070a0c2195499098afd35ad062ab531d47160bdd
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2019 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "dwarf2read.h"
33 #include "dwarf-index-cache.h"
34 #include "dwarf-index-common.h"
35 #include "bfd.h"
36 #include "elf-bfd.h"
37 #include "symtab.h"
38 #include "gdbtypes.h"
39 #include "objfiles.h"
40 #include "dwarf2.h"
41 #include "buildsym.h"
42 #include "demangle.h"
43 #include "gdb-demangle.h"
44 #include "expression.h"
45 #include "filenames.h" /* for DOSish file names */
46 #include "macrotab.h"
47 #include "language.h"
48 #include "complaints.h"
49 #include "bcache.h"
50 #include "dwarf2expr.h"
51 #include "dwarf2loc.h"
52 #include "cp-support.h"
53 #include "hashtab.h"
54 #include "command.h"
55 #include "gdbcmd.h"
56 #include "block.h"
57 #include "addrmap.h"
58 #include "typeprint.h"
59 #include "psympriv.h"
60 #include <sys/stat.h>
61 #include "completer.h"
62 #include "vec.h"
63 #include "c-lang.h"
64 #include "go-lang.h"
65 #include "valprint.h"
66 #include "gdbcore.h" /* for gnutarget */
67 #include "gdb/gdb-index.h"
68 #include <ctype.h>
69 #include "gdb_bfd.h"
70 #include "f-lang.h"
71 #include "source.h"
72 #include "filestuff.h"
73 #include "build-id.h"
74 #include "namespace.h"
75 #include "common/gdb_unlinker.h"
76 #include "common/function-view.h"
77 #include "common/gdb_optional.h"
78 #include "common/underlying.h"
79 #include "common/byte-vector.h"
80 #include "common/hash_enum.h"
81 #include "filename-seen-cache.h"
82 #include "producer.h"
83 #include <fcntl.h>
84 #include <sys/types.h>
85 #include <algorithm>
86 #include <unordered_set>
87 #include <unordered_map>
88 #include "selftest.h"
89 #include <cmath>
90 #include <set>
91 #include <forward_list>
92 #include "rust-lang.h"
93 #include "common/pathstuff.h"
94
95 /* When == 1, print basic high level tracing messages.
96 When > 1, be more verbose.
97 This is in contrast to the low level DIE reading of dwarf_die_debug. */
98 static unsigned int dwarf_read_debug = 0;
99
100 /* When non-zero, dump DIEs after they are read in. */
101 static unsigned int dwarf_die_debug = 0;
102
103 /* When non-zero, dump line number entries as they are read in. */
104 static unsigned int dwarf_line_debug = 0;
105
106 /* When non-zero, cross-check physname against demangler. */
107 static int check_physname = 0;
108
109 /* When non-zero, do not reject deprecated .gdb_index sections. */
110 static int use_deprecated_index_sections = 0;
111
112 static const struct objfile_data *dwarf2_objfile_data_key;
113
114 /* The "aclass" indices for various kinds of computed DWARF symbols. */
115
116 static int dwarf2_locexpr_index;
117 static int dwarf2_loclist_index;
118 static int dwarf2_locexpr_block_index;
119 static int dwarf2_loclist_block_index;
120
121 /* An index into a (C++) symbol name component in a symbol name as
122 recorded in the mapped_index's symbol table. For each C++ symbol
123 in the symbol table, we record one entry for the start of each
124 component in the symbol in a table of name components, and then
125 sort the table, in order to be able to binary search symbol names,
126 ignoring leading namespaces, both completion and regular look up.
127 For example, for symbol "A::B::C", we'll have an entry that points
128 to "A::B::C", another that points to "B::C", and another for "C".
129 Note that function symbols in GDB index have no parameter
130 information, just the function/method names. You can convert a
131 name_component to a "const char *" using the
132 'mapped_index::symbol_name_at(offset_type)' method. */
133
134 struct name_component
135 {
136 /* Offset in the symbol name where the component starts. Stored as
137 a (32-bit) offset instead of a pointer to save memory and improve
138 locality on 64-bit architectures. */
139 offset_type name_offset;
140
141 /* The symbol's index in the symbol and constant pool tables of a
142 mapped_index. */
143 offset_type idx;
144 };
145
146 /* Base class containing bits shared by both .gdb_index and
147 .debug_name indexes. */
148
149 struct mapped_index_base
150 {
151 mapped_index_base () = default;
152 DISABLE_COPY_AND_ASSIGN (mapped_index_base);
153
154 /* The name_component table (a sorted vector). See name_component's
155 description above. */
156 std::vector<name_component> name_components;
157
158 /* How NAME_COMPONENTS is sorted. */
159 enum case_sensitivity name_components_casing;
160
161 /* Return the number of names in the symbol table. */
162 virtual size_t symbol_name_count () const = 0;
163
164 /* Get the name of the symbol at IDX in the symbol table. */
165 virtual const char *symbol_name_at (offset_type idx) const = 0;
166
167 /* Return whether the name at IDX in the symbol table should be
168 ignored. */
169 virtual bool symbol_name_slot_invalid (offset_type idx) const
170 {
171 return false;
172 }
173
174 /* Build the symbol name component sorted vector, if we haven't
175 yet. */
176 void build_name_components ();
177
178 /* Returns the lower (inclusive) and upper (exclusive) bounds of the
179 possible matches for LN_NO_PARAMS in the name component
180 vector. */
181 std::pair<std::vector<name_component>::const_iterator,
182 std::vector<name_component>::const_iterator>
183 find_name_components_bounds (const lookup_name_info &ln_no_params) const;
184
185 /* Prevent deleting/destroying via a base class pointer. */
186 protected:
187 ~mapped_index_base() = default;
188 };
189
190 /* A description of the mapped index. The file format is described in
191 a comment by the code that writes the index. */
192 struct mapped_index final : public mapped_index_base
193 {
194 /* A slot/bucket in the symbol table hash. */
195 struct symbol_table_slot
196 {
197 const offset_type name;
198 const offset_type vec;
199 };
200
201 /* Index data format version. */
202 int version = 0;
203
204 /* The address table data. */
205 gdb::array_view<const gdb_byte> address_table;
206
207 /* The symbol table, implemented as a hash table. */
208 gdb::array_view<symbol_table_slot> symbol_table;
209
210 /* A pointer to the constant pool. */
211 const char *constant_pool = nullptr;
212
213 bool symbol_name_slot_invalid (offset_type idx) const override
214 {
215 const auto &bucket = this->symbol_table[idx];
216 return bucket.name == 0 && bucket.vec;
217 }
218
219 /* Convenience method to get at the name of the symbol at IDX in the
220 symbol table. */
221 const char *symbol_name_at (offset_type idx) const override
222 { return this->constant_pool + MAYBE_SWAP (this->symbol_table[idx].name); }
223
224 size_t symbol_name_count () const override
225 { return this->symbol_table.size (); }
226 };
227
228 /* A description of the mapped .debug_names.
229 Uninitialized map has CU_COUNT 0. */
230 struct mapped_debug_names final : public mapped_index_base
231 {
232 mapped_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile_)
233 : dwarf2_per_objfile (dwarf2_per_objfile_)
234 {}
235
236 struct dwarf2_per_objfile *dwarf2_per_objfile;
237 bfd_endian dwarf5_byte_order;
238 bool dwarf5_is_dwarf64;
239 bool augmentation_is_gdb;
240 uint8_t offset_size;
241 uint32_t cu_count = 0;
242 uint32_t tu_count, bucket_count, name_count;
243 const gdb_byte *cu_table_reordered, *tu_table_reordered;
244 const uint32_t *bucket_table_reordered, *hash_table_reordered;
245 const gdb_byte *name_table_string_offs_reordered;
246 const gdb_byte *name_table_entry_offs_reordered;
247 const gdb_byte *entry_pool;
248
249 struct index_val
250 {
251 ULONGEST dwarf_tag;
252 struct attr
253 {
254 /* Attribute name DW_IDX_*. */
255 ULONGEST dw_idx;
256
257 /* Attribute form DW_FORM_*. */
258 ULONGEST form;
259
260 /* Value if FORM is DW_FORM_implicit_const. */
261 LONGEST implicit_const;
262 };
263 std::vector<attr> attr_vec;
264 };
265
266 std::unordered_map<ULONGEST, index_val> abbrev_map;
267
268 const char *namei_to_name (uint32_t namei) const;
269
270 /* Implementation of the mapped_index_base virtual interface, for
271 the name_components cache. */
272
273 const char *symbol_name_at (offset_type idx) const override
274 { return namei_to_name (idx); }
275
276 size_t symbol_name_count () const override
277 { return this->name_count; }
278 };
279
280 /* See dwarf2read.h. */
281
282 dwarf2_per_objfile *
283 get_dwarf2_per_objfile (struct objfile *objfile)
284 {
285 return ((struct dwarf2_per_objfile *)
286 objfile_data (objfile, dwarf2_objfile_data_key));
287 }
288
289 /* Set the dwarf2_per_objfile associated to OBJFILE. */
290
291 void
292 set_dwarf2_per_objfile (struct objfile *objfile,
293 struct dwarf2_per_objfile *dwarf2_per_objfile)
294 {
295 gdb_assert (get_dwarf2_per_objfile (objfile) == NULL);
296 set_objfile_data (objfile, dwarf2_objfile_data_key, dwarf2_per_objfile);
297 }
298
299 /* Default names of the debugging sections. */
300
301 /* Note that if the debugging section has been compressed, it might
302 have a name like .zdebug_info. */
303
304 static const struct dwarf2_debug_sections dwarf2_elf_names =
305 {
306 { ".debug_info", ".zdebug_info" },
307 { ".debug_abbrev", ".zdebug_abbrev" },
308 { ".debug_line", ".zdebug_line" },
309 { ".debug_loc", ".zdebug_loc" },
310 { ".debug_loclists", ".zdebug_loclists" },
311 { ".debug_macinfo", ".zdebug_macinfo" },
312 { ".debug_macro", ".zdebug_macro" },
313 { ".debug_str", ".zdebug_str" },
314 { ".debug_line_str", ".zdebug_line_str" },
315 { ".debug_ranges", ".zdebug_ranges" },
316 { ".debug_rnglists", ".zdebug_rnglists" },
317 { ".debug_types", ".zdebug_types" },
318 { ".debug_addr", ".zdebug_addr" },
319 { ".debug_frame", ".zdebug_frame" },
320 { ".eh_frame", NULL },
321 { ".gdb_index", ".zgdb_index" },
322 { ".debug_names", ".zdebug_names" },
323 { ".debug_aranges", ".zdebug_aranges" },
324 23
325 };
326
327 /* List of DWO/DWP sections. */
328
329 static const struct dwop_section_names
330 {
331 struct dwarf2_section_names abbrev_dwo;
332 struct dwarf2_section_names info_dwo;
333 struct dwarf2_section_names line_dwo;
334 struct dwarf2_section_names loc_dwo;
335 struct dwarf2_section_names loclists_dwo;
336 struct dwarf2_section_names macinfo_dwo;
337 struct dwarf2_section_names macro_dwo;
338 struct dwarf2_section_names str_dwo;
339 struct dwarf2_section_names str_offsets_dwo;
340 struct dwarf2_section_names types_dwo;
341 struct dwarf2_section_names cu_index;
342 struct dwarf2_section_names tu_index;
343 }
344 dwop_section_names =
345 {
346 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
347 { ".debug_info.dwo", ".zdebug_info.dwo" },
348 { ".debug_line.dwo", ".zdebug_line.dwo" },
349 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
350 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
351 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
352 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
353 { ".debug_str.dwo", ".zdebug_str.dwo" },
354 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
355 { ".debug_types.dwo", ".zdebug_types.dwo" },
356 { ".debug_cu_index", ".zdebug_cu_index" },
357 { ".debug_tu_index", ".zdebug_tu_index" },
358 };
359
360 /* local data types */
361
362 /* The data in a compilation unit header, after target2host
363 translation, looks like this. */
364 struct comp_unit_head
365 {
366 unsigned int length;
367 short version;
368 unsigned char addr_size;
369 unsigned char signed_addr_p;
370 sect_offset abbrev_sect_off;
371
372 /* Size of file offsets; either 4 or 8. */
373 unsigned int offset_size;
374
375 /* Size of the length field; either 4 or 12. */
376 unsigned int initial_length_size;
377
378 enum dwarf_unit_type unit_type;
379
380 /* Offset to the first byte of this compilation unit header in the
381 .debug_info section, for resolving relative reference dies. */
382 sect_offset sect_off;
383
384 /* Offset to first die in this cu from the start of the cu.
385 This will be the first byte following the compilation unit header. */
386 cu_offset first_die_cu_offset;
387
388 /* 64-bit signature of this type unit - it is valid only for
389 UNIT_TYPE DW_UT_type. */
390 ULONGEST signature;
391
392 /* For types, offset in the type's DIE of the type defined by this TU. */
393 cu_offset type_cu_offset_in_tu;
394 };
395
396 /* Type used for delaying computation of method physnames.
397 See comments for compute_delayed_physnames. */
398 struct delayed_method_info
399 {
400 /* The type to which the method is attached, i.e., its parent class. */
401 struct type *type;
402
403 /* The index of the method in the type's function fieldlists. */
404 int fnfield_index;
405
406 /* The index of the method in the fieldlist. */
407 int index;
408
409 /* The name of the DIE. */
410 const char *name;
411
412 /* The DIE associated with this method. */
413 struct die_info *die;
414 };
415
416 /* Internal state when decoding a particular compilation unit. */
417 struct dwarf2_cu
418 {
419 explicit dwarf2_cu (struct dwarf2_per_cu_data *per_cu);
420 ~dwarf2_cu ();
421
422 DISABLE_COPY_AND_ASSIGN (dwarf2_cu);
423
424 /* The header of the compilation unit. */
425 struct comp_unit_head header {};
426
427 /* Base address of this compilation unit. */
428 CORE_ADDR base_address = 0;
429
430 /* Non-zero if base_address has been set. */
431 int base_known = 0;
432
433 /* The language we are debugging. */
434 enum language language = language_unknown;
435 const struct language_defn *language_defn = nullptr;
436
437 const char *producer = nullptr;
438
439 /* The symtab builder for this CU. This is only non-NULL when full
440 symbols are being read. */
441 std::unique_ptr<buildsym_compunit> builder;
442
443 /* The generic symbol table building routines have separate lists for
444 file scope symbols and all all other scopes (local scopes). So
445 we need to select the right one to pass to add_symbol_to_list().
446 We do it by keeping a pointer to the correct list in list_in_scope.
447
448 FIXME: The original dwarf code just treated the file scope as the
449 first local scope, and all other local scopes as nested local
450 scopes, and worked fine. Check to see if we really need to
451 distinguish these in buildsym.c. */
452 struct pending **list_in_scope = nullptr;
453
454 /* Hash table holding all the loaded partial DIEs
455 with partial_die->offset.SECT_OFF as hash. */
456 htab_t partial_dies = nullptr;
457
458 /* Storage for things with the same lifetime as this read-in compilation
459 unit, including partial DIEs. */
460 auto_obstack comp_unit_obstack;
461
462 /* When multiple dwarf2_cu structures are living in memory, this field
463 chains them all together, so that they can be released efficiently.
464 We will probably also want a generation counter so that most-recently-used
465 compilation units are cached... */
466 struct dwarf2_per_cu_data *read_in_chain = nullptr;
467
468 /* Backlink to our per_cu entry. */
469 struct dwarf2_per_cu_data *per_cu;
470
471 /* How many compilation units ago was this CU last referenced? */
472 int last_used = 0;
473
474 /* A hash table of DIE cu_offset for following references with
475 die_info->offset.sect_off as hash. */
476 htab_t die_hash = nullptr;
477
478 /* Full DIEs if read in. */
479 struct die_info *dies = nullptr;
480
481 /* A set of pointers to dwarf2_per_cu_data objects for compilation
482 units referenced by this one. Only set during full symbol processing;
483 partial symbol tables do not have dependencies. */
484 htab_t dependencies = nullptr;
485
486 /* Header data from the line table, during full symbol processing. */
487 struct line_header *line_header = nullptr;
488 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
489 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
490 this is the DW_TAG_compile_unit die for this CU. We'll hold on
491 to the line header as long as this DIE is being processed. See
492 process_die_scope. */
493 die_info *line_header_die_owner = nullptr;
494
495 /* A list of methods which need to have physnames computed
496 after all type information has been read. */
497 std::vector<delayed_method_info> method_list;
498
499 /* To be copied to symtab->call_site_htab. */
500 htab_t call_site_htab = nullptr;
501
502 /* Non-NULL if this CU came from a DWO file.
503 There is an invariant here that is important to remember:
504 Except for attributes copied from the top level DIE in the "main"
505 (or "stub") file in preparation for reading the DWO file
506 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
507 Either there isn't a DWO file (in which case this is NULL and the point
508 is moot), or there is and either we're not going to read it (in which
509 case this is NULL) or there is and we are reading it (in which case this
510 is non-NULL). */
511 struct dwo_unit *dwo_unit = nullptr;
512
513 /* The DW_AT_addr_base attribute if present, zero otherwise
514 (zero is a valid value though).
515 Note this value comes from the Fission stub CU/TU's DIE. */
516 ULONGEST addr_base = 0;
517
518 /* The DW_AT_ranges_base attribute if present, zero otherwise
519 (zero is a valid value though).
520 Note this value comes from the Fission stub CU/TU's DIE.
521 Also note that the value is zero in the non-DWO case so this value can
522 be used without needing to know whether DWO files are in use or not.
523 N.B. This does not apply to DW_AT_ranges appearing in
524 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
525 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
526 DW_AT_ranges_base *would* have to be applied, and we'd have to care
527 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
528 ULONGEST ranges_base = 0;
529
530 /* When reading debug info generated by older versions of rustc, we
531 have to rewrite some union types to be struct types with a
532 variant part. This rewriting must be done after the CU is fully
533 read in, because otherwise at the point of rewriting some struct
534 type might not have been fully processed. So, we keep a list of
535 all such types here and process them after expansion. */
536 std::vector<struct type *> rust_unions;
537
538 /* Mark used when releasing cached dies. */
539 bool mark : 1;
540
541 /* This CU references .debug_loc. See the symtab->locations_valid field.
542 This test is imperfect as there may exist optimized debug code not using
543 any location list and still facing inlining issues if handled as
544 unoptimized code. For a future better test see GCC PR other/32998. */
545 bool has_loclist : 1;
546
547 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is true
548 if all the producer_is_* fields are valid. This information is cached
549 because profiling CU expansion showed excessive time spent in
550 producer_is_gxx_lt_4_6. */
551 bool checked_producer : 1;
552 bool producer_is_gxx_lt_4_6 : 1;
553 bool producer_is_gcc_lt_4_3 : 1;
554 bool producer_is_icc : 1;
555 bool producer_is_icc_lt_14 : 1;
556 bool producer_is_codewarrior : 1;
557
558 /* When true, the file that we're processing is known to have
559 debugging info for C++ namespaces. GCC 3.3.x did not produce
560 this information, but later versions do. */
561
562 bool processing_has_namespace_info : 1;
563
564 struct partial_die_info *find_partial_die (sect_offset sect_off);
565 };
566
567 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
568 This includes type_unit_group and quick_file_names. */
569
570 struct stmt_list_hash
571 {
572 /* The DWO unit this table is from or NULL if there is none. */
573 struct dwo_unit *dwo_unit;
574
575 /* Offset in .debug_line or .debug_line.dwo. */
576 sect_offset line_sect_off;
577 };
578
579 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
580 an object of this type. */
581
582 struct type_unit_group
583 {
584 /* dwarf2read.c's main "handle" on a TU symtab.
585 To simplify things we create an artificial CU that "includes" all the
586 type units using this stmt_list so that the rest of the code still has
587 a "per_cu" handle on the symtab.
588 This PER_CU is recognized by having no section. */
589 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
590 struct dwarf2_per_cu_data per_cu;
591
592 /* The TUs that share this DW_AT_stmt_list entry.
593 This is added to while parsing type units to build partial symtabs,
594 and is deleted afterwards and not used again. */
595 VEC (sig_type_ptr) *tus;
596
597 /* The compunit symtab.
598 Type units in a group needn't all be defined in the same source file,
599 so we create an essentially anonymous symtab as the compunit symtab. */
600 struct compunit_symtab *compunit_symtab;
601
602 /* The data used to construct the hash key. */
603 struct stmt_list_hash hash;
604
605 /* The number of symtabs from the line header.
606 The value here must match line_header.num_file_names. */
607 unsigned int num_symtabs;
608
609 /* The symbol tables for this TU (obtained from the files listed in
610 DW_AT_stmt_list).
611 WARNING: The order of entries here must match the order of entries
612 in the line header. After the first TU using this type_unit_group, the
613 line header for the subsequent TUs is recreated from this. This is done
614 because we need to use the same symtabs for each TU using the same
615 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
616 there's no guarantee the line header doesn't have duplicate entries. */
617 struct symtab **symtabs;
618 };
619
620 /* These sections are what may appear in a (real or virtual) DWO file. */
621
622 struct dwo_sections
623 {
624 struct dwarf2_section_info abbrev;
625 struct dwarf2_section_info line;
626 struct dwarf2_section_info loc;
627 struct dwarf2_section_info loclists;
628 struct dwarf2_section_info macinfo;
629 struct dwarf2_section_info macro;
630 struct dwarf2_section_info str;
631 struct dwarf2_section_info str_offsets;
632 /* In the case of a virtual DWO file, these two are unused. */
633 struct dwarf2_section_info info;
634 VEC (dwarf2_section_info_def) *types;
635 };
636
637 /* CUs/TUs in DWP/DWO files. */
638
639 struct dwo_unit
640 {
641 /* Backlink to the containing struct dwo_file. */
642 struct dwo_file *dwo_file;
643
644 /* The "id" that distinguishes this CU/TU.
645 .debug_info calls this "dwo_id", .debug_types calls this "signature".
646 Since signatures came first, we stick with it for consistency. */
647 ULONGEST signature;
648
649 /* The section this CU/TU lives in, in the DWO file. */
650 struct dwarf2_section_info *section;
651
652 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
653 sect_offset sect_off;
654 unsigned int length;
655
656 /* For types, offset in the type's DIE of the type defined by this TU. */
657 cu_offset type_offset_in_tu;
658 };
659
660 /* include/dwarf2.h defines the DWP section codes.
661 It defines a max value but it doesn't define a min value, which we
662 use for error checking, so provide one. */
663
664 enum dwp_v2_section_ids
665 {
666 DW_SECT_MIN = 1
667 };
668
669 /* Data for one DWO file.
670
671 This includes virtual DWO files (a virtual DWO file is a DWO file as it
672 appears in a DWP file). DWP files don't really have DWO files per se -
673 comdat folding of types "loses" the DWO file they came from, and from
674 a high level view DWP files appear to contain a mass of random types.
675 However, to maintain consistency with the non-DWP case we pretend DWP
676 files contain virtual DWO files, and we assign each TU with one virtual
677 DWO file (generally based on the line and abbrev section offsets -
678 a heuristic that seems to work in practice). */
679
680 struct dwo_file
681 {
682 /* The DW_AT_GNU_dwo_name attribute.
683 For virtual DWO files the name is constructed from the section offsets
684 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
685 from related CU+TUs. */
686 const char *dwo_name;
687
688 /* The DW_AT_comp_dir attribute. */
689 const char *comp_dir;
690
691 /* The bfd, when the file is open. Otherwise this is NULL.
692 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
693 bfd *dbfd;
694
695 /* The sections that make up this DWO file.
696 Remember that for virtual DWO files in DWP V2, these are virtual
697 sections (for lack of a better name). */
698 struct dwo_sections sections;
699
700 /* The CUs in the file.
701 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
702 an extension to handle LLVM's Link Time Optimization output (where
703 multiple source files may be compiled into a single object/dwo pair). */
704 htab_t cus;
705
706 /* Table of TUs in the file.
707 Each element is a struct dwo_unit. */
708 htab_t tus;
709 };
710
711 /* These sections are what may appear in a DWP file. */
712
713 struct dwp_sections
714 {
715 /* These are used by both DWP version 1 and 2. */
716 struct dwarf2_section_info str;
717 struct dwarf2_section_info cu_index;
718 struct dwarf2_section_info tu_index;
719
720 /* These are only used by DWP version 2 files.
721 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
722 sections are referenced by section number, and are not recorded here.
723 In DWP version 2 there is at most one copy of all these sections, each
724 section being (effectively) comprised of the concatenation of all of the
725 individual sections that exist in the version 1 format.
726 To keep the code simple we treat each of these concatenated pieces as a
727 section itself (a virtual section?). */
728 struct dwarf2_section_info abbrev;
729 struct dwarf2_section_info info;
730 struct dwarf2_section_info line;
731 struct dwarf2_section_info loc;
732 struct dwarf2_section_info macinfo;
733 struct dwarf2_section_info macro;
734 struct dwarf2_section_info str_offsets;
735 struct dwarf2_section_info types;
736 };
737
738 /* These sections are what may appear in a virtual DWO file in DWP version 1.
739 A virtual DWO file is a DWO file as it appears in a DWP file. */
740
741 struct virtual_v1_dwo_sections
742 {
743 struct dwarf2_section_info abbrev;
744 struct dwarf2_section_info line;
745 struct dwarf2_section_info loc;
746 struct dwarf2_section_info macinfo;
747 struct dwarf2_section_info macro;
748 struct dwarf2_section_info str_offsets;
749 /* Each DWP hash table entry records one CU or one TU.
750 That is recorded here, and copied to dwo_unit.section. */
751 struct dwarf2_section_info info_or_types;
752 };
753
754 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
755 In version 2, the sections of the DWO files are concatenated together
756 and stored in one section of that name. Thus each ELF section contains
757 several "virtual" sections. */
758
759 struct virtual_v2_dwo_sections
760 {
761 bfd_size_type abbrev_offset;
762 bfd_size_type abbrev_size;
763
764 bfd_size_type line_offset;
765 bfd_size_type line_size;
766
767 bfd_size_type loc_offset;
768 bfd_size_type loc_size;
769
770 bfd_size_type macinfo_offset;
771 bfd_size_type macinfo_size;
772
773 bfd_size_type macro_offset;
774 bfd_size_type macro_size;
775
776 bfd_size_type str_offsets_offset;
777 bfd_size_type str_offsets_size;
778
779 /* Each DWP hash table entry records one CU or one TU.
780 That is recorded here, and copied to dwo_unit.section. */
781 bfd_size_type info_or_types_offset;
782 bfd_size_type info_or_types_size;
783 };
784
785 /* Contents of DWP hash tables. */
786
787 struct dwp_hash_table
788 {
789 uint32_t version, nr_columns;
790 uint32_t nr_units, nr_slots;
791 const gdb_byte *hash_table, *unit_table;
792 union
793 {
794 struct
795 {
796 const gdb_byte *indices;
797 } v1;
798 struct
799 {
800 /* This is indexed by column number and gives the id of the section
801 in that column. */
802 #define MAX_NR_V2_DWO_SECTIONS \
803 (1 /* .debug_info or .debug_types */ \
804 + 1 /* .debug_abbrev */ \
805 + 1 /* .debug_line */ \
806 + 1 /* .debug_loc */ \
807 + 1 /* .debug_str_offsets */ \
808 + 1 /* .debug_macro or .debug_macinfo */)
809 int section_ids[MAX_NR_V2_DWO_SECTIONS];
810 const gdb_byte *offsets;
811 const gdb_byte *sizes;
812 } v2;
813 } section_pool;
814 };
815
816 /* Data for one DWP file. */
817
818 struct dwp_file
819 {
820 dwp_file (const char *name_, gdb_bfd_ref_ptr &&abfd)
821 : name (name_),
822 dbfd (std::move (abfd))
823 {
824 }
825
826 /* Name of the file. */
827 const char *name;
828
829 /* File format version. */
830 int version = 0;
831
832 /* The bfd. */
833 gdb_bfd_ref_ptr dbfd;
834
835 /* Section info for this file. */
836 struct dwp_sections sections {};
837
838 /* Table of CUs in the file. */
839 const struct dwp_hash_table *cus = nullptr;
840
841 /* Table of TUs in the file. */
842 const struct dwp_hash_table *tus = nullptr;
843
844 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
845 htab_t loaded_cus {};
846 htab_t loaded_tus {};
847
848 /* Table to map ELF section numbers to their sections.
849 This is only needed for the DWP V1 file format. */
850 unsigned int num_sections = 0;
851 asection **elf_sections = nullptr;
852 };
853
854 /* This represents a '.dwz' file. */
855
856 struct dwz_file
857 {
858 dwz_file (gdb_bfd_ref_ptr &&bfd)
859 : dwz_bfd (std::move (bfd))
860 {
861 }
862
863 /* A dwz file can only contain a few sections. */
864 struct dwarf2_section_info abbrev {};
865 struct dwarf2_section_info info {};
866 struct dwarf2_section_info str {};
867 struct dwarf2_section_info line {};
868 struct dwarf2_section_info macro {};
869 struct dwarf2_section_info gdb_index {};
870 struct dwarf2_section_info debug_names {};
871
872 /* The dwz's BFD. */
873 gdb_bfd_ref_ptr dwz_bfd;
874
875 /* If we loaded the index from an external file, this contains the
876 resources associated to the open file, memory mapping, etc. */
877 std::unique_ptr<index_cache_resource> index_cache_res;
878 };
879
880 /* Struct used to pass misc. parameters to read_die_and_children, et
881 al. which are used for both .debug_info and .debug_types dies.
882 All parameters here are unchanging for the life of the call. This
883 struct exists to abstract away the constant parameters of die reading. */
884
885 struct die_reader_specs
886 {
887 /* The bfd of die_section. */
888 bfd* abfd;
889
890 /* The CU of the DIE we are parsing. */
891 struct dwarf2_cu *cu;
892
893 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
894 struct dwo_file *dwo_file;
895
896 /* The section the die comes from.
897 This is either .debug_info or .debug_types, or the .dwo variants. */
898 struct dwarf2_section_info *die_section;
899
900 /* die_section->buffer. */
901 const gdb_byte *buffer;
902
903 /* The end of the buffer. */
904 const gdb_byte *buffer_end;
905
906 /* The value of the DW_AT_comp_dir attribute. */
907 const char *comp_dir;
908
909 /* The abbreviation table to use when reading the DIEs. */
910 struct abbrev_table *abbrev_table;
911 };
912
913 /* Type of function passed to init_cutu_and_read_dies, et.al. */
914 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
915 const gdb_byte *info_ptr,
916 struct die_info *comp_unit_die,
917 int has_children,
918 void *data);
919
920 /* A 1-based directory index. This is a strong typedef to prevent
921 accidentally using a directory index as a 0-based index into an
922 array/vector. */
923 enum class dir_index : unsigned int {};
924
925 /* Likewise, a 1-based file name index. */
926 enum class file_name_index : unsigned int {};
927
928 struct file_entry
929 {
930 file_entry () = default;
931
932 file_entry (const char *name_, dir_index d_index_,
933 unsigned int mod_time_, unsigned int length_)
934 : name (name_),
935 d_index (d_index_),
936 mod_time (mod_time_),
937 length (length_)
938 {}
939
940 /* Return the include directory at D_INDEX stored in LH. Returns
941 NULL if D_INDEX is out of bounds. */
942 const char *include_dir (const line_header *lh) const;
943
944 /* The file name. Note this is an observing pointer. The memory is
945 owned by debug_line_buffer. */
946 const char *name {};
947
948 /* The directory index (1-based). */
949 dir_index d_index {};
950
951 unsigned int mod_time {};
952
953 unsigned int length {};
954
955 /* True if referenced by the Line Number Program. */
956 bool included_p {};
957
958 /* The associated symbol table, if any. */
959 struct symtab *symtab {};
960 };
961
962 /* The line number information for a compilation unit (found in the
963 .debug_line section) begins with a "statement program header",
964 which contains the following information. */
965 struct line_header
966 {
967 line_header ()
968 : offset_in_dwz {}
969 {}
970
971 /* Add an entry to the include directory table. */
972 void add_include_dir (const char *include_dir);
973
974 /* Add an entry to the file name table. */
975 void add_file_name (const char *name, dir_index d_index,
976 unsigned int mod_time, unsigned int length);
977
978 /* Return the include dir at INDEX (1-based). Returns NULL if INDEX
979 is out of bounds. */
980 const char *include_dir_at (dir_index index) const
981 {
982 /* Convert directory index number (1-based) to vector index
983 (0-based). */
984 size_t vec_index = to_underlying (index) - 1;
985
986 if (vec_index >= include_dirs.size ())
987 return NULL;
988 return include_dirs[vec_index];
989 }
990
991 /* Return the file name at INDEX (1-based). Returns NULL if INDEX
992 is out of bounds. */
993 file_entry *file_name_at (file_name_index index)
994 {
995 /* Convert file name index number (1-based) to vector index
996 (0-based). */
997 size_t vec_index = to_underlying (index) - 1;
998
999 if (vec_index >= file_names.size ())
1000 return NULL;
1001 return &file_names[vec_index];
1002 }
1003
1004 /* Const version of the above. */
1005 const file_entry *file_name_at (unsigned int index) const
1006 {
1007 if (index >= file_names.size ())
1008 return NULL;
1009 return &file_names[index];
1010 }
1011
1012 /* Offset of line number information in .debug_line section. */
1013 sect_offset sect_off {};
1014
1015 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1016 unsigned offset_in_dwz : 1; /* Can't initialize bitfields in-class. */
1017
1018 unsigned int total_length {};
1019 unsigned short version {};
1020 unsigned int header_length {};
1021 unsigned char minimum_instruction_length {};
1022 unsigned char maximum_ops_per_instruction {};
1023 unsigned char default_is_stmt {};
1024 int line_base {};
1025 unsigned char line_range {};
1026 unsigned char opcode_base {};
1027
1028 /* standard_opcode_lengths[i] is the number of operands for the
1029 standard opcode whose value is i. This means that
1030 standard_opcode_lengths[0] is unused, and the last meaningful
1031 element is standard_opcode_lengths[opcode_base - 1]. */
1032 std::unique_ptr<unsigned char[]> standard_opcode_lengths;
1033
1034 /* The include_directories table. Note these are observing
1035 pointers. The memory is owned by debug_line_buffer. */
1036 std::vector<const char *> include_dirs;
1037
1038 /* The file_names table. */
1039 std::vector<file_entry> file_names;
1040
1041 /* The start and end of the statement program following this
1042 header. These point into dwarf2_per_objfile->line_buffer. */
1043 const gdb_byte *statement_program_start {}, *statement_program_end {};
1044 };
1045
1046 typedef std::unique_ptr<line_header> line_header_up;
1047
1048 const char *
1049 file_entry::include_dir (const line_header *lh) const
1050 {
1051 return lh->include_dir_at (d_index);
1052 }
1053
1054 /* When we construct a partial symbol table entry we only
1055 need this much information. */
1056 struct partial_die_info : public allocate_on_obstack
1057 {
1058 partial_die_info (sect_offset sect_off, struct abbrev_info *abbrev);
1059
1060 /* Disable assign but still keep copy ctor, which is needed
1061 load_partial_dies. */
1062 partial_die_info& operator=(const partial_die_info& rhs) = delete;
1063
1064 /* Adjust the partial die before generating a symbol for it. This
1065 function may set the is_external flag or change the DIE's
1066 name. */
1067 void fixup (struct dwarf2_cu *cu);
1068
1069 /* Read a minimal amount of information into the minimal die
1070 structure. */
1071 const gdb_byte *read (const struct die_reader_specs *reader,
1072 const struct abbrev_info &abbrev,
1073 const gdb_byte *info_ptr);
1074
1075 /* Offset of this DIE. */
1076 const sect_offset sect_off;
1077
1078 /* DWARF-2 tag for this DIE. */
1079 const ENUM_BITFIELD(dwarf_tag) tag : 16;
1080
1081 /* Assorted flags describing the data found in this DIE. */
1082 const unsigned int has_children : 1;
1083
1084 unsigned int is_external : 1;
1085 unsigned int is_declaration : 1;
1086 unsigned int has_type : 1;
1087 unsigned int has_specification : 1;
1088 unsigned int has_pc_info : 1;
1089 unsigned int may_be_inlined : 1;
1090
1091 /* This DIE has been marked DW_AT_main_subprogram. */
1092 unsigned int main_subprogram : 1;
1093
1094 /* Flag set if the SCOPE field of this structure has been
1095 computed. */
1096 unsigned int scope_set : 1;
1097
1098 /* Flag set if the DIE has a byte_size attribute. */
1099 unsigned int has_byte_size : 1;
1100
1101 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1102 unsigned int has_const_value : 1;
1103
1104 /* Flag set if any of the DIE's children are template arguments. */
1105 unsigned int has_template_arguments : 1;
1106
1107 /* Flag set if fixup has been called on this die. */
1108 unsigned int fixup_called : 1;
1109
1110 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1111 unsigned int is_dwz : 1;
1112
1113 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1114 unsigned int spec_is_dwz : 1;
1115
1116 /* The name of this DIE. Normally the value of DW_AT_name, but
1117 sometimes a default name for unnamed DIEs. */
1118 const char *name = nullptr;
1119
1120 /* The linkage name, if present. */
1121 const char *linkage_name = nullptr;
1122
1123 /* The scope to prepend to our children. This is generally
1124 allocated on the comp_unit_obstack, so will disappear
1125 when this compilation unit leaves the cache. */
1126 const char *scope = nullptr;
1127
1128 /* Some data associated with the partial DIE. The tag determines
1129 which field is live. */
1130 union
1131 {
1132 /* The location description associated with this DIE, if any. */
1133 struct dwarf_block *locdesc;
1134 /* The offset of an import, for DW_TAG_imported_unit. */
1135 sect_offset sect_off;
1136 } d {};
1137
1138 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1139 CORE_ADDR lowpc = 0;
1140 CORE_ADDR highpc = 0;
1141
1142 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1143 DW_AT_sibling, if any. */
1144 /* NOTE: This member isn't strictly necessary, partial_die_info::read
1145 could return DW_AT_sibling values to its caller load_partial_dies. */
1146 const gdb_byte *sibling = nullptr;
1147
1148 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1149 DW_AT_specification (or DW_AT_abstract_origin or
1150 DW_AT_extension). */
1151 sect_offset spec_offset {};
1152
1153 /* Pointers to this DIE's parent, first child, and next sibling,
1154 if any. */
1155 struct partial_die_info *die_parent = nullptr;
1156 struct partial_die_info *die_child = nullptr;
1157 struct partial_die_info *die_sibling = nullptr;
1158
1159 friend struct partial_die_info *
1160 dwarf2_cu::find_partial_die (sect_offset sect_off);
1161
1162 private:
1163 /* Only need to do look up in dwarf2_cu::find_partial_die. */
1164 partial_die_info (sect_offset sect_off)
1165 : partial_die_info (sect_off, DW_TAG_padding, 0)
1166 {
1167 }
1168
1169 partial_die_info (sect_offset sect_off_, enum dwarf_tag tag_,
1170 int has_children_)
1171 : sect_off (sect_off_), tag (tag_), has_children (has_children_)
1172 {
1173 is_external = 0;
1174 is_declaration = 0;
1175 has_type = 0;
1176 has_specification = 0;
1177 has_pc_info = 0;
1178 may_be_inlined = 0;
1179 main_subprogram = 0;
1180 scope_set = 0;
1181 has_byte_size = 0;
1182 has_const_value = 0;
1183 has_template_arguments = 0;
1184 fixup_called = 0;
1185 is_dwz = 0;
1186 spec_is_dwz = 0;
1187 }
1188 };
1189
1190 /* This data structure holds the information of an abbrev. */
1191 struct abbrev_info
1192 {
1193 unsigned int number; /* number identifying abbrev */
1194 enum dwarf_tag tag; /* dwarf tag */
1195 unsigned short has_children; /* boolean */
1196 unsigned short num_attrs; /* number of attributes */
1197 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1198 struct abbrev_info *next; /* next in chain */
1199 };
1200
1201 struct attr_abbrev
1202 {
1203 ENUM_BITFIELD(dwarf_attribute) name : 16;
1204 ENUM_BITFIELD(dwarf_form) form : 16;
1205
1206 /* It is valid only if FORM is DW_FORM_implicit_const. */
1207 LONGEST implicit_const;
1208 };
1209
1210 /* Size of abbrev_table.abbrev_hash_table. */
1211 #define ABBREV_HASH_SIZE 121
1212
1213 /* Top level data structure to contain an abbreviation table. */
1214
1215 struct abbrev_table
1216 {
1217 explicit abbrev_table (sect_offset off)
1218 : sect_off (off)
1219 {
1220 m_abbrevs =
1221 XOBNEWVEC (&abbrev_obstack, struct abbrev_info *, ABBREV_HASH_SIZE);
1222 memset (m_abbrevs, 0, ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
1223 }
1224
1225 DISABLE_COPY_AND_ASSIGN (abbrev_table);
1226
1227 /* Allocate space for a struct abbrev_info object in
1228 ABBREV_TABLE. */
1229 struct abbrev_info *alloc_abbrev ();
1230
1231 /* Add an abbreviation to the table. */
1232 void add_abbrev (unsigned int abbrev_number, struct abbrev_info *abbrev);
1233
1234 /* Look up an abbrev in the table.
1235 Returns NULL if the abbrev is not found. */
1236
1237 struct abbrev_info *lookup_abbrev (unsigned int abbrev_number);
1238
1239
1240 /* Where the abbrev table came from.
1241 This is used as a sanity check when the table is used. */
1242 const sect_offset sect_off;
1243
1244 /* Storage for the abbrev table. */
1245 auto_obstack abbrev_obstack;
1246
1247 private:
1248
1249 /* Hash table of abbrevs.
1250 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1251 It could be statically allocated, but the previous code didn't so we
1252 don't either. */
1253 struct abbrev_info **m_abbrevs;
1254 };
1255
1256 typedef std::unique_ptr<struct abbrev_table> abbrev_table_up;
1257
1258 /* Attributes have a name and a value. */
1259 struct attribute
1260 {
1261 ENUM_BITFIELD(dwarf_attribute) name : 16;
1262 ENUM_BITFIELD(dwarf_form) form : 15;
1263
1264 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1265 field should be in u.str (existing only for DW_STRING) but it is kept
1266 here for better struct attribute alignment. */
1267 unsigned int string_is_canonical : 1;
1268
1269 union
1270 {
1271 const char *str;
1272 struct dwarf_block *blk;
1273 ULONGEST unsnd;
1274 LONGEST snd;
1275 CORE_ADDR addr;
1276 ULONGEST signature;
1277 }
1278 u;
1279 };
1280
1281 /* This data structure holds a complete die structure. */
1282 struct die_info
1283 {
1284 /* DWARF-2 tag for this DIE. */
1285 ENUM_BITFIELD(dwarf_tag) tag : 16;
1286
1287 /* Number of attributes */
1288 unsigned char num_attrs;
1289
1290 /* True if we're presently building the full type name for the
1291 type derived from this DIE. */
1292 unsigned char building_fullname : 1;
1293
1294 /* True if this die is in process. PR 16581. */
1295 unsigned char in_process : 1;
1296
1297 /* Abbrev number */
1298 unsigned int abbrev;
1299
1300 /* Offset in .debug_info or .debug_types section. */
1301 sect_offset sect_off;
1302
1303 /* The dies in a compilation unit form an n-ary tree. PARENT
1304 points to this die's parent; CHILD points to the first child of
1305 this node; and all the children of a given node are chained
1306 together via their SIBLING fields. */
1307 struct die_info *child; /* Its first child, if any. */
1308 struct die_info *sibling; /* Its next sibling, if any. */
1309 struct die_info *parent; /* Its parent, if any. */
1310
1311 /* An array of attributes, with NUM_ATTRS elements. There may be
1312 zero, but it's not common and zero-sized arrays are not
1313 sufficiently portable C. */
1314 struct attribute attrs[1];
1315 };
1316
1317 /* Get at parts of an attribute structure. */
1318
1319 #define DW_STRING(attr) ((attr)->u.str)
1320 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1321 #define DW_UNSND(attr) ((attr)->u.unsnd)
1322 #define DW_BLOCK(attr) ((attr)->u.blk)
1323 #define DW_SND(attr) ((attr)->u.snd)
1324 #define DW_ADDR(attr) ((attr)->u.addr)
1325 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1326
1327 /* Blocks are a bunch of untyped bytes. */
1328 struct dwarf_block
1329 {
1330 size_t size;
1331
1332 /* Valid only if SIZE is not zero. */
1333 const gdb_byte *data;
1334 };
1335
1336 #ifndef ATTR_ALLOC_CHUNK
1337 #define ATTR_ALLOC_CHUNK 4
1338 #endif
1339
1340 /* Allocate fields for structs, unions and enums in this size. */
1341 #ifndef DW_FIELD_ALLOC_CHUNK
1342 #define DW_FIELD_ALLOC_CHUNK 4
1343 #endif
1344
1345 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1346 but this would require a corresponding change in unpack_field_as_long
1347 and friends. */
1348 static int bits_per_byte = 8;
1349
1350 /* When reading a variant or variant part, we track a bit more
1351 information about the field, and store it in an object of this
1352 type. */
1353
1354 struct variant_field
1355 {
1356 /* If we see a DW_TAG_variant, then this will be the discriminant
1357 value. */
1358 ULONGEST discriminant_value;
1359 /* If we see a DW_TAG_variant, then this will be set if this is the
1360 default branch. */
1361 bool default_branch;
1362 /* While reading a DW_TAG_variant_part, this will be set if this
1363 field is the discriminant. */
1364 bool is_discriminant;
1365 };
1366
1367 struct nextfield
1368 {
1369 int accessibility = 0;
1370 int virtuality = 0;
1371 /* Extra information to describe a variant or variant part. */
1372 struct variant_field variant {};
1373 struct field field {};
1374 };
1375
1376 struct fnfieldlist
1377 {
1378 const char *name = nullptr;
1379 std::vector<struct fn_field> fnfields;
1380 };
1381
1382 /* The routines that read and process dies for a C struct or C++ class
1383 pass lists of data member fields and lists of member function fields
1384 in an instance of a field_info structure, as defined below. */
1385 struct field_info
1386 {
1387 /* List of data member and baseclasses fields. */
1388 std::vector<struct nextfield> fields;
1389 std::vector<struct nextfield> baseclasses;
1390
1391 /* Number of fields (including baseclasses). */
1392 int nfields = 0;
1393
1394 /* Set if the accesibility of one of the fields is not public. */
1395 int non_public_fields = 0;
1396
1397 /* Member function fieldlist array, contains name of possibly overloaded
1398 member function, number of overloaded member functions and a pointer
1399 to the head of the member function field chain. */
1400 std::vector<struct fnfieldlist> fnfieldlists;
1401
1402 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1403 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1404 std::vector<struct decl_field> typedef_field_list;
1405
1406 /* Nested types defined by this class and the number of elements in this
1407 list. */
1408 std::vector<struct decl_field> nested_types_list;
1409 };
1410
1411 /* One item on the queue of compilation units to read in full symbols
1412 for. */
1413 struct dwarf2_queue_item
1414 {
1415 struct dwarf2_per_cu_data *per_cu;
1416 enum language pretend_language;
1417 struct dwarf2_queue_item *next;
1418 };
1419
1420 /* The current queue. */
1421 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1422
1423 /* Loaded secondary compilation units are kept in memory until they
1424 have not been referenced for the processing of this many
1425 compilation units. Set this to zero to disable caching. Cache
1426 sizes of up to at least twenty will improve startup time for
1427 typical inter-CU-reference binaries, at an obvious memory cost. */
1428 static int dwarf_max_cache_age = 5;
1429 static void
1430 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1431 struct cmd_list_element *c, const char *value)
1432 {
1433 fprintf_filtered (file, _("The upper bound on the age of cached "
1434 "DWARF compilation units is %s.\n"),
1435 value);
1436 }
1437 \f
1438 /* local function prototypes */
1439
1440 static const char *get_section_name (const struct dwarf2_section_info *);
1441
1442 static const char *get_section_file_name (const struct dwarf2_section_info *);
1443
1444 static void dwarf2_find_base_address (struct die_info *die,
1445 struct dwarf2_cu *cu);
1446
1447 static struct partial_symtab *create_partial_symtab
1448 (struct dwarf2_per_cu_data *per_cu, const char *name);
1449
1450 static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1451 const gdb_byte *info_ptr,
1452 struct die_info *type_unit_die,
1453 int has_children, void *data);
1454
1455 static void dwarf2_build_psymtabs_hard
1456 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1457
1458 static void scan_partial_symbols (struct partial_die_info *,
1459 CORE_ADDR *, CORE_ADDR *,
1460 int, struct dwarf2_cu *);
1461
1462 static void add_partial_symbol (struct partial_die_info *,
1463 struct dwarf2_cu *);
1464
1465 static void add_partial_namespace (struct partial_die_info *pdi,
1466 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1467 int set_addrmap, struct dwarf2_cu *cu);
1468
1469 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1470 CORE_ADDR *highpc, int set_addrmap,
1471 struct dwarf2_cu *cu);
1472
1473 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1474 struct dwarf2_cu *cu);
1475
1476 static void add_partial_subprogram (struct partial_die_info *pdi,
1477 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1478 int need_pc, struct dwarf2_cu *cu);
1479
1480 static void dwarf2_read_symtab (struct partial_symtab *,
1481 struct objfile *);
1482
1483 static void psymtab_to_symtab_1 (struct partial_symtab *);
1484
1485 static abbrev_table_up abbrev_table_read_table
1486 (struct dwarf2_per_objfile *dwarf2_per_objfile, struct dwarf2_section_info *,
1487 sect_offset);
1488
1489 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1490
1491 static struct partial_die_info *load_partial_dies
1492 (const struct die_reader_specs *, const gdb_byte *, int);
1493
1494 static struct partial_die_info *find_partial_die (sect_offset, int,
1495 struct dwarf2_cu *);
1496
1497 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1498 struct attribute *, struct attr_abbrev *,
1499 const gdb_byte *);
1500
1501 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1502
1503 static int read_1_signed_byte (bfd *, const gdb_byte *);
1504
1505 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1506
1507 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1508
1509 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1510
1511 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1512 unsigned int *);
1513
1514 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1515
1516 static LONGEST read_checked_initial_length_and_offset
1517 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1518 unsigned int *, unsigned int *);
1519
1520 static LONGEST read_offset (bfd *, const gdb_byte *,
1521 const struct comp_unit_head *,
1522 unsigned int *);
1523
1524 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1525
1526 static sect_offset read_abbrev_offset
1527 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1528 struct dwarf2_section_info *, sect_offset);
1529
1530 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1531
1532 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1533
1534 static const char *read_indirect_string
1535 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1536 const struct comp_unit_head *, unsigned int *);
1537
1538 static const char *read_indirect_line_string
1539 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1540 const struct comp_unit_head *, unsigned int *);
1541
1542 static const char *read_indirect_string_at_offset
1543 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
1544 LONGEST str_offset);
1545
1546 static const char *read_indirect_string_from_dwz
1547 (struct objfile *objfile, struct dwz_file *, LONGEST);
1548
1549 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1550
1551 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1552 const gdb_byte *,
1553 unsigned int *);
1554
1555 static const char *read_str_index (const struct die_reader_specs *reader,
1556 ULONGEST str_index);
1557
1558 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1559
1560 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1561 struct dwarf2_cu *);
1562
1563 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1564 unsigned int);
1565
1566 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1567 struct dwarf2_cu *cu);
1568
1569 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1570 struct dwarf2_cu *cu);
1571
1572 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1573
1574 static struct die_info *die_specification (struct die_info *die,
1575 struct dwarf2_cu **);
1576
1577 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1578 struct dwarf2_cu *cu);
1579
1580 static void dwarf_decode_lines (struct line_header *, const char *,
1581 struct dwarf2_cu *, struct partial_symtab *,
1582 CORE_ADDR, int decode_mapping);
1583
1584 static void dwarf2_start_subfile (struct dwarf2_cu *, const char *,
1585 const char *);
1586
1587 static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1588 const char *, const char *,
1589 CORE_ADDR);
1590
1591 static struct symbol *new_symbol (struct die_info *, struct type *,
1592 struct dwarf2_cu *, struct symbol * = NULL);
1593
1594 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1595 struct dwarf2_cu *);
1596
1597 static void dwarf2_const_value_attr (const struct attribute *attr,
1598 struct type *type,
1599 const char *name,
1600 struct obstack *obstack,
1601 struct dwarf2_cu *cu, LONGEST *value,
1602 const gdb_byte **bytes,
1603 struct dwarf2_locexpr_baton **baton);
1604
1605 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1606
1607 static int need_gnat_info (struct dwarf2_cu *);
1608
1609 static struct type *die_descriptive_type (struct die_info *,
1610 struct dwarf2_cu *);
1611
1612 static void set_descriptive_type (struct type *, struct die_info *,
1613 struct dwarf2_cu *);
1614
1615 static struct type *die_containing_type (struct die_info *,
1616 struct dwarf2_cu *);
1617
1618 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1619 struct dwarf2_cu *);
1620
1621 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1622
1623 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1624
1625 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1626
1627 static char *typename_concat (struct obstack *obs, const char *prefix,
1628 const char *suffix, int physname,
1629 struct dwarf2_cu *cu);
1630
1631 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1632
1633 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1634
1635 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1636
1637 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1638
1639 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1640
1641 static void read_variable (struct die_info *die, struct dwarf2_cu *cu);
1642
1643 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1644 struct dwarf2_cu *, struct partial_symtab *);
1645
1646 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1647 values. Keep the items ordered with increasing constraints compliance. */
1648 enum pc_bounds_kind
1649 {
1650 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1651 PC_BOUNDS_NOT_PRESENT,
1652
1653 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1654 were present but they do not form a valid range of PC addresses. */
1655 PC_BOUNDS_INVALID,
1656
1657 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1658 PC_BOUNDS_RANGES,
1659
1660 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1661 PC_BOUNDS_HIGH_LOW,
1662 };
1663
1664 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1665 CORE_ADDR *, CORE_ADDR *,
1666 struct dwarf2_cu *,
1667 struct partial_symtab *);
1668
1669 static void get_scope_pc_bounds (struct die_info *,
1670 CORE_ADDR *, CORE_ADDR *,
1671 struct dwarf2_cu *);
1672
1673 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1674 CORE_ADDR, struct dwarf2_cu *);
1675
1676 static void dwarf2_add_field (struct field_info *, struct die_info *,
1677 struct dwarf2_cu *);
1678
1679 static void dwarf2_attach_fields_to_type (struct field_info *,
1680 struct type *, struct dwarf2_cu *);
1681
1682 static void dwarf2_add_member_fn (struct field_info *,
1683 struct die_info *, struct type *,
1684 struct dwarf2_cu *);
1685
1686 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1687 struct type *,
1688 struct dwarf2_cu *);
1689
1690 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1691
1692 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1693
1694 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1695
1696 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1697
1698 static struct using_direct **using_directives (struct dwarf2_cu *cu);
1699
1700 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1701
1702 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1703
1704 static struct type *read_module_type (struct die_info *die,
1705 struct dwarf2_cu *cu);
1706
1707 static const char *namespace_name (struct die_info *die,
1708 int *is_anonymous, struct dwarf2_cu *);
1709
1710 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1711
1712 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1713
1714 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1715 struct dwarf2_cu *);
1716
1717 static struct die_info *read_die_and_siblings_1
1718 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1719 struct die_info *);
1720
1721 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1722 const gdb_byte *info_ptr,
1723 const gdb_byte **new_info_ptr,
1724 struct die_info *parent);
1725
1726 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1727 struct die_info **, const gdb_byte *,
1728 int *, int);
1729
1730 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1731 struct die_info **, const gdb_byte *,
1732 int *);
1733
1734 static void process_die (struct die_info *, struct dwarf2_cu *);
1735
1736 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1737 struct obstack *);
1738
1739 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1740
1741 static const char *dwarf2_full_name (const char *name,
1742 struct die_info *die,
1743 struct dwarf2_cu *cu);
1744
1745 static const char *dwarf2_physname (const char *name, struct die_info *die,
1746 struct dwarf2_cu *cu);
1747
1748 static struct die_info *dwarf2_extension (struct die_info *die,
1749 struct dwarf2_cu **);
1750
1751 static const char *dwarf_tag_name (unsigned int);
1752
1753 static const char *dwarf_attr_name (unsigned int);
1754
1755 static const char *dwarf_form_name (unsigned int);
1756
1757 static const char *dwarf_bool_name (unsigned int);
1758
1759 static const char *dwarf_type_encoding_name (unsigned int);
1760
1761 static struct die_info *sibling_die (struct die_info *);
1762
1763 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1764
1765 static void dump_die_for_error (struct die_info *);
1766
1767 static void dump_die_1 (struct ui_file *, int level, int max_level,
1768 struct die_info *);
1769
1770 /*static*/ void dump_die (struct die_info *, int max_level);
1771
1772 static void store_in_ref_table (struct die_info *,
1773 struct dwarf2_cu *);
1774
1775 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1776
1777 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1778
1779 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1780 const struct attribute *,
1781 struct dwarf2_cu **);
1782
1783 static struct die_info *follow_die_ref (struct die_info *,
1784 const struct attribute *,
1785 struct dwarf2_cu **);
1786
1787 static struct die_info *follow_die_sig (struct die_info *,
1788 const struct attribute *,
1789 struct dwarf2_cu **);
1790
1791 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1792 struct dwarf2_cu *);
1793
1794 static struct type *get_DW_AT_signature_type (struct die_info *,
1795 const struct attribute *,
1796 struct dwarf2_cu *);
1797
1798 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1799
1800 static void read_signatured_type (struct signatured_type *);
1801
1802 static int attr_to_dynamic_prop (const struct attribute *attr,
1803 struct die_info *die, struct dwarf2_cu *cu,
1804 struct dynamic_prop *prop);
1805
1806 /* memory allocation interface */
1807
1808 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1809
1810 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1811
1812 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1813
1814 static int attr_form_is_block (const struct attribute *);
1815
1816 static int attr_form_is_section_offset (const struct attribute *);
1817
1818 static int attr_form_is_constant (const struct attribute *);
1819
1820 static int attr_form_is_ref (const struct attribute *);
1821
1822 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1823 struct dwarf2_loclist_baton *baton,
1824 const struct attribute *attr);
1825
1826 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1827 struct symbol *sym,
1828 struct dwarf2_cu *cu,
1829 int is_block);
1830
1831 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1832 const gdb_byte *info_ptr,
1833 struct abbrev_info *abbrev);
1834
1835 static hashval_t partial_die_hash (const void *item);
1836
1837 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1838
1839 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1840 (sect_offset sect_off, unsigned int offset_in_dwz,
1841 struct dwarf2_per_objfile *dwarf2_per_objfile);
1842
1843 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1844 struct die_info *comp_unit_die,
1845 enum language pretend_language);
1846
1847 static void age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1848
1849 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1850
1851 static struct type *set_die_type (struct die_info *, struct type *,
1852 struct dwarf2_cu *);
1853
1854 static void create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1855
1856 static int create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1857
1858 static void load_full_comp_unit (struct dwarf2_per_cu_data *, bool,
1859 enum language);
1860
1861 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1862 enum language);
1863
1864 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1865 enum language);
1866
1867 static void dwarf2_add_dependence (struct dwarf2_cu *,
1868 struct dwarf2_per_cu_data *);
1869
1870 static void dwarf2_mark (struct dwarf2_cu *);
1871
1872 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1873
1874 static struct type *get_die_type_at_offset (sect_offset,
1875 struct dwarf2_per_cu_data *);
1876
1877 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1878
1879 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1880 enum language pretend_language);
1881
1882 static void process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile);
1883
1884 /* Class, the destructor of which frees all allocated queue entries. This
1885 will only have work to do if an error was thrown while processing the
1886 dwarf. If no error was thrown then the queue entries should have all
1887 been processed, and freed, as we went along. */
1888
1889 class dwarf2_queue_guard
1890 {
1891 public:
1892 dwarf2_queue_guard () = default;
1893
1894 /* Free any entries remaining on the queue. There should only be
1895 entries left if we hit an error while processing the dwarf. */
1896 ~dwarf2_queue_guard ()
1897 {
1898 struct dwarf2_queue_item *item, *last;
1899
1900 item = dwarf2_queue;
1901 while (item)
1902 {
1903 /* Anything still marked queued is likely to be in an
1904 inconsistent state, so discard it. */
1905 if (item->per_cu->queued)
1906 {
1907 if (item->per_cu->cu != NULL)
1908 free_one_cached_comp_unit (item->per_cu);
1909 item->per_cu->queued = 0;
1910 }
1911
1912 last = item;
1913 item = item->next;
1914 xfree (last);
1915 }
1916
1917 dwarf2_queue = dwarf2_queue_tail = NULL;
1918 }
1919 };
1920
1921 /* The return type of find_file_and_directory. Note, the enclosed
1922 string pointers are only valid while this object is valid. */
1923
1924 struct file_and_directory
1925 {
1926 /* The filename. This is never NULL. */
1927 const char *name;
1928
1929 /* The compilation directory. NULL if not known. If we needed to
1930 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
1931 points directly to the DW_AT_comp_dir string attribute owned by
1932 the obstack that owns the DIE. */
1933 const char *comp_dir;
1934
1935 /* If we needed to build a new string for comp_dir, this is what
1936 owns the storage. */
1937 std::string comp_dir_storage;
1938 };
1939
1940 static file_and_directory find_file_and_directory (struct die_info *die,
1941 struct dwarf2_cu *cu);
1942
1943 static char *file_full_name (int file, struct line_header *lh,
1944 const char *comp_dir);
1945
1946 /* Expected enum dwarf_unit_type for read_comp_unit_head. */
1947 enum class rcuh_kind { COMPILE, TYPE };
1948
1949 static const gdb_byte *read_and_check_comp_unit_head
1950 (struct dwarf2_per_objfile* dwarf2_per_objfile,
1951 struct comp_unit_head *header,
1952 struct dwarf2_section_info *section,
1953 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1954 rcuh_kind section_kind);
1955
1956 static void init_cutu_and_read_dies
1957 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1958 int use_existing_cu, int keep, bool skip_partial,
1959 die_reader_func_ftype *die_reader_func, void *data);
1960
1961 static void init_cutu_and_read_dies_simple
1962 (struct dwarf2_per_cu_data *this_cu,
1963 die_reader_func_ftype *die_reader_func, void *data);
1964
1965 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1966
1967 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1968
1969 static struct dwo_unit *lookup_dwo_unit_in_dwp
1970 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1971 struct dwp_file *dwp_file, const char *comp_dir,
1972 ULONGEST signature, int is_debug_types);
1973
1974 static struct dwp_file *get_dwp_file
1975 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1976
1977 static struct dwo_unit *lookup_dwo_comp_unit
1978 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1979
1980 static struct dwo_unit *lookup_dwo_type_unit
1981 (struct signatured_type *, const char *, const char *);
1982
1983 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1984
1985 static void free_dwo_file (struct dwo_file *);
1986
1987 /* A unique_ptr helper to free a dwo_file. */
1988
1989 struct dwo_file_deleter
1990 {
1991 void operator() (struct dwo_file *df) const
1992 {
1993 free_dwo_file (df);
1994 }
1995 };
1996
1997 /* A unique pointer to a dwo_file. */
1998
1999 typedef std::unique_ptr<struct dwo_file, dwo_file_deleter> dwo_file_up;
2000
2001 static void process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile);
2002
2003 static void check_producer (struct dwarf2_cu *cu);
2004
2005 static void free_line_header_voidp (void *arg);
2006 \f
2007 /* Various complaints about symbol reading that don't abort the process. */
2008
2009 static void
2010 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2011 {
2012 complaint (_("statement list doesn't fit in .debug_line section"));
2013 }
2014
2015 static void
2016 dwarf2_debug_line_missing_file_complaint (void)
2017 {
2018 complaint (_(".debug_line section has line data without a file"));
2019 }
2020
2021 static void
2022 dwarf2_debug_line_missing_end_sequence_complaint (void)
2023 {
2024 complaint (_(".debug_line section has line "
2025 "program sequence without an end"));
2026 }
2027
2028 static void
2029 dwarf2_complex_location_expr_complaint (void)
2030 {
2031 complaint (_("location expression too complex"));
2032 }
2033
2034 static void
2035 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
2036 int arg3)
2037 {
2038 complaint (_("const value length mismatch for '%s', got %d, expected %d"),
2039 arg1, arg2, arg3);
2040 }
2041
2042 static void
2043 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2044 {
2045 complaint (_("debug info runs off end of %s section"
2046 " [in module %s]"),
2047 get_section_name (section),
2048 get_section_file_name (section));
2049 }
2050
2051 static void
2052 dwarf2_macro_malformed_definition_complaint (const char *arg1)
2053 {
2054 complaint (_("macro debug info contains a "
2055 "malformed macro definition:\n`%s'"),
2056 arg1);
2057 }
2058
2059 static void
2060 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
2061 {
2062 complaint (_("invalid attribute class or form for '%s' in '%s'"),
2063 arg1, arg2);
2064 }
2065
2066 /* Hash function for line_header_hash. */
2067
2068 static hashval_t
2069 line_header_hash (const struct line_header *ofs)
2070 {
2071 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
2072 }
2073
2074 /* Hash function for htab_create_alloc_ex for line_header_hash. */
2075
2076 static hashval_t
2077 line_header_hash_voidp (const void *item)
2078 {
2079 const struct line_header *ofs = (const struct line_header *) item;
2080
2081 return line_header_hash (ofs);
2082 }
2083
2084 /* Equality function for line_header_hash. */
2085
2086 static int
2087 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
2088 {
2089 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
2090 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
2091
2092 return (ofs_lhs->sect_off == ofs_rhs->sect_off
2093 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2094 }
2095
2096 \f
2097
2098 /* Read the given attribute value as an address, taking the attribute's
2099 form into account. */
2100
2101 static CORE_ADDR
2102 attr_value_as_address (struct attribute *attr)
2103 {
2104 CORE_ADDR addr;
2105
2106 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2107 {
2108 /* Aside from a few clearly defined exceptions, attributes that
2109 contain an address must always be in DW_FORM_addr form.
2110 Unfortunately, some compilers happen to be violating this
2111 requirement by encoding addresses using other forms, such
2112 as DW_FORM_data4 for example. For those broken compilers,
2113 we try to do our best, without any guarantee of success,
2114 to interpret the address correctly. It would also be nice
2115 to generate a complaint, but that would require us to maintain
2116 a list of legitimate cases where a non-address form is allowed,
2117 as well as update callers to pass in at least the CU's DWARF
2118 version. This is more overhead than what we're willing to
2119 expand for a pretty rare case. */
2120 addr = DW_UNSND (attr);
2121 }
2122 else
2123 addr = DW_ADDR (attr);
2124
2125 return addr;
2126 }
2127
2128 /* See declaration. */
2129
2130 dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
2131 const dwarf2_debug_sections *names)
2132 : objfile (objfile_)
2133 {
2134 if (names == NULL)
2135 names = &dwarf2_elf_names;
2136
2137 bfd *obfd = objfile->obfd;
2138
2139 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
2140 locate_sections (obfd, sec, *names);
2141 }
2142
2143 static void free_dwo_files (htab_t dwo_files, struct objfile *objfile);
2144
2145 dwarf2_per_objfile::~dwarf2_per_objfile ()
2146 {
2147 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
2148 free_cached_comp_units ();
2149
2150 if (quick_file_names_table)
2151 htab_delete (quick_file_names_table);
2152
2153 if (line_header_hash)
2154 htab_delete (line_header_hash);
2155
2156 for (dwarf2_per_cu_data *per_cu : all_comp_units)
2157 VEC_free (dwarf2_per_cu_ptr, per_cu->imported_symtabs);
2158
2159 for (signatured_type *sig_type : all_type_units)
2160 VEC_free (dwarf2_per_cu_ptr, sig_type->per_cu.imported_symtabs);
2161
2162 VEC_free (dwarf2_section_info_def, types);
2163
2164 if (dwo_files != NULL)
2165 free_dwo_files (dwo_files, objfile);
2166
2167 /* Everything else should be on the objfile obstack. */
2168 }
2169
2170 /* See declaration. */
2171
2172 void
2173 dwarf2_per_objfile::free_cached_comp_units ()
2174 {
2175 dwarf2_per_cu_data *per_cu = read_in_chain;
2176 dwarf2_per_cu_data **last_chain = &read_in_chain;
2177 while (per_cu != NULL)
2178 {
2179 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
2180
2181 delete per_cu->cu;
2182 *last_chain = next_cu;
2183 per_cu = next_cu;
2184 }
2185 }
2186
2187 /* A helper class that calls free_cached_comp_units on
2188 destruction. */
2189
2190 class free_cached_comp_units
2191 {
2192 public:
2193
2194 explicit free_cached_comp_units (dwarf2_per_objfile *per_objfile)
2195 : m_per_objfile (per_objfile)
2196 {
2197 }
2198
2199 ~free_cached_comp_units ()
2200 {
2201 m_per_objfile->free_cached_comp_units ();
2202 }
2203
2204 DISABLE_COPY_AND_ASSIGN (free_cached_comp_units);
2205
2206 private:
2207
2208 dwarf2_per_objfile *m_per_objfile;
2209 };
2210
2211 /* Try to locate the sections we need for DWARF 2 debugging
2212 information and return true if we have enough to do something.
2213 NAMES points to the dwarf2 section names, or is NULL if the standard
2214 ELF names are used. */
2215
2216 int
2217 dwarf2_has_info (struct objfile *objfile,
2218 const struct dwarf2_debug_sections *names)
2219 {
2220 if (objfile->flags & OBJF_READNEVER)
2221 return 0;
2222
2223 struct dwarf2_per_objfile *dwarf2_per_objfile
2224 = get_dwarf2_per_objfile (objfile);
2225
2226 if (dwarf2_per_objfile == NULL)
2227 {
2228 /* Initialize per-objfile state. */
2229 dwarf2_per_objfile
2230 = new (&objfile->objfile_obstack) struct dwarf2_per_objfile (objfile,
2231 names);
2232 set_dwarf2_per_objfile (objfile, dwarf2_per_objfile);
2233 }
2234 return (!dwarf2_per_objfile->info.is_virtual
2235 && dwarf2_per_objfile->info.s.section != NULL
2236 && !dwarf2_per_objfile->abbrev.is_virtual
2237 && dwarf2_per_objfile->abbrev.s.section != NULL);
2238 }
2239
2240 /* Return the containing section of virtual section SECTION. */
2241
2242 static struct dwarf2_section_info *
2243 get_containing_section (const struct dwarf2_section_info *section)
2244 {
2245 gdb_assert (section->is_virtual);
2246 return section->s.containing_section;
2247 }
2248
2249 /* Return the bfd owner of SECTION. */
2250
2251 static struct bfd *
2252 get_section_bfd_owner (const struct dwarf2_section_info *section)
2253 {
2254 if (section->is_virtual)
2255 {
2256 section = get_containing_section (section);
2257 gdb_assert (!section->is_virtual);
2258 }
2259 return section->s.section->owner;
2260 }
2261
2262 /* Return the bfd section of SECTION.
2263 Returns NULL if the section is not present. */
2264
2265 static asection *
2266 get_section_bfd_section (const struct dwarf2_section_info *section)
2267 {
2268 if (section->is_virtual)
2269 {
2270 section = get_containing_section (section);
2271 gdb_assert (!section->is_virtual);
2272 }
2273 return section->s.section;
2274 }
2275
2276 /* Return the name of SECTION. */
2277
2278 static const char *
2279 get_section_name (const struct dwarf2_section_info *section)
2280 {
2281 asection *sectp = get_section_bfd_section (section);
2282
2283 gdb_assert (sectp != NULL);
2284 return bfd_section_name (get_section_bfd_owner (section), sectp);
2285 }
2286
2287 /* Return the name of the file SECTION is in. */
2288
2289 static const char *
2290 get_section_file_name (const struct dwarf2_section_info *section)
2291 {
2292 bfd *abfd = get_section_bfd_owner (section);
2293
2294 return bfd_get_filename (abfd);
2295 }
2296
2297 /* Return the id of SECTION.
2298 Returns 0 if SECTION doesn't exist. */
2299
2300 static int
2301 get_section_id (const struct dwarf2_section_info *section)
2302 {
2303 asection *sectp = get_section_bfd_section (section);
2304
2305 if (sectp == NULL)
2306 return 0;
2307 return sectp->id;
2308 }
2309
2310 /* Return the flags of SECTION.
2311 SECTION (or containing section if this is a virtual section) must exist. */
2312
2313 static int
2314 get_section_flags (const struct dwarf2_section_info *section)
2315 {
2316 asection *sectp = get_section_bfd_section (section);
2317
2318 gdb_assert (sectp != NULL);
2319 return bfd_get_section_flags (sectp->owner, sectp);
2320 }
2321
2322 /* When loading sections, we look either for uncompressed section or for
2323 compressed section names. */
2324
2325 static int
2326 section_is_p (const char *section_name,
2327 const struct dwarf2_section_names *names)
2328 {
2329 if (names->normal != NULL
2330 && strcmp (section_name, names->normal) == 0)
2331 return 1;
2332 if (names->compressed != NULL
2333 && strcmp (section_name, names->compressed) == 0)
2334 return 1;
2335 return 0;
2336 }
2337
2338 /* See declaration. */
2339
2340 void
2341 dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
2342 const dwarf2_debug_sections &names)
2343 {
2344 flagword aflag = bfd_get_section_flags (abfd, sectp);
2345
2346 if ((aflag & SEC_HAS_CONTENTS) == 0)
2347 {
2348 }
2349 else if (section_is_p (sectp->name, &names.info))
2350 {
2351 this->info.s.section = sectp;
2352 this->info.size = bfd_get_section_size (sectp);
2353 }
2354 else if (section_is_p (sectp->name, &names.abbrev))
2355 {
2356 this->abbrev.s.section = sectp;
2357 this->abbrev.size = bfd_get_section_size (sectp);
2358 }
2359 else if (section_is_p (sectp->name, &names.line))
2360 {
2361 this->line.s.section = sectp;
2362 this->line.size = bfd_get_section_size (sectp);
2363 }
2364 else if (section_is_p (sectp->name, &names.loc))
2365 {
2366 this->loc.s.section = sectp;
2367 this->loc.size = bfd_get_section_size (sectp);
2368 }
2369 else if (section_is_p (sectp->name, &names.loclists))
2370 {
2371 this->loclists.s.section = sectp;
2372 this->loclists.size = bfd_get_section_size (sectp);
2373 }
2374 else if (section_is_p (sectp->name, &names.macinfo))
2375 {
2376 this->macinfo.s.section = sectp;
2377 this->macinfo.size = bfd_get_section_size (sectp);
2378 }
2379 else if (section_is_p (sectp->name, &names.macro))
2380 {
2381 this->macro.s.section = sectp;
2382 this->macro.size = bfd_get_section_size (sectp);
2383 }
2384 else if (section_is_p (sectp->name, &names.str))
2385 {
2386 this->str.s.section = sectp;
2387 this->str.size = bfd_get_section_size (sectp);
2388 }
2389 else if (section_is_p (sectp->name, &names.line_str))
2390 {
2391 this->line_str.s.section = sectp;
2392 this->line_str.size = bfd_get_section_size (sectp);
2393 }
2394 else if (section_is_p (sectp->name, &names.addr))
2395 {
2396 this->addr.s.section = sectp;
2397 this->addr.size = bfd_get_section_size (sectp);
2398 }
2399 else if (section_is_p (sectp->name, &names.frame))
2400 {
2401 this->frame.s.section = sectp;
2402 this->frame.size = bfd_get_section_size (sectp);
2403 }
2404 else if (section_is_p (sectp->name, &names.eh_frame))
2405 {
2406 this->eh_frame.s.section = sectp;
2407 this->eh_frame.size = bfd_get_section_size (sectp);
2408 }
2409 else if (section_is_p (sectp->name, &names.ranges))
2410 {
2411 this->ranges.s.section = sectp;
2412 this->ranges.size = bfd_get_section_size (sectp);
2413 }
2414 else if (section_is_p (sectp->name, &names.rnglists))
2415 {
2416 this->rnglists.s.section = sectp;
2417 this->rnglists.size = bfd_get_section_size (sectp);
2418 }
2419 else if (section_is_p (sectp->name, &names.types))
2420 {
2421 struct dwarf2_section_info type_section;
2422
2423 memset (&type_section, 0, sizeof (type_section));
2424 type_section.s.section = sectp;
2425 type_section.size = bfd_get_section_size (sectp);
2426
2427 VEC_safe_push (dwarf2_section_info_def, this->types,
2428 &type_section);
2429 }
2430 else if (section_is_p (sectp->name, &names.gdb_index))
2431 {
2432 this->gdb_index.s.section = sectp;
2433 this->gdb_index.size = bfd_get_section_size (sectp);
2434 }
2435 else if (section_is_p (sectp->name, &names.debug_names))
2436 {
2437 this->debug_names.s.section = sectp;
2438 this->debug_names.size = bfd_get_section_size (sectp);
2439 }
2440 else if (section_is_p (sectp->name, &names.debug_aranges))
2441 {
2442 this->debug_aranges.s.section = sectp;
2443 this->debug_aranges.size = bfd_get_section_size (sectp);
2444 }
2445
2446 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2447 && bfd_section_vma (abfd, sectp) == 0)
2448 this->has_section_at_zero = true;
2449 }
2450
2451 /* A helper function that decides whether a section is empty,
2452 or not present. */
2453
2454 static int
2455 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2456 {
2457 if (section->is_virtual)
2458 return section->size == 0;
2459 return section->s.section == NULL || section->size == 0;
2460 }
2461
2462 /* See dwarf2read.h. */
2463
2464 void
2465 dwarf2_read_section (struct objfile *objfile, dwarf2_section_info *info)
2466 {
2467 asection *sectp;
2468 bfd *abfd;
2469 gdb_byte *buf, *retbuf;
2470
2471 if (info->readin)
2472 return;
2473 info->buffer = NULL;
2474 info->readin = 1;
2475
2476 if (dwarf2_section_empty_p (info))
2477 return;
2478
2479 sectp = get_section_bfd_section (info);
2480
2481 /* If this is a virtual section we need to read in the real one first. */
2482 if (info->is_virtual)
2483 {
2484 struct dwarf2_section_info *containing_section =
2485 get_containing_section (info);
2486
2487 gdb_assert (sectp != NULL);
2488 if ((sectp->flags & SEC_RELOC) != 0)
2489 {
2490 error (_("Dwarf Error: DWP format V2 with relocations is not"
2491 " supported in section %s [in module %s]"),
2492 get_section_name (info), get_section_file_name (info));
2493 }
2494 dwarf2_read_section (objfile, containing_section);
2495 /* Other code should have already caught virtual sections that don't
2496 fit. */
2497 gdb_assert (info->virtual_offset + info->size
2498 <= containing_section->size);
2499 /* If the real section is empty or there was a problem reading the
2500 section we shouldn't get here. */
2501 gdb_assert (containing_section->buffer != NULL);
2502 info->buffer = containing_section->buffer + info->virtual_offset;
2503 return;
2504 }
2505
2506 /* If the section has relocations, we must read it ourselves.
2507 Otherwise we attach it to the BFD. */
2508 if ((sectp->flags & SEC_RELOC) == 0)
2509 {
2510 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2511 return;
2512 }
2513
2514 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2515 info->buffer = buf;
2516
2517 /* When debugging .o files, we may need to apply relocations; see
2518 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2519 We never compress sections in .o files, so we only need to
2520 try this when the section is not compressed. */
2521 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2522 if (retbuf != NULL)
2523 {
2524 info->buffer = retbuf;
2525 return;
2526 }
2527
2528 abfd = get_section_bfd_owner (info);
2529 gdb_assert (abfd != NULL);
2530
2531 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2532 || bfd_bread (buf, info->size, abfd) != info->size)
2533 {
2534 error (_("Dwarf Error: Can't read DWARF data"
2535 " in section %s [in module %s]"),
2536 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2537 }
2538 }
2539
2540 /* A helper function that returns the size of a section in a safe way.
2541 If you are positive that the section has been read before using the
2542 size, then it is safe to refer to the dwarf2_section_info object's
2543 "size" field directly. In other cases, you must call this
2544 function, because for compressed sections the size field is not set
2545 correctly until the section has been read. */
2546
2547 static bfd_size_type
2548 dwarf2_section_size (struct objfile *objfile,
2549 struct dwarf2_section_info *info)
2550 {
2551 if (!info->readin)
2552 dwarf2_read_section (objfile, info);
2553 return info->size;
2554 }
2555
2556 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2557 SECTION_NAME. */
2558
2559 void
2560 dwarf2_get_section_info (struct objfile *objfile,
2561 enum dwarf2_section_enum sect,
2562 asection **sectp, const gdb_byte **bufp,
2563 bfd_size_type *sizep)
2564 {
2565 struct dwarf2_per_objfile *data
2566 = (struct dwarf2_per_objfile *) objfile_data (objfile,
2567 dwarf2_objfile_data_key);
2568 struct dwarf2_section_info *info;
2569
2570 /* We may see an objfile without any DWARF, in which case we just
2571 return nothing. */
2572 if (data == NULL)
2573 {
2574 *sectp = NULL;
2575 *bufp = NULL;
2576 *sizep = 0;
2577 return;
2578 }
2579 switch (sect)
2580 {
2581 case DWARF2_DEBUG_FRAME:
2582 info = &data->frame;
2583 break;
2584 case DWARF2_EH_FRAME:
2585 info = &data->eh_frame;
2586 break;
2587 default:
2588 gdb_assert_not_reached ("unexpected section");
2589 }
2590
2591 dwarf2_read_section (objfile, info);
2592
2593 *sectp = get_section_bfd_section (info);
2594 *bufp = info->buffer;
2595 *sizep = info->size;
2596 }
2597
2598 /* A helper function to find the sections for a .dwz file. */
2599
2600 static void
2601 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2602 {
2603 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2604
2605 /* Note that we only support the standard ELF names, because .dwz
2606 is ELF-only (at the time of writing). */
2607 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2608 {
2609 dwz_file->abbrev.s.section = sectp;
2610 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2611 }
2612 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2613 {
2614 dwz_file->info.s.section = sectp;
2615 dwz_file->info.size = bfd_get_section_size (sectp);
2616 }
2617 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2618 {
2619 dwz_file->str.s.section = sectp;
2620 dwz_file->str.size = bfd_get_section_size (sectp);
2621 }
2622 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2623 {
2624 dwz_file->line.s.section = sectp;
2625 dwz_file->line.size = bfd_get_section_size (sectp);
2626 }
2627 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2628 {
2629 dwz_file->macro.s.section = sectp;
2630 dwz_file->macro.size = bfd_get_section_size (sectp);
2631 }
2632 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2633 {
2634 dwz_file->gdb_index.s.section = sectp;
2635 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2636 }
2637 else if (section_is_p (sectp->name, &dwarf2_elf_names.debug_names))
2638 {
2639 dwz_file->debug_names.s.section = sectp;
2640 dwz_file->debug_names.size = bfd_get_section_size (sectp);
2641 }
2642 }
2643
2644 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2645 there is no .gnu_debugaltlink section in the file. Error if there
2646 is such a section but the file cannot be found. */
2647
2648 static struct dwz_file *
2649 dwarf2_get_dwz_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
2650 {
2651 const char *filename;
2652 bfd_size_type buildid_len_arg;
2653 size_t buildid_len;
2654 bfd_byte *buildid;
2655
2656 if (dwarf2_per_objfile->dwz_file != NULL)
2657 return dwarf2_per_objfile->dwz_file.get ();
2658
2659 bfd_set_error (bfd_error_no_error);
2660 gdb::unique_xmalloc_ptr<char> data
2661 (bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2662 &buildid_len_arg, &buildid));
2663 if (data == NULL)
2664 {
2665 if (bfd_get_error () == bfd_error_no_error)
2666 return NULL;
2667 error (_("could not read '.gnu_debugaltlink' section: %s"),
2668 bfd_errmsg (bfd_get_error ()));
2669 }
2670
2671 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
2672
2673 buildid_len = (size_t) buildid_len_arg;
2674
2675 filename = data.get ();
2676
2677 std::string abs_storage;
2678 if (!IS_ABSOLUTE_PATH (filename))
2679 {
2680 gdb::unique_xmalloc_ptr<char> abs
2681 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2682
2683 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
2684 filename = abs_storage.c_str ();
2685 }
2686
2687 /* First try the file name given in the section. If that doesn't
2688 work, try to use the build-id instead. */
2689 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2690 if (dwz_bfd != NULL)
2691 {
2692 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2693 dwz_bfd.release ();
2694 }
2695
2696 if (dwz_bfd == NULL)
2697 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2698
2699 if (dwz_bfd == NULL)
2700 error (_("could not find '.gnu_debugaltlink' file for %s"),
2701 objfile_name (dwarf2_per_objfile->objfile));
2702
2703 std::unique_ptr<struct dwz_file> result
2704 (new struct dwz_file (std::move (dwz_bfd)));
2705
2706 bfd_map_over_sections (result->dwz_bfd.get (), locate_dwz_sections,
2707 result.get ());
2708
2709 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd,
2710 result->dwz_bfd.get ());
2711 dwarf2_per_objfile->dwz_file = std::move (result);
2712 return dwarf2_per_objfile->dwz_file.get ();
2713 }
2714 \f
2715 /* DWARF quick_symbols_functions support. */
2716
2717 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2718 unique line tables, so we maintain a separate table of all .debug_line
2719 derived entries to support the sharing.
2720 All the quick functions need is the list of file names. We discard the
2721 line_header when we're done and don't need to record it here. */
2722 struct quick_file_names
2723 {
2724 /* The data used to construct the hash key. */
2725 struct stmt_list_hash hash;
2726
2727 /* The number of entries in file_names, real_names. */
2728 unsigned int num_file_names;
2729
2730 /* The file names from the line table, after being run through
2731 file_full_name. */
2732 const char **file_names;
2733
2734 /* The file names from the line table after being run through
2735 gdb_realpath. These are computed lazily. */
2736 const char **real_names;
2737 };
2738
2739 /* When using the index (and thus not using psymtabs), each CU has an
2740 object of this type. This is used to hold information needed by
2741 the various "quick" methods. */
2742 struct dwarf2_per_cu_quick_data
2743 {
2744 /* The file table. This can be NULL if there was no file table
2745 or it's currently not read in.
2746 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2747 struct quick_file_names *file_names;
2748
2749 /* The corresponding symbol table. This is NULL if symbols for this
2750 CU have not yet been read. */
2751 struct compunit_symtab *compunit_symtab;
2752
2753 /* A temporary mark bit used when iterating over all CUs in
2754 expand_symtabs_matching. */
2755 unsigned int mark : 1;
2756
2757 /* True if we've tried to read the file table and found there isn't one.
2758 There will be no point in trying to read it again next time. */
2759 unsigned int no_file_data : 1;
2760 };
2761
2762 /* Utility hash function for a stmt_list_hash. */
2763
2764 static hashval_t
2765 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2766 {
2767 hashval_t v = 0;
2768
2769 if (stmt_list_hash->dwo_unit != NULL)
2770 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2771 v += to_underlying (stmt_list_hash->line_sect_off);
2772 return v;
2773 }
2774
2775 /* Utility equality function for a stmt_list_hash. */
2776
2777 static int
2778 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2779 const struct stmt_list_hash *rhs)
2780 {
2781 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2782 return 0;
2783 if (lhs->dwo_unit != NULL
2784 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2785 return 0;
2786
2787 return lhs->line_sect_off == rhs->line_sect_off;
2788 }
2789
2790 /* Hash function for a quick_file_names. */
2791
2792 static hashval_t
2793 hash_file_name_entry (const void *e)
2794 {
2795 const struct quick_file_names *file_data
2796 = (const struct quick_file_names *) e;
2797
2798 return hash_stmt_list_entry (&file_data->hash);
2799 }
2800
2801 /* Equality function for a quick_file_names. */
2802
2803 static int
2804 eq_file_name_entry (const void *a, const void *b)
2805 {
2806 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2807 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2808
2809 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2810 }
2811
2812 /* Delete function for a quick_file_names. */
2813
2814 static void
2815 delete_file_name_entry (void *e)
2816 {
2817 struct quick_file_names *file_data = (struct quick_file_names *) e;
2818 int i;
2819
2820 for (i = 0; i < file_data->num_file_names; ++i)
2821 {
2822 xfree ((void*) file_data->file_names[i]);
2823 if (file_data->real_names)
2824 xfree ((void*) file_data->real_names[i]);
2825 }
2826
2827 /* The space for the struct itself lives on objfile_obstack,
2828 so we don't free it here. */
2829 }
2830
2831 /* Create a quick_file_names hash table. */
2832
2833 static htab_t
2834 create_quick_file_names_table (unsigned int nr_initial_entries)
2835 {
2836 return htab_create_alloc (nr_initial_entries,
2837 hash_file_name_entry, eq_file_name_entry,
2838 delete_file_name_entry, xcalloc, xfree);
2839 }
2840
2841 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2842 have to be created afterwards. You should call age_cached_comp_units after
2843 processing PER_CU->CU. dw2_setup must have been already called. */
2844
2845 static void
2846 load_cu (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2847 {
2848 if (per_cu->is_debug_types)
2849 load_full_type_unit (per_cu);
2850 else
2851 load_full_comp_unit (per_cu, skip_partial, language_minimal);
2852
2853 if (per_cu->cu == NULL)
2854 return; /* Dummy CU. */
2855
2856 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2857 }
2858
2859 /* Read in the symbols for PER_CU. */
2860
2861 static void
2862 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2863 {
2864 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2865
2866 /* Skip type_unit_groups, reading the type units they contain
2867 is handled elsewhere. */
2868 if (IS_TYPE_UNIT_GROUP (per_cu))
2869 return;
2870
2871 /* The destructor of dwarf2_queue_guard frees any entries left on
2872 the queue. After this point we're guaranteed to leave this function
2873 with the dwarf queue empty. */
2874 dwarf2_queue_guard q_guard;
2875
2876 if (dwarf2_per_objfile->using_index
2877 ? per_cu->v.quick->compunit_symtab == NULL
2878 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2879 {
2880 queue_comp_unit (per_cu, language_minimal);
2881 load_cu (per_cu, skip_partial);
2882
2883 /* If we just loaded a CU from a DWO, and we're working with an index
2884 that may badly handle TUs, load all the TUs in that DWO as well.
2885 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2886 if (!per_cu->is_debug_types
2887 && per_cu->cu != NULL
2888 && per_cu->cu->dwo_unit != NULL
2889 && dwarf2_per_objfile->index_table != NULL
2890 && dwarf2_per_objfile->index_table->version <= 7
2891 /* DWP files aren't supported yet. */
2892 && get_dwp_file (dwarf2_per_objfile) == NULL)
2893 queue_and_load_all_dwo_tus (per_cu);
2894 }
2895
2896 process_queue (dwarf2_per_objfile);
2897
2898 /* Age the cache, releasing compilation units that have not
2899 been used recently. */
2900 age_cached_comp_units (dwarf2_per_objfile);
2901 }
2902
2903 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2904 the objfile from which this CU came. Returns the resulting symbol
2905 table. */
2906
2907 static struct compunit_symtab *
2908 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2909 {
2910 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2911
2912 gdb_assert (dwarf2_per_objfile->using_index);
2913 if (!per_cu->v.quick->compunit_symtab)
2914 {
2915 free_cached_comp_units freer (dwarf2_per_objfile);
2916 scoped_restore decrementer = increment_reading_symtab ();
2917 dw2_do_instantiate_symtab (per_cu, skip_partial);
2918 process_cu_includes (dwarf2_per_objfile);
2919 }
2920
2921 return per_cu->v.quick->compunit_symtab;
2922 }
2923
2924 /* See declaration. */
2925
2926 dwarf2_per_cu_data *
2927 dwarf2_per_objfile::get_cutu (int index)
2928 {
2929 if (index >= this->all_comp_units.size ())
2930 {
2931 index -= this->all_comp_units.size ();
2932 gdb_assert (index < this->all_type_units.size ());
2933 return &this->all_type_units[index]->per_cu;
2934 }
2935
2936 return this->all_comp_units[index];
2937 }
2938
2939 /* See declaration. */
2940
2941 dwarf2_per_cu_data *
2942 dwarf2_per_objfile::get_cu (int index)
2943 {
2944 gdb_assert (index >= 0 && index < this->all_comp_units.size ());
2945
2946 return this->all_comp_units[index];
2947 }
2948
2949 /* See declaration. */
2950
2951 signatured_type *
2952 dwarf2_per_objfile::get_tu (int index)
2953 {
2954 gdb_assert (index >= 0 && index < this->all_type_units.size ());
2955
2956 return this->all_type_units[index];
2957 }
2958
2959 /* Return a new dwarf2_per_cu_data allocated on OBJFILE's
2960 objfile_obstack, and constructed with the specified field
2961 values. */
2962
2963 static dwarf2_per_cu_data *
2964 create_cu_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2965 struct dwarf2_section_info *section,
2966 int is_dwz,
2967 sect_offset sect_off, ULONGEST length)
2968 {
2969 struct objfile *objfile = dwarf2_per_objfile->objfile;
2970 dwarf2_per_cu_data *the_cu
2971 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2972 struct dwarf2_per_cu_data);
2973 the_cu->sect_off = sect_off;
2974 the_cu->length = length;
2975 the_cu->dwarf2_per_objfile = dwarf2_per_objfile;
2976 the_cu->section = section;
2977 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2978 struct dwarf2_per_cu_quick_data);
2979 the_cu->is_dwz = is_dwz;
2980 return the_cu;
2981 }
2982
2983 /* A helper for create_cus_from_index that handles a given list of
2984 CUs. */
2985
2986 static void
2987 create_cus_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2988 const gdb_byte *cu_list, offset_type n_elements,
2989 struct dwarf2_section_info *section,
2990 int is_dwz)
2991 {
2992 for (offset_type i = 0; i < n_elements; i += 2)
2993 {
2994 gdb_static_assert (sizeof (ULONGEST) >= 8);
2995
2996 sect_offset sect_off
2997 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2998 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2999 cu_list += 2 * 8;
3000
3001 dwarf2_per_cu_data *per_cu
3002 = create_cu_from_index_list (dwarf2_per_objfile, section, is_dwz,
3003 sect_off, length);
3004 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
3005 }
3006 }
3007
3008 /* Read the CU list from the mapped index, and use it to create all
3009 the CU objects for this objfile. */
3010
3011 static void
3012 create_cus_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3013 const gdb_byte *cu_list, offset_type cu_list_elements,
3014 const gdb_byte *dwz_list, offset_type dwz_elements)
3015 {
3016 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
3017 dwarf2_per_objfile->all_comp_units.reserve
3018 ((cu_list_elements + dwz_elements) / 2);
3019
3020 create_cus_from_index_list (dwarf2_per_objfile, cu_list, cu_list_elements,
3021 &dwarf2_per_objfile->info, 0);
3022
3023 if (dwz_elements == 0)
3024 return;
3025
3026 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3027 create_cus_from_index_list (dwarf2_per_objfile, dwz_list, dwz_elements,
3028 &dwz->info, 1);
3029 }
3030
3031 /* Create the signatured type hash table from the index. */
3032
3033 static void
3034 create_signatured_type_table_from_index
3035 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3036 struct dwarf2_section_info *section,
3037 const gdb_byte *bytes,
3038 offset_type elements)
3039 {
3040 struct objfile *objfile = dwarf2_per_objfile->objfile;
3041
3042 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3043 dwarf2_per_objfile->all_type_units.reserve (elements / 3);
3044
3045 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3046
3047 for (offset_type i = 0; i < elements; i += 3)
3048 {
3049 struct signatured_type *sig_type;
3050 ULONGEST signature;
3051 void **slot;
3052 cu_offset type_offset_in_tu;
3053
3054 gdb_static_assert (sizeof (ULONGEST) >= 8);
3055 sect_offset sect_off
3056 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
3057 type_offset_in_tu
3058 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
3059 BFD_ENDIAN_LITTLE);
3060 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
3061 bytes += 3 * 8;
3062
3063 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3064 struct signatured_type);
3065 sig_type->signature = signature;
3066 sig_type->type_offset_in_tu = type_offset_in_tu;
3067 sig_type->per_cu.is_debug_types = 1;
3068 sig_type->per_cu.section = section;
3069 sig_type->per_cu.sect_off = sect_off;
3070 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3071 sig_type->per_cu.v.quick
3072 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3073 struct dwarf2_per_cu_quick_data);
3074
3075 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3076 *slot = sig_type;
3077
3078 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3079 }
3080
3081 dwarf2_per_objfile->signatured_types = sig_types_hash;
3082 }
3083
3084 /* Create the signatured type hash table from .debug_names. */
3085
3086 static void
3087 create_signatured_type_table_from_debug_names
3088 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3089 const mapped_debug_names &map,
3090 struct dwarf2_section_info *section,
3091 struct dwarf2_section_info *abbrev_section)
3092 {
3093 struct objfile *objfile = dwarf2_per_objfile->objfile;
3094
3095 dwarf2_read_section (objfile, section);
3096 dwarf2_read_section (objfile, abbrev_section);
3097
3098 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3099 dwarf2_per_objfile->all_type_units.reserve (map.tu_count);
3100
3101 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3102
3103 for (uint32_t i = 0; i < map.tu_count; ++i)
3104 {
3105 struct signatured_type *sig_type;
3106 void **slot;
3107
3108 sect_offset sect_off
3109 = (sect_offset) (extract_unsigned_integer
3110 (map.tu_table_reordered + i * map.offset_size,
3111 map.offset_size,
3112 map.dwarf5_byte_order));
3113
3114 comp_unit_head cu_header;
3115 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
3116 abbrev_section,
3117 section->buffer + to_underlying (sect_off),
3118 rcuh_kind::TYPE);
3119
3120 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3121 struct signatured_type);
3122 sig_type->signature = cu_header.signature;
3123 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
3124 sig_type->per_cu.is_debug_types = 1;
3125 sig_type->per_cu.section = section;
3126 sig_type->per_cu.sect_off = sect_off;
3127 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3128 sig_type->per_cu.v.quick
3129 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3130 struct dwarf2_per_cu_quick_data);
3131
3132 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3133 *slot = sig_type;
3134
3135 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3136 }
3137
3138 dwarf2_per_objfile->signatured_types = sig_types_hash;
3139 }
3140
3141 /* Read the address map data from the mapped index, and use it to
3142 populate the objfile's psymtabs_addrmap. */
3143
3144 static void
3145 create_addrmap_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3146 struct mapped_index *index)
3147 {
3148 struct objfile *objfile = dwarf2_per_objfile->objfile;
3149 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3150 const gdb_byte *iter, *end;
3151 struct addrmap *mutable_map;
3152 CORE_ADDR baseaddr;
3153
3154 auto_obstack temp_obstack;
3155
3156 mutable_map = addrmap_create_mutable (&temp_obstack);
3157
3158 iter = index->address_table.data ();
3159 end = iter + index->address_table.size ();
3160
3161 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3162
3163 while (iter < end)
3164 {
3165 ULONGEST hi, lo, cu_index;
3166 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3167 iter += 8;
3168 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3169 iter += 8;
3170 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
3171 iter += 4;
3172
3173 if (lo > hi)
3174 {
3175 complaint (_(".gdb_index address table has invalid range (%s - %s)"),
3176 hex_string (lo), hex_string (hi));
3177 continue;
3178 }
3179
3180 if (cu_index >= dwarf2_per_objfile->all_comp_units.size ())
3181 {
3182 complaint (_(".gdb_index address table has invalid CU number %u"),
3183 (unsigned) cu_index);
3184 continue;
3185 }
3186
3187 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr) - baseaddr;
3188 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr) - baseaddr;
3189 addrmap_set_empty (mutable_map, lo, hi - 1,
3190 dwarf2_per_objfile->get_cu (cu_index));
3191 }
3192
3193 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3194 &objfile->objfile_obstack);
3195 }
3196
3197 /* Read the address map data from DWARF-5 .debug_aranges, and use it to
3198 populate the objfile's psymtabs_addrmap. */
3199
3200 static void
3201 create_addrmap_from_aranges (struct dwarf2_per_objfile *dwarf2_per_objfile,
3202 struct dwarf2_section_info *section)
3203 {
3204 struct objfile *objfile = dwarf2_per_objfile->objfile;
3205 bfd *abfd = objfile->obfd;
3206 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3207 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
3208 SECT_OFF_TEXT (objfile));
3209
3210 auto_obstack temp_obstack;
3211 addrmap *mutable_map = addrmap_create_mutable (&temp_obstack);
3212
3213 std::unordered_map<sect_offset,
3214 dwarf2_per_cu_data *,
3215 gdb::hash_enum<sect_offset>>
3216 debug_info_offset_to_per_cu;
3217 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3218 {
3219 const auto insertpair
3220 = debug_info_offset_to_per_cu.emplace (per_cu->sect_off, per_cu);
3221 if (!insertpair.second)
3222 {
3223 warning (_("Section .debug_aranges in %s has duplicate "
3224 "debug_info_offset %s, ignoring .debug_aranges."),
3225 objfile_name (objfile), sect_offset_str (per_cu->sect_off));
3226 return;
3227 }
3228 }
3229
3230 dwarf2_read_section (objfile, section);
3231
3232 const bfd_endian dwarf5_byte_order = gdbarch_byte_order (gdbarch);
3233
3234 const gdb_byte *addr = section->buffer;
3235
3236 while (addr < section->buffer + section->size)
3237 {
3238 const gdb_byte *const entry_addr = addr;
3239 unsigned int bytes_read;
3240
3241 const LONGEST entry_length = read_initial_length (abfd, addr,
3242 &bytes_read);
3243 addr += bytes_read;
3244
3245 const gdb_byte *const entry_end = addr + entry_length;
3246 const bool dwarf5_is_dwarf64 = bytes_read != 4;
3247 const uint8_t offset_size = dwarf5_is_dwarf64 ? 8 : 4;
3248 if (addr + entry_length > section->buffer + section->size)
3249 {
3250 warning (_("Section .debug_aranges in %s entry at offset %zu "
3251 "length %s exceeds section length %s, "
3252 "ignoring .debug_aranges."),
3253 objfile_name (objfile), entry_addr - section->buffer,
3254 plongest (bytes_read + entry_length),
3255 pulongest (section->size));
3256 return;
3257 }
3258
3259 /* The version number. */
3260 const uint16_t version = read_2_bytes (abfd, addr);
3261 addr += 2;
3262 if (version != 2)
3263 {
3264 warning (_("Section .debug_aranges in %s entry at offset %zu "
3265 "has unsupported version %d, ignoring .debug_aranges."),
3266 objfile_name (objfile), entry_addr - section->buffer,
3267 version);
3268 return;
3269 }
3270
3271 const uint64_t debug_info_offset
3272 = extract_unsigned_integer (addr, offset_size, dwarf5_byte_order);
3273 addr += offset_size;
3274 const auto per_cu_it
3275 = debug_info_offset_to_per_cu.find (sect_offset (debug_info_offset));
3276 if (per_cu_it == debug_info_offset_to_per_cu.cend ())
3277 {
3278 warning (_("Section .debug_aranges in %s entry at offset %zu "
3279 "debug_info_offset %s does not exists, "
3280 "ignoring .debug_aranges."),
3281 objfile_name (objfile), entry_addr - section->buffer,
3282 pulongest (debug_info_offset));
3283 return;
3284 }
3285 dwarf2_per_cu_data *const per_cu = per_cu_it->second;
3286
3287 const uint8_t address_size = *addr++;
3288 if (address_size < 1 || address_size > 8)
3289 {
3290 warning (_("Section .debug_aranges in %s entry at offset %zu "
3291 "address_size %u is invalid, ignoring .debug_aranges."),
3292 objfile_name (objfile), entry_addr - section->buffer,
3293 address_size);
3294 return;
3295 }
3296
3297 const uint8_t segment_selector_size = *addr++;
3298 if (segment_selector_size != 0)
3299 {
3300 warning (_("Section .debug_aranges in %s entry at offset %zu "
3301 "segment_selector_size %u is not supported, "
3302 "ignoring .debug_aranges."),
3303 objfile_name (objfile), entry_addr - section->buffer,
3304 segment_selector_size);
3305 return;
3306 }
3307
3308 /* Must pad to an alignment boundary that is twice the address
3309 size. It is undocumented by the DWARF standard but GCC does
3310 use it. */
3311 for (size_t padding = ((-(addr - section->buffer))
3312 & (2 * address_size - 1));
3313 padding > 0; padding--)
3314 if (*addr++ != 0)
3315 {
3316 warning (_("Section .debug_aranges in %s entry at offset %zu "
3317 "padding is not zero, ignoring .debug_aranges."),
3318 objfile_name (objfile), entry_addr - section->buffer);
3319 return;
3320 }
3321
3322 for (;;)
3323 {
3324 if (addr + 2 * address_size > entry_end)
3325 {
3326 warning (_("Section .debug_aranges in %s entry at offset %zu "
3327 "address list is not properly terminated, "
3328 "ignoring .debug_aranges."),
3329 objfile_name (objfile), entry_addr - section->buffer);
3330 return;
3331 }
3332 ULONGEST start = extract_unsigned_integer (addr, address_size,
3333 dwarf5_byte_order);
3334 addr += address_size;
3335 ULONGEST length = extract_unsigned_integer (addr, address_size,
3336 dwarf5_byte_order);
3337 addr += address_size;
3338 if (start == 0 && length == 0)
3339 break;
3340 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
3341 {
3342 /* Symbol was eliminated due to a COMDAT group. */
3343 continue;
3344 }
3345 ULONGEST end = start + length;
3346 start = (gdbarch_adjust_dwarf2_addr (gdbarch, start + baseaddr)
3347 - baseaddr);
3348 end = (gdbarch_adjust_dwarf2_addr (gdbarch, end + baseaddr)
3349 - baseaddr);
3350 addrmap_set_empty (mutable_map, start, end - 1, per_cu);
3351 }
3352 }
3353
3354 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3355 &objfile->objfile_obstack);
3356 }
3357
3358 /* Find a slot in the mapped index INDEX for the object named NAME.
