Fix redefinition errors in C++ mode
[deliverable/binutils-gdb.git] / gdb / dwarf2loc.c
1 /* DWARF 2 location expression support for GDB.
2
3 Copyright (C) 2003-2015 Free Software Foundation, Inc.
4
5 Contributed by Daniel Jacobowitz, MontaVista Software, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "ui-out.h"
24 #include "value.h"
25 #include "frame.h"
26 #include "gdbcore.h"
27 #include "target.h"
28 #include "inferior.h"
29 #include "ax.h"
30 #include "ax-gdb.h"
31 #include "regcache.h"
32 #include "objfiles.h"
33 #include "block.h"
34 #include "gdbcmd.h"
35
36 #include "dwarf2.h"
37 #include "dwarf2expr.h"
38 #include "dwarf2loc.h"
39 #include "dwarf2-frame.h"
40 #include "compile/compile.h"
41
42 extern int dwarf2_always_disassemble;
43
44 extern const struct dwarf_expr_context_funcs dwarf_expr_ctx_funcs;
45
46 static struct value *dwarf2_evaluate_loc_desc_full (struct type *type,
47 struct frame_info *frame,
48 const gdb_byte *data,
49 size_t size,
50 struct dwarf2_per_cu_data *per_cu,
51 LONGEST byte_offset);
52
53 /* Until these have formal names, we define these here.
54 ref: http://gcc.gnu.org/wiki/DebugFission
55 Each entry in .debug_loc.dwo begins with a byte that describes the entry,
56 and is then followed by data specific to that entry. */
57
58 enum debug_loc_kind
59 {
60 /* Indicates the end of the list of entries. */
61 DEBUG_LOC_END_OF_LIST = 0,
62
63 /* This is followed by an unsigned LEB128 number that is an index into
64 .debug_addr and specifies the base address for all following entries. */
65 DEBUG_LOC_BASE_ADDRESS = 1,
66
67 /* This is followed by two unsigned LEB128 numbers that are indices into
68 .debug_addr and specify the beginning and ending addresses, and then
69 a normal location expression as in .debug_loc. */
70 DEBUG_LOC_START_END = 2,
71
72 /* This is followed by an unsigned LEB128 number that is an index into
73 .debug_addr and specifies the beginning address, and a 4 byte unsigned
74 number that specifies the length, and then a normal location expression
75 as in .debug_loc. */
76 DEBUG_LOC_START_LENGTH = 3,
77
78 /* An internal value indicating there is insufficient data. */
79 DEBUG_LOC_BUFFER_OVERFLOW = -1,
80
81 /* An internal value indicating an invalid kind of entry was found. */
82 DEBUG_LOC_INVALID_ENTRY = -2
83 };
84
85 /* Helper function which throws an error if a synthetic pointer is
86 invalid. */
87
88 static void
89 invalid_synthetic_pointer (void)
90 {
91 error (_("access outside bounds of object "
92 "referenced via synthetic pointer"));
93 }
94
95 /* Decode the addresses in a non-dwo .debug_loc entry.
96 A pointer to the next byte to examine is returned in *NEW_PTR.
97 The encoded low,high addresses are return in *LOW,*HIGH.
98 The result indicates the kind of entry found. */
99
100 static enum debug_loc_kind
101 decode_debug_loc_addresses (const gdb_byte *loc_ptr, const gdb_byte *buf_end,
102 const gdb_byte **new_ptr,
103 CORE_ADDR *low, CORE_ADDR *high,
104 enum bfd_endian byte_order,
105 unsigned int addr_size,
106 int signed_addr_p)
107 {
108 CORE_ADDR base_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
109
110 if (buf_end - loc_ptr < 2 * addr_size)
111 return DEBUG_LOC_BUFFER_OVERFLOW;
112
113 if (signed_addr_p)
114 *low = extract_signed_integer (loc_ptr, addr_size, byte_order);
115 else
116 *low = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
117 loc_ptr += addr_size;
118
119 if (signed_addr_p)
120 *high = extract_signed_integer (loc_ptr, addr_size, byte_order);
121 else
122 *high = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
123 loc_ptr += addr_size;
124
125 *new_ptr = loc_ptr;
126
127 /* A base-address-selection entry. */
128 if ((*low & base_mask) == base_mask)
129 return DEBUG_LOC_BASE_ADDRESS;
130
131 /* An end-of-list entry. */
132 if (*low == 0 && *high == 0)
133 return DEBUG_LOC_END_OF_LIST;
134
135 return DEBUG_LOC_START_END;
136 }
137
138 /* Decode the addresses in .debug_loc.dwo entry.
139 A pointer to the next byte to examine is returned in *NEW_PTR.
140 The encoded low,high addresses are return in *LOW,*HIGH.
141 The result indicates the kind of entry found. */
142
143 static enum debug_loc_kind
144 decode_debug_loc_dwo_addresses (struct dwarf2_per_cu_data *per_cu,
145 const gdb_byte *loc_ptr,
146 const gdb_byte *buf_end,
147 const gdb_byte **new_ptr,
148 CORE_ADDR *low, CORE_ADDR *high,
149 enum bfd_endian byte_order)
150 {
151 uint64_t low_index, high_index;
152
153 if (loc_ptr == buf_end)
154 return DEBUG_LOC_BUFFER_OVERFLOW;
155
156 switch (*loc_ptr++)
157 {
158 case DEBUG_LOC_END_OF_LIST:
159 *new_ptr = loc_ptr;
160 return DEBUG_LOC_END_OF_LIST;
161 case DEBUG_LOC_BASE_ADDRESS:
162 *low = 0;
163 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &high_index);
164 if (loc_ptr == NULL)
165 return DEBUG_LOC_BUFFER_OVERFLOW;
166 *high = dwarf2_read_addr_index (per_cu, high_index);
167 *new_ptr = loc_ptr;
168 return DEBUG_LOC_BASE_ADDRESS;
169 case DEBUG_LOC_START_END:
170 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &low_index);
171 if (loc_ptr == NULL)
172 return DEBUG_LOC_BUFFER_OVERFLOW;
173 *low = dwarf2_read_addr_index (per_cu, low_index);
174 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &high_index);
175 if (loc_ptr == NULL)
176 return DEBUG_LOC_BUFFER_OVERFLOW;
177 *high = dwarf2_read_addr_index (per_cu, high_index);
178 *new_ptr = loc_ptr;
179 return DEBUG_LOC_START_END;
180 case DEBUG_LOC_START_LENGTH:
181 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &low_index);
182 if (loc_ptr == NULL)
183 return DEBUG_LOC_BUFFER_OVERFLOW;
184 *low = dwarf2_read_addr_index (per_cu, low_index);
185 if (loc_ptr + 4 > buf_end)
186 return DEBUG_LOC_BUFFER_OVERFLOW;
187 *high = *low;
188 *high += extract_unsigned_integer (loc_ptr, 4, byte_order);
189 *new_ptr = loc_ptr + 4;
190 return DEBUG_LOC_START_LENGTH;
191 default:
192 return DEBUG_LOC_INVALID_ENTRY;
193 }
194 }
195
196 /* A function for dealing with location lists. Given a
197 symbol baton (BATON) and a pc value (PC), find the appropriate
198 location expression, set *LOCEXPR_LENGTH, and return a pointer
199 to the beginning of the expression. Returns NULL on failure.
200
201 For now, only return the first matching location expression; there
202 can be more than one in the list. */
203
204 const gdb_byte *
205 dwarf2_find_location_expression (struct dwarf2_loclist_baton *baton,
206 size_t *locexpr_length, CORE_ADDR pc)
207 {
208 struct objfile *objfile = dwarf2_per_cu_objfile (baton->per_cu);
209 struct gdbarch *gdbarch = get_objfile_arch (objfile);
210 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
211 unsigned int addr_size = dwarf2_per_cu_addr_size (baton->per_cu);
212 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
213 /* Adjust base_address for relocatable objects. */
214 CORE_ADDR base_offset = dwarf2_per_cu_text_offset (baton->per_cu);
215 CORE_ADDR base_address = baton->base_address + base_offset;
216 const gdb_byte *loc_ptr, *buf_end;
217
218 loc_ptr = baton->data;
219 buf_end = baton->data + baton->size;
220
221 while (1)
222 {
223 CORE_ADDR low = 0, high = 0; /* init for gcc -Wall */
224 int length;
225 enum debug_loc_kind kind;
226 const gdb_byte *new_ptr = NULL; /* init for gcc -Wall */
227
228 if (baton->from_dwo)
229 kind = decode_debug_loc_dwo_addresses (baton->per_cu,
230 loc_ptr, buf_end, &new_ptr,
231 &low, &high, byte_order);
232 else
233 kind = decode_debug_loc_addresses (loc_ptr, buf_end, &new_ptr,
234 &low, &high,
235 byte_order, addr_size,
236 signed_addr_p);
237 loc_ptr = new_ptr;
238 switch (kind)
239 {
240 case DEBUG_LOC_END_OF_LIST:
241 *locexpr_length = 0;
242 return NULL;
243 case DEBUG_LOC_BASE_ADDRESS:
244 base_address = high + base_offset;
245 continue;
246 case DEBUG_LOC_START_END:
247 case DEBUG_LOC_START_LENGTH:
248 break;
249 case DEBUG_LOC_BUFFER_OVERFLOW:
250 case DEBUG_LOC_INVALID_ENTRY:
251 error (_("dwarf2_find_location_expression: "
252 "Corrupted DWARF expression."));
253 default:
254 gdb_assert_not_reached ("bad debug_loc_kind");
255 }
256
257 /* Otherwise, a location expression entry.
258 If the entry is from a DWO, don't add base address: the entry is
259 from .debug_addr which has absolute addresses. */
260 if (! baton->from_dwo)
261 {
262 low += base_address;
263 high += base_address;
264 }
265
266 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
267 loc_ptr += 2;
268
269 if (low == high && pc == low)
270 {
271 /* This is entry PC record present only at entry point
272 of a function. Verify it is really the function entry point. */
273
274 const struct block *pc_block = block_for_pc (pc);
275 struct symbol *pc_func = NULL;
276
277 if (pc_block)
278 pc_func = block_linkage_function (pc_block);
279
280 if (pc_func && pc == BLOCK_START (SYMBOL_BLOCK_VALUE (pc_func)))
281 {
282 *locexpr_length = length;
283 return loc_ptr;
284 }
285 }
286
287 if (pc >= low && pc < high)
288 {
289 *locexpr_length = length;
290 return loc_ptr;
291 }
292
293 loc_ptr += length;
294 }
295 }
296
297 /* This is the baton used when performing dwarf2 expression
298 evaluation. */
299 struct dwarf_expr_baton
300 {
301 struct frame_info *frame;
302 struct dwarf2_per_cu_data *per_cu;
303 CORE_ADDR obj_address;
304 };
305
306 /* Helper functions for dwarf2_evaluate_loc_desc. */
307
308 /* Using the frame specified in BATON, return the value of register
309 REGNUM, treated as a pointer. */
310 static CORE_ADDR
311 dwarf_expr_read_addr_from_reg (void *baton, int dwarf_regnum)
312 {
313 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
314 struct gdbarch *gdbarch = get_frame_arch (debaton->frame);
315 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, dwarf_regnum);
316
317 return address_from_register (regnum, debaton->frame);
318 }
319
320 /* Implement struct dwarf_expr_context_funcs' "get_reg_value" callback. */
321
322 static struct value *
323 dwarf_expr_get_reg_value (void *baton, struct type *type, int dwarf_regnum)
324 {
325 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
326 struct gdbarch *gdbarch = get_frame_arch (debaton->frame);
327 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, dwarf_regnum);
328
329 return value_from_register (type, regnum, debaton->frame);
330 }
331
332 /* Read memory at ADDR (length LEN) into BUF. */
333
334 static void
335 dwarf_expr_read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
336 {
337 read_memory (addr, buf, len);
338 }
339
340 /* Using the frame specified in BATON, find the location expression
341 describing the frame base. Return a pointer to it in START and
342 its length in LENGTH. */
343 static void
344 dwarf_expr_frame_base (void *baton, const gdb_byte **start, size_t * length)
345 {
346 /* FIXME: cagney/2003-03-26: This code should be using
347 get_frame_base_address(), and then implement a dwarf2 specific
348 this_base method. */
349 struct symbol *framefunc;
350 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
351 const struct block *bl = get_frame_block (debaton->frame, NULL);
352
353 if (bl == NULL)
354 error (_("frame address is not available."));
355
356 /* Use block_linkage_function, which returns a real (not inlined)
357 function, instead of get_frame_function, which may return an
358 inlined function. */
359 framefunc = block_linkage_function (bl);
360
361 /* If we found a frame-relative symbol then it was certainly within
362 some function associated with a frame. If we can't find the frame,
363 something has gone wrong. */
364 gdb_assert (framefunc != NULL);
365
366 func_get_frame_base_dwarf_block (framefunc,
367 get_frame_address_in_block (debaton->frame),
368 start, length);
369 }
370
371 /* Implement find_frame_base_location method for LOC_BLOCK functions using
372 DWARF expression for its DW_AT_frame_base. */
373
374 static void
375 locexpr_find_frame_base_location (struct symbol *framefunc, CORE_ADDR pc,
376 const gdb_byte **start, size_t *length)
377 {
378 struct dwarf2_locexpr_baton *symbaton = SYMBOL_LOCATION_BATON (framefunc);
379
380 *length = symbaton->size;
381 *start = symbaton->data;
382 }
383
384 /* Vector for inferior functions as represented by LOC_BLOCK, if the inferior
385 function uses DWARF expression for its DW_AT_frame_base. */
386
387 const struct symbol_block_ops dwarf2_block_frame_base_locexpr_funcs =
388 {
389 locexpr_find_frame_base_location
390 };
391
392 /* Implement find_frame_base_location method for LOC_BLOCK functions using
393 DWARF location list for its DW_AT_frame_base. */
394
395 static void
396 loclist_find_frame_base_location (struct symbol *framefunc, CORE_ADDR pc,
397 const gdb_byte **start, size_t *length)
398 {
399 struct dwarf2_loclist_baton *symbaton = SYMBOL_LOCATION_BATON (framefunc);
400
401 *start = dwarf2_find_location_expression (symbaton, length, pc);
402 }
403
404 /* Vector for inferior functions as represented by LOC_BLOCK, if the inferior
405 function uses DWARF location list for its DW_AT_frame_base. */
406
407 const struct symbol_block_ops dwarf2_block_frame_base_loclist_funcs =
408 {
409 loclist_find_frame_base_location
410 };
411
412 /* See dwarf2loc.h. */
413
414 void
415 func_get_frame_base_dwarf_block (struct symbol *framefunc, CORE_ADDR pc,
416 const gdb_byte **start, size_t *length)
417 {
418 if (SYMBOL_BLOCK_OPS (framefunc) != NULL)
419 {
420 const struct symbol_block_ops *ops_block = SYMBOL_BLOCK_OPS (framefunc);
421
422 ops_block->find_frame_base_location (framefunc, pc, start, length);
423 }
424 else
425 *length = 0;
426
427 if (*length == 0)
428 error (_("Could not find the frame base for \"%s\"."),
429 SYMBOL_NATURAL_NAME (framefunc));
430 }
431
432 /* Helper function for dwarf2_evaluate_loc_desc. Computes the CFA for
433 the frame in BATON. */
434
435 static CORE_ADDR
436 dwarf_expr_frame_cfa (void *baton)
437 {
438 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
439
440 return dwarf2_frame_cfa (debaton->frame);
441 }
442
443 /* Helper function for dwarf2_evaluate_loc_desc. Computes the PC for
444 the frame in BATON. */
445
446 static CORE_ADDR
447 dwarf_expr_frame_pc (void *baton)
448 {
449 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
450
451 return get_frame_address_in_block (debaton->frame);
452 }
453
454 /* Using the objfile specified in BATON, find the address for the
455 current thread's thread-local storage with offset OFFSET. */
456 static CORE_ADDR
457 dwarf_expr_tls_address (void *baton, CORE_ADDR offset)
458 {
459 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
460 struct objfile *objfile = dwarf2_per_cu_objfile (debaton->per_cu);
461
462 return target_translate_tls_address (objfile, offset);
463 }
464
465 /* Call DWARF subroutine from DW_AT_location of DIE at DIE_OFFSET in
466 current CU (as is PER_CU). State of the CTX is not affected by the
467 call and return. */
468
469 static void
470 per_cu_dwarf_call (struct dwarf_expr_context *ctx, cu_offset die_offset,
471 struct dwarf2_per_cu_data *per_cu,
472 CORE_ADDR (*get_frame_pc) (void *baton),
473 void *baton)
474 {
475 struct dwarf2_locexpr_baton block;
476
477 block = dwarf2_fetch_die_loc_cu_off (die_offset, per_cu, get_frame_pc, baton);
478
479 /* DW_OP_call_ref is currently not supported. */
480 gdb_assert (block.per_cu == per_cu);
481
482 dwarf_expr_eval (ctx, block.data, block.size);
483 }
484
485 /* Helper interface of per_cu_dwarf_call for dwarf2_evaluate_loc_desc. */
486
487 static void
488 dwarf_expr_dwarf_call (struct dwarf_expr_context *ctx, cu_offset die_offset)
489 {
490 struct dwarf_expr_baton *debaton = ctx->baton;
491
492 per_cu_dwarf_call (ctx, die_offset, debaton->per_cu,
493 ctx->funcs->get_frame_pc, ctx->baton);
494 }
495
496 /* Callback function for dwarf2_evaluate_loc_desc. */
497
498 static struct type *
499 dwarf_expr_get_base_type (struct dwarf_expr_context *ctx,
500 cu_offset die_offset)
501 {
502 struct dwarf_expr_baton *debaton = ctx->baton;
503
504 return dwarf2_get_die_type (die_offset, debaton->per_cu);
505 }
506
507 /* See dwarf2loc.h. */
508
509 unsigned int entry_values_debug = 0;
510
511 /* Helper to set entry_values_debug. */
512
513 static void
514 show_entry_values_debug (struct ui_file *file, int from_tty,
515 struct cmd_list_element *c, const char *value)
516 {
517 fprintf_filtered (file,
518 _("Entry values and tail call frames debugging is %s.\n"),
519 value);
520 }
521
522 /* Find DW_TAG_GNU_call_site's DW_AT_GNU_call_site_target address.
523 CALLER_FRAME (for registers) can be NULL if it is not known. This function
524 always returns valid address or it throws NO_ENTRY_VALUE_ERROR. */
525
526 static CORE_ADDR
527 call_site_to_target_addr (struct gdbarch *call_site_gdbarch,
528 struct call_site *call_site,
529 struct frame_info *caller_frame)
530 {
531 switch (FIELD_LOC_KIND (call_site->target))
532 {
533 case FIELD_LOC_KIND_DWARF_BLOCK:
534 {
535 struct dwarf2_locexpr_baton *dwarf_block;
536 struct value *val;
537 struct type *caller_core_addr_type;
538 struct gdbarch *caller_arch;
539
540 dwarf_block = FIELD_DWARF_BLOCK (call_site->target);
541 if (dwarf_block == NULL)
542 {
543 struct bound_minimal_symbol msym;
544
545 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
546 throw_error (NO_ENTRY_VALUE_ERROR,
547 _("DW_AT_GNU_call_site_target is not specified "
548 "at %s in %s"),
549 paddress (call_site_gdbarch, call_site->pc),
550 (msym.minsym == NULL ? "???"
551 : MSYMBOL_PRINT_NAME (msym.minsym)));
552
553 }
554 if (caller_frame == NULL)
555 {
556 struct bound_minimal_symbol msym;
557
558 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
559 throw_error (NO_ENTRY_VALUE_ERROR,
560 _("DW_AT_GNU_call_site_target DWARF block resolving "
561 "requires known frame which is currently not "
562 "available at %s in %s"),
563 paddress (call_site_gdbarch, call_site->pc),
564 (msym.minsym == NULL ? "???"
