Fix lost line info for symbol at addr zero
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2018 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "dwarf2read.h"
33 #include "dwarf-index-common.h"
34 #include "bfd.h"
35 #include "elf-bfd.h"
36 #include "symtab.h"
37 #include "gdbtypes.h"
38 #include "objfiles.h"
39 #include "dwarf2.h"
40 #include "buildsym.h"
41 #include "demangle.h"
42 #include "gdb-demangle.h"
43 #include "expression.h"
44 #include "filenames.h" /* for DOSish file names */
45 #include "macrotab.h"
46 #include "language.h"
47 #include "complaints.h"
48 #include "bcache.h"
49 #include "dwarf2expr.h"
50 #include "dwarf2loc.h"
51 #include "cp-support.h"
52 #include "hashtab.h"
53 #include "command.h"
54 #include "gdbcmd.h"
55 #include "block.h"
56 #include "addrmap.h"
57 #include "typeprint.h"
58 #include "psympriv.h"
59 #include <sys/stat.h>
60 #include "completer.h"
61 #include "vec.h"
62 #include "c-lang.h"
63 #include "go-lang.h"
64 #include "valprint.h"
65 #include "gdbcore.h" /* for gnutarget */
66 #include "gdb/gdb-index.h"
67 #include <ctype.h>
68 #include "gdb_bfd.h"
69 #include "f-lang.h"
70 #include "source.h"
71 #include "filestuff.h"
72 #include "build-id.h"
73 #include "namespace.h"
74 #include "common/gdb_unlinker.h"
75 #include "common/function-view.h"
76 #include "common/gdb_optional.h"
77 #include "common/underlying.h"
78 #include "common/byte-vector.h"
79 #include "common/hash_enum.h"
80 #include "filename-seen-cache.h"
81 #include "producer.h"
82 #include <fcntl.h>
83 #include <sys/types.h>
84 #include <algorithm>
85 #include <unordered_set>
86 #include <unordered_map>
87 #include "selftest.h"
88 #include <cmath>
89 #include <set>
90 #include <forward_list>
91 #include "rust-lang.h"
92 #include "common/pathstuff.h"
93
94 /* When == 1, print basic high level tracing messages.
95 When > 1, be more verbose.
96 This is in contrast to the low level DIE reading of dwarf_die_debug. */
97 static unsigned int dwarf_read_debug = 0;
98
99 /* When non-zero, dump DIEs after they are read in. */
100 static unsigned int dwarf_die_debug = 0;
101
102 /* When non-zero, dump line number entries as they are read in. */
103 static unsigned int dwarf_line_debug = 0;
104
105 /* When non-zero, cross-check physname against demangler. */
106 static int check_physname = 0;
107
108 /* When non-zero, do not reject deprecated .gdb_index sections. */
109 static int use_deprecated_index_sections = 0;
110
111 static const struct objfile_data *dwarf2_objfile_data_key;
112
113 /* The "aclass" indices for various kinds of computed DWARF symbols. */
114
115 static int dwarf2_locexpr_index;
116 static int dwarf2_loclist_index;
117 static int dwarf2_locexpr_block_index;
118 static int dwarf2_loclist_block_index;
119
120 /* An index into a (C++) symbol name component in a symbol name as
121 recorded in the mapped_index's symbol table. For each C++ symbol
122 in the symbol table, we record one entry for the start of each
123 component in the symbol in a table of name components, and then
124 sort the table, in order to be able to binary search symbol names,
125 ignoring leading namespaces, both completion and regular look up.
126 For example, for symbol "A::B::C", we'll have an entry that points
127 to "A::B::C", another that points to "B::C", and another for "C".
128 Note that function symbols in GDB index have no parameter
129 information, just the function/method names. You can convert a
130 name_component to a "const char *" using the
131 'mapped_index::symbol_name_at(offset_type)' method. */
132
133 struct name_component
134 {
135 /* Offset in the symbol name where the component starts. Stored as
136 a (32-bit) offset instead of a pointer to save memory and improve
137 locality on 64-bit architectures. */
138 offset_type name_offset;
139
140 /* The symbol's index in the symbol and constant pool tables of a
141 mapped_index. */
142 offset_type idx;
143 };
144
145 /* Base class containing bits shared by both .gdb_index and
146 .debug_name indexes. */
147
148 struct mapped_index_base
149 {
150 mapped_index_base () = default;
151 DISABLE_COPY_AND_ASSIGN (mapped_index_base);
152
153 /* The name_component table (a sorted vector). See name_component's
154 description above. */
155 std::vector<name_component> name_components;
156
157 /* How NAME_COMPONENTS is sorted. */
158 enum case_sensitivity name_components_casing;
159
160 /* Return the number of names in the symbol table. */
161 virtual size_t symbol_name_count () const = 0;
162
163 /* Get the name of the symbol at IDX in the symbol table. */
164 virtual const char *symbol_name_at (offset_type idx) const = 0;
165
166 /* Return whether the name at IDX in the symbol table should be
167 ignored. */
168 virtual bool symbol_name_slot_invalid (offset_type idx) const
169 {
170 return false;
171 }
172
173 /* Build the symbol name component sorted vector, if we haven't
174 yet. */
175 void build_name_components ();
176
177 /* Returns the lower (inclusive) and upper (exclusive) bounds of the
178 possible matches for LN_NO_PARAMS in the name component
179 vector. */
180 std::pair<std::vector<name_component>::const_iterator,
181 std::vector<name_component>::const_iterator>
182 find_name_components_bounds (const lookup_name_info &ln_no_params) const;
183
184 /* Prevent deleting/destroying via a base class pointer. */
185 protected:
186 ~mapped_index_base() = default;
187 };
188
189 /* A description of the mapped index. The file format is described in
190 a comment by the code that writes the index. */
191 struct mapped_index final : public mapped_index_base
192 {
193 /* A slot/bucket in the symbol table hash. */
194 struct symbol_table_slot
195 {
196 const offset_type name;
197 const offset_type vec;
198 };
199
200 /* Index data format version. */
201 int version = 0;
202
203 /* The address table data. */
204 gdb::array_view<const gdb_byte> address_table;
205
206 /* The symbol table, implemented as a hash table. */
207 gdb::array_view<symbol_table_slot> symbol_table;
208
209 /* A pointer to the constant pool. */
210 const char *constant_pool = nullptr;
211
212 bool symbol_name_slot_invalid (offset_type idx) const override
213 {
214 const auto &bucket = this->symbol_table[idx];
215 return bucket.name == 0 && bucket.vec;
216 }
217
218 /* Convenience method to get at the name of the symbol at IDX in the
219 symbol table. */
220 const char *symbol_name_at (offset_type idx) const override
221 { return this->constant_pool + MAYBE_SWAP (this->symbol_table[idx].name); }
222
223 size_t symbol_name_count () const override
224 { return this->symbol_table.size (); }
225 };
226
227 /* A description of the mapped .debug_names.
228 Uninitialized map has CU_COUNT 0. */
229 struct mapped_debug_names final : public mapped_index_base
230 {
231 mapped_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile_)
232 : dwarf2_per_objfile (dwarf2_per_objfile_)
233 {}
234
235 struct dwarf2_per_objfile *dwarf2_per_objfile;
236 bfd_endian dwarf5_byte_order;
237 bool dwarf5_is_dwarf64;
238 bool augmentation_is_gdb;
239 uint8_t offset_size;
240 uint32_t cu_count = 0;
241 uint32_t tu_count, bucket_count, name_count;
242 const gdb_byte *cu_table_reordered, *tu_table_reordered;
243 const uint32_t *bucket_table_reordered, *hash_table_reordered;
244 const gdb_byte *name_table_string_offs_reordered;
245 const gdb_byte *name_table_entry_offs_reordered;
246 const gdb_byte *entry_pool;
247
248 struct index_val
249 {
250 ULONGEST dwarf_tag;
251 struct attr
252 {
253 /* Attribute name DW_IDX_*. */
254 ULONGEST dw_idx;
255
256 /* Attribute form DW_FORM_*. */
257 ULONGEST form;
258
259 /* Value if FORM is DW_FORM_implicit_const. */
260 LONGEST implicit_const;
261 };
262 std::vector<attr> attr_vec;
263 };
264
265 std::unordered_map<ULONGEST, index_val> abbrev_map;
266
267 const char *namei_to_name (uint32_t namei) const;
268
269 /* Implementation of the mapped_index_base virtual interface, for
270 the name_components cache. */
271
272 const char *symbol_name_at (offset_type idx) const override
273 { return namei_to_name (idx); }
274
275 size_t symbol_name_count () const override
276 { return this->name_count; }
277 };
278
279 /* See dwarf2read.h. */
280
281 dwarf2_per_objfile *
282 get_dwarf2_per_objfile (struct objfile *objfile)
283 {
284 return ((struct dwarf2_per_objfile *)
285 objfile_data (objfile, dwarf2_objfile_data_key));
286 }
287
288 /* Set the dwarf2_per_objfile associated to OBJFILE. */
289
290 void
291 set_dwarf2_per_objfile (struct objfile *objfile,
292 struct dwarf2_per_objfile *dwarf2_per_objfile)
293 {
294 gdb_assert (get_dwarf2_per_objfile (objfile) == NULL);
295 set_objfile_data (objfile, dwarf2_objfile_data_key, dwarf2_per_objfile);
296 }
297
298 /* Default names of the debugging sections. */
299
300 /* Note that if the debugging section has been compressed, it might
301 have a name like .zdebug_info. */
302
303 static const struct dwarf2_debug_sections dwarf2_elf_names =
304 {
305 { ".debug_info", ".zdebug_info" },
306 { ".debug_abbrev", ".zdebug_abbrev" },
307 { ".debug_line", ".zdebug_line" },
308 { ".debug_loc", ".zdebug_loc" },
309 { ".debug_loclists", ".zdebug_loclists" },
310 { ".debug_macinfo", ".zdebug_macinfo" },
311 { ".debug_macro", ".zdebug_macro" },
312 { ".debug_str", ".zdebug_str" },
313 { ".debug_line_str", ".zdebug_line_str" },
314 { ".debug_ranges", ".zdebug_ranges" },
315 { ".debug_rnglists", ".zdebug_rnglists" },
316 { ".debug_types", ".zdebug_types" },
317 { ".debug_addr", ".zdebug_addr" },
318 { ".debug_frame", ".zdebug_frame" },
319 { ".eh_frame", NULL },
320 { ".gdb_index", ".zgdb_index" },
321 { ".debug_names", ".zdebug_names" },
322 { ".debug_aranges", ".zdebug_aranges" },
323 23
324 };
325
326 /* List of DWO/DWP sections. */
327
328 static const struct dwop_section_names
329 {
330 struct dwarf2_section_names abbrev_dwo;
331 struct dwarf2_section_names info_dwo;
332 struct dwarf2_section_names line_dwo;
333 struct dwarf2_section_names loc_dwo;
334 struct dwarf2_section_names loclists_dwo;
335 struct dwarf2_section_names macinfo_dwo;
336 struct dwarf2_section_names macro_dwo;
337 struct dwarf2_section_names str_dwo;
338 struct dwarf2_section_names str_offsets_dwo;
339 struct dwarf2_section_names types_dwo;
340 struct dwarf2_section_names cu_index;
341 struct dwarf2_section_names tu_index;
342 }
343 dwop_section_names =
344 {
345 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
346 { ".debug_info.dwo", ".zdebug_info.dwo" },
347 { ".debug_line.dwo", ".zdebug_line.dwo" },
348 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
349 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
350 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
351 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
352 { ".debug_str.dwo", ".zdebug_str.dwo" },
353 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
354 { ".debug_types.dwo", ".zdebug_types.dwo" },
355 { ".debug_cu_index", ".zdebug_cu_index" },
356 { ".debug_tu_index", ".zdebug_tu_index" },
357 };
358
359 /* local data types */
360
361 /* The data in a compilation unit header, after target2host
362 translation, looks like this. */
363 struct comp_unit_head
364 {
365 unsigned int length;
366 short version;
367 unsigned char addr_size;
368 unsigned char signed_addr_p;
369 sect_offset abbrev_sect_off;
370
371 /* Size of file offsets; either 4 or 8. */
372 unsigned int offset_size;
373
374 /* Size of the length field; either 4 or 12. */
375 unsigned int initial_length_size;
376
377 enum dwarf_unit_type unit_type;
378
379 /* Offset to the first byte of this compilation unit header in the
380 .debug_info section, for resolving relative reference dies. */
381 sect_offset sect_off;
382
383 /* Offset to first die in this cu from the start of the cu.
384 This will be the first byte following the compilation unit header. */
385 cu_offset first_die_cu_offset;
386
387 /* 64-bit signature of this type unit - it is valid only for
388 UNIT_TYPE DW_UT_type. */
389 ULONGEST signature;
390
391 /* For types, offset in the type's DIE of the type defined by this TU. */
392 cu_offset type_cu_offset_in_tu;
393 };
394
395 /* Type used for delaying computation of method physnames.
396 See comments for compute_delayed_physnames. */
397 struct delayed_method_info
398 {
399 /* The type to which the method is attached, i.e., its parent class. */
400 struct type *type;
401
402 /* The index of the method in the type's function fieldlists. */
403 int fnfield_index;
404
405 /* The index of the method in the fieldlist. */
406 int index;
407
408 /* The name of the DIE. */
409 const char *name;
410
411 /* The DIE associated with this method. */
412 struct die_info *die;
413 };
414
415 /* Internal state when decoding a particular compilation unit. */
416 struct dwarf2_cu
417 {
418 explicit dwarf2_cu (struct dwarf2_per_cu_data *per_cu);
419 ~dwarf2_cu ();
420
421 DISABLE_COPY_AND_ASSIGN (dwarf2_cu);
422
423 /* The header of the compilation unit. */
424 struct comp_unit_head header {};
425
426 /* Base address of this compilation unit. */
427 CORE_ADDR base_address = 0;
428
429 /* Non-zero if base_address has been set. */
430 int base_known = 0;
431
432 /* The language we are debugging. */
433 enum language language = language_unknown;
434 const struct language_defn *language_defn = nullptr;
435
436 const char *producer = nullptr;
437
438 /* The generic symbol table building routines have separate lists for
439 file scope symbols and all all other scopes (local scopes). So
440 we need to select the right one to pass to add_symbol_to_list().
441 We do it by keeping a pointer to the correct list in list_in_scope.
442
443 FIXME: The original dwarf code just treated the file scope as the
444 first local scope, and all other local scopes as nested local
445 scopes, and worked fine. Check to see if we really need to
446 distinguish these in buildsym.c. */
447 struct pending **list_in_scope = nullptr;
448
449 /* Hash table holding all the loaded partial DIEs
450 with partial_die->offset.SECT_OFF as hash. */
451 htab_t partial_dies = nullptr;
452
453 /* Storage for things with the same lifetime as this read-in compilation
454 unit, including partial DIEs. */
455 auto_obstack comp_unit_obstack;
456
457 /* When multiple dwarf2_cu structures are living in memory, this field
458 chains them all together, so that they can be released efficiently.
459 We will probably also want a generation counter so that most-recently-used
460 compilation units are cached... */
461 struct dwarf2_per_cu_data *read_in_chain = nullptr;
462
463 /* Backlink to our per_cu entry. */
464 struct dwarf2_per_cu_data *per_cu;
465
466 /* How many compilation units ago was this CU last referenced? */
467 int last_used = 0;
468
469 /* A hash table of DIE cu_offset for following references with
470 die_info->offset.sect_off as hash. */
471 htab_t die_hash = nullptr;
472
473 /* Full DIEs if read in. */
474 struct die_info *dies = nullptr;
475
476 /* A set of pointers to dwarf2_per_cu_data objects for compilation
477 units referenced by this one. Only set during full symbol processing;
478 partial symbol tables do not have dependencies. */
479 htab_t dependencies = nullptr;
480
481 /* Header data from the line table, during full symbol processing. */
482 struct line_header *line_header = nullptr;
483 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
484 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
485 this is the DW_TAG_compile_unit die for this CU. We'll hold on
486 to the line header as long as this DIE is being processed. See
487 process_die_scope. */
488 die_info *line_header_die_owner = nullptr;
489
490 /* A list of methods which need to have physnames computed
491 after all type information has been read. */
492 std::vector<delayed_method_info> method_list;
493
494 /* To be copied to symtab->call_site_htab. */
495 htab_t call_site_htab = nullptr;
496
497 /* Non-NULL if this CU came from a DWO file.
498 There is an invariant here that is important to remember:
499 Except for attributes copied from the top level DIE in the "main"
500 (or "stub") file in preparation for reading the DWO file
501 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
502 Either there isn't a DWO file (in which case this is NULL and the point
503 is moot), or there is and either we're not going to read it (in which
504 case this is NULL) or there is and we are reading it (in which case this
505 is non-NULL). */
506 struct dwo_unit *dwo_unit = nullptr;
507
508 /* The DW_AT_addr_base attribute if present, zero otherwise
509 (zero is a valid value though).
510 Note this value comes from the Fission stub CU/TU's DIE. */
511 ULONGEST addr_base = 0;
512
513 /* The DW_AT_ranges_base attribute if present, zero otherwise
514 (zero is a valid value though).
515 Note this value comes from the Fission stub CU/TU's DIE.
516 Also note that the value is zero in the non-DWO case so this value can
517 be used without needing to know whether DWO files are in use or not.
518 N.B. This does not apply to DW_AT_ranges appearing in
519 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
520 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
521 DW_AT_ranges_base *would* have to be applied, and we'd have to care
522 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
523 ULONGEST ranges_base = 0;
524
525 /* When reading debug info generated by older versions of rustc, we
526 have to rewrite some union types to be struct types with a
527 variant part. This rewriting must be done after the CU is fully
528 read in, because otherwise at the point of rewriting some struct
529 type might not have been fully processed. So, we keep a list of
530 all such types here and process them after expansion. */
531 std::vector<struct type *> rust_unions;
532
533 /* Mark used when releasing cached dies. */
534 unsigned int mark : 1;
535
536 /* This CU references .debug_loc. See the symtab->locations_valid field.
537 This test is imperfect as there may exist optimized debug code not using
538 any location list and still facing inlining issues if handled as
539 unoptimized code. For a future better test see GCC PR other/32998. */
540 unsigned int has_loclist : 1;
541
542 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
543 if all the producer_is_* fields are valid. This information is cached
544 because profiling CU expansion showed excessive time spent in
545 producer_is_gxx_lt_4_6. */
546 unsigned int checked_producer : 1;
547 unsigned int producer_is_gxx_lt_4_6 : 1;
548 unsigned int producer_is_gcc_lt_4_3 : 1;
549 unsigned int producer_is_icc_lt_14 : 1;
550
551 /* When set, the file that we're processing is known to have
552 debugging info for C++ namespaces. GCC 3.3.x did not produce
553 this information, but later versions do. */
554
555 unsigned int processing_has_namespace_info : 1;
556
557 struct partial_die_info *find_partial_die (sect_offset sect_off);
558 };
559
560 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
561 This includes type_unit_group and quick_file_names. */
562
563 struct stmt_list_hash
564 {
565 /* The DWO unit this table is from or NULL if there is none. */
566 struct dwo_unit *dwo_unit;
567
568 /* Offset in .debug_line or .debug_line.dwo. */
569 sect_offset line_sect_off;
570 };
571
572 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
573 an object of this type. */
574
575 struct type_unit_group
576 {
577 /* dwarf2read.c's main "handle" on a TU symtab.
578 To simplify things we create an artificial CU that "includes" all the
579 type units using this stmt_list so that the rest of the code still has
580 a "per_cu" handle on the symtab.
581 This PER_CU is recognized by having no section. */
582 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
583 struct dwarf2_per_cu_data per_cu;
584
585 /* The TUs that share this DW_AT_stmt_list entry.
586 This is added to while parsing type units to build partial symtabs,
587 and is deleted afterwards and not used again. */
588 VEC (sig_type_ptr) *tus;
589
590 /* The compunit symtab.
591 Type units in a group needn't all be defined in the same source file,
592 so we create an essentially anonymous symtab as the compunit symtab. */
593 struct compunit_symtab *compunit_symtab;
594
595 /* The data used to construct the hash key. */
596 struct stmt_list_hash hash;
597
598 /* The number of symtabs from the line header.
599 The value here must match line_header.num_file_names. */
600 unsigned int num_symtabs;
601
602 /* The symbol tables for this TU (obtained from the files listed in
603 DW_AT_stmt_list).
604 WARNING: The order of entries here must match the order of entries
605 in the line header. After the first TU using this type_unit_group, the
606 line header for the subsequent TUs is recreated from this. This is done
607 because we need to use the same symtabs for each TU using the same
608 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
609 there's no guarantee the line header doesn't have duplicate entries. */
610 struct symtab **symtabs;
611 };
612
613 /* These sections are what may appear in a (real or virtual) DWO file. */
614
615 struct dwo_sections
616 {
617 struct dwarf2_section_info abbrev;
618 struct dwarf2_section_info line;
619 struct dwarf2_section_info loc;
620 struct dwarf2_section_info loclists;
621 struct dwarf2_section_info macinfo;
622 struct dwarf2_section_info macro;
623 struct dwarf2_section_info str;
624 struct dwarf2_section_info str_offsets;
625 /* In the case of a virtual DWO file, these two are unused. */
626 struct dwarf2_section_info info;
627 VEC (dwarf2_section_info_def) *types;
628 };
629
630 /* CUs/TUs in DWP/DWO files. */
631
632 struct dwo_unit
633 {
634 /* Backlink to the containing struct dwo_file. */
635 struct dwo_file *dwo_file;
636
637 /* The "id" that distinguishes this CU/TU.
638 .debug_info calls this "dwo_id", .debug_types calls this "signature".
639 Since signatures came first, we stick with it for consistency. */
640 ULONGEST signature;
641
642 /* The section this CU/TU lives in, in the DWO file. */
643 struct dwarf2_section_info *section;
644
645 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
646 sect_offset sect_off;
647 unsigned int length;
648
649 /* For types, offset in the type's DIE of the type defined by this TU. */
650 cu_offset type_offset_in_tu;
651 };
652
653 /* include/dwarf2.h defines the DWP section codes.
654 It defines a max value but it doesn't define a min value, which we
655 use for error checking, so provide one. */
656
657 enum dwp_v2_section_ids
658 {
659 DW_SECT_MIN = 1
660 };
661
662 /* Data for one DWO file.
663
664 This includes virtual DWO files (a virtual DWO file is a DWO file as it
665 appears in a DWP file). DWP files don't really have DWO files per se -
666 comdat folding of types "loses" the DWO file they came from, and from
667 a high level view DWP files appear to contain a mass of random types.
668 However, to maintain consistency with the non-DWP case we pretend DWP
669 files contain virtual DWO files, and we assign each TU with one virtual
670 DWO file (generally based on the line and abbrev section offsets -
671 a heuristic that seems to work in practice). */
672
673 struct dwo_file
674 {
675 /* The DW_AT_GNU_dwo_name attribute.
676 For virtual DWO files the name is constructed from the section offsets
677 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
678 from related CU+TUs. */
679 const char *dwo_name;
680
681 /* The DW_AT_comp_dir attribute. */
682 const char *comp_dir;
683
684 /* The bfd, when the file is open. Otherwise this is NULL.
685 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
686 bfd *dbfd;
687
688 /* The sections that make up this DWO file.
689 Remember that for virtual DWO files in DWP V2, these are virtual
690 sections (for lack of a better name). */
691 struct dwo_sections sections;
692
693 /* The CUs in the file.
694 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
695 an extension to handle LLVM's Link Time Optimization output (where
696 multiple source files may be compiled into a single object/dwo pair). */
697 htab_t cus;
698
699 /* Table of TUs in the file.
700 Each element is a struct dwo_unit. */
701 htab_t tus;
702 };
703
704 /* These sections are what may appear in a DWP file. */
705
706 struct dwp_sections
707 {
708 /* These are used by both DWP version 1 and 2. */
709 struct dwarf2_section_info str;
710 struct dwarf2_section_info cu_index;
711 struct dwarf2_section_info tu_index;
712
713 /* These are only used by DWP version 2 files.
714 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
715 sections are referenced by section number, and are not recorded here.
716 In DWP version 2 there is at most one copy of all these sections, each
717 section being (effectively) comprised of the concatenation of all of the
718 individual sections that exist in the version 1 format.
719 To keep the code simple we treat each of these concatenated pieces as a
720 section itself (a virtual section?). */
721 struct dwarf2_section_info abbrev;
722 struct dwarf2_section_info info;
723 struct dwarf2_section_info line;
724 struct dwarf2_section_info loc;
725 struct dwarf2_section_info macinfo;
726 struct dwarf2_section_info macro;
727 struct dwarf2_section_info str_offsets;
728 struct dwarf2_section_info types;
729 };
730
731 /* These sections are what may appear in a virtual DWO file in DWP version 1.
732 A virtual DWO file is a DWO file as it appears in a DWP file. */
733
734 struct virtual_v1_dwo_sections
735 {
736 struct dwarf2_section_info abbrev;
737 struct dwarf2_section_info line;
738 struct dwarf2_section_info loc;
739 struct dwarf2_section_info macinfo;
740 struct dwarf2_section_info macro;
741 struct dwarf2_section_info str_offsets;
742 /* Each DWP hash table entry records one CU or one TU.
743 That is recorded here, and copied to dwo_unit.section. */
744 struct dwarf2_section_info info_or_types;
745 };
746
747 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
748 In version 2, the sections of the DWO files are concatenated together
749 and stored in one section of that name. Thus each ELF section contains
750 several "virtual" sections. */
751
752 struct virtual_v2_dwo_sections
753 {
754 bfd_size_type abbrev_offset;
755 bfd_size_type abbrev_size;
756
757 bfd_size_type line_offset;
758 bfd_size_type line_size;
759
760 bfd_size_type loc_offset;
761 bfd_size_type loc_size;
762
763 bfd_size_type macinfo_offset;
764 bfd_size_type macinfo_size;
765
766 bfd_size_type macro_offset;
767 bfd_size_type macro_size;
768
769 bfd_size_type str_offsets_offset;
770 bfd_size_type str_offsets_size;
771
772 /* Each DWP hash table entry records one CU or one TU.
773 That is recorded here, and copied to dwo_unit.section. */
774 bfd_size_type info_or_types_offset;
775 bfd_size_type info_or_types_size;
776 };
777
778 /* Contents of DWP hash tables. */
779
780 struct dwp_hash_table
781 {
782 uint32_t version, nr_columns;
783 uint32_t nr_units, nr_slots;
784 const gdb_byte *hash_table, *unit_table;
785 union
786 {
787 struct
788 {
789 const gdb_byte *indices;
790 } v1;
791 struct
792 {
793 /* This is indexed by column number and gives the id of the section
794 in that column. */
795 #define MAX_NR_V2_DWO_SECTIONS \
796 (1 /* .debug_info or .debug_types */ \
797 + 1 /* .debug_abbrev */ \
798 + 1 /* .debug_line */ \
799 + 1 /* .debug_loc */ \
800 + 1 /* .debug_str_offsets */ \
801 + 1 /* .debug_macro or .debug_macinfo */)
802 int section_ids[MAX_NR_V2_DWO_SECTIONS];
803 const gdb_byte *offsets;
804 const gdb_byte *sizes;
805 } v2;
806 } section_pool;
807 };
808
809 /* Data for one DWP file. */
810
811 struct dwp_file
812 {
813 dwp_file (const char *name_, gdb_bfd_ref_ptr &&abfd)
814 : name (name_),
815 dbfd (std::move (abfd))
816 {
817 }
818
819 /* Name of the file. */
820 const char *name;
821
822 /* File format version. */
823 int version = 0;
824
825 /* The bfd. */
826 gdb_bfd_ref_ptr dbfd;
827
828 /* Section info for this file. */
829 struct dwp_sections sections {};
830
831 /* Table of CUs in the file. */
832 const struct dwp_hash_table *cus = nullptr;
833
834 /* Table of TUs in the file. */
835 const struct dwp_hash_table *tus = nullptr;
836
837 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
838 htab_t loaded_cus {};
839 htab_t loaded_tus {};
840
841 /* Table to map ELF section numbers to their sections.
842 This is only needed for the DWP V1 file format. */
843 unsigned int num_sections = 0;
844 asection **elf_sections = nullptr;
845 };
846
847 /* This represents a '.dwz' file. */
848
849 struct dwz_file
850 {
851 dwz_file (gdb_bfd_ref_ptr &&bfd)
852 : dwz_bfd (std::move (bfd))
853 {
854 }
855
856 /* A dwz file can only contain a few sections. */
857 struct dwarf2_section_info abbrev {};
858 struct dwarf2_section_info info {};
859 struct dwarf2_section_info str {};
860 struct dwarf2_section_info line {};
861 struct dwarf2_section_info macro {};
862 struct dwarf2_section_info gdb_index {};
863 struct dwarf2_section_info debug_names {};
864
865 /* The dwz's BFD. */
866 gdb_bfd_ref_ptr dwz_bfd;
867 };
868
869 /* Struct used to pass misc. parameters to read_die_and_children, et
870 al. which are used for both .debug_info and .debug_types dies.
871 All parameters here are unchanging for the life of the call. This
872 struct exists to abstract away the constant parameters of die reading. */
873
874 struct die_reader_specs
875 {
876 /* The bfd of die_section. */
877 bfd* abfd;
878
879 /* The CU of the DIE we are parsing. */
880 struct dwarf2_cu *cu;
881
882 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
883 struct dwo_file *dwo_file;
884
885 /* The section the die comes from.
886 This is either .debug_info or .debug_types, or the .dwo variants. */
887 struct dwarf2_section_info *die_section;
888
889 /* die_section->buffer. */
890 const gdb_byte *buffer;
891
892 /* The end of the buffer. */
893 const gdb_byte *buffer_end;
894
895 /* The value of the DW_AT_comp_dir attribute. */
896 const char *comp_dir;
897
898 /* The abbreviation table to use when reading the DIEs. */
899 struct abbrev_table *abbrev_table;
900 };
901
902 /* Type of function passed to init_cutu_and_read_dies, et.al. */
903 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
904 const gdb_byte *info_ptr,
905 struct die_info *comp_unit_die,
906 int has_children,
907 void *data);
908
909 /* A 1-based directory index. This is a strong typedef to prevent
910 accidentally using a directory index as a 0-based index into an
911 array/vector. */
912 enum class dir_index : unsigned int {};
913
914 /* Likewise, a 1-based file name index. */
915 enum class file_name_index : unsigned int {};
916
917 struct file_entry
918 {
919 file_entry () = default;
920
921 file_entry (const char *name_, dir_index d_index_,
922 unsigned int mod_time_, unsigned int length_)
923 : name (name_),
924 d_index (d_index_),
925 mod_time (mod_time_),
926 length (length_)
927 {}
928
929 /* Return the include directory at D_INDEX stored in LH. Returns
930 NULL if D_INDEX is out of bounds. */
931 const char *include_dir (const line_header *lh) const;
932
933 /* The file name. Note this is an observing pointer. The memory is
934 owned by debug_line_buffer. */
935 const char *name {};
936
937 /* The directory index (1-based). */
938 dir_index d_index {};
939
940 unsigned int mod_time {};
941
942 unsigned int length {};
943
944 /* True if referenced by the Line Number Program. */
945 bool included_p {};
946
947 /* The associated symbol table, if any. */
948 struct symtab *symtab {};
949 };
950
951 /* The line number information for a compilation unit (found in the
952 .debug_line section) begins with a "statement program header",
953 which contains the following information. */
954 struct line_header
955 {
956 line_header ()
957 : offset_in_dwz {}
958 {}
959
960 /* Add an entry to the include directory table. */
961 void add_include_dir (const char *include_dir);
962
963 /* Add an entry to the file name table. */
964 void add_file_name (const char *name, dir_index d_index,
965 unsigned int mod_time, unsigned int length);
966
967 /* Return the include dir at INDEX (1-based). Returns NULL if INDEX
968 is out of bounds. */
969 const char *include_dir_at (dir_index index) const
970 {
971 /* Convert directory index number (1-based) to vector index
972 (0-based). */
973 size_t vec_index = to_underlying (index) - 1;
974
975 if (vec_index >= include_dirs.size ())
976 return NULL;
977 return include_dirs[vec_index];
978 }
979
980 /* Return the file name at INDEX (1-based). Returns NULL if INDEX
981 is out of bounds. */
982 file_entry *file_name_at (file_name_index index)
983 {
984 /* Convert file name index number (1-based) to vector index
985 (0-based). */
986 size_t vec_index = to_underlying (index) - 1;
987
988 if (vec_index >= file_names.size ())
989 return NULL;
990 return &file_names[vec_index];
991 }
992
993 /* Const version of the above. */
994 const file_entry *file_name_at (unsigned int index) const
995 {
996 if (index >= file_names.size ())
997 return NULL;
998 return &file_names[index];
999 }
1000
1001 /* Offset of line number information in .debug_line section. */
1002 sect_offset sect_off {};
1003
1004 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1005 unsigned offset_in_dwz : 1; /* Can't initialize bitfields in-class. */
1006
1007 unsigned int total_length {};
1008 unsigned short version {};
1009 unsigned int header_length {};
1010 unsigned char minimum_instruction_length {};
1011 unsigned char maximum_ops_per_instruction {};
1012 unsigned char default_is_stmt {};
1013 int line_base {};
1014 unsigned char line_range {};
1015 unsigned char opcode_base {};
1016
1017 /* standard_opcode_lengths[i] is the number of operands for the
1018 standard opcode whose value is i. This means that
1019 standard_opcode_lengths[0] is unused, and the last meaningful
1020 element is standard_opcode_lengths[opcode_base - 1]. */
1021 std::unique_ptr<unsigned char[]> standard_opcode_lengths;
1022
1023 /* The include_directories table. Note these are observing
1024 pointers. The memory is owned by debug_line_buffer. */
1025 std::vector<const char *> include_dirs;
1026
1027 /* The file_names table. */
1028 std::vector<file_entry> file_names;
1029
1030 /* The start and end of the statement program following this
1031 header. These point into dwarf2_per_objfile->line_buffer. */
1032 const gdb_byte *statement_program_start {}, *statement_program_end {};
1033 };
1034
1035 typedef std::unique_ptr<line_header> line_header_up;
1036
1037 const char *
1038 file_entry::include_dir (const line_header *lh) const
1039 {
1040 return lh->include_dir_at (d_index);
1041 }
1042
1043 /* When we construct a partial symbol table entry we only
1044 need this much information. */
1045 struct partial_die_info : public allocate_on_obstack
1046 {
1047 partial_die_info (sect_offset sect_off, struct abbrev_info *abbrev);
1048
1049 /* Disable assign but still keep copy ctor, which is needed
1050 load_partial_dies. */
1051 partial_die_info& operator=(const partial_die_info& rhs) = delete;
1052
1053 /* Adjust the partial die before generating a symbol for it. This
1054 function may set the is_external flag or change the DIE's
1055 name. */
1056 void fixup (struct dwarf2_cu *cu);
1057
1058 /* Read a minimal amount of information into the minimal die
1059 structure. */
1060 const gdb_byte *read (const struct die_reader_specs *reader,
1061 const struct abbrev_info &abbrev,
1062 const gdb_byte *info_ptr);
1063
1064 /* Offset of this DIE. */
1065 const sect_offset sect_off;
1066
1067 /* DWARF-2 tag for this DIE. */
1068 const ENUM_BITFIELD(dwarf_tag) tag : 16;
1069
1070 /* Assorted flags describing the data found in this DIE. */
1071 const unsigned int has_children : 1;
1072
1073 unsigned int is_external : 1;
1074 unsigned int is_declaration : 1;
1075 unsigned int has_type : 1;
1076 unsigned int has_specification : 1;
1077 unsigned int has_pc_info : 1;
1078 unsigned int may_be_inlined : 1;
1079
1080 /* This DIE has been marked DW_AT_main_subprogram. */
1081 unsigned int main_subprogram : 1;
1082
1083 /* Flag set if the SCOPE field of this structure has been
1084 computed. */
1085 unsigned int scope_set : 1;
1086
1087 /* Flag set if the DIE has a byte_size attribute. */
1088 unsigned int has_byte_size : 1;
1089
1090 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1091 unsigned int has_const_value : 1;
1092
1093 /* Flag set if any of the DIE's children are template arguments. */
1094 unsigned int has_template_arguments : 1;
1095
1096 /* Flag set if fixup has been called on this die. */
1097 unsigned int fixup_called : 1;
1098
1099 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1100 unsigned int is_dwz : 1;
1101
1102 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1103 unsigned int spec_is_dwz : 1;
1104
1105 /* The name of this DIE. Normally the value of DW_AT_name, but
1106 sometimes a default name for unnamed DIEs. */
1107 const char *name = nullptr;
1108
1109 /* The linkage name, if present. */
1110 const char *linkage_name = nullptr;
1111
1112 /* The scope to prepend to our children. This is generally
1113 allocated on the comp_unit_obstack, so will disappear
1114 when this compilation unit leaves the cache. */
1115 const char *scope = nullptr;
1116
1117 /* Some data associated with the partial DIE. The tag determines
1118 which field is live. */
1119 union
1120 {
1121 /* The location description associated with this DIE, if any. */
1122 struct dwarf_block *locdesc;
1123 /* The offset of an import, for DW_TAG_imported_unit. */
1124 sect_offset sect_off;
1125 } d {};
1126
1127 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1128 CORE_ADDR lowpc = 0;
1129 CORE_ADDR highpc = 0;
1130
1131 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1132 DW_AT_sibling, if any. */
1133 /* NOTE: This member isn't strictly necessary, partial_die_info::read
1134 could return DW_AT_sibling values to its caller load_partial_dies. */
1135 const gdb_byte *sibling = nullptr;
1136
1137 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1138 DW_AT_specification (or DW_AT_abstract_origin or
1139 DW_AT_extension). */
1140 sect_offset spec_offset {};
1141
1142 /* Pointers to this DIE's parent, first child, and next sibling,
1143 if any. */
1144 struct partial_die_info *die_parent = nullptr;
1145 struct partial_die_info *die_child = nullptr;
1146 struct partial_die_info *die_sibling = nullptr;
1147
1148 friend struct partial_die_info *
1149 dwarf2_cu::find_partial_die (sect_offset sect_off);
1150
1151 private:
1152 /* Only need to do look up in dwarf2_cu::find_partial_die. */
1153 partial_die_info (sect_offset sect_off)
1154 : partial_die_info (sect_off, DW_TAG_padding, 0)
1155 {
1156 }
1157
1158 partial_die_info (sect_offset sect_off_, enum dwarf_tag tag_,
1159 int has_children_)
1160 : sect_off (sect_off_), tag (tag_), has_children (has_children_)
1161 {
1162 is_external = 0;
1163 is_declaration = 0;
1164 has_type = 0;
1165 has_specification = 0;
1166 has_pc_info = 0;
1167 may_be_inlined = 0;
1168 main_subprogram = 0;
1169 scope_set = 0;
1170 has_byte_size = 0;
1171 has_const_value = 0;
1172 has_template_arguments = 0;
1173 fixup_called = 0;
1174 is_dwz = 0;
1175 spec_is_dwz = 0;
1176 }
1177 };
1178
1179 /* This data structure holds the information of an abbrev. */
1180 struct abbrev_info
1181 {
1182 unsigned int number; /* number identifying abbrev */
1183 enum dwarf_tag tag; /* dwarf tag */
1184 unsigned short has_children; /* boolean */
1185 unsigned short num_attrs; /* number of attributes */
1186 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1187 struct abbrev_info *next; /* next in chain */
1188 };
1189
1190 struct attr_abbrev
1191 {
1192 ENUM_BITFIELD(dwarf_attribute) name : 16;
1193 ENUM_BITFIELD(dwarf_form) form : 16;
1194
1195 /* It is valid only if FORM is DW_FORM_implicit_const. */
1196 LONGEST implicit_const;
1197 };
1198
1199 /* Size of abbrev_table.abbrev_hash_table. */
1200 #define ABBREV_HASH_SIZE 121
1201
1202 /* Top level data structure to contain an abbreviation table. */
1203
1204 struct abbrev_table
1205 {
1206 explicit abbrev_table (sect_offset off)
1207 : sect_off (off)
1208 {
1209 m_abbrevs =
1210 XOBNEWVEC (&abbrev_obstack, struct abbrev_info *, ABBREV_HASH_SIZE);
1211 memset (m_abbrevs, 0, ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
1212 }
1213
1214 DISABLE_COPY_AND_ASSIGN (abbrev_table);
1215
1216 /* Allocate space for a struct abbrev_info object in
1217 ABBREV_TABLE. */
1218 struct abbrev_info *alloc_abbrev ();
1219
1220 /* Add an abbreviation to the table. */
1221 void add_abbrev (unsigned int abbrev_number, struct abbrev_info *abbrev);
1222
1223 /* Look up an abbrev in the table.
1224 Returns NULL if the abbrev is not found. */
1225
1226 struct abbrev_info *lookup_abbrev (unsigned int abbrev_number);
1227
1228
1229 /* Where the abbrev table came from.
1230 This is used as a sanity check when the table is used. */
1231 const sect_offset sect_off;
1232
1233 /* Storage for the abbrev table. */
1234 auto_obstack abbrev_obstack;
1235
1236 private:
1237
1238 /* Hash table of abbrevs.
1239 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1240 It could be statically allocated, but the previous code didn't so we
1241 don't either. */
1242 struct abbrev_info **m_abbrevs;
1243 };
1244
1245 typedef std::unique_ptr<struct abbrev_table> abbrev_table_up;
1246
1247 /* Attributes have a name and a value. */
1248 struct attribute
1249 {
1250 ENUM_BITFIELD(dwarf_attribute) name : 16;
1251 ENUM_BITFIELD(dwarf_form) form : 15;
1252
1253 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1254 field should be in u.str (existing only for DW_STRING) but it is kept
1255 here for better struct attribute alignment. */
1256 unsigned int string_is_canonical : 1;
1257
1258 union
1259 {
1260 const char *str;
1261 struct dwarf_block *blk;
1262 ULONGEST unsnd;
1263 LONGEST snd;
1264 CORE_ADDR addr;
1265 ULONGEST signature;
1266 }
1267 u;
1268 };
1269
1270 /* This data structure holds a complete die structure. */
1271 struct die_info
1272 {
1273 /* DWARF-2 tag for this DIE. */
1274 ENUM_BITFIELD(dwarf_tag) tag : 16;
1275
1276 /* Number of attributes */
1277 unsigned char num_attrs;
1278
1279 /* True if we're presently building the full type name for the
1280 type derived from this DIE. */
1281 unsigned char building_fullname : 1;
1282
1283 /* True if this die is in process. PR 16581. */
1284 unsigned char in_process : 1;
1285
1286 /* Abbrev number */
1287 unsigned int abbrev;
1288
1289 /* Offset in .debug_info or .debug_types section. */
1290 sect_offset sect_off;
1291
1292 /* The dies in a compilation unit form an n-ary tree. PARENT
1293 points to this die's parent; CHILD points to the first child of
1294 this node; and all the children of a given node are chained
1295 together via their SIBLING fields. */
1296 struct die_info *child; /* Its first child, if any. */
1297 struct die_info *sibling; /* Its next sibling, if any. */
1298 struct die_info *parent; /* Its parent, if any. */
1299
1300 /* An array of attributes, with NUM_ATTRS elements. There may be
1301 zero, but it's not common and zero-sized arrays are not
1302 sufficiently portable C. */
1303 struct attribute attrs[1];
1304 };
1305
1306 /* Get at parts of an attribute structure. */
1307
1308 #define DW_STRING(attr) ((attr)->u.str)
1309 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1310 #define DW_UNSND(attr) ((attr)->u.unsnd)
1311 #define DW_BLOCK(attr) ((attr)->u.blk)
1312 #define DW_SND(attr) ((attr)->u.snd)
1313 #define DW_ADDR(attr) ((attr)->u.addr)
1314 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1315
1316 /* Blocks are a bunch of untyped bytes. */
1317 struct dwarf_block
1318 {
1319 size_t size;
1320
1321 /* Valid only if SIZE is not zero. */
1322 const gdb_byte *data;
1323 };
1324
1325 #ifndef ATTR_ALLOC_CHUNK
1326 #define ATTR_ALLOC_CHUNK 4
1327 #endif
1328
1329 /* Allocate fields for structs, unions and enums in this size. */
1330 #ifndef DW_FIELD_ALLOC_CHUNK
1331 #define DW_FIELD_ALLOC_CHUNK 4
1332 #endif
1333
1334 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1335 but this would require a corresponding change in unpack_field_as_long
1336 and friends. */
1337 static int bits_per_byte = 8;
1338
1339 /* When reading a variant or variant part, we track a bit more
1340 information about the field, and store it in an object of this
1341 type. */
1342
1343 struct variant_field
1344 {
1345 /* If we see a DW_TAG_variant, then this will be the discriminant
1346 value. */
1347 ULONGEST discriminant_value;
1348 /* If we see a DW_TAG_variant, then this will be set if this is the
1349 default branch. */
1350 bool default_branch;
1351 /* While reading a DW_TAG_variant_part, this will be set if this
1352 field is the discriminant. */
1353 bool is_discriminant;
1354 };
1355
1356 struct nextfield
1357 {
1358 int accessibility = 0;
1359 int virtuality = 0;
1360 /* Extra information to describe a variant or variant part. */
1361 struct variant_field variant {};
1362 struct field field {};
1363 };
1364
1365 struct fnfieldlist
1366 {
1367 const char *name = nullptr;
1368 std::vector<struct fn_field> fnfields;
1369 };
1370
1371 /* The routines that read and process dies for a C struct or C++ class
1372 pass lists of data member fields and lists of member function fields
1373 in an instance of a field_info structure, as defined below. */
1374 struct field_info
1375 {
1376 /* List of data member and baseclasses fields. */
1377 std::vector<struct nextfield> fields;
1378 std::vector<struct nextfield> baseclasses;
1379
1380 /* Number of fields (including baseclasses). */
1381 int nfields = 0;
1382
1383 /* Set if the accesibility of one of the fields is not public. */
1384 int non_public_fields = 0;
1385
1386 /* Member function fieldlist array, contains name of possibly overloaded
1387 member function, number of overloaded member functions and a pointer
1388 to the head of the member function field chain. */
1389 std::vector<struct fnfieldlist> fnfieldlists;
1390
1391 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1392 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1393 std::vector<struct decl_field> typedef_field_list;
1394
1395 /* Nested types defined by this class and the number of elements in this
1396 list. */
1397 std::vector<struct decl_field> nested_types_list;
1398 };
1399
1400 /* One item on the queue of compilation units to read in full symbols
1401 for. */
1402 struct dwarf2_queue_item
1403 {
1404 struct dwarf2_per_cu_data *per_cu;
1405 enum language pretend_language;
1406 struct dwarf2_queue_item *next;
1407 };
1408
1409 /* The current queue. */
1410 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1411
1412 /* Loaded secondary compilation units are kept in memory until they
1413 have not been referenced for the processing of this many
1414 compilation units. Set this to zero to disable caching. Cache
1415 sizes of up to at least twenty will improve startup time for
1416 typical inter-CU-reference binaries, at an obvious memory cost. */
1417 static int dwarf_max_cache_age = 5;
1418 static void
1419 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1420 struct cmd_list_element *c, const char *value)
1421 {
1422 fprintf_filtered (file, _("The upper bound on the age of cached "
1423 "DWARF compilation units is %s.\n"),
1424 value);
1425 }
1426 \f
1427 /* local function prototypes */
1428
1429 static const char *get_section_name (const struct dwarf2_section_info *);
1430
1431 static const char *get_section_file_name (const struct dwarf2_section_info *);
1432
1433 static void dwarf2_find_base_address (struct die_info *die,
1434 struct dwarf2_cu *cu);
1435
1436 static struct partial_symtab *create_partial_symtab
1437 (struct dwarf2_per_cu_data *per_cu, const char *name);
1438
1439 static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1440 const gdb_byte *info_ptr,
1441 struct die_info *type_unit_die,
1442 int has_children, void *data);
1443
1444 static void dwarf2_build_psymtabs_hard
1445 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1446
1447 static void scan_partial_symbols (struct partial_die_info *,
1448 CORE_ADDR *, CORE_ADDR *,
1449 int, struct dwarf2_cu *);
1450
1451 static void add_partial_symbol (struct partial_die_info *,
1452 struct dwarf2_cu *);
1453
1454 static void add_partial_namespace (struct partial_die_info *pdi,
1455 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1456 int set_addrmap, struct dwarf2_cu *cu);
1457
1458 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1459 CORE_ADDR *highpc, int set_addrmap,
1460 struct dwarf2_cu *cu);
1461
1462 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1463 struct dwarf2_cu *cu);
1464
1465 static void add_partial_subprogram (struct partial_die_info *pdi,
1466 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1467 int need_pc, struct dwarf2_cu *cu);
1468
1469 static void dwarf2_read_symtab (struct partial_symtab *,
1470 struct objfile *);
1471
1472 static void psymtab_to_symtab_1 (struct partial_symtab *);
1473
1474 static abbrev_table_up abbrev_table_read_table
1475 (struct dwarf2_per_objfile *dwarf2_per_objfile, struct dwarf2_section_info *,
1476 sect_offset);
1477
1478 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1479
1480 static struct partial_die_info *load_partial_dies
1481 (const struct die_reader_specs *, const gdb_byte *, int);
1482
1483 static struct partial_die_info *find_partial_die (sect_offset, int,
1484 struct dwarf2_cu *);
1485
1486 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1487 struct attribute *, struct attr_abbrev *,
1488 const gdb_byte *);
1489
1490 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1491
1492 static int read_1_signed_byte (bfd *, const gdb_byte *);
1493
1494 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1495
1496 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1497
1498 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1499
1500 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1501 unsigned int *);
1502
1503 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1504
1505 static LONGEST read_checked_initial_length_and_offset
1506 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1507 unsigned int *, unsigned int *);
1508
1509 static LONGEST read_offset (bfd *, const gdb_byte *,
1510 const struct comp_unit_head *,
1511 unsigned int *);
1512
1513 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1514
1515 static sect_offset read_abbrev_offset
1516 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1517 struct dwarf2_section_info *, sect_offset);
1518
1519 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1520
1521 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1522
1523 static const char *read_indirect_string
1524 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1525 const struct comp_unit_head *, unsigned int *);
1526
1527 static const char *read_indirect_line_string
1528 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1529 const struct comp_unit_head *, unsigned int *);
1530
1531 static const char *read_indirect_string_at_offset
1532 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
1533 LONGEST str_offset);
1534
1535 static const char *read_indirect_string_from_dwz
1536 (struct objfile *objfile, struct dwz_file *, LONGEST);
1537
1538 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1539
1540 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1541 const gdb_byte *,
1542 unsigned int *);
1543
1544 static const char *read_str_index (const struct die_reader_specs *reader,
1545 ULONGEST str_index);
1546
1547 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1548
1549 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1550 struct dwarf2_cu *);
1551
1552 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1553 unsigned int);
1554
1555 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1556 struct dwarf2_cu *cu);
1557
1558 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1559 struct dwarf2_cu *cu);
1560
1561 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1562
1563 static struct die_info *die_specification (struct die_info *die,
1564 struct dwarf2_cu **);
1565
1566 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1567 struct dwarf2_cu *cu);
1568
1569 static void dwarf_decode_lines (struct line_header *, const char *,
1570 struct dwarf2_cu *, struct partial_symtab *,
1571 CORE_ADDR, int decode_mapping);
1572
1573 static void dwarf2_start_subfile (const char *, const char *);
1574
1575 static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1576 const char *, const char *,
1577 CORE_ADDR);
1578
1579 static struct symbol *new_symbol (struct die_info *, struct type *,
1580 struct dwarf2_cu *, struct symbol * = NULL);
1581
1582 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1583 struct dwarf2_cu *);
1584
1585 static void dwarf2_const_value_attr (const struct attribute *attr,
1586 struct type *type,
1587 const char *name,
1588 struct obstack *obstack,
1589 struct dwarf2_cu *cu, LONGEST *value,
1590 const gdb_byte **bytes,
1591 struct dwarf2_locexpr_baton **baton);
1592
1593 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1594
1595 static int need_gnat_info (struct dwarf2_cu *);
1596
1597 static struct type *die_descriptive_type (struct die_info *,
1598 struct dwarf2_cu *);
1599
1600 static void set_descriptive_type (struct type *, struct die_info *,
1601 struct dwarf2_cu *);
1602
1603 static struct type *die_containing_type (struct die_info *,
1604 struct dwarf2_cu *);
1605
1606 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1607 struct dwarf2_cu *);
1608
1609 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1610
1611 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1612
1613 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1614
1615 static char *typename_concat (struct obstack *obs, const char *prefix,
1616 const char *suffix, int physname,
1617 struct dwarf2_cu *cu);
1618
1619 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1620
1621 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1622
1623 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1624
1625 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1626
1627 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1628
1629 static void read_variable (struct die_info *die, struct dwarf2_cu *cu);
1630
1631 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1632 struct dwarf2_cu *, struct partial_symtab *);
1633
1634 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1635 values. Keep the items ordered with increasing constraints compliance. */
1636 enum pc_bounds_kind
1637 {
1638 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1639 PC_BOUNDS_NOT_PRESENT,
1640
1641 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1642 were present but they do not form a valid range of PC addresses. */
1643 PC_BOUNDS_INVALID,
1644
1645 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1646 PC_BOUNDS_RANGES,
1647
1648 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1649 PC_BOUNDS_HIGH_LOW,
1650 };
1651
1652 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1653 CORE_ADDR *, CORE_ADDR *,
1654 struct dwarf2_cu *,
1655 struct partial_symtab *);
1656
1657 static void get_scope_pc_bounds (struct die_info *,
1658 CORE_ADDR *, CORE_ADDR *,
1659 struct dwarf2_cu *);
1660
1661 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1662 CORE_ADDR, struct dwarf2_cu *);
1663
1664 static void dwarf2_add_field (struct field_info *, struct die_info *,
1665 struct dwarf2_cu *);
1666
1667 static void dwarf2_attach_fields_to_type (struct field_info *,
1668 struct type *, struct dwarf2_cu *);
1669
1670 static void dwarf2_add_member_fn (struct field_info *,
1671 struct die_info *, struct type *,
1672 struct dwarf2_cu *);
1673
1674 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1675 struct type *,
1676 struct dwarf2_cu *);
1677
1678 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1679
1680 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1681
1682 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1683
1684 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1685
1686 static struct using_direct **using_directives (enum language);
1687
1688 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1689
1690 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1691
1692 static struct type *read_module_type (struct die_info *die,
1693 struct dwarf2_cu *cu);
1694
1695 static const char *namespace_name (struct die_info *die,
1696 int *is_anonymous, struct dwarf2_cu *);
1697
1698 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1699
1700 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1701
1702 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1703 struct dwarf2_cu *);
1704
1705 static struct die_info *read_die_and_siblings_1
1706 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1707 struct die_info *);
1708
1709 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1710 const gdb_byte *info_ptr,
1711 const gdb_byte **new_info_ptr,
1712 struct die_info *parent);
1713
1714 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1715 struct die_info **, const gdb_byte *,
1716 int *, int);
1717
1718 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1719 struct die_info **, const gdb_byte *,
1720 int *);
1721
1722 static void process_die (struct die_info *, struct dwarf2_cu *);
1723
1724 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1725 struct obstack *);
1726
1727 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1728
1729 static const char *dwarf2_full_name (const char *name,
1730 struct die_info *die,
1731 struct dwarf2_cu *cu);
1732
1733 static const char *dwarf2_physname (const char *name, struct die_info *die,
1734 struct dwarf2_cu *cu);
1735
1736 static struct die_info *dwarf2_extension (struct die_info *die,
1737 struct dwarf2_cu **);
1738
1739 static const char *dwarf_tag_name (unsigned int);
1740
1741 static const char *dwarf_attr_name (unsigned int);
1742
1743 static const char *dwarf_form_name (unsigned int);
1744
1745 static const char *dwarf_bool_name (unsigned int);
1746
1747 static const char *dwarf_type_encoding_name (unsigned int);
1748
1749 static struct die_info *sibling_die (struct die_info *);
1750
1751 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1752
1753 static void dump_die_for_error (struct die_info *);
1754
1755 static void dump_die_1 (struct ui_file *, int level, int max_level,
1756 struct die_info *);
1757
1758 /*static*/ void dump_die (struct die_info *, int max_level);
1759
1760 static void store_in_ref_table (struct die_info *,
1761 struct dwarf2_cu *);
1762
1763 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1764
1765 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1766
1767 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1768 const struct attribute *,
1769 struct dwarf2_cu **);
1770
1771 static struct die_info *follow_die_ref (struct die_info *,
1772 const struct attribute *,
1773 struct dwarf2_cu **);
1774
1775 static struct die_info *follow_die_sig (struct die_info *,
1776 const struct attribute *,
1777 struct dwarf2_cu **);
1778
1779 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1780 struct dwarf2_cu *);
1781
1782 static struct type *get_DW_AT_signature_type (struct die_info *,
1783 const struct attribute *,
1784 struct dwarf2_cu *);
1785
1786 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1787
1788 static void read_signatured_type (struct signatured_type *);
1789
1790 static int attr_to_dynamic_prop (const struct attribute *attr,
1791 struct die_info *die, struct dwarf2_cu *cu,
1792 struct dynamic_prop *prop);
1793
1794 /* memory allocation interface */
1795
1796 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1797
1798 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1799
1800 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1801
1802 static int attr_form_is_block (const struct attribute *);
1803
1804 static int attr_form_is_section_offset (const struct attribute *);
1805
1806 static int attr_form_is_constant (const struct attribute *);
1807
1808 static int attr_form_is_ref (const struct attribute *);
1809
1810 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1811 struct dwarf2_loclist_baton *baton,
1812 const struct attribute *attr);
1813
1814 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1815 struct symbol *sym,
1816 struct dwarf2_cu *cu,
1817 int is_block);
1818
1819 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1820 const gdb_byte *info_ptr,
1821 struct abbrev_info *abbrev);
1822
1823 static hashval_t partial_die_hash (const void *item);
1824
1825 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1826
1827 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1828 (sect_offset sect_off, unsigned int offset_in_dwz,
1829 struct dwarf2_per_objfile *dwarf2_per_objfile);
1830
1831 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1832 struct die_info *comp_unit_die,
1833 enum language pretend_language);
1834
1835 static void age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1836
1837 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1838
1839 static struct type *set_die_type (struct die_info *, struct type *,
1840 struct dwarf2_cu *);
1841
1842 static void create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1843
1844 static int create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1845
1846 static void load_full_comp_unit (struct dwarf2_per_cu_data *, bool,
1847 enum language);
1848
1849 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1850 enum language);
1851
1852 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1853 enum language);
1854
1855 static void dwarf2_add_dependence (struct dwarf2_cu *,
1856 struct dwarf2_per_cu_data *);
1857
1858 static void dwarf2_mark (struct dwarf2_cu *);
1859
1860 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1861
1862 static struct type *get_die_type_at_offset (sect_offset,
1863 struct dwarf2_per_cu_data *);
1864
1865 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1866
1867 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1868 enum language pretend_language);
1869
1870 static void process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile);
1871
1872 /* Class, the destructor of which frees all allocated queue entries. This
1873 will only have work to do if an error was thrown while processing the
1874 dwarf. If no error was thrown then the queue entries should have all
1875 been processed, and freed, as we went along. */
1876
1877 class dwarf2_queue_guard
1878 {
1879 public:
1880 dwarf2_queue_guard () = default;
1881
1882 /* Free any entries remaining on the queue. There should only be
1883 entries left if we hit an error while processing the dwarf. */
1884 ~dwarf2_queue_guard ()
1885 {
1886 struct dwarf2_queue_item *item, *last;
1887
1888 item = dwarf2_queue;
1889 while (item)
1890 {
1891 /* Anything still marked queued is likely to be in an
1892 inconsistent state, so discard it. */
1893 if (item->per_cu->queued)
1894 {
1895 if (item->per_cu->cu != NULL)
1896 free_one_cached_comp_unit (item->per_cu);
1897 item->per_cu->queued = 0;
1898 }
1899
1900 last = item;
1901 item = item->next;
1902 xfree (last);
1903 }
1904
1905 dwarf2_queue = dwarf2_queue_tail = NULL;
1906 }
1907 };
1908
1909 /* The return type of find_file_and_directory. Note, the enclosed
1910 string pointers are only valid while this object is valid. */
1911
1912 struct file_and_directory
1913 {
1914 /* The filename. This is never NULL. */
1915 const char *name;
1916
1917 /* The compilation directory. NULL if not known. If we needed to
1918 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
1919 points directly to the DW_AT_comp_dir string attribute owned by
1920 the obstack that owns the DIE. */
1921 const char *comp_dir;
1922
1923 /* If we needed to build a new string for comp_dir, this is what
1924 owns the storage. */
1925 std::string comp_dir_storage;
1926 };
1927
1928 static file_and_directory find_file_and_directory (struct die_info *die,
1929 struct dwarf2_cu *cu);
1930
1931 static char *file_full_name (int file, struct line_header *lh,
1932 const char *comp_dir);
1933
1934 /* Expected enum dwarf_unit_type for read_comp_unit_head. */
1935 enum class rcuh_kind { COMPILE, TYPE };
1936
1937 static const gdb_byte *read_and_check_comp_unit_head
1938 (struct dwarf2_per_objfile* dwarf2_per_objfile,
1939 struct comp_unit_head *header,
1940 struct dwarf2_section_info *section,
1941 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1942 rcuh_kind section_kind);
1943
1944 static void init_cutu_and_read_dies
1945 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1946 int use_existing_cu, int keep, bool skip_partial,
1947 die_reader_func_ftype *die_reader_func, void *data);
1948
1949 static void init_cutu_and_read_dies_simple
1950 (struct dwarf2_per_cu_data *this_cu,
1951 die_reader_func_ftype *die_reader_func, void *data);
1952
1953 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1954
1955 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1956
1957 static struct dwo_unit *lookup_dwo_unit_in_dwp
1958 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1959 struct dwp_file *dwp_file, const char *comp_dir,
1960 ULONGEST signature, int is_debug_types);
1961
1962 static struct dwp_file *get_dwp_file
1963 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1964
1965 static struct dwo_unit *lookup_dwo_comp_unit
1966 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1967
1968 static struct dwo_unit *lookup_dwo_type_unit
1969 (struct signatured_type *, const char *, const char *);
1970
1971 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1972
1973 static void free_dwo_file (struct dwo_file *);
1974
1975 /* A unique_ptr helper to free a dwo_file. */
1976
1977 struct dwo_file_deleter
1978 {
1979 void operator() (struct dwo_file *df) const
1980 {
1981 free_dwo_file (df);
1982 }
1983 };
1984
1985 /* A unique pointer to a dwo_file. */
1986
1987 typedef std::unique_ptr<struct dwo_file, dwo_file_deleter> dwo_file_up;
1988
1989 static void process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile);
1990
1991 static void check_producer (struct dwarf2_cu *cu);
1992
1993 static void free_line_header_voidp (void *arg);
1994 \f
1995 /* Various complaints about symbol reading that don't abort the process. */
1996
1997 static void
1998 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1999 {
2000 complaint (_("statement list doesn't fit in .debug_line section"));
2001 }
2002
2003 static void
2004 dwarf2_debug_line_missing_file_complaint (void)
2005 {
2006 complaint (_(".debug_line section has line data without a file"));
2007 }
2008
2009 static void
2010 dwarf2_debug_line_missing_end_sequence_complaint (void)
2011 {
2012 complaint (_(".debug_line section has line "
2013 "program sequence without an end"));
2014 }
2015
2016 static void
2017 dwarf2_complex_location_expr_complaint (void)
2018 {
2019 complaint (_("location expression too complex"));
2020 }
2021
2022 static void
2023 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
2024 int arg3)
2025 {
2026 complaint (_("const value length mismatch for '%s', got %d, expected %d"),
2027 arg1, arg2, arg3);
2028 }
2029
2030 static void
2031 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2032 {
2033 complaint (_("debug info runs off end of %s section"
2034 " [in module %s]"),
2035 get_section_name (section),
2036 get_section_file_name (section));
2037 }
2038
2039 static void
2040 dwarf2_macro_malformed_definition_complaint (const char *arg1)
2041 {
2042 complaint (_("macro debug info contains a "
2043 "malformed macro definition:\n`%s'"),
2044 arg1);
2045 }
2046
2047 static void
2048 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
2049 {
2050 complaint (_("invalid attribute class or form for '%s' in '%s'"),
2051 arg1, arg2);
2052 }
2053
2054 /* Hash function for line_header_hash. */
2055
2056 static hashval_t
2057 line_header_hash (const struct line_header *ofs)
2058 {
2059 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
2060 }
2061
2062 /* Hash function for htab_create_alloc_ex for line_header_hash. */
2063
2064 static hashval_t
2065 line_header_hash_voidp (const void *item)
2066 {
2067 const struct line_header *ofs = (const struct line_header *) item;
2068
2069 return line_header_hash (ofs);
2070 }
2071
2072 /* Equality function for line_header_hash. */
2073
2074 static int
2075 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
2076 {
2077 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
2078 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
2079
2080 return (ofs_lhs->sect_off == ofs_rhs->sect_off
2081 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2082 }
2083
2084 \f
2085
2086 /* Read the given attribute value as an address, taking the attribute's
2087 form into account. */
2088
2089 static CORE_ADDR
2090 attr_value_as_address (struct attribute *attr)
2091 {
2092 CORE_ADDR addr;
2093
2094 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2095 {
2096 /* Aside from a few clearly defined exceptions, attributes that
2097 contain an address must always be in DW_FORM_addr form.
