Add unit test for copy_bitwise
[deliverable/binutils-gdb.git] / gdb / dwarf2loc.c
1 /* DWARF 2 location expression support for GDB.
2
3 Copyright (C) 2003-2016 Free Software Foundation, Inc.
4
5 Contributed by Daniel Jacobowitz, MontaVista Software, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "ui-out.h"
24 #include "value.h"
25 #include "frame.h"
26 #include "gdbcore.h"
27 #include "target.h"
28 #include "inferior.h"
29 #include "ax.h"
30 #include "ax-gdb.h"
31 #include "regcache.h"
32 #include "objfiles.h"
33 #include "block.h"
34 #include "gdbcmd.h"
35 #include "complaints.h"
36 #include "dwarf2.h"
37 #include "dwarf2expr.h"
38 #include "dwarf2loc.h"
39 #include "dwarf2-frame.h"
40 #include "compile/compile.h"
41 #include "selftest.h"
42 #include <algorithm>
43 #include <vector>
44
45 extern int dwarf_always_disassemble;
46
47 static struct value *dwarf2_evaluate_loc_desc_full (struct type *type,
48 struct frame_info *frame,
49 const gdb_byte *data,
50 size_t size,
51 struct dwarf2_per_cu_data *per_cu,
52 LONGEST byte_offset);
53
54 static struct call_site_parameter *dwarf_expr_reg_to_entry_parameter
55 (struct frame_info *frame,
56 enum call_site_parameter_kind kind,
57 union call_site_parameter_u kind_u,
58 struct dwarf2_per_cu_data **per_cu_return);
59
60 /* Until these have formal names, we define these here.
61 ref: http://gcc.gnu.org/wiki/DebugFission
62 Each entry in .debug_loc.dwo begins with a byte that describes the entry,
63 and is then followed by data specific to that entry. */
64
65 enum debug_loc_kind
66 {
67 /* Indicates the end of the list of entries. */
68 DEBUG_LOC_END_OF_LIST = 0,
69
70 /* This is followed by an unsigned LEB128 number that is an index into
71 .debug_addr and specifies the base address for all following entries. */
72 DEBUG_LOC_BASE_ADDRESS = 1,
73
74 /* This is followed by two unsigned LEB128 numbers that are indices into
75 .debug_addr and specify the beginning and ending addresses, and then
76 a normal location expression as in .debug_loc. */
77 DEBUG_LOC_START_END = 2,
78
79 /* This is followed by an unsigned LEB128 number that is an index into
80 .debug_addr and specifies the beginning address, and a 4 byte unsigned
81 number that specifies the length, and then a normal location expression
82 as in .debug_loc. */
83 DEBUG_LOC_START_LENGTH = 3,
84
85 /* An internal value indicating there is insufficient data. */
86 DEBUG_LOC_BUFFER_OVERFLOW = -1,
87
88 /* An internal value indicating an invalid kind of entry was found. */
89 DEBUG_LOC_INVALID_ENTRY = -2
90 };
91
92 /* Helper function which throws an error if a synthetic pointer is
93 invalid. */
94
95 static void
96 invalid_synthetic_pointer (void)
97 {
98 error (_("access outside bounds of object "
99 "referenced via synthetic pointer"));
100 }
101
102 /* Decode the addresses in a non-dwo .debug_loc entry.
103 A pointer to the next byte to examine is returned in *NEW_PTR.
104 The encoded low,high addresses are return in *LOW,*HIGH.
105 The result indicates the kind of entry found. */
106
107 static enum debug_loc_kind
108 decode_debug_loc_addresses (const gdb_byte *loc_ptr, const gdb_byte *buf_end,
109 const gdb_byte **new_ptr,
110 CORE_ADDR *low, CORE_ADDR *high,
111 enum bfd_endian byte_order,
112 unsigned int addr_size,
113 int signed_addr_p)
114 {
115 CORE_ADDR base_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
116
117 if (buf_end - loc_ptr < 2 * addr_size)
118 return DEBUG_LOC_BUFFER_OVERFLOW;
119
120 if (signed_addr_p)
121 *low = extract_signed_integer (loc_ptr, addr_size, byte_order);
122 else
123 *low = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
124 loc_ptr += addr_size;
125
126 if (signed_addr_p)
127 *high = extract_signed_integer (loc_ptr, addr_size, byte_order);
128 else
129 *high = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
130 loc_ptr += addr_size;
131
132 *new_ptr = loc_ptr;
133
134 /* A base-address-selection entry. */
135 if ((*low & base_mask) == base_mask)
136 return DEBUG_LOC_BASE_ADDRESS;
137
138 /* An end-of-list entry. */
139 if (*low == 0 && *high == 0)
140 return DEBUG_LOC_END_OF_LIST;
141
142 return DEBUG_LOC_START_END;
143 }
144
145 /* Decode the addresses in .debug_loc.dwo entry.
146 A pointer to the next byte to examine is returned in *NEW_PTR.
147 The encoded low,high addresses are return in *LOW,*HIGH.
148 The result indicates the kind of entry found. */
149
150 static enum debug_loc_kind
151 decode_debug_loc_dwo_addresses (struct dwarf2_per_cu_data *per_cu,
152 const gdb_byte *loc_ptr,
153 const gdb_byte *buf_end,
154 const gdb_byte **new_ptr,
155 CORE_ADDR *low, CORE_ADDR *high,
156 enum bfd_endian byte_order)
157 {
158 uint64_t low_index, high_index;
159
160 if (loc_ptr == buf_end)
161 return DEBUG_LOC_BUFFER_OVERFLOW;
162
163 switch (*loc_ptr++)
164 {
165 case DEBUG_LOC_END_OF_LIST:
166 *new_ptr = loc_ptr;
167 return DEBUG_LOC_END_OF_LIST;
168 case DEBUG_LOC_BASE_ADDRESS:
169 *low = 0;
170 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &high_index);
171 if (loc_ptr == NULL)
172 return DEBUG_LOC_BUFFER_OVERFLOW;
173 *high = dwarf2_read_addr_index (per_cu, high_index);
174 *new_ptr = loc_ptr;
175 return DEBUG_LOC_BASE_ADDRESS;
176 case DEBUG_LOC_START_END:
177 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &low_index);
178 if (loc_ptr == NULL)
179 return DEBUG_LOC_BUFFER_OVERFLOW;
180 *low = dwarf2_read_addr_index (per_cu, low_index);
181 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &high_index);
182 if (loc_ptr == NULL)
183 return DEBUG_LOC_BUFFER_OVERFLOW;
184 *high = dwarf2_read_addr_index (per_cu, high_index);
185 *new_ptr = loc_ptr;
186 return DEBUG_LOC_START_END;
187 case DEBUG_LOC_START_LENGTH:
188 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &low_index);
189 if (loc_ptr == NULL)
190 return DEBUG_LOC_BUFFER_OVERFLOW;
191 *low = dwarf2_read_addr_index (per_cu, low_index);
192 if (loc_ptr + 4 > buf_end)
193 return DEBUG_LOC_BUFFER_OVERFLOW;
194 *high = *low;
195 *high += extract_unsigned_integer (loc_ptr, 4, byte_order);
196 *new_ptr = loc_ptr + 4;
197 return DEBUG_LOC_START_LENGTH;
198 default:
199 return DEBUG_LOC_INVALID_ENTRY;
200 }
201 }
202
203 /* A function for dealing with location lists. Given a
204 symbol baton (BATON) and a pc value (PC), find the appropriate
205 location expression, set *LOCEXPR_LENGTH, and return a pointer
206 to the beginning of the expression. Returns NULL on failure.
207
208 For now, only return the first matching location expression; there
209 can be more than one in the list. */
210
211 const gdb_byte *
212 dwarf2_find_location_expression (struct dwarf2_loclist_baton *baton,
213 size_t *locexpr_length, CORE_ADDR pc)
214 {
215 struct objfile *objfile = dwarf2_per_cu_objfile (baton->per_cu);
216 struct gdbarch *gdbarch = get_objfile_arch (objfile);
217 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
218 unsigned int addr_size = dwarf2_per_cu_addr_size (baton->per_cu);
219 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
220 /* Adjust base_address for relocatable objects. */
221 CORE_ADDR base_offset = dwarf2_per_cu_text_offset (baton->per_cu);
222 CORE_ADDR base_address = baton->base_address + base_offset;
223 const gdb_byte *loc_ptr, *buf_end;
224
225 loc_ptr = baton->data;
226 buf_end = baton->data + baton->size;
227
228 while (1)
229 {
230 CORE_ADDR low = 0, high = 0; /* init for gcc -Wall */
231 int length;
232 enum debug_loc_kind kind;
233 const gdb_byte *new_ptr = NULL; /* init for gcc -Wall */
234
235 if (baton->from_dwo)
236 kind = decode_debug_loc_dwo_addresses (baton->per_cu,
237 loc_ptr, buf_end, &new_ptr,
238 &low, &high, byte_order);
239 else
240 kind = decode_debug_loc_addresses (loc_ptr, buf_end, &new_ptr,
241 &low, &high,
242 byte_order, addr_size,
243 signed_addr_p);
244 loc_ptr = new_ptr;
245 switch (kind)
246 {
247 case DEBUG_LOC_END_OF_LIST:
248 *locexpr_length = 0;
249 return NULL;
250 case DEBUG_LOC_BASE_ADDRESS:
251 base_address = high + base_offset;
252 continue;
253 case DEBUG_LOC_START_END:
254 case DEBUG_LOC_START_LENGTH:
255 break;
256 case DEBUG_LOC_BUFFER_OVERFLOW:
257 case DEBUG_LOC_INVALID_ENTRY:
258 error (_("dwarf2_find_location_expression: "
259 "Corrupted DWARF expression."));
260 default:
261 gdb_assert_not_reached ("bad debug_loc_kind");
262 }
263
264 /* Otherwise, a location expression entry.
265 If the entry is from a DWO, don't add base address: the entry is from
266 .debug_addr which already has the DWARF "base address". We still add
267 base_offset in case we're debugging a PIE executable. */
268 if (baton->from_dwo)
269 {
270 low += base_offset;
271 high += base_offset;
272 }
273 else
274 {
275 low += base_address;
276 high += base_address;
277 }
278
279 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
280 loc_ptr += 2;
281
282 if (low == high && pc == low)
283 {
284 /* This is entry PC record present only at entry point
285 of a function. Verify it is really the function entry point. */
286
287 const struct block *pc_block = block_for_pc (pc);
288 struct symbol *pc_func = NULL;
289
290 if (pc_block)
291 pc_func = block_linkage_function (pc_block);
292
293 if (pc_func && pc == BLOCK_START (SYMBOL_BLOCK_VALUE (pc_func)))
294 {
295 *locexpr_length = length;
296 return loc_ptr;
297 }
298 }
299
300 if (pc >= low && pc < high)
301 {
302 *locexpr_length = length;
303 return loc_ptr;
304 }
305
306 loc_ptr += length;
307 }
308 }
309
310 /* This is the baton used when performing dwarf2 expression
311 evaluation. */
312 struct dwarf_expr_baton
313 {
314 struct frame_info *frame;
315 struct dwarf2_per_cu_data *per_cu;
316 CORE_ADDR obj_address;
317 };
318
319 /* Implement find_frame_base_location method for LOC_BLOCK functions using
320 DWARF expression for its DW_AT_frame_base. */
321
322 static void
323 locexpr_find_frame_base_location (struct symbol *framefunc, CORE_ADDR pc,
324 const gdb_byte **start, size_t *length)
325 {
326 struct dwarf2_locexpr_baton *symbaton
327 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (framefunc);
328
329 *length = symbaton->size;
330 *start = symbaton->data;
331 }
332
333 /* Implement the struct symbol_block_ops::get_frame_base method for
334 LOC_BLOCK functions using a DWARF expression as its DW_AT_frame_base. */
335
336 static CORE_ADDR
337 locexpr_get_frame_base (struct symbol *framefunc, struct frame_info *frame)
338 {
339 struct gdbarch *gdbarch;
340 struct type *type;
341 struct dwarf2_locexpr_baton *dlbaton;
342 const gdb_byte *start;
343 size_t length;
344 struct value *result;
345
346 /* If this method is called, then FRAMEFUNC is supposed to be a DWARF block.
347 Thus, it's supposed to provide the find_frame_base_location method as
348 well. */
349 gdb_assert (SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location != NULL);
350
351 gdbarch = get_frame_arch (frame);
352 type = builtin_type (gdbarch)->builtin_data_ptr;
353 dlbaton = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (framefunc);
354
355 SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location
356 (framefunc, get_frame_pc (frame), &start, &length);
357 result = dwarf2_evaluate_loc_desc (type, frame, start, length,
358 dlbaton->per_cu);
359
360 /* The DW_AT_frame_base attribute contains a location description which
361 computes the base address itself. However, the call to
362 dwarf2_evaluate_loc_desc returns a value representing a variable at
363 that address. The frame base address is thus this variable's
364 address. */
365 return value_address (result);
366 }
367
368 /* Vector for inferior functions as represented by LOC_BLOCK, if the inferior
369 function uses DWARF expression for its DW_AT_frame_base. */
370
371 const struct symbol_block_ops dwarf2_block_frame_base_locexpr_funcs =
372 {
373 locexpr_find_frame_base_location,
374 locexpr_get_frame_base
375 };
376
377 /* Implement find_frame_base_location method for LOC_BLOCK functions using
378 DWARF location list for its DW_AT_frame_base. */
379
380 static void
381 loclist_find_frame_base_location (struct symbol *framefunc, CORE_ADDR pc,
382 const gdb_byte **start, size_t *length)
383 {
384 struct dwarf2_loclist_baton *symbaton
385 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (framefunc);
386
387 *start = dwarf2_find_location_expression (symbaton, length, pc);
388 }
389
390 /* Implement the struct symbol_block_ops::get_frame_base method for
391 LOC_BLOCK functions using a DWARF location list as its DW_AT_frame_base. */
392
393 static CORE_ADDR
394 loclist_get_frame_base (struct symbol *framefunc, struct frame_info *frame)
395 {
396 struct gdbarch *gdbarch;
397 struct type *type;
398 struct dwarf2_loclist_baton *dlbaton;
399 const gdb_byte *start;
400 size_t length;
401 struct value *result;
402
403 /* If this method is called, then FRAMEFUNC is supposed to be a DWARF block.
404 Thus, it's supposed to provide the find_frame_base_location method as
405 well. */
406 gdb_assert (SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location != NULL);
407
408 gdbarch = get_frame_arch (frame);
409 type = builtin_type (gdbarch)->builtin_data_ptr;
410 dlbaton = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (framefunc);
411
412 SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location
413 (framefunc, get_frame_pc (frame), &start, &length);
414 result = dwarf2_evaluate_loc_desc (type, frame, start, length,
415 dlbaton->per_cu);
416
417 /* The DW_AT_frame_base attribute contains a location description which
418 computes the base address itself. However, the call to
419 dwarf2_evaluate_loc_desc returns a value representing a variable at
420 that address. The frame base address is thus this variable's
421 address. */
422 return value_address (result);
423 }
424
425 /* Vector for inferior functions as represented by LOC_BLOCK, if the inferior
426 function uses DWARF location list for its DW_AT_frame_base. */
427
428 const struct symbol_block_ops dwarf2_block_frame_base_loclist_funcs =
429 {
430 loclist_find_frame_base_location,
431 loclist_get_frame_base
432 };
433
434 /* See dwarf2loc.h. */
435
436 void
437 func_get_frame_base_dwarf_block (struct symbol *framefunc, CORE_ADDR pc,
438 const gdb_byte **start, size_t *length)
439 {
440 if (SYMBOL_BLOCK_OPS (framefunc) != NULL)
441 {
442 const struct symbol_block_ops *ops_block = SYMBOL_BLOCK_OPS (framefunc);
443
444 ops_block->find_frame_base_location (framefunc, pc, start, length);
445 }
446 else
447 *length = 0;
448
449 if (*length == 0)
450 error (_("Could not find the frame base for \"%s\"."),
451 SYMBOL_NATURAL_NAME (framefunc));
452 }
453
454 static CORE_ADDR
455 get_frame_pc_for_per_cu_dwarf_call (void *baton)
456 {
457 dwarf_expr_context *ctx = (dwarf_expr_context *) baton;
458
459 return ctx->get_frame_pc ();
460 }
461
462 static void
463 per_cu_dwarf_call (struct dwarf_expr_context *ctx, cu_offset die_offset,
464 struct dwarf2_per_cu_data *per_cu)
465 {
466 struct dwarf2_locexpr_baton block;
467
468 block = dwarf2_fetch_die_loc_cu_off (die_offset, per_cu,
469 get_frame_pc_for_per_cu_dwarf_call,
470 ctx);
471
472 /* DW_OP_call_ref is currently not supported. */
473 gdb_assert (block.per_cu == per_cu);
474
475 ctx->eval (block.data, block.size);
476 }
477
478 class dwarf_evaluate_loc_desc : public dwarf_expr_context
479 {
480 public:
481
482 struct frame_info *frame;
483 struct dwarf2_per_cu_data *per_cu;
484 CORE_ADDR obj_address;
485
486 /* Helper function for dwarf2_evaluate_loc_desc. Computes the CFA for
487 the frame in BATON. */
488
489 CORE_ADDR get_frame_cfa () OVERRIDE
490 {
491 return dwarf2_frame_cfa (frame);
492 }
493
494 /* Helper function for dwarf2_evaluate_loc_desc. Computes the PC for
495 the frame in BATON. */
496
497 CORE_ADDR get_frame_pc () OVERRIDE
498 {
499 return get_frame_address_in_block (frame);
500 }
501
502 /* Using the objfile specified in BATON, find the address for the
503 current thread's thread-local storage with offset OFFSET. */
504 CORE_ADDR get_tls_address (CORE_ADDR offset) OVERRIDE
505 {
506 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
507
508 return target_translate_tls_address (objfile, offset);
509 }
510
511 /* Helper interface of per_cu_dwarf_call for
512 dwarf2_evaluate_loc_desc. */
513
514 void dwarf_call (cu_offset die_offset) OVERRIDE
515 {
516 per_cu_dwarf_call (this, die_offset, per_cu);
517 }
518
519 struct type *get_base_type (cu_offset die_offset, int size) OVERRIDE
520 {
521 struct type *result = dwarf2_get_die_type (die_offset, per_cu);
522 if (result == NULL)
523 error (_("Could not find type for DW_OP_GNU_const_type"));
524 if (size != 0 && TYPE_LENGTH (result) != size)
525 error (_("DW_OP_GNU_const_type has different sizes for type and data"));
526 return result;
527 }
528
529 /* Callback function for dwarf2_evaluate_loc_desc.
530 Fetch the address indexed by DW_OP_GNU_addr_index. */
531
532 CORE_ADDR get_addr_index (unsigned int index) OVERRIDE
533 {
534 return dwarf2_read_addr_index (per_cu, index);
535 }
536
537 /* Callback function for get_object_address. Return the address of the VLA
538 object. */
539
540 CORE_ADDR get_object_address () OVERRIDE
541 {
542 if (obj_address == 0)
543 error (_("Location address is not set."));
544 return obj_address;
545 }
546
547 /* Execute DWARF block of call_site_parameter which matches KIND and
548 KIND_U. Choose DEREF_SIZE value of that parameter. Search
549 caller of this objects's frame.