565 : MSYMBOL_PRINT_NAME (msym.minsym)));
566
567 }
568 caller_arch = get_frame_arch (caller_frame);
569 caller_core_addr_type = builtin_type (caller_arch)->builtin_func_ptr;
570 val = dwarf2_evaluate_loc_desc (caller_core_addr_type, caller_frame,
571 dwarf_block->data, dwarf_block->size,
572 dwarf_block->per_cu);
573 /* DW_AT_GNU_call_site_target is a DWARF expression, not a DWARF
574 location. */
575 if (VALUE_LVAL (val) == lval_memory)
576 return value_address (val);
577 else
578 return value_as_address (val);
579 }
580
581 case FIELD_LOC_KIND_PHYSNAME:
582 {
583 const char *physname;
584 struct bound_minimal_symbol msym;
585
586 physname = FIELD_STATIC_PHYSNAME (call_site->target);
587
588 /* Handle both the mangled and demangled PHYSNAME. */
589 msym = lookup_minimal_symbol (physname, NULL, NULL);
590 if (msym.minsym == NULL)
591 {
592 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
593 throw_error (NO_ENTRY_VALUE_ERROR,
594 _("Cannot find function \"%s\" for a call site target "
595 "at %s in %s"),
596 physname, paddress (call_site_gdbarch, call_site->pc),
597 (msym.minsym == NULL ? "???"
598 : MSYMBOL_PRINT_NAME (msym.minsym)));
599
600 }
601 return BMSYMBOL_VALUE_ADDRESS (msym);
602 }
603
604 case FIELD_LOC_KIND_PHYSADDR:
605 return FIELD_STATIC_PHYSADDR (call_site->target);
606
607 default:
608 internal_error (__FILE__, __LINE__, _("invalid call site target kind"));
609 }
610 }
611
612 /* Convert function entry point exact address ADDR to the function which is
613 compliant with TAIL_CALL_LIST_COMPLETE condition. Throw
614 NO_ENTRY_VALUE_ERROR otherwise. */
615
616 static struct symbol *
617 func_addr_to_tail_call_list (struct gdbarch *gdbarch, CORE_ADDR addr)
618 {
619 struct symbol *sym = find_pc_function (addr);
620 struct type *type;
621
622 if (sym == NULL || BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) != addr)
623 throw_error (NO_ENTRY_VALUE_ERROR,
624 _("DW_TAG_GNU_call_site resolving failed to find function "
625 "name for address %s"),
626 paddress (gdbarch, addr));
627
628 type = SYMBOL_TYPE (sym);
629 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FUNC);
630 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
631
632 return sym;
633 }
634
635 /* Verify function with entry point exact address ADDR can never call itself
636 via its tail calls (incl. transitively). Throw NO_ENTRY_VALUE_ERROR if it
637 can call itself via tail calls.
638
639 If a funtion can tail call itself its entry value based parameters are
640 unreliable. There is no verification whether the value of some/all
641 parameters is unchanged through the self tail call, we expect if there is
642 a self tail call all the parameters can be modified. */
643
644 static void
645 func_verify_no_selftailcall (struct gdbarch *gdbarch, CORE_ADDR verify_addr)
646 {
647 struct obstack addr_obstack;
648 struct cleanup *old_chain;
649 CORE_ADDR addr;
650
651 /* Track here CORE_ADDRs which were already visited. */
652 htab_t addr_hash;
653
654 /* The verification is completely unordered. Track here function addresses
655 which still need to be iterated. */
656 VEC (CORE_ADDR) *todo = NULL;
657
658 obstack_init (&addr_obstack);
659 old_chain = make_cleanup_obstack_free (&addr_obstack);
660 addr_hash = htab_create_alloc_ex (64, core_addr_hash, core_addr_eq, NULL,
661 &addr_obstack, hashtab_obstack_allocate,
662 NULL);
663 make_cleanup_htab_delete (addr_hash);
664
665 make_cleanup (VEC_cleanup (CORE_ADDR), &todo);
666
667 VEC_safe_push (CORE_ADDR, todo, verify_addr);
668 while (!VEC_empty (CORE_ADDR, todo))
669 {
670 struct symbol *func_sym;
671 struct call_site *call_site;
672
673 addr = VEC_pop (CORE_ADDR, todo);
674
675 func_sym = func_addr_to_tail_call_list (gdbarch, addr);
676
677 for (call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (func_sym));
678 call_site; call_site = call_site->tail_call_next)
679 {
680 CORE_ADDR target_addr;
681 void **slot;
682
683 /* CALLER_FRAME with registers is not available for tail-call jumped
684 frames. */
685 target_addr = call_site_to_target_addr (gdbarch, call_site, NULL);
686
687 if (target_addr == verify_addr)
688 {
689 struct bound_minimal_symbol msym;
690
691 msym = lookup_minimal_symbol_by_pc (verify_addr);
692 throw_error (NO_ENTRY_VALUE_ERROR,
693 _("DW_OP_GNU_entry_value resolving has found "
694 "function \"%s\" at %s can call itself via tail "
695 "calls"),
696 (msym.minsym == NULL ? "???"
697 : MSYMBOL_PRINT_NAME (msym.minsym)),
698 paddress (gdbarch, verify_addr));
699 }
700
701 slot = htab_find_slot (addr_hash, &target_addr, INSERT);
702 if (*slot == NULL)
703 {
704 *slot = obstack_copy (&addr_obstack, &target_addr,
705 sizeof (target_addr));
706 VEC_safe_push (CORE_ADDR, todo, target_addr);
707 }
708 }
709 }
710
711 do_cleanups (old_chain);
712 }
713
714 /* Print user readable form of CALL_SITE->PC to gdb_stdlog. Used only for
715 ENTRY_VALUES_DEBUG. */
716
717 static void
718 tailcall_dump (struct gdbarch *gdbarch, const struct call_site *call_site)
719 {
720 CORE_ADDR addr = call_site->pc;
721 struct bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (addr - 1);
722
723 fprintf_unfiltered (gdb_stdlog, " %s(%s)", paddress (gdbarch, addr),
724 (msym.minsym == NULL ? "???"
725 : MSYMBOL_PRINT_NAME (msym.minsym)));
726
727 }
728
729 /* vec.h needs single word type name, typedef it. */
730 typedef struct call_site *call_sitep;
731
732 /* Define VEC (call_sitep) functions. */
733 DEF_VEC_P (call_sitep);
734
735 /* Intersect RESULTP with CHAIN to keep RESULTP unambiguous, keep in RESULTP
736 only top callers and bottom callees which are present in both. GDBARCH is
737 used only for ENTRY_VALUES_DEBUG. RESULTP is NULL after return if there are
738 no remaining possibilities to provide unambiguous non-trivial result.
739 RESULTP should point to NULL on the first (initialization) call. Caller is
740 responsible for xfree of any RESULTP data. */
741
742 static void
743 chain_candidate (struct gdbarch *gdbarch, struct call_site_chain **resultp,
744 VEC (call_sitep) *chain)
745 {
746 struct call_site_chain *result = *resultp;
747 long length = VEC_length (call_sitep, chain);
748 int callers, callees, idx;
749
750 if (result == NULL)
751 {
752 /* Create the initial chain containing all the passed PCs. */
753
754 result = xmalloc (sizeof (*result) + sizeof (*result->call_site)
755 * (length - 1));
756 result->length = length;
757 result->callers = result->callees = length;
758 if (!VEC_empty (call_sitep, chain))
759 memcpy (result->call_site, VEC_address (call_sitep, chain),
760 sizeof (*result->call_site) * length);
761 *resultp = result;
762
763 if (entry_values_debug)
764 {
765 fprintf_unfiltered (gdb_stdlog, "tailcall: initial:");
766 for (idx = 0; idx < length; idx++)
767 tailcall_dump (gdbarch, result->call_site[idx]);
768 fputc_unfiltered ('\n', gdb_stdlog);
769 }
770
771 return;
772 }
773
774 if (entry_values_debug)
775 {
776 fprintf_unfiltered (gdb_stdlog, "tailcall: compare:");
777 for (idx = 0; idx < length; idx++)
778 tailcall_dump (gdbarch, VEC_index (call_sitep, chain, idx));
779 fputc_unfiltered ('\n', gdb_stdlog);
780 }
781
782 /* Intersect callers. */
783
784 callers = min (result->callers, length);
785 for (idx = 0; idx < callers; idx++)
786 if (result->call_site[idx] != VEC_index (call_sitep, chain, idx))
787 {
788 result->callers = idx;
789 break;
790 }
791
792 /* Intersect callees. */
793
794 callees = min (result->callees, length);
795 for (idx = 0; idx < callees; idx++)
796 if (result->call_site[result->length - 1 - idx]
797 != VEC_index (call_sitep, chain, length - 1 - idx))
798 {
799 result->callees = idx;
800 break;
801 }
802
803 if (entry_values_debug)
804 {
805 fprintf_unfiltered (gdb_stdlog, "tailcall: reduced:");
806 for (idx = 0; idx < result->callers; idx++)
807 tailcall_dump (gdbarch, result->call_site[idx]);
808 fputs_unfiltered (" |", gdb_stdlog);
809 for (idx = 0; idx < result->callees; idx++)
810 tailcall_dump (gdbarch, result->call_site[result->length
811 - result->callees + idx]);
812 fputc_unfiltered ('\n', gdb_stdlog);
813 }
814
815 if (result->callers == 0 && result->callees == 0)
816 {
817 /* There are no common callers or callees. It could be also a direct
818 call (which has length 0) with ambiguous possibility of an indirect
819 call - CALLERS == CALLEES == 0 is valid during the first allocation
820 but any subsequence processing of such entry means ambiguity. */
821 xfree (result);
822 *resultp = NULL;
823 return;
824 }
825
826 /* See call_site_find_chain_1 why there is no way to reach the bottom callee
827 PC again. In such case there must be two different code paths to reach
828 it, therefore some of the former determined intermediate PCs must differ
829 and the unambiguous chain gets shortened. */
830 gdb_assert (result->callers + result->callees < result->length);
831 }
832
833 /* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
834 assumed frames between them use GDBARCH. Use depth first search so we can
835 keep single CHAIN of call_site's back to CALLER_PC. Function recursion
836 would have needless GDB stack overhead. Caller is responsible for xfree of
837 the returned result. Any unreliability results in thrown
838 NO_ENTRY_VALUE_ERROR. */
839
840 static struct call_site_chain *
841 call_site_find_chain_1 (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
842 CORE_ADDR callee_pc)
843 {
844 CORE_ADDR save_callee_pc = callee_pc;
845 struct obstack addr_obstack;
846 struct cleanup *back_to_retval, *back_to_workdata;
847 struct call_site_chain *retval = NULL;
848 struct call_site *call_site;
849
850 /* Mark CALL_SITEs so we do not visit the same ones twice. */
851 htab_t addr_hash;
852
853 /* CHAIN contains only the intermediate CALL_SITEs. Neither CALLER_PC's
854 call_site nor any possible call_site at CALLEE_PC's function is there.
855 Any CALL_SITE in CHAIN will be iterated to its siblings - via
856 TAIL_CALL_NEXT. This is inappropriate for CALLER_PC's call_site. */
857 VEC (call_sitep) *chain = NULL;
858
859 /* We are not interested in the specific PC inside the callee function. */
860 callee_pc = get_pc_function_start (callee_pc);
861 if (callee_pc == 0)
862 throw_error (NO_ENTRY_VALUE_ERROR, _("Unable to find function for PC %s"),
863 paddress (gdbarch, save_callee_pc));
864
865 back_to_retval = make_cleanup (free_current_contents, &retval);
866
867 obstack_init (&addr_obstack);
868 back_to_workdata = make_cleanup_obstack_free (&addr_obstack);
869 addr_hash = htab_create_alloc_ex (64, core_addr_hash, core_addr_eq, NULL,
870 &addr_obstack, hashtab_obstack_allocate,
871 NULL);
872 make_cleanup_htab_delete (addr_hash);
873
874 make_cleanup (VEC_cleanup (call_sitep), &chain);
875
876 /* Do not push CALL_SITE to CHAIN. Push there only the first tail call site
877 at the target's function. All the possible tail call sites in the
878 target's function will get iterated as already pushed into CHAIN via their
879 TAIL_CALL_NEXT. */
880 call_site = call_site_for_pc (gdbarch, caller_pc);
881
882 while (call_site)
883 {
884 CORE_ADDR target_func_addr;
885 struct call_site *target_call_site;
886
887 /* CALLER_FRAME with registers is not available for tail-call jumped
888 frames. */
889 target_func_addr = call_site_to_target_addr (gdbarch, call_site, NULL);
890
891 if (target_func_addr == callee_pc)
892 {
893 chain_candidate (gdbarch, &retval, chain);
894 if (retval == NULL)
895 break;
896
897 /* There is no way to reach CALLEE_PC again as we would prevent
898 entering it twice as being already marked in ADDR_HASH. */
899 target_call_site = NULL;
900 }
901 else
902 {
903 struct symbol *target_func;
904
905 target_func = func_addr_to_tail_call_list (gdbarch, target_func_addr);
906 target_call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (target_func));
907 }
908
909 do
910 {
911 /* Attempt to visit TARGET_CALL_SITE. */
912
913 if (target_call_site)
914 {
915 void **slot;
916
917 slot = htab_find_slot (addr_hash, &target_call_site->pc, INSERT);
918 if (*slot == NULL)
919 {
920 /* Successfully entered TARGET_CALL_SITE. */
921
922 *slot = &target_call_site->pc;
923 VEC_safe_push (call_sitep, chain, target_call_site);
924 break;
925 }
926 }
927
928 /* Backtrack (without revisiting the originating call_site). Try the
929 callers's sibling; if there isn't any try the callers's callers's
930 sibling etc. */
931
932 target_call_site = NULL;
933 while (!VEC_empty (call_sitep, chain))
934 {
935 call_site = VEC_pop (call_sitep, chain);
936
937 gdb_assert (htab_find_slot (addr_hash, &call_site->pc,
938 NO_INSERT) != NULL);
939 htab_remove_elt (addr_hash, &call_site->pc);
940
941 target_call_site = call_site->tail_call_next;
942 if (target_call_site)
943 break;
944 }
945 }
946 while (target_call_site);
947
948 if (VEC_empty (call_sitep, chain))
949 call_site = NULL;
950 else
951 call_site = VEC_last (call_sitep, chain);
952 }
953
954 if (retval == NULL)
955 {
956 struct bound_minimal_symbol msym_caller, msym_callee;
957
958 msym_caller = lookup_minimal_symbol_by_pc (caller_pc);
959 msym_callee = lookup_minimal_symbol_by_pc (callee_pc);
960 throw_error (NO_ENTRY_VALUE_ERROR,
961 _("There are no unambiguously determinable intermediate "
962 "callers or callees between caller function \"%s\" at %s "
963 "and callee function \"%s\" at %s"),
964 (msym_caller.minsym == NULL
965 ? "???" : MSYMBOL_PRINT_NAME (msym_caller.minsym)),
966 paddress (gdbarch, caller_pc),
967 (msym_callee.minsym == NULL
968 ? "???" : MSYMBOL_PRINT_NAME (msym_callee.minsym)),
969 paddress (gdbarch, callee_pc));
970 }
971
972 do_cleanups (back_to_workdata);
973 discard_cleanups (back_to_retval);
974 return retval;
975 }
976
977 /* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
978 assumed frames between them use GDBARCH. If valid call_site_chain cannot be
979 constructed return NULL. Caller is responsible for xfree of the returned
980 result. */
981
982 struct call_site_chain *
983 call_site_find_chain (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
984 CORE_ADDR callee_pc)
985 {
986 volatile struct gdb_exception e;
987 struct call_site_chain *retval = NULL;
988
989 TRY_CATCH (e, RETURN_MASK_ERROR)
990 {
991 retval = call_site_find_chain_1 (gdbarch, caller_pc, callee_pc);
992 }
993 if (e.reason < 0)
994 {
995 if (e.error == NO_ENTRY_VALUE_ERROR)
996 {
997 if (entry_values_debug)
998 exception_print (gdb_stdout, e);
999
1000 return NULL;
1001 }
1002 else
1003 throw_exception (e);
1004 }
1005 return retval;
1006 }
1007
1008 /* Return 1 if KIND and KIND_U match PARAMETER. Return 0 otherwise. */
1009
1010 static int
1011 call_site_parameter_matches (struct call_site_parameter *parameter,
1012 enum call_site_parameter_kind kind,
1013 union call_site_parameter_u kind_u)
1014 {
1015 if (kind == parameter->kind)
1016 switch (kind)
1017 {
1018 case CALL_SITE_PARAMETER_DWARF_REG:
1019 return kind_u.dwarf_reg == parameter->u.dwarf_reg;
1020 case CALL_SITE_PARAMETER_FB_OFFSET:
1021 return kind_u.fb_offset == parameter->u.fb_offset;
1022 case CALL_SITE_PARAMETER_PARAM_OFFSET:
1023 return kind_u.param_offset.cu_off == parameter->u.param_offset.cu_off;
1024 }
1025 return 0;
1026 }
1027
1028 /* Fetch call_site_parameter from caller matching KIND and KIND_U.
1029 FRAME is for callee.
1030
1031 Function always returns non-NULL, it throws NO_ENTRY_VALUE_ERROR
1032 otherwise. */
1033
1034 static struct call_site_parameter *
1035 dwarf_expr_reg_to_entry_parameter (struct frame_info *frame,
1036 enum call_site_parameter_kind kind,
1037 union call_site_parameter_u kind_u,
1038 struct dwarf2_per_cu_data **per_cu_return)
1039 {
1040 CORE_ADDR func_addr, caller_pc;
1041 struct gdbarch *gdbarch;
1042 struct frame_info *caller_frame;
1043 struct call_site *call_site;
1044 int iparams;
1045 /* Initialize it just to avoid a GCC false warning. */
1046 struct call_site_parameter *parameter = NULL;
1047 CORE_ADDR target_addr;
1048
1049 while (get_frame_type (frame) == INLINE_FRAME)
1050 {
1051 frame = get_prev_frame (frame);
1052 gdb_assert (frame != NULL);
1053 }
1054
1055 func_addr = get_frame_func (frame);
1056 gdbarch = get_frame_arch (frame);
1057 caller_frame = get_prev_frame (frame);
1058 if (gdbarch != frame_unwind_arch (frame))
1059 {
1060 struct bound_minimal_symbol msym
1061 = lookup_minimal_symbol_by_pc (func_addr);
1062 struct gdbarch *caller_gdbarch = frame_unwind_arch (frame);
1063
1064 throw_error (NO_ENTRY_VALUE_ERROR,
1065 _("DW_OP_GNU_entry_value resolving callee gdbarch %s "
1066 "(of %s (%s)) does not match caller gdbarch %s"),
1067 gdbarch_bfd_arch_info (gdbarch)->printable_name,
1068 paddress (gdbarch, func_addr),
1069 (msym.minsym == NULL ? "???"
1070 : MSYMBOL_PRINT_NAME (msym.minsym)),
1071 gdbarch_bfd_arch_info (caller_gdbarch)->printable_name);
1072 }
1073
1074 if (caller_frame == NULL)
1075 {
1076 struct bound_minimal_symbol msym
1077 = lookup_minimal_symbol_by_pc (func_addr);
1078
1079 throw_error (NO_ENTRY_VALUE_ERROR, _("DW_OP_GNU_entry_value resolving "
1080 "requires caller of %s (%s)"),
1081 paddress (gdbarch, func_addr),
1082 (msym.minsym == NULL ? "???"
1083 : MSYMBOL_PRINT_NAME (msym.minsym)));
1084 }
1085 caller_pc = get_frame_pc (caller_frame);
1086 call_site = call_site_for_pc (gdbarch, caller_pc);
1087
1088 target_addr = call_site_to_target_addr (gdbarch, call_site, caller_frame);
1089 if (target_addr != func_addr)
1090 {
1091 struct minimal_symbol *target_msym, *func_msym;
1092
1093 target_msym = lookup_minimal_symbol_by_pc (target_addr).minsym;
1094 func_msym = lookup_minimal_symbol_by_pc (func_addr).minsym;
1095 throw_error (NO_ENTRY_VALUE_ERROR,
1096 _("DW_OP_GNU_entry_value resolving expects callee %s at %s "
1097 "but the called frame is for %s at %s"),
1098 (target_msym == NULL ? "???"
