* i386-tdep.c (i386_frame_prev_register): Unwind SP from memory
[deliverable/binutils-gdb.git] / gdb / dwarf2loc.c
1 /* DWARF 2 location expression support for GDB.
2
3 Copyright (C) 2003, 2005, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
5
6 Contributed by Daniel Jacobowitz, MontaVista Software, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "ui-out.h"
25 #include "value.h"
26 #include "frame.h"
27 #include "gdbcore.h"
28 #include "target.h"
29 #include "inferior.h"
30 #include "ax.h"
31 #include "ax-gdb.h"
32 #include "regcache.h"
33 #include "objfiles.h"
34 #include "exceptions.h"
35 #include "block.h"
36
37 #include "dwarf2.h"
38 #include "dwarf2expr.h"
39 #include "dwarf2loc.h"
40 #include "dwarf2-frame.h"
41
42 #include "gdb_string.h"
43 #include "gdb_assert.h"
44
45 extern int dwarf2_always_disassemble;
46
47 static void
48 dwarf_expr_frame_base_1 (struct symbol *framefunc, CORE_ADDR pc,
49 const gdb_byte **start, size_t *length);
50
51 static struct value *
52 dwarf2_evaluate_loc_desc_full (struct type *type, struct frame_info *frame,
53 const gdb_byte *data, unsigned short size,
54 struct dwarf2_per_cu_data *per_cu,
55 LONGEST byte_offset);
56
57 /* A function for dealing with location lists. Given a
58 symbol baton (BATON) and a pc value (PC), find the appropriate
59 location expression, set *LOCEXPR_LENGTH, and return a pointer
60 to the beginning of the expression. Returns NULL on failure.
61
62 For now, only return the first matching location expression; there
63 can be more than one in the list. */
64
65 const gdb_byte *
66 dwarf2_find_location_expression (struct dwarf2_loclist_baton *baton,
67 size_t *locexpr_length, CORE_ADDR pc)
68 {
69 CORE_ADDR low, high;
70 const gdb_byte *loc_ptr, *buf_end;
71 int length;
72 struct objfile *objfile = dwarf2_per_cu_objfile (baton->per_cu);
73 struct gdbarch *gdbarch = get_objfile_arch (objfile);
74 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
75 unsigned int addr_size = dwarf2_per_cu_addr_size (baton->per_cu);
76 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
77 CORE_ADDR base_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
78 /* Adjust base_address for relocatable objects. */
79 CORE_ADDR base_offset = dwarf2_per_cu_text_offset (baton->per_cu);
80 CORE_ADDR base_address = baton->base_address + base_offset;
81
82 loc_ptr = baton->data;
83 buf_end = baton->data + baton->size;
84
85 while (1)
86 {
87 if (buf_end - loc_ptr < 2 * addr_size)
88 error (_("dwarf2_find_location_expression: "
89 "Corrupted DWARF expression."));
90
91 if (signed_addr_p)
92 low = extract_signed_integer (loc_ptr, addr_size, byte_order);
93 else
94 low = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
95 loc_ptr += addr_size;
96
97 if (signed_addr_p)
98 high = extract_signed_integer (loc_ptr, addr_size, byte_order);
99 else
100 high = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
101 loc_ptr += addr_size;
102
103 /* A base-address-selection entry. */
104 if ((low & base_mask) == base_mask)
105 {
106 base_address = high + base_offset;
107 continue;
108 }
109
110 /* An end-of-list entry. */
111 if (low == 0 && high == 0)
112 return NULL;
113
114 /* Otherwise, a location expression entry. */
115 low += base_address;
116 high += base_address;
117
118 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
119 loc_ptr += 2;
120
121 if (pc >= low && pc < high)
122 {
123 *locexpr_length = length;
124 return loc_ptr;
125 }
126
127 loc_ptr += length;
128 }
129 }
130
131 /* This is the baton used when performing dwarf2 expression
132 evaluation. */
133 struct dwarf_expr_baton
134 {
135 struct frame_info *frame;
136 struct dwarf2_per_cu_data *per_cu;
137 };
138
139 /* Helper functions for dwarf2_evaluate_loc_desc. */
140
141 /* Using the frame specified in BATON, return the value of register
142 REGNUM, treated as a pointer. */
143 static CORE_ADDR
144 dwarf_expr_read_reg (void *baton, int dwarf_regnum)
145 {
146 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
147 struct gdbarch *gdbarch = get_frame_arch (debaton->frame);
148 CORE_ADDR result;
149 int regnum;
150
151 regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, dwarf_regnum);
152 result = address_from_register (builtin_type (gdbarch)->builtin_data_ptr,
153 regnum, debaton->frame);
154 return result;
155 }
156
157 /* Read memory at ADDR (length LEN) into BUF. */
158
159 static void
160 dwarf_expr_read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
161 {
162 read_memory (addr, buf, len);
163 }
164
165 /* Using the frame specified in BATON, find the location expression
166 describing the frame base. Return a pointer to it in START and
167 its length in LENGTH. */
168 static void
169 dwarf_expr_frame_base (void *baton, const gdb_byte **start, size_t * length)
170 {
171 /* FIXME: cagney/2003-03-26: This code should be using
172 get_frame_base_address(), and then implement a dwarf2 specific
173 this_base method. */
174 struct symbol *framefunc;
175 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
176
177 /* Use block_linkage_function, which returns a real (not inlined)
178 function, instead of get_frame_function, which may return an
179 inlined function. */
180 framefunc = block_linkage_function (get_frame_block (debaton->frame, NULL));
181
182 /* If we found a frame-relative symbol then it was certainly within
183 some function associated with a frame. If we can't find the frame,
184 something has gone wrong. */
185 gdb_assert (framefunc != NULL);
186
187 dwarf_expr_frame_base_1 (framefunc,
188 get_frame_address_in_block (debaton->frame),
189 start, length);
190 }
191
192 static void
193 dwarf_expr_frame_base_1 (struct symbol *framefunc, CORE_ADDR pc,
194 const gdb_byte **start, size_t *length)
195 {
196 if (SYMBOL_LOCATION_BATON (framefunc) == NULL)
197 *start = NULL;
198 else if (SYMBOL_COMPUTED_OPS (framefunc) == &dwarf2_loclist_funcs)
199 {
200 struct dwarf2_loclist_baton *symbaton;
201
202 symbaton = SYMBOL_LOCATION_BATON (framefunc);
203 *start = dwarf2_find_location_expression (symbaton, length, pc);
204 }
205 else
206 {
207 struct dwarf2_locexpr_baton *symbaton;
208
209 symbaton = SYMBOL_LOCATION_BATON (framefunc);
210 if (symbaton != NULL)
211 {
212 *length = symbaton->size;
213 *start = symbaton->data;
214 }
215 else
216 *start = NULL;
217 }
218
219 if (*start == NULL)
220 error (_("Could not find the frame base for \"%s\"."),
221 SYMBOL_NATURAL_NAME (framefunc));
222 }
223
224 /* Helper function for dwarf2_evaluate_loc_desc. Computes the CFA for
225 the frame in BATON. */
226
227 static CORE_ADDR
228 dwarf_expr_frame_cfa (void *baton)
229 {
230 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
231
232 return dwarf2_frame_cfa (debaton->frame);
233 }
234
235 /* Helper function for dwarf2_evaluate_loc_desc. Computes the PC for
236 the frame in BATON. */
237
238 static CORE_ADDR
239 dwarf_expr_frame_pc (void *baton)
240 {
241 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
242
243 return get_frame_address_in_block (debaton->frame);
244 }
245
246 /* Using the objfile specified in BATON, find the address for the
247 current thread's thread-local storage with offset OFFSET. */
248 static CORE_ADDR
249 dwarf_expr_tls_address (void *baton, CORE_ADDR offset)
250 {
251 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
252 struct objfile *objfile = dwarf2_per_cu_objfile (debaton->per_cu);
253
254 return target_translate_tls_address (objfile, offset);
255 }
256
257 /* Call DWARF subroutine from DW_AT_location of DIE at DIE_OFFSET in
258 current CU (as is PER_CU). State of the CTX is not affected by the
259 call and return. */
260
261 static void
262 per_cu_dwarf_call (struct dwarf_expr_context *ctx, size_t die_offset,
263 struct dwarf2_per_cu_data *per_cu,
264 CORE_ADDR (*get_frame_pc) (void *baton),
265 void *baton)
266 {
267 struct dwarf2_locexpr_baton block;
268
269 block = dwarf2_fetch_die_location_block (die_offset, per_cu,
270 get_frame_pc, baton);
271
272 /* DW_OP_call_ref is currently not supported. */
273 gdb_assert (block.per_cu == per_cu);
274
275 dwarf_expr_eval (ctx, block.data, block.size);
276 }
277
278 /* Helper interface of per_cu_dwarf_call for dwarf2_evaluate_loc_desc. */
279
280 static void
281 dwarf_expr_dwarf_call (struct dwarf_expr_context *ctx, size_t die_offset)
282 {
283 struct dwarf_expr_baton *debaton = ctx->baton;
284
285 per_cu_dwarf_call (ctx, die_offset, debaton->per_cu,
286 ctx->get_frame_pc, ctx->baton);
287 }
288
289 struct piece_closure
290 {
291 /* Reference count. */
292 int refc;
293
294 /* The CU from which this closure's expression came. */
295 struct dwarf2_per_cu_data *per_cu;
296
297 /* The number of pieces used to describe this variable. */
298 int n_pieces;
299
300 /* The target address size, used only for DWARF_VALUE_STACK. */
301 int addr_size;
302
303 /* The pieces themselves. */
304 struct dwarf_expr_piece *pieces;
305 };
306
307 /* Allocate a closure for a value formed from separately-described
308 PIECES. */
309
310 static struct piece_closure *
311 allocate_piece_closure (struct dwarf2_per_cu_data *per_cu,
312 int n_pieces, struct dwarf_expr_piece *pieces,
313 int addr_size)
314 {
315 struct piece_closure *c = XZALLOC (struct piece_closure);
316
317 c->refc = 1;
318 c->per_cu = per_cu;
319 c->n_pieces = n_pieces;
320 c->addr_size = addr_size;
321 c->pieces = XCALLOC (n_pieces, struct dwarf_expr_piece);
322
323 memcpy (c->pieces, pieces, n_pieces * sizeof (struct dwarf_expr_piece));
324
325 return c;
326 }
327
328 /* The lowest-level function to extract bits from a byte buffer.
329 SOURCE is the buffer. It is updated if we read to the end of a
330 byte.
331 SOURCE_OFFSET_BITS is the offset of the first bit to read. It is
332 updated to reflect the number of bits actually read.
333 NBITS is the number of bits we want to read. It is updated to
334 reflect the number of bits actually read. This function may read
335 fewer bits.
336 BITS_BIG_ENDIAN is taken directly from gdbarch.
337 This function returns the extracted bits. */
338
339 static unsigned int
340 extract_bits_primitive (const gdb_byte **source,
341 unsigned int *source_offset_bits,
342 int *nbits, int bits_big_endian)
343 {
344 unsigned int avail, mask, datum;
345
346 gdb_assert (*source_offset_bits < 8);
347
348 avail = 8 - *source_offset_bits;
349 if (avail > *nbits)
350 avail = *nbits;
351
352 mask = (1 << avail) - 1;
353 datum = **source;
354 if (bits_big_endian)
355 datum >>= 8 - (*source_offset_bits + *nbits);
356 else
357 datum >>= *source_offset_bits;
358 datum &= mask;
359
360 *nbits -= avail;
361 *source_offset_bits += avail;
362 if (*source_offset_bits >= 8)
363 {
364 *source_offset_bits -= 8;
365 ++*source;
366 }
367
368 return datum;
369 }
370
371 /* Extract some bits from a source buffer and move forward in the
372 buffer.
373
374 SOURCE is the source buffer. It is updated as bytes are read.
375 SOURCE_OFFSET_BITS is the offset into SOURCE. It is updated as
376 bits are read.