550
551 The caller can be from a different CU - per_cu_dwarf_call
552 implementation can be more simple as it does not support cross-CU
553 DWARF executions. */
554
555 void push_dwarf_reg_entry_value (enum call_site_parameter_kind kind,
556 union call_site_parameter_u kind_u,
557 int deref_size) OVERRIDE
558 {
559 struct frame_info *caller_frame;
560 struct dwarf2_per_cu_data *caller_per_cu;
561 struct call_site_parameter *parameter;
562 const gdb_byte *data_src;
563 size_t size;
564
565 caller_frame = get_prev_frame (frame);
566
567 parameter = dwarf_expr_reg_to_entry_parameter (frame, kind, kind_u,
568 &caller_per_cu);
569 data_src = deref_size == -1 ? parameter->value : parameter->data_value;
570 size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;
571
572 /* DEREF_SIZE size is not verified here. */
573 if (data_src == NULL)
574 throw_error (NO_ENTRY_VALUE_ERROR,
575 _("Cannot resolve DW_AT_GNU_call_site_data_value"));
576
577 scoped_restore save_frame = make_scoped_restore (&this->frame,
578 caller_frame);
579 scoped_restore save_per_cu = make_scoped_restore (&this->per_cu,
580 caller_per_cu);
581 scoped_restore save_obj_addr = make_scoped_restore (&this->obj_address,
582 (CORE_ADDR) 0);
583
584 scoped_restore save_arch = make_scoped_restore (&this->gdbarch);
585 this->gdbarch
586 = get_objfile_arch (dwarf2_per_cu_objfile (per_cu));
587 scoped_restore save_addr_size = make_scoped_restore (&this->addr_size);
588 this->addr_size = dwarf2_per_cu_addr_size (per_cu);
589 scoped_restore save_offset = make_scoped_restore (&this->offset);
590 this->offset = dwarf2_per_cu_text_offset (per_cu);
591
592 this->eval (data_src, size);
593 }
594
595 /* Using the frame specified in BATON, find the location expression
596 describing the frame base. Return a pointer to it in START and
597 its length in LENGTH. */
598 void get_frame_base (const gdb_byte **start, size_t * length) OVERRIDE
599 {
600 /* FIXME: cagney/2003-03-26: This code should be using
601 get_frame_base_address(), and then implement a dwarf2 specific
602 this_base method. */
603 struct symbol *framefunc;
604 const struct block *bl = get_frame_block (frame, NULL);
605
606 if (bl == NULL)
607 error (_("frame address is not available."));
608
609 /* Use block_linkage_function, which returns a real (not inlined)
610 function, instead of get_frame_function, which may return an
611 inlined function. */
612 framefunc = block_linkage_function (bl);
613
614 /* If we found a frame-relative symbol then it was certainly within
615 some function associated with a frame. If we can't find the frame,
616 something has gone wrong. */
617 gdb_assert (framefunc != NULL);
618
619 func_get_frame_base_dwarf_block (framefunc,
620 get_frame_address_in_block (frame),
621 start, length);
622 }
623
624 /* Read memory at ADDR (length LEN) into BUF. */
625
626 void read_mem (gdb_byte *buf, CORE_ADDR addr, size_t len) OVERRIDE
627 {
628 read_memory (addr, buf, len);
629 }
630
631 /* Using the frame specified in BATON, return the value of register
632 REGNUM, treated as a pointer. */
633 CORE_ADDR read_addr_from_reg (int dwarf_regnum) OVERRIDE
634 {
635 struct gdbarch *gdbarch = get_frame_arch (frame);
636 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, dwarf_regnum);
637
638 return address_from_register (regnum, frame);
639 }
640
641 /* Implement "get_reg_value" callback. */
642
643 struct value *get_reg_value (struct type *type, int dwarf_regnum) OVERRIDE
644 {
645 struct gdbarch *gdbarch = get_frame_arch (frame);
646 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, dwarf_regnum);
647
648 return value_from_register (type, regnum, frame);
649 }
650 };
651
652 /* See dwarf2loc.h. */
653
654 unsigned int entry_values_debug = 0;
655
656 /* Helper to set entry_values_debug. */
657
658 static void
659 show_entry_values_debug (struct ui_file *file, int from_tty,
660 struct cmd_list_element *c, const char *value)
661 {
662 fprintf_filtered (file,
663 _("Entry values and tail call frames debugging is %s.\n"),
664 value);
665 }
666
667 /* Find DW_TAG_GNU_call_site's DW_AT_GNU_call_site_target address.
668 CALLER_FRAME (for registers) can be NULL if it is not known. This function
669 always returns valid address or it throws NO_ENTRY_VALUE_ERROR. */
670
671 static CORE_ADDR
672 call_site_to_target_addr (struct gdbarch *call_site_gdbarch,
673 struct call_site *call_site,
674 struct frame_info *caller_frame)
675 {
676 switch (FIELD_LOC_KIND (call_site->target))
677 {
678 case FIELD_LOC_KIND_DWARF_BLOCK:
679 {
680 struct dwarf2_locexpr_baton *dwarf_block;
681 struct value *val;
682 struct type *caller_core_addr_type;
683 struct gdbarch *caller_arch;
684
685 dwarf_block = FIELD_DWARF_BLOCK (call_site->target);
686 if (dwarf_block == NULL)
687 {
688 struct bound_minimal_symbol msym;
689
690 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
691 throw_error (NO_ENTRY_VALUE_ERROR,
692 _("DW_AT_GNU_call_site_target is not specified "
693 "at %s in %s"),
694 paddress (call_site_gdbarch, call_site->pc),
695 (msym.minsym == NULL ? "???"
696 : MSYMBOL_PRINT_NAME (msym.minsym)));
697
698 }
699 if (caller_frame == NULL)
700 {
701 struct bound_minimal_symbol msym;
702
703 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
704 throw_error (NO_ENTRY_VALUE_ERROR,
705 _("DW_AT_GNU_call_site_target DWARF block resolving "
706 "requires known frame which is currently not "
707 "available at %s in %s"),
708 paddress (call_site_gdbarch, call_site->pc),
709 (msym.minsym == NULL ? "???"
710 : MSYMBOL_PRINT_NAME (msym.minsym)));
711
712 }
713 caller_arch = get_frame_arch (caller_frame);
714 caller_core_addr_type = builtin_type (caller_arch)->builtin_func_ptr;
715 val = dwarf2_evaluate_loc_desc (caller_core_addr_type, caller_frame,
716 dwarf_block->data, dwarf_block->size,
717 dwarf_block->per_cu);
718 /* DW_AT_GNU_call_site_target is a DWARF expression, not a DWARF
719 location. */
720 if (VALUE_LVAL (val) == lval_memory)
721 return value_address (val);
722 else
723 return value_as_address (val);
724 }
725
726 case FIELD_LOC_KIND_PHYSNAME:
727 {
728 const char *physname;
729 struct bound_minimal_symbol msym;
730
731 physname = FIELD_STATIC_PHYSNAME (call_site->target);
732
733 /* Handle both the mangled and demangled PHYSNAME. */
734 msym = lookup_minimal_symbol (physname, NULL, NULL);
735 if (msym.minsym == NULL)
736 {
737 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
738 throw_error (NO_ENTRY_VALUE_ERROR,
739 _("Cannot find function \"%s\" for a call site target "
740 "at %s in %s"),
741 physname, paddress (call_site_gdbarch, call_site->pc),
742 (msym.minsym == NULL ? "???"
743 : MSYMBOL_PRINT_NAME (msym.minsym)));
744
745 }
746 return BMSYMBOL_VALUE_ADDRESS (msym);
747 }
748
749 case FIELD_LOC_KIND_PHYSADDR:
750 return FIELD_STATIC_PHYSADDR (call_site->target);
751
752 default:
753 internal_error (__FILE__, __LINE__, _("invalid call site target kind"));
754 }
755 }
756
757 /* Convert function entry point exact address ADDR to the function which is
758 compliant with TAIL_CALL_LIST_COMPLETE condition. Throw
759 NO_ENTRY_VALUE_ERROR otherwise. */
760
761 static struct symbol *
762 func_addr_to_tail_call_list (struct gdbarch *gdbarch, CORE_ADDR addr)
763 {
764 struct symbol *sym = find_pc_function (addr);
765 struct type *type;
766
767 if (sym == NULL || BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) != addr)
768 throw_error (NO_ENTRY_VALUE_ERROR,
769 _("DW_TAG_GNU_call_site resolving failed to find function "
770 "name for address %s"),
771 paddress (gdbarch, addr));
772
773 type = SYMBOL_TYPE (sym);
774 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FUNC);
775 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
776
777 return sym;
778 }
779
780 /* Verify function with entry point exact address ADDR can never call itself
781 via its tail calls (incl. transitively). Throw NO_ENTRY_VALUE_ERROR if it
782 can call itself via tail calls.
783
784 If a funtion can tail call itself its entry value based parameters are
785 unreliable. There is no verification whether the value of some/all
786 parameters is unchanged through the self tail call, we expect if there is
787 a self tail call all the parameters can be modified. */
788
789 static void
790 func_verify_no_selftailcall (struct gdbarch *gdbarch, CORE_ADDR verify_addr)
791 {
792 struct obstack addr_obstack;
793 struct cleanup *old_chain;
794 CORE_ADDR addr;
795
796 /* Track here CORE_ADDRs which were already visited. */
797 htab_t addr_hash;
798
799 /* The verification is completely unordered. Track here function addresses
800 which still need to be iterated. */
801 VEC (CORE_ADDR) *todo = NULL;
802
803 obstack_init (&addr_obstack);
804 old_chain = make_cleanup_obstack_free (&addr_obstack);
805 addr_hash = htab_create_alloc_ex (64, core_addr_hash, core_addr_eq, NULL,
806 &addr_obstack, hashtab_obstack_allocate,
807 NULL);
808 make_cleanup_htab_delete (addr_hash);
809
810 make_cleanup (VEC_cleanup (CORE_ADDR), &todo);
811
812 VEC_safe_push (CORE_ADDR, todo, verify_addr);
813 while (!VEC_empty (CORE_ADDR, todo))
814 {
815 struct symbol *func_sym;
816 struct call_site *call_site;
817
818 addr = VEC_pop (CORE_ADDR, todo);
819
820 func_sym = func_addr_to_tail_call_list (gdbarch, addr);
821
822 for (call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (func_sym));
823 call_site; call_site = call_site->tail_call_next)
824 {
825 CORE_ADDR target_addr;
826 void **slot;
827
828 /* CALLER_FRAME with registers is not available for tail-call jumped
829 frames. */
830 target_addr = call_site_to_target_addr (gdbarch, call_site, NULL);
831
832 if (target_addr == verify_addr)
833 {
834 struct bound_minimal_symbol msym;
835
836 msym = lookup_minimal_symbol_by_pc (verify_addr);
837 throw_error (NO_ENTRY_VALUE_ERROR,
838 _("DW_OP_GNU_entry_value resolving has found "
839 "function \"%s\" at %s can call itself via tail "
840 "calls"),
841 (msym.minsym == NULL ? "???"
842 : MSYMBOL_PRINT_NAME (msym.minsym)),
843 paddress (gdbarch, verify_addr));
844 }
845
846 slot = htab_find_slot (addr_hash, &target_addr, INSERT);
847 if (*slot == NULL)
848 {
849 *slot = obstack_copy (&addr_obstack, &target_addr,
850 sizeof (target_addr));
851 VEC_safe_push (CORE_ADDR, todo, target_addr);
852 }
853 }
854 }
855
856 do_cleanups (old_chain);
857 }
858
859 /* Print user readable form of CALL_SITE->PC to gdb_stdlog. Used only for
860 ENTRY_VALUES_DEBUG. */
861
862 static void
863 tailcall_dump (struct gdbarch *gdbarch, const struct call_site *call_site)
864 {
865 CORE_ADDR addr = call_site->pc;
866 struct bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (addr - 1);
867
868 fprintf_unfiltered (gdb_stdlog, " %s(%s)", paddress (gdbarch, addr),
869 (msym.minsym == NULL ? "???"
870 : MSYMBOL_PRINT_NAME (msym.minsym)));
871
872 }
873
874 /* vec.h needs single word type name, typedef it. */
875 typedef struct call_site *call_sitep;
876
877 /* Define VEC (call_sitep) functions. */
878 DEF_VEC_P (call_sitep);
879
880 /* Intersect RESULTP with CHAIN to keep RESULTP unambiguous, keep in RESULTP
881 only top callers and bottom callees which are present in both. GDBARCH is
882 used only for ENTRY_VALUES_DEBUG. RESULTP is NULL after return if there are
883 no remaining possibilities to provide unambiguous non-trivial result.
884 RESULTP should point to NULL on the first (initialization) call. Caller is
885 responsible for xfree of any RESULTP data. */
886
887 static void
888 chain_candidate (struct gdbarch *gdbarch, struct call_site_chain **resultp,
889 VEC (call_sitep) *chain)
890 {
891 struct call_site_chain *result = *resultp;
892 long length = VEC_length (call_sitep, chain);
893 int callers, callees, idx;
894
895 if (result == NULL)
896 {
897 /* Create the initial chain containing all the passed PCs. */
898
899 result = ((struct call_site_chain *)
900 xmalloc (sizeof (*result)
901 + sizeof (*result->call_site) * (length - 1)));
902 result->length = length;
903 result->callers = result->callees = length;
904 if (!VEC_empty (call_sitep, chain))
905 memcpy (result->call_site, VEC_address (call_sitep, chain),
906 sizeof (*result->call_site) * length);
907 *resultp = result;
908
909 if (entry_values_debug)
910 {
911 fprintf_unfiltered (gdb_stdlog, "tailcall: initial:");
912 for (idx = 0; idx < length; idx++)
913 tailcall_dump (gdbarch, result->call_site[idx]);
914 fputc_unfiltered ('\n', gdb_stdlog);
915 }
916
917 return;
918 }
919
920 if (entry_values_debug)
921 {
922 fprintf_unfiltered (gdb_stdlog, "tailcall: compare:");
923 for (idx = 0; idx < length; idx++)
924 tailcall_dump (gdbarch, VEC_index (call_sitep, chain, idx));
925 fputc_unfiltered ('\n', gdb_stdlog);
926 }
927
928 /* Intersect callers. */
929
930 callers = std::min ((long) result->callers, length);
931 for (idx = 0; idx < callers; idx++)
932 if (result->call_site[idx] != VEC_index (call_sitep, chain, idx))
933 {
934 result->callers = idx;
935 break;
936 }
937
938 /* Intersect callees. */
939
940 callees = std::min ((long) result->callees, length);
941 for (idx = 0; idx < callees; idx++)
942 if (result->call_site[result->length - 1 - idx]
943 != VEC_index (call_sitep, chain, length - 1 - idx))
944 {
945 result->callees = idx;
946 break;
947 }
948
949 if (entry_values_debug)
950 {
951 fprintf_unfiltered (gdb_stdlog, "tailcall: reduced:");
952 for (idx = 0; idx < result->callers; idx++)
953 tailcall_dump (gdbarch, result->call_site[idx]);
954 fputs_unfiltered (" |", gdb_stdlog);
955 for (idx = 0; idx < result->callees; idx++)
956 tailcall_dump (gdbarch, result->call_site[result->length
957 - result->callees + idx]);
958 fputc_unfiltered ('\n', gdb_stdlog);
959 }
960
961 if (result->callers == 0 && result->callees == 0)
962 {
963 /* There are no common callers or callees. It could be also a direct
964 call (which has length 0) with ambiguous possibility of an indirect
965 call - CALLERS == CALLEES == 0 is valid during the first allocation
966 but any subsequence processing of such entry means ambiguity. */
967 xfree (result);
968 *resultp = NULL;
969 return;
970 }
971
972 /* See call_site_find_chain_1 why there is no way to reach the bottom callee
973 PC again. In such case there must be two different code paths to reach
974 it. CALLERS + CALLEES equal to LENGTH in the case of self tail-call. */
975 gdb_assert (result->callers + result->callees <= result->length);
976 }
977
978 /* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
979 assumed frames between them use GDBARCH. Use depth first search so we can
980 keep single CHAIN of call_site's back to CALLER_PC. Function recursion
981 would have needless GDB stack overhead. Caller is responsible for xfree of
982 the returned result. Any unreliability results in thrown
983 NO_ENTRY_VALUE_ERROR. */
984
985 static struct call_site_chain *
986 call_site_find_chain_1 (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
987 CORE_ADDR callee_pc)
988 {
989 CORE_ADDR save_callee_pc = callee_pc;
990 struct obstack addr_obstack;
991 struct cleanup *back_to_retval, *back_to_workdata;
992 struct call_site_chain *retval = NULL;
993 struct call_site *call_site;
994
995 /* Mark CALL_SITEs so we do not visit the same ones twice. */
996 htab_t addr_hash;
997
998 /* CHAIN contains only the intermediate CALL_SITEs. Neither CALLER_PC's
999 call_site nor any possible call_site at CALLEE_PC's function is there.
1000 Any CALL_SITE in CHAIN will be iterated to its siblings - via
1001 TAIL_CALL_NEXT. This is inappropriate for CALLER_PC's call_site. */
1002 VEC (call_sitep) *chain = NULL;
1003
1004 /* We are not interested in the specific PC inside the callee function. */
1005 callee_pc = get_pc_function_start (callee_pc);
1006 if (callee_pc == 0)
1007 throw_error (NO_ENTRY_VALUE_ERROR, _("Unable to find function for PC %s"),
1008 paddress (gdbarch, save_callee_pc));
1009
1010 back_to_retval = make_cleanup (free_current_contents, &retval);
1011
1012 obstack_init (&addr_obstack);
1013 back_to_workdata = make_cleanup_obstack_free (&addr_obstack);
1014 addr_hash = htab_create_alloc_ex (64, core_addr_hash, core_addr_eq, NULL,
1015 &addr_obstack, hashtab_obstack_allocate,
1016 NULL);
1017 make_cleanup_htab_delete (addr_hash);
1018
1019 make_cleanup (VEC_cleanup (call_sitep), &chain);
1020
1021 /* Do not push CALL_SITE to CHAIN. Push there only the first tail call site
1022 at the target's function. All the possible tail call sites in the
1023 target's function will get iterated as already pushed into CHAIN via their
1024 TAIL_CALL_NEXT. */
1025 call_site = call_site_for_pc (gdbarch, caller_pc);
1026
1027 while (call_site)
1028 {
1029 CORE_ADDR target_func_addr;
1030 struct call_site *target_call_site;
1031
1032 /* CALLER_FRAME with registers is not available for tail-call jumped
1033 frames. */
1034 target_func_addr = call_site_to_target_addr (gdbarch, call_site, NULL);
1035
1036 if (target_func_addr == callee_pc)
1037 {
1038 chain_candidate (gdbarch, &retval, chain);
1039 if (retval == NULL)
1040 break;
1041
1042 /* There is no way to reach CALLEE_PC again as we would prevent
1043 entering it twice as being already marked in ADDR_HASH. */
1044 target_call_site = NULL;
1045 }
1046 else
1047 {
1048 struct symbol *target_func;
1049
1050 target_func = func_addr_to_tail_call_list (gdbarch, target_func_addr);
1051 target_call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (target_func));
1052 }
1053
1054 do
1055 {
1056 /* Attempt to visit TARGET_CALL_SITE. */
1057
1058 if (target_call_site)
1059 {
1060 void **slot;
1061
1062 slot = htab_find_slot (addr_hash, &target_call_site->pc, INSERT);
1063 if (*slot == NULL)
1064 {
1065 /* Successfully entered TARGET_CALL_SITE. */
1066
1067 *slot = &target_call_site->pc;
1068 VEC_safe_push (call_sitep, chain, target_call_site);
1069 break;
1070 }
1071 }
1072
1073 /* Backtrack (without revisiting the originating call_site). Try the
1074 callers's sibling; if there isn't any try the callers's callers's
1075 sibling etc. */
1076
1077 target_call_site = NULL;
1078 while (!VEC_empty (call_sitep, chain))
1079 {
1080 call_site = VEC_pop (call_sitep, chain);
1081
1082 gdb_assert (htab_find_slot (addr_hash, &call_site->pc,
1083 NO_INSERT) != NULL);
1084 htab_remove_elt (addr_hash, &call_site->pc);
1085
1086 target_call_site = call_site->tail_call_next;
1087 if (target_call_site)
1088 break;
1089 }
1090 }
1091 while (target_call_site);
1092
1093 if (VEC_empty (call_sitep, chain))
1094 call_site = NULL;
1095 else
1096 call_site = VEC_last (call_sitep, chain);
1097 }
1098
1099 if (retval == NULL)
1100 {
1101 struct bound_minimal_symbol msym_caller, msym_callee;
1102
1103 msym_caller = lookup_minimal_symbol_by_pc (caller_pc);
1104 msym_callee = lookup_minimal_symbol_by_pc (callee_pc);
1105 throw_error (NO_ENTRY_VALUE_ERROR,
1106 _("There are no unambiguously determinable intermediate "
1107 "callers or callees between caller function \"%s\" at %s "
1108 "and callee function \"%s\" at %s"),
1109 (msym_caller.minsym == NULL
1110 ? "???" : MSYMBOL_PRINT_NAME (msym_caller.minsym)),
1111 paddress (gdbarch, caller_pc),
1112 (msym_callee.minsym == NULL
1113 ? "???" : MSYMBOL_PRINT_NAME (msym_callee.minsym)),
1114 paddress (gdbarch, callee_pc));
1115 }
1116
1117 do_cleanups (back_to_workdata);
1118 discard_cleanups (back_to_retval);
1119 return retval;
1120 }
1121
1122 /* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
1123 assumed frames between them use GDBARCH. If valid call_site_chain cannot be
1124 constructed return NULL. Caller is responsible for xfree of the returned
1125 result. */
1126
1127 struct call_site_chain *
1128 call_site_find_chain (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
1129 CORE_ADDR callee_pc)
1130 {
1131 struct call_site_chain *retval = NULL;
1132
1133 TRY
1134 {
1135 retval = call_site_find_chain_1 (gdbarch, caller_pc, callee_pc);
1136 }
1137 CATCH (e, RETURN_MASK_ERROR)
1138 {
1139 if (e.error == NO_ENTRY_VALUE_ERROR)
1140 {
1141 if (entry_values_debug)
1142 exception_print (gdb_stdout, e);
1143
1144 return NULL;
1145 }
1146 else
1147 throw_exception (e);
1148 }
1149 END_CATCH
1150
1151 return retval;
1152 }
1153
1154 /* Return 1 if KIND and KIND_U match PARAMETER. Return 0 otherwise. */
1155
1156 static int
1157 call_site_parameter_matches (struct call_site_parameter *parameter,
1158 enum call_site_parameter_kind kind,
1159 union call_site_parameter_u kind_u)
1160 {
1161 if (kind == parameter->kind)
1162 switch (kind)
1163 {
1164 case CALL_SITE_PARAMETER_DWARF_REG:
1165 return kind_u.dwarf_reg == parameter->u.dwarf_reg;
1166 case CALL_SITE_PARAMETER_FB_OFFSET:
1167 return kind_u.fb_offset == parameter->u.fb_offset;
1168 case CALL_SITE_PARAMETER_PARAM_OFFSET:
1169 return kind_u.param_offset.cu_off == parameter->u.param_offset.cu_off;
1170 }
1171 return 0;
1172 }
1173
1174 /* Fetch call_site_parameter from caller matching KIND and KIND_U.