3359 If NAME is found, set *VEC_OUT to point to the CU vector in the
3360 constant pool and return true. If NAME cannot be found, return
3361 false. */
3362
3363 static bool
3364 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3365 offset_type **vec_out)
3366 {
3367 offset_type hash;
3368 offset_type slot, step;
3369 int (*cmp) (const char *, const char *);
3370
3371 gdb::unique_xmalloc_ptr<char> without_params;
3372 if (current_language->la_language == language_cplus
3373 || current_language->la_language == language_fortran
3374 || current_language->la_language == language_d)
3375 {
3376 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3377 not contain any. */
3378
3379 if (strchr (name, '(') != NULL)
3380 {
3381 without_params = cp_remove_params (name);
3382
3383 if (without_params != NULL)
3384 name = without_params.get ();
3385 }
3386 }
3387
3388 /* Index version 4 did not support case insensitive searches. But the
3389 indices for case insensitive languages are built in lowercase, therefore
3390 simulate our NAME being searched is also lowercased. */
3391 hash = mapped_index_string_hash ((index->version == 4
3392 && case_sensitivity == case_sensitive_off
3393 ? 5 : index->version),
3394 name);
3395
3396 slot = hash & (index->symbol_table.size () - 1);
3397 step = ((hash * 17) & (index->symbol_table.size () - 1)) | 1;
3398 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3399
3400 for (;;)
3401 {
3402 const char *str;
3403
3404 const auto &bucket = index->symbol_table[slot];
3405 if (bucket.name == 0 && bucket.vec == 0)
3406 return false;
3407
3408 str = index->constant_pool + MAYBE_SWAP (bucket.name);
3409 if (!cmp (name, str))
3410 {
3411 *vec_out = (offset_type *) (index->constant_pool
3412 + MAYBE_SWAP (bucket.vec));
3413 return true;
3414 }
3415
3416 slot = (slot + step) & (index->symbol_table.size () - 1);
3417 }
3418 }
3419
3420 /* A helper function that reads the .gdb_index from BUFFER and fills
3421 in MAP. FILENAME is the name of the file containing the data;
3422 it is used for error reporting. DEPRECATED_OK is true if it is
3423 ok to use deprecated sections.
3424
3425 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3426 out parameters that are filled in with information about the CU and
3427 TU lists in the section.
3428
3429 Returns true if all went well, false otherwise. */
3430
3431 static bool
3432 read_gdb_index_from_buffer (struct objfile *objfile,
3433 const char *filename,
3434 bool deprecated_ok,
3435 gdb::array_view<const gdb_byte> buffer,
3436 struct mapped_index *map,
3437 const gdb_byte **cu_list,
3438 offset_type *cu_list_elements,
3439 const gdb_byte **types_list,
3440 offset_type *types_list_elements)
3441 {
3442 const gdb_byte *addr = &buffer[0];
3443
3444 /* Version check. */
3445 offset_type version = MAYBE_SWAP (*(offset_type *) addr);
3446 /* Versions earlier than 3 emitted every copy of a psymbol. This
3447 causes the index to behave very poorly for certain requests. Version 3
3448 contained incomplete addrmap. So, it seems better to just ignore such
3449 indices. */
3450 if (version < 4)
3451 {
3452 static int warning_printed = 0;
3453 if (!warning_printed)
3454 {
3455 warning (_("Skipping obsolete .gdb_index section in %s."),
3456 filename);
3457 warning_printed = 1;
3458 }
3459 return 0;
3460 }
3461 /* Index version 4 uses a different hash function than index version
3462 5 and later.
3463
3464 Versions earlier than 6 did not emit psymbols for inlined
3465 functions. Using these files will cause GDB not to be able to
3466 set breakpoints on inlined functions by name, so we ignore these
3467 indices unless the user has done
3468 "set use-deprecated-index-sections on". */
3469 if (version < 6 && !deprecated_ok)
3470 {
3471 static int warning_printed = 0;
3472 if (!warning_printed)
3473 {
3474 warning (_("\
3475 Skipping deprecated .gdb_index section in %s.\n\
3476 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3477 to use the section anyway."),
3478 filename);
3479 warning_printed = 1;
3480 }
3481 return 0;
3482 }
3483 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3484 of the TU (for symbols coming from TUs),
3485 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3486 Plus gold-generated indices can have duplicate entries for global symbols,
3487 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3488 These are just performance bugs, and we can't distinguish gdb-generated
3489 indices from gold-generated ones, so issue no warning here. */
3490
3491 /* Indexes with higher version than the one supported by GDB may be no
3492 longer backward compatible. */
3493 if (version > 8)
3494 return 0;
3495
3496 map->version = version;
3497
3498 offset_type *metadata = (offset_type *) (addr + sizeof (offset_type));
3499
3500 int i = 0;
3501 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3502 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3503 / 8);
3504 ++i;
3505
3506 *types_list = addr + MAYBE_SWAP (metadata[i]);
3507 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3508 - MAYBE_SWAP (metadata[i]))
3509 / 8);
3510 ++i;
3511
3512 const gdb_byte *address_table = addr + MAYBE_SWAP (metadata[i]);
3513 const gdb_byte *address_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3514 map->address_table
3515 = gdb::array_view<const gdb_byte> (address_table, address_table_end);
3516 ++i;
3517
3518 const gdb_byte *symbol_table = addr + MAYBE_SWAP (metadata[i]);
3519 const gdb_byte *symbol_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3520 map->symbol_table
3521 = gdb::array_view<mapped_index::symbol_table_slot>
3522 ((mapped_index::symbol_table_slot *) symbol_table,
3523 (mapped_index::symbol_table_slot *) symbol_table_end);
3524
3525 ++i;
3526 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3527
3528 return 1;
3529 }
3530
3531 /* Callback types for dwarf2_read_gdb_index. */
3532
3533 typedef gdb::function_view
3534 <gdb::array_view<const gdb_byte>(objfile *, dwarf2_per_objfile *)>
3535 get_gdb_index_contents_ftype;
3536 typedef gdb::function_view
3537 <gdb::array_view<const gdb_byte>(objfile *, dwz_file *)>
3538 get_gdb_index_contents_dwz_ftype;
3539
3540 /* Read .gdb_index. If everything went ok, initialize the "quick"
3541 elements of all the CUs and return 1. Otherwise, return 0. */
3542
3543 static int
3544 dwarf2_read_gdb_index
3545 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3546 get_gdb_index_contents_ftype get_gdb_index_contents,
3547 get_gdb_index_contents_dwz_ftype get_gdb_index_contents_dwz)
3548 {
3549 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3550 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3551 struct dwz_file *dwz;
3552 struct objfile *objfile = dwarf2_per_objfile->objfile;
3553
3554 gdb::array_view<const gdb_byte> main_index_contents
3555 = get_gdb_index_contents (objfile, dwarf2_per_objfile);
3556
3557 if (main_index_contents.empty ())
3558 return 0;
3559
3560 std::unique_ptr<struct mapped_index> map (new struct mapped_index);
3561 if (!read_gdb_index_from_buffer (objfile, objfile_name (objfile),
3562 use_deprecated_index_sections,
3563 main_index_contents, map.get (), &cu_list,
3564 &cu_list_elements, &types_list,
3565 &types_list_elements))
3566 return 0;
3567
3568 /* Don't use the index if it's empty. */
3569 if (map->symbol_table.empty ())
3570 return 0;
3571
3572 /* If there is a .dwz file, read it so we can get its CU list as
3573 well. */
3574 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3575 if (dwz != NULL)
3576 {
3577 struct mapped_index dwz_map;
3578 const gdb_byte *dwz_types_ignore;
3579 offset_type dwz_types_elements_ignore;
3580
3581 gdb::array_view<const gdb_byte> dwz_index_content
3582 = get_gdb_index_contents_dwz (objfile, dwz);
3583
3584 if (dwz_index_content.empty ())
3585 return 0;
3586
3587 if (!read_gdb_index_from_buffer (objfile,
3588 bfd_get_filename (dwz->dwz_bfd), 1,
3589 dwz_index_content, &dwz_map,
3590 &dwz_list, &dwz_list_elements,
3591 &dwz_types_ignore,
3592 &dwz_types_elements_ignore))
3593 {
3594 warning (_("could not read '.gdb_index' section from %s; skipping"),
3595 bfd_get_filename (dwz->dwz_bfd));
3596 return 0;
3597 }
3598 }
3599
3600 create_cus_from_index (dwarf2_per_objfile, cu_list, cu_list_elements,
3601 dwz_list, dwz_list_elements);
3602
3603 if (types_list_elements)
3604 {
3605 struct dwarf2_section_info *section;
3606
3607 /* We can only handle a single .debug_types when we have an
3608 index. */
3609 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3610 return 0;
3611
3612 section = VEC_index (dwarf2_section_info_def,
3613 dwarf2_per_objfile->types, 0);
3614
3615 create_signatured_type_table_from_index (dwarf2_per_objfile, section,
3616 types_list, types_list_elements);
3617 }
3618
3619 create_addrmap_from_index (dwarf2_per_objfile, map.get ());
3620
3621 dwarf2_per_objfile->index_table = std::move (map);
3622 dwarf2_per_objfile->using_index = 1;
3623 dwarf2_per_objfile->quick_file_names_table =
3624 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
3625
3626 return 1;
3627 }
3628
3629 /* die_reader_func for dw2_get_file_names. */
3630
3631 static void
3632 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3633 const gdb_byte *info_ptr,
3634 struct die_info *comp_unit_die,
3635 int has_children,
3636 void *data)
3637 {
3638 struct dwarf2_cu *cu = reader->cu;
3639 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3640 struct dwarf2_per_objfile *dwarf2_per_objfile
3641 = cu->per_cu->dwarf2_per_objfile;
3642 struct objfile *objfile = dwarf2_per_objfile->objfile;
3643 struct dwarf2_per_cu_data *lh_cu;
3644 struct attribute *attr;
3645 int i;
3646 void **slot;
3647 struct quick_file_names *qfn;
3648
3649 gdb_assert (! this_cu->is_debug_types);
3650
3651 /* Our callers never want to match partial units -- instead they
3652 will match the enclosing full CU. */
3653 if (comp_unit_die->tag == DW_TAG_partial_unit)
3654 {
3655 this_cu->v.quick->no_file_data = 1;
3656 return;
3657 }
3658
3659 lh_cu = this_cu;
3660 slot = NULL;
3661
3662 line_header_up lh;
3663 sect_offset line_offset {};
3664
3665 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3666 if (attr)
3667 {
3668 struct quick_file_names find_entry;
3669
3670 line_offset = (sect_offset) DW_UNSND (attr);
3671
3672 /* We may have already read in this line header (TU line header sharing).
3673 If we have we're done. */
3674 find_entry.hash.dwo_unit = cu->dwo_unit;
3675 find_entry.hash.line_sect_off = line_offset;
3676 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3677 &find_entry, INSERT);
3678 if (*slot != NULL)
3679 {
3680 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3681 return;
3682 }
3683
3684 lh = dwarf_decode_line_header (line_offset, cu);
3685 }
3686 if (lh == NULL)
3687 {
3688 lh_cu->v.quick->no_file_data = 1;
3689 return;
3690 }
3691
3692 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3693 qfn->hash.dwo_unit = cu->dwo_unit;
3694 qfn->hash.line_sect_off = line_offset;
3695 gdb_assert (slot != NULL);
3696 *slot = qfn;
3697
3698 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3699
3700 qfn->num_file_names = lh->file_names.size ();
3701 qfn->file_names =
3702 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->file_names.size ());
3703 for (i = 0; i < lh->file_names.size (); ++i)
3704 qfn->file_names[i] = file_full_name (i + 1, lh.get (), fnd.comp_dir);
3705 qfn->real_names = NULL;
3706
3707 lh_cu->v.quick->file_names = qfn;
3708 }
3709
3710 /* A helper for the "quick" functions which attempts to read the line
3711 table for THIS_CU. */
3712
3713 static struct quick_file_names *
3714 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3715 {
3716 /* This should never be called for TUs. */
3717 gdb_assert (! this_cu->is_debug_types);
3718 /* Nor type unit groups. */
3719 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3720
3721 if (this_cu->v.quick->file_names != NULL)
3722 return this_cu->v.quick->file_names;
3723 /* If we know there is no line data, no point in looking again. */
3724 if (this_cu->v.quick->no_file_data)
3725 return NULL;
3726
3727 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3728
3729 if (this_cu->v.quick->no_file_data)
3730 return NULL;
3731 return this_cu->v.quick->file_names;
3732 }
3733
3734 /* A helper for the "quick" functions which computes and caches the
3735 real path for a given file name from the line table. */
3736
3737 static const char *
3738 dw2_get_real_path (struct objfile *objfile,
3739 struct quick_file_names *qfn, int index)
3740 {
3741 if (qfn->real_names == NULL)
3742 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3743 qfn->num_file_names, const char *);
3744
3745 if (qfn->real_names[index] == NULL)
3746 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
3747
3748 return qfn->real_names[index];
3749 }
3750
3751 static struct symtab *
3752 dw2_find_last_source_symtab (struct objfile *objfile)
3753 {
3754 struct dwarf2_per_objfile *dwarf2_per_objfile
3755 = get_dwarf2_per_objfile (objfile);
3756 dwarf2_per_cu_data *dwarf_cu = dwarf2_per_objfile->all_comp_units.back ();
3757 compunit_symtab *cust = dw2_instantiate_symtab (dwarf_cu, false);
3758
3759 if (cust == NULL)
3760 return NULL;
3761
3762 return compunit_primary_filetab (cust);
3763 }
3764
3765 /* Traversal function for dw2_forget_cached_source_info. */
3766
3767 static int
3768 dw2_free_cached_file_names (void **slot, void *info)
3769 {
3770 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3771
3772 if (file_data->real_names)
3773 {
3774 int i;
3775
3776 for (i = 0; i < file_data->num_file_names; ++i)
3777 {
3778 xfree ((void*) file_data->real_names[i]);
3779 file_data->real_names[i] = NULL;
3780 }
3781 }
3782
3783 return 1;
3784 }
3785
3786 static void
3787 dw2_forget_cached_source_info (struct objfile *objfile)
3788 {
3789 struct dwarf2_per_objfile *dwarf2_per_objfile
3790 = get_dwarf2_per_objfile (objfile);
3791
3792 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3793 dw2_free_cached_file_names, NULL);
3794 }
3795
3796 /* Helper function for dw2_map_symtabs_matching_filename that expands
3797 the symtabs and calls the iterator. */
3798
3799 static int
3800 dw2_map_expand_apply (struct objfile *objfile,
3801 struct dwarf2_per_cu_data *per_cu,
3802 const char *name, const char *real_path,
3803 gdb::function_view<bool (symtab *)> callback)
3804 {
3805 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3806
3807 /* Don't visit already-expanded CUs. */
3808 if (per_cu->v.quick->compunit_symtab)
3809 return 0;
3810
3811 /* This may expand more than one symtab, and we want to iterate over
3812 all of them. */
3813 dw2_instantiate_symtab (per_cu, false);
3814
3815 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3816 last_made, callback);
3817 }
3818
3819 /* Implementation of the map_symtabs_matching_filename method. */
3820
3821 static bool
3822 dw2_map_symtabs_matching_filename
3823 (struct objfile *objfile, const char *name, const char *real_path,
3824 gdb::function_view<bool (symtab *)> callback)
3825 {
3826 const char *name_basename = lbasename (name);
3827 struct dwarf2_per_objfile *dwarf2_per_objfile
3828 = get_dwarf2_per_objfile (objfile);
3829
3830 /* The rule is CUs specify all the files, including those used by
3831 any TU, so there's no need to scan TUs here. */
3832
3833 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3834 {
3835 /* We only need to look at symtabs not already expanded. */
3836 if (per_cu->v.quick->compunit_symtab)
3837 continue;
3838
3839 quick_file_names *file_data = dw2_get_file_names (per_cu);
3840 if (file_data == NULL)
3841 continue;
3842
3843 for (int j = 0; j < file_data->num_file_names; ++j)
3844 {
3845 const char *this_name = file_data->file_names[j];
3846 const char *this_real_name;
3847
3848 if (compare_filenames_for_search (this_name, name))
3849 {
3850 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3851 callback))
3852 return true;
3853 continue;
3854 }
3855
3856 /* Before we invoke realpath, which can get expensive when many
3857 files are involved, do a quick comparison of the basenames. */
3858 if (! basenames_may_differ
3859 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3860 continue;
3861
3862 this_real_name = dw2_get_real_path (objfile, file_data, j);
3863 if (compare_filenames_for_search (this_real_name, name))
3864 {
3865 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3866 callback))
3867 return true;
3868 continue;
3869 }
3870
3871 if (real_path != NULL)
3872 {
3873 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3874 gdb_assert (IS_ABSOLUTE_PATH (name));
3875 if (this_real_name != NULL
3876 && FILENAME_CMP (real_path, this_real_name) == 0)
3877 {
3878 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3879 callback))
3880 return true;
3881 continue;
3882 }
3883 }
3884 }
3885 }
3886
3887 return false;
3888 }
3889
3890 /* Struct used to manage iterating over all CUs looking for a symbol. */
3891
3892 struct dw2_symtab_iterator
3893 {
3894 /* The dwarf2_per_objfile owning the CUs we are iterating on. */
3895 struct dwarf2_per_objfile *dwarf2_per_objfile;
3896 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3897 int want_specific_block;
3898 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3899 Unused if !WANT_SPECIFIC_BLOCK. */
3900 int block_index;
3901 /* The kind of symbol we're looking for. */
3902 domain_enum domain;
3903 /* The list of CUs from the index entry of the symbol,
3904 or NULL if not found. */
3905 offset_type *vec;
3906 /* The next element in VEC to look at. */
3907 int next;
3908 /* The number of elements in VEC, or zero if there is no match. */
3909 int length;
3910 /* Have we seen a global version of the symbol?
3911 If so we can ignore all further global instances.
3912 This is to work around gold/15646, inefficient gold-generated
3913 indices. */
3914 int global_seen;
3915 };
3916
3917 /* Initialize the index symtab iterator ITER.
3918 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3919 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3920
3921 static void
3922 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3923 struct dwarf2_per_objfile *dwarf2_per_objfile,
3924 int want_specific_block,
3925 int block_index,
3926 domain_enum domain,
3927 const char *name)
3928 {
3929 iter->dwarf2_per_objfile = dwarf2_per_objfile;
3930 iter->want_specific_block = want_specific_block;
3931 iter->block_index = block_index;
3932 iter->domain = domain;
3933 iter->next = 0;
3934 iter->global_seen = 0;
3935
3936 mapped_index *index = dwarf2_per_objfile->index_table.get ();
3937
3938 /* index is NULL if OBJF_READNOW. */
3939 if (index != NULL && find_slot_in_mapped_hash (index, name, &iter->vec))
3940 iter->length = MAYBE_SWAP (*iter->vec);
3941 else
3942 {
3943 iter->vec = NULL;
3944 iter->length = 0;
3945 }
3946 }
3947
3948 /* Return the next matching CU or NULL if there are no more. */
3949
3950 static struct dwarf2_per_cu_data *
3951 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3952 {
3953 struct dwarf2_per_objfile *dwarf2_per_objfile = iter->dwarf2_per_objfile;
3954
3955 for ( ; iter->next < iter->length; ++iter->next)
3956 {
3957 offset_type cu_index_and_attrs =
3958 MAYBE_SWAP (iter->vec[iter->next + 1]);
3959 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3960 int want_static = iter->block_index != GLOBAL_BLOCK;
3961 /* This value is only valid for index versions >= 7. */
3962 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3963 gdb_index_symbol_kind symbol_kind =
3964 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3965 /* Only check the symbol attributes if they're present.
3966 Indices prior to version 7 don't record them,
3967 and indices >= 7 may elide them for certain symbols
3968 (gold does this). */
3969 int attrs_valid =
3970 (dwarf2_per_objfile->index_table->version >= 7
3971 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3972
3973 /* Don't crash on bad data. */
3974 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
3975 + dwarf2_per_objfile->all_type_units.size ()))
3976 {
3977 complaint (_(".gdb_index entry has bad CU index"
3978 " [in module %s]"),
3979 objfile_name (dwarf2_per_objfile->objfile));
3980 continue;
3981 }
3982
3983 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
3984
3985 /* Skip if already read in. */
3986 if (per_cu->v.quick->compunit_symtab)
3987 continue;
3988
3989 /* Check static vs global. */
3990 if (attrs_valid)
3991 {
3992 if (iter->want_specific_block
3993 && want_static != is_static)
3994 continue;
3995 /* Work around gold/15646. */
3996 if (!is_static && iter->global_seen)
3997 continue;
3998 if (!is_static)
3999 iter->global_seen = 1;
4000 }
4001
4002 /* Only check the symbol's kind if it has one. */
4003 if (attrs_valid)
4004 {
4005 switch (iter->domain)
4006 {
4007 case VAR_DOMAIN:
4008 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
4009 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
4010 /* Some types are also in VAR_DOMAIN. */
4011 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4012 continue;
4013 break;
4014 case STRUCT_DOMAIN:
4015 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4016 continue;
4017 break;
4018 case LABEL_DOMAIN:
4019 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
4020 continue;
4021 break;
4022 default:
4023 break;
4024 }
4025 }
4026
4027 ++iter->next;
4028 return per_cu;
4029 }
4030
4031 return NULL;
4032 }
4033
4034 static struct compunit_symtab *
4035 dw2_lookup_symbol (struct objfile *objfile, int block_index,
4036 const char *name, domain_enum domain)
4037 {
4038 struct compunit_symtab *stab_best = NULL;
4039 struct dwarf2_per_objfile *dwarf2_per_objfile
4040 = get_dwarf2_per_objfile (objfile);
4041
4042 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
4043
4044 struct dw2_symtab_iterator iter;
4045 struct dwarf2_per_cu_data *per_cu;
4046
4047 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 1, block_index, domain, name);
4048
4049 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4050 {
4051 struct symbol *sym, *with_opaque = NULL;
4052 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
4053 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
4054 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
4055
4056 sym = block_find_symbol (block, name, domain,
4057 block_find_non_opaque_type_preferred,
4058 &with_opaque);
4059
4060 /* Some caution must be observed with overloaded functions
4061 and methods, since the index will not contain any overload
4062 information (but NAME might contain it). */
4063
4064 if (sym != NULL
4065 && SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
4066 return stab;
4067 if (with_opaque != NULL
4068 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
4069 stab_best = stab;
4070
4071 /* Keep looking through other CUs. */
4072 }
4073
4074 return stab_best;
4075 }
4076
4077 static void
4078 dw2_print_stats (struct objfile *objfile)
4079 {
4080 struct dwarf2_per_objfile *dwarf2_per_objfile
4081 = get_dwarf2_per_objfile (objfile);
4082 int total = (dwarf2_per_objfile->all_comp_units.size ()
4083 + dwarf2_per_objfile->all_type_units.size ());
4084 int count = 0;
4085
4086 for (int i = 0; i < total; ++i)
4087 {
4088 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4089
4090 if (!per_cu->v.quick->compunit_symtab)
4091 ++count;
4092 }
4093 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
4094 printf_filtered (_(" Number of unread CUs: %d\n"), count);
4095 }
4096
4097 /* This dumps minimal information about the index.
4098 It is called via "mt print objfiles".
4099 One use is to verify .gdb_index has been loaded by the
4100 gdb.dwarf2/gdb-index.exp testcase. */
4101
4102 static void
4103 dw2_dump (struct objfile *objfile)
4104 {
4105 struct dwarf2_per_objfile *dwarf2_per_objfile
4106 = get_dwarf2_per_objfile (objfile);
4107
4108 gdb_assert (dwarf2_per_objfile->using_index);
4109 printf_filtered (".gdb_index:");
4110 if (dwarf2_per_objfile->index_table != NULL)
4111 {
4112 printf_filtered (" version %d\n",
4113 dwarf2_per_objfile->index_table->version);
4114 }
4115 else
4116 printf_filtered (" faked for \"readnow\"\n");
4117 printf_filtered ("\n");
4118 }
4119
4120 static void
4121 dw2_expand_symtabs_for_function (struct objfile *objfile,
4122 const char *func_name)
4123 {
4124 struct dwarf2_per_objfile *dwarf2_per_objfile
4125 = get_dwarf2_per_objfile (objfile);
4126
4127 struct dw2_symtab_iterator iter;
4128 struct dwarf2_per_cu_data *per_cu;
4129
4130 /* Note: It doesn't matter what we pass for block_index here. */
4131 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 0, GLOBAL_BLOCK, VAR_DOMAIN,
4132 func_name);
4133
4134 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4135 dw2_instantiate_symtab (per_cu, false);
4136
4137 }
4138
4139 static void
4140 dw2_expand_all_symtabs (struct objfile *objfile)
4141 {
4142 struct dwarf2_per_objfile *dwarf2_per_objfile
4143 = get_dwarf2_per_objfile (objfile);
4144 int total_units = (dwarf2_per_objfile->all_comp_units.size ()
4145 + dwarf2_per_objfile->all_type_units.size ());
4146
4147 for (int i = 0; i < total_units; ++i)
4148 {
4149 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4150
4151 /* We don't want to directly expand a partial CU, because if we
4152 read it with the wrong language, then assertion failures can
4153 be triggered later on. See PR symtab/23010. So, tell
4154 dw2_instantiate_symtab to skip partial CUs -- any important
4155 partial CU will be read via DW_TAG_imported_unit anyway. */
4156 dw2_instantiate_symtab (per_cu, true);
4157 }
4158 }
4159
4160 static void
4161 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
4162 const char *fullname)
4163 {
4164 struct dwarf2_per_objfile *dwarf2_per_objfile
4165 = get_dwarf2_per_objfile (objfile);
4166
4167 /* We don't need to consider type units here.
4168 This is only called for examining code, e.g. expand_line_sal.
4169 There can be an order of magnitude (or more) more type units
4170 than comp units, and we avoid them if we can. */
4171
4172 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4173 {
4174 /* We only need to look at symtabs not already expanded. */
4175 if (per_cu->v.quick->compunit_symtab)
4176 continue;
4177
4178 quick_file_names *file_data = dw2_get_file_names (per_cu);
4179 if (file_data == NULL)
4180 continue;
4181
4182 for (int j = 0; j < file_data->num_file_names; ++j)
4183 {
4184 const char *this_fullname = file_data->file_names[j];
4185
4186 if (filename_cmp (this_fullname, fullname) == 0)
4187 {
4188 dw2_instantiate_symtab (per_cu, false);
4189 break;
4190 }
4191 }
4192 }
4193 }
4194
4195 static void
4196 dw2_map_matching_symbols (struct objfile *objfile,
4197 const char * name, domain_enum domain,
4198 int global,
4199 int (*callback) (struct block *,
4200 struct symbol *, void *),
4201 void *data, symbol_name_match_type match,
4202 symbol_compare_ftype *ordered_compare)
4203 {
4204 /* Currently unimplemented; used for Ada. The function can be called if the
4205 current language is Ada for a non-Ada objfile using GNU index. As Ada
4206 does not look for non-Ada symbols this function should just return. */
4207 }
4208
4209 /* Symbol name matcher for .gdb_index names.
4210
4211 Symbol names in .gdb_index have a few particularities:
4212
4213 - There's no indication of which is the language of each symbol.
4214
4215 Since each language has its own symbol name matching algorithm,
4216 and we don't know which language is the right one, we must match
4217 each symbol against all languages. This would be a potential
4218 performance problem if it were not mitigated by the
4219 mapped_index::name_components lookup table, which significantly
4220 reduces the number of times we need to call into this matcher,
4221 making it a non-issue.
4222
4223 - Symbol names in the index have no overload (parameter)
4224 information. I.e., in C++, "foo(int)" and "foo(long)" both
4225 appear as "foo" in the index, for example.
4226
4227 This means that the lookup names passed to the symbol name
4228 matcher functions must have no parameter information either
4229 because (e.g.) symbol search name "foo" does not match
4230 lookup-name "foo(int)" [while swapping search name for lookup
4231 name would match].
4232 */
4233 class gdb_index_symbol_name_matcher
4234 {
4235 public:
4236 /* Prepares the vector of comparison functions for LOOKUP_NAME. */
4237 gdb_index_symbol_name_matcher (const lookup_name_info &lookup_name);
4238
4239 /* Walk all the matcher routines and match SYMBOL_NAME against them.
4240 Returns true if any matcher matches. */
4241 bool matches (const char *symbol_name);
4242
4243 private:
4244 /* A reference to the lookup name we're matching against. */
4245 const lookup_name_info &m_lookup_name;
4246
4247 /* A vector holding all the different symbol name matchers, for all
4248 languages. */
4249 std::vector<symbol_name_matcher_ftype *> m_symbol_name_matcher_funcs;
4250 };
4251
4252 gdb_index_symbol_name_matcher::gdb_index_symbol_name_matcher
4253 (const lookup_name_info &lookup_name)
4254 : m_lookup_name (lookup_name)
4255 {
4256 /* Prepare the vector of comparison functions upfront, to avoid
4257 doing the same work for each symbol. Care is taken to avoid
4258 matching with the same matcher more than once if/when multiple
4259 languages use the same matcher function. */
4260 auto &matchers = m_symbol_name_matcher_funcs;
4261 matchers.reserve (nr_languages);
4262
4263 matchers.push_back (default_symbol_name_matcher);
4264
4265 for (int i = 0; i < nr_languages; i++)
4266 {
4267 const language_defn *lang = language_def ((enum language) i);
4268 symbol_name_matcher_ftype *name_matcher
4269 = get_symbol_name_matcher (lang, m_lookup_name);
4270
4271 /* Don't insert the same comparison routine more than once.
4272 Note that we do this linear walk instead of a seemingly
4273 cheaper sorted insert, or use a std::set or something like
4274 that, because relative order of function addresses is not
4275 stable. This is not a problem in practice because the number
4276 of supported languages is low, and the cost here is tiny
4277 compared to the number of searches we'll do afterwards using
4278 this object. */
4279 if (name_matcher != default_symbol_name_matcher
4280 && (std::find (matchers.begin (), matchers.end (), name_matcher)
4281 == matchers.end ()))
4282 matchers.push_back (name_matcher);
4283 }
4284 }
4285
4286 bool
4287 gdb_index_symbol_name_matcher::matches (const char *symbol_name)
4288 {
4289 for (auto matches_name : m_symbol_name_matcher_funcs)
4290 if (matches_name (symbol_name, m_lookup_name, NULL))
4291 return true;
4292
4293 return false;
4294 }
4295
4296 /* Starting from a search name, return the string that finds the upper
4297 bound of all strings that start with SEARCH_NAME in a sorted name
4298 list. Returns the empty string to indicate that the upper bound is
4299 the end of the list. */
4300
4301 static std::string
4302 make_sort_after_prefix_name (const char *search_name)
4303 {
4304 /* When looking to complete "func", we find the upper bound of all
4305 symbols that start with "func" by looking for where we'd insert
4306 the closest string that would follow "func" in lexicographical
4307 order. Usually, that's "func"-with-last-character-incremented,
4308 i.e. "fund". Mind non-ASCII characters, though. Usually those
4309 will be UTF-8 multi-byte sequences, but we can't be certain.
4310 Especially mind the 0xff character, which is a valid character in
4311 non-UTF-8 source character sets (e.g. Latin1 'ÿ'), and we can't
4312 rule out compilers allowing it in identifiers. Note that
4313 conveniently, strcmp/strcasecmp are specified to compare
4314 characters interpreted as unsigned char. So what we do is treat
4315 the whole string as a base 256 number composed of a sequence of
4316 base 256 "digits" and add 1 to it. I.e., adding 1 to 0xff wraps
4317 to 0, and carries 1 to the following more-significant position.
4318 If the very first character in SEARCH_NAME ends up incremented
4319 and carries/overflows, then the upper bound is the end of the
4320 list. The string after the empty string is also the empty
4321 string.
4322
4323 Some examples of this operation:
4324
4325 SEARCH_NAME => "+1" RESULT
4326
4327 "abc" => "abd"
4328 "ab\xff" => "ac"
4329 "\xff" "a" "\xff" => "\xff" "b"
4330 "\xff" => ""
4331 "\xff\xff" => ""
4332 "" => ""
4333
4334 Then, with these symbols for example:
4335
4336 func
4337 func1
4338 fund
4339
4340 completing "func" looks for symbols between "func" and
4341 "func"-with-last-character-incremented, i.e. "fund" (exclusive),
4342 which finds "func" and "func1", but not "fund".
4343
4344 And with:
4345
4346 funcÿ (Latin1 'ÿ' [0xff])
4347 funcÿ1
4348 fund
4349
4350 completing "funcÿ" looks for symbols between "funcÿ" and "fund"
4351 (exclusive), which finds "funcÿ" and "funcÿ1", but not "fund".
4352
4353 And with:
4354
4355 ÿÿ (Latin1 'ÿ' [0xff])
4356 ÿÿ1
4357
4358 completing "ÿ" or "ÿÿ" looks for symbols between between "ÿÿ" and
4359 the end of the list.
4360 */
4361 std::string after = search_name;
4362 while (!after.empty () && (unsigned char) after.back () == 0xff)
4363 after.pop_back ();
4364 if (!after.empty ())
4365 after.back () = (unsigned char) after.back () + 1;
4366 return after;
4367 }
4368
4369 /* See declaration. */
4370
4371 std::pair<std::vector<name_component>::const_iterator,
4372 std::vector<name_component>::const_iterator>
4373 mapped_index_base::find_name_components_bounds
4374 (const lookup_name_info &lookup_name_without_params) const
4375 {
4376 auto *name_cmp
4377 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4378
4379 const char *cplus
4380 = lookup_name_without_params.cplus ().lookup_name ().c_str ();
4381
4382 /* Comparison function object for lower_bound that matches against a
4383 given symbol name. */
4384 auto lookup_compare_lower = [&] (const name_component &elem,
4385 const char *name)
4386 {
4387 const char *elem_qualified = this->symbol_name_at (elem.idx);
4388 const char *elem_name = elem_qualified + elem.name_offset;
4389 return name_cmp (elem_name, name) < 0;
4390 };
4391
4392 /* Comparison function object for upper_bound that matches against a
4393 given symbol name. */
4394 auto lookup_compare_upper = [&] (const char *name,
4395 const name_component &elem)
4396 {
4397 const char *elem_qualified = this->symbol_name_at (elem.idx);
4398 const char *elem_name = elem_qualified + elem.name_offset;
4399 return name_cmp (name, elem_name) < 0;
4400 };
4401
4402 auto begin = this->name_components.begin ();
4403 auto end = this->name_components.end ();
4404
4405 /* Find the lower bound. */
4406 auto lower = [&] ()
4407 {
4408 if (lookup_name_without_params.completion_mode () && cplus[0] == '\0')
4409 return begin;
4410 else
4411 return std::lower_bound (begin, end, cplus, lookup_compare_lower);
4412 } ();
4413
4414 /* Find the upper bound. */
4415 auto upper = [&] ()
4416 {
4417 if (lookup_name_without_params.completion_mode ())
4418 {
4419 /* In completion mode, we want UPPER to point past all
4420 symbols names that have the same prefix. I.e., with
4421 these symbols, and completing "func":
4422
4423 function << lower bound
4424 function1
4425 other_function << upper bound
4426
4427 We find the upper bound by looking for the insertion
4428 point of "func"-with-last-character-incremented,
4429 i.e. "fund". */
4430 std::string after = make_sort_after_prefix_name (cplus);
4431 if (after.empty ())
4432 return end;
4433 return std::lower_bound (lower, end, after.c_str (),
4434 lookup_compare_lower);
4435 }
4436 else
4437 return std::upper_bound (lower, end, cplus, lookup_compare_upper);
4438 } ();
4439
4440 return {lower, upper};
4441 }
4442
4443 /* See declaration. */
4444
4445 void
4446 mapped_index_base::build_name_components ()
4447 {
4448 if (!this->name_components.empty ())
4449 return;
4450
4451 this->name_components_casing = case_sensitivity;
4452 auto *name_cmp
4453 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4454
4455 /* The code below only knows how to break apart components of C++
4456 symbol names (and other languages that use '::' as
4457 namespace/module separator). If we add support for wild matching
4458 to some language that uses some other operator (E.g., Ada, Go and
4459 D use '.'), then we'll need to try splitting the symbol name
4460 according to that language too. Note that Ada does support wild
4461 matching, but doesn't currently support .gdb_index. */
4462 auto count = this->symbol_name_count ();
4463 for (offset_type idx = 0; idx < count; idx++)
4464 {
4465 if (this->symbol_name_slot_invalid (idx))
4466 continue;
4467
4468 const char *name = this->symbol_name_at (idx);
4469
4470 /* Add each name component to the name component table. */
4471 unsigned int previous_len = 0;
4472 for (unsigned int current_len = cp_find_first_component (name);
4473 name[current_len] != '\0';
4474 current_len += cp_find_first_component (name + current_len))
4475 {
4476 gdb_assert (name[current_len] == ':');
4477 this->name_components.push_back ({previous_len, idx});
4478 /* Skip the '::'. */
4479 current_len += 2;
4480 previous_len = current_len;
4481 }
4482 this->name_components.push_back ({previous_len, idx});
4483 }
4484
4485 /* Sort name_components elements by name. */
4486 auto name_comp_compare = [&] (const name_component &left,
4487 const name_component &right)
4488 {
4489 const char *left_qualified = this->symbol_name_at (left.idx);
4490 const char *right_qualified = this->symbol_name_at (right.idx);
4491
4492 const char *left_name = left_qualified + left.name_offset;
4493 const char *right_name = right_qualified + right.name_offset;
4494
4495 return name_cmp (left_name, right_name) < 0;
4496 };
4497
4498 std::sort (this->name_components.begin (),
4499 this->name_components.end (),
4500 name_comp_compare);
4501 }
4502
4503 /* Helper for dw2_expand_symtabs_matching that works with a
4504 mapped_index_base instead of the containing objfile. This is split
4505 to a separate function in order to be able to unit test the
4506 name_components matching using a mock mapped_index_base. For each
4507 symbol name that matches, calls MATCH_CALLBACK, passing it the
4508 symbol's index in the mapped_index_base symbol table. */
4509
4510 static void
4511 dw2_expand_symtabs_matching_symbol
4512 (mapped_index_base &index,
4513 const lookup_name_info &lookup_name_in,
4514 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4515 enum search_domain kind,
4516 gdb::function_view<void (offset_type)> match_callback)
4517 {
4518 lookup_name_info lookup_name_without_params
4519 = lookup_name_in.make_ignore_params ();
4520 gdb_index_symbol_name_matcher lookup_name_matcher
4521 (lookup_name_without_params);
4522
4523 /* Build the symbol name component sorted vector, if we haven't
4524 yet. */
4525 index.build_name_components ();
4526
4527 auto bounds = index.find_name_components_bounds (lookup_name_without_params);
4528
4529 /* Now for each symbol name in range, check to see if we have a name
4530 match, and if so, call the MATCH_CALLBACK callback. */
4531
4532 /* The same symbol may appear more than once in the range though.
4533 E.g., if we're looking for symbols that complete "w", and we have
4534 a symbol named "w1::w2", we'll find the two name components for
4535 that same symbol in the range. To be sure we only call the
4536 callback once per symbol, we first collect the symbol name
4537 indexes that matched in a temporary vector and ignore
4538 duplicates. */
4539 std::vector<offset_type> matches;
4540 matches.reserve (std::distance (bounds.first, bounds.second));
4541
4542 for (; bounds.first != bounds.second; ++bounds.first)
4543 {
4544 const char *qualified = index.symbol_name_at (bounds.first->idx);
4545
4546 if (!lookup_name_matcher.matches (qualified)
4547 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
4548 continue;
4549
4550 matches.push_back (bounds.first->idx);
4551 }
4552
4553 std::sort (matches.begin (), matches.end ());
4554
4555 /* Finally call the callback, once per match. */
4556 ULONGEST prev = -1;
4557 for (offset_type idx : matches)
4558 {
4559 if (prev != idx)
4560 {
4561 match_callback (idx);
4562 prev = idx;
4563 }
4564 }
4565
4566 /* Above we use a type wider than idx's for 'prev', since 0 and
4567 (offset_type)-1 are both possible values. */
4568 static_assert (sizeof (prev) > sizeof (offset_type), "");
4569 }
4570
4571 #if GDB_SELF_TEST
4572
4573 namespace selftests { namespace dw2_expand_symtabs_matching {
4574
4575 /* A mock .gdb_index/.debug_names-like name index table, enough to
4576 exercise dw2_expand_symtabs_matching_symbol, which works with the
4577 mapped_index_base interface. Builds an index from the symbol list
4578 passed as parameter to the constructor. */
4579 class mock_mapped_index : public mapped_index_base
4580 {
4581 public:
4582 mock_mapped_index (gdb::array_view<const char *> symbols)
4583 : m_symbol_table (symbols)
4584 {}
4585
4586 DISABLE_COPY_AND_ASSIGN (mock_mapped_index);
4587
4588 /* Return the number of names in the symbol table. */
4589 size_t symbol_name_count () const override
4590 {
4591 return m_symbol_table.size ();
4592 }
4593
4594 /* Get the name of the symbol at IDX in the symbol table. */
4595 const char *symbol_name_at (offset_type idx) const override
4596 {
4597 return m_symbol_table[idx];
4598 }
4599
4600 private:
4601 gdb::array_view<const char *> m_symbol_table;
4602 };
4603
4604 /* Convenience function that converts a NULL pointer to a "<null>"
4605 string, to pass to print routines. */
4606
4607 static const char *
4608 string_or_null (const char *str)
4609 {
4610 return str != NULL ? str : "<null>";
4611 }
4612
4613 /* Check if a lookup_name_info built from
4614 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
4615 index. EXPECTED_LIST is the list of expected matches, in expected
4616 matching order. If no match expected, then an empty list is
4617 specified. Returns true on success. On failure prints a warning
4618 indicating the file:line that failed, and returns false. */
4619
4620 static bool
4621 check_match (const char *file, int line,
4622 mock_mapped_index &mock_index,
4623 const char *name, symbol_name_match_type match_type,
4624 bool completion_mode,
4625 std::initializer_list<const char *> expected_list)
4626 {
4627 lookup_name_info lookup_name (name, match_type, completion_mode);
4628
4629 bool matched = true;
4630
4631 auto mismatch = [&] (const char *expected_str,
4632 const char *got)
4633 {
4634 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
4635 "expected=\"%s\", got=\"%s\"\n"),
4636 file, line,
4637 (match_type == symbol_name_match_type::FULL
4638 ? "FULL" : "WILD"),
4639 name, string_or_null (expected_str), string_or_null (got));
4640 matched = false;
4641 };
4642
4643 auto expected_it = expected_list.begin ();
4644 auto expected_end = expected_list.end ();
4645
4646 dw2_expand_symtabs_matching_symbol (mock_index, lookup_name,
4647 NULL, ALL_DOMAIN,
4648 [&] (offset_type idx)
4649 {
4650 const char *matched_name = mock_index.symbol_name_at (idx);
4651 const char *expected_str
4652 = expected_it == expected_end ? NULL : *expected_it++;
4653
4654 if (expected_str == NULL || strcmp (expected_str, matched_name) != 0)
4655 mismatch (expected_str, matched_name);
4656 });
4657
4658 const char *expected_str
4659 = expected_it == expected_end ? NULL : *expected_it++;
4660 if (expected_str != NULL)
4661 mismatch (expected_str, NULL);
4662
4663 return matched;
4664 }
4665
4666 /* The symbols added to the mock mapped_index for testing (in
4667 canonical form). */
4668 static const char *test_symbols[] = {
4669 "function",
4670 "std::bar",
4671 "std::zfunction",
4672 "std::zfunction2",
4673 "w1::w2",
4674 "ns::foo<char*>",
4675 "ns::foo<int>",
4676 "ns::foo<long>",
4677 "ns2::tmpl<int>::foo2",
4678 "(anonymous namespace)::A::B::C",
4679
4680 /* These are used to check that the increment-last-char in the
4681 matching algorithm for completion doesn't match "t1_fund" when
4682 completing "t1_func". */
4683 "t1_func",
4684 "t1_func1",
4685 "t1_fund",
4686 "t1_fund1",
4687
4688 /* A UTF-8 name with multi-byte sequences to make sure that
4689 cp-name-parser understands this as a single identifier ("função"
4690 is "function" in PT). */
4691 u8"u8função",
4692
4693 /* \377 (0xff) is Latin1 'ÿ'. */
4694 "yfunc\377",
4695
4696 /* \377 (0xff) is Latin1 'ÿ'. */
4697 "\377",
4698 "\377\377123",
4699
4700 /* A name with all sorts of complications. Starts with "z" to make
4701 it easier for the completion tests below. */
4702 #define Z_SYM_NAME \
4703 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
4704 "::tuple<(anonymous namespace)::ui*, " \
4705 "std::default_delete<(anonymous namespace)::ui>, void>"
4706
4707 Z_SYM_NAME
4708 };
4709
4710 /* Returns true if the mapped_index_base::find_name_component_bounds
4711 method finds EXPECTED_SYMS in INDEX when looking for SEARCH_NAME,
4712 in completion mode. */
4713
4714 static bool
4715 check_find_bounds_finds (mapped_index_base &index,
4716 const char *search_name,
4717 gdb::array_view<const char *> expected_syms)
4718 {
4719 lookup_name_info lookup_name (search_name,
4720 symbol_name_match_type::FULL, true);
4721
4722 auto bounds = index.find_name_components_bounds (lookup_name);
4723
4724 size_t distance = std::distance (bounds.first, bounds.second);
4725 if (distance != expected_syms.size ())
4726 return false;
4727
4728 for (size_t exp_elem = 0; exp_elem < distance; exp_elem++)
4729 {
4730 auto nc_elem = bounds.first + exp_elem;
4731 const char *qualified = index.symbol_name_at (nc_elem->idx);
4732 if (strcmp (qualified, expected_syms[exp_elem]) != 0)
4733 return false;
4734 }
4735
4736 return true;
4737 }
4738
4739 /* Test the lower-level mapped_index::find_name_component_bounds
4740 method. */
4741
4742 static void
4743 test_mapped_index_find_name_component_bounds ()
4744 {
4745 mock_mapped_index mock_index (test_symbols);
4746
4747 mock_index.build_name_components ();
4748
4749 /* Test the lower-level mapped_index::find_name_component_bounds
4750 method in completion mode. */
4751 {
4752 static const char *expected_syms[] = {
4753 "t1_func",
4754 "t1_func1",
4755 };
4756
4757 SELF_CHECK (check_find_bounds_finds (mock_index,
4758 "t1_func", expected_syms));
4759 }
4760
4761 /* Check that the increment-last-char in the name matching algorithm
4762 for completion doesn't get confused with Ansi1 'ÿ' / 0xff. */
4763 {
4764 static const char *expected_syms1[] = {
4765 "\377",
4766 "\377\377123",
4767 };
4768 SELF_CHECK (check_find_bounds_finds (mock_index,
4769 "\377", expected_syms1));
4770
4771 static const char *expected_syms2[] = {
4772 "\377\377123",
4773 };
4774 SELF_CHECK (check_find_bounds_finds (mock_index,
4775 "\377\377", expected_syms2));
4776 }
4777 }
4778
4779 /* Test dw2_expand_symtabs_matching_symbol. */
4780
4781 static void
4782 test_dw2_expand_symtabs_matching_symbol ()
4783 {
4784 mock_mapped_index mock_index (test_symbols);
4785
4786 /* We let all tests run until the end even if some fails, for debug
4787 convenience. */
4788 bool any_mismatch = false;
4789
4790 /* Create the expected symbols list (an initializer_list). Needed
4791 because lists have commas, and we need to pass them to CHECK,
4792 which is a macro. */
4793 #define EXPECT(...) { __VA_ARGS__ }
4794
4795 /* Wrapper for check_match that passes down the current
4796 __FILE__/__LINE__. */
4797 #define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
4798 any_mismatch |= !check_match (__FILE__, __LINE__, \
4799 mock_index, \
4800 NAME, MATCH_TYPE, COMPLETION_MODE, \
4801 EXPECTED_LIST)
4802
4803 /* Identity checks. */
4804 for (const char *sym : test_symbols)
4805 {
4806 /* Should be able to match all existing symbols. */
4807 CHECK_MATCH (sym, symbol_name_match_type::FULL, false,
4808 EXPECT (sym));
4809
4810 /* Should be able to match all existing symbols with
4811 parameters. */
4812 std::string with_params = std::string (sym) + "(int)";
4813 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4814 EXPECT (sym));
4815
4816 /* Should be able to match all existing symbols with
4817 parameters and qualifiers. */
4818 with_params = std::string (sym) + " ( int ) const";
4819 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4820 EXPECT (sym));
4821
4822 /* This should really find sym, but cp-name-parser.y doesn't
4823 know about lvalue/rvalue qualifiers yet. */
4824 with_params = std::string (sym) + " ( int ) &&";
4825 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4826 {});
4827 }
4828
4829 /* Check that the name matching algorithm for completion doesn't get
4830 confused with Latin1 'ÿ' / 0xff. */
4831 {
4832 static const char str[] = "\377";
4833 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4834 EXPECT ("\377", "\377\377123"));
4835 }
4836
4837 /* Check that the increment-last-char in the matching algorithm for
4838 completion doesn't match "t1_fund" when completing "t1_func". */
4839 {
4840 static const char str[] = "t1_func";
4841 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4842 EXPECT ("t1_func", "t1_func1"));
4843 }
4844
4845 /* Check that completion mode works at each prefix of the expected
4846 symbol name. */
4847 {
4848 static const char str[] = "function(int)";
4849 size_t len = strlen (str);
4850 std::string lookup;
4851
4852 for (size_t i = 1; i < len; i++)
4853 {
4854 lookup.assign (str, i);
4855 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4856 EXPECT ("function"));
4857 }
4858 }
4859
4860 /* While "w" is a prefix of both components, the match function
4861 should still only be called once. */
4862 {
4863 CHECK_MATCH ("w", symbol_name_match_type::FULL, true,
4864 EXPECT ("w1::w2"));
4865 CHECK_MATCH ("w", symbol_name_match_type::WILD, true,
4866 EXPECT ("w1::w2"));
4867 }
4868
4869 /* Same, with a "complicated" symbol. */
4870 {
4871 static const char str[] = Z_SYM_NAME;
4872 size_t len = strlen (str);
4873 std::string lookup;
4874
4875 for (size_t i = 1; i < len; i++)
4876 {
4877 lookup.assign (str, i);
4878 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4879 EXPECT (Z_SYM_NAME));
4880 }
4881 }
4882
4883 /* In FULL mode, an incomplete symbol doesn't match. */
4884 {
4885 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false,
4886 {});
4887 }
4888
4889 /* A complete symbol with parameters matches any overload, since the
4890 index has no overload info. */
4891 {
4892 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true,
4893 EXPECT ("std::zfunction", "std::zfunction2"));
4894 CHECK_MATCH ("zfunction(int)", symbol_name_match_type::WILD, true,
4895 EXPECT ("std::zfunction", "std::zfunction2"));
4896 CHECK_MATCH ("zfunc", symbol_name_match_type::WILD, true,
4897 EXPECT ("std::zfunction", "std::zfunction2"));
4898 }
4899
4900 /* Check that whitespace is ignored appropriately. A symbol with a
4901 template argument list. */
4902 {
4903 static const char expected[] = "ns::foo<int>";
4904 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false,
4905 EXPECT (expected));
4906 CHECK_MATCH ("foo < int > ", symbol_name_match_type::WILD, false,
4907 EXPECT (expected));
4908 }
4909
4910 /* Check that whitespace is ignored appropriately. A symbol with a
4911 template argument list that includes a pointer. */
4912 {
4913 static const char expected[] = "ns::foo<char*>";
4914 /* Try both completion and non-completion modes. */
4915 static const bool completion_mode[2] = {false, true};
4916 for (size_t i = 0; i < 2; i++)
4917 {
4918 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL,
4919 completion_mode[i], EXPECT (expected));
4920 CHECK_MATCH ("foo < char * >", symbol_name_match_type::WILD,
4921 completion_mode[i], EXPECT (expected));
4922
4923 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL,
4924 completion_mode[i], EXPECT (expected));
4925 CHECK_MATCH ("foo < char * > (int)", symbol_name_match_type::WILD,
4926 completion_mode[i], EXPECT (expected));
4927 }
4928 }
4929
4930 {
4931 /* Check method qualifiers are ignored. */
4932 static const char expected[] = "ns::foo<char*>";
4933 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
4934 symbol_name_match_type::FULL, true, EXPECT (expected));
4935 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
4936 symbol_name_match_type::FULL, true, EXPECT (expected));
4937 CHECK_MATCH ("foo < char * > ( int ) const",
4938 symbol_name_match_type::WILD, true, EXPECT (expected));
4939 CHECK_MATCH ("foo < char * > ( int ) &&",
4940 symbol_name_match_type::WILD, true, EXPECT (expected));
4941 }
4942
4943 /* Test lookup names that don't match anything. */
4944 {
4945 CHECK_MATCH ("bar2", symbol_name_match_type::WILD, false,
4946 {});
4947
4948 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false,
4949 {});
4950 }
4951
4952 /* Some wild matching tests, exercising "(anonymous namespace)",
4953 which should not be confused with a parameter list. */
4954 {
4955 static const char *syms[] = {
4956 "A::B::C",
4957 "B::C",
4958 "C",
4959 "A :: B :: C ( int )",
4960 "B :: C ( int )",
4961 "C ( int )",
4962 };
4963
4964 for (const char *s : syms)
4965 {
4966 CHECK_MATCH (s, symbol_name_match_type::WILD, false,
4967 EXPECT ("(anonymous namespace)::A::B::C"));
4968 }
4969 }
4970
4971 {
4972 static const char expected[] = "ns2::tmpl<int>::foo2";
4973 CHECK_MATCH ("tmp", symbol_name_match_type::WILD, true,
4974 EXPECT (expected));
4975 CHECK_MATCH ("tmpl<", symbol_name_match_type::WILD, true,
4976 EXPECT (expected));
4977 }
4978
4979 SELF_CHECK (!any_mismatch);
4980
4981 #undef EXPECT
4982 #undef CHECK_MATCH
4983 }
4984
4985 static void
4986 run_test ()
4987 {
4988 test_mapped_index_find_name_component_bounds ();
4989 test_dw2_expand_symtabs_matching_symbol ();
4990 }
4991
4992 }} // namespace selftests::dw2_expand_symtabs_matching
4993
4994 #endif /* GDB_SELF_TEST */
4995
4996 /* If FILE_MATCHER is NULL or if PER_CU has
4997 dwarf2_per_cu_quick_data::MARK set (see
4998 dw_expand_symtabs_matching_file_matcher), expand the CU and call
4999 EXPANSION_NOTIFY on it. */
5000
5001 static void
5002 dw2_expand_symtabs_matching_one
5003 (struct dwarf2_per_cu_data *per_cu,
5004 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5005 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify)
5006 {
5007 if (file_matcher == NULL || per_cu->v.quick->mark)
5008 {
5009 bool symtab_was_null
5010 = (per_cu->v.quick->compunit_symtab == NULL);
5011
5012 dw2_instantiate_symtab (per_cu, false);
5013
5014 if (expansion_notify != NULL
5015 && symtab_was_null
5016 && per_cu->v.quick->compunit_symtab != NULL)
5017 expansion_notify (per_cu->v.quick->compunit_symtab);
5018 }
5019 }
5020
5021 /* Helper for dw2_expand_matching symtabs. Called on each symbol
5022 matched, to expand corresponding CUs that were marked. IDX is the
5023 index of the symbol name that matched. */
5024
5025 static void
5026 dw2_expand_marked_cus
5027 (struct dwarf2_per_objfile *dwarf2_per_objfile, offset_type idx,
5028 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5029 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5030 search_domain kind)
5031 {
5032 offset_type *vec, vec_len, vec_idx;
5033 bool global_seen = false;
5034 mapped_index &index = *dwarf2_per_objfile->index_table;
5035
5036 vec = (offset_type *) (index.constant_pool
5037 + MAYBE_SWAP (index.symbol_table[idx].vec));
5038 vec_len = MAYBE_SWAP (vec[0]);
5039 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
5040 {
5041 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
5042 /* This value is only valid for index versions >= 7. */
5043 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
5044 gdb_index_symbol_kind symbol_kind =
5045 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
5046 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
5047 /* Only check the symbol attributes if they're present.
5048 Indices prior to version 7 don't record them,
5049 and indices >= 7 may elide them for certain symbols
5050 (gold does this). */
5051 int attrs_valid =
5052 (index.version >= 7
5053 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
5054
5055 /* Work around gold/15646. */
5056 if (attrs_valid)
5057 {
5058 if (!is_static && global_seen)
5059 continue;
5060 if (!is_static)
5061 global_seen = true;
5062 }
5063
5064 /* Only check the symbol's kind if it has one. */
5065 if (attrs_valid)
5066 {
5067 switch (kind)
5068 {
5069 case VARIABLES_DOMAIN:
5070 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
5071 continue;
5072 break;
5073 case FUNCTIONS_DOMAIN:
5074 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
5075 continue;
5076 break;
5077 case TYPES_DOMAIN:
5078 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
5079 continue;
5080 break;
5081 default:
5082 break;
5083 }
5084 }
5085
5086 /* Don't crash on bad data. */
5087 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
5088 + dwarf2_per_objfile->all_type_units.size ()))
5089 {
5090 complaint (_(".gdb_index entry has bad CU index"
5091 " [in module %s]"),
5092 objfile_name (dwarf2_per_objfile->objfile));
5093 continue;
5094 }
5095
5096 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
5097 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
5098 expansion_notify);
5099 }
5100 }
5101
5102 /* If FILE_MATCHER is non-NULL, set all the
5103 dwarf2_per_cu_quick_data::MARK of the current DWARF2_PER_OBJFILE
5104 that match FILE_MATCHER. */
5105
5106 static void
5107 dw_expand_symtabs_matching_file_matcher
5108 (struct dwarf2_per_objfile *dwarf2_per_objfile,
5109 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher)
5110 {
5111 if (file_matcher == NULL)
5112 return;
5113
5114 objfile *const objfile = dwarf2_per_objfile->objfile;
5115
5116 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
5117 htab_eq_pointer,
5118 NULL, xcalloc, xfree));
5119 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
5120 htab_eq_pointer,
5121 NULL, xcalloc, xfree));
5122
5123 /* The rule is CUs specify all the files, including those used by
5124 any TU, so there's no need to scan TUs here. */
5125
5126 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5127 {
5128 QUIT;
5129
5130 per_cu->v.quick->mark = 0;
5131
5132 /* We only need to look at symtabs not already expanded. */
5133 if (per_cu->v.quick->compunit_symtab)
5134 continue;
5135
5136 quick_file_names *file_data = dw2_get_file_names (per_cu);
5137 if (file_data == NULL)
5138 continue;
5139
5140 if (htab_find (visited_not_found.get (), file_data) != NULL)
5141 continue;
5142 else if (htab_find (visited_found.get (), file_data) != NULL)
5143 {
5144 per_cu->v.quick->mark = 1;
5145 continue;
5146 }
5147
5148 for (int j = 0; j < file_data->num_file_names; ++j)
5149 {
5150 const char *this_real_name;
5151
5152 if (file_matcher (file_data->file_names[j], false))
5153 {
5154 per_cu->v.quick->mark = 1;
5155 break;
5156 }
5157
5158 /* Before we invoke realpath, which can get expensive when many
5159 files are involved, do a quick comparison of the basenames. */
5160 if (!basenames_may_differ
5161 && !file_matcher (lbasename (file_data->file_names[j]),
5162 true))
5163 continue;
5164
5165 this_real_name = dw2_get_real_path (objfile, file_data, j);
5166 if (file_matcher (this_real_name, false))
5167 {
5168 per_cu->v.quick->mark = 1;
5169 break;
5170 }
5171 }
5172
5173 void **slot = htab_find_slot (per_cu->v.quick->mark
5174 ? visited_found.get ()
5175 : visited_not_found.get (),
5176 file_data, INSERT);
5177 *slot = file_data;
5178 }
5179 }
5180
5181 static void
5182 dw2_expand_symtabs_matching
5183 (struct objfile *objfile,
5184 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5185 const lookup_name_info &lookup_name,
5186 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
5187 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5188 enum search_domain kind)
5189 {
5190 struct dwarf2_per_objfile *dwarf2_per_objfile
5191 = get_dwarf2_per_objfile (objfile);
5192
5193 /* index_table is NULL if OBJF_READNOW. */
5194 if (!dwarf2_per_objfile->index_table)
5195 return;
5196
5197 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
5198
5199 mapped_index &index = *dwarf2_per_objfile->index_table;
5200
5201 dw2_expand_symtabs_matching_symbol (index, lookup_name,
5202 symbol_matcher,
5203 kind, [&] (offset_type idx)
5204 {
5205 dw2_expand_marked_cus (dwarf2_per_objfile, idx, file_matcher,
5206 expansion_notify, kind);
5207 });
5208 }
5209
5210 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
5211 symtab. */
5212
5213 static struct compunit_symtab *
5214 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
5215 CORE_ADDR pc)
5216 {
5217 int i;
5218
5219 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
5220 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
5221 return cust;
5222
5223 if (cust->includes == NULL)
5224 return NULL;
5225
5226 for (i = 0; cust->includes[i]; ++i)
5227 {
5228 struct compunit_symtab *s = cust->includes[i];
5229
5230 s = recursively_find_pc_sect_compunit_symtab (s, pc);
5231 if (s != NULL)
5232 return s;
5233 }
5234
5235 return NULL;
5236 }
5237
5238 static struct compunit_symtab *
5239 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
5240 struct bound_minimal_symbol msymbol,
5241 CORE_ADDR pc,
5242 struct obj_section *section,
5243 int warn_if_readin)
5244 {
5245 struct dwarf2_per_cu_data *data;
5246 struct compunit_symtab *result;
5247
5248 if (!objfile->psymtabs_addrmap)
5249 return NULL;
5250
5251 CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
5252 SECT_OFF_TEXT (objfile));
5253 data = (struct dwarf2_per_cu_data *) addrmap_find (objfile->psymtabs_addrmap,
5254 pc - baseaddr);
5255 if (!data)
5256 return NULL;
5257
5258 if (warn_if_readin && data->v.quick->compunit_symtab)
5259 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
5260 paddress (get_objfile_arch (objfile), pc));
5261
5262 result
5263 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data,
5264 false),
5265 pc);
5266 gdb_assert (result != NULL);
5267 return result;
5268 }
5269
5270 static void
5271 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
5272 void *data, int need_fullname)
5273 {
5274 struct dwarf2_per_objfile *dwarf2_per_objfile
5275 = get_dwarf2_per_objfile (objfile);
5276
5277 if (!dwarf2_per_objfile->filenames_cache)
5278 {
5279 dwarf2_per_objfile->filenames_cache.emplace ();
5280
5281 htab_up visited (htab_create_alloc (10,
5282 htab_hash_pointer, htab_eq_pointer,
5283 NULL, xcalloc, xfree));
5284
5285 /* The rule is CUs specify all the files, including those used
5286 by any TU, so there's no need to scan TUs here. We can
5287 ignore file names coming from already-expanded CUs. */
5288
5289 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5290 {
5291 if (per_cu->v.quick->compunit_symtab)
5292 {
5293 void **slot = htab_find_slot (visited.get (),
5294 per_cu->v.quick->file_names,
5295 INSERT);
5296
5297 *slot = per_cu->v.quick->file_names;
5298 }
5299 }
5300
5301 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5302 {
5303 /* We only need to look at symtabs not already expanded. */
5304 if (per_cu->v.quick->compunit_symtab)
5305 continue;
5306
5307 quick_file_names *file_data = dw2_get_file_names (per_cu);
5308 if (file_data == NULL)
5309 continue;
5310
5311 void **slot = htab_find_slot (visited.get (), file_data, INSERT);
5312 if (*slot)
5313 {
5314 /* Already visited. */
5315 continue;
5316 }
5317 *slot = file_data;
5318
5319 for (int j = 0; j < file_data->num_file_names; ++j)
5320 {
5321 const char *filename = file_data->file_names[j];
5322 dwarf2_per_objfile->filenames_cache->seen (filename);
5323 }
5324 }
5325 }
5326
5327 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
5328 {
5329 gdb::unique_xmalloc_ptr<char> this_real_name;
5330
5331 if (need_fullname)
5332 this_real_name = gdb_realpath (filename);
5333 (*fun) (filename, this_real_name.get (), data);
5334 });
5335 }
5336
5337 static int
5338 dw2_has_symbols (struct objfile *objfile)
5339 {
5340 return 1;
5341 }
5342
5343 const struct quick_symbol_functions dwarf2_gdb_index_functions =
5344 {
5345 dw2_has_symbols,
5346 dw2_find_last_source_symtab,
5347 dw2_forget_cached_source_info,
5348 dw2_map_symtabs_matching_filename,
5349 dw2_lookup_symbol,
5350 dw2_print_stats,
5351 dw2_dump,
5352 dw2_expand_symtabs_for_function,
5353 dw2_expand_all_symtabs,
5354 dw2_expand_symtabs_with_fullname,
5355 dw2_map_matching_symbols,
5356 dw2_expand_symtabs_matching,
5357 dw2_find_pc_sect_compunit_symtab,
5358 NULL,
5359 dw2_map_symbol_filenames
5360 };
5361
5362 /* DWARF-5 debug_names reader. */
5363
5364 /* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
5365 static const gdb_byte dwarf5_augmentation[] = { 'G', 'D', 'B', 0 };
5366
5367 /* A helper function that reads the .debug_names section in SECTION
5368 and fills in MAP. FILENAME is the name of the file containing the
5369 section; it is used for error reporting.
5370
5371 Returns true if all went well, false otherwise. */
5372
5373 static bool
5374 read_debug_names_from_section (struct objfile *objfile,
5375 const char *filename,
5376 struct dwarf2_section_info *section,
5377 mapped_debug_names &map)
5378 {
5379 if (dwarf2_section_empty_p (section))
5380 return false;
5381
5382 /* Older elfutils strip versions could keep the section in the main
5383 executable while splitting it for the separate debug info file. */
5384 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
5385 return false;
5386
5387 dwarf2_read_section (objfile, section);
5388
5389 map.dwarf5_byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
5390
5391 const gdb_byte *addr = section->buffer;
5392
5393 bfd *const abfd = get_section_bfd_owner (section);
5394
5395 unsigned int bytes_read;
5396 LONGEST length = read_initial_length (abfd, addr, &bytes_read);
5397 addr += bytes_read;
5398
5399 map.dwarf5_is_dwarf64 = bytes_read != 4;
5400 map.offset_size = map.dwarf5_is_dwarf64 ? 8 : 4;
5401 if (bytes_read + length != section->size)
5402 {
5403 /* There may be multiple per-CU indices. */
5404 warning (_("Section .debug_names in %s length %s does not match "
5405 "section length %s, ignoring .debug_names."),
5406 filename, plongest (bytes_read + length),
5407 pulongest (section->size));
5408 return false;
5409 }
5410
5411 /* The version number. */
5412 uint16_t version = read_2_bytes (abfd, addr);
5413 addr += 2;
5414 if (version != 5)
5415 {
5416 warning (_("Section .debug_names in %s has unsupported version %d, "
5417 "ignoring .debug_names."),
5418 filename, version);
5419 return false;
5420 }
5421
5422 /* Padding. */
5423 uint16_t padding = read_2_bytes (abfd, addr);
5424 addr += 2;
5425 if (padding != 0)
5426 {
5427 warning (_("Section .debug_names in %s has unsupported padding %d, "
5428 "ignoring .debug_names."),
5429 filename, padding);
5430 return false;
5431 }
5432
5433 /* comp_unit_count - The number of CUs in the CU list. */
5434 map.cu_count = read_4_bytes (abfd, addr);
5435 addr += 4;
5436
5437 /* local_type_unit_count - The number of TUs in the local TU
5438 list. */
5439 map.tu_count = read_4_bytes (abfd, addr);
5440 addr += 4;
5441
5442 /* foreign_type_unit_count - The number of TUs in the foreign TU
5443 list. */
5444 uint32_t foreign_tu_count = read_4_bytes (abfd, addr);
5445 addr += 4;
5446 if (foreign_tu_count != 0)
5447 {
5448 warning (_("Section .debug_names in %s has unsupported %lu foreign TUs, "
5449 "ignoring .debug_names."),
5450 filename, static_cast<unsigned long> (foreign_tu_count));
5451 return false;
5452 }
5453
5454 /* bucket_count - The number of hash buckets in the hash lookup
5455 table. */
5456 map.bucket_count = read_4_bytes (abfd, addr);
5457 addr += 4;
5458
5459 /* name_count - The number of unique names in the index. */
5460 map.name_count = read_4_bytes (abfd, addr);
5461 addr += 4;
5462
5463 /* abbrev_table_size - The size in bytes of the abbreviations
5464 table. */
5465 uint32_t abbrev_table_size = read_4_bytes (abfd, addr);
5466 addr += 4;
5467
5468 /* augmentation_string_size - The size in bytes of the augmentation
5469 string. This value is rounded up to a multiple of 4. */
5470 uint32_t augmentation_string_size = read_4_bytes (abfd, addr);
5471 addr += 4;
5472 map.augmentation_is_gdb = ((augmentation_string_size
5473 == sizeof (dwarf5_augmentation))
5474 && memcmp (addr, dwarf5_augmentation,
5475 sizeof (dwarf5_augmentation)) == 0);
5476 augmentation_string_size += (-augmentation_string_size) & 3;
5477 addr += augmentation_string_size;
5478
5479 /* List of CUs */
5480 map.cu_table_reordered = addr;
5481 addr += map.cu_count * map.offset_size;
5482
5483 /* List of Local TUs */
5484 map.tu_table_reordered = addr;
5485 addr += map.tu_count * map.offset_size;
5486
5487 /* Hash Lookup Table */
5488 map.bucket_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5489 addr += map.bucket_count * 4;
5490 map.hash_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5491 addr += map.name_count * 4;
5492
5493 /* Name Table */
5494 map.name_table_string_offs_reordered = addr;
5495 addr += map.name_count * map.offset_size;
5496 map.name_table_entry_offs_reordered = addr;
5497 addr += map.name_count * map.offset_size;
5498
5499 const gdb_byte *abbrev_table_start = addr;
5500 for (;;)
5501 {
5502 const ULONGEST index_num = read_unsigned_leb128 (abfd, addr, &bytes_read);
5503 addr += bytes_read;
5504 if (index_num == 0)
5505 break;
5506
5507 const auto insertpair
5508 = map.abbrev_map.emplace (index_num, mapped_debug_names::index_val ());
5509 if (!insertpair.second)
5510 {
5511 warning (_("Section .debug_names in %s has duplicate index %s, "
5512 "ignoring .debug_names."),
5513 filename, pulongest (index_num));
5514 return false;
5515 }
5516 mapped_debug_names::index_val &indexval = insertpair.first->second;
5517 indexval.dwarf_tag = read_unsigned_leb128 (abfd, addr, &bytes_read);
5518 addr += bytes_read;
5519
5520 for (;;)
5521 {
5522 mapped_debug_names::index_val::attr attr;
5523 attr.dw_idx = read_unsigned_leb128 (abfd, addr, &bytes_read);
5524 addr += bytes_read;
5525 attr.form = read_unsigned_leb128 (abfd, addr, &bytes_read);
5526 addr += bytes_read;
5527 if (attr.form == DW_FORM_implicit_const)
5528 {
5529 attr.implicit_const = read_signed_leb128 (abfd, addr,
5530 &bytes_read);
5531 addr += bytes_read;
5532 }
5533 if (attr.dw_idx == 0 && attr.form == 0)
5534 break;
5535 indexval.attr_vec.push_back (std::move (attr));
5536 }
5537 }
5538 if (addr != abbrev_table_start + abbrev_table_size)
5539 {
5540 warning (_("Section .debug_names in %s has abbreviation_table "
5541 "of size %zu vs. written as %u, ignoring .debug_names."),
5542 filename, addr - abbrev_table_start, abbrev_table_size);
5543 return false;
5544 }
5545 map.entry_pool = addr;
5546
5547 return true;
5548 }
5549
5550 /* A helper for create_cus_from_debug_names that handles the MAP's CU
5551 list. */
5552
5553 static void
5554 create_cus_from_debug_names_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
5555 const mapped_debug_names &map,
5556 dwarf2_section_info &section,
5557 bool is_dwz)
5558 {
5559 sect_offset sect_off_prev;
5560 for (uint32_t i = 0; i <= map.cu_count; ++i)
5561 {
5562 sect_offset sect_off_next;
5563 if (i < map.cu_count)
5564 {
5565 sect_off_next
5566 = (sect_offset) (extract_unsigned_integer
5567 (map.cu_table_reordered + i * map.offset_size,
5568 map.offset_size,
5569 map.dwarf5_byte_order));
5570 }
5571 else
5572 sect_off_next = (sect_offset) section.size;
5573 if (i >= 1)
5574 {
5575 const ULONGEST length = sect_off_next - sect_off_prev;
5576 dwarf2_per_cu_data *per_cu
5577 = create_cu_from_index_list (dwarf2_per_objfile, &section, is_dwz,
5578 sect_off_prev, length);
5579 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
5580 }
5581 sect_off_prev = sect_off_next;
5582 }
5583 }
5584
5585 /* Read the CU list from the mapped index, and use it to create all
5586 the CU objects for this dwarf2_per_objfile. */
5587
5588 static void
5589 create_cus_from_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile,
5590 const mapped_debug_names &map,
5591 const mapped_debug_names &dwz_map)
5592 {
5593 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
5594 dwarf2_per_objfile->all_comp_units.reserve (map.cu_count + dwz_map.cu_count);
5595
5596 create_cus_from_debug_names_list (dwarf2_per_objfile, map,
5597 dwarf2_per_objfile->info,
5598 false /* is_dwz */);
5599
5600 if (dwz_map.cu_count == 0)
5601 return;
5602
5603 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5604 create_cus_from_debug_names_list (dwarf2_per_objfile, dwz_map, dwz->info,
5605 true /* is_dwz */);
5606 }
5607
5608 /* Read .debug_names. If everything went ok, initialize the "quick"
5609 elements of all the CUs and return true. Otherwise, return false. */
5610
5611 static bool
5612 dwarf2_read_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile)
5613 {
5614 std::unique_ptr<mapped_debug_names> map
5615 (new mapped_debug_names (dwarf2_per_objfile));
5616 mapped_debug_names dwz_map (dwarf2_per_objfile);
5617 struct objfile *objfile = dwarf2_per_objfile->objfile;
5618
5619 if (!read_debug_names_from_section (objfile, objfile_name (objfile),
5620 &dwarf2_per_objfile->debug_names,
5621 *map))
5622 return false;
5623
5624 /* Don't use the index if it's empty. */
5625 if (map->name_count == 0)
5626 return false;
5627
5628 /* If there is a .dwz file, read it so we can get its CU list as
5629 well. */
5630 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5631 if (dwz != NULL)
5632 {
5633 if (!read_debug_names_from_section (objfile,
5634 bfd_get_filename (dwz->dwz_bfd),
5635 &dwz->debug_names, dwz_map))
5636 {
5637 warning (_("could not read '.debug_names' section from %s; skipping"),
5638 bfd_get_filename (dwz->dwz_bfd));
5639 return false;
5640 }
5641 }
5642
5643 create_cus_from_debug_names (dwarf2_per_objfile, *map, dwz_map);
5644
5645 if (map->tu_count != 0)
5646 {
5647 /* We can only handle a single .debug_types when we have an
5648 index. */
5649 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
5650 return false;
5651
5652 dwarf2_section_info *section = VEC_index (dwarf2_section_info_def,
5653 dwarf2_per_objfile->types, 0);
5654
5655 create_signatured_type_table_from_debug_names
5656 (dwarf2_per_objfile, *map, section, &dwarf2_per_objfile->abbrev);
5657 }
5658
5659 create_addrmap_from_aranges (dwarf2_per_objfile,
5660 &dwarf2_per_objfile->debug_aranges);
5661
5662 dwarf2_per_objfile->debug_names_table = std::move (map);
5663 dwarf2_per_objfile->using_index = 1;
5664 dwarf2_per_objfile->quick_file_names_table =
5665 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
5666
5667 return true;
5668 }
5669
5670 /* Type used to manage iterating over all CUs looking for a symbol for
5671 .debug_names. */
5672
5673 class dw2_debug_names_iterator
5674 {
5675 public:
5676 /* If WANT_SPECIFIC_BLOCK is true, only look for symbols in block
5677 BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
5678 dw2_debug_names_iterator (const mapped_debug_names &map,
5679 bool want_specific_block,
5680 block_enum block_index, domain_enum domain,
5681 const char *name)
5682 : m_map (map), m_want_specific_block (want_specific_block),
5683 m_block_index (block_index), m_domain (domain),
5684 m_addr (find_vec_in_debug_names (map, name))
5685 {}
5686
5687 dw2_debug_names_iterator (const mapped_debug_names &map,
5688 search_domain search, uint32_t namei)
5689 : m_map (map),
5690 m_search (search),
5691 m_addr (find_vec_in_debug_names (map, namei))
5692 {}
5693
5694 /* Return the next matching CU or NULL if there are no more. */
5695 dwarf2_per_cu_data *next ();
5696
5697 private:
5698 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5699 const char *name);
5700 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5701 uint32_t namei);
5702
5703 /* The internalized form of .debug_names. */
5704 const mapped_debug_names &m_map;
5705
5706 /* If true, only look for symbols that match BLOCK_INDEX. */
5707 const bool m_want_specific_block = false;
5708
5709 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
5710 Unused if !WANT_SPECIFIC_BLOCK - FIRST_LOCAL_BLOCK is an invalid
5711 value. */
5712 const block_enum m_block_index = FIRST_LOCAL_BLOCK;
5713
5714 /* The kind of symbol we're looking for. */
5715 const domain_enum m_domain = UNDEF_DOMAIN;
5716 const search_domain m_search = ALL_DOMAIN;
5717
5718 /* The list of CUs from the index entry of the symbol, or NULL if
5719 not found. */
5720 const gdb_byte *m_addr;
5721 };
5722
5723 const char *
5724 mapped_debug_names::namei_to_name (uint32_t namei) const
5725 {
5726 const ULONGEST namei_string_offs
5727 = extract_unsigned_integer ((name_table_string_offs_reordered
5728 + namei * offset_size),
5729 offset_size,
5730 dwarf5_byte_order);
5731 return read_indirect_string_at_offset
5732 (dwarf2_per_objfile, dwarf2_per_objfile->objfile->obfd, namei_string_offs);
5733 }
5734
5735 /* Find a slot in .debug_names for the object named NAME. If NAME is
5736 found, return pointer to its pool data. If NAME cannot be found,
5737 return NULL. */
5738
5739 const gdb_byte *
5740 dw2_debug_names_iterator::find_vec_in_debug_names
5741 (const mapped_debug_names &map, const char *name)
5742 {
5743 int (*cmp) (const char *, const char *);
5744
5745 if (current_language->la_language == language_cplus
5746 || current_language->la_language == language_fortran
5747 || current_language->la_language == language_d)
5748 {
5749 /* NAME is already canonical. Drop any qualifiers as
5750 .debug_names does not contain any. */
5751
5752 if (strchr (name, '(') != NULL)
5753 {
5754 gdb::unique_xmalloc_ptr<char> without_params
5755 = cp_remove_params (name);
5756
5757 if (without_params != NULL)
5758 {
5759 name = without_params.get();
5760 }
5761 }
5762 }
5763
5764 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
5765
5766 const uint32_t full_hash = dwarf5_djb_hash (name);
5767 uint32_t namei
5768 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5769 (map.bucket_table_reordered
5770 + (full_hash % map.bucket_count)), 4,
5771 map.dwarf5_byte_order);
5772 if (namei == 0)
5773 return NULL;
5774 --namei;
5775 if (namei >= map.name_count)
5776 {
5777 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5778 "[in module %s]"),
5779 namei, map.name_count,
5780 objfile_name (map.dwarf2_per_objfile->objfile));
5781 return NULL;
5782 }
5783
5784 for (;;)
5785 {
5786 const uint32_t namei_full_hash
5787 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5788 (map.hash_table_reordered + namei), 4,
5789 map.dwarf5_byte_order);
5790 if (full_hash % map.bucket_count != namei_full_hash % map.bucket_count)
5791 return NULL;
5792
5793 if (full_hash == namei_full_hash)
5794 {
5795 const char *const namei_string = map.namei_to_name (namei);
5796
5797 #if 0 /* An expensive sanity check. */
5798 if (namei_full_hash != dwarf5_djb_hash (namei_string))
5799 {
5800 complaint (_("Wrong .debug_names hash for string at index %u "
5801 "[in module %s]"),
5802 namei, objfile_name (dwarf2_per_objfile->objfile));
5803 return NULL;
5804 }
5805 #endif
5806
5807 if (cmp (namei_string, name) == 0)
5808 {
5809 const ULONGEST namei_entry_offs
5810 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5811 + namei * map.offset_size),
5812 map.offset_size, map.dwarf5_byte_order);
5813 return map.entry_pool + namei_entry_offs;
5814 }
5815 }
5816
5817 ++namei;
5818 if (namei >= map.name_count)
5819 return NULL;
5820 }
5821 }
5822
5823 const gdb_byte *
5824 dw2_debug_names_iterator::find_vec_in_debug_names
5825 (const mapped_debug_names &map, uint32_t namei)
5826 {
5827 if (namei >= map.name_count)
5828 {
5829 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5830 "[in module %s]"),
5831 namei, map.name_count,
5832 objfile_name (map.dwarf2_per_objfile->objfile));
5833 return NULL;
5834 }
5835
5836 const ULONGEST namei_entry_offs
5837 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5838 + namei * map.offset_size),
5839 map.offset_size, map.dwarf5_byte_order);
5840 return map.entry_pool + namei_entry_offs;
5841 }
5842
5843 /* See dw2_debug_names_iterator. */
5844
5845 dwarf2_per_cu_data *
5846 dw2_debug_names_iterator::next ()
5847 {
5848 if (m_addr == NULL)
5849 return NULL;
5850
5851 struct dwarf2_per_objfile *dwarf2_per_objfile = m_map.dwarf2_per_objfile;
5852 struct objfile *objfile = dwarf2_per_objfile->objfile;
5853 bfd *const abfd = objfile->obfd;
5854
5855 again:
5856
5857 unsigned int bytes_read;
5858 const ULONGEST abbrev = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5859 m_addr += bytes_read;
5860 if (abbrev == 0)
5861 return NULL;
5862
5863 const auto indexval_it = m_map.abbrev_map.find (abbrev);
5864 if (indexval_it == m_map.abbrev_map.cend ())
5865 {
5866 complaint (_("Wrong .debug_names undefined abbrev code %s "
5867 "[in module %s]"),
5868 pulongest (abbrev), objfile_name (objfile));
5869 return NULL;
5870 }
5871 const mapped_debug_names::index_val &indexval = indexval_it->second;
5872 bool have_is_static = false;
5873 bool is_static;
5874 dwarf2_per_cu_data *per_cu = NULL;
5875 for (const mapped_debug_names::index_val::attr &attr : indexval.attr_vec)
5876 {
5877 ULONGEST ull;
5878 switch (attr.form)
5879 {
5880 case DW_FORM_implicit_const:
5881 ull = attr.implicit_const;
5882 break;
5883 case DW_FORM_flag_present:
5884 ull = 1;
5885 break;
5886 case DW_FORM_udata:
5887 ull = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5888 m_addr += bytes_read;
5889 break;
5890 default:
5891 complaint (_("Unsupported .debug_names form %s [in module %s]"),
5892 dwarf_form_name (attr.form),
5893 objfile_name (objfile));
5894 return NULL;
5895 }
5896 switch (attr.dw_idx)
5897 {
5898 case DW_IDX_compile_unit:
5899 /* Don't crash on bad data. */
5900 if (ull >= dwarf2_per_objfile->all_comp_units.size ())
5901 {
5902 complaint (_(".debug_names entry has bad CU index %s"
5903 " [in module %s]"),
5904 pulongest (ull),
5905 objfile_name (dwarf2_per_objfile->objfile));
5906 continue;
5907 }
5908 per_cu = dwarf2_per_objfile->get_cutu (ull);
5909 break;
5910 case DW_IDX_type_unit:
5911 /* Don't crash on bad data. */
5912 if (ull >= dwarf2_per_objfile->all_type_units.size ())
5913 {
5914 complaint (_(".debug_names entry has bad TU index %s"
5915 " [in module %s]"),
5916 pulongest (ull),
5917 objfile_name (dwarf2_per_objfile->objfile));
5918 continue;
5919 }
5920 per_cu = &dwarf2_per_objfile->get_tu (ull)->per_cu;
5921 break;
5922 case DW_IDX_GNU_internal:
5923 if (!m_map.augmentation_is_gdb)
5924 break;
5925 have_is_static = true;
5926 is_static = true;
5927 break;
5928 case DW_IDX_GNU_external:
5929 if (!m_map.augmentation_is_gdb)
5930 break;
5931 have_is_static = true;
5932 is_static = false;
5933 break;
5934 }
5935 }
5936
5937 /* Skip if already read in. */
5938 if (per_cu->v.quick->compunit_symtab)
5939 goto again;
5940
5941 /* Check static vs global. */
5942 if (have_is_static)
5943 {
5944 const bool want_static = m_block_index != GLOBAL_BLOCK;
5945 if (m_want_specific_block && want_static != is_static)
5946 goto again;
5947 }
5948
5949 /* Match dw2_symtab_iter_next, symbol_kind
5950 and debug_names::psymbol_tag. */
5951 switch (m_domain)
5952 {
5953 case VAR_DOMAIN:
5954 switch (indexval.dwarf_tag)
5955 {
5956 case DW_TAG_variable:
5957 case DW_TAG_subprogram:
5958 /* Some types are also in VAR_DOMAIN. */
5959 case DW_TAG_typedef:
5960 case DW_TAG_structure_type:
5961 break;
5962 default:
5963 goto again;
5964 }
5965 break;
5966 case STRUCT_DOMAIN:
5967 switch (indexval.dwarf_tag)
5968 {
5969 case DW_TAG_typedef:
5970 case DW_TAG_structure_type:
5971 break;
5972 default:
5973 goto again;
5974 }
5975 break;
5976 case LABEL_DOMAIN:
5977 switch (indexval.dwarf_tag)
5978 {
5979 case 0:
5980 case DW_TAG_variable:
5981 break;
5982 default:
5983 goto again;
5984 }
5985 break;
5986 default:
5987 break;
5988 }
5989
5990 /* Match dw2_expand_symtabs_matching, symbol_kind and
5991 debug_names::psymbol_tag. */
5992 switch (m_search)
5993 {
5994 case VARIABLES_DOMAIN:
5995 switch (indexval.dwarf_tag)
5996 {
5997 case DW_TAG_variable:
5998 break;
5999 default:
6000 goto again;
6001 }
6002 break;
6003 case FUNCTIONS_DOMAIN:
6004 switch (indexval.dwarf_tag)
6005 {
6006 case DW_TAG_subprogram:
6007 break;
6008 default:
6009 goto again;
6010 }
6011 break;
6012 case TYPES_DOMAIN:
6013 switch (indexval.dwarf_tag)
6014 {
6015 case DW_TAG_typedef:
6016 case DW_TAG_structure_type:
6017 break;
6018 default:
6019 goto again;
6020 }
6021 break;
6022 default:
6023 break;
6024 }
6025
6026 return per_cu;
6027 }
6028
6029 static struct compunit_symtab *
6030 dw2_debug_names_lookup_symbol (struct objfile *objfile, int block_index_int,
6031 const char *name, domain_enum domain)
6032 {
6033 const block_enum block_index = static_cast<block_enum> (block_index_int);
6034 struct dwarf2_per_objfile *dwarf2_per_objfile
6035 = get_dwarf2_per_objfile (objfile);
6036
6037 const auto &mapp = dwarf2_per_objfile->debug_names_table;
6038 if (!mapp)
6039 {
6040 /* index is NULL if OBJF_READNOW. */
6041 return NULL;
6042 }
6043 const auto &map = *mapp;
6044
6045 dw2_debug_names_iterator iter (map, true /* want_specific_block */,
6046 block_index, domain, name);
6047
6048 struct compunit_symtab *stab_best = NULL;
6049 struct dwarf2_per_cu_data *per_cu;
6050 while ((per_cu = iter.next ()) != NULL)
6051 {
6052 struct symbol *sym, *with_opaque = NULL;
6053 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
6054 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
6055 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
6056
6057 sym = block_find_symbol (block, name, domain,
6058 block_find_non_opaque_type_preferred,
6059 &with_opaque);
6060
6061 /* Some caution must be observed with overloaded functions and
6062 methods, since the index will not contain any overload
6063 information (but NAME might contain it). */
6064
6065 if (sym != NULL
6066 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
6067 return stab;
6068 if (with_opaque != NULL
6069 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
6070 stab_best = stab;
6071
6072 /* Keep looking through other CUs. */
6073 }
6074
6075 return stab_best;
6076 }
6077
6078 /* This dumps minimal information about .debug_names. It is called
6079 via "mt print objfiles". The gdb.dwarf2/gdb-index.exp testcase
6080 uses this to verify that .debug_names has been loaded. */
6081
6082 static void
6083 dw2_debug_names_dump (struct objfile *objfile)
6084 {
6085 struct dwarf2_per_objfile *dwarf2_per_objfile
6086 = get_dwarf2_per_objfile (objfile);
6087
6088 gdb_assert (dwarf2_per_objfile->using_index);
6089 printf_filtered (".debug_names:");
6090 if (dwarf2_per_objfile->debug_names_table)
6091 printf_filtered (" exists\n");
6092 else
6093 printf_filtered (" faked for \"readnow\"\n");
6094 printf_filtered ("\n");
6095 }
6096
6097 static void
6098 dw2_debug_names_expand_symtabs_for_function (struct objfile *objfile,
6099 const char *func_name)
6100 {
6101 struct dwarf2_per_objfile *dwarf2_per_objfile
6102 = get_dwarf2_per_objfile (objfile);
6103
6104 /* dwarf2_per_objfile->debug_names_table is NULL if OBJF_READNOW. */
6105 if (dwarf2_per_objfile->debug_names_table)
6106 {
6107 const mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6108
6109 /* Note: It doesn't matter what we pass for block_index here. */
6110 dw2_debug_names_iterator iter (map, false /* want_specific_block */,
6111 GLOBAL_BLOCK, VAR_DOMAIN, func_name);
6112
6113 struct dwarf2_per_cu_data *per_cu;
6114 while ((per_cu = iter.next ()) != NULL)
6115 dw2_instantiate_symtab (per_cu, false);
6116 }
6117 }
6118
6119 static void
6120 dw2_debug_names_expand_symtabs_matching
6121 (struct objfile *objfile,
6122 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
6123 const lookup_name_info &lookup_name,
6124 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
6125 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
6126 enum search_domain kind)
6127 {
6128 struct dwarf2_per_objfile *dwarf2_per_objfile
6129 = get_dwarf2_per_objfile (objfile);
6130
6131 /* debug_names_table is NULL if OBJF_READNOW. */
6132 if (!dwarf2_per_objfile->debug_names_table)
6133 return;
6134
6135 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
6136
6137 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6138
6139 dw2_expand_symtabs_matching_symbol (map, lookup_name,
6140 symbol_matcher,
6141 kind, [&] (offset_type namei)
6142 {
6143 /* The name was matched, now expand corresponding CUs that were
6144 marked. */
6145 dw2_debug_names_iterator iter (map, kind, namei);
6146
6147 struct dwarf2_per_cu_data *per_cu;
6148 while ((per_cu = iter.next ()) != NULL)
6149 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
6150 expansion_notify);
6151 });
6152 }
6153
6154 const struct quick_symbol_functions dwarf2_debug_names_functions =
6155 {
6156 dw2_has_symbols,
6157 dw2_find_last_source_symtab,
6158 dw2_forget_cached_source_info,
6159 dw2_map_symtabs_matching_filename,
6160 dw2_debug_names_lookup_symbol,
6161 dw2_print_stats,
6162 dw2_debug_names_dump,
6163 dw2_debug_names_expand_symtabs_for_function,
6164 dw2_expand_all_symtabs,
6165 dw2_expand_symtabs_with_fullname,
6166 dw2_map_matching_symbols,
6167 dw2_debug_names_expand_symtabs_matching,
6168 dw2_find_pc_sect_compunit_symtab,
6169 NULL,
6170 dw2_map_symbol_filenames
6171 };
6172
6173 /* Get the content of the .gdb_index section of OBJ. SECTION_OWNER should point
6174 to either a dwarf2_per_objfile or dwz_file object. */
6175
6176 template <typename T>
6177 static gdb::array_view<const gdb_byte>
6178 get_gdb_index_contents_from_section (objfile *obj, T *section_owner)
6179 {
6180 dwarf2_section_info *section = &section_owner->gdb_index;
6181
6182 if (dwarf2_section_empty_p (section))
6183 return {};
6184
6185 /* Older elfutils strip versions could keep the section in the main
6186 executable while splitting it for the separate debug info file. */
6187 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
6188 return {};
6189
6190 dwarf2_read_section (obj, section);
6191
6192 /* dwarf2_section_info::size is a bfd_size_type, while
6193 gdb::array_view works with size_t. On 32-bit hosts, with
6194 --enable-64-bit-bfd, bfd_size_type is a 64-bit type, while size_t
6195 is 32-bit. So we need an explicit narrowing conversion here.
6196 This is fine, because it's impossible to allocate or mmap an
6197 array/buffer larger than what size_t can represent. */
6198 return gdb::make_array_view (section->buffer, section->size);
6199 }
6200
6201 /* Lookup the index cache for the contents of the index associated to
6202 DWARF2_OBJ. */
6203
6204 static gdb::array_view<const gdb_byte>
6205 get_gdb_index_contents_from_cache (objfile *obj, dwarf2_per_objfile *dwarf2_obj)
6206 {
6207 const bfd_build_id *build_id = build_id_bfd_get (obj->obfd);
6208 if (build_id == nullptr)
6209 return {};
6210
6211 return global_index_cache.lookup_gdb_index (build_id,
6212 &dwarf2_obj->index_cache_res);
6213 }
6214
6215 /* Same as the above, but for DWZ. */
6216
6217 static gdb::array_view<const gdb_byte>
6218 get_gdb_index_contents_from_cache_dwz (objfile *obj, dwz_file *dwz)
6219 {
6220 const bfd_build_id *build_id = build_id_bfd_get (dwz->dwz_bfd.get ());
6221 if (build_id == nullptr)
6222 return {};
6223
6224 return global_index_cache.lookup_gdb_index (build_id, &dwz->index_cache_res);
6225 }
6226
6227 /* See symfile.h. */
6228
6229 bool
6230 dwarf2_initialize_objfile (struct objfile *objfile, dw_index_kind *index_kind)
6231 {
6232 struct dwarf2_per_objfile *dwarf2_per_objfile
6233 = get_dwarf2_per_objfile (objfile);
6234
6235 /* If we're about to read full symbols, don't bother with the
6236 indices. In this case we also don't care if some other debug
6237 format is making psymtabs, because they are all about to be
6238 expanded anyway. */
6239 if ((objfile->flags & OBJF_READNOW))
6240 {
6241 dwarf2_per_objfile->using_index = 1;
6242 create_all_comp_units (dwarf2_per_objfile);
6243 create_all_type_units (dwarf2_per_objfile);
6244 dwarf2_per_objfile->quick_file_names_table
6245 = create_quick_file_names_table
6246 (dwarf2_per_objfile->all_comp_units.size ());
6247
6248 for (int i = 0; i < (dwarf2_per_objfile->all_comp_units.size ()
6249 + dwarf2_per_objfile->all_type_units.size ()); ++i)
6250 {
6251 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
6252
6253 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6254 struct dwarf2_per_cu_quick_data);
6255 }
6256
6257 /* Return 1 so that gdb sees the "quick" functions. However,
6258 these functions will be no-ops because we will have expanded
6259 all symtabs. */
6260 *index_kind = dw_index_kind::GDB_INDEX;
6261 return true;
6262 }
6263
6264 if (dwarf2_read_debug_names (dwarf2_per_objfile))
6265 {
6266 *index_kind = dw_index_kind::DEBUG_NAMES;
6267 return true;
6268 }
6269
6270 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6271 get_gdb_index_contents_from_section<struct dwarf2_per_objfile>,
6272 get_gdb_index_contents_from_section<dwz_file>))
6273 {
6274 *index_kind = dw_index_kind::GDB_INDEX;
6275 return true;
6276 }
6277
6278 /* ... otherwise, try to find the index in the index cache. */
6279 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6280 get_gdb_index_contents_from_cache,
6281 get_gdb_index_contents_from_cache_dwz))
6282 {
6283 global_index_cache.hit ();
6284 *index_kind = dw_index_kind::GDB_INDEX;
6285 return true;
6286 }
6287
6288 global_index_cache.miss ();
6289 return false;
6290 }
6291
6292 \f
6293
6294 /* Build a partial symbol table. */
6295
6296 void
6297 dwarf2_build_psymtabs (struct objfile *objfile)
6298 {
6299 struct dwarf2_per_objfile *dwarf2_per_objfile
6300 = get_dwarf2_per_objfile (objfile);
6301
6302 if (objfile->global_psymbols.capacity () == 0
6303 && objfile->static_psymbols.capacity () == 0)
6304 init_psymbol_list (objfile, 1024);
6305
6306 TRY
6307 {
6308 /* This isn't really ideal: all the data we allocate on the
6309 objfile's obstack is still uselessly kept around. However,
6310 freeing it seems unsafe. */
6311 psymtab_discarder psymtabs (objfile);
6312 dwarf2_build_psymtabs_hard (dwarf2_per_objfile);
6313 psymtabs.keep ();
6314
6315 /* (maybe) store an index in the cache. */
6316 global_index_cache.store (dwarf2_per_objfile);
6317 }
6318 CATCH (except, RETURN_MASK_ERROR)
6319 {
6320 exception_print (gdb_stderr, except);
6321 }
6322 END_CATCH
6323 }
6324
6325 /* Return the total length of the CU described by HEADER. */
6326
6327 static unsigned int
6328 get_cu_length (const struct comp_unit_head *header)
6329 {
6330 return header->initial_length_size + header->length;
6331 }
6332
6333 /* Return TRUE if SECT_OFF is within CU_HEADER. */
6334
6335 static inline bool
6336 offset_in_cu_p (const comp_unit_head *cu_header, sect_offset sect_off)
6337 {
6338 sect_offset bottom = cu_header->sect_off;
6339 sect_offset top = cu_header->sect_off + get_cu_length (cu_header);
6340
6341 return sect_off >= bottom && sect_off < top;
6342 }
6343
6344 /* Find the base address of the compilation unit for range lists and
6345 location lists. It will normally be specified by DW_AT_low_pc.
6346 In DWARF-3 draft 4, the base address could be overridden by
6347 DW_AT_entry_pc. It's been removed, but GCC still uses this for
6348 compilation units with discontinuous ranges. */
6349
6350 static void
6351 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
6352 {
6353 struct attribute *attr;
6354
6355 cu->base_known = 0;
6356 cu->base_address = 0;
6357
6358 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
6359 if (attr)
6360 {
6361 cu->base_address = attr_value_as_address (attr);
6362 cu->base_known = 1;
6363 }
6364 else
6365 {
6366 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6367 if (attr)
6368 {
6369 cu->base_address = attr_value_as_address (attr);
6370 cu->base_known = 1;
6371 }
6372 }
6373 }
6374
6375 /* Read in the comp unit header information from the debug_info at info_ptr.