377 NBITS is the number of bits to read.
378 BITS_BIG_ENDIAN is taken directly from gdbarch.
379
380 This function returns the bits that were read. */
381
382 static unsigned int
383 extract_bits (const gdb_byte **source, unsigned int *source_offset_bits,
384 int nbits, int bits_big_endian)
385 {
386 unsigned int datum;
387
388 gdb_assert (nbits > 0 && nbits <= 8);
389
390 datum = extract_bits_primitive (source, source_offset_bits, &nbits,
391 bits_big_endian);
392 if (nbits > 0)
393 {
394 unsigned int more;
395
396 more = extract_bits_primitive (source, source_offset_bits, &nbits,
397 bits_big_endian);
398 if (bits_big_endian)
399 datum <<= nbits;
400 else
401 more <<= nbits;
402 datum |= more;
403 }
404
405 return datum;
406 }
407
408 /* Write some bits into a buffer and move forward in the buffer.
409
410 DATUM is the bits to write. The low-order bits of DATUM are used.
411 DEST is the destination buffer. It is updated as bytes are
412 written.
413 DEST_OFFSET_BITS is the bit offset in DEST at which writing is
414 done.
415 NBITS is the number of valid bits in DATUM.
416 BITS_BIG_ENDIAN is taken directly from gdbarch. */
417
418 static void
419 insert_bits (unsigned int datum,
420 gdb_byte *dest, unsigned int dest_offset_bits,
421 int nbits, int bits_big_endian)
422 {
423 unsigned int mask;
424
425 gdb_assert (dest_offset_bits + nbits <= 8);
426
427 mask = (1 << nbits) - 1;
428 if (bits_big_endian)
429 {
430 datum <<= 8 - (dest_offset_bits + nbits);
431 mask <<= 8 - (dest_offset_bits + nbits);
432 }
433 else
434 {
435 datum <<= dest_offset_bits;
436 mask <<= dest_offset_bits;
437 }
438
439 gdb_assert ((datum & ~mask) == 0);
440
441 *dest = (*dest & ~mask) | datum;
442 }
443
444 /* Copy bits from a source to a destination.
445
446 DEST is where the bits should be written.
447 DEST_OFFSET_BITS is the bit offset into DEST.
448 SOURCE is the source of bits.
449 SOURCE_OFFSET_BITS is the bit offset into SOURCE.
450 BIT_COUNT is the number of bits to copy.
451 BITS_BIG_ENDIAN is taken directly from gdbarch. */
452
453 static void
454 copy_bitwise (gdb_byte *dest, unsigned int dest_offset_bits,
455 const gdb_byte *source, unsigned int source_offset_bits,
456 unsigned int bit_count,
457 int bits_big_endian)
458 {
459 unsigned int dest_avail;
460 int datum;
461
462 /* Reduce everything to byte-size pieces. */
463 dest += dest_offset_bits / 8;
464 dest_offset_bits %= 8;
465 source += source_offset_bits / 8;
466 source_offset_bits %= 8;
467
468 dest_avail = 8 - dest_offset_bits % 8;
469
470 /* See if we can fill the first destination byte. */
471 if (dest_avail < bit_count)
472 {
473 datum = extract_bits (&source, &source_offset_bits, dest_avail,
474 bits_big_endian);
475 insert_bits (datum, dest, dest_offset_bits, dest_avail, bits_big_endian);
476 ++dest;
477 dest_offset_bits = 0;
478 bit_count -= dest_avail;
479 }
480
481 /* Now, either DEST_OFFSET_BITS is byte-aligned, or we have fewer
482 than 8 bits remaining. */
483 gdb_assert (dest_offset_bits % 8 == 0 || bit_count < 8);
484 for (; bit_count >= 8; bit_count -= 8)
485 {
486 datum = extract_bits (&source, &source_offset_bits, 8, bits_big_endian);
487 *dest++ = (gdb_byte) datum;
488 }
489
490 /* Finally, we may have a few leftover bits. */
491 gdb_assert (bit_count <= 8 - dest_offset_bits % 8);
492 if (bit_count > 0)
493 {
494 datum = extract_bits (&source, &source_offset_bits, bit_count,
495 bits_big_endian);
496 insert_bits (datum, dest, dest_offset_bits, bit_count, bits_big_endian);
497 }
498 }
499
500 static void
501 read_pieced_value (struct value *v)
502 {
503 int i;
504 long offset = 0;
505 ULONGEST bits_to_skip;
506 gdb_byte *contents;
507 struct piece_closure *c
508 = (struct piece_closure *) value_computed_closure (v);
509 struct frame_info *frame = frame_find_by_id (VALUE_FRAME_ID (v));
510 size_t type_len;
511 size_t buffer_size = 0;
512 char *buffer = NULL;
513 struct cleanup *cleanup;
514 int bits_big_endian
515 = gdbarch_bits_big_endian (get_type_arch (value_type (v)));
516
517 if (value_type (v) != value_enclosing_type (v))
518 internal_error (__FILE__, __LINE__,
519 _("Should not be able to create a lazy value with "
520 "an enclosing type"));
521
522 cleanup = make_cleanup (free_current_contents, &buffer);
523
524 contents = value_contents_raw (v);
525 bits_to_skip = 8 * value_offset (v);
526 if (value_bitsize (v))
527 {
528 bits_to_skip += value_bitpos (v);
529 type_len = value_bitsize (v);
530 }
531 else
532 type_len = 8 * TYPE_LENGTH (value_type (v));
533
534 for (i = 0; i < c->n_pieces && offset < type_len; i++)
535 {
536 struct dwarf_expr_piece *p = &c->pieces[i];
537 size_t this_size, this_size_bits;
538 long dest_offset_bits, source_offset_bits, source_offset;
539 const gdb_byte *intermediate_buffer;
540
541 /* Compute size, source, and destination offsets for copying, in
542 bits. */
543 this_size_bits = p->size;
544 if (bits_to_skip > 0 && bits_to_skip >= this_size_bits)
545 {
546 bits_to_skip -= this_size_bits;
547 continue;
548 }
549 if (this_size_bits > type_len - offset)
550 this_size_bits = type_len - offset;
551 if (bits_to_skip > 0)
552 {
553 dest_offset_bits = 0;
554 source_offset_bits = bits_to_skip;
555 this_size_bits -= bits_to_skip;
556 bits_to_skip = 0;
557 }
558 else
559 {
560 dest_offset_bits = offset;
561 source_offset_bits = 0;
562 }
563
564 this_size = (this_size_bits + source_offset_bits % 8 + 7) / 8;
565 source_offset = source_offset_bits / 8;
566 if (buffer_size < this_size)
567 {
568 buffer_size = this_size;
569 buffer = xrealloc (buffer, buffer_size);
570 }
571 intermediate_buffer = buffer;
572
573 /* Copy from the source to DEST_BUFFER. */
574 switch (p->location)
575 {
576 case DWARF_VALUE_REGISTER:
577 {
578 struct gdbarch *arch = get_frame_arch (frame);
579 int gdb_regnum = gdbarch_dwarf2_reg_to_regnum (arch, p->v.value);
580 int reg_offset = source_offset;
581
582 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG
583 && this_size < register_size (arch, gdb_regnum))
584 {
585 /* Big-endian, and we want less than full size. */
586 reg_offset = register_size (arch, gdb_regnum) - this_size;
587 /* We want the lower-order THIS_SIZE_BITS of the bytes
588 we extract from the register. */
589 source_offset_bits += 8 * this_size - this_size_bits;
590 }
591
592 if (gdb_regnum != -1)
593 {
594 int optim, unavail;
595
596 if (!get_frame_register_bytes (frame, gdb_regnum, reg_offset,
597 this_size, buffer,
598 &optim, &unavail))
599 {
600 /* Just so garbage doesn't ever shine through. */
601 memset (buffer, 0, this_size);
602
603 if (optim)
604 set_value_optimized_out (v, 1);
605 if (unavail)
606 mark_value_bytes_unavailable (v, offset, this_size);
607 }
608 }
609 else
610 {
611 error (_("Unable to access DWARF register number %s"),
612 paddress (arch, p->v.value));
613 }
614 }
615 break;
616
617 case DWARF_VALUE_MEMORY:
618 read_value_memory (v, offset,
619 p->v.mem.in_stack_memory,
620 p->v.mem.addr + source_offset,
621 buffer, this_size);
622 break;
623
624 case DWARF_VALUE_STACK:
625 {
626 struct gdbarch *gdbarch = get_type_arch (value_type (v));
627 size_t n = this_size;
628
629 if (n > c->addr_size - source_offset)
630 n = (c->addr_size >= source_offset
631 ? c->addr_size - source_offset
632 : 0);
633 if (n == 0)
634 {
635 /* Nothing. */
636 }
637 else if (source_offset == 0)
638 store_unsigned_integer (buffer, n,
639 gdbarch_byte_order (gdbarch),
640 p->v.value);
641 else
642 {
643 gdb_byte bytes[sizeof (ULONGEST)];
644
645 store_unsigned_integer (bytes, n + source_offset,
646 gdbarch_byte_order (gdbarch),
647 p->v.value);
648 memcpy (buffer, bytes + source_offset, n);
649 }
650 }
651 break;
652
653 case DWARF_VALUE_LITERAL:
654 {
655 size_t n = this_size;
656
657 if (n > p->v.literal.length - source_offset)
658 n = (p->v.literal.length >= source_offset
659 ? p->v.literal.length - source_offset
660 : 0);
661 if (n != 0)
662 intermediate_buffer = p->v.literal.data + source_offset;
663 }
664 break;
665
666 /* These bits show up as zeros -- but do not cause the value
667 to be considered optimized-out. */
668 case DWARF_VALUE_IMPLICIT_POINTER:
669 break;
670
671 case DWARF_VALUE_OPTIMIZED_OUT:
672 set_value_optimized_out (v, 1);
673 break;
674
675 default:
676 internal_error (__FILE__, __LINE__, _("invalid location type"));
677 }
678
679 if (p->location != DWARF_VALUE_OPTIMIZED_OUT
680 && p->location != DWARF_VALUE_IMPLICIT_POINTER)
681 copy_bitwise (contents, dest_offset_bits,
682 intermediate_buffer, source_offset_bits % 8,
683 this_size_bits, bits_big_endian);
684
685 offset += this_size_bits;
686 }
687
688 do_cleanups (cleanup);
689 }
690
691 static void
692 write_pieced_value (struct value *to, struct value *from)
693 {
694 int i;
695 long offset = 0;
696 ULONGEST bits_to_skip;
697 const gdb_byte *contents;
698 struct piece_closure *c
699 = (struct piece_closure *) value_computed_closure (to);
700 struct frame_info *frame = frame_find_by_id (VALUE_FRAME_ID (to));
701 size_t type_len;
702 size_t buffer_size = 0;
703 char *buffer = NULL;
704 struct cleanup *cleanup;
705 int bits_big_endian
706 = gdbarch_bits_big_endian (get_type_arch (value_type (to)));
707
708 if (frame == NULL)
709 {
710 set_value_optimized_out (to, 1);
711 return;
712 }
713
714 cleanup = make_cleanup (free_current_contents, &buffer);
715
716 contents = value_contents (from);
717 bits_to_skip = 8 * value_offset (to);
718 if (value_bitsize (to))
719 {
720 bits_to_skip += value_bitpos (to);
721 type_len = value_bitsize (to);
722 }
723 else
724 type_len = 8 * TYPE_LENGTH (value_type (to));
725
726 for (i = 0; i < c->n_pieces && offset < type_len; i++)
727 {
728 struct dwarf_expr_piece *p = &c->pieces[i];
729 size_t this_size_bits, this_size;
730 long dest_offset_bits, source_offset_bits, dest_offset, source_offset;
731 int need_bitwise;
732 const gdb_byte *source_buffer;
733
734 this_size_bits = p->size;
735 if (bits_to_skip > 0 && bits_to_skip >= this_size_bits)
736 {
737 bits_to_skip -= this_size_bits;
738 continue;
739 }
740 if (this_size_bits > type_len - offset)
741 this_size_bits = type_len - offset;
742 if (bits_to_skip > 0)
743 {
744 dest_offset_bits = bits_to_skip;
745 source_offset_bits = 0;
746 this_size_bits -= bits_to_skip;
747 bits_to_skip = 0;
748 }
749 else
750 {
751 dest_offset_bits = 0;
752 source_offset_bits = offset;
753 }
754
755 this_size = (this_size_bits + source_offset_bits % 8 + 7) / 8;
756 source_offset = source_offset_bits / 8;
757 dest_offset = dest_offset_bits / 8;
758 if (dest_offset_bits % 8 == 0 && source_offset_bits % 8 == 0)
759 {
760 source_buffer = contents + source_offset;
761 need_bitwise = 0;
762 }
763 else
764 {
765 if (buffer_size < this_size)
766 {
767 buffer_size = this_size;
768 buffer = xrealloc (buffer, buffer_size);
769 }
770 source_buffer = buffer;
771 need_bitwise = 1;
772 }
773
774 switch (p->location)
775 {
776 case DWARF_VALUE_REGISTER:
777 {
778 struct gdbarch *arch = get_frame_arch (frame);
779 int gdb_regnum = gdbarch_dwarf2_reg_to_regnum (arch, p->v.value);
780 int reg_offset = dest_offset;
781
782 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG
783 && this_size <= register_size (arch, gdb_regnum))
784 /* Big-endian, and we want less than full size. */
785 reg_offset = register_size (arch, gdb_regnum) - this_size;
786
787 if (gdb_regnum != -1)
788 {
789 if (need_bitwise)
790 {
791 int optim, unavail;
792
793 if (!get_frame_register_bytes (frame, gdb_regnum, reg_offset,
794 this_size, buffer,
795 &optim, &unavail))
796 {
797 if (optim)
798 error (_("Can't do read-modify-write to "
799 "update bitfield; containing word has been "
800 "optimized out"));
801 if (unavail)
802 throw_error (NOT_AVAILABLE_ERROR,
803 _("Can't do read-modify-write to update "
804 "bitfield; containing word "
805 "is unavailable"));
806 }
807 copy_bitwise (buffer, dest_offset_bits,
808 contents, source_offset_bits,
809 this_size_bits,
810 bits_big_endian);
811 }
812
813 put_frame_register_bytes (frame, gdb_regnum, reg_offset,
814 this_size, source_buffer);
815 }
816 else
817 {
818 error (_("Unable to write to DWARF register number %s"),
819 paddress (arch, p->v.value));
820 }
821 }
822 break;
823 case DWARF_VALUE_MEMORY:
824 if (need_bitwise)
825 {
826 /* Only the first and last bytes can possibly have any
827 bits reused. */
828 read_memory (p->v.mem.addr + dest_offset, buffer, 1);
829 read_memory (p->v.mem.addr + dest_offset + this_size - 1,
830 buffer + this_size - 1, 1);
831 copy_bitwise (buffer, dest_offset_bits,
832 contents, source_offset_bits,
833 this_size_bits,
834 bits_big_endian);
835 }
836
837 write_memory (p->v.mem.addr + dest_offset,
838 source_buffer, this_size);
839 break;
840 default:
841 set_value_optimized_out (to, 1);
842 break;
843 }
844 offset += this_size_bits;
845 }
846
847 do_cleanups (cleanup);
848 }
849
850 /* A helper function that checks bit validity in a pieced value.
