1 /* DWARF 2 debugging format support for GDB.
3 Copyright (C) 1994-2014 Free Software Foundation, Inc.
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
12 This file is part of GDB.
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
45 #include "complaints.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
55 #include "typeprint.h"
59 #include "completer.h"
64 #include "gdbcore.h" /* for gnutarget */
65 #include "gdb/gdb-index.h"
70 #include "filestuff.h"
74 #include <sys/types.h>
76 typedef struct symbol
*symbolp
;
79 /* When == 1, print basic high level tracing messages.
80 When > 1, be more verbose.
81 This is in contrast to the low level DIE reading of dwarf2_die_debug. */
82 static unsigned int dwarf2_read_debug
= 0;
84 /* When non-zero, dump DIEs after they are read in. */
85 static unsigned int dwarf2_die_debug
= 0;
87 /* When non-zero, cross-check physname against demangler. */
88 static int check_physname
= 0;
90 /* When non-zero, do not reject deprecated .gdb_index sections. */
91 static int use_deprecated_index_sections
= 0;
93 static const struct objfile_data
*dwarf2_objfile_data_key
;
95 /* The "aclass" indices for various kinds of computed DWARF symbols. */
97 static int dwarf2_locexpr_index
;
98 static int dwarf2_loclist_index
;
99 static int dwarf2_locexpr_block_index
;
100 static int dwarf2_loclist_block_index
;
102 /* A descriptor for dwarf sections.
104 S.ASECTION, SIZE are typically initialized when the objfile is first
105 scanned. BUFFER, READIN are filled in later when the section is read.
106 If the section contained compressed data then SIZE is updated to record
107 the uncompressed size of the section.
109 DWP file format V2 introduces a wrinkle that is easiest to handle by
110 creating the concept of virtual sections contained within a real section.
111 In DWP V2 the sections of the input DWO files are concatenated together
112 into one section, but section offsets are kept relative to the original
114 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
115 the real section this "virtual" section is contained in, and BUFFER,SIZE
116 describe the virtual section. */
118 struct dwarf2_section_info
122 /* If this is a real section, the bfd section. */
124 /* If this is a virtual section, pointer to the containing ("real")
126 struct dwarf2_section_info
*containing_section
;
128 /* Pointer to section data, only valid if readin. */
129 const gdb_byte
*buffer
;
130 /* The size of the section, real or virtual. */
132 /* If this is a virtual section, the offset in the real section.
133 Only valid if is_virtual. */
134 bfd_size_type virtual_offset
;
135 /* True if we have tried to read this section. */
137 /* True if this is a virtual section, False otherwise.
138 This specifies which of s.asection and s.containing_section to use. */
142 typedef struct dwarf2_section_info dwarf2_section_info_def
;
143 DEF_VEC_O (dwarf2_section_info_def
);
145 /* All offsets in the index are of this type. It must be
146 architecture-independent. */
147 typedef uint32_t offset_type
;
149 DEF_VEC_I (offset_type
);
151 /* Ensure only legit values are used. */
152 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
154 gdb_assert ((unsigned int) (value) <= 1); \
155 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
158 /* Ensure only legit values are used. */
159 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
161 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
162 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
163 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
166 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
167 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
169 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
170 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
173 /* A description of the mapped index. The file format is described in
174 a comment by the code that writes the index. */
177 /* Index data format version. */
180 /* The total length of the buffer. */
183 /* A pointer to the address table data. */
184 const gdb_byte
*address_table
;
186 /* Size of the address table data in bytes. */
187 offset_type address_table_size
;
189 /* The symbol table, implemented as a hash table. */
190 const offset_type
*symbol_table
;
192 /* Size in slots, each slot is 2 offset_types. */
193 offset_type symbol_table_slots
;
195 /* A pointer to the constant pool. */
196 const char *constant_pool
;
199 typedef struct dwarf2_per_cu_data
*dwarf2_per_cu_ptr
;
200 DEF_VEC_P (dwarf2_per_cu_ptr
);
202 /* Collection of data recorded per objfile.
203 This hangs off of dwarf2_objfile_data_key. */
205 struct dwarf2_per_objfile
207 struct dwarf2_section_info info
;
208 struct dwarf2_section_info abbrev
;
209 struct dwarf2_section_info line
;
210 struct dwarf2_section_info loc
;
211 struct dwarf2_section_info macinfo
;
212 struct dwarf2_section_info macro
;
213 struct dwarf2_section_info str
;
214 struct dwarf2_section_info ranges
;
215 struct dwarf2_section_info addr
;
216 struct dwarf2_section_info frame
;
217 struct dwarf2_section_info eh_frame
;
218 struct dwarf2_section_info gdb_index
;
220 VEC (dwarf2_section_info_def
) *types
;
223 struct objfile
*objfile
;
225 /* Table of all the compilation units. This is used to locate
226 the target compilation unit of a particular reference. */
227 struct dwarf2_per_cu_data
**all_comp_units
;
229 /* The number of compilation units in ALL_COMP_UNITS. */
232 /* The number of .debug_types-related CUs. */
235 /* The number of elements allocated in all_type_units.
236 If there are skeleton-less TUs, we add them to all_type_units lazily. */
237 int n_allocated_type_units
;
239 /* The .debug_types-related CUs (TUs).
240 This is stored in malloc space because we may realloc it. */
241 struct signatured_type
**all_type_units
;
243 /* Table of struct type_unit_group objects.
244 The hash key is the DW_AT_stmt_list value. */
245 htab_t type_unit_groups
;
247 /* A table mapping .debug_types signatures to its signatured_type entry.
248 This is NULL if the .debug_types section hasn't been read in yet. */
249 htab_t signatured_types
;
251 /* Type unit statistics, to see how well the scaling improvements
255 int nr_uniq_abbrev_tables
;
257 int nr_symtab_sharers
;
258 int nr_stmt_less_type_units
;
259 int nr_all_type_units_reallocs
;
262 /* A chain of compilation units that are currently read in, so that
263 they can be freed later. */
264 struct dwarf2_per_cu_data
*read_in_chain
;
266 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
267 This is NULL if the table hasn't been allocated yet. */
270 /* Non-zero if we've check for whether there is a DWP file. */
273 /* The DWP file if there is one, or NULL. */
274 struct dwp_file
*dwp_file
;
276 /* The shared '.dwz' file, if one exists. This is used when the
277 original data was compressed using 'dwz -m'. */
278 struct dwz_file
*dwz_file
;
280 /* A flag indicating wether this objfile has a section loaded at a
282 int has_section_at_zero
;
284 /* True if we are using the mapped index,
285 or we are faking it for OBJF_READNOW's sake. */
286 unsigned char using_index
;
288 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
289 struct mapped_index
*index_table
;
291 /* When using index_table, this keeps track of all quick_file_names entries.
292 TUs typically share line table entries with a CU, so we maintain a
293 separate table of all line table entries to support the sharing.
294 Note that while there can be way more TUs than CUs, we've already
295 sorted all the TUs into "type unit groups", grouped by their
296 DW_AT_stmt_list value. Therefore the only sharing done here is with a
297 CU and its associated TU group if there is one. */
298 htab_t quick_file_names_table
;
300 /* Set during partial symbol reading, to prevent queueing of full
302 int reading_partial_symbols
;
304 /* Table mapping type DIEs to their struct type *.
305 This is NULL if not allocated yet.
306 The mapping is done via (CU/TU + DIE offset) -> type. */
307 htab_t die_type_hash
;
309 /* The CUs we recently read. */
310 VEC (dwarf2_per_cu_ptr
) *just_read_cus
;
313 static struct dwarf2_per_objfile
*dwarf2_per_objfile
;
315 /* Default names of the debugging sections. */
317 /* Note that if the debugging section has been compressed, it might
318 have a name like .zdebug_info. */
320 static const struct dwarf2_debug_sections dwarf2_elf_names
=
322 { ".debug_info", ".zdebug_info" },
323 { ".debug_abbrev", ".zdebug_abbrev" },
324 { ".debug_line", ".zdebug_line" },
325 { ".debug_loc", ".zdebug_loc" },
326 { ".debug_macinfo", ".zdebug_macinfo" },
327 { ".debug_macro", ".zdebug_macro" },
328 { ".debug_str", ".zdebug_str" },
329 { ".debug_ranges", ".zdebug_ranges" },
330 { ".debug_types", ".zdebug_types" },
331 { ".debug_addr", ".zdebug_addr" },
332 { ".debug_frame", ".zdebug_frame" },
333 { ".eh_frame", NULL
},
334 { ".gdb_index", ".zgdb_index" },
338 /* List of DWO/DWP sections. */
340 static const struct dwop_section_names
342 struct dwarf2_section_names abbrev_dwo
;
343 struct dwarf2_section_names info_dwo
;
344 struct dwarf2_section_names line_dwo
;
345 struct dwarf2_section_names loc_dwo
;
346 struct dwarf2_section_names macinfo_dwo
;
347 struct dwarf2_section_names macro_dwo
;
348 struct dwarf2_section_names str_dwo
;
349 struct dwarf2_section_names str_offsets_dwo
;
350 struct dwarf2_section_names types_dwo
;
351 struct dwarf2_section_names cu_index
;
352 struct dwarf2_section_names tu_index
;
356 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
357 { ".debug_info.dwo", ".zdebug_info.dwo" },
358 { ".debug_line.dwo", ".zdebug_line.dwo" },
359 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
360 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
361 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
362 { ".debug_str.dwo", ".zdebug_str.dwo" },
363 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
364 { ".debug_types.dwo", ".zdebug_types.dwo" },
365 { ".debug_cu_index", ".zdebug_cu_index" },
366 { ".debug_tu_index", ".zdebug_tu_index" },
369 /* local data types */
371 /* The data in a compilation unit header, after target2host
372 translation, looks like this. */
373 struct comp_unit_head
377 unsigned char addr_size
;
378 unsigned char signed_addr_p
;
379 sect_offset abbrev_offset
;
381 /* Size of file offsets; either 4 or 8. */
382 unsigned int offset_size
;
384 /* Size of the length field; either 4 or 12. */
385 unsigned int initial_length_size
;
387 /* Offset to the first byte of this compilation unit header in the
388 .debug_info section, for resolving relative reference dies. */
391 /* Offset to first die in this cu from the start of the cu.
392 This will be the first byte following the compilation unit header. */
393 cu_offset first_die_offset
;
396 /* Type used for delaying computation of method physnames.
397 See comments for compute_delayed_physnames. */
398 struct delayed_method_info
400 /* The type to which the method is attached, i.e., its parent class. */
403 /* The index of the method in the type's function fieldlists. */
406 /* The index of the method in the fieldlist. */
409 /* The name of the DIE. */
412 /* The DIE associated with this method. */
413 struct die_info
*die
;
416 typedef struct delayed_method_info delayed_method_info
;
417 DEF_VEC_O (delayed_method_info
);
419 /* Internal state when decoding a particular compilation unit. */
422 /* The objfile containing this compilation unit. */
423 struct objfile
*objfile
;
425 /* The header of the compilation unit. */
426 struct comp_unit_head header
;
428 /* Base address of this compilation unit. */
429 CORE_ADDR base_address
;
431 /* Non-zero if base_address has been set. */
434 /* The language we are debugging. */
435 enum language language
;
436 const struct language_defn
*language_defn
;
438 const char *producer
;
440 /* The generic symbol table building routines have separate lists for
441 file scope symbols and all all other scopes (local scopes). So
442 we need to select the right one to pass to add_symbol_to_list().
443 We do it by keeping a pointer to the correct list in list_in_scope.
445 FIXME: The original dwarf code just treated the file scope as the
446 first local scope, and all other local scopes as nested local
447 scopes, and worked fine. Check to see if we really need to
448 distinguish these in buildsym.c. */
449 struct pending
**list_in_scope
;
451 /* The abbrev table for this CU.
452 Normally this points to the abbrev table in the objfile.
453 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
454 struct abbrev_table
*abbrev_table
;
456 /* Hash table holding all the loaded partial DIEs
457 with partial_die->offset.SECT_OFF as hash. */
460 /* Storage for things with the same lifetime as this read-in compilation
461 unit, including partial DIEs. */
462 struct obstack comp_unit_obstack
;
464 /* When multiple dwarf2_cu structures are living in memory, this field
465 chains them all together, so that they can be released efficiently.
466 We will probably also want a generation counter so that most-recently-used
467 compilation units are cached... */
468 struct dwarf2_per_cu_data
*read_in_chain
;
470 /* Backlink to our per_cu entry. */
471 struct dwarf2_per_cu_data
*per_cu
;
473 /* How many compilation units ago was this CU last referenced? */
476 /* A hash table of DIE cu_offset for following references with
477 die_info->offset.sect_off as hash. */
480 /* Full DIEs if read in. */
481 struct die_info
*dies
;
483 /* A set of pointers to dwarf2_per_cu_data objects for compilation
484 units referenced by this one. Only set during full symbol processing;
485 partial symbol tables do not have dependencies. */
488 /* Header data from the line table, during full symbol processing. */
489 struct line_header
*line_header
;
491 /* A list of methods which need to have physnames computed
492 after all type information has been read. */
493 VEC (delayed_method_info
) *method_list
;
495 /* To be copied to symtab->call_site_htab. */
496 htab_t call_site_htab
;
498 /* Non-NULL if this CU came from a DWO file.
499 There is an invariant here that is important to remember:
500 Except for attributes copied from the top level DIE in the "main"
501 (or "stub") file in preparation for reading the DWO file
502 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
503 Either there isn't a DWO file (in which case this is NULL and the point
504 is moot), or there is and either we're not going to read it (in which
505 case this is NULL) or there is and we are reading it (in which case this
507 struct dwo_unit
*dwo_unit
;
509 /* The DW_AT_addr_base attribute if present, zero otherwise
510 (zero is a valid value though).
511 Note this value comes from the Fission stub CU/TU's DIE. */
514 /* The DW_AT_ranges_base attribute if present, zero otherwise
515 (zero is a valid value though).
516 Note this value comes from the Fission stub CU/TU's DIE.
517 Also note that the value is zero in the non-DWO case so this value can
518 be used without needing to know whether DWO files are in use or not.
519 N.B. This does not apply to DW_AT_ranges appearing in
520 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
521 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
522 DW_AT_ranges_base *would* have to be applied, and we'd have to care
523 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
524 ULONGEST ranges_base
;
526 /* Mark used when releasing cached dies. */
527 unsigned int mark
: 1;
529 /* This CU references .debug_loc. See the symtab->locations_valid field.
530 This test is imperfect as there may exist optimized debug code not using
531 any location list and still facing inlining issues if handled as
532 unoptimized code. For a future better test see GCC PR other/32998. */
533 unsigned int has_loclist
: 1;
535 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
536 if all the producer_is_* fields are valid. This information is cached
537 because profiling CU expansion showed excessive time spent in
538 producer_is_gxx_lt_4_6. */
539 unsigned int checked_producer
: 1;
540 unsigned int producer_is_gxx_lt_4_6
: 1;
541 unsigned int producer_is_gcc_lt_4_3
: 1;
542 unsigned int producer_is_icc
: 1;
544 /* When set, the file that we're processing is known to have
545 debugging info for C++ namespaces. GCC 3.3.x did not produce
546 this information, but later versions do. */
548 unsigned int processing_has_namespace_info
: 1;
551 /* Persistent data held for a compilation unit, even when not
552 processing it. We put a pointer to this structure in the
553 read_symtab_private field of the psymtab. */
555 struct dwarf2_per_cu_data
557 /* The start offset and length of this compilation unit.
558 NOTE: Unlike comp_unit_head.length, this length includes
560 If the DIE refers to a DWO file, this is always of the original die,
565 /* Flag indicating this compilation unit will be read in before
566 any of the current compilation units are processed. */
567 unsigned int queued
: 1;
569 /* This flag will be set when reading partial DIEs if we need to load
570 absolutely all DIEs for this compilation unit, instead of just the ones
571 we think are interesting. It gets set if we look for a DIE in the
572 hash table and don't find it. */
573 unsigned int load_all_dies
: 1;
575 /* Non-zero if this CU is from .debug_types.
576 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
578 unsigned int is_debug_types
: 1;
580 /* Non-zero if this CU is from the .dwz file. */
581 unsigned int is_dwz
: 1;
583 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
584 This flag is only valid if is_debug_types is true.
585 We can't read a CU directly from a DWO file: There are required
586 attributes in the stub. */
587 unsigned int reading_dwo_directly
: 1;
589 /* Non-zero if the TU has been read.
590 This is used to assist the "Stay in DWO Optimization" for Fission:
591 When reading a DWO, it's faster to read TUs from the DWO instead of
592 fetching them from random other DWOs (due to comdat folding).
593 If the TU has already been read, the optimization is unnecessary
594 (and unwise - we don't want to change where gdb thinks the TU lives
596 This flag is only valid if is_debug_types is true. */
597 unsigned int tu_read
: 1;
599 /* The section this CU/TU lives in.
600 If the DIE refers to a DWO file, this is always the original die,
602 struct dwarf2_section_info
*section
;
604 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
605 of the CU cache it gets reset to NULL again. */
606 struct dwarf2_cu
*cu
;
608 /* The corresponding objfile.
609 Normally we can get the objfile from dwarf2_per_objfile.
610 However we can enter this file with just a "per_cu" handle. */
611 struct objfile
*objfile
;
613 /* When dwarf2_per_objfile->using_index is true, the 'quick' field
614 is active. Otherwise, the 'psymtab' field is active. */
617 /* The partial symbol table associated with this compilation unit,
618 or NULL for unread partial units. */
619 struct partial_symtab
*psymtab
;
621 /* Data needed by the "quick" functions. */
622 struct dwarf2_per_cu_quick_data
*quick
;
625 /* The CUs we import using DW_TAG_imported_unit. This is filled in
626 while reading psymtabs, used to compute the psymtab dependencies,
627 and then cleared. Then it is filled in again while reading full
628 symbols, and only deleted when the objfile is destroyed.
630 This is also used to work around a difference between the way gold
631 generates .gdb_index version <=7 and the way gdb does. Arguably this
632 is a gold bug. For symbols coming from TUs, gold records in the index
633 the CU that includes the TU instead of the TU itself. This breaks
634 dw2_lookup_symbol: It assumes that if the index says symbol X lives
635 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
636 will find X. Alas TUs live in their own symtab, so after expanding CU Y
637 we need to look in TU Z to find X. Fortunately, this is akin to
638 DW_TAG_imported_unit, so we just use the same mechanism: For
639 .gdb_index version <=7 this also records the TUs that the CU referred
640 to. Concurrently with this change gdb was modified to emit version 8
641 indices so we only pay a price for gold generated indices.
642 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
643 VEC (dwarf2_per_cu_ptr
) *imported_symtabs
;
646 /* Entry in the signatured_types hash table. */
648 struct signatured_type
650 /* The "per_cu" object of this type.
651 This struct is used iff per_cu.is_debug_types.
652 N.B.: This is the first member so that it's easy to convert pointers
654 struct dwarf2_per_cu_data per_cu
;
656 /* The type's signature. */
659 /* Offset in the TU of the type's DIE, as read from the TU header.
660 If this TU is a DWO stub and the definition lives in a DWO file
661 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
662 cu_offset type_offset_in_tu
;
664 /* Offset in the section of the type's DIE.
665 If the definition lives in a DWO file, this is the offset in the
666 .debug_types.dwo section.
667 The value is zero until the actual value is known.
668 Zero is otherwise not a valid section offset. */
669 sect_offset type_offset_in_section
;
671 /* Type units are grouped by their DW_AT_stmt_list entry so that they
672 can share them. This points to the containing symtab. */
673 struct type_unit_group
*type_unit_group
;
676 The first time we encounter this type we fully read it in and install it
677 in the symbol tables. Subsequent times we only need the type. */
680 /* Containing DWO unit.
681 This field is valid iff per_cu.reading_dwo_directly. */
682 struct dwo_unit
*dwo_unit
;
685 typedef struct signatured_type
*sig_type_ptr
;
686 DEF_VEC_P (sig_type_ptr
);
688 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
689 This includes type_unit_group and quick_file_names. */
691 struct stmt_list_hash
693 /* The DWO unit this table is from or NULL if there is none. */
694 struct dwo_unit
*dwo_unit
;
696 /* Offset in .debug_line or .debug_line.dwo. */
697 sect_offset line_offset
;
700 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
701 an object of this type. */
703 struct type_unit_group
705 /* dwarf2read.c's main "handle" on a TU symtab.
706 To simplify things we create an artificial CU that "includes" all the
707 type units using this stmt_list so that the rest of the code still has
708 a "per_cu" handle on the symtab.
709 This PER_CU is recognized by having no section. */
710 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
711 struct dwarf2_per_cu_data per_cu
;
713 /* The TUs that share this DW_AT_stmt_list entry.
714 This is added to while parsing type units to build partial symtabs,
715 and is deleted afterwards and not used again. */
716 VEC (sig_type_ptr
) *tus
;
718 /* The compunit symtab.
719 Type units in a group needn't all be defined in the same source file,
720 so we create an essentially anonymous symtab as the compunit symtab. */
721 struct compunit_symtab
*compunit_symtab
;
723 /* The data used to construct the hash key. */
724 struct stmt_list_hash hash
;
726 /* The number of symtabs from the line header.
727 The value here must match line_header.num_file_names. */
728 unsigned int num_symtabs
;
730 /* The symbol tables for this TU (obtained from the files listed in
732 WARNING: The order of entries here must match the order of entries
733 in the line header. After the first TU using this type_unit_group, the
734 line header for the subsequent TUs is recreated from this. This is done
735 because we need to use the same symtabs for each TU using the same
736 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
737 there's no guarantee the line header doesn't have duplicate entries. */
738 struct symtab
**symtabs
;
741 /* These sections are what may appear in a (real or virtual) DWO file. */
745 struct dwarf2_section_info abbrev
;
746 struct dwarf2_section_info line
;
747 struct dwarf2_section_info loc
;
748 struct dwarf2_section_info macinfo
;
749 struct dwarf2_section_info macro
;
750 struct dwarf2_section_info str
;
751 struct dwarf2_section_info str_offsets
;
752 /* In the case of a virtual DWO file, these two are unused. */
753 struct dwarf2_section_info info
;
754 VEC (dwarf2_section_info_def
) *types
;
757 /* CUs/TUs in DWP/DWO files. */
761 /* Backlink to the containing struct dwo_file. */
762 struct dwo_file
*dwo_file
;
764 /* The "id" that distinguishes this CU/TU.
765 .debug_info calls this "dwo_id", .debug_types calls this "signature".
766 Since signatures came first, we stick with it for consistency. */
769 /* The section this CU/TU lives in, in the DWO file. */
770 struct dwarf2_section_info
*section
;
772 /* Same as dwarf2_per_cu_data:{offset,length} but in the DWO section. */
776 /* For types, offset in the type's DIE of the type defined by this TU. */
777 cu_offset type_offset_in_tu
;
780 /* include/dwarf2.h defines the DWP section codes.
781 It defines a max value but it doesn't define a min value, which we
782 use for error checking, so provide one. */
784 enum dwp_v2_section_ids
789 /* Data for one DWO file.
791 This includes virtual DWO files (a virtual DWO file is a DWO file as it
792 appears in a DWP file). DWP files don't really have DWO files per se -
793 comdat folding of types "loses" the DWO file they came from, and from
794 a high level view DWP files appear to contain a mass of random types.
795 However, to maintain consistency with the non-DWP case we pretend DWP
796 files contain virtual DWO files, and we assign each TU with one virtual
797 DWO file (generally based on the line and abbrev section offsets -
798 a heuristic that seems to work in practice). */
802 /* The DW_AT_GNU_dwo_name attribute.
803 For virtual DWO files the name is constructed from the section offsets
804 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
805 from related CU+TUs. */
806 const char *dwo_name
;
808 /* The DW_AT_comp_dir attribute. */
809 const char *comp_dir
;
811 /* The bfd, when the file is open. Otherwise this is NULL.
812 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
815 /* The sections that make up this DWO file.
816 Remember that for virtual DWO files in DWP V2, these are virtual
817 sections (for lack of a better name). */
818 struct dwo_sections sections
;
820 /* The CU in the file.
821 We only support one because having more than one requires hacking the
822 dwo_name of each to match, which is highly unlikely to happen.
823 Doing this means all TUs can share comp_dir: We also assume that
824 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
827 /* Table of TUs in the file.
828 Each element is a struct dwo_unit. */
832 /* These sections are what may appear in a DWP file. */
836 /* These are used by both DWP version 1 and 2. */
837 struct dwarf2_section_info str
;
838 struct dwarf2_section_info cu_index
;
839 struct dwarf2_section_info tu_index
;
841 /* These are only used by DWP version 2 files.
842 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
843 sections are referenced by section number, and are not recorded here.
844 In DWP version 2 there is at most one copy of all these sections, each
845 section being (effectively) comprised of the concatenation of all of the
846 individual sections that exist in the version 1 format.
847 To keep the code simple we treat each of these concatenated pieces as a
848 section itself (a virtual section?). */
849 struct dwarf2_section_info abbrev
;
850 struct dwarf2_section_info info
;
851 struct dwarf2_section_info line
;
852 struct dwarf2_section_info loc
;
853 struct dwarf2_section_info macinfo
;
854 struct dwarf2_section_info macro
;
855 struct dwarf2_section_info str_offsets
;
856 struct dwarf2_section_info types
;
859 /* These sections are what may appear in a virtual DWO file in DWP version 1.
860 A virtual DWO file is a DWO file as it appears in a DWP file. */
862 struct virtual_v1_dwo_sections
864 struct dwarf2_section_info abbrev
;
865 struct dwarf2_section_info line
;
866 struct dwarf2_section_info loc
;
867 struct dwarf2_section_info macinfo
;
868 struct dwarf2_section_info macro
;
869 struct dwarf2_section_info str_offsets
;
870 /* Each DWP hash table entry records one CU or one TU.
871 That is recorded here, and copied to dwo_unit.section. */
872 struct dwarf2_section_info info_or_types
;
875 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
876 In version 2, the sections of the DWO files are concatenated together
877 and stored in one section of that name. Thus each ELF section contains
878 several "virtual" sections. */
880 struct virtual_v2_dwo_sections
882 bfd_size_type abbrev_offset
;
883 bfd_size_type abbrev_size
;
885 bfd_size_type line_offset
;
886 bfd_size_type line_size
;
888 bfd_size_type loc_offset
;
889 bfd_size_type loc_size
;
891 bfd_size_type macinfo_offset
;
892 bfd_size_type macinfo_size
;
894 bfd_size_type macro_offset
;
895 bfd_size_type macro_size
;
897 bfd_size_type str_offsets_offset
;
898 bfd_size_type str_offsets_size
;
900 /* Each DWP hash table entry records one CU or one TU.
901 That is recorded here, and copied to dwo_unit.section. */
902 bfd_size_type info_or_types_offset
;
903 bfd_size_type info_or_types_size
;
906 /* Contents of DWP hash tables. */
908 struct dwp_hash_table
910 uint32_t version
, nr_columns
;
911 uint32_t nr_units
, nr_slots
;
912 const gdb_byte
*hash_table
, *unit_table
;
917 const gdb_byte
*indices
;
921 /* This is indexed by column number and gives the id of the section
923 #define MAX_NR_V2_DWO_SECTIONS \
924 (1 /* .debug_info or .debug_types */ \
925 + 1 /* .debug_abbrev */ \
926 + 1 /* .debug_line */ \
927 + 1 /* .debug_loc */ \
928 + 1 /* .debug_str_offsets */ \
929 + 1 /* .debug_macro or .debug_macinfo */)
930 int section_ids
[MAX_NR_V2_DWO_SECTIONS
];
931 const gdb_byte
*offsets
;
932 const gdb_byte
*sizes
;
937 /* Data for one DWP file. */
941 /* Name of the file. */
944 /* File format version. */
950 /* Section info for this file. */
951 struct dwp_sections sections
;
953 /* Table of CUs in the file. */
954 const struct dwp_hash_table
*cus
;
956 /* Table of TUs in the file. */
957 const struct dwp_hash_table
*tus
;
959 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
963 /* Table to map ELF section numbers to their sections.
964 This is only needed for the DWP V1 file format. */
965 unsigned int num_sections
;
966 asection
**elf_sections
;
969 /* This represents a '.dwz' file. */
973 /* A dwz file can only contain a few sections. */
974 struct dwarf2_section_info abbrev
;
975 struct dwarf2_section_info info
;
976 struct dwarf2_section_info str
;
977 struct dwarf2_section_info line
;
978 struct dwarf2_section_info macro
;
979 struct dwarf2_section_info gdb_index
;
985 /* Struct used to pass misc. parameters to read_die_and_children, et
986 al. which are used for both .debug_info and .debug_types dies.
987 All parameters here are unchanging for the life of the call. This
988 struct exists to abstract away the constant parameters of die reading. */
990 struct die_reader_specs
992 /* The bfd of die_section. */
995 /* The CU of the DIE we are parsing. */
996 struct dwarf2_cu
*cu
;
998 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
999 struct dwo_file
*dwo_file
;
1001 /* The section the die comes from.
1002 This is either .debug_info or .debug_types, or the .dwo variants. */
1003 struct dwarf2_section_info
*die_section
;
1005 /* die_section->buffer. */
1006 const gdb_byte
*buffer
;
1008 /* The end of the buffer. */
1009 const gdb_byte
*buffer_end
;
1011 /* The value of the DW_AT_comp_dir attribute. */
1012 const char *comp_dir
;
1015 /* Type of function passed to init_cutu_and_read_dies, et.al. */
1016 typedef void (die_reader_func_ftype
) (const struct die_reader_specs
*reader
,
1017 const gdb_byte
*info_ptr
,
1018 struct die_info
*comp_unit_die
,
1022 /* The line number information for a compilation unit (found in the
1023 .debug_line section) begins with a "statement program header",
1024 which contains the following information. */
1027 unsigned int total_length
;
1028 unsigned short version
;
1029 unsigned int header_length
;
1030 unsigned char minimum_instruction_length
;
1031 unsigned char maximum_ops_per_instruction
;
1032 unsigned char default_is_stmt
;
1034 unsigned char line_range
;
1035 unsigned char opcode_base
;
1037 /* standard_opcode_lengths[i] is the number of operands for the
1038 standard opcode whose value is i. This means that
1039 standard_opcode_lengths[0] is unused, and the last meaningful
1040 element is standard_opcode_lengths[opcode_base - 1]. */
1041 unsigned char *standard_opcode_lengths
;
1043 /* The include_directories table. NOTE! These strings are not
1044 allocated with xmalloc; instead, they are pointers into
1045 debug_line_buffer. If you try to free them, `free' will get
1047 unsigned int num_include_dirs
, include_dirs_size
;
1048 const char **include_dirs
;
1050 /* The file_names table. NOTE! These strings are not allocated
1051 with xmalloc; instead, they are pointers into debug_line_buffer.
1052 Don't try to free them directly. */
1053 unsigned int num_file_names
, file_names_size
;
1057 unsigned int dir_index
;
1058 unsigned int mod_time
;
1059 unsigned int length
;
1060 int included_p
; /* Non-zero if referenced by the Line Number Program. */
1061 struct symtab
*symtab
; /* The associated symbol table, if any. */
1064 /* The start and end of the statement program following this
1065 header. These point into dwarf2_per_objfile->line_buffer. */
1066 const gdb_byte
*statement_program_start
, *statement_program_end
;
1069 /* When we construct a partial symbol table entry we only
1070 need this much information. */
1071 struct partial_die_info
1073 /* Offset of this DIE. */
1076 /* DWARF-2 tag for this DIE. */
1077 ENUM_BITFIELD(dwarf_tag
) tag
: 16;
1079 /* Assorted flags describing the data found in this DIE. */
1080 unsigned int has_children
: 1;
1081 unsigned int is_external
: 1;
1082 unsigned int is_declaration
: 1;
1083 unsigned int has_type
: 1;
1084 unsigned int has_specification
: 1;
1085 unsigned int has_pc_info
: 1;
1086 unsigned int may_be_inlined
: 1;
1088 /* Flag set if the SCOPE field of this structure has been
1090 unsigned int scope_set
: 1;
1092 /* Flag set if the DIE has a byte_size attribute. */
1093 unsigned int has_byte_size
: 1;
1095 /* Flag set if any of the DIE's children are template arguments. */
1096 unsigned int has_template_arguments
: 1;
1098 /* Flag set if fixup_partial_die has been called on this die. */
1099 unsigned int fixup_called
: 1;
1101 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1102 unsigned int is_dwz
: 1;
1104 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1105 unsigned int spec_is_dwz
: 1;
1107 /* The name of this DIE. Normally the value of DW_AT_name, but
1108 sometimes a default name for unnamed DIEs. */
1111 /* The linkage name, if present. */
1112 const char *linkage_name
;
1114 /* The scope to prepend to our children. This is generally
1115 allocated on the comp_unit_obstack, so will disappear
1116 when this compilation unit leaves the cache. */
1119 /* Some data associated with the partial DIE. The tag determines
1120 which field is live. */
1123 /* The location description associated with this DIE, if any. */
1124 struct dwarf_block
*locdesc
;
1125 /* The offset of an import, for DW_TAG_imported_unit. */
1129 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1133 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1134 DW_AT_sibling, if any. */
1135 /* NOTE: This member isn't strictly necessary, read_partial_die could
1136 return DW_AT_sibling values to its caller load_partial_dies. */
1137 const gdb_byte
*sibling
;
1139 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1140 DW_AT_specification (or DW_AT_abstract_origin or
1141 DW_AT_extension). */
1142 sect_offset spec_offset
;
1144 /* Pointers to this DIE's parent, first child, and next sibling,
1146 struct partial_die_info
*die_parent
, *die_child
, *die_sibling
;
1149 /* This data structure holds the information of an abbrev. */
1152 unsigned int number
; /* number identifying abbrev */
1153 enum dwarf_tag tag
; /* dwarf tag */
1154 unsigned short has_children
; /* boolean */
1155 unsigned short num_attrs
; /* number of attributes */
1156 struct attr_abbrev
*attrs
; /* an array of attribute descriptions */
1157 struct abbrev_info
*next
; /* next in chain */
1162 ENUM_BITFIELD(dwarf_attribute
) name
: 16;
1163 ENUM_BITFIELD(dwarf_form
) form
: 16;
1166 /* Size of abbrev_table.abbrev_hash_table. */
1167 #define ABBREV_HASH_SIZE 121
1169 /* Top level data structure to contain an abbreviation table. */
1173 /* Where the abbrev table came from.
1174 This is used as a sanity check when the table is used. */
1177 /* Storage for the abbrev table. */
1178 struct obstack abbrev_obstack
;
1180 /* Hash table of abbrevs.
1181 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1182 It could be statically allocated, but the previous code didn't so we
1184 struct abbrev_info
**abbrevs
;
1187 /* Attributes have a name and a value. */
1190 ENUM_BITFIELD(dwarf_attribute
) name
: 16;
1191 ENUM_BITFIELD(dwarf_form
) form
: 15;
1193 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1194 field should be in u.str (existing only for DW_STRING) but it is kept
1195 here for better struct attribute alignment. */
1196 unsigned int string_is_canonical
: 1;
1201 struct dwarf_block
*blk
;
1210 /* This data structure holds a complete die structure. */
1213 /* DWARF-2 tag for this DIE. */
1214 ENUM_BITFIELD(dwarf_tag
) tag
: 16;
1216 /* Number of attributes */
1217 unsigned char num_attrs
;
1219 /* True if we're presently building the full type name for the
1220 type derived from this DIE. */
1221 unsigned char building_fullname
: 1;
1223 /* True if this die is in process. PR 16581. */
1224 unsigned char in_process
: 1;
1227 unsigned int abbrev
;
1229 /* Offset in .debug_info or .debug_types section. */
1232 /* The dies in a compilation unit form an n-ary tree. PARENT
1233 points to this die's parent; CHILD points to the first child of
1234 this node; and all the children of a given node are chained
1235 together via their SIBLING fields. */
1236 struct die_info
*child
; /* Its first child, if any. */
1237 struct die_info
*sibling
; /* Its next sibling, if any. */
1238 struct die_info
*parent
; /* Its parent, if any. */
1240 /* An array of attributes, with NUM_ATTRS elements. There may be
1241 zero, but it's not common and zero-sized arrays are not
1242 sufficiently portable C. */
1243 struct attribute attrs
[1];
1246 /* Get at parts of an attribute structure. */
1248 #define DW_STRING(attr) ((attr)->u.str)
1249 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1250 #define DW_UNSND(attr) ((attr)->u.unsnd)
1251 #define DW_BLOCK(attr) ((attr)->u.blk)
1252 #define DW_SND(attr) ((attr)->u.snd)
1253 #define DW_ADDR(attr) ((attr)->u.addr)
1254 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1256 /* Blocks are a bunch of untyped bytes. */
1261 /* Valid only if SIZE is not zero. */
1262 const gdb_byte
*data
;
1265 #ifndef ATTR_ALLOC_CHUNK
1266 #define ATTR_ALLOC_CHUNK 4
1269 /* Allocate fields for structs, unions and enums in this size. */
1270 #ifndef DW_FIELD_ALLOC_CHUNK
1271 #define DW_FIELD_ALLOC_CHUNK 4
1274 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1275 but this would require a corresponding change in unpack_field_as_long
1277 static int bits_per_byte
= 8;
1279 /* The routines that read and process dies for a C struct or C++ class
1280 pass lists of data member fields and lists of member function fields
1281 in an instance of a field_info structure, as defined below. */
1284 /* List of data member and baseclasses fields. */
1287 struct nextfield
*next
;
1292 *fields
, *baseclasses
;
1294 /* Number of fields (including baseclasses). */
1297 /* Number of baseclasses. */
1300 /* Set if the accesibility of one of the fields is not public. */
1301 int non_public_fields
;
1303 /* Member function fields array, entries are allocated in the order they
1304 are encountered in the object file. */
1307 struct nextfnfield
*next
;
1308 struct fn_field fnfield
;
1312 /* Member function fieldlist array, contains name of possibly overloaded
1313 member function, number of overloaded member functions and a pointer
1314 to the head of the member function field chain. */
1319 struct nextfnfield
*head
;
1323 /* Number of entries in the fnfieldlists array. */
1326 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1327 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1328 struct typedef_field_list
1330 struct typedef_field field
;
1331 struct typedef_field_list
*next
;
1333 *typedef_field_list
;
1334 unsigned typedef_field_list_count
;
1337 /* One item on the queue of compilation units to read in full symbols
1339 struct dwarf2_queue_item
1341 struct dwarf2_per_cu_data
*per_cu
;
1342 enum language pretend_language
;
1343 struct dwarf2_queue_item
*next
;
1346 /* The current queue. */
1347 static struct dwarf2_queue_item
*dwarf2_queue
, *dwarf2_queue_tail
;
1349 /* Loaded secondary compilation units are kept in memory until they
1350 have not been referenced for the processing of this many
1351 compilation units. Set this to zero to disable caching. Cache
1352 sizes of up to at least twenty will improve startup time for
1353 typical inter-CU-reference binaries, at an obvious memory cost. */
1354 static int dwarf2_max_cache_age
= 5;
1356 show_dwarf2_max_cache_age (struct ui_file
*file
, int from_tty
,
1357 struct cmd_list_element
*c
, const char *value
)
1359 fprintf_filtered (file
, _("The upper bound on the age of cached "
1360 "dwarf2 compilation units is %s.\n"),
1364 /* local function prototypes */
1366 static const char *get_section_name (const struct dwarf2_section_info
*);
1368 static const char *get_section_file_name (const struct dwarf2_section_info
*);
1370 static void dwarf2_locate_sections (bfd
*, asection
*, void *);
1372 static void dwarf2_find_base_address (struct die_info
*die
,
1373 struct dwarf2_cu
*cu
);
1375 static struct partial_symtab
*create_partial_symtab
1376 (struct dwarf2_per_cu_data
*per_cu
, const char *name
);
1378 static void dwarf2_build_psymtabs_hard (struct objfile
*);
1380 static void scan_partial_symbols (struct partial_die_info
*,
1381 CORE_ADDR
*, CORE_ADDR
*,
1382 int, struct dwarf2_cu
*);
1384 static void add_partial_symbol (struct partial_die_info
*,
1385 struct dwarf2_cu
*);
1387 static void add_partial_namespace (struct partial_die_info
*pdi
,
1388 CORE_ADDR
*lowpc
, CORE_ADDR
*highpc
,
1389 int set_addrmap
, struct dwarf2_cu
*cu
);
1391 static void add_partial_module (struct partial_die_info
*pdi
, CORE_ADDR
*lowpc
,
1392 CORE_ADDR
*highpc
, int set_addrmap
,
1393 struct dwarf2_cu
*cu
);
1395 static void add_partial_enumeration (struct partial_die_info
*enum_pdi
,
1396 struct dwarf2_cu
*cu
);
1398 static void add_partial_subprogram (struct partial_die_info
*pdi
,
1399 CORE_ADDR
*lowpc
, CORE_ADDR
*highpc
,
1400 int need_pc
, struct dwarf2_cu
*cu
);
1402 static void dwarf2_read_symtab (struct partial_symtab
*,
1405 static void psymtab_to_symtab_1 (struct partial_symtab
*);
1407 static struct abbrev_info
*abbrev_table_lookup_abbrev
1408 (const struct abbrev_table
*, unsigned int);
1410 static struct abbrev_table
*abbrev_table_read_table
1411 (struct dwarf2_section_info
*, sect_offset
);
1413 static void abbrev_table_free (struct abbrev_table
*);
1415 static void abbrev_table_free_cleanup (void *);
1417 static void dwarf2_read_abbrevs (struct dwarf2_cu
*,
1418 struct dwarf2_section_info
*);
1420 static void dwarf2_free_abbrev_table (void *);
1422 static unsigned int peek_abbrev_code (bfd
*, const gdb_byte
*);
1424 static struct partial_die_info
*load_partial_dies
1425 (const struct die_reader_specs
*, const gdb_byte
*, int);
1427 static const gdb_byte
*read_partial_die (const struct die_reader_specs
*,
1428 struct partial_die_info
*,
1429 struct abbrev_info
*,
1433 static struct partial_die_info
*find_partial_die (sect_offset
, int,
1434 struct dwarf2_cu
*);
1436 static void fixup_partial_die (struct partial_die_info
*,
1437 struct dwarf2_cu
*);
1439 static const gdb_byte
*read_attribute (const struct die_reader_specs
*,
1440 struct attribute
*, struct attr_abbrev
*,
1443 static unsigned int read_1_byte (bfd
*, const gdb_byte
*);
1445 static int read_1_signed_byte (bfd
*, const gdb_byte
*);
1447 static unsigned int read_2_bytes (bfd
*, const gdb_byte
*);
1449 static unsigned int read_4_bytes (bfd
*, const gdb_byte
*);
1451 static ULONGEST
read_8_bytes (bfd
*, const gdb_byte
*);
1453 static CORE_ADDR
read_address (bfd
*, const gdb_byte
*ptr
, struct dwarf2_cu
*,
1456 static LONGEST
read_initial_length (bfd
*, const gdb_byte
*, unsigned int *);
1458 static LONGEST read_checked_initial_length_and_offset
1459 (bfd
*, const gdb_byte
*, const struct comp_unit_head
*,
1460 unsigned int *, unsigned int *);
1462 static LONGEST
read_offset (bfd
*, const gdb_byte
*,
1463 const struct comp_unit_head
*,
1466 static LONGEST
read_offset_1 (bfd
*, const gdb_byte
*, unsigned int);
1468 static sect_offset
read_abbrev_offset (struct dwarf2_section_info
*,
1471 static const gdb_byte
*read_n_bytes (bfd
*, const gdb_byte
*, unsigned int);
1473 static const char *read_direct_string (bfd
*, const gdb_byte
*, unsigned int *);
1475 static const char *read_indirect_string (bfd
*, const gdb_byte
*,
1476 const struct comp_unit_head
*,
1479 static const char *read_indirect_string_from_dwz (struct dwz_file
*, LONGEST
);
1481 static ULONGEST
read_unsigned_leb128 (bfd
*, const gdb_byte
*, unsigned int *);
1483 static LONGEST
read_signed_leb128 (bfd
*, const gdb_byte
*, unsigned int *);
1485 static CORE_ADDR
read_addr_index_from_leb128 (struct dwarf2_cu
*,
1489 static const char *read_str_index (const struct die_reader_specs
*reader
,
1490 ULONGEST str_index
);
1492 static void set_cu_language (unsigned int, struct dwarf2_cu
*);
1494 static struct attribute
*dwarf2_attr (struct die_info
*, unsigned int,
1495 struct dwarf2_cu
*);
1497 static struct attribute
*dwarf2_attr_no_follow (struct die_info
*,
1500 static int dwarf2_flag_true_p (struct die_info
*die
, unsigned name
,
1501 struct dwarf2_cu
*cu
);
1503 static int die_is_declaration (struct die_info
*, struct dwarf2_cu
*cu
);
1505 static struct die_info
*die_specification (struct die_info
*die
,
1506 struct dwarf2_cu
**);
1508 static void free_line_header (struct line_header
*lh
);
1510 static struct line_header
*dwarf_decode_line_header (unsigned int offset
,
1511 struct dwarf2_cu
*cu
);
1513 static void dwarf_decode_lines (struct line_header
*, const char *,
1514 struct dwarf2_cu
*, struct partial_symtab
*,
1517 static void dwarf2_start_subfile (const char *, const char *);
1519 static struct compunit_symtab
*dwarf2_start_symtab (struct dwarf2_cu
*,
1520 const char *, const char *,
1523 static struct symbol
*new_symbol (struct die_info
*, struct type
*,
1524 struct dwarf2_cu
*);
1526 static struct symbol
*new_symbol_full (struct die_info
*, struct type
*,
1527 struct dwarf2_cu
*, struct symbol
*);
1529 static void dwarf2_const_value (const struct attribute
*, struct symbol
*,
1530 struct dwarf2_cu
*);
1532 static void dwarf2_const_value_attr (const struct attribute
*attr
,
1535 struct obstack
*obstack
,
1536 struct dwarf2_cu
*cu
, LONGEST
*value
,
1537 const gdb_byte
**bytes
,
1538 struct dwarf2_locexpr_baton
**baton
);
1540 static struct type
*die_type (struct die_info
*, struct dwarf2_cu
*);
1542 static int need_gnat_info (struct dwarf2_cu
*);
1544 static struct type
*die_descriptive_type (struct die_info
*,
1545 struct dwarf2_cu
*);
1547 static void set_descriptive_type (struct type
*, struct die_info
*,
1548 struct dwarf2_cu
*);
1550 static struct type
*die_containing_type (struct die_info
*,
1551 struct dwarf2_cu
*);
1553 static struct type
*lookup_die_type (struct die_info
*, const struct attribute
*,
1554 struct dwarf2_cu
*);
1556 static struct type
*read_type_die (struct die_info
*, struct dwarf2_cu
*);
1558 static struct type
*read_type_die_1 (struct die_info
*, struct dwarf2_cu
*);
1560 static const char *determine_prefix (struct die_info
*die
, struct dwarf2_cu
*);
1562 static char *typename_concat (struct obstack
*obs
, const char *prefix
,
1563 const char *suffix
, int physname
,
1564 struct dwarf2_cu
*cu
);
1566 static void read_file_scope (struct die_info
*, struct dwarf2_cu
*);
1568 static void read_type_unit_scope (struct die_info
*, struct dwarf2_cu
*);
1570 static void read_func_scope (struct die_info
*, struct dwarf2_cu
*);
1572 static void read_lexical_block_scope (struct die_info
*, struct dwarf2_cu
*);
1574 static void read_call_site_scope (struct die_info
*die
, struct dwarf2_cu
*cu
);
1576 static int dwarf2_ranges_read (unsigned, CORE_ADDR
*, CORE_ADDR
*,
1577 struct dwarf2_cu
*, struct partial_symtab
*);
1579 static int dwarf2_get_pc_bounds (struct die_info
*,
1580 CORE_ADDR
*, CORE_ADDR
*, struct dwarf2_cu
*,
1581 struct partial_symtab
*);
1583 static void get_scope_pc_bounds (struct die_info
*,
1584 CORE_ADDR
*, CORE_ADDR
*,
1585 struct dwarf2_cu
*);
1587 static void dwarf2_record_block_ranges (struct die_info
*, struct block
*,
1588 CORE_ADDR
, struct dwarf2_cu
*);
1590 static void dwarf2_add_field (struct field_info
*, struct die_info
*,
1591 struct dwarf2_cu
*);
1593 static void dwarf2_attach_fields_to_type (struct field_info
*,
1594 struct type
*, struct dwarf2_cu
*);
1596 static void dwarf2_add_member_fn (struct field_info
*,
1597 struct die_info
*, struct type
*,
1598 struct dwarf2_cu
*);
1600 static void dwarf2_attach_fn_fields_to_type (struct field_info
*,
1602 struct dwarf2_cu
*);
1604 static void process_structure_scope (struct die_info
*, struct dwarf2_cu
*);
1606 static void read_common_block (struct die_info
*, struct dwarf2_cu
*);
1608 static void read_namespace (struct die_info
*die
, struct dwarf2_cu
*);
1610 static void read_module (struct die_info
*die
, struct dwarf2_cu
*cu
);
1612 static void read_import_statement (struct die_info
*die
, struct dwarf2_cu
*);
1614 static int read_namespace_alias (struct die_info
*die
, struct dwarf2_cu
*cu
);
1616 static struct type
*read_module_type (struct die_info
*die
,
1617 struct dwarf2_cu
*cu
);
1619 static const char *namespace_name (struct die_info
*die
,
1620 int *is_anonymous
, struct dwarf2_cu
*);
1622 static void process_enumeration_scope (struct die_info
*, struct dwarf2_cu
*);
1624 static CORE_ADDR
decode_locdesc (struct dwarf_block
*, struct dwarf2_cu
*);
1626 static enum dwarf_array_dim_ordering
read_array_order (struct die_info
*,
1627 struct dwarf2_cu
*);
1629 static struct die_info
*read_die_and_siblings_1
1630 (const struct die_reader_specs
*, const gdb_byte
*, const gdb_byte
**,
1633 static struct die_info
*read_die_and_siblings (const struct die_reader_specs
*,
1634 const gdb_byte
*info_ptr
,
1635 const gdb_byte
**new_info_ptr
,
1636 struct die_info
*parent
);
1638 static const gdb_byte
*read_full_die_1 (const struct die_reader_specs
*,
1639 struct die_info
**, const gdb_byte
*,
1642 static const gdb_byte
*read_full_die (const struct die_reader_specs
*,
1643 struct die_info
**, const gdb_byte
*,
1646 static void process_die (struct die_info
*, struct dwarf2_cu
*);
1648 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu
*,
1651 static const char *dwarf2_name (struct die_info
*die
, struct dwarf2_cu
*);
1653 static const char *dwarf2_full_name (const char *name
,
1654 struct die_info
*die
,
1655 struct dwarf2_cu
*cu
);
1657 static const char *dwarf2_physname (const char *name
, struct die_info
*die
,
1658 struct dwarf2_cu
*cu
);
1660 static struct die_info
*dwarf2_extension (struct die_info
*die
,
1661 struct dwarf2_cu
**);
1663 static const char *dwarf_tag_name (unsigned int);
1665 static const char *dwarf_attr_name (unsigned int);
1667 static const char *dwarf_form_name (unsigned int);
1669 static char *dwarf_bool_name (unsigned int);
1671 static const char *dwarf_type_encoding_name (unsigned int);
1673 static struct die_info
*sibling_die (struct die_info
*);
1675 static void dump_die_shallow (struct ui_file
*, int indent
, struct die_info
*);
1677 static void dump_die_for_error (struct die_info
*);
1679 static void dump_die_1 (struct ui_file
*, int level
, int max_level
,
1682 /*static*/ void dump_die (struct die_info
*, int max_level
);
1684 static void store_in_ref_table (struct die_info
*,
1685 struct dwarf2_cu
*);
1687 static sect_offset
dwarf2_get_ref_die_offset (const struct attribute
*);
1689 static LONGEST
dwarf2_get_attr_constant_value (const struct attribute
*, int);
1691 static struct die_info
*follow_die_ref_or_sig (struct die_info
*,
1692 const struct attribute
*,
1693 struct dwarf2_cu
**);
1695 static struct die_info
*follow_die_ref (struct die_info
*,
1696 const struct attribute
*,
1697 struct dwarf2_cu
**);
1699 static struct die_info
*follow_die_sig (struct die_info
*,
1700 const struct attribute
*,
1701 struct dwarf2_cu
**);
1703 static struct type
*get_signatured_type (struct die_info
*, ULONGEST
,
1704 struct dwarf2_cu
*);
1706 static struct type
*get_DW_AT_signature_type (struct die_info
*,
1707 const struct attribute
*,
1708 struct dwarf2_cu
*);
1710 static void load_full_type_unit (struct dwarf2_per_cu_data
*per_cu
);
1712 static void read_signatured_type (struct signatured_type
*);
1714 /* memory allocation interface */
1716 static struct dwarf_block
*dwarf_alloc_block (struct dwarf2_cu
*);
1718 static struct die_info
*dwarf_alloc_die (struct dwarf2_cu
*, int);
1720 static void dwarf_decode_macros (struct dwarf2_cu
*, unsigned int, int);
1722 static int attr_form_is_block (const struct attribute
*);
1724 static int attr_form_is_section_offset (const struct attribute
*);
1726 static int attr_form_is_constant (const struct attribute
*);
1728 static int attr_form_is_ref (const struct attribute
*);
1730 static void fill_in_loclist_baton (struct dwarf2_cu
*cu
,
1731 struct dwarf2_loclist_baton
*baton
,
1732 const struct attribute
*attr
);
1734 static void dwarf2_symbol_mark_computed (const struct attribute
*attr
,
1736 struct dwarf2_cu
*cu
,
1739 static const gdb_byte
*skip_one_die (const struct die_reader_specs
*reader
,
1740 const gdb_byte
*info_ptr
,
1741 struct abbrev_info
*abbrev
);
1743 static void free_stack_comp_unit (void *);
1745 static hashval_t
partial_die_hash (const void *item
);
1747 static int partial_die_eq (const void *item_lhs
, const void *item_rhs
);
1749 static struct dwarf2_per_cu_data
*dwarf2_find_containing_comp_unit
1750 (sect_offset offset
, unsigned int offset_in_dwz
, struct objfile
*objfile
);
1752 static void init_one_comp_unit (struct dwarf2_cu
*cu
,
1753 struct dwarf2_per_cu_data
*per_cu
);
1755 static void prepare_one_comp_unit (struct dwarf2_cu
*cu
,
1756 struct die_info
*comp_unit_die
,
1757 enum language pretend_language
);
1759 static void free_heap_comp_unit (void *);
1761 static void free_cached_comp_units (void *);
1763 static void age_cached_comp_units (void);
1765 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data
*);
1767 static struct type
*set_die_type (struct die_info
*, struct type
*,
1768 struct dwarf2_cu
*);
1770 static void create_all_comp_units (struct objfile
*);
1772 static int create_all_type_units (struct objfile
*);
1774 static void load_full_comp_unit (struct dwarf2_per_cu_data
*,
1777 static void process_full_comp_unit (struct dwarf2_per_cu_data
*,
1780 static void process_full_type_unit (struct dwarf2_per_cu_data
*,
1783 static void dwarf2_add_dependence (struct dwarf2_cu
*,
1784 struct dwarf2_per_cu_data
*);
1786 static void dwarf2_mark (struct dwarf2_cu
*);
1788 static void dwarf2_clear_marks (struct dwarf2_per_cu_data
*);
1790 static struct type
*get_die_type_at_offset (sect_offset
,
1791 struct dwarf2_per_cu_data
*);
1793 static struct type
*get_die_type (struct die_info
*die
, struct dwarf2_cu
*cu
);
1795 static void dwarf2_release_queue (void *dummy
);
1797 static void queue_comp_unit (struct dwarf2_per_cu_data
*per_cu
,
1798 enum language pretend_language
);
1800 static void process_queue (void);
1802 static void find_file_and_directory (struct die_info
*die
,
1803 struct dwarf2_cu
*cu
,
1804 const char **name
, const char **comp_dir
);
1806 static char *file_full_name (int file
, struct line_header
*lh
,
1807 const char *comp_dir
);
1809 static const gdb_byte
*read_and_check_comp_unit_head
1810 (struct comp_unit_head
*header
,
1811 struct dwarf2_section_info
*section
,
1812 struct dwarf2_section_info
*abbrev_section
, const gdb_byte
*info_ptr
,
1813 int is_debug_types_section
);
1815 static void init_cutu_and_read_dies
1816 (struct dwarf2_per_cu_data
*this_cu
, struct abbrev_table
*abbrev_table
,
1817 int use_existing_cu
, int keep
,
1818 die_reader_func_ftype
*die_reader_func
, void *data
);
1820 static void init_cutu_and_read_dies_simple
1821 (struct dwarf2_per_cu_data
*this_cu
,
1822 die_reader_func_ftype
*die_reader_func
, void *data
);
1824 static htab_t
allocate_signatured_type_table (struct objfile
*objfile
);
1826 static htab_t
allocate_dwo_unit_table (struct objfile
*objfile
);
1828 static struct dwo_unit
*lookup_dwo_unit_in_dwp
1829 (struct dwp_file
*dwp_file
, const char *comp_dir
,
1830 ULONGEST signature
, int is_debug_types
);
1832 static struct dwp_file
*get_dwp_file (void);
1834 static struct dwo_unit
*lookup_dwo_comp_unit
1835 (struct dwarf2_per_cu_data
*, const char *, const char *, ULONGEST
);
1837 static struct dwo_unit
*lookup_dwo_type_unit
1838 (struct signatured_type
*, const char *, const char *);
1840 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data
*);
1842 static void free_dwo_file_cleanup (void *);
1844 static void process_cu_includes (void);
1846 static void check_producer (struct dwarf2_cu
*cu
);
1848 /* Various complaints about symbol reading that don't abort the process. */
1851 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1853 complaint (&symfile_complaints
,
1854 _("statement list doesn't fit in .debug_line section"));
1858 dwarf2_debug_line_missing_file_complaint (void)
1860 complaint (&symfile_complaints
,
1861 _(".debug_line section has line data without a file"));
1865 dwarf2_debug_line_missing_end_sequence_complaint (void)
1867 complaint (&symfile_complaints
,
1868 _(".debug_line section has line "
1869 "program sequence without an end"));
1873 dwarf2_complex_location_expr_complaint (void)
1875 complaint (&symfile_complaints
, _("location expression too complex"));
1879 dwarf2_const_value_length_mismatch_complaint (const char *arg1
, int arg2
,
1882 complaint (&symfile_complaints
,
1883 _("const value length mismatch for '%s', got %d, expected %d"),
1888 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info
*section
)
1890 complaint (&symfile_complaints
,
1891 _("debug info runs off end of %s section"
1893 get_section_name (section
),
1894 get_section_file_name (section
));
1898 dwarf2_macro_malformed_definition_complaint (const char *arg1
)
1900 complaint (&symfile_complaints
,
1901 _("macro debug info contains a "
1902 "malformed macro definition:\n`%s'"),
1907 dwarf2_invalid_attrib_class_complaint (const char *arg1
, const char *arg2
)
1909 complaint (&symfile_complaints
,
1910 _("invalid attribute class or form for '%s' in '%s'"),
1916 /* Convert VALUE between big- and little-endian. */
1918 byte_swap (offset_type value
)
1922 result
= (value
& 0xff) << 24;
1923 result
|= (value
& 0xff00) << 8;
1924 result
|= (value
& 0xff0000) >> 8;
1925 result
|= (value
& 0xff000000) >> 24;
1929 #define MAYBE_SWAP(V) byte_swap (V)
1932 #define MAYBE_SWAP(V) (V)
1933 #endif /* WORDS_BIGENDIAN */
1935 /* Read the given attribute value as an address, taking the attribute's
1936 form into account. */
1939 attr_value_as_address (struct attribute
*attr
)
1943 if (attr
->form
!= DW_FORM_addr
&& attr
->form
!= DW_FORM_GNU_addr_index
)
1945 /* Aside from a few clearly defined exceptions, attributes that
1946 contain an address must always be in DW_FORM_addr form.
1947 Unfortunately, some compilers happen to be violating this
1948 requirement by encoding addresses using other forms, such
1949 as DW_FORM_data4 for example. For those broken compilers,
1950 we try to do our best, without any guarantee of success,
1951 to interpret the address correctly. It would also be nice
1952 to generate a complaint, but that would require us to maintain
1953 a list of legitimate cases where a non-address form is allowed,
1954 as well as update callers to pass in at least the CU's DWARF
1955 version. This is more overhead than what we're willing to
1956 expand for a pretty rare case. */
1957 addr
= DW_UNSND (attr
);
1960 addr
= DW_ADDR (attr
);
1965 /* The suffix for an index file. */
1966 #define INDEX_SUFFIX ".gdb-index"
1968 /* Try to locate the sections we need for DWARF 2 debugging
1969 information and return true if we have enough to do something.
1970 NAMES points to the dwarf2 section names, or is NULL if the standard
1971 ELF names are used. */
1974 dwarf2_has_info (struct objfile
*objfile
,
1975 const struct dwarf2_debug_sections
*names
)
1977 dwarf2_per_objfile
= objfile_data (objfile
, dwarf2_objfile_data_key
);
1978 if (!dwarf2_per_objfile
)
1980 /* Initialize per-objfile state. */
1981 struct dwarf2_per_objfile
*data
1982 = obstack_alloc (&objfile
->objfile_obstack
, sizeof (*data
));
1984 memset (data
, 0, sizeof (*data
));
1985 set_objfile_data (objfile
, dwarf2_objfile_data_key
, data
);
1986 dwarf2_per_objfile
= data
;
1988 bfd_map_over_sections (objfile
->obfd
, dwarf2_locate_sections
,
1990 dwarf2_per_objfile
->objfile
= objfile
;
1992 return (!dwarf2_per_objfile
->info
.is_virtual
1993 && dwarf2_per_objfile
->info
.s
.asection
!= NULL
1994 && !dwarf2_per_objfile
->abbrev
.is_virtual
1995 && dwarf2_per_objfile
->abbrev
.s
.asection
!= NULL
);
1998 /* Return the containing section of virtual section SECTION. */
2000 static struct dwarf2_section_info
*
2001 get_containing_section (const struct dwarf2_section_info
*section
)
2003 gdb_assert (section
->is_virtual
);
2004 return section
->s
.containing_section
;
2007 /* Return the bfd owner of SECTION. */
2010 get_section_bfd_owner (const struct dwarf2_section_info
*section
)
2012 if (section
->is_virtual
)
2014 section
= get_containing_section (section
);
2015 gdb_assert (!section
->is_virtual
);
2017 return section
->s
.asection
->owner
;
2020 /* Return the bfd section of SECTION.
2021 Returns NULL if the section is not present. */
2024 get_section_bfd_section (const struct dwarf2_section_info
*section
)
2026 if (section
->is_virtual
)
2028 section
= get_containing_section (section
);
2029 gdb_assert (!section
->is_virtual
);
2031 return section
->s
.asection
;
2034 /* Return the name of SECTION. */
2037 get_section_name (const struct dwarf2_section_info
*section
)
2039 asection
*sectp
= get_section_bfd_section (section
);
2041 gdb_assert (sectp
!= NULL
);
2042 return bfd_section_name (get_section_bfd_owner (section
), sectp
);
2045 /* Return the name of the file SECTION is in. */
2048 get_section_file_name (const struct dwarf2_section_info
*section
)
2050 bfd
*abfd
= get_section_bfd_owner (section
);
2052 return bfd_get_filename (abfd
);
2055 /* Return the id of SECTION.
2056 Returns 0 if SECTION doesn't exist. */
2059 get_section_id (const struct dwarf2_section_info
*section
)
2061 asection
*sectp
= get_section_bfd_section (section
);
2068 /* Return the flags of SECTION.
2069 SECTION (or containing section if this is a virtual section) must exist. */
2072 get_section_flags (const struct dwarf2_section_info
*section
)
2074 asection
*sectp
= get_section_bfd_section (section
);
2076 gdb_assert (sectp
!= NULL
);
2077 return bfd_get_section_flags (sectp
->owner
, sectp
);
2080 /* When loading sections, we look either for uncompressed section or for
2081 compressed section names. */
2084 section_is_p (const char *section_name
,
2085 const struct dwarf2_section_names
*names
)
2087 if (names
->normal
!= NULL
2088 && strcmp (section_name
, names
->normal
) == 0)
2090 if (names
->compressed
!= NULL
2091 && strcmp (section_name
, names
->compressed
) == 0)
2096 /* This function is mapped across the sections and remembers the
2097 offset and size of each of the debugging sections we are interested
2101 dwarf2_locate_sections (bfd
*abfd
, asection
*sectp
, void *vnames
)
2103 const struct dwarf2_debug_sections
*names
;
2104 flagword aflag
= bfd_get_section_flags (abfd
, sectp
);
2107 names
= &dwarf2_elf_names
;
2109 names
= (const struct dwarf2_debug_sections
*) vnames
;
2111 if ((aflag
& SEC_HAS_CONTENTS
) == 0)
2114 else if (section_is_p (sectp
->name
, &names
->info
))
2116 dwarf2_per_objfile
->info
.s
.asection
= sectp
;
2117 dwarf2_per_objfile
->info
.size
= bfd_get_section_size (sectp
);
2119 else if (section_is_p (sectp
->name
, &names
->abbrev
))
2121 dwarf2_per_objfile
->abbrev
.s
.asection
= sectp
;
2122 dwarf2_per_objfile
->abbrev
.size
= bfd_get_section_size (sectp
);
2124 else if (section_is_p (sectp
->name
, &names
->line
))
2126 dwarf2_per_objfile
->line
.s
.asection
= sectp
;
2127 dwarf2_per_objfile
->line
.size
= bfd_get_section_size (sectp
);
2129 else if (section_is_p (sectp
->name
, &names
->loc
))
2131 dwarf2_per_objfile
->loc
.s
.asection
= sectp
;
2132 dwarf2_per_objfile
->loc
.size
= bfd_get_section_size (sectp
);
2134 else if (section_is_p (sectp
->name
, &names
->macinfo
))
2136 dwarf2_per_objfile
->macinfo
.s
.asection
= sectp
;
2137 dwarf2_per_objfile
->macinfo
.size
= bfd_get_section_size (sectp
);
2139 else if (section_is_p (sectp
->name
, &names
->macro
))
2141 dwarf2_per_objfile
->macro
.s
.asection
= sectp
;
2142 dwarf2_per_objfile
->macro
.size
= bfd_get_section_size (sectp
);
2144 else if (section_is_p (sectp
->name
, &names
->str
))
2146 dwarf2_per_objfile
->str
.s
.asection
= sectp
;
2147 dwarf2_per_objfile
->str
.size
= bfd_get_section_size (sectp
);
2149 else if (section_is_p (sectp
->name
, &names
->addr
))
2151 dwarf2_per_objfile
->addr
.s
.asection
= sectp
;
2152 dwarf2_per_objfile
->addr
.size
= bfd_get_section_size (sectp
);
2154 else if (section_is_p (sectp
->name
, &names
->frame
))
2156 dwarf2_per_objfile
->frame
.s
.asection
= sectp
;
2157 dwarf2_per_objfile
->frame
.size
= bfd_get_section_size (sectp
);
2159 else if (section_is_p (sectp
->name
, &names
->eh_frame
))
2161 dwarf2_per_objfile
->eh_frame
.s
.asection
= sectp
;
2162 dwarf2_per_objfile
->eh_frame
.size
= bfd_get_section_size (sectp
);
2164 else if (section_is_p (sectp
->name
, &names
->ranges
))
2166 dwarf2_per_objfile
->ranges
.s
.asection
= sectp
;
2167 dwarf2_per_objfile
->ranges
.size
= bfd_get_section_size (sectp
);
2169 else if (section_is_p (sectp
->name
, &names
->types
))
2171 struct dwarf2_section_info type_section
;
2173 memset (&type_section
, 0, sizeof (type_section
));
2174 type_section
.s
.asection
= sectp
;
2175 type_section
.size
= bfd_get_section_size (sectp
);
2177 VEC_safe_push (dwarf2_section_info_def
, dwarf2_per_objfile
->types
,
2180 else if (section_is_p (sectp
->name
, &names
->gdb_index
))
2182 dwarf2_per_objfile
->gdb_index
.s
.asection
= sectp
;
2183 dwarf2_per_objfile
->gdb_index
.size
= bfd_get_section_size (sectp
);
2186 if ((bfd_get_section_flags (abfd
, sectp
) & SEC_LOAD
)
2187 && bfd_section_vma (abfd
, sectp
) == 0)
2188 dwarf2_per_objfile
->has_section_at_zero
= 1;
2191 /* A helper function that decides whether a section is empty,
2195 dwarf2_section_empty_p (const struct dwarf2_section_info
*section
)
2197 if (section
->is_virtual
)
2198 return section
->size
== 0;
2199 return section
->s
.asection
== NULL
|| section
->size
== 0;
2202 /* Read the contents of the section INFO.
2203 OBJFILE is the main object file, but not necessarily the file where
2204 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2206 If the section is compressed, uncompress it before returning. */
2209 dwarf2_read_section (struct objfile
*objfile
, struct dwarf2_section_info
*info
)
2213 gdb_byte
*buf
, *retbuf
;
2217 info
->buffer
= NULL
;
2220 if (dwarf2_section_empty_p (info
))
2223 sectp
= get_section_bfd_section (info
);
2225 /* If this is a virtual section we need to read in the real one first. */
2226 if (info
->is_virtual
)
2228 struct dwarf2_section_info
*containing_section
=
2229 get_containing_section (info
);
2231 gdb_assert (sectp
!= NULL
);
2232 if ((sectp
->flags
& SEC_RELOC
) != 0)
2234 error (_("Dwarf Error: DWP format V2 with relocations is not"
2235 " supported in section %s [in module %s]"),
2236 get_section_name (info
), get_section_file_name (info
));
2238 dwarf2_read_section (objfile
, containing_section
);
2239 /* Other code should have already caught virtual sections that don't
2241 gdb_assert (info
->virtual_offset
+ info
->size
2242 <= containing_section
->size
);
2243 /* If the real section is empty or there was a problem reading the
2244 section we shouldn't get here. */
2245 gdb_assert (containing_section
->buffer
!= NULL
);
2246 info
->buffer
= containing_section
->buffer
+ info
->virtual_offset
;
2250 /* If the section has relocations, we must read it ourselves.
2251 Otherwise we attach it to the BFD. */
2252 if ((sectp
->flags
& SEC_RELOC
) == 0)
2254 info
->buffer
= gdb_bfd_map_section (sectp
, &info
->size
);
2258 buf
= obstack_alloc (&objfile
->objfile_obstack
, info
->size
);
2261 /* When debugging .o files, we may need to apply relocations; see
2262 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2263 We never compress sections in .o files, so we only need to
2264 try this when the section is not compressed. */
2265 retbuf
= symfile_relocate_debug_section (objfile
, sectp
, buf
);
2268 info
->buffer
= retbuf
;
2272 abfd
= get_section_bfd_owner (info
);
2273 gdb_assert (abfd
!= NULL
);
2275 if (bfd_seek (abfd
, sectp
->filepos
, SEEK_SET
) != 0
2276 || bfd_bread (buf
, info
->size
, abfd
) != info
->size
)
2278 error (_("Dwarf Error: Can't read DWARF data"
2279 " in section %s [in module %s]"),
2280 bfd_section_name (abfd
, sectp
), bfd_get_filename (abfd
));
2284 /* A helper function that returns the size of a section in a safe way.
2285 If you are positive that the section has been read before using the
2286 size, then it is safe to refer to the dwarf2_section_info object's
2287 "size" field directly. In other cases, you must call this
2288 function, because for compressed sections the size field is not set
2289 correctly until the section has been read. */
2291 static bfd_size_type
2292 dwarf2_section_size (struct objfile
*objfile
,
2293 struct dwarf2_section_info
*info
)
2296 dwarf2_read_section (objfile
, info
);
2300 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2304 dwarf2_get_section_info (struct objfile
*objfile
,
2305 enum dwarf2_section_enum sect
,
2306 asection
**sectp
, const gdb_byte
**bufp
,
2307 bfd_size_type
*sizep
)
2309 struct dwarf2_per_objfile
*data
2310 = objfile_data (objfile
, dwarf2_objfile_data_key
);
2311 struct dwarf2_section_info
*info
;
2313 /* We may see an objfile without any DWARF, in which case we just
2324 case DWARF2_DEBUG_FRAME
:
2325 info
= &data
->frame
;
2327 case DWARF2_EH_FRAME
:
2328 info
= &data
->eh_frame
;
2331 gdb_assert_not_reached ("unexpected section");
2334 dwarf2_read_section (objfile
, info
);
2336 *sectp
= get_section_bfd_section (info
);
2337 *bufp
= info
->buffer
;
2338 *sizep
= info
->size
;
2341 /* A helper function to find the sections for a .dwz file. */
2344 locate_dwz_sections (bfd
*abfd
, asection
*sectp
, void *arg
)
2346 struct dwz_file
*dwz_file
= arg
;
2348 /* Note that we only support the standard ELF names, because .dwz
2349 is ELF-only (at the time of writing). */
2350 if (section_is_p (sectp
->name
, &dwarf2_elf_names
.abbrev
))
2352 dwz_file
->abbrev
.s
.asection
= sectp
;
2353 dwz_file
->abbrev
.size
= bfd_get_section_size (sectp
);
2355 else if (section_is_p (sectp
->name
, &dwarf2_elf_names
.info
))
2357 dwz_file
->info
.s
.asection
= sectp
;
2358 dwz_file
->info
.size
= bfd_get_section_size (sectp
);
2360 else if (section_is_p (sectp
->name
, &dwarf2_elf_names
.str
))
2362 dwz_file
->str
.s
.asection
= sectp
;
2363 dwz_file
->str
.size
= bfd_get_section_size (sectp
);
2365 else if (section_is_p (sectp
->name
, &dwarf2_elf_names
.line
))
2367 dwz_file
->line
.s
.asection
= sectp
;
2368 dwz_file
->line
.size
= bfd_get_section_size (sectp
);
2370 else if (section_is_p (sectp
->name
, &dwarf2_elf_names
.macro
))
2372 dwz_file
->macro
.s
.asection
= sectp
;
2373 dwz_file
->macro
.size
= bfd_get_section_size (sectp
);
2375 else if (section_is_p (sectp
->name
, &dwarf2_elf_names
.gdb_index
))
2377 dwz_file
->gdb_index
.s
.asection
= sectp
;
2378 dwz_file
->gdb_index
.size
= bfd_get_section_size (sectp
);
2382 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2383 there is no .gnu_debugaltlink section in the file. Error if there
2384 is such a section but the file cannot be found. */
2386 static struct dwz_file
*
2387 dwarf2_get_dwz_file (void)
2391 struct cleanup
*cleanup
;
2392 const char *filename
;
2393 struct dwz_file
*result
;
2394 bfd_size_type buildid_len_arg
;
2398 if (dwarf2_per_objfile
->dwz_file
!= NULL
)
2399 return dwarf2_per_objfile
->dwz_file
;
2401 bfd_set_error (bfd_error_no_error
);
2402 data
= bfd_get_alt_debug_link_info (dwarf2_per_objfile
->objfile
->obfd
,
2403 &buildid_len_arg
, &buildid
);
2406 if (bfd_get_error () == bfd_error_no_error
)
2408 error (_("could not read '.gnu_debugaltlink' section: %s"),
2409 bfd_errmsg (bfd_get_error ()));
2411 cleanup
= make_cleanup (xfree
, data
);
2412 make_cleanup (xfree
, buildid
);
2414 buildid_len
= (size_t) buildid_len_arg
;
2416 filename
= (const char *) data
;
2417 if (!IS_ABSOLUTE_PATH (filename
))
2419 char *abs
= gdb_realpath (objfile_name (dwarf2_per_objfile
->objfile
));
2422 make_cleanup (xfree
, abs
);
2423 abs
= ldirname (abs
);
2424 make_cleanup (xfree
, abs
);
2426 rel
= concat (abs
, SLASH_STRING
, filename
, (char *) NULL
);
2427 make_cleanup (xfree
, rel
);
2431 /* First try the file name given in the section. If that doesn't
2432 work, try to use the build-id instead. */
2433 dwz_bfd
= gdb_bfd_open (filename
, gnutarget
, -1);
2434 if (dwz_bfd
!= NULL
)
2436 if (!build_id_verify (dwz_bfd
, buildid_len
, buildid
))
2438 gdb_bfd_unref (dwz_bfd
);
2443 if (dwz_bfd
== NULL
)
2444 dwz_bfd
= build_id_to_debug_bfd (buildid_len
, buildid
);
2446 if (dwz_bfd
== NULL
)
2447 error (_("could not find '.gnu_debugaltlink' file for %s"),
2448 objfile_name (dwarf2_per_objfile
->objfile
));
2450 result
= OBSTACK_ZALLOC (&dwarf2_per_objfile
->objfile
->objfile_obstack
,
2452 result
->dwz_bfd
= dwz_bfd
;
2454 bfd_map_over_sections (dwz_bfd
, locate_dwz_sections
, result
);
2456 do_cleanups (cleanup
);
2458 gdb_bfd_record_inclusion (dwarf2_per_objfile
->objfile
->obfd
, dwz_bfd
);
2459 dwarf2_per_objfile
->dwz_file
= result
;
2463 /* DWARF quick_symbols_functions support. */
2465 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2466 unique line tables, so we maintain a separate table of all .debug_line
2467 derived entries to support the sharing.
2468 All the quick functions need is the list of file names. We discard the
2469 line_header when we're done and don't need to record it here. */
2470 struct quick_file_names
2472 /* The data used to construct the hash key. */
2473 struct stmt_list_hash hash
;
2475 /* The number of entries in file_names, real_names. */
2476 unsigned int num_file_names
;
2478 /* The file names from the line table, after being run through
2480 const char **file_names
;
2482 /* The file names from the line table after being run through
2483 gdb_realpath. These are computed lazily. */
2484 const char **real_names
;
2487 /* When using the index (and thus not using psymtabs), each CU has an
2488 object of this type. This is used to hold information needed by
2489 the various "quick" methods. */
2490 struct dwarf2_per_cu_quick_data
2492 /* The file table. This can be NULL if there was no file table
2493 or it's currently not read in.
2494 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2495 struct quick_file_names
*file_names
;
2497 /* The corresponding symbol table. This is NULL if symbols for this
2498 CU have not yet been read. */
2499 struct compunit_symtab
*compunit_symtab
;
2501 /* A temporary mark bit used when iterating over all CUs in
2502 expand_symtabs_matching. */
2503 unsigned int mark
: 1;
2505 /* True if we've tried to read the file table and found there isn't one.
2506 There will be no point in trying to read it again next time. */
2507 unsigned int no_file_data
: 1;
2510 /* Utility hash function for a stmt_list_hash. */
2513 hash_stmt_list_entry (const struct stmt_list_hash
*stmt_list_hash
)
2517 if (stmt_list_hash
->dwo_unit
!= NULL
)
2518 v
+= (uintptr_t) stmt_list_hash
->dwo_unit
->dwo_file
;
2519 v
+= stmt_list_hash
->line_offset
.sect_off
;
2523 /* Utility equality function for a stmt_list_hash. */
2526 eq_stmt_list_entry (const struct stmt_list_hash
*lhs
,
2527 const struct stmt_list_hash
*rhs
)
2529 if ((lhs
->dwo_unit
!= NULL
) != (rhs
->dwo_unit
!= NULL
))
2531 if (lhs
->dwo_unit
!= NULL
2532 && lhs
->dwo_unit
->dwo_file
!= rhs
->dwo_unit
->dwo_file
)
2535 return lhs
->line_offset
.sect_off
== rhs
->line_offset
.sect_off
;
2538 /* Hash function for a quick_file_names. */
2541 hash_file_name_entry (const void *e
)
2543 const struct quick_file_names
*file_data
= e
;
2545 return hash_stmt_list_entry (&file_data
->hash
);
2548 /* Equality function for a quick_file_names. */
2551 eq_file_name_entry (const void *a
, const void *b
)
2553 const struct quick_file_names
*ea
= a
;
2554 const struct quick_file_names
*eb
= b
;
2556 return eq_stmt_list_entry (&ea
->hash
, &eb
->hash
);
2559 /* Delete function for a quick_file_names. */
2562 delete_file_name_entry (void *e
)
2564 struct quick_file_names
*file_data
= e
;
2567 for (i
= 0; i
< file_data
->num_file_names
; ++i
)
2569 xfree ((void*) file_data
->file_names
[i
]);
2570 if (file_data
->real_names
)
2571 xfree ((void*) file_data
->real_names
[i
]);
2574 /* The space for the struct itself lives on objfile_obstack,
2575 so we don't free it here. */
2578 /* Create a quick_file_names hash table. */
2581 create_quick_file_names_table (unsigned int nr_initial_entries
)
2583 return htab_create_alloc (nr_initial_entries
,
2584 hash_file_name_entry
, eq_file_name_entry
,
2585 delete_file_name_entry
, xcalloc
, xfree
);
2588 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2589 have to be created afterwards. You should call age_cached_comp_units after
2590 processing PER_CU->CU. dw2_setup must have been already called. */
2593 load_cu (struct dwarf2_per_cu_data
*per_cu
)
2595 if (per_cu
->is_debug_types
)
2596 load_full_type_unit (per_cu
);
2598 load_full_comp_unit (per_cu
, language_minimal
);
2600 gdb_assert (per_cu
->cu
!= NULL
);
2602 dwarf2_find_base_address (per_cu
->cu
->dies
, per_cu
->cu
);
2605 /* Read in the symbols for PER_CU. */
2608 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data
*per_cu
)
2610 struct cleanup
*back_to
;
2612 /* Skip type_unit_groups, reading the type units they contain
2613 is handled elsewhere. */
2614 if (IS_TYPE_UNIT_GROUP (per_cu
))
2617 back_to
= make_cleanup (dwarf2_release_queue
, NULL
);
2619 if (dwarf2_per_objfile
->using_index
2620 ? per_cu
->v
.quick
->compunit_symtab
== NULL
2621 : (per_cu
->v
.psymtab
== NULL
|| !per_cu
->v
.psymtab
->readin
))
2623 queue_comp_unit (per_cu
, language_minimal
);
2626 /* If we just loaded a CU from a DWO, and we're working with an index
2627 that may badly handle TUs, load all the TUs in that DWO as well.
2628 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2629 if (!per_cu
->is_debug_types
2630 && per_cu
->cu
->dwo_unit
!= NULL
2631 && dwarf2_per_objfile
->index_table
!= NULL
2632 && dwarf2_per_objfile
->index_table
->version
<= 7
2633 /* DWP files aren't supported yet. */
2634 && get_dwp_file () == NULL
)
2635 queue_and_load_all_dwo_tus (per_cu
);
2640 /* Age the cache, releasing compilation units that have not
2641 been used recently. */
2642 age_cached_comp_units ();
2644 do_cleanups (back_to
);
2647 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2648 the objfile from which this CU came. Returns the resulting symbol
2651 static struct compunit_symtab
*
2652 dw2_instantiate_symtab (struct dwarf2_per_cu_data
*per_cu
)
2654 gdb_assert (dwarf2_per_objfile
->using_index
);
2655 if (!per_cu
->v
.quick
->compunit_symtab
)
2657 struct cleanup
*back_to
= make_cleanup (free_cached_comp_units
, NULL
);
2658 increment_reading_symtab ();
2659 dw2_do_instantiate_symtab (per_cu
);
2660 process_cu_includes ();
2661 do_cleanups (back_to
);
2664 return per_cu
->v
.quick
->compunit_symtab
;
2667 /* Return the CU/TU given its index.
2669 This is intended for loops like:
2671 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2672 + dwarf2_per_objfile->n_type_units); ++i)
2674 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
2680 static struct dwarf2_per_cu_data
*
2681 dw2_get_cutu (int index
)
2683 if (index
>= dwarf2_per_objfile
->n_comp_units
)
2685 index
-= dwarf2_per_objfile
->n_comp_units
;
2686 gdb_assert (index
< dwarf2_per_objfile
->n_type_units
);
2687 return &dwarf2_per_objfile
->all_type_units
[index
]->per_cu
;
2690 return dwarf2_per_objfile
->all_comp_units
[index
];
2693 /* Return the CU given its index.
2694 This differs from dw2_get_cutu in that it's for when you know INDEX
2697 static struct dwarf2_per_cu_data
*
2698 dw2_get_cu (int index
)
2700 gdb_assert (index
>= 0 && index
< dwarf2_per_objfile
->n_comp_units
);
2702 return dwarf2_per_objfile
->all_comp_units
[index
];
2705 /* A helper for create_cus_from_index that handles a given list of
2709 create_cus_from_index_list (struct objfile
*objfile
,
2710 const gdb_byte
*cu_list
, offset_type n_elements
,
2711 struct dwarf2_section_info
*section
,
2717 for (i
= 0; i
< n_elements
; i
+= 2)
2719 struct dwarf2_per_cu_data
*the_cu
;
2720 ULONGEST offset
, length
;
2722 gdb_static_assert (sizeof (ULONGEST
) >= 8);
2723 offset
= extract_unsigned_integer (cu_list
, 8, BFD_ENDIAN_LITTLE
);
2724 length
= extract_unsigned_integer (cu_list
+ 8, 8, BFD_ENDIAN_LITTLE
);
2727 the_cu
= OBSTACK_ZALLOC (&objfile
->objfile_obstack
,
2728 struct dwarf2_per_cu_data
);
2729 the_cu
->offset
.sect_off
= offset
;
2730 the_cu
->length
= length
;
2731 the_cu
->objfile
= objfile
;
2732 the_cu
->section
= section
;
2733 the_cu
->v
.quick
= OBSTACK_ZALLOC (&objfile
->objfile_obstack
,
2734 struct dwarf2_per_cu_quick_data
);
2735 the_cu
->is_dwz
= is_dwz
;
2736 dwarf2_per_objfile
->all_comp_units
[base_offset
+ i
/ 2] = the_cu
;
2740 /* Read the CU list from the mapped index, and use it to create all
2741 the CU objects for this objfile. */
2744 create_cus_from_index (struct objfile
*objfile
,
2745 const gdb_byte
*cu_list
, offset_type cu_list_elements
,
2746 const gdb_byte
*dwz_list
, offset_type dwz_elements
)
2748 struct dwz_file
*dwz
;
2750 dwarf2_per_objfile
->n_comp_units
= (cu_list_elements
+ dwz_elements
) / 2;
2751 dwarf2_per_objfile
->all_comp_units
2752 = obstack_alloc (&objfile
->objfile_obstack
,
2753 dwarf2_per_objfile
->n_comp_units
2754 * sizeof (struct dwarf2_per_cu_data
*));
2756 create_cus_from_index_list (objfile
, cu_list
, cu_list_elements
,
2757 &dwarf2_per_objfile
->info
, 0, 0);
2759 if (dwz_elements
== 0)
2762 dwz
= dwarf2_get_dwz_file ();
2763 create_cus_from_index_list (objfile
, dwz_list
, dwz_elements
, &dwz
->info
, 1,
2764 cu_list_elements
/ 2);
2767 /* Create the signatured type hash table from the index. */
2770 create_signatured_type_table_from_index (struct objfile
*objfile
,
2771 struct dwarf2_section_info
*section
,
2772 const gdb_byte
*bytes
,
2773 offset_type elements
)
2776 htab_t sig_types_hash
;
2778 dwarf2_per_objfile
->n_type_units
2779 = dwarf2_per_objfile
->n_allocated_type_units
2781 dwarf2_per_objfile
->all_type_units
2782 = xmalloc (dwarf2_per_objfile
->n_type_units
2783 * sizeof (struct signatured_type
*));
2785 sig_types_hash
= allocate_signatured_type_table (objfile
);
2787 for (i
= 0; i
< elements
; i
+= 3)
2789 struct signatured_type
*sig_type
;
2790 ULONGEST offset
, type_offset_in_tu
, signature
;
2793 gdb_static_assert (sizeof (ULONGEST
) >= 8);
2794 offset
= extract_unsigned_integer (bytes
, 8, BFD_ENDIAN_LITTLE
);
2795 type_offset_in_tu
= extract_unsigned_integer (bytes
+ 8, 8,
2797 signature
= extract_unsigned_integer (bytes
+ 16, 8, BFD_ENDIAN_LITTLE
);
2800 sig_type
= OBSTACK_ZALLOC (&objfile
->objfile_obstack
,
2801 struct signatured_type
);
2802 sig_type
->signature
= signature
;
2803 sig_type
->type_offset_in_tu
.cu_off
= type_offset_in_tu
;
2804 sig_type
->per_cu
.is_debug_types
= 1;
2805 sig_type
->per_cu
.section
= section
;
2806 sig_type
->per_cu
.offset
.sect_off
= offset
;
2807 sig_type
->per_cu
.objfile
= objfile
;
2808 sig_type
->per_cu
.v
.quick
2809 = OBSTACK_ZALLOC (&objfile
->objfile_obstack
,
2810 struct dwarf2_per_cu_quick_data
);
2812 slot
= htab_find_slot (sig_types_hash
, sig_type
, INSERT
);
2815 dwarf2_per_objfile
->all_type_units
[i
/ 3] = sig_type
;
2818 dwarf2_per_objfile
->signatured_types
= sig_types_hash
;
2821 /* Read the address map data from the mapped index, and use it to
2822 populate the objfile's psymtabs_addrmap. */
2825 create_addrmap_from_index (struct objfile
*objfile
, struct mapped_index
*index
)
2827 const gdb_byte
*iter
, *end
;
2828 struct obstack temp_obstack
;
2829 struct addrmap
*mutable_map
;
2830 struct cleanup
*cleanup
;
2833 obstack_init (&temp_obstack
);
2834 cleanup
= make_cleanup_obstack_free (&temp_obstack
);
2835 mutable_map
= addrmap_create_mutable (&temp_obstack
);
2837 iter
= index
->address_table
;
2838 end
= iter
+ index
->address_table_size
;
2840 baseaddr
= ANOFFSET (objfile
->section_offsets
, SECT_OFF_TEXT (objfile
));
2844 ULONGEST hi
, lo
, cu_index
;
2845 lo
= extract_unsigned_integer (iter
, 8, BFD_ENDIAN_LITTLE
);
2847 hi
= extract_unsigned_integer (iter
, 8, BFD_ENDIAN_LITTLE
);
2849 cu_index
= extract_unsigned_integer (iter
, 4, BFD_ENDIAN_LITTLE
);
2854 complaint (&symfile_complaints
,
2855 _(".gdb_index address table has invalid range (%s - %s)"),
2856 hex_string (lo
), hex_string (hi
));
2860 if (cu_index
>= dwarf2_per_objfile
->n_comp_units
)
2862 complaint (&symfile_complaints
,
2863 _(".gdb_index address table has invalid CU number %u"),
2864 (unsigned) cu_index
);
2868 addrmap_set_empty (mutable_map
, lo
+ baseaddr
, hi
+ baseaddr
- 1,
2869 dw2_get_cutu (cu_index
));
2872 objfile
->psymtabs_addrmap
= addrmap_create_fixed (mutable_map
,
2873 &objfile
->objfile_obstack
);
2874 do_cleanups (cleanup
);
2877 /* The hash function for strings in the mapped index. This is the same as
2878 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2879 implementation. This is necessary because the hash function is tied to the
2880 format of the mapped index file. The hash values do not have to match with
2883 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2886 mapped_index_string_hash (int index_version
, const void *p
)
2888 const unsigned char *str
= (const unsigned char *) p
;
2892 while ((c
= *str
++) != 0)
2894 if (index_version
>= 5)
2896 r
= r
* 67 + c
- 113;
2902 /* Find a slot in the mapped index INDEX for the object named NAME.
2903 If NAME is found, set *VEC_OUT to point to the CU vector in the
2904 constant pool and return 1. If NAME cannot be found, return 0. */
2907 find_slot_in_mapped_hash (struct mapped_index
*index
, const char *name
,
2908 offset_type
**vec_out
)
2910 struct cleanup
*back_to
= make_cleanup (null_cleanup
, 0);
2912 offset_type slot
, step
;
2913 int (*cmp
) (const char *, const char *);
2915 if (current_language
->la_language
== language_cplus
2916 || current_language
->la_language
== language_java
2917 || current_language
->la_language
== language_fortran
)
2919 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2921 const char *paren
= NULL
;
2923 /* Need to handle "(anonymous namespace)". */
2925 paren
= strchr (name
, '(');
2931 dup
= xmalloc (paren
- name
+ 1);
2932 memcpy (dup
, name
, paren
- name
);
2933 dup
[paren
- name
] = 0;
2935 make_cleanup (xfree
, dup
);
2940 /* Index version 4 did not support case insensitive searches. But the
2941 indices for case insensitive languages are built in lowercase, therefore
2942 simulate our NAME being searched is also lowercased. */
2943 hash
= mapped_index_string_hash ((index
->version
== 4
2944 && case_sensitivity
== case_sensitive_off
2945 ? 5 : index
->version
),
2948 slot
= hash
& (index
->symbol_table_slots
- 1);
2949 step
= ((hash
* 17) & (index
->symbol_table_slots
- 1)) | 1;
2950 cmp
= (case_sensitivity
== case_sensitive_on
? strcmp
: strcasecmp
);
2954 /* Convert a slot number to an offset into the table. */
2955 offset_type i
= 2 * slot
;
2957 if (index
->symbol_table
[i
] == 0 && index
->symbol_table
[i
+ 1] == 0)
2959 do_cleanups (back_to
);
2963 str
= index
->constant_pool
+ MAYBE_SWAP (index
->symbol_table
[i
]);
2964 if (!cmp (name
, str
))
2966 *vec_out
= (offset_type
*) (index
->constant_pool
2967 + MAYBE_SWAP (index
->symbol_table
[i
+ 1]));
2968 do_cleanups (back_to
);
2972 slot
= (slot
+ step
) & (index
->symbol_table_slots
- 1);
2976 /* A helper function that reads the .gdb_index from SECTION and fills
2977 in MAP. FILENAME is the name of the file containing the section;
2978 it is used for error reporting. DEPRECATED_OK is nonzero if it is
2979 ok to use deprecated sections.
