Code cleanup: Add objfile_name accessor
[deliverable/binutils-gdb.git] / gdb / dwarf2loc.c
1 /* DWARF 2 location expression support for GDB.
2
3 Copyright (C) 2003-2013 Free Software Foundation, Inc.
4
5 Contributed by Daniel Jacobowitz, MontaVista Software, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "ui-out.h"
24 #include "value.h"
25 #include "frame.h"
26 #include "gdbcore.h"
27 #include "target.h"
28 #include "inferior.h"
29 #include "ax.h"
30 #include "ax-gdb.h"
31 #include "regcache.h"
32 #include "objfiles.h"
33 #include "exceptions.h"
34 #include "block.h"
35 #include "gdbcmd.h"
36
37 #include "dwarf2.h"
38 #include "dwarf2expr.h"
39 #include "dwarf2loc.h"
40 #include "dwarf2-frame.h"
41
42 #include "gdb_string.h"
43 #include "gdb_assert.h"
44
45 extern int dwarf2_always_disassemble;
46
47 static void dwarf_expr_frame_base_1 (struct symbol *framefunc, CORE_ADDR pc,
48 const gdb_byte **start, size_t *length);
49
50 static const struct dwarf_expr_context_funcs dwarf_expr_ctx_funcs;
51
52 static struct value *dwarf2_evaluate_loc_desc_full (struct type *type,
53 struct frame_info *frame,
54 const gdb_byte *data,
55 size_t size,
56 struct dwarf2_per_cu_data *per_cu,
57 LONGEST byte_offset);
58
59 /* Until these have formal names, we define these here.
60 ref: http://gcc.gnu.org/wiki/DebugFission
61 Each entry in .debug_loc.dwo begins with a byte that describes the entry,
62 and is then followed by data specific to that entry. */
63
64 enum debug_loc_kind
65 {
66 /* Indicates the end of the list of entries. */
67 DEBUG_LOC_END_OF_LIST = 0,
68
69 /* This is followed by an unsigned LEB128 number that is an index into
70 .debug_addr and specifies the base address for all following entries. */
71 DEBUG_LOC_BASE_ADDRESS = 1,
72
73 /* This is followed by two unsigned LEB128 numbers that are indices into
74 .debug_addr and specify the beginning and ending addresses, and then
75 a normal location expression as in .debug_loc. */
76 DEBUG_LOC_START_END = 2,
77
78 /* This is followed by an unsigned LEB128 number that is an index into
79 .debug_addr and specifies the beginning address, and a 4 byte unsigned
80 number that specifies the length, and then a normal location expression
81 as in .debug_loc. */
82 DEBUG_LOC_START_LENGTH = 3,
83
84 /* An internal value indicating there is insufficient data. */
85 DEBUG_LOC_BUFFER_OVERFLOW = -1,
86
87 /* An internal value indicating an invalid kind of entry was found. */
88 DEBUG_LOC_INVALID_ENTRY = -2
89 };
90
91 /* Helper function which throws an error if a synthetic pointer is
92 invalid. */
93
94 static void
95 invalid_synthetic_pointer (void)
96 {
97 error (_("access outside bounds of object "
98 "referenced via synthetic pointer"));
99 }
100
101 /* Decode the addresses in a non-dwo .debug_loc entry.
102 A pointer to the next byte to examine is returned in *NEW_PTR.
103 The encoded low,high addresses are return in *LOW,*HIGH.
104 The result indicates the kind of entry found. */
105
106 static enum debug_loc_kind
107 decode_debug_loc_addresses (const gdb_byte *loc_ptr, const gdb_byte *buf_end,
108 const gdb_byte **new_ptr,
109 CORE_ADDR *low, CORE_ADDR *high,
110 enum bfd_endian byte_order,
111 unsigned int addr_size,
112 int signed_addr_p)
113 {
114 CORE_ADDR base_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
115
116 if (buf_end - loc_ptr < 2 * addr_size)
117 return DEBUG_LOC_BUFFER_OVERFLOW;
118
119 if (signed_addr_p)
120 *low = extract_signed_integer (loc_ptr, addr_size, byte_order);
121 else
122 *low = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
123 loc_ptr += addr_size;
124
125 if (signed_addr_p)
126 *high = extract_signed_integer (loc_ptr, addr_size, byte_order);
127 else
128 *high = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
129 loc_ptr += addr_size;
130
131 *new_ptr = loc_ptr;
132
133 /* A base-address-selection entry. */
134 if ((*low & base_mask) == base_mask)
135 return DEBUG_LOC_BASE_ADDRESS;
136
137 /* An end-of-list entry. */
138 if (*low == 0 && *high == 0)
139 return DEBUG_LOC_END_OF_LIST;
140
141 return DEBUG_LOC_START_END;
142 }
143
144 /* Decode the addresses in .debug_loc.dwo entry.
145 A pointer to the next byte to examine is returned in *NEW_PTR.
146 The encoded low,high addresses are return in *LOW,*HIGH.
147 The result indicates the kind of entry found. */
148
149 static enum debug_loc_kind
150 decode_debug_loc_dwo_addresses (struct dwarf2_per_cu_data *per_cu,
151 const gdb_byte *loc_ptr,
152 const gdb_byte *buf_end,
153 const gdb_byte **new_ptr,
154 CORE_ADDR *low, CORE_ADDR *high,
155 enum bfd_endian byte_order)
156 {
157 uint64_t low_index, high_index;
158
159 if (loc_ptr == buf_end)
160 return DEBUG_LOC_BUFFER_OVERFLOW;
161
162 switch (*loc_ptr++)
163 {
164 case DEBUG_LOC_END_OF_LIST:
165 *new_ptr = loc_ptr;
166 return DEBUG_LOC_END_OF_LIST;
167 case DEBUG_LOC_BASE_ADDRESS:
168 *low = 0;
169 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &high_index);
170 if (loc_ptr == NULL)
171 return DEBUG_LOC_BUFFER_OVERFLOW;
172 *high = dwarf2_read_addr_index (per_cu, high_index);
173 *new_ptr = loc_ptr;
174 return DEBUG_LOC_BASE_ADDRESS;
175 case DEBUG_LOC_START_END:
176 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &low_index);
177 if (loc_ptr == NULL)
178 return DEBUG_LOC_BUFFER_OVERFLOW;
179 *low = dwarf2_read_addr_index (per_cu, low_index);
180 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &high_index);
181 if (loc_ptr == NULL)
182 return DEBUG_LOC_BUFFER_OVERFLOW;
183 *high = dwarf2_read_addr_index (per_cu, high_index);
184 *new_ptr = loc_ptr;
185 return DEBUG_LOC_START_END;
186 case DEBUG_LOC_START_LENGTH:
187 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &low_index);
188 if (loc_ptr == NULL)
189 return DEBUG_LOC_BUFFER_OVERFLOW;
190 *low = dwarf2_read_addr_index (per_cu, low_index);
191 if (loc_ptr + 4 > buf_end)
192 return DEBUG_LOC_BUFFER_OVERFLOW;
193 *high = *low;
194 *high += extract_unsigned_integer (loc_ptr, 4, byte_order);
195 *new_ptr = loc_ptr + 4;
196 return DEBUG_LOC_START_LENGTH;
197 default:
198 return DEBUG_LOC_INVALID_ENTRY;
199 }
200 }
201
202 /* A function for dealing with location lists. Given a
203 symbol baton (BATON) and a pc value (PC), find the appropriate
204 location expression, set *LOCEXPR_LENGTH, and return a pointer
205 to the beginning of the expression. Returns NULL on failure.
206
207 For now, only return the first matching location expression; there
208 can be more than one in the list. */
209
210 const gdb_byte *
211 dwarf2_find_location_expression (struct dwarf2_loclist_baton *baton,
212 size_t *locexpr_length, CORE_ADDR pc)
213 {
214 struct objfile *objfile = dwarf2_per_cu_objfile (baton->per_cu);
215 struct gdbarch *gdbarch = get_objfile_arch (objfile);
216 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
217 unsigned int addr_size = dwarf2_per_cu_addr_size (baton->per_cu);
218 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
219 /* Adjust base_address for relocatable objects. */
220 CORE_ADDR base_offset = dwarf2_per_cu_text_offset (baton->per_cu);
221 CORE_ADDR base_address = baton->base_address + base_offset;
222 const gdb_byte *loc_ptr, *buf_end;
223
224 loc_ptr = baton->data;
225 buf_end = baton->data + baton->size;
226
227 while (1)
228 {
229 CORE_ADDR low = 0, high = 0; /* init for gcc -Wall */
230 int length;
231 enum debug_loc_kind kind;
232 const gdb_byte *new_ptr = NULL; /* init for gcc -Wall */
233
234 if (baton->from_dwo)
235 kind = decode_debug_loc_dwo_addresses (baton->per_cu,
236 loc_ptr, buf_end, &new_ptr,
237 &low, &high, byte_order);
238 else
239 kind = decode_debug_loc_addresses (loc_ptr, buf_end, &new_ptr,
240 &low, &high,
241 byte_order, addr_size,
242 signed_addr_p);
243 loc_ptr = new_ptr;
244 switch (kind)
245 {
246 case DEBUG_LOC_END_OF_LIST:
247 *locexpr_length = 0;
248 return NULL;
249 case DEBUG_LOC_BASE_ADDRESS:
250 base_address = high + base_offset;
251 continue;
252 case DEBUG_LOC_START_END:
253 case DEBUG_LOC_START_LENGTH:
254 break;
255 case DEBUG_LOC_BUFFER_OVERFLOW:
256 case DEBUG_LOC_INVALID_ENTRY:
257 error (_("dwarf2_find_location_expression: "
258 "Corrupted DWARF expression."));
259 default:
260 gdb_assert_not_reached ("bad debug_loc_kind");
261 }
262
263 /* Otherwise, a location expression entry.
264 If the entry is from a DWO, don't add base address: the entry is
265 from .debug_addr which has absolute addresses. */
266 if (! baton->from_dwo)
267 {
268 low += base_address;
269 high += base_address;
270 }
271
272 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
273 loc_ptr += 2;
274
275 if (low == high && pc == low)
276 {
277 /* This is entry PC record present only at entry point
278 of a function. Verify it is really the function entry point. */
279
280 struct block *pc_block = block_for_pc (pc);
281 struct symbol *pc_func = NULL;
282
283 if (pc_block)
284 pc_func = block_linkage_function (pc_block);
285
286 if (pc_func && pc == BLOCK_START (SYMBOL_BLOCK_VALUE (pc_func)))
287 {
288 *locexpr_length = length;
289 return loc_ptr;
290 }
291 }
292
293 if (pc >= low && pc < high)
294 {
295 *locexpr_length = length;
296 return loc_ptr;
297 }
298
299 loc_ptr += length;
300 }
301 }
302
303 /* This is the baton used when performing dwarf2 expression
304 evaluation. */
305 struct dwarf_expr_baton
306 {
307 struct frame_info *frame;
308 struct dwarf2_per_cu_data *per_cu;
309 };
310
311 /* Helper functions for dwarf2_evaluate_loc_desc. */
312
313 /* Using the frame specified in BATON, return the value of register
314 REGNUM, treated as a pointer. */
315 static CORE_ADDR
316 dwarf_expr_read_reg (void *baton, int dwarf_regnum)
317 {
318 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
319 struct gdbarch *gdbarch = get_frame_arch (debaton->frame);
320 CORE_ADDR result;
321 int regnum;
322
323 regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, dwarf_regnum);
324 result = address_from_register (builtin_type (gdbarch)->builtin_data_ptr,
325 regnum, debaton->frame);
326 return result;
327 }
328
329 /* Read memory at ADDR (length LEN) into BUF. */
330
331 static void
332 dwarf_expr_read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
333 {
334 read_memory (addr, buf, len);
335 }
336
337 /* Using the frame specified in BATON, find the location expression
338 describing the frame base. Return a pointer to it in START and
339 its length in LENGTH. */
340 static void
341 dwarf_expr_frame_base (void *baton, const gdb_byte **start, size_t * length)
342 {
343 /* FIXME: cagney/2003-03-26: This code should be using
344 get_frame_base_address(), and then implement a dwarf2 specific
345 this_base method. */
346 struct symbol *framefunc;
347 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
348 struct block *bl = get_frame_block (debaton->frame, NULL);
349
350 if (bl == NULL)
351 error (_("frame address is not available."));
352
353 /* Use block_linkage_function, which returns a real (not inlined)
354 function, instead of get_frame_function, which may return an
355 inlined function. */
356 framefunc = block_linkage_function (bl);
357
358 /* If we found a frame-relative symbol then it was certainly within
359 some function associated with a frame. If we can't find the frame,
360 something has gone wrong. */
361 gdb_assert (framefunc != NULL);
362
363 dwarf_expr_frame_base_1 (framefunc,
364 get_frame_address_in_block (debaton->frame),
365 start, length);
366 }
367
368 /* Implement find_frame_base_location method for LOC_BLOCK functions using
369 DWARF expression for its DW_AT_frame_base. */
370
371 static void
372 locexpr_find_frame_base_location (struct symbol *framefunc, CORE_ADDR pc,
373 const gdb_byte **start, size_t *length)
374 {
375 struct dwarf2_locexpr_baton *symbaton = SYMBOL_LOCATION_BATON (framefunc);
376
377 *length = symbaton->size;
378 *start = symbaton->data;
379 }
380
381 /* Vector for inferior functions as represented by LOC_BLOCK, if the inferior
382 function uses DWARF expression for its DW_AT_frame_base. */
383
384 const struct symbol_block_ops dwarf2_block_frame_base_locexpr_funcs =
385 {
386 locexpr_find_frame_base_location
387 };
388
389 /* Implement find_frame_base_location method for LOC_BLOCK functions using
390 DWARF location list for its DW_AT_frame_base. */
391
392 static void
393 loclist_find_frame_base_location (struct symbol *framefunc, CORE_ADDR pc,
394 const gdb_byte **start, size_t *length)
395 {
396 struct dwarf2_loclist_baton *symbaton = SYMBOL_LOCATION_BATON (framefunc);
397
398 *start = dwarf2_find_location_expression (symbaton, length, pc);
399 }
400
401 /* Vector for inferior functions as represented by LOC_BLOCK, if the inferior
402 function uses DWARF location list for its DW_AT_frame_base. */
403
404 const struct symbol_block_ops dwarf2_block_frame_base_loclist_funcs =
405 {
406 loclist_find_frame_base_location
407 };
408
409 static void
410 dwarf_expr_frame_base_1 (struct symbol *framefunc, CORE_ADDR pc,
411 const gdb_byte **start, size_t *length)
412 {
413 if (SYMBOL_BLOCK_OPS (framefunc) != NULL)
414 {
415 const struct symbol_block_ops *ops_block = SYMBOL_BLOCK_OPS (framefunc);
416
417 ops_block->find_frame_base_location (framefunc, pc, start, length);
418 }
419 else
420 *length = 0;
421
422 if (*length == 0)
423 error (_("Could not find the frame base for \"%s\"."),
424 SYMBOL_NATURAL_NAME (framefunc));
425 }
426
427 /* Helper function for dwarf2_evaluate_loc_desc. Computes the CFA for
428 the frame in BATON. */
429
430 static CORE_ADDR
431 dwarf_expr_frame_cfa (void *baton)
432 {
433 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
434
435 return dwarf2_frame_cfa (debaton->frame);
436 }
437
438 /* Helper function for dwarf2_evaluate_loc_desc. Computes the PC for
439 the frame in BATON. */
440
441 static CORE_ADDR
442 dwarf_expr_frame_pc (void *baton)
443 {
444 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
445
446 return get_frame_address_in_block (debaton->frame);
447 }
448
449 /* Using the objfile specified in BATON, find the address for the
450 current thread's thread-local storage with offset OFFSET. */
451 static CORE_ADDR
452 dwarf_expr_tls_address (void *baton, CORE_ADDR offset)
453 {
454 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
455 struct objfile *objfile = dwarf2_per_cu_objfile (debaton->per_cu);
456
457 return target_translate_tls_address (objfile, offset);
458 }
459
460 /* Call DWARF subroutine from DW_AT_location of DIE at DIE_OFFSET in
461 current CU (as is PER_CU). State of the CTX is not affected by the
462 call and return. */
463
464 static void
465 per_cu_dwarf_call (struct dwarf_expr_context *ctx, cu_offset die_offset,
466 struct dwarf2_per_cu_data *per_cu,
467 CORE_ADDR (*get_frame_pc) (void *baton),
468 void *baton)
469 {
470 struct dwarf2_locexpr_baton block;
471
472 block = dwarf2_fetch_die_loc_cu_off (die_offset, per_cu, get_frame_pc, baton);
473
474 /* DW_OP_call_ref is currently not supported. */
475 gdb_assert (block.per_cu == per_cu);
476
477 dwarf_expr_eval (ctx, block.data, block.size);
478 }
479
480 /* Helper interface of per_cu_dwarf_call for dwarf2_evaluate_loc_desc. */
481
482 static void
483 dwarf_expr_dwarf_call (struct dwarf_expr_context *ctx, cu_offset die_offset)
484 {
485 struct dwarf_expr_baton *debaton = ctx->baton;
486
487 per_cu_dwarf_call (ctx, die_offset, debaton->per_cu,
488 ctx->funcs->get_frame_pc, ctx->baton);
489 }
490
491 /* Callback function for dwarf2_evaluate_loc_desc. */
492
493 static struct type *
494 dwarf_expr_get_base_type (struct dwarf_expr_context *ctx,
495 cu_offset die_offset)
496 {
497 struct dwarf_expr_baton *debaton = ctx->baton;
498
499 return dwarf2_get_die_type (die_offset, debaton->per_cu);
500 }
501
502 /* See dwarf2loc.h. */
503
504 unsigned int entry_values_debug = 0;
505
506 /* Helper to set entry_values_debug. */
507
508 static void
509 show_entry_values_debug (struct ui_file *file, int from_tty,
510 struct cmd_list_element *c, const char *value)
511 {
512 fprintf_filtered (file,
513 _("Entry values and tail call frames debugging is %s.\n"),
514 value);
515 }
516
517 /* Find DW_TAG_GNU_call_site's DW_AT_GNU_call_site_target address.
518 CALLER_FRAME (for registers) can be NULL if it is not known. This function
519 always returns valid address or it throws NO_ENTRY_VALUE_ERROR. */
520
521 static CORE_ADDR
522 call_site_to_target_addr (struct gdbarch *call_site_gdbarch,
523 struct call_site *call_site,
524 struct frame_info *caller_frame)
525 {
526 switch (FIELD_LOC_KIND (call_site->target))
527 {
528 case FIELD_LOC_KIND_DWARF_BLOCK:
529 {
530 struct dwarf2_locexpr_baton *dwarf_block;
531 struct value *val;
532 struct type *caller_core_addr_type;
533 struct gdbarch *caller_arch;
534
535 dwarf_block = FIELD_DWARF_BLOCK (call_site->target);
536 if (dwarf_block == NULL)
537 {
538 struct bound_minimal_symbol msym;
539
540 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
541 throw_error (NO_ENTRY_VALUE_ERROR,
542 _("DW_AT_GNU_call_site_target is not specified "
543 "at %s in %s"),
544 paddress (call_site_gdbarch, call_site->pc),
545 (msym.minsym == NULL ? "???"
