gdb/
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
4 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
5 Free Software Foundation, Inc.
6
7 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
8 Inc. with support from Florida State University (under contract
9 with the Ada Joint Program Office), and Silicon Graphics, Inc.
10 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
11 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
12 support.
13
14 This file is part of GDB.
15
16 This program is free software; you can redistribute it and/or modify
17 it under the terms of the GNU General Public License as published by
18 the Free Software Foundation; either version 3 of the License, or
19 (at your option) any later version.
20
21 This program is distributed in the hope that it will be useful,
22 but WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 GNU General Public License for more details.
25
26 You should have received a copy of the GNU General Public License
27 along with this program. If not, see <http://www.gnu.org/licenses/>. */
28
29 #include "defs.h"
30 #include "bfd.h"
31 #include "symtab.h"
32 #include "gdbtypes.h"
33 #include "objfiles.h"
34 #include "dwarf2.h"
35 #include "buildsym.h"
36 #include "demangle.h"
37 #include "expression.h"
38 #include "filenames.h" /* for DOSish file names */
39 #include "macrotab.h"
40 #include "language.h"
41 #include "complaints.h"
42 #include "bcache.h"
43 #include "dwarf2expr.h"
44 #include "dwarf2loc.h"
45 #include "cp-support.h"
46 #include "hashtab.h"
47 #include "command.h"
48 #include "gdbcmd.h"
49 #include "block.h"
50 #include "addrmap.h"
51 #include "typeprint.h"
52 #include "jv-lang.h"
53 #include "psympriv.h"
54 #include "exceptions.h"
55 #include "gdb_stat.h"
56 #include "completer.h"
57 #include "vec.h"
58 #include "c-lang.h"
59 #include "valprint.h"
60
61 #include <fcntl.h>
62 #include "gdb_string.h"
63 #include "gdb_assert.h"
64 #include <sys/types.h>
65 #ifdef HAVE_ZLIB_H
66 #include <zlib.h>
67 #endif
68 #ifdef HAVE_MMAP
69 #include <sys/mman.h>
70 #ifndef MAP_FAILED
71 #define MAP_FAILED ((void *) -1)
72 #endif
73 #endif
74
75 typedef struct symbol *symbolp;
76 DEF_VEC_P (symbolp);
77
78 #if 0
79 /* .debug_info header for a compilation unit
80 Because of alignment constraints, this structure has padding and cannot
81 be mapped directly onto the beginning of the .debug_info section. */
82 typedef struct comp_unit_header
83 {
84 unsigned int length; /* length of the .debug_info
85 contribution */
86 unsigned short version; /* version number -- 2 for DWARF
87 version 2 */
88 unsigned int abbrev_offset; /* offset into .debug_abbrev section */
89 unsigned char addr_size; /* byte size of an address -- 4 */
90 }
91 _COMP_UNIT_HEADER;
92 #define _ACTUAL_COMP_UNIT_HEADER_SIZE 11
93 #endif
94
95 /* .debug_line statement program prologue
96 Because of alignment constraints, this structure has padding and cannot
97 be mapped directly onto the beginning of the .debug_info section. */
98 typedef struct statement_prologue
99 {
100 unsigned int total_length; /* byte length of the statement
101 information */
102 unsigned short version; /* version number -- 2 for DWARF
103 version 2 */
104 unsigned int prologue_length; /* # bytes between prologue &
105 stmt program */
106 unsigned char minimum_instruction_length; /* byte size of
107 smallest instr */
108 unsigned char default_is_stmt; /* initial value of is_stmt
109 register */
110 char line_base;
111 unsigned char line_range;
112 unsigned char opcode_base; /* number assigned to first special
113 opcode */
114 unsigned char *standard_opcode_lengths;
115 }
116 _STATEMENT_PROLOGUE;
117
118 /* When non-zero, dump DIEs after they are read in. */
119 static int dwarf2_die_debug = 0;
120
121 static int pagesize;
122
123 /* When set, the file that we're processing is known to have debugging
124 info for C++ namespaces. GCC 3.3.x did not produce this information,
125 but later versions do. */
126
127 static int processing_has_namespace_info;
128
129 static const struct objfile_data *dwarf2_objfile_data_key;
130
131 struct dwarf2_section_info
132 {
133 asection *asection;
134 gdb_byte *buffer;
135 bfd_size_type size;
136 int was_mmapped;
137 /* True if we have tried to read this section. */
138 int readin;
139 };
140
141 /* All offsets in the index are of this type. It must be
142 architecture-independent. */
143 typedef uint32_t offset_type;
144
145 DEF_VEC_I (offset_type);
146
147 /* A description of the mapped index. The file format is described in
148 a comment by the code that writes the index. */
149 struct mapped_index
150 {
151 /* The total length of the buffer. */
152 off_t total_size;
153 /* A pointer to the address table data. */
154 const gdb_byte *address_table;
155 /* Size of the address table data in bytes. */
156 offset_type address_table_size;
157 /* The symbol table, implemented as a hash table. */
158 const offset_type *symbol_table;
159 /* Size in slots, each slot is 2 offset_types. */
160 offset_type symbol_table_slots;
161 /* A pointer to the constant pool. */
162 const char *constant_pool;
163 };
164
165 struct dwarf2_per_objfile
166 {
167 struct dwarf2_section_info info;
168 struct dwarf2_section_info abbrev;
169 struct dwarf2_section_info line;
170 struct dwarf2_section_info loc;
171 struct dwarf2_section_info macinfo;
172 struct dwarf2_section_info str;
173 struct dwarf2_section_info ranges;
174 struct dwarf2_section_info types;
175 struct dwarf2_section_info frame;
176 struct dwarf2_section_info eh_frame;
177 struct dwarf2_section_info gdb_index;
178
179 /* Back link. */
180 struct objfile *objfile;
181
182 /* A list of all the compilation units. This is used to locate
183 the target compilation unit of a particular reference. */
184 struct dwarf2_per_cu_data **all_comp_units;
185
186 /* The number of compilation units in ALL_COMP_UNITS. */
187 int n_comp_units;
188
189 /* The number of .debug_types-related CUs. */
190 int n_type_comp_units;
191
192 /* The .debug_types-related CUs. */
193 struct dwarf2_per_cu_data **type_comp_units;
194
195 /* A chain of compilation units that are currently read in, so that
196 they can be freed later. */
197 struct dwarf2_per_cu_data *read_in_chain;
198
199 /* A table mapping .debug_types signatures to its signatured_type entry.
200 This is NULL if the .debug_types section hasn't been read in yet. */
201 htab_t signatured_types;
202
203 /* A flag indicating wether this objfile has a section loaded at a
204 VMA of 0. */
205 int has_section_at_zero;
206
207 /* True if we are using the mapped index,
208 or we are faking it for OBJF_READNOW's sake. */
209 unsigned char using_index;
210
211 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
212 struct mapped_index *index_table;
213
214 /* When using index_table, this keeps track of all quick_file_names entries.
215 TUs can share line table entries with CUs or other TUs, and there can be
216 a lot more TUs than unique line tables, so we maintain a separate table
217 of all line table entries to support the sharing. */
218 htab_t quick_file_names_table;
219
220 /* Set during partial symbol reading, to prevent queueing of full
221 symbols. */
222 int reading_partial_symbols;
223
224 /* Table mapping type .debug_info DIE offsets to types.
225 This is NULL if not allocated yet.
226 It (currently) makes sense to allocate debug_types_type_hash lazily.
227 To keep things simple we allocate both lazily. */
228 htab_t debug_info_type_hash;
229
230 /* Table mapping type .debug_types DIE offsets to types.
231 This is NULL if not allocated yet. */
232 htab_t debug_types_type_hash;
233 };
234
235 static struct dwarf2_per_objfile *dwarf2_per_objfile;
236
237 /* names of the debugging sections */
238
239 /* Note that if the debugging section has been compressed, it might
240 have a name like .zdebug_info. */
241
242 #define INFO_SECTION "debug_info"
243 #define ABBREV_SECTION "debug_abbrev"
244 #define LINE_SECTION "debug_line"
245 #define LOC_SECTION "debug_loc"
246 #define MACINFO_SECTION "debug_macinfo"
247 #define STR_SECTION "debug_str"
248 #define RANGES_SECTION "debug_ranges"
249 #define TYPES_SECTION "debug_types"
250 #define FRAME_SECTION "debug_frame"
251 #define EH_FRAME_SECTION "eh_frame"
252 #define GDB_INDEX_SECTION "gdb_index"
253
254 /* local data types */
255
256 /* We hold several abbreviation tables in memory at the same time. */
257 #ifndef ABBREV_HASH_SIZE
258 #define ABBREV_HASH_SIZE 121
259 #endif
260
261 /* The data in a compilation unit header, after target2host
262 translation, looks like this. */
263 struct comp_unit_head
264 {
265 unsigned int length;
266 short version;
267 unsigned char addr_size;
268 unsigned char signed_addr_p;
269 unsigned int abbrev_offset;
270
271 /* Size of file offsets; either 4 or 8. */
272 unsigned int offset_size;
273
274 /* Size of the length field; either 4 or 12. */
275 unsigned int initial_length_size;
276
277 /* Offset to the first byte of this compilation unit header in the
278 .debug_info section, for resolving relative reference dies. */
279 unsigned int offset;
280
281 /* Offset to first die in this cu from the start of the cu.
282 This will be the first byte following the compilation unit header. */
283 unsigned int first_die_offset;
284 };
285
286 /* Type used for delaying computation of method physnames.
287 See comments for compute_delayed_physnames. */
288 struct delayed_method_info
289 {
290 /* The type to which the method is attached, i.e., its parent class. */
291 struct type *type;
292
293 /* The index of the method in the type's function fieldlists. */
294 int fnfield_index;
295
296 /* The index of the method in the fieldlist. */
297 int index;
298
299 /* The name of the DIE. */
300 const char *name;
301
302 /* The DIE associated with this method. */
303 struct die_info *die;
304 };
305
306 typedef struct delayed_method_info delayed_method_info;
307 DEF_VEC_O (delayed_method_info);
308
309 /* Internal state when decoding a particular compilation unit. */
310 struct dwarf2_cu
311 {
312 /* The objfile containing this compilation unit. */
313 struct objfile *objfile;
314
315 /* The header of the compilation unit. */
316 struct comp_unit_head header;
317
318 /* Base address of this compilation unit. */
319 CORE_ADDR base_address;
320
321 /* Non-zero if base_address has been set. */
322 int base_known;
323
324 struct function_range *first_fn, *last_fn, *cached_fn;
325
326 /* The language we are debugging. */
327 enum language language;
328 const struct language_defn *language_defn;
329
330 const char *producer;
331
332 /* The generic symbol table building routines have separate lists for
333 file scope symbols and all all other scopes (local scopes). So
334 we need to select the right one to pass to add_symbol_to_list().
335 We do it by keeping a pointer to the correct list in list_in_scope.
336
337 FIXME: The original dwarf code just treated the file scope as the
338 first local scope, and all other local scopes as nested local
339 scopes, and worked fine. Check to see if we really need to
340 distinguish these in buildsym.c. */
341 struct pending **list_in_scope;
342
343 /* DWARF abbreviation table associated with this compilation unit. */
344 struct abbrev_info **dwarf2_abbrevs;
345
346 /* Storage for the abbrev table. */
347 struct obstack abbrev_obstack;
348
349 /* Hash table holding all the loaded partial DIEs. */
350 htab_t partial_dies;
351
352 /* Storage for things with the same lifetime as this read-in compilation
353 unit, including partial DIEs. */
354 struct obstack comp_unit_obstack;
355
356 /* When multiple dwarf2_cu structures are living in memory, this field
357 chains them all together, so that they can be released efficiently.
358 We will probably also want a generation counter so that most-recently-used
359 compilation units are cached... */
360 struct dwarf2_per_cu_data *read_in_chain;
361
362 /* Backchain to our per_cu entry if the tree has been built. */
363 struct dwarf2_per_cu_data *per_cu;
364
365 /* How many compilation units ago was this CU last referenced? */
366 int last_used;
367
368 /* A hash table of die offsets for following references. */
369 htab_t die_hash;
370
371 /* Full DIEs if read in. */
372 struct die_info *dies;
373
374 /* A set of pointers to dwarf2_per_cu_data objects for compilation
375 units referenced by this one. Only set during full symbol processing;
376 partial symbol tables do not have dependencies. */
377 htab_t dependencies;
378
379 /* Header data from the line table, during full symbol processing. */
380 struct line_header *line_header;
381
382 /* A list of methods which need to have physnames computed
383 after all type information has been read. */
384 VEC (delayed_method_info) *method_list;
385
386 /* Mark used when releasing cached dies. */
387 unsigned int mark : 1;
388
389 /* This flag will be set if this compilation unit might include
390 inter-compilation-unit references. */
391 unsigned int has_form_ref_addr : 1;
392
393 /* This flag will be set if this compilation unit includes any
394 DW_TAG_namespace DIEs. If we know that there are explicit
395 DIEs for namespaces, we don't need to try to infer them
396 from mangled names. */
397 unsigned int has_namespace_info : 1;
398 };
399
400 /* Persistent data held for a compilation unit, even when not
401 processing it. We put a pointer to this structure in the
402 read_symtab_private field of the psymtab. If we encounter
403 inter-compilation-unit references, we also maintain a sorted
404 list of all compilation units. */
405
406 struct dwarf2_per_cu_data
407 {
408 /* The start offset and length of this compilation unit. 2**29-1
409 bytes should suffice to store the length of any compilation unit
410 - if it doesn't, GDB will fall over anyway.
411 NOTE: Unlike comp_unit_head.length, this length includes
412 initial_length_size. */
413 unsigned int offset;
414 unsigned int length : 29;
415
416 /* Flag indicating this compilation unit will be read in before
417 any of the current compilation units are processed. */
418 unsigned int queued : 1;
419
420 /* This flag will be set if we need to load absolutely all DIEs
421 for this compilation unit, instead of just the ones we think
422 are interesting. It gets set if we look for a DIE in the
423 hash table and don't find it. */
424 unsigned int load_all_dies : 1;
425
426 /* Non-zero if this CU is from .debug_types.
427 Otherwise it's from .debug_info. */
428 unsigned int from_debug_types : 1;
429
430 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
431 of the CU cache it gets reset to NULL again. */
432 struct dwarf2_cu *cu;
433
434 /* The corresponding objfile. */
435 struct objfile *objfile;
436
437 /* When using partial symbol tables, the 'psymtab' field is active.
438 Otherwise the 'quick' field is active. */
439 union
440 {
441 /* The partial symbol table associated with this compilation unit,
442 or NULL for partial units (which do not have an associated
443 symtab). */
444 struct partial_symtab *psymtab;
445
446 /* Data needed by the "quick" functions. */
447 struct dwarf2_per_cu_quick_data *quick;
448 } v;
449 };
450
451 /* Entry in the signatured_types hash table. */
452
453 struct signatured_type
454 {
455 ULONGEST signature;
456
457 /* Offset in .debug_types of the TU (type_unit) for this type. */
458 unsigned int offset;
459
460 /* Offset in .debug_types of the type defined by this TU. */
461 unsigned int type_offset;
462
463 /* The CU(/TU) of this type. */
464 struct dwarf2_per_cu_data per_cu;
465 };
466
467 /* Struct used to pass misc. parameters to read_die_and_children, et
468 al. which are used for both .debug_info and .debug_types dies.
469 All parameters here are unchanging for the life of the call. This
470 struct exists to abstract away the constant parameters of die
471 reading. */
472
473 struct die_reader_specs
474 {
475 /* The bfd of this objfile. */
476 bfd* abfd;
477
478 /* The CU of the DIE we are parsing. */
479 struct dwarf2_cu *cu;
480
481 /* Pointer to start of section buffer.
482 This is either the start of .debug_info or .debug_types. */
483 const gdb_byte *buffer;
484 };
485
486 /* The line number information for a compilation unit (found in the
487 .debug_line section) begins with a "statement program header",
488 which contains the following information. */
489 struct line_header
490 {
491 unsigned int total_length;
492 unsigned short version;
493 unsigned int header_length;
494 unsigned char minimum_instruction_length;
495 unsigned char maximum_ops_per_instruction;
496 unsigned char default_is_stmt;
497 int line_base;
498 unsigned char line_range;
499 unsigned char opcode_base;
500
501 /* standard_opcode_lengths[i] is the number of operands for the
502 standard opcode whose value is i. This means that
503 standard_opcode_lengths[0] is unused, and the last meaningful
504 element is standard_opcode_lengths[opcode_base - 1]. */
505 unsigned char *standard_opcode_lengths;
506
507 /* The include_directories table. NOTE! These strings are not
508 allocated with xmalloc; instead, they are pointers into
509 debug_line_buffer. If you try to free them, `free' will get
510 indigestion. */
511 unsigned int num_include_dirs, include_dirs_size;
512 char **include_dirs;
513
514 /* The file_names table. NOTE! These strings are not allocated
515 with xmalloc; instead, they are pointers into debug_line_buffer.
516 Don't try to free them directly. */
517 unsigned int num_file_names, file_names_size;
518 struct file_entry
519 {
520 char *name;
521 unsigned int dir_index;
522 unsigned int mod_time;
523 unsigned int length;
524 int included_p; /* Non-zero if referenced by the Line Number Program. */
525 struct symtab *symtab; /* The associated symbol table, if any. */
526 } *file_names;
527
528 /* The start and end of the statement program following this
529 header. These point into dwarf2_per_objfile->line_buffer. */
530 gdb_byte *statement_program_start, *statement_program_end;
531 };
532
533 /* When we construct a partial symbol table entry we only
534 need this much information. */
535 struct partial_die_info
536 {
537 /* Offset of this DIE. */
538 unsigned int offset;
539
540 /* DWARF-2 tag for this DIE. */
541 ENUM_BITFIELD(dwarf_tag) tag : 16;
542
543 /* Assorted flags describing the data found in this DIE. */
544 unsigned int has_children : 1;
545 unsigned int is_external : 1;
546 unsigned int is_declaration : 1;
547 unsigned int has_type : 1;
548 unsigned int has_specification : 1;
549 unsigned int has_pc_info : 1;
550
551 /* Flag set if the SCOPE field of this structure has been
552 computed. */
553 unsigned int scope_set : 1;
554
555 /* Flag set if the DIE has a byte_size attribute. */
556 unsigned int has_byte_size : 1;
557
558 /* Flag set if any of the DIE's children are template arguments. */
559 unsigned int has_template_arguments : 1;
560
561 /* Flag set if fixup_partial_die has been called on this die. */
562 unsigned int fixup_called : 1;
563
564 /* The name of this DIE. Normally the value of DW_AT_name, but
565 sometimes a default name for unnamed DIEs. */
566 char *name;
567
568 /* The linkage name, if present. */
569 const char *linkage_name;
570
571 /* The scope to prepend to our children. This is generally
572 allocated on the comp_unit_obstack, so will disappear
573 when this compilation unit leaves the cache. */
574 char *scope;
575
576 /* The location description associated with this DIE, if any. */
577 struct dwarf_block *locdesc;
578
579 /* If HAS_PC_INFO, the PC range associated with this DIE. */
580 CORE_ADDR lowpc;
581 CORE_ADDR highpc;
582
583 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
584 DW_AT_sibling, if any. */
585 /* NOTE: This member isn't strictly necessary, read_partial_die could
586 return DW_AT_sibling values to its caller load_partial_dies. */
587 gdb_byte *sibling;
588
589 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
590 DW_AT_specification (or DW_AT_abstract_origin or
591 DW_AT_extension). */
592 unsigned int spec_offset;
593
594 /* Pointers to this DIE's parent, first child, and next sibling,
595 if any. */
596 struct partial_die_info *die_parent, *die_child, *die_sibling;
597 };
598
599 /* This data structure holds the information of an abbrev. */
600 struct abbrev_info
601 {
602 unsigned int number; /* number identifying abbrev */
603 enum dwarf_tag tag; /* dwarf tag */
604 unsigned short has_children; /* boolean */
605 unsigned short num_attrs; /* number of attributes */
606 struct attr_abbrev *attrs; /* an array of attribute descriptions */
607 struct abbrev_info *next; /* next in chain */
608 };
609
610 struct attr_abbrev
611 {
612 ENUM_BITFIELD(dwarf_attribute) name : 16;
613 ENUM_BITFIELD(dwarf_form) form : 16;
614 };
615
616 /* Attributes have a name and a value. */
617 struct attribute
618 {
619 ENUM_BITFIELD(dwarf_attribute) name : 16;
620 ENUM_BITFIELD(dwarf_form) form : 15;
621
622 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
623 field should be in u.str (existing only for DW_STRING) but it is kept
624 here for better struct attribute alignment. */
625 unsigned int string_is_canonical : 1;
626
627 union
628 {
629 char *str;
630 struct dwarf_block *blk;
631 ULONGEST unsnd;
632 LONGEST snd;
633 CORE_ADDR addr;
634 struct signatured_type *signatured_type;
635 }
636 u;
637 };
638
639 /* This data structure holds a complete die structure. */
640 struct die_info
641 {
642 /* DWARF-2 tag for this DIE. */
643 ENUM_BITFIELD(dwarf_tag) tag : 16;
644
645 /* Number of attributes */
646 unsigned char num_attrs;
647
648 /* True if we're presently building the full type name for the
649 type derived from this DIE. */
650 unsigned char building_fullname : 1;
651
652 /* Abbrev number */
653 unsigned int abbrev;
654
655 /* Offset in .debug_info or .debug_types section. */
656 unsigned int offset;
657
658 /* The dies in a compilation unit form an n-ary tree. PARENT
659 points to this die's parent; CHILD points to the first child of
660 this node; and all the children of a given node are chained
661 together via their SIBLING fields. */
662 struct die_info *child; /* Its first child, if any. */
663 struct die_info *sibling; /* Its next sibling, if any. */
664 struct die_info *parent; /* Its parent, if any. */
665
666 /* An array of attributes, with NUM_ATTRS elements. There may be
667 zero, but it's not common and zero-sized arrays are not
668 sufficiently portable C. */
669 struct attribute attrs[1];
670 };
671
672 struct function_range
673 {
674 const char *name;
675 CORE_ADDR lowpc, highpc;
676 int seen_line;
677 struct function_range *next;
678 };
679
680 /* Get at parts of an attribute structure. */
681
682 #define DW_STRING(attr) ((attr)->u.str)
683 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
684 #define DW_UNSND(attr) ((attr)->u.unsnd)
685 #define DW_BLOCK(attr) ((attr)->u.blk)
686 #define DW_SND(attr) ((attr)->u.snd)
687 #define DW_ADDR(attr) ((attr)->u.addr)
688 #define DW_SIGNATURED_TYPE(attr) ((attr)->u.signatured_type)
689
690 /* Blocks are a bunch of untyped bytes. */
691 struct dwarf_block
692 {
693 unsigned int size;
694 gdb_byte *data;
695 };
696
697 #ifndef ATTR_ALLOC_CHUNK
698 #define ATTR_ALLOC_CHUNK 4
699 #endif
700
701 /* Allocate fields for structs, unions and enums in this size. */
702 #ifndef DW_FIELD_ALLOC_CHUNK
703 #define DW_FIELD_ALLOC_CHUNK 4
704 #endif
705
706 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
707 but this would require a corresponding change in unpack_field_as_long
708 and friends. */
709 static int bits_per_byte = 8;
710
711 /* The routines that read and process dies for a C struct or C++ class
712 pass lists of data member fields and lists of member function fields
713 in an instance of a field_info structure, as defined below. */
714 struct field_info
715 {
716 /* List of data member and baseclasses fields. */
717 struct nextfield
718 {
719 struct nextfield *next;
720 int accessibility;
721 int virtuality;
722 struct field field;
723 }
724 *fields, *baseclasses;
725
726 /* Number of fields (including baseclasses). */
727 int nfields;
728
729 /* Number of baseclasses. */
730 int nbaseclasses;
731
732 /* Set if the accesibility of one of the fields is not public. */
733 int non_public_fields;
734
735 /* Member function fields array, entries are allocated in the order they
736 are encountered in the object file. */
737 struct nextfnfield
738 {
739 struct nextfnfield *next;
740 struct fn_field fnfield;
741 }
742 *fnfields;
743
744 /* Member function fieldlist array, contains name of possibly overloaded
745 member function, number of overloaded member functions and a pointer
746 to the head of the member function field chain. */
747 struct fnfieldlist
748 {
749 char *name;
750 int length;
751 struct nextfnfield *head;
752 }
753 *fnfieldlists;
754
755 /* Number of entries in the fnfieldlists array. */
756 int nfnfields;
757
758 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
759 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
760 struct typedef_field_list
761 {
762 struct typedef_field field;
763 struct typedef_field_list *next;
764 }
765 *typedef_field_list;
766 unsigned typedef_field_list_count;
767 };
768
769 /* One item on the queue of compilation units to read in full symbols
770 for. */
771 struct dwarf2_queue_item
772 {
773 struct dwarf2_per_cu_data *per_cu;
774 struct dwarf2_queue_item *next;
775 };
776
777 /* The current queue. */
778 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
779
780 /* Loaded secondary compilation units are kept in memory until they
781 have not been referenced for the processing of this many
782 compilation units. Set this to zero to disable caching. Cache
783 sizes of up to at least twenty will improve startup time for
784 typical inter-CU-reference binaries, at an obvious memory cost. */
785 static int dwarf2_max_cache_age = 5;
786 static void
787 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
788 struct cmd_list_element *c, const char *value)
789 {
790 fprintf_filtered (file, _("The upper bound on the age of cached "
791 "dwarf2 compilation units is %s.\n"),
792 value);
793 }
794
795
796 /* Various complaints about symbol reading that don't abort the process. */
797
798 static void
799 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
800 {
801 complaint (&symfile_complaints,
802 _("statement list doesn't fit in .debug_line section"));
803 }
804
805 static void
806 dwarf2_debug_line_missing_file_complaint (void)
807 {
808 complaint (&symfile_complaints,
809 _(".debug_line section has line data without a file"));
810 }
811
812 static void
813 dwarf2_debug_line_missing_end_sequence_complaint (void)
814 {
815 complaint (&symfile_complaints,
816 _(".debug_line section has line "
817 "program sequence without an end"));
818 }
819
820 static void
821 dwarf2_complex_location_expr_complaint (void)
822 {
823 complaint (&symfile_complaints, _("location expression too complex"));
824 }
825
826 static void
827 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
828 int arg3)
829 {
830 complaint (&symfile_complaints,
831 _("const value length mismatch for '%s', got %d, expected %d"),
832 arg1, arg2, arg3);
833 }
834
835 static void
836 dwarf2_macros_too_long_complaint (void)
837 {
838 complaint (&symfile_complaints,
839 _("macro info runs off end of `.debug_macinfo' section"));
840 }
841
842 static void
843 dwarf2_macro_malformed_definition_complaint (const char *arg1)
844 {
845 complaint (&symfile_complaints,
846 _("macro debug info contains a "
847 "malformed macro definition:\n`%s'"),
848 arg1);
849 }
850
851 static void
852 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
853 {
854 complaint (&symfile_complaints,
855 _("invalid attribute class or form for '%s' in '%s'"),
856 arg1, arg2);
857 }
858
859 /* local function prototypes */
860
861 static void dwarf2_locate_sections (bfd *, asection *, void *);
862
863 static void dwarf2_create_include_psymtab (char *, struct partial_symtab *,
864 struct objfile *);
865
866 static void dwarf2_build_psymtabs_hard (struct objfile *);
867
868 static void scan_partial_symbols (struct partial_die_info *,
869 CORE_ADDR *, CORE_ADDR *,
870 int, struct dwarf2_cu *);
871
872 static void add_partial_symbol (struct partial_die_info *,
873 struct dwarf2_cu *);
874
875 static void add_partial_namespace (struct partial_die_info *pdi,
876 CORE_ADDR *lowpc, CORE_ADDR *highpc,
877 int need_pc, struct dwarf2_cu *cu);
878
879 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
880 CORE_ADDR *highpc, int need_pc,
881 struct dwarf2_cu *cu);
882
883 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
884 struct dwarf2_cu *cu);
885
886 static void add_partial_subprogram (struct partial_die_info *pdi,
887 CORE_ADDR *lowpc, CORE_ADDR *highpc,
888 int need_pc, struct dwarf2_cu *cu);
889
890 static gdb_byte *locate_pdi_sibling (struct partial_die_info *orig_pdi,
891 gdb_byte *buffer, gdb_byte *info_ptr,
892 bfd *abfd, struct dwarf2_cu *cu);
893
894 static void dwarf2_psymtab_to_symtab (struct partial_symtab *);
895
896 static void psymtab_to_symtab_1 (struct partial_symtab *);
897
898 static void dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu);
899
900 static void dwarf2_free_abbrev_table (void *);
901
902 static struct abbrev_info *peek_die_abbrev (gdb_byte *, unsigned int *,
903 struct dwarf2_cu *);
904
905 static struct abbrev_info *dwarf2_lookup_abbrev (unsigned int,
906 struct dwarf2_cu *);
907
908 static struct partial_die_info *load_partial_dies (bfd *,
909 gdb_byte *, gdb_byte *,
910 int, struct dwarf2_cu *);
911
912 static gdb_byte *read_partial_die (struct partial_die_info *,
913 struct abbrev_info *abbrev,
914 unsigned int, bfd *,
915 gdb_byte *, gdb_byte *,
916 struct dwarf2_cu *);
917
918 static struct partial_die_info *find_partial_die (unsigned int,
919 struct dwarf2_cu *);
920
921 static void fixup_partial_die (struct partial_die_info *,
922 struct dwarf2_cu *);
923
924 static gdb_byte *read_attribute (struct attribute *, struct attr_abbrev *,
925 bfd *, gdb_byte *, struct dwarf2_cu *);
926
927 static gdb_byte *read_attribute_value (struct attribute *, unsigned,
928 bfd *, gdb_byte *, struct dwarf2_cu *);
929
930 static unsigned int read_1_byte (bfd *, gdb_byte *);
931
932 static int read_1_signed_byte (bfd *, gdb_byte *);
933
934 static unsigned int read_2_bytes (bfd *, gdb_byte *);
935
936 static unsigned int read_4_bytes (bfd *, gdb_byte *);
937
938 static ULONGEST read_8_bytes (bfd *, gdb_byte *);
939
940 static CORE_ADDR read_address (bfd *, gdb_byte *ptr, struct dwarf2_cu *,
941 unsigned int *);
942
943 static LONGEST read_initial_length (bfd *, gdb_byte *, unsigned int *);
944
945 static LONGEST read_checked_initial_length_and_offset
946 (bfd *, gdb_byte *, const struct comp_unit_head *,
947 unsigned int *, unsigned int *);
948
949 static LONGEST read_offset (bfd *, gdb_byte *, const struct comp_unit_head *,
950 unsigned int *);
951
952 static LONGEST read_offset_1 (bfd *, gdb_byte *, unsigned int);
953
954 static gdb_byte *read_n_bytes (bfd *, gdb_byte *, unsigned int);
955
956 static char *read_direct_string (bfd *, gdb_byte *, unsigned int *);
957
958 static char *read_indirect_string (bfd *, gdb_byte *,
959 const struct comp_unit_head *,
960 unsigned int *);
961
962 static unsigned long read_unsigned_leb128 (bfd *, gdb_byte *, unsigned int *);
963
964 static long read_signed_leb128 (bfd *, gdb_byte *, unsigned int *);
965
966 static gdb_byte *skip_leb128 (bfd *, gdb_byte *);
967
968 static void set_cu_language (unsigned int, struct dwarf2_cu *);
969
970 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
971 struct dwarf2_cu *);
972
973 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
974 unsigned int,
975 struct dwarf2_cu *);
976
977 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
978 struct dwarf2_cu *cu);
979
980 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
981
982 static struct die_info *die_specification (struct die_info *die,
983 struct dwarf2_cu **);
984
985 static void free_line_header (struct line_header *lh);
986
987 static void add_file_name (struct line_header *, char *, unsigned int,
988 unsigned int, unsigned int);
989
990 static struct line_header *(dwarf_decode_line_header
991 (unsigned int offset,
992 bfd *abfd, struct dwarf2_cu *cu));
993
994 static void dwarf_decode_lines (struct line_header *, const char *, bfd *,
995 struct dwarf2_cu *, struct partial_symtab *);
996
997 static void dwarf2_start_subfile (char *, const char *, const char *);
998
999 static struct symbol *new_symbol (struct die_info *, struct type *,
1000 struct dwarf2_cu *);
1001
1002 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1003 struct dwarf2_cu *, struct symbol *);
1004
1005 static void dwarf2_const_value (struct attribute *, struct symbol *,
1006 struct dwarf2_cu *);
1007
1008 static void dwarf2_const_value_attr (struct attribute *attr,
1009 struct type *type,
1010 const char *name,
1011 struct obstack *obstack,
1012 struct dwarf2_cu *cu, long *value,
1013 gdb_byte **bytes,
1014 struct dwarf2_locexpr_baton **baton);
1015
1016 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1017
1018 static int need_gnat_info (struct dwarf2_cu *);
1019
1020 static struct type *die_descriptive_type (struct die_info *,
1021 struct dwarf2_cu *);
1022
1023 static void set_descriptive_type (struct type *, struct die_info *,
1024 struct dwarf2_cu *);
1025
1026 static struct type *die_containing_type (struct die_info *,
1027 struct dwarf2_cu *);
1028
1029 static struct type *lookup_die_type (struct die_info *, struct attribute *,
1030 struct dwarf2_cu *);
1031
1032 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1033
1034 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1035
1036 static char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1037
1038 static char *typename_concat (struct obstack *obs, const char *prefix,
1039 const char *suffix, int physname,
1040 struct dwarf2_cu *cu);
1041
1042 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1043
1044 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1045
1046 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1047
1048 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1049
1050 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1051 struct dwarf2_cu *, struct partial_symtab *);
1052
1053 static int dwarf2_get_pc_bounds (struct die_info *,
1054 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1055 struct partial_symtab *);
1056
1057 static void get_scope_pc_bounds (struct die_info *,
1058 CORE_ADDR *, CORE_ADDR *,
1059 struct dwarf2_cu *);
1060
1061 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1062 CORE_ADDR, struct dwarf2_cu *);
1063
1064 static void dwarf2_add_field (struct field_info *, struct die_info *,
1065 struct dwarf2_cu *);
1066
1067 static void dwarf2_attach_fields_to_type (struct field_info *,
1068 struct type *, struct dwarf2_cu *);
1069
1070 static void dwarf2_add_member_fn (struct field_info *,
1071 struct die_info *, struct type *,
1072 struct dwarf2_cu *);
1073
1074 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1075 struct type *,
1076 struct dwarf2_cu *);
1077
1078 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1079
1080 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1081
1082 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1083
1084 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1085
1086 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1087
1088 static struct type *read_module_type (struct die_info *die,
1089 struct dwarf2_cu *cu);
1090
1091 static const char *namespace_name (struct die_info *die,
1092 int *is_anonymous, struct dwarf2_cu *);
1093
1094 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1095
1096 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1097
1098 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1099 struct dwarf2_cu *);
1100
1101 static struct die_info *read_comp_unit (gdb_byte *, struct dwarf2_cu *);
1102
1103 static struct die_info *read_die_and_children_1 (const struct die_reader_specs *reader,
1104 gdb_byte *info_ptr,
1105 gdb_byte **new_info_ptr,
1106 struct die_info *parent);
1107
1108 static struct die_info *read_die_and_children (const struct die_reader_specs *reader,
1109 gdb_byte *info_ptr,
1110 gdb_byte **new_info_ptr,
1111 struct die_info *parent);
1112
1113 static struct die_info *read_die_and_siblings (const struct die_reader_specs *reader,
1114 gdb_byte *info_ptr,
1115 gdb_byte **new_info_ptr,
1116 struct die_info *parent);
1117
1118 static gdb_byte *read_full_die (const struct die_reader_specs *reader,
1119 struct die_info **, gdb_byte *,
1120 int *);
1121
1122 static void process_die (struct die_info *, struct dwarf2_cu *);
1123
1124 static char *dwarf2_canonicalize_name (char *, struct dwarf2_cu *,
1125 struct obstack *);
1126
1127 static char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1128
1129 static const char *dwarf2_full_name (char *name,
1130 struct die_info *die,
1131 struct dwarf2_cu *cu);
1132
1133 static struct die_info *dwarf2_extension (struct die_info *die,
1134 struct dwarf2_cu **);
1135
1136 static char *dwarf_tag_name (unsigned int);
1137
1138 static char *dwarf_attr_name (unsigned int);
1139
1140 static char *dwarf_form_name (unsigned int);
1141
1142 static char *dwarf_bool_name (unsigned int);
1143
1144 static char *dwarf_type_encoding_name (unsigned int);
1145
1146 #if 0
1147 static char *dwarf_cfi_name (unsigned int);
1148 #endif
1149
1150 static struct die_info *sibling_die (struct die_info *);
1151
1152 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1153
1154 static void dump_die_for_error (struct die_info *);
1155
1156 static void dump_die_1 (struct ui_file *, int level, int max_level,
1157 struct die_info *);
1158
1159 /*static*/ void dump_die (struct die_info *, int max_level);
1160
1161 static void store_in_ref_table (struct die_info *,
1162 struct dwarf2_cu *);
1163
1164 static int is_ref_attr (struct attribute *);
1165
1166 static unsigned int dwarf2_get_ref_die_offset (struct attribute *);
1167
1168 static LONGEST dwarf2_get_attr_constant_value (struct attribute *, int);
1169
1170 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1171 struct attribute *,
1172 struct dwarf2_cu **);
1173
1174 static struct die_info *follow_die_ref (struct die_info *,
1175 struct attribute *,
1176 struct dwarf2_cu **);
1177
1178 static struct die_info *follow_die_sig (struct die_info *,
1179 struct attribute *,
1180 struct dwarf2_cu **);
1181
1182 static void read_signatured_type_at_offset (struct objfile *objfile,
1183 unsigned int offset);
1184
1185 static void read_signatured_type (struct objfile *,
1186 struct signatured_type *type_sig);
1187
1188 /* memory allocation interface */
1189
1190 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1191
1192 static struct abbrev_info *dwarf_alloc_abbrev (struct dwarf2_cu *);
1193
1194 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1195
1196 static void initialize_cu_func_list (struct dwarf2_cu *);
1197
1198 static void add_to_cu_func_list (const char *, CORE_ADDR, CORE_ADDR,
1199 struct dwarf2_cu *);
1200
1201 static void dwarf_decode_macros (struct line_header *, unsigned int,
1202 char *, bfd *, struct dwarf2_cu *);
1203
1204 static int attr_form_is_block (struct attribute *);
1205
1206 static int attr_form_is_section_offset (struct attribute *);
1207
1208 static int attr_form_is_constant (struct attribute *);
1209
1210 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1211 struct dwarf2_loclist_baton *baton,
1212 struct attribute *attr);
1213
1214 static void dwarf2_symbol_mark_computed (struct attribute *attr,
1215 struct symbol *sym,
1216 struct dwarf2_cu *cu);
1217
1218 static gdb_byte *skip_one_die (gdb_byte *buffer, gdb_byte *info_ptr,
1219 struct abbrev_info *abbrev,
1220 struct dwarf2_cu *cu);
1221
1222 static void free_stack_comp_unit (void *);
1223
1224 static hashval_t partial_die_hash (const void *item);
1225
1226 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1227
1228 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1229 (unsigned int offset, struct objfile *objfile);
1230
1231 static struct dwarf2_per_cu_data *dwarf2_find_comp_unit
1232 (unsigned int offset, struct objfile *objfile);
1233
1234 static void init_one_comp_unit (struct dwarf2_cu *cu,
1235 struct objfile *objfile);
1236
1237 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1238 struct die_info *comp_unit_die);
1239
1240 static void free_one_comp_unit (void *);
1241
1242 static void free_cached_comp_units (void *);
1243
1244 static void age_cached_comp_units (void);
1245
1246 static void free_one_cached_comp_unit (void *);
1247
1248 static struct type *set_die_type (struct die_info *, struct type *,
1249 struct dwarf2_cu *);
1250
1251 static void create_all_comp_units (struct objfile *);
1252
1253 static int create_debug_types_hash_table (struct objfile *objfile);
1254
1255 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1256 struct objfile *);
1257
1258 static void process_full_comp_unit (struct dwarf2_per_cu_data *);
1259
1260 static void dwarf2_add_dependence (struct dwarf2_cu *,
1261 struct dwarf2_per_cu_data *);
1262
1263 static void dwarf2_mark (struct dwarf2_cu *);
1264
1265 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1266
1267 static struct type *get_die_type_at_offset (unsigned int,
1268 struct dwarf2_per_cu_data *per_cu);
1269
1270 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1271
1272 static void dwarf2_release_queue (void *dummy);
1273
1274 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1275 struct objfile *objfile);
1276
1277 static void process_queue (struct objfile *objfile);
1278
1279 static void find_file_and_directory (struct die_info *die,
1280 struct dwarf2_cu *cu,
1281 char **name, char **comp_dir);
1282
1283 static char *file_full_name (int file, struct line_header *lh,
1284 const char *comp_dir);
1285
1286 static gdb_byte *partial_read_comp_unit_head (struct comp_unit_head *header,
1287 gdb_byte *info_ptr,
1288 gdb_byte *buffer,
1289 unsigned int buffer_size,
1290 bfd *abfd);
1291
1292 static void init_cu_die_reader (struct die_reader_specs *reader,
1293 struct dwarf2_cu *cu);
1294
1295 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1296
1297 #if WORDS_BIGENDIAN
1298
1299 /* Convert VALUE between big- and little-endian. */
1300 static offset_type
1301 byte_swap (offset_type value)
1302 {
1303 offset_type result;
1304
1305 result = (value & 0xff) << 24;
1306 result |= (value & 0xff00) << 8;
1307 result |= (value & 0xff0000) >> 8;
1308 result |= (value & 0xff000000) >> 24;
1309 return result;
1310 }
1311
1312 #define MAYBE_SWAP(V) byte_swap (V)
1313
1314 #else
1315 #define MAYBE_SWAP(V) (V)
1316 #endif /* WORDS_BIGENDIAN */
1317
1318 /* The suffix for an index file. */
1319 #define INDEX_SUFFIX ".gdb-index"
1320
1321 static const char *dwarf2_physname (char *name, struct die_info *die,
1322 struct dwarf2_cu *cu);
1323
1324 /* Try to locate the sections we need for DWARF 2 debugging
1325 information and return true if we have enough to do something. */
1326
1327 int
1328 dwarf2_has_info (struct objfile *objfile)
1329 {
1330 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1331 if (!dwarf2_per_objfile)
1332 {
1333 /* Initialize per-objfile state. */
1334 struct dwarf2_per_objfile *data
1335 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1336
1337 memset (data, 0, sizeof (*data));
1338 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1339 dwarf2_per_objfile = data;
1340
1341 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections, NULL);
1342 dwarf2_per_objfile->objfile = objfile;
1343 }
1344 return (dwarf2_per_objfile->info.asection != NULL
1345 && dwarf2_per_objfile->abbrev.asection != NULL);
1346 }
1347
1348 /* When loading sections, we can either look for ".<name>", or for
1349 * ".z<name>", which indicates a compressed section. */
1350
1351 static int
1352 section_is_p (const char *section_name, const char *name)
1353 {
1354 return (section_name[0] == '.'
1355 && (strcmp (section_name + 1, name) == 0
1356 || (section_name[1] == 'z'
1357 && strcmp (section_name + 2, name) == 0)));
1358 }
1359
1360 /* This function is mapped across the sections and remembers the
1361 offset and size of each of the debugging sections we are interested
1362 in. */
1363
1364 static void
1365 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *ignore_ptr)
1366 {
1367 if (section_is_p (sectp->name, INFO_SECTION))
1368 {
1369 dwarf2_per_objfile->info.asection = sectp;
1370 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
1371 }
1372 else if (section_is_p (sectp->name, ABBREV_SECTION))
1373 {
1374 dwarf2_per_objfile->abbrev.asection = sectp;
1375 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
1376 }
1377 else if (section_is_p (sectp->name, LINE_SECTION))
1378 {
1379 dwarf2_per_objfile->line.asection = sectp;
1380 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
1381 }
1382 else if (section_is_p (sectp->name, LOC_SECTION))
1383 {
1384 dwarf2_per_objfile->loc.asection = sectp;
1385 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
1386 }
1387 else if (section_is_p (sectp->name, MACINFO_SECTION))
1388 {
1389 dwarf2_per_objfile->macinfo.asection = sectp;
1390 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
1391 }
1392 else if (section_is_p (sectp->name, STR_SECTION))
1393 {
1394 dwarf2_per_objfile->str.asection = sectp;
1395 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
1396 }
1397 else if (section_is_p (sectp->name, FRAME_SECTION))
1398 {
1399 dwarf2_per_objfile->frame.asection = sectp;
1400 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
1401 }
1402 else if (section_is_p (sectp->name, EH_FRAME_SECTION))
1403 {
1404 flagword aflag = bfd_get_section_flags (ignore_abfd, sectp);
1405
1406 if (aflag & SEC_HAS_CONTENTS)
1407 {
1408 dwarf2_per_objfile->eh_frame.asection = sectp;
1409 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
1410 }
1411 }
1412 else if (section_is_p (sectp->name, RANGES_SECTION))
1413 {
1414 dwarf2_per_objfile->ranges.asection = sectp;
1415 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
1416 }
1417 else if (section_is_p (sectp->name, TYPES_SECTION))
1418 {
1419 dwarf2_per_objfile->types.asection = sectp;
1420 dwarf2_per_objfile->types.size = bfd_get_section_size (sectp);
1421 }
1422 else if (section_is_p (sectp->name, GDB_INDEX_SECTION))
1423 {
1424 dwarf2_per_objfile->gdb_index.asection = sectp;
1425 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
1426 }
1427
1428 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
1429 && bfd_section_vma (abfd, sectp) == 0)
1430 dwarf2_per_objfile->has_section_at_zero = 1;
1431 }
1432
1433 /* Decompress a section that was compressed using zlib. Store the
1434 decompressed buffer, and its size, in OUTBUF and OUTSIZE. */
1435
1436 static void
1437 zlib_decompress_section (struct objfile *objfile, asection *sectp,
1438 gdb_byte **outbuf, bfd_size_type *outsize)
1439 {
1440 bfd *abfd = objfile->obfd;
1441 #ifndef HAVE_ZLIB_H
1442 error (_("Support for zlib-compressed DWARF data (from '%s') "
1443 "is disabled in this copy of GDB"),
1444 bfd_get_filename (abfd));
1445 #else
1446 bfd_size_type compressed_size = bfd_get_section_size (sectp);
1447 gdb_byte *compressed_buffer = xmalloc (compressed_size);
1448 struct cleanup *cleanup = make_cleanup (xfree, compressed_buffer);
1449 bfd_size_type uncompressed_size;
1450 gdb_byte *uncompressed_buffer;
1451 z_stream strm;
1452 int rc;
1453 int header_size = 12;
1454
1455 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1456 || bfd_bread (compressed_buffer,
1457 compressed_size, abfd) != compressed_size)
1458 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1459 bfd_get_filename (abfd));
1460
1461 /* Read the zlib header. In this case, it should be "ZLIB" followed
1462 by the uncompressed section size, 8 bytes in big-endian order. */
1463 if (compressed_size < header_size
1464 || strncmp (compressed_buffer, "ZLIB", 4) != 0)
1465 error (_("Dwarf Error: Corrupt DWARF ZLIB header from '%s'"),
1466 bfd_get_filename (abfd));
1467 uncompressed_size = compressed_buffer[4]; uncompressed_size <<= 8;
1468 uncompressed_size += compressed_buffer[5]; uncompressed_size <<= 8;
1469 uncompressed_size += compressed_buffer[6]; uncompressed_size <<= 8;
1470 uncompressed_size += compressed_buffer[7]; uncompressed_size <<= 8;
1471 uncompressed_size += compressed_buffer[8]; uncompressed_size <<= 8;
1472 uncompressed_size += compressed_buffer[9]; uncompressed_size <<= 8;
1473 uncompressed_size += compressed_buffer[10]; uncompressed_size <<= 8;
1474 uncompressed_size += compressed_buffer[11];
1475
1476 /* It is possible the section consists of several compressed
1477 buffers concatenated together, so we uncompress in a loop. */
1478 strm.zalloc = NULL;
1479 strm.zfree = NULL;
1480 strm.opaque = NULL;
1481 strm.avail_in = compressed_size - header_size;
1482 strm.next_in = (Bytef*) compressed_buffer + header_size;
1483 strm.avail_out = uncompressed_size;
1484 uncompressed_buffer = obstack_alloc (&objfile->objfile_obstack,
1485 uncompressed_size);
1486 rc = inflateInit (&strm);
1487 while (strm.avail_in > 0)
1488 {
1489 if (rc != Z_OK)
1490 error (_("Dwarf Error: setting up DWARF uncompression in '%s': %d"),
1491 bfd_get_filename (abfd), rc);
1492 strm.next_out = ((Bytef*) uncompressed_buffer
1493 + (uncompressed_size - strm.avail_out));
1494 rc = inflate (&strm, Z_FINISH);
1495 if (rc != Z_STREAM_END)
1496 error (_("Dwarf Error: zlib error uncompressing from '%s': %d"),
1497 bfd_get_filename (abfd), rc);
1498 rc = inflateReset (&strm);
1499 }
1500 rc = inflateEnd (&strm);
1501 if (rc != Z_OK
1502 || strm.avail_out != 0)
1503 error (_("Dwarf Error: concluding DWARF uncompression in '%s': %d"),
1504 bfd_get_filename (abfd), rc);
1505
1506 do_cleanups (cleanup);
1507 *outbuf = uncompressed_buffer;
1508 *outsize = uncompressed_size;
1509 #endif
1510 }
1511
1512 /* Read the contents of the section SECTP from object file specified by
1513 OBJFILE, store info about the section into INFO.
1514 If the section is compressed, uncompress it before returning. */
1515
1516 static void
1517 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
1518 {
1519 bfd *abfd = objfile->obfd;
1520 asection *sectp = info->asection;
1521 gdb_byte *buf, *retbuf;
1522 unsigned char header[4];
1523
1524 if (info->readin)
1525 return;
1526 info->buffer = NULL;
1527 info->was_mmapped = 0;
1528 info->readin = 1;
1529
1530 if (info->asection == NULL || info->size == 0)
1531 return;
1532
1533 /* Check if the file has a 4-byte header indicating compression. */
1534 if (info->size > sizeof (header)
1535 && bfd_seek (abfd, sectp->filepos, SEEK_SET) == 0
1536 && bfd_bread (header, sizeof (header), abfd) == sizeof (header))
1537 {
1538 /* Upon decompression, update the buffer and its size. */
1539 if (strncmp (header, "ZLIB", sizeof (header)) == 0)
1540 {
1541 zlib_decompress_section (objfile, sectp, &info->buffer,
1542 &info->size);
1543 return;
1544 }
1545 }
1546
1547 #ifdef HAVE_MMAP
1548 if (pagesize == 0)
1549 pagesize = getpagesize ();
1550
1551 /* Only try to mmap sections which are large enough: we don't want to
1552 waste space due to fragmentation. Also, only try mmap for sections
1553 without relocations. */
1554
1555 if (info->size > 4 * pagesize && (sectp->flags & SEC_RELOC) == 0)
1556 {
1557 off_t pg_offset = sectp->filepos & ~(pagesize - 1);
1558 size_t map_length = info->size + sectp->filepos - pg_offset;
1559 caddr_t retbuf = bfd_mmap (abfd, 0, map_length, PROT_READ,
1560 MAP_PRIVATE, pg_offset);
1561
1562 if (retbuf != MAP_FAILED)
1563 {
1564 info->was_mmapped = 1;
1565 info->buffer = retbuf + (sectp->filepos & (pagesize - 1)) ;
1566 #if HAVE_POSIX_MADVISE
1567 posix_madvise (retbuf, map_length, POSIX_MADV_WILLNEED);
1568 #endif
1569 return;
1570 }
1571 }
1572 #endif
1573
1574 /* If we get here, we are a normal, not-compressed section. */
1575 info->buffer = buf
1576 = obstack_alloc (&objfile->objfile_obstack, info->size);
1577
1578 /* When debugging .o files, we may need to apply relocations; see
1579 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
1580 We never compress sections in .o files, so we only need to
1581 try this when the section is not compressed. */
1582 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
1583 if (retbuf != NULL)
1584 {
1585 info->buffer = retbuf;
1586 return;
1587 }
1588
1589 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1590 || bfd_bread (buf, info->size, abfd) != info->size)
1591 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1592 bfd_get_filename (abfd));
1593 }
1594
1595 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
1596 SECTION_NAME. */
1597
1598 void
1599 dwarf2_get_section_info (struct objfile *objfile, const char *section_name,
1600 asection **sectp, gdb_byte **bufp,
1601 bfd_size_type *sizep)
1602 {
1603 struct dwarf2_per_objfile *data
1604 = objfile_data (objfile, dwarf2_objfile_data_key);
1605 struct dwarf2_section_info *info;
1606
1607 /* We may see an objfile without any DWARF, in which case we just
1608 return nothing. */
1609 if (data == NULL)
1610 {
1611 *sectp = NULL;
1612 *bufp = NULL;
1613 *sizep = 0;
1614 return;
1615 }
1616 if (section_is_p (section_name, EH_FRAME_SECTION))
1617 info = &data->eh_frame;
1618 else if (section_is_p (section_name, FRAME_SECTION))
1619 info = &data->frame;
1620 else
1621 gdb_assert_not_reached ("unexpected section");
1622
1623 if (info->asection != NULL && info->size != 0 && info->buffer == NULL)
1624 /* We haven't read this section in yet. Do it now. */
1625 dwarf2_read_section (objfile, info);
1626
1627 *sectp = info->asection;
1628 *bufp = info->buffer;
1629 *sizep = info->size;
1630 }
1631
1632 \f
1633 /* DWARF quick_symbols_functions support. */
1634
1635 /* TUs can share .debug_line entries, and there can be a lot more TUs than
1636 unique line tables, so we maintain a separate table of all .debug_line
1637 derived entries to support the sharing.
1638 All the quick functions need is the list of file names. We discard the
1639 line_header when we're done and don't need to record it here. */
1640 struct quick_file_names
1641 {
1642 /* The offset in .debug_line of the line table. We hash on this. */
1643 unsigned int offset;
1644
1645 /* The number of entries in file_names, real_names. */
1646 unsigned int num_file_names;
1647
1648 /* The file names from the line table, after being run through
1649 file_full_name. */
1650 const char **file_names;
1651
1652 /* The file names from the line table after being run through
1653 gdb_realpath. These are computed lazily. */
1654 const char **real_names;
1655 };
1656
1657 /* When using the index (and thus not using psymtabs), each CU has an
1658 object of this type. This is used to hold information needed by
1659 the various "quick" methods. */
1660 struct dwarf2_per_cu_quick_data
1661 {
1662 /* The file table. This can be NULL if there was no file table
1663 or it's currently not read in.
1664 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
1665 struct quick_file_names *file_names;
1666
1667 /* The corresponding symbol table. This is NULL if symbols for this
1668 CU have not yet been read. */
1669 struct symtab *symtab;
1670
1671 /* A temporary mark bit used when iterating over all CUs in
1672 expand_symtabs_matching. */
1673 unsigned int mark : 1;
1674
1675 /* True if we've tried to read the file table and found there isn't one.
1676 There will be no point in trying to read it again next time. */
1677 unsigned int no_file_data : 1;
1678 };
1679
1680 /* Hash function for a quick_file_names. */
1681
1682 static hashval_t
1683 hash_file_name_entry (const void *e)
1684 {
1685 const struct quick_file_names *file_data = e;
1686
1687 return file_data->offset;
1688 }
1689
1690 /* Equality function for a quick_file_names. */
1691
1692 static int
1693 eq_file_name_entry (const void *a, const void *b)
1694 {
1695 const struct quick_file_names *ea = a;
1696 const struct quick_file_names *eb = b;
1697
1698 return ea->offset == eb->offset;
1699 }
1700
1701 /* Delete function for a quick_file_names. */
1702
1703 static void
1704 delete_file_name_entry (void *e)
1705 {
1706 struct quick_file_names *file_data = e;
1707 int i;
1708
1709 for (i = 0; i < file_data->num_file_names; ++i)
1710 {
1711 xfree ((void*) file_data->file_names[i]);
1712 if (file_data->real_names)
1713 xfree ((void*) file_data->real_names[i]);
1714 }
1715
1716 /* The space for the struct itself lives on objfile_obstack,
1717 so we don't free it here. */
1718 }
1719
1720 /* Create a quick_file_names hash table. */
1721
1722 static htab_t
1723 create_quick_file_names_table (unsigned int nr_initial_entries)
1724 {
1725 return htab_create_alloc (nr_initial_entries,
1726 hash_file_name_entry, eq_file_name_entry,
1727 delete_file_name_entry, xcalloc, xfree);
1728 }
1729
1730 /* Read in the symbols for PER_CU. OBJFILE is the objfile from which
1731 this CU came. */
1732
1733 static void
1734 dw2_do_instantiate_symtab (struct objfile *objfile,
1735 struct dwarf2_per_cu_data *per_cu)
1736 {
1737 struct cleanup *back_to;
1738
1739 back_to = make_cleanup (dwarf2_release_queue, NULL);
1740
1741 queue_comp_unit (per_cu, objfile);
1742
1743 if (per_cu->from_debug_types)
1744 read_signatured_type_at_offset (objfile, per_cu->offset);
1745 else
1746 load_full_comp_unit (per_cu, objfile);
1747
1748 process_queue (objfile);
1749
1750 /* Age the cache, releasing compilation units that have not
1751 been used recently. */
1752 age_cached_comp_units ();
1753
1754 do_cleanups (back_to);
1755 }
1756
1757 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
1758 the objfile from which this CU came. Returns the resulting symbol
1759 table. */
1760
1761 static struct symtab *
1762 dw2_instantiate_symtab (struct objfile *objfile,
1763 struct dwarf2_per_cu_data *per_cu)
1764 {
1765 if (!per_cu->v.quick->symtab)
1766 {
1767 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
1768 increment_reading_symtab ();
1769 dw2_do_instantiate_symtab (objfile, per_cu);
1770 do_cleanups (back_to);
1771 }
1772 return per_cu->v.quick->symtab;
1773 }
1774
1775 /* Return the CU given its index. */
1776
1777 static struct dwarf2_per_cu_data *
1778 dw2_get_cu (int index)
1779 {
1780 if (index >= dwarf2_per_objfile->n_comp_units)
1781 {
1782 index -= dwarf2_per_objfile->n_comp_units;
1783 return dwarf2_per_objfile->type_comp_units[index];
1784 }
1785 return dwarf2_per_objfile->all_comp_units[index];
1786 }
1787
1788 /* A helper function that knows how to read a 64-bit value in a way
1789 that doesn't make gdb die. Returns 1 if the conversion went ok, 0
1790 otherwise. */
1791
1792 static int
1793 extract_cu_value (const char *bytes, ULONGEST *result)
1794 {
1795 if (sizeof (ULONGEST) < 8)
1796 {
1797 int i;
1798
1799 /* Ignore the upper 4 bytes if they are all zero. */
1800 for (i = 0; i < 4; ++i)
1801 if (bytes[i + 4] != 0)
1802 return 0;
1803
1804 *result = extract_unsigned_integer (bytes, 4, BFD_ENDIAN_LITTLE);
1805 }
1806 else
1807 *result = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
1808 return 1;
1809 }
1810
1811 /* Read the CU list from the mapped index, and use it to create all
1812 the CU objects for this objfile. Return 0 if something went wrong,
1813 1 if everything went ok. */
1814
1815 static int
1816 create_cus_from_index (struct objfile *objfile, const gdb_byte *cu_list,
1817 offset_type cu_list_elements)
1818 {
1819 offset_type i;
1820
1821 dwarf2_per_objfile->n_comp_units = cu_list_elements / 2;
1822 dwarf2_per_objfile->all_comp_units
1823 = obstack_alloc (&objfile->objfile_obstack,
1824 dwarf2_per_objfile->n_comp_units
1825 * sizeof (struct dwarf2_per_cu_data *));
1826
1827 for (i = 0; i < cu_list_elements; i += 2)
1828 {
1829 struct dwarf2_per_cu_data *the_cu;
1830 ULONGEST offset, length;
1831
1832 if (!extract_cu_value (cu_list, &offset)
1833 || !extract_cu_value (cu_list + 8, &length))
1834 return 0;
1835 cu_list += 2 * 8;
1836
1837 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1838 struct dwarf2_per_cu_data);
1839 the_cu->offset = offset;
1840 the_cu->length = length;
1841 the_cu->objfile = objfile;
1842 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1843 struct dwarf2_per_cu_quick_data);
1844 dwarf2_per_objfile->all_comp_units[i / 2] = the_cu;
1845 }
1846
1847 return 1;
1848 }
1849
1850 /* Create the signatured type hash table from the index. */
1851
1852 static int
1853 create_signatured_type_table_from_index (struct objfile *objfile,
1854 const gdb_byte *bytes,
1855 offset_type elements)
1856 {
1857 offset_type i;
1858 htab_t sig_types_hash;
1859
1860 dwarf2_per_objfile->n_type_comp_units = elements / 3;
1861 dwarf2_per_objfile->type_comp_units
1862 = obstack_alloc (&objfile->objfile_obstack,
1863 dwarf2_per_objfile->n_type_comp_units
1864 * sizeof (struct dwarf2_per_cu_data *));
1865
1866 sig_types_hash = allocate_signatured_type_table (objfile);
1867
1868 for (i = 0; i < elements; i += 3)
1869 {
1870 struct signatured_type *type_sig;
1871 ULONGEST offset, type_offset, signature;
1872 void **slot;
1873
1874 if (!extract_cu_value (bytes, &offset)
1875 || !extract_cu_value (bytes + 8, &type_offset))
1876 return 0;
1877 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
1878 bytes += 3 * 8;
1879
1880 type_sig = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1881 struct signatured_type);
1882 type_sig->signature = signature;
1883 type_sig->offset = offset;
1884 type_sig->type_offset = type_offset;
1885 type_sig->per_cu.from_debug_types = 1;
1886 type_sig->per_cu.offset = offset;
1887 type_sig->per_cu.objfile = objfile;
1888 type_sig->per_cu.v.quick
1889 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1890 struct dwarf2_per_cu_quick_data);
1891
1892 slot = htab_find_slot (sig_types_hash, type_sig, INSERT);
1893 *slot = type_sig;
1894
1895 dwarf2_per_objfile->type_comp_units[i / 3] = &type_sig->per_cu;
1896 }
1897
1898 dwarf2_per_objfile->signatured_types = sig_types_hash;
1899
1900 return 1;
1901 }
1902
1903 /* Read the address map data from the mapped index, and use it to
1904 populate the objfile's psymtabs_addrmap. */
1905
1906 static void
1907 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
1908 {
1909 const gdb_byte *iter, *end;
1910 struct obstack temp_obstack;
1911 struct addrmap *mutable_map;
1912 struct cleanup *cleanup;
1913 CORE_ADDR baseaddr;
1914
1915 obstack_init (&temp_obstack);
1916 cleanup = make_cleanup_obstack_free (&temp_obstack);
1917 mutable_map = addrmap_create_mutable (&temp_obstack);
1918
1919 iter = index->address_table;
1920 end = iter + index->address_table_size;
1921
1922 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1923
1924 while (iter < end)
1925 {
1926 ULONGEST hi, lo, cu_index;
1927 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
1928 iter += 8;
1929 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
1930 iter += 8;
1931 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
1932 iter += 4;
1933
1934 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
1935 dw2_get_cu (cu_index));
1936 }
1937
1938 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
1939 &objfile->objfile_obstack);
1940 do_cleanups (cleanup);
1941 }
1942
1943 /* The hash function for strings in the mapped index. This is the
1944 same as the hashtab.c hash function, but we keep a separate copy to
1945 maintain control over the implementation. This is necessary
1946 because the hash function is tied to the format of the mapped index
1947 file. */
1948
1949 static hashval_t
1950 mapped_index_string_hash (const void *p)
1951 {
1952 const unsigned char *str = (const unsigned char *) p;
1953 hashval_t r = 0;
1954 unsigned char c;
1955
1956 while ((c = *str++) != 0)
1957 r = r * 67 + c - 113;
1958
1959 return r;
1960 }
1961
1962 /* Find a slot in the mapped index INDEX for the object named NAME.