1175 FRAME is for callee.
1176
1177 Function always returns non-NULL, it throws NO_ENTRY_VALUE_ERROR
1178 otherwise. */
1179
1180 static struct call_site_parameter *
1181 dwarf_expr_reg_to_entry_parameter (struct frame_info *frame,
1182 enum call_site_parameter_kind kind,
1183 union call_site_parameter_u kind_u,
1184 struct dwarf2_per_cu_data **per_cu_return)
1185 {
1186 CORE_ADDR func_addr, caller_pc;
1187 struct gdbarch *gdbarch;
1188 struct frame_info *caller_frame;
1189 struct call_site *call_site;
1190 int iparams;
1191 /* Initialize it just to avoid a GCC false warning. */
1192 struct call_site_parameter *parameter = NULL;
1193 CORE_ADDR target_addr;
1194
1195 while (get_frame_type (frame) == INLINE_FRAME)
1196 {
1197 frame = get_prev_frame (frame);
1198 gdb_assert (frame != NULL);
1199 }
1200
1201 func_addr = get_frame_func (frame);
1202 gdbarch = get_frame_arch (frame);
1203 caller_frame = get_prev_frame (frame);
1204 if (gdbarch != frame_unwind_arch (frame))
1205 {
1206 struct bound_minimal_symbol msym
1207 = lookup_minimal_symbol_by_pc (func_addr);
1208 struct gdbarch *caller_gdbarch = frame_unwind_arch (frame);
1209
1210 throw_error (NO_ENTRY_VALUE_ERROR,
1211 _("DW_OP_GNU_entry_value resolving callee gdbarch %s "
1212 "(of %s (%s)) does not match caller gdbarch %s"),
1213 gdbarch_bfd_arch_info (gdbarch)->printable_name,
1214 paddress (gdbarch, func_addr),
1215 (msym.minsym == NULL ? "???"
1216 : MSYMBOL_PRINT_NAME (msym.minsym)),
1217 gdbarch_bfd_arch_info (caller_gdbarch)->printable_name);
1218 }
1219
1220 if (caller_frame == NULL)
1221 {
1222 struct bound_minimal_symbol msym
1223 = lookup_minimal_symbol_by_pc (func_addr);
1224
1225 throw_error (NO_ENTRY_VALUE_ERROR, _("DW_OP_GNU_entry_value resolving "
1226 "requires caller of %s (%s)"),
1227 paddress (gdbarch, func_addr),
1228 (msym.minsym == NULL ? "???"
1229 : MSYMBOL_PRINT_NAME (msym.minsym)));
1230 }
1231 caller_pc = get_frame_pc (caller_frame);
1232 call_site = call_site_for_pc (gdbarch, caller_pc);
1233
1234 target_addr = call_site_to_target_addr (gdbarch, call_site, caller_frame);
1235 if (target_addr != func_addr)
1236 {
1237 struct minimal_symbol *target_msym, *func_msym;
1238
1239 target_msym = lookup_minimal_symbol_by_pc (target_addr).minsym;
1240 func_msym = lookup_minimal_symbol_by_pc (func_addr).minsym;
1241 throw_error (NO_ENTRY_VALUE_ERROR,
1242 _("DW_OP_GNU_entry_value resolving expects callee %s at %s "
1243 "but the called frame is for %s at %s"),
1244 (target_msym == NULL ? "???"
1245 : MSYMBOL_PRINT_NAME (target_msym)),
1246 paddress (gdbarch, target_addr),
1247 func_msym == NULL ? "???" : MSYMBOL_PRINT_NAME (func_msym),
1248 paddress (gdbarch, func_addr));
1249 }
1250
1251 /* No entry value based parameters would be reliable if this function can
1252 call itself via tail calls. */
1253 func_verify_no_selftailcall (gdbarch, func_addr);
1254
1255 for (iparams = 0; iparams < call_site->parameter_count; iparams++)
1256 {
1257 parameter = &call_site->parameter[iparams];
1258 if (call_site_parameter_matches (parameter, kind, kind_u))
1259 break;
1260 }
1261 if (iparams == call_site->parameter_count)
1262 {
1263 struct minimal_symbol *msym
1264 = lookup_minimal_symbol_by_pc (caller_pc).minsym;
1265
1266 /* DW_TAG_GNU_call_site_parameter will be missing just if GCC could not
1267 determine its value. */
1268 throw_error (NO_ENTRY_VALUE_ERROR, _("Cannot find matching parameter "
1269 "at DW_TAG_GNU_call_site %s at %s"),
1270 paddress (gdbarch, caller_pc),
1271 msym == NULL ? "???" : MSYMBOL_PRINT_NAME (msym));
1272 }
1273
1274 *per_cu_return = call_site->per_cu;
1275 return parameter;
1276 }
1277
1278 /* Return value for PARAMETER matching DEREF_SIZE. If DEREF_SIZE is -1, return
1279 the normal DW_AT_GNU_call_site_value block. Otherwise return the
1280 DW_AT_GNU_call_site_data_value (dereferenced) block.
1281
1282 TYPE and CALLER_FRAME specify how to evaluate the DWARF block into returned
1283 struct value.
1284
1285 Function always returns non-NULL, non-optimized out value. It throws
1286 NO_ENTRY_VALUE_ERROR if it cannot resolve the value for any reason. */
1287
1288 static struct value *
1289 dwarf_entry_parameter_to_value (struct call_site_parameter *parameter,
1290 CORE_ADDR deref_size, struct type *type,
1291 struct frame_info *caller_frame,
1292 struct dwarf2_per_cu_data *per_cu)
1293 {
1294 const gdb_byte *data_src;
1295 gdb_byte *data;
1296 size_t size;
1297
1298 data_src = deref_size == -1 ? parameter->value : parameter->data_value;
1299 size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;
1300
1301 /* DEREF_SIZE size is not verified here. */
1302 if (data_src == NULL)
1303 throw_error (NO_ENTRY_VALUE_ERROR,
1304 _("Cannot resolve DW_AT_GNU_call_site_data_value"));
1305
1306 /* DW_AT_GNU_call_site_value is a DWARF expression, not a DWARF
1307 location. Postprocessing of DWARF_VALUE_MEMORY would lose the type from
1308 DWARF block. */
1309 data = (gdb_byte *) alloca (size + 1);
1310 memcpy (data, data_src, size);
1311 data[size] = DW_OP_stack_value;
1312
1313 return dwarf2_evaluate_loc_desc (type, caller_frame, data, size + 1, per_cu);
1314 }
1315
1316 /* VALUE must be of type lval_computed with entry_data_value_funcs. Perform
1317 the indirect method on it, that is use its stored target value, the sole
1318 purpose of entry_data_value_funcs.. */
1319
1320 static struct value *
1321 entry_data_value_coerce_ref (const struct value *value)
1322 {
1323 struct type *checked_type = check_typedef (value_type (value));
1324 struct value *target_val;
1325
1326 if (TYPE_CODE (checked_type) != TYPE_CODE_REF)
1327 return NULL;
1328
1329 target_val = (struct value *) value_computed_closure (value);
1330 value_incref (target_val);
1331 return target_val;
1332 }
1333
1334 /* Implement copy_closure. */
1335
1336 static void *
1337 entry_data_value_copy_closure (const struct value *v)
1338 {
1339 struct value *target_val = (struct value *) value_computed_closure (v);
1340
1341 value_incref (target_val);
1342 return target_val;
1343 }
1344
1345 /* Implement free_closure. */
1346
1347 static void
1348 entry_data_value_free_closure (struct value *v)
1349 {
1350 struct value *target_val = (struct value *) value_computed_closure (v);
1351
1352 value_free (target_val);
1353 }
1354
1355 /* Vector for methods for an entry value reference where the referenced value
1356 is stored in the caller. On the first dereference use
1357 DW_AT_GNU_call_site_data_value in the caller. */
1358
1359 static const struct lval_funcs entry_data_value_funcs =
1360 {
1361 NULL, /* read */
1362 NULL, /* write */
1363 NULL, /* indirect */
1364 entry_data_value_coerce_ref,
1365 NULL, /* check_synthetic_pointer */
1366 entry_data_value_copy_closure,
1367 entry_data_value_free_closure
1368 };
1369
1370 /* Read parameter of TYPE at (callee) FRAME's function entry. KIND and KIND_U
1371 are used to match DW_AT_location at the caller's
1372 DW_TAG_GNU_call_site_parameter.
1373
1374 Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it
1375 cannot resolve the parameter for any reason. */
1376
1377 static struct value *
1378 value_of_dwarf_reg_entry (struct type *type, struct frame_info *frame,
1379 enum call_site_parameter_kind kind,
1380 union call_site_parameter_u kind_u)
1381 {
1382 struct type *checked_type = check_typedef (type);
1383 struct type *target_type = TYPE_TARGET_TYPE (checked_type);
1384 struct frame_info *caller_frame = get_prev_frame (frame);
1385 struct value *outer_val, *target_val, *val;
1386 struct call_site_parameter *parameter;
1387 struct dwarf2_per_cu_data *caller_per_cu;
1388
1389 parameter = dwarf_expr_reg_to_entry_parameter (frame, kind, kind_u,
1390 &caller_per_cu);
1391
1392 outer_val = dwarf_entry_parameter_to_value (parameter, -1 /* deref_size */,
1393 type, caller_frame,
1394 caller_per_cu);
1395
1396 /* Check if DW_AT_GNU_call_site_data_value cannot be used. If it should be
1397 used and it is not available do not fall back to OUTER_VAL - dereferencing
1398 TYPE_CODE_REF with non-entry data value would give current value - not the
1399 entry value. */
1400
1401 if (TYPE_CODE (checked_type) != TYPE_CODE_REF
1402 || TYPE_TARGET_TYPE (checked_type) == NULL)
1403 return outer_val;
1404
1405 target_val = dwarf_entry_parameter_to_value (parameter,
1406 TYPE_LENGTH (target_type),
1407 target_type, caller_frame,
1408 caller_per_cu);
1409
1410 release_value (target_val);
1411 val = allocate_computed_value (type, &entry_data_value_funcs,
1412 target_val /* closure */);
1413
1414 /* Copy the referencing pointer to the new computed value. */
1415 memcpy (value_contents_raw (val), value_contents_raw (outer_val),
1416 TYPE_LENGTH (checked_type));
1417 set_value_lazy (val, 0);
1418
1419 return val;
1420 }
1421
1422 /* Read parameter of TYPE at (callee) FRAME's function entry. DATA and
1423 SIZE are DWARF block used to match DW_AT_location at the caller's
1424 DW_TAG_GNU_call_site_parameter.
1425
1426 Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it
1427 cannot resolve the parameter for any reason. */
1428
1429 static struct value *
1430 value_of_dwarf_block_entry (struct type *type, struct frame_info *frame,
1431 const gdb_byte *block, size_t block_len)
1432 {
1433 union call_site_parameter_u kind_u;
1434
1435 kind_u.dwarf_reg = dwarf_block_to_dwarf_reg (block, block + block_len);
1436 if (kind_u.dwarf_reg != -1)
1437 return value_of_dwarf_reg_entry (type, frame, CALL_SITE_PARAMETER_DWARF_REG,
1438 kind_u);
1439
1440 if (dwarf_block_to_fb_offset (block, block + block_len, &kind_u.fb_offset))
1441 return value_of_dwarf_reg_entry (type, frame, CALL_SITE_PARAMETER_FB_OFFSET,
1442 kind_u);
1443
1444 /* This can normally happen - throw NO_ENTRY_VALUE_ERROR to get the message
1445 suppressed during normal operation. The expression can be arbitrary if
1446 there is no caller-callee entry value binding expected. */
1447 throw_error (NO_ENTRY_VALUE_ERROR,
1448 _("DWARF-2 expression error: DW_OP_GNU_entry_value is supported "
1449 "only for single DW_OP_reg* or for DW_OP_fbreg(*)"));
1450 }
1451
1452 struct piece_closure
1453 {
1454 /* Reference count. */
1455 int refc;
1456
1457 /* The CU from which this closure's expression came. */
1458 struct dwarf2_per_cu_data *per_cu;
1459
1460 /* The number of pieces used to describe this variable. */
1461 int n_pieces;
1462
1463 /* The target address size, used only for DWARF_VALUE_STACK. */
1464 int addr_size;
1465
1466 /* The pieces themselves. */
1467 struct dwarf_expr_piece *pieces;
1468 };
1469
1470 /* Allocate a closure for a value formed from separately-described
1471 PIECES. */
1472
1473 static struct piece_closure *
1474 allocate_piece_closure (struct dwarf2_per_cu_data *per_cu,
1475 int n_pieces, struct dwarf_expr_piece *pieces,
1476 int addr_size)
1477 {
1478 struct piece_closure *c = XCNEW (struct piece_closure);
1479 int i;
1480
1481 c->refc = 1;
1482 c->per_cu = per_cu;
1483 c->n_pieces = n_pieces;
1484 c->addr_size = addr_size;
1485 c->pieces = XCNEWVEC (struct dwarf_expr_piece, n_pieces);
1486
1487 memcpy (c->pieces, pieces, n_pieces * sizeof (struct dwarf_expr_piece));
1488 for (i = 0; i < n_pieces; ++i)
1489 if (c->pieces[i].location == DWARF_VALUE_STACK)
1490 value_incref (c->pieces[i].v.value);
1491
1492 return c;
1493 }
1494
1495 /* Copy NBITS bits from SOURCE to DEST starting at the given bit
1496 offsets. Use the bit order as specified by BITS_BIG_ENDIAN.
1497 Source and destination buffers must not overlap. */
1498
1499 static void
1500 copy_bitwise (gdb_byte *dest, ULONGEST dest_offset,
1501 const gdb_byte *source, ULONGEST source_offset,
1502 ULONGEST nbits, int bits_big_endian)
1503 {
1504 unsigned int buf, avail;
1505
1506 if (nbits == 0)
1507 return;
1508
1509 if (bits_big_endian)
1510 {
1511 /* Start from the end, then work backwards. */
1512 dest_offset += nbits - 1;
1513 dest += dest_offset / 8;
1514 dest_offset = 7 - dest_offset % 8;
1515 source_offset += nbits - 1;
1516 source += source_offset / 8;
1517 source_offset = 7 - source_offset % 8;
1518 }
1519 else
1520 {
1521 dest += dest_offset / 8;
1522 dest_offset %= 8;
1523 source += source_offset / 8;
1524 source_offset %= 8;
1525 }
1526
1527 /* Fill BUF with DEST_OFFSET bits from the destination and 8 -
1528 SOURCE_OFFSET bits from the source. */
1529 buf = *(bits_big_endian ? source-- : source++) >> source_offset;
1530 buf <<= dest_offset;
1531 buf |= *dest & ((1 << dest_offset) - 1);
1532
1533 /* NBITS: bits yet to be written; AVAIL: BUF's fill level. */
1534 nbits += dest_offset;
1535 avail = dest_offset + 8 - source_offset;
1536
1537 /* Flush 8 bits from BUF, if appropriate. */
1538 if (nbits >= 8 && avail >= 8)
1539 {
1540 *(bits_big_endian ? dest-- : dest++) = buf;
1541 buf >>= 8;
1542 avail -= 8;
1543 nbits -= 8;
1544 }
1545
1546 /* Copy the middle part. */
1547 if (nbits >= 8)
1548 {
1549 size_t len = nbits / 8;
1550
1551 while (len--)
1552 {
1553 buf |= *(bits_big_endian ? source-- : source++) << avail;
1554 *(bits_big_endian ? dest-- : dest++) = buf;
1555 buf >>= 8;
1556 }
1557 nbits %= 8;
1558 }
1559
1560 /* Write the last byte. */
1561 if (nbits)
1562 {
1563 if (avail < nbits)
1564 buf |= *source << avail;
1565
1566 buf &= (1 << nbits) - 1;
1567 *dest = (*dest & (~0 << nbits)) | buf;
1568 }
1569 }
1570
1571 #if GDB_SELF_TEST
1572
1573 namespace selftests {
1574
1575 /* Helper function for the unit test of copy_bitwise. Convert NBITS bits
1576 out of BITS, starting at OFFS, to the respective '0'/'1'-string. MSB0
1577 specifies whether to assume big endian bit numbering. Store the
1578 resulting (not null-terminated) string at STR. */
1579
1580 static void
1581 bits_to_str (char *str, const gdb_byte *bits, ULONGEST offs,
1582 ULONGEST nbits, int msb0)
1583 {
1584 unsigned int j;
1585 size_t i;
1586
1587 for (i = offs / 8, j = offs % 8; nbits; i++, j = 0)
1588 {
1589 unsigned int ch = bits[i];
1590 for (; j < 8 && nbits; j++, nbits--)
1591 *str++ = (ch & (msb0 ? (1 << (7 - j)) : (1 << j))) ? '1' : '0';
1592 }
1593 }
1594
1595 /* Check one invocation of copy_bitwise with the given parameters. */
1596
1597 static void
1598 check_copy_bitwise (const gdb_byte *dest, unsigned int dest_offset,
1599 const gdb_byte *source, unsigned int source_offset,
1600 unsigned int nbits, int msb0)
1601 {
1602 size_t len = align_up (dest_offset + nbits, 8);
1603 char *expected = (char *) alloca (len + 1);
1604 char *actual = (char *) alloca (len + 1);
1605 gdb_byte *buf = (gdb_byte *) alloca (len / 8);
1606
1607 /* Compose a '0'/'1'-string that represents the expected result of
1608 copy_bitwise below:
1609 Bits from [0, DEST_OFFSET) are filled from DEST.
1610 Bits from [DEST_OFFSET, DEST_OFFSET + NBITS) are filled from SOURCE.
1611 Bits from [DEST_OFFSET + NBITS, LEN) are filled from DEST.
1612
1613 E.g., with:
1614 dest_offset: 4
1615 nbits: 2
1616 len: 8
1617 dest: 00000000
1618 source: 11111111
1619
1620 We should end up with:
1621 buf: 00001100
1622 DDDDSSDD (D=dest, S=source)
1623 */
1624 bits_to_str (expected, dest, 0, len, msb0);
1625 bits_to_str (expected + dest_offset, source, source_offset, nbits, msb0);
1626
1627 /* Fill BUF with data from DEST, apply copy_bitwise, and convert the
1628 result to a '0'/'1'-string. */
1629 memcpy (buf, dest, len / 8);
1630 copy_bitwise (buf, dest_offset, source, source_offset, nbits, msb0);
1631 bits_to_str (actual, buf, 0, len, msb0);
1632
1633 /* Compare the resulting strings. */
1634 expected[len] = actual[len] = '\0';
1635 if (strcmp (expected, actual) != 0)
1636 error (_("copy_bitwise %s != %s (%u+%u -> %u)"),
1637 expected, actual, source_offset, nbits, dest_offset);
1638 }
1639
1640 /* Unit test for copy_bitwise. */
1641
1642 static void
1643 copy_bitwise_tests (void)
1644 {
1645 /* Data to be used as both source and destination buffers. The two
1646 arrays below represent the lsb0- and msb0- encoded versions of the
1647 following bit string, respectively:
1648 00000000 00011111 11111111 01001000 10100101 11110010
1649 This pattern is chosen such that it contains:
1650 - constant 0- and 1- chunks of more than a full byte;
1651 - 0/1- and 1/0 transitions on all bit positions within a byte;
1652 - several sufficiently asymmetric bytes.