2981 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
2982 out parameters that are filled in with information about the CU and
2983 TU lists in the section.
2985 Returns 1 if all went well, 0 otherwise. */
2988 read_index_from_section (struct objfile
*objfile
,
2989 const char *filename
,
2991 struct dwarf2_section_info
*section
,
2992 struct mapped_index
*map
,
2993 const gdb_byte
**cu_list
,
2994 offset_type
*cu_list_elements
,
2995 const gdb_byte
**types_list
,
2996 offset_type
*types_list_elements
)
2998 const gdb_byte
*addr
;
2999 offset_type version
;
3000 offset_type
*metadata
;
3003 if (dwarf2_section_empty_p (section
))
3006 /* Older elfutils strip versions could keep the section in the main
3007 executable while splitting it for the separate debug info file. */
3008 if ((get_section_flags (section
) & SEC_HAS_CONTENTS
) == 0)
3011 dwarf2_read_section (objfile
, section
);
3013 addr
= section
->buffer
;
3014 /* Version check. */
3015 version
= MAYBE_SWAP (*(offset_type
*) addr
);
3016 /* Versions earlier than 3 emitted every copy of a psymbol. This
3017 causes the index to behave very poorly for certain requests. Version 3
3018 contained incomplete addrmap. So, it seems better to just ignore such
3022 static int warning_printed
= 0;
3023 if (!warning_printed
)
3025 warning (_("Skipping obsolete .gdb_index section in %s."),
3027 warning_printed
= 1;
3031 /* Index version 4 uses a different hash function than index version
3034 Versions earlier than 6 did not emit psymbols for inlined
3035 functions. Using these files will cause GDB not to be able to
3036 set breakpoints on inlined functions by name, so we ignore these
3037 indices unless the user has done
3038 "set use-deprecated-index-sections on". */
3039 if (version
< 6 && !deprecated_ok
)
3041 static int warning_printed
= 0;
3042 if (!warning_printed
)
3045 Skipping deprecated .gdb_index section in %s.\n\
3046 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3047 to use the section anyway."),
3049 warning_printed
= 1;
3053 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3054 of the TU (for symbols coming from TUs),
3055 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3056 Plus gold-generated indices can have duplicate entries for global symbols,
3057 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3058 These are just performance bugs, and we can't distinguish gdb-generated
3059 indices from gold-generated ones, so issue no warning here. */
3061 /* Indexes with higher version than the one supported by GDB may be no
3062 longer backward compatible. */
3066 map
->version
= version
;
3067 map
->total_size
= section
->size
;
3069 metadata
= (offset_type
*) (addr
+ sizeof (offset_type
));
3072 *cu_list
= addr
+ MAYBE_SWAP (metadata
[i
]);
3073 *cu_list_elements
= ((MAYBE_SWAP (metadata
[i
+ 1]) - MAYBE_SWAP (metadata
[i
]))
3077 *types_list
= addr
+ MAYBE_SWAP (metadata
[i
]);
3078 *types_list_elements
= ((MAYBE_SWAP (metadata
[i
+ 1])
3079 - MAYBE_SWAP (metadata
[i
]))
3083 map
->address_table
= addr
+ MAYBE_SWAP (metadata
[i
]);
3084 map
->address_table_size
= (MAYBE_SWAP (metadata
[i
+ 1])
3085 - MAYBE_SWAP (metadata
[i
]));
3088 map
->symbol_table
= (offset_type
*) (addr
+ MAYBE_SWAP (metadata
[i
]));
3089 map
->symbol_table_slots
= ((MAYBE_SWAP (metadata
[i
+ 1])
3090 - MAYBE_SWAP (metadata
[i
]))
3091 / (2 * sizeof (offset_type
)));
3094 map
->constant_pool
= (char *) (addr
+ MAYBE_SWAP (metadata
[i
]));
3100 /* Read the index file. If everything went ok, initialize the "quick"
3101 elements of all the CUs and return 1. Otherwise, return 0. */
3104 dwarf2_read_index (struct objfile
*objfile
)
3106 struct mapped_index local_map
, *map
;
3107 const gdb_byte
*cu_list
, *types_list
, *dwz_list
= NULL
;
3108 offset_type cu_list_elements
, types_list_elements
, dwz_list_elements
= 0;
3109 struct dwz_file
*dwz
;
3111 if (!read_index_from_section (objfile
, objfile_name (objfile
),
3112 use_deprecated_index_sections
,
3113 &dwarf2_per_objfile
->gdb_index
, &local_map
,
3114 &cu_list
, &cu_list_elements
,
3115 &types_list
, &types_list_elements
))
3118 /* Don't use the index if it's empty. */
3119 if (local_map
.symbol_table_slots
== 0)
3122 /* If there is a .dwz file, read it so we can get its CU list as
3124 dwz
= dwarf2_get_dwz_file ();
3127 struct mapped_index dwz_map
;
3128 const gdb_byte
*dwz_types_ignore
;
3129 offset_type dwz_types_elements_ignore
;
3131 if (!read_index_from_section (objfile
, bfd_get_filename (dwz
->dwz_bfd
),
3133 &dwz
->gdb_index
, &dwz_map
,
3134 &dwz_list
, &dwz_list_elements
,
3136 &dwz_types_elements_ignore
))
3138 warning (_("could not read '.gdb_index' section from %s; skipping"),
3139 bfd_get_filename (dwz
->dwz_bfd
));
3144 create_cus_from_index (objfile
, cu_list
, cu_list_elements
, dwz_list
,
3147 if (types_list_elements
)
3149 struct dwarf2_section_info
*section
;
3151 /* We can only handle a single .debug_types when we have an
3153 if (VEC_length (dwarf2_section_info_def
, dwarf2_per_objfile
->types
) != 1)
3156 section
= VEC_index (dwarf2_section_info_def
,
3157 dwarf2_per_objfile
->types
, 0);
3159 create_signatured_type_table_from_index (objfile
, section
, types_list
,
3160 types_list_elements
);
3163 create_addrmap_from_index (objfile
, &local_map
);
3165 map
= obstack_alloc (&objfile
->objfile_obstack
, sizeof (struct mapped_index
));
3168 dwarf2_per_objfile
->index_table
= map
;
3169 dwarf2_per_objfile
->using_index
= 1;
3170 dwarf2_per_objfile
->quick_file_names_table
=
3171 create_quick_file_names_table (dwarf2_per_objfile
->n_comp_units
);
3176 /* A helper for the "quick" functions which sets the global
3177 dwarf2_per_objfile according to OBJFILE. */
3180 dw2_setup (struct objfile
*objfile
)
3182 dwarf2_per_objfile
= objfile_data (objfile
, dwarf2_objfile_data_key
);
3183 gdb_assert (dwarf2_per_objfile
);
3186 /* die_reader_func for dw2_get_file_names. */
3189 dw2_get_file_names_reader (const struct die_reader_specs
*reader
,
3190 const gdb_byte
*info_ptr
,
3191 struct die_info
*comp_unit_die
,
3195 struct dwarf2_cu
*cu
= reader
->cu
;
3196 struct dwarf2_per_cu_data
*this_cu
= cu
->per_cu
;
3197 struct objfile
*objfile
= dwarf2_per_objfile
->objfile
;
3198 struct dwarf2_per_cu_data
*lh_cu
;
3199 struct line_header
*lh
;
3200 struct attribute
*attr
;
3202 const char *name
, *comp_dir
;
3204 struct quick_file_names
*qfn
;
3205 unsigned int line_offset
;
3207 gdb_assert (! this_cu
->is_debug_types
);
3209 /* Our callers never want to match partial units -- instead they
3210 will match the enclosing full CU. */
3211 if (comp_unit_die
->tag
== DW_TAG_partial_unit
)
3213 this_cu
->v
.quick
->no_file_data
= 1;
3222 attr
= dwarf2_attr (comp_unit_die
, DW_AT_stmt_list
, cu
);
3225 struct quick_file_names find_entry
;
3227 line_offset
= DW_UNSND (attr
);
3229 /* We may have already read in this line header (TU line header sharing).
3230 If we have we're done. */
3231 find_entry
.hash
.dwo_unit
= cu
->dwo_unit
;
3232 find_entry
.hash
.line_offset
.sect_off
= line_offset
;
3233 slot
= htab_find_slot (dwarf2_per_objfile
->quick_file_names_table
,
3234 &find_entry
, INSERT
);
3237 lh_cu
->v
.quick
->file_names
= *slot
;
3241 lh
= dwarf_decode_line_header (line_offset
, cu
);
3245 lh_cu
->v
.quick
->no_file_data
= 1;
3249 qfn
= obstack_alloc (&objfile
->objfile_obstack
, sizeof (*qfn
));
3250 qfn
->hash
.dwo_unit
= cu
->dwo_unit
;
3251 qfn
->hash
.line_offset
.sect_off
= line_offset
;
3252 gdb_assert (slot
!= NULL
);
3255 find_file_and_directory (comp_unit_die
, cu
, &name
, &comp_dir
);
3257 qfn
->num_file_names
= lh
->num_file_names
;
3258 qfn
->file_names
= obstack_alloc (&objfile
->objfile_obstack
,
3259 lh
->num_file_names
* sizeof (char *));
3260 for (i
= 0; i
< lh
->num_file_names
; ++i
)
3261 qfn
->file_names
[i
] = file_full_name (i
+ 1, lh
, comp_dir
);
3262 qfn
->real_names
= NULL
;
3264 free_line_header (lh
);
3266 lh_cu
->v
.quick
->file_names
= qfn
;
3269 /* A helper for the "quick" functions which attempts to read the line
3270 table for THIS_CU. */
3272 static struct quick_file_names
*
3273 dw2_get_file_names (struct dwarf2_per_cu_data
*this_cu
)
3275 /* This should never be called for TUs. */
3276 gdb_assert (! this_cu
->is_debug_types
);
3277 /* Nor type unit groups. */
3278 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu
));
3280 if (this_cu
->v
.quick
->file_names
!= NULL
)
3281 return this_cu
->v
.quick
->file_names
;
3282 /* If we know there is no line data, no point in looking again. */
3283 if (this_cu
->v
.quick
->no_file_data
)
3286 init_cutu_and_read_dies_simple (this_cu
, dw2_get_file_names_reader
, NULL
);
3288 if (this_cu
->v
.quick
->no_file_data
)
3290 return this_cu
->v
.quick
->file_names
;
3293 /* A helper for the "quick" functions which computes and caches the
3294 real path for a given file name from the line table. */
3297 dw2_get_real_path (struct objfile
*objfile
,
3298 struct quick_file_names
*qfn
, int index
)
3300 if (qfn
->real_names
== NULL
)
3301 qfn
->real_names
= OBSTACK_CALLOC (&objfile
->objfile_obstack
,
3302 qfn
->num_file_names
, const char *);
3304 if (qfn
->real_names
[index
] == NULL
)
3305 qfn
->real_names
[index
] = gdb_realpath (qfn
->file_names
[index
]);
3307 return qfn
->real_names
[index
];
3310 static struct symtab
*
3311 dw2_find_last_source_symtab (struct objfile
*objfile
)
3313 struct compunit_symtab
*cust
;
3316 dw2_setup (objfile
);
3317 index
= dwarf2_per_objfile
->n_comp_units
- 1;
3318 cust
= dw2_instantiate_symtab (dw2_get_cutu (index
));
3321 return compunit_primary_filetab (cust
);
3324 /* Traversal function for dw2_forget_cached_source_info. */
3327 dw2_free_cached_file_names (void **slot
, void *info
)
3329 struct quick_file_names
*file_data
= (struct quick_file_names
*) *slot
;
3331 if (file_data
->real_names
)
3335 for (i
= 0; i
< file_data
->num_file_names
; ++i
)
3337 xfree ((void*) file_data
->real_names
[i
]);
3338 file_data
->real_names
[i
] = NULL
;
3346 dw2_forget_cached_source_info (struct objfile
*objfile
)
3348 dw2_setup (objfile
);
3350 htab_traverse_noresize (dwarf2_per_objfile
->quick_file_names_table
,
3351 dw2_free_cached_file_names
, NULL
);
3354 /* Helper function for dw2_map_symtabs_matching_filename that expands
3355 the symtabs and calls the iterator. */
3358 dw2_map_expand_apply (struct objfile
*objfile
,
3359 struct dwarf2_per_cu_data
*per_cu
,
3360 const char *name
, const char *real_path
,
3361 int (*callback
) (struct symtab
*, void *),
3364 struct compunit_symtab
*last_made
= objfile
->compunit_symtabs
;
3366 /* Don't visit already-expanded CUs. */
3367 if (per_cu
->v
.quick
->compunit_symtab
)
3370 /* This may expand more than one symtab, and we want to iterate over
3372 dw2_instantiate_symtab (per_cu
);
3374 return iterate_over_some_symtabs (name
, real_path
, callback
, data
,
3375 objfile
->compunit_symtabs
, last_made
);
3378 /* Implementation of the map_symtabs_matching_filename method. */
3381 dw2_map_symtabs_matching_filename (struct objfile
*objfile
, const char *name
,
3382 const char *real_path
,
3383 int (*callback
) (struct symtab
*, void *),
3387 const char *name_basename
= lbasename (name
);
3389 dw2_setup (objfile
);
3391 /* The rule is CUs specify all the files, including those used by
3392 any TU, so there's no need to scan TUs here. */
3394 for (i
= 0; i
< dwarf2_per_objfile
->n_comp_units
; ++i
)
3397 struct dwarf2_per_cu_data
*per_cu
= dw2_get_cu (i
);
3398 struct quick_file_names
*file_data
;
3400 /* We only need to look at symtabs not already expanded. */
3401 if (per_cu
->v
.quick
->compunit_symtab
)
3404 file_data
= dw2_get_file_names (per_cu
);
3405 if (file_data
== NULL
)
3408 for (j
= 0; j
< file_data
->num_file_names
; ++j
)
3410 const char *this_name
= file_data
->file_names
[j
];
3411 const char *this_real_name
;
3413 if (compare_filenames_for_search (this_name
, name
))
3415 if (dw2_map_expand_apply (objfile
, per_cu
, name
, real_path
,
3421 /* Before we invoke realpath, which can get expensive when many
3422 files are involved, do a quick comparison of the basenames. */
3423 if (! basenames_may_differ
3424 && FILENAME_CMP (lbasename (this_name
), name_basename
) != 0)
3427 this_real_name
= dw2_get_real_path (objfile
, file_data
, j
);
3428 if (compare_filenames_for_search (this_real_name
, name
))
3430 if (dw2_map_expand_apply (objfile
, per_cu
, name
, real_path
,
3436 if (real_path
!= NULL
)
3438 gdb_assert (IS_ABSOLUTE_PATH (real_path
));
3439 gdb_assert (IS_ABSOLUTE_PATH (name
));
3440 if (this_real_name
!= NULL
3441 && FILENAME_CMP (real_path
, this_real_name
) == 0)
3443 if (dw2_map_expand_apply (objfile
, per_cu
, name
, real_path
,
3455 /* Struct used to manage iterating over all CUs looking for a symbol. */
3457 struct dw2_symtab_iterator
3459 /* The internalized form of .gdb_index. */
3460 struct mapped_index
*index
;
3461 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3462 int want_specific_block
;
3463 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3464 Unused if !WANT_SPECIFIC_BLOCK. */
3466 /* The kind of symbol we're looking for. */
3468 /* The list of CUs from the index entry of the symbol,
3469 or NULL if not found. */
3471 /* The next element in VEC to look at. */
3473 /* The number of elements in VEC, or zero if there is no match. */
3475 /* Have we seen a global version of the symbol?
3476 If so we can ignore all further global instances.
3477 This is to work around gold/15646, inefficient gold-generated
3482 /* Initialize the index symtab iterator ITER.
3483 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3484 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3487 dw2_symtab_iter_init (struct dw2_symtab_iterator
*iter
,
3488 struct mapped_index
*index
,
3489 int want_specific_block
,
3494 iter
->index
= index
;
3495 iter
->want_specific_block
= want_specific_block
;
3496 iter
->block_index
= block_index
;
3497 iter
->domain
= domain
;
3499 iter
->global_seen
= 0;
3501 if (find_slot_in_mapped_hash (index
, name
, &iter
->vec
))
3502 iter
->length
= MAYBE_SWAP (*iter
->vec
);
3510 /* Return the next matching CU or NULL if there are no more. */
3512 static struct dwarf2_per_cu_data
*
3513 dw2_symtab_iter_next (struct dw2_symtab_iterator
*iter
)
3515 for ( ; iter
->next
< iter
->length
; ++iter
->next
)
3517 offset_type cu_index_and_attrs
=
3518 MAYBE_SWAP (iter
->vec
[iter
->next
+ 1]);
3519 offset_type cu_index
= GDB_INDEX_CU_VALUE (cu_index_and_attrs
);
3520 struct dwarf2_per_cu_data
*per_cu
;
3521 int want_static
= iter
->block_index
!= GLOBAL_BLOCK
;
3522 /* This value is only valid for index versions >= 7. */
3523 int is_static
= GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs
);
3524 gdb_index_symbol_kind symbol_kind
=
3525 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs
);
3526 /* Only check the symbol attributes if they're present.
3527 Indices prior to version 7 don't record them,
3528 and indices >= 7 may elide them for certain symbols
3529 (gold does this). */
3531 (iter
->index
->version
>= 7
3532 && symbol_kind
!= GDB_INDEX_SYMBOL_KIND_NONE
);
3534 /* Don't crash on bad data. */
3535 if (cu_index
>= (dwarf2_per_objfile
->n_comp_units
3536 + dwarf2_per_objfile
->n_type_units
))
3538 complaint (&symfile_complaints
,
3539 _(".gdb_index entry has bad CU index"
3541 objfile_name (dwarf2_per_objfile
->objfile
));
3545 per_cu
= dw2_get_cutu (cu_index
);
3547 /* Skip if already read in. */
3548 if (per_cu
->v
.quick
->compunit_symtab
)
3551 /* Check static vs global. */
3554 if (iter
->want_specific_block
3555 && want_static
!= is_static
)
3557 /* Work around gold/15646. */
3558 if (!is_static
&& iter
->global_seen
)
3561 iter
->global_seen
= 1;
3564 /* Only check the symbol's kind if it has one. */
3567 switch (iter
->domain
)
3570 if (symbol_kind
!= GDB_INDEX_SYMBOL_KIND_VARIABLE
3571 && symbol_kind
!= GDB_INDEX_SYMBOL_KIND_FUNCTION
3572 /* Some types are also in VAR_DOMAIN. */
3573 && symbol_kind
!= GDB_INDEX_SYMBOL_KIND_TYPE
)
3577 if (symbol_kind
!= GDB_INDEX_SYMBOL_KIND_TYPE
)
3581 if (symbol_kind
!= GDB_INDEX_SYMBOL_KIND_OTHER
)
3596 static struct compunit_symtab
*
3597 dw2_lookup_symbol (struct objfile
*objfile
, int block_index
,
3598 const char *name
, domain_enum domain
)
3600 struct compunit_symtab
*stab_best
= NULL
;
3601 struct mapped_index
*index
;
3603 dw2_setup (objfile
);
3605 index
= dwarf2_per_objfile
->index_table
;
3607 /* index is NULL if OBJF_READNOW. */
3610 struct dw2_symtab_iterator iter
;
3611 struct dwarf2_per_cu_data
*per_cu
;
3613 dw2_symtab_iter_init (&iter
, index
, 1, block_index
, domain
, name
);
3615 while ((per_cu
= dw2_symtab_iter_next (&iter
)) != NULL
)
3617 struct symbol
*sym
= NULL
;
3618 struct compunit_symtab
*stab
= dw2_instantiate_symtab (per_cu
);
3619 const struct blockvector
*bv
= COMPUNIT_BLOCKVECTOR (stab
);
3620 struct block
*block
= BLOCKVECTOR_BLOCK (bv
, block_index
);
3622 /* Some caution must be observed with overloaded functions
3623 and methods, since the index will not contain any overload
3624 information (but NAME might contain it). */
3625 sym
= block_lookup_symbol (block
, name
, domain
);
3627 if (sym
&& strcmp_iw (SYMBOL_SEARCH_NAME (sym
), name
) == 0)
3629 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym
)))
3635 /* Keep looking through other CUs. */
3643 dw2_print_stats (struct objfile
*objfile
)
3645 int i
, total
, count
;
3647 dw2_setup (objfile
);
3648 total
= dwarf2_per_objfile
->n_comp_units
+ dwarf2_per_objfile
->n_type_units
;
3650 for (i
= 0; i
< total
; ++i
)
3652 struct dwarf2_per_cu_data
*per_cu
= dw2_get_cutu (i
);
3654 if (!per_cu
->v
.quick
->compunit_symtab
)
3657 printf_filtered (_(" Number of read CUs: %d\n"), total
- count
);
3658 printf_filtered (_(" Number of unread CUs: %d\n"), count
);
3661 /* This dumps minimal information about the index.
3662 It is called via "mt print objfiles".
3663 One use is to verify .gdb_index has been loaded by the
3664 gdb.dwarf2/gdb-index.exp testcase. */
3667 dw2_dump (struct objfile
*objfile
)
3669 dw2_setup (objfile
);
3670 gdb_assert (dwarf2_per_objfile
->using_index
);
3671 printf_filtered (".gdb_index:");
3672 if (dwarf2_per_objfile
->index_table
!= NULL
)
3674 printf_filtered (" version %d\n",
3675 dwarf2_per_objfile
->index_table
->version
);
3678 printf_filtered (" faked for \"readnow\"\n");
3679 printf_filtered ("\n");
3683 dw2_relocate (struct objfile
*objfile
,
3684 const struct section_offsets
*new_offsets
,
3685 const struct section_offsets
*delta
)
3687 /* There's nothing to relocate here. */
3691 dw2_expand_symtabs_for_function (struct objfile
*objfile
,
3692 const char *func_name
)
3694 struct mapped_index
*index
;
3696 dw2_setup (objfile
);
3698 index
= dwarf2_per_objfile
->index_table
;
3700 /* index is NULL if OBJF_READNOW. */
3703 struct dw2_symtab_iterator iter
;
3704 struct dwarf2_per_cu_data
*per_cu
;
3706 /* Note: It doesn't matter what we pass for block_index here. */
3707 dw2_symtab_iter_init (&iter
, index
, 0, GLOBAL_BLOCK
, VAR_DOMAIN
,
3710 while ((per_cu
= dw2_symtab_iter_next (&iter
)) != NULL
)
3711 dw2_instantiate_symtab (per_cu
);
3716 dw2_expand_all_symtabs (struct objfile
*objfile
)
3720 dw2_setup (objfile
);
3722 for (i
= 0; i
< (dwarf2_per_objfile
->n_comp_units
3723 + dwarf2_per_objfile
->n_type_units
); ++i
)
3725 struct dwarf2_per_cu_data
*per_cu
= dw2_get_cutu (i
);
3727 dw2_instantiate_symtab (per_cu
);
3732 dw2_expand_symtabs_with_fullname (struct objfile
*objfile
,
3733 const char *fullname
)
3737 dw2_setup (objfile
);
3739 /* We don't need to consider type units here.
3740 This is only called for examining code, e.g. expand_line_sal.
3741 There can be an order of magnitude (or more) more type units
3742 than comp units, and we avoid them if we can. */
3744 for (i
= 0; i
< dwarf2_per_objfile
->n_comp_units
; ++i
)
3747 struct dwarf2_per_cu_data
*per_cu
= dw2_get_cutu (i
);
3748 struct quick_file_names
*file_data
;
3750 /* We only need to look at symtabs not already expanded. */
3751 if (per_cu
->v
.quick
->compunit_symtab
)
3754 file_data
= dw2_get_file_names (per_cu
);
3755 if (file_data
== NULL
)
3758 for (j
= 0; j
< file_data
->num_file_names
; ++j
)
3760 const char *this_fullname
= file_data
->file_names
[j
];
3762 if (filename_cmp (this_fullname
, fullname
) == 0)
3764 dw2_instantiate_symtab (per_cu
);
3772 dw2_map_matching_symbols (struct objfile
*objfile
,
3773 const char * name
, domain_enum
namespace,
3775 int (*callback
) (struct block
*,
3776 struct symbol
*, void *),
3777 void *data
, symbol_compare_ftype
*match
,
3778 symbol_compare_ftype
*ordered_compare
)
3780 /* Currently unimplemented; used for Ada. The function can be called if the
3781 current language is Ada for a non-Ada objfile using GNU index. As Ada
3782 does not look for non-Ada symbols this function should just return. */
3786 dw2_expand_symtabs_matching
3787 (struct objfile
*objfile
,
3788 expand_symtabs_file_matcher_ftype
*file_matcher
,
3789 expand_symtabs_symbol_matcher_ftype
*symbol_matcher
,
3790 enum search_domain kind
,
3795 struct mapped_index
*index
;
3797 dw2_setup (objfile
);
3799 /* index_table is NULL if OBJF_READNOW. */
3800 if (!dwarf2_per_objfile
->index_table
)
3802 index
= dwarf2_per_objfile
->index_table
;
3804 if (file_matcher
!= NULL
)
3806 struct cleanup
*cleanup
;
3807 htab_t visited_found
, visited_not_found
;
3809 visited_found
= htab_create_alloc (10,
3810 htab_hash_pointer
, htab_eq_pointer
,
3811 NULL
, xcalloc
, xfree
);
3812 cleanup
= make_cleanup_htab_delete (visited_found
);
3813 visited_not_found
= htab_create_alloc (10,
3814 htab_hash_pointer
, htab_eq_pointer
,
3815 NULL
, xcalloc
, xfree
);
3816 make_cleanup_htab_delete (visited_not_found
);
3818 /* The rule is CUs specify all the files, including those used by
3819 any TU, so there's no need to scan TUs here. */
3821 for (i
= 0; i
< dwarf2_per_objfile
->n_comp_units
; ++i
)
3824 struct dwarf2_per_cu_data
*per_cu
= dw2_get_cu (i
);
3825 struct quick_file_names
*file_data
;
3828 per_cu
->v
.quick
->mark
= 0;
3830 /* We only need to look at symtabs not already expanded. */
3831 if (per_cu
->v
.quick
->compunit_symtab
)
3834 file_data
= dw2_get_file_names (per_cu
);
3835 if (file_data
== NULL
)
3838 if (htab_find (visited_not_found
, file_data
) != NULL
)
3840 else if (htab_find (visited_found
, file_data
) != NULL
)
3842 per_cu
->v
.quick
->mark
= 1;
3846 for (j
= 0; j
< file_data
->num_file_names
; ++j
)
3848 const char *this_real_name
;
3850 if (file_matcher (file_data
->file_names
[j
], data
, 0))
3852 per_cu
->v
.quick
->mark
= 1;
3856 /* Before we invoke realpath, which can get expensive when many
3857 files are involved, do a quick comparison of the basenames. */
3858 if (!basenames_may_differ
3859 && !file_matcher (lbasename (file_data
->file_names
[j
]),
3863 this_real_name
= dw2_get_real_path (objfile
, file_data
, j
);
3864 if (file_matcher (this_real_name
, data
, 0))
3866 per_cu
->v
.quick
->mark
= 1;
3871 slot
= htab_find_slot (per_cu
->v
.quick
->mark
3873 : visited_not_found
,
3878 do_cleanups (cleanup
);
3881 for (iter
= 0; iter
< index
->symbol_table_slots
; ++iter
)
3883 offset_type idx
= 2 * iter
;
3885 offset_type
*vec
, vec_len
, vec_idx
;
3886 int global_seen
= 0;
3888 if (index
->symbol_table
[idx
] == 0 && index
->symbol_table
[idx
+ 1] == 0)
3891 name
= index
->constant_pool
+ MAYBE_SWAP (index
->symbol_table
[idx
]);
3893 if (! (*symbol_matcher
) (name
, data
))
3896 /* The name was matched, now expand corresponding CUs that were
3898 vec
= (offset_type
*) (index
->constant_pool
3899 + MAYBE_SWAP (index
->symbol_table
[idx
+ 1]));
3900 vec_len
= MAYBE_SWAP (vec
[0]);
3901 for (vec_idx
= 0; vec_idx
< vec_len
; ++vec_idx
)
3903 struct dwarf2_per_cu_data
*per_cu
;
3904 offset_type cu_index_and_attrs
= MAYBE_SWAP (vec
[vec_idx
+ 1]);
3905 /* This value is only valid for index versions >= 7. */
3906 int is_static
= GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs
);
3907 gdb_index_symbol_kind symbol_kind
=
3908 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs
);
3909 int cu_index
= GDB_INDEX_CU_VALUE (cu_index_and_attrs
);
3910 /* Only check the symbol attributes if they're present.
3911 Indices prior to version 7 don't record them,
3912 and indices >= 7 may elide them for certain symbols
3913 (gold does this). */
3915 (index
->version
>= 7
3916 && symbol_kind
!= GDB_INDEX_SYMBOL_KIND_NONE
);
3918 /* Work around gold/15646. */
3921 if (!is_static
&& global_seen
)
3927 /* Only check the symbol's kind if it has one. */
3932 case VARIABLES_DOMAIN
:
3933 if (symbol_kind
!= GDB_INDEX_SYMBOL_KIND_VARIABLE
)
3936 case FUNCTIONS_DOMAIN
:
3937 if (symbol_kind
!= GDB_INDEX_SYMBOL_KIND_FUNCTION
)
3941 if (symbol_kind
!= GDB_INDEX_SYMBOL_KIND_TYPE
)
3949 /* Don't crash on bad data. */
3950 if (cu_index
>= (dwarf2_per_objfile
->n_comp_units
3951 + dwarf2_per_objfile
->n_type_units
))
3953 complaint (&symfile_complaints
,
3954 _(".gdb_index entry has bad CU index"
3955 " [in module %s]"), objfile_name (objfile
));
3959 per_cu
= dw2_get_cutu (cu_index
);
3960 if (file_matcher
== NULL
|| per_cu
->v
.quick
->mark
)
3961 dw2_instantiate_symtab (per_cu
);
3966 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
3969 static struct compunit_symtab
*
3970 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab
*cust
,
3975 if (COMPUNIT_BLOCKVECTOR (cust
) != NULL
3976 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust
), pc
))
3979 if (cust
->includes
== NULL
)
3982 for (i
= 0; cust
->includes
[i
]; ++i
)
3984 struct compunit_symtab
*s
= cust
->includes
[i
];
3986 s
= recursively_find_pc_sect_compunit_symtab (s
, pc
);
3994 static struct compunit_symtab
*
3995 dw2_find_pc_sect_compunit_symtab (struct objfile
*objfile
,
3996 struct bound_minimal_symbol msymbol
,
3998 struct obj_section
*section
,
4001 struct dwarf2_per_cu_data
*data
;
4002 struct compunit_symtab
*result
;
4004 dw2_setup (objfile
);
4006 if (!objfile
->psymtabs_addrmap
)
4009 data
= addrmap_find (objfile
->psymtabs_addrmap
, pc
);
4013 if (warn_if_readin
&& data
->v
.quick
->compunit_symtab
)
4014 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
4015 paddress (get_objfile_arch (objfile
), pc
));
4018 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data
),
4020 gdb_assert (result
!= NULL
);
4025 dw2_map_symbol_filenames (struct objfile
*objfile
, symbol_filename_ftype
*fun
,
4026 void *data
, int need_fullname
)
4029 struct cleanup
*cleanup
;
4030 htab_t visited
= htab_create_alloc (10, htab_hash_pointer
, htab_eq_pointer
,
4031 NULL
, xcalloc
, xfree
);
4033 cleanup
= make_cleanup_htab_delete (visited
);
4034 dw2_setup (objfile
);
4036 /* The rule is CUs specify all the files, including those used by
4037 any TU, so there's no need to scan TUs here.
4038 We can ignore file names coming from already-expanded CUs. */
4040 for (i
= 0; i
< dwarf2_per_objfile
->n_comp_units
; ++i
)
4042 struct dwarf2_per_cu_data
*per_cu
= dw2_get_cutu (i
);
4044 if (per_cu
->v
.quick
->compunit_symtab
)
4046 void **slot
= htab_find_slot (visited
, per_cu
->v
.quick
->file_names
,
4049 *slot
= per_cu
->v
.quick
->file_names
;
4053 for (i
= 0; i
< dwarf2_per_objfile
->n_comp_units
; ++i
)
4056 struct dwarf2_per_cu_data
*per_cu
= dw2_get_cu (i
);
4057 struct quick_file_names
*file_data
;
4060 /* We only need to look at symtabs not already expanded. */
4061 if (per_cu
->v
.quick
->compunit_symtab
)
4064 file_data
= dw2_get_file_names (per_cu
);
4065 if (file_data
== NULL
)
4068 slot
= htab_find_slot (visited
, file_data
, INSERT
);
4071 /* Already visited. */
4076 for (j
= 0; j
< file_data
->num_file_names
; ++j
)
4078 const char *this_real_name
;
4081 this_real_name
= dw2_get_real_path (objfile
, file_data
, j
);
4083 this_real_name
= NULL
;
4084 (*fun
) (file_data
->file_names
[j
], this_real_name
, data
);
4088 do_cleanups (cleanup
);
4092 dw2_has_symbols (struct objfile
*objfile
)
4097 const struct quick_symbol_functions dwarf2_gdb_index_functions
=
4100 dw2_find_last_source_symtab
,
4101 dw2_forget_cached_source_info
,
4102 dw2_map_symtabs_matching_filename
,
4107 dw2_expand_symtabs_for_function
,
4108 dw2_expand_all_symtabs
,
4109 dw2_expand_symtabs_with_fullname
,
4110 dw2_map_matching_symbols
,
4111 dw2_expand_symtabs_matching
,
4112 dw2_find_pc_sect_compunit_symtab
,
4113 dw2_map_symbol_filenames
4116 /* Initialize for reading DWARF for this objfile. Return 0 if this
4117 file will use psymtabs, or 1 if using the GNU index. */
4120 dwarf2_initialize_objfile (struct objfile
*objfile
)
4122 /* If we're about to read full symbols, don't bother with the
4123 indices. In this case we also don't care if some other debug
4124 format is making psymtabs, because they are all about to be
4126 if ((objfile
->flags
& OBJF_READNOW
))
4130 dwarf2_per_objfile
->using_index
= 1;
4131 create_all_comp_units (objfile
);
4132 create_all_type_units (objfile
);
4133 dwarf2_per_objfile
->quick_file_names_table
=
4134 create_quick_file_names_table (dwarf2_per_objfile
->n_comp_units
);
4136 for (i
= 0; i
< (dwarf2_per_objfile
->n_comp_units
4137 + dwarf2_per_objfile
->n_type_units
); ++i
)
4139 struct dwarf2_per_cu_data
*per_cu
= dw2_get_cutu (i
);
4141 per_cu
->v
.quick
= OBSTACK_ZALLOC (&objfile
->objfile_obstack
,
4142 struct dwarf2_per_cu_quick_data
);
4145 /* Return 1 so that gdb sees the "quick" functions. However,
4146 these functions will be no-ops because we will have expanded
4151 if (dwarf2_read_index (objfile
))
4159 /* Build a partial symbol table. */
4162 dwarf2_build_psymtabs (struct objfile
*objfile
)
4164 volatile struct gdb_exception except
;
4166 if (objfile
->global_psymbols
.size
== 0 && objfile
->static_psymbols
.size
== 0)
4168 init_psymbol_list (objfile
, 1024);
4171 TRY_CATCH (except
, RETURN_MASK_ERROR
)
4173 /* This isn't really ideal: all the data we allocate on the
4174 objfile's obstack is still uselessly kept around. However,
4175 freeing it seems unsafe. */
4176 struct cleanup
*cleanups
= make_cleanup_discard_psymtabs (objfile
);
4178 dwarf2_build_psymtabs_hard (objfile
);
4179 discard_cleanups (cleanups
);
4181 if (except
.reason
< 0)
4182 exception_print (gdb_stderr
, except
);
4185 /* Return the total length of the CU described by HEADER. */
4188 get_cu_length (const struct comp_unit_head
*header
)
4190 return header
->initial_length_size
+ header
->length
;
4193 /* Return TRUE if OFFSET is within CU_HEADER. */
4196 offset_in_cu_p (const struct comp_unit_head
*cu_header
, sect_offset offset
)
4198 sect_offset bottom
= { cu_header
->offset
.sect_off
};
4199 sect_offset top
= { cu_header
->offset
.sect_off
+ get_cu_length (cu_header
) };
4201 return (offset
.sect_off
>= bottom
.sect_off
&& offset
.sect_off
< top
.sect_off
);
4204 /* Find the base address of the compilation unit for range lists and
4205 location lists. It will normally be specified by DW_AT_low_pc.
4206 In DWARF-3 draft 4, the base address could be overridden by
4207 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4208 compilation units with discontinuous ranges. */
4211 dwarf2_find_base_address (struct die_info
*die
, struct dwarf2_cu
*cu
)
4213 struct attribute
*attr
;
4216 cu
->base_address
= 0;
4218 attr
= dwarf2_attr (die
, DW_AT_entry_pc
, cu
);
4221 cu
->base_address
= attr_value_as_address (attr
);
4226 attr
= dwarf2_attr (die
, DW_AT_low_pc
, cu
);
4229 cu
->base_address
= attr_value_as_address (attr
);
4235 /* Read in the comp unit header information from the debug_info at info_ptr.
4236 NOTE: This leaves members offset, first_die_offset to be filled in
4239 static const gdb_byte
*
4240 read_comp_unit_head (struct comp_unit_head
*cu_header
,
4241 const gdb_byte
*info_ptr
, bfd
*abfd
)
4244 unsigned int bytes_read
;
4246 cu_header
->length
= read_initial_length (abfd
, info_ptr
, &bytes_read
);
4247 cu_header
->initial_length_size
= bytes_read
;
4248 cu_header
->offset_size
= (bytes_read
== 4) ? 4 : 8;
4249 info_ptr
+= bytes_read
;
4250 cu_header
->version
= read_2_bytes (abfd
, info_ptr
);
4252 cu_header
->abbrev_offset
.sect_off
= read_offset (abfd
, info_ptr
, cu_header
,
4254 info_ptr
+= bytes_read
;
4255 cu_header
->addr_size
= read_1_byte (abfd
, info_ptr
);
4257 signed_addr
= bfd_get_sign_extend_vma (abfd
);
4258 if (signed_addr
< 0)
4259 internal_error (__FILE__
, __LINE__
,
4260 _("read_comp_unit_head: dwarf from non elf file"));
4261 cu_header
->signed_addr_p
= signed_addr
;
4266 /* Helper function that returns the proper abbrev section for
4269 static struct dwarf2_section_info
*
4270 get_abbrev_section_for_cu (struct dwarf2_per_cu_data
*this_cu
)
4272 struct dwarf2_section_info
*abbrev
;
4274 if (this_cu
->is_dwz
)
4275 abbrev
= &dwarf2_get_dwz_file ()->abbrev
;
4277 abbrev
= &dwarf2_per_objfile
->abbrev
;
4282 /* Subroutine of read_and_check_comp_unit_head and
4283 read_and_check_type_unit_head to simplify them.
4284 Perform various error checking on the header. */
4287 error_check_comp_unit_head (struct comp_unit_head
*header
,
4288 struct dwarf2_section_info
*section
,
4289 struct dwarf2_section_info
*abbrev_section
)
4291 bfd
*abfd
= get_section_bfd_owner (section
);
4292 const char *filename
= get_section_file_name (section
);
4294 if (header
->version
!= 2 && header
->version
!= 3 && header
->version
!= 4)
4295 error (_("Dwarf Error: wrong version in compilation unit header "
4296 "(is %d, should be 2, 3, or 4) [in module %s]"), header
->version
,
4299 if (header
->abbrev_offset
.sect_off
4300 >= dwarf2_section_size (dwarf2_per_objfile
->objfile
, abbrev_section
))
4301 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
4302 "(offset 0x%lx + 6) [in module %s]"),
4303 (long) header
->abbrev_offset
.sect_off
, (long) header
->offset
.sect_off
,
4306 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4307 avoid potential 32-bit overflow. */
4308 if (((unsigned long) header
->offset
.sect_off
+ get_cu_length (header
))
4310 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4311 "(offset 0x%lx + 0) [in module %s]"),
4312 (long) header
->length
, (long) header
->offset
.sect_off
,
4316 /* Read in a CU/TU header and perform some basic error checking.
4317 The contents of the header are stored in HEADER.
4318 The result is a pointer to the start of the first DIE. */
4320 static const gdb_byte
*
4321 read_and_check_comp_unit_head (struct comp_unit_head
*header
,
4322 struct dwarf2_section_info
*section
,
4323 struct dwarf2_section_info
*abbrev_section
,
4324 const gdb_byte
*info_ptr
,
4325 int is_debug_types_section
)
4327 const gdb_byte
*beg_of_comp_unit
= info_ptr
;
4328 bfd
*abfd
= get_section_bfd_owner (section
);
4330 header
->offset
.sect_off
= beg_of_comp_unit
- section
->buffer
;
4332 info_ptr
= read_comp_unit_head (header
, info_ptr
, abfd
);
4334 /* If we're reading a type unit, skip over the signature and
4335 type_offset fields. */
4336 if (is_debug_types_section
)
4337 info_ptr
+= 8 /*signature*/ + header
->offset_size
;
4339 header
->first_die_offset
.cu_off
= info_ptr
- beg_of_comp_unit
;
4341 error_check_comp_unit_head (header
, section
, abbrev_section
);
4346 /* Read in the types comp unit header information from .debug_types entry at
4347 types_ptr. The result is a pointer to one past the end of the header. */
4349 static const gdb_byte
*
4350 read_and_check_type_unit_head (struct comp_unit_head
*header
,
4351 struct dwarf2_section_info
*section
,
4352 struct dwarf2_section_info
*abbrev_section
,
4353 const gdb_byte
*info_ptr
,
4354 ULONGEST
*signature
,
4355 cu_offset
*type_offset_in_tu
)
4357 const gdb_byte
*beg_of_comp_unit
= info_ptr
;
4358 bfd
*abfd
= get_section_bfd_owner (section
);
4360 header
->offset
.sect_off
= beg_of_comp_unit
- section
->buffer
;
4362 info_ptr
= read_comp_unit_head (header
, info_ptr
, abfd
);
4364 /* If we're reading a type unit, skip over the signature and
4365 type_offset fields. */
4366 if (signature
!= NULL
)
4367 *signature
= read_8_bytes (abfd
, info_ptr
);
4369 if (type_offset_in_tu
!= NULL
)
4370 type_offset_in_tu
->cu_off
= read_offset_1 (abfd
, info_ptr
,
4371 header
->offset_size
);
4372 info_ptr
+= header
->offset_size
;
4374 header
->first_die_offset
.cu_off
= info_ptr
- beg_of_comp_unit
;
4376 error_check_comp_unit_head (header
, section
, abbrev_section
);
4381 /* Fetch the abbreviation table offset from a comp or type unit header. */
4384 read_abbrev_offset (struct dwarf2_section_info
*section
,
4387 bfd
*abfd
= get_section_bfd_owner (section
);
4388 const gdb_byte
*info_ptr
;
4389 unsigned int length
, initial_length_size
, offset_size
;
4390 sect_offset abbrev_offset
;
4392 dwarf2_read_section (dwarf2_per_objfile
->objfile
, section
);
4393 info_ptr
= section
->buffer
+ offset
.sect_off
;
4394 length
= read_initial_length (abfd
, info_ptr
, &initial_length_size
);
4395 offset_size
= initial_length_size
== 4 ? 4 : 8;
4396 info_ptr
+= initial_length_size
+ 2 /*version*/;
4397 abbrev_offset
.sect_off
= read_offset_1 (abfd
, info_ptr
, offset_size
);
4398 return abbrev_offset
;
4401 /* Allocate a new partial symtab for file named NAME and mark this new
4402 partial symtab as being an include of PST. */
4405 dwarf2_create_include_psymtab (const char *name
, struct partial_symtab
*pst
,
4406 struct objfile
*objfile
)
4408 struct partial_symtab
*subpst
= allocate_psymtab (name
, objfile
);
4410 if (!IS_ABSOLUTE_PATH (subpst
->filename
))
4412 /* It shares objfile->objfile_obstack. */
4413 subpst
->dirname
= pst
->dirname
;
4416 subpst
->section_offsets
= pst
->section_offsets
;
4417 subpst
->textlow
= 0;
4418 subpst
->texthigh
= 0;
4420 subpst
->dependencies
= (struct partial_symtab
**)
4421 obstack_alloc (&objfile
->objfile_obstack
,
4422 sizeof (struct partial_symtab
*));
4423 subpst
->dependencies
[0] = pst
;
4424 subpst
->number_of_dependencies
= 1;
4426 subpst
->globals_offset
= 0;
4427 subpst
->n_global_syms
= 0;
4428 subpst
->statics_offset
= 0;
4429 subpst
->n_static_syms
= 0;
4430 subpst
->compunit_symtab
= NULL
;
4431 subpst
->read_symtab
= pst
->read_symtab
;
4434 /* No private part is necessary for include psymtabs. This property
4435 can be used to differentiate between such include psymtabs and
4436 the regular ones. */
4437 subpst
->read_symtab_private
= NULL
;
4440 /* Read the Line Number Program data and extract the list of files
4441 included by the source file represented by PST. Build an include
4442 partial symtab for each of these included files. */
4445 dwarf2_build_include_psymtabs (struct dwarf2_cu
*cu
,
4446 struct die_info
*die
,
4447 struct partial_symtab
*pst
)
4449 struct line_header
*lh
= NULL
;
4450 struct attribute
*attr
;
4452 attr
= dwarf2_attr (die
, DW_AT_stmt_list
, cu
);
4454 lh
= dwarf_decode_line_header (DW_UNSND (attr
), cu
);
4456 return; /* No linetable, so no includes. */
4458 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4459 dwarf_decode_lines (lh
, pst
->dirname
, cu
, pst
, pst
->textlow
);
4461 free_line_header (lh
);
4465 hash_signatured_type (const void *item
)
4467 const struct signatured_type
*sig_type
= item
;
4469 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4470 return sig_type
->signature
;
4474 eq_signatured_type (const void *item_lhs
, const void *item_rhs
)
4476 const struct signatured_type
*lhs
= item_lhs
;
4477 const struct signatured_type
*rhs
= item_rhs
;
4479 return lhs
->signature
== rhs
->signature
;
4482 /* Allocate a hash table for signatured types. */
4485 allocate_signatured_type_table (struct objfile
*objfile
)
4487 return htab_create_alloc_ex (41,
4488 hash_signatured_type
,
4491 &objfile
->objfile_obstack
,
4492 hashtab_obstack_allocate
,
4493 dummy_obstack_deallocate
);
4496 /* A helper function to add a signatured type CU to a table. */
4499 add_signatured_type_cu_to_table (void **slot
, void *datum
)
4501 struct signatured_type
*sigt
= *slot
;
4502 struct signatured_type
***datap
= datum
;
4510 /* Create the hash table of all entries in the .debug_types
4511 (or .debug_types.dwo) section(s).
4512 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4513 otherwise it is NULL.
4515 The result is a pointer to the hash table or NULL if there are no types.
4517 Note: This function processes DWO files only, not DWP files. */
4520 create_debug_types_hash_table (struct dwo_file
*dwo_file
,
4521 VEC (dwarf2_section_info_def
) *types
)
4523 struct objfile
*objfile
= dwarf2_per_objfile
->objfile
;
4524 htab_t types_htab
= NULL
;
4526 struct dwarf2_section_info
*section
;
4527 struct dwarf2_section_info
*abbrev_section
;
4529 if (VEC_empty (dwarf2_section_info_def
, types
))
4532 abbrev_section
= (dwo_file
!= NULL
4533 ? &dwo_file
->sections
.abbrev
4534 : &dwarf2_per_objfile
->abbrev
);
4536 if (dwarf2_read_debug
)
4537 fprintf_unfiltered (gdb_stdlog
, "Reading .debug_types%s for %s:\n",
4538 dwo_file
? ".dwo" : "",
4539 get_section_file_name (abbrev_section
));
4542 VEC_iterate (dwarf2_section_info_def
, types
, ix
, section
);
4546 const gdb_byte
*info_ptr
, *end_ptr
;
4548 dwarf2_read_section (objfile
, section
);
4549 info_ptr
= section
->buffer
;
4551 if (info_ptr
== NULL
)
4554 /* We can't set abfd until now because the section may be empty or
4555 not present, in which case the bfd is unknown. */
4556 abfd
= get_section_bfd_owner (section
);
4558 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4559 because we don't need to read any dies: the signature is in the
4562 end_ptr
= info_ptr
+ section
->size
;
4563 while (info_ptr
< end_ptr
)
4566 cu_offset type_offset_in_tu
;
4568 struct signatured_type
*sig_type
;
4569 struct dwo_unit
*dwo_tu
;
4571 const gdb_byte
*ptr
= info_ptr
;
4572 struct comp_unit_head header
;
4573 unsigned int length
;
4575 offset
.sect_off
= ptr
- section
->buffer
;
4577 /* We need to read the type's signature in order to build the hash
4578 table, but we don't need anything else just yet. */
4580 ptr
= read_and_check_type_unit_head (&header
, section
,
4581 abbrev_section
, ptr
,
4582 &signature
, &type_offset_in_tu
);
4584 length
= get_cu_length (&header
);
4586 /* Skip dummy type units. */
4587 if (ptr
>= info_ptr
+ length
4588 || peek_abbrev_code (abfd
, ptr
) == 0)
4594 if (types_htab
== NULL
)
4597 types_htab
= allocate_dwo_unit_table (objfile
);
4599 types_htab
= allocate_signatured_type_table (objfile
);
4605 dwo_tu
= OBSTACK_ZALLOC (&objfile
->objfile_obstack
,
4607 dwo_tu
->dwo_file
= dwo_file
;
4608 dwo_tu
->signature
= signature
;
4609 dwo_tu
->type_offset_in_tu
= type_offset_in_tu
;
4610 dwo_tu
->section
= section
;
4611 dwo_tu
->offset
= offset
;
4612 dwo_tu
->length
= length
;
4616 /* N.B.: type_offset is not usable if this type uses a DWO file.
4617 The real type_offset is in the DWO file. */
4619 sig_type
= OBSTACK_ZALLOC (&objfile
->objfile_obstack
,
4620 struct signatured_type
);
4621 sig_type
->signature
= signature
;
4622 sig_type
->type_offset_in_tu
= type_offset_in_tu
;
4623 sig_type
->per_cu
.objfile
= objfile
;
4624 sig_type
->per_cu
.is_debug_types
= 1;
4625 sig_type
->per_cu
.section
= section
;
4626 sig_type
->per_cu
.offset
= offset
;
4627 sig_type
->per_cu
.length
= length
;
4630 slot
= htab_find_slot (types_htab
,
4631 dwo_file
? (void*) dwo_tu
: (void *) sig_type
,
4633 gdb_assert (slot
!= NULL
);
4636 sect_offset dup_offset
;
4640 const struct dwo_unit
*dup_tu
= *slot
;
4642 dup_offset
= dup_tu
->offset
;
4646 const struct signatured_type
*dup_tu
= *slot
;
4648 dup_offset
= dup_tu
->per_cu
.offset
;
4651 complaint (&symfile_complaints
,
4652 _("debug type entry at offset 0x%x is duplicate to"
4653 " the entry at offset 0x%x, signature %s"),
4654 offset
.sect_off
, dup_offset
.sect_off
,
4655 hex_string (signature
));
4657 *slot
= dwo_file
? (void *) dwo_tu
: (void *) sig_type
;
4659 if (dwarf2_read_debug
> 1)
4660 fprintf_unfiltered (gdb_stdlog
, " offset 0x%x, signature %s\n",
4662 hex_string (signature
));
4671 /* Create the hash table of all entries in the .debug_types section,
4672 and initialize all_type_units.
4673 The result is zero if there is an error (e.g. missing .debug_types section),
4674 otherwise non-zero. */
4677 create_all_type_units (struct objfile
*objfile
)
4680 struct signatured_type
**iter
;
4682 types_htab
= create_debug_types_hash_table (NULL
, dwarf2_per_objfile
->types
);
4683 if (types_htab
== NULL
)
4685 dwarf2_per_objfile
->signatured_types
= NULL
;
4689 dwarf2_per_objfile
->signatured_types
= types_htab
;
4691 dwarf2_per_objfile
->n_type_units
4692 = dwarf2_per_objfile
->n_allocated_type_units
4693 = htab_elements (types_htab
);
4694 dwarf2_per_objfile
->all_type_units
4695 = xmalloc (dwarf2_per_objfile
->n_type_units
4696 * sizeof (struct signatured_type
*));
4697 iter
= &dwarf2_per_objfile
->all_type_units
[0];
4698 htab_traverse_noresize (types_htab
, add_signatured_type_cu_to_table
, &iter
);
4699 gdb_assert (iter
- &dwarf2_per_objfile
->all_type_units
[0]
4700 == dwarf2_per_objfile
->n_type_units
);
4705 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
4706 If SLOT is non-NULL, it is the entry to use in the hash table.
4707 Otherwise we find one. */
4709 static struct signatured_type
*
4710 add_type_unit (ULONGEST sig
, void **slot
)
4712 struct objfile
*objfile
= dwarf2_per_objfile
->objfile
;
4713 int n_type_units
= dwarf2_per_objfile
->n_type_units
;
4714 struct signatured_type
*sig_type
;
4716 gdb_assert (n_type_units
<= dwarf2_per_objfile
->n_allocated_type_units
);
4718 if (n_type_units
> dwarf2_per_objfile
->n_allocated_type_units
)
4720 if (dwarf2_per_objfile
->n_allocated_type_units
== 0)
4721 dwarf2_per_objfile
->n_allocated_type_units
= 1;
4722 dwarf2_per_objfile
->n_allocated_type_units
*= 2;
4723 dwarf2_per_objfile
->all_type_units
4724 = xrealloc (dwarf2_per_objfile
->all_type_units
,
4725 dwarf2_per_objfile
->n_allocated_type_units
4726 * sizeof (struct signatured_type
*));
4727 ++dwarf2_per_objfile
->tu_stats
.nr_all_type_units_reallocs
;
4729 dwarf2_per_objfile
->n_type_units
= n_type_units
;
4731 sig_type
= OBSTACK_ZALLOC (&objfile
->objfile_obstack
,
4732 struct signatured_type
);
4733 dwarf2_per_objfile
->all_type_units
[n_type_units
- 1] = sig_type
;
4734 sig_type
->signature
= sig
;
4735 sig_type
->per_cu
.is_debug_types
= 1;
4736 if (dwarf2_per_objfile
->using_index
)
4738 sig_type
->per_cu
.v
.quick
=
4739 OBSTACK_ZALLOC (&objfile
->objfile_obstack
,
4740 struct dwarf2_per_cu_quick_data
);
4745 slot
= htab_find_slot (dwarf2_per_objfile
->signatured_types
,
4748 gdb_assert (*slot
== NULL
);
4750 /* The rest of sig_type must be filled in by the caller. */
4754 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4755 Fill in SIG_ENTRY with DWO_ENTRY. */
4758 fill_in_sig_entry_from_dwo_entry (struct objfile
*objfile
,
4759 struct signatured_type
*sig_entry
,
4760 struct dwo_unit
*dwo_entry
)
4762 /* Make sure we're not clobbering something we don't expect to. */
4763 gdb_assert (! sig_entry
->per_cu
.queued
);
4764 gdb_assert (sig_entry
->per_cu
.cu
== NULL
);
4765 if (dwarf2_per_objfile
->using_index
)
4767 gdb_assert (sig_entry
->per_cu
.v
.quick
!= NULL
);
4768 gdb_assert (sig_entry
->per_cu
.v
.quick
->compunit_symtab
== NULL
);
4771 gdb_assert (sig_entry
->per_cu
.v
.psymtab
== NULL
);
4772 gdb_assert (sig_entry
->signature
== dwo_entry
->signature
);
4773 gdb_assert (sig_entry
->type_offset_in_section
.sect_off
== 0);
4774 gdb_assert (sig_entry
->type_unit_group
== NULL
);
4775 gdb_assert (sig_entry
->dwo_unit
== NULL
);
4777 sig_entry
->per_cu
.section
= dwo_entry
->section
;
4778 sig_entry
->per_cu
.offset
= dwo_entry
->offset
;
4779 sig_entry
->per_cu
.length
= dwo_entry
->length
;
4780 sig_entry
->per_cu
.reading_dwo_directly
= 1;
4781 sig_entry
->per_cu
.objfile
= objfile
;
4782 sig_entry
->type_offset_in_tu
= dwo_entry
->type_offset_in_tu
;
4783 sig_entry
->dwo_unit
= dwo_entry
;
4786 /* Subroutine of lookup_signatured_type.
4787 If we haven't read the TU yet, create the signatured_type data structure
4788 for a TU to be read in directly from a DWO file, bypassing the stub.
4789 This is the "Stay in DWO Optimization": When there is no DWP file and we're
4790 using .gdb_index, then when reading a CU we want to stay in the DWO file
4791 containing that CU. Otherwise we could end up reading several other DWO
4792 files (due to comdat folding) to process the transitive closure of all the
4793 mentioned TUs, and that can be slow. The current DWO file will have every
4794 type signature that it needs.
4795 We only do this for .gdb_index because in the psymtab case we already have
4796 to read all the DWOs to build the type unit groups. */
4798 static struct signatured_type
*
4799 lookup_dwo_signatured_type (struct dwarf2_cu
*cu
, ULONGEST sig
)
4801 struct objfile
*objfile
= dwarf2_per_objfile
->objfile
;
4802 struct dwo_file
*dwo_file
;
4803 struct dwo_unit find_dwo_entry
, *dwo_entry
;
4804 struct signatured_type find_sig_entry
, *sig_entry
;
4807 gdb_assert (cu
->dwo_unit
&& dwarf2_per_objfile
->using_index
);
4809 /* If TU skeletons have been removed then we may not have read in any
4811 if (dwarf2_per_objfile
->signatured_types
== NULL
)
4813 dwarf2_per_objfile
->signatured_types
4814 = allocate_signatured_type_table (objfile
);
4817 /* We only ever need to read in one copy of a signatured type.
4818 Use the global signatured_types array to do our own comdat-folding
4819 of types. If this is the first time we're reading this TU, and
4820 the TU has an entry in .gdb_index, replace the recorded data from
4821 .gdb_index with this TU. */
4823 find_sig_entry
.signature
= sig
;
4824 slot
= htab_find_slot (dwarf2_per_objfile
->signatured_types
,
4825 &find_sig_entry
, INSERT
);
4828 /* We can get here with the TU already read, *or* in the process of being
4829 read. Don't reassign the global entry to point to this DWO if that's
4830 the case. Also note that if the TU is already being read, it may not
4831 have come from a DWO, the program may be a mix of Fission-compiled
4832 code and non-Fission-compiled code. */
4834 /* Have we already tried to read this TU?
4835 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4836 needn't exist in the global table yet). */
4837 if (sig_entry
!= NULL
&& sig_entry
->per_cu
.tu_read
)
4840 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
4841 dwo_unit of the TU itself. */
4842 dwo_file
= cu
->dwo_unit
->dwo_file
;
4844 /* Ok, this is the first time we're reading this TU. */
4845 if (dwo_file
->tus
== NULL
)
4847 find_dwo_entry
.signature
= sig
;
4848 dwo_entry
= htab_find (dwo_file
->tus
, &find_dwo_entry
);
4849 if (dwo_entry
== NULL
)
4852 /* If the global table doesn't have an entry for this TU, add one. */
4853 if (sig_entry
== NULL
)
4854 sig_entry
= add_type_unit (sig
, slot
);
4856 fill_in_sig_entry_from_dwo_entry (objfile
, sig_entry
, dwo_entry
);
4857 sig_entry
->per_cu
.tu_read
= 1;
4861 /* Subroutine of lookup_signatured_type.
4862 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
4863 then try the DWP file. If the TU stub (skeleton) has been removed then
4864 it won't be in .gdb_index. */
4866 static struct signatured_type
*
4867 lookup_dwp_signatured_type (struct dwarf2_cu
*cu
, ULONGEST sig
)
4869 struct objfile
*objfile
= dwarf2_per_objfile
->objfile
;
4870 struct dwp_file
*dwp_file
= get_dwp_file ();
4871 struct dwo_unit
*dwo_entry
;
4872 struct signatured_type find_sig_entry
, *sig_entry
;
4875 gdb_assert (cu
->dwo_unit
&& dwarf2_per_objfile
->using_index
);
4876 gdb_assert (dwp_file
!= NULL
);
4878 /* If TU skeletons have been removed then we may not have read in any
4880 if (dwarf2_per_objfile
->signatured_types
== NULL
)
4882 dwarf2_per_objfile
->signatured_types
4883 = allocate_signatured_type_table (objfile
);
4886 find_sig_entry
.signature
= sig
;
4887 slot
= htab_find_slot (dwarf2_per_objfile
->signatured_types
,
4888 &find_sig_entry
, INSERT
);
4891 /* Have we already tried to read this TU?
4892 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4893 needn't exist in the global table yet). */
4894 if (sig_entry
!= NULL
)
4897 if (dwp_file
->tus
== NULL
)
4899 dwo_entry
= lookup_dwo_unit_in_dwp (dwp_file
, NULL
,
4900 sig
, 1 /* is_debug_types */);
4901 if (dwo_entry
== NULL
)
4904 sig_entry
= add_type_unit (sig
, slot
);
4905 fill_in_sig_entry_from_dwo_entry (objfile
, sig_entry
, dwo_entry
);
4910 /* Lookup a signature based type for DW_FORM_ref_sig8.
4911 Returns NULL if signature SIG is not present in the table.
4912 It is up to the caller to complain about this. */
4914 static struct signatured_type
*
4915 lookup_signatured_type (struct dwarf2_cu
*cu
, ULONGEST sig
)
4918 && dwarf2_per_objfile
->using_index
)
4920 /* We're in a DWO/DWP file, and we're using .gdb_index.
4921 These cases require special processing. */
4922 if (get_dwp_file () == NULL
)
4923 return lookup_dwo_signatured_type (cu
, sig
);
4925 return lookup_dwp_signatured_type (cu
, sig
);
4929 struct signatured_type find_entry
, *entry
;
4931 if (dwarf2_per_objfile
->signatured_types
== NULL
)
4933 find_entry
.signature
= sig
;
4934 entry
= htab_find (dwarf2_per_objfile
->signatured_types
, &find_entry
);
4939 /* Low level DIE reading support. */
4941 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
4944 init_cu_die_reader (struct die_reader_specs
*reader
,
4945 struct dwarf2_cu
*cu
,
4946 struct dwarf2_section_info
*section
,
4947 struct dwo_file
*dwo_file
)
4949 gdb_assert (section
->readin
&& section
->buffer
!= NULL
);
4950 reader
->abfd
= get_section_bfd_owner (section
);
4952 reader
->dwo_file
= dwo_file
;
4953 reader
->die_section
= section
;
4954 reader
->buffer
= section
->buffer
;
4955 reader
->buffer_end
= section
->buffer
+ section
->size
;
4956 reader
->comp_dir
= NULL
;
4959 /* Subroutine of init_cutu_and_read_dies to simplify it.
4960 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
4961 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
4964 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
4965 from it to the DIE in the DWO. If NULL we are skipping the stub.
4966 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
4967 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
4968 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
4969 STUB_COMP_DIR may be non-NULL.
4970 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
4971 are filled in with the info of the DIE from the DWO file.
4972 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
4973 provided an abbrev table to use.
4974 The result is non-zero if a valid (non-dummy) DIE was found. */
4977 read_cutu_die_from_dwo (struct dwarf2_per_cu_data
*this_cu
,
4978 struct dwo_unit
*dwo_unit
,
4979 int abbrev_table_provided
,
4980 struct die_info
*stub_comp_unit_die
,
4981 const char *stub_comp_dir
,
4982 struct die_reader_specs
*result_reader
,
4983 const gdb_byte
**result_info_ptr
,
4984 struct die_info
**result_comp_unit_die
,
4985 int *result_has_children
)
4987 struct objfile
*objfile
= dwarf2_per_objfile
->objfile
;
4988 struct dwarf2_cu
*cu
= this_cu
->cu
;
4989 struct dwarf2_section_info
*section
;
4991 const gdb_byte
*begin_info_ptr
, *info_ptr
;
4992 ULONGEST signature
; /* Or dwo_id. */
4993 struct attribute
*comp_dir
, *stmt_list
, *low_pc
, *high_pc
, *ranges
;
4994 int i
,num_extra_attrs
;
4995 struct dwarf2_section_info
*dwo_abbrev_section
;
4996 struct attribute
*attr
;
4997 struct die_info
*comp_unit_die
;
4999 /* At most one of these may be provided. */
5000 gdb_assert ((stub_comp_unit_die
!= NULL
) + (stub_comp_dir
!= NULL
) <= 1);
5002 /* These attributes aren't processed until later:
5003 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
5004 DW_AT_comp_dir is used now, to find the DWO file, but it is also
5005 referenced later. However, these attributes are found in the stub
5006 which we won't have later. In order to not impose this complication
5007 on the rest of the code, we read them here and copy them to the
5016 if (stub_comp_unit_die
!= NULL
)
5018 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
5020 if (! this_cu
->is_debug_types
)
5021 stmt_list
= dwarf2_attr (stub_comp_unit_die
, DW_AT_stmt_list
, cu
);
5022 low_pc
= dwarf2_attr (stub_comp_unit_die
, DW_AT_low_pc
, cu
);
5023 high_pc
= dwarf2_attr (stub_comp_unit_die
, DW_AT_high_pc
, cu
);
5024 ranges
= dwarf2_attr (stub_comp_unit_die
, DW_AT_ranges
, cu
);
5025 comp_dir
= dwarf2_attr (stub_comp_unit_die
, DW_AT_comp_dir
, cu
);
5027 /* There should be a DW_AT_addr_base attribute here (if needed).
5028 We need the value before we can process DW_FORM_GNU_addr_index. */
5030 attr
= dwarf2_attr (stub_comp_unit_die
, DW_AT_GNU_addr_base
, cu
);
5032 cu
->addr_base
= DW_UNSND (attr
);
5034 /* There should be a DW_AT_ranges_base attribute here (if needed).
5035 We need the value before we can process DW_AT_ranges. */
5036 cu
->ranges_base
= 0;
5037 attr
= dwarf2_attr (stub_comp_unit_die
, DW_AT_GNU_ranges_base
, cu
);
5039 cu
->ranges_base
= DW_UNSND (attr
);
5041 else if (stub_comp_dir
!= NULL
)
5043 /* Reconstruct the comp_dir attribute to simplify the code below. */
5044 comp_dir
= (struct attribute
*)
5045 obstack_alloc (&cu
->comp_unit_obstack
, sizeof (*comp_dir
));
5046 comp_dir
->name
= DW_AT_comp_dir
;
5047 comp_dir
->form
= DW_FORM_string
;
5048 DW_STRING_IS_CANONICAL (comp_dir
) = 0;
5049 DW_STRING (comp_dir
) = stub_comp_dir
;
5052 /* Set up for reading the DWO CU/TU. */
5053 cu
->dwo_unit
= dwo_unit
;
5054 section
= dwo_unit
->section
;
5055 dwarf2_read_section (objfile
, section
);
5056 abfd
= get_section_bfd_owner (section
);
5057 begin_info_ptr
= info_ptr
= section
->buffer
+ dwo_unit
->offset
.sect_off
;
5058 dwo_abbrev_section
= &dwo_unit
->dwo_file
->sections
.abbrev
;
5059 init_cu_die_reader (result_reader
, cu
, section
, dwo_unit
->dwo_file
);
5061 if (this_cu
->is_debug_types
)
5063 ULONGEST header_signature
;
5064 cu_offset type_offset_in_tu
;
5065 struct signatured_type
*sig_type
= (struct signatured_type
*) this_cu
;
5067 info_ptr
= read_and_check_type_unit_head (&cu
->header
, section
,
5071 &type_offset_in_tu
);
5072 /* This is not an assert because it can be caused by bad debug info. */
5073 if (sig_type
->signature
!= header_signature
)
5075 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5076 " TU at offset 0x%x [in module %s]"),
5077 hex_string (sig_type
->signature
),
5078 hex_string (header_signature
),
5079 dwo_unit
->offset
.sect_off
,
5080 bfd_get_filename (abfd
));
5082 gdb_assert (dwo_unit
->offset
.sect_off
== cu
->header
.offset
.sect_off
);
5083 /* For DWOs coming from DWP files, we don't know the CU length
5084 nor the type's offset in the TU until now. */
5085 dwo_unit
->length
= get_cu_length (&cu
->header
);
5086 dwo_unit
->type_offset_in_tu
= type_offset_in_tu
;
5088 /* Establish the type offset that can be used to lookup the type.
5089 For DWO files, we don't know it until now. */
5090 sig_type
->type_offset_in_section
.sect_off
=
5091 dwo_unit
->offset
.sect_off
+ dwo_unit
->type_offset_in_tu
.cu_off
;
5095 info_ptr
= read_and_check_comp_unit_head (&cu
->header
, section
,
5098 gdb_assert (dwo_unit
->offset
.sect_off
== cu
->header
.offset
.sect_off
);
5099 /* For DWOs coming from DWP files, we don't know the CU length
5101 dwo_unit
->length
= get_cu_length (&cu
->header
);
5104 /* Replace the CU's original abbrev table with the DWO's.
5105 Reminder: We can't read the abbrev table until we've read the header. */
5106 if (abbrev_table_provided
)
5108 /* Don't free the provided abbrev table, the caller of
5109 init_cutu_and_read_dies owns it. */
5110 dwarf2_read_abbrevs (cu
, dwo_abbrev_section
);
5111 /* Ensure the DWO abbrev table gets freed. */
5112 make_cleanup (dwarf2_free_abbrev_table
, cu
);
5116 dwarf2_free_abbrev_table (cu
);
5117 dwarf2_read_abbrevs (cu
, dwo_abbrev_section
);
5118 /* Leave any existing abbrev table cleanup as is. */
5121 /* Read in the die, but leave space to copy over the attributes
5122 from the stub. This has the benefit of simplifying the rest of
5123 the code - all the work to maintain the illusion of a single
5124 DW_TAG_{compile,type}_unit DIE is done here. */
5125 num_extra_attrs
= ((stmt_list
!= NULL
)
5129 + (comp_dir
!= NULL
));
5130 info_ptr
= read_full_die_1 (result_reader
, result_comp_unit_die
, info_ptr
,
5131 result_has_children
, num_extra_attrs
);
5133 /* Copy over the attributes from the stub to the DIE we just read in. */
5134 comp_unit_die
= *result_comp_unit_die
;
5135 i
= comp_unit_die
->num_attrs
;
5136 if (stmt_list
!= NULL
)
5137 comp_unit_die
->attrs
[i
++] = *stmt_list
;
5139 comp_unit_die
->attrs
[i
++] = *low_pc
;
5140 if (high_pc
!= NULL
)
5141 comp_unit_die
->attrs
[i
++] = *high_pc
;
5143 comp_unit_die
->attrs
[i
++] = *ranges
;
5144 if (comp_dir
!= NULL
)
5145 comp_unit_die
->attrs
[i
++] = *comp_dir
;
5146 comp_unit_die
->num_attrs
+= num_extra_attrs
;
5148 if (dwarf2_die_debug
)
5150 fprintf_unfiltered (gdb_stdlog
,
5151 "Read die from %s@0x%x of %s:\n",
5152 get_section_name (section
),
5153 (unsigned) (begin_info_ptr
- section
->buffer
),
5154 bfd_get_filename (abfd
));
5155 dump_die (comp_unit_die
, dwarf2_die_debug
);
5158 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5159 TUs by skipping the stub and going directly to the entry in the DWO file.
5160 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5161 to get it via circuitous means. Blech. */
5162 if (comp_dir
!= NULL
)
5163 result_reader
->comp_dir
= DW_STRING (comp_dir
);
5165 /* Skip dummy compilation units. */
5166 if (info_ptr
>= begin_info_ptr
+ dwo_unit
->length
5167 || peek_abbrev_code (abfd
, info_ptr
) == 0)
5170 *result_info_ptr
= info_ptr
;
5174 /* Subroutine of init_cutu_and_read_dies to simplify it.
5175 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
5176 Returns NULL if the specified DWO unit cannot be found. */
5178 static struct dwo_unit
*
5179 lookup_dwo_unit (struct dwarf2_per_cu_data
*this_cu
,
5180 struct die_info
*comp_unit_die
)
5182 struct dwarf2_cu
*cu
= this_cu
->cu
;
5183 struct attribute
*attr
;
5185 struct dwo_unit
*dwo_unit
;
5186 const char *comp_dir
, *dwo_name
;
5188 gdb_assert (cu
!= NULL
);
5190 /* Yeah, we look dwo_name up again, but it simplifies the code. */
5191 attr
= dwarf2_attr (comp_unit_die
, DW_AT_GNU_dwo_name
, cu
);
5192 gdb_assert (attr
!= NULL
);
5193 dwo_name
= DW_STRING (attr
);
5195 attr
= dwarf2_attr (comp_unit_die
, DW_AT_comp_dir
, cu
);
5197 comp_dir
= DW_STRING (attr
);
5199 if (this_cu
->is_debug_types
)
5201 struct signatured_type
*sig_type
;
5203 /* Since this_cu is the first member of struct signatured_type,
5204 we can go from a pointer to one to a pointer to the other. */
5205 sig_type
= (struct signatured_type
*) this_cu
;
5206 signature
= sig_type
->signature
;
5207 dwo_unit
= lookup_dwo_type_unit (sig_type
, dwo_name
, comp_dir
);
5211 struct attribute
*attr
;
5213 attr
= dwarf2_attr (comp_unit_die
, DW_AT_GNU_dwo_id
, cu
);
5215 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5217 dwo_name
, objfile_name (this_cu
->objfile
));
5218 signature
= DW_UNSND (attr
);
5219 dwo_unit
= lookup_dwo_comp_unit (this_cu
, dwo_name
, comp_dir
,
5226 /* Subroutine of init_cutu_and_read_dies to simplify it.
5227 See it for a description of the parameters.
5228 Read a TU directly from a DWO file, bypassing the stub.
5230 Note: This function could be a little bit simpler if we shared cleanups
5231 with our caller, init_cutu_and_read_dies. That's generally a fragile thing
5232 to do, so we keep this function self-contained. Or we could move this
5233 into our caller, but it's complex enough already. */
5236 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data
*this_cu
,
5237 int use_existing_cu
, int keep
,
5238 die_reader_func_ftype
*die_reader_func
,
5241 struct dwarf2_cu
*cu
;
5242 struct signatured_type
*sig_type
;
5243 struct cleanup
*cleanups
, *free_cu_cleanup
= NULL
;
5244 struct die_reader_specs reader
;
5245 const gdb_byte
*info_ptr
;
5246 struct die_info
*comp_unit_die
;
5249 /* Verify we can do the following downcast, and that we have the
5251 gdb_assert (this_cu
->is_debug_types
&& this_cu
->reading_dwo_directly
);
5252 sig_type
= (struct signatured_type
*) this_cu
;
5253 gdb_assert (sig_type
->dwo_unit
!= NULL
);
5255 cleanups
= make_cleanup (null_cleanup
, NULL
);
5257 if (use_existing_cu
&& this_cu
->cu
!= NULL
)
5259 gdb_assert (this_cu
->cu
->dwo_unit
== sig_type
->dwo_unit
);
5261 /* There's no need to do the rereading_dwo_cu handling that
5262 init_cutu_and_read_dies does since we don't read the stub. */
5266 /* If !use_existing_cu, this_cu->cu must be NULL. */
5267 gdb_assert (this_cu
->cu
== NULL
);
5268 cu
= xmalloc (sizeof (*cu
));
5269 init_one_comp_unit (cu
, this_cu
);
5270 /* If an error occurs while loading, release our storage. */
5271 free_cu_cleanup
= make_cleanup (free_heap_comp_unit
, cu
);
5274 /* A future optimization, if needed, would be to use an existing
5275 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
5276 could share abbrev tables. */
5278 if (read_cutu_die_from_dwo (this_cu
, sig_type
->dwo_unit
,
5279 0 /* abbrev_table_provided */,
5280 NULL
/* stub_comp_unit_die */,
5281 sig_type
->dwo_unit
->dwo_file
->comp_dir
,
5283 &comp_unit_die
, &has_children
) == 0)
5286 do_cleanups (cleanups
);
5290 /* All the "real" work is done here. */
5291 die_reader_func (&reader
, info_ptr
, comp_unit_die
, has_children
, data
);
5293 /* This duplicates the code in init_cutu_and_read_dies,
5294 but the alternative is making the latter more complex.
5295 This function is only for the special case of using DWO files directly:
5296 no point in overly complicating the general case just to handle this. */
5297 if (free_cu_cleanup
!= NULL
)
5301 /* We've successfully allocated this compilation unit. Let our
5302 caller clean it up when finished with it. */
5303 discard_cleanups (free_cu_cleanup
);
5305 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5306 So we have to manually free the abbrev table. */
5307 dwarf2_free_abbrev_table (cu
);
5309 /* Link this CU into read_in_chain. */
5310 this_cu
->cu
->read_in_chain
= dwarf2_per_objfile
->read_in_chain
;
5311 dwarf2_per_objfile
->read_in_chain
= this_cu
;
5314 do_cleanups (free_cu_cleanup
);
5317 do_cleanups (cleanups
);
5320 /* Initialize a CU (or TU) and read its DIEs.
5321 If the CU defers to a DWO file, read the DWO file as well.
5323 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5324 Otherwise the table specified in the comp unit header is read in and used.
5325 This is an optimization for when we already have the abbrev table.
5327 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5328 Otherwise, a new CU is allocated with xmalloc.
5330 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5331 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5333 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5334 linker) then DIE_READER_FUNC will not get called. */
5337 init_cutu_and_read_dies (struct dwarf2_per_cu_data
*this_cu
,
5338 struct abbrev_table
*abbrev_table
,
5339 int use_existing_cu
, int keep
,
5340 die_reader_func_ftype
*die_reader_func
,
5343 struct objfile
*objfile
= dwarf2_per_objfile
->objfile
;
5344 struct dwarf2_section_info
*section
= this_cu
->section
;
5345 bfd
*abfd
= get_section_bfd_owner (section
);
5346 struct dwarf2_cu
*cu
;
5347 const gdb_byte
*begin_info_ptr
, *info_ptr
;
5348 struct die_reader_specs reader
;
5349 struct die_info
*comp_unit_die
;
5351 struct attribute
*attr
;
5352 struct cleanup
*cleanups
, *free_cu_cleanup
= NULL
;
5353 struct signatured_type
*sig_type
= NULL
;
5354 struct dwarf2_section_info
*abbrev_section
;
5355 /* Non-zero if CU currently points to a DWO file and we need to
5356 reread it. When this happens we need to reread the skeleton die
5357 before we can reread the DWO file (this only applies to CUs, not TUs). */
5358 int rereading_dwo_cu
= 0;
5360 if (dwarf2_die_debug
)
5361 fprintf_unfiltered (gdb_stdlog
, "Reading %s unit at offset 0x%x\n",
5362 this_cu
->is_debug_types
? "type" : "comp",
5363 this_cu
->offset
.sect_off
);
5365 if (use_existing_cu
)
5368 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5369 file (instead of going through the stub), short-circuit all of this. */
5370 if (this_cu
->reading_dwo_directly
)
5372 /* Narrow down the scope of possibilities to have to understand. */
5373 gdb_assert (this_cu
->is_debug_types
);
5374 gdb_assert (abbrev_table
== NULL
);
5375 init_tu_and_read_dwo_dies (this_cu
, use_existing_cu
, keep
,
5376 die_reader_func
, data
);
5380 cleanups
= make_cleanup (null_cleanup
, NULL
);
5382 /* This is cheap if the section is already read in. */
5383 dwarf2_read_section (objfile
, section
);
5385 begin_info_ptr
= info_ptr
= section
->buffer
+ this_cu
->offset
.sect_off
;
5387 abbrev_section
= get_abbrev_section_for_cu (this_cu
);
5389 if (use_existing_cu
&& this_cu
->cu
!= NULL
)
5392 /* If this CU is from a DWO file we need to start over, we need to
5393 refetch the attributes from the skeleton CU.
5394 This could be optimized by retrieving those attributes from when we
5395 were here the first time: the previous comp_unit_die was stored in
5396 comp_unit_obstack. But there's no data yet that we need this
5398 if (cu
->dwo_unit
!= NULL
)
5399 rereading_dwo_cu
= 1;
5403 /* If !use_existing_cu, this_cu->cu must be NULL. */
5404 gdb_assert (this_cu
->cu
== NULL
);
5405 cu
= xmalloc (sizeof (*cu
));
5406 init_one_comp_unit (cu
, this_cu
);
5407 /* If an error occurs while loading, release our storage. */
5408 free_cu_cleanup
= make_cleanup (free_heap_comp_unit
, cu
);
5411 /* Get the header. */
5412 if (cu
->header
.first_die_offset
.cu_off
!= 0 && ! rereading_dwo_cu
)
5414 /* We already have the header, there's no need to read it in again. */
5415 info_ptr
+= cu
->header
.first_die_offset
.cu_off
;
5419 if (this_cu
->is_debug_types
)
5422 cu_offset type_offset_in_tu
;
5424 info_ptr
= read_and_check_type_unit_head (&cu
->header
, section
,
5425 abbrev_section
, info_ptr
,
5427 &type_offset_in_tu
);
5429 /* Since per_cu is the first member of struct signatured_type,
5430 we can go from a pointer to one to a pointer to the other. */
5431 sig_type
= (struct signatured_type
*) this_cu
;
5432 gdb_assert (sig_type
->signature
== signature
);
5433 gdb_assert (sig_type
->type_offset_in_tu
.cu_off
5434 == type_offset_in_tu
.cu_off
);
5435 gdb_assert (this_cu
->offset
.sect_off
== cu
->header
.offset
.sect_off
);
5437 /* LENGTH has not been set yet for type units if we're
5438 using .gdb_index. */
5439 this_cu
->length
= get_cu_length (&cu
->header
);
5441 /* Establish the type offset that can be used to lookup the type. */
5442 sig_type
->type_offset_in_section
.sect_off
=
5443 this_cu
->offset
.sect_off
+ sig_type
->type_offset_in_tu
.cu_off
;
5447 info_ptr
= read_and_check_comp_unit_head (&cu
->header
, section
,
5451 gdb_assert (this_cu
->offset
.sect_off
== cu
->header
.offset
.sect_off
);
5452 gdb_assert (this_cu
->length
== get_cu_length (&cu
->header
));
5456 /* Skip dummy compilation units. */
5457 if (info_ptr
>= begin_info_ptr
+ this_cu
->length
5458 || peek_abbrev_code (abfd
, info_ptr
) == 0)
5460 do_cleanups (cleanups
);
5464 /* If we don't have them yet, read the abbrevs for this compilation unit.
5465 And if we need to read them now, make sure they're freed when we're
5466 done. Note that it's important that if the CU had an abbrev table
5467 on entry we don't free it when we're done: Somewhere up the call stack
5468 it may be in use. */
5469 if (abbrev_table
!= NULL
)
5471 gdb_assert (cu
->abbrev_table
== NULL
);
5472 gdb_assert (cu
->header
.abbrev_offset
.sect_off
5473 == abbrev_table
->offset
.sect_off
);
5474 cu
->abbrev_table
= abbrev_table
;
5476 else if (cu
->abbrev_table
== NULL
)
5478 dwarf2_read_abbrevs (cu
, abbrev_section
);
5479 make_cleanup (dwarf2_free_abbrev_table
, cu
);
5481 else if (rereading_dwo_cu
)
5483 dwarf2_free_abbrev_table (cu
);
5484 dwarf2_read_abbrevs (cu
, abbrev_section
);
5487 /* Read the top level CU/TU die. */
5488 init_cu_die_reader (&reader
, cu
, section
, NULL
);
5489 info_ptr
= read_full_die (&reader
, &comp_unit_die
, info_ptr
, &has_children
);
5491 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5493 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5494 DWO CU, that this test will fail (the attribute will not be present). */
5495 attr
= dwarf2_attr (comp_unit_die
, DW_AT_GNU_dwo_name
, cu
);
5498 struct dwo_unit
*dwo_unit
;
5499 struct die_info
*dwo_comp_unit_die
;
5503 complaint (&symfile_complaints
,
5504 _("compilation unit with DW_AT_GNU_dwo_name"
5505 " has children (offset 0x%x) [in module %s]"),
5506 this_cu
->offset
.sect_off
, bfd_get_filename (abfd
));
5508 dwo_unit
= lookup_dwo_unit (this_cu
, comp_unit_die
);
5509 if (dwo_unit
!= NULL
)
5511 if (read_cutu_die_from_dwo (this_cu
, dwo_unit
,
5512 abbrev_table
!= NULL
,
5513 comp_unit_die
, NULL
,
5515 &dwo_comp_unit_die
, &has_children
) == 0)
5518 do_cleanups (cleanups
);
5521 comp_unit_die
= dwo_comp_unit_die
;
5525 /* Yikes, we couldn't find the rest of the DIE, we only have
5526 the stub. A complaint has already been logged. There's
5527 not much more we can do except pass on the stub DIE to
5528 die_reader_func. We don't want to throw an error on bad
5533 /* All of the above is setup for this call. Yikes. */
5534 die_reader_func (&reader
, info_ptr
, comp_unit_die
, has_children
, data
);
5536 /* Done, clean up. */
5537 if (free_cu_cleanup
!= NULL
)
5541 /* We've successfully allocated this compilation unit. Let our
5542 caller clean it up when finished with it. */
5543 discard_cleanups (free_cu_cleanup
);
5545 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5546 So we have to manually free the abbrev table. */
5547 dwarf2_free_abbrev_table (cu
);
5549 /* Link this CU into read_in_chain. */
5550 this_cu
->cu
->read_in_chain
= dwarf2_per_objfile
->read_in_chain
;
5551 dwarf2_per_objfile
->read_in_chain
= this_cu
;
5554 do_cleanups (free_cu_cleanup
);
5557 do_cleanups (cleanups
);
5560 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
5561 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
5562 to have already done the lookup to find the DWO file).
5564 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
5565 THIS_CU->is_debug_types, but nothing else.
5567 We fill in THIS_CU->length.
5569 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5570 linker) then DIE_READER_FUNC will not get called.
5572 THIS_CU->cu is always freed when done.
5573 This is done in order to not leave THIS_CU->cu in a state where we have
5574 to care whether it refers to the "main" CU or the DWO CU. */
5577 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data
*this_cu
,
5578 struct dwo_file
*dwo_file
,
5579 die_reader_func_ftype
*die_reader_func
,
5582 struct objfile
*objfile
= dwarf2_per_objfile
->objfile
;
5583 struct dwarf2_section_info
*section
= this_cu
->section
;
5584 bfd
*abfd
= get_section_bfd_owner (section
);
5585 struct dwarf2_section_info
*abbrev_section
;
5586 struct dwarf2_cu cu
;
5587 const gdb_byte
*begin_info_ptr
, *info_ptr
;
5588 struct die_reader_specs reader
;
5589 struct cleanup
*cleanups
;
5590 struct die_info
*comp_unit_die
;
5593 if (dwarf2_die_debug
)
5594 fprintf_unfiltered (gdb_stdlog
, "Reading %s unit at offset 0x%x\n",
5595 this_cu
->is_debug_types
? "type" : "comp",
5596 this_cu
->offset
.sect_off
);
5598 gdb_assert (this_cu
->cu
== NULL
);
5600 abbrev_section
= (dwo_file
!= NULL
5601 ? &dwo_file
->sections
.abbrev
5602 : get_abbrev_section_for_cu (this_cu
));
5604 /* This is cheap if the section is already read in. */
5605 dwarf2_read_section (objfile
, section
);
5607 init_one_comp_unit (&cu
, this_cu
);
5609 cleanups
= make_cleanup (free_stack_comp_unit
, &cu
);
5611 begin_info_ptr
= info_ptr
= section
->buffer
+ this_cu
->offset
.sect_off
;
5612 info_ptr
= read_and_check_comp_unit_head (&cu
.header
, section
,
5613 abbrev_section
, info_ptr
,
5614 this_cu
->is_debug_types
);
5616 this_cu
->length
= get_cu_length (&cu
.header
);
5618 /* Skip dummy compilation units. */
5619 if (info_ptr
>= begin_info_ptr
+ this_cu
->length
5620 || peek_abbrev_code (abfd
, info_ptr
) == 0)
5622 do_cleanups (cleanups
);
5626 dwarf2_read_abbrevs (&cu
, abbrev_section
);
5627 make_cleanup (dwarf2_free_abbrev_table
, &cu
);
5629 init_cu_die_reader (&reader
, &cu
, section
, dwo_file
);
5630 info_ptr
= read_full_die (&reader
, &comp_unit_die
, info_ptr
, &has_children
);
5632 die_reader_func (&reader
, info_ptr
, comp_unit_die
, has_children
, data
);
5634 do_cleanups (cleanups
);
5637 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5638 does not lookup the specified DWO file.
5639 This cannot be used to read DWO files.
5641 THIS_CU->cu is always freed when done.
5642 This is done in order to not leave THIS_CU->cu in a state where we have
5643 to care whether it refers to the "main" CU or the DWO CU.
5644 We can revisit this if the data shows there's a performance issue. */
5647 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data
*this_cu
,
5648 die_reader_func_ftype
*die_reader_func
,
5651 init_cutu_and_read_dies_no_follow (this_cu
, NULL
, die_reader_func
, data
);
5654 /* Type Unit Groups.
5656 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5657 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5658 so that all types coming from the same compilation (.o file) are grouped
5659 together. A future step could be to put the types in the same symtab as
5660 the CU the types ultimately came from. */
5663 hash_type_unit_group (const void *item
)
5665 const struct type_unit_group
*tu_group
= item
;
5667 return hash_stmt_list_entry (&tu_group
->hash
);
5671 eq_type_unit_group (const void *item_lhs
, const void *item_rhs
)
5673 const struct type_unit_group
*lhs
= item_lhs
;
5674 const struct type_unit_group
*rhs
= item_rhs
;
5676 return eq_stmt_list_entry (&lhs
->hash
, &rhs
->hash
);
5679 /* Allocate a hash table for type unit groups. */
5682 allocate_type_unit_groups_table (void)
5684 return htab_create_alloc_ex (3,
5685 hash_type_unit_group
,
5688 &dwarf2_per_objfile
->objfile
->objfile_obstack
,
5689 hashtab_obstack_allocate
,
5690 dummy_obstack_deallocate
);
5693 /* Type units that don't have DW_AT_stmt_list are grouped into their own
5694 partial symtabs. We combine several TUs per psymtab to not let the size
5695 of any one psymtab grow too big. */
5696 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5697 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
5699 /* Helper routine for get_type_unit_group.
5700 Create the type_unit_group object used to hold one or more TUs. */
5702 static struct type_unit_group
*
5703 create_type_unit_group (struct dwarf2_cu
*cu
, sect_offset line_offset_struct
)
5705 struct objfile
*objfile
= dwarf2_per_objfile
->objfile
;
5706 struct dwarf2_per_cu_data
*per_cu
;
5707 struct type_unit_group
*tu_group
;
5709 tu_group
= OBSTACK_ZALLOC (&objfile
->objfile_obstack
,
5710 struct type_unit_group
);
5711 per_cu
= &tu_group
->per_cu
;
5712 per_cu
->objfile
= objfile
;
5714 if (dwarf2_per_objfile
->using_index
)
5716 per_cu
->v
.quick
= OBSTACK_ZALLOC (&objfile
->objfile_obstack
,
5717 struct dwarf2_per_cu_quick_data
);
5721 unsigned int line_offset
= line_offset_struct
.sect_off
;
5722 struct partial_symtab
*pst
;
5725 /* Give the symtab a useful name for debug purposes. */
5726 if ((line_offset
& NO_STMT_LIST_TYPE_UNIT_PSYMTAB
) != 0)
5727 name
= xstrprintf ("<type_units_%d>",
5728 (line_offset
& ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB
));
5730 name
= xstrprintf ("<type_units_at_0x%x>", line_offset
);
5732 pst
= create_partial_symtab (per_cu
, name
);
5738 tu_group
->hash
.dwo_unit
= cu
->dwo_unit
;
5739 tu_group
->hash
.line_offset
= line_offset_struct
;
5744 /* Look up the type_unit_group for type unit CU, and create it if necessary.
5745 STMT_LIST is a DW_AT_stmt_list attribute. */
5747 static struct type_unit_group
*
5748 get_type_unit_group (struct dwarf2_cu
*cu
, const struct attribute
*stmt_list
)
5750 struct tu_stats
*tu_stats
= &dwarf2_per_objfile
->tu_stats
;
5751 struct type_unit_group
*tu_group
;
5753 unsigned int line_offset
;
5754 struct type_unit_group type_unit_group_for_lookup
;
5756 if (dwarf2_per_objfile
->type_unit_groups
== NULL
)
5758 dwarf2_per_objfile
->type_unit_groups
=
5759 allocate_type_unit_groups_table ();
5762 /* Do we need to create a new group, or can we use an existing one? */
5766 line_offset
= DW_UNSND (stmt_list
);
5767 ++tu_stats
->nr_symtab_sharers
;
5771 /* Ugh, no stmt_list. Rare, but we have to handle it.
5772 We can do various things here like create one group per TU or
5773 spread them over multiple groups to split up the expansion work.
5774 To avoid worst case scenarios (too many groups or too large groups)
5775 we, umm, group them in bunches. */
5776 line_offset
= (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5777 | (tu_stats
->nr_stmt_less_type_units
5778 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE
));
5779 ++tu_stats
->nr_stmt_less_type_units
;
5782 type_unit_group_for_lookup
.hash
.dwo_unit
= cu
->dwo_unit
;
5783 type_unit_group_for_lookup
.hash
.line_offset
.sect_off
= line_offset
;
5784 slot
= htab_find_slot (dwarf2_per_objfile
->type_unit_groups
,
5785 &type_unit_group_for_lookup
, INSERT
);
5789 gdb_assert (tu_group
!= NULL
);
5793 sect_offset line_offset_struct
;
5795 line_offset_struct
.sect_off
= line_offset
;
5796 tu_group
= create_type_unit_group (cu
, line_offset_struct
);
5798 ++tu_stats
->nr_symtabs
;
5804 /* Partial symbol tables. */
5806 /* Create a psymtab named NAME and assign it to PER_CU.