1099 : MSYMBOL_PRINT_NAME (target_msym)),
1100 paddress (gdbarch, target_addr),
1101 func_msym == NULL ? "???" : MSYMBOL_PRINT_NAME (func_msym),
1102 paddress (gdbarch, func_addr));
1103 }
1104
1105 /* No entry value based parameters would be reliable if this function can
1106 call itself via tail calls. */
1107 func_verify_no_selftailcall (gdbarch, func_addr);
1108
1109 for (iparams = 0; iparams < call_site->parameter_count; iparams++)
1110 {
1111 parameter = &call_site->parameter[iparams];
1112 if (call_site_parameter_matches (parameter, kind, kind_u))
1113 break;
1114 }
1115 if (iparams == call_site->parameter_count)
1116 {
1117 struct minimal_symbol *msym
1118 = lookup_minimal_symbol_by_pc (caller_pc).minsym;
1119
1120 /* DW_TAG_GNU_call_site_parameter will be missing just if GCC could not
1121 determine its value. */
1122 throw_error (NO_ENTRY_VALUE_ERROR, _("Cannot find matching parameter "
1123 "at DW_TAG_GNU_call_site %s at %s"),
1124 paddress (gdbarch, caller_pc),
1125 msym == NULL ? "???" : MSYMBOL_PRINT_NAME (msym));
1126 }
1127
1128 *per_cu_return = call_site->per_cu;
1129 return parameter;
1130 }
1131
1132 /* Return value for PARAMETER matching DEREF_SIZE. If DEREF_SIZE is -1, return
1133 the normal DW_AT_GNU_call_site_value block. Otherwise return the
1134 DW_AT_GNU_call_site_data_value (dereferenced) block.
1135
1136 TYPE and CALLER_FRAME specify how to evaluate the DWARF block into returned
1137 struct value.
1138
1139 Function always returns non-NULL, non-optimized out value. It throws
1140 NO_ENTRY_VALUE_ERROR if it cannot resolve the value for any reason. */
1141
1142 static struct value *
1143 dwarf_entry_parameter_to_value (struct call_site_parameter *parameter,
1144 CORE_ADDR deref_size, struct type *type,
1145 struct frame_info *caller_frame,
1146 struct dwarf2_per_cu_data *per_cu)
1147 {
1148 const gdb_byte *data_src;
1149 gdb_byte *data;
1150 size_t size;
1151
1152 data_src = deref_size == -1 ? parameter->value : parameter->data_value;
1153 size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;
1154
1155 /* DEREF_SIZE size is not verified here. */
1156 if (data_src == NULL)
1157 throw_error (NO_ENTRY_VALUE_ERROR,
1158 _("Cannot resolve DW_AT_GNU_call_site_data_value"));
1159
1160 /* DW_AT_GNU_call_site_value is a DWARF expression, not a DWARF
1161 location. Postprocessing of DWARF_VALUE_MEMORY would lose the type from
1162 DWARF block. */
1163 data = alloca (size + 1);
1164 memcpy (data, data_src, size);
1165 data[size] = DW_OP_stack_value;
1166
1167 return dwarf2_evaluate_loc_desc (type, caller_frame, data, size + 1, per_cu);
1168 }
1169
1170 /* Execute DWARF block of call_site_parameter which matches KIND and KIND_U.
1171 Choose DEREF_SIZE value of that parameter. Search caller of the CTX's
1172 frame. CTX must be of dwarf_expr_ctx_funcs kind.
1173
1174 The CTX caller can be from a different CU - per_cu_dwarf_call implementation
1175 can be more simple as it does not support cross-CU DWARF executions. */
1176
1177 static void
1178 dwarf_expr_push_dwarf_reg_entry_value (struct dwarf_expr_context *ctx,
1179 enum call_site_parameter_kind kind,
1180 union call_site_parameter_u kind_u,
1181 int deref_size)
1182 {
1183 struct dwarf_expr_baton *debaton;
1184 struct frame_info *frame, *caller_frame;
1185 struct dwarf2_per_cu_data *caller_per_cu;
1186 struct dwarf_expr_baton baton_local;
1187 struct dwarf_expr_context saved_ctx;
1188 struct call_site_parameter *parameter;
1189 const gdb_byte *data_src;
1190 size_t size;
1191
1192 gdb_assert (ctx->funcs == &dwarf_expr_ctx_funcs);
1193 debaton = ctx->baton;
1194 frame = debaton->frame;
1195 caller_frame = get_prev_frame (frame);
1196
1197 parameter = dwarf_expr_reg_to_entry_parameter (frame, kind, kind_u,
1198 &caller_per_cu);
1199 data_src = deref_size == -1 ? parameter->value : parameter->data_value;
1200 size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;
1201
1202 /* DEREF_SIZE size is not verified here. */
1203 if (data_src == NULL)
1204 throw_error (NO_ENTRY_VALUE_ERROR,
1205 _("Cannot resolve DW_AT_GNU_call_site_data_value"));
1206
1207 baton_local.frame = caller_frame;
1208 baton_local.per_cu = caller_per_cu;
1209 baton_local.obj_address = 0;
1210
1211 saved_ctx.gdbarch = ctx->gdbarch;
1212 saved_ctx.addr_size = ctx->addr_size;
1213 saved_ctx.offset = ctx->offset;
1214 saved_ctx.baton = ctx->baton;
1215 ctx->gdbarch = get_objfile_arch (dwarf2_per_cu_objfile (baton_local.per_cu));
1216 ctx->addr_size = dwarf2_per_cu_addr_size (baton_local.per_cu);
1217 ctx->offset = dwarf2_per_cu_text_offset (baton_local.per_cu);
1218 ctx->baton = &baton_local;
1219
1220 dwarf_expr_eval (ctx, data_src, size);
1221
1222 ctx->gdbarch = saved_ctx.gdbarch;
1223 ctx->addr_size = saved_ctx.addr_size;
1224 ctx->offset = saved_ctx.offset;
1225 ctx->baton = saved_ctx.baton;
1226 }
1227
1228 /* Callback function for dwarf2_evaluate_loc_desc.
1229 Fetch the address indexed by DW_OP_GNU_addr_index. */
1230
1231 static CORE_ADDR
1232 dwarf_expr_get_addr_index (void *baton, unsigned int index)
1233 {
1234 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
1235
1236 return dwarf2_read_addr_index (debaton->per_cu, index);
1237 }
1238
1239 /* Callback function for get_object_address. Return the address of the VLA
1240 object. */
1241
1242 static CORE_ADDR
1243 dwarf_expr_get_obj_addr (void *baton)
1244 {
1245 struct dwarf_expr_baton *debaton = baton;
1246
1247 gdb_assert (debaton != NULL);
1248
1249 if (debaton->obj_address == 0)
1250 error (_("Location address is not set."));
1251
1252 return debaton->obj_address;
1253 }
1254
1255 /* VALUE must be of type lval_computed with entry_data_value_funcs. Perform
1256 the indirect method on it, that is use its stored target value, the sole
1257 purpose of entry_data_value_funcs.. */
1258
1259 static struct value *
1260 entry_data_value_coerce_ref (const struct value *value)
1261 {
1262 struct type *checked_type = check_typedef (value_type (value));
1263 struct value *target_val;
1264
1265 if (TYPE_CODE (checked_type) != TYPE_CODE_REF)
1266 return NULL;
1267
1268 target_val = value_computed_closure (value);
1269 value_incref (target_val);
1270 return target_val;
1271 }
1272
1273 /* Implement copy_closure. */
1274
1275 static void *
1276 entry_data_value_copy_closure (const struct value *v)
1277 {
1278 struct value *target_val = value_computed_closure (v);
1279
1280 value_incref (target_val);
1281 return target_val;
1282 }
1283
1284 /* Implement free_closure. */
1285
1286 static void
1287 entry_data_value_free_closure (struct value *v)
1288 {
1289 struct value *target_val = value_computed_closure (v);
1290
1291 value_free (target_val);
1292 }
1293
1294 /* Vector for methods for an entry value reference where the referenced value
1295 is stored in the caller. On the first dereference use
1296 DW_AT_GNU_call_site_data_value in the caller. */
1297
1298 static const struct lval_funcs entry_data_value_funcs =
1299 {
1300 NULL, /* read */
1301 NULL, /* write */
1302 NULL, /* indirect */
1303 entry_data_value_coerce_ref,
1304 NULL, /* check_synthetic_pointer */
1305 entry_data_value_copy_closure,
1306 entry_data_value_free_closure
1307 };
1308
1309 /* Read parameter of TYPE at (callee) FRAME's function entry. KIND and KIND_U
1310 are used to match DW_AT_location at the caller's
1311 DW_TAG_GNU_call_site_parameter.
1312
1313 Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it
1314 cannot resolve the parameter for any reason. */
1315
1316 static struct value *
1317 value_of_dwarf_reg_entry (struct type *type, struct frame_info *frame,
1318 enum call_site_parameter_kind kind,
1319 union call_site_parameter_u kind_u)
1320 {
1321 struct type *checked_type = check_typedef (type);
1322 struct type *target_type = TYPE_TARGET_TYPE (checked_type);
1323 struct frame_info *caller_frame = get_prev_frame (frame);
1324 struct value *outer_val, *target_val, *val;
1325 struct call_site_parameter *parameter;
1326 struct dwarf2_per_cu_data *caller_per_cu;
1327
1328 parameter = dwarf_expr_reg_to_entry_parameter (frame, kind, kind_u,
1329 &caller_per_cu);
1330
1331 outer_val = dwarf_entry_parameter_to_value (parameter, -1 /* deref_size */,
1332 type, caller_frame,
1333 caller_per_cu);
1334
1335 /* Check if DW_AT_GNU_call_site_data_value cannot be used. If it should be
1336 used and it is not available do not fall back to OUTER_VAL - dereferencing
1337 TYPE_CODE_REF with non-entry data value would give current value - not the
1338 entry value. */
1339
1340 if (TYPE_CODE (checked_type) != TYPE_CODE_REF
1341 || TYPE_TARGET_TYPE (checked_type) == NULL)
1342 return outer_val;
1343
1344 target_val = dwarf_entry_parameter_to_value (parameter,
1345 TYPE_LENGTH (target_type),
1346 target_type, caller_frame,
1347 caller_per_cu);
1348
1349 release_value (target_val);
1350 val = allocate_computed_value (type, &entry_data_value_funcs,
1351 target_val /* closure */);
1352
1353 /* Copy the referencing pointer to the new computed value. */
1354 memcpy (value_contents_raw (val), value_contents_raw (outer_val),
1355 TYPE_LENGTH (checked_type));
1356 set_value_lazy (val, 0);
1357
1358 return val;
1359 }
1360
1361 /* Read parameter of TYPE at (callee) FRAME's function entry. DATA and
1362 SIZE are DWARF block used to match DW_AT_location at the caller's
1363 DW_TAG_GNU_call_site_parameter.
1364
1365 Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it
1366 cannot resolve the parameter for any reason. */
1367
1368 static struct value *
1369 value_of_dwarf_block_entry (struct type *type, struct frame_info *frame,
1370 const gdb_byte *block, size_t block_len)
1371 {
1372 union call_site_parameter_u kind_u;
1373
1374 kind_u.dwarf_reg = dwarf_block_to_dwarf_reg (block, block + block_len);
1375 if (kind_u.dwarf_reg != -1)
1376 return value_of_dwarf_reg_entry (type, frame, CALL_SITE_PARAMETER_DWARF_REG,
1377 kind_u);
1378
1379 if (dwarf_block_to_fb_offset (block, block + block_len, &kind_u.fb_offset))
1380 return value_of_dwarf_reg_entry (type, frame, CALL_SITE_PARAMETER_FB_OFFSET,
1381 kind_u);
1382
1383 /* This can normally happen - throw NO_ENTRY_VALUE_ERROR to get the message
1384 suppressed during normal operation. The expression can be arbitrary if
1385 there is no caller-callee entry value binding expected. */
1386 throw_error (NO_ENTRY_VALUE_ERROR,
1387 _("DWARF-2 expression error: DW_OP_GNU_entry_value is supported "
1388 "only for single DW_OP_reg* or for DW_OP_fbreg(*)"));
1389 }
1390
1391 struct piece_closure
1392 {
1393 /* Reference count. */
1394 int refc;
1395
1396 /* The CU from which this closure's expression came. */
1397 struct dwarf2_per_cu_data *per_cu;
1398
1399 /* The number of pieces used to describe this variable. */
1400 int n_pieces;
1401
1402 /* The target address size, used only for DWARF_VALUE_STACK. */
1403 int addr_size;
1404
1405 /* The pieces themselves. */
1406 struct dwarf_expr_piece *pieces;
1407 };
1408
1409 /* Allocate a closure for a value formed from separately-described
1410 PIECES. */
1411
1412 static struct piece_closure *
1413 allocate_piece_closure (struct dwarf2_per_cu_data *per_cu,
1414 int n_pieces, struct dwarf_expr_piece *pieces,
1415 int addr_size)
1416 {
1417 struct piece_closure *c = XCNEW (struct piece_closure);
1418 int i;
1419
1420 c->refc = 1;
1421 c->per_cu = per_cu;
1422 c->n_pieces = n_pieces;
1423 c->addr_size = addr_size;
1424 c->pieces = XCNEWVEC (struct dwarf_expr_piece, n_pieces);
1425
1426 memcpy (c->pieces, pieces, n_pieces * sizeof (struct dwarf_expr_piece));
1427 for (i = 0; i < n_pieces; ++i)
1428 if (c->pieces[i].location == DWARF_VALUE_STACK)
1429 value_incref (c->pieces[i].v.value);
1430
1431 return c;
1432 }
1433
1434 /* The lowest-level function to extract bits from a byte buffer.
1435 SOURCE is the buffer. It is updated if we read to the end of a
1436 byte.
1437 SOURCE_OFFSET_BITS is the offset of the first bit to read. It is
1438 updated to reflect the number of bits actually read.
1439 NBITS is the number of bits we want to read. It is updated to
1440 reflect the number of bits actually read. This function may read
1441 fewer bits.
1442 BITS_BIG_ENDIAN is taken directly from gdbarch.
1443 This function returns the extracted bits. */
1444
1445 static unsigned int
1446 extract_bits_primitive (const gdb_byte **source,
1447 unsigned int *source_offset_bits,
1448 int *nbits, int bits_big_endian)
1449 {
1450 unsigned int avail, mask, datum;
1451
1452 gdb_assert (*source_offset_bits < 8);
1453
1454 avail = 8 - *source_offset_bits;
1455 if (avail > *nbits)
1456 avail = *nbits;
1457
1458 mask = (1 << avail) - 1;
1459 datum = **source;
1460 if (bits_big_endian)
1461 datum >>= 8 - (*source_offset_bits + *nbits);
1462 else
1463 datum >>= *source_offset_bits;
1464 datum &= mask;
1465
1466 *nbits -= avail;
1467 *source_offset_bits += avail;
1468 if (*source_offset_bits >= 8)
1469 {
1470 *source_offset_bits -= 8;
1471 ++*source;
1472 }
1473
1474 return datum;
1475 }
1476
1477 /* Extract some bits from a source buffer and move forward in the
1478 buffer.
1479
1480 SOURCE is the source buffer. It is updated as bytes are read.
1481 SOURCE_OFFSET_BITS is the offset into SOURCE. It is updated as
1482 bits are read.
1483 NBITS is the number of bits to read.
1484 BITS_BIG_ENDIAN is taken directly from gdbarch.
1485
1486 This function returns the bits that were read. */
1487
1488 static unsigned int
1489 extract_bits (const gdb_byte **source, unsigned int *source_offset_bits,
1490 int nbits, int bits_big_endian)
1491 {
1492 unsigned int datum;
1493
1494 gdb_assert (nbits > 0 && nbits <= 8);
1495
1496 datum = extract_bits_primitive (source, source_offset_bits, &nbits,
1497 bits_big_endian);
1498 if (nbits > 0)
1499 {
1500 unsigned int more;
1501
1502 more = extract_bits_primitive (source, source_offset_bits, &nbits,
1503 bits_big_endian);
1504 if (bits_big_endian)
1505 datum <<= nbits;
1506 else
1507 more <<= nbits;
1508 datum |= more;
1509 }
1510
1511 return datum;
1512 }
1513
1514 /* Write some bits into a buffer and move forward in the buffer.
1515
1516 DATUM is the bits to write. The low-order bits of DATUM are used.
1517 DEST is the destination buffer. It is updated as bytes are
1518 written.
1519 DEST_OFFSET_BITS is the bit offset in DEST at which writing is
1520 done.
1521 NBITS is the number of valid bits in DATUM.
1522 BITS_BIG_ENDIAN is taken directly from gdbarch. */
1523
1524 static void
1525 insert_bits (unsigned int datum,
1526 gdb_byte *dest, unsigned int dest_offset_bits,
1527 int nbits, int bits_big_endian)
1528 {
1529 unsigned int mask;
1530
1531 gdb_assert (dest_offset_bits + nbits <= 8);
1532
1533 mask = (1 << nbits) - 1;
1534 if (bits_big_endian)
1535 {
1536 datum <<= 8 - (dest_offset_bits + nbits);
1537 mask <<= 8 - (dest_offset_bits + nbits);
1538 }
1539 else
1540 {
1541 datum <<= dest_offset_bits;
1542 mask <<= dest_offset_bits;
1543 }
1544
1545 gdb_assert ((datum & ~mask) == 0);
1546
1547 *dest = (*dest & ~mask) | datum;
1548 }
1549
1550 /* Copy bits from a source to a destination.