851 CHECK_FOR indicates the kind of validity checking.
852 DWARF_VALUE_MEMORY means to check whether any bit is valid.
853 DWARF_VALUE_OPTIMIZED_OUT means to check whether any bit is
854 optimized out.
855 DWARF_VALUE_IMPLICIT_POINTER means to check whether the bits are an
856 implicit pointer. */
857
858 static int
859 check_pieced_value_bits (const struct value *value, int bit_offset,
860 int bit_length,
861 enum dwarf_value_location check_for)
862 {
863 struct piece_closure *c
864 = (struct piece_closure *) value_computed_closure (value);
865 int i;
866 int validity = (check_for == DWARF_VALUE_MEMORY
867 || check_for == DWARF_VALUE_IMPLICIT_POINTER);
868
869 bit_offset += 8 * value_offset (value);
870 if (value_bitsize (value))
871 bit_offset += value_bitpos (value);
872
873 for (i = 0; i < c->n_pieces && bit_length > 0; i++)
874 {
875 struct dwarf_expr_piece *p = &c->pieces[i];
876 size_t this_size_bits = p->size;
877
878 if (bit_offset > 0)
879 {
880 if (bit_offset >= this_size_bits)
881 {
882 bit_offset -= this_size_bits;
883 continue;
884 }
885
886 bit_length -= this_size_bits - bit_offset;
887 bit_offset = 0;
888 }
889 else
890 bit_length -= this_size_bits;
891
892 if (check_for == DWARF_VALUE_IMPLICIT_POINTER)
893 {
894 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
895 return 0;
896 }
897 else if (p->location == DWARF_VALUE_OPTIMIZED_OUT
898 || p->location == DWARF_VALUE_IMPLICIT_POINTER)
899 {
900 if (validity)
901 return 0;
902 }
903 else
904 {
905 if (!validity)
906 return 1;
907 }
908 }
909
910 return validity;
911 }
912
913 static int
914 check_pieced_value_validity (const struct value *value, int bit_offset,
915 int bit_length)
916 {
917 return check_pieced_value_bits (value, bit_offset, bit_length,
918 DWARF_VALUE_MEMORY);
919 }
920
921 static int
922 check_pieced_value_invalid (const struct value *value)
923 {
924 return check_pieced_value_bits (value, 0,
925 8 * TYPE_LENGTH (value_type (value)),
926 DWARF_VALUE_OPTIMIZED_OUT);
927 }
928
929 /* An implementation of an lval_funcs method to see whether a value is
930 a synthetic pointer. */
931
932 static int
933 check_pieced_synthetic_pointer (const struct value *value, int bit_offset,
934 int bit_length)
935 {
936 return check_pieced_value_bits (value, bit_offset, bit_length,
937 DWARF_VALUE_IMPLICIT_POINTER);
938 }
939
940 /* A wrapper function for get_frame_address_in_block. */
941
942 static CORE_ADDR
943 get_frame_address_in_block_wrapper (void *baton)
944 {
945 return get_frame_address_in_block (baton);
946 }
947
948 /* An implementation of an lval_funcs method to indirect through a
949 pointer. This handles the synthetic pointer case when needed. */
950
951 static struct value *
952 indirect_pieced_value (struct value *value)
953 {
954 struct piece_closure *c
955 = (struct piece_closure *) value_computed_closure (value);
956 struct type *type;
957 struct frame_info *frame;
958 struct dwarf2_locexpr_baton baton;
959 int i, bit_offset, bit_length;
960 struct dwarf_expr_piece *piece = NULL;
961 struct value *result;
962 LONGEST byte_offset;
963
964 type = value_type (value);
965 if (TYPE_CODE (type) != TYPE_CODE_PTR)
966 return NULL;
967
968 bit_length = 8 * TYPE_LENGTH (type);
969 bit_offset = 8 * value_offset (value);
970 if (value_bitsize (value))
971 bit_offset += value_bitpos (value);
972
973 for (i = 0; i < c->n_pieces && bit_length > 0; i++)
974 {
975 struct dwarf_expr_piece *p = &c->pieces[i];
976 size_t this_size_bits = p->size;
977
978 if (bit_offset > 0)
979 {
980 if (bit_offset >= this_size_bits)
981 {
982 bit_offset -= this_size_bits;
983 continue;
984 }
985
986 bit_length -= this_size_bits - bit_offset;
987 bit_offset = 0;
988 }
989 else
990 bit_length -= this_size_bits;
991
992 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
993 return NULL;
994
995 if (bit_length != 0)
996 error (_("Invalid use of DW_OP_GNU_implicit_pointer"));
997
998 piece = p;
999 break;
1000 }
1001
1002 frame = get_selected_frame (_("No frame selected."));
1003 byte_offset = value_as_address (value);
1004
1005 gdb_assert (piece);
1006 baton = dwarf2_fetch_die_location_block (piece->v.ptr.die, c->per_cu,
1007 get_frame_address_in_block_wrapper,
1008 frame);
1009
1010 result = dwarf2_evaluate_loc_desc_full (TYPE_TARGET_TYPE (type), frame,
1011 baton.data, baton.size, baton.per_cu,
1012 byte_offset);
1013
1014 return result;
1015 }
1016
1017 static void *
1018 copy_pieced_value_closure (const struct value *v)
1019 {
1020 struct piece_closure *c
1021 = (struct piece_closure *) value_computed_closure (v);
1022
1023 ++c->refc;
1024 return c;
1025 }
1026
1027 static void
1028 free_pieced_value_closure (struct value *v)
1029 {
1030 struct piece_closure *c
1031 = (struct piece_closure *) value_computed_closure (v);
1032
1033 --c->refc;
1034 if (c->refc == 0)
1035 {
1036 xfree (c->pieces);
1037 xfree (c);
1038 }
1039 }
1040
1041 /* Functions for accessing a variable described by DW_OP_piece. */
1042 static struct lval_funcs pieced_value_funcs = {
1043 read_pieced_value,
1044 write_pieced_value,
1045 check_pieced_value_validity,
1046 check_pieced_value_invalid,
1047 indirect_pieced_value,
1048 check_pieced_synthetic_pointer,
1049 copy_pieced_value_closure,
1050 free_pieced_value_closure
1051 };
1052
1053 /* Helper function which throws an error if a synthetic pointer is
1054 invalid. */
1055
1056 static void
1057 invalid_synthetic_pointer (void)
1058 {
1059 error (_("access outside bounds of object "
1060 "referenced via synthetic pointer"));
1061 }
1062
1063 /* Evaluate a location description, starting at DATA and with length
1064 SIZE, to find the current location of variable of TYPE in the
1065 context of FRAME. BYTE_OFFSET is applied after the contents are
1066 computed. */
1067
1068 static struct value *
1069 dwarf2_evaluate_loc_desc_full (struct type *type, struct frame_info *frame,
1070 const gdb_byte *data, unsigned short size,
1071 struct dwarf2_per_cu_data *per_cu,
1072 LONGEST byte_offset)
1073 {
1074 struct value *retval;
1075 struct dwarf_expr_baton baton;
1076 struct dwarf_expr_context *ctx;
1077 struct cleanup *old_chain;
1078 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
1079 volatile struct gdb_exception ex;
1080
1081 if (byte_offset < 0)
1082 invalid_synthetic_pointer ();
1083
1084 if (size == 0)
1085 {
1086 retval = allocate_value (type);
1087 VALUE_LVAL (retval) = not_lval;
1088 set_value_optimized_out (retval, 1);
1089 return retval;
1090 }
1091
1092 baton.frame = frame;
1093 baton.per_cu = per_cu;
1094
1095 ctx = new_dwarf_expr_context ();
1096 old_chain = make_cleanup_free_dwarf_expr_context (ctx);
1097
1098 ctx->gdbarch = get_objfile_arch (objfile);
1099 ctx->addr_size = dwarf2_per_cu_addr_size (per_cu);
1100 ctx->offset = dwarf2_per_cu_text_offset (per_cu);
1101 ctx->baton = &baton;
1102 ctx->read_reg = dwarf_expr_read_reg;
1103 ctx->read_mem = dwarf_expr_read_mem;
1104 ctx->get_frame_base = dwarf_expr_frame_base;
1105 ctx->get_frame_cfa = dwarf_expr_frame_cfa;
1106 ctx->get_frame_pc = dwarf_expr_frame_pc;
1107 ctx->get_tls_address = dwarf_expr_tls_address;
1108 ctx->dwarf_call = dwarf_expr_dwarf_call;
1109
1110 TRY_CATCH (ex, RETURN_MASK_ERROR)
1111 {
1112 dwarf_expr_eval (ctx, data, size);
1113 }
1114 if (ex.reason < 0)
1115 {
1116 if (ex.error == NOT_AVAILABLE_ERROR)
1117 {
1118 retval = allocate_value (type);
1119 mark_value_bytes_unavailable (retval, 0, TYPE_LENGTH (type));
1120 return retval;
1121 }
1122 else
1123 throw_exception (ex);
1124 }
1125
1126 if (ctx->num_pieces > 0)
1127 {
1128 struct piece_closure *c;
1129 struct frame_id frame_id = get_frame_id (frame);
1130 ULONGEST bit_size = 0;
1131 int i;
1132
1133 for (i = 0; i < ctx->num_pieces; ++i)
1134 bit_size += ctx->pieces[i].size;
1135 if (8 * (byte_offset + TYPE_LENGTH (type)) > bit_size)
1136 invalid_synthetic_pointer ();
1137
1138 c = allocate_piece_closure (per_cu, ctx->num_pieces, ctx->pieces,
1139 ctx->addr_size);
1140 retval = allocate_computed_value (type, &pieced_value_funcs, c);
1141 VALUE_FRAME_ID (retval) = frame_id;
1142 set_value_offset (retval, byte_offset);
1143 }
1144 else
1145 {
1146 switch (ctx->location)
1147 {
1148 case DWARF_VALUE_REGISTER:
1149 {
1150 struct gdbarch *arch = get_frame_arch (frame);
1151 ULONGEST dwarf_regnum = dwarf_expr_fetch (ctx, 0);
1152 int gdb_regnum = gdbarch_dwarf2_reg_to_regnum (arch, dwarf_regnum);
1153
1154 if (byte_offset != 0)
1155 error (_("cannot use offset on synthetic pointer to register"));
1156 if (gdb_regnum != -1)
1157 retval = value_from_register (type, gdb_regnum, frame);
1158 else
1159 error (_("Unable to access DWARF register number %s"),