5808 The caller must fill in the following details:
5809 dirname, textlow, texthigh. */
5811 static struct partial_symtab
*
5812 create_partial_symtab (struct dwarf2_per_cu_data
*per_cu
, const char *name
)
5814 struct objfile
*objfile
= per_cu
->objfile
;
5815 struct partial_symtab
*pst
;
5817 pst
= start_psymtab_common (objfile
, objfile
->section_offsets
,
5819 objfile
->global_psymbols
.next
,
5820 objfile
->static_psymbols
.next
);
5822 pst
->psymtabs_addrmap_supported
= 1;
5824 /* This is the glue that links PST into GDB's symbol API. */
5825 pst
->read_symtab_private
= per_cu
;
5826 pst
->read_symtab
= dwarf2_read_symtab
;
5827 per_cu
->v
.psymtab
= pst
;
5832 /* The DATA object passed to process_psymtab_comp_unit_reader has this
5835 struct process_psymtab_comp_unit_data
5837 /* True if we are reading a DW_TAG_partial_unit. */
5839 int want_partial_unit
;
5841 /* The "pretend" language that is used if the CU doesn't declare a
5844 enum language pretend_language
;
5847 /* die_reader_func for process_psymtab_comp_unit. */
5850 process_psymtab_comp_unit_reader (const struct die_reader_specs
*reader
,
5851 const gdb_byte
*info_ptr
,
5852 struct die_info
*comp_unit_die
,
5856 struct dwarf2_cu
*cu
= reader
->cu
;
5857 struct objfile
*objfile
= cu
->objfile
;
5858 struct dwarf2_per_cu_data
*per_cu
= cu
->per_cu
;
5859 struct attribute
*attr
;
5861 CORE_ADDR best_lowpc
= 0, best_highpc
= 0;
5862 struct partial_symtab
*pst
;
5864 const char *filename
;
5865 struct process_psymtab_comp_unit_data
*info
= data
;
5867 if (comp_unit_die
->tag
== DW_TAG_partial_unit
&& !info
->want_partial_unit
)
5870 gdb_assert (! per_cu
->is_debug_types
);
5872 prepare_one_comp_unit (cu
, comp_unit_die
, info
->pretend_language
);
5874 cu
->list_in_scope
= &file_symbols
;
5876 /* Allocate a new partial symbol table structure. */
5877 attr
= dwarf2_attr (comp_unit_die
, DW_AT_name
, cu
);
5878 if (attr
== NULL
|| !DW_STRING (attr
))
5881 filename
= DW_STRING (attr
);
5883 pst
= create_partial_symtab (per_cu
, filename
);
5885 /* This must be done before calling dwarf2_build_include_psymtabs. */
5886 attr
= dwarf2_attr (comp_unit_die
, DW_AT_comp_dir
, cu
);
5888 pst
->dirname
= DW_STRING (attr
);
5890 baseaddr
= ANOFFSET (objfile
->section_offsets
, SECT_OFF_TEXT (objfile
));
5892 dwarf2_find_base_address (comp_unit_die
, cu
);
5894 /* Possibly set the default values of LOWPC and HIGHPC from
5896 has_pc_info
= dwarf2_get_pc_bounds (comp_unit_die
, &best_lowpc
,
5897 &best_highpc
, cu
, pst
);
5898 if (has_pc_info
== 1 && best_lowpc
< best_highpc
)
5899 /* Store the contiguous range if it is not empty; it can be empty for
5900 CUs with no code. */
5901 addrmap_set_empty (objfile
->psymtabs_addrmap
,
5902 best_lowpc
+ baseaddr
,
5903 best_highpc
+ baseaddr
- 1, pst
);
5905 /* Check if comp unit has_children.
5906 If so, read the rest of the partial symbols from this comp unit.
5907 If not, there's no more debug_info for this comp unit. */
5910 struct partial_die_info
*first_die
;
5911 CORE_ADDR lowpc
, highpc
;
5913 lowpc
= ((CORE_ADDR
) -1);
5914 highpc
= ((CORE_ADDR
) 0);
5916 first_die
= load_partial_dies (reader
, info_ptr
, 1);
5918 scan_partial_symbols (first_die
, &lowpc
, &highpc
,
5921 /* If we didn't find a lowpc, set it to highpc to avoid
5922 complaints from `maint check'. */
5923 if (lowpc
== ((CORE_ADDR
) -1))
5926 /* If the compilation unit didn't have an explicit address range,
5927 then use the information extracted from its child dies. */
5931 best_highpc
= highpc
;
5934 pst
->textlow
= best_lowpc
+ baseaddr
;
5935 pst
->texthigh
= best_highpc
+ baseaddr
;
5937 pst
->n_global_syms
= objfile
->global_psymbols
.next
-
5938 (objfile
->global_psymbols
.list
+ pst
->globals_offset
);
5939 pst
->n_static_syms
= objfile
->static_psymbols
.next
-
5940 (objfile
->static_psymbols
.list
+ pst
->statics_offset
);
5941 sort_pst_symbols (objfile
, pst
);
5943 if (!VEC_empty (dwarf2_per_cu_ptr
, cu
->per_cu
->imported_symtabs
))
5946 int len
= VEC_length (dwarf2_per_cu_ptr
, cu
->per_cu
->imported_symtabs
);
5947 struct dwarf2_per_cu_data
*iter
;
5949 /* Fill in 'dependencies' here; we fill in 'users' in a
5951 pst
->number_of_dependencies
= len
;
5952 pst
->dependencies
= obstack_alloc (&objfile
->objfile_obstack
,
5953 len
* sizeof (struct symtab
*));
5955 VEC_iterate (dwarf2_per_cu_ptr
, cu
->per_cu
->imported_symtabs
,
5958 pst
->dependencies
[i
] = iter
->v
.psymtab
;
5960 VEC_free (dwarf2_per_cu_ptr
, cu
->per_cu
->imported_symtabs
);
5963 /* Get the list of files included in the current compilation unit,
5964 and build a psymtab for each of them. */
5965 dwarf2_build_include_psymtabs (cu
, comp_unit_die
, pst
);
5967 if (dwarf2_read_debug
)
5969 struct gdbarch
*gdbarch
= get_objfile_arch (objfile
);
5971 fprintf_unfiltered (gdb_stdlog
,
5972 "Psymtab for %s unit @0x%x: %s - %s"
5973 ", %d global, %d static syms\n",
5974 per_cu
->is_debug_types
? "type" : "comp",
5975 per_cu
->offset
.sect_off
,
5976 paddress (gdbarch
, pst
->textlow
),
5977 paddress (gdbarch
, pst
->texthigh
),
5978 pst
->n_global_syms
, pst
->n_static_syms
);
5982 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
5983 Process compilation unit THIS_CU for a psymtab. */
5986 process_psymtab_comp_unit (struct dwarf2_per_cu_data
*this_cu
,
5987 int want_partial_unit
,
5988 enum language pretend_language
)
5990 struct process_psymtab_comp_unit_data info
;
5992 /* If this compilation unit was already read in, free the
5993 cached copy in order to read it in again. This is
5994 necessary because we skipped some symbols when we first
5995 read in the compilation unit (see load_partial_dies).
5996 This problem could be avoided, but the benefit is unclear. */
5997 if (this_cu
->cu
!= NULL
)
5998 free_one_cached_comp_unit (this_cu
);
6000 gdb_assert (! this_cu
->is_debug_types
);
6001 info
.want_partial_unit
= want_partial_unit
;
6002 info
.pretend_language
= pretend_language
;
6003 init_cutu_and_read_dies (this_cu
, NULL
, 0, 0,
6004 process_psymtab_comp_unit_reader
,
6007 /* Age out any secondary CUs. */
6008 age_cached_comp_units ();
6011 /* Reader function for build_type_psymtabs. */
6014 build_type_psymtabs_reader (const struct die_reader_specs
*reader
,
6015 const gdb_byte
*info_ptr
,
6016 struct die_info
*type_unit_die
,
6020 struct objfile
*objfile
= dwarf2_per_objfile
->objfile
;
6021 struct dwarf2_cu
*cu
= reader
->cu
;
6022 struct dwarf2_per_cu_data
*per_cu
= cu
->per_cu
;
6023 struct signatured_type
*sig_type
;
6024 struct type_unit_group
*tu_group
;
6025 struct attribute
*attr
;
6026 struct partial_die_info
*first_die
;
6027 CORE_ADDR lowpc
, highpc
;
6028 struct partial_symtab
*pst
;
6030 gdb_assert (data
== NULL
);
6031 gdb_assert (per_cu
->is_debug_types
);
6032 sig_type
= (struct signatured_type
*) per_cu
;
6037 attr
= dwarf2_attr_no_follow (type_unit_die
, DW_AT_stmt_list
);
6038 tu_group
= get_type_unit_group (cu
, attr
);
6040 VEC_safe_push (sig_type_ptr
, tu_group
->tus
, sig_type
);
6042 prepare_one_comp_unit (cu
, type_unit_die
, language_minimal
);
6043 cu
->list_in_scope
= &file_symbols
;
6044 pst
= create_partial_symtab (per_cu
, "");
6047 first_die
= load_partial_dies (reader
, info_ptr
, 1);
6049 lowpc
= (CORE_ADDR
) -1;
6050 highpc
= (CORE_ADDR
) 0;
6051 scan_partial_symbols (first_die
, &lowpc
, &highpc
, 0, cu
);
6053 pst
->n_global_syms
= objfile
->global_psymbols
.next
-
6054 (objfile
->global_psymbols
.list
+ pst
->globals_offset
);
6055 pst
->n_static_syms
= objfile
->static_psymbols
.next
-
6056 (objfile
->static_psymbols
.list
+ pst
->statics_offset
);
6057 sort_pst_symbols (objfile
, pst
);
6060 /* Struct used to sort TUs by their abbreviation table offset. */
6062 struct tu_abbrev_offset
6064 struct signatured_type
*sig_type
;
6065 sect_offset abbrev_offset
;
6068 /* Helper routine for build_type_psymtabs_1, passed to qsort. */
6071 sort_tu_by_abbrev_offset (const void *ap
, const void *bp
)
6073 const struct tu_abbrev_offset
* const *a
= ap
;
6074 const struct tu_abbrev_offset
* const *b
= bp
;
6075 unsigned int aoff
= (*a
)->abbrev_offset
.sect_off
;
6076 unsigned int boff
= (*b
)->abbrev_offset
.sect_off
;
6078 return (aoff
> boff
) - (aoff
< boff
);
6081 /* Efficiently read all the type units.
6082 This does the bulk of the work for build_type_psymtabs.
6084 The efficiency is because we sort TUs by the abbrev table they use and
6085 only read each abbrev table once. In one program there are 200K TUs
6086 sharing 8K abbrev tables.
6088 The main purpose of this function is to support building the
6089 dwarf2_per_objfile->type_unit_groups table.
6090 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
6091 can collapse the search space by grouping them by stmt_list.
6092 The savings can be significant, in the same program from above the 200K TUs
6093 share 8K stmt_list tables.
6095 FUNC is expected to call get_type_unit_group, which will create the
6096 struct type_unit_group if necessary and add it to
6097 dwarf2_per_objfile->type_unit_groups. */
6100 build_type_psymtabs_1 (void)
6102 struct objfile
*objfile
= dwarf2_per_objfile
->objfile
;
6103 struct tu_stats
*tu_stats
= &dwarf2_per_objfile
->tu_stats
;
6104 struct cleanup
*cleanups
;
6105 struct abbrev_table
*abbrev_table
;
6106 sect_offset abbrev_offset
;
6107 struct tu_abbrev_offset
*sorted_by_abbrev
;
6108 struct type_unit_group
**iter
;
6111 /* It's up to the caller to not call us multiple times. */
6112 gdb_assert (dwarf2_per_objfile
->type_unit_groups
== NULL
);
6114 if (dwarf2_per_objfile
->n_type_units
== 0)
6117 /* TUs typically share abbrev tables, and there can be way more TUs than
6118 abbrev tables. Sort by abbrev table to reduce the number of times we
6119 read each abbrev table in.
6120 Alternatives are to punt or to maintain a cache of abbrev tables.
6121 This is simpler and efficient enough for now.
6123 Later we group TUs by their DW_AT_stmt_list value (as this defines the
6124 symtab to use). Typically TUs with the same abbrev offset have the same
6125 stmt_list value too so in practice this should work well.
6127 The basic algorithm here is:
6129 sort TUs by abbrev table
6130 for each TU with same abbrev table:
6131 read abbrev table if first user
6132 read TU top level DIE
6133 [IWBN if DWO skeletons had DW_AT_stmt_list]
6136 if (dwarf2_read_debug
)
6137 fprintf_unfiltered (gdb_stdlog
, "Building type unit groups ...\n");
6139 /* Sort in a separate table to maintain the order of all_type_units
6140 for .gdb_index: TU indices directly index all_type_units. */
6141 sorted_by_abbrev
= XNEWVEC (struct tu_abbrev_offset
,
6142 dwarf2_per_objfile
->n_type_units
);
6143 for (i
= 0; i
< dwarf2_per_objfile
->n_type_units
; ++i
)
6145 struct signatured_type
*sig_type
= dwarf2_per_objfile
->all_type_units
[i
];
6147 sorted_by_abbrev
[i
].sig_type
= sig_type
;
6148 sorted_by_abbrev
[i
].abbrev_offset
=
6149 read_abbrev_offset (sig_type
->per_cu
.section
,
6150 sig_type
->per_cu
.offset
);
6152 cleanups
= make_cleanup (xfree
, sorted_by_abbrev
);
6153 qsort (sorted_by_abbrev
, dwarf2_per_objfile
->n_type_units
,
6154 sizeof (struct tu_abbrev_offset
), sort_tu_by_abbrev_offset
);
6156 abbrev_offset
.sect_off
= ~(unsigned) 0;
6157 abbrev_table
= NULL
;
6158 make_cleanup (abbrev_table_free_cleanup
, &abbrev_table
);
6160 for (i
= 0; i
< dwarf2_per_objfile
->n_type_units
; ++i
)
6162 const struct tu_abbrev_offset
*tu
= &sorted_by_abbrev
[i
];
6164 /* Switch to the next abbrev table if necessary. */
6165 if (abbrev_table
== NULL
6166 || tu
->abbrev_offset
.sect_off
!= abbrev_offset
.sect_off
)
6168 if (abbrev_table
!= NULL
)
6170 abbrev_table_free (abbrev_table
);
6171 /* Reset to NULL in case abbrev_table_read_table throws
6172 an error: abbrev_table_free_cleanup will get called. */
6173 abbrev_table
= NULL
;
6175 abbrev_offset
= tu
->abbrev_offset
;
6177 abbrev_table_read_table (&dwarf2_per_objfile
->abbrev
,
6179 ++tu_stats
->nr_uniq_abbrev_tables
;
6182 init_cutu_and_read_dies (&tu
->sig_type
->per_cu
, abbrev_table
, 0, 0,
6183 build_type_psymtabs_reader
, NULL
);
6186 do_cleanups (cleanups
);
6189 /* Print collected type unit statistics. */
6192 print_tu_stats (void)
6194 struct tu_stats
*tu_stats
= &dwarf2_per_objfile
->tu_stats
;
6196 fprintf_unfiltered (gdb_stdlog
, "Type unit statistics:\n");
6197 fprintf_unfiltered (gdb_stdlog
, " %d TUs\n",
6198 dwarf2_per_objfile
->n_type_units
);
6199 fprintf_unfiltered (gdb_stdlog
, " %d uniq abbrev tables\n",
6200 tu_stats
->nr_uniq_abbrev_tables
);
6201 fprintf_unfiltered (gdb_stdlog
, " %d symtabs from stmt_list entries\n",
6202 tu_stats
->nr_symtabs
);
6203 fprintf_unfiltered (gdb_stdlog
, " %d symtab sharers\n",
6204 tu_stats
->nr_symtab_sharers
);
6205 fprintf_unfiltered (gdb_stdlog
, " %d type units without a stmt_list\n",
6206 tu_stats
->nr_stmt_less_type_units
);
6207 fprintf_unfiltered (gdb_stdlog
, " %d all_type_units reallocs\n",
6208 tu_stats
->nr_all_type_units_reallocs
);
6211 /* Traversal function for build_type_psymtabs. */
6214 build_type_psymtab_dependencies (void **slot
, void *info
)
6216 struct objfile
*objfile
= dwarf2_per_objfile
->objfile
;
6217 struct type_unit_group
*tu_group
= (struct type_unit_group
*) *slot
;
6218 struct dwarf2_per_cu_data
*per_cu
= &tu_group
->per_cu
;
6219 struct partial_symtab
*pst
= per_cu
->v
.psymtab
;
6220 int len
= VEC_length (sig_type_ptr
, tu_group
->tus
);
6221 struct signatured_type
*iter
;
6224 gdb_assert (len
> 0);
6225 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu
));
6227 pst
->number_of_dependencies
= len
;
6228 pst
->dependencies
= obstack_alloc (&objfile
->objfile_obstack
,
6229 len
* sizeof (struct psymtab
*));
6231 VEC_iterate (sig_type_ptr
, tu_group
->tus
, i
, iter
);
6234 gdb_assert (iter
->per_cu
.is_debug_types
);
6235 pst
->dependencies
[i
] = iter
->per_cu
.v
.psymtab
;
6236 iter
->type_unit_group
= tu_group
;
6239 VEC_free (sig_type_ptr
, tu_group
->tus
);
6244 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6245 Build partial symbol tables for the .debug_types comp-units. */
6248 build_type_psymtabs (struct objfile
*objfile
)
6250 if (! create_all_type_units (objfile
))
6253 build_type_psymtabs_1 ();
6256 /* Traversal function for process_skeletonless_type_unit.
6257 Read a TU in a DWO file and build partial symbols for it. */
6260 process_skeletonless_type_unit (void **slot
, void *info
)
6262 struct dwo_unit
*dwo_unit
= (struct dwo_unit
*) *slot
;
6263 struct objfile
*objfile
= info
;
6264 struct signatured_type find_entry
, *entry
;
6266 /* If this TU doesn't exist in the global table, add it and read it in. */
6268 if (dwarf2_per_objfile
->signatured_types
== NULL
)
6270 dwarf2_per_objfile
->signatured_types
6271 = allocate_signatured_type_table (objfile
);
6274 find_entry
.signature
= dwo_unit
->signature
;
6275 slot
= htab_find_slot (dwarf2_per_objfile
->signatured_types
, &find_entry
,
6277 /* If we've already seen this type there's nothing to do. What's happening
6278 is we're doing our own version of comdat-folding here. */
6282 /* This does the job that create_all_type_units would have done for
6284 entry
= add_type_unit (dwo_unit
->signature
, slot
);
6285 fill_in_sig_entry_from_dwo_entry (objfile
, entry
, dwo_unit
);
6288 /* This does the job that build_type_psymtabs_1 would have done. */
6289 init_cutu_and_read_dies (&entry
->per_cu
, NULL
, 0, 0,
6290 build_type_psymtabs_reader
, NULL
);
6295 /* Traversal function for process_skeletonless_type_units. */
6298 process_dwo_file_for_skeletonless_type_units (void **slot
, void *info
)
6300 struct dwo_file
*dwo_file
= (struct dwo_file
*) *slot
;
6302 if (dwo_file
->tus
!= NULL
)
6304 htab_traverse_noresize (dwo_file
->tus
,
6305 process_skeletonless_type_unit
, info
);
6311 /* Scan all TUs of DWO files, verifying we've processed them.
6312 This is needed in case a TU was emitted without its skeleton.
6313 Note: This can't be done until we know what all the DWO files are. */
6316 process_skeletonless_type_units (struct objfile
*objfile
)
6318 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
6319 if (get_dwp_file () == NULL
6320 && dwarf2_per_objfile
->dwo_files
!= NULL
)
6322 htab_traverse_noresize (dwarf2_per_objfile
->dwo_files
,
6323 process_dwo_file_for_skeletonless_type_units
,
6328 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
6331 psymtabs_addrmap_cleanup (void *o
)
6333 struct objfile
*objfile
= o
;
6335 objfile
->psymtabs_addrmap
= NULL
;
6338 /* Compute the 'user' field for each psymtab in OBJFILE. */
6341 set_partial_user (struct objfile
*objfile
)
6345 for (i
= 0; i
< dwarf2_per_objfile
->n_comp_units
; ++i
)
6347 struct dwarf2_per_cu_data
*per_cu
= dw2_get_cutu (i
);
6348 struct partial_symtab
*pst
= per_cu
->v
.psymtab
;
6354 for (j
= 0; j
< pst
->number_of_dependencies
; ++j
)
6356 /* Set the 'user' field only if it is not already set. */
6357 if (pst
->dependencies
[j
]->user
== NULL
)
6358 pst
->dependencies
[j
]->user
= pst
;
6363 /* Build the partial symbol table by doing a quick pass through the
6364 .debug_info and .debug_abbrev sections. */
6367 dwarf2_build_psymtabs_hard (struct objfile
*objfile
)
6369 struct cleanup
*back_to
, *addrmap_cleanup
;
6370 struct obstack temp_obstack
;
6373 if (dwarf2_read_debug
)
6375 fprintf_unfiltered (gdb_stdlog
, "Building psymtabs of objfile %s ...\n",
6376 objfile_name (objfile
));
6379 dwarf2_per_objfile
->reading_partial_symbols
= 1;
6381 dwarf2_read_section (objfile
, &dwarf2_per_objfile
->info
);
6383 /* Any cached compilation units will be linked by the per-objfile
6384 read_in_chain. Make sure to free them when we're done. */
6385 back_to
= make_cleanup (free_cached_comp_units
, NULL
);
6387 build_type_psymtabs (objfile
);
6389 create_all_comp_units (objfile
);
6391 /* Create a temporary address map on a temporary obstack. We later
6392 copy this to the final obstack. */
6393 obstack_init (&temp_obstack
);
6394 make_cleanup_obstack_free (&temp_obstack
);
6395 objfile
->psymtabs_addrmap
= addrmap_create_mutable (&temp_obstack
);
6396 addrmap_cleanup
= make_cleanup (psymtabs_addrmap_cleanup
, objfile
);
6398 for (i
= 0; i
< dwarf2_per_objfile
->n_comp_units
; ++i
)
6400 struct dwarf2_per_cu_data
*per_cu
= dw2_get_cutu (i
);
6402 process_psymtab_comp_unit (per_cu
, 0, language_minimal
);
6405 /* This has to wait until we read the CUs, we need the list of DWOs. */
6406 process_skeletonless_type_units (objfile
);
6408 /* Now that all TUs have been processed we can fill in the dependencies. */
6409 if (dwarf2_per_objfile
->type_unit_groups
!= NULL
)
6411 htab_traverse_noresize (dwarf2_per_objfile
->type_unit_groups
,
6412 build_type_psymtab_dependencies
, NULL
);
6415 if (dwarf2_read_debug
)
6418 set_partial_user (objfile
);
6420 objfile
->psymtabs_addrmap
= addrmap_create_fixed (objfile
->psymtabs_addrmap
,
6421 &objfile
->objfile_obstack
);
6422 discard_cleanups (addrmap_cleanup
);
6424 do_cleanups (back_to
);
6426 if (dwarf2_read_debug
)
6427 fprintf_unfiltered (gdb_stdlog
, "Done building psymtabs of %s\n",
6428 objfile_name (objfile
));
6431 /* die_reader_func for load_partial_comp_unit. */
6434 load_partial_comp_unit_reader (const struct die_reader_specs
*reader
,
6435 const gdb_byte
*info_ptr
,
6436 struct die_info
*comp_unit_die
,
6440 struct dwarf2_cu
*cu
= reader
->cu
;
6442 prepare_one_comp_unit (cu
, comp_unit_die
, language_minimal
);
6444 /* Check if comp unit has_children.
6445 If so, read the rest of the partial symbols from this comp unit.
6446 If not, there's no more debug_info for this comp unit. */
6448 load_partial_dies (reader
, info_ptr
, 0);
6451 /* Load the partial DIEs for a secondary CU into memory.
6452 This is also used when rereading a primary CU with load_all_dies. */
6455 load_partial_comp_unit (struct dwarf2_per_cu_data
*this_cu
)
6457 init_cutu_and_read_dies (this_cu
, NULL
, 1, 1,
6458 load_partial_comp_unit_reader
, NULL
);
6462 read_comp_units_from_section (struct objfile
*objfile
,
6463 struct dwarf2_section_info
*section
,
6464 unsigned int is_dwz
,
6467 struct dwarf2_per_cu_data
***all_comp_units
)
6469 const gdb_byte
*info_ptr
;
6470 bfd
*abfd
= get_section_bfd_owner (section
);
6472 if (dwarf2_read_debug
)
6473 fprintf_unfiltered (gdb_stdlog
, "Reading %s for %s\n",
6474 get_section_name (section
),
6475 get_section_file_name (section
));
6477 dwarf2_read_section (objfile
, section
);
6479 info_ptr
= section
->buffer
;
6481 while (info_ptr
< section
->buffer
+ section
->size
)
6483 unsigned int length
, initial_length_size
;
6484 struct dwarf2_per_cu_data
*this_cu
;
6487 offset
.sect_off
= info_ptr
- section
->buffer
;
6489 /* Read just enough information to find out where the next
6490 compilation unit is. */
6491 length
= read_initial_length (abfd
, info_ptr
, &initial_length_size
);
6493 /* Save the compilation unit for later lookup. */
6494 this_cu
= obstack_alloc (&objfile
->objfile_obstack
,
6495 sizeof (struct dwarf2_per_cu_data
));
6496 memset (this_cu
, 0, sizeof (*this_cu
));
6497 this_cu
->offset
= offset
;
6498 this_cu
->length
= length
+ initial_length_size
;
6499 this_cu
->is_dwz
= is_dwz
;
6500 this_cu
->objfile
= objfile
;
6501 this_cu
->section
= section
;
6503 if (*n_comp_units
== *n_allocated
)
6506 *all_comp_units
= xrealloc (*all_comp_units
,
6508 * sizeof (struct dwarf2_per_cu_data
*));
6510 (*all_comp_units
)[*n_comp_units
] = this_cu
;
6513 info_ptr
= info_ptr
+ this_cu
->length
;
6517 /* Create a list of all compilation units in OBJFILE.
6518 This is only done for -readnow and building partial symtabs. */
6521 create_all_comp_units (struct objfile
*objfile
)
6525 struct dwarf2_per_cu_data
**all_comp_units
;
6526 struct dwz_file
*dwz
;
6530 all_comp_units
= xmalloc (n_allocated
6531 * sizeof (struct dwarf2_per_cu_data
*));
6533 read_comp_units_from_section (objfile
, &dwarf2_per_objfile
->info
, 0,
6534 &n_allocated
, &n_comp_units
, &all_comp_units
);
6536 dwz
= dwarf2_get_dwz_file ();
6538 read_comp_units_from_section (objfile
, &dwz
->info
, 1,
6539 &n_allocated
, &n_comp_units
,
6542 dwarf2_per_objfile
->all_comp_units
6543 = obstack_alloc (&objfile
->objfile_obstack
,
6544 n_comp_units
* sizeof (struct dwarf2_per_cu_data
*));
6545 memcpy (dwarf2_per_objfile
->all_comp_units
, all_comp_units
,
6546 n_comp_units
* sizeof (struct dwarf2_per_cu_data
*));
6547 xfree (all_comp_units
);
6548 dwarf2_per_objfile
->n_comp_units
= n_comp_units
;
6551 /* Process all loaded DIEs for compilation unit CU, starting at
6552 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
6553 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
6554 DW_AT_ranges). See the comments of add_partial_subprogram on how
6555 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
6558 scan_partial_symbols (struct partial_die_info
*first_die
, CORE_ADDR
*lowpc
,
6559 CORE_ADDR
*highpc
, int set_addrmap
,
6560 struct dwarf2_cu
*cu
)
6562 struct partial_die_info
*pdi
;
6564 /* Now, march along the PDI's, descending into ones which have
6565 interesting children but skipping the children of the other ones,
6566 until we reach the end of the compilation unit. */
6572 fixup_partial_die (pdi
, cu
);
6574 /* Anonymous namespaces or modules have no name but have interesting
6575 children, so we need to look at them. Ditto for anonymous
6578 if (pdi
->name
!= NULL
|| pdi
->tag
== DW_TAG_namespace
6579 || pdi
->tag
== DW_TAG_module
|| pdi
->tag
== DW_TAG_enumeration_type
6580 || pdi
->tag
== DW_TAG_imported_unit
)
6584 case DW_TAG_subprogram
:
6585 add_partial_subprogram (pdi
, lowpc
, highpc
, set_addrmap
, cu
);
6587 case DW_TAG_constant
:
6588 case DW_TAG_variable
:
6589 case DW_TAG_typedef
:
6590 case DW_TAG_union_type
:
6591 if (!pdi
->is_declaration
)
6593 add_partial_symbol (pdi
, cu
);
6596 case DW_TAG_class_type
:
6597 case DW_TAG_interface_type
:
6598 case DW_TAG_structure_type
:
6599 if (!pdi
->is_declaration
)
6601 add_partial_symbol (pdi
, cu
);
6604 case DW_TAG_enumeration_type
:
6605 if (!pdi
->is_declaration
)
6606 add_partial_enumeration (pdi
, cu
);
6608 case DW_TAG_base_type
:
6609 case DW_TAG_subrange_type
:
6610 /* File scope base type definitions are added to the partial
6612 add_partial_symbol (pdi
, cu
);
6614 case DW_TAG_namespace
:
6615 add_partial_namespace (pdi
, lowpc
, highpc
, set_addrmap
, cu
);
6618 add_partial_module (pdi
, lowpc
, highpc
, set_addrmap
, cu
);
6620 case DW_TAG_imported_unit
:
6622 struct dwarf2_per_cu_data
*per_cu
;
6624 /* For now we don't handle imported units in type units. */
6625 if (cu
->per_cu
->is_debug_types
)
6627 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6628 " supported in type units [in module %s]"),
6629 objfile_name (cu
->objfile
));
6632 per_cu
= dwarf2_find_containing_comp_unit (pdi
->d
.offset
,
6636 /* Go read the partial unit, if needed. */
6637 if (per_cu
->v
.psymtab
== NULL
)
6638 process_psymtab_comp_unit (per_cu
, 1, cu
->language
);
6640 VEC_safe_push (dwarf2_per_cu_ptr
,
6641 cu
->per_cu
->imported_symtabs
, per_cu
);
6644 case DW_TAG_imported_declaration
:
6645 add_partial_symbol (pdi
, cu
);
6652 /* If the die has a sibling, skip to the sibling. */
6654 pdi
= pdi
->die_sibling
;
6658 /* Functions used to compute the fully scoped name of a partial DIE.
6660 Normally, this is simple. For C++, the parent DIE's fully scoped
6661 name is concatenated with "::" and the partial DIE's name. For
6662 Java, the same thing occurs except that "." is used instead of "::".
6663 Enumerators are an exception; they use the scope of their parent
6664 enumeration type, i.e. the name of the enumeration type is not
6665 prepended to the enumerator.
6667 There are two complexities. One is DW_AT_specification; in this
6668 case "parent" means the parent of the target of the specification,
6669 instead of the direct parent of the DIE. The other is compilers
6670 which do not emit DW_TAG_namespace; in this case we try to guess
6671 the fully qualified name of structure types from their members'
6672 linkage names. This must be done using the DIE's children rather
6673 than the children of any DW_AT_specification target. We only need
6674 to do this for structures at the top level, i.e. if the target of
6675 any DW_AT_specification (if any; otherwise the DIE itself) does not
6678 /* Compute the scope prefix associated with PDI's parent, in
6679 compilation unit CU. The result will be allocated on CU's
6680 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6681 field. NULL is returned if no prefix is necessary. */
6683 partial_die_parent_scope (struct partial_die_info
*pdi
,
6684 struct dwarf2_cu
*cu
)
6686 const char *grandparent_scope
;
6687 struct partial_die_info
*parent
, *real_pdi
;
6689 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6690 then this means the parent of the specification DIE. */
6693 while (real_pdi
->has_specification
)
6694 real_pdi
= find_partial_die (real_pdi
->spec_offset
,
6695 real_pdi
->spec_is_dwz
, cu
);
6697 parent
= real_pdi
->die_parent
;
6701 if (parent
->scope_set
)
6702 return parent
->scope
;
6704 fixup_partial_die (parent
, cu
);
6706 grandparent_scope
= partial_die_parent_scope (parent
, cu
);
6708 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6709 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6710 Work around this problem here. */
6711 if (cu
->language
== language_cplus
6712 && parent
->tag
== DW_TAG_namespace
6713 && strcmp (parent
->name
, "::") == 0
6714 && grandparent_scope
== NULL
)
6716 parent
->scope
= NULL
;
6717 parent
->scope_set
= 1;
6721 if (pdi
->tag
== DW_TAG_enumerator
)
6722 /* Enumerators should not get the name of the enumeration as a prefix. */
6723 parent
->scope
= grandparent_scope
;
6724 else if (parent
->tag
== DW_TAG_namespace
6725 || parent
->tag
== DW_TAG_module
6726 || parent
->tag
== DW_TAG_structure_type
6727 || parent
->tag
== DW_TAG_class_type
6728 || parent
->tag
== DW_TAG_interface_type
6729 || parent
->tag
== DW_TAG_union_type
6730 || parent
->tag
== DW_TAG_enumeration_type
)
6732 if (grandparent_scope
== NULL
)
6733 parent
->scope
= parent
->name
;
6735 parent
->scope
= typename_concat (&cu
->comp_unit_obstack
,
6737 parent
->name
, 0, cu
);
6741 /* FIXME drow/2004-04-01: What should we be doing with
6742 function-local names? For partial symbols, we should probably be
6744 complaint (&symfile_complaints
,
6745 _("unhandled containing DIE tag %d for DIE at %d"),
6746 parent
->tag
, pdi
->offset
.sect_off
);
6747 parent
->scope
= grandparent_scope
;
6750 parent
->scope_set
= 1;
6751 return parent
->scope
;
6754 /* Return the fully scoped name associated with PDI, from compilation unit
6755 CU. The result will be allocated with malloc. */
6758 partial_die_full_name (struct partial_die_info
*pdi
,
6759 struct dwarf2_cu
*cu
)
6761 const char *parent_scope
;
6763 /* If this is a template instantiation, we can not work out the
6764 template arguments from partial DIEs. So, unfortunately, we have
6765 to go through the full DIEs. At least any work we do building
6766 types here will be reused if full symbols are loaded later. */
6767 if (pdi
->has_template_arguments
)
6769 fixup_partial_die (pdi
, cu
);
6771 if (pdi
->name
!= NULL
&& strchr (pdi
->name
, '<') == NULL
)
6773 struct die_info
*die
;
6774 struct attribute attr
;
6775 struct dwarf2_cu
*ref_cu
= cu
;
6777 /* DW_FORM_ref_addr is using section offset. */
6779 attr
.form
= DW_FORM_ref_addr
;
6780 attr
.u
.unsnd
= pdi
->offset
.sect_off
;
6781 die
= follow_die_ref (NULL
, &attr
, &ref_cu
);
6783 return xstrdup (dwarf2_full_name (NULL
, die
, ref_cu
));
6787 parent_scope
= partial_die_parent_scope (pdi
, cu
);
6788 if (parent_scope
== NULL
)
6791 return typename_concat (NULL
, parent_scope
, pdi
->name
, 0, cu
);
6795 add_partial_symbol (struct partial_die_info
*pdi
, struct dwarf2_cu
*cu
)
6797 struct objfile
*objfile
= cu
->objfile
;
6799 const char *actual_name
= NULL
;
6801 char *built_actual_name
;
6803 baseaddr
= ANOFFSET (objfile
->section_offsets
, SECT_OFF_TEXT (objfile
));
6805 built_actual_name
= partial_die_full_name (pdi
, cu
);
6806 if (built_actual_name
!= NULL
)
6807 actual_name
= built_actual_name
;
6809 if (actual_name
== NULL
)
6810 actual_name
= pdi
->name
;
6814 case DW_TAG_subprogram
:
6815 if (pdi
->is_external
|| cu
->language
== language_ada
)
6817 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6818 of the global scope. But in Ada, we want to be able to access
6819 nested procedures globally. So all Ada subprograms are stored
6820 in the global scope. */
6821 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
6822 mst_text, objfile); */
6823 add_psymbol_to_list (actual_name
, strlen (actual_name
),
6824 built_actual_name
!= NULL
,
6825 VAR_DOMAIN
, LOC_BLOCK
,
6826 &objfile
->global_psymbols
,
6827 0, pdi
->lowpc
+ baseaddr
,
6828 cu
->language
, objfile
);
6832 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
6833 mst_file_text, objfile); */
6834 add_psymbol_to_list (actual_name
, strlen (actual_name
),
6835 built_actual_name
!= NULL
,
6836 VAR_DOMAIN
, LOC_BLOCK
,
6837 &objfile
->static_psymbols
,
6838 0, pdi
->lowpc
+ baseaddr
,
6839 cu
->language
, objfile
);
6842 case DW_TAG_constant
:
6844 struct psymbol_allocation_list
*list
;
6846 if (pdi
->is_external
)
6847 list
= &objfile
->global_psymbols
;
6849 list
= &objfile
->static_psymbols
;
6850 add_psymbol_to_list (actual_name
, strlen (actual_name
),
6851 built_actual_name
!= NULL
, VAR_DOMAIN
, LOC_STATIC
,
6852 list
, 0, 0, cu
->language
, objfile
);
6855 case DW_TAG_variable
:
6857 addr
= decode_locdesc (pdi
->d
.locdesc
, cu
);
6861 && !dwarf2_per_objfile
->has_section_at_zero
)
6863 /* A global or static variable may also have been stripped
6864 out by the linker if unused, in which case its address
6865 will be nullified; do not add such variables into partial
6866 symbol table then. */
6868 else if (pdi
->is_external
)
6871 Don't enter into the minimal symbol tables as there is
6872 a minimal symbol table entry from the ELF symbols already.
6873 Enter into partial symbol table if it has a location
6874 descriptor or a type.
6875 If the location descriptor is missing, new_symbol will create
6876 a LOC_UNRESOLVED symbol, the address of the variable will then
6877 be determined from the minimal symbol table whenever the variable
6879 The address for the partial symbol table entry is not
6880 used by GDB, but it comes in handy for debugging partial symbol
6883 if (pdi
->d
.locdesc
|| pdi
->has_type
)
6884 add_psymbol_to_list (actual_name
, strlen (actual_name
),
6885 built_actual_name
!= NULL
,
6886 VAR_DOMAIN
, LOC_STATIC
,
6887 &objfile
->global_psymbols
,
6889 cu
->language
, objfile
);
6893 /* Static Variable. Skip symbols without location descriptors. */
6894 if (pdi
->d
.locdesc
== NULL
)
6896 xfree (built_actual_name
);
6899 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
6900 mst_file_data, objfile); */
6901 add_psymbol_to_list (actual_name
, strlen (actual_name
),
6902 built_actual_name
!= NULL
,
6903 VAR_DOMAIN
, LOC_STATIC
,
6904 &objfile
->static_psymbols
,
6906 cu
->language
, objfile
);
6909 case DW_TAG_typedef
:
6910 case DW_TAG_base_type
:
6911 case DW_TAG_subrange_type
:
6912 add_psymbol_to_list (actual_name
, strlen (actual_name
),
6913 built_actual_name
!= NULL
,
6914 VAR_DOMAIN
, LOC_TYPEDEF
,
6915 &objfile
->static_psymbols
,
6916 0, (CORE_ADDR
) 0, cu
->language
, objfile
);
6918 case DW_TAG_imported_declaration
:
6919 case DW_TAG_namespace
:
6920 add_psymbol_to_list (actual_name
, strlen (actual_name
),
6921 built_actual_name
!= NULL
,
6922 VAR_DOMAIN
, LOC_TYPEDEF
,
6923 &objfile
->global_psymbols
,
6924 0, (CORE_ADDR
) 0, cu
->language
, objfile
);
6927 add_psymbol_to_list (actual_name
, strlen (actual_name
),
6928 built_actual_name
!= NULL
,
6929 MODULE_DOMAIN
, LOC_TYPEDEF
,
6930 &objfile
->global_psymbols
,
6931 0, (CORE_ADDR
) 0, cu
->language
, objfile
);
6933 case DW_TAG_class_type
:
6934 case DW_TAG_interface_type
:
6935 case DW_TAG_structure_type
:
6936 case DW_TAG_union_type
:
6937 case DW_TAG_enumeration_type
:
6938 /* Skip external references. The DWARF standard says in the section
6939 about "Structure, Union, and Class Type Entries": "An incomplete
6940 structure, union or class type is represented by a structure,
6941 union or class entry that does not have a byte size attribute
6942 and that has a DW_AT_declaration attribute." */
6943 if (!pdi
->has_byte_size
&& pdi
->is_declaration
)
6945 xfree (built_actual_name
);
6949 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
6950 static vs. global. */
6951 add_psymbol_to_list (actual_name
, strlen (actual_name
),
6952 built_actual_name
!= NULL
,
6953 STRUCT_DOMAIN
, LOC_TYPEDEF
,
6954 (cu
->language
== language_cplus
6955 || cu
->language
== language_java
)
6956 ? &objfile
->global_psymbols
6957 : &objfile
->static_psymbols
,
6958 0, (CORE_ADDR
) 0, cu
->language
, objfile
);
6961 case DW_TAG_enumerator
:
6962 add_psymbol_to_list (actual_name
, strlen (actual_name
),
6963 built_actual_name
!= NULL
,
6964 VAR_DOMAIN
, LOC_CONST
,
6965 (cu
->language
== language_cplus
6966 || cu
->language
== language_java
)
6967 ? &objfile
->global_psymbols
6968 : &objfile
->static_psymbols
,
6969 0, (CORE_ADDR
) 0, cu
->language
, objfile
);
6975 xfree (built_actual_name
);
6978 /* Read a partial die corresponding to a namespace; also, add a symbol
6979 corresponding to that namespace to the symbol table. NAMESPACE is
6980 the name of the enclosing namespace. */
6983 add_partial_namespace (struct partial_die_info
*pdi
,
6984 CORE_ADDR
*lowpc
, CORE_ADDR
*highpc
,
6985 int set_addrmap
, struct dwarf2_cu
*cu
)
6987 /* Add a symbol for the namespace. */
6989 add_partial_symbol (pdi
, cu
);
6991 /* Now scan partial symbols in that namespace. */
6993 if (pdi
->has_children
)
6994 scan_partial_symbols (pdi
->die_child
, lowpc
, highpc
, set_addrmap
, cu
);
6997 /* Read a partial die corresponding to a Fortran module. */
7000 add_partial_module (struct partial_die_info
*pdi
, CORE_ADDR
*lowpc
,
7001 CORE_ADDR
*highpc
, int set_addrmap
, struct dwarf2_cu
*cu
)
7003 /* Add a symbol for the namespace. */
7005 add_partial_symbol (pdi
, cu
);
7007 /* Now scan partial symbols in that module. */
7009 if (pdi
->has_children
)
7010 scan_partial_symbols (pdi
->die_child
, lowpc
, highpc
, set_addrmap
, cu
);
7013 /* Read a partial die corresponding to a subprogram and create a partial
7014 symbol for that subprogram. When the CU language allows it, this
7015 routine also defines a partial symbol for each nested subprogram
7016 that this subprogram contains. If SET_ADDRMAP is true, record the
7017 covered ranges in the addrmap. Set *LOWPC and *HIGHPC to the lowest
7018 and highest PC values found in PDI.
7020 PDI may also be a lexical block, in which case we simply search
7021 recursively for subprograms defined inside that lexical block.
7022 Again, this is only performed when the CU language allows this
7023 type of definitions. */
7026 add_partial_subprogram (struct partial_die_info
*pdi
,
7027 CORE_ADDR
*lowpc
, CORE_ADDR
*highpc
,
7028 int set_addrmap
, struct dwarf2_cu
*cu
)
7030 if (pdi
->tag
== DW_TAG_subprogram
)
7032 if (pdi
->has_pc_info
)
7034 if (pdi
->lowpc
< *lowpc
)
7035 *lowpc
= pdi
->lowpc
;
7036 if (pdi
->highpc
> *highpc
)
7037 *highpc
= pdi
->highpc
;
7041 struct objfile
*objfile
= cu
->objfile
;
7043 baseaddr
= ANOFFSET (objfile
->section_offsets
,
7044 SECT_OFF_TEXT (objfile
));
7045 addrmap_set_empty (objfile
->psymtabs_addrmap
,
7046 pdi
->lowpc
+ baseaddr
,
7047 pdi
->highpc
- 1 + baseaddr
,
7048 cu
->per_cu
->v
.psymtab
);
7052 if (pdi
->has_pc_info
|| (!pdi
->is_external
&& pdi
->may_be_inlined
))
7054 if (!pdi
->is_declaration
)
7055 /* Ignore subprogram DIEs that do not have a name, they are
7056 illegal. Do not emit a complaint at this point, we will
7057 do so when we convert this psymtab into a symtab. */
7059 add_partial_symbol (pdi
, cu
);
7063 if (! pdi
->has_children
)
7066 if (cu
->language
== language_ada
)
7068 pdi
= pdi
->die_child
;
7071 fixup_partial_die (pdi
, cu
);
7072 if (pdi
->tag
== DW_TAG_subprogram
7073 || pdi
->tag
== DW_TAG_lexical_block
)
7074 add_partial_subprogram (pdi
, lowpc
, highpc
, set_addrmap
, cu
);
7075 pdi
= pdi
->die_sibling
;
7080 /* Read a partial die corresponding to an enumeration type. */
7083 add_partial_enumeration (struct partial_die_info
*enum_pdi
,
7084 struct dwarf2_cu
*cu
)
7086 struct partial_die_info
*pdi
;
7088 if (enum_pdi
->name
!= NULL
)
7089 add_partial_symbol (enum_pdi
, cu
);
7091 pdi
= enum_pdi
->die_child
;
7094 if (pdi
->tag
!= DW_TAG_enumerator
|| pdi
->name
== NULL
)
7095 complaint (&symfile_complaints
, _("malformed enumerator DIE ignored"));
7097 add_partial_symbol (pdi
, cu
);
7098 pdi
= pdi
->die_sibling
;
7102 /* Return the initial uleb128 in the die at INFO_PTR. */
7105 peek_abbrev_code (bfd
*abfd
, const gdb_byte
*info_ptr
)
7107 unsigned int bytes_read
;
7109 return read_unsigned_leb128 (abfd
, info_ptr
, &bytes_read
);
7112 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
7113 Return the corresponding abbrev, or NULL if the number is zero (indicating
7114 an empty DIE). In either case *BYTES_READ will be set to the length of
7115 the initial number. */
7117 static struct abbrev_info
*
7118 peek_die_abbrev (const gdb_byte
*info_ptr
, unsigned int *bytes_read
,
7119 struct dwarf2_cu
*cu
)
7121 bfd
*abfd
= cu
->objfile
->obfd
;
7122 unsigned int abbrev_number
;
7123 struct abbrev_info
*abbrev
;
7125 abbrev_number
= read_unsigned_leb128 (abfd
, info_ptr
, bytes_read
);
7127 if (abbrev_number
== 0)
7130 abbrev
= abbrev_table_lookup_abbrev (cu
->abbrev_table
, abbrev_number
);
7133 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"),
7134 abbrev_number
, bfd_get_filename (abfd
));
7140 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7141 Returns a pointer to the end of a series of DIEs, terminated by an empty
7142 DIE. Any children of the skipped DIEs will also be skipped. */
7144 static const gdb_byte
*
7145 skip_children (const struct die_reader_specs
*reader
, const gdb_byte
*info_ptr
)
7147 struct dwarf2_cu
*cu
= reader
->cu
;
7148 struct abbrev_info
*abbrev
;
7149 unsigned int bytes_read
;
7153 abbrev
= peek_die_abbrev (info_ptr
, &bytes_read
, cu
);
7155 return info_ptr
+ bytes_read
;
7157 info_ptr
= skip_one_die (reader
, info_ptr
+ bytes_read
, abbrev
);
7161 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7162 INFO_PTR should point just after the initial uleb128 of a DIE, and the
7163 abbrev corresponding to that skipped uleb128 should be passed in
7164 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7167 static const gdb_byte
*
7168 skip_one_die (const struct die_reader_specs
*reader
, const gdb_byte
*info_ptr
,
7169 struct abbrev_info
*abbrev
)
7171 unsigned int bytes_read
;
7172 struct attribute attr
;
7173 bfd
*abfd
= reader
->abfd
;
7174 struct dwarf2_cu
*cu
= reader
->cu
;
7175 const gdb_byte
*buffer
= reader
->buffer
;
7176 const gdb_byte
*buffer_end
= reader
->buffer_end
;
7177 const gdb_byte
*start_info_ptr
= info_ptr
;
7178 unsigned int form
, i
;
7180 for (i
= 0; i
< abbrev
->num_attrs
; i
++)
7182 /* The only abbrev we care about is DW_AT_sibling. */
7183 if (abbrev
->attrs
[i
].name
== DW_AT_sibling
)
7185 read_attribute (reader
, &attr
, &abbrev
->attrs
[i
], info_ptr
);
7186 if (attr
.form
== DW_FORM_ref_addr
)
7187 complaint (&symfile_complaints
,
7188 _("ignoring absolute DW_AT_sibling"));
7191 unsigned int off
= dwarf2_get_ref_die_offset (&attr
).sect_off
;
7192 const gdb_byte
*sibling_ptr
= buffer
+ off
;
7194 if (sibling_ptr
< info_ptr
)
7195 complaint (&symfile_complaints
,
7196 _("DW_AT_sibling points backwards"));
7197 else if (sibling_ptr
> reader
->buffer_end
)
7198 dwarf2_section_buffer_overflow_complaint (reader
->die_section
);
7204 /* If it isn't DW_AT_sibling, skip this attribute. */
7205 form
= abbrev
->attrs
[i
].form
;
7209 case DW_FORM_ref_addr
:
7210 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7211 and later it is offset sized. */
7212 if (cu
->header
.version
== 2)
7213 info_ptr
+= cu
->header
.addr_size
;
7215 info_ptr
+= cu
->header
.offset_size
;
7217 case DW_FORM_GNU_ref_alt
:
7218 info_ptr
+= cu
->header
.offset_size
;
7221 info_ptr
+= cu
->header
.addr_size
;
7228 case DW_FORM_flag_present
:
7240 case DW_FORM_ref_sig8
:
7243 case DW_FORM_string
:
7244 read_direct_string (abfd
, info_ptr
, &bytes_read
);
7245 info_ptr
+= bytes_read
;
7247 case DW_FORM_sec_offset
:
7249 case DW_FORM_GNU_strp_alt
:
7250 info_ptr
+= cu
->header
.offset_size
;
7252 case DW_FORM_exprloc
:
7254 info_ptr
+= read_unsigned_leb128 (abfd
, info_ptr
, &bytes_read
);
7255 info_ptr
+= bytes_read
;
7257 case DW_FORM_block1
:
7258 info_ptr
+= 1 + read_1_byte (abfd
, info_ptr
);
7260 case DW_FORM_block2
:
7261 info_ptr
+= 2 + read_2_bytes (abfd
, info_ptr
);
7263 case DW_FORM_block4
:
7264 info_ptr
+= 4 + read_4_bytes (abfd
, info_ptr
);
7268 case DW_FORM_ref_udata
:
7269 case DW_FORM_GNU_addr_index
:
7270 case DW_FORM_GNU_str_index
:
7271 info_ptr
= safe_skip_leb128 (info_ptr
, buffer_end
);
7273 case DW_FORM_indirect
:
7274 form
= read_unsigned_leb128 (abfd
, info_ptr
, &bytes_read
);
7275 info_ptr
+= bytes_read
;
7276 /* We need to continue parsing from here, so just go back to
7278 goto skip_attribute
;
7281 error (_("Dwarf Error: Cannot handle %s "
7282 "in DWARF reader [in module %s]"),
7283 dwarf_form_name (form
),
7284 bfd_get_filename (abfd
));
7288 if (abbrev
->has_children
)
7289 return skip_children (reader
, info_ptr
);
7294 /* Locate ORIG_PDI's sibling.
7295 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
7297 static const gdb_byte
*
7298 locate_pdi_sibling (const struct die_reader_specs
*reader
,
7299 struct partial_die_info
*orig_pdi
,
7300 const gdb_byte
*info_ptr
)
7302 /* Do we know the sibling already? */
7304 if (orig_pdi
->sibling
)
7305 return orig_pdi
->sibling
;
7307 /* Are there any children to deal with? */
7309 if (!orig_pdi
->has_children
)
7312 /* Skip the children the long way. */
7314 return skip_children (reader
, info_ptr
);
7317 /* Expand this partial symbol table into a full symbol table. SELF is
7321 dwarf2_read_symtab (struct partial_symtab
*self
,
7322 struct objfile
*objfile
)
7326 warning (_("bug: psymtab for %s is already read in."),
7333 printf_filtered (_("Reading in symbols for %s..."),
7335 gdb_flush (gdb_stdout
);
7338 /* Restore our global data. */
7339 dwarf2_per_objfile
= objfile_data (objfile
, dwarf2_objfile_data_key
);
7341 /* If this psymtab is constructed from a debug-only objfile, the
7342 has_section_at_zero flag will not necessarily be correct. We
7343 can get the correct value for this flag by looking at the data
7344 associated with the (presumably stripped) associated objfile. */
7345 if (objfile
->separate_debug_objfile_backlink
)
7347 struct dwarf2_per_objfile
*dpo_backlink
7348 = objfile_data (objfile
->separate_debug_objfile_backlink
,
7349 dwarf2_objfile_data_key
);
7351 dwarf2_per_objfile
->has_section_at_zero
7352 = dpo_backlink
->has_section_at_zero
;
7355 dwarf2_per_objfile
->reading_partial_symbols
= 0;
7357 psymtab_to_symtab_1 (self
);
7359 /* Finish up the debug error message. */
7361 printf_filtered (_("done.\n"));
7364 process_cu_includes ();
7367 /* Reading in full CUs. */
7369 /* Add PER_CU to the queue. */
7372 queue_comp_unit (struct dwarf2_per_cu_data
*per_cu
,
7373 enum language pretend_language
)
7375 struct dwarf2_queue_item
*item
;
7378 item
= xmalloc (sizeof (*item
));
7379 item
->per_cu
= per_cu
;
7380 item
->pretend_language
= pretend_language
;
7383 if (dwarf2_queue
== NULL
)
7384 dwarf2_queue
= item
;
7386 dwarf2_queue_tail
->next
= item
;
7388 dwarf2_queue_tail
= item
;
7391 /* If PER_CU is not yet queued, add it to the queue.
7392 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7394 The result is non-zero if PER_CU was queued, otherwise the result is zero
7395 meaning either PER_CU is already queued or it is already loaded.
7397 N.B. There is an invariant here that if a CU is queued then it is loaded.
7398 The caller is required to load PER_CU if we return non-zero. */
7401 maybe_queue_comp_unit (struct dwarf2_cu
*dependent_cu
,
7402 struct dwarf2_per_cu_data
*per_cu
,
7403 enum language pretend_language
)
7405 /* We may arrive here during partial symbol reading, if we need full
7406 DIEs to process an unusual case (e.g. template arguments). Do
7407 not queue PER_CU, just tell our caller to load its DIEs. */
7408 if (dwarf2_per_objfile
->reading_partial_symbols
)
7410 if (per_cu
->cu
== NULL
|| per_cu
->cu
->dies
== NULL
)
7415 /* Mark the dependence relation so that we don't flush PER_CU
7417 if (dependent_cu
!= NULL
)
7418 dwarf2_add_dependence (dependent_cu
, per_cu
);
7420 /* If it's already on the queue, we have nothing to do. */
7424 /* If the compilation unit is already loaded, just mark it as
7426 if (per_cu
->cu
!= NULL
)
7428 per_cu
->cu
->last_used
= 0;
7432 /* Add it to the queue. */
7433 queue_comp_unit (per_cu
, pretend_language
);
7438 /* Process the queue. */
7441 process_queue (void)
7443 struct dwarf2_queue_item
*item
, *next_item
;
7445 if (dwarf2_read_debug
)
7447 fprintf_unfiltered (gdb_stdlog
,
7448 "Expanding one or more symtabs of objfile %s ...\n",
7449 objfile_name (dwarf2_per_objfile
->objfile
));
7452 /* The queue starts out with one item, but following a DIE reference
7453 may load a new CU, adding it to the end of the queue. */
7454 for (item
= dwarf2_queue
; item
!= NULL
; dwarf2_queue
= item
= next_item
)
7456 if (dwarf2_per_objfile
->using_index
7457 ? !item
->per_cu
->v
.quick
->compunit_symtab
7458 : (item
->per_cu
->v
.psymtab
&& !item
->per_cu
->v
.psymtab
->readin
))
7460 struct dwarf2_per_cu_data
*per_cu
= item
->per_cu
;
7461 unsigned int debug_print_threshold
;
7464 if (per_cu
->is_debug_types
)
7466 struct signatured_type
*sig_type
=
7467 (struct signatured_type
*) per_cu
;
7469 sprintf (buf
, "TU %s at offset 0x%x",
7470 hex_string (sig_type
->signature
),
7471 per_cu
->offset
.sect_off
);
7472 /* There can be 100s of TUs.
7473 Only print them in verbose mode. */
7474 debug_print_threshold
= 2;
7478 sprintf (buf
, "CU at offset 0x%x", per_cu
->offset
.sect_off
);
7479 debug_print_threshold
= 1;
7482 if (dwarf2_read_debug
>= debug_print_threshold
)
7483 fprintf_unfiltered (gdb_stdlog
, "Expanding symtab of %s\n", buf
);
7485 if (per_cu
->is_debug_types
)
7486 process_full_type_unit (per_cu
, item
->pretend_language
);
7488 process_full_comp_unit (per_cu
, item
->pretend_language
);
7490 if (dwarf2_read_debug
>= debug_print_threshold
)
7491 fprintf_unfiltered (gdb_stdlog
, "Done expanding %s\n", buf
);
7494 item
->per_cu
->queued
= 0;
7495 next_item
= item
->next
;
7499 dwarf2_queue_tail
= NULL
;
7501 if (dwarf2_read_debug
)
7503 fprintf_unfiltered (gdb_stdlog
, "Done expanding symtabs of %s.\n",
7504 objfile_name (dwarf2_per_objfile
->objfile
));
7508 /* Free all allocated queue entries. This function only releases anything if
7509 an error was thrown; if the queue was processed then it would have been
7510 freed as we went along. */
7513 dwarf2_release_queue (void *dummy
)
7515 struct dwarf2_queue_item
*item
, *last
;
7517 item
= dwarf2_queue
;
7520 /* Anything still marked queued is likely to be in an
7521 inconsistent state, so discard it. */
7522 if (item
->per_cu
->queued
)
7524 if (item
->per_cu
->cu
!= NULL
)
7525 free_one_cached_comp_unit (item
->per_cu
);
7526 item
->per_cu
->queued
= 0;
7534 dwarf2_queue
= dwarf2_queue_tail
= NULL
;
7537 /* Read in full symbols for PST, and anything it depends on. */
7540 psymtab_to_symtab_1 (struct partial_symtab
*pst
)
7542 struct dwarf2_per_cu_data
*per_cu
;
7548 for (i
= 0; i
< pst
->number_of_dependencies
; i
++)
7549 if (!pst
->dependencies
[i
]->readin
7550 && pst
->dependencies
[i
]->user
== NULL
)
7552 /* Inform about additional files that need to be read in. */
7555 /* FIXME: i18n: Need to make this a single string. */
7556 fputs_filtered (" ", gdb_stdout
);
7558 fputs_filtered ("and ", gdb_stdout
);
7560 printf_filtered ("%s...", pst
->dependencies
[i
]->filename
);
7561 wrap_here (""); /* Flush output. */
7562 gdb_flush (gdb_stdout
);
7564 psymtab_to_symtab_1 (pst
->dependencies
[i
]);
7567 per_cu
= pst
->read_symtab_private
;
7571 /* It's an include file, no symbols to read for it.
7572 Everything is in the parent symtab. */
7577 dw2_do_instantiate_symtab (per_cu
);
7580 /* Trivial hash function for die_info: the hash value of a DIE
7581 is its offset in .debug_info for this objfile. */
7584 die_hash (const void *item
)
7586 const struct die_info
*die
= item
;
7588 return die
->offset
.sect_off
;
7591 /* Trivial comparison function for die_info structures: two DIEs
7592 are equal if they have the same offset. */
7595 die_eq (const void *item_lhs
, const void *item_rhs
)
7597 const struct die_info
*die_lhs
= item_lhs
;
7598 const struct die_info
*die_rhs
= item_rhs
;
7600 return die_lhs
->offset
.sect_off
== die_rhs
->offset
.sect_off
;
7603 /* die_reader_func for load_full_comp_unit.
7604 This is identical to read_signatured_type_reader,
7605 but is kept separate for now. */
7608 load_full_comp_unit_reader (const struct die_reader_specs
*reader
,
7609 const gdb_byte
*info_ptr
,
7610 struct die_info
*comp_unit_die
,
7614 struct dwarf2_cu
*cu
= reader
->cu
;
7615 enum language
*language_ptr
= data
;
7617 gdb_assert (cu
->die_hash
== NULL
);
7619 htab_create_alloc_ex (cu
->header
.length
/ 12,
7623 &cu
->comp_unit_obstack
,
7624 hashtab_obstack_allocate
,
7625 dummy_obstack_deallocate
);
7628 comp_unit_die
->child
= read_die_and_siblings (reader
, info_ptr
,
7629 &info_ptr
, comp_unit_die
);
7630 cu
->dies
= comp_unit_die
;
7631 /* comp_unit_die is not stored in die_hash, no need. */
7633 /* We try not to read any attributes in this function, because not
7634 all CUs needed for references have been loaded yet, and symbol
7635 table processing isn't initialized. But we have to set the CU language,
7636 or we won't be able to build types correctly.
7637 Similarly, if we do not read the producer, we can not apply
7638 producer-specific interpretation. */
7639 prepare_one_comp_unit (cu
, cu
->dies
, *language_ptr
);
7642 /* Load the DIEs associated with PER_CU into memory. */
7645 load_full_comp_unit (struct dwarf2_per_cu_data
*this_cu
,
7646 enum language pretend_language
)
7648 gdb_assert (! this_cu
->is_debug_types
);
7650 init_cutu_and_read_dies (this_cu
, NULL
, 1, 1,
7651 load_full_comp_unit_reader
, &pretend_language
);
7654 /* Add a DIE to the delayed physname list. */
7657 add_to_method_list (struct type
*type
, int fnfield_index
, int index
,
7658 const char *name
, struct die_info
*die
,
7659 struct dwarf2_cu
*cu
)
7661 struct delayed_method_info mi
;
7663 mi
.fnfield_index
= fnfield_index
;
7667 VEC_safe_push (delayed_method_info
, cu
->method_list
, &mi
);
7670 /* A cleanup for freeing the delayed method list. */
7673 free_delayed_list (void *ptr
)
7675 struct dwarf2_cu
*cu
= (struct dwarf2_cu
*) ptr
;
7676 if (cu
->method_list
!= NULL
)
7678 VEC_free (delayed_method_info
, cu
->method_list
);
7679 cu
->method_list
= NULL
;
7683 /* Compute the physnames of any methods on the CU's method list.
7685 The computation of method physnames is delayed in order to avoid the
7686 (bad) condition that one of the method's formal parameters is of an as yet
7690 compute_delayed_physnames (struct dwarf2_cu
*cu
)
7693 struct delayed_method_info
*mi
;
7694 for (i
= 0; VEC_iterate (delayed_method_info
, cu
->method_list
, i
, mi
) ; ++i
)
7696 const char *physname
;
7697 struct fn_fieldlist
*fn_flp
7698 = &TYPE_FN_FIELDLIST (mi
->type
, mi
->fnfield_index
);
7699 physname
= dwarf2_physname (mi
->name
, mi
->die
, cu
);
7700 fn_flp
->fn_fields
[mi
->index
].physname
= physname
? physname
: "";
7704 /* Go objects should be embedded in a DW_TAG_module DIE,
7705 and it's not clear if/how imported objects will appear.
7706 To keep Go support simple until that's worked out,
7707 go back through what we've read and create something usable.
7708 We could do this while processing each DIE, and feels kinda cleaner,
7709 but that way is more invasive.
7710 This is to, for example, allow the user to type "p var" or "b main"
7711 without having to specify the package name, and allow lookups
7712 of module.object to work in contexts that use the expression
7716 fixup_go_packaging (struct dwarf2_cu
*cu
)
7718 char *package_name
= NULL
;
7719 struct pending
*list
;
7722 for (list
= global_symbols
; list
!= NULL
; list
= list
->next
)
7724 for (i
= 0; i
< list
->nsyms
; ++i
)
7726 struct symbol
*sym
= list
->symbol
[i
];
7728 if (SYMBOL_LANGUAGE (sym
) == language_go
7729 && SYMBOL_CLASS (sym
) == LOC_BLOCK
)
7731 char *this_package_name
= go_symbol_package_name (sym
);
7733 if (this_package_name
== NULL
)
7735 if (package_name
== NULL
)
7736 package_name
= this_package_name
;
7739 if (strcmp (package_name
, this_package_name
) != 0)
7740 complaint (&symfile_complaints
,
7741 _("Symtab %s has objects from two different Go packages: %s and %s"),
7742 (SYMBOL_SYMTAB (sym
)
7743 ? symtab_to_filename_for_display (SYMBOL_SYMTAB (sym
))
7744 : objfile_name (cu
->objfile
)),
7745 this_package_name
, package_name
);
7746 xfree (this_package_name
);
7752 if (package_name
!= NULL
)
7754 struct objfile
*objfile
= cu
->objfile
;
7755 const char *saved_package_name
7756 = obstack_copy0 (&objfile
->per_bfd
->storage_obstack
,
7758 strlen (package_name
));
7759 struct type
*type
= init_type (TYPE_CODE_MODULE
, 0, 0,
7760 saved_package_name
, objfile
);
7763 TYPE_TAG_NAME (type
) = TYPE_NAME (type
);
7765 sym
= allocate_symbol (objfile
);
7766 SYMBOL_SET_LANGUAGE (sym
, language_go
, &objfile
->objfile_obstack
);
7767 SYMBOL_SET_NAMES (sym
, saved_package_name
,
7768 strlen (saved_package_name
), 0, objfile
);
7769 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7770 e.g., "main" finds the "main" module and not C's main(). */
7771 SYMBOL_DOMAIN (sym
) = STRUCT_DOMAIN
;
7772 SYMBOL_ACLASS_INDEX (sym
) = LOC_TYPEDEF
;
7773 SYMBOL_TYPE (sym
) = type
;
7775 add_symbol_to_list (sym
, &global_symbols
);
7777 xfree (package_name
);
7781 /* Return the symtab for PER_CU. This works properly regardless of
7782 whether we're using the index or psymtabs. */
7784 static struct compunit_symtab
*
7785 get_compunit_symtab (struct dwarf2_per_cu_data
*per_cu
)
7787 return (dwarf2_per_objfile
->using_index
7788 ? per_cu
->v
.quick
->compunit_symtab
7789 : per_cu
->v
.psymtab
->compunit_symtab
);
7792 /* A helper function for computing the list of all symbol tables
7793 included by PER_CU. */
7796 recursively_compute_inclusions (VEC (compunit_symtab_ptr
) **result
,
7797 htab_t all_children
, htab_t all_type_symtabs
,
7798 struct dwarf2_per_cu_data
*per_cu
,
7799 struct compunit_symtab
*immediate_parent
)
7803 struct compunit_symtab
*cust
;
7804 struct dwarf2_per_cu_data
*iter
;
7806 slot
= htab_find_slot (all_children
, per_cu
, INSERT
);
7809 /* This inclusion and its children have been processed. */
7814 /* Only add a CU if it has a symbol table. */
7815 cust
= get_compunit_symtab (per_cu
);
7818 /* If this is a type unit only add its symbol table if we haven't
7819 seen it yet (type unit per_cu's can share symtabs). */
7820 if (per_cu
->is_debug_types
)
7822 slot
= htab_find_slot (all_type_symtabs
, cust
, INSERT
);
7826 VEC_safe_push (compunit_symtab_ptr
, *result
, cust
);
7827 if (cust
->user
== NULL
)
7828 cust
->user
= immediate_parent
;
7833 VEC_safe_push (compunit_symtab_ptr
, *result
, cust
);
7834 if (cust
->user
== NULL
)
7835 cust
->user
= immediate_parent
;
7840 VEC_iterate (dwarf2_per_cu_ptr
, per_cu
->imported_symtabs
, ix
, iter
);
7843 recursively_compute_inclusions (result
, all_children
,
7844 all_type_symtabs
, iter
, cust
);
7848 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
7852 compute_compunit_symtab_includes (struct dwarf2_per_cu_data
*per_cu
)
7854 gdb_assert (! per_cu
->is_debug_types
);
7856 if (!VEC_empty (dwarf2_per_cu_ptr
, per_cu
->imported_symtabs
))
7859 struct dwarf2_per_cu_data
*per_cu_iter
;
7860 struct compunit_symtab
*compunit_symtab_iter
;
7861 VEC (compunit_symtab_ptr
) *result_symtabs
= NULL
;
7862 htab_t all_children
, all_type_symtabs
;
7863 struct compunit_symtab
*cust
= get_compunit_symtab (per_cu
);
7865 /* If we don't have a symtab, we can just skip this case. */
7869 all_children
= htab_create_alloc (1, htab_hash_pointer
, htab_eq_pointer
,
7870 NULL
, xcalloc
, xfree
);
7871 all_type_symtabs
= htab_create_alloc (1, htab_hash_pointer
, htab_eq_pointer
,
7872 NULL
, xcalloc
, xfree
);
7875 VEC_iterate (dwarf2_per_cu_ptr
, per_cu
->imported_symtabs
,
7879 recursively_compute_inclusions (&result_symtabs
, all_children
,
7880 all_type_symtabs
, per_cu_iter
,
7884 /* Now we have a transitive closure of all the included symtabs. */
7885 len
= VEC_length (compunit_symtab_ptr
, result_symtabs
);
7887 = obstack_alloc (&dwarf2_per_objfile
->objfile
->objfile_obstack
,
7888 (len
+ 1) * sizeof (struct symtab
*));
7890 VEC_iterate (compunit_symtab_ptr
, result_symtabs
, ix
,
7891 compunit_symtab_iter
);
7893 cust
->includes
[ix
] = compunit_symtab_iter
;
7894 cust
->includes
[len
] = NULL
;
7896 VEC_free (compunit_symtab_ptr
, result_symtabs
);
7897 htab_delete (all_children
);
7898 htab_delete (all_type_symtabs
);
7902 /* Compute the 'includes' field for the symtabs of all the CUs we just
7906 process_cu_includes (void)
7909 struct dwarf2_per_cu_data
*iter
;
7912 VEC_iterate (dwarf2_per_cu_ptr
, dwarf2_per_objfile
->just_read_cus
,
7916 if (! iter
->is_debug_types
)
7917 compute_compunit_symtab_includes (iter
);
7920 VEC_free (dwarf2_per_cu_ptr
, dwarf2_per_objfile
->just_read_cus
);
7923 /* Generate full symbol information for PER_CU, whose DIEs have
7924 already been loaded into memory. */
7927 process_full_comp_unit (struct dwarf2_per_cu_data
*per_cu
,
7928 enum language pretend_language
)
7930 struct dwarf2_cu
*cu
= per_cu
->cu
;
7931 struct objfile
*objfile
= per_cu
->objfile
;
7932 CORE_ADDR lowpc
, highpc
;
7933 struct compunit_symtab
*cust
;
7934 struct cleanup
*back_to
, *delayed_list_cleanup
;
7936 struct block
*static_block
;
7938 baseaddr
= ANOFFSET (objfile
->section_offsets
, SECT_OFF_TEXT (objfile
));
7941 back_to
= make_cleanup (really_free_pendings
, NULL
);
7942 delayed_list_cleanup
= make_cleanup (free_delayed_list
, cu
);
7944 cu
->list_in_scope
= &file_symbols
;
7946 cu
->language
= pretend_language
;
7947 cu
->language_defn
= language_def (cu
->language
);
7949 /* Do line number decoding in read_file_scope () */
7950 process_die (cu
->dies
, cu
);
7952 /* For now fudge the Go package. */
7953 if (cu
->language
== language_go
)
7954 fixup_go_packaging (cu
);
7956 /* Now that we have processed all the DIEs in the CU, all the types
7957 should be complete, and it should now be safe to compute all of the
7959 compute_delayed_physnames (cu
);
7960 do_cleanups (delayed_list_cleanup
);
7962 /* Some compilers don't define a DW_AT_high_pc attribute for the
7963 compilation unit. If the DW_AT_high_pc is missing, synthesize
7964 it, by scanning the DIE's below the compilation unit. */
7965 get_scope_pc_bounds (cu
->dies
, &lowpc
, &highpc
, cu
);
7968 = end_symtab_get_static_block (highpc
+ baseaddr
, 0, 1);
7970 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
7971 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
7972 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
7973 addrmap to help ensure it has an accurate map of pc values belonging to
7975 dwarf2_record_block_ranges (cu
->dies
, static_block
, baseaddr
, cu
);
7977 cust
= end_symtab_from_static_block (static_block
,
7978 SECT_OFF_TEXT (objfile
), 0);
7982 int gcc_4_minor
= producer_is_gcc_ge_4 (cu
->producer
);
7984 /* Set symtab language to language from DW_AT_language. If the
7985 compilation is from a C file generated by language preprocessors, do
7986 not set the language if it was already deduced by start_subfile. */
7987 if (!(cu
->language
== language_c
7988 && COMPUNIT_FILETABS (cust
)->language
!= language_c
))
7989 COMPUNIT_FILETABS (cust
)->language
= cu
->language
;
7991 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
7992 produce DW_AT_location with location lists but it can be possibly
7993 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
7994 there were bugs in prologue debug info, fixed later in GCC-4.5
7995 by "unwind info for epilogues" patch (which is not directly related).
7997 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
7998 needed, it would be wrong due to missing DW_AT_producer there.
8000 Still one can confuse GDB by using non-standard GCC compilation
8001 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
8003 if (cu
->has_loclist
&& gcc_4_minor
>= 5)
8004 cust
->locations_valid
= 1;
8006 if (gcc_4_minor
>= 5)
8007 cust
->epilogue_unwind_valid
= 1;
8009 cust
->call_site_htab
= cu
->call_site_htab
;
8012 if (dwarf2_per_objfile
->using_index
)
8013 per_cu
->v
.quick
->compunit_symtab
= cust
;
8016 struct partial_symtab
*pst
= per_cu
->v
.psymtab
;
8017 pst
->compunit_symtab
= cust
;
8021 /* Push it for inclusion processing later. */
8022 VEC_safe_push (dwarf2_per_cu_ptr
, dwarf2_per_objfile
->just_read_cus
, per_cu
);
8024 do_cleanups (back_to
);
8027 /* Generate full symbol information for type unit PER_CU, whose DIEs have
8028 already been loaded into memory. */
8031 process_full_type_unit (struct dwarf2_per_cu_data
*per_cu
,
8032 enum language pretend_language
)
8034 struct dwarf2_cu
*cu
= per_cu
->cu
;
8035 struct objfile
*objfile
= per_cu
->objfile
;
8036 struct compunit_symtab
*cust
;
8037 struct cleanup
*back_to
, *delayed_list_cleanup
;
8038 struct signatured_type
*sig_type
;
8040 gdb_assert (per_cu
->is_debug_types
);
8041 sig_type
= (struct signatured_type
*) per_cu
;
8044 back_to
= make_cleanup (really_free_pendings
, NULL
);
8045 delayed_list_cleanup
= make_cleanup (free_delayed_list
, cu
);
8047 cu
->list_in_scope
= &file_symbols
;
8049 cu
->language
= pretend_language
;
8050 cu
->language_defn
= language_def (cu
->language
);
8052 /* The symbol tables are set up in read_type_unit_scope. */
8053 process_die (cu
->dies
, cu
);
8055 /* For now fudge the Go package. */
8056 if (cu
->language
== language_go
)
8057 fixup_go_packaging (cu
);
8059 /* Now that we have processed all the DIEs in the CU, all the types
8060 should be complete, and it should now be safe to compute all of the
8062 compute_delayed_physnames (cu
);
8063 do_cleanups (delayed_list_cleanup
);
8065 /* TUs share symbol tables.
8066 If this is the first TU to use this symtab, complete the construction
8067 of it with end_expandable_symtab. Otherwise, complete the addition of
8068 this TU's symbols to the existing symtab. */
8069 if (sig_type
->type_unit_group
->compunit_symtab
== NULL
)
8071 cust
= end_expandable_symtab (0, SECT_OFF_TEXT (objfile
));
8072 sig_type
->type_unit_group
->compunit_symtab
= cust
;
8076 /* Set symtab language to language from DW_AT_language. If the
8077 compilation is from a C file generated by language preprocessors,
8078 do not set the language if it was already deduced by
8080 if (!(cu
->language
== language_c
8081 && COMPUNIT_FILETABS (cust
)->language
!= language_c
))
8082 COMPUNIT_FILETABS (cust
)->language
= cu
->language
;
8087 augment_type_symtab (sig_type
->type_unit_group
->compunit_symtab
);
8088 cust
= sig_type
->type_unit_group
->compunit_symtab
;
8091 if (dwarf2_per_objfile
->using_index
)
8092 per_cu
->v
.quick
->compunit_symtab
= cust
;
8095 struct partial_symtab
*pst
= per_cu
->v
.psymtab
;
8096 pst
->compunit_symtab
= cust
;
8100 do_cleanups (back_to
);
8103 /* Process an imported unit DIE. */
8106 process_imported_unit_die (struct die_info
*die
, struct dwarf2_cu
*cu
)
8108 struct attribute
*attr
;
8110 /* For now we don't handle imported units in type units. */
8111 if (cu
->per_cu
->is_debug_types
)
8113 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8114 " supported in type units [in module %s]"),
8115 objfile_name (cu
->objfile
));
8118 attr
= dwarf2_attr (die
, DW_AT_import
, cu
);
8121 struct dwarf2_per_cu_data
*per_cu
;
8122 struct symtab
*imported_symtab
;
8126 offset
= dwarf2_get_ref_die_offset (attr
);
8127 is_dwz
= (attr
->form
== DW_FORM_GNU_ref_alt
|| cu
->per_cu
->is_dwz
);
8128 per_cu
= dwarf2_find_containing_comp_unit (offset
, is_dwz
, cu
->objfile
);
8130 /* If necessary, add it to the queue and load its DIEs. */
8131 if (maybe_queue_comp_unit (cu
, per_cu
, cu
->language
))
8132 load_full_comp_unit (per_cu
, cu
->language
);
8134 VEC_safe_push (dwarf2_per_cu_ptr
, cu
->per_cu
->imported_symtabs
,
8139 /* Reset the in_process bit of a die. */
8142 reset_die_in_process (void *arg
)
8144 struct die_info
*die
= arg
;
8146 die
->in_process
= 0;
8149 /* Process a die and its children. */
8152 process_die (struct die_info
*die
, struct dwarf2_cu
*cu
)
8154 struct cleanup
*in_process
;
8156 /* We should only be processing those not already in process. */
8157 gdb_assert (!die
->in_process
);
8159 die
->in_process
= 1;
8160 in_process
= make_cleanup (reset_die_in_process
,die
);
8164 case DW_TAG_padding
:
8166 case DW_TAG_compile_unit
:
8167 case DW_TAG_partial_unit
:
8168 read_file_scope (die
, cu
);
8170 case DW_TAG_type_unit
:
8171 read_type_unit_scope (die
, cu
);
8173 case DW_TAG_subprogram
:
8174 case DW_TAG_inlined_subroutine
:
8175 read_func_scope (die
, cu
);
8177 case DW_TAG_lexical_block
:
8178 case DW_TAG_try_block
:
8179 case DW_TAG_catch_block
:
8180 read_lexical_block_scope (die
, cu
);
8182 case DW_TAG_GNU_call_site
:
8183 read_call_site_scope (die
, cu
);
8185 case DW_TAG_class_type
:
8186 case DW_TAG_interface_type
:
8187 case DW_TAG_structure_type
:
8188 case DW_TAG_union_type
:
8189 process_structure_scope (die
, cu
);
8191 case DW_TAG_enumeration_type
:
8192 process_enumeration_scope (die
, cu
);
8195 /* These dies have a type, but processing them does not create
8196 a symbol or recurse to process the children. Therefore we can
8197 read them on-demand through read_type_die. */
8198 case DW_TAG_subroutine_type
:
8199 case DW_TAG_set_type
:
8200 case DW_TAG_array_type
:
8201 case DW_TAG_pointer_type
:
8202 case DW_TAG_ptr_to_member_type
:
8203 case DW_TAG_reference_type
:
8204 case DW_TAG_string_type
:
8207 case DW_TAG_base_type
:
8208 case DW_TAG_subrange_type
:
8209 case DW_TAG_typedef
:
8210 /* Add a typedef symbol for the type definition, if it has a
8212 new_symbol (die
, read_type_die (die
, cu
), cu
);
8214 case DW_TAG_common_block
:
8215 read_common_block (die
, cu
);
8217 case DW_TAG_common_inclusion
:
8219 case DW_TAG_namespace
:
8220 cu
->processing_has_namespace_info
= 1;
8221 read_namespace (die
, cu
);
8224 cu
->processing_has_namespace_info
= 1;
8225 read_module (die
, cu
);
8227 case DW_TAG_imported_declaration
:
8228 cu
->processing_has_namespace_info
= 1;
8229 if (read_namespace_alias (die
, cu
))
8231 /* The declaration is not a global namespace alias: fall through. */
8232 case DW_TAG_imported_module
:
8233 cu
->processing_has_namespace_info
= 1;
8234 if (die
->child
!= NULL
&& (die
->tag
== DW_TAG_imported_declaration
8235 || cu
->language
!= language_fortran
))
8236 complaint (&symfile_complaints
, _("Tag '%s' has unexpected children"),
8237 dwarf_tag_name (die
->tag
));
8238 read_import_statement (die
, cu
);
8241 case DW_TAG_imported_unit
:
8242 process_imported_unit_die (die
, cu
);
8246 new_symbol (die
, NULL
, cu
);
8250 do_cleanups (in_process
);
8253 /* DWARF name computation. */
8255 /* A helper function for dwarf2_compute_name which determines whether DIE
8256 needs to have the name of the scope prepended to the name listed in the
8260 die_needs_namespace (struct die_info
*die
, struct dwarf2_cu
*cu
)
8262 struct attribute
*attr
;
8266 case DW_TAG_namespace
:
8267 case DW_TAG_typedef
:
8268 case DW_TAG_class_type
:
8269 case DW_TAG_interface_type
:
8270 case DW_TAG_structure_type
:
8271 case DW_TAG_union_type
:
8272 case DW_TAG_enumeration_type
:
8273 case DW_TAG_enumerator
:
8274 case DW_TAG_subprogram
:
8276 case DW_TAG_imported_declaration
:
8279 case DW_TAG_variable
:
8280 case DW_TAG_constant
:
8281 /* We only need to prefix "globally" visible variables. These include
8282 any variable marked with DW_AT_external or any variable that
8283 lives in a namespace. [Variables in anonymous namespaces
8284 require prefixing, but they are not DW_AT_external.] */
8286 if (dwarf2_attr (die
, DW_AT_specification
, cu
))
8288 struct dwarf2_cu
*spec_cu
= cu
;
8290 return die_needs_namespace (die_specification (die
, &spec_cu
),
8294 attr
= dwarf2_attr (die
, DW_AT_external
, cu
);
8295 if (attr
== NULL
&& die
->parent
->tag
!= DW_TAG_namespace
8296 && die
->parent
->tag
!= DW_TAG_module
)
8298 /* A variable in a lexical block of some kind does not need a
8299 namespace, even though in C++ such variables may be external
8300 and have a mangled name. */
8301 if (die
->parent
->tag
== DW_TAG_lexical_block
8302 || die
->parent
->tag
== DW_TAG_try_block
8303 || die
->parent
->tag
== DW_TAG_catch_block
8304 || die
->parent
->tag
== DW_TAG_subprogram
)
8313 /* Retrieve the last character from a mem_file. */
8316 do_ui_file_peek_last (void *object
, const char *buffer
, long length
)
8318 char *last_char_p
= (char *) object
;
8321 *last_char_p
= buffer
[length
- 1];
8324 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
8325 compute the physname for the object, which include a method's:
8326 - formal parameters (C++/Java),
8327 - receiver type (Go),
8328 - return type (Java).
8330 The term "physname" is a bit confusing.
8331 For C++, for example, it is the demangled name.
8332 For Go, for example, it's the mangled name.
8334 For Ada, return the DIE's linkage name rather than the fully qualified
8335 name. PHYSNAME is ignored..
8337 The result is allocated on the objfile_obstack and canonicalized. */
8340 dwarf2_compute_name (const char *name
,
8341 struct die_info
*die
, struct dwarf2_cu
*cu
,
8344 struct objfile
*objfile
= cu
->objfile
;
8347 name
= dwarf2_name (die
, cu
);
8349 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
8350 compute it by typename_concat inside GDB. */
8351 if (cu
->language
== language_ada
8352 || (cu
->language
== language_fortran
&& physname
))
8354 /* For Ada unit, we prefer the linkage name over the name, as
8355 the former contains the exported name, which the user expects
8356 to be able to reference. Ideally, we want the user to be able
8357 to reference this entity using either natural or linkage name,
8358 but we haven't started looking at this enhancement yet. */
8359 struct attribute
*attr
;
8361 attr
= dwarf2_attr (die
, DW_AT_linkage_name
, cu
);
8363 attr
= dwarf2_attr (die
, DW_AT_MIPS_linkage_name
, cu
);
8364 if (attr
&& DW_STRING (attr
))
8365 return DW_STRING (attr
);
8368 /* These are the only languages we know how to qualify names in. */
8370 && (cu
->language
== language_cplus
|| cu
->language
== language_java
8371 || cu
->language
== language_fortran
))
8373 if (die_needs_namespace (die
, cu
))
8377 struct ui_file
*buf
;
8378 char *intermediate_name
;
8379 const char *canonical_name
= NULL
;
8381 prefix
= determine_prefix (die
, cu
);
8382 buf
= mem_fileopen ();
8383 if (*prefix
!= '\0')
8385 char *prefixed_name
= typename_concat (NULL
, prefix
, name
,
8388 fputs_unfiltered (prefixed_name
, buf
);
8389 xfree (prefixed_name
);
8392 fputs_unfiltered (name
, buf
);
8394 /* Template parameters may be specified in the DIE's DW_AT_name, or
8395 as children with DW_TAG_template_type_param or
8396 DW_TAG_value_type_param. If the latter, add them to the name
8397 here. If the name already has template parameters, then
8398 skip this step; some versions of GCC emit both, and
8399 it is more efficient to use the pre-computed name.
8401 Something to keep in mind about this process: it is very
8402 unlikely, or in some cases downright impossible, to produce
8403 something that will match the mangled name of a function.
8404 If the definition of the function has the same debug info,
8405 we should be able to match up with it anyway. But fallbacks
8406 using the minimal symbol, for instance to find a method
8407 implemented in a stripped copy of libstdc++, will not work.
8408 If we do not have debug info for the definition, we will have to
8409 match them up some other way.
8411 When we do name matching there is a related problem with function
8412 templates; two instantiated function templates are allowed to
8413 differ only by their return types, which we do not add here. */
8415 if (cu
->language
== language_cplus
&& strchr (name
, '<') == NULL
)
8417 struct attribute
*attr
;
8418 struct die_info
*child
;
8421 die
->building_fullname
= 1;
8423 for (child
= die
->child
; child
!= NULL
; child
= child
->sibling
)
8427 const gdb_byte
*bytes
;
8428 struct dwarf2_locexpr_baton
*baton
;
8431 if (child
->tag
!= DW_TAG_template_type_param
8432 && child
->tag
!= DW_TAG_template_value_param
)
8437 fputs_unfiltered ("<", buf
);
8441 fputs_unfiltered (", ", buf
);
8443 attr
= dwarf2_attr (child
, DW_AT_type
, cu
);
8446 complaint (&symfile_complaints
,
8447 _("template parameter missing DW_AT_type"));
8448 fputs_unfiltered ("UNKNOWN_TYPE", buf
);
8451 type
= die_type (child
, cu
);
8453 if (child
->tag
== DW_TAG_template_type_param
)
8455 c_print_type (type
, "", buf
, -1, 0, &type_print_raw_options
);
8459 attr
= dwarf2_attr (child
, DW_AT_const_value
, cu
);
8462 complaint (&symfile_complaints
,
8463 _("template parameter missing "
8464 "DW_AT_const_value"));
8465 fputs_unfiltered ("UNKNOWN_VALUE", buf
);
8469 dwarf2_const_value_attr (attr
, type
, name
,
8470 &cu
->comp_unit_obstack
, cu
,
8471 &value
, &bytes
, &baton
);
8473 if (TYPE_NOSIGN (type
))
8474 /* GDB prints characters as NUMBER 'CHAR'. If that's
8475 changed, this can use value_print instead. */
8476 c_printchar (value
, type
, buf
);
8479 struct value_print_options opts
;
8482 v
= dwarf2_evaluate_loc_desc (type
, NULL
,
8486 else if (bytes
!= NULL
)
8488 v
= allocate_value (type
);
8489 memcpy (value_contents_writeable (v
), bytes
,
8490 TYPE_LENGTH (type
));
8493 v
= value_from_longest (type
, value
);
8495 /* Specify decimal so that we do not depend on
8497 get_formatted_print_options (&opts
, 'd');
8499 value_print (v
, buf
, &opts
);
8505 die
->building_fullname
= 0;
8509 /* Close the argument list, with a space if necessary
8510 (nested templates). */
8511 char last_char
= '\0';
8512 ui_file_put (buf
, do_ui_file_peek_last
, &last_char
);
8513 if (last_char
== '>')
8514 fputs_unfiltered (" >", buf
);
8516 fputs_unfiltered (">", buf
);
8520 /* For Java and C++ methods, append formal parameter type
8521 information, if PHYSNAME. */
8523 if (physname
&& die
->tag
== DW_TAG_subprogram
8524 && (cu
->language
== language_cplus
8525 || cu
->language
== language_java
))
8527 struct type
*type
= read_type_die (die
, cu
);
8529 c_type_print_args (type
, buf
, 1, cu
->language
,
8530 &type_print_raw_options
);
8532 if (cu
->language
== language_java
)
8534 /* For java, we must append the return type to method
8536 if (die
->tag
== DW_TAG_subprogram
)
8537 java_print_type (TYPE_TARGET_TYPE (type
), "", buf
,
8538 0, 0, &type_print_raw_options
);
8540 else if (cu
->language
== language_cplus
)
8542 /* Assume that an artificial first parameter is
8543 "this", but do not crash if it is not. RealView
8544 marks unnamed (and thus unused) parameters as
8545 artificial; there is no way to differentiate
8547 if (TYPE_NFIELDS (type
) > 0
8548 && TYPE_FIELD_ARTIFICIAL (type
, 0)
8549 && TYPE_CODE (TYPE_FIELD_TYPE (type
, 0)) == TYPE_CODE_PTR
8550 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type
,
8552 fputs_unfiltered (" const", buf
);
8556 intermediate_name
= ui_file_xstrdup (buf
, &length
);
8557 ui_file_delete (buf
);
8559 if (cu
->language
== language_cplus
)
8561 = dwarf2_canonicalize_name (intermediate_name
, cu
,
8562 &objfile
->per_bfd
->storage_obstack
);
8564 /* If we only computed INTERMEDIATE_NAME, or if
8565 INTERMEDIATE_NAME is already canonical, then we need to
8566 copy it to the appropriate obstack. */
8567 if (canonical_name
== NULL
|| canonical_name
== intermediate_name
)
8568 name
= obstack_copy0 (&objfile
->per_bfd
->storage_obstack
,
8570 strlen (intermediate_name
));
8572 name
= canonical_name
;
8574 xfree (intermediate_name
);
8581 /* Return the fully qualified name of DIE, based on its DW_AT_name.
8582 If scope qualifiers are appropriate they will be added. The result
8583 will be allocated on the storage_obstack, or NULL if the DIE does
8584 not have a name. NAME may either be from a previous call to
8585 dwarf2_name or NULL.
8587 The output string will be canonicalized (if C++/Java). */
8590 dwarf2_full_name (const char *name
, struct die_info
*die
, struct dwarf2_cu
*cu
)
8592 return dwarf2_compute_name (name
, die
, cu
, 0);
8595 /* Construct a physname for the given DIE in CU. NAME may either be
8596 from a previous call to dwarf2_name or NULL. The result will be
8597 allocated on the objfile_objstack or NULL if the DIE does not have a
8600 The output string will be canonicalized (if C++/Java). */
8603 dwarf2_physname (const char *name
, struct die_info
*die
, struct dwarf2_cu
*cu
)
8605 struct objfile
*objfile
= cu
->objfile
;
8606 struct attribute
*attr
;
8607 const char *retval
, *mangled
= NULL
, *canon
= NULL
;
8608 struct cleanup
*back_to
;
8611 /* In this case dwarf2_compute_name is just a shortcut not building anything
8613 if (!die_needs_namespace (die
, cu
))
8614 return dwarf2_compute_name (name
, die
, cu
, 1);
8616 back_to
= make_cleanup (null_cleanup
, NULL
);
8618 attr
= dwarf2_attr (die
, DW_AT_linkage_name
, cu
);
8620 attr
= dwarf2_attr (die
, DW_AT_MIPS_linkage_name
, cu
);
8622 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8624 if (attr
&& DW_STRING (attr
))
8628 mangled
= DW_STRING (attr
);
8630 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8631 type. It is easier for GDB users to search for such functions as
8632 `name(params)' than `long name(params)'. In such case the minimal
8633 symbol names do not match the full symbol names but for template
8634 functions there is never a need to look up their definition from their
8635 declaration so the only disadvantage remains the minimal symbol
8636 variant `long name(params)' does not have the proper inferior type.
8639 if (cu
->language
== language_go
)
8641 /* This is a lie, but we already lie to the caller new_symbol_full.
8642 new_symbol_full assumes we return the mangled name.
8643 This just undoes that lie until things are cleaned up. */
8648 demangled
= gdb_demangle (mangled
,
8649 (DMGL_PARAMS
| DMGL_ANSI
8650 | (cu
->language
== language_java
8651 ? DMGL_JAVA
| DMGL_RET_POSTFIX
8656 make_cleanup (xfree
, demangled
);
8666 if (canon
== NULL
|| check_physname
)
8668 const char *physname
= dwarf2_compute_name (name
, die
, cu
, 1);
8670 if (canon
!= NULL
&& strcmp (physname
, canon
) != 0)
8672 /* It may not mean a bug in GDB. The compiler could also
8673 compute DW_AT_linkage_name incorrectly. But in such case
8674 GDB would need to be bug-to-bug compatible. */
8676 complaint (&symfile_complaints
,
8677 _("Computed physname <%s> does not match demangled <%s> "
8678 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
8679 physname
, canon
, mangled
, die
->offset
.sect_off
,
8680 objfile_name (objfile
));
8682 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8683 is available here - over computed PHYSNAME. It is safer
8684 against both buggy GDB and buggy compilers. */
8698 retval
= obstack_copy0 (&objfile
->per_bfd
->storage_obstack
,
8699 retval
, strlen (retval
));
8701 do_cleanups (back_to
);
8705 /* Inspect DIE in CU for a namespace alias. If one exists, record
8706 a new symbol for it.
