Parameterize cp_scan_for_anonymous_namespaces
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2018 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "dwarf2read.h"
33 #include "dwarf-index-common.h"
34 #include "bfd.h"
35 #include "elf-bfd.h"
36 #include "symtab.h"
37 #include "gdbtypes.h"
38 #include "objfiles.h"
39 #include "dwarf2.h"
40 #include "buildsym-legacy.h"
41 #include "demangle.h"
42 #include "gdb-demangle.h"
43 #include "expression.h"
44 #include "filenames.h" /* for DOSish file names */
45 #include "macrotab.h"
46 #include "language.h"
47 #include "complaints.h"
48 #include "bcache.h"
49 #include "dwarf2expr.h"
50 #include "dwarf2loc.h"
51 #include "cp-support.h"
52 #include "hashtab.h"
53 #include "command.h"
54 #include "gdbcmd.h"
55 #include "block.h"
56 #include "addrmap.h"
57 #include "typeprint.h"
58 #include "psympriv.h"
59 #include <sys/stat.h>
60 #include "completer.h"
61 #include "vec.h"
62 #include "c-lang.h"
63 #include "go-lang.h"
64 #include "valprint.h"
65 #include "gdbcore.h" /* for gnutarget */
66 #include "gdb/gdb-index.h"
67 #include <ctype.h>
68 #include "gdb_bfd.h"
69 #include "f-lang.h"
70 #include "source.h"
71 #include "filestuff.h"
72 #include "build-id.h"
73 #include "namespace.h"
74 #include "common/gdb_unlinker.h"
75 #include "common/function-view.h"
76 #include "common/gdb_optional.h"
77 #include "common/underlying.h"
78 #include "common/byte-vector.h"
79 #include "common/hash_enum.h"
80 #include "filename-seen-cache.h"
81 #include "producer.h"
82 #include <fcntl.h>
83 #include <sys/types.h>
84 #include <algorithm>
85 #include <unordered_set>
86 #include <unordered_map>
87 #include "selftest.h"
88 #include <cmath>
89 #include <set>
90 #include <forward_list>
91 #include "rust-lang.h"
92 #include "common/pathstuff.h"
93
94 /* When == 1, print basic high level tracing messages.
95 When > 1, be more verbose.
96 This is in contrast to the low level DIE reading of dwarf_die_debug. */
97 static unsigned int dwarf_read_debug = 0;
98
99 /* When non-zero, dump DIEs after they are read in. */
100 static unsigned int dwarf_die_debug = 0;
101
102 /* When non-zero, dump line number entries as they are read in. */
103 static unsigned int dwarf_line_debug = 0;
104
105 /* When non-zero, cross-check physname against demangler. */
106 static int check_physname = 0;
107
108 /* When non-zero, do not reject deprecated .gdb_index sections. */
109 static int use_deprecated_index_sections = 0;
110
111 static const struct objfile_data *dwarf2_objfile_data_key;
112
113 /* The "aclass" indices for various kinds of computed DWARF symbols. */
114
115 static int dwarf2_locexpr_index;
116 static int dwarf2_loclist_index;
117 static int dwarf2_locexpr_block_index;
118 static int dwarf2_loclist_block_index;
119
120 /* An index into a (C++) symbol name component in a symbol name as
121 recorded in the mapped_index's symbol table. For each C++ symbol
122 in the symbol table, we record one entry for the start of each
123 component in the symbol in a table of name components, and then
124 sort the table, in order to be able to binary search symbol names,
125 ignoring leading namespaces, both completion and regular look up.
126 For example, for symbol "A::B::C", we'll have an entry that points
127 to "A::B::C", another that points to "B::C", and another for "C".
128 Note that function symbols in GDB index have no parameter
129 information, just the function/method names. You can convert a
130 name_component to a "const char *" using the
131 'mapped_index::symbol_name_at(offset_type)' method. */
132
133 struct name_component
134 {
135 /* Offset in the symbol name where the component starts. Stored as
136 a (32-bit) offset instead of a pointer to save memory and improve
137 locality on 64-bit architectures. */
138 offset_type name_offset;
139
140 /* The symbol's index in the symbol and constant pool tables of a
141 mapped_index. */
142 offset_type idx;
143 };
144
145 /* Base class containing bits shared by both .gdb_index and
146 .debug_name indexes. */
147
148 struct mapped_index_base
149 {
150 mapped_index_base () = default;
151 DISABLE_COPY_AND_ASSIGN (mapped_index_base);
152
153 /* The name_component table (a sorted vector). See name_component's
154 description above. */
155 std::vector<name_component> name_components;
156
157 /* How NAME_COMPONENTS is sorted. */
158 enum case_sensitivity name_components_casing;
159
160 /* Return the number of names in the symbol table. */
161 virtual size_t symbol_name_count () const = 0;
162
163 /* Get the name of the symbol at IDX in the symbol table. */
164 virtual const char *symbol_name_at (offset_type idx) const = 0;
165
166 /* Return whether the name at IDX in the symbol table should be
167 ignored. */
168 virtual bool symbol_name_slot_invalid (offset_type idx) const
169 {
170 return false;
171 }
172
173 /* Build the symbol name component sorted vector, if we haven't
174 yet. */
175 void build_name_components ();
176
177 /* Returns the lower (inclusive) and upper (exclusive) bounds of the
178 possible matches for LN_NO_PARAMS in the name component
179 vector. */
180 std::pair<std::vector<name_component>::const_iterator,
181 std::vector<name_component>::const_iterator>
182 find_name_components_bounds (const lookup_name_info &ln_no_params) const;
183
184 /* Prevent deleting/destroying via a base class pointer. */
185 protected:
186 ~mapped_index_base() = default;
187 };
188
189 /* A description of the mapped index. The file format is described in
190 a comment by the code that writes the index. */
191 struct mapped_index final : public mapped_index_base
192 {
193 /* A slot/bucket in the symbol table hash. */
194 struct symbol_table_slot
195 {
196 const offset_type name;
197 const offset_type vec;
198 };
199
200 /* Index data format version. */
201 int version = 0;
202
203 /* The address table data. */
204 gdb::array_view<const gdb_byte> address_table;
205
206 /* The symbol table, implemented as a hash table. */
207 gdb::array_view<symbol_table_slot> symbol_table;
208
209 /* A pointer to the constant pool. */
210 const char *constant_pool = nullptr;
211
212 bool symbol_name_slot_invalid (offset_type idx) const override
213 {
214 const auto &bucket = this->symbol_table[idx];
215 return bucket.name == 0 && bucket.vec;
216 }
217
218 /* Convenience method to get at the name of the symbol at IDX in the
219 symbol table. */
220 const char *symbol_name_at (offset_type idx) const override
221 { return this->constant_pool + MAYBE_SWAP (this->symbol_table[idx].name); }
222
223 size_t symbol_name_count () const override
224 { return this->symbol_table.size (); }
225 };
226
227 /* A description of the mapped .debug_names.
228 Uninitialized map has CU_COUNT 0. */
229 struct mapped_debug_names final : public mapped_index_base
230 {
231 mapped_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile_)
232 : dwarf2_per_objfile (dwarf2_per_objfile_)
233 {}
234
235 struct dwarf2_per_objfile *dwarf2_per_objfile;
236 bfd_endian dwarf5_byte_order;
237 bool dwarf5_is_dwarf64;
238 bool augmentation_is_gdb;
239 uint8_t offset_size;
240 uint32_t cu_count = 0;
241 uint32_t tu_count, bucket_count, name_count;
242 const gdb_byte *cu_table_reordered, *tu_table_reordered;
243 const uint32_t *bucket_table_reordered, *hash_table_reordered;
244 const gdb_byte *name_table_string_offs_reordered;
245 const gdb_byte *name_table_entry_offs_reordered;
246 const gdb_byte *entry_pool;
247
248 struct index_val
249 {
250 ULONGEST dwarf_tag;
251 struct attr
252 {
253 /* Attribute name DW_IDX_*. */
254 ULONGEST dw_idx;
255
256 /* Attribute form DW_FORM_*. */
257 ULONGEST form;
258
259 /* Value if FORM is DW_FORM_implicit_const. */
260 LONGEST implicit_const;
261 };
262 std::vector<attr> attr_vec;
263 };
264
265 std::unordered_map<ULONGEST, index_val> abbrev_map;
266
267 const char *namei_to_name (uint32_t namei) const;
268
269 /* Implementation of the mapped_index_base virtual interface, for
270 the name_components cache. */
271
272 const char *symbol_name_at (offset_type idx) const override
273 { return namei_to_name (idx); }
274
275 size_t symbol_name_count () const override
276 { return this->name_count; }
277 };
278
279 /* See dwarf2read.h. */
280
281 dwarf2_per_objfile *
282 get_dwarf2_per_objfile (struct objfile *objfile)
283 {
284 return ((struct dwarf2_per_objfile *)
285 objfile_data (objfile, dwarf2_objfile_data_key));
286 }
287
288 /* Set the dwarf2_per_objfile associated to OBJFILE. */
289
290 void
291 set_dwarf2_per_objfile (struct objfile *objfile,
292 struct dwarf2_per_objfile *dwarf2_per_objfile)
293 {
294 gdb_assert (get_dwarf2_per_objfile (objfile) == NULL);
295 set_objfile_data (objfile, dwarf2_objfile_data_key, dwarf2_per_objfile);
296 }
297
298 /* Default names of the debugging sections. */
299
300 /* Note that if the debugging section has been compressed, it might
301 have a name like .zdebug_info. */
302
303 static const struct dwarf2_debug_sections dwarf2_elf_names =
304 {
305 { ".debug_info", ".zdebug_info" },
306 { ".debug_abbrev", ".zdebug_abbrev" },
307 { ".debug_line", ".zdebug_line" },
308 { ".debug_loc", ".zdebug_loc" },
309 { ".debug_loclists", ".zdebug_loclists" },
310 { ".debug_macinfo", ".zdebug_macinfo" },
311 { ".debug_macro", ".zdebug_macro" },
312 { ".debug_str", ".zdebug_str" },
313 { ".debug_line_str", ".zdebug_line_str" },
314 { ".debug_ranges", ".zdebug_ranges" },
315 { ".debug_rnglists", ".zdebug_rnglists" },
316 { ".debug_types", ".zdebug_types" },
317 { ".debug_addr", ".zdebug_addr" },
318 { ".debug_frame", ".zdebug_frame" },
319 { ".eh_frame", NULL },
320 { ".gdb_index", ".zgdb_index" },
321 { ".debug_names", ".zdebug_names" },
322 { ".debug_aranges", ".zdebug_aranges" },
323 23
324 };
325
326 /* List of DWO/DWP sections. */
327
328 static const struct dwop_section_names
329 {
330 struct dwarf2_section_names abbrev_dwo;
331 struct dwarf2_section_names info_dwo;
332 struct dwarf2_section_names line_dwo;
333 struct dwarf2_section_names loc_dwo;
334 struct dwarf2_section_names loclists_dwo;
335 struct dwarf2_section_names macinfo_dwo;
336 struct dwarf2_section_names macro_dwo;
337 struct dwarf2_section_names str_dwo;
338 struct dwarf2_section_names str_offsets_dwo;
339 struct dwarf2_section_names types_dwo;
340 struct dwarf2_section_names cu_index;
341 struct dwarf2_section_names tu_index;
342 }
343 dwop_section_names =
344 {
345 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
346 { ".debug_info.dwo", ".zdebug_info.dwo" },
347 { ".debug_line.dwo", ".zdebug_line.dwo" },
348 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
349 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
350 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
351 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
352 { ".debug_str.dwo", ".zdebug_str.dwo" },
353 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
354 { ".debug_types.dwo", ".zdebug_types.dwo" },
355 { ".debug_cu_index", ".zdebug_cu_index" },
356 { ".debug_tu_index", ".zdebug_tu_index" },
357 };
358
359 /* local data types */
360
361 /* The data in a compilation unit header, after target2host
362 translation, looks like this. */
363 struct comp_unit_head
364 {
365 unsigned int length;
366 short version;
367 unsigned char addr_size;
368 unsigned char signed_addr_p;
369 sect_offset abbrev_sect_off;
370
371 /* Size of file offsets; either 4 or 8. */
372 unsigned int offset_size;
373
374 /* Size of the length field; either 4 or 12. */
375 unsigned int initial_length_size;
376
377 enum dwarf_unit_type unit_type;
378
379 /* Offset to the first byte of this compilation unit header in the
380 .debug_info section, for resolving relative reference dies. */
381 sect_offset sect_off;
382
383 /* Offset to first die in this cu from the start of the cu.
384 This will be the first byte following the compilation unit header. */
385 cu_offset first_die_cu_offset;
386
387 /* 64-bit signature of this type unit - it is valid only for
388 UNIT_TYPE DW_UT_type. */
389 ULONGEST signature;
390
391 /* For types, offset in the type's DIE of the type defined by this TU. */
392 cu_offset type_cu_offset_in_tu;
393 };
394
395 /* Type used for delaying computation of method physnames.
396 See comments for compute_delayed_physnames. */
397 struct delayed_method_info
398 {
399 /* The type to which the method is attached, i.e., its parent class. */
400 struct type *type;
401
402 /* The index of the method in the type's function fieldlists. */
403 int fnfield_index;
404
405 /* The index of the method in the fieldlist. */
406 int index;
407
408 /* The name of the DIE. */
409 const char *name;
410
411 /* The DIE associated with this method. */
412 struct die_info *die;
413 };
414
415 /* Internal state when decoding a particular compilation unit. */
416 struct dwarf2_cu
417 {
418 explicit dwarf2_cu (struct dwarf2_per_cu_data *per_cu);
419 ~dwarf2_cu ();
420
421 DISABLE_COPY_AND_ASSIGN (dwarf2_cu);
422
423 /* The header of the compilation unit. */
424 struct comp_unit_head header {};
425
426 /* Base address of this compilation unit. */
427 CORE_ADDR base_address = 0;
428
429 /* Non-zero if base_address has been set. */
430 int base_known = 0;
431
432 /* The language we are debugging. */
433 enum language language = language_unknown;
434 const struct language_defn *language_defn = nullptr;
435
436 const char *producer = nullptr;
437
438 /* The generic symbol table building routines have separate lists for
439 file scope symbols and all all other scopes (local scopes). So
440 we need to select the right one to pass to add_symbol_to_list().
441 We do it by keeping a pointer to the correct list in list_in_scope.
442
443 FIXME: The original dwarf code just treated the file scope as the
444 first local scope, and all other local scopes as nested local
445 scopes, and worked fine. Check to see if we really need to
446 distinguish these in buildsym.c. */
447 struct pending **list_in_scope = nullptr;
448
449 /* Hash table holding all the loaded partial DIEs
450 with partial_die->offset.SECT_OFF as hash. */
451 htab_t partial_dies = nullptr;
452
453 /* Storage for things with the same lifetime as this read-in compilation
454 unit, including partial DIEs. */
455 auto_obstack comp_unit_obstack;
456
457 /* When multiple dwarf2_cu structures are living in memory, this field
458 chains them all together, so that they can be released efficiently.
459 We will probably also want a generation counter so that most-recently-used
460 compilation units are cached... */
461 struct dwarf2_per_cu_data *read_in_chain = nullptr;
462
463 /* Backlink to our per_cu entry. */
464 struct dwarf2_per_cu_data *per_cu;
465
466 /* How many compilation units ago was this CU last referenced? */
467 int last_used = 0;
468
469 /* A hash table of DIE cu_offset for following references with
470 die_info->offset.sect_off as hash. */
471 htab_t die_hash = nullptr;
472
473 /* Full DIEs if read in. */
474 struct die_info *dies = nullptr;
475
476 /* A set of pointers to dwarf2_per_cu_data objects for compilation
477 units referenced by this one. Only set during full symbol processing;
478 partial symbol tables do not have dependencies. */
479 htab_t dependencies = nullptr;
480
481 /* Header data from the line table, during full symbol processing. */
482 struct line_header *line_header = nullptr;
483 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
484 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
485 this is the DW_TAG_compile_unit die for this CU. We'll hold on
486 to the line header as long as this DIE is being processed. See
487 process_die_scope. */
488 die_info *line_header_die_owner = nullptr;
489
490 /* A list of methods which need to have physnames computed
491 after all type information has been read. */
492 std::vector<delayed_method_info> method_list;
493
494 /* To be copied to symtab->call_site_htab. */
495 htab_t call_site_htab = nullptr;
496
497 /* Non-NULL if this CU came from a DWO file.
498 There is an invariant here that is important to remember:
499 Except for attributes copied from the top level DIE in the "main"
500 (or "stub") file in preparation for reading the DWO file
501 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
502 Either there isn't a DWO file (in which case this is NULL and the point
503 is moot), or there is and either we're not going to read it (in which
504 case this is NULL) or there is and we are reading it (in which case this
505 is non-NULL). */
506 struct dwo_unit *dwo_unit = nullptr;
507
508 /* The DW_AT_addr_base attribute if present, zero otherwise
509 (zero is a valid value though).
510 Note this value comes from the Fission stub CU/TU's DIE. */
511 ULONGEST addr_base = 0;
512
513 /* The DW_AT_ranges_base attribute if present, zero otherwise
514 (zero is a valid value though).
515 Note this value comes from the Fission stub CU/TU's DIE.
516 Also note that the value is zero in the non-DWO case so this value can
517 be used without needing to know whether DWO files are in use or not.
518 N.B. This does not apply to DW_AT_ranges appearing in
519 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
520 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
521 DW_AT_ranges_base *would* have to be applied, and we'd have to care
522 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
523 ULONGEST ranges_base = 0;
524
525 /* When reading debug info generated by older versions of rustc, we
526 have to rewrite some union types to be struct types with a
527 variant part. This rewriting must be done after the CU is fully
528 read in, because otherwise at the point of rewriting some struct
529 type might not have been fully processed. So, we keep a list of
530 all such types here and process them after expansion. */
531 std::vector<struct type *> rust_unions;
532
533 /* Mark used when releasing cached dies. */
534 unsigned int mark : 1;
535
536 /* This CU references .debug_loc. See the symtab->locations_valid field.
537 This test is imperfect as there may exist optimized debug code not using
538 any location list and still facing inlining issues if handled as
539 unoptimized code. For a future better test see GCC PR other/32998. */
540 unsigned int has_loclist : 1;
541
542 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
543 if all the producer_is_* fields are valid. This information is cached
544 because profiling CU expansion showed excessive time spent in
545 producer_is_gxx_lt_4_6. */
546 unsigned int checked_producer : 1;
547 unsigned int producer_is_gxx_lt_4_6 : 1;
548 unsigned int producer_is_gcc_lt_4_3 : 1;
549 unsigned int producer_is_icc_lt_14 : 1;
550
551 /* When set, the file that we're processing is known to have
552 debugging info for C++ namespaces. GCC 3.3.x did not produce
553 this information, but later versions do. */
554
555 unsigned int processing_has_namespace_info : 1;
556
557 struct partial_die_info *find_partial_die (sect_offset sect_off);
558 };
559
560 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
561 This includes type_unit_group and quick_file_names. */
562
563 struct stmt_list_hash
564 {
565 /* The DWO unit this table is from or NULL if there is none. */
566 struct dwo_unit *dwo_unit;
567
568 /* Offset in .debug_line or .debug_line.dwo. */
569 sect_offset line_sect_off;
570 };
571
572 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
573 an object of this type. */
574
575 struct type_unit_group
576 {
577 /* dwarf2read.c's main "handle" on a TU symtab.
578 To simplify things we create an artificial CU that "includes" all the
579 type units using this stmt_list so that the rest of the code still has
580 a "per_cu" handle on the symtab.
581 This PER_CU is recognized by having no section. */
582 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
583 struct dwarf2_per_cu_data per_cu;
584
585 /* The TUs that share this DW_AT_stmt_list entry.
586 This is added to while parsing type units to build partial symtabs,
587 and is deleted afterwards and not used again. */
588 VEC (sig_type_ptr) *tus;
589
590 /* The compunit symtab.
591 Type units in a group needn't all be defined in the same source file,
592 so we create an essentially anonymous symtab as the compunit symtab. */
593 struct compunit_symtab *compunit_symtab;
594
595 /* The data used to construct the hash key. */
596 struct stmt_list_hash hash;
597
598 /* The number of symtabs from the line header.
599 The value here must match line_header.num_file_names. */
600 unsigned int num_symtabs;
601
602 /* The symbol tables for this TU (obtained from the files listed in
603 DW_AT_stmt_list).
604 WARNING: The order of entries here must match the order of entries
605 in the line header. After the first TU using this type_unit_group, the
606 line header for the subsequent TUs is recreated from this. This is done
607 because we need to use the same symtabs for each TU using the same
608 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
609 there's no guarantee the line header doesn't have duplicate entries. */
610 struct symtab **symtabs;
611 };
612
613 /* These sections are what may appear in a (real or virtual) DWO file. */
614
615 struct dwo_sections
616 {
617 struct dwarf2_section_info abbrev;
618 struct dwarf2_section_info line;
619 struct dwarf2_section_info loc;
620 struct dwarf2_section_info loclists;
621 struct dwarf2_section_info macinfo;
622 struct dwarf2_section_info macro;
623 struct dwarf2_section_info str;
624 struct dwarf2_section_info str_offsets;
625 /* In the case of a virtual DWO file, these two are unused. */
626 struct dwarf2_section_info info;
627 VEC (dwarf2_section_info_def) *types;
628 };
629
630 /* CUs/TUs in DWP/DWO files. */
631
632 struct dwo_unit
633 {
634 /* Backlink to the containing struct dwo_file. */
635 struct dwo_file *dwo_file;
636
637 /* The "id" that distinguishes this CU/TU.
638 .debug_info calls this "dwo_id", .debug_types calls this "signature".
639 Since signatures came first, we stick with it for consistency. */
640 ULONGEST signature;
641
642 /* The section this CU/TU lives in, in the DWO file. */
643 struct dwarf2_section_info *section;
644
645 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
646 sect_offset sect_off;
647 unsigned int length;
648
649 /* For types, offset in the type's DIE of the type defined by this TU. */
650 cu_offset type_offset_in_tu;
651 };
652
653 /* include/dwarf2.h defines the DWP section codes.
654 It defines a max value but it doesn't define a min value, which we
655 use for error checking, so provide one. */
656
657 enum dwp_v2_section_ids
658 {
659 DW_SECT_MIN = 1
660 };
661
662 /* Data for one DWO file.
663
664 This includes virtual DWO files (a virtual DWO file is a DWO file as it
665 appears in a DWP file). DWP files don't really have DWO files per se -
666 comdat folding of types "loses" the DWO file they came from, and from
667 a high level view DWP files appear to contain a mass of random types.
668 However, to maintain consistency with the non-DWP case we pretend DWP
669 files contain virtual DWO files, and we assign each TU with one virtual
670 DWO file (generally based on the line and abbrev section offsets -
671 a heuristic that seems to work in practice). */
672
673 struct dwo_file
674 {
675 /* The DW_AT_GNU_dwo_name attribute.
676 For virtual DWO files the name is constructed from the section offsets
677 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
678 from related CU+TUs. */
679 const char *dwo_name;
680
681 /* The DW_AT_comp_dir attribute. */
682 const char *comp_dir;
683
684 /* The bfd, when the file is open. Otherwise this is NULL.
685 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
686 bfd *dbfd;
687
688 /* The sections that make up this DWO file.
689 Remember that for virtual DWO files in DWP V2, these are virtual
690 sections (for lack of a better name). */
691 struct dwo_sections sections;
692
693 /* The CUs in the file.
694 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
695 an extension to handle LLVM's Link Time Optimization output (where
696 multiple source files may be compiled into a single object/dwo pair). */
697 htab_t cus;
698
699 /* Table of TUs in the file.
700 Each element is a struct dwo_unit. */
701 htab_t tus;
702 };
703
704 /* These sections are what may appear in a DWP file. */
705
706 struct dwp_sections
707 {
708 /* These are used by both DWP version 1 and 2. */
709 struct dwarf2_section_info str;
710 struct dwarf2_section_info cu_index;
711 struct dwarf2_section_info tu_index;
712
713 /* These are only used by DWP version 2 files.
714 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
715 sections are referenced by section number, and are not recorded here.
716 In DWP version 2 there is at most one copy of all these sections, each
717 section being (effectively) comprised of the concatenation of all of the
718 individual sections that exist in the version 1 format.
719 To keep the code simple we treat each of these concatenated pieces as a
720 section itself (a virtual section?). */
721 struct dwarf2_section_info abbrev;
722 struct dwarf2_section_info info;
723 struct dwarf2_section_info line;
724 struct dwarf2_section_info loc;
725 struct dwarf2_section_info macinfo;
726 struct dwarf2_section_info macro;
727 struct dwarf2_section_info str_offsets;
728 struct dwarf2_section_info types;
729 };
730
731 /* These sections are what may appear in a virtual DWO file in DWP version 1.
732 A virtual DWO file is a DWO file as it appears in a DWP file. */
733
734 struct virtual_v1_dwo_sections
735 {
736 struct dwarf2_section_info abbrev;
737 struct dwarf2_section_info line;
738 struct dwarf2_section_info loc;
739 struct dwarf2_section_info macinfo;
740 struct dwarf2_section_info macro;
741 struct dwarf2_section_info str_offsets;
742 /* Each DWP hash table entry records one CU or one TU.
743 That is recorded here, and copied to dwo_unit.section. */
744 struct dwarf2_section_info info_or_types;
745 };
746
747 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
748 In version 2, the sections of the DWO files are concatenated together
749 and stored in one section of that name. Thus each ELF section contains
750 several "virtual" sections. */
751
752 struct virtual_v2_dwo_sections
753 {
754 bfd_size_type abbrev_offset;
755 bfd_size_type abbrev_size;
756
757 bfd_size_type line_offset;
758 bfd_size_type line_size;
759
760 bfd_size_type loc_offset;
761 bfd_size_type loc_size;
762
763 bfd_size_type macinfo_offset;
764 bfd_size_type macinfo_size;
765
766 bfd_size_type macro_offset;
767 bfd_size_type macro_size;
768
769 bfd_size_type str_offsets_offset;
770 bfd_size_type str_offsets_size;
771
772 /* Each DWP hash table entry records one CU or one TU.
773 That is recorded here, and copied to dwo_unit.section. */
774 bfd_size_type info_or_types_offset;
775 bfd_size_type info_or_types_size;
776 };
777
778 /* Contents of DWP hash tables. */
779
780 struct dwp_hash_table
781 {
782 uint32_t version, nr_columns;
783 uint32_t nr_units, nr_slots;
784 const gdb_byte *hash_table, *unit_table;
785 union
786 {
787 struct
788 {
789 const gdb_byte *indices;
790 } v1;
791 struct
792 {
793 /* This is indexed by column number and gives the id of the section
794 in that column. */
795 #define MAX_NR_V2_DWO_SECTIONS \
796 (1 /* .debug_info or .debug_types */ \
797 + 1 /* .debug_abbrev */ \
798 + 1 /* .debug_line */ \
799 + 1 /* .debug_loc */ \
800 + 1 /* .debug_str_offsets */ \
801 + 1 /* .debug_macro or .debug_macinfo */)
802 int section_ids[MAX_NR_V2_DWO_SECTIONS];
803 const gdb_byte *offsets;
804 const gdb_byte *sizes;
805 } v2;
806 } section_pool;
807 };
808
809 /* Data for one DWP file. */
810
811 struct dwp_file
812 {
813 dwp_file (const char *name_, gdb_bfd_ref_ptr &&abfd)
814 : name (name_),
815 dbfd (std::move (abfd))
816 {
817 }
818
819 /* Name of the file. */
820 const char *name;
821
822 /* File format version. */
823 int version = 0;
824
825 /* The bfd. */
826 gdb_bfd_ref_ptr dbfd;
827
828 /* Section info for this file. */
829 struct dwp_sections sections {};
830
831 /* Table of CUs in the file. */
832 const struct dwp_hash_table *cus = nullptr;
833
834 /* Table of TUs in the file. */
835 const struct dwp_hash_table *tus = nullptr;
836
837 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
838 htab_t loaded_cus {};
839 htab_t loaded_tus {};
840
841 /* Table to map ELF section numbers to their sections.
842 This is only needed for the DWP V1 file format. */
843 unsigned int num_sections = 0;
844 asection **elf_sections = nullptr;
845 };
846
847 /* This represents a '.dwz' file. */
848
849 struct dwz_file
850 {
851 dwz_file (gdb_bfd_ref_ptr &&bfd)
852 : dwz_bfd (std::move (bfd))
853 {
854 }
855
856 /* A dwz file can only contain a few sections. */
857 struct dwarf2_section_info abbrev {};
858 struct dwarf2_section_info info {};
859 struct dwarf2_section_info str {};
860 struct dwarf2_section_info line {};
861 struct dwarf2_section_info macro {};
862 struct dwarf2_section_info gdb_index {};
863 struct dwarf2_section_info debug_names {};
864
865 /* The dwz's BFD. */
866 gdb_bfd_ref_ptr dwz_bfd;
867 };
868
869 /* Struct used to pass misc. parameters to read_die_and_children, et
870 al. which are used for both .debug_info and .debug_types dies.
871 All parameters here are unchanging for the life of the call. This
872 struct exists to abstract away the constant parameters of die reading. */
873
874 struct die_reader_specs
875 {
876 /* The bfd of die_section. */
877 bfd* abfd;
878
879 /* The CU of the DIE we are parsing. */
880 struct dwarf2_cu *cu;
881
882 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
883 struct dwo_file *dwo_file;
884
885 /* The section the die comes from.
886 This is either .debug_info or .debug_types, or the .dwo variants. */
887 struct dwarf2_section_info *die_section;
888
889 /* die_section->buffer. */
890 const gdb_byte *buffer;
891
892 /* The end of the buffer. */
893 const gdb_byte *buffer_end;
894
895 /* The value of the DW_AT_comp_dir attribute. */
896 const char *comp_dir;
897
898 /* The abbreviation table to use when reading the DIEs. */
899 struct abbrev_table *abbrev_table;
900 };
901
902 /* Type of function passed to init_cutu_and_read_dies, et.al. */
903 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
904 const gdb_byte *info_ptr,
905 struct die_info *comp_unit_die,
906 int has_children,
907 void *data);
908
909 /* A 1-based directory index. This is a strong typedef to prevent
910 accidentally using a directory index as a 0-based index into an
911 array/vector. */
912 enum class dir_index : unsigned int {};
913
914 /* Likewise, a 1-based file name index. */
915 enum class file_name_index : unsigned int {};
916
917 struct file_entry
918 {
919 file_entry () = default;
920
921 file_entry (const char *name_, dir_index d_index_,
922 unsigned int mod_time_, unsigned int length_)
923 : name (name_),
924 d_index (d_index_),
925 mod_time (mod_time_),
926 length (length_)
927 {}
928
929 /* Return the include directory at D_INDEX stored in LH. Returns
930 NULL if D_INDEX is out of bounds. */
931 const char *include_dir (const line_header *lh) const;
932
933 /* The file name. Note this is an observing pointer. The memory is
934 owned by debug_line_buffer. */
935 const char *name {};
936
937 /* The directory index (1-based). */
938 dir_index d_index {};
939
940 unsigned int mod_time {};
941
942 unsigned int length {};
943
944 /* True if referenced by the Line Number Program. */
945 bool included_p {};
946
947 /* The associated symbol table, if any. */
948 struct symtab *symtab {};
949 };
950
951 /* The line number information for a compilation unit (found in the
952 .debug_line section) begins with a "statement program header",
953 which contains the following information. */
954 struct line_header
955 {
956 line_header ()
957 : offset_in_dwz {}
958 {}
959
960 /* Add an entry to the include directory table. */
961 void add_include_dir (const char *include_dir);
962
963 /* Add an entry to the file name table. */
964 void add_file_name (const char *name, dir_index d_index,
965 unsigned int mod_time, unsigned int length);
966
967 /* Return the include dir at INDEX (1-based). Returns NULL if INDEX
968 is out of bounds. */
969 const char *include_dir_at (dir_index index) const
970 {
971 /* Convert directory index number (1-based) to vector index
972 (0-based). */
973 size_t vec_index = to_underlying (index) - 1;
974
975 if (vec_index >= include_dirs.size ())
976 return NULL;
977 return include_dirs[vec_index];
978 }
979
980 /* Return the file name at INDEX (1-based). Returns NULL if INDEX
981 is out of bounds. */
982 file_entry *file_name_at (file_name_index index)
983 {
984 /* Convert file name index number (1-based) to vector index
985 (0-based). */
986 size_t vec_index = to_underlying (index) - 1;
987
988 if (vec_index >= file_names.size ())
989 return NULL;
990 return &file_names[vec_index];
991 }
992
993 /* Const version of the above. */
994 const file_entry *file_name_at (unsigned int index) const
995 {
996 if (index >= file_names.size ())
997 return NULL;
998 return &file_names[index];
999 }
1000
1001 /* Offset of line number information in .debug_line section. */
1002 sect_offset sect_off {};
1003
1004 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1005 unsigned offset_in_dwz : 1; /* Can't initialize bitfields in-class. */
1006
1007 unsigned int total_length {};
1008 unsigned short version {};
1009 unsigned int header_length {};
1010 unsigned char minimum_instruction_length {};
1011 unsigned char maximum_ops_per_instruction {};
1012 unsigned char default_is_stmt {};
1013 int line_base {};
1014 unsigned char line_range {};
1015 unsigned char opcode_base {};
1016
1017 /* standard_opcode_lengths[i] is the number of operands for the
1018 standard opcode whose value is i. This means that
1019 standard_opcode_lengths[0] is unused, and the last meaningful
1020 element is standard_opcode_lengths[opcode_base - 1]. */
1021 std::unique_ptr<unsigned char[]> standard_opcode_lengths;
1022
1023 /* The include_directories table. Note these are observing
1024 pointers. The memory is owned by debug_line_buffer. */
1025 std::vector<const char *> include_dirs;
1026
1027 /* The file_names table. */
1028 std::vector<file_entry> file_names;
1029
1030 /* The start and end of the statement program following this
1031 header. These point into dwarf2_per_objfile->line_buffer. */
1032 const gdb_byte *statement_program_start {}, *statement_program_end {};
1033 };
1034
1035 typedef std::unique_ptr<line_header> line_header_up;
1036
1037 const char *
1038 file_entry::include_dir (const line_header *lh) const
1039 {
1040 return lh->include_dir_at (d_index);
1041 }
1042
1043 /* When we construct a partial symbol table entry we only
1044 need this much information. */
1045 struct partial_die_info : public allocate_on_obstack
1046 {
1047 partial_die_info (sect_offset sect_off, struct abbrev_info *abbrev);
1048
1049 /* Disable assign but still keep copy ctor, which is needed
1050 load_partial_dies. */
1051 partial_die_info& operator=(const partial_die_info& rhs) = delete;
1052
1053 /* Adjust the partial die before generating a symbol for it. This
1054 function may set the is_external flag or change the DIE's
1055 name. */
1056 void fixup (struct dwarf2_cu *cu);
1057
1058 /* Read a minimal amount of information into the minimal die
1059 structure. */
1060 const gdb_byte *read (const struct die_reader_specs *reader,
1061 const struct abbrev_info &abbrev,
1062 const gdb_byte *info_ptr);
1063
1064 /* Offset of this DIE. */
1065 const sect_offset sect_off;
1066
1067 /* DWARF-2 tag for this DIE. */
1068 const ENUM_BITFIELD(dwarf_tag) tag : 16;
1069
1070 /* Assorted flags describing the data found in this DIE. */
1071 const unsigned int has_children : 1;
1072
1073 unsigned int is_external : 1;
1074 unsigned int is_declaration : 1;
1075 unsigned int has_type : 1;
1076 unsigned int has_specification : 1;
1077 unsigned int has_pc_info : 1;
1078 unsigned int may_be_inlined : 1;
1079
1080 /* This DIE has been marked DW_AT_main_subprogram. */
1081 unsigned int main_subprogram : 1;
1082
1083 /* Flag set if the SCOPE field of this structure has been
1084 computed. */
1085 unsigned int scope_set : 1;
1086
1087 /* Flag set if the DIE has a byte_size attribute. */
1088 unsigned int has_byte_size : 1;
1089
1090 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1091 unsigned int has_const_value : 1;
1092
1093 /* Flag set if any of the DIE's children are template arguments. */
1094 unsigned int has_template_arguments : 1;
1095
1096 /* Flag set if fixup has been called on this die. */
1097 unsigned int fixup_called : 1;
1098
1099 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1100 unsigned int is_dwz : 1;
1101
1102 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1103 unsigned int spec_is_dwz : 1;
1104
1105 /* The name of this DIE. Normally the value of DW_AT_name, but
1106 sometimes a default name for unnamed DIEs. */
1107 const char *name = nullptr;
1108
1109 /* The linkage name, if present. */
1110 const char *linkage_name = nullptr;
1111
1112 /* The scope to prepend to our children. This is generally
1113 allocated on the comp_unit_obstack, so will disappear
1114 when this compilation unit leaves the cache. */
1115 const char *scope = nullptr;
1116
1117 /* Some data associated with the partial DIE. The tag determines
1118 which field is live. */
1119 union
1120 {
1121 /* The location description associated with this DIE, if any. */
1122 struct dwarf_block *locdesc;
1123 /* The offset of an import, for DW_TAG_imported_unit. */
1124 sect_offset sect_off;
1125 } d {};
1126
1127 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1128 CORE_ADDR lowpc = 0;
1129 CORE_ADDR highpc = 0;
1130
1131 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1132 DW_AT_sibling, if any. */
1133 /* NOTE: This member isn't strictly necessary, partial_die_info::read
1134 could return DW_AT_sibling values to its caller load_partial_dies. */
1135 const gdb_byte *sibling = nullptr;
1136
1137 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1138 DW_AT_specification (or DW_AT_abstract_origin or
1139 DW_AT_extension). */
1140 sect_offset spec_offset {};
1141
1142 /* Pointers to this DIE's parent, first child, and next sibling,
1143 if any. */
1144 struct partial_die_info *die_parent = nullptr;
1145 struct partial_die_info *die_child = nullptr;
1146 struct partial_die_info *die_sibling = nullptr;
1147
1148 friend struct partial_die_info *
1149 dwarf2_cu::find_partial_die (sect_offset sect_off);
1150
1151 private:
1152 /* Only need to do look up in dwarf2_cu::find_partial_die. */
1153 partial_die_info (sect_offset sect_off)
1154 : partial_die_info (sect_off, DW_TAG_padding, 0)
1155 {
1156 }
1157
1158 partial_die_info (sect_offset sect_off_, enum dwarf_tag tag_,
1159 int has_children_)
1160 : sect_off (sect_off_), tag (tag_), has_children (has_children_)
1161 {
1162 is_external = 0;
1163 is_declaration = 0;
1164 has_type = 0;
1165 has_specification = 0;
1166 has_pc_info = 0;
1167 may_be_inlined = 0;
1168 main_subprogram = 0;
1169 scope_set = 0;
1170 has_byte_size = 0;
1171 has_const_value = 0;
1172 has_template_arguments = 0;
1173 fixup_called = 0;
1174 is_dwz = 0;
1175 spec_is_dwz = 0;
1176 }
1177 };
1178
1179 /* This data structure holds the information of an abbrev. */
1180 struct abbrev_info
1181 {
1182 unsigned int number; /* number identifying abbrev */
1183 enum dwarf_tag tag; /* dwarf tag */
1184 unsigned short has_children; /* boolean */
1185 unsigned short num_attrs; /* number of attributes */
1186 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1187 struct abbrev_info *next; /* next in chain */
1188 };
1189
1190 struct attr_abbrev
1191 {
1192 ENUM_BITFIELD(dwarf_attribute) name : 16;
1193 ENUM_BITFIELD(dwarf_form) form : 16;
1194
1195 /* It is valid only if FORM is DW_FORM_implicit_const. */
1196 LONGEST implicit_const;
1197 };
1198
1199 /* Size of abbrev_table.abbrev_hash_table. */
1200 #define ABBREV_HASH_SIZE 121
1201
1202 /* Top level data structure to contain an abbreviation table. */
1203
1204 struct abbrev_table
1205 {
1206 explicit abbrev_table (sect_offset off)
1207 : sect_off (off)
1208 {
1209 m_abbrevs =
1210 XOBNEWVEC (&abbrev_obstack, struct abbrev_info *, ABBREV_HASH_SIZE);
1211 memset (m_abbrevs, 0, ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
1212 }
1213
1214 DISABLE_COPY_AND_ASSIGN (abbrev_table);
1215
1216 /* Allocate space for a struct abbrev_info object in
1217 ABBREV_TABLE. */
1218 struct abbrev_info *alloc_abbrev ();
1219
1220 /* Add an abbreviation to the table. */
1221 void add_abbrev (unsigned int abbrev_number, struct abbrev_info *abbrev);
1222
1223 /* Look up an abbrev in the table.
1224 Returns NULL if the abbrev is not found. */
1225
1226 struct abbrev_info *lookup_abbrev (unsigned int abbrev_number);
1227
1228
1229 /* Where the abbrev table came from.
1230 This is used as a sanity check when the table is used. */
1231 const sect_offset sect_off;
1232
1233 /* Storage for the abbrev table. */
1234 auto_obstack abbrev_obstack;
1235
1236 private:
1237
1238 /* Hash table of abbrevs.
1239 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1240 It could be statically allocated, but the previous code didn't so we
1241 don't either. */
1242 struct abbrev_info **m_abbrevs;
1243 };
1244
1245 typedef std::unique_ptr<struct abbrev_table> abbrev_table_up;
1246
1247 /* Attributes have a name and a value. */
1248 struct attribute
1249 {
1250 ENUM_BITFIELD(dwarf_attribute) name : 16;
1251 ENUM_BITFIELD(dwarf_form) form : 15;
1252
1253 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1254 field should be in u.str (existing only for DW_STRING) but it is kept
1255 here for better struct attribute alignment. */
1256 unsigned int string_is_canonical : 1;
1257
1258 union
1259 {
1260 const char *str;
1261 struct dwarf_block *blk;
1262 ULONGEST unsnd;
1263 LONGEST snd;
1264 CORE_ADDR addr;
1265 ULONGEST signature;
1266 }
1267 u;
1268 };
1269
1270 /* This data structure holds a complete die structure. */
1271 struct die_info
1272 {
1273 /* DWARF-2 tag for this DIE. */
1274 ENUM_BITFIELD(dwarf_tag) tag : 16;
1275
1276 /* Number of attributes */
1277 unsigned char num_attrs;
1278
1279 /* True if we're presently building the full type name for the
1280 type derived from this DIE. */
1281 unsigned char building_fullname : 1;
1282
1283 /* True if this die is in process. PR 16581. */
1284 unsigned char in_process : 1;
1285
1286 /* Abbrev number */
1287 unsigned int abbrev;
1288
1289 /* Offset in .debug_info or .debug_types section. */
1290 sect_offset sect_off;
1291
1292 /* The dies in a compilation unit form an n-ary tree. PARENT
1293 points to this die's parent; CHILD points to the first child of
1294 this node; and all the children of a given node are chained
1295 together via their SIBLING fields. */
1296 struct die_info *child; /* Its first child, if any. */
1297 struct die_info *sibling; /* Its next sibling, if any. */
1298 struct die_info *parent; /* Its parent, if any. */
1299
1300 /* An array of attributes, with NUM_ATTRS elements. There may be
1301 zero, but it's not common and zero-sized arrays are not
1302 sufficiently portable C. */
1303 struct attribute attrs[1];
1304 };
1305
1306 /* Get at parts of an attribute structure. */
1307
1308 #define DW_STRING(attr) ((attr)->u.str)
1309 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1310 #define DW_UNSND(attr) ((attr)->u.unsnd)
1311 #define DW_BLOCK(attr) ((attr)->u.blk)
1312 #define DW_SND(attr) ((attr)->u.snd)
1313 #define DW_ADDR(attr) ((attr)->u.addr)
1314 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1315
1316 /* Blocks are a bunch of untyped bytes. */
1317 struct dwarf_block
1318 {
1319 size_t size;
1320
1321 /* Valid only if SIZE is not zero. */
1322 const gdb_byte *data;
1323 };
1324
1325 #ifndef ATTR_ALLOC_CHUNK
1326 #define ATTR_ALLOC_CHUNK 4
1327 #endif
1328
1329 /* Allocate fields for structs, unions and enums in this size. */
1330 #ifndef DW_FIELD_ALLOC_CHUNK
1331 #define DW_FIELD_ALLOC_CHUNK 4
1332 #endif
1333
1334 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1335 but this would require a corresponding change in unpack_field_as_long
1336 and friends. */
1337 static int bits_per_byte = 8;
1338
1339 /* When reading a variant or variant part, we track a bit more
1340 information about the field, and store it in an object of this
1341 type. */
1342
1343 struct variant_field
1344 {
1345 /* If we see a DW_TAG_variant, then this will be the discriminant
1346 value. */
1347 ULONGEST discriminant_value;
1348 /* If we see a DW_TAG_variant, then this will be set if this is the
1349 default branch. */
1350 bool default_branch;
1351 /* While reading a DW_TAG_variant_part, this will be set if this
1352 field is the discriminant. */
1353 bool is_discriminant;
1354 };
1355
1356 struct nextfield
1357 {
1358 int accessibility = 0;
1359 int virtuality = 0;
1360 /* Extra information to describe a variant or variant part. */
1361 struct variant_field variant {};
1362 struct field field {};
1363 };
1364
1365 struct fnfieldlist
1366 {
1367 const char *name = nullptr;
1368 std::vector<struct fn_field> fnfields;
1369 };
1370
1371 /* The routines that read and process dies for a C struct or C++ class
1372 pass lists of data member fields and lists of member function fields
1373 in an instance of a field_info structure, as defined below. */
1374 struct field_info
1375 {
1376 /* List of data member and baseclasses fields. */
1377 std::vector<struct nextfield> fields;
1378 std::vector<struct nextfield> baseclasses;
1379
1380 /* Number of fields (including baseclasses). */
1381 int nfields = 0;
1382
1383 /* Set if the accesibility of one of the fields is not public. */
1384 int non_public_fields = 0;
1385
1386 /* Member function fieldlist array, contains name of possibly overloaded
1387 member function, number of overloaded member functions and a pointer
1388 to the head of the member function field chain. */
1389 std::vector<struct fnfieldlist> fnfieldlists;
1390
1391 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1392 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1393 std::vector<struct decl_field> typedef_field_list;
1394
1395 /* Nested types defined by this class and the number of elements in this
1396 list. */
1397 std::vector<struct decl_field> nested_types_list;
1398 };
1399
1400 /* One item on the queue of compilation units to read in full symbols
1401 for. */
1402 struct dwarf2_queue_item
1403 {
1404 struct dwarf2_per_cu_data *per_cu;
1405 enum language pretend_language;
1406 struct dwarf2_queue_item *next;
1407 };
1408
1409 /* The current queue. */
1410 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1411
1412 /* Loaded secondary compilation units are kept in memory until they
1413 have not been referenced for the processing of this many
1414 compilation units. Set this to zero to disable caching. Cache
1415 sizes of up to at least twenty will improve startup time for
1416 typical inter-CU-reference binaries, at an obvious memory cost. */
1417 static int dwarf_max_cache_age = 5;
1418 static void
1419 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1420 struct cmd_list_element *c, const char *value)
1421 {
1422 fprintf_filtered (file, _("The upper bound on the age of cached "
1423 "DWARF compilation units is %s.\n"),
1424 value);
1425 }
1426 \f
1427 /* local function prototypes */
1428
1429 static const char *get_section_name (const struct dwarf2_section_info *);
1430
1431 static const char *get_section_file_name (const struct dwarf2_section_info *);
1432
1433 static void dwarf2_find_base_address (struct die_info *die,
1434 struct dwarf2_cu *cu);
1435
1436 static struct partial_symtab *create_partial_symtab
1437 (struct dwarf2_per_cu_data *per_cu, const char *name);
1438
1439 static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1440 const gdb_byte *info_ptr,
1441 struct die_info *type_unit_die,
1442 int has_children, void *data);
1443
1444 static void dwarf2_build_psymtabs_hard
1445 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1446
1447 static void scan_partial_symbols (struct partial_die_info *,
1448 CORE_ADDR *, CORE_ADDR *,
1449 int, struct dwarf2_cu *);
1450
1451 static void add_partial_symbol (struct partial_die_info *,
1452 struct dwarf2_cu *);
1453
1454 static void add_partial_namespace (struct partial_die_info *pdi,
1455 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1456 int set_addrmap, struct dwarf2_cu *cu);
1457
1458 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1459 CORE_ADDR *highpc, int set_addrmap,
1460 struct dwarf2_cu *cu);
1461
1462 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1463 struct dwarf2_cu *cu);
1464
1465 static void add_partial_subprogram (struct partial_die_info *pdi,
1466 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1467 int need_pc, struct dwarf2_cu *cu);
1468
1469 static void dwarf2_read_symtab (struct partial_symtab *,
1470 struct objfile *);
1471
1472 static void psymtab_to_symtab_1 (struct partial_symtab *);
1473
1474 static abbrev_table_up abbrev_table_read_table
1475 (struct dwarf2_per_objfile *dwarf2_per_objfile, struct dwarf2_section_info *,
1476 sect_offset);
1477
1478 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1479
1480 static struct partial_die_info *load_partial_dies
1481 (const struct die_reader_specs *, const gdb_byte *, int);
1482
1483 static struct partial_die_info *find_partial_die (sect_offset, int,
1484 struct dwarf2_cu *);
1485
1486 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1487 struct attribute *, struct attr_abbrev *,
1488 const gdb_byte *);
1489
1490 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1491
1492 static int read_1_signed_byte (bfd *, const gdb_byte *);
1493
1494 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1495
1496 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1497
1498 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1499
1500 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1501 unsigned int *);
1502
1503 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1504
1505 static LONGEST read_checked_initial_length_and_offset
1506 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1507 unsigned int *, unsigned int *);
1508
1509 static LONGEST read_offset (bfd *, const gdb_byte *,
1510 const struct comp_unit_head *,
1511 unsigned int *);
1512
1513 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1514
1515 static sect_offset read_abbrev_offset
1516 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1517 struct dwarf2_section_info *, sect_offset);
1518
1519 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1520
1521 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1522
1523 static const char *read_indirect_string
1524 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1525 const struct comp_unit_head *, unsigned int *);
1526
1527 static const char *read_indirect_line_string
1528 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1529 const struct comp_unit_head *, unsigned int *);
1530
1531 static const char *read_indirect_string_at_offset
1532 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
1533 LONGEST str_offset);
1534
1535 static const char *read_indirect_string_from_dwz
1536 (struct objfile *objfile, struct dwz_file *, LONGEST);
1537
1538 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1539
1540 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1541 const gdb_byte *,
1542 unsigned int *);
1543
1544 static const char *read_str_index (const struct die_reader_specs *reader,
1545 ULONGEST str_index);
1546
1547 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1548
1549 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1550 struct dwarf2_cu *);
1551
1552 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1553 unsigned int);
1554
1555 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1556 struct dwarf2_cu *cu);
1557
1558 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1559 struct dwarf2_cu *cu);
1560
1561 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1562
1563 static struct die_info *die_specification (struct die_info *die,
1564 struct dwarf2_cu **);
1565
1566 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1567 struct dwarf2_cu *cu);
1568
1569 static void dwarf_decode_lines (struct line_header *, const char *,
1570 struct dwarf2_cu *, struct partial_symtab *,
1571 CORE_ADDR, int decode_mapping);
1572
1573 static void dwarf2_start_subfile (const char *, const char *);
1574
1575 static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1576 const char *, const char *,
1577 CORE_ADDR);
1578
1579 static struct symbol *new_symbol (struct die_info *, struct type *,
1580 struct dwarf2_cu *, struct symbol * = NULL);
1581
1582 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1583 struct dwarf2_cu *);
1584
1585 static void dwarf2_const_value_attr (const struct attribute *attr,
1586 struct type *type,
1587 const char *name,
1588 struct obstack *obstack,
1589 struct dwarf2_cu *cu, LONGEST *value,
1590 const gdb_byte **bytes,
1591 struct dwarf2_locexpr_baton **baton);
1592
1593 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1594
1595 static int need_gnat_info (struct dwarf2_cu *);
1596
1597 static struct type *die_descriptive_type (struct die_info *,
1598 struct dwarf2_cu *);
1599
1600 static void set_descriptive_type (struct type *, struct die_info *,
1601 struct dwarf2_cu *);
1602
1603 static struct type *die_containing_type (struct die_info *,
1604 struct dwarf2_cu *);
1605
1606 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1607 struct dwarf2_cu *);
1608
1609 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1610
1611 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1612
1613 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1614
1615 static char *typename_concat (struct obstack *obs, const char *prefix,
1616 const char *suffix, int physname,
1617 struct dwarf2_cu *cu);
1618
1619 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1620
1621 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1622
1623 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1624
1625 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1626
1627 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1628
1629 static void read_variable (struct die_info *die, struct dwarf2_cu *cu);
1630
1631 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1632 struct dwarf2_cu *, struct partial_symtab *);
1633
1634 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1635 values. Keep the items ordered with increasing constraints compliance. */
1636 enum pc_bounds_kind
1637 {
1638 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1639 PC_BOUNDS_NOT_PRESENT,
1640
1641 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1642 were present but they do not form a valid range of PC addresses. */
1643 PC_BOUNDS_INVALID,
1644
1645 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1646 PC_BOUNDS_RANGES,
1647
1648 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1649 PC_BOUNDS_HIGH_LOW,
1650 };
1651
1652 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1653 CORE_ADDR *, CORE_ADDR *,
1654 struct dwarf2_cu *,
1655 struct partial_symtab *);
1656
1657 static void get_scope_pc_bounds (struct die_info *,
1658 CORE_ADDR *, CORE_ADDR *,
1659 struct dwarf2_cu *);
1660
1661 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1662 CORE_ADDR, struct dwarf2_cu *);
1663
1664 static void dwarf2_add_field (struct field_info *, struct die_info *,
1665 struct dwarf2_cu *);
1666
1667 static void dwarf2_attach_fields_to_type (struct field_info *,
1668 struct type *, struct dwarf2_cu *);
1669
1670 static void dwarf2_add_member_fn (struct field_info *,
1671 struct die_info *, struct type *,
1672 struct dwarf2_cu *);
1673
1674 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1675 struct type *,
1676 struct dwarf2_cu *);
1677
1678 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1679
1680 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1681
1682 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1683
1684 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1685
1686 static struct using_direct **using_directives (enum language);
1687
1688 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1689
1690 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1691
1692 static struct type *read_module_type (struct die_info *die,
1693 struct dwarf2_cu *cu);
1694
1695 static const char *namespace_name (struct die_info *die,
1696 int *is_anonymous, struct dwarf2_cu *);
1697
1698 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1699
1700 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1701
1702 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1703 struct dwarf2_cu *);
1704
1705 static struct die_info *read_die_and_siblings_1
1706 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1707 struct die_info *);
1708
1709 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1710 const gdb_byte *info_ptr,
1711 const gdb_byte **new_info_ptr,
1712 struct die_info *parent);
1713
1714 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1715 struct die_info **, const gdb_byte *,
1716 int *, int);
1717
1718 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1719 struct die_info **, const gdb_byte *,
1720 int *);
1721
1722 static void process_die (struct die_info *, struct dwarf2_cu *);
1723
1724 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1725 struct obstack *);
1726
1727 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1728
1729 static const char *dwarf2_full_name (const char *name,
1730 struct die_info *die,
1731 struct dwarf2_cu *cu);
1732
1733 static const char *dwarf2_physname (const char *name, struct die_info *die,
1734 struct dwarf2_cu *cu);
1735
1736 static struct die_info *dwarf2_extension (struct die_info *die,
1737 struct dwarf2_cu **);
1738
1739 static const char *dwarf_tag_name (unsigned int);
1740
1741 static const char *dwarf_attr_name (unsigned int);
1742
1743 static const char *dwarf_form_name (unsigned int);
1744
1745 static const char *dwarf_bool_name (unsigned int);
1746
1747 static const char *dwarf_type_encoding_name (unsigned int);
1748
1749 static struct die_info *sibling_die (struct die_info *);
1750
1751 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1752
1753 static void dump_die_for_error (struct die_info *);
1754
1755 static void dump_die_1 (struct ui_file *, int level, int max_level,
1756 struct die_info *);
1757
1758 /*static*/ void dump_die (struct die_info *, int max_level);
1759
1760 static void store_in_ref_table (struct die_info *,
1761 struct dwarf2_cu *);
1762
1763 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1764
1765 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1766
1767 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1768 const struct attribute *,
1769 struct dwarf2_cu **);
1770
1771 static struct die_info *follow_die_ref (struct die_info *,
1772 const struct attribute *,
1773 struct dwarf2_cu **);
1774
1775 static struct die_info *follow_die_sig (struct die_info *,
1776 const struct attribute *,
1777 struct dwarf2_cu **);
1778
1779 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1780 struct dwarf2_cu *);
1781
1782 static struct type *get_DW_AT_signature_type (struct die_info *,
1783 const struct attribute *,
1784 struct dwarf2_cu *);
1785
1786 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1787
1788 static void read_signatured_type (struct signatured_type *);
1789
1790 static int attr_to_dynamic_prop (const struct attribute *attr,
1791 struct die_info *die, struct dwarf2_cu *cu,
1792 struct dynamic_prop *prop);
1793
1794 /* memory allocation interface */
1795
1796 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1797
1798 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1799
1800 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1801
1802 static int attr_form_is_block (const struct attribute *);
1803
1804 static int attr_form_is_section_offset (const struct attribute *);
1805
1806 static int attr_form_is_constant (const struct attribute *);
1807
1808 static int attr_form_is_ref (const struct attribute *);
1809
1810 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1811 struct dwarf2_loclist_baton *baton,
1812 const struct attribute *attr);
1813
1814 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1815 struct symbol *sym,
1816 struct dwarf2_cu *cu,
1817 int is_block);
1818
1819 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1820 const gdb_byte *info_ptr,
1821 struct abbrev_info *abbrev);
1822
1823 static hashval_t partial_die_hash (const void *item);
1824
1825 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1826
1827 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1828 (sect_offset sect_off, unsigned int offset_in_dwz,
1829 struct dwarf2_per_objfile *dwarf2_per_objfile);
1830
1831 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1832 struct die_info *comp_unit_die,
1833 enum language pretend_language);
1834
1835 static void age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1836
1837 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1838
1839 static struct type *set_die_type (struct die_info *, struct type *,
1840 struct dwarf2_cu *);
1841
1842 static void create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1843
1844 static int create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1845
1846 static void load_full_comp_unit (struct dwarf2_per_cu_data *, bool,
1847 enum language);
1848
1849 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1850 enum language);
1851
1852 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1853 enum language);
1854
1855 static void dwarf2_add_dependence (struct dwarf2_cu *,
1856 struct dwarf2_per_cu_data *);
1857
1858 static void dwarf2_mark (struct dwarf2_cu *);
1859
1860 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1861
1862 static struct type *get_die_type_at_offset (sect_offset,
1863 struct dwarf2_per_cu_data *);
1864
1865 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1866
1867 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1868 enum language pretend_language);
1869
1870 static void process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile);
1871
1872 /* Class, the destructor of which frees all allocated queue entries. This
1873 will only have work to do if an error was thrown while processing the
1874 dwarf. If no error was thrown then the queue entries should have all
1875 been processed, and freed, as we went along. */
1876
1877 class dwarf2_queue_guard
1878 {
1879 public:
1880 dwarf2_queue_guard () = default;
1881
1882 /* Free any entries remaining on the queue. There should only be
1883 entries left if we hit an error while processing the dwarf. */
1884 ~dwarf2_queue_guard ()
1885 {
1886 struct dwarf2_queue_item *item, *last;
1887
1888 item = dwarf2_queue;
1889 while (item)
1890 {
1891 /* Anything still marked queued is likely to be in an
1892 inconsistent state, so discard it. */
1893 if (item->per_cu->queued)
1894 {
1895 if (item->per_cu->cu != NULL)
1896 free_one_cached_comp_unit (item->per_cu);
1897 item->per_cu->queued = 0;
1898 }
1899
1900 last = item;
1901 item = item->next;
1902 xfree (last);
1903 }
1904
1905 dwarf2_queue = dwarf2_queue_tail = NULL;
1906 }
1907 };
1908
1909 /* The return type of find_file_and_directory. Note, the enclosed
1910 string pointers are only valid while this object is valid. */
1911
1912 struct file_and_directory
1913 {
1914 /* The filename. This is never NULL. */
1915 const char *name;
1916
1917 /* The compilation directory. NULL if not known. If we needed to
1918 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
1919 points directly to the DW_AT_comp_dir string attribute owned by
1920 the obstack that owns the DIE. */
1921 const char *comp_dir;
1922
1923 /* If we needed to build a new string for comp_dir, this is what
1924 owns the storage. */
1925 std::string comp_dir_storage;
1926 };
1927
1928 static file_and_directory find_file_and_directory (struct die_info *die,
1929 struct dwarf2_cu *cu);
1930
1931 static char *file_full_name (int file, struct line_header *lh,
1932 const char *comp_dir);
1933
1934 /* Expected enum dwarf_unit_type for read_comp_unit_head. */
1935 enum class rcuh_kind { COMPILE, TYPE };
1936
1937 static const gdb_byte *read_and_check_comp_unit_head
1938 (struct dwarf2_per_objfile* dwarf2_per_objfile,
1939 struct comp_unit_head *header,
1940 struct dwarf2_section_info *section,
1941 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1942 rcuh_kind section_kind);
1943
1944 static void init_cutu_and_read_dies
1945 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1946 int use_existing_cu, int keep, bool skip_partial,
1947 die_reader_func_ftype *die_reader_func, void *data);
1948
1949 static void init_cutu_and_read_dies_simple
1950 (struct dwarf2_per_cu_data *this_cu,
1951 die_reader_func_ftype *die_reader_func, void *data);
1952
1953 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1954
1955 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1956
1957 static struct dwo_unit *lookup_dwo_unit_in_dwp
1958 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1959 struct dwp_file *dwp_file, const char *comp_dir,
1960 ULONGEST signature, int is_debug_types);
1961
1962 static struct dwp_file *get_dwp_file
1963 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1964
1965 static struct dwo_unit *lookup_dwo_comp_unit
1966 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1967
1968 static struct dwo_unit *lookup_dwo_type_unit
1969 (struct signatured_type *, const char *, const char *);
1970
1971 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1972
1973 static void free_dwo_file (struct dwo_file *);
1974
1975 /* A unique_ptr helper to free a dwo_file. */
1976
1977 struct dwo_file_deleter
1978 {
1979 void operator() (struct dwo_file *df) const
1980 {
1981 free_dwo_file (df);
1982 }
1983 };
1984
1985 /* A unique pointer to a dwo_file. */
1986
1987 typedef std::unique_ptr<struct dwo_file, dwo_file_deleter> dwo_file_up;
1988
1989 static void process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile);
1990
1991 static void check_producer (struct dwarf2_cu *cu);
1992
1993 static void free_line_header_voidp (void *arg);
1994 \f
1995 /* Various complaints about symbol reading that don't abort the process. */
1996
1997 static void
1998 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1999 {
2000 complaint (_("statement list doesn't fit in .debug_line section"));
2001 }
2002
2003 static void
2004 dwarf2_debug_line_missing_file_complaint (void)
2005 {
2006 complaint (_(".debug_line section has line data without a file"));
2007 }
2008
2009 static void
2010 dwarf2_debug_line_missing_end_sequence_complaint (void)
2011 {
2012 complaint (_(".debug_line section has line "
2013 "program sequence without an end"));
2014 }
2015
2016 static void
2017 dwarf2_complex_location_expr_complaint (void)
2018 {
2019 complaint (_("location expression too complex"));
2020 }
2021
2022 static void
2023 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
2024 int arg3)
2025 {
2026 complaint (_("const value length mismatch for '%s', got %d, expected %d"),
2027 arg1, arg2, arg3);
2028 }
2029
2030 static void
2031 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2032 {
2033 complaint (_("debug info runs off end of %s section"
2034 " [in module %s]"),
2035 get_section_name (section),
2036 get_section_file_name (section));
2037 }
2038
2039 static void
2040 dwarf2_macro_malformed_definition_complaint (const char *arg1)
2041 {
2042 complaint (_("macro debug info contains a "
2043 "malformed macro definition:\n`%s'"),
2044 arg1);
2045 }
2046
2047 static void
2048 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
2049 {
2050 complaint (_("invalid attribute class or form for '%s' in '%s'"),
2051 arg1, arg2);
2052 }
2053
2054 /* Hash function for line_header_hash. */
2055
2056 static hashval_t
2057 line_header_hash (const struct line_header *ofs)
2058 {
2059 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
2060 }
2061
2062 /* Hash function for htab_create_alloc_ex for line_header_hash. */
2063
2064 static hashval_t
2065 line_header_hash_voidp (const void *item)
2066 {
2067 const struct line_header *ofs = (const struct line_header *) item;
2068
2069 return line_header_hash (ofs);
2070 }
2071
2072 /* Equality function for line_header_hash. */
2073
2074 static int
2075 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
2076 {
2077 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
2078 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
2079
2080 return (ofs_lhs->sect_off == ofs_rhs->sect_off
2081 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2082 }
2083
2084 \f
2085
2086 /* Read the given attribute value as an address, taking the attribute's
2087 form into account. */
2088
2089 static CORE_ADDR
2090 attr_value_as_address (struct attribute *attr)
2091 {
2092 CORE_ADDR addr;
2093
2094 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2095 {
2096 /* Aside from a few clearly defined exceptions, attributes that
2097 contain an address must always be in DW_FORM_addr form.
2098 Unfortunately, some compilers happen to be violating this
2099 requirement by encoding addresses using other forms, such
2100 as DW_FORM_data4 for example. For those broken compilers,
2101 we try to do our best, without any guarantee of success,
2102 to interpret the address correctly. It would also be nice
2103 to generate a complaint, but that would require us to maintain
2104 a list of legitimate cases where a non-address form is allowed,
2105 as well as update callers to pass in at least the CU's DWARF
2106 version. This is more overhead than what we're willing to
2107 expand for a pretty rare case. */
2108 addr = DW_UNSND (attr);
2109 }
2110 else
2111 addr = DW_ADDR (attr);
2112
2113 return addr;
2114 }
2115
2116 /* See declaration. */
2117
2118 dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
2119 const dwarf2_debug_sections *names)
2120 : objfile (objfile_)
2121 {
2122 if (names == NULL)
2123 names = &dwarf2_elf_names;
2124
2125 bfd *obfd = objfile->obfd;
2126
2127 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
2128 locate_sections (obfd, sec, *names);
2129 }
2130
2131 static void free_dwo_files (htab_t dwo_files, struct objfile *objfile);
2132
2133 dwarf2_per_objfile::~dwarf2_per_objfile ()
2134 {
2135 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
2136 free_cached_comp_units ();
2137
2138 if (quick_file_names_table)
2139 htab_delete (quick_file_names_table);
2140
2141 if (line_header_hash)
2142 htab_delete (line_header_hash);
2143
2144 for (dwarf2_per_cu_data *per_cu : all_comp_units)
2145 VEC_free (dwarf2_per_cu_ptr, per_cu->imported_symtabs);
2146
2147 for (signatured_type *sig_type : all_type_units)
2148 VEC_free (dwarf2_per_cu_ptr, sig_type->per_cu.imported_symtabs);
2149
2150 VEC_free (dwarf2_section_info_def, types);
2151
2152 if (dwo_files != NULL)
2153 free_dwo_files (dwo_files, objfile);
2154
2155 /* Everything else should be on the objfile obstack. */
2156 }
2157
2158 /* See declaration. */
2159
2160 void
2161 dwarf2_per_objfile::free_cached_comp_units ()
2162 {
2163 dwarf2_per_cu_data *per_cu = read_in_chain;
2164 dwarf2_per_cu_data **last_chain = &read_in_chain;
2165 while (per_cu != NULL)
2166 {
2167 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
2168
2169 delete per_cu->cu;
2170 *last_chain = next_cu;
2171 per_cu = next_cu;
2172 }
2173 }
2174
2175 /* A helper class that calls free_cached_comp_units on
2176 destruction. */
2177
2178 class free_cached_comp_units
2179 {
2180 public:
2181
2182 explicit free_cached_comp_units (dwarf2_per_objfile *per_objfile)
2183 : m_per_objfile (per_objfile)
2184 {
2185 }
2186
2187 ~free_cached_comp_units ()
2188 {
2189 m_per_objfile->free_cached_comp_units ();
2190 }
2191
2192 DISABLE_COPY_AND_ASSIGN (free_cached_comp_units);
2193
2194 private:
2195
2196 dwarf2_per_objfile *m_per_objfile;
2197 };
2198
2199 /* Try to locate the sections we need for DWARF 2 debugging
2200 information and return true if we have enough to do something.
2201 NAMES points to the dwarf2 section names, or is NULL if the standard
2202 ELF names are used. */
2203
2204 int
2205 dwarf2_has_info (struct objfile *objfile,
2206 const struct dwarf2_debug_sections *names)
2207 {
2208 if (objfile->flags & OBJF_READNEVER)
2209 return 0;
2210
2211 struct dwarf2_per_objfile *dwarf2_per_objfile
2212 = get_dwarf2_per_objfile (objfile);
2213
2214 if (dwarf2_per_objfile == NULL)
2215 {
2216 /* Initialize per-objfile state. */
2217 dwarf2_per_objfile
2218 = new (&objfile->objfile_obstack) struct dwarf2_per_objfile (objfile,
2219 names);
2220 set_dwarf2_per_objfile (objfile, dwarf2_per_objfile);
2221 }
2222 return (!dwarf2_per_objfile->info.is_virtual
2223 && dwarf2_per_objfile->info.s.section != NULL
2224 && !dwarf2_per_objfile->abbrev.is_virtual
2225 && dwarf2_per_objfile->abbrev.s.section != NULL);
2226 }
2227
2228 /* Return the containing section of virtual section SECTION. */
2229
2230 static struct dwarf2_section_info *
2231 get_containing_section (const struct dwarf2_section_info *section)
2232 {
2233 gdb_assert (section->is_virtual);
2234 return section->s.containing_section;
2235 }
2236
2237 /* Return the bfd owner of SECTION. */
2238
2239 static struct bfd *
2240 get_section_bfd_owner (const struct dwarf2_section_info *section)
2241 {
2242 if (section->is_virtual)
2243 {
2244 section = get_containing_section (section);
2245 gdb_assert (!section->is_virtual);
2246 }
2247 return section->s.section->owner;
2248 }
2249
2250 /* Return the bfd section of SECTION.
2251 Returns NULL if the section is not present. */
2252
2253 static asection *
2254 get_section_bfd_section (const struct dwarf2_section_info *section)
2255 {
2256 if (section->is_virtual)
2257 {
2258 section = get_containing_section (section);
2259 gdb_assert (!section->is_virtual);
2260 }
2261 return section->s.section;
2262 }
2263
2264 /* Return the name of SECTION. */
2265
2266 static const char *
2267 get_section_name (const struct dwarf2_section_info *section)
2268 {
2269 asection *sectp = get_section_bfd_section (section);
2270
2271 gdb_assert (sectp != NULL);
2272 return bfd_section_name (get_section_bfd_owner (section), sectp);
2273 }
2274
2275 /* Return the name of the file SECTION is in. */
2276
2277 static const char *
2278 get_section_file_name (const struct dwarf2_section_info *section)
2279 {
2280 bfd *abfd = get_section_bfd_owner (section);
2281
2282 return bfd_get_filename (abfd);
2283 }
2284
2285 /* Return the id of SECTION.
2286 Returns 0 if SECTION doesn't exist. */
2287
2288 static int
2289 get_section_id (const struct dwarf2_section_info *section)
2290 {
2291 asection *sectp = get_section_bfd_section (section);
2292
2293 if (sectp == NULL)
2294 return 0;
2295 return sectp->id;
2296 }
2297
2298 /* Return the flags of SECTION.
2299 SECTION (or containing section if this is a virtual section) must exist. */
2300
2301 static int
2302 get_section_flags (const struct dwarf2_section_info *section)
2303 {
2304 asection *sectp = get_section_bfd_section (section);
2305
2306 gdb_assert (sectp != NULL);
2307 return bfd_get_section_flags (sectp->owner, sectp);
2308 }
2309
2310 /* When loading sections, we look either for uncompressed section or for
2311 compressed section names. */
2312
2313 static int
2314 section_is_p (const char *section_name,
2315 const struct dwarf2_section_names *names)
2316 {
2317 if (names->normal != NULL
2318 && strcmp (section_name, names->normal) == 0)
2319 return 1;
2320 if (names->compressed != NULL
2321 && strcmp (section_name, names->compressed) == 0)
2322 return 1;
2323 return 0;
2324 }
2325
2326 /* See declaration. */
2327
2328 void
2329 dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
2330 const dwarf2_debug_sections &names)
2331 {
2332 flagword aflag = bfd_get_section_flags (abfd, sectp);
2333
2334 if ((aflag & SEC_HAS_CONTENTS) == 0)
2335 {
2336 }
2337 else if (section_is_p (sectp->name, &names.info))
2338 {
2339 this->info.s.section = sectp;
2340 this->info.size = bfd_get_section_size (sectp);
2341 }
2342 else if (section_is_p (sectp->name, &names.abbrev))
2343 {
2344 this->abbrev.s.section = sectp;
2345 this->abbrev.size = bfd_get_section_size (sectp);
2346 }
2347 else if (section_is_p (sectp->name, &names.line))
2348 {
2349 this->line.s.section = sectp;
2350 this->line.size = bfd_get_section_size (sectp);
2351 }
2352 else if (section_is_p (sectp->name, &names.loc))
2353 {
2354 this->loc.s.section = sectp;
2355 this->loc.size = bfd_get_section_size (sectp);
2356 }
2357 else if (section_is_p (sectp->name, &names.loclists))
2358 {
2359 this->loclists.s.section = sectp;
2360 this->loclists.size = bfd_get_section_size (sectp);
2361 }
2362 else if (section_is_p (sectp->name, &names.macinfo))
2363 {
2364 this->macinfo.s.section = sectp;
2365 this->macinfo.size = bfd_get_section_size (sectp);
2366 }
2367 else if (section_is_p (sectp->name, &names.macro))
2368 {
2369 this->macro.s.section = sectp;
2370 this->macro.size = bfd_get_section_size (sectp);
2371 }
2372 else if (section_is_p (sectp->name, &names.str))
2373 {
2374 this->str.s.section = sectp;
2375 this->str.size = bfd_get_section_size (sectp);
2376 }
2377 else if (section_is_p (sectp->name, &names.line_str))
2378 {
2379 this->line_str.s.section = sectp;
2380 this->line_str.size = bfd_get_section_size (sectp);
2381 }
2382 else if (section_is_p (sectp->name, &names.addr))
2383 {
2384 this->addr.s.section = sectp;
2385 this->addr.size = bfd_get_section_size (sectp);
2386 }
2387 else if (section_is_p (sectp->name, &names.frame))
2388 {
2389 this->frame.s.section = sectp;
2390 this->frame.size = bfd_get_section_size (sectp);
2391 }
2392 else if (section_is_p (sectp->name, &names.eh_frame))
2393 {
2394 this->eh_frame.s.section = sectp;
2395 this->eh_frame.size = bfd_get_section_size (sectp);
2396 }
2397 else if (section_is_p (sectp->name, &names.ranges))
2398 {
2399 this->ranges.s.section = sectp;
2400 this->ranges.size = bfd_get_section_size (sectp);
2401 }
2402 else if (section_is_p (sectp->name, &names.rnglists))
2403 {
2404 this->rnglists.s.section = sectp;
2405 this->rnglists.size = bfd_get_section_size (sectp);
2406 }
2407 else if (section_is_p (sectp->name, &names.types))
2408 {
2409 struct dwarf2_section_info type_section;
2410
2411 memset (&type_section, 0, sizeof (type_section));
2412 type_section.s.section = sectp;
2413 type_section.size = bfd_get_section_size (sectp);
2414
2415 VEC_safe_push (dwarf2_section_info_def, this->types,
2416 &type_section);
2417 }
2418 else if (section_is_p (sectp->name, &names.gdb_index))
2419 {
2420 this->gdb_index.s.section = sectp;
2421 this->gdb_index.size = bfd_get_section_size (sectp);
2422 }
2423 else if (section_is_p (sectp->name, &names.debug_names))
2424 {
2425 this->debug_names.s.section = sectp;
2426 this->debug_names.size = bfd_get_section_size (sectp);
2427 }
2428 else if (section_is_p (sectp->name, &names.debug_aranges))
2429 {
2430 this->debug_aranges.s.section = sectp;
2431 this->debug_aranges.size = bfd_get_section_size (sectp);
2432 }
2433
2434 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2435 && bfd_section_vma (abfd, sectp) == 0)
2436 this->has_section_at_zero = true;
2437 }
2438
2439 /* A helper function that decides whether a section is empty,
2440 or not present. */
2441
2442 static int
2443 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2444 {
2445 if (section->is_virtual)
2446 return section->size == 0;
2447 return section->s.section == NULL || section->size == 0;
2448 }
2449
2450 /* See dwarf2read.h. */
2451
2452 void
2453 dwarf2_read_section (struct objfile *objfile, dwarf2_section_info *info)
2454 {
2455 asection *sectp;
2456 bfd *abfd;
2457 gdb_byte *buf, *retbuf;
2458
2459 if (info->readin)
2460 return;
2461 info->buffer = NULL;
2462 info->readin = 1;
2463
2464 if (dwarf2_section_empty_p (info))
2465 return;
2466
2467 sectp = get_section_bfd_section (info);
2468
2469 /* If this is a virtual section we need to read in the real one first. */
2470 if (info->is_virtual)
2471 {
2472 struct dwarf2_section_info *containing_section =
2473 get_containing_section (info);
2474
2475 gdb_assert (sectp != NULL);
2476 if ((sectp->flags & SEC_RELOC) != 0)
2477 {
2478 error (_("Dwarf Error: DWP format V2 with relocations is not"
2479 " supported in section %s [in module %s]"),
2480 get_section_name (info), get_section_file_name (info));
2481 }
2482 dwarf2_read_section (objfile, containing_section);
2483 /* Other code should have already caught virtual sections that don't
2484 fit. */
2485 gdb_assert (info->virtual_offset + info->size
2486 <= containing_section->size);
2487 /* If the real section is empty or there was a problem reading the
2488 section we shouldn't get here. */
2489 gdb_assert (containing_section->buffer != NULL);
2490 info->buffer = containing_section->buffer + info->virtual_offset;
2491 return;
2492 }
2493
2494 /* If the section has relocations, we must read it ourselves.
2495 Otherwise we attach it to the BFD. */
2496 if ((sectp->flags & SEC_RELOC) == 0)
2497 {
2498 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2499 return;
2500 }
2501
2502 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2503 info->buffer = buf;
2504
2505 /* When debugging .o files, we may need to apply relocations; see
2506 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2507 We never compress sections in .o files, so we only need to
2508 try this when the section is not compressed. */
2509 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2510 if (retbuf != NULL)
2511 {
2512 info->buffer = retbuf;
2513 return;
2514 }
2515
2516 abfd = get_section_bfd_owner (info);
2517 gdb_assert (abfd != NULL);
2518
2519 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2520 || bfd_bread (buf, info->size, abfd) != info->size)
2521 {
2522 error (_("Dwarf Error: Can't read DWARF data"
2523 " in section %s [in module %s]"),
2524 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2525 }
2526 }
2527
2528 /* A helper function that returns the size of a section in a safe way.
2529 If you are positive that the section has been read before using the
2530 size, then it is safe to refer to the dwarf2_section_info object's
2531 "size" field directly. In other cases, you must call this
2532 function, because for compressed sections the size field is not set
2533 correctly until the section has been read. */
2534
2535 static bfd_size_type
2536 dwarf2_section_size (struct objfile *objfile,
2537 struct dwarf2_section_info *info)
2538 {
2539 if (!info->readin)
2540 dwarf2_read_section (objfile, info);
2541 return info->size;
2542 }
2543
2544 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2545 SECTION_NAME. */
2546
2547 void
2548 dwarf2_get_section_info (struct objfile *objfile,
2549 enum dwarf2_section_enum sect,
2550 asection **sectp, const gdb_byte **bufp,
2551 bfd_size_type *sizep)
2552 {
2553 struct dwarf2_per_objfile *data
2554 = (struct dwarf2_per_objfile *) objfile_data (objfile,
2555 dwarf2_objfile_data_key);
2556 struct dwarf2_section_info *info;
2557
2558 /* We may see an objfile without any DWARF, in which case we just
2559 return nothing. */
2560 if (data == NULL)
2561 {
2562 *sectp = NULL;
2563 *bufp = NULL;
2564 *sizep = 0;
2565 return;
2566 }
2567 switch (sect)
2568 {
2569 case DWARF2_DEBUG_FRAME:
2570 info = &data->frame;
2571 break;
2572 case DWARF2_EH_FRAME:
2573 info = &data->eh_frame;
2574 break;
2575 default:
2576 gdb_assert_not_reached ("unexpected section");
2577 }
2578
2579 dwarf2_read_section (objfile, info);
2580
2581 *sectp = get_section_bfd_section (info);
2582 *bufp = info->buffer;
2583 *sizep = info->size;
2584 }
2585
2586 /* A helper function to find the sections for a .dwz file. */
2587
2588 static void
2589 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2590 {
2591 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2592
2593 /* Note that we only support the standard ELF names, because .dwz
2594 is ELF-only (at the time of writing). */
2595 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2596 {
2597 dwz_file->abbrev.s.section = sectp;
2598 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2599 }
2600 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2601 {
2602 dwz_file->info.s.section = sectp;
2603 dwz_file->info.size = bfd_get_section_size (sectp);
2604 }
2605 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2606 {
2607 dwz_file->str.s.section = sectp;
2608 dwz_file->str.size = bfd_get_section_size (sectp);
2609 }
2610 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2611 {
2612 dwz_file->line.s.section = sectp;
2613 dwz_file->line.size = bfd_get_section_size (sectp);
2614 }
2615 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2616 {
2617 dwz_file->macro.s.section = sectp;
2618 dwz_file->macro.size = bfd_get_section_size (sectp);
2619 }
2620 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2621 {
2622 dwz_file->gdb_index.s.section = sectp;
2623 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2624 }
2625 else if (section_is_p (sectp->name, &dwarf2_elf_names.debug_names))
2626 {
2627 dwz_file->debug_names.s.section = sectp;
2628 dwz_file->debug_names.size = bfd_get_section_size (sectp);
2629 }
2630 }
2631
2632 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2633 there is no .gnu_debugaltlink section in the file. Error if there
2634 is such a section but the file cannot be found. */
2635
2636 static struct dwz_file *
2637 dwarf2_get_dwz_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
2638 {
2639 const char *filename;
2640 bfd_size_type buildid_len_arg;
2641 size_t buildid_len;
2642 bfd_byte *buildid;
2643
2644 if (dwarf2_per_objfile->dwz_file != NULL)
2645 return dwarf2_per_objfile->dwz_file.get ();
2646
2647 bfd_set_error (bfd_error_no_error);
2648 gdb::unique_xmalloc_ptr<char> data
2649 (bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2650 &buildid_len_arg, &buildid));
2651 if (data == NULL)
2652 {
2653 if (bfd_get_error () == bfd_error_no_error)
2654 return NULL;
2655 error (_("could not read '.gnu_debugaltlink' section: %s"),
2656 bfd_errmsg (bfd_get_error ()));
2657 }
2658
2659 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
2660
2661 buildid_len = (size_t) buildid_len_arg;
2662
2663 filename = data.get ();
2664
2665 std::string abs_storage;
2666 if (!IS_ABSOLUTE_PATH (filename))
2667 {
2668 gdb::unique_xmalloc_ptr<char> abs
2669 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2670
2671 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
2672 filename = abs_storage.c_str ();
2673 }
2674
2675 /* First try the file name given in the section. If that doesn't
2676 work, try to use the build-id instead. */
2677 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2678 if (dwz_bfd != NULL)
2679 {
2680 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2681 dwz_bfd.release ();
2682 }
2683
2684 if (dwz_bfd == NULL)
2685 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2686
2687 if (dwz_bfd == NULL)
2688 error (_("could not find '.gnu_debugaltlink' file for %s"),
2689 objfile_name (dwarf2_per_objfile->objfile));
2690
2691 std::unique_ptr<struct dwz_file> result
2692 (new struct dwz_file (std::move (dwz_bfd)));
2693
2694 bfd_map_over_sections (result->dwz_bfd.get (), locate_dwz_sections,
2695 result.get ());
2696
2697 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd,
2698 result->dwz_bfd.get ());
2699 dwarf2_per_objfile->dwz_file = std::move (result);
2700 return dwarf2_per_objfile->dwz_file.get ();
2701 }
2702 \f
2703 /* DWARF quick_symbols_functions support. */
2704
2705 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2706 unique line tables, so we maintain a separate table of all .debug_line
2707 derived entries to support the sharing.
2708 All the quick functions need is the list of file names. We discard the
2709 line_header when we're done and don't need to record it here. */
2710 struct quick_file_names
2711 {
2712 /* The data used to construct the hash key. */
2713 struct stmt_list_hash hash;
2714
2715 /* The number of entries in file_names, real_names. */
2716 unsigned int num_file_names;
2717
2718 /* The file names from the line table, after being run through
2719 file_full_name. */
2720 const char **file_names;
2721
2722 /* The file names from the line table after being run through
2723 gdb_realpath. These are computed lazily. */
2724 const char **real_names;
2725 };
2726
2727 /* When using the index (and thus not using psymtabs), each CU has an
2728 object of this type. This is used to hold information needed by
2729 the various "quick" methods. */
2730 struct dwarf2_per_cu_quick_data
2731 {
2732 /* The file table. This can be NULL if there was no file table
2733 or it's currently not read in.
2734 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2735 struct quick_file_names *file_names;
2736
2737 /* The corresponding symbol table. This is NULL if symbols for this
2738 CU have not yet been read. */
2739 struct compunit_symtab *compunit_symtab;
2740
2741 /* A temporary mark bit used when iterating over all CUs in
2742 expand_symtabs_matching. */
2743 unsigned int mark : 1;
2744
2745 /* True if we've tried to read the file table and found there isn't one.
2746 There will be no point in trying to read it again next time. */
2747 unsigned int no_file_data : 1;
2748 };
2749
2750 /* Utility hash function for a stmt_list_hash. */
2751
2752 static hashval_t
2753 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2754 {
2755 hashval_t v = 0;
2756
2757 if (stmt_list_hash->dwo_unit != NULL)
2758 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2759 v += to_underlying (stmt_list_hash->line_sect_off);
2760 return v;
2761 }
2762
2763 /* Utility equality function for a stmt_list_hash. */
2764
2765 static int
2766 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2767 const struct stmt_list_hash *rhs)
2768 {
2769 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2770 return 0;
2771 if (lhs->dwo_unit != NULL
2772 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2773 return 0;
2774
2775 return lhs->line_sect_off == rhs->line_sect_off;
2776 }
2777
2778 /* Hash function for a quick_file_names. */
2779
2780 static hashval_t
2781 hash_file_name_entry (const void *e)
2782 {
2783 const struct quick_file_names *file_data
2784 = (const struct quick_file_names *) e;
2785
2786 return hash_stmt_list_entry (&file_data->hash);
2787 }
2788
2789 /* Equality function for a quick_file_names. */
2790
2791 static int
2792 eq_file_name_entry (const void *a, const void *b)
2793 {
2794 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2795 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2796
2797 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2798 }
2799
2800 /* Delete function for a quick_file_names. */
2801
2802 static void
2803 delete_file_name_entry (void *e)
2804 {
2805 struct quick_file_names *file_data = (struct quick_file_names *) e;
2806 int i;
2807
2808 for (i = 0; i < file_data->num_file_names; ++i)
2809 {
2810 xfree ((void*) file_data->file_names[i]);
2811 if (file_data->real_names)
2812 xfree ((void*) file_data->real_names[i]);
2813 }
2814
2815 /* The space for the struct itself lives on objfile_obstack,
2816 so we don't free it here. */
2817 }
2818
2819 /* Create a quick_file_names hash table. */
2820
2821 static htab_t
2822 create_quick_file_names_table (unsigned int nr_initial_entries)
2823 {
2824 return htab_create_alloc (nr_initial_entries,
2825 hash_file_name_entry, eq_file_name_entry,
2826 delete_file_name_entry, xcalloc, xfree);
2827 }
2828
2829 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2830 have to be created afterwards. You should call age_cached_comp_units after
2831 processing PER_CU->CU. dw2_setup must have been already called. */
2832
2833 static void
2834 load_cu (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2835 {
2836 if (per_cu->is_debug_types)
2837 load_full_type_unit (per_cu);
2838 else
2839 load_full_comp_unit (per_cu, skip_partial, language_minimal);
2840
2841 if (per_cu->cu == NULL)
2842 return; /* Dummy CU. */
2843
2844 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2845 }
2846
2847 /* Read in the symbols for PER_CU. */
2848
2849 static void
2850 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2851 {
2852 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2853
2854 /* Skip type_unit_groups, reading the type units they contain
2855 is handled elsewhere. */
2856 if (IS_TYPE_UNIT_GROUP (per_cu))
2857 return;
2858
2859 /* The destructor of dwarf2_queue_guard frees any entries left on
2860 the queue. After this point we're guaranteed to leave this function
2861 with the dwarf queue empty. */
2862 dwarf2_queue_guard q_guard;
2863
2864 if (dwarf2_per_objfile->using_index
2865 ? per_cu->v.quick->compunit_symtab == NULL
2866 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2867 {
2868 queue_comp_unit (per_cu, language_minimal);
2869 load_cu (per_cu, skip_partial);
2870
2871 /* If we just loaded a CU from a DWO, and we're working with an index
2872 that may badly handle TUs, load all the TUs in that DWO as well.
2873 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2874 if (!per_cu->is_debug_types
2875 && per_cu->cu != NULL
2876 && per_cu->cu->dwo_unit != NULL
2877 && dwarf2_per_objfile->index_table != NULL
2878 && dwarf2_per_objfile->index_table->version <= 7
2879 /* DWP files aren't supported yet. */
2880 && get_dwp_file (dwarf2_per_objfile) == NULL)
2881 queue_and_load_all_dwo_tus (per_cu);
2882 }
2883
2884 process_queue (dwarf2_per_objfile);
2885
2886 /* Age the cache, releasing compilation units that have not
2887 been used recently. */
2888 age_cached_comp_units (dwarf2_per_objfile);
2889 }
2890
2891 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2892 the objfile from which this CU came. Returns the resulting symbol
2893 table. */
2894
2895 static struct compunit_symtab *
2896 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2897 {
2898 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2899
2900 gdb_assert (dwarf2_per_objfile->using_index);
2901 if (!per_cu->v.quick->compunit_symtab)
2902 {
2903 free_cached_comp_units freer (dwarf2_per_objfile);
2904 scoped_restore decrementer = increment_reading_symtab ();
2905 dw2_do_instantiate_symtab (per_cu, skip_partial);
2906 process_cu_includes (dwarf2_per_objfile);
2907 }
2908
2909 return per_cu->v.quick->compunit_symtab;
2910 }
2911
2912 /* See declaration. */
2913
2914 dwarf2_per_cu_data *
2915 dwarf2_per_objfile::get_cutu (int index)
2916 {
2917 if (index >= this->all_comp_units.size ())
2918 {
2919 index -= this->all_comp_units.size ();
2920 gdb_assert (index < this->all_type_units.size ());
2921 return &this->all_type_units[index]->per_cu;
2922 }
2923
2924 return this->all_comp_units[index];
2925 }
2926
2927 /* See declaration. */
2928
2929 dwarf2_per_cu_data *
2930 dwarf2_per_objfile::get_cu (int index)
2931 {
2932 gdb_assert (index >= 0 && index < this->all_comp_units.size ());
2933
2934 return this->all_comp_units[index];
2935 }
2936
2937 /* See declaration. */
2938
2939 signatured_type *
2940 dwarf2_per_objfile::get_tu (int index)
2941 {
2942 gdb_assert (index >= 0 && index < this->all_type_units.size ());
2943
2944 return this->all_type_units[index];
2945 }
2946
2947 /* Return a new dwarf2_per_cu_data allocated on OBJFILE's
2948 objfile_obstack, and constructed with the specified field
2949 values. */
2950
2951 static dwarf2_per_cu_data *
2952 create_cu_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2953 struct dwarf2_section_info *section,
2954 int is_dwz,
2955 sect_offset sect_off, ULONGEST length)
2956 {
2957 struct objfile *objfile = dwarf2_per_objfile->objfile;
2958 dwarf2_per_cu_data *the_cu
2959 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2960 struct dwarf2_per_cu_data);
2961 the_cu->sect_off = sect_off;
2962 the_cu->length = length;
2963 the_cu->dwarf2_per_objfile = dwarf2_per_objfile;
2964 the_cu->section = section;
2965 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2966 struct dwarf2_per_cu_quick_data);
2967 the_cu->is_dwz = is_dwz;
2968 return the_cu;
2969 }
2970
2971 /* A helper for create_cus_from_index that handles a given list of
2972 CUs. */
2973
2974 static void
2975 create_cus_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2976 const gdb_byte *cu_list, offset_type n_elements,
2977 struct dwarf2_section_info *section,
2978 int is_dwz)
2979 {
2980 for (offset_type i = 0; i < n_elements; i += 2)
2981 {
2982 gdb_static_assert (sizeof (ULONGEST) >= 8);
2983
2984 sect_offset sect_off
2985 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2986 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2987 cu_list += 2 * 8;
2988
2989 dwarf2_per_cu_data *per_cu
2990 = create_cu_from_index_list (dwarf2_per_objfile, section, is_dwz,
2991 sect_off, length);
2992 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
2993 }
2994 }
2995
2996 /* Read the CU list from the mapped index, and use it to create all
2997 the CU objects for this objfile. */
2998
2999 static void
3000 create_cus_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3001 const gdb_byte *cu_list, offset_type cu_list_elements,
3002 const gdb_byte *dwz_list, offset_type dwz_elements)
3003 {
3004 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
3005 dwarf2_per_objfile->all_comp_units.reserve
3006 ((cu_list_elements + dwz_elements) / 2);
3007
3008 create_cus_from_index_list (dwarf2_per_objfile, cu_list, cu_list_elements,
3009 &dwarf2_per_objfile->info, 0);
3010
3011 if (dwz_elements == 0)
3012 return;
3013
3014 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3015 create_cus_from_index_list (dwarf2_per_objfile, dwz_list, dwz_elements,
3016 &dwz->info, 1);
3017 }
3018
3019 /* Create the signatured type hash table from the index. */
3020
3021 static void
3022 create_signatured_type_table_from_index
3023 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3024 struct dwarf2_section_info *section,
3025 const gdb_byte *bytes,
3026 offset_type elements)
3027 {
3028 struct objfile *objfile = dwarf2_per_objfile->objfile;
3029
3030 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3031 dwarf2_per_objfile->all_type_units.reserve (elements / 3);
3032
3033 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3034
3035 for (offset_type i = 0; i < elements; i += 3)
3036 {
3037 struct signatured_type *sig_type;
3038 ULONGEST signature;
3039 void **slot;
3040 cu_offset type_offset_in_tu;
3041
3042 gdb_static_assert (sizeof (ULONGEST) >= 8);
3043 sect_offset sect_off
3044 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
3045 type_offset_in_tu
3046 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
3047 BFD_ENDIAN_LITTLE);
3048 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
3049 bytes += 3 * 8;
3050
3051 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3052 struct signatured_type);
3053 sig_type->signature = signature;
3054 sig_type->type_offset_in_tu = type_offset_in_tu;
3055 sig_type->per_cu.is_debug_types = 1;
3056 sig_type->per_cu.section = section;
3057 sig_type->per_cu.sect_off = sect_off;
3058 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3059 sig_type->per_cu.v.quick
3060 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3061 struct dwarf2_per_cu_quick_data);
3062
3063 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3064 *slot = sig_type;
3065
3066 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3067 }
3068
3069 dwarf2_per_objfile->signatured_types = sig_types_hash;
3070 }
3071
3072 /* Create the signatured type hash table from .debug_names. */
3073
3074 static void
3075 create_signatured_type_table_from_debug_names
3076 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3077 const mapped_debug_names &map,
3078 struct dwarf2_section_info *section,
3079 struct dwarf2_section_info *abbrev_section)
3080 {
3081 struct objfile *objfile = dwarf2_per_objfile->objfile;
3082
3083 dwarf2_read_section (objfile, section);
3084 dwarf2_read_section (objfile, abbrev_section);
3085
3086 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3087 dwarf2_per_objfile->all_type_units.reserve (map.tu_count);
3088
3089 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3090
3091 for (uint32_t i = 0; i < map.tu_count; ++i)
3092 {
3093 struct signatured_type *sig_type;
3094 void **slot;
3095
3096 sect_offset sect_off
3097 = (sect_offset) (extract_unsigned_integer
3098 (map.tu_table_reordered + i * map.offset_size,
3099 map.offset_size,
3100 map.dwarf5_byte_order));
3101
3102 comp_unit_head cu_header;
3103 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
3104 abbrev_section,
3105 section->buffer + to_underlying (sect_off),
3106 rcuh_kind::TYPE);
3107
3108 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3109 struct signatured_type);
3110 sig_type->signature = cu_header.signature;
3111 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
3112 sig_type->per_cu.is_debug_types = 1;
3113 sig_type->per_cu.section = section;
3114 sig_type->per_cu.sect_off = sect_off;
3115 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3116 sig_type->per_cu.v.quick
3117 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3118 struct dwarf2_per_cu_quick_data);
3119
3120 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3121 *slot = sig_type;
3122
3123 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3124 }
3125
3126 dwarf2_per_objfile->signatured_types = sig_types_hash;
3127 }
3128
3129 /* Read the address map data from the mapped index, and use it to
3130 populate the objfile's psymtabs_addrmap. */
3131
3132 static void
3133 create_addrmap_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3134 struct mapped_index *index)
3135 {
3136 struct objfile *objfile = dwarf2_per_objfile->objfile;
3137 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3138 const gdb_byte *iter, *end;
3139 struct addrmap *mutable_map;
3140 CORE_ADDR baseaddr;
3141
3142 auto_obstack temp_obstack;
3143
3144 mutable_map = addrmap_create_mutable (&temp_obstack);
3145
3146 iter = index->address_table.data ();
3147 end = iter + index->address_table.size ();
3148
3149 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3150
3151 while (iter < end)
3152 {
3153 ULONGEST hi, lo, cu_index;
3154 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3155 iter += 8;
3156 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3157 iter += 8;
3158 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
3159 iter += 4;
3160
3161 if (lo > hi)
3162 {
3163 complaint (_(".gdb_index address table has invalid range (%s - %s)"),
3164 hex_string (lo), hex_string (hi));
3165 continue;
3166 }
3167
3168 if (cu_index >= dwarf2_per_objfile->all_comp_units.size ())
3169 {
3170 complaint (_(".gdb_index address table has invalid CU number %u"),
3171 (unsigned) cu_index);
3172 continue;
3173 }
3174
3175 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
3176 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
3177 addrmap_set_empty (mutable_map, lo, hi - 1,
3178 dwarf2_per_objfile->get_cu (cu_index));
3179 }
3180
3181 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3182 &objfile->objfile_obstack);
3183 }
3184
3185 /* Read the address map data from DWARF-5 .debug_aranges, and use it to
3186 populate the objfile's psymtabs_addrmap. */
3187
3188 static void
3189 create_addrmap_from_aranges (struct dwarf2_per_objfile *dwarf2_per_objfile,
3190 struct dwarf2_section_info *section)
3191 {
3192 struct objfile *objfile = dwarf2_per_objfile->objfile;
3193 bfd *abfd = objfile->obfd;
3194 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3195 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
3196 SECT_OFF_TEXT (objfile));
3197
3198 auto_obstack temp_obstack;
3199 addrmap *mutable_map = addrmap_create_mutable (&temp_obstack);
3200
3201 std::unordered_map<sect_offset,
3202 dwarf2_per_cu_data *,
3203 gdb::hash_enum<sect_offset>>
3204 debug_info_offset_to_per_cu;
3205 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3206 {
3207 const auto insertpair
3208 = debug_info_offset_to_per_cu.emplace (per_cu->sect_off, per_cu);
3209 if (!insertpair.second)
3210 {
3211 warning (_("Section .debug_aranges in %s has duplicate "
3212 "debug_info_offset %s, ignoring .debug_aranges."),
3213 objfile_name (objfile), sect_offset_str (per_cu->sect_off));
3214 return;
3215 }
3216 }
3217
3218 dwarf2_read_section (objfile, section);
3219
3220 const bfd_endian dwarf5_byte_order = gdbarch_byte_order (gdbarch);
3221
3222 const gdb_byte *addr = section->buffer;
3223
3224 while (addr < section->buffer + section->size)
3225 {
3226 const gdb_byte *const entry_addr = addr;
3227 unsigned int bytes_read;
3228
3229 const LONGEST entry_length = read_initial_length (abfd, addr,
3230 &bytes_read);
3231 addr += bytes_read;
3232
3233 const gdb_byte *const entry_end = addr + entry_length;
3234 const bool dwarf5_is_dwarf64 = bytes_read != 4;
3235 const uint8_t offset_size = dwarf5_is_dwarf64 ? 8 : 4;
3236 if (addr + entry_length > section->buffer + section->size)
3237 {
3238 warning (_("Section .debug_aranges in %s entry at offset %zu "
3239 "length %s exceeds section length %s, "
3240 "ignoring .debug_aranges."),
3241 objfile_name (objfile), entry_addr - section->buffer,
3242 plongest (bytes_read + entry_length),
3243 pulongest (section->size));
3244 return;
3245 }
3246
3247 /* The version number. */
3248 const uint16_t version = read_2_bytes (abfd, addr);
3249 addr += 2;
3250 if (version != 2)
3251 {
3252 warning (_("Section .debug_aranges in %s entry at offset %zu "
3253 "has unsupported version %d, ignoring .debug_aranges."),
3254 objfile_name (objfile), entry_addr - section->buffer,
3255 version);
3256 return;
3257 }
3258
3259 const uint64_t debug_info_offset
3260 = extract_unsigned_integer (addr, offset_size, dwarf5_byte_order);
3261 addr += offset_size;
3262 const auto per_cu_it
3263 = debug_info_offset_to_per_cu.find (sect_offset (debug_info_offset));
3264 if (per_cu_it == debug_info_offset_to_per_cu.cend ())
3265 {
3266 warning (_("Section .debug_aranges in %s entry at offset %zu "
3267 "debug_info_offset %s does not exists, "
3268 "ignoring .debug_aranges."),
3269 objfile_name (objfile), entry_addr - section->buffer,
3270 pulongest (debug_info_offset));
3271 return;
3272 }
3273 dwarf2_per_cu_data *const per_cu = per_cu_it->second;
3274
3275 const uint8_t address_size = *addr++;
3276 if (address_size < 1 || address_size > 8)
3277 {
3278 warning (_("Section .debug_aranges in %s entry at offset %zu "
3279 "address_size %u is invalid, ignoring .debug_aranges."),
3280 objfile_name (objfile), entry_addr - section->buffer,
3281 address_size);
3282 return;
3283 }
3284
3285 const uint8_t segment_selector_size = *addr++;
3286 if (segment_selector_size != 0)
3287 {
3288 warning (_("Section .debug_aranges in %s entry at offset %zu "
3289 "segment_selector_size %u is not supported, "
3290 "ignoring .debug_aranges."),
3291 objfile_name (objfile), entry_addr - section->buffer,
3292 segment_selector_size);
3293 return;
3294 }
3295
3296 /* Must pad to an alignment boundary that is twice the address
3297 size. It is undocumented by the DWARF standard but GCC does
3298 use it. */
3299 for (size_t padding = ((-(addr - section->buffer))
3300 & (2 * address_size - 1));
3301 padding > 0; padding--)
3302 if (*addr++ != 0)
3303 {
3304 warning (_("Section .debug_aranges in %s entry at offset %zu "
3305 "padding is not zero, ignoring .debug_aranges."),
3306 objfile_name (objfile), entry_addr - section->buffer);
3307 return;
3308 }
3309
3310 for (;;)
3311 {
3312 if (addr + 2 * address_size > entry_end)
3313 {
3314 warning (_("Section .debug_aranges in %s entry at offset %zu "
3315 "address list is not properly terminated, "
3316 "ignoring .debug_aranges."),
3317 objfile_name (objfile), entry_addr - section->buffer);
3318 return;
3319 }
3320 ULONGEST start = extract_unsigned_integer (addr, address_size,
3321 dwarf5_byte_order);
3322 addr += address_size;
3323 ULONGEST length = extract_unsigned_integer (addr, address_size,
3324 dwarf5_byte_order);
3325 addr += address_size;
3326 if (start == 0 && length == 0)
3327 break;
3328 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
3329 {
3330 /* Symbol was eliminated due to a COMDAT group. */
3331 continue;
3332 }
3333 ULONGEST end = start + length;
3334 start = gdbarch_adjust_dwarf2_addr (gdbarch, start + baseaddr);
3335 end = gdbarch_adjust_dwarf2_addr (gdbarch, end + baseaddr);
3336 addrmap_set_empty (mutable_map, start, end - 1, per_cu);
3337 }
3338 }
3339
3340 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3341 &objfile->objfile_obstack);
3342 }
3343
3344 /* Find a slot in the mapped index INDEX for the object named NAME.