546 : SYMBOL_PRINT_NAME (msym.minsym)));
547
548 }
549 if (caller_frame == NULL)
550 {
551 struct bound_minimal_symbol msym;
552
553 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
554 throw_error (NO_ENTRY_VALUE_ERROR,
555 _("DW_AT_GNU_call_site_target DWARF block resolving "
556 "requires known frame which is currently not "
557 "available at %s in %s"),
558 paddress (call_site_gdbarch, call_site->pc),
559 (msym.minsym == NULL ? "???"
560 : SYMBOL_PRINT_NAME (msym.minsym)));
561
562 }
563 caller_arch = get_frame_arch (caller_frame);
564 caller_core_addr_type = builtin_type (caller_arch)->builtin_func_ptr;
565 val = dwarf2_evaluate_loc_desc (caller_core_addr_type, caller_frame,
566 dwarf_block->data, dwarf_block->size,
567 dwarf_block->per_cu);
568 /* DW_AT_GNU_call_site_target is a DWARF expression, not a DWARF
569 location. */
570 if (VALUE_LVAL (val) == lval_memory)
571 return value_address (val);
572 else
573 return value_as_address (val);
574 }
575
576 case FIELD_LOC_KIND_PHYSNAME:
577 {
578 const char *physname;
579 struct minimal_symbol *msym;
580
581 physname = FIELD_STATIC_PHYSNAME (call_site->target);
582
583 /* Handle both the mangled and demangled PHYSNAME. */
584 msym = lookup_minimal_symbol (physname, NULL, NULL);
585 if (msym == NULL)
586 {
587 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1).minsym;
588 throw_error (NO_ENTRY_VALUE_ERROR,
589 _("Cannot find function \"%s\" for a call site target "
590 "at %s in %s"),
591 physname, paddress (call_site_gdbarch, call_site->pc),
592 msym == NULL ? "???" : SYMBOL_PRINT_NAME (msym));
593
594 }
595 return SYMBOL_VALUE_ADDRESS (msym);
596 }
597
598 case FIELD_LOC_KIND_PHYSADDR:
599 return FIELD_STATIC_PHYSADDR (call_site->target);
600
601 default:
602 internal_error (__FILE__, __LINE__, _("invalid call site target kind"));
603 }
604 }
605
606 /* Convert function entry point exact address ADDR to the function which is
607 compliant with TAIL_CALL_LIST_COMPLETE condition. Throw
608 NO_ENTRY_VALUE_ERROR otherwise. */
609
610 static struct symbol *
611 func_addr_to_tail_call_list (struct gdbarch *gdbarch, CORE_ADDR addr)
612 {
613 struct symbol *sym = find_pc_function (addr);
614 struct type *type;
615
616 if (sym == NULL || BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) != addr)
617 throw_error (NO_ENTRY_VALUE_ERROR,
618 _("DW_TAG_GNU_call_site resolving failed to find function "
619 "name for address %s"),
620 paddress (gdbarch, addr));
621
622 type = SYMBOL_TYPE (sym);
623 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FUNC);
624 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
625
626 return sym;
627 }
628
629 /* Verify function with entry point exact address ADDR can never call itself
630 via its tail calls (incl. transitively). Throw NO_ENTRY_VALUE_ERROR if it
631 can call itself via tail calls.
632
633 If a funtion can tail call itself its entry value based parameters are
634 unreliable. There is no verification whether the value of some/all
635 parameters is unchanged through the self tail call, we expect if there is
636 a self tail call all the parameters can be modified. */
637
638 static void
639 func_verify_no_selftailcall (struct gdbarch *gdbarch, CORE_ADDR verify_addr)
640 {
641 struct obstack addr_obstack;
642 struct cleanup *old_chain;
643 CORE_ADDR addr;
644
645 /* Track here CORE_ADDRs which were already visited. */
646 htab_t addr_hash;
647
648 /* The verification is completely unordered. Track here function addresses
649 which still need to be iterated. */
650 VEC (CORE_ADDR) *todo = NULL;
651
652 obstack_init (&addr_obstack);
653 old_chain = make_cleanup_obstack_free (&addr_obstack);
654 addr_hash = htab_create_alloc_ex (64, core_addr_hash, core_addr_eq, NULL,
655 &addr_obstack, hashtab_obstack_allocate,
656 NULL);
657 make_cleanup_htab_delete (addr_hash);
658
659 make_cleanup (VEC_cleanup (CORE_ADDR), &todo);
660
661 VEC_safe_push (CORE_ADDR, todo, verify_addr);
662 while (!VEC_empty (CORE_ADDR, todo))
663 {
664 struct symbol *func_sym;
665 struct call_site *call_site;
666
667 addr = VEC_pop (CORE_ADDR, todo);
668
669 func_sym = func_addr_to_tail_call_list (gdbarch, addr);
670
671 for (call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (func_sym));
672 call_site; call_site = call_site->tail_call_next)
673 {
674 CORE_ADDR target_addr;
675 void **slot;
676
677 /* CALLER_FRAME with registers is not available for tail-call jumped
678 frames. */
679 target_addr = call_site_to_target_addr (gdbarch, call_site, NULL);
680
681 if (target_addr == verify_addr)
682 {
683 struct bound_minimal_symbol msym;
684
685 msym = lookup_minimal_symbol_by_pc (verify_addr);
686 throw_error (NO_ENTRY_VALUE_ERROR,
687 _("DW_OP_GNU_entry_value resolving has found "
688 "function \"%s\" at %s can call itself via tail "
689 "calls"),
690 (msym.minsym == NULL ? "???"
691 : SYMBOL_PRINT_NAME (msym.minsym)),
692 paddress (gdbarch, verify_addr));
693 }
694
695 slot = htab_find_slot (addr_hash, &target_addr, INSERT);
696 if (*slot == NULL)
697 {
698 *slot = obstack_copy (&addr_obstack, &target_addr,
699 sizeof (target_addr));
700 VEC_safe_push (CORE_ADDR, todo, target_addr);
701 }
702 }
703 }
704
705 do_cleanups (old_chain);
706 }
707
708 /* Print user readable form of CALL_SITE->PC to gdb_stdlog. Used only for
709 ENTRY_VALUES_DEBUG. */
710
711 static void
712 tailcall_dump (struct gdbarch *gdbarch, const struct call_site *call_site)
713 {
714 CORE_ADDR addr = call_site->pc;
715 struct bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (addr - 1);
716
717 fprintf_unfiltered (gdb_stdlog, " %s(%s)", paddress (gdbarch, addr),
718 (msym.minsym == NULL ? "???"
719 : SYMBOL_PRINT_NAME (msym.minsym)));
720
721 }
722
723 /* vec.h needs single word type name, typedef it. */
724 typedef struct call_site *call_sitep;
725
726 /* Define VEC (call_sitep) functions. */
727 DEF_VEC_P (call_sitep);
728
729 /* Intersect RESULTP with CHAIN to keep RESULTP unambiguous, keep in RESULTP
730 only top callers and bottom callees which are present in both. GDBARCH is
731 used only for ENTRY_VALUES_DEBUG. RESULTP is NULL after return if there are
732 no remaining possibilities to provide unambiguous non-trivial result.
733 RESULTP should point to NULL on the first (initialization) call. Caller is
734 responsible for xfree of any RESULTP data. */
735
736 static void
737 chain_candidate (struct gdbarch *gdbarch, struct call_site_chain **resultp,
738 VEC (call_sitep) *chain)
739 {
740 struct call_site_chain *result = *resultp;
741 long length = VEC_length (call_sitep, chain);
742 int callers, callees, idx;
743
744 if (result == NULL)
745 {
746 /* Create the initial chain containing all the passed PCs. */
747
748 result = xmalloc (sizeof (*result) + sizeof (*result->call_site)
749 * (length - 1));
750 result->length = length;
751 result->callers = result->callees = length;
752 memcpy (result->call_site, VEC_address (call_sitep, chain),
753 sizeof (*result->call_site) * length);
754 *resultp = result;
755
756 if (entry_values_debug)
757 {
758 fprintf_unfiltered (gdb_stdlog, "tailcall: initial:");
759 for (idx = 0; idx < length; idx++)
760 tailcall_dump (gdbarch, result->call_site[idx]);
761 fputc_unfiltered ('\n', gdb_stdlog);
762 }
763
764 return;
765 }
766
767 if (entry_values_debug)
768 {
769 fprintf_unfiltered (gdb_stdlog, "tailcall: compare:");
770 for (idx = 0; idx < length; idx++)
771 tailcall_dump (gdbarch, VEC_index (call_sitep, chain, idx));
772 fputc_unfiltered ('\n', gdb_stdlog);
773 }
774
775 /* Intersect callers. */
776
777 callers = min (result->callers, length);
778 for (idx = 0; idx < callers; idx++)
779 if (result->call_site[idx] != VEC_index (call_sitep, chain, idx))
780 {
781 result->callers = idx;
782 break;
783 }
784
785 /* Intersect callees. */
786
787 callees = min (result->callees, length);
788 for (idx = 0; idx < callees; idx++)
789 if (result->call_site[result->length - 1 - idx]
790 != VEC_index (call_sitep, chain, length - 1 - idx))
791 {
792 result->callees = idx;
793 break;
794 }
795
796 if (entry_values_debug)
797 {
798 fprintf_unfiltered (gdb_stdlog, "tailcall: reduced:");
799 for (idx = 0; idx < result->callers; idx++)
800 tailcall_dump (gdbarch, result->call_site[idx]);
801 fputs_unfiltered (" |", gdb_stdlog);
802 for (idx = 0; idx < result->callees; idx++)
803 tailcall_dump (gdbarch, result->call_site[result->length
804 - result->callees + idx]);
805 fputc_unfiltered ('\n', gdb_stdlog);
806 }
807
808 if (result->callers == 0 && result->callees == 0)
809 {
810 /* There are no common callers or callees. It could be also a direct
811 call (which has length 0) with ambiguous possibility of an indirect
812 call - CALLERS == CALLEES == 0 is valid during the first allocation
813 but any subsequence processing of such entry means ambiguity. */
814 xfree (result);
815 *resultp = NULL;
816 return;
817 }
818
819 /* See call_site_find_chain_1 why there is no way to reach the bottom callee
820 PC again. In such case there must be two different code paths to reach
821 it, therefore some of the former determined intermediate PCs must differ
822 and the unambiguous chain gets shortened. */
823 gdb_assert (result->callers + result->callees < result->length);
824 }
825
826 /* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
827 assumed frames between them use GDBARCH. Use depth first search so we can
828 keep single CHAIN of call_site's back to CALLER_PC. Function recursion
829 would have needless GDB stack overhead. Caller is responsible for xfree of
830 the returned result. Any unreliability results in thrown
831 NO_ENTRY_VALUE_ERROR. */
832
833 static struct call_site_chain *
834 call_site_find_chain_1 (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
835 CORE_ADDR callee_pc)
836 {
837 CORE_ADDR save_callee_pc = callee_pc;
838 struct obstack addr_obstack;
839 struct cleanup *back_to_retval, *back_to_workdata;
840 struct call_site_chain *retval = NULL;
841 struct call_site *call_site;
842
843 /* Mark CALL_SITEs so we do not visit the same ones twice. */
844 htab_t addr_hash;
845
846 /* CHAIN contains only the intermediate CALL_SITEs. Neither CALLER_PC's
847 call_site nor any possible call_site at CALLEE_PC's function is there.
848 Any CALL_SITE in CHAIN will be iterated to its siblings - via
849 TAIL_CALL_NEXT. This is inappropriate for CALLER_PC's call_site. */
850 VEC (call_sitep) *chain = NULL;
851
852 /* We are not interested in the specific PC inside the callee function. */
853 callee_pc = get_pc_function_start (callee_pc);
854 if (callee_pc == 0)
855 throw_error (NO_ENTRY_VALUE_ERROR, _("Unable to find function for PC %s"),
856 paddress (gdbarch, save_callee_pc));
857
858 back_to_retval = make_cleanup (free_current_contents, &retval);
859
860 obstack_init (&addr_obstack);
861 back_to_workdata = make_cleanup_obstack_free (&addr_obstack);
862 addr_hash = htab_create_alloc_ex (64, core_addr_hash, core_addr_eq, NULL,
863 &addr_obstack, hashtab_obstack_allocate,
864 NULL);
865 make_cleanup_htab_delete (addr_hash);
866
867 make_cleanup (VEC_cleanup (call_sitep), &chain);
868
869 /* Do not push CALL_SITE to CHAIN. Push there only the first tail call site
870 at the target's function. All the possible tail call sites in the
871 target's function will get iterated as already pushed into CHAIN via their
872 TAIL_CALL_NEXT. */
873 call_site = call_site_for_pc (gdbarch, caller_pc);
874
875 while (call_site)
876 {
877 CORE_ADDR target_func_addr;
878 struct call_site *target_call_site;
879
880 /* CALLER_FRAME with registers is not available for tail-call jumped
881 frames. */
882 target_func_addr = call_site_to_target_addr (gdbarch, call_site, NULL);
883
884 if (target_func_addr == callee_pc)
885 {
886 chain_candidate (gdbarch, &retval, chain);
887 if (retval == NULL)
888 break;
889
890 /* There is no way to reach CALLEE_PC again as we would prevent
891 entering it twice as being already marked in ADDR_HASH. */
892 target_call_site = NULL;
893 }
894 else
895 {
896 struct symbol *target_func;
897
898 target_func = func_addr_to_tail_call_list (gdbarch, target_func_addr);
899 target_call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (target_func));
900 }
901
902 do
903 {
904 /* Attempt to visit TARGET_CALL_SITE. */
905
906 if (target_call_site)
907 {
908 void **slot;
909
910 slot = htab_find_slot (addr_hash, &target_call_site->pc, INSERT);
911 if (*slot == NULL)
912 {
913 /* Successfully entered TARGET_CALL_SITE. */
914
915 *slot = &target_call_site->pc;
916 VEC_safe_push (call_sitep, chain, target_call_site);
917 break;
918 }
919 }
920
921 /* Backtrack (without revisiting the originating call_site). Try the
922 callers's sibling; if there isn't any try the callers's callers's
923 sibling etc. */
924
925 target_call_site = NULL;
926 while (!VEC_empty (call_sitep, chain))
927 {
928 call_site = VEC_pop (call_sitep, chain);
929
930 gdb_assert (htab_find_slot (addr_hash, &call_site->pc,
931 NO_INSERT) != NULL);
932 htab_remove_elt (addr_hash, &call_site->pc);
933
934 target_call_site = call_site->tail_call_next;
935 if (target_call_site)
936 break;
937 }
938 }
939 while (target_call_site);
940
941 if (VEC_empty (call_sitep, chain))
942 call_site = NULL;
943 else
944 call_site = VEC_last (call_sitep, chain);
945 }
946
947 if (retval == NULL)
948 {
949 struct bound_minimal_symbol msym_caller, msym_callee;
950
951 msym_caller = lookup_minimal_symbol_by_pc (caller_pc);
952 msym_callee = lookup_minimal_symbol_by_pc (callee_pc);
953 throw_error (NO_ENTRY_VALUE_ERROR,
954 _("There are no unambiguously determinable intermediate "
955 "callers or callees between caller function \"%s\" at %s "
956 "and callee function \"%s\" at %s"),
957 (msym_caller.minsym == NULL
958 ? "???" : SYMBOL_PRINT_NAME (msym_caller.minsym)),
959 paddress (gdbarch, caller_pc),
960 (msym_callee.minsym == NULL
961 ? "???" : SYMBOL_PRINT_NAME (msym_callee.minsym)),
962 paddress (gdbarch, callee_pc));
963 }
964
965 do_cleanups (back_to_workdata);
966 discard_cleanups (back_to_retval);
967 return retval;
968 }
969
970 /* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
971 assumed frames between them use GDBARCH. If valid call_site_chain cannot be
972 constructed return NULL. Caller is responsible for xfree of the returned
973 result. */
974
975 struct call_site_chain *
976 call_site_find_chain (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
977 CORE_ADDR callee_pc)
978 {
979 volatile struct gdb_exception e;
980 struct call_site_chain *retval = NULL;
981
982 TRY_CATCH (e, RETURN_MASK_ERROR)
983 {
984 retval = call_site_find_chain_1 (gdbarch, caller_pc, callee_pc);
985 }
986 if (e.reason < 0)
987 {
988 if (e.error == NO_ENTRY_VALUE_ERROR)
989 {
990 if (entry_values_debug)
991 exception_print (gdb_stdout, e);
992
993 return NULL;
994 }
995 else
996 throw_exception (e);
997 }
998 return retval;
999 }
1000
1001 /* Return 1 if KIND and KIND_U match PARAMETER. Return 0 otherwise. */
1002
1003 static int
1004 call_site_parameter_matches (struct call_site_parameter *parameter,
1005 enum call_site_parameter_kind kind,
1006 union call_site_parameter_u kind_u)
1007 {
1008 if (kind == parameter->kind)
1009 switch (kind)
1010 {
1011 case CALL_SITE_PARAMETER_DWARF_REG:
1012 return kind_u.dwarf_reg == parameter->u.dwarf_reg;
1013 case CALL_SITE_PARAMETER_FB_OFFSET:
1014 return kind_u.fb_offset == parameter->u.fb_offset;
1015 case CALL_SITE_PARAMETER_PARAM_OFFSET:
1016 return kind_u.param_offset.cu_off == parameter->u.param_offset.cu_off;
1017 }
1018 return 0;
1019 }
1020
1021 /* Fetch call_site_parameter from caller matching KIND and KIND_U.
1022 FRAME is for callee.
1023
1024 Function always returns non-NULL, it throws NO_ENTRY_VALUE_ERROR
1025 otherwise. */
1026
1027 static struct call_site_parameter *
1028 dwarf_expr_reg_to_entry_parameter (struct frame_info *frame,
1029 enum call_site_parameter_kind kind,
1030 union call_site_parameter_u kind_u,
1031 struct dwarf2_per_cu_data **per_cu_return)
1032 {
1033 CORE_ADDR func_addr, caller_pc;
1034 struct gdbarch *gdbarch;
1035 struct frame_info *caller_frame;
1036 struct call_site *call_site;
1037 int iparams;
1038 /* Initialize it just to avoid a GCC false warning. */
1039 struct call_site_parameter *parameter = NULL;
1040 CORE_ADDR target_addr;
1041
1042 while (get_frame_type (frame) == INLINE_FRAME)
1043 {
1044 frame = get_prev_frame (frame);
1045 gdb_assert (frame != NULL);
1046 }
1047
1048 func_addr = get_frame_func (frame);
1049 gdbarch = get_frame_arch (frame);
1050 caller_frame = get_prev_frame (frame);
1051 if (gdbarch != frame_unwind_arch (frame))
1052 {
1053 struct bound_minimal_symbol msym
1054 = lookup_minimal_symbol_by_pc (func_addr);
1055 struct gdbarch *caller_gdbarch = frame_unwind_arch (frame);
1056
1057 throw_error (NO_ENTRY_VALUE_ERROR,
1058 _("DW_OP_GNU_entry_value resolving callee gdbarch %s "
1059 "(of %s (%s)) does not match caller gdbarch %s"),
1060 gdbarch_bfd_arch_info (gdbarch)->printable_name,
1061 paddress (gdbarch, func_addr),
1062 (msym.minsym == NULL ? "???"