1653 */
1654 static const gdb_byte data_lsb0[] = {
1655 0x00, 0xf8, 0xff, 0x12, 0xa5, 0x4f
1656 };
1657 static const gdb_byte data_msb0[] = {
1658 0x00, 0x1f, 0xff, 0x48, 0xa5, 0xf2
1659 };
1660
1661 constexpr size_t data_nbits = 8 * sizeof (data_lsb0);
1662 constexpr unsigned max_nbits = 24;
1663
1664 /* Try all combinations of:
1665 lsb0/msb0 bit order (using the respective data array)
1666 X [0, MAX_NBITS] copy bit width
1667 X feasible source offsets for the given copy bit width
1668 X feasible destination offsets
1669 */
1670 for (int msb0 = 0; msb0 < 2; msb0++)
1671 {
1672 const gdb_byte *data = msb0 ? data_msb0 : data_lsb0;
1673
1674 for (unsigned int nbits = 1; nbits <= max_nbits; nbits++)
1675 {
1676 const unsigned int max_offset = data_nbits - nbits;
1677
1678 for (unsigned source_offset = 0;
1679 source_offset <= max_offset;
1680 source_offset++)
1681 {
1682 for (unsigned dest_offset = 0;
1683 dest_offset <= max_offset;
1684 dest_offset++)
1685 {
1686 check_copy_bitwise (data + dest_offset / 8,
1687 dest_offset % 8,
1688 data + source_offset / 8,
1689 source_offset % 8,
1690 nbits, msb0);
1691 }
1692 }
1693 }
1694
1695 /* Special cases: copy all, copy nothing. */
1696 check_copy_bitwise (data_lsb0, 0, data_msb0, 0, data_nbits, msb0);
1697 check_copy_bitwise (data_msb0, 0, data_lsb0, 0, data_nbits, msb0);
1698 check_copy_bitwise (data, data_nbits - 7, data, 9, 0, msb0);
1699 }
1700 }
1701
1702 } /* namespace selftests */
1703
1704 #endif /* GDB_SELF_TEST */
1705
1706 static void
1707 read_pieced_value (struct value *v)
1708 {
1709 int i;
1710 long offset = 0;
1711 ULONGEST bits_to_skip;
1712 gdb_byte *contents;
1713 struct piece_closure *c
1714 = (struct piece_closure *) value_computed_closure (v);
1715 struct frame_info *frame;
1716 size_t type_len;
1717 size_t buffer_size = 0;
1718 std::vector<gdb_byte> buffer;
1719 int bits_big_endian
1720 = gdbarch_bits_big_endian (get_type_arch (value_type (v)));
1721
1722 /* VALUE_FRAME_ID is used instead of VALUE_NEXT_FRAME_ID here
1723 because FRAME is passed to get_frame_register_bytes(), which
1724 does its own "->next" operation. */
1725 frame = frame_find_by_id (VALUE_FRAME_ID (v));
1726
1727 if (value_type (v) != value_enclosing_type (v))
1728 internal_error (__FILE__, __LINE__,
1729 _("Should not be able to create a lazy value with "
1730 "an enclosing type"));
1731
1732 contents = value_contents_raw (v);
1733 bits_to_skip = 8 * value_offset (v);
1734 if (value_bitsize (v))
1735 {
1736 bits_to_skip += value_bitpos (v);
1737 type_len = value_bitsize (v);
1738 }
1739 else
1740 type_len = 8 * TYPE_LENGTH (value_type (v));
1741
1742 for (i = 0; i < c->n_pieces && offset < type_len; i++)
1743 {
1744 struct dwarf_expr_piece *p = &c->pieces[i];
1745 size_t this_size, this_size_bits;
1746 long dest_offset_bits, source_offset_bits, source_offset;
1747 const gdb_byte *intermediate_buffer;
1748
1749 /* Compute size, source, and destination offsets for copying, in
1750 bits. */
1751 this_size_bits = p->size;
1752 if (bits_to_skip > 0 && bits_to_skip >= this_size_bits)
1753 {
1754 bits_to_skip -= this_size_bits;
1755 continue;
1756 }
1757 if (bits_to_skip > 0)
1758 {
1759 dest_offset_bits = 0;
1760 source_offset_bits = bits_to_skip;
1761 this_size_bits -= bits_to_skip;
1762 bits_to_skip = 0;
1763 }
1764 else
1765 {
1766 dest_offset_bits = offset;
1767 source_offset_bits = 0;
1768 }
1769 if (this_size_bits > type_len - offset)
1770 this_size_bits = type_len - offset;
1771
1772 this_size = (this_size_bits + source_offset_bits % 8 + 7) / 8;
1773 source_offset = source_offset_bits / 8;
1774 if (buffer_size < this_size)
1775 {
1776 buffer_size = this_size;
1777 buffer.reserve (buffer_size);
1778 }
1779 intermediate_buffer = buffer.data ();
1780
1781 /* Copy from the source to DEST_BUFFER. */
1782 switch (p->location)
1783 {
1784 case DWARF_VALUE_REGISTER:
1785 {
1786 struct gdbarch *arch = get_frame_arch (frame);
1787 int gdb_regnum = dwarf_reg_to_regnum_or_error (arch, p->v.regno);
1788 int optim, unavail;
1789 LONGEST reg_offset = source_offset;
1790
1791 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG
1792 && this_size < register_size (arch, gdb_regnum))
1793 {
1794 /* Big-endian, and we want less than full size. */
1795 reg_offset = register_size (arch, gdb_regnum) - this_size;
1796 /* We want the lower-order THIS_SIZE_BITS of the bytes
1797 we extract from the register. */
1798 source_offset_bits += 8 * this_size - this_size_bits;
1799 }
1800
1801 if (!get_frame_register_bytes (frame, gdb_regnum, reg_offset,
1802 this_size, buffer.data (),
1803 &optim, &unavail))
1804 {
1805 /* Just so garbage doesn't ever shine through. */
1806 memset (buffer.data (), 0, this_size);
1807
1808 if (optim)
1809 mark_value_bits_optimized_out (v, offset, this_size_bits);
1810 if (unavail)
1811 mark_value_bits_unavailable (v, offset, this_size_bits);
1812 }
1813 }
1814 break;
1815
1816 case DWARF_VALUE_MEMORY:
1817 read_value_memory (v, offset,
1818 p->v.mem.in_stack_memory,
1819 p->v.mem.addr + source_offset,
1820 buffer.data (), this_size);
1821 break;
1822
1823 case DWARF_VALUE_STACK:
1824 {
1825 size_t n = this_size;
1826
1827 if (n > c->addr_size - source_offset)
1828 n = (c->addr_size >= source_offset
1829 ? c->addr_size - source_offset
1830 : 0);
1831 if (n == 0)
1832 {
1833 /* Nothing. */
1834 }
1835 else
1836 {
1837 const gdb_byte *val_bytes = value_contents_all (p->v.value);
1838
1839 intermediate_buffer = val_bytes + source_offset;
1840 }
1841 }
1842 break;
1843
1844 case DWARF_VALUE_LITERAL:
1845 {
1846 size_t n = this_size;
1847
1848 if (n > p->v.literal.length - source_offset)
1849 n = (p->v.literal.length >= source_offset
1850 ? p->v.literal.length - source_offset
1851 : 0);
1852 if (n != 0)
1853 intermediate_buffer = p->v.literal.data + source_offset;
1854 }
1855 break;
1856
1857 /* These bits show up as zeros -- but do not cause the value
1858 to be considered optimized-out. */
1859 case DWARF_VALUE_IMPLICIT_POINTER:
1860 break;
1861
1862 case DWARF_VALUE_OPTIMIZED_OUT:
1863 mark_value_bits_optimized_out (v, offset, this_size_bits);
1864 break;
1865
1866 default:
1867 internal_error (__FILE__, __LINE__, _("invalid location type"));
1868 }
1869
1870 if (p->location != DWARF_VALUE_OPTIMIZED_OUT
1871 && p->location != DWARF_VALUE_IMPLICIT_POINTER)
1872 copy_bitwise (contents, dest_offset_bits,
1873 intermediate_buffer, source_offset_bits % 8,
1874 this_size_bits, bits_big_endian);
1875
1876 offset += this_size_bits;
1877 }
1878 }
1879
1880 static void
1881 write_pieced_value (struct value *to, struct value *from)
1882 {
1883 int i;
1884 long offset = 0;
1885 ULONGEST bits_to_skip;
1886 const gdb_byte *contents;
1887 struct piece_closure *c
1888 = (struct piece_closure *) value_computed_closure (to);
1889 struct frame_info *frame;
1890 size_t type_len;
1891 size_t buffer_size = 0;
1892 std::vector<gdb_byte> buffer;
1893 int bits_big_endian
1894 = gdbarch_bits_big_endian (get_type_arch (value_type (to)));
1895
1896 /* VALUE_FRAME_ID is used instead of VALUE_NEXT_FRAME_ID here
1897 because FRAME is passed to get_frame_register_bytes() and
1898 put_frame_register_bytes(), both of which do their own "->next"
1899 operations. */
1900 frame = frame_find_by_id (VALUE_FRAME_ID (to));
1901 if (frame == NULL)
1902 {
1903 mark_value_bytes_optimized_out (to, 0, TYPE_LENGTH (value_type (to)));
1904 return;
1905 }
1906
1907 contents = value_contents (from);
1908 bits_to_skip = 8 * value_offset (to);
1909 if (value_bitsize (to))
1910 {
1911 bits_to_skip += value_bitpos (to);
1912 type_len = value_bitsize (to);
1913 }
1914 else
1915 type_len = 8 * TYPE_LENGTH (value_type (to));
1916
1917 for (i = 0; i < c->n_pieces && offset < type_len; i++)
1918 {
1919 struct dwarf_expr_piece *p = &c->pieces[i];
1920 size_t this_size_bits, this_size;
1921 long dest_offset_bits, source_offset_bits, dest_offset, source_offset;
1922 int need_bitwise;
1923 const gdb_byte *source_buffer;
1924
1925 this_size_bits = p->size;
1926 if (bits_to_skip > 0 && bits_to_skip >= this_size_bits)
1927 {
1928 bits_to_skip -= this_size_bits;
1929 continue;
1930 }
1931 if (this_size_bits > type_len - offset)
1932 this_size_bits = type_len - offset;
1933 if (bits_to_skip > 0)
1934 {
1935 dest_offset_bits = bits_to_skip;
1936 source_offset_bits = 0;
1937 this_size_bits -= bits_to_skip;
1938 bits_to_skip = 0;
1939 }
1940 else
1941 {
1942 dest_offset_bits = 0;
1943 source_offset_bits = offset;
1944 }
1945
1946 this_size = (this_size_bits + source_offset_bits % 8 + 7) / 8;
1947 source_offset = source_offset_bits / 8;
1948 dest_offset = dest_offset_bits / 8;
1949 if (dest_offset_bits % 8 == 0 && source_offset_bits % 8 == 0)
1950 {
1951 source_buffer = contents + source_offset;
1952 need_bitwise = 0;
1953 }
1954 else
1955 {
1956 if (buffer_size < this_size)
1957 {
1958 buffer_size = this_size;
1959 buffer.reserve (buffer_size);
1960 }
1961 source_buffer = buffer.data ();
1962 need_bitwise = 1;
1963 }
1964
1965 switch (p->location)
1966 {
1967 case DWARF_VALUE_REGISTER:
1968 {
1969 struct gdbarch *arch = get_frame_arch (frame);
1970 int gdb_regnum = dwarf_reg_to_regnum_or_error (arch, p->v.regno);
1971 int reg_offset = dest_offset;
1972
1973 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG
1974 && this_size <= register_size (arch, gdb_regnum))
1975 {
1976 /* Big-endian, and we want less than full size. */
1977 reg_offset = register_size (arch, gdb_regnum) - this_size;
1978 }
1979
1980 if (need_bitwise)
1981 {
1982 int optim, unavail;
1983
1984 if (!get_frame_register_bytes (frame, gdb_regnum, reg_offset,
1985 this_size, buffer.data (),
1986 &optim, &unavail))
1987 {
1988 if (optim)
1989 throw_error (OPTIMIZED_OUT_ERROR,
1990 _("Can't do read-modify-write to "
1991 "update bitfield; containing word "
1992 "has been optimized out"));
1993 if (unavail)
1994 throw_error (NOT_AVAILABLE_ERROR,
1995 _("Can't do read-modify-write to update "
1996 "bitfield; containing word "
1997 "is unavailable"));
1998 }
1999 copy_bitwise (buffer.data (), dest_offset_bits,
2000 contents, source_offset_bits,
2001 this_size_bits,
2002 bits_big_endian);
2003 }
2004
2005 put_frame_register_bytes (frame, gdb_regnum, reg_offset,
2006 this_size, source_buffer);
2007 }
2008 break;
2009 case DWARF_VALUE_MEMORY:
2010 if (need_bitwise)
2011 {
2012 /* Only the first and last bytes can possibly have any
2013 bits reused. */
2014 read_memory (p->v.mem.addr + dest_offset, buffer.data (), 1);
2015 read_memory (p->v.mem.addr + dest_offset + this_size - 1,
2016 &buffer[this_size - 1], 1);
2017 copy_bitwise (buffer.data (), dest_offset_bits,
2018 contents, source_offset_bits,
2019 this_size_bits,
2020 bits_big_endian);
2021 }
2022
2023 write_memory (p->v.mem.addr + dest_offset,
2024 source_buffer, this_size);
2025 break;
2026 default:
2027 mark_value_bytes_optimized_out (to, 0, TYPE_LENGTH (value_type (to)));
2028 break;
2029 }
2030 offset += this_size_bits;
2031 }
2032 }
2033
2034 /* An implementation of an lval_funcs method to see whether a value is
2035 a synthetic pointer. */
2036
2037 static int
2038 check_pieced_synthetic_pointer (const struct value *value, LONGEST bit_offset,
2039 int bit_length)
2040 {
2041 struct piece_closure *c
2042 = (struct piece_closure *) value_computed_closure (value);
2043 int i;
2044
2045 bit_offset += 8 * value_offset (value);
2046 if (value_bitsize (value))
2047 bit_offset += value_bitpos (value);
2048
2049 for (i = 0; i < c->n_pieces && bit_length > 0; i++)
2050 {
2051 struct dwarf_expr_piece *p = &c->pieces[i];
2052 size_t this_size_bits = p->size;
2053
2054 if (bit_offset > 0)
2055 {
2056 if (bit_offset >= this_size_bits)
2057 {
2058 bit_offset -= this_size_bits;
2059 continue;
2060 }
2061
2062 bit_length -= this_size_bits - bit_offset;
2063 bit_offset = 0;
2064 }
2065 else
2066 bit_length -= this_size_bits;
2067
2068 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
2069 return 0;
2070 }
2071
2072 return 1;
2073 }
2074
2075 /* A wrapper function for get_frame_address_in_block. */
2076
2077 static CORE_ADDR
2078 get_frame_address_in_block_wrapper (void *baton)
2079 {
2080 return get_frame_address_in_block ((struct frame_info *) baton);
2081 }
2082
2083 /* Fetch a DW_AT_const_value through a synthetic pointer. */
2084
2085 static struct value *
2086 fetch_const_value_from_synthetic_pointer (sect_offset die, LONGEST byte_offset,
2087 struct dwarf2_per_cu_data *per_cu,
2088 struct type *type)
2089 {
2090 struct value *result = NULL;
2091 struct obstack temp_obstack;
2092 struct cleanup *cleanup;
2093 const gdb_byte *bytes;
2094 LONGEST len;
2095
2096 obstack_init (&temp_obstack);
2097 cleanup = make_cleanup_obstack_free (&temp_obstack);
2098 bytes = dwarf2_fetch_constant_bytes (die, per_cu, &temp_obstack, &len);
2099
2100 if (bytes != NULL)
2101 {
2102 if (byte_offset >= 0
2103 && byte_offset + TYPE_LENGTH (TYPE_TARGET_TYPE (type)) <= len)
2104 {
2105 bytes += byte_offset;
2106 result = value_from_contents (TYPE_TARGET_TYPE (type), bytes);
2107 }
2108 else
2109 invalid_synthetic_pointer ();
2110 }
2111 else
2112 result = allocate_optimized_out_value (TYPE_TARGET_TYPE (type));
2113
2114 do_cleanups (cleanup);
2115
2116 return result;
2117 }
2118
2119 /* Fetch the value pointed to by a synthetic pointer. */
2120
2121 static struct value *
2122 indirect_synthetic_pointer (sect_offset die, LONGEST byte_offset,
2123 struct dwarf2_per_cu_data *per_cu,
2124 struct frame_info *frame, struct type *type)
2125 {
2126 /* Fetch the location expression of the DIE we're pointing to. */
2127 struct dwarf2_locexpr_baton baton
2128 = dwarf2_fetch_die_loc_sect_off (die, per_cu,
2129 get_frame_address_in_block_wrapper, frame);
2130
2131 /* If pointed-to DIE has a DW_AT_location, evaluate it and return the
2132 resulting value. Otherwise, it may have a DW_AT_const_value instead,
2133 or it may've been optimized out. */
2134 if (baton.data != NULL)
2135 return dwarf2_evaluate_loc_desc_full (TYPE_TARGET_TYPE (type), frame,
2136 baton.data, baton.size, baton.per_cu,
2137 byte_offset);
2138 else
2139 return fetch_const_value_from_synthetic_pointer (die, byte_offset, per_cu,
2140 type);
2141 }
2142
2143 /* An implementation of an lval_funcs method to indirect through a
2144 pointer. This handles the synthetic pointer case when needed. */
2145
2146 static struct value *
2147 indirect_pieced_value (struct value *value)
2148 {
2149 struct piece_closure *c
2150 = (struct piece_closure *) value_computed_closure (value);
2151 struct type *type;
2152 struct frame_info *frame;
2153 struct dwarf2_locexpr_baton baton;
2154 int i, bit_length;
2155 LONGEST bit_offset;
2156 struct dwarf_expr_piece *piece = NULL;
2157 LONGEST byte_offset;
2158 enum bfd_endian byte_order;
2159
2160 type = check_typedef (value_type (value));
2161 if (TYPE_CODE (type) != TYPE_CODE_PTR)
2162 return NULL;
2163
2164 bit_length = 8 * TYPE_LENGTH (type);
2165 bit_offset = 8 * value_offset (value);
2166 if (value_bitsize (value))
2167 bit_offset += value_bitpos (value);
2168
2169 for (i = 0; i < c->n_pieces && bit_length > 0; i++)
2170 {
2171 struct dwarf_expr_piece *p = &c->pieces[i];
2172 size_t this_size_bits = p->size;
2173
2174 if (bit_offset > 0)
2175 {
2176 if (bit_offset >= this_size_bits)
2177 {
2178 bit_offset -= this_size_bits;
2179 continue;
2180 }
2181
2182 bit_length -= this_size_bits - bit_offset;
2183 bit_offset = 0;
2184 }
2185 else
2186 bit_length -= this_size_bits;
2187
2188 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
2189 return NULL;
2190
2191 if (bit_length != 0)
2192 error (_("Invalid use of DW_OP_GNU_implicit_pointer"));
2193
2194 piece = p;
2195 break;
2196 }
2197
2198 gdb_assert (piece != NULL);
2199 frame = get_selected_frame (_("No frame selected."));
2200
2201 /* This is an offset requested by GDB, such as value subscripts.