3345 If NAME is found, set *VEC_OUT to point to the CU vector in the
3346 constant pool and return true. If NAME cannot be found, return
3347 false. */
3348
3349 static bool
3350 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3351 offset_type **vec_out)
3352 {
3353 offset_type hash;
3354 offset_type slot, step;
3355 int (*cmp) (const char *, const char *);
3356
3357 gdb::unique_xmalloc_ptr<char> without_params;
3358 if (current_language->la_language == language_cplus
3359 || current_language->la_language == language_fortran
3360 || current_language->la_language == language_d)
3361 {
3362 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3363 not contain any. */
3364
3365 if (strchr (name, '(') != NULL)
3366 {
3367 without_params = cp_remove_params (name);
3368
3369 if (without_params != NULL)
3370 name = without_params.get ();
3371 }
3372 }
3373
3374 /* Index version 4 did not support case insensitive searches. But the
3375 indices for case insensitive languages are built in lowercase, therefore
3376 simulate our NAME being searched is also lowercased. */
3377 hash = mapped_index_string_hash ((index->version == 4
3378 && case_sensitivity == case_sensitive_off
3379 ? 5 : index->version),
3380 name);
3381
3382 slot = hash & (index->symbol_table.size () - 1);
3383 step = ((hash * 17) & (index->symbol_table.size () - 1)) | 1;
3384 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3385
3386 for (;;)
3387 {
3388 const char *str;
3389
3390 const auto &bucket = index->symbol_table[slot];
3391 if (bucket.name == 0 && bucket.vec == 0)
3392 return false;
3393
3394 str = index->constant_pool + MAYBE_SWAP (bucket.name);
3395 if (!cmp (name, str))
3396 {
3397 *vec_out = (offset_type *) (index->constant_pool
3398 + MAYBE_SWAP (bucket.vec));
3399 return true;
3400 }
3401
3402 slot = (slot + step) & (index->symbol_table.size () - 1);
3403 }
3404 }
3405
3406 /* A helper function that reads the .gdb_index from SECTION and fills
3407 in MAP. FILENAME is the name of the file containing the section;
3408 it is used for error reporting. DEPRECATED_OK is true if it is
3409 ok to use deprecated sections.
3410
3411 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3412 out parameters that are filled in with information about the CU and
3413 TU lists in the section.
3414
3415 Returns 1 if all went well, 0 otherwise. */
3416
3417 static bool
3418 read_gdb_index_from_section (struct objfile *objfile,
3419 const char *filename,
3420 bool deprecated_ok,
3421 struct dwarf2_section_info *section,
3422 struct mapped_index *map,
3423 const gdb_byte **cu_list,
3424 offset_type *cu_list_elements,
3425 const gdb_byte **types_list,
3426 offset_type *types_list_elements)
3427 {
3428 const gdb_byte *addr;
3429 offset_type version;
3430 offset_type *metadata;
3431 int i;
3432
3433 if (dwarf2_section_empty_p (section))
3434 return 0;
3435
3436 /* Older elfutils strip versions could keep the section in the main
3437 executable while splitting it for the separate debug info file. */
3438 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
3439 return 0;
3440
3441 dwarf2_read_section (objfile, section);
3442
3443 addr = section->buffer;
3444 /* Version check. */
3445 version = MAYBE_SWAP (*(offset_type *) addr);
3446 /* Versions earlier than 3 emitted every copy of a psymbol. This
3447 causes the index to behave very poorly for certain requests. Version 3
3448 contained incomplete addrmap. So, it seems better to just ignore such
3449 indices. */
3450 if (version < 4)
3451 {
3452 static int warning_printed = 0;
3453 if (!warning_printed)
3454 {
3455 warning (_("Skipping obsolete .gdb_index section in %s."),
3456 filename);
3457 warning_printed = 1;
3458 }
3459 return 0;
3460 }
3461 /* Index version 4 uses a different hash function than index version
3462 5 and later.
3463
3464 Versions earlier than 6 did not emit psymbols for inlined
3465 functions. Using these files will cause GDB not to be able to
3466 set breakpoints on inlined functions by name, so we ignore these
3467 indices unless the user has done
3468 "set use-deprecated-index-sections on". */
3469 if (version < 6 && !deprecated_ok)
3470 {
3471 static int warning_printed = 0;
3472 if (!warning_printed)
3473 {
3474 warning (_("\
3475 Skipping deprecated .gdb_index section in %s.\n\
3476 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3477 to use the section anyway."),
3478 filename);
3479 warning_printed = 1;
3480 }
3481 return 0;
3482 }
3483 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3484 of the TU (for symbols coming from TUs),
3485 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3486 Plus gold-generated indices can have duplicate entries for global symbols,
3487 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3488 These are just performance bugs, and we can't distinguish gdb-generated
3489 indices from gold-generated ones, so issue no warning here. */
3490
3491 /* Indexes with higher version than the one supported by GDB may be no
3492 longer backward compatible. */
3493 if (version > 8)
3494 return 0;
3495
3496 map->version = version;
3497
3498 metadata = (offset_type *) (addr + sizeof (offset_type));
3499
3500 i = 0;
3501 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3502 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3503 / 8);
3504 ++i;
3505
3506 *types_list = addr + MAYBE_SWAP (metadata[i]);
3507 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3508 - MAYBE_SWAP (metadata[i]))
3509 / 8);
3510 ++i;
3511
3512 const gdb_byte *address_table = addr + MAYBE_SWAP (metadata[i]);
3513 const gdb_byte *address_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3514 map->address_table
3515 = gdb::array_view<const gdb_byte> (address_table, address_table_end);
3516 ++i;
3517
3518 const gdb_byte *symbol_table = addr + MAYBE_SWAP (metadata[i]);
3519 const gdb_byte *symbol_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3520 map->symbol_table
3521 = gdb::array_view<mapped_index::symbol_table_slot>
3522 ((mapped_index::symbol_table_slot *) symbol_table,
3523 (mapped_index::symbol_table_slot *) symbol_table_end);
3524
3525 ++i;
3526 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3527
3528 return 1;
3529 }
3530
3531 /* Read .gdb_index. If everything went ok, initialize the "quick"
3532 elements of all the CUs and return 1. Otherwise, return 0. */
3533
3534 static int
3535 dwarf2_read_gdb_index (struct dwarf2_per_objfile *dwarf2_per_objfile)
3536 {
3537 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3538 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3539 struct dwz_file *dwz;
3540 struct objfile *objfile = dwarf2_per_objfile->objfile;
3541
3542 std::unique_ptr<struct mapped_index> map (new struct mapped_index);
3543 if (!read_gdb_index_from_section (objfile, objfile_name (objfile),
3544 use_deprecated_index_sections,
3545 &dwarf2_per_objfile->gdb_index, map.get (),
3546 &cu_list, &cu_list_elements,
3547 &types_list, &types_list_elements))
3548 return 0;
3549
3550 /* Don't use the index if it's empty. */
3551 if (map->symbol_table.empty ())
3552 return 0;
3553
3554 /* If there is a .dwz file, read it so we can get its CU list as
3555 well. */
3556 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3557 if (dwz != NULL)
3558 {
3559 struct mapped_index dwz_map;
3560 const gdb_byte *dwz_types_ignore;
3561 offset_type dwz_types_elements_ignore;
3562
3563 if (!read_gdb_index_from_section (objfile,
3564 bfd_get_filename (dwz->dwz_bfd), 1,
3565 &dwz->gdb_index, &dwz_map,
3566 &dwz_list, &dwz_list_elements,
3567 &dwz_types_ignore,
3568 &dwz_types_elements_ignore))
3569 {
3570 warning (_("could not read '.gdb_index' section from %s; skipping"),
3571 bfd_get_filename (dwz->dwz_bfd));
3572 return 0;
3573 }
3574 }
3575
3576 create_cus_from_index (dwarf2_per_objfile, cu_list, cu_list_elements,
3577 dwz_list, dwz_list_elements);
3578
3579 if (types_list_elements)
3580 {
3581 struct dwarf2_section_info *section;
3582
3583 /* We can only handle a single .debug_types when we have an
3584 index. */
3585 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3586 return 0;
3587
3588 section = VEC_index (dwarf2_section_info_def,
3589 dwarf2_per_objfile->types, 0);
3590
3591 create_signatured_type_table_from_index (dwarf2_per_objfile, section,
3592 types_list, types_list_elements);
3593 }
3594
3595 create_addrmap_from_index (dwarf2_per_objfile, map.get ());
3596
3597 dwarf2_per_objfile->index_table = std::move (map);
3598 dwarf2_per_objfile->using_index = 1;
3599 dwarf2_per_objfile->quick_file_names_table =
3600 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
3601
3602 return 1;
3603 }
3604
3605 /* die_reader_func for dw2_get_file_names. */
3606
3607 static void
3608 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3609 const gdb_byte *info_ptr,
3610 struct die_info *comp_unit_die,
3611 int has_children,
3612 void *data)
3613 {
3614 struct dwarf2_cu *cu = reader->cu;
3615 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3616 struct dwarf2_per_objfile *dwarf2_per_objfile
3617 = cu->per_cu->dwarf2_per_objfile;
3618 struct objfile *objfile = dwarf2_per_objfile->objfile;
3619 struct dwarf2_per_cu_data *lh_cu;
3620 struct attribute *attr;
3621 int i;
3622 void **slot;
3623 struct quick_file_names *qfn;
3624
3625 gdb_assert (! this_cu->is_debug_types);
3626
3627 /* Our callers never want to match partial units -- instead they
3628 will match the enclosing full CU. */
3629 if (comp_unit_die->tag == DW_TAG_partial_unit)
3630 {
3631 this_cu->v.quick->no_file_data = 1;
3632 return;
3633 }
3634
3635 lh_cu = this_cu;
3636 slot = NULL;
3637
3638 line_header_up lh;
3639 sect_offset line_offset {};
3640
3641 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3642 if (attr)
3643 {
3644 struct quick_file_names find_entry;
3645
3646 line_offset = (sect_offset) DW_UNSND (attr);
3647
3648 /* We may have already read in this line header (TU line header sharing).
3649 If we have we're done. */
3650 find_entry.hash.dwo_unit = cu->dwo_unit;
3651 find_entry.hash.line_sect_off = line_offset;
3652 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3653 &find_entry, INSERT);
3654 if (*slot != NULL)
3655 {
3656 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3657 return;
3658 }
3659
3660 lh = dwarf_decode_line_header (line_offset, cu);
3661 }
3662 if (lh == NULL)
3663 {
3664 lh_cu->v.quick->no_file_data = 1;
3665 return;
3666 }
3667
3668 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3669 qfn->hash.dwo_unit = cu->dwo_unit;
3670 qfn->hash.line_sect_off = line_offset;
3671 gdb_assert (slot != NULL);
3672 *slot = qfn;
3673
3674 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3675
3676 qfn->num_file_names = lh->file_names.size ();
3677 qfn->file_names =
3678 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->file_names.size ());
3679 for (i = 0; i < lh->file_names.size (); ++i)
3680 qfn->file_names[i] = file_full_name (i + 1, lh.get (), fnd.comp_dir);
3681 qfn->real_names = NULL;
3682
3683 lh_cu->v.quick->file_names = qfn;
3684 }
3685
3686 /* A helper for the "quick" functions which attempts to read the line
3687 table for THIS_CU. */
3688
3689 static struct quick_file_names *
3690 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3691 {
3692 /* This should never be called for TUs. */
3693 gdb_assert (! this_cu->is_debug_types);
3694 /* Nor type unit groups. */
3695 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3696
3697 if (this_cu->v.quick->file_names != NULL)
3698 return this_cu->v.quick->file_names;
3699 /* If we know there is no line data, no point in looking again. */
3700 if (this_cu->v.quick->no_file_data)
3701 return NULL;
3702
3703 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3704
3705 if (this_cu->v.quick->no_file_data)
3706 return NULL;
3707 return this_cu->v.quick->file_names;
3708 }
3709
3710 /* A helper for the "quick" functions which computes and caches the
3711 real path for a given file name from the line table. */
3712
3713 static const char *
3714 dw2_get_real_path (struct objfile *objfile,
3715 struct quick_file_names *qfn, int index)
3716 {
3717 if (qfn->real_names == NULL)
3718 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3719 qfn->num_file_names, const char *);
3720
3721 if (qfn->real_names[index] == NULL)
3722 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
3723
3724 return qfn->real_names[index];
3725 }
3726
3727 static struct symtab *
3728 dw2_find_last_source_symtab (struct objfile *objfile)
3729 {
3730 struct dwarf2_per_objfile *dwarf2_per_objfile
3731 = get_dwarf2_per_objfile (objfile);
3732 dwarf2_per_cu_data *dwarf_cu = dwarf2_per_objfile->all_comp_units.back ();
3733 compunit_symtab *cust = dw2_instantiate_symtab (dwarf_cu, false);
3734
3735 if (cust == NULL)
3736 return NULL;
3737
3738 return compunit_primary_filetab (cust);
3739 }
3740
3741 /* Traversal function for dw2_forget_cached_source_info. */
3742
3743 static int
3744 dw2_free_cached_file_names (void **slot, void *info)
3745 {
3746 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3747
3748 if (file_data->real_names)
3749 {
3750 int i;
3751
3752 for (i = 0; i < file_data->num_file_names; ++i)
3753 {
3754 xfree ((void*) file_data->real_names[i]);
3755 file_data->real_names[i] = NULL;
3756 }
3757 }
3758
3759 return 1;
3760 }
3761
3762 static void
3763 dw2_forget_cached_source_info (struct objfile *objfile)
3764 {
3765 struct dwarf2_per_objfile *dwarf2_per_objfile
3766 = get_dwarf2_per_objfile (objfile);
3767
3768 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3769 dw2_free_cached_file_names, NULL);
3770 }
3771
3772 /* Helper function for dw2_map_symtabs_matching_filename that expands
3773 the symtabs and calls the iterator. */
3774
3775 static int
3776 dw2_map_expand_apply (struct objfile *objfile,
3777 struct dwarf2_per_cu_data *per_cu,
3778 const char *name, const char *real_path,
3779 gdb::function_view<bool (symtab *)> callback)
3780 {
3781 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3782
3783 /* Don't visit already-expanded CUs. */
3784 if (per_cu->v.quick->compunit_symtab)
3785 return 0;
3786
3787 /* This may expand more than one symtab, and we want to iterate over
3788 all of them. */
3789 dw2_instantiate_symtab (per_cu, false);
3790
3791 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3792 last_made, callback);
3793 }
3794
3795 /* Implementation of the map_symtabs_matching_filename method. */
3796
3797 static bool
3798 dw2_map_symtabs_matching_filename
3799 (struct objfile *objfile, const char *name, const char *real_path,
3800 gdb::function_view<bool (symtab *)> callback)
3801 {
3802 const char *name_basename = lbasename (name);
3803 struct dwarf2_per_objfile *dwarf2_per_objfile
3804 = get_dwarf2_per_objfile (objfile);
3805
3806 /* The rule is CUs specify all the files, including those used by
3807 any TU, so there's no need to scan TUs here. */
3808
3809 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3810 {
3811 /* We only need to look at symtabs not already expanded. */
3812 if (per_cu->v.quick->compunit_symtab)
3813 continue;
3814
3815 quick_file_names *file_data = dw2_get_file_names (per_cu);
3816 if (file_data == NULL)
3817 continue;
3818
3819 for (int j = 0; j < file_data->num_file_names; ++j)
3820 {
3821 const char *this_name = file_data->file_names[j];
3822 const char *this_real_name;
3823
3824 if (compare_filenames_for_search (this_name, name))
3825 {
3826 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3827 callback))
3828 return true;
3829 continue;
3830 }
3831
3832 /* Before we invoke realpath, which can get expensive when many
3833 files are involved, do a quick comparison of the basenames. */
3834 if (! basenames_may_differ
3835 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3836 continue;
3837
3838 this_real_name = dw2_get_real_path (objfile, file_data, j);
3839 if (compare_filenames_for_search (this_real_name, name))
3840 {
3841 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3842 callback))
3843 return true;
3844 continue;
3845 }
3846
3847 if (real_path != NULL)
3848 {
3849 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3850 gdb_assert (IS_ABSOLUTE_PATH (name));
3851 if (this_real_name != NULL
3852 && FILENAME_CMP (real_path, this_real_name) == 0)
3853 {
3854 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3855 callback))
3856 return true;
3857 continue;
3858 }
3859 }
3860 }
3861 }
3862
3863 return false;
3864 }
3865
3866 /* Struct used to manage iterating over all CUs looking for a symbol. */
3867
3868 struct dw2_symtab_iterator
3869 {
3870 /* The dwarf2_per_objfile owning the CUs we are iterating on. */
3871 struct dwarf2_per_objfile *dwarf2_per_objfile;
3872 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3873 int want_specific_block;
3874 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3875 Unused if !WANT_SPECIFIC_BLOCK. */
3876 int block_index;
3877 /* The kind of symbol we're looking for. */
3878 domain_enum domain;
3879 /* The list of CUs from the index entry of the symbol,
3880 or NULL if not found. */
3881 offset_type *vec;
3882 /* The next element in VEC to look at. */
3883 int next;
3884 /* The number of elements in VEC, or zero if there is no match. */
3885 int length;
3886 /* Have we seen a global version of the symbol?
3887 If so we can ignore all further global instances.
3888 This is to work around gold/15646, inefficient gold-generated
3889 indices. */
3890 int global_seen;
3891 };
3892
3893 /* Initialize the index symtab iterator ITER.
3894 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3895 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3896
3897 static void
3898 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3899 struct dwarf2_per_objfile *dwarf2_per_objfile,
3900 int want_specific_block,
3901 int block_index,
3902 domain_enum domain,
3903 const char *name)
3904 {
3905 iter->dwarf2_per_objfile = dwarf2_per_objfile;
3906 iter->want_specific_block = want_specific_block;
3907 iter->block_index = block_index;
3908 iter->domain = domain;
3909 iter->next = 0;
3910 iter->global_seen = 0;
3911
3912 mapped_index *index = dwarf2_per_objfile->index_table.get ();
3913
3914 /* index is NULL if OBJF_READNOW. */
3915 if (index != NULL && find_slot_in_mapped_hash (index, name, &iter->vec))
3916 iter->length = MAYBE_SWAP (*iter->vec);
3917 else
3918 {
3919 iter->vec = NULL;
3920 iter->length = 0;
3921 }
3922 }
3923
3924 /* Return the next matching CU or NULL if there are no more. */
3925
3926 static struct dwarf2_per_cu_data *
3927 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3928 {
3929 struct dwarf2_per_objfile *dwarf2_per_objfile = iter->dwarf2_per_objfile;
3930
3931 for ( ; iter->next < iter->length; ++iter->next)
3932 {
3933 offset_type cu_index_and_attrs =
3934 MAYBE_SWAP (iter->vec[iter->next + 1]);
3935 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3936 int want_static = iter->block_index != GLOBAL_BLOCK;
3937 /* This value is only valid for index versions >= 7. */
3938 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3939 gdb_index_symbol_kind symbol_kind =
3940 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3941 /* Only check the symbol attributes if they're present.
3942 Indices prior to version 7 don't record them,
3943 and indices >= 7 may elide them for certain symbols
3944 (gold does this). */
3945 int attrs_valid =
3946 (dwarf2_per_objfile->index_table->version >= 7
3947 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3948
3949 /* Don't crash on bad data. */
3950 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
3951 + dwarf2_per_objfile->all_type_units.size ()))
3952 {
3953 complaint (_(".gdb_index entry has bad CU index"
3954 " [in module %s]"),
3955 objfile_name (dwarf2_per_objfile->objfile));
3956 continue;
3957 }
3958
3959 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
3960
3961 /* Skip if already read in. */
3962 if (per_cu->v.quick->compunit_symtab)
3963 continue;
3964
3965 /* Check static vs global. */
3966 if (attrs_valid)
3967 {
3968 if (iter->want_specific_block
3969 && want_static != is_static)
3970 continue;
3971 /* Work around gold/15646. */
3972 if (!is_static && iter->global_seen)
3973 continue;
3974 if (!is_static)
3975 iter->global_seen = 1;
3976 }
3977
3978 /* Only check the symbol's kind if it has one. */
3979 if (attrs_valid)
3980 {
3981 switch (iter->domain)
3982 {
3983 case VAR_DOMAIN:
3984 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3985 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3986 /* Some types are also in VAR_DOMAIN. */
3987 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3988 continue;
3989 break;
3990 case STRUCT_DOMAIN:
3991 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3992 continue;
3993 break;
3994 case LABEL_DOMAIN:
3995 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3996 continue;
3997 break;
3998 default:
3999 break;
4000 }
4001 }
4002
4003 ++iter->next;
4004 return per_cu;
4005 }
4006
4007 return NULL;
4008 }
4009
4010 static struct compunit_symtab *
4011 dw2_lookup_symbol (struct objfile *objfile, int block_index,
4012 const char *name, domain_enum domain)
4013 {
4014 struct compunit_symtab *stab_best = NULL;
4015 struct dwarf2_per_objfile *dwarf2_per_objfile
4016 = get_dwarf2_per_objfile (objfile);
4017
4018 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
4019
4020 struct dw2_symtab_iterator iter;
4021 struct dwarf2_per_cu_data *per_cu;
4022
4023 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 1, block_index, domain, name);
4024
4025 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4026 {
4027 struct symbol *sym, *with_opaque = NULL;
4028 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
4029 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
4030 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
4031
4032 sym = block_find_symbol (block, name, domain,
4033 block_find_non_opaque_type_preferred,
4034 &with_opaque);
4035
4036 /* Some caution must be observed with overloaded functions
4037 and methods, since the index will not contain any overload
4038 information (but NAME might contain it). */
4039
4040 if (sym != NULL
4041 && SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
4042 return stab;
4043 if (with_opaque != NULL
4044 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
4045 stab_best = stab;
4046
4047 /* Keep looking through other CUs. */
4048 }
4049
4050 return stab_best;
4051 }
4052
4053 static void
4054 dw2_print_stats (struct objfile *objfile)
4055 {
4056 struct dwarf2_per_objfile *dwarf2_per_objfile
4057 = get_dwarf2_per_objfile (objfile);
4058 int total = (dwarf2_per_objfile->all_comp_units.size ()
4059 + dwarf2_per_objfile->all_type_units.size ());
4060 int count = 0;
4061
4062 for (int i = 0; i < total; ++i)
4063 {
4064 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4065
4066 if (!per_cu->v.quick->compunit_symtab)
4067 ++count;
4068 }
4069 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
4070 printf_filtered (_(" Number of unread CUs: %d\n"), count);
4071 }
4072
4073 /* This dumps minimal information about the index.
4074 It is called via "mt print objfiles".
4075 One use is to verify .gdb_index has been loaded by the
4076 gdb.dwarf2/gdb-index.exp testcase. */
4077
4078 static void
4079 dw2_dump (struct objfile *objfile)
4080 {
4081 struct dwarf2_per_objfile *dwarf2_per_objfile
4082 = get_dwarf2_per_objfile (objfile);
4083
4084 gdb_assert (dwarf2_per_objfile->using_index);
4085 printf_filtered (".gdb_index:");
4086 if (dwarf2_per_objfile->index_table != NULL)
4087 {
4088 printf_filtered (" version %d\n",
4089 dwarf2_per_objfile->index_table->version);
4090 }
4091 else
4092 printf_filtered (" faked for \"readnow\"\n");
4093 printf_filtered ("\n");
4094 }
4095
4096 static void
4097 dw2_relocate (struct objfile *objfile,
4098 const struct section_offsets *new_offsets,
4099 const struct section_offsets *delta)
4100 {
4101 /* There's nothing to relocate here. */
4102 }
4103
4104 static void
4105 dw2_expand_symtabs_for_function (struct objfile *objfile,
4106 const char *func_name)
4107 {
4108 struct dwarf2_per_objfile *dwarf2_per_objfile
4109 = get_dwarf2_per_objfile (objfile);
4110
4111 struct dw2_symtab_iterator iter;
4112 struct dwarf2_per_cu_data *per_cu;
4113
4114 /* Note: It doesn't matter what we pass for block_index here. */
4115 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 0, GLOBAL_BLOCK, VAR_DOMAIN,
4116 func_name);
4117
4118 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4119 dw2_instantiate_symtab (per_cu, false);
4120
4121 }
4122
4123 static void
4124 dw2_expand_all_symtabs (struct objfile *objfile)
4125 {
4126 struct dwarf2_per_objfile *dwarf2_per_objfile
4127 = get_dwarf2_per_objfile (objfile);
4128 int total_units = (dwarf2_per_objfile->all_comp_units.size ()
4129 + dwarf2_per_objfile->all_type_units.size ());
4130
4131 for (int i = 0; i < total_units; ++i)
4132 {
4133 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4134
4135 /* We don't want to directly expand a partial CU, because if we
4136 read it with the wrong language, then assertion failures can
4137 be triggered later on. See PR symtab/23010. So, tell
4138 dw2_instantiate_symtab to skip partial CUs -- any important
4139 partial CU will be read via DW_TAG_imported_unit anyway. */
4140 dw2_instantiate_symtab (per_cu, true);
4141 }
4142 }
4143
4144 static void
4145 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
4146 const char *fullname)
4147 {
4148 struct dwarf2_per_objfile *dwarf2_per_objfile
4149 = get_dwarf2_per_objfile (objfile);
4150
4151 /* We don't need to consider type units here.
4152 This is only called for examining code, e.g. expand_line_sal.
4153 There can be an order of magnitude (or more) more type units
4154 than comp units, and we avoid them if we can. */
4155
4156 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4157 {
4158 /* We only need to look at symtabs not already expanded. */
4159 if (per_cu->v.quick->compunit_symtab)
4160 continue;
4161
4162 quick_file_names *file_data = dw2_get_file_names (per_cu);
4163 if (file_data == NULL)
4164 continue;
4165
4166 for (int j = 0; j < file_data->num_file_names; ++j)
4167 {
4168 const char *this_fullname = file_data->file_names[j];
4169
4170 if (filename_cmp (this_fullname, fullname) == 0)
4171 {
4172 dw2_instantiate_symtab (per_cu, false);
4173 break;
4174 }
4175 }
4176 }
4177 }
4178
4179 static void
4180 dw2_map_matching_symbols (struct objfile *objfile,
4181 const char * name, domain_enum domain,
4182 int global,
4183 int (*callback) (struct block *,
4184 struct symbol *, void *),
4185 void *data, symbol_name_match_type match,
4186 symbol_compare_ftype *ordered_compare)
4187 {
4188 /* Currently unimplemented; used for Ada. The function can be called if the
4189 current language is Ada for a non-Ada objfile using GNU index. As Ada
4190 does not look for non-Ada symbols this function should just return. */
4191 }
4192
4193 /* Symbol name matcher for .gdb_index names.
4194
4195 Symbol names in .gdb_index have a few particularities:
4196
4197 - There's no indication of which is the language of each symbol.
4198
4199 Since each language has its own symbol name matching algorithm,
4200 and we don't know which language is the right one, we must match
4201 each symbol against all languages. This would be a potential
4202 performance problem if it were not mitigated by the
4203 mapped_index::name_components lookup table, which significantly
4204 reduces the number of times we need to call into this matcher,
4205 making it a non-issue.
4206
4207 - Symbol names in the index have no overload (parameter)
4208 information. I.e., in C++, "foo(int)" and "foo(long)" both
4209 appear as "foo" in the index, for example.
4210
4211 This means that the lookup names passed to the symbol name
4212 matcher functions must have no parameter information either
4213 because (e.g.) symbol search name "foo" does not match
4214 lookup-name "foo(int)" [while swapping search name for lookup
4215 name would match].
4216 */
4217 class gdb_index_symbol_name_matcher
4218 {
4219 public:
4220 /* Prepares the vector of comparison functions for LOOKUP_NAME. */
4221 gdb_index_symbol_name_matcher (const lookup_name_info &lookup_name);
4222
4223 /* Walk all the matcher routines and match SYMBOL_NAME against them.
4224 Returns true if any matcher matches. */
4225 bool matches (const char *symbol_name);
4226
4227 private:
4228 /* A reference to the lookup name we're matching against. */
4229 const lookup_name_info &m_lookup_name;
4230
4231 /* A vector holding all the different symbol name matchers, for all
4232 languages. */
4233 std::vector<symbol_name_matcher_ftype *> m_symbol_name_matcher_funcs;
4234 };
4235
4236 gdb_index_symbol_name_matcher::gdb_index_symbol_name_matcher
4237 (const lookup_name_info &lookup_name)
4238 : m_lookup_name (lookup_name)
4239 {
4240 /* Prepare the vector of comparison functions upfront, to avoid
4241 doing the same work for each symbol. Care is taken to avoid
4242 matching with the same matcher more than once if/when multiple
4243 languages use the same matcher function. */
4244 auto &matchers = m_symbol_name_matcher_funcs;
4245 matchers.reserve (nr_languages);
4246
4247 matchers.push_back (default_symbol_name_matcher);
4248
4249 for (int i = 0; i < nr_languages; i++)
4250 {
4251 const language_defn *lang = language_def ((enum language) i);
4252 symbol_name_matcher_ftype *name_matcher
4253 = get_symbol_name_matcher (lang, m_lookup_name);
4254
4255 /* Don't insert the same comparison routine more than once.
4256 Note that we do this linear walk instead of a seemingly
4257 cheaper sorted insert, or use a std::set or something like
4258 that, because relative order of function addresses is not
4259 stable. This is not a problem in practice because the number
4260 of supported languages is low, and the cost here is tiny
4261 compared to the number of searches we'll do afterwards using
4262 this object. */
4263 if (name_matcher != default_symbol_name_matcher
4264 && (std::find (matchers.begin (), matchers.end (), name_matcher)
4265 == matchers.end ()))
4266 matchers.push_back (name_matcher);
4267 }
4268 }
4269
4270 bool
4271 gdb_index_symbol_name_matcher::matches (const char *symbol_name)
4272 {
4273 for (auto matches_name : m_symbol_name_matcher_funcs)
4274 if (matches_name (symbol_name, m_lookup_name, NULL))
4275 return true;
4276
4277 return false;
4278 }
4279
4280 /* Starting from a search name, return the string that finds the upper
4281 bound of all strings that start with SEARCH_NAME in a sorted name
4282 list. Returns the empty string to indicate that the upper bound is
4283 the end of the list. */
4284
4285 static std::string
4286 make_sort_after_prefix_name (const char *search_name)
4287 {
4288 /* When looking to complete "func", we find the upper bound of all
4289 symbols that start with "func" by looking for where we'd insert
4290 the closest string that would follow "func" in lexicographical
4291 order. Usually, that's "func"-with-last-character-incremented,
4292 i.e. "fund". Mind non-ASCII characters, though. Usually those
4293 will be UTF-8 multi-byte sequences, but we can't be certain.
4294 Especially mind the 0xff character, which is a valid character in
4295 non-UTF-8 source character sets (e.g. Latin1 'ÿ'), and we can't
4296 rule out compilers allowing it in identifiers. Note that
4297 conveniently, strcmp/strcasecmp are specified to compare
4298 characters interpreted as unsigned char. So what we do is treat
4299 the whole string as a base 256 number composed of a sequence of
4300 base 256 "digits" and add 1 to it. I.e., adding 1 to 0xff wraps
4301 to 0, and carries 1 to the following more-significant position.
4302 If the very first character in SEARCH_NAME ends up incremented
4303 and carries/overflows, then the upper bound is the end of the
4304 list. The string after the empty string is also the empty
4305 string.
4306
4307 Some examples of this operation:
4308
4309 SEARCH_NAME => "+1" RESULT
4310
4311 "abc" => "abd"
4312 "ab\xff" => "ac"
4313 "\xff" "a" "\xff" => "\xff" "b"
4314 "\xff" => ""
4315 "\xff\xff" => ""
4316 "" => ""
4317
4318 Then, with these symbols for example:
4319
4320 func
4321 func1
4322 fund
4323
4324 completing "func" looks for symbols between "func" and
4325 "func"-with-last-character-incremented, i.e. "fund" (exclusive),
4326 which finds "func" and "func1", but not "fund".
4327
4328 And with:
4329
4330 funcÿ (Latin1 'ÿ' [0xff])
4331 funcÿ1
4332 fund
4333
4334 completing "funcÿ" looks for symbols between "funcÿ" and "fund"
4335 (exclusive), which finds "funcÿ" and "funcÿ1", but not "fund".
4336
4337 And with:
4338
4339 ÿÿ (Latin1 'ÿ' [0xff])
4340 ÿÿ1
4341
4342 completing "ÿ" or "ÿÿ" looks for symbols between between "ÿÿ" and
4343 the end of the list.
4344 */
4345 std::string after = search_name;
4346 while (!after.empty () && (unsigned char) after.back () == 0xff)
4347 after.pop_back ();
4348 if (!after.empty ())
4349 after.back () = (unsigned char) after.back () + 1;
4350 return after;
4351 }
4352
4353 /* See declaration. */
4354
4355 std::pair<std::vector<name_component>::const_iterator,
4356 std::vector<name_component>::const_iterator>
4357 mapped_index_base::find_name_components_bounds
4358 (const lookup_name_info &lookup_name_without_params) const
4359 {
4360 auto *name_cmp
4361 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4362
4363 const char *cplus
4364 = lookup_name_without_params.cplus ().lookup_name ().c_str ();
4365
4366 /* Comparison function object for lower_bound that matches against a
4367 given symbol name. */
4368 auto lookup_compare_lower = [&] (const name_component &elem,
4369 const char *name)
4370 {
4371 const char *elem_qualified = this->symbol_name_at (elem.idx);
4372 const char *elem_name = elem_qualified + elem.name_offset;
4373 return name_cmp (elem_name, name) < 0;
4374 };
4375
4376 /* Comparison function object for upper_bound that matches against a
4377 given symbol name. */
4378 auto lookup_compare_upper = [&] (const char *name,
4379 const name_component &elem)
4380 {
4381 const char *elem_qualified = this->symbol_name_at (elem.idx);
4382 const char *elem_name = elem_qualified + elem.name_offset;
4383 return name_cmp (name, elem_name) < 0;
4384 };
4385
4386 auto begin = this->name_components.begin ();
4387 auto end = this->name_components.end ();
4388
4389 /* Find the lower bound. */
4390 auto lower = [&] ()
4391 {
4392 if (lookup_name_without_params.completion_mode () && cplus[0] == '\0')
4393 return begin;
4394 else
4395 return std::lower_bound (begin, end, cplus, lookup_compare_lower);
4396 } ();
4397
4398 /* Find the upper bound. */
4399 auto upper = [&] ()
4400 {
4401 if (lookup_name_without_params.completion_mode ())
4402 {
4403 /* In completion mode, we want UPPER to point past all
4404 symbols names that have the same prefix. I.e., with
4405 these symbols, and completing "func":
4406
4407 function << lower bound
4408 function1
4409 other_function << upper bound
4410
4411 We find the upper bound by looking for the insertion
4412 point of "func"-with-last-character-incremented,
4413 i.e. "fund". */
4414 std::string after = make_sort_after_prefix_name (cplus);
4415 if (after.empty ())
4416 return end;
4417 return std::lower_bound (lower, end, after.c_str (),
4418 lookup_compare_lower);
4419 }
4420 else
4421 return std::upper_bound (lower, end, cplus, lookup_compare_upper);
4422 } ();
4423
4424 return {lower, upper};
4425 }
4426
4427 /* See declaration. */
4428
4429 void
4430 mapped_index_base::build_name_components ()
4431 {
4432 if (!this->name_components.empty ())
4433 return;
4434
4435 this->name_components_casing = case_sensitivity;
4436 auto *name_cmp
4437 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4438
4439 /* The code below only knows how to break apart components of C++
4440 symbol names (and other languages that use '::' as
4441 namespace/module separator). If we add support for wild matching
4442 to some language that uses some other operator (E.g., Ada, Go and
4443 D use '.'), then we'll need to try splitting the symbol name
4444 according to that language too. Note that Ada does support wild
4445 matching, but doesn't currently support .gdb_index. */
4446 auto count = this->symbol_name_count ();
4447 for (offset_type idx = 0; idx < count; idx++)
4448 {
4449 if (this->symbol_name_slot_invalid (idx))
4450 continue;
4451
4452 const char *name = this->symbol_name_at (idx);
4453
4454 /* Add each name component to the name component table. */
4455 unsigned int previous_len = 0;
4456 for (unsigned int current_len = cp_find_first_component (name);
4457 name[current_len] != '\0';
4458 current_len += cp_find_first_component (name + current_len))
4459 {
4460 gdb_assert (name[current_len] == ':');
4461 this->name_components.push_back ({previous_len, idx});
4462 /* Skip the '::'. */
4463 current_len += 2;
4464 previous_len = current_len;
4465 }
4466 this->name_components.push_back ({previous_len, idx});
4467 }
4468
4469 /* Sort name_components elements by name. */
4470 auto name_comp_compare = [&] (const name_component &left,
4471 const name_component &right)
4472 {
4473 const char *left_qualified = this->symbol_name_at (left.idx);
4474 const char *right_qualified = this->symbol_name_at (right.idx);
4475
4476 const char *left_name = left_qualified + left.name_offset;
4477 const char *right_name = right_qualified + right.name_offset;
4478
4479 return name_cmp (left_name, right_name) < 0;
4480 };
4481
4482 std::sort (this->name_components.begin (),
4483 this->name_components.end (),
4484 name_comp_compare);
4485 }
4486
4487 /* Helper for dw2_expand_symtabs_matching that works with a
4488 mapped_index_base instead of the containing objfile. This is split
4489 to a separate function in order to be able to unit test the
4490 name_components matching using a mock mapped_index_base. For each
4491 symbol name that matches, calls MATCH_CALLBACK, passing it the
4492 symbol's index in the mapped_index_base symbol table. */
4493
4494 static void
4495 dw2_expand_symtabs_matching_symbol
4496 (mapped_index_base &index,
4497 const lookup_name_info &lookup_name_in,
4498 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4499 enum search_domain kind,
4500 gdb::function_view<void (offset_type)> match_callback)
4501 {
4502 lookup_name_info lookup_name_without_params
4503 = lookup_name_in.make_ignore_params ();
4504 gdb_index_symbol_name_matcher lookup_name_matcher
4505 (lookup_name_without_params);
4506
4507 /* Build the symbol name component sorted vector, if we haven't
4508 yet. */
4509 index.build_name_components ();
4510
4511 auto bounds = index.find_name_components_bounds (lookup_name_without_params);
4512
4513 /* Now for each symbol name in range, check to see if we have a name
4514 match, and if so, call the MATCH_CALLBACK callback. */
4515
4516 /* The same symbol may appear more than once in the range though.
4517 E.g., if we're looking for symbols that complete "w", and we have
4518 a symbol named "w1::w2", we'll find the two name components for
4519 that same symbol in the range. To be sure we only call the
4520 callback once per symbol, we first collect the symbol name
4521 indexes that matched in a temporary vector and ignore
4522 duplicates. */
4523 std::vector<offset_type> matches;
4524 matches.reserve (std::distance (bounds.first, bounds.second));
4525
4526 for (; bounds.first != bounds.second; ++bounds.first)
4527 {
4528 const char *qualified = index.symbol_name_at (bounds.first->idx);
4529
4530 if (!lookup_name_matcher.matches (qualified)
4531 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
4532 continue;
4533
4534 matches.push_back (bounds.first->idx);
4535 }
4536
4537 std::sort (matches.begin (), matches.end ());
4538
4539 /* Finally call the callback, once per match. */
4540 ULONGEST prev = -1;
4541 for (offset_type idx : matches)
4542 {
4543 if (prev != idx)
4544 {
4545 match_callback (idx);
4546 prev = idx;
4547 }
4548 }
4549
4550 /* Above we use a type wider than idx's for 'prev', since 0 and
4551 (offset_type)-1 are both possible values. */
4552 static_assert (sizeof (prev) > sizeof (offset_type), "");
4553 }
4554
4555 #if GDB_SELF_TEST
4556
4557 namespace selftests { namespace dw2_expand_symtabs_matching {
4558
4559 /* A mock .gdb_index/.debug_names-like name index table, enough to
4560 exercise dw2_expand_symtabs_matching_symbol, which works with the
4561 mapped_index_base interface. Builds an index from the symbol list
4562 passed as parameter to the constructor. */
4563 class mock_mapped_index : public mapped_index_base
4564 {
4565 public:
4566 mock_mapped_index (gdb::array_view<const char *> symbols)
4567 : m_symbol_table (symbols)
4568 {}
4569
4570 DISABLE_COPY_AND_ASSIGN (mock_mapped_index);
4571
4572 /* Return the number of names in the symbol table. */
4573 size_t symbol_name_count () const override
4574 {
4575 return m_symbol_table.size ();
4576 }
4577
4578 /* Get the name of the symbol at IDX in the symbol table. */
4579 const char *symbol_name_at (offset_type idx) const override
4580 {
4581 return m_symbol_table[idx];
4582 }
4583
4584 private:
4585 gdb::array_view<const char *> m_symbol_table;
4586 };
4587
4588 /* Convenience function that converts a NULL pointer to a "<null>"
4589 string, to pass to print routines. */
4590
4591 static const char *
4592 string_or_null (const char *str)
4593 {
4594 return str != NULL ? str : "<null>";
4595 }
4596
4597 /* Check if a lookup_name_info built from
4598 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
4599 index. EXPECTED_LIST is the list of expected matches, in expected
4600 matching order. If no match expected, then an empty list is
4601 specified. Returns true on success. On failure prints a warning
4602 indicating the file:line that failed, and returns false. */
4603
4604 static bool
4605 check_match (const char *file, int line,
4606 mock_mapped_index &mock_index,
4607 const char *name, symbol_name_match_type match_type,
4608 bool completion_mode,
4609 std::initializer_list<const char *> expected_list)
4610 {
4611 lookup_name_info lookup_name (name, match_type, completion_mode);
4612
4613 bool matched = true;
4614
4615 auto mismatch = [&] (const char *expected_str,
4616 const char *got)
4617 {
4618 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
4619 "expected=\"%s\", got=\"%s\"\n"),
4620 file, line,
4621 (match_type == symbol_name_match_type::FULL
4622 ? "FULL" : "WILD"),
4623 name, string_or_null (expected_str), string_or_null (got));
4624 matched = false;
4625 };
4626
4627 auto expected_it = expected_list.begin ();
4628 auto expected_end = expected_list.end ();
4629
4630 dw2_expand_symtabs_matching_symbol (mock_index, lookup_name,
4631 NULL, ALL_DOMAIN,
4632 [&] (offset_type idx)
4633 {
4634 const char *matched_name = mock_index.symbol_name_at (idx);
4635 const char *expected_str
4636 = expected_it == expected_end ? NULL : *expected_it++;
4637
4638 if (expected_str == NULL || strcmp (expected_str, matched_name) != 0)
4639 mismatch (expected_str, matched_name);
4640 });
4641
4642 const char *expected_str
4643 = expected_it == expected_end ? NULL : *expected_it++;
4644 if (expected_str != NULL)
4645 mismatch (expected_str, NULL);
4646
4647 return matched;
4648 }
4649
4650 /* The symbols added to the mock mapped_index for testing (in
4651 canonical form). */
4652 static const char *test_symbols[] = {
4653 "function",
4654 "std::bar",
4655 "std::zfunction",
4656 "std::zfunction2",
4657 "w1::w2",
4658 "ns::foo<char*>",
4659 "ns::foo<int>",
4660 "ns::foo<long>",
4661 "ns2::tmpl<int>::foo2",
4662 "(anonymous namespace)::A::B::C",
4663
4664 /* These are used to check that the increment-last-char in the
4665 matching algorithm for completion doesn't match "t1_fund" when
4666 completing "t1_func". */
4667 "t1_func",
4668 "t1_func1",
4669 "t1_fund",
4670 "t1_fund1",
4671
4672 /* A UTF-8 name with multi-byte sequences to make sure that
4673 cp-name-parser understands this as a single identifier ("função"
4674 is "function" in PT). */
4675 u8"u8função",
4676
4677 /* \377 (0xff) is Latin1 'ÿ'. */
4678 "yfunc\377",
4679
4680 /* \377 (0xff) is Latin1 'ÿ'. */
4681 "\377",
4682 "\377\377123",
4683
4684 /* A name with all sorts of complications. Starts with "z" to make
4685 it easier for the completion tests below. */
4686 #define Z_SYM_NAME \
4687 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
4688 "::tuple<(anonymous namespace)::ui*, " \
4689 "std::default_delete<(anonymous namespace)::ui>, void>"
4690
4691 Z_SYM_NAME
4692 };
4693
4694 /* Returns true if the mapped_index_base::find_name_component_bounds
4695 method finds EXPECTED_SYMS in INDEX when looking for SEARCH_NAME,
4696 in completion mode. */
4697
4698 static bool
4699 check_find_bounds_finds (mapped_index_base &index,
4700 const char *search_name,
4701 gdb::array_view<const char *> expected_syms)
4702 {
4703 lookup_name_info lookup_name (search_name,
4704 symbol_name_match_type::FULL, true);
4705
4706 auto bounds = index.find_name_components_bounds (lookup_name);
4707
4708 size_t distance = std::distance (bounds.first, bounds.second);
4709 if (distance != expected_syms.size ())
4710 return false;
4711
4712 for (size_t exp_elem = 0; exp_elem < distance; exp_elem++)
4713 {
4714 auto nc_elem = bounds.first + exp_elem;
4715 const char *qualified = index.symbol_name_at (nc_elem->idx);
4716 if (strcmp (qualified, expected_syms[exp_elem]) != 0)
4717 return false;
4718 }
4719
4720 return true;
4721 }
4722
4723 /* Test the lower-level mapped_index::find_name_component_bounds
4724 method. */
4725
4726 static void
4727 test_mapped_index_find_name_component_bounds ()
4728 {
4729 mock_mapped_index mock_index (test_symbols);
4730
4731 mock_index.build_name_components ();
4732
4733 /* Test the lower-level mapped_index::find_name_component_bounds
4734 method in completion mode. */
4735 {
4736 static const char *expected_syms[] = {
4737 "t1_func",
4738 "t1_func1",
4739 };
4740
4741 SELF_CHECK (check_find_bounds_finds (mock_index,
4742 "t1_func", expected_syms));
4743 }
4744
4745 /* Check that the increment-last-char in the name matching algorithm
4746 for completion doesn't get confused with Ansi1 'ÿ' / 0xff. */
4747 {
4748 static const char *expected_syms1[] = {
4749 "\377",
4750 "\377\377123",
4751 };
4752 SELF_CHECK (check_find_bounds_finds (mock_index,
4753 "\377", expected_syms1));
4754
4755 static const char *expected_syms2[] = {
4756 "\377\377123",
4757 };
4758 SELF_CHECK (check_find_bounds_finds (mock_index,
4759 "\377\377", expected_syms2));
4760 }
4761 }
4762
4763 /* Test dw2_expand_symtabs_matching_symbol. */
4764
4765 static void
4766 test_dw2_expand_symtabs_matching_symbol ()
4767 {
4768 mock_mapped_index mock_index (test_symbols);
4769
4770 /* We let all tests run until the end even if some fails, for debug
4771 convenience. */
4772 bool any_mismatch = false;
4773
4774 /* Create the expected symbols list (an initializer_list). Needed
4775 because lists have commas, and we need to pass them to CHECK,
4776 which is a macro. */
4777 #define EXPECT(...) { __VA_ARGS__ }
4778
4779 /* Wrapper for check_match that passes down the current
4780 __FILE__/__LINE__. */
4781 #define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
4782 any_mismatch |= !check_match (__FILE__, __LINE__, \
4783 mock_index, \
4784 NAME, MATCH_TYPE, COMPLETION_MODE, \
4785 EXPECTED_LIST)
4786
4787 /* Identity checks. */
4788 for (const char *sym : test_symbols)
4789 {
4790 /* Should be able to match all existing symbols. */
4791 CHECK_MATCH (sym, symbol_name_match_type::FULL, false,
4792 EXPECT (sym));
4793
4794 /* Should be able to match all existing symbols with
4795 parameters. */
4796 std::string with_params = std::string (sym) + "(int)";
4797 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4798 EXPECT (sym));
4799
4800 /* Should be able to match all existing symbols with
4801 parameters and qualifiers. */
4802 with_params = std::string (sym) + " ( int ) const";
4803 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4804 EXPECT (sym));
4805
4806 /* This should really find sym, but cp-name-parser.y doesn't
4807 know about lvalue/rvalue qualifiers yet. */
4808 with_params = std::string (sym) + " ( int ) &&";
4809 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4810 {});
4811 }
4812
4813 /* Check that the name matching algorithm for completion doesn't get
4814 confused with Latin1 'ÿ' / 0xff. */
4815 {
4816 static const char str[] = "\377";
4817 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4818 EXPECT ("\377", "\377\377123"));
4819 }
4820
4821 /* Check that the increment-last-char in the matching algorithm for
4822 completion doesn't match "t1_fund" when completing "t1_func". */
4823 {
4824 static const char str[] = "t1_func";
4825 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4826 EXPECT ("t1_func", "t1_func1"));
4827 }
4828
4829 /* Check that completion mode works at each prefix of the expected
4830 symbol name. */
4831 {
4832 static const char str[] = "function(int)";
4833 size_t len = strlen (str);
4834 std::string lookup;
4835
4836 for (size_t i = 1; i < len; i++)
4837 {
4838 lookup.assign (str, i);
4839 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4840 EXPECT ("function"));
4841 }
4842 }
4843
4844 /* While "w" is a prefix of both components, the match function
4845 should still only be called once. */
4846 {
4847 CHECK_MATCH ("w", symbol_name_match_type::FULL, true,
4848 EXPECT ("w1::w2"));
4849 CHECK_MATCH ("w", symbol_name_match_type::WILD, true,
4850 EXPECT ("w1::w2"));
4851 }
4852
4853 /* Same, with a "complicated" symbol. */
4854 {
4855 static const char str[] = Z_SYM_NAME;
4856 size_t len = strlen (str);
4857 std::string lookup;
4858
4859 for (size_t i = 1; i < len; i++)
4860 {
4861 lookup.assign (str, i);
4862 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4863 EXPECT (Z_SYM_NAME));
4864 }
4865 }
4866
4867 /* In FULL mode, an incomplete symbol doesn't match. */
4868 {
4869 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false,
4870 {});
4871 }
4872
4873 /* A complete symbol with parameters matches any overload, since the
4874 index has no overload info. */
4875 {
4876 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true,
4877 EXPECT ("std::zfunction", "std::zfunction2"));
4878 CHECK_MATCH ("zfunction(int)", symbol_name_match_type::WILD, true,
4879 EXPECT ("std::zfunction", "std::zfunction2"));
4880 CHECK_MATCH ("zfunc", symbol_name_match_type::WILD, true,
4881 EXPECT ("std::zfunction", "std::zfunction2"));
4882 }
4883
4884 /* Check that whitespace is ignored appropriately. A symbol with a
4885 template argument list. */
4886 {
4887 static const char expected[] = "ns::foo<int>";
4888 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false,
4889 EXPECT (expected));
4890 CHECK_MATCH ("foo < int > ", symbol_name_match_type::WILD, false,
4891 EXPECT (expected));
4892 }
4893
4894 /* Check that whitespace is ignored appropriately. A symbol with a
4895 template argument list that includes a pointer. */
4896 {
4897 static const char expected[] = "ns::foo<char*>";
4898 /* Try both completion and non-completion modes. */
4899 static const bool completion_mode[2] = {false, true};
4900 for (size_t i = 0; i < 2; i++)
4901 {
4902 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL,
4903 completion_mode[i], EXPECT (expected));
4904 CHECK_MATCH ("foo < char * >", symbol_name_match_type::WILD,
4905 completion_mode[i], EXPECT (expected));
4906
4907 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL,
4908 completion_mode[i], EXPECT (expected));
4909 CHECK_MATCH ("foo < char * > (int)", symbol_name_match_type::WILD,
4910 completion_mode[i], EXPECT (expected));
4911 }
4912 }
4913
4914 {
4915 /* Check method qualifiers are ignored. */
4916 static const char expected[] = "ns::foo<char*>";
4917 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
4918 symbol_name_match_type::FULL, true, EXPECT (expected));
4919 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
4920 symbol_name_match_type::FULL, true, EXPECT (expected));
4921 CHECK_MATCH ("foo < char * > ( int ) const",
4922 symbol_name_match_type::WILD, true, EXPECT (expected));
4923 CHECK_MATCH ("foo < char * > ( int ) &&",
4924 symbol_name_match_type::WILD, true, EXPECT (expected));
4925 }
4926
4927 /* Test lookup names that don't match anything. */
4928 {
4929 CHECK_MATCH ("bar2", symbol_name_match_type::WILD, false,
4930 {});
4931
4932 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false,
4933 {});
4934 }
4935
4936 /* Some wild matching tests, exercising "(anonymous namespace)",
4937 which should not be confused with a parameter list. */
4938 {
4939 static const char *syms[] = {
4940 "A::B::C",
4941 "B::C",
4942 "C",
4943 "A :: B :: C ( int )",
4944 "B :: C ( int )",
4945 "C ( int )",
4946 };
4947
4948 for (const char *s : syms)
4949 {
4950 CHECK_MATCH (s, symbol_name_match_type::WILD, false,
4951 EXPECT ("(anonymous namespace)::A::B::C"));
4952 }
4953 }
4954
4955 {
4956 static const char expected[] = "ns2::tmpl<int>::foo2";
4957 CHECK_MATCH ("tmp", symbol_name_match_type::WILD, true,
4958 EXPECT (expected));
4959 CHECK_MATCH ("tmpl<", symbol_name_match_type::WILD, true,
4960 EXPECT (expected));
4961 }
4962
4963 SELF_CHECK (!any_mismatch);
4964
4965 #undef EXPECT
4966 #undef CHECK_MATCH
4967 }
4968
4969 static void
4970 run_test ()
4971 {
4972 test_mapped_index_find_name_component_bounds ();
4973 test_dw2_expand_symtabs_matching_symbol ();
4974 }
4975
4976 }} // namespace selftests::dw2_expand_symtabs_matching
4977
4978 #endif /* GDB_SELF_TEST */
4979
4980 /* If FILE_MATCHER is NULL or if PER_CU has
4981 dwarf2_per_cu_quick_data::MARK set (see
4982 dw_expand_symtabs_matching_file_matcher), expand the CU and call
4983 EXPANSION_NOTIFY on it. */
4984
4985 static void
4986 dw2_expand_symtabs_matching_one
4987 (struct dwarf2_per_cu_data *per_cu,
4988 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4989 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify)
4990 {
4991 if (file_matcher == NULL || per_cu->v.quick->mark)
4992 {
4993 bool symtab_was_null
4994 = (per_cu->v.quick->compunit_symtab == NULL);
4995
4996 dw2_instantiate_symtab (per_cu, false);
4997
4998 if (expansion_notify != NULL
4999 && symtab_was_null
5000 && per_cu->v.quick->compunit_symtab != NULL)
5001 expansion_notify (per_cu->v.quick->compunit_symtab);
5002 }
5003 }
5004
5005 /* Helper for dw2_expand_matching symtabs. Called on each symbol
5006 matched, to expand corresponding CUs that were marked. IDX is the
5007 index of the symbol name that matched. */
5008
5009 static void
5010 dw2_expand_marked_cus
5011 (struct dwarf2_per_objfile *dwarf2_per_objfile, offset_type idx,
5012 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5013 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5014 search_domain kind)
5015 {
5016 offset_type *vec, vec_len, vec_idx;
5017 bool global_seen = false;
5018 mapped_index &index = *dwarf2_per_objfile->index_table;
5019
5020 vec = (offset_type *) (index.constant_pool
5021 + MAYBE_SWAP (index.symbol_table[idx].vec));
5022 vec_len = MAYBE_SWAP (vec[0]);
5023 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
5024 {
5025 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
5026 /* This value is only valid for index versions >= 7. */
5027 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
5028 gdb_index_symbol_kind symbol_kind =
5029 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
5030 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
5031 /* Only check the symbol attributes if they're present.
5032 Indices prior to version 7 don't record them,
5033 and indices >= 7 may elide them for certain symbols
5034 (gold does this). */
5035 int attrs_valid =
5036 (index.version >= 7
5037 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
5038
5039 /* Work around gold/15646. */
5040 if (attrs_valid)
5041 {
5042 if (!is_static && global_seen)
5043 continue;
5044 if (!is_static)
5045 global_seen = true;
5046 }
5047
5048 /* Only check the symbol's kind if it has one. */
5049 if (attrs_valid)
5050 {
5051 switch (kind)
5052 {
5053 case VARIABLES_DOMAIN:
5054 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
5055 continue;
5056 break;
5057 case FUNCTIONS_DOMAIN:
5058 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
5059 continue;
5060 break;
5061 case TYPES_DOMAIN:
5062 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
5063 continue;
5064 break;
5065 default:
5066 break;
5067 }
5068 }
5069
5070 /* Don't crash on bad data. */
5071 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
5072 + dwarf2_per_objfile->all_type_units.size ()))
5073 {
5074 complaint (_(".gdb_index entry has bad CU index"
5075 " [in module %s]"),
5076 objfile_name (dwarf2_per_objfile->objfile));
5077 continue;
5078 }
5079
5080 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
5081 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
5082 expansion_notify);
5083 }
5084 }
5085
5086 /* If FILE_MATCHER is non-NULL, set all the
5087 dwarf2_per_cu_quick_data::MARK of the current DWARF2_PER_OBJFILE
5088 that match FILE_MATCHER. */
5089
5090 static void
5091 dw_expand_symtabs_matching_file_matcher
5092 (struct dwarf2_per_objfile *dwarf2_per_objfile,
5093 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher)
5094 {
5095 if (file_matcher == NULL)
5096 return;
5097
5098 objfile *const objfile = dwarf2_per_objfile->objfile;
5099
5100 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
5101 htab_eq_pointer,
5102 NULL, xcalloc, xfree));
5103 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
5104 htab_eq_pointer,
5105 NULL, xcalloc, xfree));
5106
5107 /* The rule is CUs specify all the files, including those used by
5108 any TU, so there's no need to scan TUs here. */
5109
5110 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5111 {
5112 QUIT;
5113
5114 per_cu->v.quick->mark = 0;
5115
5116 /* We only need to look at symtabs not already expanded. */
5117 if (per_cu->v.quick->compunit_symtab)
5118 continue;
5119
5120 quick_file_names *file_data = dw2_get_file_names (per_cu);
5121 if (file_data == NULL)
5122 continue;
5123
5124 if (htab_find (visited_not_found.get (), file_data) != NULL)
5125 continue;
5126 else if (htab_find (visited_found.get (), file_data) != NULL)
5127 {
5128 per_cu->v.quick->mark = 1;
5129 continue;
5130 }
5131
5132 for (int j = 0; j < file_data->num_file_names; ++j)
5133 {
5134 const char *this_real_name;
5135
5136 if (file_matcher (file_data->file_names[j], false))
5137 {
5138 per_cu->v.quick->mark = 1;
5139 break;
5140 }
5141
5142 /* Before we invoke realpath, which can get expensive when many
5143 files are involved, do a quick comparison of the basenames. */
5144 if (!basenames_may_differ
5145 && !file_matcher (lbasename (file_data->file_names[j]),
5146 true))
5147 continue;
5148
5149 this_real_name = dw2_get_real_path (objfile, file_data, j);
5150 if (file_matcher (this_real_name, false))
5151 {
5152 per_cu->v.quick->mark = 1;
5153 break;
5154 }
5155 }
5156
5157 void **slot = htab_find_slot (per_cu->v.quick->mark
5158 ? visited_found.get ()
5159 : visited_not_found.get (),
5160 file_data, INSERT);
5161 *slot = file_data;
5162 }
5163 }
5164
5165 static void
5166 dw2_expand_symtabs_matching
5167 (struct objfile *objfile,
5168 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5169 const lookup_name_info &lookup_name,
5170 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
5171 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5172 enum search_domain kind)
5173 {
5174 struct dwarf2_per_objfile *dwarf2_per_objfile
5175 = get_dwarf2_per_objfile (objfile);
5176
5177 /* index_table is NULL if OBJF_READNOW. */
5178 if (!dwarf2_per_objfile->index_table)
5179 return;
5180
5181 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
5182
5183 mapped_index &index = *dwarf2_per_objfile->index_table;
5184
5185 dw2_expand_symtabs_matching_symbol (index, lookup_name,
5186 symbol_matcher,
5187 kind, [&] (offset_type idx)
5188 {
5189 dw2_expand_marked_cus (dwarf2_per_objfile, idx, file_matcher,
5190 expansion_notify, kind);
5191 });
5192 }
5193
5194 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
5195 symtab. */
5196
5197 static struct compunit_symtab *
5198 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
5199 CORE_ADDR pc)
5200 {
5201 int i;
5202
5203 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
5204 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
5205 return cust;
5206
5207 if (cust->includes == NULL)
5208 return NULL;
5209
5210 for (i = 0; cust->includes[i]; ++i)
5211 {
5212 struct compunit_symtab *s = cust->includes[i];
5213
5214 s = recursively_find_pc_sect_compunit_symtab (s, pc);
5215 if (s != NULL)
5216 return s;
5217 }
5218
5219 return NULL;
5220 }
5221
5222 static struct compunit_symtab *
5223 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
5224 struct bound_minimal_symbol msymbol,
5225 CORE_ADDR pc,
5226 struct obj_section *section,
5227 int warn_if_readin)
5228 {
5229 struct dwarf2_per_cu_data *data;
5230 struct compunit_symtab *result;
5231
5232 if (!objfile->psymtabs_addrmap)
5233 return NULL;
5234
5235 data = (struct dwarf2_per_cu_data *) addrmap_find (objfile->psymtabs_addrmap,
5236 pc);
5237 if (!data)
5238 return NULL;
5239
5240 if (warn_if_readin && data->v.quick->compunit_symtab)
5241 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
5242 paddress (get_objfile_arch (objfile), pc));
5243
5244 result
5245 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data,
5246 false),
5247 pc);
5248 gdb_assert (result != NULL);
5249 return result;
5250 }
5251
5252 static void
5253 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
5254 void *data, int need_fullname)
5255 {
5256 struct dwarf2_per_objfile *dwarf2_per_objfile
5257 = get_dwarf2_per_objfile (objfile);
5258
5259 if (!dwarf2_per_objfile->filenames_cache)
5260 {
5261 dwarf2_per_objfile->filenames_cache.emplace ();
5262
5263 htab_up visited (htab_create_alloc (10,
5264 htab_hash_pointer, htab_eq_pointer,
5265 NULL, xcalloc, xfree));
5266
5267 /* The rule is CUs specify all the files, including those used
5268 by any TU, so there's no need to scan TUs here. We can
5269 ignore file names coming from already-expanded CUs. */
5270
5271 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5272 {
5273 if (per_cu->v.quick->compunit_symtab)
5274 {
5275 void **slot = htab_find_slot (visited.get (),
5276 per_cu->v.quick->file_names,
5277 INSERT);
5278
5279 *slot = per_cu->v.quick->file_names;
5280 }
5281 }
5282
5283 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5284 {
5285 /* We only need to look at symtabs not already expanded. */
5286 if (per_cu->v.quick->compunit_symtab)
5287 continue;
5288
5289 quick_file_names *file_data = dw2_get_file_names (per_cu);
5290 if (file_data == NULL)
5291 continue;
5292
5293 void **slot = htab_find_slot (visited.get (), file_data, INSERT);
5294 if (*slot)
5295 {
5296 /* Already visited. */
5297 continue;
5298 }
5299 *slot = file_data;
5300
5301 for (int j = 0; j < file_data->num_file_names; ++j)
5302 {
5303 const char *filename = file_data->file_names[j];
5304 dwarf2_per_objfile->filenames_cache->seen (filename);
5305 }
5306 }
5307 }
5308
5309 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
5310 {
5311 gdb::unique_xmalloc_ptr<char> this_real_name;
5312
5313 if (need_fullname)
5314 this_real_name = gdb_realpath (filename);
5315 (*fun) (filename, this_real_name.get (), data);
5316 });
5317 }
5318
5319 static int
5320 dw2_has_symbols (struct objfile *objfile)
5321 {
5322 return 1;
5323 }
5324
5325 const struct quick_symbol_functions dwarf2_gdb_index_functions =
5326 {
5327 dw2_has_symbols,
5328 dw2_find_last_source_symtab,
5329 dw2_forget_cached_source_info,
5330 dw2_map_symtabs_matching_filename,
5331 dw2_lookup_symbol,
5332 dw2_print_stats,
5333 dw2_dump,
5334 dw2_relocate,
5335 dw2_expand_symtabs_for_function,
5336 dw2_expand_all_symtabs,
5337 dw2_expand_symtabs_with_fullname,
5338 dw2_map_matching_symbols,
5339 dw2_expand_symtabs_matching,
5340 dw2_find_pc_sect_compunit_symtab,
5341 NULL,
5342 dw2_map_symbol_filenames
5343 };
5344
5345 /* DWARF-5 debug_names reader. */
5346
5347 /* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
5348 static const gdb_byte dwarf5_augmentation[] = { 'G', 'D', 'B', 0 };
5349
5350 /* A helper function that reads the .debug_names section in SECTION
5351 and fills in MAP. FILENAME is the name of the file containing the
5352 section; it is used for error reporting.
5353
5354 Returns true if all went well, false otherwise. */
5355
5356 static bool
5357 read_debug_names_from_section (struct objfile *objfile,
5358 const char *filename,
5359 struct dwarf2_section_info *section,
5360 mapped_debug_names &map)
5361 {
5362 if (dwarf2_section_empty_p (section))
5363 return false;
5364
5365 /* Older elfutils strip versions could keep the section in the main
5366 executable while splitting it for the separate debug info file. */
5367 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
5368 return false;
5369
5370 dwarf2_read_section (objfile, section);
5371
5372 map.dwarf5_byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
5373
5374 const gdb_byte *addr = section->buffer;
5375
5376 bfd *const abfd = get_section_bfd_owner (section);
5377
5378 unsigned int bytes_read;
5379 LONGEST length = read_initial_length (abfd, addr, &bytes_read);
5380 addr += bytes_read;
5381
5382 map.dwarf5_is_dwarf64 = bytes_read != 4;
5383 map.offset_size = map.dwarf5_is_dwarf64 ? 8 : 4;
5384 if (bytes_read + length != section->size)
5385 {
5386 /* There may be multiple per-CU indices. */
5387 warning (_("Section .debug_names in %s length %s does not match "
5388 "section length %s, ignoring .debug_names."),
5389 filename, plongest (bytes_read + length),
5390 pulongest (section->size));
5391 return false;
5392 }
5393
5394 /* The version number. */
5395 uint16_t version = read_2_bytes (abfd, addr);
5396 addr += 2;
5397 if (version != 5)
5398 {
5399 warning (_("Section .debug_names in %s has unsupported version %d, "
5400 "ignoring .debug_names."),
5401 filename, version);
5402 return false;
5403 }
5404
5405 /* Padding. */
5406 uint16_t padding = read_2_bytes (abfd, addr);
5407 addr += 2;
5408 if (padding != 0)
5409 {
5410 warning (_("Section .debug_names in %s has unsupported padding %d, "
5411 "ignoring .debug_names."),
5412 filename, padding);
5413 return false;
5414 }
5415
5416 /* comp_unit_count - The number of CUs in the CU list. */
5417 map.cu_count = read_4_bytes (abfd, addr);
5418 addr += 4;
5419
5420 /* local_type_unit_count - The number of TUs in the local TU
5421 list. */
5422 map.tu_count = read_4_bytes (abfd, addr);
5423 addr += 4;
5424
5425 /* foreign_type_unit_count - The number of TUs in the foreign TU
5426 list. */
5427 uint32_t foreign_tu_count = read_4_bytes (abfd, addr);
5428 addr += 4;
5429 if (foreign_tu_count != 0)
5430 {
5431 warning (_("Section .debug_names in %s has unsupported %lu foreign TUs, "
5432 "ignoring .debug_names."),
5433 filename, static_cast<unsigned long> (foreign_tu_count));
5434 return false;
5435 }
5436
5437 /* bucket_count - The number of hash buckets in the hash lookup
5438 table. */
5439 map.bucket_count = read_4_bytes (abfd, addr);
5440 addr += 4;
5441
5442 /* name_count - The number of unique names in the index. */
5443 map.name_count = read_4_bytes (abfd, addr);
5444 addr += 4;
5445
5446 /* abbrev_table_size - The size in bytes of the abbreviations
5447 table. */
5448 uint32_t abbrev_table_size = read_4_bytes (abfd, addr);
5449 addr += 4;
5450
5451 /* augmentation_string_size - The size in bytes of the augmentation
5452 string. This value is rounded up to a multiple of 4. */
5453 uint32_t augmentation_string_size = read_4_bytes (abfd, addr);
5454 addr += 4;
5455 map.augmentation_is_gdb = ((augmentation_string_size
5456 == sizeof (dwarf5_augmentation))
5457 && memcmp (addr, dwarf5_augmentation,
5458 sizeof (dwarf5_augmentation)) == 0);
5459 augmentation_string_size += (-augmentation_string_size) & 3;
5460 addr += augmentation_string_size;
5461
5462 /* List of CUs */
5463 map.cu_table_reordered = addr;
5464 addr += map.cu_count * map.offset_size;
5465
5466 /* List of Local TUs */
5467 map.tu_table_reordered = addr;
5468 addr += map.tu_count * map.offset_size;
5469
5470 /* Hash Lookup Table */
5471 map.bucket_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5472 addr += map.bucket_count * 4;
5473 map.hash_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5474 addr += map.name_count * 4;
5475
5476 /* Name Table */
5477 map.name_table_string_offs_reordered = addr;
5478 addr += map.name_count * map.offset_size;
5479 map.name_table_entry_offs_reordered = addr;
5480 addr += map.name_count * map.offset_size;
5481
5482 const gdb_byte *abbrev_table_start = addr;
5483 for (;;)
5484 {
5485 unsigned int bytes_read;
5486 const ULONGEST index_num = read_unsigned_leb128 (abfd, addr, &bytes_read);
5487 addr += bytes_read;
5488 if (index_num == 0)
5489 break;
5490
5491 const auto insertpair
5492 = map.abbrev_map.emplace (index_num, mapped_debug_names::index_val ());
5493 if (!insertpair.second)
5494 {
5495 warning (_("Section .debug_names in %s has duplicate index %s, "
5496 "ignoring .debug_names."),
5497 filename, pulongest (index_num));
5498 return false;
5499 }
5500 mapped_debug_names::index_val &indexval = insertpair.first->second;
5501 indexval.dwarf_tag = read_unsigned_leb128 (abfd, addr, &bytes_read);
5502 addr += bytes_read;
5503
5504 for (;;)
5505 {
5506 mapped_debug_names::index_val::attr attr;
5507 attr.dw_idx = read_unsigned_leb128 (abfd, addr, &bytes_read);
5508 addr += bytes_read;
5509 attr.form = read_unsigned_leb128 (abfd, addr, &bytes_read);
5510 addr += bytes_read;
5511 if (attr.form == DW_FORM_implicit_const)
5512 {
5513 attr.implicit_const = read_signed_leb128 (abfd, addr,
5514 &bytes_read);
5515 addr += bytes_read;
5516 }
5517 if (attr.dw_idx == 0 && attr.form == 0)
5518 break;
5519 indexval.attr_vec.push_back (std::move (attr));
5520 }
5521 }
5522 if (addr != abbrev_table_start + abbrev_table_size)
5523 {
5524 warning (_("Section .debug_names in %s has abbreviation_table "
5525 "of size %zu vs. written as %u, ignoring .debug_names."),
5526 filename, addr - abbrev_table_start, abbrev_table_size);
5527 return false;
5528 }
5529 map.entry_pool = addr;
5530
5531 return true;
5532 }
5533
5534 /* A helper for create_cus_from_debug_names that handles the MAP's CU
5535 list. */
5536
5537 static void
5538 create_cus_from_debug_names_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
5539 const mapped_debug_names &map,
5540 dwarf2_section_info &section,
5541 bool is_dwz)
5542 {
5543 sect_offset sect_off_prev;
5544 for (uint32_t i = 0; i <= map.cu_count; ++i)
5545 {
5546 sect_offset sect_off_next;
5547 if (i < map.cu_count)
5548 {
5549 sect_off_next
5550 = (sect_offset) (extract_unsigned_integer
5551 (map.cu_table_reordered + i * map.offset_size,
5552 map.offset_size,
5553 map.dwarf5_byte_order));
5554 }
5555 else
5556 sect_off_next = (sect_offset) section.size;
5557 if (i >= 1)
5558 {
5559 const ULONGEST length = sect_off_next - sect_off_prev;
5560 dwarf2_per_cu_data *per_cu
5561 = create_cu_from_index_list (dwarf2_per_objfile, &section, is_dwz,
5562 sect_off_prev, length);
5563 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
5564 }
5565 sect_off_prev = sect_off_next;
5566 }
5567 }
5568
5569 /* Read the CU list from the mapped index, and use it to create all
5570 the CU objects for this dwarf2_per_objfile. */
5571
5572 static void
5573 create_cus_from_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile,
5574 const mapped_debug_names &map,
5575 const mapped_debug_names &dwz_map)
5576 {
5577 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
5578 dwarf2_per_objfile->all_comp_units.reserve (map.cu_count + dwz_map.cu_count);
5579
5580 create_cus_from_debug_names_list (dwarf2_per_objfile, map,
5581 dwarf2_per_objfile->info,
5582 false /* is_dwz */);
5583
5584 if (dwz_map.cu_count == 0)
5585 return;
5586
5587 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5588 create_cus_from_debug_names_list (dwarf2_per_objfile, dwz_map, dwz->info,
5589 true /* is_dwz */);
5590 }
5591
5592 /* Read .debug_names. If everything went ok, initialize the "quick"
5593 elements of all the CUs and return true. Otherwise, return false. */
5594
5595 static bool
5596 dwarf2_read_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile)
5597 {
5598 std::unique_ptr<mapped_debug_names> map
5599 (new mapped_debug_names (dwarf2_per_objfile));
5600 mapped_debug_names dwz_map (dwarf2_per_objfile);
5601 struct objfile *objfile = dwarf2_per_objfile->objfile;
5602
5603 if (!read_debug_names_from_section (objfile, objfile_name (objfile),
5604 &dwarf2_per_objfile->debug_names,
5605 *map))
5606 return false;
5607
5608 /* Don't use the index if it's empty. */
5609 if (map->name_count == 0)
5610 return false;
5611
5612 /* If there is a .dwz file, read it so we can get its CU list as
5613 well. */
5614 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5615 if (dwz != NULL)
5616 {
5617 if (!read_debug_names_from_section (objfile,
5618 bfd_get_filename (dwz->dwz_bfd),
5619 &dwz->debug_names, dwz_map))
5620 {
5621 warning (_("could not read '.debug_names' section from %s; skipping"),
5622 bfd_get_filename (dwz->dwz_bfd));
5623 return false;
5624 }
5625 }
5626
5627 create_cus_from_debug_names (dwarf2_per_objfile, *map, dwz_map);
5628
5629 if (map->tu_count != 0)
5630 {
5631 /* We can only handle a single .debug_types when we have an
5632 index. */
5633 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
5634 return false;
5635
5636 dwarf2_section_info *section = VEC_index (dwarf2_section_info_def,
5637 dwarf2_per_objfile->types, 0);
5638
5639 create_signatured_type_table_from_debug_names
5640 (dwarf2_per_objfile, *map, section, &dwarf2_per_objfile->abbrev);
5641 }
5642
5643 create_addrmap_from_aranges (dwarf2_per_objfile,
5644 &dwarf2_per_objfile->debug_aranges);
5645
5646 dwarf2_per_objfile->debug_names_table = std::move (map);
5647 dwarf2_per_objfile->using_index = 1;
5648 dwarf2_per_objfile->quick_file_names_table =
5649 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
5650
5651 return true;
5652 }
5653
5654 /* Type used to manage iterating over all CUs looking for a symbol for
5655 .debug_names. */
5656
5657 class dw2_debug_names_iterator
5658 {
5659 public:
5660 /* If WANT_SPECIFIC_BLOCK is true, only look for symbols in block
5661 BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
5662 dw2_debug_names_iterator (const mapped_debug_names &map,
5663 bool want_specific_block,
5664 block_enum block_index, domain_enum domain,
5665 const char *name)
5666 : m_map (map), m_want_specific_block (want_specific_block),
5667 m_block_index (block_index), m_domain (domain),
5668 m_addr (find_vec_in_debug_names (map, name))
5669 {}
5670
5671 dw2_debug_names_iterator (const mapped_debug_names &map,
5672 search_domain search, uint32_t namei)
5673 : m_map (map),
5674 m_search (search),
5675 m_addr (find_vec_in_debug_names (map, namei))
5676 {}
5677
5678 /* Return the next matching CU or NULL if there are no more. */
5679 dwarf2_per_cu_data *next ();
5680
5681 private:
5682 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5683 const char *name);
5684 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5685 uint32_t namei);
5686
5687 /* The internalized form of .debug_names. */
5688 const mapped_debug_names &m_map;
5689
5690 /* If true, only look for symbols that match BLOCK_INDEX. */
5691 const bool m_want_specific_block = false;
5692
5693 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
5694 Unused if !WANT_SPECIFIC_BLOCK - FIRST_LOCAL_BLOCK is an invalid
5695 value. */
5696 const block_enum m_block_index = FIRST_LOCAL_BLOCK;
5697
5698 /* The kind of symbol we're looking for. */
5699 const domain_enum m_domain = UNDEF_DOMAIN;
5700 const search_domain m_search = ALL_DOMAIN;
5701
5702 /* The list of CUs from the index entry of the symbol, or NULL if
5703 not found. */
5704 const gdb_byte *m_addr;
5705 };
5706
5707 const char *
5708 mapped_debug_names::namei_to_name (uint32_t namei) const
5709 {
5710 const ULONGEST namei_string_offs
5711 = extract_unsigned_integer ((name_table_string_offs_reordered
5712 + namei * offset_size),
5713 offset_size,
5714 dwarf5_byte_order);
5715 return read_indirect_string_at_offset
5716 (dwarf2_per_objfile, dwarf2_per_objfile->objfile->obfd, namei_string_offs);
5717 }
5718
5719 /* Find a slot in .debug_names for the object named NAME. If NAME is
5720 found, return pointer to its pool data. If NAME cannot be found,
5721 return NULL. */
5722
5723 const gdb_byte *
5724 dw2_debug_names_iterator::find_vec_in_debug_names
5725 (const mapped_debug_names &map, const char *name)
5726 {
5727 int (*cmp) (const char *, const char *);
5728
5729 if (current_language->la_language == language_cplus
5730 || current_language->la_language == language_fortran
5731 || current_language->la_language == language_d)
5732 {
5733 /* NAME is already canonical. Drop any qualifiers as
5734 .debug_names does not contain any. */
5735
5736 if (strchr (name, '(') != NULL)
5737 {
5738 gdb::unique_xmalloc_ptr<char> without_params
5739 = cp_remove_params (name);
5740
5741 if (without_params != NULL)
5742 {
5743 name = without_params.get();
5744 }
5745 }
5746 }
5747
5748 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
5749
5750 const uint32_t full_hash = dwarf5_djb_hash (name);
5751 uint32_t namei
5752 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5753 (map.bucket_table_reordered
5754 + (full_hash % map.bucket_count)), 4,
5755 map.dwarf5_byte_order);
5756 if (namei == 0)
5757 return NULL;
5758 --namei;
5759 if (namei >= map.name_count)
5760 {
5761 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5762 "[in module %s]"),
5763 namei, map.name_count,
5764 objfile_name (map.dwarf2_per_objfile->objfile));
5765 return NULL;
5766 }
5767
5768 for (;;)
5769 {
5770 const uint32_t namei_full_hash
5771 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5772 (map.hash_table_reordered + namei), 4,
5773 map.dwarf5_byte_order);
5774 if (full_hash % map.bucket_count != namei_full_hash % map.bucket_count)
5775 return NULL;
5776
5777 if (full_hash == namei_full_hash)
5778 {
5779 const char *const namei_string = map.namei_to_name (namei);
5780
5781 #if 0 /* An expensive sanity check. */
5782 if (namei_full_hash != dwarf5_djb_hash (namei_string))
5783 {
5784 complaint (_("Wrong .debug_names hash for string at index %u "
5785 "[in module %s]"),
5786 namei, objfile_name (dwarf2_per_objfile->objfile));
5787 return NULL;
5788 }
5789 #endif
5790
5791 if (cmp (namei_string, name) == 0)
5792 {
5793 const ULONGEST namei_entry_offs
5794 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5795 + namei * map.offset_size),
5796 map.offset_size, map.dwarf5_byte_order);
5797 return map.entry_pool + namei_entry_offs;
5798 }
5799 }
5800
5801 ++namei;
5802 if (namei >= map.name_count)
5803 return NULL;
5804 }
5805 }
5806
5807 const gdb_byte *
5808 dw2_debug_names_iterator::find_vec_in_debug_names
5809 (const mapped_debug_names &map, uint32_t namei)
5810 {
5811 if (namei >= map.name_count)
5812 {
5813 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5814 "[in module %s]"),
5815 namei, map.name_count,
5816 objfile_name (map.dwarf2_per_objfile->objfile));
5817 return NULL;
5818 }
5819
5820 const ULONGEST namei_entry_offs
5821 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5822 + namei * map.offset_size),
5823 map.offset_size, map.dwarf5_byte_order);
5824 return map.entry_pool + namei_entry_offs;
5825 }
5826
5827 /* See dw2_debug_names_iterator. */
5828
5829 dwarf2_per_cu_data *
5830 dw2_debug_names_iterator::next ()
5831 {
5832 if (m_addr == NULL)
5833 return NULL;
5834
5835 struct dwarf2_per_objfile *dwarf2_per_objfile = m_map.dwarf2_per_objfile;
5836 struct objfile *objfile = dwarf2_per_objfile->objfile;
5837 bfd *const abfd = objfile->obfd;
5838
5839 again:
5840
5841 unsigned int bytes_read;
5842 const ULONGEST abbrev = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5843 m_addr += bytes_read;
5844 if (abbrev == 0)
5845 return NULL;
5846
5847 const auto indexval_it = m_map.abbrev_map.find (abbrev);
5848 if (indexval_it == m_map.abbrev_map.cend ())
5849 {
5850 complaint (_("Wrong .debug_names undefined abbrev code %s "
5851 "[in module %s]"),
5852 pulongest (abbrev), objfile_name (objfile));
5853 return NULL;
5854 }
5855 const mapped_debug_names::index_val &indexval = indexval_it->second;
5856 bool have_is_static = false;
5857 bool is_static;
5858 dwarf2_per_cu_data *per_cu = NULL;
5859 for (const mapped_debug_names::index_val::attr &attr : indexval.attr_vec)
5860 {
5861 ULONGEST ull;
5862 switch (attr.form)
5863 {
5864 case DW_FORM_implicit_const:
5865 ull = attr.implicit_const;
5866 break;
5867 case DW_FORM_flag_present:
5868 ull = 1;
5869 break;
5870 case DW_FORM_udata:
5871 ull = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5872 m_addr += bytes_read;
5873 break;
5874 default:
5875 complaint (_("Unsupported .debug_names form %s [in module %s]"),
5876 dwarf_form_name (attr.form),
5877 objfile_name (objfile));
5878 return NULL;
5879 }
5880 switch (attr.dw_idx)
5881 {
5882 case DW_IDX_compile_unit:
5883 /* Don't crash on bad data. */
5884 if (ull >= dwarf2_per_objfile->all_comp_units.size ())
5885 {
5886 complaint (_(".debug_names entry has bad CU index %s"
5887 " [in module %s]"),
5888 pulongest (ull),
5889 objfile_name (dwarf2_per_objfile->objfile));
5890 continue;
5891 }
5892 per_cu = dwarf2_per_objfile->get_cutu (ull);
5893 break;
5894 case DW_IDX_type_unit:
5895 /* Don't crash on bad data. */
5896 if (ull >= dwarf2_per_objfile->all_type_units.size ())
5897 {
5898 complaint (_(".debug_names entry has bad TU index %s"
5899 " [in module %s]"),
5900 pulongest (ull),
5901 objfile_name (dwarf2_per_objfile->objfile));
5902 continue;
5903 }
5904 per_cu = &dwarf2_per_objfile->get_tu (ull)->per_cu;
5905 break;
5906 case DW_IDX_GNU_internal:
5907 if (!m_map.augmentation_is_gdb)
5908 break;
5909 have_is_static = true;
5910 is_static = true;
5911 break;
5912 case DW_IDX_GNU_external:
5913 if (!m_map.augmentation_is_gdb)
5914 break;
5915 have_is_static = true;
5916 is_static = false;
5917 break;
5918 }
5919 }
5920
5921 /* Skip if already read in. */
5922 if (per_cu->v.quick->compunit_symtab)
5923 goto again;
5924
5925 /* Check static vs global. */
5926 if (have_is_static)
5927 {
5928 const bool want_static = m_block_index != GLOBAL_BLOCK;
5929 if (m_want_specific_block && want_static != is_static)
5930 goto again;
5931 }
5932
5933 /* Match dw2_symtab_iter_next, symbol_kind
5934 and debug_names::psymbol_tag. */
5935 switch (m_domain)
5936 {
5937 case VAR_DOMAIN:
5938 switch (indexval.dwarf_tag)
5939 {
5940 case DW_TAG_variable:
5941 case DW_TAG_subprogram:
5942 /* Some types are also in VAR_DOMAIN. */
5943 case DW_TAG_typedef:
5944 case DW_TAG_structure_type:
5945 break;
5946 default:
5947 goto again;
5948 }
5949 break;
5950 case STRUCT_DOMAIN:
5951 switch (indexval.dwarf_tag)
5952 {
5953 case DW_TAG_typedef:
5954 case DW_TAG_structure_type:
5955 break;
5956 default:
5957 goto again;
5958 }
5959 break;
5960 case LABEL_DOMAIN:
5961 switch (indexval.dwarf_tag)
5962 {
5963 case 0:
5964 case DW_TAG_variable:
5965 break;
5966 default:
5967 goto again;
5968 }
5969 break;
5970 default:
5971 break;
5972 }
5973
5974 /* Match dw2_expand_symtabs_matching, symbol_kind and
5975 debug_names::psymbol_tag. */
5976 switch (m_search)
5977 {
5978 case VARIABLES_DOMAIN:
5979 switch (indexval.dwarf_tag)
5980 {
5981 case DW_TAG_variable:
5982 break;
5983 default:
5984 goto again;
5985 }
5986 break;
5987 case FUNCTIONS_DOMAIN:
5988 switch (indexval.dwarf_tag)
5989 {
5990 case DW_TAG_subprogram:
5991 break;
5992 default:
5993 goto again;
5994 }
5995 break;
5996 case TYPES_DOMAIN:
5997 switch (indexval.dwarf_tag)
5998 {
5999 case DW_TAG_typedef:
6000 case DW_TAG_structure_type:
6001 break;
6002 default:
6003 goto again;
6004 }
6005 break;
6006 default:
6007 break;
6008 }
6009
6010 return per_cu;
6011 }
6012
6013 static struct compunit_symtab *
6014 dw2_debug_names_lookup_symbol (struct objfile *objfile, int block_index_int,
6015 const char *name, domain_enum domain)
6016 {
6017 const block_enum block_index = static_cast<block_enum> (block_index_int);
6018 struct dwarf2_per_objfile *dwarf2_per_objfile
6019 = get_dwarf2_per_objfile (objfile);
6020
6021 const auto &mapp = dwarf2_per_objfile->debug_names_table;
6022 if (!mapp)
6023 {
6024 /* index is NULL if OBJF_READNOW. */
6025 return NULL;
6026 }
6027 const auto &map = *mapp;
6028
6029 dw2_debug_names_iterator iter (map, true /* want_specific_block */,
6030 block_index, domain, name);
6031
6032 struct compunit_symtab *stab_best = NULL;
6033 struct dwarf2_per_cu_data *per_cu;
6034 while ((per_cu = iter.next ()) != NULL)
6035 {
6036 struct symbol *sym, *with_opaque = NULL;
6037 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
6038 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
6039 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
6040
6041 sym = block_find_symbol (block, name, domain,
6042 block_find_non_opaque_type_preferred,
6043 &with_opaque);
6044
6045 /* Some caution must be observed with overloaded functions and
6046 methods, since the index will not contain any overload
6047 information (but NAME might contain it). */
6048
6049 if (sym != NULL
6050 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
6051 return stab;
6052 if (with_opaque != NULL
6053 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
6054 stab_best = stab;
6055
6056 /* Keep looking through other CUs. */
6057 }
6058
6059 return stab_best;
6060 }
6061
6062 /* This dumps minimal information about .debug_names. It is called
6063 via "mt print objfiles". The gdb.dwarf2/gdb-index.exp testcase
6064 uses this to verify that .debug_names has been loaded. */
6065
6066 static void
6067 dw2_debug_names_dump (struct objfile *objfile)
6068 {
6069 struct dwarf2_per_objfile *dwarf2_per_objfile
6070 = get_dwarf2_per_objfile (objfile);
6071
6072 gdb_assert (dwarf2_per_objfile->using_index);
6073 printf_filtered (".debug_names:");
6074 if (dwarf2_per_objfile->debug_names_table)
6075 printf_filtered (" exists\n");
6076 else
6077 printf_filtered (" faked for \"readnow\"\n");
6078 printf_filtered ("\n");
6079 }
6080
6081 static void
6082 dw2_debug_names_expand_symtabs_for_function (struct objfile *objfile,
6083 const char *func_name)
6084 {
6085 struct dwarf2_per_objfile *dwarf2_per_objfile
6086 = get_dwarf2_per_objfile (objfile);
6087
6088 /* dwarf2_per_objfile->debug_names_table is NULL if OBJF_READNOW. */
6089 if (dwarf2_per_objfile->debug_names_table)
6090 {
6091 const mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6092
6093 /* Note: It doesn't matter what we pass for block_index here. */
6094 dw2_debug_names_iterator iter (map, false /* want_specific_block */,
6095 GLOBAL_BLOCK, VAR_DOMAIN, func_name);
6096
6097 struct dwarf2_per_cu_data *per_cu;
6098 while ((per_cu = iter.next ()) != NULL)
6099 dw2_instantiate_symtab (per_cu, false);
6100 }
6101 }
6102
6103 static void
6104 dw2_debug_names_expand_symtabs_matching
6105 (struct objfile *objfile,
6106 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
6107 const lookup_name_info &lookup_name,
6108 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
6109 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
6110 enum search_domain kind)
6111 {
6112 struct dwarf2_per_objfile *dwarf2_per_objfile
6113 = get_dwarf2_per_objfile (objfile);
6114
6115 /* debug_names_table is NULL if OBJF_READNOW. */
6116 if (!dwarf2_per_objfile->debug_names_table)
6117 return;
6118
6119 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
6120
6121 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6122
6123 dw2_expand_symtabs_matching_symbol (map, lookup_name,
6124 symbol_matcher,
6125 kind, [&] (offset_type namei)
6126 {
6127 /* The name was matched, now expand corresponding CUs that were
6128 marked. */
6129 dw2_debug_names_iterator iter (map, kind, namei);
6130
6131 struct dwarf2_per_cu_data *per_cu;
6132 while ((per_cu = iter.next ()) != NULL)
6133 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
6134 expansion_notify);
6135 });
6136 }
6137
6138 const struct quick_symbol_functions dwarf2_debug_names_functions =
6139 {
6140 dw2_has_symbols,
6141 dw2_find_last_source_symtab,
6142 dw2_forget_cached_source_info,
6143 dw2_map_symtabs_matching_filename,
6144 dw2_debug_names_lookup_symbol,
6145 dw2_print_stats,
6146 dw2_debug_names_dump,
6147 dw2_relocate,
6148 dw2_debug_names_expand_symtabs_for_function,
6149 dw2_expand_all_symtabs,
6150 dw2_expand_symtabs_with_fullname,
6151 dw2_map_matching_symbols,
6152 dw2_debug_names_expand_symtabs_matching,
6153 dw2_find_pc_sect_compunit_symtab,
6154 NULL,
6155 dw2_map_symbol_filenames
6156 };
6157
6158 /* See symfile.h. */
6159
6160 bool
6161 dwarf2_initialize_objfile (struct objfile *objfile, dw_index_kind *index_kind)
6162 {
6163 struct dwarf2_per_objfile *dwarf2_per_objfile
6164 = get_dwarf2_per_objfile (objfile);
6165
6166 /* If we're about to read full symbols, don't bother with the
6167 indices. In this case we also don't care if some other debug
6168 format is making psymtabs, because they are all about to be
6169 expanded anyway. */
6170 if ((objfile->flags & OBJF_READNOW))
6171 {
6172 dwarf2_per_objfile->using_index = 1;
6173 create_all_comp_units (dwarf2_per_objfile);
6174 create_all_type_units (dwarf2_per_objfile);
6175 dwarf2_per_objfile->quick_file_names_table
6176 = create_quick_file_names_table
6177 (dwarf2_per_objfile->all_comp_units.size ());
6178
6179 for (int i = 0; i < (dwarf2_per_objfile->all_comp_units.size ()
6180 + dwarf2_per_objfile->all_type_units.size ()); ++i)
6181 {
6182 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
6183
6184 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6185 struct dwarf2_per_cu_quick_data);
6186 }
6187
6188 /* Return 1 so that gdb sees the "quick" functions. However,
6189 these functions will be no-ops because we will have expanded
6190 all symtabs. */
6191 *index_kind = dw_index_kind::GDB_INDEX;
6192 return true;
6193 }
6194
6195 if (dwarf2_read_debug_names (dwarf2_per_objfile))
6196 {
6197 *index_kind = dw_index_kind::DEBUG_NAMES;
6198 return true;
6199 }
6200
6201 if (dwarf2_read_gdb_index (dwarf2_per_objfile))
6202 {
6203 *index_kind = dw_index_kind::GDB_INDEX;
6204 return true;
6205 }
6206
6207 return false;
6208 }
6209
6210 \f
6211
6212 /* Build a partial symbol table. */
6213
6214 void
6215 dwarf2_build_psymtabs (struct objfile *objfile)
6216 {
6217 struct dwarf2_per_objfile *dwarf2_per_objfile
6218 = get_dwarf2_per_objfile (objfile);
6219
6220 if (objfile->global_psymbols.capacity () == 0
6221 && objfile->static_psymbols.capacity () == 0)
6222 init_psymbol_list (objfile, 1024);
6223
6224 TRY
6225 {
6226 /* This isn't really ideal: all the data we allocate on the
6227 objfile's obstack is still uselessly kept around. However,
6228 freeing it seems unsafe. */
6229 psymtab_discarder psymtabs (objfile);
6230 dwarf2_build_psymtabs_hard (dwarf2_per_objfile);
6231 psymtabs.keep ();
6232 }
6233 CATCH (except, RETURN_MASK_ERROR)
6234 {
6235 exception_print (gdb_stderr, except);
6236 }
6237 END_CATCH
6238 }
6239
6240 /* Return the total length of the CU described by HEADER. */
6241
6242 static unsigned int
6243 get_cu_length (const struct comp_unit_head *header)
6244 {
6245 return header->initial_length_size + header->length;
6246 }
6247
6248 /* Return TRUE if SECT_OFF is within CU_HEADER. */
6249
6250 static inline bool
6251 offset_in_cu_p (const comp_unit_head *cu_header, sect_offset sect_off)
6252 {
6253 sect_offset bottom = cu_header->sect_off;
6254 sect_offset top = cu_header->sect_off + get_cu_length (cu_header);
6255
6256 return sect_off >= bottom && sect_off < top;
6257 }
6258
6259 /* Find the base address of the compilation unit for range lists and
6260 location lists. It will normally be specified by DW_AT_low_pc.
6261 In DWARF-3 draft 4, the base address could be overridden by
6262 DW_AT_entry_pc. It's been removed, but GCC still uses this for
6263 compilation units with discontinuous ranges. */
6264
6265 static void
6266 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
6267 {
6268 struct attribute *attr;
6269
6270 cu->base_known = 0;
6271 cu->base_address = 0;
6272
6273 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
6274 if (attr)
6275 {
6276 cu->base_address = attr_value_as_address (attr);
6277 cu->base_known = 1;
6278 }
6279 else
6280 {
6281 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6282 if (attr)
6283 {
6284 cu->base_address = attr_value_as_address (attr);
6285 cu->base_known = 1;
6286 }
6287 }
6288 }
6289
6290 /* Read in the comp unit header information from the debug_info at info_ptr.
6291 Use rcuh_kind::COMPILE as the default type if not known by the caller.
6292 NOTE: This leaves members offset, first_die_offset to be filled in
6293 by the caller. */
6294
6295 static const gdb_byte *
6296 read_comp_unit_head (struct comp_unit_head *cu_header,
6297 const gdb_byte *info_ptr,
6298 struct dwarf2_section_info *section,
6299 rcuh_kind section_kind)
6300 {
6301 int signed_addr;
6302 unsigned int bytes_read;
6303 const char *filename = get_section_file_name (section);
6304 bfd *abfd = get_section_bfd_owner (section);
6305
6306 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
6307 cu_header->initial_length_size = bytes_read;
6308 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
6309 info_ptr += bytes_read;
6310 cu_header->version = read_2_bytes (abfd, info_ptr);
6311 if (cu_header->version < 2 || cu_header->version > 5)
6312 error (_("Dwarf Error: wrong version in compilation unit header "
6313 "(is %d, should be 2, 3, 4 or 5) [in module %s]"),
6314 cu_header->version, filename);
6315 info_ptr += 2;
6316 if (cu_header->version < 5)
6317 switch (section_kind)
6318 {
6319 case rcuh_kind::COMPILE:
6320 cu_header->unit_type = DW_UT_compile;
6321 break;
6322 case rcuh_kind::TYPE:
6323 cu_header->unit_type = DW_UT_type;
6324 break;
6325 default:
6326 internal_error (__FILE__, __LINE__,
6327 _("read_comp_unit_head: invalid section_kind"));
6328 }
6329 else
6330 {
6331 cu_header->unit_type = static_cast<enum dwarf_unit_type>
6332 (read_1_byte (abfd, info_ptr));
6333 info_ptr += 1;
6334 switch (cu_header->unit_type)
6335 {
6336 case DW_UT_compile:
6337 if (section_kind != rcuh_kind::COMPILE)
6338 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6339 "(is DW_UT_compile, should be DW_UT_type) [in module %s]"),
6340 filename);
6341 break;
6342 case DW_UT_type:
6343 section_kind = rcuh_kind::TYPE;
6344 break;
6345 default:
6346 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6347 "(is %d, should be %d or %d) [in module %s]"),
6348 cu_header->unit_type, DW_UT_compile, DW_UT_type, filename);
6349 }
6350
6351 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6352 info_ptr += 1;
6353 }
6354 cu_header->abbrev_sect_off = (sect_offset) read_offset (abfd, info_ptr,
6355 cu_header,
6356 &bytes_read);
6357 info_ptr += bytes_read;
6358 if (cu_header->version < 5)
6359 {
6360 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6361 info_ptr += 1;
6362 }
6363 signed_addr = bfd_get_sign_extend_vma (abfd);
6364 if (signed_addr < 0)
6365 internal_error (__FILE__, __LINE__,
6366 _("read_comp_unit_head: dwarf from non elf file"));
6367 cu_header->signed_addr_p = signed_addr;
6368
6369 if (section_kind == rcuh_kind::TYPE)
6370 {
6371 LONGEST type_offset;
6372
6373 cu_header->signature = read_8_bytes (abfd, info_ptr);
6374 info_ptr += 8;
6375
6376 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
6377 info_ptr += bytes_read;
6378 cu_header->type_cu_offset_in_tu = (cu_offset) type_offset;
6379 if (to_underlying (cu_header->type_cu_offset_in_tu) != type_offset)
6380 error (_("Dwarf Error: Too big type_offset in compilation unit "
6381 "header (is %s) [in module %s]"), plongest (type_offset),
6382 filename);
6383 }
6384
6385 return info_ptr;
6386 }
6387
6388 /* Helper function that returns the proper abbrev section for
6389 THIS_CU. */
6390
6391 static struct dwarf2_section_info *
6392 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
6393 {
6394 struct dwarf2_section_info *abbrev;
6395 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6396
6397 if (this_cu->is_dwz)
6398 abbrev = &dwarf2_get_dwz_file (dwarf2_per_objfile)->abbrev;
6399 else
6400 abbrev = &dwarf2_per_objfile->abbrev;
6401
6402 return abbrev;
6403 }
6404
6405 /* Subroutine of read_and_check_comp_unit_head and
6406 read_and_check_type_unit_head to simplify them.