1551
1552 DEST is where the bits should be written.
1553 DEST_OFFSET_BITS is the bit offset into DEST.
1554 SOURCE is the source of bits.
1555 SOURCE_OFFSET_BITS is the bit offset into SOURCE.
1556 BIT_COUNT is the number of bits to copy.
1557 BITS_BIG_ENDIAN is taken directly from gdbarch. */
1558
1559 static void
1560 copy_bitwise (gdb_byte *dest, unsigned int dest_offset_bits,
1561 const gdb_byte *source, unsigned int source_offset_bits,
1562 unsigned int bit_count,
1563 int bits_big_endian)
1564 {
1565 unsigned int dest_avail;
1566 int datum;
1567
1568 /* Reduce everything to byte-size pieces. */
1569 dest += dest_offset_bits / 8;
1570 dest_offset_bits %= 8;
1571 source += source_offset_bits / 8;
1572 source_offset_bits %= 8;
1573
1574 dest_avail = 8 - dest_offset_bits % 8;
1575
1576 /* See if we can fill the first destination byte. */
1577 if (dest_avail < bit_count)
1578 {
1579 datum = extract_bits (&source, &source_offset_bits, dest_avail,
1580 bits_big_endian);
1581 insert_bits (datum, dest, dest_offset_bits, dest_avail, bits_big_endian);
1582 ++dest;
1583 dest_offset_bits = 0;
1584 bit_count -= dest_avail;
1585 }
1586
1587 /* Now, either DEST_OFFSET_BITS is byte-aligned, or we have fewer
1588 than 8 bits remaining. */
1589 gdb_assert (dest_offset_bits % 8 == 0 || bit_count < 8);
1590 for (; bit_count >= 8; bit_count -= 8)
1591 {
1592 datum = extract_bits (&source, &source_offset_bits, 8, bits_big_endian);
1593 *dest++ = (gdb_byte) datum;
1594 }
1595
1596 /* Finally, we may have a few leftover bits. */
1597 gdb_assert (bit_count <= 8 - dest_offset_bits % 8);
1598 if (bit_count > 0)
1599 {
1600 datum = extract_bits (&source, &source_offset_bits, bit_count,
1601 bits_big_endian);
1602 insert_bits (datum, dest, dest_offset_bits, bit_count, bits_big_endian);
1603 }
1604 }
1605
1606 static void
1607 read_pieced_value (struct value *v)
1608 {
1609 int i;
1610 long offset = 0;
1611 ULONGEST bits_to_skip;
1612 gdb_byte *contents;
1613 struct piece_closure *c
1614 = (struct piece_closure *) value_computed_closure (v);
1615 struct frame_info *frame = frame_find_by_id (VALUE_FRAME_ID (v));
1616 size_t type_len;
1617 size_t buffer_size = 0;
1618 gdb_byte *buffer = NULL;
1619 struct cleanup *cleanup;
1620 int bits_big_endian
1621 = gdbarch_bits_big_endian (get_type_arch (value_type (v)));
1622
1623 if (value_type (v) != value_enclosing_type (v))
1624 internal_error (__FILE__, __LINE__,
1625 _("Should not be able to create a lazy value with "
1626 "an enclosing type"));
1627
1628 cleanup = make_cleanup (free_current_contents, &buffer);
1629
1630 contents = value_contents_raw (v);
1631 bits_to_skip = 8 * value_offset (v);
1632 if (value_bitsize (v))
1633 {
1634 bits_to_skip += value_bitpos (v);
1635 type_len = value_bitsize (v);
1636 }
1637 else
1638 type_len = 8 * TYPE_LENGTH (value_type (v));
1639
1640 for (i = 0; i < c->n_pieces && offset < type_len; i++)
1641 {
1642 struct dwarf_expr_piece *p = &c->pieces[i];
1643 size_t this_size, this_size_bits;
1644 long dest_offset_bits, source_offset_bits, source_offset;
1645 const gdb_byte *intermediate_buffer;
1646
1647 /* Compute size, source, and destination offsets for copying, in
1648 bits. */
1649 this_size_bits = p->size;
1650 if (bits_to_skip > 0 && bits_to_skip >= this_size_bits)
1651 {
1652 bits_to_skip -= this_size_bits;
1653 continue;
1654 }
1655 if (bits_to_skip > 0)
1656 {
1657 dest_offset_bits = 0;
1658 source_offset_bits = bits_to_skip;
1659 this_size_bits -= bits_to_skip;
1660 bits_to_skip = 0;
1661 }
1662 else
1663 {
1664 dest_offset_bits = offset;
1665 source_offset_bits = 0;
1666 }
1667 if (this_size_bits > type_len - offset)
1668 this_size_bits = type_len - offset;
1669
1670 this_size = (this_size_bits + source_offset_bits % 8 + 7) / 8;
1671 source_offset = source_offset_bits / 8;
1672 if (buffer_size < this_size)
1673 {
1674 buffer_size = this_size;
1675 buffer = xrealloc (buffer, buffer_size);
1676 }
1677 intermediate_buffer = buffer;
1678
1679 /* Copy from the source to DEST_BUFFER. */
1680 switch (p->location)
1681 {
1682 case DWARF_VALUE_REGISTER:
1683 {
1684 struct gdbarch *arch = get_frame_arch (frame);
1685 int gdb_regnum = gdbarch_dwarf2_reg_to_regnum (arch, p->v.regno);
1686
1687 if (gdb_regnum != -1)
1688 {
1689 int optim, unavail;
1690 int reg_offset = source_offset;
1691
1692 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG
1693 && this_size < register_size (arch, gdb_regnum))
1694 {
1695 /* Big-endian, and we want less than full size. */
1696 reg_offset = register_size (arch, gdb_regnum) - this_size;
1697 /* We want the lower-order THIS_SIZE_BITS of the bytes
1698 we extract from the register. */
1699 source_offset_bits += 8 * this_size - this_size_bits;
1700 }
1701
1702 if (!get_frame_register_bytes (frame, gdb_regnum, reg_offset,
1703 this_size, buffer,
1704 &optim, &unavail))
1705 {
1706 /* Just so garbage doesn't ever shine through. */
1707 memset (buffer, 0, this_size);
1708
1709 if (optim)
1710 mark_value_bits_optimized_out (v, offset, this_size_bits);
1711 if (unavail)
1712 mark_value_bits_unavailable (v, offset, this_size_bits);
1713 }
1714 }
1715 else
1716 {
1717 error (_("Unable to access DWARF register number %s"),
1718 paddress (arch, p->v.regno));
1719 }
1720 }
1721 break;
1722
1723 case DWARF_VALUE_MEMORY:
1724 read_value_memory (v, offset,
1725 p->v.mem.in_stack_memory,
1726 p->v.mem.addr + source_offset,
1727 buffer, this_size);
1728 break;
1729
1730 case DWARF_VALUE_STACK:
1731 {
1732 size_t n = this_size;
1733
1734 if (n > c->addr_size - source_offset)
1735 n = (c->addr_size >= source_offset
1736 ? c->addr_size - source_offset
1737 : 0);
1738 if (n == 0)
1739 {
1740 /* Nothing. */
1741 }
1742 else
1743 {
1744 const gdb_byte *val_bytes = value_contents_all (p->v.value);
1745
1746 intermediate_buffer = val_bytes + source_offset;
1747 }
1748 }
1749 break;
1750
1751 case DWARF_VALUE_LITERAL:
1752 {
1753 size_t n = this_size;
1754
1755 if (n > p->v.literal.length - source_offset)
1756 n = (p->v.literal.length >= source_offset
1757 ? p->v.literal.length - source_offset
1758 : 0);
1759 if (n != 0)
1760 intermediate_buffer = p->v.literal.data + source_offset;
1761 }
1762 break;
1763
1764 /* These bits show up as zeros -- but do not cause the value
1765 to be considered optimized-out. */
1766 case DWARF_VALUE_IMPLICIT_POINTER:
1767 break;
1768
1769 case DWARF_VALUE_OPTIMIZED_OUT:
1770 mark_value_bits_optimized_out (v, offset, this_size_bits);
1771 break;
1772
1773 default:
1774 internal_error (__FILE__, __LINE__, _("invalid location type"));
1775 }
1776
1777 if (p->location != DWARF_VALUE_OPTIMIZED_OUT
1778 && p->location != DWARF_VALUE_IMPLICIT_POINTER)
1779 copy_bitwise (contents, dest_offset_bits,
1780 intermediate_buffer, source_offset_bits % 8,
1781 this_size_bits, bits_big_endian);
1782
1783 offset += this_size_bits;
1784 }
1785
1786 do_cleanups (cleanup);
1787 }
1788
1789 static void
1790 write_pieced_value (struct value *to, struct value *from)
1791 {
1792 int i;
1793 long offset = 0;
1794 ULONGEST bits_to_skip;
1795 const gdb_byte *contents;
1796 struct piece_closure *c
1797 = (struct piece_closure *) value_computed_closure (to);
1798 struct frame_info *frame = frame_find_by_id (VALUE_FRAME_ID (to));
1799 size_t type_len;
1800 size_t buffer_size = 0;
1801 gdb_byte *buffer = NULL;
1802 struct cleanup *cleanup;
1803 int bits_big_endian
1804 = gdbarch_bits_big_endian (get_type_arch (value_type (to)));
1805
1806 if (frame == NULL)
1807 {
1808 mark_value_bytes_optimized_out (to, 0, TYPE_LENGTH (value_type (to)));
1809 return;
1810 }
1811
1812 cleanup = make_cleanup (free_current_contents, &buffer);
1813
1814 contents = value_contents (from);
1815 bits_to_skip = 8 * value_offset (to);
1816 if (value_bitsize (to))
1817 {
1818 bits_to_skip += value_bitpos (to);
1819 type_len = value_bitsize (to);
1820 }
1821 else
1822 type_len = 8 * TYPE_LENGTH (value_type (to));
1823
1824 for (i = 0; i < c->n_pieces && offset < type_len; i++)
1825 {
1826 struct dwarf_expr_piece *p = &c->pieces[i];
1827 size_t this_size_bits, this_size;
1828 long dest_offset_bits, source_offset_bits, dest_offset, source_offset;
1829 int need_bitwise;
1830 const gdb_byte *source_buffer;
1831
1832 this_size_bits = p->size;
1833 if (bits_to_skip > 0 && bits_to_skip >= this_size_bits)
1834 {
1835 bits_to_skip -= this_size_bits;
1836 continue;
1837 }
1838 if (this_size_bits > type_len - offset)
1839 this_size_bits = type_len - offset;
1840 if (bits_to_skip > 0)
1841 {
1842 dest_offset_bits = bits_to_skip;
1843 source_offset_bits = 0;
1844 this_size_bits -= bits_to_skip;
1845 bits_to_skip = 0;
1846 }
1847 else
1848 {
1849 dest_offset_bits = 0;
1850 source_offset_bits = offset;
1851 }
1852
1853 this_size = (this_size_bits + source_offset_bits % 8 + 7) / 8;
1854 source_offset = source_offset_bits / 8;
1855 dest_offset = dest_offset_bits / 8;
1856 if (dest_offset_bits % 8 == 0 && source_offset_bits % 8 == 0)
1857 {
1858 source_buffer = contents + source_offset;
1859 need_bitwise = 0;
1860 }
1861 else
1862 {
1863 if (buffer_size < this_size)
1864 {
1865 buffer_size = this_size;
1866 buffer = xrealloc (buffer, buffer_size);
1867 }
1868 source_buffer = buffer;
1869 need_bitwise = 1;
1870 }
1871
1872 switch (p->location)
1873 {
1874 case DWARF_VALUE_REGISTER:
1875 {
1876 struct gdbarch *arch = get_frame_arch (frame);
1877 int gdb_regnum = gdbarch_dwarf2_reg_to_regnum (arch, p->v.regno);
1878
1879 if (gdb_regnum != -1)
1880 {
1881 int reg_offset = dest_offset;
1882
1883 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG
1884 && this_size <= register_size (arch, gdb_regnum))
1885 {
1886 /* Big-endian, and we want less than full size. */
1887 reg_offset = register_size (arch, gdb_regnum) - this_size;
1888 }
1889
1890 if (need_bitwise)
1891 {
1892 int optim, unavail;
1893
1894 if (!get_frame_register_bytes (frame, gdb_regnum, reg_offset,
1895 this_size, buffer,
1896 &optim, &unavail))
1897 {
1898 if (optim)
1899 throw_error (OPTIMIZED_OUT_ERROR,
1900 _("Can't do read-modify-write to "
1901 "update bitfield; containing word "
1902 "has been optimized out"));
1903 if (unavail)
1904 throw_error (NOT_AVAILABLE_ERROR,
1905 _("Can't do read-modify-write to update "
1906 "bitfield; containing word "
1907 "is unavailable"));
1908 }
1909 copy_bitwise (buffer, dest_offset_bits,
1910 contents, source_offset_bits,
1911 this_size_bits,
1912 bits_big_endian);
1913 }
1914
1915 put_frame_register_bytes (frame, gdb_regnum, reg_offset,
1916 this_size, source_buffer);
1917 }
1918 else
1919 {
1920 error (_("Unable to write to DWARF register number %s"),
1921 paddress (arch, p->v.regno));
1922 }
1923 }
1924 break;
1925 case DWARF_VALUE_MEMORY:
1926 if (need_bitwise)
1927 {
1928 /* Only the first and last bytes can possibly have any
1929 bits reused. */
1930 read_memory (p->v.mem.addr + dest_offset, buffer, 1);
1931 read_memory (p->v.mem.addr + dest_offset + this_size - 1,
1932 buffer + this_size - 1, 1);
1933 copy_bitwise (buffer, dest_offset_bits,
1934 contents, source_offset_bits,
1935 this_size_bits,
1936 bits_big_endian);
1937 }
1938
1939 write_memory (p->v.mem.addr + dest_offset,
1940 source_buffer, this_size);
1941 break;
1942 default:
1943 mark_value_bytes_optimized_out (to, 0, TYPE_LENGTH (value_type (to)));
1944 break;
1945 }
1946 offset += this_size_bits;
1947 }
1948
1949 do_cleanups (cleanup);
1950 }
1951
1952 /* An implementation of an lval_funcs method to see whether a value is
1953 a synthetic pointer. */
1954
1955 static int
1956 check_pieced_synthetic_pointer (const struct value *value, int bit_offset,
1957 int bit_length)
1958 {
1959 struct piece_closure *c
1960 = (struct piece_closure *) value_computed_closure (value);
1961 int i;
1962
1963 bit_offset += 8 * value_offset (value);
1964 if (value_bitsize (value))
1965 bit_offset += value_bitpos (value);
1966
1967 for (i = 0; i < c->n_pieces && bit_length > 0; i++)
1968 {
1969 struct dwarf_expr_piece *p = &c->pieces[i];
1970 size_t this_size_bits = p->size;
1971
1972 if (bit_offset > 0)
1973 {
1974 if (bit_offset >= this_size_bits)
1975 {
1976 bit_offset -= this_size_bits;
1977 continue;
1978 }
1979
1980 bit_length -= this_size_bits - bit_offset;
1981 bit_offset = 0;
1982 }
1983 else
1984 bit_length -= this_size_bits;
1985
1986 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
1987 return 0;
1988 }
1989
1990 return 1;
1991 }
1992
1993 /* A wrapper function for get_frame_address_in_block. */
1994
1995 static CORE_ADDR
1996 get_frame_address_in_block_wrapper (void *baton)
1997 {
1998 return get_frame_address_in_block (baton);
1999 }
2000
2001 /* An implementation of an lval_funcs method to indirect through a
2002 pointer. This handles the synthetic pointer case when needed. */
2003
2004 static struct value *
2005 indirect_pieced_value (struct value *value)
2006 {
2007 struct piece_closure *c
2008 = (struct piece_closure *) value_computed_closure (value);
2009 struct type *type;
2010 struct frame_info *frame;
2011 struct dwarf2_locexpr_baton baton;
2012 int i, bit_offset, bit_length;
2013 struct dwarf_expr_piece *piece = NULL;
2014 LONGEST byte_offset;
2015 enum bfd_endian byte_order;
2016
2017 type = check_typedef (value_type (value));
2018 if (TYPE_CODE (type) != TYPE_CODE_PTR)
2019 return NULL;
2020
2021 bit_length = 8 * TYPE_LENGTH (type);
2022 bit_offset = 8 * value_offset (value);
2023 if (value_bitsize (value))
2024 bit_offset += value_bitpos (value);
2025
2026 for (i = 0; i < c->n_pieces && bit_length > 0; i++)
2027 {
2028 struct dwarf_expr_piece *p = &c->pieces[i];
2029 size_t this_size_bits = p->size;
2030
2031 if (bit_offset > 0)
2032 {
2033 if (bit_offset >= this_size_bits)
2034 {
2035 bit_offset -= this_size_bits;
2036 continue;
2037 }
2038
2039 bit_length -= this_size_bits - bit_offset;
2040 bit_offset = 0;
2041 }
2042 else
2043 bit_length -= this_size_bits;
2044
2045 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
2046 return NULL;
2047
2048 if (bit_length != 0)
2049 error (_("Invalid use of DW_OP_GNU_implicit_pointer"));
2050
2051 piece = p;
2052 break;
2053 }
2054
2055 frame = get_selected_frame (_("No frame selected."));
2056
2057 /* This is an offset requested by GDB, such as value subscripts.