8708 Returns 1 if a namespace alias was recorded, 0 otherwise. */
8711 read_namespace_alias (struct die_info
*die
, struct dwarf2_cu
*cu
)
8713 struct attribute
*attr
;
8715 /* If the die does not have a name, this is not a namespace
8717 attr
= dwarf2_attr (die
, DW_AT_name
, cu
);
8721 struct die_info
*d
= die
;
8722 struct dwarf2_cu
*imported_cu
= cu
;
8724 /* If the compiler has nested DW_AT_imported_declaration DIEs,
8725 keep inspecting DIEs until we hit the underlying import. */
8726 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
8727 for (num
= 0; num
< MAX_NESTED_IMPORTED_DECLARATIONS
; ++num
)
8729 attr
= dwarf2_attr (d
, DW_AT_import
, cu
);
8733 d
= follow_die_ref (d
, attr
, &imported_cu
);
8734 if (d
->tag
!= DW_TAG_imported_declaration
)
8738 if (num
== MAX_NESTED_IMPORTED_DECLARATIONS
)
8740 complaint (&symfile_complaints
,
8741 _("DIE at 0x%x has too many recursively imported "
8742 "declarations"), d
->offset
.sect_off
);
8749 sect_offset offset
= dwarf2_get_ref_die_offset (attr
);
8751 type
= get_die_type_at_offset (offset
, cu
->per_cu
);
8752 if (type
!= NULL
&& TYPE_CODE (type
) == TYPE_CODE_NAMESPACE
)
8754 /* This declaration is a global namespace alias. Add
8755 a symbol for it whose type is the aliased namespace. */
8756 new_symbol (die
, type
, cu
);
8765 /* Read the import statement specified by the given die and record it. */
8768 read_import_statement (struct die_info
*die
, struct dwarf2_cu
*cu
)
8770 struct objfile
*objfile
= cu
->objfile
;
8771 struct attribute
*import_attr
;
8772 struct die_info
*imported_die
, *child_die
;
8773 struct dwarf2_cu
*imported_cu
;
8774 const char *imported_name
;
8775 const char *imported_name_prefix
;
8776 const char *canonical_name
;
8777 const char *import_alias
;
8778 const char *imported_declaration
= NULL
;
8779 const char *import_prefix
;
8780 VEC (const_char_ptr
) *excludes
= NULL
;
8781 struct cleanup
*cleanups
;
8783 import_attr
= dwarf2_attr (die
, DW_AT_import
, cu
);
8784 if (import_attr
== NULL
)
8786 complaint (&symfile_complaints
, _("Tag '%s' has no DW_AT_import"),
8787 dwarf_tag_name (die
->tag
));
8792 imported_die
= follow_die_ref_or_sig (die
, import_attr
, &imported_cu
);
8793 imported_name
= dwarf2_name (imported_die
, imported_cu
);
8794 if (imported_name
== NULL
)
8796 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8798 The import in the following code:
8812 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8813 <52> DW_AT_decl_file : 1
8814 <53> DW_AT_decl_line : 6
8815 <54> DW_AT_import : <0x75>
8816 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8818 <5b> DW_AT_decl_file : 1
8819 <5c> DW_AT_decl_line : 2
8820 <5d> DW_AT_type : <0x6e>
8822 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
8823 <76> DW_AT_byte_size : 4
8824 <77> DW_AT_encoding : 5 (signed)
8826 imports the wrong die ( 0x75 instead of 0x58 ).
8827 This case will be ignored until the gcc bug is fixed. */
8831 /* Figure out the local name after import. */
8832 import_alias
= dwarf2_name (die
, cu
);
8834 /* Figure out where the statement is being imported to. */
8835 import_prefix
= determine_prefix (die
, cu
);
8837 /* Figure out what the scope of the imported die is and prepend it
8838 to the name of the imported die. */
8839 imported_name_prefix
= determine_prefix (imported_die
, imported_cu
);
8841 if (imported_die
->tag
!= DW_TAG_namespace
8842 && imported_die
->tag
!= DW_TAG_module
)
8844 imported_declaration
= imported_name
;
8845 canonical_name
= imported_name_prefix
;
8847 else if (strlen (imported_name_prefix
) > 0)
8848 canonical_name
= obconcat (&objfile
->objfile_obstack
,
8849 imported_name_prefix
, "::", imported_name
,
8852 canonical_name
= imported_name
;
8854 cleanups
= make_cleanup (VEC_cleanup (const_char_ptr
), &excludes
);
8856 if (die
->tag
== DW_TAG_imported_module
&& cu
->language
== language_fortran
)
8857 for (child_die
= die
->child
; child_die
&& child_die
->tag
;
8858 child_die
= sibling_die (child_die
))
8860 /* DWARF-4: A Fortran use statement with a “rename list” may be
8861 represented by an imported module entry with an import attribute
8862 referring to the module and owned entries corresponding to those
8863 entities that are renamed as part of being imported. */
8865 if (child_die
->tag
!= DW_TAG_imported_declaration
)
8867 complaint (&symfile_complaints
,
8868 _("child DW_TAG_imported_declaration expected "
8869 "- DIE at 0x%x [in module %s]"),
8870 child_die
->offset
.sect_off
, objfile_name (objfile
));
8874 import_attr
= dwarf2_attr (child_die
, DW_AT_import
, cu
);
8875 if (import_attr
== NULL
)
8877 complaint (&symfile_complaints
, _("Tag '%s' has no DW_AT_import"),
8878 dwarf_tag_name (child_die
->tag
));
8883 imported_die
= follow_die_ref_or_sig (child_die
, import_attr
,
8885 imported_name
= dwarf2_name (imported_die
, imported_cu
);
8886 if (imported_name
== NULL
)
8888 complaint (&symfile_complaints
,
8889 _("child DW_TAG_imported_declaration has unknown "
8890 "imported name - DIE at 0x%x [in module %s]"),
8891 child_die
->offset
.sect_off
, objfile_name (objfile
));
8895 VEC_safe_push (const_char_ptr
, excludes
, imported_name
);
8897 process_die (child_die
, cu
);
8900 cp_add_using_directive (import_prefix
,
8903 imported_declaration
,
8906 &objfile
->objfile_obstack
);
8908 do_cleanups (cleanups
);
8911 /* Cleanup function for handle_DW_AT_stmt_list. */
8914 free_cu_line_header (void *arg
)
8916 struct dwarf2_cu
*cu
= arg
;
8918 free_line_header (cu
->line_header
);
8919 cu
->line_header
= NULL
;
8922 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
8923 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
8924 this, it was first present in GCC release 4.3.0. */
8927 producer_is_gcc_lt_4_3 (struct dwarf2_cu
*cu
)
8929 if (!cu
->checked_producer
)
8930 check_producer (cu
);
8932 return cu
->producer_is_gcc_lt_4_3
;
8936 find_file_and_directory (struct die_info
*die
, struct dwarf2_cu
*cu
,
8937 const char **name
, const char **comp_dir
)
8939 struct attribute
*attr
;
8944 /* Find the filename. Do not use dwarf2_name here, since the filename
8945 is not a source language identifier. */
8946 attr
= dwarf2_attr (die
, DW_AT_name
, cu
);
8949 *name
= DW_STRING (attr
);
8952 attr
= dwarf2_attr (die
, DW_AT_comp_dir
, cu
);
8954 *comp_dir
= DW_STRING (attr
);
8955 else if (producer_is_gcc_lt_4_3 (cu
) && *name
!= NULL
8956 && IS_ABSOLUTE_PATH (*name
))
8958 char *d
= ldirname (*name
);
8962 make_cleanup (xfree
, d
);
8964 if (*comp_dir
!= NULL
)
8966 /* Irix 6.2 native cc prepends <machine>.: to the compilation
8967 directory, get rid of it. */
8968 char *cp
= strchr (*comp_dir
, ':');
8970 if (cp
&& cp
!= *comp_dir
&& cp
[-1] == '.' && cp
[1] == '/')
8975 *name
= "<unknown>";
8978 /* Handle DW_AT_stmt_list for a compilation unit.
8979 DIE is the DW_TAG_compile_unit die for CU.
8980 COMP_DIR is the compilation directory. LOWPC is passed to
8981 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
8984 handle_DW_AT_stmt_list (struct die_info
*die
, struct dwarf2_cu
*cu
,
8985 const char *comp_dir
, CORE_ADDR lowpc
) /* ARI: editCase function */
8987 struct attribute
*attr
;
8989 gdb_assert (! cu
->per_cu
->is_debug_types
);
8991 attr
= dwarf2_attr (die
, DW_AT_stmt_list
, cu
);
8994 unsigned int line_offset
= DW_UNSND (attr
);
8995 struct line_header
*line_header
8996 = dwarf_decode_line_header (line_offset
, cu
);
9000 cu
->line_header
= line_header
;
9001 make_cleanup (free_cu_line_header
, cu
);
9002 dwarf_decode_lines (line_header
, comp_dir
, cu
, NULL
, lowpc
);
9007 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
9010 read_file_scope (struct die_info
*die
, struct dwarf2_cu
*cu
)
9012 struct objfile
*objfile
= dwarf2_per_objfile
->objfile
;
9013 struct cleanup
*back_to
= make_cleanup (null_cleanup
, 0);
9014 CORE_ADDR lowpc
= ((CORE_ADDR
) -1);
9015 CORE_ADDR highpc
= ((CORE_ADDR
) 0);
9016 struct attribute
*attr
;
9017 const char *name
= NULL
;
9018 const char *comp_dir
= NULL
;
9019 struct die_info
*child_die
;
9020 bfd
*abfd
= objfile
->obfd
;
9023 baseaddr
= ANOFFSET (objfile
->section_offsets
, SECT_OFF_TEXT (objfile
));
9025 get_scope_pc_bounds (die
, &lowpc
, &highpc
, cu
);
9027 /* If we didn't find a lowpc, set it to highpc to avoid complaints
9028 from finish_block. */
9029 if (lowpc
== ((CORE_ADDR
) -1))
9034 find_file_and_directory (die
, cu
, &name
, &comp_dir
);
9036 prepare_one_comp_unit (cu
, die
, cu
->language
);
9038 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
9039 standardised yet. As a workaround for the language detection we fall
9040 back to the DW_AT_producer string. */
9041 if (cu
->producer
&& strstr (cu
->producer
, "IBM XL C for OpenCL") != NULL
)
9042 cu
->language
= language_opencl
;
9044 /* Similar hack for Go. */
9045 if (cu
->producer
&& strstr (cu
->producer
, "GNU Go ") != NULL
)
9046 set_cu_language (DW_LANG_Go
, cu
);
9048 dwarf2_start_symtab (cu
, name
, comp_dir
, lowpc
);
9050 /* Decode line number information if present. We do this before
9051 processing child DIEs, so that the line header table is available
9052 for DW_AT_decl_file. */
9053 handle_DW_AT_stmt_list (die
, cu
, comp_dir
, lowpc
);
9055 /* Process all dies in compilation unit. */
9056 if (die
->child
!= NULL
)
9058 child_die
= die
->child
;
9059 while (child_die
&& child_die
->tag
)
9061 process_die (child_die
, cu
);
9062 child_die
= sibling_die (child_die
);
9066 /* Decode macro information, if present. Dwarf 2 macro information
9067 refers to information in the line number info statement program
9068 header, so we can only read it if we've read the header
9070 attr
= dwarf2_attr (die
, DW_AT_GNU_macros
, cu
);
9071 if (attr
&& cu
->line_header
)
9073 if (dwarf2_attr (die
, DW_AT_macro_info
, cu
))
9074 complaint (&symfile_complaints
,
9075 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
9077 dwarf_decode_macros (cu
, DW_UNSND (attr
), 1);
9081 attr
= dwarf2_attr (die
, DW_AT_macro_info
, cu
);
9082 if (attr
&& cu
->line_header
)
9084 unsigned int macro_offset
= DW_UNSND (attr
);
9086 dwarf_decode_macros (cu
, macro_offset
, 0);
9090 do_cleanups (back_to
);
9093 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
9094 Create the set of symtabs used by this TU, or if this TU is sharing
9095 symtabs with another TU and the symtabs have already been created
9096 then restore those symtabs in the line header.
9097 We don't need the pc/line-number mapping for type units. */
9100 setup_type_unit_groups (struct die_info
*die
, struct dwarf2_cu
*cu
)
9102 struct objfile
*objfile
= dwarf2_per_objfile
->objfile
;
9103 struct dwarf2_per_cu_data
*per_cu
= cu
->per_cu
;
9104 struct type_unit_group
*tu_group
;
9106 struct line_header
*lh
;
9107 struct attribute
*attr
;
9108 unsigned int i
, line_offset
;
9109 struct signatured_type
*sig_type
;
9111 gdb_assert (per_cu
->is_debug_types
);
9112 sig_type
= (struct signatured_type
*) per_cu
;
9114 attr
= dwarf2_attr (die
, DW_AT_stmt_list
, cu
);
9116 /* If we're using .gdb_index (includes -readnow) then
9117 per_cu->type_unit_group may not have been set up yet. */
9118 if (sig_type
->type_unit_group
== NULL
)
9119 sig_type
->type_unit_group
= get_type_unit_group (cu
, attr
);
9120 tu_group
= sig_type
->type_unit_group
;
9122 /* If we've already processed this stmt_list there's no real need to
9123 do it again, we could fake it and just recreate the part we need
9124 (file name,index -> symtab mapping). If data shows this optimization
9125 is useful we can do it then. */
9126 first_time
= tu_group
->compunit_symtab
== NULL
;
9128 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
9133 line_offset
= DW_UNSND (attr
);
9134 lh
= dwarf_decode_line_header (line_offset
, cu
);
9139 dwarf2_start_symtab (cu
, "", NULL
, 0);
9142 gdb_assert (tu_group
->symtabs
== NULL
);
9145 /* Note: The compunit symtab will get allocated at the end. */
9149 cu
->line_header
= lh
;
9150 make_cleanup (free_cu_line_header
, cu
);
9154 struct compunit_symtab
*cust
= dwarf2_start_symtab (cu
, "", NULL
, 0);
9156 tu_group
->num_symtabs
= lh
->num_file_names
;
9157 tu_group
->symtabs
= XNEWVEC (struct symtab
*, lh
->num_file_names
);
9159 for (i
= 0; i
< lh
->num_file_names
; ++i
)
9161 const char *dir
= NULL
;
9162 struct file_entry
*fe
= &lh
->file_names
[i
];
9165 dir
= lh
->include_dirs
[fe
->dir_index
- 1];
9166 dwarf2_start_subfile (fe
->name
, dir
);
9168 if (current_subfile
->symtab
== NULL
)
9170 /* NOTE: start_subfile will recognize when it's been passed
9171 a file it has already seen. So we can't assume there's a
9172 simple mapping from lh->file_names to subfiles, plus
9173 lh->file_names may contain dups. */
9174 current_subfile
->symtab
9175 = allocate_symtab (cust
, current_subfile
->name
);
9178 fe
->symtab
= current_subfile
->symtab
;
9179 tu_group
->symtabs
[i
] = fe
->symtab
;
9186 for (i
= 0; i
< lh
->num_file_names
; ++i
)
9188 struct file_entry
*fe
= &lh
->file_names
[i
];
9190 fe
->symtab
= tu_group
->symtabs
[i
];
9194 /* The main symtab is allocated last. Type units don't have DW_AT_name
9195 so they don't have a "real" (so to speak) symtab anyway.
9196 There is later code that will assign the main symtab to all symbols
9197 that don't have one. We need to handle the case of a symbol with a
9198 missing symtab (DW_AT_decl_file) anyway. */
9201 /* Process DW_TAG_type_unit.
9202 For TUs we want to skip the first top level sibling if it's not the
9203 actual type being defined by this TU. In this case the first top
9204 level sibling is there to provide context only. */
9207 read_type_unit_scope (struct die_info
*die
, struct dwarf2_cu
*cu
)
9209 struct die_info
*child_die
;
9211 prepare_one_comp_unit (cu
, die
, language_minimal
);
9213 /* Initialize (or reinitialize) the machinery for building symtabs.
9214 We do this before processing child DIEs, so that the line header table
9215 is available for DW_AT_decl_file. */
9216 setup_type_unit_groups (die
, cu
);
9218 if (die
->child
!= NULL
)
9220 child_die
= die
->child
;
9221 while (child_die
&& child_die
->tag
)
9223 process_die (child_die
, cu
);
9224 child_die
= sibling_die (child_die
);
9231 http://gcc.gnu.org/wiki/DebugFission
9232 http://gcc.gnu.org/wiki/DebugFissionDWP
9234 To simplify handling of both DWO files ("object" files with the DWARF info)
9235 and DWP files (a file with the DWOs packaged up into one file), we treat
9236 DWP files as having a collection of virtual DWO files. */
9239 hash_dwo_file (const void *item
)
9241 const struct dwo_file
*dwo_file
= item
;
9244 hash
= htab_hash_string (dwo_file
->dwo_name
);
9245 if (dwo_file
->comp_dir
!= NULL
)
9246 hash
+= htab_hash_string (dwo_file
->comp_dir
);
9251 eq_dwo_file (const void *item_lhs
, const void *item_rhs
)
9253 const struct dwo_file
*lhs
= item_lhs
;
9254 const struct dwo_file
*rhs
= item_rhs
;
9256 if (strcmp (lhs
->dwo_name
, rhs
->dwo_name
) != 0)
9258 if (lhs
->comp_dir
== NULL
|| rhs
->comp_dir
== NULL
)
9259 return lhs
->comp_dir
== rhs
->comp_dir
;
9260 return strcmp (lhs
->comp_dir
, rhs
->comp_dir
) == 0;
9263 /* Allocate a hash table for DWO files. */
9266 allocate_dwo_file_hash_table (void)
9268 struct objfile
*objfile
= dwarf2_per_objfile
->objfile
;
9270 return htab_create_alloc_ex (41,
9274 &objfile
->objfile_obstack
,
9275 hashtab_obstack_allocate
,
9276 dummy_obstack_deallocate
);
9279 /* Lookup DWO file DWO_NAME. */
9282 lookup_dwo_file_slot (const char *dwo_name
, const char *comp_dir
)
9284 struct dwo_file find_entry
;
9287 if (dwarf2_per_objfile
->dwo_files
== NULL
)
9288 dwarf2_per_objfile
->dwo_files
= allocate_dwo_file_hash_table ();
9290 memset (&find_entry
, 0, sizeof (find_entry
));
9291 find_entry
.dwo_name
= dwo_name
;
9292 find_entry
.comp_dir
= comp_dir
;
9293 slot
= htab_find_slot (dwarf2_per_objfile
->dwo_files
, &find_entry
, INSERT
);
9299 hash_dwo_unit (const void *item
)
9301 const struct dwo_unit
*dwo_unit
= item
;
9303 /* This drops the top 32 bits of the id, but is ok for a hash. */
9304 return dwo_unit
->signature
;
9308 eq_dwo_unit (const void *item_lhs
, const void *item_rhs
)
9310 const struct dwo_unit
*lhs
= item_lhs
;
9311 const struct dwo_unit
*rhs
= item_rhs
;
9313 /* The signature is assumed to be unique within the DWO file.
9314 So while object file CU dwo_id's always have the value zero,
9315 that's OK, assuming each object file DWO file has only one CU,
9316 and that's the rule for now. */
9317 return lhs
->signature
== rhs
->signature
;
9320 /* Allocate a hash table for DWO CUs,TUs.
9321 There is one of these tables for each of CUs,TUs for each DWO file. */
9324 allocate_dwo_unit_table (struct objfile
*objfile
)
9326 /* Start out with a pretty small number.
9327 Generally DWO files contain only one CU and maybe some TUs. */
9328 return htab_create_alloc_ex (3,
9332 &objfile
->objfile_obstack
,
9333 hashtab_obstack_allocate
,
9334 dummy_obstack_deallocate
);
9337 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
9339 struct create_dwo_cu_data
9341 struct dwo_file
*dwo_file
;
9342 struct dwo_unit dwo_unit
;
9345 /* die_reader_func for create_dwo_cu. */
9348 create_dwo_cu_reader (const struct die_reader_specs
*reader
,
9349 const gdb_byte
*info_ptr
,
9350 struct die_info
*comp_unit_die
,
9354 struct dwarf2_cu
*cu
= reader
->cu
;
9355 struct objfile
*objfile
= dwarf2_per_objfile
->objfile
;
9356 sect_offset offset
= cu
->per_cu
->offset
;
9357 struct dwarf2_section_info
*section
= cu
->per_cu
->section
;
9358 struct create_dwo_cu_data
*data
= datap
;
9359 struct dwo_file
*dwo_file
= data
->dwo_file
;
9360 struct dwo_unit
*dwo_unit
= &data
->dwo_unit
;
9361 struct attribute
*attr
;
9363 attr
= dwarf2_attr (comp_unit_die
, DW_AT_GNU_dwo_id
, cu
);
9366 complaint (&symfile_complaints
,
9367 _("Dwarf Error: debug entry at offset 0x%x is missing"
9368 " its dwo_id [in module %s]"),
9369 offset
.sect_off
, dwo_file
->dwo_name
);
9373 dwo_unit
->dwo_file
= dwo_file
;
9374 dwo_unit
->signature
= DW_UNSND (attr
);
9375 dwo_unit
->section
= section
;
9376 dwo_unit
->offset
= offset
;
9377 dwo_unit
->length
= cu
->per_cu
->length
;
9379 if (dwarf2_read_debug
)
9380 fprintf_unfiltered (gdb_stdlog
, " offset 0x%x, dwo_id %s\n",
9381 offset
.sect_off
, hex_string (dwo_unit
->signature
));
9384 /* Create the dwo_unit for the lone CU in DWO_FILE.
9385 Note: This function processes DWO files only, not DWP files. */
9387 static struct dwo_unit
*
9388 create_dwo_cu (struct dwo_file
*dwo_file
)
9390 struct objfile
*objfile
= dwarf2_per_objfile
->objfile
;
9391 struct dwarf2_section_info
*section
= &dwo_file
->sections
.info
;
9394 const gdb_byte
*info_ptr
, *end_ptr
;
9395 struct create_dwo_cu_data create_dwo_cu_data
;
9396 struct dwo_unit
*dwo_unit
;
9398 dwarf2_read_section (objfile
, section
);
9399 info_ptr
= section
->buffer
;
9401 if (info_ptr
== NULL
)
9404 /* We can't set abfd until now because the section may be empty or
9405 not present, in which case section->asection will be NULL. */
9406 abfd
= get_section_bfd_owner (section
);
9408 if (dwarf2_read_debug
)
9410 fprintf_unfiltered (gdb_stdlog
, "Reading %s for %s:\n",
9411 get_section_name (section
),
9412 get_section_file_name (section
));
9415 create_dwo_cu_data
.dwo_file
= dwo_file
;
9418 end_ptr
= info_ptr
+ section
->size
;
9419 while (info_ptr
< end_ptr
)
9421 struct dwarf2_per_cu_data per_cu
;
9423 memset (&create_dwo_cu_data
.dwo_unit
, 0,
9424 sizeof (create_dwo_cu_data
.dwo_unit
));
9425 memset (&per_cu
, 0, sizeof (per_cu
));
9426 per_cu
.objfile
= objfile
;
9427 per_cu
.is_debug_types
= 0;
9428 per_cu
.offset
.sect_off
= info_ptr
- section
->buffer
;
9429 per_cu
.section
= section
;
9431 init_cutu_and_read_dies_no_follow (&per_cu
, dwo_file
,
9432 create_dwo_cu_reader
,
9433 &create_dwo_cu_data
);
9435 if (create_dwo_cu_data
.dwo_unit
.dwo_file
!= NULL
)
9437 /* If we've already found one, complain. We only support one
9438 because having more than one requires hacking the dwo_name of
9439 each to match, which is highly unlikely to happen. */
9440 if (dwo_unit
!= NULL
)
9442 complaint (&symfile_complaints
,
9443 _("Multiple CUs in DWO file %s [in module %s]"),
9444 dwo_file
->dwo_name
, objfile_name (objfile
));
9448 dwo_unit
= OBSTACK_ZALLOC (&objfile
->objfile_obstack
, struct dwo_unit
);
9449 *dwo_unit
= create_dwo_cu_data
.dwo_unit
;
9452 info_ptr
+= per_cu
.length
;
9458 /* DWP file .debug_{cu,tu}_index section format:
9459 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9463 Both index sections have the same format, and serve to map a 64-bit
9464 signature to a set of section numbers. Each section begins with a header,
9465 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9466 indexes, and a pool of 32-bit section numbers. The index sections will be
9467 aligned at 8-byte boundaries in the file.
9469 The index section header consists of:
9471 V, 32 bit version number
9473 N, 32 bit number of compilation units or type units in the index
9474 M, 32 bit number of slots in the hash table
9476 Numbers are recorded using the byte order of the application binary.
9478 The hash table begins at offset 16 in the section, and consists of an array
9479 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9480 order of the application binary). Unused slots in the hash table are 0.
9481 (We rely on the extreme unlikeliness of a signature being exactly 0.)
9483 The parallel table begins immediately after the hash table
9484 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9485 array of 32-bit indexes (using the byte order of the application binary),
9486 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9487 table contains a 32-bit index into the pool of section numbers. For unused
9488 hash table slots, the corresponding entry in the parallel table will be 0.
9490 The pool of section numbers begins immediately following the hash table
9491 (at offset 16 + 12 * M from the beginning of the section). The pool of
9492 section numbers consists of an array of 32-bit words (using the byte order
9493 of the application binary). Each item in the array is indexed starting
9494 from 0. The hash table entry provides the index of the first section
9495 number in the set. Additional section numbers in the set follow, and the
9496 set is terminated by a 0 entry (section number 0 is not used in ELF).
9498 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9499 section must be the first entry in the set, and the .debug_abbrev.dwo must
9500 be the second entry. Other members of the set may follow in any order.
9506 DWP Version 2 combines all the .debug_info, etc. sections into one,
9507 and the entries in the index tables are now offsets into these sections.
9508 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9511 Index Section Contents:
9513 Hash Table of Signatures dwp_hash_table.hash_table
9514 Parallel Table of Indices dwp_hash_table.unit_table
9515 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9516 Table of Section Sizes dwp_hash_table.v2.sizes
9518 The index section header consists of:
9520 V, 32 bit version number
9521 L, 32 bit number of columns in the table of section offsets
9522 N, 32 bit number of compilation units or type units in the index
9523 M, 32 bit number of slots in the hash table
9525 Numbers are recorded using the byte order of the application binary.
9527 The hash table has the same format as version 1.
9528 The parallel table of indices has the same format as version 1,
9529 except that the entries are origin-1 indices into the table of sections
9530 offsets and the table of section sizes.
9532 The table of offsets begins immediately following the parallel table
9533 (at offset 16 + 12 * M from the beginning of the section). The table is
9534 a two-dimensional array of 32-bit words (using the byte order of the
9535 application binary), with L columns and N+1 rows, in row-major order.
9536 Each row in the array is indexed starting from 0. The first row provides
9537 a key to the remaining rows: each column in this row provides an identifier
9538 for a debug section, and the offsets in the same column of subsequent rows
9539 refer to that section. The section identifiers are:
9541 DW_SECT_INFO 1 .debug_info.dwo
9542 DW_SECT_TYPES 2 .debug_types.dwo
9543 DW_SECT_ABBREV 3 .debug_abbrev.dwo
9544 DW_SECT_LINE 4 .debug_line.dwo
9545 DW_SECT_LOC 5 .debug_loc.dwo
9546 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
9547 DW_SECT_MACINFO 7 .debug_macinfo.dwo
9548 DW_SECT_MACRO 8 .debug_macro.dwo
9550 The offsets provided by the CU and TU index sections are the base offsets
9551 for the contributions made by each CU or TU to the corresponding section
9552 in the package file. Each CU and TU header contains an abbrev_offset
9553 field, used to find the abbreviations table for that CU or TU within the
9554 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
9555 be interpreted as relative to the base offset given in the index section.
9556 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
9557 should be interpreted as relative to the base offset for .debug_line.dwo,
9558 and offsets into other debug sections obtained from DWARF attributes should
9559 also be interpreted as relative to the corresponding base offset.
9561 The table of sizes begins immediately following the table of offsets.
9562 Like the table of offsets, it is a two-dimensional array of 32-bit words,
9563 with L columns and N rows, in row-major order. Each row in the array is
9564 indexed starting from 1 (row 0 is shared by the two tables).
9568 Hash table lookup is handled the same in version 1 and 2:
9570 We assume that N and M will not exceed 2^32 - 1.
9571 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
9573 Given a 64-bit compilation unit signature or a type signature S, an entry
9574 in the hash table is located as follows:
9576 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
9577 the low-order k bits all set to 1.
9579 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
9581 3) If the hash table entry at index H matches the signature, use that
9582 entry. If the hash table entry at index H is unused (all zeroes),
9583 terminate the search: the signature is not present in the table.
9585 4) Let H = (H + H') modulo M. Repeat at Step 3.
9587 Because M > N and H' and M are relatively prime, the search is guaranteed
9588 to stop at an unused slot or find the match. */
9590 /* Create a hash table to map DWO IDs to their CU/TU entry in
9591 .debug_{info,types}.dwo in DWP_FILE.
9592 Returns NULL if there isn't one.
9593 Note: This function processes DWP files only, not DWO files. */
9595 static struct dwp_hash_table
*
9596 create_dwp_hash_table (struct dwp_file
*dwp_file
, int is_debug_types
)
9598 struct objfile
*objfile
= dwarf2_per_objfile
->objfile
;
9599 bfd
*dbfd
= dwp_file
->dbfd
;
9600 const gdb_byte
*index_ptr
, *index_end
;
9601 struct dwarf2_section_info
*index
;
9602 uint32_t version
, nr_columns
, nr_units
, nr_slots
;
9603 struct dwp_hash_table
*htab
;
9606 index
= &dwp_file
->sections
.tu_index
;
9608 index
= &dwp_file
->sections
.cu_index
;
9610 if (dwarf2_section_empty_p (index
))
9612 dwarf2_read_section (objfile
, index
);
9614 index_ptr
= index
->buffer
;
9615 index_end
= index_ptr
+ index
->size
;
9617 version
= read_4_bytes (dbfd
, index_ptr
);
9620 nr_columns
= read_4_bytes (dbfd
, index_ptr
);
9624 nr_units
= read_4_bytes (dbfd
, index_ptr
);
9626 nr_slots
= read_4_bytes (dbfd
, index_ptr
);
9629 if (version
!= 1 && version
!= 2)
9631 error (_("Dwarf Error: unsupported DWP file version (%s)"
9633 pulongest (version
), dwp_file
->name
);
9635 if (nr_slots
!= (nr_slots
& -nr_slots
))
9637 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
9638 " is not power of 2 [in module %s]"),
9639 pulongest (nr_slots
), dwp_file
->name
);
9642 htab
= OBSTACK_ZALLOC (&objfile
->objfile_obstack
, struct dwp_hash_table
);
9643 htab
->version
= version
;
9644 htab
->nr_columns
= nr_columns
;
9645 htab
->nr_units
= nr_units
;
9646 htab
->nr_slots
= nr_slots
;
9647 htab
->hash_table
= index_ptr
;
9648 htab
->unit_table
= htab
->hash_table
+ sizeof (uint64_t) * nr_slots
;
9650 /* Exit early if the table is empty. */
9651 if (nr_slots
== 0 || nr_units
== 0
9652 || (version
== 2 && nr_columns
== 0))
9654 /* All must be zero. */
9655 if (nr_slots
!= 0 || nr_units
!= 0
9656 || (version
== 2 && nr_columns
!= 0))
9658 complaint (&symfile_complaints
,
9659 _("Empty DWP but nr_slots,nr_units,nr_columns not"
9660 " all zero [in modules %s]"),
9668 htab
->section_pool
.v1
.indices
=
9669 htab
->unit_table
+ sizeof (uint32_t) * nr_slots
;
9670 /* It's harder to decide whether the section is too small in v1.
9671 V1 is deprecated anyway so we punt. */
9675 const gdb_byte
*ids_ptr
= htab
->unit_table
+ sizeof (uint32_t) * nr_slots
;
9676 int *ids
= htab
->section_pool
.v2
.section_ids
;
9677 /* Reverse map for error checking. */
9678 int ids_seen
[DW_SECT_MAX
+ 1];
9683 error (_("Dwarf Error: bad DWP hash table, too few columns"
9684 " in section table [in module %s]"),
9687 if (nr_columns
> MAX_NR_V2_DWO_SECTIONS
)
9689 error (_("Dwarf Error: bad DWP hash table, too many columns"
9690 " in section table [in module %s]"),
9693 memset (ids
, 255, (DW_SECT_MAX
+ 1) * sizeof (int32_t));
9694 memset (ids_seen
, 255, (DW_SECT_MAX
+ 1) * sizeof (int32_t));
9695 for (i
= 0; i
< nr_columns
; ++i
)
9697 int id
= read_4_bytes (dbfd
, ids_ptr
+ i
* sizeof (uint32_t));
9699 if (id
< DW_SECT_MIN
|| id
> DW_SECT_MAX
)
9701 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
9702 " in section table [in module %s]"),
9703 id
, dwp_file
->name
);
9705 if (ids_seen
[id
] != -1)
9707 error (_("Dwarf Error: bad DWP hash table, duplicate section"
9708 " id %d in section table [in module %s]"),
9709 id
, dwp_file
->name
);
9714 /* Must have exactly one info or types section. */
9715 if (((ids_seen
[DW_SECT_INFO
] != -1)
9716 + (ids_seen
[DW_SECT_TYPES
] != -1))
9719 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
9720 " DWO info/types section [in module %s]"),
9723 /* Must have an abbrev section. */
9724 if (ids_seen
[DW_SECT_ABBREV
] == -1)
9726 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
9727 " section [in module %s]"),
9730 htab
->section_pool
.v2
.offsets
= ids_ptr
+ sizeof (uint32_t) * nr_columns
;
9731 htab
->section_pool
.v2
.sizes
=
9732 htab
->section_pool
.v2
.offsets
+ (sizeof (uint32_t)
9733 * nr_units
* nr_columns
);
9734 if ((htab
->section_pool
.v2
.sizes
+ (sizeof (uint32_t)
9735 * nr_units
* nr_columns
))
9738 error (_("Dwarf Error: DWP index section is corrupt (too small)"
9747 /* Update SECTIONS with the data from SECTP.
9749 This function is like the other "locate" section routines that are
9750 passed to bfd_map_over_sections, but in this context the sections to
9751 read comes from the DWP V1 hash table, not the full ELF section table.
9753 The result is non-zero for success, or zero if an error was found. */
9756 locate_v1_virtual_dwo_sections (asection
*sectp
,
9757 struct virtual_v1_dwo_sections
*sections
)
9759 const struct dwop_section_names
*names
= &dwop_section_names
;
9761 if (section_is_p (sectp
->name
, &names
->abbrev_dwo
))
9763 /* There can be only one. */
9764 if (sections
->abbrev
.s
.asection
!= NULL
)
9766 sections
->abbrev
.s
.asection
= sectp
;
9767 sections
->abbrev
.size
= bfd_get_section_size (sectp
);
9769 else if (section_is_p (sectp
->name
, &names
->info_dwo
)
9770 || section_is_p (sectp
->name
, &names
->types_dwo
))
9772 /* There can be only one. */
9773 if (sections
->info_or_types
.s
.asection
!= NULL
)
9775 sections
->info_or_types
.s
.asection
= sectp
;
9776 sections
->info_or_types
.size
= bfd_get_section_size (sectp
);
9778 else if (section_is_p (sectp
->name
, &names
->line_dwo
))
9780 /* There can be only one. */
9781 if (sections
->line
.s
.asection
!= NULL
)
9783 sections
->line
.s
.asection
= sectp
;
9784 sections
->line
.size
= bfd_get_section_size (sectp
);
9786 else if (section_is_p (sectp
->name
, &names
->loc_dwo
))
9788 /* There can be only one. */
9789 if (sections
->loc
.s
.asection
!= NULL
)
9791 sections
->loc
.s
.asection
= sectp
;
9792 sections
->loc
.size
= bfd_get_section_size (sectp
);
9794 else if (section_is_p (sectp
->name
, &names
->macinfo_dwo
))
9796 /* There can be only one. */
9797 if (sections
->macinfo
.s
.asection
!= NULL
)
9799 sections
->macinfo
.s
.asection
= sectp
;
9800 sections
->macinfo
.size
= bfd_get_section_size (sectp
);
9802 else if (section_is_p (sectp
->name
, &names
->macro_dwo
))
9804 /* There can be only one. */
9805 if (sections
->macro
.s
.asection
!= NULL
)
9807 sections
->macro
.s
.asection
= sectp
;
9808 sections
->macro
.size
= bfd_get_section_size (sectp
);
9810 else if (section_is_p (sectp
->name
, &names
->str_offsets_dwo
))
9812 /* There can be only one. */
9813 if (sections
->str_offsets
.s
.asection
!= NULL
)
9815 sections
->str_offsets
.s
.asection
= sectp
;
9816 sections
->str_offsets
.size
= bfd_get_section_size (sectp
);
9820 /* No other kind of section is valid. */
9827 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
9828 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
9829 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
9830 This is for DWP version 1 files. */
9832 static struct dwo_unit
*
9833 create_dwo_unit_in_dwp_v1 (struct dwp_file
*dwp_file
,
9834 uint32_t unit_index
,
9835 const char *comp_dir
,
9836 ULONGEST signature
, int is_debug_types
)
9838 struct objfile
*objfile
= dwarf2_per_objfile
->objfile
;
9839 const struct dwp_hash_table
*dwp_htab
=
9840 is_debug_types
? dwp_file
->tus
: dwp_file
->cus
;
9841 bfd
*dbfd
= dwp_file
->dbfd
;
9842 const char *kind
= is_debug_types
? "TU" : "CU";
9843 struct dwo_file
*dwo_file
;
9844 struct dwo_unit
*dwo_unit
;
9845 struct virtual_v1_dwo_sections sections
;
9846 void **dwo_file_slot
;
9847 char *virtual_dwo_name
;
9848 struct dwarf2_section_info
*cutu
;
9849 struct cleanup
*cleanups
;
9852 gdb_assert (dwp_file
->version
== 1);
9854 if (dwarf2_read_debug
)
9856 fprintf_unfiltered (gdb_stdlog
, "Reading %s %s/%s in DWP V1 file: %s\n",
9858 pulongest (unit_index
), hex_string (signature
),
9862 /* Fetch the sections of this DWO unit.
9863 Put a limit on the number of sections we look for so that bad data
9864 doesn't cause us to loop forever. */
9866 #define MAX_NR_V1_DWO_SECTIONS \
9867 (1 /* .debug_info or .debug_types */ \
9868 + 1 /* .debug_abbrev */ \
9869 + 1 /* .debug_line */ \
9870 + 1 /* .debug_loc */ \
9871 + 1 /* .debug_str_offsets */ \
9872 + 1 /* .debug_macro or .debug_macinfo */ \
9873 + 1 /* trailing zero */)
9875 memset (§ions
, 0, sizeof (sections
));
9876 cleanups
= make_cleanup (null_cleanup
, 0);
9878 for (i
= 0; i
< MAX_NR_V1_DWO_SECTIONS
; ++i
)
9881 uint32_t section_nr
=
9883 dwp_htab
->section_pool
.v1
.indices
9884 + (unit_index
+ i
) * sizeof (uint32_t));
9886 if (section_nr
== 0)
9888 if (section_nr
>= dwp_file
->num_sections
)
9890 error (_("Dwarf Error: bad DWP hash table, section number too large"
9895 sectp
= dwp_file
->elf_sections
[section_nr
];
9896 if (! locate_v1_virtual_dwo_sections (sectp
, §ions
))
9898 error (_("Dwarf Error: bad DWP hash table, invalid section found"
9905 || dwarf2_section_empty_p (§ions
.info_or_types
)
9906 || dwarf2_section_empty_p (§ions
.abbrev
))
9908 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
9912 if (i
== MAX_NR_V1_DWO_SECTIONS
)
9914 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
9919 /* It's easier for the rest of the code if we fake a struct dwo_file and
9920 have dwo_unit "live" in that. At least for now.
9922 The DWP file can be made up of a random collection of CUs and TUs.
9923 However, for each CU + set of TUs that came from the same original DWO
9924 file, we can combine them back into a virtual DWO file to save space
9925 (fewer struct dwo_file objects to allocate). Remember that for really
9926 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
9929 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
9930 get_section_id (§ions
.abbrev
),
9931 get_section_id (§ions
.line
),
9932 get_section_id (§ions
.loc
),
9933 get_section_id (§ions
.str_offsets
));
9934 make_cleanup (xfree
, virtual_dwo_name
);
9935 /* Can we use an existing virtual DWO file? */
9936 dwo_file_slot
= lookup_dwo_file_slot (virtual_dwo_name
, comp_dir
);
9937 /* Create one if necessary. */
9938 if (*dwo_file_slot
== NULL
)
9940 if (dwarf2_read_debug
)
9942 fprintf_unfiltered (gdb_stdlog
, "Creating virtual DWO: %s\n",
9945 dwo_file
= OBSTACK_ZALLOC (&objfile
->objfile_obstack
, struct dwo_file
);
9946 dwo_file
->dwo_name
= obstack_copy0 (&objfile
->objfile_obstack
,
9948 strlen (virtual_dwo_name
));
9949 dwo_file
->comp_dir
= comp_dir
;
9950 dwo_file
->sections
.abbrev
= sections
.abbrev
;
9951 dwo_file
->sections
.line
= sections
.line
;
9952 dwo_file
->sections
.loc
= sections
.loc
;
9953 dwo_file
->sections
.macinfo
= sections
.macinfo
;
9954 dwo_file
->sections
.macro
= sections
.macro
;
9955 dwo_file
->sections
.str_offsets
= sections
.str_offsets
;
9956 /* The "str" section is global to the entire DWP file. */
9957 dwo_file
->sections
.str
= dwp_file
->sections
.str
;
9958 /* The info or types section is assigned below to dwo_unit,
9959 there's no need to record it in dwo_file.
9960 Also, we can't simply record type sections in dwo_file because
9961 we record a pointer into the vector in dwo_unit. As we collect more
9962 types we'll grow the vector and eventually have to reallocate space
9963 for it, invalidating all copies of pointers into the previous
9965 *dwo_file_slot
= dwo_file
;
9969 if (dwarf2_read_debug
)
9971 fprintf_unfiltered (gdb_stdlog
, "Using existing virtual DWO: %s\n",
9974 dwo_file
= *dwo_file_slot
;
9976 do_cleanups (cleanups
);
9978 dwo_unit
= OBSTACK_ZALLOC (&objfile
->objfile_obstack
, struct dwo_unit
);
9979 dwo_unit
->dwo_file
= dwo_file
;
9980 dwo_unit
->signature
= signature
;
9981 dwo_unit
->section
= obstack_alloc (&objfile
->objfile_obstack
,
9982 sizeof (struct dwarf2_section_info
));
9983 *dwo_unit
->section
= sections
.info_or_types
;
9984 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
9989 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
9990 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
9991 piece within that section used by a TU/CU, return a virtual section
9992 of just that piece. */
9994 static struct dwarf2_section_info
9995 create_dwp_v2_section (struct dwarf2_section_info
*section
,
9996 bfd_size_type offset
, bfd_size_type size
)
9998 struct dwarf2_section_info result
;
10001 gdb_assert (section
!= NULL
);
10002 gdb_assert (!section
->is_virtual
);
10004 memset (&result
, 0, sizeof (result
));
10005 result
.s
.containing_section
= section
;
10006 result
.is_virtual
= 1;
10011 sectp
= get_section_bfd_section (section
);
10013 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
10014 bounds of the real section. This is a pretty-rare event, so just
10015 flag an error (easier) instead of a warning and trying to cope. */
10017 || offset
+ size
> bfd_get_section_size (sectp
))
10019 bfd
*abfd
= sectp
->owner
;
10021 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
10022 " in section %s [in module %s]"),
10023 sectp
? bfd_section_name (abfd
, sectp
) : "<unknown>",
10024 objfile_name (dwarf2_per_objfile
->objfile
));
10027 result
.virtual_offset
= offset
;
10028 result
.size
= size
;
10032 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10033 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10034 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10035 This is for DWP version 2 files. */
10037 static struct dwo_unit
*
10038 create_dwo_unit_in_dwp_v2 (struct dwp_file
*dwp_file
,
10039 uint32_t unit_index
,
10040 const char *comp_dir
,
10041 ULONGEST signature
, int is_debug_types
)
10043 struct objfile
*objfile
= dwarf2_per_objfile
->objfile
;
10044 const struct dwp_hash_table
*dwp_htab
=
10045 is_debug_types
? dwp_file
->tus
: dwp_file
->cus
;
10046 bfd
*dbfd
= dwp_file
->dbfd
;
10047 const char *kind
= is_debug_types
? "TU" : "CU";
10048 struct dwo_file
*dwo_file
;
10049 struct dwo_unit
*dwo_unit
;
10050 struct virtual_v2_dwo_sections sections
;
10051 void **dwo_file_slot
;
10052 char *virtual_dwo_name
;
10053 struct dwarf2_section_info
*cutu
;
10054 struct cleanup
*cleanups
;
10057 gdb_assert (dwp_file
->version
== 2);
10059 if (dwarf2_read_debug
)
10061 fprintf_unfiltered (gdb_stdlog
, "Reading %s %s/%s in DWP V2 file: %s\n",
10063 pulongest (unit_index
), hex_string (signature
),
10067 /* Fetch the section offsets of this DWO unit. */
10069 memset (§ions
, 0, sizeof (sections
));
10070 cleanups
= make_cleanup (null_cleanup
, 0);
10072 for (i
= 0; i
< dwp_htab
->nr_columns
; ++i
)
10074 uint32_t offset
= read_4_bytes (dbfd
,
10075 dwp_htab
->section_pool
.v2
.offsets
10076 + (((unit_index
- 1) * dwp_htab
->nr_columns
10078 * sizeof (uint32_t)));
10079 uint32_t size
= read_4_bytes (dbfd
,
10080 dwp_htab
->section_pool
.v2
.sizes
10081 + (((unit_index
- 1) * dwp_htab
->nr_columns
10083 * sizeof (uint32_t)));
10085 switch (dwp_htab
->section_pool
.v2
.section_ids
[i
])
10088 case DW_SECT_TYPES
:
10089 sections
.info_or_types_offset
= offset
;
10090 sections
.info_or_types_size
= size
;
10092 case DW_SECT_ABBREV
:
10093 sections
.abbrev_offset
= offset
;
10094 sections
.abbrev_size
= size
;
10097 sections
.line_offset
= offset
;
10098 sections
.line_size
= size
;
10101 sections
.loc_offset
= offset
;
10102 sections
.loc_size
= size
;
10104 case DW_SECT_STR_OFFSETS
:
10105 sections
.str_offsets_offset
= offset
;
10106 sections
.str_offsets_size
= size
;
10108 case DW_SECT_MACINFO
:
10109 sections
.macinfo_offset
= offset
;
10110 sections
.macinfo_size
= size
;
10112 case DW_SECT_MACRO
:
10113 sections
.macro_offset
= offset
;
10114 sections
.macro_size
= size
;
10119 /* It's easier for the rest of the code if we fake a struct dwo_file and
10120 have dwo_unit "live" in that. At least for now.
10122 The DWP file can be made up of a random collection of CUs and TUs.
10123 However, for each CU + set of TUs that came from the same original DWO
10124 file, we can combine them back into a virtual DWO file to save space
10125 (fewer struct dwo_file objects to allocate). Remember that for really
10126 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10129 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
10130 (long) (sections
.abbrev_size
? sections
.abbrev_offset
: 0),
10131 (long) (sections
.line_size
? sections
.line_offset
: 0),
10132 (long) (sections
.loc_size
? sections
.loc_offset
: 0),
10133 (long) (sections
.str_offsets_size
10134 ? sections
.str_offsets_offset
: 0));
10135 make_cleanup (xfree
, virtual_dwo_name
);
10136 /* Can we use an existing virtual DWO file? */
10137 dwo_file_slot
= lookup_dwo_file_slot (virtual_dwo_name
, comp_dir
);
10138 /* Create one if necessary. */
10139 if (*dwo_file_slot
== NULL
)
10141 if (dwarf2_read_debug
)
10143 fprintf_unfiltered (gdb_stdlog
, "Creating virtual DWO: %s\n",
10146 dwo_file
= OBSTACK_ZALLOC (&objfile
->objfile_obstack
, struct dwo_file
);
10147 dwo_file
->dwo_name
= obstack_copy0 (&objfile
->objfile_obstack
,
10149 strlen (virtual_dwo_name
));
10150 dwo_file
->comp_dir
= comp_dir
;
10151 dwo_file
->sections
.abbrev
=
10152 create_dwp_v2_section (&dwp_file
->sections
.abbrev
,
10153 sections
.abbrev_offset
, sections
.abbrev_size
);
10154 dwo_file
->sections
.line
=
10155 create_dwp_v2_section (&dwp_file
->sections
.line
,
10156 sections
.line_offset
, sections
.line_size
);
10157 dwo_file
->sections
.loc
=
10158 create_dwp_v2_section (&dwp_file
->sections
.loc
,
10159 sections
.loc_offset
, sections
.loc_size
);
10160 dwo_file
->sections
.macinfo
=
10161 create_dwp_v2_section (&dwp_file
->sections
.macinfo
,
10162 sections
.macinfo_offset
, sections
.macinfo_size
);
10163 dwo_file
->sections
.macro
=
10164 create_dwp_v2_section (&dwp_file
->sections
.macro
,
10165 sections
.macro_offset
, sections
.macro_size
);
10166 dwo_file
->sections
.str_offsets
=
10167 create_dwp_v2_section (&dwp_file
->sections
.str_offsets
,
10168 sections
.str_offsets_offset
,
10169 sections
.str_offsets_size
);
10170 /* The "str" section is global to the entire DWP file. */
10171 dwo_file
->sections
.str
= dwp_file
->sections
.str
;
10172 /* The info or types section is assigned below to dwo_unit,
10173 there's no need to record it in dwo_file.
10174 Also, we can't simply record type sections in dwo_file because
10175 we record a pointer into the vector in dwo_unit. As we collect more
10176 types we'll grow the vector and eventually have to reallocate space
10177 for it, invalidating all copies of pointers into the previous
10179 *dwo_file_slot
= dwo_file
;
10183 if (dwarf2_read_debug
)
10185 fprintf_unfiltered (gdb_stdlog
, "Using existing virtual DWO: %s\n",
10188 dwo_file
= *dwo_file_slot
;
10190 do_cleanups (cleanups
);
10192 dwo_unit
= OBSTACK_ZALLOC (&objfile
->objfile_obstack
, struct dwo_unit
);
10193 dwo_unit
->dwo_file
= dwo_file
;
10194 dwo_unit
->signature
= signature
;
10195 dwo_unit
->section
= obstack_alloc (&objfile
->objfile_obstack
,
10196 sizeof (struct dwarf2_section_info
));
10197 *dwo_unit
->section
= create_dwp_v2_section (is_debug_types
10198 ? &dwp_file
->sections
.types
10199 : &dwp_file
->sections
.info
,
10200 sections
.info_or_types_offset
,
10201 sections
.info_or_types_size
);
10202 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10207 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10208 Returns NULL if the signature isn't found. */
10210 static struct dwo_unit
*
10211 lookup_dwo_unit_in_dwp (struct dwp_file
*dwp_file
, const char *comp_dir
,
10212 ULONGEST signature
, int is_debug_types
)
10214 const struct dwp_hash_table
*dwp_htab
=
10215 is_debug_types
? dwp_file
->tus
: dwp_file
->cus
;
10216 bfd
*dbfd
= dwp_file
->dbfd
;
10217 uint32_t mask
= dwp_htab
->nr_slots
- 1;
10218 uint32_t hash
= signature
& mask
;
10219 uint32_t hash2
= ((signature
>> 32) & mask
) | 1;
10222 struct dwo_unit find_dwo_cu
, *dwo_cu
;
10224 memset (&find_dwo_cu
, 0, sizeof (find_dwo_cu
));
10225 find_dwo_cu
.signature
= signature
;
10226 slot
= htab_find_slot (is_debug_types
10227 ? dwp_file
->loaded_tus
10228 : dwp_file
->loaded_cus
,
10229 &find_dwo_cu
, INSERT
);
10234 /* Use a for loop so that we don't loop forever on bad debug info. */
10235 for (i
= 0; i
< dwp_htab
->nr_slots
; ++i
)
10237 ULONGEST signature_in_table
;
10239 signature_in_table
=
10240 read_8_bytes (dbfd
, dwp_htab
->hash_table
+ hash
* sizeof (uint64_t));
10241 if (signature_in_table
== signature
)
10243 uint32_t unit_index
=
10244 read_4_bytes (dbfd
,
10245 dwp_htab
->unit_table
+ hash
* sizeof (uint32_t));
10247 if (dwp_file
->version
== 1)
10249 *slot
= create_dwo_unit_in_dwp_v1 (dwp_file
, unit_index
,
10250 comp_dir
, signature
,
10255 *slot
= create_dwo_unit_in_dwp_v2 (dwp_file
, unit_index
,
10256 comp_dir
, signature
,
10261 if (signature_in_table
== 0)
10263 hash
= (hash
+ hash2
) & mask
;
10266 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10267 " [in module %s]"),
10271 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
10272 Open the file specified by FILE_NAME and hand it off to BFD for
10273 preliminary analysis. Return a newly initialized bfd *, which
10274 includes a canonicalized copy of FILE_NAME.
10275 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
10276 SEARCH_CWD is true if the current directory is to be searched.
10277 It will be searched before debug-file-directory.
10278 If successful, the file is added to the bfd include table of the
10279 objfile's bfd (see gdb_bfd_record_inclusion).
10280 If unable to find/open the file, return NULL.
10281 NOTE: This function is derived from symfile_bfd_open. */
10284 try_open_dwop_file (const char *file_name
, int is_dwp
, int search_cwd
)
10288 char *absolute_name
;
10289 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10290 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10291 to debug_file_directory. */
10293 static const char dirname_separator_string
[] = { DIRNAME_SEPARATOR
, '\0' };
10297 if (*debug_file_directory
!= '\0')
10298 search_path
= concat (".", dirname_separator_string
,
10299 debug_file_directory
, NULL
);
10301 search_path
= xstrdup (".");
10304 search_path
= xstrdup (debug_file_directory
);
10306 flags
= OPF_RETURN_REALPATH
;
10308 flags
|= OPF_SEARCH_IN_PATH
;
10309 desc
= openp (search_path
, flags
, file_name
,
10310 O_RDONLY
| O_BINARY
, &absolute_name
);
10311 xfree (search_path
);
10315 sym_bfd
= gdb_bfd_open (absolute_name
, gnutarget
, desc
);
10316 xfree (absolute_name
);
10317 if (sym_bfd
== NULL
)
10319 bfd_set_cacheable (sym_bfd
, 1);
10321 if (!bfd_check_format (sym_bfd
, bfd_object
))
10323 gdb_bfd_unref (sym_bfd
); /* This also closes desc. */
10327 /* Success. Record the bfd as having been included by the objfile's bfd.
10328 This is important because things like demangled_names_hash lives in the
10329 objfile's per_bfd space and may have references to things like symbol
10330 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
10331 gdb_bfd_record_inclusion (dwarf2_per_objfile
->objfile
->obfd
, sym_bfd
);
10336 /* Try to open DWO file FILE_NAME.
10337 COMP_DIR is the DW_AT_comp_dir attribute.
10338 The result is the bfd handle of the file.
10339 If there is a problem finding or opening the file, return NULL.
10340 Upon success, the canonicalized path of the file is stored in the bfd,
10341 same as symfile_bfd_open. */
10344 open_dwo_file (const char *file_name
, const char *comp_dir
)
10348 if (IS_ABSOLUTE_PATH (file_name
))
10349 return try_open_dwop_file (file_name
, 0 /*is_dwp*/, 0 /*search_cwd*/);
10351 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10353 if (comp_dir
!= NULL
)
10355 char *path_to_try
= concat (comp_dir
, SLASH_STRING
, file_name
, NULL
);
10357 /* NOTE: If comp_dir is a relative path, this will also try the
10358 search path, which seems useful. */
10359 abfd
= try_open_dwop_file (path_to_try
, 0 /*is_dwp*/, 1 /*search_cwd*/);
10360 xfree (path_to_try
);
10365 /* That didn't work, try debug-file-directory, which, despite its name,
10366 is a list of paths. */
10368 if (*debug_file_directory
== '\0')
10371 return try_open_dwop_file (file_name
, 0 /*is_dwp*/, 1 /*search_cwd*/);
10374 /* This function is mapped across the sections and remembers the offset and
10375 size of each of the DWO debugging sections we are interested in. */
10378 dwarf2_locate_dwo_sections (bfd
*abfd
, asection
*sectp
, void *dwo_sections_ptr
)
10380 struct dwo_sections
*dwo_sections
= dwo_sections_ptr
;
10381 const struct dwop_section_names
*names
= &dwop_section_names
;
10383 if (section_is_p (sectp
->name
, &names
->abbrev_dwo
))
10385 dwo_sections
->abbrev
.s
.asection
= sectp
;
10386 dwo_sections
->abbrev
.size
= bfd_get_section_size (sectp
);
10388 else if (section_is_p (sectp
->name
, &names
->info_dwo
))
10390 dwo_sections
->info
.s
.asection
= sectp
;
10391 dwo_sections
->info
.size
= bfd_get_section_size (sectp
);
10393 else if (section_is_p (sectp
->name
, &names
->line_dwo
))
10395 dwo_sections
->line
.s
.asection
= sectp
;
10396 dwo_sections
->line
.size
= bfd_get_section_size (sectp
);
10398 else if (section_is_p (sectp
->name
, &names
->loc_dwo
))
10400 dwo_sections
->loc
.s
.asection
= sectp
;
10401 dwo_sections
->loc
.size
= bfd_get_section_size (sectp
);
10403 else if (section_is_p (sectp
->name
, &names
->macinfo_dwo
))
10405 dwo_sections
->macinfo
.s
.asection
= sectp
;
10406 dwo_sections
->macinfo
.size
= bfd_get_section_size (sectp
);
10408 else if (section_is_p (sectp
->name
, &names
->macro_dwo
))
10410 dwo_sections
->macro
.s
.asection
= sectp
;
10411 dwo_sections
->macro
.size
= bfd_get_section_size (sectp
);
10413 else if (section_is_p (sectp
->name
, &names
->str_dwo
))
10415 dwo_sections
->str
.s
.asection
= sectp
;
10416 dwo_sections
->str
.size
= bfd_get_section_size (sectp
);
10418 else if (section_is_p (sectp
->name
, &names
->str_offsets_dwo
))
10420 dwo_sections
->str_offsets
.s
.asection
= sectp
;
10421 dwo_sections
->str_offsets
.size
= bfd_get_section_size (sectp
);
10423 else if (section_is_p (sectp
->name
, &names
->types_dwo
))
10425 struct dwarf2_section_info type_section
;
10427 memset (&type_section
, 0, sizeof (type_section
));
10428 type_section
.s
.asection
= sectp
;
10429 type_section
.size
= bfd_get_section_size (sectp
);
10430 VEC_safe_push (dwarf2_section_info_def
, dwo_sections
->types
,
10435 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
10436 by PER_CU. This is for the non-DWP case.
10437 The result is NULL if DWO_NAME can't be found. */
10439 static struct dwo_file
*
10440 open_and_init_dwo_file (struct dwarf2_per_cu_data
*per_cu
,
10441 const char *dwo_name
, const char *comp_dir
)
10443 struct objfile
*objfile
= dwarf2_per_objfile
->objfile
;
10444 struct dwo_file
*dwo_file
;
10446 struct cleanup
*cleanups
;
10448 dbfd
= open_dwo_file (dwo_name
, comp_dir
);
10451 if (dwarf2_read_debug
)
10452 fprintf_unfiltered (gdb_stdlog
, "DWO file not found: %s\n", dwo_name
);
10455 dwo_file
= OBSTACK_ZALLOC (&objfile
->objfile_obstack
, struct dwo_file
);
10456 dwo_file
->dwo_name
= dwo_name
;
10457 dwo_file
->comp_dir
= comp_dir
;
10458 dwo_file
->dbfd
= dbfd
;
10460 cleanups
= make_cleanup (free_dwo_file_cleanup
, dwo_file
);
10462 bfd_map_over_sections (dbfd
, dwarf2_locate_dwo_sections
, &dwo_file
->sections
);
10464 dwo_file
->cu
= create_dwo_cu (dwo_file
);
10466 dwo_file
->tus
= create_debug_types_hash_table (dwo_file
,
10467 dwo_file
->sections
.types
);
10469 discard_cleanups (cleanups
);
10471 if (dwarf2_read_debug
)
10472 fprintf_unfiltered (gdb_stdlog
, "DWO file found: %s\n", dwo_name
);
10477 /* This function is mapped across the sections and remembers the offset and
10478 size of each of the DWP debugging sections common to version 1 and 2 that
10479 we are interested in. */
10482 dwarf2_locate_common_dwp_sections (bfd
*abfd
, asection
*sectp
,
10483 void *dwp_file_ptr
)
10485 struct dwp_file
*dwp_file
= dwp_file_ptr
;
10486 const struct dwop_section_names
*names
= &dwop_section_names
;
10487 unsigned int elf_section_nr
= elf_section_data (sectp
)->this_idx
;
10489 /* Record the ELF section number for later lookup: this is what the
10490 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10491 gdb_assert (elf_section_nr
< dwp_file
->num_sections
);
10492 dwp_file
->elf_sections
[elf_section_nr
] = sectp
;
10494 /* Look for specific sections that we need. */
10495 if (section_is_p (sectp
->name
, &names
->str_dwo
))
10497 dwp_file
->sections
.str
.s
.asection
= sectp
;
10498 dwp_file
->sections
.str
.size
= bfd_get_section_size (sectp
);
10500 else if (section_is_p (sectp
->name
, &names
->cu_index
))
10502 dwp_file
->sections
.cu_index
.s
.asection
= sectp
;
10503 dwp_file
->sections
.cu_index
.size
= bfd_get_section_size (sectp
);
10505 else if (section_is_p (sectp
->name
, &names
->tu_index
))
10507 dwp_file
->sections
.tu_index
.s
.asection
= sectp
;
10508 dwp_file
->sections
.tu_index
.size
= bfd_get_section_size (sectp
);
10512 /* This function is mapped across the sections and remembers the offset and
10513 size of each of the DWP version 2 debugging sections that we are interested
10514 in. This is split into a separate function because we don't know if we
10515 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10518 dwarf2_locate_v2_dwp_sections (bfd
*abfd
, asection
*sectp
, void *dwp_file_ptr
)
10520 struct dwp_file
*dwp_file
= dwp_file_ptr
;
10521 const struct dwop_section_names
*names
= &dwop_section_names
;
10522 unsigned int elf_section_nr
= elf_section_data (sectp
)->this_idx
;
10524 /* Record the ELF section number for later lookup: this is what the
10525 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10526 gdb_assert (elf_section_nr
< dwp_file
->num_sections
);
10527 dwp_file
->elf_sections
[elf_section_nr
] = sectp
;
10529 /* Look for specific sections that we need. */
10530 if (section_is_p (sectp
->name
, &names
->abbrev_dwo
))
10532 dwp_file
->sections
.abbrev
.s
.asection
= sectp
;
10533 dwp_file
->sections
.abbrev
.size
= bfd_get_section_size (sectp
);
10535 else if (section_is_p (sectp
->name
, &names
->info_dwo
))
10537 dwp_file
->sections
.info
.s
.asection
= sectp
;
10538 dwp_file
->sections
.info
.size
= bfd_get_section_size (sectp
);
10540 else if (section_is_p (sectp
->name
, &names
->line_dwo
))
10542 dwp_file
->sections
.line
.s
.asection
= sectp
;
10543 dwp_file
->sections
.line
.size
= bfd_get_section_size (sectp
);
10545 else if (section_is_p (sectp
->name
, &names
->loc_dwo
))
10547 dwp_file
->sections
.loc
.s
.asection
= sectp
;
10548 dwp_file
->sections
.loc
.size
= bfd_get_section_size (sectp
);
10550 else if (section_is_p (sectp
->name
, &names
->macinfo_dwo
))
10552 dwp_file
->sections
.macinfo
.s
.asection
= sectp
;
10553 dwp_file
->sections
.macinfo
.size
= bfd_get_section_size (sectp
);
10555 else if (section_is_p (sectp
->name
, &names
->macro_dwo
))
10557 dwp_file
->sections
.macro
.s
.asection
= sectp
;
10558 dwp_file
->sections
.macro
.size
= bfd_get_section_size (sectp
);
10560 else if (section_is_p (sectp
->name
, &names
->str_offsets_dwo
))
10562 dwp_file
->sections
.str_offsets
.s
.asection
= sectp
;
10563 dwp_file
->sections
.str_offsets
.size
= bfd_get_section_size (sectp
);
10565 else if (section_is_p (sectp
->name
, &names
->types_dwo
))
10567 dwp_file
->sections
.types
.s
.asection
= sectp
;
10568 dwp_file
->sections
.types
.size
= bfd_get_section_size (sectp
);
10572 /* Hash function for dwp_file loaded CUs/TUs. */
10575 hash_dwp_loaded_cutus (const void *item
)
10577 const struct dwo_unit
*dwo_unit
= item
;
10579 /* This drops the top 32 bits of the signature, but is ok for a hash. */
10580 return dwo_unit
->signature
;
10583 /* Equality function for dwp_file loaded CUs/TUs. */
10586 eq_dwp_loaded_cutus (const void *a
, const void *b
)
10588 const struct dwo_unit
*dua
= a
;
10589 const struct dwo_unit
*dub
= b
;
10591 return dua
->signature
== dub
->signature
;
10594 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
10597 allocate_dwp_loaded_cutus_table (struct objfile
*objfile
)
10599 return htab_create_alloc_ex (3,
10600 hash_dwp_loaded_cutus
,
10601 eq_dwp_loaded_cutus
,
10603 &objfile
->objfile_obstack
,
10604 hashtab_obstack_allocate
,
10605 dummy_obstack_deallocate
);
10608 /* Try to open DWP file FILE_NAME.
10609 The result is the bfd handle of the file.
10610 If there is a problem finding or opening the file, return NULL.
10611 Upon success, the canonicalized path of the file is stored in the bfd,
10612 same as symfile_bfd_open. */
10615 open_dwp_file (const char *file_name
)
10619 abfd
= try_open_dwop_file (file_name
, 1 /*is_dwp*/, 1 /*search_cwd*/);
10623 /* Work around upstream bug 15652.
10624 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
10625 [Whether that's a "bug" is debatable, but it is getting in our way.]
10626 We have no real idea where the dwp file is, because gdb's realpath-ing
10627 of the executable's path may have discarded the needed info.
10628 [IWBN if the dwp file name was recorded in the executable, akin to
10629 .gnu_debuglink, but that doesn't exist yet.]
10630 Strip the directory from FILE_NAME and search again. */
10631 if (*debug_file_directory
!= '\0')
10633 /* Don't implicitly search the current directory here.
10634 If the user wants to search "." to handle this case,
10635 it must be added to debug-file-directory. */
10636 return try_open_dwop_file (lbasename (file_name
), 1 /*is_dwp*/,
10643 /* Initialize the use of the DWP file for the current objfile.
10644 By convention the name of the DWP file is ${objfile}.dwp.
10645 The result is NULL if it can't be found. */
10647 static struct dwp_file
*
10648 open_and_init_dwp_file (void)
10650 struct objfile
*objfile
= dwarf2_per_objfile
->objfile
;
10651 struct dwp_file
*dwp_file
;
10654 struct cleanup
*cleanups
;
10656 /* Try to find first .dwp for the binary file before any symbolic links
10658 dwp_name
= xstrprintf ("%s.dwp", objfile
->original_name
);
10659 cleanups
= make_cleanup (xfree
, dwp_name
);
10661 dbfd
= open_dwp_file (dwp_name
);
10663 && strcmp (objfile
->original_name
, objfile_name (objfile
)) != 0)
10665 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
10666 dwp_name
= xstrprintf ("%s.dwp", objfile_name (objfile
));
10667 make_cleanup (xfree
, dwp_name
);
10668 dbfd
= open_dwp_file (dwp_name
);
10673 if (dwarf2_read_debug
)
10674 fprintf_unfiltered (gdb_stdlog
, "DWP file not found: %s\n", dwp_name
);
10675 do_cleanups (cleanups
);
10678 dwp_file
= OBSTACK_ZALLOC (&objfile
->objfile_obstack
, struct dwp_file
);
10679 dwp_file
->name
= bfd_get_filename (dbfd
);
10680 dwp_file
->dbfd
= dbfd
;
10681 do_cleanups (cleanups
);
10683 /* +1: section 0 is unused */
10684 dwp_file
->num_sections
= bfd_count_sections (dbfd
) + 1;
10685 dwp_file
->elf_sections
=
10686 OBSTACK_CALLOC (&objfile
->objfile_obstack
,
10687 dwp_file
->num_sections
, asection
*);
10689 bfd_map_over_sections (dbfd
, dwarf2_locate_common_dwp_sections
, dwp_file
);
10691 dwp_file
->cus
= create_dwp_hash_table (dwp_file
, 0);
10693 dwp_file
->tus
= create_dwp_hash_table (dwp_file
, 1);
10695 /* The DWP file version is stored in the hash table. Oh well. */
10696 if (dwp_file
->cus
->version
!= dwp_file
->tus
->version
)
10698 /* Technically speaking, we should try to limp along, but this is
10699 pretty bizarre. We use pulongest here because that's the established
10700 portability solution (e.g, we cannot use %u for uint32_t). */
10701 error (_("Dwarf Error: DWP file CU version %s doesn't match"
10702 " TU version %s [in DWP file %s]"),
10703 pulongest (dwp_file
->cus
->version
),
10704 pulongest (dwp_file
->tus
->version
), dwp_name
);
10706 dwp_file
->version
= dwp_file
->cus
->version
;
10708 if (dwp_file
->version
== 2)
10709 bfd_map_over_sections (dbfd
, dwarf2_locate_v2_dwp_sections
, dwp_file
);
10711 dwp_file
->loaded_cus
= allocate_dwp_loaded_cutus_table (objfile
);
10712 dwp_file
->loaded_tus
= allocate_dwp_loaded_cutus_table (objfile
);
10714 if (dwarf2_read_debug
)
10716 fprintf_unfiltered (gdb_stdlog
, "DWP file found: %s\n", dwp_file
->name
);
10717 fprintf_unfiltered (gdb_stdlog
,
10718 " %s CUs, %s TUs\n",
10719 pulongest (dwp_file
->cus
? dwp_file
->cus
->nr_units
: 0),
10720 pulongest (dwp_file
->tus
? dwp_file
->tus
->nr_units
: 0));
10726 /* Wrapper around open_and_init_dwp_file, only open it once. */
10728 static struct dwp_file
*
10729 get_dwp_file (void)
10731 if (! dwarf2_per_objfile
->dwp_checked
)
10733 dwarf2_per_objfile
->dwp_file
= open_and_init_dwp_file ();
10734 dwarf2_per_objfile
->dwp_checked
= 1;
10736 return dwarf2_per_objfile
->dwp_file
;
10739 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
10740 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
10741 or in the DWP file for the objfile, referenced by THIS_UNIT.
10742 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
10743 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
10745 This is called, for example, when wanting to read a variable with a
10746 complex location. Therefore we don't want to do file i/o for every call.
10747 Therefore we don't want to look for a DWO file on every call.
10748 Therefore we first see if we've already seen SIGNATURE in a DWP file,
10749 then we check if we've already seen DWO_NAME, and only THEN do we check
10752 The result is a pointer to the dwo_unit object or NULL if we didn't find it
10753 (dwo_id mismatch or couldn't find the DWO/DWP file). */
10755 static struct dwo_unit
*
10756 lookup_dwo_cutu (struct dwarf2_per_cu_data
*this_unit
,
10757 const char *dwo_name
, const char *comp_dir
,
10758 ULONGEST signature
, int is_debug_types
)
10760 struct objfile
*objfile
= dwarf2_per_objfile
->objfile
;
10761 const char *kind
= is_debug_types
? "TU" : "CU";
10762 void **dwo_file_slot
;
10763 struct dwo_file
*dwo_file
;
10764 struct dwp_file
*dwp_file
;
10766 /* First see if there's a DWP file.
10767 If we have a DWP file but didn't find the DWO inside it, don't
10768 look for the original DWO file. It makes gdb behave differently
10769 depending on whether one is debugging in the build tree. */
10771 dwp_file
= get_dwp_file ();
10772 if (dwp_file
!= NULL
)
10774 const struct dwp_hash_table
*dwp_htab
=
10775 is_debug_types
? dwp_file
->tus
: dwp_file
->cus
;
10777 if (dwp_htab
!= NULL
)
10779 struct dwo_unit
*dwo_cutu
=
10780 lookup_dwo_unit_in_dwp (dwp_file
, comp_dir
,
10781 signature
, is_debug_types
);
10783 if (dwo_cutu
!= NULL
)
10785 if (dwarf2_read_debug
)
10787 fprintf_unfiltered (gdb_stdlog
,
10788 "Virtual DWO %s %s found: @%s\n",
10789 kind
, hex_string (signature
),
10790 host_address_to_string (dwo_cutu
));
10798 /* No DWP file, look for the DWO file. */
10800 dwo_file_slot
= lookup_dwo_file_slot (dwo_name
, comp_dir
);
10801 if (*dwo_file_slot
== NULL
)
10803 /* Read in the file and build a table of the CUs/TUs it contains. */
10804 *dwo_file_slot
= open_and_init_dwo_file (this_unit
, dwo_name
, comp_dir
);
10806 /* NOTE: This will be NULL if unable to open the file. */
10807 dwo_file
= *dwo_file_slot
;
10809 if (dwo_file
!= NULL
)
10811 struct dwo_unit
*dwo_cutu
= NULL
;
10813 if (is_debug_types
&& dwo_file
->tus
)
10815 struct dwo_unit find_dwo_cutu
;
10817 memset (&find_dwo_cutu
, 0, sizeof (find_dwo_cutu
));
10818 find_dwo_cutu
.signature
= signature
;
10819 dwo_cutu
= htab_find (dwo_file
->tus
, &find_dwo_cutu
);
10821 else if (!is_debug_types
&& dwo_file
->cu
)
10823 if (signature
== dwo_file
->cu
->signature
)
10824 dwo_cutu
= dwo_file
->cu
;
10827 if (dwo_cutu
!= NULL
)
10829 if (dwarf2_read_debug
)
10831 fprintf_unfiltered (gdb_stdlog
, "DWO %s %s(%s) found: @%s\n",
10832 kind
, dwo_name
, hex_string (signature
),
10833 host_address_to_string (dwo_cutu
));
10840 /* We didn't find it. This could mean a dwo_id mismatch, or
10841 someone deleted the DWO/DWP file, or the search path isn't set up
10842 correctly to find the file. */
10844 if (dwarf2_read_debug
)
10846 fprintf_unfiltered (gdb_stdlog
, "DWO %s %s(%s) not found\n",
10847 kind
, dwo_name
, hex_string (signature
));
10850 /* This is a warning and not a complaint because it can be caused by
10851 pilot error (e.g., user accidentally deleting the DWO). */
10853 /* Print the name of the DWP file if we looked there, helps the user
10854 better diagnose the problem. */
10855 char *dwp_text
= NULL
;
10856 struct cleanup
*cleanups
;
10858 if (dwp_file
!= NULL
)
10859 dwp_text
= xstrprintf (" [in DWP file %s]", lbasename (dwp_file
->name
));
10860 cleanups
= make_cleanup (xfree
, dwp_text
);
10862 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
10863 " [in module %s]"),
10864 kind
, dwo_name
, hex_string (signature
),
10865 dwp_text
!= NULL
? dwp_text
: "",
10866 this_unit
->is_debug_types
? "TU" : "CU",
10867 this_unit
->offset
.sect_off
, objfile_name (objfile
));
10869 do_cleanups (cleanups
);
10874 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
10875 See lookup_dwo_cutu_unit for details. */
10877 static struct dwo_unit
*
10878 lookup_dwo_comp_unit (struct dwarf2_per_cu_data
*this_cu
,
10879 const char *dwo_name
, const char *comp_dir
,
10880 ULONGEST signature
)
10882 return lookup_dwo_cutu (this_cu
, dwo_name
, comp_dir
, signature
, 0);
10885 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
10886 See lookup_dwo_cutu_unit for details. */
10888 static struct dwo_unit
*
10889 lookup_dwo_type_unit (struct signatured_type
*this_tu
,
10890 const char *dwo_name
, const char *comp_dir
)
10892 return lookup_dwo_cutu (&this_tu
->per_cu
, dwo_name
, comp_dir
, this_tu
->signature
, 1);
10895 /* Traversal function for queue_and_load_all_dwo_tus. */
10898 queue_and_load_dwo_tu (void **slot
, void *info
)
10900 struct dwo_unit
*dwo_unit
= (struct dwo_unit
*) *slot
;
10901 struct dwarf2_per_cu_data
*per_cu
= (struct dwarf2_per_cu_data
*) info
;
10902 ULONGEST signature
= dwo_unit
->signature
;
10903 struct signatured_type
*sig_type
=
10904 lookup_dwo_signatured_type (per_cu
->cu
, signature
);
10906 if (sig_type
!= NULL
)
10908 struct dwarf2_per_cu_data
*sig_cu
= &sig_type
->per_cu
;
10910 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
10911 a real dependency of PER_CU on SIG_TYPE. That is detected later
10912 while processing PER_CU. */
10913 if (maybe_queue_comp_unit (NULL
, sig_cu
, per_cu
->cu
->language
))
10914 load_full_type_unit (sig_cu
);
10915 VEC_safe_push (dwarf2_per_cu_ptr
, per_cu
->imported_symtabs
, sig_cu
);
10921 /* Queue all TUs contained in the DWO of PER_CU to be read in.
10922 The DWO may have the only definition of the type, though it may not be
10923 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
10924 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
10927 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data
*per_cu
)
10929 struct dwo_unit
*dwo_unit
;
10930 struct dwo_file
*dwo_file
;
10932 gdb_assert (!per_cu
->is_debug_types
);
10933 gdb_assert (get_dwp_file () == NULL
);
10934 gdb_assert (per_cu
->cu
!= NULL
);
10936 dwo_unit
= per_cu
->cu
->dwo_unit
;
10937 gdb_assert (dwo_unit
!= NULL
);
10939 dwo_file
= dwo_unit
->dwo_file
;
10940 if (dwo_file
->tus
!= NULL
)
10941 htab_traverse_noresize (dwo_file
->tus
, queue_and_load_dwo_tu
, per_cu
);
10944 /* Free all resources associated with DWO_FILE.
10945 Close the DWO file and munmap the sections.
10946 All memory should be on the objfile obstack. */
10949 free_dwo_file (struct dwo_file
*dwo_file
, struct objfile
*objfile
)
10952 struct dwarf2_section_info
*section
;
10954 /* Note: dbfd is NULL for virtual DWO files. */
10955 gdb_bfd_unref (dwo_file
->dbfd
);
10957 VEC_free (dwarf2_section_info_def
, dwo_file
->sections
.types
);
10960 /* Wrapper for free_dwo_file for use in cleanups. */
10963 free_dwo_file_cleanup (void *arg
)
10965 struct dwo_file
*dwo_file
= (struct dwo_file
*) arg
;
10966 struct objfile
*objfile
= dwarf2_per_objfile
->objfile
;
10968 free_dwo_file (dwo_file
, objfile
);
10971 /* Traversal function for free_dwo_files. */
10974 free_dwo_file_from_slot (void **slot
, void *info
)
10976 struct dwo_file
*dwo_file
= (struct dwo_file
*) *slot
;
10977 struct objfile
*objfile
= (struct objfile
*) info
;
10979 free_dwo_file (dwo_file
, objfile
);
10984 /* Free all resources associated with DWO_FILES. */
10987 free_dwo_files (htab_t dwo_files
, struct objfile
*objfile
)
10989 htab_traverse_noresize (dwo_files
, free_dwo_file_from_slot
, objfile
);
10992 /* Read in various DIEs. */
10994 /* qsort helper for inherit_abstract_dies. */
10997 unsigned_int_compar (const void *ap
, const void *bp
)
10999 unsigned int a
= *(unsigned int *) ap
;
11000 unsigned int b
= *(unsigned int *) bp
;
11002 return (a
> b
) - (b
> a
);
11005 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
11006 Inherit only the children of the DW_AT_abstract_origin DIE not being
11007 already referenced by DW_AT_abstract_origin from the children of the
11011 inherit_abstract_dies (struct die_info
*die
, struct dwarf2_cu
*cu
)
11013 struct die_info
*child_die
;
11014 unsigned die_children_count
;
11015 /* CU offsets which were referenced by children of the current DIE. */
11016 sect_offset
*offsets
;
11017 sect_offset
*offsets_end
, *offsetp
;
11018 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
11019 struct die_info
*origin_die
;
11020 /* Iterator of the ORIGIN_DIE children. */
11021 struct die_info
*origin_child_die
;
11022 struct cleanup
*cleanups
;
11023 struct attribute
*attr
;
11024 struct dwarf2_cu
*origin_cu
;
11025 struct pending
**origin_previous_list_in_scope
;
11027 attr
= dwarf2_attr (die
, DW_AT_abstract_origin
, cu
);
11031 /* Note that following die references may follow to a die in a
11035 origin_die
= follow_die_ref (die
, attr
, &origin_cu
);
11037 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
11039 origin_previous_list_in_scope
= origin_cu
->list_in_scope
;
11040 origin_cu
->list_in_scope
= cu
->list_in_scope
;
11042 if (die
->tag
!= origin_die
->tag
11043 && !(die
->tag
== DW_TAG_inlined_subroutine
11044 && origin_die
->tag
== DW_TAG_subprogram
))
11045 complaint (&symfile_complaints
,
11046 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
11047 die
->offset
.sect_off
, origin_die
->offset
.sect_off
);
11049 child_die
= die
->child
;
11050 die_children_count
= 0;
11051 while (child_die
&& child_die
->tag
)
11053 child_die
= sibling_die (child_die
);
11054 die_children_count
++;
11056 offsets
= xmalloc (sizeof (*offsets
) * die_children_count
);
11057 cleanups
= make_cleanup (xfree
, offsets
);
11059 offsets_end
= offsets
;
11060 child_die
= die
->child
;
11061 while (child_die
&& child_die
->tag
)
11063 /* For each CHILD_DIE, find the corresponding child of
11064 ORIGIN_DIE. If there is more than one layer of
11065 DW_AT_abstract_origin, follow them all; there shouldn't be,
11066 but GCC versions at least through 4.4 generate this (GCC PR
11068 struct die_info
*child_origin_die
= child_die
;
11069 struct dwarf2_cu
*child_origin_cu
= cu
;
11073 attr
= dwarf2_attr (child_origin_die
, DW_AT_abstract_origin
,
11077 child_origin_die
= follow_die_ref (child_origin_die
, attr
,
11081 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
11082 counterpart may exist. */
11083 if (child_origin_die
!= child_die
)
11085 if (child_die
->tag
!= child_origin_die
->tag
11086 && !(child_die
->tag
== DW_TAG_inlined_subroutine
11087 && child_origin_die
->tag
== DW_TAG_subprogram
))
11088 complaint (&symfile_complaints
,
11089 _("Child DIE 0x%x and its abstract origin 0x%x have "
11090 "different tags"), child_die
->offset
.sect_off
,
11091 child_origin_die
->offset
.sect_off
);
11092 if (child_origin_die
->parent
!= origin_die
)
11093 complaint (&symfile_complaints
,
11094 _("Child DIE 0x%x and its abstract origin 0x%x have "
11095 "different parents"), child_die
->offset
.sect_off
,
11096 child_origin_die
->offset
.sect_off
);
11098 *offsets_end
++ = child_origin_die
->offset
;
11100 child_die
= sibling_die (child_die
);
11102 qsort (offsets
, offsets_end
- offsets
, sizeof (*offsets
),
11103 unsigned_int_compar
);
11104 for (offsetp
= offsets
+ 1; offsetp
< offsets_end
; offsetp
++)
11105 if (offsetp
[-1].sect_off
== offsetp
->sect_off
)
11106 complaint (&symfile_complaints
,
11107 _("Multiple children of DIE 0x%x refer "
11108 "to DIE 0x%x as their abstract origin"),
11109 die
->offset
.sect_off
, offsetp
->sect_off
);
11112 origin_child_die
= origin_die
->child
;
11113 while (origin_child_die
&& origin_child_die
->tag
)
11115 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
11116 while (offsetp
< offsets_end
11117 && offsetp
->sect_off
< origin_child_die
->offset
.sect_off
)
11119 if (offsetp
>= offsets_end
11120 || offsetp
->sect_off
> origin_child_die
->offset
.sect_off
)
11122 /* Found that ORIGIN_CHILD_DIE is really not referenced.
11123 Check whether we're already processing ORIGIN_CHILD_DIE.
11124 This can happen with mutually referenced abstract_origins.
11126 if (!origin_child_die
->in_process
)
11127 process_die (origin_child_die
, origin_cu
);
11129 origin_child_die
= sibling_die (origin_child_die
);
11131 origin_cu
->list_in_scope
= origin_previous_list_in_scope
;
11133 do_cleanups (cleanups
);
11137 read_func_scope (struct die_info
*die
, struct dwarf2_cu
*cu
)
11139 struct objfile
*objfile
= cu
->objfile
;
11140 struct context_stack
*new;
11143 struct die_info
*child_die
;
11144 struct attribute
*attr
, *call_line
, *call_file
;
11146 CORE_ADDR baseaddr
;
11147 struct block
*block
;
11148 int inlined_func
= (die
->tag
== DW_TAG_inlined_subroutine
);
11149 VEC (symbolp
) *template_args
= NULL
;
11150 struct template_symbol
*templ_func
= NULL
;
11154 /* If we do not have call site information, we can't show the
11155 caller of this inlined function. That's too confusing, so
11156 only use the scope for local variables. */
11157 call_line
= dwarf2_attr (die
, DW_AT_call_line
, cu
);
11158 call_file
= dwarf2_attr (die
, DW_AT_call_file
, cu
);
11159 if (call_line
== NULL
|| call_file
== NULL
)
11161 read_lexical_block_scope (die
, cu
);
11166 baseaddr
= ANOFFSET (objfile
->section_offsets
, SECT_OFF_TEXT (objfile
));
11168 name
= dwarf2_name (die
, cu
);
11170 /* Ignore functions with missing or empty names. These are actually
11171 illegal according to the DWARF standard. */
11174 complaint (&symfile_complaints
,
11175 _("missing name for subprogram DIE at %d"),
11176 die
->offset
.sect_off
);
11180 /* Ignore functions with missing or invalid low and high pc attributes. */
11181 if (!dwarf2_get_pc_bounds (die
, &lowpc
, &highpc
, cu
, NULL
))
11183 attr
= dwarf2_attr (die
, DW_AT_external
, cu
);
11184 if (!attr
|| !DW_UNSND (attr
))
11185 complaint (&symfile_complaints
,
11186 _("cannot get low and high bounds "
11187 "for subprogram DIE at %d"),
11188 die
->offset
.sect_off
);
11193 highpc
+= baseaddr
;
11195 /* If we have any template arguments, then we must allocate a
11196 different sort of symbol. */
11197 for (child_die
= die
->child
; child_die
; child_die
= sibling_die (child_die
))
11199 if (child_die
->tag
== DW_TAG_template_type_param
11200 || child_die
->tag
== DW_TAG_template_value_param
)
11202 templ_func
= allocate_template_symbol (objfile
);
11203 templ_func
->base
.is_cplus_template_function
= 1;
11208 new = push_context (0, lowpc
);
11209 new->name
= new_symbol_full (die
, read_type_die (die
, cu
), cu
,
11210 (struct symbol
*) templ_func
);
11212 /* If there is a location expression for DW_AT_frame_base, record
11214 attr
= dwarf2_attr (die
, DW_AT_frame_base
, cu
);
11216 dwarf2_symbol_mark_computed (attr
, new->name
, cu
, 1);
11218 cu
->list_in_scope
= &local_symbols
;
11220 if (die
->child
!= NULL
)
11222 child_die
= die
->child
;
11223 while (child_die
&& child_die
->tag
)
11225 if (child_die
->tag
== DW_TAG_template_type_param
11226 || child_die
->tag
== DW_TAG_template_value_param
)
11228 struct symbol
*arg
= new_symbol (child_die
, NULL
, cu
);
11231 VEC_safe_push (symbolp
, template_args
, arg
);
11234 process_die (child_die
, cu
);
11235 child_die
= sibling_die (child_die
);
11239 inherit_abstract_dies (die
, cu
);
11241 /* If we have a DW_AT_specification, we might need to import using
11242 directives from the context of the specification DIE. See the
11243 comment in determine_prefix. */
11244 if (cu
->language
== language_cplus
11245 && dwarf2_attr (die
, DW_AT_specification
, cu
))
11247 struct dwarf2_cu
*spec_cu
= cu
;
11248 struct die_info
*spec_die
= die_specification (die
, &spec_cu
);
11252 child_die
= spec_die
->child
;
11253 while (child_die
&& child_die
->tag
)
11255 if (child_die
->tag
== DW_TAG_imported_module
)
11256 process_die (child_die
, spec_cu
);
11257 child_die
= sibling_die (child_die
);
11260 /* In some cases, GCC generates specification DIEs that
11261 themselves contain DW_AT_specification attributes. */
11262 spec_die
= die_specification (spec_die
, &spec_cu
);
11266 new = pop_context ();
11267 /* Make a block for the local symbols within. */
11268 block
= finish_block (new->name
, &local_symbols
, new->old_blocks
,
11271 /* For C++, set the block's scope. */
11272 if ((cu
->language
== language_cplus
|| cu
->language
== language_fortran
)
11273 && cu
->processing_has_namespace_info
)
11274 block_set_scope (block
, determine_prefix (die
, cu
),
11275 &objfile
->objfile_obstack
);
11277 /* If we have address ranges, record them. */
11278 dwarf2_record_block_ranges (die
, block
, baseaddr
, cu
);
11280 /* Attach template arguments to function. */
11281 if (! VEC_empty (symbolp
, template_args
))
11283 gdb_assert (templ_func
!= NULL
);
11285 templ_func
->n_template_arguments
= VEC_length (symbolp
, template_args
);
11286 templ_func
->template_arguments
11287 = obstack_alloc (&objfile
->objfile_obstack
,
11288 (templ_func
->n_template_arguments
11289 * sizeof (struct symbol
*)));
11290 memcpy (templ_func
->template_arguments
,
11291 VEC_address (symbolp
, template_args
),
11292 (templ_func
->n_template_arguments
* sizeof (struct symbol
*)));
11293 VEC_free (symbolp
, template_args
);
11296 /* In C++, we can have functions nested inside functions (e.g., when
11297 a function declares a class that has methods). This means that
11298 when we finish processing a function scope, we may need to go
11299 back to building a containing block's symbol lists. */
11300 local_symbols
= new->locals
;
11301 using_directives
= new->using_directives
;
11303 /* If we've finished processing a top-level function, subsequent
11304 symbols go in the file symbol list. */
11305 if (outermost_context_p ())
11306 cu
->list_in_scope
= &file_symbols
;
11309 /* Process all the DIES contained within a lexical block scope. Start
11310 a new scope, process the dies, and then close the scope. */
11313 read_lexical_block_scope (struct die_info
*die
, struct dwarf2_cu
*cu
)
11315 struct objfile
*objfile
= cu
->objfile
;
11316 struct context_stack
*new;
11317 CORE_ADDR lowpc
, highpc
;
11318 struct die_info
*child_die
;
11319 CORE_ADDR baseaddr
;
11321 baseaddr
= ANOFFSET (objfile
->section_offsets
, SECT_OFF_TEXT (objfile
));
11323 /* Ignore blocks with missing or invalid low and high pc attributes. */
11324 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11325 as multiple lexical blocks? Handling children in a sane way would
11326 be nasty. Might be easier to properly extend generic blocks to
11327 describe ranges. */
11328 if (!dwarf2_get_pc_bounds (die
, &lowpc
, &highpc
, cu
, NULL
))
11331 highpc
+= baseaddr
;
11333 push_context (0, lowpc
);
11334 if (die
->child
!= NULL
)
11336 child_die
= die
->child
;
11337 while (child_die
&& child_die
->tag
)
11339 process_die (child_die
, cu
);
11340 child_die
= sibling_die (child_die
);
11343 new = pop_context ();
11345 if (local_symbols
!= NULL
|| using_directives
!= NULL
)
11347 struct block
*block
11348 = finish_block (0, &local_symbols
, new->old_blocks
, new->start_addr
,
11351 /* Note that recording ranges after traversing children, as we
11352 do here, means that recording a parent's ranges entails
11353 walking across all its children's ranges as they appear in
11354 the address map, which is quadratic behavior.