1160 paddress (arch, dwarf_regnum));
1161 }
1162 break;
1163
1164 case DWARF_VALUE_MEMORY:
1165 {
1166 CORE_ADDR address = dwarf_expr_fetch_address (ctx, 0);
1167 int in_stack_memory = dwarf_expr_fetch_in_stack_memory (ctx, 0);
1168
1169 retval = allocate_value_lazy (type);
1170 VALUE_LVAL (retval) = lval_memory;
1171 if (in_stack_memory)
1172 set_value_stack (retval, 1);
1173 set_value_address (retval, address + byte_offset);
1174 }
1175 break;
1176
1177 case DWARF_VALUE_STACK:
1178 {
1179 ULONGEST value = dwarf_expr_fetch (ctx, 0);
1180 bfd_byte *contents, *tem;
1181 size_t n = ctx->addr_size;
1182
1183 if (byte_offset + TYPE_LENGTH (type) > n)
1184 invalid_synthetic_pointer ();
1185
1186 tem = alloca (n);
1187 store_unsigned_integer (tem, n,
1188 gdbarch_byte_order (ctx->gdbarch),
1189 value);
1190
1191 tem += byte_offset;
1192 n -= byte_offset;
1193
1194 retval = allocate_value (type);
1195 contents = value_contents_raw (retval);
1196 if (n > TYPE_LENGTH (type))
1197 n = TYPE_LENGTH (type);
1198 memcpy (contents, tem, n);
1199 }
1200 break;
1201
1202 case DWARF_VALUE_LITERAL:
1203 {
1204 bfd_byte *contents;
1205 const bfd_byte *ldata;
1206 size_t n = ctx->len;
1207
1208 if (byte_offset + TYPE_LENGTH (type) > n)
1209 invalid_synthetic_pointer ();
1210
1211 retval = allocate_value (type);
1212 contents = value_contents_raw (retval);
1213
1214 ldata = ctx->data + byte_offset;
1215 n -= byte_offset;
1216
1217 if (n > TYPE_LENGTH (type))
1218 n = TYPE_LENGTH (type);
1219 memcpy (contents, ldata, n);
1220 }
1221 break;
1222
1223 case DWARF_VALUE_OPTIMIZED_OUT:
1224 retval = allocate_value (type);
1225 VALUE_LVAL (retval) = not_lval;
1226 set_value_optimized_out (retval, 1);
1227 break;
1228
1229 /* DWARF_VALUE_IMPLICIT_POINTER was converted to a pieced
1230 operation by execute_stack_op. */
1231 case DWARF_VALUE_IMPLICIT_POINTER:
1232 /* DWARF_VALUE_OPTIMIZED_OUT can't occur in this context --
1233 it can only be encountered when making a piece. */
1234 default:
1235 internal_error (__FILE__, __LINE__, _("invalid location type"));
1236 }
1237 }
1238
1239 set_value_initialized (retval, ctx->initialized);
1240
1241 do_cleanups (old_chain);
1242
1243 return retval;
1244 }
1245
1246 /* The exported interface to dwarf2_evaluate_loc_desc_full; it always
1247 passes 0 as the byte_offset. */
1248
1249 struct value *
1250 dwarf2_evaluate_loc_desc (struct type *type, struct frame_info *frame,
1251 const gdb_byte *data, unsigned short size,
1252 struct dwarf2_per_cu_data *per_cu)
1253 {
1254 return dwarf2_evaluate_loc_desc_full (type, frame, data, size, per_cu, 0);
1255 }
1256
1257 \f
1258 /* Helper functions and baton for dwarf2_loc_desc_needs_frame. */
1259
1260 struct needs_frame_baton
1261 {
1262 int needs_frame;
1263 struct dwarf2_per_cu_data *per_cu;
1264 };
1265
1266 /* Reads from registers do require a frame. */
1267 static CORE_ADDR
1268 needs_frame_read_reg (void *baton, int regnum)
1269 {
1270 struct needs_frame_baton *nf_baton = baton;
1271
1272 nf_baton->needs_frame = 1;
1273 return 1;
1274 }
1275
1276 /* Reads from memory do not require a frame. */
1277 static void
1278 needs_frame_read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
1279 {
1280 memset (buf, 0, len);
1281 }
1282
1283 /* Frame-relative accesses do require a frame. */
1284 static void
1285 needs_frame_frame_base (void *baton, const gdb_byte **start, size_t * length)
1286 {
1287 static gdb_byte lit0 = DW_OP_lit0;
1288 struct needs_frame_baton *nf_baton = baton;
1289
1290 *start = &lit0;
1291 *length = 1;
1292
1293 nf_baton->needs_frame = 1;
1294 }
1295
1296 /* CFA accesses require a frame. */
1297
1298 static CORE_ADDR
1299 needs_frame_frame_cfa (void *baton)
1300 {
1301 struct needs_frame_baton *nf_baton = baton;
1302
1303 nf_baton->needs_frame = 1;
1304 return 1;
1305 }
1306
1307 /* Thread-local accesses do require a frame. */
1308 static CORE_ADDR
1309 needs_frame_tls_address (void *baton, CORE_ADDR offset)
1310 {
1311 struct needs_frame_baton *nf_baton = baton;
1312
1313 nf_baton->needs_frame = 1;
1314 return 1;
1315 }
1316
1317 /* Helper interface of per_cu_dwarf_call for dwarf2_loc_desc_needs_frame. */
1318
1319 static void
1320 needs_frame_dwarf_call (struct dwarf_expr_context *ctx, size_t die_offset)
1321 {
1322 struct needs_frame_baton *nf_baton = ctx->baton;
1323
1324 per_cu_dwarf_call (ctx, die_offset, nf_baton->per_cu,
1325 ctx->get_frame_pc, ctx->baton);
1326 }
1327
1328 /* Return non-zero iff the location expression at DATA (length SIZE)
1329 requires a frame to evaluate. */
1330
1331 static int
1332 dwarf2_loc_desc_needs_frame (const gdb_byte *data, unsigned short size,
1333 struct dwarf2_per_cu_data *per_cu)
1334 {
1335 struct needs_frame_baton baton;
1336 struct dwarf_expr_context *ctx;
1337 int in_reg;
1338 struct cleanup *old_chain;
1339 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
1340
1341 baton.needs_frame = 0;
1342 baton.per_cu = per_cu;
1343
1344 ctx = new_dwarf_expr_context ();
1345 old_chain = make_cleanup_free_dwarf_expr_context (ctx);
1346
1347 ctx->gdbarch = get_objfile_arch (objfile);
1348 ctx->addr_size = dwarf2_per_cu_addr_size (per_cu);
1349 ctx->offset = dwarf2_per_cu_text_offset (per_cu);
1350 ctx->baton = &baton;
1351 ctx->read_reg = needs_frame_read_reg;
1352 ctx->read_mem = needs_frame_read_mem;
1353 ctx->get_frame_base = needs_frame_frame_base;
1354 ctx->get_frame_cfa = needs_frame_frame_cfa;
1355 ctx->get_frame_pc = needs_frame_frame_cfa;
1356 ctx->get_tls_address = needs_frame_tls_address;
1357 ctx->dwarf_call = needs_frame_dwarf_call;
1358
1359 dwarf_expr_eval (ctx, data, size);
1360
1361 in_reg = ctx->location == DWARF_VALUE_REGISTER;
1362
1363 if (ctx->num_pieces > 0)
1364 {
1365 int i;
1366
1367 /* If the location has several pieces, and any of them are in
1368 registers, then we will need a frame to fetch them from. */
1369 for (i = 0; i < ctx->num_pieces; i++)
1370 if (ctx->pieces[i].location == DWARF_VALUE_REGISTER)
1371 in_reg = 1;
1372 }
1373
1374 do_cleanups (old_chain);
1375
1376 return baton.needs_frame || in_reg;
1377 }
1378
1379 /* A helper function that throws an unimplemented error mentioning a
1380 given DWARF operator. */
1381
1382 static void
1383 unimplemented (unsigned int op)
1384 {
1385 const char *name = dwarf_stack_op_name (op);
1386
1387 if (name)
1388 error (_("DWARF operator %s cannot be translated to an agent expression"),
1389 name);
1390 else
1391 error (_("Unknown DWARF operator 0x%02x cannot be translated "
1392 "to an agent expression"),
1393 op);
1394 }
1395
1396 /* A helper function to convert a DWARF register to an arch register.
1397 ARCH is the architecture.
1398 DWARF_REG is the register.
1399 This will throw an exception if the DWARF register cannot be
1400 translated to an architecture register. */
1401
1402 static int
1403 translate_register (struct gdbarch *arch, int dwarf_reg)
1404 {
1405 int reg = gdbarch_dwarf2_reg_to_regnum (arch, dwarf_reg);
1406 if (reg == -1)
1407 error (_("Unable to access DWARF register number %d"), dwarf_reg);
1408 return reg;
1409 }
1410
1411 /* A helper function that emits an access to memory. ARCH is the
1412 target architecture. EXPR is the expression which we are building.
1413 NBITS is the number of bits we want to read. This emits the
1414 opcodes needed to read the memory and then extract the desired
1415 bits. */
1416
1417 static void
1418 access_memory (struct gdbarch *arch, struct agent_expr *expr, ULONGEST nbits)
1419 {
1420 ULONGEST nbytes = (nbits + 7) / 8;
1421
1422 gdb_assert (nbits > 0 && nbits <= sizeof (LONGEST));
1423
1424 if (trace_kludge)
1425 ax_trace_quick (expr, nbytes);
1426
1427 if (nbits <= 8)
1428 ax_simple (expr, aop_ref8);
1429 else if (nbits <= 16)
1430 ax_simple (expr, aop_ref16);
1431 else if (nbits <= 32)
1432 ax_simple (expr, aop_ref32);
1433 else
1434 ax_simple (expr, aop_ref64);
1435
1436 /* If we read exactly the number of bytes we wanted, we're done. */
1437 if (8 * nbytes == nbits)
1438 return;
1439
1440 if (gdbarch_bits_big_endian (arch))
1441 {
1442 /* On a bits-big-endian machine, we want the high-order
1443 NBITS. */
1444 ax_const_l (expr, 8 * nbytes - nbits);
1445 ax_simple (expr, aop_rsh_unsigned);
1446 }
1447 else
1448 {
1449 /* On a bits-little-endian box, we want the low-order NBITS. */
1450 ax_zero_ext (expr, nbits);
1451 }
1452 }
1453
1454 /* A helper function to return the frame's PC. */
1455
1456 static CORE_ADDR
1457 get_ax_pc (void *baton)
1458 {
1459 struct agent_expr *expr = baton;
1460
1461 return expr->scope;
1462 }
1463
1464 /* Compile a DWARF location expression to an agent expression.