6376 Use rcuh_kind::COMPILE as the default type if not known by the caller.
6377 NOTE: This leaves members offset, first_die_offset to be filled in
6378 by the caller. */
6379
6380 static const gdb_byte *
6381 read_comp_unit_head (struct comp_unit_head *cu_header,
6382 const gdb_byte *info_ptr,
6383 struct dwarf2_section_info *section,
6384 rcuh_kind section_kind)
6385 {
6386 int signed_addr;
6387 unsigned int bytes_read;
6388 const char *filename = get_section_file_name (section);
6389 bfd *abfd = get_section_bfd_owner (section);
6390
6391 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
6392 cu_header->initial_length_size = bytes_read;
6393 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
6394 info_ptr += bytes_read;
6395 cu_header->version = read_2_bytes (abfd, info_ptr);
6396 if (cu_header->version < 2 || cu_header->version > 5)
6397 error (_("Dwarf Error: wrong version in compilation unit header "
6398 "(is %d, should be 2, 3, 4 or 5) [in module %s]"),
6399 cu_header->version, filename);
6400 info_ptr += 2;
6401 if (cu_header->version < 5)
6402 switch (section_kind)
6403 {
6404 case rcuh_kind::COMPILE:
6405 cu_header->unit_type = DW_UT_compile;
6406 break;
6407 case rcuh_kind::TYPE:
6408 cu_header->unit_type = DW_UT_type;
6409 break;
6410 default:
6411 internal_error (__FILE__, __LINE__,
6412 _("read_comp_unit_head: invalid section_kind"));
6413 }
6414 else
6415 {
6416 cu_header->unit_type = static_cast<enum dwarf_unit_type>
6417 (read_1_byte (abfd, info_ptr));
6418 info_ptr += 1;
6419 switch (cu_header->unit_type)
6420 {
6421 case DW_UT_compile:
6422 if (section_kind != rcuh_kind::COMPILE)
6423 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6424 "(is DW_UT_compile, should be DW_UT_type) [in module %s]"),
6425 filename);
6426 break;
6427 case DW_UT_type:
6428 section_kind = rcuh_kind::TYPE;
6429 break;
6430 default:
6431 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6432 "(is %d, should be %d or %d) [in module %s]"),
6433 cu_header->unit_type, DW_UT_compile, DW_UT_type, filename);
6434 }
6435
6436 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6437 info_ptr += 1;
6438 }
6439 cu_header->abbrev_sect_off = (sect_offset) read_offset (abfd, info_ptr,
6440 cu_header,
6441 &bytes_read);
6442 info_ptr += bytes_read;
6443 if (cu_header->version < 5)
6444 {
6445 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6446 info_ptr += 1;
6447 }
6448 signed_addr = bfd_get_sign_extend_vma (abfd);
6449 if (signed_addr < 0)
6450 internal_error (__FILE__, __LINE__,
6451 _("read_comp_unit_head: dwarf from non elf file"));
6452 cu_header->signed_addr_p = signed_addr;
6453
6454 if (section_kind == rcuh_kind::TYPE)
6455 {
6456 LONGEST type_offset;
6457
6458 cu_header->signature = read_8_bytes (abfd, info_ptr);
6459 info_ptr += 8;
6460
6461 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
6462 info_ptr += bytes_read;
6463 cu_header->type_cu_offset_in_tu = (cu_offset) type_offset;
6464 if (to_underlying (cu_header->type_cu_offset_in_tu) != type_offset)
6465 error (_("Dwarf Error: Too big type_offset in compilation unit "
6466 "header (is %s) [in module %s]"), plongest (type_offset),
6467 filename);
6468 }
6469
6470 return info_ptr;
6471 }
6472
6473 /* Helper function that returns the proper abbrev section for
6474 THIS_CU. */
6475
6476 static struct dwarf2_section_info *
6477 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
6478 {
6479 struct dwarf2_section_info *abbrev;
6480 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6481
6482 if (this_cu->is_dwz)
6483 abbrev = &dwarf2_get_dwz_file (dwarf2_per_objfile)->abbrev;
6484 else
6485 abbrev = &dwarf2_per_objfile->abbrev;
6486
6487 return abbrev;
6488 }
6489
6490 /* Subroutine of read_and_check_comp_unit_head and
6491 read_and_check_type_unit_head to simplify them.
6492 Perform various error checking on the header. */
6493
6494 static void
6495 error_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6496 struct comp_unit_head *header,
6497 struct dwarf2_section_info *section,
6498 struct dwarf2_section_info *abbrev_section)
6499 {
6500 const char *filename = get_section_file_name (section);
6501
6502 if (to_underlying (header->abbrev_sect_off)
6503 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
6504 error (_("Dwarf Error: bad offset (%s) in compilation unit header "
6505 "(offset %s + 6) [in module %s]"),
6506 sect_offset_str (header->abbrev_sect_off),
6507 sect_offset_str (header->sect_off),
6508 filename);
6509
6510 /* Cast to ULONGEST to use 64-bit arithmetic when possible to
6511 avoid potential 32-bit overflow. */
6512 if (((ULONGEST) header->sect_off + get_cu_length (header))
6513 > section->size)
6514 error (_("Dwarf Error: bad length (0x%x) in compilation unit header "
6515 "(offset %s + 0) [in module %s]"),
6516 header->length, sect_offset_str (header->sect_off),
6517 filename);
6518 }
6519
6520 /* Read in a CU/TU header and perform some basic error checking.
6521 The contents of the header are stored in HEADER.
6522 The result is a pointer to the start of the first DIE. */
6523
6524 static const gdb_byte *
6525 read_and_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6526 struct comp_unit_head *header,
6527 struct dwarf2_section_info *section,
6528 struct dwarf2_section_info *abbrev_section,
6529 const gdb_byte *info_ptr,
6530 rcuh_kind section_kind)
6531 {
6532 const gdb_byte *beg_of_comp_unit = info_ptr;
6533
6534 header->sect_off = (sect_offset) (beg_of_comp_unit - section->buffer);
6535
6536 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
6537
6538 header->first_die_cu_offset = (cu_offset) (info_ptr - beg_of_comp_unit);
6539
6540 error_check_comp_unit_head (dwarf2_per_objfile, header, section,
6541 abbrev_section);
6542
6543 return info_ptr;
6544 }
6545
6546 /* Fetch the abbreviation table offset from a comp or type unit header. */
6547
6548 static sect_offset
6549 read_abbrev_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
6550 struct dwarf2_section_info *section,
6551 sect_offset sect_off)
6552 {
6553 bfd *abfd = get_section_bfd_owner (section);
6554 const gdb_byte *info_ptr;
6555 unsigned int initial_length_size, offset_size;
6556 uint16_t version;
6557
6558 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
6559 info_ptr = section->buffer + to_underlying (sect_off);
6560 read_initial_length (abfd, info_ptr, &initial_length_size);
6561 offset_size = initial_length_size == 4 ? 4 : 8;
6562 info_ptr += initial_length_size;
6563
6564 version = read_2_bytes (abfd, info_ptr);
6565 info_ptr += 2;
6566 if (version >= 5)
6567 {
6568 /* Skip unit type and address size. */
6569 info_ptr += 2;
6570 }
6571
6572 return (sect_offset) read_offset_1 (abfd, info_ptr, offset_size);
6573 }
6574
6575 /* Allocate a new partial symtab for file named NAME and mark this new
6576 partial symtab as being an include of PST. */
6577
6578 static void
6579 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
6580 struct objfile *objfile)
6581 {
6582 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
6583
6584 if (!IS_ABSOLUTE_PATH (subpst->filename))
6585 {
6586 /* It shares objfile->objfile_obstack. */
6587 subpst->dirname = pst->dirname;
6588 }
6589
6590 subpst->dependencies
6591 = XOBNEW (&objfile->objfile_obstack, struct partial_symtab *);
6592 subpst->dependencies[0] = pst;
6593 subpst->number_of_dependencies = 1;
6594
6595 subpst->read_symtab = pst->read_symtab;
6596
6597 /* No private part is necessary for include psymtabs. This property
6598 can be used to differentiate between such include psymtabs and
6599 the regular ones. */
6600 subpst->read_symtab_private = NULL;
6601 }
6602
6603 /* Read the Line Number Program data and extract the list of files
6604 included by the source file represented by PST. Build an include
6605 partial symtab for each of these included files. */
6606
6607 static void
6608 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
6609 struct die_info *die,
6610 struct partial_symtab *pst)
6611 {
6612 line_header_up lh;
6613 struct attribute *attr;
6614
6615 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
6616 if (attr)
6617 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
6618 if (lh == NULL)
6619 return; /* No linetable, so no includes. */
6620
6621 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). Also note
6622 that we pass in the raw text_low here; that is ok because we're
6623 only decoding the line table to make include partial symtabs, and
6624 so the addresses aren't really used. */
6625 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst,
6626 pst->raw_text_low (), 1);
6627 }
6628
6629 static hashval_t
6630 hash_signatured_type (const void *item)
6631 {
6632 const struct signatured_type *sig_type
6633 = (const struct signatured_type *) item;
6634
6635 /* This drops the top 32 bits of the signature, but is ok for a hash. */
6636 return sig_type->signature;
6637 }
6638
6639 static int
6640 eq_signatured_type (const void *item_lhs, const void *item_rhs)
6641 {
6642 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
6643 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
6644
6645 return lhs->signature == rhs->signature;
6646 }
6647
6648 /* Allocate a hash table for signatured types. */
6649
6650 static htab_t
6651 allocate_signatured_type_table (struct objfile *objfile)
6652 {
6653 return htab_create_alloc_ex (41,
6654 hash_signatured_type,
6655 eq_signatured_type,
6656 NULL,
6657 &objfile->objfile_obstack,
6658 hashtab_obstack_allocate,
6659 dummy_obstack_deallocate);
6660 }
6661
6662 /* A helper function to add a signatured type CU to a table. */
6663
6664 static int
6665 add_signatured_type_cu_to_table (void **slot, void *datum)
6666 {
6667 struct signatured_type *sigt = (struct signatured_type *) *slot;
6668 std::vector<signatured_type *> *all_type_units
6669 = (std::vector<signatured_type *> *) datum;
6670
6671 all_type_units->push_back (sigt);
6672
6673 return 1;
6674 }
6675
6676 /* A helper for create_debug_types_hash_table. Read types from SECTION
6677 and fill them into TYPES_HTAB. It will process only type units,
6678 therefore DW_UT_type. */
6679
6680 static void
6681 create_debug_type_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6682 struct dwo_file *dwo_file,
6683 dwarf2_section_info *section, htab_t &types_htab,
6684 rcuh_kind section_kind)
6685 {
6686 struct objfile *objfile = dwarf2_per_objfile->objfile;
6687 struct dwarf2_section_info *abbrev_section;
6688 bfd *abfd;
6689 const gdb_byte *info_ptr, *end_ptr;
6690
6691 abbrev_section = (dwo_file != NULL
6692 ? &dwo_file->sections.abbrev
6693 : &dwarf2_per_objfile->abbrev);
6694
6695 if (dwarf_read_debug)
6696 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
6697 get_section_name (section),
6698 get_section_file_name (abbrev_section));
6699
6700 dwarf2_read_section (objfile, section);
6701 info_ptr = section->buffer;
6702
6703 if (info_ptr == NULL)
6704 return;
6705
6706 /* We can't set abfd until now because the section may be empty or
6707 not present, in which case the bfd is unknown. */
6708 abfd = get_section_bfd_owner (section);
6709
6710 /* We don't use init_cutu_and_read_dies_simple, or some such, here
6711 because we don't need to read any dies: the signature is in the
6712 header. */
6713
6714 end_ptr = info_ptr + section->size;
6715 while (info_ptr < end_ptr)
6716 {
6717 struct signatured_type *sig_type;
6718 struct dwo_unit *dwo_tu;
6719 void **slot;
6720 const gdb_byte *ptr = info_ptr;
6721 struct comp_unit_head header;
6722 unsigned int length;
6723
6724 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
6725
6726 /* Initialize it due to a false compiler warning. */
6727 header.signature = -1;
6728 header.type_cu_offset_in_tu = (cu_offset) -1;
6729
6730 /* We need to read the type's signature in order to build the hash
6731 table, but we don't need anything else just yet. */
6732
6733 ptr = read_and_check_comp_unit_head (dwarf2_per_objfile, &header, section,
6734 abbrev_section, ptr, section_kind);
6735
6736 length = get_cu_length (&header);
6737
6738 /* Skip dummy type units. */
6739 if (ptr >= info_ptr + length
6740 || peek_abbrev_code (abfd, ptr) == 0
6741 || header.unit_type != DW_UT_type)
6742 {
6743 info_ptr += length;
6744 continue;
6745 }
6746
6747 if (types_htab == NULL)
6748 {
6749 if (dwo_file)
6750 types_htab = allocate_dwo_unit_table (objfile);
6751 else
6752 types_htab = allocate_signatured_type_table (objfile);
6753 }
6754
6755 if (dwo_file)
6756 {
6757 sig_type = NULL;
6758 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6759 struct dwo_unit);
6760 dwo_tu->dwo_file = dwo_file;
6761 dwo_tu->signature = header.signature;
6762 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
6763 dwo_tu->section = section;
6764 dwo_tu->sect_off = sect_off;
6765 dwo_tu->length = length;
6766 }
6767 else
6768 {
6769 /* N.B.: type_offset is not usable if this type uses a DWO file.
6770 The real type_offset is in the DWO file. */
6771 dwo_tu = NULL;
6772 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6773 struct signatured_type);
6774 sig_type->signature = header.signature;
6775 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
6776 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6777 sig_type->per_cu.is_debug_types = 1;
6778 sig_type->per_cu.section = section;
6779 sig_type->per_cu.sect_off = sect_off;
6780 sig_type->per_cu.length = length;
6781 }
6782
6783 slot = htab_find_slot (types_htab,
6784 dwo_file ? (void*) dwo_tu : (void *) sig_type,
6785 INSERT);
6786 gdb_assert (slot != NULL);
6787 if (*slot != NULL)
6788 {
6789 sect_offset dup_sect_off;
6790
6791 if (dwo_file)
6792 {
6793 const struct dwo_unit *dup_tu
6794 = (const struct dwo_unit *) *slot;
6795
6796 dup_sect_off = dup_tu->sect_off;
6797 }
6798 else
6799 {
6800 const struct signatured_type *dup_tu
6801 = (const struct signatured_type *) *slot;
6802
6803 dup_sect_off = dup_tu->per_cu.sect_off;
6804 }
6805
6806 complaint (_("debug type entry at offset %s is duplicate to"
6807 " the entry at offset %s, signature %s"),
6808 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
6809 hex_string (header.signature));
6810 }
6811 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
6812
6813 if (dwarf_read_debug > 1)
6814 fprintf_unfiltered (gdb_stdlog, " offset %s, signature %s\n",
6815 sect_offset_str (sect_off),
6816 hex_string (header.signature));
6817
6818 info_ptr += length;
6819 }
6820 }
6821
6822 /* Create the hash table of all entries in the .debug_types
6823 (or .debug_types.dwo) section(s).
6824 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
6825 otherwise it is NULL.
6826
6827 The result is a pointer to the hash table or NULL if there are no types.
6828
6829 Note: This function processes DWO files only, not DWP files. */
6830
6831 static void
6832 create_debug_types_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6833 struct dwo_file *dwo_file,
6834 VEC (dwarf2_section_info_def) *types,
6835 htab_t &types_htab)
6836 {
6837 int ix;
6838 struct dwarf2_section_info *section;
6839
6840 if (VEC_empty (dwarf2_section_info_def, types))
6841 return;
6842
6843 for (ix = 0;
6844 VEC_iterate (dwarf2_section_info_def, types, ix, section);
6845 ++ix)
6846 create_debug_type_hash_table (dwarf2_per_objfile, dwo_file, section,
6847 types_htab, rcuh_kind::TYPE);
6848 }
6849
6850 /* Create the hash table of all entries in the .debug_types section,
6851 and initialize all_type_units.
6852 The result is zero if there is an error (e.g. missing .debug_types section),
6853 otherwise non-zero. */
6854
6855 static int
6856 create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
6857 {
6858 htab_t types_htab = NULL;
6859
6860 create_debug_type_hash_table (dwarf2_per_objfile, NULL,
6861 &dwarf2_per_objfile->info, types_htab,
6862 rcuh_kind::COMPILE);
6863 create_debug_types_hash_table (dwarf2_per_objfile, NULL,
6864 dwarf2_per_objfile->types, types_htab);
6865 if (types_htab == NULL)
6866 {
6867 dwarf2_per_objfile->signatured_types = NULL;
6868 return 0;
6869 }
6870
6871 dwarf2_per_objfile->signatured_types = types_htab;
6872
6873 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
6874 dwarf2_per_objfile->all_type_units.reserve (htab_elements (types_htab));
6875
6876 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table,
6877 &dwarf2_per_objfile->all_type_units);
6878
6879 return 1;
6880 }
6881
6882 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
6883 If SLOT is non-NULL, it is the entry to use in the hash table.
6884 Otherwise we find one. */
6885
6886 static struct signatured_type *
6887 add_type_unit (struct dwarf2_per_objfile *dwarf2_per_objfile, ULONGEST sig,
6888 void **slot)
6889 {
6890 struct objfile *objfile = dwarf2_per_objfile->objfile;
6891
6892 if (dwarf2_per_objfile->all_type_units.size ()
6893 == dwarf2_per_objfile->all_type_units.capacity ())
6894 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
6895
6896 signatured_type *sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6897 struct signatured_type);
6898
6899 dwarf2_per_objfile->all_type_units.push_back (sig_type);
6900 sig_type->signature = sig;
6901 sig_type->per_cu.is_debug_types = 1;
6902 if (dwarf2_per_objfile->using_index)
6903 {
6904 sig_type->per_cu.v.quick =
6905 OBSTACK_ZALLOC (&objfile->objfile_obstack,
6906 struct dwarf2_per_cu_quick_data);
6907 }
6908
6909 if (slot == NULL)
6910 {
6911 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6912 sig_type, INSERT);
6913 }
6914 gdb_assert (*slot == NULL);
6915 *slot = sig_type;
6916 /* The rest of sig_type must be filled in by the caller. */
6917 return sig_type;
6918 }
6919
6920 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
6921 Fill in SIG_ENTRY with DWO_ENTRY. */
6922
6923 static void
6924 fill_in_sig_entry_from_dwo_entry (struct dwarf2_per_objfile *dwarf2_per_objfile,
6925 struct signatured_type *sig_entry,
6926 struct dwo_unit *dwo_entry)
6927 {
6928 /* Make sure we're not clobbering something we don't expect to. */
6929 gdb_assert (! sig_entry->per_cu.queued);
6930 gdb_assert (sig_entry->per_cu.cu == NULL);
6931 if (dwarf2_per_objfile->using_index)
6932 {
6933 gdb_assert (sig_entry->per_cu.v.quick != NULL);
6934 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6935 }
6936 else
6937 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
6938 gdb_assert (sig_entry->signature == dwo_entry->signature);
6939 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
6940 gdb_assert (sig_entry->type_unit_group == NULL);
6941 gdb_assert (sig_entry->dwo_unit == NULL);
6942
6943 sig_entry->per_cu.section = dwo_entry->section;
6944 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
6945 sig_entry->per_cu.length = dwo_entry->length;
6946 sig_entry->per_cu.reading_dwo_directly = 1;
6947 sig_entry->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6948 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
6949 sig_entry->dwo_unit = dwo_entry;
6950 }
6951
6952 /* Subroutine of lookup_signatured_type.
6953 If we haven't read the TU yet, create the signatured_type data structure
6954 for a TU to be read in directly from a DWO file, bypassing the stub.
6955 This is the "Stay in DWO Optimization": When there is no DWP file and we're
6956 using .gdb_index, then when reading a CU we want to stay in the DWO file
6957 containing that CU. Otherwise we could end up reading several other DWO
6958 files (due to comdat folding) to process the transitive closure of all the
6959 mentioned TUs, and that can be slow. The current DWO file will have every
6960 type signature that it needs.
6961 We only do this for .gdb_index because in the psymtab case we already have
6962 to read all the DWOs to build the type unit groups. */
6963
6964 static struct signatured_type *
6965 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6966 {
6967 struct dwarf2_per_objfile *dwarf2_per_objfile
6968 = cu->per_cu->dwarf2_per_objfile;
6969 struct objfile *objfile = dwarf2_per_objfile->objfile;
6970 struct dwo_file *dwo_file;
6971 struct dwo_unit find_dwo_entry, *dwo_entry;
6972 struct signatured_type find_sig_entry, *sig_entry;
6973 void **slot;
6974
6975 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6976
6977 /* If TU skeletons have been removed then we may not have read in any
6978 TUs yet. */
6979 if (dwarf2_per_objfile->signatured_types == NULL)
6980 {
6981 dwarf2_per_objfile->signatured_types
6982 = allocate_signatured_type_table (objfile);
6983 }
6984
6985 /* We only ever need to read in one copy of a signatured type.
6986 Use the global signatured_types array to do our own comdat-folding
6987 of types. If this is the first time we're reading this TU, and
6988 the TU has an entry in .gdb_index, replace the recorded data from
6989 .gdb_index with this TU. */
6990
6991 find_sig_entry.signature = sig;
6992 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6993 &find_sig_entry, INSERT);
6994 sig_entry = (struct signatured_type *) *slot;
6995
6996 /* We can get here with the TU already read, *or* in the process of being
6997 read. Don't reassign the global entry to point to this DWO if that's
6998 the case. Also note that if the TU is already being read, it may not
6999 have come from a DWO, the program may be a mix of Fission-compiled
7000 code and non-Fission-compiled code. */
7001
7002 /* Have we already tried to read this TU?
7003 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7004 needn't exist in the global table yet). */
7005 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
7006 return sig_entry;
7007
7008 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
7009 dwo_unit of the TU itself. */
7010 dwo_file = cu->dwo_unit->dwo_file;
7011
7012 /* Ok, this is the first time we're reading this TU. */
7013 if (dwo_file->tus == NULL)
7014 return NULL;
7015 find_dwo_entry.signature = sig;
7016 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
7017 if (dwo_entry == NULL)
7018 return NULL;
7019
7020 /* If the global table doesn't have an entry for this TU, add one. */
7021 if (sig_entry == NULL)
7022 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7023
7024 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7025 sig_entry->per_cu.tu_read = 1;
7026 return sig_entry;
7027 }
7028
7029 /* Subroutine of lookup_signatured_type.
7030 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
7031 then try the DWP file. If the TU stub (skeleton) has been removed then
7032 it won't be in .gdb_index. */
7033
7034 static struct signatured_type *
7035 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7036 {
7037 struct dwarf2_per_objfile *dwarf2_per_objfile
7038 = cu->per_cu->dwarf2_per_objfile;
7039 struct objfile *objfile = dwarf2_per_objfile->objfile;
7040 struct dwp_file *dwp_file = get_dwp_file (dwarf2_per_objfile);
7041 struct dwo_unit *dwo_entry;
7042 struct signatured_type find_sig_entry, *sig_entry;
7043 void **slot;
7044
7045 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
7046 gdb_assert (dwp_file != NULL);
7047
7048 /* If TU skeletons have been removed then we may not have read in any
7049 TUs yet. */
7050 if (dwarf2_per_objfile->signatured_types == NULL)
7051 {
7052 dwarf2_per_objfile->signatured_types
7053 = allocate_signatured_type_table (objfile);
7054 }
7055
7056 find_sig_entry.signature = sig;
7057 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
7058 &find_sig_entry, INSERT);
7059 sig_entry = (struct signatured_type *) *slot;
7060
7061 /* Have we already tried to read this TU?
7062 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7063 needn't exist in the global table yet). */
7064 if (sig_entry != NULL)
7065 return sig_entry;
7066
7067 if (dwp_file->tus == NULL)
7068 return NULL;
7069 dwo_entry = lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, NULL,
7070 sig, 1 /* is_debug_types */);
7071 if (dwo_entry == NULL)
7072 return NULL;
7073
7074 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7075 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7076
7077 return sig_entry;
7078 }
7079
7080 /* Lookup a signature based type for DW_FORM_ref_sig8.
7081 Returns NULL if signature SIG is not present in the table.
7082 It is up to the caller to complain about this. */
7083
7084 static struct signatured_type *
7085 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7086 {
7087 struct dwarf2_per_objfile *dwarf2_per_objfile
7088 = cu->per_cu->dwarf2_per_objfile;
7089
7090 if (cu->dwo_unit
7091 && dwarf2_per_objfile->using_index)
7092 {
7093 /* We're in a DWO/DWP file, and we're using .gdb_index.
7094 These cases require special processing. */
7095 if (get_dwp_file (dwarf2_per_objfile) == NULL)
7096 return lookup_dwo_signatured_type (cu, sig);
7097 else
7098 return lookup_dwp_signatured_type (cu, sig);
7099 }
7100 else
7101 {
7102 struct signatured_type find_entry, *entry;
7103
7104 if (dwarf2_per_objfile->signatured_types == NULL)
7105 return NULL;
7106 find_entry.signature = sig;
7107 entry = ((struct signatured_type *)
7108 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
7109 return entry;
7110 }
7111 }
7112 \f
7113 /* Low level DIE reading support. */
7114
7115 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
7116
7117 static void
7118 init_cu_die_reader (struct die_reader_specs *reader,
7119 struct dwarf2_cu *cu,
7120 struct dwarf2_section_info *section,
7121 struct dwo_file *dwo_file,
7122 struct abbrev_table *abbrev_table)
7123 {
7124 gdb_assert (section->readin && section->buffer != NULL);
7125 reader->abfd = get_section_bfd_owner (section);
7126 reader->cu = cu;
7127 reader->dwo_file = dwo_file;
7128 reader->die_section = section;
7129 reader->buffer = section->buffer;
7130 reader->buffer_end = section->buffer + section->size;
7131 reader->comp_dir = NULL;
7132 reader->abbrev_table = abbrev_table;
7133 }
7134
7135 /* Subroutine of init_cutu_and_read_dies to simplify it.
7136 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
7137 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
7138 already.
7139
7140 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
7141 from it to the DIE in the DWO. If NULL we are skipping the stub.
7142 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
7143 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
7144 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
7145 STUB_COMP_DIR may be non-NULL.
7146 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
7147 are filled in with the info of the DIE from the DWO file.
7148 *RESULT_DWO_ABBREV_TABLE will be filled in with the abbrev table allocated
7149 from the dwo. Since *RESULT_READER references this abbrev table, it must be
7150 kept around for at least as long as *RESULT_READER.
7151
7152 The result is non-zero if a valid (non-dummy) DIE was found. */
7153
7154 static int
7155 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
7156 struct dwo_unit *dwo_unit,
7157 struct die_info *stub_comp_unit_die,
7158 const char *stub_comp_dir,
7159 struct die_reader_specs *result_reader,
7160 const gdb_byte **result_info_ptr,
7161 struct die_info **result_comp_unit_die,
7162 int *result_has_children,
7163 abbrev_table_up *result_dwo_abbrev_table)
7164 {
7165 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7166 struct objfile *objfile = dwarf2_per_objfile->objfile;
7167 struct dwarf2_cu *cu = this_cu->cu;
7168 bfd *abfd;
7169 const gdb_byte *begin_info_ptr, *info_ptr;
7170 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
7171 int i,num_extra_attrs;
7172 struct dwarf2_section_info *dwo_abbrev_section;
7173 struct attribute *attr;
7174 struct die_info *comp_unit_die;
7175
7176 /* At most one of these may be provided. */
7177 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
7178
7179 /* These attributes aren't processed until later:
7180 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
7181 DW_AT_comp_dir is used now, to find the DWO file, but it is also
7182 referenced later. However, these attributes are found in the stub
7183 which we won't have later. In order to not impose this complication
7184 on the rest of the code, we read them here and copy them to the
7185 DWO CU/TU die. */
7186
7187 stmt_list = NULL;
7188 low_pc = NULL;
7189 high_pc = NULL;
7190 ranges = NULL;
7191 comp_dir = NULL;
7192
7193 if (stub_comp_unit_die != NULL)
7194 {
7195 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
7196 DWO file. */
7197 if (! this_cu->is_debug_types)
7198 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
7199 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
7200 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
7201 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
7202 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
7203
7204 /* There should be a DW_AT_addr_base attribute here (if needed).
7205 We need the value before we can process DW_FORM_GNU_addr_index. */
7206 cu->addr_base = 0;
7207 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
7208 if (attr)
7209 cu->addr_base = DW_UNSND (attr);
7210
7211 /* There should be a DW_AT_ranges_base attribute here (if needed).
7212 We need the value before we can process DW_AT_ranges. */
7213 cu->ranges_base = 0;
7214 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
7215 if (attr)
7216 cu->ranges_base = DW_UNSND (attr);
7217 }
7218 else if (stub_comp_dir != NULL)
7219 {
7220 /* Reconstruct the comp_dir attribute to simplify the code below. */
7221 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
7222 comp_dir->name = DW_AT_comp_dir;
7223 comp_dir->form = DW_FORM_string;
7224 DW_STRING_IS_CANONICAL (comp_dir) = 0;
7225 DW_STRING (comp_dir) = stub_comp_dir;
7226 }
7227
7228 /* Set up for reading the DWO CU/TU. */
7229 cu->dwo_unit = dwo_unit;
7230 dwarf2_section_info *section = dwo_unit->section;
7231 dwarf2_read_section (objfile, section);
7232 abfd = get_section_bfd_owner (section);
7233 begin_info_ptr = info_ptr = (section->buffer
7234 + to_underlying (dwo_unit->sect_off));
7235 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
7236
7237 if (this_cu->is_debug_types)
7238 {
7239 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
7240
7241 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7242 &cu->header, section,
7243 dwo_abbrev_section,
7244 info_ptr, rcuh_kind::TYPE);
7245 /* This is not an assert because it can be caused by bad debug info. */
7246 if (sig_type->signature != cu->header.signature)
7247 {
7248 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
7249 " TU at offset %s [in module %s]"),
7250 hex_string (sig_type->signature),
7251 hex_string (cu->header.signature),
7252 sect_offset_str (dwo_unit->sect_off),
7253 bfd_get_filename (abfd));
7254 }
7255 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7256 /* For DWOs coming from DWP files, we don't know the CU length
7257 nor the type's offset in the TU until now. */
7258 dwo_unit->length = get_cu_length (&cu->header);
7259 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
7260
7261 /* Establish the type offset that can be used to lookup the type.
7262 For DWO files, we don't know it until now. */
7263 sig_type->type_offset_in_section
7264 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
7265 }
7266 else
7267 {
7268 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7269 &cu->header, section,
7270 dwo_abbrev_section,
7271 info_ptr, rcuh_kind::COMPILE);
7272 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7273 /* For DWOs coming from DWP files, we don't know the CU length
7274 until now. */
7275 dwo_unit->length = get_cu_length (&cu->header);
7276 }
7277
7278 *result_dwo_abbrev_table
7279 = abbrev_table_read_table (dwarf2_per_objfile, dwo_abbrev_section,
7280 cu->header.abbrev_sect_off);
7281 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file,
7282 result_dwo_abbrev_table->get ());
7283
7284 /* Read in the die, but leave space to copy over the attributes
7285 from the stub. This has the benefit of simplifying the rest of
7286 the code - all the work to maintain the illusion of a single
7287 DW_TAG_{compile,type}_unit DIE is done here. */
7288 num_extra_attrs = ((stmt_list != NULL)
7289 + (low_pc != NULL)
7290 + (high_pc != NULL)
7291 + (ranges != NULL)
7292 + (comp_dir != NULL));
7293 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
7294 result_has_children, num_extra_attrs);
7295
7296 /* Copy over the attributes from the stub to the DIE we just read in. */
7297 comp_unit_die = *result_comp_unit_die;
7298 i = comp_unit_die->num_attrs;
7299 if (stmt_list != NULL)
7300 comp_unit_die->attrs[i++] = *stmt_list;
7301 if (low_pc != NULL)
7302 comp_unit_die->attrs[i++] = *low_pc;
7303 if (high_pc != NULL)
7304 comp_unit_die->attrs[i++] = *high_pc;
7305 if (ranges != NULL)
7306 comp_unit_die->attrs[i++] = *ranges;
7307 if (comp_dir != NULL)
7308 comp_unit_die->attrs[i++] = *comp_dir;
7309 comp_unit_die->num_attrs += num_extra_attrs;
7310
7311 if (dwarf_die_debug)
7312 {
7313 fprintf_unfiltered (gdb_stdlog,
7314 "Read die from %s@0x%x of %s:\n",
7315 get_section_name (section),
7316 (unsigned) (begin_info_ptr - section->buffer),
7317 bfd_get_filename (abfd));
7318 dump_die (comp_unit_die, dwarf_die_debug);
7319 }
7320
7321 /* Save the comp_dir attribute. If there is no DWP file then we'll read
7322 TUs by skipping the stub and going directly to the entry in the DWO file.
7323 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
7324 to get it via circuitous means. Blech. */
7325 if (comp_dir != NULL)
7326 result_reader->comp_dir = DW_STRING (comp_dir);
7327
7328 /* Skip dummy compilation units. */
7329 if (info_ptr >= begin_info_ptr + dwo_unit->length
7330 || peek_abbrev_code (abfd, info_ptr) == 0)
7331 return 0;
7332
7333 *result_info_ptr = info_ptr;
7334 return 1;
7335 }
7336
7337 /* Subroutine of init_cutu_and_read_dies to simplify it.
7338 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
7339 Returns NULL if the specified DWO unit cannot be found. */
7340
7341 static struct dwo_unit *
7342 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
7343 struct die_info *comp_unit_die)
7344 {
7345 struct dwarf2_cu *cu = this_cu->cu;
7346 ULONGEST signature;
7347 struct dwo_unit *dwo_unit;
7348 const char *comp_dir, *dwo_name;
7349
7350 gdb_assert (cu != NULL);
7351
7352 /* Yeah, we look dwo_name up again, but it simplifies the code. */
7353 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7354 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7355
7356 if (this_cu->is_debug_types)
7357 {
7358 struct signatured_type *sig_type;
7359
7360 /* Since this_cu is the first member of struct signatured_type,
7361 we can go from a pointer to one to a pointer to the other. */
7362 sig_type = (struct signatured_type *) this_cu;
7363 signature = sig_type->signature;
7364 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
7365 }
7366 else
7367 {
7368 struct attribute *attr;
7369
7370 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
7371 if (! attr)
7372 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
7373 " [in module %s]"),
7374 dwo_name, objfile_name (this_cu->dwarf2_per_objfile->objfile));
7375 signature = DW_UNSND (attr);
7376 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
7377 signature);
7378 }
7379
7380 return dwo_unit;
7381 }
7382
7383 /* Subroutine of init_cutu_and_read_dies to simplify it.
7384 See it for a description of the parameters.
7385 Read a TU directly from a DWO file, bypassing the stub. */
7386
7387 static void
7388 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
7389 int use_existing_cu, int keep,
7390 die_reader_func_ftype *die_reader_func,
7391 void *data)
7392 {
7393 std::unique_ptr<dwarf2_cu> new_cu;
7394 struct signatured_type *sig_type;
7395 struct die_reader_specs reader;
7396 const gdb_byte *info_ptr;
7397 struct die_info *comp_unit_die;
7398 int has_children;
7399 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7400
7401 /* Verify we can do the following downcast, and that we have the
7402 data we need. */
7403 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
7404 sig_type = (struct signatured_type *) this_cu;
7405 gdb_assert (sig_type->dwo_unit != NULL);
7406
7407 if (use_existing_cu && this_cu->cu != NULL)
7408 {
7409 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
7410 /* There's no need to do the rereading_dwo_cu handling that
7411 init_cutu_and_read_dies does since we don't read the stub. */
7412 }
7413 else
7414 {
7415 /* If !use_existing_cu, this_cu->cu must be NULL. */
7416 gdb_assert (this_cu->cu == NULL);
7417 new_cu.reset (new dwarf2_cu (this_cu));
7418 }
7419
7420 /* A future optimization, if needed, would be to use an existing
7421 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
7422 could share abbrev tables. */
7423
7424 /* The abbreviation table used by READER, this must live at least as long as
7425 READER. */
7426 abbrev_table_up dwo_abbrev_table;
7427
7428 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
7429 NULL /* stub_comp_unit_die */,
7430 sig_type->dwo_unit->dwo_file->comp_dir,
7431 &reader, &info_ptr,
7432 &comp_unit_die, &has_children,
7433 &dwo_abbrev_table) == 0)
7434 {
7435 /* Dummy die. */
7436 return;
7437 }
7438
7439 /* All the "real" work is done here. */
7440 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7441
7442 /* This duplicates the code in init_cutu_and_read_dies,
7443 but the alternative is making the latter more complex.
7444 This function is only for the special case of using DWO files directly:
7445 no point in overly complicating the general case just to handle this. */
7446 if (new_cu != NULL && keep)
7447 {
7448 /* Link this CU into read_in_chain. */
7449 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7450 dwarf2_per_objfile->read_in_chain = this_cu;
7451 /* The chain owns it now. */
7452 new_cu.release ();
7453 }
7454 }
7455
7456 /* Initialize a CU (or TU) and read its DIEs.
7457 If the CU defers to a DWO file, read the DWO file as well.
7458
7459 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
7460 Otherwise the table specified in the comp unit header is read in and used.
7461 This is an optimization for when we already have the abbrev table.
7462
7463 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
7464 Otherwise, a new CU is allocated with xmalloc.
7465
7466 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
7467 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
7468
7469 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7470 linker) then DIE_READER_FUNC will not get called. */
7471
7472 static void
7473 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
7474 struct abbrev_table *abbrev_table,
7475 int use_existing_cu, int keep,
7476 bool skip_partial,
7477 die_reader_func_ftype *die_reader_func,
7478 void *data)
7479 {
7480 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7481 struct objfile *objfile = dwarf2_per_objfile->objfile;
7482 struct dwarf2_section_info *section = this_cu->section;
7483 bfd *abfd = get_section_bfd_owner (section);
7484 struct dwarf2_cu *cu;
7485 const gdb_byte *begin_info_ptr, *info_ptr;
7486 struct die_reader_specs reader;
7487 struct die_info *comp_unit_die;
7488 int has_children;
7489 struct attribute *attr;
7490 struct signatured_type *sig_type = NULL;
7491 struct dwarf2_section_info *abbrev_section;
7492 /* Non-zero if CU currently points to a DWO file and we need to
7493 reread it. When this happens we need to reread the skeleton die
7494 before we can reread the DWO file (this only applies to CUs, not TUs). */
7495 int rereading_dwo_cu = 0;
7496
7497 if (dwarf_die_debug)
7498 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7499 this_cu->is_debug_types ? "type" : "comp",
7500 sect_offset_str (this_cu->sect_off));
7501
7502 if (use_existing_cu)
7503 gdb_assert (keep);
7504
7505 /* If we're reading a TU directly from a DWO file, including a virtual DWO
7506 file (instead of going through the stub), short-circuit all of this. */
7507 if (this_cu->reading_dwo_directly)
7508 {
7509 /* Narrow down the scope of possibilities to have to understand. */
7510 gdb_assert (this_cu->is_debug_types);
7511 gdb_assert (abbrev_table == NULL);
7512 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
7513 die_reader_func, data);
7514 return;
7515 }
7516
7517 /* This is cheap if the section is already read in. */
7518 dwarf2_read_section (objfile, section);
7519
7520 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7521
7522 abbrev_section = get_abbrev_section_for_cu (this_cu);
7523
7524 std::unique_ptr<dwarf2_cu> new_cu;
7525 if (use_existing_cu && this_cu->cu != NULL)
7526 {
7527 cu = this_cu->cu;
7528 /* If this CU is from a DWO file we need to start over, we need to
7529 refetch the attributes from the skeleton CU.
7530 This could be optimized by retrieving those attributes from when we
7531 were here the first time: the previous comp_unit_die was stored in
7532 comp_unit_obstack. But there's no data yet that we need this
7533 optimization. */
7534 if (cu->dwo_unit != NULL)
7535 rereading_dwo_cu = 1;
7536 }
7537 else
7538 {
7539 /* If !use_existing_cu, this_cu->cu must be NULL. */
7540 gdb_assert (this_cu->cu == NULL);
7541 new_cu.reset (new dwarf2_cu (this_cu));
7542 cu = new_cu.get ();
7543 }
7544
7545 /* Get the header. */
7546 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
7547 {
7548 /* We already have the header, there's no need to read it in again. */
7549 info_ptr += to_underlying (cu->header.first_die_cu_offset);
7550 }
7551 else
7552 {
7553 if (this_cu->is_debug_types)
7554 {
7555 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7556 &cu->header, section,
7557 abbrev_section, info_ptr,
7558 rcuh_kind::TYPE);
7559
7560 /* Since per_cu is the first member of struct signatured_type,
7561 we can go from a pointer to one to a pointer to the other. */
7562 sig_type = (struct signatured_type *) this_cu;
7563 gdb_assert (sig_type->signature == cu->header.signature);
7564 gdb_assert (sig_type->type_offset_in_tu
7565 == cu->header.type_cu_offset_in_tu);
7566 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7567
7568 /* LENGTH has not been set yet for type units if we're
7569 using .gdb_index. */
7570 this_cu->length = get_cu_length (&cu->header);
7571
7572 /* Establish the type offset that can be used to lookup the type. */
7573 sig_type->type_offset_in_section =
7574 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
7575
7576 this_cu->dwarf_version = cu->header.version;
7577 }
7578 else
7579 {
7580 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7581 &cu->header, section,
7582 abbrev_section,
7583 info_ptr,
7584 rcuh_kind::COMPILE);
7585
7586 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7587 gdb_assert (this_cu->length == get_cu_length (&cu->header));
7588 this_cu->dwarf_version = cu->header.version;
7589 }
7590 }
7591
7592 /* Skip dummy compilation units. */
7593 if (info_ptr >= begin_info_ptr + this_cu->length
7594 || peek_abbrev_code (abfd, info_ptr) == 0)
7595 return;
7596
7597 /* If we don't have them yet, read the abbrevs for this compilation unit.
7598 And if we need to read them now, make sure they're freed when we're
7599 done (own the table through ABBREV_TABLE_HOLDER). */
7600 abbrev_table_up abbrev_table_holder;
7601 if (abbrev_table != NULL)
7602 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
7603 else
7604 {
7605 abbrev_table_holder
7606 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7607 cu->header.abbrev_sect_off);
7608 abbrev_table = abbrev_table_holder.get ();
7609 }
7610
7611 /* Read the top level CU/TU die. */
7612 init_cu_die_reader (&reader, cu, section, NULL, abbrev_table);
7613 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7614
7615 if (skip_partial && comp_unit_die->tag == DW_TAG_partial_unit)
7616 return;
7617
7618 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
7619 from the DWO file. read_cutu_die_from_dwo will allocate the abbreviation
7620 table from the DWO file and pass the ownership over to us. It will be
7621 referenced from READER, so we must make sure to free it after we're done
7622 with READER.
7623
7624 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
7625 DWO CU, that this test will fail (the attribute will not be present). */
7626 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7627 abbrev_table_up dwo_abbrev_table;
7628 if (attr)
7629 {
7630 struct dwo_unit *dwo_unit;
7631 struct die_info *dwo_comp_unit_die;
7632
7633 if (has_children)
7634 {
7635 complaint (_("compilation unit with DW_AT_GNU_dwo_name"
7636 " has children (offset %s) [in module %s]"),
7637 sect_offset_str (this_cu->sect_off),
7638 bfd_get_filename (abfd));
7639 }
7640 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
7641 if (dwo_unit != NULL)
7642 {
7643 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
7644 comp_unit_die, NULL,
7645 &reader, &info_ptr,
7646 &dwo_comp_unit_die, &has_children,
7647 &dwo_abbrev_table) == 0)
7648 {
7649 /* Dummy die. */
7650 return;
7651 }
7652 comp_unit_die = dwo_comp_unit_die;
7653 }
7654 else
7655 {
7656 /* Yikes, we couldn't find the rest of the DIE, we only have
7657 the stub. A complaint has already been logged. There's
7658 not much more we can do except pass on the stub DIE to
7659 die_reader_func. We don't want to throw an error on bad
7660 debug info. */
7661 }
7662 }
7663
7664 /* All of the above is setup for this call. Yikes. */
7665 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7666
7667 /* Done, clean up. */
7668 if (new_cu != NULL && keep)
7669 {
7670 /* Link this CU into read_in_chain. */
7671 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7672 dwarf2_per_objfile->read_in_chain = this_cu;
7673 /* The chain owns it now. */
7674 new_cu.release ();
7675 }
7676 }
7677
7678 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
7679 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
7680 to have already done the lookup to find the DWO file).
7681
7682 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
7683 THIS_CU->is_debug_types, but nothing else.
7684
7685 We fill in THIS_CU->length.
7686
7687 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7688 linker) then DIE_READER_FUNC will not get called.
7689
7690 THIS_CU->cu is always freed when done.
7691 This is done in order to not leave THIS_CU->cu in a state where we have
7692 to care whether it refers to the "main" CU or the DWO CU. */
7693
7694 static void
7695 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
7696 struct dwo_file *dwo_file,
7697 die_reader_func_ftype *die_reader_func,
7698 void *data)
7699 {
7700 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7701 struct objfile *objfile = dwarf2_per_objfile->objfile;
7702 struct dwarf2_section_info *section = this_cu->section;
7703 bfd *abfd = get_section_bfd_owner (section);
7704 struct dwarf2_section_info *abbrev_section;
7705 const gdb_byte *begin_info_ptr, *info_ptr;
7706 struct die_reader_specs reader;
7707 struct die_info *comp_unit_die;
7708 int has_children;
7709
7710 if (dwarf_die_debug)
7711 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7712 this_cu->is_debug_types ? "type" : "comp",
7713 sect_offset_str (this_cu->sect_off));
7714
7715 gdb_assert (this_cu->cu == NULL);
7716
7717 abbrev_section = (dwo_file != NULL
7718 ? &dwo_file->sections.abbrev
7719 : get_abbrev_section_for_cu (this_cu));
7720
7721 /* This is cheap if the section is already read in. */
7722 dwarf2_read_section (objfile, section);
7723
7724 struct dwarf2_cu cu (this_cu);
7725
7726 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7727 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7728 &cu.header, section,
7729 abbrev_section, info_ptr,
7730 (this_cu->is_debug_types
7731 ? rcuh_kind::TYPE
7732 : rcuh_kind::COMPILE));
7733
7734 this_cu->length = get_cu_length (&cu.header);
7735
7736 /* Skip dummy compilation units. */
7737 if (info_ptr >= begin_info_ptr + this_cu->length
7738 || peek_abbrev_code (abfd, info_ptr) == 0)
7739 return;
7740
7741 abbrev_table_up abbrev_table
7742 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7743 cu.header.abbrev_sect_off);
7744
7745 init_cu_die_reader (&reader, &cu, section, dwo_file, abbrev_table.get ());
7746 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7747
7748 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7749 }
7750
7751 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
7752 does not lookup the specified DWO file.
7753 This cannot be used to read DWO files.
7754
7755 THIS_CU->cu is always freed when done.
7756 This is done in order to not leave THIS_CU->cu in a state where we have
7757 to care whether it refers to the "main" CU or the DWO CU.
7758 We can revisit this if the data shows there's a performance issue. */
7759
7760 static void
7761 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
7762 die_reader_func_ftype *die_reader_func,
7763 void *data)
7764 {
7765 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
7766 }
7767 \f
7768 /* Type Unit Groups.
7769
7770 Type Unit Groups are a way to collapse the set of all TUs (type units) into
7771 a more manageable set. The grouping is done by DW_AT_stmt_list entry
7772 so that all types coming from the same compilation (.o file) are grouped
7773 together. A future step could be to put the types in the same symtab as
7774 the CU the types ultimately came from. */
7775
7776 static hashval_t
7777 hash_type_unit_group (const void *item)
7778 {
7779 const struct type_unit_group *tu_group
7780 = (const struct type_unit_group *) item;
7781
7782 return hash_stmt_list_entry (&tu_group->hash);
7783 }
7784
7785 static int
7786 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
7787 {
7788 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
7789 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
7790
7791 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
7792 }
7793
7794 /* Allocate a hash table for type unit groups. */
7795
7796 static htab_t
7797 allocate_type_unit_groups_table (struct objfile *objfile)
7798 {
7799 return htab_create_alloc_ex (3,
7800 hash_type_unit_group,
7801 eq_type_unit_group,
7802 NULL,
7803 &objfile->objfile_obstack,
7804 hashtab_obstack_allocate,
7805 dummy_obstack_deallocate);
7806 }
7807
7808 /* Type units that don't have DW_AT_stmt_list are grouped into their own
7809 partial symtabs. We combine several TUs per psymtab to not let the size
7810 of any one psymtab grow too big. */
7811 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
7812 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
7813
7814 /* Helper routine for get_type_unit_group.
7815 Create the type_unit_group object used to hold one or more TUs. */
7816
7817 static struct type_unit_group *
7818 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
7819 {
7820 struct dwarf2_per_objfile *dwarf2_per_objfile
7821 = cu->per_cu->dwarf2_per_objfile;
7822 struct objfile *objfile = dwarf2_per_objfile->objfile;
7823 struct dwarf2_per_cu_data *per_cu;
7824 struct type_unit_group *tu_group;
7825
7826 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7827 struct type_unit_group);
7828 per_cu = &tu_group->per_cu;
7829 per_cu->dwarf2_per_objfile = dwarf2_per_objfile;
7830
7831 if (dwarf2_per_objfile->using_index)
7832 {
7833 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7834 struct dwarf2_per_cu_quick_data);
7835 }
7836 else
7837 {
7838 unsigned int line_offset = to_underlying (line_offset_struct);
7839 struct partial_symtab *pst;
7840 std::string name;
7841
7842 /* Give the symtab a useful name for debug purposes. */
7843 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
7844 name = string_printf ("<type_units_%d>",
7845 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
7846 else
7847 name = string_printf ("<type_units_at_0x%x>", line_offset);
7848
7849 pst = create_partial_symtab (per_cu, name.c_str ());
7850 pst->anonymous = 1;
7851 }
7852
7853 tu_group->hash.dwo_unit = cu->dwo_unit;
7854 tu_group->hash.line_sect_off = line_offset_struct;
7855
7856 return tu_group;
7857 }
7858
7859 /* Look up the type_unit_group for type unit CU, and create it if necessary.
7860 STMT_LIST is a DW_AT_stmt_list attribute. */
7861
7862 static struct type_unit_group *
7863 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
7864 {
7865 struct dwarf2_per_objfile *dwarf2_per_objfile
7866 = cu->per_cu->dwarf2_per_objfile;
7867 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7868 struct type_unit_group *tu_group;
7869 void **slot;
7870 unsigned int line_offset;
7871 struct type_unit_group type_unit_group_for_lookup;
7872
7873 if (dwarf2_per_objfile->type_unit_groups == NULL)
7874 {
7875 dwarf2_per_objfile->type_unit_groups =
7876 allocate_type_unit_groups_table (dwarf2_per_objfile->objfile);
7877 }
7878
7879 /* Do we need to create a new group, or can we use an existing one? */
7880
7881 if (stmt_list)
7882 {
7883 line_offset = DW_UNSND (stmt_list);
7884 ++tu_stats->nr_symtab_sharers;
7885 }
7886 else
7887 {
7888 /* Ugh, no stmt_list. Rare, but we have to handle it.
7889 We can do various things here like create one group per TU or
7890 spread them over multiple groups to split up the expansion work.
7891 To avoid worst case scenarios (too many groups or too large groups)
7892 we, umm, group them in bunches. */
7893 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
7894 | (tu_stats->nr_stmt_less_type_units
7895 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
7896 ++tu_stats->nr_stmt_less_type_units;
7897 }
7898
7899 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
7900 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
7901 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
7902 &type_unit_group_for_lookup, INSERT);
7903 if (*slot != NULL)
7904 {
7905 tu_group = (struct type_unit_group *) *slot;
7906 gdb_assert (tu_group != NULL);
7907 }
7908 else
7909 {
7910 sect_offset line_offset_struct = (sect_offset) line_offset;
7911 tu_group = create_type_unit_group (cu, line_offset_struct);
7912 *slot = tu_group;
7913 ++tu_stats->nr_symtabs;
7914 }
7915
7916 return tu_group;
7917 }
7918 \f
7919 /* Partial symbol tables. */
7920
7921 /* Create a psymtab named NAME and assign it to PER_CU.
7922
7923 The caller must fill in the following details:
7924 dirname, textlow, texthigh. */
7925
7926 static struct partial_symtab *
7927 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
7928 {
7929 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
7930 struct partial_symtab *pst;
7931
7932 pst = start_psymtab_common (objfile, name, 0);
7933
7934 pst->psymtabs_addrmap_supported = 1;
7935
7936 /* This is the glue that links PST into GDB's symbol API. */
7937 pst->read_symtab_private = per_cu;
7938 pst->read_symtab = dwarf2_read_symtab;
7939 per_cu->v.psymtab = pst;
7940
7941 return pst;
7942 }
7943
7944 /* The DATA object passed to process_psymtab_comp_unit_reader has this
7945 type. */
7946
7947 struct process_psymtab_comp_unit_data
7948 {
7949 /* True if we are reading a DW_TAG_partial_unit. */
7950
7951 int want_partial_unit;
7952
7953 /* The "pretend" language that is used if the CU doesn't declare a
7954 language. */
7955
7956 enum language pretend_language;
7957 };
7958
7959 /* die_reader_func for process_psymtab_comp_unit. */
7960
7961 static void
7962 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
7963 const gdb_byte *info_ptr,
7964 struct die_info *comp_unit_die,
7965 int has_children,
7966 void *data)
7967 {
7968 struct dwarf2_cu *cu = reader->cu;
7969 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
7970 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7971 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7972 CORE_ADDR baseaddr;
7973 CORE_ADDR best_lowpc = 0, best_highpc = 0;
7974 struct partial_symtab *pst;
7975 enum pc_bounds_kind cu_bounds_kind;
7976 const char *filename;
7977 struct process_psymtab_comp_unit_data *info
7978 = (struct process_psymtab_comp_unit_data *) data;
7979
7980 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
7981 return;
7982
7983 gdb_assert (! per_cu->is_debug_types);
7984
7985 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
7986
7987 /* Allocate a new partial symbol table structure. */
7988 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
7989 if (filename == NULL)
7990 filename = "";
7991
7992 pst = create_partial_symtab (per_cu, filename);
7993
7994 /* This must be done before calling dwarf2_build_include_psymtabs. */
7995 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7996
7997 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7998
7999 dwarf2_find_base_address (comp_unit_die, cu);
8000
8001 /* Possibly set the default values of LOWPC and HIGHPC from
8002 `DW_AT_ranges'. */
8003 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
8004 &best_highpc, cu, pst);
8005 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
8006 {
8007 CORE_ADDR low
8008 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr)
8009 - baseaddr);
8010 CORE_ADDR high
8011 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr)
8012 - baseaddr - 1);
8013 /* Store the contiguous range if it is not empty; it can be
8014 empty for CUs with no code. */
8015 addrmap_set_empty (objfile->psymtabs_addrmap, low, high, pst);
8016 }
8017
8018 /* Check if comp unit has_children.
8019 If so, read the rest of the partial symbols from this comp unit.
8020 If not, there's no more debug_info for this comp unit. */
8021 if (has_children)
8022 {
8023 struct partial_die_info *first_die;
8024 CORE_ADDR lowpc, highpc;
8025
8026 lowpc = ((CORE_ADDR) -1);
8027 highpc = ((CORE_ADDR) 0);
8028
8029 first_die = load_partial_dies (reader, info_ptr, 1);
8030
8031 scan_partial_symbols (first_die, &lowpc, &highpc,
8032 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
8033
8034 /* If we didn't find a lowpc, set it to highpc to avoid
8035 complaints from `maint check'. */
8036 if (lowpc == ((CORE_ADDR) -1))
8037 lowpc = highpc;
8038
8039 /* If the compilation unit didn't have an explicit address range,
8040 then use the information extracted from its child dies. */
8041 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
8042 {
8043 best_lowpc = lowpc;
8044 best_highpc = highpc;
8045 }
8046 }
8047 pst->set_text_low (gdbarch_adjust_dwarf2_addr (gdbarch,
8048 best_lowpc + baseaddr)
8049 - baseaddr);
8050 pst->set_text_high (gdbarch_adjust_dwarf2_addr (gdbarch,
8051 best_highpc + baseaddr)
8052 - baseaddr);
8053
8054 end_psymtab_common (objfile, pst);
8055
8056 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
8057 {
8058 int i;
8059 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8060 struct dwarf2_per_cu_data *iter;
8061
8062 /* Fill in 'dependencies' here; we fill in 'users' in a
8063 post-pass. */
8064 pst->number_of_dependencies = len;
8065 pst->dependencies =
8066 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
8067 for (i = 0;
8068 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8069 i, iter);
8070 ++i)
8071 pst->dependencies[i] = iter->v.psymtab;
8072
8073 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8074 }
8075
8076 /* Get the list of files included in the current compilation unit,
8077 and build a psymtab for each of them. */
8078 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
8079
8080 if (dwarf_read_debug)
8081 fprintf_unfiltered (gdb_stdlog,
8082 "Psymtab for %s unit @%s: %s - %s"
8083 ", %d global, %d static syms\n",
8084 per_cu->is_debug_types ? "type" : "comp",
8085 sect_offset_str (per_cu->sect_off),
8086 paddress (gdbarch, pst->text_low (objfile)),
8087 paddress (gdbarch, pst->text_high (objfile)),
8088 pst->n_global_syms, pst->n_static_syms);
8089 }
8090
8091 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8092 Process compilation unit THIS_CU for a psymtab. */
8093
8094 static void
8095 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
8096 int want_partial_unit,
8097 enum language pretend_language)
8098 {
8099 /* If this compilation unit was already read in, free the
8100 cached copy in order to read it in again. This is
8101 necessary because we skipped some symbols when we first
8102 read in the compilation unit (see load_partial_dies).
8103 This problem could be avoided, but the benefit is unclear. */
8104 if (this_cu->cu != NULL)
8105 free_one_cached_comp_unit (this_cu);
8106
8107 if (this_cu->is_debug_types)
8108 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8109 build_type_psymtabs_reader, NULL);
8110 else
8111 {
8112 process_psymtab_comp_unit_data info;
8113 info.want_partial_unit = want_partial_unit;
8114 info.pretend_language = pretend_language;
8115 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8116 process_psymtab_comp_unit_reader, &info);
8117 }
8118
8119 /* Age out any secondary CUs. */
8120 age_cached_comp_units (this_cu->dwarf2_per_objfile);
8121 }
8122
8123 /* Reader function for build_type_psymtabs. */
8124
8125 static void
8126 build_type_psymtabs_reader (const struct die_reader_specs *reader,
8127 const gdb_byte *info_ptr,
8128 struct die_info *type_unit_die,
8129 int has_children,
8130 void *data)
8131 {
8132 struct dwarf2_per_objfile *dwarf2_per_objfile
8133 = reader->cu->per_cu->dwarf2_per_objfile;
8134 struct objfile *objfile = dwarf2_per_objfile->objfile;
8135 struct dwarf2_cu *cu = reader->cu;
8136 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8137 struct signatured_type *sig_type;
8138 struct type_unit_group *tu_group;
8139 struct attribute *attr;
8140 struct partial_die_info *first_die;
8141 CORE_ADDR lowpc, highpc;
8142 struct partial_symtab *pst;
8143
8144 gdb_assert (data == NULL);
8145 gdb_assert (per_cu->is_debug_types);
8146 sig_type = (struct signatured_type *) per_cu;
8147
8148 if (! has_children)
8149 return;
8150
8151 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
8152 tu_group = get_type_unit_group (cu, attr);
8153
8154 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
8155
8156 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
8157 pst = create_partial_symtab (per_cu, "");
8158 pst->anonymous = 1;
8159
8160 first_die = load_partial_dies (reader, info_ptr, 1);
8161
8162 lowpc = (CORE_ADDR) -1;
8163 highpc = (CORE_ADDR) 0;
8164 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
8165
8166 end_psymtab_common (objfile, pst);
8167 }
8168
8169 /* Struct used to sort TUs by their abbreviation table offset. */
8170
8171 struct tu_abbrev_offset
8172 {
8173 tu_abbrev_offset (signatured_type *sig_type_, sect_offset abbrev_offset_)
8174 : sig_type (sig_type_), abbrev_offset (abbrev_offset_)
8175 {}
8176
8177 signatured_type *sig_type;
8178 sect_offset abbrev_offset;
8179 };
8180
8181 /* Helper routine for build_type_psymtabs_1, passed to std::sort. */
8182
8183 static bool
8184 sort_tu_by_abbrev_offset (const struct tu_abbrev_offset &a,
8185 const struct tu_abbrev_offset &b)
8186 {
8187 return a.abbrev_offset < b.abbrev_offset;
8188 }
8189
8190 /* Efficiently read all the type units.
8191 This does the bulk of the work for build_type_psymtabs.
8192
8193 The efficiency is because we sort TUs by the abbrev table they use and
8194 only read each abbrev table once. In one program there are 200K TUs
8195 sharing 8K abbrev tables.
8196
8197 The main purpose of this function is to support building the
8198 dwarf2_per_objfile->type_unit_groups table.
8199 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
8200 can collapse the search space by grouping them by stmt_list.
8201 The savings can be significant, in the same program from above the 200K TUs
8202 share 8K stmt_list tables.
8203
8204 FUNC is expected to call get_type_unit_group, which will create the
8205 struct type_unit_group if necessary and add it to
8206 dwarf2_per_objfile->type_unit_groups. */
8207
8208 static void
8209 build_type_psymtabs_1 (struct dwarf2_per_objfile *dwarf2_per_objfile)
8210 {
8211 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8212 abbrev_table_up abbrev_table;
8213 sect_offset abbrev_offset;
8214
8215 /* It's up to the caller to not call us multiple times. */
8216 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
8217
8218 if (dwarf2_per_objfile->all_type_units.empty ())
8219 return;
8220
8221 /* TUs typically share abbrev tables, and there can be way more TUs than
8222 abbrev tables. Sort by abbrev table to reduce the number of times we
8223 read each abbrev table in.
8224 Alternatives are to punt or to maintain a cache of abbrev tables.
8225 This is simpler and efficient enough for now.
8226
8227 Later we group TUs by their DW_AT_stmt_list value (as this defines the
8228 symtab to use). Typically TUs with the same abbrev offset have the same
8229 stmt_list value too so in practice this should work well.
8230
8231 The basic algorithm here is:
8232
8233 sort TUs by abbrev table
8234 for each TU with same abbrev table:
8235 read abbrev table if first user
8236 read TU top level DIE
8237 [IWBN if DWO skeletons had DW_AT_stmt_list]
8238 call FUNC */
8239
8240 if (dwarf_read_debug)
8241 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
8242
8243 /* Sort in a separate table to maintain the order of all_type_units
8244 for .gdb_index: TU indices directly index all_type_units. */
8245 std::vector<tu_abbrev_offset> sorted_by_abbrev;
8246 sorted_by_abbrev.reserve (dwarf2_per_objfile->all_type_units.size ());
8247
8248 for (signatured_type *sig_type : dwarf2_per_objfile->all_type_units)
8249 sorted_by_abbrev.emplace_back
8250 (sig_type, read_abbrev_offset (dwarf2_per_objfile,
8251 sig_type->per_cu.section,
8252 sig_type->per_cu.sect_off));
8253
8254 std::sort (sorted_by_abbrev.begin (), sorted_by_abbrev.end (),
8255 sort_tu_by_abbrev_offset);
8256
8257 abbrev_offset = (sect_offset) ~(unsigned) 0;
8258
8259 for (const tu_abbrev_offset &tu : sorted_by_abbrev)
8260 {
8261 /* Switch to the next abbrev table if necessary. */
8262 if (abbrev_table == NULL
8263 || tu.abbrev_offset != abbrev_offset)
8264 {
8265 abbrev_offset = tu.abbrev_offset;
8266 abbrev_table =
8267 abbrev_table_read_table (dwarf2_per_objfile,
8268 &dwarf2_per_objfile->abbrev,
8269 abbrev_offset);
8270 ++tu_stats->nr_uniq_abbrev_tables;
8271 }
8272
8273 init_cutu_and_read_dies (&tu.sig_type->per_cu, abbrev_table.get (),
8274 0, 0, false, build_type_psymtabs_reader, NULL);
8275 }
8276 }
8277
8278 /* Print collected type unit statistics. */
8279
8280 static void
8281 print_tu_stats (struct dwarf2_per_objfile *dwarf2_per_objfile)
8282 {
8283 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8284
8285 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
8286 fprintf_unfiltered (gdb_stdlog, " %zu TUs\n",
8287 dwarf2_per_objfile->all_type_units.size ());
8288 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
8289 tu_stats->nr_uniq_abbrev_tables);
8290 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
8291 tu_stats->nr_symtabs);
8292 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
8293 tu_stats->nr_symtab_sharers);
8294 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
8295 tu_stats->nr_stmt_less_type_units);
8296 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
8297 tu_stats->nr_all_type_units_reallocs);
8298 }
8299
8300 /* Traversal function for build_type_psymtabs. */
8301
8302 static int
8303 build_type_psymtab_dependencies (void **slot, void *info)
8304 {
8305 struct dwarf2_per_objfile *dwarf2_per_objfile
8306 = (struct dwarf2_per_objfile *) info;
8307 struct objfile *objfile = dwarf2_per_objfile->objfile;
8308 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
8309 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
8310 struct partial_symtab *pst = per_cu->v.psymtab;
8311 int len = VEC_length (sig_type_ptr, tu_group->tus);
8312 struct signatured_type *iter;
8313 int i;
8314
8315 gdb_assert (len > 0);
8316 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
8317
8318 pst->number_of_dependencies = len;
8319 pst->dependencies =
8320 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
8321 for (i = 0;
8322 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
8323 ++i)
8324 {
8325 gdb_assert (iter->per_cu.is_debug_types);
8326 pst->dependencies[i] = iter->per_cu.v.psymtab;
8327 iter->type_unit_group = tu_group;
8328 }
8329
8330 VEC_free (sig_type_ptr, tu_group->tus);
8331
8332 return 1;
8333 }
8334
8335 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8336 Build partial symbol tables for the .debug_types comp-units. */
8337
8338 static void
8339 build_type_psymtabs (struct dwarf2_per_objfile *dwarf2_per_objfile)
8340 {
8341 if (! create_all_type_units (dwarf2_per_objfile))
8342 return;
8343
8344 build_type_psymtabs_1 (dwarf2_per_objfile);
8345 }
8346
8347 /* Traversal function for process_skeletonless_type_unit.
8348 Read a TU in a DWO file and build partial symbols for it. */
8349
8350 static int
8351 process_skeletonless_type_unit (void **slot, void *info)
8352 {
8353 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
8354 struct dwarf2_per_objfile *dwarf2_per_objfile
8355 = (struct dwarf2_per_objfile *) info;
8356 struct signatured_type find_entry, *entry;
8357
8358 /* If this TU doesn't exist in the global table, add it and read it in. */
8359
8360 if (dwarf2_per_objfile->signatured_types == NULL)
8361 {
8362 dwarf2_per_objfile->signatured_types
8363 = allocate_signatured_type_table (dwarf2_per_objfile->objfile);
8364 }
8365
8366 find_entry.signature = dwo_unit->signature;
8367 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
8368 INSERT);
8369 /* If we've already seen this type there's nothing to do. What's happening
8370 is we're doing our own version of comdat-folding here. */
8371 if (*slot != NULL)
8372 return 1;
8373
8374 /* This does the job that create_all_type_units would have done for
8375 this TU. */
8376 entry = add_type_unit (dwarf2_per_objfile, dwo_unit->signature, slot);
8377 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, entry, dwo_unit);
8378 *slot = entry;
8379
8380 /* This does the job that build_type_psymtabs_1 would have done. */
8381 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0, false,
8382 build_type_psymtabs_reader, NULL);
8383
8384 return 1;
8385 }
8386
8387 /* Traversal function for process_skeletonless_type_units. */
8388
8389 static int
8390 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
8391 {
8392 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
8393
8394 if (dwo_file->tus != NULL)
8395 {
8396 htab_traverse_noresize (dwo_file->tus,
8397 process_skeletonless_type_unit, info);
8398 }
8399
8400 return 1;
8401 }
8402
8403 /* Scan all TUs of DWO files, verifying we've processed them.
8404 This is needed in case a TU was emitted without its skeleton.
8405 Note: This can't be done until we know what all the DWO files are. */
8406
8407 static void
8408 process_skeletonless_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8409 {
8410 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
8411 if (get_dwp_file (dwarf2_per_objfile) == NULL
8412 && dwarf2_per_objfile->dwo_files != NULL)
8413 {
8414 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
8415 process_dwo_file_for_skeletonless_type_units,
8416 dwarf2_per_objfile);
8417 }
8418 }
8419
8420 /* Compute the 'user' field for each psymtab in DWARF2_PER_OBJFILE. */
8421
8422 static void
8423 set_partial_user (struct dwarf2_per_objfile *dwarf2_per_objfile)
8424 {
8425 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8426 {
8427 struct partial_symtab *pst = per_cu->v.psymtab;
8428
8429 if (pst == NULL)
8430 continue;
8431
8432 for (int j = 0; j < pst->number_of_dependencies; ++j)
8433 {
8434 /* Set the 'user' field only if it is not already set. */
8435 if (pst->dependencies[j]->user == NULL)
8436 pst->dependencies[j]->user = pst;
8437 }
8438 }
8439 }
8440
8441 /* Build the partial symbol table by doing a quick pass through the
8442 .debug_info and .debug_abbrev sections. */
8443
8444 static void
8445 dwarf2_build_psymtabs_hard (struct dwarf2_per_objfile *dwarf2_per_objfile)
8446 {
8447 struct objfile *objfile = dwarf2_per_objfile->objfile;
8448
8449 if (dwarf_read_debug)
8450 {
8451 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
8452 objfile_name (objfile));
8453 }
8454
8455 dwarf2_per_objfile->reading_partial_symbols = 1;
8456
8457 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
8458
8459 /* Any cached compilation units will be linked by the per-objfile
8460 read_in_chain. Make sure to free them when we're done. */
8461 free_cached_comp_units freer (dwarf2_per_objfile);
8462
8463 build_type_psymtabs (dwarf2_per_objfile);
8464
8465 create_all_comp_units (dwarf2_per_objfile);
8466
8467 /* Create a temporary address map on a temporary obstack. We later
8468 copy this to the final obstack. */
8469 auto_obstack temp_obstack;
8470
8471 scoped_restore save_psymtabs_addrmap
8472 = make_scoped_restore (&objfile->psymtabs_addrmap,
8473 addrmap_create_mutable (&temp_obstack));
8474
8475 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8476 process_psymtab_comp_unit (per_cu, 0, language_minimal);
8477
8478 /* This has to wait until we read the CUs, we need the list of DWOs. */
8479 process_skeletonless_type_units (dwarf2_per_objfile);
8480
8481 /* Now that all TUs have been processed we can fill in the dependencies. */
8482 if (dwarf2_per_objfile->type_unit_groups != NULL)
8483 {
8484 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
8485 build_type_psymtab_dependencies, dwarf2_per_objfile);
8486 }
8487
8488 if (dwarf_read_debug)
8489 print_tu_stats (dwarf2_per_objfile);
8490
8491 set_partial_user (dwarf2_per_objfile);
8492
8493 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
8494 &objfile->objfile_obstack);
8495 /* At this point we want to keep the address map. */
8496 save_psymtabs_addrmap.release ();
8497
8498 if (dwarf_read_debug)
8499 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
8500 objfile_name (objfile));
8501 }
8502
8503 /* die_reader_func for load_partial_comp_unit. */
8504
8505 static void
8506 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
8507 const gdb_byte *info_ptr,
8508 struct die_info *comp_unit_die,
8509 int has_children,
8510 void *data)
8511 {
8512 struct dwarf2_cu *cu = reader->cu;
8513
8514 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
8515
8516 /* Check if comp unit has_children.
8517 If so, read the rest of the partial symbols from this comp unit.
8518 If not, there's no more debug_info for this comp unit. */
8519 if (has_children)
8520 load_partial_dies (reader, info_ptr, 0);
8521 }
8522
8523 /* Load the partial DIEs for a secondary CU into memory.
8524 This is also used when rereading a primary CU with load_all_dies. */
8525
8526 static void
8527 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
8528 {
8529 init_cutu_and_read_dies (this_cu, NULL, 1, 1, false,
8530 load_partial_comp_unit_reader, NULL);
8531 }
8532
8533 static void
8534 read_comp_units_from_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
8535 struct dwarf2_section_info *section,
8536 struct dwarf2_section_info *abbrev_section,
8537 unsigned int is_dwz)
8538 {
8539 const gdb_byte *info_ptr;
8540 struct objfile *objfile = dwarf2_per_objfile->objfile;
8541
8542 if (dwarf_read_debug)
8543 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
8544 get_section_name (section),
8545 get_section_file_name (section));
8546
8547 dwarf2_read_section (objfile, section);
8548
8549 info_ptr = section->buffer;
8550
8551 while (info_ptr < section->buffer + section->size)
8552 {
8553 struct dwarf2_per_cu_data *this_cu;
8554
8555 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
8556
8557 comp_unit_head cu_header;
8558 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
8559 abbrev_section, info_ptr,
8560 rcuh_kind::COMPILE);
8561
8562 /* Save the compilation unit for later lookup. */
8563 if (cu_header.unit_type != DW_UT_type)
8564 {
8565 this_cu = XOBNEW (&objfile->objfile_obstack,
8566 struct dwarf2_per_cu_data);
8567 memset (this_cu, 0, sizeof (*this_cu));
8568 }
8569 else
8570 {
8571 auto sig_type = XOBNEW (&objfile->objfile_obstack,
8572 struct signatured_type);
8573 memset (sig_type, 0, sizeof (*sig_type));
8574 sig_type->signature = cu_header.signature;
8575 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
8576 this_cu = &sig_type->per_cu;
8577 }
8578 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
8579 this_cu->sect_off = sect_off;
8580 this_cu->length = cu_header.length + cu_header.initial_length_size;
8581 this_cu->is_dwz = is_dwz;
8582 this_cu->dwarf2_per_objfile = dwarf2_per_objfile;
8583 this_cu->section = section;
8584
8585 dwarf2_per_objfile->all_comp_units.push_back (this_cu);
8586
8587 info_ptr = info_ptr + this_cu->length;
8588 }
8589 }
8590
8591 /* Create a list of all compilation units in OBJFILE.
8592 This is only done for -readnow and building partial symtabs. */
8593
8594 static void
8595 create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8596 {
8597 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
8598 read_comp_units_from_section (dwarf2_per_objfile, &dwarf2_per_objfile->info,
8599 &dwarf2_per_objfile->abbrev, 0);
8600
8601 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
8602 if (dwz != NULL)
8603 read_comp_units_from_section (dwarf2_per_objfile, &dwz->info, &dwz->abbrev,
8604 1);
8605 }
8606
8607 /* Process all loaded DIEs for compilation unit CU, starting at
8608 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
8609 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
8610 DW_AT_ranges). See the comments of add_partial_subprogram on how
8611 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
8612
8613 static void
8614 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
8615 CORE_ADDR *highpc, int set_addrmap,
8616 struct dwarf2_cu *cu)
8617 {
8618 struct partial_die_info *pdi;
8619
8620 /* Now, march along the PDI's, descending into ones which have
8621 interesting children but skipping the children of the other ones,
8622 until we reach the end of the compilation unit. */
8623
8624 pdi = first_die;
8625
8626 while (pdi != NULL)
8627 {
8628 pdi->fixup (cu);
8629
8630 /* Anonymous namespaces or modules have no name but have interesting
8631 children, so we need to look at them. Ditto for anonymous
8632 enums. */
8633
8634 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
8635 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
8636 || pdi->tag == DW_TAG_imported_unit
8637 || pdi->tag == DW_TAG_inlined_subroutine)
8638 {
8639 switch (pdi->tag)
8640 {
8641 case DW_TAG_subprogram:
8642 case DW_TAG_inlined_subroutine:
8643 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
8644 break;
8645 case DW_TAG_constant:
8646 case DW_TAG_variable:
8647 case DW_TAG_typedef:
8648 case DW_TAG_union_type:
8649 if (!pdi->is_declaration)
8650 {
8651 add_partial_symbol (pdi, cu);
8652 }
8653 break;
8654 case DW_TAG_class_type:
8655 case DW_TAG_interface_type:
8656 case DW_TAG_structure_type:
8657 if (!pdi->is_declaration)
8658 {
8659 add_partial_symbol (pdi, cu);
8660 }
8661 if ((cu->language == language_rust
8662 || cu->language == language_cplus) && pdi->has_children)
8663 scan_partial_symbols (pdi->die_child, lowpc, highpc,
8664 set_addrmap, cu);
8665 break;
8666 case DW_TAG_enumeration_type:
8667 if (!pdi->is_declaration)
8668 add_partial_enumeration (pdi, cu);
8669 break;
8670 case DW_TAG_base_type:
8671 case DW_TAG_subrange_type:
8672 /* File scope base type definitions are added to the partial
8673 symbol table. */
8674 add_partial_symbol (pdi, cu);
8675 break;
8676 case DW_TAG_namespace:
8677 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
8678 break;
8679 case DW_TAG_module:
8680 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
8681 break;
8682 case DW_TAG_imported_unit:
8683 {
8684 struct dwarf2_per_cu_data *per_cu;
8685
8686 /* For now we don't handle imported units in type units. */
8687 if (cu->per_cu->is_debug_types)
8688 {
8689 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8690 " supported in type units [in module %s]"),
8691 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
8692 }
8693
8694 per_cu = dwarf2_find_containing_comp_unit
8695 (pdi->d.sect_off, pdi->is_dwz,
8696 cu->per_cu->dwarf2_per_objfile);
8697
8698 /* Go read the partial unit, if needed. */
8699 if (per_cu->v.psymtab == NULL)
8700 process_psymtab_comp_unit (per_cu, 1, cu->language);
8701
8702 VEC_safe_push (dwarf2_per_cu_ptr,
8703 cu->per_cu->imported_symtabs, per_cu);
8704 }
8705 break;
8706 case DW_TAG_imported_declaration:
8707 add_partial_symbol (pdi, cu);
8708 break;
8709 default:
8710 break;
8711 }
8712 }
8713
8714 /* If the die has a sibling, skip to the sibling. */
8715
8716 pdi = pdi->die_sibling;
8717 }
8718 }
8719
8720 /* Functions used to compute the fully scoped name of a partial DIE.
8721
8722 Normally, this is simple. For C++, the parent DIE's fully scoped
8723 name is concatenated with "::" and the partial DIE's name.
8724 Enumerators are an exception; they use the scope of their parent
8725 enumeration type, i.e. the name of the enumeration type is not
8726 prepended to the enumerator.
8727
8728 There are two complexities. One is DW_AT_specification; in this
8729 case "parent" means the parent of the target of the specification,
8730 instead of the direct parent of the DIE. The other is compilers
8731 which do not emit DW_TAG_namespace; in this case we try to guess
8732 the fully qualified name of structure types from their members'
8733 linkage names. This must be done using the DIE's children rather
8734 than the children of any DW_AT_specification target. We only need
8735 to do this for structures at the top level, i.e. if the target of
8736 any DW_AT_specification (if any; otherwise the DIE itself) does not
8737 have a parent. */
8738
8739 /* Compute the scope prefix associated with PDI's parent, in
8740 compilation unit CU. The result will be allocated on CU's
8741 comp_unit_obstack, or a copy of the already allocated PDI->NAME
8742 field. NULL is returned if no prefix is necessary. */
8743 static const char *
8744 partial_die_parent_scope (struct partial_die_info *pdi,
8745 struct dwarf2_cu *cu)
8746 {
8747 const char *grandparent_scope;
8748 struct partial_die_info *parent, *real_pdi;
8749
8750 /* We need to look at our parent DIE; if we have a DW_AT_specification,
8751 then this means the parent of the specification DIE. */
8752
8753 real_pdi = pdi;
8754 while (real_pdi->has_specification)
8755 real_pdi = find_partial_die (real_pdi->spec_offset,
8756 real_pdi->spec_is_dwz, cu);
8757
8758 parent = real_pdi->die_parent;
8759 if (parent == NULL)
8760 return NULL;
8761
8762 if (parent->scope_set)
8763 return parent->scope;
8764
8765 parent->fixup (cu);
8766
8767 grandparent_scope = partial_die_parent_scope (parent, cu);
8768
8769 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
8770 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
8771 Work around this problem here. */
8772 if (cu->language == language_cplus
8773 && parent->tag == DW_TAG_namespace
8774 && strcmp (parent->name, "::") == 0
8775 && grandparent_scope == NULL)
8776 {
8777 parent->scope = NULL;
8778 parent->scope_set = 1;
8779 return NULL;
8780 }
8781
8782 if (pdi->tag == DW_TAG_enumerator)
8783 /* Enumerators should not get the name of the enumeration as a prefix. */
8784 parent->scope = grandparent_scope;
8785 else if (parent->tag == DW_TAG_namespace
8786 || parent->tag == DW_TAG_module
8787 || parent->tag == DW_TAG_structure_type
8788 || parent->tag == DW_TAG_class_type
8789 || parent->tag == DW_TAG_interface_type
8790 || parent->tag == DW_TAG_union_type
8791 || parent->tag == DW_TAG_enumeration_type)
8792 {
8793 if (grandparent_scope == NULL)
8794 parent->scope = parent->name;
8795 else
8796 parent->scope = typename_concat (&cu->comp_unit_obstack,
8797 grandparent_scope,
8798 parent->name, 0, cu);
8799 }
8800 else
8801 {
8802 /* FIXME drow/2004-04-01: What should we be doing with
8803 function-local names? For partial symbols, we should probably be
8804 ignoring them. */
8805 complaint (_("unhandled containing DIE tag %d for DIE at %s"),
8806 parent->tag, sect_offset_str (pdi->sect_off));
8807 parent->scope = grandparent_scope;
8808 }
8809
8810 parent->scope_set = 1;
8811 return parent->scope;
8812 }
8813
8814 /* Return the fully scoped name associated with PDI, from compilation unit
8815 CU. The result will be allocated with malloc. */
8816
8817 static char *
8818 partial_die_full_name (struct partial_die_info *pdi,
8819 struct dwarf2_cu *cu)
8820 {
8821 const char *parent_scope;
8822
8823 /* If this is a template instantiation, we can not work out the
8824 template arguments from partial DIEs. So, unfortunately, we have
8825 to go through the full DIEs. At least any work we do building
8826 types here will be reused if full symbols are loaded later. */
8827 if (pdi->has_template_arguments)
8828 {
8829 pdi->fixup (cu);
8830
8831 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
8832 {
8833 struct die_info *die;
8834 struct attribute attr;
8835 struct dwarf2_cu *ref_cu = cu;
8836
8837 /* DW_FORM_ref_addr is using section offset. */
8838 attr.name = (enum dwarf_attribute) 0;
8839 attr.form = DW_FORM_ref_addr;
8840 attr.u.unsnd = to_underlying (pdi->sect_off);
8841 die = follow_die_ref (NULL, &attr, &ref_cu);
8842
8843 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
8844 }
8845 }
8846
8847 parent_scope = partial_die_parent_scope (pdi, cu);
8848 if (parent_scope == NULL)
8849 return NULL;
8850 else
8851 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
8852 }
8853
8854 static void
8855 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
8856 {
8857 struct dwarf2_per_objfile *dwarf2_per_objfile
8858 = cu->per_cu->dwarf2_per_objfile;
8859 struct objfile *objfile = dwarf2_per_objfile->objfile;
8860 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8861 CORE_ADDR addr = 0;
8862 const char *actual_name = NULL;
8863 CORE_ADDR baseaddr;
8864 char *built_actual_name;
8865
8866 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8867
8868 built_actual_name = partial_die_full_name (pdi, cu);
8869 if (built_actual_name != NULL)
8870 actual_name = built_actual_name;
8871
8872 if (actual_name == NULL)
8873 actual_name = pdi->name;
8874
8875 switch (pdi->tag)
8876 {
8877 case DW_TAG_inlined_subroutine:
8878 case DW_TAG_subprogram:
8879 addr = (gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr)
8880 - baseaddr);
8881 if (pdi->is_external || cu->language == language_ada)
8882 {
8883 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
8884 of the global scope. But in Ada, we want to be able to access
8885 nested procedures globally. So all Ada subprograms are stored
8886 in the global scope. */
8887 add_psymbol_to_list (actual_name, strlen (actual_name),
8888 built_actual_name != NULL,
8889 VAR_DOMAIN, LOC_BLOCK,
8890 SECT_OFF_TEXT (objfile),
8891 psymbol_placement::GLOBAL,
8892 addr,
8893 cu->language, objfile);
8894 }
8895 else
8896 {
8897 add_psymbol_to_list (actual_name, strlen (actual_name),
8898 built_actual_name != NULL,
8899 VAR_DOMAIN, LOC_BLOCK,
8900 SECT_OFF_TEXT (objfile),
8901 psymbol_placement::STATIC,
8902 addr, cu->language, objfile);
8903 }
8904
8905 if (pdi->main_subprogram && actual_name != NULL)
8906 set_objfile_main_name (objfile, actual_name, cu->language);
8907 break;
8908 case DW_TAG_constant:
8909 add_psymbol_to_list (actual_name, strlen (actual_name),
8910 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
8911 -1, (pdi->is_external
8912 ? psymbol_placement::GLOBAL
8913 : psymbol_placement::STATIC),
8914 0, cu->language, objfile);
8915 break;
8916 case DW_TAG_variable:
8917 if (pdi->d.locdesc)
8918 addr = decode_locdesc (pdi->d.locdesc, cu);
8919
8920 if (pdi->d.locdesc
8921 && addr == 0
8922 && !dwarf2_per_objfile->has_section_at_zero)
8923 {
8924 /* A global or static variable may also have been stripped
8925 out by the linker if unused, in which case its address
8926 will be nullified; do not add such variables into partial
8927 symbol table then. */
8928 }
8929 else if (pdi->is_external)
8930 {
8931 /* Global Variable.
8932 Don't enter into the minimal symbol tables as there is
8933 a minimal symbol table entry from the ELF symbols already.
8934 Enter into partial symbol table if it has a location
8935 descriptor or a type.
8936 If the location descriptor is missing, new_symbol will create
8937 a LOC_UNRESOLVED symbol, the address of the variable will then
8938 be determined from the minimal symbol table whenever the variable
8939 is referenced.
8940 The address for the partial symbol table entry is not
8941 used by GDB, but it comes in handy for debugging partial symbol
8942 table building. */
8943
8944 if (pdi->d.locdesc || pdi->has_type)
8945 add_psymbol_to_list (actual_name, strlen (actual_name),
8946 built_actual_name != NULL,
8947 VAR_DOMAIN, LOC_STATIC,
8948 SECT_OFF_TEXT (objfile),
8949 psymbol_placement::GLOBAL,
8950 addr, cu->language, objfile);
8951 }
8952 else
8953 {
8954 int has_loc = pdi->d.locdesc != NULL;
8955
8956 /* Static Variable. Skip symbols whose value we cannot know (those
8957 without location descriptors or constant values). */
8958 if (!has_loc && !pdi->has_const_value)
8959 {
8960 xfree (built_actual_name);
8961 return;
8962 }
8963
8964 add_psymbol_to_list (actual_name, strlen (actual_name),
8965 built_actual_name != NULL,
8966 VAR_DOMAIN, LOC_STATIC,
8967 SECT_OFF_TEXT (objfile),
8968 psymbol_placement::STATIC,
8969 has_loc ? addr : 0,
8970 cu->language, objfile);
8971 }
8972 break;
8973 case DW_TAG_typedef:
8974 case DW_TAG_base_type:
8975 case DW_TAG_subrange_type:
8976 add_psymbol_to_list (actual_name, strlen (actual_name),
8977 built_actual_name != NULL,
8978 VAR_DOMAIN, LOC_TYPEDEF, -1,
8979 psymbol_placement::STATIC,
8980 0, cu->language, objfile);
8981 break;
8982 case DW_TAG_imported_declaration:
8983 case DW_TAG_namespace:
8984 add_psymbol_to_list (actual_name, strlen (actual_name),
8985 built_actual_name != NULL,
8986 VAR_DOMAIN, LOC_TYPEDEF, -1,
8987 psymbol_placement::GLOBAL,
8988 0, cu->language, objfile);
8989 break;
8990 case DW_TAG_module:
8991 add_psymbol_to_list (actual_name, strlen (actual_name),
8992 built_actual_name != NULL,
8993 MODULE_DOMAIN, LOC_TYPEDEF, -1,
8994 psymbol_placement::GLOBAL,
8995 0, cu->language, objfile);
8996 break;
8997 case DW_TAG_class_type:
8998 case DW_TAG_interface_type:
8999 case DW_TAG_structure_type:
9000 case DW_TAG_union_type:
9001 case DW_TAG_enumeration_type:
9002 /* Skip external references. The DWARF standard says in the section
9003 about "Structure, Union, and Class Type Entries": "An incomplete
9004 structure, union or class type is represented by a structure,
9005 union or class entry that does not have a byte size attribute
9006 and that has a DW_AT_declaration attribute." */
9007 if (!pdi->has_byte_size && pdi->is_declaration)
9008 {
9009 xfree (built_actual_name);
9010 return;
9011 }
9012
9013 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
9014 static vs. global. */
9015 add_psymbol_to_list (actual_name, strlen (actual_name),
9016 built_actual_name != NULL,
9017 STRUCT_DOMAIN, LOC_TYPEDEF, -1,
9018 cu->language == language_cplus
9019 ? psymbol_placement::GLOBAL
9020 : psymbol_placement::STATIC,
9021 0, cu->language, objfile);
9022
9023 break;
9024 case DW_TAG_enumerator:
9025 add_psymbol_to_list (actual_name, strlen (actual_name),
9026 built_actual_name != NULL,
9027 VAR_DOMAIN, LOC_CONST, -1,
9028 cu->language == language_cplus
9029 ? psymbol_placement::GLOBAL
9030 : psymbol_placement::STATIC,
9031 0, cu->language, objfile);
9032 break;
9033 default:
9034 break;
9035 }
9036
9037 xfree (built_actual_name);
9038 }
9039
9040 /* Read a partial die corresponding to a namespace; also, add a symbol
9041 corresponding to that namespace to the symbol table. NAMESPACE is
9042 the name of the enclosing namespace. */
9043
9044 static void
9045 add_partial_namespace (struct partial_die_info *pdi,
9046 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9047 int set_addrmap, struct dwarf2_cu *cu)
9048 {
9049 /* Add a symbol for the namespace. */
9050
9051 add_partial_symbol (pdi, cu);
9052
9053 /* Now scan partial symbols in that namespace. */
9054
9055 if (pdi->has_children)
9056 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9057 }
9058
9059 /* Read a partial die corresponding to a Fortran module. */
9060
9061 static void
9062 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
9063 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
9064 {
9065 /* Add a symbol for the namespace. */
9066
9067 add_partial_symbol (pdi, cu);
9068
9069 /* Now scan partial symbols in that module. */
9070
9071 if (pdi->has_children)
9072 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9073 }
9074
9075 /* Read a partial die corresponding to a subprogram or an inlined
9076 subprogram and create a partial symbol for that subprogram.
9077 When the CU language allows it, this routine also defines a partial
9078 symbol for each nested subprogram that this subprogram contains.
9079 If SET_ADDRMAP is true, record the covered ranges in the addrmap.
9080 Set *LOWPC and *HIGHPC to the lowest and highest PC values found in PDI.
9081
9082 PDI may also be a lexical block, in which case we simply search
9083 recursively for subprograms defined inside that lexical block.
9084 Again, this is only performed when the CU language allows this
9085 type of definitions. */
9086
9087 static void
9088 add_partial_subprogram (struct partial_die_info *pdi,
9089 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9090 int set_addrmap, struct dwarf2_cu *cu)
9091 {
9092 if (pdi->tag == DW_TAG_subprogram || pdi->tag == DW_TAG_inlined_subroutine)
9093 {
9094 if (pdi->has_pc_info)
9095 {
9096 if (pdi->lowpc < *lowpc)
9097 *lowpc = pdi->lowpc;
9098 if (pdi->highpc > *highpc)
9099 *highpc = pdi->highpc;
9100 if (set_addrmap)
9101 {
9102 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9103 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9104 CORE_ADDR baseaddr;
9105 CORE_ADDR this_highpc;
9106 CORE_ADDR this_lowpc;
9107
9108 baseaddr = ANOFFSET (objfile->section_offsets,
9109 SECT_OFF_TEXT (objfile));
9110 this_lowpc
9111 = (gdbarch_adjust_dwarf2_addr (gdbarch,
9112 pdi->lowpc + baseaddr)
9113 - baseaddr);
9114 this_highpc
9115 = (gdbarch_adjust_dwarf2_addr (gdbarch,
9116 pdi->highpc + baseaddr)
9117 - baseaddr);
9118 addrmap_set_empty (objfile->psymtabs_addrmap,
9119 this_lowpc, this_highpc - 1,
9120 cu->per_cu->v.psymtab);
9121 }
9122 }
9123
9124 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
9125 {
9126 if (!pdi->is_declaration)
9127 /* Ignore subprogram DIEs that do not have a name, they are
9128 illegal. Do not emit a complaint at this point, we will
9129 do so when we convert this psymtab into a symtab. */
9130 if (pdi->name)
9131 add_partial_symbol (pdi, cu);
9132 }
9133 }
9134
9135 if (! pdi->has_children)
9136 return;
9137
9138 if (cu->language == language_ada)
9139 {
9140 pdi = pdi->die_child;
9141 while (pdi != NULL)
9142 {
9143 pdi->fixup (cu);
9144 if (pdi->tag == DW_TAG_subprogram
9145 || pdi->tag == DW_TAG_inlined_subroutine
9146 || pdi->tag == DW_TAG_lexical_block)
9147 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
9148 pdi = pdi->die_sibling;
9149 }
9150 }
9151 }
9152
9153 /* Read a partial die corresponding to an enumeration type. */
9154
9155 static void
9156 add_partial_enumeration (struct partial_die_info *enum_pdi,
9157 struct dwarf2_cu *cu)
9158 {
9159 struct partial_die_info *pdi;
9160
9161 if (enum_pdi->name != NULL)
9162 add_partial_symbol (enum_pdi, cu);
9163
9164 pdi = enum_pdi->die_child;
9165 while (pdi)
9166 {
9167 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
9168 complaint (_("malformed enumerator DIE ignored"));
9169 else
9170 add_partial_symbol (pdi, cu);
9171 pdi = pdi->die_sibling;
9172 }
9173 }
9174
9175 /* Return the initial uleb128 in the die at INFO_PTR. */
9176
9177 static unsigned int
9178 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
9179 {
9180 unsigned int bytes_read;
9181
9182 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9183 }
9184
9185 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit
9186 READER::CU. Use READER::ABBREV_TABLE to lookup any abbreviation.
9187
9188 Return the corresponding abbrev, or NULL if the number is zero (indicating
9189 an empty DIE). In either case *BYTES_READ will be set to the length of
9190 the initial number. */
9191
9192 static struct abbrev_info *
9193 peek_die_abbrev (const die_reader_specs &reader,
9194 const gdb_byte *info_ptr, unsigned int *bytes_read)
9195 {
9196 dwarf2_cu *cu = reader.cu;
9197 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
9198 unsigned int abbrev_number
9199 = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
9200
9201 if (abbrev_number == 0)
9202 return NULL;
9203
9204 abbrev_info *abbrev = reader.abbrev_table->lookup_abbrev (abbrev_number);
9205 if (!abbrev)
9206 {
9207 error (_("Dwarf Error: Could not find abbrev number %d in %s"
9208 " at offset %s [in module %s]"),
9209 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
9210 sect_offset_str (cu->header.sect_off), bfd_get_filename (abfd));
9211 }
9212
9213 return abbrev;
9214 }
9215
9216 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9217 Returns a pointer to the end of a series of DIEs, terminated by an empty
9218 DIE. Any children of the skipped DIEs will also be skipped. */
9219
9220 static const gdb_byte *
9221 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
9222 {
9223 while (1)
9224 {
9225 unsigned int bytes_read;
9226 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
9227
9228 if (abbrev == NULL)
9229 return info_ptr + bytes_read;
9230 else
9231 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
9232 }
9233 }
9234
9235 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9236 INFO_PTR should point just after the initial uleb128 of a DIE, and the
9237 abbrev corresponding to that skipped uleb128 should be passed in
9238 ABBREV. Returns a pointer to this DIE's sibling, skipping any
9239 children. */
9240
9241 static const gdb_byte *
9242 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
9243 struct abbrev_info *abbrev)
9244 {
9245 unsigned int bytes_read;
9246 struct attribute attr;
9247 bfd *abfd = reader->abfd;
9248 struct dwarf2_cu *cu = reader->cu;
9249 const gdb_byte *buffer = reader->buffer;
9250 const gdb_byte *buffer_end = reader->buffer_end;
9251 unsigned int form, i;
9252
9253 for (i = 0; i < abbrev->num_attrs; i++)
9254 {
9255 /* The only abbrev we care about is DW_AT_sibling. */
9256 if (abbrev->attrs[i].name == DW_AT_sibling)
9257 {
9258 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
9259 if (attr.form == DW_FORM_ref_addr)
9260 complaint (_("ignoring absolute DW_AT_sibling"));
9261 else
9262 {
9263 sect_offset off = dwarf2_get_ref_die_offset (&attr);
9264 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
9265
9266 if (sibling_ptr < info_ptr)
9267 complaint (_("DW_AT_sibling points backwards"));
9268 else if (sibling_ptr > reader->buffer_end)
9269 dwarf2_section_buffer_overflow_complaint (reader->die_section);
9270 else
9271 return sibling_ptr;
9272 }
9273 }
9274
9275 /* If it isn't DW_AT_sibling, skip this attribute. */
9276 form = abbrev->attrs[i].form;
9277 skip_attribute:
9278 switch (form)
9279 {
9280 case DW_FORM_ref_addr:
9281 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
9282 and later it is offset sized. */
9283 if (cu->header.version == 2)
9284 info_ptr += cu->header.addr_size;
9285 else
9286 info_ptr += cu->header.offset_size;
9287 break;
9288 case DW_FORM_GNU_ref_alt:
9289 info_ptr += cu->header.offset_size;
9290 break;
9291 case DW_FORM_addr:
9292 info_ptr += cu->header.addr_size;
9293 break;
9294 case DW_FORM_data1:
9295 case DW_FORM_ref1:
9296 case DW_FORM_flag:
9297 info_ptr += 1;
9298 break;
9299 case DW_FORM_flag_present:
9300 case DW_FORM_implicit_const:
9301 break;
9302 case DW_FORM_data2:
9303 case DW_FORM_ref2:
9304 info_ptr += 2;
9305 break;
9306 case DW_FORM_data4:
9307 case DW_FORM_ref4:
9308 info_ptr += 4;
9309 break;
9310 case DW_FORM_data8:
9311 case DW_FORM_ref8:
9312 case DW_FORM_ref_sig8:
9313 info_ptr += 8;
9314 break;
9315 case DW_FORM_data16:
9316 info_ptr += 16;
9317 break;
9318 case DW_FORM_string:
9319 read_direct_string (abfd, info_ptr, &bytes_read);
9320 info_ptr += bytes_read;
9321 break;
9322 case DW_FORM_sec_offset:
9323 case DW_FORM_strp:
9324 case DW_FORM_GNU_strp_alt:
9325 info_ptr += cu->header.offset_size;
9326 break;
9327 case DW_FORM_exprloc:
9328 case DW_FORM_block:
9329 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9330 info_ptr += bytes_read;
9331 break;
9332 case DW_FORM_block1:
9333 info_ptr += 1 + read_1_byte (abfd, info_ptr);
9334 break;
9335 case DW_FORM_block2:
9336 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
9337 break;
9338 case DW_FORM_block4:
9339 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
9340 break;
9341 case DW_FORM_sdata:
9342 case DW_FORM_udata:
9343 case DW_FORM_ref_udata:
9344 case DW_FORM_GNU_addr_index:
9345 case DW_FORM_GNU_str_index:
9346 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
9347 break;
9348 case DW_FORM_indirect:
9349 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9350 info_ptr += bytes_read;
9351 /* We need to continue parsing from here, so just go back to
9352 the top. */
9353 goto skip_attribute;
9354
9355 default:
9356 error (_("Dwarf Error: Cannot handle %s "
9357 "in DWARF reader [in module %s]"),
9358 dwarf_form_name (form),
9359 bfd_get_filename (abfd));
9360 }
9361 }
9362
9363 if (abbrev->has_children)
9364 return skip_children (reader, info_ptr);
9365 else
9366 return info_ptr;
9367 }
9368
9369 /* Locate ORIG_PDI's sibling.
9370 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
9371
9372 static const gdb_byte *
9373 locate_pdi_sibling (const struct die_reader_specs *reader,
9374 struct partial_die_info *orig_pdi,
9375 const gdb_byte *info_ptr)
9376 {
9377 /* Do we know the sibling already? */
9378
9379 if (orig_pdi->sibling)
9380 return orig_pdi->sibling;
9381
9382 /* Are there any children to deal with? */
9383
9384 if (!orig_pdi->has_children)
9385 return info_ptr;
9386
9387 /* Skip the children the long way. */
9388
9389 return skip_children (reader, info_ptr);
9390 }
9391
9392 /* Expand this partial symbol table into a full symbol table. SELF is
9393 not NULL. */
9394
9395 static void
9396 dwarf2_read_symtab (struct partial_symtab *self,
9397 struct objfile *objfile)
9398 {
9399 struct dwarf2_per_objfile *dwarf2_per_objfile
9400 = get_dwarf2_per_objfile (objfile);
9401
9402 if (self->readin)
9403 {
9404 warning (_("bug: psymtab for %s is already read in."),
9405 self->filename);
9406 }
9407 else
9408 {
9409 if (info_verbose)
9410 {
9411 printf_filtered (_("Reading in symbols for %s..."),
9412 self->filename);
9413 gdb_flush (gdb_stdout);
9414 }
9415
9416 /* If this psymtab is constructed from a debug-only objfile, the
9417 has_section_at_zero flag will not necessarily be correct. We
9418 can get the correct value for this flag by looking at the data
9419 associated with the (presumably stripped) associated objfile. */
9420 if (objfile->separate_debug_objfile_backlink)
9421 {
9422 struct dwarf2_per_objfile *dpo_backlink
9423 = get_dwarf2_per_objfile (objfile->separate_debug_objfile_backlink);
9424
9425 dwarf2_per_objfile->has_section_at_zero
9426 = dpo_backlink->has_section_at_zero;
9427 }
9428
9429 dwarf2_per_objfile->reading_partial_symbols = 0;
9430
9431 psymtab_to_symtab_1 (self);
9432
9433 /* Finish up the debug error message. */
9434 if (info_verbose)
9435 printf_filtered (_("done.\n"));
9436 }
9437
9438 process_cu_includes (dwarf2_per_objfile);
9439 }
9440 \f
9441 /* Reading in full CUs. */
9442
9443 /* Add PER_CU to the queue. */
9444
9445 static void
9446 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
9447 enum language pretend_language)
9448 {
9449 struct dwarf2_queue_item *item;
9450
9451 per_cu->queued = 1;
9452 item = XNEW (struct dwarf2_queue_item);
9453 item->per_cu = per_cu;
9454 item->pretend_language = pretend_language;
9455 item->next = NULL;
9456
9457 if (dwarf2_queue == NULL)
9458 dwarf2_queue = item;
9459 else
9460 dwarf2_queue_tail->next = item;
9461
9462 dwarf2_queue_tail = item;
9463 }
9464
9465 /* If PER_CU is not yet queued, add it to the queue.
9466 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
9467 dependency.
9468 The result is non-zero if PER_CU was queued, otherwise the result is zero
9469 meaning either PER_CU is already queued or it is already loaded.
9470
9471 N.B. There is an invariant here that if a CU is queued then it is loaded.
9472 The caller is required to load PER_CU if we return non-zero. */
9473
9474 static int
9475 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
9476 struct dwarf2_per_cu_data *per_cu,
9477 enum language pretend_language)
9478 {
9479 /* We may arrive here during partial symbol reading, if we need full
9480 DIEs to process an unusual case (e.g. template arguments). Do
9481 not queue PER_CU, just tell our caller to load its DIEs. */
9482 if (per_cu->dwarf2_per_objfile->reading_partial_symbols)
9483 {
9484 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
9485 return 1;
9486 return 0;
9487 }
9488
9489 /* Mark the dependence relation so that we don't flush PER_CU
9490 too early. */
9491 if (dependent_cu != NULL)
9492 dwarf2_add_dependence (dependent_cu, per_cu);
9493
9494 /* If it's already on the queue, we have nothing to do. */
9495 if (per_cu->queued)
9496 return 0;
9497
9498 /* If the compilation unit is already loaded, just mark it as
9499 used. */
9500 if (per_cu->cu != NULL)
9501 {
9502 per_cu->cu->last_used = 0;
9503 return 0;
9504 }
9505
9506 /* Add it to the queue. */
9507 queue_comp_unit (per_cu, pretend_language);
9508
9509 return 1;
9510 }
9511
9512 /* Process the queue. */
9513
9514 static void
9515 process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile)
9516 {
9517 struct dwarf2_queue_item *item, *next_item;
9518
9519 if (dwarf_read_debug)
9520 {
9521 fprintf_unfiltered (gdb_stdlog,
9522 "Expanding one or more symtabs of objfile %s ...\n",
9523 objfile_name (dwarf2_per_objfile->objfile));
9524 }
9525
9526 /* The queue starts out with one item, but following a DIE reference
9527 may load a new CU, adding it to the end of the queue. */
9528 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
9529 {
9530 if ((dwarf2_per_objfile->using_index
9531 ? !item->per_cu->v.quick->compunit_symtab
9532 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
9533 /* Skip dummy CUs. */
9534 && item->per_cu->cu != NULL)
9535 {
9536 struct dwarf2_per_cu_data *per_cu = item->per_cu;
9537 unsigned int debug_print_threshold;
9538 char buf[100];
9539
9540 if (per_cu->is_debug_types)
9541 {
9542 struct signatured_type *sig_type =
9543 (struct signatured_type *) per_cu;
9544
9545 sprintf (buf, "TU %s at offset %s",
9546 hex_string (sig_type->signature),
9547 sect_offset_str (per_cu->sect_off));
9548 /* There can be 100s of TUs.