1963 If NAME is found, set *VEC_OUT to point to the CU vector in the
1964 constant pool and return 1. If NAME cannot be found, return 0. */
1965
1966 static int
1967 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
1968 offset_type **vec_out)
1969 {
1970 offset_type hash = mapped_index_string_hash (name);
1971 offset_type slot, step;
1972
1973 slot = hash & (index->symbol_table_slots - 1);
1974 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
1975
1976 for (;;)
1977 {
1978 /* Convert a slot number to an offset into the table. */
1979 offset_type i = 2 * slot;
1980 const char *str;
1981 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
1982 return 0;
1983
1984 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
1985 if (!strcmp (name, str))
1986 {
1987 *vec_out = (offset_type *) (index->constant_pool
1988 + MAYBE_SWAP (index->symbol_table[i + 1]));
1989 return 1;
1990 }
1991
1992 slot = (slot + step) & (index->symbol_table_slots - 1);
1993 }
1994 }
1995
1996 /* Read the index file. If everything went ok, initialize the "quick"
1997 elements of all the CUs and return 1. Otherwise, return 0. */
1998
1999 static int
2000 dwarf2_read_index (struct objfile *objfile)
2001 {
2002 char *addr;
2003 struct mapped_index *map;
2004 offset_type *metadata;
2005 const gdb_byte *cu_list;
2006 const gdb_byte *types_list = NULL;
2007 offset_type version, cu_list_elements;
2008 offset_type types_list_elements = 0;
2009 int i;
2010
2011 if (dwarf2_per_objfile->gdb_index.asection == NULL
2012 || dwarf2_per_objfile->gdb_index.size == 0)
2013 return 0;
2014
2015 /* Older elfutils strip versions could keep the section in the main
2016 executable while splitting it for the separate debug info file. */
2017 if ((bfd_get_file_flags (dwarf2_per_objfile->gdb_index.asection)
2018 & SEC_HAS_CONTENTS) == 0)
2019 return 0;
2020
2021 dwarf2_read_section (objfile, &dwarf2_per_objfile->gdb_index);
2022
2023 addr = dwarf2_per_objfile->gdb_index.buffer;
2024 /* Version check. */
2025 version = MAYBE_SWAP (*(offset_type *) addr);
2026 /* Versions earlier than 3 emitted every copy of a psymbol. This
2027 causes the index to behave very poorly for certain requests. So,
2028 it seems better to just ignore such indices. */
2029 if (version < 3)
2030 return 0;
2031 /* Indexes with higher version than the one supported by GDB may be no
2032 longer backward compatible. */
2033 if (version > 3)
2034 return 0;
2035
2036 map = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct mapped_index);
2037 map->total_size = dwarf2_per_objfile->gdb_index.size;
2038
2039 metadata = (offset_type *) (addr + sizeof (offset_type));
2040
2041 i = 0;
2042 cu_list = addr + MAYBE_SWAP (metadata[i]);
2043 cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
2044 / 8);
2045 ++i;
2046
2047 types_list = addr + MAYBE_SWAP (metadata[i]);
2048 types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
2049 - MAYBE_SWAP (metadata[i]))
2050 / 8);
2051 ++i;
2052
2053 map->address_table = addr + MAYBE_SWAP (metadata[i]);
2054 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
2055 - MAYBE_SWAP (metadata[i]));
2056 ++i;
2057
2058 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
2059 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
2060 - MAYBE_SWAP (metadata[i]))
2061 / (2 * sizeof (offset_type)));
2062 ++i;
2063
2064 map->constant_pool = addr + MAYBE_SWAP (metadata[i]);
2065
2066 if (!create_cus_from_index (objfile, cu_list, cu_list_elements))
2067 return 0;
2068
2069 if (types_list_elements
2070 && !create_signatured_type_table_from_index (objfile, types_list,
2071 types_list_elements))
2072 return 0;
2073
2074 create_addrmap_from_index (objfile, map);
2075
2076 dwarf2_per_objfile->index_table = map;
2077 dwarf2_per_objfile->using_index = 1;
2078 dwarf2_per_objfile->quick_file_names_table =
2079 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
2080
2081 return 1;
2082 }
2083
2084 /* A helper for the "quick" functions which sets the global
2085 dwarf2_per_objfile according to OBJFILE. */
2086
2087 static void
2088 dw2_setup (struct objfile *objfile)
2089 {
2090 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
2091 gdb_assert (dwarf2_per_objfile);
2092 }
2093
2094 /* A helper for the "quick" functions which attempts to read the line
2095 table for THIS_CU. */
2096
2097 static struct quick_file_names *
2098 dw2_get_file_names (struct objfile *objfile,
2099 struct dwarf2_per_cu_data *this_cu)
2100 {
2101 bfd *abfd = objfile->obfd;
2102 struct line_header *lh;
2103 struct attribute *attr;
2104 struct cleanup *cleanups;
2105 struct die_info *comp_unit_die;
2106 struct dwarf2_section_info* sec;
2107 gdb_byte *beg_of_comp_unit, *info_ptr, *buffer;
2108 int has_children, i;
2109 struct dwarf2_cu cu;
2110 unsigned int bytes_read, buffer_size;
2111 struct die_reader_specs reader_specs;
2112 char *name, *comp_dir;
2113 void **slot;
2114 struct quick_file_names *qfn;
2115 unsigned int line_offset;
2116
2117 if (this_cu->v.quick->file_names != NULL)
2118 return this_cu->v.quick->file_names;
2119 /* If we know there is no line data, no point in looking again. */
2120 if (this_cu->v.quick->no_file_data)
2121 return NULL;
2122
2123 init_one_comp_unit (&cu, objfile);
2124 cleanups = make_cleanup (free_stack_comp_unit, &cu);
2125
2126 if (this_cu->from_debug_types)
2127 sec = &dwarf2_per_objfile->types;
2128 else
2129 sec = &dwarf2_per_objfile->info;
2130 dwarf2_read_section (objfile, sec);
2131 buffer_size = sec->size;
2132 buffer = sec->buffer;
2133 info_ptr = buffer + this_cu->offset;
2134 beg_of_comp_unit = info_ptr;
2135
2136 info_ptr = partial_read_comp_unit_head (&cu.header, info_ptr,
2137 buffer, buffer_size,
2138 abfd);
2139
2140 /* Complete the cu_header. */
2141 cu.header.offset = beg_of_comp_unit - buffer;
2142 cu.header.first_die_offset = info_ptr - beg_of_comp_unit;
2143
2144 this_cu->cu = &cu;
2145 cu.per_cu = this_cu;
2146
2147 dwarf2_read_abbrevs (abfd, &cu);
2148 make_cleanup (dwarf2_free_abbrev_table, &cu);
2149
2150 if (this_cu->from_debug_types)
2151 info_ptr += 8 /*signature*/ + cu.header.offset_size;
2152 init_cu_die_reader (&reader_specs, &cu);
2153 info_ptr = read_full_die (&reader_specs, &comp_unit_die, info_ptr,
2154 &has_children);
2155
2156 lh = NULL;
2157 slot = NULL;
2158 line_offset = 0;
2159 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, &cu);
2160 if (attr)
2161 {
2162 struct quick_file_names find_entry;
2163
2164 line_offset = DW_UNSND (attr);
2165
2166 /* We may have already read in this line header (TU line header sharing).
2167 If we have we're done. */
2168 find_entry.offset = line_offset;
2169 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
2170 &find_entry, INSERT);
2171 if (*slot != NULL)
2172 {
2173 do_cleanups (cleanups);
2174 this_cu->v.quick->file_names = *slot;
2175 return *slot;
2176 }
2177
2178 lh = dwarf_decode_line_header (line_offset, abfd, &cu);
2179 }
2180 if (lh == NULL)
2181 {
2182 do_cleanups (cleanups);
2183 this_cu->v.quick->no_file_data = 1;
2184 return NULL;
2185 }
2186
2187 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
2188 qfn->offset = line_offset;
2189 gdb_assert (slot != NULL);
2190 *slot = qfn;
2191
2192 find_file_and_directory (comp_unit_die, &cu, &name, &comp_dir);
2193
2194 qfn->num_file_names = lh->num_file_names;
2195 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
2196 lh->num_file_names * sizeof (char *));
2197 for (i = 0; i < lh->num_file_names; ++i)
2198 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
2199 qfn->real_names = NULL;
2200
2201 free_line_header (lh);
2202 do_cleanups (cleanups);
2203
2204 this_cu->v.quick->file_names = qfn;
2205 return qfn;
2206 }
2207
2208 /* A helper for the "quick" functions which computes and caches the
2209 real path for a given file name from the line table. */
2210
2211 static const char *
2212 dw2_get_real_path (struct objfile *objfile,
2213 struct quick_file_names *qfn, int index)
2214 {
2215 if (qfn->real_names == NULL)
2216 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
2217 qfn->num_file_names, sizeof (char *));
2218
2219 if (qfn->real_names[index] == NULL)
2220 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
2221
2222 return qfn->real_names[index];
2223 }
2224
2225 static struct symtab *
2226 dw2_find_last_source_symtab (struct objfile *objfile)
2227 {
2228 int index;
2229
2230 dw2_setup (objfile);
2231 index = dwarf2_per_objfile->n_comp_units - 1;
2232 return dw2_instantiate_symtab (objfile, dw2_get_cu (index));
2233 }
2234
2235 /* Traversal function for dw2_forget_cached_source_info. */
2236
2237 static int
2238 dw2_free_cached_file_names (void **slot, void *info)
2239 {
2240 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
2241
2242 if (file_data->real_names)
2243 {
2244 int i;
2245
2246 for (i = 0; i < file_data->num_file_names; ++i)
2247 {
2248 xfree ((void*) file_data->real_names[i]);
2249 file_data->real_names[i] = NULL;
2250 }
2251 }
2252
2253 return 1;
2254 }
2255
2256 static void
2257 dw2_forget_cached_source_info (struct objfile *objfile)
2258 {
2259 dw2_setup (objfile);
2260
2261 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
2262 dw2_free_cached_file_names, NULL);
2263 }
2264
2265 static int
2266 dw2_lookup_symtab (struct objfile *objfile, const char *name,
2267 const char *full_path, const char *real_path,
2268 struct symtab **result)
2269 {
2270 int i;
2271 int check_basename = lbasename (name) == name;
2272 struct dwarf2_per_cu_data *base_cu = NULL;
2273
2274 dw2_setup (objfile);
2275
2276 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2277 + dwarf2_per_objfile->n_type_comp_units); ++i)
2278 {
2279 int j;
2280 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2281 struct quick_file_names *file_data;
2282
2283 if (per_cu->v.quick->symtab)
2284 continue;
2285
2286 file_data = dw2_get_file_names (objfile, per_cu);
2287 if (file_data == NULL)
2288 continue;
2289
2290 for (j = 0; j < file_data->num_file_names; ++j)
2291 {
2292 const char *this_name = file_data->file_names[j];
2293
2294 if (FILENAME_CMP (name, this_name) == 0)
2295 {
2296 *result = dw2_instantiate_symtab (objfile, per_cu);
2297 return 1;
2298 }
2299
2300 if (check_basename && ! base_cu
2301 && FILENAME_CMP (lbasename (this_name), name) == 0)
2302 base_cu = per_cu;
2303
2304 if (full_path != NULL)
2305 {
2306 const char *this_real_name = dw2_get_real_path (objfile,
2307 file_data, j);
2308
2309 if (this_real_name != NULL
2310 && FILENAME_CMP (full_path, this_real_name) == 0)
2311 {
2312 *result = dw2_instantiate_symtab (objfile, per_cu);
2313 return 1;
2314 }
2315 }
2316
2317 if (real_path != NULL)
2318 {
2319 const char *this_real_name = dw2_get_real_path (objfile,
2320 file_data, j);
2321
2322 if (this_real_name != NULL
2323 && FILENAME_CMP (real_path, this_real_name) == 0)
2324 {
2325 *result = dw2_instantiate_symtab (objfile, per_cu);
2326 return 1;
2327 }
2328 }
2329 }
2330 }
2331
2332 if (base_cu)
2333 {
2334 *result = dw2_instantiate_symtab (objfile, base_cu);
2335 return 1;
2336 }
2337
2338 return 0;
2339 }
2340
2341 static struct symtab *
2342 dw2_lookup_symbol (struct objfile *objfile, int block_index,
2343 const char *name, domain_enum domain)
2344 {
2345 /* We do all the work in the pre_expand_symtabs_matching hook
2346 instead. */
2347 return NULL;
2348 }
2349
2350 /* A helper function that expands all symtabs that hold an object
2351 named NAME. */
2352
2353 static void
2354 dw2_do_expand_symtabs_matching (struct objfile *objfile, const char *name)
2355 {
2356 dw2_setup (objfile);
2357
2358 /* index_table is NULL if OBJF_READNOW. */
2359 if (dwarf2_per_objfile->index_table)
2360 {
2361 offset_type *vec;
2362
2363 if (find_slot_in_mapped_hash (dwarf2_per_objfile->index_table,
2364 name, &vec))
2365 {
2366 offset_type i, len = MAYBE_SWAP (*vec);
2367 for (i = 0; i < len; ++i)
2368 {
2369 offset_type cu_index = MAYBE_SWAP (vec[i + 1]);
2370 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (cu_index);
2371
2372 dw2_instantiate_symtab (objfile, per_cu);
2373 }
2374 }
2375 }
2376 }
2377
2378 static void
2379 dw2_pre_expand_symtabs_matching (struct objfile *objfile,
2380 int kind, const char *name,
2381 domain_enum domain)
2382 {
2383 dw2_do_expand_symtabs_matching (objfile, name);
2384 }
2385
2386 static void
2387 dw2_print_stats (struct objfile *objfile)
2388 {
2389 int i, count;
2390
2391 dw2_setup (objfile);
2392 count = 0;
2393 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2394 + dwarf2_per_objfile->n_type_comp_units); ++i)
2395 {
2396 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2397
2398 if (!per_cu->v.quick->symtab)
2399 ++count;
2400 }
2401 printf_filtered (_(" Number of unread CUs: %d\n"), count);
2402 }
2403
2404 static void
2405 dw2_dump (struct objfile *objfile)
2406 {
2407 /* Nothing worth printing. */
2408 }
2409
2410 static void
2411 dw2_relocate (struct objfile *objfile, struct section_offsets *new_offsets,
2412 struct section_offsets *delta)
2413 {
2414 /* There's nothing to relocate here. */
2415 }
2416
2417 static void
2418 dw2_expand_symtabs_for_function (struct objfile *objfile,
2419 const char *func_name)
2420 {
2421 dw2_do_expand_symtabs_matching (objfile, func_name);
2422 }
2423
2424 static void
2425 dw2_expand_all_symtabs (struct objfile *objfile)
2426 {
2427 int i;
2428
2429 dw2_setup (objfile);
2430
2431 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2432 + dwarf2_per_objfile->n_type_comp_units); ++i)
2433 {
2434 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2435
2436 dw2_instantiate_symtab (objfile, per_cu);
2437 }
2438 }
2439
2440 static void
2441 dw2_expand_symtabs_with_filename (struct objfile *objfile,
2442 const char *filename)
2443 {
2444 int i;
2445
2446 dw2_setup (objfile);
2447
2448 /* We don't need to consider type units here.
2449 This is only called for examining code, e.g. expand_line_sal.
2450 There can be an order of magnitude (or more) more type units
2451 than comp units, and we avoid them if we can. */
2452
2453 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
2454 {
2455 int j;
2456 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2457 struct quick_file_names *file_data;
2458
2459 if (per_cu->v.quick->symtab)
2460 continue;
2461
2462 file_data = dw2_get_file_names (objfile, per_cu);
2463 if (file_data == NULL)
2464 continue;
2465
2466 for (j = 0; j < file_data->num_file_names; ++j)
2467 {
2468 const char *this_name = file_data->file_names[j];
2469 if (FILENAME_CMP (this_name, filename) == 0)
2470 {
2471 dw2_instantiate_symtab (objfile, per_cu);
2472 break;
2473 }
2474 }
2475 }
2476 }
2477
2478 static const char *
2479 dw2_find_symbol_file (struct objfile *objfile, const char *name)
2480 {
2481 struct dwarf2_per_cu_data *per_cu;
2482 offset_type *vec;
2483 struct quick_file_names *file_data;
2484
2485 dw2_setup (objfile);
2486
2487 /* index_table is NULL if OBJF_READNOW. */
2488 if (!dwarf2_per_objfile->index_table)
2489 return NULL;
2490
2491 if (!find_slot_in_mapped_hash (dwarf2_per_objfile->index_table,
2492 name, &vec))
2493 return NULL;
2494
2495 /* Note that this just looks at the very first one named NAME -- but
2496 actually we are looking for a function. find_main_filename
2497 should be rewritten so that it doesn't require a custom hook. It
2498 could just use the ordinary symbol tables. */
2499 /* vec[0] is the length, which must always be >0. */
2500 per_cu = dw2_get_cu (MAYBE_SWAP (vec[1]));
2501
2502 file_data = dw2_get_file_names (objfile, per_cu);
2503 if (file_data == NULL)
2504 return NULL;
2505
2506 return file_data->file_names[file_data->num_file_names - 1];
2507 }
2508
2509 static void
2510 dw2_map_matching_symbols (const char * name, domain_enum namespace,
2511 struct objfile *objfile, int global,
2512 int (*callback) (struct block *,
2513 struct symbol *, void *),
2514 void *data, symbol_compare_ftype *match,
2515 symbol_compare_ftype *ordered_compare)
2516 {
2517 /* Currently unimplemented; used for Ada. The function can be called if the
2518 current language is Ada for a non-Ada objfile using GNU index. As Ada
2519 does not look for non-Ada symbols this function should just return. */
2520 }
2521
2522 static void
2523 dw2_expand_symtabs_matching (struct objfile *objfile,
2524 int (*file_matcher) (const char *, void *),
2525 int (*name_matcher) (const char *, void *),
2526 domain_enum kind,
2527 void *data)
2528 {
2529 int i;
2530 offset_type iter;
2531 struct mapped_index *index;
2532
2533 dw2_setup (objfile);
2534
2535 /* index_table is NULL if OBJF_READNOW. */
2536 if (!dwarf2_per_objfile->index_table)
2537 return;
2538 index = dwarf2_per_objfile->index_table;
2539
2540 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2541 + dwarf2_per_objfile->n_type_comp_units); ++i)
2542 {
2543 int j;
2544 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2545 struct quick_file_names *file_data;
2546
2547 per_cu->v.quick->mark = 0;
2548 if (per_cu->v.quick->symtab)
2549 continue;
2550
2551 file_data = dw2_get_file_names (objfile, per_cu);
2552 if (file_data == NULL)
2553 continue;
2554
2555 for (j = 0; j < file_data->num_file_names; ++j)
2556 {
2557 if (file_matcher (file_data->file_names[j], data))
2558 {
2559 per_cu->v.quick->mark = 1;
2560 break;
2561 }
2562 }
2563 }
2564
2565 for (iter = 0; iter < index->symbol_table_slots; ++iter)
2566 {
2567 offset_type idx = 2 * iter;
2568 const char *name;
2569 offset_type *vec, vec_len, vec_idx;
2570
2571 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
2572 continue;
2573
2574 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
2575
2576 if (! (*name_matcher) (name, data))
2577 continue;
2578
2579 /* The name was matched, now expand corresponding CUs that were
2580 marked. */
2581 vec = (offset_type *) (index->constant_pool
2582 + MAYBE_SWAP (index->symbol_table[idx + 1]));
2583 vec_len = MAYBE_SWAP (vec[0]);
2584 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
2585 {
2586 struct dwarf2_per_cu_data *per_cu;
2587
2588 per_cu = dw2_get_cu (MAYBE_SWAP (vec[vec_idx + 1]));
2589 if (per_cu->v.quick->mark)
2590 dw2_instantiate_symtab (objfile, per_cu);
2591 }
2592 }
2593 }
2594
2595 static struct symtab *
2596 dw2_find_pc_sect_symtab (struct objfile *objfile,
2597 struct minimal_symbol *msymbol,
2598 CORE_ADDR pc,
2599 struct obj_section *section,
2600 int warn_if_readin)
2601 {
2602 struct dwarf2_per_cu_data *data;
2603
2604 dw2_setup (objfile);
2605
2606 if (!objfile->psymtabs_addrmap)
2607 return NULL;
2608
2609 data = addrmap_find (objfile->psymtabs_addrmap, pc);
2610 if (!data)
2611 return NULL;
2612
2613 if (warn_if_readin && data->v.quick->symtab)
2614 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
2615 paddress (get_objfile_arch (objfile), pc));
2616
2617 return dw2_instantiate_symtab (objfile, data);
2618 }
2619
2620 static void
2621 dw2_map_symbol_names (struct objfile *objfile,
2622 void (*fun) (const char *, void *),
2623 void *data)
2624 {
2625 offset_type iter;
2626 struct mapped_index *index;
2627
2628 dw2_setup (objfile);
2629
2630 /* index_table is NULL if OBJF_READNOW. */
2631 if (!dwarf2_per_objfile->index_table)
2632 return;
2633 index = dwarf2_per_objfile->index_table;
2634
2635 for (iter = 0; iter < index->symbol_table_slots; ++iter)
2636 {
2637 offset_type idx = 2 * iter;
2638 const char *name;
2639 offset_type *vec, vec_len, vec_idx;
2640
2641 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
2642 continue;
2643
2644 name = (index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]));
2645
2646 (*fun) (name, data);
2647 }
2648 }
2649
2650 static void
2651 dw2_map_symbol_filenames (struct objfile *objfile,
2652 void (*fun) (const char *, const char *, void *),
2653 void *data)
2654 {
2655 int i;
2656
2657 dw2_setup (objfile);
2658
2659 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2660 + dwarf2_per_objfile->n_type_comp_units); ++i)
2661 {
2662 int j;
2663 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2664 struct quick_file_names *file_data;
2665
2666 if (per_cu->v.quick->symtab)
2667 continue;
2668
2669 file_data = dw2_get_file_names (objfile, per_cu);
2670 if (file_data == NULL)
2671 continue;
2672
2673 for (j = 0; j < file_data->num_file_names; ++j)
2674 {
2675 const char *this_real_name = dw2_get_real_path (objfile, file_data,
2676 j);
2677 (*fun) (file_data->file_names[j], this_real_name, data);
2678 }
2679 }
2680 }
2681
2682 static int
2683 dw2_has_symbols (struct objfile *objfile)
2684 {
2685 return 1;
2686 }
2687
2688 const struct quick_symbol_functions dwarf2_gdb_index_functions =
2689 {
2690 dw2_has_symbols,
2691 dw2_find_last_source_symtab,
2692 dw2_forget_cached_source_info,
2693 dw2_lookup_symtab,
2694 dw2_lookup_symbol,
2695 dw2_pre_expand_symtabs_matching,
2696 dw2_print_stats,
2697 dw2_dump,
2698 dw2_relocate,
2699 dw2_expand_symtabs_for_function,
2700 dw2_expand_all_symtabs,
2701 dw2_expand_symtabs_with_filename,
2702 dw2_find_symbol_file,
2703 dw2_map_matching_symbols,
2704 dw2_expand_symtabs_matching,
2705 dw2_find_pc_sect_symtab,
2706 dw2_map_symbol_names,
2707 dw2_map_symbol_filenames
2708 };
2709
2710 /* Initialize for reading DWARF for this objfile. Return 0 if this
2711 file will use psymtabs, or 1 if using the GNU index. */
2712
2713 int
2714 dwarf2_initialize_objfile (struct objfile *objfile)
2715 {
2716 /* If we're about to read full symbols, don't bother with the
2717 indices. In this case we also don't care if some other debug
2718 format is making psymtabs, because they are all about to be
2719 expanded anyway. */
2720 if ((objfile->flags & OBJF_READNOW))
2721 {
2722 int i;
2723
2724 dwarf2_per_objfile->using_index = 1;
2725 create_all_comp_units (objfile);
2726 create_debug_types_hash_table (objfile);
2727 dwarf2_per_objfile->quick_file_names_table =
2728 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
2729
2730 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2731 + dwarf2_per_objfile->n_type_comp_units); ++i)
2732 {
2733 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2734
2735 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2736 struct dwarf2_per_cu_quick_data);
2737 }
2738
2739 /* Return 1 so that gdb sees the "quick" functions. However,
2740 these functions will be no-ops because we will have expanded
2741 all symtabs. */
2742 return 1;
2743 }
2744
2745 if (dwarf2_read_index (objfile))
2746 return 1;
2747
2748 dwarf2_build_psymtabs (objfile);
2749 return 0;
2750 }
2751
2752 \f
2753
2754 /* Build a partial symbol table. */
2755
2756 void
2757 dwarf2_build_psymtabs (struct objfile *objfile)
2758 {
2759 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
2760 {
2761 init_psymbol_list (objfile, 1024);
2762 }
2763
2764 dwarf2_build_psymtabs_hard (objfile);
2765 }
2766
2767 /* Return TRUE if OFFSET is within CU_HEADER. */
2768
2769 static inline int
2770 offset_in_cu_p (const struct comp_unit_head *cu_header, unsigned int offset)
2771 {
2772 unsigned int bottom = cu_header->offset;
2773 unsigned int top = (cu_header->offset
2774 + cu_header->length
2775 + cu_header->initial_length_size);
2776
2777 return (offset >= bottom && offset < top);
2778 }
2779
2780 /* Read in the comp unit header information from the debug_info at info_ptr.
2781 NOTE: This leaves members offset, first_die_offset to be filled in
2782 by the caller. */
2783
2784 static gdb_byte *
2785 read_comp_unit_head (struct comp_unit_head *cu_header,
2786 gdb_byte *info_ptr, bfd *abfd)
2787 {
2788 int signed_addr;
2789 unsigned int bytes_read;
2790
2791 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
2792 cu_header->initial_length_size = bytes_read;
2793 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
2794 info_ptr += bytes_read;
2795 cu_header->version = read_2_bytes (abfd, info_ptr);
2796 info_ptr += 2;
2797 cu_header->abbrev_offset = read_offset (abfd, info_ptr, cu_header,
2798 &bytes_read);
2799 info_ptr += bytes_read;
2800 cu_header->addr_size = read_1_byte (abfd, info_ptr);
2801 info_ptr += 1;
2802 signed_addr = bfd_get_sign_extend_vma (abfd);
2803 if (signed_addr < 0)
2804 internal_error (__FILE__, __LINE__,
2805 _("read_comp_unit_head: dwarf from non elf file"));
2806 cu_header->signed_addr_p = signed_addr;
2807
2808 return info_ptr;
2809 }
2810
2811 static gdb_byte *
2812 partial_read_comp_unit_head (struct comp_unit_head *header, gdb_byte *info_ptr,
2813 gdb_byte *buffer, unsigned int buffer_size,
2814 bfd *abfd)
2815 {
2816 gdb_byte *beg_of_comp_unit = info_ptr;
2817
2818 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
2819
2820 if (header->version != 2 && header->version != 3 && header->version != 4)
2821 error (_("Dwarf Error: wrong version in compilation unit header "
2822 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
2823 bfd_get_filename (abfd));
2824
2825 if (header->abbrev_offset >= dwarf2_per_objfile->abbrev.size)
2826 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
2827 "(offset 0x%lx + 6) [in module %s]"),
2828 (long) header->abbrev_offset,
2829 (long) (beg_of_comp_unit - buffer),
2830 bfd_get_filename (abfd));
2831
2832 if (beg_of_comp_unit + header->length + header->initial_length_size
2833 > buffer + buffer_size)
2834 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
2835 "(offset 0x%lx + 0) [in module %s]"),
2836 (long) header->length,
2837 (long) (beg_of_comp_unit - buffer),
2838 bfd_get_filename (abfd));
2839
2840 return info_ptr;
2841 }
2842
2843 /* Read in the types comp unit header information from .debug_types entry at
2844 types_ptr. The result is a pointer to one past the end of the header. */
2845
2846 static gdb_byte *
2847 read_type_comp_unit_head (struct comp_unit_head *cu_header,
2848 ULONGEST *signature,
2849 gdb_byte *types_ptr, bfd *abfd)
2850 {
2851 gdb_byte *initial_types_ptr = types_ptr;
2852
2853 dwarf2_read_section (dwarf2_per_objfile->objfile,
2854 &dwarf2_per_objfile->types);
2855 cu_header->offset = types_ptr - dwarf2_per_objfile->types.buffer;
2856
2857 types_ptr = read_comp_unit_head (cu_header, types_ptr, abfd);
2858
2859 *signature = read_8_bytes (abfd, types_ptr);
2860 types_ptr += 8;
2861 types_ptr += cu_header->offset_size;
2862 cu_header->first_die_offset = types_ptr - initial_types_ptr;
2863
2864 return types_ptr;
2865 }
2866
2867 /* Allocate a new partial symtab for file named NAME and mark this new
2868 partial symtab as being an include of PST. */
2869
2870 static void
2871 dwarf2_create_include_psymtab (char *name, struct partial_symtab *pst,
2872 struct objfile *objfile)
2873 {
2874 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
2875
2876 subpst->section_offsets = pst->section_offsets;
2877 subpst->textlow = 0;
2878 subpst->texthigh = 0;
2879
2880 subpst->dependencies = (struct partial_symtab **)
2881 obstack_alloc (&objfile->objfile_obstack,
2882 sizeof (struct partial_symtab *));
2883 subpst->dependencies[0] = pst;
2884 subpst->number_of_dependencies = 1;
2885
2886 subpst->globals_offset = 0;
2887 subpst->n_global_syms = 0;
2888 subpst->statics_offset = 0;
2889 subpst->n_static_syms = 0;
2890 subpst->symtab = NULL;
2891 subpst->read_symtab = pst->read_symtab;
2892 subpst->readin = 0;
2893
2894 /* No private part is necessary for include psymtabs. This property
2895 can be used to differentiate between such include psymtabs and
2896 the regular ones. */
2897 subpst->read_symtab_private = NULL;
2898 }
2899
2900 /* Read the Line Number Program data and extract the list of files
2901 included by the source file represented by PST. Build an include
2902 partial symtab for each of these included files. */
2903
2904 static void
2905 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
2906 struct die_info *die,
2907 struct partial_symtab *pst)
2908 {
2909 struct objfile *objfile = cu->objfile;
2910 bfd *abfd = objfile->obfd;
2911 struct line_header *lh = NULL;
2912 struct attribute *attr;
2913
2914 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
2915 if (attr)
2916 {
2917 unsigned int line_offset = DW_UNSND (attr);
2918
2919 lh = dwarf_decode_line_header (line_offset, abfd, cu);
2920 }
2921 if (lh == NULL)
2922 return; /* No linetable, so no includes. */
2923
2924 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
2925 dwarf_decode_lines (lh, pst->dirname, abfd, cu, pst);
2926
2927 free_line_header (lh);
2928 }
2929
2930 static hashval_t
2931 hash_type_signature (const void *item)
2932 {
2933 const struct signatured_type *type_sig = item;
2934
2935 /* This drops the top 32 bits of the signature, but is ok for a hash. */
2936 return type_sig->signature;
2937 }
2938
2939 static int
2940 eq_type_signature (const void *item_lhs, const void *item_rhs)
2941 {
2942 const struct signatured_type *lhs = item_lhs;
2943 const struct signatured_type *rhs = item_rhs;
2944
2945 return lhs->signature == rhs->signature;
2946 }
2947
2948 /* Allocate a hash table for signatured types. */
2949
2950 static htab_t
2951 allocate_signatured_type_table (struct objfile *objfile)
2952 {
2953 return htab_create_alloc_ex (41,
2954 hash_type_signature,
2955 eq_type_signature,
2956 NULL,
2957 &objfile->objfile_obstack,
2958 hashtab_obstack_allocate,
2959 dummy_obstack_deallocate);
2960 }
2961
2962 /* A helper function to add a signatured type CU to a list. */
2963
2964 static int
2965 add_signatured_type_cu_to_list (void **slot, void *datum)
2966 {
2967 struct signatured_type *sigt = *slot;
2968 struct dwarf2_per_cu_data ***datap = datum;
2969
2970 **datap = &sigt->per_cu;
2971 ++*datap;
2972
2973 return 1;
2974 }
2975
2976 /* Create the hash table of all entries in the .debug_types section.
2977 The result is zero if there is an error (e.g. missing .debug_types section),
2978 otherwise non-zero. */
2979
2980 static int
2981 create_debug_types_hash_table (struct objfile *objfile)
2982 {
2983 gdb_byte *info_ptr;
2984 htab_t types_htab;
2985 struct dwarf2_per_cu_data **iter;
2986
2987 dwarf2_read_section (objfile, &dwarf2_per_objfile->types);
2988 info_ptr = dwarf2_per_objfile->types.buffer;
2989
2990 if (info_ptr == NULL)
2991 {
2992 dwarf2_per_objfile->signatured_types = NULL;
2993 return 0;
2994 }
2995
2996 types_htab = allocate_signatured_type_table (objfile);
2997
2998 if (dwarf2_die_debug)
2999 fprintf_unfiltered (gdb_stdlog, "Signatured types:\n");
3000
3001 while (info_ptr < dwarf2_per_objfile->types.buffer
3002 + dwarf2_per_objfile->types.size)
3003 {
3004 unsigned int offset;
3005 unsigned int offset_size;
3006 unsigned int type_offset;
3007 unsigned int length, initial_length_size;
3008 unsigned short version;
3009 ULONGEST signature;
3010 struct signatured_type *type_sig;
3011 void **slot;
3012 gdb_byte *ptr = info_ptr;
3013
3014 offset = ptr - dwarf2_per_objfile->types.buffer;
3015
3016 /* We need to read the type's signature in order to build the hash
3017 table, but we don't need to read anything else just yet. */
3018
3019 /* Sanity check to ensure entire cu is present. */
3020 length = read_initial_length (objfile->obfd, ptr, &initial_length_size);
3021 if (ptr + length + initial_length_size
3022 > dwarf2_per_objfile->types.buffer + dwarf2_per_objfile->types.size)
3023 {
3024 complaint (&symfile_complaints,
3025 _("debug type entry runs off end "
3026 "of `.debug_types' section, ignored"));
3027 break;
3028 }
3029
3030 offset_size = initial_length_size == 4 ? 4 : 8;
3031 ptr += initial_length_size;
3032 version = bfd_get_16 (objfile->obfd, ptr);
3033 ptr += 2;
3034 ptr += offset_size; /* abbrev offset */
3035 ptr += 1; /* address size */
3036 signature = bfd_get_64 (objfile->obfd, ptr);
3037 ptr += 8;
3038 type_offset = read_offset_1 (objfile->obfd, ptr, offset_size);
3039
3040 type_sig = obstack_alloc (&objfile->objfile_obstack, sizeof (*type_sig));
3041 memset (type_sig, 0, sizeof (*type_sig));
3042 type_sig->signature = signature;
3043 type_sig->offset = offset;
3044 type_sig->type_offset = type_offset;
3045 type_sig->per_cu.objfile = objfile;
3046 type_sig->per_cu.from_debug_types = 1;
3047
3048 slot = htab_find_slot (types_htab, type_sig, INSERT);
3049 gdb_assert (slot != NULL);
3050 *slot = type_sig;
3051
3052 if (dwarf2_die_debug)
3053 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature 0x%s\n",
3054 offset, phex (signature, sizeof (signature)));
3055
3056 info_ptr = info_ptr + initial_length_size + length;
3057 }
3058
3059 dwarf2_per_objfile->signatured_types = types_htab;
3060
3061 dwarf2_per_objfile->n_type_comp_units = htab_elements (types_htab);
3062 dwarf2_per_objfile->type_comp_units
3063 = obstack_alloc (&objfile->objfile_obstack,
3064 dwarf2_per_objfile->n_type_comp_units
3065 * sizeof (struct dwarf2_per_cu_data *));
3066 iter = &dwarf2_per_objfile->type_comp_units[0];
3067 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_list, &iter);
3068 gdb_assert (iter - &dwarf2_per_objfile->type_comp_units[0]
3069 == dwarf2_per_objfile->n_type_comp_units);
3070
3071 return 1;
3072 }
3073
3074 /* Lookup a signature based type.
3075 Returns NULL if SIG is not present in the table. */
3076
3077 static struct signatured_type *
3078 lookup_signatured_type (struct objfile *objfile, ULONGEST sig)
3079 {
3080 struct signatured_type find_entry, *entry;
3081
3082 if (dwarf2_per_objfile->signatured_types == NULL)
3083 {
3084 complaint (&symfile_complaints,
3085 _("missing `.debug_types' section for DW_FORM_sig8 die"));
3086 return 0;
3087 }
3088
3089 find_entry.signature = sig;
3090 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
3091 return entry;
3092 }
3093
3094 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
3095
3096 static void
3097 init_cu_die_reader (struct die_reader_specs *reader,
3098 struct dwarf2_cu *cu)
3099 {
3100 reader->abfd = cu->objfile->obfd;
3101 reader->cu = cu;
3102 if (cu->per_cu->from_debug_types)
3103 {
3104 gdb_assert (dwarf2_per_objfile->types.readin);
3105 reader->buffer = dwarf2_per_objfile->types.buffer;
3106 }
3107 else
3108 {
3109 gdb_assert (dwarf2_per_objfile->info.readin);
3110 reader->buffer = dwarf2_per_objfile->info.buffer;
3111 }
3112 }
3113
3114 /* Find the base address of the compilation unit for range lists and
3115 location lists. It will normally be specified by DW_AT_low_pc.
3116 In DWARF-3 draft 4, the base address could be overridden by
3117 DW_AT_entry_pc. It's been removed, but GCC still uses this for
3118 compilation units with discontinuous ranges. */
3119
3120 static void
3121 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
3122 {
3123 struct attribute *attr;
3124
3125 cu->base_known = 0;
3126 cu->base_address = 0;
3127
3128 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
3129 if (attr)
3130 {
3131 cu->base_address = DW_ADDR (attr);
3132 cu->base_known = 1;
3133 }
3134 else
3135 {
3136 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
3137 if (attr)
3138 {
3139 cu->base_address = DW_ADDR (attr);
3140 cu->base_known = 1;
3141 }
3142 }
3143 }
3144
3145 /* Subroutine of process_type_comp_unit and dwarf2_build_psymtabs_hard
3146 to combine the common parts.
3147 Process a compilation unit for a psymtab.
3148 BUFFER is a pointer to the beginning of the dwarf section buffer,
3149 either .debug_info or debug_types.
3150 INFO_PTR is a pointer to the start of the CU.
3151 Returns a pointer to the next CU. */
3152
3153 static gdb_byte *
3154 process_psymtab_comp_unit (struct objfile *objfile,
3155 struct dwarf2_per_cu_data *this_cu,
3156 gdb_byte *buffer, gdb_byte *info_ptr,
3157 unsigned int buffer_size)
3158 {
3159 bfd *abfd = objfile->obfd;
3160 gdb_byte *beg_of_comp_unit = info_ptr;
3161 struct die_info *comp_unit_die;
3162 struct partial_symtab *pst;
3163 CORE_ADDR baseaddr;
3164 struct cleanup *back_to_inner;
3165 struct dwarf2_cu cu;
3166 int has_children, has_pc_info;
3167 struct attribute *attr;
3168 CORE_ADDR best_lowpc = 0, best_highpc = 0;
3169 struct die_reader_specs reader_specs;
3170
3171 init_one_comp_unit (&cu, objfile);
3172 back_to_inner = make_cleanup (free_stack_comp_unit, &cu);
3173
3174 info_ptr = partial_read_comp_unit_head (&cu.header, info_ptr,
3175 buffer, buffer_size,
3176 abfd);
3177
3178 /* Complete the cu_header. */
3179 cu.header.offset = beg_of_comp_unit - buffer;
3180 cu.header.first_die_offset = info_ptr - beg_of_comp_unit;
3181
3182 cu.list_in_scope = &file_symbols;
3183
3184 /* If this compilation unit was already read in, free the
3185 cached copy in order to read it in again. This is
3186 necessary because we skipped some symbols when we first
3187 read in the compilation unit (see load_partial_dies).
3188 This problem could be avoided, but the benefit is
3189 unclear. */
3190 if (this_cu->cu != NULL)
3191 free_one_cached_comp_unit (this_cu->cu);
3192
3193 /* Note that this is a pointer to our stack frame, being
3194 added to a global data structure. It will be cleaned up
3195 in free_stack_comp_unit when we finish with this
3196 compilation unit. */
3197 this_cu->cu = &cu;
3198 cu.per_cu = this_cu;
3199
3200 /* Read the abbrevs for this compilation unit into a table. */
3201 dwarf2_read_abbrevs (abfd, &cu);
3202 make_cleanup (dwarf2_free_abbrev_table, &cu);
3203
3204 /* Read the compilation unit die. */
3205 if (this_cu->from_debug_types)
3206 info_ptr += 8 /*signature*/ + cu.header.offset_size;
3207 init_cu_die_reader (&reader_specs, &cu);
3208 info_ptr = read_full_die (&reader_specs, &comp_unit_die, info_ptr,
3209 &has_children);
3210
3211 if (this_cu->from_debug_types)
3212 {
3213 /* offset,length haven't been set yet for type units. */
3214 this_cu->offset = cu.header.offset;
3215 this_cu->length = cu.header.length + cu.header.initial_length_size;
3216 }
3217 else if (comp_unit_die->tag == DW_TAG_partial_unit)
3218 {
3219 info_ptr = (beg_of_comp_unit + cu.header.length
3220 + cu.header.initial_length_size);
3221 do_cleanups (back_to_inner);
3222 return info_ptr;
3223 }
3224
3225 prepare_one_comp_unit (&cu, comp_unit_die);
3226
3227 /* Allocate a new partial symbol table structure. */
3228 attr = dwarf2_attr (comp_unit_die, DW_AT_name, &cu);
3229 pst = start_psymtab_common (objfile, objfile->section_offsets,
3230 (attr != NULL) ? DW_STRING (attr) : "",
3231 /* TEXTLOW and TEXTHIGH are set below. */
3232 0,
3233 objfile->global_psymbols.next,
3234 objfile->static_psymbols.next);
3235
3236 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, &cu);
3237 if (attr != NULL)
3238 pst->dirname = DW_STRING (attr);
3239
3240 pst->read_symtab_private = this_cu;
3241
3242 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3243
3244 /* Store the function that reads in the rest of the symbol table. */
3245 pst->read_symtab = dwarf2_psymtab_to_symtab;
3246
3247 this_cu->v.psymtab = pst;
3248
3249 dwarf2_find_base_address (comp_unit_die, &cu);
3250
3251 /* Possibly set the default values of LOWPC and HIGHPC from
3252 `DW_AT_ranges'. */
3253 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
3254 &best_highpc, &cu, pst);
3255 if (has_pc_info == 1 && best_lowpc < best_highpc)
3256 /* Store the contiguous range if it is not empty; it can be empty for
3257 CUs with no code. */
3258 addrmap_set_empty (objfile->psymtabs_addrmap,
3259 best_lowpc + baseaddr,
3260 best_highpc + baseaddr - 1, pst);
3261
3262 /* Check if comp unit has_children.
3263 If so, read the rest of the partial symbols from this comp unit.
3264 If not, there's no more debug_info for this comp unit. */
3265 if (has_children)
3266 {
3267 struct partial_die_info *first_die;
3268 CORE_ADDR lowpc, highpc;
3269
3270 lowpc = ((CORE_ADDR) -1);
3271 highpc = ((CORE_ADDR) 0);
3272
3273 first_die = load_partial_dies (abfd, buffer, info_ptr, 1, &cu);
3274
3275 scan_partial_symbols (first_die, &lowpc, &highpc,
3276 ! has_pc_info, &cu);
3277
3278 /* If we didn't find a lowpc, set it to highpc to avoid
3279 complaints from `maint check'. */
3280 if (lowpc == ((CORE_ADDR) -1))
3281 lowpc = highpc;
3282
3283 /* If the compilation unit didn't have an explicit address range,
3284 then use the information extracted from its child dies. */
3285 if (! has_pc_info)
3286 {
3287 best_lowpc = lowpc;
3288 best_highpc = highpc;
3289 }
3290 }
3291 pst->textlow = best_lowpc + baseaddr;
3292 pst->texthigh = best_highpc + baseaddr;
3293
3294 pst->n_global_syms = objfile->global_psymbols.next -
3295 (objfile->global_psymbols.list + pst->globals_offset);
3296 pst->n_static_syms = objfile->static_psymbols.next -
3297 (objfile->static_psymbols.list + pst->statics_offset);
3298 sort_pst_symbols (pst);
3299
3300 info_ptr = (beg_of_comp_unit + cu.header.length
3301 + cu.header.initial_length_size);
3302
3303 if (this_cu->from_debug_types)
3304 {
3305 /* It's not clear we want to do anything with stmt lists here.
3306 Waiting to see what gcc ultimately does. */
3307 }
3308 else
3309 {
3310 /* Get the list of files included in the current compilation unit,
3311 and build a psymtab for each of them. */
3312 dwarf2_build_include_psymtabs (&cu, comp_unit_die, pst);
3313 }
3314
3315 do_cleanups (back_to_inner);
3316
3317 return info_ptr;
3318 }
3319
3320 /* Traversal function for htab_traverse_noresize.
3321 Process one .debug_types comp-unit. */
3322
3323 static int
3324 process_type_comp_unit (void **slot, void *info)
3325 {
3326 struct signatured_type *entry = (struct signatured_type *) *slot;
3327 struct objfile *objfile = (struct objfile *) info;
3328 struct dwarf2_per_cu_data *this_cu;
3329
3330 this_cu = &entry->per_cu;
3331
3332 gdb_assert (dwarf2_per_objfile->types.readin);
3333 process_psymtab_comp_unit (objfile, this_cu,
3334 dwarf2_per_objfile->types.buffer,
3335 dwarf2_per_objfile->types.buffer + entry->offset,
3336 dwarf2_per_objfile->types.size);
3337
3338 return 1;
3339 }
3340
3341 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
3342 Build partial symbol tables for the .debug_types comp-units. */
3343
3344 static void
3345 build_type_psymtabs (struct objfile *objfile)
3346 {
3347 if (! create_debug_types_hash_table (objfile))
3348 return;
3349
3350 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
3351 process_type_comp_unit, objfile);
3352 }
3353
3354 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
3355
3356 static void
3357 psymtabs_addrmap_cleanup (void *o)
3358 {
3359 struct objfile *objfile = o;
3360
3361 objfile->psymtabs_addrmap = NULL;
3362 }
3363
3364 /* Build the partial symbol table by doing a quick pass through the
3365 .debug_info and .debug_abbrev sections. */
3366
3367 static void
3368 dwarf2_build_psymtabs_hard (struct objfile *objfile)
3369 {
3370 gdb_byte *info_ptr;
3371 struct cleanup *back_to, *addrmap_cleanup;
3372 struct obstack temp_obstack;
3373
3374 dwarf2_per_objfile->reading_partial_symbols = 1;
3375
3376 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
3377 info_ptr = dwarf2_per_objfile->info.buffer;
3378
3379 /* Any cached compilation units will be linked by the per-objfile
3380 read_in_chain. Make sure to free them when we're done. */
3381 back_to = make_cleanup (free_cached_comp_units, NULL);
3382
3383 build_type_psymtabs (objfile);
3384
3385 create_all_comp_units (objfile);
3386
3387 /* Create a temporary address map on a temporary obstack. We later
3388 copy this to the final obstack. */
3389 obstack_init (&temp_obstack);
3390 make_cleanup_obstack_free (&temp_obstack);
3391 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
3392 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
3393
3394 /* Since the objects we're extracting from .debug_info vary in
3395 length, only the individual functions to extract them (like
3396 read_comp_unit_head and load_partial_die) can really know whether
3397 the buffer is large enough to hold another complete object.
3398
3399 At the moment, they don't actually check that. If .debug_info
3400 holds just one extra byte after the last compilation unit's dies,
3401 then read_comp_unit_head will happily read off the end of the
3402 buffer. read_partial_die is similarly casual. Those functions
3403 should be fixed.
3404
3405 For this loop condition, simply checking whether there's any data
3406 left at all should be sufficient. */
3407
3408 while (info_ptr < (dwarf2_per_objfile->info.buffer
3409 + dwarf2_per_objfile->info.size))
3410 {
3411 struct dwarf2_per_cu_data *this_cu;
3412
3413 this_cu = dwarf2_find_comp_unit (info_ptr
3414 - dwarf2_per_objfile->info.buffer,
3415 objfile);
3416
3417 info_ptr = process_psymtab_comp_unit (objfile, this_cu,
3418 dwarf2_per_objfile->info.buffer,
3419 info_ptr,
3420 dwarf2_per_objfile->info.size);
3421 }
3422
3423 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
3424 &objfile->objfile_obstack);
3425 discard_cleanups (addrmap_cleanup);
3426
3427 do_cleanups (back_to);
3428 }
3429
3430 /* Load the partial DIEs for a secondary CU into memory. */
3431
3432 static void
3433 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu,
3434 struct objfile *objfile)
3435 {
3436 bfd *abfd = objfile->obfd;
3437 gdb_byte *info_ptr, *beg_of_comp_unit;
3438 struct die_info *comp_unit_die;
3439 struct dwarf2_cu *cu;
3440 struct cleanup *free_abbrevs_cleanup, *free_cu_cleanup = NULL;
3441 int has_children;
3442 struct die_reader_specs reader_specs;
3443 int read_cu = 0;
3444
3445 gdb_assert (! this_cu->from_debug_types);
3446
3447 gdb_assert (dwarf2_per_objfile->info.readin);
3448 info_ptr = dwarf2_per_objfile->info.buffer + this_cu->offset;
3449 beg_of_comp_unit = info_ptr;
3450
3451 if (this_cu->cu == NULL)
3452 {
3453 cu = xmalloc (sizeof (*cu));
3454 init_one_comp_unit (cu, objfile);
3455
3456 read_cu = 1;
3457
3458 /* If an error occurs while loading, release our storage. */
3459 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
3460
3461 info_ptr = partial_read_comp_unit_head (&cu->header, info_ptr,
3462 dwarf2_per_objfile->info.buffer,
3463 dwarf2_per_objfile->info.size,
3464 abfd);
3465
3466 /* Complete the cu_header. */
3467 cu->header.offset = this_cu->offset;
3468 cu->header.first_die_offset = info_ptr - beg_of_comp_unit;
3469
3470 /* Link this compilation unit into the compilation unit tree. */
3471 this_cu->cu = cu;
3472 cu->per_cu = this_cu;
3473
3474 /* Link this CU into read_in_chain. */
3475 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
3476 dwarf2_per_objfile->read_in_chain = this_cu;
3477 }
3478 else
3479 {
3480 cu = this_cu->cu;
3481 info_ptr += cu->header.first_die_offset;
3482 }
3483
3484 /* Read the abbrevs for this compilation unit into a table. */
3485 gdb_assert (cu->dwarf2_abbrevs == NULL);
3486 dwarf2_read_abbrevs (abfd, cu);
3487 free_abbrevs_cleanup = make_cleanup (dwarf2_free_abbrev_table, cu);
3488
3489 /* Read the compilation unit die. */
3490 init_cu_die_reader (&reader_specs, cu);
3491 info_ptr = read_full_die (&reader_specs, &comp_unit_die, info_ptr,
3492 &has_children);
3493
3494 prepare_one_comp_unit (cu, comp_unit_die);
3495
3496 /* Check if comp unit has_children.
3497 If so, read the rest of the partial symbols from this comp unit.
3498 If not, there's no more debug_info for this comp unit. */
3499 if (has_children)
3500 load_partial_dies (abfd, dwarf2_per_objfile->info.buffer, info_ptr, 0, cu);
3501
3502 do_cleanups (free_abbrevs_cleanup);
3503
3504 if (read_cu)
3505 {
3506 /* We've successfully allocated this compilation unit. Let our
3507 caller clean it up when finished with it. */
3508 discard_cleanups (free_cu_cleanup);
3509 }
3510 }
3511
3512 /* Create a list of all compilation units in OBJFILE. We do this only
3513 if an inter-comp-unit reference is found; presumably if there is one,
3514 there will be many, and one will occur early in the .debug_info section.
3515 So there's no point in building this list incrementally. */
3516
3517 static void
3518 create_all_comp_units (struct objfile *objfile)
3519 {
3520 int n_allocated;
3521 int n_comp_units;
3522 struct dwarf2_per_cu_data **all_comp_units;
3523 gdb_byte *info_ptr;
3524
3525 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
3526 info_ptr = dwarf2_per_objfile->info.buffer;
3527
3528 n_comp_units = 0;
3529 n_allocated = 10;
3530 all_comp_units = xmalloc (n_allocated
3531 * sizeof (struct dwarf2_per_cu_data *));
3532
3533 while (info_ptr < dwarf2_per_objfile->info.buffer
3534 + dwarf2_per_objfile->info.size)
3535 {
3536 unsigned int length, initial_length_size;
3537 struct dwarf2_per_cu_data *this_cu;
3538 unsigned int offset;
3539
3540 offset = info_ptr - dwarf2_per_objfile->info.buffer;
3541
3542 /* Read just enough information to find out where the next
3543 compilation unit is. */
3544 length = read_initial_length (objfile->obfd, info_ptr,
3545 &initial_length_size);
3546
3547 /* Save the compilation unit for later lookup. */
3548 this_cu = obstack_alloc (&objfile->objfile_obstack,
3549 sizeof (struct dwarf2_per_cu_data));
3550 memset (this_cu, 0, sizeof (*this_cu));
3551 this_cu->offset = offset;
3552 this_cu->length = length + initial_length_size;
3553 this_cu->objfile = objfile;
3554
3555 if (n_comp_units == n_allocated)
3556 {
3557 n_allocated *= 2;
3558 all_comp_units = xrealloc (all_comp_units,
3559 n_allocated
3560 * sizeof (struct dwarf2_per_cu_data *));
3561 }
3562 all_comp_units[n_comp_units++] = this_cu;
3563
3564 info_ptr = info_ptr + this_cu->length;
3565 }
3566
3567 dwarf2_per_objfile->all_comp_units
3568 = obstack_alloc (&objfile->objfile_obstack,
3569 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
3570 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
3571 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
3572 xfree (all_comp_units);
3573 dwarf2_per_objfile->n_comp_units = n_comp_units;
3574 }
3575
3576 /* Process all loaded DIEs for compilation unit CU, starting at
3577 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
3578 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
3579 DW_AT_ranges). If NEED_PC is set, then this function will set
3580 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
3581 and record the covered ranges in the addrmap. */
3582
3583 static void
3584 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
3585 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
3586 {
3587 struct partial_die_info *pdi;
3588
3589 /* Now, march along the PDI's, descending into ones which have
3590 interesting children but skipping the children of the other ones,
3591 until we reach the end of the compilation unit. */
3592
3593 pdi = first_die;
3594
3595 while (pdi != NULL)
3596 {
3597 fixup_partial_die (pdi, cu);
3598
3599 /* Anonymous namespaces or modules have no name but have interesting
3600 children, so we need to look at them. Ditto for anonymous
3601 enums. */
3602
3603 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
3604 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type)
3605 {
3606 switch (pdi->tag)
3607 {
3608 case DW_TAG_subprogram:
3609 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
3610 break;
3611 case DW_TAG_constant:
3612 case DW_TAG_variable:
3613 case DW_TAG_typedef:
3614 case DW_TAG_union_type:
3615 if (!pdi->is_declaration)
3616 {
3617 add_partial_symbol (pdi, cu);
3618 }
3619 break;
3620 case DW_TAG_class_type:
3621 case DW_TAG_interface_type:
3622 case DW_TAG_structure_type:
3623 if (!pdi->is_declaration)
3624 {
3625 add_partial_symbol (pdi, cu);
3626 }
3627 break;
3628 case DW_TAG_enumeration_type:
3629 if (!pdi->is_declaration)
3630 add_partial_enumeration (pdi, cu);
3631 break;
3632 case DW_TAG_base_type:
3633 case DW_TAG_subrange_type:
3634 /* File scope base type definitions are added to the partial
3635 symbol table. */
3636 add_partial_symbol (pdi, cu);
3637 break;
3638 case DW_TAG_namespace:
3639 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
3640 break;
3641 case DW_TAG_module:
3642 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
3643 break;
3644 default:
3645 break;
3646 }
3647 }
3648
3649 /* If the die has a sibling, skip to the sibling. */
3650
3651 pdi = pdi->die_sibling;
3652 }
3653 }
3654
3655 /* Functions used to compute the fully scoped name of a partial DIE.
3656
3657 Normally, this is simple. For C++, the parent DIE's fully scoped
3658 name is concatenated with "::" and the partial DIE's name. For
3659 Java, the same thing occurs except that "." is used instead of "::".
3660 Enumerators are an exception; they use the scope of their parent
3661 enumeration type, i.e. the name of the enumeration type is not
3662 prepended to the enumerator.
3663
3664 There are two complexities. One is DW_AT_specification; in this
3665 case "parent" means the parent of the target of the specification,
3666 instead of the direct parent of the DIE. The other is compilers
3667 which do not emit DW_TAG_namespace; in this case we try to guess
3668 the fully qualified name of structure types from their members'
3669 linkage names. This must be done using the DIE's children rather
3670 than the children of any DW_AT_specification target. We only need
3671 to do this for structures at the top level, i.e. if the target of
3672 any DW_AT_specification (if any; otherwise the DIE itself) does not
3673 have a parent. */
3674
3675 /* Compute the scope prefix associated with PDI's parent, in
3676 compilation unit CU. The result will be allocated on CU's
3677 comp_unit_obstack, or a copy of the already allocated PDI->NAME
3678 field. NULL is returned if no prefix is necessary. */
3679 static char *
3680 partial_die_parent_scope (struct partial_die_info *pdi,
3681 struct dwarf2_cu *cu)
3682 {
3683 char *grandparent_scope;
3684 struct partial_die_info *parent, *real_pdi;
3685
3686 /* We need to look at our parent DIE; if we have a DW_AT_specification,
3687 then this means the parent of the specification DIE. */
3688
3689 real_pdi = pdi;
3690 while (real_pdi->has_specification)
3691 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
3692
3693 parent = real_pdi->die_parent;
3694 if (parent == NULL)
3695 return NULL;
3696
3697 if (parent->scope_set)
3698 return parent->scope;
3699
3700 fixup_partial_die (parent, cu);
3701
3702 grandparent_scope = partial_die_parent_scope (parent, cu);
3703
3704 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
3705 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
3706 Work around this problem here. */
3707 if (cu->language == language_cplus
3708 && parent->tag == DW_TAG_namespace
3709 && strcmp (parent->name, "::") == 0
3710 && grandparent_scope == NULL)
3711 {
3712 parent->scope = NULL;
3713 parent->scope_set = 1;
3714 return NULL;
3715 }
3716
3717 if (parent->tag == DW_TAG_namespace
3718 || parent->tag == DW_TAG_module
3719 || parent->tag == DW_TAG_structure_type
3720 || parent->tag == DW_TAG_class_type
3721 || parent->tag == DW_TAG_interface_type
3722 || parent->tag == DW_TAG_union_type
3723 || parent->tag == DW_TAG_enumeration_type)
3724 {
3725 if (grandparent_scope == NULL)
3726 parent->scope = parent->name;
3727 else
3728 parent->scope = typename_concat (&cu->comp_unit_obstack,
3729 grandparent_scope,
3730 parent->name, 0, cu);
3731 }
3732 else if (parent->tag == DW_TAG_enumerator)
3733 /* Enumerators should not get the name of the enumeration as a prefix. */
3734 parent->scope = grandparent_scope;
3735 else
3736 {
3737 /* FIXME drow/2004-04-01: What should we be doing with
3738 function-local names? For partial symbols, we should probably be
3739 ignoring them. */
3740 complaint (&symfile_complaints,
3741 _("unhandled containing DIE tag %d for DIE at %d"),
3742 parent->tag, pdi->offset);
3743 parent->scope = grandparent_scope;
3744 }
3745
3746 parent->scope_set = 1;
3747 return parent->scope;
3748 }
3749
3750 /* Return the fully scoped name associated with PDI, from compilation unit
3751 CU. The result will be allocated with malloc. */
3752 static char *
3753 partial_die_full_name (struct partial_die_info *pdi,
3754 struct dwarf2_cu *cu)
3755 {
3756 char *parent_scope;
3757
3758 /* If this is a template instantiation, we can not work out the
3759 template arguments from partial DIEs. So, unfortunately, we have
3760 to go through the full DIEs. At least any work we do building
3761 types here will be reused if full symbols are loaded later. */
3762 if (pdi->has_template_arguments)
3763 {
3764 fixup_partial_die (pdi, cu);
3765
3766 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
3767 {
3768 struct die_info *die;
3769 struct attribute attr;
3770 struct dwarf2_cu *ref_cu = cu;
3771
3772 attr.name = 0;
3773 attr.form = DW_FORM_ref_addr;
3774 attr.u.addr = pdi->offset;
3775 die = follow_die_ref (NULL, &attr, &ref_cu);
3776
3777 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
3778 }
3779 }
3780
3781 parent_scope = partial_die_parent_scope (pdi, cu);
3782 if (parent_scope == NULL)
3783 return NULL;
3784 else
3785 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
3786 }
3787
3788 static void
3789 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
3790 {
3791 struct objfile *objfile = cu->objfile;
3792 CORE_ADDR addr = 0;
3793 char *actual_name = NULL;
3794 const struct partial_symbol *psym = NULL;
3795 CORE_ADDR baseaddr;
3796 int built_actual_name = 0;
3797
3798 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3799
3800 actual_name = partial_die_full_name (pdi, cu);
3801 if (actual_name)
3802 built_actual_name = 1;
3803
3804 if (actual_name == NULL)
3805 actual_name = pdi->name;
3806
3807 switch (pdi->tag)
3808 {
3809 case DW_TAG_subprogram:
3810 if (pdi->is_external || cu->language == language_ada)
3811 {
3812 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
3813 of the global scope. But in Ada, we want to be able to access
3814 nested procedures globally. So all Ada subprograms are stored
3815 in the global scope. */
3816 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
3817 mst_text, objfile); */
3818 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
3819 built_actual_name,
3820 VAR_DOMAIN, LOC_BLOCK,
3821 &objfile->global_psymbols,
3822 0, pdi->lowpc + baseaddr,
3823 cu->language, objfile);
3824 }
3825 else
3826 {
3827 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
3828 mst_file_text, objfile); */
3829 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
3830 built_actual_name,
3831 VAR_DOMAIN, LOC_BLOCK,
3832 &objfile->static_psymbols,
3833 0, pdi->lowpc + baseaddr,
3834 cu->language, objfile);
3835 }
3836 break;
3837 case DW_TAG_constant:
3838 {
3839 struct psymbol_allocation_list *list;
3840
3841 if (pdi->is_external)
3842 list = &objfile->global_psymbols;
3843 else
3844 list = &objfile->static_psymbols;
3845 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
3846 built_actual_name, VAR_DOMAIN, LOC_STATIC,
3847 list, 0, 0, cu->language, objfile);
3848
3849 }
3850 break;
3851 case DW_TAG_variable:
3852 if (pdi->locdesc)
3853 addr = decode_locdesc (pdi->locdesc, cu);
3854
3855 if (pdi->locdesc
3856 && addr == 0
3857 && !dwarf2_per_objfile->has_section_at_zero)
3858 {
3859 /* A global or static variable may also have been stripped
3860 out by the linker if unused, in which case its address
3861 will be nullified; do not add such variables into partial
3862 symbol table then. */
3863 }
3864 else if (pdi->is_external)
3865 {
3866 /* Global Variable.
3867 Don't enter into the minimal symbol tables as there is
3868 a minimal symbol table entry from the ELF symbols already.
3869 Enter into partial symbol table if it has a location
3870 descriptor or a type.
3871 If the location descriptor is missing, new_symbol will create
3872 a LOC_UNRESOLVED symbol, the address of the variable will then
3873 be determined from the minimal symbol table whenever the variable
3874 is referenced.
3875 The address for the partial symbol table entry is not
3876 used by GDB, but it comes in handy for debugging partial symbol
3877 table building. */
3878
3879 if (pdi->locdesc || pdi->has_type)
3880 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
3881 built_actual_name,
3882 VAR_DOMAIN, LOC_STATIC,
3883 &objfile->global_psymbols,
3884 0, addr + baseaddr,
3885 cu->language, objfile);
3886 }
3887 else
3888 {
3889 /* Static Variable. Skip symbols without location descriptors. */
3890 if (pdi->locdesc == NULL)
3891 {
3892 if (built_actual_name)
3893 xfree (actual_name);
3894 return;
3895 }
3896 /*prim_record_minimal_symbol (actual_name, addr + baseaddr,
3897 mst_file_data, objfile); */
3898 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
3899 built_actual_name,
3900 VAR_DOMAIN, LOC_STATIC,
3901 &objfile->static_psymbols,
3902 0, addr + baseaddr,
3903 cu->language, objfile);
3904 }
3905 break;
3906 case DW_TAG_typedef:
3907 case DW_TAG_base_type:
3908 case DW_TAG_subrange_type:
3909 add_psymbol_to_list (actual_name, strlen (actual_name),
3910 built_actual_name,
3911 VAR_DOMAIN, LOC_TYPEDEF,
3912 &objfile->static_psymbols,
3913 0, (CORE_ADDR) 0, cu->language, objfile);
3914 break;
3915 case DW_TAG_namespace:
3916 add_psymbol_to_list (actual_name, strlen (actual_name),
3917 built_actual_name,
3918 VAR_DOMAIN, LOC_TYPEDEF,
3919 &objfile->global_psymbols,
3920 0, (CORE_ADDR) 0, cu->language, objfile);
3921 break;
3922 case DW_TAG_class_type:
3923 case DW_TAG_interface_type:
3924 case DW_TAG_structure_type:
3925 case DW_TAG_union_type:
3926 case DW_TAG_enumeration_type:
3927 /* Skip external references. The DWARF standard says in the section
3928 about "Structure, Union, and Class Type Entries": "An incomplete
3929 structure, union or class type is represented by a structure,
3930 union or class entry that does not have a byte size attribute
3931 and that has a DW_AT_declaration attribute." */
3932 if (!pdi->has_byte_size && pdi->is_declaration)
3933 {
3934 if (built_actual_name)
3935 xfree (actual_name);
3936 return;
3937 }
3938
3939 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
3940 static vs. global. */
3941 add_psymbol_to_list (actual_name, strlen (actual_name),
3942 built_actual_name,
3943 STRUCT_DOMAIN, LOC_TYPEDEF,
3944 (cu->language == language_cplus
3945 || cu->language == language_java)
3946 ? &objfile->global_psymbols
3947 : &objfile->static_psymbols,
3948 0, (CORE_ADDR) 0, cu->language, objfile);
3949
3950 break;
3951 case DW_TAG_enumerator:
3952 add_psymbol_to_list (actual_name, strlen (actual_name),
3953 built_actual_name,
3954 VAR_DOMAIN, LOC_CONST,
3955 (cu->language == language_cplus
3956 || cu->language == language_java)
3957 ? &objfile->global_psymbols
3958 : &objfile->static_psymbols,
3959 0, (CORE_ADDR) 0, cu->language, objfile);
3960 break;
3961 default:
3962 break;
3963 }
3964
3965 if (built_actual_name)
3966 xfree (actual_name);
3967 }
3968
3969 /* Read a partial die corresponding to a namespace; also, add a symbol
3970 corresponding to that namespace to the symbol table. NAMESPACE is
3971 the name of the enclosing namespace. */
3972
3973 static void
3974 add_partial_namespace (struct partial_die_info *pdi,
3975 CORE_ADDR *lowpc, CORE_ADDR *highpc,
3976 int need_pc, struct dwarf2_cu *cu)
3977 {
3978 /* Add a symbol for the namespace. */
3979
3980 add_partial_symbol (pdi, cu);
3981
3982 /* Now scan partial symbols in that namespace. */
3983
3984 if (pdi->has_children)
3985 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
3986 }
3987
3988 /* Read a partial die corresponding to a Fortran module. */
3989
3990 static void
3991 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
3992 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
3993 {
3994 /* Now scan partial symbols in that module. */
3995
3996 if (pdi->has_children)
3997 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
3998 }
3999
4000 /* Read a partial die corresponding to a subprogram and create a partial
4001 symbol for that subprogram. When the CU language allows it, this
4002 routine also defines a partial symbol for each nested subprogram
4003 that this subprogram contains.