1465
1466 EXPR is the agent expression we are building.
1467 LOC is the agent value we modify.
1468 ARCH is the architecture.
1469 ADDR_SIZE is the size of addresses, in bytes.
1470 OP_PTR is the start of the location expression.
1471 OP_END is one past the last byte of the location expression.
1472
1473 This will throw an exception for various kinds of errors -- for
1474 example, if the expression cannot be compiled, or if the expression
1475 is invalid. */
1476
1477 void
1478 dwarf2_compile_expr_to_ax (struct agent_expr *expr, struct axs_value *loc,
1479 struct gdbarch *arch, unsigned int addr_size,
1480 const gdb_byte *op_ptr, const gdb_byte *op_end,
1481 struct dwarf2_per_cu_data *per_cu)
1482 {
1483 struct cleanup *cleanups;
1484 int i, *offsets;
1485 VEC(int) *dw_labels = NULL, *patches = NULL;
1486 const gdb_byte * const base = op_ptr;
1487 const gdb_byte *previous_piece = op_ptr;
1488 enum bfd_endian byte_order = gdbarch_byte_order (arch);
1489 ULONGEST bits_collected = 0;
1490 unsigned int addr_size_bits = 8 * addr_size;
1491 int bits_big_endian = gdbarch_bits_big_endian (arch);
1492
1493 offsets = xmalloc ((op_end - op_ptr) * sizeof (int));
1494 cleanups = make_cleanup (xfree, offsets);
1495
1496 for (i = 0; i < op_end - op_ptr; ++i)
1497 offsets[i] = -1;
1498
1499 make_cleanup (VEC_cleanup (int), &dw_labels);
1500 make_cleanup (VEC_cleanup (int), &patches);
1501
1502 /* By default we are making an address. */
1503 loc->kind = axs_lvalue_memory;
1504
1505 while (op_ptr < op_end)
1506 {
1507 enum dwarf_location_atom op = *op_ptr;
1508 ULONGEST uoffset, reg;
1509 LONGEST offset;
1510 int i;
1511
1512 offsets[op_ptr - base] = expr->len;
1513 ++op_ptr;
1514
1515 /* Our basic approach to code generation is to map DWARF
1516 operations directly to AX operations. However, there are
1517 some differences.
1518
1519 First, DWARF works on address-sized units, but AX always uses
1520 LONGEST. For most operations we simply ignore this
1521 difference; instead we generate sign extensions as needed
1522 before division and comparison operations. It would be nice
1523 to omit the sign extensions, but there is no way to determine
1524 the size of the target's LONGEST. (This code uses the size
1525 of the host LONGEST in some cases -- that is a bug but it is
1526 difficult to fix.)
1527
1528 Second, some DWARF operations cannot be translated to AX.
1529 For these we simply fail. See
1530 http://sourceware.org/bugzilla/show_bug.cgi?id=11662. */
1531 switch (op)
1532 {
1533 case DW_OP_lit0:
1534 case DW_OP_lit1:
1535 case DW_OP_lit2:
1536 case DW_OP_lit3:
1537 case DW_OP_lit4:
1538 case DW_OP_lit5:
1539 case DW_OP_lit6:
1540 case DW_OP_lit7:
1541 case DW_OP_lit8:
1542 case DW_OP_lit9:
1543 case DW_OP_lit10:
1544 case DW_OP_lit11:
1545 case DW_OP_lit12:
1546 case DW_OP_lit13:
1547 case DW_OP_lit14:
1548 case DW_OP_lit15:
1549 case DW_OP_lit16:
1550 case DW_OP_lit17:
1551 case DW_OP_lit18:
1552 case DW_OP_lit19:
1553 case DW_OP_lit20:
1554 case DW_OP_lit21:
1555 case DW_OP_lit22:
1556 case DW_OP_lit23:
1557 case DW_OP_lit24:
1558 case DW_OP_lit25:
1559 case DW_OP_lit26:
1560 case DW_OP_lit27:
1561 case DW_OP_lit28:
1562 case DW_OP_lit29:
1563 case DW_OP_lit30:
1564 case DW_OP_lit31:
1565 ax_const_l (expr, op - DW_OP_lit0);
1566 break;
1567
1568 case DW_OP_addr:
1569 uoffset = extract_unsigned_integer (op_ptr, addr_size, byte_order);
1570 op_ptr += addr_size;
1571 /* Some versions of GCC emit DW_OP_addr before
1572 DW_OP_GNU_push_tls_address. In this case the value is an
1573 index, not an address. We don't support things like
1574 branching between the address and the TLS op. */
1575 if (op_ptr >= op_end || *op_ptr != DW_OP_GNU_push_tls_address)
1576 uoffset += dwarf2_per_cu_text_offset (per_cu);
1577 ax_const_l (expr, uoffset);
1578 break;
1579
1580 case DW_OP_const1u:
1581 ax_const_l (expr, extract_unsigned_integer (op_ptr, 1, byte_order));
1582 op_ptr += 1;
1583 break;
1584 case DW_OP_const1s:
1585 ax_const_l (expr, extract_signed_integer (op_ptr, 1, byte_order));
1586 op_ptr += 1;
1587 break;
1588 case DW_OP_const2u:
1589 ax_const_l (expr, extract_unsigned_integer (op_ptr, 2, byte_order));
1590 op_ptr += 2;
1591 break;
1592 case DW_OP_const2s:
1593 ax_const_l (expr, extract_signed_integer (op_ptr, 2, byte_order));
1594 op_ptr += 2;
1595 break;
1596 case DW_OP_const4u:
1597 ax_const_l (expr, extract_unsigned_integer (op_ptr, 4, byte_order));
1598 op_ptr += 4;
1599 break;
1600 case DW_OP_const4s:
1601 ax_const_l (expr, extract_signed_integer (op_ptr, 4, byte_order));
1602 op_ptr += 4;
1603 break;
1604 case DW_OP_const8u:
1605 ax_const_l (expr, extract_unsigned_integer (op_ptr, 8, byte_order));
1606 op_ptr += 8;
1607 break;
1608 case DW_OP_const8s:
1609 ax_const_l (expr, extract_signed_integer (op_ptr, 8, byte_order));
1610 op_ptr += 8;
1611 break;
1612 case DW_OP_constu:
1613 op_ptr = read_uleb128 (op_ptr, op_end, &uoffset);
1614 ax_const_l (expr, uoffset);
1615 break;
1616 case DW_OP_consts:
1617 op_ptr = read_sleb128 (op_ptr, op_end, &offset);
1618 ax_const_l (expr, offset);
1619 break;
1620
1621 case DW_OP_reg0:
1622 case DW_OP_reg1:
1623 case DW_OP_reg2:
1624 case DW_OP_reg3:
1625 case DW_OP_reg4:
1626 case DW_OP_reg5:
1627 case DW_OP_reg6:
1628 case DW_OP_reg7:
1629 case DW_OP_reg8:
1630 case DW_OP_reg9:
1631 case DW_OP_reg10:
1632 case DW_OP_reg11:
1633 case DW_OP_reg12:
1634 case DW_OP_reg13:
1635 case DW_OP_reg14:
1636 case DW_OP_reg15:
1637 case DW_OP_reg16:
1638 case DW_OP_reg17:
1639 case DW_OP_reg18:
1640 case DW_OP_reg19:
1641 case DW_OP_reg20:
1642 case DW_OP_reg21:
1643 case DW_OP_reg22:
1644 case DW_OP_reg23:
1645 case DW_OP_reg24:
1646 case DW_OP_reg25:
1647 case DW_OP_reg26:
1648 case DW_OP_reg27:
1649 case DW_OP_reg28:
1650 case DW_OP_reg29:
1651 case DW_OP_reg30:
1652 case DW_OP_reg31:
1653 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
1654 loc->u.reg = translate_register (arch, op - DW_OP_reg0);
1655 loc->kind = axs_lvalue_register;
1656 break;
1657
1658 case DW_OP_regx:
1659 op_ptr = read_uleb128 (op_ptr, op_end, &reg);
1660 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
1661 loc->u.reg = translate_register (arch, reg);
1662 loc->kind = axs_lvalue_register;
1663 break;
1664
1665 case DW_OP_implicit_value:
1666 {
1667 ULONGEST len;
1668
1669 op_ptr = read_uleb128 (op_ptr, op_end, &len);
1670 if (op_ptr + len > op_end)
1671 error (_("DW_OP_implicit_value: too few bytes available."));
1672 if (len > sizeof (ULONGEST))
1673 error (_("Cannot translate DW_OP_implicit_value of %d bytes"),
1674 (int) len);
1675
1676 ax_const_l (expr, extract_unsigned_integer (op_ptr, len,
1677 byte_order));
1678 op_ptr += len;
1679 dwarf_expr_require_composition (op_ptr, op_end,
1680 "DW_OP_implicit_value");
1681
1682 loc->kind = axs_rvalue;
1683 }
1684 break;
1685
1686 case DW_OP_stack_value:
1687 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_stack_value");
1688 loc->kind = axs_rvalue;
1689 break;
1690
1691 case DW_OP_breg0:
1692 case DW_OP_breg1:
1693 case DW_OP_breg2:
1694 case DW_OP_breg3:
1695 case DW_OP_breg4:
1696 case DW_OP_breg5:
1697 case DW_OP_breg6:
1698 case DW_OP_breg7:
1699 case DW_OP_breg8:
1700 case DW_OP_breg9:
1701 case DW_OP_breg10:
1702 case DW_OP_breg11:
1703 case DW_OP_breg12:
1704 case DW_OP_breg13:
1705 case DW_OP_breg14:
1706 case DW_OP_breg15:
1707 case DW_OP_breg16:
1708 case DW_OP_breg17:
1709 case DW_OP_breg18:
1710 case DW_OP_breg19:
1711 case DW_OP_breg20:
1712 case DW_OP_breg21:
1713 case DW_OP_breg22:
1714 case DW_OP_breg23:
1715 case DW_OP_breg24:
1716 case DW_OP_breg25:
1717 case DW_OP_breg26:
1718 case DW_OP_breg27:
1719 case DW_OP_breg28:
1720 case DW_OP_breg29:
1721 case DW_OP_breg30:
1722 case DW_OP_breg31:
1723 op_ptr = read_sleb128 (op_ptr, op_end, &offset);
1724 i = translate_register (arch, op - DW_OP_breg0);
1725 ax_reg (expr, i);
1726 if (offset != 0)
1727 {
1728 ax_const_l (expr, offset);
1729 ax_simple (expr, aop_add);
1730 }
1731 break;
1732 case DW_OP_bregx:
1733 {
1734 op_ptr = read_uleb128 (op_ptr, op_end, &reg);
1735 op_ptr = read_sleb128 (op_ptr, op_end, &offset);
1736 i = translate_register (arch, reg);
1737 ax_reg (expr, i);
1738 if (offset != 0)
1739 {
1740 ax_const_l (expr, offset);
1741 ax_simple (expr, aop_add);
1742 }
1743 }
1744 break;
1745 case DW_OP_fbreg:
1746 {
1747 const gdb_byte *datastart;
1748 size_t datalen;
1749 unsigned int before_stack_len;
1750 struct block *b;
1751 struct symbol *framefunc;
1752 LONGEST base_offset = 0;
1753
1754 b = block_for_pc (expr->scope);
1755
1756 if (!b)
1757 error (_("No block found for address"));
1758
1759 framefunc = block_linkage_function (b);
1760
1761 if (!framefunc)
1762 error (_("No function found for block"));
1763
1764 dwarf_expr_frame_base_1 (framefunc, expr->scope,
1765 &datastart, &datalen);
1766
1767 op_ptr = read_sleb128 (op_ptr, op_end, &offset);
1768 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size, datastart,
1769 datastart + datalen, per_cu);
1770
1771 if (offset != 0)
1772 {
1773 ax_const_l (expr, offset);
1774 ax_simple (expr, aop_add);
1775 }
1776
1777 loc->kind = axs_lvalue_memory;
1778 }
1779 break;
1780
1781 case DW_OP_dup:
1782 ax_simple (expr, aop_dup);
1783 break;
1784
1785 case DW_OP_drop:
1786 ax_simple (expr, aop_pop);
1787 break;
1788
1789 case DW_OP_pick:
1790 offset = *op_ptr++;
1791 ax_pick (expr, offset);
1792 break;
1793
1794 case DW_OP_swap:
1795 ax_simple (expr, aop_swap);
1796 break;
1797
1798 case DW_OP_over:
1799 ax_pick (expr, 1);
1800 break;
1801
1802 case DW_OP_rot:
1803 ax_simple (expr, aop_rot);
1804 break;
1805
1806 case DW_OP_deref:
1807 case DW_OP_deref_size:
1808 {
1809 int size;
1810
1811 if (op == DW_OP_deref_size)
1812 size = *op_ptr++;
1813 else
1814 size = addr_size;
1815
1816 switch (size)
1817 {
1818 case 8:
1819 ax_simple (expr, aop_ref8);
1820 break;
1821 case 16:
1822 ax_simple (expr, aop_ref16);
1823 break;
1824 case 32:
1825 ax_simple (expr, aop_ref32);
1826 break;
1827 case 64:
1828 ax_simple (expr, aop_ref64);
1829 break;
1830 default:
1831 /* Note that dwarf_stack_op_name will never return
1832 NULL here. */
1833 error (_("Unsupported size %d in %s"),