9549 Only print them in verbose mode. */
9550 debug_print_threshold = 2;
9551 }
9552 else
9553 {
9554 sprintf (buf, "CU at offset %s",
9555 sect_offset_str (per_cu->sect_off));
9556 debug_print_threshold = 1;
9557 }
9558
9559 if (dwarf_read_debug >= debug_print_threshold)
9560 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
9561
9562 if (per_cu->is_debug_types)
9563 process_full_type_unit (per_cu, item->pretend_language);
9564 else
9565 process_full_comp_unit (per_cu, item->pretend_language);
9566
9567 if (dwarf_read_debug >= debug_print_threshold)
9568 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
9569 }
9570
9571 item->per_cu->queued = 0;
9572 next_item = item->next;
9573 xfree (item);
9574 }
9575
9576 dwarf2_queue_tail = NULL;
9577
9578 if (dwarf_read_debug)
9579 {
9580 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
9581 objfile_name (dwarf2_per_objfile->objfile));
9582 }
9583 }
9584
9585 /* Read in full symbols for PST, and anything it depends on. */
9586
9587 static void
9588 psymtab_to_symtab_1 (struct partial_symtab *pst)
9589 {
9590 struct dwarf2_per_cu_data *per_cu;
9591 int i;
9592
9593 if (pst->readin)
9594 return;
9595
9596 for (i = 0; i < pst->number_of_dependencies; i++)
9597 if (!pst->dependencies[i]->readin
9598 && pst->dependencies[i]->user == NULL)
9599 {
9600 /* Inform about additional files that need to be read in. */
9601 if (info_verbose)
9602 {
9603 /* FIXME: i18n: Need to make this a single string. */
9604 fputs_filtered (" ", gdb_stdout);
9605 wrap_here ("");
9606 fputs_filtered ("and ", gdb_stdout);
9607 wrap_here ("");
9608 printf_filtered ("%s...", pst->dependencies[i]->filename);
9609 wrap_here (""); /* Flush output. */
9610 gdb_flush (gdb_stdout);
9611 }
9612 psymtab_to_symtab_1 (pst->dependencies[i]);
9613 }
9614
9615 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
9616
9617 if (per_cu == NULL)
9618 {
9619 /* It's an include file, no symbols to read for it.
9620 Everything is in the parent symtab. */
9621 pst->readin = 1;
9622 return;
9623 }
9624
9625 dw2_do_instantiate_symtab (per_cu, false);
9626 }
9627
9628 /* Trivial hash function for die_info: the hash value of a DIE
9629 is its offset in .debug_info for this objfile. */
9630
9631 static hashval_t
9632 die_hash (const void *item)
9633 {
9634 const struct die_info *die = (const struct die_info *) item;
9635
9636 return to_underlying (die->sect_off);
9637 }
9638
9639 /* Trivial comparison function for die_info structures: two DIEs
9640 are equal if they have the same offset. */
9641
9642 static int
9643 die_eq (const void *item_lhs, const void *item_rhs)
9644 {
9645 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
9646 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
9647
9648 return die_lhs->sect_off == die_rhs->sect_off;
9649 }
9650
9651 /* die_reader_func for load_full_comp_unit.
9652 This is identical to read_signatured_type_reader,
9653 but is kept separate for now. */
9654
9655 static void
9656 load_full_comp_unit_reader (const struct die_reader_specs *reader,
9657 const gdb_byte *info_ptr,
9658 struct die_info *comp_unit_die,
9659 int has_children,
9660 void *data)
9661 {
9662 struct dwarf2_cu *cu = reader->cu;
9663 enum language *language_ptr = (enum language *) data;
9664
9665 gdb_assert (cu->die_hash == NULL);
9666 cu->die_hash =
9667 htab_create_alloc_ex (cu->header.length / 12,
9668 die_hash,
9669 die_eq,
9670 NULL,
9671 &cu->comp_unit_obstack,
9672 hashtab_obstack_allocate,
9673 dummy_obstack_deallocate);
9674
9675 if (has_children)
9676 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
9677 &info_ptr, comp_unit_die);
9678 cu->dies = comp_unit_die;
9679 /* comp_unit_die is not stored in die_hash, no need. */
9680
9681 /* We try not to read any attributes in this function, because not
9682 all CUs needed for references have been loaded yet, and symbol
9683 table processing isn't initialized. But we have to set the CU language,
9684 or we won't be able to build types correctly.
9685 Similarly, if we do not read the producer, we can not apply
9686 producer-specific interpretation. */
9687 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
9688 }
9689
9690 /* Load the DIEs associated with PER_CU into memory. */
9691
9692 static void
9693 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
9694 bool skip_partial,
9695 enum language pretend_language)
9696 {
9697 gdb_assert (! this_cu->is_debug_types);
9698
9699 init_cutu_and_read_dies (this_cu, NULL, 1, 1, skip_partial,
9700 load_full_comp_unit_reader, &pretend_language);
9701 }
9702
9703 /* Add a DIE to the delayed physname list. */
9704
9705 static void
9706 add_to_method_list (struct type *type, int fnfield_index, int index,
9707 const char *name, struct die_info *die,
9708 struct dwarf2_cu *cu)
9709 {
9710 struct delayed_method_info mi;
9711 mi.type = type;
9712 mi.fnfield_index = fnfield_index;
9713 mi.index = index;
9714 mi.name = name;
9715 mi.die = die;
9716 cu->method_list.push_back (mi);
9717 }
9718
9719 /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
9720 "const" / "volatile". If so, decrements LEN by the length of the
9721 modifier and return true. Otherwise return false. */
9722
9723 template<size_t N>
9724 static bool
9725 check_modifier (const char *physname, size_t &len, const char (&mod)[N])
9726 {
9727 size_t mod_len = sizeof (mod) - 1;
9728 if (len > mod_len && startswith (physname + (len - mod_len), mod))
9729 {
9730 len -= mod_len;
9731 return true;
9732 }
9733 return false;
9734 }
9735
9736 /* Compute the physnames of any methods on the CU's method list.
9737
9738 The computation of method physnames is delayed in order to avoid the
9739 (bad) condition that one of the method's formal parameters is of an as yet
9740 incomplete type. */
9741
9742 static void
9743 compute_delayed_physnames (struct dwarf2_cu *cu)
9744 {
9745 /* Only C++ delays computing physnames. */
9746 if (cu->method_list.empty ())
9747 return;
9748 gdb_assert (cu->language == language_cplus);
9749
9750 for (const delayed_method_info &mi : cu->method_list)
9751 {
9752 const char *physname;
9753 struct fn_fieldlist *fn_flp
9754 = &TYPE_FN_FIELDLIST (mi.type, mi.fnfield_index);
9755 physname = dwarf2_physname (mi.name, mi.die, cu);
9756 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi.index)
9757 = physname ? physname : "";
9758
9759 /* Since there's no tag to indicate whether a method is a
9760 const/volatile overload, extract that information out of the
9761 demangled name. */
9762 if (physname != NULL)
9763 {
9764 size_t len = strlen (physname);
9765
9766 while (1)
9767 {
9768 if (physname[len] == ')') /* shortcut */
9769 break;
9770 else if (check_modifier (physname, len, " const"))
9771 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi.index) = 1;
9772 else if (check_modifier (physname, len, " volatile"))
9773 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi.index) = 1;
9774 else
9775 break;
9776 }
9777 }
9778 }
9779
9780 /* The list is no longer needed. */
9781 cu->method_list.clear ();
9782 }
9783
9784 /* A wrapper for add_symbol_to_list to ensure that SYMBOL's language is
9785 the same as all other symbols in LISTHEAD. If a new symbol is added
9786 with a different language, this function asserts. */
9787
9788 static inline void
9789 dw2_add_symbol_to_list (struct symbol *symbol, struct pending **listhead)
9790 {
9791 /* Only assert if LISTHEAD already contains symbols of a different
9792 language (dict_create_hashed/insert_symbol_hashed requires that all
9793 symbols in this list are of the same language). */
9794 gdb_assert ((*listhead) == NULL
9795 || (SYMBOL_LANGUAGE ((*listhead)->symbol[0])
9796 == SYMBOL_LANGUAGE (symbol)));
9797
9798 add_symbol_to_list (symbol, listhead);
9799 }
9800
9801 /* Go objects should be embedded in a DW_TAG_module DIE,
9802 and it's not clear if/how imported objects will appear.
9803 To keep Go support simple until that's worked out,
9804 go back through what we've read and create something usable.
9805 We could do this while processing each DIE, and feels kinda cleaner,
9806 but that way is more invasive.
9807 This is to, for example, allow the user to type "p var" or "b main"
9808 without having to specify the package name, and allow lookups
9809 of module.object to work in contexts that use the expression
9810 parser. */
9811
9812 static void
9813 fixup_go_packaging (struct dwarf2_cu *cu)
9814 {
9815 char *package_name = NULL;
9816 struct pending *list;
9817 int i;
9818
9819 for (list = *cu->builder->get_global_symbols ();
9820 list != NULL;
9821 list = list->next)
9822 {
9823 for (i = 0; i < list->nsyms; ++i)
9824 {
9825 struct symbol *sym = list->symbol[i];
9826
9827 if (SYMBOL_LANGUAGE (sym) == language_go
9828 && SYMBOL_CLASS (sym) == LOC_BLOCK)
9829 {
9830 char *this_package_name = go_symbol_package_name (sym);
9831
9832 if (this_package_name == NULL)
9833 continue;
9834 if (package_name == NULL)
9835 package_name = this_package_name;
9836 else
9837 {
9838 struct objfile *objfile
9839 = cu->per_cu->dwarf2_per_objfile->objfile;
9840 if (strcmp (package_name, this_package_name) != 0)
9841 complaint (_("Symtab %s has objects from two different Go packages: %s and %s"),
9842 (symbol_symtab (sym) != NULL
9843 ? symtab_to_filename_for_display
9844 (symbol_symtab (sym))
9845 : objfile_name (objfile)),
9846 this_package_name, package_name);
9847 xfree (this_package_name);
9848 }
9849 }
9850 }
9851 }
9852
9853 if (package_name != NULL)
9854 {
9855 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9856 const char *saved_package_name
9857 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
9858 package_name,
9859 strlen (package_name));
9860 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
9861 saved_package_name);
9862 struct symbol *sym;
9863
9864 sym = allocate_symbol (objfile);
9865 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
9866 SYMBOL_SET_NAMES (sym, saved_package_name,
9867 strlen (saved_package_name), 0, objfile);
9868 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
9869 e.g., "main" finds the "main" module and not C's main(). */
9870 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
9871 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
9872 SYMBOL_TYPE (sym) = type;
9873
9874 dw2_add_symbol_to_list (sym, cu->builder->get_global_symbols ());
9875
9876 xfree (package_name);
9877 }
9878 }
9879
9880 /* Allocate a fully-qualified name consisting of the two parts on the
9881 obstack. */
9882
9883 static const char *
9884 rust_fully_qualify (struct obstack *obstack, const char *p1, const char *p2)
9885 {
9886 return obconcat (obstack, p1, "::", p2, (char *) NULL);
9887 }
9888
9889 /* A helper that allocates a struct discriminant_info to attach to a
9890 union type. */
9891
9892 static struct discriminant_info *
9893 alloc_discriminant_info (struct type *type, int discriminant_index,
9894 int default_index)
9895 {
9896 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9897 gdb_assert (discriminant_index == -1
9898 || (discriminant_index >= 0
9899 && discriminant_index < TYPE_NFIELDS (type)));
9900 gdb_assert (default_index == -1
9901 || (default_index >= 0 && default_index < TYPE_NFIELDS (type)));
9902
9903 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
9904
9905 struct discriminant_info *disc
9906 = ((struct discriminant_info *)
9907 TYPE_ZALLOC (type,
9908 offsetof (struct discriminant_info, discriminants)
9909 + TYPE_NFIELDS (type) * sizeof (disc->discriminants[0])));
9910 disc->default_index = default_index;
9911 disc->discriminant_index = discriminant_index;
9912
9913 struct dynamic_prop prop;
9914 prop.kind = PROP_UNDEFINED;
9915 prop.data.baton = disc;
9916
9917 add_dyn_prop (DYN_PROP_DISCRIMINATED, prop, type);
9918
9919 return disc;
9920 }
9921
9922 /* Some versions of rustc emitted enums in an unusual way.
9923
9924 Ordinary enums were emitted as unions. The first element of each
9925 structure in the union was named "RUST$ENUM$DISR". This element
9926 held the discriminant.
9927
9928 These versions of Rust also implemented the "non-zero"
9929 optimization. When the enum had two values, and one is empty and
9930 the other holds a pointer that cannot be zero, the pointer is used
9931 as the discriminant, with a zero value meaning the empty variant.
9932 Here, the union's first member is of the form
9933 RUST$ENCODED$ENUM$<fieldno>$<fieldno>$...$<variantname>
9934 where the fieldnos are the indices of the fields that should be
9935 traversed in order to find the field (which may be several fields deep)
9936 and the variantname is the name of the variant of the case when the
9937 field is zero.
9938
9939 This function recognizes whether TYPE is of one of these forms,
9940 and, if so, smashes it to be a variant type. */
9941
9942 static void
9943 quirk_rust_enum (struct type *type, struct objfile *objfile)
9944 {
9945 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9946
9947 /* We don't need to deal with empty enums. */
9948 if (TYPE_NFIELDS (type) == 0)
9949 return;
9950
9951 #define RUST_ENUM_PREFIX "RUST$ENCODED$ENUM$"
9952 if (TYPE_NFIELDS (type) == 1
9953 && startswith (TYPE_FIELD_NAME (type, 0), RUST_ENUM_PREFIX))
9954 {
9955 const char *name = TYPE_FIELD_NAME (type, 0) + strlen (RUST_ENUM_PREFIX);
9956
9957 /* Decode the field name to find the offset of the
9958 discriminant. */
9959 ULONGEST bit_offset = 0;
9960 struct type *field_type = TYPE_FIELD_TYPE (type, 0);
9961 while (name[0] >= '0' && name[0] <= '9')
9962 {
9963 char *tail;
9964 unsigned long index = strtoul (name, &tail, 10);
9965 name = tail;
9966 if (*name != '$'
9967 || index >= TYPE_NFIELDS (field_type)
9968 || (TYPE_FIELD_LOC_KIND (field_type, index)
9969 != FIELD_LOC_KIND_BITPOS))
9970 {
9971 complaint (_("Could not parse Rust enum encoding string \"%s\""
9972 "[in module %s]"),
9973 TYPE_FIELD_NAME (type, 0),
9974 objfile_name (objfile));
9975 return;
9976 }
9977 ++name;
9978
9979 bit_offset += TYPE_FIELD_BITPOS (field_type, index);
9980 field_type = TYPE_FIELD_TYPE (field_type, index);
9981 }
9982
9983 /* Make a union to hold the variants. */
9984 struct type *union_type = alloc_type (objfile);
9985 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9986 TYPE_NFIELDS (union_type) = 3;
9987 TYPE_FIELDS (union_type)
9988 = (struct field *) TYPE_ZALLOC (type, 3 * sizeof (struct field));
9989 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
9990 set_type_align (union_type, TYPE_RAW_ALIGN (type));
9991
9992 /* Put the discriminant must at index 0. */
9993 TYPE_FIELD_TYPE (union_type, 0) = field_type;
9994 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
9995 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
9996 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 0), bit_offset);
9997
9998 /* The order of fields doesn't really matter, so put the real
9999 field at index 1 and the data-less field at index 2. */
10000 struct discriminant_info *disc
10001 = alloc_discriminant_info (union_type, 0, 1);
10002 TYPE_FIELD (union_type, 1) = TYPE_FIELD (type, 0);
10003 TYPE_FIELD_NAME (union_type, 1)
10004 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1)));
10005 TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1))
10006 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
10007 TYPE_FIELD_NAME (union_type, 1));
10008
10009 const char *dataless_name
10010 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
10011 name);
10012 struct type *dataless_type = init_type (objfile, TYPE_CODE_VOID, 0,
10013 dataless_name);
10014 TYPE_FIELD_TYPE (union_type, 2) = dataless_type;
10015 /* NAME points into the original discriminant name, which
10016 already has the correct lifetime. */
10017 TYPE_FIELD_NAME (union_type, 2) = name;
10018 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 2), 0);
10019 disc->discriminants[2] = 0;
10020
10021 /* Smash this type to be a structure type. We have to do this
10022 because the type has already been recorded. */
10023 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10024 TYPE_NFIELDS (type) = 1;
10025 TYPE_FIELDS (type)
10026 = (struct field *) TYPE_ZALLOC (type, sizeof (struct field));
10027
10028 /* Install the variant part. */
10029 TYPE_FIELD_TYPE (type, 0) = union_type;
10030 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10031 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10032 }
10033 else if (TYPE_NFIELDS (type) == 1)
10034 {
10035 /* We assume that a union with a single field is a univariant
10036 enum. */
10037 /* Smash this type to be a structure type. We have to do this
10038 because the type has already been recorded. */
10039 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10040
10041 /* Make a union to hold the variants. */
10042 struct type *union_type = alloc_type (objfile);
10043 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10044 TYPE_NFIELDS (union_type) = TYPE_NFIELDS (type);
10045 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10046 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10047 TYPE_FIELDS (union_type) = TYPE_FIELDS (type);
10048
10049 struct type *field_type = TYPE_FIELD_TYPE (union_type, 0);
10050 const char *variant_name
10051 = rust_last_path_segment (TYPE_NAME (field_type));
10052 TYPE_FIELD_NAME (union_type, 0) = variant_name;
10053 TYPE_NAME (field_type)
10054 = rust_fully_qualify (&objfile->objfile_obstack,
10055 TYPE_NAME (type), variant_name);
10056
10057 /* Install the union in the outer struct type. */
10058 TYPE_NFIELDS (type) = 1;
10059 TYPE_FIELDS (type)
10060 = (struct field *) TYPE_ZALLOC (union_type, sizeof (struct field));
10061 TYPE_FIELD_TYPE (type, 0) = union_type;
10062 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10063 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10064
10065 alloc_discriminant_info (union_type, -1, 0);
10066 }
10067 else
10068 {
10069 struct type *disr_type = nullptr;
10070 for (int i = 0; i < TYPE_NFIELDS (type); ++i)
10071 {
10072 disr_type = TYPE_FIELD_TYPE (type, i);
10073
10074 if (TYPE_CODE (disr_type) != TYPE_CODE_STRUCT)
10075 {
10076 /* All fields of a true enum will be structs. */
10077 return;
10078 }
10079 else if (TYPE_NFIELDS (disr_type) == 0)
10080 {
10081 /* Could be data-less variant, so keep going. */
10082 disr_type = nullptr;
10083 }
10084 else if (strcmp (TYPE_FIELD_NAME (disr_type, 0),
10085 "RUST$ENUM$DISR") != 0)
10086 {
10087 /* Not a Rust enum. */
10088 return;
10089 }
10090 else
10091 {
10092 /* Found one. */
10093 break;
10094 }
10095 }
10096
10097 /* If we got here without a discriminant, then it's probably
10098 just a union. */
10099 if (disr_type == nullptr)
10100 return;
10101
10102 /* Smash this type to be a structure type. We have to do this
10103 because the type has already been recorded. */
10104 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10105
10106 /* Make a union to hold the variants. */
10107 struct field *disr_field = &TYPE_FIELD (disr_type, 0);
10108 struct type *union_type = alloc_type (objfile);
10109 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10110 TYPE_NFIELDS (union_type) = 1 + TYPE_NFIELDS (type);
10111 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10112 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10113 TYPE_FIELDS (union_type)
10114 = (struct field *) TYPE_ZALLOC (union_type,
10115 (TYPE_NFIELDS (union_type)
10116 * sizeof (struct field)));
10117
10118 memcpy (TYPE_FIELDS (union_type) + 1, TYPE_FIELDS (type),
10119 TYPE_NFIELDS (type) * sizeof (struct field));
10120
10121 /* Install the discriminant at index 0 in the union. */
10122 TYPE_FIELD (union_type, 0) = *disr_field;
10123 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10124 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10125
10126 /* Install the union in the outer struct type. */
10127 TYPE_FIELD_TYPE (type, 0) = union_type;
10128 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10129 TYPE_NFIELDS (type) = 1;
10130
10131 /* Set the size and offset of the union type. */
10132 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10133
10134 /* We need a way to find the correct discriminant given a
10135 variant name. For convenience we build a map here. */
10136 struct type *enum_type = FIELD_TYPE (*disr_field);
10137 std::unordered_map<std::string, ULONGEST> discriminant_map;
10138 for (int i = 0; i < TYPE_NFIELDS (enum_type); ++i)
10139 {
10140 if (TYPE_FIELD_LOC_KIND (enum_type, i) == FIELD_LOC_KIND_ENUMVAL)
10141 {
10142 const char *name
10143 = rust_last_path_segment (TYPE_FIELD_NAME (enum_type, i));
10144 discriminant_map[name] = TYPE_FIELD_ENUMVAL (enum_type, i);
10145 }
10146 }
10147
10148 int n_fields = TYPE_NFIELDS (union_type);
10149 struct discriminant_info *disc
10150 = alloc_discriminant_info (union_type, 0, -1);
10151 /* Skip the discriminant here. */
10152 for (int i = 1; i < n_fields; ++i)
10153 {
10154 /* Find the final word in the name of this variant's type.
10155 That name can be used to look up the correct
10156 discriminant. */
10157 const char *variant_name
10158 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type,
10159 i)));
10160
10161 auto iter = discriminant_map.find (variant_name);
10162 if (iter != discriminant_map.end ())
10163 disc->discriminants[i] = iter->second;
10164
10165 /* Remove the discriminant field, if it exists. */
10166 struct type *sub_type = TYPE_FIELD_TYPE (union_type, i);
10167 if (TYPE_NFIELDS (sub_type) > 0)
10168 {
10169 --TYPE_NFIELDS (sub_type);
10170 ++TYPE_FIELDS (sub_type);
10171 }
10172 TYPE_FIELD_NAME (union_type, i) = variant_name;
10173 TYPE_NAME (sub_type)
10174 = rust_fully_qualify (&objfile->objfile_obstack,
10175 TYPE_NAME (type), variant_name);
10176 }
10177 }
10178 }
10179
10180 /* Rewrite some Rust unions to be structures with variants parts. */
10181
10182 static void
10183 rust_union_quirks (struct dwarf2_cu *cu)
10184 {
10185 gdb_assert (cu->language == language_rust);
10186 for (type *type_ : cu->rust_unions)
10187 quirk_rust_enum (type_, cu->per_cu->dwarf2_per_objfile->objfile);
10188 /* We don't need this any more. */
10189 cu->rust_unions.clear ();
10190 }
10191
10192 /* Return the symtab for PER_CU. This works properly regardless of
10193 whether we're using the index or psymtabs. */
10194
10195 static struct compunit_symtab *
10196 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
10197 {
10198 return (per_cu->dwarf2_per_objfile->using_index
10199 ? per_cu->v.quick->compunit_symtab
10200 : per_cu->v.psymtab->compunit_symtab);
10201 }
10202
10203 /* A helper function for computing the list of all symbol tables
10204 included by PER_CU. */
10205
10206 static void
10207 recursively_compute_inclusions (std::vector<compunit_symtab *> *result,
10208 htab_t all_children, htab_t all_type_symtabs,
10209 struct dwarf2_per_cu_data *per_cu,
10210 struct compunit_symtab *immediate_parent)
10211 {
10212 void **slot;
10213 int ix;
10214 struct compunit_symtab *cust;
10215 struct dwarf2_per_cu_data *iter;
10216
10217 slot = htab_find_slot (all_children, per_cu, INSERT);
10218 if (*slot != NULL)
10219 {
10220 /* This inclusion and its children have been processed. */
10221 return;
10222 }
10223
10224 *slot = per_cu;
10225 /* Only add a CU if it has a symbol table. */
10226 cust = get_compunit_symtab (per_cu);
10227 if (cust != NULL)
10228 {
10229 /* If this is a type unit only add its symbol table if we haven't
10230 seen it yet (type unit per_cu's can share symtabs). */
10231 if (per_cu->is_debug_types)
10232 {
10233 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
10234 if (*slot == NULL)
10235 {
10236 *slot = cust;
10237 result->push_back (cust);
10238 if (cust->user == NULL)
10239 cust->user = immediate_parent;
10240 }
10241 }
10242 else
10243 {
10244 result->push_back (cust);
10245 if (cust->user == NULL)
10246 cust->user = immediate_parent;
10247 }
10248 }
10249
10250 for (ix = 0;
10251 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
10252 ++ix)
10253 {
10254 recursively_compute_inclusions (result, all_children,
10255 all_type_symtabs, iter, cust);
10256 }
10257 }
10258
10259 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
10260 PER_CU. */
10261
10262 static void
10263 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
10264 {
10265 gdb_assert (! per_cu->is_debug_types);
10266
10267 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
10268 {
10269 int ix, len;
10270 struct dwarf2_per_cu_data *per_cu_iter;
10271 std::vector<compunit_symtab *> result_symtabs;
10272 htab_t all_children, all_type_symtabs;
10273 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
10274
10275 /* If we don't have a symtab, we can just skip this case. */
10276 if (cust == NULL)
10277 return;
10278
10279 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10280 NULL, xcalloc, xfree);
10281 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10282 NULL, xcalloc, xfree);
10283
10284 for (ix = 0;
10285 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
10286 ix, per_cu_iter);
10287 ++ix)
10288 {
10289 recursively_compute_inclusions (&result_symtabs, all_children,
10290 all_type_symtabs, per_cu_iter,
10291 cust);
10292 }
10293
10294 /* Now we have a transitive closure of all the included symtabs. */
10295 len = result_symtabs.size ();
10296 cust->includes
10297 = XOBNEWVEC (&per_cu->dwarf2_per_objfile->objfile->objfile_obstack,
10298 struct compunit_symtab *, len + 1);
10299 memcpy (cust->includes, result_symtabs.data (),
10300 len * sizeof (compunit_symtab *));
10301 cust->includes[len] = NULL;
10302
10303 htab_delete (all_children);
10304 htab_delete (all_type_symtabs);
10305 }
10306 }
10307
10308 /* Compute the 'includes' field for the symtabs of all the CUs we just
10309 read. */
10310
10311 static void
10312 process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile)
10313 {
10314 for (dwarf2_per_cu_data *iter : dwarf2_per_objfile->just_read_cus)
10315 {
10316 if (! iter->is_debug_types)
10317 compute_compunit_symtab_includes (iter);
10318 }
10319
10320 dwarf2_per_objfile->just_read_cus.clear ();
10321 }
10322
10323 /* Generate full symbol information for PER_CU, whose DIEs have
10324 already been loaded into memory. */
10325
10326 static void
10327 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
10328 enum language pretend_language)
10329 {
10330 struct dwarf2_cu *cu = per_cu->cu;
10331 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10332 struct objfile *objfile = dwarf2_per_objfile->objfile;
10333 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10334 CORE_ADDR lowpc, highpc;
10335 struct compunit_symtab *cust;
10336 CORE_ADDR baseaddr;
10337 struct block *static_block;
10338 CORE_ADDR addr;
10339
10340 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10341
10342 /* Clear the list here in case something was left over. */
10343 cu->method_list.clear ();
10344
10345 cu->language = pretend_language;
10346 cu->language_defn = language_def (cu->language);
10347
10348 /* Do line number decoding in read_file_scope () */
10349 process_die (cu->dies, cu);
10350
10351 /* For now fudge the Go package. */
10352 if (cu->language == language_go)
10353 fixup_go_packaging (cu);
10354
10355 /* Now that we have processed all the DIEs in the CU, all the types
10356 should be complete, and it should now be safe to compute all of the
10357 physnames. */
10358 compute_delayed_physnames (cu);
10359
10360 if (cu->language == language_rust)
10361 rust_union_quirks (cu);
10362
10363 /* Some compilers don't define a DW_AT_high_pc attribute for the
10364 compilation unit. If the DW_AT_high_pc is missing, synthesize
10365 it, by scanning the DIE's below the compilation unit. */
10366 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
10367
10368 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
10369 static_block = cu->builder->end_symtab_get_static_block (addr, 0, 1);
10370
10371 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
10372 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
10373 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
10374 addrmap to help ensure it has an accurate map of pc values belonging to
10375 this comp unit. */
10376 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
10377
10378 cust = cu->builder->end_symtab_from_static_block (static_block,
10379 SECT_OFF_TEXT (objfile),
10380 0);
10381
10382 if (cust != NULL)
10383 {
10384 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
10385
10386 /* Set symtab language to language from DW_AT_language. If the
10387 compilation is from a C file generated by language preprocessors, do
10388 not set the language if it was already deduced by start_subfile. */
10389 if (!(cu->language == language_c
10390 && COMPUNIT_FILETABS (cust)->language != language_unknown))
10391 COMPUNIT_FILETABS (cust)->language = cu->language;
10392
10393 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
10394 produce DW_AT_location with location lists but it can be possibly
10395 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
10396 there were bugs in prologue debug info, fixed later in GCC-4.5
10397 by "unwind info for epilogues" patch (which is not directly related).
10398
10399 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
10400 needed, it would be wrong due to missing DW_AT_producer there.
10401
10402 Still one can confuse GDB by using non-standard GCC compilation
10403 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
10404 */
10405 if (cu->has_loclist && gcc_4_minor >= 5)
10406 cust->locations_valid = 1;
10407
10408 if (gcc_4_minor >= 5)
10409 cust->epilogue_unwind_valid = 1;
10410
10411 cust->call_site_htab = cu->call_site_htab;
10412 }
10413
10414 if (dwarf2_per_objfile->using_index)
10415 per_cu->v.quick->compunit_symtab = cust;
10416 else
10417 {
10418 struct partial_symtab *pst = per_cu->v.psymtab;
10419 pst->compunit_symtab = cust;
10420 pst->readin = 1;
10421 }
10422
10423 /* Push it for inclusion processing later. */
10424 dwarf2_per_objfile->just_read_cus.push_back (per_cu);
10425
10426 /* Not needed any more. */
10427 cu->builder.reset ();
10428 }
10429
10430 /* Generate full symbol information for type unit PER_CU, whose DIEs have
10431 already been loaded into memory. */
10432
10433 static void
10434 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
10435 enum language pretend_language)
10436 {
10437 struct dwarf2_cu *cu = per_cu->cu;
10438 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10439 struct objfile *objfile = dwarf2_per_objfile->objfile;
10440 struct compunit_symtab *cust;
10441 struct signatured_type *sig_type;
10442
10443 gdb_assert (per_cu->is_debug_types);
10444 sig_type = (struct signatured_type *) per_cu;
10445
10446 /* Clear the list here in case something was left over. */
10447 cu->method_list.clear ();
10448
10449 cu->language = pretend_language;
10450 cu->language_defn = language_def (cu->language);
10451
10452 /* The symbol tables are set up in read_type_unit_scope. */
10453 process_die (cu->dies, cu);
10454
10455 /* For now fudge the Go package. */
10456 if (cu->language == language_go)
10457 fixup_go_packaging (cu);
10458
10459 /* Now that we have processed all the DIEs in the CU, all the types
10460 should be complete, and it should now be safe to compute all of the
10461 physnames. */
10462 compute_delayed_physnames (cu);
10463
10464 if (cu->language == language_rust)
10465 rust_union_quirks (cu);
10466
10467 /* TUs share symbol tables.
10468 If this is the first TU to use this symtab, complete the construction
10469 of it with end_expandable_symtab. Otherwise, complete the addition of
10470 this TU's symbols to the existing symtab. */
10471 if (sig_type->type_unit_group->compunit_symtab == NULL)
10472 {
10473 cust = cu->builder->end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
10474 sig_type->type_unit_group->compunit_symtab = cust;
10475
10476 if (cust != NULL)
10477 {
10478 /* Set symtab language to language from DW_AT_language. If the
10479 compilation is from a C file generated by language preprocessors,
10480 do not set the language if it was already deduced by
10481 start_subfile. */
10482 if (!(cu->language == language_c
10483 && COMPUNIT_FILETABS (cust)->language != language_c))
10484 COMPUNIT_FILETABS (cust)->language = cu->language;
10485 }
10486 }
10487 else
10488 {
10489 cu->builder->augment_type_symtab ();
10490 cust = sig_type->type_unit_group->compunit_symtab;
10491 }
10492
10493 if (dwarf2_per_objfile->using_index)
10494 per_cu->v.quick->compunit_symtab = cust;
10495 else
10496 {
10497 struct partial_symtab *pst = per_cu->v.psymtab;
10498 pst->compunit_symtab = cust;
10499 pst->readin = 1;
10500 }
10501
10502 /* Not needed any more. */
10503 cu->builder.reset ();
10504 }
10505
10506 /* Process an imported unit DIE. */
10507
10508 static void
10509 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
10510 {
10511 struct attribute *attr;
10512
10513 /* For now we don't handle imported units in type units. */
10514 if (cu->per_cu->is_debug_types)
10515 {
10516 error (_("Dwarf Error: DW_TAG_imported_unit is not"
10517 " supported in type units [in module %s]"),
10518 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
10519 }
10520
10521 attr = dwarf2_attr (die, DW_AT_import, cu);
10522 if (attr != NULL)
10523 {
10524 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
10525 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
10526 dwarf2_per_cu_data *per_cu
10527 = dwarf2_find_containing_comp_unit (sect_off, is_dwz,
10528 cu->per_cu->dwarf2_per_objfile);
10529
10530 /* If necessary, add it to the queue and load its DIEs. */
10531 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
10532 load_full_comp_unit (per_cu, false, cu->language);
10533
10534 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
10535 per_cu);
10536 }
10537 }
10538
10539 /* RAII object that represents a process_die scope: i.e.,
10540 starts/finishes processing a DIE. */
10541 class process_die_scope
10542 {
10543 public:
10544 process_die_scope (die_info *die, dwarf2_cu *cu)
10545 : m_die (die), m_cu (cu)
10546 {
10547 /* We should only be processing DIEs not already in process. */
10548 gdb_assert (!m_die->in_process);
10549 m_die->in_process = true;
10550 }
10551
10552 ~process_die_scope ()
10553 {
10554 m_die->in_process = false;
10555
10556 /* If we're done processing the DIE for the CU that owns the line
10557 header, we don't need the line header anymore. */
10558 if (m_cu->line_header_die_owner == m_die)
10559 {
10560 delete m_cu->line_header;
10561 m_cu->line_header = NULL;
10562 m_cu->line_header_die_owner = NULL;
10563 }
10564 }
10565
10566 private:
10567 die_info *m_die;
10568 dwarf2_cu *m_cu;
10569 };
10570
10571 /* Process a die and its children. */
10572
10573 static void
10574 process_die (struct die_info *die, struct dwarf2_cu *cu)
10575 {
10576 process_die_scope scope (die, cu);
10577
10578 switch (die->tag)
10579 {
10580 case DW_TAG_padding:
10581 break;
10582 case DW_TAG_compile_unit:
10583 case DW_TAG_partial_unit:
10584 read_file_scope (die, cu);
10585 break;
10586 case DW_TAG_type_unit:
10587 read_type_unit_scope (die, cu);
10588 break;
10589 case DW_TAG_subprogram:
10590 case DW_TAG_inlined_subroutine:
10591 read_func_scope (die, cu);
10592 break;
10593 case DW_TAG_lexical_block:
10594 case DW_TAG_try_block:
10595 case DW_TAG_catch_block:
10596 read_lexical_block_scope (die, cu);
10597 break;
10598 case DW_TAG_call_site:
10599 case DW_TAG_GNU_call_site:
10600 read_call_site_scope (die, cu);
10601 break;
10602 case DW_TAG_class_type:
10603 case DW_TAG_interface_type:
10604 case DW_TAG_structure_type:
10605 case DW_TAG_union_type:
10606 process_structure_scope (die, cu);
10607 break;
10608 case DW_TAG_enumeration_type:
10609 process_enumeration_scope (die, cu);
10610 break;
10611
10612 /* These dies have a type, but processing them does not create
10613 a symbol or recurse to process the children. Therefore we can
10614 read them on-demand through read_type_die. */
10615 case DW_TAG_subroutine_type:
10616 case DW_TAG_set_type:
10617 case DW_TAG_array_type:
10618 case DW_TAG_pointer_type:
10619 case DW_TAG_ptr_to_member_type:
10620 case DW_TAG_reference_type:
10621 case DW_TAG_rvalue_reference_type:
10622 case DW_TAG_string_type:
10623 break;
10624
10625 case DW_TAG_base_type:
10626 case DW_TAG_subrange_type:
10627 case DW_TAG_typedef:
10628 /* Add a typedef symbol for the type definition, if it has a
10629 DW_AT_name. */
10630 new_symbol (die, read_type_die (die, cu), cu);
10631 break;
10632 case DW_TAG_common_block:
10633 read_common_block (die, cu);
10634 break;
10635 case DW_TAG_common_inclusion:
10636 break;
10637 case DW_TAG_namespace:
10638 cu->processing_has_namespace_info = true;
10639 read_namespace (die, cu);
10640 break;
10641 case DW_TAG_module:
10642 cu->processing_has_namespace_info = true;
10643 read_module (die, cu);
10644 break;
10645 case DW_TAG_imported_declaration:
10646 cu->processing_has_namespace_info = true;
10647 if (read_namespace_alias (die, cu))
10648 break;
10649 /* The declaration is not a global namespace alias. */
10650 /* Fall through. */
10651 case DW_TAG_imported_module:
10652 cu->processing_has_namespace_info = true;
10653 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
10654 || cu->language != language_fortran))
10655 complaint (_("Tag '%s' has unexpected children"),
10656 dwarf_tag_name (die->tag));
10657 read_import_statement (die, cu);
10658 break;
10659
10660 case DW_TAG_imported_unit:
10661 process_imported_unit_die (die, cu);
10662 break;
10663
10664 case DW_TAG_variable:
10665 read_variable (die, cu);
10666 break;
10667
10668 default:
10669 new_symbol (die, NULL, cu);
10670 break;
10671 }
10672 }
10673 \f
10674 /* DWARF name computation. */
10675
10676 /* A helper function for dwarf2_compute_name which determines whether DIE
10677 needs to have the name of the scope prepended to the name listed in the
10678 die. */
10679
10680 static int
10681 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
10682 {
10683 struct attribute *attr;
10684
10685 switch (die->tag)
10686 {
10687 case DW_TAG_namespace:
10688 case DW_TAG_typedef:
10689 case DW_TAG_class_type:
10690 case DW_TAG_interface_type:
10691 case DW_TAG_structure_type:
10692 case DW_TAG_union_type:
10693 case DW_TAG_enumeration_type:
10694 case DW_TAG_enumerator:
10695 case DW_TAG_subprogram:
10696 case DW_TAG_inlined_subroutine:
10697 case DW_TAG_member:
10698 case DW_TAG_imported_declaration:
10699 return 1;
10700
10701 case DW_TAG_variable:
10702 case DW_TAG_constant:
10703 /* We only need to prefix "globally" visible variables. These include
10704 any variable marked with DW_AT_external or any variable that
10705 lives in a namespace. [Variables in anonymous namespaces
10706 require prefixing, but they are not DW_AT_external.] */
10707
10708 if (dwarf2_attr (die, DW_AT_specification, cu))
10709 {
10710 struct dwarf2_cu *spec_cu = cu;
10711
10712 return die_needs_namespace (die_specification (die, &spec_cu),
10713 spec_cu);
10714 }
10715
10716 attr = dwarf2_attr (die, DW_AT_external, cu);
10717 if (attr == NULL && die->parent->tag != DW_TAG_namespace
10718 && die->parent->tag != DW_TAG_module)
10719 return 0;
10720 /* A variable in a lexical block of some kind does not need a
10721 namespace, even though in C++ such variables may be external
10722 and have a mangled name. */
10723 if (die->parent->tag == DW_TAG_lexical_block
10724 || die->parent->tag == DW_TAG_try_block
10725 || die->parent->tag == DW_TAG_catch_block
10726 || die->parent->tag == DW_TAG_subprogram)
10727 return 0;
10728 return 1;
10729
10730 default:
10731 return 0;
10732 }
10733 }
10734
10735 /* Return the DIE's linkage name attribute, either DW_AT_linkage_name
10736 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10737 defined for the given DIE. */
10738
10739 static struct attribute *
10740 dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
10741 {
10742 struct attribute *attr;
10743
10744 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
10745 if (attr == NULL)
10746 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
10747
10748 return attr;
10749 }
10750
10751 /* Return the DIE's linkage name as a string, either DW_AT_linkage_name
10752 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10753 defined for the given DIE. */
10754
10755 static const char *
10756 dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
10757 {
10758 const char *linkage_name;
10759
10760 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
10761 if (linkage_name == NULL)
10762 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
10763
10764 return linkage_name;
10765 }
10766
10767 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
10768 compute the physname for the object, which include a method's:
10769 - formal parameters (C++),
10770 - receiver type (Go),
10771
10772 The term "physname" is a bit confusing.
10773 For C++, for example, it is the demangled name.
10774 For Go, for example, it's the mangled name.
10775
10776 For Ada, return the DIE's linkage name rather than the fully qualified
10777 name. PHYSNAME is ignored..
10778
10779 The result is allocated on the objfile_obstack and canonicalized. */
10780
10781 static const char *
10782 dwarf2_compute_name (const char *name,
10783 struct die_info *die, struct dwarf2_cu *cu,
10784 int physname)
10785 {
10786 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10787
10788 if (name == NULL)
10789 name = dwarf2_name (die, cu);
10790
10791 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
10792 but otherwise compute it by typename_concat inside GDB.
10793 FIXME: Actually this is not really true, or at least not always true.
10794 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
10795 Fortran names because there is no mangling standard. So new_symbol
10796 will set the demangled name to the result of dwarf2_full_name, and it is
10797 the demangled name that GDB uses if it exists. */
10798 if (cu->language == language_ada
10799 || (cu->language == language_fortran && physname))
10800 {
10801 /* For Ada unit, we prefer the linkage name over the name, as
10802 the former contains the exported name, which the user expects
10803 to be able to reference. Ideally, we want the user to be able
10804 to reference this entity using either natural or linkage name,
10805 but we haven't started looking at this enhancement yet. */
10806 const char *linkage_name = dw2_linkage_name (die, cu);
10807
10808 if (linkage_name != NULL)
10809 return linkage_name;
10810 }
10811
10812 /* These are the only languages we know how to qualify names in. */
10813 if (name != NULL
10814 && (cu->language == language_cplus
10815 || cu->language == language_fortran || cu->language == language_d
10816 || cu->language == language_rust))
10817 {
10818 if (die_needs_namespace (die, cu))
10819 {
10820 const char *prefix;
10821 const char *canonical_name = NULL;
10822
10823 string_file buf;
10824
10825 prefix = determine_prefix (die, cu);
10826 if (*prefix != '\0')
10827 {
10828 char *prefixed_name = typename_concat (NULL, prefix, name,
10829 physname, cu);
10830
10831 buf.puts (prefixed_name);
10832 xfree (prefixed_name);
10833 }
10834 else
10835 buf.puts (name);
10836
10837 /* Template parameters may be specified in the DIE's DW_AT_name, or
10838 as children with DW_TAG_template_type_param or
10839 DW_TAG_value_type_param. If the latter, add them to the name
10840 here. If the name already has template parameters, then
10841 skip this step; some versions of GCC emit both, and
10842 it is more efficient to use the pre-computed name.
10843
10844 Something to keep in mind about this process: it is very
10845 unlikely, or in some cases downright impossible, to produce
10846 something that will match the mangled name of a function.
10847 If the definition of the function has the same debug info,
10848 we should be able to match up with it anyway. But fallbacks
10849 using the minimal symbol, for instance to find a method
10850 implemented in a stripped copy of libstdc++, will not work.
10851 If we do not have debug info for the definition, we will have to
10852 match them up some other way.
10853
10854 When we do name matching there is a related problem with function
10855 templates; two instantiated function templates are allowed to
10856 differ only by their return types, which we do not add here. */
10857
10858 if (cu->language == language_cplus && strchr (name, '<') == NULL)
10859 {
10860 struct attribute *attr;
10861 struct die_info *child;
10862 int first = 1;
10863
10864 die->building_fullname = 1;
10865
10866 for (child = die->child; child != NULL; child = child->sibling)
10867 {
10868 struct type *type;
10869 LONGEST value;
10870 const gdb_byte *bytes;
10871 struct dwarf2_locexpr_baton *baton;
10872 struct value *v;
10873
10874 if (child->tag != DW_TAG_template_type_param
10875 && child->tag != DW_TAG_template_value_param)
10876 continue;
10877
10878 if (first)
10879 {
10880 buf.puts ("<");
10881 first = 0;
10882 }
10883 else
10884 buf.puts (", ");
10885
10886 attr = dwarf2_attr (child, DW_AT_type, cu);
10887 if (attr == NULL)
10888 {
10889 complaint (_("template parameter missing DW_AT_type"));
10890 buf.puts ("UNKNOWN_TYPE");
10891 continue;
10892 }
10893 type = die_type (child, cu);
10894
10895 if (child->tag == DW_TAG_template_type_param)
10896 {
10897 c_print_type (type, "", &buf, -1, 0, cu->language,
10898 &type_print_raw_options);
10899 continue;
10900 }
10901
10902 attr = dwarf2_attr (child, DW_AT_const_value, cu);
10903 if (attr == NULL)
10904 {
10905 complaint (_("template parameter missing "
10906 "DW_AT_const_value"));
10907 buf.puts ("UNKNOWN_VALUE");
10908 continue;
10909 }
10910
10911 dwarf2_const_value_attr (attr, type, name,
10912 &cu->comp_unit_obstack, cu,
10913 &value, &bytes, &baton);
10914
10915 if (TYPE_NOSIGN (type))
10916 /* GDB prints characters as NUMBER 'CHAR'. If that's
10917 changed, this can use value_print instead. */
10918 c_printchar (value, type, &buf);
10919 else
10920 {
10921 struct value_print_options opts;
10922
10923 if (baton != NULL)
10924 v = dwarf2_evaluate_loc_desc (type, NULL,
10925 baton->data,
10926 baton->size,
10927 baton->per_cu);
10928 else if (bytes != NULL)
10929 {
10930 v = allocate_value (type);
10931 memcpy (value_contents_writeable (v), bytes,
10932 TYPE_LENGTH (type));
10933 }
10934 else
10935 v = value_from_longest (type, value);
10936
10937 /* Specify decimal so that we do not depend on
10938 the radix. */
10939 get_formatted_print_options (&opts, 'd');
10940 opts.raw = 1;
10941 value_print (v, &buf, &opts);
10942 release_value (v);
10943 }
10944 }
10945
10946 die->building_fullname = 0;
10947
10948 if (!first)
10949 {
10950 /* Close the argument list, with a space if necessary
10951 (nested templates). */
10952 if (!buf.empty () && buf.string ().back () == '>')
10953 buf.puts (" >");
10954 else
10955 buf.puts (">");
10956 }
10957 }
10958
10959 /* For C++ methods, append formal parameter type
10960 information, if PHYSNAME. */
10961
10962 if (physname && die->tag == DW_TAG_subprogram
10963 && cu->language == language_cplus)
10964 {
10965 struct type *type = read_type_die (die, cu);
10966
10967 c_type_print_args (type, &buf, 1, cu->language,
10968 &type_print_raw_options);
10969
10970 if (cu->language == language_cplus)
10971 {
10972 /* Assume that an artificial first parameter is
10973 "this", but do not crash if it is not. RealView
10974 marks unnamed (and thus unused) parameters as
10975 artificial; there is no way to differentiate
10976 the two cases. */
10977 if (TYPE_NFIELDS (type) > 0
10978 && TYPE_FIELD_ARTIFICIAL (type, 0)
10979 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
10980 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
10981 0))))
10982 buf.puts (" const");
10983 }
10984 }
10985
10986 const std::string &intermediate_name = buf.string ();
10987
10988 if (cu->language == language_cplus)
10989 canonical_name
10990 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
10991 &objfile->per_bfd->storage_obstack);
10992
10993 /* If we only computed INTERMEDIATE_NAME, or if
10994 INTERMEDIATE_NAME is already canonical, then we need to
10995 copy it to the appropriate obstack. */
10996 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
10997 name = ((const char *)
10998 obstack_copy0 (&objfile->per_bfd->storage_obstack,
10999 intermediate_name.c_str (),
11000 intermediate_name.length ()));
11001 else
11002 name = canonical_name;
11003 }
11004 }
11005
11006 return name;
11007 }
11008
11009 /* Return the fully qualified name of DIE, based on its DW_AT_name.
11010 If scope qualifiers are appropriate they will be added. The result
11011 will be allocated on the storage_obstack, or NULL if the DIE does
11012 not have a name. NAME may either be from a previous call to
11013 dwarf2_name or NULL.
11014
11015 The output string will be canonicalized (if C++). */
11016
11017 static const char *
11018 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
11019 {
11020 return dwarf2_compute_name (name, die, cu, 0);
11021 }
11022
11023 /* Construct a physname for the given DIE in CU. NAME may either be
11024 from a previous call to dwarf2_name or NULL. The result will be
11025 allocated on the objfile_objstack or NULL if the DIE does not have a
11026 name.
11027
11028 The output string will be canonicalized (if C++). */
11029
11030 static const char *
11031 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
11032 {
11033 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11034 const char *retval, *mangled = NULL, *canon = NULL;
11035 int need_copy = 1;
11036
11037 /* In this case dwarf2_compute_name is just a shortcut not building anything
11038 on its own. */
11039 if (!die_needs_namespace (die, cu))
11040 return dwarf2_compute_name (name, die, cu, 1);
11041
11042 mangled = dw2_linkage_name (die, cu);
11043
11044 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
11045 See https://github.com/rust-lang/rust/issues/32925. */
11046 if (cu->language == language_rust && mangled != NULL
11047 && strchr (mangled, '{') != NULL)
11048 mangled = NULL;
11049
11050 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
11051 has computed. */
11052 gdb::unique_xmalloc_ptr<char> demangled;
11053 if (mangled != NULL)
11054 {
11055
11056 if (language_def (cu->language)->la_store_sym_names_in_linkage_form_p)
11057 {
11058 /* Do nothing (do not demangle the symbol name). */
11059 }
11060 else if (cu->language == language_go)
11061 {
11062 /* This is a lie, but we already lie to the caller new_symbol.
11063 new_symbol assumes we return the mangled name.
11064 This just undoes that lie until things are cleaned up. */
11065 }
11066 else
11067 {
11068 /* Use DMGL_RET_DROP for C++ template functions to suppress
11069 their return type. It is easier for GDB users to search
11070 for such functions as `name(params)' than `long name(params)'.
11071 In such case the minimal symbol names do not match the full
11072 symbol names but for template functions there is never a need
11073 to look up their definition from their declaration so
11074 the only disadvantage remains the minimal symbol variant
11075 `long name(params)' does not have the proper inferior type. */
11076 demangled.reset (gdb_demangle (mangled,
11077 (DMGL_PARAMS | DMGL_ANSI
11078 | DMGL_RET_DROP)));
11079 }
11080 if (demangled)
11081 canon = demangled.get ();
11082 else
11083 {
11084 canon = mangled;
11085 need_copy = 0;
11086 }
11087 }
11088
11089 if (canon == NULL || check_physname)
11090 {
11091 const char *physname = dwarf2_compute_name (name, die, cu, 1);
11092
11093 if (canon != NULL && strcmp (physname, canon) != 0)
11094 {
11095 /* It may not mean a bug in GDB. The compiler could also
11096 compute DW_AT_linkage_name incorrectly. But in such case
11097 GDB would need to be bug-to-bug compatible. */
11098
11099 complaint (_("Computed physname <%s> does not match demangled <%s> "
11100 "(from linkage <%s>) - DIE at %s [in module %s]"),
11101 physname, canon, mangled, sect_offset_str (die->sect_off),
11102 objfile_name (objfile));
11103
11104 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
11105 is available here - over computed PHYSNAME. It is safer
11106 against both buggy GDB and buggy compilers. */
11107
11108 retval = canon;
11109 }
11110 else
11111 {
11112 retval = physname;
11113 need_copy = 0;
11114 }
11115 }
11116 else
11117 retval = canon;
11118
11119 if (need_copy)
11120 retval = ((const char *)
11121 obstack_copy0 (&objfile->per_bfd->storage_obstack,
11122 retval, strlen (retval)));
11123
11124 return retval;
11125 }
11126
11127 /* Inspect DIE in CU for a namespace alias. If one exists, record
11128 a new symbol for it.
11129
11130 Returns 1 if a namespace alias was recorded, 0 otherwise. */
11131
11132 static int
11133 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
11134 {
11135 struct attribute *attr;
11136
11137 /* If the die does not have a name, this is not a namespace
11138 alias. */
11139 attr = dwarf2_attr (die, DW_AT_name, cu);
11140 if (attr != NULL)
11141 {
11142 int num;
11143 struct die_info *d = die;
11144 struct dwarf2_cu *imported_cu = cu;
11145
11146 /* If the compiler has nested DW_AT_imported_declaration DIEs,
11147 keep inspecting DIEs until we hit the underlying import. */
11148 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
11149 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
11150 {
11151 attr = dwarf2_attr (d, DW_AT_import, cu);
11152 if (attr == NULL)
11153 break;
11154
11155 d = follow_die_ref (d, attr, &imported_cu);
11156 if (d->tag != DW_TAG_imported_declaration)
11157 break;
11158 }
11159
11160 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
11161 {
11162 complaint (_("DIE at %s has too many recursively imported "
11163 "declarations"), sect_offset_str (d->sect_off));
11164 return 0;
11165 }
11166
11167 if (attr != NULL)
11168 {
11169 struct type *type;
11170 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
11171
11172 type = get_die_type_at_offset (sect_off, cu->per_cu);
11173 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
11174 {
11175 /* This declaration is a global namespace alias. Add
11176 a symbol for it whose type is the aliased namespace. */
11177 new_symbol (die, type, cu);
11178 return 1;
11179 }
11180 }
11181 }
11182
11183 return 0;
11184 }
11185
11186 /* Return the using directives repository (global or local?) to use in the
11187 current context for CU.
11188
11189 For Ada, imported declarations can materialize renamings, which *may* be
11190 global. However it is impossible (for now?) in DWARF to distinguish
11191 "external" imported declarations and "static" ones. As all imported
11192 declarations seem to be static in all other languages, make them all CU-wide
11193 global only in Ada. */
11194
11195 static struct using_direct **
11196 using_directives (struct dwarf2_cu *cu)
11197 {
11198 if (cu->language == language_ada && cu->builder->outermost_context_p ())
11199 return cu->builder->get_global_using_directives ();
11200 else
11201 return cu->builder->get_local_using_directives ();
11202 }
11203
11204 /* Read the import statement specified by the given die and record it. */
11205
11206 static void
11207 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
11208 {
11209 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11210 struct attribute *import_attr;
11211 struct die_info *imported_die, *child_die;
11212 struct dwarf2_cu *imported_cu;
11213 const char *imported_name;
11214 const char *imported_name_prefix;
11215 const char *canonical_name;
11216 const char *import_alias;
11217 const char *imported_declaration = NULL;
11218 const char *import_prefix;
11219 std::vector<const char *> excludes;
11220
11221 import_attr = dwarf2_attr (die, DW_AT_import, cu);
11222 if (import_attr == NULL)
11223 {
11224 complaint (_("Tag '%s' has no DW_AT_import"),
11225 dwarf_tag_name (die->tag));
11226 return;
11227 }
11228
11229 imported_cu = cu;
11230 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
11231 imported_name = dwarf2_name (imported_die, imported_cu);
11232 if (imported_name == NULL)
11233 {
11234 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
11235
11236 The import in the following code:
11237 namespace A
11238 {
11239 typedef int B;
11240 }
11241
11242 int main ()
11243 {
11244 using A::B;
11245 B b;
11246 return b;
11247 }
11248
11249 ...
11250 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
11251 <52> DW_AT_decl_file : 1
11252 <53> DW_AT_decl_line : 6
11253 <54> DW_AT_import : <0x75>
11254 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
11255 <59> DW_AT_name : B
11256 <5b> DW_AT_decl_file : 1
11257 <5c> DW_AT_decl_line : 2
11258 <5d> DW_AT_type : <0x6e>
11259 ...
11260 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
11261 <76> DW_AT_byte_size : 4
11262 <77> DW_AT_encoding : 5 (signed)
11263
11264 imports the wrong die ( 0x75 instead of 0x58 ).
11265 This case will be ignored until the gcc bug is fixed. */
11266 return;
11267 }
11268
11269 /* Figure out the local name after import. */
11270 import_alias = dwarf2_name (die, cu);
11271
11272 /* Figure out where the statement is being imported to. */
11273 import_prefix = determine_prefix (die, cu);
11274
11275 /* Figure out what the scope of the imported die is and prepend it
11276 to the name of the imported die. */
11277 imported_name_prefix = determine_prefix (imported_die, imported_cu);
11278
11279 if (imported_die->tag != DW_TAG_namespace
11280 && imported_die->tag != DW_TAG_module)
11281 {
11282 imported_declaration = imported_name;
11283 canonical_name = imported_name_prefix;
11284 }
11285 else if (strlen (imported_name_prefix) > 0)
11286 canonical_name = obconcat (&objfile->objfile_obstack,
11287 imported_name_prefix,
11288 (cu->language == language_d ? "." : "::"),
11289 imported_name, (char *) NULL);
11290 else
11291 canonical_name = imported_name;
11292
11293 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
11294 for (child_die = die->child; child_die && child_die->tag;
11295 child_die = sibling_die (child_die))
11296 {
11297 /* DWARF-4: A Fortran use statement with a “rename list” may be
11298 represented by an imported module entry with an import attribute
11299 referring to the module and owned entries corresponding to those
11300 entities that are renamed as part of being imported. */
11301
11302 if (child_die->tag != DW_TAG_imported_declaration)
11303 {
11304 complaint (_("child DW_TAG_imported_declaration expected "
11305 "- DIE at %s [in module %s]"),
11306 sect_offset_str (child_die->sect_off),
11307 objfile_name (objfile));
11308 continue;
11309 }
11310
11311 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
11312 if (import_attr == NULL)
11313 {
11314 complaint (_("Tag '%s' has no DW_AT_import"),
11315 dwarf_tag_name (child_die->tag));
11316 continue;
11317 }
11318
11319 imported_cu = cu;
11320 imported_die = follow_die_ref_or_sig (child_die, import_attr,
11321 &imported_cu);
11322 imported_name = dwarf2_name (imported_die, imported_cu);
11323 if (imported_name == NULL)
11324 {
11325 complaint (_("child DW_TAG_imported_declaration has unknown "
11326 "imported name - DIE at %s [in module %s]"),
11327 sect_offset_str (child_die->sect_off),
11328 objfile_name (objfile));
11329 continue;
11330 }
11331
11332 excludes.push_back (imported_name);
11333
11334 process_die (child_die, cu);
11335 }
11336
11337 add_using_directive (using_directives (cu),
11338 import_prefix,
11339 canonical_name,
11340 import_alias,
11341 imported_declaration,
11342 excludes,
11343 0,
11344 &objfile->objfile_obstack);
11345 }
11346
11347 /* ICC<14 does not output the required DW_AT_declaration on incomplete
11348 types, but gives them a size of zero. Starting with version 14,
11349 ICC is compatible with GCC. */
11350
11351 static bool
11352 producer_is_icc_lt_14 (struct dwarf2_cu *cu)
11353 {
11354 if (!cu->checked_producer)
11355 check_producer (cu);
11356
11357 return cu->producer_is_icc_lt_14;
11358 }
11359
11360 /* ICC generates a DW_AT_type for C void functions. This was observed on
11361 ICC 14.0.5.212, and appears to be against the DWARF spec (V5 3.3.2)
11362 which says that void functions should not have a DW_AT_type. */
11363
11364 static bool
11365 producer_is_icc (struct dwarf2_cu *cu)
11366 {
11367 if (!cu->checked_producer)
11368 check_producer (cu);
11369
11370 return cu->producer_is_icc;
11371 }
11372
11373 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
11374 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
11375 this, it was first present in GCC release 4.3.0. */
11376
11377 static bool
11378 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
11379 {
11380 if (!cu->checked_producer)
11381 check_producer (cu);
11382
11383 return cu->producer_is_gcc_lt_4_3;
11384 }
11385
11386 static file_and_directory
11387 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
11388 {
11389 file_and_directory res;
11390
11391 /* Find the filename. Do not use dwarf2_name here, since the filename
11392 is not a source language identifier. */
11393 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
11394 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
11395
11396 if (res.comp_dir == NULL
11397 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
11398 && IS_ABSOLUTE_PATH (res.name))
11399 {
11400 res.comp_dir_storage = ldirname (res.name);
11401 if (!res.comp_dir_storage.empty ())
11402 res.comp_dir = res.comp_dir_storage.c_str ();
11403 }
11404 if (res.comp_dir != NULL)
11405 {
11406 /* Irix 6.2 native cc prepends <machine>.: to the compilation
11407 directory, get rid of it. */
11408 const char *cp = strchr (res.comp_dir, ':');
11409
11410 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
11411 res.comp_dir = cp + 1;
11412 }
11413
11414 if (res.name == NULL)
11415 res.name = "<unknown>";
11416
11417 return res;
11418 }
11419
11420 /* Handle DW_AT_stmt_list for a compilation unit.
11421 DIE is the DW_TAG_compile_unit die for CU.
11422 COMP_DIR is the compilation directory. LOWPC is passed to
11423 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
11424
11425 static void
11426 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
11427 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
11428 {
11429 struct dwarf2_per_objfile *dwarf2_per_objfile
11430 = cu->per_cu->dwarf2_per_objfile;
11431 struct objfile *objfile = dwarf2_per_objfile->objfile;
11432 struct attribute *attr;
11433 struct line_header line_header_local;
11434 hashval_t line_header_local_hash;
11435 void **slot;
11436 int decode_mapping;
11437
11438 gdb_assert (! cu->per_cu->is_debug_types);
11439
11440 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11441 if (attr == NULL)
11442 return;
11443
11444 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11445
11446 /* The line header hash table is only created if needed (it exists to
11447 prevent redundant reading of the line table for partial_units).
11448 If we're given a partial_unit, we'll need it. If we're given a
11449 compile_unit, then use the line header hash table if it's already
11450 created, but don't create one just yet. */
11451
11452 if (dwarf2_per_objfile->line_header_hash == NULL
11453 && die->tag == DW_TAG_partial_unit)
11454 {
11455 dwarf2_per_objfile->line_header_hash
11456 = htab_create_alloc_ex (127, line_header_hash_voidp,
11457 line_header_eq_voidp,
11458 free_line_header_voidp,
11459 &objfile->objfile_obstack,
11460 hashtab_obstack_allocate,
11461 dummy_obstack_deallocate);
11462 }
11463
11464 line_header_local.sect_off = line_offset;
11465 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
11466 line_header_local_hash = line_header_hash (&line_header_local);
11467 if (dwarf2_per_objfile->line_header_hash != NULL)
11468 {
11469 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11470 &line_header_local,
11471 line_header_local_hash, NO_INSERT);
11472
11473 /* For DW_TAG_compile_unit we need info like symtab::linetable which
11474 is not present in *SLOT (since if there is something in *SLOT then
11475 it will be for a partial_unit). */
11476 if (die->tag == DW_TAG_partial_unit && slot != NULL)
11477 {
11478 gdb_assert (*slot != NULL);
11479 cu->line_header = (struct line_header *) *slot;
11480 return;
11481 }
11482 }
11483
11484 /* dwarf_decode_line_header does not yet provide sufficient information.
11485 We always have to call also dwarf_decode_lines for it. */
11486 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
11487 if (lh == NULL)
11488 return;
11489
11490 cu->line_header = lh.release ();
11491 cu->line_header_die_owner = die;
11492
11493 if (dwarf2_per_objfile->line_header_hash == NULL)
11494 slot = NULL;
11495 else
11496 {
11497 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11498 &line_header_local,
11499 line_header_local_hash, INSERT);
11500 gdb_assert (slot != NULL);
11501 }
11502 if (slot != NULL && *slot == NULL)
11503 {
11504 /* This newly decoded line number information unit will be owned
11505 by line_header_hash hash table. */
11506 *slot = cu->line_header;
11507 cu->line_header_die_owner = NULL;
11508 }
11509 else
11510 {
11511 /* We cannot free any current entry in (*slot) as that struct line_header
11512 may be already used by multiple CUs. Create only temporary decoded
11513 line_header for this CU - it may happen at most once for each line
11514 number information unit. And if we're not using line_header_hash
11515 then this is what we want as well. */
11516 gdb_assert (die->tag != DW_TAG_partial_unit);
11517 }
11518 decode_mapping = (die->tag != DW_TAG_partial_unit);
11519 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
11520 decode_mapping);
11521
11522 }
11523
11524 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
11525
11526 static void
11527 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
11528 {
11529 struct dwarf2_per_objfile *dwarf2_per_objfile
11530 = cu->per_cu->dwarf2_per_objfile;
11531 struct objfile *objfile = dwarf2_per_objfile->objfile;
11532 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11533 CORE_ADDR lowpc = ((CORE_ADDR) -1);
11534 CORE_ADDR highpc = ((CORE_ADDR) 0);
11535 struct attribute *attr;
11536 struct die_info *child_die;
11537 CORE_ADDR baseaddr;
11538
11539 prepare_one_comp_unit (cu, die, cu->language);
11540 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11541
11542 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
11543
11544 /* If we didn't find a lowpc, set it to highpc to avoid complaints
11545 from finish_block. */
11546 if (lowpc == ((CORE_ADDR) -1))
11547 lowpc = highpc;
11548 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11549
11550 file_and_directory fnd = find_file_and_directory (die, cu);
11551
11552 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
11553 standardised yet. As a workaround for the language detection we fall
11554 back to the DW_AT_producer string. */
11555 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
11556 cu->language = language_opencl;
11557
11558 /* Similar hack for Go. */
11559 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
11560 set_cu_language (DW_LANG_Go, cu);
11561
11562 dwarf2_start_symtab (cu, fnd.name, fnd.comp_dir, lowpc);
11563
11564 /* Decode line number information if present. We do this before
11565 processing child DIEs, so that the line header table is available
11566 for DW_AT_decl_file. */
11567 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
11568
11569 /* Process all dies in compilation unit. */
11570 if (die->child != NULL)
11571 {
11572 child_die = die->child;
11573 while (child_die && child_die->tag)
11574 {
11575 process_die (child_die, cu);
11576 child_die = sibling_die (child_die);
11577 }
11578 }
11579
11580 /* Decode macro information, if present. Dwarf 2 macro information
11581 refers to information in the line number info statement program
11582 header, so we can only read it if we've read the header
11583 successfully. */
11584 attr = dwarf2_attr (die, DW_AT_macros, cu);
11585 if (attr == NULL)
11586 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
11587 if (attr && cu->line_header)
11588 {
11589 if (dwarf2_attr (die, DW_AT_macro_info, cu))
11590 complaint (_("CU refers to both DW_AT_macros and DW_AT_macro_info"));
11591
11592 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
11593 }
11594 else
11595 {
11596 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
11597 if (attr && cu->line_header)
11598 {
11599 unsigned int macro_offset = DW_UNSND (attr);
11600
11601 dwarf_decode_macros (cu, macro_offset, 0);
11602 }
11603 }
11604 }
11605
11606 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
11607 Create the set of symtabs used by this TU, or if this TU is sharing
11608 symtabs with another TU and the symtabs have already been created
11609 then restore those symtabs in the line header.
11610 We don't need the pc/line-number mapping for type units. */
11611
11612 static void
11613 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
11614 {
11615 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
11616 struct type_unit_group *tu_group;
11617 int first_time;
11618 struct attribute *attr;
11619 unsigned int i;
11620 struct signatured_type *sig_type;
11621
11622 gdb_assert (per_cu->is_debug_types);
11623 sig_type = (struct signatured_type *) per_cu;
11624
11625 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11626
11627 /* If we're using .gdb_index (includes -readnow) then
11628 per_cu->type_unit_group may not have been set up yet. */
11629 if (sig_type->type_unit_group == NULL)
11630 sig_type->type_unit_group = get_type_unit_group (cu, attr);
11631 tu_group = sig_type->type_unit_group;
11632
11633 /* If we've already processed this stmt_list there's no real need to
11634 do it again, we could fake it and just recreate the part we need
11635 (file name,index -> symtab mapping). If data shows this optimization
11636 is useful we can do it then. */
11637 first_time = tu_group->compunit_symtab == NULL;
11638
11639 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
11640 debug info. */
11641 line_header_up lh;
11642 if (attr != NULL)
11643 {
11644 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11645 lh = dwarf_decode_line_header (line_offset, cu);
11646 }
11647 if (lh == NULL)
11648 {
11649 if (first_time)
11650 dwarf2_start_symtab (cu, "", NULL, 0);
11651 else
11652 {
11653 gdb_assert (tu_group->symtabs == NULL);
11654 gdb_assert (cu->builder == nullptr);
11655 struct compunit_symtab *cust = tu_group->compunit_symtab;
11656 cu->builder.reset (new struct buildsym_compunit
11657 (COMPUNIT_OBJFILE (cust), "",
11658 COMPUNIT_DIRNAME (cust),
11659 compunit_language (cust),
11660 0, cust));
11661 }
11662 return;
11663 }
11664
11665 cu->line_header = lh.release ();
11666 cu->line_header_die_owner = die;
11667
11668 if (first_time)
11669 {
11670 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
11671
11672 /* Note: We don't assign tu_group->compunit_symtab yet because we're
11673 still initializing it, and our caller (a few levels up)
11674 process_full_type_unit still needs to know if this is the first
11675 time. */
11676
11677 tu_group->num_symtabs = cu->line_header->file_names.size ();
11678 tu_group->symtabs = XNEWVEC (struct symtab *,
11679 cu->line_header->file_names.size ());
11680
11681 for (i = 0; i < cu->line_header->file_names.size (); ++i)
11682 {
11683 file_entry &fe = cu->line_header->file_names[i];
11684
11685 dwarf2_start_subfile (cu, fe.name, fe.include_dir (cu->line_header));
11686
11687 if (cu->builder->get_current_subfile ()->symtab == NULL)
11688 {
11689 /* NOTE: start_subfile will recognize when it's been
11690 passed a file it has already seen. So we can't
11691 assume there's a simple mapping from
11692 cu->line_header->file_names to subfiles, plus
11693 cu->line_header->file_names may contain dups. */
11694 cu->builder->get_current_subfile ()->symtab
11695 = allocate_symtab (cust,
11696 cu->builder->get_current_subfile ()->name);
11697 }
11698
11699 fe.symtab = cu->builder->get_current_subfile ()->symtab;
11700 tu_group->symtabs[i] = fe.symtab;
11701 }
11702 }
11703 else
11704 {
11705 gdb_assert (cu->builder == nullptr);
11706 struct compunit_symtab *cust = tu_group->compunit_symtab;
11707 cu->builder.reset (new struct buildsym_compunit
11708 (COMPUNIT_OBJFILE (cust), "",
11709 COMPUNIT_DIRNAME (cust),
11710 compunit_language (cust),
11711 0, cust));
11712
11713 for (i = 0; i < cu->line_header->file_names.size (); ++i)
11714 {
11715 file_entry &fe = cu->line_header->file_names[i];
11716
11717 fe.symtab = tu_group->symtabs[i];
11718 }
11719 }
11720
11721 /* The main symtab is allocated last. Type units don't have DW_AT_name
11722 so they don't have a "real" (so to speak) symtab anyway.
11723 There is later code that will assign the main symtab to all symbols
11724 that don't have one. We need to handle the case of a symbol with a
11725 missing symtab (DW_AT_decl_file) anyway. */
11726 }
11727
11728 /* Process DW_TAG_type_unit.
11729 For TUs we want to skip the first top level sibling if it's not the
11730 actual type being defined by this TU. In this case the first top
11731 level sibling is there to provide context only. */
11732
11733 static void
11734 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
11735 {
11736 struct die_info *child_die;
11737
11738 prepare_one_comp_unit (cu, die, language_minimal);
11739
11740 /* Initialize (or reinitialize) the machinery for building symtabs.
11741 We do this before processing child DIEs, so that the line header table
11742 is available for DW_AT_decl_file. */
11743 setup_type_unit_groups (die, cu);
11744
11745 if (die->child != NULL)
11746 {
11747 child_die = die->child;
11748 while (child_die && child_die->tag)
11749 {
11750 process_die (child_die, cu);
11751 child_die = sibling_die (child_die);
11752 }
11753 }
11754 }
11755 \f
11756 /* DWO/DWP files.
11757
11758 http://gcc.gnu.org/wiki/DebugFission
11759 http://gcc.gnu.org/wiki/DebugFissionDWP
11760
11761 To simplify handling of both DWO files ("object" files with the DWARF info)
11762 and DWP files (a file with the DWOs packaged up into one file), we treat
11763 DWP files as having a collection of virtual DWO files. */
11764
11765 static hashval_t
11766 hash_dwo_file (const void *item)
11767 {
11768 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
11769 hashval_t hash;
11770
11771 hash = htab_hash_string (dwo_file->dwo_name);
11772 if (dwo_file->comp_dir != NULL)
11773 hash += htab_hash_string (dwo_file->comp_dir);
11774 return hash;
11775 }
11776
11777 static int
11778 eq_dwo_file (const void *item_lhs, const void *item_rhs)
11779 {
11780 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
11781 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
11782
11783 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
11784 return 0;
11785 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
11786 return lhs->comp_dir == rhs->comp_dir;
11787 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
11788 }
11789
11790 /* Allocate a hash table for DWO files. */
11791
11792 static htab_t
11793 allocate_dwo_file_hash_table (struct objfile *objfile)
11794 {
11795 return htab_create_alloc_ex (41,
11796 hash_dwo_file,
11797 eq_dwo_file,
11798 NULL,
11799 &objfile->objfile_obstack,
11800 hashtab_obstack_allocate,
11801 dummy_obstack_deallocate);
11802 }
11803
11804 /* Lookup DWO file DWO_NAME. */
11805
11806 static void **
11807 lookup_dwo_file_slot (struct dwarf2_per_objfile *dwarf2_per_objfile,
11808 const char *dwo_name,
11809 const char *comp_dir)
11810 {
11811 struct dwo_file find_entry;
11812 void **slot;
11813
11814 if (dwarf2_per_objfile->dwo_files == NULL)
11815 dwarf2_per_objfile->dwo_files
11816 = allocate_dwo_file_hash_table (dwarf2_per_objfile->objfile);
11817
11818 memset (&find_entry, 0, sizeof (find_entry));
11819 find_entry.dwo_name = dwo_name;
11820 find_entry.comp_dir = comp_dir;
11821 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
11822
11823 return slot;
11824 }
11825
11826 static hashval_t
11827 hash_dwo_unit (const void *item)
11828 {
11829 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
11830
11831 /* This drops the top 32 bits of the id, but is ok for a hash. */
11832 return dwo_unit->signature;
11833 }
11834
11835 static int
11836 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
11837 {
11838 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
11839 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
11840
11841 /* The signature is assumed to be unique within the DWO file.
11842 So while object file CU dwo_id's always have the value zero,
11843 that's OK, assuming each object file DWO file has only one CU,
11844 and that's the rule for now. */
11845 return lhs->signature == rhs->signature;
11846 }
11847
11848 /* Allocate a hash table for DWO CUs,TUs.
11849 There is one of these tables for each of CUs,TUs for each DWO file. */
11850
11851 static htab_t
11852 allocate_dwo_unit_table (struct objfile *objfile)
11853 {
11854 /* Start out with a pretty small number.
11855 Generally DWO files contain only one CU and maybe some TUs. */
11856 return htab_create_alloc_ex (3,
11857 hash_dwo_unit,
11858 eq_dwo_unit,
11859 NULL,
11860 &objfile->objfile_obstack,
11861 hashtab_obstack_allocate,
11862 dummy_obstack_deallocate);
11863 }
11864
11865 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
11866
11867 struct create_dwo_cu_data
11868 {
11869 struct dwo_file *dwo_file;
11870 struct dwo_unit dwo_unit;
11871 };
11872
11873 /* die_reader_func for create_dwo_cu. */
11874
11875 static void
11876 create_dwo_cu_reader (const struct die_reader_specs *reader,
11877 const gdb_byte *info_ptr,
11878 struct die_info *comp_unit_die,
11879 int has_children,
11880 void *datap)
11881 {
11882 struct dwarf2_cu *cu = reader->cu;
11883 sect_offset sect_off = cu->per_cu->sect_off;
11884 struct dwarf2_section_info *section = cu->per_cu->section;
11885 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
11886 struct dwo_file *dwo_file = data->dwo_file;
11887 struct dwo_unit *dwo_unit = &data->dwo_unit;
11888 struct attribute *attr;
11889
11890 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
11891 if (attr == NULL)
11892 {
11893 complaint (_("Dwarf Error: debug entry at offset %s is missing"
11894 " its dwo_id [in module %s]"),
11895 sect_offset_str (sect_off), dwo_file->dwo_name);
11896 return;
11897 }
11898
11899 dwo_unit->dwo_file = dwo_file;
11900 dwo_unit->signature = DW_UNSND (attr);
11901 dwo_unit->section = section;
11902 dwo_unit->sect_off = sect_off;
11903 dwo_unit->length = cu->per_cu->length;
11904
11905 if (dwarf_read_debug)
11906 fprintf_unfiltered (gdb_stdlog, " offset %s, dwo_id %s\n",
11907 sect_offset_str (sect_off),
11908 hex_string (dwo_unit->signature));
11909 }
11910
11911 /* Create the dwo_units for the CUs in a DWO_FILE.
11912 Note: This function processes DWO files only, not DWP files. */
11913
11914 static void
11915 create_cus_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11916 struct dwo_file &dwo_file, dwarf2_section_info &section,
11917 htab_t &cus_htab)
11918 {
11919 struct objfile *objfile = dwarf2_per_objfile->objfile;
11920 const gdb_byte *info_ptr, *end_ptr;
11921
11922 dwarf2_read_section (objfile, &section);
11923 info_ptr = section.buffer;
11924
11925 if (info_ptr == NULL)
11926 return;
11927
11928 if (dwarf_read_debug)
11929 {
11930 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
11931 get_section_name (&section),
11932 get_section_file_name (&section));
11933 }
11934
11935 end_ptr = info_ptr + section.size;
11936 while (info_ptr < end_ptr)
11937 {
11938 struct dwarf2_per_cu_data per_cu;
11939 struct create_dwo_cu_data create_dwo_cu_data;
11940 struct dwo_unit *dwo_unit;
11941 void **slot;
11942 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
11943
11944 memset (&create_dwo_cu_data.dwo_unit, 0,
11945 sizeof (create_dwo_cu_data.dwo_unit));
11946 memset (&per_cu, 0, sizeof (per_cu));
11947 per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
11948 per_cu.is_debug_types = 0;
11949 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
11950 per_cu.section = &section;
11951 create_dwo_cu_data.dwo_file = &dwo_file;
11952
11953 init_cutu_and_read_dies_no_follow (
11954 &per_cu, &dwo_file, create_dwo_cu_reader, &create_dwo_cu_data);
11955 info_ptr += per_cu.length;
11956
11957 // If the unit could not be parsed, skip it.
11958 if (create_dwo_cu_data.dwo_unit.dwo_file == NULL)
11959 continue;
11960
11961 if (cus_htab == NULL)
11962 cus_htab = allocate_dwo_unit_table (objfile);
11963
11964 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11965 *dwo_unit = create_dwo_cu_data.dwo_unit;
11966 slot = htab_find_slot (cus_htab, dwo_unit, INSERT);
11967 gdb_assert (slot != NULL);
11968 if (*slot != NULL)
11969 {
11970 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
11971 sect_offset dup_sect_off = dup_cu->sect_off;
11972
11973 complaint (_("debug cu entry at offset %s is duplicate to"
11974 " the entry at offset %s, signature %s"),
11975 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
11976 hex_string (dwo_unit->signature));
11977 }
11978 *slot = (void *)dwo_unit;
11979 }
11980 }
11981
11982 /* DWP file .debug_{cu,tu}_index section format:
11983 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
11984
11985 DWP Version 1:
11986
11987 Both index sections have the same format, and serve to map a 64-bit
11988 signature to a set of section numbers. Each section begins with a header,
11989 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
11990 indexes, and a pool of 32-bit section numbers. The index sections will be
11991 aligned at 8-byte boundaries in the file.
11992
11993 The index section header consists of:
11994
11995 V, 32 bit version number
11996 -, 32 bits unused
11997 N, 32 bit number of compilation units or type units in the index
11998 M, 32 bit number of slots in the hash table
11999
12000 Numbers are recorded using the byte order of the application binary.
12001
12002 The hash table begins at offset 16 in the section, and consists of an array
12003 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
12004 order of the application binary). Unused slots in the hash table are 0.
12005 (We rely on the extreme unlikeliness of a signature being exactly 0.)
12006
12007 The parallel table begins immediately after the hash table
12008 (at offset 16 + 8 * M from the beginning of the section), and consists of an
12009 array of 32-bit indexes (using the byte order of the application binary),
12010 corresponding 1-1 with slots in the hash table. Each entry in the parallel
12011 table contains a 32-bit index into the pool of section numbers. For unused
12012 hash table slots, the corresponding entry in the parallel table will be 0.
12013
12014 The pool of section numbers begins immediately following the hash table
12015 (at offset 16 + 12 * M from the beginning of the section). The pool of
12016 section numbers consists of an array of 32-bit words (using the byte order
12017 of the application binary). Each item in the array is indexed starting
12018 from 0. The hash table entry provides the index of the first section
12019 number in the set. Additional section numbers in the set follow, and the
12020 set is terminated by a 0 entry (section number 0 is not used in ELF).
12021
12022 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
12023 section must be the first entry in the set, and the .debug_abbrev.dwo must
12024 be the second entry. Other members of the set may follow in any order.
12025
12026 ---
12027
12028 DWP Version 2:
12029
12030 DWP Version 2 combines all the .debug_info, etc. sections into one,
12031 and the entries in the index tables are now offsets into these sections.
12032 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
12033 section.
12034
12035 Index Section Contents:
12036 Header
12037 Hash Table of Signatures dwp_hash_table.hash_table
12038 Parallel Table of Indices dwp_hash_table.unit_table
12039 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
12040 Table of Section Sizes dwp_hash_table.v2.sizes
12041
12042 The index section header consists of:
12043
12044 V, 32 bit version number
12045 L, 32 bit number of columns in the table of section offsets
12046 N, 32 bit number of compilation units or type units in the index
12047 M, 32 bit number of slots in the hash table
12048
12049 Numbers are recorded using the byte order of the application binary.
12050
12051 The hash table has the same format as version 1.
12052 The parallel table of indices has the same format as version 1,
12053 except that the entries are origin-1 indices into the table of sections
12054 offsets and the table of section sizes.
12055
12056 The table of offsets begins immediately following the parallel table
12057 (at offset 16 + 12 * M from the beginning of the section). The table is
12058 a two-dimensional array of 32-bit words (using the byte order of the
12059 application binary), with L columns and N+1 rows, in row-major order.
12060 Each row in the array is indexed starting from 0. The first row provides
12061 a key to the remaining rows: each column in this row provides an identifier
12062 for a debug section, and the offsets in the same column of subsequent rows
12063 refer to that section. The section identifiers are:
12064
12065 DW_SECT_INFO 1 .debug_info.dwo
12066 DW_SECT_TYPES 2 .debug_types.dwo
12067 DW_SECT_ABBREV 3 .debug_abbrev.dwo
12068 DW_SECT_LINE 4 .debug_line.dwo
12069 DW_SECT_LOC 5 .debug_loc.dwo
12070 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
12071 DW_SECT_MACINFO 7 .debug_macinfo.dwo
12072 DW_SECT_MACRO 8 .debug_macro.dwo
12073
12074 The offsets provided by the CU and TU index sections are the base offsets
12075 for the contributions made by each CU or TU to the corresponding section
12076 in the package file. Each CU and TU header contains an abbrev_offset
12077 field, used to find the abbreviations table for that CU or TU within the
12078 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
12079 be interpreted as relative to the base offset given in the index section.
12080 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
12081 should be interpreted as relative to the base offset for .debug_line.dwo,
12082 and offsets into other debug sections obtained from DWARF attributes should
12083 also be interpreted as relative to the corresponding base offset.
12084
12085 The table of sizes begins immediately following the table of offsets.
12086 Like the table of offsets, it is a two-dimensional array of 32-bit words,
12087 with L columns and N rows, in row-major order. Each row in the array is
12088 indexed starting from 1 (row 0 is shared by the two tables).
12089
12090 ---
12091
12092 Hash table lookup is handled the same in version 1 and 2:
12093
12094 We assume that N and M will not exceed 2^32 - 1.
12095 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
12096
12097 Given a 64-bit compilation unit signature or a type signature S, an entry
12098 in the hash table is located as follows:
12099
12100 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
12101 the low-order k bits all set to 1.
12102
12103 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
12104
12105 3) If the hash table entry at index H matches the signature, use that
12106 entry. If the hash table entry at index H is unused (all zeroes),
12107 terminate the search: the signature is not present in the table.
12108
12109 4) Let H = (H + H') modulo M. Repeat at Step 3.
12110
12111 Because M > N and H' and M are relatively prime, the search is guaranteed
12112 to stop at an unused slot or find the match. */
12113
12114 /* Create a hash table to map DWO IDs to their CU/TU entry in
12115 .debug_{info,types}.dwo in DWP_FILE.
12116 Returns NULL if there isn't one.
12117 Note: This function processes DWP files only, not DWO files. */
12118
12119 static struct dwp_hash_table *
12120 create_dwp_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
12121 struct dwp_file *dwp_file, int is_debug_types)
12122 {
12123 struct objfile *objfile = dwarf2_per_objfile->objfile;
12124 bfd *dbfd = dwp_file->dbfd.get ();
12125 const gdb_byte *index_ptr, *index_end;
12126 struct dwarf2_section_info *index;
12127 uint32_t version, nr_columns, nr_units, nr_slots;
12128 struct dwp_hash_table *htab;
12129
12130 if (is_debug_types)
12131 index = &dwp_file->sections.tu_index;
12132 else
12133 index = &dwp_file->sections.cu_index;
12134
12135 if (dwarf2_section_empty_p (index))
12136 return NULL;
12137 dwarf2_read_section (objfile, index);
12138
12139 index_ptr = index->buffer;
12140 index_end = index_ptr + index->size;
12141
12142 version = read_4_bytes (dbfd, index_ptr);
12143 index_ptr += 4;
12144 if (version == 2)
12145 nr_columns = read_4_bytes (dbfd, index_ptr);
12146 else
12147 nr_columns = 0;
12148 index_ptr += 4;
12149 nr_units = read_4_bytes (dbfd, index_ptr);
12150 index_ptr += 4;
12151 nr_slots = read_4_bytes (dbfd, index_ptr);
12152 index_ptr += 4;
12153
12154 if (version != 1 && version != 2)
12155 {
12156 error (_("Dwarf Error: unsupported DWP file version (%s)"
12157 " [in module %s]"),
12158 pulongest (version), dwp_file->name);
12159 }
12160 if (nr_slots != (nr_slots & -nr_slots))
12161 {
12162 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
12163 " is not power of 2 [in module %s]"),
12164 pulongest (nr_slots), dwp_file->name);
12165 }
12166
12167 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
12168 htab->version = version;
12169 htab->nr_columns = nr_columns;
12170 htab->nr_units = nr_units;
12171 htab->nr_slots = nr_slots;
12172 htab->hash_table = index_ptr;
12173 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
12174
12175 /* Exit early if the table is empty. */
12176 if (nr_slots == 0 || nr_units == 0
12177 || (version == 2 && nr_columns == 0))
12178 {
12179 /* All must be zero. */
12180 if (nr_slots != 0 || nr_units != 0
12181 || (version == 2 && nr_columns != 0))
12182 {
12183 complaint (_("Empty DWP but nr_slots,nr_units,nr_columns not"
12184 " all zero [in modules %s]"),
12185 dwp_file->name);
12186 }
12187 return htab;
12188 }
12189
12190 if (version == 1)
12191 {
12192 htab->section_pool.v1.indices =
12193 htab->unit_table + sizeof (uint32_t) * nr_slots;
12194 /* It's harder to decide whether the section is too small in v1.
12195 V1 is deprecated anyway so we punt. */
12196 }
12197 else
12198 {
12199 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
12200 int *ids = htab->section_pool.v2.section_ids;
12201 size_t sizeof_ids = sizeof (htab->section_pool.v2.section_ids);
12202 /* Reverse map for error checking. */
12203 int ids_seen[DW_SECT_MAX + 1];
12204 int i;
12205
12206 if (nr_columns < 2)
12207 {
12208 error (_("Dwarf Error: bad DWP hash table, too few columns"
12209 " in section table [in module %s]"),
12210 dwp_file->name);
12211 }
12212 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
12213 {
12214 error (_("Dwarf Error: bad DWP hash table, too many columns"
12215 " in section table [in module %s]"),
12216 dwp_file->name);
12217 }
12218 memset (ids, 255, sizeof_ids);
12219 memset (ids_seen, 255, sizeof (ids_seen));
12220 for (i = 0; i < nr_columns; ++i)
12221 {
12222 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
12223
12224 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
12225 {
12226 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
12227 " in section table [in module %s]"),
12228 id, dwp_file->name);
12229 }
12230 if (ids_seen[id] != -1)
12231 {
12232 error (_("Dwarf Error: bad DWP hash table, duplicate section"
12233 " id %d in section table [in module %s]"),
12234 id, dwp_file->name);
12235 }
12236 ids_seen[id] = i;
12237 ids[i] = id;
12238 }
12239 /* Must have exactly one info or types section. */
12240 if (((ids_seen[DW_SECT_INFO] != -1)
12241 + (ids_seen[DW_SECT_TYPES] != -1))
12242 != 1)
12243 {
12244 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
12245 " DWO info/types section [in module %s]"),
12246 dwp_file->name);
12247 }
12248 /* Must have an abbrev section. */
12249 if (ids_seen[DW_SECT_ABBREV] == -1)
12250 {
12251 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
12252 " section [in module %s]"),
12253 dwp_file->name);
12254 }
12255 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
12256 htab->section_pool.v2.sizes =
12257 htab->section_pool.v2.offsets + (sizeof (uint32_t)
12258 * nr_units * nr_columns);
12259 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
12260 * nr_units * nr_columns))
12261 > index_end)
12262 {
12263 error (_("Dwarf Error: DWP index section is corrupt (too small)"
12264 " [in module %s]"),
12265 dwp_file->name);
12266 }
12267 }
12268
12269 return htab;
12270 }
12271
12272 /* Update SECTIONS with the data from SECTP.
12273
12274 This function is like the other "locate" section routines that are
12275 passed to bfd_map_over_sections, but in this context the sections to
12276 read comes from the DWP V1 hash table, not the full ELF section table.
12277
12278 The result is non-zero for success, or zero if an error was found. */
12279
12280 static int
12281 locate_v1_virtual_dwo_sections (asection *sectp,
12282 struct virtual_v1_dwo_sections *sections)
12283 {
12284 const struct dwop_section_names *names = &dwop_section_names;
12285
12286 if (section_is_p (sectp->name, &names->abbrev_dwo))
12287 {
12288 /* There can be only one. */
12289 if (sections->abbrev.s.section != NULL)
12290 return 0;
12291 sections->abbrev.s.section = sectp;
12292 sections->abbrev.size = bfd_get_section_size (sectp);
12293 }
12294 else if (section_is_p (sectp->name, &names->info_dwo)
12295 || section_is_p (sectp->name, &names->types_dwo))
12296 {
12297 /* There can be only one. */
12298 if (sections->info_or_types.s.section != NULL)
12299 return 0;
12300 sections->info_or_types.s.section = sectp;
12301 sections->info_or_types.size = bfd_get_section_size (sectp);
12302 }
12303 else if (section_is_p (sectp->name, &names->line_dwo))
12304 {
12305 /* There can be only one. */
12306 if (sections->line.s.section != NULL)
12307 return 0;
12308 sections->line.s.section = sectp;
12309 sections->line.size = bfd_get_section_size (sectp);
12310 }
12311 else if (section_is_p (sectp->name, &names->loc_dwo))
12312 {
12313 /* There can be only one. */
12314 if (sections->loc.s.section != NULL)
12315 return 0;
12316 sections->loc.s.section = sectp;
12317 sections->loc.size = bfd_get_section_size (sectp);
12318 }
12319 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12320 {
12321 /* There can be only one. */
12322 if (sections->macinfo.s.section != NULL)
12323 return 0;
12324 sections->macinfo.s.section = sectp;
12325 sections->macinfo.size = bfd_get_section_size (sectp);
12326 }
12327 else if (section_is_p (sectp->name, &names->macro_dwo))
12328 {
12329 /* There can be only one. */
12330 if (sections->macro.s.section != NULL)
12331 return 0;
12332 sections->macro.s.section = sectp;
12333 sections->macro.size = bfd_get_section_size (sectp);
12334 }
12335 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12336 {
12337 /* There can be only one. */
12338 if (sections->str_offsets.s.section != NULL)
12339 return 0;
12340 sections->str_offsets.s.section = sectp;
12341 sections->str_offsets.size = bfd_get_section_size (sectp);
12342 }
12343 else
12344 {
12345 /* No other kind of section is valid. */
12346 return 0;
12347 }
12348
12349 return 1;
12350 }
12351
12352 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12353 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12354 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12355 This is for DWP version 1 files. */
12356
12357 static struct dwo_unit *
12358 create_dwo_unit_in_dwp_v1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12359 struct dwp_file *dwp_file,
12360 uint32_t unit_index,
12361 const char *comp_dir,
12362 ULONGEST signature, int is_debug_types)
12363 {
12364 struct objfile *objfile = dwarf2_per_objfile->objfile;
12365 const struct dwp_hash_table *dwp_htab =
12366 is_debug_types ? dwp_file->tus : dwp_file->cus;
12367 bfd *dbfd = dwp_file->dbfd.get ();
12368 const char *kind = is_debug_types ? "TU" : "CU";
12369 struct dwo_file *dwo_file;
12370 struct dwo_unit *dwo_unit;
12371 struct virtual_v1_dwo_sections sections;
12372 void **dwo_file_slot;
12373 int i;
12374
12375 gdb_assert (dwp_file->version == 1);
12376
12377 if (dwarf_read_debug)
12378 {
12379 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
12380 kind,
12381 pulongest (unit_index), hex_string (signature),
12382 dwp_file->name);
12383 }
12384
12385 /* Fetch the sections of this DWO unit.
12386 Put a limit on the number of sections we look for so that bad data
12387 doesn't cause us to loop forever. */
12388
12389 #define MAX_NR_V1_DWO_SECTIONS \
12390 (1 /* .debug_info or .debug_types */ \
12391 + 1 /* .debug_abbrev */ \
12392 + 1 /* .debug_line */ \
12393 + 1 /* .debug_loc */ \
12394 + 1 /* .debug_str_offsets */ \
12395 + 1 /* .debug_macro or .debug_macinfo */ \
12396 + 1 /* trailing zero */)
12397
12398 memset (&sections, 0, sizeof (sections));
12399
12400 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
12401 {
12402 asection *sectp;
12403 uint32_t section_nr =
12404 read_4_bytes (dbfd,
12405 dwp_htab->section_pool.v1.indices
12406 + (unit_index + i) * sizeof (uint32_t));
12407
12408 if (section_nr == 0)
12409 break;
12410 if (section_nr >= dwp_file->num_sections)
12411 {
12412 error (_("Dwarf Error: bad DWP hash table, section number too large"
12413 " [in module %s]"),
12414 dwp_file->name);
12415 }
12416
12417 sectp = dwp_file->elf_sections[section_nr];
12418 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
12419 {
12420 error (_("Dwarf Error: bad DWP hash table, invalid section found"
12421 " [in module %s]"),
12422 dwp_file->name);
12423 }
12424 }
12425
12426 if (i < 2
12427 || dwarf2_section_empty_p (&sections.info_or_types)
12428 || dwarf2_section_empty_p (&sections.abbrev))
12429 {
12430 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
12431 " [in module %s]"),
12432 dwp_file->name);
12433 }
12434 if (i == MAX_NR_V1_DWO_SECTIONS)
12435 {
12436 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
12437 " [in module %s]"),
12438 dwp_file->name);
12439 }
12440
12441 /* It's easier for the rest of the code if we fake a struct dwo_file and
12442 have dwo_unit "live" in that. At least for now.
12443
12444 The DWP file can be made up of a random collection of CUs and TUs.
12445 However, for each CU + set of TUs that came from the same original DWO
12446 file, we can combine them back into a virtual DWO file to save space
12447 (fewer struct dwo_file objects to allocate). Remember that for really
12448 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12449
12450 std::string virtual_dwo_name =
12451 string_printf ("virtual-dwo/%d-%d-%d-%d",
12452 get_section_id (&sections.abbrev),
12453 get_section_id (&sections.line),
12454 get_section_id (&sections.loc),
12455 get_section_id (&sections.str_offsets));
12456 /* Can we use an existing virtual DWO file? */
12457 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12458 virtual_dwo_name.c_str (),
12459 comp_dir);
12460 /* Create one if necessary. */
12461 if (*dwo_file_slot == NULL)
12462 {
12463 if (dwarf_read_debug)
12464 {
12465 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12466 virtual_dwo_name.c_str ());
12467 }
12468 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12469 dwo_file->dwo_name
12470 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12471 virtual_dwo_name.c_str (),
12472 virtual_dwo_name.size ());
12473 dwo_file->comp_dir = comp_dir;
12474 dwo_file->sections.abbrev = sections.abbrev;
12475 dwo_file->sections.line = sections.line;
12476 dwo_file->sections.loc = sections.loc;
12477 dwo_file->sections.macinfo = sections.macinfo;
12478 dwo_file->sections.macro = sections.macro;
12479 dwo_file->sections.str_offsets = sections.str_offsets;
12480 /* The "str" section is global to the entire DWP file. */
12481 dwo_file->sections.str = dwp_file->sections.str;
12482 /* The info or types section is assigned below to dwo_unit,
12483 there's no need to record it in dwo_file.
12484 Also, we can't simply record type sections in dwo_file because
12485 we record a pointer into the vector in dwo_unit. As we collect more
12486 types we'll grow the vector and eventually have to reallocate space
12487 for it, invalidating all copies of pointers into the previous
12488 contents. */
12489 *dwo_file_slot = dwo_file;
12490 }
12491 else
12492 {
12493 if (dwarf_read_debug)
12494 {
12495 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12496 virtual_dwo_name.c_str ());
12497 }
12498 dwo_file = (struct dwo_file *) *dwo_file_slot;
12499 }
12500
12501 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12502 dwo_unit->dwo_file = dwo_file;
12503 dwo_unit->signature = signature;
12504 dwo_unit->section =
12505 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12506 *dwo_unit->section = sections.info_or_types;
12507 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12508
12509 return dwo_unit;
12510 }
12511
12512 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
12513 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
12514 piece within that section used by a TU/CU, return a virtual section
12515 of just that piece. */
12516
12517 static struct dwarf2_section_info
12518 create_dwp_v2_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
12519 struct dwarf2_section_info *section,
12520 bfd_size_type offset, bfd_size_type size)
12521 {
12522 struct dwarf2_section_info result;
12523 asection *sectp;
12524
12525 gdb_assert (section != NULL);
12526 gdb_assert (!section->is_virtual);
12527
12528 memset (&result, 0, sizeof (result));
12529 result.s.containing_section = section;
12530 result.is_virtual = 1;
12531
12532 if (size == 0)
12533 return result;
12534
12535 sectp = get_section_bfd_section (section);
12536
12537 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
12538 bounds of the real section. This is a pretty-rare event, so just
12539 flag an error (easier) instead of a warning and trying to cope. */
12540 if (sectp == NULL
12541 || offset + size > bfd_get_section_size (sectp))
12542 {
12543 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
12544 " in section %s [in module %s]"),
12545 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
12546 objfile_name (dwarf2_per_objfile->objfile));
12547 }
12548
12549 result.virtual_offset = offset;
12550 result.size = size;
12551 return result;
12552 }
12553
12554 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12555 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12556 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12557 This is for DWP version 2 files. */
12558
12559 static struct dwo_unit *
12560 create_dwo_unit_in_dwp_v2 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12561 struct dwp_file *dwp_file,
12562 uint32_t unit_index,
12563 const char *comp_dir,
12564 ULONGEST signature, int is_debug_types)
12565 {
12566 struct objfile *objfile = dwarf2_per_objfile->objfile;
12567 const struct dwp_hash_table *dwp_htab =
12568 is_debug_types ? dwp_file->tus : dwp_file->cus;
12569 bfd *dbfd = dwp_file->dbfd.get ();
12570 const char *kind = is_debug_types ? "TU" : "CU";
12571 struct dwo_file *dwo_file;
12572 struct dwo_unit *dwo_unit;
12573 struct virtual_v2_dwo_sections sections;
12574 void **dwo_file_slot;
12575 int i;
12576
12577 gdb_assert (dwp_file->version == 2);
12578
12579 if (dwarf_read_debug)
12580 {
12581 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
12582 kind,
12583 pulongest (unit_index), hex_string (signature),
12584 dwp_file->name);
12585 }
12586
12587 /* Fetch the section offsets of this DWO unit. */
12588
12589 memset (&sections, 0, sizeof (sections));
12590
12591 for (i = 0; i < dwp_htab->nr_columns; ++i)
12592 {
12593 uint32_t offset = read_4_bytes (dbfd,
12594 dwp_htab->section_pool.v2.offsets
12595 + (((unit_index - 1) * dwp_htab->nr_columns
12596 + i)
12597 * sizeof (uint32_t)));
12598 uint32_t size = read_4_bytes (dbfd,
12599 dwp_htab->section_pool.v2.sizes
12600 + (((unit_index - 1) * dwp_htab->nr_columns
12601 + i)
12602 * sizeof (uint32_t)));
12603
12604 switch (dwp_htab->section_pool.v2.section_ids[i])
12605 {
12606 case DW_SECT_INFO:
12607 case DW_SECT_TYPES:
12608 sections.info_or_types_offset = offset;
12609 sections.info_or_types_size = size;
12610 break;
12611 case DW_SECT_ABBREV:
12612 sections.abbrev_offset = offset;
12613 sections.abbrev_size = size;
12614 break;
12615 case DW_SECT_LINE:
12616 sections.line_offset = offset;
12617 sections.line_size = size;
12618 break;
12619 case DW_SECT_LOC:
12620 sections.loc_offset = offset;
12621 sections.loc_size = size;
12622 break;
12623 case DW_SECT_STR_OFFSETS:
12624 sections.str_offsets_offset = offset;
12625 sections.str_offsets_size = size;
12626 break;
12627 case DW_SECT_MACINFO:
12628 sections.macinfo_offset = offset;
12629 sections.macinfo_size = size;
12630 break;
12631 case DW_SECT_MACRO:
12632 sections.macro_offset = offset;
12633 sections.macro_size = size;
12634 break;
12635 }
12636 }
12637
12638 /* It's easier for the rest of the code if we fake a struct dwo_file and
12639 have dwo_unit "live" in that. At least for now.