1063 : SYMBOL_PRINT_NAME (msym.minsym)),
1064 gdbarch_bfd_arch_info (caller_gdbarch)->printable_name);
1065 }
1066
1067 if (caller_frame == NULL)
1068 {
1069 struct bound_minimal_symbol msym
1070 = lookup_minimal_symbol_by_pc (func_addr);
1071
1072 throw_error (NO_ENTRY_VALUE_ERROR, _("DW_OP_GNU_entry_value resolving "
1073 "requires caller of %s (%s)"),
1074 paddress (gdbarch, func_addr),
1075 (msym.minsym == NULL ? "???"
1076 : SYMBOL_PRINT_NAME (msym.minsym)));
1077 }
1078 caller_pc = get_frame_pc (caller_frame);
1079 call_site = call_site_for_pc (gdbarch, caller_pc);
1080
1081 target_addr = call_site_to_target_addr (gdbarch, call_site, caller_frame);
1082 if (target_addr != func_addr)
1083 {
1084 struct minimal_symbol *target_msym, *func_msym;
1085
1086 target_msym = lookup_minimal_symbol_by_pc (target_addr).minsym;
1087 func_msym = lookup_minimal_symbol_by_pc (func_addr).minsym;
1088 throw_error (NO_ENTRY_VALUE_ERROR,
1089 _("DW_OP_GNU_entry_value resolving expects callee %s at %s "
1090 "but the called frame is for %s at %s"),
1091 (target_msym == NULL ? "???"
1092 : SYMBOL_PRINT_NAME (target_msym)),
1093 paddress (gdbarch, target_addr),
1094 func_msym == NULL ? "???" : SYMBOL_PRINT_NAME (func_msym),
1095 paddress (gdbarch, func_addr));
1096 }
1097
1098 /* No entry value based parameters would be reliable if this function can
1099 call itself via tail calls. */
1100 func_verify_no_selftailcall (gdbarch, func_addr);
1101
1102 for (iparams = 0; iparams < call_site->parameter_count; iparams++)
1103 {
1104 parameter = &call_site->parameter[iparams];
1105 if (call_site_parameter_matches (parameter, kind, kind_u))
1106 break;
1107 }
1108 if (iparams == call_site->parameter_count)
1109 {
1110 struct minimal_symbol *msym
1111 = lookup_minimal_symbol_by_pc (caller_pc).minsym;
1112
1113 /* DW_TAG_GNU_call_site_parameter will be missing just if GCC could not
1114 determine its value. */
1115 throw_error (NO_ENTRY_VALUE_ERROR, _("Cannot find matching parameter "
1116 "at DW_TAG_GNU_call_site %s at %s"),
1117 paddress (gdbarch, caller_pc),
1118 msym == NULL ? "???" : SYMBOL_PRINT_NAME (msym));
1119 }
1120
1121 *per_cu_return = call_site->per_cu;
1122 return parameter;
1123 }
1124
1125 /* Return value for PARAMETER matching DEREF_SIZE. If DEREF_SIZE is -1, return
1126 the normal DW_AT_GNU_call_site_value block. Otherwise return the
1127 DW_AT_GNU_call_site_data_value (dereferenced) block.
1128
1129 TYPE and CALLER_FRAME specify how to evaluate the DWARF block into returned
1130 struct value.
1131
1132 Function always returns non-NULL, non-optimized out value. It throws
1133 NO_ENTRY_VALUE_ERROR if it cannot resolve the value for any reason. */
1134
1135 static struct value *
1136 dwarf_entry_parameter_to_value (struct call_site_parameter *parameter,
1137 CORE_ADDR deref_size, struct type *type,
1138 struct frame_info *caller_frame,
1139 struct dwarf2_per_cu_data *per_cu)
1140 {
1141 const gdb_byte *data_src;
1142 gdb_byte *data;
1143 size_t size;
1144
1145 data_src = deref_size == -1 ? parameter->value : parameter->data_value;
1146 size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;
1147
1148 /* DEREF_SIZE size is not verified here. */
1149 if (data_src == NULL)
1150 throw_error (NO_ENTRY_VALUE_ERROR,
1151 _("Cannot resolve DW_AT_GNU_call_site_data_value"));
1152
1153 /* DW_AT_GNU_call_site_value is a DWARF expression, not a DWARF
1154 location. Postprocessing of DWARF_VALUE_MEMORY would lose the type from
1155 DWARF block. */
1156 data = alloca (size + 1);
1157 memcpy (data, data_src, size);
1158 data[size] = DW_OP_stack_value;
1159
1160 return dwarf2_evaluate_loc_desc (type, caller_frame, data, size + 1, per_cu);
1161 }
1162
1163 /* Execute DWARF block of call_site_parameter which matches KIND and KIND_U.
1164 Choose DEREF_SIZE value of that parameter. Search caller of the CTX's
1165 frame. CTX must be of dwarf_expr_ctx_funcs kind.
1166
1167 The CTX caller can be from a different CU - per_cu_dwarf_call implementation
1168 can be more simple as it does not support cross-CU DWARF executions. */
1169
1170 static void
1171 dwarf_expr_push_dwarf_reg_entry_value (struct dwarf_expr_context *ctx,
1172 enum call_site_parameter_kind kind,
1173 union call_site_parameter_u kind_u,
1174 int deref_size)
1175 {
1176 struct dwarf_expr_baton *debaton;
1177 struct frame_info *frame, *caller_frame;
1178 struct dwarf2_per_cu_data *caller_per_cu;
1179 struct dwarf_expr_baton baton_local;
1180 struct dwarf_expr_context saved_ctx;
1181 struct call_site_parameter *parameter;
1182 const gdb_byte *data_src;
1183 size_t size;
1184
1185 gdb_assert (ctx->funcs == &dwarf_expr_ctx_funcs);
1186 debaton = ctx->baton;
1187 frame = debaton->frame;
1188 caller_frame = get_prev_frame (frame);
1189
1190 parameter = dwarf_expr_reg_to_entry_parameter (frame, kind, kind_u,
1191 &caller_per_cu);
1192 data_src = deref_size == -1 ? parameter->value : parameter->data_value;
1193 size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;
1194
1195 /* DEREF_SIZE size is not verified here. */
1196 if (data_src == NULL)
1197 throw_error (NO_ENTRY_VALUE_ERROR,
1198 _("Cannot resolve DW_AT_GNU_call_site_data_value"));
1199
1200 baton_local.frame = caller_frame;
1201 baton_local.per_cu = caller_per_cu;
1202
1203 saved_ctx.gdbarch = ctx->gdbarch;
1204 saved_ctx.addr_size = ctx->addr_size;
1205 saved_ctx.offset = ctx->offset;
1206 saved_ctx.baton = ctx->baton;
1207 ctx->gdbarch = get_objfile_arch (dwarf2_per_cu_objfile (baton_local.per_cu));
1208 ctx->addr_size = dwarf2_per_cu_addr_size (baton_local.per_cu);
1209 ctx->offset = dwarf2_per_cu_text_offset (baton_local.per_cu);
1210 ctx->baton = &baton_local;
1211
1212 dwarf_expr_eval (ctx, data_src, size);
1213
1214 ctx->gdbarch = saved_ctx.gdbarch;
1215 ctx->addr_size = saved_ctx.addr_size;
1216 ctx->offset = saved_ctx.offset;
1217 ctx->baton = saved_ctx.baton;
1218 }
1219
1220 /* Callback function for dwarf2_evaluate_loc_desc.
1221 Fetch the address indexed by DW_OP_GNU_addr_index. */
1222
1223 static CORE_ADDR
1224 dwarf_expr_get_addr_index (void *baton, unsigned int index)
1225 {
1226 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
1227
1228 return dwarf2_read_addr_index (debaton->per_cu, index);
1229 }
1230
1231 /* VALUE must be of type lval_computed with entry_data_value_funcs. Perform
1232 the indirect method on it, that is use its stored target value, the sole
1233 purpose of entry_data_value_funcs.. */
1234
1235 static struct value *
1236 entry_data_value_coerce_ref (const struct value *value)
1237 {
1238 struct type *checked_type = check_typedef (value_type (value));
1239 struct value *target_val;
1240
1241 if (TYPE_CODE (checked_type) != TYPE_CODE_REF)
1242 return NULL;
1243
1244 target_val = value_computed_closure (value);
1245 value_incref (target_val);
1246 return target_val;
1247 }
1248
1249 /* Implement copy_closure. */
1250
1251 static void *
1252 entry_data_value_copy_closure (const struct value *v)
1253 {
1254 struct value *target_val = value_computed_closure (v);
1255
1256 value_incref (target_val);
1257 return target_val;
1258 }
1259
1260 /* Implement free_closure. */
1261
1262 static void
1263 entry_data_value_free_closure (struct value *v)
1264 {
1265 struct value *target_val = value_computed_closure (v);
1266
1267 value_free (target_val);
1268 }
1269
1270 /* Vector for methods for an entry value reference where the referenced value
1271 is stored in the caller. On the first dereference use
1272 DW_AT_GNU_call_site_data_value in the caller. */
1273
1274 static const struct lval_funcs entry_data_value_funcs =
1275 {
1276 NULL, /* read */
1277 NULL, /* write */
1278 NULL, /* check_validity */
1279 NULL, /* check_any_valid */
1280 NULL, /* indirect */
1281 entry_data_value_coerce_ref,
1282 NULL, /* check_synthetic_pointer */
1283 entry_data_value_copy_closure,
1284 entry_data_value_free_closure
1285 };
1286
1287 /* Read parameter of TYPE at (callee) FRAME's function entry. KIND and KIND_U
1288 are used to match DW_AT_location at the caller's
1289 DW_TAG_GNU_call_site_parameter.
1290
1291 Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it
1292 cannot resolve the parameter for any reason. */
1293
1294 static struct value *
1295 value_of_dwarf_reg_entry (struct type *type, struct frame_info *frame,
1296 enum call_site_parameter_kind kind,
1297 union call_site_parameter_u kind_u)
1298 {
1299 struct type *checked_type = check_typedef (type);
1300 struct type *target_type = TYPE_TARGET_TYPE (checked_type);
1301 struct frame_info *caller_frame = get_prev_frame (frame);
1302 struct value *outer_val, *target_val, *val;
1303 struct call_site_parameter *parameter;
1304 struct dwarf2_per_cu_data *caller_per_cu;
1305 CORE_ADDR addr;
1306
1307 parameter = dwarf_expr_reg_to_entry_parameter (frame, kind, kind_u,
1308 &caller_per_cu);
1309
1310 outer_val = dwarf_entry_parameter_to_value (parameter, -1 /* deref_size */,
1311 type, caller_frame,
1312 caller_per_cu);
1313
1314 /* Check if DW_AT_GNU_call_site_data_value cannot be used. If it should be
1315 used and it is not available do not fall back to OUTER_VAL - dereferencing
1316 TYPE_CODE_REF with non-entry data value would give current value - not the
1317 entry value. */
1318
1319 if (TYPE_CODE (checked_type) != TYPE_CODE_REF
1320 || TYPE_TARGET_TYPE (checked_type) == NULL)
1321 return outer_val;
1322
1323 target_val = dwarf_entry_parameter_to_value (parameter,
1324 TYPE_LENGTH (target_type),
1325 target_type, caller_frame,
1326 caller_per_cu);
1327
1328 /* value_as_address dereferences TYPE_CODE_REF. */
1329 addr = extract_typed_address (value_contents (outer_val), checked_type);
1330
1331 /* The target entry value has artificial address of the entry value
1332 reference. */
1333 VALUE_LVAL (target_val) = lval_memory;
1334 set_value_address (target_val, addr);
1335
1336 release_value (target_val);
1337 val = allocate_computed_value (type, &entry_data_value_funcs,
1338 target_val /* closure */);
1339
1340 /* Copy the referencing pointer to the new computed value. */
1341 memcpy (value_contents_raw (val), value_contents_raw (outer_val),
1342 TYPE_LENGTH (checked_type));
1343 set_value_lazy (val, 0);
1344
1345 return val;
1346 }
1347
1348 /* Read parameter of TYPE at (callee) FRAME's function entry. DATA and
1349 SIZE are DWARF block used to match DW_AT_location at the caller's
1350 DW_TAG_GNU_call_site_parameter.
1351
1352 Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it
1353 cannot resolve the parameter for any reason. */
1354
1355 static struct value *
1356 value_of_dwarf_block_entry (struct type *type, struct frame_info *frame,
1357 const gdb_byte *block, size_t block_len)
1358 {
1359 union call_site_parameter_u kind_u;
1360
1361 kind_u.dwarf_reg = dwarf_block_to_dwarf_reg (block, block + block_len);
1362 if (kind_u.dwarf_reg != -1)
1363 return value_of_dwarf_reg_entry (type, frame, CALL_SITE_PARAMETER_DWARF_REG,
1364 kind_u);
1365
1366 if (dwarf_block_to_fb_offset (block, block + block_len, &kind_u.fb_offset))
1367 return value_of_dwarf_reg_entry (type, frame, CALL_SITE_PARAMETER_FB_OFFSET,
1368 kind_u);
1369
1370 /* This can normally happen - throw NO_ENTRY_VALUE_ERROR to get the message
1371 suppressed during normal operation. The expression can be arbitrary if
1372 there is no caller-callee entry value binding expected. */
1373 throw_error (NO_ENTRY_VALUE_ERROR,
1374 _("DWARF-2 expression error: DW_OP_GNU_entry_value is supported "
1375 "only for single DW_OP_reg* or for DW_OP_fbreg(*)"));
1376 }
1377
1378 struct piece_closure
1379 {
1380 /* Reference count. */
1381 int refc;
1382
1383 /* The CU from which this closure's expression came. */
1384 struct dwarf2_per_cu_data *per_cu;
1385
1386 /* The number of pieces used to describe this variable. */
1387 int n_pieces;
1388
1389 /* The target address size, used only for DWARF_VALUE_STACK. */
1390 int addr_size;
1391
1392 /* The pieces themselves. */
1393 struct dwarf_expr_piece *pieces;
1394 };
1395
1396 /* Allocate a closure for a value formed from separately-described
1397 PIECES. */
1398
1399 static struct piece_closure *
1400 allocate_piece_closure (struct dwarf2_per_cu_data *per_cu,
1401 int n_pieces, struct dwarf_expr_piece *pieces,
1402 int addr_size)
1403 {
1404 struct piece_closure *c = XZALLOC (struct piece_closure);
1405 int i;
1406
1407 c->refc = 1;
1408 c->per_cu = per_cu;
1409 c->n_pieces = n_pieces;
1410 c->addr_size = addr_size;
1411 c->pieces = XCALLOC (n_pieces, struct dwarf_expr_piece);
1412
1413 memcpy (c->pieces, pieces, n_pieces * sizeof (struct dwarf_expr_piece));
1414 for (i = 0; i < n_pieces; ++i)
1415 if (c->pieces[i].location == DWARF_VALUE_STACK)
1416 value_incref (c->pieces[i].v.value);
1417
1418 return c;
1419 }
1420
1421 /* The lowest-level function to extract bits from a byte buffer.
1422 SOURCE is the buffer. It is updated if we read to the end of a
1423 byte.
1424 SOURCE_OFFSET_BITS is the offset of the first bit to read. It is
1425 updated to reflect the number of bits actually read.
1426 NBITS is the number of bits we want to read. It is updated to
1427 reflect the number of bits actually read. This function may read
1428 fewer bits.
1429 BITS_BIG_ENDIAN is taken directly from gdbarch.
1430 This function returns the extracted bits. */
1431
1432 static unsigned int
1433 extract_bits_primitive (const gdb_byte **source,
1434 unsigned int *source_offset_bits,
1435 int *nbits, int bits_big_endian)
1436 {
1437 unsigned int avail, mask, datum;
1438
1439 gdb_assert (*source_offset_bits < 8);
1440
1441 avail = 8 - *source_offset_bits;
1442 if (avail > *nbits)
1443 avail = *nbits;
1444
1445 mask = (1 << avail) - 1;
1446 datum = **source;
1447 if (bits_big_endian)
1448 datum >>= 8 - (*source_offset_bits + *nbits);
1449 else
1450 datum >>= *source_offset_bits;
1451 datum &= mask;
1452
1453 *nbits -= avail;
1454 *source_offset_bits += avail;
1455 if (*source_offset_bits >= 8)
1456 {
1457 *source_offset_bits -= 8;
1458 ++*source;
1459 }
1460
1461 return datum;
1462 }
1463
1464 /* Extract some bits from a source buffer and move forward in the
1465 buffer.
1466
1467 SOURCE is the source buffer. It is updated as bytes are read.
1468 SOURCE_OFFSET_BITS is the offset into SOURCE. It is updated as
1469 bits are read.
1470 NBITS is the number of bits to read.
1471 BITS_BIG_ENDIAN is taken directly from gdbarch.
1472
1473 This function returns the bits that were read. */
1474
1475 static unsigned int
1476 extract_bits (const gdb_byte **source, unsigned int *source_offset_bits,
1477 int nbits, int bits_big_endian)
1478 {
1479 unsigned int datum;
1480
1481 gdb_assert (nbits > 0 && nbits <= 8);
1482
1483 datum = extract_bits_primitive (source, source_offset_bits, &nbits,
1484 bits_big_endian);
1485 if (nbits > 0)
1486 {
1487 unsigned int more;
1488
1489 more = extract_bits_primitive (source, source_offset_bits, &nbits,
1490 bits_big_endian);
1491 if (bits_big_endian)
1492 datum <<= nbits;
1493 else
1494 more <<= nbits;
1495 datum |= more;
1496 }
1497
1498 return datum;
1499 }
1500
1501 /* Write some bits into a buffer and move forward in the buffer.
1502
1503 DATUM is the bits to write. The low-order bits of DATUM are used.
1504 DEST is the destination buffer. It is updated as bytes are
1505 written.
1506 DEST_OFFSET_BITS is the bit offset in DEST at which writing is
1507 done.
1508 NBITS is the number of valid bits in DATUM.
1509 BITS_BIG_ENDIAN is taken directly from gdbarch. */
1510
1511 static void
1512 insert_bits (unsigned int datum,
1513 gdb_byte *dest, unsigned int dest_offset_bits,
1514 int nbits, int bits_big_endian)
1515 {
1516 unsigned int mask;
1517
1518 gdb_assert (dest_offset_bits + nbits <= 8);
1519
1520 mask = (1 << nbits) - 1;
1521 if (bits_big_endian)
1522 {
1523 datum <<= 8 - (dest_offset_bits + nbits);
1524 mask <<= 8 - (dest_offset_bits + nbits);
1525 }
1526 else
1527 {
1528 datum <<= dest_offset_bits;
1529 mask <<= dest_offset_bits;
1530 }
1531
1532 gdb_assert ((datum & ~mask) == 0);
1533
1534 *dest = (*dest & ~mask) | datum;
1535 }
1536
1537 /* Copy bits from a source to a destination.