1834 size, dwarf_stack_op_name (op));
1835 }
1836 }
1837 break;
1838
1839 case DW_OP_abs:
1840 /* Sign extend the operand. */
1841 ax_ext (expr, addr_size_bits);
1842 ax_simple (expr, aop_dup);
1843 ax_const_l (expr, 0);
1844 ax_simple (expr, aop_less_signed);
1845 ax_simple (expr, aop_log_not);
1846 i = ax_goto (expr, aop_if_goto);
1847 /* We have to emit 0 - X. */
1848 ax_const_l (expr, 0);
1849 ax_simple (expr, aop_swap);
1850 ax_simple (expr, aop_sub);
1851 ax_label (expr, i, expr->len);
1852 break;
1853
1854 case DW_OP_neg:
1855 /* No need to sign extend here. */
1856 ax_const_l (expr, 0);
1857 ax_simple (expr, aop_swap);
1858 ax_simple (expr, aop_sub);
1859 break;
1860
1861 case DW_OP_not:
1862 /* Sign extend the operand. */
1863 ax_ext (expr, addr_size_bits);
1864 ax_simple (expr, aop_bit_not);
1865 break;
1866
1867 case DW_OP_plus_uconst:
1868 op_ptr = read_uleb128 (op_ptr, op_end, &reg);
1869 /* It would be really weird to emit `DW_OP_plus_uconst 0',
1870 but we micro-optimize anyhow. */
1871 if (reg != 0)
1872 {
1873 ax_const_l (expr, reg);
1874 ax_simple (expr, aop_add);
1875 }
1876 break;
1877
1878 case DW_OP_and:
1879 ax_simple (expr, aop_bit_and);
1880 break;
1881
1882 case DW_OP_div:
1883 /* Sign extend the operands. */
1884 ax_ext (expr, addr_size_bits);
1885 ax_simple (expr, aop_swap);
1886 ax_ext (expr, addr_size_bits);
1887 ax_simple (expr, aop_swap);
1888 ax_simple (expr, aop_div_signed);
1889 break;
1890
1891 case DW_OP_minus:
1892 ax_simple (expr, aop_sub);
1893 break;
1894
1895 case DW_OP_mod:
1896 ax_simple (expr, aop_rem_unsigned);
1897 break;
1898
1899 case DW_OP_mul:
1900 ax_simple (expr, aop_mul);
1901 break;
1902
1903 case DW_OP_or:
1904 ax_simple (expr, aop_bit_or);
1905 break;
1906
1907 case DW_OP_plus:
1908 ax_simple (expr, aop_add);
1909 break;
1910
1911 case DW_OP_shl:
1912 ax_simple (expr, aop_lsh);
1913 break;
1914
1915 case DW_OP_shr:
1916 ax_simple (expr, aop_rsh_unsigned);
1917 break;
1918
1919 case DW_OP_shra:
1920 ax_simple (expr, aop_rsh_signed);
1921 break;
1922
1923 case DW_OP_xor:
1924 ax_simple (expr, aop_bit_xor);
1925 break;
1926
1927 case DW_OP_le:
1928 /* Sign extend the operands. */
1929 ax_ext (expr, addr_size_bits);
1930 ax_simple (expr, aop_swap);
1931 ax_ext (expr, addr_size_bits);
1932 /* Note no swap here: A <= B is !(B < A). */
1933 ax_simple (expr, aop_less_signed);
1934 ax_simple (expr, aop_log_not);
1935 break;
1936
1937 case DW_OP_ge:
1938 /* Sign extend the operands. */
1939 ax_ext (expr, addr_size_bits);
1940 ax_simple (expr, aop_swap);
1941 ax_ext (expr, addr_size_bits);
1942 ax_simple (expr, aop_swap);
1943 /* A >= B is !(A < B). */
1944 ax_simple (expr, aop_less_signed);
1945 ax_simple (expr, aop_log_not);
1946 break;
1947
1948 case DW_OP_eq:
1949 /* Sign extend the operands. */
1950 ax_ext (expr, addr_size_bits);
1951 ax_simple (expr, aop_swap);
1952 ax_ext (expr, addr_size_bits);
1953 /* No need for a second swap here. */
1954 ax_simple (expr, aop_equal);
1955 break;
1956
1957 case DW_OP_lt:
1958 /* Sign extend the operands. */
1959 ax_ext (expr, addr_size_bits);
1960 ax_simple (expr, aop_swap);
1961 ax_ext (expr, addr_size_bits);
1962 ax_simple (expr, aop_swap);
1963 ax_simple (expr, aop_less_signed);
1964 break;
1965
1966 case DW_OP_gt:
1967 /* Sign extend the operands. */
1968 ax_ext (expr, addr_size_bits);
1969 ax_simple (expr, aop_swap);
1970 ax_ext (expr, addr_size_bits);
1971 /* Note no swap here: A > B is B < A. */
1972 ax_simple (expr, aop_less_signed);
1973 break;
1974
1975 case DW_OP_ne:
1976 /* Sign extend the operands. */
1977 ax_ext (expr, addr_size_bits);
1978 ax_simple (expr, aop_swap);
1979 ax_ext (expr, addr_size_bits);
1980 /* No need for a swap here. */
1981 ax_simple (expr, aop_equal);
1982 ax_simple (expr, aop_log_not);
1983 break;
1984
1985 case DW_OP_call_frame_cfa:
1986 dwarf2_compile_cfa_to_ax (expr, loc, arch, expr->scope, per_cu);
1987 loc->kind = axs_lvalue_memory;
1988 break;
1989
1990 case DW_OP_GNU_push_tls_address:
1991 unimplemented (op);
1992 break;
1993
1994 case DW_OP_skip:
1995 offset = extract_signed_integer (op_ptr, 2, byte_order);
1996 op_ptr += 2;
1997 i = ax_goto (expr, aop_goto);
1998 VEC_safe_push (int, dw_labels, op_ptr + offset - base);
1999 VEC_safe_push (int, patches, i);
2000 break;
2001
2002 case DW_OP_bra:
2003 offset = extract_signed_integer (op_ptr, 2, byte_order);
2004 op_ptr += 2;
2005 /* Zero extend the operand. */
2006 ax_zero_ext (expr, addr_size_bits);
2007 i = ax_goto (expr, aop_if_goto);
2008 VEC_safe_push (int, dw_labels, op_ptr + offset - base);
2009 VEC_safe_push (int, patches, i);
2010 break;
2011
2012 case DW_OP_nop:
2013 break;
2014
2015 case DW_OP_piece:
2016 case DW_OP_bit_piece:
2017 {
2018 ULONGEST size, offset;
2019
2020 if (op_ptr - 1 == previous_piece)
2021 error (_("Cannot translate empty pieces to agent expressions"));
2022 previous_piece = op_ptr - 1;
2023
2024 op_ptr = read_uleb128 (op_ptr, op_end, &size);
2025 if (op == DW_OP_piece)
2026 {
2027 size *= 8;
2028 offset = 0;
2029 }
2030 else
2031 op_ptr = read_uleb128 (op_ptr, op_end, &offset);
2032
2033 if (bits_collected + size > 8 * sizeof (LONGEST))
2034 error (_("Expression pieces exceed word size"));
2035
2036 /* Access the bits. */
2037 switch (loc->kind)
2038 {
2039 case axs_lvalue_register:
2040 ax_reg (expr, loc->u.reg);
2041 break;
2042
2043 case axs_lvalue_memory:
2044 /* Offset the pointer, if needed. */
2045 if (offset > 8)
2046 {
2047 ax_const_l (expr, offset / 8);
2048 ax_simple (expr, aop_add);
2049 offset %= 8;
2050 }
2051 access_memory (arch, expr, size);
2052 break;
2053 }
2054
2055 /* For a bits-big-endian target, shift up what we already
2056 have. For a bits-little-endian target, shift up the
2057 new data. Note that there is a potential bug here if
2058 the DWARF expression leaves multiple values on the
2059 stack. */
2060 if (bits_collected > 0)
2061 {
2062 if (bits_big_endian)
2063 {
2064 ax_simple (expr, aop_swap);
2065 ax_const_l (expr, size);
2066 ax_simple (expr, aop_lsh);
2067 /* We don't need a second swap here, because
2068 aop_bit_or is symmetric. */
2069 }
2070 else
2071 {
2072 ax_const_l (expr, size);
2073 ax_simple (expr, aop_lsh);
2074 }
2075 ax_simple (expr, aop_bit_or);
2076 }
2077
2078 bits_collected += size;
2079 loc->kind = axs_rvalue;
2080 }
2081 break;
2082
2083 case DW_OP_GNU_uninit:
2084 unimplemented (op);
2085
2086 case DW_OP_call2:
2087 case DW_OP_call4:
2088 {
2089 struct dwarf2_locexpr_baton block;
2090 int size = (op == DW_OP_call2 ? 2 : 4);
2091
2092 uoffset = extract_unsigned_integer (op_ptr, size, byte_order);
2093 op_ptr += size;
2094
2095 block = dwarf2_fetch_die_location_block (uoffset, per_cu,
2096 get_ax_pc, expr);
2097
2098 /* DW_OP_call_ref is currently not supported. */
2099 gdb_assert (block.per_cu == per_cu);
2100
2101 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size,
2102 block.data, block.data + block.size,
2103 per_cu);
2104 }
2105 break;
2106
2107 case DW_OP_call_ref:
2108 unimplemented (op);
2109
2110 default:
2111 unimplemented (op);
2112 }
2113 }
2114
2115 /* Patch all the branches we emitted. */
2116 for (i = 0; i < VEC_length (int, patches); ++i)
2117 {
2118 int targ = offsets[VEC_index (int, dw_labels, i)];
2119 if (targ == -1)
2120 internal_error (__FILE__, __LINE__, _("invalid label"));
2121 ax_label (expr, VEC_index (int, patches, i), targ);
2122 }
2123
2124 do_cleanups (cleanups);
2125 }
2126
2127 \f
2128 /* Return the value of SYMBOL in FRAME using the DWARF-2 expression
2129 evaluator to calculate the location. */
2130 static struct value *
2131 locexpr_read_variable (struct symbol *symbol, struct frame_info *frame)
2132 {
2133 struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
2134 struct value *val;
2135
2136 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, dlbaton->data,
2137 dlbaton->size, dlbaton->per_cu);
2138
2139 return val;
2140 }
2141
2142 /* Return non-zero iff we need a frame to evaluate SYMBOL. */
2143 static int
2144 locexpr_read_needs_frame (struct symbol *symbol)
2145 {
2146 struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
2147
2148 return dwarf2_loc_desc_needs_frame (dlbaton->data, dlbaton->size,
2149 dlbaton->per_cu);
2150 }
2151
2152 /* Return true if DATA points to the end of a piece. END is one past
2153 the last byte in the expression. */
2154
2155 static int
2156 piece_end_p (const gdb_byte *data, const gdb_byte *end)
2157 {
2158 return data == end || data[0] == DW_OP_piece || data[0] == DW_OP_bit_piece;
2159 }
2160
2161 /* Nicely describe a single piece of a location, returning an updated
2162 position in the bytecode sequence. This function cannot recognize
2163 all locations; if a location is not recognized, it simply returns
2164 DATA. */
2165
2166 static const gdb_byte *
2167 locexpr_describe_location_piece (struct symbol *symbol, struct ui_file *stream,
2168 CORE_ADDR addr, struct objfile *objfile,
2169 const gdb_byte *data, const gdb_byte *end,
2170 unsigned int addr_size)
2171 {
2172 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2173 int regno;
2174
2175 if (data[0] >= DW_OP_reg0 && data[0] <= DW_OP_reg31)
2176 {
2177 regno = gdbarch_dwarf2_reg_to_regnum (gdbarch, data[0] - DW_OP_reg0);
2178 fprintf_filtered (stream, _("a variable in $%s"),
2179 gdbarch_register_name (gdbarch, regno));
2180 data += 1;
2181 }
2182 else if (data[0] == DW_OP_regx)
2183 {
2184 ULONGEST reg;
2185
2186 data = read_uleb128 (data + 1, end, &reg);
2187 regno = gdbarch_dwarf2_reg_to_regnum (gdbarch, reg);
2188 fprintf_filtered (stream, _("a variable in $%s"),
2189 gdbarch_register_name (gdbarch, regno));
2190 }
2191 else if (data[0] == DW_OP_fbreg)
2192 {
2193 struct block *b;
2194 struct symbol *framefunc;
2195 int frame_reg = 0;
2196 LONGEST frame_offset;
2197 const gdb_byte *base_data, *new_data, *save_data = data;
2198 size_t base_size;
2199 LONGEST base_offset = 0;
2200
2201 new_data = read_sleb128 (data + 1, end, &frame_offset);
2202 if (!piece_end_p (new_data, end))
2203 return data;
2204 data = new_data;
2205
2206 b = block_for_pc (addr);
2207
2208 if (!b)
2209 error (_("No block found for address for symbol \"%s\"."),