6407 Perform various error checking on the header. */
6408
6409 static void
6410 error_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6411 struct comp_unit_head *header,
6412 struct dwarf2_section_info *section,
6413 struct dwarf2_section_info *abbrev_section)
6414 {
6415 const char *filename = get_section_file_name (section);
6416
6417 if (to_underlying (header->abbrev_sect_off)
6418 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
6419 error (_("Dwarf Error: bad offset (%s) in compilation unit header "
6420 "(offset %s + 6) [in module %s]"),
6421 sect_offset_str (header->abbrev_sect_off),
6422 sect_offset_str (header->sect_off),
6423 filename);
6424
6425 /* Cast to ULONGEST to use 64-bit arithmetic when possible to
6426 avoid potential 32-bit overflow. */
6427 if (((ULONGEST) header->sect_off + get_cu_length (header))
6428 > section->size)
6429 error (_("Dwarf Error: bad length (0x%x) in compilation unit header "
6430 "(offset %s + 0) [in module %s]"),
6431 header->length, sect_offset_str (header->sect_off),
6432 filename);
6433 }
6434
6435 /* Read in a CU/TU header and perform some basic error checking.
6436 The contents of the header are stored in HEADER.
6437 The result is a pointer to the start of the first DIE. */
6438
6439 static const gdb_byte *
6440 read_and_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6441 struct comp_unit_head *header,
6442 struct dwarf2_section_info *section,
6443 struct dwarf2_section_info *abbrev_section,
6444 const gdb_byte *info_ptr,
6445 rcuh_kind section_kind)
6446 {
6447 const gdb_byte *beg_of_comp_unit = info_ptr;
6448
6449 header->sect_off = (sect_offset) (beg_of_comp_unit - section->buffer);
6450
6451 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
6452
6453 header->first_die_cu_offset = (cu_offset) (info_ptr - beg_of_comp_unit);
6454
6455 error_check_comp_unit_head (dwarf2_per_objfile, header, section,
6456 abbrev_section);
6457
6458 return info_ptr;
6459 }
6460
6461 /* Fetch the abbreviation table offset from a comp or type unit header. */
6462
6463 static sect_offset
6464 read_abbrev_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
6465 struct dwarf2_section_info *section,
6466 sect_offset sect_off)
6467 {
6468 bfd *abfd = get_section_bfd_owner (section);
6469 const gdb_byte *info_ptr;
6470 unsigned int initial_length_size, offset_size;
6471 uint16_t version;
6472
6473 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
6474 info_ptr = section->buffer + to_underlying (sect_off);
6475 read_initial_length (abfd, info_ptr, &initial_length_size);
6476 offset_size = initial_length_size == 4 ? 4 : 8;
6477 info_ptr += initial_length_size;
6478
6479 version = read_2_bytes (abfd, info_ptr);
6480 info_ptr += 2;
6481 if (version >= 5)
6482 {
6483 /* Skip unit type and address size. */
6484 info_ptr += 2;
6485 }
6486
6487 return (sect_offset) read_offset_1 (abfd, info_ptr, offset_size);
6488 }
6489
6490 /* Allocate a new partial symtab for file named NAME and mark this new
6491 partial symtab as being an include of PST. */
6492
6493 static void
6494 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
6495 struct objfile *objfile)
6496 {
6497 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
6498
6499 if (!IS_ABSOLUTE_PATH (subpst->filename))
6500 {
6501 /* It shares objfile->objfile_obstack. */
6502 subpst->dirname = pst->dirname;
6503 }
6504
6505 subpst->textlow = 0;
6506 subpst->texthigh = 0;
6507
6508 subpst->dependencies
6509 = XOBNEW (&objfile->objfile_obstack, struct partial_symtab *);
6510 subpst->dependencies[0] = pst;
6511 subpst->number_of_dependencies = 1;
6512
6513 subpst->globals_offset = 0;
6514 subpst->n_global_syms = 0;
6515 subpst->statics_offset = 0;
6516 subpst->n_static_syms = 0;
6517 subpst->compunit_symtab = NULL;
6518 subpst->read_symtab = pst->read_symtab;
6519 subpst->readin = 0;
6520
6521 /* No private part is necessary for include psymtabs. This property
6522 can be used to differentiate between such include psymtabs and
6523 the regular ones. */
6524 subpst->read_symtab_private = NULL;
6525 }
6526
6527 /* Read the Line Number Program data and extract the list of files
6528 included by the source file represented by PST. Build an include
6529 partial symtab for each of these included files. */
6530
6531 static void
6532 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
6533 struct die_info *die,
6534 struct partial_symtab *pst)
6535 {
6536 line_header_up lh;
6537 struct attribute *attr;
6538
6539 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
6540 if (attr)
6541 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
6542 if (lh == NULL)
6543 return; /* No linetable, so no includes. */
6544
6545 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
6546 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst, pst->textlow, 1);
6547 }
6548
6549 static hashval_t
6550 hash_signatured_type (const void *item)
6551 {
6552 const struct signatured_type *sig_type
6553 = (const struct signatured_type *) item;
6554
6555 /* This drops the top 32 bits of the signature, but is ok for a hash. */
6556 return sig_type->signature;
6557 }
6558
6559 static int
6560 eq_signatured_type (const void *item_lhs, const void *item_rhs)
6561 {
6562 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
6563 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
6564
6565 return lhs->signature == rhs->signature;
6566 }
6567
6568 /* Allocate a hash table for signatured types. */
6569
6570 static htab_t
6571 allocate_signatured_type_table (struct objfile *objfile)
6572 {
6573 return htab_create_alloc_ex (41,
6574 hash_signatured_type,
6575 eq_signatured_type,
6576 NULL,
6577 &objfile->objfile_obstack,
6578 hashtab_obstack_allocate,
6579 dummy_obstack_deallocate);
6580 }
6581
6582 /* A helper function to add a signatured type CU to a table. */
6583
6584 static int
6585 add_signatured_type_cu_to_table (void **slot, void *datum)
6586 {
6587 struct signatured_type *sigt = (struct signatured_type *) *slot;
6588 std::vector<signatured_type *> *all_type_units
6589 = (std::vector<signatured_type *> *) datum;
6590
6591 all_type_units->push_back (sigt);
6592
6593 return 1;
6594 }
6595
6596 /* A helper for create_debug_types_hash_table. Read types from SECTION
6597 and fill them into TYPES_HTAB. It will process only type units,
6598 therefore DW_UT_type. */
6599
6600 static void
6601 create_debug_type_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6602 struct dwo_file *dwo_file,
6603 dwarf2_section_info *section, htab_t &types_htab,
6604 rcuh_kind section_kind)
6605 {
6606 struct objfile *objfile = dwarf2_per_objfile->objfile;
6607 struct dwarf2_section_info *abbrev_section;
6608 bfd *abfd;
6609 const gdb_byte *info_ptr, *end_ptr;
6610
6611 abbrev_section = (dwo_file != NULL
6612 ? &dwo_file->sections.abbrev
6613 : &dwarf2_per_objfile->abbrev);
6614
6615 if (dwarf_read_debug)
6616 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
6617 get_section_name (section),
6618 get_section_file_name (abbrev_section));
6619
6620 dwarf2_read_section (objfile, section);
6621 info_ptr = section->buffer;
6622
6623 if (info_ptr == NULL)
6624 return;
6625
6626 /* We can't set abfd until now because the section may be empty or
6627 not present, in which case the bfd is unknown. */
6628 abfd = get_section_bfd_owner (section);
6629
6630 /* We don't use init_cutu_and_read_dies_simple, or some such, here
6631 because we don't need to read any dies: the signature is in the
6632 header. */
6633
6634 end_ptr = info_ptr + section->size;
6635 while (info_ptr < end_ptr)
6636 {
6637 struct signatured_type *sig_type;
6638 struct dwo_unit *dwo_tu;
6639 void **slot;
6640 const gdb_byte *ptr = info_ptr;
6641 struct comp_unit_head header;
6642 unsigned int length;
6643
6644 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
6645
6646 /* Initialize it due to a false compiler warning. */
6647 header.signature = -1;
6648 header.type_cu_offset_in_tu = (cu_offset) -1;
6649
6650 /* We need to read the type's signature in order to build the hash
6651 table, but we don't need anything else just yet. */
6652
6653 ptr = read_and_check_comp_unit_head (dwarf2_per_objfile, &header, section,
6654 abbrev_section, ptr, section_kind);
6655
6656 length = get_cu_length (&header);
6657
6658 /* Skip dummy type units. */
6659 if (ptr >= info_ptr + length
6660 || peek_abbrev_code (abfd, ptr) == 0
6661 || header.unit_type != DW_UT_type)
6662 {
6663 info_ptr += length;
6664 continue;
6665 }
6666
6667 if (types_htab == NULL)
6668 {
6669 if (dwo_file)
6670 types_htab = allocate_dwo_unit_table (objfile);
6671 else
6672 types_htab = allocate_signatured_type_table (objfile);
6673 }
6674
6675 if (dwo_file)
6676 {
6677 sig_type = NULL;
6678 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6679 struct dwo_unit);
6680 dwo_tu->dwo_file = dwo_file;
6681 dwo_tu->signature = header.signature;
6682 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
6683 dwo_tu->section = section;
6684 dwo_tu->sect_off = sect_off;
6685 dwo_tu->length = length;
6686 }
6687 else
6688 {
6689 /* N.B.: type_offset is not usable if this type uses a DWO file.
6690 The real type_offset is in the DWO file. */
6691 dwo_tu = NULL;
6692 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6693 struct signatured_type);
6694 sig_type->signature = header.signature;
6695 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
6696 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6697 sig_type->per_cu.is_debug_types = 1;
6698 sig_type->per_cu.section = section;
6699 sig_type->per_cu.sect_off = sect_off;
6700 sig_type->per_cu.length = length;
6701 }
6702
6703 slot = htab_find_slot (types_htab,
6704 dwo_file ? (void*) dwo_tu : (void *) sig_type,
6705 INSERT);
6706 gdb_assert (slot != NULL);
6707 if (*slot != NULL)
6708 {
6709 sect_offset dup_sect_off;
6710
6711 if (dwo_file)
6712 {
6713 const struct dwo_unit *dup_tu
6714 = (const struct dwo_unit *) *slot;
6715
6716 dup_sect_off = dup_tu->sect_off;
6717 }
6718 else
6719 {
6720 const struct signatured_type *dup_tu
6721 = (const struct signatured_type *) *slot;
6722
6723 dup_sect_off = dup_tu->per_cu.sect_off;
6724 }
6725
6726 complaint (_("debug type entry at offset %s is duplicate to"
6727 " the entry at offset %s, signature %s"),
6728 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
6729 hex_string (header.signature));
6730 }
6731 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
6732
6733 if (dwarf_read_debug > 1)
6734 fprintf_unfiltered (gdb_stdlog, " offset %s, signature %s\n",
6735 sect_offset_str (sect_off),
6736 hex_string (header.signature));
6737
6738 info_ptr += length;
6739 }
6740 }
6741
6742 /* Create the hash table of all entries in the .debug_types
6743 (or .debug_types.dwo) section(s).
6744 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
6745 otherwise it is NULL.
6746
6747 The result is a pointer to the hash table or NULL if there are no types.
6748
6749 Note: This function processes DWO files only, not DWP files. */
6750
6751 static void
6752 create_debug_types_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6753 struct dwo_file *dwo_file,
6754 VEC (dwarf2_section_info_def) *types,
6755 htab_t &types_htab)
6756 {
6757 int ix;
6758 struct dwarf2_section_info *section;
6759
6760 if (VEC_empty (dwarf2_section_info_def, types))
6761 return;
6762
6763 for (ix = 0;
6764 VEC_iterate (dwarf2_section_info_def, types, ix, section);
6765 ++ix)
6766 create_debug_type_hash_table (dwarf2_per_objfile, dwo_file, section,
6767 types_htab, rcuh_kind::TYPE);
6768 }
6769
6770 /* Create the hash table of all entries in the .debug_types section,
6771 and initialize all_type_units.
6772 The result is zero if there is an error (e.g. missing .debug_types section),
6773 otherwise non-zero. */
6774
6775 static int
6776 create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
6777 {
6778 htab_t types_htab = NULL;
6779
6780 create_debug_type_hash_table (dwarf2_per_objfile, NULL,
6781 &dwarf2_per_objfile->info, types_htab,
6782 rcuh_kind::COMPILE);
6783 create_debug_types_hash_table (dwarf2_per_objfile, NULL,
6784 dwarf2_per_objfile->types, types_htab);
6785 if (types_htab == NULL)
6786 {
6787 dwarf2_per_objfile->signatured_types = NULL;
6788 return 0;
6789 }
6790
6791 dwarf2_per_objfile->signatured_types = types_htab;
6792
6793 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
6794 dwarf2_per_objfile->all_type_units.reserve (htab_elements (types_htab));
6795
6796 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table,
6797 &dwarf2_per_objfile->all_type_units);
6798
6799 return 1;
6800 }
6801
6802 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
6803 If SLOT is non-NULL, it is the entry to use in the hash table.
6804 Otherwise we find one. */
6805
6806 static struct signatured_type *
6807 add_type_unit (struct dwarf2_per_objfile *dwarf2_per_objfile, ULONGEST sig,
6808 void **slot)
6809 {
6810 struct objfile *objfile = dwarf2_per_objfile->objfile;
6811
6812 if (dwarf2_per_objfile->all_type_units.size ()
6813 == dwarf2_per_objfile->all_type_units.capacity ())
6814 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
6815
6816 signatured_type *sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6817 struct signatured_type);
6818
6819 dwarf2_per_objfile->all_type_units.push_back (sig_type);
6820 sig_type->signature = sig;
6821 sig_type->per_cu.is_debug_types = 1;
6822 if (dwarf2_per_objfile->using_index)
6823 {
6824 sig_type->per_cu.v.quick =
6825 OBSTACK_ZALLOC (&objfile->objfile_obstack,
6826 struct dwarf2_per_cu_quick_data);
6827 }
6828
6829 if (slot == NULL)
6830 {
6831 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6832 sig_type, INSERT);
6833 }
6834 gdb_assert (*slot == NULL);
6835 *slot = sig_type;
6836 /* The rest of sig_type must be filled in by the caller. */
6837 return sig_type;
6838 }
6839
6840 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
6841 Fill in SIG_ENTRY with DWO_ENTRY. */
6842
6843 static void
6844 fill_in_sig_entry_from_dwo_entry (struct dwarf2_per_objfile *dwarf2_per_objfile,
6845 struct signatured_type *sig_entry,
6846 struct dwo_unit *dwo_entry)
6847 {
6848 /* Make sure we're not clobbering something we don't expect to. */
6849 gdb_assert (! sig_entry->per_cu.queued);
6850 gdb_assert (sig_entry->per_cu.cu == NULL);
6851 if (dwarf2_per_objfile->using_index)
6852 {
6853 gdb_assert (sig_entry->per_cu.v.quick != NULL);
6854 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6855 }
6856 else
6857 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
6858 gdb_assert (sig_entry->signature == dwo_entry->signature);
6859 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
6860 gdb_assert (sig_entry->type_unit_group == NULL);
6861 gdb_assert (sig_entry->dwo_unit == NULL);
6862
6863 sig_entry->per_cu.section = dwo_entry->section;
6864 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
6865 sig_entry->per_cu.length = dwo_entry->length;
6866 sig_entry->per_cu.reading_dwo_directly = 1;
6867 sig_entry->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6868 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
6869 sig_entry->dwo_unit = dwo_entry;
6870 }
6871
6872 /* Subroutine of lookup_signatured_type.
6873 If we haven't read the TU yet, create the signatured_type data structure
6874 for a TU to be read in directly from a DWO file, bypassing the stub.
6875 This is the "Stay in DWO Optimization": When there is no DWP file and we're
6876 using .gdb_index, then when reading a CU we want to stay in the DWO file
6877 containing that CU. Otherwise we could end up reading several other DWO
6878 files (due to comdat folding) to process the transitive closure of all the
6879 mentioned TUs, and that can be slow. The current DWO file will have every
6880 type signature that it needs.
6881 We only do this for .gdb_index because in the psymtab case we already have
6882 to read all the DWOs to build the type unit groups. */
6883
6884 static struct signatured_type *
6885 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6886 {
6887 struct dwarf2_per_objfile *dwarf2_per_objfile
6888 = cu->per_cu->dwarf2_per_objfile;
6889 struct objfile *objfile = dwarf2_per_objfile->objfile;
6890 struct dwo_file *dwo_file;
6891 struct dwo_unit find_dwo_entry, *dwo_entry;
6892 struct signatured_type find_sig_entry, *sig_entry;
6893 void **slot;
6894
6895 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6896
6897 /* If TU skeletons have been removed then we may not have read in any
6898 TUs yet. */
6899 if (dwarf2_per_objfile->signatured_types == NULL)
6900 {
6901 dwarf2_per_objfile->signatured_types
6902 = allocate_signatured_type_table (objfile);
6903 }
6904
6905 /* We only ever need to read in one copy of a signatured type.
6906 Use the global signatured_types array to do our own comdat-folding
6907 of types. If this is the first time we're reading this TU, and
6908 the TU has an entry in .gdb_index, replace the recorded data from
6909 .gdb_index with this TU. */
6910
6911 find_sig_entry.signature = sig;
6912 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6913 &find_sig_entry, INSERT);
6914 sig_entry = (struct signatured_type *) *slot;
6915
6916 /* We can get here with the TU already read, *or* in the process of being
6917 read. Don't reassign the global entry to point to this DWO if that's
6918 the case. Also note that if the TU is already being read, it may not
6919 have come from a DWO, the program may be a mix of Fission-compiled
6920 code and non-Fission-compiled code. */
6921
6922 /* Have we already tried to read this TU?
6923 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
6924 needn't exist in the global table yet). */
6925 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
6926 return sig_entry;
6927
6928 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
6929 dwo_unit of the TU itself. */
6930 dwo_file = cu->dwo_unit->dwo_file;
6931
6932 /* Ok, this is the first time we're reading this TU. */
6933 if (dwo_file->tus == NULL)
6934 return NULL;
6935 find_dwo_entry.signature = sig;
6936 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
6937 if (dwo_entry == NULL)
6938 return NULL;
6939
6940 /* If the global table doesn't have an entry for this TU, add one. */
6941 if (sig_entry == NULL)
6942 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
6943
6944 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
6945 sig_entry->per_cu.tu_read = 1;
6946 return sig_entry;
6947 }
6948
6949 /* Subroutine of lookup_signatured_type.
6950 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
6951 then try the DWP file. If the TU stub (skeleton) has been removed then
6952 it won't be in .gdb_index. */
6953
6954 static struct signatured_type *
6955 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6956 {
6957 struct dwarf2_per_objfile *dwarf2_per_objfile
6958 = cu->per_cu->dwarf2_per_objfile;
6959 struct objfile *objfile = dwarf2_per_objfile->objfile;
6960 struct dwp_file *dwp_file = get_dwp_file (dwarf2_per_objfile);
6961 struct dwo_unit *dwo_entry;
6962 struct signatured_type find_sig_entry, *sig_entry;
6963 void **slot;
6964
6965 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6966 gdb_assert (dwp_file != NULL);
6967
6968 /* If TU skeletons have been removed then we may not have read in any
6969 TUs yet. */
6970 if (dwarf2_per_objfile->signatured_types == NULL)
6971 {
6972 dwarf2_per_objfile->signatured_types
6973 = allocate_signatured_type_table (objfile);
6974 }
6975
6976 find_sig_entry.signature = sig;
6977 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6978 &find_sig_entry, INSERT);
6979 sig_entry = (struct signatured_type *) *slot;
6980
6981 /* Have we already tried to read this TU?
6982 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
6983 needn't exist in the global table yet). */
6984 if (sig_entry != NULL)
6985 return sig_entry;
6986
6987 if (dwp_file->tus == NULL)
6988 return NULL;
6989 dwo_entry = lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, NULL,
6990 sig, 1 /* is_debug_types */);
6991 if (dwo_entry == NULL)
6992 return NULL;
6993
6994 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
6995 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
6996
6997 return sig_entry;
6998 }
6999
7000 /* Lookup a signature based type for DW_FORM_ref_sig8.
7001 Returns NULL if signature SIG is not present in the table.
7002 It is up to the caller to complain about this. */
7003
7004 static struct signatured_type *
7005 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7006 {
7007 struct dwarf2_per_objfile *dwarf2_per_objfile
7008 = cu->per_cu->dwarf2_per_objfile;
7009
7010 if (cu->dwo_unit
7011 && dwarf2_per_objfile->using_index)
7012 {
7013 /* We're in a DWO/DWP file, and we're using .gdb_index.
7014 These cases require special processing. */
7015 if (get_dwp_file (dwarf2_per_objfile) == NULL)
7016 return lookup_dwo_signatured_type (cu, sig);
7017 else
7018 return lookup_dwp_signatured_type (cu, sig);
7019 }
7020 else
7021 {
7022 struct signatured_type find_entry, *entry;
7023
7024 if (dwarf2_per_objfile->signatured_types == NULL)
7025 return NULL;
7026 find_entry.signature = sig;
7027 entry = ((struct signatured_type *)
7028 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
7029 return entry;
7030 }
7031 }
7032 \f
7033 /* Low level DIE reading support. */
7034
7035 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
7036
7037 static void
7038 init_cu_die_reader (struct die_reader_specs *reader,
7039 struct dwarf2_cu *cu,
7040 struct dwarf2_section_info *section,
7041 struct dwo_file *dwo_file,
7042 struct abbrev_table *abbrev_table)
7043 {
7044 gdb_assert (section->readin && section->buffer != NULL);
7045 reader->abfd = get_section_bfd_owner (section);
7046 reader->cu = cu;
7047 reader->dwo_file = dwo_file;
7048 reader->die_section = section;
7049 reader->buffer = section->buffer;
7050 reader->buffer_end = section->buffer + section->size;
7051 reader->comp_dir = NULL;
7052 reader->abbrev_table = abbrev_table;
7053 }
7054
7055 /* Subroutine of init_cutu_and_read_dies to simplify it.
7056 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
7057 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
7058 already.
7059
7060 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
7061 from it to the DIE in the DWO. If NULL we are skipping the stub.
7062 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
7063 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
7064 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
7065 STUB_COMP_DIR may be non-NULL.
7066 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
7067 are filled in with the info of the DIE from the DWO file.
7068 *RESULT_DWO_ABBREV_TABLE will be filled in with the abbrev table allocated
7069 from the dwo. Since *RESULT_READER references this abbrev table, it must be
7070 kept around for at least as long as *RESULT_READER.
7071
7072 The result is non-zero if a valid (non-dummy) DIE was found. */
7073
7074 static int
7075 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
7076 struct dwo_unit *dwo_unit,
7077 struct die_info *stub_comp_unit_die,
7078 const char *stub_comp_dir,
7079 struct die_reader_specs *result_reader,
7080 const gdb_byte **result_info_ptr,
7081 struct die_info **result_comp_unit_die,
7082 int *result_has_children,
7083 abbrev_table_up *result_dwo_abbrev_table)
7084 {
7085 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7086 struct objfile *objfile = dwarf2_per_objfile->objfile;
7087 struct dwarf2_cu *cu = this_cu->cu;
7088 bfd *abfd;
7089 const gdb_byte *begin_info_ptr, *info_ptr;
7090 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
7091 int i,num_extra_attrs;
7092 struct dwarf2_section_info *dwo_abbrev_section;
7093 struct attribute *attr;
7094 struct die_info *comp_unit_die;
7095
7096 /* At most one of these may be provided. */
7097 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
7098
7099 /* These attributes aren't processed until later:
7100 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
7101 DW_AT_comp_dir is used now, to find the DWO file, but it is also
7102 referenced later. However, these attributes are found in the stub
7103 which we won't have later. In order to not impose this complication
7104 on the rest of the code, we read them here and copy them to the
7105 DWO CU/TU die. */
7106
7107 stmt_list = NULL;
7108 low_pc = NULL;
7109 high_pc = NULL;
7110 ranges = NULL;
7111 comp_dir = NULL;
7112
7113 if (stub_comp_unit_die != NULL)
7114 {
7115 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
7116 DWO file. */
7117 if (! this_cu->is_debug_types)
7118 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
7119 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
7120 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
7121 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
7122 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
7123
7124 /* There should be a DW_AT_addr_base attribute here (if needed).
7125 We need the value before we can process DW_FORM_GNU_addr_index. */
7126 cu->addr_base = 0;
7127 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
7128 if (attr)
7129 cu->addr_base = DW_UNSND (attr);
7130
7131 /* There should be a DW_AT_ranges_base attribute here (if needed).
7132 We need the value before we can process DW_AT_ranges. */
7133 cu->ranges_base = 0;
7134 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
7135 if (attr)
7136 cu->ranges_base = DW_UNSND (attr);
7137 }
7138 else if (stub_comp_dir != NULL)
7139 {
7140 /* Reconstruct the comp_dir attribute to simplify the code below. */
7141 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
7142 comp_dir->name = DW_AT_comp_dir;
7143 comp_dir->form = DW_FORM_string;
7144 DW_STRING_IS_CANONICAL (comp_dir) = 0;
7145 DW_STRING (comp_dir) = stub_comp_dir;
7146 }
7147
7148 /* Set up for reading the DWO CU/TU. */
7149 cu->dwo_unit = dwo_unit;
7150 dwarf2_section_info *section = dwo_unit->section;
7151 dwarf2_read_section (objfile, section);
7152 abfd = get_section_bfd_owner (section);
7153 begin_info_ptr = info_ptr = (section->buffer
7154 + to_underlying (dwo_unit->sect_off));
7155 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
7156
7157 if (this_cu->is_debug_types)
7158 {
7159 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
7160
7161 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7162 &cu->header, section,
7163 dwo_abbrev_section,
7164 info_ptr, rcuh_kind::TYPE);
7165 /* This is not an assert because it can be caused by bad debug info. */
7166 if (sig_type->signature != cu->header.signature)
7167 {
7168 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
7169 " TU at offset %s [in module %s]"),
7170 hex_string (sig_type->signature),
7171 hex_string (cu->header.signature),
7172 sect_offset_str (dwo_unit->sect_off),
7173 bfd_get_filename (abfd));
7174 }
7175 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7176 /* For DWOs coming from DWP files, we don't know the CU length
7177 nor the type's offset in the TU until now. */
7178 dwo_unit->length = get_cu_length (&cu->header);
7179 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
7180
7181 /* Establish the type offset that can be used to lookup the type.
7182 For DWO files, we don't know it until now. */
7183 sig_type->type_offset_in_section
7184 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
7185 }
7186 else
7187 {
7188 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7189 &cu->header, section,
7190 dwo_abbrev_section,
7191 info_ptr, rcuh_kind::COMPILE);
7192 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7193 /* For DWOs coming from DWP files, we don't know the CU length
7194 until now. */
7195 dwo_unit->length = get_cu_length (&cu->header);
7196 }
7197
7198 *result_dwo_abbrev_table
7199 = abbrev_table_read_table (dwarf2_per_objfile, dwo_abbrev_section,
7200 cu->header.abbrev_sect_off);
7201 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file,
7202 result_dwo_abbrev_table->get ());
7203
7204 /* Read in the die, but leave space to copy over the attributes
7205 from the stub. This has the benefit of simplifying the rest of
7206 the code - all the work to maintain the illusion of a single
7207 DW_TAG_{compile,type}_unit DIE is done here. */
7208 num_extra_attrs = ((stmt_list != NULL)
7209 + (low_pc != NULL)
7210 + (high_pc != NULL)
7211 + (ranges != NULL)
7212 + (comp_dir != NULL));
7213 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
7214 result_has_children, num_extra_attrs);
7215
7216 /* Copy over the attributes from the stub to the DIE we just read in. */
7217 comp_unit_die = *result_comp_unit_die;
7218 i = comp_unit_die->num_attrs;
7219 if (stmt_list != NULL)
7220 comp_unit_die->attrs[i++] = *stmt_list;
7221 if (low_pc != NULL)
7222 comp_unit_die->attrs[i++] = *low_pc;
7223 if (high_pc != NULL)
7224 comp_unit_die->attrs[i++] = *high_pc;
7225 if (ranges != NULL)
7226 comp_unit_die->attrs[i++] = *ranges;
7227 if (comp_dir != NULL)
7228 comp_unit_die->attrs[i++] = *comp_dir;
7229 comp_unit_die->num_attrs += num_extra_attrs;
7230
7231 if (dwarf_die_debug)
7232 {
7233 fprintf_unfiltered (gdb_stdlog,
7234 "Read die from %s@0x%x of %s:\n",
7235 get_section_name (section),
7236 (unsigned) (begin_info_ptr - section->buffer),
7237 bfd_get_filename (abfd));
7238 dump_die (comp_unit_die, dwarf_die_debug);
7239 }
7240
7241 /* Save the comp_dir attribute. If there is no DWP file then we'll read
7242 TUs by skipping the stub and going directly to the entry in the DWO file.
7243 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
7244 to get it via circuitous means. Blech. */
7245 if (comp_dir != NULL)
7246 result_reader->comp_dir = DW_STRING (comp_dir);
7247
7248 /* Skip dummy compilation units. */
7249 if (info_ptr >= begin_info_ptr + dwo_unit->length
7250 || peek_abbrev_code (abfd, info_ptr) == 0)
7251 return 0;
7252
7253 *result_info_ptr = info_ptr;
7254 return 1;
7255 }
7256
7257 /* Subroutine of init_cutu_and_read_dies to simplify it.
7258 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
7259 Returns NULL if the specified DWO unit cannot be found. */
7260
7261 static struct dwo_unit *
7262 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
7263 struct die_info *comp_unit_die)
7264 {
7265 struct dwarf2_cu *cu = this_cu->cu;
7266 ULONGEST signature;
7267 struct dwo_unit *dwo_unit;
7268 const char *comp_dir, *dwo_name;
7269
7270 gdb_assert (cu != NULL);
7271
7272 /* Yeah, we look dwo_name up again, but it simplifies the code. */
7273 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7274 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7275
7276 if (this_cu->is_debug_types)
7277 {
7278 struct signatured_type *sig_type;
7279
7280 /* Since this_cu is the first member of struct signatured_type,
7281 we can go from a pointer to one to a pointer to the other. */
7282 sig_type = (struct signatured_type *) this_cu;
7283 signature = sig_type->signature;
7284 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
7285 }
7286 else
7287 {
7288 struct attribute *attr;
7289
7290 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
7291 if (! attr)
7292 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
7293 " [in module %s]"),
7294 dwo_name, objfile_name (this_cu->dwarf2_per_objfile->objfile));
7295 signature = DW_UNSND (attr);
7296 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
7297 signature);
7298 }
7299
7300 return dwo_unit;
7301 }
7302
7303 /* Subroutine of init_cutu_and_read_dies to simplify it.
7304 See it for a description of the parameters.
7305 Read a TU directly from a DWO file, bypassing the stub. */
7306
7307 static void
7308 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
7309 int use_existing_cu, int keep,
7310 die_reader_func_ftype *die_reader_func,
7311 void *data)
7312 {
7313 std::unique_ptr<dwarf2_cu> new_cu;
7314 struct signatured_type *sig_type;
7315 struct die_reader_specs reader;
7316 const gdb_byte *info_ptr;
7317 struct die_info *comp_unit_die;
7318 int has_children;
7319 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7320
7321 /* Verify we can do the following downcast, and that we have the
7322 data we need. */
7323 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
7324 sig_type = (struct signatured_type *) this_cu;
7325 gdb_assert (sig_type->dwo_unit != NULL);
7326
7327 if (use_existing_cu && this_cu->cu != NULL)
7328 {
7329 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
7330 /* There's no need to do the rereading_dwo_cu handling that
7331 init_cutu_and_read_dies does since we don't read the stub. */
7332 }
7333 else
7334 {
7335 /* If !use_existing_cu, this_cu->cu must be NULL. */
7336 gdb_assert (this_cu->cu == NULL);
7337 new_cu.reset (new dwarf2_cu (this_cu));
7338 }
7339
7340 /* A future optimization, if needed, would be to use an existing
7341 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
7342 could share abbrev tables. */
7343
7344 /* The abbreviation table used by READER, this must live at least as long as
7345 READER. */
7346 abbrev_table_up dwo_abbrev_table;
7347
7348 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
7349 NULL /* stub_comp_unit_die */,
7350 sig_type->dwo_unit->dwo_file->comp_dir,
7351 &reader, &info_ptr,
7352 &comp_unit_die, &has_children,
7353 &dwo_abbrev_table) == 0)
7354 {
7355 /* Dummy die. */
7356 return;
7357 }
7358
7359 /* All the "real" work is done here. */
7360 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7361
7362 /* This duplicates the code in init_cutu_and_read_dies,
7363 but the alternative is making the latter more complex.
7364 This function is only for the special case of using DWO files directly:
7365 no point in overly complicating the general case just to handle this. */
7366 if (new_cu != NULL && keep)
7367 {
7368 /* Link this CU into read_in_chain. */
7369 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7370 dwarf2_per_objfile->read_in_chain = this_cu;
7371 /* The chain owns it now. */
7372 new_cu.release ();
7373 }
7374 }
7375
7376 /* Initialize a CU (or TU) and read its DIEs.
7377 If the CU defers to a DWO file, read the DWO file as well.
7378
7379 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
7380 Otherwise the table specified in the comp unit header is read in and used.
7381 This is an optimization for when we already have the abbrev table.
7382
7383 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
7384 Otherwise, a new CU is allocated with xmalloc.
7385
7386 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
7387 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
7388
7389 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7390 linker) then DIE_READER_FUNC will not get called. */
7391
7392 static void
7393 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
7394 struct abbrev_table *abbrev_table,
7395 int use_existing_cu, int keep,
7396 bool skip_partial,
7397 die_reader_func_ftype *die_reader_func,
7398 void *data)
7399 {
7400 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7401 struct objfile *objfile = dwarf2_per_objfile->objfile;
7402 struct dwarf2_section_info *section = this_cu->section;
7403 bfd *abfd = get_section_bfd_owner (section);
7404 struct dwarf2_cu *cu;
7405 const gdb_byte *begin_info_ptr, *info_ptr;
7406 struct die_reader_specs reader;
7407 struct die_info *comp_unit_die;
7408 int has_children;
7409 struct attribute *attr;
7410 struct signatured_type *sig_type = NULL;
7411 struct dwarf2_section_info *abbrev_section;
7412 /* Non-zero if CU currently points to a DWO file and we need to
7413 reread it. When this happens we need to reread the skeleton die
7414 before we can reread the DWO file (this only applies to CUs, not TUs). */
7415 int rereading_dwo_cu = 0;
7416
7417 if (dwarf_die_debug)
7418 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7419 this_cu->is_debug_types ? "type" : "comp",
7420 sect_offset_str (this_cu->sect_off));
7421
7422 if (use_existing_cu)
7423 gdb_assert (keep);
7424
7425 /* If we're reading a TU directly from a DWO file, including a virtual DWO
7426 file (instead of going through the stub), short-circuit all of this. */
7427 if (this_cu->reading_dwo_directly)
7428 {
7429 /* Narrow down the scope of possibilities to have to understand. */
7430 gdb_assert (this_cu->is_debug_types);
7431 gdb_assert (abbrev_table == NULL);
7432 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
7433 die_reader_func, data);
7434 return;
7435 }
7436
7437 /* This is cheap if the section is already read in. */
7438 dwarf2_read_section (objfile, section);
7439
7440 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7441
7442 abbrev_section = get_abbrev_section_for_cu (this_cu);
7443
7444 std::unique_ptr<dwarf2_cu> new_cu;
7445 if (use_existing_cu && this_cu->cu != NULL)
7446 {
7447 cu = this_cu->cu;
7448 /* If this CU is from a DWO file we need to start over, we need to
7449 refetch the attributes from the skeleton CU.
7450 This could be optimized by retrieving those attributes from when we
7451 were here the first time: the previous comp_unit_die was stored in
7452 comp_unit_obstack. But there's no data yet that we need this
7453 optimization. */
7454 if (cu->dwo_unit != NULL)
7455 rereading_dwo_cu = 1;
7456 }
7457 else
7458 {
7459 /* If !use_existing_cu, this_cu->cu must be NULL. */
7460 gdb_assert (this_cu->cu == NULL);
7461 new_cu.reset (new dwarf2_cu (this_cu));
7462 cu = new_cu.get ();
7463 }
7464
7465 /* Get the header. */
7466 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
7467 {
7468 /* We already have the header, there's no need to read it in again. */
7469 info_ptr += to_underlying (cu->header.first_die_cu_offset);
7470 }
7471 else
7472 {
7473 if (this_cu->is_debug_types)
7474 {
7475 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7476 &cu->header, section,
7477 abbrev_section, info_ptr,
7478 rcuh_kind::TYPE);
7479
7480 /* Since per_cu is the first member of struct signatured_type,
7481 we can go from a pointer to one to a pointer to the other. */
7482 sig_type = (struct signatured_type *) this_cu;
7483 gdb_assert (sig_type->signature == cu->header.signature);
7484 gdb_assert (sig_type->type_offset_in_tu
7485 == cu->header.type_cu_offset_in_tu);
7486 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7487
7488 /* LENGTH has not been set yet for type units if we're
7489 using .gdb_index. */
7490 this_cu->length = get_cu_length (&cu->header);
7491
7492 /* Establish the type offset that can be used to lookup the type. */
7493 sig_type->type_offset_in_section =
7494 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
7495
7496 this_cu->dwarf_version = cu->header.version;
7497 }
7498 else
7499 {
7500 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7501 &cu->header, section,
7502 abbrev_section,
7503 info_ptr,
7504 rcuh_kind::COMPILE);
7505
7506 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7507 gdb_assert (this_cu->length == get_cu_length (&cu->header));
7508 this_cu->dwarf_version = cu->header.version;
7509 }
7510 }
7511
7512 /* Skip dummy compilation units. */
7513 if (info_ptr >= begin_info_ptr + this_cu->length
7514 || peek_abbrev_code (abfd, info_ptr) == 0)
7515 return;
7516
7517 /* If we don't have them yet, read the abbrevs for this compilation unit.
7518 And if we need to read them now, make sure they're freed when we're
7519 done (own the table through ABBREV_TABLE_HOLDER). */
7520 abbrev_table_up abbrev_table_holder;
7521 if (abbrev_table != NULL)
7522 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
7523 else
7524 {
7525 abbrev_table_holder
7526 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7527 cu->header.abbrev_sect_off);
7528 abbrev_table = abbrev_table_holder.get ();
7529 }
7530
7531 /* Read the top level CU/TU die. */
7532 init_cu_die_reader (&reader, cu, section, NULL, abbrev_table);
7533 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7534
7535 if (skip_partial && comp_unit_die->tag == DW_TAG_partial_unit)
7536 return;
7537
7538 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
7539 from the DWO file. read_cutu_die_from_dwo will allocate the abbreviation
7540 table from the DWO file and pass the ownership over to us. It will be
7541 referenced from READER, so we must make sure to free it after we're done
7542 with READER.
7543
7544 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
7545 DWO CU, that this test will fail (the attribute will not be present). */
7546 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7547 abbrev_table_up dwo_abbrev_table;
7548 if (attr)
7549 {
7550 struct dwo_unit *dwo_unit;
7551 struct die_info *dwo_comp_unit_die;
7552
7553 if (has_children)
7554 {
7555 complaint (_("compilation unit with DW_AT_GNU_dwo_name"
7556 " has children (offset %s) [in module %s]"),
7557 sect_offset_str (this_cu->sect_off),
7558 bfd_get_filename (abfd));
7559 }
7560 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
7561 if (dwo_unit != NULL)
7562 {
7563 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
7564 comp_unit_die, NULL,
7565 &reader, &info_ptr,
7566 &dwo_comp_unit_die, &has_children,
7567 &dwo_abbrev_table) == 0)
7568 {
7569 /* Dummy die. */
7570 return;
7571 }
7572 comp_unit_die = dwo_comp_unit_die;
7573 }
7574 else
7575 {
7576 /* Yikes, we couldn't find the rest of the DIE, we only have
7577 the stub. A complaint has already been logged. There's
7578 not much more we can do except pass on the stub DIE to
7579 die_reader_func. We don't want to throw an error on bad
7580 debug info. */
7581 }
7582 }
7583
7584 /* All of the above is setup for this call. Yikes. */
7585 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7586
7587 /* Done, clean up. */
7588 if (new_cu != NULL && keep)
7589 {
7590 /* Link this CU into read_in_chain. */
7591 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7592 dwarf2_per_objfile->read_in_chain = this_cu;
7593 /* The chain owns it now. */
7594 new_cu.release ();
7595 }
7596 }
7597
7598 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
7599 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
7600 to have already done the lookup to find the DWO file).
7601
7602 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
7603 THIS_CU->is_debug_types, but nothing else.
7604
7605 We fill in THIS_CU->length.
7606
7607 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7608 linker) then DIE_READER_FUNC will not get called.
7609
7610 THIS_CU->cu is always freed when done.
7611 This is done in order to not leave THIS_CU->cu in a state where we have
7612 to care whether it refers to the "main" CU or the DWO CU. */
7613
7614 static void
7615 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
7616 struct dwo_file *dwo_file,
7617 die_reader_func_ftype *die_reader_func,
7618 void *data)
7619 {
7620 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7621 struct objfile *objfile = dwarf2_per_objfile->objfile;
7622 struct dwarf2_section_info *section = this_cu->section;
7623 bfd *abfd = get_section_bfd_owner (section);
7624 struct dwarf2_section_info *abbrev_section;
7625 const gdb_byte *begin_info_ptr, *info_ptr;
7626 struct die_reader_specs reader;
7627 struct die_info *comp_unit_die;
7628 int has_children;
7629
7630 if (dwarf_die_debug)
7631 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7632 this_cu->is_debug_types ? "type" : "comp",
7633 sect_offset_str (this_cu->sect_off));
7634
7635 gdb_assert (this_cu->cu == NULL);
7636
7637 abbrev_section = (dwo_file != NULL
7638 ? &dwo_file->sections.abbrev
7639 : get_abbrev_section_for_cu (this_cu));
7640
7641 /* This is cheap if the section is already read in. */
7642 dwarf2_read_section (objfile, section);
7643
7644 struct dwarf2_cu cu (this_cu);
7645
7646 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7647 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7648 &cu.header, section,
7649 abbrev_section, info_ptr,
7650 (this_cu->is_debug_types
7651 ? rcuh_kind::TYPE
7652 : rcuh_kind::COMPILE));
7653
7654 this_cu->length = get_cu_length (&cu.header);
7655
7656 /* Skip dummy compilation units. */
7657 if (info_ptr >= begin_info_ptr + this_cu->length
7658 || peek_abbrev_code (abfd, info_ptr) == 0)
7659 return;
7660
7661 abbrev_table_up abbrev_table
7662 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7663 cu.header.abbrev_sect_off);
7664
7665 init_cu_die_reader (&reader, &cu, section, dwo_file, abbrev_table.get ());
7666 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7667
7668 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7669 }
7670
7671 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
7672 does not lookup the specified DWO file.
7673 This cannot be used to read DWO files.
7674
7675 THIS_CU->cu is always freed when done.
7676 This is done in order to not leave THIS_CU->cu in a state where we have
7677 to care whether it refers to the "main" CU or the DWO CU.
7678 We can revisit this if the data shows there's a performance issue. */
7679
7680 static void
7681 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
7682 die_reader_func_ftype *die_reader_func,
7683 void *data)
7684 {
7685 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
7686 }
7687 \f
7688 /* Type Unit Groups.
7689
7690 Type Unit Groups are a way to collapse the set of all TUs (type units) into
7691 a more manageable set. The grouping is done by DW_AT_stmt_list entry
7692 so that all types coming from the same compilation (.o file) are grouped
7693 together. A future step could be to put the types in the same symtab as
7694 the CU the types ultimately came from. */
7695
7696 static hashval_t
7697 hash_type_unit_group (const void *item)
7698 {
7699 const struct type_unit_group *tu_group
7700 = (const struct type_unit_group *) item;
7701
7702 return hash_stmt_list_entry (&tu_group->hash);
7703 }
7704
7705 static int
7706 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
7707 {
7708 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
7709 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
7710
7711 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
7712 }
7713
7714 /* Allocate a hash table for type unit groups. */
7715
7716 static htab_t
7717 allocate_type_unit_groups_table (struct objfile *objfile)
7718 {
7719 return htab_create_alloc_ex (3,
7720 hash_type_unit_group,
7721 eq_type_unit_group,
7722 NULL,
7723 &objfile->objfile_obstack,
7724 hashtab_obstack_allocate,
7725 dummy_obstack_deallocate);
7726 }
7727
7728 /* Type units that don't have DW_AT_stmt_list are grouped into their own
7729 partial symtabs. We combine several TUs per psymtab to not let the size
7730 of any one psymtab grow too big. */
7731 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
7732 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
7733
7734 /* Helper routine for get_type_unit_group.
7735 Create the type_unit_group object used to hold one or more TUs. */
7736
7737 static struct type_unit_group *
7738 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
7739 {
7740 struct dwarf2_per_objfile *dwarf2_per_objfile
7741 = cu->per_cu->dwarf2_per_objfile;
7742 struct objfile *objfile = dwarf2_per_objfile->objfile;
7743 struct dwarf2_per_cu_data *per_cu;
7744 struct type_unit_group *tu_group;
7745
7746 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7747 struct type_unit_group);
7748 per_cu = &tu_group->per_cu;
7749 per_cu->dwarf2_per_objfile = dwarf2_per_objfile;
7750
7751 if (dwarf2_per_objfile->using_index)
7752 {
7753 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7754 struct dwarf2_per_cu_quick_data);
7755 }
7756 else
7757 {
7758 unsigned int line_offset = to_underlying (line_offset_struct);
7759 struct partial_symtab *pst;
7760 char *name;
7761
7762 /* Give the symtab a useful name for debug purposes. */
7763 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
7764 name = xstrprintf ("<type_units_%d>",
7765 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
7766 else
7767 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
7768
7769 pst = create_partial_symtab (per_cu, name);
7770 pst->anonymous = 1;
7771
7772 xfree (name);
7773 }
7774
7775 tu_group->hash.dwo_unit = cu->dwo_unit;
7776 tu_group->hash.line_sect_off = line_offset_struct;
7777
7778 return tu_group;
7779 }
7780
7781 /* Look up the type_unit_group for type unit CU, and create it if necessary.
7782 STMT_LIST is a DW_AT_stmt_list attribute. */
7783
7784 static struct type_unit_group *
7785 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
7786 {
7787 struct dwarf2_per_objfile *dwarf2_per_objfile
7788 = cu->per_cu->dwarf2_per_objfile;
7789 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7790 struct type_unit_group *tu_group;
7791 void **slot;
7792 unsigned int line_offset;
7793 struct type_unit_group type_unit_group_for_lookup;
7794
7795 if (dwarf2_per_objfile->type_unit_groups == NULL)
7796 {
7797 dwarf2_per_objfile->type_unit_groups =
7798 allocate_type_unit_groups_table (dwarf2_per_objfile->objfile);
7799 }
7800
7801 /* Do we need to create a new group, or can we use an existing one? */
7802
7803 if (stmt_list)
7804 {
7805 line_offset = DW_UNSND (stmt_list);
7806 ++tu_stats->nr_symtab_sharers;
7807 }
7808 else
7809 {
7810 /* Ugh, no stmt_list. Rare, but we have to handle it.
7811 We can do various things here like create one group per TU or
7812 spread them over multiple groups to split up the expansion work.
7813 To avoid worst case scenarios (too many groups or too large groups)
7814 we, umm, group them in bunches. */
7815 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
7816 | (tu_stats->nr_stmt_less_type_units
7817 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
7818 ++tu_stats->nr_stmt_less_type_units;
7819 }
7820
7821 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
7822 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
7823 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
7824 &type_unit_group_for_lookup, INSERT);
7825 if (*slot != NULL)
7826 {
7827 tu_group = (struct type_unit_group *) *slot;
7828 gdb_assert (tu_group != NULL);
7829 }
7830 else
7831 {
7832 sect_offset line_offset_struct = (sect_offset) line_offset;
7833 tu_group = create_type_unit_group (cu, line_offset_struct);
7834 *slot = tu_group;
7835 ++tu_stats->nr_symtabs;
7836 }
7837
7838 return tu_group;
7839 }
7840 \f
7841 /* Partial symbol tables. */
7842
7843 /* Create a psymtab named NAME and assign it to PER_CU.
7844
7845 The caller must fill in the following details:
7846 dirname, textlow, texthigh. */
7847
7848 static struct partial_symtab *
7849 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
7850 {
7851 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
7852 struct partial_symtab *pst;
7853
7854 pst = start_psymtab_common (objfile, name, 0,
7855 objfile->global_psymbols,
7856 objfile->static_psymbols);
7857
7858 pst->psymtabs_addrmap_supported = 1;
7859
7860 /* This is the glue that links PST into GDB's symbol API. */
7861 pst->read_symtab_private = per_cu;
7862 pst->read_symtab = dwarf2_read_symtab;
7863 per_cu->v.psymtab = pst;
7864
7865 return pst;
7866 }
7867
7868 /* The DATA object passed to process_psymtab_comp_unit_reader has this
7869 type. */
7870
7871 struct process_psymtab_comp_unit_data
7872 {
7873 /* True if we are reading a DW_TAG_partial_unit. */
7874
7875 int want_partial_unit;
7876
7877 /* The "pretend" language that is used if the CU doesn't declare a
7878 language. */
7879
7880 enum language pretend_language;
7881 };
7882
7883 /* die_reader_func for process_psymtab_comp_unit. */
7884
7885 static void
7886 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
7887 const gdb_byte *info_ptr,
7888 struct die_info *comp_unit_die,
7889 int has_children,
7890 void *data)
7891 {
7892 struct dwarf2_cu *cu = reader->cu;
7893 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
7894 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7895 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7896 CORE_ADDR baseaddr;
7897 CORE_ADDR best_lowpc = 0, best_highpc = 0;
7898 struct partial_symtab *pst;
7899 enum pc_bounds_kind cu_bounds_kind;
7900 const char *filename;
7901 struct process_psymtab_comp_unit_data *info
7902 = (struct process_psymtab_comp_unit_data *) data;
7903
7904 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
7905 return;
7906
7907 gdb_assert (! per_cu->is_debug_types);
7908
7909 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
7910
7911 /* Allocate a new partial symbol table structure. */
7912 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
7913 if (filename == NULL)
7914 filename = "";
7915
7916 pst = create_partial_symtab (per_cu, filename);
7917
7918 /* This must be done before calling dwarf2_build_include_psymtabs. */
7919 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7920
7921 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7922
7923 dwarf2_find_base_address (comp_unit_die, cu);
7924
7925 /* Possibly set the default values of LOWPC and HIGHPC from
7926 `DW_AT_ranges'. */
7927 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
7928 &best_highpc, cu, pst);
7929 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
7930 /* Store the contiguous range if it is not empty; it can be empty for
7931 CUs with no code. */
7932 addrmap_set_empty (objfile->psymtabs_addrmap,
7933 gdbarch_adjust_dwarf2_addr (gdbarch,
7934 best_lowpc + baseaddr),
7935 gdbarch_adjust_dwarf2_addr (gdbarch,
7936 best_highpc + baseaddr) - 1,
7937 pst);
7938
7939 /* Check if comp unit has_children.
7940 If so, read the rest of the partial symbols from this comp unit.
7941 If not, there's no more debug_info for this comp unit. */
7942 if (has_children)
7943 {
7944 struct partial_die_info *first_die;
7945 CORE_ADDR lowpc, highpc;
7946
7947 lowpc = ((CORE_ADDR) -1);
7948 highpc = ((CORE_ADDR) 0);
7949
7950 first_die = load_partial_dies (reader, info_ptr, 1);
7951
7952 scan_partial_symbols (first_die, &lowpc, &highpc,
7953 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
7954
7955 /* If we didn't find a lowpc, set it to highpc to avoid
7956 complaints from `maint check'. */
7957 if (lowpc == ((CORE_ADDR) -1))
7958 lowpc = highpc;
7959
7960 /* If the compilation unit didn't have an explicit address range,
7961 then use the information extracted from its child dies. */
7962 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
7963 {
7964 best_lowpc = lowpc;
7965 best_highpc = highpc;
7966 }
7967 }
7968 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
7969 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
7970
7971 end_psymtab_common (objfile, pst);
7972
7973 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
7974 {
7975 int i;
7976 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
7977 struct dwarf2_per_cu_data *iter;
7978
7979 /* Fill in 'dependencies' here; we fill in 'users' in a
7980 post-pass. */
7981 pst->number_of_dependencies = len;
7982 pst->dependencies =
7983 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
7984 for (i = 0;
7985 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
7986 i, iter);
7987 ++i)
7988 pst->dependencies[i] = iter->v.psymtab;
7989
7990 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
7991 }
7992
7993 /* Get the list of files included in the current compilation unit,
7994 and build a psymtab for each of them. */
7995 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
7996
7997 if (dwarf_read_debug)
7998 {
7999 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8000
8001 fprintf_unfiltered (gdb_stdlog,
8002 "Psymtab for %s unit @%s: %s - %s"
8003 ", %d global, %d static syms\n",
8004 per_cu->is_debug_types ? "type" : "comp",
8005 sect_offset_str (per_cu->sect_off),
8006 paddress (gdbarch, pst->textlow),
8007 paddress (gdbarch, pst->texthigh),
8008 pst->n_global_syms, pst->n_static_syms);
8009 }
8010 }
8011
8012 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8013 Process compilation unit THIS_CU for a psymtab. */
8014
8015 static void
8016 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
8017 int want_partial_unit,
8018 enum language pretend_language)
8019 {
8020 /* If this compilation unit was already read in, free the
8021 cached copy in order to read it in again. This is
8022 necessary because we skipped some symbols when we first
8023 read in the compilation unit (see load_partial_dies).
8024 This problem could be avoided, but the benefit is unclear. */
8025 if (this_cu->cu != NULL)
8026 free_one_cached_comp_unit (this_cu);
8027
8028 if (this_cu->is_debug_types)
8029 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8030 build_type_psymtabs_reader, NULL);
8031 else
8032 {
8033 process_psymtab_comp_unit_data info;
8034 info.want_partial_unit = want_partial_unit;
8035 info.pretend_language = pretend_language;
8036 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8037 process_psymtab_comp_unit_reader, &info);
8038 }
8039
8040 /* Age out any secondary CUs. */
8041 age_cached_comp_units (this_cu->dwarf2_per_objfile);
8042 }
8043
8044 /* Reader function for build_type_psymtabs. */
8045
8046 static void
8047 build_type_psymtabs_reader (const struct die_reader_specs *reader,
8048 const gdb_byte *info_ptr,
8049 struct die_info *type_unit_die,
8050 int has_children,
8051 void *data)
8052 {
8053 struct dwarf2_per_objfile *dwarf2_per_objfile
8054 = reader->cu->per_cu->dwarf2_per_objfile;
8055 struct objfile *objfile = dwarf2_per_objfile->objfile;
8056 struct dwarf2_cu *cu = reader->cu;
8057 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8058 struct signatured_type *sig_type;
8059 struct type_unit_group *tu_group;
8060 struct attribute *attr;
8061 struct partial_die_info *first_die;
8062 CORE_ADDR lowpc, highpc;
8063 struct partial_symtab *pst;
8064
8065 gdb_assert (data == NULL);
8066 gdb_assert (per_cu->is_debug_types);
8067 sig_type = (struct signatured_type *) per_cu;
8068
8069 if (! has_children)
8070 return;
8071
8072 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
8073 tu_group = get_type_unit_group (cu, attr);
8074
8075 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
8076
8077 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
8078 pst = create_partial_symtab (per_cu, "");
8079 pst->anonymous = 1;
8080
8081 first_die = load_partial_dies (reader, info_ptr, 1);
8082
8083 lowpc = (CORE_ADDR) -1;
8084 highpc = (CORE_ADDR) 0;
8085 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
8086
8087 end_psymtab_common (objfile, pst);
8088 }
8089
8090 /* Struct used to sort TUs by their abbreviation table offset. */
8091
8092 struct tu_abbrev_offset
8093 {
8094 tu_abbrev_offset (signatured_type *sig_type_, sect_offset abbrev_offset_)
8095 : sig_type (sig_type_), abbrev_offset (abbrev_offset_)
8096 {}
8097
8098 signatured_type *sig_type;
8099 sect_offset abbrev_offset;
8100 };
8101
8102 /* Helper routine for build_type_psymtabs_1, passed to std::sort. */
8103
8104 static bool
8105 sort_tu_by_abbrev_offset (const struct tu_abbrev_offset &a,
8106 const struct tu_abbrev_offset &b)
8107 {
8108 return a.abbrev_offset < b.abbrev_offset;
8109 }
8110
8111 /* Efficiently read all the type units.
8112 This does the bulk of the work for build_type_psymtabs.
8113
8114 The efficiency is because we sort TUs by the abbrev table they use and
8115 only read each abbrev table once. In one program there are 200K TUs
8116 sharing 8K abbrev tables.
8117
8118 The main purpose of this function is to support building the
8119 dwarf2_per_objfile->type_unit_groups table.
8120 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
8121 can collapse the search space by grouping them by stmt_list.
8122 The savings can be significant, in the same program from above the 200K TUs
8123 share 8K stmt_list tables.
8124
8125 FUNC is expected to call get_type_unit_group, which will create the
8126 struct type_unit_group if necessary and add it to
8127 dwarf2_per_objfile->type_unit_groups. */
8128
8129 static void
8130 build_type_psymtabs_1 (struct dwarf2_per_objfile *dwarf2_per_objfile)
8131 {
8132 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8133 abbrev_table_up abbrev_table;
8134 sect_offset abbrev_offset;
8135
8136 /* It's up to the caller to not call us multiple times. */
8137 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
8138
8139 if (dwarf2_per_objfile->all_type_units.empty ())
8140 return;
8141
8142 /* TUs typically share abbrev tables, and there can be way more TUs than
8143 abbrev tables. Sort by abbrev table to reduce the number of times we
8144 read each abbrev table in.
8145 Alternatives are to punt or to maintain a cache of abbrev tables.
8146 This is simpler and efficient enough for now.
8147
8148 Later we group TUs by their DW_AT_stmt_list value (as this defines the
8149 symtab to use). Typically TUs with the same abbrev offset have the same
8150 stmt_list value too so in practice this should work well.
8151
8152 The basic algorithm here is:
8153
8154 sort TUs by abbrev table
8155 for each TU with same abbrev table:
8156 read abbrev table if first user
8157 read TU top level DIE
8158 [IWBN if DWO skeletons had DW_AT_stmt_list]
8159 call FUNC */
8160
8161 if (dwarf_read_debug)
8162 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
8163
8164 /* Sort in a separate table to maintain the order of all_type_units
8165 for .gdb_index: TU indices directly index all_type_units. */
8166 std::vector<tu_abbrev_offset> sorted_by_abbrev;
8167 sorted_by_abbrev.reserve (dwarf2_per_objfile->all_type_units.size ());
8168
8169 for (signatured_type *sig_type : dwarf2_per_objfile->all_type_units)
8170 sorted_by_abbrev.emplace_back
8171 (sig_type, read_abbrev_offset (dwarf2_per_objfile,
8172 sig_type->per_cu.section,
8173 sig_type->per_cu.sect_off));
8174
8175 std::sort (sorted_by_abbrev.begin (), sorted_by_abbrev.end (),
8176 sort_tu_by_abbrev_offset);
8177
8178 abbrev_offset = (sect_offset) ~(unsigned) 0;
8179
8180 for (const tu_abbrev_offset &tu : sorted_by_abbrev)
8181 {
8182 /* Switch to the next abbrev table if necessary. */
8183 if (abbrev_table == NULL
8184 || tu.abbrev_offset != abbrev_offset)
8185 {
8186 abbrev_offset = tu.abbrev_offset;
8187 abbrev_table =
8188 abbrev_table_read_table (dwarf2_per_objfile,
8189 &dwarf2_per_objfile->abbrev,
8190 abbrev_offset);
8191 ++tu_stats->nr_uniq_abbrev_tables;
8192 }
8193
8194 init_cutu_and_read_dies (&tu.sig_type->per_cu, abbrev_table.get (),
8195 0, 0, false, build_type_psymtabs_reader, NULL);
8196 }
8197 }
8198
8199 /* Print collected type unit statistics. */
8200
8201 static void
8202 print_tu_stats (struct dwarf2_per_objfile *dwarf2_per_objfile)
8203 {
8204 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8205
8206 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
8207 fprintf_unfiltered (gdb_stdlog, " %zu TUs\n",
8208 dwarf2_per_objfile->all_type_units.size ());
8209 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
8210 tu_stats->nr_uniq_abbrev_tables);
8211 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
8212 tu_stats->nr_symtabs);
8213 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
8214 tu_stats->nr_symtab_sharers);
8215 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
8216 tu_stats->nr_stmt_less_type_units);
8217 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
8218 tu_stats->nr_all_type_units_reallocs);
8219 }
8220
8221 /* Traversal function for build_type_psymtabs. */
8222
8223 static int
8224 build_type_psymtab_dependencies (void **slot, void *info)
8225 {
8226 struct dwarf2_per_objfile *dwarf2_per_objfile
8227 = (struct dwarf2_per_objfile *) info;
8228 struct objfile *objfile = dwarf2_per_objfile->objfile;
8229 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
8230 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
8231 struct partial_symtab *pst = per_cu->v.psymtab;
8232 int len = VEC_length (sig_type_ptr, tu_group->tus);
8233 struct signatured_type *iter;
8234 int i;
8235
8236 gdb_assert (len > 0);
8237 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
8238
8239 pst->number_of_dependencies = len;
8240 pst->dependencies =
8241 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
8242 for (i = 0;
8243 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
8244 ++i)
8245 {
8246 gdb_assert (iter->per_cu.is_debug_types);
8247 pst->dependencies[i] = iter->per_cu.v.psymtab;
8248 iter->type_unit_group = tu_group;
8249 }
8250
8251 VEC_free (sig_type_ptr, tu_group->tus);
8252
8253 return 1;
8254 }
8255
8256 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8257 Build partial symbol tables for the .debug_types comp-units. */
8258
8259 static void
8260 build_type_psymtabs (struct dwarf2_per_objfile *dwarf2_per_objfile)
8261 {
8262 if (! create_all_type_units (dwarf2_per_objfile))
8263 return;
8264
8265 build_type_psymtabs_1 (dwarf2_per_objfile);
8266 }
8267
8268 /* Traversal function for process_skeletonless_type_unit.
8269 Read a TU in a DWO file and build partial symbols for it. */
8270
8271 static int
8272 process_skeletonless_type_unit (void **slot, void *info)
8273 {
8274 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
8275 struct dwarf2_per_objfile *dwarf2_per_objfile
8276 = (struct dwarf2_per_objfile *) info;
8277 struct signatured_type find_entry, *entry;
8278
8279 /* If this TU doesn't exist in the global table, add it and read it in. */
8280
8281 if (dwarf2_per_objfile->signatured_types == NULL)
8282 {
8283 dwarf2_per_objfile->signatured_types
8284 = allocate_signatured_type_table (dwarf2_per_objfile->objfile);
8285 }
8286
8287 find_entry.signature = dwo_unit->signature;
8288 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
8289 INSERT);
8290 /* If we've already seen this type there's nothing to do. What's happening
8291 is we're doing our own version of comdat-folding here. */
8292 if (*slot != NULL)
8293 return 1;
8294
8295 /* This does the job that create_all_type_units would have done for
8296 this TU. */
8297 entry = add_type_unit (dwarf2_per_objfile, dwo_unit->signature, slot);
8298 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, entry, dwo_unit);
8299 *slot = entry;
8300
8301 /* This does the job that build_type_psymtabs_1 would have done. */
8302 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0, false,
8303 build_type_psymtabs_reader, NULL);
8304
8305 return 1;
8306 }
8307
8308 /* Traversal function for process_skeletonless_type_units. */
8309
8310 static int
8311 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
8312 {
8313 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
8314
8315 if (dwo_file->tus != NULL)
8316 {
8317 htab_traverse_noresize (dwo_file->tus,
8318 process_skeletonless_type_unit, info);
8319 }
8320
8321 return 1;
8322 }
8323
8324 /* Scan all TUs of DWO files, verifying we've processed them.
8325 This is needed in case a TU was emitted without its skeleton.
8326 Note: This can't be done until we know what all the DWO files are. */
8327
8328 static void
8329 process_skeletonless_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8330 {
8331 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
8332 if (get_dwp_file (dwarf2_per_objfile) == NULL
8333 && dwarf2_per_objfile->dwo_files != NULL)
8334 {
8335 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
8336 process_dwo_file_for_skeletonless_type_units,
8337 dwarf2_per_objfile);
8338 }
8339 }
8340
8341 /* Compute the 'user' field for each psymtab in DWARF2_PER_OBJFILE. */
8342
8343 static void
8344 set_partial_user (struct dwarf2_per_objfile *dwarf2_per_objfile)
8345 {
8346 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8347 {
8348 struct partial_symtab *pst = per_cu->v.psymtab;
8349
8350 if (pst == NULL)
8351 continue;
8352
8353 for (int j = 0; j < pst->number_of_dependencies; ++j)
8354 {
8355 /* Set the 'user' field only if it is not already set. */
8356 if (pst->dependencies[j]->user == NULL)
8357 pst->dependencies[j]->user = pst;
8358 }
8359 }
8360 }
8361
8362 /* Build the partial symbol table by doing a quick pass through the
8363 .debug_info and .debug_abbrev sections. */
8364
8365 static void
8366 dwarf2_build_psymtabs_hard (struct dwarf2_per_objfile *dwarf2_per_objfile)
8367 {
8368 struct objfile *objfile = dwarf2_per_objfile->objfile;
8369
8370 if (dwarf_read_debug)
8371 {
8372 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
8373 objfile_name (objfile));
8374 }
8375
8376 dwarf2_per_objfile->reading_partial_symbols = 1;
8377
8378 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
8379
8380 /* Any cached compilation units will be linked by the per-objfile
8381 read_in_chain. Make sure to free them when we're done. */
8382 free_cached_comp_units freer (dwarf2_per_objfile);
8383
8384 build_type_psymtabs (dwarf2_per_objfile);
8385
8386 create_all_comp_units (dwarf2_per_objfile);
8387
8388 /* Create a temporary address map on a temporary obstack. We later
8389 copy this to the final obstack. */
8390 auto_obstack temp_obstack;
8391
8392 scoped_restore save_psymtabs_addrmap
8393 = make_scoped_restore (&objfile->psymtabs_addrmap,
8394 addrmap_create_mutable (&temp_obstack));
8395
8396 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8397 process_psymtab_comp_unit (per_cu, 0, language_minimal);
8398
8399 /* This has to wait until we read the CUs, we need the list of DWOs. */
8400 process_skeletonless_type_units (dwarf2_per_objfile);
8401
8402 /* Now that all TUs have been processed we can fill in the dependencies. */
8403 if (dwarf2_per_objfile->type_unit_groups != NULL)
8404 {
8405 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
8406 build_type_psymtab_dependencies, dwarf2_per_objfile);
8407 }
8408
8409 if (dwarf_read_debug)
8410 print_tu_stats (dwarf2_per_objfile);
8411
8412 set_partial_user (dwarf2_per_objfile);
8413
8414 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
8415 &objfile->objfile_obstack);
8416 /* At this point we want to keep the address map. */
8417 save_psymtabs_addrmap.release ();
8418
8419 if (dwarf_read_debug)
8420 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
8421 objfile_name (objfile));
8422 }
8423
8424 /* die_reader_func for load_partial_comp_unit. */
8425
8426 static void
8427 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
8428 const gdb_byte *info_ptr,
8429 struct die_info *comp_unit_die,
8430 int has_children,
8431 void *data)
8432 {
8433 struct dwarf2_cu *cu = reader->cu;
8434
8435 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
8436
8437 /* Check if comp unit has_children.
8438 If so, read the rest of the partial symbols from this comp unit.
8439 If not, there's no more debug_info for this comp unit. */
8440 if (has_children)
8441 load_partial_dies (reader, info_ptr, 0);
8442 }
8443
8444 /* Load the partial DIEs for a secondary CU into memory.
8445 This is also used when rereading a primary CU with load_all_dies. */
8446
8447 static void
8448 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
8449 {
8450 init_cutu_and_read_dies (this_cu, NULL, 1, 1, false,
8451 load_partial_comp_unit_reader, NULL);
8452 }
8453
8454 static void
8455 read_comp_units_from_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
8456 struct dwarf2_section_info *section,
8457 struct dwarf2_section_info *abbrev_section,
8458 unsigned int is_dwz)
8459 {
8460 const gdb_byte *info_ptr;
8461 struct objfile *objfile = dwarf2_per_objfile->objfile;
8462
8463 if (dwarf_read_debug)
8464 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
8465 get_section_name (section),
8466 get_section_file_name (section));
8467
8468 dwarf2_read_section (objfile, section);
8469
8470 info_ptr = section->buffer;
8471
8472 while (info_ptr < section->buffer + section->size)
8473 {
8474 struct dwarf2_per_cu_data *this_cu;
8475
8476 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
8477
8478 comp_unit_head cu_header;
8479 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
8480 abbrev_section, info_ptr,
8481 rcuh_kind::COMPILE);
8482
8483 /* Save the compilation unit for later lookup. */
8484 if (cu_header.unit_type != DW_UT_type)
8485 {
8486 this_cu = XOBNEW (&objfile->objfile_obstack,
8487 struct dwarf2_per_cu_data);
8488 memset (this_cu, 0, sizeof (*this_cu));
8489 }
8490 else
8491 {
8492 auto sig_type = XOBNEW (&objfile->objfile_obstack,
8493 struct signatured_type);
8494 memset (sig_type, 0, sizeof (*sig_type));
8495 sig_type->signature = cu_header.signature;
8496 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
8497 this_cu = &sig_type->per_cu;
8498 }
8499 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
8500 this_cu->sect_off = sect_off;
8501 this_cu->length = cu_header.length + cu_header.initial_length_size;
8502 this_cu->is_dwz = is_dwz;
8503 this_cu->dwarf2_per_objfile = dwarf2_per_objfile;
8504 this_cu->section = section;
8505
8506 dwarf2_per_objfile->all_comp_units.push_back (this_cu);
8507
8508 info_ptr = info_ptr + this_cu->length;
8509 }
8510 }
8511
8512 /* Create a list of all compilation units in OBJFILE.
8513 This is only done for -readnow and building partial symtabs. */
8514
8515 static void
8516 create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8517 {
8518 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
8519 read_comp_units_from_section (dwarf2_per_objfile, &dwarf2_per_objfile->info,
8520 &dwarf2_per_objfile->abbrev, 0);
8521
8522 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
8523 if (dwz != NULL)
8524 read_comp_units_from_section (dwarf2_per_objfile, &dwz->info, &dwz->abbrev,
8525 1);
8526 }
8527
8528 /* Process all loaded DIEs for compilation unit CU, starting at
8529 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
8530 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
8531 DW_AT_ranges). See the comments of add_partial_subprogram on how
8532 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
8533
8534 static void
8535 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
8536 CORE_ADDR *highpc, int set_addrmap,
8537 struct dwarf2_cu *cu)
8538 {
8539 struct partial_die_info *pdi;
8540
8541 /* Now, march along the PDI's, descending into ones which have
8542 interesting children but skipping the children of the other ones,
8543 until we reach the end of the compilation unit. */
8544
8545 pdi = first_die;
8546
8547 while (pdi != NULL)
8548 {
8549 pdi->fixup (cu);
8550
8551 /* Anonymous namespaces or modules have no name but have interesting
8552 children, so we need to look at them. Ditto for anonymous
8553 enums. */
8554
8555 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
8556 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
8557 || pdi->tag == DW_TAG_imported_unit
8558 || pdi->tag == DW_TAG_inlined_subroutine)
8559 {
8560 switch (pdi->tag)
8561 {
8562 case DW_TAG_subprogram:
8563 case DW_TAG_inlined_subroutine:
8564 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
8565 break;
8566 case DW_TAG_constant:
8567 case DW_TAG_variable:
8568 case DW_TAG_typedef:
8569 case DW_TAG_union_type:
8570 if (!pdi->is_declaration)
8571 {
8572 add_partial_symbol (pdi, cu);
8573 }
8574 break;
8575 case DW_TAG_class_type:
8576 case DW_TAG_interface_type:
8577 case DW_TAG_structure_type:
8578 if (!pdi->is_declaration)
8579 {
8580 add_partial_symbol (pdi, cu);
8581 }
8582 if ((cu->language == language_rust
8583 || cu->language == language_cplus) && pdi->has_children)
8584 scan_partial_symbols (pdi->die_child, lowpc, highpc,
8585 set_addrmap, cu);
8586 break;
8587 case DW_TAG_enumeration_type:
8588 if (!pdi->is_declaration)
8589 add_partial_enumeration (pdi, cu);
8590 break;
8591 case DW_TAG_base_type:
8592 case DW_TAG_subrange_type:
8593 /* File scope base type definitions are added to the partial
8594 symbol table. */
8595 add_partial_symbol (pdi, cu);
8596 break;
8597 case DW_TAG_namespace:
8598 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
8599 break;
8600 case DW_TAG_module:
8601 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
8602 break;
8603 case DW_TAG_imported_unit:
8604 {
8605 struct dwarf2_per_cu_data *per_cu;
8606
8607 /* For now we don't handle imported units in type units. */
8608 if (cu->per_cu->is_debug_types)
8609 {
8610 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8611 " supported in type units [in module %s]"),
8612 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
8613 }
8614
8615 per_cu = dwarf2_find_containing_comp_unit
8616 (pdi->d.sect_off, pdi->is_dwz,
8617 cu->per_cu->dwarf2_per_objfile);
8618
8619 /* Go read the partial unit, if needed. */
8620 if (per_cu->v.psymtab == NULL)
8621 process_psymtab_comp_unit (per_cu, 1, cu->language);
8622
8623 VEC_safe_push (dwarf2_per_cu_ptr,
8624 cu->per_cu->imported_symtabs, per_cu);
8625 }
8626 break;
8627 case DW_TAG_imported_declaration:
8628 add_partial_symbol (pdi, cu);
8629 break;
8630 default:
8631 break;
8632 }
8633 }
8634
8635 /* If the die has a sibling, skip to the sibling. */
8636
8637 pdi = pdi->die_sibling;
8638 }
8639 }
8640
8641 /* Functions used to compute the fully scoped name of a partial DIE.
8642
8643 Normally, this is simple. For C++, the parent DIE's fully scoped
8644 name is concatenated with "::" and the partial DIE's name.
8645 Enumerators are an exception; they use the scope of their parent
8646 enumeration type, i.e. the name of the enumeration type is not
8647 prepended to the enumerator.
8648
8649 There are two complexities. One is DW_AT_specification; in this
8650 case "parent" means the parent of the target of the specification,
8651 instead of the direct parent of the DIE. The other is compilers
8652 which do not emit DW_TAG_namespace; in this case we try to guess
8653 the fully qualified name of structure types from their members'
8654 linkage names. This must be done using the DIE's children rather
8655 than the children of any DW_AT_specification target. We only need
8656 to do this for structures at the top level, i.e. if the target of
8657 any DW_AT_specification (if any; otherwise the DIE itself) does not
8658 have a parent. */
8659
8660 /* Compute the scope prefix associated with PDI's parent, in
8661 compilation unit CU. The result will be allocated on CU's
8662 comp_unit_obstack, or a copy of the already allocated PDI->NAME
8663 field. NULL is returned if no prefix is necessary. */
8664 static const char *
8665 partial_die_parent_scope (struct partial_die_info *pdi,
8666 struct dwarf2_cu *cu)
8667 {
8668 const char *grandparent_scope;
8669 struct partial_die_info *parent, *real_pdi;
8670
8671 /* We need to look at our parent DIE; if we have a DW_AT_specification,
8672 then this means the parent of the specification DIE. */
8673
8674 real_pdi = pdi;
8675 while (real_pdi->has_specification)
8676 real_pdi = find_partial_die (real_pdi->spec_offset,
8677 real_pdi->spec_is_dwz, cu);
8678
8679 parent = real_pdi->die_parent;
8680 if (parent == NULL)
8681 return NULL;
8682
8683 if (parent->scope_set)
8684 return parent->scope;
8685
8686 parent->fixup (cu);
8687
8688 grandparent_scope = partial_die_parent_scope (parent, cu);
8689
8690 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
8691 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
8692 Work around this problem here. */
8693 if (cu->language == language_cplus
8694 && parent->tag == DW_TAG_namespace
8695 && strcmp (parent->name, "::") == 0
8696 && grandparent_scope == NULL)
8697 {
8698 parent->scope = NULL;
8699 parent->scope_set = 1;
8700 return NULL;
8701 }
8702
8703 if (pdi->tag == DW_TAG_enumerator)
8704 /* Enumerators should not get the name of the enumeration as a prefix. */
8705 parent->scope = grandparent_scope;
8706 else if (parent->tag == DW_TAG_namespace
8707 || parent->tag == DW_TAG_module
8708 || parent->tag == DW_TAG_structure_type
8709 || parent->tag == DW_TAG_class_type
8710 || parent->tag == DW_TAG_interface_type
8711 || parent->tag == DW_TAG_union_type
8712 || parent->tag == DW_TAG_enumeration_type)
8713 {
8714 if (grandparent_scope == NULL)
8715 parent->scope = parent->name;
8716 else
8717 parent->scope = typename_concat (&cu->comp_unit_obstack,
8718 grandparent_scope,
8719 parent->name, 0, cu);
8720 }
8721 else
8722 {
8723 /* FIXME drow/2004-04-01: What should we be doing with
8724 function-local names? For partial symbols, we should probably be
8725 ignoring them. */
8726 complaint (_("unhandled containing DIE tag %d for DIE at %s"),
8727 parent->tag, sect_offset_str (pdi->sect_off));
8728 parent->scope = grandparent_scope;
8729 }
8730
8731 parent->scope_set = 1;
8732 return parent->scope;
8733 }
8734
8735 /* Return the fully scoped name associated with PDI, from compilation unit
8736 CU. The result will be allocated with malloc. */
8737
8738 static char *
8739 partial_die_full_name (struct partial_die_info *pdi,
8740 struct dwarf2_cu *cu)
8741 {
8742 const char *parent_scope;
8743
8744 /* If this is a template instantiation, we can not work out the
8745 template arguments from partial DIEs. So, unfortunately, we have
8746 to go through the full DIEs. At least any work we do building
8747 types here will be reused if full symbols are loaded later. */
8748 if (pdi->has_template_arguments)
8749 {
8750 pdi->fixup (cu);
8751
8752 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
8753 {
8754 struct die_info *die;
8755 struct attribute attr;
8756 struct dwarf2_cu *ref_cu = cu;
8757
8758 /* DW_FORM_ref_addr is using section offset. */
8759 attr.name = (enum dwarf_attribute) 0;
8760 attr.form = DW_FORM_ref_addr;
8761 attr.u.unsnd = to_underlying (pdi->sect_off);
8762 die = follow_die_ref (NULL, &attr, &ref_cu);
8763
8764 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
8765 }
8766 }
8767
8768 parent_scope = partial_die_parent_scope (pdi, cu);
8769 if (parent_scope == NULL)
8770 return NULL;
8771 else
8772 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
8773 }
8774
8775 static void
8776 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
8777 {
8778 struct dwarf2_per_objfile *dwarf2_per_objfile
8779 = cu->per_cu->dwarf2_per_objfile;
8780 struct objfile *objfile = dwarf2_per_objfile->objfile;
8781 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8782 CORE_ADDR addr = 0;
8783 const char *actual_name = NULL;
8784 CORE_ADDR baseaddr;
8785 char *built_actual_name;
8786
8787 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8788
8789 built_actual_name = partial_die_full_name (pdi, cu);
8790 if (built_actual_name != NULL)
8791 actual_name = built_actual_name;
8792
8793 if (actual_name == NULL)
8794 actual_name = pdi->name;
8795
8796 switch (pdi->tag)
8797 {
8798 case DW_TAG_inlined_subroutine:
8799 case DW_TAG_subprogram:
8800 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
8801 if (pdi->is_external || cu->language == language_ada)
8802 {
8803 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
8804 of the global scope. But in Ada, we want to be able to access
8805 nested procedures globally. So all Ada subprograms are stored
8806 in the global scope. */
8807 add_psymbol_to_list (actual_name, strlen (actual_name),
8808 built_actual_name != NULL,
8809 VAR_DOMAIN, LOC_BLOCK,
8810 &objfile->global_psymbols,
8811 addr, cu->language, objfile);
8812 }
8813 else
8814 {
8815 add_psymbol_to_list (actual_name, strlen (actual_name),
8816 built_actual_name != NULL,
8817 VAR_DOMAIN, LOC_BLOCK,
8818 &objfile->static_psymbols,
8819 addr, cu->language, objfile);
8820 }
8821
8822 if (pdi->main_subprogram && actual_name != NULL)
8823 set_objfile_main_name (objfile, actual_name, cu->language);
8824 break;
8825 case DW_TAG_constant:
8826 {
8827 std::vector<partial_symbol *> *list;
8828
8829 if (pdi->is_external)
8830 list = &objfile->global_psymbols;
8831 else
8832 list = &objfile->static_psymbols;
8833 add_psymbol_to_list (actual_name, strlen (actual_name),
8834 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
8835 list, 0, cu->language, objfile);
8836 }
8837 break;
8838 case DW_TAG_variable:
8839 if (pdi->d.locdesc)
8840 addr = decode_locdesc (pdi->d.locdesc, cu);
8841
8842 if (pdi->d.locdesc
8843 && addr == 0
8844 && !dwarf2_per_objfile->has_section_at_zero)
8845 {
8846 /* A global or static variable may also have been stripped
8847 out by the linker if unused, in which case its address
8848 will be nullified; do not add such variables into partial
8849 symbol table then. */
8850 }
8851 else if (pdi->is_external)
8852 {
8853 /* Global Variable.
8854 Don't enter into the minimal symbol tables as there is
8855 a minimal symbol table entry from the ELF symbols already.
8856 Enter into partial symbol table if it has a location
8857 descriptor or a type.
8858 If the location descriptor is missing, new_symbol will create
8859 a LOC_UNRESOLVED symbol, the address of the variable will then
8860 be determined from the minimal symbol table whenever the variable
8861 is referenced.
8862 The address for the partial symbol table entry is not
8863 used by GDB, but it comes in handy for debugging partial symbol
8864 table building. */
8865
8866 if (pdi->d.locdesc || pdi->has_type)
8867 add_psymbol_to_list (actual_name, strlen (actual_name),
8868 built_actual_name != NULL,
8869 VAR_DOMAIN, LOC_STATIC,
8870 &objfile->global_psymbols,
8871 addr + baseaddr,
8872 cu->language, objfile);
8873 }
8874 else
8875 {
8876 int has_loc = pdi->d.locdesc != NULL;
8877
8878 /* Static Variable. Skip symbols whose value we cannot know (those
8879 without location descriptors or constant values). */
8880 if (!has_loc && !pdi->has_const_value)
8881 {
8882 xfree (built_actual_name);
8883 return;
8884 }
8885
8886 add_psymbol_to_list (actual_name, strlen (actual_name),
8887 built_actual_name != NULL,
8888 VAR_DOMAIN, LOC_STATIC,
8889 &objfile->static_psymbols,
8890 has_loc ? addr + baseaddr : (CORE_ADDR) 0,
8891 cu->language, objfile);
8892 }
8893 break;
8894 case DW_TAG_typedef:
8895 case DW_TAG_base_type:
8896 case DW_TAG_subrange_type:
8897 add_psymbol_to_list (actual_name, strlen (actual_name),
8898 built_actual_name != NULL,
8899 VAR_DOMAIN, LOC_TYPEDEF,
8900 &objfile->static_psymbols,
8901 0, cu->language, objfile);
8902 break;
8903 case DW_TAG_imported_declaration:
8904 case DW_TAG_namespace:
8905 add_psymbol_to_list (actual_name, strlen (actual_name),
8906 built_actual_name != NULL,
8907 VAR_DOMAIN, LOC_TYPEDEF,
8908 &objfile->global_psymbols,
8909 0, cu->language, objfile);
8910 break;
8911 case DW_TAG_module:
8912 add_psymbol_to_list (actual_name, strlen (actual_name),
8913 built_actual_name != NULL,
8914 MODULE_DOMAIN, LOC_TYPEDEF,
8915 &objfile->global_psymbols,
8916 0, cu->language, objfile);
8917 break;
8918 case DW_TAG_class_type:
8919 case DW_TAG_interface_type:
8920 case DW_TAG_structure_type:
8921 case DW_TAG_union_type:
8922 case DW_TAG_enumeration_type:
8923 /* Skip external references. The DWARF standard says in the section
8924 about "Structure, Union, and Class Type Entries": "An incomplete
8925 structure, union or class type is represented by a structure,
8926 union or class entry that does not have a byte size attribute
8927 and that has a DW_AT_declaration attribute." */
8928 if (!pdi->has_byte_size && pdi->is_declaration)
8929 {
8930 xfree (built_actual_name);
8931 return;
8932 }
8933
8934 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
8935 static vs. global. */
8936 add_psymbol_to_list (actual_name, strlen (actual_name),
8937 built_actual_name != NULL,
8938 STRUCT_DOMAIN, LOC_TYPEDEF,
8939 cu->language == language_cplus
8940 ? &objfile->global_psymbols
8941 : &objfile->static_psymbols,
8942 0, cu->language, objfile);
8943
8944 break;
8945 case DW_TAG_enumerator:
8946 add_psymbol_to_list (actual_name, strlen (actual_name),
8947 built_actual_name != NULL,
8948 VAR_DOMAIN, LOC_CONST,
8949 cu->language == language_cplus
8950 ? &objfile->global_psymbols
8951 : &objfile->static_psymbols,
8952 0, cu->language, objfile);
8953 break;
8954 default:
8955 break;
8956 }
8957
8958 xfree (built_actual_name);
8959 }
8960
8961 /* Read a partial die corresponding to a namespace; also, add a symbol
8962 corresponding to that namespace to the symbol table. NAMESPACE is
8963 the name of the enclosing namespace. */
8964
8965 static void
8966 add_partial_namespace (struct partial_die_info *pdi,
8967 CORE_ADDR *lowpc, CORE_ADDR *highpc,
8968 int set_addrmap, struct dwarf2_cu *cu)
8969 {
8970 /* Add a symbol for the namespace. */
8971
8972 add_partial_symbol (pdi, cu);
8973
8974 /* Now scan partial symbols in that namespace. */
8975
8976 if (pdi->has_children)
8977 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
8978 }
8979
8980 /* Read a partial die corresponding to a Fortran module. */
8981
8982 static void
8983 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
8984 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
8985 {
8986 /* Add a symbol for the namespace. */
8987
8988 add_partial_symbol (pdi, cu);
8989
8990 /* Now scan partial symbols in that module. */
8991
8992 if (pdi->has_children)
8993 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
8994 }
8995
8996 /* Read a partial die corresponding to a subprogram or an inlined
8997 subprogram and create a partial symbol for that subprogram.
8998 When the CU language allows it, this routine also defines a partial
8999 symbol for each nested subprogram that this subprogram contains.
9000 If SET_ADDRMAP is true, record the covered ranges in the addrmap.
9001 Set *LOWPC and *HIGHPC to the lowest and highest PC values found in PDI.
9002
9003 PDI may also be a lexical block, in which case we simply search
9004 recursively for subprograms defined inside that lexical block.
9005 Again, this is only performed when the CU language allows this
9006 type of definitions. */
9007
9008 static void
9009 add_partial_subprogram (struct partial_die_info *pdi,
9010 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9011 int set_addrmap, struct dwarf2_cu *cu)
9012 {
9013 if (pdi->tag == DW_TAG_subprogram || pdi->tag == DW_TAG_inlined_subroutine)
9014 {
9015 if (pdi->has_pc_info)
9016 {
9017 if (pdi->lowpc < *lowpc)
9018 *lowpc = pdi->lowpc;
9019 if (pdi->highpc > *highpc)
9020 *highpc = pdi->highpc;
9021 if (set_addrmap)
9022 {
9023 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9024 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9025 CORE_ADDR baseaddr;
9026 CORE_ADDR highpc;
9027 CORE_ADDR lowpc;
9028
9029 baseaddr = ANOFFSET (objfile->section_offsets,
9030 SECT_OFF_TEXT (objfile));
9031 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
9032 pdi->lowpc + baseaddr);
9033 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
9034 pdi->highpc + baseaddr);
9035 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
9036 cu->per_cu->v.psymtab);
9037 }
9038 }
9039
9040 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
9041 {
9042 if (!pdi->is_declaration)
9043 /* Ignore subprogram DIEs that do not have a name, they are
9044 illegal. Do not emit a complaint at this point, we will
9045 do so when we convert this psymtab into a symtab. */
9046 if (pdi->name)
9047 add_partial_symbol (pdi, cu);
9048 }
9049 }
9050
9051 if (! pdi->has_children)
9052 return;
9053
9054 if (cu->language == language_ada)
9055 {
9056 pdi = pdi->die_child;
9057 while (pdi != NULL)
9058 {
9059 pdi->fixup (cu);
9060 if (pdi->tag == DW_TAG_subprogram
9061 || pdi->tag == DW_TAG_inlined_subroutine
9062 || pdi->tag == DW_TAG_lexical_block)
9063 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
9064 pdi = pdi->die_sibling;
9065 }
9066 }
9067 }
9068
9069 /* Read a partial die corresponding to an enumeration type. */
9070
9071 static void
9072 add_partial_enumeration (struct partial_die_info *enum_pdi,
9073 struct dwarf2_cu *cu)
9074 {
9075 struct partial_die_info *pdi;
9076
9077 if (enum_pdi->name != NULL)
9078 add_partial_symbol (enum_pdi, cu);
9079
9080 pdi = enum_pdi->die_child;
9081 while (pdi)
9082 {
9083 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
9084 complaint (_("malformed enumerator DIE ignored"));
9085 else
9086 add_partial_symbol (pdi, cu);
9087 pdi = pdi->die_sibling;
9088 }
9089 }
9090
9091 /* Return the initial uleb128 in the die at INFO_PTR. */
9092
9093 static unsigned int
9094 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
9095 {
9096 unsigned int bytes_read;
9097
9098 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9099 }
9100
9101 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit
9102 READER::CU. Use READER::ABBREV_TABLE to lookup any abbreviation.
9103
9104 Return the corresponding abbrev, or NULL if the number is zero (indicating
9105 an empty DIE). In either case *BYTES_READ will be set to the length of
9106 the initial number. */
9107
9108 static struct abbrev_info *
9109 peek_die_abbrev (const die_reader_specs &reader,
9110 const gdb_byte *info_ptr, unsigned int *bytes_read)
9111 {
9112 dwarf2_cu *cu = reader.cu;
9113 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
9114 unsigned int abbrev_number
9115 = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
9116
9117 if (abbrev_number == 0)
9118 return NULL;
9119
9120 abbrev_info *abbrev = reader.abbrev_table->lookup_abbrev (abbrev_number);
9121 if (!abbrev)
9122 {
9123 error (_("Dwarf Error: Could not find abbrev number %d in %s"
9124 " at offset %s [in module %s]"),
9125 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
9126 sect_offset_str (cu->header.sect_off), bfd_get_filename (abfd));
9127 }
9128
9129 return abbrev;
9130 }
9131
9132 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9133 Returns a pointer to the end of a series of DIEs, terminated by an empty
9134 DIE. Any children of the skipped DIEs will also be skipped. */
9135
9136 static const gdb_byte *
9137 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
9138 {
9139 while (1)
9140 {
9141 unsigned int bytes_read;
9142 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
9143
9144 if (abbrev == NULL)
9145 return info_ptr + bytes_read;
9146 else
9147 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
9148 }
9149 }
9150
9151 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9152 INFO_PTR should point just after the initial uleb128 of a DIE, and the
9153 abbrev corresponding to that skipped uleb128 should be passed in
9154 ABBREV. Returns a pointer to this DIE's sibling, skipping any
9155 children. */
9156
9157 static const gdb_byte *
9158 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
9159 struct abbrev_info *abbrev)
9160 {
9161 unsigned int bytes_read;
9162 struct attribute attr;
9163 bfd *abfd = reader->abfd;
9164 struct dwarf2_cu *cu = reader->cu;
9165 const gdb_byte *buffer = reader->buffer;
9166 const gdb_byte *buffer_end = reader->buffer_end;
9167 unsigned int form, i;
9168
9169 for (i = 0; i < abbrev->num_attrs; i++)
9170 {
9171 /* The only abbrev we care about is DW_AT_sibling. */
9172 if (abbrev->attrs[i].name == DW_AT_sibling)
9173 {
9174 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
9175 if (attr.form == DW_FORM_ref_addr)
9176 complaint (_("ignoring absolute DW_AT_sibling"));
9177 else
9178 {
9179 sect_offset off = dwarf2_get_ref_die_offset (&attr);
9180 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
9181
9182 if (sibling_ptr < info_ptr)
9183 complaint (_("DW_AT_sibling points backwards"));
9184 else if (sibling_ptr > reader->buffer_end)
9185 dwarf2_section_buffer_overflow_complaint (reader->die_section);
9186 else
9187 return sibling_ptr;
9188 }
9189 }
9190
9191 /* If it isn't DW_AT_sibling, skip this attribute. */
9192 form = abbrev->attrs[i].form;
9193 skip_attribute:
9194 switch (form)
9195 {
9196 case DW_FORM_ref_addr:
9197 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
9198 and later it is offset sized. */
9199 if (cu->header.version == 2)
9200 info_ptr += cu->header.addr_size;
9201 else
9202 info_ptr += cu->header.offset_size;
9203 break;
9204 case DW_FORM_GNU_ref_alt:
9205 info_ptr += cu->header.offset_size;
9206 break;
9207 case DW_FORM_addr:
9208 info_ptr += cu->header.addr_size;
9209 break;
9210 case DW_FORM_data1:
9211 case DW_FORM_ref1:
9212 case DW_FORM_flag:
9213 info_ptr += 1;
9214 break;
9215 case DW_FORM_flag_present:
9216 case DW_FORM_implicit_const:
9217 break;
9218 case DW_FORM_data2:
9219 case DW_FORM_ref2:
9220 info_ptr += 2;
9221 break;
9222 case DW_FORM_data4:
9223 case DW_FORM_ref4:
9224 info_ptr += 4;
9225 break;
9226 case DW_FORM_data8:
9227 case DW_FORM_ref8:
9228 case DW_FORM_ref_sig8:
9229 info_ptr += 8;
9230 break;
9231 case DW_FORM_data16:
9232 info_ptr += 16;
9233 break;
9234 case DW_FORM_string:
9235 read_direct_string (abfd, info_ptr, &bytes_read);
9236 info_ptr += bytes_read;
9237 break;
9238 case DW_FORM_sec_offset:
9239 case DW_FORM_strp:
9240 case DW_FORM_GNU_strp_alt:
9241 info_ptr += cu->header.offset_size;
9242 break;
9243 case DW_FORM_exprloc:
9244 case DW_FORM_block:
9245 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9246 info_ptr += bytes_read;
9247 break;
9248 case DW_FORM_block1:
9249 info_ptr += 1 + read_1_byte (abfd, info_ptr);
9250 break;
9251 case DW_FORM_block2:
9252 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
9253 break;
9254 case DW_FORM_block4:
9255 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
9256 break;
9257 case DW_FORM_sdata:
9258 case DW_FORM_udata:
9259 case DW_FORM_ref_udata:
9260 case DW_FORM_GNU_addr_index:
9261 case DW_FORM_GNU_str_index:
9262 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
9263 break;
9264 case DW_FORM_indirect:
9265 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9266 info_ptr += bytes_read;
9267 /* We need to continue parsing from here, so just go back to
9268 the top. */
9269 goto skip_attribute;
9270
9271 default:
9272 error (_("Dwarf Error: Cannot handle %s "
9273 "in DWARF reader [in module %s]"),
9274 dwarf_form_name (form),
9275 bfd_get_filename (abfd));
9276 }
9277 }
9278
9279 if (abbrev->has_children)
9280 return skip_children (reader, info_ptr);
9281 else
9282 return info_ptr;
9283 }
9284
9285 /* Locate ORIG_PDI's sibling.
9286 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
9287
9288 static const gdb_byte *
9289 locate_pdi_sibling (const struct die_reader_specs *reader,
9290 struct partial_die_info *orig_pdi,
9291 const gdb_byte *info_ptr)
9292 {
9293 /* Do we know the sibling already? */
9294
9295 if (orig_pdi->sibling)
9296 return orig_pdi->sibling;
9297
9298 /* Are there any children to deal with? */
9299
9300 if (!orig_pdi->has_children)
9301 return info_ptr;
9302
9303 /* Skip the children the long way. */
9304
9305 return skip_children (reader, info_ptr);
9306 }
9307
9308 /* Expand this partial symbol table into a full symbol table. SELF is
9309 not NULL. */
9310
9311 static void
9312 dwarf2_read_symtab (struct partial_symtab *self,
9313 struct objfile *objfile)
9314 {
9315 struct dwarf2_per_objfile *dwarf2_per_objfile
9316 = get_dwarf2_per_objfile (objfile);
9317
9318 if (self->readin)
9319 {
9320 warning (_("bug: psymtab for %s is already read in."),
9321 self->filename);
9322 }
9323 else
9324 {
9325 if (info_verbose)
9326 {
9327 printf_filtered (_("Reading in symbols for %s..."),
9328 self->filename);
9329 gdb_flush (gdb_stdout);
9330 }
9331
9332 /* If this psymtab is constructed from a debug-only objfile, the
9333 has_section_at_zero flag will not necessarily be correct. We
9334 can get the correct value for this flag by looking at the data
9335 associated with the (presumably stripped) associated objfile. */
9336 if (objfile->separate_debug_objfile_backlink)
9337 {
9338 struct dwarf2_per_objfile *dpo_backlink
9339 = get_dwarf2_per_objfile (objfile->separate_debug_objfile_backlink);
9340
9341 dwarf2_per_objfile->has_section_at_zero
9342 = dpo_backlink->has_section_at_zero;
9343 }
9344
9345 dwarf2_per_objfile->reading_partial_symbols = 0;
9346
9347 psymtab_to_symtab_1 (self);
9348
9349 /* Finish up the debug error message. */
9350 if (info_verbose)
9351 printf_filtered (_("done.\n"));
9352 }
9353
9354 process_cu_includes (dwarf2_per_objfile);
9355 }
9356 \f
9357 /* Reading in full CUs. */
9358
9359 /* Add PER_CU to the queue. */
9360
9361 static void
9362 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
9363 enum language pretend_language)
9364 {
9365 struct dwarf2_queue_item *item;
9366
9367 per_cu->queued = 1;
9368 item = XNEW (struct dwarf2_queue_item);
9369 item->per_cu = per_cu;
9370 item->pretend_language = pretend_language;
9371 item->next = NULL;
9372
9373 if (dwarf2_queue == NULL)
9374 dwarf2_queue = item;
9375 else
9376 dwarf2_queue_tail->next = item;
9377
9378 dwarf2_queue_tail = item;
9379 }
9380
9381 /* If PER_CU is not yet queued, add it to the queue.
9382 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
9383 dependency.
9384 The result is non-zero if PER_CU was queued, otherwise the result is zero
9385 meaning either PER_CU is already queued or it is already loaded.
9386
9387 N.B. There is an invariant here that if a CU is queued then it is loaded.
9388 The caller is required to load PER_CU if we return non-zero. */
9389
9390 static int
9391 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
9392 struct dwarf2_per_cu_data *per_cu,
9393 enum language pretend_language)
9394 {
9395 /* We may arrive here during partial symbol reading, if we need full
9396 DIEs to process an unusual case (e.g. template arguments). Do
9397 not queue PER_CU, just tell our caller to load its DIEs. */
9398 if (per_cu->dwarf2_per_objfile->reading_partial_symbols)
9399 {
9400 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
9401 return 1;
9402 return 0;
9403 }
9404
9405 /* Mark the dependence relation so that we don't flush PER_CU
9406 too early. */
9407 if (dependent_cu != NULL)
9408 dwarf2_add_dependence (dependent_cu, per_cu);
9409
9410 /* If it's already on the queue, we have nothing to do. */
9411 if (per_cu->queued)
9412 return 0;
9413
9414 /* If the compilation unit is already loaded, just mark it as
9415 used. */
9416 if (per_cu->cu != NULL)
9417 {
9418 per_cu->cu->last_used = 0;
9419 return 0;
9420 }
9421
9422 /* Add it to the queue. */
9423 queue_comp_unit (per_cu, pretend_language);
9424
9425 return 1;
9426 }
9427
9428 /* Process the queue. */
9429
9430 static void
9431 process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile)
9432 {
9433 struct dwarf2_queue_item *item, *next_item;
9434
9435 if (dwarf_read_debug)
9436 {
9437 fprintf_unfiltered (gdb_stdlog,
9438 "Expanding one or more symtabs of objfile %s ...\n",
9439 objfile_name (dwarf2_per_objfile->objfile));
9440 }
9441
9442 /* The queue starts out with one item, but following a DIE reference
9443 may load a new CU, adding it to the end of the queue. */
9444 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
9445 {
9446 if ((dwarf2_per_objfile->using_index
9447 ? !item->per_cu->v.quick->compunit_symtab
9448 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
9449 /* Skip dummy CUs. */
9450 && item->per_cu->cu != NULL)
9451 {
9452 struct dwarf2_per_cu_data *per_cu = item->per_cu;
9453 unsigned int debug_print_threshold;
9454 char buf[100];
9455
9456 if (per_cu->is_debug_types)
9457 {
9458 struct signatured_type *sig_type =
9459 (struct signatured_type *) per_cu;
9460
9461 sprintf (buf, "TU %s at offset %s",
9462 hex_string (sig_type->signature),
9463 sect_offset_str (per_cu->sect_off));
9464 /* There can be 100s of TUs.