1538
1539 DEST is where the bits should be written.
1540 DEST_OFFSET_BITS is the bit offset into DEST.
1541 SOURCE is the source of bits.
1542 SOURCE_OFFSET_BITS is the bit offset into SOURCE.
1543 BIT_COUNT is the number of bits to copy.
1544 BITS_BIG_ENDIAN is taken directly from gdbarch. */
1545
1546 static void
1547 copy_bitwise (gdb_byte *dest, unsigned int dest_offset_bits,
1548 const gdb_byte *source, unsigned int source_offset_bits,
1549 unsigned int bit_count,
1550 int bits_big_endian)
1551 {
1552 unsigned int dest_avail;
1553 int datum;
1554
1555 /* Reduce everything to byte-size pieces. */
1556 dest += dest_offset_bits / 8;
1557 dest_offset_bits %= 8;
1558 source += source_offset_bits / 8;
1559 source_offset_bits %= 8;
1560
1561 dest_avail = 8 - dest_offset_bits % 8;
1562
1563 /* See if we can fill the first destination byte. */
1564 if (dest_avail < bit_count)
1565 {
1566 datum = extract_bits (&source, &source_offset_bits, dest_avail,
1567 bits_big_endian);
1568 insert_bits (datum, dest, dest_offset_bits, dest_avail, bits_big_endian);
1569 ++dest;
1570 dest_offset_bits = 0;
1571 bit_count -= dest_avail;
1572 }
1573
1574 /* Now, either DEST_OFFSET_BITS is byte-aligned, or we have fewer
1575 than 8 bits remaining. */
1576 gdb_assert (dest_offset_bits % 8 == 0 || bit_count < 8);
1577 for (; bit_count >= 8; bit_count -= 8)
1578 {
1579 datum = extract_bits (&source, &source_offset_bits, 8, bits_big_endian);
1580 *dest++ = (gdb_byte) datum;
1581 }
1582
1583 /* Finally, we may have a few leftover bits. */
1584 gdb_assert (bit_count <= 8 - dest_offset_bits % 8);
1585 if (bit_count > 0)
1586 {
1587 datum = extract_bits (&source, &source_offset_bits, bit_count,
1588 bits_big_endian);
1589 insert_bits (datum, dest, dest_offset_bits, bit_count, bits_big_endian);
1590 }
1591 }
1592
1593 static void
1594 read_pieced_value (struct value *v)
1595 {
1596 int i;
1597 long offset = 0;
1598 ULONGEST bits_to_skip;
1599 gdb_byte *contents;
1600 struct piece_closure *c
1601 = (struct piece_closure *) value_computed_closure (v);
1602 struct frame_info *frame = frame_find_by_id (VALUE_FRAME_ID (v));
1603 size_t type_len;
1604 size_t buffer_size = 0;
1605 gdb_byte *buffer = NULL;
1606 struct cleanup *cleanup;
1607 int bits_big_endian
1608 = gdbarch_bits_big_endian (get_type_arch (value_type (v)));
1609
1610 if (value_type (v) != value_enclosing_type (v))
1611 internal_error (__FILE__, __LINE__,
1612 _("Should not be able to create a lazy value with "
1613 "an enclosing type"));
1614
1615 cleanup = make_cleanup (free_current_contents, &buffer);
1616
1617 contents = value_contents_raw (v);
1618 bits_to_skip = 8 * value_offset (v);
1619 if (value_bitsize (v))
1620 {
1621 bits_to_skip += value_bitpos (v);
1622 type_len = value_bitsize (v);
1623 }
1624 else
1625 type_len = 8 * TYPE_LENGTH (value_type (v));
1626
1627 for (i = 0; i < c->n_pieces && offset < type_len; i++)
1628 {
1629 struct dwarf_expr_piece *p = &c->pieces[i];
1630 size_t this_size, this_size_bits;
1631 long dest_offset_bits, source_offset_bits, source_offset;
1632 const gdb_byte *intermediate_buffer;
1633
1634 /* Compute size, source, and destination offsets for copying, in
1635 bits. */
1636 this_size_bits = p->size;
1637 if (bits_to_skip > 0 && bits_to_skip >= this_size_bits)
1638 {
1639 bits_to_skip -= this_size_bits;
1640 continue;
1641 }
1642 if (bits_to_skip > 0)
1643 {
1644 dest_offset_bits = 0;
1645 source_offset_bits = bits_to_skip;
1646 this_size_bits -= bits_to_skip;
1647 bits_to_skip = 0;
1648 }
1649 else
1650 {
1651 dest_offset_bits = offset;
1652 source_offset_bits = 0;
1653 }
1654 if (this_size_bits > type_len - offset)
1655 this_size_bits = type_len - offset;
1656
1657 this_size = (this_size_bits + source_offset_bits % 8 + 7) / 8;
1658 source_offset = source_offset_bits / 8;
1659 if (buffer_size < this_size)
1660 {
1661 buffer_size = this_size;
1662 buffer = xrealloc (buffer, buffer_size);
1663 }
1664 intermediate_buffer = buffer;
1665
1666 /* Copy from the source to DEST_BUFFER. */
1667 switch (p->location)
1668 {
1669 case DWARF_VALUE_REGISTER:
1670 {
1671 struct gdbarch *arch = get_frame_arch (frame);
1672 int gdb_regnum = gdbarch_dwarf2_reg_to_regnum (arch, p->v.regno);
1673 int reg_offset = source_offset;
1674
1675 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG
1676 && this_size < register_size (arch, gdb_regnum))
1677 {
1678 /* Big-endian, and we want less than full size. */
1679 reg_offset = register_size (arch, gdb_regnum) - this_size;
1680 /* We want the lower-order THIS_SIZE_BITS of the bytes
1681 we extract from the register. */
1682 source_offset_bits += 8 * this_size - this_size_bits;
1683 }
1684
1685 if (gdb_regnum != -1)
1686 {
1687 int optim, unavail;
1688
1689 if (!get_frame_register_bytes (frame, gdb_regnum, reg_offset,
1690 this_size, buffer,
1691 &optim, &unavail))
1692 {
1693 /* Just so garbage doesn't ever shine through. */
1694 memset (buffer, 0, this_size);
1695
1696 if (optim)
1697 set_value_optimized_out (v, 1);
1698 if (unavail)
1699 mark_value_bytes_unavailable (v, offset, this_size);
1700 }
1701 }
1702 else
1703 {
1704 error (_("Unable to access DWARF register number %s"),
1705 paddress (arch, p->v.regno));
1706 }
1707 }
1708 break;
1709
1710 case DWARF_VALUE_MEMORY:
1711 read_value_memory (v, offset,
1712 p->v.mem.in_stack_memory,
1713 p->v.mem.addr + source_offset,
1714 buffer, this_size);
1715 break;
1716
1717 case DWARF_VALUE_STACK:
1718 {
1719 size_t n = this_size;
1720
1721 if (n > c->addr_size - source_offset)
1722 n = (c->addr_size >= source_offset
1723 ? c->addr_size - source_offset
1724 : 0);
1725 if (n == 0)
1726 {
1727 /* Nothing. */
1728 }
1729 else
1730 {
1731 const gdb_byte *val_bytes = value_contents_all (p->v.value);
1732
1733 intermediate_buffer = val_bytes + source_offset;
1734 }
1735 }
1736 break;
1737
1738 case DWARF_VALUE_LITERAL:
1739 {
1740 size_t n = this_size;
1741
1742 if (n > p->v.literal.length - source_offset)
1743 n = (p->v.literal.length >= source_offset
1744 ? p->v.literal.length - source_offset
1745 : 0);
1746 if (n != 0)
1747 intermediate_buffer = p->v.literal.data + source_offset;
1748 }
1749 break;
1750
1751 /* These bits show up as zeros -- but do not cause the value
1752 to be considered optimized-out. */
1753 case DWARF_VALUE_IMPLICIT_POINTER:
1754 break;
1755
1756 case DWARF_VALUE_OPTIMIZED_OUT:
1757 set_value_optimized_out (v, 1);
1758 break;
1759
1760 default:
1761 internal_error (__FILE__, __LINE__, _("invalid location type"));
1762 }
1763
1764 if (p->location != DWARF_VALUE_OPTIMIZED_OUT
1765 && p->location != DWARF_VALUE_IMPLICIT_POINTER)
1766 copy_bitwise (contents, dest_offset_bits,
1767 intermediate_buffer, source_offset_bits % 8,
1768 this_size_bits, bits_big_endian);
1769
1770 offset += this_size_bits;
1771 }
1772
1773 do_cleanups (cleanup);
1774 }
1775
1776 static void
1777 write_pieced_value (struct value *to, struct value *from)
1778 {
1779 int i;
1780 long offset = 0;
1781 ULONGEST bits_to_skip;
1782 const gdb_byte *contents;
1783 struct piece_closure *c
1784 = (struct piece_closure *) value_computed_closure (to);
1785 struct frame_info *frame = frame_find_by_id (VALUE_FRAME_ID (to));
1786 size_t type_len;
1787 size_t buffer_size = 0;
1788 gdb_byte *buffer = NULL;
1789 struct cleanup *cleanup;
1790 int bits_big_endian
1791 = gdbarch_bits_big_endian (get_type_arch (value_type (to)));
1792
1793 if (frame == NULL)
1794 {
1795 set_value_optimized_out (to, 1);
1796 return;
1797 }
1798
1799 cleanup = make_cleanup (free_current_contents, &buffer);
1800
1801 contents = value_contents (from);
1802 bits_to_skip = 8 * value_offset (to);
1803 if (value_bitsize (to))
1804 {
1805 bits_to_skip += value_bitpos (to);
1806 type_len = value_bitsize (to);
1807 }
1808 else
1809 type_len = 8 * TYPE_LENGTH (value_type (to));
1810
1811 for (i = 0; i < c->n_pieces && offset < type_len; i++)
1812 {
1813 struct dwarf_expr_piece *p = &c->pieces[i];
1814 size_t this_size_bits, this_size;
1815 long dest_offset_bits, source_offset_bits, dest_offset, source_offset;
1816 int need_bitwise;
1817 const gdb_byte *source_buffer;
1818
1819 this_size_bits = p->size;
1820 if (bits_to_skip > 0 && bits_to_skip >= this_size_bits)
1821 {
1822 bits_to_skip -= this_size_bits;
1823 continue;
1824 }
1825 if (this_size_bits > type_len - offset)
1826 this_size_bits = type_len - offset;
1827 if (bits_to_skip > 0)
1828 {
1829 dest_offset_bits = bits_to_skip;
1830 source_offset_bits = 0;
1831 this_size_bits -= bits_to_skip;
1832 bits_to_skip = 0;
1833 }
1834 else
1835 {
1836 dest_offset_bits = 0;
1837 source_offset_bits = offset;
1838 }
1839
1840 this_size = (this_size_bits + source_offset_bits % 8 + 7) / 8;
1841 source_offset = source_offset_bits / 8;
1842 dest_offset = dest_offset_bits / 8;
1843 if (dest_offset_bits % 8 == 0 && source_offset_bits % 8 == 0)
1844 {
1845 source_buffer = contents + source_offset;
1846 need_bitwise = 0;
1847 }
1848 else
1849 {
1850 if (buffer_size < this_size)
1851 {
1852 buffer_size = this_size;
1853 buffer = xrealloc (buffer, buffer_size);
1854 }
1855 source_buffer = buffer;
1856 need_bitwise = 1;
1857 }
1858
1859 switch (p->location)
1860 {
1861 case DWARF_VALUE_REGISTER:
1862 {
1863 struct gdbarch *arch = get_frame_arch (frame);
1864 int gdb_regnum = gdbarch_dwarf2_reg_to_regnum (arch, p->v.regno);
1865 int reg_offset = dest_offset;
1866
1867 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG
1868 && this_size <= register_size (arch, gdb_regnum))
1869 /* Big-endian, and we want less than full size. */
1870 reg_offset = register_size (arch, gdb_regnum) - this_size;
1871
1872 if (gdb_regnum != -1)
1873 {
1874 if (need_bitwise)
1875 {
1876 int optim, unavail;
1877
1878 if (!get_frame_register_bytes (frame, gdb_regnum, reg_offset,
1879 this_size, buffer,
1880 &optim, &unavail))
1881 {
1882 if (optim)
1883 error (_("Can't do read-modify-write to "
1884 "update bitfield; containing word has been "
1885 "optimized out"));
1886 if (unavail)
1887 throw_error (NOT_AVAILABLE_ERROR,
1888 _("Can't do read-modify-write to update "
1889 "bitfield; containing word "
1890 "is unavailable"));
1891 }
1892 copy_bitwise (buffer, dest_offset_bits,
1893 contents, source_offset_bits,
1894 this_size_bits,
1895 bits_big_endian);
1896 }
1897
1898 put_frame_register_bytes (frame, gdb_regnum, reg_offset,
1899 this_size, source_buffer);
1900 }
1901 else
1902 {
1903 error (_("Unable to write to DWARF register number %s"),
1904 paddress (arch, p->v.regno));
1905 }
1906 }
1907 break;
1908 case DWARF_VALUE_MEMORY:
1909 if (need_bitwise)
1910 {
1911 /* Only the first and last bytes can possibly have any
1912 bits reused. */
1913 read_memory (p->v.mem.addr + dest_offset, buffer, 1);
1914 read_memory (p->v.mem.addr + dest_offset + this_size - 1,
1915 buffer + this_size - 1, 1);
1916 copy_bitwise (buffer, dest_offset_bits,
1917 contents, source_offset_bits,
1918 this_size_bits,
1919 bits_big_endian);
1920 }
1921
1922 write_memory (p->v.mem.addr + dest_offset,
1923 source_buffer, this_size);
1924 break;
1925 default:
1926 set_value_optimized_out (to, 1);
1927 break;
1928 }
1929 offset += this_size_bits;
1930 }
1931
1932 do_cleanups (cleanup);
1933 }
1934
1935 /* A helper function that checks bit validity in a pieced value.
1936 CHECK_FOR indicates the kind of validity checking.
1937 DWARF_VALUE_MEMORY means to check whether any bit is valid.
1938 DWARF_VALUE_OPTIMIZED_OUT means to check whether any bit is
1939 optimized out.
1940 DWARF_VALUE_IMPLICIT_POINTER means to check whether the bits are an
1941 implicit pointer. */
1942
1943 static int
1944 check_pieced_value_bits (const struct value *value, int bit_offset,
1945 int bit_length,
1946 enum dwarf_value_location check_for)
1947 {
1948 struct piece_closure *c
1949 = (struct piece_closure *) value_computed_closure (value);
1950 int i;
1951 int validity = (check_for == DWARF_VALUE_MEMORY
1952 || check_for == DWARF_VALUE_IMPLICIT_POINTER);
1953
1954 bit_offset += 8 * value_offset (value);
1955 if (value_bitsize (value))
1956 bit_offset += value_bitpos (value);
1957
1958 for (i = 0; i < c->n_pieces && bit_length > 0; i++)
1959 {
1960 struct dwarf_expr_piece *p = &c->pieces[i];
1961 size_t this_size_bits = p->size;
1962
1963 if (bit_offset > 0)
1964 {
1965 if (bit_offset >= this_size_bits)
1966 {
1967 bit_offset -= this_size_bits;
1968 continue;
1969 }
1970
1971 bit_length -= this_size_bits - bit_offset;
1972 bit_offset = 0;
1973 }
1974 else
1975 bit_length -= this_size_bits;
1976
1977 if (check_for == DWARF_VALUE_IMPLICIT_POINTER)
1978 {
1979 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
1980 return 0;
1981 }
1982 else if (p->location == DWARF_VALUE_OPTIMIZED_OUT
1983 || p->location == DWARF_VALUE_IMPLICIT_POINTER)
1984 {
1985 if (validity)
1986 return 0;
1987 }
1988 else
1989 {
1990 if (!validity)
1991 return 1;
1992 }
1993 }
1994
1995 return validity;
1996 }
1997
1998 static int
1999 check_pieced_value_validity (const struct value *value, int bit_offset,
2000 int bit_length)
2001 {
2002 return check_pieced_value_bits (value, bit_offset, bit_length,
2003 DWARF_VALUE_MEMORY);
2004 }
2005
2006 static int
2007 check_pieced_value_invalid (const struct value *value)
2008 {
2009 return check_pieced_value_bits (value, 0,
2010 8 * TYPE_LENGTH (value_type (value)),
2011 DWARF_VALUE_OPTIMIZED_OUT);
2012 }
2013
2014 /* An implementation of an lval_funcs method to see whether a value is
2015 a synthetic pointer. */
2016
2017 static int
2018 check_pieced_synthetic_pointer (const struct value *value, int bit_offset,
2019 int bit_length)
2020 {
2021 return check_pieced_value_bits (value, bit_offset, bit_length,
2022 DWARF_VALUE_IMPLICIT_POINTER);
2023 }
2024
2025 /* A wrapper function for get_frame_address_in_block. */
2026
2027 static CORE_ADDR
2028 get_frame_address_in_block_wrapper (void *baton)
2029 {
2030 return get_frame_address_in_block (baton);
2031 }
2032
2033 /* An implementation of an lval_funcs method to indirect through a
2034 pointer. This handles the synthetic pointer case when needed. */
2035
2036 static struct value *
2037 indirect_pieced_value (struct value *value)
2038 {
2039 struct piece_closure *c
2040 = (struct piece_closure *) value_computed_closure (value);
2041 struct type *type;
2042 struct frame_info *frame;
2043 struct dwarf2_locexpr_baton baton;
2044 int i, bit_offset, bit_length;
2045 struct dwarf_expr_piece *piece = NULL;
2046 LONGEST byte_offset;
2047
2048 type = check_typedef (value_type (value));
2049 if (TYPE_CODE (type) != TYPE_CODE_PTR)
2050 return NULL;
2051
2052 bit_length = 8 * TYPE_LENGTH (type);
2053 bit_offset = 8 * value_offset (value);
2054 if (value_bitsize (value))
2055 bit_offset += value_bitpos (value);
2056
2057 for (i = 0; i < c->n_pieces && bit_length > 0; i++)
2058 {
2059 struct dwarf_expr_piece *p = &c->pieces[i];
2060 size_t this_size_bits = p->size;
2061
2062 if (bit_offset > 0)
2063 {
2064 if (bit_offset >= this_size_bits)
2065 {
2066 bit_offset -= this_size_bits;
2067 continue;
2068 }
2069
2070 bit_length -= this_size_bits - bit_offset;
2071 bit_offset = 0;
2072 }
2073 else
2074 bit_length -= this_size_bits;
2075
2076 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
2077 return NULL;
2078
2079 if (bit_length != 0)
2080 error (_("Invalid use of DW_OP_GNU_implicit_pointer"));
2081
2082 piece = p;
2083 break;
2084 }
2085
2086 frame = get_selected_frame (_("No frame selected."));
2087
2088 /* This is an offset requested by GDB, such as value subscripts.