2058 However, due to how synthetic pointers are implemented, this is
2059 always presented to us as a pointer type. This means we have to
2060 sign-extend it manually as appropriate. Use raw
2061 extract_signed_integer directly rather than value_as_address and
2062 sign extend afterwards on architectures that would need it
2063 (mostly everywhere except MIPS, which has signed addresses) as
2064 the later would go through gdbarch_pointer_to_address and thus
2065 return a CORE_ADDR with high bits set on architectures that
2066 encode address spaces and other things in CORE_ADDR. */
2067 byte_order = gdbarch_byte_order (get_frame_arch (frame));
2068 byte_offset = extract_signed_integer (value_contents (value),
2069 TYPE_LENGTH (type), byte_order);
2070 byte_offset += piece->v.ptr.offset;
2071
2072 gdb_assert (piece);
2073 baton
2074 = dwarf2_fetch_die_loc_sect_off (piece->v.ptr.die, c->per_cu,
2075 get_frame_address_in_block_wrapper,
2076 frame);
2077
2078 if (baton.data != NULL)
2079 return dwarf2_evaluate_loc_desc_full (TYPE_TARGET_TYPE (type), frame,
2080 baton.data, baton.size, baton.per_cu,
2081 byte_offset);
2082
2083 {
2084 struct obstack temp_obstack;
2085 struct cleanup *cleanup;
2086 const gdb_byte *bytes;
2087 LONGEST len;
2088 struct value *result;
2089
2090 obstack_init (&temp_obstack);
2091 cleanup = make_cleanup_obstack_free (&temp_obstack);
2092
2093 bytes = dwarf2_fetch_constant_bytes (piece->v.ptr.die, c->per_cu,
2094 &temp_obstack, &len);
2095 if (bytes == NULL)
2096 result = allocate_optimized_out_value (TYPE_TARGET_TYPE (type));
2097 else
2098 {
2099 if (byte_offset < 0
2100 || byte_offset + TYPE_LENGTH (TYPE_TARGET_TYPE (type)) > len)
2101 invalid_synthetic_pointer ();
2102 bytes += byte_offset;
2103 result = value_from_contents (TYPE_TARGET_TYPE (type), bytes);
2104 }
2105
2106 do_cleanups (cleanup);
2107 return result;
2108 }
2109 }
2110
2111 static void *
2112 copy_pieced_value_closure (const struct value *v)
2113 {
2114 struct piece_closure *c
2115 = (struct piece_closure *) value_computed_closure (v);
2116
2117 ++c->refc;
2118 return c;
2119 }
2120
2121 static void
2122 free_pieced_value_closure (struct value *v)
2123 {
2124 struct piece_closure *c
2125 = (struct piece_closure *) value_computed_closure (v);
2126
2127 --c->refc;
2128 if (c->refc == 0)
2129 {
2130 int i;
2131
2132 for (i = 0; i < c->n_pieces; ++i)
2133 if (c->pieces[i].location == DWARF_VALUE_STACK)
2134 value_free (c->pieces[i].v.value);
2135
2136 xfree (c->pieces);
2137 xfree (c);
2138 }
2139 }
2140
2141 /* Functions for accessing a variable described by DW_OP_piece. */
2142 static const struct lval_funcs pieced_value_funcs = {
2143 read_pieced_value,
2144 write_pieced_value,
2145 indirect_pieced_value,
2146 NULL, /* coerce_ref */
2147 check_pieced_synthetic_pointer,
2148 copy_pieced_value_closure,
2149 free_pieced_value_closure
2150 };
2151
2152 /* Virtual method table for dwarf2_evaluate_loc_desc_full below. */
2153
2154 const struct dwarf_expr_context_funcs dwarf_expr_ctx_funcs =
2155 {
2156 dwarf_expr_read_addr_from_reg,
2157 dwarf_expr_get_reg_value,
2158 dwarf_expr_read_mem,
2159 dwarf_expr_frame_base,
2160 dwarf_expr_frame_cfa,
2161 dwarf_expr_frame_pc,
2162 dwarf_expr_tls_address,
2163 dwarf_expr_dwarf_call,
2164 dwarf_expr_get_base_type,
2165 dwarf_expr_push_dwarf_reg_entry_value,
2166 dwarf_expr_get_addr_index,
2167 dwarf_expr_get_obj_addr
2168 };
2169
2170 /* Evaluate a location description, starting at DATA and with length
2171 SIZE, to find the current location of variable of TYPE in the
2172 context of FRAME. BYTE_OFFSET is applied after the contents are
2173 computed. */
2174
2175 static struct value *
2176 dwarf2_evaluate_loc_desc_full (struct type *type, struct frame_info *frame,
2177 const gdb_byte *data, size_t size,
2178 struct dwarf2_per_cu_data *per_cu,
2179 LONGEST byte_offset)
2180 {
2181 struct value *retval;
2182 struct dwarf_expr_baton baton;
2183 struct dwarf_expr_context *ctx;
2184 struct cleanup *old_chain, *value_chain;
2185 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
2186 volatile struct gdb_exception ex;
2187
2188 if (byte_offset < 0)
2189 invalid_synthetic_pointer ();
2190
2191 if (size == 0)
2192 return allocate_optimized_out_value (type);
2193
2194 baton.frame = frame;
2195 baton.per_cu = per_cu;
2196 baton.obj_address = 0;
2197
2198 ctx = new_dwarf_expr_context ();
2199 old_chain = make_cleanup_free_dwarf_expr_context (ctx);
2200 value_chain = make_cleanup_value_free_to_mark (value_mark ());
2201
2202 ctx->gdbarch = get_objfile_arch (objfile);
2203 ctx->addr_size = dwarf2_per_cu_addr_size (per_cu);
2204 ctx->ref_addr_size = dwarf2_per_cu_ref_addr_size (per_cu);
2205 ctx->offset = dwarf2_per_cu_text_offset (per_cu);
2206 ctx->baton = &baton;
2207 ctx->funcs = &dwarf_expr_ctx_funcs;
2208
2209 TRY_CATCH (ex, RETURN_MASK_ERROR)
2210 {
2211 dwarf_expr_eval (ctx, data, size);
2212 }
2213 if (ex.reason < 0)
2214 {
2215 if (ex.error == NOT_AVAILABLE_ERROR)
2216 {
2217 do_cleanups (old_chain);
2218 retval = allocate_value (type);
2219 mark_value_bytes_unavailable (retval, 0, TYPE_LENGTH (type));
2220 return retval;
2221 }
2222 else if (ex.error == NO_ENTRY_VALUE_ERROR)
2223 {
2224 if (entry_values_debug)
2225 exception_print (gdb_stdout, ex);
2226 do_cleanups (old_chain);
2227 return allocate_optimized_out_value (type);
2228 }
2229 else
2230 throw_exception (ex);
2231 }
2232
2233 if (ctx->num_pieces > 0)
2234 {
2235 struct piece_closure *c;
2236 struct frame_id frame_id = get_frame_id (frame);
2237 ULONGEST bit_size = 0;
2238 int i;
2239
2240 for (i = 0; i < ctx->num_pieces; ++i)
2241 bit_size += ctx->pieces[i].size;
2242 if (8 * (byte_offset + TYPE_LENGTH (type)) > bit_size)
2243 invalid_synthetic_pointer ();
2244
2245 c = allocate_piece_closure (per_cu, ctx->num_pieces, ctx->pieces,
2246 ctx->addr_size);
2247 /* We must clean up the value chain after creating the piece
2248 closure but before allocating the result. */
2249 do_cleanups (value_chain);
2250 retval = allocate_computed_value (type, &pieced_value_funcs, c);
2251 VALUE_FRAME_ID (retval) = frame_id;
2252 set_value_offset (retval, byte_offset);
2253 }
2254 else
2255 {
2256 switch (ctx->location)
2257 {
2258 case DWARF_VALUE_REGISTER:
2259 {
2260 struct gdbarch *arch = get_frame_arch (frame);
2261 int dwarf_regnum
2262 = longest_to_int (value_as_long (dwarf_expr_fetch (ctx, 0)));
2263 int gdb_regnum = gdbarch_dwarf2_reg_to_regnum (arch, dwarf_regnum);
2264
2265 if (byte_offset != 0)
2266 error (_("cannot use offset on synthetic pointer to register"));
2267 do_cleanups (value_chain);
2268 if (gdb_regnum == -1)
2269 error (_("Unable to access DWARF register number %d"),
2270 dwarf_regnum);
2271 retval = value_from_register (type, gdb_regnum, frame);
2272 if (value_optimized_out (retval))
2273 {
2274 struct value *tmp;
2275
2276 /* This means the register has undefined value / was
2277 not saved. As we're computing the location of some
2278 variable etc. in the program, not a value for
2279 inspecting a register ($pc, $sp, etc.), return a
2280 generic optimized out value instead, so that we show
2281 <optimized out> instead of <not saved>. */
2282 do_cleanups (value_chain);
2283 tmp = allocate_value (type);
2284 value_contents_copy (tmp, 0, retval, 0, TYPE_LENGTH (type));
2285 retval = tmp;
2286 }
2287 }
2288 break;
2289
2290 case DWARF_VALUE_MEMORY:
2291 {
2292 CORE_ADDR address = dwarf_expr_fetch_address (ctx, 0);
2293 int in_stack_memory = dwarf_expr_fetch_in_stack_memory (ctx, 0);
2294
2295 do_cleanups (value_chain);
2296 retval = value_at_lazy (type, address + byte_offset);
2297 if (in_stack_memory)
2298 set_value_stack (retval, 1);
2299 }
2300 break;
2301
2302 case DWARF_VALUE_STACK:
2303 {
2304 struct value *value = dwarf_expr_fetch (ctx, 0);
2305 gdb_byte *contents;
2306 const gdb_byte *val_bytes;
2307 size_t n = TYPE_LENGTH (value_type (value));
2308
2309 if (byte_offset + TYPE_LENGTH (type) > n)
2310 invalid_synthetic_pointer ();
2311
2312 val_bytes = value_contents_all (value);
2313 val_bytes += byte_offset;
2314 n -= byte_offset;
2315
2316 /* Preserve VALUE because we are going to free values back
2317 to the mark, but we still need the value contents
2318 below. */
2319 value_incref (value);
2320 do_cleanups (value_chain);
2321 make_cleanup_value_free (value);
2322
2323 retval = allocate_value (type);
2324 contents = value_contents_raw (retval);
2325 if (n > TYPE_LENGTH (type))
2326 {
2327 struct gdbarch *objfile_gdbarch = get_objfile_arch (objfile);
2328
2329 if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
2330 val_bytes += n - TYPE_LENGTH (type);
2331 n = TYPE_LENGTH (type);
2332 }
2333 memcpy (contents, val_bytes, n);
2334 }
2335 break;
2336
2337 case DWARF_VALUE_LITERAL:
2338 {
2339 bfd_byte *contents;
2340 const bfd_byte *ldata;
2341 size_t n = ctx->len;
2342
2343 if (byte_offset + TYPE_LENGTH (type) > n)
2344 invalid_synthetic_pointer ();
2345
2346 do_cleanups (value_chain);
2347 retval = allocate_value (type);
2348 contents = value_contents_raw (retval);
2349
2350 ldata = ctx->data + byte_offset;
2351 n -= byte_offset;
2352
2353 if (n > TYPE_LENGTH (type))
2354 {
2355 struct gdbarch *objfile_gdbarch = get_objfile_arch (objfile);
2356
2357 if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
2358 ldata += n - TYPE_LENGTH (type);
2359 n = TYPE_LENGTH (type);
2360 }
2361 memcpy (contents, ldata, n);
2362 }
2363 break;
2364
2365 case DWARF_VALUE_OPTIMIZED_OUT:
2366 do_cleanups (value_chain);
2367 retval = allocate_optimized_out_value (type);
2368 break;
2369
2370 /* DWARF_VALUE_IMPLICIT_POINTER was converted to a pieced
2371 operation by execute_stack_op. */
2372 case DWARF_VALUE_IMPLICIT_POINTER:
2373 /* DWARF_VALUE_OPTIMIZED_OUT can't occur in this context --
2374 it can only be encountered when making a piece. */
2375 default:
2376 internal_error (__FILE__, __LINE__, _("invalid location type"));
2377 }
2378 }
2379
2380 set_value_initialized (retval, ctx->initialized);
2381
2382 do_cleanups (old_chain);
2383
2384 return retval;
2385 }
2386
2387 /* The exported interface to dwarf2_evaluate_loc_desc_full; it always
2388 passes 0 as the byte_offset. */
2389
2390 struct value *
2391 dwarf2_evaluate_loc_desc (struct type *type, struct frame_info *frame,
2392 const gdb_byte *data, size_t size,
2393 struct dwarf2_per_cu_data *per_cu)
2394 {
2395 return dwarf2_evaluate_loc_desc_full (type, frame, data, size, per_cu, 0);
2396 }
2397
2398 /* Evaluates a dwarf expression and stores the result in VAL, expecting
2399 that the dwarf expression only produces a single CORE_ADDR. ADDR is a
2400 context (location of a variable) and might be needed to evaluate the
2401 location expression.
2402 Returns 1 on success, 0 otherwise. */
2403
2404 static int
2405 dwarf2_locexpr_baton_eval (const struct dwarf2_locexpr_baton *dlbaton,
2406 CORE_ADDR addr,
2407 CORE_ADDR *valp)
2408 {
2409 struct dwarf_expr_context *ctx;
2410 struct dwarf_expr_baton baton;
2411 struct objfile *objfile;
2412 struct cleanup *cleanup;
2413
2414 if (dlbaton == NULL || dlbaton->size == 0)
2415 return 0;
2416
2417 ctx = new_dwarf_expr_context ();
2418 cleanup = make_cleanup_free_dwarf_expr_context (ctx);
2419
2420 baton.frame = get_selected_frame (NULL);
2421 baton.per_cu = dlbaton->per_cu;
2422 baton.obj_address = addr;
2423
2424 objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
2425
2426 ctx->gdbarch = get_objfile_arch (objfile);
2427 ctx->addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
2428 ctx->ref_addr_size = dwarf2_per_cu_ref_addr_size (dlbaton->per_cu);
2429 ctx->offset = dwarf2_per_cu_text_offset (dlbaton->per_cu);
2430 ctx->funcs = &dwarf_expr_ctx_funcs;
2431 ctx->baton = &baton;
2432
2433 dwarf_expr_eval (ctx, dlbaton->data, dlbaton->size);
2434
2435 switch (ctx->location)
2436 {
2437 case DWARF_VALUE_REGISTER:
2438 case DWARF_VALUE_MEMORY:
2439 case DWARF_VALUE_STACK:
2440 *valp = dwarf_expr_fetch_address (ctx, 0);
2441 if (ctx->location == DWARF_VALUE_REGISTER)
2442 *valp = dwarf_expr_read_addr_from_reg (&baton, *valp);
2443 do_cleanups (cleanup);
2444 return 1;
2445 case DWARF_VALUE_LITERAL:
2446 *valp = extract_signed_integer (ctx->data, ctx->len,
2447 gdbarch_byte_order (ctx->gdbarch));
2448 do_cleanups (cleanup);
2449 return 1;
2450 /* Unsupported dwarf values. */
2451 case DWARF_VALUE_OPTIMIZED_OUT:
2452 case DWARF_VALUE_IMPLICIT_POINTER:
2453 break;
2454 }
2455
2456 do_cleanups (cleanup);
2457 return 0;
2458 }
2459
2460 /* See dwarf2loc.h. */
2461
2462 int
2463 dwarf2_evaluate_property (const struct dynamic_prop *prop,
2464 struct property_addr_info *addr_stack,
2465 CORE_ADDR *value)
2466 {
2467 if (prop == NULL)
2468 return 0;
2469
2470 switch (prop->kind)
2471 {
2472 case PROP_LOCEXPR:
2473 {
2474 const struct dwarf2_property_baton *baton = prop->data.baton;
2475
2476 if (dwarf2_locexpr_baton_eval (&baton->locexpr, addr_stack->addr,
2477 value))
2478 {
2479 if (baton->referenced_type)
2480 {
2481 struct value *val = value_at (baton->referenced_type, *value);
2482
2483 *value = value_as_address (val);
2484 }
2485 return 1;
2486 }
2487 }
2488 break;
2489
2490 case PROP_LOCLIST:
2491 {
2492 struct dwarf2_property_baton *baton = prop->data.baton;
2493 struct frame_info *frame = get_selected_frame (NULL);
2494 CORE_ADDR pc = get_frame_address_in_block (frame);
2495 const gdb_byte *data;
2496 struct value *val;
2497 size_t size;
2498
2499 data = dwarf2_find_location_expression (&baton->loclist, &size, pc);
2500 if (data != NULL)
2501 {
2502 val = dwarf2_evaluate_loc_desc (baton->referenced_type, frame, data,
2503 size, baton->loclist.per_cu);
2504 if (!value_optimized_out (val))
2505 {
2506 *value = value_as_address (val);
2507 return 1;
2508 }
2509 }
2510 }
2511 break;
2512
2513 case PROP_CONST:
2514 *value = prop->data.const_val;
2515 return 1;
2516
2517 case PROP_ADDR_OFFSET:
2518 {
2519 struct dwarf2_property_baton *baton = prop->data.baton;
2520 struct property_addr_info *pinfo;
2521 struct value *val;
2522
2523 for (pinfo = addr_stack; pinfo != NULL; pinfo = pinfo->next)
2524 if (pinfo->type == baton->referenced_type)
2525 break;
2526 if (pinfo == NULL)
2527 error (_("cannot find reference address for offset property"));
2528 val = value_at (baton->offset_info.type,
2529 pinfo->addr + baton->offset_info.offset);
2530 *value = value_as_address (val);
2531 return 1;
2532 }
2533 }
2534
2535 return 0;
2536 }
2537
2538 /* See dwarf2loc.h. */
2539
2540 void
2541 dwarf2_compile_property_to_c (struct ui_file *stream,
2542 const char *result_name,
2543 struct gdbarch *gdbarch,
2544 unsigned char *registers_used,
2545 const struct dynamic_prop *prop,
2546 CORE_ADDR pc,
2547 struct symbol *sym)
2548 {
2549 struct dwarf2_property_baton *baton = prop->data.baton;
2550 const gdb_byte *data;
2551 size_t size;
2552 struct dwarf2_per_cu_data *per_cu;
2553
2554 if (prop->kind == PROP_LOCEXPR)
2555 {
2556 data = baton->locexpr.data;
2557 size = baton->locexpr.size;
2558 per_cu = baton->locexpr.per_cu;
2559 }
2560 else
2561 {
2562 gdb_assert (prop->kind == PROP_LOCLIST);
2563
2564 data = dwarf2_find_location_expression (&baton->loclist, &size, pc);
2565 per_cu = baton->loclist.per_cu;
2566 }
2567
2568 compile_dwarf_bounds_to_c (stream, result_name, prop, sym, pc,
2569 gdbarch, registers_used,
2570 dwarf2_per_cu_addr_size (per_cu),
2571 data, data + size, per_cu);
2572 }
2573
2574 \f
2575 /* Helper functions and baton for dwarf2_loc_desc_needs_frame. */
2576
2577 struct needs_frame_baton
2578 {
2579 int needs_frame;
2580 struct dwarf2_per_cu_data *per_cu;
2581 };
2582
2583 /* Reads from registers do require a frame. */
2584 static CORE_ADDR
2585 needs_frame_read_addr_from_reg (void *baton, int regnum)
2586 {
2587 struct needs_frame_baton *nf_baton = baton;
2588
2589 nf_baton->needs_frame = 1;
2590 return 1;
2591 }
2592
2593 /* struct dwarf_expr_context_funcs' "get_reg_value" callback:
2594 Reads from registers do require a frame. */
2595
2596 static struct value *
2597 needs_frame_get_reg_value (void *baton, struct type *type, int regnum)
2598 {
2599 struct needs_frame_baton *nf_baton = baton;
2600
2601 nf_baton->needs_frame = 1;
2602 return value_zero (type, not_lval);
2603 }
2604
2605 /* Reads from memory do not require a frame. */
2606 static void
2607 needs_frame_read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
2608 {
2609 memset (buf, 0, len);
2610 }
2611
2612 /* Frame-relative accesses do require a frame. */
2613 static void
2614 needs_frame_frame_base (void *baton, const gdb_byte **start, size_t * length)
2615 {
2616 static gdb_byte lit0 = DW_OP_lit0;
2617 struct needs_frame_baton *nf_baton = baton;
2618
2619 *start = &lit0;
2620 *length = 1;
2621
2622 nf_baton->needs_frame = 1;
2623 }
2624
2625 /* CFA accesses require a frame. */
2626
2627 static CORE_ADDR
2628 needs_frame_frame_cfa (void *baton)
2629 {
2630 struct needs_frame_baton *nf_baton = baton;
2631
2632 nf_baton->needs_frame = 1;
2633 return 1;
2634 }
2635
2636 /* Thread-local accesses do require a frame. */
2637 static CORE_ADDR
2638 needs_frame_tls_address (void *baton, CORE_ADDR offset)
2639 {
2640 struct needs_frame_baton *nf_baton = baton;
2641
2642 nf_baton->needs_frame = 1;
2643 return 1;
2644 }
2645
2646 /* Helper interface of per_cu_dwarf_call for dwarf2_loc_desc_needs_frame. */
2647
2648 static void
2649 needs_frame_dwarf_call (struct dwarf_expr_context *ctx, cu_offset die_offset)
2650 {
2651 struct needs_frame_baton *nf_baton = ctx->baton;
2652
2653 per_cu_dwarf_call (ctx, die_offset, nf_baton->per_cu,
2654 ctx->funcs->get_frame_pc, ctx->baton);
2655 }
2656
2657 /* DW_OP_GNU_entry_value accesses require a caller, therefore a frame. */
2658
2659 static void
2660 needs_dwarf_reg_entry_value (struct dwarf_expr_context *ctx,
2661 enum call_site_parameter_kind kind,
2662 union call_site_parameter_u kind_u, int deref_size)
2663 {
2664 struct needs_frame_baton *nf_baton = ctx->baton;
2665
2666 nf_baton->needs_frame = 1;
2667
2668 /* The expression may require some stub values on DWARF stack. */
2669 dwarf_expr_push_address (ctx, 0, 0);
2670 }
2671
2672 /* DW_OP_GNU_addr_index doesn't require a frame. */
2673
2674 static CORE_ADDR
2675 needs_get_addr_index (void *baton, unsigned int index)
2676 {
2677 /* Nothing to do. */
2678 return 1;
2679 }
2680
2681 /* DW_OP_push_object_address has a frame already passed through. */
2682
2683 static CORE_ADDR
2684 needs_get_obj_addr (void *baton)
2685 {
2686 /* Nothing to do. */
2687 return 1;
2688 }
2689
2690 /* Virtual method table for dwarf2_loc_desc_needs_frame below. */
2691
2692 static const struct dwarf_expr_context_funcs needs_frame_ctx_funcs =
2693 {
2694 needs_frame_read_addr_from_reg,
2695 needs_frame_get_reg_value,
2696 needs_frame_read_mem,
2697 needs_frame_frame_base,
2698 needs_frame_frame_cfa,
2699 needs_frame_frame_cfa, /* get_frame_pc */
2700 needs_frame_tls_address,
2701 needs_frame_dwarf_call,
2702 NULL, /* get_base_type */
2703 needs_dwarf_reg_entry_value,
2704 needs_get_addr_index,
2705 needs_get_obj_addr
2706 };
2707
2708 /* Return non-zero iff the location expression at DATA (length SIZE)
2709 requires a frame to evaluate. */
2710
2711 static int
2712 dwarf2_loc_desc_needs_frame (const gdb_byte *data, size_t size,
2713 struct dwarf2_per_cu_data *per_cu)
2714 {
2715 struct needs_frame_baton baton;
2716 struct dwarf_expr_context *ctx;
2717 int in_reg;
2718 struct cleanup *old_chain;
2719 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
2720
2721 baton.needs_frame = 0;
2722 baton.per_cu = per_cu;
2723
2724 ctx = new_dwarf_expr_context ();
2725 old_chain = make_cleanup_free_dwarf_expr_context (ctx);
2726 make_cleanup_value_free_to_mark (value_mark ());
2727
2728 ctx->gdbarch = get_objfile_arch (objfile);
2729 ctx->addr_size = dwarf2_per_cu_addr_size (per_cu);
2730 ctx->ref_addr_size = dwarf2_per_cu_ref_addr_size (per_cu);
2731 ctx->offset = dwarf2_per_cu_text_offset (per_cu);
2732 ctx->baton = &baton;
2733 ctx->funcs = &needs_frame_ctx_funcs;
2734
2735 dwarf_expr_eval (ctx, data, size);
2736
2737 in_reg = ctx->location == DWARF_VALUE_REGISTER;
2738
2739 if (ctx->num_pieces > 0)
2740 {
2741 int i;
2742
2743 /* If the location has several pieces, and any of them are in
2744 registers, then we will need a frame to fetch them from. */
2745 for (i = 0; i < ctx->num_pieces; i++)
2746 if (ctx->pieces[i].location == DWARF_VALUE_REGISTER)
2747 in_reg = 1;
2748 }
2749
2750 do_cleanups (old_chain);
2751
2752 return baton.needs_frame || in_reg;
2753 }
2754
2755 /* A helper function that throws an unimplemented error mentioning a
2756 given DWARF operator. */
2757
2758 static void
2759 unimplemented (unsigned int op)
2760 {
2761 const char *name = get_DW_OP_name (op);
2762
2763 if (name)
2764 error (_("DWARF operator %s cannot be translated to an agent expression"),
2765 name);
2766 else
2767 error (_("Unknown DWARF operator 0x%02x cannot be translated "
2768 "to an agent expression"),
2769 op);
2770 }
2771
2772 /* See dwarf2loc.h. */
2773
2774 int
2775 dwarf2_reg_to_regnum_or_error (struct gdbarch *arch, int dwarf_reg)
2776 {
2777 int reg = gdbarch_dwarf2_reg_to_regnum (arch, dwarf_reg);
2778 if (reg == -1)
2779 error (_("Unable to access DWARF register number %d"), dwarf_reg);
2780 return reg;
2781 }
2782
2783 /* A helper function that emits an access to memory. ARCH is the
2784 target architecture. EXPR is the expression which we are building.