2098 Unfortunately, some compilers happen to be violating this
2099 requirement by encoding addresses using other forms, such
2100 as DW_FORM_data4 for example. For those broken compilers,
2101 we try to do our best, without any guarantee of success,
2102 to interpret the address correctly. It would also be nice
2103 to generate a complaint, but that would require us to maintain
2104 a list of legitimate cases where a non-address form is allowed,
2105 as well as update callers to pass in at least the CU's DWARF
2106 version. This is more overhead than what we're willing to
2107 expand for a pretty rare case. */
2108 addr = DW_UNSND (attr);
2109 }
2110 else
2111 addr = DW_ADDR (attr);
2112
2113 return addr;
2114 }
2115
2116 /* See declaration. */
2117
2118 dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
2119 const dwarf2_debug_sections *names)
2120 : objfile (objfile_)
2121 {
2122 if (names == NULL)
2123 names = &dwarf2_elf_names;
2124
2125 bfd *obfd = objfile->obfd;
2126
2127 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
2128 locate_sections (obfd, sec, *names);
2129 }
2130
2131 static void free_dwo_files (htab_t dwo_files, struct objfile *objfile);
2132
2133 dwarf2_per_objfile::~dwarf2_per_objfile ()
2134 {
2135 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
2136 free_cached_comp_units ();
2137
2138 if (quick_file_names_table)
2139 htab_delete (quick_file_names_table);
2140
2141 if (line_header_hash)
2142 htab_delete (line_header_hash);
2143
2144 for (dwarf2_per_cu_data *per_cu : all_comp_units)
2145 VEC_free (dwarf2_per_cu_ptr, per_cu->imported_symtabs);
2146
2147 for (signatured_type *sig_type : all_type_units)
2148 VEC_free (dwarf2_per_cu_ptr, sig_type->per_cu.imported_symtabs);
2149
2150 VEC_free (dwarf2_section_info_def, types);
2151
2152 if (dwo_files != NULL)
2153 free_dwo_files (dwo_files, objfile);
2154
2155 /* Everything else should be on the objfile obstack. */
2156 }
2157
2158 /* See declaration. */
2159
2160 void
2161 dwarf2_per_objfile::free_cached_comp_units ()
2162 {
2163 dwarf2_per_cu_data *per_cu = read_in_chain;
2164 dwarf2_per_cu_data **last_chain = &read_in_chain;
2165 while (per_cu != NULL)
2166 {
2167 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
2168
2169 delete per_cu->cu;
2170 *last_chain = next_cu;
2171 per_cu = next_cu;
2172 }
2173 }
2174
2175 /* A helper class that calls free_cached_comp_units on
2176 destruction. */
2177
2178 class free_cached_comp_units
2179 {
2180 public:
2181
2182 explicit free_cached_comp_units (dwarf2_per_objfile *per_objfile)
2183 : m_per_objfile (per_objfile)
2184 {
2185 }
2186
2187 ~free_cached_comp_units ()
2188 {
2189 m_per_objfile->free_cached_comp_units ();
2190 }
2191
2192 DISABLE_COPY_AND_ASSIGN (free_cached_comp_units);
2193
2194 private:
2195
2196 dwarf2_per_objfile *m_per_objfile;
2197 };
2198
2199 /* Try to locate the sections we need for DWARF 2 debugging
2200 information and return true if we have enough to do something.
2201 NAMES points to the dwarf2 section names, or is NULL if the standard
2202 ELF names are used. */
2203
2204 int
2205 dwarf2_has_info (struct objfile *objfile,
2206 const struct dwarf2_debug_sections *names)
2207 {
2208 if (objfile->flags & OBJF_READNEVER)
2209 return 0;
2210
2211 struct dwarf2_per_objfile *dwarf2_per_objfile
2212 = get_dwarf2_per_objfile (objfile);
2213
2214 if (dwarf2_per_objfile == NULL)
2215 {
2216 /* Initialize per-objfile state. */
2217 dwarf2_per_objfile
2218 = new (&objfile->objfile_obstack) struct dwarf2_per_objfile (objfile,
2219 names);
2220 set_dwarf2_per_objfile (objfile, dwarf2_per_objfile);
2221 }
2222 return (!dwarf2_per_objfile->info.is_virtual
2223 && dwarf2_per_objfile->info.s.section != NULL
2224 && !dwarf2_per_objfile->abbrev.is_virtual
2225 && dwarf2_per_objfile->abbrev.s.section != NULL);
2226 }
2227
2228 /* Return the containing section of virtual section SECTION. */
2229
2230 static struct dwarf2_section_info *
2231 get_containing_section (const struct dwarf2_section_info *section)
2232 {
2233 gdb_assert (section->is_virtual);
2234 return section->s.containing_section;
2235 }
2236
2237 /* Return the bfd owner of SECTION. */
2238
2239 static struct bfd *
2240 get_section_bfd_owner (const struct dwarf2_section_info *section)
2241 {
2242 if (section->is_virtual)
2243 {
2244 section = get_containing_section (section);
2245 gdb_assert (!section->is_virtual);
2246 }
2247 return section->s.section->owner;
2248 }
2249
2250 /* Return the bfd section of SECTION.
2251 Returns NULL if the section is not present. */
2252
2253 static asection *
2254 get_section_bfd_section (const struct dwarf2_section_info *section)
2255 {
2256 if (section->is_virtual)
2257 {
2258 section = get_containing_section (section);
2259 gdb_assert (!section->is_virtual);
2260 }
2261 return section->s.section;
2262 }
2263
2264 /* Return the name of SECTION. */
2265
2266 static const char *
2267 get_section_name (const struct dwarf2_section_info *section)
2268 {
2269 asection *sectp = get_section_bfd_section (section);
2270
2271 gdb_assert (sectp != NULL);
2272 return bfd_section_name (get_section_bfd_owner (section), sectp);
2273 }
2274
2275 /* Return the name of the file SECTION is in. */
2276
2277 static const char *
2278 get_section_file_name (const struct dwarf2_section_info *section)
2279 {
2280 bfd *abfd = get_section_bfd_owner (section);
2281
2282 return bfd_get_filename (abfd);
2283 }
2284
2285 /* Return the id of SECTION.
2286 Returns 0 if SECTION doesn't exist. */
2287
2288 static int
2289 get_section_id (const struct dwarf2_section_info *section)
2290 {
2291 asection *sectp = get_section_bfd_section (section);
2292
2293 if (sectp == NULL)
2294 return 0;
2295 return sectp->id;
2296 }
2297
2298 /* Return the flags of SECTION.
2299 SECTION (or containing section if this is a virtual section) must exist. */
2300
2301 static int
2302 get_section_flags (const struct dwarf2_section_info *section)
2303 {
2304 asection *sectp = get_section_bfd_section (section);
2305
2306 gdb_assert (sectp != NULL);
2307 return bfd_get_section_flags (sectp->owner, sectp);
2308 }
2309
2310 /* When loading sections, we look either for uncompressed section or for
2311 compressed section names. */
2312
2313 static int
2314 section_is_p (const char *section_name,
2315 const struct dwarf2_section_names *names)
2316 {
2317 if (names->normal != NULL
2318 && strcmp (section_name, names->normal) == 0)
2319 return 1;
2320 if (names->compressed != NULL
2321 && strcmp (section_name, names->compressed) == 0)
2322 return 1;
2323 return 0;
2324 }
2325
2326 /* See declaration. */
2327
2328 void
2329 dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
2330 const dwarf2_debug_sections &names)
2331 {
2332 flagword aflag = bfd_get_section_flags (abfd, sectp);
2333
2334 if ((aflag & SEC_HAS_CONTENTS) == 0)
2335 {
2336 }
2337 else if (section_is_p (sectp->name, &names.info))
2338 {
2339 this->info.s.section = sectp;
2340 this->info.size = bfd_get_section_size (sectp);
2341 }
2342 else if (section_is_p (sectp->name, &names.abbrev))
2343 {
2344 this->abbrev.s.section = sectp;
2345 this->abbrev.size = bfd_get_section_size (sectp);
2346 }
2347 else if (section_is_p (sectp->name, &names.line))
2348 {
2349 this->line.s.section = sectp;
2350 this->line.size = bfd_get_section_size (sectp);
2351 }
2352 else if (section_is_p (sectp->name, &names.loc))
2353 {
2354 this->loc.s.section = sectp;
2355 this->loc.size = bfd_get_section_size (sectp);
2356 }
2357 else if (section_is_p (sectp->name, &names.loclists))
2358 {
2359 this->loclists.s.section = sectp;
2360 this->loclists.size = bfd_get_section_size (sectp);
2361 }
2362 else if (section_is_p (sectp->name, &names.macinfo))
2363 {
2364 this->macinfo.s.section = sectp;
2365 this->macinfo.size = bfd_get_section_size (sectp);
2366 }
2367 else if (section_is_p (sectp->name, &names.macro))
2368 {
2369 this->macro.s.section = sectp;
2370 this->macro.size = bfd_get_section_size (sectp);
2371 }
2372 else if (section_is_p (sectp->name, &names.str))
2373 {
2374 this->str.s.section = sectp;
2375 this->str.size = bfd_get_section_size (sectp);
2376 }
2377 else if (section_is_p (sectp->name, &names.line_str))
2378 {
2379 this->line_str.s.section = sectp;
2380 this->line_str.size = bfd_get_section_size (sectp);
2381 }
2382 else if (section_is_p (sectp->name, &names.addr))
2383 {
2384 this->addr.s.section = sectp;
2385 this->addr.size = bfd_get_section_size (sectp);
2386 }
2387 else if (section_is_p (sectp->name, &names.frame))
2388 {
2389 this->frame.s.section = sectp;
2390 this->frame.size = bfd_get_section_size (sectp);
2391 }
2392 else if (section_is_p (sectp->name, &names.eh_frame))
2393 {
2394 this->eh_frame.s.section = sectp;
2395 this->eh_frame.size = bfd_get_section_size (sectp);
2396 }
2397 else if (section_is_p (sectp->name, &names.ranges))
2398 {
2399 this->ranges.s.section = sectp;
2400 this->ranges.size = bfd_get_section_size (sectp);
2401 }
2402 else if (section_is_p (sectp->name, &names.rnglists))
2403 {
2404 this->rnglists.s.section = sectp;
2405 this->rnglists.size = bfd_get_section_size (sectp);
2406 }
2407 else if (section_is_p (sectp->name, &names.types))
2408 {
2409 struct dwarf2_section_info type_section;
2410
2411 memset (&type_section, 0, sizeof (type_section));
2412 type_section.s.section = sectp;
2413 type_section.size = bfd_get_section_size (sectp);
2414
2415 VEC_safe_push (dwarf2_section_info_def, this->types,
2416 &type_section);
2417 }
2418 else if (section_is_p (sectp->name, &names.gdb_index))
2419 {
2420 this->gdb_index.s.section = sectp;
2421 this->gdb_index.size = bfd_get_section_size (sectp);
2422 }
2423 else if (section_is_p (sectp->name, &names.debug_names))
2424 {
2425 this->debug_names.s.section = sectp;
2426 this->debug_names.size = bfd_get_section_size (sectp);
2427 }
2428 else if (section_is_p (sectp->name, &names.debug_aranges))
2429 {
2430 this->debug_aranges.s.section = sectp;
2431 this->debug_aranges.size = bfd_get_section_size (sectp);
2432 }
2433
2434 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2435 && bfd_section_vma (abfd, sectp) == 0)
2436 this->has_section_at_zero = true;
2437 }
2438
2439 /* A helper function that decides whether a section is empty,
2440 or not present. */
2441
2442 static int
2443 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2444 {
2445 if (section->is_virtual)
2446 return section->size == 0;
2447 return section->s.section == NULL || section->size == 0;
2448 }
2449
2450 /* See dwarf2read.h. */
2451
2452 void
2453 dwarf2_read_section (struct objfile *objfile, dwarf2_section_info *info)
2454 {
2455 asection *sectp;
2456 bfd *abfd;
2457 gdb_byte *buf, *retbuf;
2458
2459 if (info->readin)
2460 return;
2461 info->buffer = NULL;
2462 info->readin = 1;
2463
2464 if (dwarf2_section_empty_p (info))
2465 return;
2466
2467 sectp = get_section_bfd_section (info);
2468
2469 /* If this is a virtual section we need to read in the real one first. */
2470 if (info->is_virtual)
2471 {
2472 struct dwarf2_section_info *containing_section =
2473 get_containing_section (info);
2474
2475 gdb_assert (sectp != NULL);
2476 if ((sectp->flags & SEC_RELOC) != 0)
2477 {
2478 error (_("Dwarf Error: DWP format V2 with relocations is not"
2479 " supported in section %s [in module %s]"),
2480 get_section_name (info), get_section_file_name (info));
2481 }
2482 dwarf2_read_section (objfile, containing_section);
2483 /* Other code should have already caught virtual sections that don't
2484 fit. */
2485 gdb_assert (info->virtual_offset + info->size
2486 <= containing_section->size);
2487 /* If the real section is empty or there was a problem reading the
2488 section we shouldn't get here. */
2489 gdb_assert (containing_section->buffer != NULL);
2490 info->buffer = containing_section->buffer + info->virtual_offset;
2491 return;
2492 }
2493
2494 /* If the section has relocations, we must read it ourselves.
2495 Otherwise we attach it to the BFD. */
2496 if ((sectp->flags & SEC_RELOC) == 0)
2497 {
2498 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2499 return;
2500 }
2501
2502 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2503 info->buffer = buf;
2504
2505 /* When debugging .o files, we may need to apply relocations; see
2506 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2507 We never compress sections in .o files, so we only need to
2508 try this when the section is not compressed. */
2509 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2510 if (retbuf != NULL)
2511 {
2512 info->buffer = retbuf;
2513 return;
2514 }
2515
2516 abfd = get_section_bfd_owner (info);
2517 gdb_assert (abfd != NULL);
2518
2519 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2520 || bfd_bread (buf, info->size, abfd) != info->size)
2521 {
2522 error (_("Dwarf Error: Can't read DWARF data"
2523 " in section %s [in module %s]"),
2524 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2525 }
2526 }
2527
2528 /* A helper function that returns the size of a section in a safe way.
2529 If you are positive that the section has been read before using the
2530 size, then it is safe to refer to the dwarf2_section_info object's
2531 "size" field directly. In other cases, you must call this
2532 function, because for compressed sections the size field is not set
2533 correctly until the section has been read. */
2534
2535 static bfd_size_type
2536 dwarf2_section_size (struct objfile *objfile,
2537 struct dwarf2_section_info *info)
2538 {
2539 if (!info->readin)
2540 dwarf2_read_section (objfile, info);
2541 return info->size;
2542 }
2543
2544 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2545 SECTION_NAME. */
2546
2547 void
2548 dwarf2_get_section_info (struct objfile *objfile,
2549 enum dwarf2_section_enum sect,
2550 asection **sectp, const gdb_byte **bufp,
2551 bfd_size_type *sizep)
2552 {
2553 struct dwarf2_per_objfile *data
2554 = (struct dwarf2_per_objfile *) objfile_data (objfile,
2555 dwarf2_objfile_data_key);
2556 struct dwarf2_section_info *info;
2557
2558 /* We may see an objfile without any DWARF, in which case we just
2559 return nothing. */
2560 if (data == NULL)
2561 {
2562 *sectp = NULL;
2563 *bufp = NULL;
2564 *sizep = 0;
2565 return;
2566 }
2567 switch (sect)
2568 {
2569 case DWARF2_DEBUG_FRAME:
2570 info = &data->frame;
2571 break;
2572 case DWARF2_EH_FRAME:
2573 info = &data->eh_frame;
2574 break;
2575 default:
2576 gdb_assert_not_reached ("unexpected section");
2577 }
2578
2579 dwarf2_read_section (objfile, info);
2580
2581 *sectp = get_section_bfd_section (info);
2582 *bufp = info->buffer;
2583 *sizep = info->size;
2584 }
2585
2586 /* A helper function to find the sections for a .dwz file. */
2587
2588 static void
2589 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2590 {
2591 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2592
2593 /* Note that we only support the standard ELF names, because .dwz
2594 is ELF-only (at the time of writing). */
2595 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2596 {
2597 dwz_file->abbrev.s.section = sectp;
2598 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2599 }
2600 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2601 {
2602 dwz_file->info.s.section = sectp;
2603 dwz_file->info.size = bfd_get_section_size (sectp);
2604 }
2605 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2606 {
2607 dwz_file->str.s.section = sectp;
2608 dwz_file->str.size = bfd_get_section_size (sectp);
2609 }
2610 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2611 {
2612 dwz_file->line.s.section = sectp;
2613 dwz_file->line.size = bfd_get_section_size (sectp);
2614 }
2615 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2616 {
2617 dwz_file->macro.s.section = sectp;
2618 dwz_file->macro.size = bfd_get_section_size (sectp);
2619 }
2620 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2621 {
2622 dwz_file->gdb_index.s.section = sectp;
2623 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2624 }
2625 else if (section_is_p (sectp->name, &dwarf2_elf_names.debug_names))
2626 {
2627 dwz_file->debug_names.s.section = sectp;
2628 dwz_file->debug_names.size = bfd_get_section_size (sectp);
2629 }
2630 }
2631
2632 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2633 there is no .gnu_debugaltlink section in the file. Error if there
2634 is such a section but the file cannot be found. */
2635
2636 static struct dwz_file *
2637 dwarf2_get_dwz_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
2638 {
2639 const char *filename;
2640 bfd_size_type buildid_len_arg;
2641 size_t buildid_len;
2642 bfd_byte *buildid;
2643
2644 if (dwarf2_per_objfile->dwz_file != NULL)
2645 return dwarf2_per_objfile->dwz_file.get ();
2646
2647 bfd_set_error (bfd_error_no_error);
2648 gdb::unique_xmalloc_ptr<char> data
2649 (bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2650 &buildid_len_arg, &buildid));
2651 if (data == NULL)
2652 {
2653 if (bfd_get_error () == bfd_error_no_error)
2654 return NULL;
2655 error (_("could not read '.gnu_debugaltlink' section: %s"),
2656 bfd_errmsg (bfd_get_error ()));
2657 }
2658
2659 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
2660
2661 buildid_len = (size_t) buildid_len_arg;
2662
2663 filename = data.get ();
2664
2665 std::string abs_storage;
2666 if (!IS_ABSOLUTE_PATH (filename))
2667 {
2668 gdb::unique_xmalloc_ptr<char> abs
2669 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2670
2671 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
2672 filename = abs_storage.c_str ();
2673 }
2674
2675 /* First try the file name given in the section. If that doesn't
2676 work, try to use the build-id instead. */
2677 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2678 if (dwz_bfd != NULL)
2679 {
2680 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2681 dwz_bfd.release ();
2682 }
2683
2684 if (dwz_bfd == NULL)
2685 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2686
2687 if (dwz_bfd == NULL)
2688 error (_("could not find '.gnu_debugaltlink' file for %s"),
2689 objfile_name (dwarf2_per_objfile->objfile));
2690
2691 std::unique_ptr<struct dwz_file> result
2692 (new struct dwz_file (std::move (dwz_bfd)));
2693
2694 bfd_map_over_sections (result->dwz_bfd.get (), locate_dwz_sections,
2695 result.get ());
2696
2697 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd,
2698 result->dwz_bfd.get ());
2699 dwarf2_per_objfile->dwz_file = std::move (result);
2700 return dwarf2_per_objfile->dwz_file.get ();
2701 }
2702 \f
2703 /* DWARF quick_symbols_functions support. */
2704
2705 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2706 unique line tables, so we maintain a separate table of all .debug_line
2707 derived entries to support the sharing.
2708 All the quick functions need is the list of file names. We discard the
2709 line_header when we're done and don't need to record it here. */
2710 struct quick_file_names
2711 {
2712 /* The data used to construct the hash key. */
2713 struct stmt_list_hash hash;
2714
2715 /* The number of entries in file_names, real_names. */
2716 unsigned int num_file_names;
2717
2718 /* The file names from the line table, after being run through
2719 file_full_name. */
2720 const char **file_names;
2721
2722 /* The file names from the line table after being run through
2723 gdb_realpath. These are computed lazily. */
2724 const char **real_names;
2725 };
2726
2727 /* When using the index (and thus not using psymtabs), each CU has an
2728 object of this type. This is used to hold information needed by
2729 the various "quick" methods. */
2730 struct dwarf2_per_cu_quick_data
2731 {
2732 /* The file table. This can be NULL if there was no file table
2733 or it's currently not read in.
2734 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2735 struct quick_file_names *file_names;
2736
2737 /* The corresponding symbol table. This is NULL if symbols for this
2738 CU have not yet been read. */
2739 struct compunit_symtab *compunit_symtab;
2740
2741 /* A temporary mark bit used when iterating over all CUs in
2742 expand_symtabs_matching. */
2743 unsigned int mark : 1;
2744
2745 /* True if we've tried to read the file table and found there isn't one.
2746 There will be no point in trying to read it again next time. */
2747 unsigned int no_file_data : 1;
2748 };
2749
2750 /* Utility hash function for a stmt_list_hash. */
2751
2752 static hashval_t
2753 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2754 {
2755 hashval_t v = 0;
2756
2757 if (stmt_list_hash->dwo_unit != NULL)
2758 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2759 v += to_underlying (stmt_list_hash->line_sect_off);
2760 return v;
2761 }
2762
2763 /* Utility equality function for a stmt_list_hash. */
2764
2765 static int
2766 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2767 const struct stmt_list_hash *rhs)
2768 {
2769 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2770 return 0;
2771 if (lhs->dwo_unit != NULL
2772 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2773 return 0;
2774
2775 return lhs->line_sect_off == rhs->line_sect_off;
2776 }
2777
2778 /* Hash function for a quick_file_names. */
2779
2780 static hashval_t
2781 hash_file_name_entry (const void *e)
2782 {
2783 const struct quick_file_names *file_data
2784 = (const struct quick_file_names *) e;
2785
2786 return hash_stmt_list_entry (&file_data->hash);
2787 }
2788
2789 /* Equality function for a quick_file_names. */
2790
2791 static int
2792 eq_file_name_entry (const void *a, const void *b)
2793 {
2794 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2795 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2796
2797 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2798 }
2799
2800 /* Delete function for a quick_file_names. */
2801
2802 static void
2803 delete_file_name_entry (void *e)
2804 {
2805 struct quick_file_names *file_data = (struct quick_file_names *) e;
2806 int i;
2807
2808 for (i = 0; i < file_data->num_file_names; ++i)
2809 {
2810 xfree ((void*) file_data->file_names[i]);
2811 if (file_data->real_names)
2812 xfree ((void*) file_data->real_names[i]);
2813 }
2814
2815 /* The space for the struct itself lives on objfile_obstack,
2816 so we don't free it here. */
2817 }
2818
2819 /* Create a quick_file_names hash table. */
2820
2821 static htab_t
2822 create_quick_file_names_table (unsigned int nr_initial_entries)
2823 {
2824 return htab_create_alloc (nr_initial_entries,
2825 hash_file_name_entry, eq_file_name_entry,
2826 delete_file_name_entry, xcalloc, xfree);
2827 }
2828
2829 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2830 have to be created afterwards. You should call age_cached_comp_units after
2831 processing PER_CU->CU. dw2_setup must have been already called. */
2832
2833 static void
2834 load_cu (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2835 {
2836 if (per_cu->is_debug_types)
2837 load_full_type_unit (per_cu);
2838 else
2839 load_full_comp_unit (per_cu, skip_partial, language_minimal);
2840
2841 if (per_cu->cu == NULL)
2842 return; /* Dummy CU. */
2843
2844 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2845 }
2846
2847 /* Read in the symbols for PER_CU. */
2848
2849 static void
2850 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2851 {
2852 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2853
2854 /* Skip type_unit_groups, reading the type units they contain
2855 is handled elsewhere. */
2856 if (IS_TYPE_UNIT_GROUP (per_cu))
2857 return;
2858
2859 /* The destructor of dwarf2_queue_guard frees any entries left on
2860 the queue. After this point we're guaranteed to leave this function
2861 with the dwarf queue empty. */
2862 dwarf2_queue_guard q_guard;
2863
2864 if (dwarf2_per_objfile->using_index
2865 ? per_cu->v.quick->compunit_symtab == NULL
2866 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2867 {
2868 queue_comp_unit (per_cu, language_minimal);
2869 load_cu (per_cu, skip_partial);
2870
2871 /* If we just loaded a CU from a DWO, and we're working with an index
2872 that may badly handle TUs, load all the TUs in that DWO as well.
2873 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2874 if (!per_cu->is_debug_types
2875 && per_cu->cu != NULL
2876 && per_cu->cu->dwo_unit != NULL
2877 && dwarf2_per_objfile->index_table != NULL
2878 && dwarf2_per_objfile->index_table->version <= 7
2879 /* DWP files aren't supported yet. */
2880 && get_dwp_file (dwarf2_per_objfile) == NULL)
2881 queue_and_load_all_dwo_tus (per_cu);
2882 }
2883
2884 process_queue (dwarf2_per_objfile);
2885
2886 /* Age the cache, releasing compilation units that have not
2887 been used recently. */
2888 age_cached_comp_units (dwarf2_per_objfile);
2889 }
2890
2891 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2892 the objfile from which this CU came. Returns the resulting symbol
2893 table. */
2894
2895 static struct compunit_symtab *
2896 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2897 {
2898 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2899
2900 gdb_assert (dwarf2_per_objfile->using_index);
2901 if (!per_cu->v.quick->compunit_symtab)
2902 {
2903 free_cached_comp_units freer (dwarf2_per_objfile);
2904 scoped_restore decrementer = increment_reading_symtab ();
2905 dw2_do_instantiate_symtab (per_cu, skip_partial);
2906 process_cu_includes (dwarf2_per_objfile);
2907 }
2908
2909 return per_cu->v.quick->compunit_symtab;
2910 }
2911
2912 /* See declaration. */
2913
2914 dwarf2_per_cu_data *
2915 dwarf2_per_objfile::get_cutu (int index)
2916 {
2917 if (index >= this->all_comp_units.size ())
2918 {
2919 index -= this->all_comp_units.size ();
2920 gdb_assert (index < this->all_type_units.size ());
2921 return &this->all_type_units[index]->per_cu;
2922 }
2923
2924 return this->all_comp_units[index];
2925 }
2926
2927 /* See declaration. */
2928
2929 dwarf2_per_cu_data *
2930 dwarf2_per_objfile::get_cu (int index)
2931 {
2932 gdb_assert (index >= 0 && index < this->all_comp_units.size ());
2933
2934 return this->all_comp_units[index];
2935 }
2936
2937 /* See declaration. */
2938
2939 signatured_type *
2940 dwarf2_per_objfile::get_tu (int index)
2941 {
2942 gdb_assert (index >= 0 && index < this->all_type_units.size ());
2943
2944 return this->all_type_units[index];
2945 }
2946
2947 /* Return a new dwarf2_per_cu_data allocated on OBJFILE's
2948 objfile_obstack, and constructed with the specified field
2949 values. */
2950
2951 static dwarf2_per_cu_data *
2952 create_cu_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2953 struct dwarf2_section_info *section,
2954 int is_dwz,
2955 sect_offset sect_off, ULONGEST length)
2956 {
2957 struct objfile *objfile = dwarf2_per_objfile->objfile;
2958 dwarf2_per_cu_data *the_cu
2959 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2960 struct dwarf2_per_cu_data);
2961 the_cu->sect_off = sect_off;
2962 the_cu->length = length;
2963 the_cu->dwarf2_per_objfile = dwarf2_per_objfile;
2964 the_cu->section = section;
2965 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2966 struct dwarf2_per_cu_quick_data);
2967 the_cu->is_dwz = is_dwz;
2968 return the_cu;
2969 }
2970
2971 /* A helper for create_cus_from_index that handles a given list of
2972 CUs. */
2973
2974 static void
2975 create_cus_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2976 const gdb_byte *cu_list, offset_type n_elements,
2977 struct dwarf2_section_info *section,
2978 int is_dwz)
2979 {
2980 for (offset_type i = 0; i < n_elements; i += 2)
2981 {
2982 gdb_static_assert (sizeof (ULONGEST) >= 8);
2983
2984 sect_offset sect_off
2985 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2986 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2987 cu_list += 2 * 8;
2988
2989 dwarf2_per_cu_data *per_cu
2990 = create_cu_from_index_list (dwarf2_per_objfile, section, is_dwz,
2991 sect_off, length);
2992 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
2993 }
2994 }
2995
2996 /* Read the CU list from the mapped index, and use it to create all
2997 the CU objects for this objfile. */
2998
2999 static void
3000 create_cus_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3001 const gdb_byte *cu_list, offset_type cu_list_elements,
3002 const gdb_byte *dwz_list, offset_type dwz_elements)
3003 {
3004 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
3005 dwarf2_per_objfile->all_comp_units.reserve
3006 ((cu_list_elements + dwz_elements) / 2);
3007
3008 create_cus_from_index_list (dwarf2_per_objfile, cu_list, cu_list_elements,
3009 &dwarf2_per_objfile->info, 0);
3010
3011 if (dwz_elements == 0)
3012 return;
3013
3014 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3015 create_cus_from_index_list (dwarf2_per_objfile, dwz_list, dwz_elements,
3016 &dwz->info, 1);
3017 }
3018
3019 /* Create the signatured type hash table from the index. */
3020
3021 static void
3022 create_signatured_type_table_from_index
3023 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3024 struct dwarf2_section_info *section,
3025 const gdb_byte *bytes,
3026 offset_type elements)
3027 {
3028 struct objfile *objfile = dwarf2_per_objfile->objfile;
3029
3030 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3031 dwarf2_per_objfile->all_type_units.reserve (elements / 3);
3032
3033 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3034
3035 for (offset_type i = 0; i < elements; i += 3)
3036 {
3037 struct signatured_type *sig_type;
3038 ULONGEST signature;
3039 void **slot;
3040 cu_offset type_offset_in_tu;
3041
3042 gdb_static_assert (sizeof (ULONGEST) >= 8);
3043 sect_offset sect_off
3044 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
3045 type_offset_in_tu
3046 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
3047 BFD_ENDIAN_LITTLE);
3048 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
3049 bytes += 3 * 8;
3050
3051 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3052 struct signatured_type);
3053 sig_type->signature = signature;
3054 sig_type->type_offset_in_tu = type_offset_in_tu;
3055 sig_type->per_cu.is_debug_types = 1;
3056 sig_type->per_cu.section = section;
3057 sig_type->per_cu.sect_off = sect_off;
3058 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3059 sig_type->per_cu.v.quick
3060 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3061 struct dwarf2_per_cu_quick_data);
3062
3063 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3064 *slot = sig_type;
3065
3066 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3067 }
3068
3069 dwarf2_per_objfile->signatured_types = sig_types_hash;
3070 }
3071
3072 /* Create the signatured type hash table from .debug_names. */
3073
3074 static void
3075 create_signatured_type_table_from_debug_names
3076 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3077 const mapped_debug_names &map,
3078 struct dwarf2_section_info *section,
3079 struct dwarf2_section_info *abbrev_section)
3080 {
3081 struct objfile *objfile = dwarf2_per_objfile->objfile;
3082
3083 dwarf2_read_section (objfile, section);
3084 dwarf2_read_section (objfile, abbrev_section);
3085
3086 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3087 dwarf2_per_objfile->all_type_units.reserve (map.tu_count);
3088
3089 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3090
3091 for (uint32_t i = 0; i < map.tu_count; ++i)
3092 {
3093 struct signatured_type *sig_type;
3094 void **slot;
3095
3096 sect_offset sect_off
3097 = (sect_offset) (extract_unsigned_integer
3098 (map.tu_table_reordered + i * map.offset_size,
3099 map.offset_size,
3100 map.dwarf5_byte_order));
3101
3102 comp_unit_head cu_header;
3103 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
3104 abbrev_section,
3105 section->buffer + to_underlying (sect_off),
3106 rcuh_kind::TYPE);
3107
3108 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3109 struct signatured_type);
3110 sig_type->signature = cu_header.signature;
3111 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
3112 sig_type->per_cu.is_debug_types = 1;
3113 sig_type->per_cu.section = section;
3114 sig_type->per_cu.sect_off = sect_off;
3115 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3116 sig_type->per_cu.v.quick
3117 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3118 struct dwarf2_per_cu_quick_data);
3119
3120 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3121 *slot = sig_type;
3122
3123 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3124 }
3125
3126 dwarf2_per_objfile->signatured_types = sig_types_hash;
3127 }
3128
3129 /* Read the address map data from the mapped index, and use it to
3130 populate the objfile's psymtabs_addrmap. */
3131
3132 static void
3133 create_addrmap_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3134 struct mapped_index *index)
3135 {
3136 struct objfile *objfile = dwarf2_per_objfile->objfile;
3137 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3138 const gdb_byte *iter, *end;
3139 struct addrmap *mutable_map;
3140 CORE_ADDR baseaddr;
3141
3142 auto_obstack temp_obstack;
3143
3144 mutable_map = addrmap_create_mutable (&temp_obstack);
3145
3146 iter = index->address_table.data ();
3147 end = iter + index->address_table.size ();
3148
3149 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3150
3151 while (iter < end)
3152 {
3153 ULONGEST hi, lo, cu_index;
3154 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3155 iter += 8;
3156 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3157 iter += 8;
3158 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
3159 iter += 4;
3160
3161 if (lo > hi)
3162 {
3163 complaint (_(".gdb_index address table has invalid range (%s - %s)"),
3164 hex_string (lo), hex_string (hi));
3165 continue;
3166 }
3167
3168 if (cu_index >= dwarf2_per_objfile->all_comp_units.size ())
3169 {
3170 complaint (_(".gdb_index address table has invalid CU number %u"),
3171 (unsigned) cu_index);
3172 continue;
3173 }
3174
3175 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
3176 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
3177 addrmap_set_empty (mutable_map, lo, hi - 1,
3178 dwarf2_per_objfile->get_cu (cu_index));
3179 }
3180
3181 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3182 &objfile->objfile_obstack);
3183 }
3184
3185 /* Read the address map data from DWARF-5 .debug_aranges, and use it to
3186 populate the objfile's psymtabs_addrmap. */
3187
3188 static void
3189 create_addrmap_from_aranges (struct dwarf2_per_objfile *dwarf2_per_objfile,
3190 struct dwarf2_section_info *section)
3191 {
3192 struct objfile *objfile = dwarf2_per_objfile->objfile;
3193 bfd *abfd = objfile->obfd;
3194 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3195 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
3196 SECT_OFF_TEXT (objfile));
3197
3198 auto_obstack temp_obstack;
3199 addrmap *mutable_map = addrmap_create_mutable (&temp_obstack);
3200
3201 std::unordered_map<sect_offset,
3202 dwarf2_per_cu_data *,
3203 gdb::hash_enum<sect_offset>>
3204 debug_info_offset_to_per_cu;
3205 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3206 {
3207 const auto insertpair
3208 = debug_info_offset_to_per_cu.emplace (per_cu->sect_off, per_cu);
3209 if (!insertpair.second)
3210 {
3211 warning (_("Section .debug_aranges in %s has duplicate "
3212 "debug_info_offset %s, ignoring .debug_aranges."),
3213 objfile_name (objfile), sect_offset_str (per_cu->sect_off));
3214 return;
3215 }
3216 }
3217
3218 dwarf2_read_section (objfile, section);
3219
3220 const bfd_endian dwarf5_byte_order = gdbarch_byte_order (gdbarch);
3221
3222 const gdb_byte *addr = section->buffer;
3223
3224 while (addr < section->buffer + section->size)
3225 {
3226 const gdb_byte *const entry_addr = addr;
3227 unsigned int bytes_read;
3228
3229 const LONGEST entry_length = read_initial_length (abfd, addr,
3230 &bytes_read);
3231 addr += bytes_read;
3232
3233 const gdb_byte *const entry_end = addr + entry_length;
3234 const bool dwarf5_is_dwarf64 = bytes_read != 4;
3235 const uint8_t offset_size = dwarf5_is_dwarf64 ? 8 : 4;
3236 if (addr + entry_length > section->buffer + section->size)
3237 {
3238 warning (_("Section .debug_aranges in %s entry at offset %zu "
3239 "length %s exceeds section length %s, "
3240 "ignoring .debug_aranges."),
3241 objfile_name (objfile), entry_addr - section->buffer,
3242 plongest (bytes_read + entry_length),
3243 pulongest (section->size));
3244 return;
3245 }
3246
3247 /* The version number. */
3248 const uint16_t version = read_2_bytes (abfd, addr);
3249 addr += 2;
3250 if (version != 2)
3251 {
3252 warning (_("Section .debug_aranges in %s entry at offset %zu "
3253 "has unsupported version %d, ignoring .debug_aranges."),
3254 objfile_name (objfile), entry_addr - section->buffer,
3255 version);
3256 return;
3257 }
3258
3259 const uint64_t debug_info_offset
3260 = extract_unsigned_integer (addr, offset_size, dwarf5_byte_order);
3261 addr += offset_size;
3262 const auto per_cu_it
3263 = debug_info_offset_to_per_cu.find (sect_offset (debug_info_offset));
3264 if (per_cu_it == debug_info_offset_to_per_cu.cend ())
3265 {
3266 warning (_("Section .debug_aranges in %s entry at offset %zu "
3267 "debug_info_offset %s does not exists, "
3268 "ignoring .debug_aranges."),
3269 objfile_name (objfile), entry_addr - section->buffer,
3270 pulongest (debug_info_offset));
3271 return;
3272 }
3273 dwarf2_per_cu_data *const per_cu = per_cu_it->second;
3274
3275 const uint8_t address_size = *addr++;
3276 if (address_size < 1 || address_size > 8)
3277 {
3278 warning (_("Section .debug_aranges in %s entry at offset %zu "
3279 "address_size %u is invalid, ignoring .debug_aranges."),
3280 objfile_name (objfile), entry_addr - section->buffer,
3281 address_size);
3282 return;
3283 }
3284
3285 const uint8_t segment_selector_size = *addr++;
3286 if (segment_selector_size != 0)
3287 {
3288 warning (_("Section .debug_aranges in %s entry at offset %zu "
3289 "segment_selector_size %u is not supported, "
3290 "ignoring .debug_aranges."),
3291 objfile_name (objfile), entry_addr - section->buffer,
3292 segment_selector_size);
3293 return;
3294 }
3295
3296 /* Must pad to an alignment boundary that is twice the address
3297 size. It is undocumented by the DWARF standard but GCC does
3298 use it. */
3299 for (size_t padding = ((-(addr - section->buffer))
3300 & (2 * address_size - 1));
3301 padding > 0; padding--)
3302 if (*addr++ != 0)
3303 {
3304 warning (_("Section .debug_aranges in %s entry at offset %zu "
3305 "padding is not zero, ignoring .debug_aranges."),
3306 objfile_name (objfile), entry_addr - section->buffer);
3307 return;
3308 }
3309
3310 for (;;)
3311 {
3312 if (addr + 2 * address_size > entry_end)
3313 {
3314 warning (_("Section .debug_aranges in %s entry at offset %zu "
3315 "address list is not properly terminated, "
3316 "ignoring .debug_aranges."),
3317 objfile_name (objfile), entry_addr - section->buffer);
3318 return;
3319 }
3320 ULONGEST start = extract_unsigned_integer (addr, address_size,
3321 dwarf5_byte_order);
3322 addr += address_size;
3323 ULONGEST length = extract_unsigned_integer (addr, address_size,
3324 dwarf5_byte_order);
3325 addr += address_size;
3326 if (start == 0 && length == 0)
3327 break;
3328 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
3329 {
3330 /* Symbol was eliminated due to a COMDAT group. */
3331 continue;
3332 }
3333 ULONGEST end = start + length;
3334 start = gdbarch_adjust_dwarf2_addr (gdbarch, start + baseaddr);
3335 end = gdbarch_adjust_dwarf2_addr (gdbarch, end + baseaddr);
3336 addrmap_set_empty (mutable_map, start, end - 1, per_cu);
3337 }
3338 }
3339
3340 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3341 &objfile->objfile_obstack);
3342 }
3343
3344 /* Find a slot in the mapped index INDEX for the object named NAME.
3345 If NAME is found, set *VEC_OUT to point to the CU vector in the
3346 constant pool and return true. If NAME cannot be found, return
3347 false. */
3348
3349 static bool
3350 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3351 offset_type **vec_out)
3352 {
3353 offset_type hash;
3354 offset_type slot, step;
3355 int (*cmp) (const char *, const char *);
3356
3357 gdb::unique_xmalloc_ptr<char> without_params;
3358 if (current_language->la_language == language_cplus
3359 || current_language->la_language == language_fortran
3360 || current_language->la_language == language_d)
3361 {
3362 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3363 not contain any. */
3364
3365 if (strchr (name, '(') != NULL)
3366 {
3367 without_params = cp_remove_params (name);
3368
3369 if (without_params != NULL)
3370 name = without_params.get ();
3371 }
3372 }
3373
3374 /* Index version 4 did not support case insensitive searches. But the
3375 indices for case insensitive languages are built in lowercase, therefore
3376 simulate our NAME being searched is also lowercased. */
3377 hash = mapped_index_string_hash ((index->version == 4
3378 && case_sensitivity == case_sensitive_off
3379 ? 5 : index->version),
3380 name);
3381
3382 slot = hash & (index->symbol_table.size () - 1);
3383 step = ((hash * 17) & (index->symbol_table.size () - 1)) | 1;
3384 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3385
3386 for (;;)
3387 {
3388 const char *str;
3389
3390 const auto &bucket = index->symbol_table[slot];
3391 if (bucket.name == 0 && bucket.vec == 0)
3392 return false;
3393
3394 str = index->constant_pool + MAYBE_SWAP (bucket.name);
3395 if (!cmp (name, str))
3396 {
3397 *vec_out = (offset_type *) (index->constant_pool
3398 + MAYBE_SWAP (bucket.vec));
3399 return true;
3400 }
3401
3402 slot = (slot + step) & (index->symbol_table.size () - 1);
3403 }
3404 }
3405
3406 /* A helper function that reads the .gdb_index from SECTION and fills
3407 in MAP. FILENAME is the name of the file containing the section;
3408 it is used for error reporting. DEPRECATED_OK is true if it is
3409 ok to use deprecated sections.
3410
3411 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3412 out parameters that are filled in with information about the CU and
3413 TU lists in the section.
3414
3415 Returns 1 if all went well, 0 otherwise. */
3416
3417 static bool
3418 read_gdb_index_from_section (struct objfile *objfile,
3419 const char *filename,
3420 bool deprecated_ok,
3421 struct dwarf2_section_info *section,
3422 struct mapped_index *map,
3423 const gdb_byte **cu_list,
3424 offset_type *cu_list_elements,
3425 const gdb_byte **types_list,
3426 offset_type *types_list_elements)
3427 {
3428 const gdb_byte *addr;
3429 offset_type version;
3430 offset_type *metadata;
3431 int i;
3432
3433 if (dwarf2_section_empty_p (section))
3434 return 0;
3435
3436 /* Older elfutils strip versions could keep the section in the main
3437 executable while splitting it for the separate debug info file. */
3438 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
3439 return 0;
3440
3441 dwarf2_read_section (objfile, section);
3442
3443 addr = section->buffer;
3444 /* Version check. */
3445 version = MAYBE_SWAP (*(offset_type *) addr);
3446 /* Versions earlier than 3 emitted every copy of a psymbol. This
3447 causes the index to behave very poorly for certain requests. Version 3
3448 contained incomplete addrmap. So, it seems better to just ignore such
3449 indices. */
3450 if (version < 4)
3451 {
3452 static int warning_printed = 0;
3453 if (!warning_printed)
3454 {
3455 warning (_("Skipping obsolete .gdb_index section in %s."),
3456 filename);
3457 warning_printed = 1;
3458 }
3459 return 0;
3460 }
3461 /* Index version 4 uses a different hash function than index version
3462 5 and later.
3463
3464 Versions earlier than 6 did not emit psymbols for inlined
3465 functions. Using these files will cause GDB not to be able to
3466 set breakpoints on inlined functions by name, so we ignore these
3467 indices unless the user has done
3468 "set use-deprecated-index-sections on". */
3469 if (version < 6 && !deprecated_ok)
3470 {
3471 static int warning_printed = 0;
3472 if (!warning_printed)
3473 {
3474 warning (_("\
3475 Skipping deprecated .gdb_index section in %s.\n\
3476 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3477 to use the section anyway."),
3478 filename);
3479 warning_printed = 1;
3480 }
3481 return 0;
3482 }
3483 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3484 of the TU (for symbols coming from TUs),
3485 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3486 Plus gold-generated indices can have duplicate entries for global symbols,
3487 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3488 These are just performance bugs, and we can't distinguish gdb-generated
3489 indices from gold-generated ones, so issue no warning here. */
3490
3491 /* Indexes with higher version than the one supported by GDB may be no
3492 longer backward compatible. */
3493 if (version > 8)
3494 return 0;
3495
3496 map->version = version;
3497
3498 metadata = (offset_type *) (addr + sizeof (offset_type));
3499
3500 i = 0;
3501 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3502 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3503 / 8);
3504 ++i;
3505
3506 *types_list = addr + MAYBE_SWAP (metadata[i]);
3507 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3508 - MAYBE_SWAP (metadata[i]))
3509 / 8);
3510 ++i;
3511
3512 const gdb_byte *address_table = addr + MAYBE_SWAP (metadata[i]);
3513 const gdb_byte *address_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3514 map->address_table
3515 = gdb::array_view<const gdb_byte> (address_table, address_table_end);
3516 ++i;
3517
3518 const gdb_byte *symbol_table = addr + MAYBE_SWAP (metadata[i]);
3519 const gdb_byte *symbol_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3520 map->symbol_table
3521 = gdb::array_view<mapped_index::symbol_table_slot>
3522 ((mapped_index::symbol_table_slot *) symbol_table,
3523 (mapped_index::symbol_table_slot *) symbol_table_end);
3524
3525 ++i;
3526 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3527
3528 return 1;
3529 }
3530
3531 /* Read .gdb_index. If everything went ok, initialize the "quick"
3532 elements of all the CUs and return 1. Otherwise, return 0. */
3533
3534 static int
3535 dwarf2_read_gdb_index (struct dwarf2_per_objfile *dwarf2_per_objfile)
3536 {
3537 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3538 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3539 struct dwz_file *dwz;
3540 struct objfile *objfile = dwarf2_per_objfile->objfile;
3541
3542 std::unique_ptr<struct mapped_index> map (new struct mapped_index);
3543 if (!read_gdb_index_from_section (objfile, objfile_name (objfile),
3544 use_deprecated_index_sections,
3545 &dwarf2_per_objfile->gdb_index, map.get (),
3546 &cu_list, &cu_list_elements,
3547 &types_list, &types_list_elements))
3548 return 0;
3549
3550 /* Don't use the index if it's empty. */
3551 if (map->symbol_table.empty ())
3552 return 0;
3553
3554 /* If there is a .dwz file, read it so we can get its CU list as
3555 well. */
3556 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3557 if (dwz != NULL)
3558 {
3559 struct mapped_index dwz_map;
3560 const gdb_byte *dwz_types_ignore;
3561 offset_type dwz_types_elements_ignore;
3562
3563 if (!read_gdb_index_from_section (objfile,
3564 bfd_get_filename (dwz->dwz_bfd), 1,
3565 &dwz->gdb_index, &dwz_map,
3566 &dwz_list, &dwz_list_elements,
3567 &dwz_types_ignore,
3568 &dwz_types_elements_ignore))
3569 {
3570 warning (_("could not read '.gdb_index' section from %s; skipping"),
3571 bfd_get_filename (dwz->dwz_bfd));
3572 return 0;
3573 }
3574 }
3575
3576 create_cus_from_index (dwarf2_per_objfile, cu_list, cu_list_elements,
3577 dwz_list, dwz_list_elements);
3578
3579 if (types_list_elements)
3580 {
3581 struct dwarf2_section_info *section;
3582
3583 /* We can only handle a single .debug_types when we have an
3584 index. */
3585 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3586 return 0;
3587
3588 section = VEC_index (dwarf2_section_info_def,
3589 dwarf2_per_objfile->types, 0);
3590
3591 create_signatured_type_table_from_index (dwarf2_per_objfile, section,
3592 types_list, types_list_elements);
3593 }
3594
3595 create_addrmap_from_index (dwarf2_per_objfile, map.get ());
3596
3597 dwarf2_per_objfile->index_table = std::move (map);
3598 dwarf2_per_objfile->using_index = 1;
3599 dwarf2_per_objfile->quick_file_names_table =
3600 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
3601
3602 return 1;
3603 }
3604
3605 /* die_reader_func for dw2_get_file_names. */
3606
3607 static void
3608 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3609 const gdb_byte *info_ptr,
3610 struct die_info *comp_unit_die,
3611 int has_children,
3612 void *data)
3613 {
3614 struct dwarf2_cu *cu = reader->cu;
3615 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3616 struct dwarf2_per_objfile *dwarf2_per_objfile
3617 = cu->per_cu->dwarf2_per_objfile;
3618 struct objfile *objfile = dwarf2_per_objfile->objfile;
3619 struct dwarf2_per_cu_data *lh_cu;
3620 struct attribute *attr;
3621 int i;
3622 void **slot;
3623 struct quick_file_names *qfn;
3624
3625 gdb_assert (! this_cu->is_debug_types);
3626
3627 /* Our callers never want to match partial units -- instead they
3628 will match the enclosing full CU. */
3629 if (comp_unit_die->tag == DW_TAG_partial_unit)
3630 {
3631 this_cu->v.quick->no_file_data = 1;
3632 return;
3633 }
3634
3635 lh_cu = this_cu;
3636 slot = NULL;
3637
3638 line_header_up lh;
3639 sect_offset line_offset {};
3640
3641 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3642 if (attr)
3643 {
3644 struct quick_file_names find_entry;
3645
3646 line_offset = (sect_offset) DW_UNSND (attr);
3647
3648 /* We may have already read in this line header (TU line header sharing).
3649 If we have we're done. */
3650 find_entry.hash.dwo_unit = cu->dwo_unit;
3651 find_entry.hash.line_sect_off = line_offset;
3652 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3653 &find_entry, INSERT);
3654 if (*slot != NULL)
3655 {
3656 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3657 return;
3658 }
3659
3660 lh = dwarf_decode_line_header (line_offset, cu);
3661 }
3662 if (lh == NULL)
3663 {
3664 lh_cu->v.quick->no_file_data = 1;
3665 return;
3666 }
3667
3668 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3669 qfn->hash.dwo_unit = cu->dwo_unit;
3670 qfn->hash.line_sect_off = line_offset;
3671 gdb_assert (slot != NULL);
3672 *slot = qfn;
3673
3674 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3675
3676 qfn->num_file_names = lh->file_names.size ();
3677 qfn->file_names =
3678 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->file_names.size ());
3679 for (i = 0; i < lh->file_names.size (); ++i)
3680 qfn->file_names[i] = file_full_name (i + 1, lh.get (), fnd.comp_dir);
3681 qfn->real_names = NULL;
3682
3683 lh_cu->v.quick->file_names = qfn;
3684 }
3685
3686 /* A helper for the "quick" functions which attempts to read the line
3687 table for THIS_CU. */
3688
3689 static struct quick_file_names *
3690 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3691 {
3692 /* This should never be called for TUs. */
3693 gdb_assert (! this_cu->is_debug_types);
3694 /* Nor type unit groups. */
3695 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3696
3697 if (this_cu->v.quick->file_names != NULL)
3698 return this_cu->v.quick->file_names;
3699 /* If we know there is no line data, no point in looking again. */
3700 if (this_cu->v.quick->no_file_data)
3701 return NULL;
3702
3703 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3704
3705 if (this_cu->v.quick->no_file_data)
3706 return NULL;
3707 return this_cu->v.quick->file_names;
3708 }
3709
3710 /* A helper for the "quick" functions which computes and caches the
3711 real path for a given file name from the line table. */
3712
3713 static const char *
3714 dw2_get_real_path (struct objfile *objfile,
3715 struct quick_file_names *qfn, int index)
3716 {
3717 if (qfn->real_names == NULL)
3718 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3719 qfn->num_file_names, const char *);
3720
3721 if (qfn->real_names[index] == NULL)
3722 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
3723
3724 return qfn->real_names[index];
3725 }
3726
3727 static struct symtab *
3728 dw2_find_last_source_symtab (struct objfile *objfile)
3729 {
3730 struct dwarf2_per_objfile *dwarf2_per_objfile
3731 = get_dwarf2_per_objfile (objfile);
3732 dwarf2_per_cu_data *dwarf_cu = dwarf2_per_objfile->all_comp_units.back ();
3733 compunit_symtab *cust = dw2_instantiate_symtab (dwarf_cu, false);
3734
3735 if (cust == NULL)
3736 return NULL;
3737
3738 return compunit_primary_filetab (cust);
3739 }
3740
3741 /* Traversal function for dw2_forget_cached_source_info. */
3742
3743 static int
3744 dw2_free_cached_file_names (void **slot, void *info)
3745 {
3746 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3747
3748 if (file_data->real_names)
3749 {
3750 int i;
3751
3752 for (i = 0; i < file_data->num_file_names; ++i)
3753 {
3754 xfree ((void*) file_data->real_names[i]);
3755 file_data->real_names[i] = NULL;
3756 }
3757 }
3758
3759 return 1;
3760 }
3761
3762 static void
3763 dw2_forget_cached_source_info (struct objfile *objfile)
3764 {
3765 struct dwarf2_per_objfile *dwarf2_per_objfile
3766 = get_dwarf2_per_objfile (objfile);
3767
3768 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3769 dw2_free_cached_file_names, NULL);
3770 }
3771
3772 /* Helper function for dw2_map_symtabs_matching_filename that expands
3773 the symtabs and calls the iterator. */
3774
3775 static int
3776 dw2_map_expand_apply (struct objfile *objfile,
3777 struct dwarf2_per_cu_data *per_cu,
3778 const char *name, const char *real_path,
3779 gdb::function_view<bool (symtab *)> callback)
3780 {
3781 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3782
3783 /* Don't visit already-expanded CUs. */
3784 if (per_cu->v.quick->compunit_symtab)
3785 return 0;
3786
3787 /* This may expand more than one symtab, and we want to iterate over
3788 all of them. */
3789 dw2_instantiate_symtab (per_cu, false);
3790
3791 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3792 last_made, callback);
3793 }
3794
3795 /* Implementation of the map_symtabs_matching_filename method. */
3796
3797 static bool
3798 dw2_map_symtabs_matching_filename
3799 (struct objfile *objfile, const char *name, const char *real_path,
3800 gdb::function_view<bool (symtab *)> callback)
3801 {
3802 const char *name_basename = lbasename (name);
3803 struct dwarf2_per_objfile *dwarf2_per_objfile
3804 = get_dwarf2_per_objfile (objfile);
3805
3806 /* The rule is CUs specify all the files, including those used by
3807 any TU, so there's no need to scan TUs here. */
3808
3809 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3810 {
3811 /* We only need to look at symtabs not already expanded. */
3812 if (per_cu->v.quick->compunit_symtab)
3813 continue;
3814
3815 quick_file_names *file_data = dw2_get_file_names (per_cu);
3816 if (file_data == NULL)
3817 continue;
3818
3819 for (int j = 0; j < file_data->num_file_names; ++j)
3820 {
3821 const char *this_name = file_data->file_names[j];
3822 const char *this_real_name;
3823
3824 if (compare_filenames_for_search (this_name, name))
3825 {
3826 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3827 callback))
3828 return true;
3829 continue;
3830 }
3831
3832 /* Before we invoke realpath, which can get expensive when many
3833 files are involved, do a quick comparison of the basenames. */
3834 if (! basenames_may_differ
3835 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3836 continue;
3837
3838 this_real_name = dw2_get_real_path (objfile, file_data, j);
3839 if (compare_filenames_for_search (this_real_name, name))
3840 {
3841 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3842 callback))
3843 return true;
3844 continue;
3845 }
3846
3847 if (real_path != NULL)
3848 {
3849 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3850 gdb_assert (IS_ABSOLUTE_PATH (name));
3851 if (this_real_name != NULL
3852 && FILENAME_CMP (real_path, this_real_name) == 0)
3853 {
3854 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3855 callback))
3856 return true;
3857 continue;
3858 }
3859 }
3860 }
3861 }
3862
3863 return false;
3864 }
3865
3866 /* Struct used to manage iterating over all CUs looking for a symbol. */
3867
3868 struct dw2_symtab_iterator
3869 {
3870 /* The dwarf2_per_objfile owning the CUs we are iterating on. */
3871 struct dwarf2_per_objfile *dwarf2_per_objfile;
3872 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3873 int want_specific_block;
3874 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3875 Unused if !WANT_SPECIFIC_BLOCK. */
3876 int block_index;
3877 /* The kind of symbol we're looking for. */
3878 domain_enum domain;
3879 /* The list of CUs from the index entry of the symbol,
3880 or NULL if not found. */
3881 offset_type *vec;
3882 /* The next element in VEC to look at. */
3883 int next;
3884 /* The number of elements in VEC, or zero if there is no match. */
3885 int length;
3886 /* Have we seen a global version of the symbol?