2089 However, due to how synthetic pointers are implemented, this is
2090 always presented to us as a pointer type. This means we have to
2091 sign-extend it manually as appropriate. */
2092 byte_offset = value_as_address (value);
2093 if (TYPE_LENGTH (value_type (value)) < sizeof (LONGEST))
2094 byte_offset = gdb_sign_extend (byte_offset,
2095 8 * TYPE_LENGTH (value_type (value)));
2096 byte_offset += piece->v.ptr.offset;
2097
2098 gdb_assert (piece);
2099 baton
2100 = dwarf2_fetch_die_loc_sect_off (piece->v.ptr.die, c->per_cu,
2101 get_frame_address_in_block_wrapper,
2102 frame);
2103
2104 if (baton.data != NULL)
2105 return dwarf2_evaluate_loc_desc_full (TYPE_TARGET_TYPE (type), frame,
2106 baton.data, baton.size, baton.per_cu,
2107 byte_offset);
2108
2109 {
2110 struct obstack temp_obstack;
2111 struct cleanup *cleanup;
2112 const gdb_byte *bytes;
2113 LONGEST len;
2114 struct value *result;
2115
2116 obstack_init (&temp_obstack);
2117 cleanup = make_cleanup_obstack_free (&temp_obstack);
2118
2119 bytes = dwarf2_fetch_constant_bytes (piece->v.ptr.die, c->per_cu,
2120 &temp_obstack, &len);
2121 if (bytes == NULL)
2122 result = allocate_optimized_out_value (TYPE_TARGET_TYPE (type));
2123 else
2124 {
2125 if (byte_offset < 0
2126 || byte_offset + TYPE_LENGTH (TYPE_TARGET_TYPE (type)) > len)
2127 invalid_synthetic_pointer ();
2128 bytes += byte_offset;
2129 result = value_from_contents (TYPE_TARGET_TYPE (type), bytes);
2130 }
2131
2132 do_cleanups (cleanup);
2133 return result;
2134 }
2135 }
2136
2137 static void *
2138 copy_pieced_value_closure (const struct value *v)
2139 {
2140 struct piece_closure *c
2141 = (struct piece_closure *) value_computed_closure (v);
2142
2143 ++c->refc;
2144 return c;
2145 }
2146
2147 static void
2148 free_pieced_value_closure (struct value *v)
2149 {
2150 struct piece_closure *c
2151 = (struct piece_closure *) value_computed_closure (v);
2152
2153 --c->refc;
2154 if (c->refc == 0)
2155 {
2156 int i;
2157
2158 for (i = 0; i < c->n_pieces; ++i)
2159 if (c->pieces[i].location == DWARF_VALUE_STACK)
2160 value_free (c->pieces[i].v.value);
2161
2162 xfree (c->pieces);
2163 xfree (c);
2164 }
2165 }
2166
2167 /* Functions for accessing a variable described by DW_OP_piece. */
2168 static const struct lval_funcs pieced_value_funcs = {
2169 read_pieced_value,
2170 write_pieced_value,
2171 check_pieced_value_validity,
2172 check_pieced_value_invalid,
2173 indirect_pieced_value,
2174 NULL, /* coerce_ref */
2175 check_pieced_synthetic_pointer,
2176 copy_pieced_value_closure,
2177 free_pieced_value_closure
2178 };
2179
2180 /* Virtual method table for dwarf2_evaluate_loc_desc_full below. */
2181
2182 static const struct dwarf_expr_context_funcs dwarf_expr_ctx_funcs =
2183 {
2184 dwarf_expr_read_reg,
2185 dwarf_expr_read_mem,
2186 dwarf_expr_frame_base,
2187 dwarf_expr_frame_cfa,
2188 dwarf_expr_frame_pc,
2189 dwarf_expr_tls_address,
2190 dwarf_expr_dwarf_call,
2191 dwarf_expr_get_base_type,
2192 dwarf_expr_push_dwarf_reg_entry_value,
2193 dwarf_expr_get_addr_index
2194 };
2195
2196 /* Evaluate a location description, starting at DATA and with length
2197 SIZE, to find the current location of variable of TYPE in the
2198 context of FRAME. BYTE_OFFSET is applied after the contents are
2199 computed. */
2200
2201 static struct value *
2202 dwarf2_evaluate_loc_desc_full (struct type *type, struct frame_info *frame,
2203 const gdb_byte *data, size_t size,
2204 struct dwarf2_per_cu_data *per_cu,
2205 LONGEST byte_offset)
2206 {
2207 struct value *retval;
2208 struct dwarf_expr_baton baton;
2209 struct dwarf_expr_context *ctx;
2210 struct cleanup *old_chain, *value_chain;
2211 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
2212 volatile struct gdb_exception ex;
2213
2214 if (byte_offset < 0)
2215 invalid_synthetic_pointer ();
2216
2217 if (size == 0)
2218 return allocate_optimized_out_value (type);
2219
2220 baton.frame = frame;
2221 baton.per_cu = per_cu;
2222
2223 ctx = new_dwarf_expr_context ();
2224 old_chain = make_cleanup_free_dwarf_expr_context (ctx);
2225 value_chain = make_cleanup_value_free_to_mark (value_mark ());
2226
2227 ctx->gdbarch = get_objfile_arch (objfile);
2228 ctx->addr_size = dwarf2_per_cu_addr_size (per_cu);
2229 ctx->ref_addr_size = dwarf2_per_cu_ref_addr_size (per_cu);
2230 ctx->offset = dwarf2_per_cu_text_offset (per_cu);
2231 ctx->baton = &baton;
2232 ctx->funcs = &dwarf_expr_ctx_funcs;
2233
2234 TRY_CATCH (ex, RETURN_MASK_ERROR)
2235 {
2236 dwarf_expr_eval (ctx, data, size);
2237 }
2238 if (ex.reason < 0)
2239 {
2240 if (ex.error == NOT_AVAILABLE_ERROR)
2241 {
2242 do_cleanups (old_chain);
2243 retval = allocate_value (type);
2244 mark_value_bytes_unavailable (retval, 0, TYPE_LENGTH (type));
2245 return retval;
2246 }
2247 else if (ex.error == NO_ENTRY_VALUE_ERROR)
2248 {
2249 if (entry_values_debug)
2250 exception_print (gdb_stdout, ex);
2251 do_cleanups (old_chain);
2252 return allocate_optimized_out_value (type);
2253 }
2254 else
2255 throw_exception (ex);
2256 }
2257
2258 if (ctx->num_pieces > 0)
2259 {
2260 struct piece_closure *c;
2261 struct frame_id frame_id = get_frame_id (frame);
2262 ULONGEST bit_size = 0;
2263 int i;
2264
2265 for (i = 0; i < ctx->num_pieces; ++i)
2266 bit_size += ctx->pieces[i].size;
2267 if (8 * (byte_offset + TYPE_LENGTH (type)) > bit_size)
2268 invalid_synthetic_pointer ();
2269
2270 c = allocate_piece_closure (per_cu, ctx->num_pieces, ctx->pieces,
2271 ctx->addr_size);
2272 /* We must clean up the value chain after creating the piece
2273 closure but before allocating the result. */
2274 do_cleanups (value_chain);
2275 retval = allocate_computed_value (type, &pieced_value_funcs, c);
2276 VALUE_FRAME_ID (retval) = frame_id;
2277 set_value_offset (retval, byte_offset);
2278 }
2279 else
2280 {
2281 switch (ctx->location)
2282 {
2283 case DWARF_VALUE_REGISTER:
2284 {
2285 struct gdbarch *arch = get_frame_arch (frame);
2286 int dwarf_regnum
2287 = longest_to_int (value_as_long (dwarf_expr_fetch (ctx, 0)));
2288 int gdb_regnum = gdbarch_dwarf2_reg_to_regnum (arch, dwarf_regnum);
2289
2290 if (byte_offset != 0)
2291 error (_("cannot use offset on synthetic pointer to register"));
2292 do_cleanups (value_chain);
2293 if (gdb_regnum != -1)
2294 retval = value_from_register (type, gdb_regnum, frame);
2295 else
2296 error (_("Unable to access DWARF register number %d"),
2297 dwarf_regnum);
2298 }
2299 break;
2300
2301 case DWARF_VALUE_MEMORY:
2302 {
2303 CORE_ADDR address = dwarf_expr_fetch_address (ctx, 0);
2304 int in_stack_memory = dwarf_expr_fetch_in_stack_memory (ctx, 0);
2305
2306 do_cleanups (value_chain);
2307 retval = value_at_lazy (type, address + byte_offset);
2308 if (in_stack_memory)
2309 set_value_stack (retval, 1);
2310 }
2311 break;
2312
2313 case DWARF_VALUE_STACK:
2314 {
2315 struct value *value = dwarf_expr_fetch (ctx, 0);
2316 gdb_byte *contents;
2317 const gdb_byte *val_bytes;
2318 size_t n = TYPE_LENGTH (value_type (value));
2319
2320 if (byte_offset + TYPE_LENGTH (type) > n)
2321 invalid_synthetic_pointer ();
2322
2323 val_bytes = value_contents_all (value);
2324 val_bytes += byte_offset;
2325 n -= byte_offset;
2326
2327 /* Preserve VALUE because we are going to free values back
2328 to the mark, but we still need the value contents
2329 below. */
2330 value_incref (value);
2331 do_cleanups (value_chain);
2332 make_cleanup_value_free (value);
2333
2334 retval = allocate_value (type);
2335 contents = value_contents_raw (retval);
2336 if (n > TYPE_LENGTH (type))
2337 {
2338 struct gdbarch *objfile_gdbarch = get_objfile_arch (objfile);
2339
2340 if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
2341 val_bytes += n - TYPE_LENGTH (type);
2342 n = TYPE_LENGTH (type);
2343 }
2344 memcpy (contents, val_bytes, n);
2345 }
2346 break;
2347
2348 case DWARF_VALUE_LITERAL:
2349 {
2350 bfd_byte *contents;
2351 const bfd_byte *ldata;
2352 size_t n = ctx->len;
2353
2354 if (byte_offset + TYPE_LENGTH (type) > n)
2355 invalid_synthetic_pointer ();
2356
2357 do_cleanups (value_chain);
2358 retval = allocate_value (type);
2359 contents = value_contents_raw (retval);
2360
2361 ldata = ctx->data + byte_offset;
2362 n -= byte_offset;
2363
2364 if (n > TYPE_LENGTH (type))
2365 {
2366 struct gdbarch *objfile_gdbarch = get_objfile_arch (objfile);
2367
2368 if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
2369 ldata += n - TYPE_LENGTH (type);
2370 n = TYPE_LENGTH (type);
2371 }
2372 memcpy (contents, ldata, n);
2373 }
2374 break;
2375
2376 case DWARF_VALUE_OPTIMIZED_OUT:
2377 do_cleanups (value_chain);
2378 retval = allocate_optimized_out_value (type);
2379 break;
2380
2381 /* DWARF_VALUE_IMPLICIT_POINTER was converted to a pieced
2382 operation by execute_stack_op. */
2383 case DWARF_VALUE_IMPLICIT_POINTER:
2384 /* DWARF_VALUE_OPTIMIZED_OUT can't occur in this context --
2385 it can only be encountered when making a piece. */
2386 default:
2387 internal_error (__FILE__, __LINE__, _("invalid location type"));
2388 }
2389 }
2390
2391 set_value_initialized (retval, ctx->initialized);
2392
2393 do_cleanups (old_chain);
2394
2395 return retval;
2396 }
2397
2398 /* The exported interface to dwarf2_evaluate_loc_desc_full; it always
2399 passes 0 as the byte_offset. */
2400
2401 struct value *
2402 dwarf2_evaluate_loc_desc (struct type *type, struct frame_info *frame,
2403 const gdb_byte *data, size_t size,
2404 struct dwarf2_per_cu_data *per_cu)
2405 {
2406 return dwarf2_evaluate_loc_desc_full (type, frame, data, size, per_cu, 0);
2407 }
2408
2409 \f
2410 /* Helper functions and baton for dwarf2_loc_desc_needs_frame. */
2411
2412 struct needs_frame_baton
2413 {
2414 int needs_frame;
2415 struct dwarf2_per_cu_data *per_cu;
2416 };
2417
2418 /* Reads from registers do require a frame. */
2419 static CORE_ADDR
2420 needs_frame_read_reg (void *baton, int regnum)
2421 {
2422 struct needs_frame_baton *nf_baton = baton;
2423
2424 nf_baton->needs_frame = 1;
2425 return 1;
2426 }
2427
2428 /* Reads from memory do not require a frame. */
2429 static void
2430 needs_frame_read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
2431 {
2432 memset (buf, 0, len);
2433 }
2434
2435 /* Frame-relative accesses do require a frame. */
2436 static void
2437 needs_frame_frame_base (void *baton, const gdb_byte **start, size_t * length)
2438 {
2439 static gdb_byte lit0 = DW_OP_lit0;
2440 struct needs_frame_baton *nf_baton = baton;
2441
2442 *start = &lit0;
2443 *length = 1;
2444
2445 nf_baton->needs_frame = 1;
2446 }
2447
2448 /* CFA accesses require a frame. */
2449
2450 static CORE_ADDR
2451 needs_frame_frame_cfa (void *baton)
2452 {
2453 struct needs_frame_baton *nf_baton = baton;
2454
2455 nf_baton->needs_frame = 1;
2456 return 1;
2457 }
2458
2459 /* Thread-local accesses do require a frame. */
2460 static CORE_ADDR
2461 needs_frame_tls_address (void *baton, CORE_ADDR offset)
2462 {
2463 struct needs_frame_baton *nf_baton = baton;
2464
2465 nf_baton->needs_frame = 1;
2466 return 1;
2467 }
2468
2469 /* Helper interface of per_cu_dwarf_call for dwarf2_loc_desc_needs_frame. */
2470
2471 static void
2472 needs_frame_dwarf_call (struct dwarf_expr_context *ctx, cu_offset die_offset)
2473 {
2474 struct needs_frame_baton *nf_baton = ctx->baton;
2475
2476 per_cu_dwarf_call (ctx, die_offset, nf_baton->per_cu,
2477 ctx->funcs->get_frame_pc, ctx->baton);
2478 }
2479
2480 /* DW_OP_GNU_entry_value accesses require a caller, therefore a frame. */
2481
2482 static void
2483 needs_dwarf_reg_entry_value (struct dwarf_expr_context *ctx,
2484 enum call_site_parameter_kind kind,
2485 union call_site_parameter_u kind_u, int deref_size)
2486 {
2487 struct needs_frame_baton *nf_baton = ctx->baton;
2488
2489 nf_baton->needs_frame = 1;
2490
2491 /* The expression may require some stub values on DWARF stack. */
2492 dwarf_expr_push_address (ctx, 0, 0);
2493 }
2494
2495 /* DW_OP_GNU_addr_index doesn't require a frame. */
2496
2497 static CORE_ADDR
2498 needs_get_addr_index (void *baton, unsigned int index)
2499 {
2500 /* Nothing to do. */
2501 return 1;
2502 }
2503
2504 /* Virtual method table for dwarf2_loc_desc_needs_frame below. */
2505
2506 static const struct dwarf_expr_context_funcs needs_frame_ctx_funcs =
2507 {
2508 needs_frame_read_reg,
2509 needs_frame_read_mem,
2510 needs_frame_frame_base,
2511 needs_frame_frame_cfa,
2512 needs_frame_frame_cfa, /* get_frame_pc */
2513 needs_frame_tls_address,
2514 needs_frame_dwarf_call,
2515 NULL, /* get_base_type */
2516 needs_dwarf_reg_entry_value,
2517 needs_get_addr_index
2518 };
2519
2520 /* Return non-zero iff the location expression at DATA (length SIZE)
2521 requires a frame to evaluate. */
2522
2523 static int
2524 dwarf2_loc_desc_needs_frame (const gdb_byte *data, size_t size,
2525 struct dwarf2_per_cu_data *per_cu)
2526 {
2527 struct needs_frame_baton baton;
2528 struct dwarf_expr_context *ctx;
2529 int in_reg;
2530 struct cleanup *old_chain;
2531 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
2532
2533 baton.needs_frame = 0;
2534 baton.per_cu = per_cu;
2535
2536 ctx = new_dwarf_expr_context ();
2537 old_chain = make_cleanup_free_dwarf_expr_context (ctx);
2538 make_cleanup_value_free_to_mark (value_mark ());
2539
2540 ctx->gdbarch = get_objfile_arch (objfile);
2541 ctx->addr_size = dwarf2_per_cu_addr_size (per_cu);
2542 ctx->ref_addr_size = dwarf2_per_cu_ref_addr_size (per_cu);
2543 ctx->offset = dwarf2_per_cu_text_offset (per_cu);
2544 ctx->baton = &baton;
2545 ctx->funcs = &needs_frame_ctx_funcs;
2546
2547 dwarf_expr_eval (ctx, data, size);
2548
2549 in_reg = ctx->location == DWARF_VALUE_REGISTER;
2550
2551 if (ctx->num_pieces > 0)
2552 {
2553 int i;
2554
2555 /* If the location has several pieces, and any of them are in
2556 registers, then we will need a frame to fetch them from. */
2557 for (i = 0; i < ctx->num_pieces; i++)
2558 if (ctx->pieces[i].location == DWARF_VALUE_REGISTER)
2559 in_reg = 1;
2560 }
2561
2562 do_cleanups (old_chain);
2563
2564 return baton.needs_frame || in_reg;
2565 }
2566
2567 /* A helper function that throws an unimplemented error mentioning a
2568 given DWARF operator. */
2569
2570 static void
2571 unimplemented (unsigned int op)
2572 {
2573 const char *name = get_DW_OP_name (op);
2574
2575 if (name)
2576 error (_("DWARF operator %s cannot be translated to an agent expression"),
2577 name);
2578 else
2579 error (_("Unknown DWARF operator 0x%02x cannot be translated "
2580 "to an agent expression"),
2581 op);
2582 }
2583
2584 /* A helper function to convert a DWARF register to an arch register.
2585 ARCH is the architecture.
2586 DWARF_REG is the register.
2587 This will throw an exception if the DWARF register cannot be
2588 translated to an architecture register. */
2589
2590 static int
2591 translate_register (struct gdbarch *arch, int dwarf_reg)
2592 {
2593 int reg = gdbarch_dwarf2_reg_to_regnum (arch, dwarf_reg);
2594 if (reg == -1)
2595 error (_("Unable to access DWARF register number %d"), dwarf_reg);
2596 return reg;
2597 }
2598
2599 /* A helper function that emits an access to memory. ARCH is the
2600 target architecture. EXPR is the expression which we are building.