11356 It would be nicer to record the parent's ranges before
11357 traversing its children, simply overriding whatever you find
11358 there. But since we don't even decide whether to create a
11359 block until after we've traversed its children, that's hard
11361 dwarf2_record_block_ranges (die
, block
, baseaddr
, cu
);
11363 local_symbols
= new->locals
;
11364 using_directives
= new->using_directives
;
11367 /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
11370 read_call_site_scope (struct die_info
*die
, struct dwarf2_cu
*cu
)
11372 struct objfile
*objfile
= cu
->objfile
;
11373 struct gdbarch
*gdbarch
= get_objfile_arch (objfile
);
11374 CORE_ADDR pc
, baseaddr
;
11375 struct attribute
*attr
;
11376 struct call_site
*call_site
, call_site_local
;
11379 struct die_info
*child_die
;
11381 baseaddr
= ANOFFSET (objfile
->section_offsets
, SECT_OFF_TEXT (objfile
));
11383 attr
= dwarf2_attr (die
, DW_AT_low_pc
, cu
);
11386 complaint (&symfile_complaints
,
11387 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
11388 "DIE 0x%x [in module %s]"),
11389 die
->offset
.sect_off
, objfile_name (objfile
));
11392 pc
= attr_value_as_address (attr
) + baseaddr
;
11394 if (cu
->call_site_htab
== NULL
)
11395 cu
->call_site_htab
= htab_create_alloc_ex (16, core_addr_hash
, core_addr_eq
,
11396 NULL
, &objfile
->objfile_obstack
,
11397 hashtab_obstack_allocate
, NULL
);
11398 call_site_local
.pc
= pc
;
11399 slot
= htab_find_slot (cu
->call_site_htab
, &call_site_local
, INSERT
);
11402 complaint (&symfile_complaints
,
11403 _("Duplicate PC %s for DW_TAG_GNU_call_site "
11404 "DIE 0x%x [in module %s]"),
11405 paddress (gdbarch
, pc
), die
->offset
.sect_off
,
11406 objfile_name (objfile
));
11410 /* Count parameters at the caller. */
11413 for (child_die
= die
->child
; child_die
&& child_die
->tag
;
11414 child_die
= sibling_die (child_die
))
11416 if (child_die
->tag
!= DW_TAG_GNU_call_site_parameter
)
11418 complaint (&symfile_complaints
,
11419 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
11420 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11421 child_die
->tag
, child_die
->offset
.sect_off
,
11422 objfile_name (objfile
));
11429 call_site
= obstack_alloc (&objfile
->objfile_obstack
,
11430 (sizeof (*call_site
)
11431 + (sizeof (*call_site
->parameter
)
11432 * (nparams
- 1))));
11434 memset (call_site
, 0, sizeof (*call_site
) - sizeof (*call_site
->parameter
));
11435 call_site
->pc
= pc
;
11437 if (dwarf2_flag_true_p (die
, DW_AT_GNU_tail_call
, cu
))
11439 struct die_info
*func_die
;
11441 /* Skip also over DW_TAG_inlined_subroutine. */
11442 for (func_die
= die
->parent
;
11443 func_die
&& func_die
->tag
!= DW_TAG_subprogram
11444 && func_die
->tag
!= DW_TAG_subroutine_type
;
11445 func_die
= func_die
->parent
);
11447 /* DW_AT_GNU_all_call_sites is a superset
11448 of DW_AT_GNU_all_tail_call_sites. */
11450 && !dwarf2_flag_true_p (func_die
, DW_AT_GNU_all_call_sites
, cu
)
11451 && !dwarf2_flag_true_p (func_die
, DW_AT_GNU_all_tail_call_sites
, cu
))
11453 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11454 not complete. But keep CALL_SITE for look ups via call_site_htab,
11455 both the initial caller containing the real return address PC and
11456 the final callee containing the current PC of a chain of tail
11457 calls do not need to have the tail call list complete. But any
11458 function candidate for a virtual tail call frame searched via
11459 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11460 determined unambiguously. */
11464 struct type
*func_type
= NULL
;
11467 func_type
= get_die_type (func_die
, cu
);
11468 if (func_type
!= NULL
)
11470 gdb_assert (TYPE_CODE (func_type
) == TYPE_CODE_FUNC
);
11472 /* Enlist this call site to the function. */
11473 call_site
->tail_call_next
= TYPE_TAIL_CALL_LIST (func_type
);
11474 TYPE_TAIL_CALL_LIST (func_type
) = call_site
;
11477 complaint (&symfile_complaints
,
11478 _("Cannot find function owning DW_TAG_GNU_call_site "
11479 "DIE 0x%x [in module %s]"),
11480 die
->offset
.sect_off
, objfile_name (objfile
));
11484 attr
= dwarf2_attr (die
, DW_AT_GNU_call_site_target
, cu
);
11486 attr
= dwarf2_attr (die
, DW_AT_abstract_origin
, cu
);
11487 SET_FIELD_DWARF_BLOCK (call_site
->target
, NULL
);
11488 if (!attr
|| (attr_form_is_block (attr
) && DW_BLOCK (attr
)->size
== 0))
11489 /* Keep NULL DWARF_BLOCK. */;
11490 else if (attr_form_is_block (attr
))
11492 struct dwarf2_locexpr_baton
*dlbaton
;
11494 dlbaton
= obstack_alloc (&objfile
->objfile_obstack
, sizeof (*dlbaton
));
11495 dlbaton
->data
= DW_BLOCK (attr
)->data
;
11496 dlbaton
->size
= DW_BLOCK (attr
)->size
;
11497 dlbaton
->per_cu
= cu
->per_cu
;
11499 SET_FIELD_DWARF_BLOCK (call_site
->target
, dlbaton
);
11501 else if (attr_form_is_ref (attr
))
11503 struct dwarf2_cu
*target_cu
= cu
;
11504 struct die_info
*target_die
;
11506 target_die
= follow_die_ref (die
, attr
, &target_cu
);
11507 gdb_assert (target_cu
->objfile
== objfile
);
11508 if (die_is_declaration (target_die
, target_cu
))
11510 const char *target_physname
= NULL
;
11511 struct attribute
*target_attr
;
11513 /* Prefer the mangled name; otherwise compute the demangled one. */
11514 target_attr
= dwarf2_attr (target_die
, DW_AT_linkage_name
, target_cu
);
11515 if (target_attr
== NULL
)
11516 target_attr
= dwarf2_attr (target_die
, DW_AT_MIPS_linkage_name
,
11518 if (target_attr
!= NULL
&& DW_STRING (target_attr
) != NULL
)
11519 target_physname
= DW_STRING (target_attr
);
11521 target_physname
= dwarf2_physname (NULL
, target_die
, target_cu
);
11522 if (target_physname
== NULL
)
11523 complaint (&symfile_complaints
,
11524 _("DW_AT_GNU_call_site_target target DIE has invalid "
11525 "physname, for referencing DIE 0x%x [in module %s]"),
11526 die
->offset
.sect_off
, objfile_name (objfile
));
11528 SET_FIELD_PHYSNAME (call_site
->target
, target_physname
);
11534 /* DW_AT_entry_pc should be preferred. */
11535 if (!dwarf2_get_pc_bounds (target_die
, &lowpc
, NULL
, target_cu
, NULL
))
11536 complaint (&symfile_complaints
,
11537 _("DW_AT_GNU_call_site_target target DIE has invalid "
11538 "low pc, for referencing DIE 0x%x [in module %s]"),
11539 die
->offset
.sect_off
, objfile_name (objfile
));
11541 SET_FIELD_PHYSADDR (call_site
->target
, lowpc
+ baseaddr
);
11545 complaint (&symfile_complaints
,
11546 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
11547 "block nor reference, for DIE 0x%x [in module %s]"),
11548 die
->offset
.sect_off
, objfile_name (objfile
));
11550 call_site
->per_cu
= cu
->per_cu
;
11552 for (child_die
= die
->child
;
11553 child_die
&& child_die
->tag
;
11554 child_die
= sibling_die (child_die
))
11556 struct call_site_parameter
*parameter
;
11557 struct attribute
*loc
, *origin
;
11559 if (child_die
->tag
!= DW_TAG_GNU_call_site_parameter
)
11561 /* Already printed the complaint above. */
11565 gdb_assert (call_site
->parameter_count
< nparams
);
11566 parameter
= &call_site
->parameter
[call_site
->parameter_count
];
11568 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
11569 specifies DW_TAG_formal_parameter. Value of the data assumed for the
11570 register is contained in DW_AT_GNU_call_site_value. */
11572 loc
= dwarf2_attr (child_die
, DW_AT_location
, cu
);
11573 origin
= dwarf2_attr (child_die
, DW_AT_abstract_origin
, cu
);
11574 if (loc
== NULL
&& origin
!= NULL
&& attr_form_is_ref (origin
))
11576 sect_offset offset
;
11578 parameter
->kind
= CALL_SITE_PARAMETER_PARAM_OFFSET
;
11579 offset
= dwarf2_get_ref_die_offset (origin
);
11580 if (!offset_in_cu_p (&cu
->header
, offset
))
11582 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
11583 binding can be done only inside one CU. Such referenced DIE
11584 therefore cannot be even moved to DW_TAG_partial_unit. */
11585 complaint (&symfile_complaints
,
11586 _("DW_AT_abstract_origin offset is not in CU for "
11587 "DW_TAG_GNU_call_site child DIE 0x%x "
11589 child_die
->offset
.sect_off
, objfile_name (objfile
));
11592 parameter
->u
.param_offset
.cu_off
= (offset
.sect_off
11593 - cu
->header
.offset
.sect_off
);
11595 else if (loc
== NULL
|| origin
!= NULL
|| !attr_form_is_block (loc
))
11597 complaint (&symfile_complaints
,
11598 _("No DW_FORM_block* DW_AT_location for "
11599 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11600 child_die
->offset
.sect_off
, objfile_name (objfile
));
11605 parameter
->u
.dwarf_reg
= dwarf_block_to_dwarf_reg
11606 (DW_BLOCK (loc
)->data
, &DW_BLOCK (loc
)->data
[DW_BLOCK (loc
)->size
]);
11607 if (parameter
->u
.dwarf_reg
!= -1)
11608 parameter
->kind
= CALL_SITE_PARAMETER_DWARF_REG
;
11609 else if (dwarf_block_to_sp_offset (gdbarch
, DW_BLOCK (loc
)->data
,
11610 &DW_BLOCK (loc
)->data
[DW_BLOCK (loc
)->size
],
11611 ¶meter
->u
.fb_offset
))
11612 parameter
->kind
= CALL_SITE_PARAMETER_FB_OFFSET
;
11615 complaint (&symfile_complaints
,
11616 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
11617 "for DW_FORM_block* DW_AT_location is supported for "
11618 "DW_TAG_GNU_call_site child DIE 0x%x "
11620 child_die
->offset
.sect_off
, objfile_name (objfile
));
11625 attr
= dwarf2_attr (child_die
, DW_AT_GNU_call_site_value
, cu
);
11626 if (!attr_form_is_block (attr
))
11628 complaint (&symfile_complaints
,
11629 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
11630 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11631 child_die
->offset
.sect_off
, objfile_name (objfile
));
11634 parameter
->value
= DW_BLOCK (attr
)->data
;
11635 parameter
->value_size
= DW_BLOCK (attr
)->size
;
11637 /* Parameters are not pre-cleared by memset above. */
11638 parameter
->data_value
= NULL
;
11639 parameter
->data_value_size
= 0;
11640 call_site
->parameter_count
++;
11642 attr
= dwarf2_attr (child_die
, DW_AT_GNU_call_site_data_value
, cu
);
11645 if (!attr_form_is_block (attr
))
11646 complaint (&symfile_complaints
,
11647 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
11648 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11649 child_die
->offset
.sect_off
, objfile_name (objfile
));
11652 parameter
->data_value
= DW_BLOCK (attr
)->data
;
11653 parameter
->data_value_size
= DW_BLOCK (attr
)->size
;
11659 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
11660 Return 1 if the attributes are present and valid, otherwise, return 0.
11661 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
11664 dwarf2_ranges_read (unsigned offset
, CORE_ADDR
*low_return
,
11665 CORE_ADDR
*high_return
, struct dwarf2_cu
*cu
,
11666 struct partial_symtab
*ranges_pst
)
11668 struct objfile
*objfile
= cu
->objfile
;
11669 struct comp_unit_head
*cu_header
= &cu
->header
;
11670 bfd
*obfd
= objfile
->obfd
;
11671 unsigned int addr_size
= cu_header
->addr_size
;
11672 CORE_ADDR mask
= ~(~(CORE_ADDR
)1 << (addr_size
* 8 - 1));
11673 /* Base address selection entry. */
11676 unsigned int dummy
;
11677 const gdb_byte
*buffer
;
11681 CORE_ADDR high
= 0;
11682 CORE_ADDR baseaddr
;
11684 found_base
= cu
->base_known
;
11685 base
= cu
->base_address
;
11687 dwarf2_read_section (objfile
, &dwarf2_per_objfile
->ranges
);
11688 if (offset
>= dwarf2_per_objfile
->ranges
.size
)
11690 complaint (&symfile_complaints
,
11691 _("Offset %d out of bounds for DW_AT_ranges attribute"),
11695 buffer
= dwarf2_per_objfile
->ranges
.buffer
+ offset
;
11697 /* Read in the largest possible address. */
11698 marker
= read_address (obfd
, buffer
, cu
, &dummy
);
11699 if ((marker
& mask
) == mask
)
11701 /* If we found the largest possible address, then
11702 read the base address. */
11703 base
= read_address (obfd
, buffer
+ addr_size
, cu
, &dummy
);
11704 buffer
+= 2 * addr_size
;
11705 offset
+= 2 * addr_size
;
11711 baseaddr
= ANOFFSET (objfile
->section_offsets
, SECT_OFF_TEXT (objfile
));
11715 CORE_ADDR range_beginning
, range_end
;
11717 range_beginning
= read_address (obfd
, buffer
, cu
, &dummy
);
11718 buffer
+= addr_size
;
11719 range_end
= read_address (obfd
, buffer
, cu
, &dummy
);
11720 buffer
+= addr_size
;
11721 offset
+= 2 * addr_size
;
11723 /* An end of list marker is a pair of zero addresses. */
11724 if (range_beginning
== 0 && range_end
== 0)
11725 /* Found the end of list entry. */
11728 /* Each base address selection entry is a pair of 2 values.
11729 The first is the largest possible address, the second is
11730 the base address. Check for a base address here. */
11731 if ((range_beginning
& mask
) == mask
)
11733 /* If we found the largest possible address, then
11734 read the base address. */
11735 base
= read_address (obfd
, buffer
+ addr_size
, cu
, &dummy
);
11742 /* We have no valid base address for the ranges
11744 complaint (&symfile_complaints
,
11745 _("Invalid .debug_ranges data (no base address)"));
11749 if (range_beginning
> range_end
)
11751 /* Inverted range entries are invalid. */
11752 complaint (&symfile_complaints
,
11753 _("Invalid .debug_ranges data (inverted range)"));
11757 /* Empty range entries have no effect. */
11758 if (range_beginning
== range_end
)
11761 range_beginning
+= base
;
11764 /* A not-uncommon case of bad debug info.
11765 Don't pollute the addrmap with bad data. */
11766 if (range_beginning
+ baseaddr
== 0
11767 && !dwarf2_per_objfile
->has_section_at_zero
)
11769 complaint (&symfile_complaints
,
11770 _(".debug_ranges entry has start address of zero"
11771 " [in module %s]"), objfile_name (objfile
));
11775 if (ranges_pst
!= NULL
)
11776 addrmap_set_empty (objfile
->psymtabs_addrmap
,
11777 range_beginning
+ baseaddr
,
11778 range_end
- 1 + baseaddr
,
11781 /* FIXME: This is recording everything as a low-high
11782 segment of consecutive addresses. We should have a
11783 data structure for discontiguous block ranges
11787 low
= range_beginning
;
11793 if (range_beginning
< low
)
11794 low
= range_beginning
;
11795 if (range_end
> high
)
11801 /* If the first entry is an end-of-list marker, the range
11802 describes an empty scope, i.e. no instructions. */
11808 *high_return
= high
;
11812 /* Get low and high pc attributes from a die. Return 1 if the attributes
11813 are present and valid, otherwise, return 0. Return -1 if the range is
11814 discontinuous, i.e. derived from DW_AT_ranges information. */
11817 dwarf2_get_pc_bounds (struct die_info
*die
, CORE_ADDR
*lowpc
,
11818 CORE_ADDR
*highpc
, struct dwarf2_cu
*cu
,
11819 struct partial_symtab
*pst
)
11821 struct attribute
*attr
;
11822 struct attribute
*attr_high
;
11824 CORE_ADDR high
= 0;
11827 attr_high
= dwarf2_attr (die
, DW_AT_high_pc
, cu
);
11830 attr
= dwarf2_attr (die
, DW_AT_low_pc
, cu
);
11833 low
= attr_value_as_address (attr
);
11834 high
= attr_value_as_address (attr_high
);
11835 if (cu
->header
.version
>= 4 && attr_form_is_constant (attr_high
))
11839 /* Found high w/o low attribute. */
11842 /* Found consecutive range of addresses. */
11847 attr
= dwarf2_attr (die
, DW_AT_ranges
, cu
);
11850 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
11851 We take advantage of the fact that DW_AT_ranges does not appear
11852 in DW_TAG_compile_unit of DWO files. */
11853 int need_ranges_base
= die
->tag
!= DW_TAG_compile_unit
;
11854 unsigned int ranges_offset
= (DW_UNSND (attr
)
11855 + (need_ranges_base
11859 /* Value of the DW_AT_ranges attribute is the offset in the
11860 .debug_ranges section. */
11861 if (!dwarf2_ranges_read (ranges_offset
, &low
, &high
, cu
, pst
))
11863 /* Found discontinuous range of addresses. */
11868 /* read_partial_die has also the strict LOW < HIGH requirement. */
11872 /* When using the GNU linker, .gnu.linkonce. sections are used to
11873 eliminate duplicate copies of functions and vtables and such.
11874 The linker will arbitrarily choose one and discard the others.
11875 The AT_*_pc values for such functions refer to local labels in
11876 these sections. If the section from that file was discarded, the
11877 labels are not in the output, so the relocs get a value of 0.
11878 If this is a discarded function, mark the pc bounds as invalid,
11879 so that GDB will ignore it. */
11880 if (low
== 0 && !dwarf2_per_objfile
->has_section_at_zero
)
11889 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
11890 its low and high PC addresses. Do nothing if these addresses could not
11891 be determined. Otherwise, set LOWPC to the low address if it is smaller,
11892 and HIGHPC to the high address if greater than HIGHPC. */
11895 dwarf2_get_subprogram_pc_bounds (struct die_info
*die
,
11896 CORE_ADDR
*lowpc
, CORE_ADDR
*highpc
,
11897 struct dwarf2_cu
*cu
)
11899 CORE_ADDR low
, high
;
11900 struct die_info
*child
= die
->child
;
11902 if (dwarf2_get_pc_bounds (die
, &low
, &high
, cu
, NULL
))
11904 *lowpc
= min (*lowpc
, low
);
11905 *highpc
= max (*highpc
, high
);
11908 /* If the language does not allow nested subprograms (either inside
11909 subprograms or lexical blocks), we're done. */
11910 if (cu
->language
!= language_ada
)
11913 /* Check all the children of the given DIE. If it contains nested
11914 subprograms, then check their pc bounds. Likewise, we need to
11915 check lexical blocks as well, as they may also contain subprogram
11917 while (child
&& child
->tag
)
11919 if (child
->tag
== DW_TAG_subprogram
11920 || child
->tag
== DW_TAG_lexical_block
)
11921 dwarf2_get_subprogram_pc_bounds (child
, lowpc
, highpc
, cu
);
11922 child
= sibling_die (child
);
11926 /* Get the low and high pc's represented by the scope DIE, and store
11927 them in *LOWPC and *HIGHPC. If the correct values can't be
11928 determined, set *LOWPC to -1 and *HIGHPC to 0. */
11931 get_scope_pc_bounds (struct die_info
*die
,
11932 CORE_ADDR
*lowpc
, CORE_ADDR
*highpc
,
11933 struct dwarf2_cu
*cu
)
11935 CORE_ADDR best_low
= (CORE_ADDR
) -1;
11936 CORE_ADDR best_high
= (CORE_ADDR
) 0;
11937 CORE_ADDR current_low
, current_high
;
11939 if (dwarf2_get_pc_bounds (die
, ¤t_low
, ¤t_high
, cu
, NULL
))
11941 best_low
= current_low
;
11942 best_high
= current_high
;
11946 struct die_info
*child
= die
->child
;
11948 while (child
&& child
->tag
)
11950 switch (child
->tag
) {
11951 case DW_TAG_subprogram
:
11952 dwarf2_get_subprogram_pc_bounds (child
, &best_low
, &best_high
, cu
);
11954 case DW_TAG_namespace
:
11955 case DW_TAG_module
:
11956 /* FIXME: carlton/2004-01-16: Should we do this for
11957 DW_TAG_class_type/DW_TAG_structure_type, too? I think
11958 that current GCC's always emit the DIEs corresponding
11959 to definitions of methods of classes as children of a
11960 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
11961 the DIEs giving the declarations, which could be
11962 anywhere). But I don't see any reason why the
11963 standards says that they have to be there. */
11964 get_scope_pc_bounds (child
, ¤t_low
, ¤t_high
, cu
);
11966 if (current_low
!= ((CORE_ADDR
) -1))
11968 best_low
= min (best_low
, current_low
);
11969 best_high
= max (best_high
, current_high
);
11977 child
= sibling_die (child
);
11982 *highpc
= best_high
;
11985 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
11989 dwarf2_record_block_ranges (struct die_info
*die
, struct block
*block
,
11990 CORE_ADDR baseaddr
, struct dwarf2_cu
*cu
)
11992 struct objfile
*objfile
= cu
->objfile
;
11993 struct attribute
*attr
;
11994 struct attribute
*attr_high
;
11996 attr_high
= dwarf2_attr (die
, DW_AT_high_pc
, cu
);
11999 attr
= dwarf2_attr (die
, DW_AT_low_pc
, cu
);
12002 CORE_ADDR low
= attr_value_as_address (attr
);
12003 CORE_ADDR high
= attr_value_as_address (attr_high
);
12005 if (cu
->header
.version
>= 4 && attr_form_is_constant (attr_high
))
12008 record_block_range (block
, baseaddr
+ low
, baseaddr
+ high
- 1);
12012 attr
= dwarf2_attr (die
, DW_AT_ranges
, cu
);
12015 bfd
*obfd
= objfile
->obfd
;
12016 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12017 We take advantage of the fact that DW_AT_ranges does not appear
12018 in DW_TAG_compile_unit of DWO files. */
12019 int need_ranges_base
= die
->tag
!= DW_TAG_compile_unit
;
12021 /* The value of the DW_AT_ranges attribute is the offset of the
12022 address range list in the .debug_ranges section. */
12023 unsigned long offset
= (DW_UNSND (attr
)
12024 + (need_ranges_base
? cu
->ranges_base
: 0));
12025 const gdb_byte
*buffer
;
12027 /* For some target architectures, but not others, the
12028 read_address function sign-extends the addresses it returns.
12029 To recognize base address selection entries, we need a
12031 unsigned int addr_size
= cu
->header
.addr_size
;
12032 CORE_ADDR base_select_mask
= ~(~(CORE_ADDR
)1 << (addr_size
* 8 - 1));
12034 /* The base address, to which the next pair is relative. Note
12035 that this 'base' is a DWARF concept: most entries in a range
12036 list are relative, to reduce the number of relocs against the
12037 debugging information. This is separate from this function's
12038 'baseaddr' argument, which GDB uses to relocate debugging
12039 information from a shared library based on the address at
12040 which the library was loaded. */
12041 CORE_ADDR base
= cu
->base_address
;
12042 int base_known
= cu
->base_known
;
12044 dwarf2_read_section (objfile
, &dwarf2_per_objfile
->ranges
);
12045 if (offset
>= dwarf2_per_objfile
->ranges
.size
)
12047 complaint (&symfile_complaints
,
12048 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
12052 buffer
= dwarf2_per_objfile
->ranges
.buffer
+ offset
;
12056 unsigned int bytes_read
;
12057 CORE_ADDR start
, end
;
12059 start
= read_address (obfd
, buffer
, cu
, &bytes_read
);
12060 buffer
+= bytes_read
;
12061 end
= read_address (obfd
, buffer
, cu
, &bytes_read
);
12062 buffer
+= bytes_read
;
12064 /* Did we find the end of the range list? */
12065 if (start
== 0 && end
== 0)
12068 /* Did we find a base address selection entry? */
12069 else if ((start
& base_select_mask
) == base_select_mask
)
12075 /* We found an ordinary address range. */
12080 complaint (&symfile_complaints
,
12081 _("Invalid .debug_ranges data "
12082 "(no base address)"));
12088 /* Inverted range entries are invalid. */
12089 complaint (&symfile_complaints
,
12090 _("Invalid .debug_ranges data "
12091 "(inverted range)"));
12095 /* Empty range entries have no effect. */
12099 start
+= base
+ baseaddr
;
12100 end
+= base
+ baseaddr
;
12102 /* A not-uncommon case of bad debug info.
12103 Don't pollute the addrmap with bad data. */
12104 if (start
== 0 && !dwarf2_per_objfile
->has_section_at_zero
)
12106 complaint (&symfile_complaints
,
12107 _(".debug_ranges entry has start address of zero"
12108 " [in module %s]"), objfile_name (objfile
));
12112 record_block_range (block
, start
, end
- 1);
12118 /* Check whether the producer field indicates either of GCC < 4.6, or the
12119 Intel C/C++ compiler, and cache the result in CU. */
12122 check_producer (struct dwarf2_cu
*cu
)
12125 int major
, minor
, release
;
12127 if (cu
->producer
== NULL
)
12129 /* For unknown compilers expect their behavior is DWARF version
12132 GCC started to support .debug_types sections by -gdwarf-4 since
12133 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
12134 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
12135 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
12136 interpreted incorrectly by GDB now - GCC PR debug/48229. */
12138 else if (strncmp (cu
->producer
, "GNU ", strlen ("GNU ")) == 0)
12140 /* Skip any identifier after "GNU " - such as "C++" or "Java". */
12142 cs
= &cu
->producer
[strlen ("GNU ")];
12143 while (*cs
&& !isdigit (*cs
))
12145 if (sscanf (cs
, "%d.%d.%d", &major
, &minor
, &release
) != 3)
12147 /* Not recognized as GCC. */
12151 cu
->producer_is_gxx_lt_4_6
= major
< 4 || (major
== 4 && minor
< 6);
12152 cu
->producer_is_gcc_lt_4_3
= major
< 4 || (major
== 4 && minor
< 3);
12155 else if (strncmp (cu
->producer
, "Intel(R) C", strlen ("Intel(R) C")) == 0)
12156 cu
->producer_is_icc
= 1;
12159 /* For other non-GCC compilers, expect their behavior is DWARF version
12163 cu
->checked_producer
= 1;
12166 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12167 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12168 during 4.6.0 experimental. */
12171 producer_is_gxx_lt_4_6 (struct dwarf2_cu
*cu
)
12173 if (!cu
->checked_producer
)
12174 check_producer (cu
);
12176 return cu
->producer_is_gxx_lt_4_6
;
12179 /* Return the default accessibility type if it is not overriden by
12180 DW_AT_accessibility. */
12182 static enum dwarf_access_attribute
12183 dwarf2_default_access_attribute (struct die_info
*die
, struct dwarf2_cu
*cu
)
12185 if (cu
->header
.version
< 3 || producer_is_gxx_lt_4_6 (cu
))
12187 /* The default DWARF 2 accessibility for members is public, the default
12188 accessibility for inheritance is private. */
12190 if (die
->tag
!= DW_TAG_inheritance
)
12191 return DW_ACCESS_public
;
12193 return DW_ACCESS_private
;
12197 /* DWARF 3+ defines the default accessibility a different way. The same
12198 rules apply now for DW_TAG_inheritance as for the members and it only
12199 depends on the container kind. */
12201 if (die
->parent
->tag
== DW_TAG_class_type
)
12202 return DW_ACCESS_private
;
12204 return DW_ACCESS_public
;
12208 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12209 offset. If the attribute was not found return 0, otherwise return
12210 1. If it was found but could not properly be handled, set *OFFSET
12214 handle_data_member_location (struct die_info
*die
, struct dwarf2_cu
*cu
,
12217 struct attribute
*attr
;
12219 attr
= dwarf2_attr (die
, DW_AT_data_member_location
, cu
);
12224 /* Note that we do not check for a section offset first here.
12225 This is because DW_AT_data_member_location is new in DWARF 4,
12226 so if we see it, we can assume that a constant form is really
12227 a constant and not a section offset. */
12228 if (attr_form_is_constant (attr
))
12229 *offset
= dwarf2_get_attr_constant_value (attr
, 0);
12230 else if (attr_form_is_section_offset (attr
))
12231 dwarf2_complex_location_expr_complaint ();
12232 else if (attr_form_is_block (attr
))
12233 *offset
= decode_locdesc (DW_BLOCK (attr
), cu
);
12235 dwarf2_complex_location_expr_complaint ();
12243 /* Add an aggregate field to the field list. */
12246 dwarf2_add_field (struct field_info
*fip
, struct die_info
*die
,
12247 struct dwarf2_cu
*cu
)
12249 struct objfile
*objfile
= cu
->objfile
;
12250 struct gdbarch
*gdbarch
= get_objfile_arch (objfile
);
12251 struct nextfield
*new_field
;
12252 struct attribute
*attr
;
12254 const char *fieldname
= "";
12256 /* Allocate a new field list entry and link it in. */
12257 new_field
= (struct nextfield
*) xmalloc (sizeof (struct nextfield
));
12258 make_cleanup (xfree
, new_field
);
12259 memset (new_field
, 0, sizeof (struct nextfield
));
12261 if (die
->tag
== DW_TAG_inheritance
)
12263 new_field
->next
= fip
->baseclasses
;
12264 fip
->baseclasses
= new_field
;
12268 new_field
->next
= fip
->fields
;
12269 fip
->fields
= new_field
;
12273 attr
= dwarf2_attr (die
, DW_AT_accessibility
, cu
);
12275 new_field
->accessibility
= DW_UNSND (attr
);
12277 new_field
->accessibility
= dwarf2_default_access_attribute (die
, cu
);
12278 if (new_field
->accessibility
!= DW_ACCESS_public
)
12279 fip
->non_public_fields
= 1;
12281 attr
= dwarf2_attr (die
, DW_AT_virtuality
, cu
);
12283 new_field
->virtuality
= DW_UNSND (attr
);
12285 new_field
->virtuality
= DW_VIRTUALITY_none
;
12287 fp
= &new_field
->field
;
12289 if (die
->tag
== DW_TAG_member
&& ! die_is_declaration (die
, cu
))
12293 /* Data member other than a C++ static data member. */
12295 /* Get type of field. */
12296 fp
->type
= die_type (die
, cu
);
12298 SET_FIELD_BITPOS (*fp
, 0);
12300 /* Get bit size of field (zero if none). */
12301 attr
= dwarf2_attr (die
, DW_AT_bit_size
, cu
);
12304 FIELD_BITSIZE (*fp
) = DW_UNSND (attr
);
12308 FIELD_BITSIZE (*fp
) = 0;
12311 /* Get bit offset of field. */
12312 if (handle_data_member_location (die
, cu
, &offset
))
12313 SET_FIELD_BITPOS (*fp
, offset
* bits_per_byte
);
12314 attr
= dwarf2_attr (die
, DW_AT_bit_offset
, cu
);
12317 if (gdbarch_bits_big_endian (gdbarch
))
12319 /* For big endian bits, the DW_AT_bit_offset gives the
12320 additional bit offset from the MSB of the containing
12321 anonymous object to the MSB of the field. We don't
12322 have to do anything special since we don't need to
12323 know the size of the anonymous object. */
12324 SET_FIELD_BITPOS (*fp
, FIELD_BITPOS (*fp
) + DW_UNSND (attr
));
12328 /* For little endian bits, compute the bit offset to the
12329 MSB of the anonymous object, subtract off the number of
12330 bits from the MSB of the field to the MSB of the
12331 object, and then subtract off the number of bits of
12332 the field itself. The result is the bit offset of
12333 the LSB of the field. */
12334 int anonymous_size
;
12335 int bit_offset
= DW_UNSND (attr
);
12337 attr
= dwarf2_attr (die
, DW_AT_byte_size
, cu
);
12340 /* The size of the anonymous object containing
12341 the bit field is explicit, so use the
12342 indicated size (in bytes). */
12343 anonymous_size
= DW_UNSND (attr
);
12347 /* The size of the anonymous object containing
12348 the bit field must be inferred from the type
12349 attribute of the data member containing the
12351 anonymous_size
= TYPE_LENGTH (fp
->type
);
12353 SET_FIELD_BITPOS (*fp
,
12354 (FIELD_BITPOS (*fp
)
12355 + anonymous_size
* bits_per_byte
12356 - bit_offset
- FIELD_BITSIZE (*fp
)));
12360 /* Get name of field. */
12361 fieldname
= dwarf2_name (die
, cu
);
12362 if (fieldname
== NULL
)
12365 /* The name is already allocated along with this objfile, so we don't
12366 need to duplicate it for the type. */
12367 fp
->name
= fieldname
;
12369 /* Change accessibility for artificial fields (e.g. virtual table
12370 pointer or virtual base class pointer) to private. */
12371 if (dwarf2_attr (die
, DW_AT_artificial
, cu
))
12373 FIELD_ARTIFICIAL (*fp
) = 1;
12374 new_field
->accessibility
= DW_ACCESS_private
;
12375 fip
->non_public_fields
= 1;
12378 else if (die
->tag
== DW_TAG_member
|| die
->tag
== DW_TAG_variable
)
12380 /* C++ static member. */
12382 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
12383 is a declaration, but all versions of G++ as of this writing
12384 (so through at least 3.2.1) incorrectly generate
12385 DW_TAG_variable tags. */
12387 const char *physname
;
12389 /* Get name of field. */
12390 fieldname
= dwarf2_name (die
, cu
);
12391 if (fieldname
== NULL
)
12394 attr
= dwarf2_attr (die
, DW_AT_const_value
, cu
);
12396 /* Only create a symbol if this is an external value.
12397 new_symbol checks this and puts the value in the global symbol
12398 table, which we want. If it is not external, new_symbol
12399 will try to put the value in cu->list_in_scope which is wrong. */
12400 && dwarf2_flag_true_p (die
, DW_AT_external
, cu
))
12402 /* A static const member, not much different than an enum as far as
12403 we're concerned, except that we can support more types. */
12404 new_symbol (die
, NULL
, cu
);
12407 /* Get physical name. */
12408 physname
= dwarf2_physname (fieldname
, die
, cu
);
12410 /* The name is already allocated along with this objfile, so we don't
12411 need to duplicate it for the type. */
12412 SET_FIELD_PHYSNAME (*fp
, physname
? physname
: "");
12413 FIELD_TYPE (*fp
) = die_type (die
, cu
);
12414 FIELD_NAME (*fp
) = fieldname
;
12416 else if (die
->tag
== DW_TAG_inheritance
)
12420 /* C++ base class field. */
12421 if (handle_data_member_location (die
, cu
, &offset
))
12422 SET_FIELD_BITPOS (*fp
, offset
* bits_per_byte
);
12423 FIELD_BITSIZE (*fp
) = 0;
12424 FIELD_TYPE (*fp
) = die_type (die
, cu
);
12425 FIELD_NAME (*fp
) = type_name_no_tag (fp
->type
);
12426 fip
->nbaseclasses
++;
12430 /* Add a typedef defined in the scope of the FIP's class. */
12433 dwarf2_add_typedef (struct field_info
*fip
, struct die_info
*die
,
12434 struct dwarf2_cu
*cu
)
12436 struct objfile
*objfile
= cu
->objfile
;
12437 struct typedef_field_list
*new_field
;
12438 struct attribute
*attr
;
12439 struct typedef_field
*fp
;
12440 char *fieldname
= "";
12442 /* Allocate a new field list entry and link it in. */
12443 new_field
= xzalloc (sizeof (*new_field
));
12444 make_cleanup (xfree
, new_field
);
12446 gdb_assert (die
->tag
== DW_TAG_typedef
);
12448 fp
= &new_field
->field
;
12450 /* Get name of field. */
12451 fp
->name
= dwarf2_name (die
, cu
);
12452 if (fp
->name
== NULL
)
12455 fp
->type
= read_type_die (die
, cu
);
12457 new_field
->next
= fip
->typedef_field_list
;
12458 fip
->typedef_field_list
= new_field
;
12459 fip
->typedef_field_list_count
++;
12462 /* Create the vector of fields, and attach it to the type. */
12465 dwarf2_attach_fields_to_type (struct field_info
*fip
, struct type
*type
,
12466 struct dwarf2_cu
*cu
)
12468 int nfields
= fip
->nfields
;
12470 /* Record the field count, allocate space for the array of fields,
12471 and create blank accessibility bitfields if necessary. */
12472 TYPE_NFIELDS (type
) = nfields
;
12473 TYPE_FIELDS (type
) = (struct field
*)
12474 TYPE_ALLOC (type
, sizeof (struct field
) * nfields
);
12475 memset (TYPE_FIELDS (type
), 0, sizeof (struct field
) * nfields
);
12477 if (fip
->non_public_fields
&& cu
->language
!= language_ada
)
12479 ALLOCATE_CPLUS_STRUCT_TYPE (type
);
12481 TYPE_FIELD_PRIVATE_BITS (type
) =
12482 (B_TYPE
*) TYPE_ALLOC (type
, B_BYTES (nfields
));
12483 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type
), nfields
);
12485 TYPE_FIELD_PROTECTED_BITS (type
) =
12486 (B_TYPE
*) TYPE_ALLOC (type
, B_BYTES (nfields
));
12487 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type
), nfields
);
12489 TYPE_FIELD_IGNORE_BITS (type
) =
12490 (B_TYPE
*) TYPE_ALLOC (type
, B_BYTES (nfields
));
12491 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type
), nfields
);
12494 /* If the type has baseclasses, allocate and clear a bit vector for
12495 TYPE_FIELD_VIRTUAL_BITS. */
12496 if (fip
->nbaseclasses
&& cu
->language
!= language_ada
)
12498 int num_bytes
= B_BYTES (fip
->nbaseclasses
);
12499 unsigned char *pointer
;
12501 ALLOCATE_CPLUS_STRUCT_TYPE (type
);
12502 pointer
= TYPE_ALLOC (type
, num_bytes
);
12503 TYPE_FIELD_VIRTUAL_BITS (type
) = pointer
;
12504 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type
), fip
->nbaseclasses
);
12505 TYPE_N_BASECLASSES (type
) = fip
->nbaseclasses
;
12508 /* Copy the saved-up fields into the field vector. Start from the head of
12509 the list, adding to the tail of the field array, so that they end up in
12510 the same order in the array in which they were added to the list. */
12511 while (nfields
-- > 0)
12513 struct nextfield
*fieldp
;
12517 fieldp
= fip
->fields
;
12518 fip
->fields
= fieldp
->next
;
12522 fieldp
= fip
->baseclasses
;
12523 fip
->baseclasses
= fieldp
->next
;
12526 TYPE_FIELD (type
, nfields
) = fieldp
->field
;
12527 switch (fieldp
->accessibility
)
12529 case DW_ACCESS_private
:
12530 if (cu
->language
!= language_ada
)
12531 SET_TYPE_FIELD_PRIVATE (type
, nfields
);
12534 case DW_ACCESS_protected
:
12535 if (cu
->language
!= language_ada
)
12536 SET_TYPE_FIELD_PROTECTED (type
, nfields
);
12539 case DW_ACCESS_public
:
12543 /* Unknown accessibility. Complain and treat it as public. */
12545 complaint (&symfile_complaints
, _("unsupported accessibility %d"),
12546 fieldp
->accessibility
);
12550 if (nfields
< fip
->nbaseclasses
)
12552 switch (fieldp
->virtuality
)
12554 case DW_VIRTUALITY_virtual
:
12555 case DW_VIRTUALITY_pure_virtual
:
12556 if (cu
->language
== language_ada
)
12557 error (_("unexpected virtuality in component of Ada type"));
12558 SET_TYPE_FIELD_VIRTUAL (type
, nfields
);
12565 /* Return true if this member function is a constructor, false
12569 dwarf2_is_constructor (struct die_info
*die
, struct dwarf2_cu
*cu
)
12571 const char *fieldname
;
12572 const char *typename
;
12575 if (die
->parent
== NULL
)
12578 if (die
->parent
->tag
!= DW_TAG_structure_type
12579 && die
->parent
->tag
!= DW_TAG_union_type
12580 && die
->parent
->tag
!= DW_TAG_class_type
)
12583 fieldname
= dwarf2_name (die
, cu
);
12584 typename
= dwarf2_name (die
->parent
, cu
);
12585 if (fieldname
== NULL
|| typename
== NULL
)
12588 len
= strlen (fieldname
);
12589 return (strncmp (fieldname
, typename
, len
) == 0
12590 && (typename
[len
] == '\0' || typename
[len
] == '<'));
12593 /* Add a member function to the proper fieldlist. */
12596 dwarf2_add_member_fn (struct field_info
*fip
, struct die_info
*die
,
12597 struct type
*type
, struct dwarf2_cu
*cu
)
12599 struct objfile
*objfile
= cu
->objfile
;
12600 struct attribute
*attr
;
12601 struct fnfieldlist
*flp
;
12603 struct fn_field
*fnp
;
12604 const char *fieldname
;
12605 struct nextfnfield
*new_fnfield
;
12606 struct type
*this_type
;
12607 enum dwarf_access_attribute accessibility
;
12609 if (cu
->language
== language_ada
)
12610 error (_("unexpected member function in Ada type"));
12612 /* Get name of member function. */
12613 fieldname
= dwarf2_name (die
, cu
);
12614 if (fieldname
== NULL
)
12617 /* Look up member function name in fieldlist. */
12618 for (i
= 0; i
< fip
->nfnfields
; i
++)
12620 if (strcmp (fip
->fnfieldlists
[i
].name
, fieldname
) == 0)
12624 /* Create new list element if necessary. */
12625 if (i
< fip
->nfnfields
)
12626 flp
= &fip
->fnfieldlists
[i
];
12629 if ((fip
->nfnfields
% DW_FIELD_ALLOC_CHUNK
) == 0)
12631 fip
->fnfieldlists
= (struct fnfieldlist
*)
12632 xrealloc (fip
->fnfieldlists
,
12633 (fip
->nfnfields
+ DW_FIELD_ALLOC_CHUNK
)
12634 * sizeof (struct fnfieldlist
));
12635 if (fip
->nfnfields
== 0)
12636 make_cleanup (free_current_contents
, &fip
->fnfieldlists
);
12638 flp
= &fip
->fnfieldlists
[fip
->nfnfields
];
12639 flp
->name
= fieldname
;
12642 i
= fip
->nfnfields
++;
12645 /* Create a new member function field and chain it to the field list
12647 new_fnfield
= (struct nextfnfield
*) xmalloc (sizeof (struct nextfnfield
));
12648 make_cleanup (xfree
, new_fnfield
);
12649 memset (new_fnfield
, 0, sizeof (struct nextfnfield
));
12650 new_fnfield
->next
= flp
->head
;
12651 flp
->head
= new_fnfield
;
12654 /* Fill in the member function field info. */
12655 fnp
= &new_fnfield
->fnfield
;
12657 /* Delay processing of the physname until later. */
12658 if (cu
->language
== language_cplus
|| cu
->language
== language_java
)
12660 add_to_method_list (type
, i
, flp
->length
- 1, fieldname
,
12665 const char *physname
= dwarf2_physname (fieldname
, die
, cu
);
12666 fnp
->physname
= physname
? physname
: "";
12669 fnp
->type
= alloc_type (objfile
);
12670 this_type
= read_type_die (die
, cu
);
12671 if (this_type
&& TYPE_CODE (this_type
) == TYPE_CODE_FUNC
)
12673 int nparams
= TYPE_NFIELDS (this_type
);
12675 /* TYPE is the domain of this method, and THIS_TYPE is the type
12676 of the method itself (TYPE_CODE_METHOD). */
12677 smash_to_method_type (fnp
->type
, type
,
12678 TYPE_TARGET_TYPE (this_type
),
12679 TYPE_FIELDS (this_type
),
12680 TYPE_NFIELDS (this_type
),
12681 TYPE_VARARGS (this_type
));
12683 /* Handle static member functions.
12684 Dwarf2 has no clean way to discern C++ static and non-static
12685 member functions. G++ helps GDB by marking the first
12686 parameter for non-static member functions (which is the this
12687 pointer) as artificial. We obtain this information from
12688 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
12689 if (nparams
== 0 || TYPE_FIELD_ARTIFICIAL (this_type
, 0) == 0)
12690 fnp
->voffset
= VOFFSET_STATIC
;
12693 complaint (&symfile_complaints
, _("member function type missing for '%s'"),
12694 dwarf2_full_name (fieldname
, die
, cu
));
12696 /* Get fcontext from DW_AT_containing_type if present. */
12697 if (dwarf2_attr (die
, DW_AT_containing_type
, cu
) != NULL
)
12698 fnp
->fcontext
= die_containing_type (die
, cu
);
12700 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
12701 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
12703 /* Get accessibility. */
12704 attr
= dwarf2_attr (die
, DW_AT_accessibility
, cu
);
12706 accessibility
= DW_UNSND (attr
);
12708 accessibility
= dwarf2_default_access_attribute (die
, cu
);
12709 switch (accessibility
)
12711 case DW_ACCESS_private
:
12712 fnp
->is_private
= 1;
12714 case DW_ACCESS_protected
:
12715 fnp
->is_protected
= 1;
12719 /* Check for artificial methods. */
12720 attr
= dwarf2_attr (die
, DW_AT_artificial
, cu
);
12721 if (attr
&& DW_UNSND (attr
) != 0)
12722 fnp
->is_artificial
= 1;
12724 fnp
->is_constructor
= dwarf2_is_constructor (die
, cu
);
12726 /* Get index in virtual function table if it is a virtual member
12727 function. For older versions of GCC, this is an offset in the
12728 appropriate virtual table, as specified by DW_AT_containing_type.
12729 For everyone else, it is an expression to be evaluated relative
12730 to the object address. */
12732 attr
= dwarf2_attr (die
, DW_AT_vtable_elem_location
, cu
);
12735 if (attr_form_is_block (attr
) && DW_BLOCK (attr
)->size
> 0)
12737 if (DW_BLOCK (attr
)->data
[0] == DW_OP_constu
)
12739 /* Old-style GCC. */
12740 fnp
->voffset
= decode_locdesc (DW_BLOCK (attr
), cu
) + 2;
12742 else if (DW_BLOCK (attr
)->data
[0] == DW_OP_deref
12743 || (DW_BLOCK (attr
)->size
> 1
12744 && DW_BLOCK (attr
)->data
[0] == DW_OP_deref_size
12745 && DW_BLOCK (attr
)->data
[1] == cu
->header
.addr_size
))
12747 struct dwarf_block blk
;
12750 offset
= (DW_BLOCK (attr
)->data
[0] == DW_OP_deref
12752 blk
.size
= DW_BLOCK (attr
)->size
- offset
;
12753 blk
.data
= DW_BLOCK (attr
)->data
+ offset
;
12754 fnp
->voffset
= decode_locdesc (DW_BLOCK (attr
), cu
);
12755 if ((fnp
->voffset
% cu
->header
.addr_size
) != 0)
12756 dwarf2_complex_location_expr_complaint ();
12758 fnp
->voffset
/= cu
->header
.addr_size
;
12762 dwarf2_complex_location_expr_complaint ();
12764 if (!fnp
->fcontext
)
12765 fnp
->fcontext
= TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type
, 0));
12767 else if (attr_form_is_section_offset (attr
))
12769 dwarf2_complex_location_expr_complaint ();
12773 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
12779 attr
= dwarf2_attr (die
, DW_AT_virtuality
, cu
);
12780 if (attr
&& DW_UNSND (attr
))
12782 /* GCC does this, as of 2008-08-25; PR debug/37237. */
12783 complaint (&symfile_complaints
,
12784 _("Member function \"%s\" (offset %d) is virtual "
12785 "but the vtable offset is not specified"),
12786 fieldname
, die
->offset
.sect_off
);
12787 ALLOCATE_CPLUS_STRUCT_TYPE (type
);
12788 TYPE_CPLUS_DYNAMIC (type
) = 1;
12793 /* Create the vector of member function fields, and attach it to the type. */
12796 dwarf2_attach_fn_fields_to_type (struct field_info
*fip
, struct type
*type
,
12797 struct dwarf2_cu
*cu
)
12799 struct fnfieldlist
*flp
;
12802 if (cu
->language
== language_ada
)
12803 error (_("unexpected member functions in Ada type"));
12805 ALLOCATE_CPLUS_STRUCT_TYPE (type
);
12806 TYPE_FN_FIELDLISTS (type
) = (struct fn_fieldlist
*)
12807 TYPE_ALLOC (type
, sizeof (struct fn_fieldlist
) * fip
->nfnfields
);
12809 for (i
= 0, flp
= fip
->fnfieldlists
; i
< fip
->nfnfields
; i
++, flp
++)
12811 struct nextfnfield
*nfp
= flp
->head
;
12812 struct fn_fieldlist
*fn_flp
= &TYPE_FN_FIELDLIST (type
, i
);
12815 TYPE_FN_FIELDLIST_NAME (type
, i
) = flp
->name
;
12816 TYPE_FN_FIELDLIST_LENGTH (type
, i
) = flp
->length
;
12817 fn_flp
->fn_fields
= (struct fn_field
*)
12818 TYPE_ALLOC (type
, sizeof (struct fn_field
) * flp
->length
);
12819 for (k
= flp
->length
; (k
--, nfp
); nfp
= nfp
->next
)
12820 fn_flp
->fn_fields
[k
] = nfp
->fnfield
;
12823 TYPE_NFN_FIELDS (type
) = fip
->nfnfields
;
12826 /* Returns non-zero if NAME is the name of a vtable member in CU's
12827 language, zero otherwise. */
12829 is_vtable_name (const char *name
, struct dwarf2_cu
*cu
)
12831 static const char vptr
[] = "_vptr";
12832 static const char vtable
[] = "vtable";
12834 /* Look for the C++ and Java forms of the vtable. */
12835 if ((cu
->language
== language_java
12836 && strncmp (name
, vtable
, sizeof (vtable
) - 1) == 0)
12837 || (strncmp (name
, vptr
, sizeof (vptr
) - 1) == 0
12838 && is_cplus_marker (name
[sizeof (vptr
) - 1])))
12844 /* GCC outputs unnamed structures that are really pointers to member
12845 functions, with the ABI-specified layout. If TYPE describes
12846 such a structure, smash it into a member function type.
12848 GCC shouldn't do this; it should just output pointer to member DIEs.
12849 This is GCC PR debug/28767. */
12852 quirk_gcc_member_function_pointer (struct type
*type
, struct objfile
*objfile
)
12854 struct type
*pfn_type
, *domain_type
, *new_type
;
12856 /* Check for a structure with no name and two children. */
12857 if (TYPE_CODE (type
) != TYPE_CODE_STRUCT
|| TYPE_NFIELDS (type
) != 2)
12860 /* Check for __pfn and __delta members. */
12861 if (TYPE_FIELD_NAME (type
, 0) == NULL
12862 || strcmp (TYPE_FIELD_NAME (type
, 0), "__pfn") != 0
12863 || TYPE_FIELD_NAME (type
, 1) == NULL
12864 || strcmp (TYPE_FIELD_NAME (type
, 1), "__delta") != 0)
12867 /* Find the type of the method. */
12868 pfn_type
= TYPE_FIELD_TYPE (type
, 0);
12869 if (pfn_type
== NULL
12870 || TYPE_CODE (pfn_type
) != TYPE_CODE_PTR
12871 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type
)) != TYPE_CODE_FUNC
)
12874 /* Look for the "this" argument. */
12875 pfn_type
= TYPE_TARGET_TYPE (pfn_type
);
12876 if (TYPE_NFIELDS (pfn_type
) == 0
12877 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
12878 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type
, 0)) != TYPE_CODE_PTR
)
12881 domain_type
= TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type
, 0));
12882 new_type
= alloc_type (objfile
);
12883 smash_to_method_type (new_type
, domain_type
, TYPE_TARGET_TYPE (pfn_type
),
12884 TYPE_FIELDS (pfn_type
), TYPE_NFIELDS (pfn_type
),
12885 TYPE_VARARGS (pfn_type
));
12886 smash_to_methodptr_type (type
, new_type
);
12889 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
12893 producer_is_icc (struct dwarf2_cu
*cu
)
12895 if (!cu
->checked_producer
)
12896 check_producer (cu
);
12898 return cu
->producer_is_icc
;
12901 /* Called when we find the DIE that starts a structure or union scope
12902 (definition) to create a type for the structure or union. Fill in
12903 the type's name and general properties; the members will not be
12904 processed until process_structure_scope. A symbol table entry for
12905 the type will also not be done until process_structure_scope (assuming
12906 the type has a name).
12908 NOTE: we need to call these functions regardless of whether or not the
12909 DIE has a DW_AT_name attribute, since it might be an anonymous
12910 structure or union. This gets the type entered into our set of
12911 user defined types. */
12913 static struct type
*
12914 read_structure_type (struct die_info
*die
, struct dwarf2_cu
*cu
)
12916 struct objfile
*objfile
= cu
->objfile
;
12918 struct attribute
*attr
;
12921 /* If the definition of this type lives in .debug_types, read that type.
12922 Don't follow DW_AT_specification though, that will take us back up
12923 the chain and we want to go down. */
12924 attr
= dwarf2_attr_no_follow (die
, DW_AT_signature
);
12927 type
= get_DW_AT_signature_type (die
, attr
, cu
);
12929 /* The type's CU may not be the same as CU.
12930 Ensure TYPE is recorded with CU in die_type_hash. */
12931 return set_die_type (die
, type
, cu
);
12934 type
= alloc_type (objfile
);
12935 INIT_CPLUS_SPECIFIC (type
);
12937 name
= dwarf2_name (die
, cu
);
12940 if (cu
->language
== language_cplus
12941 || cu
->language
== language_java
)
12943 const char *full_name
= dwarf2_full_name (name
, die
, cu
);
12945 /* dwarf2_full_name might have already finished building the DIE's
12946 type. If so, there is no need to continue. */
12947 if (get_die_type (die
, cu
) != NULL
)
12948 return get_die_type (die
, cu
);
12950 TYPE_TAG_NAME (type
) = full_name
;
12951 if (die
->tag
== DW_TAG_structure_type
12952 || die
->tag
== DW_TAG_class_type
)
12953 TYPE_NAME (type
) = TYPE_TAG_NAME (type
);
12957 /* The name is already allocated along with this objfile, so
12958 we don't need to duplicate it for the type. */
12959 TYPE_TAG_NAME (type
) = name
;
12960 if (die
->tag
== DW_TAG_class_type
)
12961 TYPE_NAME (type
) = TYPE_TAG_NAME (type
);
12965 if (die
->tag
== DW_TAG_structure_type
)
12967 TYPE_CODE (type
) = TYPE_CODE_STRUCT
;
12969 else if (die
->tag
== DW_TAG_union_type
)
12971 TYPE_CODE (type
) = TYPE_CODE_UNION
;
12975 TYPE_CODE (type
) = TYPE_CODE_STRUCT
;
12978 if (cu
->language
== language_cplus
&& die
->tag
== DW_TAG_class_type
)
12979 TYPE_DECLARED_CLASS (type
) = 1;
12981 attr
= dwarf2_attr (die
, DW_AT_byte_size
, cu
);
12984 TYPE_LENGTH (type
) = DW_UNSND (attr
);
12988 TYPE_LENGTH (type
) = 0;
12991 if (producer_is_icc (cu
) && (TYPE_LENGTH (type
) == 0))
12993 /* ICC does not output the required DW_AT_declaration
12994 on incomplete types, but gives them a size of zero. */
12995 TYPE_STUB (type
) = 1;
12998 TYPE_STUB_SUPPORTED (type
) = 1;
13000 if (die_is_declaration (die
, cu
))
13001 TYPE_STUB (type
) = 1;
13002 else if (attr
== NULL
&& die
->child
== NULL
13003 && producer_is_realview (cu
->producer
))
13004 /* RealView does not output the required DW_AT_declaration
13005 on incomplete types. */
13006 TYPE_STUB (type
) = 1;
13008 /* We need to add the type field to the die immediately so we don't
13009 infinitely recurse when dealing with pointers to the structure
13010 type within the structure itself. */
13011 set_die_type (die
, type
, cu
);
13013 /* set_die_type should be already done. */
13014 set_descriptive_type (type
, die
, cu
);
13019 /* Finish creating a structure or union type, including filling in
13020 its members and creating a symbol for it. */
13023 process_structure_scope (struct die_info
*die
, struct dwarf2_cu
*cu
)
13025 struct objfile
*objfile
= cu
->objfile
;
13026 struct die_info
*child_die
;
13029 type
= get_die_type (die
, cu
);
13031 type
= read_structure_type (die
, cu
);
13033 if (die
->child
!= NULL
&& ! die_is_declaration (die
, cu
))
13035 struct field_info fi
;
13036 VEC (symbolp
) *template_args
= NULL
;
13037 struct cleanup
*back_to
= make_cleanup (null_cleanup
, 0);
13039 memset (&fi
, 0, sizeof (struct field_info
));
13041 child_die
= die
->child
;
13043 while (child_die
&& child_die
->tag
)
13045 if (child_die
->tag
== DW_TAG_member
13046 || child_die
->tag
== DW_TAG_variable
)
13048 /* NOTE: carlton/2002-11-05: A C++ static data member
13049 should be a DW_TAG_member that is a declaration, but
13050 all versions of G++ as of this writing (so through at
13051 least 3.2.1) incorrectly generate DW_TAG_variable
13052 tags for them instead. */
13053 dwarf2_add_field (&fi
, child_die
, cu
);
13055 else if (child_die
->tag
== DW_TAG_subprogram
)
13057 /* C++ member function. */
13058 dwarf2_add_member_fn (&fi
, child_die
, type
, cu
);
13060 else if (child_die
->tag
== DW_TAG_inheritance
)
13062 /* C++ base class field. */
13063 dwarf2_add_field (&fi
, child_die
, cu
);
13065 else if (child_die
->tag
== DW_TAG_typedef
)
13066 dwarf2_add_typedef (&fi
, child_die
, cu
);
13067 else if (child_die
->tag
== DW_TAG_template_type_param
13068 || child_die
->tag
== DW_TAG_template_value_param
)
13070 struct symbol
*arg
= new_symbol (child_die
, NULL
, cu
);
13073 VEC_safe_push (symbolp
, template_args
, arg
);
13076 child_die
= sibling_die (child_die
);
13079 /* Attach template arguments to type. */
13080 if (! VEC_empty (symbolp
, template_args
))
13082 ALLOCATE_CPLUS_STRUCT_TYPE (type
);
13083 TYPE_N_TEMPLATE_ARGUMENTS (type
)
13084 = VEC_length (symbolp
, template_args
);
13085 TYPE_TEMPLATE_ARGUMENTS (type
)
13086 = obstack_alloc (&objfile
->objfile_obstack
,
13087 (TYPE_N_TEMPLATE_ARGUMENTS (type
)
13088 * sizeof (struct symbol
*)));
13089 memcpy (TYPE_TEMPLATE_ARGUMENTS (type
),
13090 VEC_address (symbolp
, template_args
),
13091 (TYPE_N_TEMPLATE_ARGUMENTS (type
)
13092 * sizeof (struct symbol
*)));
13093 VEC_free (symbolp
, template_args
);
13096 /* Attach fields and member functions to the type. */
13098 dwarf2_attach_fields_to_type (&fi
, type
, cu
);
13101 dwarf2_attach_fn_fields_to_type (&fi
, type
, cu
);
13103 /* Get the type which refers to the base class (possibly this
13104 class itself) which contains the vtable pointer for the current
13105 class from the DW_AT_containing_type attribute. This use of
13106 DW_AT_containing_type is a GNU extension. */
13108 if (dwarf2_attr (die
, DW_AT_containing_type
, cu
) != NULL
)
13110 struct type
*t
= die_containing_type (die
, cu
);
13112 TYPE_VPTR_BASETYPE (type
) = t
;
13117 /* Our own class provides vtbl ptr. */
13118 for (i
= TYPE_NFIELDS (t
) - 1;
13119 i
>= TYPE_N_BASECLASSES (t
);
13122 const char *fieldname
= TYPE_FIELD_NAME (t
, i
);
13124 if (is_vtable_name (fieldname
, cu
))
13126 TYPE_VPTR_FIELDNO (type
) = i
;
13131 /* Complain if virtual function table field not found. */
13132 if (i
< TYPE_N_BASECLASSES (t
))
13133 complaint (&symfile_complaints
,
13134 _("virtual function table pointer "
13135 "not found when defining class '%s'"),
13136 TYPE_TAG_NAME (type
) ? TYPE_TAG_NAME (type
) :
13141 TYPE_VPTR_FIELDNO (type
) = TYPE_VPTR_FIELDNO (t
);
13144 else if (cu
->producer
13145 && strncmp (cu
->producer
,
13146 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
13148 /* The IBM XLC compiler does not provide direct indication
13149 of the containing type, but the vtable pointer is
13150 always named __vfp. */
13154 for (i
= TYPE_NFIELDS (type
) - 1;
13155 i
>= TYPE_N_BASECLASSES (type
);
13158 if (strcmp (TYPE_FIELD_NAME (type
, i
), "__vfp") == 0)
13160 TYPE_VPTR_FIELDNO (type
) = i
;
13161 TYPE_VPTR_BASETYPE (type
) = type
;
13168 /* Copy fi.typedef_field_list linked list elements content into the
13169 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13170 if (fi
.typedef_field_list
)
13172 int i
= fi
.typedef_field_list_count
;
13174 ALLOCATE_CPLUS_STRUCT_TYPE (type
);
13175 TYPE_TYPEDEF_FIELD_ARRAY (type
)
13176 = TYPE_ALLOC (type
, sizeof (TYPE_TYPEDEF_FIELD (type
, 0)) * i
);
13177 TYPE_TYPEDEF_FIELD_COUNT (type
) = i
;
13179 /* Reverse the list order to keep the debug info elements order. */
13182 struct typedef_field
*dest
, *src
;
13184 dest
= &TYPE_TYPEDEF_FIELD (type
, i
);
13185 src
= &fi
.typedef_field_list
->field
;
13186 fi
.typedef_field_list
= fi
.typedef_field_list
->next
;
13191 do_cleanups (back_to
);
13193 if (HAVE_CPLUS_STRUCT (type
))
13194 TYPE_CPLUS_REALLY_JAVA (type
) = cu
->language
== language_java
;
13197 quirk_gcc_member_function_pointer (type
, objfile
);
13199 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13200 snapshots) has been known to create a die giving a declaration
13201 for a class that has, as a child, a die giving a definition for a
13202 nested class. So we have to process our children even if the
13203 current die is a declaration. Normally, of course, a declaration
13204 won't have any children at all. */
13206 child_die
= die
->child
;
13208 while (child_die
!= NULL
&& child_die
->tag
)
13210 if (child_die
->tag
== DW_TAG_member
13211 || child_die
->tag
== DW_TAG_variable
13212 || child_die
->tag
== DW_TAG_inheritance
13213 || child_die
->tag
== DW_TAG_template_value_param
13214 || child_die
->tag
== DW_TAG_template_type_param
)
13219 process_die (child_die
, cu
);
13221 child_die
= sibling_die (child_die
);
13224 /* Do not consider external references. According to the DWARF standard,
13225 these DIEs are identified by the fact that they have no byte_size
13226 attribute, and a declaration attribute. */
13227 if (dwarf2_attr (die
, DW_AT_byte_size
, cu
) != NULL
13228 || !die_is_declaration (die
, cu
))
13229 new_symbol (die
, type
, cu
);
13232 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
13233 update TYPE using some information only available in DIE's children. */
13236 update_enumeration_type_from_children (struct die_info
*die
,
13238 struct dwarf2_cu
*cu
)
13240 struct obstack obstack
;
13241 struct die_info
*child_die
;
13242 int unsigned_enum
= 1;
13245 struct cleanup
*old_chain
;
13247 obstack_init (&obstack
);
13248 old_chain
= make_cleanup_obstack_free (&obstack
);
13250 for (child_die
= die
->child
;
13251 child_die
!= NULL
&& child_die
->tag
;
13252 child_die
= sibling_die (child_die
))
13254 struct attribute
*attr
;
13256 const gdb_byte
*bytes
;
13257 struct dwarf2_locexpr_baton
*baton
;
13260 if (child_die
->tag
!= DW_TAG_enumerator
)
13263 attr
= dwarf2_attr (child_die
, DW_AT_const_value
, cu
);
13267 name
= dwarf2_name (child_die
, cu
);
13269 name
= "<anonymous enumerator>";
13271 dwarf2_const_value_attr (attr
, type
, name
, &obstack
, cu
,
13272 &value
, &bytes
, &baton
);
13278 else if ((mask
& value
) != 0)
13283 /* If we already know that the enum type is neither unsigned, nor
13284 a flag type, no need to look at the rest of the enumerates. */
13285 if (!unsigned_enum
&& !flag_enum
)
13290 TYPE_UNSIGNED (type
) = 1;
13292 TYPE_FLAG_ENUM (type
) = 1;
13294 do_cleanups (old_chain
);
13297 /* Given a DW_AT_enumeration_type die, set its type. We do not
13298 complete the type's fields yet, or create any symbols. */
13300 static struct type
*
13301 read_enumeration_type (struct die_info
*die
, struct dwarf2_cu
*cu
)
13303 struct objfile
*objfile
= cu
->objfile
;
13305 struct attribute
*attr
;
13308 /* If the definition of this type lives in .debug_types, read that type.
13309 Don't follow DW_AT_specification though, that will take us back up
13310 the chain and we want to go down. */
13311 attr
= dwarf2_attr_no_follow (die
, DW_AT_signature
);
13314 type
= get_DW_AT_signature_type (die
, attr
, cu
);
13316 /* The type's CU may not be the same as CU.
13317 Ensure TYPE is recorded with CU in die_type_hash. */
13318 return set_die_type (die
, type
, cu
);
13321 type
= alloc_type (objfile
);
13323 TYPE_CODE (type
) = TYPE_CODE_ENUM
;
13324 name
= dwarf2_full_name (NULL
, die
, cu
);
13326 TYPE_TAG_NAME (type
) = name
;
13328 attr
= dwarf2_attr (die
, DW_AT_type
, cu
);
13331 struct type
*underlying_type
= die_type (die
, cu
);
13333 TYPE_TARGET_TYPE (type
) = underlying_type
;
13336 attr
= dwarf2_attr (die
, DW_AT_byte_size
, cu
);
13339 TYPE_LENGTH (type
) = DW_UNSND (attr
);
13343 TYPE_LENGTH (type
) = 0;
13346 /* The enumeration DIE can be incomplete. In Ada, any type can be
13347 declared as private in the package spec, and then defined only
13348 inside the package body. Such types are known as Taft Amendment
13349 Types. When another package uses such a type, an incomplete DIE
13350 may be generated by the compiler. */
13351 if (die_is_declaration (die
, cu
))
13352 TYPE_STUB (type
) = 1;
13354 /* Finish the creation of this type by using the enum's children.
13355 We must call this even when the underlying type has been provided
13356 so that we can determine if we're looking at a "flag" enum. */
13357 update_enumeration_type_from_children (die
, type
, cu
);
13359 /* If this type has an underlying type that is not a stub, then we
13360 may use its attributes. We always use the "unsigned" attribute
13361 in this situation, because ordinarily we guess whether the type
13362 is unsigned -- but the guess can be wrong and the underlying type
13363 can tell us the reality. However, we defer to a local size
13364 attribute if one exists, because this lets the compiler override
13365 the underlying type if needed. */
13366 if (TYPE_TARGET_TYPE (type
) != NULL
&& !TYPE_STUB (TYPE_TARGET_TYPE (type
)))
13368 TYPE_UNSIGNED (type
) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type
));
13369 if (TYPE_LENGTH (type
) == 0)
13370 TYPE_LENGTH (type
) = TYPE_LENGTH (TYPE_TARGET_TYPE (type
));
13373 TYPE_DECLARED_CLASS (type
) = dwarf2_flag_true_p (die
, DW_AT_enum_class
, cu
);
13375 return set_die_type (die
, type
, cu
);
13378 /* Given a pointer to a die which begins an enumeration, process all
13379 the dies that define the members of the enumeration, and create the
13380 symbol for the enumeration type.
13382 NOTE: We reverse the order of the element list. */
13385 process_enumeration_scope (struct die_info
*die
, struct dwarf2_cu
*cu
)
13387 struct type
*this_type
;
13389 this_type
= get_die_type (die
, cu
);
13390 if (this_type
== NULL
)
13391 this_type
= read_enumeration_type (die
, cu
);
13393 if (die
->child
!= NULL
)
13395 struct die_info
*child_die
;
13396 struct symbol
*sym
;
13397 struct field
*fields
= NULL
;
13398 int num_fields
= 0;
13401 child_die
= die
->child
;
13402 while (child_die
&& child_die
->tag
)
13404 if (child_die
->tag
!= DW_TAG_enumerator
)
13406 process_die (child_die
, cu
);
13410 name
= dwarf2_name (child_die
, cu
);
13413 sym
= new_symbol (child_die
, this_type
, cu
);
13415 if ((num_fields
% DW_FIELD_ALLOC_CHUNK
) == 0)
13417 fields
= (struct field
*)
13419 (num_fields
+ DW_FIELD_ALLOC_CHUNK
)
13420 * sizeof (struct field
));
13423 FIELD_NAME (fields
[num_fields
]) = SYMBOL_LINKAGE_NAME (sym
);
13424 FIELD_TYPE (fields
[num_fields
]) = NULL
;
13425 SET_FIELD_ENUMVAL (fields
[num_fields
], SYMBOL_VALUE (sym
));
13426 FIELD_BITSIZE (fields
[num_fields
]) = 0;
13432 child_die
= sibling_die (child_die
);
13437 TYPE_NFIELDS (this_type
) = num_fields
;
13438 TYPE_FIELDS (this_type
) = (struct field
*)
13439 TYPE_ALLOC (this_type
, sizeof (struct field
) * num_fields
);
13440 memcpy (TYPE_FIELDS (this_type
), fields
,
13441 sizeof (struct field
) * num_fields
);
13446 /* If we are reading an enum from a .debug_types unit, and the enum
13447 is a declaration, and the enum is not the signatured type in the
13448 unit, then we do not want to add a symbol for it. Adding a
13449 symbol would in some cases obscure the true definition of the
13450 enum, giving users an incomplete type when the definition is
13451 actually available. Note that we do not want to do this for all
13452 enums which are just declarations, because C++0x allows forward
13453 enum declarations. */
13454 if (cu
->per_cu
->is_debug_types
13455 && die_is_declaration (die
, cu
))
13457 struct signatured_type
*sig_type
;
13459 sig_type
= (struct signatured_type
*) cu
->per_cu
;
13460 gdb_assert (sig_type
->type_offset_in_section
.sect_off
!= 0);
13461 if (sig_type
->type_offset_in_section
.sect_off
!= die
->offset
.sect_off
)
13465 new_symbol (die
, this_type
, cu
);
13468 /* Extract all information from a DW_TAG_array_type DIE and put it in
13469 the DIE's type field. For now, this only handles one dimensional
13472 static struct type
*
13473 read_array_type (struct die_info
*die
, struct dwarf2_cu
*cu
)
13475 struct objfile
*objfile
= cu
->objfile
;
13476 struct die_info
*child_die
;
13478 struct type
*element_type
, *range_type
, *index_type
;
13479 struct type
**range_types
= NULL
;
13480 struct attribute
*attr
;
13482 struct cleanup
*back_to
;
13484 unsigned int bit_stride
= 0;
13486 element_type
= die_type (die
, cu
);
13488 /* The die_type call above may have already set the type for this DIE. */
13489 type
= get_die_type (die
, cu
);
13493 attr
= dwarf2_attr (die
, DW_AT_byte_stride
, cu
);
13495 bit_stride
= DW_UNSND (attr
) * 8;
13497 attr
= dwarf2_attr (die
, DW_AT_bit_stride
, cu
);
13499 bit_stride
= DW_UNSND (attr
);
13501 /* Irix 6.2 native cc creates array types without children for
13502 arrays with unspecified length. */
13503 if (die
->child
== NULL
)
13505 index_type
= objfile_type (objfile
)->builtin_int
;
13506 range_type
= create_static_range_type (NULL
, index_type
, 0, -1);
13507 type
= create_array_type_with_stride (NULL
, element_type
, range_type
,
13509 return set_die_type (die
, type
, cu
);
13512 back_to
= make_cleanup (null_cleanup
, NULL
);
13513 child_die
= die
->child
;
13514 while (child_die
&& child_die
->tag
)
13516 if (child_die
->tag
== DW_TAG_subrange_type
)
13518 struct type
*child_type
= read_type_die (child_die
, cu
);
13520 if (child_type
!= NULL
)
13522 /* The range type was succesfully read. Save it for the
13523 array type creation. */
13524 if ((ndim
% DW_FIELD_ALLOC_CHUNK
) == 0)
13526 range_types
= (struct type
**)
13527 xrealloc (range_types
, (ndim
+ DW_FIELD_ALLOC_CHUNK
)
13528 * sizeof (struct type
*));
13530 make_cleanup (free_current_contents
, &range_types
);
13532 range_types
[ndim
++] = child_type
;
13535 child_die
= sibling_die (child_die
);
13538 /* Dwarf2 dimensions are output from left to right, create the
13539 necessary array types in backwards order. */
13541 type
= element_type
;
13543 if (read_array_order (die
, cu
) == DW_ORD_col_major
)
13548 type
= create_array_type_with_stride (NULL
, type
, range_types
[i
++],
13554 type
= create_array_type_with_stride (NULL
, type
, range_types
[ndim
],
13558 /* Understand Dwarf2 support for vector types (like they occur on
13559 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
13560 array type. This is not part of the Dwarf2/3 standard yet, but a
13561 custom vendor extension. The main difference between a regular
13562 array and the vector variant is that vectors are passed by value
13564 attr
= dwarf2_attr (die
, DW_AT_GNU_vector
, cu
);
13566 make_vector_type (type
);
13568 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
13569 implementation may choose to implement triple vectors using this
13571 attr
= dwarf2_attr (die
, DW_AT_byte_size
, cu
);
13574 if (DW_UNSND (attr
) >= TYPE_LENGTH (type
))
13575 TYPE_LENGTH (type
) = DW_UNSND (attr
);
13577 complaint (&symfile_complaints
,
13578 _("DW_AT_byte_size for array type smaller "
13579 "than the total size of elements"));
13582 name
= dwarf2_name (die
, cu
);
13584 TYPE_NAME (type
) = name
;
13586 /* Install the type in the die. */
13587 set_die_type (die
, type
, cu
);
13589 /* set_die_type should be already done. */
13590 set_descriptive_type (type
, die
, cu
);
13592 do_cleanups (back_to
);
13597 static enum dwarf_array_dim_ordering
13598 read_array_order (struct die_info
*die
, struct dwarf2_cu
*cu
)
13600 struct attribute
*attr
;
13602 attr
= dwarf2_attr (die
, DW_AT_ordering
, cu
);
13604 if (attr
) return DW_SND (attr
);
13606 /* GNU F77 is a special case, as at 08/2004 array type info is the
13607 opposite order to the dwarf2 specification, but data is still
13608 laid out as per normal fortran.
13610 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
13611 version checking. */
13613 if (cu
->language
== language_fortran
13614 && cu
->producer
&& strstr (cu
->producer
, "GNU F77"))
13616 return DW_ORD_row_major
;
13619 switch (cu
->language_defn
->la_array_ordering
)
13621 case array_column_major
:
13622 return DW_ORD_col_major
;
13623 case array_row_major
:
13625 return DW_ORD_row_major
;
13629 /* Extract all information from a DW_TAG_set_type DIE and put it in
13630 the DIE's type field. */
13632 static struct type
*
13633 read_set_type (struct die_info
*die
, struct dwarf2_cu
*cu
)
13635 struct type
*domain_type
, *set_type
;
13636 struct attribute
*attr
;
13638 domain_type
= die_type (die
, cu
);
13640 /* The die_type call above may have already set the type for this DIE. */
13641 set_type
= get_die_type (die
, cu
);
13645 set_type
= create_set_type (NULL
, domain_type
);
13647 attr
= dwarf2_attr (die
, DW_AT_byte_size
, cu
);
13649 TYPE_LENGTH (set_type
) = DW_UNSND (attr
);
13651 return set_die_type (die
, set_type
, cu
);
13654 /* A helper for read_common_block that creates a locexpr baton.
13655 SYM is the symbol which we are marking as computed.
13656 COMMON_DIE is the DIE for the common block.
13657 COMMON_LOC is the location expression attribute for the common
13659 MEMBER_LOC is the location expression attribute for the particular
13660 member of the common block that we are processing.
13661 CU is the CU from which the above come. */
13664 mark_common_block_symbol_computed (struct symbol
*sym
,
13665 struct die_info
*common_die
,
13666 struct attribute
*common_loc
,
13667 struct attribute
*member_loc
,
13668 struct dwarf2_cu
*cu
)
13670 struct objfile
*objfile
= dwarf2_per_objfile
->objfile
;
13671 struct dwarf2_locexpr_baton
*baton
;
13673 unsigned int cu_off
;
13674 enum bfd_endian byte_order
= gdbarch_byte_order (get_objfile_arch (objfile
));
13675 LONGEST offset
= 0;
13677 gdb_assert (common_loc
&& member_loc
);
13678 gdb_assert (attr_form_is_block (common_loc
));
13679 gdb_assert (attr_form_is_block (member_loc
)
13680 || attr_form_is_constant (member_loc
));
13682 baton
= obstack_alloc (&objfile
->objfile_obstack
,
13683 sizeof (struct dwarf2_locexpr_baton
));
13684 baton
->per_cu
= cu
->per_cu
;
13685 gdb_assert (baton
->per_cu
);
13687 baton
->size
= 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
13689 if (attr_form_is_constant (member_loc
))
13691 offset
= dwarf2_get_attr_constant_value (member_loc
, 0);
13692 baton
->size
+= 1 /* DW_OP_addr */ + cu
->header
.addr_size
;
13695 baton
->size
+= DW_BLOCK (member_loc
)->size
;
13697 ptr
= obstack_alloc (&objfile
->objfile_obstack
, baton
->size
);
13700 *ptr
++ = DW_OP_call4
;
13701 cu_off
= common_die
->offset
.sect_off
- cu
->per_cu
->offset
.sect_off
;
13702 store_unsigned_integer (ptr
, 4, byte_order
, cu_off
);
13705 if (attr_form_is_constant (member_loc
))
13707 *ptr
++ = DW_OP_addr
;
13708 store_unsigned_integer (ptr
, cu
->header
.addr_size
, byte_order
, offset
);
13709 ptr
+= cu
->header
.addr_size
;
13713 /* We have to copy the data here, because DW_OP_call4 will only
13714 use a DW_AT_location attribute. */
13715 memcpy (ptr
, DW_BLOCK (member_loc
)->data
, DW_BLOCK (member_loc
)->size
);
13716 ptr
+= DW_BLOCK (member_loc
)->size
;
13719 *ptr
++ = DW_OP_plus
;
13720 gdb_assert (ptr
- baton
->data
== baton
->size
);
13722 SYMBOL_LOCATION_BATON (sym
) = baton
;
13723 SYMBOL_ACLASS_INDEX (sym
) = dwarf2_locexpr_index
;
13726 /* Create appropriate locally-scoped variables for all the
13727 DW_TAG_common_block entries. Also create a struct common_block
13728 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
13729 is used to sepate the common blocks name namespace from regular
13733 read_common_block (struct die_info
*die
, struct dwarf2_cu
*cu
)
13735 struct attribute
*attr
;
13737 attr
= dwarf2_attr (die
, DW_AT_location
, cu
);
13740 /* Support the .debug_loc offsets. */
13741 if (attr_form_is_block (attr
))
13745 else if (attr_form_is_section_offset (attr
))
13747 dwarf2_complex_location_expr_complaint ();
13752 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
13753 "common block member");
13758 if (die
->child
!= NULL
)
13760 struct objfile
*objfile
= cu
->objfile
;
13761 struct die_info
*child_die
;
13762 size_t n_entries
= 0, size
;
13763 struct common_block
*common_block
;
13764 struct symbol
*sym
;
13766 for (child_die
= die
->child
;
13767 child_die
&& child_die
->tag
;
13768 child_die
= sibling_die (child_die
))
13771 size
= (sizeof (struct common_block
)
13772 + (n_entries
- 1) * sizeof (struct symbol
*));
13773 common_block
= obstack_alloc (&objfile
->objfile_obstack
, size
);
13774 memset (common_block
->contents
, 0, n_entries
* sizeof (struct symbol
*));
13775 common_block
->n_entries
= 0;
13777 for (child_die
= die
->child
;
13778 child_die
&& child_die
->tag
;
13779 child_die
= sibling_die (child_die
))
13781 /* Create the symbol in the DW_TAG_common_block block in the current
13783 sym
= new_symbol (child_die
, NULL
, cu
);
13786 struct attribute
*member_loc
;
13788 common_block
->contents
[common_block
->n_entries
++] = sym
;
13790 member_loc
= dwarf2_attr (child_die
, DW_AT_data_member_location
,
13794 /* GDB has handled this for a long time, but it is
13795 not specified by DWARF. It seems to have been
13796 emitted by gfortran at least as recently as:
13797 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
13798 complaint (&symfile_complaints
,
13799 _("Variable in common block has "
13800 "DW_AT_data_member_location "
13801 "- DIE at 0x%x [in module %s]"),
13802 child_die
->offset
.sect_off
,
13803 objfile_name (cu
->objfile
));
13805 if (attr_form_is_section_offset (member_loc
))
13806 dwarf2_complex_location_expr_complaint ();
13807 else if (attr_form_is_constant (member_loc
)
13808 || attr_form_is_block (member_loc
))
13811 mark_common_block_symbol_computed (sym
, die
, attr
,
13815 dwarf2_complex_location_expr_complaint ();
13820 sym
= new_symbol (die
, objfile_type (objfile
)->builtin_void
, cu
);
13821 SYMBOL_VALUE_COMMON_BLOCK (sym
) = common_block
;
13825 /* Create a type for a C++ namespace. */
13827 static struct type
*
13828 read_namespace_type (struct die_info
*die
, struct dwarf2_cu
*cu
)
13830 struct objfile
*objfile
= cu
->objfile
;
13831 const char *previous_prefix
, *name
;
13835 /* For extensions, reuse the type of the original namespace. */
13836 if (dwarf2_attr (die
, DW_AT_extension
, cu
) != NULL
)
13838 struct die_info
*ext_die
;
13839 struct dwarf2_cu
*ext_cu
= cu
;
13841 ext_die
= dwarf2_extension (die
, &ext_cu
);
13842 type
= read_type_die (ext_die
, ext_cu
);
13844 /* EXT_CU may not be the same as CU.
13845 Ensure TYPE is recorded with CU in die_type_hash. */
13846 return set_die_type (die
, type
, cu
);
13849 name
= namespace_name (die
, &is_anonymous
, cu
);
13851 /* Now build the name of the current namespace. */
13853 previous_prefix
= determine_prefix (die
, cu
);
13854 if (previous_prefix
[0] != '\0')
13855 name
= typename_concat (&objfile
->objfile_obstack
,
13856 previous_prefix
, name
, 0, cu
);
13858 /* Create the type. */
13859 type
= init_type (TYPE_CODE_NAMESPACE
, 0, 0, NULL
,
13861 TYPE_NAME (type
) = name
;
13862 TYPE_TAG_NAME (type
) = TYPE_NAME (type
);
13864 return set_die_type (die
, type
, cu
);
13867 /* Read a C++ namespace. */
13870 read_namespace (struct die_info
*die
, struct dwarf2_cu
*cu
)
13872 struct objfile
*objfile
= cu
->objfile
;
13875 /* Add a symbol associated to this if we haven't seen the namespace
13876 before. Also, add a using directive if it's an anonymous
13879 if (dwarf2_attr (die
, DW_AT_extension
, cu
) == NULL
)
13883 type
= read_type_die (die
, cu
);
13884 new_symbol (die
, type
, cu
);
13886 namespace_name (die
, &is_anonymous
, cu
);
13889 const char *previous_prefix
= determine_prefix (die
, cu
);
13891 cp_add_using_directive (previous_prefix
, TYPE_NAME (type
), NULL
,
13892 NULL
, NULL
, 0, &objfile
->objfile_obstack
);
13896 if (die
->child
!= NULL
)
13898 struct die_info
*child_die
= die
->child
;
13900 while (child_die
&& child_die
->tag
)
13902 process_die (child_die
, cu
);
13903 child_die
= sibling_die (child_die
);
13908 /* Read a Fortran module as type. This DIE can be only a declaration used for
13909 imported module. Still we need that type as local Fortran "use ... only"
13910 declaration imports depend on the created type in determine_prefix. */
13912 static struct type
*
13913 read_module_type (struct die_info
*die
, struct dwarf2_cu
*cu
)
13915 struct objfile
*objfile
= cu
->objfile
;
13916 const char *module_name
;
13919 module_name
= dwarf2_name (die
, cu
);
13921 complaint (&symfile_complaints
,
13922 _("DW_TAG_module has no name, offset 0x%x"),
13923 die
->offset
.sect_off
);
13924 type
= init_type (TYPE_CODE_MODULE
, 0, 0, module_name
, objfile
);
13926 /* determine_prefix uses TYPE_TAG_NAME. */
13927 TYPE_TAG_NAME (type
) = TYPE_NAME (type
);
13929 return set_die_type (die
, type
, cu
);
13932 /* Read a Fortran module. */
13935 read_module (struct die_info
*die
, struct dwarf2_cu
*cu
)
13937 struct die_info
*child_die
= die
->child
;
13940 type
= read_type_die (die
, cu
);
13941 new_symbol (die
, type
, cu
);
13943 while (child_die
&& child_die
->tag
)
13945 process_die (child_die
, cu
);
13946 child_die
= sibling_die (child_die
);
13950 /* Return the name of the namespace represented by DIE. Set
13951 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
13954 static const char *
13955 namespace_name (struct die_info
*die
, int *is_anonymous
, struct dwarf2_cu
*cu
)
13957 struct die_info
*current_die
;
13958 const char *name
= NULL
;
13960 /* Loop through the extensions until we find a name. */
13962 for (current_die
= die
;
13963 current_die
!= NULL
;
13964 current_die
= dwarf2_extension (die
, &cu
))
13966 name
= dwarf2_name (current_die
, cu
);
13971 /* Is it an anonymous namespace? */
13973 *is_anonymous
= (name
== NULL
);
13975 name
= CP_ANONYMOUS_NAMESPACE_STR
;
13980 /* Extract all information from a DW_TAG_pointer_type DIE and add to
13981 the user defined type vector. */
13983 static struct type
*
13984 read_tag_pointer_type (struct die_info
*die
, struct dwarf2_cu
*cu
)
13986 struct gdbarch
*gdbarch
= get_objfile_arch (cu
->objfile
);
13987 struct comp_unit_head
*cu_header
= &cu
->header
;
13989 struct attribute
*attr_byte_size
;
13990 struct attribute
*attr_address_class
;
13991 int byte_size
, addr_class
;
13992 struct type
*target_type
;
13994 target_type
= die_type (die
, cu
);
13996 /* The die_type call above may have already set the type for this DIE. */
13997 type
= get_die_type (die
, cu
);
14001 type
= lookup_pointer_type (target_type
);
14003 attr_byte_size
= dwarf2_attr (die
, DW_AT_byte_size
, cu
);
14004 if (attr_byte_size
)
14005 byte_size
= DW_UNSND (attr_byte_size
);
14007 byte_size
= cu_header
->addr_size
;
14009 attr_address_class
= dwarf2_attr (die
, DW_AT_address_class
, cu
);
14010 if (attr_address_class
)
14011 addr_class
= DW_UNSND (attr_address_class
);
14013 addr_class
= DW_ADDR_none
;
14015 /* If the pointer size or address class is different than the
14016 default, create a type variant marked as such and set the
14017 length accordingly. */
14018 if (TYPE_LENGTH (type
) != byte_size
|| addr_class
!= DW_ADDR_none
)
14020 if (gdbarch_address_class_type_flags_p (gdbarch
))
14024 type_flags
= gdbarch_address_class_type_flags
14025 (gdbarch
, byte_size
, addr_class
);
14026 gdb_assert ((type_flags
& ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL
)
14028 type
= make_type_with_address_space (type
, type_flags
);
14030 else if (TYPE_LENGTH (type
) != byte_size
)
14032 complaint (&symfile_complaints
,
14033 _("invalid pointer size %d"), byte_size
);
14037 /* Should we also complain about unhandled address classes? */
14041 TYPE_LENGTH (type
) = byte_size
;
14042 return set_die_type (die
, type
, cu
);
14045 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
14046 the user defined type vector. */
14048 static struct type
*
14049 read_tag_ptr_to_member_type (struct die_info
*die
, struct dwarf2_cu
*cu
)
14052 struct type
*to_type
;
14053 struct type
*domain
;
14055 to_type
= die_type (die
, cu
);
14056 domain
= die_containing_type (die
, cu
);
14058 /* The calls above may have already set the type for this DIE. */
14059 type
= get_die_type (die
, cu
);
14063 if (TYPE_CODE (check_typedef (to_type
)) == TYPE_CODE_METHOD
)
14064 type
= lookup_methodptr_type (to_type
);
14065 else if (TYPE_CODE (check_typedef (to_type
)) == TYPE_CODE_FUNC
)
14067 struct type
*new_type
= alloc_type (cu
->objfile
);
14069 smash_to_method_type (new_type
, domain
, TYPE_TARGET_TYPE (to_type
),
14070 TYPE_FIELDS (to_type
), TYPE_NFIELDS (to_type
),
14071 TYPE_VARARGS (to_type
));
14072 type
= lookup_methodptr_type (new_type
);
14075 type
= lookup_memberptr_type (to_type
, domain
);
14077 return set_die_type (die
, type
, cu
);
14080 /* Extract all information from a DW_TAG_reference_type DIE and add to
14081 the user defined type vector. */
14083 static struct type
*
14084 read_tag_reference_type (struct die_info
*die
, struct dwarf2_cu
*cu
)
14086 struct comp_unit_head
*cu_header
= &cu
->header
;
14087 struct type
*type
, *target_type
;
14088 struct attribute
*attr
;
14090 target_type
= die_type (die
, cu
);
14092 /* The die_type call above may have already set the type for this DIE. */
14093 type
= get_die_type (die
, cu
);
14097 type
= lookup_reference_type (target_type
);
14098 attr
= dwarf2_attr (die
, DW_AT_byte_size
, cu
);
14101 TYPE_LENGTH (type
) = DW_UNSND (attr
);
14105 TYPE_LENGTH (type
) = cu_header
->addr_size
;
14107 return set_die_type (die
, type
, cu
);
14110 /* Add the given cv-qualifiers to the element type of the array. GCC
14111 outputs DWARF type qualifiers that apply to an array, not the
14112 element type. But GDB relies on the array element type to carry
14113 the cv-qualifiers. This mimics section 6.7.3 of the C99
14116 static struct type
*
14117 add_array_cv_type (struct die_info
*die
, struct dwarf2_cu
*cu
,
14118 struct type
*base_type
, int cnst
, int voltl
)
14120 struct type
*el_type
, *inner_array
;
14122 base_type
= copy_type (base_type
);
14123 inner_array
= base_type
;
14125 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array
)) == TYPE_CODE_ARRAY
)
14127 TYPE_TARGET_TYPE (inner_array
) =
14128 copy_type (TYPE_TARGET_TYPE (inner_array
));
14129 inner_array
= TYPE_TARGET_TYPE (inner_array
);
14132 el_type
= TYPE_TARGET_TYPE (inner_array
);
14133 cnst
|= TYPE_CONST (el_type
);
14134 voltl
|= TYPE_VOLATILE (el_type
);
14135 TYPE_TARGET_TYPE (inner_array
) = make_cv_type (cnst
, voltl
, el_type
, NULL
);
14137 return set_die_type (die
, base_type
, cu
);
14140 static struct type
*
14141 read_tag_const_type (struct die_info
*die
, struct dwarf2_cu
*cu
)
14143 struct type
*base_type
, *cv_type
;
14145 base_type
= die_type (die
, cu
);
14147 /* The die_type call above may have already set the type for this DIE. */
14148 cv_type
= get_die_type (die
, cu
);
14152 /* In case the const qualifier is applied to an array type, the element type
14153 is so qualified, not the array type (section 6.7.3 of C99). */
14154 if (TYPE_CODE (base_type
) == TYPE_CODE_ARRAY
)
14155 return add_array_cv_type (die
, cu
, base_type
, 1, 0);
14157 cv_type
= make_cv_type (1, TYPE_VOLATILE (base_type
), base_type
, 0);
14158 return set_die_type (die
, cv_type
, cu
);
14161 static struct type
*
14162 read_tag_volatile_type (struct die_info
*die
, struct dwarf2_cu
*cu
)
14164 struct type
*base_type
, *cv_type
;
14166 base_type
= die_type (die
, cu
);
14168 /* The die_type call above may have already set the type for this DIE. */
14169 cv_type
= get_die_type (die
, cu
);
14173 /* In case the volatile qualifier is applied to an array type, the
14174 element type is so qualified, not the array type (section 6.7.3
14176 if (TYPE_CODE (base_type
) == TYPE_CODE_ARRAY
)
14177 return add_array_cv_type (die
, cu
, base_type
, 0, 1);
14179 cv_type
= make_cv_type (TYPE_CONST (base_type
), 1, base_type
, 0);
14180 return set_die_type (die
, cv_type
, cu
);
14183 /* Handle DW_TAG_restrict_type. */
14185 static struct type
*
14186 read_tag_restrict_type (struct die_info
*die
, struct dwarf2_cu
*cu
)
14188 struct type
*base_type
, *cv_type
;
14190 base_type
= die_type (die
, cu
);
14192 /* The die_type call above may have already set the type for this DIE. */
14193 cv_type
= get_die_type (die
, cu
);
14197 cv_type
= make_restrict_type (base_type
);
14198 return set_die_type (die
, cv_type
, cu
);
14201 /* Extract all information from a DW_TAG_string_type DIE and add to
14202 the user defined type vector. It isn't really a user defined type,
14203 but it behaves like one, with other DIE's using an AT_user_def_type
14204 attribute to reference it. */
14206 static struct type
*
14207 read_tag_string_type (struct die_info
*die
, struct dwarf2_cu
*cu
)
14209 struct objfile
*objfile
= cu
->objfile
;
14210 struct gdbarch
*gdbarch
= get_objfile_arch (objfile
);
14211 struct type
*type
, *range_type
, *index_type
, *char_type
;
14212 struct attribute
*attr
;
14213 unsigned int length
;
14215 attr
= dwarf2_attr (die
, DW_AT_string_length
, cu
);
14218 length
= DW_UNSND (attr
);
14222 /* Check for the DW_AT_byte_size attribute. */
14223 attr
= dwarf2_attr (die
, DW_AT_byte_size
, cu
);
14226 length
= DW_UNSND (attr
);
14234 index_type
= objfile_type (objfile
)->builtin_int
;
14235 range_type
= create_static_range_type (NULL
, index_type
, 1, length
);
14236 char_type
= language_string_char_type (cu
->language_defn
, gdbarch
);
14237 type
= create_string_type (NULL
, char_type
, range_type
);
14239 return set_die_type (die
, type
, cu
);
14242 /* Assuming that DIE corresponds to a function, returns nonzero
14243 if the function is prototyped. */
14246 prototyped_function_p (struct die_info
*die
, struct dwarf2_cu
*cu
)
14248 struct attribute
*attr
;
14250 attr
= dwarf2_attr (die
, DW_AT_prototyped
, cu
);
14251 if (attr
&& (DW_UNSND (attr
) != 0))
14254 /* The DWARF standard implies that the DW_AT_prototyped attribute
14255 is only meaninful for C, but the concept also extends to other
14256 languages that allow unprototyped functions (Eg: Objective C).
14257 For all other languages, assume that functions are always
14259 if (cu
->language
!= language_c
14260 && cu
->language
!= language_objc
14261 && cu
->language
!= language_opencl
)
14264 /* RealView does not emit DW_AT_prototyped. We can not distinguish
14265 prototyped and unprototyped functions; default to prototyped,
14266 since that is more common in modern code (and RealView warns
14267 about unprototyped functions). */
14268 if (producer_is_realview (cu
->producer
))
14274 /* Handle DIES due to C code like:
14278 int (*funcp)(int a, long l);
14282 ('funcp' generates a DW_TAG_subroutine_type DIE). */
14284 static struct type
*
14285 read_subroutine_type (struct die_info
*die
, struct dwarf2_cu
*cu
)
14287 struct objfile
*objfile
= cu
->objfile
;
14288 struct type
*type
; /* Type that this function returns. */
14289 struct type
*ftype
; /* Function that returns above type. */
14290 struct attribute
*attr
;
14292 type
= die_type (die
, cu
);
14294 /* The die_type call above may have already set the type for this DIE. */
14295 ftype
= get_die_type (die
, cu
);
14299 ftype
= lookup_function_type (type
);
14301 if (prototyped_function_p (die
, cu
))
14302 TYPE_PROTOTYPED (ftype
) = 1;
14304 /* Store the calling convention in the type if it's available in
14305 the subroutine die. Otherwise set the calling convention to
14306 the default value DW_CC_normal. */
14307 attr
= dwarf2_attr (die
, DW_AT_calling_convention
, cu
);
14309 TYPE_CALLING_CONVENTION (ftype
) = DW_UNSND (attr
);
14310 else if (cu
->producer
&& strstr (cu
->producer
, "IBM XL C for OpenCL"))
14311 TYPE_CALLING_CONVENTION (ftype
) = DW_CC_GDB_IBM_OpenCL
;
14313 TYPE_CALLING_CONVENTION (ftype
) = DW_CC_normal
;
14315 /* We need to add the subroutine type to the die immediately so
14316 we don't infinitely recurse when dealing with parameters
14317 declared as the same subroutine type. */
14318 set_die_type (die
, ftype
, cu
);
14320 if (die
->child
!= NULL
)
14322 struct type
*void_type
= objfile_type (objfile
)->builtin_void
;
14323 struct die_info
*child_die
;
14324 int nparams
, iparams
;
14326 /* Count the number of parameters.