2785 NBITS is the number of bits we want to read. This emits the
2786 opcodes needed to read the memory and then extract the desired
2787 bits. */
2788
2789 static void
2790 access_memory (struct gdbarch *arch, struct agent_expr *expr, ULONGEST nbits)
2791 {
2792 ULONGEST nbytes = (nbits + 7) / 8;
2793
2794 gdb_assert (nbytes > 0 && nbytes <= sizeof (LONGEST));
2795
2796 if (expr->tracing)
2797 ax_trace_quick (expr, nbytes);
2798
2799 if (nbits <= 8)
2800 ax_simple (expr, aop_ref8);
2801 else if (nbits <= 16)
2802 ax_simple (expr, aop_ref16);
2803 else if (nbits <= 32)
2804 ax_simple (expr, aop_ref32);
2805 else
2806 ax_simple (expr, aop_ref64);
2807
2808 /* If we read exactly the number of bytes we wanted, we're done. */
2809 if (8 * nbytes == nbits)
2810 return;
2811
2812 if (gdbarch_bits_big_endian (arch))
2813 {
2814 /* On a bits-big-endian machine, we want the high-order
2815 NBITS. */
2816 ax_const_l (expr, 8 * nbytes - nbits);
2817 ax_simple (expr, aop_rsh_unsigned);
2818 }
2819 else
2820 {
2821 /* On a bits-little-endian box, we want the low-order NBITS. */
2822 ax_zero_ext (expr, nbits);
2823 }
2824 }
2825
2826 /* A helper function to return the frame's PC. */
2827
2828 static CORE_ADDR
2829 get_ax_pc (void *baton)
2830 {
2831 struct agent_expr *expr = baton;
2832
2833 return expr->scope;
2834 }
2835
2836 /* Compile a DWARF location expression to an agent expression.
2837
2838 EXPR is the agent expression we are building.
2839 LOC is the agent value we modify.
2840 ARCH is the architecture.
2841 ADDR_SIZE is the size of addresses, in bytes.
2842 OP_PTR is the start of the location expression.
2843 OP_END is one past the last byte of the location expression.
2844
2845 This will throw an exception for various kinds of errors -- for
2846 example, if the expression cannot be compiled, or if the expression
2847 is invalid. */
2848
2849 void
2850 dwarf2_compile_expr_to_ax (struct agent_expr *expr, struct axs_value *loc,
2851 struct gdbarch *arch, unsigned int addr_size,
2852 const gdb_byte *op_ptr, const gdb_byte *op_end,
2853 struct dwarf2_per_cu_data *per_cu)
2854 {
2855 struct cleanup *cleanups;
2856 int i, *offsets;
2857 VEC(int) *dw_labels = NULL, *patches = NULL;
2858 const gdb_byte * const base = op_ptr;
2859 const gdb_byte *previous_piece = op_ptr;
2860 enum bfd_endian byte_order = gdbarch_byte_order (arch);
2861 ULONGEST bits_collected = 0;
2862 unsigned int addr_size_bits = 8 * addr_size;
2863 int bits_big_endian = gdbarch_bits_big_endian (arch);
2864
2865 offsets = xmalloc ((op_end - op_ptr) * sizeof (int));
2866 cleanups = make_cleanup (xfree, offsets);
2867
2868 for (i = 0; i < op_end - op_ptr; ++i)
2869 offsets[i] = -1;
2870
2871 make_cleanup (VEC_cleanup (int), &dw_labels);
2872 make_cleanup (VEC_cleanup (int), &patches);
2873
2874 /* By default we are making an address. */
2875 loc->kind = axs_lvalue_memory;
2876
2877 while (op_ptr < op_end)
2878 {
2879 enum dwarf_location_atom op = *op_ptr;
2880 uint64_t uoffset, reg;
2881 int64_t offset;
2882 int i;
2883
2884 offsets[op_ptr - base] = expr->len;
2885 ++op_ptr;
2886
2887 /* Our basic approach to code generation is to map DWARF
2888 operations directly to AX operations. However, there are
2889 some differences.
2890
2891 First, DWARF works on address-sized units, but AX always uses
2892 LONGEST. For most operations we simply ignore this
2893 difference; instead we generate sign extensions as needed
2894 before division and comparison operations. It would be nice
2895 to omit the sign extensions, but there is no way to determine
2896 the size of the target's LONGEST. (This code uses the size
2897 of the host LONGEST in some cases -- that is a bug but it is
2898 difficult to fix.)
2899
2900 Second, some DWARF operations cannot be translated to AX.
2901 For these we simply fail. See
2902 http://sourceware.org/bugzilla/show_bug.cgi?id=11662. */
2903 switch (op)
2904 {
2905 case DW_OP_lit0:
2906 case DW_OP_lit1:
2907 case DW_OP_lit2:
2908 case DW_OP_lit3:
2909 case DW_OP_lit4:
2910 case DW_OP_lit5:
2911 case DW_OP_lit6:
2912 case DW_OP_lit7:
2913 case DW_OP_lit8:
2914 case DW_OP_lit9:
2915 case DW_OP_lit10:
2916 case DW_OP_lit11:
2917 case DW_OP_lit12:
2918 case DW_OP_lit13:
2919 case DW_OP_lit14:
2920 case DW_OP_lit15:
2921 case DW_OP_lit16:
2922 case DW_OP_lit17:
2923 case DW_OP_lit18:
2924 case DW_OP_lit19:
2925 case DW_OP_lit20:
2926 case DW_OP_lit21:
2927 case DW_OP_lit22:
2928 case DW_OP_lit23:
2929 case DW_OP_lit24:
2930 case DW_OP_lit25:
2931 case DW_OP_lit26:
2932 case DW_OP_lit27:
2933 case DW_OP_lit28:
2934 case DW_OP_lit29:
2935 case DW_OP_lit30:
2936 case DW_OP_lit31:
2937 ax_const_l (expr, op - DW_OP_lit0);
2938 break;
2939
2940 case DW_OP_addr:
2941 uoffset = extract_unsigned_integer (op_ptr, addr_size, byte_order);
2942 op_ptr += addr_size;
2943 /* Some versions of GCC emit DW_OP_addr before
2944 DW_OP_GNU_push_tls_address. In this case the value is an
2945 index, not an address. We don't support things like
2946 branching between the address and the TLS op. */
2947 if (op_ptr >= op_end || *op_ptr != DW_OP_GNU_push_tls_address)
2948 uoffset += dwarf2_per_cu_text_offset (per_cu);
2949 ax_const_l (expr, uoffset);
2950 break;
2951
2952 case DW_OP_const1u:
2953 ax_const_l (expr, extract_unsigned_integer (op_ptr, 1, byte_order));
2954 op_ptr += 1;
2955 break;
2956 case DW_OP_const1s:
2957 ax_const_l (expr, extract_signed_integer (op_ptr, 1, byte_order));
2958 op_ptr += 1;
2959 break;
2960 case DW_OP_const2u:
2961 ax_const_l (expr, extract_unsigned_integer (op_ptr, 2, byte_order));
2962 op_ptr += 2;
2963 break;
2964 case DW_OP_const2s:
2965 ax_const_l (expr, extract_signed_integer (op_ptr, 2, byte_order));
2966 op_ptr += 2;
2967 break;
2968 case DW_OP_const4u:
2969 ax_const_l (expr, extract_unsigned_integer (op_ptr, 4, byte_order));
2970 op_ptr += 4;
2971 break;
2972 case DW_OP_const4s:
2973 ax_const_l (expr, extract_signed_integer (op_ptr, 4, byte_order));
2974 op_ptr += 4;
2975 break;
2976 case DW_OP_const8u:
2977 ax_const_l (expr, extract_unsigned_integer (op_ptr, 8, byte_order));
2978 op_ptr += 8;
2979 break;
2980 case DW_OP_const8s:
2981 ax_const_l (expr, extract_signed_integer (op_ptr, 8, byte_order));
2982 op_ptr += 8;
2983 break;
2984 case DW_OP_constu:
2985 op_ptr = safe_read_uleb128 (op_ptr, op_end, &uoffset);
2986 ax_const_l (expr, uoffset);
2987 break;
2988 case DW_OP_consts:
2989 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
2990 ax_const_l (expr, offset);
2991 break;
2992
2993 case DW_OP_reg0:
2994 case DW_OP_reg1:
2995 case DW_OP_reg2:
2996 case DW_OP_reg3:
2997 case DW_OP_reg4:
2998 case DW_OP_reg5:
2999 case DW_OP_reg6:
3000 case DW_OP_reg7:
3001 case DW_OP_reg8:
3002 case DW_OP_reg9:
3003 case DW_OP_reg10:
3004 case DW_OP_reg11:
3005 case DW_OP_reg12:
3006 case DW_OP_reg13:
3007 case DW_OP_reg14:
3008 case DW_OP_reg15:
3009 case DW_OP_reg16:
3010 case DW_OP_reg17:
3011 case DW_OP_reg18:
3012 case DW_OP_reg19:
3013 case DW_OP_reg20:
3014 case DW_OP_reg21:
3015 case DW_OP_reg22:
3016 case DW_OP_reg23:
3017 case DW_OP_reg24:
3018 case DW_OP_reg25:
3019 case DW_OP_reg26:
3020 case DW_OP_reg27:
3021 case DW_OP_reg28:
3022 case DW_OP_reg29:
3023 case DW_OP_reg30:
3024 case DW_OP_reg31:
3025 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
3026 loc->u.reg = dwarf2_reg_to_regnum_or_error (arch, op - DW_OP_reg0);
3027 loc->kind = axs_lvalue_register;
3028 break;
3029
3030 case DW_OP_regx:
3031 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3032 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
3033 loc->u.reg = dwarf2_reg_to_regnum_or_error (arch, reg);
3034 loc->kind = axs_lvalue_register;
3035 break;
3036
3037 case DW_OP_implicit_value:
3038 {
3039 uint64_t len;
3040
3041 op_ptr = safe_read_uleb128 (op_ptr, op_end, &len);
3042 if (op_ptr + len > op_end)
3043 error (_("DW_OP_implicit_value: too few bytes available."));
3044 if (len > sizeof (ULONGEST))
3045 error (_("Cannot translate DW_OP_implicit_value of %d bytes"),
3046 (int) len);
3047
3048 ax_const_l (expr, extract_unsigned_integer (op_ptr, len,
3049 byte_order));
3050 op_ptr += len;
3051 dwarf_expr_require_composition (op_ptr, op_end,
3052 "DW_OP_implicit_value");
3053
3054 loc->kind = axs_rvalue;
3055 }
3056 break;
3057
3058 case DW_OP_stack_value:
3059 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_stack_value");
3060 loc->kind = axs_rvalue;
3061 break;
3062
3063 case DW_OP_breg0:
3064 case DW_OP_breg1:
3065 case DW_OP_breg2:
3066 case DW_OP_breg3:
3067 case DW_OP_breg4:
3068 case DW_OP_breg5:
3069 case DW_OP_breg6:
3070 case DW_OP_breg7:
3071 case DW_OP_breg8:
3072 case DW_OP_breg9:
3073 case DW_OP_breg10:
3074 case DW_OP_breg11:
3075 case DW_OP_breg12:
3076 case DW_OP_breg13:
3077 case DW_OP_breg14:
3078 case DW_OP_breg15:
3079 case DW_OP_breg16:
3080 case DW_OP_breg17:
3081 case DW_OP_breg18:
3082 case DW_OP_breg19:
3083 case DW_OP_breg20:
3084 case DW_OP_breg21:
3085 case DW_OP_breg22:
3086 case DW_OP_breg23:
3087 case DW_OP_breg24:
3088 case DW_OP_breg25:
3089 case DW_OP_breg26:
3090 case DW_OP_breg27:
3091 case DW_OP_breg28:
3092 case DW_OP_breg29:
3093 case DW_OP_breg30:
3094 case DW_OP_breg31:
3095 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3096 i = dwarf2_reg_to_regnum_or_error (arch, op - DW_OP_breg0);
3097 ax_reg (expr, i);
3098 if (offset != 0)
3099 {
3100 ax_const_l (expr, offset);
3101 ax_simple (expr, aop_add);
3102 }
3103 break;
3104 case DW_OP_bregx:
3105 {
3106 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3107 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3108 i = dwarf2_reg_to_regnum_or_error (arch, reg);
3109 ax_reg (expr, i);
3110 if (offset != 0)
3111 {
3112 ax_const_l (expr, offset);
3113 ax_simple (expr, aop_add);
3114 }
3115 }
3116 break;
3117 case DW_OP_fbreg:
3118 {
3119 const gdb_byte *datastart;
3120 size_t datalen;
3121 const struct block *b;
3122 struct symbol *framefunc;
3123
3124 b = block_for_pc (expr->scope);
3125
3126 if (!b)
3127 error (_("No block found for address"));
3128
3129 framefunc = block_linkage_function (b);
3130
3131 if (!framefunc)
3132 error (_("No function found for block"));
3133
3134 func_get_frame_base_dwarf_block (framefunc, expr->scope,
3135 &datastart, &datalen);
3136
3137 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3138 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size, datastart,
3139 datastart + datalen, per_cu);
3140 if (loc->kind == axs_lvalue_register)
3141 require_rvalue (expr, loc);
3142
3143 if (offset != 0)
3144 {
3145 ax_const_l (expr, offset);
3146 ax_simple (expr, aop_add);
3147 }
3148
3149 loc->kind = axs_lvalue_memory;
3150 }
3151 break;
3152
3153 case DW_OP_dup:
3154 ax_simple (expr, aop_dup);
3155 break;
3156
3157 case DW_OP_drop:
3158 ax_simple (expr, aop_pop);
3159 break;
3160
3161 case DW_OP_pick:
3162 offset = *op_ptr++;
3163 ax_pick (expr, offset);
3164 break;
3165
3166 case DW_OP_swap:
3167 ax_simple (expr, aop_swap);
3168 break;
3169
3170 case DW_OP_over:
3171 ax_pick (expr, 1);
3172 break;
3173
3174 case DW_OP_rot:
3175 ax_simple (expr, aop_rot);
3176 break;
3177
3178 case DW_OP_deref:
3179 case DW_OP_deref_size:
3180 {
3181 int size;
3182
3183 if (op == DW_OP_deref_size)
3184 size = *op_ptr++;
3185 else
3186 size = addr_size;
3187
3188 if (size != 1 && size != 2 && size != 4 && size != 8)
3189 error (_("Unsupported size %d in %s"),
3190 size, get_DW_OP_name (op));
3191 access_memory (arch, expr, size * TARGET_CHAR_BIT);
3192 }
3193 break;
3194
3195 case DW_OP_abs:
3196 /* Sign extend the operand. */
3197 ax_ext (expr, addr_size_bits);
3198 ax_simple (expr, aop_dup);
3199 ax_const_l (expr, 0);
3200 ax_simple (expr, aop_less_signed);
3201 ax_simple (expr, aop_log_not);
3202 i = ax_goto (expr, aop_if_goto);
3203 /* We have to emit 0 - X. */
3204 ax_const_l (expr, 0);
3205 ax_simple (expr, aop_swap);
3206 ax_simple (expr, aop_sub);
3207 ax_label (expr, i, expr->len);
3208 break;
3209
3210 case DW_OP_neg:
3211 /* No need to sign extend here. */
3212 ax_const_l (expr, 0);
3213 ax_simple (expr, aop_swap);
3214 ax_simple (expr, aop_sub);
3215 break;
3216
3217 case DW_OP_not:
3218 /* Sign extend the operand. */
3219 ax_ext (expr, addr_size_bits);
3220 ax_simple (expr, aop_bit_not);
3221 break;
3222
3223 case DW_OP_plus_uconst:
3224 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3225 /* It would be really weird to emit `DW_OP_plus_uconst 0',
3226 but we micro-optimize anyhow. */
3227 if (reg != 0)
3228 {
3229 ax_const_l (expr, reg);
3230 ax_simple (expr, aop_add);
3231 }
3232 break;
3233
3234 case DW_OP_and:
3235 ax_simple (expr, aop_bit_and);
3236 break;
3237
3238 case DW_OP_div:
3239 /* Sign extend the operands. */
3240 ax_ext (expr, addr_size_bits);
3241 ax_simple (expr, aop_swap);
3242 ax_ext (expr, addr_size_bits);
3243 ax_simple (expr, aop_swap);
3244 ax_simple (expr, aop_div_signed);
3245 break;
3246
3247 case DW_OP_minus:
3248 ax_simple (expr, aop_sub);
3249 break;
3250
3251 case DW_OP_mod:
3252 ax_simple (expr, aop_rem_unsigned);
3253 break;
3254
3255 case DW_OP_mul:
3256 ax_simple (expr, aop_mul);
3257 break;
3258
3259 case DW_OP_or:
3260 ax_simple (expr, aop_bit_or);
3261 break;
3262
3263 case DW_OP_plus:
3264 ax_simple (expr, aop_add);
3265 break;
3266
3267 case DW_OP_shl:
3268 ax_simple (expr, aop_lsh);
3269 break;
3270
3271 case DW_OP_shr:
3272 ax_simple (expr, aop_rsh_unsigned);
3273 break;
3274
3275 case DW_OP_shra:
3276 ax_simple (expr, aop_rsh_signed);
3277 break;
3278
3279 case DW_OP_xor:
3280 ax_simple (expr, aop_bit_xor);
3281 break;
3282
3283 case DW_OP_le:
3284 /* Sign extend the operands. */
3285 ax_ext (expr, addr_size_bits);
3286 ax_simple (expr, aop_swap);
3287 ax_ext (expr, addr_size_bits);
3288 /* Note no swap here: A <= B is !(B < A). */
3289 ax_simple (expr, aop_less_signed);
3290 ax_simple (expr, aop_log_not);
3291 break;
3292
3293 case DW_OP_ge:
3294 /* Sign extend the operands. */
3295 ax_ext (expr, addr_size_bits);
3296 ax_simple (expr, aop_swap);
3297 ax_ext (expr, addr_size_bits);
3298 ax_simple (expr, aop_swap);
3299 /* A >= B is !(A < B). */
3300 ax_simple (expr, aop_less_signed);
3301 ax_simple (expr, aop_log_not);
3302 break;
3303
3304 case DW_OP_eq:
3305 /* Sign extend the operands. */
3306 ax_ext (expr, addr_size_bits);
3307 ax_simple (expr, aop_swap);
3308 ax_ext (expr, addr_size_bits);
3309 /* No need for a second swap here. */
3310 ax_simple (expr, aop_equal);
3311 break;
3312
3313 case DW_OP_lt:
3314 /* Sign extend the operands. */
3315 ax_ext (expr, addr_size_bits);
3316 ax_simple (expr, aop_swap);
3317 ax_ext (expr, addr_size_bits);
3318 ax_simple (expr, aop_swap);
3319 ax_simple (expr, aop_less_signed);
3320 break;
3321
3322 case DW_OP_gt:
3323 /* Sign extend the operands. */
3324 ax_ext (expr, addr_size_bits);
3325 ax_simple (expr, aop_swap);
3326 ax_ext (expr, addr_size_bits);
3327 /* Note no swap here: A > B is B < A. */
3328 ax_simple (expr, aop_less_signed);
3329 break;
3330
3331 case DW_OP_ne:
3332 /* Sign extend the operands. */
3333 ax_ext (expr, addr_size_bits);
3334 ax_simple (expr, aop_swap);
3335 ax_ext (expr, addr_size_bits);
3336 /* No need for a swap here. */
3337 ax_simple (expr, aop_equal);
3338 ax_simple (expr, aop_log_not);
3339 break;
3340
3341 case DW_OP_call_frame_cfa:
3342 {
3343 int regnum;
3344 CORE_ADDR text_offset;
3345 LONGEST off;
3346 const gdb_byte *cfa_start, *cfa_end;
3347
3348 if (dwarf2_fetch_cfa_info (arch, expr->scope, per_cu,
3349 &regnum, &off,
3350 &text_offset, &cfa_start, &cfa_end))
3351 {
3352 /* Register. */
3353 ax_reg (expr, regnum);
3354 if (off != 0)
3355 {
3356 ax_const_l (expr, off);
3357 ax_simple (expr, aop_add);
3358 }
3359 }
3360 else
3361 {
3362 /* Another expression. */
3363 ax_const_l (expr, text_offset);
3364 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size,
3365 cfa_start, cfa_end, per_cu);
3366 }
3367
3368 loc->kind = axs_lvalue_memory;
3369 }
3370 break;
3371
3372 case DW_OP_GNU_push_tls_address:
3373 unimplemented (op);
3374 break;
3375
3376 case DW_OP_push_object_address:
3377 unimplemented (op);
3378 break;
3379
3380 case DW_OP_skip:
3381 offset = extract_signed_integer (op_ptr, 2, byte_order);
3382 op_ptr += 2;
3383 i = ax_goto (expr, aop_goto);
3384 VEC_safe_push (int, dw_labels, op_ptr + offset - base);
3385 VEC_safe_push (int, patches, i);
3386 break;
3387
3388 case DW_OP_bra:
3389 offset = extract_signed_integer (op_ptr, 2, byte_order);
3390 op_ptr += 2;
3391 /* Zero extend the operand. */
3392 ax_zero_ext (expr, addr_size_bits);
3393 i = ax_goto (expr, aop_if_goto);
3394 VEC_safe_push (int, dw_labels, op_ptr + offset - base);
3395 VEC_safe_push (int, patches, i);
3396 break;
3397
3398 case DW_OP_nop:
3399 break;
3400
3401 case DW_OP_piece:
3402 case DW_OP_bit_piece:
3403 {
3404 uint64_t size, offset;
3405
3406 if (op_ptr - 1 == previous_piece)