2601 NBITS is the number of bits we want to read. This emits the
2602 opcodes needed to read the memory and then extract the desired
2603 bits. */
2604
2605 static void
2606 access_memory (struct gdbarch *arch, struct agent_expr *expr, ULONGEST nbits)
2607 {
2608 ULONGEST nbytes = (nbits + 7) / 8;
2609
2610 gdb_assert (nbytes > 0 && nbytes <= sizeof (LONGEST));
2611
2612 if (expr->tracing)
2613 ax_trace_quick (expr, nbytes);
2614
2615 if (nbits <= 8)
2616 ax_simple (expr, aop_ref8);
2617 else if (nbits <= 16)
2618 ax_simple (expr, aop_ref16);
2619 else if (nbits <= 32)
2620 ax_simple (expr, aop_ref32);
2621 else
2622 ax_simple (expr, aop_ref64);
2623
2624 /* If we read exactly the number of bytes we wanted, we're done. */
2625 if (8 * nbytes == nbits)
2626 return;
2627
2628 if (gdbarch_bits_big_endian (arch))
2629 {
2630 /* On a bits-big-endian machine, we want the high-order
2631 NBITS. */
2632 ax_const_l (expr, 8 * nbytes - nbits);
2633 ax_simple (expr, aop_rsh_unsigned);
2634 }
2635 else
2636 {
2637 /* On a bits-little-endian box, we want the low-order NBITS. */
2638 ax_zero_ext (expr, nbits);
2639 }
2640 }
2641
2642 /* A helper function to return the frame's PC. */
2643
2644 static CORE_ADDR
2645 get_ax_pc (void *baton)
2646 {
2647 struct agent_expr *expr = baton;
2648
2649 return expr->scope;
2650 }
2651
2652 /* Compile a DWARF location expression to an agent expression.
2653
2654 EXPR is the agent expression we are building.
2655 LOC is the agent value we modify.
2656 ARCH is the architecture.
2657 ADDR_SIZE is the size of addresses, in bytes.
2658 OP_PTR is the start of the location expression.
2659 OP_END is one past the last byte of the location expression.
2660
2661 This will throw an exception for various kinds of errors -- for
2662 example, if the expression cannot be compiled, or if the expression
2663 is invalid. */
2664
2665 void
2666 dwarf2_compile_expr_to_ax (struct agent_expr *expr, struct axs_value *loc,
2667 struct gdbarch *arch, unsigned int addr_size,
2668 const gdb_byte *op_ptr, const gdb_byte *op_end,
2669 struct dwarf2_per_cu_data *per_cu)
2670 {
2671 struct cleanup *cleanups;
2672 int i, *offsets;
2673 VEC(int) *dw_labels = NULL, *patches = NULL;
2674 const gdb_byte * const base = op_ptr;
2675 const gdb_byte *previous_piece = op_ptr;
2676 enum bfd_endian byte_order = gdbarch_byte_order (arch);
2677 ULONGEST bits_collected = 0;
2678 unsigned int addr_size_bits = 8 * addr_size;
2679 int bits_big_endian = gdbarch_bits_big_endian (arch);
2680
2681 offsets = xmalloc ((op_end - op_ptr) * sizeof (int));
2682 cleanups = make_cleanup (xfree, offsets);
2683
2684 for (i = 0; i < op_end - op_ptr; ++i)
2685 offsets[i] = -1;
2686
2687 make_cleanup (VEC_cleanup (int), &dw_labels);
2688 make_cleanup (VEC_cleanup (int), &patches);
2689
2690 /* By default we are making an address. */
2691 loc->kind = axs_lvalue_memory;
2692
2693 while (op_ptr < op_end)
2694 {
2695 enum dwarf_location_atom op = *op_ptr;
2696 uint64_t uoffset, reg;
2697 int64_t offset;
2698 int i;
2699
2700 offsets[op_ptr - base] = expr->len;
2701 ++op_ptr;
2702
2703 /* Our basic approach to code generation is to map DWARF
2704 operations directly to AX operations. However, there are
2705 some differences.
2706
2707 First, DWARF works on address-sized units, but AX always uses
2708 LONGEST. For most operations we simply ignore this
2709 difference; instead we generate sign extensions as needed
2710 before division and comparison operations. It would be nice
2711 to omit the sign extensions, but there is no way to determine
2712 the size of the target's LONGEST. (This code uses the size
2713 of the host LONGEST in some cases -- that is a bug but it is
2714 difficult to fix.)
2715
2716 Second, some DWARF operations cannot be translated to AX.
2717 For these we simply fail. See
2718 http://sourceware.org/bugzilla/show_bug.cgi?id=11662. */
2719 switch (op)
2720 {
2721 case DW_OP_lit0:
2722 case DW_OP_lit1:
2723 case DW_OP_lit2:
2724 case DW_OP_lit3:
2725 case DW_OP_lit4:
2726 case DW_OP_lit5:
2727 case DW_OP_lit6:
2728 case DW_OP_lit7:
2729 case DW_OP_lit8:
2730 case DW_OP_lit9:
2731 case DW_OP_lit10:
2732 case DW_OP_lit11:
2733 case DW_OP_lit12:
2734 case DW_OP_lit13:
2735 case DW_OP_lit14:
2736 case DW_OP_lit15:
2737 case DW_OP_lit16:
2738 case DW_OP_lit17:
2739 case DW_OP_lit18:
2740 case DW_OP_lit19:
2741 case DW_OP_lit20:
2742 case DW_OP_lit21:
2743 case DW_OP_lit22:
2744 case DW_OP_lit23:
2745 case DW_OP_lit24:
2746 case DW_OP_lit25:
2747 case DW_OP_lit26:
2748 case DW_OP_lit27:
2749 case DW_OP_lit28:
2750 case DW_OP_lit29:
2751 case DW_OP_lit30:
2752 case DW_OP_lit31:
2753 ax_const_l (expr, op - DW_OP_lit0);
2754 break;
2755
2756 case DW_OP_addr:
2757 uoffset = extract_unsigned_integer (op_ptr, addr_size, byte_order);
2758 op_ptr += addr_size;
2759 /* Some versions of GCC emit DW_OP_addr before
2760 DW_OP_GNU_push_tls_address. In this case the value is an
2761 index, not an address. We don't support things like
2762 branching between the address and the TLS op. */
2763 if (op_ptr >= op_end || *op_ptr != DW_OP_GNU_push_tls_address)
2764 uoffset += dwarf2_per_cu_text_offset (per_cu);
2765 ax_const_l (expr, uoffset);
2766 break;
2767
2768 case DW_OP_const1u:
2769 ax_const_l (expr, extract_unsigned_integer (op_ptr, 1, byte_order));
2770 op_ptr += 1;
2771 break;
2772 case DW_OP_const1s:
2773 ax_const_l (expr, extract_signed_integer (op_ptr, 1, byte_order));
2774 op_ptr += 1;
2775 break;
2776 case DW_OP_const2u:
2777 ax_const_l (expr, extract_unsigned_integer (op_ptr, 2, byte_order));
2778 op_ptr += 2;
2779 break;
2780 case DW_OP_const2s:
2781 ax_const_l (expr, extract_signed_integer (op_ptr, 2, byte_order));
2782 op_ptr += 2;
2783 break;
2784 case DW_OP_const4u:
2785 ax_const_l (expr, extract_unsigned_integer (op_ptr, 4, byte_order));
2786 op_ptr += 4;
2787 break;
2788 case DW_OP_const4s:
2789 ax_const_l (expr, extract_signed_integer (op_ptr, 4, byte_order));
2790 op_ptr += 4;
2791 break;
2792 case DW_OP_const8u:
2793 ax_const_l (expr, extract_unsigned_integer (op_ptr, 8, byte_order));
2794 op_ptr += 8;
2795 break;
2796 case DW_OP_const8s:
2797 ax_const_l (expr, extract_signed_integer (op_ptr, 8, byte_order));
2798 op_ptr += 8;
2799 break;
2800 case DW_OP_constu:
2801 op_ptr = safe_read_uleb128 (op_ptr, op_end, &uoffset);
2802 ax_const_l (expr, uoffset);
2803 break;
2804 case DW_OP_consts:
2805 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
2806 ax_const_l (expr, offset);
2807 break;
2808
2809 case DW_OP_reg0:
2810 case DW_OP_reg1:
2811 case DW_OP_reg2:
2812 case DW_OP_reg3:
2813 case DW_OP_reg4:
2814 case DW_OP_reg5:
2815 case DW_OP_reg6:
2816 case DW_OP_reg7:
2817 case DW_OP_reg8:
2818 case DW_OP_reg9:
2819 case DW_OP_reg10:
2820 case DW_OP_reg11:
2821 case DW_OP_reg12:
2822 case DW_OP_reg13:
2823 case DW_OP_reg14:
2824 case DW_OP_reg15:
2825 case DW_OP_reg16:
2826 case DW_OP_reg17:
2827 case DW_OP_reg18:
2828 case DW_OP_reg19:
2829 case DW_OP_reg20:
2830 case DW_OP_reg21:
2831 case DW_OP_reg22:
2832 case DW_OP_reg23:
2833 case DW_OP_reg24:
2834 case DW_OP_reg25:
2835 case DW_OP_reg26:
2836 case DW_OP_reg27:
2837 case DW_OP_reg28:
2838 case DW_OP_reg29:
2839 case DW_OP_reg30:
2840 case DW_OP_reg31:
2841 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
2842 loc->u.reg = translate_register (arch, op - DW_OP_reg0);
2843 loc->kind = axs_lvalue_register;
2844 break;
2845
2846 case DW_OP_regx:
2847 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
2848 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
2849 loc->u.reg = translate_register (arch, reg);
2850 loc->kind = axs_lvalue_register;
2851 break;
2852
2853 case DW_OP_implicit_value:
2854 {
2855 uint64_t len;
2856
2857 op_ptr = safe_read_uleb128 (op_ptr, op_end, &len);
2858 if (op_ptr + len > op_end)
2859 error (_("DW_OP_implicit_value: too few bytes available."));
2860 if (len > sizeof (ULONGEST))
2861 error (_("Cannot translate DW_OP_implicit_value of %d bytes"),
2862 (int) len);
2863
2864 ax_const_l (expr, extract_unsigned_integer (op_ptr, len,
2865 byte_order));
2866 op_ptr += len;
2867 dwarf_expr_require_composition (op_ptr, op_end,
2868 "DW_OP_implicit_value");
2869
2870 loc->kind = axs_rvalue;
2871 }
2872 break;
2873
2874 case DW_OP_stack_value:
2875 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_stack_value");
2876 loc->kind = axs_rvalue;
2877 break;
2878
2879 case DW_OP_breg0:
2880 case DW_OP_breg1:
2881 case DW_OP_breg2:
2882 case DW_OP_breg3:
2883 case DW_OP_breg4:
2884 case DW_OP_breg5:
2885 case DW_OP_breg6:
2886 case DW_OP_breg7:
2887 case DW_OP_breg8:
2888 case DW_OP_breg9:
2889 case DW_OP_breg10:
2890 case DW_OP_breg11:
2891 case DW_OP_breg12:
2892 case DW_OP_breg13:
2893 case DW_OP_breg14:
2894 case DW_OP_breg15:
2895 case DW_OP_breg16:
2896 case DW_OP_breg17:
2897 case DW_OP_breg18:
2898 case DW_OP_breg19:
2899 case DW_OP_breg20:
2900 case DW_OP_breg21:
2901 case DW_OP_breg22:
2902 case DW_OP_breg23:
2903 case DW_OP_breg24:
2904 case DW_OP_breg25:
2905 case DW_OP_breg26:
2906 case DW_OP_breg27:
2907 case DW_OP_breg28:
2908 case DW_OP_breg29:
2909 case DW_OP_breg30:
2910 case DW_OP_breg31:
2911 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
2912 i = translate_register (arch, op - DW_OP_breg0);
2913 ax_reg (expr, i);
2914 if (offset != 0)
2915 {
2916 ax_const_l (expr, offset);
2917 ax_simple (expr, aop_add);
2918 }
2919 break;
2920 case DW_OP_bregx:
2921 {
2922 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
2923 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
2924 i = translate_register (arch, reg);
2925 ax_reg (expr, i);
2926 if (offset != 0)
2927 {
2928 ax_const_l (expr, offset);
2929 ax_simple (expr, aop_add);
2930 }
2931 }
2932 break;
2933 case DW_OP_fbreg:
2934 {
2935 const gdb_byte *datastart;
2936 size_t datalen;
2937 struct block *b;
2938 struct symbol *framefunc;
2939
2940 b = block_for_pc (expr->scope);
2941
2942 if (!b)
2943 error (_("No block found for address"));
2944
2945 framefunc = block_linkage_function (b);
2946
2947 if (!framefunc)
2948 error (_("No function found for block"));
2949
2950 dwarf_expr_frame_base_1 (framefunc, expr->scope,
2951 &datastart, &datalen);
2952
2953 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
2954 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size, datastart,
2955 datastart + datalen, per_cu);
2956 if (loc->kind == axs_lvalue_register)
2957 require_rvalue (expr, loc);
2958
2959 if (offset != 0)
2960 {
2961 ax_const_l (expr, offset);
2962 ax_simple (expr, aop_add);
2963 }
2964
2965 loc->kind = axs_lvalue_memory;
2966 }
2967 break;
2968
2969 case DW_OP_dup:
2970 ax_simple (expr, aop_dup);
2971 break;
2972
2973 case DW_OP_drop:
2974 ax_simple (expr, aop_pop);
2975 break;
2976
2977 case DW_OP_pick:
2978 offset = *op_ptr++;
2979 ax_pick (expr, offset);
2980 break;
2981
2982 case DW_OP_swap:
2983 ax_simple (expr, aop_swap);
2984 break;
2985
2986 case DW_OP_over:
2987 ax_pick (expr, 1);
2988 break;
2989
2990 case DW_OP_rot:
2991 ax_simple (expr, aop_rot);
2992 break;
2993
2994 case DW_OP_deref:
2995 case DW_OP_deref_size:
2996 {
2997 int size;
2998
2999 if (op == DW_OP_deref_size)
3000 size = *op_ptr++;
3001 else
3002 size = addr_size;
3003
3004 if (size != 1 && size != 2 && size != 4 && size != 8)
3005 error (_("Unsupported size %d in %s"),
3006 size, get_DW_OP_name (op));
3007 access_memory (arch, expr, size * TARGET_CHAR_BIT);
3008 }
3009 break;
3010
3011 case DW_OP_abs:
3012 /* Sign extend the operand. */
3013 ax_ext (expr, addr_size_bits);
3014 ax_simple (expr, aop_dup);
3015 ax_const_l (expr, 0);
3016 ax_simple (expr, aop_less_signed);
3017 ax_simple (expr, aop_log_not);
3018 i = ax_goto (expr, aop_if_goto);
3019 /* We have to emit 0 - X. */
3020 ax_const_l (expr, 0);
3021 ax_simple (expr, aop_swap);
3022 ax_simple (expr, aop_sub);
3023 ax_label (expr, i, expr->len);
3024 break;
3025
3026 case DW_OP_neg:
3027 /* No need to sign extend here. */
3028 ax_const_l (expr, 0);
3029 ax_simple (expr, aop_swap);
3030 ax_simple (expr, aop_sub);
3031 break;
3032
3033 case DW_OP_not:
3034 /* Sign extend the operand. */
3035 ax_ext (expr, addr_size_bits);
3036 ax_simple (expr, aop_bit_not);
3037 break;
3038
3039 case DW_OP_plus_uconst:
3040 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3041 /* It would be really weird to emit `DW_OP_plus_uconst 0',
3042 but we micro-optimize anyhow. */
3043 if (reg != 0)
3044 {
3045 ax_const_l (expr, reg);
3046 ax_simple (expr, aop_add);
3047 }
3048 break;
3049
3050 case DW_OP_and:
3051 ax_simple (expr, aop_bit_and);
3052 break;
3053
3054 case DW_OP_div:
3055 /* Sign extend the operands. */
3056 ax_ext (expr, addr_size_bits);
3057 ax_simple (expr, aop_swap);
3058 ax_ext (expr, addr_size_bits);
3059 ax_simple (expr, aop_swap);
3060 ax_simple (expr, aop_div_signed);
3061 break;
3062
3063 case DW_OP_minus:
3064 ax_simple (expr, aop_sub);
3065 break;
3066
3067 case DW_OP_mod:
3068 ax_simple (expr, aop_rem_unsigned);
3069 break;
3070
3071 case DW_OP_mul:
3072 ax_simple (expr, aop_mul);
3073 break;
3074
3075 case DW_OP_or:
3076 ax_simple (expr, aop_bit_or);
3077 break;
3078
3079 case DW_OP_plus:
3080 ax_simple (expr, aop_add);
3081 break;
3082
3083 case DW_OP_shl:
3084 ax_simple (expr, aop_lsh);
3085 break;
3086
3087 case DW_OP_shr:
3088 ax_simple (expr, aop_rsh_unsigned);
3089 break;
3090
3091 case DW_OP_shra:
3092 ax_simple (expr, aop_rsh_signed);