14327 FIXME: GDB currently ignores vararg functions, but knows about
14328 vararg member functions. */
14330 child_die
= die
->child
;
14331 while (child_die
&& child_die
->tag
)
14333 if (child_die
->tag
== DW_TAG_formal_parameter
)
14335 else if (child_die
->tag
== DW_TAG_unspecified_parameters
)
14336 TYPE_VARARGS (ftype
) = 1;
14337 child_die
= sibling_die (child_die
);
14340 /* Allocate storage for parameters and fill them in. */
14341 TYPE_NFIELDS (ftype
) = nparams
;
14342 TYPE_FIELDS (ftype
) = (struct field
*)
14343 TYPE_ZALLOC (ftype
, nparams
* sizeof (struct field
));
14345 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
14346 even if we error out during the parameters reading below. */
14347 for (iparams
= 0; iparams
< nparams
; iparams
++)
14348 TYPE_FIELD_TYPE (ftype
, iparams
) = void_type
;
14351 child_die
= die
->child
;
14352 while (child_die
&& child_die
->tag
)
14354 if (child_die
->tag
== DW_TAG_formal_parameter
)
14356 struct type
*arg_type
;
14358 /* DWARF version 2 has no clean way to discern C++
14359 static and non-static member functions. G++ helps
14360 GDB by marking the first parameter for non-static
14361 member functions (which is the this pointer) as
14362 artificial. We pass this information to
14363 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
14365 DWARF version 3 added DW_AT_object_pointer, which GCC
14366 4.5 does not yet generate. */
14367 attr
= dwarf2_attr (child_die
, DW_AT_artificial
, cu
);
14369 TYPE_FIELD_ARTIFICIAL (ftype
, iparams
) = DW_UNSND (attr
);
14372 TYPE_FIELD_ARTIFICIAL (ftype
, iparams
) = 0;
14374 /* GCC/43521: In java, the formal parameter
14375 "this" is sometimes not marked with DW_AT_artificial. */
14376 if (cu
->language
== language_java
)
14378 const char *name
= dwarf2_name (child_die
, cu
);
14380 if (name
&& !strcmp (name
, "this"))
14381 TYPE_FIELD_ARTIFICIAL (ftype
, iparams
) = 1;
14384 arg_type
= die_type (child_die
, cu
);
14386 /* RealView does not mark THIS as const, which the testsuite
14387 expects. GCC marks THIS as const in method definitions,
14388 but not in the class specifications (GCC PR 43053). */
14389 if (cu
->language
== language_cplus
&& !TYPE_CONST (arg_type
)
14390 && TYPE_FIELD_ARTIFICIAL (ftype
, iparams
))
14393 struct dwarf2_cu
*arg_cu
= cu
;
14394 const char *name
= dwarf2_name (child_die
, cu
);
14396 attr
= dwarf2_attr (die
, DW_AT_object_pointer
, cu
);
14399 /* If the compiler emits this, use it. */
14400 if (follow_die_ref (die
, attr
, &arg_cu
) == child_die
)
14403 else if (name
&& strcmp (name
, "this") == 0)
14404 /* Function definitions will have the argument names. */
14406 else if (name
== NULL
&& iparams
== 0)
14407 /* Declarations may not have the names, so like
14408 elsewhere in GDB, assume an artificial first
14409 argument is "this". */
14413 arg_type
= make_cv_type (1, TYPE_VOLATILE (arg_type
),
14417 TYPE_FIELD_TYPE (ftype
, iparams
) = arg_type
;
14420 child_die
= sibling_die (child_die
);
14427 static struct type
*
14428 read_typedef (struct die_info
*die
, struct dwarf2_cu
*cu
)
14430 struct objfile
*objfile
= cu
->objfile
;
14431 const char *name
= NULL
;
14432 struct type
*this_type
, *target_type
;
14434 name
= dwarf2_full_name (NULL
, die
, cu
);
14435 this_type
= init_type (TYPE_CODE_TYPEDEF
, 0,
14436 TYPE_FLAG_TARGET_STUB
, NULL
, objfile
);
14437 TYPE_NAME (this_type
) = name
;
14438 set_die_type (die
, this_type
, cu
);
14439 target_type
= die_type (die
, cu
);
14440 if (target_type
!= this_type
)
14441 TYPE_TARGET_TYPE (this_type
) = target_type
;
14444 /* Self-referential typedefs are, it seems, not allowed by the DWARF
14445 spec and cause infinite loops in GDB. */
14446 complaint (&symfile_complaints
,
14447 _("Self-referential DW_TAG_typedef "
14448 "- DIE at 0x%x [in module %s]"),
14449 die
->offset
.sect_off
, objfile_name (objfile
));
14450 TYPE_TARGET_TYPE (this_type
) = NULL
;
14455 /* Find a representation of a given base type and install
14456 it in the TYPE field of the die. */
14458 static struct type
*
14459 read_base_type (struct die_info
*die
, struct dwarf2_cu
*cu
)
14461 struct objfile
*objfile
= cu
->objfile
;
14463 struct attribute
*attr
;
14464 int encoding
= 0, size
= 0;
14466 enum type_code code
= TYPE_CODE_INT
;
14467 int type_flags
= 0;
14468 struct type
*target_type
= NULL
;
14470 attr
= dwarf2_attr (die
, DW_AT_encoding
, cu
);
14473 encoding
= DW_UNSND (attr
);
14475 attr
= dwarf2_attr (die
, DW_AT_byte_size
, cu
);
14478 size
= DW_UNSND (attr
);
14480 name
= dwarf2_name (die
, cu
);
14483 complaint (&symfile_complaints
,
14484 _("DW_AT_name missing from DW_TAG_base_type"));
14489 case DW_ATE_address
:
14490 /* Turn DW_ATE_address into a void * pointer. */
14491 code
= TYPE_CODE_PTR
;
14492 type_flags
|= TYPE_FLAG_UNSIGNED
;
14493 target_type
= init_type (TYPE_CODE_VOID
, 1, 0, NULL
, objfile
);
14495 case DW_ATE_boolean
:
14496 code
= TYPE_CODE_BOOL
;
14497 type_flags
|= TYPE_FLAG_UNSIGNED
;
14499 case DW_ATE_complex_float
:
14500 code
= TYPE_CODE_COMPLEX
;
14501 target_type
= init_type (TYPE_CODE_FLT
, size
/ 2, 0, NULL
, objfile
);
14503 case DW_ATE_decimal_float
:
14504 code
= TYPE_CODE_DECFLOAT
;
14507 code
= TYPE_CODE_FLT
;
14509 case DW_ATE_signed
:
14511 case DW_ATE_unsigned
:
14512 type_flags
|= TYPE_FLAG_UNSIGNED
;
14513 if (cu
->language
== language_fortran
14515 && strncmp (name
, "character(", sizeof ("character(") - 1) == 0)
14516 code
= TYPE_CODE_CHAR
;
14518 case DW_ATE_signed_char
:
14519 if (cu
->language
== language_ada
|| cu
->language
== language_m2
14520 || cu
->language
== language_pascal
14521 || cu
->language
== language_fortran
)
14522 code
= TYPE_CODE_CHAR
;
14524 case DW_ATE_unsigned_char
:
14525 if (cu
->language
== language_ada
|| cu
->language
== language_m2
14526 || cu
->language
== language_pascal
14527 || cu
->language
== language_fortran
)
14528 code
= TYPE_CODE_CHAR
;
14529 type_flags
|= TYPE_FLAG_UNSIGNED
;
14532 /* We just treat this as an integer and then recognize the
14533 type by name elsewhere. */
14537 complaint (&symfile_complaints
, _("unsupported DW_AT_encoding: '%s'"),
14538 dwarf_type_encoding_name (encoding
));
14542 type
= init_type (code
, size
, type_flags
, NULL
, objfile
);
14543 TYPE_NAME (type
) = name
;
14544 TYPE_TARGET_TYPE (type
) = target_type
;
14546 if (name
&& strcmp (name
, "char") == 0)
14547 TYPE_NOSIGN (type
) = 1;
14549 return set_die_type (die
, type
, cu
);
14552 /* Parse dwarf attribute if it's a block, reference or constant and put the
14553 resulting value of the attribute into struct bound_prop.
14554 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
14557 attr_to_dynamic_prop (const struct attribute
*attr
, struct die_info
*die
,
14558 struct dwarf2_cu
*cu
, struct dynamic_prop
*prop
)
14560 struct dwarf2_property_baton
*baton
;
14561 struct obstack
*obstack
= &cu
->objfile
->objfile_obstack
;
14563 if (attr
== NULL
|| prop
== NULL
)
14566 if (attr_form_is_block (attr
))
14568 baton
= obstack_alloc (obstack
, sizeof (*baton
));
14569 baton
->referenced_type
= NULL
;
14570 baton
->locexpr
.per_cu
= cu
->per_cu
;
14571 baton
->locexpr
.size
= DW_BLOCK (attr
)->size
;
14572 baton
->locexpr
.data
= DW_BLOCK (attr
)->data
;
14573 prop
->data
.baton
= baton
;
14574 prop
->kind
= PROP_LOCEXPR
;
14575 gdb_assert (prop
->data
.baton
!= NULL
);
14577 else if (attr_form_is_ref (attr
))
14579 struct dwarf2_cu
*target_cu
= cu
;
14580 struct die_info
*target_die
;
14581 struct attribute
*target_attr
;
14583 target_die
= follow_die_ref (die
, attr
, &target_cu
);
14584 target_attr
= dwarf2_attr (target_die
, DW_AT_location
, target_cu
);
14585 if (target_attr
== NULL
)
14588 if (attr_form_is_section_offset (target_attr
))
14590 baton
= obstack_alloc (obstack
, sizeof (*baton
));
14591 baton
->referenced_type
= die_type (target_die
, target_cu
);
14592 fill_in_loclist_baton (cu
, &baton
->loclist
, target_attr
);
14593 prop
->data
.baton
= baton
;
14594 prop
->kind
= PROP_LOCLIST
;
14595 gdb_assert (prop
->data
.baton
!= NULL
);
14597 else if (attr_form_is_block (target_attr
))
14599 baton
= obstack_alloc (obstack
, sizeof (*baton
));
14600 baton
->referenced_type
= die_type (target_die
, target_cu
);
14601 baton
->locexpr
.per_cu
= cu
->per_cu
;
14602 baton
->locexpr
.size
= DW_BLOCK (target_attr
)->size
;
14603 baton
->locexpr
.data
= DW_BLOCK (target_attr
)->data
;
14604 prop
->data
.baton
= baton
;
14605 prop
->kind
= PROP_LOCEXPR
;
14606 gdb_assert (prop
->data
.baton
!= NULL
);
14610 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14611 "dynamic property");
14615 else if (attr_form_is_constant (attr
))
14617 prop
->data
.const_val
= dwarf2_get_attr_constant_value (attr
, 0);
14618 prop
->kind
= PROP_CONST
;
14622 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr
->form
),
14623 dwarf2_name (die
, cu
));
14630 /* Read the given DW_AT_subrange DIE. */
14632 static struct type
*
14633 read_subrange_type (struct die_info
*die
, struct dwarf2_cu
*cu
)
14635 struct type
*base_type
, *orig_base_type
;
14636 struct type
*range_type
;
14637 struct attribute
*attr
;
14638 struct dynamic_prop low
, high
;
14639 int low_default_is_valid
;
14640 int high_bound_is_count
= 0;
14642 LONGEST negative_mask
;
14644 orig_base_type
= die_type (die
, cu
);
14645 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
14646 whereas the real type might be. So, we use ORIG_BASE_TYPE when
14647 creating the range type, but we use the result of check_typedef
14648 when examining properties of the type. */
14649 base_type
= check_typedef (orig_base_type
);
14651 /* The die_type call above may have already set the type for this DIE. */
14652 range_type
= get_die_type (die
, cu
);
14656 low
.kind
= PROP_CONST
;
14657 high
.kind
= PROP_CONST
;
14658 high
.data
.const_val
= 0;
14660 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
14661 omitting DW_AT_lower_bound. */
14662 switch (cu
->language
)
14665 case language_cplus
:
14666 low
.data
.const_val
= 0;
14667 low_default_is_valid
= 1;
14669 case language_fortran
:
14670 low
.data
.const_val
= 1;
14671 low_default_is_valid
= 1;
14674 case language_java
:
14675 case language_objc
:
14676 low
.data
.const_val
= 0;
14677 low_default_is_valid
= (cu
->header
.version
>= 4);
14681 case language_pascal
:
14682 low
.data
.const_val
= 1;
14683 low_default_is_valid
= (cu
->header
.version
>= 4);
14686 low
.data
.const_val
= 0;
14687 low_default_is_valid
= 0;
14691 attr
= dwarf2_attr (die
, DW_AT_lower_bound
, cu
);
14693 attr_to_dynamic_prop (attr
, die
, cu
, &low
);
14694 else if (!low_default_is_valid
)
14695 complaint (&symfile_complaints
, _("Missing DW_AT_lower_bound "
14696 "- DIE at 0x%x [in module %s]"),
14697 die
->offset
.sect_off
, objfile_name (cu
->objfile
));
14699 attr
= dwarf2_attr (die
, DW_AT_upper_bound
, cu
);
14700 if (!attr_to_dynamic_prop (attr
, die
, cu
, &high
))
14702 attr
= dwarf2_attr (die
, DW_AT_count
, cu
);
14703 if (attr_to_dynamic_prop (attr
, die
, cu
, &high
))
14705 /* If bounds are constant do the final calculation here. */
14706 if (low
.kind
== PROP_CONST
&& high
.kind
== PROP_CONST
)
14707 high
.data
.const_val
= low
.data
.const_val
+ high
.data
.const_val
- 1;
14709 high_bound_is_count
= 1;
14713 /* Dwarf-2 specifications explicitly allows to create subrange types
14714 without specifying a base type.
14715 In that case, the base type must be set to the type of
14716 the lower bound, upper bound or count, in that order, if any of these
14717 three attributes references an object that has a type.
14718 If no base type is found, the Dwarf-2 specifications say that
14719 a signed integer type of size equal to the size of an address should
14721 For the following C code: `extern char gdb_int [];'
14722 GCC produces an empty range DIE.
14723 FIXME: muller/2010-05-28: Possible references to object for low bound,
14724 high bound or count are not yet handled by this code. */
14725 if (TYPE_CODE (base_type
) == TYPE_CODE_VOID
)
14727 struct objfile
*objfile
= cu
->objfile
;
14728 struct gdbarch
*gdbarch
= get_objfile_arch (objfile
);
14729 int addr_size
= gdbarch_addr_bit (gdbarch
) /8;
14730 struct type
*int_type
= objfile_type (objfile
)->builtin_int
;
14732 /* Test "int", "long int", and "long long int" objfile types,
14733 and select the first one having a size above or equal to the
14734 architecture address size. */
14735 if (int_type
&& TYPE_LENGTH (int_type
) >= addr_size
)
14736 base_type
= int_type
;
14739 int_type
= objfile_type (objfile
)->builtin_long
;
14740 if (int_type
&& TYPE_LENGTH (int_type
) >= addr_size
)
14741 base_type
= int_type
;
14744 int_type
= objfile_type (objfile
)->builtin_long_long
;
14745 if (int_type
&& TYPE_LENGTH (int_type
) >= addr_size
)
14746 base_type
= int_type
;
14751 /* Normally, the DWARF producers are expected to use a signed
14752 constant form (Eg. DW_FORM_sdata) to express negative bounds.
14753 But this is unfortunately not always the case, as witnessed
14754 with GCC, for instance, where the ambiguous DW_FORM_dataN form
14755 is used instead. To work around that ambiguity, we treat
14756 the bounds as signed, and thus sign-extend their values, when
14757 the base type is signed. */
14759 (LONGEST
) -1 << (TYPE_LENGTH (base_type
) * TARGET_CHAR_BIT
- 1);
14760 if (low
.kind
== PROP_CONST
14761 && !TYPE_UNSIGNED (base_type
) && (low
.data
.const_val
& negative_mask
))
14762 low
.data
.const_val
|= negative_mask
;
14763 if (high
.kind
== PROP_CONST
14764 && !TYPE_UNSIGNED (base_type
) && (high
.data
.const_val
& negative_mask
))
14765 high
.data
.const_val
|= negative_mask
;
14767 range_type
= create_range_type (NULL
, orig_base_type
, &low
, &high
);
14769 if (high_bound_is_count
)
14770 TYPE_RANGE_DATA (range_type
)->flag_upper_bound_is_count
= 1;
14772 /* Ada expects an empty array on no boundary attributes. */
14773 if (attr
== NULL
&& cu
->language
!= language_ada
)
14774 TYPE_HIGH_BOUND_KIND (range_type
) = PROP_UNDEFINED
;
14776 name
= dwarf2_name (die
, cu
);
14778 TYPE_NAME (range_type
) = name
;
14780 attr
= dwarf2_attr (die
, DW_AT_byte_size
, cu
);
14782 TYPE_LENGTH (range_type
) = DW_UNSND (attr
);
14784 set_die_type (die
, range_type
, cu
);
14786 /* set_die_type should be already done. */
14787 set_descriptive_type (range_type
, die
, cu
);
14792 static struct type
*
14793 read_unspecified_type (struct die_info
*die
, struct dwarf2_cu
*cu
)
14797 /* For now, we only support the C meaning of an unspecified type: void. */
14799 type
= init_type (TYPE_CODE_VOID
, 0, 0, NULL
, cu
->objfile
);
14800 TYPE_NAME (type
) = dwarf2_name (die
, cu
);
14802 return set_die_type (die
, type
, cu
);
14805 /* Read a single die and all its descendents. Set the die's sibling
14806 field to NULL; set other fields in the die correctly, and set all
14807 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
14808 location of the info_ptr after reading all of those dies. PARENT
14809 is the parent of the die in question. */
14811 static struct die_info
*
14812 read_die_and_children (const struct die_reader_specs
*reader
,
14813 const gdb_byte
*info_ptr
,
14814 const gdb_byte
**new_info_ptr
,
14815 struct die_info
*parent
)
14817 struct die_info
*die
;
14818 const gdb_byte
*cur_ptr
;
14821 cur_ptr
= read_full_die_1 (reader
, &die
, info_ptr
, &has_children
, 0);
14824 *new_info_ptr
= cur_ptr
;
14827 store_in_ref_table (die
, reader
->cu
);
14830 die
->child
= read_die_and_siblings_1 (reader
, cur_ptr
, new_info_ptr
, die
);
14834 *new_info_ptr
= cur_ptr
;
14837 die
->sibling
= NULL
;
14838 die
->parent
= parent
;
14842 /* Read a die, all of its descendents, and all of its siblings; set
14843 all of the fields of all of the dies correctly. Arguments are as
14844 in read_die_and_children. */
14846 static struct die_info
*
14847 read_die_and_siblings_1 (const struct die_reader_specs
*reader
,
14848 const gdb_byte
*info_ptr
,
14849 const gdb_byte
**new_info_ptr
,
14850 struct die_info
*parent
)
14852 struct die_info
*first_die
, *last_sibling
;
14853 const gdb_byte
*cur_ptr
;
14855 cur_ptr
= info_ptr
;
14856 first_die
= last_sibling
= NULL
;
14860 struct die_info
*die
14861 = read_die_and_children (reader
, cur_ptr
, &cur_ptr
, parent
);
14865 *new_info_ptr
= cur_ptr
;
14872 last_sibling
->sibling
= die
;
14874 last_sibling
= die
;
14878 /* Read a die, all of its descendents, and all of its siblings; set
14879 all of the fields of all of the dies correctly. Arguments are as
14880 in read_die_and_children.
14881 This the main entry point for reading a DIE and all its children. */
14883 static struct die_info
*
14884 read_die_and_siblings (const struct die_reader_specs
*reader
,
14885 const gdb_byte
*info_ptr
,
14886 const gdb_byte
**new_info_ptr
,
14887 struct die_info
*parent
)
14889 struct die_info
*die
= read_die_and_siblings_1 (reader
, info_ptr
,
14890 new_info_ptr
, parent
);
14892 if (dwarf2_die_debug
)
14894 fprintf_unfiltered (gdb_stdlog
,
14895 "Read die from %s@0x%x of %s:\n",
14896 get_section_name (reader
->die_section
),
14897 (unsigned) (info_ptr
- reader
->die_section
->buffer
),
14898 bfd_get_filename (reader
->abfd
));
14899 dump_die (die
, dwarf2_die_debug
);
14905 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
14907 The caller is responsible for filling in the extra attributes
14908 and updating (*DIEP)->num_attrs.
14909 Set DIEP to point to a newly allocated die with its information,
14910 except for its child, sibling, and parent fields.
14911 Set HAS_CHILDREN to tell whether the die has children or not. */
14913 static const gdb_byte
*
14914 read_full_die_1 (const struct die_reader_specs
*reader
,
14915 struct die_info
**diep
, const gdb_byte
*info_ptr
,
14916 int *has_children
, int num_extra_attrs
)
14918 unsigned int abbrev_number
, bytes_read
, i
;
14919 sect_offset offset
;
14920 struct abbrev_info
*abbrev
;
14921 struct die_info
*die
;
14922 struct dwarf2_cu
*cu
= reader
->cu
;
14923 bfd
*abfd
= reader
->abfd
;
14925 offset
.sect_off
= info_ptr
- reader
->buffer
;
14926 abbrev_number
= read_unsigned_leb128 (abfd
, info_ptr
, &bytes_read
);
14927 info_ptr
+= bytes_read
;
14928 if (!abbrev_number
)
14935 abbrev
= abbrev_table_lookup_abbrev (cu
->abbrev_table
, abbrev_number
);
14937 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
14939 bfd_get_filename (abfd
));
14941 die
= dwarf_alloc_die (cu
, abbrev
->num_attrs
+ num_extra_attrs
);
14942 die
->offset
= offset
;
14943 die
->tag
= abbrev
->tag
;
14944 die
->abbrev
= abbrev_number
;
14946 /* Make the result usable.
14947 The caller needs to update num_attrs after adding the extra
14949 die
->num_attrs
= abbrev
->num_attrs
;
14951 for (i
= 0; i
< abbrev
->num_attrs
; ++i
)
14952 info_ptr
= read_attribute (reader
, &die
->attrs
[i
], &abbrev
->attrs
[i
],
14956 *has_children
= abbrev
->has_children
;
14960 /* Read a die and all its attributes.
14961 Set DIEP to point to a newly allocated die with its information,
14962 except for its child, sibling, and parent fields.
14963 Set HAS_CHILDREN to tell whether the die has children or not. */
14965 static const gdb_byte
*
14966 read_full_die (const struct die_reader_specs
*reader
,
14967 struct die_info
**diep
, const gdb_byte
*info_ptr
,
14970 const gdb_byte
*result
;
14972 result
= read_full_die_1 (reader
, diep
, info_ptr
, has_children
, 0);
14974 if (dwarf2_die_debug
)
14976 fprintf_unfiltered (gdb_stdlog
,
14977 "Read die from %s@0x%x of %s:\n",
14978 get_section_name (reader
->die_section
),
14979 (unsigned) (info_ptr
- reader
->die_section
->buffer
),
14980 bfd_get_filename (reader
->abfd
));
14981 dump_die (*diep
, dwarf2_die_debug
);
14987 /* Abbreviation tables.
14989 In DWARF version 2, the description of the debugging information is
14990 stored in a separate .debug_abbrev section. Before we read any
14991 dies from a section we read in all abbreviations and install them
14992 in a hash table. */
14994 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
14996 static struct abbrev_info
*
14997 abbrev_table_alloc_abbrev (struct abbrev_table
*abbrev_table
)
14999 struct abbrev_info
*abbrev
;
15001 abbrev
= (struct abbrev_info
*)
15002 obstack_alloc (&abbrev_table
->abbrev_obstack
, sizeof (struct abbrev_info
));
15003 memset (abbrev
, 0, sizeof (struct abbrev_info
));
15007 /* Add an abbreviation to the table. */
15010 abbrev_table_add_abbrev (struct abbrev_table
*abbrev_table
,
15011 unsigned int abbrev_number
,
15012 struct abbrev_info
*abbrev
)
15014 unsigned int hash_number
;
15016 hash_number
= abbrev_number
% ABBREV_HASH_SIZE
;
15017 abbrev
->next
= abbrev_table
->abbrevs
[hash_number
];
15018 abbrev_table
->abbrevs
[hash_number
] = abbrev
;
15021 /* Look up an abbrev in the table.
15022 Returns NULL if the abbrev is not found. */
15024 static struct abbrev_info
*
15025 abbrev_table_lookup_abbrev (const struct abbrev_table
*abbrev_table
,
15026 unsigned int abbrev_number
)
15028 unsigned int hash_number
;
15029 struct abbrev_info
*abbrev
;
15031 hash_number
= abbrev_number
% ABBREV_HASH_SIZE
;
15032 abbrev
= abbrev_table
->abbrevs
[hash_number
];
15036 if (abbrev
->number
== abbrev_number
)
15038 abbrev
= abbrev
->next
;
15043 /* Read in an abbrev table. */
15045 static struct abbrev_table
*
15046 abbrev_table_read_table (struct dwarf2_section_info
*section
,
15047 sect_offset offset
)
15049 struct objfile
*objfile
= dwarf2_per_objfile
->objfile
;
15050 bfd
*abfd
= get_section_bfd_owner (section
);
15051 struct abbrev_table
*abbrev_table
;
15052 const gdb_byte
*abbrev_ptr
;
15053 struct abbrev_info
*cur_abbrev
;
15054 unsigned int abbrev_number
, bytes_read
, abbrev_name
;
15055 unsigned int abbrev_form
;
15056 struct attr_abbrev
*cur_attrs
;
15057 unsigned int allocated_attrs
;
15059 abbrev_table
= XNEW (struct abbrev_table
);
15060 abbrev_table
->offset
= offset
;
15061 obstack_init (&abbrev_table
->abbrev_obstack
);
15062 abbrev_table
->abbrevs
= obstack_alloc (&abbrev_table
->abbrev_obstack
,
15064 * sizeof (struct abbrev_info
*)));
15065 memset (abbrev_table
->abbrevs
, 0,
15066 ABBREV_HASH_SIZE
* sizeof (struct abbrev_info
*));
15068 dwarf2_read_section (objfile
, section
);
15069 abbrev_ptr
= section
->buffer
+ offset
.sect_off
;
15070 abbrev_number
= read_unsigned_leb128 (abfd
, abbrev_ptr
, &bytes_read
);
15071 abbrev_ptr
+= bytes_read
;
15073 allocated_attrs
= ATTR_ALLOC_CHUNK
;
15074 cur_attrs
= xmalloc (allocated_attrs
* sizeof (struct attr_abbrev
));
15076 /* Loop until we reach an abbrev number of 0. */
15077 while (abbrev_number
)
15079 cur_abbrev
= abbrev_table_alloc_abbrev (abbrev_table
);
15081 /* read in abbrev header */
15082 cur_abbrev
->number
= abbrev_number
;
15083 cur_abbrev
->tag
= read_unsigned_leb128 (abfd
, abbrev_ptr
, &bytes_read
);
15084 abbrev_ptr
+= bytes_read
;
15085 cur_abbrev
->has_children
= read_1_byte (abfd
, abbrev_ptr
);
15088 /* now read in declarations */
15089 abbrev_name
= read_unsigned_leb128 (abfd
, abbrev_ptr
, &bytes_read
);
15090 abbrev_ptr
+= bytes_read
;
15091 abbrev_form
= read_unsigned_leb128 (abfd
, abbrev_ptr
, &bytes_read
);
15092 abbrev_ptr
+= bytes_read
;
15093 while (abbrev_name
)
15095 if (cur_abbrev
->num_attrs
== allocated_attrs
)
15097 allocated_attrs
+= ATTR_ALLOC_CHUNK
;
15099 = xrealloc (cur_attrs
, (allocated_attrs
15100 * sizeof (struct attr_abbrev
)));
15103 cur_attrs
[cur_abbrev
->num_attrs
].name
= abbrev_name
;
15104 cur_attrs
[cur_abbrev
->num_attrs
++].form
= abbrev_form
;
15105 abbrev_name
= read_unsigned_leb128 (abfd
, abbrev_ptr
, &bytes_read
);
15106 abbrev_ptr
+= bytes_read
;
15107 abbrev_form
= read_unsigned_leb128 (abfd
, abbrev_ptr
, &bytes_read
);
15108 abbrev_ptr
+= bytes_read
;
15111 cur_abbrev
->attrs
= obstack_alloc (&abbrev_table
->abbrev_obstack
,
15112 (cur_abbrev
->num_attrs
15113 * sizeof (struct attr_abbrev
)));
15114 memcpy (cur_abbrev
->attrs
, cur_attrs
,
15115 cur_abbrev
->num_attrs
* sizeof (struct attr_abbrev
));
15117 abbrev_table_add_abbrev (abbrev_table
, abbrev_number
, cur_abbrev
);
15119 /* Get next abbreviation.
15120 Under Irix6 the abbreviations for a compilation unit are not
15121 always properly terminated with an abbrev number of 0.
15122 Exit loop if we encounter an abbreviation which we have
15123 already read (which means we are about to read the abbreviations
15124 for the next compile unit) or if the end of the abbreviation
15125 table is reached. */
15126 if ((unsigned int) (abbrev_ptr
- section
->buffer
) >= section
->size
)
15128 abbrev_number
= read_unsigned_leb128 (abfd
, abbrev_ptr
, &bytes_read
);
15129 abbrev_ptr
+= bytes_read
;
15130 if (abbrev_table_lookup_abbrev (abbrev_table
, abbrev_number
) != NULL
)
15135 return abbrev_table
;
15138 /* Free the resources held by ABBREV_TABLE. */
15141 abbrev_table_free (struct abbrev_table
*abbrev_table
)
15143 obstack_free (&abbrev_table
->abbrev_obstack
, NULL
);
15144 xfree (abbrev_table
);
15147 /* Same as abbrev_table_free but as a cleanup.
15148 We pass in a pointer to the pointer to the table so that we can
15149 set the pointer to NULL when we're done. It also simplifies
15150 build_type_psymtabs_1. */
15153 abbrev_table_free_cleanup (void *table_ptr
)
15155 struct abbrev_table
**abbrev_table_ptr
= table_ptr
;
15157 if (*abbrev_table_ptr
!= NULL
)
15158 abbrev_table_free (*abbrev_table_ptr
);
15159 *abbrev_table_ptr
= NULL
;
15162 /* Read the abbrev table for CU from ABBREV_SECTION. */
15165 dwarf2_read_abbrevs (struct dwarf2_cu
*cu
,
15166 struct dwarf2_section_info
*abbrev_section
)
15169 abbrev_table_read_table (abbrev_section
, cu
->header
.abbrev_offset
);
15172 /* Release the memory used by the abbrev table for a compilation unit. */
15175 dwarf2_free_abbrev_table (void *ptr_to_cu
)
15177 struct dwarf2_cu
*cu
= ptr_to_cu
;
15179 if (cu
->abbrev_table
!= NULL
)
15180 abbrev_table_free (cu
->abbrev_table
);
15181 /* Set this to NULL so that we SEGV if we try to read it later,
15182 and also because free_comp_unit verifies this is NULL. */
15183 cu
->abbrev_table
= NULL
;
15186 /* Returns nonzero if TAG represents a type that we might generate a partial
15190 is_type_tag_for_partial (int tag
)
15195 /* Some types that would be reasonable to generate partial symbols for,
15196 that we don't at present. */
15197 case DW_TAG_array_type
:
15198 case DW_TAG_file_type
:
15199 case DW_TAG_ptr_to_member_type
:
15200 case DW_TAG_set_type
:
15201 case DW_TAG_string_type
:
15202 case DW_TAG_subroutine_type
:
15204 case DW_TAG_base_type
:
15205 case DW_TAG_class_type
:
15206 case DW_TAG_interface_type
:
15207 case DW_TAG_enumeration_type
:
15208 case DW_TAG_structure_type
:
15209 case DW_TAG_subrange_type
:
15210 case DW_TAG_typedef
:
15211 case DW_TAG_union_type
:
15218 /* Load all DIEs that are interesting for partial symbols into memory. */
15220 static struct partial_die_info
*
15221 load_partial_dies (const struct die_reader_specs
*reader
,
15222 const gdb_byte
*info_ptr
, int building_psymtab
)
15224 struct dwarf2_cu
*cu
= reader
->cu
;
15225 struct objfile
*objfile
= cu
->objfile
;
15226 struct partial_die_info
*part_die
;
15227 struct partial_die_info
*parent_die
, *last_die
, *first_die
= NULL
;
15228 struct abbrev_info
*abbrev
;
15229 unsigned int bytes_read
;
15230 unsigned int load_all
= 0;
15231 int nesting_level
= 1;
15236 gdb_assert (cu
->per_cu
!= NULL
);
15237 if (cu
->per_cu
->load_all_dies
)
15241 = htab_create_alloc_ex (cu
->header
.length
/ 12,
15245 &cu
->comp_unit_obstack
,
15246 hashtab_obstack_allocate
,
15247 dummy_obstack_deallocate
);
15249 part_die
= obstack_alloc (&cu
->comp_unit_obstack
,
15250 sizeof (struct partial_die_info
));
15254 abbrev
= peek_die_abbrev (info_ptr
, &bytes_read
, cu
);
15256 /* A NULL abbrev means the end of a series of children. */
15257 if (abbrev
== NULL
)
15259 if (--nesting_level
== 0)
15261 /* PART_DIE was probably the last thing allocated on the
15262 comp_unit_obstack, so we could call obstack_free
15263 here. We don't do that because the waste is small,
15264 and will be cleaned up when we're done with this
15265 compilation unit. This way, we're also more robust
15266 against other users of the comp_unit_obstack. */
15269 info_ptr
+= bytes_read
;
15270 last_die
= parent_die
;
15271 parent_die
= parent_die
->die_parent
;
15275 /* Check for template arguments. We never save these; if
15276 they're seen, we just mark the parent, and go on our way. */
15277 if (parent_die
!= NULL
15278 && cu
->language
== language_cplus
15279 && (abbrev
->tag
== DW_TAG_template_type_param
15280 || abbrev
->tag
== DW_TAG_template_value_param
))
15282 parent_die
->has_template_arguments
= 1;
15286 /* We don't need a partial DIE for the template argument. */
15287 info_ptr
= skip_one_die (reader
, info_ptr
+ bytes_read
, abbrev
);
15292 /* We only recurse into c++ subprograms looking for template arguments.
15293 Skip their other children. */
15295 && cu
->language
== language_cplus
15296 && parent_die
!= NULL
15297 && parent_die
->tag
== DW_TAG_subprogram
)
15299 info_ptr
= skip_one_die (reader
, info_ptr
+ bytes_read
, abbrev
);
15303 /* Check whether this DIE is interesting enough to save. Normally
15304 we would not be interested in members here, but there may be
15305 later variables referencing them via DW_AT_specification (for
15306 static members). */
15308 && !is_type_tag_for_partial (abbrev
->tag
)
15309 && abbrev
->tag
!= DW_TAG_constant
15310 && abbrev
->tag
!= DW_TAG_enumerator
15311 && abbrev
->tag
!= DW_TAG_subprogram
15312 && abbrev
->tag
!= DW_TAG_lexical_block
15313 && abbrev
->tag
!= DW_TAG_variable
15314 && abbrev
->tag
!= DW_TAG_namespace
15315 && abbrev
->tag
!= DW_TAG_module
15316 && abbrev
->tag
!= DW_TAG_member
15317 && abbrev
->tag
!= DW_TAG_imported_unit
15318 && abbrev
->tag
!= DW_TAG_imported_declaration
)
15320 /* Otherwise we skip to the next sibling, if any. */
15321 info_ptr
= skip_one_die (reader
, info_ptr
+ bytes_read
, abbrev
);
15325 info_ptr
= read_partial_die (reader
, part_die
, abbrev
, bytes_read
,
15328 /* This two-pass algorithm for processing partial symbols has a
15329 high cost in cache pressure. Thus, handle some simple cases
15330 here which cover the majority of C partial symbols. DIEs
15331 which neither have specification tags in them, nor could have
15332 specification tags elsewhere pointing at them, can simply be
15333 processed and discarded.
15335 This segment is also optional; scan_partial_symbols and
15336 add_partial_symbol will handle these DIEs if we chain
15337 them in normally. When compilers which do not emit large
15338 quantities of duplicate debug information are more common,
15339 this code can probably be removed. */
15341 /* Any complete simple types at the top level (pretty much all
15342 of them, for a language without namespaces), can be processed
15344 if (parent_die
== NULL
15345 && part_die
->has_specification
== 0
15346 && part_die
->is_declaration
== 0
15347 && ((part_die
->tag
== DW_TAG_typedef
&& !part_die
->has_children
)
15348 || part_die
->tag
== DW_TAG_base_type
15349 || part_die
->tag
== DW_TAG_subrange_type
))
15351 if (building_psymtab
&& part_die
->name
!= NULL
)
15352 add_psymbol_to_list (part_die
->name
, strlen (part_die
->name
), 0,
15353 VAR_DOMAIN
, LOC_TYPEDEF
,
15354 &objfile
->static_psymbols
,
15355 0, (CORE_ADDR
) 0, cu
->language
, objfile
);
15356 info_ptr
= locate_pdi_sibling (reader
, part_die
, info_ptr
);
15360 /* The exception for DW_TAG_typedef with has_children above is
15361 a workaround of GCC PR debug/47510. In the case of this complaint
15362 type_name_no_tag_or_error will error on such types later.
15364 GDB skipped children of DW_TAG_typedef by the shortcut above and then
15365 it could not find the child DIEs referenced later, this is checked
15366 above. In correct DWARF DW_TAG_typedef should have no children. */
15368 if (part_die
->tag
== DW_TAG_typedef
&& part_die
->has_children
)
15369 complaint (&symfile_complaints
,
15370 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
15371 "- DIE at 0x%x [in module %s]"),
15372 part_die
->offset
.sect_off
, objfile_name (objfile
));
15374 /* If we're at the second level, and we're an enumerator, and
15375 our parent has no specification (meaning possibly lives in a
15376 namespace elsewhere), then we can add the partial symbol now
15377 instead of queueing it. */
15378 if (part_die
->tag
== DW_TAG_enumerator
15379 && parent_die
!= NULL
15380 && parent_die
->die_parent
== NULL
15381 && parent_die
->tag
== DW_TAG_enumeration_type
15382 && parent_die
->has_specification
== 0)
15384 if (part_die
->name
== NULL
)
15385 complaint (&symfile_complaints
,
15386 _("malformed enumerator DIE ignored"));
15387 else if (building_psymtab
)
15388 add_psymbol_to_list (part_die
->name
, strlen (part_die
->name
), 0,
15389 VAR_DOMAIN
, LOC_CONST
,
15390 (cu
->language
== language_cplus
15391 || cu
->language
== language_java
)
15392 ? &objfile
->global_psymbols
15393 : &objfile
->static_psymbols
,
15394 0, (CORE_ADDR
) 0, cu
->language
, objfile
);
15396 info_ptr
= locate_pdi_sibling (reader
, part_die
, info_ptr
);
15400 /* We'll save this DIE so link it in. */
15401 part_die
->die_parent
= parent_die
;
15402 part_die
->die_sibling
= NULL
;
15403 part_die
->die_child
= NULL
;
15405 if (last_die
&& last_die
== parent_die
)
15406 last_die
->die_child
= part_die
;
15408 last_die
->die_sibling
= part_die
;
15410 last_die
= part_die
;
15412 if (first_die
== NULL
)
15413 first_die
= part_die
;
15415 /* Maybe add the DIE to the hash table. Not all DIEs that we
15416 find interesting need to be in the hash table, because we
15417 also have the parent/sibling/child chains; only those that we
15418 might refer to by offset later during partial symbol reading.
15420 For now this means things that might have be the target of a
15421 DW_AT_specification, DW_AT_abstract_origin, or
15422 DW_AT_extension. DW_AT_extension will refer only to
15423 namespaces; DW_AT_abstract_origin refers to functions (and
15424 many things under the function DIE, but we do not recurse
15425 into function DIEs during partial symbol reading) and
15426 possibly variables as well; DW_AT_specification refers to
15427 declarations. Declarations ought to have the DW_AT_declaration
15428 flag. It happens that GCC forgets to put it in sometimes, but
15429 only for functions, not for types.
15431 Adding more things than necessary to the hash table is harmless
15432 except for the performance cost. Adding too few will result in
15433 wasted time in find_partial_die, when we reread the compilation
15434 unit with load_all_dies set. */
15437 || abbrev
->tag
== DW_TAG_constant
15438 || abbrev
->tag
== DW_TAG_subprogram
15439 || abbrev
->tag
== DW_TAG_variable
15440 || abbrev
->tag
== DW_TAG_namespace
15441 || part_die
->is_declaration
)
15445 slot
= htab_find_slot_with_hash (cu
->partial_dies
, part_die
,
15446 part_die
->offset
.sect_off
, INSERT
);
15450 part_die
= obstack_alloc (&cu
->comp_unit_obstack
,
15451 sizeof (struct partial_die_info
));
15453 /* For some DIEs we want to follow their children (if any). For C
15454 we have no reason to follow the children of structures; for other
15455 languages we have to, so that we can get at method physnames
15456 to infer fully qualified class names, for DW_AT_specification,
15457 and for C++ template arguments. For C++, we also look one level
15458 inside functions to find template arguments (if the name of the
15459 function does not already contain the template arguments).
15461 For Ada, we need to scan the children of subprograms and lexical
15462 blocks as well because Ada allows the definition of nested
15463 entities that could be interesting for the debugger, such as
15464 nested subprograms for instance. */
15465 if (last_die
->has_children
15467 || last_die
->tag
== DW_TAG_namespace
15468 || last_die
->tag
== DW_TAG_module
15469 || last_die
->tag
== DW_TAG_enumeration_type
15470 || (cu
->language
== language_cplus
15471 && last_die
->tag
== DW_TAG_subprogram
15472 && (last_die
->name
== NULL
15473 || strchr (last_die
->name
, '<') == NULL
))
15474 || (cu
->language
!= language_c
15475 && (last_die
->tag
== DW_TAG_class_type
15476 || last_die
->tag
== DW_TAG_interface_type
15477 || last_die
->tag
== DW_TAG_structure_type
15478 || last_die
->tag
== DW_TAG_union_type
))
15479 || (cu
->language
== language_ada
15480 && (last_die
->tag
== DW_TAG_subprogram
15481 || last_die
->tag
== DW_TAG_lexical_block
))))
15484 parent_die
= last_die
;
15488 /* Otherwise we skip to the next sibling, if any. */
15489 info_ptr
= locate_pdi_sibling (reader
, last_die
, info_ptr
);
15491 /* Back to the top, do it again. */
15495 /* Read a minimal amount of information into the minimal die structure. */
15497 static const gdb_byte
*
15498 read_partial_die (const struct die_reader_specs
*reader
,
15499 struct partial_die_info
*part_die
,
15500 struct abbrev_info
*abbrev
, unsigned int abbrev_len
,
15501 const gdb_byte
*info_ptr
)
15503 struct dwarf2_cu
*cu
= reader
->cu
;
15504 struct objfile
*objfile
= cu
->objfile
;
15505 const gdb_byte
*buffer
= reader
->buffer
;
15507 struct attribute attr
;
15508 int has_low_pc_attr
= 0;
15509 int has_high_pc_attr
= 0;
15510 int high_pc_relative
= 0;
15512 memset (part_die
, 0, sizeof (struct partial_die_info
));
15514 part_die
->offset
.sect_off
= info_ptr
- buffer
;
15516 info_ptr
+= abbrev_len
;
15518 if (abbrev
== NULL
)
15521 part_die
->tag
= abbrev
->tag
;
15522 part_die
->has_children
= abbrev
->has_children
;
15524 for (i
= 0; i
< abbrev
->num_attrs
; ++i
)
15526 info_ptr
= read_attribute (reader
, &attr
, &abbrev
->attrs
[i
], info_ptr
);
15528 /* Store the data if it is of an attribute we want to keep in a
15529 partial symbol table. */
15533 switch (part_die
->tag
)
15535 case DW_TAG_compile_unit
:
15536 case DW_TAG_partial_unit
:
15537 case DW_TAG_type_unit
:
15538 /* Compilation units have a DW_AT_name that is a filename, not
15539 a source language identifier. */
15540 case DW_TAG_enumeration_type
:
15541 case DW_TAG_enumerator
:
15542 /* These tags always have simple identifiers already; no need
15543 to canonicalize them. */
15544 part_die
->name
= DW_STRING (&attr
);
15548 = dwarf2_canonicalize_name (DW_STRING (&attr
), cu
,
15549 &objfile
->per_bfd
->storage_obstack
);
15553 case DW_AT_linkage_name
:
15554 case DW_AT_MIPS_linkage_name
:
15555 /* Note that both forms of linkage name might appear. We
15556 assume they will be the same, and we only store the last
15558 if (cu
->language
== language_ada
)
15559 part_die
->name
= DW_STRING (&attr
);
15560 part_die
->linkage_name
= DW_STRING (&attr
);
15563 has_low_pc_attr
= 1;
15564 part_die
->lowpc
= attr_value_as_address (&attr
);
15566 case DW_AT_high_pc
:
15567 has_high_pc_attr
= 1;
15568 part_die
->highpc
= attr_value_as_address (&attr
);
15569 if (cu
->header
.version
>= 4 && attr_form_is_constant (&attr
))
15570 high_pc_relative
= 1;
15572 case DW_AT_location
:
15573 /* Support the .debug_loc offsets. */
15574 if (attr_form_is_block (&attr
))
15576 part_die
->d
.locdesc
= DW_BLOCK (&attr
);
15578 else if (attr_form_is_section_offset (&attr
))
15580 dwarf2_complex_location_expr_complaint ();
15584 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15585 "partial symbol information");
15588 case DW_AT_external
:
15589 part_die
->is_external
= DW_UNSND (&attr
);
15591 case DW_AT_declaration
:
15592 part_die
->is_declaration
= DW_UNSND (&attr
);
15595 part_die
->has_type
= 1;
15597 case DW_AT_abstract_origin
:
15598 case DW_AT_specification
:
15599 case DW_AT_extension
:
15600 part_die
->has_specification
= 1;
15601 part_die
->spec_offset
= dwarf2_get_ref_die_offset (&attr
);
15602 part_die
->spec_is_dwz
= (attr
.form
== DW_FORM_GNU_ref_alt
15603 || cu
->per_cu
->is_dwz
);
15605 case DW_AT_sibling
:
15606 /* Ignore absolute siblings, they might point outside of
15607 the current compile unit. */
15608 if (attr
.form
== DW_FORM_ref_addr
)
15609 complaint (&symfile_complaints
,
15610 _("ignoring absolute DW_AT_sibling"));
15613 unsigned int off
= dwarf2_get_ref_die_offset (&attr
).sect_off
;
15614 const gdb_byte
*sibling_ptr
= buffer
+ off
;
15616 if (sibling_ptr
< info_ptr
)
15617 complaint (&symfile_complaints
,
15618 _("DW_AT_sibling points backwards"));
15619 else if (sibling_ptr
> reader
->buffer_end
)
15620 dwarf2_section_buffer_overflow_complaint (reader
->die_section
);
15622 part_die
->sibling
= sibling_ptr
;
15625 case DW_AT_byte_size
:
15626 part_die
->has_byte_size
= 1;
15628 case DW_AT_calling_convention
:
15629 /* DWARF doesn't provide a way to identify a program's source-level
15630 entry point. DW_AT_calling_convention attributes are only meant
15631 to describe functions' calling conventions.
15633 However, because it's a necessary piece of information in
15634 Fortran, and because DW_CC_program is the only piece of debugging
15635 information whose definition refers to a 'main program' at all,
15636 several compilers have begun marking Fortran main programs with
15637 DW_CC_program --- even when those functions use the standard
15638 calling conventions.
15640 So until DWARF specifies a way to provide this information and
15641 compilers pick up the new representation, we'll support this
15643 if (DW_UNSND (&attr
) == DW_CC_program
15644 && cu
->language
== language_fortran
)
15645 set_objfile_main_name (objfile
, part_die
->name
, language_fortran
);
15648 if (DW_UNSND (&attr
) == DW_INL_inlined
15649 || DW_UNSND (&attr
) == DW_INL_declared_inlined
)
15650 part_die
->may_be_inlined
= 1;
15654 if (part_die
->tag
== DW_TAG_imported_unit
)
15656 part_die
->d
.offset
= dwarf2_get_ref_die_offset (&attr
);
15657 part_die
->is_dwz
= (attr
.form
== DW_FORM_GNU_ref_alt
15658 || cu
->per_cu
->is_dwz
);
15667 if (high_pc_relative
)
15668 part_die
->highpc
+= part_die
->lowpc
;
15670 if (has_low_pc_attr
&& has_high_pc_attr
)
15672 /* When using the GNU linker, .gnu.linkonce. sections are used to
15673 eliminate duplicate copies of functions and vtables and such.
15674 The linker will arbitrarily choose one and discard the others.
15675 The AT_*_pc values for such functions refer to local labels in
15676 these sections. If the section from that file was discarded, the
15677 labels are not in the output, so the relocs get a value of 0.
15678 If this is a discarded function, mark the pc bounds as invalid,
15679 so that GDB will ignore it. */
15680 if (part_die
->lowpc
== 0 && !dwarf2_per_objfile
->has_section_at_zero
)
15682 struct gdbarch
*gdbarch
= get_objfile_arch (objfile
);
15684 complaint (&symfile_complaints
,
15685 _("DW_AT_low_pc %s is zero "
15686 "for DIE at 0x%x [in module %s]"),
15687 paddress (gdbarch
, part_die
->lowpc
),
15688 part_die
->offset
.sect_off
, objfile_name (objfile
));
15690 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
15691 else if (part_die
->lowpc
>= part_die
->highpc
)
15693 struct gdbarch
*gdbarch
= get_objfile_arch (objfile
);
15695 complaint (&symfile_complaints
,
15696 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
15697 "for DIE at 0x%x [in module %s]"),
15698 paddress (gdbarch
, part_die
->lowpc
),
15699 paddress (gdbarch
, part_die
->highpc
),
15700 part_die
->offset
.sect_off
, objfile_name (objfile
));
15703 part_die
->has_pc_info
= 1;
15709 /* Find a cached partial DIE at OFFSET in CU. */
15711 static struct partial_die_info
*
15712 find_partial_die_in_comp_unit (sect_offset offset
, struct dwarf2_cu
*cu
)
15714 struct partial_die_info
*lookup_die
= NULL
;
15715 struct partial_die_info part_die
;
15717 part_die
.offset
= offset
;
15718 lookup_die
= htab_find_with_hash (cu
->partial_dies
, &part_die
,
15724 /* Find a partial DIE at OFFSET, which may or may not be in CU,
15725 except in the case of .debug_types DIEs which do not reference
15726 outside their CU (they do however referencing other types via
15727 DW_FORM_ref_sig8). */
15729 static struct partial_die_info
*
15730 find_partial_die (sect_offset offset
, int offset_in_dwz
, struct dwarf2_cu
*cu
)
15732 struct objfile
*objfile
= cu
->objfile
;
15733 struct dwarf2_per_cu_data
*per_cu
= NULL
;
15734 struct partial_die_info
*pd
= NULL
;
15736 if (offset_in_dwz
== cu
->per_cu
->is_dwz
15737 && offset_in_cu_p (&cu
->header
, offset
))
15739 pd
= find_partial_die_in_comp_unit (offset
, cu
);
15742 /* We missed recording what we needed.
15743 Load all dies and try again. */
15744 per_cu
= cu
->per_cu
;
15748 /* TUs don't reference other CUs/TUs (except via type signatures). */
15749 if (cu
->per_cu
->is_debug_types
)
15751 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
15752 " external reference to offset 0x%lx [in module %s].\n"),
15753 (long) cu
->header
.offset
.sect_off
, (long) offset
.sect_off
,
15754 bfd_get_filename (objfile
->obfd
));
15756 per_cu
= dwarf2_find_containing_comp_unit (offset
, offset_in_dwz
,
15759 if (per_cu
->cu
== NULL
|| per_cu
->cu
->partial_dies
== NULL
)
15760 load_partial_comp_unit (per_cu
);
15762 per_cu
->cu
->last_used
= 0;
15763 pd
= find_partial_die_in_comp_unit (offset
, per_cu
->cu
);
15766 /* If we didn't find it, and not all dies have been loaded,
15767 load them all and try again. */
15769 if (pd
== NULL
&& per_cu
->load_all_dies
== 0)
15771 per_cu
->load_all_dies
= 1;
15773 /* This is nasty. When we reread the DIEs, somewhere up the call chain
15774 THIS_CU->cu may already be in use. So we can't just free it and
15775 replace its DIEs with the ones we read in. Instead, we leave those
15776 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
15777 and clobber THIS_CU->cu->partial_dies with the hash table for the new
15779 load_partial_comp_unit (per_cu
);
15781 pd
= find_partial_die_in_comp_unit (offset
, per_cu
->cu
);
15785 internal_error (__FILE__
, __LINE__
,
15786 _("could not find partial DIE 0x%x "
15787 "in cache [from module %s]\n"),
15788 offset
.sect_off
, bfd_get_filename (objfile
->obfd
));
15792 /* See if we can figure out if the class lives in a namespace. We do
15793 this by looking for a member function; its demangled name will
15794 contain namespace info, if there is any. */
15797 guess_partial_die_structure_name (struct partial_die_info
*struct_pdi
,
15798 struct dwarf2_cu
*cu
)
15800 /* NOTE: carlton/2003-10-07: Getting the info this way changes
15801 what template types look like, because the demangler
15802 frequently doesn't give the same name as the debug info. We
15803 could fix this by only using the demangled name to get the
15804 prefix (but see comment in read_structure_type). */
15806 struct partial_die_info
*real_pdi
;
15807 struct partial_die_info
*child_pdi
;
15809 /* If this DIE (this DIE's specification, if any) has a parent, then
15810 we should not do this. We'll prepend the parent's fully qualified
15811 name when we create the partial symbol. */
15813 real_pdi
= struct_pdi
;
15814 while (real_pdi
->has_specification
)
15815 real_pdi
= find_partial_die (real_pdi
->spec_offset
,
15816 real_pdi
->spec_is_dwz
, cu
);
15818 if (real_pdi
->die_parent
!= NULL
)
15821 for (child_pdi
= struct_pdi
->die_child
;
15823 child_pdi
= child_pdi
->die_sibling
)
15825 if (child_pdi
->tag
== DW_TAG_subprogram
15826 && child_pdi
->linkage_name
!= NULL
)
15828 char *actual_class_name
15829 = language_class_name_from_physname (cu
->language_defn
,
15830 child_pdi
->linkage_name
);
15831 if (actual_class_name
!= NULL
)
15834 = obstack_copy0 (&cu
->objfile
->per_bfd
->storage_obstack
,
15836 strlen (actual_class_name
));
15837 xfree (actual_class_name
);
15844 /* Adjust PART_DIE before generating a symbol for it. This function
15845 may set the is_external flag or change the DIE's name. */
15848 fixup_partial_die (struct partial_die_info
*part_die
,
15849 struct dwarf2_cu
*cu
)
15851 /* Once we've fixed up a die, there's no point in doing so again.
15852 This also avoids a memory leak if we were to call
15853 guess_partial_die_structure_name multiple times. */
15854 if (part_die
->fixup_called
)
15857 /* If we found a reference attribute and the DIE has no name, try
15858 to find a name in the referred to DIE. */
15860 if (part_die
->name
== NULL
&& part_die
->has_specification
)
15862 struct partial_die_info
*spec_die
;
15864 spec_die
= find_partial_die (part_die
->spec_offset
,
15865 part_die
->spec_is_dwz
, cu
);
15867 fixup_partial_die (spec_die
, cu
);
15869 if (spec_die
->name
)
15871 part_die
->name
= spec_die
->name
;
15873 /* Copy DW_AT_external attribute if it is set. */
15874 if (spec_die
->is_external
)
15875 part_die
->is_external
= spec_die
->is_external
;
15879 /* Set default names for some unnamed DIEs. */
15881 if (part_die
->name
== NULL
&& part_die
->tag
== DW_TAG_namespace
)
15882 part_die
->name
= CP_ANONYMOUS_NAMESPACE_STR
;
15884 /* If there is no parent die to provide a namespace, and there are
15885 children, see if we can determine the namespace from their linkage
15887 if (cu
->language
== language_cplus
15888 && !VEC_empty (dwarf2_section_info_def
, dwarf2_per_objfile
->types
)
15889 && part_die
->die_parent
== NULL
15890 && part_die
->has_children
15891 && (part_die
->tag
== DW_TAG_class_type
15892 || part_die
->tag
== DW_TAG_structure_type
15893 || part_die
->tag
== DW_TAG_union_type
))
15894 guess_partial_die_structure_name (part_die
, cu
);
15896 /* GCC might emit a nameless struct or union that has a linkage
15897 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
15898 if (part_die
->name
== NULL
15899 && (part_die
->tag
== DW_TAG_class_type
15900 || part_die
->tag
== DW_TAG_interface_type
15901 || part_die
->tag
== DW_TAG_structure_type
15902 || part_die
->tag
== DW_TAG_union_type
)
15903 && part_die
->linkage_name
!= NULL
)
15907 demangled
= gdb_demangle (part_die
->linkage_name
, DMGL_TYPES
);
15912 /* Strip any leading namespaces/classes, keep only the base name.
15913 DW_AT_name for named DIEs does not contain the prefixes. */
15914 base
= strrchr (demangled
, ':');
15915 if (base
&& base
> demangled
&& base
[-1] == ':')
15921 = obstack_copy0 (&cu
->objfile
->per_bfd
->storage_obstack
,
15922 base
, strlen (base
));
15927 part_die
->fixup_called
= 1;
15930 /* Read an attribute value described by an attribute form. */
15932 static const gdb_byte
*
15933 read_attribute_value (const struct die_reader_specs
*reader
,
15934 struct attribute
*attr
, unsigned form
,
15935 const gdb_byte
*info_ptr
)
15937 struct dwarf2_cu
*cu
= reader
->cu
;
15938 bfd
*abfd
= reader
->abfd
;
15939 struct comp_unit_head
*cu_header
= &cu
->header
;
15940 unsigned int bytes_read
;
15941 struct dwarf_block
*blk
;
15946 case DW_FORM_ref_addr
:
15947 if (cu
->header
.version
== 2)
15948 DW_UNSND (attr
) = read_address (abfd
, info_ptr
, cu
, &bytes_read
);
15950 DW_UNSND (attr
) = read_offset (abfd
, info_ptr
,
15951 &cu
->header
, &bytes_read
);
15952 info_ptr
+= bytes_read
;
15954 case DW_FORM_GNU_ref_alt
:
15955 DW_UNSND (attr
) = read_offset (abfd
, info_ptr
, &cu
->header
, &bytes_read
);
15956 info_ptr
+= bytes_read
;
15959 DW_ADDR (attr
) = read_address (abfd
, info_ptr
, cu
, &bytes_read
);
15960 info_ptr
+= bytes_read
;
15962 case DW_FORM_block2
:
15963 blk
= dwarf_alloc_block (cu
);
15964 blk
->size
= read_2_bytes (abfd
, info_ptr
);
15966 blk
->data
= read_n_bytes (abfd
, info_ptr
, blk
->size
);
15967 info_ptr
+= blk
->size
;
15968 DW_BLOCK (attr
) = blk
;
15970 case DW_FORM_block4
:
15971 blk
= dwarf_alloc_block (cu
);
15972 blk
->size
= read_4_bytes (abfd
, info_ptr
);
15974 blk
->data
= read_n_bytes (abfd
, info_ptr
, blk
->size
);
15975 info_ptr
+= blk
->size
;
15976 DW_BLOCK (attr
) = blk
;
15978 case DW_FORM_data2
:
15979 DW_UNSND (attr
) = read_2_bytes (abfd
, info_ptr
);
15982 case DW_FORM_data4
:
15983 DW_UNSND (attr
) = read_4_bytes (abfd
, info_ptr
);
15986 case DW_FORM_data8
:
15987 DW_UNSND (attr
) = read_8_bytes (abfd
, info_ptr
);
15990 case DW_FORM_sec_offset
:
15991 DW_UNSND (attr
) = read_offset (abfd
, info_ptr
, &cu
->header
, &bytes_read
);
15992 info_ptr
+= bytes_read
;
15994 case DW_FORM_string
:
15995 DW_STRING (attr
) = read_direct_string (abfd
, info_ptr
, &bytes_read
);
15996 DW_STRING_IS_CANONICAL (attr
) = 0;
15997 info_ptr
+= bytes_read
;
16000 if (!cu
->per_cu
->is_dwz
)
16002 DW_STRING (attr
) = read_indirect_string (abfd
, info_ptr
, cu_header
,
16004 DW_STRING_IS_CANONICAL (attr
) = 0;
16005 info_ptr
+= bytes_read
;
16009 case DW_FORM_GNU_strp_alt
:
16011 struct dwz_file
*dwz
= dwarf2_get_dwz_file ();
16012 LONGEST str_offset
= read_offset (abfd
, info_ptr
, cu_header
,
16015 DW_STRING (attr
) = read_indirect_string_from_dwz (dwz
, str_offset
);
16016 DW_STRING_IS_CANONICAL (attr
) = 0;
16017 info_ptr
+= bytes_read
;
16020 case DW_FORM_exprloc
:
16021 case DW_FORM_block
:
16022 blk
= dwarf_alloc_block (cu
);
16023 blk
->size
= read_unsigned_leb128 (abfd
, info_ptr
, &bytes_read
);
16024 info_ptr
+= bytes_read
;
16025 blk
->data
= read_n_bytes (abfd
, info_ptr
, blk
->size
);
16026 info_ptr
+= blk
->size
;
16027 DW_BLOCK (attr
) = blk
;
16029 case DW_FORM_block1
:
16030 blk
= dwarf_alloc_block (cu
);
16031 blk
->size
= read_1_byte (abfd
, info_ptr
);
16033 blk
->data
= read_n_bytes (abfd
, info_ptr
, blk
->size
);
16034 info_ptr
+= blk
->size
;
16035 DW_BLOCK (attr
) = blk
;
16037 case DW_FORM_data1
:
16038 DW_UNSND (attr
) = read_1_byte (abfd
, info_ptr
);
16042 DW_UNSND (attr
) = read_1_byte (abfd
, info_ptr
);
16045 case DW_FORM_flag_present
:
16046 DW_UNSND (attr
) = 1;
16048 case DW_FORM_sdata
:
16049 DW_SND (attr
) = read_signed_leb128 (abfd
, info_ptr
, &bytes_read
);
16050 info_ptr
+= bytes_read
;
16052 case DW_FORM_udata
:
16053 DW_UNSND (attr
) = read_unsigned_leb128 (abfd
, info_ptr
, &bytes_read
);
16054 info_ptr
+= bytes_read
;
16057 DW_UNSND (attr
) = (cu
->header
.offset
.sect_off
16058 + read_1_byte (abfd
, info_ptr
));
16062 DW_UNSND (attr
) = (cu
->header
.offset
.sect_off
16063 + read_2_bytes (abfd
, info_ptr
));
16067 DW_UNSND (attr
) = (cu
->header
.offset
.sect_off
16068 + read_4_bytes (abfd
, info_ptr
));
16072 DW_UNSND (attr
) = (cu
->header
.offset
.sect_off
16073 + read_8_bytes (abfd
, info_ptr
));
16076 case DW_FORM_ref_sig8
:
16077 DW_SIGNATURE (attr
) = read_8_bytes (abfd
, info_ptr
);
16080 case DW_FORM_ref_udata
:
16081 DW_UNSND (attr
) = (cu
->header
.offset
.sect_off
16082 + read_unsigned_leb128 (abfd
, info_ptr
, &bytes_read
));
16083 info_ptr
+= bytes_read
;
16085 case DW_FORM_indirect
:
16086 form
= read_unsigned_leb128 (abfd
, info_ptr
, &bytes_read
);
16087 info_ptr
+= bytes_read
;
16088 info_ptr
= read_attribute_value (reader
, attr
, form
, info_ptr
);
16090 case DW_FORM_GNU_addr_index
:
16091 if (reader
->dwo_file
== NULL
)
16093 /* For now flag a hard error.
16094 Later we can turn this into a complaint. */
16095 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16096 dwarf_form_name (form
),
16097 bfd_get_filename (abfd
));
16099 DW_ADDR (attr
) = read_addr_index_from_leb128 (cu
, info_ptr
, &bytes_read
);
16100 info_ptr
+= bytes_read
;
16102 case DW_FORM_GNU_str_index
:
16103 if (reader
->dwo_file
== NULL
)
16105 /* For now flag a hard error.
16106 Later we can turn this into a complaint if warranted. */
16107 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16108 dwarf_form_name (form
),
16109 bfd_get_filename (abfd
));
16112 ULONGEST str_index
=
16113 read_unsigned_leb128 (abfd
, info_ptr
, &bytes_read
);
16115 DW_STRING (attr
) = read_str_index (reader
, str_index
);
16116 DW_STRING_IS_CANONICAL (attr
) = 0;
16117 info_ptr
+= bytes_read
;
16121 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
16122 dwarf_form_name (form
),
16123 bfd_get_filename (abfd
));
16127 if (cu
->per_cu
->is_dwz
&& attr_form_is_ref (attr
))
16128 attr
->form
= DW_FORM_GNU_ref_alt
;
16130 /* We have seen instances where the compiler tried to emit a byte
16131 size attribute of -1 which ended up being encoded as an unsigned
16132 0xffffffff. Although 0xffffffff is technically a valid size value,
16133 an object of this size seems pretty unlikely so we can relatively
16134 safely treat these cases as if the size attribute was invalid and
16135 treat them as zero by default. */
16136 if (attr
->name
== DW_AT_byte_size
16137 && form
== DW_FORM_data4
16138 && DW_UNSND (attr
) >= 0xffffffff)
16141 (&symfile_complaints
,
16142 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
16143 hex_string (DW_UNSND (attr
)));
16144 DW_UNSND (attr
) = 0;
16150 /* Read an attribute described by an abbreviated attribute. */
16152 static const gdb_byte
*
16153 read_attribute (const struct die_reader_specs
*reader
,
16154 struct attribute
*attr
, struct attr_abbrev
*abbrev
,
16155 const gdb_byte
*info_ptr
)
16157 attr
->name
= abbrev
->name
;
16158 return read_attribute_value (reader
, attr
, abbrev
->form
, info_ptr
);
16161 /* Read dwarf information from a buffer. */
16163 static unsigned int
16164 read_1_byte (bfd
*abfd
, const gdb_byte
*buf
)
16166 return bfd_get_8 (abfd
, buf
);
16170 read_1_signed_byte (bfd
*abfd
, const gdb_byte
*buf
)
16172 return bfd_get_signed_8 (abfd
, buf
);
16175 static unsigned int
16176 read_2_bytes (bfd
*abfd
, const gdb_byte
*buf
)
16178 return bfd_get_16 (abfd
, buf
);
16182 read_2_signed_bytes (bfd
*abfd
, const gdb_byte
*buf
)
16184 return bfd_get_signed_16 (abfd
, buf
);
16187 static unsigned int
16188 read_4_bytes (bfd
*abfd
, const gdb_byte
*buf
)
16190 return bfd_get_32 (abfd
, buf
);
16194 read_4_signed_bytes (bfd
*abfd
, const gdb_byte
*buf
)
16196 return bfd_get_signed_32 (abfd
, buf
);
16200 read_8_bytes (bfd
*abfd
, const gdb_byte
*buf
)
16202 return bfd_get_64 (abfd
, buf
);
16206 read_address (bfd
*abfd
, const gdb_byte
*buf
, struct dwarf2_cu
*cu
,
16207 unsigned int *bytes_read
)
16209 struct comp_unit_head
*cu_header
= &cu
->header
;
16210 CORE_ADDR retval
= 0;
16212 if (cu_header
->signed_addr_p
)
16214 switch (cu_header
->addr_size
)
16217 retval
= bfd_get_signed_16 (abfd
, buf
);
16220 retval
= bfd_get_signed_32 (abfd
, buf
);
16223 retval
= bfd_get_signed_64 (abfd
, buf
);
16226 internal_error (__FILE__
, __LINE__
,
16227 _("read_address: bad switch, signed [in module %s]"),
16228 bfd_get_filename (abfd
));
16233 switch (cu_header
->addr_size
)
16236 retval
= bfd_get_16 (abfd
, buf
);
16239 retval
= bfd_get_32 (abfd
, buf
);
16242 retval
= bfd_get_64 (abfd
, buf
);
16245 internal_error (__FILE__
, __LINE__
,
16246 _("read_address: bad switch, "
16247 "unsigned [in module %s]"),
16248 bfd_get_filename (abfd
));
16252 *bytes_read
= cu_header
->addr_size
;
16256 /* Read the initial length from a section. The (draft) DWARF 3
16257 specification allows the initial length to take up either 4 bytes
16258 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
16259 bytes describe the length and all offsets will be 8 bytes in length
16262 An older, non-standard 64-bit format is also handled by this
16263 function. The older format in question stores the initial length
16264 as an 8-byte quantity without an escape value. Lengths greater
16265 than 2^32 aren't very common which means that the initial 4 bytes
16266 is almost always zero. Since a length value of zero doesn't make
16267 sense for the 32-bit format, this initial zero can be considered to
16268 be an escape value which indicates the presence of the older 64-bit
16269 format. As written, the code can't detect (old format) lengths
16270 greater than 4GB. If it becomes necessary to handle lengths
16271 somewhat larger than 4GB, we could allow other small values (such
16272 as the non-sensical values of 1, 2, and 3) to also be used as
16273 escape values indicating the presence of the old format.
16275 The value returned via bytes_read should be used to increment the
16276 relevant pointer after calling read_initial_length().
16278 [ Note: read_initial_length() and read_offset() are based on the
16279 document entitled "DWARF Debugging Information Format", revision
16280 3, draft 8, dated November 19, 2001. This document was obtained
16283 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
16285 This document is only a draft and is subject to change. (So beware.)
16287 Details regarding the older, non-standard 64-bit format were
16288 determined empirically by examining 64-bit ELF files produced by
16289 the SGI toolchain on an IRIX 6.5 machine.
16291 - Kevin, July 16, 2002
16295 read_initial_length (bfd
*abfd
, const gdb_byte
*buf
, unsigned int *bytes_read
)
16297 LONGEST length
= bfd_get_32 (abfd
, buf
);
16299 if (length
== 0xffffffff)
16301 length
= bfd_get_64 (abfd
, buf
+ 4);
16304 else if (length
== 0)
16306 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
16307 length
= bfd_get_64 (abfd
, buf
);
16318 /* Cover function for read_initial_length.
16319 Returns the length of the object at BUF, and stores the size of the
16320 initial length in *BYTES_READ and stores the size that offsets will be in
16322 If the initial length size is not equivalent to that specified in
16323 CU_HEADER then issue a complaint.
16324 This is useful when reading non-comp-unit headers. */
16327 read_checked_initial_length_and_offset (bfd
*abfd
, const gdb_byte
*buf
,
16328 const struct comp_unit_head
*cu_header
,
16329 unsigned int *bytes_read
,
16330 unsigned int *offset_size
)
16332 LONGEST length
= read_initial_length (abfd
, buf
, bytes_read
);
16334 gdb_assert (cu_header
->initial_length_size
== 4
16335 || cu_header
->initial_length_size
== 8
16336 || cu_header
->initial_length_size
== 12);
16338 if (cu_header
->initial_length_size
!= *bytes_read
)
16339 complaint (&symfile_complaints
,
16340 _("intermixed 32-bit and 64-bit DWARF sections"));
16342 *offset_size
= (*bytes_read
== 4) ? 4 : 8;
16346 /* Read an offset from the data stream. The size of the offset is
16347 given by cu_header->offset_size. */
16350 read_offset (bfd
*abfd
, const gdb_byte
*buf
,
16351 const struct comp_unit_head
*cu_header
,
16352 unsigned int *bytes_read
)
16354 LONGEST offset
= read_offset_1 (abfd
, buf
, cu_header
->offset_size
);
16356 *bytes_read
= cu_header
->offset_size
;
16360 /* Read an offset from the data stream. */
16363 read_offset_1 (bfd
*abfd
, const gdb_byte
*buf
, unsigned int offset_size
)
16365 LONGEST retval
= 0;
16367 switch (offset_size
)
16370 retval
= bfd_get_32 (abfd
, buf
);
16373 retval
= bfd_get_64 (abfd
, buf
);
16376 internal_error (__FILE__
, __LINE__
,
16377 _("read_offset_1: bad switch [in module %s]"),
16378 bfd_get_filename (abfd
));
16384 static const gdb_byte
*
16385 read_n_bytes (bfd
*abfd
, const gdb_byte
*buf
, unsigned int size
)
16387 /* If the size of a host char is 8 bits, we can return a pointer
16388 to the buffer, otherwise we have to copy the data to a buffer
16389 allocated on the temporary obstack. */
16390 gdb_assert (HOST_CHAR_BIT
== 8);
16394 static const char *
16395 read_direct_string (bfd
*abfd
, const gdb_byte
*buf
,
16396 unsigned int *bytes_read_ptr
)
16398 /* If the size of a host char is 8 bits, we can return a pointer
16399 to the string, otherwise we have to copy the string to a buffer
16400 allocated on the temporary obstack. */
16401 gdb_assert (HOST_CHAR_BIT
== 8);
16404 *bytes_read_ptr
= 1;
16407 *bytes_read_ptr
= strlen ((const char *) buf
) + 1;
16408 return (const char *) buf
;
16411 static const char *
16412 read_indirect_string_at_offset (bfd
*abfd
, LONGEST str_offset
)
16414 dwarf2_read_section (dwarf2_per_objfile
->objfile
, &dwarf2_per_objfile
->str
);
16415 if (dwarf2_per_objfile
->str
.buffer
== NULL
)
16416 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
16417 bfd_get_filename (abfd
));
16418 if (str_offset
>= dwarf2_per_objfile
->str
.size
)
16419 error (_("DW_FORM_strp pointing outside of "
16420 ".debug_str section [in module %s]"),
16421 bfd_get_filename (abfd
));
16422 gdb_assert (HOST_CHAR_BIT
== 8);
16423 if (dwarf2_per_objfile
->str
.buffer
[str_offset
] == '\0')
16425 return (const char *) (dwarf2_per_objfile
->str
.buffer
+ str_offset
);
16428 /* Read a string at offset STR_OFFSET in the .debug_str section from
16429 the .dwz file DWZ. Throw an error if the offset is too large. If
16430 the string consists of a single NUL byte, return NULL; otherwise
16431 return a pointer to the string. */
16433 static const char *
16434 read_indirect_string_from_dwz (struct dwz_file
*dwz
, LONGEST str_offset
)
16436 dwarf2_read_section (dwarf2_per_objfile
->objfile
, &dwz
->str
);
16438 if (dwz
->str
.buffer
== NULL
)
16439 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
16440 "section [in module %s]"),
16441 bfd_get_filename (dwz
->dwz_bfd
));
16442 if (str_offset
>= dwz
->str
.size
)
16443 error (_("DW_FORM_GNU_strp_alt pointing outside of "
16444 ".debug_str section [in module %s]"),
16445 bfd_get_filename (dwz
->dwz_bfd
));
16446 gdb_assert (HOST_CHAR_BIT
== 8);
16447 if (dwz
->str
.buffer
[str_offset
] == '\0')
16449 return (const char *) (dwz
->str
.buffer
+ str_offset
);
16452 static const char *
16453 read_indirect_string (bfd
*abfd
, const gdb_byte
*buf
,
16454 const struct comp_unit_head
*cu_header
,
16455 unsigned int *bytes_read_ptr
)
16457 LONGEST str_offset
= read_offset (abfd
, buf
, cu_header
, bytes_read_ptr
);
16459 return read_indirect_string_at_offset (abfd
, str_offset
);
16463 read_unsigned_leb128 (bfd
*abfd
, const gdb_byte
*buf
,
16464 unsigned int *bytes_read_ptr
)
16467 unsigned int num_read
;
16469 unsigned char byte
;
16477 byte
= bfd_get_8 (abfd
, buf
);
16480 result
|= ((ULONGEST
) (byte
& 127) << shift
);
16481 if ((byte
& 128) == 0)
16487 *bytes_read_ptr
= num_read
;
16492 read_signed_leb128 (bfd
*abfd
, const gdb_byte
*buf
,
16493 unsigned int *bytes_read_ptr
)
16496 int i
, shift
, num_read
;
16497 unsigned char byte
;
16505 byte
= bfd_get_8 (abfd
, buf
);
16508 result
|= ((LONGEST
) (byte
& 127) << shift
);
16510 if ((byte
& 128) == 0)
16515 if ((shift
< 8 * sizeof (result
)) && (byte
& 0x40))
16516 result
|= -(((LONGEST
) 1) << shift
);
16517 *bytes_read_ptr
= num_read
;
16521 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
16522 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
16523 ADDR_SIZE is the size of addresses from the CU header. */
16526 read_addr_index_1 (unsigned int addr_index
, ULONGEST addr_base
, int addr_size
)
16528 struct objfile
*objfile
= dwarf2_per_objfile
->objfile
;
16529 bfd
*abfd
= objfile
->obfd
;
16530 const gdb_byte
*info_ptr
;
16532 dwarf2_read_section (objfile
, &dwarf2_per_objfile
->addr
);
16533 if (dwarf2_per_objfile
->addr
.buffer
== NULL
)
16534 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
16535 objfile_name (objfile
));
16536 if (addr_base
+ addr_index
* addr_size
>= dwarf2_per_objfile
->addr
.size
)
16537 error (_("DW_FORM_addr_index pointing outside of "
16538 ".debug_addr section [in module %s]"),
16539 objfile_name (objfile
));
16540 info_ptr
= (dwarf2_per_objfile
->addr
.buffer
16541 + addr_base
+ addr_index
* addr_size
);
16542 if (addr_size
== 4)
16543 return bfd_get_32 (abfd
, info_ptr
);
16545 return bfd_get_64 (abfd
, info_ptr
);
16548 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
16551 read_addr_index (struct dwarf2_cu
*cu
, unsigned int addr_index
)
16553 return read_addr_index_1 (addr_index
, cu
->addr_base
, cu
->header
.addr_size
);
16556 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
16559 read_addr_index_from_leb128 (struct dwarf2_cu
*cu
, const gdb_byte
*info_ptr
,
16560 unsigned int *bytes_read
)
16562 bfd
*abfd
= cu
->objfile
->obfd
;
16563 unsigned int addr_index
= read_unsigned_leb128 (abfd
, info_ptr
, bytes_read
);
16565 return read_addr_index (cu
, addr_index
);
16568 /* Data structure to pass results from dwarf2_read_addr_index_reader
16569 back to dwarf2_read_addr_index. */
16571 struct dwarf2_read_addr_index_data
16573 ULONGEST addr_base
;
16577 /* die_reader_func for dwarf2_read_addr_index. */
16580 dwarf2_read_addr_index_reader (const struct die_reader_specs
*reader
,
16581 const gdb_byte
*info_ptr
,
16582 struct die_info
*comp_unit_die
,
16586 struct dwarf2_cu
*cu
= reader
->cu
;
16587 struct dwarf2_read_addr_index_data
*aidata
=
16588 (struct dwarf2_read_addr_index_data
*) data
;
16590 aidata
->addr_base
= cu
->addr_base
;
16591 aidata
->addr_size
= cu
->header
.addr_size
;
16594 /* Given an index in .debug_addr, fetch the value.
16595 NOTE: This can be called during dwarf expression evaluation,
16596 long after the debug information has been read, and thus per_cu->cu
16597 may no longer exist. */
16600 dwarf2_read_addr_index (struct dwarf2_per_cu_data
*per_cu
,
16601 unsigned int addr_index
)
16603 struct objfile
*objfile
= per_cu
->objfile
;
16604 struct dwarf2_cu
*cu
= per_cu
->cu
;
16605 ULONGEST addr_base
;
16608 /* This is intended to be called from outside this file. */
16609 dw2_setup (objfile
);
16611 /* We need addr_base and addr_size.
16612 If we don't have PER_CU->cu, we have to get it.
16613 Nasty, but the alternative is storing the needed info in PER_CU,
16614 which at this point doesn't seem justified: it's not clear how frequently
16615 it would get used and it would increase the size of every PER_CU.
16616 Entry points like dwarf2_per_cu_addr_size do a similar thing
16617 so we're not in uncharted territory here.
16618 Alas we need to be a bit more complicated as addr_base is contained
16621 We don't need to read the entire CU(/TU).
16622 We just need the header and top level die.
16624 IWBN to use the aging mechanism to let us lazily later discard the CU.
16625 For now we skip this optimization. */
16629 addr_base
= cu
->addr_base
;
16630 addr_size
= cu
->header
.addr_size
;
16634 struct dwarf2_read_addr_index_data aidata
;
16636 /* Note: We can't use init_cutu_and_read_dies_simple here,
16637 we need addr_base. */
16638 init_cutu_and_read_dies (per_cu
, NULL
, 0, 0,
16639 dwarf2_read_addr_index_reader
, &aidata
);
16640 addr_base
= aidata
.addr_base
;
16641 addr_size
= aidata
.addr_size
;
16644 return read_addr_index_1 (addr_index
, addr_base
, addr_size
);
16647 /* Given a DW_FORM_GNU_str_index, fetch the string.
16648 This is only used by the Fission support. */
16650 static const char *
16651 read_str_index (const struct die_reader_specs
*reader
, ULONGEST str_index
)
16653 struct objfile
*objfile
= dwarf2_per_objfile
->objfile
;
16654 const char *objf_name
= objfile_name (objfile
);
16655 bfd
*abfd
= objfile
->obfd
;
16656 struct dwarf2_cu
*cu
= reader
->cu
;
16657 struct dwarf2_section_info
*str_section
= &reader
->dwo_file
->sections
.str
;
16658 struct dwarf2_section_info
*str_offsets_section
=
16659 &reader
->dwo_file
->sections
.str_offsets
;
16660 const gdb_byte
*info_ptr
;
16661 ULONGEST str_offset
;
16662 static const char form_name
[] = "DW_FORM_GNU_str_index";
16664 dwarf2_read_section (objfile
, str_section
);
16665 dwarf2_read_section (objfile
, str_offsets_section
);
16666 if (str_section
->buffer
== NULL
)
16667 error (_("%s used without .debug_str.dwo section"
16668 " in CU at offset 0x%lx [in module %s]"),
16669 form_name
, (long) cu
->header
.offset
.sect_off
, objf_name
);
16670 if (str_offsets_section
->buffer
== NULL
)
16671 error (_("%s used without .debug_str_offsets.dwo section"
16672 " in CU at offset 0x%lx [in module %s]"),
16673 form_name
, (long) cu
->header
.offset
.sect_off
, objf_name
);
16674 if (str_index
* cu
->header
.offset_size
>= str_offsets_section
->size
)
16675 error (_("%s pointing outside of .debug_str_offsets.dwo"
16676 " section in CU at offset 0x%lx [in module %s]"),
16677 form_name
, (long) cu
->header
.offset
.sect_off
, objf_name
);
16678 info_ptr
= (str_offsets_section
->buffer
16679 + str_index
* cu
->header
.offset_size
);
16680 if (cu
->header
.offset_size
== 4)
16681 str_offset
= bfd_get_32 (abfd
, info_ptr
);
16683 str_offset
= bfd_get_64 (abfd
, info_ptr
);
16684 if (str_offset
>= str_section
->size
)
16685 error (_("Offset from %s pointing outside of"
16686 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
16687 form_name
, (long) cu
->header
.offset
.sect_off
, objf_name
);
16688 return (const char *) (str_section
->buffer
+ str_offset
);
16691 /* Return the length of an LEB128 number in BUF. */
16694 leb128_size (const gdb_byte
*buf
)
16696 const gdb_byte
*begin
= buf
;
16702 if ((byte
& 128) == 0)
16703 return buf
- begin
;
16708 set_cu_language (unsigned int lang
, struct dwarf2_cu
*cu
)
16716 cu
->language
= language_c
;
16718 case DW_LANG_C_plus_plus
:
16719 cu
->language
= language_cplus
;
16722 cu
->language
= language_d
;
16724 case DW_LANG_Fortran77
:
16725 case DW_LANG_Fortran90
:
16726 case DW_LANG_Fortran95
:
16727 cu
->language
= language_fortran
;
16730 cu
->language
= language_go
;
16732 case DW_LANG_Mips_Assembler
:
16733 cu
->language
= language_asm
;
16736 cu
->language
= language_java
;
16738 case DW_LANG_Ada83
:
16739 case DW_LANG_Ada95
:
16740 cu
->language
= language_ada
;
16742 case DW_LANG_Modula2
:
16743 cu
->language
= language_m2
;
16745 case DW_LANG_Pascal83
:
16746 cu
->language
= language_pascal
;
16749 cu
->language
= language_objc
;
16751 case DW_LANG_Cobol74
:
16752 case DW_LANG_Cobol85
:
16754 cu
->language
= language_minimal
;
16757 cu
->language_defn
= language_def (cu
->language
);
16760 /* Return the named attribute or NULL if not there. */
16762 static struct attribute
*
16763 dwarf2_attr (struct die_info
*die
, unsigned int name
, struct dwarf2_cu
*cu
)
16768 struct attribute
*spec
= NULL
;
16770 for (i
= 0; i
< die
->num_attrs
; ++i
)
16772 if (die
->attrs
[i
].name
== name
)
16773 return &die
->attrs
[i
];
16774 if (die
->attrs
[i
].name
== DW_AT_specification
16775 || die
->attrs
[i
].name
== DW_AT_abstract_origin
)
16776 spec
= &die
->attrs
[i
];
16782 die
= follow_die_ref (die
, spec
, &cu
);
16788 /* Return the named attribute or NULL if not there,
16789 but do not follow DW_AT_specification, etc.
16790 This is for use in contexts where we're reading .debug_types dies.
16791 Following DW_AT_specification, DW_AT_abstract_origin will take us
16792 back up the chain, and we want to go down. */
16794 static struct attribute
*
16795 dwarf2_attr_no_follow (struct die_info
*die
, unsigned int name
)
16799 for (i
= 0; i
< die
->num_attrs
; ++i
)
16800 if (die
->attrs
[i
].name
== name
)
16801 return &die
->attrs
[i
];
16806 /* Return non-zero iff the attribute NAME is defined for the given DIE,
16807 and holds a non-zero value. This function should only be used for
16808 DW_FORM_flag or DW_FORM_flag_present attributes. */
16811 dwarf2_flag_true_p (struct die_info
*die
, unsigned name
, struct dwarf2_cu
*cu
)
16813 struct attribute
*attr
= dwarf2_attr (die
, name
, cu
);
16815 return (attr
&& DW_UNSND (attr
));
16819 die_is_declaration (struct die_info
*die
, struct dwarf2_cu
*cu
)
16821 /* A DIE is a declaration if it has a DW_AT_declaration attribute
16822 which value is non-zero. However, we have to be careful with
16823 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
16824 (via dwarf2_flag_true_p) follows this attribute. So we may
16825 end up accidently finding a declaration attribute that belongs
16826 to a different DIE referenced by the specification attribute,
16827 even though the given DIE does not have a declaration attribute. */
16828 return (dwarf2_flag_true_p (die
, DW_AT_declaration
, cu
)
16829 && dwarf2_attr (die
, DW_AT_specification
, cu
) == NULL
);
16832 /* Return the die giving the specification for DIE, if there is
16833 one. *SPEC_CU is the CU containing DIE on input, and the CU
16834 containing the return value on output. If there is no
16835 specification, but there is an abstract origin, that is
16838 static struct die_info
*
16839 die_specification (struct die_info
*die
, struct dwarf2_cu
**spec_cu
)
16841 struct attribute
*spec_attr
= dwarf2_attr (die
, DW_AT_specification
,
16844 if (spec_attr
== NULL
)
16845 spec_attr
= dwarf2_attr (die
, DW_AT_abstract_origin
, *spec_cu
);
16847 if (spec_attr
== NULL
)
16850 return follow_die_ref (die
, spec_attr
, spec_cu
);
16853 /* Free the line_header structure *LH, and any arrays and strings it
16855 NOTE: This is also used as a "cleanup" function. */
16858 free_line_header (struct line_header
*lh
)
16860 if (lh
->standard_opcode_lengths
)
16861 xfree (lh
->standard_opcode_lengths
);
16863 /* Remember that all the lh->file_names[i].name pointers are
16864 pointers into debug_line_buffer, and don't need to be freed. */
16865 if (lh
->file_names
)
16866 xfree (lh
->file_names
);
16868 /* Similarly for the include directory names. */
16869 if (lh
->include_dirs
)
16870 xfree (lh
->include_dirs
);
16875 /* Add an entry to LH's include directory table. */
16878 add_include_dir (struct line_header
*lh
, const char *include_dir
)
16880 /* Grow the array if necessary. */
16881 if (lh
->include_dirs_size
== 0)
16883 lh
->include_dirs_size
= 1; /* for testing */
16884 lh
->include_dirs
= xmalloc (lh
->include_dirs_size
16885 * sizeof (*lh
->include_dirs
));
16887 else if (lh
->num_include_dirs
>= lh
->include_dirs_size
)
16889 lh
->include_dirs_size
*= 2;
16890 lh
->include_dirs
= xrealloc (lh
->include_dirs
,
16891 (lh
->include_dirs_size
16892 * sizeof (*lh
->include_dirs
)));
16895 lh
->include_dirs
[lh
->num_include_dirs
++] = include_dir
;
16898 /* Add an entry to LH's file name table. */
16901 add_file_name (struct line_header
*lh
,
16903 unsigned int dir_index
,
16904 unsigned int mod_time
,
16905 unsigned int length
)
16907 struct file_entry
*fe
;
16909 /* Grow the array if necessary. */
16910 if (lh
->file_names_size
== 0)
16912 lh
->file_names_size
= 1; /* for testing */
16913 lh
->file_names
= xmalloc (lh
->file_names_size
16914 * sizeof (*lh
->file_names
));
16916 else if (lh
->num_file_names
>= lh
->file_names_size
)
16918 lh
->file_names_size
*= 2;
16919 lh
->file_names
= xrealloc (lh
->file_names
,
16920 (lh
->file_names_size
16921 * sizeof (*lh
->file_names
)));
16924 fe
= &lh
->file_names
[lh
->num_file_names
++];
16926 fe
->dir_index
= dir_index
;
16927 fe
->mod_time
= mod_time
;
16928 fe
->length
= length
;
16929 fe
->included_p
= 0;
16933 /* A convenience function to find the proper .debug_line section for a
16936 static struct dwarf2_section_info
*
16937 get_debug_line_section (struct dwarf2_cu
*cu
)
16939 struct dwarf2_section_info
*section
;
16941 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
16943 if (cu
->dwo_unit
&& cu
->per_cu
->is_debug_types
)
16944 section
= &cu
->dwo_unit
->dwo_file
->sections
.line
;
16945 else if (cu
->per_cu
->is_dwz
)
16947 struct dwz_file
*dwz
= dwarf2_get_dwz_file ();
16949 section
= &dwz
->line
;
16952 section
= &dwarf2_per_objfile
->line
;
16957 /* Read the statement program header starting at OFFSET in
16958 .debug_line, or .debug_line.dwo. Return a pointer
16959 to a struct line_header, allocated using xmalloc.
16961 NOTE: the strings in the include directory and file name tables of
16962 the returned object point into the dwarf line section buffer,
16963 and must not be freed. */
16965 static struct line_header
*
16966 dwarf_decode_line_header (unsigned int offset
, struct dwarf2_cu
*cu
)
16968 struct cleanup
*back_to
;
16969 struct line_header
*lh
;
16970 const gdb_byte
*line_ptr
;
16971 unsigned int bytes_read
, offset_size
;
16973 const char *cur_dir
, *cur_file
;
16974 struct dwarf2_section_info
*section
;
16977 section
= get_debug_line_section (cu
);
16978 dwarf2_read_section (dwarf2_per_objfile
->objfile
, section
);
16979 if (section
->buffer
== NULL
)
16981 if (cu
->dwo_unit
&& cu
->per_cu
->is_debug_types
)
16982 complaint (&symfile_complaints
, _("missing .debug_line.dwo section"));
16984 complaint (&symfile_complaints
, _("missing .debug_line section"));
16988 /* We can't do this until we know the section is non-empty.
16989 Only then do we know we have such a section. */
16990 abfd
= get_section_bfd_owner (section
);
16992 /* Make sure that at least there's room for the total_length field.
16993 That could be 12 bytes long, but we're just going to fudge that. */
16994 if (offset
+ 4 >= section
->size
)
16996 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17000 lh
= xmalloc (sizeof (*lh
));
17001 memset (lh
, 0, sizeof (*lh
));
17002 back_to
= make_cleanup ((make_cleanup_ftype
*) free_line_header
,
17005 line_ptr
= section
->buffer
+ offset
;
17007 /* Read in the header. */
17009 read_checked_initial_length_and_offset (abfd
, line_ptr
, &cu
->header
,
17010 &bytes_read
, &offset_size
);
17011 line_ptr
+= bytes_read
;
17012 if (line_ptr
+ lh
->total_length
> (section
->buffer
+ section
->size
))
17014 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17015 do_cleanups (back_to
);
17018 lh
->statement_program_end
= line_ptr
+ lh
->total_length
;
17019 lh
->version
= read_2_bytes (abfd
, line_ptr
);
17021 lh
->header_length
= read_offset_1 (abfd
, line_ptr
, offset_size
);
17022 line_ptr
+= offset_size
;
17023 lh
->minimum_instruction_length
= read_1_byte (abfd
, line_ptr
);
17025 if (lh
->version
>= 4)
17027 lh
->maximum_ops_per_instruction
= read_1_byte (abfd
, line_ptr
);
17031 lh
->maximum_ops_per_instruction
= 1;
17033 if (lh
->maximum_ops_per_instruction
== 0)
17035 lh
->maximum_ops_per_instruction
= 1;
17036 complaint (&symfile_complaints
,
17037 _("invalid maximum_ops_per_instruction "
17038 "in `.debug_line' section"));
17041 lh
->default_is_stmt
= read_1_byte (abfd
, line_ptr
);
17043 lh
->line_base
= read_1_signed_byte (abfd
, line_ptr
);
17045 lh
->line_range
= read_1_byte (abfd
, line_ptr
);
17047 lh
->opcode_base
= read_1_byte (abfd
, line_ptr
);
17049 lh
->standard_opcode_lengths
17050 = xmalloc (lh
->opcode_base
* sizeof (lh
->standard_opcode_lengths
[0]));
17052 lh
->standard_opcode_lengths
[0] = 1; /* This should never be used anyway. */
17053 for (i
= 1; i
< lh
->opcode_base
; ++i
)
17055 lh
->standard_opcode_lengths
[i
] = read_1_byte (abfd
, line_ptr
);
17059 /* Read directory table. */
17060 while ((cur_dir
= read_direct_string (abfd
, line_ptr
, &bytes_read
)) != NULL
)
17062 line_ptr
+= bytes_read
;
17063 add_include_dir (lh
, cur_dir
);
17065 line_ptr
+= bytes_read
;
17067 /* Read file name table. */
17068 while ((cur_file
= read_direct_string (abfd
, line_ptr
, &bytes_read
)) != NULL
)
17070 unsigned int dir_index
, mod_time
, length
;
17072 line_ptr
+= bytes_read
;
17073 dir_index
= read_unsigned_leb128 (abfd
, line_ptr
, &bytes_read
);
17074 line_ptr
+= bytes_read
;
17075 mod_time
= read_unsigned_leb128 (abfd
, line_ptr
, &bytes_read
);
17076 line_ptr
+= bytes_read
;
17077 length
= read_unsigned_leb128 (abfd
, line_ptr
, &bytes_read
);
17078 line_ptr
+= bytes_read
;
17080 add_file_name (lh
, cur_file
, dir_index
, mod_time
, length
);
17082 line_ptr
+= bytes_read
;
17083 lh
->statement_program_start
= line_ptr
;
17085 if (line_ptr
> (section
->buffer
+ section
->size
))
17086 complaint (&symfile_complaints
,
17087 _("line number info header doesn't "
17088 "fit in `.debug_line' section"));
17090 discard_cleanups (back_to
);
17094 /* Subroutine of dwarf_decode_lines to simplify it.