12640
12641 The DWP file can be made up of a random collection of CUs and TUs.
12642 However, for each CU + set of TUs that came from the same original DWO
12643 file, we can combine them back into a virtual DWO file to save space
12644 (fewer struct dwo_file objects to allocate). Remember that for really
12645 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12646
12647 std::string virtual_dwo_name =
12648 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
12649 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
12650 (long) (sections.line_size ? sections.line_offset : 0),
12651 (long) (sections.loc_size ? sections.loc_offset : 0),
12652 (long) (sections.str_offsets_size
12653 ? sections.str_offsets_offset : 0));
12654 /* Can we use an existing virtual DWO file? */
12655 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12656 virtual_dwo_name.c_str (),
12657 comp_dir);
12658 /* Create one if necessary. */
12659 if (*dwo_file_slot == NULL)
12660 {
12661 if (dwarf_read_debug)
12662 {
12663 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12664 virtual_dwo_name.c_str ());
12665 }
12666 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12667 dwo_file->dwo_name
12668 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12669 virtual_dwo_name.c_str (),
12670 virtual_dwo_name.size ());
12671 dwo_file->comp_dir = comp_dir;
12672 dwo_file->sections.abbrev =
12673 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.abbrev,
12674 sections.abbrev_offset, sections.abbrev_size);
12675 dwo_file->sections.line =
12676 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.line,
12677 sections.line_offset, sections.line_size);
12678 dwo_file->sections.loc =
12679 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.loc,
12680 sections.loc_offset, sections.loc_size);
12681 dwo_file->sections.macinfo =
12682 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macinfo,
12683 sections.macinfo_offset, sections.macinfo_size);
12684 dwo_file->sections.macro =
12685 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macro,
12686 sections.macro_offset, sections.macro_size);
12687 dwo_file->sections.str_offsets =
12688 create_dwp_v2_section (dwarf2_per_objfile,
12689 &dwp_file->sections.str_offsets,
12690 sections.str_offsets_offset,
12691 sections.str_offsets_size);
12692 /* The "str" section is global to the entire DWP file. */
12693 dwo_file->sections.str = dwp_file->sections.str;
12694 /* The info or types section is assigned below to dwo_unit,
12695 there's no need to record it in dwo_file.
12696 Also, we can't simply record type sections in dwo_file because
12697 we record a pointer into the vector in dwo_unit. As we collect more
12698 types we'll grow the vector and eventually have to reallocate space
12699 for it, invalidating all copies of pointers into the previous
12700 contents. */
12701 *dwo_file_slot = dwo_file;
12702 }
12703 else
12704 {
12705 if (dwarf_read_debug)
12706 {
12707 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12708 virtual_dwo_name.c_str ());
12709 }
12710 dwo_file = (struct dwo_file *) *dwo_file_slot;
12711 }
12712
12713 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12714 dwo_unit->dwo_file = dwo_file;
12715 dwo_unit->signature = signature;
12716 dwo_unit->section =
12717 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12718 *dwo_unit->section = create_dwp_v2_section (dwarf2_per_objfile,
12719 is_debug_types
12720 ? &dwp_file->sections.types
12721 : &dwp_file->sections.info,
12722 sections.info_or_types_offset,
12723 sections.info_or_types_size);
12724 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12725
12726 return dwo_unit;
12727 }
12728
12729 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
12730 Returns NULL if the signature isn't found. */
12731
12732 static struct dwo_unit *
12733 lookup_dwo_unit_in_dwp (struct dwarf2_per_objfile *dwarf2_per_objfile,
12734 struct dwp_file *dwp_file, const char *comp_dir,
12735 ULONGEST signature, int is_debug_types)
12736 {
12737 const struct dwp_hash_table *dwp_htab =
12738 is_debug_types ? dwp_file->tus : dwp_file->cus;
12739 bfd *dbfd = dwp_file->dbfd.get ();
12740 uint32_t mask = dwp_htab->nr_slots - 1;
12741 uint32_t hash = signature & mask;
12742 uint32_t hash2 = ((signature >> 32) & mask) | 1;
12743 unsigned int i;
12744 void **slot;
12745 struct dwo_unit find_dwo_cu;
12746
12747 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
12748 find_dwo_cu.signature = signature;
12749 slot = htab_find_slot (is_debug_types
12750 ? dwp_file->loaded_tus
12751 : dwp_file->loaded_cus,
12752 &find_dwo_cu, INSERT);
12753
12754 if (*slot != NULL)
12755 return (struct dwo_unit *) *slot;
12756
12757 /* Use a for loop so that we don't loop forever on bad debug info. */
12758 for (i = 0; i < dwp_htab->nr_slots; ++i)
12759 {
12760 ULONGEST signature_in_table;
12761
12762 signature_in_table =
12763 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
12764 if (signature_in_table == signature)
12765 {
12766 uint32_t unit_index =
12767 read_4_bytes (dbfd,
12768 dwp_htab->unit_table + hash * sizeof (uint32_t));
12769
12770 if (dwp_file->version == 1)
12771 {
12772 *slot = create_dwo_unit_in_dwp_v1 (dwarf2_per_objfile,
12773 dwp_file, unit_index,
12774 comp_dir, signature,
12775 is_debug_types);
12776 }
12777 else
12778 {
12779 *slot = create_dwo_unit_in_dwp_v2 (dwarf2_per_objfile,
12780 dwp_file, unit_index,
12781 comp_dir, signature,
12782 is_debug_types);
12783 }
12784 return (struct dwo_unit *) *slot;
12785 }
12786 if (signature_in_table == 0)
12787 return NULL;
12788 hash = (hash + hash2) & mask;
12789 }
12790
12791 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
12792 " [in module %s]"),
12793 dwp_file->name);
12794 }
12795
12796 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
12797 Open the file specified by FILE_NAME and hand it off to BFD for
12798 preliminary analysis. Return a newly initialized bfd *, which
12799 includes a canonicalized copy of FILE_NAME.
12800 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
12801 SEARCH_CWD is true if the current directory is to be searched.
12802 It will be searched before debug-file-directory.
12803 If successful, the file is added to the bfd include table of the
12804 objfile's bfd (see gdb_bfd_record_inclusion).
12805 If unable to find/open the file, return NULL.
12806 NOTE: This function is derived from symfile_bfd_open. */
12807
12808 static gdb_bfd_ref_ptr
12809 try_open_dwop_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12810 const char *file_name, int is_dwp, int search_cwd)
12811 {
12812 int desc;
12813 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
12814 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
12815 to debug_file_directory. */
12816 const char *search_path;
12817 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
12818
12819 gdb::unique_xmalloc_ptr<char> search_path_holder;
12820 if (search_cwd)
12821 {
12822 if (*debug_file_directory != '\0')
12823 {
12824 search_path_holder.reset (concat (".", dirname_separator_string,
12825 debug_file_directory,
12826 (char *) NULL));
12827 search_path = search_path_holder.get ();
12828 }
12829 else
12830 search_path = ".";
12831 }
12832 else
12833 search_path = debug_file_directory;
12834
12835 openp_flags flags = OPF_RETURN_REALPATH;
12836 if (is_dwp)
12837 flags |= OPF_SEARCH_IN_PATH;
12838
12839 gdb::unique_xmalloc_ptr<char> absolute_name;
12840 desc = openp (search_path, flags, file_name,
12841 O_RDONLY | O_BINARY, &absolute_name);
12842 if (desc < 0)
12843 return NULL;
12844
12845 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name.get (),
12846 gnutarget, desc));
12847 if (sym_bfd == NULL)
12848 return NULL;
12849 bfd_set_cacheable (sym_bfd.get (), 1);
12850
12851 if (!bfd_check_format (sym_bfd.get (), bfd_object))
12852 return NULL;
12853
12854 /* Success. Record the bfd as having been included by the objfile's bfd.
12855 This is important because things like demangled_names_hash lives in the
12856 objfile's per_bfd space and may have references to things like symbol
12857 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
12858 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
12859
12860 return sym_bfd;
12861 }
12862
12863 /* Try to open DWO file FILE_NAME.
12864 COMP_DIR is the DW_AT_comp_dir attribute.
12865 The result is the bfd handle of the file.
12866 If there is a problem finding or opening the file, return NULL.
12867 Upon success, the canonicalized path of the file is stored in the bfd,
12868 same as symfile_bfd_open. */
12869
12870 static gdb_bfd_ref_ptr
12871 open_dwo_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12872 const char *file_name, const char *comp_dir)
12873 {
12874 if (IS_ABSOLUTE_PATH (file_name))
12875 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12876 0 /*is_dwp*/, 0 /*search_cwd*/);
12877
12878 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
12879
12880 if (comp_dir != NULL)
12881 {
12882 char *path_to_try = concat (comp_dir, SLASH_STRING,
12883 file_name, (char *) NULL);
12884
12885 /* NOTE: If comp_dir is a relative path, this will also try the
12886 search path, which seems useful. */
12887 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile,
12888 path_to_try,
12889 0 /*is_dwp*/,
12890 1 /*search_cwd*/));
12891 xfree (path_to_try);
12892 if (abfd != NULL)
12893 return abfd;
12894 }
12895
12896 /* That didn't work, try debug-file-directory, which, despite its name,
12897 is a list of paths. */
12898
12899 if (*debug_file_directory == '\0')
12900 return NULL;
12901
12902 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12903 0 /*is_dwp*/, 1 /*search_cwd*/);
12904 }
12905
12906 /* This function is mapped across the sections and remembers the offset and
12907 size of each of the DWO debugging sections we are interested in. */
12908
12909 static void
12910 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
12911 {
12912 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
12913 const struct dwop_section_names *names = &dwop_section_names;
12914
12915 if (section_is_p (sectp->name, &names->abbrev_dwo))
12916 {
12917 dwo_sections->abbrev.s.section = sectp;
12918 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
12919 }
12920 else if (section_is_p (sectp->name, &names->info_dwo))
12921 {
12922 dwo_sections->info.s.section = sectp;
12923 dwo_sections->info.size = bfd_get_section_size (sectp);
12924 }
12925 else if (section_is_p (sectp->name, &names->line_dwo))
12926 {
12927 dwo_sections->line.s.section = sectp;
12928 dwo_sections->line.size = bfd_get_section_size (sectp);
12929 }
12930 else if (section_is_p (sectp->name, &names->loc_dwo))
12931 {
12932 dwo_sections->loc.s.section = sectp;
12933 dwo_sections->loc.size = bfd_get_section_size (sectp);
12934 }
12935 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12936 {
12937 dwo_sections->macinfo.s.section = sectp;
12938 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
12939 }
12940 else if (section_is_p (sectp->name, &names->macro_dwo))
12941 {
12942 dwo_sections->macro.s.section = sectp;
12943 dwo_sections->macro.size = bfd_get_section_size (sectp);
12944 }
12945 else if (section_is_p (sectp->name, &names->str_dwo))
12946 {
12947 dwo_sections->str.s.section = sectp;
12948 dwo_sections->str.size = bfd_get_section_size (sectp);
12949 }
12950 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12951 {
12952 dwo_sections->str_offsets.s.section = sectp;
12953 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
12954 }
12955 else if (section_is_p (sectp->name, &names->types_dwo))
12956 {
12957 struct dwarf2_section_info type_section;
12958
12959 memset (&type_section, 0, sizeof (type_section));
12960 type_section.s.section = sectp;
12961 type_section.size = bfd_get_section_size (sectp);
12962 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
12963 &type_section);
12964 }
12965 }
12966
12967 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
12968 by PER_CU. This is for the non-DWP case.
12969 The result is NULL if DWO_NAME can't be found. */
12970
12971 static struct dwo_file *
12972 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
12973 const char *dwo_name, const char *comp_dir)
12974 {
12975 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
12976 struct objfile *objfile = dwarf2_per_objfile->objfile;
12977
12978 gdb_bfd_ref_ptr dbfd (open_dwo_file (dwarf2_per_objfile, dwo_name, comp_dir));
12979 if (dbfd == NULL)
12980 {
12981 if (dwarf_read_debug)
12982 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
12983 return NULL;
12984 }
12985
12986 /* We use a unique pointer here, despite the obstack allocation,
12987 because a dwo_file needs some cleanup if it is abandoned. */
12988 dwo_file_up dwo_file (OBSTACK_ZALLOC (&objfile->objfile_obstack,
12989 struct dwo_file));
12990 dwo_file->dwo_name = dwo_name;
12991 dwo_file->comp_dir = comp_dir;
12992 dwo_file->dbfd = dbfd.release ();
12993
12994 bfd_map_over_sections (dwo_file->dbfd, dwarf2_locate_dwo_sections,
12995 &dwo_file->sections);
12996
12997 create_cus_hash_table (dwarf2_per_objfile, *dwo_file, dwo_file->sections.info,
12998 dwo_file->cus);
12999
13000 create_debug_types_hash_table (dwarf2_per_objfile, dwo_file.get (),
13001 dwo_file->sections.types, dwo_file->tus);
13002
13003 if (dwarf_read_debug)
13004 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
13005
13006 return dwo_file.release ();
13007 }
13008
13009 /* This function is mapped across the sections and remembers the offset and
13010 size of each of the DWP debugging sections common to version 1 and 2 that
13011 we are interested in. */
13012
13013 static void
13014 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
13015 void *dwp_file_ptr)
13016 {
13017 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
13018 const struct dwop_section_names *names = &dwop_section_names;
13019 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
13020
13021 /* Record the ELF section number for later lookup: this is what the
13022 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
13023 gdb_assert (elf_section_nr < dwp_file->num_sections);
13024 dwp_file->elf_sections[elf_section_nr] = sectp;
13025
13026 /* Look for specific sections that we need. */
13027 if (section_is_p (sectp->name, &names->str_dwo))
13028 {
13029 dwp_file->sections.str.s.section = sectp;
13030 dwp_file->sections.str.size = bfd_get_section_size (sectp);
13031 }
13032 else if (section_is_p (sectp->name, &names->cu_index))
13033 {
13034 dwp_file->sections.cu_index.s.section = sectp;
13035 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
13036 }
13037 else if (section_is_p (sectp->name, &names->tu_index))
13038 {
13039 dwp_file->sections.tu_index.s.section = sectp;
13040 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
13041 }
13042 }
13043
13044 /* This function is mapped across the sections and remembers the offset and
13045 size of each of the DWP version 2 debugging sections that we are interested
13046 in. This is split into a separate function because we don't know if we
13047 have version 1 or 2 until we parse the cu_index/tu_index sections. */
13048
13049 static void
13050 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
13051 {
13052 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
13053 const struct dwop_section_names *names = &dwop_section_names;
13054 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
13055
13056 /* Record the ELF section number for later lookup: this is what the
13057 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
13058 gdb_assert (elf_section_nr < dwp_file->num_sections);
13059 dwp_file->elf_sections[elf_section_nr] = sectp;
13060
13061 /* Look for specific sections that we need. */
13062 if (section_is_p (sectp->name, &names->abbrev_dwo))
13063 {
13064 dwp_file->sections.abbrev.s.section = sectp;
13065 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
13066 }
13067 else if (section_is_p (sectp->name, &names->info_dwo))
13068 {
13069 dwp_file->sections.info.s.section = sectp;
13070 dwp_file->sections.info.size = bfd_get_section_size (sectp);
13071 }
13072 else if (section_is_p (sectp->name, &names->line_dwo))
13073 {
13074 dwp_file->sections.line.s.section = sectp;
13075 dwp_file->sections.line.size = bfd_get_section_size (sectp);
13076 }
13077 else if (section_is_p (sectp->name, &names->loc_dwo))
13078 {
13079 dwp_file->sections.loc.s.section = sectp;
13080 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
13081 }
13082 else if (section_is_p (sectp->name, &names->macinfo_dwo))
13083 {
13084 dwp_file->sections.macinfo.s.section = sectp;
13085 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
13086 }
13087 else if (section_is_p (sectp->name, &names->macro_dwo))
13088 {
13089 dwp_file->sections.macro.s.section = sectp;
13090 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
13091 }
13092 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
13093 {
13094 dwp_file->sections.str_offsets.s.section = sectp;
13095 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
13096 }
13097 else if (section_is_p (sectp->name, &names->types_dwo))
13098 {
13099 dwp_file->sections.types.s.section = sectp;
13100 dwp_file->sections.types.size = bfd_get_section_size (sectp);
13101 }
13102 }
13103
13104 /* Hash function for dwp_file loaded CUs/TUs. */
13105
13106 static hashval_t
13107 hash_dwp_loaded_cutus (const void *item)
13108 {
13109 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
13110
13111 /* This drops the top 32 bits of the signature, but is ok for a hash. */
13112 return dwo_unit->signature;
13113 }
13114
13115 /* Equality function for dwp_file loaded CUs/TUs. */
13116
13117 static int
13118 eq_dwp_loaded_cutus (const void *a, const void *b)
13119 {
13120 const struct dwo_unit *dua = (const struct dwo_unit *) a;
13121 const struct dwo_unit *dub = (const struct dwo_unit *) b;
13122
13123 return dua->signature == dub->signature;
13124 }
13125
13126 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
13127
13128 static htab_t
13129 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
13130 {
13131 return htab_create_alloc_ex (3,
13132 hash_dwp_loaded_cutus,
13133 eq_dwp_loaded_cutus,
13134 NULL,
13135 &objfile->objfile_obstack,
13136 hashtab_obstack_allocate,
13137 dummy_obstack_deallocate);
13138 }
13139
13140 /* Try to open DWP file FILE_NAME.
13141 The result is the bfd handle of the file.
13142 If there is a problem finding or opening the file, return NULL.
13143 Upon success, the canonicalized path of the file is stored in the bfd,
13144 same as symfile_bfd_open. */
13145
13146 static gdb_bfd_ref_ptr
13147 open_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
13148 const char *file_name)
13149 {
13150 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile, file_name,
13151 1 /*is_dwp*/,
13152 1 /*search_cwd*/));
13153 if (abfd != NULL)
13154 return abfd;
13155
13156 /* Work around upstream bug 15652.
13157 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
13158 [Whether that's a "bug" is debatable, but it is getting in our way.]
13159 We have no real idea where the dwp file is, because gdb's realpath-ing
13160 of the executable's path may have discarded the needed info.
13161 [IWBN if the dwp file name was recorded in the executable, akin to
13162 .gnu_debuglink, but that doesn't exist yet.]
13163 Strip the directory from FILE_NAME and search again. */
13164 if (*debug_file_directory != '\0')
13165 {
13166 /* Don't implicitly search the current directory here.
13167 If the user wants to search "." to handle this case,
13168 it must be added to debug-file-directory. */
13169 return try_open_dwop_file (dwarf2_per_objfile,
13170 lbasename (file_name), 1 /*is_dwp*/,
13171 0 /*search_cwd*/);
13172 }
13173
13174 return NULL;
13175 }
13176
13177 /* Initialize the use of the DWP file for the current objfile.
13178 By convention the name of the DWP file is ${objfile}.dwp.
13179 The result is NULL if it can't be found. */
13180
13181 static std::unique_ptr<struct dwp_file>
13182 open_and_init_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13183 {
13184 struct objfile *objfile = dwarf2_per_objfile->objfile;
13185
13186 /* Try to find first .dwp for the binary file before any symbolic links
13187 resolving. */
13188
13189 /* If the objfile is a debug file, find the name of the real binary
13190 file and get the name of dwp file from there. */
13191 std::string dwp_name;
13192 if (objfile->separate_debug_objfile_backlink != NULL)
13193 {
13194 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
13195 const char *backlink_basename = lbasename (backlink->original_name);
13196
13197 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
13198 }
13199 else
13200 dwp_name = objfile->original_name;
13201
13202 dwp_name += ".dwp";
13203
13204 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ()));
13205 if (dbfd == NULL
13206 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
13207 {
13208 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
13209 dwp_name = objfile_name (objfile);
13210 dwp_name += ".dwp";
13211 dbfd = open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ());
13212 }
13213
13214 if (dbfd == NULL)
13215 {
13216 if (dwarf_read_debug)
13217 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
13218 return std::unique_ptr<dwp_file> ();
13219 }
13220
13221 const char *name = bfd_get_filename (dbfd.get ());
13222 std::unique_ptr<struct dwp_file> dwp_file
13223 (new struct dwp_file (name, std::move (dbfd)));
13224
13225 /* +1: section 0 is unused */
13226 dwp_file->num_sections = bfd_count_sections (dwp_file->dbfd) + 1;
13227 dwp_file->elf_sections =
13228 OBSTACK_CALLOC (&objfile->objfile_obstack,
13229 dwp_file->num_sections, asection *);
13230
13231 bfd_map_over_sections (dwp_file->dbfd.get (),
13232 dwarf2_locate_common_dwp_sections,
13233 dwp_file.get ());
13234
13235 dwp_file->cus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13236 0);
13237
13238 dwp_file->tus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13239 1);
13240
13241 /* The DWP file version is stored in the hash table. Oh well. */
13242 if (dwp_file->cus && dwp_file->tus
13243 && dwp_file->cus->version != dwp_file->tus->version)
13244 {
13245 /* Technically speaking, we should try to limp along, but this is
13246 pretty bizarre. We use pulongest here because that's the established
13247 portability solution (e.g, we cannot use %u for uint32_t). */
13248 error (_("Dwarf Error: DWP file CU version %s doesn't match"
13249 " TU version %s [in DWP file %s]"),
13250 pulongest (dwp_file->cus->version),
13251 pulongest (dwp_file->tus->version), dwp_name.c_str ());
13252 }
13253
13254 if (dwp_file->cus)
13255 dwp_file->version = dwp_file->cus->version;
13256 else if (dwp_file->tus)
13257 dwp_file->version = dwp_file->tus->version;
13258 else
13259 dwp_file->version = 2;
13260
13261 if (dwp_file->version == 2)
13262 bfd_map_over_sections (dwp_file->dbfd.get (),
13263 dwarf2_locate_v2_dwp_sections,
13264 dwp_file.get ());
13265
13266 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
13267 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
13268
13269 if (dwarf_read_debug)
13270 {
13271 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
13272 fprintf_unfiltered (gdb_stdlog,
13273 " %s CUs, %s TUs\n",
13274 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
13275 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
13276 }
13277
13278 return dwp_file;
13279 }
13280
13281 /* Wrapper around open_and_init_dwp_file, only open it once. */
13282
13283 static struct dwp_file *
13284 get_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13285 {
13286 if (! dwarf2_per_objfile->dwp_checked)
13287 {
13288 dwarf2_per_objfile->dwp_file
13289 = open_and_init_dwp_file (dwarf2_per_objfile);
13290 dwarf2_per_objfile->dwp_checked = 1;
13291 }
13292 return dwarf2_per_objfile->dwp_file.get ();
13293 }
13294
13295 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
13296 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
13297 or in the DWP file for the objfile, referenced by THIS_UNIT.
13298 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
13299 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
13300
13301 This is called, for example, when wanting to read a variable with a
13302 complex location. Therefore we don't want to do file i/o for every call.
13303 Therefore we don't want to look for a DWO file on every call.
13304 Therefore we first see if we've already seen SIGNATURE in a DWP file,
13305 then we check if we've already seen DWO_NAME, and only THEN do we check
13306 for a DWO file.
13307
13308 The result is a pointer to the dwo_unit object or NULL if we didn't find it
13309 (dwo_id mismatch or couldn't find the DWO/DWP file). */
13310
13311 static struct dwo_unit *
13312 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
13313 const char *dwo_name, const char *comp_dir,
13314 ULONGEST signature, int is_debug_types)
13315 {
13316 struct dwarf2_per_objfile *dwarf2_per_objfile = this_unit->dwarf2_per_objfile;
13317 struct objfile *objfile = dwarf2_per_objfile->objfile;
13318 const char *kind = is_debug_types ? "TU" : "CU";
13319 void **dwo_file_slot;
13320 struct dwo_file *dwo_file;
13321 struct dwp_file *dwp_file;
13322
13323 /* First see if there's a DWP file.
13324 If we have a DWP file but didn't find the DWO inside it, don't
13325 look for the original DWO file. It makes gdb behave differently
13326 depending on whether one is debugging in the build tree. */
13327
13328 dwp_file = get_dwp_file (dwarf2_per_objfile);
13329 if (dwp_file != NULL)
13330 {
13331 const struct dwp_hash_table *dwp_htab =
13332 is_debug_types ? dwp_file->tus : dwp_file->cus;
13333
13334 if (dwp_htab != NULL)
13335 {
13336 struct dwo_unit *dwo_cutu =
13337 lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, comp_dir,
13338 signature, is_debug_types);
13339
13340 if (dwo_cutu != NULL)
13341 {
13342 if (dwarf_read_debug)
13343 {
13344 fprintf_unfiltered (gdb_stdlog,
13345 "Virtual DWO %s %s found: @%s\n",
13346 kind, hex_string (signature),
13347 host_address_to_string (dwo_cutu));
13348 }
13349 return dwo_cutu;
13350 }
13351 }
13352 }
13353 else
13354 {
13355 /* No DWP file, look for the DWO file. */
13356
13357 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
13358 dwo_name, comp_dir);
13359 if (*dwo_file_slot == NULL)
13360 {
13361 /* Read in the file and build a table of the CUs/TUs it contains. */
13362 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
13363 }
13364 /* NOTE: This will be NULL if unable to open the file. */
13365 dwo_file = (struct dwo_file *) *dwo_file_slot;
13366
13367 if (dwo_file != NULL)
13368 {
13369 struct dwo_unit *dwo_cutu = NULL;
13370
13371 if (is_debug_types && dwo_file->tus)
13372 {
13373 struct dwo_unit find_dwo_cutu;
13374
13375 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13376 find_dwo_cutu.signature = signature;
13377 dwo_cutu
13378 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
13379 }
13380 else if (!is_debug_types && dwo_file->cus)
13381 {
13382 struct dwo_unit find_dwo_cutu;
13383
13384 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13385 find_dwo_cutu.signature = signature;
13386 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus,
13387 &find_dwo_cutu);
13388 }
13389
13390 if (dwo_cutu != NULL)
13391 {
13392 if (dwarf_read_debug)
13393 {
13394 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
13395 kind, dwo_name, hex_string (signature),
13396 host_address_to_string (dwo_cutu));
13397 }
13398 return dwo_cutu;
13399 }
13400 }
13401 }
13402
13403 /* We didn't find it. This could mean a dwo_id mismatch, or
13404 someone deleted the DWO/DWP file, or the search path isn't set up
13405 correctly to find the file. */
13406
13407 if (dwarf_read_debug)
13408 {
13409 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
13410 kind, dwo_name, hex_string (signature));
13411 }
13412
13413 /* This is a warning and not a complaint because it can be caused by
13414 pilot error (e.g., user accidentally deleting the DWO). */
13415 {
13416 /* Print the name of the DWP file if we looked there, helps the user
13417 better diagnose the problem. */
13418 std::string dwp_text;
13419
13420 if (dwp_file != NULL)
13421 dwp_text = string_printf (" [in DWP file %s]",
13422 lbasename (dwp_file->name));
13423
13424 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset %s"
13425 " [in module %s]"),
13426 kind, dwo_name, hex_string (signature),
13427 dwp_text.c_str (),
13428 this_unit->is_debug_types ? "TU" : "CU",
13429 sect_offset_str (this_unit->sect_off), objfile_name (objfile));
13430 }
13431 return NULL;
13432 }
13433
13434 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
13435 See lookup_dwo_cutu_unit for details. */
13436
13437 static struct dwo_unit *
13438 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
13439 const char *dwo_name, const char *comp_dir,
13440 ULONGEST signature)
13441 {
13442 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
13443 }
13444
13445 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
13446 See lookup_dwo_cutu_unit for details. */
13447
13448 static struct dwo_unit *
13449 lookup_dwo_type_unit (struct signatured_type *this_tu,
13450 const char *dwo_name, const char *comp_dir)
13451 {
13452 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
13453 }
13454
13455 /* Traversal function for queue_and_load_all_dwo_tus. */
13456
13457 static int
13458 queue_and_load_dwo_tu (void **slot, void *info)
13459 {
13460 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
13461 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
13462 ULONGEST signature = dwo_unit->signature;
13463 struct signatured_type *sig_type =
13464 lookup_dwo_signatured_type (per_cu->cu, signature);
13465
13466 if (sig_type != NULL)
13467 {
13468 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
13469
13470 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
13471 a real dependency of PER_CU on SIG_TYPE. That is detected later
13472 while processing PER_CU. */
13473 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
13474 load_full_type_unit (sig_cu);
13475 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
13476 }
13477
13478 return 1;
13479 }
13480
13481 /* Queue all TUs contained in the DWO of PER_CU to be read in.
13482 The DWO may have the only definition of the type, though it may not be
13483 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
13484 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
13485
13486 static void
13487 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
13488 {
13489 struct dwo_unit *dwo_unit;
13490 struct dwo_file *dwo_file;
13491
13492 gdb_assert (!per_cu->is_debug_types);
13493 gdb_assert (get_dwp_file (per_cu->dwarf2_per_objfile) == NULL);
13494 gdb_assert (per_cu->cu != NULL);
13495
13496 dwo_unit = per_cu->cu->dwo_unit;
13497 gdb_assert (dwo_unit != NULL);
13498
13499 dwo_file = dwo_unit->dwo_file;
13500 if (dwo_file->tus != NULL)
13501 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
13502 }
13503
13504 /* Free all resources associated with DWO_FILE.
13505 Close the DWO file and munmap the sections. */
13506
13507 static void
13508 free_dwo_file (struct dwo_file *dwo_file)
13509 {
13510 /* Note: dbfd is NULL for virtual DWO files. */
13511 gdb_bfd_unref (dwo_file->dbfd);
13512
13513 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
13514 }
13515
13516 /* Traversal function for free_dwo_files. */
13517
13518 static int
13519 free_dwo_file_from_slot (void **slot, void *info)
13520 {
13521 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
13522
13523 free_dwo_file (dwo_file);
13524
13525 return 1;
13526 }
13527
13528 /* Free all resources associated with DWO_FILES. */
13529
13530 static void
13531 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
13532 {
13533 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
13534 }
13535 \f
13536 /* Read in various DIEs. */
13537
13538 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
13539 Inherit only the children of the DW_AT_abstract_origin DIE not being
13540 already referenced by DW_AT_abstract_origin from the children of the
13541 current DIE. */
13542
13543 static void
13544 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
13545 {
13546 struct die_info *child_die;
13547 sect_offset *offsetp;
13548 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
13549 struct die_info *origin_die;
13550 /* Iterator of the ORIGIN_DIE children. */
13551 struct die_info *origin_child_die;
13552 struct attribute *attr;
13553 struct dwarf2_cu *origin_cu;
13554 struct pending **origin_previous_list_in_scope;
13555
13556 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13557 if (!attr)
13558 return;
13559
13560 /* Note that following die references may follow to a die in a
13561 different cu. */
13562
13563 origin_cu = cu;
13564 origin_die = follow_die_ref (die, attr, &origin_cu);
13565
13566 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
13567 symbols in. */
13568 origin_previous_list_in_scope = origin_cu->list_in_scope;
13569 origin_cu->list_in_scope = cu->list_in_scope;
13570
13571 if (die->tag != origin_die->tag
13572 && !(die->tag == DW_TAG_inlined_subroutine
13573 && origin_die->tag == DW_TAG_subprogram))
13574 complaint (_("DIE %s and its abstract origin %s have different tags"),
13575 sect_offset_str (die->sect_off),
13576 sect_offset_str (origin_die->sect_off));
13577
13578 std::vector<sect_offset> offsets;
13579
13580 for (child_die = die->child;
13581 child_die && child_die->tag;
13582 child_die = sibling_die (child_die))
13583 {
13584 struct die_info *child_origin_die;
13585 struct dwarf2_cu *child_origin_cu;
13586
13587 /* We are trying to process concrete instance entries:
13588 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
13589 it's not relevant to our analysis here. i.e. detecting DIEs that are
13590 present in the abstract instance but not referenced in the concrete
13591 one. */
13592 if (child_die->tag == DW_TAG_call_site
13593 || child_die->tag == DW_TAG_GNU_call_site)
13594 continue;
13595
13596 /* For each CHILD_DIE, find the corresponding child of
13597 ORIGIN_DIE. If there is more than one layer of
13598 DW_AT_abstract_origin, follow them all; there shouldn't be,
13599 but GCC versions at least through 4.4 generate this (GCC PR
13600 40573). */
13601 child_origin_die = child_die;
13602 child_origin_cu = cu;
13603 while (1)
13604 {
13605 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
13606 child_origin_cu);
13607 if (attr == NULL)
13608 break;
13609 child_origin_die = follow_die_ref (child_origin_die, attr,
13610 &child_origin_cu);
13611 }
13612
13613 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
13614 counterpart may exist. */
13615 if (child_origin_die != child_die)
13616 {
13617 if (child_die->tag != child_origin_die->tag
13618 && !(child_die->tag == DW_TAG_inlined_subroutine
13619 && child_origin_die->tag == DW_TAG_subprogram))
13620 complaint (_("Child DIE %s and its abstract origin %s have "
13621 "different tags"),
13622 sect_offset_str (child_die->sect_off),
13623 sect_offset_str (child_origin_die->sect_off));
13624 if (child_origin_die->parent != origin_die)
13625 complaint (_("Child DIE %s and its abstract origin %s have "
13626 "different parents"),
13627 sect_offset_str (child_die->sect_off),
13628 sect_offset_str (child_origin_die->sect_off));
13629 else
13630 offsets.push_back (child_origin_die->sect_off);
13631 }
13632 }
13633 std::sort (offsets.begin (), offsets.end ());
13634 sect_offset *offsets_end = offsets.data () + offsets.size ();
13635 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
13636 if (offsetp[-1] == *offsetp)
13637 complaint (_("Multiple children of DIE %s refer "
13638 "to DIE %s as their abstract origin"),
13639 sect_offset_str (die->sect_off), sect_offset_str (*offsetp));
13640
13641 offsetp = offsets.data ();
13642 origin_child_die = origin_die->child;
13643 while (origin_child_die && origin_child_die->tag)
13644 {
13645 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
13646 while (offsetp < offsets_end
13647 && *offsetp < origin_child_die->sect_off)
13648 offsetp++;
13649 if (offsetp >= offsets_end
13650 || *offsetp > origin_child_die->sect_off)
13651 {
13652 /* Found that ORIGIN_CHILD_DIE is really not referenced.
13653 Check whether we're already processing ORIGIN_CHILD_DIE.
13654 This can happen with mutually referenced abstract_origins.
13655 PR 16581. */
13656 if (!origin_child_die->in_process)
13657 process_die (origin_child_die, origin_cu);
13658 }
13659 origin_child_die = sibling_die (origin_child_die);
13660 }
13661 origin_cu->list_in_scope = origin_previous_list_in_scope;
13662 }
13663
13664 static void
13665 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
13666 {
13667 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13668 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13669 struct context_stack *newobj;
13670 CORE_ADDR lowpc;
13671 CORE_ADDR highpc;
13672 struct die_info *child_die;
13673 struct attribute *attr, *call_line, *call_file;
13674 const char *name;
13675 CORE_ADDR baseaddr;
13676 struct block *block;
13677 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
13678 std::vector<struct symbol *> template_args;
13679 struct template_symbol *templ_func = NULL;
13680
13681 if (inlined_func)
13682 {
13683 /* If we do not have call site information, we can't show the
13684 caller of this inlined function. That's too confusing, so
13685 only use the scope for local variables. */
13686 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
13687 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
13688 if (call_line == NULL || call_file == NULL)
13689 {
13690 read_lexical_block_scope (die, cu);
13691 return;
13692 }
13693 }
13694
13695 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13696
13697 name = dwarf2_name (die, cu);
13698
13699 /* Ignore functions with missing or empty names. These are actually
13700 illegal according to the DWARF standard. */
13701 if (name == NULL)
13702 {
13703 complaint (_("missing name for subprogram DIE at %s"),
13704 sect_offset_str (die->sect_off));
13705 return;
13706 }
13707
13708 /* Ignore functions with missing or invalid low and high pc attributes. */
13709 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
13710 <= PC_BOUNDS_INVALID)
13711 {
13712 attr = dwarf2_attr (die, DW_AT_external, cu);
13713 if (!attr || !DW_UNSND (attr))
13714 complaint (_("cannot get low and high bounds "
13715 "for subprogram DIE at %s"),
13716 sect_offset_str (die->sect_off));
13717 return;
13718 }
13719
13720 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13721 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13722
13723 /* If we have any template arguments, then we must allocate a
13724 different sort of symbol. */
13725 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
13726 {
13727 if (child_die->tag == DW_TAG_template_type_param
13728 || child_die->tag == DW_TAG_template_value_param)
13729 {
13730 templ_func = allocate_template_symbol (objfile);
13731 templ_func->subclass = SYMBOL_TEMPLATE;
13732 break;
13733 }
13734 }
13735
13736 newobj = cu->builder->push_context (0, lowpc);
13737 newobj->name = new_symbol (die, read_type_die (die, cu), cu,
13738 (struct symbol *) templ_func);
13739
13740 /* If there is a location expression for DW_AT_frame_base, record
13741 it. */
13742 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
13743 if (attr)
13744 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
13745
13746 /* If there is a location for the static link, record it. */
13747 newobj->static_link = NULL;
13748 attr = dwarf2_attr (die, DW_AT_static_link, cu);
13749 if (attr)
13750 {
13751 newobj->static_link
13752 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
13753 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
13754 }
13755
13756 cu->list_in_scope = cu->builder->get_local_symbols ();
13757
13758 if (die->child != NULL)
13759 {
13760 child_die = die->child;
13761 while (child_die && child_die->tag)
13762 {
13763 if (child_die->tag == DW_TAG_template_type_param
13764 || child_die->tag == DW_TAG_template_value_param)
13765 {
13766 struct symbol *arg = new_symbol (child_die, NULL, cu);
13767
13768 if (arg != NULL)
13769 template_args.push_back (arg);
13770 }
13771 else
13772 process_die (child_die, cu);
13773 child_die = sibling_die (child_die);
13774 }
13775 }
13776
13777 inherit_abstract_dies (die, cu);
13778
13779 /* If we have a DW_AT_specification, we might need to import using
13780 directives from the context of the specification DIE. See the
13781 comment in determine_prefix. */
13782 if (cu->language == language_cplus
13783 && dwarf2_attr (die, DW_AT_specification, cu))
13784 {
13785 struct dwarf2_cu *spec_cu = cu;
13786 struct die_info *spec_die = die_specification (die, &spec_cu);
13787
13788 while (spec_die)
13789 {
13790 child_die = spec_die->child;
13791 while (child_die && child_die->tag)
13792 {
13793 if (child_die->tag == DW_TAG_imported_module)
13794 process_die (child_die, spec_cu);
13795 child_die = sibling_die (child_die);
13796 }
13797
13798 /* In some cases, GCC generates specification DIEs that
13799 themselves contain DW_AT_specification attributes. */
13800 spec_die = die_specification (spec_die, &spec_cu);
13801 }
13802 }
13803
13804 struct context_stack cstk = cu->builder->pop_context ();
13805 /* Make a block for the local symbols within. */
13806 block = cu->builder->finish_block (cstk.name, cstk.old_blocks,
13807 cstk.static_link, lowpc, highpc);
13808
13809 /* For C++, set the block's scope. */
13810 if ((cu->language == language_cplus
13811 || cu->language == language_fortran
13812 || cu->language == language_d
13813 || cu->language == language_rust)
13814 && cu->processing_has_namespace_info)
13815 block_set_scope (block, determine_prefix (die, cu),
13816 &objfile->objfile_obstack);
13817
13818 /* If we have address ranges, record them. */
13819 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13820
13821 gdbarch_make_symbol_special (gdbarch, cstk.name, objfile);
13822
13823 /* Attach template arguments to function. */
13824 if (!template_args.empty ())
13825 {
13826 gdb_assert (templ_func != NULL);
13827
13828 templ_func->n_template_arguments = template_args.size ();
13829 templ_func->template_arguments
13830 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
13831 templ_func->n_template_arguments);
13832 memcpy (templ_func->template_arguments,
13833 template_args.data (),
13834 (templ_func->n_template_arguments * sizeof (struct symbol *)));
13835
13836 /* Make sure that the symtab is set on the new symbols. Even
13837 though they don't appear in this symtab directly, other parts
13838 of gdb assume that symbols do, and this is reasonably
13839 true. */
13840 for (symbol *sym : template_args)
13841 symbol_set_symtab (sym, symbol_symtab (templ_func));
13842 }
13843
13844 /* In C++, we can have functions nested inside functions (e.g., when
13845 a function declares a class that has methods). This means that
13846 when we finish processing a function scope, we may need to go
13847 back to building a containing block's symbol lists. */
13848 *cu->builder->get_local_symbols () = cstk.locals;
13849 cu->builder->set_local_using_directives (cstk.local_using_directives);
13850
13851 /* If we've finished processing a top-level function, subsequent
13852 symbols go in the file symbol list. */
13853 if (cu->builder->outermost_context_p ())
13854 cu->list_in_scope = cu->builder->get_file_symbols ();
13855 }
13856
13857 /* Process all the DIES contained within a lexical block scope. Start
13858 a new scope, process the dies, and then close the scope. */
13859
13860 static void
13861 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
13862 {
13863 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13864 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13865 CORE_ADDR lowpc, highpc;
13866 struct die_info *child_die;
13867 CORE_ADDR baseaddr;
13868
13869 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13870
13871 /* Ignore blocks with missing or invalid low and high pc attributes. */
13872 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
13873 as multiple lexical blocks? Handling children in a sane way would
13874 be nasty. Might be easier to properly extend generic blocks to
13875 describe ranges. */
13876 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
13877 {
13878 case PC_BOUNDS_NOT_PRESENT:
13879 /* DW_TAG_lexical_block has no attributes, process its children as if
13880 there was no wrapping by that DW_TAG_lexical_block.
13881 GCC does no longer produces such DWARF since GCC r224161. */
13882 for (child_die = die->child;
13883 child_die != NULL && child_die->tag;
13884 child_die = sibling_die (child_die))
13885 process_die (child_die, cu);
13886 return;
13887 case PC_BOUNDS_INVALID:
13888 return;
13889 }
13890 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13891 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13892
13893 cu->builder->push_context (0, lowpc);
13894 if (die->child != NULL)
13895 {
13896 child_die = die->child;
13897 while (child_die && child_die->tag)
13898 {
13899 process_die (child_die, cu);
13900 child_die = sibling_die (child_die);
13901 }
13902 }
13903 inherit_abstract_dies (die, cu);
13904 struct context_stack cstk = cu->builder->pop_context ();
13905
13906 if (*cu->builder->get_local_symbols () != NULL
13907 || (*cu->builder->get_local_using_directives ()) != NULL)
13908 {
13909 struct block *block
13910 = cu->builder->finish_block (0, cstk.old_blocks, NULL,
13911 cstk.start_addr, highpc);
13912
13913 /* Note that recording ranges after traversing children, as we
13914 do here, means that recording a parent's ranges entails
13915 walking across all its children's ranges as they appear in
13916 the address map, which is quadratic behavior.
13917
13918 It would be nicer to record the parent's ranges before
13919 traversing its children, simply overriding whatever you find
13920 there. But since we don't even decide whether to create a
13921 block until after we've traversed its children, that's hard
13922 to do. */
13923 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13924 }
13925 *cu->builder->get_local_symbols () = cstk.locals;
13926 cu->builder->set_local_using_directives (cstk.local_using_directives);
13927 }
13928
13929 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
13930
13931 static void
13932 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
13933 {
13934 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13935 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13936 CORE_ADDR pc, baseaddr;
13937 struct attribute *attr;
13938 struct call_site *call_site, call_site_local;
13939 void **slot;
13940 int nparams;
13941 struct die_info *child_die;
13942
13943 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13944
13945 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
13946 if (attr == NULL)
13947 {
13948 /* This was a pre-DWARF-5 GNU extension alias
13949 for DW_AT_call_return_pc. */
13950 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13951 }
13952 if (!attr)
13953 {
13954 complaint (_("missing DW_AT_call_return_pc for DW_TAG_call_site "
13955 "DIE %s [in module %s]"),
13956 sect_offset_str (die->sect_off), objfile_name (objfile));
13957 return;
13958 }
13959 pc = attr_value_as_address (attr) + baseaddr;
13960 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
13961
13962 if (cu->call_site_htab == NULL)
13963 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
13964 NULL, &objfile->objfile_obstack,
13965 hashtab_obstack_allocate, NULL);
13966 call_site_local.pc = pc;
13967 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
13968 if (*slot != NULL)
13969 {
13970 complaint (_("Duplicate PC %s for DW_TAG_call_site "
13971 "DIE %s [in module %s]"),
13972 paddress (gdbarch, pc), sect_offset_str (die->sect_off),
13973 objfile_name (objfile));
13974 return;
13975 }
13976
13977 /* Count parameters at the caller. */
13978
13979 nparams = 0;
13980 for (child_die = die->child; child_die && child_die->tag;
13981 child_die = sibling_die (child_die))
13982 {
13983 if (child_die->tag != DW_TAG_call_site_parameter
13984 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13985 {
13986 complaint (_("Tag %d is not DW_TAG_call_site_parameter in "
13987 "DW_TAG_call_site child DIE %s [in module %s]"),
13988 child_die->tag, sect_offset_str (child_die->sect_off),
13989 objfile_name (objfile));
13990 continue;
13991 }
13992
13993 nparams++;
13994 }
13995
13996 call_site
13997 = ((struct call_site *)
13998 obstack_alloc (&objfile->objfile_obstack,
13999 sizeof (*call_site)
14000 + (sizeof (*call_site->parameter) * (nparams - 1))));
14001 *slot = call_site;
14002 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
14003 call_site->pc = pc;
14004
14005 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
14006 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
14007 {
14008 struct die_info *func_die;
14009
14010 /* Skip also over DW_TAG_inlined_subroutine. */
14011 for (func_die = die->parent;
14012 func_die && func_die->tag != DW_TAG_subprogram
14013 && func_die->tag != DW_TAG_subroutine_type;
14014 func_die = func_die->parent);
14015
14016 /* DW_AT_call_all_calls is a superset
14017 of DW_AT_call_all_tail_calls. */
14018 if (func_die
14019 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
14020 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
14021 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
14022 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
14023 {
14024 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
14025 not complete. But keep CALL_SITE for look ups via call_site_htab,
14026 both the initial caller containing the real return address PC and
14027 the final callee containing the current PC of a chain of tail
14028 calls do not need to have the tail call list complete. But any
14029 function candidate for a virtual tail call frame searched via
14030 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
14031 determined unambiguously. */
14032 }
14033 else
14034 {
14035 struct type *func_type = NULL;
14036
14037 if (func_die)
14038 func_type = get_die_type (func_die, cu);
14039 if (func_type != NULL)
14040 {
14041 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
14042
14043 /* Enlist this call site to the function. */
14044 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
14045 TYPE_TAIL_CALL_LIST (func_type) = call_site;
14046 }
14047 else
14048 complaint (_("Cannot find function owning DW_TAG_call_site "
14049 "DIE %s [in module %s]"),
14050 sect_offset_str (die->sect_off), objfile_name (objfile));
14051 }
14052 }
14053
14054 attr = dwarf2_attr (die, DW_AT_call_target, cu);
14055 if (attr == NULL)
14056 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
14057 if (attr == NULL)
14058 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
14059 if (attr == NULL)
14060 {
14061 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
14062 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
14063 }
14064 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
14065 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
14066 /* Keep NULL DWARF_BLOCK. */;
14067 else if (attr_form_is_block (attr))
14068 {
14069 struct dwarf2_locexpr_baton *dlbaton;
14070
14071 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
14072 dlbaton->data = DW_BLOCK (attr)->data;
14073 dlbaton->size = DW_BLOCK (attr)->size;
14074 dlbaton->per_cu = cu->per_cu;
14075
14076 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
14077 }
14078 else if (attr_form_is_ref (attr))
14079 {
14080 struct dwarf2_cu *target_cu = cu;
14081 struct die_info *target_die;
14082
14083 target_die = follow_die_ref (die, attr, &target_cu);
14084 gdb_assert (target_cu->per_cu->dwarf2_per_objfile->objfile == objfile);
14085 if (die_is_declaration (target_die, target_cu))
14086 {
14087 const char *target_physname;
14088
14089 /* Prefer the mangled name; otherwise compute the demangled one. */
14090 target_physname = dw2_linkage_name (target_die, target_cu);
14091 if (target_physname == NULL)
14092 target_physname = dwarf2_physname (NULL, target_die, target_cu);
14093 if (target_physname == NULL)
14094 complaint (_("DW_AT_call_target target DIE has invalid "
14095 "physname, for referencing DIE %s [in module %s]"),
14096 sect_offset_str (die->sect_off), objfile_name (objfile));
14097 else
14098 SET_FIELD_PHYSNAME (call_site->target, target_physname);
14099 }
14100 else
14101 {
14102 CORE_ADDR lowpc;
14103
14104 /* DW_AT_entry_pc should be preferred. */
14105 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
14106 <= PC_BOUNDS_INVALID)
14107 complaint (_("DW_AT_call_target target DIE has invalid "
14108 "low pc, for referencing DIE %s [in module %s]"),
14109 sect_offset_str (die->sect_off), objfile_name (objfile));
14110 else
14111 {
14112 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
14113 SET_FIELD_PHYSADDR (call_site->target, lowpc);
14114 }
14115 }
14116 }
14117 else
14118 complaint (_("DW_TAG_call_site DW_AT_call_target is neither "
14119 "block nor reference, for DIE %s [in module %s]"),
14120 sect_offset_str (die->sect_off), objfile_name (objfile));
14121
14122 call_site->per_cu = cu->per_cu;
14123
14124 for (child_die = die->child;
14125 child_die && child_die->tag;
14126 child_die = sibling_die (child_die))
14127 {
14128 struct call_site_parameter *parameter;
14129 struct attribute *loc, *origin;
14130
14131 if (child_die->tag != DW_TAG_call_site_parameter
14132 && child_die->tag != DW_TAG_GNU_call_site_parameter)
14133 {
14134 /* Already printed the complaint above. */
14135 continue;
14136 }
14137
14138 gdb_assert (call_site->parameter_count < nparams);
14139 parameter = &call_site->parameter[call_site->parameter_count];
14140
14141 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
14142 specifies DW_TAG_formal_parameter. Value of the data assumed for the
14143 register is contained in DW_AT_call_value. */
14144
14145 loc = dwarf2_attr (child_die, DW_AT_location, cu);
14146 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
14147 if (origin == NULL)
14148 {
14149 /* This was a pre-DWARF-5 GNU extension alias
14150 for DW_AT_call_parameter. */
14151 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
14152 }
14153 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
14154 {
14155 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
14156
14157 sect_offset sect_off
14158 = (sect_offset) dwarf2_get_ref_die_offset (origin);
14159 if (!offset_in_cu_p (&cu->header, sect_off))
14160 {
14161 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
14162 binding can be done only inside one CU. Such referenced DIE
14163 therefore cannot be even moved to DW_TAG_partial_unit. */
14164 complaint (_("DW_AT_call_parameter offset is not in CU for "
14165 "DW_TAG_call_site child DIE %s [in module %s]"),
14166 sect_offset_str (child_die->sect_off),
14167 objfile_name (objfile));
14168 continue;
14169 }
14170 parameter->u.param_cu_off
14171 = (cu_offset) (sect_off - cu->header.sect_off);
14172 }
14173 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
14174 {
14175 complaint (_("No DW_FORM_block* DW_AT_location for "
14176 "DW_TAG_call_site child DIE %s [in module %s]"),
14177 sect_offset_str (child_die->sect_off), objfile_name (objfile));
14178 continue;
14179 }
14180 else
14181 {
14182 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
14183 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
14184 if (parameter->u.dwarf_reg != -1)
14185 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
14186 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
14187 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
14188 &parameter->u.fb_offset))
14189 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
14190 else
14191 {
14192 complaint (_("Only single DW_OP_reg or DW_OP_fbreg is supported "
14193 "for DW_FORM_block* DW_AT_location is supported for "
14194 "DW_TAG_call_site child DIE %s "
14195 "[in module %s]"),
14196 sect_offset_str (child_die->sect_off),
14197 objfile_name (objfile));
14198 continue;
14199 }
14200 }
14201
14202 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
14203 if (attr == NULL)
14204 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
14205 if (!attr_form_is_block (attr))
14206 {
14207 complaint (_("No DW_FORM_block* DW_AT_call_value for "
14208 "DW_TAG_call_site child DIE %s [in module %s]"),
14209 sect_offset_str (child_die->sect_off),
14210 objfile_name (objfile));
14211 continue;
14212 }
14213 parameter->value = DW_BLOCK (attr)->data;
14214 parameter->value_size = DW_BLOCK (attr)->size;
14215
14216 /* Parameters are not pre-cleared by memset above. */
14217 parameter->data_value = NULL;
14218 parameter->data_value_size = 0;
14219 call_site->parameter_count++;
14220
14221 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
14222 if (attr == NULL)
14223 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
14224 if (attr)
14225 {
14226 if (!attr_form_is_block (attr))
14227 complaint (_("No DW_FORM_block* DW_AT_call_data_value for "
14228 "DW_TAG_call_site child DIE %s [in module %s]"),
14229 sect_offset_str (child_die->sect_off),
14230 objfile_name (objfile));
14231 else
14232 {
14233 parameter->data_value = DW_BLOCK (attr)->data;
14234 parameter->data_value_size = DW_BLOCK (attr)->size;
14235 }
14236 }
14237 }
14238 }
14239
14240 /* Helper function for read_variable. If DIE represents a virtual
14241 table, then return the type of the concrete object that is
14242 associated with the virtual table. Otherwise, return NULL. */
14243
14244 static struct type *
14245 rust_containing_type (struct die_info *die, struct dwarf2_cu *cu)
14246 {
14247 struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu);
14248 if (attr == NULL)
14249 return NULL;
14250
14251 /* Find the type DIE. */
14252 struct die_info *type_die = NULL;
14253 struct dwarf2_cu *type_cu = cu;
14254
14255 if (attr_form_is_ref (attr))
14256 type_die = follow_die_ref (die, attr, &type_cu);
14257 if (type_die == NULL)
14258 return NULL;
14259
14260 if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL)
14261 return NULL;
14262 return die_containing_type (type_die, type_cu);
14263 }
14264
14265 /* Read a variable (DW_TAG_variable) DIE and create a new symbol. */
14266
14267 static void
14268 read_variable (struct die_info *die, struct dwarf2_cu *cu)
14269 {
14270 struct rust_vtable_symbol *storage = NULL;
14271
14272 if (cu->language == language_rust)
14273 {
14274 struct type *containing_type = rust_containing_type (die, cu);
14275
14276 if (containing_type != NULL)
14277 {
14278 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14279
14280 storage = OBSTACK_ZALLOC (&objfile->objfile_obstack,
14281 struct rust_vtable_symbol);
14282 initialize_objfile_symbol (storage);
14283 storage->concrete_type = containing_type;
14284 storage->subclass = SYMBOL_RUST_VTABLE;
14285 }
14286 }
14287
14288 struct symbol *res = new_symbol (die, NULL, cu, storage);
14289 struct attribute *abstract_origin
14290 = dwarf2_attr (die, DW_AT_abstract_origin, cu);
14291 struct attribute *loc = dwarf2_attr (die, DW_AT_location, cu);
14292 if (res == NULL && loc && abstract_origin)
14293 {
14294 /* We have a variable without a name, but with a location and an abstract
14295 origin. This may be a concrete instance of an abstract variable
14296 referenced from an DW_OP_GNU_variable_value, so save it to find it back
14297 later. */
14298 struct dwarf2_cu *origin_cu = cu;
14299 struct die_info *origin_die
14300 = follow_die_ref (die, abstract_origin, &origin_cu);
14301 dwarf2_per_objfile *dpo = cu->per_cu->dwarf2_per_objfile;
14302 dpo->abstract_to_concrete[origin_die].push_back (die);
14303 }
14304 }
14305
14306 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
14307 reading .debug_rnglists.
14308 Callback's type should be:
14309 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14310 Return true if the attributes are present and valid, otherwise,
14311 return false. */
14312
14313 template <typename Callback>
14314 static bool
14315 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
14316 Callback &&callback)
14317 {
14318 struct dwarf2_per_objfile *dwarf2_per_objfile
14319 = cu->per_cu->dwarf2_per_objfile;
14320 struct objfile *objfile = dwarf2_per_objfile->objfile;
14321 bfd *obfd = objfile->obfd;
14322 /* Base address selection entry. */
14323 CORE_ADDR base;
14324 int found_base;
14325 const gdb_byte *buffer;
14326 CORE_ADDR baseaddr;
14327 bool overflow = false;
14328
14329 found_base = cu->base_known;
14330 base = cu->base_address;
14331
14332 dwarf2_read_section (objfile, &dwarf2_per_objfile->rnglists);
14333 if (offset >= dwarf2_per_objfile->rnglists.size)
14334 {
14335 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14336 offset);
14337 return false;
14338 }
14339 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
14340
14341 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14342
14343 while (1)
14344 {
14345 /* Initialize it due to a false compiler warning. */
14346 CORE_ADDR range_beginning = 0, range_end = 0;
14347 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
14348 + dwarf2_per_objfile->rnglists.size);
14349 unsigned int bytes_read;
14350
14351 if (buffer == buf_end)
14352 {
14353 overflow = true;
14354 break;
14355 }
14356 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
14357 switch (rlet)
14358 {
14359 case DW_RLE_end_of_list:
14360 break;
14361 case DW_RLE_base_address:
14362 if (buffer + cu->header.addr_size > buf_end)
14363 {
14364 overflow = true;
14365 break;
14366 }
14367 base = read_address (obfd, buffer, cu, &bytes_read);
14368 found_base = 1;
14369 buffer += bytes_read;
14370 break;
14371 case DW_RLE_start_length:
14372 if (buffer + cu->header.addr_size > buf_end)
14373 {
14374 overflow = true;
14375 break;
14376 }
14377 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14378 buffer += bytes_read;
14379 range_end = (range_beginning
14380 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
14381 buffer += bytes_read;
14382 if (buffer > buf_end)
14383 {
14384 overflow = true;
14385 break;
14386 }
14387 break;
14388 case DW_RLE_offset_pair:
14389 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14390 buffer += bytes_read;
14391 if (buffer > buf_end)
14392 {
14393 overflow = true;
14394 break;
14395 }
14396 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14397 buffer += bytes_read;
14398 if (buffer > buf_end)
14399 {
14400 overflow = true;
14401 break;
14402 }
14403 break;
14404 case DW_RLE_start_end:
14405 if (buffer + 2 * cu->header.addr_size > buf_end)
14406 {
14407 overflow = true;
14408 break;
14409 }
14410 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14411 buffer += bytes_read;
14412 range_end = read_address (obfd, buffer, cu, &bytes_read);
14413 buffer += bytes_read;
14414 break;
14415 default:
14416 complaint (_("Invalid .debug_rnglists data (no base address)"));
14417 return false;
14418 }
14419 if (rlet == DW_RLE_end_of_list || overflow)
14420 break;
14421 if (rlet == DW_RLE_base_address)
14422 continue;
14423
14424 if (!found_base)
14425 {
14426 /* We have no valid base address for the ranges
14427 data. */
14428 complaint (_("Invalid .debug_rnglists data (no base address)"));
14429 return false;
14430 }
14431
14432 if (range_beginning > range_end)
14433 {
14434 /* Inverted range entries are invalid. */
14435 complaint (_("Invalid .debug_rnglists data (inverted range)"));
14436 return false;
14437 }
14438
14439 /* Empty range entries have no effect. */
14440 if (range_beginning == range_end)
14441 continue;
14442
14443 range_beginning += base;
14444 range_end += base;
14445
14446 /* A not-uncommon case of bad debug info.
14447 Don't pollute the addrmap with bad data. */
14448 if (range_beginning + baseaddr == 0
14449 && !dwarf2_per_objfile->has_section_at_zero)
14450 {
14451 complaint (_(".debug_rnglists entry has start address of zero"
14452 " [in module %s]"), objfile_name (objfile));
14453 continue;
14454 }
14455
14456 callback (range_beginning, range_end);
14457 }
14458
14459 if (overflow)
14460 {
14461 complaint (_("Offset %d is not terminated "
14462 "for DW_AT_ranges attribute"),
14463 offset);
14464 return false;
14465 }
14466
14467 return true;
14468 }
14469
14470 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
14471 Callback's type should be:
14472 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14473 Return 1 if the attributes are present and valid, otherwise, return 0. */
14474
14475 template <typename Callback>
14476 static int
14477 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
14478 Callback &&callback)
14479 {
14480 struct dwarf2_per_objfile *dwarf2_per_objfile
14481 = cu->per_cu->dwarf2_per_objfile;
14482 struct objfile *objfile = dwarf2_per_objfile->objfile;
14483 struct comp_unit_head *cu_header = &cu->header;
14484 bfd *obfd = objfile->obfd;
14485 unsigned int addr_size = cu_header->addr_size;
14486 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
14487 /* Base address selection entry. */
14488 CORE_ADDR base;
14489 int found_base;
14490 unsigned int dummy;
14491 const gdb_byte *buffer;
14492 CORE_ADDR baseaddr;
14493
14494 if (cu_header->version >= 5)
14495 return dwarf2_rnglists_process (offset, cu, callback);
14496
14497 found_base = cu->base_known;
14498 base = cu->base_address;
14499
14500 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
14501 if (offset >= dwarf2_per_objfile->ranges.size)
14502 {
14503 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14504 offset);
14505 return 0;
14506 }
14507 buffer = dwarf2_per_objfile->ranges.buffer + offset;
14508
14509 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14510
14511 while (1)
14512 {
14513 CORE_ADDR range_beginning, range_end;
14514
14515 range_beginning = read_address (obfd, buffer, cu, &dummy);
14516 buffer += addr_size;
14517 range_end = read_address (obfd, buffer, cu, &dummy);
14518 buffer += addr_size;
14519 offset += 2 * addr_size;
14520
14521 /* An end of list marker is a pair of zero addresses. */
14522 if (range_beginning == 0 && range_end == 0)
14523 /* Found the end of list entry. */
14524 break;
14525
14526 /* Each base address selection entry is a pair of 2 values.
14527 The first is the largest possible address, the second is
14528 the base address. Check for a base address here. */
14529 if ((range_beginning & mask) == mask)
14530 {
14531 /* If we found the largest possible address, then we already
14532 have the base address in range_end. */
14533 base = range_end;
14534 found_base = 1;
14535 continue;
14536 }
14537
14538 if (!found_base)
14539 {
14540 /* We have no valid base address for the ranges
14541 data. */
14542 complaint (_("Invalid .debug_ranges data (no base address)"));
14543 return 0;
14544 }
14545
14546 if (range_beginning > range_end)
14547 {
14548 /* Inverted range entries are invalid. */
14549 complaint (_("Invalid .debug_ranges data (inverted range)"));
14550 return 0;
14551 }
14552
14553 /* Empty range entries have no effect. */
14554 if (range_beginning == range_end)
14555 continue;
14556
14557 range_beginning += base;
14558 range_end += base;
14559
14560 /* A not-uncommon case of bad debug info.
14561 Don't pollute the addrmap with bad data. */
14562 if (range_beginning + baseaddr == 0
14563 && !dwarf2_per_objfile->has_section_at_zero)
14564 {
14565 complaint (_(".debug_ranges entry has start address of zero"
14566 " [in module %s]"), objfile_name (objfile));
14567 continue;
14568 }
14569
14570 callback (range_beginning, range_end);
14571 }
14572
14573 return 1;
14574 }
14575
14576 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
14577 Return 1 if the attributes are present and valid, otherwise, return 0.
14578 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
14579
14580 static int
14581 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
14582 CORE_ADDR *high_return, struct dwarf2_cu *cu,
14583 struct partial_symtab *ranges_pst)
14584 {
14585 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14586 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14587 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
14588 SECT_OFF_TEXT (objfile));
14589 int low_set = 0;
14590 CORE_ADDR low = 0;
14591 CORE_ADDR high = 0;
14592 int retval;
14593
14594 retval = dwarf2_ranges_process (offset, cu,
14595 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
14596 {
14597 if (ranges_pst != NULL)
14598 {
14599 CORE_ADDR lowpc;
14600 CORE_ADDR highpc;
14601
14602 lowpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14603 range_beginning + baseaddr)
14604 - baseaddr);
14605 highpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14606 range_end + baseaddr)
14607 - baseaddr);
14608 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
14609 ranges_pst);
14610 }
14611
14612 /* FIXME: This is recording everything as a low-high
14613 segment of consecutive addresses. We should have a
14614 data structure for discontiguous block ranges
14615 instead. */
14616 if (! low_set)
14617 {
14618 low = range_beginning;
14619 high = range_end;
14620 low_set = 1;
14621 }
14622 else
14623 {
14624 if (range_beginning < low)
14625 low = range_beginning;
14626 if (range_end > high)
14627 high = range_end;
14628 }
14629 });
14630 if (!retval)
14631 return 0;
14632
14633 if (! low_set)
14634 /* If the first entry is an end-of-list marker, the range
14635 describes an empty scope, i.e. no instructions. */
14636 return 0;
14637
14638 if (low_return)
14639 *low_return = low;
14640 if (high_return)
14641 *high_return = high;
14642 return 1;
14643 }
14644
14645 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
14646 definition for the return value. *LOWPC and *HIGHPC are set iff
14647 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
14648
14649 static enum pc_bounds_kind
14650 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
14651 CORE_ADDR *highpc, struct dwarf2_cu *cu,
14652 struct partial_symtab *pst)
14653 {
14654 struct dwarf2_per_objfile *dwarf2_per_objfile
14655 = cu->per_cu->dwarf2_per_objfile;
14656 struct attribute *attr;
14657 struct attribute *attr_high;
14658 CORE_ADDR low = 0;
14659 CORE_ADDR high = 0;
14660 enum pc_bounds_kind ret;
14661
14662 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14663 if (attr_high)
14664 {
14665 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14666 if (attr)
14667 {
14668 low = attr_value_as_address (attr);
14669 high = attr_value_as_address (attr_high);
14670 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14671 high += low;
14672 }
14673 else
14674 /* Found high w/o low attribute. */
14675 return PC_BOUNDS_INVALID;
14676
14677 /* Found consecutive range of addresses. */
14678 ret = PC_BOUNDS_HIGH_LOW;
14679 }
14680 else
14681 {
14682 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14683 if (attr != NULL)
14684 {
14685 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14686 We take advantage of the fact that DW_AT_ranges does not appear
14687 in DW_TAG_compile_unit of DWO files. */
14688 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14689 unsigned int ranges_offset = (DW_UNSND (attr)
14690 + (need_ranges_base
14691 ? cu->ranges_base
14692 : 0));
14693
14694 /* Value of the DW_AT_ranges attribute is the offset in the
14695 .debug_ranges section. */
14696 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
14697 return PC_BOUNDS_INVALID;
14698 /* Found discontinuous range of addresses. */
14699 ret = PC_BOUNDS_RANGES;
14700 }
14701 else
14702 return PC_BOUNDS_NOT_PRESENT;
14703 }
14704
14705 /* partial_die_info::read has also the strict LOW < HIGH requirement. */
14706 if (high <= low)
14707 return PC_BOUNDS_INVALID;
14708
14709 /* When using the GNU linker, .gnu.linkonce. sections are used to
14710 eliminate duplicate copies of functions and vtables and such.
14711 The linker will arbitrarily choose one and discard the others.
14712 The AT_*_pc values for such functions refer to local labels in
14713 these sections. If the section from that file was discarded, the
14714 labels are not in the output, so the relocs get a value of 0.
14715 If this is a discarded function, mark the pc bounds as invalid,
14716 so that GDB will ignore it. */
14717 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
14718 return PC_BOUNDS_INVALID;
14719
14720 *lowpc = low;
14721 if (highpc)
14722 *highpc = high;
14723 return ret;
14724 }
14725
14726 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
14727 its low and high PC addresses. Do nothing if these addresses could not
14728 be determined. Otherwise, set LOWPC to the low address if it is smaller,
14729 and HIGHPC to the high address if greater than HIGHPC. */
14730
14731 static void
14732 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
14733 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14734 struct dwarf2_cu *cu)
14735 {
14736 CORE_ADDR low, high;
14737 struct die_info *child = die->child;
14738
14739 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
14740 {
14741 *lowpc = std::min (*lowpc, low);
14742 *highpc = std::max (*highpc, high);
14743 }
14744
14745 /* If the language does not allow nested subprograms (either inside
14746 subprograms or lexical blocks), we're done. */
14747 if (cu->language != language_ada)
14748 return;
14749
14750 /* Check all the children of the given DIE. If it contains nested
14751 subprograms, then check their pc bounds. Likewise, we need to
14752 check lexical blocks as well, as they may also contain subprogram
14753 definitions. */
14754 while (child && child->tag)
14755 {
14756 if (child->tag == DW_TAG_subprogram
14757 || child->tag == DW_TAG_lexical_block)
14758 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
14759 child = sibling_die (child);
14760 }
14761 }
14762
14763 /* Get the low and high pc's represented by the scope DIE, and store
14764 them in *LOWPC and *HIGHPC. If the correct values can't be
14765 determined, set *LOWPC to -1 and *HIGHPC to 0. */
14766
14767 static void
14768 get_scope_pc_bounds (struct die_info *die,
14769 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14770 struct dwarf2_cu *cu)
14771 {
14772 CORE_ADDR best_low = (CORE_ADDR) -1;
14773 CORE_ADDR best_high = (CORE_ADDR) 0;
14774 CORE_ADDR current_low, current_high;
14775
14776 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
14777 >= PC_BOUNDS_RANGES)
14778 {
14779 best_low = current_low;
14780 best_high = current_high;
14781 }
14782 else
14783 {
14784 struct die_info *child = die->child;
14785
14786 while (child && child->tag)
14787 {
14788 switch (child->tag) {
14789 case DW_TAG_subprogram:
14790 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
14791 break;
14792 case DW_TAG_namespace:
14793 case DW_TAG_module:
14794 /* FIXME: carlton/2004-01-16: Should we do this for
14795 DW_TAG_class_type/DW_TAG_structure_type, too? I think
14796 that current GCC's always emit the DIEs corresponding
14797 to definitions of methods of classes as children of a
14798 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
14799 the DIEs giving the declarations, which could be
14800 anywhere). But I don't see any reason why the
14801 standards says that they have to be there. */
14802 get_scope_pc_bounds (child, &current_low, &current_high, cu);
14803
14804 if (current_low != ((CORE_ADDR) -1))
14805 {
14806 best_low = std::min (best_low, current_low);
14807 best_high = std::max (best_high, current_high);
14808 }
14809 break;
14810 default:
14811 /* Ignore. */
14812 break;
14813 }
14814
14815 child = sibling_die (child);
14816 }
14817 }
14818
14819 *lowpc = best_low;
14820 *highpc = best_high;
14821 }
14822
14823 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
14824 in DIE. */
14825
14826 static void
14827 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
14828 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
14829 {
14830 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14831 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14832 struct attribute *attr;
14833 struct attribute *attr_high;
14834
14835 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14836 if (attr_high)
14837 {
14838 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14839 if (attr)
14840 {
14841 CORE_ADDR low = attr_value_as_address (attr);
14842 CORE_ADDR high = attr_value_as_address (attr_high);
14843
14844 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14845 high += low;
14846
14847 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
14848 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
14849 cu->builder->record_block_range (block, low, high - 1);
14850 }
14851 }
14852
14853 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14854 if (attr)
14855 {
14856 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14857 We take advantage of the fact that DW_AT_ranges does not appear
14858 in DW_TAG_compile_unit of DWO files. */
14859 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14860
14861 /* The value of the DW_AT_ranges attribute is the offset of the
14862 address range list in the .debug_ranges section. */
14863 unsigned long offset = (DW_UNSND (attr)
14864 + (need_ranges_base ? cu->ranges_base : 0));
14865
14866 std::vector<blockrange> blockvec;
14867 dwarf2_ranges_process (offset, cu,
14868 [&] (CORE_ADDR start, CORE_ADDR end)
14869 {
14870 start += baseaddr;
14871 end += baseaddr;
14872 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
14873 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
14874 cu->builder->record_block_range (block, start, end - 1);
14875 blockvec.emplace_back (start, end);
14876 });
14877
14878 BLOCK_RANGES(block) = make_blockranges (objfile, blockvec);
14879 }
14880 }
14881
14882 /* Check whether the producer field indicates either of GCC < 4.6, or the
14883 Intel C/C++ compiler, and cache the result in CU. */
14884
14885 static void
14886 check_producer (struct dwarf2_cu *cu)
14887 {
14888 int major, minor;
14889
14890 if (cu->producer == NULL)
14891 {
14892 /* For unknown compilers expect their behavior is DWARF version
14893 compliant.
14894
14895 GCC started to support .debug_types sections by -gdwarf-4 since
14896 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
14897 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
14898 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
14899 interpreted incorrectly by GDB now - GCC PR debug/48229. */
14900 }
14901 else if (producer_is_gcc (cu->producer, &major, &minor))
14902 {
14903 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
14904 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
14905 }
14906 else if (producer_is_icc (cu->producer, &major, &minor))
14907 {
14908 cu->producer_is_icc = true;
14909 cu->producer_is_icc_lt_14 = major < 14;
14910 }
14911 else if (startswith (cu->producer, "CodeWarrior S12/L-ISA"))
14912 cu->producer_is_codewarrior = true;
14913 else
14914 {
14915 /* For other non-GCC compilers, expect their behavior is DWARF version
14916 compliant. */
14917 }
14918
14919 cu->checked_producer = true;
14920 }
14921
14922 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
14923 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
14924 during 4.6.0 experimental. */
14925
14926 static bool
14927 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
14928 {
14929 if (!cu->checked_producer)
14930 check_producer (cu);
14931
14932 return cu->producer_is_gxx_lt_4_6;
14933 }
14934
14935
14936 /* Codewarrior (at least as of version 5.0.40) generates dwarf line information
14937 with incorrect is_stmt attributes. */
14938
14939 static bool
14940 producer_is_codewarrior (struct dwarf2_cu *cu)
14941 {
14942 if (!cu->checked_producer)
14943 check_producer (cu);
14944
14945 return cu->producer_is_codewarrior;
14946 }
14947
14948 /* Return the default accessibility type if it is not overriden by
14949 DW_AT_accessibility. */
14950
14951 static enum dwarf_access_attribute
14952 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
14953 {
14954 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
14955 {
14956 /* The default DWARF 2 accessibility for members is public, the default
14957 accessibility for inheritance is private. */
14958
14959 if (die->tag != DW_TAG_inheritance)
14960 return DW_ACCESS_public;
14961 else
14962 return DW_ACCESS_private;
14963 }
14964 else
14965 {
14966 /* DWARF 3+ defines the default accessibility a different way. The same
14967 rules apply now for DW_TAG_inheritance as for the members and it only
14968 depends on the container kind. */
14969
14970 if (die->parent->tag == DW_TAG_class_type)
14971 return DW_ACCESS_private;
14972 else
14973 return DW_ACCESS_public;
14974 }
14975 }
14976
14977 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
14978 offset. If the attribute was not found return 0, otherwise return
14979 1. If it was found but could not properly be handled, set *OFFSET
14980 to 0. */
14981
14982 static int
14983 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
14984 LONGEST *offset)
14985 {
14986 struct attribute *attr;
14987
14988 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
14989 if (attr != NULL)
14990 {
14991 *offset = 0;
14992
14993 /* Note that we do not check for a section offset first here.
14994 This is because DW_AT_data_member_location is new in DWARF 4,
14995 so if we see it, we can assume that a constant form is really
14996 a constant and not a section offset. */
14997 if (attr_form_is_constant (attr))
14998 *offset = dwarf2_get_attr_constant_value (attr, 0);
14999 else if (attr_form_is_section_offset (attr))
15000 dwarf2_complex_location_expr_complaint ();
15001 else if (attr_form_is_block (attr))
15002 *offset = decode_locdesc (DW_BLOCK (attr), cu);
15003 else
15004 dwarf2_complex_location_expr_complaint ();
15005
15006 return 1;
15007 }
15008
15009 return 0;
15010 }
15011
15012 /* Add an aggregate field to the field list. */
15013
15014 static void
15015 dwarf2_add_field (struct field_info *fip, struct die_info *die,
15016 struct dwarf2_cu *cu)
15017 {
15018 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15019 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15020 struct nextfield *new_field;
15021 struct attribute *attr;
15022 struct field *fp;
15023 const char *fieldname = "";
15024
15025 if (die->tag == DW_TAG_inheritance)
15026 {
15027 fip->baseclasses.emplace_back ();
15028 new_field = &fip->baseclasses.back ();
15029 }
15030 else
15031 {
15032 fip->fields.emplace_back ();
15033 new_field = &fip->fields.back ();
15034 }
15035
15036 fip->nfields++;
15037
15038 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15039 if (attr)
15040 new_field->accessibility = DW_UNSND (attr);
15041 else
15042 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
15043 if (new_field->accessibility != DW_ACCESS_public)
15044 fip->non_public_fields = 1;
15045
15046 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15047 if (attr)
15048 new_field->virtuality = DW_UNSND (attr);
15049 else
15050 new_field->virtuality = DW_VIRTUALITY_none;
15051
15052 fp = &new_field->field;
15053
15054 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
15055 {
15056 LONGEST offset;
15057
15058 /* Data member other than a C++ static data member. */
15059
15060 /* Get type of field. */
15061 fp->type = die_type (die, cu);
15062
15063 SET_FIELD_BITPOS (*fp, 0);
15064
15065 /* Get bit size of field (zero if none). */
15066 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
15067 if (attr)
15068 {
15069 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
15070 }
15071 else
15072 {
15073 FIELD_BITSIZE (*fp) = 0;
15074 }
15075
15076 /* Get bit offset of field. */
15077 if (handle_data_member_location (die, cu, &offset))
15078 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15079 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
15080 if (attr)
15081 {
15082 if (gdbarch_bits_big_endian (gdbarch))
15083 {
15084 /* For big endian bits, the DW_AT_bit_offset gives the
15085 additional bit offset from the MSB of the containing
15086 anonymous object to the MSB of the field. We don't
15087 have to do anything special since we don't need to
15088 know the size of the anonymous object. */
15089 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
15090 }
15091 else
15092 {
15093 /* For little endian bits, compute the bit offset to the
15094 MSB of the anonymous object, subtract off the number of
15095 bits from the MSB of the field to the MSB of the
15096 object, and then subtract off the number of bits of
15097 the field itself. The result is the bit offset of
15098 the LSB of the field. */
15099 int anonymous_size;
15100 int bit_offset = DW_UNSND (attr);
15101
15102 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15103 if (attr)
15104 {
15105 /* The size of the anonymous object containing
15106 the bit field is explicit, so use the
15107 indicated size (in bytes). */
15108 anonymous_size = DW_UNSND (attr);
15109 }
15110 else
15111 {
15112 /* The size of the anonymous object containing
15113 the bit field must be inferred from the type
15114 attribute of the data member containing the
15115 bit field. */
15116 anonymous_size = TYPE_LENGTH (fp->type);
15117 }
15118 SET_FIELD_BITPOS (*fp,
15119 (FIELD_BITPOS (*fp)
15120 + anonymous_size * bits_per_byte
15121 - bit_offset - FIELD_BITSIZE (*fp)));
15122 }
15123 }
15124 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
15125 if (attr != NULL)
15126 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
15127 + dwarf2_get_attr_constant_value (attr, 0)));
15128
15129 /* Get name of field. */
15130 fieldname = dwarf2_name (die, cu);
15131 if (fieldname == NULL)
15132 fieldname = "";
15133
15134 /* The name is already allocated along with this objfile, so we don't
15135 need to duplicate it for the type. */
15136 fp->name = fieldname;
15137
15138 /* Change accessibility for artificial fields (e.g. virtual table
15139 pointer or virtual base class pointer) to private. */
15140 if (dwarf2_attr (die, DW_AT_artificial, cu))
15141 {
15142 FIELD_ARTIFICIAL (*fp) = 1;
15143 new_field->accessibility = DW_ACCESS_private;
15144 fip->non_public_fields = 1;
15145 }
15146 }
15147 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
15148 {
15149 /* C++ static member. */
15150
15151 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
15152 is a declaration, but all versions of G++ as of this writing
15153 (so through at least 3.2.1) incorrectly generate
15154 DW_TAG_variable tags. */
15155
15156 const char *physname;
15157
15158 /* Get name of field. */
15159 fieldname = dwarf2_name (die, cu);
15160 if (fieldname == NULL)
15161 return;
15162
15163 attr = dwarf2_attr (die, DW_AT_const_value, cu);
15164 if (attr
15165 /* Only create a symbol if this is an external value.
15166 new_symbol checks this and puts the value in the global symbol
15167 table, which we want. If it is not external, new_symbol
15168 will try to put the value in cu->list_in_scope which is wrong. */
15169 && dwarf2_flag_true_p (die, DW_AT_external, cu))
15170 {
15171 /* A static const member, not much different than an enum as far as
15172 we're concerned, except that we can support more types. */
15173 new_symbol (die, NULL, cu);
15174 }
15175
15176 /* Get physical name. */
15177 physname = dwarf2_physname (fieldname, die, cu);
15178
15179 /* The name is already allocated along with this objfile, so we don't
15180 need to duplicate it for the type. */
15181 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
15182 FIELD_TYPE (*fp) = die_type (die, cu);
15183 FIELD_NAME (*fp) = fieldname;
15184 }
15185 else if (die->tag == DW_TAG_inheritance)
15186 {
15187 LONGEST offset;
15188
15189 /* C++ base class field. */
15190 if (handle_data_member_location (die, cu, &offset))
15191 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15192 FIELD_BITSIZE (*fp) = 0;
15193 FIELD_TYPE (*fp) = die_type (die, cu);
15194 FIELD_NAME (*fp) = TYPE_NAME (fp->type);
15195 }
15196 else if (die->tag == DW_TAG_variant_part)
15197 {
15198 /* process_structure_scope will treat this DIE as a union. */
15199 process_structure_scope (die, cu);
15200
15201 /* The variant part is relative to the start of the enclosing
15202 structure. */
15203 SET_FIELD_BITPOS (*fp, 0);
15204 fp->type = get_die_type (die, cu);
15205 fp->artificial = 1;
15206 fp->name = "<<variant>>";
15207
15208 /* Normally a DW_TAG_variant_part won't have a size, but our
15209 representation requires one, so set it to the maximum of the
15210 child sizes. */
15211 if (TYPE_LENGTH (fp->type) == 0)
15212 {
15213 unsigned max = 0;
15214 for (int i = 0; i < TYPE_NFIELDS (fp->type); ++i)
15215 if (TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i)) > max)
15216 max = TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i));
15217 TYPE_LENGTH (fp->type) = max;
15218 }
15219 }
15220 else
15221 gdb_assert_not_reached ("missing case in dwarf2_add_field");
15222 }
15223
15224 /* Can the type given by DIE define another type? */
15225
15226 static bool
15227 type_can_define_types (const struct die_info *die)
15228 {
15229 switch (die->tag)
15230 {
15231 case DW_TAG_typedef:
15232 case DW_TAG_class_type:
15233 case DW_TAG_structure_type:
15234 case DW_TAG_union_type:
15235 case DW_TAG_enumeration_type:
15236 return true;
15237
15238 default:
15239 return false;
15240 }
15241 }
15242
15243 /* Add a type definition defined in the scope of the FIP's class. */
15244
15245 static void
15246 dwarf2_add_type_defn (struct field_info *fip, struct die_info *die,
15247 struct dwarf2_cu *cu)
15248 {
15249 struct decl_field fp;
15250 memset (&fp, 0, sizeof (fp));
15251
15252 gdb_assert (type_can_define_types (die));
15253
15254 /* Get name of field. NULL is okay here, meaning an anonymous type. */
15255 fp.name = dwarf2_name (die, cu);
15256 fp.type = read_type_die (die, cu);
15257
15258 /* Save accessibility. */
15259 enum dwarf_access_attribute accessibility;
15260 struct attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15261 if (attr != NULL)
15262 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15263 else
15264 accessibility = dwarf2_default_access_attribute (die, cu);
15265 switch (accessibility)
15266 {
15267 case DW_ACCESS_public:
15268 /* The assumed value if neither private nor protected. */
15269 break;
15270 case DW_ACCESS_private:
15271 fp.is_private = 1;
15272 break;
15273 case DW_ACCESS_protected:
15274 fp.is_protected = 1;
15275 break;
15276 default:
15277 complaint (_("Unhandled DW_AT_accessibility value (%x)"), accessibility);
15278 }
15279
15280 if (die->tag == DW_TAG_typedef)
15281 fip->typedef_field_list.push_back (fp);
15282 else
15283 fip->nested_types_list.push_back (fp);
15284 }
15285
15286 /* Create the vector of fields, and attach it to the type. */
15287
15288 static void
15289 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
15290 struct dwarf2_cu *cu)
15291 {
15292 int nfields = fip->nfields;
15293
15294 /* Record the field count, allocate space for the array of fields,
15295 and create blank accessibility bitfields if necessary. */
15296 TYPE_NFIELDS (type) = nfields;
15297 TYPE_FIELDS (type) = (struct field *)
15298 TYPE_ZALLOC (type, sizeof (struct field) * nfields);
15299
15300 if (fip->non_public_fields && cu->language != language_ada)
15301 {
15302 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15303
15304 TYPE_FIELD_PRIVATE_BITS (type) =
15305 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15306 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
15307
15308 TYPE_FIELD_PROTECTED_BITS (type) =
15309 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15310 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
15311
15312 TYPE_FIELD_IGNORE_BITS (type) =
15313 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15314 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
15315 }
15316
15317 /* If the type has baseclasses, allocate and clear a bit vector for
15318 TYPE_FIELD_VIRTUAL_BITS. */
15319 if (!fip->baseclasses.empty () && cu->language != language_ada)
15320 {
15321 int num_bytes = B_BYTES (fip->baseclasses.size ());
15322 unsigned char *pointer;
15323
15324 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15325 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
15326 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
15327 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->baseclasses.size ());
15328 TYPE_N_BASECLASSES (type) = fip->baseclasses.size ();
15329 }
15330
15331 if (TYPE_FLAG_DISCRIMINATED_UNION (type))
15332 {
15333 struct discriminant_info *di = alloc_discriminant_info (type, -1, -1);
15334
15335 for (int index = 0; index < nfields; ++index)
15336 {
15337 struct nextfield &field = fip->fields[index];
15338
15339 if (field.variant.is_discriminant)
15340 di->discriminant_index = index;
15341 else if (field.variant.default_branch)
15342 di->default_index = index;
15343 else
15344 di->discriminants[index] = field.variant.discriminant_value;
15345 }
15346 }
15347
15348 /* Copy the saved-up fields into the field vector. */
15349 for (int i = 0; i < nfields; ++i)
15350 {
15351 struct nextfield &field
15352 = ((i < fip->baseclasses.size ()) ? fip->baseclasses[i]
15353 : fip->fields[i - fip->baseclasses.size ()]);
15354
15355 TYPE_FIELD (type, i) = field.field;
15356 switch (field.accessibility)
15357 {
15358 case DW_ACCESS_private:
15359 if (cu->language != language_ada)
15360 SET_TYPE_FIELD_PRIVATE (type, i);
15361 break;
15362
15363 case DW_ACCESS_protected:
15364 if (cu->language != language_ada)
15365 SET_TYPE_FIELD_PROTECTED (type, i);
15366 break;
15367
15368 case DW_ACCESS_public:
15369 break;
15370
15371 default:
15372 /* Unknown accessibility. Complain and treat it as public. */
15373 {
15374 complaint (_("unsupported accessibility %d"),
15375 field.accessibility);
15376 }
15377 break;
15378 }
15379 if (i < fip->baseclasses.size ())
15380 {
15381 switch (field.virtuality)
15382 {
15383 case DW_VIRTUALITY_virtual:
15384 case DW_VIRTUALITY_pure_virtual:
15385 if (cu->language == language_ada)
15386 error (_("unexpected virtuality in component of Ada type"));
15387 SET_TYPE_FIELD_VIRTUAL (type, i);
15388 break;
15389 }
15390 }
15391 }
15392 }
15393
15394 /* Return true if this member function is a constructor, false
15395 otherwise. */
15396
15397 static int
15398 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
15399 {
15400 const char *fieldname;
15401 const char *type_name;
15402 int len;
15403
15404 if (die->parent == NULL)
15405 return 0;
15406
15407 if (die->parent->tag != DW_TAG_structure_type
15408 && die->parent->tag != DW_TAG_union_type
15409 && die->parent->tag != DW_TAG_class_type)
15410 return 0;
15411
15412 fieldname = dwarf2_name (die, cu);
15413 type_name = dwarf2_name (die->parent, cu);
15414 if (fieldname == NULL || type_name == NULL)
15415 return 0;
15416
15417 len = strlen (fieldname);
15418 return (strncmp (fieldname, type_name, len) == 0
15419 && (type_name[len] == '\0' || type_name[len] == '<'));
15420 }
15421
15422 /* Add a member function to the proper fieldlist. */
15423
15424 static void
15425 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
15426 struct type *type, struct dwarf2_cu *cu)
15427 {
15428 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15429 struct attribute *attr;
15430 int i;
15431 struct fnfieldlist *flp = nullptr;
15432 struct fn_field *fnp;
15433 const char *fieldname;
15434 struct type *this_type;
15435 enum dwarf_access_attribute accessibility;
15436
15437 if (cu->language == language_ada)
15438 error (_("unexpected member function in Ada type"));
15439
15440 /* Get name of member function. */
15441 fieldname = dwarf2_name (die, cu);
15442 if (fieldname == NULL)
15443 return;
15444
15445 /* Look up member function name in fieldlist. */
15446 for (i = 0; i < fip->fnfieldlists.size (); i++)
15447 {
15448 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
15449 {
15450 flp = &fip->fnfieldlists[i];
15451 break;
15452 }
15453 }
15454
15455 /* Create a new fnfieldlist if necessary. */
15456 if (flp == nullptr)
15457 {
15458 fip->fnfieldlists.emplace_back ();
15459 flp = &fip->fnfieldlists.back ();
15460 flp->name = fieldname;
15461 i = fip->fnfieldlists.size () - 1;
15462 }
15463
15464 /* Create a new member function field and add it to the vector of
15465 fnfieldlists. */
15466 flp->fnfields.emplace_back ();
15467 fnp = &flp->fnfields.back ();
15468
15469 /* Delay processing of the physname until later. */
15470 if (cu->language == language_cplus)
15471 add_to_method_list (type, i, flp->fnfields.size () - 1, fieldname,
15472 die, cu);
15473 else
15474 {
15475 const char *physname = dwarf2_physname (fieldname, die, cu);
15476 fnp->physname = physname ? physname : "";
15477 }
15478
15479 fnp->type = alloc_type (objfile);
15480 this_type = read_type_die (die, cu);
15481 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
15482 {
15483 int nparams = TYPE_NFIELDS (this_type);
15484
15485 /* TYPE is the domain of this method, and THIS_TYPE is the type
15486 of the method itself (TYPE_CODE_METHOD). */
15487 smash_to_method_type (fnp->type, type,
15488 TYPE_TARGET_TYPE (this_type),
15489 TYPE_FIELDS (this_type),
15490 TYPE_NFIELDS (this_type),
15491 TYPE_VARARGS (this_type));
15492
15493 /* Handle static member functions.
15494 Dwarf2 has no clean way to discern C++ static and non-static
15495 member functions. G++ helps GDB by marking the first
15496 parameter for non-static member functions (which is the this
15497 pointer) as artificial. We obtain this information from
15498 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
15499 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
15500 fnp->voffset = VOFFSET_STATIC;
15501 }
15502 else
15503 complaint (_("member function type missing for '%s'"),
15504 dwarf2_full_name (fieldname, die, cu));
15505
15506 /* Get fcontext from DW_AT_containing_type if present. */
15507 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15508 fnp->fcontext = die_containing_type (die, cu);
15509
15510 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
15511 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
15512
15513 /* Get accessibility. */
15514 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15515 if (attr)
15516 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15517 else
15518 accessibility = dwarf2_default_access_attribute (die, cu);
15519 switch (accessibility)
15520 {
15521 case DW_ACCESS_private:
15522 fnp->is_private = 1;
15523 break;
15524 case DW_ACCESS_protected:
15525 fnp->is_protected = 1;
15526 break;
15527 }
15528
15529 /* Check for artificial methods. */
15530 attr = dwarf2_attr (die, DW_AT_artificial, cu);
15531 if (attr && DW_UNSND (attr) != 0)
15532 fnp->is_artificial = 1;
15533
15534 fnp->is_constructor = dwarf2_is_constructor (die, cu);
15535
15536 /* Get index in virtual function table if it is a virtual member
15537 function. For older versions of GCC, this is an offset in the
15538 appropriate virtual table, as specified by DW_AT_containing_type.
15539 For everyone else, it is an expression to be evaluated relative
15540 to the object address. */
15541
15542 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
15543 if (attr)
15544 {
15545 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
15546 {
15547 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
15548 {
15549 /* Old-style GCC. */
15550 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
15551 }
15552 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
15553 || (DW_BLOCK (attr)->size > 1
15554 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
15555 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
15556 {
15557 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
15558 if ((fnp->voffset % cu->header.addr_size) != 0)
15559 dwarf2_complex_location_expr_complaint ();
15560 else
15561 fnp->voffset /= cu->header.addr_size;
15562 fnp->voffset += 2;
15563 }
15564 else
15565 dwarf2_complex_location_expr_complaint ();
15566
15567 if (!fnp->fcontext)
15568 {
15569 /* If there is no `this' field and no DW_AT_containing_type,
15570 we cannot actually find a base class context for the
15571 vtable! */
15572 if (TYPE_NFIELDS (this_type) == 0
15573 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
15574 {
15575 complaint (_("cannot determine context for virtual member "
15576 "function \"%s\" (offset %s)"),
15577 fieldname, sect_offset_str (die->sect_off));
15578 }
15579 else
15580 {
15581 fnp->fcontext
15582 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
15583 }
15584 }
15585 }
15586 else if (attr_form_is_section_offset (attr))
15587 {
15588 dwarf2_complex_location_expr_complaint ();
15589 }
15590 else
15591 {
15592 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
15593 fieldname);
15594 }
15595 }
15596 else
15597 {
15598 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15599 if (attr && DW_UNSND (attr))
15600 {
15601 /* GCC does this, as of 2008-08-25; PR debug/37237. */
15602 complaint (_("Member function \"%s\" (offset %s) is virtual "
15603 "but the vtable offset is not specified"),
15604 fieldname, sect_offset_str (die->sect_off));
15605 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15606 TYPE_CPLUS_DYNAMIC (type) = 1;
15607 }
15608 }
15609 }
15610
15611 /* Create the vector of member function fields, and attach it to the type. */
15612
15613 static void
15614 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
15615 struct dwarf2_cu *cu)
15616 {
15617 if (cu->language == language_ada)
15618 error (_("unexpected member functions in Ada type"));
15619
15620 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15621 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
15622 TYPE_ALLOC (type,
15623 sizeof (struct fn_fieldlist) * fip->fnfieldlists.size ());
15624
15625 for (int i = 0; i < fip->fnfieldlists.size (); i++)
15626 {
15627 struct fnfieldlist &nf = fip->fnfieldlists[i];
15628 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
15629
15630 TYPE_FN_FIELDLIST_NAME (type, i) = nf.name;
15631 TYPE_FN_FIELDLIST_LENGTH (type, i) = nf.fnfields.size ();
15632 fn_flp->fn_fields = (struct fn_field *)
15633 TYPE_ALLOC (type, sizeof (struct fn_field) * nf.fnfields.size ());
15634
15635 for (int k = 0; k < nf.fnfields.size (); ++k)
15636 fn_flp->fn_fields[k] = nf.fnfields[k];
15637 }
15638
15639 TYPE_NFN_FIELDS (type) = fip->fnfieldlists.size ();
15640 }
15641
15642 /* Returns non-zero if NAME is the name of a vtable member in CU's
15643 language, zero otherwise. */
15644 static int
15645 is_vtable_name (const char *name, struct dwarf2_cu *cu)
15646 {
15647 static const char vptr[] = "_vptr";
15648
15649 /* Look for the C++ form of the vtable. */
15650 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
15651 return 1;
15652
15653 return 0;
15654 }
15655
15656 /* GCC outputs unnamed structures that are really pointers to member
15657 functions, with the ABI-specified layout. If TYPE describes
15658 such a structure, smash it into a member function type.
15659
15660 GCC shouldn't do this; it should just output pointer to member DIEs.
15661 This is GCC PR debug/28767. */
15662
15663 static void
15664 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
15665 {
15666 struct type *pfn_type, *self_type, *new_type;
15667
15668 /* Check for a structure with no name and two children. */
15669 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
15670 return;
15671
15672 /* Check for __pfn and __delta members. */
15673 if (TYPE_FIELD_NAME (type, 0) == NULL
15674 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
15675 || TYPE_FIELD_NAME (type, 1) == NULL
15676 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
15677 return;
15678
15679 /* Find the type of the method. */
15680 pfn_type = TYPE_FIELD_TYPE (type, 0);
15681 if (pfn_type == NULL
15682 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
15683 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
15684 return;
15685
15686 /* Look for the "this" argument. */
15687 pfn_type = TYPE_TARGET_TYPE (pfn_type);
15688 if (TYPE_NFIELDS (pfn_type) == 0
15689 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
15690 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
15691 return;
15692
15693 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
15694 new_type = alloc_type (objfile);
15695 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
15696 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
15697 TYPE_VARARGS (pfn_type));
15698 smash_to_methodptr_type (type, new_type);
15699 }
15700
15701 /* If the DIE has a DW_AT_alignment attribute, return its value, doing
15702 appropriate error checking and issuing complaints if there is a
15703 problem. */
15704
15705 static ULONGEST
15706 get_alignment (struct dwarf2_cu *cu, struct die_info *die)
15707 {
15708 struct attribute *attr = dwarf2_attr (die, DW_AT_alignment, cu);
15709
15710 if (attr == nullptr)
15711 return 0;
15712
15713 if (!attr_form_is_constant (attr))
15714 {
15715 complaint (_("DW_AT_alignment must have constant form"
15716 " - DIE at %s [in module %s]"),
15717 sect_offset_str (die->sect_off),
15718 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15719 return 0;
15720 }
15721
15722 ULONGEST align;
15723 if (attr->form == DW_FORM_sdata)
15724 {
15725 LONGEST val = DW_SND (attr);
15726 if (val < 0)
15727 {
15728 complaint (_("DW_AT_alignment value must not be negative"
15729 " - DIE at %s [in module %s]"),
15730 sect_offset_str (die->sect_off),
15731 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15732 return 0;
15733 }
15734 align = val;
15735 }
15736 else
15737 align = DW_UNSND (attr);
15738
15739 if (align == 0)
15740 {
15741 complaint (_("DW_AT_alignment value must not be zero"
15742 " - DIE at %s [in module %s]"),
15743 sect_offset_str (die->sect_off),
15744 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15745 return 0;
15746 }
15747 if ((align & (align - 1)) != 0)
15748 {
15749 complaint (_("DW_AT_alignment value must be a power of 2"
15750 " - DIE at %s [in module %s]"),
15751 sect_offset_str (die->sect_off),
15752 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15753 return 0;
15754 }
15755
15756 return align;
15757 }
15758
15759 /* If the DIE has a DW_AT_alignment attribute, use its value to set
15760 the alignment for TYPE. */
15761
15762 static void
15763 maybe_set_alignment (struct dwarf2_cu *cu, struct die_info *die,
15764 struct type *type)
15765 {
15766 if (!set_type_align (type, get_alignment (cu, die)))
15767 complaint (_("DW_AT_alignment value too large"
15768 " - DIE at %s [in module %s]"),
15769 sect_offset_str (die->sect_off),
15770 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15771 }
15772
15773 /* Called when we find the DIE that starts a structure or union scope
15774 (definition) to create a type for the structure or union. Fill in
15775 the type's name and general properties; the members will not be
15776 processed until process_structure_scope. A symbol table entry for
15777 the type will also not be done until process_structure_scope (assuming
15778 the type has a name).
15779
15780 NOTE: we need to call these functions regardless of whether or not the
15781 DIE has a DW_AT_name attribute, since it might be an anonymous
15782 structure or union. This gets the type entered into our set of
15783 user defined types. */
15784
15785 static struct type *
15786 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
15787 {
15788 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15789 struct type *type;
15790 struct attribute *attr;
15791 const char *name;
15792
15793 /* If the definition of this type lives in .debug_types, read that type.
15794 Don't follow DW_AT_specification though, that will take us back up
15795 the chain and we want to go down. */
15796 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
15797 if (attr)
15798 {
15799 type = get_DW_AT_signature_type (die, attr, cu);
15800
15801 /* The type's CU may not be the same as CU.
15802 Ensure TYPE is recorded with CU in die_type_hash. */
15803 return set_die_type (die, type, cu);
15804 }
15805
15806 type = alloc_type (objfile);
15807 INIT_CPLUS_SPECIFIC (type);
15808
15809 name = dwarf2_name (die, cu);
15810 if (name != NULL)
15811 {
15812 if (cu->language == language_cplus
15813 || cu->language == language_d
15814 || cu->language == language_rust)
15815 {
15816 const char *full_name = dwarf2_full_name (name, die, cu);
15817
15818 /* dwarf2_full_name might have already finished building the DIE's
15819 type. If so, there is no need to continue. */
15820 if (get_die_type (die, cu) != NULL)
15821 return get_die_type (die, cu);
15822
15823 TYPE_NAME (type) = full_name;
15824 }
15825 else
15826 {
15827 /* The name is already allocated along with this objfile, so
15828 we don't need to duplicate it for the type. */
15829 TYPE_NAME (type) = name;
15830 }
15831 }
15832
15833 if (die->tag == DW_TAG_structure_type)
15834 {
15835 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15836 }
15837 else if (die->tag == DW_TAG_union_type)
15838 {
15839 TYPE_CODE (type) = TYPE_CODE_UNION;
15840 }
15841 else if (die->tag == DW_TAG_variant_part)
15842 {
15843 TYPE_CODE (type) = TYPE_CODE_UNION;
15844 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
15845 }
15846 else
15847 {
15848 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15849 }
15850
15851 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
15852 TYPE_DECLARED_CLASS (type) = 1;
15853
15854 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15855 if (attr)
15856 {
15857 if (attr_form_is_constant (attr))
15858 TYPE_LENGTH (type) = DW_UNSND (attr);
15859 else
15860 {
15861 /* For the moment, dynamic type sizes are not supported
15862 by GDB's struct type. The actual size is determined
15863 on-demand when resolving the type of a given object,
15864 so set the type's length to zero for now. Otherwise,
15865 we record an expression as the length, and that expression
15866 could lead to a very large value, which could eventually
15867 lead to us trying to allocate that much memory when creating
15868 a value of that type. */
15869 TYPE_LENGTH (type) = 0;
15870 }
15871 }
15872 else
15873 {
15874 TYPE_LENGTH (type) = 0;
15875 }
15876
15877 maybe_set_alignment (cu, die, type);
15878
15879 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
15880 {
15881 /* ICC<14 does not output the required DW_AT_declaration on
15882 incomplete types, but gives them a size of zero. */
15883 TYPE_STUB (type) = 1;
15884 }
15885 else
15886 TYPE_STUB_SUPPORTED (type) = 1;
15887
15888 if (die_is_declaration (die, cu))
15889 TYPE_STUB (type) = 1;
15890 else if (attr == NULL && die->child == NULL
15891 && producer_is_realview (cu->producer))
15892 /* RealView does not output the required DW_AT_declaration
15893 on incomplete types. */
15894 TYPE_STUB (type) = 1;
15895
15896 /* We need to add the type field to the die immediately so we don't
15897 infinitely recurse when dealing with pointers to the structure
15898 type within the structure itself. */
15899 set_die_type (die, type, cu);
15900
15901 /* set_die_type should be already done. */
15902 set_descriptive_type (type, die, cu);
15903
15904 return type;
15905 }
15906
15907 /* A helper for process_structure_scope that handles a single member
15908 DIE. */
15909
15910 static void
15911 handle_struct_member_die (struct die_info *child_die, struct type *type,
15912 struct field_info *fi,
15913 std::vector<struct symbol *> *template_args,
15914 struct dwarf2_cu *cu)
15915 {
15916 if (child_die->tag == DW_TAG_member
15917 || child_die->tag == DW_TAG_variable
15918 || child_die->tag == DW_TAG_variant_part)
15919 {
15920 /* NOTE: carlton/2002-11-05: A C++ static data member
15921 should be a DW_TAG_member that is a declaration, but
15922 all versions of G++ as of this writing (so through at
15923 least 3.2.1) incorrectly generate DW_TAG_variable
15924 tags for them instead. */
15925 dwarf2_add_field (fi, child_die, cu);
15926 }
15927 else if (child_die->tag == DW_TAG_subprogram)
15928 {
15929 /* Rust doesn't have member functions in the C++ sense.