2202 However, due to how synthetic pointers are implemented, this is
2203 always presented to us as a pointer type. This means we have to
2204 sign-extend it manually as appropriate. Use raw
2205 extract_signed_integer directly rather than value_as_address and
2206 sign extend afterwards on architectures that would need it
2207 (mostly everywhere except MIPS, which has signed addresses) as
2208 the later would go through gdbarch_pointer_to_address and thus
2209 return a CORE_ADDR with high bits set on architectures that
2210 encode address spaces and other things in CORE_ADDR. */
2211 byte_order = gdbarch_byte_order (get_frame_arch (frame));
2212 byte_offset = extract_signed_integer (value_contents (value),
2213 TYPE_LENGTH (type), byte_order);
2214 byte_offset += piece->v.ptr.offset;
2215
2216 return indirect_synthetic_pointer (piece->v.ptr.die, byte_offset, c->per_cu,
2217 frame, type);
2218 }
2219
2220 /* Implementation of the coerce_ref method of lval_funcs for synthetic C++
2221 references. */
2222
2223 static struct value *
2224 coerce_pieced_ref (const struct value *value)
2225 {
2226 struct type *type = check_typedef (value_type (value));
2227
2228 if (value_bits_synthetic_pointer (value, value_embedded_offset (value),
2229 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
2230 {
2231 const struct piece_closure *closure
2232 = (struct piece_closure *) value_computed_closure (value);
2233 struct frame_info *frame
2234 = get_selected_frame (_("No frame selected."));
2235
2236 /* gdb represents synthetic pointers as pieced values with a single
2237 piece. */
2238 gdb_assert (closure != NULL);
2239 gdb_assert (closure->n_pieces == 1);
2240
2241 return indirect_synthetic_pointer (closure->pieces->v.ptr.die,
2242 closure->pieces->v.ptr.offset,
2243 closure->per_cu, frame, type);
2244 }
2245 else
2246 {
2247 /* Else: not a synthetic reference; do nothing. */
2248 return NULL;
2249 }
2250 }
2251
2252 static void *
2253 copy_pieced_value_closure (const struct value *v)
2254 {
2255 struct piece_closure *c
2256 = (struct piece_closure *) value_computed_closure (v);
2257
2258 ++c->refc;
2259 return c;
2260 }
2261
2262 static void
2263 free_pieced_value_closure (struct value *v)
2264 {
2265 struct piece_closure *c
2266 = (struct piece_closure *) value_computed_closure (v);
2267
2268 --c->refc;
2269 if (c->refc == 0)
2270 {
2271 int i;
2272
2273 for (i = 0; i < c->n_pieces; ++i)
2274 if (c->pieces[i].location == DWARF_VALUE_STACK)
2275 value_free (c->pieces[i].v.value);
2276
2277 xfree (c->pieces);
2278 xfree (c);
2279 }
2280 }
2281
2282 /* Functions for accessing a variable described by DW_OP_piece. */
2283 static const struct lval_funcs pieced_value_funcs = {
2284 read_pieced_value,
2285 write_pieced_value,
2286 indirect_pieced_value,
2287 coerce_pieced_ref,
2288 check_pieced_synthetic_pointer,
2289 copy_pieced_value_closure,
2290 free_pieced_value_closure
2291 };
2292
2293 /* Evaluate a location description, starting at DATA and with length
2294 SIZE, to find the current location of variable of TYPE in the
2295 context of FRAME. BYTE_OFFSET is applied after the contents are
2296 computed. */
2297
2298 static struct value *
2299 dwarf2_evaluate_loc_desc_full (struct type *type, struct frame_info *frame,
2300 const gdb_byte *data, size_t size,
2301 struct dwarf2_per_cu_data *per_cu,
2302 LONGEST byte_offset)
2303 {
2304 struct value *retval;
2305 struct cleanup *value_chain;
2306 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
2307
2308 if (byte_offset < 0)
2309 invalid_synthetic_pointer ();
2310
2311 if (size == 0)
2312 return allocate_optimized_out_value (type);
2313
2314 dwarf_evaluate_loc_desc ctx;
2315 ctx.frame = frame;
2316 ctx.per_cu = per_cu;
2317 ctx.obj_address = 0;
2318
2319 value_chain = make_cleanup_value_free_to_mark (value_mark ());
2320
2321 ctx.gdbarch = get_objfile_arch (objfile);
2322 ctx.addr_size = dwarf2_per_cu_addr_size (per_cu);
2323 ctx.ref_addr_size = dwarf2_per_cu_ref_addr_size (per_cu);
2324 ctx.offset = dwarf2_per_cu_text_offset (per_cu);
2325
2326 TRY
2327 {
2328 ctx.eval (data, size);
2329 }
2330 CATCH (ex, RETURN_MASK_ERROR)
2331 {
2332 if (ex.error == NOT_AVAILABLE_ERROR)
2333 {
2334 do_cleanups (value_chain);
2335 retval = allocate_value (type);
2336 mark_value_bytes_unavailable (retval, 0, TYPE_LENGTH (type));
2337 return retval;
2338 }
2339 else if (ex.error == NO_ENTRY_VALUE_ERROR)
2340 {
2341 if (entry_values_debug)
2342 exception_print (gdb_stdout, ex);
2343 do_cleanups (value_chain);
2344 return allocate_optimized_out_value (type);
2345 }
2346 else
2347 throw_exception (ex);
2348 }
2349 END_CATCH
2350
2351 if (ctx.num_pieces > 0)
2352 {
2353 struct piece_closure *c;
2354 struct frame_id frame_id
2355 = frame == NULL
2356 ? null_frame_id
2357 : get_frame_id (get_next_frame_sentinel_okay (frame));
2358 ULONGEST bit_size = 0;
2359 int i;
2360
2361 for (i = 0; i < ctx.num_pieces; ++i)
2362 bit_size += ctx.pieces[i].size;
2363 if (8 * (byte_offset + TYPE_LENGTH (type)) > bit_size)
2364 invalid_synthetic_pointer ();
2365
2366 c = allocate_piece_closure (per_cu, ctx.num_pieces, ctx.pieces,
2367 ctx.addr_size);
2368 /* We must clean up the value chain after creating the piece
2369 closure but before allocating the result. */
2370 do_cleanups (value_chain);
2371 retval = allocate_computed_value (type, &pieced_value_funcs, c);
2372 VALUE_NEXT_FRAME_ID (retval) = frame_id;
2373 set_value_offset (retval, byte_offset);
2374 }
2375 else
2376 {
2377 switch (ctx.location)
2378 {
2379 case DWARF_VALUE_REGISTER:
2380 {
2381 struct gdbarch *arch = get_frame_arch (frame);
2382 int dwarf_regnum
2383 = longest_to_int (value_as_long (ctx.fetch (0)));
2384 int gdb_regnum = dwarf_reg_to_regnum_or_error (arch, dwarf_regnum);
2385
2386 if (byte_offset != 0)
2387 error (_("cannot use offset on synthetic pointer to register"));
2388 do_cleanups (value_chain);
2389 retval = value_from_register (type, gdb_regnum, frame);
2390 if (value_optimized_out (retval))
2391 {
2392 struct value *tmp;
2393
2394 /* This means the register has undefined value / was
2395 not saved. As we're computing the location of some
2396 variable etc. in the program, not a value for
2397 inspecting a register ($pc, $sp, etc.), return a
2398 generic optimized out value instead, so that we show
2399 <optimized out> instead of <not saved>. */
2400 do_cleanups (value_chain);
2401 tmp = allocate_value (type);
2402 value_contents_copy (tmp, 0, retval, 0, TYPE_LENGTH (type));
2403 retval = tmp;
2404 }
2405 }
2406 break;
2407
2408 case DWARF_VALUE_MEMORY:
2409 {
2410 struct type *ptr_type;
2411 CORE_ADDR address = ctx.fetch_address (0);
2412 int in_stack_memory = ctx.fetch_in_stack_memory (0);
2413
2414 /* DW_OP_deref_size (and possibly other operations too) may
2415 create a pointer instead of an address. Ideally, the
2416 pointer to address conversion would be performed as part
2417 of those operations, but the type of the object to
2418 which the address refers is not known at the time of
2419 the operation. Therefore, we do the conversion here
2420 since the type is readily available. */
2421
2422 switch (TYPE_CODE (type))
2423 {
2424 case TYPE_CODE_FUNC:
2425 case TYPE_CODE_METHOD:
2426 ptr_type = builtin_type (ctx.gdbarch)->builtin_func_ptr;
2427 break;
2428 default:
2429 ptr_type = builtin_type (ctx.gdbarch)->builtin_data_ptr;
2430 break;
2431 }
2432 address = value_as_address (value_from_pointer (ptr_type, address));
2433
2434 do_cleanups (value_chain);
2435 retval = value_at_lazy (type, address + byte_offset);
2436 if (in_stack_memory)
2437 set_value_stack (retval, 1);
2438 }
2439 break;
2440
2441 case DWARF_VALUE_STACK:
2442 {
2443 struct value *value = ctx.fetch (0);
2444 gdb_byte *contents;
2445 const gdb_byte *val_bytes;
2446 size_t n = TYPE_LENGTH (value_type (value));
2447
2448 if (byte_offset + TYPE_LENGTH (type) > n)
2449 invalid_synthetic_pointer ();
2450
2451 val_bytes = value_contents_all (value);
2452 val_bytes += byte_offset;
2453 n -= byte_offset;
2454
2455 /* Preserve VALUE because we are going to free values back
2456 to the mark, but we still need the value contents
2457 below. */
2458 value_incref (value);
2459 do_cleanups (value_chain);
2460 make_cleanup_value_free (value);
2461
2462 retval = allocate_value (type);
2463 contents = value_contents_raw (retval);
2464 if (n > TYPE_LENGTH (type))
2465 {
2466 struct gdbarch *objfile_gdbarch = get_objfile_arch (objfile);
2467
2468 if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
2469 val_bytes += n - TYPE_LENGTH (type);
2470 n = TYPE_LENGTH (type);
2471 }
2472 memcpy (contents, val_bytes, n);
2473 }
2474 break;
2475
2476 case DWARF_VALUE_LITERAL:
2477 {
2478 bfd_byte *contents;
2479 const bfd_byte *ldata;
2480 size_t n = ctx.len;
2481
2482 if (byte_offset + TYPE_LENGTH (type) > n)
2483 invalid_synthetic_pointer ();
2484
2485 do_cleanups (value_chain);
2486 retval = allocate_value (type);
2487 contents = value_contents_raw (retval);
2488
2489 ldata = ctx.data + byte_offset;
2490 n -= byte_offset;
2491
2492 if (n > TYPE_LENGTH (type))
2493 {
2494 struct gdbarch *objfile_gdbarch = get_objfile_arch (objfile);
2495
2496 if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
2497 ldata += n - TYPE_LENGTH (type);
2498 n = TYPE_LENGTH (type);
2499 }
2500 memcpy (contents, ldata, n);
2501 }
2502 break;
2503
2504 case DWARF_VALUE_OPTIMIZED_OUT:
2505 do_cleanups (value_chain);
2506 retval = allocate_optimized_out_value (type);
2507 break;
2508
2509 /* DWARF_VALUE_IMPLICIT_POINTER was converted to a pieced
2510 operation by execute_stack_op. */
2511 case DWARF_VALUE_IMPLICIT_POINTER:
2512 /* DWARF_VALUE_OPTIMIZED_OUT can't occur in this context --
2513 it can only be encountered when making a piece. */
2514 default:
2515 internal_error (__FILE__, __LINE__, _("invalid location type"));
2516 }
2517 }
2518
2519 set_value_initialized (retval, ctx.initialized);
2520
2521 do_cleanups (value_chain);
2522
2523 return retval;
2524 }
2525
2526 /* The exported interface to dwarf2_evaluate_loc_desc_full; it always
2527 passes 0 as the byte_offset. */
2528
2529 struct value *
2530 dwarf2_evaluate_loc_desc (struct type *type, struct frame_info *frame,
2531 const gdb_byte *data, size_t size,
2532 struct dwarf2_per_cu_data *per_cu)
2533 {
2534 return dwarf2_evaluate_loc_desc_full (type, frame, data, size, per_cu, 0);
2535 }
2536
2537 /* Evaluates a dwarf expression and stores the result in VAL, expecting
2538 that the dwarf expression only produces a single CORE_ADDR. FRAME is the
2539 frame in which the expression is evaluated. ADDR is a context (location of
2540 a variable) and might be needed to evaluate the location expression.
2541 Returns 1 on success, 0 otherwise. */
2542
2543 static int
2544 dwarf2_locexpr_baton_eval (const struct dwarf2_locexpr_baton *dlbaton,
2545 struct frame_info *frame,
2546 CORE_ADDR addr,
2547 CORE_ADDR *valp)
2548 {
2549 struct objfile *objfile;
2550 struct cleanup *cleanup;
2551
2552 if (dlbaton == NULL || dlbaton->size == 0)
2553 return 0;
2554
2555 dwarf_evaluate_loc_desc ctx;
2556
2557 ctx.frame = frame;
2558 ctx.per_cu = dlbaton->per_cu;
2559 ctx.obj_address = addr;
2560
2561 objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
2562
2563 ctx.gdbarch = get_objfile_arch (objfile);
2564 ctx.addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
2565 ctx.ref_addr_size = dwarf2_per_cu_ref_addr_size (dlbaton->per_cu);
2566 ctx.offset = dwarf2_per_cu_text_offset (dlbaton->per_cu);
2567
2568 ctx.eval (dlbaton->data, dlbaton->size);
2569
2570 switch (ctx.location)
2571 {
2572 case DWARF_VALUE_REGISTER:
2573 case DWARF_VALUE_MEMORY:
2574 case DWARF_VALUE_STACK:
2575 *valp = ctx.fetch_address (0);
2576 if (ctx.location == DWARF_VALUE_REGISTER)
2577 *valp = ctx.read_addr_from_reg (*valp);
2578 return 1;
2579 case DWARF_VALUE_LITERAL:
2580 *valp = extract_signed_integer (ctx.data, ctx.len,
2581 gdbarch_byte_order (ctx.gdbarch));
2582 return 1;
2583 /* Unsupported dwarf values. */
2584 case DWARF_VALUE_OPTIMIZED_OUT:
2585 case DWARF_VALUE_IMPLICIT_POINTER:
2586 break;
2587 }
2588
2589 return 0;
2590 }
2591
2592 /* See dwarf2loc.h. */
2593
2594 int
2595 dwarf2_evaluate_property (const struct dynamic_prop *prop,
2596 struct frame_info *frame,
2597 struct property_addr_info *addr_stack,
2598 CORE_ADDR *value)
2599 {
2600 if (prop == NULL)
2601 return 0;
2602
2603 if (frame == NULL && has_stack_frames ())
2604 frame = get_selected_frame (NULL);
2605
2606 switch (prop->kind)
2607 {
2608 case PROP_LOCEXPR:
2609 {
2610 const struct dwarf2_property_baton *baton
2611 = (const struct dwarf2_property_baton *) prop->data.baton;
2612
2613 if (dwarf2_locexpr_baton_eval (&baton->locexpr, frame,
2614 addr_stack ? addr_stack->addr : 0,
2615 value))
2616 {
2617 if (baton->referenced_type)
2618 {
2619 struct value *val = value_at (baton->referenced_type, *value);
2620
2621 *value = value_as_address (val);
2622 }
2623 return 1;
2624 }
2625 }
2626 break;
2627
2628 case PROP_LOCLIST:
2629 {
2630 struct dwarf2_property_baton *baton
2631 = (struct dwarf2_property_baton *) prop->data.baton;
2632 CORE_ADDR pc = get_frame_address_in_block (frame);
2633 const gdb_byte *data;
2634 struct value *val;
2635 size_t size;
2636
2637 data = dwarf2_find_location_expression (&baton->loclist, &size, pc);
2638 if (data != NULL)
2639 {
2640 val = dwarf2_evaluate_loc_desc (baton->referenced_type, frame, data,
2641 size, baton->loclist.per_cu);
2642 if (!value_optimized_out (val))
2643 {
2644 *value = value_as_address (val);
2645 return 1;
2646 }
2647 }
2648 }
2649 break;
2650
2651 case PROP_CONST:
2652 *value = prop->data.const_val;
2653 return 1;
2654
2655 case PROP_ADDR_OFFSET:
2656 {
2657 struct dwarf2_property_baton *baton
2658 = (struct dwarf2_property_baton *) prop->data.baton;
2659 struct property_addr_info *pinfo;
2660 struct value *val;
2661
2662 for (pinfo = addr_stack; pinfo != NULL; pinfo = pinfo->next)
2663 if (pinfo->type == baton->referenced_type)
2664 break;
2665 if (pinfo == NULL)
2666 error (_("cannot find reference address for offset property"));
2667 if (pinfo->valaddr != NULL)
2668 val = value_from_contents
2669 (baton->offset_info.type,
2670 pinfo->valaddr + baton->offset_info.offset);
2671 else
2672 val = value_at (baton->offset_info.type,
2673 pinfo->addr + baton->offset_info.offset);
2674 *value = value_as_address (val);
2675 return 1;
2676 }
2677 }
2678
2679 return 0;
2680 }
2681
2682 /* See dwarf2loc.h. */
2683
2684 void
2685 dwarf2_compile_property_to_c (struct ui_file *stream,
2686 const char *result_name,
2687 struct gdbarch *gdbarch,
2688 unsigned char *registers_used,
2689 const struct dynamic_prop *prop,
2690 CORE_ADDR pc,
2691 struct symbol *sym)
2692 {
2693 struct dwarf2_property_baton *baton
2694 = (struct dwarf2_property_baton *) prop->data.baton;
2695 const gdb_byte *data;
2696 size_t size;
2697 struct dwarf2_per_cu_data *per_cu;
2698
2699 if (prop->kind == PROP_LOCEXPR)
2700 {
2701 data = baton->locexpr.data;
2702 size = baton->locexpr.size;
2703 per_cu = baton->locexpr.per_cu;
2704 }
2705 else
2706 {
2707 gdb_assert (prop->kind == PROP_LOCLIST);
2708
2709 data = dwarf2_find_location_expression (&baton->loclist, &size, pc);
2710 per_cu = baton->loclist.per_cu;
2711 }
2712
2713 compile_dwarf_bounds_to_c (stream, result_name, prop, sym, pc,
2714 gdbarch, registers_used,
2715 dwarf2_per_cu_addr_size (per_cu),
2716 data, data + size, per_cu);
2717 }
2718
2719 \f
2720 /* Helper functions and baton for dwarf2_loc_desc_get_symbol_read_needs. */
2721
2722 class symbol_needs_eval_context : public dwarf_expr_context
2723 {
2724 public:
2725
2726 enum symbol_needs_kind needs;
2727 struct dwarf2_per_cu_data *per_cu;
2728
2729 /* Reads from registers do require a frame. */
2730 CORE_ADDR read_addr_from_reg (int regnum) OVERRIDE
2731 {
2732 needs = SYMBOL_NEEDS_FRAME;
2733 return 1;
2734 }
2735
2736 /* "get_reg_value" callback: Reads from registers do require a
2737 frame. */
2738
2739 struct value *get_reg_value (struct type *type, int regnum) OVERRIDE
2740 {
2741 needs = SYMBOL_NEEDS_FRAME;
2742 return value_zero (type, not_lval);
2743 }
2744
2745 /* Reads from memory do not require a frame. */
2746 void read_mem (gdb_byte *buf, CORE_ADDR addr, size_t len) OVERRIDE
2747 {
2748 memset (buf, 0, len);
2749 }
2750
2751 /* Frame-relative accesses do require a frame. */
2752 void get_frame_base (const gdb_byte **start, size_t *length) OVERRIDE
2753 {
2754 static gdb_byte lit0 = DW_OP_lit0;
2755
2756 *start = &lit0;
2757 *length = 1;
2758
2759 needs = SYMBOL_NEEDS_FRAME;
2760 }
2761
2762 /* CFA accesses require a frame. */
2763 CORE_ADDR get_frame_cfa () OVERRIDE
2764 {
2765 needs = SYMBOL_NEEDS_FRAME;
2766 return 1;
2767 }
2768
2769 CORE_ADDR get_frame_pc () OVERRIDE
2770 {
2771 needs = SYMBOL_NEEDS_FRAME;
2772 return 1;
2773 }
2774
2775 /* Thread-local accesses require registers, but not a frame. */
2776 CORE_ADDR get_tls_address (CORE_ADDR offset) OVERRIDE
2777 {
2778 if (needs <= SYMBOL_NEEDS_REGISTERS)
2779 needs = SYMBOL_NEEDS_REGISTERS;
2780 return 1;
2781 }
2782
2783 /* Helper interface of per_cu_dwarf_call for
2784 dwarf2_loc_desc_get_symbol_read_needs. */
2785
2786 void dwarf_call (cu_offset die_offset) OVERRIDE
2787 {
2788 per_cu_dwarf_call (this, die_offset, per_cu);
2789 }
2790
2791 /* DW_OP_GNU_entry_value accesses require a caller, therefore a
2792 frame. */
2793
2794 void push_dwarf_reg_entry_value (enum call_site_parameter_kind kind,
2795 union call_site_parameter_u kind_u,
2796 int deref_size) OVERRIDE
2797 {
2798 needs = SYMBOL_NEEDS_FRAME;
2799
2800 /* The expression may require some stub values on DWARF stack. */
2801 push_address (0, 0);
2802 }
2803
2804 /* DW_OP_GNU_addr_index doesn't require a frame. */
2805
2806 CORE_ADDR get_addr_index (unsigned int index) OVERRIDE
2807 {
2808 /* Nothing to do. */
2809 return 1;
2810 }
2811
2812 /* DW_OP_push_object_address has a frame already passed through. */
2813
2814 CORE_ADDR get_object_address () OVERRIDE
2815 {
2816 /* Nothing to do. */
2817 return 1;
2818 }
2819 };
2820
2821 /* Compute the correct symbol_needs_kind value for the location
2822 expression at DATA (length SIZE). */
2823
2824 static enum symbol_needs_kind
2825 dwarf2_loc_desc_get_symbol_read_needs (const gdb_byte *data, size_t size,
2826 struct dwarf2_per_cu_data *per_cu)
2827 {
2828 int in_reg;
2829 struct cleanup *old_chain;
2830 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
2831
2832 symbol_needs_eval_context ctx;
2833
2834 ctx.needs = SYMBOL_NEEDS_NONE;
2835 ctx.per_cu = per_cu;
2836
2837 old_chain = make_cleanup_value_free_to_mark (value_mark ());
2838
2839 ctx.gdbarch = get_objfile_arch (objfile);
2840 ctx.addr_size = dwarf2_per_cu_addr_size (per_cu);
2841 ctx.ref_addr_size = dwarf2_per_cu_ref_addr_size (per_cu);
2842 ctx.offset = dwarf2_per_cu_text_offset (per_cu);
2843
2844 ctx.eval (data, size);
2845
2846 in_reg = ctx.location == DWARF_VALUE_REGISTER;
2847
2848 if (ctx.num_pieces > 0)
2849 {
2850 int i;
2851
2852 /* If the location has several pieces, and any of them are in
2853 registers, then we will need a frame to fetch them from. */
2854 for (i = 0; i < ctx.num_pieces; i++)
2855 if (ctx.pieces[i].location == DWARF_VALUE_REGISTER)
2856 in_reg = 1;
2857 }
2858
2859 do_cleanups (old_chain);
2860
2861 if (in_reg)
2862 ctx.needs = SYMBOL_NEEDS_FRAME;
2863 return ctx.needs;
2864 }
2865
2866 /* A helper function that throws an unimplemented error mentioning a
2867 given DWARF operator. */
2868
2869 static void
2870 unimplemented (unsigned int op)
2871 {
2872 const char *name = get_DW_OP_name (op);
2873
2874 if (name)
2875 error (_("DWARF operator %s cannot be translated to an agent expression"),
2876 name);
2877 else
2878 error (_("Unknown DWARF operator 0x%02x cannot be translated "
2879 "to an agent expression"),
2880 op);
2881 }
2882
2883 /* See dwarf2loc.h.