17095 Return the file name of the psymtab for included file FILE_INDEX
17096 in line header LH of PST.
17097 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17098 If space for the result is malloc'd, it will be freed by a cleanup.
17099 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
17101 The function creates dangling cleanup registration. */
17103 static const char *
17104 psymtab_include_file_name (const struct line_header
*lh
, int file_index
,
17105 const struct partial_symtab
*pst
,
17106 const char *comp_dir
)
17108 const struct file_entry fe
= lh
->file_names
[file_index
];
17109 const char *include_name
= fe
.name
;
17110 const char *include_name_to_compare
= include_name
;
17111 const char *dir_name
= NULL
;
17112 const char *pst_filename
;
17113 char *copied_name
= NULL
;
17117 dir_name
= lh
->include_dirs
[fe
.dir_index
- 1];
17119 if (!IS_ABSOLUTE_PATH (include_name
)
17120 && (dir_name
!= NULL
|| comp_dir
!= NULL
))
17122 /* Avoid creating a duplicate psymtab for PST.
17123 We do this by comparing INCLUDE_NAME and PST_FILENAME.
17124 Before we do the comparison, however, we need to account
17125 for DIR_NAME and COMP_DIR.
17126 First prepend dir_name (if non-NULL). If we still don't
17127 have an absolute path prepend comp_dir (if non-NULL).
17128 However, the directory we record in the include-file's
17129 psymtab does not contain COMP_DIR (to match the
17130 corresponding symtab(s)).
17135 bash$ gcc -g ./hello.c
17136 include_name = "hello.c"
17138 DW_AT_comp_dir = comp_dir = "/tmp"
17139 DW_AT_name = "./hello.c"
17143 if (dir_name
!= NULL
)
17145 char *tem
= concat (dir_name
, SLASH_STRING
,
17146 include_name
, (char *)NULL
);
17148 make_cleanup (xfree
, tem
);
17149 include_name
= tem
;
17150 include_name_to_compare
= include_name
;
17152 if (!IS_ABSOLUTE_PATH (include_name
) && comp_dir
!= NULL
)
17154 char *tem
= concat (comp_dir
, SLASH_STRING
,
17155 include_name
, (char *)NULL
);
17157 make_cleanup (xfree
, tem
);
17158 include_name_to_compare
= tem
;
17162 pst_filename
= pst
->filename
;
17163 if (!IS_ABSOLUTE_PATH (pst_filename
) && pst
->dirname
!= NULL
)
17165 copied_name
= concat (pst
->dirname
, SLASH_STRING
,
17166 pst_filename
, (char *)NULL
);
17167 pst_filename
= copied_name
;
17170 file_is_pst
= FILENAME_CMP (include_name_to_compare
, pst_filename
) == 0;
17172 if (copied_name
!= NULL
)
17173 xfree (copied_name
);
17177 return include_name
;
17180 /* Ignore this record_line request. */
17183 noop_record_line (struct subfile
*subfile
, int line
, CORE_ADDR pc
)
17188 /* Return non-zero if we should add LINE to the line number table.
17189 LINE is the line to add, LAST_LINE is the last line that was added,
17190 LAST_SUBFILE is the subfile for LAST_LINE.
17191 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
17192 had a non-zero discriminator.
17194 We have to be careful in the presence of discriminators.
17195 E.g., for this line:
17197 for (i = 0; i < 100000; i++);
17199 clang can emit four line number entries for that one line,
17200 each with a different discriminator.
17201 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
17203 However, we want gdb to coalesce all four entries into one.
17204 Otherwise the user could stepi into the middle of the line and
17205 gdb would get confused about whether the pc really was in the
17206 middle of the line.
17208 Things are further complicated by the fact that two consecutive
17209 line number entries for the same line is a heuristic used by gcc
17210 to denote the end of the prologue. So we can't just discard duplicate
17211 entries, we have to be selective about it. The heuristic we use is
17212 that we only collapse consecutive entries for the same line if at least
17213 one of those entries has a non-zero discriminator. PR 17276.
17215 Note: Addresses in the line number state machine can never go backwards
17216 within one sequence, thus this coalescing is ok. */
17219 dwarf_record_line_p (unsigned int line
, unsigned int last_line
,
17220 int line_has_non_zero_discriminator
,
17221 struct subfile
*last_subfile
)
17223 if (current_subfile
!= last_subfile
)
17225 if (line
!= last_line
)
17227 /* Same line for the same file that we've seen already.
17228 As a last check, for pr 17276, only record the line if the line
17229 has never had a non-zero discriminator. */
17230 if (!line_has_non_zero_discriminator
)
17235 /* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
17236 in the line table of subfile SUBFILE. */
17239 dwarf_record_line (struct gdbarch
*gdbarch
, struct subfile
*subfile
,
17240 unsigned int line
, CORE_ADDR address
,
17241 record_line_ftype p_record_line
)
17243 CORE_ADDR addr
= gdbarch_addr_bits_remove (gdbarch
, address
);
17245 (*p_record_line
) (subfile
, line
, addr
);
17248 /* Subroutine of dwarf_decode_lines_1 to simplify it.
17249 Mark the end of a set of line number records.
17250 The arguments are the same as for dwarf_record_line.
17251 If SUBFILE is NULL the request is ignored. */
17254 dwarf_finish_line (struct gdbarch
*gdbarch
, struct subfile
*subfile
,
17255 CORE_ADDR address
, record_line_ftype p_record_line
)
17257 if (subfile
!= NULL
)
17258 dwarf_record_line (gdbarch
, subfile
, 0, address
, p_record_line
);
17261 /* Subroutine of dwarf_decode_lines to simplify it.
17262 Process the line number information in LH. */
17265 dwarf_decode_lines_1 (struct line_header
*lh
, struct dwarf2_cu
*cu
,
17266 const int decode_for_pst_p
, CORE_ADDR lowpc
)
17268 const gdb_byte
*line_ptr
, *extended_end
;
17269 const gdb_byte
*line_end
;
17270 unsigned int bytes_read
, extended_len
;
17271 unsigned char op_code
, extended_op
;
17272 CORE_ADDR baseaddr
;
17273 struct objfile
*objfile
= cu
->objfile
;
17274 bfd
*abfd
= objfile
->obfd
;
17275 struct gdbarch
*gdbarch
= get_objfile_arch (objfile
);
17276 struct subfile
*last_subfile
= NULL
;
17277 void (*p_record_line
) (struct subfile
*subfile
, int line
, CORE_ADDR pc
)
17280 baseaddr
= ANOFFSET (objfile
->section_offsets
, SECT_OFF_TEXT (objfile
));
17282 line_ptr
= lh
->statement_program_start
;
17283 line_end
= lh
->statement_program_end
;
17285 /* Read the statement sequences until there's nothing left. */
17286 while (line_ptr
< line_end
)
17288 /* state machine registers */
17289 CORE_ADDR address
= 0;
17290 unsigned int file
= 1;
17291 unsigned int line
= 1;
17292 int is_stmt
= lh
->default_is_stmt
;
17293 int end_sequence
= 0;
17294 unsigned char op_index
= 0;
17295 unsigned int discriminator
= 0;
17296 /* The last line number that was recorded, used to coalesce
17297 consecutive entries for the same line. This can happen, for
17298 example, when discriminators are present. PR 17276. */
17299 unsigned int last_line
= 0;
17300 int line_has_non_zero_discriminator
= 0;
17302 if (!decode_for_pst_p
&& lh
->num_file_names
>= file
)
17304 /* Start a subfile for the current file of the state machine. */
17305 /* lh->include_dirs and lh->file_names are 0-based, but the
17306 directory and file name numbers in the statement program
17308 struct file_entry
*fe
= &lh
->file_names
[file
- 1];
17309 const char *dir
= NULL
;
17312 dir
= lh
->include_dirs
[fe
->dir_index
- 1];
17314 dwarf2_start_subfile (fe
->name
, dir
);
17317 /* Decode the table. */
17318 while (!end_sequence
)
17320 op_code
= read_1_byte (abfd
, line_ptr
);
17322 if (line_ptr
> line_end
)
17324 dwarf2_debug_line_missing_end_sequence_complaint ();
17328 if (op_code
>= lh
->opcode_base
)
17330 /* Special opcode. */
17331 unsigned char adj_opcode
;
17334 adj_opcode
= op_code
- lh
->opcode_base
;
17335 address
+= (((op_index
+ (adj_opcode
/ lh
->line_range
))
17336 / lh
->maximum_ops_per_instruction
)
17337 * lh
->minimum_instruction_length
);
17338 op_index
= ((op_index
+ (adj_opcode
/ lh
->line_range
))
17339 % lh
->maximum_ops_per_instruction
);
17340 line_delta
= lh
->line_base
+ (adj_opcode
% lh
->line_range
);
17341 line
+= line_delta
;
17342 if (line_delta
!= 0)
17343 line_has_non_zero_discriminator
= discriminator
!= 0;
17344 if (lh
->num_file_names
< file
|| file
== 0)
17345 dwarf2_debug_line_missing_file_complaint ();
17346 /* For now we ignore lines not starting on an
17347 instruction boundary. */
17348 else if (op_index
== 0)
17350 lh
->file_names
[file
- 1].included_p
= 1;
17351 if (!decode_for_pst_p
&& is_stmt
)
17353 if (last_subfile
!= current_subfile
)
17355 dwarf_finish_line (gdbarch
, last_subfile
,
17356 address
, p_record_line
);
17358 if (dwarf_record_line_p (line
, last_line
,
17359 line_has_non_zero_discriminator
,
17362 dwarf_record_line (gdbarch
, current_subfile
,
17363 line
, address
, p_record_line
);
17365 last_subfile
= current_subfile
;
17371 else switch (op_code
)
17373 case DW_LNS_extended_op
:
17374 extended_len
= read_unsigned_leb128 (abfd
, line_ptr
,
17376 line_ptr
+= bytes_read
;
17377 extended_end
= line_ptr
+ extended_len
;
17378 extended_op
= read_1_byte (abfd
, line_ptr
);
17380 switch (extended_op
)
17382 case DW_LNE_end_sequence
:
17383 p_record_line
= record_line
;
17386 case DW_LNE_set_address
:
17387 address
= read_address (abfd
, line_ptr
, cu
, &bytes_read
);
17389 /* If address < lowpc then it's not a usable value, it's
17390 outside the pc range of the CU. However, we restrict
17391 the test to only address values of zero to preserve
17392 GDB's previous behaviour which is to handle the specific
17393 case of a function being GC'd by the linker. */
17394 if (address
== 0 && address
< lowpc
)
17396 /* This line table is for a function which has been
17397 GCd by the linker. Ignore it. PR gdb/12528 */
17400 = line_ptr
- get_debug_line_section (cu
)->buffer
;
17402 complaint (&symfile_complaints
,
17403 _(".debug_line address at offset 0x%lx is 0 "
17405 line_offset
, objfile_name (objfile
));
17406 p_record_line
= noop_record_line
;
17407 /* Note: p_record_line is left as noop_record_line
17408 until we see DW_LNE_end_sequence. */
17412 line_ptr
+= bytes_read
;
17413 address
+= baseaddr
;
17415 case DW_LNE_define_file
:
17417 const char *cur_file
;
17418 unsigned int dir_index
, mod_time
, length
;
17420 cur_file
= read_direct_string (abfd
, line_ptr
,
17422 line_ptr
+= bytes_read
;
17424 read_unsigned_leb128 (abfd
, line_ptr
, &bytes_read
);
17425 line_ptr
+= bytes_read
;
17427 read_unsigned_leb128 (abfd
, line_ptr
, &bytes_read
);
17428 line_ptr
+= bytes_read
;
17430 read_unsigned_leb128 (abfd
, line_ptr
, &bytes_read
);
17431 line_ptr
+= bytes_read
;
17432 add_file_name (lh
, cur_file
, dir_index
, mod_time
, length
);
17435 case DW_LNE_set_discriminator
:
17436 /* The discriminator is not interesting to the debugger;
17437 just ignore it. We still need to check its value though:
17438 if there are consecutive entries for the same
17439 (non-prologue) line we want to coalesce them.
17441 discriminator
= read_unsigned_leb128 (abfd
, line_ptr
,
17443 line_has_non_zero_discriminator
|= discriminator
!= 0;
17444 line_ptr
+= bytes_read
;
17447 complaint (&symfile_complaints
,
17448 _("mangled .debug_line section"));
17451 /* Make sure that we parsed the extended op correctly. If e.g.
17452 we expected a different address size than the producer used,
17453 we may have read the wrong number of bytes. */
17454 if (line_ptr
!= extended_end
)
17456 complaint (&symfile_complaints
,
17457 _("mangled .debug_line section"));
17462 if (lh
->num_file_names
< file
|| file
== 0)
17463 dwarf2_debug_line_missing_file_complaint ();
17466 lh
->file_names
[file
- 1].included_p
= 1;
17467 if (!decode_for_pst_p
&& is_stmt
)
17469 if (last_subfile
!= current_subfile
)
17471 dwarf_finish_line (gdbarch
, last_subfile
,
17472 address
, p_record_line
);
17474 if (dwarf_record_line_p (line
, last_line
,
17475 line_has_non_zero_discriminator
,
17478 dwarf_record_line (gdbarch
, current_subfile
,
17479 line
, address
, p_record_line
);
17481 last_subfile
= current_subfile
;
17487 case DW_LNS_advance_pc
:
17490 = read_unsigned_leb128 (abfd
, line_ptr
, &bytes_read
);
17492 address
+= (((op_index
+ adjust
)
17493 / lh
->maximum_ops_per_instruction
)
17494 * lh
->minimum_instruction_length
);
17495 op_index
= ((op_index
+ adjust
)
17496 % lh
->maximum_ops_per_instruction
);
17497 line_ptr
+= bytes_read
;
17500 case DW_LNS_advance_line
:
17503 = read_signed_leb128 (abfd
, line_ptr
, &bytes_read
);
17505 line
+= line_delta
;
17506 if (line_delta
!= 0)
17507 line_has_non_zero_discriminator
= discriminator
!= 0;
17508 line_ptr
+= bytes_read
;
17511 case DW_LNS_set_file
:
17513 /* The arrays lh->include_dirs and lh->file_names are
17514 0-based, but the directory and file name numbers in
17515 the statement program are 1-based. */
17516 struct file_entry
*fe
;
17517 const char *dir
= NULL
;
17519 file
= read_unsigned_leb128 (abfd
, line_ptr
, &bytes_read
);
17520 line_ptr
+= bytes_read
;
17521 if (lh
->num_file_names
< file
|| file
== 0)
17522 dwarf2_debug_line_missing_file_complaint ();
17525 fe
= &lh
->file_names
[file
- 1];
17527 dir
= lh
->include_dirs
[fe
->dir_index
- 1];
17528 if (!decode_for_pst_p
)
17530 last_subfile
= current_subfile
;
17531 line_has_non_zero_discriminator
= discriminator
!= 0;
17532 dwarf2_start_subfile (fe
->name
, dir
);
17537 case DW_LNS_set_column
:
17538 (void) read_unsigned_leb128 (abfd
, line_ptr
, &bytes_read
);
17539 line_ptr
+= bytes_read
;
17541 case DW_LNS_negate_stmt
:
17542 is_stmt
= (!is_stmt
);
17544 case DW_LNS_set_basic_block
:
17546 /* Add to the address register of the state machine the
17547 address increment value corresponding to special opcode
17548 255. I.e., this value is scaled by the minimum
17549 instruction length since special opcode 255 would have
17550 scaled the increment. */
17551 case DW_LNS_const_add_pc
:
17553 CORE_ADDR adjust
= (255 - lh
->opcode_base
) / lh
->line_range
;
17555 address
+= (((op_index
+ adjust
)
17556 / lh
->maximum_ops_per_instruction
)
17557 * lh
->minimum_instruction_length
);
17558 op_index
= ((op_index
+ adjust
)
17559 % lh
->maximum_ops_per_instruction
);
17562 case DW_LNS_fixed_advance_pc
:
17563 address
+= read_2_bytes (abfd
, line_ptr
);
17569 /* Unknown standard opcode, ignore it. */
17572 for (i
= 0; i
< lh
->standard_opcode_lengths
[op_code
]; i
++)
17574 (void) read_unsigned_leb128 (abfd
, line_ptr
, &bytes_read
);
17575 line_ptr
+= bytes_read
;
17580 if (lh
->num_file_names
< file
|| file
== 0)
17581 dwarf2_debug_line_missing_file_complaint ();
17584 lh
->file_names
[file
- 1].included_p
= 1;
17585 if (!decode_for_pst_p
)
17587 dwarf_finish_line (gdbarch
, current_subfile
, address
,
17594 /* Decode the Line Number Program (LNP) for the given line_header
17595 structure and CU. The actual information extracted and the type
17596 of structures created from the LNP depends on the value of PST.
17598 1. If PST is NULL, then this procedure uses the data from the program
17599 to create all necessary symbol tables, and their linetables.
17601 2. If PST is not NULL, this procedure reads the program to determine
17602 the list of files included by the unit represented by PST, and
17603 builds all the associated partial symbol tables.
17605 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17606 It is used for relative paths in the line table.
17607 NOTE: When processing partial symtabs (pst != NULL),
17608 comp_dir == pst->dirname.
17610 NOTE: It is important that psymtabs have the same file name (via strcmp)
17611 as the corresponding symtab. Since COMP_DIR is not used in the name of the
17612 symtab we don't use it in the name of the psymtabs we create.
17613 E.g. expand_line_sal requires this when finding psymtabs to expand.
17614 A good testcase for this is mb-inline.exp.
17616 LOWPC is the lowest address in CU (or 0 if not known). */
17619 dwarf_decode_lines (struct line_header
*lh
, const char *comp_dir
,
17620 struct dwarf2_cu
*cu
, struct partial_symtab
*pst
,
17623 struct objfile
*objfile
= cu
->objfile
;
17624 const int decode_for_pst_p
= (pst
!= NULL
);
17626 dwarf_decode_lines_1 (lh
, cu
, decode_for_pst_p
, lowpc
);
17628 if (decode_for_pst_p
)
17632 /* Now that we're done scanning the Line Header Program, we can
17633 create the psymtab of each included file. */
17634 for (file_index
= 0; file_index
< lh
->num_file_names
; file_index
++)
17635 if (lh
->file_names
[file_index
].included_p
== 1)
17637 const char *include_name
=
17638 psymtab_include_file_name (lh
, file_index
, pst
, comp_dir
);
17639 if (include_name
!= NULL
)
17640 dwarf2_create_include_psymtab (include_name
, pst
, objfile
);
17645 /* Make sure a symtab is created for every file, even files
17646 which contain only variables (i.e. no code with associated
17648 struct compunit_symtab
*cust
= buildsym_compunit_symtab ();
17651 for (i
= 0; i
< lh
->num_file_names
; i
++)
17653 const char *dir
= NULL
;
17654 struct file_entry
*fe
;
17656 fe
= &lh
->file_names
[i
];
17658 dir
= lh
->include_dirs
[fe
->dir_index
- 1];
17659 dwarf2_start_subfile (fe
->name
, dir
);
17661 if (current_subfile
->symtab
== NULL
)
17663 current_subfile
->symtab
17664 = allocate_symtab (cust
, current_subfile
->name
);
17666 fe
->symtab
= current_subfile
->symtab
;
17671 /* Start a subfile for DWARF. FILENAME is the name of the file and
17672 DIRNAME the name of the source directory which contains FILENAME
17673 or NULL if not known.
17674 This routine tries to keep line numbers from identical absolute and
17675 relative file names in a common subfile.
17677 Using the `list' example from the GDB testsuite, which resides in
17678 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
17679 of /srcdir/list0.c yields the following debugging information for list0.c:
17681 DW_AT_name: /srcdir/list0.c
17682 DW_AT_comp_dir: /compdir
17683 files.files[0].name: list0.h
17684 files.files[0].dir: /srcdir
17685 files.files[1].name: list0.c
17686 files.files[1].dir: /srcdir
17688 The line number information for list0.c has to end up in a single
17689 subfile, so that `break /srcdir/list0.c:1' works as expected.
17690 start_subfile will ensure that this happens provided that we pass the
17691 concatenation of files.files[1].dir and files.files[1].name as the
17695 dwarf2_start_subfile (const char *filename
, const char *dirname
)
17699 /* In order not to lose the line information directory,
17700 we concatenate it to the filename when it makes sense.
17701 Note that the Dwarf3 standard says (speaking of filenames in line
17702 information): ``The directory index is ignored for file names
17703 that represent full path names''. Thus ignoring dirname in the
17704 `else' branch below isn't an issue. */
17706 if (!IS_ABSOLUTE_PATH (filename
) && dirname
!= NULL
)
17708 copy
= concat (dirname
, SLASH_STRING
, filename
, (char *)NULL
);
17712 start_subfile (filename
);
17718 /* Start a symtab for DWARF.
17719 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
17721 static struct compunit_symtab
*
17722 dwarf2_start_symtab (struct dwarf2_cu
*cu
,
17723 const char *name
, const char *comp_dir
, CORE_ADDR low_pc
)
17725 struct compunit_symtab
*cust
17726 = start_symtab (cu
->objfile
, name
, comp_dir
, low_pc
);
17728 record_debugformat ("DWARF 2");
17729 record_producer (cu
->producer
);
17731 /* We assume that we're processing GCC output. */
17732 processing_gcc_compilation
= 2;
17734 cu
->processing_has_namespace_info
= 0;
17740 var_decode_location (struct attribute
*attr
, struct symbol
*sym
,
17741 struct dwarf2_cu
*cu
)
17743 struct objfile
*objfile
= cu
->objfile
;
17744 struct comp_unit_head
*cu_header
= &cu
->header
;
17746 /* NOTE drow/2003-01-30: There used to be a comment and some special
17747 code here to turn a symbol with DW_AT_external and a
17748 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
17749 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
17750 with some versions of binutils) where shared libraries could have
17751 relocations against symbols in their debug information - the
17752 minimal symbol would have the right address, but the debug info
17753 would not. It's no longer necessary, because we will explicitly
17754 apply relocations when we read in the debug information now. */
17756 /* A DW_AT_location attribute with no contents indicates that a
17757 variable has been optimized away. */
17758 if (attr_form_is_block (attr
) && DW_BLOCK (attr
)->size
== 0)
17760 SYMBOL_ACLASS_INDEX (sym
) = LOC_OPTIMIZED_OUT
;
17764 /* Handle one degenerate form of location expression specially, to
17765 preserve GDB's previous behavior when section offsets are
17766 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
17767 then mark this symbol as LOC_STATIC. */
17769 if (attr_form_is_block (attr
)
17770 && ((DW_BLOCK (attr
)->data
[0] == DW_OP_addr
17771 && DW_BLOCK (attr
)->size
== 1 + cu_header
->addr_size
)
17772 || (DW_BLOCK (attr
)->data
[0] == DW_OP_GNU_addr_index
17773 && (DW_BLOCK (attr
)->size
17774 == 1 + leb128_size (&DW_BLOCK (attr
)->data
[1])))))
17776 unsigned int dummy
;
17778 if (DW_BLOCK (attr
)->data
[0] == DW_OP_addr
)
17779 SYMBOL_VALUE_ADDRESS (sym
) =
17780 read_address (objfile
->obfd
, DW_BLOCK (attr
)->data
+ 1, cu
, &dummy
);
17782 SYMBOL_VALUE_ADDRESS (sym
) =
17783 read_addr_index_from_leb128 (cu
, DW_BLOCK (attr
)->data
+ 1, &dummy
);
17784 SYMBOL_ACLASS_INDEX (sym
) = LOC_STATIC
;
17785 fixup_symbol_section (sym
, objfile
);
17786 SYMBOL_VALUE_ADDRESS (sym
) += ANOFFSET (objfile
->section_offsets
,
17787 SYMBOL_SECTION (sym
));
17791 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
17792 expression evaluator, and use LOC_COMPUTED only when necessary
17793 (i.e. when the value of a register or memory location is
17794 referenced, or a thread-local block, etc.). Then again, it might
17795 not be worthwhile. I'm assuming that it isn't unless performance
17796 or memory numbers show me otherwise. */
17798 dwarf2_symbol_mark_computed (attr
, sym
, cu
, 0);
17800 if (SYMBOL_COMPUTED_OPS (sym
)->location_has_loclist
)
17801 cu
->has_loclist
= 1;
17804 /* Given a pointer to a DWARF information entry, figure out if we need
17805 to make a symbol table entry for it, and if so, create a new entry
17806 and return a pointer to it.
17807 If TYPE is NULL, determine symbol type from the die, otherwise
17808 used the passed type.
17809 If SPACE is not NULL, use it to hold the new symbol. If it is
17810 NULL, allocate a new symbol on the objfile's obstack. */
17812 static struct symbol
*
17813 new_symbol_full (struct die_info
*die
, struct type
*type
, struct dwarf2_cu
*cu
,
17814 struct symbol
*space
)
17816 struct objfile
*objfile
= cu
->objfile
;
17817 struct symbol
*sym
= NULL
;
17819 struct attribute
*attr
= NULL
;
17820 struct attribute
*attr2
= NULL
;
17821 CORE_ADDR baseaddr
;
17822 struct pending
**list_to_add
= NULL
;
17824 int inlined_func
= (die
->tag
== DW_TAG_inlined_subroutine
);
17826 baseaddr
= ANOFFSET (objfile
->section_offsets
, SECT_OFF_TEXT (objfile
));
17828 name
= dwarf2_name (die
, cu
);
17831 const char *linkagename
;
17832 int suppress_add
= 0;
17837 sym
= allocate_symbol (objfile
);
17838 OBJSTAT (objfile
, n_syms
++);
17840 /* Cache this symbol's name and the name's demangled form (if any). */
17841 SYMBOL_SET_LANGUAGE (sym
, cu
->language
, &objfile
->objfile_obstack
);
17842 linkagename
= dwarf2_physname (name
, die
, cu
);
17843 SYMBOL_SET_NAMES (sym
, linkagename
, strlen (linkagename
), 0, objfile
);
17845 /* Fortran does not have mangling standard and the mangling does differ
17846 between gfortran, iFort etc. */
17847 if (cu
->language
== language_fortran
17848 && symbol_get_demangled_name (&(sym
->ginfo
)) == NULL
)
17849 symbol_set_demangled_name (&(sym
->ginfo
),
17850 dwarf2_full_name (name
, die
, cu
),
17853 /* Default assumptions.
17854 Use the passed type or decode it from the die. */
17855 SYMBOL_DOMAIN (sym
) = VAR_DOMAIN
;
17856 SYMBOL_ACLASS_INDEX (sym
) = LOC_OPTIMIZED_OUT
;
17858 SYMBOL_TYPE (sym
) = type
;
17860 SYMBOL_TYPE (sym
) = die_type (die
, cu
);
17861 attr
= dwarf2_attr (die
,
17862 inlined_func
? DW_AT_call_line
: DW_AT_decl_line
,
17866 SYMBOL_LINE (sym
) = DW_UNSND (attr
);
17869 attr
= dwarf2_attr (die
,
17870 inlined_func
? DW_AT_call_file
: DW_AT_decl_file
,
17874 int file_index
= DW_UNSND (attr
);
17876 if (cu
->line_header
== NULL
17877 || file_index
> cu
->line_header
->num_file_names
)
17878 complaint (&symfile_complaints
,
17879 _("file index out of range"));
17880 else if (file_index
> 0)
17882 struct file_entry
*fe
;
17884 fe
= &cu
->line_header
->file_names
[file_index
- 1];
17885 SYMBOL_SYMTAB (sym
) = fe
->symtab
;
17892 attr
= dwarf2_attr (die
, DW_AT_low_pc
, cu
);
17894 SYMBOL_VALUE_ADDRESS (sym
)
17895 = attr_value_as_address (attr
) + baseaddr
;
17896 SYMBOL_TYPE (sym
) = objfile_type (objfile
)->builtin_core_addr
;
17897 SYMBOL_DOMAIN (sym
) = LABEL_DOMAIN
;
17898 SYMBOL_ACLASS_INDEX (sym
) = LOC_LABEL
;
17899 add_symbol_to_list (sym
, cu
->list_in_scope
);
17901 case DW_TAG_subprogram
:
17902 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
17904 SYMBOL_ACLASS_INDEX (sym
) = LOC_BLOCK
;
17905 attr2
= dwarf2_attr (die
, DW_AT_external
, cu
);
17906 if ((attr2
&& (DW_UNSND (attr2
) != 0))
17907 || cu
->language
== language_ada
)
17909 /* Subprograms marked external are stored as a global symbol.
17910 Ada subprograms, whether marked external or not, are always
17911 stored as a global symbol, because we want to be able to
17912 access them globally. For instance, we want to be able
17913 to break on a nested subprogram without having to
17914 specify the context. */
17915 list_to_add
= &global_symbols
;
17919 list_to_add
= cu
->list_in_scope
;
17922 case DW_TAG_inlined_subroutine
:
17923 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
17925 SYMBOL_ACLASS_INDEX (sym
) = LOC_BLOCK
;
17926 SYMBOL_INLINED (sym
) = 1;
17927 list_to_add
= cu
->list_in_scope
;
17929 case DW_TAG_template_value_param
:
17931 /* Fall through. */
17932 case DW_TAG_constant
:
17933 case DW_TAG_variable
:
17934 case DW_TAG_member
:
17935 /* Compilation with minimal debug info may result in
17936 variables with missing type entries. Change the
17937 misleading `void' type to something sensible. */
17938 if (TYPE_CODE (SYMBOL_TYPE (sym
)) == TYPE_CODE_VOID
)
17940 = objfile_type (objfile
)->nodebug_data_symbol
;
17942 attr
= dwarf2_attr (die
, DW_AT_const_value
, cu
);
17943 /* In the case of DW_TAG_member, we should only be called for
17944 static const members. */
17945 if (die
->tag
== DW_TAG_member
)
17947 /* dwarf2_add_field uses die_is_declaration,
17948 so we do the same. */
17949 gdb_assert (die_is_declaration (die
, cu
));
17954 dwarf2_const_value (attr
, sym
, cu
);
17955 attr2
= dwarf2_attr (die
, DW_AT_external
, cu
);
17958 if (attr2
&& (DW_UNSND (attr2
) != 0))
17959 list_to_add
= &global_symbols
;
17961 list_to_add
= cu
->list_in_scope
;
17965 attr
= dwarf2_attr (die
, DW_AT_location
, cu
);
17968 var_decode_location (attr
, sym
, cu
);
17969 attr2
= dwarf2_attr (die
, DW_AT_external
, cu
);
17971 /* Fortran explicitly imports any global symbols to the local
17972 scope by DW_TAG_common_block. */
17973 if (cu
->language
== language_fortran
&& die
->parent
17974 && die
->parent
->tag
== DW_TAG_common_block
)
17977 if (SYMBOL_CLASS (sym
) == LOC_STATIC
17978 && SYMBOL_VALUE_ADDRESS (sym
) == 0
17979 && !dwarf2_per_objfile
->has_section_at_zero
)
17981 /* When a static variable is eliminated by the linker,
17982 the corresponding debug information is not stripped
17983 out, but the variable address is set to null;
17984 do not add such variables into symbol table. */
17986 else if (attr2
&& (DW_UNSND (attr2
) != 0))
17988 /* Workaround gfortran PR debug/40040 - it uses
17989 DW_AT_location for variables in -fPIC libraries which may
17990 get overriden by other libraries/executable and get
17991 a different address. Resolve it by the minimal symbol
17992 which may come from inferior's executable using copy
17993 relocation. Make this workaround only for gfortran as for
17994 other compilers GDB cannot guess the minimal symbol
17995 Fortran mangling kind. */
17996 if (cu
->language
== language_fortran
&& die
->parent
17997 && die
->parent
->tag
== DW_TAG_module
17999 && strncmp (cu
->producer
, "GNU Fortran ", 12) == 0)
18000 SYMBOL_ACLASS_INDEX (sym
) = LOC_UNRESOLVED
;
18002 /* A variable with DW_AT_external is never static,
18003 but it may be block-scoped. */
18004 list_to_add
= (cu
->list_in_scope
== &file_symbols
18005 ? &global_symbols
: cu
->list_in_scope
);
18008 list_to_add
= cu
->list_in_scope
;
18012 /* We do not know the address of this symbol.
18013 If it is an external symbol and we have type information
18014 for it, enter the symbol as a LOC_UNRESOLVED symbol.
18015 The address of the variable will then be determined from
18016 the minimal symbol table whenever the variable is
18018 attr2
= dwarf2_attr (die
, DW_AT_external
, cu
);
18020 /* Fortran explicitly imports any global symbols to the local
18021 scope by DW_TAG_common_block. */
18022 if (cu
->language
== language_fortran
&& die
->parent
18023 && die
->parent
->tag
== DW_TAG_common_block
)
18025 /* SYMBOL_CLASS doesn't matter here because
18026 read_common_block is going to reset it. */
18028 list_to_add
= cu
->list_in_scope
;
18030 else if (attr2
&& (DW_UNSND (attr2
) != 0)
18031 && dwarf2_attr (die
, DW_AT_type
, cu
) != NULL
)
18033 /* A variable with DW_AT_external is never static, but it
18034 may be block-scoped. */
18035 list_to_add
= (cu
->list_in_scope
== &file_symbols
18036 ? &global_symbols
: cu
->list_in_scope
);
18038 SYMBOL_ACLASS_INDEX (sym
) = LOC_UNRESOLVED
;
18040 else if (!die_is_declaration (die
, cu
))
18042 /* Use the default LOC_OPTIMIZED_OUT class. */
18043 gdb_assert (SYMBOL_CLASS (sym
) == LOC_OPTIMIZED_OUT
);
18045 list_to_add
= cu
->list_in_scope
;
18049 case DW_TAG_formal_parameter
:
18050 /* If we are inside a function, mark this as an argument. If
18051 not, we might be looking at an argument to an inlined function
18052 when we do not have enough information to show inlined frames;
18053 pretend it's a local variable in that case so that the user can
18055 if (context_stack_depth
> 0
18056 && context_stack
[context_stack_depth
- 1].name
!= NULL
)
18057 SYMBOL_IS_ARGUMENT (sym
) = 1;
18058 attr
= dwarf2_attr (die
, DW_AT_location
, cu
);
18061 var_decode_location (attr
, sym
, cu
);
18063 attr
= dwarf2_attr (die
, DW_AT_const_value
, cu
);
18066 dwarf2_const_value (attr
, sym
, cu
);
18069 list_to_add
= cu
->list_in_scope
;
18071 case DW_TAG_unspecified_parameters
:
18072 /* From varargs functions; gdb doesn't seem to have any
18073 interest in this information, so just ignore it for now.
18076 case DW_TAG_template_type_param
:
18078 /* Fall through. */
18079 case DW_TAG_class_type
:
18080 case DW_TAG_interface_type
:
18081 case DW_TAG_structure_type
:
18082 case DW_TAG_union_type
:
18083 case DW_TAG_set_type
:
18084 case DW_TAG_enumeration_type
:
18085 SYMBOL_ACLASS_INDEX (sym
) = LOC_TYPEDEF
;
18086 SYMBOL_DOMAIN (sym
) = STRUCT_DOMAIN
;
18089 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
18090 really ever be static objects: otherwise, if you try
18091 to, say, break of a class's method and you're in a file
18092 which doesn't mention that class, it won't work unless
18093 the check for all static symbols in lookup_symbol_aux
18094 saves you. See the OtherFileClass tests in
18095 gdb.c++/namespace.exp. */
18099 list_to_add
= (cu
->list_in_scope
== &file_symbols
18100 && (cu
->language
== language_cplus
18101 || cu
->language
== language_java
)
18102 ? &global_symbols
: cu
->list_in_scope
);
18104 /* The semantics of C++ state that "struct foo {
18105 ... }" also defines a typedef for "foo". A Java
18106 class declaration also defines a typedef for the
18108 if (cu
->language
== language_cplus
18109 || cu
->language
== language_java
18110 || cu
->language
== language_ada
)
18112 /* The symbol's name is already allocated along
18113 with this objfile, so we don't need to
18114 duplicate it for the type. */
18115 if (TYPE_NAME (SYMBOL_TYPE (sym
)) == 0)
18116 TYPE_NAME (SYMBOL_TYPE (sym
)) = SYMBOL_SEARCH_NAME (sym
);
18121 case DW_TAG_typedef
:
18122 SYMBOL_ACLASS_INDEX (sym
) = LOC_TYPEDEF
;
18123 SYMBOL_DOMAIN (sym
) = VAR_DOMAIN
;
18124 list_to_add
= cu
->list_in_scope
;
18126 case DW_TAG_base_type
:
18127 case DW_TAG_subrange_type
:
18128 SYMBOL_ACLASS_INDEX (sym
) = LOC_TYPEDEF
;
18129 SYMBOL_DOMAIN (sym
) = VAR_DOMAIN
;
18130 list_to_add
= cu
->list_in_scope
;
18132 case DW_TAG_enumerator
:
18133 attr
= dwarf2_attr (die
, DW_AT_const_value
, cu
);
18136 dwarf2_const_value (attr
, sym
, cu
);
18139 /* NOTE: carlton/2003-11-10: See comment above in the
18140 DW_TAG_class_type, etc. block. */
18142 list_to_add
= (cu
->list_in_scope
== &file_symbols
18143 && (cu
->language
== language_cplus
18144 || cu
->language
== language_java
)
18145 ? &global_symbols
: cu
->list_in_scope
);
18148 case DW_TAG_imported_declaration
:
18149 case DW_TAG_namespace
:
18150 SYMBOL_ACLASS_INDEX (sym
) = LOC_TYPEDEF
;
18151 list_to_add
= &global_symbols
;
18153 case DW_TAG_module
:
18154 SYMBOL_ACLASS_INDEX (sym
) = LOC_TYPEDEF
;
18155 SYMBOL_DOMAIN (sym
) = MODULE_DOMAIN
;
18156 list_to_add
= &global_symbols
;
18158 case DW_TAG_common_block
:
18159 SYMBOL_ACLASS_INDEX (sym
) = LOC_COMMON_BLOCK
;
18160 SYMBOL_DOMAIN (sym
) = COMMON_BLOCK_DOMAIN
;
18161 add_symbol_to_list (sym
, cu
->list_in_scope
);
18164 /* Not a tag we recognize. Hopefully we aren't processing
18165 trash data, but since we must specifically ignore things
18166 we don't recognize, there is nothing else we should do at
18168 complaint (&symfile_complaints
, _("unsupported tag: '%s'"),
18169 dwarf_tag_name (die
->tag
));
18175 sym
->hash_next
= objfile
->template_symbols
;
18176 objfile
->template_symbols
= sym
;
18177 list_to_add
= NULL
;
18180 if (list_to_add
!= NULL
)
18181 add_symbol_to_list (sym
, list_to_add
);
18183 /* For the benefit of old versions of GCC, check for anonymous
18184 namespaces based on the demangled name. */
18185 if (!cu
->processing_has_namespace_info
18186 && cu
->language
== language_cplus
)
18187 cp_scan_for_anonymous_namespaces (sym
, objfile
);
18192 /* A wrapper for new_symbol_full that always allocates a new symbol. */
18194 static struct symbol
*
18195 new_symbol (struct die_info
*die
, struct type
*type
, struct dwarf2_cu
*cu
)
18197 return new_symbol_full (die
, type
, cu
, NULL
);
18200 /* Given an attr with a DW_FORM_dataN value in host byte order,
18201 zero-extend it as appropriate for the symbol's type. The DWARF
18202 standard (v4) is not entirely clear about the meaning of using
18203 DW_FORM_dataN for a constant with a signed type, where the type is
18204 wider than the data. The conclusion of a discussion on the DWARF
18205 list was that this is unspecified. We choose to always zero-extend
18206 because that is the interpretation long in use by GCC. */
18209 dwarf2_const_value_data (const struct attribute
*attr
, struct obstack
*obstack
,
18210 struct dwarf2_cu
*cu
, LONGEST
*value
, int bits
)
18212 struct objfile
*objfile
= cu
->objfile
;
18213 enum bfd_endian byte_order
= bfd_big_endian (objfile
->obfd
) ?
18214 BFD_ENDIAN_BIG
: BFD_ENDIAN_LITTLE
;
18215 LONGEST l
= DW_UNSND (attr
);
18217 if (bits
< sizeof (*value
) * 8)
18219 l
&= ((LONGEST
) 1 << bits
) - 1;
18222 else if (bits
== sizeof (*value
) * 8)
18226 gdb_byte
*bytes
= obstack_alloc (obstack
, bits
/ 8);
18227 store_unsigned_integer (bytes
, bits
/ 8, byte_order
, l
);
18234 /* Read a constant value from an attribute. Either set *VALUE, or if
18235 the value does not fit in *VALUE, set *BYTES - either already
18236 allocated on the objfile obstack, or newly allocated on OBSTACK,
18237 or, set *BATON, if we translated the constant to a location
18241 dwarf2_const_value_attr (const struct attribute
*attr
, struct type
*type
,
18242 const char *name
, struct obstack
*obstack
,
18243 struct dwarf2_cu
*cu
,
18244 LONGEST
*value
, const gdb_byte
**bytes
,
18245 struct dwarf2_locexpr_baton
**baton
)
18247 struct objfile
*objfile
= cu
->objfile
;
18248 struct comp_unit_head
*cu_header
= &cu
->header
;
18249 struct dwarf_block
*blk
;
18250 enum bfd_endian byte_order
= (bfd_big_endian (objfile
->obfd
) ?
18251 BFD_ENDIAN_BIG
: BFD_ENDIAN_LITTLE
);
18257 switch (attr
->form
)
18260 case DW_FORM_GNU_addr_index
:
18264 if (TYPE_LENGTH (type
) != cu_header
->addr_size
)
18265 dwarf2_const_value_length_mismatch_complaint (name
,
18266 cu_header
->addr_size
,
18267 TYPE_LENGTH (type
));
18268 /* Symbols of this form are reasonably rare, so we just
18269 piggyback on the existing location code rather than writing
18270 a new implementation of symbol_computed_ops. */
18271 *baton
= obstack_alloc (obstack
, sizeof (struct dwarf2_locexpr_baton
));
18272 (*baton
)->per_cu
= cu
->per_cu
;
18273 gdb_assert ((*baton
)->per_cu
);
18275 (*baton
)->size
= 2 + cu_header
->addr_size
;
18276 data
= obstack_alloc (obstack
, (*baton
)->size
);
18277 (*baton
)->data
= data
;
18279 data
[0] = DW_OP_addr
;
18280 store_unsigned_integer (&data
[1], cu_header
->addr_size
,
18281 byte_order
, DW_ADDR (attr
));
18282 data
[cu_header
->addr_size
+ 1] = DW_OP_stack_value
;
18285 case DW_FORM_string
:
18287 case DW_FORM_GNU_str_index
:
18288 case DW_FORM_GNU_strp_alt
:
18289 /* DW_STRING is already allocated on the objfile obstack, point
18291 *bytes
= (const gdb_byte
*) DW_STRING (attr
);
18293 case DW_FORM_block1
:
18294 case DW_FORM_block2
:
18295 case DW_FORM_block4
:
18296 case DW_FORM_block
:
18297 case DW_FORM_exprloc
:
18298 blk
= DW_BLOCK (attr
);
18299 if (TYPE_LENGTH (type
) != blk
->size
)
18300 dwarf2_const_value_length_mismatch_complaint (name
, blk
->size
,
18301 TYPE_LENGTH (type
));
18302 *bytes
= blk
->data
;
18305 /* The DW_AT_const_value attributes are supposed to carry the
18306 symbol's value "represented as it would be on the target
18307 architecture." By the time we get here, it's already been
18308 converted to host endianness, so we just need to sign- or
18309 zero-extend it as appropriate. */
18310 case DW_FORM_data1
:
18311 *bytes
= dwarf2_const_value_data (attr
, obstack
, cu
, value
, 8);
18313 case DW_FORM_data2
:
18314 *bytes
= dwarf2_const_value_data (attr
, obstack
, cu
, value
, 16);
18316 case DW_FORM_data4
:
18317 *bytes
= dwarf2_const_value_data (attr
, obstack
, cu
, value
, 32);
18319 case DW_FORM_data8
:
18320 *bytes
= dwarf2_const_value_data (attr
, obstack
, cu
, value
, 64);
18323 case DW_FORM_sdata
:
18324 *value
= DW_SND (attr
);
18327 case DW_FORM_udata
:
18328 *value
= DW_UNSND (attr
);
18332 complaint (&symfile_complaints
,
18333 _("unsupported const value attribute form: '%s'"),
18334 dwarf_form_name (attr
->form
));
18341 /* Copy constant value from an attribute to a symbol. */
18344 dwarf2_const_value (const struct attribute
*attr
, struct symbol
*sym
,
18345 struct dwarf2_cu
*cu
)
18347 struct objfile
*objfile
= cu
->objfile
;
18348 struct comp_unit_head
*cu_header
= &cu
->header
;
18350 const gdb_byte
*bytes
;
18351 struct dwarf2_locexpr_baton
*baton
;
18353 dwarf2_const_value_attr (attr
, SYMBOL_TYPE (sym
),
18354 SYMBOL_PRINT_NAME (sym
),
18355 &objfile
->objfile_obstack
, cu
,
18356 &value
, &bytes
, &baton
);
18360 SYMBOL_LOCATION_BATON (sym
) = baton
;
18361 SYMBOL_ACLASS_INDEX (sym
) = dwarf2_locexpr_index
;
18363 else if (bytes
!= NULL
)
18365 SYMBOL_VALUE_BYTES (sym
) = bytes
;
18366 SYMBOL_ACLASS_INDEX (sym
) = LOC_CONST_BYTES
;
18370 SYMBOL_VALUE (sym
) = value
;
18371 SYMBOL_ACLASS_INDEX (sym
) = LOC_CONST
;
18375 /* Return the type of the die in question using its DW_AT_type attribute. */
18377 static struct type
*
18378 die_type (struct die_info
*die
, struct dwarf2_cu
*cu
)
18380 struct attribute
*type_attr
;
18382 type_attr
= dwarf2_attr (die
, DW_AT_type
, cu
);
18385 /* A missing DW_AT_type represents a void type. */
18386 return objfile_type (cu
->objfile
)->builtin_void
;
18389 return lookup_die_type (die
, type_attr
, cu
);
18392 /* True iff CU's producer generates GNAT Ada auxiliary information
18393 that allows to find parallel types through that information instead
18394 of having to do expensive parallel lookups by type name. */
18397 need_gnat_info (struct dwarf2_cu
*cu
)
18399 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
18400 of GNAT produces this auxiliary information, without any indication
18401 that it is produced. Part of enhancing the FSF version of GNAT
18402 to produce that information will be to put in place an indicator
18403 that we can use in order to determine whether the descriptive type
18404 info is available or not. One suggestion that has been made is
18405 to use a new attribute, attached to the CU die. For now, assume
18406 that the descriptive type info is not available. */
18410 /* Return the auxiliary type of the die in question using its
18411 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
18412 attribute is not present. */
18414 static struct type
*
18415 die_descriptive_type (struct die_info
*die
, struct dwarf2_cu
*cu
)
18417 struct attribute
*type_attr
;
18419 type_attr
= dwarf2_attr (die
, DW_AT_GNAT_descriptive_type
, cu
);
18423 return lookup_die_type (die
, type_attr
, cu
);
18426 /* If DIE has a descriptive_type attribute, then set the TYPE's
18427 descriptive type accordingly. */
18430 set_descriptive_type (struct type
*type
, struct die_info
*die
,
18431 struct dwarf2_cu
*cu
)
18433 struct type
*descriptive_type
= die_descriptive_type (die
, cu
);
18435 if (descriptive_type
)
18437 ALLOCATE_GNAT_AUX_TYPE (type
);
18438 TYPE_DESCRIPTIVE_TYPE (type
) = descriptive_type
;
18442 /* Return the containing type of the die in question using its
18443 DW_AT_containing_type attribute. */
18445 static struct type
*
18446 die_containing_type (struct die_info
*die
, struct dwarf2_cu
*cu
)
18448 struct attribute
*type_attr
;
18450 type_attr
= dwarf2_attr (die
, DW_AT_containing_type
, cu
);
18452 error (_("Dwarf Error: Problem turning containing type into gdb type "
18453 "[in module %s]"), objfile_name (cu
->objfile
));
18455 return lookup_die_type (die
, type_attr
, cu
);
18458 /* Return an error marker type to use for the ill formed type in DIE/CU. */
18460 static struct type
*
18461 build_error_marker_type (struct dwarf2_cu
*cu
, struct die_info
*die
)
18463 struct objfile
*objfile
= dwarf2_per_objfile
->objfile
;
18464 char *message
, *saved
;
18466 message
= xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
18467 objfile_name (objfile
),
18468 cu
->header
.offset
.sect_off
,
18469 die
->offset
.sect_off
);
18470 saved
= obstack_copy0 (&objfile
->objfile_obstack
,
18471 message
, strlen (message
));
18474 return init_type (TYPE_CODE_ERROR
, 0, 0, saved
, objfile
);
18477 /* Look up the type of DIE in CU using its type attribute ATTR.
18478 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
18479 DW_AT_containing_type.
18480 If there is no type substitute an error marker. */
18482 static struct type
*
18483 lookup_die_type (struct die_info
*die
, const struct attribute
*attr
,
18484 struct dwarf2_cu
*cu
)
18486 struct objfile
*objfile
= cu
->objfile
;
18487 struct type
*this_type
;
18489 gdb_assert (attr
->name
== DW_AT_type
18490 || attr
->name
== DW_AT_GNAT_descriptive_type
18491 || attr
->name
== DW_AT_containing_type
);
18493 /* First see if we have it cached. */
18495 if (attr
->form
== DW_FORM_GNU_ref_alt
)
18497 struct dwarf2_per_cu_data
*per_cu
;
18498 sect_offset offset
= dwarf2_get_ref_die_offset (attr
);
18500 per_cu
= dwarf2_find_containing_comp_unit (offset
, 1, cu
->objfile
);
18501 this_type
= get_die_type_at_offset (offset
, per_cu
);
18503 else if (attr_form_is_ref (attr
))
18505 sect_offset offset
= dwarf2_get_ref_die_offset (attr
);
18507 this_type
= get_die_type_at_offset (offset
, cu
->per_cu
);
18509 else if (attr
->form
== DW_FORM_ref_sig8
)
18511 ULONGEST signature
= DW_SIGNATURE (attr
);
18513 return get_signatured_type (die
, signature
, cu
);
18517 complaint (&symfile_complaints
,
18518 _("Dwarf Error: Bad type attribute %s in DIE"
18519 " at 0x%x [in module %s]"),
18520 dwarf_attr_name (attr
->name
), die
->offset
.sect_off
,
18521 objfile_name (objfile
));
18522 return build_error_marker_type (cu
, die
);
18525 /* If not cached we need to read it in. */
18527 if (this_type
== NULL
)
18529 struct die_info
*type_die
= NULL
;
18530 struct dwarf2_cu
*type_cu
= cu
;
18532 if (attr_form_is_ref (attr
))
18533 type_die
= follow_die_ref (die
, attr
, &type_cu
);
18534 if (type_die
== NULL
)
18535 return build_error_marker_type (cu
, die
);
18536 /* If we find the type now, it's probably because the type came
18537 from an inter-CU reference and the type's CU got expanded before
18539 this_type
= read_type_die (type_die
, type_cu
);
18542 /* If we still don't have a type use an error marker. */
18544 if (this_type
== NULL
)
18545 return build_error_marker_type (cu
, die
);
18550 /* Return the type in DIE, CU.
18551 Returns NULL for invalid types.
18553 This first does a lookup in die_type_hash,
18554 and only reads the die in if necessary.
18556 NOTE: This can be called when reading in partial or full symbols. */
18558 static struct type
*
18559 read_type_die (struct die_info
*die
, struct dwarf2_cu
*cu
)
18561 struct type
*this_type
;
18563 this_type
= get_die_type (die
, cu
);
18567 return read_type_die_1 (die
, cu
);
18570 /* Read the type in DIE, CU.
18571 Returns NULL for invalid types. */
18573 static struct type
*
18574 read_type_die_1 (struct die_info
*die
, struct dwarf2_cu
*cu
)
18576 struct type
*this_type
= NULL
;
18580 case DW_TAG_class_type
:
18581 case DW_TAG_interface_type
:
18582 case DW_TAG_structure_type
:
18583 case DW_TAG_union_type
:
18584 this_type
= read_structure_type (die
, cu
);
18586 case DW_TAG_enumeration_type
:
18587 this_type
= read_enumeration_type (die
, cu
);
18589 case DW_TAG_subprogram
:
18590 case DW_TAG_subroutine_type
:
18591 case DW_TAG_inlined_subroutine
:
18592 this_type
= read_subroutine_type (die
, cu
);
18594 case DW_TAG_array_type
:
18595 this_type
= read_array_type (die
, cu
);
18597 case DW_TAG_set_type
:
18598 this_type
= read_set_type (die
, cu
);
18600 case DW_TAG_pointer_type
:
18601 this_type
= read_tag_pointer_type (die
, cu
);
18603 case DW_TAG_ptr_to_member_type
:
18604 this_type
= read_tag_ptr_to_member_type (die
, cu
);
18606 case DW_TAG_reference_type
:
18607 this_type
= read_tag_reference_type (die
, cu
);
18609 case DW_TAG_const_type
:
18610 this_type
= read_tag_const_type (die
, cu
);
18612 case DW_TAG_volatile_type
:
18613 this_type
= read_tag_volatile_type (die
, cu
);
18615 case DW_TAG_restrict_type
:
18616 this_type
= read_tag_restrict_type (die
, cu
);
18618 case DW_TAG_string_type
:
18619 this_type
= read_tag_string_type (die
, cu
);
18621 case DW_TAG_typedef
:
18622 this_type
= read_typedef (die
, cu
);
18624 case DW_TAG_subrange_type
:
18625 this_type
= read_subrange_type (die
, cu
);
18627 case DW_TAG_base_type
:
18628 this_type
= read_base_type (die
, cu
);
18630 case DW_TAG_unspecified_type
:
18631 this_type
= read_unspecified_type (die
, cu
);
18633 case DW_TAG_namespace
:
18634 this_type
= read_namespace_type (die
, cu
);
18636 case DW_TAG_module
:
18637 this_type
= read_module_type (die
, cu
);
18640 complaint (&symfile_complaints
,
18641 _("unexpected tag in read_type_die: '%s'"),
18642 dwarf_tag_name (die
->tag
));
18649 /* See if we can figure out if the class lives in a namespace. We do
18650 this by looking for a member function; its demangled name will
18651 contain namespace info, if there is any.
18652 Return the computed name or NULL.
18653 Space for the result is allocated on the objfile's obstack.
18654 This is the full-die version of guess_partial_die_structure_name.
18655 In this case we know DIE has no useful parent. */
18658 guess_full_die_structure_name (struct die_info
*die
, struct dwarf2_cu
*cu
)
18660 struct die_info
*spec_die
;
18661 struct dwarf2_cu
*spec_cu
;
18662 struct die_info
*child
;
18665 spec_die
= die_specification (die
, &spec_cu
);
18666 if (spec_die
!= NULL
)
18672 for (child
= die
->child
;
18674 child
= child
->sibling
)
18676 if (child
->tag
== DW_TAG_subprogram
)
18678 struct attribute
*attr
;
18680 attr
= dwarf2_attr (child
, DW_AT_linkage_name
, cu
);
18682 attr
= dwarf2_attr (child
, DW_AT_MIPS_linkage_name
, cu
);
18686 = language_class_name_from_physname (cu
->language_defn
,
18690 if (actual_name
!= NULL
)
18692 const char *die_name
= dwarf2_name (die
, cu
);
18694 if (die_name
!= NULL
18695 && strcmp (die_name
, actual_name
) != 0)
18697 /* Strip off the class name from the full name.
18698 We want the prefix. */
18699 int die_name_len
= strlen (die_name
);
18700 int actual_name_len
= strlen (actual_name
);
18702 /* Test for '::' as a sanity check. */
18703 if (actual_name_len
> die_name_len
+ 2
18704 && actual_name
[actual_name_len
18705 - die_name_len
- 1] == ':')
18707 obstack_copy0 (&cu
->objfile
->per_bfd
->storage_obstack
,
18709 actual_name_len
- die_name_len
- 2);
18712 xfree (actual_name
);
18721 /* GCC might emit a nameless typedef that has a linkage name. Determine the
18722 prefix part in such case. See
18723 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18726 anonymous_struct_prefix (struct die_info
*die
, struct dwarf2_cu
*cu
)
18728 struct attribute
*attr
;
18731 if (die
->tag
!= DW_TAG_class_type
&& die
->tag
!= DW_TAG_interface_type
18732 && die
->tag
!= DW_TAG_structure_type
&& die
->tag
!= DW_TAG_union_type
)
18735 attr
= dwarf2_attr (die
, DW_AT_name
, cu
);
18736 if (attr
!= NULL
&& DW_STRING (attr
) != NULL
)
18739 attr
= dwarf2_attr (die
, DW_AT_linkage_name
, cu
);
18741 attr
= dwarf2_attr (die
, DW_AT_MIPS_linkage_name
, cu
);
18742 if (attr
== NULL
|| DW_STRING (attr
) == NULL
)
18745 /* dwarf2_name had to be already called. */
18746 gdb_assert (DW_STRING_IS_CANONICAL (attr
));
18748 /* Strip the base name, keep any leading namespaces/classes. */
18749 base
= strrchr (DW_STRING (attr
), ':');
18750 if (base
== NULL
|| base
== DW_STRING (attr
) || base
[-1] != ':')
18753 return obstack_copy0 (&cu
->objfile
->per_bfd
->storage_obstack
,
18754 DW_STRING (attr
), &base
[-1] - DW_STRING (attr
));
18757 /* Return the name of the namespace/class that DIE is defined within,
18758 or "" if we can't tell. The caller should not xfree the result.
18760 For example, if we're within the method foo() in the following
18770 then determine_prefix on foo's die will return "N::C". */
18772 static const char *
18773 determine_prefix (struct die_info
*die
, struct dwarf2_cu
*cu
)
18775 struct die_info
*parent
, *spec_die
;
18776 struct dwarf2_cu
*spec_cu
;
18777 struct type
*parent_type
;
18780 if (cu
->language
!= language_cplus
&& cu
->language
!= language_java
18781 && cu
->language
!= language_fortran
)
18784 retval
= anonymous_struct_prefix (die
, cu
);
18788 /* We have to be careful in the presence of DW_AT_specification.
18789 For example, with GCC 3.4, given the code
18793 // Definition of N::foo.
18797 then we'll have a tree of DIEs like this:
18799 1: DW_TAG_compile_unit
18800 2: DW_TAG_namespace // N
18801 3: DW_TAG_subprogram // declaration of N::foo
18802 4: DW_TAG_subprogram // definition of N::foo
18803 DW_AT_specification // refers to die #3
18805 Thus, when processing die #4, we have to pretend that we're in
18806 the context of its DW_AT_specification, namely the contex of die
18809 spec_die
= die_specification (die
, &spec_cu
);
18810 if (spec_die
== NULL
)
18811 parent
= die
->parent
;
18814 parent
= spec_die
->parent
;
18818 if (parent
== NULL
)
18820 else if (parent
->building_fullname
)
18823 const char *parent_name
;
18825 /* It has been seen on RealView 2.2 built binaries,
18826 DW_TAG_template_type_param types actually _defined_ as
18827 children of the parent class:
18830 template class <class Enum> Class{};
18831 Class<enum E> class_e;
18833 1: DW_TAG_class_type (Class)
18834 2: DW_TAG_enumeration_type (E)
18835 3: DW_TAG_enumerator (enum1:0)
18836 3: DW_TAG_enumerator (enum2:1)
18838 2: DW_TAG_template_type_param
18839 DW_AT_type DW_FORM_ref_udata (E)
18841 Besides being broken debug info, it can put GDB into an
18842 infinite loop. Consider:
18844 When we're building the full name for Class<E>, we'll start
18845 at Class, and go look over its template type parameters,
18846 finding E. We'll then try to build the full name of E, and
18847 reach here. We're now trying to build the full name of E,
18848 and look over the parent DIE for containing scope. In the
18849 broken case, if we followed the parent DIE of E, we'd again
18850 find Class, and once again go look at its template type
18851 arguments, etc., etc. Simply don't consider such parent die
18852 as source-level parent of this die (it can't be, the language
18853 doesn't allow it), and break the loop here. */
18854 name
= dwarf2_name (die
, cu
);
18855 parent_name
= dwarf2_name (parent
, cu
);
18856 complaint (&symfile_complaints
,
18857 _("template param type '%s' defined within parent '%s'"),
18858 name
? name
: "<unknown>",
18859 parent_name
? parent_name
: "<unknown>");
18863 switch (parent
->tag
)
18865 case DW_TAG_namespace
:
18866 parent_type
= read_type_die (parent
, cu
);
18867 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
18868 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
18869 Work around this problem here. */
18870 if (cu
->language
== language_cplus
18871 && strcmp (TYPE_TAG_NAME (parent_type
), "::") == 0)
18873 /* We give a name to even anonymous namespaces. */
18874 return TYPE_TAG_NAME (parent_type
);
18875 case DW_TAG_class_type
:
18876 case DW_TAG_interface_type
:
18877 case DW_TAG_structure_type
:
18878 case DW_TAG_union_type
:
18879 case DW_TAG_module
:
18880 parent_type
= read_type_die (parent
, cu
);
18881 if (TYPE_TAG_NAME (parent_type
) != NULL
)
18882 return TYPE_TAG_NAME (parent_type
);
18884 /* An anonymous structure is only allowed non-static data
18885 members; no typedefs, no member functions, et cetera.
18886 So it does not need a prefix. */
18888 case DW_TAG_compile_unit
:
18889 case DW_TAG_partial_unit
:
18890 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
18891 if (cu
->language
== language_cplus
18892 && !VEC_empty (dwarf2_section_info_def
, dwarf2_per_objfile
->types
)
18893 && die
->child
!= NULL
18894 && (die
->tag
== DW_TAG_class_type
18895 || die
->tag
== DW_TAG_structure_type
18896 || die
->tag
== DW_TAG_union_type
))
18898 char *name
= guess_full_die_structure_name (die
, cu
);
18903 case DW_TAG_enumeration_type
:
18904 parent_type
= read_type_die (parent
, cu
);
18905 if (TYPE_DECLARED_CLASS (parent_type
))
18907 if (TYPE_TAG_NAME (parent_type
) != NULL
)
18908 return TYPE_TAG_NAME (parent_type
);
18911 /* Fall through. */
18913 return determine_prefix (parent
, cu
);
18917 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
18918 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
18919 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
18920 an obconcat, otherwise allocate storage for the result. The CU argument is
18921 used to determine the language and hence, the appropriate separator. */
18923 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
18926 typename_concat (struct obstack
*obs
, const char *prefix
, const char *suffix
,
18927 int physname
, struct dwarf2_cu
*cu
)
18929 const char *lead
= "";
18932 if (suffix
== NULL
|| suffix
[0] == '\0'
18933 || prefix
== NULL
|| prefix
[0] == '\0')
18935 else if (cu
->language
== language_java
)
18937 else if (cu
->language
== language_fortran
&& physname
)
18939 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
18940 DW_AT_MIPS_linkage_name is preferred and used instead. */
18948 if (prefix
== NULL
)
18950 if (suffix
== NULL
)
18956 = xmalloc (strlen (prefix
) + MAX_SEP_LEN
+ strlen (suffix
) + 1);
18958 strcpy (retval
, lead
);
18959 strcat (retval
, prefix
);
18960 strcat (retval
, sep
);
18961 strcat (retval
, suffix
);
18966 /* We have an obstack. */
18967 return obconcat (obs
, lead
, prefix
, sep
, suffix
, (char *) NULL
);
18971 /* Return sibling of die, NULL if no sibling. */
18973 static struct die_info
*
18974 sibling_die (struct die_info
*die
)
18976 return die
->sibling
;
18979 /* Get name of a die, return NULL if not found. */
18981 static const char *
18982 dwarf2_canonicalize_name (const char *name
, struct dwarf2_cu
*cu
,
18983 struct obstack
*obstack
)
18985 if (name
&& cu
->language
== language_cplus
)
18987 char *canon_name
= cp_canonicalize_string (name
);
18989 if (canon_name
!= NULL
)
18991 if (strcmp (canon_name
, name
) != 0)
18992 name
= obstack_copy0 (obstack
, canon_name
, strlen (canon_name
));
18993 xfree (canon_name
);
19000 /* Get name of a die, return NULL if not found. */
19002 static const char *
19003 dwarf2_name (struct die_info
*die
, struct dwarf2_cu
*cu
)
19005 struct attribute
*attr
;
19007 attr
= dwarf2_attr (die
, DW_AT_name
, cu
);
19008 if ((!attr
|| !DW_STRING (attr
))
19009 && die
->tag
!= DW_TAG_class_type
19010 && die
->tag
!= DW_TAG_interface_type
19011 && die
->tag
!= DW_TAG_structure_type
19012 && die
->tag
!= DW_TAG_union_type
)
19017 case DW_TAG_compile_unit
:
19018 case DW_TAG_partial_unit
:
19019 /* Compilation units have a DW_AT_name that is a filename, not
19020 a source language identifier. */
19021 case DW_TAG_enumeration_type
:
19022 case DW_TAG_enumerator
:
19023 /* These tags always have simple identifiers already; no need
19024 to canonicalize them. */
19025 return DW_STRING (attr
);
19027 case DW_TAG_subprogram
:
19028 /* Java constructors will all be named "<init>", so return
19029 the class name when we see this special case. */
19030 if (cu
->language
== language_java
19031 && DW_STRING (attr
) != NULL
19032 && strcmp (DW_STRING (attr
), "<init>") == 0)
19034 struct dwarf2_cu
*spec_cu
= cu
;
19035 struct die_info
*spec_die
;
19037 /* GCJ will output '<init>' for Java constructor names.
19038 For this special case, return the name of the parent class. */
19040 /* GCJ may output subprogram DIEs with AT_specification set.
19041 If so, use the name of the specified DIE. */
19042 spec_die
= die_specification (die
, &spec_cu
);
19043 if (spec_die
!= NULL
)
19044 return dwarf2_name (spec_die
, spec_cu
);
19049 if (die
->tag
== DW_TAG_class_type
)
19050 return dwarf2_name (die
, cu
);
19052 while (die
->tag
!= DW_TAG_compile_unit
19053 && die
->tag
!= DW_TAG_partial_unit
);
19057 case DW_TAG_class_type
:
19058 case DW_TAG_interface_type
:
19059 case DW_TAG_structure_type
:
19060 case DW_TAG_union_type
:
19061 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
19062 structures or unions. These were of the form "._%d" in GCC 4.1,
19063 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
19064 and GCC 4.4. We work around this problem by ignoring these. */
19065 if (attr
&& DW_STRING (attr
)
19066 && (strncmp (DW_STRING (attr
), "._", 2) == 0
19067 || strncmp (DW_STRING (attr
), "<anonymous", 10) == 0))
19070 /* GCC might emit a nameless typedef that has a linkage name. See
19071 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19072 if (!attr
|| DW_STRING (attr
) == NULL
)
19074 char *demangled
= NULL
;
19076 attr
= dwarf2_attr (die
, DW_AT_linkage_name
, cu
);
19078 attr
= dwarf2_attr (die
, DW_AT_MIPS_linkage_name
, cu
);
19080 if (attr
== NULL
|| DW_STRING (attr
) == NULL
)
19083 /* Avoid demangling DW_STRING (attr) the second time on a second
19084 call for the same DIE. */
19085 if (!DW_STRING_IS_CANONICAL (attr
))
19086 demangled
= gdb_demangle (DW_STRING (attr
), DMGL_TYPES
);
19092 /* FIXME: we already did this for the partial symbol... */
19094 = obstack_copy0 (&cu
->objfile
->per_bfd
->storage_obstack
,
19095 demangled
, strlen (demangled
));
19096 DW_STRING_IS_CANONICAL (attr
) = 1;
19099 /* Strip any leading namespaces/classes, keep only the base name.
19100 DW_AT_name for named DIEs does not contain the prefixes. */
19101 base
= strrchr (DW_STRING (attr
), ':');
19102 if (base
&& base
> DW_STRING (attr
) && base
[-1] == ':')
19105 return DW_STRING (attr
);
19114 if (!DW_STRING_IS_CANONICAL (attr
))
19117 = dwarf2_canonicalize_name (DW_STRING (attr
), cu
,
19118 &cu
->objfile
->per_bfd
->storage_obstack
);
19119 DW_STRING_IS_CANONICAL (attr
) = 1;
19121 return DW_STRING (attr
);
19124 /* Return the die that this die in an extension of, or NULL if there
19125 is none. *EXT_CU is the CU containing DIE on input, and the CU
19126 containing the return value on output. */
19128 static struct die_info
*
19129 dwarf2_extension (struct die_info
*die
, struct dwarf2_cu
**ext_cu
)
19131 struct attribute
*attr
;
19133 attr
= dwarf2_attr (die
, DW_AT_extension
, *ext_cu
);
19137 return follow_die_ref (die
, attr
, ext_cu
);
19140 /* Convert a DIE tag into its string name. */
19142 static const char *
19143 dwarf_tag_name (unsigned tag
)
19145 const char *name
= get_DW_TAG_name (tag
);
19148 return "DW_TAG_<unknown>";
19153 /* Convert a DWARF attribute code into its string name. */
19155 static const char *
19156 dwarf_attr_name (unsigned attr
)
19160 #ifdef MIPS /* collides with DW_AT_HP_block_index */
19161 if (attr
== DW_AT_MIPS_fde
)
19162 return "DW_AT_MIPS_fde";
19164 if (attr
== DW_AT_HP_block_index
)
19165 return "DW_AT_HP_block_index";
19168 name
= get_DW_AT_name (attr
);
19171 return "DW_AT_<unknown>";
19176 /* Convert a DWARF value form code into its string name. */
19178 static const char *
19179 dwarf_form_name (unsigned form
)
19181 const char *name
= get_DW_FORM_name (form
);
19184 return "DW_FORM_<unknown>";
19190 dwarf_bool_name (unsigned mybool
)
19198 /* Convert a DWARF type code into its string name. */
19200 static const char *
19201 dwarf_type_encoding_name (unsigned enc
)
19203 const char *name
= get_DW_ATE_name (enc
);
19206 return "DW_ATE_<unknown>";
19212 dump_die_shallow (struct ui_file
*f
, int indent
, struct die_info
*die
)
19216 print_spaces (indent
, f
);
19217 fprintf_unfiltered (f
, "Die: %s (abbrev %d, offset 0x%x)\n",
19218 dwarf_tag_name (die
->tag
), die
->abbrev
, die
->offset
.sect_off
);
19220 if (die
->parent
!= NULL
)
19222 print_spaces (indent
, f
);
19223 fprintf_unfiltered (f
, " parent at offset: 0x%x\n",
19224 die
->parent
->offset
.sect_off
);
19227 print_spaces (indent
, f
);
19228 fprintf_unfiltered (f
, " has children: %s\n",
19229 dwarf_bool_name (die
->child
!= NULL
));
19231 print_spaces (indent
, f
);
19232 fprintf_unfiltered (f
, " attributes:\n");
19234 for (i
= 0; i
< die
->num_attrs
; ++i
)
19236 print_spaces (indent
, f
);
19237 fprintf_unfiltered (f
, " %s (%s) ",
19238 dwarf_attr_name (die
->attrs
[i
].name
),
19239 dwarf_form_name (die
->attrs
[i
].form
));
19241 switch (die
->attrs
[i
].form
)
19244 case DW_FORM_GNU_addr_index
:
19245 fprintf_unfiltered (f
, "address: ");
19246 fputs_filtered (hex_string (DW_ADDR (&die
->attrs
[i
])), f
);
19248 case DW_FORM_block2
:
19249 case DW_FORM_block4
:
19250 case DW_FORM_block
:
19251 case DW_FORM_block1
:
19252 fprintf_unfiltered (f
, "block: size %s",
19253 pulongest (DW_BLOCK (&die
->attrs
[i
])->size
));
19255 case DW_FORM_exprloc
:
19256 fprintf_unfiltered (f
, "expression: size %s",
19257 pulongest (DW_BLOCK (&die
->attrs
[i
])->size
));
19259 case DW_FORM_ref_addr
:
19260 fprintf_unfiltered (f
, "ref address: ");
19261 fputs_filtered (hex_string (DW_UNSND (&die
->attrs
[i
])), f
);
19263 case DW_FORM_GNU_ref_alt
:
19264 fprintf_unfiltered (f
, "alt ref address: ");
19265 fputs_filtered (hex_string (DW_UNSND (&die
->attrs
[i
])), f
);
19271 case DW_FORM_ref_udata
:
19272 fprintf_unfiltered (f
, "constant ref: 0x%lx (adjusted)",
19273 (long) (DW_UNSND (&die
->attrs
[i
])));
19275 case DW_FORM_data1
:
19276 case DW_FORM_data2
:
19277 case DW_FORM_data4
:
19278 case DW_FORM_data8
:
19279 case DW_FORM_udata
:
19280 case DW_FORM_sdata
:
19281 fprintf_unfiltered (f
, "constant: %s",
19282 pulongest (DW_UNSND (&die
->attrs
[i
])));
19284 case DW_FORM_sec_offset
:
19285 fprintf_unfiltered (f
, "section offset: %s",
19286 pulongest (DW_UNSND (&die
->attrs
[i
])));
19288 case DW_FORM_ref_sig8
:
19289 fprintf_unfiltered (f
, "signature: %s",
19290 hex_string (DW_SIGNATURE (&die
->attrs
[i
])));
19292 case DW_FORM_string
:
19294 case DW_FORM_GNU_str_index
:
19295 case DW_FORM_GNU_strp_alt
:
19296 fprintf_unfiltered (f
, "string: \"%s\" (%s canonicalized)",
19297 DW_STRING (&die
->attrs
[i
])
19298 ? DW_STRING (&die
->attrs
[i
]) : "",
19299 DW_STRING_IS_CANONICAL (&die
->attrs
[i
]) ? "is" : "not");
19302 if (DW_UNSND (&die
->attrs
[i
]))
19303 fprintf_unfiltered (f
, "flag: TRUE");
19305 fprintf_unfiltered (f
, "flag: FALSE");
19307 case DW_FORM_flag_present
:
19308 fprintf_unfiltered (f
, "flag: TRUE");
19310 case DW_FORM_indirect
:
19311 /* The reader will have reduced the indirect form to
19312 the "base form" so this form should not occur. */
19313 fprintf_unfiltered (f
,
19314 "unexpected attribute form: DW_FORM_indirect");
19317 fprintf_unfiltered (f
, "unsupported attribute form: %d.",
19318 die
->attrs
[i
].form
);
19321 fprintf_unfiltered (f
, "\n");
19326 dump_die_for_error (struct die_info
*die
)
19328 dump_die_shallow (gdb_stderr
, 0, die
);
19332 dump_die_1 (struct ui_file
*f
, int level
, int max_level
, struct die_info
*die
)
19334 int indent
= level
* 4;
19336 gdb_assert (die
!= NULL
);
19338 if (level
>= max_level
)
19341 dump_die_shallow (f
, indent
, die
);
19343 if (die
->child
!= NULL
)
19345 print_spaces (indent
, f
);
19346 fprintf_unfiltered (f
, " Children:");
19347 if (level
+ 1 < max_level
)
19349 fprintf_unfiltered (f
, "\n");
19350 dump_die_1 (f
, level
+ 1, max_level
, die
->child
);
19354 fprintf_unfiltered (f
,
19355 " [not printed, max nesting level reached]\n");
19359 if (die
->sibling
!= NULL
&& level
> 0)
19361 dump_die_1 (f
, level
, max_level
, die
->sibling
);
19365 /* This is called from the pdie macro in gdbinit.in.
19366 It's not static so gcc will keep a copy callable from gdb. */
19369 dump_die (struct die_info
*die
, int max_level
)
19371 dump_die_1 (gdb_stdlog
, 0, max_level
, die
);
19375 store_in_ref_table (struct die_info
*die
, struct dwarf2_cu
*cu
)
19379 slot
= htab_find_slot_with_hash (cu
->die_hash
, die
, die
->offset
.sect_off
,
19385 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
19389 dwarf2_get_ref_die_offset (const struct attribute
*attr
)
19391 sect_offset retval
= { DW_UNSND (attr
) };
19393 if (attr_form_is_ref (attr
))
19396 retval
.sect_off
= 0;
19397 complaint (&symfile_complaints
,
19398 _("unsupported die ref attribute form: '%s'"),
19399 dwarf_form_name (attr
->form
));
19403 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
19404 * the value held by the attribute is not constant. */
19407 dwarf2_get_attr_constant_value (const struct attribute
*attr
, int default_value
)
19409 if (attr
->form
== DW_FORM_sdata
)
19410 return DW_SND (attr
);
19411 else if (attr
->form
== DW_FORM_udata
19412 || attr
->form
== DW_FORM_data1
19413 || attr
->form
== DW_FORM_data2
19414 || attr
->form
== DW_FORM_data4
19415 || attr
->form
== DW_FORM_data8
)
19416 return DW_UNSND (attr
);
19419 complaint (&symfile_complaints
,
19420 _("Attribute value is not a constant (%s)"),
19421 dwarf_form_name (attr
->form
));
19422 return default_value
;
19426 /* Follow reference or signature attribute ATTR of SRC_DIE.
19427 On entry *REF_CU is the CU of SRC_DIE.
19428 On exit *REF_CU is the CU of the result. */
19430 static struct die_info
*
19431 follow_die_ref_or_sig (struct die_info
*src_die
, const struct attribute
*attr
,
19432 struct dwarf2_cu
**ref_cu
)
19434 struct die_info
*die
;
19436 if (attr_form_is_ref (attr
))
19437 die
= follow_die_ref (src_die
, attr
, ref_cu
);
19438 else if (attr
->form
== DW_FORM_ref_sig8
)
19439 die
= follow_die_sig (src_die
, attr
, ref_cu
);
19442 dump_die_for_error (src_die
);
19443 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
19444 objfile_name ((*ref_cu
)->objfile
));
19450 /* Follow reference OFFSET.
19451 On entry *REF_CU is the CU of the source die referencing OFFSET.
19452 On exit *REF_CU is the CU of the result.
19453 Returns NULL if OFFSET is invalid. */
19455 static struct die_info
*
19456 follow_die_offset (sect_offset offset
, int offset_in_dwz
,
19457 struct dwarf2_cu
**ref_cu
)
19459 struct die_info temp_die
;
19460 struct dwarf2_cu
*target_cu
, *cu
= *ref_cu
;
19462 gdb_assert (cu
->per_cu
!= NULL
);
19466 if (cu
->per_cu
->is_debug_types
)
19468 /* .debug_types CUs cannot reference anything outside their CU.
19469 If they need to, they have to reference a signatured type via
19470 DW_FORM_ref_sig8. */
19471 if (! offset_in_cu_p (&cu
->header
, offset
))
19474 else if (offset_in_dwz
!= cu
->per_cu
->is_dwz
19475 || ! offset_in_cu_p (&cu
->header
, offset
))
19477 struct dwarf2_per_cu_data
*per_cu
;
19479 per_cu
= dwarf2_find_containing_comp_unit (offset
, offset_in_dwz
,
19482 /* If necessary, add it to the queue and load its DIEs. */
19483 if (maybe_queue_comp_unit (cu
, per_cu
, cu
->language
))
19484 load_full_comp_unit (per_cu
, cu
->language
);
19486 target_cu
= per_cu
->cu
;
19488 else if (cu
->dies
== NULL
)
19490 /* We're loading full DIEs during partial symbol reading. */
19491 gdb_assert (dwarf2_per_objfile
->reading_partial_symbols
);
19492 load_full_comp_unit (cu
->per_cu
, language_minimal
);
19495 *ref_cu
= target_cu
;
19496 temp_die
.offset
= offset
;
19497 return htab_find_with_hash (target_cu
->die_hash
, &temp_die
, offset
.sect_off
);
19500 /* Follow reference attribute ATTR of SRC_DIE.
19501 On entry *REF_CU is the CU of SRC_DIE.
19502 On exit *REF_CU is the CU of the result. */
19504 static struct die_info
*
19505 follow_die_ref (struct die_info
*src_die
, const struct attribute
*attr
,
19506 struct dwarf2_cu
**ref_cu
)
19508 sect_offset offset
= dwarf2_get_ref_die_offset (attr
);
19509 struct dwarf2_cu
*cu
= *ref_cu
;
19510 struct die_info
*die
;
19512 die
= follow_die_offset (offset
,
19513 (attr
->form
== DW_FORM_GNU_ref_alt
19514 || cu
->per_cu
->is_dwz
),
19517 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
19518 "at 0x%x [in module %s]"),
19519 offset
.sect_off
, src_die
->offset
.sect_off
,
19520 objfile_name (cu
->objfile
));
19525 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
19526 Returned value is intended for DW_OP_call*. Returned
19527 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
19529 struct dwarf2_locexpr_baton
19530 dwarf2_fetch_die_loc_sect_off (sect_offset offset
,
19531 struct dwarf2_per_cu_data
*per_cu
,
19532 CORE_ADDR (*get_frame_pc
) (void *baton
),
19535 struct dwarf2_cu
*cu
;
19536 struct die_info
*die
;
19537 struct attribute
*attr
;
19538 struct dwarf2_locexpr_baton retval
;
19540 dw2_setup (per_cu
->objfile
);
19542 if (per_cu
->cu
== NULL
)
19546 die
= follow_die_offset (offset
, per_cu
->is_dwz
, &cu
);
19548 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
19549 offset
.sect_off
, objfile_name (per_cu
->objfile
));
19551 attr
= dwarf2_attr (die
, DW_AT_location
, cu
);
19554 /* DWARF: "If there is no such attribute, then there is no effect.".
19555 DATA is ignored if SIZE is 0. */
19557 retval
.data
= NULL
;
19560 else if (attr_form_is_section_offset (attr
))
19562 struct dwarf2_loclist_baton loclist_baton
;
19563 CORE_ADDR pc
= (*get_frame_pc
) (baton
);
19566 fill_in_loclist_baton (cu
, &loclist_baton
, attr
);
19568 retval
.data
= dwarf2_find_location_expression (&loclist_baton
,
19570 retval
.size
= size
;
19574 if (!attr_form_is_block (attr
))
19575 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
19576 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
19577 offset
.sect_off
, objfile_name (per_cu
->objfile
));
19579 retval
.data
= DW_BLOCK (attr
)->data
;
19580 retval
.size
= DW_BLOCK (attr
)->size
;
19582 retval
.per_cu
= cu
->per_cu
;
19584 age_cached_comp_units ();
19589 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
19592 struct dwarf2_locexpr_baton
19593 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu
,
19594 struct dwarf2_per_cu_data
*per_cu
,
19595 CORE_ADDR (*get_frame_pc
) (void *baton
),
19598 sect_offset offset
= { per_cu
->offset
.sect_off
+ offset_in_cu
.cu_off
};
19600 return dwarf2_fetch_die_loc_sect_off (offset
, per_cu
, get_frame_pc
, baton
);
19603 /* Write a constant of a given type as target-ordered bytes into
19606 static const gdb_byte
*
19607 write_constant_as_bytes (struct obstack
*obstack
,
19608 enum bfd_endian byte_order
,
19615 *len
= TYPE_LENGTH (type
);
19616 result
= obstack_alloc (obstack
, *len
);
19617 store_unsigned_integer (result
, *len
, byte_order
, value
);
19622 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
19623 pointer to the constant bytes and set LEN to the length of the
19624 data. If memory is needed, allocate it on OBSTACK. If the DIE
19625 does not have a DW_AT_const_value, return NULL. */
19628 dwarf2_fetch_constant_bytes (sect_offset offset
,
19629 struct dwarf2_per_cu_data
*per_cu
,
19630 struct obstack
*obstack
,
19633 struct dwarf2_cu
*cu
;
19634 struct die_info
*die
;
19635 struct attribute
*attr
;
19636 const gdb_byte
*result
= NULL
;
19639 enum bfd_endian byte_order
;
19641 dw2_setup (per_cu
->objfile
);
19643 if (per_cu
->cu
== NULL
)
19647 die
= follow_die_offset (offset
, per_cu
->is_dwz
, &cu
);
19649 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
19650 offset
.sect_off
, objfile_name (per_cu
->objfile
));
19653 attr
= dwarf2_attr (die
, DW_AT_const_value
, cu
);
19657 byte_order
= (bfd_big_endian (per_cu
->objfile
->obfd
)
19658 ? BFD_ENDIAN_BIG
: BFD_ENDIAN_LITTLE
);
19660 switch (attr
->form
)
19663 case DW_FORM_GNU_addr_index
:
19667 *len
= cu
->header
.addr_size
;
19668 tem
= obstack_alloc (obstack
, *len
);
19669 store_unsigned_integer (tem
, *len
, byte_order
, DW_ADDR (attr
));
19673 case DW_FORM_string
:
19675 case DW_FORM_GNU_str_index
:
19676 case DW_FORM_GNU_strp_alt
:
19677 /* DW_STRING is already allocated on the objfile obstack, point
19679 result
= (const gdb_byte
*) DW_STRING (attr
);
19680 *len
= strlen (DW_STRING (attr
));
19682 case DW_FORM_block1
:
19683 case DW_FORM_block2
:
19684 case DW_FORM_block4
:
19685 case DW_FORM_block
:
19686 case DW_FORM_exprloc
:
19687 result
= DW_BLOCK (attr
)->data
;
19688 *len
= DW_BLOCK (attr
)->size
;
19691 /* The DW_AT_const_value attributes are supposed to carry the
19692 symbol's value "represented as it would be on the target
19693 architecture." By the time we get here, it's already been
19694 converted to host endianness, so we just need to sign- or
19695 zero-extend it as appropriate. */
19696 case DW_FORM_data1
:
19697 type
= die_type (die
, cu
);
19698 result
= dwarf2_const_value_data (attr
, obstack
, cu
, &value
, 8);
19699 if (result
== NULL
)
19700 result
= write_constant_as_bytes (obstack
, byte_order
,
19703 case DW_FORM_data2
:
19704 type
= die_type (die
, cu
);
19705 result
= dwarf2_const_value_data (attr
, obstack
, cu
, &value
, 16);
19706 if (result
== NULL
)
19707 result
= write_constant_as_bytes (obstack
, byte_order
,
19710 case DW_FORM_data4
:
19711 type
= die_type (die
, cu
);
19712 result
= dwarf2_const_value_data (attr
, obstack
, cu
, &value
, 32);
19713 if (result
== NULL
)
19714 result
= write_constant_as_bytes (obstack
, byte_order
,
19717 case DW_FORM_data8
:
19718 type
= die_type (die
, cu
);
19719 result
= dwarf2_const_value_data (attr
, obstack
, cu
, &value
, 64);
19720 if (result
== NULL
)
19721 result
= write_constant_as_bytes (obstack
, byte_order
,
19725 case DW_FORM_sdata
:
19726 type
= die_type (die
, cu
);
19727 result
= write_constant_as_bytes (obstack
, byte_order
,
19728 type
, DW_SND (attr
), len
);
19731 case DW_FORM_udata
:
19732 type
= die_type (die
, cu
);
19733 result
= write_constant_as_bytes (obstack
, byte_order
,
19734 type
, DW_UNSND (attr
), len
);
19738 complaint (&symfile_complaints
,
19739 _("unsupported const value attribute form: '%s'"),
19740 dwarf_form_name (attr
->form
));
19747 /* Return the type of the DIE at DIE_OFFSET in the CU named by
19751 dwarf2_get_die_type (cu_offset die_offset
,
19752 struct dwarf2_per_cu_data
*per_cu
)
19754 sect_offset die_offset_sect
;
19756 dw2_setup (per_cu
->objfile
);
19758 die_offset_sect
.sect_off
= per_cu
->offset
.sect_off
+ die_offset
.cu_off
;
19759 return get_die_type_at_offset (die_offset_sect
, per_cu
);
19762 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
19763 On entry *REF_CU is the CU of SRC_DIE.
19764 On exit *REF_CU is the CU of the result.
19765 Returns NULL if the referenced DIE isn't found. */
19767 static struct die_info
*
19768 follow_die_sig_1 (struct die_info
*src_die
, struct signatured_type
*sig_type
,
19769 struct dwarf2_cu
**ref_cu
)
19771 struct objfile
*objfile
= (*ref_cu
)->objfile
;
19772 struct die_info temp_die
;
19773 struct dwarf2_cu
*sig_cu
;
19774 struct die_info
*die
;
19776 /* While it might be nice to assert sig_type->type == NULL here,
19777 we can get here for DW_AT_imported_declaration where we need
19778 the DIE not the type. */
19780 /* If necessary, add it to the queue and load its DIEs. */
19782 if (maybe_queue_comp_unit (*ref_cu
, &sig_type
->per_cu
, language_minimal
))
19783 read_signatured_type (sig_type
);
19785 sig_cu
= sig_type
->per_cu
.cu
;
19786 gdb_assert (sig_cu
!= NULL
);
19787 gdb_assert (sig_type
->type_offset_in_section
.sect_off
!= 0);
19788 temp_die
.offset
= sig_type
->type_offset_in_section
;
19789 die
= htab_find_with_hash (sig_cu
->die_hash
, &temp_die
,
19790 temp_die
.offset
.sect_off
);
19793 /* For .gdb_index version 7 keep track of included TUs.
19794 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
19795 if (dwarf2_per_objfile
->index_table
!= NULL
19796 && dwarf2_per_objfile
->index_table
->version
<= 7)
19798 VEC_safe_push (dwarf2_per_cu_ptr
,
19799 (*ref_cu
)->per_cu
->imported_symtabs
,
19810 /* Follow signatured type referenced by ATTR in SRC_DIE.
19811 On entry *REF_CU is the CU of SRC_DIE.
19812 On exit *REF_CU is the CU of the result.
19813 The result is the DIE of the type.
19814 If the referenced type cannot be found an error is thrown. */
19816 static struct die_info
*
19817 follow_die_sig (struct die_info
*src_die
, const struct attribute
*attr
,
19818 struct dwarf2_cu
**ref_cu
)
19820 ULONGEST signature
= DW_SIGNATURE (attr
);
19821 struct signatured_type
*sig_type
;
19822 struct die_info
*die
;
19824 gdb_assert (attr
->form
== DW_FORM_ref_sig8
);
19826 sig_type
= lookup_signatured_type (*ref_cu
, signature
);
19827 /* sig_type will be NULL if the signatured type is missing from
19829 if (sig_type
== NULL
)
19831 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
19832 " from DIE at 0x%x [in module %s]"),
19833 hex_string (signature
), src_die
->offset
.sect_off
,
19834 objfile_name ((*ref_cu
)->objfile
));
19837 die
= follow_die_sig_1 (src_die
, sig_type
, ref_cu
);
19840 dump_die_for_error (src_die
);
19841 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
19842 " from DIE at 0x%x [in module %s]"),
19843 hex_string (signature
), src_die
->offset
.sect_off
,
19844 objfile_name ((*ref_cu
)->objfile
));
19850 /* Get the type specified by SIGNATURE referenced in DIE/CU,
19851 reading in and processing the type unit if necessary. */
19853 static struct type
*
19854 get_signatured_type (struct die_info
*die
, ULONGEST signature
,
19855 struct dwarf2_cu
*cu
)
19857 struct signatured_type
*sig_type
;
19858 struct dwarf2_cu
*type_cu
;
19859 struct die_info
*type_die
;
19862 sig_type
= lookup_signatured_type (cu
, signature
);
19863 /* sig_type will be NULL if the signatured type is missing from
19865 if (sig_type
== NULL
)
19867 complaint (&symfile_complaints
,
19868 _("Dwarf Error: Cannot find signatured DIE %s referenced"
19869 " from DIE at 0x%x [in module %s]"),
19870 hex_string (signature
), die
->offset
.sect_off
,
19871 objfile_name (dwarf2_per_objfile
->objfile
));
19872 return build_error_marker_type (cu
, die
);
19875 /* If we already know the type we're done. */
19876 if (sig_type
->type
!= NULL
)
19877 return sig_type
->type
;
19880 type_die
= follow_die_sig_1 (die
, sig_type
, &type_cu
);
19881 if (type_die
!= NULL
)
19883 /* N.B. We need to call get_die_type to ensure only one type for this DIE
19884 is created. This is important, for example, because for c++ classes
19885 we need TYPE_NAME set which is only done by new_symbol. Blech. */
19886 type
= read_type_die (type_die
, type_cu
);
19889 complaint (&symfile_complaints
,
19890 _("Dwarf Error: Cannot build signatured type %s"
19891 " referenced from DIE at 0x%x [in module %s]"),
19892 hex_string (signature
), die
->offset
.sect_off
,
19893 objfile_name (dwarf2_per_objfile
->objfile
));
19894 type
= build_error_marker_type (cu
, die
);
19899 complaint (&symfile_complaints
,
19900 _("Dwarf Error: Problem reading signatured DIE %s referenced"
19901 " from DIE at 0x%x [in module %s]"),
19902 hex_string (signature
), die
->offset
.sect_off
,
19903 objfile_name (dwarf2_per_objfile
->objfile
));
19904 type
= build_error_marker_type (cu
, die
);
19906 sig_type
->type
= type
;
19911 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
19912 reading in and processing the type unit if necessary. */
19914 static struct type
*
19915 get_DW_AT_signature_type (struct die_info
*die
, const struct attribute
*attr
,
19916 struct dwarf2_cu
*cu
) /* ARI: editCase function */
19918 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
19919 if (attr_form_is_ref (attr
))
19921 struct dwarf2_cu
*type_cu
= cu
;
19922 struct die_info
*type_die
= follow_die_ref (die
, attr
, &type_cu
);
19924 return read_type_die (type_die
, type_cu
);
19926 else if (attr
->form
== DW_FORM_ref_sig8
)
19928 return get_signatured_type (die
, DW_SIGNATURE (attr
), cu
);
19932 complaint (&symfile_complaints
,
19933 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
19934 " at 0x%x [in module %s]"),
19935 dwarf_form_name (attr
->form
), die
->offset
.sect_off
,
19936 objfile_name (dwarf2_per_objfile
->objfile
));
19937 return build_error_marker_type (cu
, die
);
19941 /* Load the DIEs associated with type unit PER_CU into memory. */
19944 load_full_type_unit (struct dwarf2_per_cu_data
*per_cu
)
19946 struct signatured_type
*sig_type
;
19948 /* Caller is responsible for ensuring type_unit_groups don't get here. */
19949 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu
));
19951 /* We have the per_cu, but we need the signatured_type.