4004
4005 DIE my also be a lexical block, in which case we simply search
4006 recursively for suprograms defined inside that lexical block.
4007 Again, this is only performed when the CU language allows this
4008 type of definitions. */
4009
4010 static void
4011 add_partial_subprogram (struct partial_die_info *pdi,
4012 CORE_ADDR *lowpc, CORE_ADDR *highpc,
4013 int need_pc, struct dwarf2_cu *cu)
4014 {
4015 if (pdi->tag == DW_TAG_subprogram)
4016 {
4017 if (pdi->has_pc_info)
4018 {
4019 if (pdi->lowpc < *lowpc)
4020 *lowpc = pdi->lowpc;
4021 if (pdi->highpc > *highpc)
4022 *highpc = pdi->highpc;
4023 if (need_pc)
4024 {
4025 CORE_ADDR baseaddr;
4026 struct objfile *objfile = cu->objfile;
4027
4028 baseaddr = ANOFFSET (objfile->section_offsets,
4029 SECT_OFF_TEXT (objfile));
4030 addrmap_set_empty (objfile->psymtabs_addrmap,
4031 pdi->lowpc + baseaddr,
4032 pdi->highpc - 1 + baseaddr,
4033 cu->per_cu->v.psymtab);
4034 }
4035 if (!pdi->is_declaration)
4036 /* Ignore subprogram DIEs that do not have a name, they are
4037 illegal. Do not emit a complaint at this point, we will
4038 do so when we convert this psymtab into a symtab. */
4039 if (pdi->name)
4040 add_partial_symbol (pdi, cu);
4041 }
4042 }
4043
4044 if (! pdi->has_children)
4045 return;
4046
4047 if (cu->language == language_ada)
4048 {
4049 pdi = pdi->die_child;
4050 while (pdi != NULL)
4051 {
4052 fixup_partial_die (pdi, cu);
4053 if (pdi->tag == DW_TAG_subprogram
4054 || pdi->tag == DW_TAG_lexical_block)
4055 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
4056 pdi = pdi->die_sibling;
4057 }
4058 }
4059 }
4060
4061 /* Read a partial die corresponding to an enumeration type. */
4062
4063 static void
4064 add_partial_enumeration (struct partial_die_info *enum_pdi,
4065 struct dwarf2_cu *cu)
4066 {
4067 struct partial_die_info *pdi;
4068
4069 if (enum_pdi->name != NULL)
4070 add_partial_symbol (enum_pdi, cu);
4071
4072 pdi = enum_pdi->die_child;
4073 while (pdi)
4074 {
4075 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
4076 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
4077 else
4078 add_partial_symbol (pdi, cu);
4079 pdi = pdi->die_sibling;
4080 }
4081 }
4082
4083 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
4084 Return the corresponding abbrev, or NULL if the number is zero (indicating
4085 an empty DIE). In either case *BYTES_READ will be set to the length of
4086 the initial number. */
4087
4088 static struct abbrev_info *
4089 peek_die_abbrev (gdb_byte *info_ptr, unsigned int *bytes_read,
4090 struct dwarf2_cu *cu)
4091 {
4092 bfd *abfd = cu->objfile->obfd;
4093 unsigned int abbrev_number;
4094 struct abbrev_info *abbrev;
4095
4096 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
4097
4098 if (abbrev_number == 0)
4099 return NULL;
4100
4101 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
4102 if (!abbrev)
4103 {
4104 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"),
4105 abbrev_number, bfd_get_filename (abfd));
4106 }
4107
4108 return abbrev;
4109 }
4110
4111 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
4112 Returns a pointer to the end of a series of DIEs, terminated by an empty
4113 DIE. Any children of the skipped DIEs will also be skipped. */
4114
4115 static gdb_byte *
4116 skip_children (gdb_byte *buffer, gdb_byte *info_ptr, struct dwarf2_cu *cu)
4117 {
4118 struct abbrev_info *abbrev;
4119 unsigned int bytes_read;
4120
4121 while (1)
4122 {
4123 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
4124 if (abbrev == NULL)
4125 return info_ptr + bytes_read;
4126 else
4127 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
4128 }
4129 }
4130
4131 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
4132 INFO_PTR should point just after the initial uleb128 of a DIE, and the
4133 abbrev corresponding to that skipped uleb128 should be passed in
4134 ABBREV. Returns a pointer to this DIE's sibling, skipping any
4135 children. */
4136
4137 static gdb_byte *
4138 skip_one_die (gdb_byte *buffer, gdb_byte *info_ptr,
4139 struct abbrev_info *abbrev, struct dwarf2_cu *cu)
4140 {
4141 unsigned int bytes_read;
4142 struct attribute attr;
4143 bfd *abfd = cu->objfile->obfd;
4144 unsigned int form, i;
4145
4146 for (i = 0; i < abbrev->num_attrs; i++)
4147 {
4148 /* The only abbrev we care about is DW_AT_sibling. */
4149 if (abbrev->attrs[i].name == DW_AT_sibling)
4150 {
4151 read_attribute (&attr, &abbrev->attrs[i],
4152 abfd, info_ptr, cu);
4153 if (attr.form == DW_FORM_ref_addr)
4154 complaint (&symfile_complaints,
4155 _("ignoring absolute DW_AT_sibling"));
4156 else
4157 return buffer + dwarf2_get_ref_die_offset (&attr);
4158 }
4159
4160 /* If it isn't DW_AT_sibling, skip this attribute. */
4161 form = abbrev->attrs[i].form;
4162 skip_attribute:
4163 switch (form)
4164 {
4165 case DW_FORM_ref_addr:
4166 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
4167 and later it is offset sized. */
4168 if (cu->header.version == 2)
4169 info_ptr += cu->header.addr_size;
4170 else
4171 info_ptr += cu->header.offset_size;
4172 break;
4173 case DW_FORM_addr:
4174 info_ptr += cu->header.addr_size;
4175 break;
4176 case DW_FORM_data1:
4177 case DW_FORM_ref1:
4178 case DW_FORM_flag:
4179 info_ptr += 1;
4180 break;
4181 case DW_FORM_flag_present:
4182 break;
4183 case DW_FORM_data2:
4184 case DW_FORM_ref2:
4185 info_ptr += 2;
4186 break;
4187 case DW_FORM_data4:
4188 case DW_FORM_ref4:
4189 info_ptr += 4;
4190 break;
4191 case DW_FORM_data8:
4192 case DW_FORM_ref8:
4193 case DW_FORM_sig8:
4194 info_ptr += 8;
4195 break;
4196 case DW_FORM_string:
4197 read_direct_string (abfd, info_ptr, &bytes_read);
4198 info_ptr += bytes_read;
4199 break;
4200 case DW_FORM_sec_offset:
4201 case DW_FORM_strp:
4202 info_ptr += cu->header.offset_size;
4203 break;
4204 case DW_FORM_exprloc:
4205 case DW_FORM_block:
4206 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
4207 info_ptr += bytes_read;
4208 break;
4209 case DW_FORM_block1:
4210 info_ptr += 1 + read_1_byte (abfd, info_ptr);
4211 break;
4212 case DW_FORM_block2:
4213 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
4214 break;
4215 case DW_FORM_block4:
4216 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
4217 break;
4218 case DW_FORM_sdata:
4219 case DW_FORM_udata:
4220 case DW_FORM_ref_udata:
4221 info_ptr = skip_leb128 (abfd, info_ptr);
4222 break;
4223 case DW_FORM_indirect:
4224 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
4225 info_ptr += bytes_read;
4226 /* We need to continue parsing from here, so just go back to
4227 the top. */
4228 goto skip_attribute;
4229
4230 default:
4231 error (_("Dwarf Error: Cannot handle %s "
4232 "in DWARF reader [in module %s]"),
4233 dwarf_form_name (form),
4234 bfd_get_filename (abfd));
4235 }
4236 }
4237
4238 if (abbrev->has_children)
4239 return skip_children (buffer, info_ptr, cu);
4240 else
4241 return info_ptr;
4242 }
4243
4244 /* Locate ORIG_PDI's sibling.
4245 INFO_PTR should point to the start of the next DIE after ORIG_PDI
4246 in BUFFER. */
4247
4248 static gdb_byte *
4249 locate_pdi_sibling (struct partial_die_info *orig_pdi,
4250 gdb_byte *buffer, gdb_byte *info_ptr,
4251 bfd *abfd, struct dwarf2_cu *cu)
4252 {
4253 /* Do we know the sibling already? */
4254
4255 if (orig_pdi->sibling)
4256 return orig_pdi->sibling;
4257
4258 /* Are there any children to deal with? */
4259
4260 if (!orig_pdi->has_children)
4261 return info_ptr;
4262
4263 /* Skip the children the long way. */
4264
4265 return skip_children (buffer, info_ptr, cu);
4266 }
4267
4268 /* Expand this partial symbol table into a full symbol table. */
4269
4270 static void
4271 dwarf2_psymtab_to_symtab (struct partial_symtab *pst)
4272 {
4273 if (pst != NULL)
4274 {
4275 if (pst->readin)
4276 {
4277 warning (_("bug: psymtab for %s is already read in."),
4278 pst->filename);
4279 }
4280 else
4281 {
4282 if (info_verbose)
4283 {
4284 printf_filtered (_("Reading in symbols for %s..."),
4285 pst->filename);
4286 gdb_flush (gdb_stdout);
4287 }
4288
4289 /* Restore our global data. */
4290 dwarf2_per_objfile = objfile_data (pst->objfile,
4291 dwarf2_objfile_data_key);
4292
4293 /* If this psymtab is constructed from a debug-only objfile, the
4294 has_section_at_zero flag will not necessarily be correct. We
4295 can get the correct value for this flag by looking at the data
4296 associated with the (presumably stripped) associated objfile. */
4297 if (pst->objfile->separate_debug_objfile_backlink)
4298 {
4299 struct dwarf2_per_objfile *dpo_backlink
4300 = objfile_data (pst->objfile->separate_debug_objfile_backlink,
4301 dwarf2_objfile_data_key);
4302
4303 dwarf2_per_objfile->has_section_at_zero
4304 = dpo_backlink->has_section_at_zero;
4305 }
4306
4307 dwarf2_per_objfile->reading_partial_symbols = 0;
4308
4309 psymtab_to_symtab_1 (pst);
4310
4311 /* Finish up the debug error message. */
4312 if (info_verbose)
4313 printf_filtered (_("done.\n"));
4314 }
4315 }
4316 }
4317
4318 /* Add PER_CU to the queue. */
4319
4320 static void
4321 queue_comp_unit (struct dwarf2_per_cu_data *per_cu, struct objfile *objfile)
4322 {
4323 struct dwarf2_queue_item *item;
4324
4325 per_cu->queued = 1;
4326 item = xmalloc (sizeof (*item));
4327 item->per_cu = per_cu;
4328 item->next = NULL;
4329
4330 if (dwarf2_queue == NULL)
4331 dwarf2_queue = item;
4332 else
4333 dwarf2_queue_tail->next = item;
4334
4335 dwarf2_queue_tail = item;
4336 }
4337
4338 /* Process the queue. */
4339
4340 static void
4341 process_queue (struct objfile *objfile)
4342 {
4343 struct dwarf2_queue_item *item, *next_item;
4344
4345 /* The queue starts out with one item, but following a DIE reference
4346 may load a new CU, adding it to the end of the queue. */
4347 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
4348 {
4349 if (dwarf2_per_objfile->using_index
4350 ? !item->per_cu->v.quick->symtab
4351 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
4352 process_full_comp_unit (item->per_cu);
4353
4354 item->per_cu->queued = 0;
4355 next_item = item->next;
4356 xfree (item);
4357 }
4358
4359 dwarf2_queue_tail = NULL;
4360 }
4361
4362 /* Free all allocated queue entries. This function only releases anything if
4363 an error was thrown; if the queue was processed then it would have been
4364 freed as we went along. */
4365
4366 static void
4367 dwarf2_release_queue (void *dummy)
4368 {
4369 struct dwarf2_queue_item *item, *last;
4370
4371 item = dwarf2_queue;
4372 while (item)
4373 {
4374 /* Anything still marked queued is likely to be in an
4375 inconsistent state, so discard it. */
4376 if (item->per_cu->queued)
4377 {
4378 if (item->per_cu->cu != NULL)
4379 free_one_cached_comp_unit (item->per_cu->cu);
4380 item->per_cu->queued = 0;
4381 }
4382
4383 last = item;
4384 item = item->next;
4385 xfree (last);
4386 }
4387
4388 dwarf2_queue = dwarf2_queue_tail = NULL;
4389 }
4390
4391 /* Read in full symbols for PST, and anything it depends on. */
4392
4393 static void
4394 psymtab_to_symtab_1 (struct partial_symtab *pst)
4395 {
4396 struct dwarf2_per_cu_data *per_cu;
4397 struct cleanup *back_to;
4398 int i;
4399
4400 for (i = 0; i < pst->number_of_dependencies; i++)
4401 if (!pst->dependencies[i]->readin)
4402 {
4403 /* Inform about additional files that need to be read in. */
4404 if (info_verbose)
4405 {
4406 /* FIXME: i18n: Need to make this a single string. */
4407 fputs_filtered (" ", gdb_stdout);
4408 wrap_here ("");
4409 fputs_filtered ("and ", gdb_stdout);
4410 wrap_here ("");
4411 printf_filtered ("%s...", pst->dependencies[i]->filename);
4412 wrap_here (""); /* Flush output. */
4413 gdb_flush (gdb_stdout);
4414 }
4415 psymtab_to_symtab_1 (pst->dependencies[i]);
4416 }
4417
4418 per_cu = pst->read_symtab_private;
4419
4420 if (per_cu == NULL)
4421 {
4422 /* It's an include file, no symbols to read for it.
4423 Everything is in the parent symtab. */
4424 pst->readin = 1;
4425 return;
4426 }
4427
4428 dw2_do_instantiate_symtab (pst->objfile, per_cu);
4429 }
4430
4431 /* Load the DIEs associated with PER_CU into memory. */
4432
4433 static void
4434 load_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
4435 struct objfile *objfile)
4436 {
4437 bfd *abfd = objfile->obfd;
4438 struct dwarf2_cu *cu;
4439 unsigned int offset;
4440 gdb_byte *info_ptr, *beg_of_comp_unit;
4441 struct cleanup *free_abbrevs_cleanup = NULL, *free_cu_cleanup = NULL;
4442 struct attribute *attr;
4443 int read_cu = 0;
4444
4445 gdb_assert (! per_cu->from_debug_types);
4446
4447 /* Set local variables from the partial symbol table info. */
4448 offset = per_cu->offset;
4449
4450 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
4451 info_ptr = dwarf2_per_objfile->info.buffer + offset;
4452 beg_of_comp_unit = info_ptr;
4453
4454 if (per_cu->cu == NULL)
4455 {
4456 cu = xmalloc (sizeof (*cu));
4457 init_one_comp_unit (cu, objfile);
4458
4459 read_cu = 1;
4460
4461 /* If an error occurs while loading, release our storage. */
4462 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
4463
4464 /* Read in the comp_unit header. */
4465 info_ptr = read_comp_unit_head (&cu->header, info_ptr, abfd);
4466
4467 /* Complete the cu_header. */
4468 cu->header.offset = offset;
4469 cu->header.first_die_offset = info_ptr - beg_of_comp_unit;
4470
4471 /* Read the abbrevs for this compilation unit. */
4472 dwarf2_read_abbrevs (abfd, cu);
4473 free_abbrevs_cleanup = make_cleanup (dwarf2_free_abbrev_table, cu);
4474
4475 /* Link this compilation unit into the compilation unit tree. */
4476 per_cu->cu = cu;
4477 cu->per_cu = per_cu;
4478
4479 /* Link this CU into read_in_chain. */
4480 per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
4481 dwarf2_per_objfile->read_in_chain = per_cu;
4482 }
4483 else
4484 {
4485 cu = per_cu->cu;
4486 info_ptr += cu->header.first_die_offset;
4487 }
4488
4489 cu->dies = read_comp_unit (info_ptr, cu);
4490
4491 /* We try not to read any attributes in this function, because not
4492 all objfiles needed for references have been loaded yet, and symbol
4493 table processing isn't initialized. But we have to set the CU language,
4494 or we won't be able to build types correctly. */
4495 prepare_one_comp_unit (cu, cu->dies);
4496
4497 /* Similarly, if we do not read the producer, we can not apply
4498 producer-specific interpretation. */
4499 attr = dwarf2_attr (cu->dies, DW_AT_producer, cu);
4500 if (attr)
4501 cu->producer = DW_STRING (attr);
4502
4503 if (read_cu)
4504 {
4505 do_cleanups (free_abbrevs_cleanup);
4506
4507 /* We've successfully allocated this compilation unit. Let our
4508 caller clean it up when finished with it. */
4509 discard_cleanups (free_cu_cleanup);
4510 }
4511 }
4512
4513 /* Add a DIE to the delayed physname list. */
4514
4515 static void
4516 add_to_method_list (struct type *type, int fnfield_index, int index,
4517 const char *name, struct die_info *die,
4518 struct dwarf2_cu *cu)
4519 {
4520 struct delayed_method_info mi;
4521 mi.type = type;
4522 mi.fnfield_index = fnfield_index;
4523 mi.index = index;
4524 mi.name = name;
4525 mi.die = die;
4526 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
4527 }
4528
4529 /* A cleanup for freeing the delayed method list. */
4530
4531 static void
4532 free_delayed_list (void *ptr)
4533 {
4534 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
4535 if (cu->method_list != NULL)
4536 {
4537 VEC_free (delayed_method_info, cu->method_list);
4538 cu->method_list = NULL;
4539 }
4540 }
4541
4542 /* Compute the physnames of any methods on the CU's method list.
4543
4544 The computation of method physnames is delayed in order to avoid the
4545 (bad) condition that one of the method's formal parameters is of an as yet
4546 incomplete type. */
4547
4548 static void
4549 compute_delayed_physnames (struct dwarf2_cu *cu)
4550 {
4551 int i;
4552 struct delayed_method_info *mi;
4553 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
4554 {
4555 char *physname;
4556 struct fn_fieldlist *fn_flp
4557 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
4558 physname = (char *) dwarf2_physname ((char *) mi->name, mi->die, cu);
4559 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
4560 }
4561 }
4562
4563 /* Generate full symbol information for PST and CU, whose DIEs have
4564 already been loaded into memory. */
4565
4566 static void
4567 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu)
4568 {
4569 struct dwarf2_cu *cu = per_cu->cu;
4570 struct objfile *objfile = per_cu->objfile;
4571 CORE_ADDR lowpc, highpc;
4572 struct symtab *symtab;
4573 struct cleanup *back_to, *delayed_list_cleanup;
4574 CORE_ADDR baseaddr;
4575
4576 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
4577
4578 buildsym_init ();
4579 back_to = make_cleanup (really_free_pendings, NULL);
4580 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
4581
4582 cu->list_in_scope = &file_symbols;
4583
4584 dwarf2_find_base_address (cu->dies, cu);
4585
4586 /* Do line number decoding in read_file_scope () */
4587 process_die (cu->dies, cu);
4588
4589 /* Now that we have processed all the DIEs in the CU, all the types
4590 should be complete, and it should now be safe to compute all of the
4591 physnames. */
4592 compute_delayed_physnames (cu);
4593 do_cleanups (delayed_list_cleanup);
4594
4595 /* Some compilers don't define a DW_AT_high_pc attribute for the
4596 compilation unit. If the DW_AT_high_pc is missing, synthesize
4597 it, by scanning the DIE's below the compilation unit. */
4598 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
4599
4600 symtab = end_symtab (highpc + baseaddr, objfile, SECT_OFF_TEXT (objfile));
4601
4602 /* Set symtab language to language from DW_AT_language.
4603 If the compilation is from a C file generated by language preprocessors,
4604 do not set the language if it was already deduced by start_subfile. */
4605 if (symtab != NULL
4606 && !(cu->language == language_c && symtab->language != language_c))
4607 {
4608 symtab->language = cu->language;
4609 }
4610
4611 if (dwarf2_per_objfile->using_index)
4612 per_cu->v.quick->symtab = symtab;
4613 else
4614 {
4615 struct partial_symtab *pst = per_cu->v.psymtab;
4616 pst->symtab = symtab;
4617 pst->readin = 1;
4618 }
4619
4620 do_cleanups (back_to);
4621 }
4622
4623 /* Process a die and its children. */
4624
4625 static void
4626 process_die (struct die_info *die, struct dwarf2_cu *cu)
4627 {
4628 switch (die->tag)
4629 {
4630 case DW_TAG_padding:
4631 break;
4632 case DW_TAG_compile_unit:
4633 read_file_scope (die, cu);
4634 break;
4635 case DW_TAG_type_unit:
4636 read_type_unit_scope (die, cu);
4637 break;
4638 case DW_TAG_subprogram:
4639 case DW_TAG_inlined_subroutine:
4640 read_func_scope (die, cu);
4641 break;
4642 case DW_TAG_lexical_block:
4643 case DW_TAG_try_block:
4644 case DW_TAG_catch_block:
4645 read_lexical_block_scope (die, cu);
4646 break;
4647 case DW_TAG_class_type:
4648 case DW_TAG_interface_type:
4649 case DW_TAG_structure_type:
4650 case DW_TAG_union_type:
4651 process_structure_scope (die, cu);
4652 break;
4653 case DW_TAG_enumeration_type:
4654 process_enumeration_scope (die, cu);
4655 break;
4656
4657 /* These dies have a type, but processing them does not create
4658 a symbol or recurse to process the children. Therefore we can
4659 read them on-demand through read_type_die. */
4660 case DW_TAG_subroutine_type:
4661 case DW_TAG_set_type:
4662 case DW_TAG_array_type:
4663 case DW_TAG_pointer_type:
4664 case DW_TAG_ptr_to_member_type:
4665 case DW_TAG_reference_type:
4666 case DW_TAG_string_type:
4667 break;
4668
4669 case DW_TAG_base_type:
4670 case DW_TAG_subrange_type:
4671 case DW_TAG_typedef:
4672 /* Add a typedef symbol for the type definition, if it has a
4673 DW_AT_name. */
4674 new_symbol (die, read_type_die (die, cu), cu);
4675 break;
4676 case DW_TAG_common_block:
4677 read_common_block (die, cu);
4678 break;
4679 case DW_TAG_common_inclusion:
4680 break;
4681 case DW_TAG_namespace:
4682 processing_has_namespace_info = 1;
4683 read_namespace (die, cu);
4684 break;
4685 case DW_TAG_module:
4686 processing_has_namespace_info = 1;
4687 read_module (die, cu);
4688 break;
4689 case DW_TAG_imported_declaration:
4690 case DW_TAG_imported_module:
4691 processing_has_namespace_info = 1;
4692 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
4693 || cu->language != language_fortran))
4694 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
4695 dwarf_tag_name (die->tag));
4696 read_import_statement (die, cu);
4697 break;
4698 default:
4699 new_symbol (die, NULL, cu);
4700 break;
4701 }
4702 }
4703
4704 /* A helper function for dwarf2_compute_name which determines whether DIE
4705 needs to have the name of the scope prepended to the name listed in the
4706 die. */
4707
4708 static int
4709 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
4710 {
4711 struct attribute *attr;
4712
4713 switch (die->tag)
4714 {
4715 case DW_TAG_namespace:
4716 case DW_TAG_typedef:
4717 case DW_TAG_class_type:
4718 case DW_TAG_interface_type:
4719 case DW_TAG_structure_type:
4720 case DW_TAG_union_type:
4721 case DW_TAG_enumeration_type:
4722 case DW_TAG_enumerator:
4723 case DW_TAG_subprogram:
4724 case DW_TAG_member:
4725 return 1;
4726
4727 case DW_TAG_variable:
4728 case DW_TAG_constant:
4729 /* We only need to prefix "globally" visible variables. These include
4730 any variable marked with DW_AT_external or any variable that
4731 lives in a namespace. [Variables in anonymous namespaces
4732 require prefixing, but they are not DW_AT_external.] */
4733
4734 if (dwarf2_attr (die, DW_AT_specification, cu))
4735 {
4736 struct dwarf2_cu *spec_cu = cu;
4737
4738 return die_needs_namespace (die_specification (die, &spec_cu),
4739 spec_cu);
4740 }
4741
4742 attr = dwarf2_attr (die, DW_AT_external, cu);
4743 if (attr == NULL && die->parent->tag != DW_TAG_namespace
4744 && die->parent->tag != DW_TAG_module)
4745 return 0;
4746 /* A variable in a lexical block of some kind does not need a
4747 namespace, even though in C++ such variables may be external
4748 and have a mangled name. */
4749 if (die->parent->tag == DW_TAG_lexical_block
4750 || die->parent->tag == DW_TAG_try_block
4751 || die->parent->tag == DW_TAG_catch_block
4752 || die->parent->tag == DW_TAG_subprogram)
4753 return 0;
4754 return 1;
4755
4756 default:
4757 return 0;
4758 }
4759 }
4760
4761 /* Retrieve the last character from a mem_file. */
4762
4763 static void
4764 do_ui_file_peek_last (void *object, const char *buffer, long length)
4765 {
4766 char *last_char_p = (char *) object;
4767
4768 if (length > 0)
4769 *last_char_p = buffer[length - 1];
4770 }
4771
4772 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
4773 compute the physname for the object, which include a method's
4774 formal parameters (C++/Java) and return type (Java).
4775
4776 For Ada, return the DIE's linkage name rather than the fully qualified
4777 name. PHYSNAME is ignored..
4778
4779 The result is allocated on the objfile_obstack and canonicalized. */
4780
4781 static const char *
4782 dwarf2_compute_name (char *name, struct die_info *die, struct dwarf2_cu *cu,
4783 int physname)
4784 {
4785 if (name == NULL)
4786 name = dwarf2_name (die, cu);
4787
4788 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
4789 compute it by typename_concat inside GDB. */
4790 if (cu->language == language_ada
4791 || (cu->language == language_fortran && physname))
4792 {
4793 /* For Ada unit, we prefer the linkage name over the name, as
4794 the former contains the exported name, which the user expects
4795 to be able to reference. Ideally, we want the user to be able
4796 to reference this entity using either natural or linkage name,
4797 but we haven't started looking at this enhancement yet. */
4798 struct attribute *attr;
4799
4800 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
4801 if (attr == NULL)
4802 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
4803 if (attr && DW_STRING (attr))
4804 return DW_STRING (attr);
4805 }
4806
4807 /* These are the only languages we know how to qualify names in. */
4808 if (name != NULL
4809 && (cu->language == language_cplus || cu->language == language_java
4810 || cu->language == language_fortran))
4811 {
4812 if (die_needs_namespace (die, cu))
4813 {
4814 long length;
4815 char *prefix;
4816 struct ui_file *buf;
4817
4818 prefix = determine_prefix (die, cu);
4819 buf = mem_fileopen ();
4820 if (*prefix != '\0')
4821 {
4822 char *prefixed_name = typename_concat (NULL, prefix, name,
4823 physname, cu);
4824
4825 fputs_unfiltered (prefixed_name, buf);
4826 xfree (prefixed_name);
4827 }
4828 else
4829 fputs_unfiltered (name ? name : "", buf);
4830
4831 /* Template parameters may be specified in the DIE's DW_AT_name, or
4832 as children with DW_TAG_template_type_param or
4833 DW_TAG_value_type_param. If the latter, add them to the name
4834 here. If the name already has template parameters, then
4835 skip this step; some versions of GCC emit both, and
4836 it is more efficient to use the pre-computed name.
4837
4838 Something to keep in mind about this process: it is very
4839 unlikely, or in some cases downright impossible, to produce
4840 something that will match the mangled name of a function.
4841 If the definition of the function has the same debug info,
4842 we should be able to match up with it anyway. But fallbacks
4843 using the minimal symbol, for instance to find a method
4844 implemented in a stripped copy of libstdc++, will not work.
4845 If we do not have debug info for the definition, we will have to
4846 match them up some other way.
4847
4848 When we do name matching there is a related problem with function
4849 templates; two instantiated function templates are allowed to
4850 differ only by their return types, which we do not add here. */
4851
4852 if (cu->language == language_cplus && strchr (name, '<') == NULL)
4853 {
4854 struct attribute *attr;
4855 struct die_info *child;
4856 int first = 1;
4857
4858 die->building_fullname = 1;
4859
4860 for (child = die->child; child != NULL; child = child->sibling)
4861 {
4862 struct type *type;
4863 long value;
4864 gdb_byte *bytes;
4865 struct dwarf2_locexpr_baton *baton;
4866 struct value *v;
4867
4868 if (child->tag != DW_TAG_template_type_param
4869 && child->tag != DW_TAG_template_value_param)
4870 continue;
4871
4872 if (first)
4873 {
4874 fputs_unfiltered ("<", buf);
4875 first = 0;
4876 }
4877 else
4878 fputs_unfiltered (", ", buf);
4879
4880 attr = dwarf2_attr (child, DW_AT_type, cu);
4881 if (attr == NULL)
4882 {
4883 complaint (&symfile_complaints,
4884 _("template parameter missing DW_AT_type"));
4885 fputs_unfiltered ("UNKNOWN_TYPE", buf);
4886 continue;
4887 }
4888 type = die_type (child, cu);
4889
4890 if (child->tag == DW_TAG_template_type_param)
4891 {
4892 c_print_type (type, "", buf, -1, 0);
4893 continue;
4894 }
4895
4896 attr = dwarf2_attr (child, DW_AT_const_value, cu);
4897 if (attr == NULL)
4898 {
4899 complaint (&symfile_complaints,
4900 _("template parameter missing "
4901 "DW_AT_const_value"));
4902 fputs_unfiltered ("UNKNOWN_VALUE", buf);
4903 continue;
4904 }
4905
4906 dwarf2_const_value_attr (attr, type, name,
4907 &cu->comp_unit_obstack, cu,
4908 &value, &bytes, &baton);
4909
4910 if (TYPE_NOSIGN (type))
4911 /* GDB prints characters as NUMBER 'CHAR'. If that's
4912 changed, this can use value_print instead. */
4913 c_printchar (value, type, buf);
4914 else
4915 {
4916 struct value_print_options opts;
4917
4918 if (baton != NULL)
4919 v = dwarf2_evaluate_loc_desc (type, NULL,
4920 baton->data,
4921 baton->size,
4922 baton->per_cu);
4923 else if (bytes != NULL)
4924 {
4925 v = allocate_value (type);
4926 memcpy (value_contents_writeable (v), bytes,
4927 TYPE_LENGTH (type));
4928 }
4929 else
4930 v = value_from_longest (type, value);
4931
4932 /* Specify decimal so that we do not depend on
4933 the radix. */
4934 get_formatted_print_options (&opts, 'd');
4935 opts.raw = 1;
4936 value_print (v, buf, &opts);
4937 release_value (v);
4938 value_free (v);
4939 }
4940 }
4941
4942 die->building_fullname = 0;
4943
4944 if (!first)
4945 {
4946 /* Close the argument list, with a space if necessary
4947 (nested templates). */
4948 char last_char = '\0';
4949 ui_file_put (buf, do_ui_file_peek_last, &last_char);
4950 if (last_char == '>')
4951 fputs_unfiltered (" >", buf);
4952 else
4953 fputs_unfiltered (">", buf);
4954 }
4955 }
4956
4957 /* For Java and C++ methods, append formal parameter type
4958 information, if PHYSNAME. */
4959
4960 if (physname && die->tag == DW_TAG_subprogram
4961 && (cu->language == language_cplus
4962 || cu->language == language_java))
4963 {
4964 struct type *type = read_type_die (die, cu);
4965
4966 c_type_print_args (type, buf, 0, cu->language);
4967
4968 if (cu->language == language_java)
4969 {
4970 /* For java, we must append the return type to method
4971 names. */
4972 if (die->tag == DW_TAG_subprogram)
4973 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
4974 0, 0);
4975 }
4976 else if (cu->language == language_cplus)
4977 {
4978 /* Assume that an artificial first parameter is
4979 "this", but do not crash if it is not. RealView
4980 marks unnamed (and thus unused) parameters as
4981 artificial; there is no way to differentiate
4982 the two cases. */
4983 if (TYPE_NFIELDS (type) > 0
4984 && TYPE_FIELD_ARTIFICIAL (type, 0)
4985 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
4986 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
4987 0))))
4988 fputs_unfiltered (" const", buf);
4989 }
4990 }
4991
4992 name = ui_file_obsavestring (buf, &cu->objfile->objfile_obstack,
4993 &length);
4994 ui_file_delete (buf);
4995
4996 if (cu->language == language_cplus)
4997 {
4998 char *cname
4999 = dwarf2_canonicalize_name (name, cu,
5000 &cu->objfile->objfile_obstack);
5001
5002 if (cname != NULL)
5003 name = cname;
5004 }
5005 }
5006 }
5007
5008 return name;
5009 }
5010
5011 /* Return the fully qualified name of DIE, based on its DW_AT_name.
5012 If scope qualifiers are appropriate they will be added. The result
5013 will be allocated on the objfile_obstack, or NULL if the DIE does
5014 not have a name. NAME may either be from a previous call to
5015 dwarf2_name or NULL.
5016
5017 The output string will be canonicalized (if C++/Java). */
5018
5019 static const char *
5020 dwarf2_full_name (char *name, struct die_info *die, struct dwarf2_cu *cu)
5021 {
5022 return dwarf2_compute_name (name, die, cu, 0);
5023 }
5024
5025 /* Construct a physname for the given DIE in CU. NAME may either be
5026 from a previous call to dwarf2_name or NULL. The result will be
5027 allocated on the objfile_objstack or NULL if the DIE does not have a
5028 name.
5029
5030 The output string will be canonicalized (if C++/Java). */
5031
5032 static const char *
5033 dwarf2_physname (char *name, struct die_info *die, struct dwarf2_cu *cu)
5034 {
5035 return dwarf2_compute_name (name, die, cu, 1);
5036 }
5037
5038 /* Read the import statement specified by the given die and record it. */
5039
5040 static void
5041 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
5042 {
5043 struct attribute *import_attr;
5044 struct die_info *imported_die;
5045 struct dwarf2_cu *imported_cu;
5046 const char *imported_name;
5047 const char *imported_name_prefix;
5048 const char *canonical_name;
5049 const char *import_alias;
5050 const char *imported_declaration = NULL;
5051 const char *import_prefix;
5052
5053 char *temp;
5054
5055 import_attr = dwarf2_attr (die, DW_AT_import, cu);
5056 if (import_attr == NULL)
5057 {
5058 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
5059 dwarf_tag_name (die->tag));
5060 return;
5061 }
5062
5063 imported_cu = cu;
5064 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
5065 imported_name = dwarf2_name (imported_die, imported_cu);
5066 if (imported_name == NULL)
5067 {
5068 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
5069
5070 The import in the following code:
5071 namespace A
5072 {
5073 typedef int B;
5074 }
5075
5076 int main ()
5077 {
5078 using A::B;
5079 B b;
5080 return b;
5081 }
5082
5083 ...
5084 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
5085 <52> DW_AT_decl_file : 1
5086 <53> DW_AT_decl_line : 6
5087 <54> DW_AT_import : <0x75>
5088 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
5089 <59> DW_AT_name : B
5090 <5b> DW_AT_decl_file : 1
5091 <5c> DW_AT_decl_line : 2
5092 <5d> DW_AT_type : <0x6e>
5093 ...
5094 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
5095 <76> DW_AT_byte_size : 4
5096 <77> DW_AT_encoding : 5 (signed)
5097
5098 imports the wrong die ( 0x75 instead of 0x58 ).
5099 This case will be ignored until the gcc bug is fixed. */
5100 return;
5101 }
5102
5103 /* Figure out the local name after import. */
5104 import_alias = dwarf2_name (die, cu);
5105
5106 /* Figure out where the statement is being imported to. */
5107 import_prefix = determine_prefix (die, cu);
5108
5109 /* Figure out what the scope of the imported die is and prepend it
5110 to the name of the imported die. */
5111 imported_name_prefix = determine_prefix (imported_die, imported_cu);
5112
5113 if (imported_die->tag != DW_TAG_namespace
5114 && imported_die->tag != DW_TAG_module)
5115 {
5116 imported_declaration = imported_name;
5117 canonical_name = imported_name_prefix;
5118 }
5119 else if (strlen (imported_name_prefix) > 0)
5120 {
5121 temp = alloca (strlen (imported_name_prefix)
5122 + 2 + strlen (imported_name) + 1);
5123 strcpy (temp, imported_name_prefix);
5124 strcat (temp, "::");
5125 strcat (temp, imported_name);
5126 canonical_name = temp;
5127 }
5128 else
5129 canonical_name = imported_name;
5130
5131 cp_add_using_directive (import_prefix,
5132 canonical_name,
5133 import_alias,
5134 imported_declaration,
5135 &cu->objfile->objfile_obstack);
5136 }
5137
5138 static void
5139 initialize_cu_func_list (struct dwarf2_cu *cu)
5140 {
5141 cu->first_fn = cu->last_fn = cu->cached_fn = NULL;
5142 }
5143
5144 /* Cleanup function for read_file_scope. */
5145
5146 static void
5147 free_cu_line_header (void *arg)
5148 {
5149 struct dwarf2_cu *cu = arg;
5150
5151 free_line_header (cu->line_header);
5152 cu->line_header = NULL;
5153 }
5154
5155 static void
5156 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
5157 char **name, char **comp_dir)
5158 {
5159 struct attribute *attr;
5160
5161 *name = NULL;
5162 *comp_dir = NULL;
5163
5164 /* Find the filename. Do not use dwarf2_name here, since the filename
5165 is not a source language identifier. */
5166 attr = dwarf2_attr (die, DW_AT_name, cu);
5167 if (attr)
5168 {
5169 *name = DW_STRING (attr);
5170 }
5171
5172 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
5173 if (attr)
5174 *comp_dir = DW_STRING (attr);
5175 else if (*name != NULL && IS_ABSOLUTE_PATH (*name))
5176 {
5177 *comp_dir = ldirname (*name);
5178 if (*comp_dir != NULL)
5179 make_cleanup (xfree, *comp_dir);
5180 }
5181 if (*comp_dir != NULL)
5182 {
5183 /* Irix 6.2 native cc prepends <machine>.: to the compilation
5184 directory, get rid of it. */
5185 char *cp = strchr (*comp_dir, ':');
5186
5187 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
5188 *comp_dir = cp + 1;
5189 }
5190
5191 if (*name == NULL)
5192 *name = "<unknown>";
5193 }
5194
5195 /* Process DW_TAG_compile_unit. */
5196
5197 static void
5198 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
5199 {
5200 struct objfile *objfile = cu->objfile;
5201 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
5202 CORE_ADDR lowpc = ((CORE_ADDR) -1);
5203 CORE_ADDR highpc = ((CORE_ADDR) 0);
5204 struct attribute *attr;
5205 char *name = NULL;
5206 char *comp_dir = NULL;
5207 struct die_info *child_die;
5208 bfd *abfd = objfile->obfd;
5209 struct line_header *line_header = 0;
5210 CORE_ADDR baseaddr;
5211
5212 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5213
5214 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
5215
5216 /* If we didn't find a lowpc, set it to highpc to avoid complaints
5217 from finish_block. */
5218 if (lowpc == ((CORE_ADDR) -1))
5219 lowpc = highpc;
5220 lowpc += baseaddr;
5221 highpc += baseaddr;
5222
5223 find_file_and_directory (die, cu, &name, &comp_dir);
5224
5225 attr = dwarf2_attr (die, DW_AT_language, cu);
5226 if (attr)
5227 {
5228 set_cu_language (DW_UNSND (attr), cu);
5229 }
5230
5231 attr = dwarf2_attr (die, DW_AT_producer, cu);
5232 if (attr)
5233 cu->producer = DW_STRING (attr);
5234
5235 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
5236 standardised yet. As a workaround for the language detection we fall
5237 back to the DW_AT_producer string. */
5238 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
5239 cu->language = language_opencl;
5240
5241 /* We assume that we're processing GCC output. */
5242 processing_gcc_compilation = 2;
5243
5244 processing_has_namespace_info = 0;
5245
5246 start_symtab (name, comp_dir, lowpc);
5247 record_debugformat ("DWARF 2");
5248 record_producer (cu->producer);
5249
5250 initialize_cu_func_list (cu);
5251
5252 /* Decode line number information if present. We do this before
5253 processing child DIEs, so that the line header table is available
5254 for DW_AT_decl_file. */
5255 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
5256 if (attr)
5257 {
5258 unsigned int line_offset = DW_UNSND (attr);
5259 line_header = dwarf_decode_line_header (line_offset, abfd, cu);
5260 if (line_header)
5261 {
5262 cu->line_header = line_header;
5263 make_cleanup (free_cu_line_header, cu);
5264 dwarf_decode_lines (line_header, comp_dir, abfd, cu, NULL);
5265 }
5266 }
5267
5268 /* Process all dies in compilation unit. */
5269 if (die->child != NULL)
5270 {
5271 child_die = die->child;
5272 while (child_die && child_die->tag)
5273 {
5274 process_die (child_die, cu);
5275 child_die = sibling_die (child_die);
5276 }
5277 }
5278
5279 /* Decode macro information, if present. Dwarf 2 macro information
5280 refers to information in the line number info statement program
5281 header, so we can only read it if we've read the header
5282 successfully. */
5283 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
5284 if (attr && line_header)
5285 {
5286 unsigned int macro_offset = DW_UNSND (attr);
5287
5288 dwarf_decode_macros (line_header, macro_offset,
5289 comp_dir, abfd, cu);
5290 }
5291 do_cleanups (back_to);
5292 }
5293
5294 /* Process DW_TAG_type_unit.
5295 For TUs we want to skip the first top level sibling if it's not the
5296 actual type being defined by this TU. In this case the first top
5297 level sibling is there to provide context only. */
5298
5299 static void
5300 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
5301 {
5302 struct objfile *objfile = cu->objfile;
5303 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
5304 CORE_ADDR lowpc;
5305 struct attribute *attr;
5306 char *name = NULL;
5307 char *comp_dir = NULL;
5308 struct die_info *child_die;
5309 bfd *abfd = objfile->obfd;
5310
5311 /* start_symtab needs a low pc, but we don't really have one.
5312 Do what read_file_scope would do in the absence of such info. */
5313 lowpc = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5314
5315 /* Find the filename. Do not use dwarf2_name here, since the filename
5316 is not a source language identifier. */
5317 attr = dwarf2_attr (die, DW_AT_name, cu);
5318 if (attr)
5319 name = DW_STRING (attr);
5320
5321 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
5322 if (attr)
5323 comp_dir = DW_STRING (attr);
5324 else if (name != NULL && IS_ABSOLUTE_PATH (name))
5325 {
5326 comp_dir = ldirname (name);
5327 if (comp_dir != NULL)
5328 make_cleanup (xfree, comp_dir);
5329 }
5330
5331 if (name == NULL)
5332 name = "<unknown>";
5333
5334 attr = dwarf2_attr (die, DW_AT_language, cu);
5335 if (attr)
5336 set_cu_language (DW_UNSND (attr), cu);
5337
5338 /* This isn't technically needed today. It is done for symmetry
5339 with read_file_scope. */
5340 attr = dwarf2_attr (die, DW_AT_producer, cu);
5341 if (attr)
5342 cu->producer = DW_STRING (attr);
5343
5344 /* We assume that we're processing GCC output. */
5345 processing_gcc_compilation = 2;
5346
5347 processing_has_namespace_info = 0;
5348
5349 start_symtab (name, comp_dir, lowpc);
5350 record_debugformat ("DWARF 2");
5351 record_producer (cu->producer);
5352
5353 /* Process the dies in the type unit. */
5354 if (die->child == NULL)
5355 {
5356 dump_die_for_error (die);
5357 error (_("Dwarf Error: Missing children for type unit [in module %s]"),
5358 bfd_get_filename (abfd));
5359 }
5360
5361 child_die = die->child;
5362
5363 while (child_die && child_die->tag)
5364 {
5365 process_die (child_die, cu);
5366
5367 child_die = sibling_die (child_die);
5368 }
5369
5370 do_cleanups (back_to);
5371 }
5372
5373 static void
5374 add_to_cu_func_list (const char *name, CORE_ADDR lowpc, CORE_ADDR highpc,
5375 struct dwarf2_cu *cu)
5376 {
5377 struct function_range *thisfn;
5378
5379 thisfn = (struct function_range *)
5380 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct function_range));
5381 thisfn->name = name;
5382 thisfn->lowpc = lowpc;
5383 thisfn->highpc = highpc;
5384 thisfn->seen_line = 0;
5385 thisfn->next = NULL;
5386
5387 if (cu->last_fn == NULL)
5388 cu->first_fn = thisfn;
5389 else
5390 cu->last_fn->next = thisfn;
5391
5392 cu->last_fn = thisfn;
5393 }
5394
5395 /* qsort helper for inherit_abstract_dies. */
5396
5397 static int
5398 unsigned_int_compar (const void *ap, const void *bp)
5399 {
5400 unsigned int a = *(unsigned int *) ap;
5401 unsigned int b = *(unsigned int *) bp;
5402
5403 return (a > b) - (b > a);
5404 }
5405
5406 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
5407 Inherit only the children of the DW_AT_abstract_origin DIE not being
5408 already referenced by DW_AT_abstract_origin from the children of the
5409 current DIE. */
5410
5411 static void
5412 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
5413 {
5414 struct die_info *child_die;
5415 unsigned die_children_count;
5416 /* CU offsets which were referenced by children of the current DIE. */
5417 unsigned *offsets;
5418 unsigned *offsets_end, *offsetp;
5419 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
5420 struct die_info *origin_die;
5421 /* Iterator of the ORIGIN_DIE children. */
5422 struct die_info *origin_child_die;
5423 struct cleanup *cleanups;
5424 struct attribute *attr;
5425 struct dwarf2_cu *origin_cu;
5426 struct pending **origin_previous_list_in_scope;
5427
5428 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
5429 if (!attr)
5430 return;
5431
5432 /* Note that following die references may follow to a die in a
5433 different cu. */
5434
5435 origin_cu = cu;
5436 origin_die = follow_die_ref (die, attr, &origin_cu);
5437
5438 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
5439 symbols in. */
5440 origin_previous_list_in_scope = origin_cu->list_in_scope;
5441 origin_cu->list_in_scope = cu->list_in_scope;
5442
5443 if (die->tag != origin_die->tag
5444 && !(die->tag == DW_TAG_inlined_subroutine
5445 && origin_die->tag == DW_TAG_subprogram))
5446 complaint (&symfile_complaints,
5447 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
5448 die->offset, origin_die->offset);
5449
5450 child_die = die->child;
5451 die_children_count = 0;
5452 while (child_die && child_die->tag)
5453 {
5454 child_die = sibling_die (child_die);
5455 die_children_count++;
5456 }
5457 offsets = xmalloc (sizeof (*offsets) * die_children_count);
5458 cleanups = make_cleanup (xfree, offsets);
5459
5460 offsets_end = offsets;
5461 child_die = die->child;
5462 while (child_die && child_die->tag)
5463 {
5464 /* For each CHILD_DIE, find the corresponding child of
5465 ORIGIN_DIE. If there is more than one layer of
5466 DW_AT_abstract_origin, follow them all; there shouldn't be,
5467 but GCC versions at least through 4.4 generate this (GCC PR
5468 40573). */
5469 struct die_info *child_origin_die = child_die;
5470 struct dwarf2_cu *child_origin_cu = cu;
5471
5472 while (1)
5473 {
5474 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
5475 child_origin_cu);
5476 if (attr == NULL)
5477 break;
5478 child_origin_die = follow_die_ref (child_origin_die, attr,
5479 &child_origin_cu);
5480 }
5481
5482 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
5483 counterpart may exist. */
5484 if (child_origin_die != child_die)
5485 {
5486 if (child_die->tag != child_origin_die->tag
5487 && !(child_die->tag == DW_TAG_inlined_subroutine
5488 && child_origin_die->tag == DW_TAG_subprogram))
5489 complaint (&symfile_complaints,
5490 _("Child DIE 0x%x and its abstract origin 0x%x have "
5491 "different tags"), child_die->offset,
5492 child_origin_die->offset);
5493 if (child_origin_die->parent != origin_die)
5494 complaint (&symfile_complaints,
5495 _("Child DIE 0x%x and its abstract origin 0x%x have "
5496 "different parents"), child_die->offset,
5497 child_origin_die->offset);
5498 else
5499 *offsets_end++ = child_origin_die->offset;
5500 }
5501 child_die = sibling_die (child_die);
5502 }
5503 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
5504 unsigned_int_compar);
5505 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
5506 if (offsetp[-1] == *offsetp)
5507 complaint (&symfile_complaints,
5508 _("Multiple children of DIE 0x%x refer "
5509 "to DIE 0x%x as their abstract origin"),
5510 die->offset, *offsetp);
5511
5512 offsetp = offsets;
5513 origin_child_die = origin_die->child;
5514 while (origin_child_die && origin_child_die->tag)
5515 {
5516 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
5517 while (offsetp < offsets_end && *offsetp < origin_child_die->offset)
5518 offsetp++;
5519 if (offsetp >= offsets_end || *offsetp > origin_child_die->offset)
5520 {
5521 /* Found that ORIGIN_CHILD_DIE is really not referenced. */
5522 process_die (origin_child_die, origin_cu);
5523 }
5524 origin_child_die = sibling_die (origin_child_die);
5525 }
5526 origin_cu->list_in_scope = origin_previous_list_in_scope;
5527
5528 do_cleanups (cleanups);
5529 }
5530
5531 static void
5532 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
5533 {
5534 struct objfile *objfile = cu->objfile;
5535 struct context_stack *new;
5536 CORE_ADDR lowpc;
5537 CORE_ADDR highpc;
5538 struct die_info *child_die;
5539 struct attribute *attr, *call_line, *call_file;
5540 char *name;
5541 CORE_ADDR baseaddr;
5542 struct block *block;
5543 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
5544 VEC (symbolp) *template_args = NULL;
5545 struct template_symbol *templ_func = NULL;
5546
5547 if (inlined_func)
5548 {
5549 /* If we do not have call site information, we can't show the
5550 caller of this inlined function. That's too confusing, so
5551 only use the scope for local variables. */
5552 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
5553 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
5554 if (call_line == NULL || call_file == NULL)
5555 {
5556 read_lexical_block_scope (die, cu);
5557 return;
5558 }
5559 }
5560
5561 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5562
5563 name = dwarf2_name (die, cu);
5564
5565 /* Ignore functions with missing or empty names. These are actually
5566 illegal according to the DWARF standard. */
5567 if (name == NULL)
5568 {
5569 complaint (&symfile_complaints,
5570 _("missing name for subprogram DIE at %d"), die->offset);
5571 return;
5572 }
5573
5574 /* Ignore functions with missing or invalid low and high pc attributes. */
5575 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
5576 {
5577 attr = dwarf2_attr (die, DW_AT_external, cu);
5578 if (!attr || !DW_UNSND (attr))
5579 complaint (&symfile_complaints,
5580 _("cannot get low and high bounds "
5581 "for subprogram DIE at %d"),
5582 die->offset);
5583 return;
5584 }
5585
5586 lowpc += baseaddr;
5587 highpc += baseaddr;
5588
5589 /* Record the function range for dwarf_decode_lines. */
5590 add_to_cu_func_list (name, lowpc, highpc, cu);
5591
5592 /* If we have any template arguments, then we must allocate a
5593 different sort of symbol. */
5594 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
5595 {
5596 if (child_die->tag == DW_TAG_template_type_param
5597 || child_die->tag == DW_TAG_template_value_param)
5598 {
5599 templ_func = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5600 struct template_symbol);
5601 templ_func->base.is_cplus_template_function = 1;
5602 break;
5603 }
5604 }
5605
5606 new = push_context (0, lowpc);
5607 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
5608 (struct symbol *) templ_func);
5609
5610 /* If there is a location expression for DW_AT_frame_base, record
5611 it. */
5612 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
5613 if (attr)
5614 /* FIXME: cagney/2004-01-26: The DW_AT_frame_base's location
5615 expression is being recorded directly in the function's symbol
5616 and not in a separate frame-base object. I guess this hack is
5617 to avoid adding some sort of frame-base adjunct/annex to the
5618 function's symbol :-(. The problem with doing this is that it
5619 results in a function symbol with a location expression that
5620 has nothing to do with the location of the function, ouch! The
5621 relationship should be: a function's symbol has-a frame base; a
5622 frame-base has-a location expression. */
5623 dwarf2_symbol_mark_computed (attr, new->name, cu);
5624
5625 cu->list_in_scope = &local_symbols;
5626
5627 if (die->child != NULL)
5628 {
5629 child_die = die->child;
5630 while (child_die && child_die->tag)
5631 {
5632 if (child_die->tag == DW_TAG_template_type_param
5633 || child_die->tag == DW_TAG_template_value_param)
5634 {
5635 struct symbol *arg = new_symbol (child_die, NULL, cu);
5636
5637 if (arg != NULL)
5638 VEC_safe_push (symbolp, template_args, arg);
5639 }
5640 else
5641 process_die (child_die, cu);
5642 child_die = sibling_die (child_die);
5643 }
5644 }
5645
5646 inherit_abstract_dies (die, cu);
5647
5648 /* If we have a DW_AT_specification, we might need to import using
5649 directives from the context of the specification DIE. See the
5650 comment in determine_prefix. */
5651 if (cu->language == language_cplus
5652 && dwarf2_attr (die, DW_AT_specification, cu))
5653 {
5654 struct dwarf2_cu *spec_cu = cu;
5655 struct die_info *spec_die = die_specification (die, &spec_cu);
5656
5657 while (spec_die)
5658 {
5659 child_die = spec_die->child;
5660 while (child_die && child_die->tag)
5661 {
5662 if (child_die->tag == DW_TAG_imported_module)
5663 process_die (child_die, spec_cu);
5664 child_die = sibling_die (child_die);
5665 }
5666
5667 /* In some cases, GCC generates specification DIEs that
5668 themselves contain DW_AT_specification attributes. */
5669 spec_die = die_specification (spec_die, &spec_cu);
5670 }
5671 }
5672
5673 new = pop_context ();
5674 /* Make a block for the local symbols within. */
5675 block = finish_block (new->name, &local_symbols, new->old_blocks,
5676 lowpc, highpc, objfile);
5677
5678 /* For C++, set the block's scope. */
5679 if (cu->language == language_cplus || cu->language == language_fortran)
5680 cp_set_block_scope (new->name, block, &objfile->objfile_obstack,
5681 determine_prefix (die, cu),
5682 processing_has_namespace_info);
5683
5684 /* If we have address ranges, record them. */
5685 dwarf2_record_block_ranges (die, block, baseaddr, cu);
5686
5687 /* Attach template arguments to function. */
5688 if (! VEC_empty (symbolp, template_args))
5689 {
5690 gdb_assert (templ_func != NULL);
5691
5692 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
5693 templ_func->template_arguments
5694 = obstack_alloc (&objfile->objfile_obstack,
5695 (templ_func->n_template_arguments
5696 * sizeof (struct symbol *)));
5697 memcpy (templ_func->template_arguments,
5698 VEC_address (symbolp, template_args),
5699 (templ_func->n_template_arguments * sizeof (struct symbol *)));
5700 VEC_free (symbolp, template_args);
5701 }
5702
5703 /* In C++, we can have functions nested inside functions (e.g., when
5704 a function declares a class that has methods). This means that
5705 when we finish processing a function scope, we may need to go
5706 back to building a containing block's symbol lists. */
5707 local_symbols = new->locals;
5708 param_symbols = new->params;
5709 using_directives = new->using_directives;
5710
5711 /* If we've finished processing a top-level function, subsequent
5712 symbols go in the file symbol list. */
5713 if (outermost_context_p ())
5714 cu->list_in_scope = &file_symbols;
5715 }
5716
5717 /* Process all the DIES contained within a lexical block scope. Start
5718 a new scope, process the dies, and then close the scope. */
5719
5720 static void
5721 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
5722 {
5723 struct objfile *objfile = cu->objfile;
5724 struct context_stack *new;
5725 CORE_ADDR lowpc, highpc;
5726 struct die_info *child_die;
5727 CORE_ADDR baseaddr;
5728
5729 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5730
5731 /* Ignore blocks with missing or invalid low and high pc attributes. */
5732 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
5733 as multiple lexical blocks? Handling children in a sane way would
5734 be nasty. Might be easier to properly extend generic blocks to
5735 describe ranges. */
5736 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
5737 return;
5738 lowpc += baseaddr;
5739 highpc += baseaddr;
5740
5741 push_context (0, lowpc);
5742 if (die->child != NULL)
5743 {
5744 child_die = die->child;
5745 while (child_die && child_die->tag)
5746 {
5747 process_die (child_die, cu);
5748 child_die = sibling_die (child_die);
5749 }
5750 }
5751 new = pop_context ();
5752
5753 if (local_symbols != NULL || using_directives != NULL)
5754 {
5755 struct block *block
5756 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
5757 highpc, objfile);
5758
5759 /* Note that recording ranges after traversing children, as we
5760 do here, means that recording a parent's ranges entails
5761 walking across all its children's ranges as they appear in
5762 the address map, which is quadratic behavior.
5763
5764 It would be nicer to record the parent's ranges before
5765 traversing its children, simply overriding whatever you find
5766 there. But since we don't even decide whether to create a
5767 block until after we've traversed its children, that's hard
5768 to do. */
5769 dwarf2_record_block_ranges (die, block, baseaddr, cu);
5770 }
5771 local_symbols = new->locals;
5772 using_directives = new->using_directives;
5773 }
5774
5775 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
5776 Return 1 if the attributes are present and valid, otherwise, return 0.
5777 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
5778
5779 static int
5780 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
5781 CORE_ADDR *high_return, struct dwarf2_cu *cu,
5782 struct partial_symtab *ranges_pst)
5783 {
5784 struct objfile *objfile = cu->objfile;
5785 struct comp_unit_head *cu_header = &cu->header;
5786 bfd *obfd = objfile->obfd;
5787 unsigned int addr_size = cu_header->addr_size;
5788 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
5789 /* Base address selection entry. */
5790 CORE_ADDR base;
5791 int found_base;
5792 unsigned int dummy;
5793 gdb_byte *buffer;
5794 CORE_ADDR marker;
5795 int low_set;
5796 CORE_ADDR low = 0;
5797 CORE_ADDR high = 0;
5798 CORE_ADDR baseaddr;
5799
5800 found_base = cu->base_known;
5801 base = cu->base_address;
5802
5803 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
5804 if (offset >= dwarf2_per_objfile->ranges.size)
5805 {
5806 complaint (&symfile_complaints,
5807 _("Offset %d out of bounds for DW_AT_ranges attribute"),
5808 offset);
5809 return 0;
5810 }
5811 buffer = dwarf2_per_objfile->ranges.buffer + offset;
5812
5813 /* Read in the largest possible address. */
5814 marker = read_address (obfd, buffer, cu, &dummy);
5815 if ((marker & mask) == mask)
5816 {
5817 /* If we found the largest possible address, then
5818 read the base address. */
5819 base = read_address (obfd, buffer + addr_size, cu, &dummy);
5820 buffer += 2 * addr_size;
5821 offset += 2 * addr_size;
5822 found_base = 1;
5823 }
5824
5825 low_set = 0;
5826
5827 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5828
5829 while (1)
5830 {
5831 CORE_ADDR range_beginning, range_end;
5832
5833 range_beginning = read_address (obfd, buffer, cu, &dummy);
5834 buffer += addr_size;
5835 range_end = read_address (obfd, buffer, cu, &dummy);
5836 buffer += addr_size;
5837 offset += 2 * addr_size;
5838
5839 /* An end of list marker is a pair of zero addresses. */
5840 if (range_beginning == 0 && range_end == 0)
5841 /* Found the end of list entry. */
5842 break;
5843
5844 /* Each base address selection entry is a pair of 2 values.
5845 The first is the largest possible address, the second is
5846 the base address. Check for a base address here. */
5847 if ((range_beginning & mask) == mask)
5848 {
5849 /* If we found the largest possible address, then
5850 read the base address. */
5851 base = read_address (obfd, buffer + addr_size, cu, &dummy);
5852 found_base = 1;
5853 continue;
5854 }
5855
5856 if (!found_base)
5857 {
5858 /* We have no valid base address for the ranges
5859 data. */
5860 complaint (&symfile_complaints,
5861 _("Invalid .debug_ranges data (no base address)"));
5862 return 0;
5863 }
5864
5865 range_beginning += base;
5866 range_end += base;
5867
5868 if (ranges_pst != NULL && range_beginning < range_end)
5869 addrmap_set_empty (objfile->psymtabs_addrmap,
5870 range_beginning + baseaddr,
5871 range_end - 1 + baseaddr,
5872 ranges_pst);
5873
5874 /* FIXME: This is recording everything as a low-high
5875 segment of consecutive addresses. We should have a
5876 data structure for discontiguous block ranges
5877 instead. */
5878 if (! low_set)
5879 {
5880 low = range_beginning;
5881 high = range_end;
5882 low_set = 1;
5883 }
5884 else
5885 {
5886 if (range_beginning < low)
5887 low = range_beginning;
5888 if (range_end > high)
5889 high = range_end;
5890 }
5891 }
5892
5893 if (! low_set)
5894 /* If the first entry is an end-of-list marker, the range
5895 describes an empty scope, i.e. no instructions. */
5896 return 0;
5897
5898 if (low_return)
5899 *low_return = low;
5900 if (high_return)
5901 *high_return = high;
5902 return 1;
5903 }
5904
5905 /* Get low and high pc attributes from a die. Return 1 if the attributes
5906 are present and valid, otherwise, return 0. Return -1 if the range is
5907 discontinuous, i.e. derived from DW_AT_ranges information. */
5908 static int
5909 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
5910 CORE_ADDR *highpc, struct dwarf2_cu *cu,
5911 struct partial_symtab *pst)
5912 {
5913 struct attribute *attr;
5914 CORE_ADDR low = 0;
5915 CORE_ADDR high = 0;
5916 int ret = 0;
5917
5918 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
5919 if (attr)
5920 {
5921 high = DW_ADDR (attr);
5922 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
5923 if (attr)
5924 low = DW_ADDR (attr);
5925 else
5926 /* Found high w/o low attribute. */
5927 return 0;
5928
5929 /* Found consecutive range of addresses. */
5930 ret = 1;
5931 }
5932 else
5933 {
5934 attr = dwarf2_attr (die, DW_AT_ranges, cu);
5935 if (attr != NULL)
5936 {
5937 /* Value of the DW_AT_ranges attribute is the offset in the
5938 .debug_ranges section. */
5939 if (!dwarf2_ranges_read (DW_UNSND (attr), &low, &high, cu, pst))
5940 return 0;
5941 /* Found discontinuous range of addresses. */
5942 ret = -1;
5943 }
5944 }
5945
5946 if (high < low)
5947 return 0;
5948
5949 /* When using the GNU linker, .gnu.linkonce. sections are used to
5950 eliminate duplicate copies of functions and vtables and such.
5951 The linker will arbitrarily choose one and discard the others.
5952 The AT_*_pc values for such functions refer to local labels in
5953 these sections. If the section from that file was discarded, the
5954 labels are not in the output, so the relocs get a value of 0.