15930 However, it does emit ordinary functions as children
15931 of a struct DIE. */
15932 if (cu->language == language_rust)
15933 read_func_scope (child_die, cu);
15934 else
15935 {
15936 /* C++ member function. */
15937 dwarf2_add_member_fn (fi, child_die, type, cu);
15938 }
15939 }
15940 else if (child_die->tag == DW_TAG_inheritance)
15941 {
15942 /* C++ base class field. */
15943 dwarf2_add_field (fi, child_die, cu);
15944 }
15945 else if (type_can_define_types (child_die))
15946 dwarf2_add_type_defn (fi, child_die, cu);
15947 else if (child_die->tag == DW_TAG_template_type_param
15948 || child_die->tag == DW_TAG_template_value_param)
15949 {
15950 struct symbol *arg = new_symbol (child_die, NULL, cu);
15951
15952 if (arg != NULL)
15953 template_args->push_back (arg);
15954 }
15955 else if (child_die->tag == DW_TAG_variant)
15956 {
15957 /* In a variant we want to get the discriminant and also add a
15958 field for our sole member child. */
15959 struct attribute *discr = dwarf2_attr (child_die, DW_AT_discr_value, cu);
15960
15961 for (struct die_info *variant_child = child_die->child;
15962 variant_child != NULL;
15963 variant_child = sibling_die (variant_child))
15964 {
15965 if (variant_child->tag == DW_TAG_member)
15966 {
15967 handle_struct_member_die (variant_child, type, fi,
15968 template_args, cu);
15969 /* Only handle the one. */
15970 break;
15971 }
15972 }
15973
15974 /* We don't handle this but we might as well report it if we see
15975 it. */
15976 if (dwarf2_attr (child_die, DW_AT_discr_list, cu) != nullptr)
15977 complaint (_("DW_AT_discr_list is not supported yet"
15978 " - DIE at %s [in module %s]"),
15979 sect_offset_str (child_die->sect_off),
15980 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15981
15982 /* The first field was just added, so we can stash the
15983 discriminant there. */
15984 gdb_assert (!fi->fields.empty ());
15985 if (discr == NULL)
15986 fi->fields.back ().variant.default_branch = true;
15987 else
15988 fi->fields.back ().variant.discriminant_value = DW_UNSND (discr);
15989 }
15990 }
15991
15992 /* Finish creating a structure or union type, including filling in
15993 its members and creating a symbol for it. */
15994
15995 static void
15996 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
15997 {
15998 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15999 struct die_info *child_die;
16000 struct type *type;
16001
16002 type = get_die_type (die, cu);
16003 if (type == NULL)
16004 type = read_structure_type (die, cu);
16005
16006 /* When reading a DW_TAG_variant_part, we need to notice when we
16007 read the discriminant member, so we can record it later in the
16008 discriminant_info. */
16009 bool is_variant_part = TYPE_FLAG_DISCRIMINATED_UNION (type);
16010 sect_offset discr_offset;
16011 bool has_template_parameters = false;
16012
16013 if (is_variant_part)
16014 {
16015 struct attribute *discr = dwarf2_attr (die, DW_AT_discr, cu);
16016 if (discr == NULL)
16017 {
16018 /* Maybe it's a univariant form, an extension we support.
16019 In this case arrange not to check the offset. */
16020 is_variant_part = false;
16021 }
16022 else if (attr_form_is_ref (discr))
16023 {
16024 struct dwarf2_cu *target_cu = cu;
16025 struct die_info *target_die = follow_die_ref (die, discr, &target_cu);
16026
16027 discr_offset = target_die->sect_off;
16028 }
16029 else
16030 {
16031 complaint (_("DW_AT_discr does not have DIE reference form"
16032 " - DIE at %s [in module %s]"),
16033 sect_offset_str (die->sect_off),
16034 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16035 is_variant_part = false;
16036 }
16037 }
16038
16039 if (die->child != NULL && ! die_is_declaration (die, cu))
16040 {
16041 struct field_info fi;
16042 std::vector<struct symbol *> template_args;
16043
16044 child_die = die->child;
16045
16046 while (child_die && child_die->tag)
16047 {
16048 handle_struct_member_die (child_die, type, &fi, &template_args, cu);
16049
16050 if (is_variant_part && discr_offset == child_die->sect_off)
16051 fi.fields.back ().variant.is_discriminant = true;
16052
16053 child_die = sibling_die (child_die);
16054 }
16055
16056 /* Attach template arguments to type. */
16057 if (!template_args.empty ())
16058 {
16059 has_template_parameters = true;
16060 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16061 TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size ();
16062 TYPE_TEMPLATE_ARGUMENTS (type)
16063 = XOBNEWVEC (&objfile->objfile_obstack,
16064 struct symbol *,
16065 TYPE_N_TEMPLATE_ARGUMENTS (type));
16066 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
16067 template_args.data (),
16068 (TYPE_N_TEMPLATE_ARGUMENTS (type)
16069 * sizeof (struct symbol *)));
16070 }
16071
16072 /* Attach fields and member functions to the type. */
16073 if (fi.nfields)
16074 dwarf2_attach_fields_to_type (&fi, type, cu);
16075 if (!fi.fnfieldlists.empty ())
16076 {
16077 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
16078
16079 /* Get the type which refers to the base class (possibly this
16080 class itself) which contains the vtable pointer for the current
16081 class from the DW_AT_containing_type attribute. This use of
16082 DW_AT_containing_type is a GNU extension. */
16083
16084 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
16085 {
16086 struct type *t = die_containing_type (die, cu);
16087
16088 set_type_vptr_basetype (type, t);
16089 if (type == t)
16090 {
16091 int i;
16092
16093 /* Our own class provides vtbl ptr. */
16094 for (i = TYPE_NFIELDS (t) - 1;
16095 i >= TYPE_N_BASECLASSES (t);
16096 --i)
16097 {
16098 const char *fieldname = TYPE_FIELD_NAME (t, i);
16099
16100 if (is_vtable_name (fieldname, cu))
16101 {
16102 set_type_vptr_fieldno (type, i);
16103 break;
16104 }
16105 }
16106
16107 /* Complain if virtual function table field not found. */
16108 if (i < TYPE_N_BASECLASSES (t))
16109 complaint (_("virtual function table pointer "
16110 "not found when defining class '%s'"),
16111 TYPE_NAME (type) ? TYPE_NAME (type) : "");
16112 }
16113 else
16114 {
16115 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
16116 }
16117 }
16118 else if (cu->producer
16119 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
16120 {
16121 /* The IBM XLC compiler does not provide direct indication
16122 of the containing type, but the vtable pointer is
16123 always named __vfp. */
16124
16125 int i;
16126
16127 for (i = TYPE_NFIELDS (type) - 1;
16128 i >= TYPE_N_BASECLASSES (type);
16129 --i)
16130 {
16131 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
16132 {
16133 set_type_vptr_fieldno (type, i);
16134 set_type_vptr_basetype (type, type);
16135 break;
16136 }
16137 }
16138 }
16139 }
16140
16141 /* Copy fi.typedef_field_list linked list elements content into the
16142 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
16143 if (!fi.typedef_field_list.empty ())
16144 {
16145 int count = fi.typedef_field_list.size ();
16146
16147 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16148 TYPE_TYPEDEF_FIELD_ARRAY (type)
16149 = ((struct decl_field *)
16150 TYPE_ALLOC (type,
16151 sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * count));
16152 TYPE_TYPEDEF_FIELD_COUNT (type) = count;
16153
16154 for (int i = 0; i < fi.typedef_field_list.size (); ++i)
16155 TYPE_TYPEDEF_FIELD (type, i) = fi.typedef_field_list[i];
16156 }
16157
16158 /* Copy fi.nested_types_list linked list elements content into the
16159 allocated array TYPE_NESTED_TYPES_ARRAY (type). */
16160 if (!fi.nested_types_list.empty () && cu->language != language_ada)
16161 {
16162 int count = fi.nested_types_list.size ();
16163
16164 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16165 TYPE_NESTED_TYPES_ARRAY (type)
16166 = ((struct decl_field *)
16167 TYPE_ALLOC (type, sizeof (struct decl_field) * count));
16168 TYPE_NESTED_TYPES_COUNT (type) = count;
16169
16170 for (int i = 0; i < fi.nested_types_list.size (); ++i)
16171 TYPE_NESTED_TYPES_FIELD (type, i) = fi.nested_types_list[i];
16172 }
16173 }
16174
16175 quirk_gcc_member_function_pointer (type, objfile);
16176 if (cu->language == language_rust && die->tag == DW_TAG_union_type)
16177 cu->rust_unions.push_back (type);
16178
16179 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
16180 snapshots) has been known to create a die giving a declaration
16181 for a class that has, as a child, a die giving a definition for a
16182 nested class. So we have to process our children even if the
16183 current die is a declaration. Normally, of course, a declaration
16184 won't have any children at all. */
16185
16186 child_die = die->child;
16187
16188 while (child_die != NULL && child_die->tag)
16189 {
16190 if (child_die->tag == DW_TAG_member
16191 || child_die->tag == DW_TAG_variable
16192 || child_die->tag == DW_TAG_inheritance
16193 || child_die->tag == DW_TAG_template_value_param
16194 || child_die->tag == DW_TAG_template_type_param)
16195 {
16196 /* Do nothing. */
16197 }
16198 else
16199 process_die (child_die, cu);
16200
16201 child_die = sibling_die (child_die);
16202 }
16203
16204 /* Do not consider external references. According to the DWARF standard,
16205 these DIEs are identified by the fact that they have no byte_size
16206 attribute, and a declaration attribute. */
16207 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
16208 || !die_is_declaration (die, cu))
16209 {
16210 struct symbol *sym = new_symbol (die, type, cu);
16211
16212 if (has_template_parameters)
16213 {
16214 /* Make sure that the symtab is set on the new symbols.
16215 Even though they don't appear in this symtab directly,
16216 other parts of gdb assume that symbols do, and this is
16217 reasonably true. */
16218 for (int i = 0; i < TYPE_N_TEMPLATE_ARGUMENTS (type); ++i)
16219 symbol_set_symtab (TYPE_TEMPLATE_ARGUMENT (type, i),
16220 symbol_symtab (sym));
16221 }
16222 }
16223 }
16224
16225 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
16226 update TYPE using some information only available in DIE's children. */
16227
16228 static void
16229 update_enumeration_type_from_children (struct die_info *die,
16230 struct type *type,
16231 struct dwarf2_cu *cu)
16232 {
16233 struct die_info *child_die;
16234 int unsigned_enum = 1;
16235 int flag_enum = 1;
16236 ULONGEST mask = 0;
16237
16238 auto_obstack obstack;
16239
16240 for (child_die = die->child;
16241 child_die != NULL && child_die->tag;
16242 child_die = sibling_die (child_die))
16243 {
16244 struct attribute *attr;
16245 LONGEST value;
16246 const gdb_byte *bytes;
16247 struct dwarf2_locexpr_baton *baton;
16248 const char *name;
16249
16250 if (child_die->tag != DW_TAG_enumerator)
16251 continue;
16252
16253 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
16254 if (attr == NULL)
16255 continue;
16256
16257 name = dwarf2_name (child_die, cu);
16258 if (name == NULL)
16259 name = "<anonymous enumerator>";
16260
16261 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
16262 &value, &bytes, &baton);
16263 if (value < 0)
16264 {
16265 unsigned_enum = 0;
16266 flag_enum = 0;
16267 }
16268 else if ((mask & value) != 0)
16269 flag_enum = 0;
16270 else
16271 mask |= value;
16272
16273 /* If we already know that the enum type is neither unsigned, nor
16274 a flag type, no need to look at the rest of the enumerates. */
16275 if (!unsigned_enum && !flag_enum)
16276 break;
16277 }
16278
16279 if (unsigned_enum)
16280 TYPE_UNSIGNED (type) = 1;
16281 if (flag_enum)
16282 TYPE_FLAG_ENUM (type) = 1;
16283 }
16284
16285 /* Given a DW_AT_enumeration_type die, set its type. We do not
16286 complete the type's fields yet, or create any symbols. */
16287
16288 static struct type *
16289 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
16290 {
16291 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16292 struct type *type;
16293 struct attribute *attr;
16294 const char *name;
16295
16296 /* If the definition of this type lives in .debug_types, read that type.
16297 Don't follow DW_AT_specification though, that will take us back up
16298 the chain and we want to go down. */
16299 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
16300 if (attr)
16301 {
16302 type = get_DW_AT_signature_type (die, attr, cu);
16303
16304 /* The type's CU may not be the same as CU.
16305 Ensure TYPE is recorded with CU in die_type_hash. */
16306 return set_die_type (die, type, cu);
16307 }
16308
16309 type = alloc_type (objfile);
16310
16311 TYPE_CODE (type) = TYPE_CODE_ENUM;
16312 name = dwarf2_full_name (NULL, die, cu);
16313 if (name != NULL)
16314 TYPE_NAME (type) = name;
16315
16316 attr = dwarf2_attr (die, DW_AT_type, cu);
16317 if (attr != NULL)
16318 {
16319 struct type *underlying_type = die_type (die, cu);
16320
16321 TYPE_TARGET_TYPE (type) = underlying_type;
16322 }
16323
16324 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16325 if (attr)
16326 {
16327 TYPE_LENGTH (type) = DW_UNSND (attr);
16328 }
16329 else
16330 {
16331 TYPE_LENGTH (type) = 0;
16332 }
16333
16334 maybe_set_alignment (cu, die, type);
16335
16336 /* The enumeration DIE can be incomplete. In Ada, any type can be
16337 declared as private in the package spec, and then defined only
16338 inside the package body. Such types are known as Taft Amendment
16339 Types. When another package uses such a type, an incomplete DIE
16340 may be generated by the compiler. */
16341 if (die_is_declaration (die, cu))
16342 TYPE_STUB (type) = 1;
16343
16344 /* Finish the creation of this type by using the enum's children.
16345 We must call this even when the underlying type has been provided
16346 so that we can determine if we're looking at a "flag" enum. */
16347 update_enumeration_type_from_children (die, type, cu);
16348
16349 /* If this type has an underlying type that is not a stub, then we
16350 may use its attributes. We always use the "unsigned" attribute
16351 in this situation, because ordinarily we guess whether the type
16352 is unsigned -- but the guess can be wrong and the underlying type
16353 can tell us the reality. However, we defer to a local size
16354 attribute if one exists, because this lets the compiler override
16355 the underlying type if needed. */
16356 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
16357 {
16358 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
16359 if (TYPE_LENGTH (type) == 0)
16360 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
16361 if (TYPE_RAW_ALIGN (type) == 0
16362 && TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)) != 0)
16363 set_type_align (type, TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)));
16364 }
16365
16366 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
16367
16368 return set_die_type (die, type, cu);
16369 }
16370
16371 /* Given a pointer to a die which begins an enumeration, process all
16372 the dies that define the members of the enumeration, and create the
16373 symbol for the enumeration type.
16374
16375 NOTE: We reverse the order of the element list. */
16376
16377 static void
16378 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
16379 {
16380 struct type *this_type;
16381
16382 this_type = get_die_type (die, cu);
16383 if (this_type == NULL)
16384 this_type = read_enumeration_type (die, cu);
16385
16386 if (die->child != NULL)
16387 {
16388 struct die_info *child_die;
16389 struct symbol *sym;
16390 struct field *fields = NULL;
16391 int num_fields = 0;
16392 const char *name;
16393
16394 child_die = die->child;
16395 while (child_die && child_die->tag)
16396 {
16397 if (child_die->tag != DW_TAG_enumerator)
16398 {
16399 process_die (child_die, cu);
16400 }
16401 else
16402 {
16403 name = dwarf2_name (child_die, cu);
16404 if (name)
16405 {
16406 sym = new_symbol (child_die, this_type, cu);
16407
16408 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
16409 {
16410 fields = (struct field *)
16411 xrealloc (fields,
16412 (num_fields + DW_FIELD_ALLOC_CHUNK)
16413 * sizeof (struct field));
16414 }
16415
16416 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
16417 FIELD_TYPE (fields[num_fields]) = NULL;
16418 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
16419 FIELD_BITSIZE (fields[num_fields]) = 0;
16420
16421 num_fields++;
16422 }
16423 }
16424
16425 child_die = sibling_die (child_die);
16426 }
16427
16428 if (num_fields)
16429 {
16430 TYPE_NFIELDS (this_type) = num_fields;
16431 TYPE_FIELDS (this_type) = (struct field *)
16432 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
16433 memcpy (TYPE_FIELDS (this_type), fields,
16434 sizeof (struct field) * num_fields);
16435 xfree (fields);
16436 }
16437 }
16438
16439 /* If we are reading an enum from a .debug_types unit, and the enum
16440 is a declaration, and the enum is not the signatured type in the
16441 unit, then we do not want to add a symbol for it. Adding a
16442 symbol would in some cases obscure the true definition of the
16443 enum, giving users an incomplete type when the definition is
16444 actually available. Note that we do not want to do this for all
16445 enums which are just declarations, because C++0x allows forward
16446 enum declarations. */
16447 if (cu->per_cu->is_debug_types
16448 && die_is_declaration (die, cu))
16449 {
16450 struct signatured_type *sig_type;
16451
16452 sig_type = (struct signatured_type *) cu->per_cu;
16453 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
16454 if (sig_type->type_offset_in_section != die->sect_off)
16455 return;
16456 }
16457
16458 new_symbol (die, this_type, cu);
16459 }
16460
16461 /* Extract all information from a DW_TAG_array_type DIE and put it in
16462 the DIE's type field. For now, this only handles one dimensional
16463 arrays. */
16464
16465 static struct type *
16466 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
16467 {
16468 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16469 struct die_info *child_die;
16470 struct type *type;
16471 struct type *element_type, *range_type, *index_type;
16472 struct attribute *attr;
16473 const char *name;
16474 struct dynamic_prop *byte_stride_prop = NULL;
16475 unsigned int bit_stride = 0;
16476
16477 element_type = die_type (die, cu);
16478
16479 /* The die_type call above may have already set the type for this DIE. */
16480 type = get_die_type (die, cu);
16481 if (type)
16482 return type;
16483
16484 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
16485 if (attr != NULL)
16486 {
16487 int stride_ok;
16488
16489 byte_stride_prop
16490 = (struct dynamic_prop *) alloca (sizeof (struct dynamic_prop));
16491 stride_ok = attr_to_dynamic_prop (attr, die, cu, byte_stride_prop);
16492 if (!stride_ok)
16493 {
16494 complaint (_("unable to read array DW_AT_byte_stride "
16495 " - DIE at %s [in module %s]"),
16496 sect_offset_str (die->sect_off),
16497 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16498 /* Ignore this attribute. We will likely not be able to print
16499 arrays of this type correctly, but there is little we can do
16500 to help if we cannot read the attribute's value. */
16501 byte_stride_prop = NULL;
16502 }
16503 }
16504
16505 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
16506 if (attr != NULL)
16507 bit_stride = DW_UNSND (attr);
16508
16509 /* Irix 6.2 native cc creates array types without children for
16510 arrays with unspecified length. */
16511 if (die->child == NULL)
16512 {
16513 index_type = objfile_type (objfile)->builtin_int;
16514 range_type = create_static_range_type (NULL, index_type, 0, -1);
16515 type = create_array_type_with_stride (NULL, element_type, range_type,
16516 byte_stride_prop, bit_stride);
16517 return set_die_type (die, type, cu);
16518 }
16519
16520 std::vector<struct type *> range_types;
16521 child_die = die->child;
16522 while (child_die && child_die->tag)
16523 {
16524 if (child_die->tag == DW_TAG_subrange_type)
16525 {
16526 struct type *child_type = read_type_die (child_die, cu);
16527
16528 if (child_type != NULL)
16529 {
16530 /* The range type was succesfully read. Save it for the
16531 array type creation. */
16532 range_types.push_back (child_type);
16533 }
16534 }
16535 child_die = sibling_die (child_die);
16536 }
16537
16538 /* Dwarf2 dimensions are output from left to right, create the
16539 necessary array types in backwards order. */
16540
16541 type = element_type;
16542
16543 if (read_array_order (die, cu) == DW_ORD_col_major)
16544 {
16545 int i = 0;
16546
16547 while (i < range_types.size ())
16548 type = create_array_type_with_stride (NULL, type, range_types[i++],
16549 byte_stride_prop, bit_stride);
16550 }
16551 else
16552 {
16553 size_t ndim = range_types.size ();
16554 while (ndim-- > 0)
16555 type = create_array_type_with_stride (NULL, type, range_types[ndim],
16556 byte_stride_prop, bit_stride);
16557 }
16558
16559 /* Understand Dwarf2 support for vector types (like they occur on
16560 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
16561 array type. This is not part of the Dwarf2/3 standard yet, but a
16562 custom vendor extension. The main difference between a regular
16563 array and the vector variant is that vectors are passed by value
16564 to functions. */
16565 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
16566 if (attr)
16567 make_vector_type (type);
16568
16569 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
16570 implementation may choose to implement triple vectors using this
16571 attribute. */
16572 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16573 if (attr)
16574 {
16575 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
16576 TYPE_LENGTH (type) = DW_UNSND (attr);
16577 else
16578 complaint (_("DW_AT_byte_size for array type smaller "
16579 "than the total size of elements"));
16580 }
16581
16582 name = dwarf2_name (die, cu);
16583 if (name)
16584 TYPE_NAME (type) = name;
16585
16586 maybe_set_alignment (cu, die, type);
16587
16588 /* Install the type in the die. */
16589 set_die_type (die, type, cu);
16590
16591 /* set_die_type should be already done. */
16592 set_descriptive_type (type, die, cu);
16593
16594 return type;
16595 }
16596
16597 static enum dwarf_array_dim_ordering
16598 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
16599 {
16600 struct attribute *attr;
16601
16602 attr = dwarf2_attr (die, DW_AT_ordering, cu);
16603
16604 if (attr)
16605 return (enum dwarf_array_dim_ordering) DW_SND (attr);
16606
16607 /* GNU F77 is a special case, as at 08/2004 array type info is the
16608 opposite order to the dwarf2 specification, but data is still
16609 laid out as per normal fortran.
16610
16611 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
16612 version checking. */
16613
16614 if (cu->language == language_fortran
16615 && cu->producer && strstr (cu->producer, "GNU F77"))
16616 {
16617 return DW_ORD_row_major;
16618 }
16619
16620 switch (cu->language_defn->la_array_ordering)
16621 {
16622 case array_column_major:
16623 return DW_ORD_col_major;
16624 case array_row_major:
16625 default:
16626 return DW_ORD_row_major;
16627 };
16628 }
16629
16630 /* Extract all information from a DW_TAG_set_type DIE and put it in
16631 the DIE's type field. */
16632
16633 static struct type *
16634 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
16635 {
16636 struct type *domain_type, *set_type;
16637 struct attribute *attr;
16638
16639 domain_type = die_type (die, cu);
16640
16641 /* The die_type call above may have already set the type for this DIE. */
16642 set_type = get_die_type (die, cu);
16643 if (set_type)
16644 return set_type;
16645
16646 set_type = create_set_type (NULL, domain_type);
16647
16648 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16649 if (attr)
16650 TYPE_LENGTH (set_type) = DW_UNSND (attr);
16651
16652 maybe_set_alignment (cu, die, set_type);
16653
16654 return set_die_type (die, set_type, cu);
16655 }
16656
16657 /* A helper for read_common_block that creates a locexpr baton.
16658 SYM is the symbol which we are marking as computed.
16659 COMMON_DIE is the DIE for the common block.
16660 COMMON_LOC is the location expression attribute for the common
16661 block itself.
16662 MEMBER_LOC is the location expression attribute for the particular
16663 member of the common block that we are processing.
16664 CU is the CU from which the above come. */
16665
16666 static void
16667 mark_common_block_symbol_computed (struct symbol *sym,
16668 struct die_info *common_die,
16669 struct attribute *common_loc,
16670 struct attribute *member_loc,
16671 struct dwarf2_cu *cu)
16672 {
16673 struct dwarf2_per_objfile *dwarf2_per_objfile
16674 = cu->per_cu->dwarf2_per_objfile;
16675 struct objfile *objfile = dwarf2_per_objfile->objfile;
16676 struct dwarf2_locexpr_baton *baton;
16677 gdb_byte *ptr;
16678 unsigned int cu_off;
16679 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
16680 LONGEST offset = 0;
16681
16682 gdb_assert (common_loc && member_loc);
16683 gdb_assert (attr_form_is_block (common_loc));
16684 gdb_assert (attr_form_is_block (member_loc)
16685 || attr_form_is_constant (member_loc));
16686
16687 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
16688 baton->per_cu = cu->per_cu;
16689 gdb_assert (baton->per_cu);
16690
16691 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
16692
16693 if (attr_form_is_constant (member_loc))
16694 {
16695 offset = dwarf2_get_attr_constant_value (member_loc, 0);
16696 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
16697 }
16698 else
16699 baton->size += DW_BLOCK (member_loc)->size;
16700
16701 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
16702 baton->data = ptr;
16703
16704 *ptr++ = DW_OP_call4;
16705 cu_off = common_die->sect_off - cu->per_cu->sect_off;
16706 store_unsigned_integer (ptr, 4, byte_order, cu_off);
16707 ptr += 4;
16708
16709 if (attr_form_is_constant (member_loc))
16710 {
16711 *ptr++ = DW_OP_addr;
16712 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
16713 ptr += cu->header.addr_size;
16714 }
16715 else
16716 {
16717 /* We have to copy the data here, because DW_OP_call4 will only
16718 use a DW_AT_location attribute. */
16719 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
16720 ptr += DW_BLOCK (member_loc)->size;
16721 }
16722
16723 *ptr++ = DW_OP_plus;
16724 gdb_assert (ptr - baton->data == baton->size);
16725
16726 SYMBOL_LOCATION_BATON (sym) = baton;
16727 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
16728 }
16729
16730 /* Create appropriate locally-scoped variables for all the
16731 DW_TAG_common_block entries. Also create a struct common_block
16732 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
16733 is used to sepate the common blocks name namespace from regular
16734 variable names. */
16735
16736 static void
16737 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
16738 {
16739 struct attribute *attr;
16740
16741 attr = dwarf2_attr (die, DW_AT_location, cu);
16742 if (attr)
16743 {
16744 /* Support the .debug_loc offsets. */
16745 if (attr_form_is_block (attr))
16746 {
16747 /* Ok. */
16748 }
16749 else if (attr_form_is_section_offset (attr))
16750 {
16751 dwarf2_complex_location_expr_complaint ();
16752 attr = NULL;
16753 }
16754 else
16755 {
16756 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16757 "common block member");
16758 attr = NULL;
16759 }
16760 }
16761
16762 if (die->child != NULL)
16763 {
16764 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16765 struct die_info *child_die;
16766 size_t n_entries = 0, size;
16767 struct common_block *common_block;
16768 struct symbol *sym;
16769
16770 for (child_die = die->child;
16771 child_die && child_die->tag;
16772 child_die = sibling_die (child_die))
16773 ++n_entries;
16774
16775 size = (sizeof (struct common_block)
16776 + (n_entries - 1) * sizeof (struct symbol *));
16777 common_block
16778 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
16779 size);
16780 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
16781 common_block->n_entries = 0;
16782
16783 for (child_die = die->child;
16784 child_die && child_die->tag;
16785 child_die = sibling_die (child_die))
16786 {
16787 /* Create the symbol in the DW_TAG_common_block block in the current
16788 symbol scope. */
16789 sym = new_symbol (child_die, NULL, cu);
16790 if (sym != NULL)
16791 {
16792 struct attribute *member_loc;
16793
16794 common_block->contents[common_block->n_entries++] = sym;
16795
16796 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
16797 cu);
16798 if (member_loc)
16799 {
16800 /* GDB has handled this for a long time, but it is
16801 not specified by DWARF. It seems to have been
16802 emitted by gfortran at least as recently as:
16803 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
16804 complaint (_("Variable in common block has "
16805 "DW_AT_data_member_location "
16806 "- DIE at %s [in module %s]"),
16807 sect_offset_str (child_die->sect_off),
16808 objfile_name (objfile));
16809
16810 if (attr_form_is_section_offset (member_loc))
16811 dwarf2_complex_location_expr_complaint ();
16812 else if (attr_form_is_constant (member_loc)
16813 || attr_form_is_block (member_loc))
16814 {
16815 if (attr)
16816 mark_common_block_symbol_computed (sym, die, attr,
16817 member_loc, cu);
16818 }
16819 else
16820 dwarf2_complex_location_expr_complaint ();
16821 }
16822 }
16823 }
16824
16825 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
16826 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
16827 }
16828 }
16829
16830 /* Create a type for a C++ namespace. */
16831
16832 static struct type *
16833 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
16834 {
16835 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16836 const char *previous_prefix, *name;
16837 int is_anonymous;
16838 struct type *type;
16839
16840 /* For extensions, reuse the type of the original namespace. */
16841 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
16842 {
16843 struct die_info *ext_die;
16844 struct dwarf2_cu *ext_cu = cu;
16845
16846 ext_die = dwarf2_extension (die, &ext_cu);
16847 type = read_type_die (ext_die, ext_cu);
16848
16849 /* EXT_CU may not be the same as CU.
16850 Ensure TYPE is recorded with CU in die_type_hash. */
16851 return set_die_type (die, type, cu);
16852 }
16853
16854 name = namespace_name (die, &is_anonymous, cu);
16855
16856 /* Now build the name of the current namespace. */
16857
16858 previous_prefix = determine_prefix (die, cu);
16859 if (previous_prefix[0] != '\0')
16860 name = typename_concat (&objfile->objfile_obstack,
16861 previous_prefix, name, 0, cu);
16862
16863 /* Create the type. */
16864 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
16865
16866 return set_die_type (die, type, cu);
16867 }
16868
16869 /* Read a namespace scope. */
16870
16871 static void
16872 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
16873 {
16874 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16875 int is_anonymous;
16876
16877 /* Add a symbol associated to this if we haven't seen the namespace
16878 before. Also, add a using directive if it's an anonymous
16879 namespace. */
16880
16881 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
16882 {
16883 struct type *type;
16884
16885 type = read_type_die (die, cu);
16886 new_symbol (die, type, cu);
16887
16888 namespace_name (die, &is_anonymous, cu);
16889 if (is_anonymous)
16890 {
16891 const char *previous_prefix = determine_prefix (die, cu);
16892
16893 std::vector<const char *> excludes;
16894 add_using_directive (using_directives (cu),
16895 previous_prefix, TYPE_NAME (type), NULL,
16896 NULL, excludes, 0, &objfile->objfile_obstack);
16897 }
16898 }
16899
16900 if (die->child != NULL)
16901 {
16902 struct die_info *child_die = die->child;
16903
16904 while (child_die && child_die->tag)
16905 {
16906 process_die (child_die, cu);
16907 child_die = sibling_die (child_die);
16908 }
16909 }
16910 }
16911
16912 /* Read a Fortran module as type. This DIE can be only a declaration used for
16913 imported module. Still we need that type as local Fortran "use ... only"
16914 declaration imports depend on the created type in determine_prefix. */
16915
16916 static struct type *
16917 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
16918 {
16919 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16920 const char *module_name;
16921 struct type *type;
16922
16923 module_name = dwarf2_name (die, cu);
16924 if (!module_name)
16925 complaint (_("DW_TAG_module has no name, offset %s"),
16926 sect_offset_str (die->sect_off));
16927 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
16928
16929 return set_die_type (die, type, cu);
16930 }
16931
16932 /* Read a Fortran module. */
16933
16934 static void
16935 read_module (struct die_info *die, struct dwarf2_cu *cu)
16936 {
16937 struct die_info *child_die = die->child;
16938 struct type *type;
16939
16940 type = read_type_die (die, cu);
16941 new_symbol (die, type, cu);
16942
16943 while (child_die && child_die->tag)
16944 {
16945 process_die (child_die, cu);
16946 child_die = sibling_die (child_die);
16947 }
16948 }
16949
16950 /* Return the name of the namespace represented by DIE. Set
16951 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
16952 namespace. */
16953
16954 static const char *
16955 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
16956 {
16957 struct die_info *current_die;
16958 const char *name = NULL;
16959
16960 /* Loop through the extensions until we find a name. */
16961
16962 for (current_die = die;
16963 current_die != NULL;
16964 current_die = dwarf2_extension (die, &cu))
16965 {
16966 /* We don't use dwarf2_name here so that we can detect the absence
16967 of a name -> anonymous namespace. */
16968 name = dwarf2_string_attr (die, DW_AT_name, cu);
16969
16970 if (name != NULL)
16971 break;
16972 }
16973
16974 /* Is it an anonymous namespace? */
16975
16976 *is_anonymous = (name == NULL);
16977 if (*is_anonymous)
16978 name = CP_ANONYMOUS_NAMESPACE_STR;
16979
16980 return name;
16981 }
16982
16983 /* Extract all information from a DW_TAG_pointer_type DIE and add to
16984 the user defined type vector. */
16985
16986 static struct type *
16987 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
16988 {
16989 struct gdbarch *gdbarch
16990 = get_objfile_arch (cu->per_cu->dwarf2_per_objfile->objfile);
16991 struct comp_unit_head *cu_header = &cu->header;
16992 struct type *type;
16993 struct attribute *attr_byte_size;
16994 struct attribute *attr_address_class;
16995 int byte_size, addr_class;
16996 struct type *target_type;
16997
16998 target_type = die_type (die, cu);
16999
17000 /* The die_type call above may have already set the type for this DIE. */
17001 type = get_die_type (die, cu);
17002 if (type)
17003 return type;
17004
17005 type = lookup_pointer_type (target_type);
17006
17007 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
17008 if (attr_byte_size)
17009 byte_size = DW_UNSND (attr_byte_size);
17010 else
17011 byte_size = cu_header->addr_size;
17012
17013 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
17014 if (attr_address_class)
17015 addr_class = DW_UNSND (attr_address_class);
17016 else
17017 addr_class = DW_ADDR_none;
17018
17019 ULONGEST alignment = get_alignment (cu, die);
17020
17021 /* If the pointer size, alignment, or address class is different
17022 than the default, create a type variant marked as such and set
17023 the length accordingly. */
17024 if (TYPE_LENGTH (type) != byte_size
17025 || (alignment != 0 && TYPE_RAW_ALIGN (type) != 0
17026 && alignment != TYPE_RAW_ALIGN (type))
17027 || addr_class != DW_ADDR_none)
17028 {
17029 if (gdbarch_address_class_type_flags_p (gdbarch))
17030 {
17031 int type_flags;
17032
17033 type_flags = gdbarch_address_class_type_flags
17034 (gdbarch, byte_size, addr_class);
17035 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
17036 == 0);
17037 type = make_type_with_address_space (type, type_flags);
17038 }
17039 else if (TYPE_LENGTH (type) != byte_size)
17040 {
17041 complaint (_("invalid pointer size %d"), byte_size);
17042 }
17043 else if (TYPE_RAW_ALIGN (type) != alignment)
17044 {
17045 complaint (_("Invalid DW_AT_alignment"
17046 " - DIE at %s [in module %s]"),
17047 sect_offset_str (die->sect_off),
17048 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17049 }
17050 else
17051 {
17052 /* Should we also complain about unhandled address classes? */
17053 }
17054 }
17055
17056 TYPE_LENGTH (type) = byte_size;
17057 set_type_align (type, alignment);
17058 return set_die_type (die, type, cu);
17059 }
17060
17061 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
17062 the user defined type vector. */
17063
17064 static struct type *
17065 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
17066 {
17067 struct type *type;
17068 struct type *to_type;
17069 struct type *domain;
17070
17071 to_type = die_type (die, cu);
17072 domain = die_containing_type (die, cu);
17073
17074 /* The calls above may have already set the type for this DIE. */
17075 type = get_die_type (die, cu);
17076 if (type)
17077 return type;
17078
17079 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
17080 type = lookup_methodptr_type (to_type);
17081 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
17082 {
17083 struct type *new_type
17084 = alloc_type (cu->per_cu->dwarf2_per_objfile->objfile);
17085
17086 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
17087 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
17088 TYPE_VARARGS (to_type));
17089 type = lookup_methodptr_type (new_type);
17090 }
17091 else
17092 type = lookup_memberptr_type (to_type, domain);
17093
17094 return set_die_type (die, type, cu);
17095 }
17096
17097 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
17098 the user defined type vector. */
17099
17100 static struct type *
17101 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
17102 enum type_code refcode)
17103 {
17104 struct comp_unit_head *cu_header = &cu->header;
17105 struct type *type, *target_type;
17106 struct attribute *attr;
17107
17108 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
17109
17110 target_type = die_type (die, cu);
17111
17112 /* The die_type call above may have already set the type for this DIE. */
17113 type = get_die_type (die, cu);
17114 if (type)
17115 return type;
17116
17117 type = lookup_reference_type (target_type, refcode);
17118 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17119 if (attr)
17120 {
17121 TYPE_LENGTH (type) = DW_UNSND (attr);
17122 }
17123 else
17124 {
17125 TYPE_LENGTH (type) = cu_header->addr_size;
17126 }
17127 maybe_set_alignment (cu, die, type);
17128 return set_die_type (die, type, cu);
17129 }
17130
17131 /* Add the given cv-qualifiers to the element type of the array. GCC
17132 outputs DWARF type qualifiers that apply to an array, not the
17133 element type. But GDB relies on the array element type to carry
17134 the cv-qualifiers. This mimics section 6.7.3 of the C99
17135 specification. */
17136
17137 static struct type *
17138 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
17139 struct type *base_type, int cnst, int voltl)
17140 {
17141 struct type *el_type, *inner_array;
17142
17143 base_type = copy_type (base_type);
17144 inner_array = base_type;
17145
17146 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
17147 {
17148 TYPE_TARGET_TYPE (inner_array) =
17149 copy_type (TYPE_TARGET_TYPE (inner_array));
17150 inner_array = TYPE_TARGET_TYPE (inner_array);
17151 }
17152
17153 el_type = TYPE_TARGET_TYPE (inner_array);
17154 cnst |= TYPE_CONST (el_type);
17155 voltl |= TYPE_VOLATILE (el_type);
17156 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
17157
17158 return set_die_type (die, base_type, cu);
17159 }
17160
17161 static struct type *
17162 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
17163 {
17164 struct type *base_type, *cv_type;
17165
17166 base_type = die_type (die, cu);
17167
17168 /* The die_type call above may have already set the type for this DIE. */
17169 cv_type = get_die_type (die, cu);
17170 if (cv_type)
17171 return cv_type;
17172
17173 /* In case the const qualifier is applied to an array type, the element type
17174 is so qualified, not the array type (section 6.7.3 of C99). */
17175 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17176 return add_array_cv_type (die, cu, base_type, 1, 0);
17177
17178 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
17179 return set_die_type (die, cv_type, cu);
17180 }
17181
17182 static struct type *
17183 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
17184 {
17185 struct type *base_type, *cv_type;
17186
17187 base_type = die_type (die, cu);
17188
17189 /* The die_type call above may have already set the type for this DIE. */
17190 cv_type = get_die_type (die, cu);
17191 if (cv_type)
17192 return cv_type;
17193
17194 /* In case the volatile qualifier is applied to an array type, the
17195 element type is so qualified, not the array type (section 6.7.3
17196 of C99). */
17197 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17198 return add_array_cv_type (die, cu, base_type, 0, 1);
17199
17200 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
17201 return set_die_type (die, cv_type, cu);
17202 }
17203
17204 /* Handle DW_TAG_restrict_type. */
17205
17206 static struct type *
17207 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
17208 {
17209 struct type *base_type, *cv_type;
17210
17211 base_type = die_type (die, cu);
17212
17213 /* The die_type call above may have already set the type for this DIE. */
17214 cv_type = get_die_type (die, cu);
17215 if (cv_type)
17216 return cv_type;
17217
17218 cv_type = make_restrict_type (base_type);
17219 return set_die_type (die, cv_type, cu);
17220 }
17221
17222 /* Handle DW_TAG_atomic_type. */
17223
17224 static struct type *
17225 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
17226 {
17227 struct type *base_type, *cv_type;
17228
17229 base_type = die_type (die, cu);
17230
17231 /* The die_type call above may have already set the type for this DIE. */
17232 cv_type = get_die_type (die, cu);
17233 if (cv_type)
17234 return cv_type;
17235
17236 cv_type = make_atomic_type (base_type);
17237 return set_die_type (die, cv_type, cu);
17238 }
17239
17240 /* Extract all information from a DW_TAG_string_type DIE and add to
17241 the user defined type vector. It isn't really a user defined type,
17242 but it behaves like one, with other DIE's using an AT_user_def_type
17243 attribute to reference it. */
17244
17245 static struct type *
17246 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
17247 {
17248 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17249 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17250 struct type *type, *range_type, *index_type, *char_type;
17251 struct attribute *attr;
17252 unsigned int length;
17253
17254 attr = dwarf2_attr (die, DW_AT_string_length, cu);
17255 if (attr)
17256 {
17257 length = DW_UNSND (attr);
17258 }
17259 else
17260 {
17261 /* Check for the DW_AT_byte_size attribute. */
17262 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17263 if (attr)
17264 {
17265 length = DW_UNSND (attr);
17266 }
17267 else
17268 {
17269 length = 1;
17270 }
17271 }
17272
17273 index_type = objfile_type (objfile)->builtin_int;
17274 range_type = create_static_range_type (NULL, index_type, 1, length);
17275 char_type = language_string_char_type (cu->language_defn, gdbarch);
17276 type = create_string_type (NULL, char_type, range_type);
17277
17278 return set_die_type (die, type, cu);
17279 }
17280
17281 /* Assuming that DIE corresponds to a function, returns nonzero
17282 if the function is prototyped. */
17283
17284 static int
17285 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
17286 {
17287 struct attribute *attr;
17288
17289 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
17290 if (attr && (DW_UNSND (attr) != 0))
17291 return 1;
17292
17293 /* The DWARF standard implies that the DW_AT_prototyped attribute
17294 is only meaninful for C, but the concept also extends to other
17295 languages that allow unprototyped functions (Eg: Objective C).
17296 For all other languages, assume that functions are always
17297 prototyped. */
17298 if (cu->language != language_c
17299 && cu->language != language_objc
17300 && cu->language != language_opencl)
17301 return 1;
17302
17303 /* RealView does not emit DW_AT_prototyped. We can not distinguish
17304 prototyped and unprototyped functions; default to prototyped,
17305 since that is more common in modern code (and RealView warns
17306 about unprototyped functions). */
17307 if (producer_is_realview (cu->producer))
17308 return 1;
17309
17310 return 0;
17311 }
17312
17313 /* Handle DIES due to C code like:
17314
17315 struct foo
17316 {
17317 int (*funcp)(int a, long l);
17318 int b;
17319 };
17320
17321 ('funcp' generates a DW_TAG_subroutine_type DIE). */
17322
17323 static struct type *
17324 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
17325 {
17326 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17327 struct type *type; /* Type that this function returns. */
17328 struct type *ftype; /* Function that returns above type. */
17329 struct attribute *attr;
17330
17331 type = die_type (die, cu);
17332
17333 /* The die_type call above may have already set the type for this DIE. */
17334 ftype = get_die_type (die, cu);
17335 if (ftype)
17336 return ftype;
17337
17338 ftype = lookup_function_type (type);
17339
17340 if (prototyped_function_p (die, cu))
17341 TYPE_PROTOTYPED (ftype) = 1;
17342
17343 /* Store the calling convention in the type if it's available in
17344 the subroutine die. Otherwise set the calling convention to
17345 the default value DW_CC_normal. */
17346 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
17347 if (attr)
17348 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
17349 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
17350 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
17351 else
17352 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
17353
17354 /* Record whether the function returns normally to its caller or not
17355 if the DWARF producer set that information. */
17356 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
17357 if (attr && (DW_UNSND (attr) != 0))
17358 TYPE_NO_RETURN (ftype) = 1;
17359
17360 /* We need to add the subroutine type to the die immediately so
17361 we don't infinitely recurse when dealing with parameters
17362 declared as the same subroutine type. */
17363 set_die_type (die, ftype, cu);
17364
17365 if (die->child != NULL)
17366 {
17367 struct type *void_type = objfile_type (objfile)->builtin_void;
17368 struct die_info *child_die;
17369 int nparams, iparams;
17370
17371 /* Count the number of parameters.
17372 FIXME: GDB currently ignores vararg functions, but knows about
17373 vararg member functions. */
17374 nparams = 0;
17375 child_die = die->child;
17376 while (child_die && child_die->tag)
17377 {
17378 if (child_die->tag == DW_TAG_formal_parameter)
17379 nparams++;
17380 else if (child_die->tag == DW_TAG_unspecified_parameters)
17381 TYPE_VARARGS (ftype) = 1;
17382 child_die = sibling_die (child_die);
17383 }
17384
17385 /* Allocate storage for parameters and fill them in. */
17386 TYPE_NFIELDS (ftype) = nparams;
17387 TYPE_FIELDS (ftype) = (struct field *)
17388 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
17389
17390 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
17391 even if we error out during the parameters reading below. */
17392 for (iparams = 0; iparams < nparams; iparams++)
17393 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
17394
17395 iparams = 0;
17396 child_die = die->child;
17397 while (child_die && child_die->tag)
17398 {
17399 if (child_die->tag == DW_TAG_formal_parameter)
17400 {
17401 struct type *arg_type;
17402
17403 /* DWARF version 2 has no clean way to discern C++
17404 static and non-static member functions. G++ helps
17405 GDB by marking the first parameter for non-static
17406 member functions (which is the this pointer) as
17407 artificial. We pass this information to
17408 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
17409
17410 DWARF version 3 added DW_AT_object_pointer, which GCC
17411 4.5 does not yet generate. */
17412 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
17413 if (attr)
17414 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
17415 else
17416 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
17417 arg_type = die_type (child_die, cu);
17418
17419 /* RealView does not mark THIS as const, which the testsuite
17420 expects. GCC marks THIS as const in method definitions,
17421 but not in the class specifications (GCC PR 43053). */
17422 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
17423 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
17424 {
17425 int is_this = 0;
17426 struct dwarf2_cu *arg_cu = cu;
17427 const char *name = dwarf2_name (child_die, cu);
17428
17429 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
17430 if (attr)
17431 {
17432 /* If the compiler emits this, use it. */
17433 if (follow_die_ref (die, attr, &arg_cu) == child_die)
17434 is_this = 1;
17435 }
17436 else if (name && strcmp (name, "this") == 0)
17437 /* Function definitions will have the argument names. */
17438 is_this = 1;
17439 else if (name == NULL && iparams == 0)
17440 /* Declarations may not have the names, so like
17441 elsewhere in GDB, assume an artificial first
17442 argument is "this". */
17443 is_this = 1;
17444
17445 if (is_this)
17446 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
17447 arg_type, 0);
17448 }
17449
17450 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
17451 iparams++;
17452 }
17453 child_die = sibling_die (child_die);
17454 }
17455 }
17456
17457 return ftype;
17458 }
17459
17460 static struct type *
17461 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
17462 {
17463 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17464 const char *name = NULL;
17465 struct type *this_type, *target_type;
17466
17467 name = dwarf2_full_name (NULL, die, cu);
17468 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
17469 TYPE_TARGET_STUB (this_type) = 1;
17470 set_die_type (die, this_type, cu);
17471 target_type = die_type (die, cu);
17472 if (target_type != this_type)
17473 TYPE_TARGET_TYPE (this_type) = target_type;
17474 else
17475 {
17476 /* Self-referential typedefs are, it seems, not allowed by the DWARF
17477 spec and cause infinite loops in GDB. */
17478 complaint (_("Self-referential DW_TAG_typedef "
17479 "- DIE at %s [in module %s]"),
17480 sect_offset_str (die->sect_off), objfile_name (objfile));
17481 TYPE_TARGET_TYPE (this_type) = NULL;
17482 }
17483 return this_type;
17484 }
17485
17486 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
17487 (which may be different from NAME) to the architecture back-end to allow
17488 it to guess the correct format if necessary. */
17489
17490 static struct type *
17491 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
17492 const char *name_hint)
17493 {
17494 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17495 const struct floatformat **format;
17496 struct type *type;
17497
17498 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
17499 if (format)
17500 type = init_float_type (objfile, bits, name, format);
17501 else
17502 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17503
17504 return type;
17505 }
17506
17507 /* Allocate an integer type of size BITS and name NAME. */
17508
17509 static struct type *
17510 dwarf2_init_integer_type (struct dwarf2_cu *cu, struct objfile *objfile,
17511 int bits, int unsigned_p, const char *name)
17512 {
17513 struct type *type;
17514
17515 /* Versions of Intel's C Compiler generate an integer type called "void"
17516 instead of using DW_TAG_unspecified_type. This has been seen on
17517 at least versions 14, 17, and 18. */
17518 if (bits == 0 && producer_is_icc (cu) && name != nullptr
17519 && strcmp (name, "void") == 0)
17520 type = objfile_type (objfile)->builtin_void;
17521 else
17522 type = init_integer_type (objfile, bits, unsigned_p, name);
17523
17524 return type;
17525 }
17526
17527 /* Find a representation of a given base type and install
17528 it in the TYPE field of the die. */
17529
17530 static struct type *
17531 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
17532 {
17533 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17534 struct type *type;
17535 struct attribute *attr;
17536 int encoding = 0, bits = 0;
17537 const char *name;
17538
17539 attr = dwarf2_attr (die, DW_AT_encoding, cu);
17540 if (attr)
17541 {
17542 encoding = DW_UNSND (attr);
17543 }
17544 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17545 if (attr)
17546 {
17547 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
17548 }
17549 name = dwarf2_name (die, cu);
17550 if (!name)
17551 {
17552 complaint (_("DW_AT_name missing from DW_TAG_base_type"));
17553 }
17554
17555 switch (encoding)
17556 {
17557 case DW_ATE_address:
17558 /* Turn DW_ATE_address into a void * pointer. */
17559 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
17560 type = init_pointer_type (objfile, bits, name, type);
17561 break;
17562 case DW_ATE_boolean:
17563 type = init_boolean_type (objfile, bits, 1, name);
17564 break;
17565 case DW_ATE_complex_float:
17566 type = dwarf2_init_float_type (objfile, bits / 2, NULL, name);
17567 type = init_complex_type (objfile, name, type);
17568 break;
17569 case DW_ATE_decimal_float:
17570 type = init_decfloat_type (objfile, bits, name);
17571 break;
17572 case DW_ATE_float:
17573 type = dwarf2_init_float_type (objfile, bits, name, name);
17574 break;
17575 case DW_ATE_signed:
17576 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17577 break;
17578 case DW_ATE_unsigned:
17579 if (cu->language == language_fortran
17580 && name
17581 && startswith (name, "character("))
17582 type = init_character_type (objfile, bits, 1, name);
17583 else
17584 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17585 break;
17586 case DW_ATE_signed_char:
17587 if (cu->language == language_ada || cu->language == language_m2
17588 || cu->language == language_pascal
17589 || cu->language == language_fortran)
17590 type = init_character_type (objfile, bits, 0, name);
17591 else
17592 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17593 break;
17594 case DW_ATE_unsigned_char:
17595 if (cu->language == language_ada || cu->language == language_m2
17596 || cu->language == language_pascal
17597 || cu->language == language_fortran
17598 || cu->language == language_rust)
17599 type = init_character_type (objfile, bits, 1, name);
17600 else
17601 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17602 break;
17603 case DW_ATE_UTF:
17604 {
17605 gdbarch *arch = get_objfile_arch (objfile);
17606
17607 if (bits == 16)
17608 type = builtin_type (arch)->builtin_char16;
17609 else if (bits == 32)
17610 type = builtin_type (arch)->builtin_char32;
17611 else
17612 {
17613 complaint (_("unsupported DW_ATE_UTF bit size: '%d'"),
17614 bits);
17615 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17616 }
17617 return set_die_type (die, type, cu);
17618 }
17619 break;
17620
17621 default:
17622 complaint (_("unsupported DW_AT_encoding: '%s'"),
17623 dwarf_type_encoding_name (encoding));
17624 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17625 break;
17626 }
17627
17628 if (name && strcmp (name, "char") == 0)
17629 TYPE_NOSIGN (type) = 1;
17630
17631 maybe_set_alignment (cu, die, type);
17632
17633 return set_die_type (die, type, cu);
17634 }
17635
17636 /* Parse dwarf attribute if it's a block, reference or constant and put the
17637 resulting value of the attribute into struct bound_prop.
17638 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
17639
17640 static int
17641 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
17642 struct dwarf2_cu *cu, struct dynamic_prop *prop)
17643 {
17644 struct dwarf2_property_baton *baton;
17645 struct obstack *obstack
17646 = &cu->per_cu->dwarf2_per_objfile->objfile->objfile_obstack;
17647
17648 if (attr == NULL || prop == NULL)
17649 return 0;
17650
17651 if (attr_form_is_block (attr))
17652 {
17653 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17654 baton->referenced_type = NULL;
17655 baton->locexpr.per_cu = cu->per_cu;
17656 baton->locexpr.size = DW_BLOCK (attr)->size;
17657 baton->locexpr.data = DW_BLOCK (attr)->data;
17658 prop->data.baton = baton;
17659 prop->kind = PROP_LOCEXPR;
17660 gdb_assert (prop->data.baton != NULL);
17661 }
17662 else if (attr_form_is_ref (attr))
17663 {
17664 struct dwarf2_cu *target_cu = cu;
17665 struct die_info *target_die;
17666 struct attribute *target_attr;
17667
17668 target_die = follow_die_ref (die, attr, &target_cu);
17669 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
17670 if (target_attr == NULL)
17671 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
17672 target_cu);
17673 if (target_attr == NULL)
17674 return 0;
17675
17676 switch (target_attr->name)
17677 {
17678 case DW_AT_location:
17679 if (attr_form_is_section_offset (target_attr))
17680 {
17681 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17682 baton->referenced_type = die_type (target_die, target_cu);
17683 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
17684 prop->data.baton = baton;
17685 prop->kind = PROP_LOCLIST;
17686 gdb_assert (prop->data.baton != NULL);
17687 }
17688 else if (attr_form_is_block (target_attr))
17689 {
17690 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17691 baton->referenced_type = die_type (target_die, target_cu);
17692 baton->locexpr.per_cu = cu->per_cu;
17693 baton->locexpr.size = DW_BLOCK (target_attr)->size;
17694 baton->locexpr.data = DW_BLOCK (target_attr)->data;
17695 prop->data.baton = baton;
17696 prop->kind = PROP_LOCEXPR;
17697 gdb_assert (prop->data.baton != NULL);
17698 }
17699 else
17700 {
17701 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
17702 "dynamic property");
17703 return 0;
17704 }
17705 break;
17706 case DW_AT_data_member_location:
17707 {
17708 LONGEST offset;
17709
17710 if (!handle_data_member_location (target_die, target_cu,
17711 &offset))
17712 return 0;
17713
17714 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17715 baton->referenced_type = read_type_die (target_die->parent,
17716 target_cu);
17717 baton->offset_info.offset = offset;
17718 baton->offset_info.type = die_type (target_die, target_cu);
17719 prop->data.baton = baton;
17720 prop->kind = PROP_ADDR_OFFSET;
17721 break;
17722 }
17723 }
17724 }
17725 else if (attr_form_is_constant (attr))
17726 {
17727 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
17728 prop->kind = PROP_CONST;
17729 }
17730 else
17731 {
17732 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
17733 dwarf2_name (die, cu));
17734 return 0;
17735 }
17736
17737 return 1;
17738 }
17739
17740 /* Read the given DW_AT_subrange DIE. */
17741
17742 static struct type *
17743 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
17744 {
17745 struct type *base_type, *orig_base_type;
17746 struct type *range_type;
17747 struct attribute *attr;
17748 struct dynamic_prop low, high;
17749 int low_default_is_valid;
17750 int high_bound_is_count = 0;
17751 const char *name;
17752 ULONGEST negative_mask;
17753
17754 orig_base_type = die_type (die, cu);
17755 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
17756 whereas the real type might be. So, we use ORIG_BASE_TYPE when
17757 creating the range type, but we use the result of check_typedef
17758 when examining properties of the type. */
17759 base_type = check_typedef (orig_base_type);
17760
17761 /* The die_type call above may have already set the type for this DIE. */
17762 range_type = get_die_type (die, cu);
17763 if (range_type)
17764 return range_type;
17765
17766 low.kind = PROP_CONST;
17767 high.kind = PROP_CONST;
17768 high.data.const_val = 0;
17769
17770 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
17771 omitting DW_AT_lower_bound. */
17772 switch (cu->language)
17773 {
17774 case language_c:
17775 case language_cplus:
17776 low.data.const_val = 0;
17777 low_default_is_valid = 1;
17778 break;
17779 case language_fortran:
17780 low.data.const_val = 1;
17781 low_default_is_valid = 1;
17782 break;
17783 case language_d:
17784 case language_objc:
17785 case language_rust:
17786 low.data.const_val = 0;
17787 low_default_is_valid = (cu->header.version >= 4);
17788 break;
17789 case language_ada:
17790 case language_m2:
17791 case language_pascal:
17792 low.data.const_val = 1;
17793 low_default_is_valid = (cu->header.version >= 4);
17794 break;
17795 default:
17796 low.data.const_val = 0;
17797 low_default_is_valid = 0;
17798 break;
17799 }
17800
17801 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
17802 if (attr)
17803 attr_to_dynamic_prop (attr, die, cu, &low);
17804 else if (!low_default_is_valid)
17805 complaint (_("Missing DW_AT_lower_bound "
17806 "- DIE at %s [in module %s]"),
17807 sect_offset_str (die->sect_off),
17808 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17809
17810 struct attribute *attr_ub, *attr_count;
17811 attr = attr_ub = dwarf2_attr (die, DW_AT_upper_bound, cu);
17812 if (!attr_to_dynamic_prop (attr, die, cu, &high))
17813 {
17814 attr = attr_count = dwarf2_attr (die, DW_AT_count, cu);
17815 if (attr_to_dynamic_prop (attr, die, cu, &high))
17816 {
17817 /* If bounds are constant do the final calculation here. */
17818 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
17819 high.data.const_val = low.data.const_val + high.data.const_val - 1;
17820 else
17821 high_bound_is_count = 1;
17822 }
17823 else
17824 {
17825 if (attr_ub != NULL)
17826 complaint (_("Unresolved DW_AT_upper_bound "
17827 "- DIE at %s [in module %s]"),
17828 sect_offset_str (die->sect_off),
17829 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17830 if (attr_count != NULL)
17831 complaint (_("Unresolved DW_AT_count "
17832 "- DIE at %s [in module %s]"),
17833 sect_offset_str (die->sect_off),
17834 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17835 }
17836
17837 }
17838
17839 /* Dwarf-2 specifications explicitly allows to create subrange types
17840 without specifying a base type.
17841 In that case, the base type must be set to the type of
17842 the lower bound, upper bound or count, in that order, if any of these
17843 three attributes references an object that has a type.
17844 If no base type is found, the Dwarf-2 specifications say that
17845 a signed integer type of size equal to the size of an address should
17846 be used.
17847 For the following C code: `extern char gdb_int [];'
17848 GCC produces an empty range DIE.
17849 FIXME: muller/2010-05-28: Possible references to object for low bound,
17850 high bound or count are not yet handled by this code. */
17851 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
17852 {
17853 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17854 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17855 int addr_size = gdbarch_addr_bit (gdbarch) /8;
17856 struct type *int_type = objfile_type (objfile)->builtin_int;
17857
17858 /* Test "int", "long int", and "long long int" objfile types,
17859 and select the first one having a size above or equal to the
17860 architecture address size. */
17861 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17862 base_type = int_type;
17863 else
17864 {
17865 int_type = objfile_type (objfile)->builtin_long;
17866 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17867 base_type = int_type;
17868 else
17869 {
17870 int_type = objfile_type (objfile)->builtin_long_long;
17871 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17872 base_type = int_type;
17873 }
17874 }
17875 }
17876
17877 /* Normally, the DWARF producers are expected to use a signed
17878 constant form (Eg. DW_FORM_sdata) to express negative bounds.
17879 But this is unfortunately not always the case, as witnessed
17880 with GCC, for instance, where the ambiguous DW_FORM_dataN form
17881 is used instead. To work around that ambiguity, we treat
17882 the bounds as signed, and thus sign-extend their values, when
17883 the base type is signed. */
17884 negative_mask =
17885 -((ULONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
17886 if (low.kind == PROP_CONST
17887 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
17888 low.data.const_val |= negative_mask;
17889 if (high.kind == PROP_CONST
17890 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
17891 high.data.const_val |= negative_mask;
17892
17893 range_type = create_range_type (NULL, orig_base_type, &low, &high);
17894
17895 if (high_bound_is_count)
17896 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
17897
17898 /* Ada expects an empty array on no boundary attributes. */
17899 if (attr == NULL && cu->language != language_ada)
17900 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
17901
17902 name = dwarf2_name (die, cu);
17903 if (name)
17904 TYPE_NAME (range_type) = name;
17905
17906 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17907 if (attr)
17908 TYPE_LENGTH (range_type) = DW_UNSND (attr);
17909
17910 maybe_set_alignment (cu, die, range_type);
17911
17912 set_die_type (die, range_type, cu);
17913
17914 /* set_die_type should be already done. */
17915 set_descriptive_type (range_type, die, cu);
17916
17917 return range_type;
17918 }
17919
17920 static struct type *
17921 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
17922 {
17923 struct type *type;
17924
17925 type = init_type (cu->per_cu->dwarf2_per_objfile->objfile, TYPE_CODE_VOID,0,
17926 NULL);
17927 TYPE_NAME (type) = dwarf2_name (die, cu);
17928
17929 /* In Ada, an unspecified type is typically used when the description
17930 of the type is defered to a different unit. When encountering
17931 such a type, we treat it as a stub, and try to resolve it later on,
17932 when needed. */
17933 if (cu->language == language_ada)
17934 TYPE_STUB (type) = 1;
17935
17936 return set_die_type (die, type, cu);
17937 }
17938
17939 /* Read a single die and all its descendents. Set the die's sibling
17940 field to NULL; set other fields in the die correctly, and set all
17941 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
17942 location of the info_ptr after reading all of those dies. PARENT
17943 is the parent of the die in question. */
17944
17945 static struct die_info *
17946 read_die_and_children (const struct die_reader_specs *reader,
17947 const gdb_byte *info_ptr,
17948 const gdb_byte **new_info_ptr,
17949 struct die_info *parent)
17950 {
17951 struct die_info *die;
17952 const gdb_byte *cur_ptr;
17953 int has_children;
17954
17955 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
17956 if (die == NULL)
17957 {
17958 *new_info_ptr = cur_ptr;
17959 return NULL;
17960 }
17961 store_in_ref_table (die, reader->cu);
17962
17963 if (has_children)
17964 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
17965 else
17966 {
17967 die->child = NULL;
17968 *new_info_ptr = cur_ptr;
17969 }
17970
17971 die->sibling = NULL;
17972 die->parent = parent;
17973 return die;
17974 }
17975
17976 /* Read a die, all of its descendents, and all of its siblings; set
17977 all of the fields of all of the dies correctly. Arguments are as
17978 in read_die_and_children. */
17979
17980 static struct die_info *
17981 read_die_and_siblings_1 (const struct die_reader_specs *reader,
17982 const gdb_byte *info_ptr,
17983 const gdb_byte **new_info_ptr,
17984 struct die_info *parent)
17985 {
17986 struct die_info *first_die, *last_sibling;
17987 const gdb_byte *cur_ptr;
17988
17989 cur_ptr = info_ptr;
17990 first_die = last_sibling = NULL;
17991
17992 while (1)
17993 {
17994 struct die_info *die
17995 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
17996
17997 if (die == NULL)
17998 {
17999 *new_info_ptr = cur_ptr;
18000 return first_die;
18001 }
18002
18003 if (!first_die)
18004 first_die = die;
18005 else
18006 last_sibling->sibling = die;
18007
18008 last_sibling = die;
18009 }
18010 }
18011
18012 /* Read a die, all of its descendents, and all of its siblings; set
18013 all of the fields of all of the dies correctly. Arguments are as
18014 in read_die_and_children.
18015 This the main entry point for reading a DIE and all its children. */
18016
18017 static struct die_info *
18018 read_die_and_siblings (const struct die_reader_specs *reader,
18019 const gdb_byte *info_ptr,
18020 const gdb_byte **new_info_ptr,
18021 struct die_info *parent)
18022 {
18023 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
18024 new_info_ptr, parent);
18025
18026 if (dwarf_die_debug)
18027 {
18028 fprintf_unfiltered (gdb_stdlog,
18029 "Read die from %s@0x%x of %s:\n",
18030 get_section_name (reader->die_section),
18031 (unsigned) (info_ptr - reader->die_section->buffer),
18032 bfd_get_filename (reader->abfd));
18033 dump_die (die, dwarf_die_debug);
18034 }
18035
18036 return die;
18037 }
18038
18039 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
18040 attributes.
18041 The caller is responsible for filling in the extra attributes
18042 and updating (*DIEP)->num_attrs.
18043 Set DIEP to point to a newly allocated die with its information,
18044 except for its child, sibling, and parent fields.
18045 Set HAS_CHILDREN to tell whether the die has children or not. */
18046
18047 static const gdb_byte *
18048 read_full_die_1 (const struct die_reader_specs *reader,
18049 struct die_info **diep, const gdb_byte *info_ptr,
18050 int *has_children, int num_extra_attrs)
18051 {
18052 unsigned int abbrev_number, bytes_read, i;
18053 struct abbrev_info *abbrev;
18054 struct die_info *die;
18055 struct dwarf2_cu *cu = reader->cu;
18056 bfd *abfd = reader->abfd;
18057
18058 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
18059 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18060 info_ptr += bytes_read;
18061 if (!abbrev_number)
18062 {
18063 *diep = NULL;
18064 *has_children = 0;
18065 return info_ptr;
18066 }
18067
18068 abbrev = reader->abbrev_table->lookup_abbrev (abbrev_number);
18069 if (!abbrev)
18070 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
18071 abbrev_number,
18072 bfd_get_filename (abfd));
18073
18074 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
18075 die->sect_off = sect_off;
18076 die->tag = abbrev->tag;
18077 die->abbrev = abbrev_number;
18078
18079 /* Make the result usable.
18080 The caller needs to update num_attrs after adding the extra
18081 attributes. */
18082 die->num_attrs = abbrev->num_attrs;
18083
18084 for (i = 0; i < abbrev->num_attrs; ++i)
18085 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
18086 info_ptr);
18087
18088 *diep = die;
18089 *has_children = abbrev->has_children;
18090 return info_ptr;
18091 }
18092
18093 /* Read a die and all its attributes.
18094 Set DIEP to point to a newly allocated die with its information,
18095 except for its child, sibling, and parent fields.
18096 Set HAS_CHILDREN to tell whether the die has children or not. */
18097
18098 static const gdb_byte *
18099 read_full_die (const struct die_reader_specs *reader,
18100 struct die_info **diep, const gdb_byte *info_ptr,
18101 int *has_children)
18102 {
18103 const gdb_byte *result;
18104
18105 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
18106
18107 if (dwarf_die_debug)
18108 {
18109 fprintf_unfiltered (gdb_stdlog,
18110 "Read die from %s@0x%x of %s:\n",
18111 get_section_name (reader->die_section),
18112 (unsigned) (info_ptr - reader->die_section->buffer),
18113 bfd_get_filename (reader->abfd));
18114 dump_die (*diep, dwarf_die_debug);
18115 }
18116
18117 return result;
18118 }
18119 \f
18120 /* Abbreviation tables.
18121
18122 In DWARF version 2, the description of the debugging information is
18123 stored in a separate .debug_abbrev section. Before we read any
18124 dies from a section we read in all abbreviations and install them
18125 in a hash table. */
18126
18127 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
18128
18129 struct abbrev_info *
18130 abbrev_table::alloc_abbrev ()
18131 {
18132 struct abbrev_info *abbrev;
18133
18134 abbrev = XOBNEW (&abbrev_obstack, struct abbrev_info);
18135 memset (abbrev, 0, sizeof (struct abbrev_info));
18136
18137 return abbrev;
18138 }
18139
18140 /* Add an abbreviation to the table. */
18141
18142 void
18143 abbrev_table::add_abbrev (unsigned int abbrev_number,
18144 struct abbrev_info *abbrev)
18145 {
18146 unsigned int hash_number;
18147
18148 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18149 abbrev->next = m_abbrevs[hash_number];
18150 m_abbrevs[hash_number] = abbrev;
18151 }
18152
18153 /* Look up an abbrev in the table.
18154 Returns NULL if the abbrev is not found. */
18155
18156 struct abbrev_info *
18157 abbrev_table::lookup_abbrev (unsigned int abbrev_number)
18158 {
18159 unsigned int hash_number;
18160 struct abbrev_info *abbrev;
18161
18162 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18163 abbrev = m_abbrevs[hash_number];
18164
18165 while (abbrev)
18166 {
18167 if (abbrev->number == abbrev_number)
18168 return abbrev;
18169 abbrev = abbrev->next;
18170 }
18171 return NULL;
18172 }
18173
18174 /* Read in an abbrev table. */
18175
18176 static abbrev_table_up
18177 abbrev_table_read_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
18178 struct dwarf2_section_info *section,
18179 sect_offset sect_off)
18180 {
18181 struct objfile *objfile = dwarf2_per_objfile->objfile;
18182 bfd *abfd = get_section_bfd_owner (section);
18183 const gdb_byte *abbrev_ptr;
18184 struct abbrev_info *cur_abbrev;
18185 unsigned int abbrev_number, bytes_read, abbrev_name;
18186 unsigned int abbrev_form;
18187 struct attr_abbrev *cur_attrs;
18188 unsigned int allocated_attrs;
18189
18190 abbrev_table_up abbrev_table (new struct abbrev_table (sect_off));
18191
18192 dwarf2_read_section (objfile, section);
18193 abbrev_ptr = section->buffer + to_underlying (sect_off);
18194 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18195 abbrev_ptr += bytes_read;
18196
18197 allocated_attrs = ATTR_ALLOC_CHUNK;
18198 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
18199
18200 /* Loop until we reach an abbrev number of 0. */
18201 while (abbrev_number)
18202 {
18203 cur_abbrev = abbrev_table->alloc_abbrev ();
18204
18205 /* read in abbrev header */
18206 cur_abbrev->number = abbrev_number;
18207 cur_abbrev->tag
18208 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18209 abbrev_ptr += bytes_read;
18210 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
18211 abbrev_ptr += 1;
18212
18213 /* now read in declarations */
18214 for (;;)
18215 {
18216 LONGEST implicit_const;
18217
18218 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18219 abbrev_ptr += bytes_read;
18220 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18221 abbrev_ptr += bytes_read;
18222 if (abbrev_form == DW_FORM_implicit_const)
18223 {
18224 implicit_const = read_signed_leb128 (abfd, abbrev_ptr,
18225 &bytes_read);
18226 abbrev_ptr += bytes_read;
18227 }
18228 else
18229 {
18230 /* Initialize it due to a false compiler warning. */
18231 implicit_const = -1;
18232 }
18233
18234 if (abbrev_name == 0)
18235 break;
18236
18237 if (cur_abbrev->num_attrs == allocated_attrs)
18238 {
18239 allocated_attrs += ATTR_ALLOC_CHUNK;
18240 cur_attrs
18241 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
18242 }
18243
18244 cur_attrs[cur_abbrev->num_attrs].name
18245 = (enum dwarf_attribute) abbrev_name;
18246 cur_attrs[cur_abbrev->num_attrs].form
18247 = (enum dwarf_form) abbrev_form;
18248 cur_attrs[cur_abbrev->num_attrs].implicit_const = implicit_const;
18249 ++cur_abbrev->num_attrs;
18250 }
18251
18252 cur_abbrev->attrs =
18253 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
18254 cur_abbrev->num_attrs);
18255 memcpy (cur_abbrev->attrs, cur_attrs,
18256 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
18257
18258 abbrev_table->add_abbrev (abbrev_number, cur_abbrev);
18259
18260 /* Get next abbreviation.
18261 Under Irix6 the abbreviations for a compilation unit are not
18262 always properly terminated with an abbrev number of 0.
18263 Exit loop if we encounter an abbreviation which we have
18264 already read (which means we are about to read the abbreviations
18265 for the next compile unit) or if the end of the abbreviation
18266 table is reached. */
18267 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
18268 break;
18269 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18270 abbrev_ptr += bytes_read;
18271 if (abbrev_table->lookup_abbrev (abbrev_number) != NULL)
18272 break;
18273 }
18274
18275 xfree (cur_attrs);
18276 return abbrev_table;
18277 }
18278
18279 /* Returns nonzero if TAG represents a type that we might generate a partial
18280 symbol for. */
18281
18282 static int
18283 is_type_tag_for_partial (int tag)
18284 {
18285 switch (tag)
18286 {
18287 #if 0
18288 /* Some types that would be reasonable to generate partial symbols for,
18289 that we don't at present. */
18290 case DW_TAG_array_type:
18291 case DW_TAG_file_type:
18292 case DW_TAG_ptr_to_member_type:
18293 case DW_TAG_set_type:
18294 case DW_TAG_string_type:
18295 case DW_TAG_subroutine_type:
18296 #endif
18297 case DW_TAG_base_type:
18298 case DW_TAG_class_type:
18299 case DW_TAG_interface_type:
18300 case DW_TAG_enumeration_type:
18301 case DW_TAG_structure_type:
18302 case DW_TAG_subrange_type:
18303 case DW_TAG_typedef:
18304 case DW_TAG_union_type:
18305 return 1;
18306 default:
18307 return 0;
18308 }
18309 }
18310
18311 /* Load all DIEs that are interesting for partial symbols into memory. */
18312
18313 static struct partial_die_info *
18314 load_partial_dies (const struct die_reader_specs *reader,
18315 const gdb_byte *info_ptr, int building_psymtab)
18316 {
18317 struct dwarf2_cu *cu = reader->cu;
18318 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18319 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
18320 unsigned int bytes_read;
18321 unsigned int load_all = 0;
18322 int nesting_level = 1;
18323
18324 parent_die = NULL;
18325 last_die = NULL;
18326
18327 gdb_assert (cu->per_cu != NULL);
18328 if (cu->per_cu->load_all_dies)
18329 load_all = 1;
18330
18331 cu->partial_dies
18332 = htab_create_alloc_ex (cu->header.length / 12,
18333 partial_die_hash,
18334 partial_die_eq,
18335 NULL,
18336 &cu->comp_unit_obstack,
18337 hashtab_obstack_allocate,
18338 dummy_obstack_deallocate);
18339
18340 while (1)
18341 {
18342 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
18343
18344 /* A NULL abbrev means the end of a series of children. */
18345 if (abbrev == NULL)
18346 {
18347 if (--nesting_level == 0)
18348 return first_die;
18349
18350 info_ptr += bytes_read;
18351 last_die = parent_die;
18352 parent_die = parent_die->die_parent;
18353 continue;
18354 }
18355
18356 /* Check for template arguments. We never save these; if
18357 they're seen, we just mark the parent, and go on our way. */
18358 if (parent_die != NULL
18359 && cu->language == language_cplus
18360 && (abbrev->tag == DW_TAG_template_type_param
18361 || abbrev->tag == DW_TAG_template_value_param))
18362 {
18363 parent_die->has_template_arguments = 1;
18364
18365 if (!load_all)
18366 {
18367 /* We don't need a partial DIE for the template argument. */
18368 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18369 continue;
18370 }
18371 }
18372
18373 /* We only recurse into c++ subprograms looking for template arguments.
18374 Skip their other children. */
18375 if (!load_all
18376 && cu->language == language_cplus
18377 && parent_die != NULL
18378 && parent_die->tag == DW_TAG_subprogram)
18379 {
18380 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18381 continue;
18382 }
18383
18384 /* Check whether this DIE is interesting enough to save. Normally
18385 we would not be interested in members here, but there may be
18386 later variables referencing them via DW_AT_specification (for
18387 static members). */
18388 if (!load_all
18389 && !is_type_tag_for_partial (abbrev->tag)
18390 && abbrev->tag != DW_TAG_constant
18391 && abbrev->tag != DW_TAG_enumerator
18392 && abbrev->tag != DW_TAG_subprogram
18393 && abbrev->tag != DW_TAG_inlined_subroutine
18394 && abbrev->tag != DW_TAG_lexical_block
18395 && abbrev->tag != DW_TAG_variable
18396 && abbrev->tag != DW_TAG_namespace
18397 && abbrev->tag != DW_TAG_module
18398 && abbrev->tag != DW_TAG_member
18399 && abbrev->tag != DW_TAG_imported_unit
18400 && abbrev->tag != DW_TAG_imported_declaration)
18401 {
18402 /* Otherwise we skip to the next sibling, if any. */
18403 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18404 continue;
18405 }
18406
18407 struct partial_die_info pdi ((sect_offset) (info_ptr - reader->buffer),
18408 abbrev);
18409
18410 info_ptr = pdi.read (reader, *abbrev, info_ptr + bytes_read);
18411
18412 /* This two-pass algorithm for processing partial symbols has a
18413 high cost in cache pressure. Thus, handle some simple cases
18414 here which cover the majority of C partial symbols. DIEs
18415 which neither have specification tags in them, nor could have
18416 specification tags elsewhere pointing at them, can simply be
18417 processed and discarded.
18418
18419 This segment is also optional; scan_partial_symbols and
18420 add_partial_symbol will handle these DIEs if we chain
18421 them in normally. When compilers which do not emit large
18422 quantities of duplicate debug information are more common,
18423 this code can probably be removed. */
18424
18425 /* Any complete simple types at the top level (pretty much all
18426 of them, for a language without namespaces), can be processed
18427 directly. */
18428 if (parent_die == NULL
18429 && pdi.has_specification == 0
18430 && pdi.is_declaration == 0
18431 && ((pdi.tag == DW_TAG_typedef && !pdi.has_children)
18432 || pdi.tag == DW_TAG_base_type
18433 || pdi.tag == DW_TAG_subrange_type))
18434 {
18435 if (building_psymtab && pdi.name != NULL)
18436 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18437 VAR_DOMAIN, LOC_TYPEDEF, -1,
18438 psymbol_placement::STATIC,
18439 0, cu->language, objfile);
18440 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18441 continue;
18442 }
18443
18444 /* The exception for DW_TAG_typedef with has_children above is
18445 a workaround of GCC PR debug/47510. In the case of this complaint
18446 type_name_or_error will error on such types later.
18447
18448 GDB skipped children of DW_TAG_typedef by the shortcut above and then
18449 it could not find the child DIEs referenced later, this is checked
18450 above. In correct DWARF DW_TAG_typedef should have no children. */
18451
18452 if (pdi.tag == DW_TAG_typedef && pdi.has_children)
18453 complaint (_("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
18454 "- DIE at %s [in module %s]"),
18455 sect_offset_str (pdi.sect_off), objfile_name (objfile));
18456
18457 /* If we're at the second level, and we're an enumerator, and
18458 our parent has no specification (meaning possibly lives in a
18459 namespace elsewhere), then we can add the partial symbol now
18460 instead of queueing it. */
18461 if (pdi.tag == DW_TAG_enumerator
18462 && parent_die != NULL
18463 && parent_die->die_parent == NULL
18464 && parent_die->tag == DW_TAG_enumeration_type
18465 && parent_die->has_specification == 0)
18466 {
18467 if (pdi.name == NULL)
18468 complaint (_("malformed enumerator DIE ignored"));
18469 else if (building_psymtab)
18470 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18471 VAR_DOMAIN, LOC_CONST, -1,
18472 cu->language == language_cplus
18473 ? psymbol_placement::GLOBAL
18474 : psymbol_placement::STATIC,
18475 0, cu->language, objfile);
18476
18477 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18478 continue;
18479 }
18480
18481 struct partial_die_info *part_die
18482 = new (&cu->comp_unit_obstack) partial_die_info (pdi);
18483
18484 /* We'll save this DIE so link it in. */
18485 part_die->die_parent = parent_die;
18486 part_die->die_sibling = NULL;
18487 part_die->die_child = NULL;
18488
18489 if (last_die && last_die == parent_die)
18490 last_die->die_child = part_die;
18491 else if (last_die)
18492 last_die->die_sibling = part_die;
18493
18494 last_die = part_die;
18495
18496 if (first_die == NULL)
18497 first_die = part_die;
18498
18499 /* Maybe add the DIE to the hash table. Not all DIEs that we
18500 find interesting need to be in the hash table, because we
18501 also have the parent/sibling/child chains; only those that we
18502 might refer to by offset later during partial symbol reading.
18503
18504 For now this means things that might have be the target of a
18505 DW_AT_specification, DW_AT_abstract_origin, or
18506 DW_AT_extension. DW_AT_extension will refer only to
18507 namespaces; DW_AT_abstract_origin refers to functions (and
18508 many things under the function DIE, but we do not recurse
18509 into function DIEs during partial symbol reading) and
18510 possibly variables as well; DW_AT_specification refers to
18511 declarations. Declarations ought to have the DW_AT_declaration
18512 flag. It happens that GCC forgets to put it in sometimes, but
18513 only for functions, not for types.
18514
18515 Adding more things than necessary to the hash table is harmless
18516 except for the performance cost. Adding too few will result in
18517 wasted time in find_partial_die, when we reread the compilation
18518 unit with load_all_dies set. */
18519
18520 if (load_all
18521 || abbrev->tag == DW_TAG_constant
18522 || abbrev->tag == DW_TAG_subprogram
18523 || abbrev->tag == DW_TAG_variable
18524 || abbrev->tag == DW_TAG_namespace
18525 || part_die->is_declaration)
18526 {
18527 void **slot;
18528
18529 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
18530 to_underlying (part_die->sect_off),
18531 INSERT);
18532 *slot = part_die;
18533 }
18534
18535 /* For some DIEs we want to follow their children (if any). For C
18536 we have no reason to follow the children of structures; for other
18537 languages we have to, so that we can get at method physnames
18538 to infer fully qualified class names, for DW_AT_specification,
18539 and for C++ template arguments. For C++, we also look one level
18540 inside functions to find template arguments (if the name of the
18541 function does not already contain the template arguments).
18542
18543 For Ada, we need to scan the children of subprograms and lexical
18544 blocks as well because Ada allows the definition of nested
18545 entities that could be interesting for the debugger, such as
18546 nested subprograms for instance. */
18547 if (last_die->has_children
18548 && (load_all
18549 || last_die->tag == DW_TAG_namespace
18550 || last_die->tag == DW_TAG_module
18551 || last_die->tag == DW_TAG_enumeration_type
18552 || (cu->language == language_cplus
18553 && last_die->tag == DW_TAG_subprogram
18554 && (last_die->name == NULL
18555 || strchr (last_die->name, '<') == NULL))
18556 || (cu->language != language_c
18557 && (last_die->tag == DW_TAG_class_type
18558 || last_die->tag == DW_TAG_interface_type
18559 || last_die->tag == DW_TAG_structure_type
18560 || last_die->tag == DW_TAG_union_type))
18561 || (cu->language == language_ada
18562 && (last_die->tag == DW_TAG_subprogram
18563 || last_die->tag == DW_TAG_lexical_block))))
18564 {
18565 nesting_level++;
18566 parent_die = last_die;
18567 continue;
18568 }
18569
18570 /* Otherwise we skip to the next sibling, if any. */
18571 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
18572
18573 /* Back to the top, do it again. */
18574 }
18575 }
18576
18577 partial_die_info::partial_die_info (sect_offset sect_off_,
18578 struct abbrev_info *abbrev)
18579 : partial_die_info (sect_off_, abbrev->tag, abbrev->has_children)
18580 {
18581 }
18582
18583 /* Read a minimal amount of information into the minimal die structure.
18584 INFO_PTR should point just after the initial uleb128 of a DIE. */
18585
18586 const gdb_byte *
18587 partial_die_info::read (const struct die_reader_specs *reader,
18588 const struct abbrev_info &abbrev, const gdb_byte *info_ptr)
18589 {
18590 struct dwarf2_cu *cu = reader->cu;
18591 struct dwarf2_per_objfile *dwarf2_per_objfile
18592 = cu->per_cu->dwarf2_per_objfile;
18593 unsigned int i;
18594 int has_low_pc_attr = 0;
18595 int has_high_pc_attr = 0;
18596 int high_pc_relative = 0;
18597
18598 for (i = 0; i < abbrev.num_attrs; ++i)
18599 {
18600 struct attribute attr;
18601
18602 info_ptr = read_attribute (reader, &attr, &abbrev.attrs[i], info_ptr);
18603
18604 /* Store the data if it is of an attribute we want to keep in a
18605 partial symbol table. */
18606 switch (attr.name)
18607 {
18608 case DW_AT_name:
18609 switch (tag)
18610 {
18611 case DW_TAG_compile_unit:
18612 case DW_TAG_partial_unit:
18613 case DW_TAG_type_unit:
18614 /* Compilation units have a DW_AT_name that is a filename, not
18615 a source language identifier. */
18616 case DW_TAG_enumeration_type:
18617 case DW_TAG_enumerator:
18618 /* These tags always have simple identifiers already; no need
18619 to canonicalize them. */
18620 name = DW_STRING (&attr);
18621 break;
18622 default:
18623 {
18624 struct objfile *objfile = dwarf2_per_objfile->objfile;
18625
18626 name
18627 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
18628 &objfile->per_bfd->storage_obstack);
18629 }
18630 break;
18631 }
18632 break;
18633 case DW_AT_linkage_name:
18634 case DW_AT_MIPS_linkage_name:
18635 /* Note that both forms of linkage name might appear. We
18636 assume they will be the same, and we only store the last
18637 one we see. */
18638 if (cu->language == language_ada)
18639 name = DW_STRING (&attr);
18640 linkage_name = DW_STRING (&attr);
18641 break;
18642 case DW_AT_low_pc:
18643 has_low_pc_attr = 1;
18644 lowpc = attr_value_as_address (&attr);
18645 break;
18646 case DW_AT_high_pc:
18647 has_high_pc_attr = 1;
18648 highpc = attr_value_as_address (&attr);
18649 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
18650 high_pc_relative = 1;
18651 break;
18652 case DW_AT_location:
18653 /* Support the .debug_loc offsets. */
18654 if (attr_form_is_block (&attr))
18655 {
18656 d.locdesc = DW_BLOCK (&attr);
18657 }
18658 else if (attr_form_is_section_offset (&attr))
18659 {
18660 dwarf2_complex_location_expr_complaint ();
18661 }
18662 else
18663 {
18664 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
18665 "partial symbol information");
18666 }
18667 break;
18668 case DW_AT_external:
18669 is_external = DW_UNSND (&attr);
18670 break;
18671 case DW_AT_declaration:
18672 is_declaration = DW_UNSND (&attr);
18673 break;
18674 case DW_AT_type:
18675 has_type = 1;
18676 break;
18677 case DW_AT_abstract_origin:
18678 case DW_AT_specification:
18679 case DW_AT_extension:
18680 has_specification = 1;
18681 spec_offset = dwarf2_get_ref_die_offset (&attr);
18682 spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18683 || cu->per_cu->is_dwz);
18684 break;
18685 case DW_AT_sibling:
18686 /* Ignore absolute siblings, they might point outside of
18687 the current compile unit. */
18688 if (attr.form == DW_FORM_ref_addr)
18689 complaint (_("ignoring absolute DW_AT_sibling"));
18690 else
18691 {
18692 const gdb_byte *buffer = reader->buffer;
18693 sect_offset off = dwarf2_get_ref_die_offset (&attr);
18694 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
18695
18696 if (sibling_ptr < info_ptr)
18697 complaint (_("DW_AT_sibling points backwards"));
18698 else if (sibling_ptr > reader->buffer_end)
18699 dwarf2_section_buffer_overflow_complaint (reader->die_section);
18700 else
18701 sibling = sibling_ptr;
18702 }
18703 break;
18704 case DW_AT_byte_size:
18705 has_byte_size = 1;
18706 break;
18707 case DW_AT_const_value:
18708 has_const_value = 1;
18709 break;
18710 case DW_AT_calling_convention:
18711 /* DWARF doesn't provide a way to identify a program's source-level
18712 entry point. DW_AT_calling_convention attributes are only meant
18713 to describe functions' calling conventions.
18714
18715 However, because it's a necessary piece of information in
18716 Fortran, and before DWARF 4 DW_CC_program was the only
18717 piece of debugging information whose definition refers to
18718 a 'main program' at all, several compilers marked Fortran
18719 main programs with DW_CC_program --- even when those
18720 functions use the standard calling conventions.
18721
18722 Although DWARF now specifies a way to provide this
18723 information, we support this practice for backward
18724 compatibility. */
18725 if (DW_UNSND (&attr) == DW_CC_program
18726 && cu->language == language_fortran)
18727 main_subprogram = 1;
18728 break;
18729 case DW_AT_inline:
18730 if (DW_UNSND (&attr) == DW_INL_inlined
18731 || DW_UNSND (&attr) == DW_INL_declared_inlined)
18732 may_be_inlined = 1;
18733 break;
18734
18735 case DW_AT_import:
18736 if (tag == DW_TAG_imported_unit)
18737 {
18738 d.sect_off = dwarf2_get_ref_die_offset (&attr);
18739 is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18740 || cu->per_cu->is_dwz);
18741 }
18742 break;
18743
18744 case DW_AT_main_subprogram:
18745 main_subprogram = DW_UNSND (&attr);
18746 break;
18747
18748 default:
18749 break;
18750 }
18751 }
18752
18753 if (high_pc_relative)
18754 highpc += lowpc;
18755
18756 if (has_low_pc_attr && has_high_pc_attr)
18757 {
18758 /* When using the GNU linker, .gnu.linkonce. sections are used to
18759 eliminate duplicate copies of functions and vtables and such.
18760 The linker will arbitrarily choose one and discard the others.
18761 The AT_*_pc values for such functions refer to local labels in
18762 these sections. If the section from that file was discarded, the
18763 labels are not in the output, so the relocs get a value of 0.
18764 If this is a discarded function, mark the pc bounds as invalid,
18765 so that GDB will ignore it. */
18766 if (lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
18767 {
18768 struct objfile *objfile = dwarf2_per_objfile->objfile;
18769 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18770
18771 complaint (_("DW_AT_low_pc %s is zero "
18772 "for DIE at %s [in module %s]"),
18773 paddress (gdbarch, lowpc),
18774 sect_offset_str (sect_off),
18775 objfile_name (objfile));
18776 }
18777 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
18778 else if (lowpc >= highpc)
18779 {
18780 struct objfile *objfile = dwarf2_per_objfile->objfile;
18781 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18782
18783 complaint (_("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
18784 "for DIE at %s [in module %s]"),
18785 paddress (gdbarch, lowpc),
18786 paddress (gdbarch, highpc),
18787 sect_offset_str (sect_off),
18788 objfile_name (objfile));
18789 }
18790 else
18791 has_pc_info = 1;
18792 }
18793
18794 return info_ptr;
18795 }
18796
18797 /* Find a cached partial DIE at OFFSET in CU. */
18798
18799 struct partial_die_info *
18800 dwarf2_cu::find_partial_die (sect_offset sect_off)
18801 {
18802 struct partial_die_info *lookup_die = NULL;
18803 struct partial_die_info part_die (sect_off);
18804
18805 lookup_die = ((struct partial_die_info *)
18806 htab_find_with_hash (partial_dies, &part_die,
18807 to_underlying (sect_off)));
18808
18809 return lookup_die;
18810 }
18811
18812 /* Find a partial DIE at OFFSET, which may or may not be in CU,
18813 except in the case of .debug_types DIEs which do not reference
18814 outside their CU (they do however referencing other types via
18815 DW_FORM_ref_sig8). */
18816
18817 static struct partial_die_info *
18818 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
18819 {
18820 struct dwarf2_per_objfile *dwarf2_per_objfile
18821 = cu->per_cu->dwarf2_per_objfile;
18822 struct objfile *objfile = dwarf2_per_objfile->objfile;
18823 struct dwarf2_per_cu_data *per_cu = NULL;
18824 struct partial_die_info *pd = NULL;
18825
18826 if (offset_in_dwz == cu->per_cu->is_dwz
18827 && offset_in_cu_p (&cu->header, sect_off))
18828 {
18829 pd = cu->find_partial_die (sect_off);
18830 if (pd != NULL)
18831 return pd;
18832 /* We missed recording what we needed.
18833 Load all dies and try again. */
18834 per_cu = cu->per_cu;
18835 }
18836 else
18837 {
18838 /* TUs don't reference other CUs/TUs (except via type signatures). */
18839 if (cu->per_cu->is_debug_types)
18840 {
18841 error (_("Dwarf Error: Type Unit at offset %s contains"
18842 " external reference to offset %s [in module %s].\n"),
18843 sect_offset_str (cu->header.sect_off), sect_offset_str (sect_off),
18844 bfd_get_filename (objfile->obfd));
18845 }
18846 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
18847 dwarf2_per_objfile);
18848
18849 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
18850 load_partial_comp_unit (per_cu);
18851
18852 per_cu->cu->last_used = 0;
18853 pd = per_cu->cu->find_partial_die (sect_off);
18854 }
18855
18856 /* If we didn't find it, and not all dies have been loaded,
18857 load them all and try again. */
18858
18859 if (pd == NULL && per_cu->load_all_dies == 0)
18860 {
18861 per_cu->load_all_dies = 1;
18862
18863 /* This is nasty. When we reread the DIEs, somewhere up the call chain
18864 THIS_CU->cu may already be in use. So we can't just free it and
18865 replace its DIEs with the ones we read in. Instead, we leave those
18866 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
18867 and clobber THIS_CU->cu->partial_dies with the hash table for the new
18868 set. */
18869 load_partial_comp_unit (per_cu);
18870
18871 pd = per_cu->cu->find_partial_die (sect_off);
18872 }
18873
18874 if (pd == NULL)
18875 internal_error (__FILE__, __LINE__,
18876 _("could not find partial DIE %s "
18877 "in cache [from module %s]\n"),
18878 sect_offset_str (sect_off), bfd_get_filename (objfile->obfd));
18879 return pd;
18880 }
18881
18882 /* See if we can figure out if the class lives in a namespace. We do
18883 this by looking for a member function; its demangled name will
18884 contain namespace info, if there is any. */
18885
18886 static void
18887 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
18888 struct dwarf2_cu *cu)
18889 {
18890 /* NOTE: carlton/2003-10-07: Getting the info this way changes
18891 what template types look like, because the demangler
18892 frequently doesn't give the same name as the debug info. We
18893 could fix this by only using the demangled name to get the
18894 prefix (but see comment in read_structure_type). */
18895
18896 struct partial_die_info *real_pdi;
18897 struct partial_die_info *child_pdi;
18898
18899 /* If this DIE (this DIE's specification, if any) has a parent, then
18900 we should not do this. We'll prepend the parent's fully qualified
18901 name when we create the partial symbol. */
18902
18903 real_pdi = struct_pdi;
18904 while (real_pdi->has_specification)
18905 real_pdi = find_partial_die (real_pdi->spec_offset,
18906 real_pdi->spec_is_dwz, cu);
18907
18908 if (real_pdi->die_parent != NULL)
18909 return;
18910
18911 for (child_pdi = struct_pdi->die_child;
18912 child_pdi != NULL;
18913 child_pdi = child_pdi->die_sibling)
18914 {
18915 if (child_pdi->tag == DW_TAG_subprogram
18916 && child_pdi->linkage_name != NULL)
18917 {
18918 char *actual_class_name
18919 = language_class_name_from_physname (cu->language_defn,
18920 child_pdi->linkage_name);
18921 if (actual_class_name != NULL)
18922 {
18923 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18924 struct_pdi->name
18925 = ((const char *)
18926 obstack_copy0 (&objfile->per_bfd->storage_obstack,
18927 actual_class_name,
18928 strlen (actual_class_name)));
18929 xfree (actual_class_name);
18930 }
18931 break;
18932 }
18933 }
18934 }
18935
18936 void
18937 partial_die_info::fixup (struct dwarf2_cu *cu)
18938 {
18939 /* Once we've fixed up a die, there's no point in doing so again.
18940 This also avoids a memory leak if we were to call
18941 guess_partial_die_structure_name multiple times. */
18942 if (fixup_called)
18943 return;
18944
18945 /* If we found a reference attribute and the DIE has no name, try
18946 to find a name in the referred to DIE. */
18947
18948 if (name == NULL && has_specification)
18949 {
18950 struct partial_die_info *spec_die;
18951
18952 spec_die = find_partial_die (spec_offset, spec_is_dwz, cu);
18953
18954 spec_die->fixup (cu);
18955
18956 if (spec_die->name)
18957 {
18958 name = spec_die->name;
18959
18960 /* Copy DW_AT_external attribute if it is set. */
18961 if (spec_die->is_external)
18962 is_external = spec_die->is_external;
18963 }
18964 }
18965
18966 /* Set default names for some unnamed DIEs. */
18967
18968 if (name == NULL && tag == DW_TAG_namespace)
18969 name = CP_ANONYMOUS_NAMESPACE_STR;
18970
18971 /* If there is no parent die to provide a namespace, and there are
18972 children, see if we can determine the namespace from their linkage
18973 name. */
18974 if (cu->language == language_cplus
18975 && !VEC_empty (dwarf2_section_info_def,
18976 cu->per_cu->dwarf2_per_objfile->types)
18977 && die_parent == NULL
18978 && has_children
18979 && (tag == DW_TAG_class_type
18980 || tag == DW_TAG_structure_type
18981 || tag == DW_TAG_union_type))
18982 guess_partial_die_structure_name (this, cu);
18983
18984 /* GCC might emit a nameless struct or union that has a linkage
18985 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18986 if (name == NULL
18987 && (tag == DW_TAG_class_type
18988 || tag == DW_TAG_interface_type
18989 || tag == DW_TAG_structure_type
18990 || tag == DW_TAG_union_type)
18991 && linkage_name != NULL)
18992 {
18993 char *demangled;
18994
18995 demangled = gdb_demangle (linkage_name, DMGL_TYPES);
18996 if (demangled)
18997 {
18998 const char *base;
18999
19000 /* Strip any leading namespaces/classes, keep only the base name.
19001 DW_AT_name for named DIEs does not contain the prefixes. */
19002 base = strrchr (demangled, ':');
19003 if (base && base > demangled && base[-1] == ':')
19004 base++;
19005 else
19006 base = demangled;
19007
19008 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
19009 name
19010 = ((const char *)
19011 obstack_copy0 (&objfile->per_bfd->storage_obstack,
19012 base, strlen (base)));
19013 xfree (demangled);
19014 }
19015 }
19016
19017 fixup_called = 1;
19018 }
19019
19020 /* Read an attribute value described by an attribute form. */
19021
19022 static const gdb_byte *
19023 read_attribute_value (const struct die_reader_specs *reader,
19024 struct attribute *attr, unsigned form,
19025 LONGEST implicit_const, const gdb_byte *info_ptr)
19026 {
19027 struct dwarf2_cu *cu = reader->cu;
19028 struct dwarf2_per_objfile *dwarf2_per_objfile
19029 = cu->per_cu->dwarf2_per_objfile;
19030 struct objfile *objfile = dwarf2_per_objfile->objfile;
19031 struct gdbarch *gdbarch = get_objfile_arch (objfile);
19032 bfd *abfd = reader->abfd;
19033 struct comp_unit_head *cu_header = &cu->header;
19034 unsigned int bytes_read;
19035 struct dwarf_block *blk;
19036
19037 attr->form = (enum dwarf_form) form;
19038 switch (form)
19039 {
19040 case DW_FORM_ref_addr:
19041 if (cu->header.version == 2)
19042 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
19043 else
19044 DW_UNSND (attr) = read_offset (abfd, info_ptr,
19045 &cu->header, &bytes_read);
19046 info_ptr += bytes_read;
19047 break;
19048 case DW_FORM_GNU_ref_alt:
19049 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19050 info_ptr += bytes_read;
19051 break;
19052 case DW_FORM_addr:
19053 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
19054 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
19055 info_ptr += bytes_read;
19056 break;
19057 case DW_FORM_block2:
19058 blk = dwarf_alloc_block (cu);
19059 blk->size = read_2_bytes (abfd, info_ptr);
19060 info_ptr += 2;
19061 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19062 info_ptr += blk->size;
19063 DW_BLOCK (attr) = blk;
19064 break;
19065 case DW_FORM_block4:
19066 blk = dwarf_alloc_block (cu);
19067 blk->size = read_4_bytes (abfd, info_ptr);
19068 info_ptr += 4;
19069 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19070 info_ptr += blk->size;
19071 DW_BLOCK (attr) = blk;
19072 break;
19073 case DW_FORM_data2:
19074 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
19075 info_ptr += 2;
19076 break;
19077 case DW_FORM_data4:
19078 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
19079 info_ptr += 4;
19080 break;
19081 case DW_FORM_data8:
19082 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
19083 info_ptr += 8;
19084 break;
19085 case DW_FORM_data16:
19086 blk = dwarf_alloc_block (cu);
19087 blk->size = 16;
19088 blk->data = read_n_bytes (abfd, info_ptr, 16);
19089 info_ptr += 16;
19090 DW_BLOCK (attr) = blk;
19091 break;
19092 case DW_FORM_sec_offset:
19093 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19094 info_ptr += bytes_read;
19095 break;
19096 case DW_FORM_string:
19097 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
19098 DW_STRING_IS_CANONICAL (attr) = 0;
19099 info_ptr += bytes_read;
19100 break;
19101 case DW_FORM_strp:
19102 if (!cu->per_cu->is_dwz)
19103 {
19104 DW_STRING (attr) = read_indirect_string (dwarf2_per_objfile,
19105 abfd, info_ptr, cu_header,
19106 &bytes_read);
19107 DW_STRING_IS_CANONICAL (attr) = 0;
19108 info_ptr += bytes_read;
19109 break;
19110 }
19111 /* FALLTHROUGH */
19112 case DW_FORM_line_strp:
19113 if (!cu->per_cu->is_dwz)
19114 {
19115 DW_STRING (attr) = read_indirect_line_string (dwarf2_per_objfile,
19116 abfd, info_ptr,
19117 cu_header, &bytes_read);
19118 DW_STRING_IS_CANONICAL (attr) = 0;
19119 info_ptr += bytes_read;
19120 break;
19121 }
19122 /* FALLTHROUGH */
19123 case DW_FORM_GNU_strp_alt:
19124 {
19125 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
19126 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
19127 &bytes_read);
19128
19129 DW_STRING (attr) = read_indirect_string_from_dwz (objfile,
19130 dwz, str_offset);
19131 DW_STRING_IS_CANONICAL (attr) = 0;
19132 info_ptr += bytes_read;
19133 }
19134 break;
19135 case DW_FORM_exprloc:
19136 case DW_FORM_block:
19137 blk = dwarf_alloc_block (cu);
19138 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19139 info_ptr += bytes_read;
19140 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19141 info_ptr += blk->size;
19142 DW_BLOCK (attr) = blk;
19143 break;
19144 case DW_FORM_block1:
19145 blk = dwarf_alloc_block (cu);
19146 blk->size = read_1_byte (abfd, info_ptr);
19147 info_ptr += 1;
19148 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19149 info_ptr += blk->size;
19150 DW_BLOCK (attr) = blk;
19151 break;
19152 case DW_FORM_data1:
19153 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19154 info_ptr += 1;
19155 break;
19156 case DW_FORM_flag:
19157 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19158 info_ptr += 1;
19159 break;
19160 case DW_FORM_flag_present:
19161 DW_UNSND (attr) = 1;
19162 break;
19163 case DW_FORM_sdata:
19164 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19165 info_ptr += bytes_read;
19166 break;
19167 case DW_FORM_udata:
19168 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19169 info_ptr += bytes_read;
19170 break;
19171 case DW_FORM_ref1:
19172 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19173 + read_1_byte (abfd, info_ptr));
19174 info_ptr += 1;
19175 break;
19176 case DW_FORM_ref2:
19177 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19178 + read_2_bytes (abfd, info_ptr));
19179 info_ptr += 2;
19180 break;
19181 case DW_FORM_ref4:
19182 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19183 + read_4_bytes (abfd, info_ptr));
19184 info_ptr += 4;
19185 break;
19186 case DW_FORM_ref8:
19187 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19188 + read_8_bytes (abfd, info_ptr));
19189 info_ptr += 8;
19190 break;
19191 case DW_FORM_ref_sig8:
19192 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
19193 info_ptr += 8;
19194 break;
19195 case DW_FORM_ref_udata:
19196 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19197 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
19198 info_ptr += bytes_read;
19199 break;
19200 case DW_FORM_indirect:
19201 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19202 info_ptr += bytes_read;
19203 if (form == DW_FORM_implicit_const)
19204 {
19205 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19206 info_ptr += bytes_read;
19207 }
19208 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
19209 info_ptr);
19210 break;
19211 case DW_FORM_implicit_const:
19212 DW_SND (attr) = implicit_const;
19213 break;
19214 case DW_FORM_GNU_addr_index:
19215 if (reader->dwo_file == NULL)
19216 {
19217 /* For now flag a hard error.