2884
2885 This is basically a wrapper on gdbarch_dwarf2_reg_to_regnum so that we
2886 can issue a complaint, which is better than having every target's
2887 implementation of dwarf2_reg_to_regnum do it. */
2888
2889 int
2890 dwarf_reg_to_regnum (struct gdbarch *arch, int dwarf_reg)
2891 {
2892 int reg = gdbarch_dwarf2_reg_to_regnum (arch, dwarf_reg);
2893
2894 if (reg == -1)
2895 {
2896 complaint (&symfile_complaints,
2897 _("bad DWARF register number %d"), dwarf_reg);
2898 }
2899 return reg;
2900 }
2901
2902 /* Subroutine of dwarf_reg_to_regnum_or_error to simplify it.
2903 Throw an error because DWARF_REG is bad. */
2904
2905 static void
2906 throw_bad_regnum_error (ULONGEST dwarf_reg)
2907 {
2908 /* Still want to print -1 as "-1".
2909 We *could* have int and ULONGEST versions of dwarf2_reg_to_regnum_or_error
2910 but that's overkill for now. */
2911 if ((int) dwarf_reg == dwarf_reg)
2912 error (_("Unable to access DWARF register number %d"), (int) dwarf_reg);
2913 error (_("Unable to access DWARF register number %s"),
2914 pulongest (dwarf_reg));
2915 }
2916
2917 /* See dwarf2loc.h. */
2918
2919 int
2920 dwarf_reg_to_regnum_or_error (struct gdbarch *arch, ULONGEST dwarf_reg)
2921 {
2922 int reg;
2923
2924 if (dwarf_reg > INT_MAX)
2925 throw_bad_regnum_error (dwarf_reg);
2926 /* Yes, we will end up issuing a complaint and an error if DWARF_REG is
2927 bad, but that's ok. */
2928 reg = dwarf_reg_to_regnum (arch, (int) dwarf_reg);
2929 if (reg == -1)
2930 throw_bad_regnum_error (dwarf_reg);
2931 return reg;
2932 }
2933
2934 /* A helper function that emits an access to memory. ARCH is the
2935 target architecture. EXPR is the expression which we are building.
2936 NBITS is the number of bits we want to read. This emits the
2937 opcodes needed to read the memory and then extract the desired
2938 bits. */
2939
2940 static void
2941 access_memory (struct gdbarch *arch, struct agent_expr *expr, ULONGEST nbits)
2942 {
2943 ULONGEST nbytes = (nbits + 7) / 8;
2944
2945 gdb_assert (nbytes > 0 && nbytes <= sizeof (LONGEST));
2946
2947 if (expr->tracing)
2948 ax_trace_quick (expr, nbytes);
2949
2950 if (nbits <= 8)
2951 ax_simple (expr, aop_ref8);
2952 else if (nbits <= 16)
2953 ax_simple (expr, aop_ref16);
2954 else if (nbits <= 32)
2955 ax_simple (expr, aop_ref32);
2956 else
2957 ax_simple (expr, aop_ref64);
2958
2959 /* If we read exactly the number of bytes we wanted, we're done. */
2960 if (8 * nbytes == nbits)
2961 return;
2962
2963 if (gdbarch_bits_big_endian (arch))
2964 {
2965 /* On a bits-big-endian machine, we want the high-order
2966 NBITS. */
2967 ax_const_l (expr, 8 * nbytes - nbits);
2968 ax_simple (expr, aop_rsh_unsigned);
2969 }
2970 else
2971 {
2972 /* On a bits-little-endian box, we want the low-order NBITS. */
2973 ax_zero_ext (expr, nbits);
2974 }
2975 }
2976
2977 /* A helper function to return the frame's PC. */
2978
2979 static CORE_ADDR
2980 get_ax_pc (void *baton)
2981 {
2982 struct agent_expr *expr = (struct agent_expr *) baton;
2983
2984 return expr->scope;
2985 }
2986
2987 /* Compile a DWARF location expression to an agent expression.
2988
2989 EXPR is the agent expression we are building.
2990 LOC is the agent value we modify.
2991 ARCH is the architecture.
2992 ADDR_SIZE is the size of addresses, in bytes.
2993 OP_PTR is the start of the location expression.
2994 OP_END is one past the last byte of the location expression.
2995
2996 This will throw an exception for various kinds of errors -- for
2997 example, if the expression cannot be compiled, or if the expression
2998 is invalid. */
2999
3000 void
3001 dwarf2_compile_expr_to_ax (struct agent_expr *expr, struct axs_value *loc,
3002 struct gdbarch *arch, unsigned int addr_size,
3003 const gdb_byte *op_ptr, const gdb_byte *op_end,
3004 struct dwarf2_per_cu_data *per_cu)
3005 {
3006 int i;
3007 std::vector<int> dw_labels, patches;
3008 const gdb_byte * const base = op_ptr;
3009 const gdb_byte *previous_piece = op_ptr;
3010 enum bfd_endian byte_order = gdbarch_byte_order (arch);
3011 ULONGEST bits_collected = 0;
3012 unsigned int addr_size_bits = 8 * addr_size;
3013 int bits_big_endian = gdbarch_bits_big_endian (arch);
3014
3015 std::vector<int> offsets (op_end - op_ptr, -1);
3016
3017 /* By default we are making an address. */
3018 loc->kind = axs_lvalue_memory;
3019
3020 while (op_ptr < op_end)
3021 {
3022 enum dwarf_location_atom op = (enum dwarf_location_atom) *op_ptr;
3023 uint64_t uoffset, reg;
3024 int64_t offset;
3025 int i;
3026
3027 offsets[op_ptr - base] = expr->len;
3028 ++op_ptr;
3029
3030 /* Our basic approach to code generation is to map DWARF
3031 operations directly to AX operations. However, there are
3032 some differences.
3033
3034 First, DWARF works on address-sized units, but AX always uses
3035 LONGEST. For most operations we simply ignore this
3036 difference; instead we generate sign extensions as needed
3037 before division and comparison operations. It would be nice
3038 to omit the sign extensions, but there is no way to determine
3039 the size of the target's LONGEST. (This code uses the size
3040 of the host LONGEST in some cases -- that is a bug but it is
3041 difficult to fix.)
3042
3043 Second, some DWARF operations cannot be translated to AX.
3044 For these we simply fail. See
3045 http://sourceware.org/bugzilla/show_bug.cgi?id=11662. */
3046 switch (op)
3047 {
3048 case DW_OP_lit0:
3049 case DW_OP_lit1:
3050 case DW_OP_lit2:
3051 case DW_OP_lit3:
3052 case DW_OP_lit4:
3053 case DW_OP_lit5:
3054 case DW_OP_lit6:
3055 case DW_OP_lit7:
3056 case DW_OP_lit8:
3057 case DW_OP_lit9:
3058 case DW_OP_lit10:
3059 case DW_OP_lit11:
3060 case DW_OP_lit12:
3061 case DW_OP_lit13:
3062 case DW_OP_lit14:
3063 case DW_OP_lit15:
3064 case DW_OP_lit16:
3065 case DW_OP_lit17:
3066 case DW_OP_lit18:
3067 case DW_OP_lit19:
3068 case DW_OP_lit20:
3069 case DW_OP_lit21:
3070 case DW_OP_lit22:
3071 case DW_OP_lit23:
3072 case DW_OP_lit24:
3073 case DW_OP_lit25:
3074 case DW_OP_lit26:
3075 case DW_OP_lit27:
3076 case DW_OP_lit28:
3077 case DW_OP_lit29:
3078 case DW_OP_lit30:
3079 case DW_OP_lit31:
3080 ax_const_l (expr, op - DW_OP_lit0);
3081 break;
3082
3083 case DW_OP_addr:
3084 uoffset = extract_unsigned_integer (op_ptr, addr_size, byte_order);
3085 op_ptr += addr_size;
3086 /* Some versions of GCC emit DW_OP_addr before
3087 DW_OP_GNU_push_tls_address. In this case the value is an
3088 index, not an address. We don't support things like
3089 branching between the address and the TLS op. */
3090 if (op_ptr >= op_end || *op_ptr != DW_OP_GNU_push_tls_address)
3091 uoffset += dwarf2_per_cu_text_offset (per_cu);
3092 ax_const_l (expr, uoffset);
3093 break;
3094
3095 case DW_OP_const1u:
3096 ax_const_l (expr, extract_unsigned_integer (op_ptr, 1, byte_order));
3097 op_ptr += 1;
3098 break;
3099 case DW_OP_const1s:
3100 ax_const_l (expr, extract_signed_integer (op_ptr, 1, byte_order));
3101 op_ptr += 1;
3102 break;
3103 case DW_OP_const2u:
3104 ax_const_l (expr, extract_unsigned_integer (op_ptr, 2, byte_order));
3105 op_ptr += 2;
3106 break;
3107 case DW_OP_const2s:
3108 ax_const_l (expr, extract_signed_integer (op_ptr, 2, byte_order));
3109 op_ptr += 2;
3110 break;
3111 case DW_OP_const4u:
3112 ax_const_l (expr, extract_unsigned_integer (op_ptr, 4, byte_order));
3113 op_ptr += 4;
3114 break;
3115 case DW_OP_const4s:
3116 ax_const_l (expr, extract_signed_integer (op_ptr, 4, byte_order));
3117 op_ptr += 4;
3118 break;
3119 case DW_OP_const8u:
3120 ax_const_l (expr, extract_unsigned_integer (op_ptr, 8, byte_order));
3121 op_ptr += 8;
3122 break;
3123 case DW_OP_const8s:
3124 ax_const_l (expr, extract_signed_integer (op_ptr, 8, byte_order));
3125 op_ptr += 8;
3126 break;
3127 case DW_OP_constu:
3128 op_ptr = safe_read_uleb128 (op_ptr, op_end, &uoffset);
3129 ax_const_l (expr, uoffset);
3130 break;
3131 case DW_OP_consts:
3132 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3133 ax_const_l (expr, offset);
3134 break;
3135
3136 case DW_OP_reg0:
3137 case DW_OP_reg1:
3138 case DW_OP_reg2:
3139 case DW_OP_reg3:
3140 case DW_OP_reg4:
3141 case DW_OP_reg5:
3142 case DW_OP_reg6:
3143 case DW_OP_reg7:
3144 case DW_OP_reg8:
3145 case DW_OP_reg9:
3146 case DW_OP_reg10:
3147 case DW_OP_reg11:
3148 case DW_OP_reg12:
3149 case DW_OP_reg13:
3150 case DW_OP_reg14:
3151 case DW_OP_reg15:
3152 case DW_OP_reg16:
3153 case DW_OP_reg17:
3154 case DW_OP_reg18:
3155 case DW_OP_reg19:
3156 case DW_OP_reg20:
3157 case DW_OP_reg21:
3158 case DW_OP_reg22:
3159 case DW_OP_reg23:
3160 case DW_OP_reg24:
3161 case DW_OP_reg25:
3162 case DW_OP_reg26:
3163 case DW_OP_reg27:
3164 case DW_OP_reg28:
3165 case DW_OP_reg29:
3166 case DW_OP_reg30:
3167 case DW_OP_reg31:
3168 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
3169 loc->u.reg = dwarf_reg_to_regnum_or_error (arch, op - DW_OP_reg0);
3170 loc->kind = axs_lvalue_register;
3171 break;
3172
3173 case DW_OP_regx:
3174 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3175 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
3176 loc->u.reg = dwarf_reg_to_regnum_or_error (arch, reg);
3177 loc->kind = axs_lvalue_register;
3178 break;
3179
3180 case DW_OP_implicit_value:
3181 {
3182 uint64_t len;
3183
3184 op_ptr = safe_read_uleb128 (op_ptr, op_end, &len);
3185 if (op_ptr + len > op_end)
3186 error (_("DW_OP_implicit_value: too few bytes available."));
3187 if (len > sizeof (ULONGEST))
3188 error (_("Cannot translate DW_OP_implicit_value of %d bytes"),
3189 (int) len);
3190
3191 ax_const_l (expr, extract_unsigned_integer (op_ptr, len,
3192 byte_order));
3193 op_ptr += len;
3194 dwarf_expr_require_composition (op_ptr, op_end,
3195 "DW_OP_implicit_value");
3196
3197 loc->kind = axs_rvalue;
3198 }
3199 break;
3200
3201 case DW_OP_stack_value:
3202 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_stack_value");
3203 loc->kind = axs_rvalue;
3204 break;
3205
3206 case DW_OP_breg0:
3207 case DW_OP_breg1:
3208 case DW_OP_breg2:
3209 case DW_OP_breg3:
3210 case DW_OP_breg4:
3211 case DW_OP_breg5:
3212 case DW_OP_breg6:
3213 case DW_OP_breg7:
3214 case DW_OP_breg8:
3215 case DW_OP_breg9:
3216 case DW_OP_breg10:
3217 case DW_OP_breg11:
3218 case DW_OP_breg12:
3219 case DW_OP_breg13:
3220 case DW_OP_breg14:
3221 case DW_OP_breg15:
3222 case DW_OP_breg16:
3223 case DW_OP_breg17:
3224 case DW_OP_breg18:
3225 case DW_OP_breg19:
3226 case DW_OP_breg20:
3227 case DW_OP_breg21:
3228 case DW_OP_breg22:
3229 case DW_OP_breg23:
3230 case DW_OP_breg24:
3231 case DW_OP_breg25:
3232 case DW_OP_breg26:
3233 case DW_OP_breg27:
3234 case DW_OP_breg28:
3235 case DW_OP_breg29:
3236 case DW_OP_breg30:
3237 case DW_OP_breg31:
3238 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3239 i = dwarf_reg_to_regnum_or_error (arch, op - DW_OP_breg0);
3240 ax_reg (expr, i);
3241 if (offset != 0)
3242 {
3243 ax_const_l (expr, offset);
3244 ax_simple (expr, aop_add);
3245 }
3246 break;
3247 case DW_OP_bregx:
3248 {
3249 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3250 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3251 i = dwarf_reg_to_regnum_or_error (arch, reg);
3252 ax_reg (expr, i);
3253 if (offset != 0)
3254 {
3255 ax_const_l (expr, offset);
3256 ax_simple (expr, aop_add);
3257 }
3258 }
3259 break;
3260 case DW_OP_fbreg:
3261 {
3262 const gdb_byte *datastart;
3263 size_t datalen;
3264 const struct block *b;
3265 struct symbol *framefunc;
3266
3267 b = block_for_pc (expr->scope);
3268
3269 if (!b)
3270 error (_("No block found for address"));
3271
3272 framefunc = block_linkage_function (b);
3273
3274 if (!framefunc)
3275 error (_("No function found for block"));
3276
3277 func_get_frame_base_dwarf_block (framefunc, expr->scope,
3278 &datastart, &datalen);
3279
3280 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3281 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size, datastart,
3282 datastart + datalen, per_cu);
3283 if (loc->kind == axs_lvalue_register)
3284 require_rvalue (expr, loc);
3285
3286 if (offset != 0)
3287 {
3288 ax_const_l (expr, offset);
3289 ax_simple (expr, aop_add);
3290 }
3291
3292 loc->kind = axs_lvalue_memory;
3293 }
3294 break;
3295
3296 case DW_OP_dup:
3297 ax_simple (expr, aop_dup);
3298 break;
3299
3300 case DW_OP_drop:
3301 ax_simple (expr, aop_pop);
3302 break;
3303
3304 case DW_OP_pick:
3305 offset = *op_ptr++;
3306 ax_pick (expr, offset);
3307 break;
3308
3309 case DW_OP_swap:
3310 ax_simple (expr, aop_swap);
3311 break;
3312
3313 case DW_OP_over:
3314 ax_pick (expr, 1);
3315 break;
3316
3317 case DW_OP_rot:
3318 ax_simple (expr, aop_rot);
3319 break;
3320
3321 case DW_OP_deref:
3322 case DW_OP_deref_size:
3323 {
3324 int size;
3325
3326 if (op == DW_OP_deref_size)
3327 size = *op_ptr++;
3328 else
3329 size = addr_size;
3330
3331 if (size != 1 && size != 2 && size != 4 && size != 8)
3332 error (_("Unsupported size %d in %s"),
3333 size, get_DW_OP_name (op));
3334 access_memory (arch, expr, size * TARGET_CHAR_BIT);
3335 }
3336 break;
3337
3338 case DW_OP_abs:
3339 /* Sign extend the operand. */
3340 ax_ext (expr, addr_size_bits);
3341 ax_simple (expr, aop_dup);
3342 ax_const_l (expr, 0);
3343 ax_simple (expr, aop_less_signed);
3344 ax_simple (expr, aop_log_not);
3345 i = ax_goto (expr, aop_if_goto);
3346 /* We have to emit 0 - X. */
3347 ax_const_l (expr, 0);
3348 ax_simple (expr, aop_swap);
3349 ax_simple (expr, aop_sub);
3350 ax_label (expr, i, expr->len);
3351 break;
3352
3353 case DW_OP_neg:
3354 /* No need to sign extend here. */
3355 ax_const_l (expr, 0);
3356 ax_simple (expr, aop_swap);
3357 ax_simple (expr, aop_sub);
3358 break;
3359
3360 case DW_OP_not:
3361 /* Sign extend the operand. */
3362 ax_ext (expr, addr_size_bits);
3363 ax_simple (expr, aop_bit_not);
3364 break;
3365
3366 case DW_OP_plus_uconst:
3367 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3368 /* It would be really weird to emit `DW_OP_plus_uconst 0',
3369 but we micro-optimize anyhow. */
3370 if (reg != 0)
3371 {
3372 ax_const_l (expr, reg);
3373 ax_simple (expr, aop_add);
3374 }
3375 break;
3376
3377 case DW_OP_and:
3378 ax_simple (expr, aop_bit_and);
3379 break;
3380
3381 case DW_OP_div:
3382 /* Sign extend the operands. */
3383 ax_ext (expr, addr_size_bits);
3384 ax_simple (expr, aop_swap);
3385 ax_ext (expr, addr_size_bits);
3386 ax_simple (expr, aop_swap);
3387 ax_simple (expr, aop_div_signed);
3388 break;
3389
3390 case DW_OP_minus:
3391 ax_simple (expr, aop_sub);
3392 break;
3393
3394 case DW_OP_mod:
3395 ax_simple (expr, aop_rem_unsigned);
3396 break;
3397
3398 case DW_OP_mul:
3399 ax_simple (expr, aop_mul);
3400 break;
3401
3402 case DW_OP_or:
3403 ax_simple (expr, aop_bit_or);
3404 break;
3405
3406 case DW_OP_plus:
3407 ax_simple (expr, aop_add);
3408 break;
3409
3410 case DW_OP_shl:
3411 ax_simple (expr, aop_lsh);