3407 error (_("Cannot translate empty pieces to agent expressions"));
3408 previous_piece = op_ptr - 1;
3409
3410 op_ptr = safe_read_uleb128 (op_ptr, op_end, &size);
3411 if (op == DW_OP_piece)
3412 {
3413 size *= 8;
3414 offset = 0;
3415 }
3416 else
3417 op_ptr = safe_read_uleb128 (op_ptr, op_end, &offset);
3418
3419 if (bits_collected + size > 8 * sizeof (LONGEST))
3420 error (_("Expression pieces exceed word size"));
3421
3422 /* Access the bits. */
3423 switch (loc->kind)
3424 {
3425 case axs_lvalue_register:
3426 ax_reg (expr, loc->u.reg);
3427 break;
3428
3429 case axs_lvalue_memory:
3430 /* Offset the pointer, if needed. */
3431 if (offset > 8)
3432 {
3433 ax_const_l (expr, offset / 8);
3434 ax_simple (expr, aop_add);
3435 offset %= 8;
3436 }
3437 access_memory (arch, expr, size);
3438 break;
3439 }
3440
3441 /* For a bits-big-endian target, shift up what we already
3442 have. For a bits-little-endian target, shift up the
3443 new data. Note that there is a potential bug here if
3444 the DWARF expression leaves multiple values on the
3445 stack. */
3446 if (bits_collected > 0)
3447 {
3448 if (bits_big_endian)
3449 {
3450 ax_simple (expr, aop_swap);
3451 ax_const_l (expr, size);
3452 ax_simple (expr, aop_lsh);
3453 /* We don't need a second swap here, because
3454 aop_bit_or is symmetric. */
3455 }
3456 else
3457 {
3458 ax_const_l (expr, size);
3459 ax_simple (expr, aop_lsh);
3460 }
3461 ax_simple (expr, aop_bit_or);
3462 }
3463
3464 bits_collected += size;
3465 loc->kind = axs_rvalue;
3466 }
3467 break;
3468
3469 case DW_OP_GNU_uninit:
3470 unimplemented (op);
3471
3472 case DW_OP_call2:
3473 case DW_OP_call4:
3474 {
3475 struct dwarf2_locexpr_baton block;
3476 int size = (op == DW_OP_call2 ? 2 : 4);
3477 cu_offset offset;
3478
3479 uoffset = extract_unsigned_integer (op_ptr, size, byte_order);
3480 op_ptr += size;
3481
3482 offset.cu_off = uoffset;
3483 block = dwarf2_fetch_die_loc_cu_off (offset, per_cu,
3484 get_ax_pc, expr);
3485
3486 /* DW_OP_call_ref is currently not supported. */
3487 gdb_assert (block.per_cu == per_cu);
3488
3489 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size,
3490 block.data, block.data + block.size,
3491 per_cu);
3492 }
3493 break;
3494
3495 case DW_OP_call_ref:
3496 unimplemented (op);
3497
3498 default:
3499 unimplemented (op);
3500 }
3501 }
3502
3503 /* Patch all the branches we emitted. */
3504 for (i = 0; i < VEC_length (int, patches); ++i)
3505 {
3506 int targ = offsets[VEC_index (int, dw_labels, i)];
3507 if (targ == -1)
3508 internal_error (__FILE__, __LINE__, _("invalid label"));
3509 ax_label (expr, VEC_index (int, patches, i), targ);
3510 }
3511
3512 do_cleanups (cleanups);
3513 }
3514
3515 \f
3516 /* Return the value of SYMBOL in FRAME using the DWARF-2 expression
3517 evaluator to calculate the location. */
3518 static struct value *
3519 locexpr_read_variable (struct symbol *symbol, struct frame_info *frame)
3520 {
3521 struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
3522 struct value *val;
3523
3524 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, dlbaton->data,
3525 dlbaton->size, dlbaton->per_cu);
3526
3527 return val;
3528 }
3529
3530 /* Return the value of SYMBOL in FRAME at (callee) FRAME's function
3531 entry. SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
3532 will be thrown. */
3533
3534 static struct value *
3535 locexpr_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
3536 {
3537 struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
3538
3539 return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, dlbaton->data,
3540 dlbaton->size);
3541 }
3542
3543 /* Return non-zero iff we need a frame to evaluate SYMBOL. */
3544 static int
3545 locexpr_read_needs_frame (struct symbol *symbol)
3546 {
3547 struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
3548
3549 return dwarf2_loc_desc_needs_frame (dlbaton->data, dlbaton->size,
3550 dlbaton->per_cu);
3551 }
3552
3553 /* Return true if DATA points to the end of a piece. END is one past
3554 the last byte in the expression. */
3555
3556 static int
3557 piece_end_p (const gdb_byte *data, const gdb_byte *end)
3558 {
3559 return data == end || data[0] == DW_OP_piece || data[0] == DW_OP_bit_piece;
3560 }
3561
3562 /* Helper for locexpr_describe_location_piece that finds the name of a
3563 DWARF register. */
3564
3565 static const char *
3566 locexpr_regname (struct gdbarch *gdbarch, int dwarf_regnum)
3567 {
3568 int regnum;
3569
3570 regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, dwarf_regnum);
3571 return gdbarch_register_name (gdbarch, regnum);
3572 }
3573
3574 /* Nicely describe a single piece of a location, returning an updated
3575 position in the bytecode sequence. This function cannot recognize
3576 all locations; if a location is not recognized, it simply returns
3577 DATA. If there is an error during reading, e.g. we run off the end
3578 of the buffer, an error is thrown. */
3579
3580 static const gdb_byte *
3581 locexpr_describe_location_piece (struct symbol *symbol, struct ui_file *stream,
3582 CORE_ADDR addr, struct objfile *objfile,
3583 struct dwarf2_per_cu_data *per_cu,
3584 const gdb_byte *data, const gdb_byte *end,
3585 unsigned int addr_size)
3586 {
3587 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3588 size_t leb128_size;
3589
3590 if (data[0] >= DW_OP_reg0 && data[0] <= DW_OP_reg31)
3591 {
3592 fprintf_filtered (stream, _("a variable in $%s"),
3593 locexpr_regname (gdbarch, data[0] - DW_OP_reg0));
3594 data += 1;
3595 }
3596 else if (data[0] == DW_OP_regx)
3597 {
3598 uint64_t reg;
3599
3600 data = safe_read_uleb128 (data + 1, end, &reg);
3601 fprintf_filtered (stream, _("a variable in $%s"),
3602 locexpr_regname (gdbarch, reg));
3603 }
3604 else if (data[0] == DW_OP_fbreg)
3605 {
3606 const struct block *b;
3607 struct symbol *framefunc;
3608 int frame_reg = 0;
3609 int64_t frame_offset;
3610 const gdb_byte *base_data, *new_data, *save_data = data;
3611 size_t base_size;
3612 int64_t base_offset = 0;
3613
3614 new_data = safe_read_sleb128 (data + 1, end, &frame_offset);
3615 if (!piece_end_p (new_data, end))
3616 return data;
3617 data = new_data;
3618
3619 b = block_for_pc (addr);
3620
3621 if (!b)
3622 error (_("No block found for address for symbol \"%s\"."),
3623 SYMBOL_PRINT_NAME (symbol));
3624
3625 framefunc = block_linkage_function (b);
3626
3627 if (!framefunc)
3628 error (_("No function found for block for symbol \"%s\"."),
3629 SYMBOL_PRINT_NAME (symbol));
3630
3631 func_get_frame_base_dwarf_block (framefunc, addr, &base_data, &base_size);
3632
3633 if (base_data[0] >= DW_OP_breg0 && base_data[0] <= DW_OP_breg31)
3634 {
3635 const gdb_byte *buf_end;
3636
3637 frame_reg = base_data[0] - DW_OP_breg0;
3638 buf_end = safe_read_sleb128 (base_data + 1, base_data + base_size,
3639 &base_offset);
3640 if (buf_end != base_data + base_size)
3641 error (_("Unexpected opcode after "
3642 "DW_OP_breg%u for symbol \"%s\"."),
3643 frame_reg, SYMBOL_PRINT_NAME (symbol));
3644 }
3645 else if (base_data[0] >= DW_OP_reg0 && base_data[0] <= DW_OP_reg31)
3646 {
3647 /* The frame base is just the register, with no offset. */
3648 frame_reg = base_data[0] - DW_OP_reg0;
3649 base_offset = 0;
3650 }
3651 else
3652 {
3653 /* We don't know what to do with the frame base expression,
3654 so we can't trace this variable; give up. */
3655 return save_data;
3656 }
3657
3658 fprintf_filtered (stream,
3659 _("a variable at frame base reg $%s offset %s+%s"),
3660 locexpr_regname (gdbarch, frame_reg),
3661 plongest (base_offset), plongest (frame_offset));
3662 }
3663 else if (data[0] >= DW_OP_breg0 && data[0] <= DW_OP_breg31
3664 && piece_end_p (data, end))
3665 {
3666 int64_t offset;
3667
3668 data = safe_read_sleb128 (data + 1, end, &offset);
3669
3670 fprintf_filtered (stream,
3671 _("a variable at offset %s from base reg $%s"),
3672 plongest (offset),
3673 locexpr_regname (gdbarch, data[0] - DW_OP_breg0));
3674 }
3675
3676 /* The location expression for a TLS variable looks like this (on a
3677 64-bit LE machine):
3678
3679 DW_AT_location : 10 byte block: 3 4 0 0 0 0 0 0 0 e0
3680 (DW_OP_addr: 4; DW_OP_GNU_push_tls_address)
3681
3682 0x3 is the encoding for DW_OP_addr, which has an operand as long
3683 as the size of an address on the target machine (here is 8
3684 bytes). Note that more recent version of GCC emit DW_OP_const4u
3685 or DW_OP_const8u, depending on address size, rather than
3686 DW_OP_addr. 0xe0 is the encoding for DW_OP_GNU_push_tls_address.
3687 The operand represents the offset at which the variable is within
3688 the thread local storage. */
3689
3690 else if (data + 1 + addr_size < end
3691 && (data[0] == DW_OP_addr
3692 || (addr_size == 4 && data[0] == DW_OP_const4u)
3693 || (addr_size == 8 && data[0] == DW_OP_const8u))
3694 && data[1 + addr_size] == DW_OP_GNU_push_tls_address
3695 && piece_end_p (data + 2 + addr_size, end))
3696 {
3697 ULONGEST offset;
3698 offset = extract_unsigned_integer (data + 1, addr_size,
3699 gdbarch_byte_order (gdbarch));
3700
3701 fprintf_filtered (stream,
3702 _("a thread-local variable at offset 0x%s "
3703 "in the thread-local storage for `%s'"),
3704 phex_nz (offset, addr_size), objfile_name (objfile));
3705
3706 data += 1 + addr_size + 1;
3707 }
3708
3709 /* With -gsplit-dwarf a TLS variable can also look like this:
3710 DW_AT_location : 3 byte block: fc 4 e0
3711 (DW_OP_GNU_const_index: 4;
3712 DW_OP_GNU_push_tls_address) */
3713 else if (data + 3 <= end
3714 && data + 1 + (leb128_size = skip_leb128 (data + 1, end)) < end
3715 && data[0] == DW_OP_GNU_const_index
3716 && leb128_size > 0
3717 && data[1 + leb128_size] == DW_OP_GNU_push_tls_address
3718 && piece_end_p (data + 2 + leb128_size, end))
3719 {
3720 uint64_t offset;
3721
3722 data = safe_read_uleb128 (data + 1, end, &offset);
3723 offset = dwarf2_read_addr_index (per_cu, offset);
3724 fprintf_filtered (stream,
3725 _("a thread-local variable at offset 0x%s "
3726 "in the thread-local storage for `%s'"),
3727 phex_nz (offset, addr_size), objfile_name (objfile));
3728 ++data;
3729 }
3730
3731 else if (data[0] >= DW_OP_lit0
3732 && data[0] <= DW_OP_lit31
3733 && data + 1 < end
3734 && data[1] == DW_OP_stack_value)
3735 {
3736 fprintf_filtered (stream, _("the constant %d"), data[0] - DW_OP_lit0);
3737 data += 2;
3738 }
3739
3740 return data;
3741 }
3742
3743 /* Disassemble an expression, stopping at the end of a piece or at the
3744 end of the expression. Returns a pointer to the next unread byte
3745 in the input expression. If ALL is nonzero, then this function
3746 will keep going until it reaches the end of the expression.
3747 If there is an error during reading, e.g. we run off the end
3748 of the buffer, an error is thrown. */
3749
3750 static const gdb_byte *
3751 disassemble_dwarf_expression (struct ui_file *stream,
3752 struct gdbarch *arch, unsigned int addr_size,
3753 int offset_size, const gdb_byte *start,
3754 const gdb_byte *data, const gdb_byte *end,
3755 int indent, int all,
3756 struct dwarf2_per_cu_data *per_cu)
3757 {
3758 while (data < end
3759 && (all
3760 || (data[0] != DW_OP_piece && data[0] != DW_OP_bit_piece)))
3761 {
3762 enum dwarf_location_atom op = *data++;
3763 uint64_t ul;
3764 int64_t l;
3765 const char *name;
3766
3767 name = get_DW_OP_name (op);
3768
3769 if (!name)
3770 error (_("Unrecognized DWARF opcode 0x%02x at %ld"),
3771 op, (long) (data - 1 - start));
3772 fprintf_filtered (stream, " %*ld: %s", indent + 4,
3773 (long) (data - 1 - start), name);
3774
3775 switch (op)
3776 {
3777 case DW_OP_addr:
3778 ul = extract_unsigned_integer (data, addr_size,
3779 gdbarch_byte_order (arch));
3780 data += addr_size;
3781 fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
3782 break;
3783
3784 case DW_OP_const1u:
3785 ul = extract_unsigned_integer (data, 1, gdbarch_byte_order (arch));
3786 data += 1;
3787 fprintf_filtered (stream, " %s", pulongest (ul));
3788 break;
3789 case DW_OP_const1s:
3790 l = extract_signed_integer (data, 1, gdbarch_byte_order (arch));
3791 data += 1;
3792 fprintf_filtered (stream, " %s", plongest (l));
3793 break;
3794 case DW_OP_const2u:
3795 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
3796 data += 2;
3797 fprintf_filtered (stream, " %s", pulongest (ul));
3798 break;
3799 case DW_OP_const2s:
3800 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
3801 data += 2;
3802 fprintf_filtered (stream, " %s", plongest (l));
3803 break;
3804 case DW_OP_const4u:
3805 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
3806 data += 4;
3807 fprintf_filtered (stream, " %s", pulongest (ul));
3808 break;
3809 case DW_OP_const4s:
3810 l = extract_signed_integer (data, 4, gdbarch_byte_order (arch));
3811 data += 4;
3812 fprintf_filtered (stream, " %s", plongest (l));
3813 break;
3814 case DW_OP_const8u:
3815 ul = extract_unsigned_integer (data, 8, gdbarch_byte_order (arch));
3816 data += 8;
3817 fprintf_filtered (stream, " %s", pulongest (ul));
3818 break;
3819 case DW_OP_const8s:
3820 l = extract_signed_integer (data, 8, gdbarch_byte_order (arch));
3821 data += 8;
3822 fprintf_filtered (stream, " %s", plongest (l));
3823 break;
3824 case DW_OP_constu:
3825 data = safe_read_uleb128 (data, end, &ul);
3826 fprintf_filtered (stream, " %s", pulongest (ul));
3827 break;
3828 case DW_OP_consts:
3829 data = safe_read_sleb128 (data, end, &l);
3830 fprintf_filtered (stream, " %s", plongest (l));
3831 break;
3832
3833 case DW_OP_reg0:
3834 case DW_OP_reg1:
3835 case DW_OP_reg2:
3836 case DW_OP_reg3:
3837 case DW_OP_reg4:
3838 case DW_OP_reg5:
3839 case DW_OP_reg6:
3840 case DW_OP_reg7:
3841 case DW_OP_reg8:
3842 case DW_OP_reg9:
3843 case DW_OP_reg10:
3844 case DW_OP_reg11:
3845 case DW_OP_reg12:
3846 case DW_OP_reg13:
3847 case DW_OP_reg14:
3848 case DW_OP_reg15:
3849 case DW_OP_reg16:
3850 case DW_OP_reg17:
3851 case DW_OP_reg18:
3852 case DW_OP_reg19:
3853 case DW_OP_reg20:
3854 case DW_OP_reg21:
3855 case DW_OP_reg22:
3856 case DW_OP_reg23:
3857 case DW_OP_reg24:
3858 case DW_OP_reg25:
3859 case DW_OP_reg26:
3860 case DW_OP_reg27:
3861 case DW_OP_reg28:
3862 case DW_OP_reg29:
3863 case DW_OP_reg30:
3864 case DW_OP_reg31:
3865 fprintf_filtered (stream, " [$%s]",
3866 locexpr_regname (arch, op - DW_OP_reg0));
3867 break;
3868
3869 case DW_OP_regx:
3870 data = safe_read_uleb128 (data, end, &ul);
3871 fprintf_filtered (stream, " %s [$%s]", pulongest (ul),
3872 locexpr_regname (arch, (int) ul));
3873 break;
3874
3875 case DW_OP_implicit_value:
3876 data = safe_read_uleb128 (data, end, &ul);
3877 data += ul;
3878 fprintf_filtered (stream, " %s", pulongest (ul));
3879 break;
3880
3881 case DW_OP_breg0:
3882 case DW_OP_breg1:
3883 case DW_OP_breg2:
3884 case DW_OP_breg3:
3885 case DW_OP_breg4:
3886 case DW_OP_breg5:
3887 case DW_OP_breg6:
3888 case DW_OP_breg7:
3889 case DW_OP_breg8:
3890 case DW_OP_breg9:
3891 case DW_OP_breg10:
3892 case DW_OP_breg11:
3893 case DW_OP_breg12:
3894 case DW_OP_breg13:
3895 case DW_OP_breg14:
3896 case DW_OP_breg15:
3897 case DW_OP_breg16:
3898 case DW_OP_breg17:
3899 case DW_OP_breg18:
3900 case DW_OP_breg19:
3901 case DW_OP_breg20:
3902 case DW_OP_breg21:
3903 case DW_OP_breg22:
3904 case DW_OP_breg23:
3905 case DW_OP_breg24:
3906 case DW_OP_breg25:
3907 case DW_OP_breg26:
3908 case DW_OP_breg27:
3909 case DW_OP_breg28:
3910 case DW_OP_breg29:
3911 case DW_OP_breg30:
3912 case DW_OP_breg31:
3913 data = safe_read_sleb128 (data, end, &l);
3914 fprintf_filtered (stream, " %s [$%s]", plongest (l),
3915 locexpr_regname (arch, op - DW_OP_breg0));
3916 break;
3917
3918 case DW_OP_bregx:
3919 data = safe_read_uleb128 (data, end, &ul);
3920 data = safe_read_sleb128 (data, end, &l);
3921 fprintf_filtered (stream, " register %s [$%s] offset %s",
3922 pulongest (ul),
3923 locexpr_regname (arch, (int) ul),
3924 plongest (l));
3925 break;
3926
3927 case DW_OP_fbreg:
3928 data = safe_read_sleb128 (data, end, &l);
3929 fprintf_filtered (stream, " %s", plongest (l));
3930 break;
3931
3932 case DW_OP_xderef_size:
3933 case DW_OP_deref_size:
3934 case DW_OP_pick:
3935 fprintf_filtered (stream, " %d", *data);
3936 ++data;
3937 break;
3938
3939 case DW_OP_plus_uconst:
3940 data = safe_read_uleb128 (data, end, &ul);
3941 fprintf_filtered (stream, " %s", pulongest (ul));
3942 break;
3943
3944 case DW_OP_skip:
3945 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
3946 data += 2;
3947 fprintf_filtered (stream, " to %ld",
3948 (long) (data + l - start));
3949 break;
3950
3951 case DW_OP_bra:
3952 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
3953 data += 2;
3954 fprintf_filtered (stream, " %ld",
3955 (long) (data + l - start));
3956 break;
3957
3958 case DW_OP_call2:
3959 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
3960 data += 2;
3961 fprintf_filtered (stream, " offset %s", phex_nz (ul, 2));
3962 break;
3963
3964 case DW_OP_call4:
3965 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