9465 Only print them in verbose mode. */
9466 debug_print_threshold = 2;
9467 }
9468 else
9469 {
9470 sprintf (buf, "CU at offset %s",
9471 sect_offset_str (per_cu->sect_off));
9472 debug_print_threshold = 1;
9473 }
9474
9475 if (dwarf_read_debug >= debug_print_threshold)
9476 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
9477
9478 if (per_cu->is_debug_types)
9479 process_full_type_unit (per_cu, item->pretend_language);
9480 else
9481 process_full_comp_unit (per_cu, item->pretend_language);
9482
9483 if (dwarf_read_debug >= debug_print_threshold)
9484 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
9485 }
9486
9487 item->per_cu->queued = 0;
9488 next_item = item->next;
9489 xfree (item);
9490 }
9491
9492 dwarf2_queue_tail = NULL;
9493
9494 if (dwarf_read_debug)
9495 {
9496 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
9497 objfile_name (dwarf2_per_objfile->objfile));
9498 }
9499 }
9500
9501 /* Read in full symbols for PST, and anything it depends on. */
9502
9503 static void
9504 psymtab_to_symtab_1 (struct partial_symtab *pst)
9505 {
9506 struct dwarf2_per_cu_data *per_cu;
9507 int i;
9508
9509 if (pst->readin)
9510 return;
9511
9512 for (i = 0; i < pst->number_of_dependencies; i++)
9513 if (!pst->dependencies[i]->readin
9514 && pst->dependencies[i]->user == NULL)
9515 {
9516 /* Inform about additional files that need to be read in. */
9517 if (info_verbose)
9518 {
9519 /* FIXME: i18n: Need to make this a single string. */
9520 fputs_filtered (" ", gdb_stdout);
9521 wrap_here ("");
9522 fputs_filtered ("and ", gdb_stdout);
9523 wrap_here ("");
9524 printf_filtered ("%s...", pst->dependencies[i]->filename);
9525 wrap_here (""); /* Flush output. */
9526 gdb_flush (gdb_stdout);
9527 }
9528 psymtab_to_symtab_1 (pst->dependencies[i]);
9529 }
9530
9531 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
9532
9533 if (per_cu == NULL)
9534 {
9535 /* It's an include file, no symbols to read for it.
9536 Everything is in the parent symtab. */
9537 pst->readin = 1;
9538 return;
9539 }
9540
9541 dw2_do_instantiate_symtab (per_cu, false);
9542 }
9543
9544 /* Trivial hash function for die_info: the hash value of a DIE
9545 is its offset in .debug_info for this objfile. */
9546
9547 static hashval_t
9548 die_hash (const void *item)
9549 {
9550 const struct die_info *die = (const struct die_info *) item;
9551
9552 return to_underlying (die->sect_off);
9553 }
9554
9555 /* Trivial comparison function for die_info structures: two DIEs
9556 are equal if they have the same offset. */
9557
9558 static int
9559 die_eq (const void *item_lhs, const void *item_rhs)
9560 {
9561 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
9562 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
9563
9564 return die_lhs->sect_off == die_rhs->sect_off;
9565 }
9566
9567 /* die_reader_func for load_full_comp_unit.
9568 This is identical to read_signatured_type_reader,
9569 but is kept separate for now. */
9570
9571 static void
9572 load_full_comp_unit_reader (const struct die_reader_specs *reader,
9573 const gdb_byte *info_ptr,
9574 struct die_info *comp_unit_die,
9575 int has_children,
9576 void *data)
9577 {
9578 struct dwarf2_cu *cu = reader->cu;
9579 enum language *language_ptr = (enum language *) data;
9580
9581 gdb_assert (cu->die_hash == NULL);
9582 cu->die_hash =
9583 htab_create_alloc_ex (cu->header.length / 12,
9584 die_hash,
9585 die_eq,
9586 NULL,
9587 &cu->comp_unit_obstack,
9588 hashtab_obstack_allocate,
9589 dummy_obstack_deallocate);
9590
9591 if (has_children)
9592 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
9593 &info_ptr, comp_unit_die);
9594 cu->dies = comp_unit_die;
9595 /* comp_unit_die is not stored in die_hash, no need. */
9596
9597 /* We try not to read any attributes in this function, because not
9598 all CUs needed for references have been loaded yet, and symbol
9599 table processing isn't initialized. But we have to set the CU language,
9600 or we won't be able to build types correctly.
9601 Similarly, if we do not read the producer, we can not apply
9602 producer-specific interpretation. */
9603 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
9604 }
9605
9606 /* Load the DIEs associated with PER_CU into memory. */
9607
9608 static void
9609 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
9610 bool skip_partial,
9611 enum language pretend_language)
9612 {
9613 gdb_assert (! this_cu->is_debug_types);
9614
9615 init_cutu_and_read_dies (this_cu, NULL, 1, 1, skip_partial,
9616 load_full_comp_unit_reader, &pretend_language);
9617 }
9618
9619 /* Add a DIE to the delayed physname list. */
9620
9621 static void
9622 add_to_method_list (struct type *type, int fnfield_index, int index,
9623 const char *name, struct die_info *die,
9624 struct dwarf2_cu *cu)
9625 {
9626 struct delayed_method_info mi;
9627 mi.type = type;
9628 mi.fnfield_index = fnfield_index;
9629 mi.index = index;
9630 mi.name = name;
9631 mi.die = die;
9632 cu->method_list.push_back (mi);
9633 }
9634
9635 /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
9636 "const" / "volatile". If so, decrements LEN by the length of the
9637 modifier and return true. Otherwise return false. */
9638
9639 template<size_t N>
9640 static bool
9641 check_modifier (const char *physname, size_t &len, const char (&mod)[N])
9642 {
9643 size_t mod_len = sizeof (mod) - 1;
9644 if (len > mod_len && startswith (physname + (len - mod_len), mod))
9645 {
9646 len -= mod_len;
9647 return true;
9648 }
9649 return false;
9650 }
9651
9652 /* Compute the physnames of any methods on the CU's method list.
9653
9654 The computation of method physnames is delayed in order to avoid the
9655 (bad) condition that one of the method's formal parameters is of an as yet
9656 incomplete type. */
9657
9658 static void
9659 compute_delayed_physnames (struct dwarf2_cu *cu)
9660 {
9661 /* Only C++ delays computing physnames. */
9662 if (cu->method_list.empty ())
9663 return;
9664 gdb_assert (cu->language == language_cplus);
9665
9666 for (const delayed_method_info &mi : cu->method_list)
9667 {
9668 const char *physname;
9669 struct fn_fieldlist *fn_flp
9670 = &TYPE_FN_FIELDLIST (mi.type, mi.fnfield_index);
9671 physname = dwarf2_physname (mi.name, mi.die, cu);
9672 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi.index)
9673 = physname ? physname : "";
9674
9675 /* Since there's no tag to indicate whether a method is a
9676 const/volatile overload, extract that information out of the
9677 demangled name. */
9678 if (physname != NULL)
9679 {
9680 size_t len = strlen (physname);
9681
9682 while (1)
9683 {
9684 if (physname[len] == ')') /* shortcut */
9685 break;
9686 else if (check_modifier (physname, len, " const"))
9687 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi.index) = 1;
9688 else if (check_modifier (physname, len, " volatile"))
9689 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi.index) = 1;
9690 else
9691 break;
9692 }
9693 }
9694 }
9695
9696 /* The list is no longer needed. */
9697 cu->method_list.clear ();
9698 }
9699
9700 /* Go objects should be embedded in a DW_TAG_module DIE,
9701 and it's not clear if/how imported objects will appear.
9702 To keep Go support simple until that's worked out,
9703 go back through what we've read and create something usable.
9704 We could do this while processing each DIE, and feels kinda cleaner,
9705 but that way is more invasive.
9706 This is to, for example, allow the user to type "p var" or "b main"
9707 without having to specify the package name, and allow lookups
9708 of module.object to work in contexts that use the expression
9709 parser. */
9710
9711 static void
9712 fixup_go_packaging (struct dwarf2_cu *cu)
9713 {
9714 char *package_name = NULL;
9715 struct pending *list;
9716 int i;
9717
9718 for (list = *get_global_symbols (); list != NULL; list = list->next)
9719 {
9720 for (i = 0; i < list->nsyms; ++i)
9721 {
9722 struct symbol *sym = list->symbol[i];
9723
9724 if (SYMBOL_LANGUAGE (sym) == language_go
9725 && SYMBOL_CLASS (sym) == LOC_BLOCK)
9726 {
9727 char *this_package_name = go_symbol_package_name (sym);
9728
9729 if (this_package_name == NULL)
9730 continue;
9731 if (package_name == NULL)
9732 package_name = this_package_name;
9733 else
9734 {
9735 struct objfile *objfile
9736 = cu->per_cu->dwarf2_per_objfile->objfile;
9737 if (strcmp (package_name, this_package_name) != 0)
9738 complaint (_("Symtab %s has objects from two different Go packages: %s and %s"),
9739 (symbol_symtab (sym) != NULL
9740 ? symtab_to_filename_for_display
9741 (symbol_symtab (sym))
9742 : objfile_name (objfile)),
9743 this_package_name, package_name);
9744 xfree (this_package_name);
9745 }
9746 }
9747 }
9748 }
9749
9750 if (package_name != NULL)
9751 {
9752 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9753 const char *saved_package_name
9754 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
9755 package_name,
9756 strlen (package_name));
9757 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
9758 saved_package_name);
9759 struct symbol *sym;
9760
9761 sym = allocate_symbol (objfile);
9762 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
9763 SYMBOL_SET_NAMES (sym, saved_package_name,
9764 strlen (saved_package_name), 0, objfile);
9765 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
9766 e.g., "main" finds the "main" module and not C's main(). */
9767 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
9768 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
9769 SYMBOL_TYPE (sym) = type;
9770
9771 add_symbol_to_list (sym, get_global_symbols ());
9772
9773 xfree (package_name);
9774 }
9775 }
9776
9777 /* Allocate a fully-qualified name consisting of the two parts on the
9778 obstack. */
9779
9780 static const char *
9781 rust_fully_qualify (struct obstack *obstack, const char *p1, const char *p2)
9782 {
9783 return obconcat (obstack, p1, "::", p2, (char *) NULL);
9784 }
9785
9786 /* A helper that allocates a struct discriminant_info to attach to a
9787 union type. */
9788
9789 static struct discriminant_info *
9790 alloc_discriminant_info (struct type *type, int discriminant_index,
9791 int default_index)
9792 {
9793 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9794 gdb_assert (discriminant_index == -1
9795 || (discriminant_index >= 0
9796 && discriminant_index < TYPE_NFIELDS (type)));
9797 gdb_assert (default_index == -1
9798 || (default_index >= 0 && default_index < TYPE_NFIELDS (type)));
9799
9800 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
9801
9802 struct discriminant_info *disc
9803 = ((struct discriminant_info *)
9804 TYPE_ZALLOC (type,
9805 offsetof (struct discriminant_info, discriminants)
9806 + TYPE_NFIELDS (type) * sizeof (disc->discriminants[0])));
9807 disc->default_index = default_index;
9808 disc->discriminant_index = discriminant_index;
9809
9810 struct dynamic_prop prop;
9811 prop.kind = PROP_UNDEFINED;
9812 prop.data.baton = disc;
9813
9814 add_dyn_prop (DYN_PROP_DISCRIMINATED, prop, type);
9815
9816 return disc;
9817 }
9818
9819 /* Some versions of rustc emitted enums in an unusual way.
9820
9821 Ordinary enums were emitted as unions. The first element of each
9822 structure in the union was named "RUST$ENUM$DISR". This element
9823 held the discriminant.
9824
9825 These versions of Rust also implemented the "non-zero"
9826 optimization. When the enum had two values, and one is empty and
9827 the other holds a pointer that cannot be zero, the pointer is used
9828 as the discriminant, with a zero value meaning the empty variant.
9829 Here, the union's first member is of the form
9830 RUST$ENCODED$ENUM$<fieldno>$<fieldno>$...$<variantname>
9831 where the fieldnos are the indices of the fields that should be
9832 traversed in order to find the field (which may be several fields deep)
9833 and the variantname is the name of the variant of the case when the
9834 field is zero.
9835
9836 This function recognizes whether TYPE is of one of these forms,
9837 and, if so, smashes it to be a variant type. */
9838
9839 static void
9840 quirk_rust_enum (struct type *type, struct objfile *objfile)
9841 {
9842 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9843
9844 /* We don't need to deal with empty enums. */
9845 if (TYPE_NFIELDS (type) == 0)
9846 return;
9847
9848 #define RUST_ENUM_PREFIX "RUST$ENCODED$ENUM$"
9849 if (TYPE_NFIELDS (type) == 1
9850 && startswith (TYPE_FIELD_NAME (type, 0), RUST_ENUM_PREFIX))
9851 {
9852 const char *name = TYPE_FIELD_NAME (type, 0) + strlen (RUST_ENUM_PREFIX);
9853
9854 /* Decode the field name to find the offset of the
9855 discriminant. */
9856 ULONGEST bit_offset = 0;
9857 struct type *field_type = TYPE_FIELD_TYPE (type, 0);
9858 while (name[0] >= '0' && name[0] <= '9')
9859 {
9860 char *tail;
9861 unsigned long index = strtoul (name, &tail, 10);
9862 name = tail;
9863 if (*name != '$'
9864 || index >= TYPE_NFIELDS (field_type)
9865 || (TYPE_FIELD_LOC_KIND (field_type, index)
9866 != FIELD_LOC_KIND_BITPOS))
9867 {
9868 complaint (_("Could not parse Rust enum encoding string \"%s\""
9869 "[in module %s]"),
9870 TYPE_FIELD_NAME (type, 0),
9871 objfile_name (objfile));
9872 return;
9873 }
9874 ++name;
9875
9876 bit_offset += TYPE_FIELD_BITPOS (field_type, index);
9877 field_type = TYPE_FIELD_TYPE (field_type, index);
9878 }
9879
9880 /* Make a union to hold the variants. */
9881 struct type *union_type = alloc_type (objfile);
9882 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9883 TYPE_NFIELDS (union_type) = 3;
9884 TYPE_FIELDS (union_type)
9885 = (struct field *) TYPE_ZALLOC (type, 3 * sizeof (struct field));
9886 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
9887 set_type_align (union_type, TYPE_RAW_ALIGN (type));
9888
9889 /* Put the discriminant must at index 0. */
9890 TYPE_FIELD_TYPE (union_type, 0) = field_type;
9891 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
9892 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
9893 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 0), bit_offset);
9894
9895 /* The order of fields doesn't really matter, so put the real
9896 field at index 1 and the data-less field at index 2. */
9897 struct discriminant_info *disc
9898 = alloc_discriminant_info (union_type, 0, 1);
9899 TYPE_FIELD (union_type, 1) = TYPE_FIELD (type, 0);
9900 TYPE_FIELD_NAME (union_type, 1)
9901 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1)));
9902 TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1))
9903 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
9904 TYPE_FIELD_NAME (union_type, 1));
9905
9906 const char *dataless_name
9907 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
9908 name);
9909 struct type *dataless_type = init_type (objfile, TYPE_CODE_VOID, 0,
9910 dataless_name);
9911 TYPE_FIELD_TYPE (union_type, 2) = dataless_type;
9912 /* NAME points into the original discriminant name, which
9913 already has the correct lifetime. */
9914 TYPE_FIELD_NAME (union_type, 2) = name;
9915 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 2), 0);
9916 disc->discriminants[2] = 0;
9917
9918 /* Smash this type to be a structure type. We have to do this
9919 because the type has already been recorded. */
9920 TYPE_CODE (type) = TYPE_CODE_STRUCT;
9921 TYPE_NFIELDS (type) = 1;
9922 TYPE_FIELDS (type)
9923 = (struct field *) TYPE_ZALLOC (type, sizeof (struct field));
9924
9925 /* Install the variant part. */
9926 TYPE_FIELD_TYPE (type, 0) = union_type;
9927 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
9928 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
9929 }
9930 else if (TYPE_NFIELDS (type) == 1)
9931 {
9932 /* We assume that a union with a single field is a univariant
9933 enum. */
9934 /* Smash this type to be a structure type. We have to do this
9935 because the type has already been recorded. */
9936 TYPE_CODE (type) = TYPE_CODE_STRUCT;
9937
9938 /* Make a union to hold the variants. */
9939 struct type *union_type = alloc_type (objfile);
9940 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9941 TYPE_NFIELDS (union_type) = TYPE_NFIELDS (type);
9942 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
9943 set_type_align (union_type, TYPE_RAW_ALIGN (type));
9944 TYPE_FIELDS (union_type) = TYPE_FIELDS (type);
9945
9946 struct type *field_type = TYPE_FIELD_TYPE (union_type, 0);
9947 const char *variant_name
9948 = rust_last_path_segment (TYPE_NAME (field_type));
9949 TYPE_FIELD_NAME (union_type, 0) = variant_name;
9950 TYPE_NAME (field_type)
9951 = rust_fully_qualify (&objfile->objfile_obstack,
9952 TYPE_NAME (type), variant_name);
9953
9954 /* Install the union in the outer struct type. */
9955 TYPE_NFIELDS (type) = 1;
9956 TYPE_FIELDS (type)
9957 = (struct field *) TYPE_ZALLOC (union_type, sizeof (struct field));
9958 TYPE_FIELD_TYPE (type, 0) = union_type;
9959 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
9960 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
9961
9962 alloc_discriminant_info (union_type, -1, 0);
9963 }
9964 else
9965 {
9966 struct type *disr_type = nullptr;
9967 for (int i = 0; i < TYPE_NFIELDS (type); ++i)
9968 {
9969 disr_type = TYPE_FIELD_TYPE (type, i);
9970
9971 if (TYPE_CODE (disr_type) != TYPE_CODE_STRUCT)
9972 {
9973 /* All fields of a true enum will be structs. */
9974 return;
9975 }
9976 else if (TYPE_NFIELDS (disr_type) == 0)
9977 {
9978 /* Could be data-less variant, so keep going. */
9979 disr_type = nullptr;
9980 }
9981 else if (strcmp (TYPE_FIELD_NAME (disr_type, 0),
9982 "RUST$ENUM$DISR") != 0)
9983 {
9984 /* Not a Rust enum. */
9985 return;
9986 }
9987 else
9988 {
9989 /* Found one. */
9990 break;
9991 }
9992 }
9993
9994 /* If we got here without a discriminant, then it's probably
9995 just a union. */
9996 if (disr_type == nullptr)
9997 return;
9998
9999 /* Smash this type to be a structure type. We have to do this
10000 because the type has already been recorded. */
10001 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10002
10003 /* Make a union to hold the variants. */
10004 struct field *disr_field = &TYPE_FIELD (disr_type, 0);
10005 struct type *union_type = alloc_type (objfile);
10006 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10007 TYPE_NFIELDS (union_type) = 1 + TYPE_NFIELDS (type);
10008 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10009 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10010 TYPE_FIELDS (union_type)
10011 = (struct field *) TYPE_ZALLOC (union_type,
10012 (TYPE_NFIELDS (union_type)
10013 * sizeof (struct field)));
10014
10015 memcpy (TYPE_FIELDS (union_type) + 1, TYPE_FIELDS (type),
10016 TYPE_NFIELDS (type) * sizeof (struct field));
10017
10018 /* Install the discriminant at index 0 in the union. */
10019 TYPE_FIELD (union_type, 0) = *disr_field;
10020 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10021 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10022
10023 /* Install the union in the outer struct type. */
10024 TYPE_FIELD_TYPE (type, 0) = union_type;
10025 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10026 TYPE_NFIELDS (type) = 1;
10027
10028 /* Set the size and offset of the union type. */
10029 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10030
10031 /* We need a way to find the correct discriminant given a
10032 variant name. For convenience we build a map here. */
10033 struct type *enum_type = FIELD_TYPE (*disr_field);
10034 std::unordered_map<std::string, ULONGEST> discriminant_map;
10035 for (int i = 0; i < TYPE_NFIELDS (enum_type); ++i)
10036 {
10037 if (TYPE_FIELD_LOC_KIND (enum_type, i) == FIELD_LOC_KIND_ENUMVAL)
10038 {
10039 const char *name
10040 = rust_last_path_segment (TYPE_FIELD_NAME (enum_type, i));
10041 discriminant_map[name] = TYPE_FIELD_ENUMVAL (enum_type, i);
10042 }
10043 }
10044
10045 int n_fields = TYPE_NFIELDS (union_type);
10046 struct discriminant_info *disc
10047 = alloc_discriminant_info (union_type, 0, -1);
10048 /* Skip the discriminant here. */
10049 for (int i = 1; i < n_fields; ++i)
10050 {
10051 /* Find the final word in the name of this variant's type.
10052 That name can be used to look up the correct
10053 discriminant. */
10054 const char *variant_name
10055 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type,
10056 i)));
10057
10058 auto iter = discriminant_map.find (variant_name);
10059 if (iter != discriminant_map.end ())
10060 disc->discriminants[i] = iter->second;
10061
10062 /* Remove the discriminant field, if it exists. */
10063 struct type *sub_type = TYPE_FIELD_TYPE (union_type, i);
10064 if (TYPE_NFIELDS (sub_type) > 0)
10065 {
10066 --TYPE_NFIELDS (sub_type);
10067 ++TYPE_FIELDS (sub_type);
10068 }
10069 TYPE_FIELD_NAME (union_type, i) = variant_name;
10070 TYPE_NAME (sub_type)
10071 = rust_fully_qualify (&objfile->objfile_obstack,
10072 TYPE_NAME (type), variant_name);
10073 }
10074 }
10075 }
10076
10077 /* Rewrite some Rust unions to be structures with variants parts. */
10078
10079 static void
10080 rust_union_quirks (struct dwarf2_cu *cu)
10081 {
10082 gdb_assert (cu->language == language_rust);
10083 for (type *type_ : cu->rust_unions)
10084 quirk_rust_enum (type_, cu->per_cu->dwarf2_per_objfile->objfile);
10085 /* We don't need this any more. */
10086 cu->rust_unions.clear ();
10087 }
10088
10089 /* Return the symtab for PER_CU. This works properly regardless of
10090 whether we're using the index or psymtabs. */
10091
10092 static struct compunit_symtab *
10093 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
10094 {
10095 return (per_cu->dwarf2_per_objfile->using_index
10096 ? per_cu->v.quick->compunit_symtab
10097 : per_cu->v.psymtab->compunit_symtab);
10098 }
10099
10100 /* A helper function for computing the list of all symbol tables
10101 included by PER_CU. */
10102
10103 static void
10104 recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
10105 htab_t all_children, htab_t all_type_symtabs,
10106 struct dwarf2_per_cu_data *per_cu,
10107 struct compunit_symtab *immediate_parent)
10108 {
10109 void **slot;
10110 int ix;
10111 struct compunit_symtab *cust;
10112 struct dwarf2_per_cu_data *iter;
10113
10114 slot = htab_find_slot (all_children, per_cu, INSERT);
10115 if (*slot != NULL)
10116 {
10117 /* This inclusion and its children have been processed. */
10118 return;
10119 }
10120
10121 *slot = per_cu;
10122 /* Only add a CU if it has a symbol table. */
10123 cust = get_compunit_symtab (per_cu);
10124 if (cust != NULL)
10125 {
10126 /* If this is a type unit only add its symbol table if we haven't
10127 seen it yet (type unit per_cu's can share symtabs). */
10128 if (per_cu->is_debug_types)
10129 {
10130 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
10131 if (*slot == NULL)
10132 {
10133 *slot = cust;
10134 VEC_safe_push (compunit_symtab_ptr, *result, cust);
10135 if (cust->user == NULL)
10136 cust->user = immediate_parent;
10137 }
10138 }
10139 else
10140 {
10141 VEC_safe_push (compunit_symtab_ptr, *result, cust);
10142 if (cust->user == NULL)
10143 cust->user = immediate_parent;
10144 }
10145 }
10146
10147 for (ix = 0;
10148 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
10149 ++ix)
10150 {
10151 recursively_compute_inclusions (result, all_children,
10152 all_type_symtabs, iter, cust);
10153 }
10154 }
10155
10156 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
10157 PER_CU. */
10158
10159 static void
10160 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
10161 {
10162 gdb_assert (! per_cu->is_debug_types);
10163
10164 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
10165 {
10166 int ix, len;
10167 struct dwarf2_per_cu_data *per_cu_iter;
10168 struct compunit_symtab *compunit_symtab_iter;
10169 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
10170 htab_t all_children, all_type_symtabs;
10171 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
10172
10173 /* If we don't have a symtab, we can just skip this case. */
10174 if (cust == NULL)
10175 return;
10176
10177 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10178 NULL, xcalloc, xfree);
10179 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10180 NULL, xcalloc, xfree);
10181
10182 for (ix = 0;
10183 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
10184 ix, per_cu_iter);
10185 ++ix)
10186 {
10187 recursively_compute_inclusions (&result_symtabs, all_children,
10188 all_type_symtabs, per_cu_iter,
10189 cust);
10190 }
10191
10192 /* Now we have a transitive closure of all the included symtabs. */
10193 len = VEC_length (compunit_symtab_ptr, result_symtabs);
10194 cust->includes
10195 = XOBNEWVEC (&per_cu->dwarf2_per_objfile->objfile->objfile_obstack,
10196 struct compunit_symtab *, len + 1);
10197 for (ix = 0;
10198 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
10199 compunit_symtab_iter);
10200 ++ix)
10201 cust->includes[ix] = compunit_symtab_iter;
10202 cust->includes[len] = NULL;
10203
10204 VEC_free (compunit_symtab_ptr, result_symtabs);
10205 htab_delete (all_children);
10206 htab_delete (all_type_symtabs);
10207 }
10208 }
10209
10210 /* Compute the 'includes' field for the symtabs of all the CUs we just
10211 read. */
10212
10213 static void
10214 process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile)
10215 {
10216 for (dwarf2_per_cu_data *iter : dwarf2_per_objfile->just_read_cus)
10217 {
10218 if (! iter->is_debug_types)
10219 compute_compunit_symtab_includes (iter);
10220 }
10221
10222 dwarf2_per_objfile->just_read_cus.clear ();
10223 }
10224
10225 /* Generate full symbol information for PER_CU, whose DIEs have
10226 already been loaded into memory. */
10227
10228 static void
10229 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
10230 enum language pretend_language)
10231 {
10232 struct dwarf2_cu *cu = per_cu->cu;
10233 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10234 struct objfile *objfile = dwarf2_per_objfile->objfile;
10235 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10236 CORE_ADDR lowpc, highpc;
10237 struct compunit_symtab *cust;
10238 CORE_ADDR baseaddr;
10239 struct block *static_block;
10240 CORE_ADDR addr;
10241
10242 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10243
10244 scoped_free_pendings free_pending;
10245
10246 /* Clear the list here in case something was left over. */
10247 cu->method_list.clear ();
10248
10249 cu->language = pretend_language;
10250 cu->language_defn = language_def (cu->language);
10251
10252 /* Do line number decoding in read_file_scope () */
10253 process_die (cu->dies, cu);
10254
10255 /* For now fudge the Go package. */
10256 if (cu->language == language_go)
10257 fixup_go_packaging (cu);
10258
10259 /* Now that we have processed all the DIEs in the CU, all the types
10260 should be complete, and it should now be safe to compute all of the
10261 physnames. */
10262 compute_delayed_physnames (cu);
10263
10264 if (cu->language == language_rust)
10265 rust_union_quirks (cu);
10266
10267 /* Some compilers don't define a DW_AT_high_pc attribute for the
10268 compilation unit. If the DW_AT_high_pc is missing, synthesize
10269 it, by scanning the DIE's below the compilation unit. */
10270 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
10271
10272 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
10273 static_block = end_symtab_get_static_block (addr, 0, 1);
10274
10275 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
10276 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
10277 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
10278 addrmap to help ensure it has an accurate map of pc values belonging to
10279 this comp unit. */
10280 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
10281
10282 cust = end_symtab_from_static_block (static_block,
10283 SECT_OFF_TEXT (objfile), 0);
10284
10285 if (cust != NULL)
10286 {
10287 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
10288
10289 /* Set symtab language to language from DW_AT_language. If the
10290 compilation is from a C file generated by language preprocessors, do
10291 not set the language if it was already deduced by start_subfile. */
10292 if (!(cu->language == language_c
10293 && COMPUNIT_FILETABS (cust)->language != language_unknown))
10294 COMPUNIT_FILETABS (cust)->language = cu->language;
10295
10296 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
10297 produce DW_AT_location with location lists but it can be possibly
10298 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
10299 there were bugs in prologue debug info, fixed later in GCC-4.5
10300 by "unwind info for epilogues" patch (which is not directly related).
10301
10302 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
10303 needed, it would be wrong due to missing DW_AT_producer there.
10304
10305 Still one can confuse GDB by using non-standard GCC compilation
10306 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
10307 */
10308 if (cu->has_loclist && gcc_4_minor >= 5)
10309 cust->locations_valid = 1;
10310
10311 if (gcc_4_minor >= 5)
10312 cust->epilogue_unwind_valid = 1;
10313
10314 cust->call_site_htab = cu->call_site_htab;
10315 }
10316
10317 if (dwarf2_per_objfile->using_index)
10318 per_cu->v.quick->compunit_symtab = cust;
10319 else
10320 {
10321 struct partial_symtab *pst = per_cu->v.psymtab;
10322 pst->compunit_symtab = cust;
10323 pst->readin = 1;
10324 }
10325
10326 /* Push it for inclusion processing later. */
10327 dwarf2_per_objfile->just_read_cus.push_back (per_cu);
10328 }
10329
10330 /* Generate full symbol information for type unit PER_CU, whose DIEs have
10331 already been loaded into memory. */
10332
10333 static void
10334 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
10335 enum language pretend_language)
10336 {
10337 struct dwarf2_cu *cu = per_cu->cu;
10338 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10339 struct objfile *objfile = dwarf2_per_objfile->objfile;
10340 struct compunit_symtab *cust;
10341 struct signatured_type *sig_type;
10342
10343 gdb_assert (per_cu->is_debug_types);
10344 sig_type = (struct signatured_type *) per_cu;
10345
10346 scoped_free_pendings free_pending;
10347
10348 /* Clear the list here in case something was left over. */
10349 cu->method_list.clear ();
10350
10351 cu->language = pretend_language;
10352 cu->language_defn = language_def (cu->language);
10353
10354 /* The symbol tables are set up in read_type_unit_scope. */
10355 process_die (cu->dies, cu);
10356
10357 /* For now fudge the Go package. */
10358 if (cu->language == language_go)
10359 fixup_go_packaging (cu);
10360
10361 /* Now that we have processed all the DIEs in the CU, all the types
10362 should be complete, and it should now be safe to compute all of the
10363 physnames. */
10364 compute_delayed_physnames (cu);
10365
10366 if (cu->language == language_rust)
10367 rust_union_quirks (cu);
10368
10369 /* TUs share symbol tables.
10370 If this is the first TU to use this symtab, complete the construction
10371 of it with end_expandable_symtab. Otherwise, complete the addition of
10372 this TU's symbols to the existing symtab. */
10373 if (sig_type->type_unit_group->compunit_symtab == NULL)
10374 {
10375 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
10376 sig_type->type_unit_group->compunit_symtab = cust;
10377
10378 if (cust != NULL)
10379 {
10380 /* Set symtab language to language from DW_AT_language. If the
10381 compilation is from a C file generated by language preprocessors,
10382 do not set the language if it was already deduced by
10383 start_subfile. */
10384 if (!(cu->language == language_c
10385 && COMPUNIT_FILETABS (cust)->language != language_c))
10386 COMPUNIT_FILETABS (cust)->language = cu->language;
10387 }
10388 }
10389 else
10390 {
10391 augment_type_symtab ();
10392 cust = sig_type->type_unit_group->compunit_symtab;
10393 }
10394
10395 if (dwarf2_per_objfile->using_index)
10396 per_cu->v.quick->compunit_symtab = cust;
10397 else
10398 {
10399 struct partial_symtab *pst = per_cu->v.psymtab;
10400 pst->compunit_symtab = cust;
10401 pst->readin = 1;
10402 }
10403 }
10404
10405 /* Process an imported unit DIE. */
10406
10407 static void
10408 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
10409 {
10410 struct attribute *attr;
10411
10412 /* For now we don't handle imported units in type units. */
10413 if (cu->per_cu->is_debug_types)
10414 {
10415 error (_("Dwarf Error: DW_TAG_imported_unit is not"
10416 " supported in type units [in module %s]"),
10417 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
10418 }
10419
10420 attr = dwarf2_attr (die, DW_AT_import, cu);
10421 if (attr != NULL)
10422 {
10423 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
10424 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
10425 dwarf2_per_cu_data *per_cu
10426 = dwarf2_find_containing_comp_unit (sect_off, is_dwz,
10427 cu->per_cu->dwarf2_per_objfile);
10428
10429 /* If necessary, add it to the queue and load its DIEs. */
10430 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
10431 load_full_comp_unit (per_cu, false, cu->language);
10432
10433 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
10434 per_cu);
10435 }
10436 }
10437
10438 /* RAII object that represents a process_die scope: i.e.,
10439 starts/finishes processing a DIE. */
10440 class process_die_scope
10441 {
10442 public:
10443 process_die_scope (die_info *die, dwarf2_cu *cu)
10444 : m_die (die), m_cu (cu)
10445 {
10446 /* We should only be processing DIEs not already in process. */
10447 gdb_assert (!m_die->in_process);
10448 m_die->in_process = true;
10449 }
10450
10451 ~process_die_scope ()
10452 {
10453 m_die->in_process = false;
10454
10455 /* If we're done processing the DIE for the CU that owns the line
10456 header, we don't need the line header anymore. */
10457 if (m_cu->line_header_die_owner == m_die)
10458 {
10459 delete m_cu->line_header;
10460 m_cu->line_header = NULL;
10461 m_cu->line_header_die_owner = NULL;
10462 }
10463 }
10464
10465 private:
10466 die_info *m_die;
10467 dwarf2_cu *m_cu;
10468 };
10469
10470 /* Process a die and its children. */
10471
10472 static void
10473 process_die (struct die_info *die, struct dwarf2_cu *cu)
10474 {
10475 process_die_scope scope (die, cu);
10476
10477 switch (die->tag)
10478 {
10479 case DW_TAG_padding:
10480 break;
10481 case DW_TAG_compile_unit:
10482 case DW_TAG_partial_unit:
10483 read_file_scope (die, cu);
10484 break;
10485 case DW_TAG_type_unit:
10486 read_type_unit_scope (die, cu);
10487 break;
10488 case DW_TAG_subprogram:
10489 case DW_TAG_inlined_subroutine:
10490 read_func_scope (die, cu);
10491 break;
10492 case DW_TAG_lexical_block:
10493 case DW_TAG_try_block:
10494 case DW_TAG_catch_block:
10495 read_lexical_block_scope (die, cu);
10496 break;
10497 case DW_TAG_call_site:
10498 case DW_TAG_GNU_call_site:
10499 read_call_site_scope (die, cu);
10500 break;
10501 case DW_TAG_class_type:
10502 case DW_TAG_interface_type:
10503 case DW_TAG_structure_type:
10504 case DW_TAG_union_type:
10505 process_structure_scope (die, cu);
10506 break;
10507 case DW_TAG_enumeration_type:
10508 process_enumeration_scope (die, cu);
10509 break;
10510
10511 /* These dies have a type, but processing them does not create
10512 a symbol or recurse to process the children. Therefore we can
10513 read them on-demand through read_type_die. */
10514 case DW_TAG_subroutine_type:
10515 case DW_TAG_set_type:
10516 case DW_TAG_array_type:
10517 case DW_TAG_pointer_type:
10518 case DW_TAG_ptr_to_member_type:
10519 case DW_TAG_reference_type:
10520 case DW_TAG_rvalue_reference_type:
10521 case DW_TAG_string_type:
10522 break;
10523
10524 case DW_TAG_base_type:
10525 case DW_TAG_subrange_type:
10526 case DW_TAG_typedef:
10527 /* Add a typedef symbol for the type definition, if it has a
10528 DW_AT_name. */
10529 new_symbol (die, read_type_die (die, cu), cu);
10530 break;
10531 case DW_TAG_common_block:
10532 read_common_block (die, cu);
10533 break;
10534 case DW_TAG_common_inclusion:
10535 break;
10536 case DW_TAG_namespace:
10537 cu->processing_has_namespace_info = 1;
10538 read_namespace (die, cu);
10539 break;
10540 case DW_TAG_module:
10541 cu->processing_has_namespace_info = 1;
10542 read_module (die, cu);
10543 break;
10544 case DW_TAG_imported_declaration:
10545 cu->processing_has_namespace_info = 1;
10546 if (read_namespace_alias (die, cu))
10547 break;
10548 /* The declaration is not a global namespace alias. */
10549 /* Fall through. */
10550 case DW_TAG_imported_module:
10551 cu->processing_has_namespace_info = 1;
10552 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
10553 || cu->language != language_fortran))
10554 complaint (_("Tag '%s' has unexpected children"),
10555 dwarf_tag_name (die->tag));
10556 read_import_statement (die, cu);
10557 break;
10558
10559 case DW_TAG_imported_unit:
10560 process_imported_unit_die (die, cu);
10561 break;
10562
10563 case DW_TAG_variable:
10564 read_variable (die, cu);
10565 break;
10566
10567 default:
10568 new_symbol (die, NULL, cu);
10569 break;
10570 }
10571 }
10572 \f
10573 /* DWARF name computation. */
10574
10575 /* A helper function for dwarf2_compute_name which determines whether DIE
10576 needs to have the name of the scope prepended to the name listed in the
10577 die. */
10578
10579 static int
10580 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
10581 {
10582 struct attribute *attr;
10583
10584 switch (die->tag)
10585 {
10586 case DW_TAG_namespace:
10587 case DW_TAG_typedef:
10588 case DW_TAG_class_type:
10589 case DW_TAG_interface_type:
10590 case DW_TAG_structure_type:
10591 case DW_TAG_union_type:
10592 case DW_TAG_enumeration_type:
10593 case DW_TAG_enumerator:
10594 case DW_TAG_subprogram:
10595 case DW_TAG_inlined_subroutine:
10596 case DW_TAG_member:
10597 case DW_TAG_imported_declaration:
10598 return 1;
10599
10600 case DW_TAG_variable:
10601 case DW_TAG_constant:
10602 /* We only need to prefix "globally" visible variables. These include
10603 any variable marked with DW_AT_external or any variable that
10604 lives in a namespace. [Variables in anonymous namespaces
10605 require prefixing, but they are not DW_AT_external.] */
10606
10607 if (dwarf2_attr (die, DW_AT_specification, cu))
10608 {
10609 struct dwarf2_cu *spec_cu = cu;
10610
10611 return die_needs_namespace (die_specification (die, &spec_cu),
10612 spec_cu);
10613 }
10614
10615 attr = dwarf2_attr (die, DW_AT_external, cu);
10616 if (attr == NULL && die->parent->tag != DW_TAG_namespace
10617 && die->parent->tag != DW_TAG_module)
10618 return 0;
10619 /* A variable in a lexical block of some kind does not need a
10620 namespace, even though in C++ such variables may be external
10621 and have a mangled name. */
10622 if (die->parent->tag == DW_TAG_lexical_block
10623 || die->parent->tag == DW_TAG_try_block
10624 || die->parent->tag == DW_TAG_catch_block
10625 || die->parent->tag == DW_TAG_subprogram)
10626 return 0;
10627 return 1;
10628
10629 default:
10630 return 0;
10631 }
10632 }
10633
10634 /* Return the DIE's linkage name attribute, either DW_AT_linkage_name
10635 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10636 defined for the given DIE. */
10637
10638 static struct attribute *
10639 dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
10640 {
10641 struct attribute *attr;
10642
10643 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
10644 if (attr == NULL)
10645 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
10646
10647 return attr;
10648 }
10649
10650 /* Return the DIE's linkage name as a string, either DW_AT_linkage_name
10651 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10652 defined for the given DIE. */
10653
10654 static const char *
10655 dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
10656 {
10657 const char *linkage_name;
10658
10659 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
10660 if (linkage_name == NULL)
10661 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
10662
10663 return linkage_name;
10664 }
10665
10666 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
10667 compute the physname for the object, which include a method's:
10668 - formal parameters (C++),
10669 - receiver type (Go),
10670
10671 The term "physname" is a bit confusing.
10672 For C++, for example, it is the demangled name.
10673 For Go, for example, it's the mangled name.
10674
10675 For Ada, return the DIE's linkage name rather than the fully qualified
10676 name. PHYSNAME is ignored..
10677
10678 The result is allocated on the objfile_obstack and canonicalized. */
10679
10680 static const char *
10681 dwarf2_compute_name (const char *name,
10682 struct die_info *die, struct dwarf2_cu *cu,
10683 int physname)
10684 {
10685 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10686
10687 if (name == NULL)
10688 name = dwarf2_name (die, cu);
10689
10690 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
10691 but otherwise compute it by typename_concat inside GDB.
10692 FIXME: Actually this is not really true, or at least not always true.
10693 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
10694 Fortran names because there is no mangling standard. So new_symbol
10695 will set the demangled name to the result of dwarf2_full_name, and it is
10696 the demangled name that GDB uses if it exists. */
10697 if (cu->language == language_ada
10698 || (cu->language == language_fortran && physname))
10699 {
10700 /* For Ada unit, we prefer the linkage name over the name, as
10701 the former contains the exported name, which the user expects
10702 to be able to reference. Ideally, we want the user to be able
10703 to reference this entity using either natural or linkage name,
10704 but we haven't started looking at this enhancement yet. */
10705 const char *linkage_name = dw2_linkage_name (die, cu);
10706
10707 if (linkage_name != NULL)
10708 return linkage_name;
10709 }
10710
10711 /* These are the only languages we know how to qualify names in. */
10712 if (name != NULL
10713 && (cu->language == language_cplus
10714 || cu->language == language_fortran || cu->language == language_d
10715 || cu->language == language_rust))
10716 {
10717 if (die_needs_namespace (die, cu))
10718 {
10719 const char *prefix;
10720 const char *canonical_name = NULL;
10721
10722 string_file buf;
10723
10724 prefix = determine_prefix (die, cu);
10725 if (*prefix != '\0')
10726 {
10727 char *prefixed_name = typename_concat (NULL, prefix, name,
10728 physname, cu);
10729
10730 buf.puts (prefixed_name);
10731 xfree (prefixed_name);
10732 }
10733 else
10734 buf.puts (name);
10735
10736 /* Template parameters may be specified in the DIE's DW_AT_name, or
10737 as children with DW_TAG_template_type_param or
10738 DW_TAG_value_type_param. If the latter, add them to the name
10739 here. If the name already has template parameters, then
10740 skip this step; some versions of GCC emit both, and
10741 it is more efficient to use the pre-computed name.
10742
10743 Something to keep in mind about this process: it is very
10744 unlikely, or in some cases downright impossible, to produce
10745 something that will match the mangled name of a function.
10746 If the definition of the function has the same debug info,
10747 we should be able to match up with it anyway. But fallbacks
10748 using the minimal symbol, for instance to find a method
10749 implemented in a stripped copy of libstdc++, will not work.
10750 If we do not have debug info for the definition, we will have to
10751 match them up some other way.
10752
10753 When we do name matching there is a related problem with function
10754 templates; two instantiated function templates are allowed to
10755 differ only by their return types, which we do not add here. */
10756
10757 if (cu->language == language_cplus && strchr (name, '<') == NULL)
10758 {
10759 struct attribute *attr;
10760 struct die_info *child;
10761 int first = 1;
10762
10763 die->building_fullname = 1;
10764
10765 for (child = die->child; child != NULL; child = child->sibling)
10766 {
10767 struct type *type;
10768 LONGEST value;
10769 const gdb_byte *bytes;
10770 struct dwarf2_locexpr_baton *baton;
10771 struct value *v;
10772
10773 if (child->tag != DW_TAG_template_type_param
10774 && child->tag != DW_TAG_template_value_param)
10775 continue;
10776
10777 if (first)
10778 {
10779 buf.puts ("<");
10780 first = 0;
10781 }
10782 else
10783 buf.puts (", ");
10784
10785 attr = dwarf2_attr (child, DW_AT_type, cu);
10786 if (attr == NULL)
10787 {
10788 complaint (_("template parameter missing DW_AT_type"));
10789 buf.puts ("UNKNOWN_TYPE");
10790 continue;
10791 }
10792 type = die_type (child, cu);
10793
10794 if (child->tag == DW_TAG_template_type_param)
10795 {
10796 c_print_type (type, "", &buf, -1, 0, cu->language,
10797 &type_print_raw_options);
10798 continue;
10799 }
10800
10801 attr = dwarf2_attr (child, DW_AT_const_value, cu);
10802 if (attr == NULL)
10803 {
10804 complaint (_("template parameter missing "
10805 "DW_AT_const_value"));
10806 buf.puts ("UNKNOWN_VALUE");
10807 continue;
10808 }
10809
10810 dwarf2_const_value_attr (attr, type, name,
10811 &cu->comp_unit_obstack, cu,
10812 &value, &bytes, &baton);
10813
10814 if (TYPE_NOSIGN (type))
10815 /* GDB prints characters as NUMBER 'CHAR'. If that's
10816 changed, this can use value_print instead. */
10817 c_printchar (value, type, &buf);
10818 else
10819 {
10820 struct value_print_options opts;
10821
10822 if (baton != NULL)
10823 v = dwarf2_evaluate_loc_desc (type, NULL,
10824 baton->data,
10825 baton->size,
10826 baton->per_cu);
10827 else if (bytes != NULL)
10828 {
10829 v = allocate_value (type);
10830 memcpy (value_contents_writeable (v), bytes,
10831 TYPE_LENGTH (type));
10832 }
10833 else
10834 v = value_from_longest (type, value);
10835
10836 /* Specify decimal so that we do not depend on
10837 the radix. */
10838 get_formatted_print_options (&opts, 'd');
10839 opts.raw = 1;
10840 value_print (v, &buf, &opts);
10841 release_value (v);
10842 }
10843 }
10844
10845 die->building_fullname = 0;
10846
10847 if (!first)
10848 {
10849 /* Close the argument list, with a space if necessary
10850 (nested templates). */
10851 if (!buf.empty () && buf.string ().back () == '>')
10852 buf.puts (" >");
10853 else
10854 buf.puts (">");
10855 }
10856 }
10857
10858 /* For C++ methods, append formal parameter type
10859 information, if PHYSNAME. */
10860
10861 if (physname && die->tag == DW_TAG_subprogram
10862 && cu->language == language_cplus)
10863 {
10864 struct type *type = read_type_die (die, cu);
10865
10866 c_type_print_args (type, &buf, 1, cu->language,
10867 &type_print_raw_options);
10868
10869 if (cu->language == language_cplus)
10870 {
10871 /* Assume that an artificial first parameter is
10872 "this", but do not crash if it is not. RealView
10873 marks unnamed (and thus unused) parameters as
10874 artificial; there is no way to differentiate
10875 the two cases. */
10876 if (TYPE_NFIELDS (type) > 0
10877 && TYPE_FIELD_ARTIFICIAL (type, 0)
10878 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
10879 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
10880 0))))
10881 buf.puts (" const");
10882 }
10883 }
10884
10885 const std::string &intermediate_name = buf.string ();
10886
10887 if (cu->language == language_cplus)
10888 canonical_name
10889 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
10890 &objfile->per_bfd->storage_obstack);
10891
10892 /* If we only computed INTERMEDIATE_NAME, or if
10893 INTERMEDIATE_NAME is already canonical, then we need to
10894 copy it to the appropriate obstack. */
10895 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
10896 name = ((const char *)
10897 obstack_copy0 (&objfile->per_bfd->storage_obstack,
10898 intermediate_name.c_str (),
10899 intermediate_name.length ()));
10900 else
10901 name = canonical_name;
10902 }
10903 }
10904
10905 return name;
10906 }
10907
10908 /* Return the fully qualified name of DIE, based on its DW_AT_name.
10909 If scope qualifiers are appropriate they will be added. The result
10910 will be allocated on the storage_obstack, or NULL if the DIE does
10911 not have a name. NAME may either be from a previous call to
10912 dwarf2_name or NULL.
10913
10914 The output string will be canonicalized (if C++). */
10915
10916 static const char *
10917 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
10918 {
10919 return dwarf2_compute_name (name, die, cu, 0);
10920 }
10921
10922 /* Construct a physname for the given DIE in CU. NAME may either be
10923 from a previous call to dwarf2_name or NULL. The result will be
10924 allocated on the objfile_objstack or NULL if the DIE does not have a
10925 name.
10926
10927 The output string will be canonicalized (if C++). */
10928
10929 static const char *
10930 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
10931 {
10932 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10933 const char *retval, *mangled = NULL, *canon = NULL;
10934 int need_copy = 1;
10935
10936 /* In this case dwarf2_compute_name is just a shortcut not building anything
10937 on its own. */
10938 if (!die_needs_namespace (die, cu))
10939 return dwarf2_compute_name (name, die, cu, 1);
10940
10941 mangled = dw2_linkage_name (die, cu);
10942
10943 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
10944 See https://github.com/rust-lang/rust/issues/32925. */
10945 if (cu->language == language_rust && mangled != NULL
10946 && strchr (mangled, '{') != NULL)
10947 mangled = NULL;
10948
10949 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
10950 has computed. */
10951 gdb::unique_xmalloc_ptr<char> demangled;
10952 if (mangled != NULL)
10953 {
10954
10955 if (language_def (cu->language)->la_store_sym_names_in_linkage_form_p)
10956 {
10957 /* Do nothing (do not demangle the symbol name). */
10958 }
10959 else if (cu->language == language_go)
10960 {
10961 /* This is a lie, but we already lie to the caller new_symbol.
10962 new_symbol assumes we return the mangled name.
10963 This just undoes that lie until things are cleaned up. */
10964 }
10965 else
10966 {
10967 /* Use DMGL_RET_DROP for C++ template functions to suppress
10968 their return type. It is easier for GDB users to search
10969 for such functions as `name(params)' than `long name(params)'.
10970 In such case the minimal symbol names do not match the full
10971 symbol names but for template functions there is never a need
10972 to look up their definition from their declaration so
10973 the only disadvantage remains the minimal symbol variant
10974 `long name(params)' does not have the proper inferior type. */
10975 demangled.reset (gdb_demangle (mangled,
10976 (DMGL_PARAMS | DMGL_ANSI
10977 | DMGL_RET_DROP)));
10978 }
10979 if (demangled)
10980 canon = demangled.get ();
10981 else
10982 {
10983 canon = mangled;
10984 need_copy = 0;
10985 }
10986 }
10987
10988 if (canon == NULL || check_physname)
10989 {
10990 const char *physname = dwarf2_compute_name (name, die, cu, 1);
10991
10992 if (canon != NULL && strcmp (physname, canon) != 0)
10993 {
10994 /* It may not mean a bug in GDB. The compiler could also
10995 compute DW_AT_linkage_name incorrectly. But in such case
10996 GDB would need to be bug-to-bug compatible. */
10997
10998 complaint (_("Computed physname <%s> does not match demangled <%s> "
10999 "(from linkage <%s>) - DIE at %s [in module %s]"),
11000 physname, canon, mangled, sect_offset_str (die->sect_off),
11001 objfile_name (objfile));
11002
11003 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
11004 is available here - over computed PHYSNAME. It is safer
11005 against both buggy GDB and buggy compilers. */
11006
11007 retval = canon;
11008 }
11009 else
11010 {
11011 retval = physname;
11012 need_copy = 0;
11013 }
11014 }
11015 else
11016 retval = canon;
11017
11018 if (need_copy)
11019 retval = ((const char *)
11020 obstack_copy0 (&objfile->per_bfd->storage_obstack,
11021 retval, strlen (retval)));
11022
11023 return retval;
11024 }
11025
11026 /* Inspect DIE in CU for a namespace alias. If one exists, record
11027 a new symbol for it.
11028
11029 Returns 1 if a namespace alias was recorded, 0 otherwise. */
11030
11031 static int
11032 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
11033 {
11034 struct attribute *attr;
11035
11036 /* If the die does not have a name, this is not a namespace
11037 alias. */
11038 attr = dwarf2_attr (die, DW_AT_name, cu);
11039 if (attr != NULL)
11040 {
11041 int num;
11042 struct die_info *d = die;
11043 struct dwarf2_cu *imported_cu = cu;
11044
11045 /* If the compiler has nested DW_AT_imported_declaration DIEs,
11046 keep inspecting DIEs until we hit the underlying import. */
11047 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
11048 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
11049 {
11050 attr = dwarf2_attr (d, DW_AT_import, cu);
11051 if (attr == NULL)
11052 break;
11053
11054 d = follow_die_ref (d, attr, &imported_cu);
11055 if (d->tag != DW_TAG_imported_declaration)
11056 break;
11057 }
11058
11059 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
11060 {
11061 complaint (_("DIE at %s has too many recursively imported "
11062 "declarations"), sect_offset_str (d->sect_off));
11063 return 0;
11064 }
11065
11066 if (attr != NULL)
11067 {
11068 struct type *type;
11069 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
11070
11071 type = get_die_type_at_offset (sect_off, cu->per_cu);
11072 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
11073 {
11074 /* This declaration is a global namespace alias. Add
11075 a symbol for it whose type is the aliased namespace. */
11076 new_symbol (die, type, cu);
11077 return 1;
11078 }
11079 }
11080 }
11081
11082 return 0;
11083 }
11084
11085 /* Return the using directives repository (global or local?) to use in the
11086 current context for LANGUAGE.
11087
11088 For Ada, imported declarations can materialize renamings, which *may* be
11089 global. However it is impossible (for now?) in DWARF to distinguish
11090 "external" imported declarations and "static" ones. As all imported
11091 declarations seem to be static in all other languages, make them all CU-wide
11092 global only in Ada. */
11093
11094 static struct using_direct **
11095 using_directives (enum language language)
11096 {
11097 if (language == language_ada && outermost_context_p ())
11098 return get_global_using_directives ();
11099 else
11100 return get_local_using_directives ();
11101 }
11102
11103 /* Read the import statement specified by the given die and record it. */
11104
11105 static void
11106 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
11107 {
11108 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11109 struct attribute *import_attr;
11110 struct die_info *imported_die, *child_die;
11111 struct dwarf2_cu *imported_cu;
11112 const char *imported_name;
11113 const char *imported_name_prefix;
11114 const char *canonical_name;
11115 const char *import_alias;
11116 const char *imported_declaration = NULL;
11117 const char *import_prefix;
11118 std::vector<const char *> excludes;
11119
11120 import_attr = dwarf2_attr (die, DW_AT_import, cu);
11121 if (import_attr == NULL)
11122 {
11123 complaint (_("Tag '%s' has no DW_AT_import"),
11124 dwarf_tag_name (die->tag));
11125 return;
11126 }
11127
11128 imported_cu = cu;
11129 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
11130 imported_name = dwarf2_name (imported_die, imported_cu);
11131 if (imported_name == NULL)
11132 {
11133 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
11134
11135 The import in the following code:
11136 namespace A
11137 {
11138 typedef int B;
11139 }
11140
11141 int main ()
11142 {
11143 using A::B;
11144 B b;
11145 return b;
11146 }
11147
11148 ...
11149 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
11150 <52> DW_AT_decl_file : 1
11151 <53> DW_AT_decl_line : 6
11152 <54> DW_AT_import : <0x75>
11153 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
11154 <59> DW_AT_name : B
11155 <5b> DW_AT_decl_file : 1
11156 <5c> DW_AT_decl_line : 2
11157 <5d> DW_AT_type : <0x6e>
11158 ...
11159 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
11160 <76> DW_AT_byte_size : 4
11161 <77> DW_AT_encoding : 5 (signed)
11162
11163 imports the wrong die ( 0x75 instead of 0x58 ).
11164 This case will be ignored until the gcc bug is fixed. */
11165 return;
11166 }
11167
11168 /* Figure out the local name after import. */
11169 import_alias = dwarf2_name (die, cu);
11170
11171 /* Figure out where the statement is being imported to. */
11172 import_prefix = determine_prefix (die, cu);
11173
11174 /* Figure out what the scope of the imported die is and prepend it
11175 to the name of the imported die. */
11176 imported_name_prefix = determine_prefix (imported_die, imported_cu);
11177
11178 if (imported_die->tag != DW_TAG_namespace
11179 && imported_die->tag != DW_TAG_module)
11180 {
11181 imported_declaration = imported_name;
11182 canonical_name = imported_name_prefix;
11183 }
11184 else if (strlen (imported_name_prefix) > 0)
11185 canonical_name = obconcat (&objfile->objfile_obstack,
11186 imported_name_prefix,
11187 (cu->language == language_d ? "." : "::"),
11188 imported_name, (char *) NULL);
11189 else
11190 canonical_name = imported_name;
11191
11192 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
11193 for (child_die = die->child; child_die && child_die->tag;
11194 child_die = sibling_die (child_die))
11195 {
11196 /* DWARF-4: A Fortran use statement with a “rename list” may be
11197 represented by an imported module entry with an import attribute
11198 referring to the module and owned entries corresponding to those
11199 entities that are renamed as part of being imported. */
11200
11201 if (child_die->tag != DW_TAG_imported_declaration)
11202 {
11203 complaint (_("child DW_TAG_imported_declaration expected "
11204 "- DIE at %s [in module %s]"),
11205 sect_offset_str (child_die->sect_off),
11206 objfile_name (objfile));
11207 continue;
11208 }
11209
11210 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
11211 if (import_attr == NULL)
11212 {
11213 complaint (_("Tag '%s' has no DW_AT_import"),
11214 dwarf_tag_name (child_die->tag));
11215 continue;
11216 }
11217
11218 imported_cu = cu;
11219 imported_die = follow_die_ref_or_sig (child_die, import_attr,
11220 &imported_cu);
11221 imported_name = dwarf2_name (imported_die, imported_cu);
11222 if (imported_name == NULL)
11223 {
11224 complaint (_("child DW_TAG_imported_declaration has unknown "
11225 "imported name - DIE at %s [in module %s]"),
11226 sect_offset_str (child_die->sect_off),
11227 objfile_name (objfile));
11228 continue;
11229 }
11230
11231 excludes.push_back (imported_name);
11232
11233 process_die (child_die, cu);
11234 }
11235
11236 add_using_directive (using_directives (cu->language),
11237 import_prefix,
11238 canonical_name,
11239 import_alias,
11240 imported_declaration,
11241 excludes,
11242 0,
11243 &objfile->objfile_obstack);
11244 }
11245
11246 /* ICC<14 does not output the required DW_AT_declaration on incomplete
11247 types, but gives them a size of zero. Starting with version 14,
11248 ICC is compatible with GCC. */
11249
11250 static int
11251 producer_is_icc_lt_14 (struct dwarf2_cu *cu)
11252 {
11253 if (!cu->checked_producer)
11254 check_producer (cu);
11255
11256 return cu->producer_is_icc_lt_14;
11257 }
11258
11259 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
11260 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
11261 this, it was first present in GCC release 4.3.0. */
11262
11263 static int
11264 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
11265 {
11266 if (!cu->checked_producer)
11267 check_producer (cu);
11268
11269 return cu->producer_is_gcc_lt_4_3;
11270 }
11271
11272 static file_and_directory
11273 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
11274 {
11275 file_and_directory res;
11276
11277 /* Find the filename. Do not use dwarf2_name here, since the filename
11278 is not a source language identifier. */
11279 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
11280 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
11281
11282 if (res.comp_dir == NULL
11283 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
11284 && IS_ABSOLUTE_PATH (res.name))
11285 {
11286 res.comp_dir_storage = ldirname (res.name);
11287 if (!res.comp_dir_storage.empty ())
11288 res.comp_dir = res.comp_dir_storage.c_str ();
11289 }
11290 if (res.comp_dir != NULL)
11291 {
11292 /* Irix 6.2 native cc prepends <machine>.: to the compilation
11293 directory, get rid of it. */
11294 const char *cp = strchr (res.comp_dir, ':');
11295
11296 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
11297 res.comp_dir = cp + 1;
11298 }
11299
11300 if (res.name == NULL)
11301 res.name = "<unknown>";
11302
11303 return res;
11304 }
11305
11306 /* Handle DW_AT_stmt_list for a compilation unit.
11307 DIE is the DW_TAG_compile_unit die for CU.
11308 COMP_DIR is the compilation directory. LOWPC is passed to
11309 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
11310
11311 static void
11312 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
11313 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
11314 {
11315 struct dwarf2_per_objfile *dwarf2_per_objfile
11316 = cu->per_cu->dwarf2_per_objfile;
11317 struct objfile *objfile = dwarf2_per_objfile->objfile;
11318 struct attribute *attr;
11319 struct line_header line_header_local;
11320 hashval_t line_header_local_hash;
11321 void **slot;
11322 int decode_mapping;
11323
11324 gdb_assert (! cu->per_cu->is_debug_types);
11325
11326 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11327 if (attr == NULL)
11328 return;
11329
11330 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11331
11332 /* The line header hash table is only created if needed (it exists to
11333 prevent redundant reading of the line table for partial_units).
11334 If we're given a partial_unit, we'll need it. If we're given a
11335 compile_unit, then use the line header hash table if it's already
11336 created, but don't create one just yet. */
11337
11338 if (dwarf2_per_objfile->line_header_hash == NULL
11339 && die->tag == DW_TAG_partial_unit)
11340 {
11341 dwarf2_per_objfile->line_header_hash
11342 = htab_create_alloc_ex (127, line_header_hash_voidp,
11343 line_header_eq_voidp,
11344 free_line_header_voidp,
11345 &objfile->objfile_obstack,
11346 hashtab_obstack_allocate,
11347 dummy_obstack_deallocate);
11348 }
11349
11350 line_header_local.sect_off = line_offset;
11351 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
11352 line_header_local_hash = line_header_hash (&line_header_local);
11353 if (dwarf2_per_objfile->line_header_hash != NULL)
11354 {
11355 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11356 &line_header_local,
11357 line_header_local_hash, NO_INSERT);
11358
11359 /* For DW_TAG_compile_unit we need info like symtab::linetable which
11360 is not present in *SLOT (since if there is something in *SLOT then
11361 it will be for a partial_unit). */
11362 if (die->tag == DW_TAG_partial_unit && slot != NULL)
11363 {
11364 gdb_assert (*slot != NULL);
11365 cu->line_header = (struct line_header *) *slot;
11366 return;
11367 }
11368 }
11369
11370 /* dwarf_decode_line_header does not yet provide sufficient information.
11371 We always have to call also dwarf_decode_lines for it. */
11372 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
11373 if (lh == NULL)
11374 return;
11375
11376 cu->line_header = lh.release ();
11377 cu->line_header_die_owner = die;
11378
11379 if (dwarf2_per_objfile->line_header_hash == NULL)
11380 slot = NULL;
11381 else
11382 {
11383 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11384 &line_header_local,
11385 line_header_local_hash, INSERT);
11386 gdb_assert (slot != NULL);
11387 }
11388 if (slot != NULL && *slot == NULL)
11389 {
11390 /* This newly decoded line number information unit will be owned
11391 by line_header_hash hash table. */
11392 *slot = cu->line_header;
11393 cu->line_header_die_owner = NULL;
11394 }
11395 else
11396 {
11397 /* We cannot free any current entry in (*slot) as that struct line_header
11398 may be already used by multiple CUs. Create only temporary decoded
11399 line_header for this CU - it may happen at most once for each line
11400 number information unit. And if we're not using line_header_hash
11401 then this is what we want as well. */
11402 gdb_assert (die->tag != DW_TAG_partial_unit);
11403 }
11404 decode_mapping = (die->tag != DW_TAG_partial_unit);
11405 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
11406 decode_mapping);
11407
11408 }
11409
11410 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
11411
11412 static void
11413 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
11414 {
11415 struct dwarf2_per_objfile *dwarf2_per_objfile
11416 = cu->per_cu->dwarf2_per_objfile;
11417 struct objfile *objfile = dwarf2_per_objfile->objfile;
11418 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11419 CORE_ADDR lowpc = ((CORE_ADDR) -1);
11420 CORE_ADDR highpc = ((CORE_ADDR) 0);
11421 struct attribute *attr;
11422 struct die_info *child_die;
11423 CORE_ADDR baseaddr;
11424
11425 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11426
11427 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
11428
11429 /* If we didn't find a lowpc, set it to highpc to avoid complaints
11430 from finish_block. */
11431 if (lowpc == ((CORE_ADDR) -1))
11432 lowpc = highpc;
11433 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11434
11435 file_and_directory fnd = find_file_and_directory (die, cu);
11436
11437 prepare_one_comp_unit (cu, die, cu->language);
11438
11439 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
11440 standardised yet. As a workaround for the language detection we fall
11441 back to the DW_AT_producer string. */
11442 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
11443 cu->language = language_opencl;
11444
11445 /* Similar hack for Go. */
11446 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
11447 set_cu_language (DW_LANG_Go, cu);
11448
11449 dwarf2_start_symtab (cu, fnd.name, fnd.comp_dir, lowpc);
11450
11451 /* Decode line number information if present. We do this before
11452 processing child DIEs, so that the line header table is available
11453 for DW_AT_decl_file. */
11454 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
11455
11456 /* Process all dies in compilation unit. */
11457 if (die->child != NULL)
11458 {
11459 child_die = die->child;
11460 while (child_die && child_die->tag)
11461 {
11462 process_die (child_die, cu);
11463 child_die = sibling_die (child_die);
11464 }
11465 }
11466
11467 /* Decode macro information, if present. Dwarf 2 macro information
11468 refers to information in the line number info statement program
11469 header, so we can only read it if we've read the header
11470 successfully. */
11471 attr = dwarf2_attr (die, DW_AT_macros, cu);
11472 if (attr == NULL)
11473 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
11474 if (attr && cu->line_header)
11475 {
11476 if (dwarf2_attr (die, DW_AT_macro_info, cu))
11477 complaint (_("CU refers to both DW_AT_macros and DW_AT_macro_info"));
11478
11479 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
11480 }
11481 else
11482 {
11483 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
11484 if (attr && cu->line_header)
11485 {
11486 unsigned int macro_offset = DW_UNSND (attr);
11487
11488 dwarf_decode_macros (cu, macro_offset, 0);
11489 }
11490 }
11491 }
11492
11493 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
11494 Create the set of symtabs used by this TU, or if this TU is sharing
11495 symtabs with another TU and the symtabs have already been created
11496 then restore those symtabs in the line header.
11497 We don't need the pc/line-number mapping for type units. */
11498
11499 static void
11500 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
11501 {
11502 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
11503 struct type_unit_group *tu_group;
11504 int first_time;
11505 struct attribute *attr;
11506 unsigned int i;
11507 struct signatured_type *sig_type;
11508
11509 gdb_assert (per_cu->is_debug_types);
11510 sig_type = (struct signatured_type *) per_cu;
11511
11512 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11513
11514 /* If we're using .gdb_index (includes -readnow) then
11515 per_cu->type_unit_group may not have been set up yet. */
11516 if (sig_type->type_unit_group == NULL)
11517 sig_type->type_unit_group = get_type_unit_group (cu, attr);
11518 tu_group = sig_type->type_unit_group;
11519
11520 /* If we've already processed this stmt_list there's no real need to
11521 do it again, we could fake it and just recreate the part we need
11522 (file name,index -> symtab mapping). If data shows this optimization
11523 is useful we can do it then. */
11524 first_time = tu_group->compunit_symtab == NULL;
11525
11526 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
11527 debug info. */
11528 line_header_up lh;
11529 if (attr != NULL)
11530 {
11531 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11532 lh = dwarf_decode_line_header (line_offset, cu);
11533 }
11534 if (lh == NULL)
11535 {
11536 if (first_time)
11537 dwarf2_start_symtab (cu, "", NULL, 0);
11538 else
11539 {
11540 gdb_assert (tu_group->symtabs == NULL);
11541 restart_symtab (tu_group->compunit_symtab, "", 0);
11542 }
11543 return;
11544 }
11545
11546 cu->line_header = lh.release ();
11547 cu->line_header_die_owner = die;
11548
11549 if (first_time)
11550 {
11551 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
11552
11553 /* Note: We don't assign tu_group->compunit_symtab yet because we're
11554 still initializing it, and our caller (a few levels up)
11555 process_full_type_unit still needs to know if this is the first
11556 time. */
11557
11558 tu_group->num_symtabs = cu->line_header->file_names.size ();
11559 tu_group->symtabs = XNEWVEC (struct symtab *,
11560 cu->line_header->file_names.size ());
11561
11562 for (i = 0; i < cu->line_header->file_names.size (); ++i)
11563 {
11564 file_entry &fe = cu->line_header->file_names[i];
11565
11566 dwarf2_start_subfile (fe.name, fe.include_dir (cu->line_header));
11567
11568 if (get_current_subfile ()->symtab == NULL)
11569 {
11570 /* NOTE: start_subfile will recognize when it's been
11571 passed a file it has already seen. So we can't
11572 assume there's a simple mapping from
11573 cu->line_header->file_names to subfiles, plus
11574 cu->line_header->file_names may contain dups. */
11575 get_current_subfile ()->symtab
11576 = allocate_symtab (cust, get_current_subfile ()->name);
11577 }
11578
11579 fe.symtab = get_current_subfile ()->symtab;
11580 tu_group->symtabs[i] = fe.symtab;
11581 }
11582 }
11583 else
11584 {
11585 restart_symtab (tu_group->compunit_symtab, "", 0);
11586
11587 for (i = 0; i < cu->line_header->file_names.size (); ++i)
11588 {
11589 file_entry &fe = cu->line_header->file_names[i];
11590
11591 fe.symtab = tu_group->symtabs[i];
11592 }
11593 }
11594
11595 /* The main symtab is allocated last. Type units don't have DW_AT_name
11596 so they don't have a "real" (so to speak) symtab anyway.
11597 There is later code that will assign the main symtab to all symbols
11598 that don't have one. We need to handle the case of a symbol with a
11599 missing symtab (DW_AT_decl_file) anyway. */
11600 }
11601
11602 /* Process DW_TAG_type_unit.
11603 For TUs we want to skip the first top level sibling if it's not the
11604 actual type being defined by this TU. In this case the first top
11605 level sibling is there to provide context only. */
11606
11607 static void
11608 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
11609 {
11610 struct die_info *child_die;
11611
11612 prepare_one_comp_unit (cu, die, language_minimal);
11613
11614 /* Initialize (or reinitialize) the machinery for building symtabs.
11615 We do this before processing child DIEs, so that the line header table
11616 is available for DW_AT_decl_file. */
11617 setup_type_unit_groups (die, cu);
11618
11619 if (die->child != NULL)
11620 {
11621 child_die = die->child;
11622 while (child_die && child_die->tag)
11623 {
11624 process_die (child_die, cu);
11625 child_die = sibling_die (child_die);
11626 }
11627 }
11628 }
11629 \f
11630 /* DWO/DWP files.
11631
11632 http://gcc.gnu.org/wiki/DebugFission
11633 http://gcc.gnu.org/wiki/DebugFissionDWP
11634
11635 To simplify handling of both DWO files ("object" files with the DWARF info)
11636 and DWP files (a file with the DWOs packaged up into one file), we treat
11637 DWP files as having a collection of virtual DWO files. */
11638
11639 static hashval_t
11640 hash_dwo_file (const void *item)
11641 {
11642 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
11643 hashval_t hash;
11644
11645 hash = htab_hash_string (dwo_file->dwo_name);
11646 if (dwo_file->comp_dir != NULL)
11647 hash += htab_hash_string (dwo_file->comp_dir);
11648 return hash;
11649 }
11650
11651 static int
11652 eq_dwo_file (const void *item_lhs, const void *item_rhs)
11653 {
11654 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
11655 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
11656
11657 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
11658 return 0;
11659 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
11660 return lhs->comp_dir == rhs->comp_dir;
11661 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
11662 }
11663
11664 /* Allocate a hash table for DWO files. */
11665
11666 static htab_t
11667 allocate_dwo_file_hash_table (struct objfile *objfile)
11668 {
11669 return htab_create_alloc_ex (41,
11670 hash_dwo_file,
11671 eq_dwo_file,
11672 NULL,
11673 &objfile->objfile_obstack,
11674 hashtab_obstack_allocate,
11675 dummy_obstack_deallocate);
11676 }
11677
11678 /* Lookup DWO file DWO_NAME. */
11679
11680 static void **
11681 lookup_dwo_file_slot (struct dwarf2_per_objfile *dwarf2_per_objfile,
11682 const char *dwo_name,
11683 const char *comp_dir)
11684 {
11685 struct dwo_file find_entry;
11686 void **slot;
11687
11688 if (dwarf2_per_objfile->dwo_files == NULL)
11689 dwarf2_per_objfile->dwo_files
11690 = allocate_dwo_file_hash_table (dwarf2_per_objfile->objfile);
11691
11692 memset (&find_entry, 0, sizeof (find_entry));
11693 find_entry.dwo_name = dwo_name;
11694 find_entry.comp_dir = comp_dir;
11695 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
11696
11697 return slot;
11698 }
11699
11700 static hashval_t
11701 hash_dwo_unit (const void *item)
11702 {
11703 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
11704
11705 /* This drops the top 32 bits of the id, but is ok for a hash. */
11706 return dwo_unit->signature;
11707 }
11708
11709 static int
11710 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
11711 {
11712 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
11713 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
11714
11715 /* The signature is assumed to be unique within the DWO file.
11716 So while object file CU dwo_id's always have the value zero,
11717 that's OK, assuming each object file DWO file has only one CU,
11718 and that's the rule for now. */
11719 return lhs->signature == rhs->signature;
11720 }
11721
11722 /* Allocate a hash table for DWO CUs,TUs.
11723 There is one of these tables for each of CUs,TUs for each DWO file. */
11724
11725 static htab_t
11726 allocate_dwo_unit_table (struct objfile *objfile)
11727 {
11728 /* Start out with a pretty small number.
11729 Generally DWO files contain only one CU and maybe some TUs. */
11730 return htab_create_alloc_ex (3,
11731 hash_dwo_unit,
11732 eq_dwo_unit,
11733 NULL,
11734 &objfile->objfile_obstack,
11735 hashtab_obstack_allocate,
11736 dummy_obstack_deallocate);
11737 }
11738
11739 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
11740
11741 struct create_dwo_cu_data
11742 {
11743 struct dwo_file *dwo_file;
11744 struct dwo_unit dwo_unit;
11745 };
11746
11747 /* die_reader_func for create_dwo_cu. */
11748
11749 static void
11750 create_dwo_cu_reader (const struct die_reader_specs *reader,
11751 const gdb_byte *info_ptr,
11752 struct die_info *comp_unit_die,
11753 int has_children,
11754 void *datap)
11755 {
11756 struct dwarf2_cu *cu = reader->cu;
11757 sect_offset sect_off = cu->per_cu->sect_off;
11758 struct dwarf2_section_info *section = cu->per_cu->section;
11759 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
11760 struct dwo_file *dwo_file = data->dwo_file;
11761 struct dwo_unit *dwo_unit = &data->dwo_unit;
11762 struct attribute *attr;
11763
11764 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
11765 if (attr == NULL)
11766 {
11767 complaint (_("Dwarf Error: debug entry at offset %s is missing"
11768 " its dwo_id [in module %s]"),
11769 sect_offset_str (sect_off), dwo_file->dwo_name);
11770 return;
11771 }
11772
11773 dwo_unit->dwo_file = dwo_file;
11774 dwo_unit->signature = DW_UNSND (attr);
11775 dwo_unit->section = section;
11776 dwo_unit->sect_off = sect_off;
11777 dwo_unit->length = cu->per_cu->length;
11778
11779 if (dwarf_read_debug)
11780 fprintf_unfiltered (gdb_stdlog, " offset %s, dwo_id %s\n",
11781 sect_offset_str (sect_off),
11782 hex_string (dwo_unit->signature));
11783 }
11784
11785 /* Create the dwo_units for the CUs in a DWO_FILE.
11786 Note: This function processes DWO files only, not DWP files. */
11787
11788 static void
11789 create_cus_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11790 struct dwo_file &dwo_file, dwarf2_section_info &section,
11791 htab_t &cus_htab)
11792 {
11793 struct objfile *objfile = dwarf2_per_objfile->objfile;
11794 const gdb_byte *info_ptr, *end_ptr;
11795
11796 dwarf2_read_section (objfile, &section);
11797 info_ptr = section.buffer;
11798
11799 if (info_ptr == NULL)
11800 return;
11801
11802 if (dwarf_read_debug)
11803 {
11804 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
11805 get_section_name (&section),
11806 get_section_file_name (&section));
11807 }
11808
11809 end_ptr = info_ptr + section.size;
11810 while (info_ptr < end_ptr)
11811 {
11812 struct dwarf2_per_cu_data per_cu;
11813 struct create_dwo_cu_data create_dwo_cu_data;
11814 struct dwo_unit *dwo_unit;
11815 void **slot;
11816 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
11817
11818 memset (&create_dwo_cu_data.dwo_unit, 0,
11819 sizeof (create_dwo_cu_data.dwo_unit));
11820 memset (&per_cu, 0, sizeof (per_cu));
11821 per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
11822 per_cu.is_debug_types = 0;
11823 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
11824 per_cu.section = &section;
11825 create_dwo_cu_data.dwo_file = &dwo_file;
11826
11827 init_cutu_and_read_dies_no_follow (
11828 &per_cu, &dwo_file, create_dwo_cu_reader, &create_dwo_cu_data);
11829 info_ptr += per_cu.length;
11830
11831 // If the unit could not be parsed, skip it.
11832 if (create_dwo_cu_data.dwo_unit.dwo_file == NULL)
11833 continue;
11834
11835 if (cus_htab == NULL)
11836 cus_htab = allocate_dwo_unit_table (objfile);
11837
11838 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11839 *dwo_unit = create_dwo_cu_data.dwo_unit;
11840 slot = htab_find_slot (cus_htab, dwo_unit, INSERT);
11841 gdb_assert (slot != NULL);
11842 if (*slot != NULL)
11843 {
11844 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
11845 sect_offset dup_sect_off = dup_cu->sect_off;
11846
11847 complaint (_("debug cu entry at offset %s is duplicate to"
11848 " the entry at offset %s, signature %s"),
11849 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
11850 hex_string (dwo_unit->signature));
11851 }
11852 *slot = (void *)dwo_unit;
11853 }
11854 }
11855
11856 /* DWP file .debug_{cu,tu}_index section format:
11857 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
11858
11859 DWP Version 1:
11860
11861 Both index sections have the same format, and serve to map a 64-bit
11862 signature to a set of section numbers. Each section begins with a header,
11863 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
11864 indexes, and a pool of 32-bit section numbers. The index sections will be
11865 aligned at 8-byte boundaries in the file.
11866
11867 The index section header consists of:
11868
11869 V, 32 bit version number
11870 -, 32 bits unused
11871 N, 32 bit number of compilation units or type units in the index
11872 M, 32 bit number of slots in the hash table
11873
11874 Numbers are recorded using the byte order of the application binary.
11875
11876 The hash table begins at offset 16 in the section, and consists of an array
11877 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
11878 order of the application binary). Unused slots in the hash table are 0.
11879 (We rely on the extreme unlikeliness of a signature being exactly 0.)
11880
11881 The parallel table begins immediately after the hash table
11882 (at offset 16 + 8 * M from the beginning of the section), and consists of an
11883 array of 32-bit indexes (using the byte order of the application binary),
11884 corresponding 1-1 with slots in the hash table. Each entry in the parallel
11885 table contains a 32-bit index into the pool of section numbers. For unused
11886 hash table slots, the corresponding entry in the parallel table will be 0.
11887
11888 The pool of section numbers begins immediately following the hash table
11889 (at offset 16 + 12 * M from the beginning of the section). The pool of
11890 section numbers consists of an array of 32-bit words (using the byte order
11891 of the application binary). Each item in the array is indexed starting
11892 from 0. The hash table entry provides the index of the first section
11893 number in the set. Additional section numbers in the set follow, and the
11894 set is terminated by a 0 entry (section number 0 is not used in ELF).
11895
11896 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
11897 section must be the first entry in the set, and the .debug_abbrev.dwo must
11898 be the second entry. Other members of the set may follow in any order.
11899
11900 ---
11901
11902 DWP Version 2:
11903
11904 DWP Version 2 combines all the .debug_info, etc. sections into one,
11905 and the entries in the index tables are now offsets into these sections.
11906 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
11907 section.
11908
11909 Index Section Contents:
11910 Header
11911 Hash Table of Signatures dwp_hash_table.hash_table
11912 Parallel Table of Indices dwp_hash_table.unit_table
11913 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
11914 Table of Section Sizes dwp_hash_table.v2.sizes
11915
11916 The index section header consists of:
11917
11918 V, 32 bit version number
11919 L, 32 bit number of columns in the table of section offsets
11920 N, 32 bit number of compilation units or type units in the index
11921 M, 32 bit number of slots in the hash table
11922
11923 Numbers are recorded using the byte order of the application binary.
11924
11925 The hash table has the same format as version 1.
11926 The parallel table of indices has the same format as version 1,
11927 except that the entries are origin-1 indices into the table of sections
11928 offsets and the table of section sizes.
11929
11930 The table of offsets begins immediately following the parallel table
11931 (at offset 16 + 12 * M from the beginning of the section). The table is
11932 a two-dimensional array of 32-bit words (using the byte order of the
11933 application binary), with L columns and N+1 rows, in row-major order.
11934 Each row in the array is indexed starting from 0. The first row provides
11935 a key to the remaining rows: each column in this row provides an identifier
11936 for a debug section, and the offsets in the same column of subsequent rows
11937 refer to that section. The section identifiers are:
11938
11939 DW_SECT_INFO 1 .debug_info.dwo
11940 DW_SECT_TYPES 2 .debug_types.dwo
11941 DW_SECT_ABBREV 3 .debug_abbrev.dwo
11942 DW_SECT_LINE 4 .debug_line.dwo
11943 DW_SECT_LOC 5 .debug_loc.dwo
11944 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
11945 DW_SECT_MACINFO 7 .debug_macinfo.dwo
11946 DW_SECT_MACRO 8 .debug_macro.dwo
11947
11948 The offsets provided by the CU and TU index sections are the base offsets
11949 for the contributions made by each CU or TU to the corresponding section
11950 in the package file. Each CU and TU header contains an abbrev_offset
11951 field, used to find the abbreviations table for that CU or TU within the
11952 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
11953 be interpreted as relative to the base offset given in the index section.
11954 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
11955 should be interpreted as relative to the base offset for .debug_line.dwo,
11956 and offsets into other debug sections obtained from DWARF attributes should
11957 also be interpreted as relative to the corresponding base offset.
11958
11959 The table of sizes begins immediately following the table of offsets.
11960 Like the table of offsets, it is a two-dimensional array of 32-bit words,
11961 with L columns and N rows, in row-major order. Each row in the array is
11962 indexed starting from 1 (row 0 is shared by the two tables).
11963
11964 ---
11965
11966 Hash table lookup is handled the same in version 1 and 2:
11967
11968 We assume that N and M will not exceed 2^32 - 1.
11969 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
11970
11971 Given a 64-bit compilation unit signature or a type signature S, an entry
11972 in the hash table is located as follows:
11973
11974 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
11975 the low-order k bits all set to 1.
11976
11977 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
11978
11979 3) If the hash table entry at index H matches the signature, use that
11980 entry. If the hash table entry at index H is unused (all zeroes),
11981 terminate the search: the signature is not present in the table.
11982
11983 4) Let H = (H + H') modulo M. Repeat at Step 3.
11984
11985 Because M > N and H' and M are relatively prime, the search is guaranteed
11986 to stop at an unused slot or find the match. */
11987
11988 /* Create a hash table to map DWO IDs to their CU/TU entry in
11989 .debug_{info,types}.dwo in DWP_FILE.
11990 Returns NULL if there isn't one.
11991 Note: This function processes DWP files only, not DWO files. */
11992
11993 static struct dwp_hash_table *
11994 create_dwp_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11995 struct dwp_file *dwp_file, int is_debug_types)
11996 {
11997 struct objfile *objfile = dwarf2_per_objfile->objfile;
11998 bfd *dbfd = dwp_file->dbfd.get ();
11999 const gdb_byte *index_ptr, *index_end;
12000 struct dwarf2_section_info *index;
12001 uint32_t version, nr_columns, nr_units, nr_slots;
12002 struct dwp_hash_table *htab;
12003
12004 if (is_debug_types)
12005 index = &dwp_file->sections.tu_index;
12006 else
12007 index = &dwp_file->sections.cu_index;
12008
12009 if (dwarf2_section_empty_p (index))
12010 return NULL;
12011 dwarf2_read_section (objfile, index);
12012
12013 index_ptr = index->buffer;
12014 index_end = index_ptr + index->size;
12015
12016 version = read_4_bytes (dbfd, index_ptr);
12017 index_ptr += 4;
12018 if (version == 2)
12019 nr_columns = read_4_bytes (dbfd, index_ptr);
12020 else
12021 nr_columns = 0;
12022 index_ptr += 4;
12023 nr_units = read_4_bytes (dbfd, index_ptr);
12024 index_ptr += 4;
12025 nr_slots = read_4_bytes (dbfd, index_ptr);
12026 index_ptr += 4;
12027
12028 if (version != 1 && version != 2)
12029 {
12030 error (_("Dwarf Error: unsupported DWP file version (%s)"
12031 " [in module %s]"),
12032 pulongest (version), dwp_file->name);
12033 }
12034 if (nr_slots != (nr_slots & -nr_slots))
12035 {
12036 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
12037 " is not power of 2 [in module %s]"),
12038 pulongest (nr_slots), dwp_file->name);
12039 }
12040
12041 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
12042 htab->version = version;
12043 htab->nr_columns = nr_columns;
12044 htab->nr_units = nr_units;
12045 htab->nr_slots = nr_slots;
12046 htab->hash_table = index_ptr;
12047 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
12048
12049 /* Exit early if the table is empty. */
12050 if (nr_slots == 0 || nr_units == 0
12051 || (version == 2 && nr_columns == 0))
12052 {
12053 /* All must be zero. */
12054 if (nr_slots != 0 || nr_units != 0
12055 || (version == 2 && nr_columns != 0))
12056 {
12057 complaint (_("Empty DWP but nr_slots,nr_units,nr_columns not"
12058 " all zero [in modules %s]"),
12059 dwp_file->name);
12060 }
12061 return htab;
12062 }
12063
12064 if (version == 1)
12065 {
12066 htab->section_pool.v1.indices =
12067 htab->unit_table + sizeof (uint32_t) * nr_slots;
12068 /* It's harder to decide whether the section is too small in v1.
12069 V1 is deprecated anyway so we punt. */
12070 }
12071 else
12072 {
12073 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
12074 int *ids = htab->section_pool.v2.section_ids;
12075 /* Reverse map for error checking. */
12076 int ids_seen[DW_SECT_MAX + 1];
12077 int i;
12078
12079 if (nr_columns < 2)
12080 {
12081 error (_("Dwarf Error: bad DWP hash table, too few columns"
12082 " in section table [in module %s]"),
12083 dwp_file->name);
12084 }
12085 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
12086 {
12087 error (_("Dwarf Error: bad DWP hash table, too many columns"
12088 " in section table [in module %s]"),
12089 dwp_file->name);
12090 }
12091 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
12092 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
12093 for (i = 0; i < nr_columns; ++i)
12094 {
12095 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
12096
12097 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
12098 {
12099 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
12100 " in section table [in module %s]"),
12101 id, dwp_file->name);
12102 }
12103 if (ids_seen[id] != -1)
12104 {
12105 error (_("Dwarf Error: bad DWP hash table, duplicate section"
12106 " id %d in section table [in module %s]"),
12107 id, dwp_file->name);
12108 }
12109 ids_seen[id] = i;
12110 ids[i] = id;
12111 }
12112 /* Must have exactly one info or types section. */
12113 if (((ids_seen[DW_SECT_INFO] != -1)
12114 + (ids_seen[DW_SECT_TYPES] != -1))
12115 != 1)
12116 {
12117 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
12118 " DWO info/types section [in module %s]"),
12119 dwp_file->name);
12120 }
12121 /* Must have an abbrev section. */
12122 if (ids_seen[DW_SECT_ABBREV] == -1)
12123 {
12124 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
12125 " section [in module %s]"),
12126 dwp_file->name);
12127 }
12128 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
12129 htab->section_pool.v2.sizes =
12130 htab->section_pool.v2.offsets + (sizeof (uint32_t)
12131 * nr_units * nr_columns);
12132 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
12133 * nr_units * nr_columns))
12134 > index_end)
12135 {
12136 error (_("Dwarf Error: DWP index section is corrupt (too small)"
12137 " [in module %s]"),
12138 dwp_file->name);
12139 }
12140 }
12141
12142 return htab;
12143 }
12144
12145 /* Update SECTIONS with the data from SECTP.
12146
12147 This function is like the other "locate" section routines that are
12148 passed to bfd_map_over_sections, but in this context the sections to
12149 read comes from the DWP V1 hash table, not the full ELF section table.
12150
12151 The result is non-zero for success, or zero if an error was found. */
12152
12153 static int
12154 locate_v1_virtual_dwo_sections (asection *sectp,
12155 struct virtual_v1_dwo_sections *sections)
12156 {
12157 const struct dwop_section_names *names = &dwop_section_names;
12158
12159 if (section_is_p (sectp->name, &names->abbrev_dwo))
12160 {
12161 /* There can be only one. */
12162 if (sections->abbrev.s.section != NULL)
12163 return 0;
12164 sections->abbrev.s.section = sectp;
12165 sections->abbrev.size = bfd_get_section_size (sectp);
12166 }
12167 else if (section_is_p (sectp->name, &names->info_dwo)
12168 || section_is_p (sectp->name, &names->types_dwo))
12169 {
12170 /* There can be only one. */
12171 if (sections->info_or_types.s.section != NULL)
12172 return 0;
12173 sections->info_or_types.s.section = sectp;
12174 sections->info_or_types.size = bfd_get_section_size (sectp);
12175 }
12176 else if (section_is_p (sectp->name, &names->line_dwo))
12177 {
12178 /* There can be only one. */
12179 if (sections->line.s.section != NULL)
12180 return 0;
12181 sections->line.s.section = sectp;
12182 sections->line.size = bfd_get_section_size (sectp);
12183 }
12184 else if (section_is_p (sectp->name, &names->loc_dwo))
12185 {
12186 /* There can be only one. */
12187 if (sections->loc.s.section != NULL)
12188 return 0;
12189 sections->loc.s.section = sectp;
12190 sections->loc.size = bfd_get_section_size (sectp);
12191 }
12192 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12193 {
12194 /* There can be only one. */
12195 if (sections->macinfo.s.section != NULL)
12196 return 0;
12197 sections->macinfo.s.section = sectp;
12198 sections->macinfo.size = bfd_get_section_size (sectp);
12199 }
12200 else if (section_is_p (sectp->name, &names->macro_dwo))
12201 {
12202 /* There can be only one. */
12203 if (sections->macro.s.section != NULL)
12204 return 0;
12205 sections->macro.s.section = sectp;
12206 sections->macro.size = bfd_get_section_size (sectp);
12207 }
12208 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12209 {
12210 /* There can be only one. */
12211 if (sections->str_offsets.s.section != NULL)
12212 return 0;
12213 sections->str_offsets.s.section = sectp;
12214 sections->str_offsets.size = bfd_get_section_size (sectp);
12215 }
12216 else
12217 {
12218 /* No other kind of section is valid. */
12219 return 0;
12220 }
12221
12222 return 1;
12223 }
12224
12225 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12226 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12227 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12228 This is for DWP version 1 files. */
12229
12230 static struct dwo_unit *
12231 create_dwo_unit_in_dwp_v1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12232 struct dwp_file *dwp_file,
12233 uint32_t unit_index,
12234 const char *comp_dir,
12235 ULONGEST signature, int is_debug_types)
12236 {
12237 struct objfile *objfile = dwarf2_per_objfile->objfile;
12238 const struct dwp_hash_table *dwp_htab =
12239 is_debug_types ? dwp_file->tus : dwp_file->cus;
12240 bfd *dbfd = dwp_file->dbfd.get ();
12241 const char *kind = is_debug_types ? "TU" : "CU";
12242 struct dwo_file *dwo_file;
12243 struct dwo_unit *dwo_unit;
12244 struct virtual_v1_dwo_sections sections;
12245 void **dwo_file_slot;
12246 int i;
12247
12248 gdb_assert (dwp_file->version == 1);
12249
12250 if (dwarf_read_debug)
12251 {
12252 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
12253 kind,
12254 pulongest (unit_index), hex_string (signature),
12255 dwp_file->name);
12256 }
12257
12258 /* Fetch the sections of this DWO unit.
12259 Put a limit on the number of sections we look for so that bad data
12260 doesn't cause us to loop forever. */
12261
12262 #define MAX_NR_V1_DWO_SECTIONS \
12263 (1 /* .debug_info or .debug_types */ \
12264 + 1 /* .debug_abbrev */ \
12265 + 1 /* .debug_line */ \
12266 + 1 /* .debug_loc */ \
12267 + 1 /* .debug_str_offsets */ \
12268 + 1 /* .debug_macro or .debug_macinfo */ \
12269 + 1 /* trailing zero */)
12270
12271 memset (&sections, 0, sizeof (sections));
12272
12273 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
12274 {
12275 asection *sectp;
12276 uint32_t section_nr =
12277 read_4_bytes (dbfd,
12278 dwp_htab->section_pool.v1.indices
12279 + (unit_index + i) * sizeof (uint32_t));
12280
12281 if (section_nr == 0)
12282 break;
12283 if (section_nr >= dwp_file->num_sections)
12284 {
12285 error (_("Dwarf Error: bad DWP hash table, section number too large"
12286 " [in module %s]"),
12287 dwp_file->name);
12288 }
12289
12290 sectp = dwp_file->elf_sections[section_nr];
12291 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
12292 {
12293 error (_("Dwarf Error: bad DWP hash table, invalid section found"
12294 " [in module %s]"),
12295 dwp_file->name);
12296 }
12297 }
12298
12299 if (i < 2
12300 || dwarf2_section_empty_p (&sections.info_or_types)
12301 || dwarf2_section_empty_p (&sections.abbrev))
12302 {
12303 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
12304 " [in module %s]"),
12305 dwp_file->name);
12306 }
12307 if (i == MAX_NR_V1_DWO_SECTIONS)
12308 {
12309 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
12310 " [in module %s]"),
12311 dwp_file->name);
12312 }
12313
12314 /* It's easier for the rest of the code if we fake a struct dwo_file and
12315 have dwo_unit "live" in that. At least for now.
12316
12317 The DWP file can be made up of a random collection of CUs and TUs.
12318 However, for each CU + set of TUs that came from the same original DWO
12319 file, we can combine them back into a virtual DWO file to save space
12320 (fewer struct dwo_file objects to allocate). Remember that for really
12321 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12322
12323 std::string virtual_dwo_name =
12324 string_printf ("virtual-dwo/%d-%d-%d-%d",
12325 get_section_id (&sections.abbrev),
12326 get_section_id (&sections.line),
12327 get_section_id (&sections.loc),
12328 get_section_id (&sections.str_offsets));
12329 /* Can we use an existing virtual DWO file? */
12330 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12331 virtual_dwo_name.c_str (),
12332 comp_dir);
12333 /* Create one if necessary. */
12334 if (*dwo_file_slot == NULL)
12335 {
12336 if (dwarf_read_debug)
12337 {
12338 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12339 virtual_dwo_name.c_str ());
12340 }
12341 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12342 dwo_file->dwo_name
12343 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12344 virtual_dwo_name.c_str (),
12345 virtual_dwo_name.size ());
12346 dwo_file->comp_dir = comp_dir;
12347 dwo_file->sections.abbrev = sections.abbrev;
12348 dwo_file->sections.line = sections.line;
12349 dwo_file->sections.loc = sections.loc;
12350 dwo_file->sections.macinfo = sections.macinfo;
12351 dwo_file->sections.macro = sections.macro;
12352 dwo_file->sections.str_offsets = sections.str_offsets;
12353 /* The "str" section is global to the entire DWP file. */
12354 dwo_file->sections.str = dwp_file->sections.str;
12355 /* The info or types section is assigned below to dwo_unit,
12356 there's no need to record it in dwo_file.
12357 Also, we can't simply record type sections in dwo_file because
12358 we record a pointer into the vector in dwo_unit. As we collect more
12359 types we'll grow the vector and eventually have to reallocate space
12360 for it, invalidating all copies of pointers into the previous
12361 contents. */
12362 *dwo_file_slot = dwo_file;
12363 }
12364 else
12365 {
12366 if (dwarf_read_debug)
12367 {
12368 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12369 virtual_dwo_name.c_str ());
12370 }
12371 dwo_file = (struct dwo_file *) *dwo_file_slot;
12372 }
12373
12374 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12375 dwo_unit->dwo_file = dwo_file;
12376 dwo_unit->signature = signature;
12377 dwo_unit->section =
12378 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12379 *dwo_unit->section = sections.info_or_types;
12380 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12381
12382 return dwo_unit;
12383 }
12384
12385 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
12386 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
12387 piece within that section used by a TU/CU, return a virtual section
12388 of just that piece. */
12389
12390 static struct dwarf2_section_info
12391 create_dwp_v2_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
12392 struct dwarf2_section_info *section,
12393 bfd_size_type offset, bfd_size_type size)
12394 {
12395 struct dwarf2_section_info result;
12396 asection *sectp;
12397
12398 gdb_assert (section != NULL);
12399 gdb_assert (!section->is_virtual);
12400
12401 memset (&result, 0, sizeof (result));
12402 result.s.containing_section = section;
12403 result.is_virtual = 1;
12404
12405 if (size == 0)
12406 return result;
12407
12408 sectp = get_section_bfd_section (section);
12409
12410 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
12411 bounds of the real section. This is a pretty-rare event, so just
12412 flag an error (easier) instead of a warning and trying to cope. */
12413 if (sectp == NULL
12414 || offset + size > bfd_get_section_size (sectp))
12415 {
12416 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
12417 " in section %s [in module %s]"),
12418 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
12419 objfile_name (dwarf2_per_objfile->objfile));
12420 }
12421
12422 result.virtual_offset = offset;
12423 result.size = size;
12424 return result;
12425 }
12426
12427 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12428 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12429 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12430 This is for DWP version 2 files. */
12431
12432 static struct dwo_unit *
12433 create_dwo_unit_in_dwp_v2 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12434 struct dwp_file *dwp_file,
12435 uint32_t unit_index,
12436 const char *comp_dir,
12437 ULONGEST signature, int is_debug_types)
12438 {
12439 struct objfile *objfile = dwarf2_per_objfile->objfile;
12440 const struct dwp_hash_table *dwp_htab =
12441 is_debug_types ? dwp_file->tus : dwp_file->cus;
12442 bfd *dbfd = dwp_file->dbfd.get ();
12443 const char *kind = is_debug_types ? "TU" : "CU";
12444 struct dwo_file *dwo_file;
12445 struct dwo_unit *dwo_unit;
12446 struct virtual_v2_dwo_sections sections;
12447 void **dwo_file_slot;
12448 int i;
12449
12450 gdb_assert (dwp_file->version == 2);
12451
12452 if (dwarf_read_debug)
12453 {
12454 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
12455 kind,
12456 pulongest (unit_index), hex_string (signature),
12457 dwp_file->name);
12458 }
12459
12460 /* Fetch the section offsets of this DWO unit. */
12461
12462 memset (&sections, 0, sizeof (sections));
12463
12464 for (i = 0; i < dwp_htab->nr_columns; ++i)
12465 {
12466 uint32_t offset = read_4_bytes (dbfd,
12467 dwp_htab->section_pool.v2.offsets
12468 + (((unit_index - 1) * dwp_htab->nr_columns
12469 + i)
12470 * sizeof (uint32_t)));
12471 uint32_t size = read_4_bytes (dbfd,
12472 dwp_htab->section_pool.v2.sizes
12473 + (((unit_index - 1) * dwp_htab->nr_columns
12474 + i)
12475 * sizeof (uint32_t)));
12476
12477 switch (dwp_htab->section_pool.v2.section_ids[i])
12478 {
12479 case DW_SECT_INFO:
12480 case DW_SECT_TYPES:
12481 sections.info_or_types_offset = offset;
12482 sections.info_or_types_size = size;
12483 break;
12484 case DW_SECT_ABBREV:
12485 sections.abbrev_offset = offset;
12486 sections.abbrev_size = size;
12487 break;
12488 case DW_SECT_LINE:
12489 sections.line_offset = offset;
12490 sections.line_size = size;
12491 break;
12492 case DW_SECT_LOC:
12493 sections.loc_offset = offset;
12494 sections.loc_size = size;
12495 break;
12496 case DW_SECT_STR_OFFSETS:
12497 sections.str_offsets_offset = offset;
12498 sections.str_offsets_size = size;
12499 break;
12500 case DW_SECT_MACINFO:
12501 sections.macinfo_offset = offset;
12502 sections.macinfo_size = size;
12503 break;
12504 case DW_SECT_MACRO:
12505 sections.macro_offset = offset;
12506 sections.macro_size = size;
12507 break;
12508 }
12509 }
12510
12511 /* It's easier for the rest of the code if we fake a struct dwo_file and
12512 have dwo_unit "live" in that. At least for now.