5955 If this is a discarded function, mark the pc bounds as invalid,
5956 so that GDB will ignore it. */
5957 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
5958 return 0;
5959
5960 *lowpc = low;
5961 *highpc = high;
5962 return ret;
5963 }
5964
5965 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
5966 its low and high PC addresses. Do nothing if these addresses could not
5967 be determined. Otherwise, set LOWPC to the low address if it is smaller,
5968 and HIGHPC to the high address if greater than HIGHPC. */
5969
5970 static void
5971 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
5972 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5973 struct dwarf2_cu *cu)
5974 {
5975 CORE_ADDR low, high;
5976 struct die_info *child = die->child;
5977
5978 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
5979 {
5980 *lowpc = min (*lowpc, low);
5981 *highpc = max (*highpc, high);
5982 }
5983
5984 /* If the language does not allow nested subprograms (either inside
5985 subprograms or lexical blocks), we're done. */
5986 if (cu->language != language_ada)
5987 return;
5988
5989 /* Check all the children of the given DIE. If it contains nested
5990 subprograms, then check their pc bounds. Likewise, we need to
5991 check lexical blocks as well, as they may also contain subprogram
5992 definitions. */
5993 while (child && child->tag)
5994 {
5995 if (child->tag == DW_TAG_subprogram
5996 || child->tag == DW_TAG_lexical_block)
5997 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
5998 child = sibling_die (child);
5999 }
6000 }
6001
6002 /* Get the low and high pc's represented by the scope DIE, and store
6003 them in *LOWPC and *HIGHPC. If the correct values can't be
6004 determined, set *LOWPC to -1 and *HIGHPC to 0. */
6005
6006 static void
6007 get_scope_pc_bounds (struct die_info *die,
6008 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6009 struct dwarf2_cu *cu)
6010 {
6011 CORE_ADDR best_low = (CORE_ADDR) -1;
6012 CORE_ADDR best_high = (CORE_ADDR) 0;
6013 CORE_ADDR current_low, current_high;
6014
6015 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
6016 {
6017 best_low = current_low;
6018 best_high = current_high;
6019 }
6020 else
6021 {
6022 struct die_info *child = die->child;
6023
6024 while (child && child->tag)
6025 {
6026 switch (child->tag) {
6027 case DW_TAG_subprogram:
6028 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
6029 break;
6030 case DW_TAG_namespace:
6031 case DW_TAG_module:
6032 /* FIXME: carlton/2004-01-16: Should we do this for
6033 DW_TAG_class_type/DW_TAG_structure_type, too? I think
6034 that current GCC's always emit the DIEs corresponding
6035 to definitions of methods of classes as children of a
6036 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
6037 the DIEs giving the declarations, which could be
6038 anywhere). But I don't see any reason why the
6039 standards says that they have to be there. */
6040 get_scope_pc_bounds (child, &current_low, &current_high, cu);
6041
6042 if (current_low != ((CORE_ADDR) -1))
6043 {
6044 best_low = min (best_low, current_low);
6045 best_high = max (best_high, current_high);
6046 }
6047 break;
6048 default:
6049 /* Ignore. */
6050 break;
6051 }
6052
6053 child = sibling_die (child);
6054 }
6055 }
6056
6057 *lowpc = best_low;
6058 *highpc = best_high;
6059 }
6060
6061 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
6062 in DIE. */
6063 static void
6064 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
6065 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
6066 {
6067 struct attribute *attr;
6068
6069 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
6070 if (attr)
6071 {
6072 CORE_ADDR high = DW_ADDR (attr);
6073
6074 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6075 if (attr)
6076 {
6077 CORE_ADDR low = DW_ADDR (attr);
6078
6079 record_block_range (block, baseaddr + low, baseaddr + high - 1);
6080 }
6081 }
6082
6083 attr = dwarf2_attr (die, DW_AT_ranges, cu);
6084 if (attr)
6085 {
6086 bfd *obfd = cu->objfile->obfd;
6087
6088 /* The value of the DW_AT_ranges attribute is the offset of the
6089 address range list in the .debug_ranges section. */
6090 unsigned long offset = DW_UNSND (attr);
6091 gdb_byte *buffer = dwarf2_per_objfile->ranges.buffer + offset;
6092
6093 /* For some target architectures, but not others, the
6094 read_address function sign-extends the addresses it returns.
6095 To recognize base address selection entries, we need a
6096 mask. */
6097 unsigned int addr_size = cu->header.addr_size;
6098 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
6099
6100 /* The base address, to which the next pair is relative. Note
6101 that this 'base' is a DWARF concept: most entries in a range
6102 list are relative, to reduce the number of relocs against the
6103 debugging information. This is separate from this function's
6104 'baseaddr' argument, which GDB uses to relocate debugging
6105 information from a shared library based on the address at
6106 which the library was loaded. */
6107 CORE_ADDR base = cu->base_address;
6108 int base_known = cu->base_known;
6109
6110 gdb_assert (dwarf2_per_objfile->ranges.readin);
6111 if (offset >= dwarf2_per_objfile->ranges.size)
6112 {
6113 complaint (&symfile_complaints,
6114 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
6115 offset);
6116 return;
6117 }
6118
6119 for (;;)
6120 {
6121 unsigned int bytes_read;
6122 CORE_ADDR start, end;
6123
6124 start = read_address (obfd, buffer, cu, &bytes_read);
6125 buffer += bytes_read;
6126 end = read_address (obfd, buffer, cu, &bytes_read);
6127 buffer += bytes_read;
6128
6129 /* Did we find the end of the range list? */
6130 if (start == 0 && end == 0)
6131 break;
6132
6133 /* Did we find a base address selection entry? */
6134 else if ((start & base_select_mask) == base_select_mask)
6135 {
6136 base = end;
6137 base_known = 1;
6138 }
6139
6140 /* We found an ordinary address range. */
6141 else
6142 {
6143 if (!base_known)
6144 {
6145 complaint (&symfile_complaints,
6146 _("Invalid .debug_ranges data "
6147 "(no base address)"));
6148 return;
6149 }
6150
6151 record_block_range (block,
6152 baseaddr + base + start,
6153 baseaddr + base + end - 1);
6154 }
6155 }
6156 }
6157 }
6158
6159 /* Add an aggregate field to the field list. */
6160
6161 static void
6162 dwarf2_add_field (struct field_info *fip, struct die_info *die,
6163 struct dwarf2_cu *cu)
6164 {
6165 struct objfile *objfile = cu->objfile;
6166 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6167 struct nextfield *new_field;
6168 struct attribute *attr;
6169 struct field *fp;
6170 char *fieldname = "";
6171
6172 /* Allocate a new field list entry and link it in. */
6173 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
6174 make_cleanup (xfree, new_field);
6175 memset (new_field, 0, sizeof (struct nextfield));
6176
6177 if (die->tag == DW_TAG_inheritance)
6178 {
6179 new_field->next = fip->baseclasses;
6180 fip->baseclasses = new_field;
6181 }
6182 else
6183 {
6184 new_field->next = fip->fields;
6185 fip->fields = new_field;
6186 }
6187 fip->nfields++;
6188
6189 /* Handle accessibility and virtuality of field.
6190 The default accessibility for members is public, the default
6191 accessibility for inheritance is private. */
6192 if (die->tag != DW_TAG_inheritance)
6193 new_field->accessibility = DW_ACCESS_public;
6194 else
6195 new_field->accessibility = DW_ACCESS_private;
6196 new_field->virtuality = DW_VIRTUALITY_none;
6197
6198 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
6199 if (attr)
6200 new_field->accessibility = DW_UNSND (attr);
6201 if (new_field->accessibility != DW_ACCESS_public)
6202 fip->non_public_fields = 1;
6203 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
6204 if (attr)
6205 new_field->virtuality = DW_UNSND (attr);
6206
6207 fp = &new_field->field;
6208
6209 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
6210 {
6211 /* Data member other than a C++ static data member. */
6212
6213 /* Get type of field. */
6214 fp->type = die_type (die, cu);
6215
6216 SET_FIELD_BITPOS (*fp, 0);
6217
6218 /* Get bit size of field (zero if none). */
6219 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
6220 if (attr)
6221 {
6222 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
6223 }
6224 else
6225 {
6226 FIELD_BITSIZE (*fp) = 0;
6227 }
6228
6229 /* Get bit offset of field. */
6230 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
6231 if (attr)
6232 {
6233 int byte_offset = 0;
6234
6235 if (attr_form_is_section_offset (attr))
6236 dwarf2_complex_location_expr_complaint ();
6237 else if (attr_form_is_constant (attr))
6238 byte_offset = dwarf2_get_attr_constant_value (attr, 0);
6239 else if (attr_form_is_block (attr))
6240 byte_offset = decode_locdesc (DW_BLOCK (attr), cu);
6241 else
6242 dwarf2_complex_location_expr_complaint ();
6243
6244 SET_FIELD_BITPOS (*fp, byte_offset * bits_per_byte);
6245 }
6246 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
6247 if (attr)
6248 {
6249 if (gdbarch_bits_big_endian (gdbarch))
6250 {
6251 /* For big endian bits, the DW_AT_bit_offset gives the
6252 additional bit offset from the MSB of the containing
6253 anonymous object to the MSB of the field. We don't
6254 have to do anything special since we don't need to
6255 know the size of the anonymous object. */
6256 FIELD_BITPOS (*fp) += DW_UNSND (attr);
6257 }
6258 else
6259 {
6260 /* For little endian bits, compute the bit offset to the
6261 MSB of the anonymous object, subtract off the number of
6262 bits from the MSB of the field to the MSB of the
6263 object, and then subtract off the number of bits of
6264 the field itself. The result is the bit offset of
6265 the LSB of the field. */
6266 int anonymous_size;
6267 int bit_offset = DW_UNSND (attr);
6268
6269 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
6270 if (attr)
6271 {
6272 /* The size of the anonymous object containing
6273 the bit field is explicit, so use the
6274 indicated size (in bytes). */
6275 anonymous_size = DW_UNSND (attr);
6276 }
6277 else
6278 {
6279 /* The size of the anonymous object containing
6280 the bit field must be inferred from the type
6281 attribute of the data member containing the
6282 bit field. */
6283 anonymous_size = TYPE_LENGTH (fp->type);
6284 }
6285 FIELD_BITPOS (*fp) += anonymous_size * bits_per_byte
6286 - bit_offset - FIELD_BITSIZE (*fp);
6287 }
6288 }
6289
6290 /* Get name of field. */
6291 fieldname = dwarf2_name (die, cu);
6292 if (fieldname == NULL)
6293 fieldname = "";
6294
6295 /* The name is already allocated along with this objfile, so we don't
6296 need to duplicate it for the type. */
6297 fp->name = fieldname;
6298
6299 /* Change accessibility for artificial fields (e.g. virtual table
6300 pointer or virtual base class pointer) to private. */
6301 if (dwarf2_attr (die, DW_AT_artificial, cu))
6302 {
6303 FIELD_ARTIFICIAL (*fp) = 1;
6304 new_field->accessibility = DW_ACCESS_private;
6305 fip->non_public_fields = 1;
6306 }
6307 }
6308 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
6309 {
6310 /* C++ static member. */
6311
6312 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
6313 is a declaration, but all versions of G++ as of this writing
6314 (so through at least 3.2.1) incorrectly generate
6315 DW_TAG_variable tags. */
6316
6317 char *physname;
6318
6319 /* Get name of field. */
6320 fieldname = dwarf2_name (die, cu);
6321 if (fieldname == NULL)
6322 return;
6323
6324 attr = dwarf2_attr (die, DW_AT_const_value, cu);
6325 if (attr
6326 /* Only create a symbol if this is an external value.
6327 new_symbol checks this and puts the value in the global symbol
6328 table, which we want. If it is not external, new_symbol
6329 will try to put the value in cu->list_in_scope which is wrong. */
6330 && dwarf2_flag_true_p (die, DW_AT_external, cu))
6331 {
6332 /* A static const member, not much different than an enum as far as
6333 we're concerned, except that we can support more types. */
6334 new_symbol (die, NULL, cu);
6335 }
6336
6337 /* Get physical name. */
6338 physname = (char *) dwarf2_physname (fieldname, die, cu);
6339
6340 /* The name is already allocated along with this objfile, so we don't
6341 need to duplicate it for the type. */
6342 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
6343 FIELD_TYPE (*fp) = die_type (die, cu);
6344 FIELD_NAME (*fp) = fieldname;
6345 }
6346 else if (die->tag == DW_TAG_inheritance)
6347 {
6348 /* C++ base class field. */
6349 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
6350 if (attr)
6351 {
6352 int byte_offset = 0;
6353
6354 if (attr_form_is_section_offset (attr))
6355 dwarf2_complex_location_expr_complaint ();
6356 else if (attr_form_is_constant (attr))
6357 byte_offset = dwarf2_get_attr_constant_value (attr, 0);
6358 else if (attr_form_is_block (attr))
6359 byte_offset = decode_locdesc (DW_BLOCK (attr), cu);
6360 else
6361 dwarf2_complex_location_expr_complaint ();
6362
6363 SET_FIELD_BITPOS (*fp, byte_offset * bits_per_byte);
6364 }
6365 FIELD_BITSIZE (*fp) = 0;
6366 FIELD_TYPE (*fp) = die_type (die, cu);
6367 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
6368 fip->nbaseclasses++;
6369 }
6370 }
6371
6372 /* Add a typedef defined in the scope of the FIP's class. */
6373
6374 static void
6375 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
6376 struct dwarf2_cu *cu)
6377 {
6378 struct objfile *objfile = cu->objfile;
6379 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6380 struct typedef_field_list *new_field;
6381 struct attribute *attr;
6382 struct typedef_field *fp;
6383 char *fieldname = "";
6384
6385 /* Allocate a new field list entry and link it in. */
6386 new_field = xzalloc (sizeof (*new_field));
6387 make_cleanup (xfree, new_field);
6388
6389 gdb_assert (die->tag == DW_TAG_typedef);
6390
6391 fp = &new_field->field;
6392
6393 /* Get name of field. */
6394 fp->name = dwarf2_name (die, cu);
6395 if (fp->name == NULL)
6396 return;
6397
6398 fp->type = read_type_die (die, cu);
6399
6400 new_field->next = fip->typedef_field_list;
6401 fip->typedef_field_list = new_field;
6402 fip->typedef_field_list_count++;
6403 }
6404
6405 /* Create the vector of fields, and attach it to the type. */
6406
6407 static void
6408 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
6409 struct dwarf2_cu *cu)
6410 {
6411 int nfields = fip->nfields;
6412
6413 /* Record the field count, allocate space for the array of fields,
6414 and create blank accessibility bitfields if necessary. */
6415 TYPE_NFIELDS (type) = nfields;
6416 TYPE_FIELDS (type) = (struct field *)
6417 TYPE_ALLOC (type, sizeof (struct field) * nfields);
6418 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
6419
6420 if (fip->non_public_fields && cu->language != language_ada)
6421 {
6422 ALLOCATE_CPLUS_STRUCT_TYPE (type);
6423
6424 TYPE_FIELD_PRIVATE_BITS (type) =
6425 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
6426 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
6427
6428 TYPE_FIELD_PROTECTED_BITS (type) =
6429 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
6430 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
6431
6432 TYPE_FIELD_IGNORE_BITS (type) =
6433 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
6434 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
6435 }
6436
6437 /* If the type has baseclasses, allocate and clear a bit vector for
6438 TYPE_FIELD_VIRTUAL_BITS. */
6439 if (fip->nbaseclasses && cu->language != language_ada)
6440 {
6441 int num_bytes = B_BYTES (fip->nbaseclasses);
6442 unsigned char *pointer;
6443
6444 ALLOCATE_CPLUS_STRUCT_TYPE (type);
6445 pointer = TYPE_ALLOC (type, num_bytes);
6446 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
6447 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
6448 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
6449 }
6450
6451 /* Copy the saved-up fields into the field vector. Start from the head of
6452 the list, adding to the tail of the field array, so that they end up in
6453 the same order in the array in which they were added to the list. */
6454 while (nfields-- > 0)
6455 {
6456 struct nextfield *fieldp;
6457
6458 if (fip->fields)
6459 {
6460 fieldp = fip->fields;
6461 fip->fields = fieldp->next;
6462 }
6463 else
6464 {
6465 fieldp = fip->baseclasses;
6466 fip->baseclasses = fieldp->next;
6467 }
6468
6469 TYPE_FIELD (type, nfields) = fieldp->field;
6470 switch (fieldp->accessibility)
6471 {
6472 case DW_ACCESS_private:
6473 if (cu->language != language_ada)
6474 SET_TYPE_FIELD_PRIVATE (type, nfields);
6475 break;
6476
6477 case DW_ACCESS_protected:
6478 if (cu->language != language_ada)
6479 SET_TYPE_FIELD_PROTECTED (type, nfields);
6480 break;
6481
6482 case DW_ACCESS_public:
6483 break;
6484
6485 default:
6486 /* Unknown accessibility. Complain and treat it as public. */
6487 {
6488 complaint (&symfile_complaints, _("unsupported accessibility %d"),
6489 fieldp->accessibility);
6490 }
6491 break;
6492 }
6493 if (nfields < fip->nbaseclasses)
6494 {
6495 switch (fieldp->virtuality)
6496 {
6497 case DW_VIRTUALITY_virtual:
6498 case DW_VIRTUALITY_pure_virtual:
6499 if (cu->language == language_ada)
6500 error (_("unexpected virtuality in component of Ada type"));
6501 SET_TYPE_FIELD_VIRTUAL (type, nfields);
6502 break;
6503 }
6504 }
6505 }
6506 }
6507
6508 /* Add a member function to the proper fieldlist. */
6509
6510 static void
6511 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
6512 struct type *type, struct dwarf2_cu *cu)
6513 {
6514 struct objfile *objfile = cu->objfile;
6515 struct attribute *attr;
6516 struct fnfieldlist *flp;
6517 int i;
6518 struct fn_field *fnp;
6519 char *fieldname;
6520 struct nextfnfield *new_fnfield;
6521 struct type *this_type;
6522
6523 if (cu->language == language_ada)
6524 error (_("unexpected member function in Ada type"));
6525
6526 /* Get name of member function. */
6527 fieldname = dwarf2_name (die, cu);
6528 if (fieldname == NULL)
6529 return;
6530
6531 /* Look up member function name in fieldlist. */
6532 for (i = 0; i < fip->nfnfields; i++)
6533 {
6534 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
6535 break;
6536 }
6537
6538 /* Create new list element if necessary. */
6539 if (i < fip->nfnfields)
6540 flp = &fip->fnfieldlists[i];
6541 else
6542 {
6543 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
6544 {
6545 fip->fnfieldlists = (struct fnfieldlist *)
6546 xrealloc (fip->fnfieldlists,
6547 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
6548 * sizeof (struct fnfieldlist));
6549 if (fip->nfnfields == 0)
6550 make_cleanup (free_current_contents, &fip->fnfieldlists);
6551 }
6552 flp = &fip->fnfieldlists[fip->nfnfields];
6553 flp->name = fieldname;
6554 flp->length = 0;
6555 flp->head = NULL;
6556 i = fip->nfnfields++;
6557 }
6558
6559 /* Create a new member function field and chain it to the field list
6560 entry. */
6561 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
6562 make_cleanup (xfree, new_fnfield);
6563 memset (new_fnfield, 0, sizeof (struct nextfnfield));
6564 new_fnfield->next = flp->head;
6565 flp->head = new_fnfield;
6566 flp->length++;
6567
6568 /* Fill in the member function field info. */
6569 fnp = &new_fnfield->fnfield;
6570
6571 /* Delay processing of the physname until later. */
6572 if (cu->language == language_cplus || cu->language == language_java)
6573 {
6574 add_to_method_list (type, i, flp->length - 1, fieldname,
6575 die, cu);
6576 }
6577 else
6578 {
6579 char *physname = (char *) dwarf2_physname (fieldname, die, cu);
6580 fnp->physname = physname ? physname : "";
6581 }
6582
6583 fnp->type = alloc_type (objfile);
6584 this_type = read_type_die (die, cu);
6585 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
6586 {
6587 int nparams = TYPE_NFIELDS (this_type);
6588
6589 /* TYPE is the domain of this method, and THIS_TYPE is the type
6590 of the method itself (TYPE_CODE_METHOD). */
6591 smash_to_method_type (fnp->type, type,
6592 TYPE_TARGET_TYPE (this_type),
6593 TYPE_FIELDS (this_type),
6594 TYPE_NFIELDS (this_type),
6595 TYPE_VARARGS (this_type));
6596
6597 /* Handle static member functions.
6598 Dwarf2 has no clean way to discern C++ static and non-static
6599 member functions. G++ helps GDB by marking the first
6600 parameter for non-static member functions (which is the this
6601 pointer) as artificial. We obtain this information from
6602 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
6603 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
6604 fnp->voffset = VOFFSET_STATIC;
6605 }
6606 else
6607 complaint (&symfile_complaints, _("member function type missing for '%s'"),
6608 dwarf2_full_name (fieldname, die, cu));
6609
6610 /* Get fcontext from DW_AT_containing_type if present. */
6611 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
6612 fnp->fcontext = die_containing_type (die, cu);
6613
6614 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
6615 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
6616
6617 /* Get accessibility. */
6618 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
6619 if (attr)
6620 {
6621 switch (DW_UNSND (attr))
6622 {
6623 case DW_ACCESS_private:
6624 fnp->is_private = 1;
6625 break;
6626 case DW_ACCESS_protected:
6627 fnp->is_protected = 1;
6628 break;
6629 }
6630 }
6631
6632 /* Check for artificial methods. */
6633 attr = dwarf2_attr (die, DW_AT_artificial, cu);
6634 if (attr && DW_UNSND (attr) != 0)
6635 fnp->is_artificial = 1;
6636
6637 /* Get index in virtual function table if it is a virtual member
6638 function. For older versions of GCC, this is an offset in the
6639 appropriate virtual table, as specified by DW_AT_containing_type.
6640 For everyone else, it is an expression to be evaluated relative
6641 to the object address. */
6642
6643 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
6644 if (attr)
6645 {
6646 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
6647 {
6648 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
6649 {
6650 /* Old-style GCC. */
6651 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
6652 }
6653 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
6654 || (DW_BLOCK (attr)->size > 1
6655 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
6656 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
6657 {
6658 struct dwarf_block blk;
6659 int offset;
6660
6661 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
6662 ? 1 : 2);
6663 blk.size = DW_BLOCK (attr)->size - offset;
6664 blk.data = DW_BLOCK (attr)->data + offset;
6665 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
6666 if ((fnp->voffset % cu->header.addr_size) != 0)
6667 dwarf2_complex_location_expr_complaint ();
6668 else
6669 fnp->voffset /= cu->header.addr_size;
6670 fnp->voffset += 2;
6671 }
6672 else
6673 dwarf2_complex_location_expr_complaint ();
6674
6675 if (!fnp->fcontext)
6676 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
6677 }
6678 else if (attr_form_is_section_offset (attr))
6679 {
6680 dwarf2_complex_location_expr_complaint ();
6681 }
6682 else
6683 {
6684 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
6685 fieldname);
6686 }
6687 }
6688 else
6689 {
6690 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
6691 if (attr && DW_UNSND (attr))
6692 {
6693 /* GCC does this, as of 2008-08-25; PR debug/37237. */
6694 complaint (&symfile_complaints,
6695 _("Member function \"%s\" (offset %d) is virtual "
6696 "but the vtable offset is not specified"),
6697 fieldname, die->offset);
6698 ALLOCATE_CPLUS_STRUCT_TYPE (type);
6699 TYPE_CPLUS_DYNAMIC (type) = 1;
6700 }
6701 }
6702 }
6703
6704 /* Create the vector of member function fields, and attach it to the type. */
6705
6706 static void
6707 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
6708 struct dwarf2_cu *cu)
6709 {
6710 struct fnfieldlist *flp;
6711 int total_length = 0;
6712 int i;
6713
6714 if (cu->language == language_ada)
6715 error (_("unexpected member functions in Ada type"));
6716
6717 ALLOCATE_CPLUS_STRUCT_TYPE (type);
6718 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
6719 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
6720
6721 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
6722 {
6723 struct nextfnfield *nfp = flp->head;
6724 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
6725 int k;
6726
6727 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
6728 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
6729 fn_flp->fn_fields = (struct fn_field *)
6730 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
6731 for (k = flp->length; (k--, nfp); nfp = nfp->next)
6732 fn_flp->fn_fields[k] = nfp->fnfield;
6733
6734 total_length += flp->length;
6735 }
6736
6737 TYPE_NFN_FIELDS (type) = fip->nfnfields;
6738 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
6739 }
6740
6741 /* Returns non-zero if NAME is the name of a vtable member in CU's
6742 language, zero otherwise. */
6743 static int
6744 is_vtable_name (const char *name, struct dwarf2_cu *cu)
6745 {
6746 static const char vptr[] = "_vptr";
6747 static const char vtable[] = "vtable";
6748
6749 /* Look for the C++ and Java forms of the vtable. */
6750 if ((cu->language == language_java
6751 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
6752 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
6753 && is_cplus_marker (name[sizeof (vptr) - 1])))
6754 return 1;
6755
6756 return 0;
6757 }
6758
6759 /* GCC outputs unnamed structures that are really pointers to member
6760 functions, with the ABI-specified layout. If TYPE describes
6761 such a structure, smash it into a member function type.
6762
6763 GCC shouldn't do this; it should just output pointer to member DIEs.
6764 This is GCC PR debug/28767. */
6765
6766 static void
6767 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
6768 {
6769 struct type *pfn_type, *domain_type, *new_type;
6770
6771 /* Check for a structure with no name and two children. */
6772 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
6773 return;
6774
6775 /* Check for __pfn and __delta members. */
6776 if (TYPE_FIELD_NAME (type, 0) == NULL
6777 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
6778 || TYPE_FIELD_NAME (type, 1) == NULL
6779 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
6780 return;
6781
6782 /* Find the type of the method. */
6783 pfn_type = TYPE_FIELD_TYPE (type, 0);
6784 if (pfn_type == NULL
6785 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
6786 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
6787 return;
6788
6789 /* Look for the "this" argument. */
6790 pfn_type = TYPE_TARGET_TYPE (pfn_type);
6791 if (TYPE_NFIELDS (pfn_type) == 0
6792 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
6793 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
6794 return;
6795
6796 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
6797 new_type = alloc_type (objfile);
6798 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
6799 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
6800 TYPE_VARARGS (pfn_type));
6801 smash_to_methodptr_type (type, new_type);
6802 }
6803
6804 /* Called when we find the DIE that starts a structure or union scope
6805 (definition) to create a type for the structure or union. Fill in
6806 the type's name and general properties; the members will not be
6807 processed until process_structure_type.
6808
6809 NOTE: we need to call these functions regardless of whether or not the
6810 DIE has a DW_AT_name attribute, since it might be an anonymous
6811 structure or union. This gets the type entered into our set of
6812 user defined types.
6813
6814 However, if the structure is incomplete (an opaque struct/union)
6815 then suppress creating a symbol table entry for it since gdb only
6816 wants to find the one with the complete definition. Note that if
6817 it is complete, we just call new_symbol, which does it's own
6818 checking about whether the struct/union is anonymous or not (and
6819 suppresses creating a symbol table entry itself). */
6820
6821 static struct type *
6822 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
6823 {
6824 struct objfile *objfile = cu->objfile;
6825 struct type *type;
6826 struct attribute *attr;
6827 char *name;
6828
6829 /* If the definition of this type lives in .debug_types, read that type.
6830 Don't follow DW_AT_specification though, that will take us back up
6831 the chain and we want to go down. */
6832 attr = dwarf2_attr_no_follow (die, DW_AT_signature, cu);
6833 if (attr)
6834 {
6835 struct dwarf2_cu *type_cu = cu;
6836 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
6837
6838 /* We could just recurse on read_structure_type, but we need to call
6839 get_die_type to ensure only one type for this DIE is created.
6840 This is important, for example, because for c++ classes we need
6841 TYPE_NAME set which is only done by new_symbol. Blech. */
6842 type = read_type_die (type_die, type_cu);
6843
6844 /* TYPE_CU may not be the same as CU.
6845 Ensure TYPE is recorded in CU's type_hash table. */
6846 return set_die_type (die, type, cu);
6847 }
6848
6849 type = alloc_type (objfile);
6850 INIT_CPLUS_SPECIFIC (type);
6851
6852 name = dwarf2_name (die, cu);
6853 if (name != NULL)
6854 {
6855 if (cu->language == language_cplus
6856 || cu->language == language_java)
6857 {
6858 char *full_name = (char *) dwarf2_full_name (name, die, cu);
6859
6860 /* dwarf2_full_name might have already finished building the DIE's
6861 type. If so, there is no need to continue. */
6862 if (get_die_type (die, cu) != NULL)
6863 return get_die_type (die, cu);
6864
6865 TYPE_TAG_NAME (type) = full_name;
6866 if (die->tag == DW_TAG_structure_type
6867 || die->tag == DW_TAG_class_type)
6868 TYPE_NAME (type) = TYPE_TAG_NAME (type);
6869 }
6870 else
6871 {
6872 /* The name is already allocated along with this objfile, so
6873 we don't need to duplicate it for the type. */
6874 TYPE_TAG_NAME (type) = (char *) name;
6875 if (die->tag == DW_TAG_class_type)
6876 TYPE_NAME (type) = TYPE_TAG_NAME (type);
6877 }
6878 }
6879
6880 if (die->tag == DW_TAG_structure_type)
6881 {
6882 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6883 }
6884 else if (die->tag == DW_TAG_union_type)
6885 {
6886 TYPE_CODE (type) = TYPE_CODE_UNION;
6887 }
6888 else
6889 {
6890 TYPE_CODE (type) = TYPE_CODE_CLASS;
6891 }
6892
6893 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
6894 TYPE_DECLARED_CLASS (type) = 1;
6895
6896 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
6897 if (attr)
6898 {
6899 TYPE_LENGTH (type) = DW_UNSND (attr);
6900 }
6901 else
6902 {
6903 TYPE_LENGTH (type) = 0;
6904 }
6905
6906 TYPE_STUB_SUPPORTED (type) = 1;
6907 if (die_is_declaration (die, cu))
6908 TYPE_STUB (type) = 1;
6909 else if (attr == NULL && die->child == NULL
6910 && producer_is_realview (cu->producer))
6911 /* RealView does not output the required DW_AT_declaration
6912 on incomplete types. */
6913 TYPE_STUB (type) = 1;
6914
6915 /* We need to add the type field to the die immediately so we don't
6916 infinitely recurse when dealing with pointers to the structure
6917 type within the structure itself. */
6918 set_die_type (die, type, cu);
6919
6920 /* set_die_type should be already done. */
6921 set_descriptive_type (type, die, cu);
6922
6923 return type;
6924 }
6925
6926 /* Finish creating a structure or union type, including filling in
6927 its members and creating a symbol for it. */
6928
6929 static void
6930 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
6931 {
6932 struct objfile *objfile = cu->objfile;
6933 struct die_info *child_die = die->child;
6934 struct type *type;
6935
6936 type = get_die_type (die, cu);
6937 if (type == NULL)
6938 type = read_structure_type (die, cu);
6939
6940 if (die->child != NULL && ! die_is_declaration (die, cu))
6941 {
6942 struct field_info fi;
6943 struct die_info *child_die;
6944 VEC (symbolp) *template_args = NULL;
6945 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
6946
6947 memset (&fi, 0, sizeof (struct field_info));
6948
6949 child_die = die->child;
6950
6951 while (child_die && child_die->tag)
6952 {
6953 if (child_die->tag == DW_TAG_member
6954 || child_die->tag == DW_TAG_variable)
6955 {
6956 /* NOTE: carlton/2002-11-05: A C++ static data member
6957 should be a DW_TAG_member that is a declaration, but
6958 all versions of G++ as of this writing (so through at
6959 least 3.2.1) incorrectly generate DW_TAG_variable
6960 tags for them instead. */
6961 dwarf2_add_field (&fi, child_die, cu);
6962 }
6963 else if (child_die->tag == DW_TAG_subprogram)
6964 {
6965 /* C++ member function. */
6966 dwarf2_add_member_fn (&fi, child_die, type, cu);
6967 }
6968 else if (child_die->tag == DW_TAG_inheritance)
6969 {
6970 /* C++ base class field. */
6971 dwarf2_add_field (&fi, child_die, cu);
6972 }
6973 else if (child_die->tag == DW_TAG_typedef)
6974 dwarf2_add_typedef (&fi, child_die, cu);
6975 else if (child_die->tag == DW_TAG_template_type_param
6976 || child_die->tag == DW_TAG_template_value_param)
6977 {
6978 struct symbol *arg = new_symbol (child_die, NULL, cu);
6979
6980 if (arg != NULL)
6981 VEC_safe_push (symbolp, template_args, arg);
6982 }
6983
6984 child_die = sibling_die (child_die);
6985 }
6986
6987 /* Attach template arguments to type. */
6988 if (! VEC_empty (symbolp, template_args))
6989 {
6990 ALLOCATE_CPLUS_STRUCT_TYPE (type);
6991 TYPE_N_TEMPLATE_ARGUMENTS (type)
6992 = VEC_length (symbolp, template_args);
6993 TYPE_TEMPLATE_ARGUMENTS (type)
6994 = obstack_alloc (&objfile->objfile_obstack,
6995 (TYPE_N_TEMPLATE_ARGUMENTS (type)
6996 * sizeof (struct symbol *)));
6997 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
6998 VEC_address (symbolp, template_args),
6999 (TYPE_N_TEMPLATE_ARGUMENTS (type)
7000 * sizeof (struct symbol *)));
7001 VEC_free (symbolp, template_args);
7002 }
7003
7004 /* Attach fields and member functions to the type. */
7005 if (fi.nfields)
7006 dwarf2_attach_fields_to_type (&fi, type, cu);
7007 if (fi.nfnfields)
7008 {
7009 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
7010
7011 /* Get the type which refers to the base class (possibly this
7012 class itself) which contains the vtable pointer for the current
7013 class from the DW_AT_containing_type attribute. This use of
7014 DW_AT_containing_type is a GNU extension. */
7015
7016 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
7017 {
7018 struct type *t = die_containing_type (die, cu);
7019
7020 TYPE_VPTR_BASETYPE (type) = t;
7021 if (type == t)
7022 {
7023 int i;
7024
7025 /* Our own class provides vtbl ptr. */
7026 for (i = TYPE_NFIELDS (t) - 1;
7027 i >= TYPE_N_BASECLASSES (t);
7028 --i)
7029 {
7030 char *fieldname = TYPE_FIELD_NAME (t, i);
7031
7032 if (is_vtable_name (fieldname, cu))
7033 {
7034 TYPE_VPTR_FIELDNO (type) = i;
7035 break;
7036 }
7037 }
7038
7039 /* Complain if virtual function table field not found. */
7040 if (i < TYPE_N_BASECLASSES (t))
7041 complaint (&symfile_complaints,
7042 _("virtual function table pointer "
7043 "not found when defining class '%s'"),
7044 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
7045 "");
7046 }
7047 else
7048 {
7049 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
7050 }
7051 }
7052 else if (cu->producer
7053 && strncmp (cu->producer,
7054 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
7055 {
7056 /* The IBM XLC compiler does not provide direct indication
7057 of the containing type, but the vtable pointer is
7058 always named __vfp. */
7059
7060 int i;
7061
7062 for (i = TYPE_NFIELDS (type) - 1;
7063 i >= TYPE_N_BASECLASSES (type);
7064 --i)
7065 {
7066 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
7067 {
7068 TYPE_VPTR_FIELDNO (type) = i;
7069 TYPE_VPTR_BASETYPE (type) = type;
7070 break;
7071 }
7072 }
7073 }
7074 }
7075
7076 /* Copy fi.typedef_field_list linked list elements content into the
7077 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
7078 if (fi.typedef_field_list)
7079 {
7080 int i = fi.typedef_field_list_count;
7081
7082 ALLOCATE_CPLUS_STRUCT_TYPE (type);
7083 TYPE_TYPEDEF_FIELD_ARRAY (type)
7084 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
7085 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
7086
7087 /* Reverse the list order to keep the debug info elements order. */
7088 while (--i >= 0)
7089 {
7090 struct typedef_field *dest, *src;
7091
7092 dest = &TYPE_TYPEDEF_FIELD (type, i);
7093 src = &fi.typedef_field_list->field;
7094 fi.typedef_field_list = fi.typedef_field_list->next;
7095 *dest = *src;
7096 }
7097 }
7098
7099 do_cleanups (back_to);
7100 }
7101
7102 quirk_gcc_member_function_pointer (type, cu->objfile);
7103
7104 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
7105 snapshots) has been known to create a die giving a declaration
7106 for a class that has, as a child, a die giving a definition for a
7107 nested class. So we have to process our children even if the
7108 current die is a declaration. Normally, of course, a declaration
7109 won't have any children at all. */
7110
7111 while (child_die != NULL && child_die->tag)
7112 {
7113 if (child_die->tag == DW_TAG_member
7114 || child_die->tag == DW_TAG_variable
7115 || child_die->tag == DW_TAG_inheritance
7116 || child_die->tag == DW_TAG_template_value_param
7117 || child_die->tag == DW_TAG_template_type_param)
7118 {
7119 /* Do nothing. */
7120 }
7121 else
7122 process_die (child_die, cu);
7123
7124 child_die = sibling_die (child_die);
7125 }
7126
7127 /* Do not consider external references. According to the DWARF standard,
7128 these DIEs are identified by the fact that they have no byte_size
7129 attribute, and a declaration attribute. */
7130 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
7131 || !die_is_declaration (die, cu))
7132 new_symbol (die, type, cu);
7133 }
7134
7135 /* Given a DW_AT_enumeration_type die, set its type. We do not
7136 complete the type's fields yet, or create any symbols. */
7137
7138 static struct type *
7139 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
7140 {
7141 struct objfile *objfile = cu->objfile;
7142 struct type *type;
7143 struct attribute *attr;
7144 const char *name;
7145
7146 /* If the definition of this type lives in .debug_types, read that type.
7147 Don't follow DW_AT_specification though, that will take us back up
7148 the chain and we want to go down. */
7149 attr = dwarf2_attr_no_follow (die, DW_AT_signature, cu);
7150 if (attr)
7151 {
7152 struct dwarf2_cu *type_cu = cu;
7153 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
7154
7155 type = read_type_die (type_die, type_cu);
7156
7157 /* TYPE_CU may not be the same as CU.
7158 Ensure TYPE is recorded in CU's type_hash table. */
7159 return set_die_type (die, type, cu);
7160 }
7161
7162 type = alloc_type (objfile);
7163
7164 TYPE_CODE (type) = TYPE_CODE_ENUM;
7165 name = dwarf2_full_name (NULL, die, cu);
7166 if (name != NULL)
7167 TYPE_TAG_NAME (type) = (char *) name;
7168
7169 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
7170 if (attr)
7171 {
7172 TYPE_LENGTH (type) = DW_UNSND (attr);
7173 }
7174 else
7175 {
7176 TYPE_LENGTH (type) = 0;
7177 }
7178
7179 /* The enumeration DIE can be incomplete. In Ada, any type can be
7180 declared as private in the package spec, and then defined only
7181 inside the package body. Such types are known as Taft Amendment
7182 Types. When another package uses such a type, an incomplete DIE
7183 may be generated by the compiler. */
7184 if (die_is_declaration (die, cu))
7185 TYPE_STUB (type) = 1;
7186
7187 return set_die_type (die, type, cu);
7188 }
7189
7190 /* Given a pointer to a die which begins an enumeration, process all
7191 the dies that define the members of the enumeration, and create the
7192 symbol for the enumeration type.
7193
7194 NOTE: We reverse the order of the element list. */
7195
7196 static void
7197 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
7198 {
7199 struct type *this_type;
7200
7201 this_type = get_die_type (die, cu);
7202 if (this_type == NULL)
7203 this_type = read_enumeration_type (die, cu);
7204
7205 if (die->child != NULL)
7206 {
7207 struct die_info *child_die;
7208 struct symbol *sym;
7209 struct field *fields = NULL;
7210 int num_fields = 0;
7211 int unsigned_enum = 1;
7212 char *name;
7213
7214 child_die = die->child;
7215 while (child_die && child_die->tag)
7216 {
7217 if (child_die->tag != DW_TAG_enumerator)
7218 {
7219 process_die (child_die, cu);
7220 }
7221 else
7222 {
7223 name = dwarf2_name (child_die, cu);
7224 if (name)
7225 {
7226 sym = new_symbol (child_die, this_type, cu);
7227 if (SYMBOL_VALUE (sym) < 0)
7228 unsigned_enum = 0;
7229
7230 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
7231 {
7232 fields = (struct field *)
7233 xrealloc (fields,
7234 (num_fields + DW_FIELD_ALLOC_CHUNK)
7235 * sizeof (struct field));
7236 }
7237
7238 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
7239 FIELD_TYPE (fields[num_fields]) = NULL;
7240 SET_FIELD_BITPOS (fields[num_fields], SYMBOL_VALUE (sym));
7241 FIELD_BITSIZE (fields[num_fields]) = 0;
7242
7243 num_fields++;
7244 }
7245 }
7246
7247 child_die = sibling_die (child_die);
7248 }
7249
7250 if (num_fields)
7251 {
7252 TYPE_NFIELDS (this_type) = num_fields;
7253 TYPE_FIELDS (this_type) = (struct field *)
7254 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
7255 memcpy (TYPE_FIELDS (this_type), fields,
7256 sizeof (struct field) * num_fields);
7257 xfree (fields);
7258 }
7259 if (unsigned_enum)
7260 TYPE_UNSIGNED (this_type) = 1;
7261 }
7262
7263 new_symbol (die, this_type, cu);
7264 }
7265
7266 /* Extract all information from a DW_TAG_array_type DIE and put it in
7267 the DIE's type field. For now, this only handles one dimensional
7268 arrays. */
7269
7270 static struct type *
7271 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
7272 {
7273 struct objfile *objfile = cu->objfile;
7274 struct die_info *child_die;
7275 struct type *type;
7276 struct type *element_type, *range_type, *index_type;
7277 struct type **range_types = NULL;
7278 struct attribute *attr;
7279 int ndim = 0;
7280 struct cleanup *back_to;
7281 char *name;
7282
7283 element_type = die_type (die, cu);
7284
7285 /* The die_type call above may have already set the type for this DIE. */
7286 type = get_die_type (die, cu);
7287 if (type)
7288 return type;
7289
7290 /* Irix 6.2 native cc creates array types without children for
7291 arrays with unspecified length. */
7292 if (die->child == NULL)
7293 {
7294 index_type = objfile_type (objfile)->builtin_int;
7295 range_type = create_range_type (NULL, index_type, 0, -1);
7296 type = create_array_type (NULL, element_type, range_type);
7297 return set_die_type (die, type, cu);
7298 }
7299
7300 back_to = make_cleanup (null_cleanup, NULL);
7301 child_die = die->child;
7302 while (child_die && child_die->tag)
7303 {
7304 if (child_die->tag == DW_TAG_subrange_type)
7305 {
7306 struct type *child_type = read_type_die (child_die, cu);
7307
7308 if (child_type != NULL)
7309 {
7310 /* The range type was succesfully read. Save it for the
7311 array type creation. */
7312 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
7313 {
7314 range_types = (struct type **)
7315 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
7316 * sizeof (struct type *));
7317 if (ndim == 0)
7318 make_cleanup (free_current_contents, &range_types);
7319 }
7320 range_types[ndim++] = child_type;
7321 }
7322 }
7323 child_die = sibling_die (child_die);
7324 }
7325
7326 /* Dwarf2 dimensions are output from left to right, create the
7327 necessary array types in backwards order. */
7328
7329 type = element_type;
7330
7331 if (read_array_order (die, cu) == DW_ORD_col_major)
7332 {
7333 int i = 0;
7334
7335 while (i < ndim)
7336 type = create_array_type (NULL, type, range_types[i++]);
7337 }
7338 else
7339 {
7340 while (ndim-- > 0)
7341 type = create_array_type (NULL, type, range_types[ndim]);
7342 }
7343
7344 /* Understand Dwarf2 support for vector types (like they occur on
7345 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
7346 array type. This is not part of the Dwarf2/3 standard yet, but a
7347 custom vendor extension. The main difference between a regular
7348 array and the vector variant is that vectors are passed by value
7349 to functions. */
7350 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
7351 if (attr)
7352 make_vector_type (type);
7353
7354 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
7355 implementation may choose to implement triple vectors using this
7356 attribute. */
7357 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
7358 if (attr)
7359 {
7360 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
7361 TYPE_LENGTH (type) = DW_UNSND (attr);
7362 else
7363 complaint (&symfile_complaints,
7364 _("DW_AT_byte_size for array type smaller "
7365 "than the total size of elements"));
7366 }
7367
7368 name = dwarf2_name (die, cu);
7369 if (name)
7370 TYPE_NAME (type) = name;
7371
7372 /* Install the type in the die. */
7373 set_die_type (die, type, cu);
7374
7375 /* set_die_type should be already done. */
7376 set_descriptive_type (type, die, cu);
7377
7378 do_cleanups (back_to);
7379
7380 return type;
7381 }
7382
7383 static enum dwarf_array_dim_ordering
7384 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
7385 {
7386 struct attribute *attr;
7387
7388 attr = dwarf2_attr (die, DW_AT_ordering, cu);
7389
7390 if (attr) return DW_SND (attr);
7391
7392 /* GNU F77 is a special case, as at 08/2004 array type info is the
7393 opposite order to the dwarf2 specification, but data is still
7394 laid out as per normal fortran.
7395
7396 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
7397 version checking. */
7398
7399 if (cu->language == language_fortran
7400 && cu->producer && strstr (cu->producer, "GNU F77"))
7401 {
7402 return DW_ORD_row_major;
7403 }
7404
7405 switch (cu->language_defn->la_array_ordering)
7406 {
7407 case array_column_major:
7408 return DW_ORD_col_major;
7409 case array_row_major:
7410 default:
7411 return DW_ORD_row_major;
7412 };
7413 }
7414
7415 /* Extract all information from a DW_TAG_set_type DIE and put it in
7416 the DIE's type field. */
7417
7418 static struct type *
7419 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
7420 {
7421 struct type *domain_type, *set_type;
7422 struct attribute *attr;
7423
7424 domain_type = die_type (die, cu);
7425
7426 /* The die_type call above may have already set the type for this DIE. */
7427 set_type = get_die_type (die, cu);
7428 if (set_type)
7429 return set_type;
7430
7431 set_type = create_set_type (NULL, domain_type);
7432
7433 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
7434 if (attr)
7435 TYPE_LENGTH (set_type) = DW_UNSND (attr);
7436
7437 return set_die_type (die, set_type, cu);
7438 }
7439
7440 /* First cut: install each common block member as a global variable. */
7441
7442 static void
7443 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
7444 {
7445 struct die_info *child_die;
7446 struct attribute *attr;
7447 struct symbol *sym;
7448 CORE_ADDR base = (CORE_ADDR) 0;
7449
7450 attr = dwarf2_attr (die, DW_AT_location, cu);
7451 if (attr)
7452 {
7453 /* Support the .debug_loc offsets. */
7454 if (attr_form_is_block (attr))
7455 {
7456 base = decode_locdesc (DW_BLOCK (attr), cu);
7457 }
7458 else if (attr_form_is_section_offset (attr))
7459 {
7460 dwarf2_complex_location_expr_complaint ();
7461 }
7462 else
7463 {
7464 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
7465 "common block member");
7466 }
7467 }
7468 if (die->child != NULL)
7469 {
7470 child_die = die->child;
7471 while (child_die && child_die->tag)
7472 {
7473 sym = new_symbol (child_die, NULL, cu);
7474 attr = dwarf2_attr (child_die, DW_AT_data_member_location, cu);
7475 if (sym != NULL && attr != NULL)
7476 {
7477 CORE_ADDR byte_offset = 0;
7478
7479 if (attr_form_is_section_offset (attr))
7480 dwarf2_complex_location_expr_complaint ();
7481 else if (attr_form_is_constant (attr))
7482 byte_offset = dwarf2_get_attr_constant_value (attr, 0);
7483 else if (attr_form_is_block (attr))
7484 byte_offset = decode_locdesc (DW_BLOCK (attr), cu);
7485 else
7486 dwarf2_complex_location_expr_complaint ();
7487
7488 SYMBOL_VALUE_ADDRESS (sym) = base + byte_offset;
7489 add_symbol_to_list (sym, &global_symbols);
7490 }
7491 child_die = sibling_die (child_die);
7492 }
7493 }
7494 }
7495
7496 /* Create a type for a C++ namespace. */
7497
7498 static struct type *
7499 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
7500 {
7501 struct objfile *objfile = cu->objfile;
7502 const char *previous_prefix, *name;
7503 int is_anonymous;
7504 struct type *type;
7505
7506 /* For extensions, reuse the type of the original namespace. */
7507 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
7508 {
7509 struct die_info *ext_die;
7510 struct dwarf2_cu *ext_cu = cu;
7511
7512 ext_die = dwarf2_extension (die, &ext_cu);
7513 type = read_type_die (ext_die, ext_cu);
7514
7515 /* EXT_CU may not be the same as CU.
7516 Ensure TYPE is recorded in CU's type_hash table. */
7517 return set_die_type (die, type, cu);
7518 }
7519
7520 name = namespace_name (die, &is_anonymous, cu);
7521
7522 /* Now build the name of the current namespace. */
7523
7524 previous_prefix = determine_prefix (die, cu);
7525 if (previous_prefix[0] != '\0')
7526 name = typename_concat (&objfile->objfile_obstack,
7527 previous_prefix, name, 0, cu);
7528
7529 /* Create the type. */
7530 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
7531 objfile);
7532 TYPE_NAME (type) = (char *) name;
7533 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7534
7535 return set_die_type (die, type, cu);
7536 }
7537
7538 /* Read a C++ namespace. */
7539
7540 static void
7541 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
7542 {
7543 struct objfile *objfile = cu->objfile;
7544 const char *name;
7545 int is_anonymous;
7546
7547 /* Add a symbol associated to this if we haven't seen the namespace
7548 before. Also, add a using directive if it's an anonymous
7549 namespace. */
7550
7551 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
7552 {
7553 struct type *type;
7554
7555 type = read_type_die (die, cu);
7556 new_symbol (die, type, cu);
7557
7558 name = namespace_name (die, &is_anonymous, cu);
7559 if (is_anonymous)
7560 {
7561 const char *previous_prefix = determine_prefix (die, cu);
7562
7563 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
7564 NULL, &objfile->objfile_obstack);
7565 }
7566 }
7567
7568 if (die->child != NULL)
7569 {
7570 struct die_info *child_die = die->child;
7571
7572 while (child_die && child_die->tag)
7573 {
7574 process_die (child_die, cu);
7575 child_die = sibling_die (child_die);
7576 }
7577 }
7578 }
7579
7580 /* Read a Fortran module as type. This DIE can be only a declaration used for
7581 imported module. Still we need that type as local Fortran "use ... only"
7582 declaration imports depend on the created type in determine_prefix. */
7583
7584 static struct type *
7585 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
7586 {
7587 struct objfile *objfile = cu->objfile;
7588 char *module_name;
7589 struct type *type;
7590
7591 module_name = dwarf2_name (die, cu);
7592 if (!module_name)
7593 complaint (&symfile_complaints,
7594 _("DW_TAG_module has no name, offset 0x%x"),
7595 die->offset);
7596 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
7597
7598 /* determine_prefix uses TYPE_TAG_NAME. */
7599 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7600
7601 return set_die_type (die, type, cu);
7602 }
7603
7604 /* Read a Fortran module. */
7605
7606 static void
7607 read_module (struct die_info *die, struct dwarf2_cu *cu)
7608 {
7609 struct die_info *child_die = die->child;
7610
7611 while (child_die && child_die->tag)
7612 {
7613 process_die (child_die, cu);
7614 child_die = sibling_die (child_die);
7615 }
7616 }
7617
7618 /* Return the name of the namespace represented by DIE. Set
7619 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
7620 namespace. */
7621
7622 static const char *
7623 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
7624 {
7625 struct die_info *current_die;
7626 const char *name = NULL;
7627
7628 /* Loop through the extensions until we find a name. */
7629
7630 for (current_die = die;
7631 current_die != NULL;
7632 current_die = dwarf2_extension (die, &cu))
7633 {
7634 name = dwarf2_name (current_die, cu);
7635 if (name != NULL)
7636 break;
7637 }
7638
7639 /* Is it an anonymous namespace? */
7640
7641 *is_anonymous = (name == NULL);
7642 if (*is_anonymous)
7643 name = "(anonymous namespace)";
7644
7645 return name;
7646 }
7647
7648 /* Extract all information from a DW_TAG_pointer_type DIE and add to
7649 the user defined type vector. */
7650
7651 static struct type *
7652 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
7653 {
7654 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
7655 struct comp_unit_head *cu_header = &cu->header;
7656 struct type *type;
7657 struct attribute *attr_byte_size;
7658 struct attribute *attr_address_class;
7659 int byte_size, addr_class;
7660 struct type *target_type;
7661
7662 target_type = die_type (die, cu);
7663
7664 /* The die_type call above may have already set the type for this DIE. */
7665 type = get_die_type (die, cu);
7666 if (type)
7667 return type;
7668
7669 type = lookup_pointer_type (target_type);
7670
7671 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
7672 if (attr_byte_size)
7673 byte_size = DW_UNSND (attr_byte_size);
7674 else
7675 byte_size = cu_header->addr_size;
7676
7677 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
7678 if (attr_address_class)
7679 addr_class = DW_UNSND (attr_address_class);
7680 else
7681 addr_class = DW_ADDR_none;
7682
7683 /* If the pointer size or address class is different than the
7684 default, create a type variant marked as such and set the
7685 length accordingly. */
7686 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
7687 {
7688 if (gdbarch_address_class_type_flags_p (gdbarch))
7689 {
7690 int type_flags;
7691
7692 type_flags = gdbarch_address_class_type_flags
7693 (gdbarch, byte_size, addr_class);
7694 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
7695 == 0);
7696 type = make_type_with_address_space (type, type_flags);
7697 }
7698 else if (TYPE_LENGTH (type) != byte_size)
7699 {
7700 complaint (&symfile_complaints,
7701 _("invalid pointer size %d"), byte_size);
7702 }
7703 else
7704 {
7705 /* Should we also complain about unhandled address classes? */
7706 }
7707 }
7708
7709 TYPE_LENGTH (type) = byte_size;
7710 return set_die_type (die, type, cu);
7711 }
7712
7713 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
7714 the user defined type vector. */
7715
7716 static struct type *
7717 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
7718 {
7719 struct type *type;
7720 struct type *to_type;
7721 struct type *domain;
7722
7723 to_type = die_type (die, cu);
7724 domain = die_containing_type (die, cu);
7725
7726 /* The calls above may have already set the type for this DIE. */
7727 type = get_die_type (die, cu);
7728 if (type)
7729 return type;
7730
7731 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
7732 type = lookup_methodptr_type (to_type);
7733 else
7734 type = lookup_memberptr_type (to_type, domain);
7735
7736 return set_die_type (die, type, cu);
7737 }
7738
7739 /* Extract all information from a DW_TAG_reference_type DIE and add to
7740 the user defined type vector. */
7741
7742 static struct type *
7743 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
7744 {
7745 struct comp_unit_head *cu_header = &cu->header;
7746 struct type *type, *target_type;
7747 struct attribute *attr;
7748
7749 target_type = die_type (die, cu);
7750
7751 /* The die_type call above may have already set the type for this DIE. */
7752 type = get_die_type (die, cu);
7753 if (type)
7754 return type;
7755
7756 type = lookup_reference_type (target_type);
7757 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
7758 if (attr)
7759 {
7760 TYPE_LENGTH (type) = DW_UNSND (attr);
7761 }
7762 else
7763 {
7764 TYPE_LENGTH (type) = cu_header->addr_size;
7765 }
7766 return set_die_type (die, type, cu);
7767 }
7768
7769 static struct type *
7770 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
7771 {
7772 struct type *base_type, *cv_type;
7773
7774 base_type = die_type (die, cu);
7775
7776 /* The die_type call above may have already set the type for this DIE. */
7777 cv_type = get_die_type (die, cu);
7778 if (cv_type)
7779 return cv_type;
7780
7781 /* In case the const qualifier is applied to an array type, the element type
7782 is so qualified, not the array type (section 6.7.3 of C99). */
7783 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
7784 {
7785 struct type *el_type, *inner_array;
7786
7787 base_type = copy_type (base_type);
7788 inner_array = base_type;
7789
7790 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
7791 {
7792 TYPE_TARGET_TYPE (inner_array) =
7793 copy_type (TYPE_TARGET_TYPE (inner_array));
7794 inner_array = TYPE_TARGET_TYPE (inner_array);
7795 }
7796
7797 el_type = TYPE_TARGET_TYPE (inner_array);
7798 TYPE_TARGET_TYPE (inner_array) =
7799 make_cv_type (1, TYPE_VOLATILE (el_type), el_type, NULL);
7800
7801 return set_die_type (die, base_type, cu);
7802 }
7803
7804 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
7805 return set_die_type (die, cv_type, cu);
7806 }
7807
7808 static struct type *
7809 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
7810 {
7811 struct type *base_type, *cv_type;
7812
7813 base_type = die_type (die, cu);
7814
7815 /* The die_type call above may have already set the type for this DIE. */
7816 cv_type = get_die_type (die, cu);
7817 if (cv_type)
7818 return cv_type;
7819
7820 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
7821 return set_die_type (die, cv_type, cu);
7822 }
7823
7824 /* Extract all information from a DW_TAG_string_type DIE and add to
7825 the user defined type vector. It isn't really a user defined type,
7826 but it behaves like one, with other DIE's using an AT_user_def_type
7827 attribute to reference it. */
7828
7829 static struct type *
7830 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
7831 {
7832 struct objfile *objfile = cu->objfile;
7833 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7834 struct type *type, *range_type, *index_type, *char_type;
7835 struct attribute *attr;
7836 unsigned int length;
7837
7838 attr = dwarf2_attr (die, DW_AT_string_length, cu);
7839 if (attr)
7840 {
7841 length = DW_UNSND (attr);
7842 }
7843 else
7844 {
7845 /* Check for the DW_AT_byte_size attribute. */
7846 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
7847 if (attr)
7848 {
7849 length = DW_UNSND (attr);
7850 }
7851 else
7852 {
7853 length = 1;
7854 }
7855 }
7856
7857 index_type = objfile_type (objfile)->builtin_int;
7858 range_type = create_range_type (NULL, index_type, 1, length);
7859 char_type = language_string_char_type (cu->language_defn, gdbarch);
7860 type = create_string_type (NULL, char_type, range_type);
7861
7862 return set_die_type (die, type, cu);
7863 }
7864
7865 /* Handle DIES due to C code like:
7866
7867 struct foo
7868 {
7869 int (*funcp)(int a, long l);
7870 int b;
7871 };
7872
7873 ('funcp' generates a DW_TAG_subroutine_type DIE). */
7874
7875 static struct type *
7876 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
7877 {
7878 struct type *type; /* Type that this function returns. */
7879 struct type *ftype; /* Function that returns above type. */
7880 struct attribute *attr;
7881
7882 type = die_type (die, cu);
7883
7884 /* The die_type call above may have already set the type for this DIE. */
7885 ftype = get_die_type (die, cu);
7886 if (ftype)
7887 return ftype;
7888
7889 ftype = lookup_function_type (type);
7890
7891 /* All functions in C++, Pascal and Java have prototypes. */
7892 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
7893 if ((attr && (DW_UNSND (attr) != 0))
7894 || cu->language == language_cplus
7895 || cu->language == language_java
7896 || cu->language == language_pascal)
7897 TYPE_PROTOTYPED (ftype) = 1;
7898 else if (producer_is_realview (cu->producer))
7899 /* RealView does not emit DW_AT_prototyped. We can not
7900 distinguish prototyped and unprototyped functions; default to
7901 prototyped, since that is more common in modern code (and
7902 RealView warns about unprototyped functions). */
7903 TYPE_PROTOTYPED (ftype) = 1;
7904
7905 /* Store the calling convention in the type if it's available in
7906 the subroutine die. Otherwise set the calling convention to
7907 the default value DW_CC_normal. */
7908 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
7909 TYPE_CALLING_CONVENTION (ftype) = attr ? DW_UNSND (attr) : DW_CC_normal;
7910
7911 /* We need to add the subroutine type to the die immediately so
7912 we don't infinitely recurse when dealing with parameters
7913 declared as the same subroutine type. */
7914 set_die_type (die, ftype, cu);
7915
7916 if (die->child != NULL)
7917 {
7918 struct type *void_type = objfile_type (cu->objfile)->builtin_void;
7919 struct die_info *child_die;
7920 int nparams, iparams;
7921
7922 /* Count the number of parameters.
7923 FIXME: GDB currently ignores vararg functions, but knows about
7924 vararg member functions. */
7925 nparams = 0;
7926 child_die = die->child;
7927 while (child_die && child_die->tag)
7928 {
7929 if (child_die->tag == DW_TAG_formal_parameter)
7930 nparams++;
7931 else if (child_die->tag == DW_TAG_unspecified_parameters)
7932 TYPE_VARARGS (ftype) = 1;
7933 child_die = sibling_die (child_die);
7934 }
7935
7936 /* Allocate storage for parameters and fill them in. */
7937 TYPE_NFIELDS (ftype) = nparams;
7938 TYPE_FIELDS (ftype) = (struct field *)
7939 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
7940
7941 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
7942 even if we error out during the parameters reading below. */
7943 for (iparams = 0; iparams < nparams; iparams++)
7944 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
7945
7946 iparams = 0;
7947 child_die = die->child;
7948 while (child_die && child_die->tag)
7949 {
7950 if (child_die->tag == DW_TAG_formal_parameter)
7951 {
7952 struct type *arg_type;
7953
7954 /* DWARF version 2 has no clean way to discern C++
7955 static and non-static member functions. G++ helps
7956 GDB by marking the first parameter for non-static
7957 member functions (which is the this pointer) as
7958 artificial. We pass this information to
7959 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
7960
7961 DWARF version 3 added DW_AT_object_pointer, which GCC
7962 4.5 does not yet generate. */
7963 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
7964 if (attr)
7965 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
7966 else
7967 {
7968 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
7969
7970 /* GCC/43521: In java, the formal parameter
7971 "this" is sometimes not marked with DW_AT_artificial. */
7972 if (cu->language == language_java)
7973 {
7974 const char *name = dwarf2_name (child_die, cu);
7975
7976 if (name && !strcmp (name, "this"))
7977 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
7978 }
7979 }
7980 arg_type = die_type (child_die, cu);
7981
7982 /* RealView does not mark THIS as const, which the testsuite
7983 expects. GCC marks THIS as const in method definitions,
7984 but not in the class specifications (GCC PR 43053). */
7985 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
7986 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
7987 {
7988 int is_this = 0;
7989 struct dwarf2_cu *arg_cu = cu;
7990 const char *name = dwarf2_name (child_die, cu);
7991
7992 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
7993 if (attr)
7994 {
7995 /* If the compiler emits this, use it. */
7996 if (follow_die_ref (die, attr, &arg_cu) == child_die)
7997 is_this = 1;
7998 }
7999 else if (name && strcmp (name, "this") == 0)
8000 /* Function definitions will have the argument names. */
8001 is_this = 1;
8002 else if (name == NULL && iparams == 0)
8003 /* Declarations may not have the names, so like
8004 elsewhere in GDB, assume an artificial first
8005 argument is "this". */
8006 is_this = 1;
8007
8008 if (is_this)
8009 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
8010 arg_type, 0);
8011 }
8012
8013 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
8014 iparams++;
8015 }
8016 child_die = sibling_die (child_die);
8017 }
8018 }
8019
8020 return ftype;
8021 }
8022
8023 static struct type *
8024 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
8025 {
8026 struct objfile *objfile = cu->objfile;
8027 const char *name = NULL;
8028 struct type *this_type;
8029
8030 name = dwarf2_full_name (NULL, die, cu);
8031 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
8032 TYPE_FLAG_TARGET_STUB, NULL, objfile);
8033 TYPE_NAME (this_type) = (char *) name;
8034 set_die_type (die, this_type, cu);
8035 TYPE_TARGET_TYPE (this_type) = die_type (die, cu);
8036 return this_type;
8037 }
8038
8039 /* Find a representation of a given base type and install
8040 it in the TYPE field of the die. */
8041
8042 static struct type *
8043 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
8044 {
8045 struct objfile *objfile = cu->objfile;
8046 struct type *type;
8047 struct attribute *attr;
8048 int encoding = 0, size = 0;
8049 char *name;
8050 enum type_code code = TYPE_CODE_INT;
8051 int type_flags = 0;
8052 struct type *target_type = NULL;
8053
8054 attr = dwarf2_attr (die, DW_AT_encoding, cu);
8055 if (attr)
8056 {
8057 encoding = DW_UNSND (attr);
8058 }
8059 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
8060 if (attr)
8061 {
8062 size = DW_UNSND (attr);
8063 }
8064 name = dwarf2_name (die, cu);
8065 if (!name)
8066 {
8067 complaint (&symfile_complaints,
8068 _("DW_AT_name missing from DW_TAG_base_type"));
8069 }
8070
8071 switch (encoding)
8072 {
8073 case DW_ATE_address:
8074 /* Turn DW_ATE_address into a void * pointer. */
8075 code = TYPE_CODE_PTR;
8076 type_flags |= TYPE_FLAG_UNSIGNED;
8077 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
8078 break;
8079 case DW_ATE_boolean:
8080 code = TYPE_CODE_BOOL;
8081 type_flags |= TYPE_FLAG_UNSIGNED;
8082 break;
8083 case DW_ATE_complex_float:
8084 code = TYPE_CODE_COMPLEX;
8085 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
8086 break;
8087 case DW_ATE_decimal_float:
8088 code = TYPE_CODE_DECFLOAT;
8089 break;
8090 case DW_ATE_float:
8091 code = TYPE_CODE_FLT;
8092 break;
8093 case DW_ATE_signed:
8094 break;
8095 case DW_ATE_unsigned:
8096 type_flags |= TYPE_FLAG_UNSIGNED;
8097 break;
8098 case DW_ATE_signed_char:
8099 if (cu->language == language_ada || cu->language == language_m2
8100 || cu->language == language_pascal)
8101 code = TYPE_CODE_CHAR;
8102 break;
8103 case DW_ATE_unsigned_char:
8104 if (cu->language == language_ada || cu->language == language_m2
8105 || cu->language == language_pascal)
8106 code = TYPE_CODE_CHAR;
8107 type_flags |= TYPE_FLAG_UNSIGNED;
8108 break;
8109 case DW_ATE_UTF:
8110 /* We just treat this as an integer and then recognize the
8111 type by name elsewhere. */
8112 break;
8113
8114 default:
8115 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
8116 dwarf_type_encoding_name (encoding));
8117 break;
8118 }
8119
8120 type = init_type (code, size, type_flags, NULL, objfile);
8121 TYPE_NAME (type) = name;
8122 TYPE_TARGET_TYPE (type) = target_type;
8123
8124 if (name && strcmp (name, "char") == 0)
8125 TYPE_NOSIGN (type) = 1;
8126
8127 return set_die_type (die, type, cu);
8128 }
8129
8130 /* Read the given DW_AT_subrange DIE. */
8131
8132 static struct type *
8133 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
8134 {
8135 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
8136 struct type *base_type;
8137 struct type *range_type;
8138 struct attribute *attr;
8139 LONGEST low = 0;
8140 LONGEST high = -1;
8141 char *name;
8142 LONGEST negative_mask;
8143
8144 base_type = die_type (die, cu);
8145 /* Preserve BASE_TYPE's original type, just set its LENGTH. */
8146 check_typedef (base_type);
8147
8148 /* The die_type call above may have already set the type for this DIE. */
8149 range_type = get_die_type (die, cu);
8150 if (range_type)
8151 return range_type;
8152
8153 if (cu->language == language_fortran)
8154 {
8155 /* FORTRAN implies a lower bound of 1, if not given. */
8156 low = 1;
8157 }
8158
8159 /* FIXME: For variable sized arrays either of these could be
8160 a variable rather than a constant value. We'll allow it,
8161 but we don't know how to handle it. */
8162 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
8163 if (attr)
8164 low = dwarf2_get_attr_constant_value (attr, 0);
8165
8166 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
8167 if (attr)
8168 {
8169 if (attr->form == DW_FORM_block1 || is_ref_attr (attr))
8170 {
8171 /* GCC encodes arrays with unspecified or dynamic length
8172 with a DW_FORM_block1 attribute or a reference attribute.