19218 Later we can turn this into a complaint. */
19219 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19220 dwarf_form_name (form),
19221 bfd_get_filename (abfd));
19222 }
19223 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
19224 info_ptr += bytes_read;
19225 break;
19226 case DW_FORM_GNU_str_index:
19227 if (reader->dwo_file == NULL)
19228 {
19229 /* For now flag a hard error.
19230 Later we can turn this into a complaint if warranted. */
19231 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19232 dwarf_form_name (form),
19233 bfd_get_filename (abfd));
19234 }
19235 {
19236 ULONGEST str_index =
19237 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19238
19239 DW_STRING (attr) = read_str_index (reader, str_index);
19240 DW_STRING_IS_CANONICAL (attr) = 0;
19241 info_ptr += bytes_read;
19242 }
19243 break;
19244 default:
19245 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
19246 dwarf_form_name (form),
19247 bfd_get_filename (abfd));
19248 }
19249
19250 /* Super hack. */
19251 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
19252 attr->form = DW_FORM_GNU_ref_alt;
19253
19254 /* We have seen instances where the compiler tried to emit a byte
19255 size attribute of -1 which ended up being encoded as an unsigned
19256 0xffffffff. Although 0xffffffff is technically a valid size value,
19257 an object of this size seems pretty unlikely so we can relatively
19258 safely treat these cases as if the size attribute was invalid and
19259 treat them as zero by default. */
19260 if (attr->name == DW_AT_byte_size
19261 && form == DW_FORM_data4
19262 && DW_UNSND (attr) >= 0xffffffff)
19263 {
19264 complaint
19265 (_("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
19266 hex_string (DW_UNSND (attr)));
19267 DW_UNSND (attr) = 0;
19268 }
19269
19270 return info_ptr;
19271 }
19272
19273 /* Read an attribute described by an abbreviated attribute. */
19274
19275 static const gdb_byte *
19276 read_attribute (const struct die_reader_specs *reader,
19277 struct attribute *attr, struct attr_abbrev *abbrev,
19278 const gdb_byte *info_ptr)
19279 {
19280 attr->name = abbrev->name;
19281 return read_attribute_value (reader, attr, abbrev->form,
19282 abbrev->implicit_const, info_ptr);
19283 }
19284
19285 /* Read dwarf information from a buffer. */
19286
19287 static unsigned int
19288 read_1_byte (bfd *abfd, const gdb_byte *buf)
19289 {
19290 return bfd_get_8 (abfd, buf);
19291 }
19292
19293 static int
19294 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
19295 {
19296 return bfd_get_signed_8 (abfd, buf);
19297 }
19298
19299 static unsigned int
19300 read_2_bytes (bfd *abfd, const gdb_byte *buf)
19301 {
19302 return bfd_get_16 (abfd, buf);
19303 }
19304
19305 static int
19306 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
19307 {
19308 return bfd_get_signed_16 (abfd, buf);
19309 }
19310
19311 static unsigned int
19312 read_4_bytes (bfd *abfd, const gdb_byte *buf)
19313 {
19314 return bfd_get_32 (abfd, buf);
19315 }
19316
19317 static int
19318 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
19319 {
19320 return bfd_get_signed_32 (abfd, buf);
19321 }
19322
19323 static ULONGEST
19324 read_8_bytes (bfd *abfd, const gdb_byte *buf)
19325 {
19326 return bfd_get_64 (abfd, buf);
19327 }
19328
19329 static CORE_ADDR
19330 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
19331 unsigned int *bytes_read)
19332 {
19333 struct comp_unit_head *cu_header = &cu->header;
19334 CORE_ADDR retval = 0;
19335
19336 if (cu_header->signed_addr_p)
19337 {
19338 switch (cu_header->addr_size)
19339 {
19340 case 2:
19341 retval = bfd_get_signed_16 (abfd, buf);
19342 break;
19343 case 4:
19344 retval = bfd_get_signed_32 (abfd, buf);
19345 break;
19346 case 8:
19347 retval = bfd_get_signed_64 (abfd, buf);
19348 break;
19349 default:
19350 internal_error (__FILE__, __LINE__,
19351 _("read_address: bad switch, signed [in module %s]"),
19352 bfd_get_filename (abfd));
19353 }
19354 }
19355 else
19356 {
19357 switch (cu_header->addr_size)
19358 {
19359 case 2:
19360 retval = bfd_get_16 (abfd, buf);
19361 break;
19362 case 4:
19363 retval = bfd_get_32 (abfd, buf);
19364 break;
19365 case 8:
19366 retval = bfd_get_64 (abfd, buf);
19367 break;
19368 default:
19369 internal_error (__FILE__, __LINE__,
19370 _("read_address: bad switch, "
19371 "unsigned [in module %s]"),
19372 bfd_get_filename (abfd));
19373 }
19374 }
19375
19376 *bytes_read = cu_header->addr_size;
19377 return retval;
19378 }
19379
19380 /* Read the initial length from a section. The (draft) DWARF 3
19381 specification allows the initial length to take up either 4 bytes
19382 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
19383 bytes describe the length and all offsets will be 8 bytes in length
19384 instead of 4.
19385
19386 An older, non-standard 64-bit format is also handled by this
19387 function. The older format in question stores the initial length
19388 as an 8-byte quantity without an escape value. Lengths greater
19389 than 2^32 aren't very common which means that the initial 4 bytes
19390 is almost always zero. Since a length value of zero doesn't make
19391 sense for the 32-bit format, this initial zero can be considered to
19392 be an escape value which indicates the presence of the older 64-bit
19393 format. As written, the code can't detect (old format) lengths
19394 greater than 4GB. If it becomes necessary to handle lengths
19395 somewhat larger than 4GB, we could allow other small values (such
19396 as the non-sensical values of 1, 2, and 3) to also be used as
19397 escape values indicating the presence of the old format.
19398
19399 The value returned via bytes_read should be used to increment the
19400 relevant pointer after calling read_initial_length().
19401
19402 [ Note: read_initial_length() and read_offset() are based on the
19403 document entitled "DWARF Debugging Information Format", revision
19404 3, draft 8, dated November 19, 2001. This document was obtained
19405 from:
19406
19407 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
19408
19409 This document is only a draft and is subject to change. (So beware.)
19410
19411 Details regarding the older, non-standard 64-bit format were
19412 determined empirically by examining 64-bit ELF files produced by
19413 the SGI toolchain on an IRIX 6.5 machine.
19414
19415 - Kevin, July 16, 2002
19416 ] */
19417
19418 static LONGEST
19419 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
19420 {
19421 LONGEST length = bfd_get_32 (abfd, buf);
19422
19423 if (length == 0xffffffff)
19424 {
19425 length = bfd_get_64 (abfd, buf + 4);
19426 *bytes_read = 12;
19427 }
19428 else if (length == 0)
19429 {
19430 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
19431 length = bfd_get_64 (abfd, buf);
19432 *bytes_read = 8;
19433 }
19434 else
19435 {
19436 *bytes_read = 4;
19437 }
19438
19439 return length;
19440 }
19441
19442 /* Cover function for read_initial_length.
19443 Returns the length of the object at BUF, and stores the size of the
19444 initial length in *BYTES_READ and stores the size that offsets will be in
19445 *OFFSET_SIZE.
19446 If the initial length size is not equivalent to that specified in
19447 CU_HEADER then issue a complaint.
19448 This is useful when reading non-comp-unit headers. */
19449
19450 static LONGEST
19451 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
19452 const struct comp_unit_head *cu_header,
19453 unsigned int *bytes_read,
19454 unsigned int *offset_size)
19455 {
19456 LONGEST length = read_initial_length (abfd, buf, bytes_read);
19457
19458 gdb_assert (cu_header->initial_length_size == 4
19459 || cu_header->initial_length_size == 8
19460 || cu_header->initial_length_size == 12);
19461
19462 if (cu_header->initial_length_size != *bytes_read)
19463 complaint (_("intermixed 32-bit and 64-bit DWARF sections"));
19464
19465 *offset_size = (*bytes_read == 4) ? 4 : 8;
19466 return length;
19467 }
19468
19469 /* Read an offset from the data stream. The size of the offset is
19470 given by cu_header->offset_size. */
19471
19472 static LONGEST
19473 read_offset (bfd *abfd, const gdb_byte *buf,
19474 const struct comp_unit_head *cu_header,
19475 unsigned int *bytes_read)
19476 {
19477 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
19478
19479 *bytes_read = cu_header->offset_size;
19480 return offset;
19481 }
19482
19483 /* Read an offset from the data stream. */
19484
19485 static LONGEST
19486 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
19487 {
19488 LONGEST retval = 0;
19489
19490 switch (offset_size)
19491 {
19492 case 4:
19493 retval = bfd_get_32 (abfd, buf);
19494 break;
19495 case 8:
19496 retval = bfd_get_64 (abfd, buf);
19497 break;
19498 default:
19499 internal_error (__FILE__, __LINE__,
19500 _("read_offset_1: bad switch [in module %s]"),
19501 bfd_get_filename (abfd));
19502 }
19503
19504 return retval;
19505 }
19506
19507 static const gdb_byte *
19508 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
19509 {
19510 /* If the size of a host char is 8 bits, we can return a pointer
19511 to the buffer, otherwise we have to copy the data to a buffer
19512 allocated on the temporary obstack. */
19513 gdb_assert (HOST_CHAR_BIT == 8);
19514 return buf;
19515 }
19516
19517 static const char *
19518 read_direct_string (bfd *abfd, const gdb_byte *buf,
19519 unsigned int *bytes_read_ptr)
19520 {
19521 /* If the size of a host char is 8 bits, we can return a pointer
19522 to the string, otherwise we have to copy the string to a buffer
19523 allocated on the temporary obstack. */
19524 gdb_assert (HOST_CHAR_BIT == 8);
19525 if (*buf == '\0')
19526 {
19527 *bytes_read_ptr = 1;
19528 return NULL;
19529 }
19530 *bytes_read_ptr = strlen ((const char *) buf) + 1;
19531 return (const char *) buf;
19532 }
19533
19534 /* Return pointer to string at section SECT offset STR_OFFSET with error
19535 reporting strings FORM_NAME and SECT_NAME. */
19536
19537 static const char *
19538 read_indirect_string_at_offset_from (struct objfile *objfile,
19539 bfd *abfd, LONGEST str_offset,
19540 struct dwarf2_section_info *sect,
19541 const char *form_name,
19542 const char *sect_name)
19543 {
19544 dwarf2_read_section (objfile, sect);
19545 if (sect->buffer == NULL)
19546 error (_("%s used without %s section [in module %s]"),
19547 form_name, sect_name, bfd_get_filename (abfd));
19548 if (str_offset >= sect->size)
19549 error (_("%s pointing outside of %s section [in module %s]"),
19550 form_name, sect_name, bfd_get_filename (abfd));
19551 gdb_assert (HOST_CHAR_BIT == 8);
19552 if (sect->buffer[str_offset] == '\0')
19553 return NULL;
19554 return (const char *) (sect->buffer + str_offset);
19555 }
19556
19557 /* Return pointer to string at .debug_str offset STR_OFFSET. */
19558
19559 static const char *
19560 read_indirect_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19561 bfd *abfd, LONGEST str_offset)
19562 {
19563 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19564 abfd, str_offset,
19565 &dwarf2_per_objfile->str,
19566 "DW_FORM_strp", ".debug_str");
19567 }
19568
19569 /* Return pointer to string at .debug_line_str offset STR_OFFSET. */
19570
19571 static const char *
19572 read_indirect_line_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19573 bfd *abfd, LONGEST str_offset)
19574 {
19575 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19576 abfd, str_offset,
19577 &dwarf2_per_objfile->line_str,
19578 "DW_FORM_line_strp",
19579 ".debug_line_str");
19580 }
19581
19582 /* Read a string at offset STR_OFFSET in the .debug_str section from
19583 the .dwz file DWZ. Throw an error if the offset is too large. If
19584 the string consists of a single NUL byte, return NULL; otherwise
19585 return a pointer to the string. */
19586
19587 static const char *
19588 read_indirect_string_from_dwz (struct objfile *objfile, struct dwz_file *dwz,
19589 LONGEST str_offset)
19590 {
19591 dwarf2_read_section (objfile, &dwz->str);
19592
19593 if (dwz->str.buffer == NULL)
19594 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
19595 "section [in module %s]"),
19596 bfd_get_filename (dwz->dwz_bfd));
19597 if (str_offset >= dwz->str.size)
19598 error (_("DW_FORM_GNU_strp_alt pointing outside of "
19599 ".debug_str section [in module %s]"),
19600 bfd_get_filename (dwz->dwz_bfd));
19601 gdb_assert (HOST_CHAR_BIT == 8);
19602 if (dwz->str.buffer[str_offset] == '\0')
19603 return NULL;
19604 return (const char *) (dwz->str.buffer + str_offset);
19605 }
19606
19607 /* Return pointer to string at .debug_str offset as read from BUF.
19608 BUF is assumed to be in a compilation unit described by CU_HEADER.
19609 Return *BYTES_READ_PTR count of bytes read from BUF. */
19610
19611 static const char *
19612 read_indirect_string (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
19613 const gdb_byte *buf,
19614 const struct comp_unit_head *cu_header,
19615 unsigned int *bytes_read_ptr)
19616 {
19617 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19618
19619 return read_indirect_string_at_offset (dwarf2_per_objfile, abfd, str_offset);
19620 }
19621
19622 /* Return pointer to string at .debug_line_str offset as read from BUF.
19623 BUF is assumed to be in a compilation unit described by CU_HEADER.
19624 Return *BYTES_READ_PTR count of bytes read from BUF. */
19625
19626 static const char *
19627 read_indirect_line_string (struct dwarf2_per_objfile *dwarf2_per_objfile,
19628 bfd *abfd, const gdb_byte *buf,
19629 const struct comp_unit_head *cu_header,
19630 unsigned int *bytes_read_ptr)
19631 {
19632 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19633
19634 return read_indirect_line_string_at_offset (dwarf2_per_objfile, abfd,
19635 str_offset);
19636 }
19637
19638 ULONGEST
19639 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
19640 unsigned int *bytes_read_ptr)
19641 {
19642 ULONGEST result;
19643 unsigned int num_read;
19644 int shift;
19645 unsigned char byte;
19646
19647 result = 0;
19648 shift = 0;
19649 num_read = 0;
19650 while (1)
19651 {
19652 byte = bfd_get_8 (abfd, buf);
19653 buf++;
19654 num_read++;
19655 result |= ((ULONGEST) (byte & 127) << shift);
19656 if ((byte & 128) == 0)
19657 {
19658 break;
19659 }
19660 shift += 7;
19661 }
19662 *bytes_read_ptr = num_read;
19663 return result;
19664 }
19665
19666 static LONGEST
19667 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
19668 unsigned int *bytes_read_ptr)
19669 {
19670 ULONGEST result;
19671 int shift, num_read;
19672 unsigned char byte;
19673
19674 result = 0;
19675 shift = 0;
19676 num_read = 0;
19677 while (1)
19678 {
19679 byte = bfd_get_8 (abfd, buf);
19680 buf++;
19681 num_read++;
19682 result |= ((ULONGEST) (byte & 127) << shift);
19683 shift += 7;
19684 if ((byte & 128) == 0)
19685 {
19686 break;
19687 }
19688 }
19689 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
19690 result |= -(((ULONGEST) 1) << shift);
19691 *bytes_read_ptr = num_read;
19692 return result;
19693 }
19694
19695 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
19696 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
19697 ADDR_SIZE is the size of addresses from the CU header. */
19698
19699 static CORE_ADDR
19700 read_addr_index_1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
19701 unsigned int addr_index, ULONGEST addr_base, int addr_size)
19702 {
19703 struct objfile *objfile = dwarf2_per_objfile->objfile;
19704 bfd *abfd = objfile->obfd;
19705 const gdb_byte *info_ptr;
19706
19707 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
19708 if (dwarf2_per_objfile->addr.buffer == NULL)
19709 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
19710 objfile_name (objfile));
19711 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
19712 error (_("DW_FORM_addr_index pointing outside of "
19713 ".debug_addr section [in module %s]"),
19714 objfile_name (objfile));
19715 info_ptr = (dwarf2_per_objfile->addr.buffer
19716 + addr_base + addr_index * addr_size);
19717 if (addr_size == 4)
19718 return bfd_get_32 (abfd, info_ptr);
19719 else
19720 return bfd_get_64 (abfd, info_ptr);
19721 }
19722
19723 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
19724
19725 static CORE_ADDR
19726 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
19727 {
19728 return read_addr_index_1 (cu->per_cu->dwarf2_per_objfile, addr_index,
19729 cu->addr_base, cu->header.addr_size);
19730 }
19731
19732 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
19733
19734 static CORE_ADDR
19735 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
19736 unsigned int *bytes_read)
19737 {
19738 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
19739 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
19740
19741 return read_addr_index (cu, addr_index);
19742 }
19743
19744 /* Data structure to pass results from dwarf2_read_addr_index_reader
19745 back to dwarf2_read_addr_index. */
19746
19747 struct dwarf2_read_addr_index_data
19748 {
19749 ULONGEST addr_base;
19750 int addr_size;
19751 };
19752
19753 /* die_reader_func for dwarf2_read_addr_index. */
19754
19755 static void
19756 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
19757 const gdb_byte *info_ptr,
19758 struct die_info *comp_unit_die,
19759 int has_children,
19760 void *data)
19761 {
19762 struct dwarf2_cu *cu = reader->cu;
19763 struct dwarf2_read_addr_index_data *aidata =
19764 (struct dwarf2_read_addr_index_data *) data;
19765
19766 aidata->addr_base = cu->addr_base;
19767 aidata->addr_size = cu->header.addr_size;
19768 }
19769
19770 /* Given an index in .debug_addr, fetch the value.
19771 NOTE: This can be called during dwarf expression evaluation,
19772 long after the debug information has been read, and thus per_cu->cu
19773 may no longer exist. */
19774
19775 CORE_ADDR
19776 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
19777 unsigned int addr_index)
19778 {
19779 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
19780 struct dwarf2_cu *cu = per_cu->cu;
19781 ULONGEST addr_base;
19782 int addr_size;
19783
19784 /* We need addr_base and addr_size.
19785 If we don't have PER_CU->cu, we have to get it.
19786 Nasty, but the alternative is storing the needed info in PER_CU,
19787 which at this point doesn't seem justified: it's not clear how frequently
19788 it would get used and it would increase the size of every PER_CU.
19789 Entry points like dwarf2_per_cu_addr_size do a similar thing
19790 so we're not in uncharted territory here.
19791 Alas we need to be a bit more complicated as addr_base is contained
19792 in the DIE.
19793
19794 We don't need to read the entire CU(/TU).
19795 We just need the header and top level die.
19796
19797 IWBN to use the aging mechanism to let us lazily later discard the CU.
19798 For now we skip this optimization. */
19799
19800 if (cu != NULL)
19801 {
19802 addr_base = cu->addr_base;
19803 addr_size = cu->header.addr_size;
19804 }
19805 else
19806 {
19807 struct dwarf2_read_addr_index_data aidata;
19808
19809 /* Note: We can't use init_cutu_and_read_dies_simple here,
19810 we need addr_base. */
19811 init_cutu_and_read_dies (per_cu, NULL, 0, 0, false,
19812 dwarf2_read_addr_index_reader, &aidata);
19813 addr_base = aidata.addr_base;
19814 addr_size = aidata.addr_size;
19815 }
19816
19817 return read_addr_index_1 (dwarf2_per_objfile, addr_index, addr_base,
19818 addr_size);
19819 }
19820
19821 /* Given a DW_FORM_GNU_str_index, fetch the string.
19822 This is only used by the Fission support. */
19823
19824 static const char *
19825 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
19826 {
19827 struct dwarf2_cu *cu = reader->cu;
19828 struct dwarf2_per_objfile *dwarf2_per_objfile
19829 = cu->per_cu->dwarf2_per_objfile;
19830 struct objfile *objfile = dwarf2_per_objfile->objfile;
19831 const char *objf_name = objfile_name (objfile);
19832 bfd *abfd = objfile->obfd;
19833 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
19834 struct dwarf2_section_info *str_offsets_section =
19835 &reader->dwo_file->sections.str_offsets;
19836 const gdb_byte *info_ptr;
19837 ULONGEST str_offset;
19838 static const char form_name[] = "DW_FORM_GNU_str_index";
19839
19840 dwarf2_read_section (objfile, str_section);
19841 dwarf2_read_section (objfile, str_offsets_section);
19842 if (str_section->buffer == NULL)
19843 error (_("%s used without .debug_str.dwo section"
19844 " in CU at offset %s [in module %s]"),
19845 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19846 if (str_offsets_section->buffer == NULL)
19847 error (_("%s used without .debug_str_offsets.dwo section"
19848 " in CU at offset %s [in module %s]"),
19849 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19850 if (str_index * cu->header.offset_size >= str_offsets_section->size)
19851 error (_("%s pointing outside of .debug_str_offsets.dwo"
19852 " section in CU at offset %s [in module %s]"),
19853 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19854 info_ptr = (str_offsets_section->buffer
19855 + str_index * cu->header.offset_size);
19856 if (cu->header.offset_size == 4)
19857 str_offset = bfd_get_32 (abfd, info_ptr);
19858 else
19859 str_offset = bfd_get_64 (abfd, info_ptr);
19860 if (str_offset >= str_section->size)
19861 error (_("Offset from %s pointing outside of"
19862 " .debug_str.dwo section in CU at offset %s [in module %s]"),
19863 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19864 return (const char *) (str_section->buffer + str_offset);
19865 }
19866
19867 /* Return the length of an LEB128 number in BUF. */
19868
19869 static int
19870 leb128_size (const gdb_byte *buf)
19871 {
19872 const gdb_byte *begin = buf;
19873 gdb_byte byte;
19874
19875 while (1)
19876 {
19877 byte = *buf++;
19878 if ((byte & 128) == 0)
19879 return buf - begin;
19880 }
19881 }
19882
19883 static void
19884 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
19885 {
19886 switch (lang)
19887 {
19888 case DW_LANG_C89:
19889 case DW_LANG_C99:
19890 case DW_LANG_C11:
19891 case DW_LANG_C:
19892 case DW_LANG_UPC:
19893 cu->language = language_c;
19894 break;
19895 case DW_LANG_Java:
19896 case DW_LANG_C_plus_plus:
19897 case DW_LANG_C_plus_plus_11:
19898 case DW_LANG_C_plus_plus_14:
19899 cu->language = language_cplus;
19900 break;
19901 case DW_LANG_D:
19902 cu->language = language_d;
19903 break;
19904 case DW_LANG_Fortran77:
19905 case DW_LANG_Fortran90:
19906 case DW_LANG_Fortran95:
19907 case DW_LANG_Fortran03:
19908 case DW_LANG_Fortran08:
19909 cu->language = language_fortran;
19910 break;
19911 case DW_LANG_Go:
19912 cu->language = language_go;
19913 break;
19914 case DW_LANG_Mips_Assembler:
19915 cu->language = language_asm;
19916 break;
19917 case DW_LANG_Ada83:
19918 case DW_LANG_Ada95:
19919 cu->language = language_ada;
19920 break;
19921 case DW_LANG_Modula2:
19922 cu->language = language_m2;
19923 break;
19924 case DW_LANG_Pascal83:
19925 cu->language = language_pascal;
19926 break;
19927 case DW_LANG_ObjC:
19928 cu->language = language_objc;
19929 break;
19930 case DW_LANG_Rust:
19931 case DW_LANG_Rust_old:
19932 cu->language = language_rust;
19933 break;
19934 case DW_LANG_Cobol74:
19935 case DW_LANG_Cobol85:
19936 default:
19937 cu->language = language_minimal;
19938 break;
19939 }
19940 cu->language_defn = language_def (cu->language);
19941 }
19942
19943 /* Return the named attribute or NULL if not there. */
19944
19945 static struct attribute *
19946 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19947 {
19948 for (;;)
19949 {
19950 unsigned int i;
19951 struct attribute *spec = NULL;
19952
19953 for (i = 0; i < die->num_attrs; ++i)
19954 {
19955 if (die->attrs[i].name == name)
19956 return &die->attrs[i];
19957 if (die->attrs[i].name == DW_AT_specification
19958 || die->attrs[i].name == DW_AT_abstract_origin)
19959 spec = &die->attrs[i];
19960 }
19961
19962 if (!spec)
19963 break;
19964
19965 die = follow_die_ref (die, spec, &cu);
19966 }
19967
19968 return NULL;
19969 }
19970
19971 /* Return the named attribute or NULL if not there,
19972 but do not follow DW_AT_specification, etc.
19973 This is for use in contexts where we're reading .debug_types dies.
19974 Following DW_AT_specification, DW_AT_abstract_origin will take us
19975 back up the chain, and we want to go down. */
19976
19977 static struct attribute *
19978 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
19979 {
19980 unsigned int i;
19981
19982 for (i = 0; i < die->num_attrs; ++i)
19983 if (die->attrs[i].name == name)
19984 return &die->attrs[i];
19985
19986 return NULL;
19987 }
19988
19989 /* Return the string associated with a string-typed attribute, or NULL if it
19990 is either not found or is of an incorrect type. */
19991
19992 static const char *
19993 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19994 {
19995 struct attribute *attr;
19996 const char *str = NULL;
19997
19998 attr = dwarf2_attr (die, name, cu);
19999
20000 if (attr != NULL)
20001 {
20002 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
20003 || attr->form == DW_FORM_string
20004 || attr->form == DW_FORM_GNU_str_index
20005 || attr->form == DW_FORM_GNU_strp_alt)
20006 str = DW_STRING (attr);
20007 else
20008 complaint (_("string type expected for attribute %s for "
20009 "DIE at %s in module %s"),
20010 dwarf_attr_name (name), sect_offset_str (die->sect_off),
20011 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
20012 }
20013
20014 return str;
20015 }
20016
20017 /* Return non-zero iff the attribute NAME is defined for the given DIE,
20018 and holds a non-zero value. This function should only be used for
20019 DW_FORM_flag or DW_FORM_flag_present attributes. */
20020
20021 static int
20022 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
20023 {
20024 struct attribute *attr = dwarf2_attr (die, name, cu);
20025
20026 return (attr && DW_UNSND (attr));
20027 }
20028
20029 static int
20030 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
20031 {
20032 /* A DIE is a declaration if it has a DW_AT_declaration attribute
20033 which value is non-zero. However, we have to be careful with
20034 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
20035 (via dwarf2_flag_true_p) follows this attribute. So we may
20036 end up accidently finding a declaration attribute that belongs
20037 to a different DIE referenced by the specification attribute,
20038 even though the given DIE does not have a declaration attribute. */
20039 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
20040 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
20041 }
20042
20043 /* Return the die giving the specification for DIE, if there is
20044 one. *SPEC_CU is the CU containing DIE on input, and the CU
20045 containing the return value on output. If there is no
20046 specification, but there is an abstract origin, that is
20047 returned. */
20048
20049 static struct die_info *
20050 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
20051 {
20052 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
20053 *spec_cu);
20054
20055 if (spec_attr == NULL)
20056 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
20057
20058 if (spec_attr == NULL)
20059 return NULL;
20060 else
20061 return follow_die_ref (die, spec_attr, spec_cu);
20062 }
20063
20064 /* Stub for free_line_header to match void * callback types. */
20065
20066 static void
20067 free_line_header_voidp (void *arg)
20068 {
20069 struct line_header *lh = (struct line_header *) arg;
20070
20071 delete lh;
20072 }
20073
20074 void
20075 line_header::add_include_dir (const char *include_dir)
20076 {
20077 if (dwarf_line_debug >= 2)
20078 fprintf_unfiltered (gdb_stdlog, "Adding dir %zu: %s\n",
20079 include_dirs.size () + 1, include_dir);
20080
20081 include_dirs.push_back (include_dir);
20082 }
20083
20084 void
20085 line_header::add_file_name (const char *name,
20086 dir_index d_index,
20087 unsigned int mod_time,
20088 unsigned int length)
20089 {
20090 if (dwarf_line_debug >= 2)
20091 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
20092 (unsigned) file_names.size () + 1, name);
20093
20094 file_names.emplace_back (name, d_index, mod_time, length);
20095 }
20096
20097 /* A convenience function to find the proper .debug_line section for a CU. */
20098
20099 static struct dwarf2_section_info *
20100 get_debug_line_section (struct dwarf2_cu *cu)
20101 {
20102 struct dwarf2_section_info *section;
20103 struct dwarf2_per_objfile *dwarf2_per_objfile
20104 = cu->per_cu->dwarf2_per_objfile;
20105
20106 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
20107 DWO file. */
20108 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20109 section = &cu->dwo_unit->dwo_file->sections.line;
20110 else if (cu->per_cu->is_dwz)
20111 {
20112 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
20113
20114 section = &dwz->line;
20115 }
20116 else
20117 section = &dwarf2_per_objfile->line;
20118
20119 return section;
20120 }
20121
20122 /* Read directory or file name entry format, starting with byte of
20123 format count entries, ULEB128 pairs of entry formats, ULEB128 of
20124 entries count and the entries themselves in the described entry
20125 format. */
20126
20127 static void
20128 read_formatted_entries (struct dwarf2_per_objfile *dwarf2_per_objfile,
20129 bfd *abfd, const gdb_byte **bufp,
20130 struct line_header *lh,
20131 const struct comp_unit_head *cu_header,
20132 void (*callback) (struct line_header *lh,
20133 const char *name,
20134 dir_index d_index,
20135 unsigned int mod_time,
20136 unsigned int length))
20137 {
20138 gdb_byte format_count, formati;
20139 ULONGEST data_count, datai;
20140 const gdb_byte *buf = *bufp;
20141 const gdb_byte *format_header_data;
20142 unsigned int bytes_read;
20143
20144 format_count = read_1_byte (abfd, buf);
20145 buf += 1;
20146 format_header_data = buf;
20147 for (formati = 0; formati < format_count; formati++)
20148 {
20149 read_unsigned_leb128 (abfd, buf, &bytes_read);
20150 buf += bytes_read;
20151 read_unsigned_leb128 (abfd, buf, &bytes_read);
20152 buf += bytes_read;
20153 }
20154
20155 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
20156 buf += bytes_read;
20157 for (datai = 0; datai < data_count; datai++)
20158 {
20159 const gdb_byte *format = format_header_data;
20160 struct file_entry fe;
20161
20162 for (formati = 0; formati < format_count; formati++)
20163 {
20164 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
20165 format += bytes_read;
20166
20167 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
20168 format += bytes_read;
20169
20170 gdb::optional<const char *> string;
20171 gdb::optional<unsigned int> uint;
20172
20173 switch (form)
20174 {
20175 case DW_FORM_string:
20176 string.emplace (read_direct_string (abfd, buf, &bytes_read));
20177 buf += bytes_read;
20178 break;
20179
20180 case DW_FORM_line_strp:
20181 string.emplace (read_indirect_line_string (dwarf2_per_objfile,
20182 abfd, buf,
20183 cu_header,
20184 &bytes_read));
20185 buf += bytes_read;
20186 break;
20187
20188 case DW_FORM_data1:
20189 uint.emplace (read_1_byte (abfd, buf));
20190 buf += 1;
20191 break;
20192
20193 case DW_FORM_data2:
20194 uint.emplace (read_2_bytes (abfd, buf));
20195 buf += 2;
20196 break;
20197
20198 case DW_FORM_data4:
20199 uint.emplace (read_4_bytes (abfd, buf));
20200 buf += 4;
20201 break;
20202
20203 case DW_FORM_data8:
20204 uint.emplace (read_8_bytes (abfd, buf));
20205 buf += 8;
20206 break;
20207
20208 case DW_FORM_udata:
20209 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
20210 buf += bytes_read;
20211 break;
20212
20213 case DW_FORM_block:
20214 /* It is valid only for DW_LNCT_timestamp which is ignored by
20215 current GDB. */
20216 break;
20217 }
20218
20219 switch (content_type)
20220 {
20221 case DW_LNCT_path:
20222 if (string.has_value ())
20223 fe.name = *string;
20224 break;
20225 case DW_LNCT_directory_index:
20226 if (uint.has_value ())
20227 fe.d_index = (dir_index) *uint;
20228 break;
20229 case DW_LNCT_timestamp:
20230 if (uint.has_value ())
20231 fe.mod_time = *uint;
20232 break;
20233 case DW_LNCT_size:
20234 if (uint.has_value ())
20235 fe.length = *uint;
20236 break;
20237 case DW_LNCT_MD5:
20238 break;
20239 default:
20240 complaint (_("Unknown format content type %s"),
20241 pulongest (content_type));
20242 }
20243 }
20244
20245 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
20246 }
20247
20248 *bufp = buf;
20249 }
20250
20251 /* Read the statement program header starting at OFFSET in
20252 .debug_line, or .debug_line.dwo. Return a pointer
20253 to a struct line_header, allocated using xmalloc.
20254 Returns NULL if there is a problem reading the header, e.g., if it
20255 has a version we don't understand.
20256
20257 NOTE: the strings in the include directory and file name tables of
20258 the returned object point into the dwarf line section buffer,
20259 and must not be freed. */
20260
20261 static line_header_up
20262 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
20263 {
20264 const gdb_byte *line_ptr;
20265 unsigned int bytes_read, offset_size;
20266 int i;
20267 const char *cur_dir, *cur_file;
20268 struct dwarf2_section_info *section;
20269 bfd *abfd;
20270 struct dwarf2_per_objfile *dwarf2_per_objfile
20271 = cu->per_cu->dwarf2_per_objfile;
20272
20273 section = get_debug_line_section (cu);
20274 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
20275 if (section->buffer == NULL)
20276 {
20277 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20278 complaint (_("missing .debug_line.dwo section"));
20279 else
20280 complaint (_("missing .debug_line section"));
20281 return 0;
20282 }
20283
20284 /* We can't do this until we know the section is non-empty.
20285 Only then do we know we have such a section. */
20286 abfd = get_section_bfd_owner (section);
20287
20288 /* Make sure that at least there's room for the total_length field.
20289 That could be 12 bytes long, but we're just going to fudge that. */
20290 if (to_underlying (sect_off) + 4 >= section->size)
20291 {
20292 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20293 return 0;
20294 }
20295
20296 line_header_up lh (new line_header ());
20297
20298 lh->sect_off = sect_off;
20299 lh->offset_in_dwz = cu->per_cu->is_dwz;
20300
20301 line_ptr = section->buffer + to_underlying (sect_off);
20302
20303 /* Read in the header. */
20304 lh->total_length =
20305 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
20306 &bytes_read, &offset_size);
20307 line_ptr += bytes_read;
20308 if (line_ptr + lh->total_length > (section->buffer + section->size))
20309 {
20310 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20311 return 0;
20312 }
20313 lh->statement_program_end = line_ptr + lh->total_length;
20314 lh->version = read_2_bytes (abfd, line_ptr);
20315 line_ptr += 2;
20316 if (lh->version > 5)
20317 {
20318 /* This is a version we don't understand. The format could have
20319 changed in ways we don't handle properly so just punt. */
20320 complaint (_("unsupported version in .debug_line section"));
20321 return NULL;
20322 }
20323 if (lh->version >= 5)
20324 {
20325 gdb_byte segment_selector_size;
20326
20327 /* Skip address size. */
20328 read_1_byte (abfd, line_ptr);
20329 line_ptr += 1;
20330
20331 segment_selector_size = read_1_byte (abfd, line_ptr);
20332 line_ptr += 1;
20333 if (segment_selector_size != 0)
20334 {
20335 complaint (_("unsupported segment selector size %u "
20336 "in .debug_line section"),
20337 segment_selector_size);
20338 return NULL;
20339 }
20340 }
20341 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
20342 line_ptr += offset_size;
20343 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
20344 line_ptr += 1;
20345 if (lh->version >= 4)
20346 {
20347 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
20348 line_ptr += 1;
20349 }
20350 else
20351 lh->maximum_ops_per_instruction = 1;
20352
20353 if (lh->maximum_ops_per_instruction == 0)
20354 {
20355 lh->maximum_ops_per_instruction = 1;
20356 complaint (_("invalid maximum_ops_per_instruction "
20357 "in `.debug_line' section"));
20358 }
20359
20360 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
20361 line_ptr += 1;
20362 lh->line_base = read_1_signed_byte (abfd, line_ptr);
20363 line_ptr += 1;
20364 lh->line_range = read_1_byte (abfd, line_ptr);
20365 line_ptr += 1;
20366 lh->opcode_base = read_1_byte (abfd, line_ptr);
20367 line_ptr += 1;
20368 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
20369
20370 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
20371 for (i = 1; i < lh->opcode_base; ++i)
20372 {
20373 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
20374 line_ptr += 1;
20375 }
20376
20377 if (lh->version >= 5)
20378 {
20379 /* Read directory table. */
20380 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20381 &cu->header,
20382 [] (struct line_header *header, const char *name,
20383 dir_index d_index, unsigned int mod_time,
20384 unsigned int length)
20385 {
20386 header->add_include_dir (name);
20387 });
20388
20389 /* Read file name table. */
20390 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20391 &cu->header,
20392 [] (struct line_header *header, const char *name,
20393 dir_index d_index, unsigned int mod_time,
20394 unsigned int length)
20395 {
20396 header->add_file_name (name, d_index, mod_time, length);
20397 });
20398 }
20399 else
20400 {
20401 /* Read directory table. */
20402 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20403 {
20404 line_ptr += bytes_read;
20405 lh->add_include_dir (cur_dir);
20406 }
20407 line_ptr += bytes_read;
20408
20409 /* Read file name table. */
20410 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20411 {
20412 unsigned int mod_time, length;
20413 dir_index d_index;
20414
20415 line_ptr += bytes_read;
20416 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20417 line_ptr += bytes_read;
20418 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20419 line_ptr += bytes_read;
20420 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20421 line_ptr += bytes_read;
20422
20423 lh->add_file_name (cur_file, d_index, mod_time, length);
20424 }
20425 line_ptr += bytes_read;
20426 }
20427 lh->statement_program_start = line_ptr;
20428
20429 if (line_ptr > (section->buffer + section->size))
20430 complaint (_("line number info header doesn't "
20431 "fit in `.debug_line' section"));
20432
20433 return lh;
20434 }
20435
20436 /* Subroutine of dwarf_decode_lines to simplify it.
20437 Return the file name of the psymtab for included file FILE_INDEX
20438 in line header LH of PST.
20439 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20440 If space for the result is malloc'd, *NAME_HOLDER will be set.
20441 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
20442
20443 static const char *
20444 psymtab_include_file_name (const struct line_header *lh, int file_index,
20445 const struct partial_symtab *pst,
20446 const char *comp_dir,
20447 gdb::unique_xmalloc_ptr<char> *name_holder)
20448 {
20449 const file_entry &fe = lh->file_names[file_index];
20450 const char *include_name = fe.name;
20451 const char *include_name_to_compare = include_name;
20452 const char *pst_filename;
20453 int file_is_pst;
20454
20455 const char *dir_name = fe.include_dir (lh);
20456
20457 gdb::unique_xmalloc_ptr<char> hold_compare;
20458 if (!IS_ABSOLUTE_PATH (include_name)
20459 && (dir_name != NULL || comp_dir != NULL))
20460 {
20461 /* Avoid creating a duplicate psymtab for PST.
20462 We do this by comparing INCLUDE_NAME and PST_FILENAME.
20463 Before we do the comparison, however, we need to account
20464 for DIR_NAME and COMP_DIR.
20465 First prepend dir_name (if non-NULL). If we still don't
20466 have an absolute path prepend comp_dir (if non-NULL).
20467 However, the directory we record in the include-file's
20468 psymtab does not contain COMP_DIR (to match the
20469 corresponding symtab(s)).
20470
20471 Example:
20472
20473 bash$ cd /tmp
20474 bash$ gcc -g ./hello.c
20475 include_name = "hello.c"
20476 dir_name = "."
20477 DW_AT_comp_dir = comp_dir = "/tmp"
20478 DW_AT_name = "./hello.c"
20479
20480 */
20481
20482 if (dir_name != NULL)
20483 {
20484 name_holder->reset (concat (dir_name, SLASH_STRING,
20485 include_name, (char *) NULL));
20486 include_name = name_holder->get ();
20487 include_name_to_compare = include_name;
20488 }
20489 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
20490 {
20491 hold_compare.reset (concat (comp_dir, SLASH_STRING,
20492 include_name, (char *) NULL));
20493 include_name_to_compare = hold_compare.get ();
20494 }
20495 }
20496
20497 pst_filename = pst->filename;
20498 gdb::unique_xmalloc_ptr<char> copied_name;
20499 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
20500 {
20501 copied_name.reset (concat (pst->dirname, SLASH_STRING,
20502 pst_filename, (char *) NULL));
20503 pst_filename = copied_name.get ();
20504 }
20505
20506 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
20507
20508 if (file_is_pst)
20509 return NULL;
20510 return include_name;
20511 }
20512
20513 /* State machine to track the state of the line number program. */
20514
20515 class lnp_state_machine
20516 {
20517 public:
20518 /* Initialize a machine state for the start of a line number
20519 program. */
20520 lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch, line_header *lh,
20521 bool record_lines_p);
20522
20523 file_entry *current_file ()
20524 {
20525 /* lh->file_names is 0-based, but the file name numbers in the
20526 statement program are 1-based. */
20527 return m_line_header->file_name_at (m_file);
20528 }
20529
20530 /* Record the line in the state machine. END_SEQUENCE is true if
20531 we're processing the end of a sequence. */
20532 void record_line (bool end_sequence);
20533
20534 /* Check ADDRESS is zero and less than UNRELOCATED_LOWPC and if true
20535 nop-out rest of the lines in this sequence. */
20536 void check_line_address (struct dwarf2_cu *cu,
20537 const gdb_byte *line_ptr,
20538 CORE_ADDR unrelocated_lowpc, CORE_ADDR address);
20539
20540 void handle_set_discriminator (unsigned int discriminator)
20541 {
20542 m_discriminator = discriminator;
20543 m_line_has_non_zero_discriminator |= discriminator != 0;
20544 }
20545
20546 /* Handle DW_LNE_set_address. */
20547 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
20548 {
20549 m_op_index = 0;
20550 address += baseaddr;
20551 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
20552 }
20553
20554 /* Handle DW_LNS_advance_pc. */
20555 void handle_advance_pc (CORE_ADDR adjust);
20556
20557 /* Handle a special opcode. */
20558 void handle_special_opcode (unsigned char op_code);
20559
20560 /* Handle DW_LNS_advance_line. */
20561 void handle_advance_line (int line_delta)
20562 {
20563 advance_line (line_delta);
20564 }
20565
20566 /* Handle DW_LNS_set_file. */
20567 void handle_set_file (file_name_index file);
20568
20569 /* Handle DW_LNS_negate_stmt. */
20570 void handle_negate_stmt ()
20571 {
20572 m_is_stmt = !m_is_stmt;
20573 }
20574
20575 /* Handle DW_LNS_const_add_pc. */
20576 void handle_const_add_pc ();
20577
20578 /* Handle DW_LNS_fixed_advance_pc. */
20579 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
20580 {
20581 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20582 m_op_index = 0;
20583 }
20584
20585 /* Handle DW_LNS_copy. */
20586 void handle_copy ()
20587 {
20588 record_line (false);
20589 m_discriminator = 0;
20590 }
20591
20592 /* Handle DW_LNE_end_sequence. */
20593 void handle_end_sequence ()
20594 {
20595 m_currently_recording_lines = true;
20596 }
20597
20598 private:
20599 /* Advance the line by LINE_DELTA. */
20600 void advance_line (int line_delta)
20601 {
20602 m_line += line_delta;
20603
20604 if (line_delta != 0)
20605 m_line_has_non_zero_discriminator = m_discriminator != 0;
20606 }
20607
20608 struct dwarf2_cu *m_cu;
20609
20610 gdbarch *m_gdbarch;
20611
20612 /* True if we're recording lines.
20613 Otherwise we're building partial symtabs and are just interested in
20614 finding include files mentioned by the line number program. */
20615 bool m_record_lines_p;
20616
20617 /* The line number header. */
20618 line_header *m_line_header;
20619
20620 /* These are part of the standard DWARF line number state machine,
20621 and initialized according to the DWARF spec. */
20622
20623 unsigned char m_op_index = 0;
20624 /* The line table index (1-based) of the current file. */
20625 file_name_index m_file = (file_name_index) 1;
20626 unsigned int m_line = 1;
20627
20628 /* These are initialized in the constructor. */
20629
20630 CORE_ADDR m_address;
20631 bool m_is_stmt;
20632 unsigned int m_discriminator;
20633
20634 /* Additional bits of state we need to track. */
20635
20636 /* The last file that we called dwarf2_start_subfile for.
20637 This is only used for TLLs. */
20638 unsigned int m_last_file = 0;
20639 /* The last file a line number was recorded for. */
20640 struct subfile *m_last_subfile = NULL;
20641
20642 /* When true, record the lines we decode. */
20643 bool m_currently_recording_lines = false;
20644
20645 /* The last line number that was recorded, used to coalesce
20646 consecutive entries for the same line. This can happen, for
20647 example, when discriminators are present. PR 17276. */
20648 unsigned int m_last_line = 0;
20649 bool m_line_has_non_zero_discriminator = false;
20650 };
20651
20652 void
20653 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
20654 {
20655 CORE_ADDR addr_adj = (((m_op_index + adjust)
20656 / m_line_header->maximum_ops_per_instruction)
20657 * m_line_header->minimum_instruction_length);
20658 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20659 m_op_index = ((m_op_index + adjust)
20660 % m_line_header->maximum_ops_per_instruction);
20661 }
20662
20663 void
20664 lnp_state_machine::handle_special_opcode (unsigned char op_code)
20665 {
20666 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
20667 CORE_ADDR addr_adj = (((m_op_index
20668 + (adj_opcode / m_line_header->line_range))
20669 / m_line_header->maximum_ops_per_instruction)
20670 * m_line_header->minimum_instruction_length);
20671 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20672 m_op_index = ((m_op_index + (adj_opcode / m_line_header->line_range))
20673 % m_line_header->maximum_ops_per_instruction);
20674
20675 int line_delta = (m_line_header->line_base
20676 + (adj_opcode % m_line_header->line_range));
20677 advance_line (line_delta);
20678 record_line (false);
20679 m_discriminator = 0;
20680 }
20681
20682 void
20683 lnp_state_machine::handle_set_file (file_name_index file)
20684 {
20685 m_file = file;
20686
20687 const file_entry *fe = current_file ();
20688 if (fe == NULL)
20689 dwarf2_debug_line_missing_file_complaint ();
20690 else if (m_record_lines_p)
20691 {
20692 const char *dir = fe->include_dir (m_line_header);
20693
20694 m_last_subfile = m_cu->builder->get_current_subfile ();
20695 m_line_has_non_zero_discriminator = m_discriminator != 0;
20696 dwarf2_start_subfile (m_cu, fe->name, dir);
20697 }
20698 }
20699
20700 void
20701 lnp_state_machine::handle_const_add_pc ()
20702 {
20703 CORE_ADDR adjust
20704 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
20705
20706 CORE_ADDR addr_adj
20707 = (((m_op_index + adjust)
20708 / m_line_header->maximum_ops_per_instruction)
20709 * m_line_header->minimum_instruction_length);
20710
20711 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20712 m_op_index = ((m_op_index + adjust)
20713 % m_line_header->maximum_ops_per_instruction);
20714 }
20715
20716 /* Return non-zero if we should add LINE to the line number table.
20717 LINE is the line to add, LAST_LINE is the last line that was added,
20718 LAST_SUBFILE is the subfile for LAST_LINE.
20719 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
20720 had a non-zero discriminator.
20721
20722 We have to be careful in the presence of discriminators.
20723 E.g., for this line:
20724
20725 for (i = 0; i < 100000; i++);
20726
20727 clang can emit four line number entries for that one line,
20728 each with a different discriminator.
20729 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
20730
20731 However, we want gdb to coalesce all four entries into one.
20732 Otherwise the user could stepi into the middle of the line and
20733 gdb would get confused about whether the pc really was in the
20734 middle of the line.
20735
20736 Things are further complicated by the fact that two consecutive
20737 line number entries for the same line is a heuristic used by gcc
20738 to denote the end of the prologue. So we can't just discard duplicate
20739 entries, we have to be selective about it. The heuristic we use is
20740 that we only collapse consecutive entries for the same line if at least
20741 one of those entries has a non-zero discriminator. PR 17276.
20742
20743 Note: Addresses in the line number state machine can never go backwards
20744 within one sequence, thus this coalescing is ok. */
20745
20746 static int
20747 dwarf_record_line_p (struct dwarf2_cu *cu,
20748 unsigned int line, unsigned int last_line,
20749 int line_has_non_zero_discriminator,
20750 struct subfile *last_subfile)
20751 {
20752 if (cu->builder->get_current_subfile () != last_subfile)
20753 return 1;
20754 if (line != last_line)
20755 return 1;
20756 /* Same line for the same file that we've seen already.
20757 As a last check, for pr 17276, only record the line if the line
20758 has never had a non-zero discriminator. */
20759 if (!line_has_non_zero_discriminator)
20760 return 1;
20761 return 0;
20762 }
20763
20764 /* Use the CU's builder to record line number LINE beginning at
20765 address ADDRESS in the line table of subfile SUBFILE. */
20766
20767 static void
20768 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
20769 unsigned int line, CORE_ADDR address,
20770 struct dwarf2_cu *cu)
20771 {
20772 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
20773
20774 if (dwarf_line_debug)
20775 {
20776 fprintf_unfiltered (gdb_stdlog,
20777 "Recording line %u, file %s, address %s\n",
20778 line, lbasename (subfile->name),
20779 paddress (gdbarch, address));
20780 }
20781
20782 if (cu != nullptr)
20783 cu->builder->record_line (subfile, line, addr);
20784 }
20785
20786 /* Subroutine of dwarf_decode_lines_1 to simplify it.
20787 Mark the end of a set of line number records.
20788 The arguments are the same as for dwarf_record_line_1.
20789 If SUBFILE is NULL the request is ignored. */
20790
20791 static void
20792 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
20793 CORE_ADDR address, struct dwarf2_cu *cu)
20794 {
20795 if (subfile == NULL)
20796 return;
20797
20798 if (dwarf_line_debug)
20799 {
20800 fprintf_unfiltered (gdb_stdlog,
20801 "Finishing current line, file %s, address %s\n",
20802 lbasename (subfile->name),
20803 paddress (gdbarch, address));
20804 }
20805
20806 dwarf_record_line_1 (gdbarch, subfile, 0, address, cu);
20807 }
20808
20809 void
20810 lnp_state_machine::record_line (bool end_sequence)
20811 {
20812 if (dwarf_line_debug)
20813 {
20814 fprintf_unfiltered (gdb_stdlog,
20815 "Processing actual line %u: file %u,"
20816 " address %s, is_stmt %u, discrim %u\n",
20817 m_line, to_underlying (m_file),
20818 paddress (m_gdbarch, m_address),
20819 m_is_stmt, m_discriminator);
20820 }
20821
20822 file_entry *fe = current_file ();
20823
20824 if (fe == NULL)
20825 dwarf2_debug_line_missing_file_complaint ();
20826 /* For now we ignore lines not starting on an instruction boundary.
20827 But not when processing end_sequence for compatibility with the
20828 previous version of the code. */
20829 else if (m_op_index == 0 || end_sequence)
20830 {
20831 fe->included_p = 1;
20832 if (m_record_lines_p && (producer_is_codewarrior (m_cu) || m_is_stmt))
20833 {
20834 if (m_last_subfile != m_cu->builder->get_current_subfile ()
20835 || end_sequence)
20836 {
20837 dwarf_finish_line (m_gdbarch, m_last_subfile, m_address,
20838 m_currently_recording_lines ? m_cu : nullptr);
20839 }
20840
20841 if (!end_sequence)
20842 {
20843 if (dwarf_record_line_p (m_cu, m_line, m_last_line,
20844 m_line_has_non_zero_discriminator,
20845 m_last_subfile))
20846 {
20847 dwarf_record_line_1 (m_gdbarch,
20848 m_cu->builder->get_current_subfile (),
20849 m_line, m_address,
20850 m_currently_recording_lines ? m_cu : nullptr);
20851 }
20852 m_last_subfile = m_cu->builder->get_current_subfile ();
20853 m_last_line = m_line;
20854 }
20855 }
20856 }
20857 }
20858
20859 lnp_state_machine::lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch,
20860 line_header *lh, bool record_lines_p)
20861 {
20862 m_cu = cu;
20863 m_gdbarch = arch;
20864 m_record_lines_p = record_lines_p;
20865 m_line_header = lh;
20866
20867 m_currently_recording_lines = true;
20868
20869 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
20870 was a line entry for it so that the backend has a chance to adjust it
20871 and also record it in case it needs it. This is currently used by MIPS
20872 code, cf. `mips_adjust_dwarf2_line'. */
20873 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
20874 m_is_stmt = lh->default_is_stmt;
20875 m_discriminator = 0;
20876 }
20877
20878 void
20879 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
20880 const gdb_byte *line_ptr,
20881 CORE_ADDR unrelocated_lowpc, CORE_ADDR address)
20882 {
20883 /* If ADDRESS < UNRELOCATED_LOWPC then it's not a usable value, it's outside
20884 the pc range of the CU. However, we restrict the test to only ADDRESS
20885 values of zero to preserve GDB's previous behaviour which is to handle
20886 the specific case of a function being GC'd by the linker. */
20887
20888 if (address == 0 && address < unrelocated_lowpc)
20889 {
20890 /* This line table is for a function which has been
20891 GCd by the linker. Ignore it. PR gdb/12528 */
20892
20893 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20894 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
20895
20896 complaint (_(".debug_line address at offset 0x%lx is 0 [in module %s]"),
20897 line_offset, objfile_name (objfile));
20898 m_currently_recording_lines = false;
20899 /* Note: m_currently_recording_lines is left as false until we see
20900 DW_LNE_end_sequence. */
20901 }
20902 }
20903
20904 /* Subroutine of dwarf_decode_lines to simplify it.
20905 Process the line number information in LH.
20906 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
20907 program in order to set included_p for every referenced header. */
20908
20909 static void
20910 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
20911 const int decode_for_pst_p, CORE_ADDR lowpc)
20912 {
20913 const gdb_byte *line_ptr, *extended_end;
20914 const gdb_byte *line_end;
20915 unsigned int bytes_read, extended_len;
20916 unsigned char op_code, extended_op;
20917 CORE_ADDR baseaddr;
20918 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20919 bfd *abfd = objfile->obfd;
20920 struct gdbarch *gdbarch = get_objfile_arch (objfile);
20921 /* True if we're recording line info (as opposed to building partial
20922 symtabs and just interested in finding include files mentioned by
20923 the line number program). */
20924 bool record_lines_p = !decode_for_pst_p;
20925
20926 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
20927
20928 line_ptr = lh->statement_program_start;
20929 line_end = lh->statement_program_end;
20930
20931 /* Read the statement sequences until there's nothing left. */
20932 while (line_ptr < line_end)
20933 {
20934 /* The DWARF line number program state machine. Reset the state
20935 machine at the start of each sequence. */
20936 lnp_state_machine state_machine (cu, gdbarch, lh, record_lines_p);
20937 bool end_sequence = false;
20938
20939 if (record_lines_p)
20940 {
20941 /* Start a subfile for the current file of the state
20942 machine. */
20943 const file_entry *fe = state_machine.current_file ();
20944
20945 if (fe != NULL)
20946 dwarf2_start_subfile (cu, fe->name, fe->include_dir (lh));
20947 }
20948
20949 /* Decode the table. */
20950 while (line_ptr < line_end && !end_sequence)
20951 {
20952 op_code = read_1_byte (abfd, line_ptr);
20953 line_ptr += 1;
20954
20955 if (op_code >= lh->opcode_base)
20956 {
20957 /* Special opcode. */
20958 state_machine.handle_special_opcode (op_code);
20959 }
20960 else switch (op_code)
20961 {
20962 case DW_LNS_extended_op:
20963 extended_len = read_unsigned_leb128 (abfd, line_ptr,
20964 &bytes_read);
20965 line_ptr += bytes_read;
20966 extended_end = line_ptr + extended_len;
20967 extended_op = read_1_byte (abfd, line_ptr);
20968 line_ptr += 1;
20969 switch (extended_op)
20970 {
20971 case DW_LNE_end_sequence:
20972 state_machine.handle_end_sequence ();
20973 end_sequence = true;
20974 break;
20975 case DW_LNE_set_address:
20976 {
20977 CORE_ADDR address
20978 = read_address (abfd, line_ptr, cu, &bytes_read);
20979 line_ptr += bytes_read;
20980
20981 state_machine.check_line_address (cu, line_ptr,
20982 lowpc - baseaddr, address);
20983 state_machine.handle_set_address (baseaddr, address);
20984 }
20985 break;
20986 case DW_LNE_define_file:
20987 {
20988 const char *cur_file;
20989 unsigned int mod_time, length;
20990 dir_index dindex;
20991
20992 cur_file = read_direct_string (abfd, line_ptr,
20993 &bytes_read);
20994 line_ptr += bytes_read;
20995 dindex = (dir_index)
20996 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20997 line_ptr += bytes_read;
20998 mod_time =
20999 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21000 line_ptr += bytes_read;
21001 length =
21002 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21003 line_ptr += bytes_read;
21004 lh->add_file_name (cur_file, dindex, mod_time, length);
21005 }
21006 break;
21007 case DW_LNE_set_discriminator:
21008 {
21009 /* The discriminator is not interesting to the
21010 debugger; just ignore it. We still need to
21011 check its value though:
21012 if there are consecutive entries for the same
21013 (non-prologue) line we want to coalesce them.
21014 PR 17276. */
21015 unsigned int discr
21016 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21017 line_ptr += bytes_read;
21018
21019 state_machine.handle_set_discriminator (discr);
21020 }
21021 break;
21022 default:
21023 complaint (_("mangled .debug_line section"));
21024 return;
21025 }
21026 /* Make sure that we parsed the extended op correctly. If e.g.
21027 we expected a different address size than the producer used,
21028 we may have read the wrong number of bytes. */
21029 if (line_ptr != extended_end)
21030 {
21031 complaint (_("mangled .debug_line section"));
21032 return;
21033 }
21034 break;
21035 case DW_LNS_copy:
21036 state_machine.handle_copy ();
21037 break;
21038 case DW_LNS_advance_pc:
21039 {
21040 CORE_ADDR adjust
21041 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21042 line_ptr += bytes_read;
21043
21044 state_machine.handle_advance_pc (adjust);
21045 }
21046 break;
21047 case DW_LNS_advance_line:
21048 {
21049 int line_delta
21050 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
21051 line_ptr += bytes_read;
21052
21053 state_machine.handle_advance_line (line_delta);
21054 }
21055 break;
21056 case DW_LNS_set_file:
21057 {
21058 file_name_index file
21059 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
21060 &bytes_read);
21061 line_ptr += bytes_read;
21062
21063 state_machine.handle_set_file (file);
21064 }
21065 break;
21066 case DW_LNS_set_column:
21067 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21068 line_ptr += bytes_read;
21069 break;
21070 case DW_LNS_negate_stmt:
21071 state_machine.handle_negate_stmt ();
21072 break;
21073 case DW_LNS_set_basic_block:
21074 break;
21075 /* Add to the address register of the state machine the
21076 address increment value corresponding to special opcode
21077 255. I.e., this value is scaled by the minimum
21078 instruction length since special opcode 255 would have
21079 scaled the increment. */
21080 case DW_LNS_const_add_pc:
21081 state_machine.handle_const_add_pc ();
21082 break;
21083 case DW_LNS_fixed_advance_pc:
21084 {
21085 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
21086 line_ptr += 2;
21087
21088 state_machine.handle_fixed_advance_pc (addr_adj);
21089 }
21090 break;
21091 default:
21092 {
21093 /* Unknown standard opcode, ignore it. */
21094 int i;
21095
21096 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
21097 {
21098 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21099 line_ptr += bytes_read;
21100 }
21101 }
21102 }
21103 }
21104
21105 if (!end_sequence)
21106 dwarf2_debug_line_missing_end_sequence_complaint ();
21107
21108 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
21109 in which case we still finish recording the last line). */
21110 state_machine.record_line (true);
21111 }
21112 }
21113
21114 /* Decode the Line Number Program (LNP) for the given line_header
21115 structure and CU. The actual information extracted and the type
21116 of structures created from the LNP depends on the value of PST.
21117
21118 1. If PST is NULL, then this procedure uses the data from the program
21119 to create all necessary symbol tables, and their linetables.
21120
21121 2. If PST is not NULL, this procedure reads the program to determine
21122 the list of files included by the unit represented by PST, and
21123 builds all the associated partial symbol tables.
21124
21125 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
21126 It is used for relative paths in the line table.
21127 NOTE: When processing partial symtabs (pst != NULL),
21128 comp_dir == pst->dirname.
21129
21130 NOTE: It is important that psymtabs have the same file name (via strcmp)
21131 as the corresponding symtab. Since COMP_DIR is not used in the name of the
21132 symtab we don't use it in the name of the psymtabs we create.
21133 E.g. expand_line_sal requires this when finding psymtabs to expand.
21134 A good testcase for this is mb-inline.exp.
21135
21136 LOWPC is the lowest address in CU (or 0 if not known).
21137
21138 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
21139 for its PC<->lines mapping information. Otherwise only the filename
21140 table is read in. */
21141
21142 static void
21143 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
21144 struct dwarf2_cu *cu, struct partial_symtab *pst,
21145 CORE_ADDR lowpc, int decode_mapping)
21146 {
21147 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21148 const int decode_for_pst_p = (pst != NULL);
21149
21150 if (decode_mapping)
21151 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
21152
21153 if (decode_for_pst_p)
21154 {
21155 int file_index;
21156
21157 /* Now that we're done scanning the Line Header Program, we can
21158 create the psymtab of each included file. */
21159 for (file_index = 0; file_index < lh->file_names.size (); file_index++)
21160 if (lh->file_names[file_index].included_p == 1)
21161 {
21162 gdb::unique_xmalloc_ptr<char> name_holder;
21163 const char *include_name =
21164 psymtab_include_file_name (lh, file_index, pst, comp_dir,
21165 &name_holder);
21166 if (include_name != NULL)
21167 dwarf2_create_include_psymtab (include_name, pst, objfile);
21168 }
21169 }
21170 else
21171 {
21172 /* Make sure a symtab is created for every file, even files
21173 which contain only variables (i.e. no code with associated
21174 line numbers). */
21175 struct compunit_symtab *cust = cu->builder->get_compunit_symtab ();
21176 int i;
21177
21178 for (i = 0; i < lh->file_names.size (); i++)
21179 {
21180 file_entry &fe = lh->file_names[i];
21181
21182 dwarf2_start_subfile (cu, fe.name, fe.include_dir (lh));
21183
21184 if (cu->builder->get_current_subfile ()->symtab == NULL)
21185 {
21186 cu->builder->get_current_subfile ()->symtab
21187 = allocate_symtab (cust,
21188 cu->builder->get_current_subfile ()->name);
21189 }
21190 fe.symtab = cu->builder->get_current_subfile ()->symtab;
21191 }
21192 }
21193 }
21194
21195 /* Start a subfile for DWARF. FILENAME is the name of the file and
21196 DIRNAME the name of the source directory which contains FILENAME
21197 or NULL if not known.
21198 This routine tries to keep line numbers from identical absolute and
21199 relative file names in a common subfile.
21200
21201 Using the `list' example from the GDB testsuite, which resides in
21202 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
21203 of /srcdir/list0.c yields the following debugging information for list0.c:
21204
21205 DW_AT_name: /srcdir/list0.c
21206 DW_AT_comp_dir: /compdir
21207 files.files[0].name: list0.h
21208 files.files[0].dir: /srcdir
21209 files.files[1].name: list0.c
21210 files.files[1].dir: /srcdir
21211
21212 The line number information for list0.c has to end up in a single
21213 subfile, so that `break /srcdir/list0.c:1' works as expected.
21214 start_subfile will ensure that this happens provided that we pass the
21215 concatenation of files.files[1].dir and files.files[1].name as the
21216 subfile's name. */
21217
21218 static void
21219 dwarf2_start_subfile (struct dwarf2_cu *cu, const char *filename,
21220 const char *dirname)
21221 {
21222 char *copy = NULL;
21223
21224 /* In order not to lose the line information directory,
21225 we concatenate it to the filename when it makes sense.
21226 Note that the Dwarf3 standard says (speaking of filenames in line
21227 information): ``The directory index is ignored for file names
21228 that represent full path names''. Thus ignoring dirname in the
21229 `else' branch below isn't an issue. */
21230
21231 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
21232 {
21233 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
21234 filename = copy;
21235 }
21236
21237 cu->builder->start_subfile (filename);
21238
21239 if (copy != NULL)
21240 xfree (copy);
21241 }
21242
21243 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
21244 buildsym_compunit constructor. */
21245
21246 static struct compunit_symtab *
21247 dwarf2_start_symtab (struct dwarf2_cu *cu,
21248 const char *name, const char *comp_dir, CORE_ADDR low_pc)
21249 {
21250 gdb_assert (cu->builder == nullptr);
21251
21252 cu->builder.reset (new struct buildsym_compunit
21253 (cu->per_cu->dwarf2_per_objfile->objfile,
21254 name, comp_dir, cu->language, low_pc));
21255
21256 cu->list_in_scope = cu->builder->get_file_symbols ();
21257
21258 cu->builder->record_debugformat ("DWARF 2");
21259 cu->builder->record_producer (cu->producer);
21260
21261 cu->processing_has_namespace_info = false;
21262
21263 return cu->builder->get_compunit_symtab ();
21264 }
21265
21266 static void
21267 var_decode_location (struct attribute *attr, struct symbol *sym,
21268 struct dwarf2_cu *cu)
21269 {
21270 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21271 struct comp_unit_head *cu_header = &cu->header;
21272
21273 /* NOTE drow/2003-01-30: There used to be a comment and some special
21274 code here to turn a symbol with DW_AT_external and a
21275 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
21276 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
21277 with some versions of binutils) where shared libraries could have
21278 relocations against symbols in their debug information - the
21279 minimal symbol would have the right address, but the debug info
21280 would not. It's no longer necessary, because we will explicitly
21281 apply relocations when we read in the debug information now. */
21282
21283 /* A DW_AT_location attribute with no contents indicates that a
21284 variable has been optimized away. */
21285 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
21286 {
21287 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21288 return;
21289 }
21290
21291 /* Handle one degenerate form of location expression specially, to
21292 preserve GDB's previous behavior when section offsets are
21293 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
21294 then mark this symbol as LOC_STATIC. */
21295
21296 if (attr_form_is_block (attr)
21297 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
21298 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
21299 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
21300 && (DW_BLOCK (attr)->size
21301 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
21302 {
21303 unsigned int dummy;
21304
21305 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
21306 SYMBOL_VALUE_ADDRESS (sym) =
21307 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
21308 else
21309 SYMBOL_VALUE_ADDRESS (sym) =
21310 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
21311 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
21312 fixup_symbol_section (sym, objfile);
21313 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
21314 SYMBOL_SECTION (sym));
21315 return;
21316 }
21317
21318 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
21319 expression evaluator, and use LOC_COMPUTED only when necessary
21320 (i.e. when the value of a register or memory location is
21321 referenced, or a thread-local block, etc.). Then again, it might
21322 not be worthwhile. I'm assuming that it isn't unless performance
21323 or memory numbers show me otherwise. */
21324
21325 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
21326
21327 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
21328 cu->has_loclist = true;
21329 }
21330
21331 /* Given a pointer to a DWARF information entry, figure out if we need
21332 to make a symbol table entry for it, and if so, create a new entry
21333 and return a pointer to it.
21334 If TYPE is NULL, determine symbol type from the die, otherwise
21335 used the passed type.
21336 If SPACE is not NULL, use it to hold the new symbol. If it is
21337 NULL, allocate a new symbol on the objfile's obstack. */
21338
21339 static struct symbol *
21340 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
21341 struct symbol *space)
21342 {
21343 struct dwarf2_per_objfile *dwarf2_per_objfile
21344 = cu->per_cu->dwarf2_per_objfile;
21345 struct objfile *objfile = dwarf2_per_objfile->objfile;
21346 struct gdbarch *gdbarch = get_objfile_arch (objfile);
21347 struct symbol *sym = NULL;
21348 const char *name;
21349 struct attribute *attr = NULL;
21350 struct attribute *attr2 = NULL;
21351 CORE_ADDR baseaddr;
21352 struct pending **list_to_add = NULL;
21353
21354 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
21355
21356 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21357
21358 name = dwarf2_name (die, cu);
21359 if (name)
21360 {
21361 const char *linkagename;
21362 int suppress_add = 0;
21363
21364 if (space)
21365 sym = space;
21366 else
21367 sym = allocate_symbol (objfile);
21368 OBJSTAT (objfile, n_syms++);
21369
21370 /* Cache this symbol's name and the name's demangled form (if any). */
21371 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
21372 linkagename = dwarf2_physname (name, die, cu);
21373 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
21374
21375 /* Fortran does not have mangling standard and the mangling does differ
21376 between gfortran, iFort etc. */
21377 if (cu->language == language_fortran
21378 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
21379 symbol_set_demangled_name (&(sym->ginfo),
21380 dwarf2_full_name (name, die, cu),
21381 NULL);
21382
21383 /* Default assumptions.
21384 Use the passed type or decode it from the die. */
21385 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21386 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21387 if (type != NULL)
21388 SYMBOL_TYPE (sym) = type;
21389 else
21390 SYMBOL_TYPE (sym) = die_type (die, cu);
21391 attr = dwarf2_attr (die,
21392 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
21393 cu);
21394 if (attr)
21395 {
21396 SYMBOL_LINE (sym) = DW_UNSND (attr);
21397 }
21398
21399 attr = dwarf2_attr (die,
21400 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
21401 cu);
21402 if (attr)
21403 {
21404 file_name_index file_index = (file_name_index) DW_UNSND (attr);
21405 struct file_entry *fe;
21406
21407 if (cu->line_header != NULL)
21408 fe = cu->line_header->file_name_at (file_index);
21409 else
21410 fe = NULL;
21411
21412 if (fe == NULL)
21413 complaint (_("file index out of range"));
21414 else
21415 symbol_set_symtab (sym, fe->symtab);
21416 }
21417
21418 switch (die->tag)
21419 {
21420 case DW_TAG_label:
21421 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
21422 if (attr)
21423 {
21424 CORE_ADDR addr;
21425
21426 addr = attr_value_as_address (attr);
21427 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
21428 SYMBOL_VALUE_ADDRESS (sym) = addr;
21429 }
21430 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
21431 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
21432 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
21433 dw2_add_symbol_to_list (sym, cu->list_in_scope);
21434 break;
21435 case DW_TAG_subprogram:
21436 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21437 finish_block. */
21438 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21439 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21440 if ((attr2 && (DW_UNSND (attr2) != 0))
21441 || cu->language == language_ada)
21442 {
21443 /* Subprograms marked external are stored as a global symbol.
21444 Ada subprograms, whether marked external or not, are always
21445 stored as a global symbol, because we want to be able to
21446 access them globally. For instance, we want to be able
21447 to break on a nested subprogram without having to
21448 specify the context. */
21449 list_to_add = cu->builder->get_global_symbols ();
21450 }
21451 else
21452 {
21453 list_to_add = cu->list_in_scope;
21454 }
21455 break;
21456 case DW_TAG_inlined_subroutine:
21457 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21458 finish_block. */
21459 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21460 SYMBOL_INLINED (sym) = 1;
21461 list_to_add = cu->list_in_scope;
21462 break;
21463 case DW_TAG_template_value_param:
21464 suppress_add = 1;
21465 /* Fall through. */
21466 case DW_TAG_constant:
21467 case DW_TAG_variable:
21468 case DW_TAG_member:
21469 /* Compilation with minimal debug info may result in
21470 variables with missing type entries. Change the
21471 misleading `void' type to something sensible. */
21472 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
21473 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
21474
21475 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21476 /* In the case of DW_TAG_member, we should only be called for
21477 static const members. */
21478 if (die->tag == DW_TAG_member)
21479 {
21480 /* dwarf2_add_field uses die_is_declaration,
21481 so we do the same. */
21482 gdb_assert (die_is_declaration (die, cu));
21483 gdb_assert (attr);
21484 }
21485 if (attr)
21486 {
21487 dwarf2_const_value (attr, sym, cu);
21488 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21489 if (!suppress_add)
21490 {
21491 if (attr2 && (DW_UNSND (attr2) != 0))
21492 list_to_add = cu->builder->get_global_symbols ();
21493 else
21494 list_to_add = cu->list_in_scope;
21495 }
21496 break;
21497 }
21498 attr = dwarf2_attr (die, DW_AT_location, cu);
21499 if (attr)
21500 {
21501 var_decode_location (attr, sym, cu);
21502 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21503
21504 /* Fortran explicitly imports any global symbols to the local
21505 scope by DW_TAG_common_block. */
21506 if (cu->language == language_fortran && die->parent
21507 && die->parent->tag == DW_TAG_common_block)
21508 attr2 = NULL;
21509
21510 if (SYMBOL_CLASS (sym) == LOC_STATIC
21511 && SYMBOL_VALUE_ADDRESS (sym) == 0
21512 && !dwarf2_per_objfile->has_section_at_zero)
21513 {
21514 /* When a static variable is eliminated by the linker,
21515 the corresponding debug information is not stripped
21516 out, but the variable address is set to null;
21517 do not add such variables into symbol table. */
21518 }
21519 else if (attr2 && (DW_UNSND (attr2) != 0))
21520 {
21521 /* Workaround gfortran PR debug/40040 - it uses
21522 DW_AT_location for variables in -fPIC libraries which may
21523 get overriden by other libraries/executable and get
21524 a different address. Resolve it by the minimal symbol
21525 which may come from inferior's executable using copy
21526 relocation. Make this workaround only for gfortran as for
21527 other compilers GDB cannot guess the minimal symbol
21528 Fortran mangling kind. */
21529 if (cu->language == language_fortran && die->parent
21530 && die->parent->tag == DW_TAG_module
21531 && cu->producer
21532 && startswith (cu->producer, "GNU Fortran"))
21533 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21534
21535 /* A variable with DW_AT_external is never static,
21536 but it may be block-scoped. */
21537 list_to_add
21538 = (cu->list_in_scope == cu->builder->get_file_symbols ()
21539 ? cu->builder->get_global_symbols ()
21540 : cu->list_in_scope);
21541 }
21542 else
21543 list_to_add = cu->list_in_scope;
21544 }
21545 else
21546 {
21547 /* We do not know the address of this symbol.
21548 If it is an external symbol and we have type information
21549 for it, enter the symbol as a LOC_UNRESOLVED symbol.
21550 The address of the variable will then be determined from
21551 the minimal symbol table whenever the variable is
21552 referenced. */
21553 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21554
21555 /* Fortran explicitly imports any global symbols to the local
21556 scope by DW_TAG_common_block. */
21557 if (cu->language == language_fortran && die->parent
21558 && die->parent->tag == DW_TAG_common_block)
21559 {
21560 /* SYMBOL_CLASS doesn't matter here because
21561 read_common_block is going to reset it. */
21562 if (!suppress_add)
21563 list_to_add = cu->list_in_scope;
21564 }
21565 else if (attr2 && (DW_UNSND (attr2) != 0)
21566 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
21567 {
21568 /* A variable with DW_AT_external is never static, but it
21569 may be block-scoped. */
21570 list_to_add
21571 = (cu->list_in_scope == cu->builder->get_file_symbols ()
21572 ? cu->builder->get_global_symbols ()
21573 : cu->list_in_scope);
21574
21575 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21576 }
21577 else if (!die_is_declaration (die, cu))
21578 {
21579 /* Use the default LOC_OPTIMIZED_OUT class. */
21580 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
21581 if (!suppress_add)
21582 list_to_add = cu->list_in_scope;
21583 }
21584 }
21585 break;
21586 case DW_TAG_formal_parameter:
21587 {
21588 /* If we are inside a function, mark this as an argument. If
21589 not, we might be looking at an argument to an inlined function
21590 when we do not have enough information to show inlined frames;
21591 pretend it's a local variable in that case so that the user can
21592 still see it. */
21593 struct context_stack *curr
21594 = cu->builder->get_current_context_stack ();
21595 if (curr != nullptr && curr->name != nullptr)
21596 SYMBOL_IS_ARGUMENT (sym) = 1;
21597 attr = dwarf2_attr (die, DW_AT_location, cu);
21598 if (attr)
21599 {
21600 var_decode_location (attr, sym, cu);
21601 }
21602 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21603 if (attr)
21604 {
21605 dwarf2_const_value (attr, sym, cu);
21606 }
21607
21608 list_to_add = cu->list_in_scope;
21609 }
21610 break;
21611 case DW_TAG_unspecified_parameters:
21612 /* From varargs functions; gdb doesn't seem to have any
21613 interest in this information, so just ignore it for now.
21614 (FIXME?) */
21615 break;
21616 case DW_TAG_template_type_param:
21617 suppress_add = 1;
21618 /* Fall through. */
21619 case DW_TAG_class_type:
21620 case DW_TAG_interface_type:
21621 case DW_TAG_structure_type:
21622 case DW_TAG_union_type:
21623 case DW_TAG_set_type:
21624 case DW_TAG_enumeration_type:
21625 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21626 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
21627
21628 {
21629 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
21630 really ever be static objects: otherwise, if you try
21631 to, say, break of a class's method and you're in a file
21632 which doesn't mention that class, it won't work unless
21633 the check for all static symbols in lookup_symbol_aux
21634 saves you. See the OtherFileClass tests in
21635 gdb.c++/namespace.exp. */
21636
21637 if (!suppress_add)
21638 {
21639 list_to_add
21640 = (cu->list_in_scope == cu->builder->get_file_symbols ()
21641 && cu->language == language_cplus
21642 ? cu->builder->get_global_symbols ()
21643 : cu->list_in_scope);
21644
21645 /* The semantics of C++ state that "struct foo {
21646 ... }" also defines a typedef for "foo". */
21647 if (cu->language == language_cplus
21648 || cu->language == language_ada
21649 || cu->language == language_d
21650 || cu->language == language_rust)
21651 {
21652 /* The symbol's name is already allocated along
21653 with this objfile, so we don't need to
21654 duplicate it for the type. */
21655 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
21656 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
21657 }
21658 }
21659 }
21660 break;
21661 case DW_TAG_typedef:
21662 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21663 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21664 list_to_add = cu->list_in_scope;
21665 break;
21666 case DW_TAG_base_type:
21667 case DW_TAG_subrange_type:
21668 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21669 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21670 list_to_add = cu->list_in_scope;
21671 break;
21672 case DW_TAG_enumerator:
21673 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21674 if (attr)
21675 {
21676 dwarf2_const_value (attr, sym, cu);
21677 }
21678 {
21679 /* NOTE: carlton/2003-11-10: See comment above in the
21680 DW_TAG_class_type, etc. block. */
21681
21682 list_to_add
21683 = (cu->list_in_scope == cu->builder->get_file_symbols ()
21684 && cu->language == language_cplus
21685 ? cu->builder->get_global_symbols ()
21686 : cu->list_in_scope);
21687 }
21688 break;
21689 case DW_TAG_imported_declaration:
21690 case DW_TAG_namespace:
21691 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21692 list_to_add = cu->builder->get_global_symbols ();
21693 break;
21694 case DW_TAG_module:
21695 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21696 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
21697 list_to_add = cu->builder->get_global_symbols ();
21698 break;
21699 case DW_TAG_common_block:
21700 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
21701 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
21702 dw2_add_symbol_to_list (sym, cu->list_in_scope);
21703 break;
21704 default:
21705 /* Not a tag we recognize. Hopefully we aren't processing
21706 trash data, but since we must specifically ignore things
21707 we don't recognize, there is nothing else we should do at
21708 this point. */
21709 complaint (_("unsupported tag: '%s'"),
21710 dwarf_tag_name (die->tag));
21711 break;
21712 }
21713
21714 if (suppress_add)
21715 {
21716 sym->hash_next = objfile->template_symbols;
21717 objfile->template_symbols = sym;
21718 list_to_add = NULL;
21719 }
21720
21721 if (list_to_add != NULL)
21722 dw2_add_symbol_to_list (sym, list_to_add);
21723
21724 /* For the benefit of old versions of GCC, check for anonymous
21725 namespaces based on the demangled name. */
21726 if (!cu->processing_has_namespace_info
21727 && cu->language == language_cplus)
21728 cp_scan_for_anonymous_namespaces (cu->builder.get (), sym, objfile);
21729 }
21730 return (sym);
21731 }
21732
21733 /* Given an attr with a DW_FORM_dataN value in host byte order,
21734 zero-extend it as appropriate for the symbol's type. The DWARF
21735 standard (v4) is not entirely clear about the meaning of using
21736 DW_FORM_dataN for a constant with a signed type, where the type is
21737 wider than the data. The conclusion of a discussion on the DWARF
21738 list was that this is unspecified. We choose to always zero-extend
21739 because that is the interpretation long in use by GCC. */
21740
21741 static gdb_byte *
21742 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
21743 struct dwarf2_cu *cu, LONGEST *value, int bits)
21744 {
21745 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21746 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
21747 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
21748 LONGEST l = DW_UNSND (attr);
21749
21750 if (bits < sizeof (*value) * 8)
21751 {
21752 l &= ((LONGEST) 1 << bits) - 1;
21753 *value = l;
21754 }
21755 else if (bits == sizeof (*value) * 8)
21756 *value = l;
21757 else
21758 {
21759 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
21760 store_unsigned_integer (bytes, bits / 8, byte_order, l);
21761 return bytes;
21762 }
21763
21764 return NULL;
21765 }
21766
21767 /* Read a constant value from an attribute. Either set *VALUE, or if
21768 the value does not fit in *VALUE, set *BYTES - either already
21769 allocated on the objfile obstack, or newly allocated on OBSTACK,
21770 or, set *BATON, if we translated the constant to a location
21771 expression. */
21772
21773 static void
21774 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
21775 const char *name, struct obstack *obstack,
21776 struct dwarf2_cu *cu,
21777 LONGEST *value, const gdb_byte **bytes,
21778 struct dwarf2_locexpr_baton **baton)
21779 {
21780 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21781 struct comp_unit_head *cu_header = &cu->header;
21782 struct dwarf_block *blk;
21783 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
21784 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
21785
21786 *value = 0;
21787 *bytes = NULL;
21788 *baton = NULL;
21789
21790 switch (attr->form)
21791 {
21792 case DW_FORM_addr:
21793 case DW_FORM_GNU_addr_index:
21794 {
21795 gdb_byte *data;
21796
21797 if (TYPE_LENGTH (type) != cu_header->addr_size)
21798 dwarf2_const_value_length_mismatch_complaint (name,
21799 cu_header->addr_size,
21800 TYPE_LENGTH (type));
21801 /* Symbols of this form are reasonably rare, so we just
21802 piggyback on the existing location code rather than writing
21803 a new implementation of symbol_computed_ops. */
21804 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
21805 (*baton)->per_cu = cu->per_cu;
21806 gdb_assert ((*baton)->per_cu);
21807
21808 (*baton)->size = 2 + cu_header->addr_size;
21809 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
21810 (*baton)->data = data;
21811
21812 data[0] = DW_OP_addr;
21813 store_unsigned_integer (&data[1], cu_header->addr_size,
21814 byte_order, DW_ADDR (attr));
21815 data[cu_header->addr_size + 1] = DW_OP_stack_value;
21816 }
21817 break;
21818 case DW_FORM_string:
21819 case DW_FORM_strp:
21820 case DW_FORM_GNU_str_index:
21821 case DW_FORM_GNU_strp_alt:
21822 /* DW_STRING is already allocated on the objfile obstack, point
21823 directly to it. */
21824 *bytes = (const gdb_byte *) DW_STRING (attr);
21825 break;
21826 case DW_FORM_block1:
21827 case DW_FORM_block2:
21828 case DW_FORM_block4:
21829 case DW_FORM_block:
21830 case DW_FORM_exprloc:
21831 case DW_FORM_data16:
21832 blk = DW_BLOCK (attr);
21833 if (TYPE_LENGTH (type) != blk->size)
21834 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
21835 TYPE_LENGTH (type));
21836 *bytes = blk->data;
21837 break;
21838
21839 /* The DW_AT_const_value attributes are supposed to carry the
21840 symbol's value "represented as it would be on the target
21841 architecture." By the time we get here, it's already been
21842 converted to host endianness, so we just need to sign- or
21843 zero-extend it as appropriate. */
21844 case DW_FORM_data1:
21845 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
21846 break;
21847 case DW_FORM_data2:
21848 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
21849 break;
21850 case DW_FORM_data4:
21851 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
21852 break;
21853 case DW_FORM_data8:
21854 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
21855 break;
21856
21857 case DW_FORM_sdata:
21858 case DW_FORM_implicit_const:
21859 *value = DW_SND (attr);
21860 break;
21861
21862 case DW_FORM_udata:
21863 *value = DW_UNSND (attr);
21864 break;
21865
21866 default:
21867 complaint (_("unsupported const value attribute form: '%s'"),
21868 dwarf_form_name (attr->form));
21869 *value = 0;
21870 break;
21871 }
21872 }
21873
21874
21875 /* Copy constant value from an attribute to a symbol. */
21876
21877 static void
21878 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
21879 struct dwarf2_cu *cu)
21880 {
21881 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21882 LONGEST value;
21883 const gdb_byte *bytes;
21884 struct dwarf2_locexpr_baton *baton;
21885
21886 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
21887 SYMBOL_PRINT_NAME (sym),
21888 &objfile->objfile_obstack, cu,
21889 &value, &bytes, &baton);
21890
21891 if (baton != NULL)
21892 {
21893 SYMBOL_LOCATION_BATON (sym) = baton;
21894 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
21895 }
21896 else if (bytes != NULL)
21897 {
21898 SYMBOL_VALUE_BYTES (sym) = bytes;
21899 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
21900 }
21901 else
21902 {
21903 SYMBOL_VALUE (sym) = value;
21904 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
21905 }
21906 }
21907
21908 /* Return the type of the die in question using its DW_AT_type attribute. */
21909
21910 static struct type *
21911 die_type (struct die_info *die, struct dwarf2_cu *cu)
21912 {
21913 struct attribute *type_attr;
21914
21915 type_attr = dwarf2_attr (die, DW_AT_type, cu);
21916 if (!type_attr)
21917 {
21918 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21919 /* A missing DW_AT_type represents a void type. */
21920 return objfile_type (objfile)->builtin_void;
21921 }
21922
21923 return lookup_die_type (die, type_attr, cu);
21924 }
21925
21926 /* True iff CU's producer generates GNAT Ada auxiliary information
21927 that allows to find parallel types through that information instead
21928 of having to do expensive parallel lookups by type name. */
21929
21930 static int
21931 need_gnat_info (struct dwarf2_cu *cu)
21932 {
21933 /* Assume that the Ada compiler was GNAT, which always produces
21934 the auxiliary information. */
21935 return (cu->language == language_ada);
21936 }
21937
21938 /* Return the auxiliary type of the die in question using its
21939 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
21940 attribute is not present. */
21941
21942 static struct type *
21943 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
21944 {
21945 struct attribute *type_attr;
21946
21947 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
21948 if (!type_attr)
21949 return NULL;
21950
21951 return lookup_die_type (die, type_attr, cu);
21952 }
21953
21954 /* If DIE has a descriptive_type attribute, then set the TYPE's
21955 descriptive type accordingly. */
21956
21957 static void
21958 set_descriptive_type (struct type *type, struct die_info *die,
21959 struct dwarf2_cu *cu)
21960 {
21961 struct type *descriptive_type = die_descriptive_type (die, cu);
21962
21963 if (descriptive_type)
21964 {
21965 ALLOCATE_GNAT_AUX_TYPE (type);
21966 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
21967 }
21968 }
21969
21970 /* Return the containing type of the die in question using its
21971 DW_AT_containing_type attribute. */
21972
21973 static struct type *
21974 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
21975 {
21976 struct attribute *type_attr;
21977 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21978
21979 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
21980 if (!type_attr)
21981 error (_("Dwarf Error: Problem turning containing type into gdb type "
21982 "[in module %s]"), objfile_name (objfile));
21983
21984 return lookup_die_type (die, type_attr, cu);
21985 }
21986
21987 /* Return an error marker type to use for the ill formed type in DIE/CU. */
21988
21989 static struct type *
21990 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
21991 {
21992 struct dwarf2_per_objfile *dwarf2_per_objfile
21993 = cu->per_cu->dwarf2_per_objfile;
21994 struct objfile *objfile = dwarf2_per_objfile->objfile;
21995 char *saved;
21996
21997 std::string message
21998 = string_printf (_("<unknown type in %s, CU %s, DIE %s>"),
21999 objfile_name (objfile),
22000 sect_offset_str (cu->header.sect_off),
22001 sect_offset_str (die->sect_off));
22002 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
22003 message.c_str (), message.length ());
22004
22005 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
22006 }
22007
22008 /* Look up the type of DIE in CU using its type attribute ATTR.
22009 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
22010 DW_AT_containing_type.
22011 If there is no type substitute an error marker. */
22012
22013 static struct type *
22014 lookup_die_type (struct die_info *die, const struct attribute *attr,
22015 struct dwarf2_cu *cu)
22016 {
22017 struct dwarf2_per_objfile *dwarf2_per_objfile
22018 = cu->per_cu->dwarf2_per_objfile;
22019 struct objfile *objfile = dwarf2_per_objfile->objfile;
22020 struct type *this_type;
22021
22022 gdb_assert (attr->name == DW_AT_type
22023 || attr->name == DW_AT_GNAT_descriptive_type
22024 || attr->name == DW_AT_containing_type);
22025
22026 /* First see if we have it cached. */
22027
22028 if (attr->form == DW_FORM_GNU_ref_alt)
22029 {
22030 struct dwarf2_per_cu_data *per_cu;
22031 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22032
22033 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1,
22034 dwarf2_per_objfile);
22035 this_type = get_die_type_at_offset (sect_off, per_cu);
22036 }
22037 else if (attr_form_is_ref (attr))
22038 {
22039 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22040
22041 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
22042 }
22043 else if (attr->form == DW_FORM_ref_sig8)
22044 {
22045 ULONGEST signature = DW_SIGNATURE (attr);
22046
22047 return get_signatured_type (die, signature, cu);
22048 }
22049 else
22050 {
22051 complaint (_("Dwarf Error: Bad type attribute %s in DIE"
22052 " at %s [in module %s]"),
22053 dwarf_attr_name (attr->name), sect_offset_str (die->sect_off),
22054 objfile_name (objfile));
22055 return build_error_marker_type (cu, die);
22056 }
22057
22058 /* If not cached we need to read it in. */
22059
22060 if (this_type == NULL)
22061 {
22062 struct die_info *type_die = NULL;
22063 struct dwarf2_cu *type_cu = cu;
22064
22065 if (attr_form_is_ref (attr))
22066 type_die = follow_die_ref (die, attr, &type_cu);
22067 if (type_die == NULL)
22068 return build_error_marker_type (cu, die);
22069 /* If we find the type now, it's probably because the type came
22070 from an inter-CU reference and the type's CU got expanded before
22071 ours. */
22072 this_type = read_type_die (type_die, type_cu);
22073 }
22074
22075 /* If we still don't have a type use an error marker. */
22076
22077 if (this_type == NULL)
22078 return build_error_marker_type (cu, die);
22079
22080 return this_type;
22081 }
22082
22083 /* Return the type in DIE, CU.
22084 Returns NULL for invalid types.
22085
22086 This first does a lookup in die_type_hash,
22087 and only reads the die in if necessary.
22088
22089 NOTE: This can be called when reading in partial or full symbols. */
22090
22091 static struct type *
22092 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
22093 {
22094 struct type *this_type;
22095
22096 this_type = get_die_type (die, cu);
22097 if (this_type)
22098 return this_type;
22099
22100 return read_type_die_1 (die, cu);
22101 }
22102
22103 /* Read the type in DIE, CU.
22104 Returns NULL for invalid types. */
22105
22106 static struct type *
22107 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
22108 {
22109 struct type *this_type = NULL;
22110
22111 switch (die->tag)
22112 {
22113 case DW_TAG_class_type:
22114 case DW_TAG_interface_type:
22115 case DW_TAG_structure_type:
22116 case DW_TAG_union_type:
22117 this_type = read_structure_type (die, cu);
22118 break;
22119 case DW_TAG_enumeration_type:
22120 this_type = read_enumeration_type (die, cu);
22121 break;
22122 case DW_TAG_subprogram:
22123 case DW_TAG_subroutine_type:
22124 case DW_TAG_inlined_subroutine:
22125 this_type = read_subroutine_type (die, cu);
22126 break;
22127 case DW_TAG_array_type:
22128 this_type = read_array_type (die, cu);
22129 break;
22130 case DW_TAG_set_type:
22131 this_type = read_set_type (die, cu);
22132 break;
22133 case DW_TAG_pointer_type:
22134 this_type = read_tag_pointer_type (die, cu);
22135 break;
22136 case DW_TAG_ptr_to_member_type:
22137 this_type = read_tag_ptr_to_member_type (die, cu);
22138 break;
22139 case DW_TAG_reference_type:
22140 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
22141 break;
22142 case DW_TAG_rvalue_reference_type:
22143 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
22144 break;
22145 case DW_TAG_const_type:
22146 this_type = read_tag_const_type (die, cu);
22147 break;
22148 case DW_TAG_volatile_type:
22149 this_type = read_tag_volatile_type (die, cu);
22150 break;
22151 case DW_TAG_restrict_type:
22152 this_type = read_tag_restrict_type (die, cu);
22153 break;
22154 case DW_TAG_string_type:
22155 this_type = read_tag_string_type (die, cu);
22156 break;
22157 case DW_TAG_typedef:
22158 this_type = read_typedef (die, cu);
22159 break;
22160 case DW_TAG_subrange_type:
22161 this_type = read_subrange_type (die, cu);
22162 break;
22163 case DW_TAG_base_type:
22164 this_type = read_base_type (die, cu);
22165 break;
22166 case DW_TAG_unspecified_type:
22167 this_type = read_unspecified_type (die, cu);
22168 break;
22169 case DW_TAG_namespace:
22170 this_type = read_namespace_type (die, cu);
22171 break;
22172 case DW_TAG_module:
22173 this_type = read_module_type (die, cu);
22174 break;
22175 case DW_TAG_atomic_type:
22176 this_type = read_tag_atomic_type (die, cu);
22177 break;
22178 default:
22179 complaint (_("unexpected tag in read_type_die: '%s'"),
22180 dwarf_tag_name (die->tag));
22181 break;
22182 }
22183
22184 return this_type;
22185 }
22186
22187 /* See if we can figure out if the class lives in a namespace. We do
22188 this by looking for a member function; its demangled name will
22189 contain namespace info, if there is any.
22190 Return the computed name or NULL.
22191 Space for the result is allocated on the objfile's obstack.
22192 This is the full-die version of guess_partial_die_structure_name.
22193 In this case we know DIE has no useful parent. */
22194
22195 static char *
22196 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
22197 {
22198 struct die_info *spec_die;
22199 struct dwarf2_cu *spec_cu;
22200 struct die_info *child;
22201 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22202
22203 spec_cu = cu;
22204 spec_die = die_specification (die, &spec_cu);
22205 if (spec_die != NULL)
22206 {
22207 die = spec_die;
22208 cu = spec_cu;
22209 }
22210
22211 for (child = die->child;
22212 child != NULL;
22213 child = child->sibling)
22214 {
22215 if (child->tag == DW_TAG_subprogram)
22216 {
22217 const char *linkage_name = dw2_linkage_name (child, cu);
22218
22219 if (linkage_name != NULL)
22220 {
22221 char *actual_name
22222 = language_class_name_from_physname (cu->language_defn,
22223 linkage_name);
22224 char *name = NULL;
22225
22226 if (actual_name != NULL)
22227 {
22228 const char *die_name = dwarf2_name (die, cu);
22229
22230 if (die_name != NULL
22231 && strcmp (die_name, actual_name) != 0)
22232 {
22233 /* Strip off the class name from the full name.
22234 We want the prefix. */
22235 int die_name_len = strlen (die_name);
22236 int actual_name_len = strlen (actual_name);
22237
22238 /* Test for '::' as a sanity check. */
22239 if (actual_name_len > die_name_len + 2
22240 && actual_name[actual_name_len
22241 - die_name_len - 1] == ':')
22242 name = (char *) obstack_copy0 (
22243 &objfile->per_bfd->storage_obstack,
22244 actual_name, actual_name_len - die_name_len - 2);
22245 }
22246 }
22247 xfree (actual_name);
22248 return name;
22249 }
22250 }
22251 }
22252
22253 return NULL;
22254 }
22255
22256 /* GCC might emit a nameless typedef that has a linkage name. Determine the
22257 prefix part in such case. See
22258 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22259
22260 static const char *
22261 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
22262 {
22263 struct attribute *attr;
22264 const char *base;
22265
22266 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
22267 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
22268 return NULL;
22269
22270 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
22271 return NULL;
22272
22273 attr = dw2_linkage_name_attr (die, cu);
22274 if (attr == NULL || DW_STRING (attr) == NULL)
22275 return NULL;
22276
22277 /* dwarf2_name had to be already called. */
22278 gdb_assert (DW_STRING_IS_CANONICAL (attr));
22279
22280 /* Strip the base name, keep any leading namespaces/classes. */
22281 base = strrchr (DW_STRING (attr), ':');
22282 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
22283 return "";
22284
22285 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22286 return (char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
22287 DW_STRING (attr),
22288 &base[-1] - DW_STRING (attr));
22289 }
22290
22291 /* Return the name of the namespace/class that DIE is defined within,
22292 or "" if we can't tell. The caller should not xfree the result.
22293
22294 For example, if we're within the method foo() in the following
22295 code:
22296
22297 namespace N {
22298 class C {
22299 void foo () {
22300 }
22301 };
22302 }
22303
22304 then determine_prefix on foo's die will return "N::C". */
22305
22306 static const char *
22307 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
22308 {
22309 struct dwarf2_per_objfile *dwarf2_per_objfile
22310 = cu->per_cu->dwarf2_per_objfile;
22311 struct die_info *parent, *spec_die;
22312 struct dwarf2_cu *spec_cu;
22313 struct type *parent_type;
22314 const char *retval;
22315
22316 if (cu->language != language_cplus
22317 && cu->language != language_fortran && cu->language != language_d
22318 && cu->language != language_rust)
22319 return "";
22320
22321 retval = anonymous_struct_prefix (die, cu);
22322 if (retval)
22323 return retval;
22324
22325 /* We have to be careful in the presence of DW_AT_specification.
22326 For example, with GCC 3.4, given the code
22327
22328 namespace N {
22329 void foo() {
22330 // Definition of N::foo.
22331 }
22332 }
22333
22334 then we'll have a tree of DIEs like this:
22335
22336 1: DW_TAG_compile_unit
22337 2: DW_TAG_namespace // N
22338 3: DW_TAG_subprogram // declaration of N::foo
22339 4: DW_TAG_subprogram // definition of N::foo
22340 DW_AT_specification // refers to die #3
22341
22342 Thus, when processing die #4, we have to pretend that we're in
22343 the context of its DW_AT_specification, namely the contex of die
22344 #3. */
22345 spec_cu = cu;
22346 spec_die = die_specification (die, &spec_cu);
22347 if (spec_die == NULL)
22348 parent = die->parent;
22349 else
22350 {
22351 parent = spec_die->parent;
22352 cu = spec_cu;
22353 }
22354
22355 if (parent == NULL)
22356 return "";
22357 else if (parent->building_fullname)
22358 {
22359 const char *name;
22360 const char *parent_name;
22361
22362 /* It has been seen on RealView 2.2 built binaries,
22363 DW_TAG_template_type_param types actually _defined_ as
22364 children of the parent class:
22365
22366 enum E {};
22367 template class <class Enum> Class{};
22368 Class<enum E> class_e;
22369
22370 1: DW_TAG_class_type (Class)
22371 2: DW_TAG_enumeration_type (E)
22372 3: DW_TAG_enumerator (enum1:0)
22373 3: DW_TAG_enumerator (enum2:1)
22374 ...
22375 2: DW_TAG_template_type_param
22376 DW_AT_type DW_FORM_ref_udata (E)
22377
22378 Besides being broken debug info, it can put GDB into an
22379 infinite loop. Consider:
22380
22381 When we're building the full name for Class<E>, we'll start
22382 at Class, and go look over its template type parameters,
22383 finding E. We'll then try to build the full name of E, and
22384 reach here. We're now trying to build the full name of E,
22385 and look over the parent DIE for containing scope. In the
22386 broken case, if we followed the parent DIE of E, we'd again
22387 find Class, and once again go look at its template type
22388 arguments, etc., etc. Simply don't consider such parent die
22389 as source-level parent of this die (it can't be, the language
22390 doesn't allow it), and break the loop here. */
22391 name = dwarf2_name (die, cu);
22392 parent_name = dwarf2_name (parent, cu);
22393 complaint (_("template param type '%s' defined within parent '%s'"),
22394 name ? name : "<unknown>",
22395 parent_name ? parent_name : "<unknown>");
22396 return "";
22397 }
22398 else
22399 switch (parent->tag)
22400 {
22401 case DW_TAG_namespace:
22402 parent_type = read_type_die (parent, cu);
22403 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
22404 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
22405 Work around this problem here. */
22406 if (cu->language == language_cplus
22407 && strcmp (TYPE_NAME (parent_type), "::") == 0)
22408 return "";
22409 /* We give a name to even anonymous namespaces. */
22410 return TYPE_NAME (parent_type);
22411 case DW_TAG_class_type:
22412 case DW_TAG_interface_type:
22413 case DW_TAG_structure_type:
22414 case DW_TAG_union_type:
22415 case DW_TAG_module:
22416 parent_type = read_type_die (parent, cu);
22417 if (TYPE_NAME (parent_type) != NULL)
22418 return TYPE_NAME (parent_type);
22419 else
22420 /* An anonymous structure is only allowed non-static data
22421 members; no typedefs, no member functions, et cetera.