3887 If so we can ignore all further global instances.
3888 This is to work around gold/15646, inefficient gold-generated
3889 indices. */
3890 int global_seen;
3891 };
3892
3893 /* Initialize the index symtab iterator ITER.
3894 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3895 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3896
3897 static void
3898 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3899 struct dwarf2_per_objfile *dwarf2_per_objfile,
3900 int want_specific_block,
3901 int block_index,
3902 domain_enum domain,
3903 const char *name)
3904 {
3905 iter->dwarf2_per_objfile = dwarf2_per_objfile;
3906 iter->want_specific_block = want_specific_block;
3907 iter->block_index = block_index;
3908 iter->domain = domain;
3909 iter->next = 0;
3910 iter->global_seen = 0;
3911
3912 mapped_index *index = dwarf2_per_objfile->index_table.get ();
3913
3914 /* index is NULL if OBJF_READNOW. */
3915 if (index != NULL && find_slot_in_mapped_hash (index, name, &iter->vec))
3916 iter->length = MAYBE_SWAP (*iter->vec);
3917 else
3918 {
3919 iter->vec = NULL;
3920 iter->length = 0;
3921 }
3922 }
3923
3924 /* Return the next matching CU or NULL if there are no more. */
3925
3926 static struct dwarf2_per_cu_data *
3927 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3928 {
3929 struct dwarf2_per_objfile *dwarf2_per_objfile = iter->dwarf2_per_objfile;
3930
3931 for ( ; iter->next < iter->length; ++iter->next)
3932 {
3933 offset_type cu_index_and_attrs =
3934 MAYBE_SWAP (iter->vec[iter->next + 1]);
3935 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3936 int want_static = iter->block_index != GLOBAL_BLOCK;
3937 /* This value is only valid for index versions >= 7. */
3938 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3939 gdb_index_symbol_kind symbol_kind =
3940 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3941 /* Only check the symbol attributes if they're present.
3942 Indices prior to version 7 don't record them,
3943 and indices >= 7 may elide them for certain symbols
3944 (gold does this). */
3945 int attrs_valid =
3946 (dwarf2_per_objfile->index_table->version >= 7
3947 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3948
3949 /* Don't crash on bad data. */
3950 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
3951 + dwarf2_per_objfile->all_type_units.size ()))
3952 {
3953 complaint (_(".gdb_index entry has bad CU index"
3954 " [in module %s]"),
3955 objfile_name (dwarf2_per_objfile->objfile));
3956 continue;
3957 }
3958
3959 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
3960
3961 /* Skip if already read in. */
3962 if (per_cu->v.quick->compunit_symtab)
3963 continue;
3964
3965 /* Check static vs global. */
3966 if (attrs_valid)
3967 {
3968 if (iter->want_specific_block
3969 && want_static != is_static)
3970 continue;
3971 /* Work around gold/15646. */
3972 if (!is_static && iter->global_seen)
3973 continue;
3974 if (!is_static)
3975 iter->global_seen = 1;
3976 }
3977
3978 /* Only check the symbol's kind if it has one. */
3979 if (attrs_valid)
3980 {
3981 switch (iter->domain)
3982 {
3983 case VAR_DOMAIN:
3984 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3985 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3986 /* Some types are also in VAR_DOMAIN. */
3987 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3988 continue;
3989 break;
3990 case STRUCT_DOMAIN:
3991 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3992 continue;
3993 break;
3994 case LABEL_DOMAIN:
3995 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3996 continue;
3997 break;
3998 default:
3999 break;
4000 }
4001 }
4002
4003 ++iter->next;
4004 return per_cu;
4005 }
4006
4007 return NULL;
4008 }
4009
4010 static struct compunit_symtab *
4011 dw2_lookup_symbol (struct objfile *objfile, int block_index,
4012 const char *name, domain_enum domain)
4013 {
4014 struct compunit_symtab *stab_best = NULL;
4015 struct dwarf2_per_objfile *dwarf2_per_objfile
4016 = get_dwarf2_per_objfile (objfile);
4017
4018 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
4019
4020 struct dw2_symtab_iterator iter;
4021 struct dwarf2_per_cu_data *per_cu;
4022
4023 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 1, block_index, domain, name);
4024
4025 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4026 {
4027 struct symbol *sym, *with_opaque = NULL;
4028 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
4029 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
4030 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
4031
4032 sym = block_find_symbol (block, name, domain,
4033 block_find_non_opaque_type_preferred,
4034 &with_opaque);
4035
4036 /* Some caution must be observed with overloaded functions
4037 and methods, since the index will not contain any overload
4038 information (but NAME might contain it). */
4039
4040 if (sym != NULL
4041 && SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
4042 return stab;
4043 if (with_opaque != NULL
4044 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
4045 stab_best = stab;
4046
4047 /* Keep looking through other CUs. */
4048 }
4049
4050 return stab_best;
4051 }
4052
4053 static void
4054 dw2_print_stats (struct objfile *objfile)
4055 {
4056 struct dwarf2_per_objfile *dwarf2_per_objfile
4057 = get_dwarf2_per_objfile (objfile);
4058 int total = (dwarf2_per_objfile->all_comp_units.size ()
4059 + dwarf2_per_objfile->all_type_units.size ());
4060 int count = 0;
4061
4062 for (int i = 0; i < total; ++i)
4063 {
4064 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4065
4066 if (!per_cu->v.quick->compunit_symtab)
4067 ++count;
4068 }
4069 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
4070 printf_filtered (_(" Number of unread CUs: %d\n"), count);
4071 }
4072
4073 /* This dumps minimal information about the index.
4074 It is called via "mt print objfiles".
4075 One use is to verify .gdb_index has been loaded by the
4076 gdb.dwarf2/gdb-index.exp testcase. */
4077
4078 static void
4079 dw2_dump (struct objfile *objfile)
4080 {
4081 struct dwarf2_per_objfile *dwarf2_per_objfile
4082 = get_dwarf2_per_objfile (objfile);
4083
4084 gdb_assert (dwarf2_per_objfile->using_index);
4085 printf_filtered (".gdb_index:");
4086 if (dwarf2_per_objfile->index_table != NULL)
4087 {
4088 printf_filtered (" version %d\n",
4089 dwarf2_per_objfile->index_table->version);
4090 }
4091 else
4092 printf_filtered (" faked for \"readnow\"\n");
4093 printf_filtered ("\n");
4094 }
4095
4096 static void
4097 dw2_relocate (struct objfile *objfile,
4098 const struct section_offsets *new_offsets,
4099 const struct section_offsets *delta)
4100 {
4101 /* There's nothing to relocate here. */
4102 }
4103
4104 static void
4105 dw2_expand_symtabs_for_function (struct objfile *objfile,
4106 const char *func_name)
4107 {
4108 struct dwarf2_per_objfile *dwarf2_per_objfile
4109 = get_dwarf2_per_objfile (objfile);
4110
4111 struct dw2_symtab_iterator iter;
4112 struct dwarf2_per_cu_data *per_cu;
4113
4114 /* Note: It doesn't matter what we pass for block_index here. */
4115 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 0, GLOBAL_BLOCK, VAR_DOMAIN,
4116 func_name);
4117
4118 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4119 dw2_instantiate_symtab (per_cu, false);
4120
4121 }
4122
4123 static void
4124 dw2_expand_all_symtabs (struct objfile *objfile)
4125 {
4126 struct dwarf2_per_objfile *dwarf2_per_objfile
4127 = get_dwarf2_per_objfile (objfile);
4128 int total_units = (dwarf2_per_objfile->all_comp_units.size ()
4129 + dwarf2_per_objfile->all_type_units.size ());
4130
4131 for (int i = 0; i < total_units; ++i)
4132 {
4133 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4134
4135 /* We don't want to directly expand a partial CU, because if we
4136 read it with the wrong language, then assertion failures can
4137 be triggered later on. See PR symtab/23010. So, tell
4138 dw2_instantiate_symtab to skip partial CUs -- any important
4139 partial CU will be read via DW_TAG_imported_unit anyway. */
4140 dw2_instantiate_symtab (per_cu, true);
4141 }
4142 }
4143
4144 static void
4145 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
4146 const char *fullname)
4147 {
4148 struct dwarf2_per_objfile *dwarf2_per_objfile
4149 = get_dwarf2_per_objfile (objfile);
4150
4151 /* We don't need to consider type units here.
4152 This is only called for examining code, e.g. expand_line_sal.
4153 There can be an order of magnitude (or more) more type units
4154 than comp units, and we avoid them if we can. */
4155
4156 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4157 {
4158 /* We only need to look at symtabs not already expanded. */
4159 if (per_cu->v.quick->compunit_symtab)
4160 continue;
4161
4162 quick_file_names *file_data = dw2_get_file_names (per_cu);
4163 if (file_data == NULL)
4164 continue;
4165
4166 for (int j = 0; j < file_data->num_file_names; ++j)
4167 {
4168 const char *this_fullname = file_data->file_names[j];
4169
4170 if (filename_cmp (this_fullname, fullname) == 0)
4171 {
4172 dw2_instantiate_symtab (per_cu, false);
4173 break;
4174 }
4175 }
4176 }
4177 }
4178
4179 static void
4180 dw2_map_matching_symbols (struct objfile *objfile,
4181 const char * name, domain_enum domain,
4182 int global,
4183 int (*callback) (struct block *,
4184 struct symbol *, void *),
4185 void *data, symbol_name_match_type match,
4186 symbol_compare_ftype *ordered_compare)
4187 {
4188 /* Currently unimplemented; used for Ada. The function can be called if the
4189 current language is Ada for a non-Ada objfile using GNU index. As Ada
4190 does not look for non-Ada symbols this function should just return. */
4191 }
4192
4193 /* Symbol name matcher for .gdb_index names.
4194
4195 Symbol names in .gdb_index have a few particularities:
4196
4197 - There's no indication of which is the language of each symbol.
4198
4199 Since each language has its own symbol name matching algorithm,
4200 and we don't know which language is the right one, we must match
4201 each symbol against all languages. This would be a potential
4202 performance problem if it were not mitigated by the
4203 mapped_index::name_components lookup table, which significantly
4204 reduces the number of times we need to call into this matcher,
4205 making it a non-issue.
4206
4207 - Symbol names in the index have no overload (parameter)
4208 information. I.e., in C++, "foo(int)" and "foo(long)" both
4209 appear as "foo" in the index, for example.
4210
4211 This means that the lookup names passed to the symbol name
4212 matcher functions must have no parameter information either
4213 because (e.g.) symbol search name "foo" does not match
4214 lookup-name "foo(int)" [while swapping search name for lookup
4215 name would match].
4216 */
4217 class gdb_index_symbol_name_matcher
4218 {
4219 public:
4220 /* Prepares the vector of comparison functions for LOOKUP_NAME. */
4221 gdb_index_symbol_name_matcher (const lookup_name_info &lookup_name);
4222
4223 /* Walk all the matcher routines and match SYMBOL_NAME against them.
4224 Returns true if any matcher matches. */
4225 bool matches (const char *symbol_name);
4226
4227 private:
4228 /* A reference to the lookup name we're matching against. */
4229 const lookup_name_info &m_lookup_name;
4230
4231 /* A vector holding all the different symbol name matchers, for all
4232 languages. */
4233 std::vector<symbol_name_matcher_ftype *> m_symbol_name_matcher_funcs;
4234 };
4235
4236 gdb_index_symbol_name_matcher::gdb_index_symbol_name_matcher
4237 (const lookup_name_info &lookup_name)
4238 : m_lookup_name (lookup_name)
4239 {
4240 /* Prepare the vector of comparison functions upfront, to avoid
4241 doing the same work for each symbol. Care is taken to avoid
4242 matching with the same matcher more than once if/when multiple
4243 languages use the same matcher function. */
4244 auto &matchers = m_symbol_name_matcher_funcs;
4245 matchers.reserve (nr_languages);
4246
4247 matchers.push_back (default_symbol_name_matcher);
4248
4249 for (int i = 0; i < nr_languages; i++)
4250 {
4251 const language_defn *lang = language_def ((enum language) i);
4252 symbol_name_matcher_ftype *name_matcher
4253 = get_symbol_name_matcher (lang, m_lookup_name);
4254
4255 /* Don't insert the same comparison routine more than once.
4256 Note that we do this linear walk instead of a seemingly
4257 cheaper sorted insert, or use a std::set or something like
4258 that, because relative order of function addresses is not
4259 stable. This is not a problem in practice because the number
4260 of supported languages is low, and the cost here is tiny
4261 compared to the number of searches we'll do afterwards using
4262 this object. */
4263 if (name_matcher != default_symbol_name_matcher
4264 && (std::find (matchers.begin (), matchers.end (), name_matcher)
4265 == matchers.end ()))
4266 matchers.push_back (name_matcher);
4267 }
4268 }
4269
4270 bool
4271 gdb_index_symbol_name_matcher::matches (const char *symbol_name)
4272 {
4273 for (auto matches_name : m_symbol_name_matcher_funcs)
4274 if (matches_name (symbol_name, m_lookup_name, NULL))
4275 return true;
4276
4277 return false;
4278 }
4279
4280 /* Starting from a search name, return the string that finds the upper
4281 bound of all strings that start with SEARCH_NAME in a sorted name
4282 list. Returns the empty string to indicate that the upper bound is
4283 the end of the list. */
4284
4285 static std::string
4286 make_sort_after_prefix_name (const char *search_name)
4287 {
4288 /* When looking to complete "func", we find the upper bound of all
4289 symbols that start with "func" by looking for where we'd insert
4290 the closest string that would follow "func" in lexicographical
4291 order. Usually, that's "func"-with-last-character-incremented,
4292 i.e. "fund". Mind non-ASCII characters, though. Usually those
4293 will be UTF-8 multi-byte sequences, but we can't be certain.
4294 Especially mind the 0xff character, which is a valid character in
4295 non-UTF-8 source character sets (e.g. Latin1 'ÿ'), and we can't
4296 rule out compilers allowing it in identifiers. Note that
4297 conveniently, strcmp/strcasecmp are specified to compare
4298 characters interpreted as unsigned char. So what we do is treat
4299 the whole string as a base 256 number composed of a sequence of
4300 base 256 "digits" and add 1 to it. I.e., adding 1 to 0xff wraps
4301 to 0, and carries 1 to the following more-significant position.
4302 If the very first character in SEARCH_NAME ends up incremented
4303 and carries/overflows, then the upper bound is the end of the
4304 list. The string after the empty string is also the empty
4305 string.
4306
4307 Some examples of this operation:
4308
4309 SEARCH_NAME => "+1" RESULT
4310
4311 "abc" => "abd"
4312 "ab\xff" => "ac"
4313 "\xff" "a" "\xff" => "\xff" "b"
4314 "\xff" => ""
4315 "\xff\xff" => ""
4316 "" => ""
4317
4318 Then, with these symbols for example:
4319
4320 func
4321 func1
4322 fund
4323
4324 completing "func" looks for symbols between "func" and
4325 "func"-with-last-character-incremented, i.e. "fund" (exclusive),
4326 which finds "func" and "func1", but not "fund".
4327
4328 And with:
4329
4330 funcÿ (Latin1 'ÿ' [0xff])
4331 funcÿ1
4332 fund
4333
4334 completing "funcÿ" looks for symbols between "funcÿ" and "fund"
4335 (exclusive), which finds "funcÿ" and "funcÿ1", but not "fund".
4336
4337 And with:
4338
4339 ÿÿ (Latin1 'ÿ' [0xff])
4340 ÿÿ1
4341
4342 completing "ÿ" or "ÿÿ" looks for symbols between between "ÿÿ" and
4343 the end of the list.
4344 */
4345 std::string after = search_name;
4346 while (!after.empty () && (unsigned char) after.back () == 0xff)
4347 after.pop_back ();
4348 if (!after.empty ())
4349 after.back () = (unsigned char) after.back () + 1;
4350 return after;
4351 }
4352
4353 /* See declaration. */
4354
4355 std::pair<std::vector<name_component>::const_iterator,
4356 std::vector<name_component>::const_iterator>
4357 mapped_index_base::find_name_components_bounds
4358 (const lookup_name_info &lookup_name_without_params) const
4359 {
4360 auto *name_cmp
4361 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4362
4363 const char *cplus
4364 = lookup_name_without_params.cplus ().lookup_name ().c_str ();
4365
4366 /* Comparison function object for lower_bound that matches against a
4367 given symbol name. */
4368 auto lookup_compare_lower = [&] (const name_component &elem,
4369 const char *name)
4370 {
4371 const char *elem_qualified = this->symbol_name_at (elem.idx);
4372 const char *elem_name = elem_qualified + elem.name_offset;
4373 return name_cmp (elem_name, name) < 0;
4374 };
4375
4376 /* Comparison function object for upper_bound that matches against a
4377 given symbol name. */
4378 auto lookup_compare_upper = [&] (const char *name,
4379 const name_component &elem)
4380 {
4381 const char *elem_qualified = this->symbol_name_at (elem.idx);
4382 const char *elem_name = elem_qualified + elem.name_offset;
4383 return name_cmp (name, elem_name) < 0;
4384 };
4385
4386 auto begin = this->name_components.begin ();
4387 auto end = this->name_components.end ();
4388
4389 /* Find the lower bound. */
4390 auto lower = [&] ()
4391 {
4392 if (lookup_name_without_params.completion_mode () && cplus[0] == '\0')
4393 return begin;
4394 else
4395 return std::lower_bound (begin, end, cplus, lookup_compare_lower);
4396 } ();
4397
4398 /* Find the upper bound. */
4399 auto upper = [&] ()
4400 {
4401 if (lookup_name_without_params.completion_mode ())
4402 {
4403 /* In completion mode, we want UPPER to point past all
4404 symbols names that have the same prefix. I.e., with
4405 these symbols, and completing "func":
4406
4407 function << lower bound
4408 function1
4409 other_function << upper bound
4410
4411 We find the upper bound by looking for the insertion
4412 point of "func"-with-last-character-incremented,
4413 i.e. "fund". */
4414 std::string after = make_sort_after_prefix_name (cplus);
4415 if (after.empty ())
4416 return end;
4417 return std::lower_bound (lower, end, after.c_str (),
4418 lookup_compare_lower);
4419 }
4420 else
4421 return std::upper_bound (lower, end, cplus, lookup_compare_upper);
4422 } ();
4423
4424 return {lower, upper};
4425 }
4426
4427 /* See declaration. */
4428
4429 void
4430 mapped_index_base::build_name_components ()
4431 {
4432 if (!this->name_components.empty ())
4433 return;
4434
4435 this->name_components_casing = case_sensitivity;
4436 auto *name_cmp
4437 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4438
4439 /* The code below only knows how to break apart components of C++
4440 symbol names (and other languages that use '::' as
4441 namespace/module separator). If we add support for wild matching
4442 to some language that uses some other operator (E.g., Ada, Go and
4443 D use '.'), then we'll need to try splitting the symbol name
4444 according to that language too. Note that Ada does support wild
4445 matching, but doesn't currently support .gdb_index. */
4446 auto count = this->symbol_name_count ();
4447 for (offset_type idx = 0; idx < count; idx++)
4448 {
4449 if (this->symbol_name_slot_invalid (idx))
4450 continue;
4451
4452 const char *name = this->symbol_name_at (idx);
4453
4454 /* Add each name component to the name component table. */
4455 unsigned int previous_len = 0;
4456 for (unsigned int current_len = cp_find_first_component (name);
4457 name[current_len] != '\0';
4458 current_len += cp_find_first_component (name + current_len))
4459 {
4460 gdb_assert (name[current_len] == ':');
4461 this->name_components.push_back ({previous_len, idx});
4462 /* Skip the '::'. */
4463 current_len += 2;
4464 previous_len = current_len;
4465 }
4466 this->name_components.push_back ({previous_len, idx});
4467 }
4468
4469 /* Sort name_components elements by name. */
4470 auto name_comp_compare = [&] (const name_component &left,
4471 const name_component &right)
4472 {
4473 const char *left_qualified = this->symbol_name_at (left.idx);
4474 const char *right_qualified = this->symbol_name_at (right.idx);
4475
4476 const char *left_name = left_qualified + left.name_offset;
4477 const char *right_name = right_qualified + right.name_offset;
4478
4479 return name_cmp (left_name, right_name) < 0;
4480 };
4481
4482 std::sort (this->name_components.begin (),
4483 this->name_components.end (),
4484 name_comp_compare);
4485 }
4486
4487 /* Helper for dw2_expand_symtabs_matching that works with a
4488 mapped_index_base instead of the containing objfile. This is split
4489 to a separate function in order to be able to unit test the
4490 name_components matching using a mock mapped_index_base. For each
4491 symbol name that matches, calls MATCH_CALLBACK, passing it the
4492 symbol's index in the mapped_index_base symbol table. */
4493
4494 static void
4495 dw2_expand_symtabs_matching_symbol
4496 (mapped_index_base &index,
4497 const lookup_name_info &lookup_name_in,
4498 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4499 enum search_domain kind,
4500 gdb::function_view<void (offset_type)> match_callback)
4501 {
4502 lookup_name_info lookup_name_without_params
4503 = lookup_name_in.make_ignore_params ();
4504 gdb_index_symbol_name_matcher lookup_name_matcher
4505 (lookup_name_without_params);
4506
4507 /* Build the symbol name component sorted vector, if we haven't
4508 yet. */
4509 index.build_name_components ();
4510
4511 auto bounds = index.find_name_components_bounds (lookup_name_without_params);
4512
4513 /* Now for each symbol name in range, check to see if we have a name
4514 match, and if so, call the MATCH_CALLBACK callback. */
4515
4516 /* The same symbol may appear more than once in the range though.
4517 E.g., if we're looking for symbols that complete "w", and we have
4518 a symbol named "w1::w2", we'll find the two name components for
4519 that same symbol in the range. To be sure we only call the
4520 callback once per symbol, we first collect the symbol name
4521 indexes that matched in a temporary vector and ignore
4522 duplicates. */
4523 std::vector<offset_type> matches;
4524 matches.reserve (std::distance (bounds.first, bounds.second));
4525
4526 for (; bounds.first != bounds.second; ++bounds.first)
4527 {
4528 const char *qualified = index.symbol_name_at (bounds.first->idx);
4529
4530 if (!lookup_name_matcher.matches (qualified)
4531 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
4532 continue;
4533
4534 matches.push_back (bounds.first->idx);
4535 }
4536
4537 std::sort (matches.begin (), matches.end ());
4538
4539 /* Finally call the callback, once per match. */
4540 ULONGEST prev = -1;
4541 for (offset_type idx : matches)
4542 {
4543 if (prev != idx)
4544 {
4545 match_callback (idx);
4546 prev = idx;
4547 }
4548 }
4549
4550 /* Above we use a type wider than idx's for 'prev', since 0 and
4551 (offset_type)-1 are both possible values. */
4552 static_assert (sizeof (prev) > sizeof (offset_type), "");
4553 }
4554
4555 #if GDB_SELF_TEST
4556
4557 namespace selftests { namespace dw2_expand_symtabs_matching {
4558
4559 /* A mock .gdb_index/.debug_names-like name index table, enough to
4560 exercise dw2_expand_symtabs_matching_symbol, which works with the
4561 mapped_index_base interface. Builds an index from the symbol list
4562 passed as parameter to the constructor. */
4563 class mock_mapped_index : public mapped_index_base
4564 {
4565 public:
4566 mock_mapped_index (gdb::array_view<const char *> symbols)
4567 : m_symbol_table (symbols)
4568 {}
4569
4570 DISABLE_COPY_AND_ASSIGN (mock_mapped_index);
4571
4572 /* Return the number of names in the symbol table. */
4573 size_t symbol_name_count () const override
4574 {
4575 return m_symbol_table.size ();
4576 }
4577
4578 /* Get the name of the symbol at IDX in the symbol table. */
4579 const char *symbol_name_at (offset_type idx) const override
4580 {
4581 return m_symbol_table[idx];
4582 }
4583
4584 private:
4585 gdb::array_view<const char *> m_symbol_table;
4586 };
4587
4588 /* Convenience function that converts a NULL pointer to a "<null>"
4589 string, to pass to print routines. */
4590
4591 static const char *
4592 string_or_null (const char *str)
4593 {
4594 return str != NULL ? str : "<null>";
4595 }
4596
4597 /* Check if a lookup_name_info built from
4598 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
4599 index. EXPECTED_LIST is the list of expected matches, in expected
4600 matching order. If no match expected, then an empty list is
4601 specified. Returns true on success. On failure prints a warning
4602 indicating the file:line that failed, and returns false. */
4603
4604 static bool
4605 check_match (const char *file, int line,
4606 mock_mapped_index &mock_index,
4607 const char *name, symbol_name_match_type match_type,
4608 bool completion_mode,
4609 std::initializer_list<const char *> expected_list)
4610 {
4611 lookup_name_info lookup_name (name, match_type, completion_mode);
4612
4613 bool matched = true;
4614
4615 auto mismatch = [&] (const char *expected_str,
4616 const char *got)
4617 {
4618 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
4619 "expected=\"%s\", got=\"%s\"\n"),
4620 file, line,
4621 (match_type == symbol_name_match_type::FULL
4622 ? "FULL" : "WILD"),
4623 name, string_or_null (expected_str), string_or_null (got));
4624 matched = false;
4625 };
4626
4627 auto expected_it = expected_list.begin ();
4628 auto expected_end = expected_list.end ();
4629
4630 dw2_expand_symtabs_matching_symbol (mock_index, lookup_name,
4631 NULL, ALL_DOMAIN,
4632 [&] (offset_type idx)
4633 {
4634 const char *matched_name = mock_index.symbol_name_at (idx);
4635 const char *expected_str
4636 = expected_it == expected_end ? NULL : *expected_it++;
4637
4638 if (expected_str == NULL || strcmp (expected_str, matched_name) != 0)
4639 mismatch (expected_str, matched_name);
4640 });
4641
4642 const char *expected_str
4643 = expected_it == expected_end ? NULL : *expected_it++;
4644 if (expected_str != NULL)
4645 mismatch (expected_str, NULL);
4646
4647 return matched;
4648 }
4649
4650 /* The symbols added to the mock mapped_index for testing (in
4651 canonical form). */
4652 static const char *test_symbols[] = {
4653 "function",
4654 "std::bar",
4655 "std::zfunction",
4656 "std::zfunction2",
4657 "w1::w2",
4658 "ns::foo<char*>",
4659 "ns::foo<int>",
4660 "ns::foo<long>",
4661 "ns2::tmpl<int>::foo2",
4662 "(anonymous namespace)::A::B::C",
4663
4664 /* These are used to check that the increment-last-char in the
4665 matching algorithm for completion doesn't match "t1_fund" when
4666 completing "t1_func". */
4667 "t1_func",
4668 "t1_func1",
4669 "t1_fund",
4670 "t1_fund1",
4671
4672 /* A UTF-8 name with multi-byte sequences to make sure that
4673 cp-name-parser understands this as a single identifier ("função"
4674 is "function" in PT). */
4675 u8"u8função",
4676
4677 /* \377 (0xff) is Latin1 'ÿ'. */
4678 "yfunc\377",
4679
4680 /* \377 (0xff) is Latin1 'ÿ'. */
4681 "\377",
4682 "\377\377123",
4683
4684 /* A name with all sorts of complications. Starts with "z" to make
4685 it easier for the completion tests below. */
4686 #define Z_SYM_NAME \
4687 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
4688 "::tuple<(anonymous namespace)::ui*, " \
4689 "std::default_delete<(anonymous namespace)::ui>, void>"
4690
4691 Z_SYM_NAME
4692 };
4693
4694 /* Returns true if the mapped_index_base::find_name_component_bounds
4695 method finds EXPECTED_SYMS in INDEX when looking for SEARCH_NAME,
4696 in completion mode. */
4697
4698 static bool
4699 check_find_bounds_finds (mapped_index_base &index,
4700 const char *search_name,
4701 gdb::array_view<const char *> expected_syms)
4702 {
4703 lookup_name_info lookup_name (search_name,
4704 symbol_name_match_type::FULL, true);
4705
4706 auto bounds = index.find_name_components_bounds (lookup_name);
4707
4708 size_t distance = std::distance (bounds.first, bounds.second);
4709 if (distance != expected_syms.size ())
4710 return false;
4711
4712 for (size_t exp_elem = 0; exp_elem < distance; exp_elem++)
4713 {
4714 auto nc_elem = bounds.first + exp_elem;
4715 const char *qualified = index.symbol_name_at (nc_elem->idx);
4716 if (strcmp (qualified, expected_syms[exp_elem]) != 0)
4717 return false;
4718 }
4719
4720 return true;
4721 }
4722
4723 /* Test the lower-level mapped_index::find_name_component_bounds
4724 method. */
4725
4726 static void
4727 test_mapped_index_find_name_component_bounds ()
4728 {
4729 mock_mapped_index mock_index (test_symbols);
4730
4731 mock_index.build_name_components ();
4732
4733 /* Test the lower-level mapped_index::find_name_component_bounds
4734 method in completion mode. */
4735 {
4736 static const char *expected_syms[] = {
4737 "t1_func",
4738 "t1_func1",
4739 };
4740
4741 SELF_CHECK (check_find_bounds_finds (mock_index,
4742 "t1_func", expected_syms));
4743 }
4744
4745 /* Check that the increment-last-char in the name matching algorithm
4746 for completion doesn't get confused with Ansi1 'ÿ' / 0xff. */
4747 {
4748 static const char *expected_syms1[] = {
4749 "\377",
4750 "\377\377123",
4751 };
4752 SELF_CHECK (check_find_bounds_finds (mock_index,
4753 "\377", expected_syms1));
4754
4755 static const char *expected_syms2[] = {
4756 "\377\377123",
4757 };
4758 SELF_CHECK (check_find_bounds_finds (mock_index,
4759 "\377\377", expected_syms2));
4760 }
4761 }
4762
4763 /* Test dw2_expand_symtabs_matching_symbol. */
4764
4765 static void
4766 test_dw2_expand_symtabs_matching_symbol ()
4767 {
4768 mock_mapped_index mock_index (test_symbols);
4769
4770 /* We let all tests run until the end even if some fails, for debug
4771 convenience. */
4772 bool any_mismatch = false;
4773
4774 /* Create the expected symbols list (an initializer_list). Needed
4775 because lists have commas, and we need to pass them to CHECK,
4776 which is a macro. */
4777 #define EXPECT(...) { __VA_ARGS__ }
4778
4779 /* Wrapper for check_match that passes down the current
4780 __FILE__/__LINE__. */
4781 #define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
4782 any_mismatch |= !check_match (__FILE__, __LINE__, \
4783 mock_index, \
4784 NAME, MATCH_TYPE, COMPLETION_MODE, \
4785 EXPECTED_LIST)
4786
4787 /* Identity checks. */
4788 for (const char *sym : test_symbols)
4789 {
4790 /* Should be able to match all existing symbols. */
4791 CHECK_MATCH (sym, symbol_name_match_type::FULL, false,
4792 EXPECT (sym));
4793
4794 /* Should be able to match all existing symbols with
4795 parameters. */
4796 std::string with_params = std::string (sym) + "(int)";
4797 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4798 EXPECT (sym));
4799
4800 /* Should be able to match all existing symbols with
4801 parameters and qualifiers. */
4802 with_params = std::string (sym) + " ( int ) const";
4803 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4804 EXPECT (sym));
4805
4806 /* This should really find sym, but cp-name-parser.y doesn't
4807 know about lvalue/rvalue qualifiers yet. */
4808 with_params = std::string (sym) + " ( int ) &&";
4809 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4810 {});
4811 }
4812
4813 /* Check that the name matching algorithm for completion doesn't get
4814 confused with Latin1 'ÿ' / 0xff. */
4815 {
4816 static const char str[] = "\377";
4817 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4818 EXPECT ("\377", "\377\377123"));
4819 }
4820
4821 /* Check that the increment-last-char in the matching algorithm for
4822 completion doesn't match "t1_fund" when completing "t1_func". */
4823 {
4824 static const char str[] = "t1_func";
4825 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4826 EXPECT ("t1_func", "t1_func1"));
4827 }
4828
4829 /* Check that completion mode works at each prefix of the expected
4830 symbol name. */
4831 {
4832 static const char str[] = "function(int)";
4833 size_t len = strlen (str);
4834 std::string lookup;
4835
4836 for (size_t i = 1; i < len; i++)
4837 {
4838 lookup.assign (str, i);
4839 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4840 EXPECT ("function"));
4841 }
4842 }
4843
4844 /* While "w" is a prefix of both components, the match function
4845 should still only be called once. */
4846 {
4847 CHECK_MATCH ("w", symbol_name_match_type::FULL, true,
4848 EXPECT ("w1::w2"));
4849 CHECK_MATCH ("w", symbol_name_match_type::WILD, true,
4850 EXPECT ("w1::w2"));
4851 }
4852
4853 /* Same, with a "complicated" symbol. */
4854 {
4855 static const char str[] = Z_SYM_NAME;
4856 size_t len = strlen (str);
4857 std::string lookup;
4858
4859 for (size_t i = 1; i < len; i++)
4860 {
4861 lookup.assign (str, i);
4862 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4863 EXPECT (Z_SYM_NAME));
4864 }
4865 }
4866
4867 /* In FULL mode, an incomplete symbol doesn't match. */
4868 {
4869 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false,
4870 {});
4871 }
4872
4873 /* A complete symbol with parameters matches any overload, since the
4874 index has no overload info. */
4875 {
4876 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true,
4877 EXPECT ("std::zfunction", "std::zfunction2"));
4878 CHECK_MATCH ("zfunction(int)", symbol_name_match_type::WILD, true,
4879 EXPECT ("std::zfunction", "std::zfunction2"));
4880 CHECK_MATCH ("zfunc", symbol_name_match_type::WILD, true,
4881 EXPECT ("std::zfunction", "std::zfunction2"));
4882 }
4883
4884 /* Check that whitespace is ignored appropriately. A symbol with a
4885 template argument list. */
4886 {
4887 static const char expected[] = "ns::foo<int>";
4888 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false,
4889 EXPECT (expected));
4890 CHECK_MATCH ("foo < int > ", symbol_name_match_type::WILD, false,
4891 EXPECT (expected));
4892 }
4893
4894 /* Check that whitespace is ignored appropriately. A symbol with a
4895 template argument list that includes a pointer. */
4896 {
4897 static const char expected[] = "ns::foo<char*>";
4898 /* Try both completion and non-completion modes. */
4899 static const bool completion_mode[2] = {false, true};
4900 for (size_t i = 0; i < 2; i++)
4901 {
4902 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL,
4903 completion_mode[i], EXPECT (expected));
4904 CHECK_MATCH ("foo < char * >", symbol_name_match_type::WILD,
4905 completion_mode[i], EXPECT (expected));
4906
4907 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL,
4908 completion_mode[i], EXPECT (expected));
4909 CHECK_MATCH ("foo < char * > (int)", symbol_name_match_type::WILD,
4910 completion_mode[i], EXPECT (expected));
4911 }
4912 }
4913
4914 {
4915 /* Check method qualifiers are ignored. */
4916 static const char expected[] = "ns::foo<char*>";
4917 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
4918 symbol_name_match_type::FULL, true, EXPECT (expected));
4919 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
4920 symbol_name_match_type::FULL, true, EXPECT (expected));
4921 CHECK_MATCH ("foo < char * > ( int ) const",
4922 symbol_name_match_type::WILD, true, EXPECT (expected));
4923 CHECK_MATCH ("foo < char * > ( int ) &&",
4924 symbol_name_match_type::WILD, true, EXPECT (expected));
4925 }
4926
4927 /* Test lookup names that don't match anything. */
4928 {
4929 CHECK_MATCH ("bar2", symbol_name_match_type::WILD, false,
4930 {});
4931
4932 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false,
4933 {});
4934 }
4935
4936 /* Some wild matching tests, exercising "(anonymous namespace)",
4937 which should not be confused with a parameter list. */
4938 {
4939 static const char *syms[] = {
4940 "A::B::C",
4941 "B::C",
4942 "C",
4943 "A :: B :: C ( int )",
4944 "B :: C ( int )",
4945 "C ( int )",
4946 };
4947
4948 for (const char *s : syms)
4949 {
4950 CHECK_MATCH (s, symbol_name_match_type::WILD, false,
4951 EXPECT ("(anonymous namespace)::A::B::C"));
4952 }
4953 }
4954
4955 {
4956 static const char expected[] = "ns2::tmpl<int>::foo2";
4957 CHECK_MATCH ("tmp", symbol_name_match_type::WILD, true,
4958 EXPECT (expected));
4959 CHECK_MATCH ("tmpl<", symbol_name_match_type::WILD, true,
4960 EXPECT (expected));
4961 }
4962
4963 SELF_CHECK (!any_mismatch);
4964
4965 #undef EXPECT
4966 #undef CHECK_MATCH
4967 }
4968
4969 static void
4970 run_test ()
4971 {
4972 test_mapped_index_find_name_component_bounds ();
4973 test_dw2_expand_symtabs_matching_symbol ();
4974 }
4975
4976 }} // namespace selftests::dw2_expand_symtabs_matching
4977
4978 #endif /* GDB_SELF_TEST */
4979
4980 /* If FILE_MATCHER is NULL or if PER_CU has
4981 dwarf2_per_cu_quick_data::MARK set (see
4982 dw_expand_symtabs_matching_file_matcher), expand the CU and call
4983 EXPANSION_NOTIFY on it. */
4984
4985 static void
4986 dw2_expand_symtabs_matching_one
4987 (struct dwarf2_per_cu_data *per_cu,
4988 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4989 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify)
4990 {
4991 if (file_matcher == NULL || per_cu->v.quick->mark)
4992 {
4993 bool symtab_was_null
4994 = (per_cu->v.quick->compunit_symtab == NULL);
4995
4996 dw2_instantiate_symtab (per_cu, false);
4997
4998 if (expansion_notify != NULL
4999 && symtab_was_null
5000 && per_cu->v.quick->compunit_symtab != NULL)
5001 expansion_notify (per_cu->v.quick->compunit_symtab);
5002 }
5003 }
5004
5005 /* Helper for dw2_expand_matching symtabs. Called on each symbol
5006 matched, to expand corresponding CUs that were marked. IDX is the
5007 index of the symbol name that matched. */
5008
5009 static void
5010 dw2_expand_marked_cus
5011 (struct dwarf2_per_objfile *dwarf2_per_objfile, offset_type idx,
5012 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5013 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5014 search_domain kind)
5015 {
5016 offset_type *vec, vec_len, vec_idx;
5017 bool global_seen = false;
5018 mapped_index &index = *dwarf2_per_objfile->index_table;
5019
5020 vec = (offset_type *) (index.constant_pool
5021 + MAYBE_SWAP (index.symbol_table[idx].vec));
5022 vec_len = MAYBE_SWAP (vec[0]);
5023 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
5024 {
5025 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
5026 /* This value is only valid for index versions >= 7. */
5027 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
5028 gdb_index_symbol_kind symbol_kind =
5029 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
5030 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
5031 /* Only check the symbol attributes if they're present.
5032 Indices prior to version 7 don't record them,
5033 and indices >= 7 may elide them for certain symbols
5034 (gold does this). */
5035 int attrs_valid =
5036 (index.version >= 7
5037 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
5038
5039 /* Work around gold/15646. */
5040 if (attrs_valid)
5041 {
5042 if (!is_static && global_seen)
5043 continue;
5044 if (!is_static)
5045 global_seen = true;
5046 }
5047
5048 /* Only check the symbol's kind if it has one. */
5049 if (attrs_valid)
5050 {
5051 switch (kind)
5052 {
5053 case VARIABLES_DOMAIN:
5054 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
5055 continue;
5056 break;
5057 case FUNCTIONS_DOMAIN:
5058 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
5059 continue;
5060 break;
5061 case TYPES_DOMAIN:
5062 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
5063 continue;
5064 break;
5065 default:
5066 break;
5067 }
5068 }
5069
5070 /* Don't crash on bad data. */
5071 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
5072 + dwarf2_per_objfile->all_type_units.size ()))
5073 {
5074 complaint (_(".gdb_index entry has bad CU index"
5075 " [in module %s]"),
5076 objfile_name (dwarf2_per_objfile->objfile));
5077 continue;
5078 }
5079
5080 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
5081 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
5082 expansion_notify);
5083 }
5084 }
5085
5086 /* If FILE_MATCHER is non-NULL, set all the
5087 dwarf2_per_cu_quick_data::MARK of the current DWARF2_PER_OBJFILE
5088 that match FILE_MATCHER. */
5089
5090 static void
5091 dw_expand_symtabs_matching_file_matcher
5092 (struct dwarf2_per_objfile *dwarf2_per_objfile,
5093 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher)
5094 {
5095 if (file_matcher == NULL)
5096 return;
5097
5098 objfile *const objfile = dwarf2_per_objfile->objfile;
5099
5100 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
5101 htab_eq_pointer,
5102 NULL, xcalloc, xfree));
5103 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
5104 htab_eq_pointer,
5105 NULL, xcalloc, xfree));
5106
5107 /* The rule is CUs specify all the files, including those used by
5108 any TU, so there's no need to scan TUs here. */
5109
5110 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5111 {
5112 QUIT;
5113
5114 per_cu->v.quick->mark = 0;
5115
5116 /* We only need to look at symtabs not already expanded. */
5117 if (per_cu->v.quick->compunit_symtab)
5118 continue;
5119
5120 quick_file_names *file_data = dw2_get_file_names (per_cu);
5121 if (file_data == NULL)
5122 continue;
5123
5124 if (htab_find (visited_not_found.get (), file_data) != NULL)
5125 continue;
5126 else if (htab_find (visited_found.get (), file_data) != NULL)
5127 {
5128 per_cu->v.quick->mark = 1;
5129 continue;
5130 }
5131
5132 for (int j = 0; j < file_data->num_file_names; ++j)
5133 {
5134 const char *this_real_name;
5135
5136 if (file_matcher (file_data->file_names[j], false))
5137 {
5138 per_cu->v.quick->mark = 1;
5139 break;
5140 }
5141
5142 /* Before we invoke realpath, which can get expensive when many
5143 files are involved, do a quick comparison of the basenames. */
5144 if (!basenames_may_differ
5145 && !file_matcher (lbasename (file_data->file_names[j]),
5146 true))
5147 continue;
5148
5149 this_real_name = dw2_get_real_path (objfile, file_data, j);
5150 if (file_matcher (this_real_name, false))
5151 {
5152 per_cu->v.quick->mark = 1;
5153 break;
5154 }
5155 }
5156
5157 void **slot = htab_find_slot (per_cu->v.quick->mark
5158 ? visited_found.get ()
5159 : visited_not_found.get (),
5160 file_data, INSERT);
5161 *slot = file_data;
5162 }
5163 }
5164
5165 static void
5166 dw2_expand_symtabs_matching
5167 (struct objfile *objfile,
5168 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5169 const lookup_name_info &lookup_name,
5170 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
5171 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5172 enum search_domain kind)
5173 {
5174 struct dwarf2_per_objfile *dwarf2_per_objfile
5175 = get_dwarf2_per_objfile (objfile);
5176
5177 /* index_table is NULL if OBJF_READNOW. */
5178 if (!dwarf2_per_objfile->index_table)
5179 return;
5180
5181 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
5182
5183 mapped_index &index = *dwarf2_per_objfile->index_table;
5184
5185 dw2_expand_symtabs_matching_symbol (index, lookup_name,
5186 symbol_matcher,
5187 kind, [&] (offset_type idx)
5188 {
5189 dw2_expand_marked_cus (dwarf2_per_objfile, idx, file_matcher,
5190 expansion_notify, kind);
5191 });
5192 }
5193
5194 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
5195 symtab. */
5196
5197 static struct compunit_symtab *
5198 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
5199 CORE_ADDR pc)
5200 {
5201 int i;
5202
5203 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
5204 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
5205 return cust;
5206
5207 if (cust->includes == NULL)
5208 return NULL;
5209
5210 for (i = 0; cust->includes[i]; ++i)
5211 {
5212 struct compunit_symtab *s = cust->includes[i];
5213
5214 s = recursively_find_pc_sect_compunit_symtab (s, pc);
5215 if (s != NULL)
5216 return s;
5217 }
5218
5219 return NULL;
5220 }
5221
5222 static struct compunit_symtab *
5223 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
5224 struct bound_minimal_symbol msymbol,
5225 CORE_ADDR pc,
5226 struct obj_section *section,
5227 int warn_if_readin)
5228 {
5229 struct dwarf2_per_cu_data *data;
5230 struct compunit_symtab *result;
5231
5232 if (!objfile->psymtabs_addrmap)
5233 return NULL;
5234
5235 data = (struct dwarf2_per_cu_data *) addrmap_find (objfile->psymtabs_addrmap,
5236 pc);
5237 if (!data)
5238 return NULL;
5239
5240 if (warn_if_readin && data->v.quick->compunit_symtab)
5241 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
5242 paddress (get_objfile_arch (objfile), pc));
5243
5244 result
5245 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data,
5246 false),
5247 pc);
5248 gdb_assert (result != NULL);
5249 return result;
5250 }
5251
5252 static void
5253 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
5254 void *data, int need_fullname)
5255 {
5256 struct dwarf2_per_objfile *dwarf2_per_objfile
5257 = get_dwarf2_per_objfile (objfile);
5258
5259 if (!dwarf2_per_objfile->filenames_cache)
5260 {
5261 dwarf2_per_objfile->filenames_cache.emplace ();
5262
5263 htab_up visited (htab_create_alloc (10,
5264 htab_hash_pointer, htab_eq_pointer,
5265 NULL, xcalloc, xfree));
5266
5267 /* The rule is CUs specify all the files, including those used
5268 by any TU, so there's no need to scan TUs here. We can
5269 ignore file names coming from already-expanded CUs. */
5270
5271 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5272 {
5273 if (per_cu->v.quick->compunit_symtab)
5274 {
5275 void **slot = htab_find_slot (visited.get (),
5276 per_cu->v.quick->file_names,
5277 INSERT);
5278
5279 *slot = per_cu->v.quick->file_names;
5280 }
5281 }
5282
5283 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5284 {
5285 /* We only need to look at symtabs not already expanded. */
5286 if (per_cu->v.quick->compunit_symtab)
5287 continue;
5288
5289 quick_file_names *file_data = dw2_get_file_names (per_cu);
5290 if (file_data == NULL)
5291 continue;
5292
5293 void **slot = htab_find_slot (visited.get (), file_data, INSERT);
5294 if (*slot)
5295 {
5296 /* Already visited. */
5297 continue;
5298 }
5299 *slot = file_data;
5300
5301 for (int j = 0; j < file_data->num_file_names; ++j)
5302 {
5303 const char *filename = file_data->file_names[j];
5304 dwarf2_per_objfile->filenames_cache->seen (filename);
5305 }
5306 }
5307 }
5308
5309 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
5310 {
5311 gdb::unique_xmalloc_ptr<char> this_real_name;
5312
5313 if (need_fullname)
5314 this_real_name = gdb_realpath (filename);
5315 (*fun) (filename, this_real_name.get (), data);
5316 });
5317 }
5318
5319 static int
5320 dw2_has_symbols (struct objfile *objfile)
5321 {
5322 return 1;
5323 }
5324
5325 const struct quick_symbol_functions dwarf2_gdb_index_functions =
5326 {
5327 dw2_has_symbols,
5328 dw2_find_last_source_symtab,
5329 dw2_forget_cached_source_info,
5330 dw2_map_symtabs_matching_filename,
5331 dw2_lookup_symbol,
5332 dw2_print_stats,
5333 dw2_dump,
5334 dw2_relocate,
5335 dw2_expand_symtabs_for_function,
5336 dw2_expand_all_symtabs,
5337 dw2_expand_symtabs_with_fullname,
5338 dw2_map_matching_symbols,
5339 dw2_expand_symtabs_matching,
5340 dw2_find_pc_sect_compunit_symtab,
5341 NULL,
5342 dw2_map_symbol_filenames
5343 };
5344
5345 /* DWARF-5 debug_names reader. */
5346
5347 /* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
5348 static const gdb_byte dwarf5_augmentation[] = { 'G', 'D', 'B', 0 };
5349
5350 /* A helper function that reads the .debug_names section in SECTION
5351 and fills in MAP. FILENAME is the name of the file containing the
5352 section; it is used for error reporting.