2210 SYMBOL_PRINT_NAME (symbol));
2211
2212 framefunc = block_linkage_function (b);
2213
2214 if (!framefunc)
2215 error (_("No function found for block for symbol \"%s\"."),
2216 SYMBOL_PRINT_NAME (symbol));
2217
2218 dwarf_expr_frame_base_1 (framefunc, addr, &base_data, &base_size);
2219
2220 if (base_data[0] >= DW_OP_breg0 && base_data[0] <= DW_OP_breg31)
2221 {
2222 const gdb_byte *buf_end;
2223
2224 frame_reg = base_data[0] - DW_OP_breg0;
2225 buf_end = read_sleb128 (base_data + 1,
2226 base_data + base_size, &base_offset);
2227 if (buf_end != base_data + base_size)
2228 error (_("Unexpected opcode after "
2229 "DW_OP_breg%u for symbol \"%s\"."),
2230 frame_reg, SYMBOL_PRINT_NAME (symbol));
2231 }
2232 else if (base_data[0] >= DW_OP_reg0 && base_data[0] <= DW_OP_reg31)
2233 {
2234 /* The frame base is just the register, with no offset. */
2235 frame_reg = base_data[0] - DW_OP_reg0;
2236 base_offset = 0;
2237 }
2238 else
2239 {
2240 /* We don't know what to do with the frame base expression,
2241 so we can't trace this variable; give up. */
2242 return save_data;
2243 }
2244
2245 regno = gdbarch_dwarf2_reg_to_regnum (gdbarch, frame_reg);
2246
2247 fprintf_filtered (stream,
2248 _("a variable at frame base reg $%s offset %s+%s"),
2249 gdbarch_register_name (gdbarch, regno),
2250 plongest (base_offset), plongest (frame_offset));
2251 }
2252 else if (data[0] >= DW_OP_breg0 && data[0] <= DW_OP_breg31
2253 && piece_end_p (data, end))
2254 {
2255 LONGEST offset;
2256
2257 regno = gdbarch_dwarf2_reg_to_regnum (gdbarch, data[0] - DW_OP_breg0);
2258
2259 data = read_sleb128 (data + 1, end, &offset);
2260
2261 fprintf_filtered (stream,
2262 _("a variable at offset %s from base reg $%s"),
2263 plongest (offset),
2264 gdbarch_register_name (gdbarch, regno));
2265 }
2266
2267 /* The location expression for a TLS variable looks like this (on a
2268 64-bit LE machine):
2269
2270 DW_AT_location : 10 byte block: 3 4 0 0 0 0 0 0 0 e0
2271 (DW_OP_addr: 4; DW_OP_GNU_push_tls_address)
2272
2273 0x3 is the encoding for DW_OP_addr, which has an operand as long
2274 as the size of an address on the target machine (here is 8
2275 bytes). Note that more recent version of GCC emit DW_OP_const4u
2276 or DW_OP_const8u, depending on address size, rather than
2277 DW_OP_addr. 0xe0 is the encoding for DW_OP_GNU_push_tls_address.
2278 The operand represents the offset at which the variable is within
2279 the thread local storage. */
2280
2281 else if (data + 1 + addr_size < end
2282 && (data[0] == DW_OP_addr
2283 || (addr_size == 4 && data[0] == DW_OP_const4u)
2284 || (addr_size == 8 && data[0] == DW_OP_const8u))
2285 && data[1 + addr_size] == DW_OP_GNU_push_tls_address
2286 && piece_end_p (data + 2 + addr_size, end))
2287 {
2288 ULONGEST offset;
2289 offset = extract_unsigned_integer (data + 1, addr_size,
2290 gdbarch_byte_order (gdbarch));
2291
2292 fprintf_filtered (stream,
2293 _("a thread-local variable at offset 0x%s "
2294 "in the thread-local storage for `%s'"),
2295 phex_nz (offset, addr_size), objfile->name);
2296
2297 data += 1 + addr_size + 1;
2298 }
2299 else if (data[0] >= DW_OP_lit0
2300 && data[0] <= DW_OP_lit31
2301 && data + 1 < end
2302 && data[1] == DW_OP_stack_value)
2303 {
2304 fprintf_filtered (stream, _("the constant %d"), data[0] - DW_OP_lit0);
2305 data += 2;
2306 }
2307
2308 return data;
2309 }
2310
2311 /* Disassemble an expression, stopping at the end of a piece or at the
2312 end of the expression. Returns a pointer to the next unread byte
2313 in the input expression. If ALL is nonzero, then this function
2314 will keep going until it reaches the end of the expression. */
2315
2316 static const gdb_byte *
2317 disassemble_dwarf_expression (struct ui_file *stream,
2318 struct gdbarch *arch, unsigned int addr_size,
2319 int offset_size,
2320 const gdb_byte *data, const gdb_byte *end,
2321 int all)
2322 {
2323 const gdb_byte *start = data;
2324
2325 fprintf_filtered (stream, _("a complex DWARF expression:\n"));
2326
2327 while (data < end
2328 && (all
2329 || (data[0] != DW_OP_piece && data[0] != DW_OP_bit_piece)))
2330 {
2331 enum dwarf_location_atom op = *data++;
2332 ULONGEST ul;
2333 LONGEST l;
2334 const char *name;
2335
2336 name = dwarf_stack_op_name (op);
2337
2338 if (!name)
2339 error (_("Unrecognized DWARF opcode 0x%02x at %ld"),
2340 op, (long) (data - start));
2341 fprintf_filtered (stream, " % 4ld: %s", (long) (data - start), name);
2342
2343 switch (op)
2344 {
2345 case DW_OP_addr:
2346 ul = extract_unsigned_integer (data, addr_size,
2347 gdbarch_byte_order (arch));
2348 data += addr_size;
2349 fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
2350 break;
2351
2352 case DW_OP_const1u:
2353 ul = extract_unsigned_integer (data, 1, gdbarch_byte_order (arch));
2354 data += 1;
2355 fprintf_filtered (stream, " %s", pulongest (ul));
2356 break;
2357 case DW_OP_const1s:
2358 l = extract_signed_integer (data, 1, gdbarch_byte_order (arch));
2359 data += 1;
2360 fprintf_filtered (stream, " %s", plongest (l));
2361 break;
2362 case DW_OP_const2u:
2363 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
2364 data += 2;
2365 fprintf_filtered (stream, " %s", pulongest (ul));
2366 break;
2367 case DW_OP_const2s:
2368 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
2369 data += 2;
2370 fprintf_filtered (stream, " %s", plongest (l));
2371 break;
2372 case DW_OP_const4u:
2373 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
2374 data += 4;
2375 fprintf_filtered (stream, " %s", pulongest (ul));
2376 break;
2377 case DW_OP_const4s:
2378 l = extract_signed_integer (data, 4, gdbarch_byte_order (arch));
2379 data += 4;
2380 fprintf_filtered (stream, " %s", plongest (l));
2381 break;
2382 case DW_OP_const8u:
2383 ul = extract_unsigned_integer (data, 8, gdbarch_byte_order (arch));
2384 data += 8;
2385 fprintf_filtered (stream, " %s", pulongest (ul));
2386 break;
2387 case DW_OP_const8s:
2388 l = extract_signed_integer (data, 8, gdbarch_byte_order (arch));
2389 data += 8;
2390 fprintf_filtered (stream, " %s", plongest (l));
2391 break;
2392 case DW_OP_constu:
2393 data = read_uleb128 (data, end, &ul);
2394 fprintf_filtered (stream, " %s", pulongest (ul));
2395 break;
2396 case DW_OP_consts:
2397 data = read_sleb128 (data, end, &l);
2398 fprintf_filtered (stream, " %s", plongest (l));
2399 break;
2400
2401 case DW_OP_reg0:
2402 case DW_OP_reg1:
2403 case DW_OP_reg2:
2404 case DW_OP_reg3:
2405 case DW_OP_reg4:
2406 case DW_OP_reg5:
2407 case DW_OP_reg6:
2408 case DW_OP_reg7:
2409 case DW_OP_reg8:
2410 case DW_OP_reg9:
2411 case DW_OP_reg10:
2412 case DW_OP_reg11:
2413 case DW_OP_reg12:
2414 case DW_OP_reg13:
2415 case DW_OP_reg14:
2416 case DW_OP_reg15:
2417 case DW_OP_reg16:
2418 case DW_OP_reg17:
2419 case DW_OP_reg18:
2420 case DW_OP_reg19:
2421 case DW_OP_reg20:
2422 case DW_OP_reg21:
2423 case DW_OP_reg22:
2424 case DW_OP_reg23:
2425 case DW_OP_reg24:
2426 case DW_OP_reg25:
2427 case DW_OP_reg26:
2428 case DW_OP_reg27:
2429 case DW_OP_reg28:
2430 case DW_OP_reg29:
2431 case DW_OP_reg30:
2432 case DW_OP_reg31:
2433 fprintf_filtered (stream, " [$%s]",
2434 gdbarch_register_name (arch, op - DW_OP_reg0));
2435 break;
2436
2437 case DW_OP_regx:
2438 data = read_uleb128 (data, end, &ul);
2439 fprintf_filtered (stream, " %s [$%s]", pulongest (ul),
2440 gdbarch_register_name (arch, (int) ul));
2441 break;
2442
2443 case DW_OP_implicit_value:
2444 data = read_uleb128 (data, end, &ul);
2445 data += ul;
2446 fprintf_filtered (stream, " %s", pulongest (ul));
2447 break;
2448
2449 case DW_OP_breg0:
2450 case DW_OP_breg1:
2451 case DW_OP_breg2:
2452 case DW_OP_breg3:
2453 case DW_OP_breg4:
2454 case DW_OP_breg5:
2455 case DW_OP_breg6:
2456 case DW_OP_breg7:
2457 case DW_OP_breg8:
2458 case DW_OP_breg9:
2459 case DW_OP_breg10:
2460 case DW_OP_breg11:
2461 case DW_OP_breg12:
2462 case DW_OP_breg13:
2463 case DW_OP_breg14:
2464 case DW_OP_breg15:
2465 case DW_OP_breg16:
2466 case DW_OP_breg17:
2467 case DW_OP_breg18:
2468 case DW_OP_breg19:
2469 case DW_OP_breg20:
2470 case DW_OP_breg21:
2471 case DW_OP_breg22:
2472 case DW_OP_breg23:
2473 case DW_OP_breg24:
2474 case DW_OP_breg25:
2475 case DW_OP_breg26:
2476 case DW_OP_breg27:
2477 case DW_OP_breg28:
2478 case DW_OP_breg29:
2479 case DW_OP_breg30:
2480 case DW_OP_breg31:
2481 data = read_sleb128 (data, end, &l);
2482 fprintf_filtered (stream, " %s [$%s]", plongest (l),
2483 gdbarch_register_name (arch, op - DW_OP_breg0));
2484 break;
2485
2486 case DW_OP_bregx:
2487 data = read_uleb128 (data, end, &ul);
2488 data = read_sleb128 (data, end, &l);
2489 fprintf_filtered (stream, " register %s [$%s] offset %s",
2490 pulongest (ul),
2491 gdbarch_register_name (arch, (int) ul),
2492 plongest (l));
2493 break;
2494
2495 case DW_OP_fbreg:
2496 data = read_sleb128 (data, end, &l);
2497 fprintf_filtered (stream, " %s", plongest (l));
2498 break;
2499
2500 case DW_OP_xderef_size:
2501 case DW_OP_deref_size:
2502 case DW_OP_pick:
2503 fprintf_filtered (stream, " %d", *data);
2504 ++data;
2505 break;
2506
2507 case DW_OP_plus_uconst:
2508 data = read_uleb128 (data, end, &ul);
2509 fprintf_filtered (stream, " %s", pulongest (ul));
2510 break;
2511
2512 case DW_OP_skip:
2513 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
2514 data += 2;
2515 fprintf_filtered (stream, " to %ld",
2516 (long) (data + l - start));
2517 break;
2518
2519 case DW_OP_bra:
2520 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
2521 data += 2;
2522 fprintf_filtered (stream, " %ld",
2523 (long) (data + l - start));
2524 break;
2525
2526 case DW_OP_call2:
2527 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
2528 data += 2;
2529 fprintf_filtered (stream, " offset %s", phex_nz (ul, 2));
2530 break;
2531
2532 case DW_OP_call4:
2533 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
2534 data += 4;
2535 fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
2536 break;
2537
2538 case DW_OP_call_ref:
2539 ul = extract_unsigned_integer (data, offset_size,
2540 gdbarch_byte_order (arch));
2541 data += offset_size;
2542 fprintf_filtered (stream, " offset %s", phex_nz (ul, offset_size));