3412 break;
3413
3414 case DW_OP_shr:
3415 ax_simple (expr, aop_rsh_unsigned);
3416 break;
3417
3418 case DW_OP_shra:
3419 ax_simple (expr, aop_rsh_signed);
3420 break;
3421
3422 case DW_OP_xor:
3423 ax_simple (expr, aop_bit_xor);
3424 break;
3425
3426 case DW_OP_le:
3427 /* Sign extend the operands. */
3428 ax_ext (expr, addr_size_bits);
3429 ax_simple (expr, aop_swap);
3430 ax_ext (expr, addr_size_bits);
3431 /* Note no swap here: A <= B is !(B < A). */
3432 ax_simple (expr, aop_less_signed);
3433 ax_simple (expr, aop_log_not);
3434 break;
3435
3436 case DW_OP_ge:
3437 /* Sign extend the operands. */
3438 ax_ext (expr, addr_size_bits);
3439 ax_simple (expr, aop_swap);
3440 ax_ext (expr, addr_size_bits);
3441 ax_simple (expr, aop_swap);
3442 /* A >= B is !(A < B). */
3443 ax_simple (expr, aop_less_signed);
3444 ax_simple (expr, aop_log_not);
3445 break;
3446
3447 case DW_OP_eq:
3448 /* Sign extend the operands. */
3449 ax_ext (expr, addr_size_bits);
3450 ax_simple (expr, aop_swap);
3451 ax_ext (expr, addr_size_bits);
3452 /* No need for a second swap here. */
3453 ax_simple (expr, aop_equal);
3454 break;
3455
3456 case DW_OP_lt:
3457 /* Sign extend the operands. */
3458 ax_ext (expr, addr_size_bits);
3459 ax_simple (expr, aop_swap);
3460 ax_ext (expr, addr_size_bits);
3461 ax_simple (expr, aop_swap);
3462 ax_simple (expr, aop_less_signed);
3463 break;
3464
3465 case DW_OP_gt:
3466 /* Sign extend the operands. */
3467 ax_ext (expr, addr_size_bits);
3468 ax_simple (expr, aop_swap);
3469 ax_ext (expr, addr_size_bits);
3470 /* Note no swap here: A > B is B < A. */
3471 ax_simple (expr, aop_less_signed);
3472 break;
3473
3474 case DW_OP_ne:
3475 /* Sign extend the operands. */
3476 ax_ext (expr, addr_size_bits);
3477 ax_simple (expr, aop_swap);
3478 ax_ext (expr, addr_size_bits);
3479 /* No need for a swap here. */
3480 ax_simple (expr, aop_equal);
3481 ax_simple (expr, aop_log_not);
3482 break;
3483
3484 case DW_OP_call_frame_cfa:
3485 {
3486 int regnum;
3487 CORE_ADDR text_offset;
3488 LONGEST off;
3489 const gdb_byte *cfa_start, *cfa_end;
3490
3491 if (dwarf2_fetch_cfa_info (arch, expr->scope, per_cu,
3492 &regnum, &off,
3493 &text_offset, &cfa_start, &cfa_end))
3494 {
3495 /* Register. */
3496 ax_reg (expr, regnum);
3497 if (off != 0)
3498 {
3499 ax_const_l (expr, off);
3500 ax_simple (expr, aop_add);
3501 }
3502 }
3503 else
3504 {
3505 /* Another expression. */
3506 ax_const_l (expr, text_offset);
3507 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size,
3508 cfa_start, cfa_end, per_cu);
3509 }
3510
3511 loc->kind = axs_lvalue_memory;
3512 }
3513 break;
3514
3515 case DW_OP_GNU_push_tls_address:
3516 case DW_OP_form_tls_address:
3517 unimplemented (op);
3518 break;
3519
3520 case DW_OP_push_object_address:
3521 unimplemented (op);
3522 break;
3523
3524 case DW_OP_skip:
3525 offset = extract_signed_integer (op_ptr, 2, byte_order);
3526 op_ptr += 2;
3527 i = ax_goto (expr, aop_goto);
3528 dw_labels.push_back (op_ptr + offset - base);
3529 patches.push_back (i);
3530 break;
3531
3532 case DW_OP_bra:
3533 offset = extract_signed_integer (op_ptr, 2, byte_order);
3534 op_ptr += 2;
3535 /* Zero extend the operand. */
3536 ax_zero_ext (expr, addr_size_bits);
3537 i = ax_goto (expr, aop_if_goto);
3538 dw_labels.push_back (op_ptr + offset - base);
3539 patches.push_back (i);
3540 break;
3541
3542 case DW_OP_nop:
3543 break;
3544
3545 case DW_OP_piece:
3546 case DW_OP_bit_piece:
3547 {
3548 uint64_t size, offset;
3549
3550 if (op_ptr - 1 == previous_piece)
3551 error (_("Cannot translate empty pieces to agent expressions"));
3552 previous_piece = op_ptr - 1;
3553
3554 op_ptr = safe_read_uleb128 (op_ptr, op_end, &size);
3555 if (op == DW_OP_piece)
3556 {
3557 size *= 8;
3558 offset = 0;
3559 }
3560 else
3561 op_ptr = safe_read_uleb128 (op_ptr, op_end, &offset);
3562
3563 if (bits_collected + size > 8 * sizeof (LONGEST))
3564 error (_("Expression pieces exceed word size"));
3565
3566 /* Access the bits. */
3567 switch (loc->kind)
3568 {
3569 case axs_lvalue_register:
3570 ax_reg (expr, loc->u.reg);
3571 break;
3572
3573 case axs_lvalue_memory:
3574 /* Offset the pointer, if needed. */
3575 if (offset > 8)
3576 {
3577 ax_const_l (expr, offset / 8);
3578 ax_simple (expr, aop_add);
3579 offset %= 8;
3580 }
3581 access_memory (arch, expr, size);
3582 break;
3583 }
3584
3585 /* For a bits-big-endian target, shift up what we already
3586 have. For a bits-little-endian target, shift up the
3587 new data. Note that there is a potential bug here if
3588 the DWARF expression leaves multiple values on the
3589 stack. */
3590 if (bits_collected > 0)
3591 {
3592 if (bits_big_endian)
3593 {
3594 ax_simple (expr, aop_swap);
3595 ax_const_l (expr, size);
3596 ax_simple (expr, aop_lsh);
3597 /* We don't need a second swap here, because
3598 aop_bit_or is symmetric. */
3599 }
3600 else
3601 {
3602 ax_const_l (expr, size);
3603 ax_simple (expr, aop_lsh);
3604 }
3605 ax_simple (expr, aop_bit_or);
3606 }
3607
3608 bits_collected += size;
3609 loc->kind = axs_rvalue;
3610 }
3611 break;
3612
3613 case DW_OP_GNU_uninit:
3614 unimplemented (op);
3615
3616 case DW_OP_call2:
3617 case DW_OP_call4:
3618 {
3619 struct dwarf2_locexpr_baton block;
3620 int size = (op == DW_OP_call2 ? 2 : 4);
3621 cu_offset offset;
3622
3623 uoffset = extract_unsigned_integer (op_ptr, size, byte_order);
3624 op_ptr += size;
3625
3626 offset.cu_off = uoffset;
3627 block = dwarf2_fetch_die_loc_cu_off (offset, per_cu,
3628 get_ax_pc, expr);
3629
3630 /* DW_OP_call_ref is currently not supported. */
3631 gdb_assert (block.per_cu == per_cu);
3632
3633 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size,
3634 block.data, block.data + block.size,
3635 per_cu);
3636 }
3637 break;
3638
3639 case DW_OP_call_ref:
3640 unimplemented (op);
3641
3642 default:
3643 unimplemented (op);
3644 }
3645 }
3646
3647 /* Patch all the branches we emitted. */
3648 for (i = 0; i < patches.size (); ++i)
3649 {
3650 int targ = offsets[dw_labels[i]];
3651 if (targ == -1)
3652 internal_error (__FILE__, __LINE__, _("invalid label"));
3653 ax_label (expr, patches[i], targ);
3654 }
3655 }
3656
3657 \f
3658 /* Return the value of SYMBOL in FRAME using the DWARF-2 expression
3659 evaluator to calculate the location. */
3660 static struct value *
3661 locexpr_read_variable (struct symbol *symbol, struct frame_info *frame)
3662 {
3663 struct dwarf2_locexpr_baton *dlbaton
3664 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
3665 struct value *val;
3666
3667 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, dlbaton->data,
3668 dlbaton->size, dlbaton->per_cu);
3669
3670 return val;
3671 }
3672
3673 /* Return the value of SYMBOL in FRAME at (callee) FRAME's function
3674 entry. SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
3675 will be thrown. */
3676
3677 static struct value *
3678 locexpr_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
3679 {
3680 struct dwarf2_locexpr_baton *dlbaton
3681 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
3682
3683 return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, dlbaton->data,
3684 dlbaton->size);
3685 }
3686
3687 /* Implementation of get_symbol_read_needs from
3688 symbol_computed_ops. */
3689
3690 static enum symbol_needs_kind
3691 locexpr_get_symbol_read_needs (struct symbol *symbol)
3692 {
3693 struct dwarf2_locexpr_baton *dlbaton
3694 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
3695
3696 return dwarf2_loc_desc_get_symbol_read_needs (dlbaton->data, dlbaton->size,
3697 dlbaton->per_cu);
3698 }
3699
3700 /* Return true if DATA points to the end of a piece. END is one past
3701 the last byte in the expression. */
3702
3703 static int
3704 piece_end_p (const gdb_byte *data, const gdb_byte *end)
3705 {
3706 return data == end || data[0] == DW_OP_piece || data[0] == DW_OP_bit_piece;
3707 }
3708
3709 /* Helper for locexpr_describe_location_piece that finds the name of a
3710 DWARF register. */
3711
3712 static const char *
3713 locexpr_regname (struct gdbarch *gdbarch, int dwarf_regnum)
3714 {
3715 int regnum;
3716
3717 /* This doesn't use dwarf_reg_to_regnum_or_error on purpose.
3718 We'd rather print *something* here than throw an error. */
3719 regnum = dwarf_reg_to_regnum (gdbarch, dwarf_regnum);
3720 /* gdbarch_register_name may just return "", return something more
3721 descriptive for bad register numbers. */
3722 if (regnum == -1)
3723 {
3724 /* The text is output as "$bad_register_number".
3725 That is why we use the underscores. */
3726 return _("bad_register_number");
3727 }
3728 return gdbarch_register_name (gdbarch, regnum);
3729 }
3730
3731 /* Nicely describe a single piece of a location, returning an updated
3732 position in the bytecode sequence. This function cannot recognize
3733 all locations; if a location is not recognized, it simply returns
3734 DATA. If there is an error during reading, e.g. we run off the end
3735 of the buffer, an error is thrown. */
3736
3737 static const gdb_byte *
3738 locexpr_describe_location_piece (struct symbol *symbol, struct ui_file *stream,
3739 CORE_ADDR addr, struct objfile *objfile,
3740 struct dwarf2_per_cu_data *per_cu,
3741 const gdb_byte *data, const gdb_byte *end,
3742 unsigned int addr_size)
3743 {
3744 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3745 size_t leb128_size;
3746
3747 if (data[0] >= DW_OP_reg0 && data[0] <= DW_OP_reg31)
3748 {
3749 fprintf_filtered (stream, _("a variable in $%s"),
3750 locexpr_regname (gdbarch, data[0] - DW_OP_reg0));
3751 data += 1;
3752 }
3753 else if (data[0] == DW_OP_regx)
3754 {
3755 uint64_t reg;
3756
3757 data = safe_read_uleb128 (data + 1, end, &reg);
3758 fprintf_filtered (stream, _("a variable in $%s"),
3759 locexpr_regname (gdbarch, reg));
3760 }
3761 else if (data[0] == DW_OP_fbreg)
3762 {
3763 const struct block *b;
3764 struct symbol *framefunc;
3765 int frame_reg = 0;
3766 int64_t frame_offset;
3767 const gdb_byte *base_data, *new_data, *save_data = data;
3768 size_t base_size;
3769 int64_t base_offset = 0;
3770
3771 new_data = safe_read_sleb128 (data + 1, end, &frame_offset);
3772 if (!piece_end_p (new_data, end))
3773 return data;
3774 data = new_data;
3775
3776 b = block_for_pc (addr);
3777
3778 if (!b)
3779 error (_("No block found for address for symbol \"%s\"."),
3780 SYMBOL_PRINT_NAME (symbol));
3781
3782 framefunc = block_linkage_function (b);
3783
3784 if (!framefunc)
3785 error (_("No function found for block for symbol \"%s\"."),
3786 SYMBOL_PRINT_NAME (symbol));
3787
3788 func_get_frame_base_dwarf_block (framefunc, addr, &base_data, &base_size);
3789
3790 if (base_data[0] >= DW_OP_breg0 && base_data[0] <= DW_OP_breg31)
3791 {
3792 const gdb_byte *buf_end;
3793
3794 frame_reg = base_data[0] - DW_OP_breg0;
3795 buf_end = safe_read_sleb128 (base_data + 1, base_data + base_size,
3796 &base_offset);
3797 if (buf_end != base_data + base_size)
3798 error (_("Unexpected opcode after "
3799 "DW_OP_breg%u for symbol \"%s\"."),
3800 frame_reg, SYMBOL_PRINT_NAME (symbol));
3801 }
3802 else if (base_data[0] >= DW_OP_reg0 && base_data[0] <= DW_OP_reg31)
3803 {
3804 /* The frame base is just the register, with no offset. */
3805 frame_reg = base_data[0] - DW_OP_reg0;
3806 base_offset = 0;
3807 }
3808 else
3809 {
3810 /* We don't know what to do with the frame base expression,
3811 so we can't trace this variable; give up. */
3812 return save_data;
3813 }
3814
3815 fprintf_filtered (stream,
3816 _("a variable at frame base reg $%s offset %s+%s"),
3817 locexpr_regname (gdbarch, frame_reg),
3818 plongest (base_offset), plongest (frame_offset));
3819 }
3820 else if (data[0] >= DW_OP_breg0 && data[0] <= DW_OP_breg31
3821 && piece_end_p (data, end))
3822 {
3823 int64_t offset;
3824
3825 data = safe_read_sleb128 (data + 1, end, &offset);
3826
3827 fprintf_filtered (stream,
3828 _("a variable at offset %s from base reg $%s"),
3829 plongest (offset),
3830 locexpr_regname (gdbarch, data[0] - DW_OP_breg0));
3831 }
3832
3833 /* The location expression for a TLS variable looks like this (on a
3834 64-bit LE machine):
3835
3836 DW_AT_location : 10 byte block: 3 4 0 0 0 0 0 0 0 e0
3837 (DW_OP_addr: 4; DW_OP_GNU_push_tls_address)
3838
3839 0x3 is the encoding for DW_OP_addr, which has an operand as long
3840 as the size of an address on the target machine (here is 8
3841 bytes). Note that more recent version of GCC emit DW_OP_const4u
3842 or DW_OP_const8u, depending on address size, rather than
3843 DW_OP_addr. 0xe0 is the encoding for DW_OP_GNU_push_tls_address.
3844 The operand represents the offset at which the variable is within
3845 the thread local storage. */
3846
3847 else if (data + 1 + addr_size < end
3848 && (data[0] == DW_OP_addr
3849 || (addr_size == 4 && data[0] == DW_OP_const4u)
3850 || (addr_size == 8 && data[0] == DW_OP_const8u))
3851 && (data[1 + addr_size] == DW_OP_GNU_push_tls_address
3852 || data[1 + addr_size] == DW_OP_form_tls_address)
3853 && piece_end_p (data + 2 + addr_size, end))
3854 {
3855 ULONGEST offset;
3856 offset = extract_unsigned_integer (data + 1, addr_size,
3857 gdbarch_byte_order (gdbarch));
3858
3859 fprintf_filtered (stream,
3860 _("a thread-local variable at offset 0x%s "
3861 "in the thread-local storage for `%s'"),
3862 phex_nz (offset, addr_size), objfile_name (objfile));
3863
3864 data += 1 + addr_size + 1;
3865 }
3866
3867 /* With -gsplit-dwarf a TLS variable can also look like this:
3868 DW_AT_location : 3 byte block: fc 4 e0
3869 (DW_OP_GNU_const_index: 4;
3870 DW_OP_GNU_push_tls_address) */
3871 else if (data + 3 <= end
3872 && data + 1 + (leb128_size = skip_leb128 (data + 1, end)) < end
3873 && data[0] == DW_OP_GNU_const_index
3874 && leb128_size > 0
3875 && (data[1 + leb128_size] == DW_OP_GNU_push_tls_address
3876 || data[1 + leb128_size] == DW_OP_form_tls_address)
3877 && piece_end_p (data + 2 + leb128_size, end))
3878 {
3879 uint64_t offset;
3880
3881 data = safe_read_uleb128 (data + 1, end, &offset);
3882 offset = dwarf2_read_addr_index (per_cu, offset);
3883 fprintf_filtered (stream,
3884 _("a thread-local variable at offset 0x%s "
3885 "in the thread-local storage for `%s'"),
3886 phex_nz (offset, addr_size), objfile_name (objfile));
3887 ++data;
3888 }
3889
3890 else if (data[0] >= DW_OP_lit0
3891 && data[0] <= DW_OP_lit31
3892 && data + 1 < end
3893 && data[1] == DW_OP_stack_value)
3894 {
3895 fprintf_filtered (stream, _("the constant %d"), data[0] - DW_OP_lit0);
3896 data += 2;
3897 }
3898
3899 return data;
3900 }
3901
3902 /* Disassemble an expression, stopping at the end of a piece or at the
3903 end of the expression. Returns a pointer to the next unread byte
3904 in the input expression. If ALL is nonzero, then this function
3905 will keep going until it reaches the end of the expression.