12513
12514 The DWP file can be made up of a random collection of CUs and TUs.
12515 However, for each CU + set of TUs that came from the same original DWO
12516 file, we can combine them back into a virtual DWO file to save space
12517 (fewer struct dwo_file objects to allocate). Remember that for really
12518 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12519
12520 std::string virtual_dwo_name =
12521 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
12522 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
12523 (long) (sections.line_size ? sections.line_offset : 0),
12524 (long) (sections.loc_size ? sections.loc_offset : 0),
12525 (long) (sections.str_offsets_size
12526 ? sections.str_offsets_offset : 0));
12527 /* Can we use an existing virtual DWO file? */
12528 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12529 virtual_dwo_name.c_str (),
12530 comp_dir);
12531 /* Create one if necessary. */
12532 if (*dwo_file_slot == NULL)
12533 {
12534 if (dwarf_read_debug)
12535 {
12536 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12537 virtual_dwo_name.c_str ());
12538 }
12539 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12540 dwo_file->dwo_name
12541 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12542 virtual_dwo_name.c_str (),
12543 virtual_dwo_name.size ());
12544 dwo_file->comp_dir = comp_dir;
12545 dwo_file->sections.abbrev =
12546 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.abbrev,
12547 sections.abbrev_offset, sections.abbrev_size);
12548 dwo_file->sections.line =
12549 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.line,
12550 sections.line_offset, sections.line_size);
12551 dwo_file->sections.loc =
12552 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.loc,
12553 sections.loc_offset, sections.loc_size);
12554 dwo_file->sections.macinfo =
12555 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macinfo,
12556 sections.macinfo_offset, sections.macinfo_size);
12557 dwo_file->sections.macro =
12558 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macro,
12559 sections.macro_offset, sections.macro_size);
12560 dwo_file->sections.str_offsets =
12561 create_dwp_v2_section (dwarf2_per_objfile,
12562 &dwp_file->sections.str_offsets,
12563 sections.str_offsets_offset,
12564 sections.str_offsets_size);
12565 /* The "str" section is global to the entire DWP file. */
12566 dwo_file->sections.str = dwp_file->sections.str;
12567 /* The info or types section is assigned below to dwo_unit,
12568 there's no need to record it in dwo_file.
12569 Also, we can't simply record type sections in dwo_file because
12570 we record a pointer into the vector in dwo_unit. As we collect more
12571 types we'll grow the vector and eventually have to reallocate space
12572 for it, invalidating all copies of pointers into the previous
12573 contents. */
12574 *dwo_file_slot = dwo_file;
12575 }
12576 else
12577 {
12578 if (dwarf_read_debug)
12579 {
12580 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12581 virtual_dwo_name.c_str ());
12582 }
12583 dwo_file = (struct dwo_file *) *dwo_file_slot;
12584 }
12585
12586 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12587 dwo_unit->dwo_file = dwo_file;
12588 dwo_unit->signature = signature;
12589 dwo_unit->section =
12590 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12591 *dwo_unit->section = create_dwp_v2_section (dwarf2_per_objfile,
12592 is_debug_types
12593 ? &dwp_file->sections.types
12594 : &dwp_file->sections.info,
12595 sections.info_or_types_offset,
12596 sections.info_or_types_size);
12597 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12598
12599 return dwo_unit;
12600 }
12601
12602 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
12603 Returns NULL if the signature isn't found. */
12604
12605 static struct dwo_unit *
12606 lookup_dwo_unit_in_dwp (struct dwarf2_per_objfile *dwarf2_per_objfile,
12607 struct dwp_file *dwp_file, const char *comp_dir,
12608 ULONGEST signature, int is_debug_types)
12609 {
12610 const struct dwp_hash_table *dwp_htab =
12611 is_debug_types ? dwp_file->tus : dwp_file->cus;
12612 bfd *dbfd = dwp_file->dbfd.get ();
12613 uint32_t mask = dwp_htab->nr_slots - 1;
12614 uint32_t hash = signature & mask;
12615 uint32_t hash2 = ((signature >> 32) & mask) | 1;
12616 unsigned int i;
12617 void **slot;
12618 struct dwo_unit find_dwo_cu;
12619
12620 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
12621 find_dwo_cu.signature = signature;
12622 slot = htab_find_slot (is_debug_types
12623 ? dwp_file->loaded_tus
12624 : dwp_file->loaded_cus,
12625 &find_dwo_cu, INSERT);
12626
12627 if (*slot != NULL)
12628 return (struct dwo_unit *) *slot;
12629
12630 /* Use a for loop so that we don't loop forever on bad debug info. */
12631 for (i = 0; i < dwp_htab->nr_slots; ++i)
12632 {
12633 ULONGEST signature_in_table;
12634
12635 signature_in_table =
12636 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
12637 if (signature_in_table == signature)
12638 {
12639 uint32_t unit_index =
12640 read_4_bytes (dbfd,
12641 dwp_htab->unit_table + hash * sizeof (uint32_t));
12642
12643 if (dwp_file->version == 1)
12644 {
12645 *slot = create_dwo_unit_in_dwp_v1 (dwarf2_per_objfile,
12646 dwp_file, unit_index,
12647 comp_dir, signature,
12648 is_debug_types);
12649 }
12650 else
12651 {
12652 *slot = create_dwo_unit_in_dwp_v2 (dwarf2_per_objfile,
12653 dwp_file, unit_index,
12654 comp_dir, signature,
12655 is_debug_types);
12656 }
12657 return (struct dwo_unit *) *slot;
12658 }
12659 if (signature_in_table == 0)
12660 return NULL;
12661 hash = (hash + hash2) & mask;
12662 }
12663
12664 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
12665 " [in module %s]"),
12666 dwp_file->name);
12667 }
12668
12669 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
12670 Open the file specified by FILE_NAME and hand it off to BFD for
12671 preliminary analysis. Return a newly initialized bfd *, which
12672 includes a canonicalized copy of FILE_NAME.
12673 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
12674 SEARCH_CWD is true if the current directory is to be searched.
12675 It will be searched before debug-file-directory.
12676 If successful, the file is added to the bfd include table of the
12677 objfile's bfd (see gdb_bfd_record_inclusion).
12678 If unable to find/open the file, return NULL.
12679 NOTE: This function is derived from symfile_bfd_open. */
12680
12681 static gdb_bfd_ref_ptr
12682 try_open_dwop_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12683 const char *file_name, int is_dwp, int search_cwd)
12684 {
12685 int desc;
12686 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
12687 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
12688 to debug_file_directory. */
12689 const char *search_path;
12690 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
12691
12692 gdb::unique_xmalloc_ptr<char> search_path_holder;
12693 if (search_cwd)
12694 {
12695 if (*debug_file_directory != '\0')
12696 {
12697 search_path_holder.reset (concat (".", dirname_separator_string,
12698 debug_file_directory,
12699 (char *) NULL));
12700 search_path = search_path_holder.get ();
12701 }
12702 else
12703 search_path = ".";
12704 }
12705 else
12706 search_path = debug_file_directory;
12707
12708 openp_flags flags = OPF_RETURN_REALPATH;
12709 if (is_dwp)
12710 flags |= OPF_SEARCH_IN_PATH;
12711
12712 gdb::unique_xmalloc_ptr<char> absolute_name;
12713 desc = openp (search_path, flags, file_name,
12714 O_RDONLY | O_BINARY, &absolute_name);
12715 if (desc < 0)
12716 return NULL;
12717
12718 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name.get (),
12719 gnutarget, desc));
12720 if (sym_bfd == NULL)
12721 return NULL;
12722 bfd_set_cacheable (sym_bfd.get (), 1);
12723
12724 if (!bfd_check_format (sym_bfd.get (), bfd_object))
12725 return NULL;
12726
12727 /* Success. Record the bfd as having been included by the objfile's bfd.
12728 This is important because things like demangled_names_hash lives in the
12729 objfile's per_bfd space and may have references to things like symbol
12730 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
12731 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
12732
12733 return sym_bfd;
12734 }
12735
12736 /* Try to open DWO file FILE_NAME.
12737 COMP_DIR is the DW_AT_comp_dir attribute.
12738 The result is the bfd handle of the file.
12739 If there is a problem finding or opening the file, return NULL.
12740 Upon success, the canonicalized path of the file is stored in the bfd,
12741 same as symfile_bfd_open. */
12742
12743 static gdb_bfd_ref_ptr
12744 open_dwo_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12745 const char *file_name, const char *comp_dir)
12746 {
12747 if (IS_ABSOLUTE_PATH (file_name))
12748 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12749 0 /*is_dwp*/, 0 /*search_cwd*/);
12750
12751 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
12752
12753 if (comp_dir != NULL)
12754 {
12755 char *path_to_try = concat (comp_dir, SLASH_STRING,
12756 file_name, (char *) NULL);
12757
12758 /* NOTE: If comp_dir is a relative path, this will also try the
12759 search path, which seems useful. */
12760 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile,
12761 path_to_try,
12762 0 /*is_dwp*/,
12763 1 /*search_cwd*/));
12764 xfree (path_to_try);
12765 if (abfd != NULL)
12766 return abfd;
12767 }
12768
12769 /* That didn't work, try debug-file-directory, which, despite its name,
12770 is a list of paths. */
12771
12772 if (*debug_file_directory == '\0')
12773 return NULL;
12774
12775 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12776 0 /*is_dwp*/, 1 /*search_cwd*/);
12777 }
12778
12779 /* This function is mapped across the sections and remembers the offset and
12780 size of each of the DWO debugging sections we are interested in. */
12781
12782 static void
12783 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
12784 {
12785 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
12786 const struct dwop_section_names *names = &dwop_section_names;
12787
12788 if (section_is_p (sectp->name, &names->abbrev_dwo))
12789 {
12790 dwo_sections->abbrev.s.section = sectp;
12791 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
12792 }
12793 else if (section_is_p (sectp->name, &names->info_dwo))
12794 {
12795 dwo_sections->info.s.section = sectp;
12796 dwo_sections->info.size = bfd_get_section_size (sectp);
12797 }
12798 else if (section_is_p (sectp->name, &names->line_dwo))
12799 {
12800 dwo_sections->line.s.section = sectp;
12801 dwo_sections->line.size = bfd_get_section_size (sectp);
12802 }
12803 else if (section_is_p (sectp->name, &names->loc_dwo))
12804 {
12805 dwo_sections->loc.s.section = sectp;
12806 dwo_sections->loc.size = bfd_get_section_size (sectp);
12807 }
12808 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12809 {
12810 dwo_sections->macinfo.s.section = sectp;
12811 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
12812 }
12813 else if (section_is_p (sectp->name, &names->macro_dwo))
12814 {
12815 dwo_sections->macro.s.section = sectp;
12816 dwo_sections->macro.size = bfd_get_section_size (sectp);
12817 }
12818 else if (section_is_p (sectp->name, &names->str_dwo))
12819 {
12820 dwo_sections->str.s.section = sectp;
12821 dwo_sections->str.size = bfd_get_section_size (sectp);
12822 }
12823 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12824 {
12825 dwo_sections->str_offsets.s.section = sectp;
12826 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
12827 }
12828 else if (section_is_p (sectp->name, &names->types_dwo))
12829 {
12830 struct dwarf2_section_info type_section;
12831
12832 memset (&type_section, 0, sizeof (type_section));
12833 type_section.s.section = sectp;
12834 type_section.size = bfd_get_section_size (sectp);
12835 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
12836 &type_section);
12837 }
12838 }
12839
12840 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
12841 by PER_CU. This is for the non-DWP case.
12842 The result is NULL if DWO_NAME can't be found. */
12843
12844 static struct dwo_file *
12845 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
12846 const char *dwo_name, const char *comp_dir)
12847 {
12848 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
12849 struct objfile *objfile = dwarf2_per_objfile->objfile;
12850
12851 gdb_bfd_ref_ptr dbfd (open_dwo_file (dwarf2_per_objfile, dwo_name, comp_dir));
12852 if (dbfd == NULL)
12853 {
12854 if (dwarf_read_debug)
12855 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
12856 return NULL;
12857 }
12858
12859 /* We use a unique pointer here, despite the obstack allocation,
12860 because a dwo_file needs some cleanup if it is abandoned. */
12861 dwo_file_up dwo_file (OBSTACK_ZALLOC (&objfile->objfile_obstack,
12862 struct dwo_file));
12863 dwo_file->dwo_name = dwo_name;
12864 dwo_file->comp_dir = comp_dir;
12865 dwo_file->dbfd = dbfd.release ();
12866
12867 bfd_map_over_sections (dwo_file->dbfd, dwarf2_locate_dwo_sections,
12868 &dwo_file->sections);
12869
12870 create_cus_hash_table (dwarf2_per_objfile, *dwo_file, dwo_file->sections.info,
12871 dwo_file->cus);
12872
12873 create_debug_types_hash_table (dwarf2_per_objfile, dwo_file.get (),
12874 dwo_file->sections.types, dwo_file->tus);
12875
12876 if (dwarf_read_debug)
12877 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
12878
12879 return dwo_file.release ();
12880 }
12881
12882 /* This function is mapped across the sections and remembers the offset and
12883 size of each of the DWP debugging sections common to version 1 and 2 that
12884 we are interested in. */
12885
12886 static void
12887 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
12888 void *dwp_file_ptr)
12889 {
12890 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
12891 const struct dwop_section_names *names = &dwop_section_names;
12892 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
12893
12894 /* Record the ELF section number for later lookup: this is what the
12895 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
12896 gdb_assert (elf_section_nr < dwp_file->num_sections);
12897 dwp_file->elf_sections[elf_section_nr] = sectp;
12898
12899 /* Look for specific sections that we need. */
12900 if (section_is_p (sectp->name, &names->str_dwo))
12901 {
12902 dwp_file->sections.str.s.section = sectp;
12903 dwp_file->sections.str.size = bfd_get_section_size (sectp);
12904 }
12905 else if (section_is_p (sectp->name, &names->cu_index))
12906 {
12907 dwp_file->sections.cu_index.s.section = sectp;
12908 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
12909 }
12910 else if (section_is_p (sectp->name, &names->tu_index))
12911 {
12912 dwp_file->sections.tu_index.s.section = sectp;
12913 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
12914 }
12915 }
12916
12917 /* This function is mapped across the sections and remembers the offset and
12918 size of each of the DWP version 2 debugging sections that we are interested
12919 in. This is split into a separate function because we don't know if we
12920 have version 1 or 2 until we parse the cu_index/tu_index sections. */
12921
12922 static void
12923 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
12924 {
12925 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
12926 const struct dwop_section_names *names = &dwop_section_names;
12927 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
12928
12929 /* Record the ELF section number for later lookup: this is what the
12930 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
12931 gdb_assert (elf_section_nr < dwp_file->num_sections);
12932 dwp_file->elf_sections[elf_section_nr] = sectp;
12933
12934 /* Look for specific sections that we need. */
12935 if (section_is_p (sectp->name, &names->abbrev_dwo))
12936 {
12937 dwp_file->sections.abbrev.s.section = sectp;
12938 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
12939 }
12940 else if (section_is_p (sectp->name, &names->info_dwo))
12941 {
12942 dwp_file->sections.info.s.section = sectp;
12943 dwp_file->sections.info.size = bfd_get_section_size (sectp);
12944 }
12945 else if (section_is_p (sectp->name, &names->line_dwo))
12946 {
12947 dwp_file->sections.line.s.section = sectp;
12948 dwp_file->sections.line.size = bfd_get_section_size (sectp);
12949 }
12950 else if (section_is_p (sectp->name, &names->loc_dwo))
12951 {
12952 dwp_file->sections.loc.s.section = sectp;
12953 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
12954 }
12955 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12956 {
12957 dwp_file->sections.macinfo.s.section = sectp;
12958 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
12959 }
12960 else if (section_is_p (sectp->name, &names->macro_dwo))
12961 {
12962 dwp_file->sections.macro.s.section = sectp;
12963 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
12964 }
12965 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12966 {
12967 dwp_file->sections.str_offsets.s.section = sectp;
12968 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
12969 }
12970 else if (section_is_p (sectp->name, &names->types_dwo))
12971 {
12972 dwp_file->sections.types.s.section = sectp;
12973 dwp_file->sections.types.size = bfd_get_section_size (sectp);
12974 }
12975 }
12976
12977 /* Hash function for dwp_file loaded CUs/TUs. */
12978
12979 static hashval_t
12980 hash_dwp_loaded_cutus (const void *item)
12981 {
12982 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
12983
12984 /* This drops the top 32 bits of the signature, but is ok for a hash. */
12985 return dwo_unit->signature;
12986 }
12987
12988 /* Equality function for dwp_file loaded CUs/TUs. */
12989
12990 static int
12991 eq_dwp_loaded_cutus (const void *a, const void *b)
12992 {
12993 const struct dwo_unit *dua = (const struct dwo_unit *) a;
12994 const struct dwo_unit *dub = (const struct dwo_unit *) b;
12995
12996 return dua->signature == dub->signature;
12997 }
12998
12999 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
13000
13001 static htab_t
13002 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
13003 {
13004 return htab_create_alloc_ex (3,
13005 hash_dwp_loaded_cutus,
13006 eq_dwp_loaded_cutus,
13007 NULL,
13008 &objfile->objfile_obstack,
13009 hashtab_obstack_allocate,
13010 dummy_obstack_deallocate);
13011 }
13012
13013 /* Try to open DWP file FILE_NAME.
13014 The result is the bfd handle of the file.
13015 If there is a problem finding or opening the file, return NULL.
13016 Upon success, the canonicalized path of the file is stored in the bfd,
13017 same as symfile_bfd_open. */
13018
13019 static gdb_bfd_ref_ptr
13020 open_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
13021 const char *file_name)
13022 {
13023 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile, file_name,
13024 1 /*is_dwp*/,
13025 1 /*search_cwd*/));
13026 if (abfd != NULL)
13027 return abfd;
13028
13029 /* Work around upstream bug 15652.
13030 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
13031 [Whether that's a "bug" is debatable, but it is getting in our way.]
13032 We have no real idea where the dwp file is, because gdb's realpath-ing
13033 of the executable's path may have discarded the needed info.
13034 [IWBN if the dwp file name was recorded in the executable, akin to
13035 .gnu_debuglink, but that doesn't exist yet.]
13036 Strip the directory from FILE_NAME and search again. */
13037 if (*debug_file_directory != '\0')
13038 {
13039 /* Don't implicitly search the current directory here.
13040 If the user wants to search "." to handle this case,
13041 it must be added to debug-file-directory. */
13042 return try_open_dwop_file (dwarf2_per_objfile,
13043 lbasename (file_name), 1 /*is_dwp*/,
13044 0 /*search_cwd*/);
13045 }
13046
13047 return NULL;
13048 }
13049
13050 /* Initialize the use of the DWP file for the current objfile.
13051 By convention the name of the DWP file is ${objfile}.dwp.
13052 The result is NULL if it can't be found. */
13053
13054 static std::unique_ptr<struct dwp_file>
13055 open_and_init_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13056 {
13057 struct objfile *objfile = dwarf2_per_objfile->objfile;
13058
13059 /* Try to find first .dwp for the binary file before any symbolic links
13060 resolving. */
13061
13062 /* If the objfile is a debug file, find the name of the real binary
13063 file and get the name of dwp file from there. */
13064 std::string dwp_name;
13065 if (objfile->separate_debug_objfile_backlink != NULL)
13066 {
13067 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
13068 const char *backlink_basename = lbasename (backlink->original_name);
13069
13070 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
13071 }
13072 else
13073 dwp_name = objfile->original_name;
13074
13075 dwp_name += ".dwp";
13076
13077 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ()));
13078 if (dbfd == NULL
13079 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
13080 {
13081 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
13082 dwp_name = objfile_name (objfile);
13083 dwp_name += ".dwp";
13084 dbfd = open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ());
13085 }
13086
13087 if (dbfd == NULL)
13088 {
13089 if (dwarf_read_debug)
13090 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
13091 return std::unique_ptr<dwp_file> ();
13092 }
13093
13094 const char *name = bfd_get_filename (dbfd.get ());
13095 std::unique_ptr<struct dwp_file> dwp_file
13096 (new struct dwp_file (name, std::move (dbfd)));
13097
13098 /* +1: section 0 is unused */
13099 dwp_file->num_sections = bfd_count_sections (dwp_file->dbfd) + 1;
13100 dwp_file->elf_sections =
13101 OBSTACK_CALLOC (&objfile->objfile_obstack,
13102 dwp_file->num_sections, asection *);
13103
13104 bfd_map_over_sections (dwp_file->dbfd.get (),
13105 dwarf2_locate_common_dwp_sections,
13106 dwp_file.get ());
13107
13108 dwp_file->cus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13109 0);
13110
13111 dwp_file->tus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13112 1);
13113
13114 /* The DWP file version is stored in the hash table. Oh well. */
13115 if (dwp_file->cus && dwp_file->tus
13116 && dwp_file->cus->version != dwp_file->tus->version)
13117 {
13118 /* Technically speaking, we should try to limp along, but this is
13119 pretty bizarre. We use pulongest here because that's the established
13120 portability solution (e.g, we cannot use %u for uint32_t). */
13121 error (_("Dwarf Error: DWP file CU version %s doesn't match"
13122 " TU version %s [in DWP file %s]"),
13123 pulongest (dwp_file->cus->version),
13124 pulongest (dwp_file->tus->version), dwp_name.c_str ());
13125 }
13126
13127 if (dwp_file->cus)
13128 dwp_file->version = dwp_file->cus->version;
13129 else if (dwp_file->tus)
13130 dwp_file->version = dwp_file->tus->version;
13131 else
13132 dwp_file->version = 2;
13133
13134 if (dwp_file->version == 2)
13135 bfd_map_over_sections (dwp_file->dbfd.get (),
13136 dwarf2_locate_v2_dwp_sections,
13137 dwp_file.get ());
13138
13139 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
13140 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
13141
13142 if (dwarf_read_debug)
13143 {
13144 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
13145 fprintf_unfiltered (gdb_stdlog,
13146 " %s CUs, %s TUs\n",
13147 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
13148 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
13149 }
13150
13151 return dwp_file;
13152 }
13153
13154 /* Wrapper around open_and_init_dwp_file, only open it once. */
13155
13156 static struct dwp_file *
13157 get_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13158 {
13159 if (! dwarf2_per_objfile->dwp_checked)
13160 {
13161 dwarf2_per_objfile->dwp_file
13162 = open_and_init_dwp_file (dwarf2_per_objfile);
13163 dwarf2_per_objfile->dwp_checked = 1;
13164 }
13165 return dwarf2_per_objfile->dwp_file.get ();
13166 }
13167
13168 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
13169 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
13170 or in the DWP file for the objfile, referenced by THIS_UNIT.
13171 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
13172 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
13173
13174 This is called, for example, when wanting to read a variable with a
13175 complex location. Therefore we don't want to do file i/o for every call.
13176 Therefore we don't want to look for a DWO file on every call.
13177 Therefore we first see if we've already seen SIGNATURE in a DWP file,
13178 then we check if we've already seen DWO_NAME, and only THEN do we check
13179 for a DWO file.
13180
13181 The result is a pointer to the dwo_unit object or NULL if we didn't find it
13182 (dwo_id mismatch or couldn't find the DWO/DWP file). */
13183
13184 static struct dwo_unit *
13185 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
13186 const char *dwo_name, const char *comp_dir,
13187 ULONGEST signature, int is_debug_types)
13188 {
13189 struct dwarf2_per_objfile *dwarf2_per_objfile = this_unit->dwarf2_per_objfile;
13190 struct objfile *objfile = dwarf2_per_objfile->objfile;
13191 const char *kind = is_debug_types ? "TU" : "CU";
13192 void **dwo_file_slot;
13193 struct dwo_file *dwo_file;
13194 struct dwp_file *dwp_file;
13195
13196 /* First see if there's a DWP file.
13197 If we have a DWP file but didn't find the DWO inside it, don't
13198 look for the original DWO file. It makes gdb behave differently
13199 depending on whether one is debugging in the build tree. */
13200
13201 dwp_file = get_dwp_file (dwarf2_per_objfile);
13202 if (dwp_file != NULL)
13203 {
13204 const struct dwp_hash_table *dwp_htab =
13205 is_debug_types ? dwp_file->tus : dwp_file->cus;
13206
13207 if (dwp_htab != NULL)
13208 {
13209 struct dwo_unit *dwo_cutu =
13210 lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, comp_dir,
13211 signature, is_debug_types);
13212
13213 if (dwo_cutu != NULL)
13214 {
13215 if (dwarf_read_debug)
13216 {
13217 fprintf_unfiltered (gdb_stdlog,
13218 "Virtual DWO %s %s found: @%s\n",
13219 kind, hex_string (signature),
13220 host_address_to_string (dwo_cutu));
13221 }
13222 return dwo_cutu;
13223 }
13224 }
13225 }
13226 else
13227 {
13228 /* No DWP file, look for the DWO file. */
13229
13230 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
13231 dwo_name, comp_dir);
13232 if (*dwo_file_slot == NULL)
13233 {
13234 /* Read in the file and build a table of the CUs/TUs it contains. */
13235 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
13236 }
13237 /* NOTE: This will be NULL if unable to open the file. */
13238 dwo_file = (struct dwo_file *) *dwo_file_slot;
13239
13240 if (dwo_file != NULL)
13241 {
13242 struct dwo_unit *dwo_cutu = NULL;
13243
13244 if (is_debug_types && dwo_file->tus)
13245 {
13246 struct dwo_unit find_dwo_cutu;
13247
13248 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13249 find_dwo_cutu.signature = signature;
13250 dwo_cutu
13251 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
13252 }
13253 else if (!is_debug_types && dwo_file->cus)
13254 {
13255 struct dwo_unit find_dwo_cutu;
13256
13257 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13258 find_dwo_cutu.signature = signature;
13259 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus,
13260 &find_dwo_cutu);
13261 }
13262
13263 if (dwo_cutu != NULL)
13264 {
13265 if (dwarf_read_debug)
13266 {
13267 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
13268 kind, dwo_name, hex_string (signature),
13269 host_address_to_string (dwo_cutu));
13270 }
13271 return dwo_cutu;
13272 }
13273 }
13274 }
13275
13276 /* We didn't find it. This could mean a dwo_id mismatch, or
13277 someone deleted the DWO/DWP file, or the search path isn't set up
13278 correctly to find the file. */
13279
13280 if (dwarf_read_debug)
13281 {
13282 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
13283 kind, dwo_name, hex_string (signature));
13284 }
13285
13286 /* This is a warning and not a complaint because it can be caused by
13287 pilot error (e.g., user accidentally deleting the DWO). */
13288 {
13289 /* Print the name of the DWP file if we looked there, helps the user
13290 better diagnose the problem. */
13291 std::string dwp_text;
13292
13293 if (dwp_file != NULL)
13294 dwp_text = string_printf (" [in DWP file %s]",
13295 lbasename (dwp_file->name));
13296
13297 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset %s"
13298 " [in module %s]"),
13299 kind, dwo_name, hex_string (signature),
13300 dwp_text.c_str (),
13301 this_unit->is_debug_types ? "TU" : "CU",
13302 sect_offset_str (this_unit->sect_off), objfile_name (objfile));
13303 }
13304 return NULL;
13305 }
13306
13307 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
13308 See lookup_dwo_cutu_unit for details. */
13309
13310 static struct dwo_unit *
13311 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
13312 const char *dwo_name, const char *comp_dir,
13313 ULONGEST signature)
13314 {
13315 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
13316 }
13317
13318 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
13319 See lookup_dwo_cutu_unit for details. */
13320
13321 static struct dwo_unit *
13322 lookup_dwo_type_unit (struct signatured_type *this_tu,
13323 const char *dwo_name, const char *comp_dir)
13324 {
13325 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
13326 }
13327
13328 /* Traversal function for queue_and_load_all_dwo_tus. */
13329
13330 static int
13331 queue_and_load_dwo_tu (void **slot, void *info)
13332 {
13333 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
13334 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
13335 ULONGEST signature = dwo_unit->signature;
13336 struct signatured_type *sig_type =
13337 lookup_dwo_signatured_type (per_cu->cu, signature);
13338
13339 if (sig_type != NULL)
13340 {
13341 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
13342
13343 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
13344 a real dependency of PER_CU on SIG_TYPE. That is detected later
13345 while processing PER_CU. */
13346 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
13347 load_full_type_unit (sig_cu);
13348 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
13349 }
13350
13351 return 1;
13352 }
13353
13354 /* Queue all TUs contained in the DWO of PER_CU to be read in.
13355 The DWO may have the only definition of the type, though it may not be
13356 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
13357 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
13358
13359 static void
13360 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
13361 {
13362 struct dwo_unit *dwo_unit;
13363 struct dwo_file *dwo_file;
13364
13365 gdb_assert (!per_cu->is_debug_types);
13366 gdb_assert (get_dwp_file (per_cu->dwarf2_per_objfile) == NULL);
13367 gdb_assert (per_cu->cu != NULL);
13368
13369 dwo_unit = per_cu->cu->dwo_unit;
13370 gdb_assert (dwo_unit != NULL);
13371
13372 dwo_file = dwo_unit->dwo_file;
13373 if (dwo_file->tus != NULL)
13374 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
13375 }
13376
13377 /* Free all resources associated with DWO_FILE.
13378 Close the DWO file and munmap the sections. */
13379
13380 static void
13381 free_dwo_file (struct dwo_file *dwo_file)
13382 {
13383 /* Note: dbfd is NULL for virtual DWO files. */
13384 gdb_bfd_unref (dwo_file->dbfd);
13385
13386 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
13387 }
13388
13389 /* Traversal function for free_dwo_files. */
13390
13391 static int
13392 free_dwo_file_from_slot (void **slot, void *info)
13393 {
13394 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
13395
13396 free_dwo_file (dwo_file);
13397
13398 return 1;
13399 }
13400
13401 /* Free all resources associated with DWO_FILES. */
13402
13403 static void
13404 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
13405 {
13406 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
13407 }
13408 \f
13409 /* Read in various DIEs. */
13410
13411 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
13412 Inherit only the children of the DW_AT_abstract_origin DIE not being
13413 already referenced by DW_AT_abstract_origin from the children of the
13414 current DIE. */
13415
13416 static void
13417 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
13418 {
13419 struct die_info *child_die;
13420 sect_offset *offsetp;
13421 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
13422 struct die_info *origin_die;
13423 /* Iterator of the ORIGIN_DIE children. */
13424 struct die_info *origin_child_die;
13425 struct attribute *attr;
13426 struct dwarf2_cu *origin_cu;
13427 struct pending **origin_previous_list_in_scope;
13428
13429 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13430 if (!attr)
13431 return;
13432
13433 /* Note that following die references may follow to a die in a
13434 different cu. */
13435
13436 origin_cu = cu;
13437 origin_die = follow_die_ref (die, attr, &origin_cu);
13438
13439 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
13440 symbols in. */
13441 origin_previous_list_in_scope = origin_cu->list_in_scope;
13442 origin_cu->list_in_scope = cu->list_in_scope;
13443
13444 if (die->tag != origin_die->tag
13445 && !(die->tag == DW_TAG_inlined_subroutine
13446 && origin_die->tag == DW_TAG_subprogram))
13447 complaint (_("DIE %s and its abstract origin %s have different tags"),
13448 sect_offset_str (die->sect_off),
13449 sect_offset_str (origin_die->sect_off));
13450
13451 std::vector<sect_offset> offsets;
13452
13453 for (child_die = die->child;
13454 child_die && child_die->tag;
13455 child_die = sibling_die (child_die))
13456 {
13457 struct die_info *child_origin_die;
13458 struct dwarf2_cu *child_origin_cu;
13459
13460 /* We are trying to process concrete instance entries:
13461 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
13462 it's not relevant to our analysis here. i.e. detecting DIEs that are
13463 present in the abstract instance but not referenced in the concrete
13464 one. */
13465 if (child_die->tag == DW_TAG_call_site
13466 || child_die->tag == DW_TAG_GNU_call_site)
13467 continue;
13468
13469 /* For each CHILD_DIE, find the corresponding child of
13470 ORIGIN_DIE. If there is more than one layer of
13471 DW_AT_abstract_origin, follow them all; there shouldn't be,
13472 but GCC versions at least through 4.4 generate this (GCC PR
13473 40573). */
13474 child_origin_die = child_die;
13475 child_origin_cu = cu;
13476 while (1)
13477 {
13478 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
13479 child_origin_cu);
13480 if (attr == NULL)
13481 break;
13482 child_origin_die = follow_die_ref (child_origin_die, attr,
13483 &child_origin_cu);
13484 }
13485
13486 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
13487 counterpart may exist. */
13488 if (child_origin_die != child_die)
13489 {
13490 if (child_die->tag != child_origin_die->tag
13491 && !(child_die->tag == DW_TAG_inlined_subroutine
13492 && child_origin_die->tag == DW_TAG_subprogram))
13493 complaint (_("Child DIE %s and its abstract origin %s have "
13494 "different tags"),
13495 sect_offset_str (child_die->sect_off),
13496 sect_offset_str (child_origin_die->sect_off));
13497 if (child_origin_die->parent != origin_die)
13498 complaint (_("Child DIE %s and its abstract origin %s have "
13499 "different parents"),
13500 sect_offset_str (child_die->sect_off),
13501 sect_offset_str (child_origin_die->sect_off));
13502 else
13503 offsets.push_back (child_origin_die->sect_off);
13504 }
13505 }
13506 std::sort (offsets.begin (), offsets.end ());
13507 sect_offset *offsets_end = offsets.data () + offsets.size ();
13508 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
13509 if (offsetp[-1] == *offsetp)
13510 complaint (_("Multiple children of DIE %s refer "
13511 "to DIE %s as their abstract origin"),
13512 sect_offset_str (die->sect_off), sect_offset_str (*offsetp));
13513
13514 offsetp = offsets.data ();
13515 origin_child_die = origin_die->child;
13516 while (origin_child_die && origin_child_die->tag)
13517 {
13518 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
13519 while (offsetp < offsets_end
13520 && *offsetp < origin_child_die->sect_off)
13521 offsetp++;
13522 if (offsetp >= offsets_end
13523 || *offsetp > origin_child_die->sect_off)
13524 {
13525 /* Found that ORIGIN_CHILD_DIE is really not referenced.
13526 Check whether we're already processing ORIGIN_CHILD_DIE.
13527 This can happen with mutually referenced abstract_origins.
13528 PR 16581. */
13529 if (!origin_child_die->in_process)
13530 process_die (origin_child_die, origin_cu);
13531 }
13532 origin_child_die = sibling_die (origin_child_die);
13533 }
13534 origin_cu->list_in_scope = origin_previous_list_in_scope;
13535 }
13536
13537 static void
13538 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
13539 {
13540 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13541 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13542 struct context_stack *newobj;
13543 CORE_ADDR lowpc;
13544 CORE_ADDR highpc;
13545 struct die_info *child_die;
13546 struct attribute *attr, *call_line, *call_file;
13547 const char *name;
13548 CORE_ADDR baseaddr;
13549 struct block *block;
13550 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
13551 std::vector<struct symbol *> template_args;
13552 struct template_symbol *templ_func = NULL;
13553
13554 if (inlined_func)
13555 {
13556 /* If we do not have call site information, we can't show the
13557 caller of this inlined function. That's too confusing, so
13558 only use the scope for local variables. */
13559 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
13560 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
13561 if (call_line == NULL || call_file == NULL)
13562 {
13563 read_lexical_block_scope (die, cu);
13564 return;
13565 }
13566 }
13567
13568 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13569
13570 name = dwarf2_name (die, cu);
13571
13572 /* Ignore functions with missing or empty names. These are actually
13573 illegal according to the DWARF standard. */
13574 if (name == NULL)
13575 {
13576 complaint (_("missing name for subprogram DIE at %s"),
13577 sect_offset_str (die->sect_off));
13578 return;
13579 }
13580
13581 /* Ignore functions with missing or invalid low and high pc attributes. */
13582 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
13583 <= PC_BOUNDS_INVALID)
13584 {
13585 attr = dwarf2_attr (die, DW_AT_external, cu);
13586 if (!attr || !DW_UNSND (attr))
13587 complaint (_("cannot get low and high bounds "
13588 "for subprogram DIE at %s"),
13589 sect_offset_str (die->sect_off));
13590 return;
13591 }
13592
13593 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13594 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13595
13596 /* If we have any template arguments, then we must allocate a
13597 different sort of symbol. */
13598 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
13599 {
13600 if (child_die->tag == DW_TAG_template_type_param
13601 || child_die->tag == DW_TAG_template_value_param)
13602 {
13603 templ_func = allocate_template_symbol (objfile);
13604 templ_func->subclass = SYMBOL_TEMPLATE;
13605 break;
13606 }
13607 }
13608
13609 newobj = push_context (0, lowpc);
13610 newobj->name = new_symbol (die, read_type_die (die, cu), cu,
13611 (struct symbol *) templ_func);
13612
13613 /* If there is a location expression for DW_AT_frame_base, record
13614 it. */
13615 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
13616 if (attr)
13617 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
13618
13619 /* If there is a location for the static link, record it. */
13620 newobj->static_link = NULL;
13621 attr = dwarf2_attr (die, DW_AT_static_link, cu);
13622 if (attr)
13623 {
13624 newobj->static_link
13625 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
13626 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
13627 }
13628
13629 cu->list_in_scope = get_local_symbols ();
13630
13631 if (die->child != NULL)
13632 {
13633 child_die = die->child;
13634 while (child_die && child_die->tag)
13635 {
13636 if (child_die->tag == DW_TAG_template_type_param
13637 || child_die->tag == DW_TAG_template_value_param)
13638 {
13639 struct symbol *arg = new_symbol (child_die, NULL, cu);
13640
13641 if (arg != NULL)
13642 template_args.push_back (arg);
13643 }
13644 else
13645 process_die (child_die, cu);
13646 child_die = sibling_die (child_die);
13647 }
13648 }
13649
13650 inherit_abstract_dies (die, cu);
13651
13652 /* If we have a DW_AT_specification, we might need to import using
13653 directives from the context of the specification DIE. See the
13654 comment in determine_prefix. */
13655 if (cu->language == language_cplus
13656 && dwarf2_attr (die, DW_AT_specification, cu))
13657 {
13658 struct dwarf2_cu *spec_cu = cu;
13659 struct die_info *spec_die = die_specification (die, &spec_cu);
13660
13661 while (spec_die)
13662 {
13663 child_die = spec_die->child;
13664 while (child_die && child_die->tag)
13665 {
13666 if (child_die->tag == DW_TAG_imported_module)
13667 process_die (child_die, spec_cu);
13668 child_die = sibling_die (child_die);
13669 }
13670
13671 /* In some cases, GCC generates specification DIEs that
13672 themselves contain DW_AT_specification attributes. */
13673 spec_die = die_specification (spec_die, &spec_cu);
13674 }
13675 }
13676
13677 struct context_stack cstk = pop_context ();
13678 /* Make a block for the local symbols within. */
13679 block = finish_block (cstk.name, cstk.old_blocks,
13680 cstk.static_link, lowpc, highpc);
13681
13682 /* For C++, set the block's scope. */
13683 if ((cu->language == language_cplus
13684 || cu->language == language_fortran
13685 || cu->language == language_d
13686 || cu->language == language_rust)
13687 && cu->processing_has_namespace_info)
13688 block_set_scope (block, determine_prefix (die, cu),
13689 &objfile->objfile_obstack);
13690
13691 /* If we have address ranges, record them. */
13692 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13693
13694 gdbarch_make_symbol_special (gdbarch, cstk.name, objfile);
13695
13696 /* Attach template arguments to function. */
13697 if (!template_args.empty ())
13698 {
13699 gdb_assert (templ_func != NULL);
13700
13701 templ_func->n_template_arguments = template_args.size ();
13702 templ_func->template_arguments
13703 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
13704 templ_func->n_template_arguments);
13705 memcpy (templ_func->template_arguments,
13706 template_args.data (),
13707 (templ_func->n_template_arguments * sizeof (struct symbol *)));
13708 }
13709
13710 /* In C++, we can have functions nested inside functions (e.g., when
13711 a function declares a class that has methods). This means that
13712 when we finish processing a function scope, we may need to go
13713 back to building a containing block's symbol lists. */
13714 *get_local_symbols () = cstk.locals;
13715 set_local_using_directives (cstk.local_using_directives);
13716
13717 /* If we've finished processing a top-level function, subsequent
13718 symbols go in the file symbol list. */
13719 if (outermost_context_p ())
13720 cu->list_in_scope = get_file_symbols ();
13721 }
13722
13723 /* Process all the DIES contained within a lexical block scope. Start
13724 a new scope, process the dies, and then close the scope. */
13725
13726 static void
13727 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
13728 {
13729 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13730 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13731 CORE_ADDR lowpc, highpc;
13732 struct die_info *child_die;
13733 CORE_ADDR baseaddr;
13734
13735 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13736
13737 /* Ignore blocks with missing or invalid low and high pc attributes. */
13738 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
13739 as multiple lexical blocks? Handling children in a sane way would
13740 be nasty. Might be easier to properly extend generic blocks to
13741 describe ranges. */
13742 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
13743 {
13744 case PC_BOUNDS_NOT_PRESENT:
13745 /* DW_TAG_lexical_block has no attributes, process its children as if
13746 there was no wrapping by that DW_TAG_lexical_block.
13747 GCC does no longer produces such DWARF since GCC r224161. */
13748 for (child_die = die->child;
13749 child_die != NULL && child_die->tag;
13750 child_die = sibling_die (child_die))
13751 process_die (child_die, cu);
13752 return;
13753 case PC_BOUNDS_INVALID:
13754 return;
13755 }
13756 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13757 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13758
13759 push_context (0, lowpc);
13760 if (die->child != NULL)
13761 {
13762 child_die = die->child;
13763 while (child_die && child_die->tag)
13764 {
13765 process_die (child_die, cu);
13766 child_die = sibling_die (child_die);
13767 }
13768 }
13769 inherit_abstract_dies (die, cu);
13770 struct context_stack cstk = pop_context ();
13771
13772 if (*get_local_symbols () != NULL || (*get_local_using_directives ()) != NULL)
13773 {
13774 struct block *block
13775 = finish_block (0, cstk.old_blocks, NULL,
13776 cstk.start_addr, highpc);
13777
13778 /* Note that recording ranges after traversing children, as we
13779 do here, means that recording a parent's ranges entails
13780 walking across all its children's ranges as they appear in
13781 the address map, which is quadratic behavior.
13782
13783 It would be nicer to record the parent's ranges before
13784 traversing its children, simply overriding whatever you find
13785 there. But since we don't even decide whether to create a
13786 block until after we've traversed its children, that's hard
13787 to do. */
13788 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13789 }
13790 *get_local_symbols () = cstk.locals;
13791 set_local_using_directives (cstk.local_using_directives);
13792 }
13793
13794 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
13795
13796 static void
13797 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
13798 {
13799 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13800 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13801 CORE_ADDR pc, baseaddr;
13802 struct attribute *attr;
13803 struct call_site *call_site, call_site_local;
13804 void **slot;
13805 int nparams;
13806 struct die_info *child_die;
13807
13808 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13809
13810 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
13811 if (attr == NULL)
13812 {
13813 /* This was a pre-DWARF-5 GNU extension alias
13814 for DW_AT_call_return_pc. */
13815 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13816 }
13817 if (!attr)
13818 {
13819 complaint (_("missing DW_AT_call_return_pc for DW_TAG_call_site "
13820 "DIE %s [in module %s]"),
13821 sect_offset_str (die->sect_off), objfile_name (objfile));
13822 return;
13823 }
13824 pc = attr_value_as_address (attr) + baseaddr;
13825 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
13826
13827 if (cu->call_site_htab == NULL)
13828 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
13829 NULL, &objfile->objfile_obstack,
13830 hashtab_obstack_allocate, NULL);
13831 call_site_local.pc = pc;
13832 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
13833 if (*slot != NULL)
13834 {
13835 complaint (_("Duplicate PC %s for DW_TAG_call_site "
13836 "DIE %s [in module %s]"),
13837 paddress (gdbarch, pc), sect_offset_str (die->sect_off),
13838 objfile_name (objfile));
13839 return;
13840 }
13841
13842 /* Count parameters at the caller. */
13843
13844 nparams = 0;
13845 for (child_die = die->child; child_die && child_die->tag;
13846 child_die = sibling_die (child_die))
13847 {
13848 if (child_die->tag != DW_TAG_call_site_parameter
13849 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13850 {
13851 complaint (_("Tag %d is not DW_TAG_call_site_parameter in "
13852 "DW_TAG_call_site child DIE %s [in module %s]"),
13853 child_die->tag, sect_offset_str (child_die->sect_off),
13854 objfile_name (objfile));
13855 continue;
13856 }
13857
13858 nparams++;
13859 }
13860
13861 call_site
13862 = ((struct call_site *)
13863 obstack_alloc (&objfile->objfile_obstack,
13864 sizeof (*call_site)
13865 + (sizeof (*call_site->parameter) * (nparams - 1))));
13866 *slot = call_site;
13867 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
13868 call_site->pc = pc;
13869
13870 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
13871 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
13872 {
13873 struct die_info *func_die;
13874
13875 /* Skip also over DW_TAG_inlined_subroutine. */
13876 for (func_die = die->parent;
13877 func_die && func_die->tag != DW_TAG_subprogram
13878 && func_die->tag != DW_TAG_subroutine_type;
13879 func_die = func_die->parent);
13880
13881 /* DW_AT_call_all_calls is a superset
13882 of DW_AT_call_all_tail_calls. */
13883 if (func_die
13884 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
13885 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
13886 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
13887 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
13888 {
13889 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
13890 not complete. But keep CALL_SITE for look ups via call_site_htab,
13891 both the initial caller containing the real return address PC and
13892 the final callee containing the current PC of a chain of tail
13893 calls do not need to have the tail call list complete. But any
13894 function candidate for a virtual tail call frame searched via
13895 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
13896 determined unambiguously. */
13897 }
13898 else
13899 {
13900 struct type *func_type = NULL;
13901
13902 if (func_die)
13903 func_type = get_die_type (func_die, cu);
13904 if (func_type != NULL)
13905 {
13906 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
13907
13908 /* Enlist this call site to the function. */
13909 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
13910 TYPE_TAIL_CALL_LIST (func_type) = call_site;
13911 }
13912 else
13913 complaint (_("Cannot find function owning DW_TAG_call_site "
13914 "DIE %s [in module %s]"),
13915 sect_offset_str (die->sect_off), objfile_name (objfile));
13916 }
13917 }
13918
13919 attr = dwarf2_attr (die, DW_AT_call_target, cu);
13920 if (attr == NULL)
13921 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
13922 if (attr == NULL)
13923 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
13924 if (attr == NULL)
13925 {
13926 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
13927 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13928 }
13929 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
13930 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
13931 /* Keep NULL DWARF_BLOCK. */;
13932 else if (attr_form_is_block (attr))
13933 {
13934 struct dwarf2_locexpr_baton *dlbaton;
13935
13936 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
13937 dlbaton->data = DW_BLOCK (attr)->data;
13938 dlbaton->size = DW_BLOCK (attr)->size;
13939 dlbaton->per_cu = cu->per_cu;
13940
13941 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
13942 }
13943 else if (attr_form_is_ref (attr))
13944 {
13945 struct dwarf2_cu *target_cu = cu;
13946 struct die_info *target_die;
13947
13948 target_die = follow_die_ref (die, attr, &target_cu);
13949 gdb_assert (target_cu->per_cu->dwarf2_per_objfile->objfile == objfile);
13950 if (die_is_declaration (target_die, target_cu))
13951 {
13952 const char *target_physname;
13953
13954 /* Prefer the mangled name; otherwise compute the demangled one. */
13955 target_physname = dw2_linkage_name (target_die, target_cu);
13956 if (target_physname == NULL)
13957 target_physname = dwarf2_physname (NULL, target_die, target_cu);
13958 if (target_physname == NULL)
13959 complaint (_("DW_AT_call_target target DIE has invalid "
13960 "physname, for referencing DIE %s [in module %s]"),
13961 sect_offset_str (die->sect_off), objfile_name (objfile));
13962 else
13963 SET_FIELD_PHYSNAME (call_site->target, target_physname);
13964 }
13965 else
13966 {
13967 CORE_ADDR lowpc;
13968
13969 /* DW_AT_entry_pc should be preferred. */
13970 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
13971 <= PC_BOUNDS_INVALID)
13972 complaint (_("DW_AT_call_target target DIE has invalid "
13973 "low pc, for referencing DIE %s [in module %s]"),
13974 sect_offset_str (die->sect_off), objfile_name (objfile));
13975 else
13976 {
13977 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13978 SET_FIELD_PHYSADDR (call_site->target, lowpc);
13979 }
13980 }
13981 }
13982 else
13983 complaint (_("DW_TAG_call_site DW_AT_call_target is neither "
13984 "block nor reference, for DIE %s [in module %s]"),
13985 sect_offset_str (die->sect_off), objfile_name (objfile));
13986
13987 call_site->per_cu = cu->per_cu;
13988
13989 for (child_die = die->child;
13990 child_die && child_die->tag;
13991 child_die = sibling_die (child_die))
13992 {
13993 struct call_site_parameter *parameter;
13994 struct attribute *loc, *origin;
13995
13996 if (child_die->tag != DW_TAG_call_site_parameter
13997 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13998 {
13999 /* Already printed the complaint above. */
14000 continue;
14001 }
14002
14003 gdb_assert (call_site->parameter_count < nparams);
14004 parameter = &call_site->parameter[call_site->parameter_count];
14005
14006 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
14007 specifies DW_TAG_formal_parameter. Value of the data assumed for the
14008 register is contained in DW_AT_call_value. */
14009
14010 loc = dwarf2_attr (child_die, DW_AT_location, cu);
14011 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
14012 if (origin == NULL)
14013 {
14014 /* This was a pre-DWARF-5 GNU extension alias
14015 for DW_AT_call_parameter. */
14016 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
14017 }
14018 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
14019 {
14020 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
14021
14022 sect_offset sect_off
14023 = (sect_offset) dwarf2_get_ref_die_offset (origin);
14024 if (!offset_in_cu_p (&cu->header, sect_off))
14025 {
14026 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
14027 binding can be done only inside one CU. Such referenced DIE
14028 therefore cannot be even moved to DW_TAG_partial_unit. */
14029 complaint (_("DW_AT_call_parameter offset is not in CU for "
14030 "DW_TAG_call_site child DIE %s [in module %s]"),
14031 sect_offset_str (child_die->sect_off),
14032 objfile_name (objfile));
14033 continue;
14034 }
14035 parameter->u.param_cu_off
14036 = (cu_offset) (sect_off - cu->header.sect_off);
14037 }
14038 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
14039 {
14040 complaint (_("No DW_FORM_block* DW_AT_location for "
14041 "DW_TAG_call_site child DIE %s [in module %s]"),
14042 sect_offset_str (child_die->sect_off), objfile_name (objfile));
14043 continue;
14044 }
14045 else
14046 {
14047 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
14048 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
14049 if (parameter->u.dwarf_reg != -1)
14050 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
14051 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
14052 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
14053 &parameter->u.fb_offset))
14054 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
14055 else
14056 {
14057 complaint (_("Only single DW_OP_reg or DW_OP_fbreg is supported "
14058 "for DW_FORM_block* DW_AT_location is supported for "
14059 "DW_TAG_call_site child DIE %s "
14060 "[in module %s]"),
14061 sect_offset_str (child_die->sect_off),
14062 objfile_name (objfile));
14063 continue;
14064 }
14065 }
14066
14067 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
14068 if (attr == NULL)
14069 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
14070 if (!attr_form_is_block (attr))
14071 {
14072 complaint (_("No DW_FORM_block* DW_AT_call_value for "
14073 "DW_TAG_call_site child DIE %s [in module %s]"),
14074 sect_offset_str (child_die->sect_off),
14075 objfile_name (objfile));
14076 continue;
14077 }
14078 parameter->value = DW_BLOCK (attr)->data;
14079 parameter->value_size = DW_BLOCK (attr)->size;
14080
14081 /* Parameters are not pre-cleared by memset above. */
14082 parameter->data_value = NULL;
14083 parameter->data_value_size = 0;
14084 call_site->parameter_count++;
14085
14086 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
14087 if (attr == NULL)
14088 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
14089 if (attr)
14090 {
14091 if (!attr_form_is_block (attr))
14092 complaint (_("No DW_FORM_block* DW_AT_call_data_value for "
14093 "DW_TAG_call_site child DIE %s [in module %s]"),
14094 sect_offset_str (child_die->sect_off),
14095 objfile_name (objfile));
14096 else
14097 {
14098 parameter->data_value = DW_BLOCK (attr)->data;
14099 parameter->data_value_size = DW_BLOCK (attr)->size;
14100 }
14101 }
14102 }
14103 }
14104
14105 /* Helper function for read_variable. If DIE represents a virtual
14106 table, then return the type of the concrete object that is
14107 associated with the virtual table. Otherwise, return NULL. */
14108
14109 static struct type *
14110 rust_containing_type (struct die_info *die, struct dwarf2_cu *cu)
14111 {
14112 struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu);
14113 if (attr == NULL)
14114 return NULL;
14115
14116 /* Find the type DIE. */
14117 struct die_info *type_die = NULL;
14118 struct dwarf2_cu *type_cu = cu;
14119
14120 if (attr_form_is_ref (attr))
14121 type_die = follow_die_ref (die, attr, &type_cu);
14122 if (type_die == NULL)
14123 return NULL;
14124
14125 if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL)
14126 return NULL;
14127 return die_containing_type (type_die, type_cu);
14128 }
14129
14130 /* Read a variable (DW_TAG_variable) DIE and create a new symbol. */
14131
14132 static void
14133 read_variable (struct die_info *die, struct dwarf2_cu *cu)
14134 {
14135 struct rust_vtable_symbol *storage = NULL;
14136
14137 if (cu->language == language_rust)
14138 {
14139 struct type *containing_type = rust_containing_type (die, cu);
14140
14141 if (containing_type != NULL)
14142 {
14143 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14144
14145 storage = OBSTACK_ZALLOC (&objfile->objfile_obstack,
14146 struct rust_vtable_symbol);
14147 initialize_objfile_symbol (storage);
14148 storage->concrete_type = containing_type;
14149 storage->subclass = SYMBOL_RUST_VTABLE;
14150 }
14151 }
14152
14153 new_symbol (die, NULL, cu, storage);
14154 }
14155
14156 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
14157 reading .debug_rnglists.
14158 Callback's type should be:
14159 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14160 Return true if the attributes are present and valid, otherwise,
14161 return false. */
14162
14163 template <typename Callback>
14164 static bool
14165 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
14166 Callback &&callback)
14167 {
14168 struct dwarf2_per_objfile *dwarf2_per_objfile
14169 = cu->per_cu->dwarf2_per_objfile;
14170 struct objfile *objfile = dwarf2_per_objfile->objfile;
14171 bfd *obfd = objfile->obfd;
14172 /* Base address selection entry. */
14173 CORE_ADDR base;
14174 int found_base;
14175 const gdb_byte *buffer;
14176 CORE_ADDR baseaddr;
14177 bool overflow = false;
14178
14179 found_base = cu->base_known;
14180 base = cu->base_address;
14181
14182 dwarf2_read_section (objfile, &dwarf2_per_objfile->rnglists);
14183 if (offset >= dwarf2_per_objfile->rnglists.size)
14184 {
14185 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14186 offset);
14187 return false;
14188 }
14189 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
14190
14191 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14192
14193 while (1)
14194 {
14195 /* Initialize it due to a false compiler warning. */
14196 CORE_ADDR range_beginning = 0, range_end = 0;
14197 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
14198 + dwarf2_per_objfile->rnglists.size);
14199 unsigned int bytes_read;
14200
14201 if (buffer == buf_end)
14202 {
14203 overflow = true;
14204 break;
14205 }
14206 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
14207 switch (rlet)
14208 {
14209 case DW_RLE_end_of_list:
14210 break;
14211 case DW_RLE_base_address:
14212 if (buffer + cu->header.addr_size > buf_end)
14213 {
14214 overflow = true;
14215 break;
14216 }
14217 base = read_address (obfd, buffer, cu, &bytes_read);
14218 found_base = 1;
14219 buffer += bytes_read;
14220 break;
14221 case DW_RLE_start_length:
14222 if (buffer + cu->header.addr_size > buf_end)
14223 {
14224 overflow = true;
14225 break;
14226 }
14227 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14228 buffer += bytes_read;
14229 range_end = (range_beginning
14230 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
14231 buffer += bytes_read;
14232 if (buffer > buf_end)
14233 {
14234 overflow = true;
14235 break;
14236 }
14237 break;
14238 case DW_RLE_offset_pair:
14239 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14240 buffer += bytes_read;
14241 if (buffer > buf_end)
14242 {
14243 overflow = true;
14244 break;
14245 }
14246 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14247 buffer += bytes_read;
14248 if (buffer > buf_end)
14249 {
14250 overflow = true;
14251 break;
14252 }
14253 break;
14254 case DW_RLE_start_end:
14255 if (buffer + 2 * cu->header.addr_size > buf_end)
14256 {
14257 overflow = true;
14258 break;
14259 }
14260 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14261 buffer += bytes_read;
14262 range_end = read_address (obfd, buffer, cu, &bytes_read);
14263 buffer += bytes_read;
14264 break;
14265 default:
14266 complaint (_("Invalid .debug_rnglists data (no base address)"));
14267 return false;
14268 }
14269 if (rlet == DW_RLE_end_of_list || overflow)
14270 break;
14271 if (rlet == DW_RLE_base_address)
14272 continue;
14273
14274 if (!found_base)
14275 {
14276 /* We have no valid base address for the ranges
14277 data. */
14278 complaint (_("Invalid .debug_rnglists data (no base address)"));
14279 return false;
14280 }
14281
14282 if (range_beginning > range_end)
14283 {
14284 /* Inverted range entries are invalid. */
14285 complaint (_("Invalid .debug_rnglists data (inverted range)"));
14286 return false;
14287 }
14288
14289 /* Empty range entries have no effect. */
14290 if (range_beginning == range_end)
14291 continue;
14292
14293 range_beginning += base;
14294 range_end += base;
14295
14296 /* A not-uncommon case of bad debug info.
14297 Don't pollute the addrmap with bad data. */
14298 if (range_beginning + baseaddr == 0
14299 && !dwarf2_per_objfile->has_section_at_zero)
14300 {
14301 complaint (_(".debug_rnglists entry has start address of zero"
14302 " [in module %s]"), objfile_name (objfile));
14303 continue;
14304 }
14305
14306 callback (range_beginning, range_end);
14307 }
14308
14309 if (overflow)
14310 {
14311 complaint (_("Offset %d is not terminated "
14312 "for DW_AT_ranges attribute"),
14313 offset);
14314 return false;
14315 }
14316
14317 return true;
14318 }
14319
14320 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
14321 Callback's type should be:
14322 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14323 Return 1 if the attributes are present and valid, otherwise, return 0. */
14324
14325 template <typename Callback>
14326 static int
14327 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
14328 Callback &&callback)
14329 {
14330 struct dwarf2_per_objfile *dwarf2_per_objfile
14331 = cu->per_cu->dwarf2_per_objfile;
14332 struct objfile *objfile = dwarf2_per_objfile->objfile;
14333 struct comp_unit_head *cu_header = &cu->header;
14334 bfd *obfd = objfile->obfd;
14335 unsigned int addr_size = cu_header->addr_size;
14336 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
14337 /* Base address selection entry. */
14338 CORE_ADDR base;
14339 int found_base;
14340 unsigned int dummy;
14341 const gdb_byte *buffer;
14342 CORE_ADDR baseaddr;
14343
14344 if (cu_header->version >= 5)
14345 return dwarf2_rnglists_process (offset, cu, callback);
14346
14347 found_base = cu->base_known;
14348 base = cu->base_address;
14349
14350 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
14351 if (offset >= dwarf2_per_objfile->ranges.size)
14352 {
14353 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14354 offset);
14355 return 0;
14356 }
14357 buffer = dwarf2_per_objfile->ranges.buffer + offset;
14358
14359 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14360
14361 while (1)
14362 {
14363 CORE_ADDR range_beginning, range_end;
14364
14365 range_beginning = read_address (obfd, buffer, cu, &dummy);
14366 buffer += addr_size;
14367 range_end = read_address (obfd, buffer, cu, &dummy);
14368 buffer += addr_size;
14369 offset += 2 * addr_size;
14370
14371 /* An end of list marker is a pair of zero addresses. */
14372 if (range_beginning == 0 && range_end == 0)
14373 /* Found the end of list entry. */
14374 break;
14375
14376 /* Each base address selection entry is a pair of 2 values.
14377 The first is the largest possible address, the second is
14378 the base address. Check for a base address here. */
14379 if ((range_beginning & mask) == mask)
14380 {
14381 /* If we found the largest possible address, then we already
14382 have the base address in range_end. */
14383 base = range_end;
14384 found_base = 1;
14385 continue;
14386 }
14387
14388 if (!found_base)
14389 {
14390 /* We have no valid base address for the ranges
14391 data. */
14392 complaint (_("Invalid .debug_ranges data (no base address)"));
14393 return 0;
14394 }
14395
14396 if (range_beginning > range_end)
14397 {
14398 /* Inverted range entries are invalid. */
14399 complaint (_("Invalid .debug_ranges data (inverted range)"));
14400 return 0;
14401 }
14402
14403 /* Empty range entries have no effect. */
14404 if (range_beginning == range_end)
14405 continue;
14406
14407 range_beginning += base;
14408 range_end += base;
14409
14410 /* A not-uncommon case of bad debug info.
14411 Don't pollute the addrmap with bad data. */
14412 if (range_beginning + baseaddr == 0
14413 && !dwarf2_per_objfile->has_section_at_zero)
14414 {
14415 complaint (_(".debug_ranges entry has start address of zero"
14416 " [in module %s]"), objfile_name (objfile));
14417 continue;
14418 }
14419
14420 callback (range_beginning, range_end);
14421 }
14422
14423 return 1;
14424 }
14425
14426 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
14427 Return 1 if the attributes are present and valid, otherwise, return 0.
14428 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
14429
14430 static int
14431 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
14432 CORE_ADDR *high_return, struct dwarf2_cu *cu,
14433 struct partial_symtab *ranges_pst)
14434 {
14435 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14436 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14437 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
14438 SECT_OFF_TEXT (objfile));
14439 int low_set = 0;
14440 CORE_ADDR low = 0;
14441 CORE_ADDR high = 0;
14442 int retval;
14443
14444 retval = dwarf2_ranges_process (offset, cu,
14445 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
14446 {
14447 if (ranges_pst != NULL)
14448 {
14449 CORE_ADDR lowpc;
14450 CORE_ADDR highpc;
14451
14452 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
14453 range_beginning + baseaddr);
14454 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
14455 range_end + baseaddr);
14456 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
14457 ranges_pst);
14458 }
14459
14460 /* FIXME: This is recording everything as a low-high
14461 segment of consecutive addresses. We should have a
14462 data structure for discontiguous block ranges
14463 instead. */
14464 if (! low_set)
14465 {
14466 low = range_beginning;
14467 high = range_end;
14468 low_set = 1;
14469 }
14470 else
14471 {
14472 if (range_beginning < low)
14473 low = range_beginning;
14474 if (range_end > high)
14475 high = range_end;
14476 }
14477 });
14478 if (!retval)
14479 return 0;
14480
14481 if (! low_set)
14482 /* If the first entry is an end-of-list marker, the range
14483 describes an empty scope, i.e. no instructions. */
14484 return 0;
14485
14486 if (low_return)
14487 *low_return = low;
14488 if (high_return)
14489 *high_return = high;
14490 return 1;
14491 }
14492
14493 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
14494 definition for the return value. *LOWPC and *HIGHPC are set iff
14495 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
14496
14497 static enum pc_bounds_kind
14498 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
14499 CORE_ADDR *highpc, struct dwarf2_cu *cu,
14500 struct partial_symtab *pst)
14501 {
14502 struct dwarf2_per_objfile *dwarf2_per_objfile
14503 = cu->per_cu->dwarf2_per_objfile;
14504 struct attribute *attr;
14505 struct attribute *attr_high;
14506 CORE_ADDR low = 0;
14507 CORE_ADDR high = 0;
14508 enum pc_bounds_kind ret;
14509
14510 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14511 if (attr_high)
14512 {
14513 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14514 if (attr)
14515 {
14516 low = attr_value_as_address (attr);
14517 high = attr_value_as_address (attr_high);
14518 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14519 high += low;
14520 }
14521 else
14522 /* Found high w/o low attribute. */
14523 return PC_BOUNDS_INVALID;
14524
14525 /* Found consecutive range of addresses. */
14526 ret = PC_BOUNDS_HIGH_LOW;
14527 }
14528 else
14529 {
14530 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14531 if (attr != NULL)
14532 {
14533 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14534 We take advantage of the fact that DW_AT_ranges does not appear
14535 in DW_TAG_compile_unit of DWO files. */
14536 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14537 unsigned int ranges_offset = (DW_UNSND (attr)
14538 + (need_ranges_base
14539 ? cu->ranges_base
14540 : 0));
14541
14542 /* Value of the DW_AT_ranges attribute is the offset in the
14543 .debug_ranges section. */
14544 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
14545 return PC_BOUNDS_INVALID;
14546 /* Found discontinuous range of addresses. */
14547 ret = PC_BOUNDS_RANGES;
14548 }
14549 else
14550 return PC_BOUNDS_NOT_PRESENT;
14551 }
14552
14553 /* partial_die_info::read has also the strict LOW < HIGH requirement. */
14554 if (high <= low)
14555 return PC_BOUNDS_INVALID;
14556
14557 /* When using the GNU linker, .gnu.linkonce. sections are used to
14558 eliminate duplicate copies of functions and vtables and such.
14559 The linker will arbitrarily choose one and discard the others.
14560 The AT_*_pc values for such functions refer to local labels in
14561 these sections. If the section from that file was discarded, the
14562 labels are not in the output, so the relocs get a value of 0.
14563 If this is a discarded function, mark the pc bounds as invalid,
14564 so that GDB will ignore it. */
14565 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
14566 return PC_BOUNDS_INVALID;
14567
14568 *lowpc = low;
14569 if (highpc)
14570 *highpc = high;
14571 return ret;
14572 }
14573
14574 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
14575 its low and high PC addresses. Do nothing if these addresses could not
14576 be determined. Otherwise, set LOWPC to the low address if it is smaller,
14577 and HIGHPC to the high address if greater than HIGHPC. */
14578
14579 static void
14580 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
14581 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14582 struct dwarf2_cu *cu)
14583 {
14584 CORE_ADDR low, high;
14585 struct die_info *child = die->child;
14586
14587 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
14588 {
14589 *lowpc = std::min (*lowpc, low);
14590 *highpc = std::max (*highpc, high);
14591 }
14592
14593 /* If the language does not allow nested subprograms (either inside
14594 subprograms or lexical blocks), we're done. */
14595 if (cu->language != language_ada)
14596 return;
14597
14598 /* Check all the children of the given DIE. If it contains nested
14599 subprograms, then check their pc bounds. Likewise, we need to
14600 check lexical blocks as well, as they may also contain subprogram
14601 definitions. */
14602 while (child && child->tag)
14603 {
14604 if (child->tag == DW_TAG_subprogram
14605 || child->tag == DW_TAG_lexical_block)
14606 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
14607 child = sibling_die (child);
14608 }
14609 }
14610
14611 /* Get the low and high pc's represented by the scope DIE, and store
14612 them in *LOWPC and *HIGHPC. If the correct values can't be
14613 determined, set *LOWPC to -1 and *HIGHPC to 0. */
14614
14615 static void
14616 get_scope_pc_bounds (struct die_info *die,
14617 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14618 struct dwarf2_cu *cu)
14619 {
14620 CORE_ADDR best_low = (CORE_ADDR) -1;
14621 CORE_ADDR best_high = (CORE_ADDR) 0;
14622 CORE_ADDR current_low, current_high;
14623
14624 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
14625 >= PC_BOUNDS_RANGES)
14626 {
14627 best_low = current_low;
14628 best_high = current_high;
14629 }
14630 else
14631 {
14632 struct die_info *child = die->child;
14633
14634 while (child && child->tag)
14635 {
14636 switch (child->tag) {
14637 case DW_TAG_subprogram:
14638 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
14639 break;
14640 case DW_TAG_namespace:
14641 case DW_TAG_module:
14642 /* FIXME: carlton/2004-01-16: Should we do this for
14643 DW_TAG_class_type/DW_TAG_structure_type, too? I think
14644 that current GCC's always emit the DIEs corresponding
14645 to definitions of methods of classes as children of a
14646 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
14647 the DIEs giving the declarations, which could be
14648 anywhere). But I don't see any reason why the
14649 standards says that they have to be there. */
14650 get_scope_pc_bounds (child, &current_low, &current_high, cu);
14651
14652 if (current_low != ((CORE_ADDR) -1))
14653 {
14654 best_low = std::min (best_low, current_low);
14655 best_high = std::max (best_high, current_high);
14656 }
14657 break;
14658 default:
14659 /* Ignore. */
14660 break;
14661 }
14662
14663 child = sibling_die (child);
14664 }
14665 }
14666
14667 *lowpc = best_low;
14668 *highpc = best_high;
14669 }
14670
14671 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
14672 in DIE. */
14673
14674 static void
14675 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
14676 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
14677 {
14678 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14679 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14680 struct attribute *attr;
14681 struct attribute *attr_high;
14682
14683 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14684 if (attr_high)
14685 {
14686 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14687 if (attr)
14688 {
14689 CORE_ADDR low = attr_value_as_address (attr);
14690 CORE_ADDR high = attr_value_as_address (attr_high);
14691
14692 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14693 high += low;
14694
14695 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
14696 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
14697 record_block_range (block, low, high - 1);
14698 }
14699 }
14700
14701 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14702 if (attr)
14703 {
14704 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14705 We take advantage of the fact that DW_AT_ranges does not appear
14706 in DW_TAG_compile_unit of DWO files. */
14707 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14708
14709 /* The value of the DW_AT_ranges attribute is the offset of the
14710 address range list in the .debug_ranges section. */
14711 unsigned long offset = (DW_UNSND (attr)
14712 + (need_ranges_base ? cu->ranges_base : 0));
14713
14714 dwarf2_ranges_process (offset, cu,
14715 [&] (CORE_ADDR start, CORE_ADDR end)
14716 {
14717 start += baseaddr;
14718 end += baseaddr;
14719 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
14720 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
14721 record_block_range (block, start, end - 1);
14722 });
14723 }
14724 }
14725
14726 /* Check whether the producer field indicates either of GCC < 4.6, or the
14727 Intel C/C++ compiler, and cache the result in CU. */
14728
14729 static void
14730 check_producer (struct dwarf2_cu *cu)
14731 {
14732 int major, minor;
14733
14734 if (cu->producer == NULL)
14735 {
14736 /* For unknown compilers expect their behavior is DWARF version
14737 compliant.
14738
14739 GCC started to support .debug_types sections by -gdwarf-4 since
14740 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
14741 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
14742 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
14743 interpreted incorrectly by GDB now - GCC PR debug/48229. */
14744 }
14745 else if (producer_is_gcc (cu->producer, &major, &minor))
14746 {
14747 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
14748 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
14749 }
14750 else if (producer_is_icc (cu->producer, &major, &minor))
14751 cu->producer_is_icc_lt_14 = major < 14;
14752 else
14753 {
14754 /* For other non-GCC compilers, expect their behavior is DWARF version
14755 compliant. */
14756 }
14757
14758 cu->checked_producer = 1;
14759 }
14760
14761 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
14762 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
14763 during 4.6.0 experimental. */
14764
14765 static int
14766 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
14767 {
14768 if (!cu->checked_producer)
14769 check_producer (cu);
14770
14771 return cu->producer_is_gxx_lt_4_6;
14772 }
14773
14774 /* Return the default accessibility type if it is not overriden by
14775 DW_AT_accessibility. */
14776
14777 static enum dwarf_access_attribute
14778 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
14779 {
14780 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
14781 {
14782 /* The default DWARF 2 accessibility for members is public, the default
14783 accessibility for inheritance is private. */
14784
14785 if (die->tag != DW_TAG_inheritance)
14786 return DW_ACCESS_public;
14787 else
14788 return DW_ACCESS_private;
14789 }
14790 else
14791 {
14792 /* DWARF 3+ defines the default accessibility a different way. The same
14793 rules apply now for DW_TAG_inheritance as for the members and it only
14794 depends on the container kind. */
14795
14796 if (die->parent->tag == DW_TAG_class_type)
14797 return DW_ACCESS_private;
14798 else
14799 return DW_ACCESS_public;
14800 }
14801 }
14802
14803 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
14804 offset. If the attribute was not found return 0, otherwise return
14805 1. If it was found but could not properly be handled, set *OFFSET
14806 to 0. */
14807
14808 static int
14809 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
14810 LONGEST *offset)
14811 {
14812 struct attribute *attr;
14813
14814 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
14815 if (attr != NULL)
14816 {
14817 *offset = 0;
14818
14819 /* Note that we do not check for a section offset first here.
14820 This is because DW_AT_data_member_location is new in DWARF 4,
14821 so if we see it, we can assume that a constant form is really
14822 a constant and not a section offset. */
14823 if (attr_form_is_constant (attr))
14824 *offset = dwarf2_get_attr_constant_value (attr, 0);
14825 else if (attr_form_is_section_offset (attr))
14826 dwarf2_complex_location_expr_complaint ();
14827 else if (attr_form_is_block (attr))
14828 *offset = decode_locdesc (DW_BLOCK (attr), cu);
14829 else
14830 dwarf2_complex_location_expr_complaint ();
14831
14832 return 1;
14833 }
14834
14835 return 0;
14836 }
14837
14838 /* Add an aggregate field to the field list. */
14839
14840 static void
14841 dwarf2_add_field (struct field_info *fip, struct die_info *die,
14842 struct dwarf2_cu *cu)
14843 {
14844 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14845 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14846 struct nextfield *new_field;
14847 struct attribute *attr;
14848 struct field *fp;
14849 const char *fieldname = "";
14850
14851 if (die->tag == DW_TAG_inheritance)
14852 {
14853 fip->baseclasses.emplace_back ();
14854 new_field = &fip->baseclasses.back ();
14855 }
14856 else
14857 {
14858 fip->fields.emplace_back ();
14859 new_field = &fip->fields.back ();
14860 }
14861
14862 fip->nfields++;
14863
14864 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
14865 if (attr)
14866 new_field->accessibility = DW_UNSND (attr);
14867 else
14868 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
14869 if (new_field->accessibility != DW_ACCESS_public)
14870 fip->non_public_fields = 1;
14871
14872 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
14873 if (attr)
14874 new_field->virtuality = DW_UNSND (attr);
14875 else
14876 new_field->virtuality = DW_VIRTUALITY_none;
14877
14878 fp = &new_field->field;
14879
14880 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
14881 {
14882 LONGEST offset;
14883
14884 /* Data member other than a C++ static data member. */
14885
14886 /* Get type of field. */
14887 fp->type = die_type (die, cu);
14888
14889 SET_FIELD_BITPOS (*fp, 0);
14890
14891 /* Get bit size of field (zero if none). */
14892 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
14893 if (attr)
14894 {
14895 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
14896 }
14897 else
14898 {
14899 FIELD_BITSIZE (*fp) = 0;
14900 }
14901
14902 /* Get bit offset of field. */
14903 if (handle_data_member_location (die, cu, &offset))
14904 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
14905 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
14906 if (attr)
14907 {
14908 if (gdbarch_bits_big_endian (gdbarch))
14909 {
14910 /* For big endian bits, the DW_AT_bit_offset gives the
14911 additional bit offset from the MSB of the containing
14912 anonymous object to the MSB of the field. We don't
14913 have to do anything special since we don't need to
14914 know the size of the anonymous object. */
14915 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
14916 }
14917 else
14918 {
14919 /* For little endian bits, compute the bit offset to the
14920 MSB of the anonymous object, subtract off the number of
14921 bits from the MSB of the field to the MSB of the
14922 object, and then subtract off the number of bits of
14923 the field itself. The result is the bit offset of
14924 the LSB of the field. */
14925 int anonymous_size;
14926 int bit_offset = DW_UNSND (attr);
14927
14928 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14929 if (attr)
14930 {
14931 /* The size of the anonymous object containing
14932 the bit field is explicit, so use the
14933 indicated size (in bytes). */
14934 anonymous_size = DW_UNSND (attr);
14935 }
14936 else
14937 {
14938 /* The size of the anonymous object containing
14939 the bit field must be inferred from the type
14940 attribute of the data member containing the
14941 bit field. */
14942 anonymous_size = TYPE_LENGTH (fp->type);
14943 }
14944 SET_FIELD_BITPOS (*fp,
14945 (FIELD_BITPOS (*fp)
14946 + anonymous_size * bits_per_byte
14947 - bit_offset - FIELD_BITSIZE (*fp)));
14948 }
14949 }
14950 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
14951 if (attr != NULL)
14952 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
14953 + dwarf2_get_attr_constant_value (attr, 0)));
14954
14955 /* Get name of field. */
14956 fieldname = dwarf2_name (die, cu);
14957 if (fieldname == NULL)
14958 fieldname = "";
14959
14960 /* The name is already allocated along with this objfile, so we don't
14961 need to duplicate it for the type. */
14962 fp->name = fieldname;
14963
14964 /* Change accessibility for artificial fields (e.g. virtual table
14965 pointer or virtual base class pointer) to private. */
14966 if (dwarf2_attr (die, DW_AT_artificial, cu))
14967 {
14968 FIELD_ARTIFICIAL (*fp) = 1;
14969 new_field->accessibility = DW_ACCESS_private;
14970 fip->non_public_fields = 1;
14971 }
14972 }
14973 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
14974 {
14975 /* C++ static member. */
14976
14977 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
14978 is a declaration, but all versions of G++ as of this writing
14979 (so through at least 3.2.1) incorrectly generate
14980 DW_TAG_variable tags. */
14981
14982 const char *physname;
14983
14984 /* Get name of field. */
14985 fieldname = dwarf2_name (die, cu);
14986 if (fieldname == NULL)
14987 return;
14988
14989 attr = dwarf2_attr (die, DW_AT_const_value, cu);
14990 if (attr
14991 /* Only create a symbol if this is an external value.
14992 new_symbol checks this and puts the value in the global symbol
14993 table, which we want. If it is not external, new_symbol
14994 will try to put the value in cu->list_in_scope which is wrong. */
14995 && dwarf2_flag_true_p (die, DW_AT_external, cu))
14996 {
14997 /* A static const member, not much different than an enum as far as
14998 we're concerned, except that we can support more types. */
14999 new_symbol (die, NULL, cu);
15000 }
15001
15002 /* Get physical name. */
15003 physname = dwarf2_physname (fieldname, die, cu);
15004
15005 /* The name is already allocated along with this objfile, so we don't
15006 need to duplicate it for the type. */
15007 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
15008 FIELD_TYPE (*fp) = die_type (die, cu);
15009 FIELD_NAME (*fp) = fieldname;
15010 }
15011 else if (die->tag == DW_TAG_inheritance)
15012 {
15013 LONGEST offset;
15014
15015 /* C++ base class field. */
15016 if (handle_data_member_location (die, cu, &offset))
15017 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15018 FIELD_BITSIZE (*fp) = 0;
15019 FIELD_TYPE (*fp) = die_type (die, cu);
15020 FIELD_NAME (*fp) = TYPE_NAME (fp->type);
15021 }
15022 else if (die->tag == DW_TAG_variant_part)
15023 {
15024 /* process_structure_scope will treat this DIE as a union. */
15025 process_structure_scope (die, cu);
15026
15027 /* The variant part is relative to the start of the enclosing
15028 structure. */
15029 SET_FIELD_BITPOS (*fp, 0);
15030 fp->type = get_die_type (die, cu);
15031 fp->artificial = 1;
15032 fp->name = "<<variant>>";
15033 }
15034 else
15035 gdb_assert_not_reached ("missing case in dwarf2_add_field");
15036 }
15037
15038 /* Can the type given by DIE define another type? */
15039
15040 static bool
15041 type_can_define_types (const struct die_info *die)
15042 {
15043 switch (die->tag)
15044 {
15045 case DW_TAG_typedef:
15046 case DW_TAG_class_type:
15047 case DW_TAG_structure_type:
15048 case DW_TAG_union_type:
15049 case DW_TAG_enumeration_type:
15050 return true;
15051
15052 default:
15053 return false;
15054 }
15055 }
15056
15057 /* Add a type definition defined in the scope of the FIP's class. */
15058
15059 static void
15060 dwarf2_add_type_defn (struct field_info *fip, struct die_info *die,
15061 struct dwarf2_cu *cu)
15062 {
15063 struct decl_field fp;
15064 memset (&fp, 0, sizeof (fp));
15065
15066 gdb_assert (type_can_define_types (die));
15067
15068 /* Get name of field. NULL is okay here, meaning an anonymous type. */
15069 fp.name = dwarf2_name (die, cu);
15070 fp.type = read_type_die (die, cu);
15071
15072 /* Save accessibility. */
15073 enum dwarf_access_attribute accessibility;
15074 struct attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15075 if (attr != NULL)
15076 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15077 else
15078 accessibility = dwarf2_default_access_attribute (die, cu);
15079 switch (accessibility)
15080 {
15081 case DW_ACCESS_public:
15082 /* The assumed value if neither private nor protected. */
15083 break;
15084 case DW_ACCESS_private:
15085 fp.is_private = 1;
15086 break;
15087 case DW_ACCESS_protected:
15088 fp.is_protected = 1;
15089 break;
15090 default:
15091 complaint (_("Unhandled DW_AT_accessibility value (%x)"), accessibility);
15092 }
15093
15094 if (die->tag == DW_TAG_typedef)
15095 fip->typedef_field_list.push_back (fp);
15096 else
15097 fip->nested_types_list.push_back (fp);
15098 }
15099
15100 /* Create the vector of fields, and attach it to the type. */
15101
15102 static void
15103 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
15104 struct dwarf2_cu *cu)
15105 {
15106 int nfields = fip->nfields;
15107
15108 /* Record the field count, allocate space for the array of fields,
15109 and create blank accessibility bitfields if necessary. */
15110 TYPE_NFIELDS (type) = nfields;
15111 TYPE_FIELDS (type) = (struct field *)
15112 TYPE_ZALLOC (type, sizeof (struct field) * nfields);
15113
15114 if (fip->non_public_fields && cu->language != language_ada)
15115 {
15116 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15117
15118 TYPE_FIELD_PRIVATE_BITS (type) =
15119 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15120 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
15121
15122 TYPE_FIELD_PROTECTED_BITS (type) =
15123 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15124 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
15125
15126 TYPE_FIELD_IGNORE_BITS (type) =
15127 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15128 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
15129 }
15130
15131 /* If the type has baseclasses, allocate and clear a bit vector for
15132 TYPE_FIELD_VIRTUAL_BITS. */
15133 if (!fip->baseclasses.empty () && cu->language != language_ada)
15134 {
15135 int num_bytes = B_BYTES (fip->baseclasses.size ());
15136 unsigned char *pointer;
15137
15138 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15139 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
15140 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
15141 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->baseclasses.size ());
15142 TYPE_N_BASECLASSES (type) = fip->baseclasses.size ();
15143 }
15144
15145 if (TYPE_FLAG_DISCRIMINATED_UNION (type))
15146 {
15147 struct discriminant_info *di = alloc_discriminant_info (type, -1, -1);
15148
15149 for (int index = 0; index < nfields; ++index)
15150 {
15151 struct nextfield &field = fip->fields[index];
15152
15153 if (field.variant.is_discriminant)
15154 di->discriminant_index = index;
15155 else if (field.variant.default_branch)
15156 di->default_index = index;
15157 else
15158 di->discriminants[index] = field.variant.discriminant_value;
15159 }
15160 }
15161
15162 /* Copy the saved-up fields into the field vector. */
15163 for (int i = 0; i < nfields; ++i)
15164 {
15165 struct nextfield &field
15166 = ((i < fip->baseclasses.size ()) ? fip->baseclasses[i]
15167 : fip->fields[i - fip->baseclasses.size ()]);
15168
15169 TYPE_FIELD (type, i) = field.field;
15170 switch (field.accessibility)
15171 {
15172 case DW_ACCESS_private:
15173 if (cu->language != language_ada)
15174 SET_TYPE_FIELD_PRIVATE (type, i);
15175 break;
15176
15177 case DW_ACCESS_protected:
15178 if (cu->language != language_ada)
15179 SET_TYPE_FIELD_PROTECTED (type, i);
15180 break;
15181
15182 case DW_ACCESS_public:
15183 break;
15184
15185 default:
15186 /* Unknown accessibility. Complain and treat it as public. */
15187 {
15188 complaint (_("unsupported accessibility %d"),
15189 field.accessibility);
15190 }
15191 break;
15192 }
15193 if (i < fip->baseclasses.size ())
15194 {
15195 switch (field.virtuality)
15196 {
15197 case DW_VIRTUALITY_virtual:
15198 case DW_VIRTUALITY_pure_virtual:
15199 if (cu->language == language_ada)
15200 error (_("unexpected virtuality in component of Ada type"));
15201 SET_TYPE_FIELD_VIRTUAL (type, i);
15202 break;
15203 }
15204 }
15205 }
15206 }
15207
15208 /* Return true if this member function is a constructor, false
15209 otherwise. */
15210
15211 static int
15212 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
15213 {
15214 const char *fieldname;
15215 const char *type_name;
15216 int len;
15217
15218 if (die->parent == NULL)
15219 return 0;
15220
15221 if (die->parent->tag != DW_TAG_structure_type
15222 && die->parent->tag != DW_TAG_union_type
15223 && die->parent->tag != DW_TAG_class_type)
15224 return 0;
15225
15226 fieldname = dwarf2_name (die, cu);
15227 type_name = dwarf2_name (die->parent, cu);
15228 if (fieldname == NULL || type_name == NULL)
15229 return 0;
15230
15231 len = strlen (fieldname);
15232 return (strncmp (fieldname, type_name, len) == 0
15233 && (type_name[len] == '\0' || type_name[len] == '<'));
15234 }
15235
15236 /* Add a member function to the proper fieldlist. */
15237
15238 static void
15239 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
15240 struct type *type, struct dwarf2_cu *cu)
15241 {
15242 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15243 struct attribute *attr;
15244 int i;
15245 struct fnfieldlist *flp = nullptr;
15246 struct fn_field *fnp;
15247 const char *fieldname;
15248 struct type *this_type;
15249 enum dwarf_access_attribute accessibility;
15250
15251 if (cu->language == language_ada)
15252 error (_("unexpected member function in Ada type"));
15253
15254 /* Get name of member function. */
15255 fieldname = dwarf2_name (die, cu);
15256 if (fieldname == NULL)
15257 return;
15258
15259 /* Look up member function name in fieldlist. */
15260 for (i = 0; i < fip->fnfieldlists.size (); i++)
15261 {
15262 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
15263 {
15264 flp = &fip->fnfieldlists[i];
15265 break;
15266 }
15267 }
15268
15269 /* Create a new fnfieldlist if necessary. */
15270 if (flp == nullptr)
15271 {
15272 fip->fnfieldlists.emplace_back ();
15273 flp = &fip->fnfieldlists.back ();
15274 flp->name = fieldname;
15275 i = fip->fnfieldlists.size () - 1;
15276 }
15277
15278 /* Create a new member function field and add it to the vector of
15279 fnfieldlists. */
15280 flp->fnfields.emplace_back ();
15281 fnp = &flp->fnfields.back ();
15282
15283 /* Delay processing of the physname until later. */
15284 if (cu->language == language_cplus)
15285 add_to_method_list (type, i, flp->fnfields.size () - 1, fieldname,
15286 die, cu);
15287 else
15288 {
15289 const char *physname = dwarf2_physname (fieldname, die, cu);
15290 fnp->physname = physname ? physname : "";
15291 }
15292
15293 fnp->type = alloc_type (objfile);
15294 this_type = read_type_die (die, cu);
15295 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
15296 {
15297 int nparams = TYPE_NFIELDS (this_type);
15298
15299 /* TYPE is the domain of this method, and THIS_TYPE is the type
15300 of the method itself (TYPE_CODE_METHOD). */
15301 smash_to_method_type (fnp->type, type,
15302 TYPE_TARGET_TYPE (this_type),
15303 TYPE_FIELDS (this_type),
15304 TYPE_NFIELDS (this_type),
15305 TYPE_VARARGS (this_type));
15306
15307 /* Handle static member functions.
15308 Dwarf2 has no clean way to discern C++ static and non-static
15309 member functions. G++ helps GDB by marking the first
15310 parameter for non-static member functions (which is the this
15311 pointer) as artificial. We obtain this information from
15312 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
15313 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
15314 fnp->voffset = VOFFSET_STATIC;
15315 }
15316 else
15317 complaint (_("member function type missing for '%s'"),
15318 dwarf2_full_name (fieldname, die, cu));
15319
15320 /* Get fcontext from DW_AT_containing_type if present. */
15321 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15322 fnp->fcontext = die_containing_type (die, cu);
15323
15324 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
15325 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
15326
15327 /* Get accessibility. */
15328 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15329 if (attr)
15330 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15331 else
15332 accessibility = dwarf2_default_access_attribute (die, cu);
15333 switch (accessibility)
15334 {
15335 case DW_ACCESS_private:
15336 fnp->is_private = 1;
15337 break;
15338 case DW_ACCESS_protected:
15339 fnp->is_protected = 1;
15340 break;
15341 }
15342
15343 /* Check for artificial methods. */
15344 attr = dwarf2_attr (die, DW_AT_artificial, cu);
15345 if (attr && DW_UNSND (attr) != 0)
15346 fnp->is_artificial = 1;
15347
15348 fnp->is_constructor = dwarf2_is_constructor (die, cu);
15349
15350 /* Get index in virtual function table if it is a virtual member
15351 function. For older versions of GCC, this is an offset in the
15352 appropriate virtual table, as specified by DW_AT_containing_type.
15353 For everyone else, it is an expression to be evaluated relative
15354 to the object address. */
15355
15356 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
15357 if (attr)
15358 {
15359 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
15360 {
15361 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
15362 {
15363 /* Old-style GCC. */
15364 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
15365 }
15366 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
15367 || (DW_BLOCK (attr)->size > 1
15368 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
15369 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
15370 {
15371 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
15372 if ((fnp->voffset % cu->header.addr_size) != 0)
15373 dwarf2_complex_location_expr_complaint ();
15374 else
15375 fnp->voffset /= cu->header.addr_size;
15376 fnp->voffset += 2;
15377 }
15378 else
15379 dwarf2_complex_location_expr_complaint ();
15380
15381 if (!fnp->fcontext)
15382 {
15383 /* If there is no `this' field and no DW_AT_containing_type,
15384 we cannot actually find a base class context for the
15385 vtable! */
15386 if (TYPE_NFIELDS (this_type) == 0
15387 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
15388 {
15389 complaint (_("cannot determine context for virtual member "
15390 "function \"%s\" (offset %s)"),
15391 fieldname, sect_offset_str (die->sect_off));
15392 }
15393 else
15394 {
15395 fnp->fcontext
15396 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
15397 }
15398 }
15399 }
15400 else if (attr_form_is_section_offset (attr))
15401 {
15402 dwarf2_complex_location_expr_complaint ();
15403 }
15404 else
15405 {
15406 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
15407 fieldname);
15408 }
15409 }
15410 else
15411 {
15412 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15413 if (attr && DW_UNSND (attr))
15414 {
15415 /* GCC does this, as of 2008-08-25; PR debug/37237. */
15416 complaint (_("Member function \"%s\" (offset %s) is virtual "
15417 "but the vtable offset is not specified"),
15418 fieldname, sect_offset_str (die->sect_off));
15419 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15420 TYPE_CPLUS_DYNAMIC (type) = 1;
15421 }
15422 }
15423 }
15424
15425 /* Create the vector of member function fields, and attach it to the type. */
15426
15427 static void
15428 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
15429 struct dwarf2_cu *cu)
15430 {
15431 if (cu->language == language_ada)
15432 error (_("unexpected member functions in Ada type"));
15433
15434 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15435 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
15436 TYPE_ALLOC (type,
15437 sizeof (struct fn_fieldlist) * fip->fnfieldlists.size ());
15438
15439 for (int i = 0; i < fip->fnfieldlists.size (); i++)
15440 {
15441 struct fnfieldlist &nf = fip->fnfieldlists[i];
15442 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
15443
15444 TYPE_FN_FIELDLIST_NAME (type, i) = nf.name;
15445 TYPE_FN_FIELDLIST_LENGTH (type, i) = nf.fnfields.size ();
15446 fn_flp->fn_fields = (struct fn_field *)
15447 TYPE_ALLOC (type, sizeof (struct fn_field) * nf.fnfields.size ());
15448
15449 for (int k = 0; k < nf.fnfields.size (); ++k)
15450 fn_flp->fn_fields[k] = nf.fnfields[k];
15451 }
15452
15453 TYPE_NFN_FIELDS (type) = fip->fnfieldlists.size ();
15454 }
15455
15456 /* Returns non-zero if NAME is the name of a vtable member in CU's
15457 language, zero otherwise. */
15458 static int
15459 is_vtable_name (const char *name, struct dwarf2_cu *cu)
15460 {
15461 static const char vptr[] = "_vptr";
15462
15463 /* Look for the C++ form of the vtable. */
15464 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
15465 return 1;
15466
15467 return 0;
15468 }
15469
15470 /* GCC outputs unnamed structures that are really pointers to member
15471 functions, with the ABI-specified layout. If TYPE describes
15472 such a structure, smash it into a member function type.
15473
15474 GCC shouldn't do this; it should just output pointer to member DIEs.
15475 This is GCC PR debug/28767. */
15476
15477 static void
15478 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
15479 {
15480 struct type *pfn_type, *self_type, *new_type;
15481
15482 /* Check for a structure with no name and two children. */
15483 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
15484 return;
15485
15486 /* Check for __pfn and __delta members. */
15487 if (TYPE_FIELD_NAME (type, 0) == NULL
15488 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
15489 || TYPE_FIELD_NAME (type, 1) == NULL
15490 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
15491 return;
15492
15493 /* Find the type of the method. */
15494 pfn_type = TYPE_FIELD_TYPE (type, 0);
15495 if (pfn_type == NULL
15496 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
15497 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
15498 return;
15499
15500 /* Look for the "this" argument. */
15501 pfn_type = TYPE_TARGET_TYPE (pfn_type);
15502 if (TYPE_NFIELDS (pfn_type) == 0
15503 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
15504 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
15505 return;
15506
15507 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
15508 new_type = alloc_type (objfile);
15509 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
15510 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
15511 TYPE_VARARGS (pfn_type));
15512 smash_to_methodptr_type (type, new_type);
15513 }
15514
15515 /* If the DIE has a DW_AT_alignment attribute, return its value, doing
15516 appropriate error checking and issuing complaints if there is a
15517 problem. */
15518
15519 static ULONGEST
15520 get_alignment (struct dwarf2_cu *cu, struct die_info *die)
15521 {
15522 struct attribute *attr = dwarf2_attr (die, DW_AT_alignment, cu);
15523
15524 if (attr == nullptr)
15525 return 0;
15526
15527 if (!attr_form_is_constant (attr))
15528 {
15529 complaint (_("DW_AT_alignment must have constant form"
15530 " - DIE at %s [in module %s]"),
15531 sect_offset_str (die->sect_off),
15532 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15533 return 0;
15534 }
15535
15536 ULONGEST align;
15537 if (attr->form == DW_FORM_sdata)
15538 {
15539 LONGEST val = DW_SND (attr);
15540 if (val < 0)
15541 {
15542 complaint (_("DW_AT_alignment value must not be negative"
15543 " - DIE at %s [in module %s]"),
15544 sect_offset_str (die->sect_off),
15545 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15546 return 0;
15547 }
15548 align = val;
15549 }
15550 else
15551 align = DW_UNSND (attr);
15552
15553 if (align == 0)
15554 {
15555 complaint (_("DW_AT_alignment value must not be zero"
15556 " - DIE at %s [in module %s]"),
15557 sect_offset_str (die->sect_off),
15558 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15559 return 0;
15560 }
15561 if ((align & (align - 1)) != 0)
15562 {
15563 complaint (_("DW_AT_alignment value must be a power of 2"
15564 " - DIE at %s [in module %s]"),
15565 sect_offset_str (die->sect_off),
15566 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15567 return 0;
15568 }
15569
15570 return align;
15571 }
15572
15573 /* If the DIE has a DW_AT_alignment attribute, use its value to set
15574 the alignment for TYPE. */
15575
15576 static void
15577 maybe_set_alignment (struct dwarf2_cu *cu, struct die_info *die,
15578 struct type *type)
15579 {
15580 if (!set_type_align (type, get_alignment (cu, die)))
15581 complaint (_("DW_AT_alignment value too large"
15582 " - DIE at %s [in module %s]"),
15583 sect_offset_str (die->sect_off),
15584 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15585 }
15586
15587 /* Called when we find the DIE that starts a structure or union scope
15588 (definition) to create a type for the structure or union. Fill in
15589 the type's name and general properties; the members will not be
15590 processed until process_structure_scope. A symbol table entry for
15591 the type will also not be done until process_structure_scope (assuming
15592 the type has a name).
15593
15594 NOTE: we need to call these functions regardless of whether or not the
15595 DIE has a DW_AT_name attribute, since it might be an anonymous
15596 structure or union. This gets the type entered into our set of
15597 user defined types. */
15598
15599 static struct type *
15600 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
15601 {
15602 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15603 struct type *type;
15604 struct attribute *attr;
15605 const char *name;
15606
15607 /* If the definition of this type lives in .debug_types, read that type.
15608 Don't follow DW_AT_specification though, that will take us back up
15609 the chain and we want to go down. */
15610 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
15611 if (attr)
15612 {
15613 type = get_DW_AT_signature_type (die, attr, cu);
15614
15615 /* The type's CU may not be the same as CU.
15616 Ensure TYPE is recorded with CU in die_type_hash. */
15617 return set_die_type (die, type, cu);
15618 }
15619
15620 type = alloc_type (objfile);
15621 INIT_CPLUS_SPECIFIC (type);
15622
15623 name = dwarf2_name (die, cu);
15624 if (name != NULL)
15625 {
15626 if (cu->language == language_cplus
15627 || cu->language == language_d
15628 || cu->language == language_rust)
15629 {
15630 const char *full_name = dwarf2_full_name (name, die, cu);
15631
15632 /* dwarf2_full_name might have already finished building the DIE's
15633 type. If so, there is no need to continue. */
15634 if (get_die_type (die, cu) != NULL)
15635 return get_die_type (die, cu);
15636
15637 TYPE_NAME (type) = full_name;
15638 }
15639 else
15640 {
15641 /* The name is already allocated along with this objfile, so
15642 we don't need to duplicate it for the type. */
15643 TYPE_NAME (type) = name;
15644 }
15645 }
15646
15647 if (die->tag == DW_TAG_structure_type)
15648 {
15649 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15650 }
15651 else if (die->tag == DW_TAG_union_type)
15652 {
15653 TYPE_CODE (type) = TYPE_CODE_UNION;
15654 }
15655 else if (die->tag == DW_TAG_variant_part)
15656 {
15657 TYPE_CODE (type) = TYPE_CODE_UNION;
15658 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
15659 }
15660 else
15661 {
15662 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15663 }
15664
15665 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
15666 TYPE_DECLARED_CLASS (type) = 1;
15667
15668 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15669 if (attr)
15670 {
15671 if (attr_form_is_constant (attr))
15672 TYPE_LENGTH (type) = DW_UNSND (attr);
15673 else
15674 {
15675 /* For the moment, dynamic type sizes are not supported
15676 by GDB's struct type. The actual size is determined
15677 on-demand when resolving the type of a given object,
15678 so set the type's length to zero for now. Otherwise,
15679 we record an expression as the length, and that expression
15680 could lead to a very large value, which could eventually
15681 lead to us trying to allocate that much memory when creating
15682 a value of that type. */
15683 TYPE_LENGTH (type) = 0;
15684 }
15685 }
15686 else
15687 {
15688 TYPE_LENGTH (type) = 0;
15689 }
15690
15691 maybe_set_alignment (cu, die, type);
15692
15693 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
15694 {
15695 /* ICC<14 does not output the required DW_AT_declaration on
15696 incomplete types, but gives them a size of zero. */
15697 TYPE_STUB (type) = 1;
15698 }
15699 else
15700 TYPE_STUB_SUPPORTED (type) = 1;
15701
15702 if (die_is_declaration (die, cu))
15703 TYPE_STUB (type) = 1;
15704 else if (attr == NULL && die->child == NULL
15705 && producer_is_realview (cu->producer))
15706 /* RealView does not output the required DW_AT_declaration
15707 on incomplete types. */
15708 TYPE_STUB (type) = 1;
15709
15710 /* We need to add the type field to the die immediately so we don't
15711 infinitely recurse when dealing with pointers to the structure
15712 type within the structure itself. */
15713 set_die_type (die, type, cu);
15714
15715 /* set_die_type should be already done. */
15716 set_descriptive_type (type, die, cu);
15717
15718 return type;
15719 }
15720
15721 /* A helper for process_structure_scope that handles a single member
15722 DIE. */
15723
15724 static void
15725 handle_struct_member_die (struct die_info *child_die, struct type *type,
15726 struct field_info *fi,
15727 std::vector<struct symbol *> *template_args,
15728 struct dwarf2_cu *cu)
15729 {
15730 if (child_die->tag == DW_TAG_member
15731 || child_die->tag == DW_TAG_variable
15732 || child_die->tag == DW_TAG_variant_part)
15733 {
15734 /* NOTE: carlton/2002-11-05: A C++ static data member
15735 should be a DW_TAG_member that is a declaration, but
15736 all versions of G++ as of this writing (so through at
15737 least 3.2.1) incorrectly generate DW_TAG_variable
15738 tags for them instead. */
15739 dwarf2_add_field (fi, child_die, cu);
15740 }
15741 else if (child_die->tag == DW_TAG_subprogram)
15742 {
15743 /* Rust doesn't have member functions in the C++ sense.