5353
5354 Returns true if all went well, false otherwise. */
5355
5356 static bool
5357 read_debug_names_from_section (struct objfile *objfile,
5358 const char *filename,
5359 struct dwarf2_section_info *section,
5360 mapped_debug_names &map)
5361 {
5362 if (dwarf2_section_empty_p (section))
5363 return false;
5364
5365 /* Older elfutils strip versions could keep the section in the main
5366 executable while splitting it for the separate debug info file. */
5367 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
5368 return false;
5369
5370 dwarf2_read_section (objfile, section);
5371
5372 map.dwarf5_byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
5373
5374 const gdb_byte *addr = section->buffer;
5375
5376 bfd *const abfd = get_section_bfd_owner (section);
5377
5378 unsigned int bytes_read;
5379 LONGEST length = read_initial_length (abfd, addr, &bytes_read);
5380 addr += bytes_read;
5381
5382 map.dwarf5_is_dwarf64 = bytes_read != 4;
5383 map.offset_size = map.dwarf5_is_dwarf64 ? 8 : 4;
5384 if (bytes_read + length != section->size)
5385 {
5386 /* There may be multiple per-CU indices. */
5387 warning (_("Section .debug_names in %s length %s does not match "
5388 "section length %s, ignoring .debug_names."),
5389 filename, plongest (bytes_read + length),
5390 pulongest (section->size));
5391 return false;
5392 }
5393
5394 /* The version number. */
5395 uint16_t version = read_2_bytes (abfd, addr);
5396 addr += 2;
5397 if (version != 5)
5398 {
5399 warning (_("Section .debug_names in %s has unsupported version %d, "
5400 "ignoring .debug_names."),
5401 filename, version);
5402 return false;
5403 }
5404
5405 /* Padding. */
5406 uint16_t padding = read_2_bytes (abfd, addr);
5407 addr += 2;
5408 if (padding != 0)
5409 {
5410 warning (_("Section .debug_names in %s has unsupported padding %d, "
5411 "ignoring .debug_names."),
5412 filename, padding);
5413 return false;
5414 }
5415
5416 /* comp_unit_count - The number of CUs in the CU list. */
5417 map.cu_count = read_4_bytes (abfd, addr);
5418 addr += 4;
5419
5420 /* local_type_unit_count - The number of TUs in the local TU
5421 list. */
5422 map.tu_count = read_4_bytes (abfd, addr);
5423 addr += 4;
5424
5425 /* foreign_type_unit_count - The number of TUs in the foreign TU
5426 list. */
5427 uint32_t foreign_tu_count = read_4_bytes (abfd, addr);
5428 addr += 4;
5429 if (foreign_tu_count != 0)
5430 {
5431 warning (_("Section .debug_names in %s has unsupported %lu foreign TUs, "
5432 "ignoring .debug_names."),
5433 filename, static_cast<unsigned long> (foreign_tu_count));
5434 return false;
5435 }
5436
5437 /* bucket_count - The number of hash buckets in the hash lookup
5438 table. */
5439 map.bucket_count = read_4_bytes (abfd, addr);
5440 addr += 4;
5441
5442 /* name_count - The number of unique names in the index. */
5443 map.name_count = read_4_bytes (abfd, addr);
5444 addr += 4;
5445
5446 /* abbrev_table_size - The size in bytes of the abbreviations
5447 table. */
5448 uint32_t abbrev_table_size = read_4_bytes (abfd, addr);
5449 addr += 4;
5450
5451 /* augmentation_string_size - The size in bytes of the augmentation
5452 string. This value is rounded up to a multiple of 4. */
5453 uint32_t augmentation_string_size = read_4_bytes (abfd, addr);
5454 addr += 4;
5455 map.augmentation_is_gdb = ((augmentation_string_size
5456 == sizeof (dwarf5_augmentation))
5457 && memcmp (addr, dwarf5_augmentation,
5458 sizeof (dwarf5_augmentation)) == 0);
5459 augmentation_string_size += (-augmentation_string_size) & 3;
5460 addr += augmentation_string_size;
5461
5462 /* List of CUs */
5463 map.cu_table_reordered = addr;
5464 addr += map.cu_count * map.offset_size;
5465
5466 /* List of Local TUs */
5467 map.tu_table_reordered = addr;
5468 addr += map.tu_count * map.offset_size;
5469
5470 /* Hash Lookup Table */
5471 map.bucket_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5472 addr += map.bucket_count * 4;
5473 map.hash_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5474 addr += map.name_count * 4;
5475
5476 /* Name Table */
5477 map.name_table_string_offs_reordered = addr;
5478 addr += map.name_count * map.offset_size;
5479 map.name_table_entry_offs_reordered = addr;
5480 addr += map.name_count * map.offset_size;
5481
5482 const gdb_byte *abbrev_table_start = addr;
5483 for (;;)
5484 {
5485 unsigned int bytes_read;
5486 const ULONGEST index_num = read_unsigned_leb128 (abfd, addr, &bytes_read);
5487 addr += bytes_read;
5488 if (index_num == 0)
5489 break;
5490
5491 const auto insertpair
5492 = map.abbrev_map.emplace (index_num, mapped_debug_names::index_val ());
5493 if (!insertpair.second)
5494 {
5495 warning (_("Section .debug_names in %s has duplicate index %s, "
5496 "ignoring .debug_names."),
5497 filename, pulongest (index_num));
5498 return false;
5499 }
5500 mapped_debug_names::index_val &indexval = insertpair.first->second;
5501 indexval.dwarf_tag = read_unsigned_leb128 (abfd, addr, &bytes_read);
5502 addr += bytes_read;
5503
5504 for (;;)
5505 {
5506 mapped_debug_names::index_val::attr attr;
5507 attr.dw_idx = read_unsigned_leb128 (abfd, addr, &bytes_read);
5508 addr += bytes_read;
5509 attr.form = read_unsigned_leb128 (abfd, addr, &bytes_read);
5510 addr += bytes_read;
5511 if (attr.form == DW_FORM_implicit_const)
5512 {
5513 attr.implicit_const = read_signed_leb128 (abfd, addr,
5514 &bytes_read);
5515 addr += bytes_read;
5516 }
5517 if (attr.dw_idx == 0 && attr.form == 0)
5518 break;
5519 indexval.attr_vec.push_back (std::move (attr));
5520 }
5521 }
5522 if (addr != abbrev_table_start + abbrev_table_size)
5523 {
5524 warning (_("Section .debug_names in %s has abbreviation_table "
5525 "of size %zu vs. written as %u, ignoring .debug_names."),
5526 filename, addr - abbrev_table_start, abbrev_table_size);
5527 return false;
5528 }
5529 map.entry_pool = addr;
5530
5531 return true;
5532 }
5533
5534 /* A helper for create_cus_from_debug_names that handles the MAP's CU
5535 list. */
5536
5537 static void
5538 create_cus_from_debug_names_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
5539 const mapped_debug_names &map,
5540 dwarf2_section_info &section,
5541 bool is_dwz)
5542 {
5543 sect_offset sect_off_prev;
5544 for (uint32_t i = 0; i <= map.cu_count; ++i)
5545 {
5546 sect_offset sect_off_next;
5547 if (i < map.cu_count)
5548 {
5549 sect_off_next
5550 = (sect_offset) (extract_unsigned_integer
5551 (map.cu_table_reordered + i * map.offset_size,
5552 map.offset_size,
5553 map.dwarf5_byte_order));
5554 }
5555 else
5556 sect_off_next = (sect_offset) section.size;
5557 if (i >= 1)
5558 {
5559 const ULONGEST length = sect_off_next - sect_off_prev;
5560 dwarf2_per_cu_data *per_cu
5561 = create_cu_from_index_list (dwarf2_per_objfile, &section, is_dwz,
5562 sect_off_prev, length);
5563 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
5564 }
5565 sect_off_prev = sect_off_next;
5566 }
5567 }
5568
5569 /* Read the CU list from the mapped index, and use it to create all
5570 the CU objects for this dwarf2_per_objfile. */
5571
5572 static void
5573 create_cus_from_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile,
5574 const mapped_debug_names &map,
5575 const mapped_debug_names &dwz_map)
5576 {
5577 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
5578 dwarf2_per_objfile->all_comp_units.reserve (map.cu_count + dwz_map.cu_count);
5579
5580 create_cus_from_debug_names_list (dwarf2_per_objfile, map,
5581 dwarf2_per_objfile->info,
5582 false /* is_dwz */);
5583
5584 if (dwz_map.cu_count == 0)
5585 return;
5586
5587 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5588 create_cus_from_debug_names_list (dwarf2_per_objfile, dwz_map, dwz->info,
5589 true /* is_dwz */);
5590 }
5591
5592 /* Read .debug_names. If everything went ok, initialize the "quick"
5593 elements of all the CUs and return true. Otherwise, return false. */
5594
5595 static bool
5596 dwarf2_read_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile)
5597 {
5598 std::unique_ptr<mapped_debug_names> map
5599 (new mapped_debug_names (dwarf2_per_objfile));
5600 mapped_debug_names dwz_map (dwarf2_per_objfile);
5601 struct objfile *objfile = dwarf2_per_objfile->objfile;
5602
5603 if (!read_debug_names_from_section (objfile, objfile_name (objfile),
5604 &dwarf2_per_objfile->debug_names,
5605 *map))
5606 return false;
5607
5608 /* Don't use the index if it's empty. */
5609 if (map->name_count == 0)
5610 return false;
5611
5612 /* If there is a .dwz file, read it so we can get its CU list as
5613 well. */
5614 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5615 if (dwz != NULL)
5616 {
5617 if (!read_debug_names_from_section (objfile,
5618 bfd_get_filename (dwz->dwz_bfd),
5619 &dwz->debug_names, dwz_map))
5620 {
5621 warning (_("could not read '.debug_names' section from %s; skipping"),
5622 bfd_get_filename (dwz->dwz_bfd));
5623 return false;
5624 }
5625 }
5626
5627 create_cus_from_debug_names (dwarf2_per_objfile, *map, dwz_map);
5628
5629 if (map->tu_count != 0)
5630 {
5631 /* We can only handle a single .debug_types when we have an
5632 index. */
5633 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
5634 return false;
5635
5636 dwarf2_section_info *section = VEC_index (dwarf2_section_info_def,
5637 dwarf2_per_objfile->types, 0);
5638
5639 create_signatured_type_table_from_debug_names
5640 (dwarf2_per_objfile, *map, section, &dwarf2_per_objfile->abbrev);
5641 }
5642
5643 create_addrmap_from_aranges (dwarf2_per_objfile,
5644 &dwarf2_per_objfile->debug_aranges);
5645
5646 dwarf2_per_objfile->debug_names_table = std::move (map);
5647 dwarf2_per_objfile->using_index = 1;
5648 dwarf2_per_objfile->quick_file_names_table =
5649 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
5650
5651 return true;
5652 }
5653
5654 /* Type used to manage iterating over all CUs looking for a symbol for
5655 .debug_names. */
5656
5657 class dw2_debug_names_iterator
5658 {
5659 public:
5660 /* If WANT_SPECIFIC_BLOCK is true, only look for symbols in block
5661 BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
5662 dw2_debug_names_iterator (const mapped_debug_names &map,
5663 bool want_specific_block,
5664 block_enum block_index, domain_enum domain,
5665 const char *name)
5666 : m_map (map), m_want_specific_block (want_specific_block),
5667 m_block_index (block_index), m_domain (domain),
5668 m_addr (find_vec_in_debug_names (map, name))
5669 {}
5670
5671 dw2_debug_names_iterator (const mapped_debug_names &map,
5672 search_domain search, uint32_t namei)
5673 : m_map (map),
5674 m_search (search),
5675 m_addr (find_vec_in_debug_names (map, namei))
5676 {}
5677
5678 /* Return the next matching CU or NULL if there are no more. */
5679 dwarf2_per_cu_data *next ();
5680
5681 private:
5682 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5683 const char *name);
5684 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5685 uint32_t namei);
5686
5687 /* The internalized form of .debug_names. */
5688 const mapped_debug_names &m_map;
5689
5690 /* If true, only look for symbols that match BLOCK_INDEX. */
5691 const bool m_want_specific_block = false;
5692
5693 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
5694 Unused if !WANT_SPECIFIC_BLOCK - FIRST_LOCAL_BLOCK is an invalid
5695 value. */
5696 const block_enum m_block_index = FIRST_LOCAL_BLOCK;
5697
5698 /* The kind of symbol we're looking for. */
5699 const domain_enum m_domain = UNDEF_DOMAIN;
5700 const search_domain m_search = ALL_DOMAIN;
5701
5702 /* The list of CUs from the index entry of the symbol, or NULL if
5703 not found. */
5704 const gdb_byte *m_addr;
5705 };
5706
5707 const char *
5708 mapped_debug_names::namei_to_name (uint32_t namei) const
5709 {
5710 const ULONGEST namei_string_offs
5711 = extract_unsigned_integer ((name_table_string_offs_reordered
5712 + namei * offset_size),
5713 offset_size,
5714 dwarf5_byte_order);
5715 return read_indirect_string_at_offset
5716 (dwarf2_per_objfile, dwarf2_per_objfile->objfile->obfd, namei_string_offs);
5717 }
5718
5719 /* Find a slot in .debug_names for the object named NAME. If NAME is
5720 found, return pointer to its pool data. If NAME cannot be found,
5721 return NULL. */
5722
5723 const gdb_byte *
5724 dw2_debug_names_iterator::find_vec_in_debug_names
5725 (const mapped_debug_names &map, const char *name)
5726 {
5727 int (*cmp) (const char *, const char *);
5728
5729 if (current_language->la_language == language_cplus
5730 || current_language->la_language == language_fortran
5731 || current_language->la_language == language_d)
5732 {
5733 /* NAME is already canonical. Drop any qualifiers as
5734 .debug_names does not contain any. */
5735
5736 if (strchr (name, '(') != NULL)
5737 {
5738 gdb::unique_xmalloc_ptr<char> without_params
5739 = cp_remove_params (name);
5740
5741 if (without_params != NULL)
5742 {
5743 name = without_params.get();
5744 }
5745 }
5746 }
5747
5748 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
5749
5750 const uint32_t full_hash = dwarf5_djb_hash (name);
5751 uint32_t namei
5752 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5753 (map.bucket_table_reordered
5754 + (full_hash % map.bucket_count)), 4,
5755 map.dwarf5_byte_order);
5756 if (namei == 0)
5757 return NULL;
5758 --namei;
5759 if (namei >= map.name_count)
5760 {
5761 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5762 "[in module %s]"),
5763 namei, map.name_count,
5764 objfile_name (map.dwarf2_per_objfile->objfile));
5765 return NULL;
5766 }
5767
5768 for (;;)
5769 {
5770 const uint32_t namei_full_hash
5771 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5772 (map.hash_table_reordered + namei), 4,
5773 map.dwarf5_byte_order);
5774 if (full_hash % map.bucket_count != namei_full_hash % map.bucket_count)
5775 return NULL;
5776
5777 if (full_hash == namei_full_hash)
5778 {
5779 const char *const namei_string = map.namei_to_name (namei);
5780
5781 #if 0 /* An expensive sanity check. */
5782 if (namei_full_hash != dwarf5_djb_hash (namei_string))
5783 {
5784 complaint (_("Wrong .debug_names hash for string at index %u "
5785 "[in module %s]"),
5786 namei, objfile_name (dwarf2_per_objfile->objfile));
5787 return NULL;
5788 }
5789 #endif
5790
5791 if (cmp (namei_string, name) == 0)
5792 {
5793 const ULONGEST namei_entry_offs
5794 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5795 + namei * map.offset_size),
5796 map.offset_size, map.dwarf5_byte_order);
5797 return map.entry_pool + namei_entry_offs;
5798 }
5799 }
5800
5801 ++namei;
5802 if (namei >= map.name_count)
5803 return NULL;
5804 }
5805 }
5806
5807 const gdb_byte *
5808 dw2_debug_names_iterator::find_vec_in_debug_names
5809 (const mapped_debug_names &map, uint32_t namei)
5810 {
5811 if (namei >= map.name_count)
5812 {
5813 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5814 "[in module %s]"),
5815 namei, map.name_count,
5816 objfile_name (map.dwarf2_per_objfile->objfile));
5817 return NULL;
5818 }
5819
5820 const ULONGEST namei_entry_offs
5821 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5822 + namei * map.offset_size),
5823 map.offset_size, map.dwarf5_byte_order);
5824 return map.entry_pool + namei_entry_offs;
5825 }
5826
5827 /* See dw2_debug_names_iterator. */
5828
5829 dwarf2_per_cu_data *
5830 dw2_debug_names_iterator::next ()
5831 {
5832 if (m_addr == NULL)
5833 return NULL;
5834
5835 struct dwarf2_per_objfile *dwarf2_per_objfile = m_map.dwarf2_per_objfile;
5836 struct objfile *objfile = dwarf2_per_objfile->objfile;
5837 bfd *const abfd = objfile->obfd;
5838
5839 again:
5840
5841 unsigned int bytes_read;
5842 const ULONGEST abbrev = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5843 m_addr += bytes_read;
5844 if (abbrev == 0)
5845 return NULL;
5846
5847 const auto indexval_it = m_map.abbrev_map.find (abbrev);
5848 if (indexval_it == m_map.abbrev_map.cend ())
5849 {
5850 complaint (_("Wrong .debug_names undefined abbrev code %s "
5851 "[in module %s]"),
5852 pulongest (abbrev), objfile_name (objfile));
5853 return NULL;
5854 }
5855 const mapped_debug_names::index_val &indexval = indexval_it->second;
5856 bool have_is_static = false;
5857 bool is_static;
5858 dwarf2_per_cu_data *per_cu = NULL;
5859 for (const mapped_debug_names::index_val::attr &attr : indexval.attr_vec)
5860 {
5861 ULONGEST ull;
5862 switch (attr.form)
5863 {
5864 case DW_FORM_implicit_const:
5865 ull = attr.implicit_const;
5866 break;
5867 case DW_FORM_flag_present:
5868 ull = 1;
5869 break;
5870 case DW_FORM_udata:
5871 ull = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5872 m_addr += bytes_read;
5873 break;
5874 default:
5875 complaint (_("Unsupported .debug_names form %s [in module %s]"),
5876 dwarf_form_name (attr.form),
5877 objfile_name (objfile));
5878 return NULL;
5879 }
5880 switch (attr.dw_idx)
5881 {
5882 case DW_IDX_compile_unit:
5883 /* Don't crash on bad data. */
5884 if (ull >= dwarf2_per_objfile->all_comp_units.size ())
5885 {
5886 complaint (_(".debug_names entry has bad CU index %s"
5887 " [in module %s]"),
5888 pulongest (ull),
5889 objfile_name (dwarf2_per_objfile->objfile));
5890 continue;
5891 }
5892 per_cu = dwarf2_per_objfile->get_cutu (ull);
5893 break;
5894 case DW_IDX_type_unit:
5895 /* Don't crash on bad data. */
5896 if (ull >= dwarf2_per_objfile->all_type_units.size ())
5897 {
5898 complaint (_(".debug_names entry has bad TU index %s"
5899 " [in module %s]"),
5900 pulongest (ull),
5901 objfile_name (dwarf2_per_objfile->objfile));
5902 continue;
5903 }
5904 per_cu = &dwarf2_per_objfile->get_tu (ull)->per_cu;
5905 break;
5906 case DW_IDX_GNU_internal:
5907 if (!m_map.augmentation_is_gdb)
5908 break;
5909 have_is_static = true;
5910 is_static = true;
5911 break;
5912 case DW_IDX_GNU_external:
5913 if (!m_map.augmentation_is_gdb)
5914 break;
5915 have_is_static = true;
5916 is_static = false;
5917 break;
5918 }
5919 }
5920
5921 /* Skip if already read in. */
5922 if (per_cu->v.quick->compunit_symtab)
5923 goto again;
5924
5925 /* Check static vs global. */
5926 if (have_is_static)
5927 {
5928 const bool want_static = m_block_index != GLOBAL_BLOCK;
5929 if (m_want_specific_block && want_static != is_static)
5930 goto again;
5931 }
5932
5933 /* Match dw2_symtab_iter_next, symbol_kind
5934 and debug_names::psymbol_tag. */
5935 switch (m_domain)
5936 {
5937 case VAR_DOMAIN:
5938 switch (indexval.dwarf_tag)
5939 {
5940 case DW_TAG_variable:
5941 case DW_TAG_subprogram:
5942 /* Some types are also in VAR_DOMAIN. */
5943 case DW_TAG_typedef:
5944 case DW_TAG_structure_type:
5945 break;
5946 default:
5947 goto again;
5948 }
5949 break;
5950 case STRUCT_DOMAIN:
5951 switch (indexval.dwarf_tag)
5952 {
5953 case DW_TAG_typedef:
5954 case DW_TAG_structure_type:
5955 break;
5956 default:
5957 goto again;
5958 }
5959 break;
5960 case LABEL_DOMAIN:
5961 switch (indexval.dwarf_tag)
5962 {
5963 case 0:
5964 case DW_TAG_variable:
5965 break;
5966 default:
5967 goto again;
5968 }
5969 break;
5970 default:
5971 break;
5972 }
5973
5974 /* Match dw2_expand_symtabs_matching, symbol_kind and
5975 debug_names::psymbol_tag. */
5976 switch (m_search)
5977 {
5978 case VARIABLES_DOMAIN:
5979 switch (indexval.dwarf_tag)
5980 {
5981 case DW_TAG_variable:
5982 break;
5983 default:
5984 goto again;
5985 }
5986 break;
5987 case FUNCTIONS_DOMAIN:
5988 switch (indexval.dwarf_tag)
5989 {
5990 case DW_TAG_subprogram:
5991 break;
5992 default:
5993 goto again;
5994 }
5995 break;
5996 case TYPES_DOMAIN:
5997 switch (indexval.dwarf_tag)
5998 {
5999 case DW_TAG_typedef:
6000 case DW_TAG_structure_type:
6001 break;
6002 default:
6003 goto again;
6004 }
6005 break;
6006 default:
6007 break;
6008 }
6009
6010 return per_cu;
6011 }
6012
6013 static struct compunit_symtab *
6014 dw2_debug_names_lookup_symbol (struct objfile *objfile, int block_index_int,
6015 const char *name, domain_enum domain)
6016 {
6017 const block_enum block_index = static_cast<block_enum> (block_index_int);
6018 struct dwarf2_per_objfile *dwarf2_per_objfile
6019 = get_dwarf2_per_objfile (objfile);
6020
6021 const auto &mapp = dwarf2_per_objfile->debug_names_table;
6022 if (!mapp)
6023 {
6024 /* index is NULL if OBJF_READNOW. */
6025 return NULL;
6026 }
6027 const auto &map = *mapp;
6028
6029 dw2_debug_names_iterator iter (map, true /* want_specific_block */,
6030 block_index, domain, name);
6031
6032 struct compunit_symtab *stab_best = NULL;
6033 struct dwarf2_per_cu_data *per_cu;
6034 while ((per_cu = iter.next ()) != NULL)
6035 {
6036 struct symbol *sym, *with_opaque = NULL;
6037 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
6038 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
6039 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
6040
6041 sym = block_find_symbol (block, name, domain,
6042 block_find_non_opaque_type_preferred,
6043 &with_opaque);
6044
6045 /* Some caution must be observed with overloaded functions and
6046 methods, since the index will not contain any overload
6047 information (but NAME might contain it). */
6048
6049 if (sym != NULL
6050 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
6051 return stab;
6052 if (with_opaque != NULL
6053 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
6054 stab_best = stab;
6055
6056 /* Keep looking through other CUs. */
6057 }
6058
6059 return stab_best;
6060 }
6061
6062 /* This dumps minimal information about .debug_names. It is called
6063 via "mt print objfiles". The gdb.dwarf2/gdb-index.exp testcase
6064 uses this to verify that .debug_names has been loaded. */
6065
6066 static void
6067 dw2_debug_names_dump (struct objfile *objfile)
6068 {
6069 struct dwarf2_per_objfile *dwarf2_per_objfile
6070 = get_dwarf2_per_objfile (objfile);
6071
6072 gdb_assert (dwarf2_per_objfile->using_index);
6073 printf_filtered (".debug_names:");
6074 if (dwarf2_per_objfile->debug_names_table)
6075 printf_filtered (" exists\n");
6076 else
6077 printf_filtered (" faked for \"readnow\"\n");
6078 printf_filtered ("\n");
6079 }
6080
6081 static void
6082 dw2_debug_names_expand_symtabs_for_function (struct objfile *objfile,
6083 const char *func_name)
6084 {
6085 struct dwarf2_per_objfile *dwarf2_per_objfile
6086 = get_dwarf2_per_objfile (objfile);
6087
6088 /* dwarf2_per_objfile->debug_names_table is NULL if OBJF_READNOW. */
6089 if (dwarf2_per_objfile->debug_names_table)
6090 {
6091 const mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6092
6093 /* Note: It doesn't matter what we pass for block_index here. */
6094 dw2_debug_names_iterator iter (map, false /* want_specific_block */,
6095 GLOBAL_BLOCK, VAR_DOMAIN, func_name);
6096
6097 struct dwarf2_per_cu_data *per_cu;
6098 while ((per_cu = iter.next ()) != NULL)
6099 dw2_instantiate_symtab (per_cu, false);
6100 }
6101 }
6102
6103 static void
6104 dw2_debug_names_expand_symtabs_matching
6105 (struct objfile *objfile,
6106 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
6107 const lookup_name_info &lookup_name,
6108 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
6109 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
6110 enum search_domain kind)
6111 {
6112 struct dwarf2_per_objfile *dwarf2_per_objfile
6113 = get_dwarf2_per_objfile (objfile);
6114
6115 /* debug_names_table is NULL if OBJF_READNOW. */
6116 if (!dwarf2_per_objfile->debug_names_table)
6117 return;
6118
6119 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
6120
6121 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6122
6123 dw2_expand_symtabs_matching_symbol (map, lookup_name,
6124 symbol_matcher,
6125 kind, [&] (offset_type namei)
6126 {
6127 /* The name was matched, now expand corresponding CUs that were
6128 marked. */
6129 dw2_debug_names_iterator iter (map, kind, namei);
6130
6131 struct dwarf2_per_cu_data *per_cu;
6132 while ((per_cu = iter.next ()) != NULL)
6133 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
6134 expansion_notify);
6135 });
6136 }
6137
6138 const struct quick_symbol_functions dwarf2_debug_names_functions =
6139 {
6140 dw2_has_symbols,
6141 dw2_find_last_source_symtab,
6142 dw2_forget_cached_source_info,
6143 dw2_map_symtabs_matching_filename,
6144 dw2_debug_names_lookup_symbol,
6145 dw2_print_stats,
6146 dw2_debug_names_dump,
6147 dw2_relocate,
6148 dw2_debug_names_expand_symtabs_for_function,
6149 dw2_expand_all_symtabs,
6150 dw2_expand_symtabs_with_fullname,
6151 dw2_map_matching_symbols,
6152 dw2_debug_names_expand_symtabs_matching,
6153 dw2_find_pc_sect_compunit_symtab,
6154 NULL,
6155 dw2_map_symbol_filenames
6156 };
6157
6158 /* See symfile.h. */
6159
6160 bool
6161 dwarf2_initialize_objfile (struct objfile *objfile, dw_index_kind *index_kind)
6162 {
6163 struct dwarf2_per_objfile *dwarf2_per_objfile
6164 = get_dwarf2_per_objfile (objfile);
6165
6166 /* If we're about to read full symbols, don't bother with the
6167 indices. In this case we also don't care if some other debug
6168 format is making psymtabs, because they are all about to be
6169 expanded anyway. */
6170 if ((objfile->flags & OBJF_READNOW))
6171 {
6172 dwarf2_per_objfile->using_index = 1;
6173 create_all_comp_units (dwarf2_per_objfile);
6174 create_all_type_units (dwarf2_per_objfile);
6175 dwarf2_per_objfile->quick_file_names_table
6176 = create_quick_file_names_table
6177 (dwarf2_per_objfile->all_comp_units.size ());
6178
6179 for (int i = 0; i < (dwarf2_per_objfile->all_comp_units.size ()
6180 + dwarf2_per_objfile->all_type_units.size ()); ++i)
6181 {
6182 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
6183
6184 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6185 struct dwarf2_per_cu_quick_data);
6186 }
6187
6188 /* Return 1 so that gdb sees the "quick" functions. However,
6189 these functions will be no-ops because we will have expanded
6190 all symtabs. */
6191 *index_kind = dw_index_kind::GDB_INDEX;
6192 return true;
6193 }
6194
6195 if (dwarf2_read_debug_names (dwarf2_per_objfile))
6196 {
6197 *index_kind = dw_index_kind::DEBUG_NAMES;
6198 return true;
6199 }
6200
6201 if (dwarf2_read_gdb_index (dwarf2_per_objfile))
6202 {
6203 *index_kind = dw_index_kind::GDB_INDEX;
6204 return true;
6205 }
6206
6207 return false;
6208 }
6209
6210 \f
6211
6212 /* Build a partial symbol table. */
6213
6214 void
6215 dwarf2_build_psymtabs (struct objfile *objfile)
6216 {
6217 struct dwarf2_per_objfile *dwarf2_per_objfile
6218 = get_dwarf2_per_objfile (objfile);
6219
6220 if (objfile->global_psymbols.capacity () == 0
6221 && objfile->static_psymbols.capacity () == 0)
6222 init_psymbol_list (objfile, 1024);
6223
6224 TRY
6225 {
6226 /* This isn't really ideal: all the data we allocate on the
6227 objfile's obstack is still uselessly kept around. However,
6228 freeing it seems unsafe. */
6229 psymtab_discarder psymtabs (objfile);
6230 dwarf2_build_psymtabs_hard (dwarf2_per_objfile);
6231 psymtabs.keep ();
6232 }
6233 CATCH (except, RETURN_MASK_ERROR)
6234 {
6235 exception_print (gdb_stderr, except);
6236 }
6237 END_CATCH
6238 }
6239
6240 /* Return the total length of the CU described by HEADER. */
6241
6242 static unsigned int
6243 get_cu_length (const struct comp_unit_head *header)
6244 {
6245 return header->initial_length_size + header->length;
6246 }
6247
6248 /* Return TRUE if SECT_OFF is within CU_HEADER. */
6249
6250 static inline bool
6251 offset_in_cu_p (const comp_unit_head *cu_header, sect_offset sect_off)
6252 {
6253 sect_offset bottom = cu_header->sect_off;
6254 sect_offset top = cu_header->sect_off + get_cu_length (cu_header);
6255
6256 return sect_off >= bottom && sect_off < top;
6257 }
6258
6259 /* Find the base address of the compilation unit for range lists and
6260 location lists. It will normally be specified by DW_AT_low_pc.
6261 In DWARF-3 draft 4, the base address could be overridden by
6262 DW_AT_entry_pc. It's been removed, but GCC still uses this for
6263 compilation units with discontinuous ranges. */
6264
6265 static void
6266 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
6267 {
6268 struct attribute *attr;
6269
6270 cu->base_known = 0;
6271 cu->base_address = 0;
6272
6273 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
6274 if (attr)
6275 {
6276 cu->base_address = attr_value_as_address (attr);
6277 cu->base_known = 1;
6278 }
6279 else
6280 {
6281 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6282 if (attr)
6283 {
6284 cu->base_address = attr_value_as_address (attr);
6285 cu->base_known = 1;
6286 }
6287 }
6288 }
6289
6290 /* Read in the comp unit header information from the debug_info at info_ptr.
6291 Use rcuh_kind::COMPILE as the default type if not known by the caller.
6292 NOTE: This leaves members offset, first_die_offset to be filled in
6293 by the caller. */
6294
6295 static const gdb_byte *
6296 read_comp_unit_head (struct comp_unit_head *cu_header,
6297 const gdb_byte *info_ptr,
6298 struct dwarf2_section_info *section,
6299 rcuh_kind section_kind)
6300 {
6301 int signed_addr;
6302 unsigned int bytes_read;
6303 const char *filename = get_section_file_name (section);
6304 bfd *abfd = get_section_bfd_owner (section);
6305
6306 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
6307 cu_header->initial_length_size = bytes_read;
6308 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
6309 info_ptr += bytes_read;
6310 cu_header->version = read_2_bytes (abfd, info_ptr);
6311 info_ptr += 2;
6312 if (cu_header->version < 5)
6313 switch (section_kind)
6314 {
6315 case rcuh_kind::COMPILE:
6316 cu_header->unit_type = DW_UT_compile;
6317 break;
6318 case rcuh_kind::TYPE:
6319 cu_header->unit_type = DW_UT_type;
6320 break;
6321 default:
6322 internal_error (__FILE__, __LINE__,
6323 _("read_comp_unit_head: invalid section_kind"));
6324 }
6325 else
6326 {
6327 cu_header->unit_type = static_cast<enum dwarf_unit_type>
6328 (read_1_byte (abfd, info_ptr));
6329 info_ptr += 1;
6330 switch (cu_header->unit_type)
6331 {
6332 case DW_UT_compile:
6333 if (section_kind != rcuh_kind::COMPILE)
6334 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6335 "(is DW_UT_compile, should be DW_UT_type) [in module %s]"),
6336 filename);
6337 break;
6338 case DW_UT_type:
6339 section_kind = rcuh_kind::TYPE;
6340 break;
6341 default:
6342 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6343 "(is %d, should be %d or %d) [in module %s]"),
6344 cu_header->unit_type, DW_UT_compile, DW_UT_type, filename);
6345 }
6346
6347 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6348 info_ptr += 1;
6349 }
6350 cu_header->abbrev_sect_off = (sect_offset) read_offset (abfd, info_ptr,
6351 cu_header,
6352 &bytes_read);
6353 info_ptr += bytes_read;
6354 if (cu_header->version < 5)
6355 {
6356 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6357 info_ptr += 1;
6358 }
6359 signed_addr = bfd_get_sign_extend_vma (abfd);
6360 if (signed_addr < 0)
6361 internal_error (__FILE__, __LINE__,
6362 _("read_comp_unit_head: dwarf from non elf file"));
6363 cu_header->signed_addr_p = signed_addr;
6364
6365 if (section_kind == rcuh_kind::TYPE)
6366 {
6367 LONGEST type_offset;
6368
6369 cu_header->signature = read_8_bytes (abfd, info_ptr);
6370 info_ptr += 8;
6371
6372 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
6373 info_ptr += bytes_read;
6374 cu_header->type_cu_offset_in_tu = (cu_offset) type_offset;
6375 if (to_underlying (cu_header->type_cu_offset_in_tu) != type_offset)
6376 error (_("Dwarf Error: Too big type_offset in compilation unit "
6377 "header (is %s) [in module %s]"), plongest (type_offset),
6378 filename);
6379 }
6380
6381 return info_ptr;
6382 }
6383
6384 /* Helper function that returns the proper abbrev section for
6385 THIS_CU. */
6386
6387 static struct dwarf2_section_info *
6388 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
6389 {
6390 struct dwarf2_section_info *abbrev;
6391 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6392
6393 if (this_cu->is_dwz)
6394 abbrev = &dwarf2_get_dwz_file (dwarf2_per_objfile)->abbrev;
6395 else
6396 abbrev = &dwarf2_per_objfile->abbrev;
6397
6398 return abbrev;
6399 }
6400
6401 /* Subroutine of read_and_check_comp_unit_head and
6402 read_and_check_type_unit_head to simplify them.
6403 Perform various error checking on the header. */
6404
6405 static void
6406 error_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6407 struct comp_unit_head *header,
6408 struct dwarf2_section_info *section,
6409 struct dwarf2_section_info *abbrev_section)
6410 {
6411 const char *filename = get_section_file_name (section);
6412
6413 if (header->version < 2 || header->version > 5)
6414 error (_("Dwarf Error: wrong version in compilation unit header "
6415 "(is %d, should be 2, 3, 4 or 5) [in module %s]"), header->version,
6416 filename);
6417
6418 if (to_underlying (header->abbrev_sect_off)
6419 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
6420 error (_("Dwarf Error: bad offset (%s) in compilation unit header "
6421 "(offset %s + 6) [in module %s]"),
6422 sect_offset_str (header->abbrev_sect_off),
6423 sect_offset_str (header->sect_off),
6424 filename);
6425
6426 /* Cast to ULONGEST to use 64-bit arithmetic when possible to
6427 avoid potential 32-bit overflow. */
6428 if (((ULONGEST) header->sect_off + get_cu_length (header))
6429 > section->size)
6430 error (_("Dwarf Error: bad length (0x%x) in compilation unit header "
6431 "(offset %s + 0) [in module %s]"),
6432 header->length, sect_offset_str (header->sect_off),
6433 filename);
6434 }
6435
6436 /* Read in a CU/TU header and perform some basic error checking.
6437 The contents of the header are stored in HEADER.
6438 The result is a pointer to the start of the first DIE. */
6439
6440 static const gdb_byte *
6441 read_and_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6442 struct comp_unit_head *header,
6443 struct dwarf2_section_info *section,
6444 struct dwarf2_section_info *abbrev_section,
6445 const gdb_byte *info_ptr,
6446 rcuh_kind section_kind)
6447 {
6448 const gdb_byte *beg_of_comp_unit = info_ptr;
6449
6450 header->sect_off = (sect_offset) (beg_of_comp_unit - section->buffer);
6451
6452 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
6453
6454 header->first_die_cu_offset = (cu_offset) (info_ptr - beg_of_comp_unit);
6455
6456 error_check_comp_unit_head (dwarf2_per_objfile, header, section,
6457 abbrev_section);
6458
6459 return info_ptr;
6460 }
6461
6462 /* Fetch the abbreviation table offset from a comp or type unit header. */
6463
6464 static sect_offset
6465 read_abbrev_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
6466 struct dwarf2_section_info *section,
6467 sect_offset sect_off)
6468 {
6469 bfd *abfd = get_section_bfd_owner (section);
6470 const gdb_byte *info_ptr;
6471 unsigned int initial_length_size, offset_size;
6472 uint16_t version;
6473
6474 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
6475 info_ptr = section->buffer + to_underlying (sect_off);
6476 read_initial_length (abfd, info_ptr, &initial_length_size);
6477 offset_size = initial_length_size == 4 ? 4 : 8;
6478 info_ptr += initial_length_size;
6479
6480 version = read_2_bytes (abfd, info_ptr);
6481 info_ptr += 2;
6482 if (version >= 5)
6483 {
6484 /* Skip unit type and address size. */
6485 info_ptr += 2;
6486 }
6487
6488 return (sect_offset) read_offset_1 (abfd, info_ptr, offset_size);
6489 }
6490
6491 /* Allocate a new partial symtab for file named NAME and mark this new
6492 partial symtab as being an include of PST. */
6493
6494 static void
6495 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
6496 struct objfile *objfile)
6497 {
6498 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
6499
6500 if (!IS_ABSOLUTE_PATH (subpst->filename))
6501 {
6502 /* It shares objfile->objfile_obstack. */
6503 subpst->dirname = pst->dirname;
6504 }
6505
6506 subpst->textlow = 0;
6507 subpst->texthigh = 0;
6508
6509 subpst->dependencies
6510 = XOBNEW (&objfile->objfile_obstack, struct partial_symtab *);
6511 subpst->dependencies[0] = pst;
6512 subpst->number_of_dependencies = 1;
6513
6514 subpst->globals_offset = 0;
6515 subpst->n_global_syms = 0;
6516 subpst->statics_offset = 0;
6517 subpst->n_static_syms = 0;
6518 subpst->compunit_symtab = NULL;
6519 subpst->read_symtab = pst->read_symtab;
6520 subpst->readin = 0;
6521
6522 /* No private part is necessary for include psymtabs. This property
6523 can be used to differentiate between such include psymtabs and
6524 the regular ones. */
6525 subpst->read_symtab_private = NULL;
6526 }
6527
6528 /* Read the Line Number Program data and extract the list of files
6529 included by the source file represented by PST. Build an include
6530 partial symtab for each of these included files. */
6531
6532 static void
6533 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
6534 struct die_info *die,
6535 struct partial_symtab *pst)
6536 {
6537 line_header_up lh;
6538 struct attribute *attr;
6539
6540 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
6541 if (attr)
6542 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
6543 if (lh == NULL)
6544 return; /* No linetable, so no includes. */
6545
6546 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
6547 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst, pst->textlow, 1);
6548 }
6549
6550 static hashval_t
6551 hash_signatured_type (const void *item)
6552 {
6553 const struct signatured_type *sig_type
6554 = (const struct signatured_type *) item;
6555
6556 /* This drops the top 32 bits of the signature, but is ok for a hash. */
6557 return sig_type->signature;
6558 }
6559
6560 static int
6561 eq_signatured_type (const void *item_lhs, const void *item_rhs)
6562 {
6563 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
6564 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
6565
6566 return lhs->signature == rhs->signature;
6567 }
6568
6569 /* Allocate a hash table for signatured types. */
6570
6571 static htab_t
6572 allocate_signatured_type_table (struct objfile *objfile)
6573 {
6574 return htab_create_alloc_ex (41,
6575 hash_signatured_type,
6576 eq_signatured_type,
6577 NULL,
6578 &objfile->objfile_obstack,
6579 hashtab_obstack_allocate,
6580 dummy_obstack_deallocate);
6581 }
6582
6583 /* A helper function to add a signatured type CU to a table. */
6584
6585 static int
6586 add_signatured_type_cu_to_table (void **slot, void *datum)
6587 {
6588 struct signatured_type *sigt = (struct signatured_type *) *slot;
6589 std::vector<signatured_type *> *all_type_units
6590 = (std::vector<signatured_type *> *) datum;
6591
6592 all_type_units->push_back (sigt);
6593
6594 return 1;
6595 }
6596
6597 /* A helper for create_debug_types_hash_table. Read types from SECTION
6598 and fill them into TYPES_HTAB. It will process only type units,
6599 therefore DW_UT_type. */
6600
6601 static void
6602 create_debug_type_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6603 struct dwo_file *dwo_file,
6604 dwarf2_section_info *section, htab_t &types_htab,
6605 rcuh_kind section_kind)
6606 {
6607 struct objfile *objfile = dwarf2_per_objfile->objfile;
6608 struct dwarf2_section_info *abbrev_section;
6609 bfd *abfd;
6610 const gdb_byte *info_ptr, *end_ptr;
6611
6612 abbrev_section = (dwo_file != NULL
6613 ? &dwo_file->sections.abbrev
6614 : &dwarf2_per_objfile->abbrev);
6615
6616 if (dwarf_read_debug)
6617 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
6618 get_section_name (section),
6619 get_section_file_name (abbrev_section));
6620
6621 dwarf2_read_section (objfile, section);
6622 info_ptr = section->buffer;
6623
6624 if (info_ptr == NULL)
6625 return;
6626
6627 /* We can't set abfd until now because the section may be empty or
6628 not present, in which case the bfd is unknown. */
6629 abfd = get_section_bfd_owner (section);
6630
6631 /* We don't use init_cutu_and_read_dies_simple, or some such, here
6632 because we don't need to read any dies: the signature is in the
6633 header. */
6634
6635 end_ptr = info_ptr + section->size;
6636 while (info_ptr < end_ptr)
6637 {
6638 struct signatured_type *sig_type;
6639 struct dwo_unit *dwo_tu;
6640 void **slot;
6641 const gdb_byte *ptr = info_ptr;
6642 struct comp_unit_head header;
6643 unsigned int length;
6644
6645 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
6646
6647 /* Initialize it due to a false compiler warning. */
6648 header.signature = -1;
6649 header.type_cu_offset_in_tu = (cu_offset) -1;
6650
6651 /* We need to read the type's signature in order to build the hash
6652 table, but we don't need anything else just yet. */
6653
6654 ptr = read_and_check_comp_unit_head (dwarf2_per_objfile, &header, section,
6655 abbrev_section, ptr, section_kind);
6656
6657 length = get_cu_length (&header);
6658
6659 /* Skip dummy type units. */
6660 if (ptr >= info_ptr + length
6661 || peek_abbrev_code (abfd, ptr) == 0
6662 || header.unit_type != DW_UT_type)
6663 {
6664 info_ptr += length;
6665 continue;
6666 }
6667
6668 if (types_htab == NULL)
6669 {
6670 if (dwo_file)
6671 types_htab = allocate_dwo_unit_table (objfile);
6672 else
6673 types_htab = allocate_signatured_type_table (objfile);
6674 }
6675
6676 if (dwo_file)
6677 {
6678 sig_type = NULL;
6679 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6680 struct dwo_unit);
6681 dwo_tu->dwo_file = dwo_file;
6682 dwo_tu->signature = header.signature;
6683 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
6684 dwo_tu->section = section;
6685 dwo_tu->sect_off = sect_off;
6686 dwo_tu->length = length;
6687 }
6688 else
6689 {
6690 /* N.B.: type_offset is not usable if this type uses a DWO file.
6691 The real type_offset is in the DWO file. */
6692 dwo_tu = NULL;
6693 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6694 struct signatured_type);
6695 sig_type->signature = header.signature;
6696 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
6697 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6698 sig_type->per_cu.is_debug_types = 1;
6699 sig_type->per_cu.section = section;
6700 sig_type->per_cu.sect_off = sect_off;
6701 sig_type->per_cu.length = length;
6702 }
6703
6704 slot = htab_find_slot (types_htab,
6705 dwo_file ? (void*) dwo_tu : (void *) sig_type,
6706 INSERT);
6707 gdb_assert (slot != NULL);
6708 if (*slot != NULL)
6709 {
6710 sect_offset dup_sect_off;
6711
6712 if (dwo_file)
6713 {
6714 const struct dwo_unit *dup_tu
6715 = (const struct dwo_unit *) *slot;
6716
6717 dup_sect_off = dup_tu->sect_off;
6718 }
6719 else
6720 {
6721 const struct signatured_type *dup_tu
6722 = (const struct signatured_type *) *slot;
6723
6724 dup_sect_off = dup_tu->per_cu.sect_off;
6725 }
6726
6727 complaint (_("debug type entry at offset %s is duplicate to"
6728 " the entry at offset %s, signature %s"),
6729 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
6730 hex_string (header.signature));
6731 }
6732 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
6733
6734 if (dwarf_read_debug > 1)
6735 fprintf_unfiltered (gdb_stdlog, " offset %s, signature %s\n",
6736 sect_offset_str (sect_off),
6737 hex_string (header.signature));
6738
6739 info_ptr += length;
6740 }
6741 }
6742
6743 /* Create the hash table of all entries in the .debug_types
6744 (or .debug_types.dwo) section(s).
6745 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
6746 otherwise it is NULL.
6747
6748 The result is a pointer to the hash table or NULL if there are no types.
6749
6750 Note: This function processes DWO files only, not DWP files. */
6751
6752 static void
6753 create_debug_types_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6754 struct dwo_file *dwo_file,
6755 VEC (dwarf2_section_info_def) *types,
6756 htab_t &types_htab)
6757 {
6758 int ix;
6759 struct dwarf2_section_info *section;
6760
6761 if (VEC_empty (dwarf2_section_info_def, types))
6762 return;
6763
6764 for (ix = 0;
6765 VEC_iterate (dwarf2_section_info_def, types, ix, section);
6766 ++ix)
6767 create_debug_type_hash_table (dwarf2_per_objfile, dwo_file, section,
6768 types_htab, rcuh_kind::TYPE);
6769 }
6770
6771 /* Create the hash table of all entries in the .debug_types section,
6772 and initialize all_type_units.
6773 The result is zero if there is an error (e.g. missing .debug_types section),
6774 otherwise non-zero. */
6775
6776 static int
6777 create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
6778 {
6779 htab_t types_htab = NULL;
6780
6781 create_debug_type_hash_table (dwarf2_per_objfile, NULL,
6782 &dwarf2_per_objfile->info, types_htab,
6783 rcuh_kind::COMPILE);
6784 create_debug_types_hash_table (dwarf2_per_objfile, NULL,
6785 dwarf2_per_objfile->types, types_htab);
6786 if (types_htab == NULL)
6787 {
6788 dwarf2_per_objfile->signatured_types = NULL;
6789 return 0;
6790 }
6791
6792 dwarf2_per_objfile->signatured_types = types_htab;
6793
6794 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
6795 dwarf2_per_objfile->all_type_units.reserve (htab_elements (types_htab));
6796
6797 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table,
6798 &dwarf2_per_objfile->all_type_units);
6799
6800 return 1;
6801 }
6802
6803 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
6804 If SLOT is non-NULL, it is the entry to use in the hash table.
6805 Otherwise we find one. */
6806
6807 static struct signatured_type *
6808 add_type_unit (struct dwarf2_per_objfile *dwarf2_per_objfile, ULONGEST sig,
6809 void **slot)
6810 {
6811 struct objfile *objfile = dwarf2_per_objfile->objfile;
6812
6813 if (dwarf2_per_objfile->all_type_units.size ()
6814 == dwarf2_per_objfile->all_type_units.capacity ())
6815 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
6816
6817 signatured_type *sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6818 struct signatured_type);
6819
6820 dwarf2_per_objfile->all_type_units.push_back (sig_type);
6821 sig_type->signature = sig;
6822 sig_type->per_cu.is_debug_types = 1;
6823 if (dwarf2_per_objfile->using_index)
6824 {
6825 sig_type->per_cu.v.quick =
6826 OBSTACK_ZALLOC (&objfile->objfile_obstack,
6827 struct dwarf2_per_cu_quick_data);
6828 }
6829
6830 if (slot == NULL)
6831 {
6832 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6833 sig_type, INSERT);
6834 }
6835 gdb_assert (*slot == NULL);
6836 *slot = sig_type;
6837 /* The rest of sig_type must be filled in by the caller. */
6838 return sig_type;
6839 }
6840
6841 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
6842 Fill in SIG_ENTRY with DWO_ENTRY. */
6843
6844 static void
6845 fill_in_sig_entry_from_dwo_entry (struct dwarf2_per_objfile *dwarf2_per_objfile,
6846 struct signatured_type *sig_entry,
6847 struct dwo_unit *dwo_entry)
6848 {
6849 /* Make sure we're not clobbering something we don't expect to. */
6850 gdb_assert (! sig_entry->per_cu.queued);
6851 gdb_assert (sig_entry->per_cu.cu == NULL);
6852 if (dwarf2_per_objfile->using_index)
6853 {
6854 gdb_assert (sig_entry->per_cu.v.quick != NULL);
6855 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6856 }
6857 else
6858 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
6859 gdb_assert (sig_entry->signature == dwo_entry->signature);
6860 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
6861 gdb_assert (sig_entry->type_unit_group == NULL);
6862 gdb_assert (sig_entry->dwo_unit == NULL);
6863
6864 sig_entry->per_cu.section = dwo_entry->section;
6865 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
6866 sig_entry->per_cu.length = dwo_entry->length;
6867 sig_entry->per_cu.reading_dwo_directly = 1;
6868 sig_entry->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6869 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
6870 sig_entry->dwo_unit = dwo_entry;
6871 }
6872
6873 /* Subroutine of lookup_signatured_type.
6874 If we haven't read the TU yet, create the signatured_type data structure
6875 for a TU to be read in directly from a DWO file, bypassing the stub.
6876 This is the "Stay in DWO Optimization": When there is no DWP file and we're
6877 using .gdb_index, then when reading a CU we want to stay in the DWO file
6878 containing that CU. Otherwise we could end up reading several other DWO
6879 files (due to comdat folding) to process the transitive closure of all the
6880 mentioned TUs, and that can be slow. The current DWO file will have every
6881 type signature that it needs.
6882 We only do this for .gdb_index because in the psymtab case we already have
6883 to read all the DWOs to build the type unit groups. */
6884
6885 static struct signatured_type *
6886 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6887 {
6888 struct dwarf2_per_objfile *dwarf2_per_objfile
6889 = cu->per_cu->dwarf2_per_objfile;
6890 struct objfile *objfile = dwarf2_per_objfile->objfile;
6891 struct dwo_file *dwo_file;
6892 struct dwo_unit find_dwo_entry, *dwo_entry;
6893 struct signatured_type find_sig_entry, *sig_entry;
6894 void **slot;
6895
6896 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6897
6898 /* If TU skeletons have been removed then we may not have read in any
6899 TUs yet. */
6900 if (dwarf2_per_objfile->signatured_types == NULL)
6901 {
6902 dwarf2_per_objfile->signatured_types
6903 = allocate_signatured_type_table (objfile);
6904 }
6905
6906 /* We only ever need to read in one copy of a signatured type.
6907 Use the global signatured_types array to do our own comdat-folding
6908 of types. If this is the first time we're reading this TU, and
6909 the TU has an entry in .gdb_index, replace the recorded data from
6910 .gdb_index with this TU. */
6911
6912 find_sig_entry.signature = sig;
6913 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6914 &find_sig_entry, INSERT);
6915 sig_entry = (struct signatured_type *) *slot;
6916
6917 /* We can get here with the TU already read, *or* in the process of being
6918 read. Don't reassign the global entry to point to this DWO if that's
6919 the case. Also note that if the TU is already being read, it may not
6920 have come from a DWO, the program may be a mix of Fission-compiled
6921 code and non-Fission-compiled code. */
6922
6923 /* Have we already tried to read this TU?
6924 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
6925 needn't exist in the global table yet). */
6926 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
6927 return sig_entry;
6928
6929 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
6930 dwo_unit of the TU itself. */
6931 dwo_file = cu->dwo_unit->dwo_file;
6932
6933 /* Ok, this is the first time we're reading this TU. */
6934 if (dwo_file->tus == NULL)
6935 return NULL;
6936 find_dwo_entry.signature = sig;
6937 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
6938 if (dwo_entry == NULL)
6939 return NULL;
6940
6941 /* If the global table doesn't have an entry for this TU, add one. */
6942 if (sig_entry == NULL)
6943 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
6944
6945 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
6946 sig_entry->per_cu.tu_read = 1;
6947 return sig_entry;
6948 }
6949
6950 /* Subroutine of lookup_signatured_type.
6951 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
6952 then try the DWP file. If the TU stub (skeleton) has been removed then
6953 it won't be in .gdb_index. */
6954
6955 static struct signatured_type *
6956 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6957 {
6958 struct dwarf2_per_objfile *dwarf2_per_objfile
6959 = cu->per_cu->dwarf2_per_objfile;
6960 struct objfile *objfile = dwarf2_per_objfile->objfile;
6961 struct dwp_file *dwp_file = get_dwp_file (dwarf2_per_objfile);
6962 struct dwo_unit *dwo_entry;
6963 struct signatured_type find_sig_entry, *sig_entry;
6964 void **slot;
6965
6966 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6967 gdb_assert (dwp_file != NULL);
6968
6969 /* If TU skeletons have been removed then we may not have read in any
6970 TUs yet. */
6971 if (dwarf2_per_objfile->signatured_types == NULL)
6972 {
6973 dwarf2_per_objfile->signatured_types
6974 = allocate_signatured_type_table (objfile);
6975 }
6976
6977 find_sig_entry.signature = sig;
6978 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6979 &find_sig_entry, INSERT);
6980 sig_entry = (struct signatured_type *) *slot;
6981
6982 /* Have we already tried to read this TU?
6983 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
6984 needn't exist in the global table yet). */
6985 if (sig_entry != NULL)
6986 return sig_entry;
6987
6988 if (dwp_file->tus == NULL)
6989 return NULL;
6990 dwo_entry = lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, NULL,
6991 sig, 1 /* is_debug_types */);
6992 if (dwo_entry == NULL)
6993 return NULL;
6994
6995 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
6996 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
6997
6998 return sig_entry;
6999 }
7000
7001 /* Lookup a signature based type for DW_FORM_ref_sig8.
7002 Returns NULL if signature SIG is not present in the table.
7003 It is up to the caller to complain about this. */
7004
7005 static struct signatured_type *
7006 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7007 {
7008 struct dwarf2_per_objfile *dwarf2_per_objfile
7009 = cu->per_cu->dwarf2_per_objfile;
7010
7011 if (cu->dwo_unit
7012 && dwarf2_per_objfile->using_index)
7013 {
7014 /* We're in a DWO/DWP file, and we're using .gdb_index.
7015 These cases require special processing. */
7016 if (get_dwp_file (dwarf2_per_objfile) == NULL)
7017 return lookup_dwo_signatured_type (cu, sig);
7018 else
7019 return lookup_dwp_signatured_type (cu, sig);
7020 }
7021 else
7022 {
7023 struct signatured_type find_entry, *entry;
7024
7025 if (dwarf2_per_objfile->signatured_types == NULL)
7026 return NULL;
7027 find_entry.signature = sig;
7028 entry = ((struct signatured_type *)
7029 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
7030 return entry;
7031 }
7032 }
7033 \f
7034 /* Low level DIE reading support. */
7035
7036 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
7037
7038 static void
7039 init_cu_die_reader (struct die_reader_specs *reader,
7040 struct dwarf2_cu *cu,
7041 struct dwarf2_section_info *section,
7042 struct dwo_file *dwo_file,
7043 struct abbrev_table *abbrev_table)
7044 {
7045 gdb_assert (section->readin && section->buffer != NULL);
7046 reader->abfd = get_section_bfd_owner (section);
7047 reader->cu = cu;
7048 reader->dwo_file = dwo_file;
7049 reader->die_section = section;
7050 reader->buffer = section->buffer;
7051 reader->buffer_end = section->buffer + section->size;
7052 reader->comp_dir = NULL;
7053 reader->abbrev_table = abbrev_table;
7054 }
7055
7056 /* Subroutine of init_cutu_and_read_dies to simplify it.
7057 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
7058 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
7059 already.
7060
7061 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
7062 from it to the DIE in the DWO. If NULL we are skipping the stub.
7063 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
7064 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
7065 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
7066 STUB_COMP_DIR may be non-NULL.
7067 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
7068 are filled in with the info of the DIE from the DWO file.
7069 *RESULT_DWO_ABBREV_TABLE will be filled in with the abbrev table allocated
7070 from the dwo. Since *RESULT_READER references this abbrev table, it must be
7071 kept around for at least as long as *RESULT_READER.
7072
7073 The result is non-zero if a valid (non-dummy) DIE was found. */
7074
7075 static int
7076 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
7077 struct dwo_unit *dwo_unit,
7078 struct die_info *stub_comp_unit_die,
7079 const char *stub_comp_dir,
7080 struct die_reader_specs *result_reader,
7081 const gdb_byte **result_info_ptr,
7082 struct die_info **result_comp_unit_die,
7083 int *result_has_children,
7084 abbrev_table_up *result_dwo_abbrev_table)
7085 {
7086 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7087 struct objfile *objfile = dwarf2_per_objfile->objfile;
7088 struct dwarf2_cu *cu = this_cu->cu;
7089 bfd *abfd;
7090 const gdb_byte *begin_info_ptr, *info_ptr;
7091 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
7092 int i,num_extra_attrs;
7093 struct dwarf2_section_info *dwo_abbrev_section;
7094 struct attribute *attr;
7095 struct die_info *comp_unit_die;
7096
7097 /* At most one of these may be provided. */
7098 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
7099
7100 /* These attributes aren't processed until later:
7101 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
7102 DW_AT_comp_dir is used now, to find the DWO file, but it is also
7103 referenced later. However, these attributes are found in the stub
7104 which we won't have later. In order to not impose this complication
7105 on the rest of the code, we read them here and copy them to the
7106 DWO CU/TU die. */
7107
7108 stmt_list = NULL;
7109 low_pc = NULL;
7110 high_pc = NULL;
7111 ranges = NULL;
7112 comp_dir = NULL;
7113
7114 if (stub_comp_unit_die != NULL)
7115 {
7116 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
7117 DWO file. */
7118 if (! this_cu->is_debug_types)
7119 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
7120 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
7121 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
7122 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
7123 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
7124
7125 /* There should be a DW_AT_addr_base attribute here (if needed).
7126 We need the value before we can process DW_FORM_GNU_addr_index. */
7127 cu->addr_base = 0;
7128 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
7129 if (attr)
7130 cu->addr_base = DW_UNSND (attr);
7131
7132 /* There should be a DW_AT_ranges_base attribute here (if needed).
7133 We need the value before we can process DW_AT_ranges. */
7134 cu->ranges_base = 0;
7135 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
7136 if (attr)
7137 cu->ranges_base = DW_UNSND (attr);
7138 }
7139 else if (stub_comp_dir != NULL)
7140 {
7141 /* Reconstruct the comp_dir attribute to simplify the code below. */
7142 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
7143 comp_dir->name = DW_AT_comp_dir;
7144 comp_dir->form = DW_FORM_string;
7145 DW_STRING_IS_CANONICAL (comp_dir) = 0;
7146 DW_STRING (comp_dir) = stub_comp_dir;
7147 }
7148
7149 /* Set up for reading the DWO CU/TU. */
7150 cu->dwo_unit = dwo_unit;
7151 dwarf2_section_info *section = dwo_unit->section;
7152 dwarf2_read_section (objfile, section);
7153 abfd = get_section_bfd_owner (section);
7154 begin_info_ptr = info_ptr = (section->buffer
7155 + to_underlying (dwo_unit->sect_off));
7156 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
7157
7158 if (this_cu->is_debug_types)
7159 {
7160 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
7161
7162 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7163 &cu->header, section,
7164 dwo_abbrev_section,
7165 info_ptr, rcuh_kind::TYPE);
7166 /* This is not an assert because it can be caused by bad debug info. */
7167 if (sig_type->signature != cu->header.signature)
7168 {
7169 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
7170 " TU at offset %s [in module %s]"),
7171 hex_string (sig_type->signature),
7172 hex_string (cu->header.signature),
7173 sect_offset_str (dwo_unit->sect_off),
7174 bfd_get_filename (abfd));
7175 }
7176 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7177 /* For DWOs coming from DWP files, we don't know the CU length
7178 nor the type's offset in the TU until now. */
7179 dwo_unit->length = get_cu_length (&cu->header);
7180 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
7181
7182 /* Establish the type offset that can be used to lookup the type.
7183 For DWO files, we don't know it until now. */
7184 sig_type->type_offset_in_section
7185 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
7186 }
7187 else
7188 {
7189 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7190 &cu->header, section,
7191 dwo_abbrev_section,
7192 info_ptr, rcuh_kind::COMPILE);
7193 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7194 /* For DWOs coming from DWP files, we don't know the CU length
7195 until now. */
7196 dwo_unit->length = get_cu_length (&cu->header);
7197 }
7198
7199 *result_dwo_abbrev_table
7200 = abbrev_table_read_table (dwarf2_per_objfile, dwo_abbrev_section,
7201 cu->header.abbrev_sect_off);
7202 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file,
7203 result_dwo_abbrev_table->get ());
7204
7205 /* Read in the die, but leave space to copy over the attributes
7206 from the stub. This has the benefit of simplifying the rest of
7207 the code - all the work to maintain the illusion of a single
7208 DW_TAG_{compile,type}_unit DIE is done here. */
7209 num_extra_attrs = ((stmt_list != NULL)
7210 + (low_pc != NULL)
7211 + (high_pc != NULL)
7212 + (ranges != NULL)
7213 + (comp_dir != NULL));
7214 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
7215 result_has_children, num_extra_attrs);
7216
7217 /* Copy over the attributes from the stub to the DIE we just read in. */
7218 comp_unit_die = *result_comp_unit_die;
7219 i = comp_unit_die->num_attrs;
7220 if (stmt_list != NULL)
7221 comp_unit_die->attrs[i++] = *stmt_list;
7222 if (low_pc != NULL)
7223 comp_unit_die->attrs[i++] = *low_pc;
7224 if (high_pc != NULL)
7225 comp_unit_die->attrs[i++] = *high_pc;
7226 if (ranges != NULL)
7227 comp_unit_die->attrs[i++] = *ranges;
7228 if (comp_dir != NULL)
7229 comp_unit_die->attrs[i++] = *comp_dir;
7230 comp_unit_die->num_attrs += num_extra_attrs;
7231
7232 if (dwarf_die_debug)
7233 {
7234 fprintf_unfiltered (gdb_stdlog,
7235 "Read die from %s@0x%x of %s:\n",
7236 get_section_name (section),
7237 (unsigned) (begin_info_ptr - section->buffer),
7238 bfd_get_filename (abfd));
7239 dump_die (comp_unit_die, dwarf_die_debug);
7240 }
7241
7242 /* Save the comp_dir attribute. If there is no DWP file then we'll read
7243 TUs by skipping the stub and going directly to the entry in the DWO file.
7244 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
7245 to get it via circuitous means. Blech. */
7246 if (comp_dir != NULL)
7247 result_reader->comp_dir = DW_STRING (comp_dir);
7248
7249 /* Skip dummy compilation units. */
7250 if (info_ptr >= begin_info_ptr + dwo_unit->length
7251 || peek_abbrev_code (abfd, info_ptr) == 0)
7252 return 0;
7253
7254 *result_info_ptr = info_ptr;
7255 return 1;
7256 }
7257
7258 /* Subroutine of init_cutu_and_read_dies to simplify it.
7259 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
7260 Returns NULL if the specified DWO unit cannot be found. */
7261
7262 static struct dwo_unit *
7263 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
7264 struct die_info *comp_unit_die)
7265 {
7266 struct dwarf2_cu *cu = this_cu->cu;
7267 ULONGEST signature;
7268 struct dwo_unit *dwo_unit;
7269 const char *comp_dir, *dwo_name;
7270
7271 gdb_assert (cu != NULL);
7272
7273 /* Yeah, we look dwo_name up again, but it simplifies the code. */
7274 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7275 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7276
7277 if (this_cu->is_debug_types)
7278 {
7279 struct signatured_type *sig_type;
7280
7281 /* Since this_cu is the first member of struct signatured_type,
7282 we can go from a pointer to one to a pointer to the other. */
7283 sig_type = (struct signatured_type *) this_cu;
7284 signature = sig_type->signature;
7285 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
7286 }
7287 else
7288 {
7289 struct attribute *attr;
7290
7291 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
7292 if (! attr)
7293 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
7294 " [in module %s]"),
7295 dwo_name, objfile_name (this_cu->dwarf2_per_objfile->objfile));
7296 signature = DW_UNSND (attr);
7297 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
7298 signature);
7299 }
7300
7301 return dwo_unit;
7302 }
7303
7304 /* Subroutine of init_cutu_and_read_dies to simplify it.
7305 See it for a description of the parameters.
7306 Read a TU directly from a DWO file, bypassing the stub. */
7307
7308 static void
7309 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
7310 int use_existing_cu, int keep,
7311 die_reader_func_ftype *die_reader_func,
7312 void *data)
7313 {
7314 std::unique_ptr<dwarf2_cu> new_cu;
7315 struct signatured_type *sig_type;
7316 struct die_reader_specs reader;
7317 const gdb_byte *info_ptr;
7318 struct die_info *comp_unit_die;
7319 int has_children;
7320 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7321
7322 /* Verify we can do the following downcast, and that we have the
7323 data we need. */
7324 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
7325 sig_type = (struct signatured_type *) this_cu;
7326 gdb_assert (sig_type->dwo_unit != NULL);
7327
7328 if (use_existing_cu && this_cu->cu != NULL)
7329 {
7330 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
7331 /* There's no need to do the rereading_dwo_cu handling that
7332 init_cutu_and_read_dies does since we don't read the stub. */
7333 }
7334 else
7335 {
7336 /* If !use_existing_cu, this_cu->cu must be NULL. */
7337 gdb_assert (this_cu->cu == NULL);
7338 new_cu.reset (new dwarf2_cu (this_cu));
7339 }
7340
7341 /* A future optimization, if needed, would be to use an existing
7342 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
7343 could share abbrev tables. */
7344
7345 /* The abbreviation table used by READER, this must live at least as long as
7346 READER. */
7347 abbrev_table_up dwo_abbrev_table;
7348
7349 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
7350 NULL /* stub_comp_unit_die */,
7351 sig_type->dwo_unit->dwo_file->comp_dir,
7352 &reader, &info_ptr,
7353 &comp_unit_die, &has_children,
7354 &dwo_abbrev_table) == 0)
7355 {
7356 /* Dummy die. */
7357 return;
7358 }
7359
7360 /* All the "real" work is done here. */
7361 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7362
7363 /* This duplicates the code in init_cutu_and_read_dies,
7364 but the alternative is making the latter more complex.
7365 This function is only for the special case of using DWO files directly:
7366 no point in overly complicating the general case just to handle this. */
7367 if (new_cu != NULL && keep)
7368 {
7369 /* Link this CU into read_in_chain. */
7370 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7371 dwarf2_per_objfile->read_in_chain = this_cu;
7372 /* The chain owns it now. */
7373 new_cu.release ();
7374 }
7375 }
7376
7377 /* Initialize a CU (or TU) and read its DIEs.
7378 If the CU defers to a DWO file, read the DWO file as well.
7379
7380 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
7381 Otherwise the table specified in the comp unit header is read in and used.
7382 This is an optimization for when we already have the abbrev table.
7383
7384 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
7385 Otherwise, a new CU is allocated with xmalloc.
7386
7387 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
7388 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
7389
7390 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7391 linker) then DIE_READER_FUNC will not get called. */
7392
7393 static void
7394 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
7395 struct abbrev_table *abbrev_table,
7396 int use_existing_cu, int keep,
7397 bool skip_partial,
7398 die_reader_func_ftype *die_reader_func,
7399 void *data)
7400 {
7401 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7402 struct objfile *objfile = dwarf2_per_objfile->objfile;
7403 struct dwarf2_section_info *section = this_cu->section;
7404 bfd *abfd = get_section_bfd_owner (section);
7405 struct dwarf2_cu *cu;
7406 const gdb_byte *begin_info_ptr, *info_ptr;
7407 struct die_reader_specs reader;
7408 struct die_info *comp_unit_die;
7409 int has_children;
7410 struct attribute *attr;
7411 struct signatured_type *sig_type = NULL;
7412 struct dwarf2_section_info *abbrev_section;
7413 /* Non-zero if CU currently points to a DWO file and we need to
7414 reread it. When this happens we need to reread the skeleton die
7415 before we can reread the DWO file (this only applies to CUs, not TUs). */
7416 int rereading_dwo_cu = 0;
7417
7418 if (dwarf_die_debug)
7419 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7420 this_cu->is_debug_types ? "type" : "comp",
7421 sect_offset_str (this_cu->sect_off));
7422
7423 if (use_existing_cu)
7424 gdb_assert (keep);
7425
7426 /* If we're reading a TU directly from a DWO file, including a virtual DWO
7427 file (instead of going through the stub), short-circuit all of this. */
7428 if (this_cu->reading_dwo_directly)
7429 {
7430 /* Narrow down the scope of possibilities to have to understand. */
7431 gdb_assert (this_cu->is_debug_types);
7432 gdb_assert (abbrev_table == NULL);
7433 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
7434 die_reader_func, data);
7435 return;
7436 }
7437
7438 /* This is cheap if the section is already read in. */
7439 dwarf2_read_section (objfile, section);
7440
7441 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7442
7443 abbrev_section = get_abbrev_section_for_cu (this_cu);
7444
7445 std::unique_ptr<dwarf2_cu> new_cu;
7446 if (use_existing_cu && this_cu->cu != NULL)
7447 {
7448 cu = this_cu->cu;
7449 /* If this CU is from a DWO file we need to start over, we need to
7450 refetch the attributes from the skeleton CU.
7451 This could be optimized by retrieving those attributes from when we
7452 were here the first time: the previous comp_unit_die was stored in
7453 comp_unit_obstack. But there's no data yet that we need this
7454 optimization. */
7455 if (cu->dwo_unit != NULL)
7456 rereading_dwo_cu = 1;
7457 }
7458 else
7459 {
7460 /* If !use_existing_cu, this_cu->cu must be NULL. */
7461 gdb_assert (this_cu->cu == NULL);
7462 new_cu.reset (new dwarf2_cu (this_cu));
7463 cu = new_cu.get ();
7464 }
7465
7466 /* Get the header. */
7467 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
7468 {
7469 /* We already have the header, there's no need to read it in again. */
7470 info_ptr += to_underlying (cu->header.first_die_cu_offset);
7471 }
7472 else
7473 {
7474 if (this_cu->is_debug_types)
7475 {
7476 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7477 &cu->header, section,
7478 abbrev_section, info_ptr,
7479 rcuh_kind::TYPE);
7480
7481 /* Since per_cu is the first member of struct signatured_type,
7482 we can go from a pointer to one to a pointer to the other. */
7483 sig_type = (struct signatured_type *) this_cu;
7484 gdb_assert (sig_type->signature == cu->header.signature);
7485 gdb_assert (sig_type->type_offset_in_tu
7486 == cu->header.type_cu_offset_in_tu);
7487 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7488
7489 /* LENGTH has not been set yet for type units if we're
7490 using .gdb_index. */
7491 this_cu->length = get_cu_length (&cu->header);
7492
7493 /* Establish the type offset that can be used to lookup the type. */
7494 sig_type->type_offset_in_section =
7495 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
7496
7497 this_cu->dwarf_version = cu->header.version;
7498 }
7499 else
7500 {
7501 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7502 &cu->header, section,
7503 abbrev_section,
7504 info_ptr,
7505 rcuh_kind::COMPILE);
7506
7507 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7508 gdb_assert (this_cu->length == get_cu_length (&cu->header));
7509 this_cu->dwarf_version = cu->header.version;
7510 }
7511 }
7512
7513 /* Skip dummy compilation units. */
7514 if (info_ptr >= begin_info_ptr + this_cu->length
7515 || peek_abbrev_code (abfd, info_ptr) == 0)
7516 return;
7517
7518 /* If we don't have them yet, read the abbrevs for this compilation unit.