3093 break;
3094
3095 case DW_OP_xor:
3096 ax_simple (expr, aop_bit_xor);
3097 break;
3098
3099 case DW_OP_le:
3100 /* Sign extend the operands. */
3101 ax_ext (expr, addr_size_bits);
3102 ax_simple (expr, aop_swap);
3103 ax_ext (expr, addr_size_bits);
3104 /* Note no swap here: A <= B is !(B < A). */
3105 ax_simple (expr, aop_less_signed);
3106 ax_simple (expr, aop_log_not);
3107 break;
3108
3109 case DW_OP_ge:
3110 /* Sign extend the operands. */
3111 ax_ext (expr, addr_size_bits);
3112 ax_simple (expr, aop_swap);
3113 ax_ext (expr, addr_size_bits);
3114 ax_simple (expr, aop_swap);
3115 /* A >= B is !(A < B). */
3116 ax_simple (expr, aop_less_signed);
3117 ax_simple (expr, aop_log_not);
3118 break;
3119
3120 case DW_OP_eq:
3121 /* Sign extend the operands. */
3122 ax_ext (expr, addr_size_bits);
3123 ax_simple (expr, aop_swap);
3124 ax_ext (expr, addr_size_bits);
3125 /* No need for a second swap here. */
3126 ax_simple (expr, aop_equal);
3127 break;
3128
3129 case DW_OP_lt:
3130 /* Sign extend the operands. */
3131 ax_ext (expr, addr_size_bits);
3132 ax_simple (expr, aop_swap);
3133 ax_ext (expr, addr_size_bits);
3134 ax_simple (expr, aop_swap);
3135 ax_simple (expr, aop_less_signed);
3136 break;
3137
3138 case DW_OP_gt:
3139 /* Sign extend the operands. */
3140 ax_ext (expr, addr_size_bits);
3141 ax_simple (expr, aop_swap);
3142 ax_ext (expr, addr_size_bits);
3143 /* Note no swap here: A > B is B < A. */
3144 ax_simple (expr, aop_less_signed);
3145 break;
3146
3147 case DW_OP_ne:
3148 /* Sign extend the operands. */
3149 ax_ext (expr, addr_size_bits);
3150 ax_simple (expr, aop_swap);
3151 ax_ext (expr, addr_size_bits);
3152 /* No need for a swap here. */
3153 ax_simple (expr, aop_equal);
3154 ax_simple (expr, aop_log_not);
3155 break;
3156
3157 case DW_OP_call_frame_cfa:
3158 dwarf2_compile_cfa_to_ax (expr, loc, arch, expr->scope, per_cu);
3159 loc->kind = axs_lvalue_memory;
3160 break;
3161
3162 case DW_OP_GNU_push_tls_address:
3163 unimplemented (op);
3164 break;
3165
3166 case DW_OP_skip:
3167 offset = extract_signed_integer (op_ptr, 2, byte_order);
3168 op_ptr += 2;
3169 i = ax_goto (expr, aop_goto);
3170 VEC_safe_push (int, dw_labels, op_ptr + offset - base);
3171 VEC_safe_push (int, patches, i);
3172 break;
3173
3174 case DW_OP_bra:
3175 offset = extract_signed_integer (op_ptr, 2, byte_order);
3176 op_ptr += 2;
3177 /* Zero extend the operand. */
3178 ax_zero_ext (expr, addr_size_bits);
3179 i = ax_goto (expr, aop_if_goto);
3180 VEC_safe_push (int, dw_labels, op_ptr + offset - base);
3181 VEC_safe_push (int, patches, i);
3182 break;
3183
3184 case DW_OP_nop:
3185 break;
3186
3187 case DW_OP_piece:
3188 case DW_OP_bit_piece:
3189 {
3190 uint64_t size, offset;
3191
3192 if (op_ptr - 1 == previous_piece)
3193 error (_("Cannot translate empty pieces to agent expressions"));
3194 previous_piece = op_ptr - 1;
3195
3196 op_ptr = safe_read_uleb128 (op_ptr, op_end, &size);
3197 if (op == DW_OP_piece)
3198 {
3199 size *= 8;
3200 offset = 0;
3201 }
3202 else
3203 op_ptr = safe_read_uleb128 (op_ptr, op_end, &offset);
3204
3205 if (bits_collected + size > 8 * sizeof (LONGEST))
3206 error (_("Expression pieces exceed word size"));
3207
3208 /* Access the bits. */
3209 switch (loc->kind)
3210 {
3211 case axs_lvalue_register:
3212 ax_reg (expr, loc->u.reg);
3213 break;
3214
3215 case axs_lvalue_memory:
3216 /* Offset the pointer, if needed. */
3217 if (offset > 8)
3218 {
3219 ax_const_l (expr, offset / 8);
3220 ax_simple (expr, aop_add);
3221 offset %= 8;
3222 }
3223 access_memory (arch, expr, size);
3224 break;
3225 }
3226
3227 /* For a bits-big-endian target, shift up what we already
3228 have. For a bits-little-endian target, shift up the
3229 new data. Note that there is a potential bug here if
3230 the DWARF expression leaves multiple values on the
3231 stack. */
3232 if (bits_collected > 0)
3233 {
3234 if (bits_big_endian)
3235 {
3236 ax_simple (expr, aop_swap);
3237 ax_const_l (expr, size);
3238 ax_simple (expr, aop_lsh);
3239 /* We don't need a second swap here, because
3240 aop_bit_or is symmetric. */
3241 }
3242 else
3243 {
3244 ax_const_l (expr, size);
3245 ax_simple (expr, aop_lsh);
3246 }
3247 ax_simple (expr, aop_bit_or);
3248 }
3249
3250 bits_collected += size;
3251 loc->kind = axs_rvalue;
3252 }
3253 break;
3254
3255 case DW_OP_GNU_uninit:
3256 unimplemented (op);
3257
3258 case DW_OP_call2:
3259 case DW_OP_call4:
3260 {
3261 struct dwarf2_locexpr_baton block;
3262 int size = (op == DW_OP_call2 ? 2 : 4);
3263 cu_offset offset;
3264
3265 uoffset = extract_unsigned_integer (op_ptr, size, byte_order);
3266 op_ptr += size;
3267
3268 offset.cu_off = uoffset;
3269 block = dwarf2_fetch_die_loc_cu_off (offset, per_cu,
3270 get_ax_pc, expr);
3271
3272 /* DW_OP_call_ref is currently not supported. */
3273 gdb_assert (block.per_cu == per_cu);
3274
3275 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size,
3276 block.data, block.data + block.size,
3277 per_cu);
3278 }
3279 break;
3280
3281 case DW_OP_call_ref:
3282 unimplemented (op);
3283
3284 default:
3285 unimplemented (op);
3286 }
3287 }
3288
3289 /* Patch all the branches we emitted. */
3290 for (i = 0; i < VEC_length (int, patches); ++i)
3291 {
3292 int targ = offsets[VEC_index (int, dw_labels, i)];
3293 if (targ == -1)
3294 internal_error (__FILE__, __LINE__, _("invalid label"));
3295 ax_label (expr, VEC_index (int, patches, i), targ);
3296 }
3297
3298 do_cleanups (cleanups);
3299 }
3300
3301 \f
3302 /* Return the value of SYMBOL in FRAME using the DWARF-2 expression
3303 evaluator to calculate the location. */
3304 static struct value *
3305 locexpr_read_variable (struct symbol *symbol, struct frame_info *frame)
3306 {
3307 struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
3308 struct value *val;
3309
3310 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, dlbaton->data,
3311 dlbaton->size, dlbaton->per_cu);
3312
3313 return val;
3314 }
3315
3316 /* Return the value of SYMBOL in FRAME at (callee) FRAME's function
3317 entry. SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
3318 will be thrown. */
3319
3320 static struct value *
3321 locexpr_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
3322 {
3323 struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
3324
3325 return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, dlbaton->data,
3326 dlbaton->size);
3327 }
3328
3329 /* Return non-zero iff we need a frame to evaluate SYMBOL. */
3330 static int
3331 locexpr_read_needs_frame (struct symbol *symbol)
3332 {
3333 struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
3334
3335 return dwarf2_loc_desc_needs_frame (dlbaton->data, dlbaton->size,
3336 dlbaton->per_cu);
3337 }
3338
3339 /* Return true if DATA points to the end of a piece. END is one past
3340 the last byte in the expression. */
3341
3342 static int
3343 piece_end_p (const gdb_byte *data, const gdb_byte *end)
3344 {
3345 return data == end || data[0] == DW_OP_piece || data[0] == DW_OP_bit_piece;
3346 }
3347
3348 /* Helper for locexpr_describe_location_piece that finds the name of a
3349 DWARF register. */
3350
3351 static const char *
3352 locexpr_regname (struct gdbarch *gdbarch, int dwarf_regnum)
3353 {
3354 int regnum;
3355
3356 regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, dwarf_regnum);
3357 return gdbarch_register_name (gdbarch, regnum);
3358 }
3359
3360 /* Nicely describe a single piece of a location, returning an updated
3361 position in the bytecode sequence. This function cannot recognize
3362 all locations; if a location is not recognized, it simply returns
3363 DATA. If there is an error during reading, e.g. we run off the end
3364 of the buffer, an error is thrown. */
3365
3366 static const gdb_byte *
3367 locexpr_describe_location_piece (struct symbol *symbol, struct ui_file *stream,
3368 CORE_ADDR addr, struct objfile *objfile,
3369 struct dwarf2_per_cu_data *per_cu,
3370 const gdb_byte *data, const gdb_byte *end,
3371 unsigned int addr_size)
3372 {
3373 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3374 size_t leb128_size;
3375
3376 if (data[0] >= DW_OP_reg0 && data[0] <= DW_OP_reg31)
3377 {
3378 fprintf_filtered (stream, _("a variable in $%s"),
3379 locexpr_regname (gdbarch, data[0] - DW_OP_reg0));
3380 data += 1;
3381 }
3382 else if (data[0] == DW_OP_regx)
3383 {
3384 uint64_t reg;
3385
3386 data = safe_read_uleb128 (data + 1, end, &reg);
3387 fprintf_filtered (stream, _("a variable in $%s"),
3388 locexpr_regname (gdbarch, reg));
3389 }
3390 else if (data[0] == DW_OP_fbreg)
3391 {
3392 struct block *b;
3393 struct symbol *framefunc;
3394 int frame_reg = 0;
3395 int64_t frame_offset;
3396 const gdb_byte *base_data, *new_data, *save_data = data;
3397 size_t base_size;
3398 int64_t base_offset = 0;
3399
3400 new_data = safe_read_sleb128 (data + 1, end, &frame_offset);
3401 if (!piece_end_p (new_data, end))
3402 return data;
3403 data = new_data;
3404
3405 b = block_for_pc (addr);
3406
3407 if (!b)
3408 error (_("No block found for address for symbol \"%s\"."),
3409 SYMBOL_PRINT_NAME (symbol));
3410
3411 framefunc = block_linkage_function (b);
3412
3413 if (!framefunc)
3414 error (_("No function found for block for symbol \"%s\"."),
3415 SYMBOL_PRINT_NAME (symbol));
3416
3417 dwarf_expr_frame_base_1 (framefunc, addr, &base_data, &base_size);
3418
3419 if (base_data[0] >= DW_OP_breg0 && base_data[0] <= DW_OP_breg31)
3420 {
3421 const gdb_byte *buf_end;
3422
3423 frame_reg = base_data[0] - DW_OP_breg0;
3424 buf_end = safe_read_sleb128 (base_data + 1, base_data + base_size,
3425 &base_offset);
3426 if (buf_end != base_data + base_size)
3427 error (_("Unexpected opcode after "
3428 "DW_OP_breg%u for symbol \"%s\"."),
3429 frame_reg, SYMBOL_PRINT_NAME (symbol));
3430 }
3431 else if (base_data[0] >= DW_OP_reg0 && base_data[0] <= DW_OP_reg31)
3432 {
3433 /* The frame base is just the register, with no offset. */
3434 frame_reg = base_data[0] - DW_OP_reg0;
3435 base_offset = 0;
3436 }
3437 else
3438 {
3439 /* We don't know what to do with the frame base expression,
3440 so we can't trace this variable; give up. */
3441 return save_data;
3442 }
3443
3444 fprintf_filtered (stream,
3445 _("a variable at frame base reg $%s offset %s+%s"),
3446 locexpr_regname (gdbarch, frame_reg),
3447 plongest (base_offset), plongest (frame_offset));
3448 }
3449 else if (data[0] >= DW_OP_breg0 && data[0] <= DW_OP_breg31
3450 && piece_end_p (data, end))
3451 {
3452 int64_t offset;
3453
3454 data = safe_read_sleb128 (data + 1, end, &offset);
3455
3456 fprintf_filtered (stream,
3457 _("a variable at offset %s from base reg $%s"),
3458 plongest (offset),
3459 locexpr_regname (gdbarch, data[0] - DW_OP_breg0));
3460 }
3461
3462 /* The location expression for a TLS variable looks like this (on a
3463 64-bit LE machine):
3464
3465 DW_AT_location : 10 byte block: 3 4 0 0 0 0 0 0 0 e0
3466 (DW_OP_addr: 4; DW_OP_GNU_push_tls_address)
3467
3468 0x3 is the encoding for DW_OP_addr, which has an operand as long
3469 as the size of an address on the target machine (here is 8
3470 bytes). Note that more recent version of GCC emit DW_OP_const4u
3471 or DW_OP_const8u, depending on address size, rather than
3472 DW_OP_addr. 0xe0 is the encoding for DW_OP_GNU_push_tls_address.
3473 The operand represents the offset at which the variable is within
3474 the thread local storage. */
3475
3476 else if (data + 1 + addr_size < end
3477 && (data[0] == DW_OP_addr
3478 || (addr_size == 4 && data[0] == DW_OP_const4u)
3479 || (addr_size == 8 && data[0] == DW_OP_const8u))
3480 && data[1 + addr_size] == DW_OP_GNU_push_tls_address
3481 && piece_end_p (data + 2 + addr_size, end))
3482 {
3483 ULONGEST offset;
3484 offset = extract_unsigned_integer (data + 1, addr_size,
3485 gdbarch_byte_order (gdbarch));
3486
3487 fprintf_filtered (stream,
3488 _("a thread-local variable at offset 0x%s "
3489 "in the thread-local storage for `%s'"),
3490 phex_nz (offset, addr_size), objfile_name (objfile));
3491
3492 data += 1 + addr_size + 1;
3493 }
3494
3495 /* With -gsplit-dwarf a TLS variable can also look like this:
3496 DW_AT_location : 3 byte block: fc 4 e0
3497 (DW_OP_GNU_const_index: 4;
3498 DW_OP_GNU_push_tls_address) */
3499 else if (data + 3 <= end
3500 && data + 1 + (leb128_size = skip_leb128 (data + 1, end)) < end
3501 && data[0] == DW_OP_GNU_const_index
3502 && leb128_size > 0
3503 && data[1 + leb128_size] == DW_OP_GNU_push_tls_address
3504 && piece_end_p (data + 2 + leb128_size, end))
3505 {
3506 uint64_t offset;
3507
3508 data = safe_read_uleb128 (data + 1, end, &offset);
3509 offset = dwarf2_read_addr_index (per_cu, offset);
3510 fprintf_filtered (stream,
3511 _("a thread-local variable at offset 0x%s "
3512 "in the thread-local storage for `%s'"),
3513 phex_nz (offset, addr_size), objfile_name (objfile));
3514 ++data;
3515 }
3516
3517 else if (data[0] >= DW_OP_lit0
3518 && data[0] <= DW_OP_lit31
3519 && data + 1 < end
3520 && data[1] == DW_OP_stack_value)
3521 {
3522 fprintf_filtered (stream, _("the constant %d"), data[0] - DW_OP_lit0);
3523 data += 2;
3524 }
3525
3526 return data;
3527 }
3528
3529 /* Disassemble an expression, stopping at the end of a piece or at the
3530 end of the expression. Returns a pointer to the next unread byte
3531 in the input expression. If ALL is nonzero, then this function
3532 will keep going until it reaches the end of the expression.