15744 However, it does emit ordinary functions as children
15745 of a struct DIE. */
15746 if (cu->language == language_rust)
15747 read_func_scope (child_die, cu);
15748 else
15749 {
15750 /* C++ member function. */
15751 dwarf2_add_member_fn (fi, child_die, type, cu);
15752 }
15753 }
15754 else if (child_die->tag == DW_TAG_inheritance)
15755 {
15756 /* C++ base class field. */
15757 dwarf2_add_field (fi, child_die, cu);
15758 }
15759 else if (type_can_define_types (child_die))
15760 dwarf2_add_type_defn (fi, child_die, cu);
15761 else if (child_die->tag == DW_TAG_template_type_param
15762 || child_die->tag == DW_TAG_template_value_param)
15763 {
15764 struct symbol *arg = new_symbol (child_die, NULL, cu);
15765
15766 if (arg != NULL)
15767 template_args->push_back (arg);
15768 }
15769 else if (child_die->tag == DW_TAG_variant)
15770 {
15771 /* In a variant we want to get the discriminant and also add a
15772 field for our sole member child. */
15773 struct attribute *discr = dwarf2_attr (child_die, DW_AT_discr_value, cu);
15774
15775 for (struct die_info *variant_child = child_die->child;
15776 variant_child != NULL;
15777 variant_child = sibling_die (variant_child))
15778 {
15779 if (variant_child->tag == DW_TAG_member)
15780 {
15781 handle_struct_member_die (variant_child, type, fi,
15782 template_args, cu);
15783 /* Only handle the one. */
15784 break;
15785 }
15786 }
15787
15788 /* We don't handle this but we might as well report it if we see
15789 it. */
15790 if (dwarf2_attr (child_die, DW_AT_discr_list, cu) != nullptr)
15791 complaint (_("DW_AT_discr_list is not supported yet"
15792 " - DIE at %s [in module %s]"),
15793 sect_offset_str (child_die->sect_off),
15794 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15795
15796 /* The first field was just added, so we can stash the
15797 discriminant there. */
15798 gdb_assert (!fi->fields.empty ());
15799 if (discr == NULL)
15800 fi->fields.back ().variant.default_branch = true;
15801 else
15802 fi->fields.back ().variant.discriminant_value = DW_UNSND (discr);
15803 }
15804 }
15805
15806 /* Finish creating a structure or union type, including filling in
15807 its members and creating a symbol for it. */
15808
15809 static void
15810 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
15811 {
15812 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15813 struct die_info *child_die;
15814 struct type *type;
15815
15816 type = get_die_type (die, cu);
15817 if (type == NULL)
15818 type = read_structure_type (die, cu);
15819
15820 /* When reading a DW_TAG_variant_part, we need to notice when we
15821 read the discriminant member, so we can record it later in the
15822 discriminant_info. */
15823 bool is_variant_part = TYPE_FLAG_DISCRIMINATED_UNION (type);
15824 sect_offset discr_offset;
15825
15826 if (is_variant_part)
15827 {
15828 struct attribute *discr = dwarf2_attr (die, DW_AT_discr, cu);
15829 if (discr == NULL)
15830 {
15831 /* Maybe it's a univariant form, an extension we support.
15832 In this case arrange not to check the offset. */
15833 is_variant_part = false;
15834 }
15835 else if (attr_form_is_ref (discr))
15836 {
15837 struct dwarf2_cu *target_cu = cu;
15838 struct die_info *target_die = follow_die_ref (die, discr, &target_cu);
15839
15840 discr_offset = target_die->sect_off;
15841 }
15842 else
15843 {
15844 complaint (_("DW_AT_discr does not have DIE reference form"
15845 " - DIE at %s [in module %s]"),
15846 sect_offset_str (die->sect_off),
15847 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15848 is_variant_part = false;
15849 }
15850 }
15851
15852 if (die->child != NULL && ! die_is_declaration (die, cu))
15853 {
15854 struct field_info fi;
15855 std::vector<struct symbol *> template_args;
15856
15857 child_die = die->child;
15858
15859 while (child_die && child_die->tag)
15860 {
15861 handle_struct_member_die (child_die, type, &fi, &template_args, cu);
15862
15863 if (is_variant_part && discr_offset == child_die->sect_off)
15864 fi.fields.back ().variant.is_discriminant = true;
15865
15866 child_die = sibling_die (child_die);
15867 }
15868
15869 /* Attach template arguments to type. */
15870 if (!template_args.empty ())
15871 {
15872 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15873 TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size ();
15874 TYPE_TEMPLATE_ARGUMENTS (type)
15875 = XOBNEWVEC (&objfile->objfile_obstack,
15876 struct symbol *,
15877 TYPE_N_TEMPLATE_ARGUMENTS (type));
15878 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
15879 template_args.data (),
15880 (TYPE_N_TEMPLATE_ARGUMENTS (type)
15881 * sizeof (struct symbol *)));
15882 }
15883
15884 /* Attach fields and member functions to the type. */
15885 if (fi.nfields)
15886 dwarf2_attach_fields_to_type (&fi, type, cu);
15887 if (!fi.fnfieldlists.empty ())
15888 {
15889 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
15890
15891 /* Get the type which refers to the base class (possibly this
15892 class itself) which contains the vtable pointer for the current
15893 class from the DW_AT_containing_type attribute. This use of
15894 DW_AT_containing_type is a GNU extension. */
15895
15896 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15897 {
15898 struct type *t = die_containing_type (die, cu);
15899
15900 set_type_vptr_basetype (type, t);
15901 if (type == t)
15902 {
15903 int i;
15904
15905 /* Our own class provides vtbl ptr. */
15906 for (i = TYPE_NFIELDS (t) - 1;
15907 i >= TYPE_N_BASECLASSES (t);
15908 --i)
15909 {
15910 const char *fieldname = TYPE_FIELD_NAME (t, i);
15911
15912 if (is_vtable_name (fieldname, cu))
15913 {
15914 set_type_vptr_fieldno (type, i);
15915 break;
15916 }
15917 }
15918
15919 /* Complain if virtual function table field not found. */
15920 if (i < TYPE_N_BASECLASSES (t))
15921 complaint (_("virtual function table pointer "
15922 "not found when defining class '%s'"),
15923 TYPE_NAME (type) ? TYPE_NAME (type) : "");
15924 }
15925 else
15926 {
15927 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
15928 }
15929 }
15930 else if (cu->producer
15931 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
15932 {
15933 /* The IBM XLC compiler does not provide direct indication
15934 of the containing type, but the vtable pointer is
15935 always named __vfp. */
15936
15937 int i;
15938
15939 for (i = TYPE_NFIELDS (type) - 1;
15940 i >= TYPE_N_BASECLASSES (type);
15941 --i)
15942 {
15943 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
15944 {
15945 set_type_vptr_fieldno (type, i);
15946 set_type_vptr_basetype (type, type);
15947 break;
15948 }
15949 }
15950 }
15951 }
15952
15953 /* Copy fi.typedef_field_list linked list elements content into the
15954 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
15955 if (!fi.typedef_field_list.empty ())
15956 {
15957 int count = fi.typedef_field_list.size ();
15958
15959 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15960 TYPE_TYPEDEF_FIELD_ARRAY (type)
15961 = ((struct decl_field *)
15962 TYPE_ALLOC (type,
15963 sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * count));
15964 TYPE_TYPEDEF_FIELD_COUNT (type) = count;
15965
15966 for (int i = 0; i < fi.typedef_field_list.size (); ++i)
15967 TYPE_TYPEDEF_FIELD (type, i) = fi.typedef_field_list[i];
15968 }
15969
15970 /* Copy fi.nested_types_list linked list elements content into the
15971 allocated array TYPE_NESTED_TYPES_ARRAY (type). */
15972 if (!fi.nested_types_list.empty () && cu->language != language_ada)
15973 {
15974 int count = fi.nested_types_list.size ();
15975
15976 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15977 TYPE_NESTED_TYPES_ARRAY (type)
15978 = ((struct decl_field *)
15979 TYPE_ALLOC (type, sizeof (struct decl_field) * count));
15980 TYPE_NESTED_TYPES_COUNT (type) = count;
15981
15982 for (int i = 0; i < fi.nested_types_list.size (); ++i)
15983 TYPE_NESTED_TYPES_FIELD (type, i) = fi.nested_types_list[i];
15984 }
15985 }
15986
15987 quirk_gcc_member_function_pointer (type, objfile);
15988 if (cu->language == language_rust && die->tag == DW_TAG_union_type)
15989 cu->rust_unions.push_back (type);
15990
15991 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
15992 snapshots) has been known to create a die giving a declaration
15993 for a class that has, as a child, a die giving a definition for a
15994 nested class. So we have to process our children even if the
15995 current die is a declaration. Normally, of course, a declaration
15996 won't have any children at all. */
15997
15998 child_die = die->child;
15999
16000 while (child_die != NULL && child_die->tag)
16001 {
16002 if (child_die->tag == DW_TAG_member
16003 || child_die->tag == DW_TAG_variable
16004 || child_die->tag == DW_TAG_inheritance
16005 || child_die->tag == DW_TAG_template_value_param
16006 || child_die->tag == DW_TAG_template_type_param)
16007 {
16008 /* Do nothing. */
16009 }
16010 else
16011 process_die (child_die, cu);
16012
16013 child_die = sibling_die (child_die);
16014 }
16015
16016 /* Do not consider external references. According to the DWARF standard,
16017 these DIEs are identified by the fact that they have no byte_size
16018 attribute, and a declaration attribute. */
16019 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
16020 || !die_is_declaration (die, cu))
16021 new_symbol (die, type, cu);
16022 }
16023
16024 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
16025 update TYPE using some information only available in DIE's children. */
16026
16027 static void
16028 update_enumeration_type_from_children (struct die_info *die,
16029 struct type *type,
16030 struct dwarf2_cu *cu)
16031 {
16032 struct die_info *child_die;
16033 int unsigned_enum = 1;
16034 int flag_enum = 1;
16035 ULONGEST mask = 0;
16036
16037 auto_obstack obstack;
16038
16039 for (child_die = die->child;
16040 child_die != NULL && child_die->tag;
16041 child_die = sibling_die (child_die))
16042 {
16043 struct attribute *attr;
16044 LONGEST value;
16045 const gdb_byte *bytes;
16046 struct dwarf2_locexpr_baton *baton;
16047 const char *name;
16048
16049 if (child_die->tag != DW_TAG_enumerator)
16050 continue;
16051
16052 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
16053 if (attr == NULL)
16054 continue;
16055
16056 name = dwarf2_name (child_die, cu);
16057 if (name == NULL)
16058 name = "<anonymous enumerator>";
16059
16060 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
16061 &value, &bytes, &baton);
16062 if (value < 0)
16063 {
16064 unsigned_enum = 0;
16065 flag_enum = 0;
16066 }
16067 else if ((mask & value) != 0)
16068 flag_enum = 0;
16069 else
16070 mask |= value;
16071
16072 /* If we already know that the enum type is neither unsigned, nor
16073 a flag type, no need to look at the rest of the enumerates. */
16074 if (!unsigned_enum && !flag_enum)
16075 break;
16076 }
16077
16078 if (unsigned_enum)
16079 TYPE_UNSIGNED (type) = 1;
16080 if (flag_enum)
16081 TYPE_FLAG_ENUM (type) = 1;
16082 }
16083
16084 /* Given a DW_AT_enumeration_type die, set its type. We do not
16085 complete the type's fields yet, or create any symbols. */
16086
16087 static struct type *
16088 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
16089 {
16090 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16091 struct type *type;
16092 struct attribute *attr;
16093 const char *name;
16094
16095 /* If the definition of this type lives in .debug_types, read that type.
16096 Don't follow DW_AT_specification though, that will take us back up
16097 the chain and we want to go down. */
16098 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
16099 if (attr)
16100 {
16101 type = get_DW_AT_signature_type (die, attr, cu);
16102
16103 /* The type's CU may not be the same as CU.
16104 Ensure TYPE is recorded with CU in die_type_hash. */
16105 return set_die_type (die, type, cu);
16106 }
16107
16108 type = alloc_type (objfile);
16109
16110 TYPE_CODE (type) = TYPE_CODE_ENUM;
16111 name = dwarf2_full_name (NULL, die, cu);
16112 if (name != NULL)
16113 TYPE_NAME (type) = name;
16114
16115 attr = dwarf2_attr (die, DW_AT_type, cu);
16116 if (attr != NULL)
16117 {
16118 struct type *underlying_type = die_type (die, cu);
16119
16120 TYPE_TARGET_TYPE (type) = underlying_type;
16121 }
16122
16123 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16124 if (attr)
16125 {
16126 TYPE_LENGTH (type) = DW_UNSND (attr);
16127 }
16128 else
16129 {
16130 TYPE_LENGTH (type) = 0;
16131 }
16132
16133 maybe_set_alignment (cu, die, type);
16134
16135 /* The enumeration DIE can be incomplete. In Ada, any type can be
16136 declared as private in the package spec, and then defined only
16137 inside the package body. Such types are known as Taft Amendment
16138 Types. When another package uses such a type, an incomplete DIE
16139 may be generated by the compiler. */
16140 if (die_is_declaration (die, cu))
16141 TYPE_STUB (type) = 1;
16142
16143 /* Finish the creation of this type by using the enum's children.
16144 We must call this even when the underlying type has been provided
16145 so that we can determine if we're looking at a "flag" enum. */
16146 update_enumeration_type_from_children (die, type, cu);
16147
16148 /* If this type has an underlying type that is not a stub, then we
16149 may use its attributes. We always use the "unsigned" attribute
16150 in this situation, because ordinarily we guess whether the type
16151 is unsigned -- but the guess can be wrong and the underlying type
16152 can tell us the reality. However, we defer to a local size
16153 attribute if one exists, because this lets the compiler override
16154 the underlying type if needed. */
16155 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
16156 {
16157 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
16158 if (TYPE_LENGTH (type) == 0)
16159 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
16160 if (TYPE_RAW_ALIGN (type) == 0
16161 && TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)) != 0)
16162 set_type_align (type, TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)));
16163 }
16164
16165 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
16166
16167 return set_die_type (die, type, cu);
16168 }
16169
16170 /* Given a pointer to a die which begins an enumeration, process all
16171 the dies that define the members of the enumeration, and create the
16172 symbol for the enumeration type.
16173
16174 NOTE: We reverse the order of the element list. */
16175
16176 static void
16177 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
16178 {
16179 struct type *this_type;
16180
16181 this_type = get_die_type (die, cu);
16182 if (this_type == NULL)
16183 this_type = read_enumeration_type (die, cu);
16184
16185 if (die->child != NULL)
16186 {
16187 struct die_info *child_die;
16188 struct symbol *sym;
16189 struct field *fields = NULL;
16190 int num_fields = 0;
16191 const char *name;
16192
16193 child_die = die->child;
16194 while (child_die && child_die->tag)
16195 {
16196 if (child_die->tag != DW_TAG_enumerator)
16197 {
16198 process_die (child_die, cu);
16199 }
16200 else
16201 {
16202 name = dwarf2_name (child_die, cu);
16203 if (name)
16204 {
16205 sym = new_symbol (child_die, this_type, cu);
16206
16207 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
16208 {
16209 fields = (struct field *)
16210 xrealloc (fields,
16211 (num_fields + DW_FIELD_ALLOC_CHUNK)
16212 * sizeof (struct field));
16213 }
16214
16215 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
16216 FIELD_TYPE (fields[num_fields]) = NULL;
16217 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
16218 FIELD_BITSIZE (fields[num_fields]) = 0;
16219
16220 num_fields++;
16221 }
16222 }
16223
16224 child_die = sibling_die (child_die);
16225 }
16226
16227 if (num_fields)
16228 {
16229 TYPE_NFIELDS (this_type) = num_fields;
16230 TYPE_FIELDS (this_type) = (struct field *)
16231 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
16232 memcpy (TYPE_FIELDS (this_type), fields,
16233 sizeof (struct field) * num_fields);
16234 xfree (fields);
16235 }
16236 }
16237
16238 /* If we are reading an enum from a .debug_types unit, and the enum
16239 is a declaration, and the enum is not the signatured type in the
16240 unit, then we do not want to add a symbol for it. Adding a
16241 symbol would in some cases obscure the true definition of the
16242 enum, giving users an incomplete type when the definition is
16243 actually available. Note that we do not want to do this for all
16244 enums which are just declarations, because C++0x allows forward
16245 enum declarations. */
16246 if (cu->per_cu->is_debug_types
16247 && die_is_declaration (die, cu))
16248 {
16249 struct signatured_type *sig_type;
16250
16251 sig_type = (struct signatured_type *) cu->per_cu;
16252 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
16253 if (sig_type->type_offset_in_section != die->sect_off)
16254 return;
16255 }
16256
16257 new_symbol (die, this_type, cu);
16258 }
16259
16260 /* Extract all information from a DW_TAG_array_type DIE and put it in
16261 the DIE's type field. For now, this only handles one dimensional
16262 arrays. */
16263
16264 static struct type *
16265 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
16266 {
16267 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16268 struct die_info *child_die;
16269 struct type *type;
16270 struct type *element_type, *range_type, *index_type;
16271 struct attribute *attr;
16272 const char *name;
16273 struct dynamic_prop *byte_stride_prop = NULL;
16274 unsigned int bit_stride = 0;
16275
16276 element_type = die_type (die, cu);
16277
16278 /* The die_type call above may have already set the type for this DIE. */
16279 type = get_die_type (die, cu);
16280 if (type)
16281 return type;
16282
16283 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
16284 if (attr != NULL)
16285 {
16286 int stride_ok;
16287
16288 byte_stride_prop
16289 = (struct dynamic_prop *) alloca (sizeof (struct dynamic_prop));
16290 stride_ok = attr_to_dynamic_prop (attr, die, cu, byte_stride_prop);
16291 if (!stride_ok)
16292 {
16293 complaint (_("unable to read array DW_AT_byte_stride "
16294 " - DIE at %s [in module %s]"),
16295 sect_offset_str (die->sect_off),
16296 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16297 /* Ignore this attribute. We will likely not be able to print
16298 arrays of this type correctly, but there is little we can do
16299 to help if we cannot read the attribute's value. */
16300 byte_stride_prop = NULL;
16301 }
16302 }
16303
16304 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
16305 if (attr != NULL)
16306 bit_stride = DW_UNSND (attr);
16307
16308 /* Irix 6.2 native cc creates array types without children for
16309 arrays with unspecified length. */
16310 if (die->child == NULL)
16311 {
16312 index_type = objfile_type (objfile)->builtin_int;
16313 range_type = create_static_range_type (NULL, index_type, 0, -1);
16314 type = create_array_type_with_stride (NULL, element_type, range_type,
16315 byte_stride_prop, bit_stride);
16316 return set_die_type (die, type, cu);
16317 }
16318
16319 std::vector<struct type *> range_types;
16320 child_die = die->child;
16321 while (child_die && child_die->tag)
16322 {
16323 if (child_die->tag == DW_TAG_subrange_type)
16324 {
16325 struct type *child_type = read_type_die (child_die, cu);
16326
16327 if (child_type != NULL)
16328 {
16329 /* The range type was succesfully read. Save it for the
16330 array type creation. */
16331 range_types.push_back (child_type);
16332 }
16333 }
16334 child_die = sibling_die (child_die);
16335 }
16336
16337 /* Dwarf2 dimensions are output from left to right, create the
16338 necessary array types in backwards order. */
16339
16340 type = element_type;
16341
16342 if (read_array_order (die, cu) == DW_ORD_col_major)
16343 {
16344 int i = 0;
16345
16346 while (i < range_types.size ())
16347 type = create_array_type_with_stride (NULL, type, range_types[i++],
16348 byte_stride_prop, bit_stride);
16349 }
16350 else
16351 {
16352 size_t ndim = range_types.size ();
16353 while (ndim-- > 0)
16354 type = create_array_type_with_stride (NULL, type, range_types[ndim],
16355 byte_stride_prop, bit_stride);
16356 }
16357
16358 /* Understand Dwarf2 support for vector types (like they occur on
16359 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
16360 array type. This is not part of the Dwarf2/3 standard yet, but a
16361 custom vendor extension. The main difference between a regular
16362 array and the vector variant is that vectors are passed by value
16363 to functions. */
16364 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
16365 if (attr)
16366 make_vector_type (type);
16367
16368 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
16369 implementation may choose to implement triple vectors using this
16370 attribute. */
16371 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16372 if (attr)
16373 {
16374 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
16375 TYPE_LENGTH (type) = DW_UNSND (attr);
16376 else
16377 complaint (_("DW_AT_byte_size for array type smaller "
16378 "than the total size of elements"));
16379 }
16380
16381 name = dwarf2_name (die, cu);
16382 if (name)
16383 TYPE_NAME (type) = name;
16384
16385 maybe_set_alignment (cu, die, type);
16386
16387 /* Install the type in the die. */
16388 set_die_type (die, type, cu);
16389
16390 /* set_die_type should be already done. */
16391 set_descriptive_type (type, die, cu);
16392
16393 return type;
16394 }
16395
16396 static enum dwarf_array_dim_ordering
16397 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
16398 {
16399 struct attribute *attr;
16400
16401 attr = dwarf2_attr (die, DW_AT_ordering, cu);
16402
16403 if (attr)
16404 return (enum dwarf_array_dim_ordering) DW_SND (attr);
16405
16406 /* GNU F77 is a special case, as at 08/2004 array type info is the
16407 opposite order to the dwarf2 specification, but data is still
16408 laid out as per normal fortran.
16409
16410 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
16411 version checking. */
16412
16413 if (cu->language == language_fortran
16414 && cu->producer && strstr (cu->producer, "GNU F77"))
16415 {
16416 return DW_ORD_row_major;
16417 }
16418
16419 switch (cu->language_defn->la_array_ordering)
16420 {
16421 case array_column_major:
16422 return DW_ORD_col_major;
16423 case array_row_major:
16424 default:
16425 return DW_ORD_row_major;
16426 };
16427 }
16428
16429 /* Extract all information from a DW_TAG_set_type DIE and put it in
16430 the DIE's type field. */
16431
16432 static struct type *
16433 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
16434 {
16435 struct type *domain_type, *set_type;
16436 struct attribute *attr;
16437
16438 domain_type = die_type (die, cu);
16439
16440 /* The die_type call above may have already set the type for this DIE. */
16441 set_type = get_die_type (die, cu);
16442 if (set_type)
16443 return set_type;
16444
16445 set_type = create_set_type (NULL, domain_type);
16446
16447 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16448 if (attr)
16449 TYPE_LENGTH (set_type) = DW_UNSND (attr);
16450
16451 maybe_set_alignment (cu, die, set_type);
16452
16453 return set_die_type (die, set_type, cu);
16454 }
16455
16456 /* A helper for read_common_block that creates a locexpr baton.
16457 SYM is the symbol which we are marking as computed.
16458 COMMON_DIE is the DIE for the common block.
16459 COMMON_LOC is the location expression attribute for the common
16460 block itself.
16461 MEMBER_LOC is the location expression attribute for the particular
16462 member of the common block that we are processing.
16463 CU is the CU from which the above come. */
16464
16465 static void
16466 mark_common_block_symbol_computed (struct symbol *sym,
16467 struct die_info *common_die,
16468 struct attribute *common_loc,
16469 struct attribute *member_loc,
16470 struct dwarf2_cu *cu)
16471 {
16472 struct dwarf2_per_objfile *dwarf2_per_objfile
16473 = cu->per_cu->dwarf2_per_objfile;
16474 struct objfile *objfile = dwarf2_per_objfile->objfile;
16475 struct dwarf2_locexpr_baton *baton;
16476 gdb_byte *ptr;
16477 unsigned int cu_off;
16478 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
16479 LONGEST offset = 0;
16480
16481 gdb_assert (common_loc && member_loc);
16482 gdb_assert (attr_form_is_block (common_loc));
16483 gdb_assert (attr_form_is_block (member_loc)
16484 || attr_form_is_constant (member_loc));
16485
16486 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
16487 baton->per_cu = cu->per_cu;
16488 gdb_assert (baton->per_cu);
16489
16490 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
16491
16492 if (attr_form_is_constant (member_loc))
16493 {
16494 offset = dwarf2_get_attr_constant_value (member_loc, 0);
16495 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
16496 }
16497 else
16498 baton->size += DW_BLOCK (member_loc)->size;
16499
16500 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
16501 baton->data = ptr;
16502
16503 *ptr++ = DW_OP_call4;
16504 cu_off = common_die->sect_off - cu->per_cu->sect_off;
16505 store_unsigned_integer (ptr, 4, byte_order, cu_off);
16506 ptr += 4;
16507
16508 if (attr_form_is_constant (member_loc))
16509 {
16510 *ptr++ = DW_OP_addr;
16511 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
16512 ptr += cu->header.addr_size;
16513 }
16514 else
16515 {
16516 /* We have to copy the data here, because DW_OP_call4 will only
16517 use a DW_AT_location attribute. */
16518 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
16519 ptr += DW_BLOCK (member_loc)->size;
16520 }
16521
16522 *ptr++ = DW_OP_plus;
16523 gdb_assert (ptr - baton->data == baton->size);
16524
16525 SYMBOL_LOCATION_BATON (sym) = baton;
16526 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
16527 }
16528
16529 /* Create appropriate locally-scoped variables for all the
16530 DW_TAG_common_block entries. Also create a struct common_block
16531 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
16532 is used to sepate the common blocks name namespace from regular
16533 variable names. */
16534
16535 static void
16536 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
16537 {
16538 struct attribute *attr;
16539
16540 attr = dwarf2_attr (die, DW_AT_location, cu);
16541 if (attr)
16542 {
16543 /* Support the .debug_loc offsets. */
16544 if (attr_form_is_block (attr))
16545 {
16546 /* Ok. */
16547 }
16548 else if (attr_form_is_section_offset (attr))
16549 {
16550 dwarf2_complex_location_expr_complaint ();
16551 attr = NULL;
16552 }
16553 else
16554 {
16555 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16556 "common block member");
16557 attr = NULL;
16558 }
16559 }
16560
16561 if (die->child != NULL)
16562 {
16563 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16564 struct die_info *child_die;
16565 size_t n_entries = 0, size;
16566 struct common_block *common_block;
16567 struct symbol *sym;
16568
16569 for (child_die = die->child;
16570 child_die && child_die->tag;
16571 child_die = sibling_die (child_die))
16572 ++n_entries;
16573
16574 size = (sizeof (struct common_block)
16575 + (n_entries - 1) * sizeof (struct symbol *));
16576 common_block
16577 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
16578 size);
16579 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
16580 common_block->n_entries = 0;
16581
16582 for (child_die = die->child;
16583 child_die && child_die->tag;
16584 child_die = sibling_die (child_die))
16585 {
16586 /* Create the symbol in the DW_TAG_common_block block in the current
16587 symbol scope. */
16588 sym = new_symbol (child_die, NULL, cu);
16589 if (sym != NULL)
16590 {
16591 struct attribute *member_loc;
16592
16593 common_block->contents[common_block->n_entries++] = sym;
16594
16595 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
16596 cu);
16597 if (member_loc)
16598 {
16599 /* GDB has handled this for a long time, but it is
16600 not specified by DWARF. It seems to have been
16601 emitted by gfortran at least as recently as:
16602 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
16603 complaint (_("Variable in common block has "
16604 "DW_AT_data_member_location "
16605 "- DIE at %s [in module %s]"),
16606 sect_offset_str (child_die->sect_off),
16607 objfile_name (objfile));
16608
16609 if (attr_form_is_section_offset (member_loc))
16610 dwarf2_complex_location_expr_complaint ();
16611 else if (attr_form_is_constant (member_loc)
16612 || attr_form_is_block (member_loc))
16613 {
16614 if (attr)
16615 mark_common_block_symbol_computed (sym, die, attr,
16616 member_loc, cu);
16617 }
16618 else
16619 dwarf2_complex_location_expr_complaint ();
16620 }
16621 }
16622 }
16623
16624 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
16625 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
16626 }
16627 }
16628
16629 /* Create a type for a C++ namespace. */
16630
16631 static struct type *
16632 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
16633 {
16634 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16635 const char *previous_prefix, *name;
16636 int is_anonymous;
16637 struct type *type;
16638
16639 /* For extensions, reuse the type of the original namespace. */
16640 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
16641 {
16642 struct die_info *ext_die;
16643 struct dwarf2_cu *ext_cu = cu;
16644
16645 ext_die = dwarf2_extension (die, &ext_cu);
16646 type = read_type_die (ext_die, ext_cu);
16647
16648 /* EXT_CU may not be the same as CU.
16649 Ensure TYPE is recorded with CU in die_type_hash. */
16650 return set_die_type (die, type, cu);
16651 }
16652
16653 name = namespace_name (die, &is_anonymous, cu);
16654
16655 /* Now build the name of the current namespace. */
16656
16657 previous_prefix = determine_prefix (die, cu);
16658 if (previous_prefix[0] != '\0')
16659 name = typename_concat (&objfile->objfile_obstack,
16660 previous_prefix, name, 0, cu);
16661
16662 /* Create the type. */
16663 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
16664
16665 return set_die_type (die, type, cu);
16666 }
16667
16668 /* Read a namespace scope. */
16669
16670 static void
16671 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
16672 {
16673 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16674 int is_anonymous;
16675
16676 /* Add a symbol associated to this if we haven't seen the namespace
16677 before. Also, add a using directive if it's an anonymous
16678 namespace. */
16679
16680 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
16681 {
16682 struct type *type;
16683
16684 type = read_type_die (die, cu);
16685 new_symbol (die, type, cu);
16686
16687 namespace_name (die, &is_anonymous, cu);
16688 if (is_anonymous)
16689 {
16690 const char *previous_prefix = determine_prefix (die, cu);
16691
16692 std::vector<const char *> excludes;
16693 add_using_directive (using_directives (cu->language),
16694 previous_prefix, TYPE_NAME (type), NULL,
16695 NULL, excludes, 0, &objfile->objfile_obstack);
16696 }
16697 }
16698
16699 if (die->child != NULL)
16700 {
16701 struct die_info *child_die = die->child;
16702
16703 while (child_die && child_die->tag)
16704 {
16705 process_die (child_die, cu);
16706 child_die = sibling_die (child_die);
16707 }
16708 }
16709 }
16710
16711 /* Read a Fortran module as type. This DIE can be only a declaration used for
16712 imported module. Still we need that type as local Fortran "use ... only"
16713 declaration imports depend on the created type in determine_prefix. */
16714
16715 static struct type *
16716 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
16717 {
16718 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16719 const char *module_name;
16720 struct type *type;
16721
16722 module_name = dwarf2_name (die, cu);
16723 if (!module_name)
16724 complaint (_("DW_TAG_module has no name, offset %s"),
16725 sect_offset_str (die->sect_off));
16726 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
16727
16728 return set_die_type (die, type, cu);
16729 }
16730
16731 /* Read a Fortran module. */
16732
16733 static void
16734 read_module (struct die_info *die, struct dwarf2_cu *cu)
16735 {
16736 struct die_info *child_die = die->child;
16737 struct type *type;
16738
16739 type = read_type_die (die, cu);
16740 new_symbol (die, type, cu);
16741
16742 while (child_die && child_die->tag)
16743 {
16744 process_die (child_die, cu);
16745 child_die = sibling_die (child_die);
16746 }
16747 }
16748
16749 /* Return the name of the namespace represented by DIE. Set
16750 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
16751 namespace. */
16752
16753 static const char *
16754 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
16755 {
16756 struct die_info *current_die;
16757 const char *name = NULL;
16758
16759 /* Loop through the extensions until we find a name. */
16760
16761 for (current_die = die;
16762 current_die != NULL;
16763 current_die = dwarf2_extension (die, &cu))
16764 {
16765 /* We don't use dwarf2_name here so that we can detect the absence
16766 of a name -> anonymous namespace. */
16767 name = dwarf2_string_attr (die, DW_AT_name, cu);
16768
16769 if (name != NULL)
16770 break;
16771 }
16772
16773 /* Is it an anonymous namespace? */
16774
16775 *is_anonymous = (name == NULL);
16776 if (*is_anonymous)
16777 name = CP_ANONYMOUS_NAMESPACE_STR;
16778
16779 return name;
16780 }
16781
16782 /* Extract all information from a DW_TAG_pointer_type DIE and add to
16783 the user defined type vector. */
16784
16785 static struct type *
16786 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
16787 {
16788 struct gdbarch *gdbarch
16789 = get_objfile_arch (cu->per_cu->dwarf2_per_objfile->objfile);
16790 struct comp_unit_head *cu_header = &cu->header;
16791 struct type *type;
16792 struct attribute *attr_byte_size;
16793 struct attribute *attr_address_class;
16794 int byte_size, addr_class;
16795 struct type *target_type;
16796
16797 target_type = die_type (die, cu);
16798
16799 /* The die_type call above may have already set the type for this DIE. */
16800 type = get_die_type (die, cu);
16801 if (type)
16802 return type;
16803
16804 type = lookup_pointer_type (target_type);
16805
16806 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
16807 if (attr_byte_size)
16808 byte_size = DW_UNSND (attr_byte_size);
16809 else
16810 byte_size = cu_header->addr_size;
16811
16812 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
16813 if (attr_address_class)
16814 addr_class = DW_UNSND (attr_address_class);
16815 else
16816 addr_class = DW_ADDR_none;
16817
16818 ULONGEST alignment = get_alignment (cu, die);
16819
16820 /* If the pointer size, alignment, or address class is different
16821 than the default, create a type variant marked as such and set
16822 the length accordingly. */
16823 if (TYPE_LENGTH (type) != byte_size
16824 || (alignment != 0 && TYPE_RAW_ALIGN (type) != 0
16825 && alignment != TYPE_RAW_ALIGN (type))
16826 || addr_class != DW_ADDR_none)
16827 {
16828 if (gdbarch_address_class_type_flags_p (gdbarch))
16829 {
16830 int type_flags;
16831
16832 type_flags = gdbarch_address_class_type_flags
16833 (gdbarch, byte_size, addr_class);
16834 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
16835 == 0);
16836 type = make_type_with_address_space (type, type_flags);
16837 }
16838 else if (TYPE_LENGTH (type) != byte_size)
16839 {
16840 complaint (_("invalid pointer size %d"), byte_size);
16841 }
16842 else if (TYPE_RAW_ALIGN (type) != alignment)
16843 {
16844 complaint (_("Invalid DW_AT_alignment"
16845 " - DIE at %s [in module %s]"),
16846 sect_offset_str (die->sect_off),
16847 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16848 }
16849 else
16850 {
16851 /* Should we also complain about unhandled address classes? */
16852 }
16853 }
16854
16855 TYPE_LENGTH (type) = byte_size;
16856 set_type_align (type, alignment);
16857 return set_die_type (die, type, cu);
16858 }
16859
16860 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
16861 the user defined type vector. */
16862
16863 static struct type *
16864 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
16865 {
16866 struct type *type;
16867 struct type *to_type;
16868 struct type *domain;
16869
16870 to_type = die_type (die, cu);
16871 domain = die_containing_type (die, cu);
16872
16873 /* The calls above may have already set the type for this DIE. */
16874 type = get_die_type (die, cu);
16875 if (type)
16876 return type;
16877
16878 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
16879 type = lookup_methodptr_type (to_type);
16880 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
16881 {
16882 struct type *new_type
16883 = alloc_type (cu->per_cu->dwarf2_per_objfile->objfile);
16884
16885 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
16886 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
16887 TYPE_VARARGS (to_type));
16888 type = lookup_methodptr_type (new_type);
16889 }
16890 else
16891 type = lookup_memberptr_type (to_type, domain);
16892
16893 return set_die_type (die, type, cu);
16894 }
16895
16896 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
16897 the user defined type vector. */
16898
16899 static struct type *
16900 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
16901 enum type_code refcode)
16902 {
16903 struct comp_unit_head *cu_header = &cu->header;
16904 struct type *type, *target_type;
16905 struct attribute *attr;
16906
16907 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
16908
16909 target_type = die_type (die, cu);
16910
16911 /* The die_type call above may have already set the type for this DIE. */
16912 type = get_die_type (die, cu);
16913 if (type)
16914 return type;
16915
16916 type = lookup_reference_type (target_type, refcode);
16917 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16918 if (attr)
16919 {
16920 TYPE_LENGTH (type) = DW_UNSND (attr);
16921 }
16922 else
16923 {
16924 TYPE_LENGTH (type) = cu_header->addr_size;
16925 }
16926 maybe_set_alignment (cu, die, type);
16927 return set_die_type (die, type, cu);
16928 }
16929
16930 /* Add the given cv-qualifiers to the element type of the array. GCC
16931 outputs DWARF type qualifiers that apply to an array, not the
16932 element type. But GDB relies on the array element type to carry
16933 the cv-qualifiers. This mimics section 6.7.3 of the C99
16934 specification. */
16935
16936 static struct type *
16937 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
16938 struct type *base_type, int cnst, int voltl)
16939 {
16940 struct type *el_type, *inner_array;
16941
16942 base_type = copy_type (base_type);
16943 inner_array = base_type;
16944
16945 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
16946 {
16947 TYPE_TARGET_TYPE (inner_array) =
16948 copy_type (TYPE_TARGET_TYPE (inner_array));
16949 inner_array = TYPE_TARGET_TYPE (inner_array);
16950 }
16951
16952 el_type = TYPE_TARGET_TYPE (inner_array);
16953 cnst |= TYPE_CONST (el_type);
16954 voltl |= TYPE_VOLATILE (el_type);
16955 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
16956
16957 return set_die_type (die, base_type, cu);
16958 }
16959
16960 static struct type *
16961 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
16962 {
16963 struct type *base_type, *cv_type;
16964
16965 base_type = die_type (die, cu);
16966
16967 /* The die_type call above may have already set the type for this DIE. */
16968 cv_type = get_die_type (die, cu);
16969 if (cv_type)
16970 return cv_type;
16971
16972 /* In case the const qualifier is applied to an array type, the element type
16973 is so qualified, not the array type (section 6.7.3 of C99). */
16974 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
16975 return add_array_cv_type (die, cu, base_type, 1, 0);
16976
16977 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
16978 return set_die_type (die, cv_type, cu);
16979 }
16980
16981 static struct type *
16982 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
16983 {
16984 struct type *base_type, *cv_type;
16985
16986 base_type = die_type (die, cu);
16987
16988 /* The die_type call above may have already set the type for this DIE. */
16989 cv_type = get_die_type (die, cu);
16990 if (cv_type)
16991 return cv_type;
16992
16993 /* In case the volatile qualifier is applied to an array type, the
16994 element type is so qualified, not the array type (section 6.7.3
16995 of C99). */
16996 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
16997 return add_array_cv_type (die, cu, base_type, 0, 1);
16998
16999 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
17000 return set_die_type (die, cv_type, cu);
17001 }
17002
17003 /* Handle DW_TAG_restrict_type. */
17004
17005 static struct type *
17006 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
17007 {
17008 struct type *base_type, *cv_type;
17009
17010 base_type = die_type (die, cu);
17011
17012 /* The die_type call above may have already set the type for this DIE. */
17013 cv_type = get_die_type (die, cu);
17014 if (cv_type)
17015 return cv_type;
17016
17017 cv_type = make_restrict_type (base_type);
17018 return set_die_type (die, cv_type, cu);
17019 }
17020
17021 /* Handle DW_TAG_atomic_type. */
17022
17023 static struct type *
17024 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
17025 {
17026 struct type *base_type, *cv_type;
17027
17028 base_type = die_type (die, cu);
17029
17030 /* The die_type call above may have already set the type for this DIE. */
17031 cv_type = get_die_type (die, cu);
17032 if (cv_type)
17033 return cv_type;
17034
17035 cv_type = make_atomic_type (base_type);
17036 return set_die_type (die, cv_type, cu);
17037 }
17038
17039 /* Extract all information from a DW_TAG_string_type DIE and add to
17040 the user defined type vector. It isn't really a user defined type,
17041 but it behaves like one, with other DIE's using an AT_user_def_type
17042 attribute to reference it. */
17043
17044 static struct type *
17045 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
17046 {
17047 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17048 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17049 struct type *type, *range_type, *index_type, *char_type;
17050 struct attribute *attr;
17051 unsigned int length;
17052
17053 attr = dwarf2_attr (die, DW_AT_string_length, cu);
17054 if (attr)
17055 {
17056 length = DW_UNSND (attr);
17057 }
17058 else
17059 {
17060 /* Check for the DW_AT_byte_size attribute. */
17061 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17062 if (attr)
17063 {
17064 length = DW_UNSND (attr);
17065 }
17066 else
17067 {
17068 length = 1;
17069 }
17070 }
17071
17072 index_type = objfile_type (objfile)->builtin_int;
17073 range_type = create_static_range_type (NULL, index_type, 1, length);
17074 char_type = language_string_char_type (cu->language_defn, gdbarch);
17075 type = create_string_type (NULL, char_type, range_type);
17076
17077 return set_die_type (die, type, cu);
17078 }
17079
17080 /* Assuming that DIE corresponds to a function, returns nonzero
17081 if the function is prototyped. */
17082
17083 static int
17084 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
17085 {
17086 struct attribute *attr;
17087
17088 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
17089 if (attr && (DW_UNSND (attr) != 0))
17090 return 1;
17091
17092 /* The DWARF standard implies that the DW_AT_prototyped attribute
17093 is only meaninful for C, but the concept also extends to other
17094 languages that allow unprototyped functions (Eg: Objective C).
17095 For all other languages, assume that functions are always
17096 prototyped. */
17097 if (cu->language != language_c
17098 && cu->language != language_objc
17099 && cu->language != language_opencl)
17100 return 1;
17101
17102 /* RealView does not emit DW_AT_prototyped. We can not distinguish
17103 prototyped and unprototyped functions; default to prototyped,
17104 since that is more common in modern code (and RealView warns
17105 about unprototyped functions). */
17106 if (producer_is_realview (cu->producer))
17107 return 1;
17108
17109 return 0;
17110 }
17111
17112 /* Handle DIES due to C code like:
17113
17114 struct foo
17115 {
17116 int (*funcp)(int a, long l);
17117 int b;
17118 };
17119
17120 ('funcp' generates a DW_TAG_subroutine_type DIE). */
17121
17122 static struct type *
17123 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
17124 {
17125 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17126 struct type *type; /* Type that this function returns. */
17127 struct type *ftype; /* Function that returns above type. */
17128 struct attribute *attr;
17129
17130 type = die_type (die, cu);
17131
17132 /* The die_type call above may have already set the type for this DIE. */
17133 ftype = get_die_type (die, cu);
17134 if (ftype)
17135 return ftype;
17136
17137 ftype = lookup_function_type (type);
17138
17139 if (prototyped_function_p (die, cu))
17140 TYPE_PROTOTYPED (ftype) = 1;
17141
17142 /* Store the calling convention in the type if it's available in
17143 the subroutine die. Otherwise set the calling convention to
17144 the default value DW_CC_normal. */
17145 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
17146 if (attr)
17147 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
17148 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
17149 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
17150 else
17151 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
17152
17153 /* Record whether the function returns normally to its caller or not
17154 if the DWARF producer set that information. */
17155 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
17156 if (attr && (DW_UNSND (attr) != 0))
17157 TYPE_NO_RETURN (ftype) = 1;
17158
17159 /* We need to add the subroutine type to the die immediately so
17160 we don't infinitely recurse when dealing with parameters
17161 declared as the same subroutine type. */
17162 set_die_type (die, ftype, cu);
17163
17164 if (die->child != NULL)
17165 {
17166 struct type *void_type = objfile_type (objfile)->builtin_void;
17167 struct die_info *child_die;
17168 int nparams, iparams;
17169
17170 /* Count the number of parameters.
17171 FIXME: GDB currently ignores vararg functions, but knows about
17172 vararg member functions. */
17173 nparams = 0;
17174 child_die = die->child;
17175 while (child_die && child_die->tag)
17176 {
17177 if (child_die->tag == DW_TAG_formal_parameter)
17178 nparams++;
17179 else if (child_die->tag == DW_TAG_unspecified_parameters)
17180 TYPE_VARARGS (ftype) = 1;
17181 child_die = sibling_die (child_die);
17182 }
17183
17184 /* Allocate storage for parameters and fill them in. */
17185 TYPE_NFIELDS (ftype) = nparams;
17186 TYPE_FIELDS (ftype) = (struct field *)
17187 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
17188
17189 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
17190 even if we error out during the parameters reading below. */
17191 for (iparams = 0; iparams < nparams; iparams++)
17192 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
17193
17194 iparams = 0;
17195 child_die = die->child;
17196 while (child_die && child_die->tag)
17197 {
17198 if (child_die->tag == DW_TAG_formal_parameter)
17199 {
17200 struct type *arg_type;
17201
17202 /* DWARF version 2 has no clean way to discern C++
17203 static and non-static member functions. G++ helps
17204 GDB by marking the first parameter for non-static
17205 member functions (which is the this pointer) as
17206 artificial. We pass this information to
17207 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
17208
17209 DWARF version 3 added DW_AT_object_pointer, which GCC
17210 4.5 does not yet generate. */
17211 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
17212 if (attr)
17213 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
17214 else
17215 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
17216 arg_type = die_type (child_die, cu);
17217
17218 /* RealView does not mark THIS as const, which the testsuite
17219 expects. GCC marks THIS as const in method definitions,
17220 but not in the class specifications (GCC PR 43053). */
17221 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
17222 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
17223 {
17224 int is_this = 0;
17225 struct dwarf2_cu *arg_cu = cu;
17226 const char *name = dwarf2_name (child_die, cu);
17227
17228 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
17229 if (attr)
17230 {
17231 /* If the compiler emits this, use it. */
17232 if (follow_die_ref (die, attr, &arg_cu) == child_die)
17233 is_this = 1;
17234 }
17235 else if (name && strcmp (name, "this") == 0)
17236 /* Function definitions will have the argument names. */
17237 is_this = 1;
17238 else if (name == NULL && iparams == 0)
17239 /* Declarations may not have the names, so like
17240 elsewhere in GDB, assume an artificial first
17241 argument is "this". */
17242 is_this = 1;
17243
17244 if (is_this)
17245 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
17246 arg_type, 0);
17247 }
17248
17249 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
17250 iparams++;
17251 }
17252 child_die = sibling_die (child_die);
17253 }
17254 }
17255
17256 return ftype;
17257 }
17258
17259 static struct type *
17260 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
17261 {
17262 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17263 const char *name = NULL;
17264 struct type *this_type, *target_type;
17265
17266 name = dwarf2_full_name (NULL, die, cu);
17267 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
17268 TYPE_TARGET_STUB (this_type) = 1;
17269 set_die_type (die, this_type, cu);
17270 target_type = die_type (die, cu);
17271 if (target_type != this_type)
17272 TYPE_TARGET_TYPE (this_type) = target_type;
17273 else
17274 {
17275 /* Self-referential typedefs are, it seems, not allowed by the DWARF
17276 spec and cause infinite loops in GDB. */
17277 complaint (_("Self-referential DW_TAG_typedef "
17278 "- DIE at %s [in module %s]"),
17279 sect_offset_str (die->sect_off), objfile_name (objfile));
17280 TYPE_TARGET_TYPE (this_type) = NULL;
17281 }
17282 return this_type;
17283 }
17284
17285 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
17286 (which may be different from NAME) to the architecture back-end to allow
17287 it to guess the correct format if necessary. */
17288
17289 static struct type *
17290 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
17291 const char *name_hint)
17292 {
17293 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17294 const struct floatformat **format;
17295 struct type *type;
17296
17297 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
17298 if (format)
17299 type = init_float_type (objfile, bits, name, format);
17300 else
17301 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17302
17303 return type;
17304 }
17305
17306 /* Find a representation of a given base type and install
17307 it in the TYPE field of the die. */
17308
17309 static struct type *
17310 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
17311 {
17312 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17313 struct type *type;
17314 struct attribute *attr;
17315 int encoding = 0, bits = 0;
17316 const char *name;
17317
17318 attr = dwarf2_attr (die, DW_AT_encoding, cu);
17319 if (attr)
17320 {
17321 encoding = DW_UNSND (attr);
17322 }
17323 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17324 if (attr)
17325 {
17326 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
17327 }
17328 name = dwarf2_name (die, cu);
17329 if (!name)
17330 {
17331 complaint (_("DW_AT_name missing from DW_TAG_base_type"));
17332 }
17333
17334 switch (encoding)
17335 {
17336 case DW_ATE_address:
17337 /* Turn DW_ATE_address into a void * pointer. */
17338 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
17339 type = init_pointer_type (objfile, bits, name, type);
17340 break;
17341 case DW_ATE_boolean:
17342 type = init_boolean_type (objfile, bits, 1, name);
17343 break;
17344 case DW_ATE_complex_float:
17345 type = dwarf2_init_float_type (objfile, bits / 2, NULL, name);
17346 type = init_complex_type (objfile, name, type);
17347 break;
17348 case DW_ATE_decimal_float:
17349 type = init_decfloat_type (objfile, bits, name);
17350 break;
17351 case DW_ATE_float:
17352 type = dwarf2_init_float_type (objfile, bits, name, name);
17353 break;
17354 case DW_ATE_signed:
17355 type = init_integer_type (objfile, bits, 0, name);
17356 break;
17357 case DW_ATE_unsigned:
17358 if (cu->language == language_fortran
17359 && name
17360 && startswith (name, "character("))
17361 type = init_character_type (objfile, bits, 1, name);
17362 else
17363 type = init_integer_type (objfile, bits, 1, name);
17364 break;
17365 case DW_ATE_signed_char:
17366 if (cu->language == language_ada || cu->language == language_m2
17367 || cu->language == language_pascal
17368 || cu->language == language_fortran)
17369 type = init_character_type (objfile, bits, 0, name);
17370 else
17371 type = init_integer_type (objfile, bits, 0, name);
17372 break;
17373 case DW_ATE_unsigned_char:
17374 if (cu->language == language_ada || cu->language == language_m2
17375 || cu->language == language_pascal
17376 || cu->language == language_fortran
17377 || cu->language == language_rust)
17378 type = init_character_type (objfile, bits, 1, name);
17379 else
17380 type = init_integer_type (objfile, bits, 1, name);
17381 break;
17382 case DW_ATE_UTF:
17383 {
17384 gdbarch *arch = get_objfile_arch (objfile);
17385
17386 if (bits == 16)
17387 type = builtin_type (arch)->builtin_char16;
17388 else if (bits == 32)
17389 type = builtin_type (arch)->builtin_char32;
17390 else
17391 {
17392 complaint (_("unsupported DW_ATE_UTF bit size: '%d'"),
17393 bits);
17394 type = init_integer_type (objfile, bits, 1, name);
17395 }
17396 return set_die_type (die, type, cu);
17397 }
17398 break;
17399
17400 default:
17401 complaint (_("unsupported DW_AT_encoding: '%s'"),
17402 dwarf_type_encoding_name (encoding));
17403 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17404 break;
17405 }
17406
17407 if (name && strcmp (name, "char") == 0)
17408 TYPE_NOSIGN (type) = 1;
17409
17410 maybe_set_alignment (cu, die, type);
17411
17412 return set_die_type (die, type, cu);
17413 }
17414
17415 /* Parse dwarf attribute if it's a block, reference or constant and put the
17416 resulting value of the attribute into struct bound_prop.
17417 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
17418
17419 static int
17420 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
17421 struct dwarf2_cu *cu, struct dynamic_prop *prop)
17422 {
17423 struct dwarf2_property_baton *baton;
17424 struct obstack *obstack
17425 = &cu->per_cu->dwarf2_per_objfile->objfile->objfile_obstack;
17426
17427 if (attr == NULL || prop == NULL)
17428 return 0;
17429
17430 if (attr_form_is_block (attr))
17431 {
17432 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17433 baton->referenced_type = NULL;
17434 baton->locexpr.per_cu = cu->per_cu;
17435 baton->locexpr.size = DW_BLOCK (attr)->size;
17436 baton->locexpr.data = DW_BLOCK (attr)->data;
17437 prop->data.baton = baton;
17438 prop->kind = PROP_LOCEXPR;
17439 gdb_assert (prop->data.baton != NULL);
17440 }
17441 else if (attr_form_is_ref (attr))
17442 {
17443 struct dwarf2_cu *target_cu = cu;
17444 struct die_info *target_die;
17445 struct attribute *target_attr;
17446
17447 target_die = follow_die_ref (die, attr, &target_cu);
17448 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
17449 if (target_attr == NULL)
17450 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
17451 target_cu);
17452 if (target_attr == NULL)
17453 return 0;
17454
17455 switch (target_attr->name)
17456 {
17457 case DW_AT_location:
17458 if (attr_form_is_section_offset (target_attr))
17459 {
17460 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17461 baton->referenced_type = die_type (target_die, target_cu);
17462 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
17463 prop->data.baton = baton;
17464 prop->kind = PROP_LOCLIST;
17465 gdb_assert (prop->data.baton != NULL);
17466 }
17467 else if (attr_form_is_block (target_attr))
17468 {
17469 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17470 baton->referenced_type = die_type (target_die, target_cu);
17471 baton->locexpr.per_cu = cu->per_cu;
17472 baton->locexpr.size = DW_BLOCK (target_attr)->size;
17473 baton->locexpr.data = DW_BLOCK (target_attr)->data;
17474 prop->data.baton = baton;
17475 prop->kind = PROP_LOCEXPR;
17476 gdb_assert (prop->data.baton != NULL);
17477 }
17478 else
17479 {
17480 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
17481 "dynamic property");
17482 return 0;
17483 }
17484 break;
17485 case DW_AT_data_member_location:
17486 {
17487 LONGEST offset;
17488
17489 if (!handle_data_member_location (target_die, target_cu,
17490 &offset))
17491 return 0;
17492
17493 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17494 baton->referenced_type = read_type_die (target_die->parent,
17495 target_cu);
17496 baton->offset_info.offset = offset;
17497 baton->offset_info.type = die_type (target_die, target_cu);
17498 prop->data.baton = baton;
17499 prop->kind = PROP_ADDR_OFFSET;
17500 break;
17501 }
17502 }
17503 }
17504 else if (attr_form_is_constant (attr))
17505 {
17506 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
17507 prop->kind = PROP_CONST;
17508 }
17509 else
17510 {
17511 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
17512 dwarf2_name (die, cu));
17513 return 0;
17514 }
17515
17516 return 1;
17517 }
17518
17519 /* Read the given DW_AT_subrange DIE. */
17520
17521 static struct type *
17522 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
17523 {
17524 struct type *base_type, *orig_base_type;
17525 struct type *range_type;
17526 struct attribute *attr;
17527 struct dynamic_prop low, high;
17528 int low_default_is_valid;
17529 int high_bound_is_count = 0;
17530 const char *name;
17531 LONGEST negative_mask;
17532
17533 orig_base_type = die_type (die, cu);
17534 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
17535 whereas the real type might be. So, we use ORIG_BASE_TYPE when
17536 creating the range type, but we use the result of check_typedef
17537 when examining properties of the type. */
17538 base_type = check_typedef (orig_base_type);
17539
17540 /* The die_type call above may have already set the type for this DIE. */
17541 range_type = get_die_type (die, cu);
17542 if (range_type)
17543 return range_type;
17544
17545 low.kind = PROP_CONST;
17546 high.kind = PROP_CONST;
17547 high.data.const_val = 0;
17548
17549 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
17550 omitting DW_AT_lower_bound. */
17551 switch (cu->language)
17552 {
17553 case language_c:
17554 case language_cplus:
17555 low.data.const_val = 0;
17556 low_default_is_valid = 1;
17557 break;
17558 case language_fortran:
17559 low.data.const_val = 1;
17560 low_default_is_valid = 1;
17561 break;
17562 case language_d:
17563 case language_objc:
17564 case language_rust:
17565 low.data.const_val = 0;
17566 low_default_is_valid = (cu->header.version >= 4);
17567 break;
17568 case language_ada:
17569 case language_m2:
17570 case language_pascal:
17571 low.data.const_val = 1;
17572 low_default_is_valid = (cu->header.version >= 4);
17573 break;
17574 default:
17575 low.data.const_val = 0;
17576 low_default_is_valid = 0;
17577 break;
17578 }
17579
17580 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
17581 if (attr)
17582 attr_to_dynamic_prop (attr, die, cu, &low);
17583 else if (!low_default_is_valid)
17584 complaint (_("Missing DW_AT_lower_bound "
17585 "- DIE at %s [in module %s]"),
17586 sect_offset_str (die->sect_off),
17587 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17588
17589 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
17590 if (!attr_to_dynamic_prop (attr, die, cu, &high))
17591 {
17592 attr = dwarf2_attr (die, DW_AT_count, cu);
17593 if (attr_to_dynamic_prop (attr, die, cu, &high))
17594 {
17595 /* If bounds are constant do the final calculation here. */
17596 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
17597 high.data.const_val = low.data.const_val + high.data.const_val - 1;
17598 else
17599 high_bound_is_count = 1;
17600 }
17601 }
17602
17603 /* Dwarf-2 specifications explicitly allows to create subrange types
17604 without specifying a base type.
17605 In that case, the base type must be set to the type of
17606 the lower bound, upper bound or count, in that order, if any of these
17607 three attributes references an object that has a type.
17608 If no base type is found, the Dwarf-2 specifications say that
17609 a signed integer type of size equal to the size of an address should
17610 be used.
17611 For the following C code: `extern char gdb_int [];'
17612 GCC produces an empty range DIE.
17613 FIXME: muller/2010-05-28: Possible references to object for low bound,
17614 high bound or count are not yet handled by this code. */
17615 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
17616 {
17617 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17618 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17619 int addr_size = gdbarch_addr_bit (gdbarch) /8;
17620 struct type *int_type = objfile_type (objfile)->builtin_int;
17621
17622 /* Test "int", "long int", and "long long int" objfile types,
17623 and select the first one having a size above or equal to the
17624 architecture address size. */
17625 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17626 base_type = int_type;
17627 else
17628 {
17629 int_type = objfile_type (objfile)->builtin_long;
17630 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17631 base_type = int_type;
17632 else
17633 {
17634 int_type = objfile_type (objfile)->builtin_long_long;
17635 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17636 base_type = int_type;
17637 }
17638 }
17639 }
17640
17641 /* Normally, the DWARF producers are expected to use a signed
17642 constant form (Eg. DW_FORM_sdata) to express negative bounds.
17643 But this is unfortunately not always the case, as witnessed
17644 with GCC, for instance, where the ambiguous DW_FORM_dataN form
17645 is used instead. To work around that ambiguity, we treat
17646 the bounds as signed, and thus sign-extend their values, when
17647 the base type is signed. */
17648 negative_mask =
17649 -((LONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
17650 if (low.kind == PROP_CONST
17651 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
17652 low.data.const_val |= negative_mask;
17653 if (high.kind == PROP_CONST
17654 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
17655 high.data.const_val |= negative_mask;
17656
17657 range_type = create_range_type (NULL, orig_base_type, &low, &high);
17658
17659 if (high_bound_is_count)
17660 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
17661
17662 /* Ada expects an empty array on no boundary attributes. */
17663 if (attr == NULL && cu->language != language_ada)
17664 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
17665
17666 name = dwarf2_name (die, cu);
17667 if (name)
17668 TYPE_NAME (range_type) = name;
17669
17670 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17671 if (attr)
17672 TYPE_LENGTH (range_type) = DW_UNSND (attr);
17673
17674 maybe_set_alignment (cu, die, range_type);
17675
17676 set_die_type (die, range_type, cu);
17677
17678 /* set_die_type should be already done. */
17679 set_descriptive_type (range_type, die, cu);
17680
17681 return range_type;
17682 }
17683
17684 static struct type *
17685 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
17686 {
17687 struct type *type;
17688
17689 type = init_type (cu->per_cu->dwarf2_per_objfile->objfile, TYPE_CODE_VOID,0,
17690 NULL);
17691 TYPE_NAME (type) = dwarf2_name (die, cu);
17692
17693 /* In Ada, an unspecified type is typically used when the description
17694 of the type is defered to a different unit. When encountering
17695 such a type, we treat it as a stub, and try to resolve it later on,
17696 when needed. */
17697 if (cu->language == language_ada)
17698 TYPE_STUB (type) = 1;
17699
17700 return set_die_type (die, type, cu);
17701 }
17702
17703 /* Read a single die and all its descendents. Set the die's sibling
17704 field to NULL; set other fields in the die correctly, and set all
17705 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
17706 location of the info_ptr after reading all of those dies. PARENT
17707 is the parent of the die in question. */
17708
17709 static struct die_info *
17710 read_die_and_children (const struct die_reader_specs *reader,
17711 const gdb_byte *info_ptr,
17712 const gdb_byte **new_info_ptr,
17713 struct die_info *parent)
17714 {
17715 struct die_info *die;
17716 const gdb_byte *cur_ptr;
17717 int has_children;
17718
17719 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
17720 if (die == NULL)
17721 {
17722 *new_info_ptr = cur_ptr;
17723 return NULL;
17724 }
17725 store_in_ref_table (die, reader->cu);
17726
17727 if (has_children)
17728 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
17729 else
17730 {
17731 die->child = NULL;
17732 *new_info_ptr = cur_ptr;
17733 }
17734
17735 die->sibling = NULL;
17736 die->parent = parent;
17737 return die;
17738 }
17739
17740 /* Read a die, all of its descendents, and all of its siblings; set
17741 all of the fields of all of the dies correctly. Arguments are as
17742 in read_die_and_children. */
17743
17744 static struct die_info *
17745 read_die_and_siblings_1 (const struct die_reader_specs *reader,
17746 const gdb_byte *info_ptr,
17747 const gdb_byte **new_info_ptr,
17748 struct die_info *parent)
17749 {
17750 struct die_info *first_die, *last_sibling;
17751 const gdb_byte *cur_ptr;
17752
17753 cur_ptr = info_ptr;
17754 first_die = last_sibling = NULL;
17755
17756 while (1)
17757 {
17758 struct die_info *die
17759 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
17760
17761 if (die == NULL)
17762 {
17763 *new_info_ptr = cur_ptr;
17764 return first_die;
17765 }
17766
17767 if (!first_die)
17768 first_die = die;
17769 else
17770 last_sibling->sibling = die;
17771
17772 last_sibling = die;
17773 }
17774 }
17775
17776 /* Read a die, all of its descendents, and all of its siblings; set
17777 all of the fields of all of the dies correctly. Arguments are as
17778 in read_die_and_children.
17779 This the main entry point for reading a DIE and all its children. */
17780
17781 static struct die_info *
17782 read_die_and_siblings (const struct die_reader_specs *reader,
17783 const gdb_byte *info_ptr,
17784 const gdb_byte **new_info_ptr,
17785 struct die_info *parent)
17786 {
17787 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
17788 new_info_ptr, parent);
17789
17790 if (dwarf_die_debug)
17791 {
17792 fprintf_unfiltered (gdb_stdlog,
17793 "Read die from %s@0x%x of %s:\n",
17794 get_section_name (reader->die_section),
17795 (unsigned) (info_ptr - reader->die_section->buffer),
17796 bfd_get_filename (reader->abfd));
17797 dump_die (die, dwarf_die_debug);
17798 }
17799
17800 return die;
17801 }
17802
17803 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
17804 attributes.
17805 The caller is responsible for filling in the extra attributes
17806 and updating (*DIEP)->num_attrs.
17807 Set DIEP to point to a newly allocated die with its information,
17808 except for its child, sibling, and parent fields.
17809 Set HAS_CHILDREN to tell whether the die has children or not. */
17810
17811 static const gdb_byte *
17812 read_full_die_1 (const struct die_reader_specs *reader,
17813 struct die_info **diep, const gdb_byte *info_ptr,
17814 int *has_children, int num_extra_attrs)
17815 {
17816 unsigned int abbrev_number, bytes_read, i;
17817 struct abbrev_info *abbrev;
17818 struct die_info *die;
17819 struct dwarf2_cu *cu = reader->cu;
17820 bfd *abfd = reader->abfd;
17821
17822 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
17823 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
17824 info_ptr += bytes_read;
17825 if (!abbrev_number)
17826 {
17827 *diep = NULL;
17828 *has_children = 0;
17829 return info_ptr;
17830 }
17831
17832 abbrev = reader->abbrev_table->lookup_abbrev (abbrev_number);
17833 if (!abbrev)
17834 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
17835 abbrev_number,
17836 bfd_get_filename (abfd));
17837
17838 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
17839 die->sect_off = sect_off;
17840 die->tag = abbrev->tag;
17841 die->abbrev = abbrev_number;
17842
17843 /* Make the result usable.
17844 The caller needs to update num_attrs after adding the extra
17845 attributes. */
17846 die->num_attrs = abbrev->num_attrs;
17847
17848 for (i = 0; i < abbrev->num_attrs; ++i)
17849 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
17850 info_ptr);
17851
17852 *diep = die;
17853 *has_children = abbrev->has_children;
17854 return info_ptr;
17855 }
17856
17857 /* Read a die and all its attributes.
17858 Set DIEP to point to a newly allocated die with its information,
17859 except for its child, sibling, and parent fields.
17860 Set HAS_CHILDREN to tell whether the die has children or not. */
17861
17862 static const gdb_byte *
17863 read_full_die (const struct die_reader_specs *reader,
17864 struct die_info **diep, const gdb_byte *info_ptr,
17865 int *has_children)
17866 {
17867 const gdb_byte *result;
17868
17869 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
17870
17871 if (dwarf_die_debug)
17872 {
17873 fprintf_unfiltered (gdb_stdlog,
17874 "Read die from %s@0x%x of %s:\n",
17875 get_section_name (reader->die_section),
17876 (unsigned) (info_ptr - reader->die_section->buffer),
17877 bfd_get_filename (reader->abfd));
17878 dump_die (*diep, dwarf_die_debug);
17879 }
17880
17881 return result;
17882 }
17883 \f
17884 /* Abbreviation tables.
17885
17886 In DWARF version 2, the description of the debugging information is
17887 stored in a separate .debug_abbrev section. Before we read any
17888 dies from a section we read in all abbreviations and install them
17889 in a hash table. */
17890
17891 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
17892
17893 struct abbrev_info *
17894 abbrev_table::alloc_abbrev ()
17895 {
17896 struct abbrev_info *abbrev;
17897
17898 abbrev = XOBNEW (&abbrev_obstack, struct abbrev_info);
17899 memset (abbrev, 0, sizeof (struct abbrev_info));
17900
17901 return abbrev;
17902 }
17903
17904 /* Add an abbreviation to the table. */
17905
17906 void
17907 abbrev_table::add_abbrev (unsigned int abbrev_number,
17908 struct abbrev_info *abbrev)
17909 {
17910 unsigned int hash_number;
17911
17912 hash_number = abbrev_number % ABBREV_HASH_SIZE;
17913 abbrev->next = m_abbrevs[hash_number];
17914 m_abbrevs[hash_number] = abbrev;
17915 }
17916
17917 /* Look up an abbrev in the table.
17918 Returns NULL if the abbrev is not found. */
17919
17920 struct abbrev_info *
17921 abbrev_table::lookup_abbrev (unsigned int abbrev_number)
17922 {
17923 unsigned int hash_number;
17924 struct abbrev_info *abbrev;
17925
17926 hash_number = abbrev_number % ABBREV_HASH_SIZE;
17927 abbrev = m_abbrevs[hash_number];
17928
17929 while (abbrev)
17930 {
17931 if (abbrev->number == abbrev_number)
17932 return abbrev;
17933 abbrev = abbrev->next;
17934 }
17935 return NULL;
17936 }
17937
17938 /* Read in an abbrev table. */
17939
17940 static abbrev_table_up
17941 abbrev_table_read_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
17942 struct dwarf2_section_info *section,
17943 sect_offset sect_off)
17944 {
17945 struct objfile *objfile = dwarf2_per_objfile->objfile;
17946 bfd *abfd = get_section_bfd_owner (section);
17947 const gdb_byte *abbrev_ptr;
17948 struct abbrev_info *cur_abbrev;
17949 unsigned int abbrev_number, bytes_read, abbrev_name;
17950 unsigned int abbrev_form;
17951 struct attr_abbrev *cur_attrs;
17952 unsigned int allocated_attrs;
17953
17954 abbrev_table_up abbrev_table (new struct abbrev_table (sect_off));
17955
17956 dwarf2_read_section (objfile, section);
17957 abbrev_ptr = section->buffer + to_underlying (sect_off);
17958 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
17959 abbrev_ptr += bytes_read;
17960
17961 allocated_attrs = ATTR_ALLOC_CHUNK;
17962 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
17963
17964 /* Loop until we reach an abbrev number of 0. */
17965 while (abbrev_number)
17966 {
17967 cur_abbrev = abbrev_table->alloc_abbrev ();
17968
17969 /* read in abbrev header */
17970 cur_abbrev->number = abbrev_number;
17971 cur_abbrev->tag
17972 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
17973 abbrev_ptr += bytes_read;
17974 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
17975 abbrev_ptr += 1;
17976
17977 /* now read in declarations */
17978 for (;;)
17979 {
17980 LONGEST implicit_const;
17981
17982 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
17983 abbrev_ptr += bytes_read;
17984 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
17985 abbrev_ptr += bytes_read;
17986 if (abbrev_form == DW_FORM_implicit_const)
17987 {
17988 implicit_const = read_signed_leb128 (abfd, abbrev_ptr,
17989 &bytes_read);
17990 abbrev_ptr += bytes_read;
17991 }
17992 else
17993 {
17994 /* Initialize it due to a false compiler warning. */
17995 implicit_const = -1;
17996 }
17997
17998 if (abbrev_name == 0)
17999 break;
18000
18001 if (cur_abbrev->num_attrs == allocated_attrs)
18002 {
18003 allocated_attrs += ATTR_ALLOC_CHUNK;
18004 cur_attrs
18005 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
18006 }
18007
18008 cur_attrs[cur_abbrev->num_attrs].name
18009 = (enum dwarf_attribute) abbrev_name;
18010 cur_attrs[cur_abbrev->num_attrs].form
18011 = (enum dwarf_form) abbrev_form;
18012 cur_attrs[cur_abbrev->num_attrs].implicit_const = implicit_const;
18013 ++cur_abbrev->num_attrs;
18014 }
18015
18016 cur_abbrev->attrs =
18017 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
18018 cur_abbrev->num_attrs);
18019 memcpy (cur_abbrev->attrs, cur_attrs,
18020 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
18021
18022 abbrev_table->add_abbrev (abbrev_number, cur_abbrev);
18023
18024 /* Get next abbreviation.
18025 Under Irix6 the abbreviations for a compilation unit are not
18026 always properly terminated with an abbrev number of 0.
18027 Exit loop if we encounter an abbreviation which we have
18028 already read (which means we are about to read the abbreviations
18029 for the next compile unit) or if the end of the abbreviation
18030 table is reached. */
18031 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
18032 break;
18033 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18034 abbrev_ptr += bytes_read;
18035 if (abbrev_table->lookup_abbrev (abbrev_number) != NULL)
18036 break;
18037 }
18038
18039 xfree (cur_attrs);
18040 return abbrev_table;
18041 }
18042
18043 /* Returns nonzero if TAG represents a type that we might generate a partial
18044 symbol for. */
18045
18046 static int
18047 is_type_tag_for_partial (int tag)
18048 {
18049 switch (tag)
18050 {
18051 #if 0
18052 /* Some types that would be reasonable to generate partial symbols for,
18053 that we don't at present. */
18054 case DW_TAG_array_type:
18055 case DW_TAG_file_type:
18056 case DW_TAG_ptr_to_member_type:
18057 case DW_TAG_set_type:
18058 case DW_TAG_string_type:
18059 case DW_TAG_subroutine_type:
18060 #endif
18061 case DW_TAG_base_type:
18062 case DW_TAG_class_type:
18063 case DW_TAG_interface_type:
18064 case DW_TAG_enumeration_type:
18065 case DW_TAG_structure_type:
18066 case DW_TAG_subrange_type:
18067 case DW_TAG_typedef:
18068 case DW_TAG_union_type:
18069 return 1;
18070 default:
18071 return 0;
18072 }
18073 }
18074
18075 /* Load all DIEs that are interesting for partial symbols into memory. */
18076
18077 static struct partial_die_info *
18078 load_partial_dies (const struct die_reader_specs *reader,
18079 const gdb_byte *info_ptr, int building_psymtab)
18080 {
18081 struct dwarf2_cu *cu = reader->cu;
18082 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18083 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
18084 unsigned int bytes_read;
18085 unsigned int load_all = 0;
18086 int nesting_level = 1;
18087
18088 parent_die = NULL;
18089 last_die = NULL;
18090
18091 gdb_assert (cu->per_cu != NULL);
18092 if (cu->per_cu->load_all_dies)
18093 load_all = 1;
18094
18095 cu->partial_dies
18096 = htab_create_alloc_ex (cu->header.length / 12,
18097 partial_die_hash,
18098 partial_die_eq,
18099 NULL,
18100 &cu->comp_unit_obstack,
18101 hashtab_obstack_allocate,
18102 dummy_obstack_deallocate);
18103
18104 while (1)
18105 {
18106 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
18107
18108 /* A NULL abbrev means the end of a series of children. */
18109 if (abbrev == NULL)
18110 {
18111 if (--nesting_level == 0)
18112 return first_die;
18113
18114 info_ptr += bytes_read;
18115 last_die = parent_die;
18116 parent_die = parent_die->die_parent;
18117 continue;
18118 }
18119
18120 /* Check for template arguments. We never save these; if
18121 they're seen, we just mark the parent, and go on our way. */
18122 if (parent_die != NULL
18123 && cu->language == language_cplus
18124 && (abbrev->tag == DW_TAG_template_type_param
18125 || abbrev->tag == DW_TAG_template_value_param))
18126 {
18127 parent_die->has_template_arguments = 1;
18128
18129 if (!load_all)
18130 {
18131 /* We don't need a partial DIE for the template argument. */
18132 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18133 continue;
18134 }
18135 }
18136
18137 /* We only recurse into c++ subprograms looking for template arguments.
18138 Skip their other children. */
18139 if (!load_all
18140 && cu->language == language_cplus
18141 && parent_die != NULL
18142 && parent_die->tag == DW_TAG_subprogram)
18143 {
18144 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18145 continue;
18146 }
18147
18148 /* Check whether this DIE is interesting enough to save. Normally
18149 we would not be interested in members here, but there may be
18150 later variables referencing them via DW_AT_specification (for
18151 static members). */
18152 if (!load_all
18153 && !is_type_tag_for_partial (abbrev->tag)
18154 && abbrev->tag != DW_TAG_constant
18155 && abbrev->tag != DW_TAG_enumerator
18156 && abbrev->tag != DW_TAG_subprogram
18157 && abbrev->tag != DW_TAG_inlined_subroutine
18158 && abbrev->tag != DW_TAG_lexical_block
18159 && abbrev->tag != DW_TAG_variable
18160 && abbrev->tag != DW_TAG_namespace
18161 && abbrev->tag != DW_TAG_module
18162 && abbrev->tag != DW_TAG_member
18163 && abbrev->tag != DW_TAG_imported_unit
18164 && abbrev->tag != DW_TAG_imported_declaration)
18165 {
18166 /* Otherwise we skip to the next sibling, if any. */
18167 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18168 continue;
18169 }
18170
18171 struct partial_die_info pdi ((sect_offset) (info_ptr - reader->buffer),
18172 abbrev);
18173
18174 info_ptr = pdi.read (reader, *abbrev, info_ptr + bytes_read);
18175
18176 /* This two-pass algorithm for processing partial symbols has a
18177 high cost in cache pressure. Thus, handle some simple cases
18178 here which cover the majority of C partial symbols. DIEs
18179 which neither have specification tags in them, nor could have
18180 specification tags elsewhere pointing at them, can simply be
18181 processed and discarded.
18182
18183 This segment is also optional; scan_partial_symbols and
18184 add_partial_symbol will handle these DIEs if we chain
18185 them in normally. When compilers which do not emit large
18186 quantities of duplicate debug information are more common,
18187 this code can probably be removed. */
18188
18189 /* Any complete simple types at the top level (pretty much all
18190 of them, for a language without namespaces), can be processed
18191 directly. */
18192 if (parent_die == NULL
18193 && pdi.has_specification == 0
18194 && pdi.is_declaration == 0
18195 && ((pdi.tag == DW_TAG_typedef && !pdi.has_children)
18196 || pdi.tag == DW_TAG_base_type
18197 || pdi.tag == DW_TAG_subrange_type))
18198 {
18199 if (building_psymtab && pdi.name != NULL)
18200 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18201 VAR_DOMAIN, LOC_TYPEDEF,
18202 &objfile->static_psymbols,
18203 0, cu->language, objfile);
18204 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18205 continue;
18206 }
18207
18208 /* The exception for DW_TAG_typedef with has_children above is
18209 a workaround of GCC PR debug/47510. In the case of this complaint
18210 type_name_or_error will error on such types later.
18211
18212 GDB skipped children of DW_TAG_typedef by the shortcut above and then
18213 it could not find the child DIEs referenced later, this is checked
18214 above. In correct DWARF DW_TAG_typedef should have no children. */
18215
18216 if (pdi.tag == DW_TAG_typedef && pdi.has_children)
18217 complaint (_("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
18218 "- DIE at %s [in module %s]"),
18219 sect_offset_str (pdi.sect_off), objfile_name (objfile));
18220
18221 /* If we're at the second level, and we're an enumerator, and
18222 our parent has no specification (meaning possibly lives in a
18223 namespace elsewhere), then we can add the partial symbol now
18224 instead of queueing it. */
18225 if (pdi.tag == DW_TAG_enumerator
18226 && parent_die != NULL
18227 && parent_die->die_parent == NULL
18228 && parent_die->tag == DW_TAG_enumeration_type
18229 && parent_die->has_specification == 0)
18230 {
18231 if (pdi.name == NULL)
18232 complaint (_("malformed enumerator DIE ignored"));
18233 else if (building_psymtab)
18234 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18235 VAR_DOMAIN, LOC_CONST,
18236 cu->language == language_cplus
18237 ? &objfile->global_psymbols
18238 : &objfile->static_psymbols,
18239 0, cu->language, objfile);
18240
18241 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18242 continue;
18243 }
18244
18245 struct partial_die_info *part_die
18246 = new (&cu->comp_unit_obstack) partial_die_info (pdi);
18247
18248 /* We'll save this DIE so link it in. */
18249 part_die->die_parent = parent_die;
18250 part_die->die_sibling = NULL;
18251 part_die->die_child = NULL;
18252
18253 if (last_die && last_die == parent_die)
18254 last_die->die_child = part_die;
18255 else if (last_die)
18256 last_die->die_sibling = part_die;
18257
18258 last_die = part_die;
18259
18260 if (first_die == NULL)
18261 first_die = part_die;
18262
18263 /* Maybe add the DIE to the hash table. Not all DIEs that we
18264 find interesting need to be in the hash table, because we
18265 also have the parent/sibling/child chains; only those that we
18266 might refer to by offset later during partial symbol reading.
18267
18268 For now this means things that might have be the target of a
18269 DW_AT_specification, DW_AT_abstract_origin, or
18270 DW_AT_extension. DW_AT_extension will refer only to
18271 namespaces; DW_AT_abstract_origin refers to functions (and
18272 many things under the function DIE, but we do not recurse
18273 into function DIEs during partial symbol reading) and
18274 possibly variables as well; DW_AT_specification refers to
18275 declarations. Declarations ought to have the DW_AT_declaration
18276 flag. It happens that GCC forgets to put it in sometimes, but
18277 only for functions, not for types.
18278
18279 Adding more things than necessary to the hash table is harmless
18280 except for the performance cost. Adding too few will result in
18281 wasted time in find_partial_die, when we reread the compilation
18282 unit with load_all_dies set. */
18283
18284 if (load_all
18285 || abbrev->tag == DW_TAG_constant
18286 || abbrev->tag == DW_TAG_subprogram
18287 || abbrev->tag == DW_TAG_variable
18288 || abbrev->tag == DW_TAG_namespace
18289 || part_die->is_declaration)
18290 {
18291 void **slot;
18292
18293 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
18294 to_underlying (part_die->sect_off),
18295 INSERT);
18296 *slot = part_die;
18297 }
18298
18299 /* For some DIEs we want to follow their children (if any). For C
18300 we have no reason to follow the children of structures; for other
18301 languages we have to, so that we can get at method physnames
18302 to infer fully qualified class names, for DW_AT_specification,
18303 and for C++ template arguments. For C++, we also look one level
18304 inside functions to find template arguments (if the name of the
18305 function does not already contain the template arguments).
18306
18307 For Ada, we need to scan the children of subprograms and lexical
18308 blocks as well because Ada allows the definition of nested
18309 entities that could be interesting for the debugger, such as
18310 nested subprograms for instance. */
18311 if (last_die->has_children
18312 && (load_all
18313 || last_die->tag == DW_TAG_namespace
18314 || last_die->tag == DW_TAG_module
18315 || last_die->tag == DW_TAG_enumeration_type
18316 || (cu->language == language_cplus
18317 && last_die->tag == DW_TAG_subprogram
18318 && (last_die->name == NULL
18319 || strchr (last_die->name, '<') == NULL))
18320 || (cu->language != language_c
18321 && (last_die->tag == DW_TAG_class_type
18322 || last_die->tag == DW_TAG_interface_type
18323 || last_die->tag == DW_TAG_structure_type
18324 || last_die->tag == DW_TAG_union_type))
18325 || (cu->language == language_ada
18326 && (last_die->tag == DW_TAG_subprogram
18327 || last_die->tag == DW_TAG_lexical_block))))
18328 {
18329 nesting_level++;
18330 parent_die = last_die;
18331 continue;
18332 }
18333
18334 /* Otherwise we skip to the next sibling, if any. */
18335 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
18336
18337 /* Back to the top, do it again. */
18338 }
18339 }
18340
18341 partial_die_info::partial_die_info (sect_offset sect_off_,
18342 struct abbrev_info *abbrev)
18343 : partial_die_info (sect_off_, abbrev->tag, abbrev->has_children)
18344 {
18345 }
18346
18347 /* Read a minimal amount of information into the minimal die structure.
18348 INFO_PTR should point just after the initial uleb128 of a DIE. */
18349
18350 const gdb_byte *
18351 partial_die_info::read (const struct die_reader_specs *reader,
18352 const struct abbrev_info &abbrev, const gdb_byte *info_ptr)
18353 {
18354 struct dwarf2_cu *cu = reader->cu;
18355 struct dwarf2_per_objfile *dwarf2_per_objfile
18356 = cu->per_cu->dwarf2_per_objfile;
18357 unsigned int i;
18358 int has_low_pc_attr = 0;
18359 int has_high_pc_attr = 0;
18360 int high_pc_relative = 0;
18361
18362 for (i = 0; i < abbrev.num_attrs; ++i)
18363 {
18364 struct attribute attr;
18365
18366 info_ptr = read_attribute (reader, &attr, &abbrev.attrs[i], info_ptr);
18367
18368 /* Store the data if it is of an attribute we want to keep in a
18369 partial symbol table. */
18370 switch (attr.name)
18371 {
18372 case DW_AT_name:
18373 switch (tag)
18374 {
18375 case DW_TAG_compile_unit:
18376 case DW_TAG_partial_unit:
18377 case DW_TAG_type_unit:
18378 /* Compilation units have a DW_AT_name that is a filename, not
18379 a source language identifier. */
18380 case DW_TAG_enumeration_type:
18381 case DW_TAG_enumerator:
18382 /* These tags always have simple identifiers already; no need
18383 to canonicalize them. */
18384 name = DW_STRING (&attr);
18385 break;
18386 default:
18387 {
18388 struct objfile *objfile = dwarf2_per_objfile->objfile;
18389
18390 name
18391 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
18392 &objfile->per_bfd->storage_obstack);
18393 }
18394 break;
18395 }
18396 break;
18397 case DW_AT_linkage_name:
18398 case DW_AT_MIPS_linkage_name:
18399 /* Note that both forms of linkage name might appear. We
18400 assume they will be the same, and we only store the last
18401 one we see. */
18402 if (cu->language == language_ada)
18403 name = DW_STRING (&attr);
18404 linkage_name = DW_STRING (&attr);
18405 break;
18406 case DW_AT_low_pc:
18407 has_low_pc_attr = 1;
18408 lowpc = attr_value_as_address (&attr);
18409 break;
18410 case DW_AT_high_pc:
18411 has_high_pc_attr = 1;
18412 highpc = attr_value_as_address (&attr);
18413 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
18414 high_pc_relative = 1;
18415 break;
18416 case DW_AT_location:
18417 /* Support the .debug_loc offsets. */
18418 if (attr_form_is_block (&attr))
18419 {
18420 d.locdesc = DW_BLOCK (&attr);
18421 }
18422 else if (attr_form_is_section_offset (&attr))
18423 {
18424 dwarf2_complex_location_expr_complaint ();
18425 }
18426 else
18427 {
18428 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
18429 "partial symbol information");
18430 }
18431 break;
18432 case DW_AT_external:
18433 is_external = DW_UNSND (&attr);
18434 break;
18435 case DW_AT_declaration:
18436 is_declaration = DW_UNSND (&attr);
18437 break;
18438 case DW_AT_type:
18439 has_type = 1;
18440 break;
18441 case DW_AT_abstract_origin:
18442 case DW_AT_specification:
18443 case DW_AT_extension:
18444 has_specification = 1;
18445 spec_offset = dwarf2_get_ref_die_offset (&attr);
18446 spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18447 || cu->per_cu->is_dwz);
18448 break;
18449 case DW_AT_sibling:
18450 /* Ignore absolute siblings, they might point outside of
18451 the current compile unit. */
18452 if (attr.form == DW_FORM_ref_addr)
18453 complaint (_("ignoring absolute DW_AT_sibling"));
18454 else
18455 {
18456 const gdb_byte *buffer = reader->buffer;
18457 sect_offset off = dwarf2_get_ref_die_offset (&attr);
18458 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
18459
18460 if (sibling_ptr < info_ptr)
18461 complaint (_("DW_AT_sibling points backwards"));
18462 else if (sibling_ptr > reader->buffer_end)
18463 dwarf2_section_buffer_overflow_complaint (reader->die_section);
18464 else
18465 sibling = sibling_ptr;
18466 }
18467 break;
18468 case DW_AT_byte_size:
18469 has_byte_size = 1;
18470 break;
18471 case DW_AT_const_value:
18472 has_const_value = 1;
18473 break;
18474 case DW_AT_calling_convention:
18475 /* DWARF doesn't provide a way to identify a program's source-level
18476 entry point. DW_AT_calling_convention attributes are only meant
18477 to describe functions' calling conventions.
18478
18479 However, because it's a necessary piece of information in
18480 Fortran, and before DWARF 4 DW_CC_program was the only
18481 piece of debugging information whose definition refers to
18482 a 'main program' at all, several compilers marked Fortran
18483 main programs with DW_CC_program --- even when those
18484 functions use the standard calling conventions.
18485
18486 Although DWARF now specifies a way to provide this
18487 information, we support this practice for backward
18488 compatibility. */
18489 if (DW_UNSND (&attr) == DW_CC_program
18490 && cu->language == language_fortran)
18491 main_subprogram = 1;
18492 break;
18493 case DW_AT_inline:
18494 if (DW_UNSND (&attr) == DW_INL_inlined
18495 || DW_UNSND (&attr) == DW_INL_declared_inlined)
18496 may_be_inlined = 1;
18497 break;
18498
18499 case DW_AT_import:
18500 if (tag == DW_TAG_imported_unit)
18501 {
18502 d.sect_off = dwarf2_get_ref_die_offset (&attr);
18503 is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18504 || cu->per_cu->is_dwz);
18505 }
18506 break;
18507
18508 case DW_AT_main_subprogram:
18509 main_subprogram = DW_UNSND (&attr);
18510 break;
18511
18512 default:
18513 break;
18514 }
18515 }
18516
18517 if (high_pc_relative)
18518 highpc += lowpc;
18519
18520 if (has_low_pc_attr && has_high_pc_attr)
18521 {
18522 /* When using the GNU linker, .gnu.linkonce. sections are used to
18523 eliminate duplicate copies of functions and vtables and such.
18524 The linker will arbitrarily choose one and discard the others.
18525 The AT_*_pc values for such functions refer to local labels in
18526 these sections. If the section from that file was discarded, the
18527 labels are not in the output, so the relocs get a value of 0.
18528 If this is a discarded function, mark the pc bounds as invalid,
18529 so that GDB will ignore it. */
18530 if (lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
18531 {
18532 struct objfile *objfile = dwarf2_per_objfile->objfile;
18533 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18534
18535 complaint (_("DW_AT_low_pc %s is zero "
18536 "for DIE at %s [in module %s]"),
18537 paddress (gdbarch, lowpc),
18538 sect_offset_str (sect_off),
18539 objfile_name (objfile));
18540 }
18541 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
18542 else if (lowpc >= highpc)
18543 {
18544 struct objfile *objfile = dwarf2_per_objfile->objfile;
18545 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18546
18547 complaint (_("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
18548 "for DIE at %s [in module %s]"),
18549 paddress (gdbarch, lowpc),
18550 paddress (gdbarch, highpc),
18551 sect_offset_str (sect_off),
18552 objfile_name (objfile));
18553 }
18554 else
18555 has_pc_info = 1;
18556 }
18557
18558 return info_ptr;
18559 }
18560
18561 /* Find a cached partial DIE at OFFSET in CU. */
18562
18563 struct partial_die_info *
18564 dwarf2_cu::find_partial_die (sect_offset sect_off)
18565 {
18566 struct partial_die_info *lookup_die = NULL;
18567 struct partial_die_info part_die (sect_off);
18568
18569 lookup_die = ((struct partial_die_info *)
18570 htab_find_with_hash (partial_dies, &part_die,
18571 to_underlying (sect_off)));
18572
18573 return lookup_die;
18574 }
18575
18576 /* Find a partial DIE at OFFSET, which may or may not be in CU,
18577 except in the case of .debug_types DIEs which do not reference
18578 outside their CU (they do however referencing other types via
18579 DW_FORM_ref_sig8). */
18580
18581 static struct partial_die_info *
18582 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
18583 {
18584 struct dwarf2_per_objfile *dwarf2_per_objfile
18585 = cu->per_cu->dwarf2_per_objfile;
18586 struct objfile *objfile = dwarf2_per_objfile->objfile;
18587 struct dwarf2_per_cu_data *per_cu = NULL;
18588 struct partial_die_info *pd = NULL;
18589
18590 if (offset_in_dwz == cu->per_cu->is_dwz
18591 && offset_in_cu_p (&cu->header, sect_off))
18592 {
18593 pd = cu->find_partial_die (sect_off);
18594 if (pd != NULL)
18595 return pd;
18596 /* We missed recording what we needed.
18597 Load all dies and try again. */
18598 per_cu = cu->per_cu;
18599 }
18600 else
18601 {
18602 /* TUs don't reference other CUs/TUs (except via type signatures). */
18603 if (cu->per_cu->is_debug_types)
18604 {
18605 error (_("Dwarf Error: Type Unit at offset %s contains"
18606 " external reference to offset %s [in module %s].\n"),
18607 sect_offset_str (cu->header.sect_off), sect_offset_str (sect_off),
18608 bfd_get_filename (objfile->obfd));
18609 }
18610 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
18611 dwarf2_per_objfile);
18612
18613 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
18614 load_partial_comp_unit (per_cu);
18615
18616 per_cu->cu->last_used = 0;
18617 pd = per_cu->cu->find_partial_die (sect_off);
18618 }
18619
18620 /* If we didn't find it, and not all dies have been loaded,
18621 load them all and try again. */
18622
18623 if (pd == NULL && per_cu->load_all_dies == 0)
18624 {
18625 per_cu->load_all_dies = 1;
18626
18627 /* This is nasty. When we reread the DIEs, somewhere up the call chain
18628 THIS_CU->cu may already be in use. So we can't just free it and
18629 replace its DIEs with the ones we read in. Instead, we leave those
18630 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
18631 and clobber THIS_CU->cu->partial_dies with the hash table for the new
18632 set. */
18633 load_partial_comp_unit (per_cu);
18634
18635 pd = per_cu->cu->find_partial_die (sect_off);
18636 }
18637
18638 if (pd == NULL)
18639 internal_error (__FILE__, __LINE__,
18640 _("could not find partial DIE %s "
18641 "in cache [from module %s]\n"),
18642 sect_offset_str (sect_off), bfd_get_filename (objfile->obfd));
18643 return pd;
18644 }
18645
18646 /* See if we can figure out if the class lives in a namespace. We do
18647 this by looking for a member function; its demangled name will
18648 contain namespace info, if there is any. */
18649
18650 static void
18651 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
18652 struct dwarf2_cu *cu)
18653 {
18654 /* NOTE: carlton/2003-10-07: Getting the info this way changes
18655 what template types look like, because the demangler
18656 frequently doesn't give the same name as the debug info. We
18657 could fix this by only using the demangled name to get the
18658 prefix (but see comment in read_structure_type). */
18659
18660 struct partial_die_info *real_pdi;
18661 struct partial_die_info *child_pdi;
18662
18663 /* If this DIE (this DIE's specification, if any) has a parent, then
18664 we should not do this. We'll prepend the parent's fully qualified
18665 name when we create the partial symbol. */
18666
18667 real_pdi = struct_pdi;
18668 while (real_pdi->has_specification)
18669 real_pdi = find_partial_die (real_pdi->spec_offset,
18670 real_pdi->spec_is_dwz, cu);
18671
18672 if (real_pdi->die_parent != NULL)
18673 return;
18674
18675 for (child_pdi = struct_pdi->die_child;
18676 child_pdi != NULL;
18677 child_pdi = child_pdi->die_sibling)
18678 {
18679 if (child_pdi->tag == DW_TAG_subprogram
18680 && child_pdi->linkage_name != NULL)
18681 {
18682 char *actual_class_name
18683 = language_class_name_from_physname (cu->language_defn,
18684 child_pdi->linkage_name);
18685 if (actual_class_name != NULL)
18686 {
18687 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18688 struct_pdi->name
18689 = ((const char *)
18690 obstack_copy0 (&objfile->per_bfd->storage_obstack,
18691 actual_class_name,
18692 strlen (actual_class_name)));
18693 xfree (actual_class_name);
18694 }
18695 break;
18696 }
18697 }
18698 }
18699
18700 void
18701 partial_die_info::fixup (struct dwarf2_cu *cu)
18702 {
18703 /* Once we've fixed up a die, there's no point in doing so again.
18704 This also avoids a memory leak if we were to call
18705 guess_partial_die_structure_name multiple times. */
18706 if (fixup_called)
18707 return;
18708
18709 /* If we found a reference attribute and the DIE has no name, try
18710 to find a name in the referred to DIE. */
18711
18712 if (name == NULL && has_specification)
18713 {
18714 struct partial_die_info *spec_die;
18715
18716 spec_die = find_partial_die (spec_offset, spec_is_dwz, cu);
18717
18718 spec_die->fixup (cu);
18719
18720 if (spec_die->name)
18721 {
18722 name = spec_die->name;
18723
18724 /* Copy DW_AT_external attribute if it is set. */
18725 if (spec_die->is_external)
18726 is_external = spec_die->is_external;
18727 }
18728 }
18729
18730 /* Set default names for some unnamed DIEs. */
18731
18732 if (name == NULL && tag == DW_TAG_namespace)
18733 name = CP_ANONYMOUS_NAMESPACE_STR;
18734
18735 /* If there is no parent die to provide a namespace, and there are
18736 children, see if we can determine the namespace from their linkage
18737 name. */
18738 if (cu->language == language_cplus
18739 && !VEC_empty (dwarf2_section_info_def,
18740 cu->per_cu->dwarf2_per_objfile->types)
18741 && die_parent == NULL
18742 && has_children
18743 && (tag == DW_TAG_class_type
18744 || tag == DW_TAG_structure_type
18745 || tag == DW_TAG_union_type))
18746 guess_partial_die_structure_name (this, cu);
18747
18748 /* GCC might emit a nameless struct or union that has a linkage
18749 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18750 if (name == NULL
18751 && (tag == DW_TAG_class_type
18752 || tag == DW_TAG_interface_type
18753 || tag == DW_TAG_structure_type
18754 || tag == DW_TAG_union_type)
18755 && linkage_name != NULL)
18756 {
18757 char *demangled;
18758
18759 demangled = gdb_demangle (linkage_name, DMGL_TYPES);
18760 if (demangled)
18761 {
18762 const char *base;
18763
18764 /* Strip any leading namespaces/classes, keep only the base name.
18765 DW_AT_name for named DIEs does not contain the prefixes. */
18766 base = strrchr (demangled, ':');
18767 if (base && base > demangled && base[-1] == ':')
18768 base++;
18769 else
18770 base = demangled;
18771
18772 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18773 name
18774 = ((const char *)
18775 obstack_copy0 (&objfile->per_bfd->storage_obstack,
18776 base, strlen (base)));
18777 xfree (demangled);
18778 }
18779 }
18780
18781 fixup_called = 1;
18782 }
18783
18784 /* Read an attribute value described by an attribute form. */
18785
18786 static const gdb_byte *
18787 read_attribute_value (const struct die_reader_specs *reader,
18788 struct attribute *attr, unsigned form,
18789 LONGEST implicit_const, const gdb_byte *info_ptr)
18790 {
18791 struct dwarf2_cu *cu = reader->cu;
18792 struct dwarf2_per_objfile *dwarf2_per_objfile
18793 = cu->per_cu->dwarf2_per_objfile;
18794 struct objfile *objfile = dwarf2_per_objfile->objfile;
18795 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18796 bfd *abfd = reader->abfd;
18797 struct comp_unit_head *cu_header = &cu->header;
18798 unsigned int bytes_read;
18799 struct dwarf_block *blk;
18800
18801 attr->form = (enum dwarf_form) form;
18802 switch (form)
18803 {
18804 case DW_FORM_ref_addr:
18805 if (cu->header.version == 2)
18806 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
18807 else
18808 DW_UNSND (attr) = read_offset (abfd, info_ptr,
18809 &cu->header, &bytes_read);
18810 info_ptr += bytes_read;
18811 break;
18812 case DW_FORM_GNU_ref_alt:
18813 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
18814 info_ptr += bytes_read;
18815 break;
18816 case DW_FORM_addr:
18817 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
18818 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
18819 info_ptr += bytes_read;
18820 break;
18821 case DW_FORM_block2:
18822 blk = dwarf_alloc_block (cu);
18823 blk->size = read_2_bytes (abfd, info_ptr);
18824 info_ptr += 2;
18825 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18826 info_ptr += blk->size;
18827 DW_BLOCK (attr) = blk;
18828 break;
18829 case DW_FORM_block4:
18830 blk = dwarf_alloc_block (cu);
18831 blk->size = read_4_bytes (abfd, info_ptr);
18832 info_ptr += 4;
18833 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18834 info_ptr += blk->size;
18835 DW_BLOCK (attr) = blk;
18836 break;
18837 case DW_FORM_data2:
18838 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
18839 info_ptr += 2;
18840 break;
18841 case DW_FORM_data4:
18842 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
18843 info_ptr += 4;
18844 break;
18845 case DW_FORM_data8:
18846 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
18847 info_ptr += 8;
18848 break;
18849 case DW_FORM_data16:
18850 blk = dwarf_alloc_block (cu);
18851 blk->size = 16;
18852 blk->data = read_n_bytes (abfd, info_ptr, 16);
18853 info_ptr += 16;
18854 DW_BLOCK (attr) = blk;
18855 break;
18856 case DW_FORM_sec_offset:
18857 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
18858 info_ptr += bytes_read;
18859 break;
18860 case DW_FORM_string:
18861 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
18862 DW_STRING_IS_CANONICAL (attr) = 0;
18863 info_ptr += bytes_read;
18864 break;
18865 case DW_FORM_strp:
18866 if (!cu->per_cu->is_dwz)
18867 {
18868 DW_STRING (attr) = read_indirect_string (dwarf2_per_objfile,
18869 abfd, info_ptr, cu_header,
18870 &bytes_read);
18871 DW_STRING_IS_CANONICAL (attr) = 0;
18872 info_ptr += bytes_read;
18873 break;
18874 }
18875 /* FALLTHROUGH */
18876 case DW_FORM_line_strp:
18877 if (!cu->per_cu->is_dwz)
18878 {
18879 DW_STRING (attr) = read_indirect_line_string (dwarf2_per_objfile,
18880 abfd, info_ptr,
18881 cu_header, &bytes_read);
18882 DW_STRING_IS_CANONICAL (attr) = 0;
18883 info_ptr += bytes_read;
18884 break;
18885 }
18886 /* FALLTHROUGH */
18887 case DW_FORM_GNU_strp_alt:
18888 {
18889 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
18890 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
18891 &bytes_read);
18892
18893 DW_STRING (attr) = read_indirect_string_from_dwz (objfile,
18894 dwz, str_offset);
18895 DW_STRING_IS_CANONICAL (attr) = 0;
18896 info_ptr += bytes_read;
18897 }
18898 break;
18899 case DW_FORM_exprloc:
18900 case DW_FORM_block:
18901 blk = dwarf_alloc_block (cu);
18902 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18903 info_ptr += bytes_read;
18904 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18905 info_ptr += blk->size;
18906 DW_BLOCK (attr) = blk;
18907 break;
18908 case DW_FORM_block1:
18909 blk = dwarf_alloc_block (cu);
18910 blk->size = read_1_byte (abfd, info_ptr);
18911 info_ptr += 1;
18912 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18913 info_ptr += blk->size;
18914 DW_BLOCK (attr) = blk;
18915 break;
18916 case DW_FORM_data1:
18917 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
18918 info_ptr += 1;
18919 break;
18920 case DW_FORM_flag:
18921 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
18922 info_ptr += 1;
18923 break;
18924 case DW_FORM_flag_present:
18925 DW_UNSND (attr) = 1;
18926 break;
18927 case DW_FORM_sdata:
18928 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
18929 info_ptr += bytes_read;
18930 break;
18931 case DW_FORM_udata:
18932 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18933 info_ptr += bytes_read;
18934 break;
18935 case DW_FORM_ref1:
18936 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
18937 + read_1_byte (abfd, info_ptr));
18938 info_ptr += 1;
18939 break;
18940 case DW_FORM_ref2:
18941 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
18942 + read_2_bytes (abfd, info_ptr));
18943 info_ptr += 2;
18944 break;
18945 case DW_FORM_ref4:
18946 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
18947 + read_4_bytes (abfd, info_ptr));
18948 info_ptr += 4;
18949 break;
18950 case DW_FORM_ref8:
18951 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
18952 + read_8_bytes (abfd, info_ptr));
18953 info_ptr += 8;
18954 break;
18955 case DW_FORM_ref_sig8:
18956 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
18957 info_ptr += 8;
18958 break;
18959 case DW_FORM_ref_udata:
18960 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
18961 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
18962 info_ptr += bytes_read;
18963 break;
18964 case DW_FORM_indirect:
18965 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18966 info_ptr += bytes_read;
18967 if (form == DW_FORM_implicit_const)
18968 {
18969 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
18970 info_ptr += bytes_read;
18971 }
18972 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
18973 info_ptr);
18974 break;
18975 case DW_FORM_implicit_const:
18976 DW_SND (attr) = implicit_const;
18977 break;
18978 case DW_FORM_GNU_addr_index:
18979 if (reader->dwo_file == NULL)
18980 {
18981 /* For now flag a hard error.