7519 And if we need to read them now, make sure they're freed when we're
7520 done (own the table through ABBREV_TABLE_HOLDER). */
7521 abbrev_table_up abbrev_table_holder;
7522 if (abbrev_table != NULL)
7523 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
7524 else
7525 {
7526 abbrev_table_holder
7527 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7528 cu->header.abbrev_sect_off);
7529 abbrev_table = abbrev_table_holder.get ();
7530 }
7531
7532 /* Read the top level CU/TU die. */
7533 init_cu_die_reader (&reader, cu, section, NULL, abbrev_table);
7534 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7535
7536 if (skip_partial && comp_unit_die->tag == DW_TAG_partial_unit)
7537 return;
7538
7539 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
7540 from the DWO file. read_cutu_die_from_dwo will allocate the abbreviation
7541 table from the DWO file and pass the ownership over to us. It will be
7542 referenced from READER, so we must make sure to free it after we're done
7543 with READER.
7544
7545 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
7546 DWO CU, that this test will fail (the attribute will not be present). */
7547 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7548 abbrev_table_up dwo_abbrev_table;
7549 if (attr)
7550 {
7551 struct dwo_unit *dwo_unit;
7552 struct die_info *dwo_comp_unit_die;
7553
7554 if (has_children)
7555 {
7556 complaint (_("compilation unit with DW_AT_GNU_dwo_name"
7557 " has children (offset %s) [in module %s]"),
7558 sect_offset_str (this_cu->sect_off),
7559 bfd_get_filename (abfd));
7560 }
7561 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
7562 if (dwo_unit != NULL)
7563 {
7564 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
7565 comp_unit_die, NULL,
7566 &reader, &info_ptr,
7567 &dwo_comp_unit_die, &has_children,
7568 &dwo_abbrev_table) == 0)
7569 {
7570 /* Dummy die. */
7571 return;
7572 }
7573 comp_unit_die = dwo_comp_unit_die;
7574 }
7575 else
7576 {
7577 /* Yikes, we couldn't find the rest of the DIE, we only have
7578 the stub. A complaint has already been logged. There's
7579 not much more we can do except pass on the stub DIE to
7580 die_reader_func. We don't want to throw an error on bad
7581 debug info. */
7582 }
7583 }
7584
7585 /* All of the above is setup for this call. Yikes. */
7586 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7587
7588 /* Done, clean up. */
7589 if (new_cu != NULL && keep)
7590 {
7591 /* Link this CU into read_in_chain. */
7592 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7593 dwarf2_per_objfile->read_in_chain = this_cu;
7594 /* The chain owns it now. */
7595 new_cu.release ();
7596 }
7597 }
7598
7599 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
7600 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
7601 to have already done the lookup to find the DWO file).
7602
7603 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
7604 THIS_CU->is_debug_types, but nothing else.
7605
7606 We fill in THIS_CU->length.
7607
7608 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7609 linker) then DIE_READER_FUNC will not get called.
7610
7611 THIS_CU->cu is always freed when done.
7612 This is done in order to not leave THIS_CU->cu in a state where we have
7613 to care whether it refers to the "main" CU or the DWO CU. */
7614
7615 static void
7616 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
7617 struct dwo_file *dwo_file,
7618 die_reader_func_ftype *die_reader_func,
7619 void *data)
7620 {
7621 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7622 struct objfile *objfile = dwarf2_per_objfile->objfile;
7623 struct dwarf2_section_info *section = this_cu->section;
7624 bfd *abfd = get_section_bfd_owner (section);
7625 struct dwarf2_section_info *abbrev_section;
7626 const gdb_byte *begin_info_ptr, *info_ptr;
7627 struct die_reader_specs reader;
7628 struct die_info *comp_unit_die;
7629 int has_children;
7630
7631 if (dwarf_die_debug)
7632 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7633 this_cu->is_debug_types ? "type" : "comp",
7634 sect_offset_str (this_cu->sect_off));
7635
7636 gdb_assert (this_cu->cu == NULL);
7637
7638 abbrev_section = (dwo_file != NULL
7639 ? &dwo_file->sections.abbrev
7640 : get_abbrev_section_for_cu (this_cu));
7641
7642 /* This is cheap if the section is already read in. */
7643 dwarf2_read_section (objfile, section);
7644
7645 struct dwarf2_cu cu (this_cu);
7646
7647 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7648 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7649 &cu.header, section,
7650 abbrev_section, info_ptr,
7651 (this_cu->is_debug_types
7652 ? rcuh_kind::TYPE
7653 : rcuh_kind::COMPILE));
7654
7655 this_cu->length = get_cu_length (&cu.header);
7656
7657 /* Skip dummy compilation units. */
7658 if (info_ptr >= begin_info_ptr + this_cu->length
7659 || peek_abbrev_code (abfd, info_ptr) == 0)
7660 return;
7661
7662 abbrev_table_up abbrev_table
7663 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7664 cu.header.abbrev_sect_off);
7665
7666 init_cu_die_reader (&reader, &cu, section, dwo_file, abbrev_table.get ());
7667 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7668
7669 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7670 }
7671
7672 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
7673 does not lookup the specified DWO file.
7674 This cannot be used to read DWO files.
7675
7676 THIS_CU->cu is always freed when done.
7677 This is done in order to not leave THIS_CU->cu in a state where we have
7678 to care whether it refers to the "main" CU or the DWO CU.
7679 We can revisit this if the data shows there's a performance issue. */
7680
7681 static void
7682 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
7683 die_reader_func_ftype *die_reader_func,
7684 void *data)
7685 {
7686 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
7687 }
7688 \f
7689 /* Type Unit Groups.
7690
7691 Type Unit Groups are a way to collapse the set of all TUs (type units) into
7692 a more manageable set. The grouping is done by DW_AT_stmt_list entry
7693 so that all types coming from the same compilation (.o file) are grouped
7694 together. A future step could be to put the types in the same symtab as
7695 the CU the types ultimately came from. */
7696
7697 static hashval_t
7698 hash_type_unit_group (const void *item)
7699 {
7700 const struct type_unit_group *tu_group
7701 = (const struct type_unit_group *) item;
7702
7703 return hash_stmt_list_entry (&tu_group->hash);
7704 }
7705
7706 static int
7707 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
7708 {
7709 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
7710 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
7711
7712 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
7713 }
7714
7715 /* Allocate a hash table for type unit groups. */
7716
7717 static htab_t
7718 allocate_type_unit_groups_table (struct objfile *objfile)
7719 {
7720 return htab_create_alloc_ex (3,
7721 hash_type_unit_group,
7722 eq_type_unit_group,
7723 NULL,
7724 &objfile->objfile_obstack,
7725 hashtab_obstack_allocate,
7726 dummy_obstack_deallocate);
7727 }
7728
7729 /* Type units that don't have DW_AT_stmt_list are grouped into their own
7730 partial symtabs. We combine several TUs per psymtab to not let the size
7731 of any one psymtab grow too big. */
7732 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
7733 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
7734
7735 /* Helper routine for get_type_unit_group.
7736 Create the type_unit_group object used to hold one or more TUs. */
7737
7738 static struct type_unit_group *
7739 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
7740 {
7741 struct dwarf2_per_objfile *dwarf2_per_objfile
7742 = cu->per_cu->dwarf2_per_objfile;
7743 struct objfile *objfile = dwarf2_per_objfile->objfile;
7744 struct dwarf2_per_cu_data *per_cu;
7745 struct type_unit_group *tu_group;
7746
7747 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7748 struct type_unit_group);
7749 per_cu = &tu_group->per_cu;
7750 per_cu->dwarf2_per_objfile = dwarf2_per_objfile;
7751
7752 if (dwarf2_per_objfile->using_index)
7753 {
7754 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7755 struct dwarf2_per_cu_quick_data);
7756 }
7757 else
7758 {
7759 unsigned int line_offset = to_underlying (line_offset_struct);
7760 struct partial_symtab *pst;
7761 char *name;
7762
7763 /* Give the symtab a useful name for debug purposes. */
7764 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
7765 name = xstrprintf ("<type_units_%d>",
7766 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
7767 else
7768 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
7769
7770 pst = create_partial_symtab (per_cu, name);
7771 pst->anonymous = 1;
7772
7773 xfree (name);
7774 }
7775
7776 tu_group->hash.dwo_unit = cu->dwo_unit;
7777 tu_group->hash.line_sect_off = line_offset_struct;
7778
7779 return tu_group;
7780 }
7781
7782 /* Look up the type_unit_group for type unit CU, and create it if necessary.
7783 STMT_LIST is a DW_AT_stmt_list attribute. */
7784
7785 static struct type_unit_group *
7786 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
7787 {
7788 struct dwarf2_per_objfile *dwarf2_per_objfile
7789 = cu->per_cu->dwarf2_per_objfile;
7790 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7791 struct type_unit_group *tu_group;
7792 void **slot;
7793 unsigned int line_offset;
7794 struct type_unit_group type_unit_group_for_lookup;
7795
7796 if (dwarf2_per_objfile->type_unit_groups == NULL)
7797 {
7798 dwarf2_per_objfile->type_unit_groups =
7799 allocate_type_unit_groups_table (dwarf2_per_objfile->objfile);
7800 }
7801
7802 /* Do we need to create a new group, or can we use an existing one? */
7803
7804 if (stmt_list)
7805 {
7806 line_offset = DW_UNSND (stmt_list);
7807 ++tu_stats->nr_symtab_sharers;
7808 }
7809 else
7810 {
7811 /* Ugh, no stmt_list. Rare, but we have to handle it.
7812 We can do various things here like create one group per TU or
7813 spread them over multiple groups to split up the expansion work.
7814 To avoid worst case scenarios (too many groups or too large groups)
7815 we, umm, group them in bunches. */
7816 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
7817 | (tu_stats->nr_stmt_less_type_units
7818 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
7819 ++tu_stats->nr_stmt_less_type_units;
7820 }
7821
7822 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
7823 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
7824 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
7825 &type_unit_group_for_lookup, INSERT);
7826 if (*slot != NULL)
7827 {
7828 tu_group = (struct type_unit_group *) *slot;
7829 gdb_assert (tu_group != NULL);
7830 }
7831 else
7832 {
7833 sect_offset line_offset_struct = (sect_offset) line_offset;
7834 tu_group = create_type_unit_group (cu, line_offset_struct);
7835 *slot = tu_group;
7836 ++tu_stats->nr_symtabs;
7837 }
7838
7839 return tu_group;
7840 }
7841 \f
7842 /* Partial symbol tables. */
7843
7844 /* Create a psymtab named NAME and assign it to PER_CU.
7845
7846 The caller must fill in the following details:
7847 dirname, textlow, texthigh. */
7848
7849 static struct partial_symtab *
7850 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
7851 {
7852 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
7853 struct partial_symtab *pst;
7854
7855 pst = start_psymtab_common (objfile, name, 0,
7856 objfile->global_psymbols,
7857 objfile->static_psymbols);
7858
7859 pst->psymtabs_addrmap_supported = 1;
7860
7861 /* This is the glue that links PST into GDB's symbol API. */
7862 pst->read_symtab_private = per_cu;
7863 pst->read_symtab = dwarf2_read_symtab;
7864 per_cu->v.psymtab = pst;
7865
7866 return pst;
7867 }
7868
7869 /* The DATA object passed to process_psymtab_comp_unit_reader has this
7870 type. */
7871
7872 struct process_psymtab_comp_unit_data
7873 {
7874 /* True if we are reading a DW_TAG_partial_unit. */
7875
7876 int want_partial_unit;
7877
7878 /* The "pretend" language that is used if the CU doesn't declare a
7879 language. */
7880
7881 enum language pretend_language;
7882 };
7883
7884 /* die_reader_func for process_psymtab_comp_unit. */
7885
7886 static void
7887 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
7888 const gdb_byte *info_ptr,
7889 struct die_info *comp_unit_die,
7890 int has_children,
7891 void *data)
7892 {
7893 struct dwarf2_cu *cu = reader->cu;
7894 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
7895 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7896 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7897 CORE_ADDR baseaddr;
7898 CORE_ADDR best_lowpc = 0, best_highpc = 0;
7899 struct partial_symtab *pst;
7900 enum pc_bounds_kind cu_bounds_kind;
7901 const char *filename;
7902 struct process_psymtab_comp_unit_data *info
7903 = (struct process_psymtab_comp_unit_data *) data;
7904
7905 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
7906 return;
7907
7908 gdb_assert (! per_cu->is_debug_types);
7909
7910 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
7911
7912 cu->list_in_scope = &file_symbols;
7913
7914 /* Allocate a new partial symbol table structure. */
7915 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
7916 if (filename == NULL)
7917 filename = "";
7918
7919 pst = create_partial_symtab (per_cu, filename);
7920
7921 /* This must be done before calling dwarf2_build_include_psymtabs. */
7922 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7923
7924 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7925
7926 dwarf2_find_base_address (comp_unit_die, cu);
7927
7928 /* Possibly set the default values of LOWPC and HIGHPC from
7929 `DW_AT_ranges'. */
7930 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
7931 &best_highpc, cu, pst);
7932 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
7933 /* Store the contiguous range if it is not empty; it can be empty for
7934 CUs with no code. */
7935 addrmap_set_empty (objfile->psymtabs_addrmap,
7936 gdbarch_adjust_dwarf2_addr (gdbarch,
7937 best_lowpc + baseaddr),
7938 gdbarch_adjust_dwarf2_addr (gdbarch,
7939 best_highpc + baseaddr) - 1,
7940 pst);
7941
7942 /* Check if comp unit has_children.
7943 If so, read the rest of the partial symbols from this comp unit.
7944 If not, there's no more debug_info for this comp unit. */
7945 if (has_children)
7946 {
7947 struct partial_die_info *first_die;
7948 CORE_ADDR lowpc, highpc;
7949
7950 lowpc = ((CORE_ADDR) -1);
7951 highpc = ((CORE_ADDR) 0);
7952
7953 first_die = load_partial_dies (reader, info_ptr, 1);
7954
7955 scan_partial_symbols (first_die, &lowpc, &highpc,
7956 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
7957
7958 /* If we didn't find a lowpc, set it to highpc to avoid
7959 complaints from `maint check'. */
7960 if (lowpc == ((CORE_ADDR) -1))
7961 lowpc = highpc;
7962
7963 /* If the compilation unit didn't have an explicit address range,
7964 then use the information extracted from its child dies. */
7965 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
7966 {
7967 best_lowpc = lowpc;
7968 best_highpc = highpc;
7969 }
7970 }
7971 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
7972 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
7973
7974 end_psymtab_common (objfile, pst);
7975
7976 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
7977 {
7978 int i;
7979 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
7980 struct dwarf2_per_cu_data *iter;
7981
7982 /* Fill in 'dependencies' here; we fill in 'users' in a
7983 post-pass. */
7984 pst->number_of_dependencies = len;
7985 pst->dependencies =
7986 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
7987 for (i = 0;
7988 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
7989 i, iter);
7990 ++i)
7991 pst->dependencies[i] = iter->v.psymtab;
7992
7993 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
7994 }
7995
7996 /* Get the list of files included in the current compilation unit,
7997 and build a psymtab for each of them. */
7998 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
7999
8000 if (dwarf_read_debug)
8001 {
8002 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8003
8004 fprintf_unfiltered (gdb_stdlog,
8005 "Psymtab for %s unit @%s: %s - %s"
8006 ", %d global, %d static syms\n",
8007 per_cu->is_debug_types ? "type" : "comp",
8008 sect_offset_str (per_cu->sect_off),
8009 paddress (gdbarch, pst->textlow),
8010 paddress (gdbarch, pst->texthigh),
8011 pst->n_global_syms, pst->n_static_syms);
8012 }
8013 }
8014
8015 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8016 Process compilation unit THIS_CU for a psymtab. */
8017
8018 static void
8019 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
8020 int want_partial_unit,
8021 enum language pretend_language)
8022 {
8023 /* If this compilation unit was already read in, free the
8024 cached copy in order to read it in again. This is
8025 necessary because we skipped some symbols when we first
8026 read in the compilation unit (see load_partial_dies).
8027 This problem could be avoided, but the benefit is unclear. */
8028 if (this_cu->cu != NULL)
8029 free_one_cached_comp_unit (this_cu);
8030
8031 if (this_cu->is_debug_types)
8032 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8033 build_type_psymtabs_reader, NULL);
8034 else
8035 {
8036 process_psymtab_comp_unit_data info;
8037 info.want_partial_unit = want_partial_unit;
8038 info.pretend_language = pretend_language;
8039 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8040 process_psymtab_comp_unit_reader, &info);
8041 }
8042
8043 /* Age out any secondary CUs. */
8044 age_cached_comp_units (this_cu->dwarf2_per_objfile);
8045 }
8046
8047 /* Reader function for build_type_psymtabs. */
8048
8049 static void
8050 build_type_psymtabs_reader (const struct die_reader_specs *reader,
8051 const gdb_byte *info_ptr,
8052 struct die_info *type_unit_die,
8053 int has_children,
8054 void *data)
8055 {
8056 struct dwarf2_per_objfile *dwarf2_per_objfile
8057 = reader->cu->per_cu->dwarf2_per_objfile;
8058 struct objfile *objfile = dwarf2_per_objfile->objfile;
8059 struct dwarf2_cu *cu = reader->cu;
8060 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8061 struct signatured_type *sig_type;
8062 struct type_unit_group *tu_group;
8063 struct attribute *attr;
8064 struct partial_die_info *first_die;
8065 CORE_ADDR lowpc, highpc;
8066 struct partial_symtab *pst;
8067
8068 gdb_assert (data == NULL);
8069 gdb_assert (per_cu->is_debug_types);
8070 sig_type = (struct signatured_type *) per_cu;
8071
8072 if (! has_children)
8073 return;
8074
8075 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
8076 tu_group = get_type_unit_group (cu, attr);
8077
8078 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
8079
8080 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
8081 cu->list_in_scope = &file_symbols;
8082 pst = create_partial_symtab (per_cu, "");
8083 pst->anonymous = 1;
8084
8085 first_die = load_partial_dies (reader, info_ptr, 1);
8086
8087 lowpc = (CORE_ADDR) -1;
8088 highpc = (CORE_ADDR) 0;
8089 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
8090
8091 end_psymtab_common (objfile, pst);
8092 }
8093
8094 /* Struct used to sort TUs by their abbreviation table offset. */
8095
8096 struct tu_abbrev_offset
8097 {
8098 tu_abbrev_offset (signatured_type *sig_type_, sect_offset abbrev_offset_)
8099 : sig_type (sig_type_), abbrev_offset (abbrev_offset_)
8100 {}
8101
8102 signatured_type *sig_type;
8103 sect_offset abbrev_offset;
8104 };
8105
8106 /* Helper routine for build_type_psymtabs_1, passed to std::sort. */
8107
8108 static bool
8109 sort_tu_by_abbrev_offset (const struct tu_abbrev_offset &a,
8110 const struct tu_abbrev_offset &b)
8111 {
8112 return a.abbrev_offset < b.abbrev_offset;
8113 }
8114
8115 /* Efficiently read all the type units.
8116 This does the bulk of the work for build_type_psymtabs.
8117
8118 The efficiency is because we sort TUs by the abbrev table they use and
8119 only read each abbrev table once. In one program there are 200K TUs
8120 sharing 8K abbrev tables.
8121
8122 The main purpose of this function is to support building the
8123 dwarf2_per_objfile->type_unit_groups table.
8124 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
8125 can collapse the search space by grouping them by stmt_list.
8126 The savings can be significant, in the same program from above the 200K TUs
8127 share 8K stmt_list tables.
8128
8129 FUNC is expected to call get_type_unit_group, which will create the
8130 struct type_unit_group if necessary and add it to
8131 dwarf2_per_objfile->type_unit_groups. */
8132
8133 static void
8134 build_type_psymtabs_1 (struct dwarf2_per_objfile *dwarf2_per_objfile)
8135 {
8136 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8137 abbrev_table_up abbrev_table;
8138 sect_offset abbrev_offset;
8139
8140 /* It's up to the caller to not call us multiple times. */
8141 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
8142
8143 if (dwarf2_per_objfile->all_type_units.empty ())
8144 return;
8145
8146 /* TUs typically share abbrev tables, and there can be way more TUs than
8147 abbrev tables. Sort by abbrev table to reduce the number of times we
8148 read each abbrev table in.
8149 Alternatives are to punt or to maintain a cache of abbrev tables.
8150 This is simpler and efficient enough for now.
8151
8152 Later we group TUs by their DW_AT_stmt_list value (as this defines the
8153 symtab to use). Typically TUs with the same abbrev offset have the same
8154 stmt_list value too so in practice this should work well.
8155
8156 The basic algorithm here is:
8157
8158 sort TUs by abbrev table
8159 for each TU with same abbrev table:
8160 read abbrev table if first user
8161 read TU top level DIE
8162 [IWBN if DWO skeletons had DW_AT_stmt_list]
8163 call FUNC */
8164
8165 if (dwarf_read_debug)
8166 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
8167
8168 /* Sort in a separate table to maintain the order of all_type_units
8169 for .gdb_index: TU indices directly index all_type_units. */
8170 std::vector<tu_abbrev_offset> sorted_by_abbrev;
8171 sorted_by_abbrev.reserve (dwarf2_per_objfile->all_type_units.size ());
8172
8173 for (signatured_type *sig_type : dwarf2_per_objfile->all_type_units)
8174 sorted_by_abbrev.emplace_back
8175 (sig_type, read_abbrev_offset (dwarf2_per_objfile,
8176 sig_type->per_cu.section,
8177 sig_type->per_cu.sect_off));
8178
8179 std::sort (sorted_by_abbrev.begin (), sorted_by_abbrev.end (),
8180 sort_tu_by_abbrev_offset);
8181
8182 abbrev_offset = (sect_offset) ~(unsigned) 0;
8183
8184 for (const tu_abbrev_offset &tu : sorted_by_abbrev)
8185 {
8186 /* Switch to the next abbrev table if necessary. */
8187 if (abbrev_table == NULL
8188 || tu.abbrev_offset != abbrev_offset)
8189 {
8190 abbrev_offset = tu.abbrev_offset;
8191 abbrev_table =
8192 abbrev_table_read_table (dwarf2_per_objfile,
8193 &dwarf2_per_objfile->abbrev,
8194 abbrev_offset);
8195 ++tu_stats->nr_uniq_abbrev_tables;
8196 }
8197
8198 init_cutu_and_read_dies (&tu.sig_type->per_cu, abbrev_table.get (),
8199 0, 0, false, build_type_psymtabs_reader, NULL);
8200 }
8201 }
8202
8203 /* Print collected type unit statistics. */
8204
8205 static void
8206 print_tu_stats (struct dwarf2_per_objfile *dwarf2_per_objfile)
8207 {
8208 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8209
8210 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
8211 fprintf_unfiltered (gdb_stdlog, " %zu TUs\n",
8212 dwarf2_per_objfile->all_type_units.size ());
8213 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
8214 tu_stats->nr_uniq_abbrev_tables);
8215 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
8216 tu_stats->nr_symtabs);
8217 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
8218 tu_stats->nr_symtab_sharers);
8219 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
8220 tu_stats->nr_stmt_less_type_units);
8221 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
8222 tu_stats->nr_all_type_units_reallocs);
8223 }
8224
8225 /* Traversal function for build_type_psymtabs. */
8226
8227 static int
8228 build_type_psymtab_dependencies (void **slot, void *info)
8229 {
8230 struct dwarf2_per_objfile *dwarf2_per_objfile
8231 = (struct dwarf2_per_objfile *) info;
8232 struct objfile *objfile = dwarf2_per_objfile->objfile;
8233 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
8234 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
8235 struct partial_symtab *pst = per_cu->v.psymtab;
8236 int len = VEC_length (sig_type_ptr, tu_group->tus);
8237 struct signatured_type *iter;
8238 int i;
8239
8240 gdb_assert (len > 0);
8241 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
8242
8243 pst->number_of_dependencies = len;
8244 pst->dependencies =
8245 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
8246 for (i = 0;
8247 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
8248 ++i)
8249 {
8250 gdb_assert (iter->per_cu.is_debug_types);
8251 pst->dependencies[i] = iter->per_cu.v.psymtab;
8252 iter->type_unit_group = tu_group;
8253 }
8254
8255 VEC_free (sig_type_ptr, tu_group->tus);
8256
8257 return 1;
8258 }
8259
8260 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8261 Build partial symbol tables for the .debug_types comp-units. */
8262
8263 static void
8264 build_type_psymtabs (struct dwarf2_per_objfile *dwarf2_per_objfile)
8265 {
8266 if (! create_all_type_units (dwarf2_per_objfile))
8267 return;
8268
8269 build_type_psymtabs_1 (dwarf2_per_objfile);
8270 }
8271
8272 /* Traversal function for process_skeletonless_type_unit.
8273 Read a TU in a DWO file and build partial symbols for it. */
8274
8275 static int
8276 process_skeletonless_type_unit (void **slot, void *info)
8277 {
8278 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
8279 struct dwarf2_per_objfile *dwarf2_per_objfile
8280 = (struct dwarf2_per_objfile *) info;
8281 struct signatured_type find_entry, *entry;
8282
8283 /* If this TU doesn't exist in the global table, add it and read it in. */
8284
8285 if (dwarf2_per_objfile->signatured_types == NULL)
8286 {
8287 dwarf2_per_objfile->signatured_types
8288 = allocate_signatured_type_table (dwarf2_per_objfile->objfile);
8289 }
8290
8291 find_entry.signature = dwo_unit->signature;
8292 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
8293 INSERT);
8294 /* If we've already seen this type there's nothing to do. What's happening
8295 is we're doing our own version of comdat-folding here. */
8296 if (*slot != NULL)
8297 return 1;
8298
8299 /* This does the job that create_all_type_units would have done for
8300 this TU. */
8301 entry = add_type_unit (dwarf2_per_objfile, dwo_unit->signature, slot);
8302 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, entry, dwo_unit);
8303 *slot = entry;
8304
8305 /* This does the job that build_type_psymtabs_1 would have done. */
8306 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0, false,
8307 build_type_psymtabs_reader, NULL);
8308
8309 return 1;
8310 }
8311
8312 /* Traversal function for process_skeletonless_type_units. */
8313
8314 static int
8315 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
8316 {
8317 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
8318
8319 if (dwo_file->tus != NULL)
8320 {
8321 htab_traverse_noresize (dwo_file->tus,
8322 process_skeletonless_type_unit, info);
8323 }
8324
8325 return 1;
8326 }
8327
8328 /* Scan all TUs of DWO files, verifying we've processed them.
8329 This is needed in case a TU was emitted without its skeleton.
8330 Note: This can't be done until we know what all the DWO files are. */
8331
8332 static void
8333 process_skeletonless_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8334 {
8335 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
8336 if (get_dwp_file (dwarf2_per_objfile) == NULL
8337 && dwarf2_per_objfile->dwo_files != NULL)
8338 {
8339 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
8340 process_dwo_file_for_skeletonless_type_units,
8341 dwarf2_per_objfile);
8342 }
8343 }
8344
8345 /* Compute the 'user' field for each psymtab in DWARF2_PER_OBJFILE. */
8346
8347 static void
8348 set_partial_user (struct dwarf2_per_objfile *dwarf2_per_objfile)
8349 {
8350 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8351 {
8352 struct partial_symtab *pst = per_cu->v.psymtab;
8353
8354 if (pst == NULL)
8355 continue;
8356
8357 for (int j = 0; j < pst->number_of_dependencies; ++j)
8358 {
8359 /* Set the 'user' field only if it is not already set. */
8360 if (pst->dependencies[j]->user == NULL)
8361 pst->dependencies[j]->user = pst;
8362 }
8363 }
8364 }
8365
8366 /* Build the partial symbol table by doing a quick pass through the
8367 .debug_info and .debug_abbrev sections. */
8368
8369 static void
8370 dwarf2_build_psymtabs_hard (struct dwarf2_per_objfile *dwarf2_per_objfile)
8371 {
8372 struct objfile *objfile = dwarf2_per_objfile->objfile;
8373
8374 if (dwarf_read_debug)
8375 {
8376 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
8377 objfile_name (objfile));
8378 }
8379
8380 dwarf2_per_objfile->reading_partial_symbols = 1;
8381
8382 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
8383
8384 /* Any cached compilation units will be linked by the per-objfile
8385 read_in_chain. Make sure to free them when we're done. */
8386 free_cached_comp_units freer (dwarf2_per_objfile);
8387
8388 build_type_psymtabs (dwarf2_per_objfile);
8389
8390 create_all_comp_units (dwarf2_per_objfile);
8391
8392 /* Create a temporary address map on a temporary obstack. We later
8393 copy this to the final obstack. */
8394 auto_obstack temp_obstack;
8395
8396 scoped_restore save_psymtabs_addrmap
8397 = make_scoped_restore (&objfile->psymtabs_addrmap,
8398 addrmap_create_mutable (&temp_obstack));
8399
8400 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8401 process_psymtab_comp_unit (per_cu, 0, language_minimal);
8402
8403 /* This has to wait until we read the CUs, we need the list of DWOs. */
8404 process_skeletonless_type_units (dwarf2_per_objfile);
8405
8406 /* Now that all TUs have been processed we can fill in the dependencies. */
8407 if (dwarf2_per_objfile->type_unit_groups != NULL)
8408 {
8409 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
8410 build_type_psymtab_dependencies, dwarf2_per_objfile);
8411 }
8412
8413 if (dwarf_read_debug)
8414 print_tu_stats (dwarf2_per_objfile);
8415
8416 set_partial_user (dwarf2_per_objfile);
8417
8418 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
8419 &objfile->objfile_obstack);
8420 /* At this point we want to keep the address map. */
8421 save_psymtabs_addrmap.release ();
8422
8423 if (dwarf_read_debug)
8424 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
8425 objfile_name (objfile));
8426 }
8427
8428 /* die_reader_func for load_partial_comp_unit. */
8429
8430 static void
8431 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
8432 const gdb_byte *info_ptr,
8433 struct die_info *comp_unit_die,
8434 int has_children,
8435 void *data)
8436 {
8437 struct dwarf2_cu *cu = reader->cu;
8438
8439 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
8440
8441 /* Check if comp unit has_children.
8442 If so, read the rest of the partial symbols from this comp unit.
8443 If not, there's no more debug_info for this comp unit. */
8444 if (has_children)
8445 load_partial_dies (reader, info_ptr, 0);
8446 }
8447
8448 /* Load the partial DIEs for a secondary CU into memory.
8449 This is also used when rereading a primary CU with load_all_dies. */
8450
8451 static void
8452 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
8453 {
8454 init_cutu_and_read_dies (this_cu, NULL, 1, 1, false,
8455 load_partial_comp_unit_reader, NULL);
8456 }
8457
8458 static void
8459 read_comp_units_from_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
8460 struct dwarf2_section_info *section,
8461 struct dwarf2_section_info *abbrev_section,
8462 unsigned int is_dwz)
8463 {
8464 const gdb_byte *info_ptr;
8465 struct objfile *objfile = dwarf2_per_objfile->objfile;
8466
8467 if (dwarf_read_debug)
8468 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
8469 get_section_name (section),
8470 get_section_file_name (section));
8471
8472 dwarf2_read_section (objfile, section);
8473
8474 info_ptr = section->buffer;
8475
8476 while (info_ptr < section->buffer + section->size)
8477 {
8478 struct dwarf2_per_cu_data *this_cu;
8479
8480 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
8481
8482 comp_unit_head cu_header;
8483 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
8484 abbrev_section, info_ptr,
8485 rcuh_kind::COMPILE);
8486
8487 /* Save the compilation unit for later lookup. */
8488 if (cu_header.unit_type != DW_UT_type)
8489 {
8490 this_cu = XOBNEW (&objfile->objfile_obstack,
8491 struct dwarf2_per_cu_data);
8492 memset (this_cu, 0, sizeof (*this_cu));
8493 }
8494 else
8495 {
8496 auto sig_type = XOBNEW (&objfile->objfile_obstack,
8497 struct signatured_type);
8498 memset (sig_type, 0, sizeof (*sig_type));
8499 sig_type->signature = cu_header.signature;
8500 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
8501 this_cu = &sig_type->per_cu;
8502 }
8503 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
8504 this_cu->sect_off = sect_off;
8505 this_cu->length = cu_header.length + cu_header.initial_length_size;
8506 this_cu->is_dwz = is_dwz;
8507 this_cu->dwarf2_per_objfile = dwarf2_per_objfile;
8508 this_cu->section = section;
8509
8510 dwarf2_per_objfile->all_comp_units.push_back (this_cu);
8511
8512 info_ptr = info_ptr + this_cu->length;
8513 }
8514 }
8515
8516 /* Create a list of all compilation units in OBJFILE.
8517 This is only done for -readnow and building partial symtabs. */
8518
8519 static void
8520 create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8521 {
8522 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
8523 read_comp_units_from_section (dwarf2_per_objfile, &dwarf2_per_objfile->info,
8524 &dwarf2_per_objfile->abbrev, 0);
8525
8526 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
8527 if (dwz != NULL)
8528 read_comp_units_from_section (dwarf2_per_objfile, &dwz->info, &dwz->abbrev,
8529 1);
8530 }
8531
8532 /* Process all loaded DIEs for compilation unit CU, starting at
8533 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
8534 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
8535 DW_AT_ranges). See the comments of add_partial_subprogram on how
8536 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
8537
8538 static void
8539 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
8540 CORE_ADDR *highpc, int set_addrmap,
8541 struct dwarf2_cu *cu)
8542 {
8543 struct partial_die_info *pdi;
8544
8545 /* Now, march along the PDI's, descending into ones which have
8546 interesting children but skipping the children of the other ones,
8547 until we reach the end of the compilation unit. */
8548
8549 pdi = first_die;
8550
8551 while (pdi != NULL)
8552 {
8553 pdi->fixup (cu);
8554
8555 /* Anonymous namespaces or modules have no name but have interesting
8556 children, so we need to look at them. Ditto for anonymous
8557 enums. */
8558
8559 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
8560 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
8561 || pdi->tag == DW_TAG_imported_unit
8562 || pdi->tag == DW_TAG_inlined_subroutine)
8563 {
8564 switch (pdi->tag)
8565 {
8566 case DW_TAG_subprogram:
8567 case DW_TAG_inlined_subroutine:
8568 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
8569 break;
8570 case DW_TAG_constant:
8571 case DW_TAG_variable:
8572 case DW_TAG_typedef:
8573 case DW_TAG_union_type:
8574 if (!pdi->is_declaration)
8575 {
8576 add_partial_symbol (pdi, cu);
8577 }
8578 break;
8579 case DW_TAG_class_type:
8580 case DW_TAG_interface_type:
8581 case DW_TAG_structure_type:
8582 if (!pdi->is_declaration)
8583 {
8584 add_partial_symbol (pdi, cu);
8585 }
8586 if ((cu->language == language_rust
8587 || cu->language == language_cplus) && pdi->has_children)
8588 scan_partial_symbols (pdi->die_child, lowpc, highpc,
8589 set_addrmap, cu);
8590 break;
8591 case DW_TAG_enumeration_type:
8592 if (!pdi->is_declaration)
8593 add_partial_enumeration (pdi, cu);
8594 break;
8595 case DW_TAG_base_type:
8596 case DW_TAG_subrange_type:
8597 /* File scope base type definitions are added to the partial
8598 symbol table. */
8599 add_partial_symbol (pdi, cu);
8600 break;
8601 case DW_TAG_namespace:
8602 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
8603 break;
8604 case DW_TAG_module:
8605 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
8606 break;
8607 case DW_TAG_imported_unit:
8608 {
8609 struct dwarf2_per_cu_data *per_cu;
8610
8611 /* For now we don't handle imported units in type units. */
8612 if (cu->per_cu->is_debug_types)
8613 {
8614 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8615 " supported in type units [in module %s]"),
8616 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
8617 }
8618
8619 per_cu = dwarf2_find_containing_comp_unit
8620 (pdi->d.sect_off, pdi->is_dwz,
8621 cu->per_cu->dwarf2_per_objfile);
8622
8623 /* Go read the partial unit, if needed. */
8624 if (per_cu->v.psymtab == NULL)
8625 process_psymtab_comp_unit (per_cu, 1, cu->language);
8626
8627 VEC_safe_push (dwarf2_per_cu_ptr,
8628 cu->per_cu->imported_symtabs, per_cu);
8629 }
8630 break;
8631 case DW_TAG_imported_declaration:
8632 add_partial_symbol (pdi, cu);
8633 break;
8634 default:
8635 break;
8636 }
8637 }
8638
8639 /* If the die has a sibling, skip to the sibling. */
8640
8641 pdi = pdi->die_sibling;
8642 }
8643 }
8644
8645 /* Functions used to compute the fully scoped name of a partial DIE.
8646
8647 Normally, this is simple. For C++, the parent DIE's fully scoped
8648 name is concatenated with "::" and the partial DIE's name.
8649 Enumerators are an exception; they use the scope of their parent
8650 enumeration type, i.e. the name of the enumeration type is not
8651 prepended to the enumerator.
8652
8653 There are two complexities. One is DW_AT_specification; in this
8654 case "parent" means the parent of the target of the specification,
8655 instead of the direct parent of the DIE. The other is compilers
8656 which do not emit DW_TAG_namespace; in this case we try to guess
8657 the fully qualified name of structure types from their members'
8658 linkage names. This must be done using the DIE's children rather
8659 than the children of any DW_AT_specification target. We only need
8660 to do this for structures at the top level, i.e. if the target of
8661 any DW_AT_specification (if any; otherwise the DIE itself) does not
8662 have a parent. */
8663
8664 /* Compute the scope prefix associated with PDI's parent, in
8665 compilation unit CU. The result will be allocated on CU's
8666 comp_unit_obstack, or a copy of the already allocated PDI->NAME
8667 field. NULL is returned if no prefix is necessary. */
8668 static const char *
8669 partial_die_parent_scope (struct partial_die_info *pdi,
8670 struct dwarf2_cu *cu)
8671 {
8672 const char *grandparent_scope;
8673 struct partial_die_info *parent, *real_pdi;
8674
8675 /* We need to look at our parent DIE; if we have a DW_AT_specification,
8676 then this means the parent of the specification DIE. */
8677
8678 real_pdi = pdi;
8679 while (real_pdi->has_specification)
8680 real_pdi = find_partial_die (real_pdi->spec_offset,
8681 real_pdi->spec_is_dwz, cu);
8682
8683 parent = real_pdi->die_parent;
8684 if (parent == NULL)
8685 return NULL;
8686
8687 if (parent->scope_set)
8688 return parent->scope;
8689
8690 parent->fixup (cu);
8691
8692 grandparent_scope = partial_die_parent_scope (parent, cu);
8693
8694 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
8695 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
8696 Work around this problem here. */
8697 if (cu->language == language_cplus
8698 && parent->tag == DW_TAG_namespace
8699 && strcmp (parent->name, "::") == 0
8700 && grandparent_scope == NULL)
8701 {
8702 parent->scope = NULL;
8703 parent->scope_set = 1;
8704 return NULL;
8705 }
8706
8707 if (pdi->tag == DW_TAG_enumerator)
8708 /* Enumerators should not get the name of the enumeration as a prefix. */
8709 parent->scope = grandparent_scope;
8710 else if (parent->tag == DW_TAG_namespace
8711 || parent->tag == DW_TAG_module
8712 || parent->tag == DW_TAG_structure_type
8713 || parent->tag == DW_TAG_class_type
8714 || parent->tag == DW_TAG_interface_type
8715 || parent->tag == DW_TAG_union_type
8716 || parent->tag == DW_TAG_enumeration_type)
8717 {
8718 if (grandparent_scope == NULL)
8719 parent->scope = parent->name;
8720 else
8721 parent->scope = typename_concat (&cu->comp_unit_obstack,
8722 grandparent_scope,
8723 parent->name, 0, cu);
8724 }
8725 else
8726 {
8727 /* FIXME drow/2004-04-01: What should we be doing with
8728 function-local names? For partial symbols, we should probably be
8729 ignoring them. */
8730 complaint (_("unhandled containing DIE tag %d for DIE at %s"),
8731 parent->tag, sect_offset_str (pdi->sect_off));
8732 parent->scope = grandparent_scope;
8733 }
8734
8735 parent->scope_set = 1;
8736 return parent->scope;
8737 }
8738
8739 /* Return the fully scoped name associated with PDI, from compilation unit
8740 CU. The result will be allocated with malloc. */
8741
8742 static char *
8743 partial_die_full_name (struct partial_die_info *pdi,
8744 struct dwarf2_cu *cu)
8745 {
8746 const char *parent_scope;
8747
8748 /* If this is a template instantiation, we can not work out the
8749 template arguments from partial DIEs. So, unfortunately, we have
8750 to go through the full DIEs. At least any work we do building
8751 types here will be reused if full symbols are loaded later. */
8752 if (pdi->has_template_arguments)
8753 {
8754 pdi->fixup (cu);
8755
8756 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
8757 {
8758 struct die_info *die;
8759 struct attribute attr;
8760 struct dwarf2_cu *ref_cu = cu;
8761
8762 /* DW_FORM_ref_addr is using section offset. */
8763 attr.name = (enum dwarf_attribute) 0;
8764 attr.form = DW_FORM_ref_addr;
8765 attr.u.unsnd = to_underlying (pdi->sect_off);
8766 die = follow_die_ref (NULL, &attr, &ref_cu);
8767
8768 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
8769 }
8770 }
8771
8772 parent_scope = partial_die_parent_scope (pdi, cu);
8773 if (parent_scope == NULL)
8774 return NULL;
8775 else
8776 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
8777 }
8778
8779 static void
8780 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
8781 {
8782 struct dwarf2_per_objfile *dwarf2_per_objfile
8783 = cu->per_cu->dwarf2_per_objfile;
8784 struct objfile *objfile = dwarf2_per_objfile->objfile;
8785 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8786 CORE_ADDR addr = 0;
8787 const char *actual_name = NULL;
8788 CORE_ADDR baseaddr;
8789 char *built_actual_name;
8790
8791 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8792
8793 built_actual_name = partial_die_full_name (pdi, cu);
8794 if (built_actual_name != NULL)
8795 actual_name = built_actual_name;
8796
8797 if (actual_name == NULL)
8798 actual_name = pdi->name;
8799
8800 switch (pdi->tag)
8801 {
8802 case DW_TAG_inlined_subroutine:
8803 case DW_TAG_subprogram:
8804 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
8805 if (pdi->is_external || cu->language == language_ada)
8806 {
8807 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
8808 of the global scope. But in Ada, we want to be able to access
8809 nested procedures globally. So all Ada subprograms are stored
8810 in the global scope. */
8811 add_psymbol_to_list (actual_name, strlen (actual_name),
8812 built_actual_name != NULL,
8813 VAR_DOMAIN, LOC_BLOCK,
8814 &objfile->global_psymbols,
8815 addr, cu->language, objfile);
8816 }
8817 else
8818 {
8819 add_psymbol_to_list (actual_name, strlen (actual_name),
8820 built_actual_name != NULL,
8821 VAR_DOMAIN, LOC_BLOCK,
8822 &objfile->static_psymbols,
8823 addr, cu->language, objfile);
8824 }
8825
8826 if (pdi->main_subprogram && actual_name != NULL)
8827 set_objfile_main_name (objfile, actual_name, cu->language);
8828 break;
8829 case DW_TAG_constant:
8830 {
8831 std::vector<partial_symbol *> *list;
8832
8833 if (pdi->is_external)
8834 list = &objfile->global_psymbols;
8835 else
8836 list = &objfile->static_psymbols;
8837 add_psymbol_to_list (actual_name, strlen (actual_name),
8838 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
8839 list, 0, cu->language, objfile);
8840 }
8841 break;
8842 case DW_TAG_variable:
8843 if (pdi->d.locdesc)
8844 addr = decode_locdesc (pdi->d.locdesc, cu);
8845
8846 if (pdi->d.locdesc
8847 && addr == 0
8848 && !dwarf2_per_objfile->has_section_at_zero)
8849 {
8850 /* A global or static variable may also have been stripped
8851 out by the linker if unused, in which case its address
8852 will be nullified; do not add such variables into partial
8853 symbol table then. */
8854 }
8855 else if (pdi->is_external)
8856 {
8857 /* Global Variable.
8858 Don't enter into the minimal symbol tables as there is
8859 a minimal symbol table entry from the ELF symbols already.
8860 Enter into partial symbol table if it has a location
8861 descriptor or a type.
8862 If the location descriptor is missing, new_symbol will create
8863 a LOC_UNRESOLVED symbol, the address of the variable will then
8864 be determined from the minimal symbol table whenever the variable
8865 is referenced.
8866 The address for the partial symbol table entry is not
8867 used by GDB, but it comes in handy for debugging partial symbol
8868 table building. */
8869
8870 if (pdi->d.locdesc || pdi->has_type)
8871 add_psymbol_to_list (actual_name, strlen (actual_name),
8872 built_actual_name != NULL,
8873 VAR_DOMAIN, LOC_STATIC,
8874 &objfile->global_psymbols,
8875 addr + baseaddr,
8876 cu->language, objfile);
8877 }
8878 else
8879 {
8880 int has_loc = pdi->d.locdesc != NULL;
8881
8882 /* Static Variable. Skip symbols whose value we cannot know (those
8883 without location descriptors or constant values). */
8884 if (!has_loc && !pdi->has_const_value)
8885 {
8886 xfree (built_actual_name);
8887 return;
8888 }
8889
8890 add_psymbol_to_list (actual_name, strlen (actual_name),
8891 built_actual_name != NULL,
8892 VAR_DOMAIN, LOC_STATIC,
8893 &objfile->static_psymbols,
8894 has_loc ? addr + baseaddr : (CORE_ADDR) 0,
8895 cu->language, objfile);
8896 }
8897 break;
8898 case DW_TAG_typedef:
8899 case DW_TAG_base_type:
8900 case DW_TAG_subrange_type:
8901 add_psymbol_to_list (actual_name, strlen (actual_name),
8902 built_actual_name != NULL,
8903 VAR_DOMAIN, LOC_TYPEDEF,
8904 &objfile->static_psymbols,
8905 0, cu->language, objfile);
8906 break;
8907 case DW_TAG_imported_declaration:
8908 case DW_TAG_namespace:
8909 add_psymbol_to_list (actual_name, strlen (actual_name),
8910 built_actual_name != NULL,
8911 VAR_DOMAIN, LOC_TYPEDEF,
8912 &objfile->global_psymbols,
8913 0, cu->language, objfile);
8914 break;
8915 case DW_TAG_module:
8916 add_psymbol_to_list (actual_name, strlen (actual_name),
8917 built_actual_name != NULL,
8918 MODULE_DOMAIN, LOC_TYPEDEF,
8919 &objfile->global_psymbols,
8920 0, cu->language, objfile);
8921 break;
8922 case DW_TAG_class_type:
8923 case DW_TAG_interface_type:
8924 case DW_TAG_structure_type:
8925 case DW_TAG_union_type:
8926 case DW_TAG_enumeration_type:
8927 /* Skip external references. The DWARF standard says in the section
8928 about "Structure, Union, and Class Type Entries": "An incomplete
8929 structure, union or class type is represented by a structure,
8930 union or class entry that does not have a byte size attribute
8931 and that has a DW_AT_declaration attribute." */
8932 if (!pdi->has_byte_size && pdi->is_declaration)
8933 {
8934 xfree (built_actual_name);
8935 return;
8936 }
8937
8938 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
8939 static vs. global. */
8940 add_psymbol_to_list (actual_name, strlen (actual_name),
8941 built_actual_name != NULL,
8942 STRUCT_DOMAIN, LOC_TYPEDEF,
8943 cu->language == language_cplus
8944 ? &objfile->global_psymbols
8945 : &objfile->static_psymbols,
8946 0, cu->language, objfile);
8947
8948 break;
8949 case DW_TAG_enumerator:
8950 add_psymbol_to_list (actual_name, strlen (actual_name),
8951 built_actual_name != NULL,
8952 VAR_DOMAIN, LOC_CONST,
8953 cu->language == language_cplus
8954 ? &objfile->global_psymbols
8955 : &objfile->static_psymbols,
8956 0, cu->language, objfile);
8957 break;
8958 default:
8959 break;
8960 }
8961
8962 xfree (built_actual_name);
8963 }
8964
8965 /* Read a partial die corresponding to a namespace; also, add a symbol
8966 corresponding to that namespace to the symbol table. NAMESPACE is
8967 the name of the enclosing namespace. */
8968
8969 static void
8970 add_partial_namespace (struct partial_die_info *pdi,
8971 CORE_ADDR *lowpc, CORE_ADDR *highpc,
8972 int set_addrmap, struct dwarf2_cu *cu)
8973 {
8974 /* Add a symbol for the namespace. */
8975
8976 add_partial_symbol (pdi, cu);
8977
8978 /* Now scan partial symbols in that namespace. */
8979
8980 if (pdi->has_children)
8981 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
8982 }
8983
8984 /* Read a partial die corresponding to a Fortran module. */
8985
8986 static void
8987 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
8988 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
8989 {
8990 /* Add a symbol for the namespace. */
8991
8992 add_partial_symbol (pdi, cu);
8993
8994 /* Now scan partial symbols in that module. */
8995
8996 if (pdi->has_children)
8997 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
8998 }
8999
9000 /* Read a partial die corresponding to a subprogram or an inlined
9001 subprogram and create a partial symbol for that subprogram.
9002 When the CU language allows it, this routine also defines a partial
9003 symbol for each nested subprogram that this subprogram contains.
9004 If SET_ADDRMAP is true, record the covered ranges in the addrmap.
9005 Set *LOWPC and *HIGHPC to the lowest and highest PC values found in PDI.
9006
9007 PDI may also be a lexical block, in which case we simply search
9008 recursively for subprograms defined inside that lexical block.
9009 Again, this is only performed when the CU language allows this
9010 type of definitions. */
9011
9012 static void
9013 add_partial_subprogram (struct partial_die_info *pdi,
9014 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9015 int set_addrmap, struct dwarf2_cu *cu)
9016 {
9017 if (pdi->tag == DW_TAG_subprogram || pdi->tag == DW_TAG_inlined_subroutine)
9018 {
9019 if (pdi->has_pc_info)
9020 {
9021 if (pdi->lowpc < *lowpc)
9022 *lowpc = pdi->lowpc;
9023 if (pdi->highpc > *highpc)
9024 *highpc = pdi->highpc;
9025 if (set_addrmap)
9026 {
9027 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9028 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9029 CORE_ADDR baseaddr;
9030 CORE_ADDR highpc;
9031 CORE_ADDR lowpc;
9032
9033 baseaddr = ANOFFSET (objfile->section_offsets,
9034 SECT_OFF_TEXT (objfile));
9035 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
9036 pdi->lowpc + baseaddr);
9037 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
9038 pdi->highpc + baseaddr);
9039 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
9040 cu->per_cu->v.psymtab);
9041 }
9042 }
9043
9044 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
9045 {
9046 if (!pdi->is_declaration)
9047 /* Ignore subprogram DIEs that do not have a name, they are
9048 illegal. Do not emit a complaint at this point, we will
9049 do so when we convert this psymtab into a symtab. */
9050 if (pdi->name)
9051 add_partial_symbol (pdi, cu);
9052 }
9053 }
9054
9055 if (! pdi->has_children)
9056 return;
9057
9058 if (cu->language == language_ada)
9059 {
9060 pdi = pdi->die_child;
9061 while (pdi != NULL)
9062 {
9063 pdi->fixup (cu);
9064 if (pdi->tag == DW_TAG_subprogram
9065 || pdi->tag == DW_TAG_inlined_subroutine
9066 || pdi->tag == DW_TAG_lexical_block)
9067 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
9068 pdi = pdi->die_sibling;
9069 }
9070 }
9071 }
9072
9073 /* Read a partial die corresponding to an enumeration type. */
9074
9075 static void
9076 add_partial_enumeration (struct partial_die_info *enum_pdi,
9077 struct dwarf2_cu *cu)
9078 {
9079 struct partial_die_info *pdi;
9080
9081 if (enum_pdi->name != NULL)
9082 add_partial_symbol (enum_pdi, cu);
9083
9084 pdi = enum_pdi->die_child;
9085 while (pdi)
9086 {
9087 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
9088 complaint (_("malformed enumerator DIE ignored"));
9089 else
9090 add_partial_symbol (pdi, cu);
9091 pdi = pdi->die_sibling;
9092 }
9093 }
9094
9095 /* Return the initial uleb128 in the die at INFO_PTR. */
9096
9097 static unsigned int
9098 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
9099 {
9100 unsigned int bytes_read;
9101
9102 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9103 }
9104
9105 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit
9106 READER::CU. Use READER::ABBREV_TABLE to lookup any abbreviation.
9107
9108 Return the corresponding abbrev, or NULL if the number is zero (indicating
9109 an empty DIE). In either case *BYTES_READ will be set to the length of
9110 the initial number. */
9111
9112 static struct abbrev_info *
9113 peek_die_abbrev (const die_reader_specs &reader,
9114 const gdb_byte *info_ptr, unsigned int *bytes_read)
9115 {
9116 dwarf2_cu *cu = reader.cu;
9117 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
9118 unsigned int abbrev_number
9119 = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
9120
9121 if (abbrev_number == 0)
9122 return NULL;
9123
9124 abbrev_info *abbrev = reader.abbrev_table->lookup_abbrev (abbrev_number);
9125 if (!abbrev)
9126 {
9127 error (_("Dwarf Error: Could not find abbrev number %d in %s"
9128 " at offset %s [in module %s]"),
9129 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
9130 sect_offset_str (cu->header.sect_off), bfd_get_filename (abfd));
9131 }
9132
9133 return abbrev;
9134 }
9135
9136 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9137 Returns a pointer to the end of a series of DIEs, terminated by an empty
9138 DIE. Any children of the skipped DIEs will also be skipped. */
9139
9140 static const gdb_byte *
9141 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
9142 {
9143 while (1)
9144 {
9145 unsigned int bytes_read;
9146 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
9147
9148 if (abbrev == NULL)
9149 return info_ptr + bytes_read;
9150 else
9151 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
9152 }
9153 }
9154
9155 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9156 INFO_PTR should point just after the initial uleb128 of a DIE, and the
9157 abbrev corresponding to that skipped uleb128 should be passed in
9158 ABBREV. Returns a pointer to this DIE's sibling, skipping any
9159 children. */
9160
9161 static const gdb_byte *
9162 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
9163 struct abbrev_info *abbrev)
9164 {
9165 unsigned int bytes_read;
9166 struct attribute attr;
9167 bfd *abfd = reader->abfd;
9168 struct dwarf2_cu *cu = reader->cu;
9169 const gdb_byte *buffer = reader->buffer;
9170 const gdb_byte *buffer_end = reader->buffer_end;
9171 unsigned int form, i;
9172
9173 for (i = 0; i < abbrev->num_attrs; i++)
9174 {
9175 /* The only abbrev we care about is DW_AT_sibling. */
9176 if (abbrev->attrs[i].name == DW_AT_sibling)
9177 {
9178 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
9179 if (attr.form == DW_FORM_ref_addr)
9180 complaint (_("ignoring absolute DW_AT_sibling"));
9181 else
9182 {
9183 sect_offset off = dwarf2_get_ref_die_offset (&attr);
9184 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
9185
9186 if (sibling_ptr < info_ptr)
9187 complaint (_("DW_AT_sibling points backwards"));
9188 else if (sibling_ptr > reader->buffer_end)
9189 dwarf2_section_buffer_overflow_complaint (reader->die_section);
9190 else
9191 return sibling_ptr;
9192 }
9193 }
9194
9195 /* If it isn't DW_AT_sibling, skip this attribute. */
9196 form = abbrev->attrs[i].form;
9197 skip_attribute:
9198 switch (form)
9199 {
9200 case DW_FORM_ref_addr:
9201 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
9202 and later it is offset sized. */
9203 if (cu->header.version == 2)
9204 info_ptr += cu->header.addr_size;
9205 else
9206 info_ptr += cu->header.offset_size;
9207 break;
9208 case DW_FORM_GNU_ref_alt:
9209 info_ptr += cu->header.offset_size;
9210 break;
9211 case DW_FORM_addr:
9212 info_ptr += cu->header.addr_size;
9213 break;
9214 case DW_FORM_data1:
9215 case DW_FORM_ref1:
9216 case DW_FORM_flag:
9217 info_ptr += 1;
9218 break;
9219 case DW_FORM_flag_present:
9220 case DW_FORM_implicit_const:
9221 break;
9222 case DW_FORM_data2:
9223 case DW_FORM_ref2:
9224 info_ptr += 2;
9225 break;
9226 case DW_FORM_data4:
9227 case DW_FORM_ref4:
9228 info_ptr += 4;
9229 break;
9230 case DW_FORM_data8:
9231 case DW_FORM_ref8:
9232 case DW_FORM_ref_sig8:
9233 info_ptr += 8;
9234 break;
9235 case DW_FORM_data16:
9236 info_ptr += 16;
9237 break;
9238 case DW_FORM_string:
9239 read_direct_string (abfd, info_ptr, &bytes_read);
9240 info_ptr += bytes_read;
9241 break;
9242 case DW_FORM_sec_offset:
9243 case DW_FORM_strp:
9244 case DW_FORM_GNU_strp_alt:
9245 info_ptr += cu->header.offset_size;
9246 break;
9247 case DW_FORM_exprloc:
9248 case DW_FORM_block:
9249 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9250 info_ptr += bytes_read;
9251 break;
9252 case DW_FORM_block1:
9253 info_ptr += 1 + read_1_byte (abfd, info_ptr);
9254 break;
9255 case DW_FORM_block2:
9256 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
9257 break;
9258 case DW_FORM_block4:
9259 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
9260 break;
9261 case DW_FORM_sdata:
9262 case DW_FORM_udata:
9263 case DW_FORM_ref_udata:
9264 case DW_FORM_GNU_addr_index:
9265 case DW_FORM_GNU_str_index:
9266 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
9267 break;
9268 case DW_FORM_indirect:
9269 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9270 info_ptr += bytes_read;
9271 /* We need to continue parsing from here, so just go back to
9272 the top. */
9273 goto skip_attribute;
9274
9275 default:
9276 error (_("Dwarf Error: Cannot handle %s "
9277 "in DWARF reader [in module %s]"),
9278 dwarf_form_name (form),
9279 bfd_get_filename (abfd));
9280 }
9281 }
9282
9283 if (abbrev->has_children)
9284 return skip_children (reader, info_ptr);
9285 else
9286 return info_ptr;
9287 }
9288
9289 /* Locate ORIG_PDI's sibling.