8173 FIXME: GDB does not yet know how to handle dynamic
8174 arrays properly, treat them as arrays with unspecified
8175 length for now.
8176
8177 FIXME: jimb/2003-09-22: GDB does not really know
8178 how to handle arrays of unspecified length
8179 either; we just represent them as zero-length
8180 arrays. Choose an appropriate upper bound given
8181 the lower bound we've computed above. */
8182 high = low - 1;
8183 }
8184 else
8185 high = dwarf2_get_attr_constant_value (attr, 1);
8186 }
8187 else
8188 {
8189 attr = dwarf2_attr (die, DW_AT_count, cu);
8190 if (attr)
8191 {
8192 int count = dwarf2_get_attr_constant_value (attr, 1);
8193 high = low + count - 1;
8194 }
8195 else
8196 {
8197 /* Unspecified array length. */
8198 high = low - 1;
8199 }
8200 }
8201
8202 /* Dwarf-2 specifications explicitly allows to create subrange types
8203 without specifying a base type.
8204 In that case, the base type must be set to the type of
8205 the lower bound, upper bound or count, in that order, if any of these
8206 three attributes references an object that has a type.
8207 If no base type is found, the Dwarf-2 specifications say that
8208 a signed integer type of size equal to the size of an address should
8209 be used.
8210 For the following C code: `extern char gdb_int [];'
8211 GCC produces an empty range DIE.
8212 FIXME: muller/2010-05-28: Possible references to object for low bound,
8213 high bound or count are not yet handled by this code. */
8214 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
8215 {
8216 struct objfile *objfile = cu->objfile;
8217 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8218 int addr_size = gdbarch_addr_bit (gdbarch) /8;
8219 struct type *int_type = objfile_type (objfile)->builtin_int;
8220
8221 /* Test "int", "long int", and "long long int" objfile types,
8222 and select the first one having a size above or equal to the
8223 architecture address size. */
8224 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
8225 base_type = int_type;
8226 else
8227 {
8228 int_type = objfile_type (objfile)->builtin_long;
8229 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
8230 base_type = int_type;
8231 else
8232 {
8233 int_type = objfile_type (objfile)->builtin_long_long;
8234 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
8235 base_type = int_type;
8236 }
8237 }
8238 }
8239
8240 negative_mask =
8241 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
8242 if (!TYPE_UNSIGNED (base_type) && (low & negative_mask))
8243 low |= negative_mask;
8244 if (!TYPE_UNSIGNED (base_type) && (high & negative_mask))
8245 high |= negative_mask;
8246
8247 range_type = create_range_type (NULL, base_type, low, high);
8248
8249 /* Mark arrays with dynamic length at least as an array of unspecified
8250 length. GDB could check the boundary but before it gets implemented at
8251 least allow accessing the array elements. */
8252 if (attr && attr->form == DW_FORM_block1)
8253 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
8254
8255 /* Ada expects an empty array on no boundary attributes. */
8256 if (attr == NULL && cu->language != language_ada)
8257 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
8258
8259 name = dwarf2_name (die, cu);
8260 if (name)
8261 TYPE_NAME (range_type) = name;
8262
8263 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
8264 if (attr)
8265 TYPE_LENGTH (range_type) = DW_UNSND (attr);
8266
8267 set_die_type (die, range_type, cu);
8268
8269 /* set_die_type should be already done. */
8270 set_descriptive_type (range_type, die, cu);
8271
8272 return range_type;
8273 }
8274
8275 static struct type *
8276 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
8277 {
8278 struct type *type;
8279
8280 /* For now, we only support the C meaning of an unspecified type: void. */
8281
8282 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
8283 TYPE_NAME (type) = dwarf2_name (die, cu);
8284
8285 return set_die_type (die, type, cu);
8286 }
8287
8288 /* Trivial hash function for die_info: the hash value of a DIE
8289 is its offset in .debug_info for this objfile. */
8290
8291 static hashval_t
8292 die_hash (const void *item)
8293 {
8294 const struct die_info *die = item;
8295
8296 return die->offset;
8297 }
8298
8299 /* Trivial comparison function for die_info structures: two DIEs
8300 are equal if they have the same offset. */
8301
8302 static int
8303 die_eq (const void *item_lhs, const void *item_rhs)
8304 {
8305 const struct die_info *die_lhs = item_lhs;
8306 const struct die_info *die_rhs = item_rhs;
8307
8308 return die_lhs->offset == die_rhs->offset;
8309 }
8310
8311 /* Read a whole compilation unit into a linked list of dies. */
8312
8313 static struct die_info *
8314 read_comp_unit (gdb_byte *info_ptr, struct dwarf2_cu *cu)
8315 {
8316 struct die_reader_specs reader_specs;
8317 int read_abbrevs = 0;
8318 struct cleanup *back_to = NULL;
8319 struct die_info *die;
8320
8321 if (cu->dwarf2_abbrevs == NULL)
8322 {
8323 dwarf2_read_abbrevs (cu->objfile->obfd, cu);
8324 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
8325 read_abbrevs = 1;
8326 }
8327
8328 gdb_assert (cu->die_hash == NULL);
8329 cu->die_hash
8330 = htab_create_alloc_ex (cu->header.length / 12,
8331 die_hash,
8332 die_eq,
8333 NULL,
8334 &cu->comp_unit_obstack,
8335 hashtab_obstack_allocate,
8336 dummy_obstack_deallocate);
8337
8338 init_cu_die_reader (&reader_specs, cu);
8339
8340 die = read_die_and_children (&reader_specs, info_ptr, &info_ptr, NULL);
8341
8342 if (read_abbrevs)
8343 do_cleanups (back_to);
8344
8345 return die;
8346 }
8347
8348 /* Main entry point for reading a DIE and all children.
8349 Read the DIE and dump it if requested. */
8350
8351 static struct die_info *
8352 read_die_and_children (const struct die_reader_specs *reader,
8353 gdb_byte *info_ptr,
8354 gdb_byte **new_info_ptr,
8355 struct die_info *parent)
8356 {
8357 struct die_info *result = read_die_and_children_1 (reader, info_ptr,
8358 new_info_ptr, parent);
8359
8360 if (dwarf2_die_debug)
8361 {
8362 fprintf_unfiltered (gdb_stdlog,
8363 "\nRead die from %s of %s:\n",
8364 reader->buffer == dwarf2_per_objfile->info.buffer
8365 ? ".debug_info"
8366 : reader->buffer == dwarf2_per_objfile->types.buffer
8367 ? ".debug_types"
8368 : "unknown section",
8369 reader->abfd->filename);
8370 dump_die (result, dwarf2_die_debug);
8371 }
8372
8373 return result;
8374 }
8375
8376 /* Read a single die and all its descendents. Set the die's sibling
8377 field to NULL; set other fields in the die correctly, and set all
8378 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
8379 location of the info_ptr after reading all of those dies. PARENT
8380 is the parent of the die in question. */
8381
8382 static struct die_info *
8383 read_die_and_children_1 (const struct die_reader_specs *reader,
8384 gdb_byte *info_ptr,
8385 gdb_byte **new_info_ptr,
8386 struct die_info *parent)
8387 {
8388 struct die_info *die;
8389 gdb_byte *cur_ptr;
8390 int has_children;
8391
8392 cur_ptr = read_full_die (reader, &die, info_ptr, &has_children);
8393 if (die == NULL)
8394 {
8395 *new_info_ptr = cur_ptr;
8396 return NULL;
8397 }
8398 store_in_ref_table (die, reader->cu);
8399
8400 if (has_children)
8401 die->child = read_die_and_siblings (reader, cur_ptr, new_info_ptr, die);
8402 else
8403 {
8404 die->child = NULL;
8405 *new_info_ptr = cur_ptr;
8406 }
8407
8408 die->sibling = NULL;
8409 die->parent = parent;
8410 return die;
8411 }
8412
8413 /* Read a die, all of its descendents, and all of its siblings; set
8414 all of the fields of all of the dies correctly. Arguments are as
8415 in read_die_and_children. */
8416
8417 static struct die_info *
8418 read_die_and_siblings (const struct die_reader_specs *reader,
8419 gdb_byte *info_ptr,
8420 gdb_byte **new_info_ptr,
8421 struct die_info *parent)
8422 {
8423 struct die_info *first_die, *last_sibling;
8424 gdb_byte *cur_ptr;
8425
8426 cur_ptr = info_ptr;
8427 first_die = last_sibling = NULL;
8428
8429 while (1)
8430 {
8431 struct die_info *die
8432 = read_die_and_children_1 (reader, cur_ptr, &cur_ptr, parent);
8433
8434 if (die == NULL)
8435 {
8436 *new_info_ptr = cur_ptr;
8437 return first_die;
8438 }
8439
8440 if (!first_die)
8441 first_die = die;
8442 else
8443 last_sibling->sibling = die;
8444
8445 last_sibling = die;
8446 }
8447 }
8448
8449 /* Read the die from the .debug_info section buffer. Set DIEP to
8450 point to a newly allocated die with its information, except for its
8451 child, sibling, and parent fields. Set HAS_CHILDREN to tell
8452 whether the die has children or not. */
8453
8454 static gdb_byte *
8455 read_full_die (const struct die_reader_specs *reader,
8456 struct die_info **diep, gdb_byte *info_ptr,
8457 int *has_children)
8458 {
8459 unsigned int abbrev_number, bytes_read, i, offset;
8460 struct abbrev_info *abbrev;
8461 struct die_info *die;
8462 struct dwarf2_cu *cu = reader->cu;
8463 bfd *abfd = reader->abfd;
8464
8465 offset = info_ptr - reader->buffer;
8466 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
8467 info_ptr += bytes_read;
8468 if (!abbrev_number)
8469 {
8470 *diep = NULL;
8471 *has_children = 0;
8472 return info_ptr;
8473 }
8474
8475 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
8476 if (!abbrev)
8477 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
8478 abbrev_number,
8479 bfd_get_filename (abfd));
8480
8481 die = dwarf_alloc_die (cu, abbrev->num_attrs);
8482 die->offset = offset;
8483 die->tag = abbrev->tag;
8484 die->abbrev = abbrev_number;
8485
8486 die->num_attrs = abbrev->num_attrs;
8487
8488 for (i = 0; i < abbrev->num_attrs; ++i)
8489 info_ptr = read_attribute (&die->attrs[i], &abbrev->attrs[i],
8490 abfd, info_ptr, cu);
8491
8492 *diep = die;
8493 *has_children = abbrev->has_children;
8494 return info_ptr;
8495 }
8496
8497 /* In DWARF version 2, the description of the debugging information is
8498 stored in a separate .debug_abbrev section. Before we read any
8499 dies from a section we read in all abbreviations and install them
8500 in a hash table. This function also sets flags in CU describing
8501 the data found in the abbrev table. */
8502
8503 static void
8504 dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu)
8505 {
8506 struct comp_unit_head *cu_header = &cu->header;
8507 gdb_byte *abbrev_ptr;
8508 struct abbrev_info *cur_abbrev;
8509 unsigned int abbrev_number, bytes_read, abbrev_name;
8510 unsigned int abbrev_form, hash_number;
8511 struct attr_abbrev *cur_attrs;
8512 unsigned int allocated_attrs;
8513
8514 /* Initialize dwarf2 abbrevs. */
8515 obstack_init (&cu->abbrev_obstack);
8516 cu->dwarf2_abbrevs = obstack_alloc (&cu->abbrev_obstack,
8517 (ABBREV_HASH_SIZE
8518 * sizeof (struct abbrev_info *)));
8519 memset (cu->dwarf2_abbrevs, 0,
8520 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
8521
8522 dwarf2_read_section (dwarf2_per_objfile->objfile,
8523 &dwarf2_per_objfile->abbrev);
8524 abbrev_ptr = dwarf2_per_objfile->abbrev.buffer + cu_header->abbrev_offset;
8525 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8526 abbrev_ptr += bytes_read;
8527
8528 allocated_attrs = ATTR_ALLOC_CHUNK;
8529 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
8530
8531 /* Loop until we reach an abbrev number of 0. */
8532 while (abbrev_number)
8533 {
8534 cur_abbrev = dwarf_alloc_abbrev (cu);
8535
8536 /* read in abbrev header */
8537 cur_abbrev->number = abbrev_number;
8538 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8539 abbrev_ptr += bytes_read;
8540 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
8541 abbrev_ptr += 1;
8542
8543 if (cur_abbrev->tag == DW_TAG_namespace)
8544 cu->has_namespace_info = 1;
8545
8546 /* now read in declarations */
8547 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8548 abbrev_ptr += bytes_read;
8549 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8550 abbrev_ptr += bytes_read;
8551 while (abbrev_name)
8552 {
8553 if (cur_abbrev->num_attrs == allocated_attrs)
8554 {
8555 allocated_attrs += ATTR_ALLOC_CHUNK;
8556 cur_attrs
8557 = xrealloc (cur_attrs, (allocated_attrs
8558 * sizeof (struct attr_abbrev)));
8559 }
8560
8561 /* Record whether this compilation unit might have
8562 inter-compilation-unit references. If we don't know what form
8563 this attribute will have, then it might potentially be a
8564 DW_FORM_ref_addr, so we conservatively expect inter-CU
8565 references. */
8566
8567 if (abbrev_form == DW_FORM_ref_addr
8568 || abbrev_form == DW_FORM_indirect)
8569 cu->has_form_ref_addr = 1;
8570
8571 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
8572 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
8573 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8574 abbrev_ptr += bytes_read;
8575 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8576 abbrev_ptr += bytes_read;
8577 }
8578
8579 cur_abbrev->attrs = obstack_alloc (&cu->abbrev_obstack,
8580 (cur_abbrev->num_attrs
8581 * sizeof (struct attr_abbrev)));
8582 memcpy (cur_abbrev->attrs, cur_attrs,
8583 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
8584
8585 hash_number = abbrev_number % ABBREV_HASH_SIZE;
8586 cur_abbrev->next = cu->dwarf2_abbrevs[hash_number];
8587 cu->dwarf2_abbrevs[hash_number] = cur_abbrev;
8588
8589 /* Get next abbreviation.
8590 Under Irix6 the abbreviations for a compilation unit are not
8591 always properly terminated with an abbrev number of 0.
8592 Exit loop if we encounter an abbreviation which we have
8593 already read (which means we are about to read the abbreviations
8594 for the next compile unit) or if the end of the abbreviation
8595 table is reached. */
8596 if ((unsigned int) (abbrev_ptr - dwarf2_per_objfile->abbrev.buffer)
8597 >= dwarf2_per_objfile->abbrev.size)
8598 break;
8599 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8600 abbrev_ptr += bytes_read;
8601 if (dwarf2_lookup_abbrev (abbrev_number, cu) != NULL)
8602 break;
8603 }
8604
8605 xfree (cur_attrs);
8606 }
8607
8608 /* Release the memory used by the abbrev table for a compilation unit. */
8609
8610 static void
8611 dwarf2_free_abbrev_table (void *ptr_to_cu)
8612 {
8613 struct dwarf2_cu *cu = ptr_to_cu;
8614
8615 obstack_free (&cu->abbrev_obstack, NULL);
8616 cu->dwarf2_abbrevs = NULL;
8617 }
8618
8619 /* Lookup an abbrev_info structure in the abbrev hash table. */
8620
8621 static struct abbrev_info *
8622 dwarf2_lookup_abbrev (unsigned int number, struct dwarf2_cu *cu)
8623 {
8624 unsigned int hash_number;
8625 struct abbrev_info *abbrev;
8626
8627 hash_number = number % ABBREV_HASH_SIZE;
8628 abbrev = cu->dwarf2_abbrevs[hash_number];
8629
8630 while (abbrev)
8631 {
8632 if (abbrev->number == number)
8633 return abbrev;
8634 else
8635 abbrev = abbrev->next;
8636 }
8637 return NULL;
8638 }
8639
8640 /* Returns nonzero if TAG represents a type that we might generate a partial
8641 symbol for. */
8642
8643 static int
8644 is_type_tag_for_partial (int tag)
8645 {
8646 switch (tag)
8647 {
8648 #if 0
8649 /* Some types that would be reasonable to generate partial symbols for,
8650 that we don't at present. */
8651 case DW_TAG_array_type:
8652 case DW_TAG_file_type:
8653 case DW_TAG_ptr_to_member_type:
8654 case DW_TAG_set_type:
8655 case DW_TAG_string_type:
8656 case DW_TAG_subroutine_type:
8657 #endif
8658 case DW_TAG_base_type:
8659 case DW_TAG_class_type:
8660 case DW_TAG_interface_type:
8661 case DW_TAG_enumeration_type:
8662 case DW_TAG_structure_type:
8663 case DW_TAG_subrange_type:
8664 case DW_TAG_typedef:
8665 case DW_TAG_union_type:
8666 return 1;
8667 default:
8668 return 0;
8669 }
8670 }
8671
8672 /* Load all DIEs that are interesting for partial symbols into memory. */
8673
8674 static struct partial_die_info *
8675 load_partial_dies (bfd *abfd, gdb_byte *buffer, gdb_byte *info_ptr,
8676 int building_psymtab, struct dwarf2_cu *cu)
8677 {
8678 struct partial_die_info *part_die;
8679 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
8680 struct abbrev_info *abbrev;
8681 unsigned int bytes_read;
8682 unsigned int load_all = 0;
8683
8684 int nesting_level = 1;
8685
8686 parent_die = NULL;
8687 last_die = NULL;
8688
8689 if (cu->per_cu && cu->per_cu->load_all_dies)
8690 load_all = 1;
8691
8692 cu->partial_dies
8693 = htab_create_alloc_ex (cu->header.length / 12,
8694 partial_die_hash,
8695 partial_die_eq,
8696 NULL,
8697 &cu->comp_unit_obstack,
8698 hashtab_obstack_allocate,
8699 dummy_obstack_deallocate);
8700
8701 part_die = obstack_alloc (&cu->comp_unit_obstack,
8702 sizeof (struct partial_die_info));
8703
8704 while (1)
8705 {
8706 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
8707
8708 /* A NULL abbrev means the end of a series of children. */
8709 if (abbrev == NULL)
8710 {
8711 if (--nesting_level == 0)
8712 {
8713 /* PART_DIE was probably the last thing allocated on the
8714 comp_unit_obstack, so we could call obstack_free
8715 here. We don't do that because the waste is small,
8716 and will be cleaned up when we're done with this
8717 compilation unit. This way, we're also more robust
8718 against other users of the comp_unit_obstack. */
8719 return first_die;
8720 }
8721 info_ptr += bytes_read;
8722 last_die = parent_die;
8723 parent_die = parent_die->die_parent;
8724 continue;
8725 }
8726
8727 /* Check for template arguments. We never save these; if
8728 they're seen, we just mark the parent, and go on our way. */
8729 if (parent_die != NULL
8730 && cu->language == language_cplus
8731 && (abbrev->tag == DW_TAG_template_type_param
8732 || abbrev->tag == DW_TAG_template_value_param))
8733 {
8734 parent_die->has_template_arguments = 1;
8735
8736 if (!load_all)
8737 {
8738 /* We don't need a partial DIE for the template argument. */
8739 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev,
8740 cu);
8741 continue;
8742 }
8743 }
8744
8745 /* We only recurse into subprograms looking for template arguments.
8746 Skip their other children. */
8747 if (!load_all
8748 && cu->language == language_cplus
8749 && parent_die != NULL
8750 && parent_die->tag == DW_TAG_subprogram)
8751 {
8752 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
8753 continue;
8754 }
8755
8756 /* Check whether this DIE is interesting enough to save. Normally
8757 we would not be interested in members here, but there may be
8758 later variables referencing them via DW_AT_specification (for
8759 static members). */
8760 if (!load_all
8761 && !is_type_tag_for_partial (abbrev->tag)
8762 && abbrev->tag != DW_TAG_constant
8763 && abbrev->tag != DW_TAG_enumerator
8764 && abbrev->tag != DW_TAG_subprogram
8765 && abbrev->tag != DW_TAG_lexical_block
8766 && abbrev->tag != DW_TAG_variable
8767 && abbrev->tag != DW_TAG_namespace
8768 && abbrev->tag != DW_TAG_module
8769 && abbrev->tag != DW_TAG_member)
8770 {
8771 /* Otherwise we skip to the next sibling, if any. */
8772 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
8773 continue;
8774 }
8775
8776 info_ptr = read_partial_die (part_die, abbrev, bytes_read, abfd,
8777 buffer, info_ptr, cu);
8778
8779 /* This two-pass algorithm for processing partial symbols has a
8780 high cost in cache pressure. Thus, handle some simple cases
8781 here which cover the majority of C partial symbols. DIEs
8782 which neither have specification tags in them, nor could have
8783 specification tags elsewhere pointing at them, can simply be
8784 processed and discarded.
8785
8786 This segment is also optional; scan_partial_symbols and
8787 add_partial_symbol will handle these DIEs if we chain
8788 them in normally. When compilers which do not emit large
8789 quantities of duplicate debug information are more common,
8790 this code can probably be removed. */
8791
8792 /* Any complete simple types at the top level (pretty much all
8793 of them, for a language without namespaces), can be processed
8794 directly. */
8795 if (parent_die == NULL
8796 && part_die->has_specification == 0
8797 && part_die->is_declaration == 0
8798 && (part_die->tag == DW_TAG_typedef
8799 || part_die->tag == DW_TAG_base_type
8800 || part_die->tag == DW_TAG_subrange_type))
8801 {
8802 if (building_psymtab && part_die->name != NULL)
8803 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
8804 VAR_DOMAIN, LOC_TYPEDEF,
8805 &cu->objfile->static_psymbols,
8806 0, (CORE_ADDR) 0, cu->language, cu->objfile);
8807 info_ptr = locate_pdi_sibling (part_die, buffer, info_ptr, abfd, cu);
8808 continue;
8809 }
8810
8811 /* If we're at the second level, and we're an enumerator, and
8812 our parent has no specification (meaning possibly lives in a
8813 namespace elsewhere), then we can add the partial symbol now
8814 instead of queueing it. */
8815 if (part_die->tag == DW_TAG_enumerator
8816 && parent_die != NULL
8817 && parent_die->die_parent == NULL
8818 && parent_die->tag == DW_TAG_enumeration_type
8819 && parent_die->has_specification == 0)
8820 {
8821 if (part_die->name == NULL)
8822 complaint (&symfile_complaints,
8823 _("malformed enumerator DIE ignored"));
8824 else if (building_psymtab)
8825 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
8826 VAR_DOMAIN, LOC_CONST,
8827 (cu->language == language_cplus
8828 || cu->language == language_java)
8829 ? &cu->objfile->global_psymbols
8830 : &cu->objfile->static_psymbols,
8831 0, (CORE_ADDR) 0, cu->language, cu->objfile);
8832
8833 info_ptr = locate_pdi_sibling (part_die, buffer, info_ptr, abfd, cu);
8834 continue;
8835 }
8836
8837 /* We'll save this DIE so link it in. */
8838 part_die->die_parent = parent_die;
8839 part_die->die_sibling = NULL;
8840 part_die->die_child = NULL;
8841
8842 if (last_die && last_die == parent_die)
8843 last_die->die_child = part_die;
8844 else if (last_die)
8845 last_die->die_sibling = part_die;
8846
8847 last_die = part_die;
8848
8849 if (first_die == NULL)
8850 first_die = part_die;
8851
8852 /* Maybe add the DIE to the hash table. Not all DIEs that we
8853 find interesting need to be in the hash table, because we
8854 also have the parent/sibling/child chains; only those that we
8855 might refer to by offset later during partial symbol reading.
8856
8857 For now this means things that might have be the target of a
8858 DW_AT_specification, DW_AT_abstract_origin, or
8859 DW_AT_extension. DW_AT_extension will refer only to
8860 namespaces; DW_AT_abstract_origin refers to functions (and
8861 many things under the function DIE, but we do not recurse
8862 into function DIEs during partial symbol reading) and
8863 possibly variables as well; DW_AT_specification refers to
8864 declarations. Declarations ought to have the DW_AT_declaration
8865 flag. It happens that GCC forgets to put it in sometimes, but
8866 only for functions, not for types.
8867
8868 Adding more things than necessary to the hash table is harmless
8869 except for the performance cost. Adding too few will result in
8870 wasted time in find_partial_die, when we reread the compilation
8871 unit with load_all_dies set. */
8872
8873 if (load_all
8874 || abbrev->tag == DW_TAG_constant
8875 || abbrev->tag == DW_TAG_subprogram
8876 || abbrev->tag == DW_TAG_variable
8877 || abbrev->tag == DW_TAG_namespace
8878 || part_die->is_declaration)
8879 {
8880 void **slot;
8881
8882 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
8883 part_die->offset, INSERT);
8884 *slot = part_die;
8885 }
8886
8887 part_die = obstack_alloc (&cu->comp_unit_obstack,
8888 sizeof (struct partial_die_info));
8889
8890 /* For some DIEs we want to follow their children (if any). For C
8891 we have no reason to follow the children of structures; for other
8892 languages we have to, so that we can get at method physnames
8893 to infer fully qualified class names, for DW_AT_specification,
8894 and for C++ template arguments. For C++, we also look one level
8895 inside functions to find template arguments (if the name of the
8896 function does not already contain the template arguments).
8897
8898 For Ada, we need to scan the children of subprograms and lexical
8899 blocks as well because Ada allows the definition of nested
8900 entities that could be interesting for the debugger, such as
8901 nested subprograms for instance. */
8902 if (last_die->has_children
8903 && (load_all
8904 || last_die->tag == DW_TAG_namespace
8905 || last_die->tag == DW_TAG_module
8906 || last_die->tag == DW_TAG_enumeration_type
8907 || (cu->language == language_cplus
8908 && last_die->tag == DW_TAG_subprogram
8909 && (last_die->name == NULL
8910 || strchr (last_die->name, '<') == NULL))
8911 || (cu->language != language_c
8912 && (last_die->tag == DW_TAG_class_type
8913 || last_die->tag == DW_TAG_interface_type
8914 || last_die->tag == DW_TAG_structure_type
8915 || last_die->tag == DW_TAG_union_type))
8916 || (cu->language == language_ada
8917 && (last_die->tag == DW_TAG_subprogram
8918 || last_die->tag == DW_TAG_lexical_block))))
8919 {
8920 nesting_level++;
8921 parent_die = last_die;
8922 continue;
8923 }
8924
8925 /* Otherwise we skip to the next sibling, if any. */
8926 info_ptr = locate_pdi_sibling (last_die, buffer, info_ptr, abfd, cu);
8927
8928 /* Back to the top, do it again. */
8929 }
8930 }
8931
8932 /* Read a minimal amount of information into the minimal die structure. */
8933
8934 static gdb_byte *
8935 read_partial_die (struct partial_die_info *part_die,
8936 struct abbrev_info *abbrev,
8937 unsigned int abbrev_len, bfd *abfd,
8938 gdb_byte *buffer, gdb_byte *info_ptr,
8939 struct dwarf2_cu *cu)
8940 {
8941 unsigned int i;
8942 struct attribute attr;
8943 int has_low_pc_attr = 0;
8944 int has_high_pc_attr = 0;
8945
8946 memset (part_die, 0, sizeof (struct partial_die_info));
8947
8948 part_die->offset = info_ptr - buffer;
8949
8950 info_ptr += abbrev_len;
8951
8952 if (abbrev == NULL)
8953 return info_ptr;
8954
8955 part_die->tag = abbrev->tag;
8956 part_die->has_children = abbrev->has_children;
8957
8958 for (i = 0; i < abbrev->num_attrs; ++i)
8959 {
8960 info_ptr = read_attribute (&attr, &abbrev->attrs[i], abfd, info_ptr, cu);
8961
8962 /* Store the data if it is of an attribute we want to keep in a
8963 partial symbol table. */
8964 switch (attr.name)
8965 {
8966 case DW_AT_name:
8967 switch (part_die->tag)
8968 {
8969 case DW_TAG_compile_unit:
8970 case DW_TAG_type_unit:
8971 /* Compilation units have a DW_AT_name that is a filename, not
8972 a source language identifier. */
8973 case DW_TAG_enumeration_type:
8974 case DW_TAG_enumerator:
8975 /* These tags always have simple identifiers already; no need
8976 to canonicalize them. */
8977 part_die->name = DW_STRING (&attr);
8978 break;
8979 default:
8980 part_die->name
8981 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
8982 &cu->objfile->objfile_obstack);
8983 break;
8984 }
8985 break;
8986 case DW_AT_linkage_name:
8987 case DW_AT_MIPS_linkage_name:
8988 /* Note that both forms of linkage name might appear. We
8989 assume they will be the same, and we only store the last
8990 one we see. */
8991 if (cu->language == language_ada)
8992 part_die->name = DW_STRING (&attr);
8993 part_die->linkage_name = DW_STRING (&attr);
8994 break;
8995 case DW_AT_low_pc:
8996 has_low_pc_attr = 1;
8997 part_die->lowpc = DW_ADDR (&attr);
8998 break;
8999 case DW_AT_high_pc:
9000 has_high_pc_attr = 1;
9001 part_die->highpc = DW_ADDR (&attr);
9002 break;
9003 case DW_AT_location:
9004 /* Support the .debug_loc offsets. */
9005 if (attr_form_is_block (&attr))
9006 {
9007 part_die->locdesc = DW_BLOCK (&attr);
9008 }
9009 else if (attr_form_is_section_offset (&attr))
9010 {
9011 dwarf2_complex_location_expr_complaint ();
9012 }
9013 else
9014 {
9015 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
9016 "partial symbol information");
9017 }
9018 break;
9019 case DW_AT_external:
9020 part_die->is_external = DW_UNSND (&attr);
9021 break;
9022 case DW_AT_declaration:
9023 part_die->is_declaration = DW_UNSND (&attr);
9024 break;
9025 case DW_AT_type:
9026 part_die->has_type = 1;
9027 break;
9028 case DW_AT_abstract_origin:
9029 case DW_AT_specification:
9030 case DW_AT_extension:
9031 part_die->has_specification = 1;
9032 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
9033 break;
9034 case DW_AT_sibling:
9035 /* Ignore absolute siblings, they might point outside of
9036 the current compile unit. */
9037 if (attr.form == DW_FORM_ref_addr)
9038 complaint (&symfile_complaints,
9039 _("ignoring absolute DW_AT_sibling"));
9040 else
9041 part_die->sibling = buffer + dwarf2_get_ref_die_offset (&attr);
9042 break;
9043 case DW_AT_byte_size:
9044 part_die->has_byte_size = 1;
9045 break;
9046 case DW_AT_calling_convention:
9047 /* DWARF doesn't provide a way to identify a program's source-level
9048 entry point. DW_AT_calling_convention attributes are only meant
9049 to describe functions' calling conventions.
9050
9051 However, because it's a necessary piece of information in
9052 Fortran, and because DW_CC_program is the only piece of debugging
9053 information whose definition refers to a 'main program' at all,
9054 several compilers have begun marking Fortran main programs with
9055 DW_CC_program --- even when those functions use the standard
9056 calling conventions.
9057
9058 So until DWARF specifies a way to provide this information and
9059 compilers pick up the new representation, we'll support this
9060 practice. */
9061 if (DW_UNSND (&attr) == DW_CC_program
9062 && cu->language == language_fortran)
9063 {
9064 set_main_name (part_die->name);
9065
9066 /* As this DIE has a static linkage the name would be difficult
9067 to look up later. */
9068 language_of_main = language_fortran;
9069 }
9070 break;
9071 default:
9072 break;
9073 }
9074 }
9075
9076 /* When using the GNU linker, .gnu.linkonce. sections are used to
9077 eliminate duplicate copies of functions and vtables and such.
9078 The linker will arbitrarily choose one and discard the others.
9079 The AT_*_pc values for such functions refer to local labels in
9080 these sections. If the section from that file was discarded, the
9081 labels are not in the output, so the relocs get a value of 0.
9082 If this is a discarded function, mark the pc bounds as invalid,
9083 so that GDB will ignore it. */
9084 if (has_low_pc_attr && has_high_pc_attr
9085 && part_die->lowpc < part_die->highpc
9086 && (part_die->lowpc != 0
9087 || dwarf2_per_objfile->has_section_at_zero))
9088 part_die->has_pc_info = 1;
9089
9090 return info_ptr;
9091 }
9092
9093 /* Find a cached partial DIE at OFFSET in CU. */
9094
9095 static struct partial_die_info *
9096 find_partial_die_in_comp_unit (unsigned int offset, struct dwarf2_cu *cu)
9097 {
9098 struct partial_die_info *lookup_die = NULL;
9099 struct partial_die_info part_die;
9100
9101 part_die.offset = offset;
9102 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die, offset);
9103
9104 return lookup_die;
9105 }
9106
9107 /* Find a partial DIE at OFFSET, which may or may not be in CU,
9108 except in the case of .debug_types DIEs which do not reference
9109 outside their CU (they do however referencing other types via
9110 DW_FORM_sig8). */
9111
9112 static struct partial_die_info *
9113 find_partial_die (unsigned int offset, struct dwarf2_cu *cu)
9114 {
9115 struct dwarf2_per_cu_data *per_cu = NULL;
9116 struct partial_die_info *pd = NULL;
9117
9118 if (cu->per_cu->from_debug_types)
9119 {
9120 pd = find_partial_die_in_comp_unit (offset, cu);
9121 if (pd != NULL)
9122 return pd;
9123 goto not_found;
9124 }
9125
9126 if (offset_in_cu_p (&cu->header, offset))
9127 {
9128 pd = find_partial_die_in_comp_unit (offset, cu);
9129 if (pd != NULL)
9130 return pd;
9131 }
9132
9133 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
9134
9135 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
9136 load_partial_comp_unit (per_cu, cu->objfile);
9137
9138 per_cu->cu->last_used = 0;
9139 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
9140
9141 if (pd == NULL && per_cu->load_all_dies == 0)
9142 {
9143 struct cleanup *back_to;
9144 struct partial_die_info comp_unit_die;
9145 struct abbrev_info *abbrev;
9146 unsigned int bytes_read;
9147 char *info_ptr;
9148
9149 per_cu->load_all_dies = 1;
9150
9151 /* Re-read the DIEs. */
9152 back_to = make_cleanup (null_cleanup, 0);
9153 if (per_cu->cu->dwarf2_abbrevs == NULL)
9154 {
9155 dwarf2_read_abbrevs (per_cu->cu->objfile->obfd, per_cu->cu);
9156 make_cleanup (dwarf2_free_abbrev_table, per_cu->cu);
9157 }
9158 info_ptr = (dwarf2_per_objfile->info.buffer
9159 + per_cu->cu->header.offset
9160 + per_cu->cu->header.first_die_offset);
9161 abbrev = peek_die_abbrev (info_ptr, &bytes_read, per_cu->cu);
9162 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
9163 per_cu->cu->objfile->obfd,
9164 dwarf2_per_objfile->info.buffer, info_ptr,
9165 per_cu->cu);
9166 if (comp_unit_die.has_children)
9167 load_partial_dies (per_cu->cu->objfile->obfd,
9168 dwarf2_per_objfile->info.buffer, info_ptr,
9169 0, per_cu->cu);
9170 do_cleanups (back_to);
9171
9172 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
9173 }
9174
9175 not_found:
9176
9177 if (pd == NULL)
9178 internal_error (__FILE__, __LINE__,
9179 _("could not find partial DIE 0x%x "
9180 "in cache [from module %s]\n"),
9181 offset, bfd_get_filename (cu->objfile->obfd));
9182 return pd;
9183 }
9184
9185 /* See if we can figure out if the class lives in a namespace. We do
9186 this by looking for a member function; its demangled name will
9187 contain namespace info, if there is any. */
9188
9189 static void
9190 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
9191 struct dwarf2_cu *cu)
9192 {
9193 /* NOTE: carlton/2003-10-07: Getting the info this way changes
9194 what template types look like, because the demangler
9195 frequently doesn't give the same name as the debug info. We
9196 could fix this by only using the demangled name to get the
9197 prefix (but see comment in read_structure_type). */
9198
9199 struct partial_die_info *real_pdi;
9200 struct partial_die_info *child_pdi;
9201
9202 /* If this DIE (this DIE's specification, if any) has a parent, then
9203 we should not do this. We'll prepend the parent's fully qualified
9204 name when we create the partial symbol. */
9205
9206 real_pdi = struct_pdi;
9207 while (real_pdi->has_specification)
9208 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
9209
9210 if (real_pdi->die_parent != NULL)
9211 return;
9212
9213 for (child_pdi = struct_pdi->die_child;
9214 child_pdi != NULL;
9215 child_pdi = child_pdi->die_sibling)
9216 {
9217 if (child_pdi->tag == DW_TAG_subprogram
9218 && child_pdi->linkage_name != NULL)
9219 {
9220 char *actual_class_name
9221 = language_class_name_from_physname (cu->language_defn,
9222 child_pdi->linkage_name);
9223 if (actual_class_name != NULL)
9224 {
9225 struct_pdi->name
9226 = obsavestring (actual_class_name,
9227 strlen (actual_class_name),
9228 &cu->objfile->objfile_obstack);
9229 xfree (actual_class_name);
9230 }
9231 break;
9232 }
9233 }
9234 }
9235
9236 /* Adjust PART_DIE before generating a symbol for it. This function
9237 may set the is_external flag or change the DIE's name. */
9238
9239 static void
9240 fixup_partial_die (struct partial_die_info *part_die,
9241 struct dwarf2_cu *cu)
9242 {
9243 /* Once we've fixed up a die, there's no point in doing so again.
9244 This also avoids a memory leak if we were to call
9245 guess_partial_die_structure_name multiple times. */
9246 if (part_die->fixup_called)
9247 return;
9248
9249 /* If we found a reference attribute and the DIE has no name, try
9250 to find a name in the referred to DIE. */
9251
9252 if (part_die->name == NULL && part_die->has_specification)
9253 {
9254 struct partial_die_info *spec_die;
9255
9256 spec_die = find_partial_die (part_die->spec_offset, cu);
9257
9258 fixup_partial_die (spec_die, cu);
9259
9260 if (spec_die->name)
9261 {
9262 part_die->name = spec_die->name;
9263
9264 /* Copy DW_AT_external attribute if it is set. */
9265 if (spec_die->is_external)
9266 part_die->is_external = spec_die->is_external;
9267 }
9268 }
9269
9270 /* Set default names for some unnamed DIEs. */
9271
9272 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
9273 part_die->name = "(anonymous namespace)";
9274
9275 /* If there is no parent die to provide a namespace, and there are
9276 children, see if we can determine the namespace from their linkage
9277 name.
9278 NOTE: We need to do this even if cu->has_namespace_info != 0.
9279 gcc-4.5 -gdwarf-4 can drop the enclosing namespace. */
9280 if (cu->language == language_cplus
9281 && dwarf2_per_objfile->types.asection != NULL
9282 && part_die->die_parent == NULL
9283 && part_die->has_children
9284 && (part_die->tag == DW_TAG_class_type
9285 || part_die->tag == DW_TAG_structure_type
9286 || part_die->tag == DW_TAG_union_type))
9287 guess_partial_die_structure_name (part_die, cu);
9288
9289 part_die->fixup_called = 1;
9290 }
9291
9292 /* Read an attribute value described by an attribute form. */
9293
9294 static gdb_byte *
9295 read_attribute_value (struct attribute *attr, unsigned form,
9296 bfd *abfd, gdb_byte *info_ptr,
9297 struct dwarf2_cu *cu)
9298 {
9299 struct comp_unit_head *cu_header = &cu->header;
9300 unsigned int bytes_read;
9301 struct dwarf_block *blk;
9302
9303 attr->form = form;
9304 switch (form)
9305 {
9306 case DW_FORM_ref_addr:
9307 if (cu->header.version == 2)
9308 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
9309 else
9310 DW_ADDR (attr) = read_offset (abfd, info_ptr,
9311 &cu->header, &bytes_read);
9312 info_ptr += bytes_read;
9313 break;
9314 case DW_FORM_addr:
9315 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
9316 info_ptr += bytes_read;
9317 break;
9318 case DW_FORM_block2:
9319 blk = dwarf_alloc_block (cu);
9320 blk->size = read_2_bytes (abfd, info_ptr);
9321 info_ptr += 2;
9322 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
9323 info_ptr += blk->size;
9324 DW_BLOCK (attr) = blk;
9325 break;
9326 case DW_FORM_block4:
9327 blk = dwarf_alloc_block (cu);
9328 blk->size = read_4_bytes (abfd, info_ptr);
9329 info_ptr += 4;
9330 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
9331 info_ptr += blk->size;
9332 DW_BLOCK (attr) = blk;
9333 break;
9334 case DW_FORM_data2:
9335 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
9336 info_ptr += 2;
9337 break;
9338 case DW_FORM_data4:
9339 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
9340 info_ptr += 4;
9341 break;
9342 case DW_FORM_data8:
9343 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
9344 info_ptr += 8;
9345 break;
9346 case DW_FORM_sec_offset:
9347 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
9348 info_ptr += bytes_read;
9349 break;
9350 case DW_FORM_string:
9351 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
9352 DW_STRING_IS_CANONICAL (attr) = 0;
9353 info_ptr += bytes_read;
9354 break;
9355 case DW_FORM_strp:
9356 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
9357 &bytes_read);
9358 DW_STRING_IS_CANONICAL (attr) = 0;
9359 info_ptr += bytes_read;
9360 break;
9361 case DW_FORM_exprloc:
9362 case DW_FORM_block:
9363 blk = dwarf_alloc_block (cu);
9364 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9365 info_ptr += bytes_read;
9366 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
9367 info_ptr += blk->size;
9368 DW_BLOCK (attr) = blk;
9369 break;
9370 case DW_FORM_block1:
9371 blk = dwarf_alloc_block (cu);
9372 blk->size = read_1_byte (abfd, info_ptr);
9373 info_ptr += 1;
9374 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
9375 info_ptr += blk->size;
9376 DW_BLOCK (attr) = blk;
9377 break;
9378 case DW_FORM_data1:
9379 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
9380 info_ptr += 1;
9381 break;
9382 case DW_FORM_flag:
9383 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
9384 info_ptr += 1;
9385 break;
9386 case DW_FORM_flag_present:
9387 DW_UNSND (attr) = 1;
9388 break;
9389 case DW_FORM_sdata:
9390 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
9391 info_ptr += bytes_read;
9392 break;
9393 case DW_FORM_udata:
9394 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9395 info_ptr += bytes_read;
9396 break;
9397 case DW_FORM_ref1:
9398 DW_ADDR (attr) = cu->header.offset + read_1_byte (abfd, info_ptr);
9399 info_ptr += 1;
9400 break;
9401 case DW_FORM_ref2:
9402 DW_ADDR (attr) = cu->header.offset + read_2_bytes (abfd, info_ptr);
9403 info_ptr += 2;
9404 break;
9405 case DW_FORM_ref4:
9406 DW_ADDR (attr) = cu->header.offset + read_4_bytes (abfd, info_ptr);
9407 info_ptr += 4;
9408 break;
9409 case DW_FORM_ref8:
9410 DW_ADDR (attr) = cu->header.offset + read_8_bytes (abfd, info_ptr);
9411 info_ptr += 8;
9412 break;
9413 case DW_FORM_sig8:
9414 /* Convert the signature to something we can record in DW_UNSND
9415 for later lookup.
9416 NOTE: This is NULL if the type wasn't found. */
9417 DW_SIGNATURED_TYPE (attr) =
9418 lookup_signatured_type (cu->objfile, read_8_bytes (abfd, info_ptr));
9419 info_ptr += 8;
9420 break;
9421 case DW_FORM_ref_udata:
9422 DW_ADDR (attr) = (cu->header.offset
9423 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
9424 info_ptr += bytes_read;
9425 break;
9426 case DW_FORM_indirect:
9427 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9428 info_ptr += bytes_read;
9429 info_ptr = read_attribute_value (attr, form, abfd, info_ptr, cu);
9430 break;
9431 default:
9432 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
9433 dwarf_form_name (form),
9434 bfd_get_filename (abfd));
9435 }
9436
9437 /* We have seen instances where the compiler tried to emit a byte
9438 size attribute of -1 which ended up being encoded as an unsigned
9439 0xffffffff. Although 0xffffffff is technically a valid size value,
9440 an object of this size seems pretty unlikely so we can relatively
9441 safely treat these cases as if the size attribute was invalid and
9442 treat them as zero by default. */
9443 if (attr->name == DW_AT_byte_size
9444 && form == DW_FORM_data4
9445 && DW_UNSND (attr) >= 0xffffffff)
9446 {
9447 complaint
9448 (&symfile_complaints,
9449 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
9450 hex_string (DW_UNSND (attr)));
9451 DW_UNSND (attr) = 0;
9452 }
9453
9454 return info_ptr;
9455 }
9456
9457 /* Read an attribute described by an abbreviated attribute. */
9458
9459 static gdb_byte *
9460 read_attribute (struct attribute *attr, struct attr_abbrev *abbrev,
9461 bfd *abfd, gdb_byte *info_ptr, struct dwarf2_cu *cu)
9462 {
9463 attr->name = abbrev->name;
9464 return read_attribute_value (attr, abbrev->form, abfd, info_ptr, cu);
9465 }
9466
9467 /* Read dwarf information from a buffer. */
9468
9469 static unsigned int
9470 read_1_byte (bfd *abfd, gdb_byte *buf)
9471 {
9472 return bfd_get_8 (abfd, buf);
9473 }
9474
9475 static int
9476 read_1_signed_byte (bfd *abfd, gdb_byte *buf)
9477 {
9478 return bfd_get_signed_8 (abfd, buf);
9479 }
9480
9481 static unsigned int
9482 read_2_bytes (bfd *abfd, gdb_byte *buf)
9483 {
9484 return bfd_get_16 (abfd, buf);
9485 }
9486
9487 static int
9488 read_2_signed_bytes (bfd *abfd, gdb_byte *buf)
9489 {
9490 return bfd_get_signed_16 (abfd, buf);
9491 }
9492
9493 static unsigned int
9494 read_4_bytes (bfd *abfd, gdb_byte *buf)
9495 {
9496 return bfd_get_32 (abfd, buf);
9497 }
9498
9499 static int
9500 read_4_signed_bytes (bfd *abfd, gdb_byte *buf)
9501 {
9502 return bfd_get_signed_32 (abfd, buf);
9503 }
9504
9505 static ULONGEST
9506 read_8_bytes (bfd *abfd, gdb_byte *buf)
9507 {
9508 return bfd_get_64 (abfd, buf);
9509 }
9510
9511 static CORE_ADDR
9512 read_address (bfd *abfd, gdb_byte *buf, struct dwarf2_cu *cu,
9513 unsigned int *bytes_read)
9514 {
9515 struct comp_unit_head *cu_header = &cu->header;
9516 CORE_ADDR retval = 0;
9517
9518 if (cu_header->signed_addr_p)
9519 {
9520 switch (cu_header->addr_size)
9521 {
9522 case 2:
9523 retval = bfd_get_signed_16 (abfd, buf);
9524 break;
9525 case 4:
9526 retval = bfd_get_signed_32 (abfd, buf);
9527 break;
9528 case 8:
9529 retval = bfd_get_signed_64 (abfd, buf);
9530 break;
9531 default:
9532 internal_error (__FILE__, __LINE__,
9533 _("read_address: bad switch, signed [in module %s]"),
9534 bfd_get_filename (abfd));
9535 }
9536 }
9537 else
9538 {
9539 switch (cu_header->addr_size)
9540 {
9541 case 2:
9542 retval = bfd_get_16 (abfd, buf);
9543 break;
9544 case 4:
9545 retval = bfd_get_32 (abfd, buf);
9546 break;
9547 case 8:
9548 retval = bfd_get_64 (abfd, buf);
9549 break;
9550 default:
9551 internal_error (__FILE__, __LINE__,
9552 _("read_address: bad switch, "
9553 "unsigned [in module %s]"),
9554 bfd_get_filename (abfd));
9555 }
9556 }
9557
9558 *bytes_read = cu_header->addr_size;
9559 return retval;
9560 }
9561
9562 /* Read the initial length from a section. The (draft) DWARF 3
9563 specification allows the initial length to take up either 4 bytes
9564 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
9565 bytes describe the length and all offsets will be 8 bytes in length
9566 instead of 4.
9567
9568 An older, non-standard 64-bit format is also handled by this
9569 function. The older format in question stores the initial length
9570 as an 8-byte quantity without an escape value. Lengths greater
9571 than 2^32 aren't very common which means that the initial 4 bytes
9572 is almost always zero. Since a length value of zero doesn't make
9573 sense for the 32-bit format, this initial zero can be considered to
9574 be an escape value which indicates the presence of the older 64-bit
9575 format. As written, the code can't detect (old format) lengths
9576 greater than 4GB. If it becomes necessary to handle lengths
9577 somewhat larger than 4GB, we could allow other small values (such
9578 as the non-sensical values of 1, 2, and 3) to also be used as
9579 escape values indicating the presence of the old format.
9580
9581 The value returned via bytes_read should be used to increment the
9582 relevant pointer after calling read_initial_length().
9583
9584 [ Note: read_initial_length() and read_offset() are based on the
9585 document entitled "DWARF Debugging Information Format", revision
9586 3, draft 8, dated November 19, 2001. This document was obtained
9587 from:
9588
9589 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
9590
9591 This document is only a draft and is subject to change. (So beware.)
9592
9593 Details regarding the older, non-standard 64-bit format were
9594 determined empirically by examining 64-bit ELF files produced by
9595 the SGI toolchain on an IRIX 6.5 machine.
9596
9597 - Kevin, July 16, 2002
9598 ] */
9599
9600 static LONGEST
9601 read_initial_length (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read)
9602 {
9603 LONGEST length = bfd_get_32 (abfd, buf);
9604
9605 if (length == 0xffffffff)
9606 {
9607 length = bfd_get_64 (abfd, buf + 4);
9608 *bytes_read = 12;
9609 }
9610 else if (length == 0)
9611 {
9612 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
9613 length = bfd_get_64 (abfd, buf);
9614 *bytes_read = 8;
9615 }
9616 else
9617 {
9618 *bytes_read = 4;
9619 }
9620
9621 return length;
9622 }
9623
9624 /* Cover function for read_initial_length.
9625 Returns the length of the object at BUF, and stores the size of the
9626 initial length in *BYTES_READ and stores the size that offsets will be in
9627 *OFFSET_SIZE.
9628 If the initial length size is not equivalent to that specified in
9629 CU_HEADER then issue a complaint.
9630 This is useful when reading non-comp-unit headers. */
9631
9632 static LONGEST
9633 read_checked_initial_length_and_offset (bfd *abfd, gdb_byte *buf,
9634 const struct comp_unit_head *cu_header,
9635 unsigned int *bytes_read,
9636 unsigned int *offset_size)
9637 {
9638 LONGEST length = read_initial_length (abfd, buf, bytes_read);
9639
9640 gdb_assert (cu_header->initial_length_size == 4
9641 || cu_header->initial_length_size == 8
9642 || cu_header->initial_length_size == 12);
9643
9644 if (cu_header->initial_length_size != *bytes_read)
9645 complaint (&symfile_complaints,
9646 _("intermixed 32-bit and 64-bit DWARF sections"));
9647
9648 *offset_size = (*bytes_read == 4) ? 4 : 8;
9649 return length;
9650 }
9651
9652 /* Read an offset from the data stream. The size of the offset is
9653 given by cu_header->offset_size. */
9654
9655 static LONGEST
9656 read_offset (bfd *abfd, gdb_byte *buf, const struct comp_unit_head *cu_header,
9657 unsigned int *bytes_read)
9658 {
9659 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
9660
9661 *bytes_read = cu_header->offset_size;
9662 return offset;
9663 }
9664
9665 /* Read an offset from the data stream. */
9666
9667 static LONGEST
9668 read_offset_1 (bfd *abfd, gdb_byte *buf, unsigned int offset_size)
9669 {
9670 LONGEST retval = 0;
9671
9672 switch (offset_size)
9673 {
9674 case 4:
9675 retval = bfd_get_32 (abfd, buf);
9676 break;
9677 case 8:
9678 retval = bfd_get_64 (abfd, buf);
9679 break;
9680 default:
9681 internal_error (__FILE__, __LINE__,
9682 _("read_offset_1: bad switch [in module %s]"),
9683 bfd_get_filename (abfd));
9684 }
9685
9686 return retval;
9687 }
9688
9689 static gdb_byte *
9690 read_n_bytes (bfd *abfd, gdb_byte *buf, unsigned int size)
9691 {
9692 /* If the size of a host char is 8 bits, we can return a pointer
9693 to the buffer, otherwise we have to copy the data to a buffer
9694 allocated on the temporary obstack. */
9695 gdb_assert (HOST_CHAR_BIT == 8);
9696 return buf;
9697 }
9698
9699 static char *
9700 read_direct_string (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
9701 {
9702 /* If the size of a host char is 8 bits, we can return a pointer
9703 to the string, otherwise we have to copy the string to a buffer
9704 allocated on the temporary obstack. */
9705 gdb_assert (HOST_CHAR_BIT == 8);
9706 if (*buf == '\0')
9707 {
9708 *bytes_read_ptr = 1;
9709 return NULL;
9710 }
9711 *bytes_read_ptr = strlen ((char *) buf) + 1;
9712 return (char *) buf;
9713 }
9714
9715 static char *
9716 read_indirect_string (bfd *abfd, gdb_byte *buf,
9717 const struct comp_unit_head *cu_header,
9718 unsigned int *bytes_read_ptr)
9719 {
9720 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
9721
9722 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
9723 if (dwarf2_per_objfile->str.buffer == NULL)
9724 {
9725 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
9726 bfd_get_filename (abfd));
9727 return NULL;
9728 }
9729 if (str_offset >= dwarf2_per_objfile->str.size)
9730 {
9731 error (_("DW_FORM_strp pointing outside of "
9732 ".debug_str section [in module %s]"),
9733 bfd_get_filename (abfd));
9734 return NULL;
9735 }
9736 gdb_assert (HOST_CHAR_BIT == 8);
9737 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
9738 return NULL;
9739 return (char *) (dwarf2_per_objfile->str.buffer + str_offset);
9740 }
9741
9742 static unsigned long
9743 read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
9744 {
9745 unsigned long result;
9746 unsigned int num_read;
9747 int i, shift;
9748 unsigned char byte;
9749
9750 result = 0;
9751 shift = 0;
9752 num_read = 0;
9753 i = 0;
9754 while (1)
9755 {
9756 byte = bfd_get_8 (abfd, buf);
9757 buf++;
9758 num_read++;
9759 result |= ((unsigned long)(byte & 127) << shift);
9760 if ((byte & 128) == 0)
9761 {
9762 break;
9763 }
9764 shift += 7;
9765 }
9766 *bytes_read_ptr = num_read;
9767 return result;
9768 }
9769
9770 static long
9771 read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
9772 {
9773 long result;
9774 int i, shift, num_read;
9775 unsigned char byte;
9776
9777 result = 0;
9778 shift = 0;
9779 num_read = 0;
9780 i = 0;
9781 while (1)
9782 {
9783 byte = bfd_get_8 (abfd, buf);
9784 buf++;
9785 num_read++;
9786 result |= ((long)(byte & 127) << shift);
9787 shift += 7;
9788 if ((byte & 128) == 0)
9789 {
9790 break;
9791 }
9792 }
9793 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
9794 result |= -(((long)1) << shift);
9795 *bytes_read_ptr = num_read;
9796 return result;
9797 }
9798
9799 /* Return a pointer to just past the end of an LEB128 number in BUF. */
9800
9801 static gdb_byte *
9802 skip_leb128 (bfd *abfd, gdb_byte *buf)
9803 {
9804 int byte;
9805
9806 while (1)
9807 {
9808 byte = bfd_get_8 (abfd, buf);
9809 buf++;
9810 if ((byte & 128) == 0)
9811 return buf;
9812 }
9813 }
9814
9815 static void
9816 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
9817 {
9818 switch (lang)
9819 {
9820 case DW_LANG_C89:
9821 case DW_LANG_C99:
9822 case DW_LANG_C:
9823 cu->language = language_c;
9824 break;
9825 case DW_LANG_C_plus_plus:
9826 cu->language = language_cplus;
9827 break;
9828 case DW_LANG_D:
9829 cu->language = language_d;
9830 break;
9831 case DW_LANG_Fortran77:
9832 case DW_LANG_Fortran90:
9833 case DW_LANG_Fortran95:
9834 cu->language = language_fortran;
9835 break;
9836 case DW_LANG_Mips_Assembler:
9837 cu->language = language_asm;
9838 break;
9839 case DW_LANG_Java:
9840 cu->language = language_java;
9841 break;
9842 case DW_LANG_Ada83:
9843 case DW_LANG_Ada95:
9844 cu->language = language_ada;
9845 break;
9846 case DW_LANG_Modula2:
9847 cu->language = language_m2;
9848 break;
9849 case DW_LANG_Pascal83:
9850 cu->language = language_pascal;
9851 break;
9852 case DW_LANG_ObjC:
9853 cu->language = language_objc;
9854 break;
9855 case DW_LANG_Cobol74:
9856 case DW_LANG_Cobol85:
9857 default:
9858 cu->language = language_minimal;
9859 break;
9860 }
9861 cu->language_defn = language_def (cu->language);
9862 }
9863
9864 /* Return the named attribute or NULL if not there. */
9865
9866 static struct attribute *
9867 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
9868 {
9869 unsigned int i;
9870 struct attribute *spec = NULL;
9871
9872 for (i = 0; i < die->num_attrs; ++i)
9873 {
9874 if (die->attrs[i].name == name)
9875 return &die->attrs[i];
9876 if (die->attrs[i].name == DW_AT_specification
9877 || die->attrs[i].name == DW_AT_abstract_origin)
9878 spec = &die->attrs[i];
9879 }
9880
9881 if (spec)
9882 {
9883 die = follow_die_ref (die, spec, &cu);
9884 return dwarf2_attr (die, name, cu);
9885 }
9886
9887 return NULL;
9888 }
9889
9890 /* Return the named attribute or NULL if not there,
9891 but do not follow DW_AT_specification, etc.
9892 This is for use in contexts where we're reading .debug_types dies.
9893 Following DW_AT_specification, DW_AT_abstract_origin will take us
9894 back up the chain, and we want to go down. */
9895
9896 static struct attribute *
9897 dwarf2_attr_no_follow (struct die_info *die, unsigned int name,
9898 struct dwarf2_cu *cu)
9899 {
9900 unsigned int i;
9901
9902 for (i = 0; i < die->num_attrs; ++i)
9903 if (die->attrs[i].name == name)
9904 return &die->attrs[i];
9905
9906 return NULL;
9907 }
9908
9909 /* Return non-zero iff the attribute NAME is defined for the given DIE,
9910 and holds a non-zero value. This function should only be used for
9911 DW_FORM_flag or DW_FORM_flag_present attributes. */
9912
9913 static int
9914 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
9915 {
9916 struct attribute *attr = dwarf2_attr (die, name, cu);
9917
9918 return (attr && DW_UNSND (attr));
9919 }
9920
9921 static int
9922 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
9923 {
9924 /* A DIE is a declaration if it has a DW_AT_declaration attribute
9925 which value is non-zero. However, we have to be careful with
9926 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
9927 (via dwarf2_flag_true_p) follows this attribute. So we may
9928 end up accidently finding a declaration attribute that belongs
9929 to a different DIE referenced by the specification attribute,
9930 even though the given DIE does not have a declaration attribute. */
9931 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
9932 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
9933 }
9934
9935 /* Return the die giving the specification for DIE, if there is
9936 one. *SPEC_CU is the CU containing DIE on input, and the CU
9937 containing the return value on output. If there is no
9938 specification, but there is an abstract origin, that is
9939 returned. */
9940
9941 static struct die_info *
9942 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
9943 {
9944 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
9945 *spec_cu);
9946
9947 if (spec_attr == NULL)
9948 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
9949
9950 if (spec_attr == NULL)
9951 return NULL;
9952 else
9953 return follow_die_ref (die, spec_attr, spec_cu);
9954 }
9955
9956 /* Free the line_header structure *LH, and any arrays and strings it
9957 refers to.
9958 NOTE: This is also used as a "cleanup" function. */
9959
9960 static void
9961 free_line_header (struct line_header *lh)
9962 {
9963 if (lh->standard_opcode_lengths)
9964 xfree (lh->standard_opcode_lengths);
9965
9966 /* Remember that all the lh->file_names[i].name pointers are
9967 pointers into debug_line_buffer, and don't need to be freed. */
9968 if (lh->file_names)
9969 xfree (lh->file_names);
9970
9971 /* Similarly for the include directory names. */
9972 if (lh->include_dirs)
9973 xfree (lh->include_dirs);
9974
9975 xfree (lh);
9976 }
9977
9978 /* Add an entry to LH's include directory table. */
9979
9980 static void
9981 add_include_dir (struct line_header *lh, char *include_dir)
9982 {
9983 /* Grow the array if necessary. */
9984 if (lh->include_dirs_size == 0)
9985 {
9986 lh->include_dirs_size = 1; /* for testing */
9987 lh->include_dirs = xmalloc (lh->include_dirs_size
9988 * sizeof (*lh->include_dirs));
9989 }
9990 else if (lh->num_include_dirs >= lh->include_dirs_size)
9991 {
9992 lh->include_dirs_size *= 2;
9993 lh->include_dirs = xrealloc (lh->include_dirs,
9994 (lh->include_dirs_size
9995 * sizeof (*lh->include_dirs)));
9996 }
9997
9998 lh->include_dirs[lh->num_include_dirs++] = include_dir;
9999 }
10000
10001 /* Add an entry to LH's file name table. */
10002
10003 static void
10004 add_file_name (struct line_header *lh,
10005 char *name,
10006 unsigned int dir_index,
10007 unsigned int mod_time,
10008 unsigned int length)
10009 {
10010 struct file_entry *fe;
10011
10012 /* Grow the array if necessary. */
10013 if (lh->file_names_size == 0)
10014 {
10015 lh->file_names_size = 1; /* for testing */
10016 lh->file_names = xmalloc (lh->file_names_size
10017 * sizeof (*lh->file_names));
10018 }
10019 else if (lh->num_file_names >= lh->file_names_size)
10020 {
10021 lh->file_names_size *= 2;
10022 lh->file_names = xrealloc (lh->file_names,
10023 (lh->file_names_size
10024 * sizeof (*lh->file_names)));
10025 }
10026
10027 fe = &lh->file_names[lh->num_file_names++];
10028 fe->name = name;
10029 fe->dir_index = dir_index;
10030 fe->mod_time = mod_time;
10031 fe->length = length;
10032 fe->included_p = 0;
10033 fe->symtab = NULL;
10034 }
10035
10036 /* Read the statement program header starting at OFFSET in
10037 .debug_line, according to the endianness of ABFD. Return a pointer
10038 to a struct line_header, allocated using xmalloc.
10039
10040 NOTE: the strings in the include directory and file name tables of
10041 the returned object point into debug_line_buffer, and must not be
10042 freed. */
10043
10044 static struct line_header *
10045 dwarf_decode_line_header (unsigned int offset, bfd *abfd,
10046 struct dwarf2_cu *cu)
10047 {
10048 struct cleanup *back_to;
10049 struct line_header *lh;
10050 gdb_byte *line_ptr;
10051 unsigned int bytes_read, offset_size;
10052 int i;
10053 char *cur_dir, *cur_file;
10054
10055 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->line);
10056 if (dwarf2_per_objfile->line.buffer == NULL)
10057 {
10058 complaint (&symfile_complaints, _("missing .debug_line section"));
10059 return 0;
10060 }
10061
10062 /* Make sure that at least there's room for the total_length field.