3966 data += 4;
3967 fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
3968 break;
3969
3970 case DW_OP_call_ref:
3971 ul = extract_unsigned_integer (data, offset_size,
3972 gdbarch_byte_order (arch));
3973 data += offset_size;
3974 fprintf_filtered (stream, " offset %s", phex_nz (ul, offset_size));
3975 break;
3976
3977 case DW_OP_piece:
3978 data = safe_read_uleb128 (data, end, &ul);
3979 fprintf_filtered (stream, " %s (bytes)", pulongest (ul));
3980 break;
3981
3982 case DW_OP_bit_piece:
3983 {
3984 uint64_t offset;
3985
3986 data = safe_read_uleb128 (data, end, &ul);
3987 data = safe_read_uleb128 (data, end, &offset);
3988 fprintf_filtered (stream, " size %s offset %s (bits)",
3989 pulongest (ul), pulongest (offset));
3990 }
3991 break;
3992
3993 case DW_OP_GNU_implicit_pointer:
3994 {
3995 ul = extract_unsigned_integer (data, offset_size,
3996 gdbarch_byte_order (arch));
3997 data += offset_size;
3998
3999 data = safe_read_sleb128 (data, end, &l);
4000
4001 fprintf_filtered (stream, " DIE %s offset %s",
4002 phex_nz (ul, offset_size),
4003 plongest (l));
4004 }
4005 break;
4006
4007 case DW_OP_GNU_deref_type:
4008 {
4009 int addr_size = *data++;
4010 cu_offset offset;
4011 struct type *type;
4012
4013 data = safe_read_uleb128 (data, end, &ul);
4014 offset.cu_off = ul;
4015 type = dwarf2_get_die_type (offset, per_cu);
4016 fprintf_filtered (stream, "<");
4017 type_print (type, "", stream, -1);
4018 fprintf_filtered (stream, " [0x%s]> %d", phex_nz (offset.cu_off, 0),
4019 addr_size);
4020 }
4021 break;
4022
4023 case DW_OP_GNU_const_type:
4024 {
4025 cu_offset type_die;
4026 struct type *type;
4027
4028 data = safe_read_uleb128 (data, end, &ul);
4029 type_die.cu_off = ul;
4030 type = dwarf2_get_die_type (type_die, per_cu);
4031 fprintf_filtered (stream, "<");
4032 type_print (type, "", stream, -1);
4033 fprintf_filtered (stream, " [0x%s]>", phex_nz (type_die.cu_off, 0));
4034 }
4035 break;
4036
4037 case DW_OP_GNU_regval_type:
4038 {
4039 uint64_t reg;
4040 cu_offset type_die;
4041 struct type *type;
4042
4043 data = safe_read_uleb128 (data, end, &reg);
4044 data = safe_read_uleb128 (data, end, &ul);
4045 type_die.cu_off = ul;
4046
4047 type = dwarf2_get_die_type (type_die, per_cu);
4048 fprintf_filtered (stream, "<");
4049 type_print (type, "", stream, -1);
4050 fprintf_filtered (stream, " [0x%s]> [$%s]",
4051 phex_nz (type_die.cu_off, 0),
4052 locexpr_regname (arch, reg));
4053 }
4054 break;
4055
4056 case DW_OP_GNU_convert:
4057 case DW_OP_GNU_reinterpret:
4058 {
4059 cu_offset type_die;
4060
4061 data = safe_read_uleb128 (data, end, &ul);
4062 type_die.cu_off = ul;
4063
4064 if (type_die.cu_off == 0)
4065 fprintf_filtered (stream, "<0>");
4066 else
4067 {
4068 struct type *type;
4069
4070 type = dwarf2_get_die_type (type_die, per_cu);
4071 fprintf_filtered (stream, "<");
4072 type_print (type, "", stream, -1);
4073 fprintf_filtered (stream, " [0x%s]>", phex_nz (type_die.cu_off, 0));
4074 }
4075 }
4076 break;
4077
4078 case DW_OP_GNU_entry_value:
4079 data = safe_read_uleb128 (data, end, &ul);
4080 fputc_filtered ('\n', stream);
4081 disassemble_dwarf_expression (stream, arch, addr_size, offset_size,
4082 start, data, data + ul, indent + 2,
4083 all, per_cu);
4084 data += ul;
4085 continue;
4086
4087 case DW_OP_GNU_parameter_ref:
4088 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
4089 data += 4;
4090 fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
4091 break;
4092
4093 case DW_OP_GNU_addr_index:
4094 data = safe_read_uleb128 (data, end, &ul);
4095 ul = dwarf2_read_addr_index (per_cu, ul);
4096 fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
4097 break;
4098 case DW_OP_GNU_const_index:
4099 data = safe_read_uleb128 (data, end, &ul);
4100 ul = dwarf2_read_addr_index (per_cu, ul);
4101 fprintf_filtered (stream, " %s", pulongest (ul));
4102 break;
4103 }
4104
4105 fprintf_filtered (stream, "\n");
4106 }
4107
4108 return data;
4109 }
4110
4111 /* Describe a single location, which may in turn consist of multiple
4112 pieces. */
4113
4114 static void
4115 locexpr_describe_location_1 (struct symbol *symbol, CORE_ADDR addr,
4116 struct ui_file *stream,
4117 const gdb_byte *data, size_t size,
4118 struct objfile *objfile, unsigned int addr_size,
4119 int offset_size, struct dwarf2_per_cu_data *per_cu)
4120 {
4121 const gdb_byte *end = data + size;
4122 int first_piece = 1, bad = 0;
4123
4124 while (data < end)
4125 {
4126 const gdb_byte *here = data;
4127 int disassemble = 1;
4128
4129 if (first_piece)
4130 first_piece = 0;
4131 else
4132 fprintf_filtered (stream, _(", and "));
4133
4134 if (!dwarf2_always_disassemble)
4135 {
4136 data = locexpr_describe_location_piece (symbol, stream,
4137 addr, objfile, per_cu,
4138 data, end, addr_size);
4139 /* If we printed anything, or if we have an empty piece,
4140 then don't disassemble. */
4141 if (data != here
4142 || data[0] == DW_OP_piece
4143 || data[0] == DW_OP_bit_piece)
4144 disassemble = 0;
4145 }
4146 if (disassemble)
4147 {
4148 fprintf_filtered (stream, _("a complex DWARF expression:\n"));
4149 data = disassemble_dwarf_expression (stream,
4150 get_objfile_arch (objfile),
4151 addr_size, offset_size, data,
4152 data, end, 0,
4153 dwarf2_always_disassemble,
4154 per_cu);
4155 }
4156
4157 if (data < end)
4158 {
4159 int empty = data == here;
4160
4161 if (disassemble)
4162 fprintf_filtered (stream, " ");
4163 if (data[0] == DW_OP_piece)
4164 {
4165 uint64_t bytes;
4166
4167 data = safe_read_uleb128 (data + 1, end, &bytes);
4168
4169 if (empty)
4170 fprintf_filtered (stream, _("an empty %s-byte piece"),
4171 pulongest (bytes));
4172 else
4173 fprintf_filtered (stream, _(" [%s-byte piece]"),
4174 pulongest (bytes));
4175 }
4176 else if (data[0] == DW_OP_bit_piece)
4177 {
4178 uint64_t bits, offset;
4179
4180 data = safe_read_uleb128 (data + 1, end, &bits);
4181 data = safe_read_uleb128 (data, end, &offset);
4182
4183 if (empty)
4184 fprintf_filtered (stream,
4185 _("an empty %s-bit piece"),
4186 pulongest (bits));
4187 else
4188 fprintf_filtered (stream,
4189 _(" [%s-bit piece, offset %s bits]"),
4190 pulongest (bits), pulongest (offset));
4191 }
4192 else
4193 {
4194 bad = 1;
4195 break;
4196 }
4197 }
4198 }
4199
4200 if (bad || data > end)
4201 error (_("Corrupted DWARF2 expression for \"%s\"."),
4202 SYMBOL_PRINT_NAME (symbol));
4203 }
4204
4205 /* Print a natural-language description of SYMBOL to STREAM. This
4206 version is for a symbol with a single location. */
4207
4208 static void
4209 locexpr_describe_location (struct symbol *symbol, CORE_ADDR addr,
4210 struct ui_file *stream)
4211 {
4212 struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
4213 struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
4214 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4215 int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
4216
4217 locexpr_describe_location_1 (symbol, addr, stream,
4218 dlbaton->data, dlbaton->size,
4219 objfile, addr_size, offset_size,
4220 dlbaton->per_cu);
4221 }
4222
4223 /* Describe the location of SYMBOL as an agent value in VALUE, generating
4224 any necessary bytecode in AX. */
4225
4226 static void
4227 locexpr_tracepoint_var_ref (struct symbol *symbol, struct gdbarch *gdbarch,
4228 struct agent_expr *ax, struct axs_value *value)
4229 {
4230 struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
4231 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4232
4233 if (dlbaton->size == 0)
4234 value->optimized_out = 1;
4235 else
4236 dwarf2_compile_expr_to_ax (ax, value, gdbarch, addr_size,
4237 dlbaton->data, dlbaton->data + dlbaton->size,
4238 dlbaton->per_cu);
4239 }
4240
4241 /* symbol_computed_ops 'generate_c_location' method. */
4242
4243 static void
4244 locexpr_generate_c_location (struct symbol *sym, struct ui_file *stream,
4245 struct gdbarch *gdbarch,
4246 unsigned char *registers_used,
4247 CORE_ADDR pc, const char *result_name)
4248 {
4249 struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (sym);
4250 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4251
4252 if (dlbaton->size == 0)
4253 error (_("symbol \"%s\" is optimized out"), SYMBOL_NATURAL_NAME (sym));
4254
4255 compile_dwarf_expr_to_c (stream, result_name,
4256 sym, pc, gdbarch, registers_used, addr_size,
4257 dlbaton->data, dlbaton->data + dlbaton->size,
4258 dlbaton->per_cu);
4259 }
4260
4261 /* The set of location functions used with the DWARF-2 expression
4262 evaluator. */
4263 const struct symbol_computed_ops dwarf2_locexpr_funcs = {
4264 locexpr_read_variable,
4265 locexpr_read_variable_at_entry,
4266 locexpr_read_needs_frame,
4267 locexpr_describe_location,
4268 0, /* location_has_loclist */
4269 locexpr_tracepoint_var_ref,
4270 locexpr_generate_c_location
4271 };
4272
4273
4274 /* Wrapper functions for location lists. These generally find
4275 the appropriate location expression and call something above. */
4276
4277 /* Return the value of SYMBOL in FRAME using the DWARF-2 expression
4278 evaluator to calculate the location. */
4279 static struct value *
4280 loclist_read_variable (struct symbol *symbol, struct frame_info *frame)
4281 {
4282 struct dwarf2_loclist_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
4283 struct value *val;
4284 const gdb_byte *data;
4285 size_t size;
4286 CORE_ADDR pc = frame ? get_frame_address_in_block (frame) : 0;
4287
4288 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4289 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, data, size,
4290 dlbaton->per_cu);
4291
4292 return val;
4293 }
4294
4295 /* Read variable SYMBOL like loclist_read_variable at (callee) FRAME's function
4296 entry. SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
4297 will be thrown.
4298
4299 Function always returns non-NULL value, it may be marked optimized out if
4300 inferior frame information is not available. It throws NO_ENTRY_VALUE_ERROR
4301 if it cannot resolve the parameter for any reason. */
4302
4303 static struct value *
4304 loclist_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
4305 {
4306 struct dwarf2_loclist_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
4307 const gdb_byte *data;
4308 size_t size;
4309 CORE_ADDR pc;
4310
4311 if (frame == NULL || !get_frame_func_if_available (frame, &pc))
4312 return allocate_optimized_out_value (SYMBOL_TYPE (symbol));
4313
4314 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4315 if (data == NULL)
4316 return allocate_optimized_out_value (SYMBOL_TYPE (symbol));
4317
4318 return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, data, size);
4319 }
4320
4321 /* Return non-zero iff we need a frame to evaluate SYMBOL. */
4322 static int
4323 loclist_read_needs_frame (struct symbol *symbol)
4324 {
4325 /* If there's a location list, then assume we need to have a frame
4326 to choose the appropriate location expression. With tracking of
4327 global variables this is not necessarily true, but such tracking
4328 is disabled in GCC at the moment until we figure out how to
4329 represent it. */
4330
4331 return 1;
4332 }
4333
4334 /* Print a natural-language description of SYMBOL to STREAM. This
4335 version applies when there is a list of different locations, each
4336 with a specified address range. */
4337
4338 static void
4339 loclist_describe_location (struct symbol *symbol, CORE_ADDR addr,
4340 struct ui_file *stream)
4341 {
4342 struct dwarf2_loclist_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
4343 const gdb_byte *loc_ptr, *buf_end;
4344 struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
4345 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4346 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4347 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4348 int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
4349 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
4350 /* Adjust base_address for relocatable objects. */
4351 CORE_ADDR base_offset = dwarf2_per_cu_text_offset (dlbaton->per_cu);
4352 CORE_ADDR base_address = dlbaton->base_address + base_offset;
4353 int done = 0;
4354
4355 loc_ptr = dlbaton->data;
4356 buf_end = dlbaton->data + dlbaton->size;
4357
4358 fprintf_filtered (stream, _("multi-location:\n"));
4359
4360 /* Iterate through locations until we run out. */
4361 while (!done)
4362 {
4363 CORE_ADDR low = 0, high = 0; /* init for gcc -Wall */
4364 int length;
4365 enum debug_loc_kind kind;
4366 const gdb_byte *new_ptr = NULL; /* init for gcc -Wall */
4367
4368 if (dlbaton->from_dwo)
4369 kind = decode_debug_loc_dwo_addresses (dlbaton->per_cu,
4370 loc_ptr, buf_end, &new_ptr,
4371 &low, &high, byte_order);
4372 else
4373 kind = decode_debug_loc_addresses (loc_ptr, buf_end, &new_ptr,
4374 &low, &high,
4375 byte_order, addr_size,
4376 signed_addr_p);
4377 loc_ptr = new_ptr;
4378 switch (kind)
4379 {
4380 case DEBUG_LOC_END_OF_LIST:
4381 done = 1;
4382 continue;
4383 case DEBUG_LOC_BASE_ADDRESS:
4384 base_address = high + base_offset;
4385 fprintf_filtered (stream, _(" Base address %s"),
4386 paddress (gdbarch, base_address));
4387 continue;
4388 case DEBUG_LOC_START_END:
4389 case DEBUG_LOC_START_LENGTH:
4390 break;
4391 case DEBUG_LOC_BUFFER_OVERFLOW:
4392 case DEBUG_LOC_INVALID_ENTRY:
4393 error (_("Corrupted DWARF expression for symbol \"%s\"."),
4394 SYMBOL_PRINT_NAME (symbol));
4395 default:
4396 gdb_assert_not_reached ("bad debug_loc_kind");
4397 }
4398
4399 /* Otherwise, a location expression entry. */
4400 low += base_address;
4401 high += base_address;
4402
4403 low = gdbarch_adjust_dwarf2_addr (gdbarch, low);
4404 high = gdbarch_adjust_dwarf2_addr (gdbarch, high);
4405
4406 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
4407 loc_ptr += 2;
4408
4409 /* (It would improve readability to print only the minimum
4410 necessary digits of the second number of the range.) */
4411 fprintf_filtered (stream, _(" Range %s-%s: "),
4412 paddress (gdbarch, low), paddress (gdbarch, high));
4413
4414 /* Now describe this particular location. */
4415 locexpr_describe_location_1 (symbol, low, stream, loc_ptr, length,
4416 objfile, addr_size, offset_size,
4417 dlbaton->per_cu);
4418
4419 fprintf_filtered (stream, "\n");
4420
4421 loc_ptr += length;
4422 }
4423 }
4424
4425 /* Describe the location of SYMBOL as an agent value in VALUE, generating
4426 any necessary bytecode in AX. */
4427 static void
4428 loclist_tracepoint_var_ref (struct symbol *symbol, struct gdbarch *gdbarch,
4429 struct agent_expr *ax, struct axs_value *value)
4430 {
4431 struct dwarf2_loclist_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
4432 const gdb_byte *data;
4433 size_t size;
4434 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4435
4436 data = dwarf2_find_location_expression (dlbaton, &size, ax->scope);
4437 if (size == 0)
4438 value->optimized_out = 1;
4439 else
4440 dwarf2_compile_expr_to_ax (ax, value, gdbarch, addr_size, data, data + size,
4441 dlbaton->per_cu);
4442 }
4443
4444 /* symbol_computed_ops 'generate_c_location' method. */
4445
4446 static void
4447 loclist_generate_c_location (struct symbol *sym, struct ui_file *stream,
4448 struct gdbarch *gdbarch,
4449 unsigned char *registers_used,
4450 CORE_ADDR pc, const char *result_name)
4451 {
4452 struct dwarf2_loclist_baton *dlbaton = SYMBOL_LOCATION_BATON (sym);
4453 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4454 const gdb_byte *data;
4455 size_t size;
4456
4457 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4458 if (size == 0)
4459 error (_("symbol \"%s\" is optimized out"), SYMBOL_NATURAL_NAME (sym));
4460
4461 compile_dwarf_expr_to_c (stream, result_name,
4462 sym, pc, gdbarch, registers_used, addr_size,
4463 data, data + size,
4464 dlbaton->per_cu);
4465 }
4466
4467 /* The set of location functions used with the DWARF-2 expression
4468 evaluator and location lists. */
4469 const struct symbol_computed_ops dwarf2_loclist_funcs = {
4470 loclist_read_variable,
4471 loclist_read_variable_at_entry,
4472 loclist_read_needs_frame,
4473 loclist_describe_location,
4474 1, /* location_has_loclist */
4475 loclist_tracepoint_var_ref,
4476 loclist_generate_c_location
4477 };
4478
4479 /* Provide a prototype to silence -Wmissing-prototypes. */
4480 extern initialize_file_ftype _initialize_dwarf2loc;
4481
4482 void
4483 _initialize_dwarf2loc (void)
4484 {
4485 add_setshow_zuinteger_cmd ("entry-values", class_maintenance,
4486 &entry_values_debug,
4487 _("Set entry values and tail call frames "
4488 "debugging."),
4489 _("Show entry values and tail call frames "
4490 "debugging."),
4491 _("When non-zero, the process of determining "
4492 "parameter values from function entry point "
4493 "and tail call frames will be printed."),
4494 NULL,
4495 show_entry_values_debug,
4496 &setdebuglist, &showdebuglist);
4497 }
This page took 0.126518 seconds and 5 git commands to generate.