9290 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
9291
9292 static const gdb_byte *
9293 locate_pdi_sibling (const struct die_reader_specs *reader,
9294 struct partial_die_info *orig_pdi,
9295 const gdb_byte *info_ptr)
9296 {
9297 /* Do we know the sibling already? */
9298
9299 if (orig_pdi->sibling)
9300 return orig_pdi->sibling;
9301
9302 /* Are there any children to deal with? */
9303
9304 if (!orig_pdi->has_children)
9305 return info_ptr;
9306
9307 /* Skip the children the long way. */
9308
9309 return skip_children (reader, info_ptr);
9310 }
9311
9312 /* Expand this partial symbol table into a full symbol table. SELF is
9313 not NULL. */
9314
9315 static void
9316 dwarf2_read_symtab (struct partial_symtab *self,
9317 struct objfile *objfile)
9318 {
9319 struct dwarf2_per_objfile *dwarf2_per_objfile
9320 = get_dwarf2_per_objfile (objfile);
9321
9322 if (self->readin)
9323 {
9324 warning (_("bug: psymtab for %s is already read in."),
9325 self->filename);
9326 }
9327 else
9328 {
9329 if (info_verbose)
9330 {
9331 printf_filtered (_("Reading in symbols for %s..."),
9332 self->filename);
9333 gdb_flush (gdb_stdout);
9334 }
9335
9336 /* If this psymtab is constructed from a debug-only objfile, the
9337 has_section_at_zero flag will not necessarily be correct. We
9338 can get the correct value for this flag by looking at the data
9339 associated with the (presumably stripped) associated objfile. */
9340 if (objfile->separate_debug_objfile_backlink)
9341 {
9342 struct dwarf2_per_objfile *dpo_backlink
9343 = get_dwarf2_per_objfile (objfile->separate_debug_objfile_backlink);
9344
9345 dwarf2_per_objfile->has_section_at_zero
9346 = dpo_backlink->has_section_at_zero;
9347 }
9348
9349 dwarf2_per_objfile->reading_partial_symbols = 0;
9350
9351 psymtab_to_symtab_1 (self);
9352
9353 /* Finish up the debug error message. */
9354 if (info_verbose)
9355 printf_filtered (_("done.\n"));
9356 }
9357
9358 process_cu_includes (dwarf2_per_objfile);
9359 }
9360 \f
9361 /* Reading in full CUs. */
9362
9363 /* Add PER_CU to the queue. */
9364
9365 static void
9366 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
9367 enum language pretend_language)
9368 {
9369 struct dwarf2_queue_item *item;
9370
9371 per_cu->queued = 1;
9372 item = XNEW (struct dwarf2_queue_item);
9373 item->per_cu = per_cu;
9374 item->pretend_language = pretend_language;
9375 item->next = NULL;
9376
9377 if (dwarf2_queue == NULL)
9378 dwarf2_queue = item;
9379 else
9380 dwarf2_queue_tail->next = item;
9381
9382 dwarf2_queue_tail = item;
9383 }
9384
9385 /* If PER_CU is not yet queued, add it to the queue.
9386 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
9387 dependency.
9388 The result is non-zero if PER_CU was queued, otherwise the result is zero
9389 meaning either PER_CU is already queued or it is already loaded.
9390
9391 N.B. There is an invariant here that if a CU is queued then it is loaded.
9392 The caller is required to load PER_CU if we return non-zero. */
9393
9394 static int
9395 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
9396 struct dwarf2_per_cu_data *per_cu,
9397 enum language pretend_language)
9398 {
9399 /* We may arrive here during partial symbol reading, if we need full
9400 DIEs to process an unusual case (e.g. template arguments). Do
9401 not queue PER_CU, just tell our caller to load its DIEs. */
9402 if (per_cu->dwarf2_per_objfile->reading_partial_symbols)
9403 {
9404 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
9405 return 1;
9406 return 0;
9407 }
9408
9409 /* Mark the dependence relation so that we don't flush PER_CU
9410 too early. */
9411 if (dependent_cu != NULL)
9412 dwarf2_add_dependence (dependent_cu, per_cu);
9413
9414 /* If it's already on the queue, we have nothing to do. */
9415 if (per_cu->queued)
9416 return 0;
9417
9418 /* If the compilation unit is already loaded, just mark it as
9419 used. */
9420 if (per_cu->cu != NULL)
9421 {
9422 per_cu->cu->last_used = 0;
9423 return 0;
9424 }
9425
9426 /* Add it to the queue. */
9427 queue_comp_unit (per_cu, pretend_language);
9428
9429 return 1;
9430 }
9431
9432 /* Process the queue. */
9433
9434 static void
9435 process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile)
9436 {
9437 struct dwarf2_queue_item *item, *next_item;
9438
9439 if (dwarf_read_debug)
9440 {
9441 fprintf_unfiltered (gdb_stdlog,
9442 "Expanding one or more symtabs of objfile %s ...\n",
9443 objfile_name (dwarf2_per_objfile->objfile));
9444 }
9445
9446 /* The queue starts out with one item, but following a DIE reference
9447 may load a new CU, adding it to the end of the queue. */
9448 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
9449 {
9450 if ((dwarf2_per_objfile->using_index
9451 ? !item->per_cu->v.quick->compunit_symtab
9452 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
9453 /* Skip dummy CUs. */
9454 && item->per_cu->cu != NULL)
9455 {
9456 struct dwarf2_per_cu_data *per_cu = item->per_cu;
9457 unsigned int debug_print_threshold;
9458 char buf[100];
9459
9460 if (per_cu->is_debug_types)
9461 {
9462 struct signatured_type *sig_type =
9463 (struct signatured_type *) per_cu;
9464
9465 sprintf (buf, "TU %s at offset %s",
9466 hex_string (sig_type->signature),
9467 sect_offset_str (per_cu->sect_off));
9468 /* There can be 100s of TUs.
9469 Only print them in verbose mode. */
9470 debug_print_threshold = 2;
9471 }
9472 else
9473 {
9474 sprintf (buf, "CU at offset %s",
9475 sect_offset_str (per_cu->sect_off));
9476 debug_print_threshold = 1;
9477 }
9478
9479 if (dwarf_read_debug >= debug_print_threshold)
9480 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
9481
9482 if (per_cu->is_debug_types)
9483 process_full_type_unit (per_cu, item->pretend_language);
9484 else
9485 process_full_comp_unit (per_cu, item->pretend_language);
9486
9487 if (dwarf_read_debug >= debug_print_threshold)
9488 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
9489 }
9490
9491 item->per_cu->queued = 0;
9492 next_item = item->next;
9493 xfree (item);
9494 }
9495
9496 dwarf2_queue_tail = NULL;
9497
9498 if (dwarf_read_debug)
9499 {
9500 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
9501 objfile_name (dwarf2_per_objfile->objfile));
9502 }
9503 }
9504
9505 /* Read in full symbols for PST, and anything it depends on. */
9506
9507 static void
9508 psymtab_to_symtab_1 (struct partial_symtab *pst)
9509 {
9510 struct dwarf2_per_cu_data *per_cu;
9511 int i;
9512
9513 if (pst->readin)
9514 return;
9515
9516 for (i = 0; i < pst->number_of_dependencies; i++)
9517 if (!pst->dependencies[i]->readin
9518 && pst->dependencies[i]->user == NULL)
9519 {
9520 /* Inform about additional files that need to be read in. */
9521 if (info_verbose)
9522 {
9523 /* FIXME: i18n: Need to make this a single string. */
9524 fputs_filtered (" ", gdb_stdout);
9525 wrap_here ("");
9526 fputs_filtered ("and ", gdb_stdout);
9527 wrap_here ("");
9528 printf_filtered ("%s...", pst->dependencies[i]->filename);
9529 wrap_here (""); /* Flush output. */
9530 gdb_flush (gdb_stdout);
9531 }
9532 psymtab_to_symtab_1 (pst->dependencies[i]);
9533 }
9534
9535 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
9536
9537 if (per_cu == NULL)
9538 {
9539 /* It's an include file, no symbols to read for it.
9540 Everything is in the parent symtab. */
9541 pst->readin = 1;
9542 return;
9543 }
9544
9545 dw2_do_instantiate_symtab (per_cu, false);
9546 }
9547
9548 /* Trivial hash function for die_info: the hash value of a DIE
9549 is its offset in .debug_info for this objfile. */
9550
9551 static hashval_t
9552 die_hash (const void *item)
9553 {
9554 const struct die_info *die = (const struct die_info *) item;
9555
9556 return to_underlying (die->sect_off);
9557 }
9558
9559 /* Trivial comparison function for die_info structures: two DIEs
9560 are equal if they have the same offset. */
9561
9562 static int
9563 die_eq (const void *item_lhs, const void *item_rhs)
9564 {
9565 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
9566 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
9567
9568 return die_lhs->sect_off == die_rhs->sect_off;
9569 }
9570
9571 /* die_reader_func for load_full_comp_unit.
9572 This is identical to read_signatured_type_reader,
9573 but is kept separate for now. */
9574
9575 static void
9576 load_full_comp_unit_reader (const struct die_reader_specs *reader,
9577 const gdb_byte *info_ptr,
9578 struct die_info *comp_unit_die,
9579 int has_children,
9580 void *data)
9581 {
9582 struct dwarf2_cu *cu = reader->cu;
9583 enum language *language_ptr = (enum language *) data;
9584
9585 gdb_assert (cu->die_hash == NULL);
9586 cu->die_hash =
9587 htab_create_alloc_ex (cu->header.length / 12,
9588 die_hash,
9589 die_eq,
9590 NULL,
9591 &cu->comp_unit_obstack,
9592 hashtab_obstack_allocate,
9593 dummy_obstack_deallocate);
9594
9595 if (has_children)
9596 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
9597 &info_ptr, comp_unit_die);
9598 cu->dies = comp_unit_die;
9599 /* comp_unit_die is not stored in die_hash, no need. */
9600
9601 /* We try not to read any attributes in this function, because not
9602 all CUs needed for references have been loaded yet, and symbol
9603 table processing isn't initialized. But we have to set the CU language,
9604 or we won't be able to build types correctly.
9605 Similarly, if we do not read the producer, we can not apply
9606 producer-specific interpretation. */
9607 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
9608 }
9609
9610 /* Load the DIEs associated with PER_CU into memory. */
9611
9612 static void
9613 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
9614 bool skip_partial,
9615 enum language pretend_language)
9616 {
9617 gdb_assert (! this_cu->is_debug_types);
9618
9619 init_cutu_and_read_dies (this_cu, NULL, 1, 1, skip_partial,
9620 load_full_comp_unit_reader, &pretend_language);
9621 }
9622
9623 /* Add a DIE to the delayed physname list. */
9624
9625 static void
9626 add_to_method_list (struct type *type, int fnfield_index, int index,
9627 const char *name, struct die_info *die,
9628 struct dwarf2_cu *cu)
9629 {
9630 struct delayed_method_info mi;
9631 mi.type = type;
9632 mi.fnfield_index = fnfield_index;
9633 mi.index = index;
9634 mi.name = name;
9635 mi.die = die;
9636 cu->method_list.push_back (mi);
9637 }
9638
9639 /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
9640 "const" / "volatile". If so, decrements LEN by the length of the
9641 modifier and return true. Otherwise return false. */
9642
9643 template<size_t N>
9644 static bool
9645 check_modifier (const char *physname, size_t &len, const char (&mod)[N])
9646 {
9647 size_t mod_len = sizeof (mod) - 1;
9648 if (len > mod_len && startswith (physname + (len - mod_len), mod))
9649 {
9650 len -= mod_len;
9651 return true;
9652 }
9653 return false;
9654 }
9655
9656 /* Compute the physnames of any methods on the CU's method list.
9657
9658 The computation of method physnames is delayed in order to avoid the
9659 (bad) condition that one of the method's formal parameters is of an as yet
9660 incomplete type. */
9661
9662 static void
9663 compute_delayed_physnames (struct dwarf2_cu *cu)
9664 {
9665 /* Only C++ delays computing physnames. */
9666 if (cu->method_list.empty ())
9667 return;
9668 gdb_assert (cu->language == language_cplus);
9669
9670 for (const delayed_method_info &mi : cu->method_list)
9671 {
9672 const char *physname;
9673 struct fn_fieldlist *fn_flp
9674 = &TYPE_FN_FIELDLIST (mi.type, mi.fnfield_index);
9675 physname = dwarf2_physname (mi.name, mi.die, cu);
9676 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi.index)
9677 = physname ? physname : "";
9678
9679 /* Since there's no tag to indicate whether a method is a
9680 const/volatile overload, extract that information out of the
9681 demangled name. */
9682 if (physname != NULL)
9683 {
9684 size_t len = strlen (physname);
9685
9686 while (1)
9687 {
9688 if (physname[len] == ')') /* shortcut */
9689 break;
9690 else if (check_modifier (physname, len, " const"))
9691 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi.index) = 1;
9692 else if (check_modifier (physname, len, " volatile"))
9693 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi.index) = 1;
9694 else
9695 break;
9696 }
9697 }
9698 }
9699
9700 /* The list is no longer needed. */
9701 cu->method_list.clear ();
9702 }
9703
9704 /* Go objects should be embedded in a DW_TAG_module DIE,
9705 and it's not clear if/how imported objects will appear.
9706 To keep Go support simple until that's worked out,
9707 go back through what we've read and create something usable.
9708 We could do this while processing each DIE, and feels kinda cleaner,
9709 but that way is more invasive.
9710 This is to, for example, allow the user to type "p var" or "b main"
9711 without having to specify the package name, and allow lookups
9712 of module.object to work in contexts that use the expression
9713 parser. */
9714
9715 static void
9716 fixup_go_packaging (struct dwarf2_cu *cu)
9717 {
9718 char *package_name = NULL;
9719 struct pending *list;
9720 int i;
9721
9722 for (list = global_symbols; list != NULL; list = list->next)
9723 {
9724 for (i = 0; i < list->nsyms; ++i)
9725 {
9726 struct symbol *sym = list->symbol[i];
9727
9728 if (SYMBOL_LANGUAGE (sym) == language_go
9729 && SYMBOL_CLASS (sym) == LOC_BLOCK)
9730 {
9731 char *this_package_name = go_symbol_package_name (sym);
9732
9733 if (this_package_name == NULL)
9734 continue;
9735 if (package_name == NULL)
9736 package_name = this_package_name;
9737 else
9738 {
9739 struct objfile *objfile
9740 = cu->per_cu->dwarf2_per_objfile->objfile;
9741 if (strcmp (package_name, this_package_name) != 0)
9742 complaint (_("Symtab %s has objects from two different Go packages: %s and %s"),
9743 (symbol_symtab (sym) != NULL
9744 ? symtab_to_filename_for_display
9745 (symbol_symtab (sym))
9746 : objfile_name (objfile)),
9747 this_package_name, package_name);
9748 xfree (this_package_name);
9749 }
9750 }
9751 }
9752 }
9753
9754 if (package_name != NULL)
9755 {
9756 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9757 const char *saved_package_name
9758 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
9759 package_name,
9760 strlen (package_name));
9761 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
9762 saved_package_name);
9763 struct symbol *sym;
9764
9765 sym = allocate_symbol (objfile);
9766 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
9767 SYMBOL_SET_NAMES (sym, saved_package_name,
9768 strlen (saved_package_name), 0, objfile);
9769 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
9770 e.g., "main" finds the "main" module and not C's main(). */
9771 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
9772 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
9773 SYMBOL_TYPE (sym) = type;
9774
9775 add_symbol_to_list (sym, &global_symbols);
9776
9777 xfree (package_name);
9778 }
9779 }
9780
9781 /* Allocate a fully-qualified name consisting of the two parts on the
9782 obstack. */
9783
9784 static const char *
9785 rust_fully_qualify (struct obstack *obstack, const char *p1, const char *p2)
9786 {
9787 return obconcat (obstack, p1, "::", p2, (char *) NULL);
9788 }
9789
9790 /* A helper that allocates a struct discriminant_info to attach to a
9791 union type. */
9792
9793 static struct discriminant_info *
9794 alloc_discriminant_info (struct type *type, int discriminant_index,
9795 int default_index)
9796 {
9797 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9798 gdb_assert (discriminant_index == -1
9799 || (discriminant_index >= 0
9800 && discriminant_index < TYPE_NFIELDS (type)));
9801 gdb_assert (default_index == -1
9802 || (default_index >= 0 && default_index < TYPE_NFIELDS (type)));
9803
9804 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
9805
9806 struct discriminant_info *disc
9807 = ((struct discriminant_info *)
9808 TYPE_ZALLOC (type,
9809 offsetof (struct discriminant_info, discriminants)
9810 + TYPE_NFIELDS (type) * sizeof (disc->discriminants[0])));
9811 disc->default_index = default_index;
9812 disc->discriminant_index = discriminant_index;
9813
9814 struct dynamic_prop prop;
9815 prop.kind = PROP_UNDEFINED;
9816 prop.data.baton = disc;
9817
9818 add_dyn_prop (DYN_PROP_DISCRIMINATED, prop, type);
9819
9820 return disc;
9821 }
9822
9823 /* Some versions of rustc emitted enums in an unusual way.
9824
9825 Ordinary enums were emitted as unions. The first element of each
9826 structure in the union was named "RUST$ENUM$DISR". This element
9827 held the discriminant.
9828
9829 These versions of Rust also implemented the "non-zero"
9830 optimization. When the enum had two values, and one is empty and
9831 the other holds a pointer that cannot be zero, the pointer is used
9832 as the discriminant, with a zero value meaning the empty variant.
9833 Here, the union's first member is of the form
9834 RUST$ENCODED$ENUM$<fieldno>$<fieldno>$...$<variantname>
9835 where the fieldnos are the indices of the fields that should be
9836 traversed in order to find the field (which may be several fields deep)
9837 and the variantname is the name of the variant of the case when the
9838 field is zero.
9839
9840 This function recognizes whether TYPE is of one of these forms,
9841 and, if so, smashes it to be a variant type. */
9842
9843 static void
9844 quirk_rust_enum (struct type *type, struct objfile *objfile)
9845 {
9846 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9847
9848 /* We don't need to deal with empty enums. */
9849 if (TYPE_NFIELDS (type) == 0)
9850 return;
9851
9852 #define RUST_ENUM_PREFIX "RUST$ENCODED$ENUM$"
9853 if (TYPE_NFIELDS (type) == 1
9854 && startswith (TYPE_FIELD_NAME (type, 0), RUST_ENUM_PREFIX))
9855 {
9856 const char *name = TYPE_FIELD_NAME (type, 0) + strlen (RUST_ENUM_PREFIX);
9857
9858 /* Decode the field name to find the offset of the
9859 discriminant. */
9860 ULONGEST bit_offset = 0;
9861 struct type *field_type = TYPE_FIELD_TYPE (type, 0);
9862 while (name[0] >= '0' && name[0] <= '9')
9863 {
9864 char *tail;
9865 unsigned long index = strtoul (name, &tail, 10);
9866 name = tail;
9867 if (*name != '$'
9868 || index >= TYPE_NFIELDS (field_type)
9869 || (TYPE_FIELD_LOC_KIND (field_type, index)
9870 != FIELD_LOC_KIND_BITPOS))
9871 {
9872 complaint (_("Could not parse Rust enum encoding string \"%s\""
9873 "[in module %s]"),
9874 TYPE_FIELD_NAME (type, 0),
9875 objfile_name (objfile));
9876 return;
9877 }
9878 ++name;
9879
9880 bit_offset += TYPE_FIELD_BITPOS (field_type, index);
9881 field_type = TYPE_FIELD_TYPE (field_type, index);
9882 }
9883
9884 /* Make a union to hold the variants. */
9885 struct type *union_type = alloc_type (objfile);
9886 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9887 TYPE_NFIELDS (union_type) = 3;
9888 TYPE_FIELDS (union_type)
9889 = (struct field *) TYPE_ZALLOC (type, 3 * sizeof (struct field));
9890 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
9891 set_type_align (union_type, TYPE_RAW_ALIGN (type));
9892
9893 /* Put the discriminant must at index 0. */
9894 TYPE_FIELD_TYPE (union_type, 0) = field_type;
9895 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
9896 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
9897 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 0), bit_offset);
9898
9899 /* The order of fields doesn't really matter, so put the real
9900 field at index 1 and the data-less field at index 2. */
9901 struct discriminant_info *disc
9902 = alloc_discriminant_info (union_type, 0, 1);
9903 TYPE_FIELD (union_type, 1) = TYPE_FIELD (type, 0);
9904 TYPE_FIELD_NAME (union_type, 1)
9905 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1)));
9906 TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1))
9907 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
9908 TYPE_FIELD_NAME (union_type, 1));
9909
9910 const char *dataless_name
9911 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
9912 name);
9913 struct type *dataless_type = init_type (objfile, TYPE_CODE_VOID, 0,
9914 dataless_name);
9915 TYPE_FIELD_TYPE (union_type, 2) = dataless_type;
9916 /* NAME points into the original discriminant name, which
9917 already has the correct lifetime. */
9918 TYPE_FIELD_NAME (union_type, 2) = name;
9919 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 2), 0);
9920 disc->discriminants[2] = 0;
9921
9922 /* Smash this type to be a structure type. We have to do this
9923 because the type has already been recorded. */
9924 TYPE_CODE (type) = TYPE_CODE_STRUCT;
9925 TYPE_NFIELDS (type) = 1;
9926 TYPE_FIELDS (type)
9927 = (struct field *) TYPE_ZALLOC (type, sizeof (struct field));
9928
9929 /* Install the variant part. */
9930 TYPE_FIELD_TYPE (type, 0) = union_type;
9931 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
9932 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
9933 }
9934 else if (TYPE_NFIELDS (type) == 1)
9935 {
9936 /* We assume that a union with a single field is a univariant
9937 enum. */
9938 /* Smash this type to be a structure type. We have to do this
9939 because the type has already been recorded. */
9940 TYPE_CODE (type) = TYPE_CODE_STRUCT;
9941
9942 /* Make a union to hold the variants. */
9943 struct type *union_type = alloc_type (objfile);
9944 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9945 TYPE_NFIELDS (union_type) = TYPE_NFIELDS (type);
9946 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
9947 set_type_align (union_type, TYPE_RAW_ALIGN (type));
9948 TYPE_FIELDS (union_type) = TYPE_FIELDS (type);
9949
9950 struct type *field_type = TYPE_FIELD_TYPE (union_type, 0);
9951 const char *variant_name
9952 = rust_last_path_segment (TYPE_NAME (field_type));
9953 TYPE_FIELD_NAME (union_type, 0) = variant_name;
9954 TYPE_NAME (field_type)
9955 = rust_fully_qualify (&objfile->objfile_obstack,
9956 TYPE_NAME (type), variant_name);
9957
9958 /* Install the union in the outer struct type. */
9959 TYPE_NFIELDS (type) = 1;
9960 TYPE_FIELDS (type)
9961 = (struct field *) TYPE_ZALLOC (union_type, sizeof (struct field));
9962 TYPE_FIELD_TYPE (type, 0) = union_type;
9963 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
9964 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
9965
9966 alloc_discriminant_info (union_type, -1, 0);
9967 }
9968 else
9969 {
9970 struct type *disr_type = nullptr;
9971 for (int i = 0; i < TYPE_NFIELDS (type); ++i)
9972 {
9973 disr_type = TYPE_FIELD_TYPE (type, i);
9974
9975 if (TYPE_CODE (disr_type) != TYPE_CODE_STRUCT)
9976 {
9977 /* All fields of a true enum will be structs. */
9978 return;
9979 }
9980 else if (TYPE_NFIELDS (disr_type) == 0)
9981 {
9982 /* Could be data-less variant, so keep going. */
9983 disr_type = nullptr;
9984 }
9985 else if (strcmp (TYPE_FIELD_NAME (disr_type, 0),
9986 "RUST$ENUM$DISR") != 0)
9987 {
9988 /* Not a Rust enum. */
9989 return;
9990 }
9991 else
9992 {
9993 /* Found one. */
9994 break;
9995 }
9996 }
9997
9998 /* If we got here without a discriminant, then it's probably
9999 just a union. */
10000 if (disr_type == nullptr)
10001 return;
10002
10003 /* Smash this type to be a structure type. We have to do this
10004 because the type has already been recorded. */
10005 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10006
10007 /* Make a union to hold the variants. */
10008 struct field *disr_field = &TYPE_FIELD (disr_type, 0);
10009 struct type *union_type = alloc_type (objfile);
10010 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10011 TYPE_NFIELDS (union_type) = 1 + TYPE_NFIELDS (type);
10012 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10013 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10014 TYPE_FIELDS (union_type)
10015 = (struct field *) TYPE_ZALLOC (union_type,
10016 (TYPE_NFIELDS (union_type)
10017 * sizeof (struct field)));
10018
10019 memcpy (TYPE_FIELDS (union_type) + 1, TYPE_FIELDS (type),
10020 TYPE_NFIELDS (type) * sizeof (struct field));
10021
10022 /* Install the discriminant at index 0 in the union. */
10023 TYPE_FIELD (union_type, 0) = *disr_field;
10024 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10025 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10026
10027 /* Install the union in the outer struct type. */
10028 TYPE_FIELD_TYPE (type, 0) = union_type;
10029 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10030 TYPE_NFIELDS (type) = 1;
10031
10032 /* Set the size and offset of the union type. */
10033 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10034
10035 /* We need a way to find the correct discriminant given a
10036 variant name. For convenience we build a map here. */
10037 struct type *enum_type = FIELD_TYPE (*disr_field);
10038 std::unordered_map<std::string, ULONGEST> discriminant_map;
10039 for (int i = 0; i < TYPE_NFIELDS (enum_type); ++i)
10040 {
10041 if (TYPE_FIELD_LOC_KIND (enum_type, i) == FIELD_LOC_KIND_ENUMVAL)
10042 {
10043 const char *name
10044 = rust_last_path_segment (TYPE_FIELD_NAME (enum_type, i));
10045 discriminant_map[name] = TYPE_FIELD_ENUMVAL (enum_type, i);
10046 }
10047 }
10048
10049 int n_fields = TYPE_NFIELDS (union_type);
10050 struct discriminant_info *disc
10051 = alloc_discriminant_info (union_type, 0, -1);
10052 /* Skip the discriminant here. */
10053 for (int i = 1; i < n_fields; ++i)
10054 {
10055 /* Find the final word in the name of this variant's type.
10056 That name can be used to look up the correct
10057 discriminant. */
10058 const char *variant_name
10059 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type,
10060 i)));
10061
10062 auto iter = discriminant_map.find (variant_name);
10063 if (iter != discriminant_map.end ())
10064 disc->discriminants[i] = iter->second;
10065
10066 /* Remove the discriminant field, if it exists. */
10067 struct type *sub_type = TYPE_FIELD_TYPE (union_type, i);
10068 if (TYPE_NFIELDS (sub_type) > 0)
10069 {
10070 --TYPE_NFIELDS (sub_type);
10071 ++TYPE_FIELDS (sub_type);
10072 }
10073 TYPE_FIELD_NAME (union_type, i) = variant_name;
10074 TYPE_NAME (sub_type)
10075 = rust_fully_qualify (&objfile->objfile_obstack,
10076 TYPE_NAME (type), variant_name);
10077 }
10078 }
10079 }
10080
10081 /* Rewrite some Rust unions to be structures with variants parts. */
10082
10083 static void
10084 rust_union_quirks (struct dwarf2_cu *cu)
10085 {
10086 gdb_assert (cu->language == language_rust);
10087 for (type *type_ : cu->rust_unions)
10088 quirk_rust_enum (type_, cu->per_cu->dwarf2_per_objfile->objfile);
10089 /* We don't need this any more. */
10090 cu->rust_unions.clear ();
10091 }
10092
10093 /* Return the symtab for PER_CU. This works properly regardless of
10094 whether we're using the index or psymtabs. */
10095
10096 static struct compunit_symtab *
10097 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
10098 {
10099 return (per_cu->dwarf2_per_objfile->using_index
10100 ? per_cu->v.quick->compunit_symtab
10101 : per_cu->v.psymtab->compunit_symtab);
10102 }
10103
10104 /* A helper function for computing the list of all symbol tables
10105 included by PER_CU. */
10106
10107 static void
10108 recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
10109 htab_t all_children, htab_t all_type_symtabs,
10110 struct dwarf2_per_cu_data *per_cu,
10111 struct compunit_symtab *immediate_parent)
10112 {
10113 void **slot;
10114 int ix;
10115 struct compunit_symtab *cust;
10116 struct dwarf2_per_cu_data *iter;
10117
10118 slot = htab_find_slot (all_children, per_cu, INSERT);
10119 if (*slot != NULL)
10120 {
10121 /* This inclusion and its children have been processed. */
10122 return;
10123 }
10124
10125 *slot = per_cu;
10126 /* Only add a CU if it has a symbol table. */
10127 cust = get_compunit_symtab (per_cu);
10128 if (cust != NULL)
10129 {
10130 /* If this is a type unit only add its symbol table if we haven't
10131 seen it yet (type unit per_cu's can share symtabs). */
10132 if (per_cu->is_debug_types)
10133 {
10134 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
10135 if (*slot == NULL)
10136 {
10137 *slot = cust;
10138 VEC_safe_push (compunit_symtab_ptr, *result, cust);
10139 if (cust->user == NULL)
10140 cust->user = immediate_parent;
10141 }
10142 }
10143 else
10144 {
10145 VEC_safe_push (compunit_symtab_ptr, *result, cust);
10146 if (cust->user == NULL)
10147 cust->user = immediate_parent;
10148 }
10149 }
10150
10151 for (ix = 0;
10152 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
10153 ++ix)
10154 {
10155 recursively_compute_inclusions (result, all_children,
10156 all_type_symtabs, iter, cust);
10157 }
10158 }
10159
10160 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
10161 PER_CU. */
10162
10163 static void
10164 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
10165 {
10166 gdb_assert (! per_cu->is_debug_types);
10167
10168 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
10169 {
10170 int ix, len;
10171 struct dwarf2_per_cu_data *per_cu_iter;
10172 struct compunit_symtab *compunit_symtab_iter;
10173 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
10174 htab_t all_children, all_type_symtabs;
10175 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
10176
10177 /* If we don't have a symtab, we can just skip this case. */
10178 if (cust == NULL)
10179 return;
10180
10181 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10182 NULL, xcalloc, xfree);
10183 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10184 NULL, xcalloc, xfree);
10185
10186 for (ix = 0;
10187 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
10188 ix, per_cu_iter);
10189 ++ix)
10190 {
10191 recursively_compute_inclusions (&result_symtabs, all_children,
10192 all_type_symtabs, per_cu_iter,
10193 cust);
10194 }
10195
10196 /* Now we have a transitive closure of all the included symtabs. */
10197 len = VEC_length (compunit_symtab_ptr, result_symtabs);
10198 cust->includes
10199 = XOBNEWVEC (&per_cu->dwarf2_per_objfile->objfile->objfile_obstack,
10200 struct compunit_symtab *, len + 1);
10201 for (ix = 0;
10202 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
10203 compunit_symtab_iter);
10204 ++ix)
10205 cust->includes[ix] = compunit_symtab_iter;
10206 cust->includes[len] = NULL;
10207
10208 VEC_free (compunit_symtab_ptr, result_symtabs);
10209 htab_delete (all_children);
10210 htab_delete (all_type_symtabs);
10211 }
10212 }
10213
10214 /* Compute the 'includes' field for the symtabs of all the CUs we just
10215 read. */
10216
10217 static void
10218 process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile)
10219 {
10220 for (dwarf2_per_cu_data *iter : dwarf2_per_objfile->just_read_cus)
10221 {
10222 if (! iter->is_debug_types)
10223 compute_compunit_symtab_includes (iter);
10224 }
10225
10226 dwarf2_per_objfile->just_read_cus.clear ();
10227 }
10228
10229 /* Generate full symbol information for PER_CU, whose DIEs have
10230 already been loaded into memory. */
10231
10232 static void
10233 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
10234 enum language pretend_language)
10235 {
10236 struct dwarf2_cu *cu = per_cu->cu;
10237 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10238 struct objfile *objfile = dwarf2_per_objfile->objfile;
10239 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10240 CORE_ADDR lowpc, highpc;
10241 struct compunit_symtab *cust;
10242 CORE_ADDR baseaddr;
10243 struct block *static_block;
10244 CORE_ADDR addr;
10245
10246 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10247
10248 buildsym_init ();
10249 scoped_free_pendings free_pending;
10250
10251 /* Clear the list here in case something was left over. */
10252 cu->method_list.clear ();
10253
10254 cu->list_in_scope = &file_symbols;
10255
10256 cu->language = pretend_language;
10257 cu->language_defn = language_def (cu->language);
10258
10259 /* Do line number decoding in read_file_scope () */
10260 process_die (cu->dies, cu);
10261
10262 /* For now fudge the Go package. */
10263 if (cu->language == language_go)
10264 fixup_go_packaging (cu);
10265
10266 /* Now that we have processed all the DIEs in the CU, all the types
10267 should be complete, and it should now be safe to compute all of the
10268 physnames. */
10269 compute_delayed_physnames (cu);
10270
10271 if (cu->language == language_rust)
10272 rust_union_quirks (cu);
10273
10274 /* Some compilers don't define a DW_AT_high_pc attribute for the
10275 compilation unit. If the DW_AT_high_pc is missing, synthesize
10276 it, by scanning the DIE's below the compilation unit. */
10277 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
10278
10279 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
10280 static_block = end_symtab_get_static_block (addr, 0, 1);
10281
10282 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
10283 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
10284 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
10285 addrmap to help ensure it has an accurate map of pc values belonging to
10286 this comp unit. */
10287 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
10288
10289 cust = end_symtab_from_static_block (static_block,
10290 SECT_OFF_TEXT (objfile), 0);
10291
10292 if (cust != NULL)
10293 {
10294 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
10295
10296 /* Set symtab language to language from DW_AT_language. If the
10297 compilation is from a C file generated by language preprocessors, do
10298 not set the language if it was already deduced by start_subfile. */
10299 if (!(cu->language == language_c
10300 && COMPUNIT_FILETABS (cust)->language != language_unknown))
10301 COMPUNIT_FILETABS (cust)->language = cu->language;
10302
10303 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
10304 produce DW_AT_location with location lists but it can be possibly
10305 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
10306 there were bugs in prologue debug info, fixed later in GCC-4.5
10307 by "unwind info for epilogues" patch (which is not directly related).
10308
10309 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
10310 needed, it would be wrong due to missing DW_AT_producer there.
10311
10312 Still one can confuse GDB by using non-standard GCC compilation
10313 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
10314 */
10315 if (cu->has_loclist && gcc_4_minor >= 5)
10316 cust->locations_valid = 1;
10317
10318 if (gcc_4_minor >= 5)
10319 cust->epilogue_unwind_valid = 1;
10320
10321 cust->call_site_htab = cu->call_site_htab;
10322 }
10323
10324 if (dwarf2_per_objfile->using_index)
10325 per_cu->v.quick->compunit_symtab = cust;
10326 else
10327 {
10328 struct partial_symtab *pst = per_cu->v.psymtab;
10329 pst->compunit_symtab = cust;
10330 pst->readin = 1;
10331 }
10332
10333 /* Push it for inclusion processing later. */
10334 dwarf2_per_objfile->just_read_cus.push_back (per_cu);
10335 }
10336
10337 /* Generate full symbol information for type unit PER_CU, whose DIEs have
10338 already been loaded into memory. */
10339
10340 static void
10341 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
10342 enum language pretend_language)
10343 {
10344 struct dwarf2_cu *cu = per_cu->cu;
10345 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10346 struct objfile *objfile = dwarf2_per_objfile->objfile;
10347 struct compunit_symtab *cust;
10348 struct signatured_type *sig_type;
10349
10350 gdb_assert (per_cu->is_debug_types);
10351 sig_type = (struct signatured_type *) per_cu;
10352
10353 buildsym_init ();
10354 scoped_free_pendings free_pending;
10355
10356 /* Clear the list here in case something was left over. */
10357 cu->method_list.clear ();
10358
10359 cu->list_in_scope = &file_symbols;
10360
10361 cu->language = pretend_language;
10362 cu->language_defn = language_def (cu->language);
10363
10364 /* The symbol tables are set up in read_type_unit_scope. */
10365 process_die (cu->dies, cu);
10366
10367 /* For now fudge the Go package. */
10368 if (cu->language == language_go)
10369 fixup_go_packaging (cu);
10370
10371 /* Now that we have processed all the DIEs in the CU, all the types
10372 should be complete, and it should now be safe to compute all of the
10373 physnames. */
10374 compute_delayed_physnames (cu);
10375
10376 if (cu->language == language_rust)
10377 rust_union_quirks (cu);
10378
10379 /* TUs share symbol tables.
10380 If this is the first TU to use this symtab, complete the construction
10381 of it with end_expandable_symtab. Otherwise, complete the addition of
10382 this TU's symbols to the existing symtab. */
10383 if (sig_type->type_unit_group->compunit_symtab == NULL)
10384 {
10385 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
10386 sig_type->type_unit_group->compunit_symtab = cust;
10387
10388 if (cust != NULL)
10389 {
10390 /* Set symtab language to language from DW_AT_language. If the
10391 compilation is from a C file generated by language preprocessors,
10392 do not set the language if it was already deduced by
10393 start_subfile. */
10394 if (!(cu->language == language_c
10395 && COMPUNIT_FILETABS (cust)->language != language_c))
10396 COMPUNIT_FILETABS (cust)->language = cu->language;
10397 }
10398 }
10399 else
10400 {
10401 augment_type_symtab ();
10402 cust = sig_type->type_unit_group->compunit_symtab;
10403 }
10404
10405 if (dwarf2_per_objfile->using_index)
10406 per_cu->v.quick->compunit_symtab = cust;
10407 else
10408 {
10409 struct partial_symtab *pst = per_cu->v.psymtab;
10410 pst->compunit_symtab = cust;
10411 pst->readin = 1;
10412 }
10413 }
10414
10415 /* Process an imported unit DIE. */
10416
10417 static void
10418 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
10419 {
10420 struct attribute *attr;
10421
10422 /* For now we don't handle imported units in type units. */
10423 if (cu->per_cu->is_debug_types)
10424 {
10425 error (_("Dwarf Error: DW_TAG_imported_unit is not"
10426 " supported in type units [in module %s]"),
10427 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
10428 }
10429
10430 attr = dwarf2_attr (die, DW_AT_import, cu);
10431 if (attr != NULL)
10432 {
10433 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
10434 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
10435 dwarf2_per_cu_data *per_cu
10436 = dwarf2_find_containing_comp_unit (sect_off, is_dwz,
10437 cu->per_cu->dwarf2_per_objfile);
10438
10439 /* If necessary, add it to the queue and load its DIEs. */
10440 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
10441 load_full_comp_unit (per_cu, false, cu->language);
10442
10443 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
10444 per_cu);
10445 }
10446 }
10447
10448 /* RAII object that represents a process_die scope: i.e.,
10449 starts/finishes processing a DIE. */
10450 class process_die_scope
10451 {
10452 public:
10453 process_die_scope (die_info *die, dwarf2_cu *cu)
10454 : m_die (die), m_cu (cu)
10455 {
10456 /* We should only be processing DIEs not already in process. */
10457 gdb_assert (!m_die->in_process);
10458 m_die->in_process = true;
10459 }
10460
10461 ~process_die_scope ()
10462 {
10463 m_die->in_process = false;
10464
10465 /* If we're done processing the DIE for the CU that owns the line
10466 header, we don't need the line header anymore. */
10467 if (m_cu->line_header_die_owner == m_die)
10468 {
10469 delete m_cu->line_header;
10470 m_cu->line_header = NULL;
10471 m_cu->line_header_die_owner = NULL;
10472 }
10473 }
10474
10475 private:
10476 die_info *m_die;
10477 dwarf2_cu *m_cu;
10478 };
10479
10480 /* Process a die and its children. */
10481
10482 static void
10483 process_die (struct die_info *die, struct dwarf2_cu *cu)
10484 {
10485 process_die_scope scope (die, cu);
10486
10487 switch (die->tag)
10488 {
10489 case DW_TAG_padding:
10490 break;
10491 case DW_TAG_compile_unit:
10492 case DW_TAG_partial_unit:
10493 read_file_scope (die, cu);
10494 break;
10495 case DW_TAG_type_unit:
10496 read_type_unit_scope (die, cu);
10497 break;
10498 case DW_TAG_subprogram:
10499 case DW_TAG_inlined_subroutine:
10500 read_func_scope (die, cu);
10501 break;
10502 case DW_TAG_lexical_block:
10503 case DW_TAG_try_block:
10504 case DW_TAG_catch_block:
10505 read_lexical_block_scope (die, cu);
10506 break;
10507 case DW_TAG_call_site:
10508 case DW_TAG_GNU_call_site:
10509 read_call_site_scope (die, cu);
10510 break;
10511 case DW_TAG_class_type:
10512 case DW_TAG_interface_type:
10513 case DW_TAG_structure_type:
10514 case DW_TAG_union_type:
10515 process_structure_scope (die, cu);
10516 break;
10517 case DW_TAG_enumeration_type:
10518 process_enumeration_scope (die, cu);
10519 break;
10520
10521 /* These dies have a type, but processing them does not create
10522 a symbol or recurse to process the children. Therefore we can
10523 read them on-demand through read_type_die. */
10524 case DW_TAG_subroutine_type:
10525 case DW_TAG_set_type:
10526 case DW_TAG_array_type:
10527 case DW_TAG_pointer_type:
10528 case DW_TAG_ptr_to_member_type:
10529 case DW_TAG_reference_type:
10530 case DW_TAG_rvalue_reference_type:
10531 case DW_TAG_string_type:
10532 break;
10533
10534 case DW_TAG_base_type:
10535 case DW_TAG_subrange_type:
10536 case DW_TAG_typedef:
10537 /* Add a typedef symbol for the type definition, if it has a
10538 DW_AT_name. */
10539 new_symbol (die, read_type_die (die, cu), cu);
10540 break;
10541 case DW_TAG_common_block:
10542 read_common_block (die, cu);
10543 break;
10544 case DW_TAG_common_inclusion:
10545 break;
10546 case DW_TAG_namespace:
10547 cu->processing_has_namespace_info = 1;
10548 read_namespace (die, cu);
10549 break;
10550 case DW_TAG_module:
10551 cu->processing_has_namespace_info = 1;
10552 read_module (die, cu);
10553 break;
10554 case DW_TAG_imported_declaration:
10555 cu->processing_has_namespace_info = 1;
10556 if (read_namespace_alias (die, cu))
10557 break;
10558 /* The declaration is not a global namespace alias. */
10559 /* Fall through. */
10560 case DW_TAG_imported_module:
10561 cu->processing_has_namespace_info = 1;
10562 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
10563 || cu->language != language_fortran))
10564 complaint (_("Tag '%s' has unexpected children"),
10565 dwarf_tag_name (die->tag));
10566 read_import_statement (die, cu);
10567 break;
10568
10569 case DW_TAG_imported_unit:
10570 process_imported_unit_die (die, cu);
10571 break;
10572
10573 case DW_TAG_variable:
10574 read_variable (die, cu);
10575 break;
10576
10577 default:
10578 new_symbol (die, NULL, cu);
10579 break;
10580 }
10581 }
10582 \f
10583 /* DWARF name computation. */
10584
10585 /* A helper function for dwarf2_compute_name which determines whether DIE
10586 needs to have the name of the scope prepended to the name listed in the
10587 die. */
10588
10589 static int
10590 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
10591 {
10592 struct attribute *attr;
10593
10594 switch (die->tag)
10595 {
10596 case DW_TAG_namespace:
10597 case DW_TAG_typedef:
10598 case DW_TAG_class_type:
10599 case DW_TAG_interface_type:
10600 case DW_TAG_structure_type:
10601 case DW_TAG_union_type:
10602 case DW_TAG_enumeration_type:
10603 case DW_TAG_enumerator:
10604 case DW_TAG_subprogram:
10605 case DW_TAG_inlined_subroutine:
10606 case DW_TAG_member:
10607 case DW_TAG_imported_declaration:
10608 return 1;
10609
10610 case DW_TAG_variable:
10611 case DW_TAG_constant:
10612 /* We only need to prefix "globally" visible variables. These include
10613 any variable marked with DW_AT_external or any variable that
10614 lives in a namespace. [Variables in anonymous namespaces
10615 require prefixing, but they are not DW_AT_external.] */
10616
10617 if (dwarf2_attr (die, DW_AT_specification, cu))
10618 {
10619 struct dwarf2_cu *spec_cu = cu;
10620
10621 return die_needs_namespace (die_specification (die, &spec_cu),
10622 spec_cu);
10623 }
10624
10625 attr = dwarf2_attr (die, DW_AT_external, cu);
10626 if (attr == NULL && die->parent->tag != DW_TAG_namespace
10627 && die->parent->tag != DW_TAG_module)
10628 return 0;
10629 /* A variable in a lexical block of some kind does not need a
10630 namespace, even though in C++ such variables may be external
10631 and have a mangled name. */
10632 if (die->parent->tag == DW_TAG_lexical_block
10633 || die->parent->tag == DW_TAG_try_block
10634 || die->parent->tag == DW_TAG_catch_block
10635 || die->parent->tag == DW_TAG_subprogram)
10636 return 0;
10637 return 1;
10638
10639 default:
10640 return 0;
10641 }
10642 }
10643
10644 /* Return the DIE's linkage name attribute, either DW_AT_linkage_name
10645 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10646 defined for the given DIE. */
10647
10648 static struct attribute *
10649 dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
10650 {
10651 struct attribute *attr;
10652
10653 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
10654 if (attr == NULL)
10655 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
10656
10657 return attr;
10658 }
10659
10660 /* Return the DIE's linkage name as a string, either DW_AT_linkage_name
10661 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10662 defined for the given DIE. */
10663
10664 static const char *
10665 dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
10666 {
10667 const char *linkage_name;
10668
10669 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
10670 if (linkage_name == NULL)
10671 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
10672
10673 return linkage_name;
10674 }
10675
10676 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
10677 compute the physname for the object, which include a method's:
10678 - formal parameters (C++),
10679 - receiver type (Go),
10680
10681 The term "physname" is a bit confusing.
10682 For C++, for example, it is the demangled name.
10683 For Go, for example, it's the mangled name.
10684
10685 For Ada, return the DIE's linkage name rather than the fully qualified
10686 name. PHYSNAME is ignored..
10687
10688 The result is allocated on the objfile_obstack and canonicalized. */
10689
10690 static const char *
10691 dwarf2_compute_name (const char *name,
10692 struct die_info *die, struct dwarf2_cu *cu,
10693 int physname)
10694 {
10695 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10696
10697 if (name == NULL)
10698 name = dwarf2_name (die, cu);
10699
10700 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
10701 but otherwise compute it by typename_concat inside GDB.
10702 FIXME: Actually this is not really true, or at least not always true.
10703 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
10704 Fortran names because there is no mangling standard. So new_symbol
10705 will set the demangled name to the result of dwarf2_full_name, and it is
10706 the demangled name that GDB uses if it exists. */
10707 if (cu->language == language_ada
10708 || (cu->language == language_fortran && physname))
10709 {
10710 /* For Ada unit, we prefer the linkage name over the name, as
10711 the former contains the exported name, which the user expects
10712 to be able to reference. Ideally, we want the user to be able
10713 to reference this entity using either natural or linkage name,
10714 but we haven't started looking at this enhancement yet. */
10715 const char *linkage_name = dw2_linkage_name (die, cu);
10716
10717 if (linkage_name != NULL)
10718 return linkage_name;
10719 }
10720
10721 /* These are the only languages we know how to qualify names in. */
10722 if (name != NULL
10723 && (cu->language == language_cplus
10724 || cu->language == language_fortran || cu->language == language_d
10725 || cu->language == language_rust))
10726 {
10727 if (die_needs_namespace (die, cu))
10728 {
10729 const char *prefix;
10730 const char *canonical_name = NULL;
10731
10732 string_file buf;
10733
10734 prefix = determine_prefix (die, cu);
10735 if (*prefix != '\0')
10736 {
10737 char *prefixed_name = typename_concat (NULL, prefix, name,
10738 physname, cu);
10739
10740 buf.puts (prefixed_name);
10741 xfree (prefixed_name);
10742 }
10743 else
10744 buf.puts (name);
10745
10746 /* Template parameters may be specified in the DIE's DW_AT_name, or
10747 as children with DW_TAG_template_type_param or
10748 DW_TAG_value_type_param. If the latter, add them to the name
10749 here. If the name already has template parameters, then
10750 skip this step; some versions of GCC emit both, and
10751 it is more efficient to use the pre-computed name.
10752
10753 Something to keep in mind about this process: it is very
10754 unlikely, or in some cases downright impossible, to produce
10755 something that will match the mangled name of a function.
10756 If the definition of the function has the same debug info,
10757 we should be able to match up with it anyway. But fallbacks
10758 using the minimal symbol, for instance to find a method
10759 implemented in a stripped copy of libstdc++, will not work.
10760 If we do not have debug info for the definition, we will have to
10761 match them up some other way.
10762
10763 When we do name matching there is a related problem with function
10764 templates; two instantiated function templates are allowed to
10765 differ only by their return types, which we do not add here. */
10766
10767 if (cu->language == language_cplus && strchr (name, '<') == NULL)
10768 {
10769 struct attribute *attr;
10770 struct die_info *child;
10771 int first = 1;
10772
10773 die->building_fullname = 1;
10774
10775 for (child = die->child; child != NULL; child = child->sibling)
10776 {
10777 struct type *type;
10778 LONGEST value;
10779 const gdb_byte *bytes;
10780 struct dwarf2_locexpr_baton *baton;
10781 struct value *v;
10782
10783 if (child->tag != DW_TAG_template_type_param
10784 && child->tag != DW_TAG_template_value_param)
10785 continue;
10786
10787 if (first)
10788 {
10789 buf.puts ("<");
10790 first = 0;
10791 }
10792 else
10793 buf.puts (", ");
10794
10795 attr = dwarf2_attr (child, DW_AT_type, cu);
10796 if (attr == NULL)
10797 {
10798 complaint (_("template parameter missing DW_AT_type"));
10799 buf.puts ("UNKNOWN_TYPE");
10800 continue;
10801 }
10802 type = die_type (child, cu);
10803
10804 if (child->tag == DW_TAG_template_type_param)
10805 {
10806 c_print_type (type, "", &buf, -1, 0, cu->language,
10807 &type_print_raw_options);
10808 continue;
10809 }
10810
10811 attr = dwarf2_attr (child, DW_AT_const_value, cu);
10812 if (attr == NULL)
10813 {
10814 complaint (_("template parameter missing "
10815 "DW_AT_const_value"));
10816 buf.puts ("UNKNOWN_VALUE");
10817 continue;
10818 }
10819
10820 dwarf2_const_value_attr (attr, type, name,
10821 &cu->comp_unit_obstack, cu,
10822 &value, &bytes, &baton);
10823
10824 if (TYPE_NOSIGN (type))
10825 /* GDB prints characters as NUMBER 'CHAR'. If that's
10826 changed, this can use value_print instead. */
10827 c_printchar (value, type, &buf);
10828 else
10829 {
10830 struct value_print_options opts;
10831
10832 if (baton != NULL)
10833 v = dwarf2_evaluate_loc_desc (type, NULL,
10834 baton->data,
10835 baton->size,
10836 baton->per_cu);
10837 else if (bytes != NULL)
10838 {
10839 v = allocate_value (type);
10840 memcpy (value_contents_writeable (v), bytes,
10841 TYPE_LENGTH (type));
10842 }
10843 else
10844 v = value_from_longest (type, value);
10845
10846 /* Specify decimal so that we do not depend on
10847 the radix. */
10848 get_formatted_print_options (&opts, 'd');
10849 opts.raw = 1;
10850 value_print (v, &buf, &opts);
10851 release_value (v);
10852 }
10853 }
10854
10855 die->building_fullname = 0;
10856
10857 if (!first)
10858 {
10859 /* Close the argument list, with a space if necessary
10860 (nested templates). */
10861 if (!buf.empty () && buf.string ().back () == '>')
10862 buf.puts (" >");
10863 else
10864 buf.puts (">");
10865 }
10866 }
10867
10868 /* For C++ methods, append formal parameter type
10869 information, if PHYSNAME. */
10870
10871 if (physname && die->tag == DW_TAG_subprogram
10872 && cu->language == language_cplus)
10873 {
10874 struct type *type = read_type_die (die, cu);
10875
10876 c_type_print_args (type, &buf, 1, cu->language,
10877 &type_print_raw_options);
10878
10879 if (cu->language == language_cplus)
10880 {
10881 /* Assume that an artificial first parameter is
10882 "this", but do not crash if it is not. RealView
10883 marks unnamed (and thus unused) parameters as
10884 artificial; there is no way to differentiate
10885 the two cases. */
10886 if (TYPE_NFIELDS (type) > 0
10887 && TYPE_FIELD_ARTIFICIAL (type, 0)
10888 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
10889 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
10890 0))))
10891 buf.puts (" const");
10892 }
10893 }
10894
10895 const std::string &intermediate_name = buf.string ();
10896
10897 if (cu->language == language_cplus)
10898 canonical_name
10899 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
10900 &objfile->per_bfd->storage_obstack);
10901
10902 /* If we only computed INTERMEDIATE_NAME, or if
10903 INTERMEDIATE_NAME is already canonical, then we need to
10904 copy it to the appropriate obstack. */
10905 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
10906 name = ((const char *)
10907 obstack_copy0 (&objfile->per_bfd->storage_obstack,
10908 intermediate_name.c_str (),
10909 intermediate_name.length ()));
10910 else
10911 name = canonical_name;
10912 }
10913 }
10914
10915 return name;
10916 }
10917
10918 /* Return the fully qualified name of DIE, based on its DW_AT_name.
10919 If scope qualifiers are appropriate they will be added. The result
10920 will be allocated on the storage_obstack, or NULL if the DIE does
10921 not have a name. NAME may either be from a previous call to
10922 dwarf2_name or NULL.
10923
10924 The output string will be canonicalized (if C++). */
10925
10926 static const char *
10927 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
10928 {
10929 return dwarf2_compute_name (name, die, cu, 0);
10930 }
10931
10932 /* Construct a physname for the given DIE in CU. NAME may either be
10933 from a previous call to dwarf2_name or NULL. The result will be
10934 allocated on the objfile_objstack or NULL if the DIE does not have a
10935 name.
10936
10937 The output string will be canonicalized (if C++). */
10938
10939 static const char *
10940 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
10941 {
10942 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10943 const char *retval, *mangled = NULL, *canon = NULL;
10944 int need_copy = 1;
10945
10946 /* In this case dwarf2_compute_name is just a shortcut not building anything
10947 on its own. */
10948 if (!die_needs_namespace (die, cu))
10949 return dwarf2_compute_name (name, die, cu, 1);
10950
10951 mangled = dw2_linkage_name (die, cu);
10952
10953 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
10954 See https://github.com/rust-lang/rust/issues/32925. */
10955 if (cu->language == language_rust && mangled != NULL
10956 && strchr (mangled, '{') != NULL)
10957 mangled = NULL;
10958
10959 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
10960 has computed. */
10961 gdb::unique_xmalloc_ptr<char> demangled;
10962 if (mangled != NULL)
10963 {
10964
10965 if (language_def (cu->language)->la_store_sym_names_in_linkage_form_p)
10966 {
10967 /* Do nothing (do not demangle the symbol name). */
10968 }
10969 else if (cu->language == language_go)
10970 {
10971 /* This is a lie, but we already lie to the caller new_symbol.
10972 new_symbol assumes we return the mangled name.
10973 This just undoes that lie until things are cleaned up. */
10974 }
10975 else
10976 {
10977 /* Use DMGL_RET_DROP for C++ template functions to suppress
10978 their return type. It is easier for GDB users to search
10979 for such functions as `name(params)' than `long name(params)'.
10980 In such case the minimal symbol names do not match the full
10981 symbol names but for template functions there is never a need
10982 to look up their definition from their declaration so
10983 the only disadvantage remains the minimal symbol variant
10984 `long name(params)' does not have the proper inferior type. */
10985 demangled.reset (gdb_demangle (mangled,
10986 (DMGL_PARAMS | DMGL_ANSI
10987 | DMGL_RET_DROP)));
10988 }
10989 if (demangled)
10990 canon = demangled.get ();
10991 else
10992 {
10993 canon = mangled;
10994 need_copy = 0;
10995 }
10996 }
10997
10998 if (canon == NULL || check_physname)
10999 {
11000 const char *physname = dwarf2_compute_name (name, die, cu, 1);
11001
11002 if (canon != NULL && strcmp (physname, canon) != 0)
11003 {
11004 /* It may not mean a bug in GDB. The compiler could also
11005 compute DW_AT_linkage_name incorrectly. But in such case
11006 GDB would need to be bug-to-bug compatible. */
11007
11008 complaint (_("Computed physname <%s> does not match demangled <%s> "
11009 "(from linkage <%s>) - DIE at %s [in module %s]"),
11010 physname, canon, mangled, sect_offset_str (die->sect_off),
11011 objfile_name (objfile));
11012
11013 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
11014 is available here - over computed PHYSNAME. It is safer
11015 against both buggy GDB and buggy compilers. */
11016
11017 retval = canon;
11018 }
11019 else
11020 {
11021 retval = physname;
11022 need_copy = 0;
11023 }
11024 }
11025 else
11026 retval = canon;
11027
11028 if (need_copy)
11029 retval = ((const char *)
11030 obstack_copy0 (&objfile->per_bfd->storage_obstack,
11031 retval, strlen (retval)));
11032
11033 return retval;
11034 }
11035
11036 /* Inspect DIE in CU for a namespace alias. If one exists, record
11037 a new symbol for it.
11038
11039 Returns 1 if a namespace alias was recorded, 0 otherwise. */
11040
11041 static int
11042 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
11043 {
11044 struct attribute *attr;
11045
11046 /* If the die does not have a name, this is not a namespace
11047 alias. */
11048 attr = dwarf2_attr (die, DW_AT_name, cu);
11049 if (attr != NULL)
11050 {
11051 int num;
11052 struct die_info *d = die;
11053 struct dwarf2_cu *imported_cu = cu;
11054
11055 /* If the compiler has nested DW_AT_imported_declaration DIEs,
11056 keep inspecting DIEs until we hit the underlying import. */
11057 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
11058 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
11059 {
11060 attr = dwarf2_attr (d, DW_AT_import, cu);
11061 if (attr == NULL)
11062 break;
11063
11064 d = follow_die_ref (d, attr, &imported_cu);
11065 if (d->tag != DW_TAG_imported_declaration)
11066 break;
11067 }
11068
11069 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
11070 {
11071 complaint (_("DIE at %s has too many recursively imported "
11072 "declarations"), sect_offset_str (d->sect_off));
11073 return 0;
11074 }
11075
11076 if (attr != NULL)
11077 {
11078 struct type *type;
11079 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
11080
11081 type = get_die_type_at_offset (sect_off, cu->per_cu);
11082 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
11083 {
11084 /* This declaration is a global namespace alias. Add
11085 a symbol for it whose type is the aliased namespace. */
11086 new_symbol (die, type, cu);
11087 return 1;
11088 }
11089 }
11090 }
11091
11092 return 0;
11093 }
11094
11095 /* Return the using directives repository (global or local?) to use in the
11096 current context for LANGUAGE.
11097
11098 For Ada, imported declarations can materialize renamings, which *may* be
11099 global. However it is impossible (for now?) in DWARF to distinguish
11100 "external" imported declarations and "static" ones. As all imported
11101 declarations seem to be static in all other languages, make them all CU-wide
11102 global only in Ada. */
11103
11104 static struct using_direct **
11105 using_directives (enum language language)
11106 {
11107 if (language == language_ada && context_stack_depth == 0)
11108 return &global_using_directives;
11109 else
11110 return &local_using_directives;
11111 }
11112
11113 /* Read the import statement specified by the given die and record it. */
11114
11115 static void
11116 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
11117 {
11118 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11119 struct attribute *import_attr;
11120 struct die_info *imported_die, *child_die;
11121 struct dwarf2_cu *imported_cu;
11122 const char *imported_name;
11123 const char *imported_name_prefix;
11124 const char *canonical_name;
11125 const char *import_alias;
11126 const char *imported_declaration = NULL;
11127 const char *import_prefix;
11128 std::vector<const char *> excludes;
11129
11130 import_attr = dwarf2_attr (die, DW_AT_import, cu);
11131 if (import_attr == NULL)
11132 {
11133 complaint (_("Tag '%s' has no DW_AT_import"),
11134 dwarf_tag_name (die->tag));
11135 return;
11136 }
11137
11138 imported_cu = cu;
11139 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
11140 imported_name = dwarf2_name (imported_die, imported_cu);
11141 if (imported_name == NULL)
11142 {
11143 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
11144
11145 The import in the following code:
11146 namespace A
11147 {
11148 typedef int B;
11149 }
11150
11151 int main ()
11152 {
11153 using A::B;
11154 B b;
11155 return b;
11156 }
11157
11158 ...
11159 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
11160 <52> DW_AT_decl_file : 1
11161 <53> DW_AT_decl_line : 6
11162 <54> DW_AT_import : <0x75>
11163 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
11164 <59> DW_AT_name : B
11165 <5b> DW_AT_decl_file : 1
11166 <5c> DW_AT_decl_line : 2
11167 <5d> DW_AT_type : <0x6e>
11168 ...
11169 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
11170 <76> DW_AT_byte_size : 4
11171 <77> DW_AT_encoding : 5 (signed)
11172
11173 imports the wrong die ( 0x75 instead of 0x58 ).