10063 That could be 12 bytes long, but we're just going to fudge that. */
10064 if (offset + 4 >= dwarf2_per_objfile->line.size)
10065 {
10066 dwarf2_statement_list_fits_in_line_number_section_complaint ();
10067 return 0;
10068 }
10069
10070 lh = xmalloc (sizeof (*lh));
10071 memset (lh, 0, sizeof (*lh));
10072 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
10073 (void *) lh);
10074
10075 line_ptr = dwarf2_per_objfile->line.buffer + offset;
10076
10077 /* Read in the header. */
10078 lh->total_length =
10079 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
10080 &bytes_read, &offset_size);
10081 line_ptr += bytes_read;
10082 if (line_ptr + lh->total_length > (dwarf2_per_objfile->line.buffer
10083 + dwarf2_per_objfile->line.size))
10084 {
10085 dwarf2_statement_list_fits_in_line_number_section_complaint ();
10086 return 0;
10087 }
10088 lh->statement_program_end = line_ptr + lh->total_length;
10089 lh->version = read_2_bytes (abfd, line_ptr);
10090 line_ptr += 2;
10091 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
10092 line_ptr += offset_size;
10093 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
10094 line_ptr += 1;
10095 if (lh->version >= 4)
10096 {
10097 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
10098 line_ptr += 1;
10099 }
10100 else
10101 lh->maximum_ops_per_instruction = 1;
10102
10103 if (lh->maximum_ops_per_instruction == 0)
10104 {
10105 lh->maximum_ops_per_instruction = 1;
10106 complaint (&symfile_complaints,
10107 _("invalid maximum_ops_per_instruction "
10108 "in `.debug_line' section"));
10109 }
10110
10111 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
10112 line_ptr += 1;
10113 lh->line_base = read_1_signed_byte (abfd, line_ptr);
10114 line_ptr += 1;
10115 lh->line_range = read_1_byte (abfd, line_ptr);
10116 line_ptr += 1;
10117 lh->opcode_base = read_1_byte (abfd, line_ptr);
10118 line_ptr += 1;
10119 lh->standard_opcode_lengths
10120 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
10121
10122 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
10123 for (i = 1; i < lh->opcode_base; ++i)
10124 {
10125 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
10126 line_ptr += 1;
10127 }
10128
10129 /* Read directory table. */
10130 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
10131 {
10132 line_ptr += bytes_read;
10133 add_include_dir (lh, cur_dir);
10134 }
10135 line_ptr += bytes_read;
10136
10137 /* Read file name table. */
10138 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
10139 {
10140 unsigned int dir_index, mod_time, length;
10141
10142 line_ptr += bytes_read;
10143 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10144 line_ptr += bytes_read;
10145 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10146 line_ptr += bytes_read;
10147 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10148 line_ptr += bytes_read;
10149
10150 add_file_name (lh, cur_file, dir_index, mod_time, length);
10151 }
10152 line_ptr += bytes_read;
10153 lh->statement_program_start = line_ptr;
10154
10155 if (line_ptr > (dwarf2_per_objfile->line.buffer
10156 + dwarf2_per_objfile->line.size))
10157 complaint (&symfile_complaints,
10158 _("line number info header doesn't "
10159 "fit in `.debug_line' section"));
10160
10161 discard_cleanups (back_to);
10162 return lh;
10163 }
10164
10165 /* This function exists to work around a bug in certain compilers
10166 (particularly GCC 2.95), in which the first line number marker of a
10167 function does not show up until after the prologue, right before
10168 the second line number marker. This function shifts ADDRESS down
10169 to the beginning of the function if necessary, and is called on
10170 addresses passed to record_line. */
10171
10172 static CORE_ADDR
10173 check_cu_functions (CORE_ADDR address, struct dwarf2_cu *cu)
10174 {
10175 struct function_range *fn;
10176
10177 /* Find the function_range containing address. */
10178 if (!cu->first_fn)
10179 return address;
10180
10181 if (!cu->cached_fn)
10182 cu->cached_fn = cu->first_fn;
10183
10184 fn = cu->cached_fn;
10185 while (fn)
10186 if (fn->lowpc <= address && fn->highpc > address)
10187 goto found;
10188 else
10189 fn = fn->next;
10190
10191 fn = cu->first_fn;
10192 while (fn && fn != cu->cached_fn)
10193 if (fn->lowpc <= address && fn->highpc > address)
10194 goto found;
10195 else
10196 fn = fn->next;
10197
10198 return address;
10199
10200 found:
10201 if (fn->seen_line)
10202 return address;
10203 if (address != fn->lowpc)
10204 complaint (&symfile_complaints,
10205 _("misplaced first line number at 0x%lx for '%s'"),
10206 (unsigned long) address, fn->name);
10207 fn->seen_line = 1;
10208 return fn->lowpc;
10209 }
10210
10211 /* Subroutine of dwarf_decode_lines to simplify it.
10212 Return the file name of the psymtab for included file FILE_INDEX
10213 in line header LH of PST.
10214 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
10215 If space for the result is malloc'd, it will be freed by a cleanup.
10216 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
10217
10218 static char *
10219 psymtab_include_file_name (const struct line_header *lh, int file_index,
10220 const struct partial_symtab *pst,
10221 const char *comp_dir)
10222 {
10223 const struct file_entry fe = lh->file_names [file_index];
10224 char *include_name = fe.name;
10225 char *include_name_to_compare = include_name;
10226 char *dir_name = NULL;
10227 const char *pst_filename;
10228 char *copied_name = NULL;
10229 int file_is_pst;
10230
10231 if (fe.dir_index)
10232 dir_name = lh->include_dirs[fe.dir_index - 1];
10233
10234 if (!IS_ABSOLUTE_PATH (include_name)
10235 && (dir_name != NULL || comp_dir != NULL))
10236 {
10237 /* Avoid creating a duplicate psymtab for PST.
10238 We do this by comparing INCLUDE_NAME and PST_FILENAME.
10239 Before we do the comparison, however, we need to account
10240 for DIR_NAME and COMP_DIR.
10241 First prepend dir_name (if non-NULL). If we still don't
10242 have an absolute path prepend comp_dir (if non-NULL).
10243 However, the directory we record in the include-file's
10244 psymtab does not contain COMP_DIR (to match the
10245 corresponding symtab(s)).
10246
10247 Example:
10248
10249 bash$ cd /tmp
10250 bash$ gcc -g ./hello.c
10251 include_name = "hello.c"
10252 dir_name = "."
10253 DW_AT_comp_dir = comp_dir = "/tmp"
10254 DW_AT_name = "./hello.c" */
10255
10256 if (dir_name != NULL)
10257 {
10258 include_name = concat (dir_name, SLASH_STRING,
10259 include_name, (char *)NULL);
10260 include_name_to_compare = include_name;
10261 make_cleanup (xfree, include_name);
10262 }
10263 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
10264 {
10265 include_name_to_compare = concat (comp_dir, SLASH_STRING,
10266 include_name, (char *)NULL);
10267 }
10268 }
10269
10270 pst_filename = pst->filename;
10271 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
10272 {
10273 copied_name = concat (pst->dirname, SLASH_STRING,
10274 pst_filename, (char *)NULL);
10275 pst_filename = copied_name;
10276 }
10277
10278 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
10279
10280 if (include_name_to_compare != include_name)
10281 xfree (include_name_to_compare);
10282 if (copied_name != NULL)
10283 xfree (copied_name);
10284
10285 if (file_is_pst)
10286 return NULL;
10287 return include_name;
10288 }
10289
10290 /* Decode the Line Number Program (LNP) for the given line_header
10291 structure and CU. The actual information extracted and the type
10292 of structures created from the LNP depends on the value of PST.
10293
10294 1. If PST is NULL, then this procedure uses the data from the program
10295 to create all necessary symbol tables, and their linetables.
10296
10297 2. If PST is not NULL, this procedure reads the program to determine
10298 the list of files included by the unit represented by PST, and
10299 builds all the associated partial symbol tables.
10300
10301 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
10302 It is used for relative paths in the line table.
10303 NOTE: When processing partial symtabs (pst != NULL),
10304 comp_dir == pst->dirname.
10305
10306 NOTE: It is important that psymtabs have the same file name (via strcmp)
10307 as the corresponding symtab. Since COMP_DIR is not used in the name of the
10308 symtab we don't use it in the name of the psymtabs we create.
10309 E.g. expand_line_sal requires this when finding psymtabs to expand.
10310 A good testcase for this is mb-inline.exp. */
10311
10312 static void
10313 dwarf_decode_lines (struct line_header *lh, const char *comp_dir, bfd *abfd,
10314 struct dwarf2_cu *cu, struct partial_symtab *pst)
10315 {
10316 gdb_byte *line_ptr, *extended_end;
10317 gdb_byte *line_end;
10318 unsigned int bytes_read, extended_len;
10319 unsigned char op_code, extended_op, adj_opcode;
10320 CORE_ADDR baseaddr;
10321 struct objfile *objfile = cu->objfile;
10322 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10323 const int decode_for_pst_p = (pst != NULL);
10324 struct subfile *last_subfile = NULL, *first_subfile = current_subfile;
10325
10326 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10327
10328 line_ptr = lh->statement_program_start;
10329 line_end = lh->statement_program_end;
10330
10331 /* Read the statement sequences until there's nothing left. */
10332 while (line_ptr < line_end)
10333 {
10334 /* state machine registers */
10335 CORE_ADDR address = 0;
10336 unsigned int file = 1;
10337 unsigned int line = 1;
10338 unsigned int column = 0;
10339 int is_stmt = lh->default_is_stmt;
10340 int basic_block = 0;
10341 int end_sequence = 0;
10342 CORE_ADDR addr;
10343 unsigned char op_index = 0;
10344
10345 if (!decode_for_pst_p && lh->num_file_names >= file)
10346 {
10347 /* Start a subfile for the current file of the state machine. */
10348 /* lh->include_dirs and lh->file_names are 0-based, but the
10349 directory and file name numbers in the statement program
10350 are 1-based. */
10351 struct file_entry *fe = &lh->file_names[file - 1];
10352 char *dir = NULL;
10353
10354 if (fe->dir_index)
10355 dir = lh->include_dirs[fe->dir_index - 1];
10356
10357 dwarf2_start_subfile (fe->name, dir, comp_dir);
10358 }
10359
10360 /* Decode the table. */
10361 while (!end_sequence)
10362 {
10363 op_code = read_1_byte (abfd, line_ptr);
10364 line_ptr += 1;
10365 if (line_ptr > line_end)
10366 {
10367 dwarf2_debug_line_missing_end_sequence_complaint ();
10368 break;
10369 }
10370
10371 if (op_code >= lh->opcode_base)
10372 {
10373 /* Special operand. */
10374 adj_opcode = op_code - lh->opcode_base;
10375 address += (((op_index + (adj_opcode / lh->line_range))
10376 / lh->maximum_ops_per_instruction)
10377 * lh->minimum_instruction_length);
10378 op_index = ((op_index + (adj_opcode / lh->line_range))
10379 % lh->maximum_ops_per_instruction);
10380 line += lh->line_base + (adj_opcode % lh->line_range);
10381 if (lh->num_file_names < file || file == 0)
10382 dwarf2_debug_line_missing_file_complaint ();
10383 /* For now we ignore lines not starting on an
10384 instruction boundary. */
10385 else if (op_index == 0)
10386 {
10387 lh->file_names[file - 1].included_p = 1;
10388 if (!decode_for_pst_p && is_stmt)
10389 {
10390 if (last_subfile != current_subfile)
10391 {
10392 addr = gdbarch_addr_bits_remove (gdbarch, address);
10393 if (last_subfile)
10394 record_line (last_subfile, 0, addr);
10395 last_subfile = current_subfile;
10396 }
10397 /* Append row to matrix using current values. */
10398 addr = check_cu_functions (address, cu);
10399 addr = gdbarch_addr_bits_remove (gdbarch, addr);
10400 record_line (current_subfile, line, addr);
10401 }
10402 }
10403 basic_block = 0;
10404 }
10405 else switch (op_code)
10406 {
10407 case DW_LNS_extended_op:
10408 extended_len = read_unsigned_leb128 (abfd, line_ptr,
10409 &bytes_read);
10410 line_ptr += bytes_read;
10411 extended_end = line_ptr + extended_len;
10412 extended_op = read_1_byte (abfd, line_ptr);
10413 line_ptr += 1;
10414 switch (extended_op)
10415 {
10416 case DW_LNE_end_sequence:
10417 end_sequence = 1;
10418 break;
10419 case DW_LNE_set_address:
10420 address = read_address (abfd, line_ptr, cu, &bytes_read);
10421 op_index = 0;
10422 line_ptr += bytes_read;
10423 address += baseaddr;
10424 break;
10425 case DW_LNE_define_file:
10426 {
10427 char *cur_file;
10428 unsigned int dir_index, mod_time, length;
10429
10430 cur_file = read_direct_string (abfd, line_ptr,
10431 &bytes_read);
10432 line_ptr += bytes_read;
10433 dir_index =
10434 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10435 line_ptr += bytes_read;
10436 mod_time =
10437 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10438 line_ptr += bytes_read;
10439 length =
10440 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10441 line_ptr += bytes_read;
10442 add_file_name (lh, cur_file, dir_index, mod_time, length);
10443 }
10444 break;
10445 case DW_LNE_set_discriminator:
10446 /* The discriminator is not interesting to the debugger;
10447 just ignore it. */
10448 line_ptr = extended_end;
10449 break;
10450 default:
10451 complaint (&symfile_complaints,
10452 _("mangled .debug_line section"));
10453 return;
10454 }
10455 /* Make sure that we parsed the extended op correctly. If e.g.
10456 we expected a different address size than the producer used,
10457 we may have read the wrong number of bytes. */
10458 if (line_ptr != extended_end)
10459 {
10460 complaint (&symfile_complaints,
10461 _("mangled .debug_line section"));
10462 return;
10463 }
10464 break;
10465 case DW_LNS_copy:
10466 if (lh->num_file_names < file || file == 0)
10467 dwarf2_debug_line_missing_file_complaint ();
10468 else
10469 {
10470 lh->file_names[file - 1].included_p = 1;
10471 if (!decode_for_pst_p && is_stmt)
10472 {
10473 if (last_subfile != current_subfile)
10474 {
10475 addr = gdbarch_addr_bits_remove (gdbarch, address);
10476 if (last_subfile)
10477 record_line (last_subfile, 0, addr);
10478 last_subfile = current_subfile;
10479 }
10480 addr = check_cu_functions (address, cu);
10481 addr = gdbarch_addr_bits_remove (gdbarch, addr);
10482 record_line (current_subfile, line, addr);
10483 }
10484 }
10485 basic_block = 0;
10486 break;
10487 case DW_LNS_advance_pc:
10488 {
10489 CORE_ADDR adjust
10490 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10491
10492 address += (((op_index + adjust)
10493 / lh->maximum_ops_per_instruction)
10494 * lh->minimum_instruction_length);
10495 op_index = ((op_index + adjust)
10496 % lh->maximum_ops_per_instruction);
10497 line_ptr += bytes_read;
10498 }
10499 break;
10500 case DW_LNS_advance_line:
10501 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
10502 line_ptr += bytes_read;
10503 break;
10504 case DW_LNS_set_file:
10505 {
10506 /* The arrays lh->include_dirs and lh->file_names are
10507 0-based, but the directory and file name numbers in
10508 the statement program are 1-based. */
10509 struct file_entry *fe;
10510 char *dir = NULL;
10511
10512 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10513 line_ptr += bytes_read;
10514 if (lh->num_file_names < file || file == 0)
10515 dwarf2_debug_line_missing_file_complaint ();
10516 else
10517 {
10518 fe = &lh->file_names[file - 1];
10519 if (fe->dir_index)
10520 dir = lh->include_dirs[fe->dir_index - 1];
10521 if (!decode_for_pst_p)
10522 {
10523 last_subfile = current_subfile;
10524 dwarf2_start_subfile (fe->name, dir, comp_dir);
10525 }
10526 }
10527 }
10528 break;
10529 case DW_LNS_set_column:
10530 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10531 line_ptr += bytes_read;
10532 break;
10533 case DW_LNS_negate_stmt:
10534 is_stmt = (!is_stmt);
10535 break;
10536 case DW_LNS_set_basic_block:
10537 basic_block = 1;
10538 break;
10539 /* Add to the address register of the state machine the
10540 address increment value corresponding to special opcode
10541 255. I.e., this value is scaled by the minimum
10542 instruction length since special opcode 255 would have
10543 scaled the the increment. */
10544 case DW_LNS_const_add_pc:
10545 {
10546 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
10547
10548 address += (((op_index + adjust)
10549 / lh->maximum_ops_per_instruction)
10550 * lh->minimum_instruction_length);
10551 op_index = ((op_index + adjust)
10552 % lh->maximum_ops_per_instruction);
10553 }
10554 break;
10555 case DW_LNS_fixed_advance_pc:
10556 address += read_2_bytes (abfd, line_ptr);
10557 op_index = 0;
10558 line_ptr += 2;
10559 break;
10560 default:
10561 {
10562 /* Unknown standard opcode, ignore it. */
10563 int i;
10564
10565 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
10566 {
10567 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10568 line_ptr += bytes_read;
10569 }
10570 }
10571 }
10572 }
10573 if (lh->num_file_names < file || file == 0)
10574 dwarf2_debug_line_missing_file_complaint ();
10575 else
10576 {
10577 lh->file_names[file - 1].included_p = 1;
10578 if (!decode_for_pst_p)
10579 {
10580 addr = gdbarch_addr_bits_remove (gdbarch, address);
10581 record_line (current_subfile, 0, addr);
10582 }
10583 }
10584 }
10585
10586 if (decode_for_pst_p)
10587 {
10588 int file_index;
10589
10590 /* Now that we're done scanning the Line Header Program, we can
10591 create the psymtab of each included file. */
10592 for (file_index = 0; file_index < lh->num_file_names; file_index++)
10593 if (lh->file_names[file_index].included_p == 1)
10594 {
10595 char *include_name =
10596 psymtab_include_file_name (lh, file_index, pst, comp_dir);
10597 if (include_name != NULL)
10598 dwarf2_create_include_psymtab (include_name, pst, objfile);
10599 }
10600 }
10601 else
10602 {
10603 /* Make sure a symtab is created for every file, even files
10604 which contain only variables (i.e. no code with associated
10605 line numbers). */
10606
10607 int i;
10608 struct file_entry *fe;
10609
10610 for (i = 0; i < lh->num_file_names; i++)
10611 {
10612 char *dir = NULL;
10613
10614 fe = &lh->file_names[i];
10615 if (fe->dir_index)
10616 dir = lh->include_dirs[fe->dir_index - 1];
10617 dwarf2_start_subfile (fe->name, dir, comp_dir);
10618
10619 /* Skip the main file; we don't need it, and it must be
10620 allocated last, so that it will show up before the
10621 non-primary symtabs in the objfile's symtab list. */
10622 if (current_subfile == first_subfile)
10623 continue;
10624
10625 if (current_subfile->symtab == NULL)
10626 current_subfile->symtab = allocate_symtab (current_subfile->name,
10627 cu->objfile);
10628 fe->symtab = current_subfile->symtab;
10629 }
10630 }
10631 }
10632
10633 /* Start a subfile for DWARF. FILENAME is the name of the file and
10634 DIRNAME the name of the source directory which contains FILENAME
10635 or NULL if not known. COMP_DIR is the compilation directory for the
10636 linetable's compilation unit or NULL if not known.
10637 This routine tries to keep line numbers from identical absolute and
10638 relative file names in a common subfile.
10639
10640 Using the `list' example from the GDB testsuite, which resides in
10641 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
10642 of /srcdir/list0.c yields the following debugging information for list0.c:
10643
10644 DW_AT_name: /srcdir/list0.c
10645 DW_AT_comp_dir: /compdir
10646 files.files[0].name: list0.h
10647 files.files[0].dir: /srcdir
10648 files.files[1].name: list0.c
10649 files.files[1].dir: /srcdir
10650
10651 The line number information for list0.c has to end up in a single
10652 subfile, so that `break /srcdir/list0.c:1' works as expected.
10653 start_subfile will ensure that this happens provided that we pass the
10654 concatenation of files.files[1].dir and files.files[1].name as the
10655 subfile's name. */
10656
10657 static void
10658 dwarf2_start_subfile (char *filename, const char *dirname,
10659 const char *comp_dir)
10660 {
10661 char *fullname;
10662
10663 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
10664 `start_symtab' will always pass the contents of DW_AT_comp_dir as
10665 second argument to start_subfile. To be consistent, we do the
10666 same here. In order not to lose the line information directory,
10667 we concatenate it to the filename when it makes sense.
10668 Note that the Dwarf3 standard says (speaking of filenames in line
10669 information): ``The directory index is ignored for file names
10670 that represent full path names''. Thus ignoring dirname in the
10671 `else' branch below isn't an issue. */
10672
10673 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
10674 fullname = concat (dirname, SLASH_STRING, filename, (char *)NULL);
10675 else
10676 fullname = filename;
10677
10678 start_subfile (fullname, comp_dir);
10679
10680 if (fullname != filename)
10681 xfree (fullname);
10682 }
10683
10684 static void
10685 var_decode_location (struct attribute *attr, struct symbol *sym,
10686 struct dwarf2_cu *cu)
10687 {
10688 struct objfile *objfile = cu->objfile;
10689 struct comp_unit_head *cu_header = &cu->header;
10690
10691 /* NOTE drow/2003-01-30: There used to be a comment and some special
10692 code here to turn a symbol with DW_AT_external and a
10693 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
10694 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
10695 with some versions of binutils) where shared libraries could have
10696 relocations against symbols in their debug information - the
10697 minimal symbol would have the right address, but the debug info
10698 would not. It's no longer necessary, because we will explicitly
10699 apply relocations when we read in the debug information now. */
10700
10701 /* A DW_AT_location attribute with no contents indicates that a
10702 variable has been optimized away. */
10703 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
10704 {
10705 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
10706 return;
10707 }
10708
10709 /* Handle one degenerate form of location expression specially, to
10710 preserve GDB's previous behavior when section offsets are
10711 specified. If this is just a DW_OP_addr then mark this symbol
10712 as LOC_STATIC. */
10713
10714 if (attr_form_is_block (attr)
10715 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size
10716 && DW_BLOCK (attr)->data[0] == DW_OP_addr)
10717 {
10718 unsigned int dummy;
10719
10720 SYMBOL_VALUE_ADDRESS (sym) =
10721 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
10722 SYMBOL_CLASS (sym) = LOC_STATIC;
10723 fixup_symbol_section (sym, objfile);
10724 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
10725 SYMBOL_SECTION (sym));
10726 return;
10727 }
10728
10729 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
10730 expression evaluator, and use LOC_COMPUTED only when necessary
10731 (i.e. when the value of a register or memory location is
10732 referenced, or a thread-local block, etc.). Then again, it might
10733 not be worthwhile. I'm assuming that it isn't unless performance
10734 or memory numbers show me otherwise. */
10735
10736 dwarf2_symbol_mark_computed (attr, sym, cu);
10737 SYMBOL_CLASS (sym) = LOC_COMPUTED;
10738 }
10739
10740 /* Given a pointer to a DWARF information entry, figure out if we need
10741 to make a symbol table entry for it, and if so, create a new entry
10742 and return a pointer to it.
10743 If TYPE is NULL, determine symbol type from the die, otherwise
10744 used the passed type.
10745 If SPACE is not NULL, use it to hold the new symbol. If it is
10746 NULL, allocate a new symbol on the objfile's obstack. */
10747
10748 static struct symbol *
10749 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
10750 struct symbol *space)
10751 {
10752 struct objfile *objfile = cu->objfile;
10753 struct symbol *sym = NULL;
10754 char *name;
10755 struct attribute *attr = NULL;
10756 struct attribute *attr2 = NULL;
10757 CORE_ADDR baseaddr;
10758 struct pending **list_to_add = NULL;
10759
10760 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
10761
10762 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10763
10764 name = dwarf2_name (die, cu);
10765 if (name)
10766 {
10767 const char *linkagename;
10768 int suppress_add = 0;
10769
10770 if (space)
10771 sym = space;
10772 else
10773 sym = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
10774 OBJSTAT (objfile, n_syms++);
10775
10776 /* Cache this symbol's name and the name's demangled form (if any). */
10777 SYMBOL_SET_LANGUAGE (sym, cu->language);
10778 linkagename = dwarf2_physname (name, die, cu);
10779 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
10780
10781 /* Fortran does not have mangling standard and the mangling does differ
10782 between gfortran, iFort etc. */
10783 if (cu->language == language_fortran
10784 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
10785 symbol_set_demangled_name (&(sym->ginfo),
10786 (char *) dwarf2_full_name (name, die, cu),
10787 NULL);
10788
10789 /* Default assumptions.
10790 Use the passed type or decode it from the die. */
10791 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
10792 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
10793 if (type != NULL)
10794 SYMBOL_TYPE (sym) = type;
10795 else
10796 SYMBOL_TYPE (sym) = die_type (die, cu);
10797 attr = dwarf2_attr (die,
10798 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
10799 cu);
10800 if (attr)
10801 {
10802 SYMBOL_LINE (sym) = DW_UNSND (attr);
10803 }
10804
10805 attr = dwarf2_attr (die,
10806 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
10807 cu);
10808 if (attr)
10809 {
10810 int file_index = DW_UNSND (attr);
10811
10812 if (cu->line_header == NULL
10813 || file_index > cu->line_header->num_file_names)
10814 complaint (&symfile_complaints,
10815 _("file index out of range"));
10816 else if (file_index > 0)
10817 {
10818 struct file_entry *fe;
10819
10820 fe = &cu->line_header->file_names[file_index - 1];
10821 SYMBOL_SYMTAB (sym) = fe->symtab;
10822 }
10823 }
10824
10825 switch (die->tag)
10826 {
10827 case DW_TAG_label:
10828 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
10829 if (attr)
10830 {
10831 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
10832 }
10833 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
10834 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
10835 SYMBOL_CLASS (sym) = LOC_LABEL;
10836 add_symbol_to_list (sym, cu->list_in_scope);
10837 break;
10838 case DW_TAG_subprogram:
10839 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
10840 finish_block. */
10841 SYMBOL_CLASS (sym) = LOC_BLOCK;
10842 attr2 = dwarf2_attr (die, DW_AT_external, cu);
10843 if ((attr2 && (DW_UNSND (attr2) != 0))
10844 || cu->language == language_ada)
10845 {
10846 /* Subprograms marked external are stored as a global symbol.
10847 Ada subprograms, whether marked external or not, are always
10848 stored as a global symbol, because we want to be able to
10849 access them globally. For instance, we want to be able
10850 to break on a nested subprogram without having to
10851 specify the context. */
10852 list_to_add = &global_symbols;
10853 }
10854 else
10855 {
10856 list_to_add = cu->list_in_scope;
10857 }
10858 break;
10859 case DW_TAG_inlined_subroutine:
10860 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
10861 finish_block. */
10862 SYMBOL_CLASS (sym) = LOC_BLOCK;
10863 SYMBOL_INLINED (sym) = 1;
10864 /* Do not add the symbol to any lists. It will be found via
10865 BLOCK_FUNCTION from the blockvector. */
10866 break;
10867 case DW_TAG_template_value_param:
10868 suppress_add = 1;
10869 /* Fall through. */
10870 case DW_TAG_constant:
10871 case DW_TAG_variable:
10872 case DW_TAG_member:
10873 /* Compilation with minimal debug info may result in
10874 variables with missing type entries. Change the
10875 misleading `void' type to something sensible. */
10876 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
10877 SYMBOL_TYPE (sym)
10878 = objfile_type (objfile)->nodebug_data_symbol;
10879
10880 attr = dwarf2_attr (die, DW_AT_const_value, cu);
10881 /* In the case of DW_TAG_member, we should only be called for
10882 static const members. */
10883 if (die->tag == DW_TAG_member)
10884 {
10885 /* dwarf2_add_field uses die_is_declaration,
10886 so we do the same. */
10887 gdb_assert (die_is_declaration (die, cu));
10888 gdb_assert (attr);
10889 }
10890 if (attr)
10891 {
10892 dwarf2_const_value (attr, sym, cu);
10893 attr2 = dwarf2_attr (die, DW_AT_external, cu);
10894 if (!suppress_add)
10895 {
10896 if (attr2 && (DW_UNSND (attr2) != 0))
10897 list_to_add = &global_symbols;
10898 else
10899 list_to_add = cu->list_in_scope;
10900 }
10901 break;
10902 }
10903 attr = dwarf2_attr (die, DW_AT_location, cu);
10904 if (attr)
10905 {
10906 var_decode_location (attr, sym, cu);
10907 attr2 = dwarf2_attr (die, DW_AT_external, cu);
10908 if (SYMBOL_CLASS (sym) == LOC_STATIC
10909 && SYMBOL_VALUE_ADDRESS (sym) == 0
10910 && !dwarf2_per_objfile->has_section_at_zero)
10911 {
10912 /* When a static variable is eliminated by the linker,
10913 the corresponding debug information is not stripped
10914 out, but the variable address is set to null;
10915 do not add such variables into symbol table. */
10916 }
10917 else if (attr2 && (DW_UNSND (attr2) != 0))
10918 {
10919 /* Workaround gfortran PR debug/40040 - it uses
10920 DW_AT_location for variables in -fPIC libraries which may
10921 get overriden by other libraries/executable and get
10922 a different address. Resolve it by the minimal symbol
10923 which may come from inferior's executable using copy
10924 relocation. Make this workaround only for gfortran as for
10925 other compilers GDB cannot guess the minimal symbol
10926 Fortran mangling kind. */
10927 if (cu->language == language_fortran && die->parent
10928 && die->parent->tag == DW_TAG_module
10929 && cu->producer
10930 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
10931 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
10932
10933 /* A variable with DW_AT_external is never static,
10934 but it may be block-scoped. */
10935 list_to_add = (cu->list_in_scope == &file_symbols
10936 ? &global_symbols : cu->list_in_scope);
10937 }
10938 else
10939 list_to_add = cu->list_in_scope;
10940 }
10941 else
10942 {
10943 /* We do not know the address of this symbol.
10944 If it is an external symbol and we have type information
10945 for it, enter the symbol as a LOC_UNRESOLVED symbol.
10946 The address of the variable will then be determined from
10947 the minimal symbol table whenever the variable is
10948 referenced. */
10949 attr2 = dwarf2_attr (die, DW_AT_external, cu);
10950 if (attr2 && (DW_UNSND (attr2) != 0)
10951 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
10952 {
10953 /* A variable with DW_AT_external is never static, but it
10954 may be block-scoped. */
10955 list_to_add = (cu->list_in_scope == &file_symbols
10956 ? &global_symbols : cu->list_in_scope);
10957
10958 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
10959 }
10960 else if (!die_is_declaration (die, cu))
10961 {
10962 /* Use the default LOC_OPTIMIZED_OUT class. */
10963 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
10964 if (!suppress_add)
10965 list_to_add = cu->list_in_scope;
10966 }
10967 }
10968 break;
10969 case DW_TAG_formal_parameter:
10970 /* If we are inside a function, mark this as an argument. If
10971 not, we might be looking at an argument to an inlined function
10972 when we do not have enough information to show inlined frames;
10973 pretend it's a local variable in that case so that the user can
10974 still see it. */
10975 if (context_stack_depth > 0
10976 && context_stack[context_stack_depth - 1].name != NULL)
10977 SYMBOL_IS_ARGUMENT (sym) = 1;
10978 attr = dwarf2_attr (die, DW_AT_location, cu);
10979 if (attr)
10980 {
10981 var_decode_location (attr, sym, cu);
10982 }
10983 attr = dwarf2_attr (die, DW_AT_const_value, cu);
10984 if (attr)
10985 {
10986 dwarf2_const_value (attr, sym, cu);
10987 }
10988 attr = dwarf2_attr (die, DW_AT_variable_parameter, cu);
10989 if (attr && DW_UNSND (attr))
10990 {
10991 struct type *ref_type;
10992
10993 ref_type = lookup_reference_type (SYMBOL_TYPE (sym));
10994 SYMBOL_TYPE (sym) = ref_type;
10995 }
10996
10997 list_to_add = cu->list_in_scope;
10998 break;
10999 case DW_TAG_unspecified_parameters:
11000 /* From varargs functions; gdb doesn't seem to have any
11001 interest in this information, so just ignore it for now.
11002 (FIXME?) */
11003 break;
11004 case DW_TAG_template_type_param:
11005 suppress_add = 1;
11006 /* Fall through. */
11007 case DW_TAG_class_type:
11008 case DW_TAG_interface_type:
11009 case DW_TAG_structure_type:
11010 case DW_TAG_union_type:
11011 case DW_TAG_set_type:
11012 case DW_TAG_enumeration_type:
11013 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
11014 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
11015
11016 {
11017 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
11018 really ever be static objects: otherwise, if you try
11019 to, say, break of a class's method and you're in a file
11020 which doesn't mention that class, it won't work unless
11021 the check for all static symbols in lookup_symbol_aux
11022 saves you. See the OtherFileClass tests in
11023 gdb.c++/namespace.exp. */
11024
11025 if (!suppress_add)
11026 {
11027 list_to_add = (cu->list_in_scope == &file_symbols
11028 && (cu->language == language_cplus
11029 || cu->language == language_java)
11030 ? &global_symbols : cu->list_in_scope);
11031
11032 /* The semantics of C++ state that "struct foo {
11033 ... }" also defines a typedef for "foo". A Java
11034 class declaration also defines a typedef for the
11035 class. */
11036 if (cu->language == language_cplus
11037 || cu->language == language_java
11038 || cu->language == language_ada)
11039 {
11040 /* The symbol's name is already allocated along
11041 with this objfile, so we don't need to
11042 duplicate it for the type. */
11043 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
11044 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
11045 }
11046 }
11047 }
11048 break;
11049 case DW_TAG_typedef:
11050 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
11051 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
11052 list_to_add = cu->list_in_scope;
11053 break;
11054 case DW_TAG_base_type:
11055 case DW_TAG_subrange_type:
11056 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
11057 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
11058 list_to_add = cu->list_in_scope;
11059 break;
11060 case DW_TAG_enumerator:
11061 attr = dwarf2_attr (die, DW_AT_const_value, cu);
11062 if (attr)
11063 {
11064 dwarf2_const_value (attr, sym, cu);
11065 }
11066 {
11067 /* NOTE: carlton/2003-11-10: See comment above in the
11068 DW_TAG_class_type, etc. block. */
11069
11070 list_to_add = (cu->list_in_scope == &file_symbols
11071 && (cu->language == language_cplus
11072 || cu->language == language_java)
11073 ? &global_symbols : cu->list_in_scope);
11074 }
11075 break;
11076 case DW_TAG_namespace:
11077 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
11078 list_to_add = &global_symbols;
11079 break;
11080 default:
11081 /* Not a tag we recognize. Hopefully we aren't processing
11082 trash data, but since we must specifically ignore things
11083 we don't recognize, there is nothing else we should do at
11084 this point. */
11085 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
11086 dwarf_tag_name (die->tag));
11087 break;
11088 }
11089
11090 if (suppress_add)
11091 {
11092 sym->hash_next = objfile->template_symbols;
11093 objfile->template_symbols = sym;
11094 list_to_add = NULL;
11095 }
11096
11097 if (list_to_add != NULL)
11098 add_symbol_to_list (sym, list_to_add);
11099
11100 /* For the benefit of old versions of GCC, check for anonymous
11101 namespaces based on the demangled name. */
11102 if (!processing_has_namespace_info
11103 && cu->language == language_cplus)
11104 cp_scan_for_anonymous_namespaces (sym);
11105 }
11106 return (sym);
11107 }
11108
11109 /* A wrapper for new_symbol_full that always allocates a new symbol. */
11110
11111 static struct symbol *
11112 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
11113 {
11114 return new_symbol_full (die, type, cu, NULL);
11115 }
11116
11117 /* Given an attr with a DW_FORM_dataN value in host byte order,
11118 zero-extend it as appropriate for the symbol's type. The DWARF
11119 standard (v4) is not entirely clear about the meaning of using
11120 DW_FORM_dataN for a constant with a signed type, where the type is
11121 wider than the data. The conclusion of a discussion on the DWARF
11122 list was that this is unspecified. We choose to always zero-extend
11123 because that is the interpretation long in use by GCC. */
11124
11125 static gdb_byte *
11126 dwarf2_const_value_data (struct attribute *attr, struct type *type,
11127 const char *name, struct obstack *obstack,
11128 struct dwarf2_cu *cu, long *value, int bits)
11129 {
11130 struct objfile *objfile = cu->objfile;
11131 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
11132 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
11133 LONGEST l = DW_UNSND (attr);
11134
11135 if (bits < sizeof (*value) * 8)
11136 {
11137 l &= ((LONGEST) 1 << bits) - 1;
11138 *value = l;
11139 }
11140 else if (bits == sizeof (*value) * 8)
11141 *value = l;
11142 else
11143 {
11144 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
11145 store_unsigned_integer (bytes, bits / 8, byte_order, l);
11146 return bytes;
11147 }
11148
11149 return NULL;
11150 }
11151
11152 /* Read a constant value from an attribute. Either set *VALUE, or if
11153 the value does not fit in *VALUE, set *BYTES - either already
11154 allocated on the objfile obstack, or newly allocated on OBSTACK,
11155 or, set *BATON, if we translated the constant to a location
11156 expression. */
11157
11158 static void
11159 dwarf2_const_value_attr (struct attribute *attr, struct type *type,
11160 const char *name, struct obstack *obstack,
11161 struct dwarf2_cu *cu,
11162 long *value, gdb_byte **bytes,
11163 struct dwarf2_locexpr_baton **baton)
11164 {
11165 struct objfile *objfile = cu->objfile;
11166 struct comp_unit_head *cu_header = &cu->header;
11167 struct dwarf_block *blk;
11168 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
11169 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
11170
11171 *value = 0;
11172 *bytes = NULL;
11173 *baton = NULL;
11174
11175 switch (attr->form)
11176 {
11177 case DW_FORM_addr:
11178 {
11179 gdb_byte *data;
11180
11181 if (TYPE_LENGTH (type) != cu_header->addr_size)
11182 dwarf2_const_value_length_mismatch_complaint (name,
11183 cu_header->addr_size,
11184 TYPE_LENGTH (type));
11185 /* Symbols of this form are reasonably rare, so we just
11186 piggyback on the existing location code rather than writing
11187 a new implementation of symbol_computed_ops. */
11188 *baton = obstack_alloc (&objfile->objfile_obstack,
11189 sizeof (struct dwarf2_locexpr_baton));
11190 (*baton)->per_cu = cu->per_cu;
11191 gdb_assert ((*baton)->per_cu);
11192
11193 (*baton)->size = 2 + cu_header->addr_size;
11194 data = obstack_alloc (&objfile->objfile_obstack, (*baton)->size);
11195 (*baton)->data = data;
11196
11197 data[0] = DW_OP_addr;
11198 store_unsigned_integer (&data[1], cu_header->addr_size,
11199 byte_order, DW_ADDR (attr));
11200 data[cu_header->addr_size + 1] = DW_OP_stack_value;
11201 }
11202 break;
11203 case DW_FORM_string:
11204 case DW_FORM_strp:
11205 /* DW_STRING is already allocated on the objfile obstack, point
11206 directly to it. */
11207 *bytes = (gdb_byte *) DW_STRING (attr);
11208 break;
11209 case DW_FORM_block1:
11210 case DW_FORM_block2:
11211 case DW_FORM_block4:
11212 case DW_FORM_block:
11213 case DW_FORM_exprloc:
11214 blk = DW_BLOCK (attr);
11215 if (TYPE_LENGTH (type) != blk->size)
11216 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
11217 TYPE_LENGTH (type));
11218 *bytes = blk->data;
11219 break;
11220
11221 /* The DW_AT_const_value attributes are supposed to carry the
11222 symbol's value "represented as it would be on the target
11223 architecture." By the time we get here, it's already been
11224 converted to host endianness, so we just need to sign- or
11225 zero-extend it as appropriate. */
11226 case DW_FORM_data1:
11227 *bytes = dwarf2_const_value_data (attr, type, name,
11228 obstack, cu, value, 8);
11229 break;
11230 case DW_FORM_data2:
11231 *bytes = dwarf2_const_value_data (attr, type, name,
11232 obstack, cu, value, 16);
11233 break;
11234 case DW_FORM_data4:
11235 *bytes = dwarf2_const_value_data (attr, type, name,
11236 obstack, cu, value, 32);
11237 break;
11238 case DW_FORM_data8:
11239 *bytes = dwarf2_const_value_data (attr, type, name,
11240 obstack, cu, value, 64);
11241 break;
11242
11243 case DW_FORM_sdata:
11244 *value = DW_SND (attr);
11245 break;
11246
11247 case DW_FORM_udata:
11248 *value = DW_UNSND (attr);
11249 break;
11250
11251 default:
11252 complaint (&symfile_complaints,
11253 _("unsupported const value attribute form: '%s'"),
11254 dwarf_form_name (attr->form));
11255 *value = 0;
11256 break;
11257 }
11258 }
11259
11260
11261 /* Copy constant value from an attribute to a symbol. */
11262
11263 static void
11264 dwarf2_const_value (struct attribute *attr, struct symbol *sym,
11265 struct dwarf2_cu *cu)
11266 {
11267 struct objfile *objfile = cu->objfile;
11268 struct comp_unit_head *cu_header = &cu->header;
11269 long value;
11270 gdb_byte *bytes;
11271 struct dwarf2_locexpr_baton *baton;
11272
11273 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
11274 SYMBOL_PRINT_NAME (sym),
11275 &objfile->objfile_obstack, cu,
11276 &value, &bytes, &baton);
11277
11278 if (baton != NULL)
11279 {
11280 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
11281 SYMBOL_LOCATION_BATON (sym) = baton;
11282 SYMBOL_CLASS (sym) = LOC_COMPUTED;
11283 }
11284 else if (bytes != NULL)
11285 {
11286 SYMBOL_VALUE_BYTES (sym) = bytes;
11287 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
11288 }
11289 else
11290 {
11291 SYMBOL_VALUE (sym) = value;
11292 SYMBOL_CLASS (sym) = LOC_CONST;
11293 }
11294 }
11295
11296 /* Return the type of the die in question using its DW_AT_type attribute. */
11297
11298 static struct type *
11299 die_type (struct die_info *die, struct dwarf2_cu *cu)
11300 {
11301 struct attribute *type_attr;
11302
11303 type_attr = dwarf2_attr (die, DW_AT_type, cu);
11304 if (!type_attr)
11305 {
11306 /* A missing DW_AT_type represents a void type. */
11307 return objfile_type (cu->objfile)->builtin_void;
11308 }
11309
11310 return lookup_die_type (die, type_attr, cu);
11311 }
11312
11313 /* True iff CU's producer generates GNAT Ada auxiliary information
11314 that allows to find parallel types through that information instead
11315 of having to do expensive parallel lookups by type name. */
11316
11317 static int
11318 need_gnat_info (struct dwarf2_cu *cu)
11319 {
11320 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
11321 of GNAT produces this auxiliary information, without any indication
11322 that it is produced. Part of enhancing the FSF version of GNAT
11323 to produce that information will be to put in place an indicator
11324 that we can use in order to determine whether the descriptive type
11325 info is available or not. One suggestion that has been made is
11326 to use a new attribute, attached to the CU die. For now, assume
11327 that the descriptive type info is not available. */
11328 return 0;
11329 }
11330
11331 /* Return the auxiliary type of the die in question using its
11332 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
11333 attribute is not present. */
11334
11335 static struct type *
11336 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
11337 {
11338 struct attribute *type_attr;
11339
11340 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
11341 if (!type_attr)
11342 return NULL;
11343
11344 return lookup_die_type (die, type_attr, cu);
11345 }
11346
11347 /* If DIE has a descriptive_type attribute, then set the TYPE's
11348 descriptive type accordingly. */
11349
11350 static void
11351 set_descriptive_type (struct type *type, struct die_info *die,
11352 struct dwarf2_cu *cu)
11353 {
11354 struct type *descriptive_type = die_descriptive_type (die, cu);
11355
11356 if (descriptive_type)
11357 {
11358 ALLOCATE_GNAT_AUX_TYPE (type);
11359 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
11360 }
11361 }
11362
11363 /* Return the containing type of the die in question using its
11364 DW_AT_containing_type attribute. */
11365
11366 static struct type *
11367 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
11368 {
11369 struct attribute *type_attr;
11370
11371 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
11372 if (!type_attr)
11373 error (_("Dwarf Error: Problem turning containing type into gdb type "
11374 "[in module %s]"), cu->objfile->name);
11375
11376 return lookup_die_type (die, type_attr, cu);
11377 }
11378
11379 /* Look up the type of DIE in CU using its type attribute ATTR.
11380 If there is no type substitute an error marker. */
11381
11382 static struct type *
11383 lookup_die_type (struct die_info *die, struct attribute *attr,
11384 struct dwarf2_cu *cu)
11385 {
11386 struct type *this_type;
11387
11388 /* First see if we have it cached. */
11389
11390 if (is_ref_attr (attr))
11391 {
11392 unsigned int offset = dwarf2_get_ref_die_offset (attr);
11393
11394 this_type = get_die_type_at_offset (offset, cu->per_cu);
11395 }
11396 else if (attr->form == DW_FORM_sig8)
11397 {
11398 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
11399 struct dwarf2_cu *sig_cu;
11400 unsigned int offset;
11401
11402 /* sig_type will be NULL if the signatured type is missing from
11403 the debug info. */
11404 if (sig_type == NULL)
11405 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
11406 "at 0x%x [in module %s]"),
11407 die->offset, cu->objfile->name);
11408
11409 gdb_assert (sig_type->per_cu.from_debug_types);
11410 offset = sig_type->offset + sig_type->type_offset;
11411 this_type = get_die_type_at_offset (offset, &sig_type->per_cu);
11412 }
11413 else
11414 {
11415 dump_die_for_error (die);
11416 error (_("Dwarf Error: Bad type attribute %s [in module %s]"),
11417 dwarf_attr_name (attr->name), cu->objfile->name);
11418 }
11419
11420 /* If not cached we need to read it in. */
11421
11422 if (this_type == NULL)
11423 {
11424 struct die_info *type_die;
11425 struct dwarf2_cu *type_cu = cu;
11426
11427 type_die = follow_die_ref_or_sig (die, attr, &type_cu);
11428 /* If the type is cached, we should have found it above. */
11429 gdb_assert (get_die_type (type_die, type_cu) == NULL);
11430 this_type = read_type_die_1 (type_die, type_cu);
11431 }
11432
11433 /* If we still don't have a type use an error marker. */
11434
11435 if (this_type == NULL)
11436 {
11437 char *message, *saved;
11438
11439 /* read_type_die already issued a complaint. */
11440 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
11441 cu->objfile->name,
11442 cu->header.offset,
11443 die->offset);
11444 saved = obstack_copy0 (&cu->objfile->objfile_obstack,
11445 message, strlen (message));
11446 xfree (message);
11447
11448 this_type = init_type (TYPE_CODE_ERROR, 0, 0, saved, cu->objfile);
11449 }
11450
11451 return this_type;
11452 }
11453
11454 /* Return the type in DIE, CU.
11455 Returns NULL for invalid types.
11456
11457 This first does a lookup in the appropriate type_hash table,
11458 and only reads the die in if necessary.
11459
11460 NOTE: This can be called when reading in partial or full symbols. */
11461
11462 static struct type *
11463 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
11464 {
11465 struct type *this_type;
11466
11467 this_type = get_die_type (die, cu);
11468 if (this_type)
11469 return this_type;
11470
11471 return read_type_die_1 (die, cu);
11472 }
11473
11474 /* Read the type in DIE, CU.
11475 Returns NULL for invalid types. */
11476
11477 static struct type *
11478 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
11479 {
11480 struct type *this_type = NULL;
11481
11482 switch (die->tag)
11483 {
11484 case DW_TAG_class_type:
11485 case DW_TAG_interface_type:
11486 case DW_TAG_structure_type:
11487 case DW_TAG_union_type:
11488 this_type = read_structure_type (die, cu);
11489 break;
11490 case DW_TAG_enumeration_type:
11491 this_type = read_enumeration_type (die, cu);
11492 break;
11493 case DW_TAG_subprogram:
11494 case DW_TAG_subroutine_type:
11495 case DW_TAG_inlined_subroutine:
11496 this_type = read_subroutine_type (die, cu);
11497 break;
11498 case DW_TAG_array_type:
11499 this_type = read_array_type (die, cu);
11500 break;
11501 case DW_TAG_set_type:
11502 this_type = read_set_type (die, cu);
11503 break;
11504 case DW_TAG_pointer_type:
11505 this_type = read_tag_pointer_type (die, cu);
11506 break;
11507 case DW_TAG_ptr_to_member_type:
11508 this_type = read_tag_ptr_to_member_type (die, cu);
11509 break;
11510 case DW_TAG_reference_type:
11511 this_type = read_tag_reference_type (die, cu);
11512 break;
11513 case DW_TAG_const_type:
11514 this_type = read_tag_const_type (die, cu);
11515 break;
11516 case DW_TAG_volatile_type:
11517 this_type = read_tag_volatile_type (die, cu);
11518 break;
11519 case DW_TAG_string_type:
11520 this_type = read_tag_string_type (die, cu);
11521 break;
11522 case DW_TAG_typedef:
11523 this_type = read_typedef (die, cu);
11524 break;
11525 case DW_TAG_subrange_type:
11526 this_type = read_subrange_type (die, cu);
11527 break;
11528 case DW_TAG_base_type:
11529 this_type = read_base_type (die, cu);
11530 break;
11531 case DW_TAG_unspecified_type:
11532 this_type = read_unspecified_type (die, cu);
11533 break;
11534 case DW_TAG_namespace:
11535 this_type = read_namespace_type (die, cu);
11536 break;
11537 case DW_TAG_module:
11538 this_type = read_module_type (die, cu);
11539 break;
11540 default:
11541 complaint (&symfile_complaints,
11542 _("unexpected tag in read_type_die: '%s'"),
11543 dwarf_tag_name (die->tag));
11544 break;
11545 }
11546
11547 return this_type;
11548 }
11549
11550 /* See if we can figure out if the class lives in a namespace. We do
11551 this by looking for a member function; its demangled name will
11552 contain namespace info, if there is any.
11553 Return the computed name or NULL.
11554 Space for the result is allocated on the objfile's obstack.
11555 This is the full-die version of guess_partial_die_structure_name.
11556 In this case we know DIE has no useful parent. */
11557
11558 static char *
11559 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
11560 {
11561 struct die_info *spec_die;
11562 struct dwarf2_cu *spec_cu;
11563 struct die_info *child;
11564
11565 spec_cu = cu;
11566 spec_die = die_specification (die, &spec_cu);
11567 if (spec_die != NULL)
11568 {
11569 die = spec_die;
11570 cu = spec_cu;
11571 }
11572
11573 for (child = die->child;
11574 child != NULL;
11575 child = child->sibling)
11576 {
11577 if (child->tag == DW_TAG_subprogram)
11578 {
11579 struct attribute *attr;
11580
11581 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
11582 if (attr == NULL)
11583 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
11584 if (attr != NULL)
11585 {
11586 char *actual_name
11587 = language_class_name_from_physname (cu->language_defn,
11588 DW_STRING (attr));
11589 char *name = NULL;
11590
11591 if (actual_name != NULL)
11592 {
11593 char *die_name = dwarf2_name (die, cu);
11594
11595 if (die_name != NULL
11596 && strcmp (die_name, actual_name) != 0)
11597 {
11598 /* Strip off the class name from the full name.
11599 We want the prefix. */
11600 int die_name_len = strlen (die_name);
11601 int actual_name_len = strlen (actual_name);
11602
11603 /* Test for '::' as a sanity check. */
11604 if (actual_name_len > die_name_len + 2
11605 && actual_name[actual_name_len
11606 - die_name_len - 1] == ':')
11607 name =
11608 obsavestring (actual_name,
11609 actual_name_len - die_name_len - 2,
11610 &cu->objfile->objfile_obstack);
11611 }
11612 }
11613 xfree (actual_name);
11614 return name;
11615 }
11616 }
11617 }
11618
11619 return NULL;
11620 }
11621
11622 /* Return the name of the namespace/class that DIE is defined within,
11623 or "" if we can't tell. The caller should not xfree the result.
11624
11625 For example, if we're within the method foo() in the following
11626 code:
11627
11628 namespace N {
11629 class C {
11630 void foo () {
11631 }
11632 };
11633 }
11634
11635 then determine_prefix on foo's die will return "N::C". */
11636
11637 static char *
11638 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
11639 {
11640 struct die_info *parent, *spec_die;
11641 struct dwarf2_cu *spec_cu;
11642 struct type *parent_type;
11643
11644 if (cu->language != language_cplus && cu->language != language_java
11645 && cu->language != language_fortran)
11646 return "";
11647
11648 /* We have to be careful in the presence of DW_AT_specification.
11649 For example, with GCC 3.4, given the code
11650
11651 namespace N {
11652 void foo() {
11653 // Definition of N::foo.
11654 }
11655 }
11656
11657 then we'll have a tree of DIEs like this:
11658
11659 1: DW_TAG_compile_unit
11660 2: DW_TAG_namespace // N
11661 3: DW_TAG_subprogram // declaration of N::foo
11662 4: DW_TAG_subprogram // definition of N::foo
11663 DW_AT_specification // refers to die #3
11664
11665 Thus, when processing die #4, we have to pretend that we're in
11666 the context of its DW_AT_specification, namely the contex of die
11667 #3. */
11668 spec_cu = cu;
11669 spec_die = die_specification (die, &spec_cu);
11670 if (spec_die == NULL)
11671 parent = die->parent;
11672 else
11673 {
11674 parent = spec_die->parent;
11675 cu = spec_cu;
11676 }
11677
11678 if (parent == NULL)
11679 return "";
11680 else if (parent->building_fullname)
11681 {
11682 const char *name;
11683 const char *parent_name;
11684
11685 /* It has been seen on RealView 2.2 built binaries,
11686 DW_TAG_template_type_param types actually _defined_ as
11687 children of the parent class:
11688
11689 enum E {};
11690 template class <class Enum> Class{};
11691 Class<enum E> class_e;
11692
11693 1: DW_TAG_class_type (Class)
11694 2: DW_TAG_enumeration_type (E)
11695 3: DW_TAG_enumerator (enum1:0)
11696 3: DW_TAG_enumerator (enum2:1)
11697 ...
11698 2: DW_TAG_template_type_param
11699 DW_AT_type DW_FORM_ref_udata (E)
11700
11701 Besides being broken debug info, it can put GDB into an
11702 infinite loop. Consider:
11703
11704 When we're building the full name for Class<E>, we'll start
11705 at Class, and go look over its template type parameters,
11706 finding E. We'll then try to build the full name of E, and
11707 reach here. We're now trying to build the full name of E,
11708 and look over the parent DIE for containing scope. In the
11709 broken case, if we followed the parent DIE of E, we'd again
11710 find Class, and once again go look at its template type
11711 arguments, etc., etc. Simply don't consider such parent die
11712 as source-level parent of this die (it can't be, the language
11713 doesn't allow it), and break the loop here. */
11714 name = dwarf2_name (die, cu);
11715 parent_name = dwarf2_name (parent, cu);
11716 complaint (&symfile_complaints,
11717 _("template param type '%s' defined within parent '%s'"),
11718 name ? name : "<unknown>",
11719 parent_name ? parent_name : "<unknown>");
11720 return "";
11721 }
11722 else
11723 switch (parent->tag)
11724 {
11725 case DW_TAG_namespace:
11726 parent_type = read_type_die (parent, cu);
11727 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
11728 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
11729 Work around this problem here. */
11730 if (cu->language == language_cplus
11731 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
11732 return "";
11733 /* We give a name to even anonymous namespaces. */
11734 return TYPE_TAG_NAME (parent_type);
11735 case DW_TAG_class_type:
11736 case DW_TAG_interface_type:
11737 case DW_TAG_structure_type:
11738 case DW_TAG_union_type:
11739 case DW_TAG_module:
11740 parent_type = read_type_die (parent, cu);
11741 if (TYPE_TAG_NAME (parent_type) != NULL)
11742 return TYPE_TAG_NAME (parent_type);
11743 else
11744 /* An anonymous structure is only allowed non-static data
11745 members; no typedefs, no member functions, et cetera.
11746 So it does not need a prefix. */
11747 return "";
11748 case DW_TAG_compile_unit:
11749 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
11750 if (cu->language == language_cplus
11751 && dwarf2_per_objfile->types.asection != NULL
11752 && die->child != NULL
11753 && (die->tag == DW_TAG_class_type
11754 || die->tag == DW_TAG_structure_type
11755 || die->tag == DW_TAG_union_type))
11756 {
11757 char *name = guess_full_die_structure_name (die, cu);
11758 if (name != NULL)
11759 return name;
11760 }
11761 return "";
11762 default:
11763 return determine_prefix (parent, cu);
11764 }
11765 }
11766
11767 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
11768 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
11769 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
11770 an obconcat, otherwise allocate storage for the result. The CU argument is
11771 used to determine the language and hence, the appropriate separator. */
11772
11773 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
11774
11775 static char *
11776 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
11777 int physname, struct dwarf2_cu *cu)
11778 {
11779 const char *lead = "";
11780 const char *sep;
11781
11782 if (suffix == NULL || suffix[0] == '\0'
11783 || prefix == NULL || prefix[0] == '\0')
11784 sep = "";
11785 else if (cu->language == language_java)
11786 sep = ".";
11787 else if (cu->language == language_fortran && physname)
11788 {
11789 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
11790 DW_AT_MIPS_linkage_name is preferred and used instead. */
11791
11792 lead = "__";
11793 sep = "_MOD_";
11794 }
11795 else
11796 sep = "::";
11797
11798 if (prefix == NULL)
11799 prefix = "";
11800 if (suffix == NULL)
11801 suffix = "";
11802
11803 if (obs == NULL)
11804 {
11805 char *retval
11806 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
11807
11808 strcpy (retval, lead);
11809 strcat (retval, prefix);
11810 strcat (retval, sep);
11811 strcat (retval, suffix);
11812 return retval;
11813 }
11814 else
11815 {
11816 /* We have an obstack. */
11817 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
11818 }
11819 }
11820
11821 /* Return sibling of die, NULL if no sibling. */
11822
11823 static struct die_info *
11824 sibling_die (struct die_info *die)
11825 {
11826 return die->sibling;
11827 }
11828
11829 /* Get name of a die, return NULL if not found. */
11830
11831 static char *
11832 dwarf2_canonicalize_name (char *name, struct dwarf2_cu *cu,
11833 struct obstack *obstack)
11834 {
11835 if (name && cu->language == language_cplus)
11836 {
11837 char *canon_name = cp_canonicalize_string (name);
11838
11839 if (canon_name != NULL)
11840 {
11841 if (strcmp (canon_name, name) != 0)
11842 name = obsavestring (canon_name, strlen (canon_name),
11843 obstack);
11844 xfree (canon_name);
11845 }
11846 }
11847
11848 return name;
11849 }
11850
11851 /* Get name of a die, return NULL if not found. */
11852
11853 static char *
11854 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
11855 {
11856 struct attribute *attr;
11857
11858 attr = dwarf2_attr (die, DW_AT_name, cu);
11859 if (!attr || !DW_STRING (attr))
11860 return NULL;
11861
11862 switch (die->tag)
11863 {
11864 case DW_TAG_compile_unit:
11865 /* Compilation units have a DW_AT_name that is a filename, not
11866 a source language identifier. */
11867 case DW_TAG_enumeration_type:
11868 case DW_TAG_enumerator:
11869 /* These tags always have simple identifiers already; no need
11870 to canonicalize them. */
11871 return DW_STRING (attr);
11872
11873 case DW_TAG_subprogram:
11874 /* Java constructors will all be named "<init>", so return
11875 the class name when we see this special case. */
11876 if (cu->language == language_java
11877 && DW_STRING (attr) != NULL
11878 && strcmp (DW_STRING (attr), "<init>") == 0)
11879 {
11880 struct dwarf2_cu *spec_cu = cu;
11881 struct die_info *spec_die;
11882
11883 /* GCJ will output '<init>' for Java constructor names.
11884 For this special case, return the name of the parent class. */
11885
11886 /* GCJ may output suprogram DIEs with AT_specification set.