22422 So it does not need a prefix. */
22423 return "";
22424 case DW_TAG_compile_unit:
22425 case DW_TAG_partial_unit:
22426 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
22427 if (cu->language == language_cplus
22428 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
22429 && die->child != NULL
22430 && (die->tag == DW_TAG_class_type
22431 || die->tag == DW_TAG_structure_type
22432 || die->tag == DW_TAG_union_type))
22433 {
22434 char *name = guess_full_die_structure_name (die, cu);
22435 if (name != NULL)
22436 return name;
22437 }
22438 return "";
22439 case DW_TAG_enumeration_type:
22440 parent_type = read_type_die (parent, cu);
22441 if (TYPE_DECLARED_CLASS (parent_type))
22442 {
22443 if (TYPE_NAME (parent_type) != NULL)
22444 return TYPE_NAME (parent_type);
22445 return "";
22446 }
22447 /* Fall through. */
22448 default:
22449 return determine_prefix (parent, cu);
22450 }
22451 }
22452
22453 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
22454 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
22455 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
22456 an obconcat, otherwise allocate storage for the result. The CU argument is
22457 used to determine the language and hence, the appropriate separator. */
22458
22459 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
22460
22461 static char *
22462 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
22463 int physname, struct dwarf2_cu *cu)
22464 {
22465 const char *lead = "";
22466 const char *sep;
22467
22468 if (suffix == NULL || suffix[0] == '\0'
22469 || prefix == NULL || prefix[0] == '\0')
22470 sep = "";
22471 else if (cu->language == language_d)
22472 {
22473 /* For D, the 'main' function could be defined in any module, but it
22474 should never be prefixed. */
22475 if (strcmp (suffix, "D main") == 0)
22476 {
22477 prefix = "";
22478 sep = "";
22479 }
22480 else
22481 sep = ".";
22482 }
22483 else if (cu->language == language_fortran && physname)
22484 {
22485 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
22486 DW_AT_MIPS_linkage_name is preferred and used instead. */
22487
22488 lead = "__";
22489 sep = "_MOD_";
22490 }
22491 else
22492 sep = "::";
22493
22494 if (prefix == NULL)
22495 prefix = "";
22496 if (suffix == NULL)
22497 suffix = "";
22498
22499 if (obs == NULL)
22500 {
22501 char *retval
22502 = ((char *)
22503 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
22504
22505 strcpy (retval, lead);
22506 strcat (retval, prefix);
22507 strcat (retval, sep);
22508 strcat (retval, suffix);
22509 return retval;
22510 }
22511 else
22512 {
22513 /* We have an obstack. */
22514 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
22515 }
22516 }
22517
22518 /* Return sibling of die, NULL if no sibling. */
22519
22520 static struct die_info *
22521 sibling_die (struct die_info *die)
22522 {
22523 return die->sibling;
22524 }
22525
22526 /* Get name of a die, return NULL if not found. */
22527
22528 static const char *
22529 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
22530 struct obstack *obstack)
22531 {
22532 if (name && cu->language == language_cplus)
22533 {
22534 std::string canon_name = cp_canonicalize_string (name);
22535
22536 if (!canon_name.empty ())
22537 {
22538 if (canon_name != name)
22539 name = (const char *) obstack_copy0 (obstack,
22540 canon_name.c_str (),
22541 canon_name.length ());
22542 }
22543 }
22544
22545 return name;
22546 }
22547
22548 /* Get name of a die, return NULL if not found.
22549 Anonymous namespaces are converted to their magic string. */
22550
22551 static const char *
22552 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
22553 {
22554 struct attribute *attr;
22555 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22556
22557 attr = dwarf2_attr (die, DW_AT_name, cu);
22558 if ((!attr || !DW_STRING (attr))
22559 && die->tag != DW_TAG_namespace
22560 && die->tag != DW_TAG_class_type
22561 && die->tag != DW_TAG_interface_type
22562 && die->tag != DW_TAG_structure_type
22563 && die->tag != DW_TAG_union_type)
22564 return NULL;
22565
22566 switch (die->tag)
22567 {
22568 case DW_TAG_compile_unit:
22569 case DW_TAG_partial_unit:
22570 /* Compilation units have a DW_AT_name that is a filename, not
22571 a source language identifier. */
22572 case DW_TAG_enumeration_type:
22573 case DW_TAG_enumerator:
22574 /* These tags always have simple identifiers already; no need
22575 to canonicalize them. */
22576 return DW_STRING (attr);
22577
22578 case DW_TAG_namespace:
22579 if (attr != NULL && DW_STRING (attr) != NULL)
22580 return DW_STRING (attr);
22581 return CP_ANONYMOUS_NAMESPACE_STR;
22582
22583 case DW_TAG_class_type:
22584 case DW_TAG_interface_type:
22585 case DW_TAG_structure_type:
22586 case DW_TAG_union_type:
22587 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
22588 structures or unions. These were of the form "._%d" in GCC 4.1,
22589 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
22590 and GCC 4.4. We work around this problem by ignoring these. */
22591 if (attr && DW_STRING (attr)
22592 && (startswith (DW_STRING (attr), "._")
22593 || startswith (DW_STRING (attr), "<anonymous")))
22594 return NULL;
22595
22596 /* GCC might emit a nameless typedef that has a linkage name. See
22597 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22598 if (!attr || DW_STRING (attr) == NULL)
22599 {
22600 char *demangled = NULL;
22601
22602 attr = dw2_linkage_name_attr (die, cu);
22603 if (attr == NULL || DW_STRING (attr) == NULL)
22604 return NULL;
22605
22606 /* Avoid demangling DW_STRING (attr) the second time on a second
22607 call for the same DIE. */
22608 if (!DW_STRING_IS_CANONICAL (attr))
22609 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
22610
22611 if (demangled)
22612 {
22613 const char *base;
22614
22615 /* FIXME: we already did this for the partial symbol... */
22616 DW_STRING (attr)
22617 = ((const char *)
22618 obstack_copy0 (&objfile->per_bfd->storage_obstack,
22619 demangled, strlen (demangled)));
22620 DW_STRING_IS_CANONICAL (attr) = 1;
22621 xfree (demangled);
22622
22623 /* Strip any leading namespaces/classes, keep only the base name.
22624 DW_AT_name for named DIEs does not contain the prefixes. */
22625 base = strrchr (DW_STRING (attr), ':');
22626 if (base && base > DW_STRING (attr) && base[-1] == ':')
22627 return &base[1];
22628 else
22629 return DW_STRING (attr);
22630 }
22631 }
22632 break;
22633
22634 default:
22635 break;
22636 }
22637
22638 if (!DW_STRING_IS_CANONICAL (attr))
22639 {
22640 DW_STRING (attr)
22641 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
22642 &objfile->per_bfd->storage_obstack);
22643 DW_STRING_IS_CANONICAL (attr) = 1;
22644 }
22645 return DW_STRING (attr);
22646 }
22647
22648 /* Return the die that this die in an extension of, or NULL if there
22649 is none. *EXT_CU is the CU containing DIE on input, and the CU
22650 containing the return value on output. */
22651
22652 static struct die_info *
22653 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
22654 {
22655 struct attribute *attr;
22656
22657 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
22658 if (attr == NULL)
22659 return NULL;
22660
22661 return follow_die_ref (die, attr, ext_cu);
22662 }
22663
22664 /* Convert a DIE tag into its string name. */
22665
22666 static const char *
22667 dwarf_tag_name (unsigned tag)
22668 {
22669 const char *name = get_DW_TAG_name (tag);
22670
22671 if (name == NULL)
22672 return "DW_TAG_<unknown>";
22673
22674 return name;
22675 }
22676
22677 /* Convert a DWARF attribute code into its string name. */
22678
22679 static const char *
22680 dwarf_attr_name (unsigned attr)
22681 {
22682 const char *name;
22683
22684 #ifdef MIPS /* collides with DW_AT_HP_block_index */
22685 if (attr == DW_AT_MIPS_fde)
22686 return "DW_AT_MIPS_fde";
22687 #else
22688 if (attr == DW_AT_HP_block_index)
22689 return "DW_AT_HP_block_index";
22690 #endif
22691
22692 name = get_DW_AT_name (attr);
22693
22694 if (name == NULL)
22695 return "DW_AT_<unknown>";
22696
22697 return name;
22698 }
22699
22700 /* Convert a DWARF value form code into its string name. */
22701
22702 static const char *
22703 dwarf_form_name (unsigned form)
22704 {
22705 const char *name = get_DW_FORM_name (form);
22706
22707 if (name == NULL)
22708 return "DW_FORM_<unknown>";
22709
22710 return name;
22711 }
22712
22713 static const char *
22714 dwarf_bool_name (unsigned mybool)
22715 {
22716 if (mybool)
22717 return "TRUE";
22718 else
22719 return "FALSE";
22720 }
22721
22722 /* Convert a DWARF type code into its string name. */
22723
22724 static const char *
22725 dwarf_type_encoding_name (unsigned enc)
22726 {
22727 const char *name = get_DW_ATE_name (enc);
22728
22729 if (name == NULL)
22730 return "DW_ATE_<unknown>";
22731
22732 return name;
22733 }
22734
22735 static void
22736 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
22737 {
22738 unsigned int i;
22739
22740 print_spaces (indent, f);
22741 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset %s)\n",
22742 dwarf_tag_name (die->tag), die->abbrev,
22743 sect_offset_str (die->sect_off));
22744
22745 if (die->parent != NULL)
22746 {
22747 print_spaces (indent, f);
22748 fprintf_unfiltered (f, " parent at offset: %s\n",
22749 sect_offset_str (die->parent->sect_off));
22750 }
22751
22752 print_spaces (indent, f);
22753 fprintf_unfiltered (f, " has children: %s\n",
22754 dwarf_bool_name (die->child != NULL));
22755
22756 print_spaces (indent, f);
22757 fprintf_unfiltered (f, " attributes:\n");
22758
22759 for (i = 0; i < die->num_attrs; ++i)
22760 {
22761 print_spaces (indent, f);
22762 fprintf_unfiltered (f, " %s (%s) ",
22763 dwarf_attr_name (die->attrs[i].name),
22764 dwarf_form_name (die->attrs[i].form));
22765
22766 switch (die->attrs[i].form)
22767 {
22768 case DW_FORM_addr:
22769 case DW_FORM_GNU_addr_index:
22770 fprintf_unfiltered (f, "address: ");
22771 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
22772 break;
22773 case DW_FORM_block2:
22774 case DW_FORM_block4:
22775 case DW_FORM_block:
22776 case DW_FORM_block1:
22777 fprintf_unfiltered (f, "block: size %s",
22778 pulongest (DW_BLOCK (&die->attrs[i])->size));
22779 break;
22780 case DW_FORM_exprloc:
22781 fprintf_unfiltered (f, "expression: size %s",
22782 pulongest (DW_BLOCK (&die->attrs[i])->size));
22783 break;
22784 case DW_FORM_data16:
22785 fprintf_unfiltered (f, "constant of 16 bytes");
22786 break;
22787 case DW_FORM_ref_addr:
22788 fprintf_unfiltered (f, "ref address: ");
22789 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22790 break;
22791 case DW_FORM_GNU_ref_alt:
22792 fprintf_unfiltered (f, "alt ref address: ");
22793 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22794 break;
22795 case DW_FORM_ref1:
22796 case DW_FORM_ref2:
22797 case DW_FORM_ref4:
22798 case DW_FORM_ref8:
22799 case DW_FORM_ref_udata:
22800 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
22801 (long) (DW_UNSND (&die->attrs[i])));
22802 break;
22803 case DW_FORM_data1:
22804 case DW_FORM_data2:
22805 case DW_FORM_data4:
22806 case DW_FORM_data8:
22807 case DW_FORM_udata:
22808 case DW_FORM_sdata:
22809 fprintf_unfiltered (f, "constant: %s",
22810 pulongest (DW_UNSND (&die->attrs[i])));
22811 break;
22812 case DW_FORM_sec_offset:
22813 fprintf_unfiltered (f, "section offset: %s",
22814 pulongest (DW_UNSND (&die->attrs[i])));
22815 break;
22816 case DW_FORM_ref_sig8:
22817 fprintf_unfiltered (f, "signature: %s",
22818 hex_string (DW_SIGNATURE (&die->attrs[i])));
22819 break;
22820 case DW_FORM_string:
22821 case DW_FORM_strp:
22822 case DW_FORM_line_strp:
22823 case DW_FORM_GNU_str_index:
22824 case DW_FORM_GNU_strp_alt:
22825 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
22826 DW_STRING (&die->attrs[i])
22827 ? DW_STRING (&die->attrs[i]) : "",
22828 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
22829 break;
22830 case DW_FORM_flag:
22831 if (DW_UNSND (&die->attrs[i]))
22832 fprintf_unfiltered (f, "flag: TRUE");
22833 else
22834 fprintf_unfiltered (f, "flag: FALSE");
22835 break;
22836 case DW_FORM_flag_present:
22837 fprintf_unfiltered (f, "flag: TRUE");
22838 break;
22839 case DW_FORM_indirect:
22840 /* The reader will have reduced the indirect form to
22841 the "base form" so this form should not occur. */
22842 fprintf_unfiltered (f,
22843 "unexpected attribute form: DW_FORM_indirect");
22844 break;
22845 case DW_FORM_implicit_const:
22846 fprintf_unfiltered (f, "constant: %s",
22847 plongest (DW_SND (&die->attrs[i])));
22848 break;
22849 default:
22850 fprintf_unfiltered (f, "unsupported attribute form: %d.",
22851 die->attrs[i].form);
22852 break;
22853 }
22854 fprintf_unfiltered (f, "\n");
22855 }
22856 }
22857
22858 static void
22859 dump_die_for_error (struct die_info *die)
22860 {
22861 dump_die_shallow (gdb_stderr, 0, die);
22862 }
22863
22864 static void
22865 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
22866 {
22867 int indent = level * 4;
22868
22869 gdb_assert (die != NULL);
22870
22871 if (level >= max_level)
22872 return;
22873
22874 dump_die_shallow (f, indent, die);
22875
22876 if (die->child != NULL)
22877 {
22878 print_spaces (indent, f);
22879 fprintf_unfiltered (f, " Children:");
22880 if (level + 1 < max_level)
22881 {
22882 fprintf_unfiltered (f, "\n");
22883 dump_die_1 (f, level + 1, max_level, die->child);
22884 }
22885 else
22886 {
22887 fprintf_unfiltered (f,
22888 " [not printed, max nesting level reached]\n");
22889 }
22890 }
22891
22892 if (die->sibling != NULL && level > 0)
22893 {
22894 dump_die_1 (f, level, max_level, die->sibling);
22895 }
22896 }
22897
22898 /* This is called from the pdie macro in gdbinit.in.
22899 It's not static so gcc will keep a copy callable from gdb. */
22900
22901 void
22902 dump_die (struct die_info *die, int max_level)
22903 {
22904 dump_die_1 (gdb_stdlog, 0, max_level, die);
22905 }
22906
22907 static void
22908 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
22909 {
22910 void **slot;
22911
22912 slot = htab_find_slot_with_hash (cu->die_hash, die,
22913 to_underlying (die->sect_off),
22914 INSERT);
22915
22916 *slot = die;
22917 }
22918
22919 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
22920 required kind. */
22921
22922 static sect_offset
22923 dwarf2_get_ref_die_offset (const struct attribute *attr)
22924 {
22925 if (attr_form_is_ref (attr))
22926 return (sect_offset) DW_UNSND (attr);
22927
22928 complaint (_("unsupported die ref attribute form: '%s'"),
22929 dwarf_form_name (attr->form));
22930 return {};
22931 }
22932
22933 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
22934 * the value held by the attribute is not constant. */
22935
22936 static LONGEST
22937 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
22938 {
22939 if (attr->form == DW_FORM_sdata || attr->form == DW_FORM_implicit_const)
22940 return DW_SND (attr);
22941 else if (attr->form == DW_FORM_udata
22942 || attr->form == DW_FORM_data1
22943 || attr->form == DW_FORM_data2
22944 || attr->form == DW_FORM_data4
22945 || attr->form == DW_FORM_data8)
22946 return DW_UNSND (attr);
22947 else
22948 {
22949 /* For DW_FORM_data16 see attr_form_is_constant. */
22950 complaint (_("Attribute value is not a constant (%s)"),
22951 dwarf_form_name (attr->form));
22952 return default_value;
22953 }
22954 }
22955
22956 /* Follow reference or signature attribute ATTR of SRC_DIE.
22957 On entry *REF_CU is the CU of SRC_DIE.
22958 On exit *REF_CU is the CU of the result. */
22959
22960 static struct die_info *
22961 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
22962 struct dwarf2_cu **ref_cu)
22963 {
22964 struct die_info *die;
22965
22966 if (attr_form_is_ref (attr))
22967 die = follow_die_ref (src_die, attr, ref_cu);
22968 else if (attr->form == DW_FORM_ref_sig8)
22969 die = follow_die_sig (src_die, attr, ref_cu);
22970 else
22971 {
22972 dump_die_for_error (src_die);
22973 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
22974 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
22975 }
22976
22977 return die;
22978 }
22979
22980 /* Follow reference OFFSET.
22981 On entry *REF_CU is the CU of the source die referencing OFFSET.
22982 On exit *REF_CU is the CU of the result.
22983 Returns NULL if OFFSET is invalid. */
22984
22985 static struct die_info *
22986 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
22987 struct dwarf2_cu **ref_cu)
22988 {
22989 struct die_info temp_die;
22990 struct dwarf2_cu *target_cu, *cu = *ref_cu;
22991 struct dwarf2_per_objfile *dwarf2_per_objfile
22992 = cu->per_cu->dwarf2_per_objfile;
22993
22994 gdb_assert (cu->per_cu != NULL);
22995
22996 target_cu = cu;
22997
22998 if (cu->per_cu->is_debug_types)
22999 {
23000 /* .debug_types CUs cannot reference anything outside their CU.
23001 If they need to, they have to reference a signatured type via
23002 DW_FORM_ref_sig8. */
23003 if (!offset_in_cu_p (&cu->header, sect_off))
23004 return NULL;
23005 }
23006 else if (offset_in_dwz != cu->per_cu->is_dwz
23007 || !offset_in_cu_p (&cu->header, sect_off))
23008 {
23009 struct dwarf2_per_cu_data *per_cu;
23010
23011 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
23012 dwarf2_per_objfile);
23013
23014 /* If necessary, add it to the queue and load its DIEs. */
23015 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
23016 load_full_comp_unit (per_cu, false, cu->language);
23017
23018 target_cu = per_cu->cu;
23019 }
23020 else if (cu->dies == NULL)
23021 {
23022 /* We're loading full DIEs during partial symbol reading. */
23023 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
23024 load_full_comp_unit (cu->per_cu, false, language_minimal);
23025 }
23026
23027 *ref_cu = target_cu;
23028 temp_die.sect_off = sect_off;
23029 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
23030 &temp_die,
23031 to_underlying (sect_off));
23032 }
23033
23034 /* Follow reference attribute ATTR of SRC_DIE.
23035 On entry *REF_CU is the CU of SRC_DIE.
23036 On exit *REF_CU is the CU of the result. */
23037
23038 static struct die_info *
23039 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
23040 struct dwarf2_cu **ref_cu)
23041 {
23042 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
23043 struct dwarf2_cu *cu = *ref_cu;
23044 struct die_info *die;
23045
23046 die = follow_die_offset (sect_off,
23047 (attr->form == DW_FORM_GNU_ref_alt
23048 || cu->per_cu->is_dwz),
23049 ref_cu);
23050 if (!die)
23051 error (_("Dwarf Error: Cannot find DIE at %s referenced from DIE "
23052 "at %s [in module %s]"),
23053 sect_offset_str (sect_off), sect_offset_str (src_die->sect_off),
23054 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
23055
23056 return die;
23057 }
23058
23059 /* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU.
23060 Returned value is intended for DW_OP_call*. Returned
23061 dwarf2_locexpr_baton->data has lifetime of
23062 PER_CU->DWARF2_PER_OBJFILE->OBJFILE. */
23063
23064 struct dwarf2_locexpr_baton
23065 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
23066 struct dwarf2_per_cu_data *per_cu,
23067 CORE_ADDR (*get_frame_pc) (void *baton),
23068 void *baton, bool resolve_abstract_p)
23069 {
23070 struct dwarf2_cu *cu;
23071 struct die_info *die;
23072 struct attribute *attr;
23073 struct dwarf2_locexpr_baton retval;
23074 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
23075 struct objfile *objfile = dwarf2_per_objfile->objfile;
23076
23077 if (per_cu->cu == NULL)
23078 load_cu (per_cu, false);
23079 cu = per_cu->cu;
23080 if (cu == NULL)
23081 {
23082 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23083 Instead just throw an error, not much else we can do. */
23084 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23085 sect_offset_str (sect_off), objfile_name (objfile));
23086 }
23087
23088 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23089 if (!die)
23090 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23091 sect_offset_str (sect_off), objfile_name (objfile));
23092
23093 attr = dwarf2_attr (die, DW_AT_location, cu);
23094 if (!attr && resolve_abstract_p
23095 && (dwarf2_per_objfile->abstract_to_concrete.find (die)
23096 != dwarf2_per_objfile->abstract_to_concrete.end ()))
23097 {
23098 CORE_ADDR pc = (*get_frame_pc) (baton);
23099
23100 for (const auto &cand : dwarf2_per_objfile->abstract_to_concrete[die])
23101 {
23102 if (!cand->parent
23103 || cand->parent->tag != DW_TAG_subprogram)
23104 continue;
23105
23106 CORE_ADDR pc_low, pc_high;
23107 get_scope_pc_bounds (cand->parent, &pc_low, &pc_high, cu);
23108 if (pc_low == ((CORE_ADDR) -1)
23109 || !(pc_low <= pc && pc < pc_high))
23110 continue;
23111
23112 die = cand;
23113 attr = dwarf2_attr (die, DW_AT_location, cu);
23114 break;
23115 }
23116 }
23117
23118 if (!attr)
23119 {
23120 /* DWARF: "If there is no such attribute, then there is no effect.".
23121 DATA is ignored if SIZE is 0. */
23122
23123 retval.data = NULL;
23124 retval.size = 0;
23125 }
23126 else if (attr_form_is_section_offset (attr))
23127 {
23128 struct dwarf2_loclist_baton loclist_baton;
23129 CORE_ADDR pc = (*get_frame_pc) (baton);
23130 size_t size;
23131
23132 fill_in_loclist_baton (cu, &loclist_baton, attr);
23133
23134 retval.data = dwarf2_find_location_expression (&loclist_baton,
23135 &size, pc);
23136 retval.size = size;
23137 }
23138 else
23139 {
23140 if (!attr_form_is_block (attr))
23141 error (_("Dwarf Error: DIE at %s referenced in module %s "
23142 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
23143 sect_offset_str (sect_off), objfile_name (objfile));
23144
23145 retval.data = DW_BLOCK (attr)->data;
23146 retval.size = DW_BLOCK (attr)->size;
23147 }
23148 retval.per_cu = cu->per_cu;
23149
23150 age_cached_comp_units (dwarf2_per_objfile);
23151
23152 return retval;
23153 }
23154
23155 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
23156 offset. */
23157
23158 struct dwarf2_locexpr_baton
23159 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
23160 struct dwarf2_per_cu_data *per_cu,
23161 CORE_ADDR (*get_frame_pc) (void *baton),
23162 void *baton)
23163 {
23164 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
23165
23166 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
23167 }
23168
23169 /* Write a constant of a given type as target-ordered bytes into
23170 OBSTACK. */
23171
23172 static const gdb_byte *
23173 write_constant_as_bytes (struct obstack *obstack,
23174 enum bfd_endian byte_order,
23175 struct type *type,
23176 ULONGEST value,
23177 LONGEST *len)
23178 {
23179 gdb_byte *result;
23180
23181 *len = TYPE_LENGTH (type);
23182 result = (gdb_byte *) obstack_alloc (obstack, *len);
23183 store_unsigned_integer (result, *len, byte_order, value);
23184
23185 return result;
23186 }
23187
23188 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
23189 pointer to the constant bytes and set LEN to the length of the
23190 data. If memory is needed, allocate it on OBSTACK. If the DIE
23191 does not have a DW_AT_const_value, return NULL. */
23192
23193 const gdb_byte *
23194 dwarf2_fetch_constant_bytes (sect_offset sect_off,
23195 struct dwarf2_per_cu_data *per_cu,
23196 struct obstack *obstack,
23197 LONGEST *len)
23198 {
23199 struct dwarf2_cu *cu;
23200 struct die_info *die;
23201 struct attribute *attr;
23202 const gdb_byte *result = NULL;
23203 struct type *type;
23204 LONGEST value;
23205 enum bfd_endian byte_order;
23206 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
23207
23208 if (per_cu->cu == NULL)
23209 load_cu (per_cu, false);
23210 cu = per_cu->cu;
23211 if (cu == NULL)
23212 {
23213 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23214 Instead just throw an error, not much else we can do. */
23215 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23216 sect_offset_str (sect_off), objfile_name (objfile));
23217 }
23218
23219 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23220 if (!die)
23221 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23222 sect_offset_str (sect_off), objfile_name (objfile));
23223
23224 attr = dwarf2_attr (die, DW_AT_const_value, cu);
23225 if (attr == NULL)
23226 return NULL;
23227
23228 byte_order = (bfd_big_endian (objfile->obfd)
23229 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
23230
23231 switch (attr->form)
23232 {
23233 case DW_FORM_addr:
23234 case DW_FORM_GNU_addr_index:
23235 {
23236 gdb_byte *tem;
23237
23238 *len = cu->header.addr_size;
23239 tem = (gdb_byte *) obstack_alloc (obstack, *len);
23240 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
23241 result = tem;
23242 }
23243 break;
23244 case DW_FORM_string:
23245 case DW_FORM_strp:
23246 case DW_FORM_GNU_str_index:
23247 case DW_FORM_GNU_strp_alt:
23248 /* DW_STRING is already allocated on the objfile obstack, point
23249 directly to it. */
23250 result = (const gdb_byte *) DW_STRING (attr);
23251 *len = strlen (DW_STRING (attr));
23252 break;
23253 case DW_FORM_block1:
23254 case DW_FORM_block2:
23255 case DW_FORM_block4:
23256 case DW_FORM_block:
23257 case DW_FORM_exprloc:
23258 case DW_FORM_data16:
23259 result = DW_BLOCK (attr)->data;
23260 *len = DW_BLOCK (attr)->size;
23261 break;
23262
23263 /* The DW_AT_const_value attributes are supposed to carry the
23264 symbol's value "represented as it would be on the target
23265 architecture." By the time we get here, it's already been
23266 converted to host endianness, so we just need to sign- or
23267 zero-extend it as appropriate. */
23268 case DW_FORM_data1:
23269 type = die_type (die, cu);
23270 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
23271 if (result == NULL)
23272 result = write_constant_as_bytes (obstack, byte_order,
23273 type, value, len);
23274 break;
23275 case DW_FORM_data2:
23276 type = die_type (die, cu);
23277 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
23278 if (result == NULL)
23279 result = write_constant_as_bytes (obstack, byte_order,
23280 type, value, len);
23281 break;
23282 case DW_FORM_data4:
23283 type = die_type (die, cu);
23284 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
23285 if (result == NULL)
23286 result = write_constant_as_bytes (obstack, byte_order,
23287 type, value, len);
23288 break;
23289 case DW_FORM_data8:
23290 type = die_type (die, cu);
23291 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
23292 if (result == NULL)
23293 result = write_constant_as_bytes (obstack, byte_order,
23294 type, value, len);
23295 break;
23296
23297 case DW_FORM_sdata:
23298 case DW_FORM_implicit_const:
23299 type = die_type (die, cu);
23300 result = write_constant_as_bytes (obstack, byte_order,
23301 type, DW_SND (attr), len);
23302 break;
23303
23304 case DW_FORM_udata:
23305 type = die_type (die, cu);
23306 result = write_constant_as_bytes (obstack, byte_order,
23307 type, DW_UNSND (attr), len);
23308 break;
23309
23310 default:
23311 complaint (_("unsupported const value attribute form: '%s'"),
23312 dwarf_form_name (attr->form));
23313 break;
23314 }
23315
23316 return result;
23317 }
23318
23319 /* Return the type of the die at OFFSET in PER_CU. Return NULL if no
23320 valid type for this die is found. */
23321
23322 struct type *
23323 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
23324 struct dwarf2_per_cu_data *per_cu)
23325 {
23326 struct dwarf2_cu *cu;
23327 struct die_info *die;
23328
23329 if (per_cu->cu == NULL)
23330 load_cu (per_cu, false);
23331 cu = per_cu->cu;
23332 if (!cu)
23333 return NULL;
23334
23335 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23336 if (!die)
23337 return NULL;
23338
23339 return die_type (die, cu);
23340 }
23341
23342 /* Return the type of the DIE at DIE_OFFSET in the CU named by
23343 PER_CU. */
23344
23345 struct type *
23346 dwarf2_get_die_type (cu_offset die_offset,
23347 struct dwarf2_per_cu_data *per_cu)
23348 {
23349 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
23350 return get_die_type_at_offset (die_offset_sect, per_cu);
23351 }
23352
23353 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
23354 On entry *REF_CU is the CU of SRC_DIE.
23355 On exit *REF_CU is the CU of the result.
23356 Returns NULL if the referenced DIE isn't found. */
23357
23358 static struct die_info *
23359 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
23360 struct dwarf2_cu **ref_cu)
23361 {
23362 struct die_info temp_die;
23363 struct dwarf2_cu *sig_cu;
23364 struct die_info *die;
23365
23366 /* While it might be nice to assert sig_type->type == NULL here,
23367 we can get here for DW_AT_imported_declaration where we need
23368 the DIE not the type. */
23369
23370 /* If necessary, add it to the queue and load its DIEs. */
23371
23372 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
23373 read_signatured_type (sig_type);
23374
23375 sig_cu = sig_type->per_cu.cu;
23376 gdb_assert (sig_cu != NULL);
23377 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
23378 temp_die.sect_off = sig_type->type_offset_in_section;
23379 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
23380 to_underlying (temp_die.sect_off));
23381 if (die)
23382 {
23383 struct dwarf2_per_objfile *dwarf2_per_objfile
23384 = (*ref_cu)->per_cu->dwarf2_per_objfile;
23385
23386 /* For .gdb_index version 7 keep track of included TUs.
23387 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
23388 if (dwarf2_per_objfile->index_table != NULL
23389 && dwarf2_per_objfile->index_table->version <= 7)
23390 {
23391 VEC_safe_push (dwarf2_per_cu_ptr,
23392 (*ref_cu)->per_cu->imported_symtabs,
23393 sig_cu->per_cu);
23394 }
23395
23396 *ref_cu = sig_cu;
23397 return die;
23398 }
23399
23400 return NULL;
23401 }
23402
23403 /* Follow signatured type referenced by ATTR in SRC_DIE.
23404 On entry *REF_CU is the CU of SRC_DIE.
23405 On exit *REF_CU is the CU of the result.
23406 The result is the DIE of the type.
23407 If the referenced type cannot be found an error is thrown. */
23408
23409 static struct die_info *
23410 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
23411 struct dwarf2_cu **ref_cu)
23412 {
23413 ULONGEST signature = DW_SIGNATURE (attr);
23414 struct signatured_type *sig_type;
23415 struct die_info *die;
23416
23417 gdb_assert (attr->form == DW_FORM_ref_sig8);
23418
23419 sig_type = lookup_signatured_type (*ref_cu, signature);
23420 /* sig_type will be NULL if the signatured type is missing from
23421 the debug info. */
23422 if (sig_type == NULL)
23423 {
23424 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23425 " from DIE at %s [in module %s]"),
23426 hex_string (signature), sect_offset_str (src_die->sect_off),
23427 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23428 }
23429
23430 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
23431 if (die == NULL)
23432 {
23433 dump_die_for_error (src_die);
23434 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23435 " from DIE at %s [in module %s]"),
23436 hex_string (signature), sect_offset_str (src_die->sect_off),
23437 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23438 }
23439
23440 return die;
23441 }
23442
23443 /* Get the type specified by SIGNATURE referenced in DIE/CU,
23444 reading in and processing the type unit if necessary. */
23445
23446 static struct type *
23447 get_signatured_type (struct die_info *die, ULONGEST signature,
23448 struct dwarf2_cu *cu)
23449 {
23450 struct dwarf2_per_objfile *dwarf2_per_objfile
23451 = cu->per_cu->dwarf2_per_objfile;
23452 struct signatured_type *sig_type;
23453 struct dwarf2_cu *type_cu;
23454 struct die_info *type_die;
23455 struct type *type;
23456
23457 sig_type = lookup_signatured_type (cu, signature);
23458 /* sig_type will be NULL if the signatured type is missing from
23459 the debug info. */
23460 if (sig_type == NULL)
23461 {
23462 complaint (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23463 " from DIE at %s [in module %s]"),
23464 hex_string (signature), sect_offset_str (die->sect_off),
23465 objfile_name (dwarf2_per_objfile->objfile));
23466 return build_error_marker_type (cu, die);
23467 }
23468
23469 /* If we already know the type we're done. */
23470 if (sig_type->type != NULL)
23471 return sig_type->type;
23472
23473 type_cu = cu;
23474 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
23475 if (type_die != NULL)
23476 {
23477 /* N.B. We need to call get_die_type to ensure only one type for this DIE
23478 is created. This is important, for example, because for c++ classes
23479 we need TYPE_NAME set which is only done by new_symbol. Blech. */
23480 type = read_type_die (type_die, type_cu);
23481 if (type == NULL)
23482 {
23483 complaint (_("Dwarf Error: Cannot build signatured type %s"
23484 " referenced from DIE at %s [in module %s]"),
23485 hex_string (signature), sect_offset_str (die->sect_off),
23486 objfile_name (dwarf2_per_objfile->objfile));
23487 type = build_error_marker_type (cu, die);
23488 }
23489 }
23490 else
23491 {
23492 complaint (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23493 " from DIE at %s [in module %s]"),
23494 hex_string (signature), sect_offset_str (die->sect_off),
23495 objfile_name (dwarf2_per_objfile->objfile));
23496 type = build_error_marker_type (cu, die);
23497 }
23498 sig_type->type = type;
23499
23500 return type;
23501 }
23502
23503 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
23504 reading in and processing the type unit if necessary. */
23505
23506 static struct type *
23507 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
23508 struct dwarf2_cu *cu) /* ARI: editCase function */
23509 {
23510 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
23511 if (attr_form_is_ref (attr))
23512 {
23513 struct dwarf2_cu *type_cu = cu;
23514 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
23515
23516 return read_type_die (type_die, type_cu);
23517 }
23518 else if (attr->form == DW_FORM_ref_sig8)
23519 {
23520 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
23521 }
23522 else
23523 {
23524 struct dwarf2_per_objfile *dwarf2_per_objfile
23525 = cu->per_cu->dwarf2_per_objfile;
23526
23527 complaint (_("Dwarf Error: DW_AT_signature has bad form %s in DIE"
23528 " at %s [in module %s]"),
23529 dwarf_form_name (attr->form), sect_offset_str (die->sect_off),
23530 objfile_name (dwarf2_per_objfile->objfile));
23531 return build_error_marker_type (cu, die);
23532 }
23533 }
23534
23535 /* Load the DIEs associated with type unit PER_CU into memory. */
23536
23537 static void
23538 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
23539 {
23540 struct signatured_type *sig_type;
23541
23542 /* Caller is responsible for ensuring type_unit_groups don't get here. */
23543 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
23544
23545 /* We have the per_cu, but we need the signatured_type.
23546 Fortunately this is an easy translation. */
23547 gdb_assert (per_cu->is_debug_types);
23548 sig_type = (struct signatured_type *) per_cu;
23549
23550 gdb_assert (per_cu->cu == NULL);
23551
23552 read_signatured_type (sig_type);
23553
23554 gdb_assert (per_cu->cu != NULL);
23555 }
23556
23557 /* die_reader_func for read_signatured_type.
23558 This is identical to load_full_comp_unit_reader,
23559 but is kept separate for now. */
23560
23561 static void
23562 read_signatured_type_reader (const struct die_reader_specs *reader,
23563 const gdb_byte *info_ptr,
23564 struct die_info *comp_unit_die,
23565 int has_children,
23566 void *data)
23567 {
23568 struct dwarf2_cu *cu = reader->cu;
23569
23570 gdb_assert (cu->die_hash == NULL);
23571 cu->die_hash =
23572 htab_create_alloc_ex (cu->header.length / 12,
23573 die_hash,
23574 die_eq,
23575 NULL,
23576 &cu->comp_unit_obstack,
23577 hashtab_obstack_allocate,
23578 dummy_obstack_deallocate);
23579
23580 if (has_children)
23581 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
23582 &info_ptr, comp_unit_die);
23583 cu->dies = comp_unit_die;
23584 /* comp_unit_die is not stored in die_hash, no need. */
23585
23586 /* We try not to read any attributes in this function, because not
23587 all CUs needed for references have been loaded yet, and symbol
23588 table processing isn't initialized. But we have to set the CU language,
23589 or we won't be able to build types correctly.
23590 Similarly, if we do not read the producer, we can not apply
23591 producer-specific interpretation. */
23592 prepare_one_comp_unit (cu, cu->dies, language_minimal);
23593 }
23594
23595 /* Read in a signatured type and build its CU and DIEs.
23596 If the type is a stub for the real type in a DWO file,
23597 read in the real type from the DWO file as well. */
23598
23599 static void
23600 read_signatured_type (struct signatured_type *sig_type)
23601 {
23602 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
23603
23604 gdb_assert (per_cu->is_debug_types);
23605 gdb_assert (per_cu->cu == NULL);
23606
23607 init_cutu_and_read_dies (per_cu, NULL, 0, 1, false,
23608 read_signatured_type_reader, NULL);
23609 sig_type->per_cu.tu_read = 1;
23610 }
23611
23612 /* Decode simple location descriptions.
23613 Given a pointer to a dwarf block that defines a location, compute
23614 the location and return the value.
23615
23616 NOTE drow/2003-11-18: This function is called in two situations
23617 now: for the address of static or global variables (partial symbols
23618 only) and for offsets into structures which are expected to be
23619 (more or less) constant. The partial symbol case should go away,
23620 and only the constant case should remain. That will let this
23621 function complain more accurately. A few special modes are allowed
23622 without complaint for global variables (for instance, global
23623 register values and thread-local values).
23624
23625 A location description containing no operations indicates that the
23626 object is optimized out. The return value is 0 for that case.
23627 FIXME drow/2003-11-16: No callers check for this case any more; soon all
23628 callers will only want a very basic result and this can become a
23629 complaint.
23630
23631 Note that stack[0] is unused except as a default error return. */
23632
23633 static CORE_ADDR
23634 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
23635 {
23636 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
23637 size_t i;
23638 size_t size = blk->size;
23639 const gdb_byte *data = blk->data;
23640 CORE_ADDR stack[64];
23641 int stacki;
23642 unsigned int bytes_read, unsnd;
23643 gdb_byte op;
23644
23645 i = 0;
23646 stacki = 0;
23647 stack[stacki] = 0;
23648 stack[++stacki] = 0;
23649
23650 while (i < size)
23651 {
23652 op = data[i++];
23653 switch (op)
23654 {
23655 case DW_OP_lit0:
23656 case DW_OP_lit1:
23657 case DW_OP_lit2:
23658 case DW_OP_lit3:
23659 case DW_OP_lit4:
23660 case DW_OP_lit5:
23661 case DW_OP_lit6:
23662 case DW_OP_lit7:
23663 case DW_OP_lit8:
23664 case DW_OP_lit9:
23665 case DW_OP_lit10:
23666 case DW_OP_lit11:
23667 case DW_OP_lit12:
23668 case DW_OP_lit13:
23669 case DW_OP_lit14:
23670 case DW_OP_lit15:
23671 case DW_OP_lit16:
23672 case DW_OP_lit17:
23673 case DW_OP_lit18:
23674 case DW_OP_lit19:
23675 case DW_OP_lit20:
23676 case DW_OP_lit21:
23677 case DW_OP_lit22:
23678 case DW_OP_lit23:
23679 case DW_OP_lit24:
23680 case DW_OP_lit25:
23681 case DW_OP_lit26:
23682 case DW_OP_lit27:
23683 case DW_OP_lit28:
23684 case DW_OP_lit29:
23685 case DW_OP_lit30:
23686 case DW_OP_lit31:
23687 stack[++stacki] = op - DW_OP_lit0;
23688 break;
23689
23690 case DW_OP_reg0:
23691 case DW_OP_reg1:
23692 case DW_OP_reg2:
23693 case DW_OP_reg3:
23694 case DW_OP_reg4:
23695 case DW_OP_reg5:
23696 case DW_OP_reg6:
23697 case DW_OP_reg7:
23698 case DW_OP_reg8:
23699 case DW_OP_reg9:
23700 case DW_OP_reg10:
23701 case DW_OP_reg11:
23702 case DW_OP_reg12:
23703 case DW_OP_reg13:
23704 case DW_OP_reg14:
23705 case DW_OP_reg15:
23706 case DW_OP_reg16:
23707 case DW_OP_reg17:
23708 case DW_OP_reg18:
23709 case DW_OP_reg19:
23710 case DW_OP_reg20:
23711 case DW_OP_reg21:
23712 case DW_OP_reg22:
23713 case DW_OP_reg23:
23714 case DW_OP_reg24:
23715 case DW_OP_reg25:
23716 case DW_OP_reg26:
23717 case DW_OP_reg27:
23718 case DW_OP_reg28:
23719 case DW_OP_reg29:
23720 case DW_OP_reg30:
23721 case DW_OP_reg31:
23722 stack[++stacki] = op - DW_OP_reg0;
23723 if (i < size)
23724 dwarf2_complex_location_expr_complaint ();
23725 break;
23726
23727 case DW_OP_regx:
23728 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
23729 i += bytes_read;
23730 stack[++stacki] = unsnd;
23731 if (i < size)
23732 dwarf2_complex_location_expr_complaint ();
23733 break;
23734
23735 case DW_OP_addr:
23736 stack[++stacki] = read_address (objfile->obfd, &data[i],
23737 cu, &bytes_read);
23738 i += bytes_read;
23739 break;
23740
23741 case DW_OP_const1u:
23742 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
23743 i += 1;
23744 break;
23745
23746 case DW_OP_const1s:
23747 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
23748 i += 1;
23749 break;
23750
23751 case DW_OP_const2u:
23752 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
23753 i += 2;
23754 break;
23755
23756 case DW_OP_const2s:
23757 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
23758 i += 2;
23759 break;
23760
23761 case DW_OP_const4u:
23762 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
23763 i += 4;
23764 break;
23765
23766 case DW_OP_const4s:
23767 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
23768 i += 4;
23769 break;
23770
23771 case DW_OP_const8u:
23772 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
23773 i += 8;
23774 break;
23775
23776 case DW_OP_constu:
23777 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
23778 &bytes_read);
23779 i += bytes_read;
23780 break;
23781
23782 case DW_OP_consts:
23783 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
23784 i += bytes_read;
23785 break;
23786
23787 case DW_OP_dup:
23788 stack[stacki + 1] = stack[stacki];
23789 stacki++;
23790 break;
23791
23792 case DW_OP_plus:
23793 stack[stacki - 1] += stack[stacki];
23794 stacki--;
23795 break;
23796
23797 case DW_OP_plus_uconst:
23798 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
23799 &bytes_read);
23800 i += bytes_read;
23801 break;
23802
23803 case DW_OP_minus:
23804 stack[stacki - 1] -= stack[stacki];
23805 stacki--;
23806 break;
23807
23808 case DW_OP_deref:
23809 /* If we're not the last op, then we definitely can't encode
23810 this using GDB's address_class enum. This is valid for partial
23811 global symbols, although the variable's address will be bogus
23812 in the psymtab. */
23813 if (i < size)
23814 dwarf2_complex_location_expr_complaint ();
23815 break;
23816
23817 case DW_OP_GNU_push_tls_address:
23818 case DW_OP_form_tls_address:
23819 /* The top of the stack has the offset from the beginning
23820 of the thread control block at which the variable is located. */
23821 /* Nothing should follow this operator, so the top of stack would
23822 be returned. */
23823 /* This is valid for partial global symbols, but the variable's
23824 address will be bogus in the psymtab. Make it always at least
23825 non-zero to not look as a variable garbage collected by linker
23826 which have DW_OP_addr 0. */
23827 if (i < size)
23828 dwarf2_complex_location_expr_complaint ();
23829 stack[stacki]++;
23830 break;
23831
23832 case DW_OP_GNU_uninit:
23833 break;
23834
23835 case DW_OP_GNU_addr_index:
23836 case DW_OP_GNU_const_index:
23837 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
23838 &bytes_read);
23839 i += bytes_read;
23840 break;
23841
23842 default:
23843 {
23844 const char *name = get_DW_OP_name (op);
23845
23846 if (name)
23847 complaint (_("unsupported stack op: '%s'"),
23848 name);
23849 else
23850 complaint (_("unsupported stack op: '%02x'"),
23851 op);
23852 }
23853
23854 return (stack[stacki]);
23855 }
23856
23857 /* Enforce maximum stack depth of SIZE-1 to avoid writing
23858 outside of the allocated space. Also enforce minimum>0. */
23859 if (stacki >= ARRAY_SIZE (stack) - 1)
23860 {
23861 complaint (_("location description stack overflow"));
23862 return 0;
23863 }
23864
23865 if (stacki <= 0)
23866 {
23867 complaint (_("location description stack underflow"));
23868 return 0;
23869 }
23870 }
23871 return (stack[stacki]);
23872 }
23873
23874 /* memory allocation interface */
23875
23876 static struct dwarf_block *
23877 dwarf_alloc_block (struct dwarf2_cu *cu)
23878 {
23879 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
23880 }
23881
23882 static struct die_info *
23883 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
23884 {
23885 struct die_info *die;
23886 size_t size = sizeof (struct die_info);
23887
23888 if (num_attrs > 1)
23889 size += (num_attrs - 1) * sizeof (struct attribute);
23890
23891 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
23892 memset (die, 0, sizeof (struct die_info));
23893 return (die);
23894 }
23895
23896 \f
23897 /* Macro support. */
23898
23899 /* Return file name relative to the compilation directory of file number I in
23900 *LH's file name table. The result is allocated using xmalloc; the caller is
23901 responsible for freeing it. */
23902
23903 static char *
23904 file_file_name (int file, struct line_header *lh)
23905 {
23906 /* Is the file number a valid index into the line header's file name
23907 table? Remember that file numbers start with one, not zero. */
23908 if (1 <= file && file <= lh->file_names.size ())
23909 {
23910 const file_entry &fe = lh->file_names[file - 1];
23911
23912 if (!IS_ABSOLUTE_PATH (fe.name))
23913 {
23914 const char *dir = fe.include_dir (lh);
23915 if (dir != NULL)
23916 return concat (dir, SLASH_STRING, fe.name, (char *) NULL);
23917 }
23918 return xstrdup (fe.name);
23919 }
23920 else
23921 {
23922 /* The compiler produced a bogus file number. We can at least
23923 record the macro definitions made in the file, even if we
23924 won't be able to find the file by name. */
23925 char fake_name[80];
23926
23927 xsnprintf (fake_name, sizeof (fake_name),
23928 "<bad macro file number %d>", file);
23929
23930 complaint (_("bad file number in macro information (%d)"),
23931 file);
23932
23933 return xstrdup (fake_name);
23934 }
23935 }
23936
23937 /* Return the full name of file number I in *LH's file name table.
23938 Use COMP_DIR as the name of the current directory of the
23939 compilation. The result is allocated using xmalloc; the caller is
23940 responsible for freeing it. */
23941 static char *
23942 file_full_name (int file, struct line_header *lh, const char *comp_dir)
23943 {
23944 /* Is the file number a valid index into the line header's file name
23945 table? Remember that file numbers start with one, not zero. */
23946 if (1 <= file && file <= lh->file_names.size ())
23947 {
23948 char *relative = file_file_name (file, lh);
23949
23950 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
23951 return relative;
23952 return reconcat (relative, comp_dir, SLASH_STRING,
23953 relative, (char *) NULL);
23954 }
23955 else
23956 return file_file_name (file, lh);
23957 }
23958
23959
23960 static struct macro_source_file *
23961 macro_start_file (struct dwarf2_cu *cu,
23962 int file, int line,
23963 struct macro_source_file *current_file,
23964 struct line_header *lh)
23965 {
23966 /* File name relative to the compilation directory of this source file. */
23967 char *file_name = file_file_name (file, lh);
23968
23969 if (! current_file)
23970 {
23971 /* Note: We don't create a macro table for this compilation unit
23972 at all until we actually get a filename. */
23973 struct macro_table *macro_table = cu->builder->get_macro_table ();
23974
23975 /* If we have no current file, then this must be the start_file
23976 directive for the compilation unit's main source file. */
23977 current_file = macro_set_main (macro_table, file_name);
23978 macro_define_special (macro_table);
23979 }
23980 else
23981 current_file = macro_include (current_file, line, file_name);
23982
23983 xfree (file_name);
23984
23985 return current_file;
23986 }
23987
23988 static const char *
23989 consume_improper_spaces (const char *p, const char *body)
23990 {
23991 if (*p == ' ')
23992 {
23993 complaint (_("macro definition contains spaces "
23994 "in formal argument list:\n`%s'"),
23995 body);
23996
23997 while (*p == ' ')
23998 p++;
23999 }
24000
24001 return p;
24002 }
24003
24004
24005 static void
24006 parse_macro_definition (struct macro_source_file *file, int line,
24007 const char *body)
24008 {
24009 const char *p;
24010
24011 /* The body string takes one of two forms. For object-like macro
24012 definitions, it should be:
24013
24014 <macro name> " " <definition>
24015
24016 For function-like macro definitions, it should be:
24017
24018 <macro name> "() " <definition>
24019 or
24020 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
24021
24022 Spaces may appear only where explicitly indicated, and in the
24023 <definition>.
24024
24025 The Dwarf 2 spec says that an object-like macro's name is always
24026 followed by a space, but versions of GCC around March 2002 omit
24027 the space when the macro's definition is the empty string.
24028
24029 The Dwarf 2 spec says that there should be no spaces between the
24030 formal arguments in a function-like macro's formal argument list,
24031 but versions of GCC around March 2002 include spaces after the
24032 commas. */
24033
24034
24035 /* Find the extent of the macro name. The macro name is terminated
24036 by either a space or null character (for an object-like macro) or
24037 an opening paren (for a function-like macro). */
24038 for (p = body; *p; p++)
24039 if (*p == ' ' || *p == '(')
24040 break;
24041
24042 if (*p == ' ' || *p == '\0')
24043 {
24044 /* It's an object-like macro. */
24045 int name_len = p - body;
24046 char *name = savestring (body, name_len);
24047 const char *replacement;
24048
24049 if (*p == ' ')
24050 replacement = body + name_len + 1;
24051 else
24052 {
24053 dwarf2_macro_malformed_definition_complaint (body);
24054 replacement = body + name_len;
24055 }
24056
24057 macro_define_object (file, line, name, replacement);
24058
24059 xfree (name);
24060 }
24061 else if (*p == '(')
24062 {
24063 /* It's a function-like macro. */
24064 char *name = savestring (body, p - body);
24065 int argc = 0;
24066 int argv_size = 1;
24067 char **argv = XNEWVEC (char *, argv_size);
24068
24069 p++;
24070
24071 p = consume_improper_spaces (p, body);
24072
24073 /* Parse the formal argument list. */
24074 while (*p && *p != ')')
24075 {
24076 /* Find the extent of the current argument name. */
24077 const char *arg_start = p;
24078
24079 while (*p && *p != ',' && *p != ')' && *p != ' ')
24080 p++;
24081
24082 if (! *p || p == arg_start)
24083 dwarf2_macro_malformed_definition_complaint (body);
24084 else
24085 {
24086 /* Make sure argv has room for the new argument. */
24087 if (argc >= argv_size)
24088 {
24089 argv_size *= 2;
24090 argv = XRESIZEVEC (char *, argv, argv_size);
24091 }
24092
24093 argv[argc++] = savestring (arg_start, p - arg_start);
24094 }
24095
24096 p = consume_improper_spaces (p, body);
24097
24098 /* Consume the comma, if present. */
24099 if (*p == ',')
24100 {
24101 p++;
24102
24103 p = consume_improper_spaces (p, body);
24104 }
24105 }
24106
24107 if (*p == ')')
24108 {
24109 p++;
24110
24111 if (*p == ' ')
24112 /* Perfectly formed definition, no complaints. */
24113 macro_define_function (file, line, name,
24114 argc, (const char **) argv,
24115 p + 1);
24116 else if (*p == '\0')
24117 {
24118 /* Complain, but do define it. */
24119 dwarf2_macro_malformed_definition_complaint (body);
24120 macro_define_function (file, line, name,
24121 argc, (const char **) argv,
24122 p);
24123 }
24124 else
24125 /* Just complain. */
24126 dwarf2_macro_malformed_definition_complaint (body);
24127 }
24128 else
24129 /* Just complain. */
24130 dwarf2_macro_malformed_definition_complaint (body);
24131
24132 xfree (name);
24133 {
24134 int i;
24135
24136 for (i = 0; i < argc; i++)
24137 xfree (argv[i]);
24138 }
24139 xfree (argv);
24140 }
24141 else
24142 dwarf2_macro_malformed_definition_complaint (body);
24143 }
24144
24145 /* Skip some bytes from BYTES according to the form given in FORM.
24146 Returns the new pointer. */
24147
24148 static const gdb_byte *
24149 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
24150 enum dwarf_form form,
24151 unsigned int offset_size,
24152 struct dwarf2_section_info *section)
24153 {
24154 unsigned int bytes_read;
24155
24156 switch (form)
24157 {
24158 case DW_FORM_data1:
24159 case DW_FORM_flag:
24160 ++bytes;
24161 break;
24162
24163 case DW_FORM_data2:
24164 bytes += 2;
24165 break;
24166
24167 case DW_FORM_data4:
24168 bytes += 4;
24169 break;
24170
24171 case DW_FORM_data8:
24172 bytes += 8;
24173 break;
24174
24175 case DW_FORM_data16:
24176 bytes += 16;
24177 break;
24178
24179 case DW_FORM_string:
24180 read_direct_string (abfd, bytes, &bytes_read);
24181 bytes += bytes_read;
24182 break;
24183
24184 case DW_FORM_sec_offset:
24185 case DW_FORM_strp:
24186 case DW_FORM_GNU_strp_alt:
24187 bytes += offset_size;
24188 break;
24189
24190 case DW_FORM_block:
24191 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
24192 bytes += bytes_read;
24193 break;
24194
24195 case DW_FORM_block1:
24196 bytes += 1 + read_1_byte (abfd, bytes);
24197 break;
24198 case DW_FORM_block2:
24199 bytes += 2 + read_2_bytes (abfd, bytes);
24200 break;
24201 case DW_FORM_block4:
24202 bytes += 4 + read_4_bytes (abfd, bytes);
24203 break;
24204
24205 case DW_FORM_sdata:
24206 case DW_FORM_udata:
24207 case DW_FORM_GNU_addr_index:
24208 case DW_FORM_GNU_str_index:
24209 bytes = gdb_skip_leb128 (bytes, buffer_end);
24210 if (bytes == NULL)
24211 {
24212 dwarf2_section_buffer_overflow_complaint (section);
24213 return NULL;
24214 }
24215 break;
24216
24217 case DW_FORM_implicit_const:
24218 break;
24219
24220 default:
24221 {
24222 complaint (_("invalid form 0x%x in `%s'"),
24223 form, get_section_name (section));
24224 return NULL;
24225 }
24226 }
24227
24228 return bytes;
24229 }
24230
24231 /* A helper for dwarf_decode_macros that handles skipping an unknown
24232 opcode. Returns an updated pointer to the macro data buffer; or,
24233 on error, issues a complaint and returns NULL. */
24234
24235 static const gdb_byte *
24236 skip_unknown_opcode (unsigned int opcode,
24237 const gdb_byte **opcode_definitions,
24238 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24239 bfd *abfd,
24240 unsigned int offset_size,
24241 struct dwarf2_section_info *section)
24242 {
24243 unsigned int bytes_read, i;
24244 unsigned long arg;
24245 const gdb_byte *defn;
24246
24247 if (opcode_definitions[opcode] == NULL)
24248 {
24249 complaint (_("unrecognized DW_MACFINO opcode 0x%x"),
24250 opcode);
24251 return NULL;
24252 }
24253
24254 defn = opcode_definitions[opcode];
24255 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
24256 defn += bytes_read;
24257
24258 for (i = 0; i < arg; ++i)
24259 {
24260 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
24261 (enum dwarf_form) defn[i], offset_size,
24262 section);
24263 if (mac_ptr == NULL)
24264 {
24265 /* skip_form_bytes already issued the complaint. */
24266 return NULL;
24267 }
24268 }
24269
24270 return mac_ptr;
24271 }
24272
24273 /* A helper function which parses the header of a macro section.
24274 If the macro section is the extended (for now called "GNU") type,
24275 then this updates *OFFSET_SIZE. Returns a pointer to just after
24276 the header, or issues a complaint and returns NULL on error. */
24277
24278 static const gdb_byte *
24279 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
24280 bfd *abfd,
24281 const gdb_byte *mac_ptr,
24282 unsigned int *offset_size,
24283 int section_is_gnu)
24284 {
24285 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
24286
24287 if (section_is_gnu)
24288 {
24289 unsigned int version, flags;
24290
24291 version = read_2_bytes (abfd, mac_ptr);
24292 if (version != 4 && version != 5)
24293 {
24294 complaint (_("unrecognized version `%d' in .debug_macro section"),
24295 version);
24296 return NULL;
24297 }
24298 mac_ptr += 2;
24299
24300 flags = read_1_byte (abfd, mac_ptr);
24301 ++mac_ptr;
24302 *offset_size = (flags & 1) ? 8 : 4;
24303
24304 if ((flags & 2) != 0)
24305 /* We don't need the line table offset. */
24306 mac_ptr += *offset_size;
24307
24308 /* Vendor opcode descriptions. */
24309 if ((flags & 4) != 0)
24310 {
24311 unsigned int i, count;
24312
24313 count = read_1_byte (abfd, mac_ptr);
24314 ++mac_ptr;
24315 for (i = 0; i < count; ++i)
24316 {
24317 unsigned int opcode, bytes_read;
24318 unsigned long arg;
24319
24320 opcode = read_1_byte (abfd, mac_ptr);
24321 ++mac_ptr;
24322 opcode_definitions[opcode] = mac_ptr;
24323 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24324 mac_ptr += bytes_read;
24325 mac_ptr += arg;
24326 }
24327 }
24328 }
24329
24330 return mac_ptr;
24331 }
24332
24333 /* A helper for dwarf_decode_macros that handles the GNU extensions,
24334 including DW_MACRO_import. */
24335
24336 static void
24337 dwarf_decode_macro_bytes (struct dwarf2_cu *cu,
24338 bfd *abfd,
24339 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24340 struct macro_source_file *current_file,
24341 struct line_header *lh,
24342 struct dwarf2_section_info *section,
24343 int section_is_gnu, int section_is_dwz,
24344 unsigned int offset_size,
24345 htab_t include_hash)
24346 {
24347 struct dwarf2_per_objfile *dwarf2_per_objfile
24348 = cu->per_cu->dwarf2_per_objfile;
24349 struct objfile *objfile = dwarf2_per_objfile->objfile;
24350 enum dwarf_macro_record_type macinfo_type;
24351 int at_commandline;
24352 const gdb_byte *opcode_definitions[256];
24353
24354 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24355 &offset_size, section_is_gnu);
24356 if (mac_ptr == NULL)
24357 {
24358 /* We already issued a complaint. */
24359 return;
24360 }
24361
24362 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
24363 GDB is still reading the definitions from command line. First
24364 DW_MACINFO_start_file will need to be ignored as it was already executed
24365 to create CURRENT_FILE for the main source holding also the command line
24366 definitions. On first met DW_MACINFO_start_file this flag is reset to
24367 normally execute all the remaining DW_MACINFO_start_file macinfos. */
24368
24369 at_commandline = 1;
24370
24371 do
24372 {
24373 /* Do we at least have room for a macinfo type byte? */
24374 if (mac_ptr >= mac_end)
24375 {
24376 dwarf2_section_buffer_overflow_complaint (section);
24377 break;
24378 }
24379
24380 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24381 mac_ptr++;
24382
24383 /* Note that we rely on the fact that the corresponding GNU and
24384 DWARF constants are the same. */
24385 DIAGNOSTIC_PUSH
24386 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24387 switch (macinfo_type)
24388 {
24389 /* A zero macinfo type indicates the end of the macro
24390 information. */
24391 case 0:
24392 break;
24393
24394 case DW_MACRO_define:
24395 case DW_MACRO_undef:
24396 case DW_MACRO_define_strp:
24397 case DW_MACRO_undef_strp:
24398 case DW_MACRO_define_sup:
24399 case DW_MACRO_undef_sup:
24400 {
24401 unsigned int bytes_read;
24402 int line;
24403 const char *body;
24404 int is_define;
24405
24406 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24407 mac_ptr += bytes_read;
24408
24409 if (macinfo_type == DW_MACRO_define
24410 || macinfo_type == DW_MACRO_undef)
24411 {
24412 body = read_direct_string (abfd, mac_ptr, &bytes_read);
24413 mac_ptr += bytes_read;
24414 }
24415 else
24416 {
24417 LONGEST str_offset;
24418
24419 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
24420 mac_ptr += offset_size;
24421
24422 if (macinfo_type == DW_MACRO_define_sup
24423 || macinfo_type == DW_MACRO_undef_sup
24424 || section_is_dwz)
24425 {
24426 struct dwz_file *dwz
24427 = dwarf2_get_dwz_file (dwarf2_per_objfile);
24428
24429 body = read_indirect_string_from_dwz (objfile,
24430 dwz, str_offset);
24431 }
24432 else
24433 body = read_indirect_string_at_offset (dwarf2_per_objfile,
24434 abfd, str_offset);
24435 }
24436
24437 is_define = (macinfo_type == DW_MACRO_define
24438 || macinfo_type == DW_MACRO_define_strp
24439 || macinfo_type == DW_MACRO_define_sup);
24440 if (! current_file)
24441 {
24442 /* DWARF violation as no main source is present. */
24443 complaint (_("debug info with no main source gives macro %s "
24444 "on line %d: %s"),
24445 is_define ? _("definition") : _("undefinition"),
24446 line, body);
24447 break;
24448 }
24449 if ((line == 0 && !at_commandline)
24450 || (line != 0 && at_commandline))
24451 complaint (_("debug info gives %s macro %s with %s line %d: %s"),
24452 at_commandline ? _("command-line") : _("in-file"),
24453 is_define ? _("definition") : _("undefinition"),
24454 line == 0 ? _("zero") : _("non-zero"), line, body);
24455
24456 if (is_define)
24457 parse_macro_definition (current_file, line, body);
24458 else
24459 {
24460 gdb_assert (macinfo_type == DW_MACRO_undef
24461 || macinfo_type == DW_MACRO_undef_strp
24462 || macinfo_type == DW_MACRO_undef_sup);
24463 macro_undef (current_file, line, body);
24464 }
24465 }
24466 break;
24467
24468 case DW_MACRO_start_file:
24469 {
24470 unsigned int bytes_read;
24471 int line, file;
24472
24473 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24474 mac_ptr += bytes_read;
24475 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24476 mac_ptr += bytes_read;
24477
24478 if ((line == 0 && !at_commandline)
24479 || (line != 0 && at_commandline))
24480 complaint (_("debug info gives source %d included "
24481 "from %s at %s line %d"),
24482 file, at_commandline ? _("command-line") : _("file"),
24483 line == 0 ? _("zero") : _("non-zero"), line);
24484
24485 if (at_commandline)
24486 {
24487 /* This DW_MACRO_start_file was executed in the
24488 pass one. */
24489 at_commandline = 0;
24490 }
24491 else
24492 current_file = macro_start_file (cu, file, line, current_file,
24493 lh);
24494 }
24495 break;
24496
24497 case DW_MACRO_end_file:
24498 if (! current_file)
24499 complaint (_("macro debug info has an unmatched "
24500 "`close_file' directive"));
24501 else
24502 {
24503 current_file = current_file->included_by;
24504 if (! current_file)
24505 {
24506 enum dwarf_macro_record_type next_type;
24507
24508 /* GCC circa March 2002 doesn't produce the zero
24509 type byte marking the end of the compilation
24510 unit. Complain if it's not there, but exit no
24511 matter what. */
24512
24513 /* Do we at least have room for a macinfo type byte? */
24514 if (mac_ptr >= mac_end)
24515 {
24516 dwarf2_section_buffer_overflow_complaint (section);
24517 return;
24518 }
24519
24520 /* We don't increment mac_ptr here, so this is just
24521 a look-ahead. */
24522 next_type
24523 = (enum dwarf_macro_record_type) read_1_byte (abfd,
24524 mac_ptr);
24525 if (next_type != 0)
24526 complaint (_("no terminating 0-type entry for "
24527 "macros in `.debug_macinfo' section"));
24528
24529 return;
24530 }
24531 }
24532 break;
24533
24534 case DW_MACRO_import:
24535 case DW_MACRO_import_sup:
24536 {
24537 LONGEST offset;
24538 void **slot;
24539 bfd *include_bfd = abfd;
24540 struct dwarf2_section_info *include_section = section;
24541 const gdb_byte *include_mac_end = mac_end;
24542 int is_dwz = section_is_dwz;
24543 const gdb_byte *new_mac_ptr;
24544
24545 offset = read_offset_1 (abfd, mac_ptr, offset_size);
24546 mac_ptr += offset_size;
24547
24548 if (macinfo_type == DW_MACRO_import_sup)
24549 {
24550 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
24551
24552 dwarf2_read_section (objfile, &dwz->macro);
24553
24554 include_section = &dwz->macro;
24555 include_bfd = get_section_bfd_owner (include_section);
24556 include_mac_end = dwz->macro.buffer + dwz->macro.size;
24557 is_dwz = 1;
24558 }
24559
24560 new_mac_ptr = include_section->buffer + offset;
24561 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
24562
24563 if (*slot != NULL)
24564 {
24565 /* This has actually happened; see
24566 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
24567 complaint (_("recursive DW_MACRO_import in "
24568 ".debug_macro section"));
24569 }
24570 else
24571 {
24572 *slot = (void *) new_mac_ptr;
24573
24574 dwarf_decode_macro_bytes (cu, include_bfd, new_mac_ptr,
24575 include_mac_end, current_file, lh,
24576 section, section_is_gnu, is_dwz,
24577 offset_size, include_hash);
24578
24579 htab_remove_elt (include_hash, (void *) new_mac_ptr);
24580 }
24581 }
24582 break;
24583
24584 case DW_MACINFO_vendor_ext:
24585 if (!section_is_gnu)
24586 {
24587 unsigned int bytes_read;
24588
24589 /* This reads the constant, but since we don't recognize
24590 any vendor extensions, we ignore it. */
24591 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24592 mac_ptr += bytes_read;
24593 read_direct_string (abfd, mac_ptr, &bytes_read);
24594 mac_ptr += bytes_read;
24595
24596 /* We don't recognize any vendor extensions. */
24597 break;
24598 }
24599 /* FALLTHROUGH */
24600
24601 default:
24602 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24603 mac_ptr, mac_end, abfd, offset_size,
24604 section);
24605 if (mac_ptr == NULL)
24606 return;
24607 break;
24608 }
24609 DIAGNOSTIC_POP
24610 } while (macinfo_type != 0);
24611 }
24612
24613 static void
24614 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
24615 int section_is_gnu)
24616 {
24617 struct dwarf2_per_objfile *dwarf2_per_objfile
24618 = cu->per_cu->dwarf2_per_objfile;
24619 struct objfile *objfile = dwarf2_per_objfile->objfile;
24620 struct line_header *lh = cu->line_header;
24621 bfd *abfd;
24622 const gdb_byte *mac_ptr, *mac_end;
24623 struct macro_source_file *current_file = 0;
24624 enum dwarf_macro_record_type macinfo_type;
24625 unsigned int offset_size = cu->header.offset_size;
24626 const gdb_byte *opcode_definitions[256];
24627 void **slot;
24628 struct dwarf2_section_info *section;
24629 const char *section_name;
24630
24631 if (cu->dwo_unit != NULL)
24632 {
24633 if (section_is_gnu)
24634 {
24635 section = &cu->dwo_unit->dwo_file->sections.macro;
24636 section_name = ".debug_macro.dwo";
24637 }
24638 else
24639 {
24640 section = &cu->dwo_unit->dwo_file->sections.macinfo;
24641 section_name = ".debug_macinfo.dwo";
24642 }
24643 }
24644 else
24645 {
24646 if (section_is_gnu)
24647 {
24648 section = &dwarf2_per_objfile->macro;
24649 section_name = ".debug_macro";
24650 }
24651 else
24652 {
24653 section = &dwarf2_per_objfile->macinfo;
24654 section_name = ".debug_macinfo";
24655 }
24656 }
24657
24658 dwarf2_read_section (objfile, section);
24659 if (section->buffer == NULL)
24660 {
24661 complaint (_("missing %s section"), section_name);
24662 return;
24663 }
24664 abfd = get_section_bfd_owner (section);
24665
24666 /* First pass: Find the name of the base filename.
24667 This filename is needed in order to process all macros whose definition
24668 (or undefinition) comes from the command line. These macros are defined
24669 before the first DW_MACINFO_start_file entry, and yet still need to be
24670 associated to the base file.
24671
24672 To determine the base file name, we scan the macro definitions until we
24673 reach the first DW_MACINFO_start_file entry. We then initialize
24674 CURRENT_FILE accordingly so that any macro definition found before the
24675 first DW_MACINFO_start_file can still be associated to the base file. */
24676
24677 mac_ptr = section->buffer + offset;
24678 mac_end = section->buffer + section->size;
24679
24680 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24681 &offset_size, section_is_gnu);
24682 if (mac_ptr == NULL)
24683 {
24684 /* We already issued a complaint. */
24685 return;
24686 }
24687
24688 do
24689 {
24690 /* Do we at least have room for a macinfo type byte? */
24691 if (mac_ptr >= mac_end)
24692 {
24693 /* Complaint is printed during the second pass as GDB will probably
24694 stop the first pass earlier upon finding
24695 DW_MACINFO_start_file. */
24696 break;
24697 }
24698
24699 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24700 mac_ptr++;
24701
24702 /* Note that we rely on the fact that the corresponding GNU and
24703 DWARF constants are the same. */
24704 DIAGNOSTIC_PUSH
24705 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24706 switch (macinfo_type)
24707 {
24708 /* A zero macinfo type indicates the end of the macro
24709 information. */
24710 case 0:
24711 break;
24712
24713 case DW_MACRO_define:
24714 case DW_MACRO_undef:
24715 /* Only skip the data by MAC_PTR. */
24716 {
24717 unsigned int bytes_read;
24718
24719 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24720 mac_ptr += bytes_read;
24721 read_direct_string (abfd, mac_ptr, &bytes_read);
24722 mac_ptr += bytes_read;
24723 }
24724 break;
24725
24726 case DW_MACRO_start_file:
24727 {
24728 unsigned int bytes_read;
24729 int line, file;
24730
24731 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24732 mac_ptr += bytes_read;
24733 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24734 mac_ptr += bytes_read;
24735
24736 current_file = macro_start_file (cu, file, line, current_file, lh);
24737 }
24738 break;
24739
24740 case DW_MACRO_end_file:
24741 /* No data to skip by MAC_PTR. */
24742 break;
24743
24744 case DW_MACRO_define_strp:
24745 case DW_MACRO_undef_strp:
24746 case DW_MACRO_define_sup:
24747 case DW_MACRO_undef_sup:
24748 {
24749 unsigned int bytes_read;
24750
24751 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24752 mac_ptr += bytes_read;
24753 mac_ptr += offset_size;
24754 }
24755 break;
24756
24757 case DW_MACRO_import:
24758 case DW_MACRO_import_sup:
24759 /* Note that, according to the spec, a transparent include
24760 chain cannot call DW_MACRO_start_file. So, we can just
24761 skip this opcode. */
24762 mac_ptr += offset_size;
24763 break;
24764
24765 case DW_MACINFO_vendor_ext:
24766 /* Only skip the data by MAC_PTR. */
24767 if (!section_is_gnu)
24768 {
24769 unsigned int bytes_read;
24770
24771 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24772 mac_ptr += bytes_read;
24773 read_direct_string (abfd, mac_ptr, &bytes_read);
24774 mac_ptr += bytes_read;
24775 }
24776 /* FALLTHROUGH */
24777
24778 default:
24779 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24780 mac_ptr, mac_end, abfd, offset_size,
24781 section);
24782 if (mac_ptr == NULL)
24783 return;
24784 break;
24785 }
24786 DIAGNOSTIC_POP
24787 } while (macinfo_type != 0 && current_file == NULL);
24788
24789 /* Second pass: Process all entries.
24790
24791 Use the AT_COMMAND_LINE flag to determine whether we are still processing
24792 command-line macro definitions/undefinitions. This flag is unset when we
24793 reach the first DW_MACINFO_start_file entry. */
24794
24795 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
24796 htab_eq_pointer,
24797 NULL, xcalloc, xfree));
24798 mac_ptr = section->buffer + offset;
24799 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
24800 *slot = (void *) mac_ptr;
24801 dwarf_decode_macro_bytes (cu, abfd, mac_ptr, mac_end,
24802 current_file, lh, section,
24803 section_is_gnu, 0, offset_size,
24804 include_hash.get ());
24805 }
24806
24807 /* Check if the attribute's form is a DW_FORM_block*
24808 if so return true else false. */
24809
24810 static int
24811 attr_form_is_block (const struct attribute *attr)
24812 {
24813 return (attr == NULL ? 0 :
24814 attr->form == DW_FORM_block1
24815 || attr->form == DW_FORM_block2
24816 || attr->form == DW_FORM_block4
24817 || attr->form == DW_FORM_block
24818 || attr->form == DW_FORM_exprloc);
24819 }
24820
24821 /* Return non-zero if ATTR's value is a section offset --- classes
24822 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
24823 You may use DW_UNSND (attr) to retrieve such offsets.
24824
24825 Section 7.5.4, "Attribute Encodings", explains that no attribute
24826 may have a value that belongs to more than one of these classes; it
24827 would be ambiguous if we did, because we use the same forms for all
24828 of them. */
24829
24830 static int
24831 attr_form_is_section_offset (const struct attribute *attr)
24832 {
24833 return (attr->form == DW_FORM_data4
24834 || attr->form == DW_FORM_data8
24835 || attr->form == DW_FORM_sec_offset);
24836 }
24837
24838 /* Return non-zero if ATTR's value falls in the 'constant' class, or
24839 zero otherwise. When this function returns true, you can apply
24840 dwarf2_get_attr_constant_value to it.
24841
24842 However, note that for some attributes you must check
24843 attr_form_is_section_offset before using this test. DW_FORM_data4
24844 and DW_FORM_data8 are members of both the constant class, and of
24845 the classes that contain offsets into other debug sections
24846 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
24847 that, if an attribute's can be either a constant or one of the
24848 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
24849 taken as section offsets, not constants.
24850
24851 DW_FORM_data16 is not considered as dwarf2_get_attr_constant_value
24852 cannot handle that. */
24853
24854 static int
24855 attr_form_is_constant (const struct attribute *attr)
24856 {
24857 switch (attr->form)
24858 {
24859 case DW_FORM_sdata:
24860 case DW_FORM_udata:
24861 case DW_FORM_data1:
24862 case DW_FORM_data2:
24863 case DW_FORM_data4:
24864 case DW_FORM_data8:
24865 case DW_FORM_implicit_const:
24866 return 1;
24867 default:
24868 return 0;
24869 }
24870 }
24871
24872
24873 /* DW_ADDR is always stored already as sect_offset; despite for the forms
24874 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
24875
24876 static int
24877 attr_form_is_ref (const struct attribute *attr)
24878 {
24879 switch (attr->form)
24880 {
24881 case DW_FORM_ref_addr:
24882 case DW_FORM_ref1:
24883 case DW_FORM_ref2:
24884 case DW_FORM_ref4:
24885 case DW_FORM_ref8:
24886 case DW_FORM_ref_udata:
24887 case DW_FORM_GNU_ref_alt:
24888 return 1;
24889 default:
24890 return 0;
24891 }
24892 }
24893
24894 /* Return the .debug_loc section to use for CU.
24895 For DWO files use .debug_loc.dwo. */
24896
24897 static struct dwarf2_section_info *
24898 cu_debug_loc_section (struct dwarf2_cu *cu)
24899 {
24900 struct dwarf2_per_objfile *dwarf2_per_objfile
24901 = cu->per_cu->dwarf2_per_objfile;
24902
24903 if (cu->dwo_unit)
24904 {
24905 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
24906
24907 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
24908 }
24909 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
24910 : &dwarf2_per_objfile->loc);
24911 }
24912
24913 /* A helper function that fills in a dwarf2_loclist_baton. */
24914
24915 static void
24916 fill_in_loclist_baton (struct dwarf2_cu *cu,
24917 struct dwarf2_loclist_baton *baton,
24918 const struct attribute *attr)
24919 {
24920 struct dwarf2_per_objfile *dwarf2_per_objfile
24921 = cu->per_cu->dwarf2_per_objfile;
24922 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
24923
24924 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
24925
24926 baton->per_cu = cu->per_cu;
24927 gdb_assert (baton->per_cu);
24928 /* We don't know how long the location list is, but make sure we
24929 don't run off the edge of the section. */
24930 baton->size = section->size - DW_UNSND (attr);
24931 baton->data = section->buffer + DW_UNSND (attr);
24932 baton->base_address = cu->base_address;
24933 baton->from_dwo = cu->dwo_unit != NULL;
24934 }
24935
24936 static void
24937 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
24938 struct dwarf2_cu *cu, int is_block)
24939 {
24940 struct dwarf2_per_objfile *dwarf2_per_objfile
24941 = cu->per_cu->dwarf2_per_objfile;
24942 struct objfile *objfile = dwarf2_per_objfile->objfile;
24943 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
24944
24945 if (attr_form_is_section_offset (attr)
24946 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
24947 the section. If so, fall through to the complaint in the
24948 other branch. */
24949 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
24950 {
24951 struct dwarf2_loclist_baton *baton;
24952
24953 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
24954
24955 fill_in_loclist_baton (cu, baton, attr);
24956
24957 if (cu->base_known == 0)
24958 complaint (_("Location list used without "
24959 "specifying the CU base address."));
24960
24961 SYMBOL_ACLASS_INDEX (sym) = (is_block
24962 ? dwarf2_loclist_block_index
24963 : dwarf2_loclist_index);
24964 SYMBOL_LOCATION_BATON (sym) = baton;
24965 }
24966 else
24967 {
24968 struct dwarf2_locexpr_baton *baton;
24969
24970 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
24971 baton->per_cu = cu->per_cu;
24972 gdb_assert (baton->per_cu);
24973
24974 if (attr_form_is_block (attr))
24975 {
24976 /* Note that we're just copying the block's data pointer
24977 here, not the actual data. We're still pointing into the
24978 info_buffer for SYM's objfile; right now we never release
24979 that buffer, but when we do clean up properly this may
24980 need to change. */
24981 baton->size = DW_BLOCK (attr)->size;
24982 baton->data = DW_BLOCK (attr)->data;
24983 }
24984 else
24985 {
24986 dwarf2_invalid_attrib_class_complaint ("location description",
24987 SYMBOL_NATURAL_NAME (sym));
24988 baton->size = 0;
24989 }
24990
24991 SYMBOL_ACLASS_INDEX (sym) = (is_block
24992 ? dwarf2_locexpr_block_index
24993 : dwarf2_locexpr_index);
24994 SYMBOL_LOCATION_BATON (sym) = baton;
24995 }
24996 }
24997
24998 /* Return the OBJFILE associated with the compilation unit CU. If CU
24999 came from a separate debuginfo file, then the master objfile is
25000 returned. */
25001
25002 struct objfile *
25003 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
25004 {
25005 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25006
25007 /* Return the master objfile, so that we can report and look up the
25008 correct file containing this variable. */
25009 if (objfile->separate_debug_objfile_backlink)
25010 objfile = objfile->separate_debug_objfile_backlink;
25011
25012 return objfile;
25013 }
25014
25015 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
25016 (CU_HEADERP is unused in such case) or prepare a temporary copy at
25017 CU_HEADERP first. */
25018
25019 static const struct comp_unit_head *
25020 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
25021 struct dwarf2_per_cu_data *per_cu)
25022 {
25023 const gdb_byte *info_ptr;
25024
25025 if (per_cu->cu)
25026 return &per_cu->cu->header;
25027
25028 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
25029
25030 memset (cu_headerp, 0, sizeof (*cu_headerp));
25031 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
25032 rcuh_kind::COMPILE);
25033
25034 return cu_headerp;
25035 }
25036
25037 /* Return the address size given in the compilation unit header for CU. */
25038
25039 int
25040 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
25041 {
25042 struct comp_unit_head cu_header_local;
25043 const struct comp_unit_head *cu_headerp;
25044
25045 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25046
25047 return cu_headerp->addr_size;
25048 }
25049
25050 /* Return the offset size given in the compilation unit header for CU. */
25051
25052 int
25053 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
25054 {
25055 struct comp_unit_head cu_header_local;
25056 const struct comp_unit_head *cu_headerp;
25057
25058 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25059
25060 return cu_headerp->offset_size;
25061 }
25062
25063 /* See its dwarf2loc.h declaration. */
25064
25065 int
25066 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
25067 {
25068 struct comp_unit_head cu_header_local;
25069 const struct comp_unit_head *cu_headerp;
25070
25071 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25072
25073 if (cu_headerp->version == 2)
25074 return cu_headerp->addr_size;
25075 else
25076 return cu_headerp->offset_size;
25077 }
25078
25079 /* Return the text offset of the CU. The returned offset comes from
25080 this CU's objfile. If this objfile came from a separate debuginfo
25081 file, then the offset may be different from the corresponding
25082 offset in the parent objfile. */
25083
25084 CORE_ADDR
25085 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
25086 {
25087 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25088
25089 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
25090 }
25091
25092 /* Return DWARF version number of PER_CU. */
25093
25094 short
25095 dwarf2_version (struct dwarf2_per_cu_data *per_cu)
25096 {
25097 return per_cu->dwarf_version;
25098 }
25099
25100 /* Locate the .debug_info compilation unit from CU's objfile which contains
25101 the DIE at OFFSET. Raises an error on failure. */
25102
25103 static struct dwarf2_per_cu_data *
25104 dwarf2_find_containing_comp_unit (sect_offset sect_off,
25105 unsigned int offset_in_dwz,
25106 struct dwarf2_per_objfile *dwarf2_per_objfile)
25107 {
25108 struct dwarf2_per_cu_data *this_cu;
25109 int low, high;
25110
25111 low = 0;
25112 high = dwarf2_per_objfile->all_comp_units.size () - 1;
25113 while (high > low)
25114 {
25115 struct dwarf2_per_cu_data *mid_cu;
25116 int mid = low + (high - low) / 2;
25117
25118 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
25119 if (mid_cu->is_dwz > offset_in_dwz
25120 || (mid_cu->is_dwz == offset_in_dwz
25121 && mid_cu->sect_off + mid_cu->length >= sect_off))
25122 high = mid;
25123 else
25124 low = mid + 1;
25125 }
25126 gdb_assert (low == high);
25127 this_cu = dwarf2_per_objfile->all_comp_units[low];
25128 if (this_cu->is_dwz != offset_in_dwz || this_cu->sect_off > sect_off)
25129 {
25130 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
25131 error (_("Dwarf Error: could not find partial DIE containing "
25132 "offset %s [in module %s]"),
25133 sect_offset_str (sect_off),
25134 bfd_get_filename (dwarf2_per_objfile->objfile->obfd));
25135
25136 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
25137 <= sect_off);
25138 return dwarf2_per_objfile->all_comp_units[low-1];
25139 }
25140 else
25141 {
25142 this_cu = dwarf2_per_objfile->all_comp_units[low];
25143 if (low == dwarf2_per_objfile->all_comp_units.size () - 1
25144 && sect_off >= this_cu->sect_off + this_cu->length)
25145 error (_("invalid dwarf2 offset %s"), sect_offset_str (sect_off));
25146 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
25147 return this_cu;
25148 }
25149 }
25150
25151 /* Initialize dwarf2_cu CU, owned by PER_CU. */
25152
25153 dwarf2_cu::dwarf2_cu (struct dwarf2_per_cu_data *per_cu_)
25154 : per_cu (per_cu_),
25155 mark (false),
25156 has_loclist (false),
25157 checked_producer (false),
25158 producer_is_gxx_lt_4_6 (false),
25159 producer_is_gcc_lt_4_3 (false),
25160 producer_is_icc (false),
25161 producer_is_icc_lt_14 (false),
25162 producer_is_codewarrior (false),
25163 processing_has_namespace_info (false)
25164 {
25165 per_cu->cu = this;
25166 }
25167
25168 /* Destroy a dwarf2_cu. */
25169
25170 dwarf2_cu::~dwarf2_cu ()
25171 {
25172 per_cu->cu = NULL;
25173 }
25174
25175 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
25176
25177 static void
25178 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
25179 enum language pretend_language)
25180 {
25181 struct attribute *attr;
25182
25183 /* Set the language we're debugging. */
25184 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
25185 if (attr)
25186 set_cu_language (DW_UNSND (attr), cu);
25187 else
25188 {
25189 cu->language = pretend_language;
25190 cu->language_defn = language_def (cu->language);
25191 }
25192
25193 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
25194 }
25195
25196 /* Increase the age counter on each cached compilation unit, and free
25197 any that are too old. */
25198
25199 static void
25200 age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
25201 {
25202 struct dwarf2_per_cu_data *per_cu, **last_chain;
25203
25204 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
25205 per_cu = dwarf2_per_objfile->read_in_chain;
25206 while (per_cu != NULL)
25207 {
25208 per_cu->cu->last_used ++;
25209 if (per_cu->cu->last_used <= dwarf_max_cache_age)
25210 dwarf2_mark (per_cu->cu);
25211 per_cu = per_cu->cu->read_in_chain;
25212 }
25213
25214 per_cu = dwarf2_per_objfile->read_in_chain;
25215 last_chain = &dwarf2_per_objfile->read_in_chain;
25216 while (per_cu != NULL)
25217 {
25218 struct dwarf2_per_cu_data *next_cu;
25219
25220 next_cu = per_cu->cu->read_in_chain;
25221
25222 if (!per_cu->cu->mark)
25223 {
25224 delete per_cu->cu;
25225 *last_chain = next_cu;
25226 }
25227 else
25228 last_chain = &per_cu->cu->read_in_chain;
25229
25230 per_cu = next_cu;
25231 }
25232 }
25233
25234 /* Remove a single compilation unit from the cache. */
25235
25236 static void
25237 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
25238 {
25239 struct dwarf2_per_cu_data *per_cu, **last_chain;
25240 struct dwarf2_per_objfile *dwarf2_per_objfile
25241 = target_per_cu->dwarf2_per_objfile;
25242
25243 per_cu = dwarf2_per_objfile->read_in_chain;
25244 last_chain = &dwarf2_per_objfile->read_in_chain;
25245 while (per_cu != NULL)
25246 {
25247 struct dwarf2_per_cu_data *next_cu;
25248
25249 next_cu = per_cu->cu->read_in_chain;
25250
25251 if (per_cu == target_per_cu)
25252 {
25253 delete per_cu->cu;
25254 per_cu->cu = NULL;
25255 *last_chain = next_cu;
25256 break;
25257 }
25258 else
25259 last_chain = &per_cu->cu->read_in_chain;
25260
25261 per_cu = next_cu;
25262 }
25263 }
25264
25265 /* Cleanup function for the dwarf2_per_objfile data. */
25266
25267 static void
25268 dwarf2_free_objfile (struct objfile *objfile, void *datum)
25269 {
25270 struct dwarf2_per_objfile *dwarf2_per_objfile
25271 = static_cast<struct dwarf2_per_objfile *> (datum);
25272
25273 delete dwarf2_per_objfile;
25274 }
25275
25276 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
25277 We store these in a hash table separate from the DIEs, and preserve them
25278 when the DIEs are flushed out of cache.
25279
25280 The CU "per_cu" pointer is needed because offset alone is not enough to
25281 uniquely identify the type. A file may have multiple .debug_types sections,
25282 or the type may come from a DWO file. Furthermore, while it's more logical
25283 to use per_cu->section+offset, with Fission the section with the data is in
25284 the DWO file but we don't know that section at the point we need it.
25285 We have to use something in dwarf2_per_cu_data (or the pointer to it)
25286 because we can enter the lookup routine, get_die_type_at_offset, from
25287 outside this file, and thus won't necessarily have PER_CU->cu.
25288 Fortunately, PER_CU is stable for the life of the objfile. */
25289
25290 struct dwarf2_per_cu_offset_and_type
25291 {
25292 const struct dwarf2_per_cu_data *per_cu;
25293 sect_offset sect_off;
25294 struct type *type;
25295 };
25296
25297 /* Hash function for a dwarf2_per_cu_offset_and_type. */
25298
25299 static hashval_t
25300 per_cu_offset_and_type_hash (const void *item)
25301 {
25302 const struct dwarf2_per_cu_offset_and_type *ofs
25303 = (const struct dwarf2_per_cu_offset_and_type *) item;
25304
25305 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
25306 }
25307
25308 /* Equality function for a dwarf2_per_cu_offset_and_type. */
25309
25310 static int
25311 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
25312 {
25313 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
25314 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
25315 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
25316 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
25317
25318 return (ofs_lhs->per_cu == ofs_rhs->per_cu
25319 && ofs_lhs->sect_off == ofs_rhs->sect_off);
25320 }
25321
25322 /* Set the type associated with DIE to TYPE. Save it in CU's hash
25323 table if necessary. For convenience, return TYPE.
25324
25325 The DIEs reading must have careful ordering to:
25326 * Not cause infite loops trying to read in DIEs as a prerequisite for
25327 reading current DIE.
25328 * Not trying to dereference contents of still incompletely read in types
25329 while reading in other DIEs.
25330 * Enable referencing still incompletely read in types just by a pointer to
25331 the type without accessing its fields.
25332
25333 Therefore caller should follow these rules:
25334 * Try to fetch any prerequisite types we may need to build this DIE type
25335 before building the type and calling set_die_type.
25336 * After building type call set_die_type for current DIE as soon as
25337 possible before fetching more types to complete the current type.
25338 * Make the type as complete as possible before fetching more types. */
25339
25340 static struct type *
25341 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
25342 {
25343 struct dwarf2_per_objfile *dwarf2_per_objfile
25344 = cu->per_cu->dwarf2_per_objfile;
25345 struct dwarf2_per_cu_offset_and_type **slot, ofs;
25346 struct objfile *objfile = dwarf2_per_objfile->objfile;
25347 struct attribute *attr;
25348 struct dynamic_prop prop;
25349
25350 /* For Ada types, make sure that the gnat-specific data is always
25351 initialized (if not already set). There are a few types where
25352 we should not be doing so, because the type-specific area is
25353 already used to hold some other piece of info (eg: TYPE_CODE_FLT
25354 where the type-specific area is used to store the floatformat).
25355 But this is not a problem, because the gnat-specific information
25356 is actually not needed for these types. */
25357 if (need_gnat_info (cu)
25358 && TYPE_CODE (type) != TYPE_CODE_FUNC
25359 && TYPE_CODE (type) != TYPE_CODE_FLT
25360 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
25361 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
25362 && TYPE_CODE (type) != TYPE_CODE_METHOD
25363 && !HAVE_GNAT_AUX_INFO (type))
25364 INIT_GNAT_SPECIFIC (type);
25365
25366 /* Read DW_AT_allocated and set in type. */
25367 attr = dwarf2_attr (die, DW_AT_allocated, cu);
25368 if (attr_form_is_block (attr))
25369 {
25370 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25371 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type);
25372 }
25373 else if (attr != NULL)
25374 {
25375 complaint (_("DW_AT_allocated has the wrong form (%s) at DIE %s"),
25376 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25377 sect_offset_str (die->sect_off));
25378 }
25379
25380 /* Read DW_AT_associated and set in type. */
25381 attr = dwarf2_attr (die, DW_AT_associated, cu);
25382 if (attr_form_is_block (attr))
25383 {
25384 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25385 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type);
25386 }
25387 else if (attr != NULL)
25388 {
25389 complaint (_("DW_AT_associated has the wrong form (%s) at DIE %s"),
25390 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25391 sect_offset_str (die->sect_off));
25392 }
25393
25394 /* Read DW_AT_data_location and set in type. */
25395 attr = dwarf2_attr (die, DW_AT_data_location, cu);
25396 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25397 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type);
25398
25399 if (dwarf2_per_objfile->die_type_hash == NULL)
25400 {
25401 dwarf2_per_objfile->die_type_hash =
25402 htab_create_alloc_ex (127,
25403 per_cu_offset_and_type_hash,
25404 per_cu_offset_and_type_eq,
25405 NULL,
25406 &objfile->objfile_obstack,
25407 hashtab_obstack_allocate,
25408 dummy_obstack_deallocate);
25409 }
25410
25411 ofs.per_cu = cu->per_cu;
25412 ofs.sect_off = die->sect_off;
25413 ofs.type = type;
25414 slot = (struct dwarf2_per_cu_offset_and_type **)
25415 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
25416 if (*slot)
25417 complaint (_("A problem internal to GDB: DIE %s has type already set"),
25418 sect_offset_str (die->sect_off));
25419 *slot = XOBNEW (&objfile->objfile_obstack,
25420 struct dwarf2_per_cu_offset_and_type);
25421 **slot = ofs;
25422 return type;
25423 }
25424
25425 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
25426 or return NULL if the die does not have a saved type. */
25427
25428 static struct type *
25429 get_die_type_at_offset (sect_offset sect_off,
25430 struct dwarf2_per_cu_data *per_cu)
25431 {
25432 struct dwarf2_per_cu_offset_and_type *slot, ofs;
25433 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
25434
25435 if (dwarf2_per_objfile->die_type_hash == NULL)
25436 return NULL;
25437
25438 ofs.per_cu = per_cu;
25439 ofs.sect_off = sect_off;
25440 slot = ((struct dwarf2_per_cu_offset_and_type *)
25441 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
25442 if (slot)
25443 return slot->type;
25444 else
25445 return NULL;
25446 }
25447
25448 /* Look up the type for DIE in CU in die_type_hash,
25449 or return NULL if DIE does not have a saved type. */
25450
25451 static struct type *
25452 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
25453 {
25454 return get_die_type_at_offset (die->sect_off, cu->per_cu);
25455 }
25456
25457 /* Add a dependence relationship from CU to REF_PER_CU. */
25458
25459 static void
25460 dwarf2_add_dependence (struct dwarf2_cu *cu,
25461 struct dwarf2_per_cu_data *ref_per_cu)
25462 {
25463 void **slot;
25464
25465 if (cu->dependencies == NULL)
25466 cu->dependencies
25467 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
25468 NULL, &cu->comp_unit_obstack,
25469 hashtab_obstack_allocate,
25470 dummy_obstack_deallocate);
25471
25472 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
25473 if (*slot == NULL)
25474 *slot = ref_per_cu;
25475 }
25476
25477 /* Subroutine of dwarf2_mark to pass to htab_traverse.
25478 Set the mark field in every compilation unit in the
25479 cache that we must keep because we are keeping CU. */
25480
25481 static int
25482 dwarf2_mark_helper (void **slot, void *data)
25483 {
25484 struct dwarf2_per_cu_data *per_cu;
25485
25486 per_cu = (struct dwarf2_per_cu_data *) *slot;
25487
25488 /* cu->dependencies references may not yet have been ever read if QUIT aborts
25489 reading of the chain. As such dependencies remain valid it is not much
25490 useful to track and undo them during QUIT cleanups. */
25491 if (per_cu->cu == NULL)
25492 return 1;
25493
25494 if (per_cu->cu->mark)
25495 return 1;
25496 per_cu->cu->mark = true;
25497
25498 if (per_cu->cu->dependencies != NULL)
25499 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
25500
25501 return 1;
25502 }
25503
25504 /* Set the mark field in CU and in every other compilation unit in the
25505 cache that we must keep because we are keeping CU. */
25506
25507 static void
25508 dwarf2_mark (struct dwarf2_cu *cu)
25509 {
25510 if (cu->mark)
25511 return;
25512 cu->mark = true;
25513 if (cu->dependencies != NULL)
25514 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
25515 }
25516
25517 static void
25518 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
25519 {
25520 while (per_cu)
25521 {
25522 per_cu->cu->mark = false;
25523 per_cu = per_cu->cu->read_in_chain;
25524 }
25525 }
25526
25527 /* Trivial hash function for partial_die_info: the hash value of a DIE
25528 is its offset in .debug_info for this objfile. */
25529
25530 static hashval_t
25531 partial_die_hash (const void *item)
25532 {
25533 const struct partial_die_info *part_die
25534 = (const struct partial_die_info *) item;
25535
25536 return to_underlying (part_die->sect_off);
25537 }
25538
25539 /* Trivial comparison function for partial_die_info structures: two DIEs
25540 are equal if they have the same offset. */
25541
25542 static int
25543 partial_die_eq (const void *item_lhs, const void *item_rhs)
25544 {
25545 const struct partial_die_info *part_die_lhs
25546 = (const struct partial_die_info *) item_lhs;
25547 const struct partial_die_info *part_die_rhs
25548 = (const struct partial_die_info *) item_rhs;
25549
25550 return part_die_lhs->sect_off == part_die_rhs->sect_off;
25551 }
25552
25553 struct cmd_list_element *set_dwarf_cmdlist;
25554 struct cmd_list_element *show_dwarf_cmdlist;
25555
25556 static void
25557 set_dwarf_cmd (const char *args, int from_tty)
25558 {
25559 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
25560 gdb_stdout);
25561 }
25562
25563 static void
25564 show_dwarf_cmd (const char *args, int from_tty)
25565 {
25566 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
25567 }
25568
25569 int dwarf_always_disassemble;
25570
25571 static void
25572 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
25573 struct cmd_list_element *c, const char *value)
25574 {
25575 fprintf_filtered (file,
25576 _("Whether to always disassemble "
25577 "DWARF expressions is %s.\n"),
25578 value);
25579 }
25580
25581 static void
25582 show_check_physname (struct ui_file *file, int from_tty,
25583 struct cmd_list_element *c, const char *value)
25584 {
25585 fprintf_filtered (file,
25586 _("Whether to check \"physname\" is %s.\n"),
25587 value);
25588 }
25589
25590 void
25591 _initialize_dwarf2_read (void)
25592 {
25593 dwarf2_objfile_data_key
25594 = register_objfile_data_with_cleanup (nullptr, dwarf2_free_objfile);
25595
25596 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
25597 Set DWARF specific variables.\n\
25598 Configure DWARF variables such as the cache size"),
25599 &set_dwarf_cmdlist, "maintenance set dwarf ",
25600 0/*allow-unknown*/, &maintenance_set_cmdlist);
25601
25602 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
25603 Show DWARF specific variables\n\
25604 Show DWARF variables such as the cache size"),
25605 &show_dwarf_cmdlist, "maintenance show dwarf ",
25606 0/*allow-unknown*/, &maintenance_show_cmdlist);
25607
25608 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
25609 &dwarf_max_cache_age, _("\
25610 Set the upper bound on the age of cached DWARF compilation units."), _("\
25611 Show the upper bound on the age of cached DWARF compilation units."), _("\
25612 A higher limit means that cached compilation units will be stored\n\
25613 in memory longer, and more total memory will be used. Zero disables\n\
25614 caching, which can slow down startup."),
25615 NULL,
25616 show_dwarf_max_cache_age,
25617 &set_dwarf_cmdlist,
25618 &show_dwarf_cmdlist);
25619
25620 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
25621 &dwarf_always_disassemble, _("\
25622 Set whether `info address' always disassembles DWARF expressions."), _("\
25623 Show whether `info address' always disassembles DWARF expressions."), _("\
25624 When enabled, DWARF expressions are always printed in an assembly-like\n\
25625 syntax. When disabled, expressions will be printed in a more\n\
25626 conversational style, when possible."),
25627 NULL,
25628 show_dwarf_always_disassemble,
25629 &set_dwarf_cmdlist,
25630 &show_dwarf_cmdlist);
25631
25632 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
25633 Set debugging of the DWARF reader."), _("\
25634 Show debugging of the DWARF reader."), _("\
25635 When enabled (non-zero), debugging messages are printed during DWARF\n\
25636 reading and symtab expansion. A value of 1 (one) provides basic\n\
25637 information. A value greater than 1 provides more verbose information."),
25638 NULL,
25639 NULL,
25640 &setdebuglist, &showdebuglist);
25641
25642 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
25643 Set debugging of the DWARF DIE reader."), _("\
25644 Show debugging of the DWARF DIE reader."), _("\
25645 When enabled (non-zero), DIEs are dumped after they are read in.\n\
25646 The value is the maximum depth to print."),
25647 NULL,
25648 NULL,
25649 &setdebuglist, &showdebuglist);
25650
25651 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
25652 Set debugging of the dwarf line reader."), _("\
25653 Show debugging of the dwarf line reader."), _("\
25654 When enabled (non-zero), line number entries are dumped as they are read in.\n\
25655 A value of 1 (one) provides basic information.\n\
25656 A value greater than 1 provides more verbose information."),
25657 NULL,
25658 NULL,
25659 &setdebuglist, &showdebuglist);
25660
25661 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
25662 Set cross-checking of \"physname\" code against demangler."), _("\
25663 Show cross-checking of \"physname\" code against demangler."), _("\
25664 When enabled, GDB's internal \"physname\" code is checked against\n\
25665 the demangler."),
25666 NULL, show_check_physname,
25667 &setdebuglist, &showdebuglist);
25668
25669 add_setshow_boolean_cmd ("use-deprecated-index-sections",
25670 no_class, &use_deprecated_index_sections, _("\
25671 Set whether to use deprecated gdb_index sections."), _("\
25672 Show whether to use deprecated gdb_index sections."), _("\
25673 When enabled, deprecated .gdb_index sections are used anyway.\n\
25674 Normally they are ignored either because of a missing feature or\n\
25675 performance issue.\n\
25676 Warning: This option must be enabled before gdb reads the file."),
25677 NULL,
25678 NULL,
25679 &setlist, &showlist);
25680
25681 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
25682 &dwarf2_locexpr_funcs);
25683 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
25684 &dwarf2_loclist_funcs);
25685
25686 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
25687 &dwarf2_block_frame_base_locexpr_funcs);
25688 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
25689 &dwarf2_block_frame_base_loclist_funcs);
25690
25691 #if GDB_SELF_TEST
25692 selftests::register_test ("dw2_expand_symtabs_matching",
25693 selftests::dw2_expand_symtabs_matching::run_test);
25694 #endif
25695 }
This page took 0.615126 seconds and 4 git commands to generate.