19952 Fortunately this is an easy translation. */
19953 gdb_assert (per_cu
->is_debug_types
);
19954 sig_type
= (struct signatured_type
*) per_cu
;
19956 gdb_assert (per_cu
->cu
== NULL
);
19958 read_signatured_type (sig_type
);
19960 gdb_assert (per_cu
->cu
!= NULL
);
19963 /* die_reader_func for read_signatured_type.
19964 This is identical to load_full_comp_unit_reader,
19965 but is kept separate for now. */
19968 read_signatured_type_reader (const struct die_reader_specs
*reader
,
19969 const gdb_byte
*info_ptr
,
19970 struct die_info
*comp_unit_die
,
19974 struct dwarf2_cu
*cu
= reader
->cu
;
19976 gdb_assert (cu
->die_hash
== NULL
);
19978 htab_create_alloc_ex (cu
->header
.length
/ 12,
19982 &cu
->comp_unit_obstack
,
19983 hashtab_obstack_allocate
,
19984 dummy_obstack_deallocate
);
19987 comp_unit_die
->child
= read_die_and_siblings (reader
, info_ptr
,
19988 &info_ptr
, comp_unit_die
);
19989 cu
->dies
= comp_unit_die
;
19990 /* comp_unit_die is not stored in die_hash, no need. */
19992 /* We try not to read any attributes in this function, because not
19993 all CUs needed for references have been loaded yet, and symbol
19994 table processing isn't initialized. But we have to set the CU language,
19995 or we won't be able to build types correctly.
19996 Similarly, if we do not read the producer, we can not apply
19997 producer-specific interpretation. */
19998 prepare_one_comp_unit (cu
, cu
->dies
, language_minimal
);
20001 /* Read in a signatured type and build its CU and DIEs.
20002 If the type is a stub for the real type in a DWO file,
20003 read in the real type from the DWO file as well. */
20006 read_signatured_type (struct signatured_type
*sig_type
)
20008 struct dwarf2_per_cu_data
*per_cu
= &sig_type
->per_cu
;
20010 gdb_assert (per_cu
->is_debug_types
);
20011 gdb_assert (per_cu
->cu
== NULL
);
20013 init_cutu_and_read_dies (per_cu
, NULL
, 0, 1,
20014 read_signatured_type_reader
, NULL
);
20015 sig_type
->per_cu
.tu_read
= 1;
20018 /* Decode simple location descriptions.
20019 Given a pointer to a dwarf block that defines a location, compute
20020 the location and return the value.
20022 NOTE drow/2003-11-18: This function is called in two situations
20023 now: for the address of static or global variables (partial symbols
20024 only) and for offsets into structures which are expected to be
20025 (more or less) constant. The partial symbol case should go away,
20026 and only the constant case should remain. That will let this
20027 function complain more accurately. A few special modes are allowed
20028 without complaint for global variables (for instance, global
20029 register values and thread-local values).
20031 A location description containing no operations indicates that the
20032 object is optimized out. The return value is 0 for that case.
20033 FIXME drow/2003-11-16: No callers check for this case any more; soon all
20034 callers will only want a very basic result and this can become a
20037 Note that stack[0] is unused except as a default error return. */
20040 decode_locdesc (struct dwarf_block
*blk
, struct dwarf2_cu
*cu
)
20042 struct objfile
*objfile
= cu
->objfile
;
20044 size_t size
= blk
->size
;
20045 const gdb_byte
*data
= blk
->data
;
20046 CORE_ADDR stack
[64];
20048 unsigned int bytes_read
, unsnd
;
20054 stack
[++stacki
] = 0;
20093 stack
[++stacki
] = op
- DW_OP_lit0
;
20128 stack
[++stacki
] = op
- DW_OP_reg0
;
20130 dwarf2_complex_location_expr_complaint ();
20134 unsnd
= read_unsigned_leb128 (NULL
, (data
+ i
), &bytes_read
);
20136 stack
[++stacki
] = unsnd
;
20138 dwarf2_complex_location_expr_complaint ();
20142 stack
[++stacki
] = read_address (objfile
->obfd
, &data
[i
],
20147 case DW_OP_const1u
:
20148 stack
[++stacki
] = read_1_byte (objfile
->obfd
, &data
[i
]);
20152 case DW_OP_const1s
:
20153 stack
[++stacki
] = read_1_signed_byte (objfile
->obfd
, &data
[i
]);
20157 case DW_OP_const2u
:
20158 stack
[++stacki
] = read_2_bytes (objfile
->obfd
, &data
[i
]);
20162 case DW_OP_const2s
:
20163 stack
[++stacki
] = read_2_signed_bytes (objfile
->obfd
, &data
[i
]);
20167 case DW_OP_const4u
:
20168 stack
[++stacki
] = read_4_bytes (objfile
->obfd
, &data
[i
]);
20172 case DW_OP_const4s
:
20173 stack
[++stacki
] = read_4_signed_bytes (objfile
->obfd
, &data
[i
]);
20177 case DW_OP_const8u
:
20178 stack
[++stacki
] = read_8_bytes (objfile
->obfd
, &data
[i
]);
20183 stack
[++stacki
] = read_unsigned_leb128 (NULL
, (data
+ i
),
20189 stack
[++stacki
] = read_signed_leb128 (NULL
, (data
+ i
), &bytes_read
);
20194 stack
[stacki
+ 1] = stack
[stacki
];
20199 stack
[stacki
- 1] += stack
[stacki
];
20203 case DW_OP_plus_uconst
:
20204 stack
[stacki
] += read_unsigned_leb128 (NULL
, (data
+ i
),
20210 stack
[stacki
- 1] -= stack
[stacki
];
20215 /* If we're not the last op, then we definitely can't encode
20216 this using GDB's address_class enum. This is valid for partial
20217 global symbols, although the variable's address will be bogus
20220 dwarf2_complex_location_expr_complaint ();
20223 case DW_OP_GNU_push_tls_address
:
20224 /* The top of the stack has the offset from the beginning
20225 of the thread control block at which the variable is located. */
20226 /* Nothing should follow this operator, so the top of stack would
20228 /* This is valid for partial global symbols, but the variable's
20229 address will be bogus in the psymtab. Make it always at least
20230 non-zero to not look as a variable garbage collected by linker
20231 which have DW_OP_addr 0. */
20233 dwarf2_complex_location_expr_complaint ();
20237 case DW_OP_GNU_uninit
:
20240 case DW_OP_GNU_addr_index
:
20241 case DW_OP_GNU_const_index
:
20242 stack
[++stacki
] = read_addr_index_from_leb128 (cu
, &data
[i
],
20249 const char *name
= get_DW_OP_name (op
);
20252 complaint (&symfile_complaints
, _("unsupported stack op: '%s'"),
20255 complaint (&symfile_complaints
, _("unsupported stack op: '%02x'"),
20259 return (stack
[stacki
]);
20262 /* Enforce maximum stack depth of SIZE-1 to avoid writing
20263 outside of the allocated space. Also enforce minimum>0. */
20264 if (stacki
>= ARRAY_SIZE (stack
) - 1)
20266 complaint (&symfile_complaints
,
20267 _("location description stack overflow"));
20273 complaint (&symfile_complaints
,
20274 _("location description stack underflow"));
20278 return (stack
[stacki
]);
20281 /* memory allocation interface */
20283 static struct dwarf_block
*
20284 dwarf_alloc_block (struct dwarf2_cu
*cu
)
20286 struct dwarf_block
*blk
;
20288 blk
= (struct dwarf_block
*)
20289 obstack_alloc (&cu
->comp_unit_obstack
, sizeof (struct dwarf_block
));
20293 static struct die_info
*
20294 dwarf_alloc_die (struct dwarf2_cu
*cu
, int num_attrs
)
20296 struct die_info
*die
;
20297 size_t size
= sizeof (struct die_info
);
20300 size
+= (num_attrs
- 1) * sizeof (struct attribute
);
20302 die
= (struct die_info
*) obstack_alloc (&cu
->comp_unit_obstack
, size
);
20303 memset (die
, 0, sizeof (struct die_info
));
20308 /* Macro support. */
20310 /* Return file name relative to the compilation directory of file number I in
20311 *LH's file name table. The result is allocated using xmalloc; the caller is
20312 responsible for freeing it. */
20315 file_file_name (int file
, struct line_header
*lh
)
20317 /* Is the file number a valid index into the line header's file name
20318 table? Remember that file numbers start with one, not zero. */
20319 if (1 <= file
&& file
<= lh
->num_file_names
)
20321 struct file_entry
*fe
= &lh
->file_names
[file
- 1];
20323 if (IS_ABSOLUTE_PATH (fe
->name
) || fe
->dir_index
== 0)
20324 return xstrdup (fe
->name
);
20325 return concat (lh
->include_dirs
[fe
->dir_index
- 1], SLASH_STRING
,
20330 /* The compiler produced a bogus file number. We can at least
20331 record the macro definitions made in the file, even if we
20332 won't be able to find the file by name. */
20333 char fake_name
[80];
20335 xsnprintf (fake_name
, sizeof (fake_name
),
20336 "<bad macro file number %d>", file
);
20338 complaint (&symfile_complaints
,
20339 _("bad file number in macro information (%d)"),
20342 return xstrdup (fake_name
);
20346 /* Return the full name of file number I in *LH's file name table.
20347 Use COMP_DIR as the name of the current directory of the
20348 compilation. The result is allocated using xmalloc; the caller is
20349 responsible for freeing it. */
20351 file_full_name (int file
, struct line_header
*lh
, const char *comp_dir
)
20353 /* Is the file number a valid index into the line header's file name
20354 table? Remember that file numbers start with one, not zero. */
20355 if (1 <= file
&& file
<= lh
->num_file_names
)
20357 char *relative
= file_file_name (file
, lh
);
20359 if (IS_ABSOLUTE_PATH (relative
) || comp_dir
== NULL
)
20361 return reconcat (relative
, comp_dir
, SLASH_STRING
, relative
, NULL
);
20364 return file_file_name (file
, lh
);
20368 static struct macro_source_file
*
20369 macro_start_file (int file
, int line
,
20370 struct macro_source_file
*current_file
,
20371 struct line_header
*lh
)
20373 /* File name relative to the compilation directory of this source file. */
20374 char *file_name
= file_file_name (file
, lh
);
20376 if (! current_file
)
20378 /* Note: We don't create a macro table for this compilation unit
20379 at all until we actually get a filename. */
20380 struct macro_table
*macro_table
= get_macro_table ();
20382 /* If we have no current file, then this must be the start_file
20383 directive for the compilation unit's main source file. */
20384 current_file
= macro_set_main (macro_table
, file_name
);
20385 macro_define_special (macro_table
);
20388 current_file
= macro_include (current_file
, line
, file_name
);
20392 return current_file
;
20396 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
20397 followed by a null byte. */
20399 copy_string (const char *buf
, int len
)
20401 char *s
= xmalloc (len
+ 1);
20403 memcpy (s
, buf
, len
);
20409 static const char *
20410 consume_improper_spaces (const char *p
, const char *body
)
20414 complaint (&symfile_complaints
,
20415 _("macro definition contains spaces "
20416 "in formal argument list:\n`%s'"),
20428 parse_macro_definition (struct macro_source_file
*file
, int line
,
20433 /* The body string takes one of two forms. For object-like macro
20434 definitions, it should be:
20436 <macro name> " " <definition>
20438 For function-like macro definitions, it should be:
20440 <macro name> "() " <definition>
20442 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
20444 Spaces may appear only where explicitly indicated, and in the
20447 The Dwarf 2 spec says that an object-like macro's name is always
20448 followed by a space, but versions of GCC around March 2002 omit
20449 the space when the macro's definition is the empty string.
20451 The Dwarf 2 spec says that there should be no spaces between the
20452 formal arguments in a function-like macro's formal argument list,
20453 but versions of GCC around March 2002 include spaces after the
20457 /* Find the extent of the macro name. The macro name is terminated
20458 by either a space or null character (for an object-like macro) or
20459 an opening paren (for a function-like macro). */
20460 for (p
= body
; *p
; p
++)
20461 if (*p
== ' ' || *p
== '(')
20464 if (*p
== ' ' || *p
== '\0')
20466 /* It's an object-like macro. */
20467 int name_len
= p
- body
;
20468 char *name
= copy_string (body
, name_len
);
20469 const char *replacement
;
20472 replacement
= body
+ name_len
+ 1;
20475 dwarf2_macro_malformed_definition_complaint (body
);
20476 replacement
= body
+ name_len
;
20479 macro_define_object (file
, line
, name
, replacement
);
20483 else if (*p
== '(')
20485 /* It's a function-like macro. */
20486 char *name
= copy_string (body
, p
- body
);
20489 char **argv
= xmalloc (argv_size
* sizeof (*argv
));
20493 p
= consume_improper_spaces (p
, body
);
20495 /* Parse the formal argument list. */
20496 while (*p
&& *p
!= ')')
20498 /* Find the extent of the current argument name. */
20499 const char *arg_start
= p
;
20501 while (*p
&& *p
!= ',' && *p
!= ')' && *p
!= ' ')
20504 if (! *p
|| p
== arg_start
)
20505 dwarf2_macro_malformed_definition_complaint (body
);
20508 /* Make sure argv has room for the new argument. */
20509 if (argc
>= argv_size
)
20512 argv
= xrealloc (argv
, argv_size
* sizeof (*argv
));
20515 argv
[argc
++] = copy_string (arg_start
, p
- arg_start
);
20518 p
= consume_improper_spaces (p
, body
);
20520 /* Consume the comma, if present. */
20525 p
= consume_improper_spaces (p
, body
);
20534 /* Perfectly formed definition, no complaints. */
20535 macro_define_function (file
, line
, name
,
20536 argc
, (const char **) argv
,
20538 else if (*p
== '\0')
20540 /* Complain, but do define it. */
20541 dwarf2_macro_malformed_definition_complaint (body
);
20542 macro_define_function (file
, line
, name
,
20543 argc
, (const char **) argv
,
20547 /* Just complain. */
20548 dwarf2_macro_malformed_definition_complaint (body
);
20551 /* Just complain. */
20552 dwarf2_macro_malformed_definition_complaint (body
);
20558 for (i
= 0; i
< argc
; i
++)
20564 dwarf2_macro_malformed_definition_complaint (body
);
20567 /* Skip some bytes from BYTES according to the form given in FORM.
20568 Returns the new pointer. */
20570 static const gdb_byte
*
20571 skip_form_bytes (bfd
*abfd
, const gdb_byte
*bytes
, const gdb_byte
*buffer_end
,
20572 enum dwarf_form form
,
20573 unsigned int offset_size
,
20574 struct dwarf2_section_info
*section
)
20576 unsigned int bytes_read
;
20580 case DW_FORM_data1
:
20585 case DW_FORM_data2
:
20589 case DW_FORM_data4
:
20593 case DW_FORM_data8
:
20597 case DW_FORM_string
:
20598 read_direct_string (abfd
, bytes
, &bytes_read
);
20599 bytes
+= bytes_read
;
20602 case DW_FORM_sec_offset
:
20604 case DW_FORM_GNU_strp_alt
:
20605 bytes
+= offset_size
;
20608 case DW_FORM_block
:
20609 bytes
+= read_unsigned_leb128 (abfd
, bytes
, &bytes_read
);
20610 bytes
+= bytes_read
;
20613 case DW_FORM_block1
:
20614 bytes
+= 1 + read_1_byte (abfd
, bytes
);
20616 case DW_FORM_block2
:
20617 bytes
+= 2 + read_2_bytes (abfd
, bytes
);
20619 case DW_FORM_block4
:
20620 bytes
+= 4 + read_4_bytes (abfd
, bytes
);
20623 case DW_FORM_sdata
:
20624 case DW_FORM_udata
:
20625 case DW_FORM_GNU_addr_index
:
20626 case DW_FORM_GNU_str_index
:
20627 bytes
= gdb_skip_leb128 (bytes
, buffer_end
);
20630 dwarf2_section_buffer_overflow_complaint (section
);
20638 complaint (&symfile_complaints
,
20639 _("invalid form 0x%x in `%s'"),
20640 form
, get_section_name (section
));
20648 /* A helper for dwarf_decode_macros that handles skipping an unknown
20649 opcode. Returns an updated pointer to the macro data buffer; or,
20650 on error, issues a complaint and returns NULL. */
20652 static const gdb_byte
*
20653 skip_unknown_opcode (unsigned int opcode
,
20654 const gdb_byte
**opcode_definitions
,
20655 const gdb_byte
*mac_ptr
, const gdb_byte
*mac_end
,
20657 unsigned int offset_size
,
20658 struct dwarf2_section_info
*section
)
20660 unsigned int bytes_read
, i
;
20662 const gdb_byte
*defn
;
20664 if (opcode_definitions
[opcode
] == NULL
)
20666 complaint (&symfile_complaints
,
20667 _("unrecognized DW_MACFINO opcode 0x%x"),
20672 defn
= opcode_definitions
[opcode
];
20673 arg
= read_unsigned_leb128 (abfd
, defn
, &bytes_read
);
20674 defn
+= bytes_read
;
20676 for (i
= 0; i
< arg
; ++i
)
20678 mac_ptr
= skip_form_bytes (abfd
, mac_ptr
, mac_end
, defn
[i
], offset_size
,
20680 if (mac_ptr
== NULL
)
20682 /* skip_form_bytes already issued the complaint. */
20690 /* A helper function which parses the header of a macro section.
20691 If the macro section is the extended (for now called "GNU") type,
20692 then this updates *OFFSET_SIZE. Returns a pointer to just after
20693 the header, or issues a complaint and returns NULL on error. */
20695 static const gdb_byte
*
20696 dwarf_parse_macro_header (const gdb_byte
**opcode_definitions
,
20698 const gdb_byte
*mac_ptr
,
20699 unsigned int *offset_size
,
20700 int section_is_gnu
)
20702 memset (opcode_definitions
, 0, 256 * sizeof (gdb_byte
*));
20704 if (section_is_gnu
)
20706 unsigned int version
, flags
;
20708 version
= read_2_bytes (abfd
, mac_ptr
);
20711 complaint (&symfile_complaints
,
20712 _("unrecognized version `%d' in .debug_macro section"),
20718 flags
= read_1_byte (abfd
, mac_ptr
);
20720 *offset_size
= (flags
& 1) ? 8 : 4;
20722 if ((flags
& 2) != 0)
20723 /* We don't need the line table offset. */
20724 mac_ptr
+= *offset_size
;
20726 /* Vendor opcode descriptions. */
20727 if ((flags
& 4) != 0)
20729 unsigned int i
, count
;
20731 count
= read_1_byte (abfd
, mac_ptr
);
20733 for (i
= 0; i
< count
; ++i
)
20735 unsigned int opcode
, bytes_read
;
20738 opcode
= read_1_byte (abfd
, mac_ptr
);
20740 opcode_definitions
[opcode
] = mac_ptr
;
20741 arg
= read_unsigned_leb128 (abfd
, mac_ptr
, &bytes_read
);
20742 mac_ptr
+= bytes_read
;
20751 /* A helper for dwarf_decode_macros that handles the GNU extensions,
20752 including DW_MACRO_GNU_transparent_include. */
20755 dwarf_decode_macro_bytes (bfd
*abfd
,
20756 const gdb_byte
*mac_ptr
, const gdb_byte
*mac_end
,
20757 struct macro_source_file
*current_file
,
20758 struct line_header
*lh
,
20759 struct dwarf2_section_info
*section
,
20760 int section_is_gnu
, int section_is_dwz
,
20761 unsigned int offset_size
,
20762 htab_t include_hash
)
20764 struct objfile
*objfile
= dwarf2_per_objfile
->objfile
;
20765 enum dwarf_macro_record_type macinfo_type
;
20766 int at_commandline
;
20767 const gdb_byte
*opcode_definitions
[256];
20769 mac_ptr
= dwarf_parse_macro_header (opcode_definitions
, abfd
, mac_ptr
,
20770 &offset_size
, section_is_gnu
);
20771 if (mac_ptr
== NULL
)
20773 /* We already issued a complaint. */
20777 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
20778 GDB is still reading the definitions from command line. First
20779 DW_MACINFO_start_file will need to be ignored as it was already executed
20780 to create CURRENT_FILE for the main source holding also the command line
20781 definitions. On first met DW_MACINFO_start_file this flag is reset to
20782 normally execute all the remaining DW_MACINFO_start_file macinfos. */
20784 at_commandline
= 1;
20788 /* Do we at least have room for a macinfo type byte? */
20789 if (mac_ptr
>= mac_end
)
20791 dwarf2_section_buffer_overflow_complaint (section
);
20795 macinfo_type
= read_1_byte (abfd
, mac_ptr
);
20798 /* Note that we rely on the fact that the corresponding GNU and
20799 DWARF constants are the same. */
20800 switch (macinfo_type
)
20802 /* A zero macinfo type indicates the end of the macro
20807 case DW_MACRO_GNU_define
:
20808 case DW_MACRO_GNU_undef
:
20809 case DW_MACRO_GNU_define_indirect
:
20810 case DW_MACRO_GNU_undef_indirect
:
20811 case DW_MACRO_GNU_define_indirect_alt
:
20812 case DW_MACRO_GNU_undef_indirect_alt
:
20814 unsigned int bytes_read
;
20819 line
= read_unsigned_leb128 (abfd
, mac_ptr
, &bytes_read
);
20820 mac_ptr
+= bytes_read
;
20822 if (macinfo_type
== DW_MACRO_GNU_define
20823 || macinfo_type
== DW_MACRO_GNU_undef
)
20825 body
= read_direct_string (abfd
, mac_ptr
, &bytes_read
);
20826 mac_ptr
+= bytes_read
;
20830 LONGEST str_offset
;
20832 str_offset
= read_offset_1 (abfd
, mac_ptr
, offset_size
);
20833 mac_ptr
+= offset_size
;
20835 if (macinfo_type
== DW_MACRO_GNU_define_indirect_alt
20836 || macinfo_type
== DW_MACRO_GNU_undef_indirect_alt
20839 struct dwz_file
*dwz
= dwarf2_get_dwz_file ();
20841 body
= read_indirect_string_from_dwz (dwz
, str_offset
);
20844 body
= read_indirect_string_at_offset (abfd
, str_offset
);
20847 is_define
= (macinfo_type
== DW_MACRO_GNU_define
20848 || macinfo_type
== DW_MACRO_GNU_define_indirect
20849 || macinfo_type
== DW_MACRO_GNU_define_indirect_alt
);
20850 if (! current_file
)
20852 /* DWARF violation as no main source is present. */
20853 complaint (&symfile_complaints
,
20854 _("debug info with no main source gives macro %s "
20856 is_define
? _("definition") : _("undefinition"),
20860 if ((line
== 0 && !at_commandline
)
20861 || (line
!= 0 && at_commandline
))
20862 complaint (&symfile_complaints
,
20863 _("debug info gives %s macro %s with %s line %d: %s"),
20864 at_commandline
? _("command-line") : _("in-file"),
20865 is_define
? _("definition") : _("undefinition"),
20866 line
== 0 ? _("zero") : _("non-zero"), line
, body
);
20869 parse_macro_definition (current_file
, line
, body
);
20872 gdb_assert (macinfo_type
== DW_MACRO_GNU_undef
20873 || macinfo_type
== DW_MACRO_GNU_undef_indirect
20874 || macinfo_type
== DW_MACRO_GNU_undef_indirect_alt
);
20875 macro_undef (current_file
, line
, body
);
20880 case DW_MACRO_GNU_start_file
:
20882 unsigned int bytes_read
;
20885 line
= read_unsigned_leb128 (abfd
, mac_ptr
, &bytes_read
);
20886 mac_ptr
+= bytes_read
;
20887 file
= read_unsigned_leb128 (abfd
, mac_ptr
, &bytes_read
);
20888 mac_ptr
+= bytes_read
;
20890 if ((line
== 0 && !at_commandline
)
20891 || (line
!= 0 && at_commandline
))
20892 complaint (&symfile_complaints
,
20893 _("debug info gives source %d included "
20894 "from %s at %s line %d"),
20895 file
, at_commandline
? _("command-line") : _("file"),
20896 line
== 0 ? _("zero") : _("non-zero"), line
);
20898 if (at_commandline
)
20900 /* This DW_MACRO_GNU_start_file was executed in the
20902 at_commandline
= 0;
20905 current_file
= macro_start_file (file
, line
, current_file
, lh
);
20909 case DW_MACRO_GNU_end_file
:
20910 if (! current_file
)
20911 complaint (&symfile_complaints
,
20912 _("macro debug info has an unmatched "
20913 "`close_file' directive"));
20916 current_file
= current_file
->included_by
;
20917 if (! current_file
)
20919 enum dwarf_macro_record_type next_type
;
20921 /* GCC circa March 2002 doesn't produce the zero
20922 type byte marking the end of the compilation
20923 unit. Complain if it's not there, but exit no
20926 /* Do we at least have room for a macinfo type byte? */
20927 if (mac_ptr
>= mac_end
)
20929 dwarf2_section_buffer_overflow_complaint (section
);
20933 /* We don't increment mac_ptr here, so this is just
20935 next_type
= read_1_byte (abfd
, mac_ptr
);
20936 if (next_type
!= 0)
20937 complaint (&symfile_complaints
,
20938 _("no terminating 0-type entry for "
20939 "macros in `.debug_macinfo' section"));
20946 case DW_MACRO_GNU_transparent_include
:
20947 case DW_MACRO_GNU_transparent_include_alt
:
20951 bfd
*include_bfd
= abfd
;
20952 struct dwarf2_section_info
*include_section
= section
;
20953 struct dwarf2_section_info alt_section
;
20954 const gdb_byte
*include_mac_end
= mac_end
;
20955 int is_dwz
= section_is_dwz
;
20956 const gdb_byte
*new_mac_ptr
;
20958 offset
= read_offset_1 (abfd
, mac_ptr
, offset_size
);
20959 mac_ptr
+= offset_size
;
20961 if (macinfo_type
== DW_MACRO_GNU_transparent_include_alt
)
20963 struct dwz_file
*dwz
= dwarf2_get_dwz_file ();
20965 dwarf2_read_section (objfile
, &dwz
->macro
);
20967 include_section
= &dwz
->macro
;
20968 include_bfd
= get_section_bfd_owner (include_section
);
20969 include_mac_end
= dwz
->macro
.buffer
+ dwz
->macro
.size
;
20973 new_mac_ptr
= include_section
->buffer
+ offset
;
20974 slot
= htab_find_slot (include_hash
, new_mac_ptr
, INSERT
);
20978 /* This has actually happened; see
20979 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
20980 complaint (&symfile_complaints
,
20981 _("recursive DW_MACRO_GNU_transparent_include in "
20982 ".debug_macro section"));
20986 *slot
= (void *) new_mac_ptr
;
20988 dwarf_decode_macro_bytes (include_bfd
, new_mac_ptr
,
20989 include_mac_end
, current_file
, lh
,
20990 section
, section_is_gnu
, is_dwz
,
20991 offset_size
, include_hash
);
20993 htab_remove_elt (include_hash
, (void *) new_mac_ptr
);
20998 case DW_MACINFO_vendor_ext
:
20999 if (!section_is_gnu
)
21001 unsigned int bytes_read
;
21004 constant
= read_unsigned_leb128 (abfd
, mac_ptr
, &bytes_read
);
21005 mac_ptr
+= bytes_read
;
21006 read_direct_string (abfd
, mac_ptr
, &bytes_read
);
21007 mac_ptr
+= bytes_read
;
21009 /* We don't recognize any vendor extensions. */
21015 mac_ptr
= skip_unknown_opcode (macinfo_type
, opcode_definitions
,
21016 mac_ptr
, mac_end
, abfd
, offset_size
,
21018 if (mac_ptr
== NULL
)
21022 } while (macinfo_type
!= 0);
21026 dwarf_decode_macros (struct dwarf2_cu
*cu
, unsigned int offset
,
21027 int section_is_gnu
)
21029 struct objfile
*objfile
= dwarf2_per_objfile
->objfile
;
21030 struct line_header
*lh
= cu
->line_header
;
21032 const gdb_byte
*mac_ptr
, *mac_end
;
21033 struct macro_source_file
*current_file
= 0;
21034 enum dwarf_macro_record_type macinfo_type
;
21035 unsigned int offset_size
= cu
->header
.offset_size
;
21036 const gdb_byte
*opcode_definitions
[256];
21037 struct cleanup
*cleanup
;
21038 htab_t include_hash
;
21040 struct dwarf2_section_info
*section
;
21041 const char *section_name
;
21043 if (cu
->dwo_unit
!= NULL
)
21045 if (section_is_gnu
)
21047 section
= &cu
->dwo_unit
->dwo_file
->sections
.macro
;
21048 section_name
= ".debug_macro.dwo";
21052 section
= &cu
->dwo_unit
->dwo_file
->sections
.macinfo
;
21053 section_name
= ".debug_macinfo.dwo";
21058 if (section_is_gnu
)
21060 section
= &dwarf2_per_objfile
->macro
;
21061 section_name
= ".debug_macro";
21065 section
= &dwarf2_per_objfile
->macinfo
;
21066 section_name
= ".debug_macinfo";
21070 dwarf2_read_section (objfile
, section
);
21071 if (section
->buffer
== NULL
)
21073 complaint (&symfile_complaints
, _("missing %s section"), section_name
);
21076 abfd
= get_section_bfd_owner (section
);
21078 /* First pass: Find the name of the base filename.
21079 This filename is needed in order to process all macros whose definition
21080 (or undefinition) comes from the command line. These macros are defined
21081 before the first DW_MACINFO_start_file entry, and yet still need to be
21082 associated to the base file.
21084 To determine the base file name, we scan the macro definitions until we
21085 reach the first DW_MACINFO_start_file entry. We then initialize
21086 CURRENT_FILE accordingly so that any macro definition found before the
21087 first DW_MACINFO_start_file can still be associated to the base file. */
21089 mac_ptr
= section
->buffer
+ offset
;
21090 mac_end
= section
->buffer
+ section
->size
;
21092 mac_ptr
= dwarf_parse_macro_header (opcode_definitions
, abfd
, mac_ptr
,
21093 &offset_size
, section_is_gnu
);
21094 if (mac_ptr
== NULL
)
21096 /* We already issued a complaint. */
21102 /* Do we at least have room for a macinfo type byte? */
21103 if (mac_ptr
>= mac_end
)
21105 /* Complaint is printed during the second pass as GDB will probably
21106 stop the first pass earlier upon finding
21107 DW_MACINFO_start_file. */
21111 macinfo_type
= read_1_byte (abfd
, mac_ptr
);
21114 /* Note that we rely on the fact that the corresponding GNU and
21115 DWARF constants are the same. */
21116 switch (macinfo_type
)
21118 /* A zero macinfo type indicates the end of the macro
21123 case DW_MACRO_GNU_define
:
21124 case DW_MACRO_GNU_undef
:
21125 /* Only skip the data by MAC_PTR. */
21127 unsigned int bytes_read
;
21129 read_unsigned_leb128 (abfd
, mac_ptr
, &bytes_read
);
21130 mac_ptr
+= bytes_read
;
21131 read_direct_string (abfd
, mac_ptr
, &bytes_read
);
21132 mac_ptr
+= bytes_read
;
21136 case DW_MACRO_GNU_start_file
:
21138 unsigned int bytes_read
;
21141 line
= read_unsigned_leb128 (abfd
, mac_ptr
, &bytes_read
);
21142 mac_ptr
+= bytes_read
;
21143 file
= read_unsigned_leb128 (abfd
, mac_ptr
, &bytes_read
);
21144 mac_ptr
+= bytes_read
;
21146 current_file
= macro_start_file (file
, line
, current_file
, lh
);
21150 case DW_MACRO_GNU_end_file
:
21151 /* No data to skip by MAC_PTR. */
21154 case DW_MACRO_GNU_define_indirect
:
21155 case DW_MACRO_GNU_undef_indirect
:
21156 case DW_MACRO_GNU_define_indirect_alt
:
21157 case DW_MACRO_GNU_undef_indirect_alt
:
21159 unsigned int bytes_read
;
21161 read_unsigned_leb128 (abfd
, mac_ptr
, &bytes_read
);
21162 mac_ptr
+= bytes_read
;
21163 mac_ptr
+= offset_size
;
21167 case DW_MACRO_GNU_transparent_include
:
21168 case DW_MACRO_GNU_transparent_include_alt
:
21169 /* Note that, according to the spec, a transparent include
21170 chain cannot call DW_MACRO_GNU_start_file. So, we can just
21171 skip this opcode. */
21172 mac_ptr
+= offset_size
;
21175 case DW_MACINFO_vendor_ext
:
21176 /* Only skip the data by MAC_PTR. */
21177 if (!section_is_gnu
)
21179 unsigned int bytes_read
;
21181 read_unsigned_leb128 (abfd
, mac_ptr
, &bytes_read
);
21182 mac_ptr
+= bytes_read
;
21183 read_direct_string (abfd
, mac_ptr
, &bytes_read
);
21184 mac_ptr
+= bytes_read
;
21189 mac_ptr
= skip_unknown_opcode (macinfo_type
, opcode_definitions
,
21190 mac_ptr
, mac_end
, abfd
, offset_size
,
21192 if (mac_ptr
== NULL
)
21196 } while (macinfo_type
!= 0 && current_file
== NULL
);
21198 /* Second pass: Process all entries.
21200 Use the AT_COMMAND_LINE flag to determine whether we are still processing
21201 command-line macro definitions/undefinitions. This flag is unset when we
21202 reach the first DW_MACINFO_start_file entry. */
21204 include_hash
= htab_create_alloc (1, htab_hash_pointer
, htab_eq_pointer
,
21205 NULL
, xcalloc
, xfree
);
21206 cleanup
= make_cleanup_htab_delete (include_hash
);
21207 mac_ptr
= section
->buffer
+ offset
;
21208 slot
= htab_find_slot (include_hash
, mac_ptr
, INSERT
);
21209 *slot
= (void *) mac_ptr
;
21210 dwarf_decode_macro_bytes (abfd
, mac_ptr
, mac_end
,
21211 current_file
, lh
, section
,
21212 section_is_gnu
, 0, offset_size
, include_hash
);
21213 do_cleanups (cleanup
);
21216 /* Check if the attribute's form is a DW_FORM_block*
21217 if so return true else false. */
21220 attr_form_is_block (const struct attribute
*attr
)
21222 return (attr
== NULL
? 0 :
21223 attr
->form
== DW_FORM_block1
21224 || attr
->form
== DW_FORM_block2
21225 || attr
->form
== DW_FORM_block4
21226 || attr
->form
== DW_FORM_block
21227 || attr
->form
== DW_FORM_exprloc
);
21230 /* Return non-zero if ATTR's value is a section offset --- classes
21231 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
21232 You may use DW_UNSND (attr) to retrieve such offsets.
21234 Section 7.5.4, "Attribute Encodings", explains that no attribute
21235 may have a value that belongs to more than one of these classes; it
21236 would be ambiguous if we did, because we use the same forms for all
21240 attr_form_is_section_offset (const struct attribute
*attr
)
21242 return (attr
->form
== DW_FORM_data4
21243 || attr
->form
== DW_FORM_data8
21244 || attr
->form
== DW_FORM_sec_offset
);
21247 /* Return non-zero if ATTR's value falls in the 'constant' class, or
21248 zero otherwise. When this function returns true, you can apply
21249 dwarf2_get_attr_constant_value to it.
21251 However, note that for some attributes you must check
21252 attr_form_is_section_offset before using this test. DW_FORM_data4
21253 and DW_FORM_data8 are members of both the constant class, and of
21254 the classes that contain offsets into other debug sections
21255 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
21256 that, if an attribute's can be either a constant or one of the
21257 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
21258 taken as section offsets, not constants. */
21261 attr_form_is_constant (const struct attribute
*attr
)
21263 switch (attr
->form
)
21265 case DW_FORM_sdata
:
21266 case DW_FORM_udata
:
21267 case DW_FORM_data1
:
21268 case DW_FORM_data2
:
21269 case DW_FORM_data4
:
21270 case DW_FORM_data8
:
21278 /* DW_ADDR is always stored already as sect_offset; despite for the forms
21279 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
21282 attr_form_is_ref (const struct attribute
*attr
)
21284 switch (attr
->form
)
21286 case DW_FORM_ref_addr
:
21291 case DW_FORM_ref_udata
:
21292 case DW_FORM_GNU_ref_alt
:
21299 /* Return the .debug_loc section to use for CU.
21300 For DWO files use .debug_loc.dwo. */
21302 static struct dwarf2_section_info
*
21303 cu_debug_loc_section (struct dwarf2_cu
*cu
)
21306 return &cu
->dwo_unit
->dwo_file
->sections
.loc
;
21307 return &dwarf2_per_objfile
->loc
;
21310 /* A helper function that fills in a dwarf2_loclist_baton. */
21313 fill_in_loclist_baton (struct dwarf2_cu
*cu
,
21314 struct dwarf2_loclist_baton
*baton
,
21315 const struct attribute
*attr
)
21317 struct dwarf2_section_info
*section
= cu_debug_loc_section (cu
);
21319 dwarf2_read_section (dwarf2_per_objfile
->objfile
, section
);
21321 baton
->per_cu
= cu
->per_cu
;
21322 gdb_assert (baton
->per_cu
);
21323 /* We don't know how long the location list is, but make sure we
21324 don't run off the edge of the section. */
21325 baton
->size
= section
->size
- DW_UNSND (attr
);
21326 baton
->data
= section
->buffer
+ DW_UNSND (attr
);
21327 baton
->base_address
= cu
->base_address
;
21328 baton
->from_dwo
= cu
->dwo_unit
!= NULL
;
21332 dwarf2_symbol_mark_computed (const struct attribute
*attr
, struct symbol
*sym
,
21333 struct dwarf2_cu
*cu
, int is_block
)
21335 struct objfile
*objfile
= dwarf2_per_objfile
->objfile
;
21336 struct dwarf2_section_info
*section
= cu_debug_loc_section (cu
);
21338 if (attr_form_is_section_offset (attr
)
21339 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
21340 the section. If so, fall through to the complaint in the
21342 && DW_UNSND (attr
) < dwarf2_section_size (objfile
, section
))
21344 struct dwarf2_loclist_baton
*baton
;
21346 baton
= obstack_alloc (&objfile
->objfile_obstack
,
21347 sizeof (struct dwarf2_loclist_baton
));
21349 fill_in_loclist_baton (cu
, baton
, attr
);
21351 if (cu
->base_known
== 0)
21352 complaint (&symfile_complaints
,
21353 _("Location list used without "
21354 "specifying the CU base address."));
21356 SYMBOL_ACLASS_INDEX (sym
) = (is_block
21357 ? dwarf2_loclist_block_index
21358 : dwarf2_loclist_index
);
21359 SYMBOL_LOCATION_BATON (sym
) = baton
;
21363 struct dwarf2_locexpr_baton
*baton
;
21365 baton
= obstack_alloc (&objfile
->objfile_obstack
,
21366 sizeof (struct dwarf2_locexpr_baton
));
21367 baton
->per_cu
= cu
->per_cu
;
21368 gdb_assert (baton
->per_cu
);
21370 if (attr_form_is_block (attr
))
21372 /* Note that we're just copying the block's data pointer
21373 here, not the actual data. We're still pointing into the
21374 info_buffer for SYM's objfile; right now we never release
21375 that buffer, but when we do clean up properly this may
21377 baton
->size
= DW_BLOCK (attr
)->size
;
21378 baton
->data
= DW_BLOCK (attr
)->data
;
21382 dwarf2_invalid_attrib_class_complaint ("location description",
21383 SYMBOL_NATURAL_NAME (sym
));
21387 SYMBOL_ACLASS_INDEX (sym
) = (is_block
21388 ? dwarf2_locexpr_block_index
21389 : dwarf2_locexpr_index
);
21390 SYMBOL_LOCATION_BATON (sym
) = baton
;
21394 /* Return the OBJFILE associated with the compilation unit CU. If CU
21395 came from a separate debuginfo file, then the master objfile is
21399 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data
*per_cu
)
21401 struct objfile
*objfile
= per_cu
->objfile
;
21403 /* Return the master objfile, so that we can report and look up the
21404 correct file containing this variable. */
21405 if (objfile
->separate_debug_objfile_backlink
)
21406 objfile
= objfile
->separate_debug_objfile_backlink
;
21411 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
21412 (CU_HEADERP is unused in such case) or prepare a temporary copy at
21413 CU_HEADERP first. */
21415 static const struct comp_unit_head
*
21416 per_cu_header_read_in (struct comp_unit_head
*cu_headerp
,
21417 struct dwarf2_per_cu_data
*per_cu
)
21419 const gdb_byte
*info_ptr
;
21422 return &per_cu
->cu
->header
;
21424 info_ptr
= per_cu
->section
->buffer
+ per_cu
->offset
.sect_off
;
21426 memset (cu_headerp
, 0, sizeof (*cu_headerp
));
21427 read_comp_unit_head (cu_headerp
, info_ptr
, per_cu
->objfile
->obfd
);
21432 /* Return the address size given in the compilation unit header for CU. */
21435 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data
*per_cu
)
21437 struct comp_unit_head cu_header_local
;
21438 const struct comp_unit_head
*cu_headerp
;
21440 cu_headerp
= per_cu_header_read_in (&cu_header_local
, per_cu
);
21442 return cu_headerp
->addr_size
;
21445 /* Return the offset size given in the compilation unit header for CU. */
21448 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data
*per_cu
)
21450 struct comp_unit_head cu_header_local
;
21451 const struct comp_unit_head
*cu_headerp
;
21453 cu_headerp
= per_cu_header_read_in (&cu_header_local
, per_cu
);
21455 return cu_headerp
->offset_size
;
21458 /* See its dwarf2loc.h declaration. */
21461 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data
*per_cu
)
21463 struct comp_unit_head cu_header_local
;
21464 const struct comp_unit_head
*cu_headerp
;
21466 cu_headerp
= per_cu_header_read_in (&cu_header_local
, per_cu
);
21468 if (cu_headerp
->version
== 2)
21469 return cu_headerp
->addr_size
;
21471 return cu_headerp
->offset_size
;
21474 /* Return the text offset of the CU. The returned offset comes from
21475 this CU's objfile. If this objfile came from a separate debuginfo
21476 file, then the offset may be different from the corresponding
21477 offset in the parent objfile. */
21480 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data
*per_cu
)
21482 struct objfile
*objfile
= per_cu
->objfile
;
21484 return ANOFFSET (objfile
->section_offsets
, SECT_OFF_TEXT (objfile
));
21487 /* Locate the .debug_info compilation unit from CU's objfile which contains
21488 the DIE at OFFSET. Raises an error on failure. */
21490 static struct dwarf2_per_cu_data
*
21491 dwarf2_find_containing_comp_unit (sect_offset offset
,
21492 unsigned int offset_in_dwz
,
21493 struct objfile
*objfile
)
21495 struct dwarf2_per_cu_data
*this_cu
;
21497 const sect_offset
*cu_off
;
21500 high
= dwarf2_per_objfile
->n_comp_units
- 1;
21503 struct dwarf2_per_cu_data
*mid_cu
;
21504 int mid
= low
+ (high
- low
) / 2;
21506 mid_cu
= dwarf2_per_objfile
->all_comp_units
[mid
];
21507 cu_off
= &mid_cu
->offset
;
21508 if (mid_cu
->is_dwz
> offset_in_dwz
21509 || (mid_cu
->is_dwz
== offset_in_dwz
21510 && cu_off
->sect_off
>= offset
.sect_off
))
21515 gdb_assert (low
== high
);
21516 this_cu
= dwarf2_per_objfile
->all_comp_units
[low
];
21517 cu_off
= &this_cu
->offset
;
21518 if (this_cu
->is_dwz
!= offset_in_dwz
|| cu_off
->sect_off
> offset
.sect_off
)
21520 if (low
== 0 || this_cu
->is_dwz
!= offset_in_dwz
)
21521 error (_("Dwarf Error: could not find partial DIE containing "
21522 "offset 0x%lx [in module %s]"),
21523 (long) offset
.sect_off
, bfd_get_filename (objfile
->obfd
));
21525 gdb_assert (dwarf2_per_objfile
->all_comp_units
[low
-1]->offset
.sect_off
21526 <= offset
.sect_off
);
21527 return dwarf2_per_objfile
->all_comp_units
[low
-1];
21531 this_cu
= dwarf2_per_objfile
->all_comp_units
[low
];
21532 if (low
== dwarf2_per_objfile
->n_comp_units
- 1
21533 && offset
.sect_off
>= this_cu
->offset
.sect_off
+ this_cu
->length
)
21534 error (_("invalid dwarf2 offset %u"), offset
.sect_off
);
21535 gdb_assert (offset
.sect_off
< this_cu
->offset
.sect_off
+ this_cu
->length
);
21540 /* Initialize dwarf2_cu CU, owned by PER_CU. */
21543 init_one_comp_unit (struct dwarf2_cu
*cu
, struct dwarf2_per_cu_data
*per_cu
)
21545 memset (cu
, 0, sizeof (*cu
));
21547 cu
->per_cu
= per_cu
;
21548 cu
->objfile
= per_cu
->objfile
;
21549 obstack_init (&cu
->comp_unit_obstack
);
21552 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
21555 prepare_one_comp_unit (struct dwarf2_cu
*cu
, struct die_info
*comp_unit_die
,
21556 enum language pretend_language
)
21558 struct attribute
*attr
;
21560 /* Set the language we're debugging. */
21561 attr
= dwarf2_attr (comp_unit_die
, DW_AT_language
, cu
);
21563 set_cu_language (DW_UNSND (attr
), cu
);
21566 cu
->language
= pretend_language
;
21567 cu
->language_defn
= language_def (cu
->language
);
21570 attr
= dwarf2_attr (comp_unit_die
, DW_AT_producer
, cu
);
21572 cu
->producer
= DW_STRING (attr
);
21575 /* Release one cached compilation unit, CU. We unlink it from the tree
21576 of compilation units, but we don't remove it from the read_in_chain;
21577 the caller is responsible for that.
21578 NOTE: DATA is a void * because this function is also used as a
21579 cleanup routine. */
21582 free_heap_comp_unit (void *data
)
21584 struct dwarf2_cu
*cu
= data
;
21586 gdb_assert (cu
->per_cu
!= NULL
);
21587 cu
->per_cu
->cu
= NULL
;
21590 obstack_free (&cu
->comp_unit_obstack
, NULL
);
21595 /* This cleanup function is passed the address of a dwarf2_cu on the stack
21596 when we're finished with it. We can't free the pointer itself, but be
21597 sure to unlink it from the cache. Also release any associated storage. */
21600 free_stack_comp_unit (void *data
)
21602 struct dwarf2_cu
*cu
= data
;
21604 gdb_assert (cu
->per_cu
!= NULL
);
21605 cu
->per_cu
->cu
= NULL
;
21608 obstack_free (&cu
->comp_unit_obstack
, NULL
);
21609 cu
->partial_dies
= NULL
;
21612 /* Free all cached compilation units. */
21615 free_cached_comp_units (void *data
)
21617 struct dwarf2_per_cu_data
*per_cu
, **last_chain
;
21619 per_cu
= dwarf2_per_objfile
->read_in_chain
;
21620 last_chain
= &dwarf2_per_objfile
->read_in_chain
;
21621 while (per_cu
!= NULL
)
21623 struct dwarf2_per_cu_data
*next_cu
;
21625 next_cu
= per_cu
->cu
->read_in_chain
;
21627 free_heap_comp_unit (per_cu
->cu
);
21628 *last_chain
= next_cu
;
21634 /* Increase the age counter on each cached compilation unit, and free
21635 any that are too old. */
21638 age_cached_comp_units (void)
21640 struct dwarf2_per_cu_data
*per_cu
, **last_chain
;
21642 dwarf2_clear_marks (dwarf2_per_objfile
->read_in_chain
);
21643 per_cu
= dwarf2_per_objfile
->read_in_chain
;
21644 while (per_cu
!= NULL
)
21646 per_cu
->cu
->last_used
++;
21647 if (per_cu
->cu
->last_used
<= dwarf2_max_cache_age
)
21648 dwarf2_mark (per_cu
->cu
);
21649 per_cu
= per_cu
->cu
->read_in_chain
;
21652 per_cu
= dwarf2_per_objfile
->read_in_chain
;
21653 last_chain
= &dwarf2_per_objfile
->read_in_chain
;
21654 while (per_cu
!= NULL
)
21656 struct dwarf2_per_cu_data
*next_cu
;
21658 next_cu
= per_cu
->cu
->read_in_chain
;
21660 if (!per_cu
->cu
->mark
)
21662 free_heap_comp_unit (per_cu
->cu
);
21663 *last_chain
= next_cu
;
21666 last_chain
= &per_cu
->cu
->read_in_chain
;
21672 /* Remove a single compilation unit from the cache. */
21675 free_one_cached_comp_unit (struct dwarf2_per_cu_data
*target_per_cu
)
21677 struct dwarf2_per_cu_data
*per_cu
, **last_chain
;
21679 per_cu
= dwarf2_per_objfile
->read_in_chain
;
21680 last_chain
= &dwarf2_per_objfile
->read_in_chain
;
21681 while (per_cu
!= NULL
)
21683 struct dwarf2_per_cu_data
*next_cu
;
21685 next_cu
= per_cu
->cu
->read_in_chain
;
21687 if (per_cu
== target_per_cu
)
21689 free_heap_comp_unit (per_cu
->cu
);
21691 *last_chain
= next_cu
;
21695 last_chain
= &per_cu
->cu
->read_in_chain
;
21701 /* Release all extra memory associated with OBJFILE. */
21704 dwarf2_free_objfile (struct objfile
*objfile
)
21706 dwarf2_per_objfile
= objfile_data (objfile
, dwarf2_objfile_data_key
);
21708 if (dwarf2_per_objfile
== NULL
)
21711 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
21712 free_cached_comp_units (NULL
);
21714 if (dwarf2_per_objfile
->quick_file_names_table
)
21715 htab_delete (dwarf2_per_objfile
->quick_file_names_table
);
21717 /* Everything else should be on the objfile obstack. */
21720 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
21721 We store these in a hash table separate from the DIEs, and preserve them
21722 when the DIEs are flushed out of cache.
21724 The CU "per_cu" pointer is needed because offset alone is not enough to
21725 uniquely identify the type. A file may have multiple .debug_types sections,
21726 or the type may come from a DWO file. Furthermore, while it's more logical
21727 to use per_cu->section+offset, with Fission the section with the data is in
21728 the DWO file but we don't know that section at the point we need it.
21729 We have to use something in dwarf2_per_cu_data (or the pointer to it)
21730 because we can enter the lookup routine, get_die_type_at_offset, from
21731 outside this file, and thus won't necessarily have PER_CU->cu.
21732 Fortunately, PER_CU is stable for the life of the objfile. */
21734 struct dwarf2_per_cu_offset_and_type
21736 const struct dwarf2_per_cu_data
*per_cu
;
21737 sect_offset offset
;
21741 /* Hash function for a dwarf2_per_cu_offset_and_type. */
21744 per_cu_offset_and_type_hash (const void *item
)
21746 const struct dwarf2_per_cu_offset_and_type
*ofs
= item
;
21748 return (uintptr_t) ofs
->per_cu
+ ofs
->offset
.sect_off
;
21751 /* Equality function for a dwarf2_per_cu_offset_and_type. */
21754 per_cu_offset_and_type_eq (const void *item_lhs
, const void *item_rhs
)
21756 const struct dwarf2_per_cu_offset_and_type
*ofs_lhs
= item_lhs
;
21757 const struct dwarf2_per_cu_offset_and_type
*ofs_rhs
= item_rhs
;
21759 return (ofs_lhs
->per_cu
== ofs_rhs
->per_cu
21760 && ofs_lhs
->offset
.sect_off
== ofs_rhs
->offset
.sect_off
);
21763 /* Set the type associated with DIE to TYPE. Save it in CU's hash
21764 table if necessary. For convenience, return TYPE.
21766 The DIEs reading must have careful ordering to:
21767 * Not cause infite loops trying to read in DIEs as a prerequisite for
21768 reading current DIE.
21769 * Not trying to dereference contents of still incompletely read in types
21770 while reading in other DIEs.
21771 * Enable referencing still incompletely read in types just by a pointer to
21772 the type without accessing its fields.
21774 Therefore caller should follow these rules:
21775 * Try to fetch any prerequisite types we may need to build this DIE type
21776 before building the type and calling set_die_type.
21777 * After building type call set_die_type for current DIE as soon as
21778 possible before fetching more types to complete the current type.
21779 * Make the type as complete as possible before fetching more types. */
21781 static struct type
*
21782 set_die_type (struct die_info
*die
, struct type
*type
, struct dwarf2_cu
*cu
)
21784 struct dwarf2_per_cu_offset_and_type
**slot
, ofs
;
21785 struct objfile
*objfile
= cu
->objfile
;
21786 struct attribute
*attr
;
21787 struct dynamic_prop prop
;
21789 /* For Ada types, make sure that the gnat-specific data is always
21790 initialized (if not already set). There are a few types where
21791 we should not be doing so, because the type-specific area is
21792 already used to hold some other piece of info (eg: TYPE_CODE_FLT
21793 where the type-specific area is used to store the floatformat).
21794 But this is not a problem, because the gnat-specific information
21795 is actually not needed for these types. */
21796 if (need_gnat_info (cu
)
21797 && TYPE_CODE (type
) != TYPE_CODE_FUNC
21798 && TYPE_CODE (type
) != TYPE_CODE_FLT
21799 && !HAVE_GNAT_AUX_INFO (type
))
21800 INIT_GNAT_SPECIFIC (type
);
21802 /* Read DW_AT_data_location and set in type. */
21803 attr
= dwarf2_attr (die
, DW_AT_data_location
, cu
);
21804 if (attr_to_dynamic_prop (attr
, die
, cu
, &prop
))
21806 TYPE_DATA_LOCATION (type
)
21807 = obstack_alloc (&objfile
->objfile_obstack
, sizeof (prop
));
21808 *TYPE_DATA_LOCATION (type
) = prop
;
21811 if (dwarf2_per_objfile
->die_type_hash
== NULL
)
21813 dwarf2_per_objfile
->die_type_hash
=
21814 htab_create_alloc_ex (127,
21815 per_cu_offset_and_type_hash
,
21816 per_cu_offset_and_type_eq
,
21818 &objfile
->objfile_obstack
,
21819 hashtab_obstack_allocate
,
21820 dummy_obstack_deallocate
);
21823 ofs
.per_cu
= cu
->per_cu
;
21824 ofs
.offset
= die
->offset
;
21826 slot
= (struct dwarf2_per_cu_offset_and_type
**)
21827 htab_find_slot (dwarf2_per_objfile
->die_type_hash
, &ofs
, INSERT
);
21829 complaint (&symfile_complaints
,
21830 _("A problem internal to GDB: DIE 0x%x has type already set"),
21831 die
->offset
.sect_off
);
21832 *slot
= obstack_alloc (&objfile
->objfile_obstack
, sizeof (**slot
));
21837 /* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
21838 or return NULL if the die does not have a saved type. */
21840 static struct type
*
21841 get_die_type_at_offset (sect_offset offset
,
21842 struct dwarf2_per_cu_data
*per_cu
)
21844 struct dwarf2_per_cu_offset_and_type
*slot
, ofs
;
21846 if (dwarf2_per_objfile
->die_type_hash
== NULL
)
21849 ofs
.per_cu
= per_cu
;
21850 ofs
.offset
= offset
;
21851 slot
= htab_find (dwarf2_per_objfile
->die_type_hash
, &ofs
);
21858 /* Look up the type for DIE in CU in die_type_hash,
21859 or return NULL if DIE does not have a saved type. */
21861 static struct type
*
21862 get_die_type (struct die_info
*die
, struct dwarf2_cu
*cu
)
21864 return get_die_type_at_offset (die
->offset
, cu
->per_cu
);
21867 /* Add a dependence relationship from CU to REF_PER_CU. */
21870 dwarf2_add_dependence (struct dwarf2_cu
*cu
,
21871 struct dwarf2_per_cu_data
*ref_per_cu
)
21875 if (cu
->dependencies
== NULL
)
21877 = htab_create_alloc_ex (5, htab_hash_pointer
, htab_eq_pointer
,
21878 NULL
, &cu
->comp_unit_obstack
,
21879 hashtab_obstack_allocate
,
21880 dummy_obstack_deallocate
);
21882 slot
= htab_find_slot (cu
->dependencies
, ref_per_cu
, INSERT
);
21884 *slot
= ref_per_cu
;
21887 /* Subroutine of dwarf2_mark to pass to htab_traverse.
21888 Set the mark field in every compilation unit in the
21889 cache that we must keep because we are keeping CU. */
21892 dwarf2_mark_helper (void **slot
, void *data
)
21894 struct dwarf2_per_cu_data
*per_cu
;
21896 per_cu
= (struct dwarf2_per_cu_data
*) *slot
;
21898 /* cu->dependencies references may not yet have been ever read if QUIT aborts
21899 reading of the chain. As such dependencies remain valid it is not much
21900 useful to track and undo them during QUIT cleanups. */
21901 if (per_cu
->cu
== NULL
)
21904 if (per_cu
->cu
->mark
)
21906 per_cu
->cu
->mark
= 1;
21908 if (per_cu
->cu
->dependencies
!= NULL
)
21909 htab_traverse (per_cu
->cu
->dependencies
, dwarf2_mark_helper
, NULL
);
21914 /* Set the mark field in CU and in every other compilation unit in the
21915 cache that we must keep because we are keeping CU. */
21918 dwarf2_mark (struct dwarf2_cu
*cu
)
21923 if (cu
->dependencies
!= NULL
)
21924 htab_traverse (cu
->dependencies
, dwarf2_mark_helper
, NULL
);
21928 dwarf2_clear_marks (struct dwarf2_per_cu_data
*per_cu
)
21932 per_cu
->cu
->mark
= 0;
21933 per_cu
= per_cu
->cu
->read_in_chain
;
21937 /* Trivial hash function for partial_die_info: the hash value of a DIE
21938 is its offset in .debug_info for this objfile. */
21941 partial_die_hash (const void *item
)
21943 const struct partial_die_info
*part_die
= item
;
21945 return part_die
->offset
.sect_off
;
21948 /* Trivial comparison function for partial_die_info structures: two DIEs
21949 are equal if they have the same offset. */
21952 partial_die_eq (const void *item_lhs
, const void *item_rhs
)
21954 const struct partial_die_info
*part_die_lhs
= item_lhs
;
21955 const struct partial_die_info
*part_die_rhs
= item_rhs
;
21957 return part_die_lhs
->offset
.sect_off
== part_die_rhs
->offset
.sect_off
;
21960 static struct cmd_list_element
*set_dwarf2_cmdlist
;
21961 static struct cmd_list_element
*show_dwarf2_cmdlist
;
21964 set_dwarf2_cmd (char *args
, int from_tty
)
21966 help_list (set_dwarf2_cmdlist
, "maintenance set dwarf2 ", all_commands
,
21971 show_dwarf2_cmd (char *args
, int from_tty
)
21973 cmd_show_list (show_dwarf2_cmdlist
, from_tty
, "");
21976 /* Free data associated with OBJFILE, if necessary. */
21979 dwarf2_per_objfile_free (struct objfile
*objfile
, void *d
)
21981 struct dwarf2_per_objfile
*data
= d
;
21984 /* Make sure we don't accidentally use dwarf2_per_objfile while
21986 dwarf2_per_objfile
= NULL
;
21988 for (ix
= 0; ix
< data
->n_comp_units
; ++ix
)
21989 VEC_free (dwarf2_per_cu_ptr
, data
->all_comp_units
[ix
]->imported_symtabs
);
21991 for (ix
= 0; ix
< data
->n_type_units
; ++ix
)
21992 VEC_free (dwarf2_per_cu_ptr
,
21993 data
->all_type_units
[ix
]->per_cu
.imported_symtabs
);
21994 xfree (data
->all_type_units
);
21996 VEC_free (dwarf2_section_info_def
, data
->types
);
21998 if (data
->dwo_files
)
21999 free_dwo_files (data
->dwo_files
, objfile
);
22000 if (data
->dwp_file
)
22001 gdb_bfd_unref (data
->dwp_file
->dbfd
);
22003 if (data
->dwz_file
&& data
->dwz_file
->dwz_bfd
)
22004 gdb_bfd_unref (data
->dwz_file
->dwz_bfd
);
22008 /* The "save gdb-index" command. */
22010 /* The contents of the hash table we create when building the string
22012 struct strtab_entry
22014 offset_type offset
;
22018 /* Hash function for a strtab_entry.
22020 Function is used only during write_hash_table so no index format backward
22021 compatibility is needed. */
22024 hash_strtab_entry (const void *e
)
22026 const struct strtab_entry
*entry
= e
;
22027 return mapped_index_string_hash (INT_MAX
, entry
->str
);
22030 /* Equality function for a strtab_entry. */
22033 eq_strtab_entry (const void *a
, const void *b
)
22035 const struct strtab_entry
*ea
= a
;
22036 const struct strtab_entry
*eb
= b
;
22037 return !strcmp (ea
->str
, eb
->str
);
22040 /* Create a strtab_entry hash table. */
22043 create_strtab (void)
22045 return htab_create_alloc (100, hash_strtab_entry
, eq_strtab_entry
,
22046 xfree
, xcalloc
, xfree
);
22049 /* Add a string to the constant pool. Return the string's offset in
22053 add_string (htab_t table
, struct obstack
*cpool
, const char *str
)
22056 struct strtab_entry entry
;
22057 struct strtab_entry
*result
;
22060 slot
= htab_find_slot (table
, &entry
, INSERT
);
22065 result
= XNEW (struct strtab_entry
);
22066 result
->offset
= obstack_object_size (cpool
);
22068 obstack_grow_str0 (cpool
, str
);
22071 return result
->offset
;
22074 /* An entry in the symbol table. */
22075 struct symtab_index_entry
22077 /* The name of the symbol. */
22079 /* The offset of the name in the constant pool. */
22080 offset_type index_offset
;
22081 /* A sorted vector of the indices of all the CUs that hold an object
22083 VEC (offset_type
) *cu_indices
;
22086 /* The symbol table. This is a power-of-2-sized hash table. */
22087 struct mapped_symtab
22089 offset_type n_elements
;
22091 struct symtab_index_entry
**data
;
22094 /* Hash function for a symtab_index_entry. */
22097 hash_symtab_entry (const void *e
)
22099 const struct symtab_index_entry
*entry
= e
;
22100 return iterative_hash (VEC_address (offset_type
, entry
->cu_indices
),
22101 sizeof (offset_type
) * VEC_length (offset_type
,
22102 entry
->cu_indices
),
22106 /* Equality function for a symtab_index_entry. */
22109 eq_symtab_entry (const void *a
, const void *b
)
22111 const struct symtab_index_entry
*ea
= a
;
22112 const struct symtab_index_entry
*eb
= b
;
22113 int len
= VEC_length (offset_type
, ea
->cu_indices
);
22114 if (len
!= VEC_length (offset_type
, eb
->cu_indices
))
22116 return !memcmp (VEC_address (offset_type
, ea
->cu_indices
),
22117 VEC_address (offset_type
, eb
->cu_indices
),
22118 sizeof (offset_type
) * len
);
22121 /* Destroy a symtab_index_entry. */
22124 delete_symtab_entry (void *p
)
22126 struct symtab_index_entry
*entry
= p
;
22127 VEC_free (offset_type
, entry
->cu_indices
);
22131 /* Create a hash table holding symtab_index_entry objects. */
22134 create_symbol_hash_table (void)
22136 return htab_create_alloc (100, hash_symtab_entry
, eq_symtab_entry
,
22137 delete_symtab_entry
, xcalloc
, xfree
);
22140 /* Create a new mapped symtab object. */
22142 static struct mapped_symtab
*
22143 create_mapped_symtab (void)
22145 struct mapped_symtab
*symtab
= XNEW (struct mapped_symtab
);
22146 symtab
->n_elements
= 0;
22147 symtab
->size
= 1024;
22148 symtab
->data
= XCNEWVEC (struct symtab_index_entry
*, symtab
->size
);
22152 /* Destroy a mapped_symtab. */
22155 cleanup_mapped_symtab (void *p
)
22157 struct mapped_symtab
*symtab
= p
;
22158 /* The contents of the array are freed when the other hash table is
22160 xfree (symtab
->data
);
22164 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
22167 Function is used only during write_hash_table so no index format backward
22168 compatibility is needed. */
22170 static struct symtab_index_entry
**
22171 find_slot (struct mapped_symtab
*symtab
, const char *name
)
22173 offset_type index
, step
, hash
= mapped_index_string_hash (INT_MAX
, name
);
22175 index
= hash
& (symtab
->size
- 1);
22176 step
= ((hash
* 17) & (symtab
->size
- 1)) | 1;
22180 if (!symtab
->data
[index
] || !strcmp (name
, symtab
->data
[index
]->name
))
22181 return &symtab
->data
[index
];
22182 index
= (index
+ step
) & (symtab
->size
- 1);
22186 /* Expand SYMTAB's hash table. */
22189 hash_expand (struct mapped_symtab
*symtab
)
22191 offset_type old_size
= symtab
->size
;
22193 struct symtab_index_entry
**old_entries
= symtab
->data
;
22196 symtab
->data
= XCNEWVEC (struct symtab_index_entry
*, symtab
->size
);
22198 for (i
= 0; i
< old_size
; ++i
)
22200 if (old_entries
[i
])
22202 struct symtab_index_entry
**slot
= find_slot (symtab
,
22203 old_entries
[i
]->name
);
22204 *slot
= old_entries
[i
];
22208 xfree (old_entries
);
22211 /* Add an entry to SYMTAB. NAME is the name of the symbol.
22212 CU_INDEX is the index of the CU in which the symbol appears.
22213 IS_STATIC is one if the symbol is static, otherwise zero (global). */
22216 add_index_entry (struct mapped_symtab
*symtab
, const char *name
,
22217 int is_static
, gdb_index_symbol_kind kind
,
22218 offset_type cu_index
)
22220 struct symtab_index_entry
**slot
;
22221 offset_type cu_index_and_attrs
;
22223 ++symtab
->n_elements
;
22224 if (4 * symtab
->n_elements
/ 3 >= symtab
->size
)
22225 hash_expand (symtab
);
22227 slot
= find_slot (symtab
, name
);
22230 *slot
= XNEW (struct symtab_index_entry
);
22231 (*slot
)->name
= name
;
22232 /* index_offset is set later. */
22233 (*slot
)->cu_indices
= NULL
;
22236 cu_index_and_attrs
= 0;
22237 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs
, cu_index
);
22238 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs
, is_static
);
22239 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs
, kind
);
22241 /* We don't want to record an index value twice as we want to avoid the
22243 We process all global symbols and then all static symbols
22244 (which would allow us to avoid the duplication by only having to check
22245 the last entry pushed), but a symbol could have multiple kinds in one CU.
22246 To keep things simple we don't worry about the duplication here and
22247 sort and uniqufy the list after we've processed all symbols. */
22248 VEC_safe_push (offset_type
, (*slot
)->cu_indices
, cu_index_and_attrs
);
22251 /* qsort helper routine for uniquify_cu_indices. */
22254 offset_type_compare (const void *ap
, const void *bp
)
22256 offset_type a
= *(offset_type
*) ap
;
22257 offset_type b
= *(offset_type
*) bp
;
22259 return (a
> b
) - (b
> a
);
22262 /* Sort and remove duplicates of all symbols' cu_indices lists. */
22265 uniquify_cu_indices (struct mapped_symtab
*symtab
)
22269 for (i
= 0; i
< symtab
->size
; ++i
)
22271 struct symtab_index_entry
*entry
= symtab
->data
[i
];
22274 && entry
->cu_indices
!= NULL
)
22276 unsigned int next_to_insert
, next_to_check
;
22277 offset_type last_value
;
22279 qsort (VEC_address (offset_type
, entry
->cu_indices
),
22280 VEC_length (offset_type
, entry
->cu_indices
),
22281 sizeof (offset_type
), offset_type_compare
);
22283 last_value
= VEC_index (offset_type
, entry
->cu_indices
, 0);
22284 next_to_insert
= 1;
22285 for (next_to_check
= 1;
22286 next_to_check
< VEC_length (offset_type
, entry
->cu_indices
);
22289 if (VEC_index (offset_type
, entry
->cu_indices
, next_to_check
)
22292 last_value
= VEC_index (offset_type
, entry
->cu_indices
,
22294 VEC_replace (offset_type
, entry
->cu_indices
, next_to_insert
,
22299 VEC_truncate (offset_type
, entry
->cu_indices
, next_to_insert
);
22304 /* Add a vector of indices to the constant pool. */
22307 add_indices_to_cpool (htab_t symbol_hash_table
, struct obstack
*cpool
,
22308 struct symtab_index_entry
*entry
)
22312 slot
= htab_find_slot (symbol_hash_table
, entry
, INSERT
);
22315 offset_type len
= VEC_length (offset_type
, entry
->cu_indices
);
22316 offset_type val
= MAYBE_SWAP (len
);
22321 entry
->index_offset
= obstack_object_size (cpool
);
22323 obstack_grow (cpool
, &val
, sizeof (val
));
22325 VEC_iterate (offset_type
, entry
->cu_indices
, i
, iter
);
22328 val
= MAYBE_SWAP (iter
);
22329 obstack_grow (cpool
, &val
, sizeof (val
));
22334 struct symtab_index_entry
*old_entry
= *slot
;
22335 entry
->index_offset
= old_entry
->index_offset
;
22338 return entry
->index_offset
;
22341 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
22342 constant pool entries going into the obstack CPOOL. */
22345 write_hash_table (struct mapped_symtab
*symtab
,
22346 struct obstack
*output
, struct obstack
*cpool
)
22349 htab_t symbol_hash_table
;
22352 symbol_hash_table
= create_symbol_hash_table ();
22353 str_table
= create_strtab ();
22355 /* We add all the index vectors to the constant pool first, to
22356 ensure alignment is ok. */
22357 for (i
= 0; i
< symtab
->size
; ++i
)
22359 if (symtab
->data
[i
])
22360 add_indices_to_cpool (symbol_hash_table
, cpool
, symtab
->data
[i
]);
22363 /* Now write out the hash table. */
22364 for (i
= 0; i
< symtab
->size
; ++i
)
22366 offset_type str_off
, vec_off
;
22368 if (symtab
->data
[i
])
22370 str_off
= add_string (str_table
, cpool
, symtab
->data
[i
]->name
);
22371 vec_off
= symtab
->data
[i
]->index_offset
;
22375 /* While 0 is a valid constant pool index, it is not valid
22376 to have 0 for both offsets. */
22381 str_off
= MAYBE_SWAP (str_off
);
22382 vec_off
= MAYBE_SWAP (vec_off
);
22384 obstack_grow (output
, &str_off
, sizeof (str_off
));
22385 obstack_grow (output
, &vec_off
, sizeof (vec_off
));
22388 htab_delete (str_table
);
22389 htab_delete (symbol_hash_table
);
22392 /* Struct to map psymtab to CU index in the index file. */
22393 struct psymtab_cu_index_map
22395 struct partial_symtab
*psymtab
;
22396 unsigned int cu_index
;
22400 hash_psymtab_cu_index (const void *item
)
22402 const struct psymtab_cu_index_map
*map
= item
;
22404 return htab_hash_pointer (map
->psymtab
);
22408 eq_psymtab_cu_index (const void *item_lhs
, const void *item_rhs
)
22410 const struct psymtab_cu_index_map
*lhs
= item_lhs
;
22411 const struct psymtab_cu_index_map
*rhs
= item_rhs
;
22413 return lhs
->psymtab
== rhs
->psymtab
;
22416 /* Helper struct for building the address table. */
22417 struct addrmap_index_data
22419 struct objfile
*objfile
;
22420 struct obstack
*addr_obstack
;
22421 htab_t cu_index_htab
;
22423 /* Non-zero if the previous_* fields are valid.
22424 We can't write an entry until we see the next entry (since it is only then
22425 that we know the end of the entry). */
22426 int previous_valid
;
22427 /* Index of the CU in the table of all CUs in the index file. */
22428 unsigned int previous_cu_index
;
22429 /* Start address of the CU. */
22430 CORE_ADDR previous_cu_start
;
22433 /* Write an address entry to OBSTACK. */
22436 add_address_entry (struct objfile
*objfile
, struct obstack
*obstack
,
22437 CORE_ADDR start
, CORE_ADDR end
, unsigned int cu_index
)
22439 offset_type cu_index_to_write
;
22441 CORE_ADDR baseaddr
;
22443 baseaddr
= ANOFFSET (objfile
->section_offsets
, SECT_OFF_TEXT (objfile
));
22445 store_unsigned_integer (addr
, 8, BFD_ENDIAN_LITTLE
, start
- baseaddr
);
22446 obstack_grow (obstack
, addr
, 8);
22447 store_unsigned_integer (addr
, 8, BFD_ENDIAN_LITTLE
, end
- baseaddr
);
22448 obstack_grow (obstack
, addr
, 8);
22449 cu_index_to_write
= MAYBE_SWAP (cu_index
);
22450 obstack_grow (obstack
, &cu_index_to_write
, sizeof (offset_type
));
22453 /* Worker function for traversing an addrmap to build the address table. */
22456 add_address_entry_worker (void *datap
, CORE_ADDR start_addr
, void *obj
)
22458 struct addrmap_index_data
*data
= datap
;
22459 struct partial_symtab
*pst
= obj
;
22461 if (data
->previous_valid
)
22462 add_address_entry (data
->objfile
, data
->addr_obstack
,
22463 data
->previous_cu_start
, start_addr
,
22464 data
->previous_cu_index
);
22466 data
->previous_cu_start
= start_addr
;
22469 struct psymtab_cu_index_map find_map
, *map
;
22470 find_map
.psymtab
= pst
;
22471 map
= htab_find (data
->cu_index_htab
, &find_map
);
22472 gdb_assert (map
!= NULL
);
22473 data
->previous_cu_index
= map
->cu_index
;
22474 data
->previous_valid
= 1;
22477 data
->previous_valid
= 0;
22482 /* Write OBJFILE's address map to OBSTACK.
22483 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
22484 in the index file. */
22487 write_address_map (struct objfile
*objfile
, struct obstack
*obstack
,
22488 htab_t cu_index_htab
)
22490 struct addrmap_index_data addrmap_index_data
;
22492 /* When writing the address table, we have to cope with the fact that
22493 the addrmap iterator only provides the start of a region; we have to
22494 wait until the next invocation to get the start of the next region. */
22496 addrmap_index_data
.objfile
= objfile
;
22497 addrmap_index_data
.addr_obstack
= obstack
;
22498 addrmap_index_data
.cu_index_htab
= cu_index_htab
;
22499 addrmap_index_data
.previous_valid
= 0;
22501 addrmap_foreach (objfile
->psymtabs_addrmap
, add_address_entry_worker
,
22502 &addrmap_index_data
);
22504 /* It's highly unlikely the last entry (end address = 0xff...ff)
22505 is valid, but we should still handle it.
22506 The end address is recorded as the start of the next region, but that
22507 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
22509 if (addrmap_index_data
.previous_valid
)
22510 add_address_entry (objfile
, obstack
,
22511 addrmap_index_data
.previous_cu_start
, (CORE_ADDR
) -1,
22512 addrmap_index_data
.previous_cu_index
);
22515 /* Return the symbol kind of PSYM. */
22517 static gdb_index_symbol_kind
22518 symbol_kind (struct partial_symbol
*psym
)
22520 domain_enum domain
= PSYMBOL_DOMAIN (psym
);
22521 enum address_class aclass
= PSYMBOL_CLASS (psym
);
22529 return GDB_INDEX_SYMBOL_KIND_FUNCTION
;
22531 return GDB_INDEX_SYMBOL_KIND_TYPE
;
22533 case LOC_CONST_BYTES
:
22534 case LOC_OPTIMIZED_OUT
:
22536 return GDB_INDEX_SYMBOL_KIND_VARIABLE
;
22538 /* Note: It's currently impossible to recognize psyms as enum values
22539 short of reading the type info. For now punt. */
22540 return GDB_INDEX_SYMBOL_KIND_VARIABLE
;
22542 /* There are other LOC_FOO values that one might want to classify
22543 as variables, but dwarf2read.c doesn't currently use them. */
22544 return GDB_INDEX_SYMBOL_KIND_OTHER
;
22546 case STRUCT_DOMAIN
:
22547 return GDB_INDEX_SYMBOL_KIND_TYPE
;
22549 return GDB_INDEX_SYMBOL_KIND_OTHER
;
22553 /* Add a list of partial symbols to SYMTAB. */
22556 write_psymbols (struct mapped_symtab
*symtab
,
22558 struct partial_symbol
**psymp
,
22560 offset_type cu_index
,
22563 for (; count
-- > 0; ++psymp
)
22565 struct partial_symbol
*psym
= *psymp
;
22568 if (SYMBOL_LANGUAGE (psym
) == language_ada
)
22569 error (_("Ada is not currently supported by the index"));
22571 /* Only add a given psymbol once. */
22572 slot
= htab_find_slot (psyms_seen
, psym
, INSERT
);
22575 gdb_index_symbol_kind kind
= symbol_kind (psym
);
22578 add_index_entry (symtab
, SYMBOL_SEARCH_NAME (psym
),
22579 is_static
, kind
, cu_index
);
22584 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
22585 exception if there is an error. */
22588 write_obstack (FILE *file
, struct obstack
*obstack
)
22590 if (fwrite (obstack_base (obstack
), 1, obstack_object_size (obstack
),
22592 != obstack_object_size (obstack
))
22593 error (_("couldn't data write to file"));
22596 /* Unlink a file if the argument is not NULL. */
22599 unlink_if_set (void *p
)
22601 char **filename
= p
;
22603 unlink (*filename
);
22606 /* A helper struct used when iterating over debug_types. */
22607 struct signatured_type_index_data
22609 struct objfile
*objfile
;
22610 struct mapped_symtab
*symtab
;
22611 struct obstack
*types_list
;
22616 /* A helper function that writes a single signatured_type to an
22620 write_one_signatured_type (void **slot
, void *d
)
22622 struct signatured_type_index_data
*info
= d
;
22623 struct signatured_type
*entry
= (struct signatured_type
*) *slot
;
22624 struct partial_symtab
*psymtab
= entry
->per_cu
.v
.psymtab
;
22627 write_psymbols (info
->symtab
,
22629 info
->objfile
->global_psymbols
.list
22630 + psymtab
->globals_offset
,
22631 psymtab
->n_global_syms
, info
->cu_index
,
22633 write_psymbols (info
->symtab
,
22635 info
->objfile
->static_psymbols
.list
22636 + psymtab
->statics_offset
,
22637 psymtab
->n_static_syms
, info
->cu_index
,
22640 store_unsigned_integer (val
, 8, BFD_ENDIAN_LITTLE
,
22641 entry
->per_cu
.offset
.sect_off
);
22642 obstack_grow (info
->types_list
, val
, 8);
22643 store_unsigned_integer (val
, 8, BFD_ENDIAN_LITTLE
,
22644 entry
->type_offset_in_tu
.cu_off
);
22645 obstack_grow (info
->types_list
, val
, 8);
22646 store_unsigned_integer (val
, 8, BFD_ENDIAN_LITTLE
, entry
->signature
);
22647 obstack_grow (info
->types_list
, val
, 8);
22654 /* Recurse into all "included" dependencies and write their symbols as
22655 if they appeared in this psymtab. */
22658 recursively_write_psymbols (struct objfile
*objfile
,
22659 struct partial_symtab
*psymtab
,
22660 struct mapped_symtab
*symtab
,
22662 offset_type cu_index
)
22666 for (i
= 0; i
< psymtab
->number_of_dependencies
; ++i
)
22667 if (psymtab
->dependencies
[i
]->user
!= NULL
)
22668 recursively_write_psymbols (objfile
, psymtab
->dependencies
[i
],
22669 symtab
, psyms_seen
, cu_index
);
22671 write_psymbols (symtab
,
22673 objfile
->global_psymbols
.list
+ psymtab
->globals_offset
,
22674 psymtab
->n_global_syms
, cu_index
,
22676 write_psymbols (symtab
,
22678 objfile
->static_psymbols
.list
+ psymtab
->statics_offset
,
22679 psymtab
->n_static_syms
, cu_index
,
22683 /* Create an index file for OBJFILE in the directory DIR. */
22686 write_psymtabs_to_index (struct objfile
*objfile
, const char *dir
)
22688 struct cleanup
*cleanup
;
22689 char *filename
, *cleanup_filename
;
22690 struct obstack contents
, addr_obstack
, constant_pool
, symtab_obstack
;
22691 struct obstack cu_list
, types_cu_list
;
22694 struct mapped_symtab
*symtab
;
22695 offset_type val
, size_of_contents
, total_len
;
22698 htab_t cu_index_htab
;
22699 struct psymtab_cu_index_map
*psymtab_cu_index_map
;
22701 if (dwarf2_per_objfile
->using_index
)
22702 error (_("Cannot use an index to create the index"));
22704 if (VEC_length (dwarf2_section_info_def
, dwarf2_per_objfile
->types
) > 1)
22705 error (_("Cannot make an index when the file has multiple .debug_types sections"));
22707 if (!objfile
->psymtabs
|| !objfile
->psymtabs_addrmap
)
22710 if (stat (objfile_name (objfile
), &st
) < 0)
22711 perror_with_name (objfile_name (objfile
));
22713 filename
= concat (dir
, SLASH_STRING
, lbasename (objfile_name (objfile
)),
22714 INDEX_SUFFIX
, (char *) NULL
);
22715 cleanup
= make_cleanup (xfree
, filename
);
22717 out_file
= gdb_fopen_cloexec (filename
, "wb");
22719 error (_("Can't open `%s' for writing"), filename
);
22721 cleanup_filename
= filename
;
22722 make_cleanup (unlink_if_set
, &cleanup_filename
);
22724 symtab
= create_mapped_symtab ();
22725 make_cleanup (cleanup_mapped_symtab
, symtab
);
22727 obstack_init (&addr_obstack
);
22728 make_cleanup_obstack_free (&addr_obstack
);
22730 obstack_init (&cu_list
);
22731 make_cleanup_obstack_free (&cu_list
);
22733 obstack_init (&types_cu_list
);
22734 make_cleanup_obstack_free (&types_cu_list
);
22736 psyms_seen
= htab_create_alloc (100, htab_hash_pointer
, htab_eq_pointer
,
22737 NULL
, xcalloc
, xfree
);
22738 make_cleanup_htab_delete (psyms_seen
);
22740 /* While we're scanning CU's create a table that maps a psymtab pointer
22741 (which is what addrmap records) to its index (which is what is recorded
22742 in the index file). This will later be needed to write the address
22744 cu_index_htab
= htab_create_alloc (100,
22745 hash_psymtab_cu_index
,
22746 eq_psymtab_cu_index
,
22747 NULL
, xcalloc
, xfree
);
22748 make_cleanup_htab_delete (cu_index_htab
);
22749 psymtab_cu_index_map
= (struct psymtab_cu_index_map
*)
22750 xmalloc (sizeof (struct psymtab_cu_index_map
)
22751 * dwarf2_per_objfile
->n_comp_units
);
22752 make_cleanup (xfree
, psymtab_cu_index_map
);
22754 /* The CU list is already sorted, so we don't need to do additional
22755 work here. Also, the debug_types entries do not appear in
22756 all_comp_units, but only in their own hash table. */
22757 for (i
= 0; i
< dwarf2_per_objfile
->n_comp_units
; ++i
)
22759 struct dwarf2_per_cu_data
*per_cu
22760 = dwarf2_per_objfile
->all_comp_units
[i
];
22761 struct partial_symtab
*psymtab
= per_cu
->v
.psymtab
;
22763 struct psymtab_cu_index_map
*map
;
22766 /* CU of a shared file from 'dwz -m' may be unused by this main file.
22767 It may be referenced from a local scope but in such case it does not
22768 need to be present in .gdb_index. */
22769 if (psymtab
== NULL
)
22772 if (psymtab
->user
== NULL
)
22773 recursively_write_psymbols (objfile
, psymtab
, symtab
, psyms_seen
, i
);
22775 map
= &psymtab_cu_index_map
[i
];
22776 map
->psymtab
= psymtab
;
22778 slot
= htab_find_slot (cu_index_htab
, map
, INSERT
);
22779 gdb_assert (slot
!= NULL
);
22780 gdb_assert (*slot
== NULL
);
22783 store_unsigned_integer (val
, 8, BFD_ENDIAN_LITTLE
,
22784 per_cu
->offset
.sect_off
);
22785 obstack_grow (&cu_list
, val
, 8);
22786 store_unsigned_integer (val
, 8, BFD_ENDIAN_LITTLE
, per_cu
->length
);
22787 obstack_grow (&cu_list
, val
, 8);
22790 /* Dump the address map. */
22791 write_address_map (objfile
, &addr_obstack
, cu_index_htab
);
22793 /* Write out the .debug_type entries, if any. */
22794 if (dwarf2_per_objfile
->signatured_types
)
22796 struct signatured_type_index_data sig_data
;
22798 sig_data
.objfile
= objfile
;
22799 sig_data
.symtab
= symtab
;
22800 sig_data
.types_list
= &types_cu_list
;
22801 sig_data
.psyms_seen
= psyms_seen
;
22802 sig_data
.cu_index
= dwarf2_per_objfile
->n_comp_units
;
22803 htab_traverse_noresize (dwarf2_per_objfile
->signatured_types
,
22804 write_one_signatured_type
, &sig_data
);
22807 /* Now that we've processed all symbols we can shrink their cu_indices
22809 uniquify_cu_indices (symtab
);
22811 obstack_init (&constant_pool
);
22812 make_cleanup_obstack_free (&constant_pool
);
22813 obstack_init (&symtab_obstack
);
22814 make_cleanup_obstack_free (&symtab_obstack
);
22815 write_hash_table (symtab
, &symtab_obstack
, &constant_pool
);
22817 obstack_init (&contents
);
22818 make_cleanup_obstack_free (&contents
);
22819 size_of_contents
= 6 * sizeof (offset_type
);
22820 total_len
= size_of_contents
;
22822 /* The version number. */
22823 val
= MAYBE_SWAP (8);
22824 obstack_grow (&contents
, &val
, sizeof (val
));
22826 /* The offset of the CU list from the start of the file. */
22827 val
= MAYBE_SWAP (total_len
);
22828 obstack_grow (&contents
, &val
, sizeof (val
));
22829 total_len
+= obstack_object_size (&cu_list
);
22831 /* The offset of the types CU list from the start of the file. */
22832 val
= MAYBE_SWAP (total_len
);
22833 obstack_grow (&contents
, &val
, sizeof (val
));
22834 total_len
+= obstack_object_size (&types_cu_list
);
22836 /* The offset of the address table from the start of the file. */
22837 val
= MAYBE_SWAP (total_len
);
22838 obstack_grow (&contents
, &val
, sizeof (val
));
22839 total_len
+= obstack_object_size (&addr_obstack
);
22841 /* The offset of the symbol table from the start of the file. */
22842 val
= MAYBE_SWAP (total_len
);
22843 obstack_grow (&contents
, &val
, sizeof (val
));
22844 total_len
+= obstack_object_size (&symtab_obstack
);
22846 /* The offset of the constant pool from the start of the file. */
22847 val
= MAYBE_SWAP (total_len
);
22848 obstack_grow (&contents
, &val
, sizeof (val
));
22849 total_len
+= obstack_object_size (&constant_pool
);
22851 gdb_assert (obstack_object_size (&contents
) == size_of_contents
);
22853 write_obstack (out_file
, &contents
);
22854 write_obstack (out_file
, &cu_list
);
22855 write_obstack (out_file
, &types_cu_list
);
22856 write_obstack (out_file
, &addr_obstack
);
22857 write_obstack (out_file
, &symtab_obstack
);
22858 write_obstack (out_file
, &constant_pool
);
22862 /* We want to keep the file, so we set cleanup_filename to NULL
22863 here. See unlink_if_set. */
22864 cleanup_filename
= NULL
;
22866 do_cleanups (cleanup
);
22869 /* Implementation of the `save gdb-index' command.
22871 Note that the file format used by this command is documented in the
22872 GDB manual. Any changes here must be documented there. */
22875 save_gdb_index_command (char *arg
, int from_tty
)
22877 struct objfile
*objfile
;
22880 error (_("usage: save gdb-index DIRECTORY"));
22882 ALL_OBJFILES (objfile
)
22886 /* If the objfile does not correspond to an actual file, skip it. */
22887 if (stat (objfile_name (objfile
), &st
) < 0)
22890 dwarf2_per_objfile
= objfile_data (objfile
, dwarf2_objfile_data_key
);
22891 if (dwarf2_per_objfile
)
22893 volatile struct gdb_exception except
;
22895 TRY_CATCH (except
, RETURN_MASK_ERROR
)
22897 write_psymtabs_to_index (objfile
, arg
);
22899 if (except
.reason
< 0)
22900 exception_fprintf (gdb_stderr
, except
,
22901 _("Error while writing index for `%s': "),
22902 objfile_name (objfile
));
22909 int dwarf2_always_disassemble
;
22912 show_dwarf2_always_disassemble (struct ui_file
*file
, int from_tty
,
22913 struct cmd_list_element
*c
, const char *value
)
22915 fprintf_filtered (file
,
22916 _("Whether to always disassemble "
22917 "DWARF expressions is %s.\n"),
22922 show_check_physname (struct ui_file
*file
, int from_tty
,
22923 struct cmd_list_element
*c
, const char *value
)
22925 fprintf_filtered (file
,
22926 _("Whether to check \"physname\" is %s.\n"),
22930 void _initialize_dwarf2_read (void);
22933 _initialize_dwarf2_read (void)
22935 struct cmd_list_element
*c
;
22937 dwarf2_objfile_data_key
22938 = register_objfile_data_with_cleanup (NULL
, dwarf2_per_objfile_free
);
22940 add_prefix_cmd ("dwarf2", class_maintenance
, set_dwarf2_cmd
, _("\
22941 Set DWARF 2 specific variables.\n\
22942 Configure DWARF 2 variables such as the cache size"),
22943 &set_dwarf2_cmdlist
, "maintenance set dwarf2 ",
22944 0/*allow-unknown*/, &maintenance_set_cmdlist
);
22946 add_prefix_cmd ("dwarf2", class_maintenance
, show_dwarf2_cmd
, _("\
22947 Show DWARF 2 specific variables\n\
22948 Show DWARF 2 variables such as the cache size"),
22949 &show_dwarf2_cmdlist
, "maintenance show dwarf2 ",
22950 0/*allow-unknown*/, &maintenance_show_cmdlist
);
22952 add_setshow_zinteger_cmd ("max-cache-age", class_obscure
,
22953 &dwarf2_max_cache_age
, _("\
22954 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
22955 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
22956 A higher limit means that cached compilation units will be stored\n\
22957 in memory longer, and more total memory will be used. Zero disables\n\
22958 caching, which can slow down startup."),
22960 show_dwarf2_max_cache_age
,
22961 &set_dwarf2_cmdlist
,
22962 &show_dwarf2_cmdlist
);
22964 add_setshow_boolean_cmd ("always-disassemble", class_obscure
,
22965 &dwarf2_always_disassemble
, _("\
22966 Set whether `info address' always disassembles DWARF expressions."), _("\
22967 Show whether `info address' always disassembles DWARF expressions."), _("\
22968 When enabled, DWARF expressions are always printed in an assembly-like\n\
22969 syntax. When disabled, expressions will be printed in a more\n\
22970 conversational style, when possible."),
22972 show_dwarf2_always_disassemble
,
22973 &set_dwarf2_cmdlist
,
22974 &show_dwarf2_cmdlist
);
22976 add_setshow_zuinteger_cmd ("dwarf2-read", no_class
, &dwarf2_read_debug
, _("\
22977 Set debugging of the dwarf2 reader."), _("\
22978 Show debugging of the dwarf2 reader."), _("\
22979 When enabled (non-zero), debugging messages are printed during dwarf2\n\
22980 reading and symtab expansion. A value of 1 (one) provides basic\n\
22981 information. A value greater than 1 provides more verbose information."),
22984 &setdebuglist
, &showdebuglist
);
22986 add_setshow_zuinteger_cmd ("dwarf2-die", no_class
, &dwarf2_die_debug
, _("\
22987 Set debugging of the dwarf2 DIE reader."), _("\
22988 Show debugging of the dwarf2 DIE reader."), _("\
22989 When enabled (non-zero), DIEs are dumped after they are read in.\n\
22990 The value is the maximum depth to print."),
22993 &setdebuglist
, &showdebuglist
);
22995 add_setshow_boolean_cmd ("check-physname", no_class
, &check_physname
, _("\
22996 Set cross-checking of \"physname\" code against demangler."), _("\
22997 Show cross-checking of \"physname\" code against demangler."), _("\
22998 When enabled, GDB's internal \"physname\" code is checked against\n\
23000 NULL
, show_check_physname
,
23001 &setdebuglist
, &showdebuglist
);
23003 add_setshow_boolean_cmd ("use-deprecated-index-sections",
23004 no_class
, &use_deprecated_index_sections
, _("\
23005 Set whether to use deprecated gdb_index sections."), _("\
23006 Show whether to use deprecated gdb_index sections."), _("\
23007 When enabled, deprecated .gdb_index sections are used anyway.\n\
23008 Normally they are ignored either because of a missing feature or\n\
23009 performance issue.\n\
23010 Warning: This option must be enabled before gdb reads the file."),
23013 &setlist
, &showlist
);
23015 c
= add_cmd ("gdb-index", class_files
, save_gdb_index_command
,
23017 Save a gdb-index file.\n\
23018 Usage: save gdb-index DIRECTORY"),
23020 set_cmd_completer (c
, filename_completer
);
23022 dwarf2_locexpr_index
= register_symbol_computed_impl (LOC_COMPUTED
,
23023 &dwarf2_locexpr_funcs
);
23024 dwarf2_loclist_index
= register_symbol_computed_impl (LOC_COMPUTED
,
23025 &dwarf2_loclist_funcs
);
23027 dwarf2_locexpr_block_index
= register_symbol_block_impl (LOC_BLOCK
,
23028 &dwarf2_block_frame_base_locexpr_funcs
);
23029 dwarf2_loclist_block_index
= register_symbol_block_impl (LOC_BLOCK
,
23030 &dwarf2_block_frame_base_loclist_funcs
);