3906 If there is an error during reading, e.g. we run off the end
3907 of the buffer, an error is thrown. */
3908
3909 static const gdb_byte *
3910 disassemble_dwarf_expression (struct ui_file *stream,
3911 struct gdbarch *arch, unsigned int addr_size,
3912 int offset_size, const gdb_byte *start,
3913 const gdb_byte *data, const gdb_byte *end,
3914 int indent, int all,
3915 struct dwarf2_per_cu_data *per_cu)
3916 {
3917 while (data < end
3918 && (all
3919 || (data[0] != DW_OP_piece && data[0] != DW_OP_bit_piece)))
3920 {
3921 enum dwarf_location_atom op = (enum dwarf_location_atom) *data++;
3922 uint64_t ul;
3923 int64_t l;
3924 const char *name;
3925
3926 name = get_DW_OP_name (op);
3927
3928 if (!name)
3929 error (_("Unrecognized DWARF opcode 0x%02x at %ld"),
3930 op, (long) (data - 1 - start));
3931 fprintf_filtered (stream, " %*ld: %s", indent + 4,
3932 (long) (data - 1 - start), name);
3933
3934 switch (op)
3935 {
3936 case DW_OP_addr:
3937 ul = extract_unsigned_integer (data, addr_size,
3938 gdbarch_byte_order (arch));
3939 data += addr_size;
3940 fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
3941 break;
3942
3943 case DW_OP_const1u:
3944 ul = extract_unsigned_integer (data, 1, gdbarch_byte_order (arch));
3945 data += 1;
3946 fprintf_filtered (stream, " %s", pulongest (ul));
3947 break;
3948 case DW_OP_const1s:
3949 l = extract_signed_integer (data, 1, gdbarch_byte_order (arch));
3950 data += 1;
3951 fprintf_filtered (stream, " %s", plongest (l));
3952 break;
3953 case DW_OP_const2u:
3954 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
3955 data += 2;
3956 fprintf_filtered (stream, " %s", pulongest (ul));
3957 break;
3958 case DW_OP_const2s:
3959 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
3960 data += 2;
3961 fprintf_filtered (stream, " %s", plongest (l));
3962 break;
3963 case DW_OP_const4u:
3964 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
3965 data += 4;
3966 fprintf_filtered (stream, " %s", pulongest (ul));
3967 break;
3968 case DW_OP_const4s:
3969 l = extract_signed_integer (data, 4, gdbarch_byte_order (arch));
3970 data += 4;
3971 fprintf_filtered (stream, " %s", plongest (l));
3972 break;
3973 case DW_OP_const8u:
3974 ul = extract_unsigned_integer (data, 8, gdbarch_byte_order (arch));
3975 data += 8;
3976 fprintf_filtered (stream, " %s", pulongest (ul));
3977 break;
3978 case DW_OP_const8s:
3979 l = extract_signed_integer (data, 8, gdbarch_byte_order (arch));
3980 data += 8;
3981 fprintf_filtered (stream, " %s", plongest (l));
3982 break;
3983 case DW_OP_constu:
3984 data = safe_read_uleb128 (data, end, &ul);
3985 fprintf_filtered (stream, " %s", pulongest (ul));
3986 break;
3987 case DW_OP_consts:
3988 data = safe_read_sleb128 (data, end, &l);
3989 fprintf_filtered (stream, " %s", plongest (l));
3990 break;
3991
3992 case DW_OP_reg0:
3993 case DW_OP_reg1:
3994 case DW_OP_reg2:
3995 case DW_OP_reg3:
3996 case DW_OP_reg4:
3997 case DW_OP_reg5:
3998 case DW_OP_reg6:
3999 case DW_OP_reg7:
4000 case DW_OP_reg8:
4001 case DW_OP_reg9:
4002 case DW_OP_reg10:
4003 case DW_OP_reg11:
4004 case DW_OP_reg12:
4005 case DW_OP_reg13:
4006 case DW_OP_reg14:
4007 case DW_OP_reg15:
4008 case DW_OP_reg16:
4009 case DW_OP_reg17:
4010 case DW_OP_reg18:
4011 case DW_OP_reg19:
4012 case DW_OP_reg20:
4013 case DW_OP_reg21:
4014 case DW_OP_reg22:
4015 case DW_OP_reg23:
4016 case DW_OP_reg24:
4017 case DW_OP_reg25:
4018 case DW_OP_reg26:
4019 case DW_OP_reg27:
4020 case DW_OP_reg28:
4021 case DW_OP_reg29:
4022 case DW_OP_reg30:
4023 case DW_OP_reg31:
4024 fprintf_filtered (stream, " [$%s]",
4025 locexpr_regname (arch, op - DW_OP_reg0));
4026 break;
4027
4028 case DW_OP_regx:
4029 data = safe_read_uleb128 (data, end, &ul);
4030 fprintf_filtered (stream, " %s [$%s]", pulongest (ul),
4031 locexpr_regname (arch, (int) ul));
4032 break;
4033
4034 case DW_OP_implicit_value:
4035 data = safe_read_uleb128 (data, end, &ul);
4036 data += ul;
4037 fprintf_filtered (stream, " %s", pulongest (ul));
4038 break;
4039
4040 case DW_OP_breg0:
4041 case DW_OP_breg1:
4042 case DW_OP_breg2:
4043 case DW_OP_breg3:
4044 case DW_OP_breg4:
4045 case DW_OP_breg5:
4046 case DW_OP_breg6:
4047 case DW_OP_breg7:
4048 case DW_OP_breg8:
4049 case DW_OP_breg9:
4050 case DW_OP_breg10:
4051 case DW_OP_breg11:
4052 case DW_OP_breg12:
4053 case DW_OP_breg13:
4054 case DW_OP_breg14:
4055 case DW_OP_breg15:
4056 case DW_OP_breg16:
4057 case DW_OP_breg17:
4058 case DW_OP_breg18:
4059 case DW_OP_breg19:
4060 case DW_OP_breg20:
4061 case DW_OP_breg21:
4062 case DW_OP_breg22:
4063 case DW_OP_breg23:
4064 case DW_OP_breg24:
4065 case DW_OP_breg25:
4066 case DW_OP_breg26:
4067 case DW_OP_breg27:
4068 case DW_OP_breg28:
4069 case DW_OP_breg29:
4070 case DW_OP_breg30:
4071 case DW_OP_breg31:
4072 data = safe_read_sleb128 (data, end, &l);
4073 fprintf_filtered (stream, " %s [$%s]", plongest (l),
4074 locexpr_regname (arch, op - DW_OP_breg0));
4075 break;
4076
4077 case DW_OP_bregx:
4078 data = safe_read_uleb128 (data, end, &ul);
4079 data = safe_read_sleb128 (data, end, &l);
4080 fprintf_filtered (stream, " register %s [$%s] offset %s",
4081 pulongest (ul),
4082 locexpr_regname (arch, (int) ul),
4083 plongest (l));
4084 break;
4085
4086 case DW_OP_fbreg:
4087 data = safe_read_sleb128 (data, end, &l);
4088 fprintf_filtered (stream, " %s", plongest (l));
4089 break;
4090
4091 case DW_OP_xderef_size:
4092 case DW_OP_deref_size:
4093 case DW_OP_pick:
4094 fprintf_filtered (stream, " %d", *data);
4095 ++data;
4096 break;
4097
4098 case DW_OP_plus_uconst:
4099 data = safe_read_uleb128 (data, end, &ul);
4100 fprintf_filtered (stream, " %s", pulongest (ul));
4101 break;
4102
4103 case DW_OP_skip:
4104 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
4105 data += 2;
4106 fprintf_filtered (stream, " to %ld",
4107 (long) (data + l - start));
4108 break;
4109
4110 case DW_OP_bra:
4111 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
4112 data += 2;
4113 fprintf_filtered (stream, " %ld",
4114 (long) (data + l - start));
4115 break;
4116
4117 case DW_OP_call2:
4118 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
4119 data += 2;
4120 fprintf_filtered (stream, " offset %s", phex_nz (ul, 2));
4121 break;
4122
4123 case DW_OP_call4:
4124 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
4125 data += 4;
4126 fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
4127 break;
4128
4129 case DW_OP_call_ref:
4130 ul = extract_unsigned_integer (data, offset_size,
4131 gdbarch_byte_order (arch));
4132 data += offset_size;
4133 fprintf_filtered (stream, " offset %s", phex_nz (ul, offset_size));
4134 break;
4135
4136 case DW_OP_piece:
4137 data = safe_read_uleb128 (data, end, &ul);
4138 fprintf_filtered (stream, " %s (bytes)", pulongest (ul));
4139 break;
4140
4141 case DW_OP_bit_piece:
4142 {
4143 uint64_t offset;
4144
4145 data = safe_read_uleb128 (data, end, &ul);
4146 data = safe_read_uleb128 (data, end, &offset);
4147 fprintf_filtered (stream, " size %s offset %s (bits)",
4148 pulongest (ul), pulongest (offset));
4149 }
4150 break;
4151
4152 case DW_OP_GNU_implicit_pointer:
4153 {
4154 ul = extract_unsigned_integer (data, offset_size,
4155 gdbarch_byte_order (arch));
4156 data += offset_size;
4157
4158 data = safe_read_sleb128 (data, end, &l);
4159
4160 fprintf_filtered (stream, " DIE %s offset %s",
4161 phex_nz (ul, offset_size),
4162 plongest (l));
4163 }
4164 break;
4165
4166 case DW_OP_GNU_deref_type:
4167 {
4168 int addr_size = *data++;
4169 cu_offset offset;
4170 struct type *type;
4171
4172 data = safe_read_uleb128 (data, end, &ul);
4173 offset.cu_off = ul;
4174 type = dwarf2_get_die_type (offset, per_cu);
4175 fprintf_filtered (stream, "<");
4176 type_print (type, "", stream, -1);
4177 fprintf_filtered (stream, " [0x%s]> %d", phex_nz (offset.cu_off, 0),
4178 addr_size);
4179 }
4180 break;
4181
4182 case DW_OP_GNU_const_type:
4183 {
4184 cu_offset type_die;
4185 struct type *type;
4186
4187 data = safe_read_uleb128 (data, end, &ul);
4188 type_die.cu_off = ul;
4189 type = dwarf2_get_die_type (type_die, per_cu);
4190 fprintf_filtered (stream, "<");
4191 type_print (type, "", stream, -1);
4192 fprintf_filtered (stream, " [0x%s]>", phex_nz (type_die.cu_off, 0));
4193 }
4194 break;
4195
4196 case DW_OP_GNU_regval_type:
4197 {
4198 uint64_t reg;
4199 cu_offset type_die;
4200 struct type *type;
4201
4202 data = safe_read_uleb128 (data, end, &reg);
4203 data = safe_read_uleb128 (data, end, &ul);
4204 type_die.cu_off = ul;
4205
4206 type = dwarf2_get_die_type (type_die, per_cu);
4207 fprintf_filtered (stream, "<");
4208 type_print (type, "", stream, -1);
4209 fprintf_filtered (stream, " [0x%s]> [$%s]",
4210 phex_nz (type_die.cu_off, 0),
4211 locexpr_regname (arch, reg));
4212 }
4213 break;
4214
4215 case DW_OP_GNU_convert:
4216 case DW_OP_GNU_reinterpret:
4217 {
4218 cu_offset type_die;
4219
4220 data = safe_read_uleb128 (data, end, &ul);
4221 type_die.cu_off = ul;
4222
4223 if (type_die.cu_off == 0)
4224 fprintf_filtered (stream, "<0>");
4225 else
4226 {
4227 struct type *type;
4228
4229 type = dwarf2_get_die_type (type_die, per_cu);
4230 fprintf_filtered (stream, "<");
4231 type_print (type, "", stream, -1);
4232 fprintf_filtered (stream, " [0x%s]>", phex_nz (type_die.cu_off, 0));
4233 }
4234 }
4235 break;
4236
4237 case DW_OP_GNU_entry_value:
4238 data = safe_read_uleb128 (data, end, &ul);
4239 fputc_filtered ('\n', stream);
4240 disassemble_dwarf_expression (stream, arch, addr_size, offset_size,
4241 start, data, data + ul, indent + 2,
4242 all, per_cu);
4243 data += ul;
4244 continue;
4245
4246 case DW_OP_GNU_parameter_ref:
4247 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
4248 data += 4;
4249 fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
4250 break;
4251
4252 case DW_OP_GNU_addr_index:
4253 data = safe_read_uleb128 (data, end, &ul);
4254 ul = dwarf2_read_addr_index (per_cu, ul);
4255 fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
4256 break;
4257 case DW_OP_GNU_const_index:
4258 data = safe_read_uleb128 (data, end, &ul);
4259 ul = dwarf2_read_addr_index (per_cu, ul);
4260 fprintf_filtered (stream, " %s", pulongest (ul));
4261 break;
4262 }
4263
4264 fprintf_filtered (stream, "\n");
4265 }
4266
4267 return data;
4268 }
4269
4270 /* Describe a single location, which may in turn consist of multiple
4271 pieces. */
4272
4273 static void
4274 locexpr_describe_location_1 (struct symbol *symbol, CORE_ADDR addr,
4275 struct ui_file *stream,
4276 const gdb_byte *data, size_t size,
4277 struct objfile *objfile, unsigned int addr_size,
4278 int offset_size, struct dwarf2_per_cu_data *per_cu)
4279 {
4280 const gdb_byte *end = data + size;
4281 int first_piece = 1, bad = 0;
4282
4283 while (data < end)
4284 {
4285 const gdb_byte *here = data;
4286 int disassemble = 1;
4287
4288 if (first_piece)
4289 first_piece = 0;
4290 else
4291 fprintf_filtered (stream, _(", and "));
4292
4293 if (!dwarf_always_disassemble)
4294 {
4295 data = locexpr_describe_location_piece (symbol, stream,
4296 addr, objfile, per_cu,
4297 data, end, addr_size);
4298 /* If we printed anything, or if we have an empty piece,
4299 then don't disassemble. */
4300 if (data != here
4301 || data[0] == DW_OP_piece
4302 || data[0] == DW_OP_bit_piece)
4303 disassemble = 0;
4304 }
4305 if (disassemble)
4306 {
4307 fprintf_filtered (stream, _("a complex DWARF expression:\n"));
4308 data = disassemble_dwarf_expression (stream,
4309 get_objfile_arch (objfile),
4310 addr_size, offset_size, data,
4311 data, end, 0,
4312 dwarf_always_disassemble,
4313 per_cu);
4314 }
4315
4316 if (data < end)
4317 {
4318 int empty = data == here;
4319
4320 if (disassemble)
4321 fprintf_filtered (stream, " ");
4322 if (data[0] == DW_OP_piece)
4323 {
4324 uint64_t bytes;
4325
4326 data = safe_read_uleb128 (data + 1, end, &bytes);
4327
4328 if (empty)
4329 fprintf_filtered (stream, _("an empty %s-byte piece"),
4330 pulongest (bytes));
4331 else
4332 fprintf_filtered (stream, _(" [%s-byte piece]"),
4333 pulongest (bytes));
4334 }
4335 else if (data[0] == DW_OP_bit_piece)
4336 {
4337 uint64_t bits, offset;
4338
4339 data = safe_read_uleb128 (data + 1, end, &bits);
4340 data = safe_read_uleb128 (data, end, &offset);
4341
4342 if (empty)
4343 fprintf_filtered (stream,
4344 _("an empty %s-bit piece"),
4345 pulongest (bits));
4346 else
4347 fprintf_filtered (stream,
4348 _(" [%s-bit piece, offset %s bits]"),
4349 pulongest (bits), pulongest (offset));
4350 }
4351 else
4352 {
4353 bad = 1;
4354 break;
4355 }
4356 }
4357 }
4358
4359 if (bad || data > end)
4360 error (_("Corrupted DWARF2 expression for \"%s\"."),
4361 SYMBOL_PRINT_NAME (symbol));
4362 }
4363
4364 /* Print a natural-language description of SYMBOL to STREAM. This
4365 version is for a symbol with a single location. */
4366
4367 static void
4368 locexpr_describe_location (struct symbol *symbol, CORE_ADDR addr,
4369 struct ui_file *stream)
4370 {
4371 struct dwarf2_locexpr_baton *dlbaton
4372 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
4373 struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
4374 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4375 int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
4376
4377 locexpr_describe_location_1 (symbol, addr, stream,
4378 dlbaton->data, dlbaton->size,
4379 objfile, addr_size, offset_size,
4380 dlbaton->per_cu);
4381 }
4382
4383 /* Describe the location of SYMBOL as an agent value in VALUE, generating
4384 any necessary bytecode in AX. */
4385
4386 static void
4387 locexpr_tracepoint_var_ref (struct symbol *symbol, struct gdbarch *gdbarch,
4388 struct agent_expr *ax, struct axs_value *value)
4389 {
4390 struct dwarf2_locexpr_baton *dlbaton
4391 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
4392 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4393
4394 if (dlbaton->size == 0)
4395 value->optimized_out = 1;
4396 else
4397 dwarf2_compile_expr_to_ax (ax, value, gdbarch, addr_size,
4398 dlbaton->data, dlbaton->data + dlbaton->size,
4399 dlbaton->per_cu);
4400 }
4401
4402 /* symbol_computed_ops 'generate_c_location' method. */
4403
4404 static void
4405 locexpr_generate_c_location (struct symbol *sym, struct ui_file *stream,
4406 struct gdbarch *gdbarch,
4407 unsigned char *registers_used,
4408 CORE_ADDR pc, const char *result_name)
4409 {
4410 struct dwarf2_locexpr_baton *dlbaton
4411 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (sym);
4412 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4413
4414 if (dlbaton->size == 0)
4415 error (_("symbol \"%s\" is optimized out"), SYMBOL_NATURAL_NAME (sym));
4416
4417 compile_dwarf_expr_to_c (stream, result_name,
4418 sym, pc, gdbarch, registers_used, addr_size,
4419 dlbaton->data, dlbaton->data + dlbaton->size,
4420 dlbaton->per_cu);
4421 }
4422
4423 /* The set of location functions used with the DWARF-2 expression
4424 evaluator. */
4425 const struct symbol_computed_ops dwarf2_locexpr_funcs = {
4426 locexpr_read_variable,
4427 locexpr_read_variable_at_entry,
4428 locexpr_get_symbol_read_needs,
4429 locexpr_describe_location,
4430 0, /* location_has_loclist */
4431 locexpr_tracepoint_var_ref,
4432 locexpr_generate_c_location
4433 };
4434
4435
4436 /* Wrapper functions for location lists. These generally find
4437 the appropriate location expression and call something above. */
4438
4439 /* Return the value of SYMBOL in FRAME using the DWARF-2 expression
4440 evaluator to calculate the location. */
4441 static struct value *
4442 loclist_read_variable (struct symbol *symbol, struct frame_info *frame)
4443 {
4444 struct dwarf2_loclist_baton *dlbaton
4445 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4446 struct value *val;
4447 const gdb_byte *data;
4448 size_t size;
4449 CORE_ADDR pc = frame ? get_frame_address_in_block (frame) : 0;
4450
4451 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4452 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, data, size,
4453 dlbaton->per_cu);
4454
4455 return val;
4456 }
4457
4458 /* Read variable SYMBOL like loclist_read_variable at (callee) FRAME's function
4459 entry. SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
4460 will be thrown.
4461
4462 Function always returns non-NULL value, it may be marked optimized out if
4463 inferior frame information is not available. It throws NO_ENTRY_VALUE_ERROR
4464 if it cannot resolve the parameter for any reason. */
4465
4466 static struct value *
4467 loclist_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
4468 {
4469 struct dwarf2_loclist_baton *dlbaton
4470 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4471 const gdb_byte *data;
4472 size_t size;
4473 CORE_ADDR pc;
4474
4475 if (frame == NULL || !get_frame_func_if_available (frame, &pc))
4476 return allocate_optimized_out_value (SYMBOL_TYPE (symbol));
4477
4478 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4479 if (data == NULL)
4480 return allocate_optimized_out_value (SYMBOL_TYPE (symbol));
4481
4482 return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, data, size);
4483 }
4484
4485 /* Implementation of get_symbol_read_needs from
4486 symbol_computed_ops. */
4487
4488 static enum symbol_needs_kind
4489 loclist_symbol_needs (struct symbol *symbol)
4490 {
4491 /* If there's a location list, then assume we need to have a frame
4492 to choose the appropriate location expression. With tracking of
4493 global variables this is not necessarily true, but such tracking
4494 is disabled in GCC at the moment until we figure out how to
4495 represent it. */
4496
4497 return SYMBOL_NEEDS_FRAME;
4498 }
4499
4500 /* Print a natural-language description of SYMBOL to STREAM. This
4501 version applies when there is a list of different locations, each
4502 with a specified address range. */
4503
4504 static void
4505 loclist_describe_location (struct symbol *symbol, CORE_ADDR addr,
4506 struct ui_file *stream)
4507 {
4508 struct dwarf2_loclist_baton *dlbaton
4509 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4510 const gdb_byte *loc_ptr, *buf_end;
4511 struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
4512 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4513 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4514 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4515 int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
4516 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
4517 /* Adjust base_address for relocatable objects. */
4518 CORE_ADDR base_offset = dwarf2_per_cu_text_offset (dlbaton->per_cu);
4519 CORE_ADDR base_address = dlbaton->base_address + base_offset;
4520 int done = 0;
4521
4522 loc_ptr = dlbaton->data;
4523 buf_end = dlbaton->data + dlbaton->size;
4524
4525 fprintf_filtered (stream, _("multi-location:\n"));
4526
4527 /* Iterate through locations until we run out. */
4528 while (!done)
4529 {
4530 CORE_ADDR low = 0, high = 0; /* init for gcc -Wall */
4531 int length;
4532 enum debug_loc_kind kind;
4533 const gdb_byte *new_ptr = NULL; /* init for gcc -Wall */
4534
4535 if (dlbaton->from_dwo)
4536 kind = decode_debug_loc_dwo_addresses (dlbaton->per_cu,
4537 loc_ptr, buf_end, &new_ptr,
4538 &low, &high, byte_order);
4539 else
4540 kind = decode_debug_loc_addresses (loc_ptr, buf_end, &new_ptr,
4541 &low, &high,
4542 byte_order, addr_size,
4543 signed_addr_p);
4544 loc_ptr = new_ptr;
4545 switch (kind)
4546 {
4547 case DEBUG_LOC_END_OF_LIST:
4548 done = 1;
4549 continue;
4550 case DEBUG_LOC_BASE_ADDRESS:
4551 base_address = high + base_offset;
4552 fprintf_filtered (stream, _(" Base address %s"),
4553 paddress (gdbarch, base_address));
4554 continue;
4555 case DEBUG_LOC_START_END:
4556 case DEBUG_LOC_START_LENGTH:
4557 break;
4558 case DEBUG_LOC_BUFFER_OVERFLOW:
4559 case DEBUG_LOC_INVALID_ENTRY:
4560 error (_("Corrupted DWARF expression for symbol \"%s\"."),
4561 SYMBOL_PRINT_NAME (symbol));
4562 default:
4563 gdb_assert_not_reached ("bad debug_loc_kind");
4564 }
4565
4566 /* Otherwise, a location expression entry. */
4567 low += base_address;
4568 high += base_address;
4569
4570 low = gdbarch_adjust_dwarf2_addr (gdbarch, low);
4571 high = gdbarch_adjust_dwarf2_addr (gdbarch, high);
4572
4573 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
4574 loc_ptr += 2;
4575
4576 /* (It would improve readability to print only the minimum
4577 necessary digits of the second number of the range.) */
4578 fprintf_filtered (stream, _(" Range %s-%s: "),
4579 paddress (gdbarch, low), paddress (gdbarch, high));
4580
4581 /* Now describe this particular location. */
4582 locexpr_describe_location_1 (symbol, low, stream, loc_ptr, length,
4583 objfile, addr_size, offset_size,
4584 dlbaton->per_cu);
4585
4586 fprintf_filtered (stream, "\n");
4587
4588 loc_ptr += length;
4589 }
4590 }
4591
4592 /* Describe the location of SYMBOL as an agent value in VALUE, generating
4593 any necessary bytecode in AX. */
4594 static void
4595 loclist_tracepoint_var_ref (struct symbol *symbol, struct gdbarch *gdbarch,
4596 struct agent_expr *ax, struct axs_value *value)
4597 {
4598 struct dwarf2_loclist_baton *dlbaton
4599 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4600 const gdb_byte *data;
4601 size_t size;
4602 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4603
4604 data = dwarf2_find_location_expression (dlbaton, &size, ax->scope);
4605 if (size == 0)
4606 value->optimized_out = 1;
4607 else
4608 dwarf2_compile_expr_to_ax (ax, value, gdbarch, addr_size, data, data + size,
4609 dlbaton->per_cu);
4610 }
4611
4612 /* symbol_computed_ops 'generate_c_location' method. */
4613
4614 static void
4615 loclist_generate_c_location (struct symbol *sym, struct ui_file *stream,
4616 struct gdbarch *gdbarch,
4617 unsigned char *registers_used,
4618 CORE_ADDR pc, const char *result_name)
4619 {
4620 struct dwarf2_loclist_baton *dlbaton
4621 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (sym);
4622 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4623 const gdb_byte *data;
4624 size_t size;
4625
4626 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4627 if (size == 0)
4628 error (_("symbol \"%s\" is optimized out"), SYMBOL_NATURAL_NAME (sym));
4629
4630 compile_dwarf_expr_to_c (stream, result_name,
4631 sym, pc, gdbarch, registers_used, addr_size,
4632 data, data + size,
4633 dlbaton->per_cu);
4634 }
4635
4636 /* The set of location functions used with the DWARF-2 expression
4637 evaluator and location lists. */
4638 const struct symbol_computed_ops dwarf2_loclist_funcs = {
4639 loclist_read_variable,
4640 loclist_read_variable_at_entry,
4641 loclist_symbol_needs,
4642 loclist_describe_location,
4643 1, /* location_has_loclist */
4644 loclist_tracepoint_var_ref,
4645 loclist_generate_c_location
4646 };
4647
4648 /* Provide a prototype to silence -Wmissing-prototypes. */
4649 extern initialize_file_ftype _initialize_dwarf2loc;
4650
4651 void
4652 _initialize_dwarf2loc (void)
4653 {
4654 add_setshow_zuinteger_cmd ("entry-values", class_maintenance,
4655 &entry_values_debug,
4656 _("Set entry values and tail call frames "
4657 "debugging."),
4658 _("Show entry values and tail call frames "
4659 "debugging."),
4660 _("When non-zero, the process of determining "
4661 "parameter values from function entry point "
4662 "and tail call frames will be printed."),
4663 NULL,
4664 show_entry_values_debug,
4665 &setdebuglist, &showdebuglist);
4666
4667 #if GDB_SELF_TEST
4668 register_self_test (selftests::copy_bitwise_tests);
4669 #endif
4670 }
This page took 0.119642 seconds and 5 git commands to generate.