11887 If so, use the name of the specified DIE. */
11888 spec_die = die_specification (die, &spec_cu);
11889 if (spec_die != NULL)
11890 return dwarf2_name (spec_die, spec_cu);
11891
11892 do
11893 {
11894 die = die->parent;
11895 if (die->tag == DW_TAG_class_type)
11896 return dwarf2_name (die, cu);
11897 }
11898 while (die->tag != DW_TAG_compile_unit);
11899 }
11900 break;
11901
11902 case DW_TAG_class_type:
11903 case DW_TAG_interface_type:
11904 case DW_TAG_structure_type:
11905 case DW_TAG_union_type:
11906 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
11907 structures or unions. These were of the form "._%d" in GCC 4.1,
11908 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
11909 and GCC 4.4. We work around this problem by ignoring these. */
11910 if (strncmp (DW_STRING (attr), "._", 2) == 0
11911 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0)
11912 return NULL;
11913 break;
11914
11915 default:
11916 break;
11917 }
11918
11919 if (!DW_STRING_IS_CANONICAL (attr))
11920 {
11921 DW_STRING (attr)
11922 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
11923 &cu->objfile->objfile_obstack);
11924 DW_STRING_IS_CANONICAL (attr) = 1;
11925 }
11926 return DW_STRING (attr);
11927 }
11928
11929 /* Return the die that this die in an extension of, or NULL if there
11930 is none. *EXT_CU is the CU containing DIE on input, and the CU
11931 containing the return value on output. */
11932
11933 static struct die_info *
11934 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
11935 {
11936 struct attribute *attr;
11937
11938 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
11939 if (attr == NULL)
11940 return NULL;
11941
11942 return follow_die_ref (die, attr, ext_cu);
11943 }
11944
11945 /* Convert a DIE tag into its string name. */
11946
11947 static char *
11948 dwarf_tag_name (unsigned tag)
11949 {
11950 switch (tag)
11951 {
11952 case DW_TAG_padding:
11953 return "DW_TAG_padding";
11954 case DW_TAG_array_type:
11955 return "DW_TAG_array_type";
11956 case DW_TAG_class_type:
11957 return "DW_TAG_class_type";
11958 case DW_TAG_entry_point:
11959 return "DW_TAG_entry_point";
11960 case DW_TAG_enumeration_type:
11961 return "DW_TAG_enumeration_type";
11962 case DW_TAG_formal_parameter:
11963 return "DW_TAG_formal_parameter";
11964 case DW_TAG_imported_declaration:
11965 return "DW_TAG_imported_declaration";
11966 case DW_TAG_label:
11967 return "DW_TAG_label";
11968 case DW_TAG_lexical_block:
11969 return "DW_TAG_lexical_block";
11970 case DW_TAG_member:
11971 return "DW_TAG_member";
11972 case DW_TAG_pointer_type:
11973 return "DW_TAG_pointer_type";
11974 case DW_TAG_reference_type:
11975 return "DW_TAG_reference_type";
11976 case DW_TAG_compile_unit:
11977 return "DW_TAG_compile_unit";
11978 case DW_TAG_string_type:
11979 return "DW_TAG_string_type";
11980 case DW_TAG_structure_type:
11981 return "DW_TAG_structure_type";
11982 case DW_TAG_subroutine_type:
11983 return "DW_TAG_subroutine_type";
11984 case DW_TAG_typedef:
11985 return "DW_TAG_typedef";
11986 case DW_TAG_union_type:
11987 return "DW_TAG_union_type";
11988 case DW_TAG_unspecified_parameters:
11989 return "DW_TAG_unspecified_parameters";
11990 case DW_TAG_variant:
11991 return "DW_TAG_variant";
11992 case DW_TAG_common_block:
11993 return "DW_TAG_common_block";
11994 case DW_TAG_common_inclusion:
11995 return "DW_TAG_common_inclusion";
11996 case DW_TAG_inheritance:
11997 return "DW_TAG_inheritance";
11998 case DW_TAG_inlined_subroutine:
11999 return "DW_TAG_inlined_subroutine";
12000 case DW_TAG_module:
12001 return "DW_TAG_module";
12002 case DW_TAG_ptr_to_member_type:
12003 return "DW_TAG_ptr_to_member_type";
12004 case DW_TAG_set_type:
12005 return "DW_TAG_set_type";
12006 case DW_TAG_subrange_type:
12007 return "DW_TAG_subrange_type";
12008 case DW_TAG_with_stmt:
12009 return "DW_TAG_with_stmt";
12010 case DW_TAG_access_declaration:
12011 return "DW_TAG_access_declaration";
12012 case DW_TAG_base_type:
12013 return "DW_TAG_base_type";
12014 case DW_TAG_catch_block:
12015 return "DW_TAG_catch_block";
12016 case DW_TAG_const_type:
12017 return "DW_TAG_const_type";
12018 case DW_TAG_constant:
12019 return "DW_TAG_constant";
12020 case DW_TAG_enumerator:
12021 return "DW_TAG_enumerator";
12022 case DW_TAG_file_type:
12023 return "DW_TAG_file_type";
12024 case DW_TAG_friend:
12025 return "DW_TAG_friend";
12026 case DW_TAG_namelist:
12027 return "DW_TAG_namelist";
12028 case DW_TAG_namelist_item:
12029 return "DW_TAG_namelist_item";
12030 case DW_TAG_packed_type:
12031 return "DW_TAG_packed_type";
12032 case DW_TAG_subprogram:
12033 return "DW_TAG_subprogram";
12034 case DW_TAG_template_type_param:
12035 return "DW_TAG_template_type_param";
12036 case DW_TAG_template_value_param:
12037 return "DW_TAG_template_value_param";
12038 case DW_TAG_thrown_type:
12039 return "DW_TAG_thrown_type";
12040 case DW_TAG_try_block:
12041 return "DW_TAG_try_block";
12042 case DW_TAG_variant_part:
12043 return "DW_TAG_variant_part";
12044 case DW_TAG_variable:
12045 return "DW_TAG_variable";
12046 case DW_TAG_volatile_type:
12047 return "DW_TAG_volatile_type";
12048 case DW_TAG_dwarf_procedure:
12049 return "DW_TAG_dwarf_procedure";
12050 case DW_TAG_restrict_type:
12051 return "DW_TAG_restrict_type";
12052 case DW_TAG_interface_type:
12053 return "DW_TAG_interface_type";
12054 case DW_TAG_namespace:
12055 return "DW_TAG_namespace";
12056 case DW_TAG_imported_module:
12057 return "DW_TAG_imported_module";
12058 case DW_TAG_unspecified_type:
12059 return "DW_TAG_unspecified_type";
12060 case DW_TAG_partial_unit:
12061 return "DW_TAG_partial_unit";
12062 case DW_TAG_imported_unit:
12063 return "DW_TAG_imported_unit";
12064 case DW_TAG_condition:
12065 return "DW_TAG_condition";
12066 case DW_TAG_shared_type:
12067 return "DW_TAG_shared_type";
12068 case DW_TAG_type_unit:
12069 return "DW_TAG_type_unit";
12070 case DW_TAG_MIPS_loop:
12071 return "DW_TAG_MIPS_loop";
12072 case DW_TAG_HP_array_descriptor:
12073 return "DW_TAG_HP_array_descriptor";
12074 case DW_TAG_format_label:
12075 return "DW_TAG_format_label";
12076 case DW_TAG_function_template:
12077 return "DW_TAG_function_template";
12078 case DW_TAG_class_template:
12079 return "DW_TAG_class_template";
12080 case DW_TAG_GNU_BINCL:
12081 return "DW_TAG_GNU_BINCL";
12082 case DW_TAG_GNU_EINCL:
12083 return "DW_TAG_GNU_EINCL";
12084 case DW_TAG_upc_shared_type:
12085 return "DW_TAG_upc_shared_type";
12086 case DW_TAG_upc_strict_type:
12087 return "DW_TAG_upc_strict_type";
12088 case DW_TAG_upc_relaxed_type:
12089 return "DW_TAG_upc_relaxed_type";
12090 case DW_TAG_PGI_kanji_type:
12091 return "DW_TAG_PGI_kanji_type";
12092 case DW_TAG_PGI_interface_block:
12093 return "DW_TAG_PGI_interface_block";
12094 default:
12095 return "DW_TAG_<unknown>";
12096 }
12097 }
12098
12099 /* Convert a DWARF attribute code into its string name. */
12100
12101 static char *
12102 dwarf_attr_name (unsigned attr)
12103 {
12104 switch (attr)
12105 {
12106 case DW_AT_sibling:
12107 return "DW_AT_sibling";
12108 case DW_AT_location:
12109 return "DW_AT_location";
12110 case DW_AT_name:
12111 return "DW_AT_name";
12112 case DW_AT_ordering:
12113 return "DW_AT_ordering";
12114 case DW_AT_subscr_data:
12115 return "DW_AT_subscr_data";
12116 case DW_AT_byte_size:
12117 return "DW_AT_byte_size";
12118 case DW_AT_bit_offset:
12119 return "DW_AT_bit_offset";
12120 case DW_AT_bit_size:
12121 return "DW_AT_bit_size";
12122 case DW_AT_element_list:
12123 return "DW_AT_element_list";
12124 case DW_AT_stmt_list:
12125 return "DW_AT_stmt_list";
12126 case DW_AT_low_pc:
12127 return "DW_AT_low_pc";
12128 case DW_AT_high_pc:
12129 return "DW_AT_high_pc";
12130 case DW_AT_language:
12131 return "DW_AT_language";
12132 case DW_AT_member:
12133 return "DW_AT_member";
12134 case DW_AT_discr:
12135 return "DW_AT_discr";
12136 case DW_AT_discr_value:
12137 return "DW_AT_discr_value";
12138 case DW_AT_visibility:
12139 return "DW_AT_visibility";
12140 case DW_AT_import:
12141 return "DW_AT_import";
12142 case DW_AT_string_length:
12143 return "DW_AT_string_length";
12144 case DW_AT_common_reference:
12145 return "DW_AT_common_reference";
12146 case DW_AT_comp_dir:
12147 return "DW_AT_comp_dir";
12148 case DW_AT_const_value:
12149 return "DW_AT_const_value";
12150 case DW_AT_containing_type:
12151 return "DW_AT_containing_type";
12152 case DW_AT_default_value:
12153 return "DW_AT_default_value";
12154 case DW_AT_inline:
12155 return "DW_AT_inline";
12156 case DW_AT_is_optional:
12157 return "DW_AT_is_optional";
12158 case DW_AT_lower_bound:
12159 return "DW_AT_lower_bound";
12160 case DW_AT_producer:
12161 return "DW_AT_producer";
12162 case DW_AT_prototyped:
12163 return "DW_AT_prototyped";
12164 case DW_AT_return_addr:
12165 return "DW_AT_return_addr";
12166 case DW_AT_start_scope:
12167 return "DW_AT_start_scope";
12168 case DW_AT_bit_stride:
12169 return "DW_AT_bit_stride";
12170 case DW_AT_upper_bound:
12171 return "DW_AT_upper_bound";
12172 case DW_AT_abstract_origin:
12173 return "DW_AT_abstract_origin";
12174 case DW_AT_accessibility:
12175 return "DW_AT_accessibility";
12176 case DW_AT_address_class:
12177 return "DW_AT_address_class";
12178 case DW_AT_artificial:
12179 return "DW_AT_artificial";
12180 case DW_AT_base_types:
12181 return "DW_AT_base_types";
12182 case DW_AT_calling_convention:
12183 return "DW_AT_calling_convention";
12184 case DW_AT_count:
12185 return "DW_AT_count";
12186 case DW_AT_data_member_location:
12187 return "DW_AT_data_member_location";
12188 case DW_AT_decl_column:
12189 return "DW_AT_decl_column";
12190 case DW_AT_decl_file:
12191 return "DW_AT_decl_file";
12192 case DW_AT_decl_line:
12193 return "DW_AT_decl_line";
12194 case DW_AT_declaration:
12195 return "DW_AT_declaration";
12196 case DW_AT_discr_list:
12197 return "DW_AT_discr_list";
12198 case DW_AT_encoding:
12199 return "DW_AT_encoding";
12200 case DW_AT_external:
12201 return "DW_AT_external";
12202 case DW_AT_frame_base:
12203 return "DW_AT_frame_base";
12204 case DW_AT_friend:
12205 return "DW_AT_friend";
12206 case DW_AT_identifier_case:
12207 return "DW_AT_identifier_case";
12208 case DW_AT_macro_info:
12209 return "DW_AT_macro_info";
12210 case DW_AT_namelist_items:
12211 return "DW_AT_namelist_items";
12212 case DW_AT_priority:
12213 return "DW_AT_priority";
12214 case DW_AT_segment:
12215 return "DW_AT_segment";
12216 case DW_AT_specification:
12217 return "DW_AT_specification";
12218 case DW_AT_static_link:
12219 return "DW_AT_static_link";
12220 case DW_AT_type:
12221 return "DW_AT_type";
12222 case DW_AT_use_location:
12223 return "DW_AT_use_location";
12224 case DW_AT_variable_parameter:
12225 return "DW_AT_variable_parameter";
12226 case DW_AT_virtuality:
12227 return "DW_AT_virtuality";
12228 case DW_AT_vtable_elem_location:
12229 return "DW_AT_vtable_elem_location";
12230 /* DWARF 3 values. */
12231 case DW_AT_allocated:
12232 return "DW_AT_allocated";
12233 case DW_AT_associated:
12234 return "DW_AT_associated";
12235 case DW_AT_data_location:
12236 return "DW_AT_data_location";
12237 case DW_AT_byte_stride:
12238 return "DW_AT_byte_stride";
12239 case DW_AT_entry_pc:
12240 return "DW_AT_entry_pc";
12241 case DW_AT_use_UTF8:
12242 return "DW_AT_use_UTF8";
12243 case DW_AT_extension:
12244 return "DW_AT_extension";
12245 case DW_AT_ranges:
12246 return "DW_AT_ranges";
12247 case DW_AT_trampoline:
12248 return "DW_AT_trampoline";
12249 case DW_AT_call_column:
12250 return "DW_AT_call_column";
12251 case DW_AT_call_file:
12252 return "DW_AT_call_file";
12253 case DW_AT_call_line:
12254 return "DW_AT_call_line";
12255 case DW_AT_description:
12256 return "DW_AT_description";
12257 case DW_AT_binary_scale:
12258 return "DW_AT_binary_scale";
12259 case DW_AT_decimal_scale:
12260 return "DW_AT_decimal_scale";
12261 case DW_AT_small:
12262 return "DW_AT_small";
12263 case DW_AT_decimal_sign:
12264 return "DW_AT_decimal_sign";
12265 case DW_AT_digit_count:
12266 return "DW_AT_digit_count";
12267 case DW_AT_picture_string:
12268 return "DW_AT_picture_string";
12269 case DW_AT_mutable:
12270 return "DW_AT_mutable";
12271 case DW_AT_threads_scaled:
12272 return "DW_AT_threads_scaled";
12273 case DW_AT_explicit:
12274 return "DW_AT_explicit";
12275 case DW_AT_object_pointer:
12276 return "DW_AT_object_pointer";
12277 case DW_AT_endianity:
12278 return "DW_AT_endianity";
12279 case DW_AT_elemental:
12280 return "DW_AT_elemental";
12281 case DW_AT_pure:
12282 return "DW_AT_pure";
12283 case DW_AT_recursive:
12284 return "DW_AT_recursive";
12285 /* DWARF 4 values. */
12286 case DW_AT_signature:
12287 return "DW_AT_signature";
12288 case DW_AT_linkage_name:
12289 return "DW_AT_linkage_name";
12290 /* SGI/MIPS extensions. */
12291 #ifdef MIPS /* collides with DW_AT_HP_block_index */
12292 case DW_AT_MIPS_fde:
12293 return "DW_AT_MIPS_fde";
12294 #endif
12295 case DW_AT_MIPS_loop_begin:
12296 return "DW_AT_MIPS_loop_begin";
12297 case DW_AT_MIPS_tail_loop_begin:
12298 return "DW_AT_MIPS_tail_loop_begin";
12299 case DW_AT_MIPS_epilog_begin:
12300 return "DW_AT_MIPS_epilog_begin";
12301 case DW_AT_MIPS_loop_unroll_factor:
12302 return "DW_AT_MIPS_loop_unroll_factor";
12303 case DW_AT_MIPS_software_pipeline_depth:
12304 return "DW_AT_MIPS_software_pipeline_depth";
12305 case DW_AT_MIPS_linkage_name:
12306 return "DW_AT_MIPS_linkage_name";
12307 case DW_AT_MIPS_stride:
12308 return "DW_AT_MIPS_stride";
12309 case DW_AT_MIPS_abstract_name:
12310 return "DW_AT_MIPS_abstract_name";
12311 case DW_AT_MIPS_clone_origin:
12312 return "DW_AT_MIPS_clone_origin";
12313 case DW_AT_MIPS_has_inlines:
12314 return "DW_AT_MIPS_has_inlines";
12315 /* HP extensions. */
12316 #ifndef MIPS /* collides with DW_AT_MIPS_fde */
12317 case DW_AT_HP_block_index:
12318 return "DW_AT_HP_block_index";
12319 #endif
12320 case DW_AT_HP_unmodifiable:
12321 return "DW_AT_HP_unmodifiable";
12322 case DW_AT_HP_actuals_stmt_list:
12323 return "DW_AT_HP_actuals_stmt_list";
12324 case DW_AT_HP_proc_per_section:
12325 return "DW_AT_HP_proc_per_section";
12326 case DW_AT_HP_raw_data_ptr:
12327 return "DW_AT_HP_raw_data_ptr";
12328 case DW_AT_HP_pass_by_reference:
12329 return "DW_AT_HP_pass_by_reference";
12330 case DW_AT_HP_opt_level:
12331 return "DW_AT_HP_opt_level";
12332 case DW_AT_HP_prof_version_id:
12333 return "DW_AT_HP_prof_version_id";
12334 case DW_AT_HP_opt_flags:
12335 return "DW_AT_HP_opt_flags";
12336 case DW_AT_HP_cold_region_low_pc:
12337 return "DW_AT_HP_cold_region_low_pc";
12338 case DW_AT_HP_cold_region_high_pc:
12339 return "DW_AT_HP_cold_region_high_pc";
12340 case DW_AT_HP_all_variables_modifiable:
12341 return "DW_AT_HP_all_variables_modifiable";
12342 case DW_AT_HP_linkage_name:
12343 return "DW_AT_HP_linkage_name";
12344 case DW_AT_HP_prof_flags:
12345 return "DW_AT_HP_prof_flags";
12346 /* GNU extensions. */
12347 case DW_AT_sf_names:
12348 return "DW_AT_sf_names";
12349 case DW_AT_src_info:
12350 return "DW_AT_src_info";
12351 case DW_AT_mac_info:
12352 return "DW_AT_mac_info";
12353 case DW_AT_src_coords:
12354 return "DW_AT_src_coords";
12355 case DW_AT_body_begin:
12356 return "DW_AT_body_begin";
12357 case DW_AT_body_end:
12358 return "DW_AT_body_end";
12359 case DW_AT_GNU_vector:
12360 return "DW_AT_GNU_vector";
12361 case DW_AT_GNU_odr_signature:
12362 return "DW_AT_GNU_odr_signature";
12363 /* VMS extensions. */
12364 case DW_AT_VMS_rtnbeg_pd_address:
12365 return "DW_AT_VMS_rtnbeg_pd_address";
12366 /* UPC extension. */
12367 case DW_AT_upc_threads_scaled:
12368 return "DW_AT_upc_threads_scaled";
12369 /* PGI (STMicroelectronics) extensions. */
12370 case DW_AT_PGI_lbase:
12371 return "DW_AT_PGI_lbase";
12372 case DW_AT_PGI_soffset:
12373 return "DW_AT_PGI_soffset";
12374 case DW_AT_PGI_lstride:
12375 return "DW_AT_PGI_lstride";
12376 default:
12377 return "DW_AT_<unknown>";
12378 }
12379 }
12380
12381 /* Convert a DWARF value form code into its string name. */
12382
12383 static char *
12384 dwarf_form_name (unsigned form)
12385 {
12386 switch (form)
12387 {
12388 case DW_FORM_addr:
12389 return "DW_FORM_addr";
12390 case DW_FORM_block2:
12391 return "DW_FORM_block2";
12392 case DW_FORM_block4:
12393 return "DW_FORM_block4";
12394 case DW_FORM_data2:
12395 return "DW_FORM_data2";
12396 case DW_FORM_data4:
12397 return "DW_FORM_data4";
12398 case DW_FORM_data8:
12399 return "DW_FORM_data8";
12400 case DW_FORM_string:
12401 return "DW_FORM_string";
12402 case DW_FORM_block:
12403 return "DW_FORM_block";
12404 case DW_FORM_block1:
12405 return "DW_FORM_block1";
12406 case DW_FORM_data1:
12407 return "DW_FORM_data1";
12408 case DW_FORM_flag:
12409 return "DW_FORM_flag";
12410 case DW_FORM_sdata:
12411 return "DW_FORM_sdata";
12412 case DW_FORM_strp:
12413 return "DW_FORM_strp";
12414 case DW_FORM_udata:
12415 return "DW_FORM_udata";
12416 case DW_FORM_ref_addr:
12417 return "DW_FORM_ref_addr";
12418 case DW_FORM_ref1:
12419 return "DW_FORM_ref1";
12420 case DW_FORM_ref2:
12421 return "DW_FORM_ref2";
12422 case DW_FORM_ref4:
12423 return "DW_FORM_ref4";
12424 case DW_FORM_ref8:
12425 return "DW_FORM_ref8";
12426 case DW_FORM_ref_udata:
12427 return "DW_FORM_ref_udata";
12428 case DW_FORM_indirect:
12429 return "DW_FORM_indirect";
12430 case DW_FORM_sec_offset:
12431 return "DW_FORM_sec_offset";
12432 case DW_FORM_exprloc:
12433 return "DW_FORM_exprloc";
12434 case DW_FORM_flag_present:
12435 return "DW_FORM_flag_present";
12436 case DW_FORM_sig8:
12437 return "DW_FORM_sig8";
12438 default:
12439 return "DW_FORM_<unknown>";
12440 }
12441 }
12442
12443 /* Convert a DWARF stack opcode into its string name. */
12444
12445 const char *
12446 dwarf_stack_op_name (unsigned op, int def)
12447 {
12448 switch (op)
12449 {
12450 case DW_OP_addr:
12451 return "DW_OP_addr";
12452 case DW_OP_deref:
12453 return "DW_OP_deref";
12454 case DW_OP_const1u:
12455 return "DW_OP_const1u";
12456 case DW_OP_const1s:
12457 return "DW_OP_const1s";
12458 case DW_OP_const2u:
12459 return "DW_OP_const2u";
12460 case DW_OP_const2s:
12461 return "DW_OP_const2s";
12462 case DW_OP_const4u:
12463 return "DW_OP_const4u";
12464 case DW_OP_const4s:
12465 return "DW_OP_const4s";
12466 case DW_OP_const8u:
12467 return "DW_OP_const8u";
12468 case DW_OP_const8s:
12469 return "DW_OP_const8s";
12470 case DW_OP_constu:
12471 return "DW_OP_constu";
12472 case DW_OP_consts:
12473 return "DW_OP_consts";
12474 case DW_OP_dup:
12475 return "DW_OP_dup";
12476 case DW_OP_drop:
12477 return "DW_OP_drop";
12478 case DW_OP_over:
12479 return "DW_OP_over";
12480 case DW_OP_pick:
12481 return "DW_OP_pick";
12482 case DW_OP_swap:
12483 return "DW_OP_swap";
12484 case DW_OP_rot:
12485 return "DW_OP_rot";
12486 case DW_OP_xderef:
12487 return "DW_OP_xderef";
12488 case DW_OP_abs:
12489 return "DW_OP_abs";
12490 case DW_OP_and:
12491 return "DW_OP_and";
12492 case DW_OP_div:
12493 return "DW_OP_div";
12494 case DW_OP_minus:
12495 return "DW_OP_minus";
12496 case DW_OP_mod:
12497 return "DW_OP_mod";
12498 case DW_OP_mul:
12499 return "DW_OP_mul";
12500 case DW_OP_neg:
12501 return "DW_OP_neg";
12502 case DW_OP_not:
12503 return "DW_OP_not";
12504 case DW_OP_or:
12505 return "DW_OP_or";
12506 case DW_OP_plus:
12507 return "DW_OP_plus";
12508 case DW_OP_plus_uconst:
12509 return "DW_OP_plus_uconst";
12510 case DW_OP_shl:
12511 return "DW_OP_shl";
12512 case DW_OP_shr:
12513 return "DW_OP_shr";
12514 case DW_OP_shra:
12515 return "DW_OP_shra";
12516 case DW_OP_xor:
12517 return "DW_OP_xor";
12518 case DW_OP_bra:
12519 return "DW_OP_bra";
12520 case DW_OP_eq:
12521 return "DW_OP_eq";
12522 case DW_OP_ge:
12523 return "DW_OP_ge";
12524 case DW_OP_gt:
12525 return "DW_OP_gt";
12526 case DW_OP_le:
12527 return "DW_OP_le";
12528 case DW_OP_lt:
12529 return "DW_OP_lt";
12530 case DW_OP_ne:
12531 return "DW_OP_ne";
12532 case DW_OP_skip:
12533 return "DW_OP_skip";
12534 case DW_OP_lit0:
12535 return "DW_OP_lit0";
12536 case DW_OP_lit1:
12537 return "DW_OP_lit1";
12538 case DW_OP_lit2:
12539 return "DW_OP_lit2";
12540 case DW_OP_lit3:
12541 return "DW_OP_lit3";
12542 case DW_OP_lit4:
12543 return "DW_OP_lit4";
12544 case DW_OP_lit5:
12545 return "DW_OP_lit5";
12546 case DW_OP_lit6:
12547 return "DW_OP_lit6";
12548 case DW_OP_lit7:
12549 return "DW_OP_lit7";
12550 case DW_OP_lit8:
12551 return "DW_OP_lit8";
12552 case DW_OP_lit9:
12553 return "DW_OP_lit9";
12554 case DW_OP_lit10:
12555 return "DW_OP_lit10";
12556 case DW_OP_lit11:
12557 return "DW_OP_lit11";
12558 case DW_OP_lit12:
12559 return "DW_OP_lit12";
12560 case DW_OP_lit13:
12561 return "DW_OP_lit13";
12562 case DW_OP_lit14:
12563 return "DW_OP_lit14";
12564 case DW_OP_lit15:
12565 return "DW_OP_lit15";
12566 case DW_OP_lit16:
12567 return "DW_OP_lit16";
12568 case DW_OP_lit17:
12569 return "DW_OP_lit17";
12570 case DW_OP_lit18:
12571 return "DW_OP_lit18";
12572 case DW_OP_lit19:
12573 return "DW_OP_lit19";
12574 case DW_OP_lit20:
12575 return "DW_OP_lit20";
12576 case DW_OP_lit21:
12577 return "DW_OP_lit21";
12578 case DW_OP_lit22:
12579 return "DW_OP_lit22";
12580 case DW_OP_lit23:
12581 return "DW_OP_lit23";
12582 case DW_OP_lit24:
12583 return "DW_OP_lit24";
12584 case DW_OP_lit25:
12585 return "DW_OP_lit25";
12586 case DW_OP_lit26:
12587 return "DW_OP_lit26";
12588 case DW_OP_lit27:
12589 return "DW_OP_lit27";
12590 case DW_OP_lit28:
12591 return "DW_OP_lit28";
12592 case DW_OP_lit29:
12593 return "DW_OP_lit29";
12594 case DW_OP_lit30:
12595 return "DW_OP_lit30";
12596 case DW_OP_lit31:
12597 return "DW_OP_lit31";
12598 case DW_OP_reg0:
12599 return "DW_OP_reg0";
12600 case DW_OP_reg1:
12601 return "DW_OP_reg1";
12602 case DW_OP_reg2:
12603 return "DW_OP_reg2";
12604 case DW_OP_reg3:
12605 return "DW_OP_reg3";
12606 case DW_OP_reg4:
12607 return "DW_OP_reg4";
12608 case DW_OP_reg5:
12609 return "DW_OP_reg5";
12610 case DW_OP_reg6:
12611 return "DW_OP_reg6";
12612 case DW_OP_reg7:
12613 return "DW_OP_reg7";
12614 case DW_OP_reg8:
12615 return "DW_OP_reg8";
12616 case DW_OP_reg9:
12617 return "DW_OP_reg9";
12618 case DW_OP_reg10:
12619 return "DW_OP_reg10";
12620 case DW_OP_reg11:
12621 return "DW_OP_reg11";
12622 case DW_OP_reg12:
12623 return "DW_OP_reg12";
12624 case DW_OP_reg13:
12625 return "DW_OP_reg13";
12626 case DW_OP_reg14:
12627 return "DW_OP_reg14";
12628 case DW_OP_reg15:
12629 return "DW_OP_reg15";
12630 case DW_OP_reg16:
12631 return "DW_OP_reg16";
12632 case DW_OP_reg17:
12633 return "DW_OP_reg17";
12634 case DW_OP_reg18:
12635 return "DW_OP_reg18";
12636 case DW_OP_reg19:
12637 return "DW_OP_reg19";
12638 case DW_OP_reg20:
12639 return "DW_OP_reg20";
12640 case DW_OP_reg21:
12641 return "DW_OP_reg21";
12642 case DW_OP_reg22:
12643 return "DW_OP_reg22";
12644 case DW_OP_reg23:
12645 return "DW_OP_reg23";
12646 case DW_OP_reg24:
12647 return "DW_OP_reg24";
12648 case DW_OP_reg25:
12649 return "DW_OP_reg25";
12650 case DW_OP_reg26:
12651 return "DW_OP_reg26";
12652 case DW_OP_reg27:
12653 return "DW_OP_reg27";
12654 case DW_OP_reg28:
12655 return "DW_OP_reg28";
12656 case DW_OP_reg29:
12657 return "DW_OP_reg29";
12658 case DW_OP_reg30:
12659 return "DW_OP_reg30";
12660 case DW_OP_reg31:
12661 return "DW_OP_reg31";
12662 case DW_OP_breg0:
12663 return "DW_OP_breg0";
12664 case DW_OP_breg1:
12665 return "DW_OP_breg1";
12666 case DW_OP_breg2:
12667 return "DW_OP_breg2";
12668 case DW_OP_breg3:
12669 return "DW_OP_breg3";
12670 case DW_OP_breg4:
12671 return "DW_OP_breg4";
12672 case DW_OP_breg5:
12673 return "DW_OP_breg5";
12674 case DW_OP_breg6:
12675 return "DW_OP_breg6";
12676 case DW_OP_breg7:
12677 return "DW_OP_breg7";
12678 case DW_OP_breg8:
12679 return "DW_OP_breg8";
12680 case DW_OP_breg9:
12681 return "DW_OP_breg9";
12682 case DW_OP_breg10:
12683 return "DW_OP_breg10";
12684 case DW_OP_breg11:
12685 return "DW_OP_breg11";
12686 case DW_OP_breg12:
12687 return "DW_OP_breg12";
12688 case DW_OP_breg13:
12689 return "DW_OP_breg13";
12690 case DW_OP_breg14:
12691 return "DW_OP_breg14";
12692 case DW_OP_breg15:
12693 return "DW_OP_breg15";
12694 case DW_OP_breg16:
12695 return "DW_OP_breg16";
12696 case DW_OP_breg17:
12697 return "DW_OP_breg17";
12698 case DW_OP_breg18:
12699 return "DW_OP_breg18";
12700 case DW_OP_breg19:
12701 return "DW_OP_breg19";
12702 case DW_OP_breg20:
12703 return "DW_OP_breg20";
12704 case DW_OP_breg21:
12705 return "DW_OP_breg21";
12706 case DW_OP_breg22:
12707 return "DW_OP_breg22";
12708 case DW_OP_breg23:
12709 return "DW_OP_breg23";
12710 case DW_OP_breg24:
12711 return "DW_OP_breg24";
12712 case DW_OP_breg25:
12713 return "DW_OP_breg25";
12714 case DW_OP_breg26:
12715 return "DW_OP_breg26";
12716 case DW_OP_breg27:
12717 return "DW_OP_breg27";
12718 case DW_OP_breg28:
12719 return "DW_OP_breg28";
12720 case DW_OP_breg29:
12721 return "DW_OP_breg29";
12722 case DW_OP_breg30:
12723 return "DW_OP_breg30";
12724 case DW_OP_breg31:
12725 return "DW_OP_breg31";
12726 case DW_OP_regx:
12727 return "DW_OP_regx";
12728 case DW_OP_fbreg:
12729 return "DW_OP_fbreg";
12730 case DW_OP_bregx:
12731 return "DW_OP_bregx";
12732 case DW_OP_piece:
12733 return "DW_OP_piece";
12734 case DW_OP_deref_size:
12735 return "DW_OP_deref_size";
12736 case DW_OP_xderef_size:
12737 return "DW_OP_xderef_size";
12738 case DW_OP_nop:
12739 return "DW_OP_nop";
12740 /* DWARF 3 extensions. */
12741 case DW_OP_push_object_address:
12742 return "DW_OP_push_object_address";
12743 case DW_OP_call2:
12744 return "DW_OP_call2";
12745 case DW_OP_call4:
12746 return "DW_OP_call4";
12747 case DW_OP_call_ref:
12748 return "DW_OP_call_ref";
12749 case DW_OP_form_tls_address:
12750 return "DW_OP_form_tls_address";
12751 case DW_OP_call_frame_cfa:
12752 return "DW_OP_call_frame_cfa";
12753 case DW_OP_bit_piece:
12754 return "DW_OP_bit_piece";
12755 /* DWARF 4 extensions. */
12756 case DW_OP_implicit_value:
12757 return "DW_OP_implicit_value";
12758 case DW_OP_stack_value:
12759 return "DW_OP_stack_value";
12760 /* GNU extensions. */
12761 case DW_OP_GNU_push_tls_address:
12762 return "DW_OP_GNU_push_tls_address";
12763 case DW_OP_GNU_uninit:
12764 return "DW_OP_GNU_uninit";
12765 case DW_OP_GNU_implicit_pointer:
12766 return "DW_OP_GNU_implicit_pointer";
12767 default:
12768 return def ? "OP_<unknown>" : NULL;
12769 }
12770 }
12771
12772 static char *
12773 dwarf_bool_name (unsigned mybool)
12774 {
12775 if (mybool)
12776 return "TRUE";
12777 else
12778 return "FALSE";
12779 }
12780
12781 /* Convert a DWARF type code into its string name. */
12782
12783 static char *
12784 dwarf_type_encoding_name (unsigned enc)
12785 {
12786 switch (enc)
12787 {
12788 case DW_ATE_void:
12789 return "DW_ATE_void";
12790 case DW_ATE_address:
12791 return "DW_ATE_address";
12792 case DW_ATE_boolean:
12793 return "DW_ATE_boolean";
12794 case DW_ATE_complex_float:
12795 return "DW_ATE_complex_float";
12796 case DW_ATE_float:
12797 return "DW_ATE_float";
12798 case DW_ATE_signed:
12799 return "DW_ATE_signed";
12800 case DW_ATE_signed_char:
12801 return "DW_ATE_signed_char";
12802 case DW_ATE_unsigned:
12803 return "DW_ATE_unsigned";
12804 case DW_ATE_unsigned_char:
12805 return "DW_ATE_unsigned_char";
12806 /* DWARF 3. */
12807 case DW_ATE_imaginary_float:
12808 return "DW_ATE_imaginary_float";
12809 case DW_ATE_packed_decimal:
12810 return "DW_ATE_packed_decimal";
12811 case DW_ATE_numeric_string:
12812 return "DW_ATE_numeric_string";
12813 case DW_ATE_edited:
12814 return "DW_ATE_edited";
12815 case DW_ATE_signed_fixed:
12816 return "DW_ATE_signed_fixed";
12817 case DW_ATE_unsigned_fixed:
12818 return "DW_ATE_unsigned_fixed";
12819 case DW_ATE_decimal_float:
12820 return "DW_ATE_decimal_float";
12821 /* DWARF 4. */
12822 case DW_ATE_UTF:
12823 return "DW_ATE_UTF";
12824 /* HP extensions. */
12825 case DW_ATE_HP_float80:
12826 return "DW_ATE_HP_float80";
12827 case DW_ATE_HP_complex_float80:
12828 return "DW_ATE_HP_complex_float80";
12829 case DW_ATE_HP_float128:
12830 return "DW_ATE_HP_float128";
12831 case DW_ATE_HP_complex_float128:
12832 return "DW_ATE_HP_complex_float128";
12833 case DW_ATE_HP_floathpintel:
12834 return "DW_ATE_HP_floathpintel";
12835 case DW_ATE_HP_imaginary_float80:
12836 return "DW_ATE_HP_imaginary_float80";
12837 case DW_ATE_HP_imaginary_float128:
12838 return "DW_ATE_HP_imaginary_float128";
12839 default:
12840 return "DW_ATE_<unknown>";
12841 }
12842 }
12843
12844 /* Convert a DWARF call frame info operation to its string name. */
12845
12846 #if 0
12847 static char *
12848 dwarf_cfi_name (unsigned cfi_opc)
12849 {
12850 switch (cfi_opc)
12851 {
12852 case DW_CFA_advance_loc:
12853 return "DW_CFA_advance_loc";
12854 case DW_CFA_offset:
12855 return "DW_CFA_offset";
12856 case DW_CFA_restore:
12857 return "DW_CFA_restore";
12858 case DW_CFA_nop:
12859 return "DW_CFA_nop";
12860 case DW_CFA_set_loc:
12861 return "DW_CFA_set_loc";
12862 case DW_CFA_advance_loc1:
12863 return "DW_CFA_advance_loc1";
12864 case DW_CFA_advance_loc2:
12865 return "DW_CFA_advance_loc2";
12866 case DW_CFA_advance_loc4:
12867 return "DW_CFA_advance_loc4";
12868 case DW_CFA_offset_extended:
12869 return "DW_CFA_offset_extended";
12870 case DW_CFA_restore_extended:
12871 return "DW_CFA_restore_extended";
12872 case DW_CFA_undefined:
12873 return "DW_CFA_undefined";
12874 case DW_CFA_same_value:
12875 return "DW_CFA_same_value";
12876 case DW_CFA_register:
12877 return "DW_CFA_register";
12878 case DW_CFA_remember_state:
12879 return "DW_CFA_remember_state";
12880 case DW_CFA_restore_state:
12881 return "DW_CFA_restore_state";
12882 case DW_CFA_def_cfa:
12883 return "DW_CFA_def_cfa";
12884 case DW_CFA_def_cfa_register:
12885 return "DW_CFA_def_cfa_register";
12886 case DW_CFA_def_cfa_offset:
12887 return "DW_CFA_def_cfa_offset";
12888 /* DWARF 3. */
12889 case DW_CFA_def_cfa_expression:
12890 return "DW_CFA_def_cfa_expression";
12891 case DW_CFA_expression:
12892 return "DW_CFA_expression";
12893 case DW_CFA_offset_extended_sf:
12894 return "DW_CFA_offset_extended_sf";
12895 case DW_CFA_def_cfa_sf:
12896 return "DW_CFA_def_cfa_sf";
12897 case DW_CFA_def_cfa_offset_sf:
12898 return "DW_CFA_def_cfa_offset_sf";
12899 case DW_CFA_val_offset:
12900 return "DW_CFA_val_offset";
12901 case DW_CFA_val_offset_sf:
12902 return "DW_CFA_val_offset_sf";
12903 case DW_CFA_val_expression:
12904 return "DW_CFA_val_expression";
12905 /* SGI/MIPS specific. */
12906 case DW_CFA_MIPS_advance_loc8:
12907 return "DW_CFA_MIPS_advance_loc8";
12908 /* GNU extensions. */
12909 case DW_CFA_GNU_window_save:
12910 return "DW_CFA_GNU_window_save";
12911 case DW_CFA_GNU_args_size:
12912 return "DW_CFA_GNU_args_size";
12913 case DW_CFA_GNU_negative_offset_extended:
12914 return "DW_CFA_GNU_negative_offset_extended";
12915 default:
12916 return "DW_CFA_<unknown>";
12917 }
12918 }
12919 #endif
12920
12921 static void
12922 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
12923 {
12924 unsigned int i;
12925
12926 print_spaces (indent, f);
12927 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
12928 dwarf_tag_name (die->tag), die->abbrev, die->offset);
12929
12930 if (die->parent != NULL)
12931 {
12932 print_spaces (indent, f);
12933 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
12934 die->parent->offset);
12935 }
12936
12937 print_spaces (indent, f);
12938 fprintf_unfiltered (f, " has children: %s\n",
12939 dwarf_bool_name (die->child != NULL));
12940
12941 print_spaces (indent, f);
12942 fprintf_unfiltered (f, " attributes:\n");
12943
12944 for (i = 0; i < die->num_attrs; ++i)
12945 {
12946 print_spaces (indent, f);
12947 fprintf_unfiltered (f, " %s (%s) ",
12948 dwarf_attr_name (die->attrs[i].name),
12949 dwarf_form_name (die->attrs[i].form));
12950
12951 switch (die->attrs[i].form)
12952 {
12953 case DW_FORM_ref_addr:
12954 case DW_FORM_addr:
12955 fprintf_unfiltered (f, "address: ");
12956 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
12957 break;
12958 case DW_FORM_block2:
12959 case DW_FORM_block4:
12960 case DW_FORM_block:
12961 case DW_FORM_block1:
12962 fprintf_unfiltered (f, "block: size %d",
12963 DW_BLOCK (&die->attrs[i])->size);
12964 break;
12965 case DW_FORM_exprloc:
12966 fprintf_unfiltered (f, "expression: size %u",
12967 DW_BLOCK (&die->attrs[i])->size);
12968 break;
12969 case DW_FORM_ref1:
12970 case DW_FORM_ref2:
12971 case DW_FORM_ref4:
12972 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
12973 (long) (DW_ADDR (&die->attrs[i])));
12974 break;
12975 case DW_FORM_data1:
12976 case DW_FORM_data2:
12977 case DW_FORM_data4:
12978 case DW_FORM_data8:
12979 case DW_FORM_udata:
12980 case DW_FORM_sdata:
12981 fprintf_unfiltered (f, "constant: %s",
12982 pulongest (DW_UNSND (&die->attrs[i])));
12983 break;
12984 case DW_FORM_sec_offset:
12985 fprintf_unfiltered (f, "section offset: %s",
12986 pulongest (DW_UNSND (&die->attrs[i])));
12987 break;
12988 case DW_FORM_sig8:
12989 if (DW_SIGNATURED_TYPE (&die->attrs[i]) != NULL)
12990 fprintf_unfiltered (f, "signatured type, offset: 0x%x",
12991 DW_SIGNATURED_TYPE (&die->attrs[i])->offset);
12992 else
12993 fprintf_unfiltered (f, "signatured type, offset: unknown");
12994 break;
12995 case DW_FORM_string:
12996 case DW_FORM_strp:
12997 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
12998 DW_STRING (&die->attrs[i])
12999 ? DW_STRING (&die->attrs[i]) : "",
13000 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
13001 break;
13002 case DW_FORM_flag:
13003 if (DW_UNSND (&die->attrs[i]))
13004 fprintf_unfiltered (f, "flag: TRUE");
13005 else
13006 fprintf_unfiltered (f, "flag: FALSE");
13007 break;
13008 case DW_FORM_flag_present:
13009 fprintf_unfiltered (f, "flag: TRUE");
13010 break;
13011 case DW_FORM_indirect:
13012 /* The reader will have reduced the indirect form to
13013 the "base form" so this form should not occur. */
13014 fprintf_unfiltered (f,
13015 "unexpected attribute form: DW_FORM_indirect");
13016 break;
13017 default:
13018 fprintf_unfiltered (f, "unsupported attribute form: %d.",
13019 die->attrs[i].form);
13020 break;
13021 }
13022 fprintf_unfiltered (f, "\n");
13023 }
13024 }
13025
13026 static void
13027 dump_die_for_error (struct die_info *die)
13028 {
13029 dump_die_shallow (gdb_stderr, 0, die);
13030 }
13031
13032 static void
13033 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
13034 {
13035 int indent = level * 4;
13036
13037 gdb_assert (die != NULL);
13038
13039 if (level >= max_level)
13040 return;
13041
13042 dump_die_shallow (f, indent, die);
13043
13044 if (die->child != NULL)
13045 {
13046 print_spaces (indent, f);
13047 fprintf_unfiltered (f, " Children:");
13048 if (level + 1 < max_level)
13049 {
13050 fprintf_unfiltered (f, "\n");
13051 dump_die_1 (f, level + 1, max_level, die->child);
13052 }
13053 else
13054 {
13055 fprintf_unfiltered (f,
13056 " [not printed, max nesting level reached]\n");
13057 }
13058 }
13059
13060 if (die->sibling != NULL && level > 0)
13061 {
13062 dump_die_1 (f, level, max_level, die->sibling);
13063 }
13064 }
13065
13066 /* This is called from the pdie macro in gdbinit.in.
13067 It's not static so gcc will keep a copy callable from gdb. */
13068
13069 void
13070 dump_die (struct die_info *die, int max_level)
13071 {
13072 dump_die_1 (gdb_stdlog, 0, max_level, die);
13073 }
13074
13075 static void
13076 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
13077 {
13078 void **slot;
13079
13080 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset, INSERT);
13081
13082 *slot = die;
13083 }
13084
13085 static int
13086 is_ref_attr (struct attribute *attr)
13087 {
13088 switch (attr->form)
13089 {
13090 case DW_FORM_ref_addr:
13091 case DW_FORM_ref1:
13092 case DW_FORM_ref2:
13093 case DW_FORM_ref4:
13094 case DW_FORM_ref8:
13095 case DW_FORM_ref_udata:
13096 return 1;
13097 default:
13098 return 0;
13099 }
13100 }
13101
13102 static unsigned int
13103 dwarf2_get_ref_die_offset (struct attribute *attr)
13104 {
13105 if (is_ref_attr (attr))
13106 return DW_ADDR (attr);
13107
13108 complaint (&symfile_complaints,
13109 _("unsupported die ref attribute form: '%s'"),
13110 dwarf_form_name (attr->form));
13111 return 0;
13112 }
13113
13114 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
13115 * the value held by the attribute is not constant. */
13116
13117 static LONGEST
13118 dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
13119 {
13120 if (attr->form == DW_FORM_sdata)
13121 return DW_SND (attr);
13122 else if (attr->form == DW_FORM_udata
13123 || attr->form == DW_FORM_data1
13124 || attr->form == DW_FORM_data2
13125 || attr->form == DW_FORM_data4
13126 || attr->form == DW_FORM_data8)
13127 return DW_UNSND (attr);
13128 else
13129 {
13130 complaint (&symfile_complaints,
13131 _("Attribute value is not a constant (%s)"),
13132 dwarf_form_name (attr->form));
13133 return default_value;
13134 }
13135 }
13136
13137 /* THIS_CU has a reference to PER_CU. If necessary, load the new compilation
13138 unit and add it to our queue.
13139 The result is non-zero if PER_CU was queued, otherwise the result is zero
13140 meaning either PER_CU is already queued or it is already loaded. */
13141
13142 static int
13143 maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
13144 struct dwarf2_per_cu_data *per_cu)
13145 {
13146 /* We may arrive here during partial symbol reading, if we need full
13147 DIEs to process an unusual case (e.g. template arguments). Do
13148 not queue PER_CU, just tell our caller to load its DIEs. */
13149 if (dwarf2_per_objfile->reading_partial_symbols)
13150 {
13151 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
13152 return 1;
13153 return 0;
13154 }
13155
13156 /* Mark the dependence relation so that we don't flush PER_CU
13157 too early. */
13158 dwarf2_add_dependence (this_cu, per_cu);
13159
13160 /* If it's already on the queue, we have nothing to do. */
13161 if (per_cu->queued)
13162 return 0;
13163
13164 /* If the compilation unit is already loaded, just mark it as
13165 used. */
13166 if (per_cu->cu != NULL)
13167 {
13168 per_cu->cu->last_used = 0;
13169 return 0;
13170 }
13171
13172 /* Add it to the queue. */
13173 queue_comp_unit (per_cu, this_cu->objfile);
13174
13175 return 1;
13176 }
13177
13178 /* Follow reference or signature attribute ATTR of SRC_DIE.
13179 On entry *REF_CU is the CU of SRC_DIE.
13180 On exit *REF_CU is the CU of the result. */
13181
13182 static struct die_info *
13183 follow_die_ref_or_sig (struct die_info *src_die, struct attribute *attr,
13184 struct dwarf2_cu **ref_cu)
13185 {
13186 struct die_info *die;
13187
13188 if (is_ref_attr (attr))
13189 die = follow_die_ref (src_die, attr, ref_cu);
13190 else if (attr->form == DW_FORM_sig8)
13191 die = follow_die_sig (src_die, attr, ref_cu);
13192 else
13193 {
13194 dump_die_for_error (src_die);
13195 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
13196 (*ref_cu)->objfile->name);
13197 }
13198
13199 return die;
13200 }
13201
13202 /* Follow reference OFFSET.
13203 On entry *REF_CU is the CU of the source die referencing OFFSET.
13204 On exit *REF_CU is the CU of the result.
13205 Returns NULL if OFFSET is invalid. */
13206
13207 static struct die_info *
13208 follow_die_offset (unsigned int offset, struct dwarf2_cu **ref_cu)
13209 {
13210 struct die_info temp_die;
13211 struct dwarf2_cu *target_cu, *cu = *ref_cu;
13212
13213 gdb_assert (cu->per_cu != NULL);
13214
13215 target_cu = cu;
13216
13217 if (cu->per_cu->from_debug_types)
13218 {
13219 /* .debug_types CUs cannot reference anything outside their CU.
13220 If they need to, they have to reference a signatured type via
13221 DW_FORM_sig8. */
13222 if (! offset_in_cu_p (&cu->header, offset))
13223 return NULL;
13224 }
13225 else if (! offset_in_cu_p (&cu->header, offset))
13226 {
13227 struct dwarf2_per_cu_data *per_cu;
13228
13229 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
13230
13231 /* If necessary, add it to the queue and load its DIEs. */
13232 if (maybe_queue_comp_unit (cu, per_cu))
13233 load_full_comp_unit (per_cu, cu->objfile);
13234
13235 target_cu = per_cu->cu;
13236 }
13237 else if (cu->dies == NULL)
13238 {
13239 /* We're loading full DIEs during partial symbol reading. */
13240 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
13241 load_full_comp_unit (cu->per_cu, cu->objfile);
13242 }
13243
13244 *ref_cu = target_cu;
13245 temp_die.offset = offset;
13246 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset);
13247 }
13248
13249 /* Follow reference attribute ATTR of SRC_DIE.
13250 On entry *REF_CU is the CU of SRC_DIE.
13251 On exit *REF_CU is the CU of the result. */
13252
13253 static struct die_info *
13254 follow_die_ref (struct die_info *src_die, struct attribute *attr,
13255 struct dwarf2_cu **ref_cu)
13256 {
13257 unsigned int offset = dwarf2_get_ref_die_offset (attr);
13258 struct dwarf2_cu *cu = *ref_cu;
13259 struct die_info *die;
13260
13261 die = follow_die_offset (offset, ref_cu);
13262 if (!die)
13263 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
13264 "at 0x%x [in module %s]"),
13265 offset, src_die->offset, cu->objfile->name);
13266
13267 return die;
13268 }
13269
13270 /* Return DWARF block and its CU referenced by OFFSET at PER_CU. Returned
13271 value is intended for DW_OP_call*. */
13272
13273 struct dwarf2_locexpr_baton
13274 dwarf2_fetch_die_location_block (unsigned int offset,
13275 struct dwarf2_per_cu_data *per_cu,
13276 CORE_ADDR (*get_frame_pc) (void *baton),
13277 void *baton)
13278 {
13279 struct dwarf2_cu *cu = per_cu->cu;
13280 struct die_info *die;
13281 struct attribute *attr;
13282 struct dwarf2_locexpr_baton retval;
13283
13284 dw2_setup (per_cu->objfile);
13285
13286 die = follow_die_offset (offset, &cu);
13287 if (!die)
13288 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
13289 offset, per_cu->cu->objfile->name);
13290
13291 attr = dwarf2_attr (die, DW_AT_location, cu);
13292 if (!attr)
13293 {
13294 /* DWARF: "If there is no such attribute, then there is no effect.". */
13295
13296 retval.data = NULL;
13297 retval.size = 0;
13298 }
13299 else if (attr_form_is_section_offset (attr))
13300 {
13301 struct dwarf2_loclist_baton loclist_baton;
13302 CORE_ADDR pc = (*get_frame_pc) (baton);
13303 size_t size;
13304
13305 fill_in_loclist_baton (cu, &loclist_baton, attr);
13306
13307 retval.data = dwarf2_find_location_expression (&loclist_baton,
13308 &size, pc);
13309 retval.size = size;
13310 }
13311 else
13312 {
13313 if (!attr_form_is_block (attr))
13314 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
13315 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
13316 offset, per_cu->cu->objfile->name);
13317
13318 retval.data = DW_BLOCK (attr)->data;
13319 retval.size = DW_BLOCK (attr)->size;
13320 }
13321 retval.per_cu = cu->per_cu;
13322 return retval;
13323 }
13324
13325 /* Follow the signature attribute ATTR in SRC_DIE.
13326 On entry *REF_CU is the CU of SRC_DIE.
13327 On exit *REF_CU is the CU of the result. */
13328
13329 static struct die_info *
13330 follow_die_sig (struct die_info *src_die, struct attribute *attr,
13331 struct dwarf2_cu **ref_cu)
13332 {
13333 struct objfile *objfile = (*ref_cu)->objfile;
13334 struct die_info temp_die;
13335 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
13336 struct dwarf2_cu *sig_cu;
13337 struct die_info *die;
13338
13339 /* sig_type will be NULL if the signatured type is missing from
13340 the debug info. */
13341 if (sig_type == NULL)
13342 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
13343 "at 0x%x [in module %s]"),
13344 src_die->offset, objfile->name);
13345
13346 /* If necessary, add it to the queue and load its DIEs. */
13347
13348 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu))
13349 read_signatured_type (objfile, sig_type);
13350
13351 gdb_assert (sig_type->per_cu.cu != NULL);
13352
13353 sig_cu = sig_type->per_cu.cu;
13354 temp_die.offset = sig_cu->header.offset + sig_type->type_offset;
13355 die = htab_find_with_hash (sig_cu->die_hash, &temp_die, temp_die.offset);
13356 if (die)
13357 {
13358 *ref_cu = sig_cu;
13359 return die;
13360 }
13361
13362 error (_("Dwarf Error: Cannot find signatured DIE at 0x%x referenced "
13363 "from DIE at 0x%x [in module %s]"),
13364 sig_type->type_offset, src_die->offset, objfile->name);
13365 }
13366
13367 /* Given an offset of a signatured type, return its signatured_type. */
13368
13369 static struct signatured_type *
13370 lookup_signatured_type_at_offset (struct objfile *objfile, unsigned int offset)
13371 {
13372 gdb_byte *info_ptr = dwarf2_per_objfile->types.buffer + offset;
13373 unsigned int length, initial_length_size;
13374 unsigned int sig_offset;
13375 struct signatured_type find_entry, *type_sig;
13376
13377 length = read_initial_length (objfile->obfd, info_ptr, &initial_length_size);
13378 sig_offset = (initial_length_size
13379 + 2 /*version*/
13380 + (initial_length_size == 4 ? 4 : 8) /*debug_abbrev_offset*/
13381 + 1 /*address_size*/);
13382 find_entry.signature = bfd_get_64 (objfile->obfd, info_ptr + sig_offset);
13383 type_sig = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
13384
13385 /* This is only used to lookup previously recorded types.
13386 If we didn't find it, it's our bug. */
13387 gdb_assert (type_sig != NULL);
13388 gdb_assert (offset == type_sig->offset);
13389
13390 return type_sig;
13391 }
13392
13393 /* Read in signatured type at OFFSET and build its CU and die(s). */
13394
13395 static void
13396 read_signatured_type_at_offset (struct objfile *objfile,
13397 unsigned int offset)
13398 {
13399 struct signatured_type *type_sig;
13400
13401 dwarf2_read_section (objfile, &dwarf2_per_objfile->types);
13402
13403 /* We have the section offset, but we need the signature to do the
13404 hash table lookup. */
13405 type_sig = lookup_signatured_type_at_offset (objfile, offset);
13406
13407 gdb_assert (type_sig->per_cu.cu == NULL);
13408
13409 read_signatured_type (objfile, type_sig);
13410
13411 gdb_assert (type_sig->per_cu.cu != NULL);
13412 }
13413
13414 /* Read in a signatured type and build its CU and DIEs. */
13415
13416 static void
13417 read_signatured_type (struct objfile *objfile,
13418 struct signatured_type *type_sig)
13419 {
13420 gdb_byte *types_ptr;
13421 struct die_reader_specs reader_specs;
13422 struct dwarf2_cu *cu;
13423 ULONGEST signature;
13424 struct cleanup *back_to, *free_cu_cleanup;
13425
13426 dwarf2_read_section (objfile, &dwarf2_per_objfile->types);
13427 types_ptr = dwarf2_per_objfile->types.buffer + type_sig->offset;
13428
13429 gdb_assert (type_sig->per_cu.cu == NULL);
13430
13431 cu = xmalloc (sizeof (*cu));
13432 init_one_comp_unit (cu, objfile);
13433
13434 type_sig->per_cu.cu = cu;
13435 cu->per_cu = &type_sig->per_cu;
13436
13437 /* If an error occurs while loading, release our storage. */
13438 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
13439
13440 types_ptr = read_type_comp_unit_head (&cu->header, &signature,
13441 types_ptr, objfile->obfd);
13442 gdb_assert (signature == type_sig->signature);
13443
13444 cu->die_hash
13445 = htab_create_alloc_ex (cu->header.length / 12,
13446 die_hash,
13447 die_eq,
13448 NULL,
13449 &cu->comp_unit_obstack,
13450 hashtab_obstack_allocate,
13451 dummy_obstack_deallocate);
13452
13453 dwarf2_read_abbrevs (cu->objfile->obfd, cu);
13454 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
13455
13456 init_cu_die_reader (&reader_specs, cu);
13457
13458 cu->dies = read_die_and_children (&reader_specs, types_ptr, &types_ptr,
13459 NULL /*parent*/);
13460
13461 /* We try not to read any attributes in this function, because not
13462 all objfiles needed for references have been loaded yet, and symbol
13463 table processing isn't initialized. But we have to set the CU language,
13464 or we won't be able to build types correctly. */
13465 prepare_one_comp_unit (cu, cu->dies);
13466
13467 do_cleanups (back_to);
13468
13469 /* We've successfully allocated this compilation unit. Let our caller
13470 clean it up when finished with it. */
13471 discard_cleanups (free_cu_cleanup);
13472
13473 type_sig->per_cu.cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
13474 dwarf2_per_objfile->read_in_chain = &type_sig->per_cu;
13475 }
13476
13477 /* Decode simple location descriptions.
13478 Given a pointer to a dwarf block that defines a location, compute
13479 the location and return the value.
13480
13481 NOTE drow/2003-11-18: This function is called in two situations
13482 now: for the address of static or global variables (partial symbols
13483 only) and for offsets into structures which are expected to be
13484 (more or less) constant. The partial symbol case should go away,
13485 and only the constant case should remain. That will let this
13486 function complain more accurately. A few special modes are allowed
13487 without complaint for global variables (for instance, global
13488 register values and thread-local values).
13489
13490 A location description containing no operations indicates that the
13491 object is optimized out. The return value is 0 for that case.
13492 FIXME drow/2003-11-16: No callers check for this case any more; soon all
13493 callers will only want a very basic result and this can become a
13494 complaint.
13495
13496 Note that stack[0] is unused except as a default error return. */
13497
13498 static CORE_ADDR
13499 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
13500 {
13501 struct objfile *objfile = cu->objfile;
13502 int i;
13503 int size = blk->size;
13504 gdb_byte *data = blk->data;
13505 CORE_ADDR stack[64];
13506 int stacki;
13507 unsigned int bytes_read, unsnd;
13508 gdb_byte op;
13509
13510 i = 0;
13511 stacki = 0;
13512 stack[stacki] = 0;
13513 stack[++stacki] = 0;
13514
13515 while (i < size)
13516 {
13517 op = data[i++];
13518 switch (op)
13519 {
13520 case DW_OP_lit0:
13521 case DW_OP_lit1:
13522 case DW_OP_lit2:
13523 case DW_OP_lit3:
13524 case DW_OP_lit4:
13525 case DW_OP_lit5:
13526 case DW_OP_lit6:
13527 case DW_OP_lit7:
13528 case DW_OP_lit8:
13529 case DW_OP_lit9:
13530 case DW_OP_lit10:
13531 case DW_OP_lit11:
13532 case DW_OP_lit12:
13533 case DW_OP_lit13:
13534 case DW_OP_lit14:
13535 case DW_OP_lit15:
13536 case DW_OP_lit16:
13537 case DW_OP_lit17:
13538 case DW_OP_lit18:
13539 case DW_OP_lit19:
13540 case DW_OP_lit20:
13541 case DW_OP_lit21:
13542 case DW_OP_lit22:
13543 case DW_OP_lit23:
13544 case DW_OP_lit24:
13545 case DW_OP_lit25:
13546 case DW_OP_lit26:
13547 case DW_OP_lit27:
13548 case DW_OP_lit28:
13549 case DW_OP_lit29:
13550 case DW_OP_lit30:
13551 case DW_OP_lit31:
13552 stack[++stacki] = op - DW_OP_lit0;
13553 break;
13554
13555 case DW_OP_reg0:
13556 case DW_OP_reg1:
13557 case DW_OP_reg2:
13558 case DW_OP_reg3:
13559 case DW_OP_reg4:
13560 case DW_OP_reg5:
13561 case DW_OP_reg6:
13562 case DW_OP_reg7:
13563 case DW_OP_reg8:
13564 case DW_OP_reg9:
13565 case DW_OP_reg10:
13566 case DW_OP_reg11:
13567 case DW_OP_reg12:
13568 case DW_OP_reg13:
13569 case DW_OP_reg14:
13570 case DW_OP_reg15:
13571 case DW_OP_reg16:
13572 case DW_OP_reg17:
13573 case DW_OP_reg18:
13574 case DW_OP_reg19:
13575 case DW_OP_reg20:
13576 case DW_OP_reg21:
13577 case DW_OP_reg22:
13578 case DW_OP_reg23:
13579 case DW_OP_reg24:
13580 case DW_OP_reg25:
13581 case DW_OP_reg26:
13582 case DW_OP_reg27:
13583 case DW_OP_reg28:
13584 case DW_OP_reg29:
13585 case DW_OP_reg30:
13586 case DW_OP_reg31:
13587 stack[++stacki] = op - DW_OP_reg0;
13588 if (i < size)
13589 dwarf2_complex_location_expr_complaint ();
13590 break;
13591
13592 case DW_OP_regx:
13593 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
13594 i += bytes_read;
13595 stack[++stacki] = unsnd;
13596 if (i < size)
13597 dwarf2_complex_location_expr_complaint ();
13598 break;
13599
13600 case DW_OP_addr:
13601 stack[++stacki] = read_address (objfile->obfd, &data[i],
13602 cu, &bytes_read);
13603 i += bytes_read;
13604 break;
13605
13606 case DW_OP_const1u:
13607 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
13608 i += 1;
13609 break;
13610
13611 case DW_OP_const1s:
13612 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
13613 i += 1;
13614 break;
13615
13616 case DW_OP_const2u:
13617 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
13618 i += 2;
13619 break;
13620
13621 case DW_OP_const2s:
13622 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
13623 i += 2;
13624 break;
13625
13626 case DW_OP_const4u:
13627 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
13628 i += 4;
13629 break;
13630
13631 case DW_OP_const4s:
13632 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
13633 i += 4;
13634 break;
13635
13636 case DW_OP_constu:
13637 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
13638 &bytes_read);
13639 i += bytes_read;
13640 break;
13641
13642 case DW_OP_consts:
13643 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
13644 i += bytes_read;
13645 break;
13646
13647 case DW_OP_dup:
13648 stack[stacki + 1] = stack[stacki];
13649 stacki++;
13650 break;
13651
13652 case DW_OP_plus:
13653 stack[stacki - 1] += stack[stacki];
13654 stacki--;
13655 break;
13656
13657 case DW_OP_plus_uconst:
13658 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
13659 &bytes_read);
13660 i += bytes_read;
13661 break;
13662
13663 case DW_OP_minus:
13664 stack[stacki - 1] -= stack[stacki];
13665 stacki--;
13666 break;
13667
13668 case DW_OP_deref:
13669 /* If we're not the last op, then we definitely can't encode
13670 this using GDB's address_class enum. This is valid for partial
13671 global symbols, although the variable's address will be bogus
13672 in the psymtab. */
13673 if (i < size)
13674 dwarf2_complex_location_expr_complaint ();
13675 break;
13676
13677 case DW_OP_GNU_push_tls_address:
13678 /* The top of the stack has the offset from the beginning
13679 of the thread control block at which the variable is located. */
13680 /* Nothing should follow this operator, so the top of stack would
13681 be returned. */
13682 /* This is valid for partial global symbols, but the variable's
13683 address will be bogus in the psymtab. */
13684 if (i < size)
13685 dwarf2_complex_location_expr_complaint ();
13686 break;
13687
13688 case DW_OP_GNU_uninit:
13689 break;
13690
13691 default:
13692 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
13693 dwarf_stack_op_name (op, 1));
13694 return (stack[stacki]);
13695 }
13696
13697 /* Enforce maximum stack depth of SIZE-1 to avoid writing
13698 outside of the allocated space. Also enforce minimum>0. */
13699 if (stacki >= ARRAY_SIZE (stack) - 1)
13700 {
13701 complaint (&symfile_complaints,
13702 _("location description stack overflow"));
13703 return 0;
13704 }
13705
13706 if (stacki <= 0)
13707 {
13708 complaint (&symfile_complaints,
13709 _("location description stack underflow"));
13710 return 0;
13711 }
13712 }
13713 return (stack[stacki]);
13714 }
13715
13716 /* memory allocation interface */
13717
13718 static struct dwarf_block *
13719 dwarf_alloc_block (struct dwarf2_cu *cu)
13720 {
13721 struct dwarf_block *blk;
13722
13723 blk = (struct dwarf_block *)
13724 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
13725 return (blk);
13726 }
13727
13728 static struct abbrev_info *
13729 dwarf_alloc_abbrev (struct dwarf2_cu *cu)
13730 {
13731 struct abbrev_info *abbrev;
13732
13733 abbrev = (struct abbrev_info *)
13734 obstack_alloc (&cu->abbrev_obstack, sizeof (struct abbrev_info));
13735 memset (abbrev, 0, sizeof (struct abbrev_info));
13736 return (abbrev);
13737 }
13738
13739 static struct die_info *
13740 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
13741 {
13742 struct die_info *die;
13743 size_t size = sizeof (struct die_info);
13744
13745 if (num_attrs > 1)
13746 size += (num_attrs - 1) * sizeof (struct attribute);
13747
13748 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
13749 memset (die, 0, sizeof (struct die_info));
13750 return (die);
13751 }
13752
13753 \f
13754 /* Macro support. */
13755
13756 /* Return the full name of file number I in *LH's file name table.
13757 Use COMP_DIR as the name of the current directory of the
13758 compilation. The result is allocated using xmalloc; the caller is
13759 responsible for freeing it. */
13760 static char *
13761 file_full_name (int file, struct line_header *lh, const char *comp_dir)
13762 {
13763 /* Is the file number a valid index into the line header's file name
13764 table? Remember that file numbers start with one, not zero. */
13765 if (1 <= file && file <= lh->num_file_names)
13766 {
13767 struct file_entry *fe = &lh->file_names[file - 1];
13768
13769 if (IS_ABSOLUTE_PATH (fe->name))
13770 return xstrdup (fe->name);
13771 else
13772 {
13773 const char *dir;
13774 int dir_len;
13775 char *full_name;
13776
13777 if (fe->dir_index)
13778 dir = lh->include_dirs[fe->dir_index - 1];
13779 else
13780 dir = comp_dir;
13781
13782 if (dir)
13783 {
13784 dir_len = strlen (dir);
13785 full_name = xmalloc (dir_len + 1 + strlen (fe->name) + 1);
13786 strcpy (full_name, dir);
13787 full_name[dir_len] = '/';
13788 strcpy (full_name + dir_len + 1, fe->name);
13789 return full_name;
13790 }
13791 else
13792 return xstrdup (fe->name);
13793 }
13794 }
13795 else
13796 {
13797 /* The compiler produced a bogus file number. We can at least
13798 record the macro definitions made in the file, even if we
13799 won't be able to find the file by name. */
13800 char fake_name[80];
13801
13802 sprintf (fake_name, "<bad macro file number %d>", file);
13803
13804 complaint (&symfile_complaints,
13805 _("bad file number in macro information (%d)"),
13806 file);
13807
13808 return xstrdup (fake_name);
13809 }
13810 }
13811
13812
13813 static struct macro_source_file *
13814 macro_start_file (int file, int line,
13815 struct macro_source_file *current_file,
13816 const char *comp_dir,
13817 struct line_header *lh, struct objfile *objfile)
13818 {
13819 /* The full name of this source file. */
13820 char *full_name = file_full_name (file, lh, comp_dir);
13821
13822 /* We don't create a macro table for this compilation unit
13823 at all until we actually get a filename. */
13824 if (! pending_macros)
13825 pending_macros = new_macro_table (&objfile->objfile_obstack,
13826 objfile->macro_cache);
13827
13828 if (! current_file)
13829 /* If we have no current file, then this must be the start_file
13830 directive for the compilation unit's main source file. */
13831 current_file = macro_set_main (pending_macros, full_name);
13832 else
13833 current_file = macro_include (current_file, line, full_name);
13834
13835 xfree (full_name);
13836
13837 return current_file;
13838 }
13839
13840
13841 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
13842 followed by a null byte. */
13843 static char *
13844 copy_string (const char *buf, int len)
13845 {
13846 char *s = xmalloc (len + 1);
13847
13848 memcpy (s, buf, len);
13849 s[len] = '\0';
13850 return s;
13851 }
13852
13853
13854 static const char *
13855 consume_improper_spaces (const char *p, const char *body)
13856 {
13857 if (*p == ' ')
13858 {
13859 complaint (&symfile_complaints,
13860 _("macro definition contains spaces "
13861 "in formal argument list:\n`%s'"),
13862 body);
13863
13864 while (*p == ' ')
13865 p++;
13866 }
13867
13868 return p;
13869 }
13870
13871
13872 static void
13873 parse_macro_definition (struct macro_source_file *file, int line,
13874 const char *body)
13875 {
13876 const char *p;
13877
13878 /* The body string takes one of two forms. For object-like macro
13879 definitions, it should be:
13880
13881 <macro name> " " <definition>
13882
13883 For function-like macro definitions, it should be:
13884
13885 <macro name> "() " <definition>
13886 or
13887 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
13888
13889 Spaces may appear only where explicitly indicated, and in the
13890 <definition>.
13891
13892 The Dwarf 2 spec says that an object-like macro's name is always
13893 followed by a space, but versions of GCC around March 2002 omit
13894 the space when the macro's definition is the empty string.