2543 break;
2544
2545 case DW_OP_piece:
2546 data = read_uleb128 (data, end, &ul);
2547 fprintf_filtered (stream, " %s (bytes)", pulongest (ul));
2548 break;
2549
2550 case DW_OP_bit_piece:
2551 {
2552 ULONGEST offset;
2553
2554 data = read_uleb128 (data, end, &ul);
2555 data = read_uleb128 (data, end, &offset);
2556 fprintf_filtered (stream, " size %s offset %s (bits)",
2557 pulongest (ul), pulongest (offset));
2558 }
2559 break;
2560
2561 case DW_OP_GNU_implicit_pointer:
2562 {
2563 ul = extract_unsigned_integer (data, offset_size,
2564 gdbarch_byte_order (arch));
2565 data += offset_size;
2566
2567 data = read_sleb128 (data, end, &l);
2568
2569 fprintf_filtered (stream, " DIE %s offset %s",
2570 phex_nz (ul, offset_size),
2571 plongest (l));
2572 }
2573 break;
2574 }
2575
2576 fprintf_filtered (stream, "\n");
2577 }
2578
2579 return data;
2580 }
2581
2582 /* Describe a single location, which may in turn consist of multiple
2583 pieces. */
2584
2585 static void
2586 locexpr_describe_location_1 (struct symbol *symbol, CORE_ADDR addr,
2587 struct ui_file *stream,
2588 const gdb_byte *data, int size,
2589 struct objfile *objfile, unsigned int addr_size,
2590 int offset_size)
2591 {
2592 const gdb_byte *end = data + size;
2593 int first_piece = 1, bad = 0;
2594
2595 while (data < end)
2596 {
2597 const gdb_byte *here = data;
2598 int disassemble = 1;
2599
2600 if (first_piece)
2601 first_piece = 0;
2602 else
2603 fprintf_filtered (stream, _(", and "));
2604
2605 if (!dwarf2_always_disassemble)
2606 {
2607 data = locexpr_describe_location_piece (symbol, stream,
2608 addr, objfile,
2609 data, end, addr_size);
2610 /* If we printed anything, or if we have an empty piece,
2611 then don't disassemble. */
2612 if (data != here
2613 || data[0] == DW_OP_piece
2614 || data[0] == DW_OP_bit_piece)
2615 disassemble = 0;
2616 }
2617 if (disassemble)
2618 data = disassemble_dwarf_expression (stream,
2619 get_objfile_arch (objfile),
2620 addr_size, offset_size, data, end,
2621 dwarf2_always_disassemble);
2622
2623 if (data < end)
2624 {
2625 int empty = data == here;
2626
2627 if (disassemble)
2628 fprintf_filtered (stream, " ");
2629 if (data[0] == DW_OP_piece)
2630 {
2631 ULONGEST bytes;
2632
2633 data = read_uleb128 (data + 1, end, &bytes);
2634
2635 if (empty)
2636 fprintf_filtered (stream, _("an empty %s-byte piece"),
2637 pulongest (bytes));
2638 else
2639 fprintf_filtered (stream, _(" [%s-byte piece]"),
2640 pulongest (bytes));
2641 }
2642 else if (data[0] == DW_OP_bit_piece)
2643 {
2644 ULONGEST bits, offset;
2645
2646 data = read_uleb128 (data + 1, end, &bits);
2647 data = read_uleb128 (data, end, &offset);
2648
2649 if (empty)
2650 fprintf_filtered (stream,
2651 _("an empty %s-bit piece"),
2652 pulongest (bits));
2653 else
2654 fprintf_filtered (stream,
2655 _(" [%s-bit piece, offset %s bits]"),
2656 pulongest (bits), pulongest (offset));
2657 }
2658 else
2659 {
2660 bad = 1;
2661 break;
2662 }
2663 }
2664 }
2665
2666 if (bad || data > end)
2667 error (_("Corrupted DWARF2 expression for \"%s\"."),
2668 SYMBOL_PRINT_NAME (symbol));
2669 }
2670
2671 /* Print a natural-language description of SYMBOL to STREAM. This
2672 version is for a symbol with a single location. */
2673
2674 static void
2675 locexpr_describe_location (struct symbol *symbol, CORE_ADDR addr,
2676 struct ui_file *stream)
2677 {
2678 struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
2679 struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
2680 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
2681 int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
2682
2683 locexpr_describe_location_1 (symbol, addr, stream,
2684 dlbaton->data, dlbaton->size,
2685 objfile, addr_size, offset_size);
2686 }
2687
2688 /* Describe the location of SYMBOL as an agent value in VALUE, generating
2689 any necessary bytecode in AX. */
2690
2691 static void
2692 locexpr_tracepoint_var_ref (struct symbol *symbol, struct gdbarch *gdbarch,
2693 struct agent_expr *ax, struct axs_value *value)
2694 {
2695 struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
2696 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
2697
2698 if (dlbaton->data == NULL || dlbaton->size == 0)
2699 value->optimized_out = 1;
2700 else
2701 dwarf2_compile_expr_to_ax (ax, value, gdbarch, addr_size,
2702 dlbaton->data, dlbaton->data + dlbaton->size,
2703 dlbaton->per_cu);
2704 }
2705
2706 /* The set of location functions used with the DWARF-2 expression
2707 evaluator. */
2708 const struct symbol_computed_ops dwarf2_locexpr_funcs = {
2709 locexpr_read_variable,
2710 locexpr_read_needs_frame,
2711 locexpr_describe_location,
2712 locexpr_tracepoint_var_ref
2713 };
2714
2715
2716 /* Wrapper functions for location lists. These generally find
2717 the appropriate location expression and call something above. */
2718
2719 /* Return the value of SYMBOL in FRAME using the DWARF-2 expression
2720 evaluator to calculate the location. */
2721 static struct value *
2722 loclist_read_variable (struct symbol *symbol, struct frame_info *frame)
2723 {
2724 struct dwarf2_loclist_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
2725 struct value *val;
2726 const gdb_byte *data;
2727 size_t size;
2728 CORE_ADDR pc = frame ? get_frame_address_in_block (frame) : 0;
2729
2730 data = dwarf2_find_location_expression (dlbaton, &size, pc);
2731 if (data == NULL)
2732 {
2733 val = allocate_value (SYMBOL_TYPE (symbol));
2734 VALUE_LVAL (val) = not_lval;
2735 set_value_optimized_out (val, 1);
2736 }
2737 else
2738 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, data, size,
2739 dlbaton->per_cu);
2740
2741 return val;
2742 }
2743
2744 /* Return non-zero iff we need a frame to evaluate SYMBOL. */
2745 static int
2746 loclist_read_needs_frame (struct symbol *symbol)
2747 {
2748 /* If there's a location list, then assume we need to have a frame
2749 to choose the appropriate location expression. With tracking of
2750 global variables this is not necessarily true, but such tracking
2751 is disabled in GCC at the moment until we figure out how to
2752 represent it. */
2753
2754 return 1;
2755 }
2756
2757 /* Print a natural-language description of SYMBOL to STREAM. This
2758 version applies when there is a list of different locations, each
2759 with a specified address range. */
2760
2761 static void
2762 loclist_describe_location (struct symbol *symbol, CORE_ADDR addr,
2763 struct ui_file *stream)
2764 {
2765 struct dwarf2_loclist_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
2766 CORE_ADDR low, high;
2767 const gdb_byte *loc_ptr, *buf_end;
2768 int length, first = 1;
2769 struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
2770 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2771 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2772 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
2773 int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
2774 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
2775 CORE_ADDR base_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
2776 /* Adjust base_address for relocatable objects. */
2777 CORE_ADDR base_offset = dwarf2_per_cu_text_offset (dlbaton->per_cu);
2778 CORE_ADDR base_address = dlbaton->base_address + base_offset;
2779
2780 loc_ptr = dlbaton->data;
2781 buf_end = dlbaton->data + dlbaton->size;
2782
2783 fprintf_filtered (stream, _("multi-location:\n"));
2784
2785 /* Iterate through locations until we run out. */
2786 while (1)
2787 {
2788 if (buf_end - loc_ptr < 2 * addr_size)
2789 error (_("Corrupted DWARF expression for symbol \"%s\"."),
2790 SYMBOL_PRINT_NAME (symbol));
2791
2792 if (signed_addr_p)
2793 low = extract_signed_integer (loc_ptr, addr_size, byte_order);
2794 else
2795 low = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
2796 loc_ptr += addr_size;
2797
2798 if (signed_addr_p)
2799 high = extract_signed_integer (loc_ptr, addr_size, byte_order);
2800 else
2801 high = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
2802 loc_ptr += addr_size;
2803
2804 /* A base-address-selection entry. */
2805 if ((low & base_mask) == base_mask)
2806 {
2807 base_address = high + base_offset;
2808 fprintf_filtered (stream, _(" Base address %s"),
2809 paddress (gdbarch, base_address));
2810 continue;
2811 }
2812
2813 /* An end-of-list entry. */
2814 if (low == 0 && high == 0)
2815 break;
2816
2817 /* Otherwise, a location expression entry. */
2818 low += base_address;
2819 high += base_address;
2820
2821 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
2822 loc_ptr += 2;
2823
2824 /* (It would improve readability to print only the minimum
2825 necessary digits of the second number of the range.) */
2826 fprintf_filtered (stream, _(" Range %s-%s: "),
2827 paddress (gdbarch, low), paddress (gdbarch, high));
2828
2829 /* Now describe this particular location. */
2830 locexpr_describe_location_1 (symbol, low, stream, loc_ptr, length,
2831 objfile, addr_size, offset_size);
2832
2833 fprintf_filtered (stream, "\n");
2834
2835 loc_ptr += length;
2836 }
2837 }
2838
2839 /* Describe the location of SYMBOL as an agent value in VALUE, generating
2840 any necessary bytecode in AX. */
2841 static void
2842 loclist_tracepoint_var_ref (struct symbol *symbol, struct gdbarch *gdbarch,
2843 struct agent_expr *ax, struct axs_value *value)
2844 {
2845 struct dwarf2_loclist_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
2846 const gdb_byte *data;
2847 size_t size;
2848 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
2849
2850 data = dwarf2_find_location_expression (dlbaton, &size, ax->scope);
2851 if (data == NULL || size == 0)
2852 value->optimized_out = 1;
2853 else
2854 dwarf2_compile_expr_to_ax (ax, value, gdbarch, addr_size, data, data + size,
2855 dlbaton->per_cu);
2856 }
2857
2858 /* The set of location functions used with the DWARF-2 expression
2859 evaluator and location lists. */
2860 const struct symbol_computed_ops dwarf2_loclist_funcs = {
2861 loclist_read_variable,
2862 loclist_read_needs_frame,
2863 loclist_describe_location,
2864 loclist_tracepoint_var_ref
2865 };
This page took 0.093208 seconds and 4 git commands to generate.