11174 This case will be ignored until the gcc bug is fixed. */
11175 return;
11176 }
11177
11178 /* Figure out the local name after import. */
11179 import_alias = dwarf2_name (die, cu);
11180
11181 /* Figure out where the statement is being imported to. */
11182 import_prefix = determine_prefix (die, cu);
11183
11184 /* Figure out what the scope of the imported die is and prepend it
11185 to the name of the imported die. */
11186 imported_name_prefix = determine_prefix (imported_die, imported_cu);
11187
11188 if (imported_die->tag != DW_TAG_namespace
11189 && imported_die->tag != DW_TAG_module)
11190 {
11191 imported_declaration = imported_name;
11192 canonical_name = imported_name_prefix;
11193 }
11194 else if (strlen (imported_name_prefix) > 0)
11195 canonical_name = obconcat (&objfile->objfile_obstack,
11196 imported_name_prefix,
11197 (cu->language == language_d ? "." : "::"),
11198 imported_name, (char *) NULL);
11199 else
11200 canonical_name = imported_name;
11201
11202 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
11203 for (child_die = die->child; child_die && child_die->tag;
11204 child_die = sibling_die (child_die))
11205 {
11206 /* DWARF-4: A Fortran use statement with a “rename list” may be
11207 represented by an imported module entry with an import attribute
11208 referring to the module and owned entries corresponding to those
11209 entities that are renamed as part of being imported. */
11210
11211 if (child_die->tag != DW_TAG_imported_declaration)
11212 {
11213 complaint (_("child DW_TAG_imported_declaration expected "
11214 "- DIE at %s [in module %s]"),
11215 sect_offset_str (child_die->sect_off),
11216 objfile_name (objfile));
11217 continue;
11218 }
11219
11220 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
11221 if (import_attr == NULL)
11222 {
11223 complaint (_("Tag '%s' has no DW_AT_import"),
11224 dwarf_tag_name (child_die->tag));
11225 continue;
11226 }
11227
11228 imported_cu = cu;
11229 imported_die = follow_die_ref_or_sig (child_die, import_attr,
11230 &imported_cu);
11231 imported_name = dwarf2_name (imported_die, imported_cu);
11232 if (imported_name == NULL)
11233 {
11234 complaint (_("child DW_TAG_imported_declaration has unknown "
11235 "imported name - DIE at %s [in module %s]"),
11236 sect_offset_str (child_die->sect_off),
11237 objfile_name (objfile));
11238 continue;
11239 }
11240
11241 excludes.push_back (imported_name);
11242
11243 process_die (child_die, cu);
11244 }
11245
11246 add_using_directive (using_directives (cu->language),
11247 import_prefix,
11248 canonical_name,
11249 import_alias,
11250 imported_declaration,
11251 excludes,
11252 0,
11253 &objfile->objfile_obstack);
11254 }
11255
11256 /* ICC<14 does not output the required DW_AT_declaration on incomplete
11257 types, but gives them a size of zero. Starting with version 14,
11258 ICC is compatible with GCC. */
11259
11260 static int
11261 producer_is_icc_lt_14 (struct dwarf2_cu *cu)
11262 {
11263 if (!cu->checked_producer)
11264 check_producer (cu);
11265
11266 return cu->producer_is_icc_lt_14;
11267 }
11268
11269 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
11270 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
11271 this, it was first present in GCC release 4.3.0. */
11272
11273 static int
11274 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
11275 {
11276 if (!cu->checked_producer)
11277 check_producer (cu);
11278
11279 return cu->producer_is_gcc_lt_4_3;
11280 }
11281
11282 static file_and_directory
11283 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
11284 {
11285 file_and_directory res;
11286
11287 /* Find the filename. Do not use dwarf2_name here, since the filename
11288 is not a source language identifier. */
11289 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
11290 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
11291
11292 if (res.comp_dir == NULL
11293 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
11294 && IS_ABSOLUTE_PATH (res.name))
11295 {
11296 res.comp_dir_storage = ldirname (res.name);
11297 if (!res.comp_dir_storage.empty ())
11298 res.comp_dir = res.comp_dir_storage.c_str ();
11299 }
11300 if (res.comp_dir != NULL)
11301 {
11302 /* Irix 6.2 native cc prepends <machine>.: to the compilation
11303 directory, get rid of it. */
11304 const char *cp = strchr (res.comp_dir, ':');
11305
11306 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
11307 res.comp_dir = cp + 1;
11308 }
11309
11310 if (res.name == NULL)
11311 res.name = "<unknown>";
11312
11313 return res;
11314 }
11315
11316 /* Handle DW_AT_stmt_list for a compilation unit.
11317 DIE is the DW_TAG_compile_unit die for CU.
11318 COMP_DIR is the compilation directory. LOWPC is passed to
11319 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
11320
11321 static void
11322 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
11323 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
11324 {
11325 struct dwarf2_per_objfile *dwarf2_per_objfile
11326 = cu->per_cu->dwarf2_per_objfile;
11327 struct objfile *objfile = dwarf2_per_objfile->objfile;
11328 struct attribute *attr;
11329 struct line_header line_header_local;
11330 hashval_t line_header_local_hash;
11331 void **slot;
11332 int decode_mapping;
11333
11334 gdb_assert (! cu->per_cu->is_debug_types);
11335
11336 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11337 if (attr == NULL)
11338 return;
11339
11340 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11341
11342 /* The line header hash table is only created if needed (it exists to
11343 prevent redundant reading of the line table for partial_units).
11344 If we're given a partial_unit, we'll need it. If we're given a
11345 compile_unit, then use the line header hash table if it's already
11346 created, but don't create one just yet. */
11347
11348 if (dwarf2_per_objfile->line_header_hash == NULL
11349 && die->tag == DW_TAG_partial_unit)
11350 {
11351 dwarf2_per_objfile->line_header_hash
11352 = htab_create_alloc_ex (127, line_header_hash_voidp,
11353 line_header_eq_voidp,
11354 free_line_header_voidp,
11355 &objfile->objfile_obstack,
11356 hashtab_obstack_allocate,
11357 dummy_obstack_deallocate);
11358 }
11359
11360 line_header_local.sect_off = line_offset;
11361 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
11362 line_header_local_hash = line_header_hash (&line_header_local);
11363 if (dwarf2_per_objfile->line_header_hash != NULL)
11364 {
11365 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11366 &line_header_local,
11367 line_header_local_hash, NO_INSERT);
11368
11369 /* For DW_TAG_compile_unit we need info like symtab::linetable which
11370 is not present in *SLOT (since if there is something in *SLOT then
11371 it will be for a partial_unit). */
11372 if (die->tag == DW_TAG_partial_unit && slot != NULL)
11373 {
11374 gdb_assert (*slot != NULL);
11375 cu->line_header = (struct line_header *) *slot;
11376 return;
11377 }
11378 }
11379
11380 /* dwarf_decode_line_header does not yet provide sufficient information.
11381 We always have to call also dwarf_decode_lines for it. */
11382 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
11383 if (lh == NULL)
11384 return;
11385
11386 cu->line_header = lh.release ();
11387 cu->line_header_die_owner = die;
11388
11389 if (dwarf2_per_objfile->line_header_hash == NULL)
11390 slot = NULL;
11391 else
11392 {
11393 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11394 &line_header_local,
11395 line_header_local_hash, INSERT);
11396 gdb_assert (slot != NULL);
11397 }
11398 if (slot != NULL && *slot == NULL)
11399 {
11400 /* This newly decoded line number information unit will be owned
11401 by line_header_hash hash table. */
11402 *slot = cu->line_header;
11403 cu->line_header_die_owner = NULL;
11404 }
11405 else
11406 {
11407 /* We cannot free any current entry in (*slot) as that struct line_header
11408 may be already used by multiple CUs. Create only temporary decoded
11409 line_header for this CU - it may happen at most once for each line
11410 number information unit. And if we're not using line_header_hash
11411 then this is what we want as well. */
11412 gdb_assert (die->tag != DW_TAG_partial_unit);
11413 }
11414 decode_mapping = (die->tag != DW_TAG_partial_unit);
11415 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
11416 decode_mapping);
11417
11418 }
11419
11420 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
11421
11422 static void
11423 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
11424 {
11425 struct dwarf2_per_objfile *dwarf2_per_objfile
11426 = cu->per_cu->dwarf2_per_objfile;
11427 struct objfile *objfile = dwarf2_per_objfile->objfile;
11428 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11429 CORE_ADDR lowpc = ((CORE_ADDR) -1);
11430 CORE_ADDR highpc = ((CORE_ADDR) 0);
11431 struct attribute *attr;
11432 struct die_info *child_die;
11433 CORE_ADDR baseaddr;
11434
11435 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11436
11437 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
11438
11439 /* If we didn't find a lowpc, set it to highpc to avoid complaints
11440 from finish_block. */
11441 if (lowpc == ((CORE_ADDR) -1))
11442 lowpc = highpc;
11443 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11444
11445 file_and_directory fnd = find_file_and_directory (die, cu);
11446
11447 prepare_one_comp_unit (cu, die, cu->language);
11448
11449 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
11450 standardised yet. As a workaround for the language detection we fall
11451 back to the DW_AT_producer string. */
11452 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
11453 cu->language = language_opencl;
11454
11455 /* Similar hack for Go. */
11456 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
11457 set_cu_language (DW_LANG_Go, cu);
11458
11459 dwarf2_start_symtab (cu, fnd.name, fnd.comp_dir, lowpc);
11460
11461 /* Decode line number information if present. We do this before
11462 processing child DIEs, so that the line header table is available
11463 for DW_AT_decl_file. */
11464 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
11465
11466 /* Process all dies in compilation unit. */
11467 if (die->child != NULL)
11468 {
11469 child_die = die->child;
11470 while (child_die && child_die->tag)
11471 {
11472 process_die (child_die, cu);
11473 child_die = sibling_die (child_die);
11474 }
11475 }
11476
11477 /* Decode macro information, if present. Dwarf 2 macro information
11478 refers to information in the line number info statement program
11479 header, so we can only read it if we've read the header
11480 successfully. */
11481 attr = dwarf2_attr (die, DW_AT_macros, cu);
11482 if (attr == NULL)
11483 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
11484 if (attr && cu->line_header)
11485 {
11486 if (dwarf2_attr (die, DW_AT_macro_info, cu))
11487 complaint (_("CU refers to both DW_AT_macros and DW_AT_macro_info"));
11488
11489 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
11490 }
11491 else
11492 {
11493 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
11494 if (attr && cu->line_header)
11495 {
11496 unsigned int macro_offset = DW_UNSND (attr);
11497
11498 dwarf_decode_macros (cu, macro_offset, 0);
11499 }
11500 }
11501 }
11502
11503 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
11504 Create the set of symtabs used by this TU, or if this TU is sharing
11505 symtabs with another TU and the symtabs have already been created
11506 then restore those symtabs in the line header.
11507 We don't need the pc/line-number mapping for type units. */
11508
11509 static void
11510 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
11511 {
11512 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
11513 struct type_unit_group *tu_group;
11514 int first_time;
11515 struct attribute *attr;
11516 unsigned int i;
11517 struct signatured_type *sig_type;
11518
11519 gdb_assert (per_cu->is_debug_types);
11520 sig_type = (struct signatured_type *) per_cu;
11521
11522 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11523
11524 /* If we're using .gdb_index (includes -readnow) then
11525 per_cu->type_unit_group may not have been set up yet. */
11526 if (sig_type->type_unit_group == NULL)
11527 sig_type->type_unit_group = get_type_unit_group (cu, attr);
11528 tu_group = sig_type->type_unit_group;
11529
11530 /* If we've already processed this stmt_list there's no real need to
11531 do it again, we could fake it and just recreate the part we need
11532 (file name,index -> symtab mapping). If data shows this optimization
11533 is useful we can do it then. */
11534 first_time = tu_group->compunit_symtab == NULL;
11535
11536 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
11537 debug info. */
11538 line_header_up lh;
11539 if (attr != NULL)
11540 {
11541 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11542 lh = dwarf_decode_line_header (line_offset, cu);
11543 }
11544 if (lh == NULL)
11545 {
11546 if (first_time)
11547 dwarf2_start_symtab (cu, "", NULL, 0);
11548 else
11549 {
11550 gdb_assert (tu_group->symtabs == NULL);
11551 restart_symtab (tu_group->compunit_symtab, "", 0);
11552 }
11553 return;
11554 }
11555
11556 cu->line_header = lh.release ();
11557 cu->line_header_die_owner = die;
11558
11559 if (first_time)
11560 {
11561 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
11562
11563 /* Note: We don't assign tu_group->compunit_symtab yet because we're
11564 still initializing it, and our caller (a few levels up)
11565 process_full_type_unit still needs to know if this is the first
11566 time. */
11567
11568 tu_group->num_symtabs = cu->line_header->file_names.size ();
11569 tu_group->symtabs = XNEWVEC (struct symtab *,
11570 cu->line_header->file_names.size ());
11571
11572 for (i = 0; i < cu->line_header->file_names.size (); ++i)
11573 {
11574 file_entry &fe = cu->line_header->file_names[i];
11575
11576 dwarf2_start_subfile (fe.name, fe.include_dir (cu->line_header));
11577
11578 if (current_subfile->symtab == NULL)
11579 {
11580 /* NOTE: start_subfile will recognize when it's been
11581 passed a file it has already seen. So we can't
11582 assume there's a simple mapping from
11583 cu->line_header->file_names to subfiles, plus
11584 cu->line_header->file_names may contain dups. */
11585 current_subfile->symtab
11586 = allocate_symtab (cust, current_subfile->name);
11587 }
11588
11589 fe.symtab = current_subfile->symtab;
11590 tu_group->symtabs[i] = fe.symtab;
11591 }
11592 }
11593 else
11594 {
11595 restart_symtab (tu_group->compunit_symtab, "", 0);
11596
11597 for (i = 0; i < cu->line_header->file_names.size (); ++i)
11598 {
11599 file_entry &fe = cu->line_header->file_names[i];
11600
11601 fe.symtab = tu_group->symtabs[i];
11602 }
11603 }
11604
11605 /* The main symtab is allocated last. Type units don't have DW_AT_name
11606 so they don't have a "real" (so to speak) symtab anyway.
11607 There is later code that will assign the main symtab to all symbols
11608 that don't have one. We need to handle the case of a symbol with a
11609 missing symtab (DW_AT_decl_file) anyway. */
11610 }
11611
11612 /* Process DW_TAG_type_unit.
11613 For TUs we want to skip the first top level sibling if it's not the
11614 actual type being defined by this TU. In this case the first top
11615 level sibling is there to provide context only. */
11616
11617 static void
11618 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
11619 {
11620 struct die_info *child_die;
11621
11622 prepare_one_comp_unit (cu, die, language_minimal);
11623
11624 /* Initialize (or reinitialize) the machinery for building symtabs.
11625 We do this before processing child DIEs, so that the line header table
11626 is available for DW_AT_decl_file. */
11627 setup_type_unit_groups (die, cu);
11628
11629 if (die->child != NULL)
11630 {
11631 child_die = die->child;
11632 while (child_die && child_die->tag)
11633 {
11634 process_die (child_die, cu);
11635 child_die = sibling_die (child_die);
11636 }
11637 }
11638 }
11639 \f
11640 /* DWO/DWP files.
11641
11642 http://gcc.gnu.org/wiki/DebugFission
11643 http://gcc.gnu.org/wiki/DebugFissionDWP
11644
11645 To simplify handling of both DWO files ("object" files with the DWARF info)
11646 and DWP files (a file with the DWOs packaged up into one file), we treat
11647 DWP files as having a collection of virtual DWO files. */
11648
11649 static hashval_t
11650 hash_dwo_file (const void *item)
11651 {
11652 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
11653 hashval_t hash;
11654
11655 hash = htab_hash_string (dwo_file->dwo_name);
11656 if (dwo_file->comp_dir != NULL)
11657 hash += htab_hash_string (dwo_file->comp_dir);
11658 return hash;
11659 }
11660
11661 static int
11662 eq_dwo_file (const void *item_lhs, const void *item_rhs)
11663 {
11664 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
11665 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
11666
11667 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
11668 return 0;
11669 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
11670 return lhs->comp_dir == rhs->comp_dir;
11671 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
11672 }
11673
11674 /* Allocate a hash table for DWO files. */
11675
11676 static htab_t
11677 allocate_dwo_file_hash_table (struct objfile *objfile)
11678 {
11679 return htab_create_alloc_ex (41,
11680 hash_dwo_file,
11681 eq_dwo_file,
11682 NULL,
11683 &objfile->objfile_obstack,
11684 hashtab_obstack_allocate,
11685 dummy_obstack_deallocate);
11686 }
11687
11688 /* Lookup DWO file DWO_NAME. */
11689
11690 static void **
11691 lookup_dwo_file_slot (struct dwarf2_per_objfile *dwarf2_per_objfile,
11692 const char *dwo_name,
11693 const char *comp_dir)
11694 {
11695 struct dwo_file find_entry;
11696 void **slot;
11697
11698 if (dwarf2_per_objfile->dwo_files == NULL)
11699 dwarf2_per_objfile->dwo_files
11700 = allocate_dwo_file_hash_table (dwarf2_per_objfile->objfile);
11701
11702 memset (&find_entry, 0, sizeof (find_entry));
11703 find_entry.dwo_name = dwo_name;
11704 find_entry.comp_dir = comp_dir;
11705 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
11706
11707 return slot;
11708 }
11709
11710 static hashval_t
11711 hash_dwo_unit (const void *item)
11712 {
11713 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
11714
11715 /* This drops the top 32 bits of the id, but is ok for a hash. */
11716 return dwo_unit->signature;
11717 }
11718
11719 static int
11720 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
11721 {
11722 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
11723 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
11724
11725 /* The signature is assumed to be unique within the DWO file.
11726 So while object file CU dwo_id's always have the value zero,
11727 that's OK, assuming each object file DWO file has only one CU,
11728 and that's the rule for now. */
11729 return lhs->signature == rhs->signature;
11730 }
11731
11732 /* Allocate a hash table for DWO CUs,TUs.
11733 There is one of these tables for each of CUs,TUs for each DWO file. */
11734
11735 static htab_t
11736 allocate_dwo_unit_table (struct objfile *objfile)
11737 {
11738 /* Start out with a pretty small number.
11739 Generally DWO files contain only one CU and maybe some TUs. */
11740 return htab_create_alloc_ex (3,
11741 hash_dwo_unit,
11742 eq_dwo_unit,
11743 NULL,
11744 &objfile->objfile_obstack,
11745 hashtab_obstack_allocate,
11746 dummy_obstack_deallocate);
11747 }
11748
11749 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
11750
11751 struct create_dwo_cu_data
11752 {
11753 struct dwo_file *dwo_file;
11754 struct dwo_unit dwo_unit;
11755 };
11756
11757 /* die_reader_func for create_dwo_cu. */
11758
11759 static void
11760 create_dwo_cu_reader (const struct die_reader_specs *reader,
11761 const gdb_byte *info_ptr,
11762 struct die_info *comp_unit_die,
11763 int has_children,
11764 void *datap)
11765 {
11766 struct dwarf2_cu *cu = reader->cu;
11767 sect_offset sect_off = cu->per_cu->sect_off;
11768 struct dwarf2_section_info *section = cu->per_cu->section;
11769 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
11770 struct dwo_file *dwo_file = data->dwo_file;
11771 struct dwo_unit *dwo_unit = &data->dwo_unit;
11772 struct attribute *attr;
11773
11774 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
11775 if (attr == NULL)
11776 {
11777 complaint (_("Dwarf Error: debug entry at offset %s is missing"
11778 " its dwo_id [in module %s]"),
11779 sect_offset_str (sect_off), dwo_file->dwo_name);
11780 return;
11781 }
11782
11783 dwo_unit->dwo_file = dwo_file;
11784 dwo_unit->signature = DW_UNSND (attr);
11785 dwo_unit->section = section;
11786 dwo_unit->sect_off = sect_off;
11787 dwo_unit->length = cu->per_cu->length;
11788
11789 if (dwarf_read_debug)
11790 fprintf_unfiltered (gdb_stdlog, " offset %s, dwo_id %s\n",
11791 sect_offset_str (sect_off),
11792 hex_string (dwo_unit->signature));
11793 }
11794
11795 /* Create the dwo_units for the CUs in a DWO_FILE.
11796 Note: This function processes DWO files only, not DWP files. */
11797
11798 static void
11799 create_cus_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11800 struct dwo_file &dwo_file, dwarf2_section_info &section,
11801 htab_t &cus_htab)
11802 {
11803 struct objfile *objfile = dwarf2_per_objfile->objfile;
11804 const gdb_byte *info_ptr, *end_ptr;
11805
11806 dwarf2_read_section (objfile, &section);
11807 info_ptr = section.buffer;
11808
11809 if (info_ptr == NULL)
11810 return;
11811
11812 if (dwarf_read_debug)
11813 {
11814 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
11815 get_section_name (&section),
11816 get_section_file_name (&section));
11817 }
11818
11819 end_ptr = info_ptr + section.size;
11820 while (info_ptr < end_ptr)
11821 {
11822 struct dwarf2_per_cu_data per_cu;
11823 struct create_dwo_cu_data create_dwo_cu_data;
11824 struct dwo_unit *dwo_unit;
11825 void **slot;
11826 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
11827
11828 memset (&create_dwo_cu_data.dwo_unit, 0,
11829 sizeof (create_dwo_cu_data.dwo_unit));
11830 memset (&per_cu, 0, sizeof (per_cu));
11831 per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
11832 per_cu.is_debug_types = 0;
11833 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
11834 per_cu.section = &section;
11835 create_dwo_cu_data.dwo_file = &dwo_file;
11836
11837 init_cutu_and_read_dies_no_follow (
11838 &per_cu, &dwo_file, create_dwo_cu_reader, &create_dwo_cu_data);
11839 info_ptr += per_cu.length;
11840
11841 // If the unit could not be parsed, skip it.
11842 if (create_dwo_cu_data.dwo_unit.dwo_file == NULL)
11843 continue;
11844
11845 if (cus_htab == NULL)
11846 cus_htab = allocate_dwo_unit_table (objfile);
11847
11848 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11849 *dwo_unit = create_dwo_cu_data.dwo_unit;
11850 slot = htab_find_slot (cus_htab, dwo_unit, INSERT);
11851 gdb_assert (slot != NULL);
11852 if (*slot != NULL)
11853 {
11854 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
11855 sect_offset dup_sect_off = dup_cu->sect_off;
11856
11857 complaint (_("debug cu entry at offset %s is duplicate to"
11858 " the entry at offset %s, signature %s"),
11859 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
11860 hex_string (dwo_unit->signature));
11861 }
11862 *slot = (void *)dwo_unit;
11863 }
11864 }
11865
11866 /* DWP file .debug_{cu,tu}_index section format:
11867 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
11868
11869 DWP Version 1:
11870
11871 Both index sections have the same format, and serve to map a 64-bit
11872 signature to a set of section numbers. Each section begins with a header,
11873 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
11874 indexes, and a pool of 32-bit section numbers. The index sections will be
11875 aligned at 8-byte boundaries in the file.
11876
11877 The index section header consists of:
11878
11879 V, 32 bit version number
11880 -, 32 bits unused
11881 N, 32 bit number of compilation units or type units in the index
11882 M, 32 bit number of slots in the hash table
11883
11884 Numbers are recorded using the byte order of the application binary.
11885
11886 The hash table begins at offset 16 in the section, and consists of an array
11887 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
11888 order of the application binary). Unused slots in the hash table are 0.
11889 (We rely on the extreme unlikeliness of a signature being exactly 0.)
11890
11891 The parallel table begins immediately after the hash table
11892 (at offset 16 + 8 * M from the beginning of the section), and consists of an
11893 array of 32-bit indexes (using the byte order of the application binary),
11894 corresponding 1-1 with slots in the hash table. Each entry in the parallel
11895 table contains a 32-bit index into the pool of section numbers. For unused
11896 hash table slots, the corresponding entry in the parallel table will be 0.
11897
11898 The pool of section numbers begins immediately following the hash table
11899 (at offset 16 + 12 * M from the beginning of the section). The pool of
11900 section numbers consists of an array of 32-bit words (using the byte order
11901 of the application binary). Each item in the array is indexed starting
11902 from 0. The hash table entry provides the index of the first section
11903 number in the set. Additional section numbers in the set follow, and the
11904 set is terminated by a 0 entry (section number 0 is not used in ELF).
11905
11906 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
11907 section must be the first entry in the set, and the .debug_abbrev.dwo must
11908 be the second entry. Other members of the set may follow in any order.
11909
11910 ---
11911
11912 DWP Version 2:
11913
11914 DWP Version 2 combines all the .debug_info, etc. sections into one,
11915 and the entries in the index tables are now offsets into these sections.
11916 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
11917 section.
11918
11919 Index Section Contents:
11920 Header
11921 Hash Table of Signatures dwp_hash_table.hash_table
11922 Parallel Table of Indices dwp_hash_table.unit_table
11923 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
11924 Table of Section Sizes dwp_hash_table.v2.sizes
11925
11926 The index section header consists of:
11927
11928 V, 32 bit version number
11929 L, 32 bit number of columns in the table of section offsets
11930 N, 32 bit number of compilation units or type units in the index
11931 M, 32 bit number of slots in the hash table
11932
11933 Numbers are recorded using the byte order of the application binary.
11934
11935 The hash table has the same format as version 1.
11936 The parallel table of indices has the same format as version 1,
11937 except that the entries are origin-1 indices into the table of sections
11938 offsets and the table of section sizes.
11939
11940 The table of offsets begins immediately following the parallel table
11941 (at offset 16 + 12 * M from the beginning of the section). The table is
11942 a two-dimensional array of 32-bit words (using the byte order of the
11943 application binary), with L columns and N+1 rows, in row-major order.
11944 Each row in the array is indexed starting from 0. The first row provides
11945 a key to the remaining rows: each column in this row provides an identifier
11946 for a debug section, and the offsets in the same column of subsequent rows
11947 refer to that section. The section identifiers are:
11948
11949 DW_SECT_INFO 1 .debug_info.dwo
11950 DW_SECT_TYPES 2 .debug_types.dwo
11951 DW_SECT_ABBREV 3 .debug_abbrev.dwo
11952 DW_SECT_LINE 4 .debug_line.dwo
11953 DW_SECT_LOC 5 .debug_loc.dwo
11954 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
11955 DW_SECT_MACINFO 7 .debug_macinfo.dwo
11956 DW_SECT_MACRO 8 .debug_macro.dwo
11957
11958 The offsets provided by the CU and TU index sections are the base offsets
11959 for the contributions made by each CU or TU to the corresponding section
11960 in the package file. Each CU and TU header contains an abbrev_offset
11961 field, used to find the abbreviations table for that CU or TU within the
11962 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
11963 be interpreted as relative to the base offset given in the index section.
11964 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
11965 should be interpreted as relative to the base offset for .debug_line.dwo,
11966 and offsets into other debug sections obtained from DWARF attributes should
11967 also be interpreted as relative to the corresponding base offset.
11968
11969 The table of sizes begins immediately following the table of offsets.
11970 Like the table of offsets, it is a two-dimensional array of 32-bit words,
11971 with L columns and N rows, in row-major order. Each row in the array is
11972 indexed starting from 1 (row 0 is shared by the two tables).
11973
11974 ---
11975
11976 Hash table lookup is handled the same in version 1 and 2:
11977
11978 We assume that N and M will not exceed 2^32 - 1.
11979 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
11980
11981 Given a 64-bit compilation unit signature or a type signature S, an entry
11982 in the hash table is located as follows:
11983
11984 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
11985 the low-order k bits all set to 1.
11986
11987 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
11988
11989 3) If the hash table entry at index H matches the signature, use that
11990 entry. If the hash table entry at index H is unused (all zeroes),
11991 terminate the search: the signature is not present in the table.
11992
11993 4) Let H = (H + H') modulo M. Repeat at Step 3.
11994
11995 Because M > N and H' and M are relatively prime, the search is guaranteed
11996 to stop at an unused slot or find the match. */
11997
11998 /* Create a hash table to map DWO IDs to their CU/TU entry in
11999 .debug_{info,types}.dwo in DWP_FILE.
12000 Returns NULL if there isn't one.
12001 Note: This function processes DWP files only, not DWO files. */
12002
12003 static struct dwp_hash_table *
12004 create_dwp_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
12005 struct dwp_file *dwp_file, int is_debug_types)
12006 {
12007 struct objfile *objfile = dwarf2_per_objfile->objfile;
12008 bfd *dbfd = dwp_file->dbfd.get ();
12009 const gdb_byte *index_ptr, *index_end;
12010 struct dwarf2_section_info *index;
12011 uint32_t version, nr_columns, nr_units, nr_slots;
12012 struct dwp_hash_table *htab;
12013
12014 if (is_debug_types)
12015 index = &dwp_file->sections.tu_index;
12016 else
12017 index = &dwp_file->sections.cu_index;
12018
12019 if (dwarf2_section_empty_p (index))
12020 return NULL;
12021 dwarf2_read_section (objfile, index);
12022
12023 index_ptr = index->buffer;
12024 index_end = index_ptr + index->size;
12025
12026 version = read_4_bytes (dbfd, index_ptr);
12027 index_ptr += 4;
12028 if (version == 2)
12029 nr_columns = read_4_bytes (dbfd, index_ptr);
12030 else
12031 nr_columns = 0;
12032 index_ptr += 4;
12033 nr_units = read_4_bytes (dbfd, index_ptr);
12034 index_ptr += 4;
12035 nr_slots = read_4_bytes (dbfd, index_ptr);
12036 index_ptr += 4;
12037
12038 if (version != 1 && version != 2)
12039 {
12040 error (_("Dwarf Error: unsupported DWP file version (%s)"
12041 " [in module %s]"),
12042 pulongest (version), dwp_file->name);
12043 }
12044 if (nr_slots != (nr_slots & -nr_slots))
12045 {
12046 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
12047 " is not power of 2 [in module %s]"),
12048 pulongest (nr_slots), dwp_file->name);
12049 }
12050
12051 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
12052 htab->version = version;
12053 htab->nr_columns = nr_columns;
12054 htab->nr_units = nr_units;
12055 htab->nr_slots = nr_slots;
12056 htab->hash_table = index_ptr;
12057 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
12058
12059 /* Exit early if the table is empty. */
12060 if (nr_slots == 0 || nr_units == 0
12061 || (version == 2 && nr_columns == 0))
12062 {
12063 /* All must be zero. */
12064 if (nr_slots != 0 || nr_units != 0
12065 || (version == 2 && nr_columns != 0))
12066 {
12067 complaint (_("Empty DWP but nr_slots,nr_units,nr_columns not"
12068 " all zero [in modules %s]"),
12069 dwp_file->name);
12070 }
12071 return htab;
12072 }
12073
12074 if (version == 1)
12075 {
12076 htab->section_pool.v1.indices =
12077 htab->unit_table + sizeof (uint32_t) * nr_slots;
12078 /* It's harder to decide whether the section is too small in v1.
12079 V1 is deprecated anyway so we punt. */
12080 }
12081 else
12082 {
12083 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
12084 int *ids = htab->section_pool.v2.section_ids;
12085 /* Reverse map for error checking. */
12086 int ids_seen[DW_SECT_MAX + 1];
12087 int i;
12088
12089 if (nr_columns < 2)
12090 {
12091 error (_("Dwarf Error: bad DWP hash table, too few columns"
12092 " in section table [in module %s]"),
12093 dwp_file->name);
12094 }
12095 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
12096 {
12097 error (_("Dwarf Error: bad DWP hash table, too many columns"
12098 " in section table [in module %s]"),
12099 dwp_file->name);
12100 }
12101 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
12102 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
12103 for (i = 0; i < nr_columns; ++i)
12104 {
12105 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
12106
12107 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
12108 {
12109 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
12110 " in section table [in module %s]"),
12111 id, dwp_file->name);
12112 }
12113 if (ids_seen[id] != -1)
12114 {
12115 error (_("Dwarf Error: bad DWP hash table, duplicate section"
12116 " id %d in section table [in module %s]"),
12117 id, dwp_file->name);
12118 }
12119 ids_seen[id] = i;
12120 ids[i] = id;
12121 }
12122 /* Must have exactly one info or types section. */
12123 if (((ids_seen[DW_SECT_INFO] != -1)
12124 + (ids_seen[DW_SECT_TYPES] != -1))
12125 != 1)
12126 {
12127 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
12128 " DWO info/types section [in module %s]"),
12129 dwp_file->name);
12130 }
12131 /* Must have an abbrev section. */
12132 if (ids_seen[DW_SECT_ABBREV] == -1)
12133 {
12134 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
12135 " section [in module %s]"),
12136 dwp_file->name);
12137 }
12138 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
12139 htab->section_pool.v2.sizes =
12140 htab->section_pool.v2.offsets + (sizeof (uint32_t)
12141 * nr_units * nr_columns);
12142 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
12143 * nr_units * nr_columns))
12144 > index_end)
12145 {
12146 error (_("Dwarf Error: DWP index section is corrupt (too small)"
12147 " [in module %s]"),
12148 dwp_file->name);
12149 }
12150 }
12151
12152 return htab;
12153 }
12154
12155 /* Update SECTIONS with the data from SECTP.
12156
12157 This function is like the other "locate" section routines that are
12158 passed to bfd_map_over_sections, but in this context the sections to
12159 read comes from the DWP V1 hash table, not the full ELF section table.
12160
12161 The result is non-zero for success, or zero if an error was found. */
12162
12163 static int
12164 locate_v1_virtual_dwo_sections (asection *sectp,
12165 struct virtual_v1_dwo_sections *sections)
12166 {
12167 const struct dwop_section_names *names = &dwop_section_names;
12168
12169 if (section_is_p (sectp->name, &names->abbrev_dwo))
12170 {
12171 /* There can be only one. */
12172 if (sections->abbrev.s.section != NULL)
12173 return 0;
12174 sections->abbrev.s.section = sectp;
12175 sections->abbrev.size = bfd_get_section_size (sectp);
12176 }
12177 else if (section_is_p (sectp->name, &names->info_dwo)
12178 || section_is_p (sectp->name, &names->types_dwo))
12179 {
12180 /* There can be only one. */
12181 if (sections->info_or_types.s.section != NULL)
12182 return 0;
12183 sections->info_or_types.s.section = sectp;
12184 sections->info_or_types.size = bfd_get_section_size (sectp);
12185 }
12186 else if (section_is_p (sectp->name, &names->line_dwo))
12187 {
12188 /* There can be only one. */
12189 if (sections->line.s.section != NULL)
12190 return 0;
12191 sections->line.s.section = sectp;
12192 sections->line.size = bfd_get_section_size (sectp);
12193 }
12194 else if (section_is_p (sectp->name, &names->loc_dwo))
12195 {
12196 /* There can be only one. */
12197 if (sections->loc.s.section != NULL)
12198 return 0;
12199 sections->loc.s.section = sectp;
12200 sections->loc.size = bfd_get_section_size (sectp);
12201 }
12202 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12203 {
12204 /* There can be only one. */
12205 if (sections->macinfo.s.section != NULL)
12206 return 0;
12207 sections->macinfo.s.section = sectp;
12208 sections->macinfo.size = bfd_get_section_size (sectp);
12209 }
12210 else if (section_is_p (sectp->name, &names->macro_dwo))
12211 {
12212 /* There can be only one. */
12213 if (sections->macro.s.section != NULL)
12214 return 0;
12215 sections->macro.s.section = sectp;
12216 sections->macro.size = bfd_get_section_size (sectp);
12217 }
12218 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12219 {
12220 /* There can be only one. */
12221 if (sections->str_offsets.s.section != NULL)
12222 return 0;
12223 sections->str_offsets.s.section = sectp;
12224 sections->str_offsets.size = bfd_get_section_size (sectp);
12225 }
12226 else
12227 {
12228 /* No other kind of section is valid. */
12229 return 0;
12230 }
12231
12232 return 1;
12233 }
12234
12235 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12236 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12237 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12238 This is for DWP version 1 files. */
12239
12240 static struct dwo_unit *
12241 create_dwo_unit_in_dwp_v1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12242 struct dwp_file *dwp_file,
12243 uint32_t unit_index,
12244 const char *comp_dir,
12245 ULONGEST signature, int is_debug_types)
12246 {
12247 struct objfile *objfile = dwarf2_per_objfile->objfile;
12248 const struct dwp_hash_table *dwp_htab =
12249 is_debug_types ? dwp_file->tus : dwp_file->cus;
12250 bfd *dbfd = dwp_file->dbfd.get ();
12251 const char *kind = is_debug_types ? "TU" : "CU";
12252 struct dwo_file *dwo_file;
12253 struct dwo_unit *dwo_unit;
12254 struct virtual_v1_dwo_sections sections;
12255 void **dwo_file_slot;
12256 int i;
12257
12258 gdb_assert (dwp_file->version == 1);
12259
12260 if (dwarf_read_debug)
12261 {
12262 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
12263 kind,
12264 pulongest (unit_index), hex_string (signature),
12265 dwp_file->name);
12266 }
12267
12268 /* Fetch the sections of this DWO unit.
12269 Put a limit on the number of sections we look for so that bad data
12270 doesn't cause us to loop forever. */
12271
12272 #define MAX_NR_V1_DWO_SECTIONS \
12273 (1 /* .debug_info or .debug_types */ \
12274 + 1 /* .debug_abbrev */ \
12275 + 1 /* .debug_line */ \
12276 + 1 /* .debug_loc */ \
12277 + 1 /* .debug_str_offsets */ \
12278 + 1 /* .debug_macro or .debug_macinfo */ \
12279 + 1 /* trailing zero */)
12280
12281 memset (&sections, 0, sizeof (sections));
12282
12283 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
12284 {
12285 asection *sectp;
12286 uint32_t section_nr =
12287 read_4_bytes (dbfd,
12288 dwp_htab->section_pool.v1.indices
12289 + (unit_index + i) * sizeof (uint32_t));
12290
12291 if (section_nr == 0)
12292 break;
12293 if (section_nr >= dwp_file->num_sections)
12294 {
12295 error (_("Dwarf Error: bad DWP hash table, section number too large"
12296 " [in module %s]"),
12297 dwp_file->name);
12298 }
12299
12300 sectp = dwp_file->elf_sections[section_nr];
12301 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
12302 {
12303 error (_("Dwarf Error: bad DWP hash table, invalid section found"
12304 " [in module %s]"),
12305 dwp_file->name);
12306 }
12307 }
12308
12309 if (i < 2
12310 || dwarf2_section_empty_p (&sections.info_or_types)
12311 || dwarf2_section_empty_p (&sections.abbrev))
12312 {
12313 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
12314 " [in module %s]"),
12315 dwp_file->name);
12316 }
12317 if (i == MAX_NR_V1_DWO_SECTIONS)
12318 {
12319 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
12320 " [in module %s]"),
12321 dwp_file->name);
12322 }
12323
12324 /* It's easier for the rest of the code if we fake a struct dwo_file and
12325 have dwo_unit "live" in that. At least for now.
12326
12327 The DWP file can be made up of a random collection of CUs and TUs.
12328 However, for each CU + set of TUs that came from the same original DWO
12329 file, we can combine them back into a virtual DWO file to save space
12330 (fewer struct dwo_file objects to allocate). Remember that for really
12331 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12332
12333 std::string virtual_dwo_name =
12334 string_printf ("virtual-dwo/%d-%d-%d-%d",
12335 get_section_id (&sections.abbrev),
12336 get_section_id (&sections.line),
12337 get_section_id (&sections.loc),
12338 get_section_id (&sections.str_offsets));
12339 /* Can we use an existing virtual DWO file? */
12340 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12341 virtual_dwo_name.c_str (),
12342 comp_dir);
12343 /* Create one if necessary. */
12344 if (*dwo_file_slot == NULL)
12345 {
12346 if (dwarf_read_debug)
12347 {
12348 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12349 virtual_dwo_name.c_str ());
12350 }
12351 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12352 dwo_file->dwo_name
12353 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12354 virtual_dwo_name.c_str (),
12355 virtual_dwo_name.size ());
12356 dwo_file->comp_dir = comp_dir;
12357 dwo_file->sections.abbrev = sections.abbrev;
12358 dwo_file->sections.line = sections.line;
12359 dwo_file->sections.loc = sections.loc;
12360 dwo_file->sections.macinfo = sections.macinfo;
12361 dwo_file->sections.macro = sections.macro;
12362 dwo_file->sections.str_offsets = sections.str_offsets;
12363 /* The "str" section is global to the entire DWP file. */
12364 dwo_file->sections.str = dwp_file->sections.str;
12365 /* The info or types section is assigned below to dwo_unit,
12366 there's no need to record it in dwo_file.
12367 Also, we can't simply record type sections in dwo_file because
12368 we record a pointer into the vector in dwo_unit. As we collect more
12369 types we'll grow the vector and eventually have to reallocate space
12370 for it, invalidating all copies of pointers into the previous
12371 contents. */
12372 *dwo_file_slot = dwo_file;
12373 }
12374 else
12375 {
12376 if (dwarf_read_debug)
12377 {
12378 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12379 virtual_dwo_name.c_str ());
12380 }
12381 dwo_file = (struct dwo_file *) *dwo_file_slot;
12382 }
12383
12384 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12385 dwo_unit->dwo_file = dwo_file;
12386 dwo_unit->signature = signature;
12387 dwo_unit->section =
12388 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12389 *dwo_unit->section = sections.info_or_types;
12390 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12391
12392 return dwo_unit;
12393 }
12394
12395 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
12396 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
12397 piece within that section used by a TU/CU, return a virtual section
12398 of just that piece. */
12399
12400 static struct dwarf2_section_info
12401 create_dwp_v2_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
12402 struct dwarf2_section_info *section,
12403 bfd_size_type offset, bfd_size_type size)
12404 {
12405 struct dwarf2_section_info result;
12406 asection *sectp;
12407
12408 gdb_assert (section != NULL);
12409 gdb_assert (!section->is_virtual);
12410
12411 memset (&result, 0, sizeof (result));
12412 result.s.containing_section = section;
12413 result.is_virtual = 1;
12414
12415 if (size == 0)
12416 return result;
12417
12418 sectp = get_section_bfd_section (section);
12419
12420 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
12421 bounds of the real section. This is a pretty-rare event, so just
12422 flag an error (easier) instead of a warning and trying to cope. */
12423 if (sectp == NULL
12424 || offset + size > bfd_get_section_size (sectp))
12425 {
12426 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
12427 " in section %s [in module %s]"),
12428 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
12429 objfile_name (dwarf2_per_objfile->objfile));
12430 }
12431
12432 result.virtual_offset = offset;
12433 result.size = size;
12434 return result;
12435 }
12436
12437 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12438 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12439 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12440 This is for DWP version 2 files. */
12441
12442 static struct dwo_unit *
12443 create_dwo_unit_in_dwp_v2 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12444 struct dwp_file *dwp_file,
12445 uint32_t unit_index,
12446 const char *comp_dir,
12447 ULONGEST signature, int is_debug_types)
12448 {
12449 struct objfile *objfile = dwarf2_per_objfile->objfile;
12450 const struct dwp_hash_table *dwp_htab =
12451 is_debug_types ? dwp_file->tus : dwp_file->cus;
12452 bfd *dbfd = dwp_file->dbfd.get ();
12453 const char *kind = is_debug_types ? "TU" : "CU";
12454 struct dwo_file *dwo_file;
12455 struct dwo_unit *dwo_unit;
12456 struct virtual_v2_dwo_sections sections;
12457 void **dwo_file_slot;
12458 int i;
12459
12460 gdb_assert (dwp_file->version == 2);
12461
12462 if (dwarf_read_debug)
12463 {
12464 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
12465 kind,
12466 pulongest (unit_index), hex_string (signature),
12467 dwp_file->name);
12468 }
12469
12470 /* Fetch the section offsets of this DWO unit. */
12471
12472 memset (&sections, 0, sizeof (sections));
12473
12474 for (i = 0; i < dwp_htab->nr_columns; ++i)
12475 {
12476 uint32_t offset = read_4_bytes (dbfd,
12477 dwp_htab->section_pool.v2.offsets
12478 + (((unit_index - 1) * dwp_htab->nr_columns
12479 + i)
12480 * sizeof (uint32_t)));
12481 uint32_t size = read_4_bytes (dbfd,
12482 dwp_htab->section_pool.v2.sizes
12483 + (((unit_index - 1) * dwp_htab->nr_columns
12484 + i)
12485 * sizeof (uint32_t)));
12486
12487 switch (dwp_htab->section_pool.v2.section_ids[i])
12488 {
12489 case DW_SECT_INFO:
12490 case DW_SECT_TYPES:
12491 sections.info_or_types_offset = offset;
12492 sections.info_or_types_size = size;
12493 break;
12494 case DW_SECT_ABBREV:
12495 sections.abbrev_offset = offset;
12496 sections.abbrev_size = size;
12497 break;
12498 case DW_SECT_LINE:
12499 sections.line_offset = offset;
12500 sections.line_size = size;
12501 break;
12502 case DW_SECT_LOC:
12503 sections.loc_offset = offset;
12504 sections.loc_size = size;
12505 break;
12506 case DW_SECT_STR_OFFSETS:
12507 sections.str_offsets_offset = offset;
12508 sections.str_offsets_size = size;
12509 break;
12510 case DW_SECT_MACINFO:
12511 sections.macinfo_offset = offset;
12512 sections.macinfo_size = size;
12513 break;
12514 case DW_SECT_MACRO:
12515 sections.macro_offset = offset;
12516 sections.macro_size = size;
12517 break;
12518 }
12519 }
12520
12521 /* It's easier for the rest of the code if we fake a struct dwo_file and
12522 have dwo_unit "live" in that. At least for now.
12523
12524 The DWP file can be made up of a random collection of CUs and TUs.
12525 However, for each CU + set of TUs that came from the same original DWO
12526 file, we can combine them back into a virtual DWO file to save space
12527 (fewer struct dwo_file objects to allocate). Remember that for really
12528 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12529
12530 std::string virtual_dwo_name =
12531 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
12532 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
12533 (long) (sections.line_size ? sections.line_offset : 0),
12534 (long) (sections.loc_size ? sections.loc_offset : 0),
12535 (long) (sections.str_offsets_size
12536 ? sections.str_offsets_offset : 0));
12537 /* Can we use an existing virtual DWO file? */
12538 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12539 virtual_dwo_name.c_str (),
12540 comp_dir);
12541 /* Create one if necessary. */
12542 if (*dwo_file_slot == NULL)
12543 {
12544 if (dwarf_read_debug)
12545 {
12546 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12547 virtual_dwo_name.c_str ());
12548 }
12549 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12550 dwo_file->dwo_name
12551 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12552 virtual_dwo_name.c_str (),
12553 virtual_dwo_name.size ());
12554 dwo_file->comp_dir = comp_dir;
12555 dwo_file->sections.abbrev =
12556 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.abbrev,
12557 sections.abbrev_offset, sections.abbrev_size);
12558 dwo_file->sections.line =
12559 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.line,
12560 sections.line_offset, sections.line_size);
12561 dwo_file->sections.loc =
12562 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.loc,
12563 sections.loc_offset, sections.loc_size);
12564 dwo_file->sections.macinfo =
12565 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macinfo,
12566 sections.macinfo_offset, sections.macinfo_size);
12567 dwo_file->sections.macro =
12568 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macro,
12569 sections.macro_offset, sections.macro_size);
12570 dwo_file->sections.str_offsets =
12571 create_dwp_v2_section (dwarf2_per_objfile,
12572 &dwp_file->sections.str_offsets,
12573 sections.str_offsets_offset,
12574 sections.str_offsets_size);
12575 /* The "str" section is global to the entire DWP file. */
12576 dwo_file->sections.str = dwp_file->sections.str;
12577 /* The info or types section is assigned below to dwo_unit,
12578 there's no need to record it in dwo_file.
12579 Also, we can't simply record type sections in dwo_file because
12580 we record a pointer into the vector in dwo_unit. As we collect more
12581 types we'll grow the vector and eventually have to reallocate space
12582 for it, invalidating all copies of pointers into the previous
12583 contents. */
12584 *dwo_file_slot = dwo_file;
12585 }
12586 else
12587 {
12588 if (dwarf_read_debug)
12589 {
12590 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12591 virtual_dwo_name.c_str ());
12592 }
12593 dwo_file = (struct dwo_file *) *dwo_file_slot;
12594 }
12595
12596 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12597 dwo_unit->dwo_file = dwo_file;
12598 dwo_unit->signature = signature;
12599 dwo_unit->section =
12600 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12601 *dwo_unit->section = create_dwp_v2_section (dwarf2_per_objfile,
12602 is_debug_types
12603 ? &dwp_file->sections.types
12604 : &dwp_file->sections.info,
12605 sections.info_or_types_offset,
12606 sections.info_or_types_size);
12607 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12608
12609 return dwo_unit;
12610 }
12611
12612 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
12613 Returns NULL if the signature isn't found. */
12614
12615 static struct dwo_unit *
12616 lookup_dwo_unit_in_dwp (struct dwarf2_per_objfile *dwarf2_per_objfile,
12617 struct dwp_file *dwp_file, const char *comp_dir,
12618 ULONGEST signature, int is_debug_types)
12619 {
12620 const struct dwp_hash_table *dwp_htab =
12621 is_debug_types ? dwp_file->tus : dwp_file->cus;
12622 bfd *dbfd = dwp_file->dbfd.get ();
12623 uint32_t mask = dwp_htab->nr_slots - 1;
12624 uint32_t hash = signature & mask;
12625 uint32_t hash2 = ((signature >> 32) & mask) | 1;
12626 unsigned int i;
12627 void **slot;
12628 struct dwo_unit find_dwo_cu;
12629
12630 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
12631 find_dwo_cu.signature = signature;
12632 slot = htab_find_slot (is_debug_types
12633 ? dwp_file->loaded_tus
12634 : dwp_file->loaded_cus,
12635 &find_dwo_cu, INSERT);
12636
12637 if (*slot != NULL)
12638 return (struct dwo_unit *) *slot;
12639
12640 /* Use a for loop so that we don't loop forever on bad debug info. */
12641 for (i = 0; i < dwp_htab->nr_slots; ++i)
12642 {
12643 ULONGEST signature_in_table;
12644
12645 signature_in_table =
12646 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
12647 if (signature_in_table == signature)
12648 {
12649 uint32_t unit_index =
12650 read_4_bytes (dbfd,
12651 dwp_htab->unit_table + hash * sizeof (uint32_t));
12652
12653 if (dwp_file->version == 1)
12654 {
12655 *slot = create_dwo_unit_in_dwp_v1 (dwarf2_per_objfile,
12656 dwp_file, unit_index,
12657 comp_dir, signature,
12658 is_debug_types);
12659 }
12660 else
12661 {
12662 *slot = create_dwo_unit_in_dwp_v2 (dwarf2_per_objfile,
12663 dwp_file, unit_index,
12664 comp_dir, signature,
12665 is_debug_types);
12666 }
12667 return (struct dwo_unit *) *slot;
12668 }
12669 if (signature_in_table == 0)
12670 return NULL;
12671 hash = (hash + hash2) & mask;
12672 }
12673
12674 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
12675 " [in module %s]"),
12676 dwp_file->name);
12677 }
12678
12679 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
12680 Open the file specified by FILE_NAME and hand it off to BFD for
12681 preliminary analysis. Return a newly initialized bfd *, which
12682 includes a canonicalized copy of FILE_NAME.
12683 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
12684 SEARCH_CWD is true if the current directory is to be searched.
12685 It will be searched before debug-file-directory.
12686 If successful, the file is added to the bfd include table of the
12687 objfile's bfd (see gdb_bfd_record_inclusion).
12688 If unable to find/open the file, return NULL.
12689 NOTE: This function is derived from symfile_bfd_open. */
12690
12691 static gdb_bfd_ref_ptr
12692 try_open_dwop_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12693 const char *file_name, int is_dwp, int search_cwd)
12694 {
12695 int desc;
12696 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
12697 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
12698 to debug_file_directory. */
12699 const char *search_path;
12700 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
12701
12702 gdb::unique_xmalloc_ptr<char> search_path_holder;
12703 if (search_cwd)
12704 {
12705 if (*debug_file_directory != '\0')
12706 {
12707 search_path_holder.reset (concat (".", dirname_separator_string,
12708 debug_file_directory,
12709 (char *) NULL));
12710 search_path = search_path_holder.get ();
12711 }
12712 else
12713 search_path = ".";
12714 }
12715 else
12716 search_path = debug_file_directory;
12717
12718 openp_flags flags = OPF_RETURN_REALPATH;
12719 if (is_dwp)
12720 flags |= OPF_SEARCH_IN_PATH;
12721
12722 gdb::unique_xmalloc_ptr<char> absolute_name;
12723 desc = openp (search_path, flags, file_name,
12724 O_RDONLY | O_BINARY, &absolute_name);
12725 if (desc < 0)
12726 return NULL;
12727
12728 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name.get (),
12729 gnutarget, desc));
12730 if (sym_bfd == NULL)
12731 return NULL;
12732 bfd_set_cacheable (sym_bfd.get (), 1);
12733
12734 if (!bfd_check_format (sym_bfd.get (), bfd_object))
12735 return NULL;
12736
12737 /* Success. Record the bfd as having been included by the objfile's bfd.
12738 This is important because things like demangled_names_hash lives in the
12739 objfile's per_bfd space and may have references to things like symbol
12740 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
12741 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
12742
12743 return sym_bfd;
12744 }
12745
12746 /* Try to open DWO file FILE_NAME.
12747 COMP_DIR is the DW_AT_comp_dir attribute.
12748 The result is the bfd handle of the file.
12749 If there is a problem finding or opening the file, return NULL.
12750 Upon success, the canonicalized path of the file is stored in the bfd,
12751 same as symfile_bfd_open. */
12752
12753 static gdb_bfd_ref_ptr
12754 open_dwo_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12755 const char *file_name, const char *comp_dir)
12756 {
12757 if (IS_ABSOLUTE_PATH (file_name))
12758 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12759 0 /*is_dwp*/, 0 /*search_cwd*/);
12760
12761 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
12762
12763 if (comp_dir != NULL)
12764 {
12765 char *path_to_try = concat (comp_dir, SLASH_STRING,
12766 file_name, (char *) NULL);
12767
12768 /* NOTE: If comp_dir is a relative path, this will also try the
12769 search path, which seems useful. */
12770 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile,
12771 path_to_try,
12772 0 /*is_dwp*/,
12773 1 /*search_cwd*/));
12774 xfree (path_to_try);
12775 if (abfd != NULL)
12776 return abfd;
12777 }
12778
12779 /* That didn't work, try debug-file-directory, which, despite its name,
12780 is a list of paths. */
12781
12782 if (*debug_file_directory == '\0')
12783 return NULL;
12784
12785 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12786 0 /*is_dwp*/, 1 /*search_cwd*/);
12787 }
12788
12789 /* This function is mapped across the sections and remembers the offset and
12790 size of each of the DWO debugging sections we are interested in. */
12791
12792 static void
12793 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
12794 {
12795 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
12796 const struct dwop_section_names *names = &dwop_section_names;
12797
12798 if (section_is_p (sectp->name, &names->abbrev_dwo))
12799 {
12800 dwo_sections->abbrev.s.section = sectp;
12801 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
12802 }
12803 else if (section_is_p (sectp->name, &names->info_dwo))
12804 {
12805 dwo_sections->info.s.section = sectp;
12806 dwo_sections->info.size = bfd_get_section_size (sectp);
12807 }
12808 else if (section_is_p (sectp->name, &names->line_dwo))
12809 {
12810 dwo_sections->line.s.section = sectp;
12811 dwo_sections->line.size = bfd_get_section_size (sectp);
12812 }
12813 else if (section_is_p (sectp->name, &names->loc_dwo))
12814 {
12815 dwo_sections->loc.s.section = sectp;
12816 dwo_sections->loc.size = bfd_get_section_size (sectp);
12817 }
12818 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12819 {
12820 dwo_sections->macinfo.s.section = sectp;
12821 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
12822 }
12823 else if (section_is_p (sectp->name, &names->macro_dwo))
12824 {
12825 dwo_sections->macro.s.section = sectp;
12826 dwo_sections->macro.size = bfd_get_section_size (sectp);
12827 }
12828 else if (section_is_p (sectp->name, &names->str_dwo))
12829 {
12830 dwo_sections->str.s.section = sectp;
12831 dwo_sections->str.size = bfd_get_section_size (sectp);
12832 }
12833 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12834 {
12835 dwo_sections->str_offsets.s.section = sectp;
12836 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
12837 }
12838 else if (section_is_p (sectp->name, &names->types_dwo))
12839 {
12840 struct dwarf2_section_info type_section;
12841
12842 memset (&type_section, 0, sizeof (type_section));
12843 type_section.s.section = sectp;
12844 type_section.size = bfd_get_section_size (sectp);
12845 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
12846 &type_section);
12847 }
12848 }
12849
12850 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
12851 by PER_CU. This is for the non-DWP case.
12852 The result is NULL if DWO_NAME can't be found. */
12853
12854 static struct dwo_file *
12855 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
12856 const char *dwo_name, const char *comp_dir)
12857 {
12858 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
12859 struct objfile *objfile = dwarf2_per_objfile->objfile;
12860
12861 gdb_bfd_ref_ptr dbfd (open_dwo_file (dwarf2_per_objfile, dwo_name, comp_dir));
12862 if (dbfd == NULL)
12863 {
12864 if (dwarf_read_debug)
12865 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
12866 return NULL;
12867 }
12868
12869 /* We use a unique pointer here, despite the obstack allocation,
12870 because a dwo_file needs some cleanup if it is abandoned. */
12871 dwo_file_up dwo_file (OBSTACK_ZALLOC (&objfile->objfile_obstack,
12872 struct dwo_file));
12873 dwo_file->dwo_name = dwo_name;
12874 dwo_file->comp_dir = comp_dir;
12875 dwo_file->dbfd = dbfd.release ();
12876
12877 bfd_map_over_sections (dwo_file->dbfd, dwarf2_locate_dwo_sections,
12878 &dwo_file->sections);
12879
12880 create_cus_hash_table (dwarf2_per_objfile, *dwo_file, dwo_file->sections.info,
12881 dwo_file->cus);
12882
12883 create_debug_types_hash_table (dwarf2_per_objfile, dwo_file.get (),
12884 dwo_file->sections.types, dwo_file->tus);
12885
12886 if (dwarf_read_debug)
12887 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
12888
12889 return dwo_file.release ();
12890 }
12891
12892 /* This function is mapped across the sections and remembers the offset and
12893 size of each of the DWP debugging sections common to version 1 and 2 that
12894 we are interested in. */
12895
12896 static void
12897 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
12898 void *dwp_file_ptr)
12899 {
12900 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
12901 const struct dwop_section_names *names = &dwop_section_names;
12902 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
12903
12904 /* Record the ELF section number for later lookup: this is what the
12905 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
12906 gdb_assert (elf_section_nr < dwp_file->num_sections);
12907 dwp_file->elf_sections[elf_section_nr] = sectp;
12908
12909 /* Look for specific sections that we need. */
12910 if (section_is_p (sectp->name, &names->str_dwo))
12911 {
12912 dwp_file->sections.str.s.section = sectp;
12913 dwp_file->sections.str.size = bfd_get_section_size (sectp);
12914 }
12915 else if (section_is_p (sectp->name, &names->cu_index))
12916 {
12917 dwp_file->sections.cu_index.s.section = sectp;
12918 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
12919 }
12920 else if (section_is_p (sectp->name, &names->tu_index))
12921 {
12922 dwp_file->sections.tu_index.s.section = sectp;
12923 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
12924 }
12925 }
12926
12927 /* This function is mapped across the sections and remembers the offset and
12928 size of each of the DWP version 2 debugging sections that we are interested
12929 in. This is split into a separate function because we don't know if we
12930 have version 1 or 2 until we parse the cu_index/tu_index sections. */
12931
12932 static void
12933 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
12934 {
12935 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
12936 const struct dwop_section_names *names = &dwop_section_names;
12937 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
12938
12939 /* Record the ELF section number for later lookup: this is what the
12940 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
12941 gdb_assert (elf_section_nr < dwp_file->num_sections);
12942 dwp_file->elf_sections[elf_section_nr] = sectp;
12943
12944 /* Look for specific sections that we need. */
12945 if (section_is_p (sectp->name, &names->abbrev_dwo))
12946 {
12947 dwp_file->sections.abbrev.s.section = sectp;
12948 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
12949 }
12950 else if (section_is_p (sectp->name, &names->info_dwo))
12951 {
12952 dwp_file->sections.info.s.section = sectp;
12953 dwp_file->sections.info.size = bfd_get_section_size (sectp);
12954 }
12955 else if (section_is_p (sectp->name, &names->line_dwo))
12956 {
12957 dwp_file->sections.line.s.section = sectp;
12958 dwp_file->sections.line.size = bfd_get_section_size (sectp);
12959 }
12960 else if (section_is_p (sectp->name, &names->loc_dwo))
12961 {
12962 dwp_file->sections.loc.s.section = sectp;
12963 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
12964 }
12965 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12966 {
12967 dwp_file->sections.macinfo.s.section = sectp;
12968 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
12969 }
12970 else if (section_is_p (sectp->name, &names->macro_dwo))
12971 {
12972 dwp_file->sections.macro.s.section = sectp;
12973 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
12974 }
12975 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12976 {
12977 dwp_file->sections.str_offsets.s.section = sectp;
12978 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
12979 }
12980 else if (section_is_p (sectp->name, &names->types_dwo))
12981 {
12982 dwp_file->sections.types.s.section = sectp;
12983 dwp_file->sections.types.size = bfd_get_section_size (sectp);
12984 }
12985 }
12986
12987 /* Hash function for dwp_file loaded CUs/TUs. */
12988
12989 static hashval_t
12990 hash_dwp_loaded_cutus (const void *item)
12991 {
12992 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
12993
12994 /* This drops the top 32 bits of the signature, but is ok for a hash. */
12995 return dwo_unit->signature;
12996 }
12997
12998 /* Equality function for dwp_file loaded CUs/TUs. */
12999
13000 static int
13001 eq_dwp_loaded_cutus (const void *a, const void *b)
13002 {
13003 const struct dwo_unit *dua = (const struct dwo_unit *) a;
13004 const struct dwo_unit *dub = (const struct dwo_unit *) b;
13005
13006 return dua->signature == dub->signature;
13007 }
13008
13009 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
13010
13011 static htab_t
13012 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
13013 {
13014 return htab_create_alloc_ex (3,
13015 hash_dwp_loaded_cutus,
13016 eq_dwp_loaded_cutus,
13017 NULL,
13018 &objfile->objfile_obstack,
13019 hashtab_obstack_allocate,
13020 dummy_obstack_deallocate);
13021 }
13022
13023 /* Try to open DWP file FILE_NAME.