18982 Later we can turn this into a complaint. */
18983 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
18984 dwarf_form_name (form),
18985 bfd_get_filename (abfd));
18986 }
18987 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
18988 info_ptr += bytes_read;
18989 break;
18990 case DW_FORM_GNU_str_index:
18991 if (reader->dwo_file == NULL)
18992 {
18993 /* For now flag a hard error.
18994 Later we can turn this into a complaint if warranted. */
18995 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
18996 dwarf_form_name (form),
18997 bfd_get_filename (abfd));
18998 }
18999 {
19000 ULONGEST str_index =
19001 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19002
19003 DW_STRING (attr) = read_str_index (reader, str_index);
19004 DW_STRING_IS_CANONICAL (attr) = 0;
19005 info_ptr += bytes_read;
19006 }
19007 break;
19008 default:
19009 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
19010 dwarf_form_name (form),
19011 bfd_get_filename (abfd));
19012 }
19013
19014 /* Super hack. */
19015 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
19016 attr->form = DW_FORM_GNU_ref_alt;
19017
19018 /* We have seen instances where the compiler tried to emit a byte
19019 size attribute of -1 which ended up being encoded as an unsigned
19020 0xffffffff. Although 0xffffffff is technically a valid size value,
19021 an object of this size seems pretty unlikely so we can relatively
19022 safely treat these cases as if the size attribute was invalid and
19023 treat them as zero by default. */
19024 if (attr->name == DW_AT_byte_size
19025 && form == DW_FORM_data4
19026 && DW_UNSND (attr) >= 0xffffffff)
19027 {
19028 complaint
19029 (_("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
19030 hex_string (DW_UNSND (attr)));
19031 DW_UNSND (attr) = 0;
19032 }
19033
19034 return info_ptr;
19035 }
19036
19037 /* Read an attribute described by an abbreviated attribute. */
19038
19039 static const gdb_byte *
19040 read_attribute (const struct die_reader_specs *reader,
19041 struct attribute *attr, struct attr_abbrev *abbrev,
19042 const gdb_byte *info_ptr)
19043 {
19044 attr->name = abbrev->name;
19045 return read_attribute_value (reader, attr, abbrev->form,
19046 abbrev->implicit_const, info_ptr);
19047 }
19048
19049 /* Read dwarf information from a buffer. */
19050
19051 static unsigned int
19052 read_1_byte (bfd *abfd, const gdb_byte *buf)
19053 {
19054 return bfd_get_8 (abfd, buf);
19055 }
19056
19057 static int
19058 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
19059 {
19060 return bfd_get_signed_8 (abfd, buf);
19061 }
19062
19063 static unsigned int
19064 read_2_bytes (bfd *abfd, const gdb_byte *buf)
19065 {
19066 return bfd_get_16 (abfd, buf);
19067 }
19068
19069 static int
19070 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
19071 {
19072 return bfd_get_signed_16 (abfd, buf);
19073 }
19074
19075 static unsigned int
19076 read_4_bytes (bfd *abfd, const gdb_byte *buf)
19077 {
19078 return bfd_get_32 (abfd, buf);
19079 }
19080
19081 static int
19082 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
19083 {
19084 return bfd_get_signed_32 (abfd, buf);
19085 }
19086
19087 static ULONGEST
19088 read_8_bytes (bfd *abfd, const gdb_byte *buf)
19089 {
19090 return bfd_get_64 (abfd, buf);
19091 }
19092
19093 static CORE_ADDR
19094 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
19095 unsigned int *bytes_read)
19096 {
19097 struct comp_unit_head *cu_header = &cu->header;
19098 CORE_ADDR retval = 0;
19099
19100 if (cu_header->signed_addr_p)
19101 {
19102 switch (cu_header->addr_size)
19103 {
19104 case 2:
19105 retval = bfd_get_signed_16 (abfd, buf);
19106 break;
19107 case 4:
19108 retval = bfd_get_signed_32 (abfd, buf);
19109 break;
19110 case 8:
19111 retval = bfd_get_signed_64 (abfd, buf);
19112 break;
19113 default:
19114 internal_error (__FILE__, __LINE__,
19115 _("read_address: bad switch, signed [in module %s]"),
19116 bfd_get_filename (abfd));
19117 }
19118 }
19119 else
19120 {
19121 switch (cu_header->addr_size)
19122 {
19123 case 2:
19124 retval = bfd_get_16 (abfd, buf);
19125 break;
19126 case 4:
19127 retval = bfd_get_32 (abfd, buf);
19128 break;
19129 case 8:
19130 retval = bfd_get_64 (abfd, buf);
19131 break;
19132 default:
19133 internal_error (__FILE__, __LINE__,
19134 _("read_address: bad switch, "
19135 "unsigned [in module %s]"),
19136 bfd_get_filename (abfd));
19137 }
19138 }
19139
19140 *bytes_read = cu_header->addr_size;
19141 return retval;
19142 }
19143
19144 /* Read the initial length from a section. The (draft) DWARF 3
19145 specification allows the initial length to take up either 4 bytes
19146 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
19147 bytes describe the length and all offsets will be 8 bytes in length
19148 instead of 4.
19149
19150 An older, non-standard 64-bit format is also handled by this
19151 function. The older format in question stores the initial length
19152 as an 8-byte quantity without an escape value. Lengths greater
19153 than 2^32 aren't very common which means that the initial 4 bytes
19154 is almost always zero. Since a length value of zero doesn't make
19155 sense for the 32-bit format, this initial zero can be considered to
19156 be an escape value which indicates the presence of the older 64-bit
19157 format. As written, the code can't detect (old format) lengths
19158 greater than 4GB. If it becomes necessary to handle lengths
19159 somewhat larger than 4GB, we could allow other small values (such
19160 as the non-sensical values of 1, 2, and 3) to also be used as
19161 escape values indicating the presence of the old format.
19162
19163 The value returned via bytes_read should be used to increment the
19164 relevant pointer after calling read_initial_length().
19165
19166 [ Note: read_initial_length() and read_offset() are based on the
19167 document entitled "DWARF Debugging Information Format", revision
19168 3, draft 8, dated November 19, 2001. This document was obtained
19169 from:
19170
19171 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
19172
19173 This document is only a draft and is subject to change. (So beware.)
19174
19175 Details regarding the older, non-standard 64-bit format were
19176 determined empirically by examining 64-bit ELF files produced by
19177 the SGI toolchain on an IRIX 6.5 machine.
19178
19179 - Kevin, July 16, 2002
19180 ] */
19181
19182 static LONGEST
19183 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
19184 {
19185 LONGEST length = bfd_get_32 (abfd, buf);
19186
19187 if (length == 0xffffffff)
19188 {
19189 length = bfd_get_64 (abfd, buf + 4);
19190 *bytes_read = 12;
19191 }
19192 else if (length == 0)
19193 {
19194 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
19195 length = bfd_get_64 (abfd, buf);
19196 *bytes_read = 8;
19197 }
19198 else
19199 {
19200 *bytes_read = 4;
19201 }
19202
19203 return length;
19204 }
19205
19206 /* Cover function for read_initial_length.
19207 Returns the length of the object at BUF, and stores the size of the
19208 initial length in *BYTES_READ and stores the size that offsets will be in
19209 *OFFSET_SIZE.
19210 If the initial length size is not equivalent to that specified in
19211 CU_HEADER then issue a complaint.
19212 This is useful when reading non-comp-unit headers. */
19213
19214 static LONGEST
19215 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
19216 const struct comp_unit_head *cu_header,
19217 unsigned int *bytes_read,
19218 unsigned int *offset_size)
19219 {
19220 LONGEST length = read_initial_length (abfd, buf, bytes_read);
19221
19222 gdb_assert (cu_header->initial_length_size == 4
19223 || cu_header->initial_length_size == 8
19224 || cu_header->initial_length_size == 12);
19225
19226 if (cu_header->initial_length_size != *bytes_read)
19227 complaint (_("intermixed 32-bit and 64-bit DWARF sections"));
19228
19229 *offset_size = (*bytes_read == 4) ? 4 : 8;
19230 return length;
19231 }
19232
19233 /* Read an offset from the data stream. The size of the offset is
19234 given by cu_header->offset_size. */
19235
19236 static LONGEST
19237 read_offset (bfd *abfd, const gdb_byte *buf,
19238 const struct comp_unit_head *cu_header,
19239 unsigned int *bytes_read)
19240 {
19241 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
19242
19243 *bytes_read = cu_header->offset_size;
19244 return offset;
19245 }
19246
19247 /* Read an offset from the data stream. */
19248
19249 static LONGEST
19250 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
19251 {
19252 LONGEST retval = 0;
19253
19254 switch (offset_size)
19255 {
19256 case 4:
19257 retval = bfd_get_32 (abfd, buf);
19258 break;
19259 case 8:
19260 retval = bfd_get_64 (abfd, buf);
19261 break;
19262 default:
19263 internal_error (__FILE__, __LINE__,
19264 _("read_offset_1: bad switch [in module %s]"),
19265 bfd_get_filename (abfd));
19266 }
19267
19268 return retval;
19269 }
19270
19271 static const gdb_byte *
19272 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
19273 {
19274 /* If the size of a host char is 8 bits, we can return a pointer
19275 to the buffer, otherwise we have to copy the data to a buffer
19276 allocated on the temporary obstack. */
19277 gdb_assert (HOST_CHAR_BIT == 8);
19278 return buf;
19279 }
19280
19281 static const char *
19282 read_direct_string (bfd *abfd, const gdb_byte *buf,
19283 unsigned int *bytes_read_ptr)
19284 {
19285 /* If the size of a host char is 8 bits, we can return a pointer
19286 to the string, otherwise we have to copy the string to a buffer
19287 allocated on the temporary obstack. */
19288 gdb_assert (HOST_CHAR_BIT == 8);
19289 if (*buf == '\0')
19290 {
19291 *bytes_read_ptr = 1;
19292 return NULL;
19293 }
19294 *bytes_read_ptr = strlen ((const char *) buf) + 1;
19295 return (const char *) buf;
19296 }
19297
19298 /* Return pointer to string at section SECT offset STR_OFFSET with error
19299 reporting strings FORM_NAME and SECT_NAME. */
19300
19301 static const char *
19302 read_indirect_string_at_offset_from (struct objfile *objfile,
19303 bfd *abfd, LONGEST str_offset,
19304 struct dwarf2_section_info *sect,
19305 const char *form_name,
19306 const char *sect_name)
19307 {
19308 dwarf2_read_section (objfile, sect);
19309 if (sect->buffer == NULL)
19310 error (_("%s used without %s section [in module %s]"),
19311 form_name, sect_name, bfd_get_filename (abfd));
19312 if (str_offset >= sect->size)
19313 error (_("%s pointing outside of %s section [in module %s]"),
19314 form_name, sect_name, bfd_get_filename (abfd));
19315 gdb_assert (HOST_CHAR_BIT == 8);
19316 if (sect->buffer[str_offset] == '\0')
19317 return NULL;
19318 return (const char *) (sect->buffer + str_offset);
19319 }
19320
19321 /* Return pointer to string at .debug_str offset STR_OFFSET. */
19322
19323 static const char *
19324 read_indirect_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19325 bfd *abfd, LONGEST str_offset)
19326 {
19327 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19328 abfd, str_offset,
19329 &dwarf2_per_objfile->str,
19330 "DW_FORM_strp", ".debug_str");
19331 }
19332
19333 /* Return pointer to string at .debug_line_str offset STR_OFFSET. */
19334
19335 static const char *
19336 read_indirect_line_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19337 bfd *abfd, LONGEST str_offset)
19338 {
19339 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19340 abfd, str_offset,
19341 &dwarf2_per_objfile->line_str,
19342 "DW_FORM_line_strp",
19343 ".debug_line_str");
19344 }
19345
19346 /* Read a string at offset STR_OFFSET in the .debug_str section from
19347 the .dwz file DWZ. Throw an error if the offset is too large. If
19348 the string consists of a single NUL byte, return NULL; otherwise
19349 return a pointer to the string. */
19350
19351 static const char *
19352 read_indirect_string_from_dwz (struct objfile *objfile, struct dwz_file *dwz,
19353 LONGEST str_offset)
19354 {
19355 dwarf2_read_section (objfile, &dwz->str);
19356
19357 if (dwz->str.buffer == NULL)
19358 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
19359 "section [in module %s]"),
19360 bfd_get_filename (dwz->dwz_bfd));
19361 if (str_offset >= dwz->str.size)
19362 error (_("DW_FORM_GNU_strp_alt pointing outside of "
19363 ".debug_str section [in module %s]"),
19364 bfd_get_filename (dwz->dwz_bfd));
19365 gdb_assert (HOST_CHAR_BIT == 8);
19366 if (dwz->str.buffer[str_offset] == '\0')
19367 return NULL;
19368 return (const char *) (dwz->str.buffer + str_offset);
19369 }
19370
19371 /* Return pointer to string at .debug_str offset as read from BUF.
19372 BUF is assumed to be in a compilation unit described by CU_HEADER.
19373 Return *BYTES_READ_PTR count of bytes read from BUF. */
19374
19375 static const char *
19376 read_indirect_string (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
19377 const gdb_byte *buf,
19378 const struct comp_unit_head *cu_header,
19379 unsigned int *bytes_read_ptr)
19380 {
19381 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19382
19383 return read_indirect_string_at_offset (dwarf2_per_objfile, abfd, str_offset);
19384 }
19385
19386 /* Return pointer to string at .debug_line_str offset as read from BUF.
19387 BUF is assumed to be in a compilation unit described by CU_HEADER.
19388 Return *BYTES_READ_PTR count of bytes read from BUF. */
19389
19390 static const char *
19391 read_indirect_line_string (struct dwarf2_per_objfile *dwarf2_per_objfile,
19392 bfd *abfd, const gdb_byte *buf,
19393 const struct comp_unit_head *cu_header,
19394 unsigned int *bytes_read_ptr)
19395 {
19396 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19397
19398 return read_indirect_line_string_at_offset (dwarf2_per_objfile, abfd,
19399 str_offset);
19400 }
19401
19402 ULONGEST
19403 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
19404 unsigned int *bytes_read_ptr)
19405 {
19406 ULONGEST result;
19407 unsigned int num_read;
19408 int shift;
19409 unsigned char byte;
19410
19411 result = 0;
19412 shift = 0;
19413 num_read = 0;
19414 while (1)
19415 {
19416 byte = bfd_get_8 (abfd, buf);
19417 buf++;
19418 num_read++;
19419 result |= ((ULONGEST) (byte & 127) << shift);
19420 if ((byte & 128) == 0)
19421 {
19422 break;
19423 }
19424 shift += 7;
19425 }
19426 *bytes_read_ptr = num_read;
19427 return result;
19428 }
19429
19430 static LONGEST
19431 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
19432 unsigned int *bytes_read_ptr)
19433 {
19434 LONGEST result;
19435 int shift, num_read;
19436 unsigned char byte;
19437
19438 result = 0;
19439 shift = 0;
19440 num_read = 0;
19441 while (1)
19442 {
19443 byte = bfd_get_8 (abfd, buf);
19444 buf++;
19445 num_read++;
19446 result |= ((LONGEST) (byte & 127) << shift);
19447 shift += 7;
19448 if ((byte & 128) == 0)
19449 {
19450 break;
19451 }
19452 }
19453 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
19454 result |= -(((LONGEST) 1) << shift);
19455 *bytes_read_ptr = num_read;
19456 return result;
19457 }
19458
19459 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
19460 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
19461 ADDR_SIZE is the size of addresses from the CU header. */
19462
19463 static CORE_ADDR
19464 read_addr_index_1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
19465 unsigned int addr_index, ULONGEST addr_base, int addr_size)
19466 {
19467 struct objfile *objfile = dwarf2_per_objfile->objfile;
19468 bfd *abfd = objfile->obfd;
19469 const gdb_byte *info_ptr;
19470
19471 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
19472 if (dwarf2_per_objfile->addr.buffer == NULL)
19473 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
19474 objfile_name (objfile));
19475 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
19476 error (_("DW_FORM_addr_index pointing outside of "
19477 ".debug_addr section [in module %s]"),
19478 objfile_name (objfile));
19479 info_ptr = (dwarf2_per_objfile->addr.buffer
19480 + addr_base + addr_index * addr_size);
19481 if (addr_size == 4)
19482 return bfd_get_32 (abfd, info_ptr);
19483 else
19484 return bfd_get_64 (abfd, info_ptr);
19485 }
19486
19487 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
19488
19489 static CORE_ADDR
19490 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
19491 {
19492 return read_addr_index_1 (cu->per_cu->dwarf2_per_objfile, addr_index,
19493 cu->addr_base, cu->header.addr_size);
19494 }
19495
19496 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
19497
19498 static CORE_ADDR
19499 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
19500 unsigned int *bytes_read)
19501 {
19502 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
19503 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
19504
19505 return read_addr_index (cu, addr_index);
19506 }
19507
19508 /* Data structure to pass results from dwarf2_read_addr_index_reader
19509 back to dwarf2_read_addr_index. */
19510
19511 struct dwarf2_read_addr_index_data
19512 {
19513 ULONGEST addr_base;
19514 int addr_size;
19515 };
19516
19517 /* die_reader_func for dwarf2_read_addr_index. */
19518
19519 static void
19520 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
19521 const gdb_byte *info_ptr,
19522 struct die_info *comp_unit_die,
19523 int has_children,
19524 void *data)
19525 {
19526 struct dwarf2_cu *cu = reader->cu;
19527 struct dwarf2_read_addr_index_data *aidata =
19528 (struct dwarf2_read_addr_index_data *) data;
19529
19530 aidata->addr_base = cu->addr_base;
19531 aidata->addr_size = cu->header.addr_size;
19532 }
19533
19534 /* Given an index in .debug_addr, fetch the value.
19535 NOTE: This can be called during dwarf expression evaluation,
19536 long after the debug information has been read, and thus per_cu->cu
19537 may no longer exist. */
19538
19539 CORE_ADDR
19540 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
19541 unsigned int addr_index)
19542 {
19543 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
19544 struct dwarf2_cu *cu = per_cu->cu;
19545 ULONGEST addr_base;
19546 int addr_size;
19547
19548 /* We need addr_base and addr_size.
19549 If we don't have PER_CU->cu, we have to get it.
19550 Nasty, but the alternative is storing the needed info in PER_CU,
19551 which at this point doesn't seem justified: it's not clear how frequently
19552 it would get used and it would increase the size of every PER_CU.
19553 Entry points like dwarf2_per_cu_addr_size do a similar thing
19554 so we're not in uncharted territory here.
19555 Alas we need to be a bit more complicated as addr_base is contained
19556 in the DIE.
19557
19558 We don't need to read the entire CU(/TU).
19559 We just need the header and top level die.
19560
19561 IWBN to use the aging mechanism to let us lazily later discard the CU.
19562 For now we skip this optimization. */
19563
19564 if (cu != NULL)
19565 {
19566 addr_base = cu->addr_base;
19567 addr_size = cu->header.addr_size;
19568 }
19569 else
19570 {
19571 struct dwarf2_read_addr_index_data aidata;
19572
19573 /* Note: We can't use init_cutu_and_read_dies_simple here,
19574 we need addr_base. */
19575 init_cutu_and_read_dies (per_cu, NULL, 0, 0, false,
19576 dwarf2_read_addr_index_reader, &aidata);
19577 addr_base = aidata.addr_base;
19578 addr_size = aidata.addr_size;
19579 }
19580
19581 return read_addr_index_1 (dwarf2_per_objfile, addr_index, addr_base,
19582 addr_size);
19583 }
19584
19585 /* Given a DW_FORM_GNU_str_index, fetch the string.
19586 This is only used by the Fission support. */
19587
19588 static const char *
19589 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
19590 {
19591 struct dwarf2_cu *cu = reader->cu;
19592 struct dwarf2_per_objfile *dwarf2_per_objfile
19593 = cu->per_cu->dwarf2_per_objfile;
19594 struct objfile *objfile = dwarf2_per_objfile->objfile;
19595 const char *objf_name = objfile_name (objfile);
19596 bfd *abfd = objfile->obfd;
19597 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
19598 struct dwarf2_section_info *str_offsets_section =
19599 &reader->dwo_file->sections.str_offsets;
19600 const gdb_byte *info_ptr;
19601 ULONGEST str_offset;
19602 static const char form_name[] = "DW_FORM_GNU_str_index";
19603
19604 dwarf2_read_section (objfile, str_section);
19605 dwarf2_read_section (objfile, str_offsets_section);
19606 if (str_section->buffer == NULL)
19607 error (_("%s used without .debug_str.dwo section"
19608 " in CU at offset %s [in module %s]"),
19609 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19610 if (str_offsets_section->buffer == NULL)
19611 error (_("%s used without .debug_str_offsets.dwo section"
19612 " in CU at offset %s [in module %s]"),
19613 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19614 if (str_index * cu->header.offset_size >= str_offsets_section->size)
19615 error (_("%s pointing outside of .debug_str_offsets.dwo"
19616 " section in CU at offset %s [in module %s]"),
19617 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19618 info_ptr = (str_offsets_section->buffer
19619 + str_index * cu->header.offset_size);
19620 if (cu->header.offset_size == 4)
19621 str_offset = bfd_get_32 (abfd, info_ptr);
19622 else
19623 str_offset = bfd_get_64 (abfd, info_ptr);
19624 if (str_offset >= str_section->size)
19625 error (_("Offset from %s pointing outside of"
19626 " .debug_str.dwo section in CU at offset %s [in module %s]"),
19627 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19628 return (const char *) (str_section->buffer + str_offset);
19629 }
19630
19631 /* Return the length of an LEB128 number in BUF. */
19632
19633 static int
19634 leb128_size (const gdb_byte *buf)
19635 {
19636 const gdb_byte *begin = buf;
19637 gdb_byte byte;
19638
19639 while (1)
19640 {
19641 byte = *buf++;
19642 if ((byte & 128) == 0)
19643 return buf - begin;
19644 }
19645 }
19646
19647 static void
19648 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
19649 {
19650 switch (lang)
19651 {
19652 case DW_LANG_C89:
19653 case DW_LANG_C99:
19654 case DW_LANG_C11:
19655 case DW_LANG_C:
19656 case DW_LANG_UPC:
19657 cu->language = language_c;
19658 break;
19659 case DW_LANG_Java:
19660 case DW_LANG_C_plus_plus:
19661 case DW_LANG_C_plus_plus_11:
19662 case DW_LANG_C_plus_plus_14:
19663 cu->language = language_cplus;
19664 break;
19665 case DW_LANG_D:
19666 cu->language = language_d;
19667 break;
19668 case DW_LANG_Fortran77:
19669 case DW_LANG_Fortran90:
19670 case DW_LANG_Fortran95:
19671 case DW_LANG_Fortran03:
19672 case DW_LANG_Fortran08:
19673 cu->language = language_fortran;
19674 break;
19675 case DW_LANG_Go:
19676 cu->language = language_go;
19677 break;
19678 case DW_LANG_Mips_Assembler:
19679 cu->language = language_asm;
19680 break;
19681 case DW_LANG_Ada83:
19682 case DW_LANG_Ada95:
19683 cu->language = language_ada;
19684 break;
19685 case DW_LANG_Modula2:
19686 cu->language = language_m2;
19687 break;
19688 case DW_LANG_Pascal83:
19689 cu->language = language_pascal;
19690 break;
19691 case DW_LANG_ObjC:
19692 cu->language = language_objc;
19693 break;
19694 case DW_LANG_Rust:
19695 case DW_LANG_Rust_old:
19696 cu->language = language_rust;
19697 break;
19698 case DW_LANG_Cobol74:
19699 case DW_LANG_Cobol85:
19700 default:
19701 cu->language = language_minimal;
19702 break;
19703 }
19704 cu->language_defn = language_def (cu->language);
19705 }
19706
19707 /* Return the named attribute or NULL if not there. */
19708
19709 static struct attribute *
19710 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19711 {
19712 for (;;)
19713 {
19714 unsigned int i;
19715 struct attribute *spec = NULL;
19716
19717 for (i = 0; i < die->num_attrs; ++i)
19718 {
19719 if (die->attrs[i].name == name)
19720 return &die->attrs[i];
19721 if (die->attrs[i].name == DW_AT_specification
19722 || die->attrs[i].name == DW_AT_abstract_origin)
19723 spec = &die->attrs[i];
19724 }
19725
19726 if (!spec)
19727 break;
19728
19729 die = follow_die_ref (die, spec, &cu);
19730 }
19731
19732 return NULL;
19733 }
19734
19735 /* Return the named attribute or NULL if not there,
19736 but do not follow DW_AT_specification, etc.
19737 This is for use in contexts where we're reading .debug_types dies.
19738 Following DW_AT_specification, DW_AT_abstract_origin will take us
19739 back up the chain, and we want to go down. */
19740
19741 static struct attribute *
19742 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
19743 {
19744 unsigned int i;
19745
19746 for (i = 0; i < die->num_attrs; ++i)
19747 if (die->attrs[i].name == name)
19748 return &die->attrs[i];
19749
19750 return NULL;
19751 }
19752
19753 /* Return the string associated with a string-typed attribute, or NULL if it
19754 is either not found or is of an incorrect type. */
19755
19756 static const char *
19757 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19758 {
19759 struct attribute *attr;
19760 const char *str = NULL;
19761
19762 attr = dwarf2_attr (die, name, cu);
19763
19764 if (attr != NULL)
19765 {
19766 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
19767 || attr->form == DW_FORM_string
19768 || attr->form == DW_FORM_GNU_str_index
19769 || attr->form == DW_FORM_GNU_strp_alt)
19770 str = DW_STRING (attr);
19771 else
19772 complaint (_("string type expected for attribute %s for "
19773 "DIE at %s in module %s"),
19774 dwarf_attr_name (name), sect_offset_str (die->sect_off),
19775 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
19776 }
19777
19778 return str;
19779 }
19780
19781 /* Return non-zero iff the attribute NAME is defined for the given DIE,
19782 and holds a non-zero value. This function should only be used for
19783 DW_FORM_flag or DW_FORM_flag_present attributes. */
19784
19785 static int
19786 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
19787 {
19788 struct attribute *attr = dwarf2_attr (die, name, cu);
19789
19790 return (attr && DW_UNSND (attr));
19791 }
19792
19793 static int
19794 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
19795 {
19796 /* A DIE is a declaration if it has a DW_AT_declaration attribute
19797 which value is non-zero. However, we have to be careful with
19798 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
19799 (via dwarf2_flag_true_p) follows this attribute. So we may
19800 end up accidently finding a declaration attribute that belongs
19801 to a different DIE referenced by the specification attribute,
19802 even though the given DIE does not have a declaration attribute. */
19803 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
19804 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
19805 }
19806
19807 /* Return the die giving the specification for DIE, if there is
19808 one. *SPEC_CU is the CU containing DIE on input, and the CU
19809 containing the return value on output. If there is no
19810 specification, but there is an abstract origin, that is
19811 returned. */
19812
19813 static struct die_info *
19814 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
19815 {
19816 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
19817 *spec_cu);
19818
19819 if (spec_attr == NULL)
19820 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
19821
19822 if (spec_attr == NULL)
19823 return NULL;
19824 else
19825 return follow_die_ref (die, spec_attr, spec_cu);
19826 }
19827
19828 /* Stub for free_line_header to match void * callback types. */
19829
19830 static void
19831 free_line_header_voidp (void *arg)
19832 {
19833 struct line_header *lh = (struct line_header *) arg;
19834
19835 delete lh;
19836 }
19837
19838 void
19839 line_header::add_include_dir (const char *include_dir)
19840 {
19841 if (dwarf_line_debug >= 2)
19842 fprintf_unfiltered (gdb_stdlog, "Adding dir %zu: %s\n",
19843 include_dirs.size () + 1, include_dir);
19844
19845 include_dirs.push_back (include_dir);
19846 }
19847
19848 void
19849 line_header::add_file_name (const char *name,
19850 dir_index d_index,
19851 unsigned int mod_time,
19852 unsigned int length)
19853 {
19854 if (dwarf_line_debug >= 2)
19855 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
19856 (unsigned) file_names.size () + 1, name);
19857
19858 file_names.emplace_back (name, d_index, mod_time, length);
19859 }
19860
19861 /* A convenience function to find the proper .debug_line section for a CU. */
19862
19863 static struct dwarf2_section_info *
19864 get_debug_line_section (struct dwarf2_cu *cu)
19865 {
19866 struct dwarf2_section_info *section;
19867 struct dwarf2_per_objfile *dwarf2_per_objfile
19868 = cu->per_cu->dwarf2_per_objfile;
19869
19870 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
19871 DWO file. */
19872 if (cu->dwo_unit && cu->per_cu->is_debug_types)
19873 section = &cu->dwo_unit->dwo_file->sections.line;
19874 else if (cu->per_cu->is_dwz)
19875 {
19876 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
19877
19878 section = &dwz->line;
19879 }
19880 else
19881 section = &dwarf2_per_objfile->line;
19882
19883 return section;
19884 }
19885
19886 /* Read directory or file name entry format, starting with byte of
19887 format count entries, ULEB128 pairs of entry formats, ULEB128 of
19888 entries count and the entries themselves in the described entry
19889 format. */
19890
19891 static void
19892 read_formatted_entries (struct dwarf2_per_objfile *dwarf2_per_objfile,
19893 bfd *abfd, const gdb_byte **bufp,
19894 struct line_header *lh,
19895 const struct comp_unit_head *cu_header,
19896 void (*callback) (struct line_header *lh,
19897 const char *name,
19898 dir_index d_index,
19899 unsigned int mod_time,
19900 unsigned int length))
19901 {
19902 gdb_byte format_count, formati;
19903 ULONGEST data_count, datai;
19904 const gdb_byte *buf = *bufp;
19905 const gdb_byte *format_header_data;
19906 unsigned int bytes_read;
19907
19908 format_count = read_1_byte (abfd, buf);
19909 buf += 1;
19910 format_header_data = buf;
19911 for (formati = 0; formati < format_count; formati++)
19912 {
19913 read_unsigned_leb128 (abfd, buf, &bytes_read);
19914 buf += bytes_read;
19915 read_unsigned_leb128 (abfd, buf, &bytes_read);
19916 buf += bytes_read;
19917 }
19918
19919 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
19920 buf += bytes_read;
19921 for (datai = 0; datai < data_count; datai++)
19922 {
19923 const gdb_byte *format = format_header_data;
19924 struct file_entry fe;
19925
19926 for (formati = 0; formati < format_count; formati++)
19927 {
19928 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
19929 format += bytes_read;
19930
19931 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
19932 format += bytes_read;
19933
19934 gdb::optional<const char *> string;
19935 gdb::optional<unsigned int> uint;
19936
19937 switch (form)
19938 {
19939 case DW_FORM_string:
19940 string.emplace (read_direct_string (abfd, buf, &bytes_read));
19941 buf += bytes_read;
19942 break;
19943
19944 case DW_FORM_line_strp:
19945 string.emplace (read_indirect_line_string (dwarf2_per_objfile,
19946 abfd, buf,
19947 cu_header,
19948 &bytes_read));
19949 buf += bytes_read;
19950 break;
19951
19952 case DW_FORM_data1:
19953 uint.emplace (read_1_byte (abfd, buf));
19954 buf += 1;
19955 break;
19956
19957 case DW_FORM_data2:
19958 uint.emplace (read_2_bytes (abfd, buf));
19959 buf += 2;
19960 break;
19961
19962 case DW_FORM_data4:
19963 uint.emplace (read_4_bytes (abfd, buf));
19964 buf += 4;
19965 break;
19966
19967 case DW_FORM_data8:
19968 uint.emplace (read_8_bytes (abfd, buf));
19969 buf += 8;
19970 break;
19971
19972 case DW_FORM_udata:
19973 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
19974 buf += bytes_read;
19975 break;
19976
19977 case DW_FORM_block:
19978 /* It is valid only for DW_LNCT_timestamp which is ignored by
19979 current GDB. */
19980 break;
19981 }
19982
19983 switch (content_type)
19984 {
19985 case DW_LNCT_path:
19986 if (string.has_value ())
19987 fe.name = *string;
19988 break;
19989 case DW_LNCT_directory_index:
19990 if (uint.has_value ())
19991 fe.d_index = (dir_index) *uint;
19992 break;
19993 case DW_LNCT_timestamp:
19994 if (uint.has_value ())
19995 fe.mod_time = *uint;
19996 break;
19997 case DW_LNCT_size:
19998 if (uint.has_value ())
19999 fe.length = *uint;
20000 break;
20001 case DW_LNCT_MD5:
20002 break;
20003 default:
20004 complaint (_("Unknown format content type %s"),
20005 pulongest (content_type));
20006 }
20007 }
20008
20009 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
20010 }
20011
20012 *bufp = buf;
20013 }
20014
20015 /* Read the statement program header starting at OFFSET in
20016 .debug_line, or .debug_line.dwo. Return a pointer
20017 to a struct line_header, allocated using xmalloc.
20018 Returns NULL if there is a problem reading the header, e.g., if it
20019 has a version we don't understand.
20020
20021 NOTE: the strings in the include directory and file name tables of
20022 the returned object point into the dwarf line section buffer,
20023 and must not be freed. */
20024
20025 static line_header_up
20026 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
20027 {
20028 const gdb_byte *line_ptr;
20029 unsigned int bytes_read, offset_size;
20030 int i;
20031 const char *cur_dir, *cur_file;
20032 struct dwarf2_section_info *section;
20033 bfd *abfd;
20034 struct dwarf2_per_objfile *dwarf2_per_objfile
20035 = cu->per_cu->dwarf2_per_objfile;
20036
20037 section = get_debug_line_section (cu);
20038 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
20039 if (section->buffer == NULL)
20040 {
20041 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20042 complaint (_("missing .debug_line.dwo section"));
20043 else
20044 complaint (_("missing .debug_line section"));
20045 return 0;
20046 }
20047
20048 /* We can't do this until we know the section is non-empty.
20049 Only then do we know we have such a section. */
20050 abfd = get_section_bfd_owner (section);
20051
20052 /* Make sure that at least there's room for the total_length field.
20053 That could be 12 bytes long, but we're just going to fudge that. */
20054 if (to_underlying (sect_off) + 4 >= section->size)
20055 {
20056 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20057 return 0;
20058 }
20059
20060 line_header_up lh (new line_header ());
20061
20062 lh->sect_off = sect_off;
20063 lh->offset_in_dwz = cu->per_cu->is_dwz;
20064
20065 line_ptr = section->buffer + to_underlying (sect_off);
20066
20067 /* Read in the header. */
20068 lh->total_length =
20069 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
20070 &bytes_read, &offset_size);
20071 line_ptr += bytes_read;
20072 if (line_ptr + lh->total_length > (section->buffer + section->size))
20073 {
20074 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20075 return 0;
20076 }
20077 lh->statement_program_end = line_ptr + lh->total_length;
20078 lh->version = read_2_bytes (abfd, line_ptr);
20079 line_ptr += 2;
20080 if (lh->version > 5)
20081 {
20082 /* This is a version we don't understand. The format could have
20083 changed in ways we don't handle properly so just punt. */
20084 complaint (_("unsupported version in .debug_line section"));
20085 return NULL;
20086 }
20087 if (lh->version >= 5)
20088 {
20089 gdb_byte segment_selector_size;
20090
20091 /* Skip address size. */
20092 read_1_byte (abfd, line_ptr);
20093 line_ptr += 1;
20094
20095 segment_selector_size = read_1_byte (abfd, line_ptr);
20096 line_ptr += 1;
20097 if (segment_selector_size != 0)
20098 {
20099 complaint (_("unsupported segment selector size %u "
20100 "in .debug_line section"),
20101 segment_selector_size);
20102 return NULL;
20103 }
20104 }
20105 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
20106 line_ptr += offset_size;
20107 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
20108 line_ptr += 1;
20109 if (lh->version >= 4)
20110 {
20111 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
20112 line_ptr += 1;
20113 }
20114 else
20115 lh->maximum_ops_per_instruction = 1;
20116
20117 if (lh->maximum_ops_per_instruction == 0)
20118 {
20119 lh->maximum_ops_per_instruction = 1;
20120 complaint (_("invalid maximum_ops_per_instruction "
20121 "in `.debug_line' section"));
20122 }
20123
20124 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
20125 line_ptr += 1;
20126 lh->line_base = read_1_signed_byte (abfd, line_ptr);
20127 line_ptr += 1;
20128 lh->line_range = read_1_byte (abfd, line_ptr);
20129 line_ptr += 1;
20130 lh->opcode_base = read_1_byte (abfd, line_ptr);
20131 line_ptr += 1;
20132 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
20133
20134 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
20135 for (i = 1; i < lh->opcode_base; ++i)
20136 {
20137 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
20138 line_ptr += 1;
20139 }
20140
20141 if (lh->version >= 5)
20142 {
20143 /* Read directory table. */
20144 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20145 &cu->header,
20146 [] (struct line_header *lh, const char *name,
20147 dir_index d_index, unsigned int mod_time,
20148 unsigned int length)
20149 {
20150 lh->add_include_dir (name);
20151 });
20152
20153 /* Read file name table. */
20154 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20155 &cu->header,
20156 [] (struct line_header *lh, const char *name,
20157 dir_index d_index, unsigned int mod_time,
20158 unsigned int length)
20159 {
20160 lh->add_file_name (name, d_index, mod_time, length);
20161 });
20162 }
20163 else
20164 {
20165 /* Read directory table. */
20166 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20167 {
20168 line_ptr += bytes_read;
20169 lh->add_include_dir (cur_dir);
20170 }
20171 line_ptr += bytes_read;
20172
20173 /* Read file name table. */
20174 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20175 {
20176 unsigned int mod_time, length;
20177 dir_index d_index;
20178
20179 line_ptr += bytes_read;
20180 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20181 line_ptr += bytes_read;
20182 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20183 line_ptr += bytes_read;
20184 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20185 line_ptr += bytes_read;
20186
20187 lh->add_file_name (cur_file, d_index, mod_time, length);
20188 }
20189 line_ptr += bytes_read;
20190 }
20191 lh->statement_program_start = line_ptr;
20192
20193 if (line_ptr > (section->buffer + section->size))
20194 complaint (_("line number info header doesn't "
20195 "fit in `.debug_line' section"));
20196
20197 return lh;
20198 }
20199
20200 /* Subroutine of dwarf_decode_lines to simplify it.
20201 Return the file name of the psymtab for included file FILE_INDEX
20202 in line header LH of PST.
20203 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20204 If space for the result is malloc'd, *NAME_HOLDER will be set.
20205 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
20206
20207 static const char *
20208 psymtab_include_file_name (const struct line_header *lh, int file_index,
20209 const struct partial_symtab *pst,
20210 const char *comp_dir,
20211 gdb::unique_xmalloc_ptr<char> *name_holder)
20212 {
20213 const file_entry &fe = lh->file_names[file_index];
20214 const char *include_name = fe.name;
20215 const char *include_name_to_compare = include_name;
20216 const char *pst_filename;
20217 int file_is_pst;
20218
20219 const char *dir_name = fe.include_dir (lh);
20220
20221 gdb::unique_xmalloc_ptr<char> hold_compare;
20222 if (!IS_ABSOLUTE_PATH (include_name)
20223 && (dir_name != NULL || comp_dir != NULL))
20224 {
20225 /* Avoid creating a duplicate psymtab for PST.
20226 We do this by comparing INCLUDE_NAME and PST_FILENAME.
20227 Before we do the comparison, however, we need to account
20228 for DIR_NAME and COMP_DIR.
20229 First prepend dir_name (if non-NULL). If we still don't
20230 have an absolute path prepend comp_dir (if non-NULL).
20231 However, the directory we record in the include-file's
20232 psymtab does not contain COMP_DIR (to match the
20233 corresponding symtab(s)).
20234
20235 Example:
20236
20237 bash$ cd /tmp
20238 bash$ gcc -g ./hello.c
20239 include_name = "hello.c"
20240 dir_name = "."
20241 DW_AT_comp_dir = comp_dir = "/tmp"
20242 DW_AT_name = "./hello.c"
20243
20244 */
20245
20246 if (dir_name != NULL)
20247 {
20248 name_holder->reset (concat (dir_name, SLASH_STRING,
20249 include_name, (char *) NULL));
20250 include_name = name_holder->get ();
20251 include_name_to_compare = include_name;
20252 }
20253 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
20254 {
20255 hold_compare.reset (concat (comp_dir, SLASH_STRING,
20256 include_name, (char *) NULL));
20257 include_name_to_compare = hold_compare.get ();
20258 }
20259 }
20260
20261 pst_filename = pst->filename;
20262 gdb::unique_xmalloc_ptr<char> copied_name;
20263 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
20264 {
20265 copied_name.reset (concat (pst->dirname, SLASH_STRING,
20266 pst_filename, (char *) NULL));
20267 pst_filename = copied_name.get ();
20268 }
20269
20270 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
20271
20272 if (file_is_pst)
20273 return NULL;
20274 return include_name;
20275 }
20276
20277 /* State machine to track the state of the line number program. */
20278
20279 class lnp_state_machine
20280 {
20281 public:
20282 /* Initialize a machine state for the start of a line number
20283 program. */
20284 lnp_state_machine (gdbarch *arch, line_header *lh, bool record_lines_p);
20285
20286 file_entry *current_file ()
20287 {
20288 /* lh->file_names is 0-based, but the file name numbers in the
20289 statement program are 1-based. */
20290 return m_line_header->file_name_at (m_file);
20291 }
20292
20293 /* Record the line in the state machine. END_SEQUENCE is true if
20294 we're processing the end of a sequence. */
20295 void record_line (bool end_sequence);
20296
20297 /* Check ADDRESS is zero and less than UNRELOCATED_LOWPC and if true
20298 nop-out rest of the lines in this sequence. */
20299 void check_line_address (struct dwarf2_cu *cu,
20300 const gdb_byte *line_ptr,
20301 CORE_ADDR unrelocated_lowpc, CORE_ADDR address);
20302
20303 void handle_set_discriminator (unsigned int discriminator)
20304 {
20305 m_discriminator = discriminator;
20306 m_line_has_non_zero_discriminator |= discriminator != 0;
20307 }
20308
20309 /* Handle DW_LNE_set_address. */
20310 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
20311 {
20312 m_op_index = 0;
20313 address += baseaddr;
20314 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
20315 }
20316
20317 /* Handle DW_LNS_advance_pc. */
20318 void handle_advance_pc (CORE_ADDR adjust);
20319
20320 /* Handle a special opcode. */
20321 void handle_special_opcode (unsigned char op_code);
20322
20323 /* Handle DW_LNS_advance_line. */
20324 void handle_advance_line (int line_delta)
20325 {
20326 advance_line (line_delta);
20327 }
20328
20329 /* Handle DW_LNS_set_file. */
20330 void handle_set_file (file_name_index file);
20331
20332 /* Handle DW_LNS_negate_stmt. */
20333 void handle_negate_stmt ()
20334 {
20335 m_is_stmt = !m_is_stmt;
20336 }
20337
20338 /* Handle DW_LNS_const_add_pc. */
20339 void handle_const_add_pc ();
20340
20341 /* Handle DW_LNS_fixed_advance_pc. */
20342 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
20343 {
20344 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20345 m_op_index = 0;
20346 }
20347
20348 /* Handle DW_LNS_copy. */
20349 void handle_copy ()
20350 {
20351 record_line (false);
20352 m_discriminator = 0;
20353 }
20354
20355 /* Handle DW_LNE_end_sequence. */
20356 void handle_end_sequence ()
20357 {
20358 m_record_line_callback = ::record_line;
20359 }
20360
20361 private:
20362 /* Advance the line by LINE_DELTA. */
20363 void advance_line (int line_delta)
20364 {
20365 m_line += line_delta;
20366
20367 if (line_delta != 0)
20368 m_line_has_non_zero_discriminator = m_discriminator != 0;
20369 }
20370
20371 gdbarch *m_gdbarch;
20372
20373 /* True if we're recording lines.
20374 Otherwise we're building partial symtabs and are just interested in
20375 finding include files mentioned by the line number program. */
20376 bool m_record_lines_p;
20377
20378 /* The line number header. */
20379 line_header *m_line_header;
20380
20381 /* These are part of the standard DWARF line number state machine,
20382 and initialized according to the DWARF spec. */
20383
20384 unsigned char m_op_index = 0;
20385 /* The line table index (1-based) of the current file. */
20386 file_name_index m_file = (file_name_index) 1;
20387 unsigned int m_line = 1;
20388
20389 /* These are initialized in the constructor. */
20390
20391 CORE_ADDR m_address;
20392 bool m_is_stmt;
20393 unsigned int m_discriminator;
20394
20395 /* Additional bits of state we need to track. */
20396
20397 /* The last file that we called dwarf2_start_subfile for.
20398 This is only used for TLLs. */
20399 unsigned int m_last_file = 0;
20400 /* The last file a line number was recorded for. */
20401 struct subfile *m_last_subfile = NULL;
20402
20403 /* The function to call to record a line. */
20404 record_line_ftype *m_record_line_callback = NULL;
20405
20406 /* The last line number that was recorded, used to coalesce
20407 consecutive entries for the same line. This can happen, for
20408 example, when discriminators are present. PR 17276. */
20409 unsigned int m_last_line = 0;
20410 bool m_line_has_non_zero_discriminator = false;
20411 };
20412
20413 void
20414 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
20415 {
20416 CORE_ADDR addr_adj = (((m_op_index + adjust)
20417 / m_line_header->maximum_ops_per_instruction)
20418 * m_line_header->minimum_instruction_length);
20419 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20420 m_op_index = ((m_op_index + adjust)
20421 % m_line_header->maximum_ops_per_instruction);
20422 }
20423
20424 void
20425 lnp_state_machine::handle_special_opcode (unsigned char op_code)
20426 {
20427 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
20428 CORE_ADDR addr_adj = (((m_op_index
20429 + (adj_opcode / m_line_header->line_range))
20430 / m_line_header->maximum_ops_per_instruction)
20431 * m_line_header->minimum_instruction_length);
20432 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20433 m_op_index = ((m_op_index + (adj_opcode / m_line_header->line_range))
20434 % m_line_header->maximum_ops_per_instruction);
20435
20436 int line_delta = (m_line_header->line_base
20437 + (adj_opcode % m_line_header->line_range));
20438 advance_line (line_delta);
20439 record_line (false);
20440 m_discriminator = 0;
20441 }
20442
20443 void
20444 lnp_state_machine::handle_set_file (file_name_index file)
20445 {
20446 m_file = file;
20447
20448 const file_entry *fe = current_file ();
20449 if (fe == NULL)
20450 dwarf2_debug_line_missing_file_complaint ();
20451 else if (m_record_lines_p)
20452 {
20453 const char *dir = fe->include_dir (m_line_header);
20454
20455 m_last_subfile = get_current_subfile ();
20456 m_line_has_non_zero_discriminator = m_discriminator != 0;
20457 dwarf2_start_subfile (fe->name, dir);
20458 }
20459 }
20460
20461 void
20462 lnp_state_machine::handle_const_add_pc ()
20463 {
20464 CORE_ADDR adjust
20465 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
20466
20467 CORE_ADDR addr_adj
20468 = (((m_op_index + adjust)
20469 / m_line_header->maximum_ops_per_instruction)
20470 * m_line_header->minimum_instruction_length);
20471
20472 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20473 m_op_index = ((m_op_index + adjust)
20474 % m_line_header->maximum_ops_per_instruction);
20475 }
20476
20477 /* Ignore this record_line request. */
20478
20479 static void
20480 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
20481 {
20482 return;
20483 }
20484
20485 /* Return non-zero if we should add LINE to the line number table.
20486 LINE is the line to add, LAST_LINE is the last line that was added,
20487 LAST_SUBFILE is the subfile for LAST_LINE.
20488 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
20489 had a non-zero discriminator.
20490
20491 We have to be careful in the presence of discriminators.
20492 E.g., for this line:
20493
20494 for (i = 0; i < 100000; i++);
20495
20496 clang can emit four line number entries for that one line,
20497 each with a different discriminator.
20498 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
20499
20500 However, we want gdb to coalesce all four entries into one.
20501 Otherwise the user could stepi into the middle of the line and
20502 gdb would get confused about whether the pc really was in the
20503 middle of the line.
20504
20505 Things are further complicated by the fact that two consecutive
20506 line number entries for the same line is a heuristic used by gcc
20507 to denote the end of the prologue. So we can't just discard duplicate
20508 entries, we have to be selective about it. The heuristic we use is
20509 that we only collapse consecutive entries for the same line if at least
20510 one of those entries has a non-zero discriminator. PR 17276.
20511
20512 Note: Addresses in the line number state machine can never go backwards
20513 within one sequence, thus this coalescing is ok. */
20514
20515 static int
20516 dwarf_record_line_p (unsigned int line, unsigned int last_line,
20517 int line_has_non_zero_discriminator,
20518 struct subfile *last_subfile)
20519 {
20520 if (get_current_subfile () != last_subfile)
20521 return 1;
20522 if (line != last_line)
20523 return 1;
20524 /* Same line for the same file that we've seen already.
20525 As a last check, for pr 17276, only record the line if the line
20526 has never had a non-zero discriminator. */
20527 if (!line_has_non_zero_discriminator)
20528 return 1;
20529 return 0;
20530 }
20531
20532 /* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
20533 in the line table of subfile SUBFILE. */
20534
20535 static void
20536 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
20537 unsigned int line, CORE_ADDR address,
20538 record_line_ftype p_record_line)
20539 {
20540 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
20541
20542 if (dwarf_line_debug)
20543 {
20544 fprintf_unfiltered (gdb_stdlog,
20545 "Recording line %u, file %s, address %s\n",
20546 line, lbasename (subfile->name),
20547 paddress (gdbarch, address));
20548 }
20549
20550 (*p_record_line) (subfile, line, addr);
20551 }
20552
20553 /* Subroutine of dwarf_decode_lines_1 to simplify it.
20554 Mark the end of a set of line number records.
20555 The arguments are the same as for dwarf_record_line_1.
20556 If SUBFILE is NULL the request is ignored. */
20557
20558 static void
20559 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
20560 CORE_ADDR address, record_line_ftype p_record_line)
20561 {
20562 if (subfile == NULL)
20563 return;
20564
20565 if (dwarf_line_debug)
20566 {
20567 fprintf_unfiltered (gdb_stdlog,
20568 "Finishing current line, file %s, address %s\n",
20569 lbasename (subfile->name),
20570 paddress (gdbarch, address));
20571 }
20572
20573 dwarf_record_line_1 (gdbarch, subfile, 0, address, p_record_line);
20574 }
20575
20576 void
20577 lnp_state_machine::record_line (bool end_sequence)
20578 {
20579 if (dwarf_line_debug)
20580 {
20581 fprintf_unfiltered (gdb_stdlog,
20582 "Processing actual line %u: file %u,"
20583 " address %s, is_stmt %u, discrim %u\n",
20584 m_line, to_underlying (m_file),
20585 paddress (m_gdbarch, m_address),
20586 m_is_stmt, m_discriminator);
20587 }
20588
20589 file_entry *fe = current_file ();
20590
20591 if (fe == NULL)
20592 dwarf2_debug_line_missing_file_complaint ();
20593 /* For now we ignore lines not starting on an instruction boundary.
20594 But not when processing end_sequence for compatibility with the
20595 previous version of the code. */
20596 else if (m_op_index == 0 || end_sequence)
20597 {
20598 fe->included_p = 1;
20599 if (m_record_lines_p && m_is_stmt)
20600 {
20601 if (m_last_subfile != get_current_subfile () || end_sequence)
20602 {
20603 dwarf_finish_line (m_gdbarch, m_last_subfile,
20604 m_address, m_record_line_callback);
20605 }
20606
20607 if (!end_sequence)
20608 {
20609 if (dwarf_record_line_p (m_line, m_last_line,
20610 m_line_has_non_zero_discriminator,
20611 m_last_subfile))
20612 {
20613 dwarf_record_line_1 (m_gdbarch, get_current_subfile (),
20614 m_line, m_address,
20615 m_record_line_callback);
20616 }
20617 m_last_subfile = get_current_subfile ();
20618 m_last_line = m_line;
20619 }
20620 }
20621 }
20622 }
20623
20624 lnp_state_machine::lnp_state_machine (gdbarch *arch, line_header *lh,
20625 bool record_lines_p)
20626 {
20627 m_gdbarch = arch;
20628 m_record_lines_p = record_lines_p;
20629 m_line_header = lh;
20630
20631 m_record_line_callback = ::record_line;
20632
20633 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
20634 was a line entry for it so that the backend has a chance to adjust it
20635 and also record it in case it needs it. This is currently used by MIPS
20636 code, cf. `mips_adjust_dwarf2_line'. */
20637 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
20638 m_is_stmt = lh->default_is_stmt;
20639 m_discriminator = 0;
20640 }
20641
20642 void
20643 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
20644 const gdb_byte *line_ptr,
20645 CORE_ADDR unrelocated_lowpc, CORE_ADDR address)
20646 {
20647 /* If ADDRESS < UNRELOCATED_LOWPC then it's not a usable value, it's outside
20648 the pc range of the CU. However, we restrict the test to only ADDRESS
20649 values of zero to preserve GDB's previous behaviour which is to handle
20650 the specific case of a function being GC'd by the linker. */
20651
20652 if (address == 0 && address < unrelocated_lowpc)
20653 {
20654 /* This line table is for a function which has been
20655 GCd by the linker. Ignore it. PR gdb/12528 */
20656
20657 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20658 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
20659
20660 complaint (_(".debug_line address at offset 0x%lx is 0 [in module %s]"),
20661 line_offset, objfile_name (objfile));
20662 m_record_line_callback = noop_record_line;
20663 /* Note: record_line_callback is left as noop_record_line until
20664 we see DW_LNE_end_sequence. */
20665 }
20666 }
20667
20668 /* Subroutine of dwarf_decode_lines to simplify it.
20669 Process the line number information in LH.
20670 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
20671 program in order to set included_p for every referenced header. */
20672
20673 static void
20674 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
20675 const int decode_for_pst_p, CORE_ADDR lowpc)
20676 {
20677 const gdb_byte *line_ptr, *extended_end;
20678 const gdb_byte *line_end;
20679 unsigned int bytes_read, extended_len;
20680 unsigned char op_code, extended_op;
20681 CORE_ADDR baseaddr;
20682 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20683 bfd *abfd = objfile->obfd;
20684 struct gdbarch *gdbarch = get_objfile_arch (objfile);
20685 /* True if we're recording line info (as opposed to building partial
20686 symtabs and just interested in finding include files mentioned by
20687 the line number program). */
20688 bool record_lines_p = !decode_for_pst_p;
20689
20690 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
20691
20692 line_ptr = lh->statement_program_start;
20693 line_end = lh->statement_program_end;
20694
20695 /* Read the statement sequences until there's nothing left. */
20696 while (line_ptr < line_end)
20697 {
20698 /* The DWARF line number program state machine. Reset the state
20699 machine at the start of each sequence. */
20700 lnp_state_machine state_machine (gdbarch, lh, record_lines_p);
20701 bool end_sequence = false;
20702
20703 if (record_lines_p)
20704 {
20705 /* Start a subfile for the current file of the state
20706 machine. */
20707 const file_entry *fe = state_machine.current_file ();
20708
20709 if (fe != NULL)
20710 dwarf2_start_subfile (fe->name, fe->include_dir (lh));
20711 }
20712
20713 /* Decode the table. */
20714 while (line_ptr < line_end && !end_sequence)
20715 {
20716 op_code = read_1_byte (abfd, line_ptr);
20717 line_ptr += 1;
20718
20719 if (op_code >= lh->opcode_base)
20720 {
20721 /* Special opcode. */
20722 state_machine.handle_special_opcode (op_code);
20723 }
20724 else switch (op_code)
20725 {
20726 case DW_LNS_extended_op:
20727 extended_len = read_unsigned_leb128 (abfd, line_ptr,
20728 &bytes_read);
20729 line_ptr += bytes_read;
20730 extended_end = line_ptr + extended_len;
20731 extended_op = read_1_byte (abfd, line_ptr);
20732 line_ptr += 1;
20733 switch (extended_op)
20734 {
20735 case DW_LNE_end_sequence:
20736 state_machine.handle_end_sequence ();
20737 end_sequence = true;
20738 break;
20739 case DW_LNE_set_address:
20740 {
20741 CORE_ADDR address
20742 = read_address (abfd, line_ptr, cu, &bytes_read);
20743 line_ptr += bytes_read;
20744
20745 state_machine.check_line_address (cu, line_ptr,
20746 lowpc - baseaddr, address);
20747 state_machine.handle_set_address (baseaddr, address);
20748 }
20749 break;
20750 case DW_LNE_define_file:
20751 {
20752 const char *cur_file;
20753 unsigned int mod_time, length;
20754 dir_index dindex;
20755
20756 cur_file = read_direct_string (abfd, line_ptr,
20757 &bytes_read);
20758 line_ptr += bytes_read;
20759 dindex = (dir_index)
20760 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20761 line_ptr += bytes_read;
20762 mod_time =
20763 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20764 line_ptr += bytes_read;
20765 length =
20766 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20767 line_ptr += bytes_read;
20768 lh->add_file_name (cur_file, dindex, mod_time, length);
20769 }
20770 break;
20771 case DW_LNE_set_discriminator:
20772 {
20773 /* The discriminator is not interesting to the
20774 debugger; just ignore it. We still need to
20775 check its value though:
20776 if there are consecutive entries for the same
20777 (non-prologue) line we want to coalesce them.
20778 PR 17276. */
20779 unsigned int discr
20780 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20781 line_ptr += bytes_read;
20782
20783 state_machine.handle_set_discriminator (discr);
20784 }
20785 break;
20786 default:
20787 complaint (_("mangled .debug_line section"));
20788 return;
20789 }
20790 /* Make sure that we parsed the extended op correctly. If e.g.
20791 we expected a different address size than the producer used,
20792 we may have read the wrong number of bytes. */
20793 if (line_ptr != extended_end)
20794 {
20795 complaint (_("mangled .debug_line section"));
20796 return;
20797 }
20798 break;
20799 case DW_LNS_copy:
20800 state_machine.handle_copy ();
20801 break;
20802 case DW_LNS_advance_pc:
20803 {
20804 CORE_ADDR adjust
20805 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20806 line_ptr += bytes_read;
20807
20808 state_machine.handle_advance_pc (adjust);
20809 }
20810 break;
20811 case DW_LNS_advance_line:
20812 {
20813 int line_delta
20814 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
20815 line_ptr += bytes_read;
20816
20817 state_machine.handle_advance_line (line_delta);
20818 }
20819 break;
20820 case DW_LNS_set_file:
20821 {
20822 file_name_index file
20823 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
20824 &bytes_read);
20825 line_ptr += bytes_read;
20826
20827 state_machine.handle_set_file (file);
20828 }
20829 break;
20830 case DW_LNS_set_column:
20831 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20832 line_ptr += bytes_read;
20833 break;
20834 case DW_LNS_negate_stmt:
20835 state_machine.handle_negate_stmt ();
20836 break;
20837 case DW_LNS_set_basic_block:
20838 break;
20839 /* Add to the address register of the state machine the
20840 address increment value corresponding to special opcode
20841 255. I.e., this value is scaled by the minimum
20842 instruction length since special opcode 255 would have
20843 scaled the increment. */
20844 case DW_LNS_const_add_pc:
20845 state_machine.handle_const_add_pc ();
20846 break;
20847 case DW_LNS_fixed_advance_pc:
20848 {
20849 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
20850 line_ptr += 2;
20851
20852 state_machine.handle_fixed_advance_pc (addr_adj);
20853 }
20854 break;
20855 default:
20856 {
20857 /* Unknown standard opcode, ignore it. */
20858 int i;
20859
20860 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
20861 {
20862 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20863 line_ptr += bytes_read;
20864 }
20865 }
20866 }
20867 }
20868
20869 if (!end_sequence)
20870 dwarf2_debug_line_missing_end_sequence_complaint ();
20871
20872 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
20873 in which case we still finish recording the last line). */
20874 state_machine.record_line (true);
20875 }
20876 }
20877
20878 /* Decode the Line Number Program (LNP) for the given line_header
20879 structure and CU. The actual information extracted and the type
20880 of structures created from the LNP depends on the value of PST.
20881
20882 1. If PST is NULL, then this procedure uses the data from the program
20883 to create all necessary symbol tables, and their linetables.
20884
20885 2. If PST is not NULL, this procedure reads the program to determine
20886 the list of files included by the unit represented by PST, and
20887 builds all the associated partial symbol tables.
20888
20889 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20890 It is used for relative paths in the line table.
20891 NOTE: When processing partial symtabs (pst != NULL),
20892 comp_dir == pst->dirname.
20893
20894 NOTE: It is important that psymtabs have the same file name (via strcmp)
20895 as the corresponding symtab. Since COMP_DIR is not used in the name of the
20896 symtab we don't use it in the name of the psymtabs we create.
20897 E.g. expand_line_sal requires this when finding psymtabs to expand.
20898 A good testcase for this is mb-inline.exp.
20899
20900 LOWPC is the lowest address in CU (or 0 if not known).
20901
20902 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
20903 for its PC<->lines mapping information. Otherwise only the filename
20904 table is read in. */
20905
20906 static void
20907 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
20908 struct dwarf2_cu *cu, struct partial_symtab *pst,
20909 CORE_ADDR lowpc, int decode_mapping)
20910 {
20911 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20912 const int decode_for_pst_p = (pst != NULL);
20913
20914 if (decode_mapping)
20915 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
20916
20917 if (decode_for_pst_p)
20918 {
20919 int file_index;
20920
20921 /* Now that we're done scanning the Line Header Program, we can
20922 create the psymtab of each included file. */
20923 for (file_index = 0; file_index < lh->file_names.size (); file_index++)
20924 if (lh->file_names[file_index].included_p == 1)
20925 {
20926 gdb::unique_xmalloc_ptr<char> name_holder;
20927 const char *include_name =
20928 psymtab_include_file_name (lh, file_index, pst, comp_dir,
20929 &name_holder);
20930 if (include_name != NULL)
20931 dwarf2_create_include_psymtab (include_name, pst, objfile);
20932 }
20933 }
20934 else
20935 {
20936 /* Make sure a symtab is created for every file, even files
20937 which contain only variables (i.e. no code with associated
20938 line numbers). */
20939 struct compunit_symtab *cust = buildsym_compunit_symtab ();
20940 int i;
20941
20942 for (i = 0; i < lh->file_names.size (); i++)
20943 {
20944 file_entry &fe = lh->file_names[i];
20945
20946 dwarf2_start_subfile (fe.name, fe.include_dir (lh));
20947
20948 if (get_current_subfile ()->symtab == NULL)
20949 {
20950 get_current_subfile ()->symtab
20951 = allocate_symtab (cust, get_current_subfile ()->name);
20952 }
20953 fe.symtab = get_current_subfile ()->symtab;
20954 }
20955 }
20956 }
20957
20958 /* Start a subfile for DWARF. FILENAME is the name of the file and
20959 DIRNAME the name of the source directory which contains FILENAME
20960 or NULL if not known.
20961 This routine tries to keep line numbers from identical absolute and
20962 relative file names in a common subfile.
20963
20964 Using the `list' example from the GDB testsuite, which resides in
20965 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
20966 of /srcdir/list0.c yields the following debugging information for list0.c:
20967
20968 DW_AT_name: /srcdir/list0.c
20969 DW_AT_comp_dir: /compdir
20970 files.files[0].name: list0.h
20971 files.files[0].dir: /srcdir
20972 files.files[1].name: list0.c
20973 files.files[1].dir: /srcdir
20974
20975 The line number information for list0.c has to end up in a single
20976 subfile, so that `break /srcdir/list0.c:1' works as expected.
20977 start_subfile will ensure that this happens provided that we pass the
20978 concatenation of files.files[1].dir and files.files[1].name as the
20979 subfile's name. */
20980
20981 static void
20982 dwarf2_start_subfile (const char *filename, const char *dirname)
20983 {
20984 char *copy = NULL;
20985
20986 /* In order not to lose the line information directory,
20987 we concatenate it to the filename when it makes sense.
20988 Note that the Dwarf3 standard says (speaking of filenames in line
20989 information): ``The directory index is ignored for file names
20990 that represent full path names''. Thus ignoring dirname in the
20991 `else' branch below isn't an issue. */
20992
20993 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
20994 {
20995 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
20996 filename = copy;
20997 }
20998
20999 start_subfile (filename);
21000
21001 if (copy != NULL)
21002 xfree (copy);
21003 }
21004
21005 /* Start a symtab for DWARF.
21006 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
21007
21008 static struct compunit_symtab *
21009 dwarf2_start_symtab (struct dwarf2_cu *cu,
21010 const char *name, const char *comp_dir, CORE_ADDR low_pc)
21011 {
21012 struct compunit_symtab *cust
21013 = start_symtab (cu->per_cu->dwarf2_per_objfile->objfile, name, comp_dir,
21014 low_pc, cu->language);
21015
21016 cu->list_in_scope = get_file_symbols ();
21017
21018 record_debugformat ("DWARF 2");
21019 record_producer (cu->producer);
21020
21021 cu->processing_has_namespace_info = 0;
21022
21023 return cust;
21024 }
21025
21026 static void
21027 var_decode_location (struct attribute *attr, struct symbol *sym,
21028 struct dwarf2_cu *cu)
21029 {
21030 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21031 struct comp_unit_head *cu_header = &cu->header;
21032
21033 /* NOTE drow/2003-01-30: There used to be a comment and some special
21034 code here to turn a symbol with DW_AT_external and a
21035 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
21036 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
21037 with some versions of binutils) where shared libraries could have
21038 relocations against symbols in their debug information - the
21039 minimal symbol would have the right address, but the debug info
21040 would not. It's no longer necessary, because we will explicitly
21041 apply relocations when we read in the debug information now. */
21042
21043 /* A DW_AT_location attribute with no contents indicates that a
21044 variable has been optimized away. */
21045 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
21046 {
21047 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21048 return;
21049 }
21050
21051 /* Handle one degenerate form of location expression specially, to
21052 preserve GDB's previous behavior when section offsets are
21053 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
21054 then mark this symbol as LOC_STATIC. */
21055
21056 if (attr_form_is_block (attr)
21057 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
21058 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
21059 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
21060 && (DW_BLOCK (attr)->size
21061 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
21062 {
21063 unsigned int dummy;
21064
21065 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
21066 SYMBOL_VALUE_ADDRESS (sym) =
21067 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
21068 else
21069 SYMBOL_VALUE_ADDRESS (sym) =
21070 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
21071 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
21072 fixup_symbol_section (sym, objfile);
21073 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
21074 SYMBOL_SECTION (sym));
21075 return;
21076 }
21077
21078 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
21079 expression evaluator, and use LOC_COMPUTED only when necessary
21080 (i.e. when the value of a register or memory location is
21081 referenced, or a thread-local block, etc.). Then again, it might
21082 not be worthwhile. I'm assuming that it isn't unless performance
21083 or memory numbers show me otherwise. */
21084
21085 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
21086
21087 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
21088 cu->has_loclist = 1;
21089 }
21090
21091 /* Given a pointer to a DWARF information entry, figure out if we need
21092 to make a symbol table entry for it, and if so, create a new entry
21093 and return a pointer to it.
21094 If TYPE is NULL, determine symbol type from the die, otherwise
21095 used the passed type.
21096 If SPACE is not NULL, use it to hold the new symbol. If it is
21097 NULL, allocate a new symbol on the objfile's obstack. */
21098
21099 static struct symbol *
21100 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
21101 struct symbol *space)
21102 {
21103 struct dwarf2_per_objfile *dwarf2_per_objfile
21104 = cu->per_cu->dwarf2_per_objfile;
21105 struct objfile *objfile = dwarf2_per_objfile->objfile;
21106 struct gdbarch *gdbarch = get_objfile_arch (objfile);
21107 struct symbol *sym = NULL;
21108 const char *name;
21109 struct attribute *attr = NULL;
21110 struct attribute *attr2 = NULL;
21111 CORE_ADDR baseaddr;
21112 struct pending **list_to_add = NULL;
21113
21114 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
21115
21116 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21117
21118 name = dwarf2_name (die, cu);
21119 if (name)
21120 {
21121 const char *linkagename;
21122 int suppress_add = 0;
21123
21124 if (space)
21125 sym = space;
21126 else
21127 sym = allocate_symbol (objfile);
21128 OBJSTAT (objfile, n_syms++);
21129
21130 /* Cache this symbol's name and the name's demangled form (if any). */
21131 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
21132 linkagename = dwarf2_physname (name, die, cu);
21133 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
21134
21135 /* Fortran does not have mangling standard and the mangling does differ
21136 between gfortran, iFort etc. */
21137 if (cu->language == language_fortran
21138 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
21139 symbol_set_demangled_name (&(sym->ginfo),
21140 dwarf2_full_name (name, die, cu),
21141 NULL);
21142
21143 /* Default assumptions.
21144 Use the passed type or decode it from the die. */
21145 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21146 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21147 if (type != NULL)
21148 SYMBOL_TYPE (sym) = type;
21149 else
21150 SYMBOL_TYPE (sym) = die_type (die, cu);
21151 attr = dwarf2_attr (die,
21152 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
21153 cu);
21154 if (attr)
21155 {
21156 SYMBOL_LINE (sym) = DW_UNSND (attr);
21157 }
21158
21159 attr = dwarf2_attr (die,
21160 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
21161 cu);
21162 if (attr)
21163 {
21164 file_name_index file_index = (file_name_index) DW_UNSND (attr);
21165 struct file_entry *fe;
21166
21167 if (cu->line_header != NULL)
21168 fe = cu->line_header->file_name_at (file_index);
21169 else
21170 fe = NULL;
21171
21172 if (fe == NULL)
21173 complaint (_("file index out of range"));
21174 else
21175 symbol_set_symtab (sym, fe->symtab);
21176 }
21177
21178 switch (die->tag)
21179 {
21180 case DW_TAG_label:
21181 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
21182 if (attr)
21183 {
21184 CORE_ADDR addr;
21185
21186 addr = attr_value_as_address (attr);
21187 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
21188 SYMBOL_VALUE_ADDRESS (sym) = addr;
21189 }
21190 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
21191 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
21192 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
21193 add_symbol_to_list (sym, cu->list_in_scope);
21194 break;
21195 case DW_TAG_subprogram:
21196 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21197 finish_block. */
21198 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21199 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21200 if ((attr2 && (DW_UNSND (attr2) != 0))
21201 || cu->language == language_ada)
21202 {
21203 /* Subprograms marked external are stored as a global symbol.
21204 Ada subprograms, whether marked external or not, are always
21205 stored as a global symbol, because we want to be able to
21206 access them globally. For instance, we want to be able
21207 to break on a nested subprogram without having to
21208 specify the context. */
21209 list_to_add = get_global_symbols ();
21210 }
21211 else
21212 {
21213 list_to_add = cu->list_in_scope;
21214 }
21215 break;
21216 case DW_TAG_inlined_subroutine:
21217 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21218 finish_block. */
21219 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21220 SYMBOL_INLINED (sym) = 1;
21221 list_to_add = cu->list_in_scope;
21222 break;
21223 case DW_TAG_template_value_param:
21224 suppress_add = 1;
21225 /* Fall through. */
21226 case DW_TAG_constant:
21227 case DW_TAG_variable:
21228 case DW_TAG_member:
21229 /* Compilation with minimal debug info may result in
21230 variables with missing type entries. Change the
21231 misleading `void' type to something sensible. */
21232 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
21233 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
21234
21235 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21236 /* In the case of DW_TAG_member, we should only be called for
21237 static const members. */
21238 if (die->tag == DW_TAG_member)
21239 {
21240 /* dwarf2_add_field uses die_is_declaration,
21241 so we do the same. */
21242 gdb_assert (die_is_declaration (die, cu));
21243 gdb_assert (attr);
21244 }
21245 if (attr)
21246 {
21247 dwarf2_const_value (attr, sym, cu);
21248 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21249 if (!suppress_add)
21250 {
21251 if (attr2 && (DW_UNSND (attr2) != 0))
21252 list_to_add = get_global_symbols ();
21253 else
21254 list_to_add = cu->list_in_scope;
21255 }
21256 break;
21257 }
21258 attr = dwarf2_attr (die, DW_AT_location, cu);
21259 if (attr)
21260 {
21261 var_decode_location (attr, sym, cu);
21262 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21263
21264 /* Fortran explicitly imports any global symbols to the local
21265 scope by DW_TAG_common_block. */
21266 if (cu->language == language_fortran && die->parent
21267 && die->parent->tag == DW_TAG_common_block)
21268 attr2 = NULL;
21269
21270 if (SYMBOL_CLASS (sym) == LOC_STATIC
21271 && SYMBOL_VALUE_ADDRESS (sym) == 0
21272 && !dwarf2_per_objfile->has_section_at_zero)
21273 {
21274 /* When a static variable is eliminated by the linker,
21275 the corresponding debug information is not stripped
21276 out, but the variable address is set to null;
21277 do not add such variables into symbol table. */
21278 }
21279 else if (attr2 && (DW_UNSND (attr2) != 0))
21280 {
21281 /* Workaround gfortran PR debug/40040 - it uses
21282 DW_AT_location for variables in -fPIC libraries which may
21283 get overriden by other libraries/executable and get
21284 a different address. Resolve it by the minimal symbol
21285 which may come from inferior's executable using copy
21286 relocation. Make this workaround only for gfortran as for
21287 other compilers GDB cannot guess the minimal symbol
21288 Fortran mangling kind. */
21289 if (cu->language == language_fortran && die->parent
21290 && die->parent->tag == DW_TAG_module
21291 && cu->producer
21292 && startswith (cu->producer, "GNU Fortran"))
21293 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21294
21295 /* A variable with DW_AT_external is never static,
21296 but it may be block-scoped. */
21297 list_to_add = (cu->list_in_scope == get_file_symbols ()
21298 ? get_global_symbols () : cu->list_in_scope);
21299 }
21300 else
21301 list_to_add = cu->list_in_scope;
21302 }
21303 else
21304 {
21305 /* We do not know the address of this symbol.
21306 If it is an external symbol and we have type information
21307 for it, enter the symbol as a LOC_UNRESOLVED symbol.
21308 The address of the variable will then be determined from
21309 the minimal symbol table whenever the variable is
21310 referenced. */
21311 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21312
21313 /* Fortran explicitly imports any global symbols to the local
21314 scope by DW_TAG_common_block. */
21315 if (cu->language == language_fortran && die->parent
21316 && die->parent->tag == DW_TAG_common_block)
21317 {
21318 /* SYMBOL_CLASS doesn't matter here because
21319 read_common_block is going to reset it. */
21320 if (!suppress_add)
21321 list_to_add = cu->list_in_scope;
21322 }
21323 else if (attr2 && (DW_UNSND (attr2) != 0)
21324 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
21325 {
21326 /* A variable with DW_AT_external is never static, but it
21327 may be block-scoped. */
21328 list_to_add = (cu->list_in_scope == get_file_symbols ()
21329 ? get_global_symbols () : cu->list_in_scope);
21330
21331 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21332 }
21333 else if (!die_is_declaration (die, cu))
21334 {
21335 /* Use the default LOC_OPTIMIZED_OUT class. */
21336 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
21337 if (!suppress_add)
21338 list_to_add = cu->list_in_scope;
21339 }
21340 }
21341 break;
21342 case DW_TAG_formal_parameter:
21343 {
21344 /* If we are inside a function, mark this as an argument. If
21345 not, we might be looking at an argument to an inlined function
21346 when we do not have enough information to show inlined frames;
21347 pretend it's a local variable in that case so that the user can
21348 still see it. */
21349 struct context_stack *curr = get_current_context_stack ();
21350 if (curr != nullptr && curr->name != nullptr)
21351 SYMBOL_IS_ARGUMENT (sym) = 1;
21352 attr = dwarf2_attr (die, DW_AT_location, cu);
21353 if (attr)
21354 {
21355 var_decode_location (attr, sym, cu);
21356 }
21357 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21358 if (attr)
21359 {
21360 dwarf2_const_value (attr, sym, cu);
21361 }
21362
21363 list_to_add = cu->list_in_scope;
21364 }
21365 break;
21366 case DW_TAG_unspecified_parameters:
21367 /* From varargs functions; gdb doesn't seem to have any
21368 interest in this information, so just ignore it for now.
21369 (FIXME?) */
21370 break;
21371 case DW_TAG_template_type_param:
21372 suppress_add = 1;
21373 /* Fall through. */
21374 case DW_TAG_class_type:
21375 case DW_TAG_interface_type:
21376 case DW_TAG_structure_type:
21377 case DW_TAG_union_type:
21378 case DW_TAG_set_type:
21379 case DW_TAG_enumeration_type:
21380 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21381 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
21382
21383 {
21384 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
21385 really ever be static objects: otherwise, if you try
21386 to, say, break of a class's method and you're in a file
21387 which doesn't mention that class, it won't work unless
21388 the check for all static symbols in lookup_symbol_aux
21389 saves you. See the OtherFileClass tests in
21390 gdb.c++/namespace.exp. */
21391
21392 if (!suppress_add)
21393 {
21394 list_to_add = (cu->list_in_scope == get_file_symbols ()
21395 && cu->language == language_cplus
21396 ? get_global_symbols () : cu->list_in_scope);
21397
21398 /* The semantics of C++ state that "struct foo {
21399 ... }" also defines a typedef for "foo". */
21400 if (cu->language == language_cplus
21401 || cu->language == language_ada
21402 || cu->language == language_d
21403 || cu->language == language_rust)
21404 {
21405 /* The symbol's name is already allocated along
21406 with this objfile, so we don't need to
21407 duplicate it for the type. */
21408 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
21409 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
21410 }
21411 }
21412 }
21413 break;
21414 case DW_TAG_typedef:
21415 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21416 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21417 list_to_add = cu->list_in_scope;
21418 break;
21419 case DW_TAG_base_type:
21420 case DW_TAG_subrange_type:
21421 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21422 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21423 list_to_add = cu->list_in_scope;
21424 break;
21425 case DW_TAG_enumerator:
21426 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21427 if (attr)
21428 {
21429 dwarf2_const_value (attr, sym, cu);
21430 }
21431 {
21432 /* NOTE: carlton/2003-11-10: See comment above in the
21433 DW_TAG_class_type, etc. block. */
21434
21435 list_to_add = (cu->list_in_scope == get_file_symbols ()
21436 && cu->language == language_cplus
21437 ? get_global_symbols () : cu->list_in_scope);
21438 }
21439 break;
21440 case DW_TAG_imported_declaration:
21441 case DW_TAG_namespace:
21442 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21443 list_to_add = get_global_symbols ();
21444 break;
21445 case DW_TAG_module:
21446 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21447 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
21448 list_to_add = get_global_symbols ();
21449 break;
21450 case DW_TAG_common_block:
21451 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
21452 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
21453 add_symbol_to_list (sym, cu->list_in_scope);
21454 break;
21455 default:
21456 /* Not a tag we recognize. Hopefully we aren't processing
21457 trash data, but since we must specifically ignore things
21458 we don't recognize, there is nothing else we should do at
21459 this point. */
21460 complaint (_("unsupported tag: '%s'"),
21461 dwarf_tag_name (die->tag));
21462 break;
21463 }
21464
21465 if (suppress_add)
21466 {
21467 sym->hash_next = objfile->template_symbols;
21468 objfile->template_symbols = sym;
21469 list_to_add = NULL;
21470 }
21471
21472 if (list_to_add != NULL)
21473 add_symbol_to_list (sym, list_to_add);
21474
21475 /* For the benefit of old versions of GCC, check for anonymous
21476 namespaces based on the demangled name. */
21477 if (!cu->processing_has_namespace_info
21478 && cu->language == language_cplus)
21479 cp_scan_for_anonymous_namespaces (get_buildsym_compunit (), sym,
21480 objfile);
21481 }
21482 return (sym);
21483 }
21484
21485 /* Given an attr with a DW_FORM_dataN value in host byte order,
21486 zero-extend it as appropriate for the symbol's type. The DWARF
21487 standard (v4) is not entirely clear about the meaning of using
21488 DW_FORM_dataN for a constant with a signed type, where the type is
21489 wider than the data. The conclusion of a discussion on the DWARF
21490 list was that this is unspecified. We choose to always zero-extend
21491 because that is the interpretation long in use by GCC. */
21492
21493 static gdb_byte *
21494 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
21495 struct dwarf2_cu *cu, LONGEST *value, int bits)
21496 {
21497 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21498 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
21499 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
21500 LONGEST l = DW_UNSND (attr);
21501
21502 if (bits < sizeof (*value) * 8)
21503 {
21504 l &= ((LONGEST) 1 << bits) - 1;
21505 *value = l;
21506 }
21507 else if (bits == sizeof (*value) * 8)
21508 *value = l;
21509 else
21510 {
21511 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
21512 store_unsigned_integer (bytes, bits / 8, byte_order, l);
21513 return bytes;
21514 }
21515
21516 return NULL;
21517 }
21518
21519 /* Read a constant value from an attribute. Either set *VALUE, or if
21520 the value does not fit in *VALUE, set *BYTES - either already
21521 allocated on the objfile obstack, or newly allocated on OBSTACK,
21522 or, set *BATON, if we translated the constant to a location
21523 expression. */
21524
21525 static void
21526 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
21527 const char *name, struct obstack *obstack,
21528 struct dwarf2_cu *cu,
21529 LONGEST *value, const gdb_byte **bytes,
21530 struct dwarf2_locexpr_baton **baton)
21531 {
21532 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21533 struct comp_unit_head *cu_header = &cu->header;
21534 struct dwarf_block *blk;
21535 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
21536 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
21537
21538 *value = 0;
21539 *bytes = NULL;
21540 *baton = NULL;
21541
21542 switch (attr->form)
21543 {
21544 case DW_FORM_addr:
21545 case DW_FORM_GNU_addr_index:
21546 {
21547 gdb_byte *data;
21548
21549 if (TYPE_LENGTH (type) != cu_header->addr_size)
21550 dwarf2_const_value_length_mismatch_complaint (name,
21551 cu_header->addr_size,
21552 TYPE_LENGTH (type));
21553 /* Symbols of this form are reasonably rare, so we just
21554 piggyback on the existing location code rather than writing
21555 a new implementation of symbol_computed_ops. */
21556 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
21557 (*baton)->per_cu = cu->per_cu;
21558 gdb_assert ((*baton)->per_cu);
21559
21560 (*baton)->size = 2 + cu_header->addr_size;
21561 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
21562 (*baton)->data = data;
21563
21564 data[0] = DW_OP_addr;
21565 store_unsigned_integer (&data[1], cu_header->addr_size,
21566 byte_order, DW_ADDR (attr));
21567 data[cu_header->addr_size + 1] = DW_OP_stack_value;
21568 }
21569 break;
21570 case DW_FORM_string:
21571 case DW_FORM_strp:
21572 case DW_FORM_GNU_str_index:
21573 case DW_FORM_GNU_strp_alt:
21574 /* DW_STRING is already allocated on the objfile obstack, point
21575 directly to it. */
21576 *bytes = (const gdb_byte *) DW_STRING (attr);
21577 break;
21578 case DW_FORM_block1:
21579 case DW_FORM_block2:
21580 case DW_FORM_block4:
21581 case DW_FORM_block:
21582 case DW_FORM_exprloc:
21583 case DW_FORM_data16:
21584 blk = DW_BLOCK (attr);
21585 if (TYPE_LENGTH (type) != blk->size)
21586 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
21587 TYPE_LENGTH (type));
21588 *bytes = blk->data;
21589 break;
21590
21591 /* The DW_AT_const_value attributes are supposed to carry the
21592 symbol's value "represented as it would be on the target
21593 architecture." By the time we get here, it's already been
21594 converted to host endianness, so we just need to sign- or
21595 zero-extend it as appropriate. */
21596 case DW_FORM_data1:
21597 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
21598 break;
21599 case DW_FORM_data2:
21600 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
21601 break;
21602 case DW_FORM_data4:
21603 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
21604 break;
21605 case DW_FORM_data8:
21606 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
21607 break;
21608
21609 case DW_FORM_sdata:
21610 case DW_FORM_implicit_const:
21611 *value = DW_SND (attr);
21612 break;
21613
21614 case DW_FORM_udata:
21615 *value = DW_UNSND (attr);
21616 break;
21617
21618 default:
21619 complaint (_("unsupported const value attribute form: '%s'"),
21620 dwarf_form_name (attr->form));
21621 *value = 0;
21622 break;
21623 }
21624 }
21625
21626
21627 /* Copy constant value from an attribute to a symbol. */
21628
21629 static void
21630 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
21631 struct dwarf2_cu *cu)
21632 {
21633 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21634 LONGEST value;
21635 const gdb_byte *bytes;
21636 struct dwarf2_locexpr_baton *baton;
21637
21638 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
21639 SYMBOL_PRINT_NAME (sym),
21640 &objfile->objfile_obstack, cu,
21641 &value, &bytes, &baton);
21642
21643 if (baton != NULL)
21644 {
21645 SYMBOL_LOCATION_BATON (sym) = baton;
21646 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
21647 }
21648 else if (bytes != NULL)
21649 {
21650 SYMBOL_VALUE_BYTES (sym) = bytes;
21651 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
21652 }
21653 else
21654 {
21655 SYMBOL_VALUE (sym) = value;
21656 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
21657 }
21658 }
21659
21660 /* Return the type of the die in question using its DW_AT_type attribute. */
21661
21662 static struct type *
21663 die_type (struct die_info *die, struct dwarf2_cu *cu)
21664 {
21665 struct attribute *type_attr;
21666
21667 type_attr = dwarf2_attr (die, DW_AT_type, cu);
21668 if (!type_attr)
21669 {
21670 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21671 /* A missing DW_AT_type represents a void type. */
21672 return objfile_type (objfile)->builtin_void;
21673 }
21674
21675 return lookup_die_type (die, type_attr, cu);
21676 }
21677
21678 /* True iff CU's producer generates GNAT Ada auxiliary information
21679 that allows to find parallel types through that information instead
21680 of having to do expensive parallel lookups by type name. */
21681
21682 static int
21683 need_gnat_info (struct dwarf2_cu *cu)
21684 {
21685 /* Assume that the Ada compiler was GNAT, which always produces
21686 the auxiliary information. */
21687 return (cu->language == language_ada);
21688 }
21689
21690 /* Return the auxiliary type of the die in question using its
21691 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
21692 attribute is not present. */
21693
21694 static struct type *
21695 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
21696 {
21697 struct attribute *type_attr;
21698
21699 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
21700 if (!type_attr)
21701 return NULL;
21702
21703 return lookup_die_type (die, type_attr, cu);
21704 }
21705
21706 /* If DIE has a descriptive_type attribute, then set the TYPE's
21707 descriptive type accordingly. */
21708
21709 static void
21710 set_descriptive_type (struct type *type, struct die_info *die,
21711 struct dwarf2_cu *cu)
21712 {
21713 struct type *descriptive_type = die_descriptive_type (die, cu);
21714
21715 if (descriptive_type)
21716 {
21717 ALLOCATE_GNAT_AUX_TYPE (type);
21718 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
21719 }
21720 }
21721
21722 /* Return the containing type of the die in question using its
21723 DW_AT_containing_type attribute. */
21724
21725 static struct type *
21726 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
21727 {
21728 struct attribute *type_attr;
21729 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21730
21731 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
21732 if (!type_attr)
21733 error (_("Dwarf Error: Problem turning containing type into gdb type "
21734 "[in module %s]"), objfile_name (objfile));
21735
21736 return lookup_die_type (die, type_attr, cu);
21737 }
21738
21739 /* Return an error marker type to use for the ill formed type in DIE/CU. */
21740
21741 static struct type *
21742 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
21743 {
21744 struct dwarf2_per_objfile *dwarf2_per_objfile
21745 = cu->per_cu->dwarf2_per_objfile;
21746 struct objfile *objfile = dwarf2_per_objfile->objfile;
21747 char *message, *saved;
21748
21749 message = xstrprintf (_("<unknown type in %s, CU %s, DIE %s>"),
21750 objfile_name (objfile),
21751 sect_offset_str (cu->header.sect_off),
21752 sect_offset_str (die->sect_off));
21753 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
21754 message, strlen (message));
21755 xfree (message);
21756
21757 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
21758 }
21759
21760 /* Look up the type of DIE in CU using its type attribute ATTR.
21761 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
21762 DW_AT_containing_type.
21763 If there is no type substitute an error marker. */
21764
21765 static struct type *
21766 lookup_die_type (struct die_info *die, const struct attribute *attr,
21767 struct dwarf2_cu *cu)
21768 {
21769 struct dwarf2_per_objfile *dwarf2_per_objfile
21770 = cu->per_cu->dwarf2_per_objfile;
21771 struct objfile *objfile = dwarf2_per_objfile->objfile;
21772 struct type *this_type;
21773
21774 gdb_assert (attr->name == DW_AT_type
21775 || attr->name == DW_AT_GNAT_descriptive_type
21776 || attr->name == DW_AT_containing_type);
21777
21778 /* First see if we have it cached. */
21779
21780 if (attr->form == DW_FORM_GNU_ref_alt)
21781 {
21782 struct dwarf2_per_cu_data *per_cu;
21783 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
21784
21785 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1,
21786 dwarf2_per_objfile);
21787 this_type = get_die_type_at_offset (sect_off, per_cu);
21788 }
21789 else if (attr_form_is_ref (attr))
21790 {
21791 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
21792
21793 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
21794 }
21795 else if (attr->form == DW_FORM_ref_sig8)
21796 {
21797 ULONGEST signature = DW_SIGNATURE (attr);
21798
21799 return get_signatured_type (die, signature, cu);
21800 }
21801 else
21802 {
21803 complaint (_("Dwarf Error: Bad type attribute %s in DIE"
21804 " at %s [in module %s]"),
21805 dwarf_attr_name (attr->name), sect_offset_str (die->sect_off),
21806 objfile_name (objfile));
21807 return build_error_marker_type (cu, die);
21808 }
21809
21810 /* If not cached we need to read it in. */
21811
21812 if (this_type == NULL)
21813 {
21814 struct die_info *type_die = NULL;
21815 struct dwarf2_cu *type_cu = cu;
21816
21817 if (attr_form_is_ref (attr))
21818 type_die = follow_die_ref (die, attr, &type_cu);
21819 if (type_die == NULL)
21820 return build_error_marker_type (cu, die);
21821 /* If we find the type now, it's probably because the type came
21822 from an inter-CU reference and the type's CU got expanded before
21823 ours. */
21824 this_type = read_type_die (type_die, type_cu);
21825 }
21826
21827 /* If we still don't have a type use an error marker. */
21828
21829 if (this_type == NULL)
21830 return build_error_marker_type (cu, die);
21831
21832 return this_type;
21833 }
21834
21835 /* Return the type in DIE, CU.
21836 Returns NULL for invalid types.
21837
21838 This first does a lookup in die_type_hash,
21839 and only reads the die in if necessary.
21840
21841 NOTE: This can be called when reading in partial or full symbols. */
21842
21843 static struct type *
21844 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
21845 {
21846 struct type *this_type;
21847
21848 this_type = get_die_type (die, cu);
21849 if (this_type)
21850 return this_type;
21851
21852 return read_type_die_1 (die, cu);
21853 }
21854
21855 /* Read the type in DIE, CU.
21856 Returns NULL for invalid types. */
21857
21858 static struct type *
21859 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
21860 {
21861 struct type *this_type = NULL;
21862
21863 switch (die->tag)
21864 {
21865 case DW_TAG_class_type:
21866 case DW_TAG_interface_type:
21867 case DW_TAG_structure_type:
21868 case DW_TAG_union_type:
21869 this_type = read_structure_type (die, cu);
21870 break;
21871 case DW_TAG_enumeration_type:
21872 this_type = read_enumeration_type (die, cu);
21873 break;
21874 case DW_TAG_subprogram:
21875 case DW_TAG_subroutine_type:
21876 case DW_TAG_inlined_subroutine:
21877 this_type = read_subroutine_type (die, cu);
21878 break;
21879 case DW_TAG_array_type:
21880 this_type = read_array_type (die, cu);
21881 break;
21882 case DW_TAG_set_type:
21883 this_type = read_set_type (die, cu);
21884 break;
21885 case DW_TAG_pointer_type:
21886 this_type = read_tag_pointer_type (die, cu);
21887 break;
21888 case DW_TAG_ptr_to_member_type:
21889 this_type = read_tag_ptr_to_member_type (die, cu);
21890 break;
21891 case DW_TAG_reference_type:
21892 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
21893 break;
21894 case DW_TAG_rvalue_reference_type:
21895 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
21896 break;
21897 case DW_TAG_const_type:
21898 this_type = read_tag_const_type (die, cu);
21899 break;
21900 case DW_TAG_volatile_type:
21901 this_type = read_tag_volatile_type (die, cu);
21902 break;
21903 case DW_TAG_restrict_type:
21904 this_type = read_tag_restrict_type (die, cu);
21905 break;
21906 case DW_TAG_string_type:
21907 this_type = read_tag_string_type (die, cu);
21908 break;
21909 case DW_TAG_typedef:
21910 this_type = read_typedef (die, cu);
21911 break;
21912 case DW_TAG_subrange_type:
21913 this_type = read_subrange_type (die, cu);
21914 break;
21915 case DW_TAG_base_type:
21916 this_type = read_base_type (die, cu);
21917 break;
21918 case DW_TAG_unspecified_type:
21919 this_type = read_unspecified_type (die, cu);
21920 break;
21921 case DW_TAG_namespace:
21922 this_type = read_namespace_type (die, cu);
21923 break;
21924 case DW_TAG_module:
21925 this_type = read_module_type (die, cu);
21926 break;
21927 case DW_TAG_atomic_type:
21928 this_type = read_tag_atomic_type (die, cu);
21929 break;
21930 default:
21931 complaint (_("unexpected tag in read_type_die: '%s'"),
21932 dwarf_tag_name (die->tag));
21933 break;
21934 }
21935
21936 return this_type;
21937 }
21938
21939 /* See if we can figure out if the class lives in a namespace. We do
21940 this by looking for a member function; its demangled name will
21941 contain namespace info, if there is any.
21942 Return the computed name or NULL.
21943 Space for the result is allocated on the objfile's obstack.
21944 This is the full-die version of guess_partial_die_structure_name.
21945 In this case we know DIE has no useful parent. */
21946
21947 static char *
21948 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
21949 {
21950 struct die_info *spec_die;
21951 struct dwarf2_cu *spec_cu;
21952 struct die_info *child;
21953 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21954
21955 spec_cu = cu;
21956 spec_die = die_specification (die, &spec_cu);
21957 if (spec_die != NULL)
21958 {
21959 die = spec_die;
21960 cu = spec_cu;
21961 }
21962
21963 for (child = die->child;
21964 child != NULL;
21965 child = child->sibling)
21966 {
21967 if (child->tag == DW_TAG_subprogram)
21968 {
21969 const char *linkage_name = dw2_linkage_name (child, cu);
21970
21971 if (linkage_name != NULL)
21972 {
21973 char *actual_name
21974 = language_class_name_from_physname (cu->language_defn,
21975 linkage_name);
21976 char *name = NULL;
21977
21978 if (actual_name != NULL)
21979 {
21980 const char *die_name = dwarf2_name (die, cu);
21981
21982 if (die_name != NULL
21983 && strcmp (die_name, actual_name) != 0)
21984 {
21985 /* Strip off the class name from the full name.
21986 We want the prefix. */
21987 int die_name_len = strlen (die_name);
21988 int actual_name_len = strlen (actual_name);
21989
21990 /* Test for '::' as a sanity check. */
21991 if (actual_name_len > die_name_len + 2
21992 && actual_name[actual_name_len
21993 - die_name_len - 1] == ':')
21994 name = (char *) obstack_copy0 (
21995 &objfile->per_bfd->storage_obstack,
21996 actual_name, actual_name_len - die_name_len - 2);
21997 }
21998 }
21999 xfree (actual_name);
22000 return name;
22001 }
22002 }
22003 }
22004
22005 return NULL;
22006 }
22007
22008 /* GCC might emit a nameless typedef that has a linkage name. Determine the
22009 prefix part in such case. See
22010 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22011
22012 static const char *
22013 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
22014 {
22015 struct attribute *attr;
22016 const char *base;
22017
22018 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
22019 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
22020 return NULL;
22021
22022 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
22023 return NULL;
22024
22025 attr = dw2_linkage_name_attr (die, cu);
22026 if (attr == NULL || DW_STRING (attr) == NULL)
22027 return NULL;
22028
22029 /* dwarf2_name had to be already called. */
22030 gdb_assert (DW_STRING_IS_CANONICAL (attr));
22031
22032 /* Strip the base name, keep any leading namespaces/classes. */
22033 base = strrchr (DW_STRING (attr), ':');
22034 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
22035 return "";
22036
22037 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22038 return (char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
22039 DW_STRING (attr),
22040 &base[-1] - DW_STRING (attr));
22041 }
22042
22043 /* Return the name of the namespace/class that DIE is defined within,
22044 or "" if we can't tell. The caller should not xfree the result.
22045
22046 For example, if we're within the method foo() in the following
22047 code:
22048
22049 namespace N {
22050 class C {
22051 void foo () {
22052 }
22053 };
22054 }
22055
22056 then determine_prefix on foo's die will return "N::C". */
22057
22058 static const char *
22059 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
22060 {
22061 struct dwarf2_per_objfile *dwarf2_per_objfile
22062 = cu->per_cu->dwarf2_per_objfile;
22063 struct die_info *parent, *spec_die;
22064 struct dwarf2_cu *spec_cu;
22065 struct type *parent_type;
22066 const char *retval;
22067
22068 if (cu->language != language_cplus
22069 && cu->language != language_fortran && cu->language != language_d
22070 && cu->language != language_rust)
22071 return "";
22072
22073 retval = anonymous_struct_prefix (die, cu);
22074 if (retval)
22075 return retval;
22076
22077 /* We have to be careful in the presence of DW_AT_specification.
22078 For example, with GCC 3.4, given the code
22079
22080 namespace N {
22081 void foo() {
22082 // Definition of N::foo.
22083 }
22084 }
22085
22086 then we'll have a tree of DIEs like this:
22087
22088 1: DW_TAG_compile_unit
22089 2: DW_TAG_namespace // N
22090 3: DW_TAG_subprogram // declaration of N::foo
22091 4: DW_TAG_subprogram // definition of N::foo
22092 DW_AT_specification // refers to die #3
22093
22094 Thus, when processing die #4, we have to pretend that we're in
22095 the context of its DW_AT_specification, namely the contex of die
22096 #3. */
22097 spec_cu = cu;
22098 spec_die = die_specification (die, &spec_cu);
22099 if (spec_die == NULL)
22100 parent = die->parent;
22101 else
22102 {
22103 parent = spec_die->parent;
22104 cu = spec_cu;
22105 }
22106
22107 if (parent == NULL)
22108 return "";
22109 else if (parent->building_fullname)
22110 {
22111 const char *name;
22112 const char *parent_name;
22113
22114 /* It has been seen on RealView 2.2 built binaries,
22115 DW_TAG_template_type_param types actually _defined_ as
22116 children of the parent class:
22117
22118 enum E {};
22119 template class <class Enum> Class{};
22120 Class<enum E> class_e;
22121
22122 1: DW_TAG_class_type (Class)
22123 2: DW_TAG_enumeration_type (E)
22124 3: DW_TAG_enumerator (enum1:0)
22125 3: DW_TAG_enumerator (enum2:1)
22126 ...
22127 2: DW_TAG_template_type_param
22128 DW_AT_type DW_FORM_ref_udata (E)
22129
22130 Besides being broken debug info, it can put GDB into an
22131 infinite loop. Consider:
22132
22133 When we're building the full name for Class<E>, we'll start
22134 at Class, and go look over its template type parameters,
22135 finding E. We'll then try to build the full name of E, and
22136 reach here. We're now trying to build the full name of E,
22137 and look over the parent DIE for containing scope. In the
22138 broken case, if we followed the parent DIE of E, we'd again
22139 find Class, and once again go look at its template type
22140 arguments, etc., etc. Simply don't consider such parent die
22141 as source-level parent of this die (it can't be, the language
22142 doesn't allow it), and break the loop here. */
22143 name = dwarf2_name (die, cu);
22144 parent_name = dwarf2_name (parent, cu);
22145 complaint (_("template param type '%s' defined within parent '%s'"),
22146 name ? name : "<unknown>",
22147 parent_name ? parent_name : "<unknown>");
22148 return "";
22149 }
22150 else
22151 switch (parent->tag)
22152 {
22153 case DW_TAG_namespace:
22154 parent_type = read_type_die (parent, cu);
22155 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
22156 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
22157 Work around this problem here. */
22158 if (cu->language == language_cplus
22159 && strcmp (TYPE_NAME (parent_type), "::") == 0)
22160 return "";
22161 /* We give a name to even anonymous namespaces. */
22162 return TYPE_NAME (parent_type);
22163 case DW_TAG_class_type:
22164 case DW_TAG_interface_type:
22165 case DW_TAG_structure_type:
22166 case DW_TAG_union_type:
22167 case DW_TAG_module:
22168 parent_type = read_type_die (parent, cu);
22169 if (TYPE_NAME (parent_type) != NULL)
22170 return TYPE_NAME (parent_type);
22171 else
22172 /* An anonymous structure is only allowed non-static data
22173 members; no typedefs, no member functions, et cetera.