3533 If there is an error during reading, e.g. we run off the end
3534 of the buffer, an error is thrown. */
3535
3536 static const gdb_byte *
3537 disassemble_dwarf_expression (struct ui_file *stream,
3538 struct gdbarch *arch, unsigned int addr_size,
3539 int offset_size, const gdb_byte *start,
3540 const gdb_byte *data, const gdb_byte *end,
3541 int indent, int all,
3542 struct dwarf2_per_cu_data *per_cu)
3543 {
3544 while (data < end
3545 && (all
3546 || (data[0] != DW_OP_piece && data[0] != DW_OP_bit_piece)))
3547 {
3548 enum dwarf_location_atom op = *data++;
3549 uint64_t ul;
3550 int64_t l;
3551 const char *name;
3552
3553 name = get_DW_OP_name (op);
3554
3555 if (!name)
3556 error (_("Unrecognized DWARF opcode 0x%02x at %ld"),
3557 op, (long) (data - 1 - start));
3558 fprintf_filtered (stream, " %*ld: %s", indent + 4,
3559 (long) (data - 1 - start), name);
3560
3561 switch (op)
3562 {
3563 case DW_OP_addr:
3564 ul = extract_unsigned_integer (data, addr_size,
3565 gdbarch_byte_order (arch));
3566 data += addr_size;
3567 fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
3568 break;
3569
3570 case DW_OP_const1u:
3571 ul = extract_unsigned_integer (data, 1, gdbarch_byte_order (arch));
3572 data += 1;
3573 fprintf_filtered (stream, " %s", pulongest (ul));
3574 break;
3575 case DW_OP_const1s:
3576 l = extract_signed_integer (data, 1, gdbarch_byte_order (arch));
3577 data += 1;
3578 fprintf_filtered (stream, " %s", plongest (l));
3579 break;
3580 case DW_OP_const2u:
3581 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
3582 data += 2;
3583 fprintf_filtered (stream, " %s", pulongest (ul));
3584 break;
3585 case DW_OP_const2s:
3586 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
3587 data += 2;
3588 fprintf_filtered (stream, " %s", plongest (l));
3589 break;
3590 case DW_OP_const4u:
3591 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
3592 data += 4;
3593 fprintf_filtered (stream, " %s", pulongest (ul));
3594 break;
3595 case DW_OP_const4s:
3596 l = extract_signed_integer (data, 4, gdbarch_byte_order (arch));
3597 data += 4;
3598 fprintf_filtered (stream, " %s", plongest (l));
3599 break;
3600 case DW_OP_const8u:
3601 ul = extract_unsigned_integer (data, 8, gdbarch_byte_order (arch));
3602 data += 8;
3603 fprintf_filtered (stream, " %s", pulongest (ul));
3604 break;
3605 case DW_OP_const8s:
3606 l = extract_signed_integer (data, 8, gdbarch_byte_order (arch));
3607 data += 8;
3608 fprintf_filtered (stream, " %s", plongest (l));
3609 break;
3610 case DW_OP_constu:
3611 data = safe_read_uleb128 (data, end, &ul);
3612 fprintf_filtered (stream, " %s", pulongest (ul));
3613 break;
3614 case DW_OP_consts:
3615 data = safe_read_sleb128 (data, end, &l);
3616 fprintf_filtered (stream, " %s", plongest (l));
3617 break;
3618
3619 case DW_OP_reg0:
3620 case DW_OP_reg1:
3621 case DW_OP_reg2:
3622 case DW_OP_reg3:
3623 case DW_OP_reg4:
3624 case DW_OP_reg5:
3625 case DW_OP_reg6:
3626 case DW_OP_reg7:
3627 case DW_OP_reg8:
3628 case DW_OP_reg9:
3629 case DW_OP_reg10:
3630 case DW_OP_reg11:
3631 case DW_OP_reg12:
3632 case DW_OP_reg13:
3633 case DW_OP_reg14:
3634 case DW_OP_reg15:
3635 case DW_OP_reg16:
3636 case DW_OP_reg17:
3637 case DW_OP_reg18:
3638 case DW_OP_reg19:
3639 case DW_OP_reg20:
3640 case DW_OP_reg21:
3641 case DW_OP_reg22:
3642 case DW_OP_reg23:
3643 case DW_OP_reg24:
3644 case DW_OP_reg25:
3645 case DW_OP_reg26:
3646 case DW_OP_reg27:
3647 case DW_OP_reg28:
3648 case DW_OP_reg29:
3649 case DW_OP_reg30:
3650 case DW_OP_reg31:
3651 fprintf_filtered (stream, " [$%s]",
3652 locexpr_regname (arch, op - DW_OP_reg0));
3653 break;
3654
3655 case DW_OP_regx:
3656 data = safe_read_uleb128 (data, end, &ul);
3657 fprintf_filtered (stream, " %s [$%s]", pulongest (ul),
3658 locexpr_regname (arch, (int) ul));
3659 break;
3660
3661 case DW_OP_implicit_value:
3662 data = safe_read_uleb128 (data, end, &ul);
3663 data += ul;
3664 fprintf_filtered (stream, " %s", pulongest (ul));
3665 break;
3666
3667 case DW_OP_breg0:
3668 case DW_OP_breg1:
3669 case DW_OP_breg2:
3670 case DW_OP_breg3:
3671 case DW_OP_breg4:
3672 case DW_OP_breg5:
3673 case DW_OP_breg6:
3674 case DW_OP_breg7:
3675 case DW_OP_breg8:
3676 case DW_OP_breg9:
3677 case DW_OP_breg10:
3678 case DW_OP_breg11:
3679 case DW_OP_breg12:
3680 case DW_OP_breg13:
3681 case DW_OP_breg14:
3682 case DW_OP_breg15:
3683 case DW_OP_breg16:
3684 case DW_OP_breg17:
3685 case DW_OP_breg18:
3686 case DW_OP_breg19:
3687 case DW_OP_breg20:
3688 case DW_OP_breg21:
3689 case DW_OP_breg22:
3690 case DW_OP_breg23:
3691 case DW_OP_breg24:
3692 case DW_OP_breg25:
3693 case DW_OP_breg26:
3694 case DW_OP_breg27:
3695 case DW_OP_breg28:
3696 case DW_OP_breg29:
3697 case DW_OP_breg30:
3698 case DW_OP_breg31:
3699 data = safe_read_sleb128 (data, end, &l);
3700 fprintf_filtered (stream, " %s [$%s]", plongest (l),
3701 locexpr_regname (arch, op - DW_OP_breg0));
3702 break;
3703
3704 case DW_OP_bregx:
3705 data = safe_read_uleb128 (data, end, &ul);
3706 data = safe_read_sleb128 (data, end, &l);
3707 fprintf_filtered (stream, " register %s [$%s] offset %s",
3708 pulongest (ul),
3709 locexpr_regname (arch, (int) ul),
3710 plongest (l));
3711 break;
3712
3713 case DW_OP_fbreg:
3714 data = safe_read_sleb128 (data, end, &l);
3715 fprintf_filtered (stream, " %s", plongest (l));
3716 break;
3717
3718 case DW_OP_xderef_size:
3719 case DW_OP_deref_size:
3720 case DW_OP_pick:
3721 fprintf_filtered (stream, " %d", *data);
3722 ++data;
3723 break;
3724
3725 case DW_OP_plus_uconst:
3726 data = safe_read_uleb128 (data, end, &ul);
3727 fprintf_filtered (stream, " %s", pulongest (ul));
3728 break;
3729
3730 case DW_OP_skip:
3731 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
3732 data += 2;
3733 fprintf_filtered (stream, " to %ld",
3734 (long) (data + l - start));
3735 break;
3736
3737 case DW_OP_bra:
3738 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
3739 data += 2;
3740 fprintf_filtered (stream, " %ld",
3741 (long) (data + l - start));
3742 break;
3743
3744 case DW_OP_call2:
3745 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
3746 data += 2;
3747 fprintf_filtered (stream, " offset %s", phex_nz (ul, 2));
3748 break;
3749
3750 case DW_OP_call4:
3751 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
3752 data += 4;
3753 fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
3754 break;
3755
3756 case DW_OP_call_ref:
3757 ul = extract_unsigned_integer (data, offset_size,
3758 gdbarch_byte_order (arch));
3759 data += offset_size;
3760 fprintf_filtered (stream, " offset %s", phex_nz (ul, offset_size));
3761 break;
3762
3763 case DW_OP_piece:
3764 data = safe_read_uleb128 (data, end, &ul);
3765 fprintf_filtered (stream, " %s (bytes)", pulongest (ul));
3766 break;
3767
3768 case DW_OP_bit_piece:
3769 {
3770 uint64_t offset;
3771
3772 data = safe_read_uleb128 (data, end, &ul);
3773 data = safe_read_uleb128 (data, end, &offset);
3774 fprintf_filtered (stream, " size %s offset %s (bits)",
3775 pulongest (ul), pulongest (offset));
3776 }
3777 break;
3778
3779 case DW_OP_GNU_implicit_pointer:
3780 {
3781 ul = extract_unsigned_integer (data, offset_size,
3782 gdbarch_byte_order (arch));
3783 data += offset_size;
3784
3785 data = safe_read_sleb128 (data, end, &l);
3786
3787 fprintf_filtered (stream, " DIE %s offset %s",
3788 phex_nz (ul, offset_size),
3789 plongest (l));
3790 }
3791 break;
3792
3793 case DW_OP_GNU_deref_type:
3794 {
3795 int addr_size = *data++;
3796 cu_offset offset;
3797 struct type *type;
3798
3799 data = safe_read_uleb128 (data, end, &ul);
3800 offset.cu_off = ul;
3801 type = dwarf2_get_die_type (offset, per_cu);
3802 fprintf_filtered (stream, "<");
3803 type_print (type, "", stream, -1);
3804 fprintf_filtered (stream, " [0x%s]> %d", phex_nz (offset.cu_off, 0),
3805 addr_size);
3806 }
3807 break;
3808
3809 case DW_OP_GNU_const_type:
3810 {
3811 cu_offset type_die;
3812 struct type *type;
3813
3814 data = safe_read_uleb128 (data, end, &ul);
3815 type_die.cu_off = ul;
3816 type = dwarf2_get_die_type (type_die, per_cu);
3817 fprintf_filtered (stream, "<");
3818 type_print (type, "", stream, -1);
3819 fprintf_filtered (stream, " [0x%s]>", phex_nz (type_die.cu_off, 0));
3820 }
3821 break;
3822
3823 case DW_OP_GNU_regval_type:
3824 {
3825 uint64_t reg;
3826 cu_offset type_die;
3827 struct type *type;
3828
3829 data = safe_read_uleb128 (data, end, &reg);
3830 data = safe_read_uleb128 (data, end, &ul);
3831 type_die.cu_off = ul;
3832
3833 type = dwarf2_get_die_type (type_die, per_cu);
3834 fprintf_filtered (stream, "<");
3835 type_print (type, "", stream, -1);
3836 fprintf_filtered (stream, " [0x%s]> [$%s]",
3837 phex_nz (type_die.cu_off, 0),
3838 locexpr_regname (arch, reg));
3839 }
3840 break;
3841
3842 case DW_OP_GNU_convert:
3843 case DW_OP_GNU_reinterpret:
3844 {
3845 cu_offset type_die;
3846
3847 data = safe_read_uleb128 (data, end, &ul);
3848 type_die.cu_off = ul;
3849
3850 if (type_die.cu_off == 0)
3851 fprintf_filtered (stream, "<0>");
3852 else
3853 {
3854 struct type *type;
3855
3856 type = dwarf2_get_die_type (type_die, per_cu);
3857 fprintf_filtered (stream, "<");
3858 type_print (type, "", stream, -1);
3859 fprintf_filtered (stream, " [0x%s]>", phex_nz (type_die.cu_off, 0));
3860 }
3861 }
3862 break;
3863
3864 case DW_OP_GNU_entry_value:
3865 data = safe_read_uleb128 (data, end, &ul);
3866 fputc_filtered ('\n', stream);
3867 disassemble_dwarf_expression (stream, arch, addr_size, offset_size,
3868 start, data, data + ul, indent + 2,
3869 all, per_cu);
3870 data += ul;
3871 continue;
3872
3873 case DW_OP_GNU_parameter_ref:
3874 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
3875 data += 4;
3876 fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
3877 break;
3878
3879 case DW_OP_GNU_addr_index:
3880 data = safe_read_uleb128 (data, end, &ul);
3881 ul = dwarf2_read_addr_index (per_cu, ul);
3882 fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
3883 break;
3884 case DW_OP_GNU_const_index:
3885 data = safe_read_uleb128 (data, end, &ul);
3886 ul = dwarf2_read_addr_index (per_cu, ul);
3887 fprintf_filtered (stream, " %s", pulongest (ul));
3888 break;
3889 }
3890
3891 fprintf_filtered (stream, "\n");
3892 }
3893
3894 return data;
3895 }
3896
3897 /* Describe a single location, which may in turn consist of multiple
3898 pieces. */
3899
3900 static void
3901 locexpr_describe_location_1 (struct symbol *symbol, CORE_ADDR addr,
3902 struct ui_file *stream,
3903 const gdb_byte *data, size_t size,
3904 struct objfile *objfile, unsigned int addr_size,
3905 int offset_size, struct dwarf2_per_cu_data *per_cu)
3906 {
3907 const gdb_byte *end = data + size;
3908 int first_piece = 1, bad = 0;
3909
3910 while (data < end)
3911 {
3912 const gdb_byte *here = data;
3913 int disassemble = 1;
3914
3915 if (first_piece)
3916 first_piece = 0;
3917 else
3918 fprintf_filtered (stream, _(", and "));
3919
3920 if (!dwarf2_always_disassemble)
3921 {
3922 data = locexpr_describe_location_piece (symbol, stream,
3923 addr, objfile, per_cu,
3924 data, end, addr_size);
3925 /* If we printed anything, or if we have an empty piece,
3926 then don't disassemble. */
3927 if (data != here
3928 || data[0] == DW_OP_piece
3929 || data[0] == DW_OP_bit_piece)
3930 disassemble = 0;
3931 }
3932 if (disassemble)
3933 {
3934 fprintf_filtered (stream, _("a complex DWARF expression:\n"));
3935 data = disassemble_dwarf_expression (stream,
3936 get_objfile_arch (objfile),
3937 addr_size, offset_size, data,
3938 data, end, 0,
3939 dwarf2_always_disassemble,
3940 per_cu);
3941 }
3942
3943 if (data < end)
3944 {
3945 int empty = data == here;
3946
3947 if (disassemble)
3948 fprintf_filtered (stream, " ");
3949 if (data[0] == DW_OP_piece)
3950 {
3951 uint64_t bytes;
3952
3953 data = safe_read_uleb128 (data + 1, end, &bytes);
3954
3955 if (empty)
3956 fprintf_filtered (stream, _("an empty %s-byte piece"),
3957 pulongest (bytes));
3958 else
3959 fprintf_filtered (stream, _(" [%s-byte piece]"),
3960 pulongest (bytes));
3961 }
3962 else if (data[0] == DW_OP_bit_piece)
3963 {
3964 uint64_t bits, offset;
3965
3966 data = safe_read_uleb128 (data + 1, end, &bits);
3967 data = safe_read_uleb128 (data, end, &offset);
3968
3969 if (empty)
3970 fprintf_filtered (stream,
3971 _("an empty %s-bit piece"),
3972 pulongest (bits));
3973 else
3974 fprintf_filtered (stream,
3975 _(" [%s-bit piece, offset %s bits]"),
3976 pulongest (bits), pulongest (offset));
3977 }
3978 else
3979 {
3980 bad = 1;
3981 break;
3982 }
3983 }
3984 }
3985
3986 if (bad || data > end)
3987 error (_("Corrupted DWARF2 expression for \"%s\"."),
3988 SYMBOL_PRINT_NAME (symbol));
3989 }
3990
3991 /* Print a natural-language description of SYMBOL to STREAM. This
3992 version is for a symbol with a single location. */
3993
3994 static void
3995 locexpr_describe_location (struct symbol *symbol, CORE_ADDR addr,
3996 struct ui_file *stream)
3997 {
3998 struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
3999 struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
4000 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4001 int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
4002
4003 locexpr_describe_location_1 (symbol, addr, stream,
4004 dlbaton->data, dlbaton->size,
4005 objfile, addr_size, offset_size,
4006 dlbaton->per_cu);
4007 }
4008
4009 /* Describe the location of SYMBOL as an agent value in VALUE, generating
4010 any necessary bytecode in AX. */
4011
4012 static void
4013 locexpr_tracepoint_var_ref (struct symbol *symbol, struct gdbarch *gdbarch,
4014 struct agent_expr *ax, struct axs_value *value)
4015 {
4016 struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
4017 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4018
4019 if (dlbaton->size == 0)
4020 value->optimized_out = 1;
4021 else
4022 dwarf2_compile_expr_to_ax (ax, value, gdbarch, addr_size,
4023 dlbaton->data, dlbaton->data + dlbaton->size,
4024 dlbaton->per_cu);
4025 }
4026
4027 /* The set of location functions used with the DWARF-2 expression
4028 evaluator. */
4029 const struct symbol_computed_ops dwarf2_locexpr_funcs = {
4030 locexpr_read_variable,
4031 locexpr_read_variable_at_entry,
4032 locexpr_read_needs_frame,
4033 locexpr_describe_location,
4034 0, /* location_has_loclist */
4035 locexpr_tracepoint_var_ref
4036 };
4037
4038
4039 /* Wrapper functions for location lists. These generally find
4040 the appropriate location expression and call something above. */
4041
4042 /* Return the value of SYMBOL in FRAME using the DWARF-2 expression
4043 evaluator to calculate the location. */
4044 static struct value *
4045 loclist_read_variable (struct symbol *symbol, struct frame_info *frame)
4046 {
4047 struct dwarf2_loclist_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
4048 struct value *val;
4049 const gdb_byte *data;
4050 size_t size;
4051 CORE_ADDR pc = frame ? get_frame_address_in_block (frame) : 0;
4052
4053 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4054 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, data, size,
4055 dlbaton->per_cu);
4056
4057 return val;
4058 }
4059
4060 /* Read variable SYMBOL like loclist_read_variable at (callee) FRAME's function
4061 entry. SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
4062 will be thrown.
4063
4064 Function always returns non-NULL value, it may be marked optimized out if
4065 inferior frame information is not available. It throws NO_ENTRY_VALUE_ERROR
4066 if it cannot resolve the parameter for any reason. */
4067
4068 static struct value *
4069 loclist_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
4070 {
4071 struct dwarf2_loclist_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
4072 const gdb_byte *data;
4073 size_t size;
4074 CORE_ADDR pc;
4075
4076 if (frame == NULL || !get_frame_func_if_available (frame, &pc))
4077 return allocate_optimized_out_value (SYMBOL_TYPE (symbol));
4078
4079 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4080 if (data == NULL)
4081 return allocate_optimized_out_value (SYMBOL_TYPE (symbol));
4082
4083 return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, data, size);
4084 }
4085
4086 /* Return non-zero iff we need a frame to evaluate SYMBOL. */
4087 static int
4088 loclist_read_needs_frame (struct symbol *symbol)
4089 {
4090 /* If there's a location list, then assume we need to have a frame
4091 to choose the appropriate location expression. With tracking of
4092 global variables this is not necessarily true, but such tracking
4093 is disabled in GCC at the moment until we figure out how to
4094 represent it. */
4095
4096 return 1;
4097 }
4098
4099 /* Print a natural-language description of SYMBOL to STREAM. This
4100 version applies when there is a list of different locations, each
4101 with a specified address range. */
4102
4103 static void
4104 loclist_describe_location (struct symbol *symbol, CORE_ADDR addr,
4105 struct ui_file *stream)
4106 {
4107 struct dwarf2_loclist_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
4108 const gdb_byte *loc_ptr, *buf_end;
4109 struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
4110 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4111 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4112 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4113 int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
4114 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
4115 /* Adjust base_address for relocatable objects. */
4116 CORE_ADDR base_offset = dwarf2_per_cu_text_offset (dlbaton->per_cu);
4117 CORE_ADDR base_address = dlbaton->base_address + base_offset;
4118 int done = 0;
4119
4120 loc_ptr = dlbaton->data;
4121 buf_end = dlbaton->data + dlbaton->size;
4122
4123 fprintf_filtered (stream, _("multi-location:\n"));
4124
4125 /* Iterate through locations until we run out. */
4126 while (!done)
4127 {
4128 CORE_ADDR low = 0, high = 0; /* init for gcc -Wall */
4129 int length;
4130 enum debug_loc_kind kind;
4131 const gdb_byte *new_ptr = NULL; /* init for gcc -Wall */
4132
4133 if (dlbaton->from_dwo)
4134 kind = decode_debug_loc_dwo_addresses (dlbaton->per_cu,
4135 loc_ptr, buf_end, &new_ptr,
4136 &low, &high, byte_order);
4137 else
4138 kind = decode_debug_loc_addresses (loc_ptr, buf_end, &new_ptr,
4139 &low, &high,
4140 byte_order, addr_size,
4141 signed_addr_p);
4142 loc_ptr = new_ptr;
4143 switch (kind)
4144 {
4145 case DEBUG_LOC_END_OF_LIST:
4146 done = 1;
4147 continue;
4148 case DEBUG_LOC_BASE_ADDRESS:
4149 base_address = high + base_offset;
4150 fprintf_filtered (stream, _(" Base address %s"),
4151 paddress (gdbarch, base_address));
4152 continue;
4153 case DEBUG_LOC_START_END:
4154 case DEBUG_LOC_START_LENGTH:
4155 break;
4156 case DEBUG_LOC_BUFFER_OVERFLOW:
4157 case DEBUG_LOC_INVALID_ENTRY:
4158 error (_("Corrupted DWARF expression for symbol \"%s\"."),
4159 SYMBOL_PRINT_NAME (symbol));
4160 default:
4161 gdb_assert_not_reached ("bad debug_loc_kind");
4162 }
4163
4164 /* Otherwise, a location expression entry. */
4165 low += base_address;
4166 high += base_address;
4167
4168 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
4169 loc_ptr += 2;
4170
4171 /* (It would improve readability to print only the minimum
4172 necessary digits of the second number of the range.) */
4173 fprintf_filtered (stream, _(" Range %s-%s: "),
4174 paddress (gdbarch, low), paddress (gdbarch, high));
4175
4176 /* Now describe this particular location. */
4177 locexpr_describe_location_1 (symbol, low, stream, loc_ptr, length,
4178 objfile, addr_size, offset_size,
4179 dlbaton->per_cu);
4180
4181 fprintf_filtered (stream, "\n");
4182
4183 loc_ptr += length;
4184 }
4185 }
4186
4187 /* Describe the location of SYMBOL as an agent value in VALUE, generating
4188 any necessary bytecode in AX. */
4189 static void
4190 loclist_tracepoint_var_ref (struct symbol *symbol, struct gdbarch *gdbarch,
4191 struct agent_expr *ax, struct axs_value *value)
4192 {
4193 struct dwarf2_loclist_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
4194 const gdb_byte *data;
4195 size_t size;
4196 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4197
4198 data = dwarf2_find_location_expression (dlbaton, &size, ax->scope);
4199 if (size == 0)
4200 value->optimized_out = 1;
4201 else
4202 dwarf2_compile_expr_to_ax (ax, value, gdbarch, addr_size, data, data + size,
4203 dlbaton->per_cu);
4204 }
4205
4206 /* The set of location functions used with the DWARF-2 expression
4207 evaluator and location lists. */
4208 const struct symbol_computed_ops dwarf2_loclist_funcs = {
4209 loclist_read_variable,
4210 loclist_read_variable_at_entry,
4211 loclist_read_needs_frame,
4212 loclist_describe_location,
4213 1, /* location_has_loclist */
4214 loclist_tracepoint_var_ref
4215 };
4216
4217 /* Provide a prototype to silence -Wmissing-prototypes. */
4218 extern initialize_file_ftype _initialize_dwarf2loc;
4219
4220 void
4221 _initialize_dwarf2loc (void)
4222 {
4223 add_setshow_zuinteger_cmd ("entry-values", class_maintenance,
4224 &entry_values_debug,
4225 _("Set entry values and tail call frames "
4226 "debugging."),
4227 _("Show entry values and tail call frames "
4228 "debugging."),
4229 _("When non-zero, the process of determining "
4230 "parameter values from function entry point "
4231 "and tail call frames will be printed."),
4232 NULL,
4233 show_entry_values_debug,
4234 &setdebuglist, &showdebuglist);
4235 }
This page took 0.124309 seconds and 5 git commands to generate.