13895
13896 The Dwarf 2 spec says that there should be no spaces between the
13897 formal arguments in a function-like macro's formal argument list,
13898 but versions of GCC around March 2002 include spaces after the
13899 commas. */
13900
13901
13902 /* Find the extent of the macro name. The macro name is terminated
13903 by either a space or null character (for an object-like macro) or
13904 an opening paren (for a function-like macro). */
13905 for (p = body; *p; p++)
13906 if (*p == ' ' || *p == '(')
13907 break;
13908
13909 if (*p == ' ' || *p == '\0')
13910 {
13911 /* It's an object-like macro. */
13912 int name_len = p - body;
13913 char *name = copy_string (body, name_len);
13914 const char *replacement;
13915
13916 if (*p == ' ')
13917 replacement = body + name_len + 1;
13918 else
13919 {
13920 dwarf2_macro_malformed_definition_complaint (body);
13921 replacement = body + name_len;
13922 }
13923
13924 macro_define_object (file, line, name, replacement);
13925
13926 xfree (name);
13927 }
13928 else if (*p == '(')
13929 {
13930 /* It's a function-like macro. */
13931 char *name = copy_string (body, p - body);
13932 int argc = 0;
13933 int argv_size = 1;
13934 char **argv = xmalloc (argv_size * sizeof (*argv));
13935
13936 p++;
13937
13938 p = consume_improper_spaces (p, body);
13939
13940 /* Parse the formal argument list. */
13941 while (*p && *p != ')')
13942 {
13943 /* Find the extent of the current argument name. */
13944 const char *arg_start = p;
13945
13946 while (*p && *p != ',' && *p != ')' && *p != ' ')
13947 p++;
13948
13949 if (! *p || p == arg_start)
13950 dwarf2_macro_malformed_definition_complaint (body);
13951 else
13952 {
13953 /* Make sure argv has room for the new argument. */
13954 if (argc >= argv_size)
13955 {
13956 argv_size *= 2;
13957 argv = xrealloc (argv, argv_size * sizeof (*argv));
13958 }
13959
13960 argv[argc++] = copy_string (arg_start, p - arg_start);
13961 }
13962
13963 p = consume_improper_spaces (p, body);
13964
13965 /* Consume the comma, if present. */
13966 if (*p == ',')
13967 {
13968 p++;
13969
13970 p = consume_improper_spaces (p, body);
13971 }
13972 }
13973
13974 if (*p == ')')
13975 {
13976 p++;
13977
13978 if (*p == ' ')
13979 /* Perfectly formed definition, no complaints. */
13980 macro_define_function (file, line, name,
13981 argc, (const char **) argv,
13982 p + 1);
13983 else if (*p == '\0')
13984 {
13985 /* Complain, but do define it. */
13986 dwarf2_macro_malformed_definition_complaint (body);
13987 macro_define_function (file, line, name,
13988 argc, (const char **) argv,
13989 p);
13990 }
13991 else
13992 /* Just complain. */
13993 dwarf2_macro_malformed_definition_complaint (body);
13994 }
13995 else
13996 /* Just complain. */
13997 dwarf2_macro_malformed_definition_complaint (body);
13998
13999 xfree (name);
14000 {
14001 int i;
14002
14003 for (i = 0; i < argc; i++)
14004 xfree (argv[i]);
14005 }
14006 xfree (argv);
14007 }
14008 else
14009 dwarf2_macro_malformed_definition_complaint (body);
14010 }
14011
14012
14013 static void
14014 dwarf_decode_macros (struct line_header *lh, unsigned int offset,
14015 char *comp_dir, bfd *abfd,
14016 struct dwarf2_cu *cu)
14017 {
14018 gdb_byte *mac_ptr, *mac_end;
14019 struct macro_source_file *current_file = 0;
14020 enum dwarf_macinfo_record_type macinfo_type;
14021 int at_commandline;
14022
14023 dwarf2_read_section (dwarf2_per_objfile->objfile,
14024 &dwarf2_per_objfile->macinfo);
14025 if (dwarf2_per_objfile->macinfo.buffer == NULL)
14026 {
14027 complaint (&symfile_complaints, _("missing .debug_macinfo section"));
14028 return;
14029 }
14030
14031 /* First pass: Find the name of the base filename.
14032 This filename is needed in order to process all macros whose definition
14033 (or undefinition) comes from the command line. These macros are defined
14034 before the first DW_MACINFO_start_file entry, and yet still need to be
14035 associated to the base file.
14036
14037 To determine the base file name, we scan the macro definitions until we
14038 reach the first DW_MACINFO_start_file entry. We then initialize
14039 CURRENT_FILE accordingly so that any macro definition found before the
14040 first DW_MACINFO_start_file can still be associated to the base file. */
14041
14042 mac_ptr = dwarf2_per_objfile->macinfo.buffer + offset;
14043 mac_end = dwarf2_per_objfile->macinfo.buffer
14044 + dwarf2_per_objfile->macinfo.size;
14045
14046 do
14047 {
14048 /* Do we at least have room for a macinfo type byte? */
14049 if (mac_ptr >= mac_end)
14050 {
14051 /* Complaint is printed during the second pass as GDB will probably
14052 stop the first pass earlier upon finding
14053 DW_MACINFO_start_file. */
14054 break;
14055 }
14056
14057 macinfo_type = read_1_byte (abfd, mac_ptr);
14058 mac_ptr++;
14059
14060 switch (macinfo_type)
14061 {
14062 /* A zero macinfo type indicates the end of the macro
14063 information. */
14064 case 0:
14065 break;
14066
14067 case DW_MACINFO_define:
14068 case DW_MACINFO_undef:
14069 /* Only skip the data by MAC_PTR. */
14070 {
14071 unsigned int bytes_read;
14072
14073 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
14074 mac_ptr += bytes_read;
14075 read_direct_string (abfd, mac_ptr, &bytes_read);
14076 mac_ptr += bytes_read;
14077 }
14078 break;
14079
14080 case DW_MACINFO_start_file:
14081 {
14082 unsigned int bytes_read;
14083 int line, file;
14084
14085 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
14086 mac_ptr += bytes_read;
14087 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
14088 mac_ptr += bytes_read;
14089
14090 current_file = macro_start_file (file, line, current_file,
14091 comp_dir, lh, cu->objfile);
14092 }
14093 break;
14094
14095 case DW_MACINFO_end_file:
14096 /* No data to skip by MAC_PTR. */
14097 break;
14098
14099 case DW_MACINFO_vendor_ext:
14100 /* Only skip the data by MAC_PTR. */
14101 {
14102 unsigned int bytes_read;
14103
14104 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
14105 mac_ptr += bytes_read;
14106 read_direct_string (abfd, mac_ptr, &bytes_read);
14107 mac_ptr += bytes_read;
14108 }
14109 break;
14110
14111 default:
14112 break;
14113 }
14114 } while (macinfo_type != 0 && current_file == NULL);
14115
14116 /* Second pass: Process all entries.
14117
14118 Use the AT_COMMAND_LINE flag to determine whether we are still processing
14119 command-line macro definitions/undefinitions. This flag is unset when we
14120 reach the first DW_MACINFO_start_file entry. */
14121
14122 mac_ptr = dwarf2_per_objfile->macinfo.buffer + offset;
14123
14124 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
14125 GDB is still reading the definitions from command line. First
14126 DW_MACINFO_start_file will need to be ignored as it was already executed
14127 to create CURRENT_FILE for the main source holding also the command line
14128 definitions. On first met DW_MACINFO_start_file this flag is reset to
14129 normally execute all the remaining DW_MACINFO_start_file macinfos. */
14130
14131 at_commandline = 1;
14132
14133 do
14134 {
14135 /* Do we at least have room for a macinfo type byte? */
14136 if (mac_ptr >= mac_end)
14137 {
14138 dwarf2_macros_too_long_complaint ();
14139 break;
14140 }
14141
14142 macinfo_type = read_1_byte (abfd, mac_ptr);
14143 mac_ptr++;
14144
14145 switch (macinfo_type)
14146 {
14147 /* A zero macinfo type indicates the end of the macro
14148 information. */
14149 case 0:
14150 break;
14151
14152 case DW_MACINFO_define:
14153 case DW_MACINFO_undef:
14154 {
14155 unsigned int bytes_read;
14156 int line;
14157 char *body;
14158
14159 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
14160 mac_ptr += bytes_read;
14161 body = read_direct_string (abfd, mac_ptr, &bytes_read);
14162 mac_ptr += bytes_read;
14163
14164 if (! current_file)
14165 {
14166 /* DWARF violation as no main source is present. */
14167 complaint (&symfile_complaints,
14168 _("debug info with no main source gives macro %s "
14169 "on line %d: %s"),
14170 macinfo_type == DW_MACINFO_define ?
14171 _("definition") :
14172 macinfo_type == DW_MACINFO_undef ?
14173 _("undefinition") :
14174 _("something-or-other"), line, body);
14175 break;
14176 }
14177 if ((line == 0 && !at_commandline)
14178 || (line != 0 && at_commandline))
14179 complaint (&symfile_complaints,
14180 _("debug info gives %s macro %s with %s line %d: %s"),
14181 at_commandline ? _("command-line") : _("in-file"),
14182 macinfo_type == DW_MACINFO_define ?
14183 _("definition") :
14184 macinfo_type == DW_MACINFO_undef ?
14185 _("undefinition") :
14186 _("something-or-other"),
14187 line == 0 ? _("zero") : _("non-zero"), line, body);
14188
14189 if (macinfo_type == DW_MACINFO_define)
14190 parse_macro_definition (current_file, line, body);
14191 else if (macinfo_type == DW_MACINFO_undef)
14192 macro_undef (current_file, line, body);
14193 }
14194 break;
14195
14196 case DW_MACINFO_start_file:
14197 {
14198 unsigned int bytes_read;
14199 int line, file;
14200
14201 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
14202 mac_ptr += bytes_read;
14203 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
14204 mac_ptr += bytes_read;
14205
14206 if ((line == 0 && !at_commandline)
14207 || (line != 0 && at_commandline))
14208 complaint (&symfile_complaints,
14209 _("debug info gives source %d included "
14210 "from %s at %s line %d"),
14211 file, at_commandline ? _("command-line") : _("file"),
14212 line == 0 ? _("zero") : _("non-zero"), line);
14213
14214 if (at_commandline)
14215 {
14216 /* This DW_MACINFO_start_file was executed in the pass one. */
14217 at_commandline = 0;
14218 }
14219 else
14220 current_file = macro_start_file (file, line,
14221 current_file, comp_dir,
14222 lh, cu->objfile);
14223 }
14224 break;
14225
14226 case DW_MACINFO_end_file:
14227 if (! current_file)
14228 complaint (&symfile_complaints,
14229 _("macro debug info has an unmatched "
14230 "`close_file' directive"));
14231 else
14232 {
14233 current_file = current_file->included_by;
14234 if (! current_file)
14235 {
14236 enum dwarf_macinfo_record_type next_type;
14237
14238 /* GCC circa March 2002 doesn't produce the zero
14239 type byte marking the end of the compilation
14240 unit. Complain if it's not there, but exit no
14241 matter what. */
14242
14243 /* Do we at least have room for a macinfo type byte? */
14244 if (mac_ptr >= mac_end)
14245 {
14246 dwarf2_macros_too_long_complaint ();
14247 return;
14248 }
14249
14250 /* We don't increment mac_ptr here, so this is just
14251 a look-ahead. */
14252 next_type = read_1_byte (abfd, mac_ptr);
14253 if (next_type != 0)
14254 complaint (&symfile_complaints,
14255 _("no terminating 0-type entry for "
14256 "macros in `.debug_macinfo' section"));
14257
14258 return;
14259 }
14260 }
14261 break;
14262
14263 case DW_MACINFO_vendor_ext:
14264 {
14265 unsigned int bytes_read;
14266 int constant;
14267 char *string;
14268
14269 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
14270 mac_ptr += bytes_read;
14271 string = read_direct_string (abfd, mac_ptr, &bytes_read);
14272 mac_ptr += bytes_read;
14273
14274 /* We don't recognize any vendor extensions. */
14275 }
14276 break;
14277 }
14278 } while (macinfo_type != 0);
14279 }
14280
14281 /* Check if the attribute's form is a DW_FORM_block*
14282 if so return true else false. */
14283 static int
14284 attr_form_is_block (struct attribute *attr)
14285 {
14286 return (attr == NULL ? 0 :
14287 attr->form == DW_FORM_block1
14288 || attr->form == DW_FORM_block2
14289 || attr->form == DW_FORM_block4
14290 || attr->form == DW_FORM_block
14291 || attr->form == DW_FORM_exprloc);
14292 }
14293
14294 /* Return non-zero if ATTR's value is a section offset --- classes
14295 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
14296 You may use DW_UNSND (attr) to retrieve such offsets.
14297
14298 Section 7.5.4, "Attribute Encodings", explains that no attribute
14299 may have a value that belongs to more than one of these classes; it
14300 would be ambiguous if we did, because we use the same forms for all
14301 of them. */
14302 static int
14303 attr_form_is_section_offset (struct attribute *attr)
14304 {
14305 return (attr->form == DW_FORM_data4
14306 || attr->form == DW_FORM_data8
14307 || attr->form == DW_FORM_sec_offset);
14308 }
14309
14310
14311 /* Return non-zero if ATTR's value falls in the 'constant' class, or
14312 zero otherwise. When this function returns true, you can apply
14313 dwarf2_get_attr_constant_value to it.
14314
14315 However, note that for some attributes you must check
14316 attr_form_is_section_offset before using this test. DW_FORM_data4
14317 and DW_FORM_data8 are members of both the constant class, and of
14318 the classes that contain offsets into other debug sections
14319 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
14320 that, if an attribute's can be either a constant or one of the
14321 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
14322 taken as section offsets, not constants. */
14323 static int
14324 attr_form_is_constant (struct attribute *attr)
14325 {
14326 switch (attr->form)
14327 {
14328 case DW_FORM_sdata:
14329 case DW_FORM_udata:
14330 case DW_FORM_data1:
14331 case DW_FORM_data2:
14332 case DW_FORM_data4:
14333 case DW_FORM_data8:
14334 return 1;
14335 default:
14336 return 0;
14337 }
14338 }
14339
14340 /* A helper function that fills in a dwarf2_loclist_baton. */
14341
14342 static void
14343 fill_in_loclist_baton (struct dwarf2_cu *cu,
14344 struct dwarf2_loclist_baton *baton,
14345 struct attribute *attr)
14346 {
14347 dwarf2_read_section (dwarf2_per_objfile->objfile,
14348 &dwarf2_per_objfile->loc);
14349
14350 baton->per_cu = cu->per_cu;
14351 gdb_assert (baton->per_cu);
14352 /* We don't know how long the location list is, but make sure we
14353 don't run off the edge of the section. */
14354 baton->size = dwarf2_per_objfile->loc.size - DW_UNSND (attr);
14355 baton->data = dwarf2_per_objfile->loc.buffer + DW_UNSND (attr);
14356 baton->base_address = cu->base_address;
14357 }
14358
14359 static void
14360 dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
14361 struct dwarf2_cu *cu)
14362 {
14363 if (attr_form_is_section_offset (attr)
14364 /* ".debug_loc" may not exist at all, or the offset may be outside
14365 the section. If so, fall through to the complaint in the
14366 other branch. */
14367 && DW_UNSND (attr) < dwarf2_per_objfile->loc.size)
14368 {
14369 struct dwarf2_loclist_baton *baton;
14370
14371 baton = obstack_alloc (&cu->objfile->objfile_obstack,
14372 sizeof (struct dwarf2_loclist_baton));
14373
14374 fill_in_loclist_baton (cu, baton, attr);
14375
14376 if (cu->base_known == 0)
14377 complaint (&symfile_complaints,
14378 _("Location list used without "
14379 "specifying the CU base address."));
14380
14381 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_loclist_funcs;
14382 SYMBOL_LOCATION_BATON (sym) = baton;
14383 }
14384 else
14385 {
14386 struct dwarf2_locexpr_baton *baton;
14387
14388 baton = obstack_alloc (&cu->objfile->objfile_obstack,
14389 sizeof (struct dwarf2_locexpr_baton));
14390 baton->per_cu = cu->per_cu;
14391 gdb_assert (baton->per_cu);
14392
14393 if (attr_form_is_block (attr))
14394 {
14395 /* Note that we're just copying the block's data pointer
14396 here, not the actual data. We're still pointing into the
14397 info_buffer for SYM's objfile; right now we never release
14398 that buffer, but when we do clean up properly this may
14399 need to change. */
14400 baton->size = DW_BLOCK (attr)->size;
14401 baton->data = DW_BLOCK (attr)->data;
14402 }
14403 else
14404 {
14405 dwarf2_invalid_attrib_class_complaint ("location description",
14406 SYMBOL_NATURAL_NAME (sym));
14407 baton->size = 0;
14408 baton->data = NULL;
14409 }
14410
14411 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
14412 SYMBOL_LOCATION_BATON (sym) = baton;
14413 }
14414 }
14415
14416 /* Return the OBJFILE associated with the compilation unit CU. If CU
14417 came from a separate debuginfo file, then the master objfile is
14418 returned. */
14419
14420 struct objfile *
14421 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
14422 {
14423 struct objfile *objfile = per_cu->objfile;
14424
14425 /* Return the master objfile, so that we can report and look up the
14426 correct file containing this variable. */
14427 if (objfile->separate_debug_objfile_backlink)
14428 objfile = objfile->separate_debug_objfile_backlink;
14429
14430 return objfile;
14431 }
14432
14433 /* Return the address size given in the compilation unit header for CU. */
14434
14435 CORE_ADDR
14436 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
14437 {
14438 if (per_cu->cu)
14439 return per_cu->cu->header.addr_size;
14440 else
14441 {
14442 /* If the CU is not currently read in, we re-read its header. */
14443 struct objfile *objfile = per_cu->objfile;
14444 struct dwarf2_per_objfile *per_objfile
14445 = objfile_data (objfile, dwarf2_objfile_data_key);
14446 gdb_byte *info_ptr = per_objfile->info.buffer + per_cu->offset;
14447 struct comp_unit_head cu_header;
14448
14449 memset (&cu_header, 0, sizeof cu_header);
14450 read_comp_unit_head (&cu_header, info_ptr, objfile->obfd);
14451 return cu_header.addr_size;
14452 }
14453 }
14454
14455 /* Return the offset size given in the compilation unit header for CU. */
14456
14457 int
14458 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
14459 {
14460 if (per_cu->cu)
14461 return per_cu->cu->header.offset_size;
14462 else
14463 {
14464 /* If the CU is not currently read in, we re-read its header. */
14465 struct objfile *objfile = per_cu->objfile;
14466 struct dwarf2_per_objfile *per_objfile
14467 = objfile_data (objfile, dwarf2_objfile_data_key);
14468 gdb_byte *info_ptr = per_objfile->info.buffer + per_cu->offset;
14469 struct comp_unit_head cu_header;
14470
14471 memset (&cu_header, 0, sizeof cu_header);
14472 read_comp_unit_head (&cu_header, info_ptr, objfile->obfd);
14473 return cu_header.offset_size;
14474 }
14475 }
14476
14477 /* Return the text offset of the CU. The returned offset comes from
14478 this CU's objfile. If this objfile came from a separate debuginfo
14479 file, then the offset may be different from the corresponding
14480 offset in the parent objfile. */
14481
14482 CORE_ADDR
14483 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
14484 {
14485 struct objfile *objfile = per_cu->objfile;
14486
14487 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14488 }
14489
14490 /* Locate the .debug_info compilation unit from CU's objfile which contains
14491 the DIE at OFFSET. Raises an error on failure. */
14492
14493 static struct dwarf2_per_cu_data *
14494 dwarf2_find_containing_comp_unit (unsigned int offset,
14495 struct objfile *objfile)
14496 {
14497 struct dwarf2_per_cu_data *this_cu;
14498 int low, high;
14499
14500 low = 0;
14501 high = dwarf2_per_objfile->n_comp_units - 1;
14502 while (high > low)
14503 {
14504 int mid = low + (high - low) / 2;
14505
14506 if (dwarf2_per_objfile->all_comp_units[mid]->offset >= offset)
14507 high = mid;
14508 else
14509 low = mid + 1;
14510 }
14511 gdb_assert (low == high);
14512 if (dwarf2_per_objfile->all_comp_units[low]->offset > offset)
14513 {
14514 if (low == 0)
14515 error (_("Dwarf Error: could not find partial DIE containing "
14516 "offset 0x%lx [in module %s]"),
14517 (long) offset, bfd_get_filename (objfile->obfd));
14518
14519 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset <= offset);
14520 return dwarf2_per_objfile->all_comp_units[low-1];
14521 }
14522 else
14523 {
14524 this_cu = dwarf2_per_objfile->all_comp_units[low];
14525 if (low == dwarf2_per_objfile->n_comp_units - 1
14526 && offset >= this_cu->offset + this_cu->length)
14527 error (_("invalid dwarf2 offset %u"), offset);
14528 gdb_assert (offset < this_cu->offset + this_cu->length);
14529 return this_cu;
14530 }
14531 }
14532
14533 /* Locate the compilation unit from OBJFILE which is located at exactly
14534 OFFSET. Raises an error on failure. */
14535
14536 static struct dwarf2_per_cu_data *
14537 dwarf2_find_comp_unit (unsigned int offset, struct objfile *objfile)
14538 {
14539 struct dwarf2_per_cu_data *this_cu;
14540
14541 this_cu = dwarf2_find_containing_comp_unit (offset, objfile);
14542 if (this_cu->offset != offset)
14543 error (_("no compilation unit with offset %u."), offset);
14544 return this_cu;
14545 }
14546
14547 /* Initialize dwarf2_cu CU for OBJFILE in a pre-allocated space. */
14548
14549 static void
14550 init_one_comp_unit (struct dwarf2_cu *cu, struct objfile *objfile)
14551 {
14552 memset (cu, 0, sizeof (*cu));
14553 cu->objfile = objfile;
14554 obstack_init (&cu->comp_unit_obstack);
14555 }
14556
14557 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
14558
14559 static void
14560 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die)
14561 {
14562 struct attribute *attr;
14563
14564 /* Set the language we're debugging. */
14565 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
14566 if (attr)
14567 set_cu_language (DW_UNSND (attr), cu);
14568 else
14569 set_cu_language (language_minimal, cu);
14570 }
14571
14572 /* Release one cached compilation unit, CU. We unlink it from the tree
14573 of compilation units, but we don't remove it from the read_in_chain;
14574 the caller is responsible for that.
14575 NOTE: DATA is a void * because this function is also used as a
14576 cleanup routine. */
14577
14578 static void
14579 free_one_comp_unit (void *data)
14580 {
14581 struct dwarf2_cu *cu = data;
14582
14583 if (cu->per_cu != NULL)
14584 cu->per_cu->cu = NULL;
14585 cu->per_cu = NULL;
14586
14587 obstack_free (&cu->comp_unit_obstack, NULL);
14588
14589 xfree (cu);
14590 }
14591
14592 /* This cleanup function is passed the address of a dwarf2_cu on the stack
14593 when we're finished with it. We can't free the pointer itself, but be
14594 sure to unlink it from the cache. Also release any associated storage
14595 and perform cache maintenance.
14596
14597 Only used during partial symbol parsing. */
14598
14599 static void
14600 free_stack_comp_unit (void *data)
14601 {
14602 struct dwarf2_cu *cu = data;
14603
14604 obstack_free (&cu->comp_unit_obstack, NULL);
14605 cu->partial_dies = NULL;
14606
14607 if (cu->per_cu != NULL)
14608 {
14609 /* This compilation unit is on the stack in our caller, so we
14610 should not xfree it. Just unlink it. */
14611 cu->per_cu->cu = NULL;
14612 cu->per_cu = NULL;
14613
14614 /* If we had a per-cu pointer, then we may have other compilation
14615 units loaded, so age them now. */
14616 age_cached_comp_units ();
14617 }
14618 }
14619
14620 /* Free all cached compilation units. */
14621
14622 static void
14623 free_cached_comp_units (void *data)
14624 {
14625 struct dwarf2_per_cu_data *per_cu, **last_chain;
14626
14627 per_cu = dwarf2_per_objfile->read_in_chain;
14628 last_chain = &dwarf2_per_objfile->read_in_chain;
14629 while (per_cu != NULL)
14630 {
14631 struct dwarf2_per_cu_data *next_cu;
14632
14633 next_cu = per_cu->cu->read_in_chain;
14634
14635 free_one_comp_unit (per_cu->cu);
14636 *last_chain = next_cu;
14637
14638 per_cu = next_cu;
14639 }
14640 }
14641
14642 /* Increase the age counter on each cached compilation unit, and free
14643 any that are too old. */
14644
14645 static void
14646 age_cached_comp_units (void)
14647 {
14648 struct dwarf2_per_cu_data *per_cu, **last_chain;
14649
14650 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
14651 per_cu = dwarf2_per_objfile->read_in_chain;
14652 while (per_cu != NULL)
14653 {
14654 per_cu->cu->last_used ++;
14655 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
14656 dwarf2_mark (per_cu->cu);
14657 per_cu = per_cu->cu->read_in_chain;
14658 }
14659
14660 per_cu = dwarf2_per_objfile->read_in_chain;
14661 last_chain = &dwarf2_per_objfile->read_in_chain;
14662 while (per_cu != NULL)
14663 {
14664 struct dwarf2_per_cu_data *next_cu;
14665
14666 next_cu = per_cu->cu->read_in_chain;
14667
14668 if (!per_cu->cu->mark)
14669 {
14670 free_one_comp_unit (per_cu->cu);
14671 *last_chain = next_cu;
14672 }
14673 else
14674 last_chain = &per_cu->cu->read_in_chain;
14675
14676 per_cu = next_cu;
14677 }
14678 }
14679
14680 /* Remove a single compilation unit from the cache. */
14681
14682 static void
14683 free_one_cached_comp_unit (void *target_cu)
14684 {
14685 struct dwarf2_per_cu_data *per_cu, **last_chain;
14686
14687 per_cu = dwarf2_per_objfile->read_in_chain;
14688 last_chain = &dwarf2_per_objfile->read_in_chain;
14689 while (per_cu != NULL)
14690 {
14691 struct dwarf2_per_cu_data *next_cu;
14692
14693 next_cu = per_cu->cu->read_in_chain;
14694
14695 if (per_cu->cu == target_cu)
14696 {
14697 free_one_comp_unit (per_cu->cu);
14698 *last_chain = next_cu;
14699 break;
14700 }
14701 else
14702 last_chain = &per_cu->cu->read_in_chain;
14703
14704 per_cu = next_cu;
14705 }
14706 }
14707
14708 /* Release all extra memory associated with OBJFILE. */
14709
14710 void
14711 dwarf2_free_objfile (struct objfile *objfile)
14712 {
14713 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
14714
14715 if (dwarf2_per_objfile == NULL)
14716 return;
14717
14718 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
14719 free_cached_comp_units (NULL);
14720
14721 if (dwarf2_per_objfile->quick_file_names_table)
14722 htab_delete (dwarf2_per_objfile->quick_file_names_table);
14723
14724 /* Everything else should be on the objfile obstack. */
14725 }
14726
14727 /* A pair of DIE offset and GDB type pointer. We store these
14728 in a hash table separate from the DIEs, and preserve them
14729 when the DIEs are flushed out of cache. */
14730
14731 struct dwarf2_offset_and_type
14732 {
14733 unsigned int offset;
14734 struct type *type;
14735 };
14736
14737 /* Hash function for a dwarf2_offset_and_type. */
14738
14739 static hashval_t
14740 offset_and_type_hash (const void *item)
14741 {
14742 const struct dwarf2_offset_and_type *ofs = item;
14743
14744 return ofs->offset;
14745 }
14746
14747 /* Equality function for a dwarf2_offset_and_type. */
14748
14749 static int
14750 offset_and_type_eq (const void *item_lhs, const void *item_rhs)
14751 {
14752 const struct dwarf2_offset_and_type *ofs_lhs = item_lhs;
14753 const struct dwarf2_offset_and_type *ofs_rhs = item_rhs;
14754
14755 return ofs_lhs->offset == ofs_rhs->offset;
14756 }
14757
14758 /* Set the type associated with DIE to TYPE. Save it in CU's hash
14759 table if necessary. For convenience, return TYPE.
14760
14761 The DIEs reading must have careful ordering to:
14762 * Not cause infite loops trying to read in DIEs as a prerequisite for
14763 reading current DIE.
14764 * Not trying to dereference contents of still incompletely read in types
14765 while reading in other DIEs.
14766 * Enable referencing still incompletely read in types just by a pointer to
14767 the type without accessing its fields.
14768
14769 Therefore caller should follow these rules:
14770 * Try to fetch any prerequisite types we may need to build this DIE type
14771 before building the type and calling set_die_type.
14772 * After building type call set_die_type for current DIE as soon as
14773 possible before fetching more types to complete the current type.
14774 * Make the type as complete as possible before fetching more types. */
14775
14776 static struct type *
14777 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
14778 {
14779 struct dwarf2_offset_and_type **slot, ofs;
14780 struct objfile *objfile = cu->objfile;
14781 htab_t *type_hash_ptr;
14782
14783 /* For Ada types, make sure that the gnat-specific data is always
14784 initialized (if not already set). There are a few types where
14785 we should not be doing so, because the type-specific area is
14786 already used to hold some other piece of info (eg: TYPE_CODE_FLT
14787 where the type-specific area is used to store the floatformat).
14788 But this is not a problem, because the gnat-specific information
14789 is actually not needed for these types. */
14790 if (need_gnat_info (cu)
14791 && TYPE_CODE (type) != TYPE_CODE_FUNC
14792 && TYPE_CODE (type) != TYPE_CODE_FLT
14793 && !HAVE_GNAT_AUX_INFO (type))
14794 INIT_GNAT_SPECIFIC (type);
14795
14796 if (cu->per_cu->from_debug_types)
14797 type_hash_ptr = &dwarf2_per_objfile->debug_types_type_hash;
14798 else
14799 type_hash_ptr = &dwarf2_per_objfile->debug_info_type_hash;
14800
14801 if (*type_hash_ptr == NULL)
14802 {
14803 *type_hash_ptr
14804 = htab_create_alloc_ex (127,
14805 offset_and_type_hash,
14806 offset_and_type_eq,
14807 NULL,
14808 &objfile->objfile_obstack,
14809 hashtab_obstack_allocate,
14810 dummy_obstack_deallocate);
14811 }
14812
14813 ofs.offset = die->offset;
14814 ofs.type = type;
14815 slot = (struct dwarf2_offset_and_type **)
14816 htab_find_slot_with_hash (*type_hash_ptr, &ofs, ofs.offset, INSERT);
14817 if (*slot)
14818 complaint (&symfile_complaints,
14819 _("A problem internal to GDB: DIE 0x%x has type already set"),
14820 die->offset);
14821 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
14822 **slot = ofs;
14823 return type;
14824 }
14825
14826 /* Look up the type for the die at DIE_OFFSET in the appropriate type_hash
14827 table, or return NULL if the die does not have a saved type. */
14828
14829 static struct type *
14830 get_die_type_at_offset (unsigned int offset,
14831 struct dwarf2_per_cu_data *per_cu)
14832 {
14833 struct dwarf2_offset_and_type *slot, ofs;
14834 htab_t type_hash;
14835
14836 if (per_cu->from_debug_types)
14837 type_hash = dwarf2_per_objfile->debug_types_type_hash;
14838 else
14839 type_hash = dwarf2_per_objfile->debug_info_type_hash;
14840 if (type_hash == NULL)
14841 return NULL;
14842
14843 ofs.offset = offset;
14844 slot = htab_find_with_hash (type_hash, &ofs, ofs.offset);
14845 if (slot)
14846 return slot->type;
14847 else
14848 return NULL;
14849 }
14850
14851 /* Look up the type for DIE in the appropriate type_hash table,
14852 or return NULL if DIE does not have a saved type. */
14853
14854 static struct type *
14855 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
14856 {
14857 return get_die_type_at_offset (die->offset, cu->per_cu);
14858 }
14859
14860 /* Add a dependence relationship from CU to REF_PER_CU. */
14861
14862 static void
14863 dwarf2_add_dependence (struct dwarf2_cu *cu,
14864 struct dwarf2_per_cu_data *ref_per_cu)
14865 {
14866 void **slot;
14867
14868 if (cu->dependencies == NULL)
14869 cu->dependencies
14870 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
14871 NULL, &cu->comp_unit_obstack,
14872 hashtab_obstack_allocate,
14873 dummy_obstack_deallocate);
14874
14875 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
14876 if (*slot == NULL)
14877 *slot = ref_per_cu;
14878 }
14879
14880 /* Subroutine of dwarf2_mark to pass to htab_traverse.
14881 Set the mark field in every compilation unit in the
14882 cache that we must keep because we are keeping CU. */
14883
14884 static int
14885 dwarf2_mark_helper (void **slot, void *data)
14886 {
14887 struct dwarf2_per_cu_data *per_cu;
14888
14889 per_cu = (struct dwarf2_per_cu_data *) *slot;
14890 if (per_cu->cu->mark)
14891 return 1;
14892 per_cu->cu->mark = 1;
14893
14894 if (per_cu->cu->dependencies != NULL)
14895 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
14896
14897 return 1;
14898 }
14899
14900 /* Set the mark field in CU and in every other compilation unit in the
14901 cache that we must keep because we are keeping CU. */
14902
14903 static void
14904 dwarf2_mark (struct dwarf2_cu *cu)
14905 {
14906 if (cu->mark)
14907 return;
14908 cu->mark = 1;
14909 if (cu->dependencies != NULL)
14910 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
14911 }
14912
14913 static void
14914 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
14915 {
14916 while (per_cu)
14917 {
14918 per_cu->cu->mark = 0;
14919 per_cu = per_cu->cu->read_in_chain;
14920 }
14921 }
14922
14923 /* Trivial hash function for partial_die_info: the hash value of a DIE
14924 is its offset in .debug_info for this objfile. */
14925
14926 static hashval_t
14927 partial_die_hash (const void *item)
14928 {
14929 const struct partial_die_info *part_die = item;
14930
14931 return part_die->offset;
14932 }
14933
14934 /* Trivial comparison function for partial_die_info structures: two DIEs
14935 are equal if they have the same offset. */
14936
14937 static int
14938 partial_die_eq (const void *item_lhs, const void *item_rhs)
14939 {
14940 const struct partial_die_info *part_die_lhs = item_lhs;
14941 const struct partial_die_info *part_die_rhs = item_rhs;
14942
14943 return part_die_lhs->offset == part_die_rhs->offset;
14944 }
14945
14946 static struct cmd_list_element *set_dwarf2_cmdlist;
14947 static struct cmd_list_element *show_dwarf2_cmdlist;
14948
14949 static void
14950 set_dwarf2_cmd (char *args, int from_tty)
14951 {
14952 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
14953 }
14954
14955 static void
14956 show_dwarf2_cmd (char *args, int from_tty)
14957 {
14958 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
14959 }
14960
14961 /* If section described by INFO was mmapped, munmap it now. */
14962
14963 static void
14964 munmap_section_buffer (struct dwarf2_section_info *info)
14965 {
14966 if (info->was_mmapped)
14967 {
14968 #ifdef HAVE_MMAP
14969 intptr_t begin = (intptr_t) info->buffer;
14970 intptr_t map_begin = begin & ~(pagesize - 1);
14971 size_t map_length = info->size + begin - map_begin;
14972
14973 gdb_assert (munmap ((void *) map_begin, map_length) == 0);
14974 #else
14975 /* Without HAVE_MMAP, we should never be here to begin with. */
14976 gdb_assert_not_reached ("no mmap support");
14977 #endif
14978 }
14979 }
14980
14981 /* munmap debug sections for OBJFILE, if necessary. */
14982
14983 static void
14984 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
14985 {
14986 struct dwarf2_per_objfile *data = d;
14987
14988 /* This is sorted according to the order they're defined in to make it easier
14989 to keep in sync. */
14990 munmap_section_buffer (&data->info);
14991 munmap_section_buffer (&data->abbrev);
14992 munmap_section_buffer (&data->line);
14993 munmap_section_buffer (&data->loc);
14994 munmap_section_buffer (&data->macinfo);
14995 munmap_section_buffer (&data->str);
14996 munmap_section_buffer (&data->ranges);
14997 munmap_section_buffer (&data->types);
14998 munmap_section_buffer (&data->frame);
14999 munmap_section_buffer (&data->eh_frame);
15000 munmap_section_buffer (&data->gdb_index);
15001 }
15002
15003 \f
15004 /* The "save gdb-index" command. */
15005
15006 /* The contents of the hash table we create when building the string
15007 table. */
15008 struct strtab_entry
15009 {
15010 offset_type offset;
15011 const char *str;
15012 };
15013
15014 /* Hash function for a strtab_entry. */
15015
15016 static hashval_t
15017 hash_strtab_entry (const void *e)
15018 {
15019 const struct strtab_entry *entry = e;
15020 return mapped_index_string_hash (entry->str);
15021 }
15022
15023 /* Equality function for a strtab_entry. */
15024
15025 static int
15026 eq_strtab_entry (const void *a, const void *b)
15027 {
15028 const struct strtab_entry *ea = a;
15029 const struct strtab_entry *eb = b;
15030 return !strcmp (ea->str, eb->str);
15031 }
15032
15033 /* Create a strtab_entry hash table. */
15034
15035 static htab_t
15036 create_strtab (void)
15037 {
15038 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
15039 xfree, xcalloc, xfree);
15040 }
15041
15042 /* Add a string to the constant pool. Return the string's offset in
15043 host order. */
15044
15045 static offset_type
15046 add_string (htab_t table, struct obstack *cpool, const char *str)
15047 {
15048 void **slot;
15049 struct strtab_entry entry;
15050 struct strtab_entry *result;
15051
15052 entry.str = str;
15053 slot = htab_find_slot (table, &entry, INSERT);
15054 if (*slot)
15055 result = *slot;
15056 else
15057 {
15058 result = XNEW (struct strtab_entry);
15059 result->offset = obstack_object_size (cpool);
15060 result->str = str;
15061 obstack_grow_str0 (cpool, str);
15062 *slot = result;
15063 }
15064 return result->offset;
15065 }
15066
15067 /* An entry in the symbol table. */
15068 struct symtab_index_entry
15069 {
15070 /* The name of the symbol. */
15071 const char *name;
15072 /* The offset of the name in the constant pool. */
15073 offset_type index_offset;
15074 /* A sorted vector of the indices of all the CUs that hold an object
15075 of this name. */
15076 VEC (offset_type) *cu_indices;
15077 };
15078
15079 /* The symbol table. This is a power-of-2-sized hash table. */
15080 struct mapped_symtab
15081 {
15082 offset_type n_elements;
15083 offset_type size;
15084 struct symtab_index_entry **data;
15085 };
15086
15087 /* Hash function for a symtab_index_entry. */
15088
15089 static hashval_t
15090 hash_symtab_entry (const void *e)
15091 {
15092 const struct symtab_index_entry *entry = e;
15093 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
15094 sizeof (offset_type) * VEC_length (offset_type,
15095 entry->cu_indices),
15096 0);
15097 }
15098
15099 /* Equality function for a symtab_index_entry. */
15100
15101 static int
15102 eq_symtab_entry (const void *a, const void *b)
15103 {
15104 const struct symtab_index_entry *ea = a;
15105 const struct symtab_index_entry *eb = b;
15106 int len = VEC_length (offset_type, ea->cu_indices);
15107 if (len != VEC_length (offset_type, eb->cu_indices))
15108 return 0;
15109 return !memcmp (VEC_address (offset_type, ea->cu_indices),
15110 VEC_address (offset_type, eb->cu_indices),
15111 sizeof (offset_type) * len);
15112 }
15113
15114 /* Destroy a symtab_index_entry. */
15115
15116 static void
15117 delete_symtab_entry (void *p)
15118 {
15119 struct symtab_index_entry *entry = p;
15120 VEC_free (offset_type, entry->cu_indices);
15121 xfree (entry);
15122 }
15123
15124 /* Create a hash table holding symtab_index_entry objects. */
15125
15126 static htab_t
15127 create_symbol_hash_table (void)
15128 {
15129 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
15130 delete_symtab_entry, xcalloc, xfree);
15131 }
15132
15133 /* Create a new mapped symtab object. */
15134
15135 static struct mapped_symtab *
15136 create_mapped_symtab (void)
15137 {
15138 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
15139 symtab->n_elements = 0;
15140 symtab->size = 1024;
15141 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
15142 return symtab;
15143 }
15144
15145 /* Destroy a mapped_symtab. */
15146
15147 static void
15148 cleanup_mapped_symtab (void *p)
15149 {
15150 struct mapped_symtab *symtab = p;
15151 /* The contents of the array are freed when the other hash table is
15152 destroyed. */
15153 xfree (symtab->data);
15154 xfree (symtab);
15155 }
15156
15157 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
15158 the slot. */
15159
15160 static struct symtab_index_entry **
15161 find_slot (struct mapped_symtab *symtab, const char *name)
15162 {
15163 offset_type index, step, hash = mapped_index_string_hash (name);
15164
15165 index = hash & (symtab->size - 1);
15166 step = ((hash * 17) & (symtab->size - 1)) | 1;
15167
15168 for (;;)
15169 {
15170 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
15171 return &symtab->data[index];
15172 index = (index + step) & (symtab->size - 1);
15173 }
15174 }
15175
15176 /* Expand SYMTAB's hash table. */
15177
15178 static void
15179 hash_expand (struct mapped_symtab *symtab)
15180 {
15181 offset_type old_size = symtab->size;
15182 offset_type i;
15183 struct symtab_index_entry **old_entries = symtab->data;
15184
15185 symtab->size *= 2;
15186 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
15187
15188 for (i = 0; i < old_size; ++i)
15189 {
15190 if (old_entries[i])
15191 {
15192 struct symtab_index_entry **slot = find_slot (symtab,
15193 old_entries[i]->name);
15194 *slot = old_entries[i];
15195 }
15196 }
15197
15198 xfree (old_entries);
15199 }
15200
15201 /* Add an entry to SYMTAB. NAME is the name of the symbol. CU_INDEX
15202 is the index of the CU in which the symbol appears. */
15203
15204 static void
15205 add_index_entry (struct mapped_symtab *symtab, const char *name,
15206 offset_type cu_index)
15207 {
15208 struct symtab_index_entry **slot;
15209
15210 ++symtab->n_elements;
15211 if (4 * symtab->n_elements / 3 >= symtab->size)
15212 hash_expand (symtab);
15213
15214 slot = find_slot (symtab, name);
15215 if (!*slot)
15216 {
15217 *slot = XNEW (struct symtab_index_entry);
15218 (*slot)->name = name;
15219 (*slot)->cu_indices = NULL;
15220 }
15221 /* Don't push an index twice. Due to how we add entries we only
15222 have to check the last one. */
15223 if (VEC_empty (offset_type, (*slot)->cu_indices)
15224 || VEC_length (offset_type, (*slot)->cu_indices) != cu_index)
15225 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index);
15226 }
15227
15228 /* Add a vector of indices to the constant pool. */
15229
15230 static offset_type
15231 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
15232 struct symtab_index_entry *entry)
15233 {
15234 void **slot;
15235
15236 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
15237 if (!*slot)
15238 {
15239 offset_type len = VEC_length (offset_type, entry->cu_indices);
15240 offset_type val = MAYBE_SWAP (len);
15241 offset_type iter;
15242 int i;
15243
15244 *slot = entry;
15245 entry->index_offset = obstack_object_size (cpool);
15246
15247 obstack_grow (cpool, &val, sizeof (val));
15248 for (i = 0;
15249 VEC_iterate (offset_type, entry->cu_indices, i, iter);
15250 ++i)
15251 {
15252 val = MAYBE_SWAP (iter);
15253 obstack_grow (cpool, &val, sizeof (val));
15254 }
15255 }
15256 else
15257 {
15258 struct symtab_index_entry *old_entry = *slot;
15259 entry->index_offset = old_entry->index_offset;
15260 entry = old_entry;
15261 }
15262 return entry->index_offset;
15263 }
15264
15265 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
15266 constant pool entries going into the obstack CPOOL. */
15267
15268 static void
15269 write_hash_table (struct mapped_symtab *symtab,
15270 struct obstack *output, struct obstack *cpool)
15271 {
15272 offset_type i;
15273 htab_t symbol_hash_table;
15274 htab_t str_table;
15275
15276 symbol_hash_table = create_symbol_hash_table ();
15277 str_table = create_strtab ();
15278
15279 /* We add all the index vectors to the constant pool first, to
15280 ensure alignment is ok. */
15281 for (i = 0; i < symtab->size; ++i)
15282 {
15283 if (symtab->data[i])
15284 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
15285 }
15286
15287 /* Now write out the hash table. */
15288 for (i = 0; i < symtab->size; ++i)
15289 {
15290 offset_type str_off, vec_off;
15291
15292 if (symtab->data[i])
15293 {
15294 str_off = add_string (str_table, cpool, symtab->data[i]->name);
15295 vec_off = symtab->data[i]->index_offset;
15296 }
15297 else
15298 {
15299 /* While 0 is a valid constant pool index, it is not valid
15300 to have 0 for both offsets. */
15301 str_off = 0;
15302 vec_off = 0;
15303 }
15304
15305 str_off = MAYBE_SWAP (str_off);
15306 vec_off = MAYBE_SWAP (vec_off);
15307
15308 obstack_grow (output, &str_off, sizeof (str_off));
15309 obstack_grow (output, &vec_off, sizeof (vec_off));
15310 }
15311
15312 htab_delete (str_table);
15313 htab_delete (symbol_hash_table);
15314 }
15315
15316 /* Struct to map psymtab to CU index in the index file. */
15317 struct psymtab_cu_index_map
15318 {
15319 struct partial_symtab *psymtab;
15320 unsigned int cu_index;
15321 };
15322
15323 static hashval_t
15324 hash_psymtab_cu_index (const void *item)
15325 {
15326 const struct psymtab_cu_index_map *map = item;
15327
15328 return htab_hash_pointer (map->psymtab);
15329 }
15330
15331 static int
15332 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
15333 {
15334 const struct psymtab_cu_index_map *lhs = item_lhs;
15335 const struct psymtab_cu_index_map *rhs = item_rhs;
15336
15337 return lhs->psymtab == rhs->psymtab;
15338 }
15339
15340 /* Helper struct for building the address table. */
15341 struct addrmap_index_data
15342 {
15343 struct objfile *objfile;
15344 struct obstack *addr_obstack;
15345 htab_t cu_index_htab;
15346
15347 /* Non-zero if the previous_* fields are valid.
15348 We can't write an entry until we see the next entry (since it is only then
15349 that we know the end of the entry). */
15350 int previous_valid;
15351 /* Index of the CU in the table of all CUs in the index file. */
15352 unsigned int previous_cu_index;
15353 /* Start address of the CU. */
15354 CORE_ADDR previous_cu_start;
15355 };
15356
15357 /* Write an address entry to OBSTACK. */
15358
15359 static void
15360 add_address_entry (struct objfile *objfile, struct obstack *obstack,
15361 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
15362 {
15363 offset_type cu_index_to_write;
15364 char addr[8];
15365 CORE_ADDR baseaddr;
15366
15367 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
15368
15369 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
15370 obstack_grow (obstack, addr, 8);
15371 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
15372 obstack_grow (obstack, addr, 8);
15373 cu_index_to_write = MAYBE_SWAP (cu_index);
15374 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
15375 }
15376
15377 /* Worker function for traversing an addrmap to build the address table. */
15378
15379 static int
15380 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
15381 {
15382 struct addrmap_index_data *data = datap;
15383 struct partial_symtab *pst = obj;
15384 offset_type cu_index;
15385 void **slot;
15386
15387 if (data->previous_valid)
15388 add_address_entry (data->objfile, data->addr_obstack,
15389 data->previous_cu_start, start_addr,
15390 data->previous_cu_index);
15391
15392 data->previous_cu_start = start_addr;
15393 if (pst != NULL)
15394 {
15395 struct psymtab_cu_index_map find_map, *map;
15396 find_map.psymtab = pst;
15397 map = htab_find (data->cu_index_htab, &find_map);
15398 gdb_assert (map != NULL);
15399 data->previous_cu_index = map->cu_index;
15400 data->previous_valid = 1;
15401 }
15402 else
15403 data->previous_valid = 0;
15404
15405 return 0;
15406 }
15407
15408 /* Write OBJFILE's address map to OBSTACK.
15409 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
15410 in the index file. */
15411
15412 static void
15413 write_address_map (struct objfile *objfile, struct obstack *obstack,
15414 htab_t cu_index_htab)
15415 {
15416 struct addrmap_index_data addrmap_index_data;
15417
15418 /* When writing the address table, we have to cope with the fact that
15419 the addrmap iterator only provides the start of a region; we have to
15420 wait until the next invocation to get the start of the next region. */
15421
15422 addrmap_index_data.objfile = objfile;
15423 addrmap_index_data.addr_obstack = obstack;
15424 addrmap_index_data.cu_index_htab = cu_index_htab;
15425 addrmap_index_data.previous_valid = 0;
15426
15427 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
15428 &addrmap_index_data);
15429
15430 /* It's highly unlikely the last entry (end address = 0xff...ff)
15431 is valid, but we should still handle it.
15432 The end address is recorded as the start of the next region, but that
15433 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
15434 anyway. */
15435 if (addrmap_index_data.previous_valid)
15436 add_address_entry (objfile, obstack,
15437 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
15438 addrmap_index_data.previous_cu_index);
15439 }
15440
15441 /* Add a list of partial symbols to SYMTAB. */
15442
15443 static void
15444 write_psymbols (struct mapped_symtab *symtab,
15445 htab_t psyms_seen,
15446 struct partial_symbol **psymp,
15447 int count,
15448 offset_type cu_index,
15449 int is_static)
15450 {
15451 for (; count-- > 0; ++psymp)
15452 {
15453 void **slot, *lookup;
15454
15455 if (SYMBOL_LANGUAGE (*psymp) == language_ada)
15456 error (_("Ada is not currently supported by the index"));
15457
15458 /* We only want to add a given psymbol once. However, we also
15459 want to account for whether it is global or static. So, we
15460 may add it twice, using slightly different values. */
15461 if (is_static)
15462 {
15463 uintptr_t val = 1 | (uintptr_t) *psymp;
15464
15465 lookup = (void *) val;
15466 }
15467 else
15468 lookup = *psymp;
15469
15470 /* Only add a given psymbol once. */
15471 slot = htab_find_slot (psyms_seen, lookup, INSERT);
15472 if (!*slot)
15473 {
15474 *slot = lookup;
15475 add_index_entry (symtab, SYMBOL_NATURAL_NAME (*psymp), cu_index);
15476 }
15477 }
15478 }
15479
15480 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
15481 exception if there is an error. */
15482
15483 static void
15484 write_obstack (FILE *file, struct obstack *obstack)
15485 {
15486 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
15487 file)
15488 != obstack_object_size (obstack))
15489 error (_("couldn't data write to file"));
15490 }
15491
15492 /* Unlink a file if the argument is not NULL. */
15493
15494 static void
15495 unlink_if_set (void *p)
15496 {
15497 char **filename = p;
15498 if (*filename)
15499 unlink (*filename);
15500 }
15501
15502 /* A helper struct used when iterating over debug_types. */
15503 struct signatured_type_index_data
15504 {
15505 struct objfile *objfile;
15506 struct mapped_symtab *symtab;
15507 struct obstack *types_list;
15508 htab_t psyms_seen;
15509 int cu_index;
15510 };
15511
15512 /* A helper function that writes a single signatured_type to an
15513 obstack. */
15514
15515 static int
15516 write_one_signatured_type (void **slot, void *d)
15517 {
15518 struct signatured_type_index_data *info = d;
15519 struct signatured_type *entry = (struct signatured_type *) *slot;
15520 struct dwarf2_per_cu_data *per_cu = &entry->per_cu;
15521 struct partial_symtab *psymtab = per_cu->v.psymtab;
15522 gdb_byte val[8];
15523
15524 write_psymbols (info->symtab,
15525 info->psyms_seen,
15526 info->objfile->global_psymbols.list
15527 + psymtab->globals_offset,
15528 psymtab->n_global_syms, info->cu_index,
15529 0);
15530 write_psymbols (info->symtab,
15531 info->psyms_seen,
15532 info->objfile->static_psymbols.list
15533 + psymtab->statics_offset,
15534 psymtab->n_static_syms, info->cu_index,
15535 1);
15536
15537 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->offset);
15538 obstack_grow (info->types_list, val, 8);
15539 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->type_offset);
15540 obstack_grow (info->types_list, val, 8);
15541 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
15542 obstack_grow (info->types_list, val, 8);
15543
15544 ++info->cu_index;
15545
15546 return 1;
15547 }
15548
15549 /* A cleanup function for an htab_t. */
15550
15551 static void
15552 cleanup_htab (void *arg)
15553 {
15554 htab_delete (arg);
15555 }
15556
15557 /* Create an index file for OBJFILE in the directory DIR. */
15558
15559 static void
15560 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
15561 {
15562 struct cleanup *cleanup;
15563 char *filename, *cleanup_filename;
15564 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
15565 struct obstack cu_list, types_cu_list;
15566 int i;
15567 FILE *out_file;
15568 struct mapped_symtab *symtab;
15569 offset_type val, size_of_contents, total_len;
15570 struct stat st;
15571 char buf[8];
15572 htab_t psyms_seen;
15573 htab_t cu_index_htab;
15574 struct psymtab_cu_index_map *psymtab_cu_index_map;
15575
15576 if (!objfile->psymtabs)
15577 return;
15578 if (dwarf2_per_objfile->using_index)
15579 error (_("Cannot use an index to create the index"));
15580
15581 if (stat (objfile->name, &st) < 0)
15582 perror_with_name (objfile->name);
15583
15584 filename = concat (dir, SLASH_STRING, lbasename (objfile->name),
15585 INDEX_SUFFIX, (char *) NULL);
15586 cleanup = make_cleanup (xfree, filename);
15587
15588 out_file = fopen (filename, "wb");
15589 if (!out_file)
15590 error (_("Can't open `%s' for writing"), filename);
15591
15592 cleanup_filename = filename;
15593 make_cleanup (unlink_if_set, &cleanup_filename);
15594
15595 symtab = create_mapped_symtab ();
15596 make_cleanup (cleanup_mapped_symtab, symtab);
15597
15598 obstack_init (&addr_obstack);
15599 make_cleanup_obstack_free (&addr_obstack);
15600
15601 obstack_init (&cu_list);
15602 make_cleanup_obstack_free (&cu_list);
15603
15604 obstack_init (&types_cu_list);
15605 make_cleanup_obstack_free (&types_cu_list);
15606
15607 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
15608 NULL, xcalloc, xfree);
15609 make_cleanup (cleanup_htab, psyms_seen);
15610
15611 /* While we're scanning CU's create a table that maps a psymtab pointer
15612 (which is what addrmap records) to its index (which is what is recorded
15613 in the index file). This will later be needed to write the address
15614 table. */
15615 cu_index_htab = htab_create_alloc (100,
15616 hash_psymtab_cu_index,
15617 eq_psymtab_cu_index,
15618 NULL, xcalloc, xfree);
15619 make_cleanup (cleanup_htab, cu_index_htab);
15620 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
15621 xmalloc (sizeof (struct psymtab_cu_index_map)
15622 * dwarf2_per_objfile->n_comp_units);
15623 make_cleanup (xfree, psymtab_cu_index_map);
15624
15625 /* The CU list is already sorted, so we don't need to do additional
15626 work here. Also, the debug_types entries do not appear in
15627 all_comp_units, but only in their own hash table. */
15628 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
15629 {
15630 struct dwarf2_per_cu_data *per_cu
15631 = dwarf2_per_objfile->all_comp_units[i];
15632 struct partial_symtab *psymtab = per_cu->v.psymtab;
15633 gdb_byte val[8];
15634 struct psymtab_cu_index_map *map;
15635 void **slot;
15636
15637 write_psymbols (symtab,
15638 psyms_seen,
15639 objfile->global_psymbols.list + psymtab->globals_offset,
15640 psymtab->n_global_syms, i,
15641 0);
15642 write_psymbols (symtab,
15643 psyms_seen,
15644 objfile->static_psymbols.list + psymtab->statics_offset,
15645 psymtab->n_static_syms, i,
15646 1);
15647
15648 map = &psymtab_cu_index_map[i];
15649 map->psymtab = psymtab;
15650 map->cu_index = i;
15651 slot = htab_find_slot (cu_index_htab, map, INSERT);
15652 gdb_assert (slot != NULL);
15653 gdb_assert (*slot == NULL);
15654 *slot = map;
15655
15656 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->offset);
15657 obstack_grow (&cu_list, val, 8);
15658 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
15659 obstack_grow (&cu_list, val, 8);
15660 }
15661
15662 /* Dump the address map. */
15663 write_address_map (objfile, &addr_obstack, cu_index_htab);
15664
15665 /* Write out the .debug_type entries, if any. */
15666 if (dwarf2_per_objfile->signatured_types)
15667 {
15668 struct signatured_type_index_data sig_data;
15669
15670 sig_data.objfile = objfile;
15671 sig_data.symtab = symtab;
15672 sig_data.types_list = &types_cu_list;
15673 sig_data.psyms_seen = psyms_seen;
15674 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
15675 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
15676 write_one_signatured_type, &sig_data);
15677 }
15678
15679 obstack_init (&constant_pool);
15680 make_cleanup_obstack_free (&constant_pool);
15681 obstack_init (&symtab_obstack);
15682 make_cleanup_obstack_free (&symtab_obstack);
15683 write_hash_table (symtab, &symtab_obstack, &constant_pool);
15684
15685 obstack_init (&contents);
15686 make_cleanup_obstack_free (&contents);
15687 size_of_contents = 6 * sizeof (offset_type);
15688 total_len = size_of_contents;
15689
15690 /* The version number. */
15691 val = MAYBE_SWAP (3);
15692 obstack_grow (&contents, &val, sizeof (val));
15693
15694 /* The offset of the CU list from the start of the file. */
15695 val = MAYBE_SWAP (total_len);
15696 obstack_grow (&contents, &val, sizeof (val));
15697 total_len += obstack_object_size (&cu_list);
15698
15699 /* The offset of the types CU list from the start of the file. */
15700 val = MAYBE_SWAP (total_len);
15701 obstack_grow (&contents, &val, sizeof (val));
15702 total_len += obstack_object_size (&types_cu_list);
15703
15704 /* The offset of the address table from the start of the file. */
15705 val = MAYBE_SWAP (total_len);
15706 obstack_grow (&contents, &val, sizeof (val));
15707 total_len += obstack_object_size (&addr_obstack);
15708
15709 /* The offset of the symbol table from the start of the file. */
15710 val = MAYBE_SWAP (total_len);
15711 obstack_grow (&contents, &val, sizeof (val));
15712 total_len += obstack_object_size (&symtab_obstack);
15713
15714 /* The offset of the constant pool from the start of the file. */
15715 val = MAYBE_SWAP (total_len);
15716 obstack_grow (&contents, &val, sizeof (val));
15717 total_len += obstack_object_size (&constant_pool);
15718
15719 gdb_assert (obstack_object_size (&contents) == size_of_contents);
15720
15721 write_obstack (out_file, &contents);
15722 write_obstack (out_file, &cu_list);
15723 write_obstack (out_file, &types_cu_list);
15724 write_obstack (out_file, &addr_obstack);
15725 write_obstack (out_file, &symtab_obstack);
15726 write_obstack (out_file, &constant_pool);
15727
15728 fclose (out_file);
15729
15730 /* We want to keep the file, so we set cleanup_filename to NULL
15731 here. See unlink_if_set. */
15732 cleanup_filename = NULL;
15733
15734 do_cleanups (cleanup);
15735 }
15736
15737 /* The mapped index file format is designed to be directly mmap()able
15738 on any architecture. In most cases, a datum is represented using a
15739 little-endian 32-bit integer value, called an offset_type. Big
15740 endian machines must byte-swap the values before using them.
15741 Exceptions to this rule are noted. The data is laid out such that
15742 alignment is always respected.
15743
15744 A mapped index consists of several sections.
15745
15746 1. The file header. This is a sequence of values, of offset_type
15747 unless otherwise noted:
15748
15749 [0] The version number, currently 3. Versions 1 and 2 are
15750 obsolete.
15751 [1] The offset, from the start of the file, of the CU list.
15752 [2] The offset, from the start of the file, of the types CU list.
15753 Note that this section can be empty, in which case this offset will
15754 be equal to the next offset.
15755 [3] The offset, from the start of the file, of the address section.
15756 [4] The offset, from the start of the file, of the symbol table.
15757 [5] The offset, from the start of the file, of the constant pool.
15758
15759 2. The CU list. This is a sequence of pairs of 64-bit
15760 little-endian values, sorted by the CU offset. The first element
15761 in each pair is the offset of a CU in the .debug_info section. The
15762 second element in each pair is the length of that CU. References
15763 to a CU elsewhere in the map are done using a CU index, which is
15764 just the 0-based index into this table. Note that if there are
15765 type CUs, then conceptually CUs and type CUs form a single list for
15766 the purposes of CU indices.
15767
15768 3. The types CU list. This is a sequence of triplets of 64-bit
15769 little-endian values. In a triplet, the first value is the CU
15770 offset, the second value is the type offset in the CU, and the
15771 third value is the type signature. The types CU list is not
15772 sorted.
15773
15774 4. The address section. The address section consists of a sequence
15775 of address entries. Each address entry has three elements.
15776 [0] The low address. This is a 64-bit little-endian value.
15777 [1] The high address. This is a 64-bit little-endian value.
15778 Like DW_AT_high_pc, the value is one byte beyond the end.
15779 [2] The CU index. This is an offset_type value.
15780
15781 5. The symbol table. This is a hash table. The size of the hash
15782 table is always a power of 2. The initial hash and the step are
15783 currently defined by the `find_slot' function.
15784
15785 Each slot in the hash table consists of a pair of offset_type
15786 values. The first value is the offset of the symbol's name in the
15787 constant pool. The second value is the offset of the CU vector in
15788 the constant pool.
15789
15790 If both values are 0, then this slot in the hash table is empty.
15791 This is ok because while 0 is a valid constant pool index, it
15792 cannot be a valid index for both a string and a CU vector.
15793
15794 A string in the constant pool is stored as a \0-terminated string,
15795 as you'd expect.
15796
15797 A CU vector in the constant pool is a sequence of offset_type
15798 values. The first value is the number of CU indices in the vector.
15799 Each subsequent value is the index of a CU in the CU list. This
15800 element in the hash table is used to indicate which CUs define the
15801 symbol.
15802
15803 6. The constant pool. This is simply a bunch of bytes. It is
15804 organized so that alignment is correct: CU vectors are stored
15805 first, followed by strings. */
15806
15807 static void
15808 save_gdb_index_command (char *arg, int from_tty)
15809 {
15810 struct objfile *objfile;
15811
15812 if (!arg || !*arg)
15813 error (_("usage: save gdb-index DIRECTORY"));
15814
15815 ALL_OBJFILES (objfile)
15816 {
15817 struct stat st;
15818
15819 /* If the objfile does not correspond to an actual file, skip it. */
15820 if (stat (objfile->name, &st) < 0)
15821 continue;
15822
15823 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
15824 if (dwarf2_per_objfile)
15825 {
15826 volatile struct gdb_exception except;
15827
15828 TRY_CATCH (except, RETURN_MASK_ERROR)
15829 {
15830 write_psymtabs_to_index (objfile, arg);
15831 }
15832 if (except.reason < 0)
15833 exception_fprintf (gdb_stderr, except,
15834 _("Error while writing index for `%s': "),
15835 objfile->name);
15836 }
15837 }
15838 }
15839
15840 \f
15841
15842 int dwarf2_always_disassemble;
15843
15844 static void
15845 show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
15846 struct cmd_list_element *c, const char *value)
15847 {
15848 fprintf_filtered (file,
15849 _("Whether to always disassemble "
15850 "DWARF expressions is %s.\n"),
15851 value);
15852 }
15853
15854 void _initialize_dwarf2_read (void);
15855
15856 void
15857 _initialize_dwarf2_read (void)
15858 {
15859 struct cmd_list_element *c;
15860
15861 dwarf2_objfile_data_key
15862 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
15863
15864 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
15865 Set DWARF 2 specific variables.\n\
15866 Configure DWARF 2 variables such as the cache size"),
15867 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
15868 0/*allow-unknown*/, &maintenance_set_cmdlist);
15869
15870 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
15871 Show DWARF 2 specific variables\n\
15872 Show DWARF 2 variables such as the cache size"),
15873 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
15874 0/*allow-unknown*/, &maintenance_show_cmdlist);
15875
15876 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
15877 &dwarf2_max_cache_age, _("\
15878 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
15879 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
15880 A higher limit means that cached compilation units will be stored\n\
15881 in memory longer, and more total memory will be used. Zero disables\n\
15882 caching, which can slow down startup."),
15883 NULL,
15884 show_dwarf2_max_cache_age,
15885 &set_dwarf2_cmdlist,
15886 &show_dwarf2_cmdlist);
15887
15888 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
15889 &dwarf2_always_disassemble, _("\
15890 Set whether `info address' always disassembles DWARF expressions."), _("\
15891 Show whether `info address' always disassembles DWARF expressions."), _("\
15892 When enabled, DWARF expressions are always printed in an assembly-like\n\
15893 syntax. When disabled, expressions will be printed in a more\n\
15894 conversational style, when possible."),
15895 NULL,
15896 show_dwarf2_always_disassemble,
15897 &set_dwarf2_cmdlist,
15898 &show_dwarf2_cmdlist);
15899
15900 add_setshow_zinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
15901 Set debugging of the dwarf2 DIE reader."), _("\
15902 Show debugging of the dwarf2 DIE reader."), _("\
15903 When enabled (non-zero), DIEs are dumped after they are read in.\n\
15904 The value is the maximum depth to print."),
15905 NULL,
15906 NULL,
15907 &setdebuglist, &showdebuglist);
15908
15909 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
15910 _("\
15911 Save a gdb-index file.\n\
15912 Usage: save gdb-index DIRECTORY"),
15913 &save_cmdlist);
15914 set_cmd_completer (c, filename_completer);
15915 }
This page took 0.578238 seconds and 4 git commands to generate.