22174 So it does not need a prefix. */
22175 return "";
22176 case DW_TAG_compile_unit:
22177 case DW_TAG_partial_unit:
22178 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
22179 if (cu->language == language_cplus
22180 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
22181 && die->child != NULL
22182 && (die->tag == DW_TAG_class_type
22183 || die->tag == DW_TAG_structure_type
22184 || die->tag == DW_TAG_union_type))
22185 {
22186 char *name = guess_full_die_structure_name (die, cu);
22187 if (name != NULL)
22188 return name;
22189 }
22190 return "";
22191 case DW_TAG_enumeration_type:
22192 parent_type = read_type_die (parent, cu);
22193 if (TYPE_DECLARED_CLASS (parent_type))
22194 {
22195 if (TYPE_NAME (parent_type) != NULL)
22196 return TYPE_NAME (parent_type);
22197 return "";
22198 }
22199 /* Fall through. */
22200 default:
22201 return determine_prefix (parent, cu);
22202 }
22203 }
22204
22205 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
22206 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
22207 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
22208 an obconcat, otherwise allocate storage for the result. The CU argument is
22209 used to determine the language and hence, the appropriate separator. */
22210
22211 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
22212
22213 static char *
22214 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
22215 int physname, struct dwarf2_cu *cu)
22216 {
22217 const char *lead = "";
22218 const char *sep;
22219
22220 if (suffix == NULL || suffix[0] == '\0'
22221 || prefix == NULL || prefix[0] == '\0')
22222 sep = "";
22223 else if (cu->language == language_d)
22224 {
22225 /* For D, the 'main' function could be defined in any module, but it
22226 should never be prefixed. */
22227 if (strcmp (suffix, "D main") == 0)
22228 {
22229 prefix = "";
22230 sep = "";
22231 }
22232 else
22233 sep = ".";
22234 }
22235 else if (cu->language == language_fortran && physname)
22236 {
22237 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
22238 DW_AT_MIPS_linkage_name is preferred and used instead. */
22239
22240 lead = "__";
22241 sep = "_MOD_";
22242 }
22243 else
22244 sep = "::";
22245
22246 if (prefix == NULL)
22247 prefix = "";
22248 if (suffix == NULL)
22249 suffix = "";
22250
22251 if (obs == NULL)
22252 {
22253 char *retval
22254 = ((char *)
22255 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
22256
22257 strcpy (retval, lead);
22258 strcat (retval, prefix);
22259 strcat (retval, sep);
22260 strcat (retval, suffix);
22261 return retval;
22262 }
22263 else
22264 {
22265 /* We have an obstack. */
22266 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
22267 }
22268 }
22269
22270 /* Return sibling of die, NULL if no sibling. */
22271
22272 static struct die_info *
22273 sibling_die (struct die_info *die)
22274 {
22275 return die->sibling;
22276 }
22277
22278 /* Get name of a die, return NULL if not found. */
22279
22280 static const char *
22281 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
22282 struct obstack *obstack)
22283 {
22284 if (name && cu->language == language_cplus)
22285 {
22286 std::string canon_name = cp_canonicalize_string (name);
22287
22288 if (!canon_name.empty ())
22289 {
22290 if (canon_name != name)
22291 name = (const char *) obstack_copy0 (obstack,
22292 canon_name.c_str (),
22293 canon_name.length ());
22294 }
22295 }
22296
22297 return name;
22298 }
22299
22300 /* Get name of a die, return NULL if not found.
22301 Anonymous namespaces are converted to their magic string. */
22302
22303 static const char *
22304 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
22305 {
22306 struct attribute *attr;
22307 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22308
22309 attr = dwarf2_attr (die, DW_AT_name, cu);
22310 if ((!attr || !DW_STRING (attr))
22311 && die->tag != DW_TAG_namespace
22312 && die->tag != DW_TAG_class_type
22313 && die->tag != DW_TAG_interface_type
22314 && die->tag != DW_TAG_structure_type
22315 && die->tag != DW_TAG_union_type)
22316 return NULL;
22317
22318 switch (die->tag)
22319 {
22320 case DW_TAG_compile_unit:
22321 case DW_TAG_partial_unit:
22322 /* Compilation units have a DW_AT_name that is a filename, not
22323 a source language identifier. */
22324 case DW_TAG_enumeration_type:
22325 case DW_TAG_enumerator:
22326 /* These tags always have simple identifiers already; no need
22327 to canonicalize them. */
22328 return DW_STRING (attr);
22329
22330 case DW_TAG_namespace:
22331 if (attr != NULL && DW_STRING (attr) != NULL)
22332 return DW_STRING (attr);
22333 return CP_ANONYMOUS_NAMESPACE_STR;
22334
22335 case DW_TAG_class_type:
22336 case DW_TAG_interface_type:
22337 case DW_TAG_structure_type:
22338 case DW_TAG_union_type:
22339 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
22340 structures or unions. These were of the form "._%d" in GCC 4.1,
22341 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
22342 and GCC 4.4. We work around this problem by ignoring these. */
22343 if (attr && DW_STRING (attr)
22344 && (startswith (DW_STRING (attr), "._")
22345 || startswith (DW_STRING (attr), "<anonymous")))
22346 return NULL;
22347
22348 /* GCC might emit a nameless typedef that has a linkage name. See
22349 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22350 if (!attr || DW_STRING (attr) == NULL)
22351 {
22352 char *demangled = NULL;
22353
22354 attr = dw2_linkage_name_attr (die, cu);
22355 if (attr == NULL || DW_STRING (attr) == NULL)
22356 return NULL;
22357
22358 /* Avoid demangling DW_STRING (attr) the second time on a second
22359 call for the same DIE. */
22360 if (!DW_STRING_IS_CANONICAL (attr))
22361 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
22362
22363 if (demangled)
22364 {
22365 const char *base;
22366
22367 /* FIXME: we already did this for the partial symbol... */
22368 DW_STRING (attr)
22369 = ((const char *)
22370 obstack_copy0 (&objfile->per_bfd->storage_obstack,
22371 demangled, strlen (demangled)));
22372 DW_STRING_IS_CANONICAL (attr) = 1;
22373 xfree (demangled);
22374
22375 /* Strip any leading namespaces/classes, keep only the base name.
22376 DW_AT_name for named DIEs does not contain the prefixes. */
22377 base = strrchr (DW_STRING (attr), ':');
22378 if (base && base > DW_STRING (attr) && base[-1] == ':')
22379 return &base[1];
22380 else
22381 return DW_STRING (attr);
22382 }
22383 }
22384 break;
22385
22386 default:
22387 break;
22388 }
22389
22390 if (!DW_STRING_IS_CANONICAL (attr))
22391 {
22392 DW_STRING (attr)
22393 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
22394 &objfile->per_bfd->storage_obstack);
22395 DW_STRING_IS_CANONICAL (attr) = 1;
22396 }
22397 return DW_STRING (attr);
22398 }
22399
22400 /* Return the die that this die in an extension of, or NULL if there
22401 is none. *EXT_CU is the CU containing DIE on input, and the CU
22402 containing the return value on output. */
22403
22404 static struct die_info *
22405 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
22406 {
22407 struct attribute *attr;
22408
22409 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
22410 if (attr == NULL)
22411 return NULL;
22412
22413 return follow_die_ref (die, attr, ext_cu);
22414 }
22415
22416 /* Convert a DIE tag into its string name. */
22417
22418 static const char *
22419 dwarf_tag_name (unsigned tag)
22420 {
22421 const char *name = get_DW_TAG_name (tag);
22422
22423 if (name == NULL)
22424 return "DW_TAG_<unknown>";
22425
22426 return name;
22427 }
22428
22429 /* Convert a DWARF attribute code into its string name. */
22430
22431 static const char *
22432 dwarf_attr_name (unsigned attr)
22433 {
22434 const char *name;
22435
22436 #ifdef MIPS /* collides with DW_AT_HP_block_index */
22437 if (attr == DW_AT_MIPS_fde)
22438 return "DW_AT_MIPS_fde";
22439 #else
22440 if (attr == DW_AT_HP_block_index)
22441 return "DW_AT_HP_block_index";
22442 #endif
22443
22444 name = get_DW_AT_name (attr);
22445
22446 if (name == NULL)
22447 return "DW_AT_<unknown>";
22448
22449 return name;
22450 }
22451
22452 /* Convert a DWARF value form code into its string name. */
22453
22454 static const char *
22455 dwarf_form_name (unsigned form)
22456 {
22457 const char *name = get_DW_FORM_name (form);
22458
22459 if (name == NULL)
22460 return "DW_FORM_<unknown>";
22461
22462 return name;
22463 }
22464
22465 static const char *
22466 dwarf_bool_name (unsigned mybool)
22467 {
22468 if (mybool)
22469 return "TRUE";
22470 else
22471 return "FALSE";
22472 }
22473
22474 /* Convert a DWARF type code into its string name. */
22475
22476 static const char *
22477 dwarf_type_encoding_name (unsigned enc)
22478 {
22479 const char *name = get_DW_ATE_name (enc);
22480
22481 if (name == NULL)
22482 return "DW_ATE_<unknown>";
22483
22484 return name;
22485 }
22486
22487 static void
22488 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
22489 {
22490 unsigned int i;
22491
22492 print_spaces (indent, f);
22493 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset %s)\n",
22494 dwarf_tag_name (die->tag), die->abbrev,
22495 sect_offset_str (die->sect_off));
22496
22497 if (die->parent != NULL)
22498 {
22499 print_spaces (indent, f);
22500 fprintf_unfiltered (f, " parent at offset: %s\n",
22501 sect_offset_str (die->parent->sect_off));
22502 }
22503
22504 print_spaces (indent, f);
22505 fprintf_unfiltered (f, " has children: %s\n",
22506 dwarf_bool_name (die->child != NULL));
22507
22508 print_spaces (indent, f);
22509 fprintf_unfiltered (f, " attributes:\n");
22510
22511 for (i = 0; i < die->num_attrs; ++i)
22512 {
22513 print_spaces (indent, f);
22514 fprintf_unfiltered (f, " %s (%s) ",
22515 dwarf_attr_name (die->attrs[i].name),
22516 dwarf_form_name (die->attrs[i].form));
22517
22518 switch (die->attrs[i].form)
22519 {
22520 case DW_FORM_addr:
22521 case DW_FORM_GNU_addr_index:
22522 fprintf_unfiltered (f, "address: ");
22523 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
22524 break;
22525 case DW_FORM_block2:
22526 case DW_FORM_block4:
22527 case DW_FORM_block:
22528 case DW_FORM_block1:
22529 fprintf_unfiltered (f, "block: size %s",
22530 pulongest (DW_BLOCK (&die->attrs[i])->size));
22531 break;
22532 case DW_FORM_exprloc:
22533 fprintf_unfiltered (f, "expression: size %s",
22534 pulongest (DW_BLOCK (&die->attrs[i])->size));
22535 break;
22536 case DW_FORM_data16:
22537 fprintf_unfiltered (f, "constant of 16 bytes");
22538 break;
22539 case DW_FORM_ref_addr:
22540 fprintf_unfiltered (f, "ref address: ");
22541 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22542 break;
22543 case DW_FORM_GNU_ref_alt:
22544 fprintf_unfiltered (f, "alt ref address: ");
22545 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22546 break;
22547 case DW_FORM_ref1:
22548 case DW_FORM_ref2:
22549 case DW_FORM_ref4:
22550 case DW_FORM_ref8:
22551 case DW_FORM_ref_udata:
22552 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
22553 (long) (DW_UNSND (&die->attrs[i])));
22554 break;
22555 case DW_FORM_data1:
22556 case DW_FORM_data2:
22557 case DW_FORM_data4:
22558 case DW_FORM_data8:
22559 case DW_FORM_udata:
22560 case DW_FORM_sdata:
22561 fprintf_unfiltered (f, "constant: %s",
22562 pulongest (DW_UNSND (&die->attrs[i])));
22563 break;
22564 case DW_FORM_sec_offset:
22565 fprintf_unfiltered (f, "section offset: %s",
22566 pulongest (DW_UNSND (&die->attrs[i])));
22567 break;
22568 case DW_FORM_ref_sig8:
22569 fprintf_unfiltered (f, "signature: %s",
22570 hex_string (DW_SIGNATURE (&die->attrs[i])));
22571 break;
22572 case DW_FORM_string:
22573 case DW_FORM_strp:
22574 case DW_FORM_line_strp:
22575 case DW_FORM_GNU_str_index:
22576 case DW_FORM_GNU_strp_alt:
22577 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
22578 DW_STRING (&die->attrs[i])
22579 ? DW_STRING (&die->attrs[i]) : "",
22580 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
22581 break;
22582 case DW_FORM_flag:
22583 if (DW_UNSND (&die->attrs[i]))
22584 fprintf_unfiltered (f, "flag: TRUE");
22585 else
22586 fprintf_unfiltered (f, "flag: FALSE");
22587 break;
22588 case DW_FORM_flag_present:
22589 fprintf_unfiltered (f, "flag: TRUE");
22590 break;
22591 case DW_FORM_indirect:
22592 /* The reader will have reduced the indirect form to
22593 the "base form" so this form should not occur. */
22594 fprintf_unfiltered (f,
22595 "unexpected attribute form: DW_FORM_indirect");
22596 break;
22597 case DW_FORM_implicit_const:
22598 fprintf_unfiltered (f, "constant: %s",
22599 plongest (DW_SND (&die->attrs[i])));
22600 break;
22601 default:
22602 fprintf_unfiltered (f, "unsupported attribute form: %d.",
22603 die->attrs[i].form);
22604 break;
22605 }
22606 fprintf_unfiltered (f, "\n");
22607 }
22608 }
22609
22610 static void
22611 dump_die_for_error (struct die_info *die)
22612 {
22613 dump_die_shallow (gdb_stderr, 0, die);
22614 }
22615
22616 static void
22617 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
22618 {
22619 int indent = level * 4;
22620
22621 gdb_assert (die != NULL);
22622
22623 if (level >= max_level)
22624 return;
22625
22626 dump_die_shallow (f, indent, die);
22627
22628 if (die->child != NULL)
22629 {
22630 print_spaces (indent, f);
22631 fprintf_unfiltered (f, " Children:");
22632 if (level + 1 < max_level)
22633 {
22634 fprintf_unfiltered (f, "\n");
22635 dump_die_1 (f, level + 1, max_level, die->child);
22636 }
22637 else
22638 {
22639 fprintf_unfiltered (f,
22640 " [not printed, max nesting level reached]\n");
22641 }
22642 }
22643
22644 if (die->sibling != NULL && level > 0)
22645 {
22646 dump_die_1 (f, level, max_level, die->sibling);
22647 }
22648 }
22649
22650 /* This is called from the pdie macro in gdbinit.in.
22651 It's not static so gcc will keep a copy callable from gdb. */
22652
22653 void
22654 dump_die (struct die_info *die, int max_level)
22655 {
22656 dump_die_1 (gdb_stdlog, 0, max_level, die);
22657 }
22658
22659 static void
22660 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
22661 {
22662 void **slot;
22663
22664 slot = htab_find_slot_with_hash (cu->die_hash, die,
22665 to_underlying (die->sect_off),
22666 INSERT);
22667
22668 *slot = die;
22669 }
22670
22671 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
22672 required kind. */
22673
22674 static sect_offset
22675 dwarf2_get_ref_die_offset (const struct attribute *attr)
22676 {
22677 if (attr_form_is_ref (attr))
22678 return (sect_offset) DW_UNSND (attr);
22679
22680 complaint (_("unsupported die ref attribute form: '%s'"),
22681 dwarf_form_name (attr->form));
22682 return {};
22683 }
22684
22685 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
22686 * the value held by the attribute is not constant. */
22687
22688 static LONGEST
22689 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
22690 {
22691 if (attr->form == DW_FORM_sdata || attr->form == DW_FORM_implicit_const)
22692 return DW_SND (attr);
22693 else if (attr->form == DW_FORM_udata
22694 || attr->form == DW_FORM_data1
22695 || attr->form == DW_FORM_data2
22696 || attr->form == DW_FORM_data4
22697 || attr->form == DW_FORM_data8)
22698 return DW_UNSND (attr);
22699 else
22700 {
22701 /* For DW_FORM_data16 see attr_form_is_constant. */
22702 complaint (_("Attribute value is not a constant (%s)"),
22703 dwarf_form_name (attr->form));
22704 return default_value;
22705 }
22706 }
22707
22708 /* Follow reference or signature attribute ATTR of SRC_DIE.
22709 On entry *REF_CU is the CU of SRC_DIE.
22710 On exit *REF_CU is the CU of the result. */
22711
22712 static struct die_info *
22713 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
22714 struct dwarf2_cu **ref_cu)
22715 {
22716 struct die_info *die;
22717
22718 if (attr_form_is_ref (attr))
22719 die = follow_die_ref (src_die, attr, ref_cu);
22720 else if (attr->form == DW_FORM_ref_sig8)
22721 die = follow_die_sig (src_die, attr, ref_cu);
22722 else
22723 {
22724 dump_die_for_error (src_die);
22725 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
22726 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
22727 }
22728
22729 return die;
22730 }
22731
22732 /* Follow reference OFFSET.
22733 On entry *REF_CU is the CU of the source die referencing OFFSET.
22734 On exit *REF_CU is the CU of the result.
22735 Returns NULL if OFFSET is invalid. */
22736
22737 static struct die_info *
22738 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
22739 struct dwarf2_cu **ref_cu)
22740 {
22741 struct die_info temp_die;
22742 struct dwarf2_cu *target_cu, *cu = *ref_cu;
22743 struct dwarf2_per_objfile *dwarf2_per_objfile
22744 = cu->per_cu->dwarf2_per_objfile;
22745
22746 gdb_assert (cu->per_cu != NULL);
22747
22748 target_cu = cu;
22749
22750 if (cu->per_cu->is_debug_types)
22751 {
22752 /* .debug_types CUs cannot reference anything outside their CU.
22753 If they need to, they have to reference a signatured type via
22754 DW_FORM_ref_sig8. */
22755 if (!offset_in_cu_p (&cu->header, sect_off))
22756 return NULL;
22757 }
22758 else if (offset_in_dwz != cu->per_cu->is_dwz
22759 || !offset_in_cu_p (&cu->header, sect_off))
22760 {
22761 struct dwarf2_per_cu_data *per_cu;
22762
22763 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
22764 dwarf2_per_objfile);
22765
22766 /* If necessary, add it to the queue and load its DIEs. */
22767 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
22768 load_full_comp_unit (per_cu, false, cu->language);
22769
22770 target_cu = per_cu->cu;
22771 }
22772 else if (cu->dies == NULL)
22773 {
22774 /* We're loading full DIEs during partial symbol reading. */
22775 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
22776 load_full_comp_unit (cu->per_cu, false, language_minimal);
22777 }
22778
22779 *ref_cu = target_cu;
22780 temp_die.sect_off = sect_off;
22781 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
22782 &temp_die,
22783 to_underlying (sect_off));
22784 }
22785
22786 /* Follow reference attribute ATTR of SRC_DIE.
22787 On entry *REF_CU is the CU of SRC_DIE.
22788 On exit *REF_CU is the CU of the result. */
22789
22790 static struct die_info *
22791 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
22792 struct dwarf2_cu **ref_cu)
22793 {
22794 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22795 struct dwarf2_cu *cu = *ref_cu;
22796 struct die_info *die;
22797
22798 die = follow_die_offset (sect_off,
22799 (attr->form == DW_FORM_GNU_ref_alt
22800 || cu->per_cu->is_dwz),
22801 ref_cu);
22802 if (!die)
22803 error (_("Dwarf Error: Cannot find DIE at %s referenced from DIE "
22804 "at %s [in module %s]"),
22805 sect_offset_str (sect_off), sect_offset_str (src_die->sect_off),
22806 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
22807
22808 return die;
22809 }
22810
22811 /* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU.
22812 Returned value is intended for DW_OP_call*. Returned
22813 dwarf2_locexpr_baton->data has lifetime of
22814 PER_CU->DWARF2_PER_OBJFILE->OBJFILE. */
22815
22816 struct dwarf2_locexpr_baton
22817 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
22818 struct dwarf2_per_cu_data *per_cu,
22819 CORE_ADDR (*get_frame_pc) (void *baton),
22820 void *baton)
22821 {
22822 struct dwarf2_cu *cu;
22823 struct die_info *die;
22824 struct attribute *attr;
22825 struct dwarf2_locexpr_baton retval;
22826 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
22827 struct objfile *objfile = dwarf2_per_objfile->objfile;
22828
22829 if (per_cu->cu == NULL)
22830 load_cu (per_cu, false);
22831 cu = per_cu->cu;
22832 if (cu == NULL)
22833 {
22834 /* We shouldn't get here for a dummy CU, but don't crash on the user.
22835 Instead just throw an error, not much else we can do. */
22836 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
22837 sect_offset_str (sect_off), objfile_name (objfile));
22838 }
22839
22840 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
22841 if (!die)
22842 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
22843 sect_offset_str (sect_off), objfile_name (objfile));
22844
22845 attr = dwarf2_attr (die, DW_AT_location, cu);
22846 if (!attr)
22847 {
22848 /* DWARF: "If there is no such attribute, then there is no effect.".
22849 DATA is ignored if SIZE is 0. */
22850
22851 retval.data = NULL;
22852 retval.size = 0;
22853 }
22854 else if (attr_form_is_section_offset (attr))
22855 {
22856 struct dwarf2_loclist_baton loclist_baton;
22857 CORE_ADDR pc = (*get_frame_pc) (baton);
22858 size_t size;
22859
22860 fill_in_loclist_baton (cu, &loclist_baton, attr);
22861
22862 retval.data = dwarf2_find_location_expression (&loclist_baton,
22863 &size, pc);
22864 retval.size = size;
22865 }
22866 else
22867 {
22868 if (!attr_form_is_block (attr))
22869 error (_("Dwarf Error: DIE at %s referenced in module %s "
22870 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
22871 sect_offset_str (sect_off), objfile_name (objfile));
22872
22873 retval.data = DW_BLOCK (attr)->data;
22874 retval.size = DW_BLOCK (attr)->size;
22875 }
22876 retval.per_cu = cu->per_cu;
22877
22878 age_cached_comp_units (dwarf2_per_objfile);
22879
22880 return retval;
22881 }
22882
22883 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
22884 offset. */
22885
22886 struct dwarf2_locexpr_baton
22887 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
22888 struct dwarf2_per_cu_data *per_cu,
22889 CORE_ADDR (*get_frame_pc) (void *baton),
22890 void *baton)
22891 {
22892 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
22893
22894 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
22895 }
22896
22897 /* Write a constant of a given type as target-ordered bytes into
22898 OBSTACK. */
22899
22900 static const gdb_byte *
22901 write_constant_as_bytes (struct obstack *obstack,
22902 enum bfd_endian byte_order,
22903 struct type *type,
22904 ULONGEST value,
22905 LONGEST *len)
22906 {
22907 gdb_byte *result;
22908
22909 *len = TYPE_LENGTH (type);
22910 result = (gdb_byte *) obstack_alloc (obstack, *len);
22911 store_unsigned_integer (result, *len, byte_order, value);
22912
22913 return result;
22914 }
22915
22916 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
22917 pointer to the constant bytes and set LEN to the length of the
22918 data. If memory is needed, allocate it on OBSTACK. If the DIE
22919 does not have a DW_AT_const_value, return NULL. */
22920
22921 const gdb_byte *
22922 dwarf2_fetch_constant_bytes (sect_offset sect_off,
22923 struct dwarf2_per_cu_data *per_cu,
22924 struct obstack *obstack,
22925 LONGEST *len)
22926 {
22927 struct dwarf2_cu *cu;
22928 struct die_info *die;
22929 struct attribute *attr;
22930 const gdb_byte *result = NULL;
22931 struct type *type;
22932 LONGEST value;
22933 enum bfd_endian byte_order;
22934 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
22935
22936 if (per_cu->cu == NULL)
22937 load_cu (per_cu, false);
22938 cu = per_cu->cu;
22939 if (cu == NULL)
22940 {
22941 /* We shouldn't get here for a dummy CU, but don't crash on the user.
22942 Instead just throw an error, not much else we can do. */
22943 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
22944 sect_offset_str (sect_off), objfile_name (objfile));
22945 }
22946
22947 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
22948 if (!die)
22949 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
22950 sect_offset_str (sect_off), objfile_name (objfile));
22951
22952 attr = dwarf2_attr (die, DW_AT_const_value, cu);
22953 if (attr == NULL)
22954 return NULL;
22955
22956 byte_order = (bfd_big_endian (objfile->obfd)
22957 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
22958
22959 switch (attr->form)
22960 {
22961 case DW_FORM_addr:
22962 case DW_FORM_GNU_addr_index:
22963 {
22964 gdb_byte *tem;
22965
22966 *len = cu->header.addr_size;
22967 tem = (gdb_byte *) obstack_alloc (obstack, *len);
22968 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
22969 result = tem;
22970 }
22971 break;
22972 case DW_FORM_string:
22973 case DW_FORM_strp:
22974 case DW_FORM_GNU_str_index:
22975 case DW_FORM_GNU_strp_alt:
22976 /* DW_STRING is already allocated on the objfile obstack, point
22977 directly to it. */
22978 result = (const gdb_byte *) DW_STRING (attr);
22979 *len = strlen (DW_STRING (attr));
22980 break;
22981 case DW_FORM_block1:
22982 case DW_FORM_block2:
22983 case DW_FORM_block4:
22984 case DW_FORM_block:
22985 case DW_FORM_exprloc:
22986 case DW_FORM_data16:
22987 result = DW_BLOCK (attr)->data;
22988 *len = DW_BLOCK (attr)->size;
22989 break;
22990
22991 /* The DW_AT_const_value attributes are supposed to carry the
22992 symbol's value "represented as it would be on the target
22993 architecture." By the time we get here, it's already been
22994 converted to host endianness, so we just need to sign- or
22995 zero-extend it as appropriate. */
22996 case DW_FORM_data1:
22997 type = die_type (die, cu);
22998 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
22999 if (result == NULL)
23000 result = write_constant_as_bytes (obstack, byte_order,
23001 type, value, len);
23002 break;
23003 case DW_FORM_data2:
23004 type = die_type (die, cu);
23005 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
23006 if (result == NULL)
23007 result = write_constant_as_bytes (obstack, byte_order,
23008 type, value, len);
23009 break;
23010 case DW_FORM_data4:
23011 type = die_type (die, cu);
23012 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
23013 if (result == NULL)
23014 result = write_constant_as_bytes (obstack, byte_order,
23015 type, value, len);
23016 break;
23017 case DW_FORM_data8:
23018 type = die_type (die, cu);
23019 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
23020 if (result == NULL)
23021 result = write_constant_as_bytes (obstack, byte_order,
23022 type, value, len);
23023 break;
23024
23025 case DW_FORM_sdata:
23026 case DW_FORM_implicit_const:
23027 type = die_type (die, cu);
23028 result = write_constant_as_bytes (obstack, byte_order,
23029 type, DW_SND (attr), len);
23030 break;
23031
23032 case DW_FORM_udata:
23033 type = die_type (die, cu);
23034 result = write_constant_as_bytes (obstack, byte_order,
23035 type, DW_UNSND (attr), len);
23036 break;
23037
23038 default:
23039 complaint (_("unsupported const value attribute form: '%s'"),
23040 dwarf_form_name (attr->form));
23041 break;
23042 }
23043
23044 return result;
23045 }
23046
23047 /* Return the type of the die at OFFSET in PER_CU. Return NULL if no
23048 valid type for this die is found. */
23049
23050 struct type *
23051 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
23052 struct dwarf2_per_cu_data *per_cu)
23053 {
23054 struct dwarf2_cu *cu;
23055 struct die_info *die;
23056
23057 if (per_cu->cu == NULL)
23058 load_cu (per_cu, false);
23059 cu = per_cu->cu;
23060 if (!cu)
23061 return NULL;
23062
23063 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23064 if (!die)
23065 return NULL;
23066
23067 return die_type (die, cu);
23068 }
23069
23070 /* Return the type of the DIE at DIE_OFFSET in the CU named by
23071 PER_CU. */
23072
23073 struct type *
23074 dwarf2_get_die_type (cu_offset die_offset,
23075 struct dwarf2_per_cu_data *per_cu)
23076 {
23077 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
23078 return get_die_type_at_offset (die_offset_sect, per_cu);
23079 }
23080
23081 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
23082 On entry *REF_CU is the CU of SRC_DIE.
23083 On exit *REF_CU is the CU of the result.
23084 Returns NULL if the referenced DIE isn't found. */
23085
23086 static struct die_info *
23087 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
23088 struct dwarf2_cu **ref_cu)
23089 {
23090 struct die_info temp_die;
23091 struct dwarf2_cu *sig_cu;
23092 struct die_info *die;
23093
23094 /* While it might be nice to assert sig_type->type == NULL here,
23095 we can get here for DW_AT_imported_declaration where we need
23096 the DIE not the type. */
23097
23098 /* If necessary, add it to the queue and load its DIEs. */
23099
23100 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
23101 read_signatured_type (sig_type);
23102
23103 sig_cu = sig_type->per_cu.cu;
23104 gdb_assert (sig_cu != NULL);
23105 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
23106 temp_die.sect_off = sig_type->type_offset_in_section;
23107 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
23108 to_underlying (temp_die.sect_off));
23109 if (die)
23110 {
23111 struct dwarf2_per_objfile *dwarf2_per_objfile
23112 = (*ref_cu)->per_cu->dwarf2_per_objfile;
23113
23114 /* For .gdb_index version 7 keep track of included TUs.
23115 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
23116 if (dwarf2_per_objfile->index_table != NULL
23117 && dwarf2_per_objfile->index_table->version <= 7)
23118 {
23119 VEC_safe_push (dwarf2_per_cu_ptr,
23120 (*ref_cu)->per_cu->imported_symtabs,
23121 sig_cu->per_cu);
23122 }
23123
23124 *ref_cu = sig_cu;
23125 return die;
23126 }
23127
23128 return NULL;
23129 }
23130
23131 /* Follow signatured type referenced by ATTR in SRC_DIE.
23132 On entry *REF_CU is the CU of SRC_DIE.
23133 On exit *REF_CU is the CU of the result.
23134 The result is the DIE of the type.
23135 If the referenced type cannot be found an error is thrown. */
23136
23137 static struct die_info *
23138 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
23139 struct dwarf2_cu **ref_cu)
23140 {
23141 ULONGEST signature = DW_SIGNATURE (attr);
23142 struct signatured_type *sig_type;
23143 struct die_info *die;
23144
23145 gdb_assert (attr->form == DW_FORM_ref_sig8);
23146
23147 sig_type = lookup_signatured_type (*ref_cu, signature);
23148 /* sig_type will be NULL if the signatured type is missing from
23149 the debug info. */
23150 if (sig_type == NULL)
23151 {
23152 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23153 " from DIE at %s [in module %s]"),
23154 hex_string (signature), sect_offset_str (src_die->sect_off),
23155 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23156 }
23157
23158 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
23159 if (die == NULL)
23160 {
23161 dump_die_for_error (src_die);
23162 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23163 " from DIE at %s [in module %s]"),
23164 hex_string (signature), sect_offset_str (src_die->sect_off),
23165 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23166 }
23167
23168 return die;
23169 }
23170
23171 /* Get the type specified by SIGNATURE referenced in DIE/CU,
23172 reading in and processing the type unit if necessary. */
23173
23174 static struct type *
23175 get_signatured_type (struct die_info *die, ULONGEST signature,
23176 struct dwarf2_cu *cu)
23177 {
23178 struct dwarf2_per_objfile *dwarf2_per_objfile
23179 = cu->per_cu->dwarf2_per_objfile;
23180 struct signatured_type *sig_type;
23181 struct dwarf2_cu *type_cu;
23182 struct die_info *type_die;
23183 struct type *type;
23184
23185 sig_type = lookup_signatured_type (cu, signature);
23186 /* sig_type will be NULL if the signatured type is missing from
23187 the debug info. */
23188 if (sig_type == NULL)
23189 {
23190 complaint (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23191 " from DIE at %s [in module %s]"),
23192 hex_string (signature), sect_offset_str (die->sect_off),
23193 objfile_name (dwarf2_per_objfile->objfile));
23194 return build_error_marker_type (cu, die);
23195 }
23196
23197 /* If we already know the type we're done. */
23198 if (sig_type->type != NULL)
23199 return sig_type->type;
23200
23201 type_cu = cu;
23202 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
23203 if (type_die != NULL)
23204 {
23205 /* N.B. We need to call get_die_type to ensure only one type for this DIE
23206 is created. This is important, for example, because for c++ classes
23207 we need TYPE_NAME set which is only done by new_symbol. Blech. */
23208 type = read_type_die (type_die, type_cu);
23209 if (type == NULL)
23210 {
23211 complaint (_("Dwarf Error: Cannot build signatured type %s"
23212 " referenced from DIE at %s [in module %s]"),
23213 hex_string (signature), sect_offset_str (die->sect_off),
23214 objfile_name (dwarf2_per_objfile->objfile));
23215 type = build_error_marker_type (cu, die);
23216 }
23217 }
23218 else
23219 {
23220 complaint (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23221 " from DIE at %s [in module %s]"),
23222 hex_string (signature), sect_offset_str (die->sect_off),
23223 objfile_name (dwarf2_per_objfile->objfile));
23224 type = build_error_marker_type (cu, die);
23225 }
23226 sig_type->type = type;
23227
23228 return type;
23229 }
23230
23231 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
23232 reading in and processing the type unit if necessary. */
23233
23234 static struct type *
23235 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
23236 struct dwarf2_cu *cu) /* ARI: editCase function */
23237 {
23238 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
23239 if (attr_form_is_ref (attr))
23240 {
23241 struct dwarf2_cu *type_cu = cu;
23242 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
23243
23244 return read_type_die (type_die, type_cu);
23245 }
23246 else if (attr->form == DW_FORM_ref_sig8)
23247 {
23248 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
23249 }
23250 else
23251 {
23252 struct dwarf2_per_objfile *dwarf2_per_objfile
23253 = cu->per_cu->dwarf2_per_objfile;
23254
23255 complaint (_("Dwarf Error: DW_AT_signature has bad form %s in DIE"
23256 " at %s [in module %s]"),
23257 dwarf_form_name (attr->form), sect_offset_str (die->sect_off),
23258 objfile_name (dwarf2_per_objfile->objfile));
23259 return build_error_marker_type (cu, die);
23260 }
23261 }
23262
23263 /* Load the DIEs associated with type unit PER_CU into memory. */
23264
23265 static void
23266 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
23267 {
23268 struct signatured_type *sig_type;
23269
23270 /* Caller is responsible for ensuring type_unit_groups don't get here. */
23271 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
23272
23273 /* We have the per_cu, but we need the signatured_type.
23274 Fortunately this is an easy translation. */
23275 gdb_assert (per_cu->is_debug_types);
23276 sig_type = (struct signatured_type *) per_cu;
23277
23278 gdb_assert (per_cu->cu == NULL);
23279
23280 read_signatured_type (sig_type);
23281
23282 gdb_assert (per_cu->cu != NULL);
23283 }
23284
23285 /* die_reader_func for read_signatured_type.
23286 This is identical to load_full_comp_unit_reader,
23287 but is kept separate for now. */
23288
23289 static void
23290 read_signatured_type_reader (const struct die_reader_specs *reader,
23291 const gdb_byte *info_ptr,
23292 struct die_info *comp_unit_die,
23293 int has_children,
23294 void *data)
23295 {
23296 struct dwarf2_cu *cu = reader->cu;
23297
23298 gdb_assert (cu->die_hash == NULL);
23299 cu->die_hash =
23300 htab_create_alloc_ex (cu->header.length / 12,
23301 die_hash,
23302 die_eq,
23303 NULL,
23304 &cu->comp_unit_obstack,
23305 hashtab_obstack_allocate,
23306 dummy_obstack_deallocate);
23307
23308 if (has_children)
23309 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
23310 &info_ptr, comp_unit_die);
23311 cu->dies = comp_unit_die;
23312 /* comp_unit_die is not stored in die_hash, no need. */
23313
23314 /* We try not to read any attributes in this function, because not
23315 all CUs needed for references have been loaded yet, and symbol
23316 table processing isn't initialized. But we have to set the CU language,
23317 or we won't be able to build types correctly.
23318 Similarly, if we do not read the producer, we can not apply
23319 producer-specific interpretation. */
23320 prepare_one_comp_unit (cu, cu->dies, language_minimal);
23321 }
23322
23323 /* Read in a signatured type and build its CU and DIEs.
23324 If the type is a stub for the real type in a DWO file,
23325 read in the real type from the DWO file as well. */
23326
23327 static void
23328 read_signatured_type (struct signatured_type *sig_type)
23329 {
23330 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
23331
23332 gdb_assert (per_cu->is_debug_types);
23333 gdb_assert (per_cu->cu == NULL);
23334
23335 init_cutu_and_read_dies (per_cu, NULL, 0, 1, false,
23336 read_signatured_type_reader, NULL);
23337 sig_type->per_cu.tu_read = 1;
23338 }
23339
23340 /* Decode simple location descriptions.
23341 Given a pointer to a dwarf block that defines a location, compute
23342 the location and return the value.
23343
23344 NOTE drow/2003-11-18: This function is called in two situations
23345 now: for the address of static or global variables (partial symbols
23346 only) and for offsets into structures which are expected to be
23347 (more or less) constant. The partial symbol case should go away,
23348 and only the constant case should remain. That will let this
23349 function complain more accurately. A few special modes are allowed
23350 without complaint for global variables (for instance, global
23351 register values and thread-local values).
23352
23353 A location description containing no operations indicates that the
23354 object is optimized out. The return value is 0 for that case.
23355 FIXME drow/2003-11-16: No callers check for this case any more; soon all
23356 callers will only want a very basic result and this can become a
23357 complaint.
23358
23359 Note that stack[0] is unused except as a default error return. */
23360
23361 static CORE_ADDR
23362 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
23363 {
23364 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
23365 size_t i;
23366 size_t size = blk->size;
23367 const gdb_byte *data = blk->data;
23368 CORE_ADDR stack[64];
23369 int stacki;
23370 unsigned int bytes_read, unsnd;
23371 gdb_byte op;
23372
23373 i = 0;
23374 stacki = 0;
23375 stack[stacki] = 0;
23376 stack[++stacki] = 0;
23377
23378 while (i < size)
23379 {
23380 op = data[i++];
23381 switch (op)
23382 {
23383 case DW_OP_lit0:
23384 case DW_OP_lit1:
23385 case DW_OP_lit2:
23386 case DW_OP_lit3:
23387 case DW_OP_lit4:
23388 case DW_OP_lit5:
23389 case DW_OP_lit6:
23390 case DW_OP_lit7:
23391 case DW_OP_lit8:
23392 case DW_OP_lit9:
23393 case DW_OP_lit10:
23394 case DW_OP_lit11:
23395 case DW_OP_lit12:
23396 case DW_OP_lit13:
23397 case DW_OP_lit14:
23398 case DW_OP_lit15:
23399 case DW_OP_lit16:
23400 case DW_OP_lit17:
23401 case DW_OP_lit18:
23402 case DW_OP_lit19:
23403 case DW_OP_lit20:
23404 case DW_OP_lit21:
23405 case DW_OP_lit22:
23406 case DW_OP_lit23:
23407 case DW_OP_lit24:
23408 case DW_OP_lit25:
23409 case DW_OP_lit26:
23410 case DW_OP_lit27:
23411 case DW_OP_lit28:
23412 case DW_OP_lit29:
23413 case DW_OP_lit30:
23414 case DW_OP_lit31:
23415 stack[++stacki] = op - DW_OP_lit0;
23416 break;
23417
23418 case DW_OP_reg0:
23419 case DW_OP_reg1:
23420 case DW_OP_reg2:
23421 case DW_OP_reg3:
23422 case DW_OP_reg4:
23423 case DW_OP_reg5:
23424 case DW_OP_reg6:
23425 case DW_OP_reg7:
23426 case DW_OP_reg8:
23427 case DW_OP_reg9:
23428 case DW_OP_reg10:
23429 case DW_OP_reg11:
23430 case DW_OP_reg12:
23431 case DW_OP_reg13:
23432 case DW_OP_reg14:
23433 case DW_OP_reg15:
23434 case DW_OP_reg16:
23435 case DW_OP_reg17:
23436 case DW_OP_reg18:
23437 case DW_OP_reg19:
23438 case DW_OP_reg20:
23439 case DW_OP_reg21:
23440 case DW_OP_reg22:
23441 case DW_OP_reg23:
23442 case DW_OP_reg24:
23443 case DW_OP_reg25:
23444 case DW_OP_reg26:
23445 case DW_OP_reg27:
23446 case DW_OP_reg28:
23447 case DW_OP_reg29:
23448 case DW_OP_reg30:
23449 case DW_OP_reg31:
23450 stack[++stacki] = op - DW_OP_reg0;
23451 if (i < size)
23452 dwarf2_complex_location_expr_complaint ();
23453 break;
23454
23455 case DW_OP_regx:
23456 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
23457 i += bytes_read;
23458 stack[++stacki] = unsnd;
23459 if (i < size)
23460 dwarf2_complex_location_expr_complaint ();
23461 break;
23462
23463 case DW_OP_addr:
23464 stack[++stacki] = read_address (objfile->obfd, &data[i],
23465 cu, &bytes_read);
23466 i += bytes_read;
23467 break;
23468
23469 case DW_OP_const1u:
23470 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
23471 i += 1;
23472 break;
23473
23474 case DW_OP_const1s:
23475 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
23476 i += 1;
23477 break;
23478
23479 case DW_OP_const2u:
23480 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
23481 i += 2;
23482 break;
23483
23484 case DW_OP_const2s:
23485 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
23486 i += 2;
23487 break;
23488
23489 case DW_OP_const4u:
23490 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
23491 i += 4;
23492 break;
23493
23494 case DW_OP_const4s:
23495 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
23496 i += 4;
23497 break;
23498
23499 case DW_OP_const8u:
23500 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
23501 i += 8;
23502 break;
23503
23504 case DW_OP_constu:
23505 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
23506 &bytes_read);
23507 i += bytes_read;
23508 break;
23509
23510 case DW_OP_consts:
23511 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
23512 i += bytes_read;
23513 break;
23514
23515 case DW_OP_dup:
23516 stack[stacki + 1] = stack[stacki];
23517 stacki++;
23518 break;
23519
23520 case DW_OP_plus:
23521 stack[stacki - 1] += stack[stacki];
23522 stacki--;
23523 break;
23524
23525 case DW_OP_plus_uconst:
23526 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
23527 &bytes_read);
23528 i += bytes_read;
23529 break;
23530
23531 case DW_OP_minus:
23532 stack[stacki - 1] -= stack[stacki];
23533 stacki--;
23534 break;
23535
23536 case DW_OP_deref:
23537 /* If we're not the last op, then we definitely can't encode
23538 this using GDB's address_class enum. This is valid for partial
23539 global symbols, although the variable's address will be bogus
23540 in the psymtab. */
23541 if (i < size)
23542 dwarf2_complex_location_expr_complaint ();
23543 break;
23544
23545 case DW_OP_GNU_push_tls_address:
23546 case DW_OP_form_tls_address:
23547 /* The top of the stack has the offset from the beginning
23548 of the thread control block at which the variable is located. */
23549 /* Nothing should follow this operator, so the top of stack would
23550 be returned. */
23551 /* This is valid for partial global symbols, but the variable's
23552 address will be bogus in the psymtab. Make it always at least
23553 non-zero to not look as a variable garbage collected by linker
23554 which have DW_OP_addr 0. */
23555 if (i < size)
23556 dwarf2_complex_location_expr_complaint ();
23557 stack[stacki]++;
23558 break;
23559
23560 case DW_OP_GNU_uninit:
23561 break;
23562
23563 case DW_OP_GNU_addr_index:
23564 case DW_OP_GNU_const_index:
23565 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
23566 &bytes_read);
23567 i += bytes_read;
23568 break;
23569
23570 default:
23571 {
23572 const char *name = get_DW_OP_name (op);
23573
23574 if (name)
23575 complaint (_("unsupported stack op: '%s'"),
23576 name);
23577 else
23578 complaint (_("unsupported stack op: '%02x'"),
23579 op);
23580 }
23581
23582 return (stack[stacki]);
23583 }
23584
23585 /* Enforce maximum stack depth of SIZE-1 to avoid writing
23586 outside of the allocated space. Also enforce minimum>0. */
23587 if (stacki >= ARRAY_SIZE (stack) - 1)
23588 {
23589 complaint (_("location description stack overflow"));
23590 return 0;
23591 }
23592
23593 if (stacki <= 0)
23594 {
23595 complaint (_("location description stack underflow"));
23596 return 0;
23597 }
23598 }
23599 return (stack[stacki]);
23600 }
23601
23602 /* memory allocation interface */
23603
23604 static struct dwarf_block *
23605 dwarf_alloc_block (struct dwarf2_cu *cu)
23606 {
23607 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
23608 }
23609
23610 static struct die_info *
23611 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
23612 {
23613 struct die_info *die;
23614 size_t size = sizeof (struct die_info);
23615
23616 if (num_attrs > 1)
23617 size += (num_attrs - 1) * sizeof (struct attribute);
23618
23619 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
23620 memset (die, 0, sizeof (struct die_info));
23621 return (die);
23622 }
23623
23624 \f
23625 /* Macro support. */
23626
23627 /* Return file name relative to the compilation directory of file number I in
23628 *LH's file name table. The result is allocated using xmalloc; the caller is
23629 responsible for freeing it. */
23630
23631 static char *
23632 file_file_name (int file, struct line_header *lh)
23633 {
23634 /* Is the file number a valid index into the line header's file name
23635 table? Remember that file numbers start with one, not zero. */
23636 if (1 <= file && file <= lh->file_names.size ())
23637 {
23638 const file_entry &fe = lh->file_names[file - 1];
23639
23640 if (!IS_ABSOLUTE_PATH (fe.name))
23641 {
23642 const char *dir = fe.include_dir (lh);
23643 if (dir != NULL)
23644 return concat (dir, SLASH_STRING, fe.name, (char *) NULL);
23645 }
23646 return xstrdup (fe.name);
23647 }
23648 else
23649 {
23650 /* The compiler produced a bogus file number. We can at least
23651 record the macro definitions made in the file, even if we
23652 won't be able to find the file by name. */
23653 char fake_name[80];
23654
23655 xsnprintf (fake_name, sizeof (fake_name),
23656 "<bad macro file number %d>", file);
23657
23658 complaint (_("bad file number in macro information (%d)"),
23659 file);
23660
23661 return xstrdup (fake_name);
23662 }
23663 }
23664
23665 /* Return the full name of file number I in *LH's file name table.
23666 Use COMP_DIR as the name of the current directory of the
23667 compilation. The result is allocated using xmalloc; the caller is
23668 responsible for freeing it. */
23669 static char *
23670 file_full_name (int file, struct line_header *lh, const char *comp_dir)
23671 {
23672 /* Is the file number a valid index into the line header's file name
23673 table? Remember that file numbers start with one, not zero. */
23674 if (1 <= file && file <= lh->file_names.size ())
23675 {
23676 char *relative = file_file_name (file, lh);
23677
23678 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
23679 return relative;
23680 return reconcat (relative, comp_dir, SLASH_STRING,
23681 relative, (char *) NULL);
23682 }
23683 else
23684 return file_file_name (file, lh);
23685 }
23686
23687
23688 static struct macro_source_file *
23689 macro_start_file (int file, int line,
23690 struct macro_source_file *current_file,
23691 struct line_header *lh)
23692 {
23693 /* File name relative to the compilation directory of this source file. */
23694 char *file_name = file_file_name (file, lh);
23695
23696 if (! current_file)
23697 {
23698 /* Note: We don't create a macro table for this compilation unit
23699 at all until we actually get a filename. */
23700 struct macro_table *macro_table = get_macro_table ();
23701
23702 /* If we have no current file, then this must be the start_file
23703 directive for the compilation unit's main source file. */
23704 current_file = macro_set_main (macro_table, file_name);
23705 macro_define_special (macro_table);
23706 }
23707 else
23708 current_file = macro_include (current_file, line, file_name);
23709
23710 xfree (file_name);
23711
23712 return current_file;
23713 }
23714
23715 static const char *
23716 consume_improper_spaces (const char *p, const char *body)
23717 {
23718 if (*p == ' ')
23719 {
23720 complaint (_("macro definition contains spaces "
23721 "in formal argument list:\n`%s'"),
23722 body);
23723
23724 while (*p == ' ')
23725 p++;
23726 }
23727
23728 return p;
23729 }
23730
23731
23732 static void
23733 parse_macro_definition (struct macro_source_file *file, int line,
23734 const char *body)
23735 {
23736 const char *p;
23737
23738 /* The body string takes one of two forms. For object-like macro
23739 definitions, it should be:
23740
23741 <macro name> " " <definition>
23742
23743 For function-like macro definitions, it should be:
23744
23745 <macro name> "() " <definition>
23746 or
23747 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
23748
23749 Spaces may appear only where explicitly indicated, and in the
23750 <definition>.
23751
23752 The Dwarf 2 spec says that an object-like macro's name is always
23753 followed by a space, but versions of GCC around March 2002 omit
23754 the space when the macro's definition is the empty string.
23755
23756 The Dwarf 2 spec says that there should be no spaces between the
23757 formal arguments in a function-like macro's formal argument list,
23758 but versions of GCC around March 2002 include spaces after the
23759 commas. */
23760
23761
23762 /* Find the extent of the macro name. The macro name is terminated
23763 by either a space or null character (for an object-like macro) or
23764 an opening paren (for a function-like macro). */
23765 for (p = body; *p; p++)
23766 if (*p == ' ' || *p == '(')
23767 break;
23768
23769 if (*p == ' ' || *p == '\0')
23770 {
23771 /* It's an object-like macro. */
23772 int name_len = p - body;
23773 char *name = savestring (body, name_len);
23774 const char *replacement;
23775
23776 if (*p == ' ')
23777 replacement = body + name_len + 1;
23778 else
23779 {
23780 dwarf2_macro_malformed_definition_complaint (body);
23781 replacement = body + name_len;
23782 }
23783
23784 macro_define_object (file, line, name, replacement);
23785
23786 xfree (name);
23787 }
23788 else if (*p == '(')
23789 {
23790 /* It's a function-like macro. */
23791 char *name = savestring (body, p - body);
23792 int argc = 0;
23793 int argv_size = 1;
23794 char **argv = XNEWVEC (char *, argv_size);
23795
23796 p++;
23797
23798 p = consume_improper_spaces (p, body);
23799
23800 /* Parse the formal argument list. */
23801 while (*p && *p != ')')
23802 {
23803 /* Find the extent of the current argument name. */
23804 const char *arg_start = p;
23805
23806 while (*p && *p != ',' && *p != ')' && *p != ' ')
23807 p++;
23808
23809 if (! *p || p == arg_start)
23810 dwarf2_macro_malformed_definition_complaint (body);
23811 else
23812 {
23813 /* Make sure argv has room for the new argument. */
23814 if (argc >= argv_size)
23815 {
23816 argv_size *= 2;
23817 argv = XRESIZEVEC (char *, argv, argv_size);
23818 }
23819
23820 argv[argc++] = savestring (arg_start, p - arg_start);
23821 }
23822
23823 p = consume_improper_spaces (p, body);
23824
23825 /* Consume the comma, if present. */
23826 if (*p == ',')
23827 {
23828 p++;
23829
23830 p = consume_improper_spaces (p, body);
23831 }
23832 }
23833
23834 if (*p == ')')
23835 {
23836 p++;
23837
23838 if (*p == ' ')
23839 /* Perfectly formed definition, no complaints. */
23840 macro_define_function (file, line, name,
23841 argc, (const char **) argv,
23842 p + 1);
23843 else if (*p == '\0')
23844 {
23845 /* Complain, but do define it. */
23846 dwarf2_macro_malformed_definition_complaint (body);
23847 macro_define_function (file, line, name,
23848 argc, (const char **) argv,
23849 p);
23850 }
23851 else
23852 /* Just complain. */
23853 dwarf2_macro_malformed_definition_complaint (body);
23854 }
23855 else
23856 /* Just complain. */
23857 dwarf2_macro_malformed_definition_complaint (body);
23858
23859 xfree (name);
23860 {
23861 int i;
23862
23863 for (i = 0; i < argc; i++)
23864 xfree (argv[i]);
23865 }
23866 xfree (argv);
23867 }
23868 else
23869 dwarf2_macro_malformed_definition_complaint (body);
23870 }
23871
23872 /* Skip some bytes from BYTES according to the form given in FORM.
23873 Returns the new pointer. */
23874
23875 static const gdb_byte *
23876 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
23877 enum dwarf_form form,
23878 unsigned int offset_size,
23879 struct dwarf2_section_info *section)
23880 {
23881 unsigned int bytes_read;
23882
23883 switch (form)
23884 {
23885 case DW_FORM_data1:
23886 case DW_FORM_flag:
23887 ++bytes;
23888 break;
23889
23890 case DW_FORM_data2:
23891 bytes += 2;
23892 break;
23893
23894 case DW_FORM_data4:
23895 bytes += 4;
23896 break;
23897
23898 case DW_FORM_data8:
23899 bytes += 8;
23900 break;
23901
23902 case DW_FORM_data16:
23903 bytes += 16;
23904 break;
23905
23906 case DW_FORM_string:
23907 read_direct_string (abfd, bytes, &bytes_read);
23908 bytes += bytes_read;
23909 break;
23910
23911 case DW_FORM_sec_offset:
23912 case DW_FORM_strp:
23913 case DW_FORM_GNU_strp_alt:
23914 bytes += offset_size;
23915 break;
23916
23917 case DW_FORM_block:
23918 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
23919 bytes += bytes_read;
23920 break;
23921
23922 case DW_FORM_block1:
23923 bytes += 1 + read_1_byte (abfd, bytes);
23924 break;
23925 case DW_FORM_block2:
23926 bytes += 2 + read_2_bytes (abfd, bytes);
23927 break;
23928 case DW_FORM_block4:
23929 bytes += 4 + read_4_bytes (abfd, bytes);
23930 break;
23931
23932 case DW_FORM_sdata:
23933 case DW_FORM_udata:
23934 case DW_FORM_GNU_addr_index:
23935 case DW_FORM_GNU_str_index:
23936 bytes = gdb_skip_leb128 (bytes, buffer_end);
23937 if (bytes == NULL)
23938 {
23939 dwarf2_section_buffer_overflow_complaint (section);
23940 return NULL;
23941 }
23942 break;
23943
23944 case DW_FORM_implicit_const:
23945 break;
23946
23947 default:
23948 {
23949 complaint (_("invalid form 0x%x in `%s'"),
23950 form, get_section_name (section));
23951 return NULL;
23952 }
23953 }
23954
23955 return bytes;
23956 }
23957
23958 /* A helper for dwarf_decode_macros that handles skipping an unknown
23959 opcode. Returns an updated pointer to the macro data buffer; or,
23960 on error, issues a complaint and returns NULL. */
23961
23962 static const gdb_byte *
23963 skip_unknown_opcode (unsigned int opcode,
23964 const gdb_byte **opcode_definitions,
23965 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
23966 bfd *abfd,
23967 unsigned int offset_size,
23968 struct dwarf2_section_info *section)
23969 {
23970 unsigned int bytes_read, i;
23971 unsigned long arg;
23972 const gdb_byte *defn;
23973
23974 if (opcode_definitions[opcode] == NULL)
23975 {
23976 complaint (_("unrecognized DW_MACFINO opcode 0x%x"),
23977 opcode);
23978 return NULL;
23979 }
23980
23981 defn = opcode_definitions[opcode];
23982 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
23983 defn += bytes_read;
23984
23985 for (i = 0; i < arg; ++i)
23986 {
23987 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
23988 (enum dwarf_form) defn[i], offset_size,
23989 section);
23990 if (mac_ptr == NULL)
23991 {
23992 /* skip_form_bytes already issued the complaint. */
23993 return NULL;
23994 }
23995 }
23996
23997 return mac_ptr;
23998 }
23999
24000 /* A helper function which parses the header of a macro section.
24001 If the macro section is the extended (for now called "GNU") type,
24002 then this updates *OFFSET_SIZE. Returns a pointer to just after
24003 the header, or issues a complaint and returns NULL on error. */
24004
24005 static const gdb_byte *
24006 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
24007 bfd *abfd,
24008 const gdb_byte *mac_ptr,
24009 unsigned int *offset_size,
24010 int section_is_gnu)
24011 {
24012 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
24013
24014 if (section_is_gnu)
24015 {
24016 unsigned int version, flags;
24017
24018 version = read_2_bytes (abfd, mac_ptr);
24019 if (version != 4 && version != 5)
24020 {
24021 complaint (_("unrecognized version `%d' in .debug_macro section"),
24022 version);
24023 return NULL;
24024 }
24025 mac_ptr += 2;
24026
24027 flags = read_1_byte (abfd, mac_ptr);
24028 ++mac_ptr;
24029 *offset_size = (flags & 1) ? 8 : 4;
24030
24031 if ((flags & 2) != 0)
24032 /* We don't need the line table offset. */
24033 mac_ptr += *offset_size;
24034
24035 /* Vendor opcode descriptions. */
24036 if ((flags & 4) != 0)
24037 {
24038 unsigned int i, count;
24039
24040 count = read_1_byte (abfd, mac_ptr);
24041 ++mac_ptr;
24042 for (i = 0; i < count; ++i)
24043 {
24044 unsigned int opcode, bytes_read;
24045 unsigned long arg;
24046
24047 opcode = read_1_byte (abfd, mac_ptr);
24048 ++mac_ptr;
24049 opcode_definitions[opcode] = mac_ptr;
24050 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24051 mac_ptr += bytes_read;
24052 mac_ptr += arg;
24053 }
24054 }
24055 }
24056
24057 return mac_ptr;
24058 }
24059
24060 /* A helper for dwarf_decode_macros that handles the GNU extensions,
24061 including DW_MACRO_import. */
24062
24063 static void
24064 dwarf_decode_macro_bytes (struct dwarf2_per_objfile *dwarf2_per_objfile,
24065 bfd *abfd,
24066 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24067 struct macro_source_file *current_file,
24068 struct line_header *lh,
24069 struct dwarf2_section_info *section,
24070 int section_is_gnu, int section_is_dwz,
24071 unsigned int offset_size,
24072 htab_t include_hash)
24073 {
24074 struct objfile *objfile = dwarf2_per_objfile->objfile;
24075 enum dwarf_macro_record_type macinfo_type;
24076 int at_commandline;
24077 const gdb_byte *opcode_definitions[256];
24078
24079 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24080 &offset_size, section_is_gnu);
24081 if (mac_ptr == NULL)
24082 {
24083 /* We already issued a complaint. */
24084 return;
24085 }
24086
24087 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
24088 GDB is still reading the definitions from command line. First
24089 DW_MACINFO_start_file will need to be ignored as it was already executed
24090 to create CURRENT_FILE for the main source holding also the command line
24091 definitions. On first met DW_MACINFO_start_file this flag is reset to
24092 normally execute all the remaining DW_MACINFO_start_file macinfos. */
24093
24094 at_commandline = 1;
24095
24096 do
24097 {
24098 /* Do we at least have room for a macinfo type byte? */
24099 if (mac_ptr >= mac_end)
24100 {
24101 dwarf2_section_buffer_overflow_complaint (section);
24102 break;
24103 }
24104
24105 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24106 mac_ptr++;
24107
24108 /* Note that we rely on the fact that the corresponding GNU and
24109 DWARF constants are the same. */
24110 DIAGNOSTIC_PUSH
24111 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24112 switch (macinfo_type)
24113 {
24114 /* A zero macinfo type indicates the end of the macro
24115 information. */
24116 case 0:
24117 break;
24118
24119 case DW_MACRO_define:
24120 case DW_MACRO_undef:
24121 case DW_MACRO_define_strp:
24122 case DW_MACRO_undef_strp:
24123 case DW_MACRO_define_sup:
24124 case DW_MACRO_undef_sup:
24125 {
24126 unsigned int bytes_read;
24127 int line;
24128 const char *body;
24129 int is_define;
24130
24131 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24132 mac_ptr += bytes_read;
24133
24134 if (macinfo_type == DW_MACRO_define
24135 || macinfo_type == DW_MACRO_undef)
24136 {
24137 body = read_direct_string (abfd, mac_ptr, &bytes_read);
24138 mac_ptr += bytes_read;
24139 }
24140 else
24141 {
24142 LONGEST str_offset;
24143
24144 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
24145 mac_ptr += offset_size;
24146
24147 if (macinfo_type == DW_MACRO_define_sup
24148 || macinfo_type == DW_MACRO_undef_sup
24149 || section_is_dwz)
24150 {
24151 struct dwz_file *dwz
24152 = dwarf2_get_dwz_file (dwarf2_per_objfile);
24153
24154 body = read_indirect_string_from_dwz (objfile,
24155 dwz, str_offset);
24156 }
24157 else
24158 body = read_indirect_string_at_offset (dwarf2_per_objfile,
24159 abfd, str_offset);
24160 }
24161
24162 is_define = (macinfo_type == DW_MACRO_define
24163 || macinfo_type == DW_MACRO_define_strp
24164 || macinfo_type == DW_MACRO_define_sup);
24165 if (! current_file)
24166 {
24167 /* DWARF violation as no main source is present. */
24168 complaint (_("debug info with no main source gives macro %s "
24169 "on line %d: %s"),
24170 is_define ? _("definition") : _("undefinition"),
24171 line, body);
24172 break;
24173 }
24174 if ((line == 0 && !at_commandline)
24175 || (line != 0 && at_commandline))
24176 complaint (_("debug info gives %s macro %s with %s line %d: %s"),
24177 at_commandline ? _("command-line") : _("in-file"),
24178 is_define ? _("definition") : _("undefinition"),
24179 line == 0 ? _("zero") : _("non-zero"), line, body);
24180
24181 if (is_define)
24182 parse_macro_definition (current_file, line, body);
24183 else
24184 {
24185 gdb_assert (macinfo_type == DW_MACRO_undef
24186 || macinfo_type == DW_MACRO_undef_strp
24187 || macinfo_type == DW_MACRO_undef_sup);
24188 macro_undef (current_file, line, body);
24189 }
24190 }
24191 break;
24192
24193 case DW_MACRO_start_file:
24194 {
24195 unsigned int bytes_read;
24196 int line, file;
24197
24198 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24199 mac_ptr += bytes_read;
24200 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24201 mac_ptr += bytes_read;
24202
24203 if ((line == 0 && !at_commandline)
24204 || (line != 0 && at_commandline))
24205 complaint (_("debug info gives source %d included "
24206 "from %s at %s line %d"),
24207 file, at_commandline ? _("command-line") : _("file"),
24208 line == 0 ? _("zero") : _("non-zero"), line);
24209
24210 if (at_commandline)
24211 {
24212 /* This DW_MACRO_start_file was executed in the
24213 pass one. */
24214 at_commandline = 0;
24215 }
24216 else
24217 current_file = macro_start_file (file, line, current_file, lh);
24218 }
24219 break;
24220
24221 case DW_MACRO_end_file:
24222 if (! current_file)
24223 complaint (_("macro debug info has an unmatched "
24224 "`close_file' directive"));
24225 else
24226 {
24227 current_file = current_file->included_by;
24228 if (! current_file)
24229 {
24230 enum dwarf_macro_record_type next_type;
24231
24232 /* GCC circa March 2002 doesn't produce the zero
24233 type byte marking the end of the compilation
24234 unit. Complain if it's not there, but exit no
24235 matter what. */
24236
24237 /* Do we at least have room for a macinfo type byte? */
24238 if (mac_ptr >= mac_end)
24239 {
24240 dwarf2_section_buffer_overflow_complaint (section);
24241 return;
24242 }
24243
24244 /* We don't increment mac_ptr here, so this is just
24245 a look-ahead. */
24246 next_type
24247 = (enum dwarf_macro_record_type) read_1_byte (abfd,
24248 mac_ptr);
24249 if (next_type != 0)
24250 complaint (_("no terminating 0-type entry for "
24251 "macros in `.debug_macinfo' section"));
24252
24253 return;
24254 }
24255 }
24256 break;
24257
24258 case DW_MACRO_import:
24259 case DW_MACRO_import_sup:
24260 {
24261 LONGEST offset;
24262 void **slot;
24263 bfd *include_bfd = abfd;
24264 struct dwarf2_section_info *include_section = section;
24265 const gdb_byte *include_mac_end = mac_end;
24266 int is_dwz = section_is_dwz;
24267 const gdb_byte *new_mac_ptr;
24268
24269 offset = read_offset_1 (abfd, mac_ptr, offset_size);
24270 mac_ptr += offset_size;
24271
24272 if (macinfo_type == DW_MACRO_import_sup)
24273 {
24274 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
24275
24276 dwarf2_read_section (objfile, &dwz->macro);
24277
24278 include_section = &dwz->macro;
24279 include_bfd = get_section_bfd_owner (include_section);
24280 include_mac_end = dwz->macro.buffer + dwz->macro.size;
24281 is_dwz = 1;
24282 }
24283
24284 new_mac_ptr = include_section->buffer + offset;
24285 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
24286
24287 if (*slot != NULL)
24288 {
24289 /* This has actually happened; see
24290 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
24291 complaint (_("recursive DW_MACRO_import in "
24292 ".debug_macro section"));
24293 }
24294 else
24295 {
24296 *slot = (void *) new_mac_ptr;
24297
24298 dwarf_decode_macro_bytes (dwarf2_per_objfile,
24299 include_bfd, new_mac_ptr,
24300 include_mac_end, current_file, lh,
24301 section, section_is_gnu, is_dwz,
24302 offset_size, include_hash);
24303
24304 htab_remove_elt (include_hash, (void *) new_mac_ptr);
24305 }
24306 }
24307 break;
24308
24309 case DW_MACINFO_vendor_ext:
24310 if (!section_is_gnu)
24311 {
24312 unsigned int bytes_read;
24313
24314 /* This reads the constant, but since we don't recognize
24315 any vendor extensions, we ignore it. */
24316 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24317 mac_ptr += bytes_read;
24318 read_direct_string (abfd, mac_ptr, &bytes_read);
24319 mac_ptr += bytes_read;
24320
24321 /* We don't recognize any vendor extensions. */
24322 break;
24323 }
24324 /* FALLTHROUGH */
24325
24326 default:
24327 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24328 mac_ptr, mac_end, abfd, offset_size,
24329 section);
24330 if (mac_ptr == NULL)
24331 return;
24332 break;
24333 }
24334 DIAGNOSTIC_POP
24335 } while (macinfo_type != 0);
24336 }
24337
24338 static void
24339 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
24340 int section_is_gnu)
24341 {
24342 struct dwarf2_per_objfile *dwarf2_per_objfile
24343 = cu->per_cu->dwarf2_per_objfile;
24344 struct objfile *objfile = dwarf2_per_objfile->objfile;
24345 struct line_header *lh = cu->line_header;
24346 bfd *abfd;
24347 const gdb_byte *mac_ptr, *mac_end;
24348 struct macro_source_file *current_file = 0;
24349 enum dwarf_macro_record_type macinfo_type;
24350 unsigned int offset_size = cu->header.offset_size;
24351 const gdb_byte *opcode_definitions[256];
24352 void **slot;
24353 struct dwarf2_section_info *section;
24354 const char *section_name;
24355
24356 if (cu->dwo_unit != NULL)
24357 {
24358 if (section_is_gnu)
24359 {
24360 section = &cu->dwo_unit->dwo_file->sections.macro;
24361 section_name = ".debug_macro.dwo";
24362 }
24363 else
24364 {
24365 section = &cu->dwo_unit->dwo_file->sections.macinfo;
24366 section_name = ".debug_macinfo.dwo";
24367 }
24368 }
24369 else
24370 {
24371 if (section_is_gnu)
24372 {
24373 section = &dwarf2_per_objfile->macro;
24374 section_name = ".debug_macro";
24375 }
24376 else
24377 {
24378 section = &dwarf2_per_objfile->macinfo;
24379 section_name = ".debug_macinfo";
24380 }
24381 }
24382
24383 dwarf2_read_section (objfile, section);
24384 if (section->buffer == NULL)
24385 {
24386 complaint (_("missing %s section"), section_name);
24387 return;
24388 }
24389 abfd = get_section_bfd_owner (section);
24390
24391 /* First pass: Find the name of the base filename.
24392 This filename is needed in order to process all macros whose definition
24393 (or undefinition) comes from the command line. These macros are defined
24394 before the first DW_MACINFO_start_file entry, and yet still need to be
24395 associated to the base file.
24396
24397 To determine the base file name, we scan the macro definitions until we
24398 reach the first DW_MACINFO_start_file entry. We then initialize
24399 CURRENT_FILE accordingly so that any macro definition found before the
24400 first DW_MACINFO_start_file can still be associated to the base file. */
24401
24402 mac_ptr = section->buffer + offset;
24403 mac_end = section->buffer + section->size;
24404
24405 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24406 &offset_size, section_is_gnu);
24407 if (mac_ptr == NULL)
24408 {
24409 /* We already issued a complaint. */
24410 return;
24411 }
24412
24413 do
24414 {
24415 /* Do we at least have room for a macinfo type byte? */
24416 if (mac_ptr >= mac_end)
24417 {
24418 /* Complaint is printed during the second pass as GDB will probably
24419 stop the first pass earlier upon finding
24420 DW_MACINFO_start_file. */
24421 break;
24422 }
24423
24424 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24425 mac_ptr++;
24426
24427 /* Note that we rely on the fact that the corresponding GNU and
24428 DWARF constants are the same. */
24429 DIAGNOSTIC_PUSH
24430 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24431 switch (macinfo_type)
24432 {
24433 /* A zero macinfo type indicates the end of the macro
24434 information. */
24435 case 0:
24436 break;
24437
24438 case DW_MACRO_define:
24439 case DW_MACRO_undef:
24440 /* Only skip the data by MAC_PTR. */
24441 {
24442 unsigned int bytes_read;
24443
24444 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24445 mac_ptr += bytes_read;
24446 read_direct_string (abfd, mac_ptr, &bytes_read);
24447 mac_ptr += bytes_read;
24448 }
24449 break;
24450
24451 case DW_MACRO_start_file:
24452 {
24453 unsigned int bytes_read;
24454 int line, file;
24455
24456 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24457 mac_ptr += bytes_read;
24458 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24459 mac_ptr += bytes_read;
24460
24461 current_file = macro_start_file (file, line, current_file, lh);
24462 }
24463 break;
24464
24465 case DW_MACRO_end_file:
24466 /* No data to skip by MAC_PTR. */
24467 break;
24468
24469 case DW_MACRO_define_strp:
24470 case DW_MACRO_undef_strp:
24471 case DW_MACRO_define_sup:
24472 case DW_MACRO_undef_sup:
24473 {
24474 unsigned int bytes_read;
24475
24476 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24477 mac_ptr += bytes_read;
24478 mac_ptr += offset_size;
24479 }
24480 break;
24481
24482 case DW_MACRO_import:
24483 case DW_MACRO_import_sup:
24484 /* Note that, according to the spec, a transparent include
24485 chain cannot call DW_MACRO_start_file. So, we can just
24486 skip this opcode. */
24487 mac_ptr += offset_size;
24488 break;
24489
24490 case DW_MACINFO_vendor_ext:
24491 /* Only skip the data by MAC_PTR. */
24492 if (!section_is_gnu)
24493 {
24494 unsigned int bytes_read;
24495
24496 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24497 mac_ptr += bytes_read;
24498 read_direct_string (abfd, mac_ptr, &bytes_read);
24499 mac_ptr += bytes_read;
24500 }
24501 /* FALLTHROUGH */
24502
24503 default:
24504 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24505 mac_ptr, mac_end, abfd, offset_size,
24506 section);
24507 if (mac_ptr == NULL)
24508 return;
24509 break;
24510 }
24511 DIAGNOSTIC_POP
24512 } while (macinfo_type != 0 && current_file == NULL);
24513
24514 /* Second pass: Process all entries.
24515
24516 Use the AT_COMMAND_LINE flag to determine whether we are still processing
24517 command-line macro definitions/undefinitions. This flag is unset when we
24518 reach the first DW_MACINFO_start_file entry. */
24519
24520 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
24521 htab_eq_pointer,
24522 NULL, xcalloc, xfree));
24523 mac_ptr = section->buffer + offset;
24524 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
24525 *slot = (void *) mac_ptr;
24526 dwarf_decode_macro_bytes (dwarf2_per_objfile,
24527 abfd, mac_ptr, mac_end,
24528 current_file, lh, section,
24529 section_is_gnu, 0, offset_size,
24530 include_hash.get ());
24531 }
24532
24533 /* Check if the attribute's form is a DW_FORM_block*
24534 if so return true else false. */
24535
24536 static int
24537 attr_form_is_block (const struct attribute *attr)
24538 {
24539 return (attr == NULL ? 0 :
24540 attr->form == DW_FORM_block1
24541 || attr->form == DW_FORM_block2
24542 || attr->form == DW_FORM_block4
24543 || attr->form == DW_FORM_block
24544 || attr->form == DW_FORM_exprloc);
24545 }
24546
24547 /* Return non-zero if ATTR's value is a section offset --- classes
24548 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
24549 You may use DW_UNSND (attr) to retrieve such offsets.
24550
24551 Section 7.5.4, "Attribute Encodings", explains that no attribute
24552 may have a value that belongs to more than one of these classes; it
24553 would be ambiguous if we did, because we use the same forms for all
24554 of them. */
24555
24556 static int
24557 attr_form_is_section_offset (const struct attribute *attr)
24558 {
24559 return (attr->form == DW_FORM_data4
24560 || attr->form == DW_FORM_data8
24561 || attr->form == DW_FORM_sec_offset);
24562 }
24563
24564 /* Return non-zero if ATTR's value falls in the 'constant' class, or
24565 zero otherwise. When this function returns true, you can apply
24566 dwarf2_get_attr_constant_value to it.
24567
24568 However, note that for some attributes you must check
24569 attr_form_is_section_offset before using this test. DW_FORM_data4
24570 and DW_FORM_data8 are members of both the constant class, and of
24571 the classes that contain offsets into other debug sections
24572 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
24573 that, if an attribute's can be either a constant or one of the
24574 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
24575 taken as section offsets, not constants.
24576
24577 DW_FORM_data16 is not considered as dwarf2_get_attr_constant_value
24578 cannot handle that. */
24579
24580 static int
24581 attr_form_is_constant (const struct attribute *attr)
24582 {
24583 switch (attr->form)
24584 {
24585 case DW_FORM_sdata:
24586 case DW_FORM_udata:
24587 case DW_FORM_data1:
24588 case DW_FORM_data2:
24589 case DW_FORM_data4:
24590 case DW_FORM_data8:
24591 case DW_FORM_implicit_const:
24592 return 1;
24593 default:
24594 return 0;
24595 }
24596 }
24597
24598
24599 /* DW_ADDR is always stored already as sect_offset; despite for the forms
24600 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
24601
24602 static int
24603 attr_form_is_ref (const struct attribute *attr)
24604 {
24605 switch (attr->form)
24606 {
24607 case DW_FORM_ref_addr:
24608 case DW_FORM_ref1:
24609 case DW_FORM_ref2:
24610 case DW_FORM_ref4:
24611 case DW_FORM_ref8:
24612 case DW_FORM_ref_udata:
24613 case DW_FORM_GNU_ref_alt:
24614 return 1;
24615 default:
24616 return 0;
24617 }
24618 }
24619
24620 /* Return the .debug_loc section to use for CU.
24621 For DWO files use .debug_loc.dwo. */
24622
24623 static struct dwarf2_section_info *
24624 cu_debug_loc_section (struct dwarf2_cu *cu)
24625 {
24626 struct dwarf2_per_objfile *dwarf2_per_objfile
24627 = cu->per_cu->dwarf2_per_objfile;
24628
24629 if (cu->dwo_unit)
24630 {
24631 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
24632
24633 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
24634 }
24635 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
24636 : &dwarf2_per_objfile->loc);
24637 }
24638
24639 /* A helper function that fills in a dwarf2_loclist_baton. */
24640
24641 static void
24642 fill_in_loclist_baton (struct dwarf2_cu *cu,
24643 struct dwarf2_loclist_baton *baton,
24644 const struct attribute *attr)
24645 {
24646 struct dwarf2_per_objfile *dwarf2_per_objfile
24647 = cu->per_cu->dwarf2_per_objfile;
24648 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
24649
24650 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
24651
24652 baton->per_cu = cu->per_cu;
24653 gdb_assert (baton->per_cu);
24654 /* We don't know how long the location list is, but make sure we
24655 don't run off the edge of the section. */
24656 baton->size = section->size - DW_UNSND (attr);
24657 baton->data = section->buffer + DW_UNSND (attr);
24658 baton->base_address = cu->base_address;
24659 baton->from_dwo = cu->dwo_unit != NULL;
24660 }
24661
24662 static void
24663 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
24664 struct dwarf2_cu *cu, int is_block)
24665 {
24666 struct dwarf2_per_objfile *dwarf2_per_objfile
24667 = cu->per_cu->dwarf2_per_objfile;
24668 struct objfile *objfile = dwarf2_per_objfile->objfile;
24669 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
24670
24671 if (attr_form_is_section_offset (attr)
24672 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
24673 the section. If so, fall through to the complaint in the
24674 other branch. */
24675 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
24676 {
24677 struct dwarf2_loclist_baton *baton;
24678
24679 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
24680
24681 fill_in_loclist_baton (cu, baton, attr);
24682
24683 if (cu->base_known == 0)
24684 complaint (_("Location list used without "
24685 "specifying the CU base address."));
24686
24687 SYMBOL_ACLASS_INDEX (sym) = (is_block
24688 ? dwarf2_loclist_block_index
24689 : dwarf2_loclist_index);
24690 SYMBOL_LOCATION_BATON (sym) = baton;
24691 }
24692 else
24693 {
24694 struct dwarf2_locexpr_baton *baton;
24695
24696 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
24697 baton->per_cu = cu->per_cu;
24698 gdb_assert (baton->per_cu);
24699
24700 if (attr_form_is_block (attr))
24701 {
24702 /* Note that we're just copying the block's data pointer
24703 here, not the actual data. We're still pointing into the
24704 info_buffer for SYM's objfile; right now we never release
24705 that buffer, but when we do clean up properly this may
24706 need to change. */
24707 baton->size = DW_BLOCK (attr)->size;
24708 baton->data = DW_BLOCK (attr)->data;
24709 }
24710 else
24711 {
24712 dwarf2_invalid_attrib_class_complaint ("location description",
24713 SYMBOL_NATURAL_NAME (sym));
24714 baton->size = 0;
24715 }
24716
24717 SYMBOL_ACLASS_INDEX (sym) = (is_block
24718 ? dwarf2_locexpr_block_index
24719 : dwarf2_locexpr_index);
24720 SYMBOL_LOCATION_BATON (sym) = baton;
24721 }
24722 }
24723
24724 /* Return the OBJFILE associated with the compilation unit CU. If CU
24725 came from a separate debuginfo file, then the master objfile is
24726 returned. */
24727
24728 struct objfile *
24729 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
24730 {
24731 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
24732
24733 /* Return the master objfile, so that we can report and look up the
24734 correct file containing this variable. */
24735 if (objfile->separate_debug_objfile_backlink)
24736 objfile = objfile->separate_debug_objfile_backlink;
24737
24738 return objfile;
24739 }
24740
24741 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
24742 (CU_HEADERP is unused in such case) or prepare a temporary copy at
24743 CU_HEADERP first. */
24744
24745 static const struct comp_unit_head *
24746 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
24747 struct dwarf2_per_cu_data *per_cu)
24748 {
24749 const gdb_byte *info_ptr;
24750
24751 if (per_cu->cu)
24752 return &per_cu->cu->header;
24753
24754 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
24755
24756 memset (cu_headerp, 0, sizeof (*cu_headerp));
24757 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
24758 rcuh_kind::COMPILE);
24759
24760 return cu_headerp;
24761 }
24762
24763 /* Return the address size given in the compilation unit header for CU. */
24764
24765 int
24766 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
24767 {
24768 struct comp_unit_head cu_header_local;
24769 const struct comp_unit_head *cu_headerp;
24770
24771 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
24772
24773 return cu_headerp->addr_size;
24774 }
24775
24776 /* Return the offset size given in the compilation unit header for CU. */
24777
24778 int
24779 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
24780 {
24781 struct comp_unit_head cu_header_local;
24782 const struct comp_unit_head *cu_headerp;
24783
24784 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
24785
24786 return cu_headerp->offset_size;
24787 }
24788
24789 /* See its dwarf2loc.h declaration. */
24790
24791 int
24792 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
24793 {
24794 struct comp_unit_head cu_header_local;
24795 const struct comp_unit_head *cu_headerp;
24796
24797 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
24798
24799 if (cu_headerp->version == 2)
24800 return cu_headerp->addr_size;
24801 else
24802 return cu_headerp->offset_size;
24803 }
24804
24805 /* Return the text offset of the CU. The returned offset comes from
24806 this CU's objfile. If this objfile came from a separate debuginfo
24807 file, then the offset may be different from the corresponding
24808 offset in the parent objfile. */
24809
24810 CORE_ADDR
24811 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
24812 {
24813 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
24814
24815 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
24816 }
24817
24818 /* Return DWARF version number of PER_CU. */
24819
24820 short
24821 dwarf2_version (struct dwarf2_per_cu_data *per_cu)
24822 {
24823 return per_cu->dwarf_version;
24824 }
24825
24826 /* Locate the .debug_info compilation unit from CU's objfile which contains
24827 the DIE at OFFSET. Raises an error on failure. */
24828
24829 static struct dwarf2_per_cu_data *
24830 dwarf2_find_containing_comp_unit (sect_offset sect_off,
24831 unsigned int offset_in_dwz,
24832 struct dwarf2_per_objfile *dwarf2_per_objfile)
24833 {
24834 struct dwarf2_per_cu_data *this_cu;
24835 int low, high;
24836 const sect_offset *cu_off;
24837
24838 low = 0;
24839 high = dwarf2_per_objfile->all_comp_units.size () - 1;
24840 while (high > low)
24841 {
24842 struct dwarf2_per_cu_data *mid_cu;
24843 int mid = low + (high - low) / 2;
24844
24845 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
24846 cu_off = &mid_cu->sect_off;
24847 if (mid_cu->is_dwz > offset_in_dwz
24848 || (mid_cu->is_dwz == offset_in_dwz && *cu_off >= sect_off))
24849 high = mid;
24850 else
24851 low = mid + 1;
24852 }
24853 gdb_assert (low == high);
24854 this_cu = dwarf2_per_objfile->all_comp_units[low];
24855 cu_off = &this_cu->sect_off;
24856 if (this_cu->is_dwz != offset_in_dwz || *cu_off > sect_off)
24857 {
24858 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
24859 error (_("Dwarf Error: could not find partial DIE containing "
24860 "offset %s [in module %s]"),
24861 sect_offset_str (sect_off),
24862 bfd_get_filename (dwarf2_per_objfile->objfile->obfd));
24863
24864 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
24865 <= sect_off);
24866 return dwarf2_per_objfile->all_comp_units[low-1];
24867 }
24868 else
24869 {
24870 this_cu = dwarf2_per_objfile->all_comp_units[low];
24871 if (low == dwarf2_per_objfile->all_comp_units.size () - 1
24872 && sect_off >= this_cu->sect_off + this_cu->length)
24873 error (_("invalid dwarf2 offset %s"), sect_offset_str (sect_off));
24874 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
24875 return this_cu;
24876 }
24877 }
24878
24879 /* Initialize dwarf2_cu CU, owned by PER_CU. */
24880
24881 dwarf2_cu::dwarf2_cu (struct dwarf2_per_cu_data *per_cu_)
24882 : per_cu (per_cu_),
24883 mark (0),
24884 has_loclist (0),
24885 checked_producer (0),
24886 producer_is_gxx_lt_4_6 (0),
24887 producer_is_gcc_lt_4_3 (0),
24888 producer_is_icc_lt_14 (0),
24889 processing_has_namespace_info (0)
24890 {
24891 per_cu->cu = this;
24892 }
24893
24894 /* Destroy a dwarf2_cu. */
24895
24896 dwarf2_cu::~dwarf2_cu ()
24897 {
24898 per_cu->cu = NULL;
24899 }
24900
24901 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
24902
24903 static void
24904 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
24905 enum language pretend_language)
24906 {
24907 struct attribute *attr;
24908
24909 /* Set the language we're debugging. */
24910 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
24911 if (attr)
24912 set_cu_language (DW_UNSND (attr), cu);
24913 else
24914 {
24915 cu->language = pretend_language;
24916 cu->language_defn = language_def (cu->language);
24917 }
24918
24919 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
24920 }
24921
24922 /* Increase the age counter on each cached compilation unit, and free
24923 any that are too old. */
24924
24925 static void
24926 age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
24927 {
24928 struct dwarf2_per_cu_data *per_cu, **last_chain;
24929
24930 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
24931 per_cu = dwarf2_per_objfile->read_in_chain;
24932 while (per_cu != NULL)
24933 {
24934 per_cu->cu->last_used ++;
24935 if (per_cu->cu->last_used <= dwarf_max_cache_age)
24936 dwarf2_mark (per_cu->cu);
24937 per_cu = per_cu->cu->read_in_chain;
24938 }
24939
24940 per_cu = dwarf2_per_objfile->read_in_chain;
24941 last_chain = &dwarf2_per_objfile->read_in_chain;
24942 while (per_cu != NULL)
24943 {
24944 struct dwarf2_per_cu_data *next_cu;
24945
24946 next_cu = per_cu->cu->read_in_chain;
24947
24948 if (!per_cu->cu->mark)
24949 {
24950 delete per_cu->cu;
24951 *last_chain = next_cu;
24952 }
24953 else
24954 last_chain = &per_cu->cu->read_in_chain;
24955
24956 per_cu = next_cu;
24957 }
24958 }
24959
24960 /* Remove a single compilation unit from the cache. */
24961
24962 static void
24963 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
24964 {
24965 struct dwarf2_per_cu_data *per_cu, **last_chain;
24966 struct dwarf2_per_objfile *dwarf2_per_objfile
24967 = target_per_cu->dwarf2_per_objfile;
24968
24969 per_cu = dwarf2_per_objfile->read_in_chain;
24970 last_chain = &dwarf2_per_objfile->read_in_chain;
24971 while (per_cu != NULL)
24972 {
24973 struct dwarf2_per_cu_data *next_cu;
24974
24975 next_cu = per_cu->cu->read_in_chain;
24976
24977 if (per_cu == target_per_cu)
24978 {
24979 delete per_cu->cu;
24980 per_cu->cu = NULL;
24981 *last_chain = next_cu;
24982 break;
24983 }
24984 else
24985 last_chain = &per_cu->cu->read_in_chain;
24986
24987 per_cu = next_cu;
24988 }
24989 }
24990
24991 /* Cleanup function for the dwarf2_per_objfile data. */
24992
24993 static void
24994 dwarf2_free_objfile (struct objfile *objfile, void *datum)
24995 {
24996 struct dwarf2_per_objfile *dwarf2_per_objfile
24997 = static_cast<struct dwarf2_per_objfile *> (datum);
24998
24999 delete dwarf2_per_objfile;
25000 }
25001
25002 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
25003 We store these in a hash table separate from the DIEs, and preserve them
25004 when the DIEs are flushed out of cache.
25005
25006 The CU "per_cu" pointer is needed because offset alone is not enough to
25007 uniquely identify the type. A file may have multiple .debug_types sections,
25008 or the type may come from a DWO file. Furthermore, while it's more logical
25009 to use per_cu->section+offset, with Fission the section with the data is in
25010 the DWO file but we don't know that section at the point we need it.
25011 We have to use something in dwarf2_per_cu_data (or the pointer to it)
25012 because we can enter the lookup routine, get_die_type_at_offset, from
25013 outside this file, and thus won't necessarily have PER_CU->cu.
25014 Fortunately, PER_CU is stable for the life of the objfile. */
25015
25016 struct dwarf2_per_cu_offset_and_type
25017 {
25018 const struct dwarf2_per_cu_data *per_cu;
25019 sect_offset sect_off;
25020 struct type *type;
25021 };
25022
25023 /* Hash function for a dwarf2_per_cu_offset_and_type. */
25024
25025 static hashval_t
25026 per_cu_offset_and_type_hash (const void *item)
25027 {
25028 const struct dwarf2_per_cu_offset_and_type *ofs
25029 = (const struct dwarf2_per_cu_offset_and_type *) item;
25030
25031 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
25032 }
25033
25034 /* Equality function for a dwarf2_per_cu_offset_and_type. */
25035
25036 static int
25037 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
25038 {
25039 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
25040 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
25041 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
25042 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
25043
25044 return (ofs_lhs->per_cu == ofs_rhs->per_cu
25045 && ofs_lhs->sect_off == ofs_rhs->sect_off);
25046 }
25047
25048 /* Set the type associated with DIE to TYPE. Save it in CU's hash
25049 table if necessary. For convenience, return TYPE.
25050
25051 The DIEs reading must have careful ordering to:
25052 * Not cause infite loops trying to read in DIEs as a prerequisite for
25053 reading current DIE.
25054 * Not trying to dereference contents of still incompletely read in types
25055 while reading in other DIEs.
25056 * Enable referencing still incompletely read in types just by a pointer to
25057 the type without accessing its fields.
25058
25059 Therefore caller should follow these rules:
25060 * Try to fetch any prerequisite types we may need to build this DIE type
25061 before building the type and calling set_die_type.
25062 * After building type call set_die_type for current DIE as soon as
25063 possible before fetching more types to complete the current type.
25064 * Make the type as complete as possible before fetching more types. */
25065
25066 static struct type *
25067 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
25068 {
25069 struct dwarf2_per_objfile *dwarf2_per_objfile
25070 = cu->per_cu->dwarf2_per_objfile;
25071 struct dwarf2_per_cu_offset_and_type **slot, ofs;
25072 struct objfile *objfile = dwarf2_per_objfile->objfile;
25073 struct attribute *attr;
25074 struct dynamic_prop prop;
25075
25076 /* For Ada types, make sure that the gnat-specific data is always
25077 initialized (if not already set). There are a few types where
25078 we should not be doing so, because the type-specific area is
25079 already used to hold some other piece of info (eg: TYPE_CODE_FLT
25080 where the type-specific area is used to store the floatformat).
25081 But this is not a problem, because the gnat-specific information
25082 is actually not needed for these types. */
25083 if (need_gnat_info (cu)
25084 && TYPE_CODE (type) != TYPE_CODE_FUNC
25085 && TYPE_CODE (type) != TYPE_CODE_FLT
25086 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
25087 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
25088 && TYPE_CODE (type) != TYPE_CODE_METHOD
25089 && !HAVE_GNAT_AUX_INFO (type))
25090 INIT_GNAT_SPECIFIC (type);
25091
25092 /* Read DW_AT_allocated and set in type. */
25093 attr = dwarf2_attr (die, DW_AT_allocated, cu);
25094 if (attr_form_is_block (attr))
25095 {
25096 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25097 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type);
25098 }
25099 else if (attr != NULL)
25100 {
25101 complaint (_("DW_AT_allocated has the wrong form (%s) at DIE %s"),
25102 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25103 sect_offset_str (die->sect_off));
25104 }
25105
25106 /* Read DW_AT_associated and set in type. */
25107 attr = dwarf2_attr (die, DW_AT_associated, cu);
25108 if (attr_form_is_block (attr))
25109 {
25110 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25111 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type);
25112 }
25113 else if (attr != NULL)
25114 {
25115 complaint (_("DW_AT_associated has the wrong form (%s) at DIE %s"),
25116 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25117 sect_offset_str (die->sect_off));
25118 }
25119
25120 /* Read DW_AT_data_location and set in type. */
25121 attr = dwarf2_attr (die, DW_AT_data_location, cu);
25122 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25123 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type);
25124
25125 if (dwarf2_per_objfile->die_type_hash == NULL)
25126 {
25127 dwarf2_per_objfile->die_type_hash =
25128 htab_create_alloc_ex (127,
25129 per_cu_offset_and_type_hash,
25130 per_cu_offset_and_type_eq,
25131 NULL,
25132 &objfile->objfile_obstack,
25133 hashtab_obstack_allocate,
25134 dummy_obstack_deallocate);
25135 }
25136
25137 ofs.per_cu = cu->per_cu;
25138 ofs.sect_off = die->sect_off;
25139 ofs.type = type;
25140 slot = (struct dwarf2_per_cu_offset_and_type **)
25141 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
25142 if (*slot)
25143 complaint (_("A problem internal to GDB: DIE %s has type already set"),
25144 sect_offset_str (die->sect_off));
25145 *slot = XOBNEW (&objfile->objfile_obstack,
25146 struct dwarf2_per_cu_offset_and_type);
25147 **slot = ofs;
25148 return type;
25149 }
25150
25151 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
25152 or return NULL if the die does not have a saved type. */
25153
25154 static struct type *
25155 get_die_type_at_offset (sect_offset sect_off,
25156 struct dwarf2_per_cu_data *per_cu)
25157 {
25158 struct dwarf2_per_cu_offset_and_type *slot, ofs;
25159 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
25160
25161 if (dwarf2_per_objfile->die_type_hash == NULL)
25162 return NULL;
25163
25164 ofs.per_cu = per_cu;
25165 ofs.sect_off = sect_off;
25166 slot = ((struct dwarf2_per_cu_offset_and_type *)
25167 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
25168 if (slot)
25169 return slot->type;
25170 else
25171 return NULL;
25172 }
25173
25174 /* Look up the type for DIE in CU in die_type_hash,
25175 or return NULL if DIE does not have a saved type. */
25176
25177 static struct type *
25178 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
25179 {
25180 return get_die_type_at_offset (die->sect_off, cu->per_cu);
25181 }
25182
25183 /* Add a dependence relationship from CU to REF_PER_CU. */
25184
25185 static void
25186 dwarf2_add_dependence (struct dwarf2_cu *cu,
25187 struct dwarf2_per_cu_data *ref_per_cu)
25188 {
25189 void **slot;
25190
25191 if (cu->dependencies == NULL)
25192 cu->dependencies
25193 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
25194 NULL, &cu->comp_unit_obstack,
25195 hashtab_obstack_allocate,
25196 dummy_obstack_deallocate);
25197
25198 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
25199 if (*slot == NULL)
25200 *slot = ref_per_cu;
25201 }
25202
25203 /* Subroutine of dwarf2_mark to pass to htab_traverse.
25204 Set the mark field in every compilation unit in the
25205 cache that we must keep because we are keeping CU. */
25206
25207 static int
25208 dwarf2_mark_helper (void **slot, void *data)
25209 {
25210 struct dwarf2_per_cu_data *per_cu;
25211
25212 per_cu = (struct dwarf2_per_cu_data *) *slot;
25213
25214 /* cu->dependencies references may not yet have been ever read if QUIT aborts
25215 reading of the chain. As such dependencies remain valid it is not much
25216 useful to track and undo them during QUIT cleanups. */
25217 if (per_cu->cu == NULL)
25218 return 1;
25219
25220 if (per_cu->cu->mark)
25221 return 1;
25222 per_cu->cu->mark = 1;
25223
25224 if (per_cu->cu->dependencies != NULL)
25225 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
25226
25227 return 1;
25228 }
25229
25230 /* Set the mark field in CU and in every other compilation unit in the
25231 cache that we must keep because we are keeping CU. */
25232
25233 static void
25234 dwarf2_mark (struct dwarf2_cu *cu)
25235 {
25236 if (cu->mark)
25237 return;
25238 cu->mark = 1;
25239 if (cu->dependencies != NULL)
25240 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
25241 }
25242
25243 static void
25244 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
25245 {
25246 while (per_cu)
25247 {
25248 per_cu->cu->mark = 0;
25249 per_cu = per_cu->cu->read_in_chain;
25250 }
25251 }
25252
25253 /* Trivial hash function for partial_die_info: the hash value of a DIE
25254 is its offset in .debug_info for this objfile. */
25255
25256 static hashval_t
25257 partial_die_hash (const void *item)
25258 {
25259 const struct partial_die_info *part_die
25260 = (const struct partial_die_info *) item;
25261
25262 return to_underlying (part_die->sect_off);
25263 }
25264
25265 /* Trivial comparison function for partial_die_info structures: two DIEs
25266 are equal if they have the same offset. */
25267
25268 static int
25269 partial_die_eq (const void *item_lhs, const void *item_rhs)
25270 {
25271 const struct partial_die_info *part_die_lhs
25272 = (const struct partial_die_info *) item_lhs;
25273 const struct partial_die_info *part_die_rhs
25274 = (const struct partial_die_info *) item_rhs;
25275
25276 return part_die_lhs->sect_off == part_die_rhs->sect_off;
25277 }
25278
25279 static struct cmd_list_element *set_dwarf_cmdlist;
25280 static struct cmd_list_element *show_dwarf_cmdlist;
25281
25282 static void
25283 set_dwarf_cmd (const char *args, int from_tty)
25284 {
25285 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
25286 gdb_stdout);
25287 }
25288
25289 static void
25290 show_dwarf_cmd (const char *args, int from_tty)
25291 {
25292 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
25293 }
25294
25295 int dwarf_always_disassemble;
25296
25297 static void
25298 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
25299 struct cmd_list_element *c, const char *value)
25300 {
25301 fprintf_filtered (file,
25302 _("Whether to always disassemble "
25303 "DWARF expressions is %s.\n"),
25304 value);
25305 }
25306
25307 static void
25308 show_check_physname (struct ui_file *file, int from_tty,
25309 struct cmd_list_element *c, const char *value)
25310 {
25311 fprintf_filtered (file,
25312 _("Whether to check \"physname\" is %s.\n"),
25313 value);
25314 }
25315
25316 void
25317 _initialize_dwarf2_read (void)
25318 {
25319 dwarf2_objfile_data_key
25320 = register_objfile_data_with_cleanup (nullptr, dwarf2_free_objfile);
25321
25322 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
25323 Set DWARF specific variables.\n\
25324 Configure DWARF variables such as the cache size"),
25325 &set_dwarf_cmdlist, "maintenance set dwarf ",
25326 0/*allow-unknown*/, &maintenance_set_cmdlist);
25327
25328 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
25329 Show DWARF specific variables\n\
25330 Show DWARF variables such as the cache size"),
25331 &show_dwarf_cmdlist, "maintenance show dwarf ",
25332 0/*allow-unknown*/, &maintenance_show_cmdlist);
25333
25334 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
25335 &dwarf_max_cache_age, _("\
25336 Set the upper bound on the age of cached DWARF compilation units."), _("\
25337 Show the upper bound on the age of cached DWARF compilation units."), _("\
25338 A higher limit means that cached compilation units will be stored\n\
25339 in memory longer, and more total memory will be used. Zero disables\n\
25340 caching, which can slow down startup."),
25341 NULL,
25342 show_dwarf_max_cache_age,
25343 &set_dwarf_cmdlist,
25344 &show_dwarf_cmdlist);
25345
25346 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
25347 &dwarf_always_disassemble, _("\
25348 Set whether `info address' always disassembles DWARF expressions."), _("\
25349 Show whether `info address' always disassembles DWARF expressions."), _("\
25350 When enabled, DWARF expressions are always printed in an assembly-like\n\
25351 syntax. When disabled, expressions will be printed in a more\n\
25352 conversational style, when possible."),
25353 NULL,
25354 show_dwarf_always_disassemble,
25355 &set_dwarf_cmdlist,
25356 &show_dwarf_cmdlist);
25357
25358 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
25359 Set debugging of the DWARF reader."), _("\
25360 Show debugging of the DWARF reader."), _("\
25361 When enabled (non-zero), debugging messages are printed during DWARF\n\
25362 reading and symtab expansion. A value of 1 (one) provides basic\n\
25363 information. A value greater than 1 provides more verbose information."),
25364 NULL,
25365 NULL,
25366 &setdebuglist, &showdebuglist);
25367
25368 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
25369 Set debugging of the DWARF DIE reader."), _("\
25370 Show debugging of the DWARF DIE reader."), _("\
25371 When enabled (non-zero), DIEs are dumped after they are read in.\n\
25372 The value is the maximum depth to print."),
25373 NULL,
25374 NULL,
25375 &setdebuglist, &showdebuglist);
25376
25377 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
25378 Set debugging of the dwarf line reader."), _("\
25379 Show debugging of the dwarf line reader."), _("\
25380 When enabled (non-zero), line number entries are dumped as they are read in.\n\
25381 A value of 1 (one) provides basic information.\n\
25382 A value greater than 1 provides more verbose information."),
25383 NULL,
25384 NULL,
25385 &setdebuglist, &showdebuglist);
25386
25387 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
25388 Set cross-checking of \"physname\" code against demangler."), _("\
25389 Show cross-checking of \"physname\" code against demangler."), _("\
25390 When enabled, GDB's internal \"physname\" code is checked against\n\
25391 the demangler."),
25392 NULL, show_check_physname,
25393 &setdebuglist, &showdebuglist);
25394
25395 add_setshow_boolean_cmd ("use-deprecated-index-sections",
25396 no_class, &use_deprecated_index_sections, _("\
25397 Set whether to use deprecated gdb_index sections."), _("\
25398 Show whether to use deprecated gdb_index sections."), _("\
25399 When enabled, deprecated .gdb_index sections are used anyway.\n\
25400 Normally they are ignored either because of a missing feature or\n\
25401 performance issue.\n\
25402 Warning: This option must be enabled before gdb reads the file."),
25403 NULL,
25404 NULL,
25405 &setlist, &showlist);
25406
25407 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
25408 &dwarf2_locexpr_funcs);
25409 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
25410 &dwarf2_loclist_funcs);
25411
25412 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
25413 &dwarf2_block_frame_base_locexpr_funcs);
25414 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
25415 &dwarf2_block_frame_base_loclist_funcs);
25416
25417 #if GDB_SELF_TEST
25418 selftests::register_test ("dw2_expand_symtabs_matching",
25419 selftests::dw2_expand_symtabs_matching::run_test);
25420 #endif
25421 }
This page took 0.629053 seconds and 4 git commands to generate.