13024 The result is the bfd handle of the file.
13025 If there is a problem finding or opening the file, return NULL.
13026 Upon success, the canonicalized path of the file is stored in the bfd,
13027 same as symfile_bfd_open. */
13028
13029 static gdb_bfd_ref_ptr
13030 open_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
13031 const char *file_name)
13032 {
13033 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile, file_name,
13034 1 /*is_dwp*/,
13035 1 /*search_cwd*/));
13036 if (abfd != NULL)
13037 return abfd;
13038
13039 /* Work around upstream bug 15652.
13040 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
13041 [Whether that's a "bug" is debatable, but it is getting in our way.]
13042 We have no real idea where the dwp file is, because gdb's realpath-ing
13043 of the executable's path may have discarded the needed info.
13044 [IWBN if the dwp file name was recorded in the executable, akin to
13045 .gnu_debuglink, but that doesn't exist yet.]
13046 Strip the directory from FILE_NAME and search again. */
13047 if (*debug_file_directory != '\0')
13048 {
13049 /* Don't implicitly search the current directory here.
13050 If the user wants to search "." to handle this case,
13051 it must be added to debug-file-directory. */
13052 return try_open_dwop_file (dwarf2_per_objfile,
13053 lbasename (file_name), 1 /*is_dwp*/,
13054 0 /*search_cwd*/);
13055 }
13056
13057 return NULL;
13058 }
13059
13060 /* Initialize the use of the DWP file for the current objfile.
13061 By convention the name of the DWP file is ${objfile}.dwp.
13062 The result is NULL if it can't be found. */
13063
13064 static std::unique_ptr<struct dwp_file>
13065 open_and_init_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13066 {
13067 struct objfile *objfile = dwarf2_per_objfile->objfile;
13068
13069 /* Try to find first .dwp for the binary file before any symbolic links
13070 resolving. */
13071
13072 /* If the objfile is a debug file, find the name of the real binary
13073 file and get the name of dwp file from there. */
13074 std::string dwp_name;
13075 if (objfile->separate_debug_objfile_backlink != NULL)
13076 {
13077 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
13078 const char *backlink_basename = lbasename (backlink->original_name);
13079
13080 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
13081 }
13082 else
13083 dwp_name = objfile->original_name;
13084
13085 dwp_name += ".dwp";
13086
13087 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ()));
13088 if (dbfd == NULL
13089 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
13090 {
13091 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
13092 dwp_name = objfile_name (objfile);
13093 dwp_name += ".dwp";
13094 dbfd = open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ());
13095 }
13096
13097 if (dbfd == NULL)
13098 {
13099 if (dwarf_read_debug)
13100 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
13101 return std::unique_ptr<dwp_file> ();
13102 }
13103
13104 const char *name = bfd_get_filename (dbfd.get ());
13105 std::unique_ptr<struct dwp_file> dwp_file
13106 (new struct dwp_file (name, std::move (dbfd)));
13107
13108 /* +1: section 0 is unused */
13109 dwp_file->num_sections = bfd_count_sections (dwp_file->dbfd) + 1;
13110 dwp_file->elf_sections =
13111 OBSTACK_CALLOC (&objfile->objfile_obstack,
13112 dwp_file->num_sections, asection *);
13113
13114 bfd_map_over_sections (dwp_file->dbfd.get (),
13115 dwarf2_locate_common_dwp_sections,
13116 dwp_file.get ());
13117
13118 dwp_file->cus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13119 0);
13120
13121 dwp_file->tus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13122 1);
13123
13124 /* The DWP file version is stored in the hash table. Oh well. */
13125 if (dwp_file->cus && dwp_file->tus
13126 && dwp_file->cus->version != dwp_file->tus->version)
13127 {
13128 /* Technically speaking, we should try to limp along, but this is
13129 pretty bizarre. We use pulongest here because that's the established
13130 portability solution (e.g, we cannot use %u for uint32_t). */
13131 error (_("Dwarf Error: DWP file CU version %s doesn't match"
13132 " TU version %s [in DWP file %s]"),
13133 pulongest (dwp_file->cus->version),
13134 pulongest (dwp_file->tus->version), dwp_name.c_str ());
13135 }
13136
13137 if (dwp_file->cus)
13138 dwp_file->version = dwp_file->cus->version;
13139 else if (dwp_file->tus)
13140 dwp_file->version = dwp_file->tus->version;
13141 else
13142 dwp_file->version = 2;
13143
13144 if (dwp_file->version == 2)
13145 bfd_map_over_sections (dwp_file->dbfd.get (),
13146 dwarf2_locate_v2_dwp_sections,
13147 dwp_file.get ());
13148
13149 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
13150 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
13151
13152 if (dwarf_read_debug)
13153 {
13154 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
13155 fprintf_unfiltered (gdb_stdlog,
13156 " %s CUs, %s TUs\n",
13157 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
13158 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
13159 }
13160
13161 return dwp_file;
13162 }
13163
13164 /* Wrapper around open_and_init_dwp_file, only open it once. */
13165
13166 static struct dwp_file *
13167 get_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13168 {
13169 if (! dwarf2_per_objfile->dwp_checked)
13170 {
13171 dwarf2_per_objfile->dwp_file
13172 = open_and_init_dwp_file (dwarf2_per_objfile);
13173 dwarf2_per_objfile->dwp_checked = 1;
13174 }
13175 return dwarf2_per_objfile->dwp_file.get ();
13176 }
13177
13178 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
13179 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
13180 or in the DWP file for the objfile, referenced by THIS_UNIT.
13181 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
13182 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
13183
13184 This is called, for example, when wanting to read a variable with a
13185 complex location. Therefore we don't want to do file i/o for every call.
13186 Therefore we don't want to look for a DWO file on every call.
13187 Therefore we first see if we've already seen SIGNATURE in a DWP file,
13188 then we check if we've already seen DWO_NAME, and only THEN do we check
13189 for a DWO file.
13190
13191 The result is a pointer to the dwo_unit object or NULL if we didn't find it
13192 (dwo_id mismatch or couldn't find the DWO/DWP file). */
13193
13194 static struct dwo_unit *
13195 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
13196 const char *dwo_name, const char *comp_dir,
13197 ULONGEST signature, int is_debug_types)
13198 {
13199 struct dwarf2_per_objfile *dwarf2_per_objfile = this_unit->dwarf2_per_objfile;
13200 struct objfile *objfile = dwarf2_per_objfile->objfile;
13201 const char *kind = is_debug_types ? "TU" : "CU";
13202 void **dwo_file_slot;
13203 struct dwo_file *dwo_file;
13204 struct dwp_file *dwp_file;
13205
13206 /* First see if there's a DWP file.
13207 If we have a DWP file but didn't find the DWO inside it, don't
13208 look for the original DWO file. It makes gdb behave differently
13209 depending on whether one is debugging in the build tree. */
13210
13211 dwp_file = get_dwp_file (dwarf2_per_objfile);
13212 if (dwp_file != NULL)
13213 {
13214 const struct dwp_hash_table *dwp_htab =
13215 is_debug_types ? dwp_file->tus : dwp_file->cus;
13216
13217 if (dwp_htab != NULL)
13218 {
13219 struct dwo_unit *dwo_cutu =
13220 lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, comp_dir,
13221 signature, is_debug_types);
13222
13223 if (dwo_cutu != NULL)
13224 {
13225 if (dwarf_read_debug)
13226 {
13227 fprintf_unfiltered (gdb_stdlog,
13228 "Virtual DWO %s %s found: @%s\n",
13229 kind, hex_string (signature),
13230 host_address_to_string (dwo_cutu));
13231 }
13232 return dwo_cutu;
13233 }
13234 }
13235 }
13236 else
13237 {
13238 /* No DWP file, look for the DWO file. */
13239
13240 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
13241 dwo_name, comp_dir);
13242 if (*dwo_file_slot == NULL)
13243 {
13244 /* Read in the file and build a table of the CUs/TUs it contains. */
13245 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
13246 }
13247 /* NOTE: This will be NULL if unable to open the file. */
13248 dwo_file = (struct dwo_file *) *dwo_file_slot;
13249
13250 if (dwo_file != NULL)
13251 {
13252 struct dwo_unit *dwo_cutu = NULL;
13253
13254 if (is_debug_types && dwo_file->tus)
13255 {
13256 struct dwo_unit find_dwo_cutu;
13257
13258 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13259 find_dwo_cutu.signature = signature;
13260 dwo_cutu
13261 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
13262 }
13263 else if (!is_debug_types && dwo_file->cus)
13264 {
13265 struct dwo_unit find_dwo_cutu;
13266
13267 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13268 find_dwo_cutu.signature = signature;
13269 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus,
13270 &find_dwo_cutu);
13271 }
13272
13273 if (dwo_cutu != NULL)
13274 {
13275 if (dwarf_read_debug)
13276 {
13277 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
13278 kind, dwo_name, hex_string (signature),
13279 host_address_to_string (dwo_cutu));
13280 }
13281 return dwo_cutu;
13282 }
13283 }
13284 }
13285
13286 /* We didn't find it. This could mean a dwo_id mismatch, or
13287 someone deleted the DWO/DWP file, or the search path isn't set up
13288 correctly to find the file. */
13289
13290 if (dwarf_read_debug)
13291 {
13292 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
13293 kind, dwo_name, hex_string (signature));
13294 }
13295
13296 /* This is a warning and not a complaint because it can be caused by
13297 pilot error (e.g., user accidentally deleting the DWO). */
13298 {
13299 /* Print the name of the DWP file if we looked there, helps the user
13300 better diagnose the problem. */
13301 std::string dwp_text;
13302
13303 if (dwp_file != NULL)
13304 dwp_text = string_printf (" [in DWP file %s]",
13305 lbasename (dwp_file->name));
13306
13307 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset %s"
13308 " [in module %s]"),
13309 kind, dwo_name, hex_string (signature),
13310 dwp_text.c_str (),
13311 this_unit->is_debug_types ? "TU" : "CU",
13312 sect_offset_str (this_unit->sect_off), objfile_name (objfile));
13313 }
13314 return NULL;
13315 }
13316
13317 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
13318 See lookup_dwo_cutu_unit for details. */
13319
13320 static struct dwo_unit *
13321 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
13322 const char *dwo_name, const char *comp_dir,
13323 ULONGEST signature)
13324 {
13325 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
13326 }
13327
13328 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
13329 See lookup_dwo_cutu_unit for details. */
13330
13331 static struct dwo_unit *
13332 lookup_dwo_type_unit (struct signatured_type *this_tu,
13333 const char *dwo_name, const char *comp_dir)
13334 {
13335 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
13336 }
13337
13338 /* Traversal function for queue_and_load_all_dwo_tus. */
13339
13340 static int
13341 queue_and_load_dwo_tu (void **slot, void *info)
13342 {
13343 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
13344 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
13345 ULONGEST signature = dwo_unit->signature;
13346 struct signatured_type *sig_type =
13347 lookup_dwo_signatured_type (per_cu->cu, signature);
13348
13349 if (sig_type != NULL)
13350 {
13351 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
13352
13353 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
13354 a real dependency of PER_CU on SIG_TYPE. That is detected later
13355 while processing PER_CU. */
13356 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
13357 load_full_type_unit (sig_cu);
13358 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
13359 }
13360
13361 return 1;
13362 }
13363
13364 /* Queue all TUs contained in the DWO of PER_CU to be read in.
13365 The DWO may have the only definition of the type, though it may not be
13366 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
13367 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
13368
13369 static void
13370 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
13371 {
13372 struct dwo_unit *dwo_unit;
13373 struct dwo_file *dwo_file;
13374
13375 gdb_assert (!per_cu->is_debug_types);
13376 gdb_assert (get_dwp_file (per_cu->dwarf2_per_objfile) == NULL);
13377 gdb_assert (per_cu->cu != NULL);
13378
13379 dwo_unit = per_cu->cu->dwo_unit;
13380 gdb_assert (dwo_unit != NULL);
13381
13382 dwo_file = dwo_unit->dwo_file;
13383 if (dwo_file->tus != NULL)
13384 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
13385 }
13386
13387 /* Free all resources associated with DWO_FILE.
13388 Close the DWO file and munmap the sections. */
13389
13390 static void
13391 free_dwo_file (struct dwo_file *dwo_file)
13392 {
13393 /* Note: dbfd is NULL for virtual DWO files. */
13394 gdb_bfd_unref (dwo_file->dbfd);
13395
13396 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
13397 }
13398
13399 /* Traversal function for free_dwo_files. */
13400
13401 static int
13402 free_dwo_file_from_slot (void **slot, void *info)
13403 {
13404 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
13405
13406 free_dwo_file (dwo_file);
13407
13408 return 1;
13409 }
13410
13411 /* Free all resources associated with DWO_FILES. */
13412
13413 static void
13414 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
13415 {
13416 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
13417 }
13418 \f
13419 /* Read in various DIEs. */
13420
13421 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
13422 Inherit only the children of the DW_AT_abstract_origin DIE not being
13423 already referenced by DW_AT_abstract_origin from the children of the
13424 current DIE. */
13425
13426 static void
13427 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
13428 {
13429 struct die_info *child_die;
13430 sect_offset *offsetp;
13431 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
13432 struct die_info *origin_die;
13433 /* Iterator of the ORIGIN_DIE children. */
13434 struct die_info *origin_child_die;
13435 struct attribute *attr;
13436 struct dwarf2_cu *origin_cu;
13437 struct pending **origin_previous_list_in_scope;
13438
13439 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13440 if (!attr)
13441 return;
13442
13443 /* Note that following die references may follow to a die in a
13444 different cu. */
13445
13446 origin_cu = cu;
13447 origin_die = follow_die_ref (die, attr, &origin_cu);
13448
13449 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
13450 symbols in. */
13451 origin_previous_list_in_scope = origin_cu->list_in_scope;
13452 origin_cu->list_in_scope = cu->list_in_scope;
13453
13454 if (die->tag != origin_die->tag
13455 && !(die->tag == DW_TAG_inlined_subroutine
13456 && origin_die->tag == DW_TAG_subprogram))
13457 complaint (_("DIE %s and its abstract origin %s have different tags"),
13458 sect_offset_str (die->sect_off),
13459 sect_offset_str (origin_die->sect_off));
13460
13461 std::vector<sect_offset> offsets;
13462
13463 for (child_die = die->child;
13464 child_die && child_die->tag;
13465 child_die = sibling_die (child_die))
13466 {
13467 struct die_info *child_origin_die;
13468 struct dwarf2_cu *child_origin_cu;
13469
13470 /* We are trying to process concrete instance entries:
13471 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
13472 it's not relevant to our analysis here. i.e. detecting DIEs that are
13473 present in the abstract instance but not referenced in the concrete
13474 one. */
13475 if (child_die->tag == DW_TAG_call_site
13476 || child_die->tag == DW_TAG_GNU_call_site)
13477 continue;
13478
13479 /* For each CHILD_DIE, find the corresponding child of
13480 ORIGIN_DIE. If there is more than one layer of
13481 DW_AT_abstract_origin, follow them all; there shouldn't be,
13482 but GCC versions at least through 4.4 generate this (GCC PR
13483 40573). */
13484 child_origin_die = child_die;
13485 child_origin_cu = cu;
13486 while (1)
13487 {
13488 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
13489 child_origin_cu);
13490 if (attr == NULL)
13491 break;
13492 child_origin_die = follow_die_ref (child_origin_die, attr,
13493 &child_origin_cu);
13494 }
13495
13496 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
13497 counterpart may exist. */
13498 if (child_origin_die != child_die)
13499 {
13500 if (child_die->tag != child_origin_die->tag
13501 && !(child_die->tag == DW_TAG_inlined_subroutine
13502 && child_origin_die->tag == DW_TAG_subprogram))
13503 complaint (_("Child DIE %s and its abstract origin %s have "
13504 "different tags"),
13505 sect_offset_str (child_die->sect_off),
13506 sect_offset_str (child_origin_die->sect_off));
13507 if (child_origin_die->parent != origin_die)
13508 complaint (_("Child DIE %s and its abstract origin %s have "
13509 "different parents"),
13510 sect_offset_str (child_die->sect_off),
13511 sect_offset_str (child_origin_die->sect_off));
13512 else
13513 offsets.push_back (child_origin_die->sect_off);
13514 }
13515 }
13516 std::sort (offsets.begin (), offsets.end ());
13517 sect_offset *offsets_end = offsets.data () + offsets.size ();
13518 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
13519 if (offsetp[-1] == *offsetp)
13520 complaint (_("Multiple children of DIE %s refer "
13521 "to DIE %s as their abstract origin"),
13522 sect_offset_str (die->sect_off), sect_offset_str (*offsetp));
13523
13524 offsetp = offsets.data ();
13525 origin_child_die = origin_die->child;
13526 while (origin_child_die && origin_child_die->tag)
13527 {
13528 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
13529 while (offsetp < offsets_end
13530 && *offsetp < origin_child_die->sect_off)
13531 offsetp++;
13532 if (offsetp >= offsets_end
13533 || *offsetp > origin_child_die->sect_off)
13534 {
13535 /* Found that ORIGIN_CHILD_DIE is really not referenced.
13536 Check whether we're already processing ORIGIN_CHILD_DIE.
13537 This can happen with mutually referenced abstract_origins.
13538 PR 16581. */
13539 if (!origin_child_die->in_process)
13540 process_die (origin_child_die, origin_cu);
13541 }
13542 origin_child_die = sibling_die (origin_child_die);
13543 }
13544 origin_cu->list_in_scope = origin_previous_list_in_scope;
13545 }
13546
13547 static void
13548 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
13549 {
13550 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13551 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13552 struct context_stack *newobj;
13553 CORE_ADDR lowpc;
13554 CORE_ADDR highpc;
13555 struct die_info *child_die;
13556 struct attribute *attr, *call_line, *call_file;
13557 const char *name;
13558 CORE_ADDR baseaddr;
13559 struct block *block;
13560 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
13561 std::vector<struct symbol *> template_args;
13562 struct template_symbol *templ_func = NULL;
13563
13564 if (inlined_func)
13565 {
13566 /* If we do not have call site information, we can't show the
13567 caller of this inlined function. That's too confusing, so
13568 only use the scope for local variables. */
13569 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
13570 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
13571 if (call_line == NULL || call_file == NULL)
13572 {
13573 read_lexical_block_scope (die, cu);
13574 return;
13575 }
13576 }
13577
13578 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13579
13580 name = dwarf2_name (die, cu);
13581
13582 /* Ignore functions with missing or empty names. These are actually
13583 illegal according to the DWARF standard. */
13584 if (name == NULL)
13585 {
13586 complaint (_("missing name for subprogram DIE at %s"),
13587 sect_offset_str (die->sect_off));
13588 return;
13589 }
13590
13591 /* Ignore functions with missing or invalid low and high pc attributes. */
13592 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
13593 <= PC_BOUNDS_INVALID)
13594 {
13595 attr = dwarf2_attr (die, DW_AT_external, cu);
13596 if (!attr || !DW_UNSND (attr))
13597 complaint (_("cannot get low and high bounds "
13598 "for subprogram DIE at %s"),
13599 sect_offset_str (die->sect_off));
13600 return;
13601 }
13602
13603 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13604 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13605
13606 /* If we have any template arguments, then we must allocate a
13607 different sort of symbol. */
13608 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
13609 {
13610 if (child_die->tag == DW_TAG_template_type_param
13611 || child_die->tag == DW_TAG_template_value_param)
13612 {
13613 templ_func = allocate_template_symbol (objfile);
13614 templ_func->subclass = SYMBOL_TEMPLATE;
13615 break;
13616 }
13617 }
13618
13619 newobj = push_context (0, lowpc);
13620 newobj->name = new_symbol (die, read_type_die (die, cu), cu,
13621 (struct symbol *) templ_func);
13622
13623 /* If there is a location expression for DW_AT_frame_base, record
13624 it. */
13625 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
13626 if (attr)
13627 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
13628
13629 /* If there is a location for the static link, record it. */
13630 newobj->static_link = NULL;
13631 attr = dwarf2_attr (die, DW_AT_static_link, cu);
13632 if (attr)
13633 {
13634 newobj->static_link
13635 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
13636 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
13637 }
13638
13639 cu->list_in_scope = &local_symbols;
13640
13641 if (die->child != NULL)
13642 {
13643 child_die = die->child;
13644 while (child_die && child_die->tag)
13645 {
13646 if (child_die->tag == DW_TAG_template_type_param
13647 || child_die->tag == DW_TAG_template_value_param)
13648 {
13649 struct symbol *arg = new_symbol (child_die, NULL, cu);
13650
13651 if (arg != NULL)
13652 template_args.push_back (arg);
13653 }
13654 else
13655 process_die (child_die, cu);
13656 child_die = sibling_die (child_die);
13657 }
13658 }
13659
13660 inherit_abstract_dies (die, cu);
13661
13662 /* If we have a DW_AT_specification, we might need to import using
13663 directives from the context of the specification DIE. See the
13664 comment in determine_prefix. */
13665 if (cu->language == language_cplus
13666 && dwarf2_attr (die, DW_AT_specification, cu))
13667 {
13668 struct dwarf2_cu *spec_cu = cu;
13669 struct die_info *spec_die = die_specification (die, &spec_cu);
13670
13671 while (spec_die)
13672 {
13673 child_die = spec_die->child;
13674 while (child_die && child_die->tag)
13675 {
13676 if (child_die->tag == DW_TAG_imported_module)
13677 process_die (child_die, spec_cu);
13678 child_die = sibling_die (child_die);
13679 }
13680
13681 /* In some cases, GCC generates specification DIEs that
13682 themselves contain DW_AT_specification attributes. */
13683 spec_die = die_specification (spec_die, &spec_cu);
13684 }
13685 }
13686
13687 newobj = pop_context ();
13688 /* Make a block for the local symbols within. */
13689 block = finish_block (newobj->name, &local_symbols, newobj->old_blocks,
13690 newobj->static_link, lowpc, highpc);
13691
13692 /* For C++, set the block's scope. */
13693 if ((cu->language == language_cplus
13694 || cu->language == language_fortran
13695 || cu->language == language_d
13696 || cu->language == language_rust)
13697 && cu->processing_has_namespace_info)
13698 block_set_scope (block, determine_prefix (die, cu),
13699 &objfile->objfile_obstack);
13700
13701 /* If we have address ranges, record them. */
13702 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13703
13704 gdbarch_make_symbol_special (gdbarch, newobj->name, objfile);
13705
13706 /* Attach template arguments to function. */
13707 if (!template_args.empty ())
13708 {
13709 gdb_assert (templ_func != NULL);
13710
13711 templ_func->n_template_arguments = template_args.size ();
13712 templ_func->template_arguments
13713 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
13714 templ_func->n_template_arguments);
13715 memcpy (templ_func->template_arguments,
13716 template_args.data (),
13717 (templ_func->n_template_arguments * sizeof (struct symbol *)));
13718 }
13719
13720 /* In C++, we can have functions nested inside functions (e.g., when
13721 a function declares a class that has methods). This means that
13722 when we finish processing a function scope, we may need to go
13723 back to building a containing block's symbol lists. */
13724 local_symbols = newobj->locals;
13725 local_using_directives = newobj->local_using_directives;
13726
13727 /* If we've finished processing a top-level function, subsequent
13728 symbols go in the file symbol list. */
13729 if (outermost_context_p ())
13730 cu->list_in_scope = &file_symbols;
13731 }
13732
13733 /* Process all the DIES contained within a lexical block scope. Start
13734 a new scope, process the dies, and then close the scope. */
13735
13736 static void
13737 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
13738 {
13739 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13740 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13741 struct context_stack *newobj;
13742 CORE_ADDR lowpc, highpc;
13743 struct die_info *child_die;
13744 CORE_ADDR baseaddr;
13745
13746 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13747
13748 /* Ignore blocks with missing or invalid low and high pc attributes. */
13749 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
13750 as multiple lexical blocks? Handling children in a sane way would
13751 be nasty. Might be easier to properly extend generic blocks to
13752 describe ranges. */
13753 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
13754 {
13755 case PC_BOUNDS_NOT_PRESENT:
13756 /* DW_TAG_lexical_block has no attributes, process its children as if
13757 there was no wrapping by that DW_TAG_lexical_block.
13758 GCC does no longer produces such DWARF since GCC r224161. */
13759 for (child_die = die->child;
13760 child_die != NULL && child_die->tag;
13761 child_die = sibling_die (child_die))
13762 process_die (child_die, cu);
13763 return;
13764 case PC_BOUNDS_INVALID:
13765 return;
13766 }
13767 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13768 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13769
13770 push_context (0, lowpc);
13771 if (die->child != NULL)
13772 {
13773 child_die = die->child;
13774 while (child_die && child_die->tag)
13775 {
13776 process_die (child_die, cu);
13777 child_die = sibling_die (child_die);
13778 }
13779 }
13780 inherit_abstract_dies (die, cu);
13781 newobj = pop_context ();
13782
13783 if (local_symbols != NULL || local_using_directives != NULL)
13784 {
13785 struct block *block
13786 = finish_block (0, &local_symbols, newobj->old_blocks, NULL,
13787 newobj->start_addr, highpc);
13788
13789 /* Note that recording ranges after traversing children, as we
13790 do here, means that recording a parent's ranges entails
13791 walking across all its children's ranges as they appear in
13792 the address map, which is quadratic behavior.
13793
13794 It would be nicer to record the parent's ranges before
13795 traversing its children, simply overriding whatever you find
13796 there. But since we don't even decide whether to create a
13797 block until after we've traversed its children, that's hard
13798 to do. */
13799 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13800 }
13801 local_symbols = newobj->locals;
13802 local_using_directives = newobj->local_using_directives;
13803 }
13804
13805 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
13806
13807 static void
13808 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
13809 {
13810 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13811 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13812 CORE_ADDR pc, baseaddr;
13813 struct attribute *attr;
13814 struct call_site *call_site, call_site_local;
13815 void **slot;
13816 int nparams;
13817 struct die_info *child_die;
13818
13819 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13820
13821 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
13822 if (attr == NULL)
13823 {
13824 /* This was a pre-DWARF-5 GNU extension alias
13825 for DW_AT_call_return_pc. */
13826 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13827 }
13828 if (!attr)
13829 {
13830 complaint (_("missing DW_AT_call_return_pc for DW_TAG_call_site "
13831 "DIE %s [in module %s]"),
13832 sect_offset_str (die->sect_off), objfile_name (objfile));
13833 return;
13834 }
13835 pc = attr_value_as_address (attr) + baseaddr;
13836 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
13837
13838 if (cu->call_site_htab == NULL)
13839 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
13840 NULL, &objfile->objfile_obstack,
13841 hashtab_obstack_allocate, NULL);
13842 call_site_local.pc = pc;
13843 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
13844 if (*slot != NULL)
13845 {
13846 complaint (_("Duplicate PC %s for DW_TAG_call_site "
13847 "DIE %s [in module %s]"),
13848 paddress (gdbarch, pc), sect_offset_str (die->sect_off),
13849 objfile_name (objfile));
13850 return;
13851 }
13852
13853 /* Count parameters at the caller. */
13854
13855 nparams = 0;
13856 for (child_die = die->child; child_die && child_die->tag;
13857 child_die = sibling_die (child_die))
13858 {
13859 if (child_die->tag != DW_TAG_call_site_parameter
13860 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13861 {
13862 complaint (_("Tag %d is not DW_TAG_call_site_parameter in "
13863 "DW_TAG_call_site child DIE %s [in module %s]"),
13864 child_die->tag, sect_offset_str (child_die->sect_off),
13865 objfile_name (objfile));
13866 continue;
13867 }
13868
13869 nparams++;
13870 }
13871
13872 call_site
13873 = ((struct call_site *)
13874 obstack_alloc (&objfile->objfile_obstack,
13875 sizeof (*call_site)
13876 + (sizeof (*call_site->parameter) * (nparams - 1))));
13877 *slot = call_site;
13878 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
13879 call_site->pc = pc;
13880
13881 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
13882 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
13883 {
13884 struct die_info *func_die;
13885
13886 /* Skip also over DW_TAG_inlined_subroutine. */
13887 for (func_die = die->parent;
13888 func_die && func_die->tag != DW_TAG_subprogram
13889 && func_die->tag != DW_TAG_subroutine_type;
13890 func_die = func_die->parent);
13891
13892 /* DW_AT_call_all_calls is a superset
13893 of DW_AT_call_all_tail_calls. */
13894 if (func_die
13895 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
13896 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
13897 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
13898 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
13899 {
13900 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
13901 not complete. But keep CALL_SITE for look ups via call_site_htab,
13902 both the initial caller containing the real return address PC and
13903 the final callee containing the current PC of a chain of tail
13904 calls do not need to have the tail call list complete. But any
13905 function candidate for a virtual tail call frame searched via
13906 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
13907 determined unambiguously. */
13908 }
13909 else
13910 {
13911 struct type *func_type = NULL;
13912
13913 if (func_die)
13914 func_type = get_die_type (func_die, cu);
13915 if (func_type != NULL)
13916 {
13917 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
13918
13919 /* Enlist this call site to the function. */
13920 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
13921 TYPE_TAIL_CALL_LIST (func_type) = call_site;
13922 }
13923 else
13924 complaint (_("Cannot find function owning DW_TAG_call_site "
13925 "DIE %s [in module %s]"),
13926 sect_offset_str (die->sect_off), objfile_name (objfile));
13927 }
13928 }
13929
13930 attr = dwarf2_attr (die, DW_AT_call_target, cu);
13931 if (attr == NULL)
13932 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
13933 if (attr == NULL)
13934 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
13935 if (attr == NULL)
13936 {
13937 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
13938 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13939 }
13940 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
13941 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
13942 /* Keep NULL DWARF_BLOCK. */;
13943 else if (attr_form_is_block (attr))
13944 {
13945 struct dwarf2_locexpr_baton *dlbaton;
13946
13947 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
13948 dlbaton->data = DW_BLOCK (attr)->data;
13949 dlbaton->size = DW_BLOCK (attr)->size;
13950 dlbaton->per_cu = cu->per_cu;
13951
13952 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
13953 }
13954 else if (attr_form_is_ref (attr))
13955 {
13956 struct dwarf2_cu *target_cu = cu;
13957 struct die_info *target_die;
13958
13959 target_die = follow_die_ref (die, attr, &target_cu);
13960 gdb_assert (target_cu->per_cu->dwarf2_per_objfile->objfile == objfile);
13961 if (die_is_declaration (target_die, target_cu))
13962 {
13963 const char *target_physname;
13964
13965 /* Prefer the mangled name; otherwise compute the demangled one. */
13966 target_physname = dw2_linkage_name (target_die, target_cu);
13967 if (target_physname == NULL)
13968 target_physname = dwarf2_physname (NULL, target_die, target_cu);
13969 if (target_physname == NULL)
13970 complaint (_("DW_AT_call_target target DIE has invalid "
13971 "physname, for referencing DIE %s [in module %s]"),
13972 sect_offset_str (die->sect_off), objfile_name (objfile));
13973 else
13974 SET_FIELD_PHYSNAME (call_site->target, target_physname);
13975 }
13976 else
13977 {
13978 CORE_ADDR lowpc;
13979
13980 /* DW_AT_entry_pc should be preferred. */
13981 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
13982 <= PC_BOUNDS_INVALID)
13983 complaint (_("DW_AT_call_target target DIE has invalid "
13984 "low pc, for referencing DIE %s [in module %s]"),
13985 sect_offset_str (die->sect_off), objfile_name (objfile));
13986 else
13987 {
13988 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13989 SET_FIELD_PHYSADDR (call_site->target, lowpc);
13990 }
13991 }
13992 }
13993 else
13994 complaint (_("DW_TAG_call_site DW_AT_call_target is neither "
13995 "block nor reference, for DIE %s [in module %s]"),
13996 sect_offset_str (die->sect_off), objfile_name (objfile));
13997
13998 call_site->per_cu = cu->per_cu;
13999
14000 for (child_die = die->child;
14001 child_die && child_die->tag;
14002 child_die = sibling_die (child_die))
14003 {
14004 struct call_site_parameter *parameter;
14005 struct attribute *loc, *origin;
14006
14007 if (child_die->tag != DW_TAG_call_site_parameter
14008 && child_die->tag != DW_TAG_GNU_call_site_parameter)
14009 {
14010 /* Already printed the complaint above. */
14011 continue;
14012 }
14013
14014 gdb_assert (call_site->parameter_count < nparams);
14015 parameter = &call_site->parameter[call_site->parameter_count];
14016
14017 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
14018 specifies DW_TAG_formal_parameter. Value of the data assumed for the
14019 register is contained in DW_AT_call_value. */
14020
14021 loc = dwarf2_attr (child_die, DW_AT_location, cu);
14022 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
14023 if (origin == NULL)
14024 {
14025 /* This was a pre-DWARF-5 GNU extension alias
14026 for DW_AT_call_parameter. */
14027 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
14028 }
14029 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
14030 {
14031 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
14032
14033 sect_offset sect_off
14034 = (sect_offset) dwarf2_get_ref_die_offset (origin);
14035 if (!offset_in_cu_p (&cu->header, sect_off))
14036 {
14037 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
14038 binding can be done only inside one CU. Such referenced DIE
14039 therefore cannot be even moved to DW_TAG_partial_unit. */
14040 complaint (_("DW_AT_call_parameter offset is not in CU for "
14041 "DW_TAG_call_site child DIE %s [in module %s]"),
14042 sect_offset_str (child_die->sect_off),
14043 objfile_name (objfile));
14044 continue;
14045 }
14046 parameter->u.param_cu_off
14047 = (cu_offset) (sect_off - cu->header.sect_off);
14048 }
14049 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
14050 {
14051 complaint (_("No DW_FORM_block* DW_AT_location for "
14052 "DW_TAG_call_site child DIE %s [in module %s]"),
14053 sect_offset_str (child_die->sect_off), objfile_name (objfile));
14054 continue;
14055 }
14056 else
14057 {
14058 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
14059 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
14060 if (parameter->u.dwarf_reg != -1)
14061 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
14062 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
14063 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
14064 &parameter->u.fb_offset))
14065 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
14066 else
14067 {
14068 complaint (_("Only single DW_OP_reg or DW_OP_fbreg is supported "
14069 "for DW_FORM_block* DW_AT_location is supported for "
14070 "DW_TAG_call_site child DIE %s "
14071 "[in module %s]"),
14072 sect_offset_str (child_die->sect_off),
14073 objfile_name (objfile));
14074 continue;
14075 }
14076 }
14077
14078 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
14079 if (attr == NULL)
14080 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
14081 if (!attr_form_is_block (attr))
14082 {
14083 complaint (_("No DW_FORM_block* DW_AT_call_value for "
14084 "DW_TAG_call_site child DIE %s [in module %s]"),
14085 sect_offset_str (child_die->sect_off),
14086 objfile_name (objfile));
14087 continue;
14088 }
14089 parameter->value = DW_BLOCK (attr)->data;
14090 parameter->value_size = DW_BLOCK (attr)->size;
14091
14092 /* Parameters are not pre-cleared by memset above. */
14093 parameter->data_value = NULL;
14094 parameter->data_value_size = 0;
14095 call_site->parameter_count++;
14096
14097 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
14098 if (attr == NULL)
14099 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
14100 if (attr)
14101 {
14102 if (!attr_form_is_block (attr))
14103 complaint (_("No DW_FORM_block* DW_AT_call_data_value for "
14104 "DW_TAG_call_site child DIE %s [in module %s]"),
14105 sect_offset_str (child_die->sect_off),
14106 objfile_name (objfile));
14107 else
14108 {
14109 parameter->data_value = DW_BLOCK (attr)->data;
14110 parameter->data_value_size = DW_BLOCK (attr)->size;
14111 }
14112 }
14113 }
14114 }
14115
14116 /* Helper function for read_variable. If DIE represents a virtual
14117 table, then return the type of the concrete object that is
14118 associated with the virtual table. Otherwise, return NULL. */
14119
14120 static struct type *
14121 rust_containing_type (struct die_info *die, struct dwarf2_cu *cu)
14122 {
14123 struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu);
14124 if (attr == NULL)
14125 return NULL;
14126
14127 /* Find the type DIE. */
14128 struct die_info *type_die = NULL;
14129 struct dwarf2_cu *type_cu = cu;
14130
14131 if (attr_form_is_ref (attr))
14132 type_die = follow_die_ref (die, attr, &type_cu);
14133 if (type_die == NULL)
14134 return NULL;
14135
14136 if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL)
14137 return NULL;
14138 return die_containing_type (type_die, type_cu);
14139 }
14140
14141 /* Read a variable (DW_TAG_variable) DIE and create a new symbol. */
14142
14143 static void
14144 read_variable (struct die_info *die, struct dwarf2_cu *cu)
14145 {
14146 struct rust_vtable_symbol *storage = NULL;
14147
14148 if (cu->language == language_rust)
14149 {
14150 struct type *containing_type = rust_containing_type (die, cu);
14151
14152 if (containing_type != NULL)
14153 {
14154 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14155
14156 storage = OBSTACK_ZALLOC (&objfile->objfile_obstack,
14157 struct rust_vtable_symbol);
14158 initialize_objfile_symbol (storage);
14159 storage->concrete_type = containing_type;
14160 storage->subclass = SYMBOL_RUST_VTABLE;
14161 }
14162 }
14163
14164 new_symbol (die, NULL, cu, storage);
14165 }
14166
14167 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
14168 reading .debug_rnglists.
14169 Callback's type should be:
14170 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14171 Return true if the attributes are present and valid, otherwise,
14172 return false. */
14173
14174 template <typename Callback>
14175 static bool
14176 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
14177 Callback &&callback)
14178 {
14179 struct dwarf2_per_objfile *dwarf2_per_objfile
14180 = cu->per_cu->dwarf2_per_objfile;
14181 struct objfile *objfile = dwarf2_per_objfile->objfile;
14182 bfd *obfd = objfile->obfd;
14183 /* Base address selection entry. */
14184 CORE_ADDR base;
14185 int found_base;
14186 const gdb_byte *buffer;
14187 CORE_ADDR baseaddr;
14188 bool overflow = false;
14189
14190 found_base = cu->base_known;
14191 base = cu->base_address;
14192
14193 dwarf2_read_section (objfile, &dwarf2_per_objfile->rnglists);
14194 if (offset >= dwarf2_per_objfile->rnglists.size)
14195 {
14196 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14197 offset);
14198 return false;
14199 }
14200 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
14201
14202 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14203
14204 while (1)
14205 {
14206 /* Initialize it due to a false compiler warning. */
14207 CORE_ADDR range_beginning = 0, range_end = 0;
14208 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
14209 + dwarf2_per_objfile->rnglists.size);
14210 unsigned int bytes_read;
14211
14212 if (buffer == buf_end)
14213 {
14214 overflow = true;
14215 break;
14216 }
14217 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
14218 switch (rlet)
14219 {
14220 case DW_RLE_end_of_list:
14221 break;
14222 case DW_RLE_base_address:
14223 if (buffer + cu->header.addr_size > buf_end)
14224 {
14225 overflow = true;
14226 break;
14227 }
14228 base = read_address (obfd, buffer, cu, &bytes_read);
14229 found_base = 1;
14230 buffer += bytes_read;
14231 break;
14232 case DW_RLE_start_length:
14233 if (buffer + cu->header.addr_size > buf_end)
14234 {
14235 overflow = true;
14236 break;
14237 }
14238 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14239 buffer += bytes_read;
14240 range_end = (range_beginning
14241 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
14242 buffer += bytes_read;
14243 if (buffer > buf_end)
14244 {
14245 overflow = true;
14246 break;
14247 }
14248 break;
14249 case DW_RLE_offset_pair:
14250 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14251 buffer += bytes_read;
14252 if (buffer > buf_end)
14253 {
14254 overflow = true;
14255 break;
14256 }
14257 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14258 buffer += bytes_read;
14259 if (buffer > buf_end)
14260 {
14261 overflow = true;
14262 break;
14263 }
14264 break;
14265 case DW_RLE_start_end:
14266 if (buffer + 2 * cu->header.addr_size > buf_end)
14267 {
14268 overflow = true;
14269 break;
14270 }
14271 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14272 buffer += bytes_read;
14273 range_end = read_address (obfd, buffer, cu, &bytes_read);
14274 buffer += bytes_read;
14275 break;
14276 default:
14277 complaint (_("Invalid .debug_rnglists data (no base address)"));
14278 return false;
14279 }
14280 if (rlet == DW_RLE_end_of_list || overflow)
14281 break;
14282 if (rlet == DW_RLE_base_address)
14283 continue;
14284
14285 if (!found_base)
14286 {
14287 /* We have no valid base address for the ranges
14288 data. */
14289 complaint (_("Invalid .debug_rnglists data (no base address)"));
14290 return false;
14291 }
14292
14293 if (range_beginning > range_end)
14294 {
14295 /* Inverted range entries are invalid. */
14296 complaint (_("Invalid .debug_rnglists data (inverted range)"));
14297 return false;
14298 }
14299
14300 /* Empty range entries have no effect. */
14301 if (range_beginning == range_end)
14302 continue;
14303
14304 range_beginning += base;
14305 range_end += base;
14306
14307 /* A not-uncommon case of bad debug info.
14308 Don't pollute the addrmap with bad data. */
14309 if (range_beginning + baseaddr == 0
14310 && !dwarf2_per_objfile->has_section_at_zero)
14311 {
14312 complaint (_(".debug_rnglists entry has start address of zero"
14313 " [in module %s]"), objfile_name (objfile));
14314 continue;
14315 }
14316
14317 callback (range_beginning, range_end);
14318 }
14319
14320 if (overflow)
14321 {
14322 complaint (_("Offset %d is not terminated "
14323 "for DW_AT_ranges attribute"),
14324 offset);
14325 return false;
14326 }
14327
14328 return true;
14329 }
14330
14331 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
14332 Callback's type should be:
14333 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14334 Return 1 if the attributes are present and valid, otherwise, return 0. */
14335
14336 template <typename Callback>
14337 static int
14338 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
14339 Callback &&callback)
14340 {
14341 struct dwarf2_per_objfile *dwarf2_per_objfile
14342 = cu->per_cu->dwarf2_per_objfile;
14343 struct objfile *objfile = dwarf2_per_objfile->objfile;
14344 struct comp_unit_head *cu_header = &cu->header;
14345 bfd *obfd = objfile->obfd;
14346 unsigned int addr_size = cu_header->addr_size;
14347 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
14348 /* Base address selection entry. */
14349 CORE_ADDR base;
14350 int found_base;
14351 unsigned int dummy;
14352 const gdb_byte *buffer;
14353 CORE_ADDR baseaddr;
14354
14355 if (cu_header->version >= 5)
14356 return dwarf2_rnglists_process (offset, cu, callback);
14357
14358 found_base = cu->base_known;
14359 base = cu->base_address;
14360
14361 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
14362 if (offset >= dwarf2_per_objfile->ranges.size)
14363 {
14364 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14365 offset);
14366 return 0;
14367 }
14368 buffer = dwarf2_per_objfile->ranges.buffer + offset;
14369
14370 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14371
14372 while (1)
14373 {
14374 CORE_ADDR range_beginning, range_end;
14375
14376 range_beginning = read_address (obfd, buffer, cu, &dummy);
14377 buffer += addr_size;
14378 range_end = read_address (obfd, buffer, cu, &dummy);
14379 buffer += addr_size;
14380 offset += 2 * addr_size;
14381
14382 /* An end of list marker is a pair of zero addresses. */
14383 if (range_beginning == 0 && range_end == 0)
14384 /* Found the end of list entry. */
14385 break;
14386
14387 /* Each base address selection entry is a pair of 2 values.
14388 The first is the largest possible address, the second is
14389 the base address. Check for a base address here. */
14390 if ((range_beginning & mask) == mask)
14391 {
14392 /* If we found the largest possible address, then we already
14393 have the base address in range_end. */
14394 base = range_end;
14395 found_base = 1;
14396 continue;
14397 }
14398
14399 if (!found_base)
14400 {
14401 /* We have no valid base address for the ranges
14402 data. */
14403 complaint (_("Invalid .debug_ranges data (no base address)"));
14404 return 0;
14405 }
14406
14407 if (range_beginning > range_end)
14408 {
14409 /* Inverted range entries are invalid. */
14410 complaint (_("Invalid .debug_ranges data (inverted range)"));
14411 return 0;
14412 }
14413
14414 /* Empty range entries have no effect. */
14415 if (range_beginning == range_end)
14416 continue;
14417
14418 range_beginning += base;
14419 range_end += base;
14420
14421 /* A not-uncommon case of bad debug info.
14422 Don't pollute the addrmap with bad data. */
14423 if (range_beginning + baseaddr == 0
14424 && !dwarf2_per_objfile->has_section_at_zero)
14425 {
14426 complaint (_(".debug_ranges entry has start address of zero"
14427 " [in module %s]"), objfile_name (objfile));
14428 continue;
14429 }
14430
14431 callback (range_beginning, range_end);
14432 }
14433
14434 return 1;
14435 }
14436
14437 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
14438 Return 1 if the attributes are present and valid, otherwise, return 0.
14439 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
14440
14441 static int
14442 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
14443 CORE_ADDR *high_return, struct dwarf2_cu *cu,
14444 struct partial_symtab *ranges_pst)
14445 {
14446 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14447 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14448 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
14449 SECT_OFF_TEXT (objfile));
14450 int low_set = 0;
14451 CORE_ADDR low = 0;
14452 CORE_ADDR high = 0;
14453 int retval;
14454
14455 retval = dwarf2_ranges_process (offset, cu,
14456 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
14457 {
14458 if (ranges_pst != NULL)
14459 {
14460 CORE_ADDR lowpc;
14461 CORE_ADDR highpc;
14462
14463 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
14464 range_beginning + baseaddr);
14465 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
14466 range_end + baseaddr);
14467 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
14468 ranges_pst);
14469 }
14470
14471 /* FIXME: This is recording everything as a low-high
14472 segment of consecutive addresses. We should have a
14473 data structure for discontiguous block ranges
14474 instead. */
14475 if (! low_set)
14476 {
14477 low = range_beginning;
14478 high = range_end;
14479 low_set = 1;
14480 }
14481 else
14482 {
14483 if (range_beginning < low)
14484 low = range_beginning;
14485 if (range_end > high)
14486 high = range_end;
14487 }
14488 });
14489 if (!retval)
14490 return 0;
14491
14492 if (! low_set)
14493 /* If the first entry is an end-of-list marker, the range
14494 describes an empty scope, i.e. no instructions. */
14495 return 0;
14496
14497 if (low_return)
14498 *low_return = low;
14499 if (high_return)
14500 *high_return = high;
14501 return 1;
14502 }
14503
14504 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
14505 definition for the return value. *LOWPC and *HIGHPC are set iff
14506 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
14507
14508 static enum pc_bounds_kind
14509 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
14510 CORE_ADDR *highpc, struct dwarf2_cu *cu,
14511 struct partial_symtab *pst)
14512 {
14513 struct dwarf2_per_objfile *dwarf2_per_objfile
14514 = cu->per_cu->dwarf2_per_objfile;
14515 struct attribute *attr;
14516 struct attribute *attr_high;
14517 CORE_ADDR low = 0;
14518 CORE_ADDR high = 0;
14519 enum pc_bounds_kind ret;
14520
14521 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14522 if (attr_high)
14523 {
14524 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14525 if (attr)
14526 {
14527 low = attr_value_as_address (attr);
14528 high = attr_value_as_address (attr_high);
14529 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14530 high += low;
14531 }
14532 else
14533 /* Found high w/o low attribute. */
14534 return PC_BOUNDS_INVALID;
14535
14536 /* Found consecutive range of addresses. */
14537 ret = PC_BOUNDS_HIGH_LOW;
14538 }
14539 else
14540 {
14541 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14542 if (attr != NULL)
14543 {
14544 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14545 We take advantage of the fact that DW_AT_ranges does not appear
14546 in DW_TAG_compile_unit of DWO files. */
14547 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14548 unsigned int ranges_offset = (DW_UNSND (attr)
14549 + (need_ranges_base
14550 ? cu->ranges_base
14551 : 0));
14552
14553 /* Value of the DW_AT_ranges attribute is the offset in the
14554 .debug_ranges section. */
14555 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
14556 return PC_BOUNDS_INVALID;
14557 /* Found discontinuous range of addresses. */
14558 ret = PC_BOUNDS_RANGES;
14559 }
14560 else
14561 return PC_BOUNDS_NOT_PRESENT;
14562 }
14563
14564 /* partial_die_info::read has also the strict LOW < HIGH requirement. */
14565 if (high <= low)
14566 return PC_BOUNDS_INVALID;
14567
14568 /* When using the GNU linker, .gnu.linkonce. sections are used to
14569 eliminate duplicate copies of functions and vtables and such.
14570 The linker will arbitrarily choose one and discard the others.
14571 The AT_*_pc values for such functions refer to local labels in
14572 these sections. If the section from that file was discarded, the
14573 labels are not in the output, so the relocs get a value of 0.
14574 If this is a discarded function, mark the pc bounds as invalid,
14575 so that GDB will ignore it. */
14576 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
14577 return PC_BOUNDS_INVALID;
14578
14579 *lowpc = low;
14580 if (highpc)
14581 *highpc = high;
14582 return ret;
14583 }
14584
14585 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
14586 its low and high PC addresses. Do nothing if these addresses could not
14587 be determined. Otherwise, set LOWPC to the low address if it is smaller,
14588 and HIGHPC to the high address if greater than HIGHPC. */
14589
14590 static void
14591 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
14592 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14593 struct dwarf2_cu *cu)
14594 {
14595 CORE_ADDR low, high;
14596 struct die_info *child = die->child;
14597
14598 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
14599 {
14600 *lowpc = std::min (*lowpc, low);
14601 *highpc = std::max (*highpc, high);
14602 }
14603
14604 /* If the language does not allow nested subprograms (either inside
14605 subprograms or lexical blocks), we're done. */
14606 if (cu->language != language_ada)
14607 return;
14608
14609 /* Check all the children of the given DIE. If it contains nested
14610 subprograms, then check their pc bounds. Likewise, we need to
14611 check lexical blocks as well, as they may also contain subprogram
14612 definitions. */
14613 while (child && child->tag)
14614 {
14615 if (child->tag == DW_TAG_subprogram
14616 || child->tag == DW_TAG_lexical_block)
14617 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
14618 child = sibling_die (child);
14619 }
14620 }
14621
14622 /* Get the low and high pc's represented by the scope DIE, and store
14623 them in *LOWPC and *HIGHPC. If the correct values can't be
14624 determined, set *LOWPC to -1 and *HIGHPC to 0. */
14625
14626 static void
14627 get_scope_pc_bounds (struct die_info *die,
14628 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14629 struct dwarf2_cu *cu)
14630 {
14631 CORE_ADDR best_low = (CORE_ADDR) -1;
14632 CORE_ADDR best_high = (CORE_ADDR) 0;
14633 CORE_ADDR current_low, current_high;
14634
14635 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
14636 >= PC_BOUNDS_RANGES)
14637 {
14638 best_low = current_low;
14639 best_high = current_high;
14640 }
14641 else
14642 {
14643 struct die_info *child = die->child;
14644
14645 while (child && child->tag)
14646 {
14647 switch (child->tag) {
14648 case DW_TAG_subprogram:
14649 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
14650 break;
14651 case DW_TAG_namespace:
14652 case DW_TAG_module:
14653 /* FIXME: carlton/2004-01-16: Should we do this for
14654 DW_TAG_class_type/DW_TAG_structure_type, too? I think
14655 that current GCC's always emit the DIEs corresponding
14656 to definitions of methods of classes as children of a
14657 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
14658 the DIEs giving the declarations, which could be
14659 anywhere). But I don't see any reason why the
14660 standards says that they have to be there. */
14661 get_scope_pc_bounds (child, &current_low, &current_high, cu);
14662
14663 if (current_low != ((CORE_ADDR) -1))
14664 {
14665 best_low = std::min (best_low, current_low);
14666 best_high = std::max (best_high, current_high);
14667 }
14668 break;
14669 default:
14670 /* Ignore. */
14671 break;
14672 }
14673
14674 child = sibling_die (child);
14675 }
14676 }
14677
14678 *lowpc = best_low;
14679 *highpc = best_high;
14680 }
14681
14682 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
14683 in DIE. */
14684
14685 static void
14686 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
14687 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
14688 {
14689 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14690 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14691 struct attribute *attr;
14692 struct attribute *attr_high;
14693
14694 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14695 if (attr_high)
14696 {
14697 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14698 if (attr)
14699 {
14700 CORE_ADDR low = attr_value_as_address (attr);
14701 CORE_ADDR high = attr_value_as_address (attr_high);
14702
14703 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14704 high += low;
14705
14706 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
14707 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
14708 record_block_range (block, low, high - 1);
14709 }
14710 }
14711
14712 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14713 if (attr)
14714 {
14715 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14716 We take advantage of the fact that DW_AT_ranges does not appear
14717 in DW_TAG_compile_unit of DWO files. */
14718 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14719
14720 /* The value of the DW_AT_ranges attribute is the offset of the
14721 address range list in the .debug_ranges section. */
14722 unsigned long offset = (DW_UNSND (attr)
14723 + (need_ranges_base ? cu->ranges_base : 0));
14724
14725 dwarf2_ranges_process (offset, cu,
14726 [&] (CORE_ADDR start, CORE_ADDR end)
14727 {
14728 start += baseaddr;
14729 end += baseaddr;
14730 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
14731 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
14732 record_block_range (block, start, end - 1);
14733 });
14734 }
14735 }
14736
14737 /* Check whether the producer field indicates either of GCC < 4.6, or the
14738 Intel C/C++ compiler, and cache the result in CU. */
14739
14740 static void
14741 check_producer (struct dwarf2_cu *cu)
14742 {
14743 int major, minor;
14744
14745 if (cu->producer == NULL)
14746 {
14747 /* For unknown compilers expect their behavior is DWARF version
14748 compliant.
14749
14750 GCC started to support .debug_types sections by -gdwarf-4 since
14751 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
14752 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
14753 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
14754 interpreted incorrectly by GDB now - GCC PR debug/48229. */
14755 }
14756 else if (producer_is_gcc (cu->producer, &major, &minor))
14757 {
14758 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
14759 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
14760 }
14761 else if (producer_is_icc (cu->producer, &major, &minor))
14762 cu->producer_is_icc_lt_14 = major < 14;
14763 else
14764 {
14765 /* For other non-GCC compilers, expect their behavior is DWARF version
14766 compliant. */
14767 }
14768
14769 cu->checked_producer = 1;
14770 }
14771
14772 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
14773 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
14774 during 4.6.0 experimental. */
14775
14776 static int
14777 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
14778 {
14779 if (!cu->checked_producer)
14780 check_producer (cu);
14781
14782 return cu->producer_is_gxx_lt_4_6;
14783 }
14784
14785 /* Return the default accessibility type if it is not overriden by
14786 DW_AT_accessibility. */
14787
14788 static enum dwarf_access_attribute
14789 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
14790 {
14791 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
14792 {
14793 /* The default DWARF 2 accessibility for members is public, the default
14794 accessibility for inheritance is private. */
14795
14796 if (die->tag != DW_TAG_inheritance)
14797 return DW_ACCESS_public;
14798 else
14799 return DW_ACCESS_private;
14800 }
14801 else
14802 {
14803 /* DWARF 3+ defines the default accessibility a different way. The same
14804 rules apply now for DW_TAG_inheritance as for the members and it only
14805 depends on the container kind. */
14806
14807 if (die->parent->tag == DW_TAG_class_type)
14808 return DW_ACCESS_private;
14809 else
14810 return DW_ACCESS_public;
14811 }
14812 }
14813
14814 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
14815 offset. If the attribute was not found return 0, otherwise return
14816 1. If it was found but could not properly be handled, set *OFFSET
14817 to 0. */
14818
14819 static int
14820 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
14821 LONGEST *offset)
14822 {
14823 struct attribute *attr;
14824
14825 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
14826 if (attr != NULL)
14827 {
14828 *offset = 0;
14829
14830 /* Note that we do not check for a section offset first here.
14831 This is because DW_AT_data_member_location is new in DWARF 4,
14832 so if we see it, we can assume that a constant form is really
14833 a constant and not a section offset. */
14834 if (attr_form_is_constant (attr))
14835 *offset = dwarf2_get_attr_constant_value (attr, 0);
14836 else if (attr_form_is_section_offset (attr))
14837 dwarf2_complex_location_expr_complaint ();
14838 else if (attr_form_is_block (attr))
14839 *offset = decode_locdesc (DW_BLOCK (attr), cu);
14840 else
14841 dwarf2_complex_location_expr_complaint ();
14842
14843 return 1;
14844 }
14845
14846 return 0;
14847 }
14848
14849 /* Add an aggregate field to the field list. */
14850
14851 static void
14852 dwarf2_add_field (struct field_info *fip, struct die_info *die,
14853 struct dwarf2_cu *cu)
14854 {
14855 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14856 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14857 struct nextfield *new_field;
14858 struct attribute *attr;
14859 struct field *fp;
14860 const char *fieldname = "";
14861
14862 if (die->tag == DW_TAG_inheritance)
14863 {
14864 fip->baseclasses.emplace_back ();
14865 new_field = &fip->baseclasses.back ();
14866 }
14867 else
14868 {
14869 fip->fields.emplace_back ();
14870 new_field = &fip->fields.back ();
14871 }
14872
14873 fip->nfields++;
14874
14875 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
14876 if (attr)
14877 new_field->accessibility = DW_UNSND (attr);
14878 else
14879 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
14880 if (new_field->accessibility != DW_ACCESS_public)
14881 fip->non_public_fields = 1;
14882
14883 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
14884 if (attr)
14885 new_field->virtuality = DW_UNSND (attr);
14886 else
14887 new_field->virtuality = DW_VIRTUALITY_none;
14888
14889 fp = &new_field->field;
14890
14891 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
14892 {
14893 LONGEST offset;
14894
14895 /* Data member other than a C++ static data member. */
14896
14897 /* Get type of field. */
14898 fp->type = die_type (die, cu);
14899
14900 SET_FIELD_BITPOS (*fp, 0);
14901
14902 /* Get bit size of field (zero if none). */
14903 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
14904 if (attr)
14905 {
14906 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
14907 }
14908 else
14909 {
14910 FIELD_BITSIZE (*fp) = 0;
14911 }
14912
14913 /* Get bit offset of field. */
14914 if (handle_data_member_location (die, cu, &offset))
14915 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
14916 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
14917 if (attr)
14918 {
14919 if (gdbarch_bits_big_endian (gdbarch))
14920 {
14921 /* For big endian bits, the DW_AT_bit_offset gives the
14922 additional bit offset from the MSB of the containing
14923 anonymous object to the MSB of the field. We don't
14924 have to do anything special since we don't need to
14925 know the size of the anonymous object. */
14926 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
14927 }
14928 else
14929 {
14930 /* For little endian bits, compute the bit offset to the
14931 MSB of the anonymous object, subtract off the number of
14932 bits from the MSB of the field to the MSB of the
14933 object, and then subtract off the number of bits of
14934 the field itself. The result is the bit offset of
14935 the LSB of the field. */
14936 int anonymous_size;
14937 int bit_offset = DW_UNSND (attr);
14938
14939 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14940 if (attr)
14941 {
14942 /* The size of the anonymous object containing
14943 the bit field is explicit, so use the
14944 indicated size (in bytes). */
14945 anonymous_size = DW_UNSND (attr);
14946 }
14947 else
14948 {
14949 /* The size of the anonymous object containing
14950 the bit field must be inferred from the type
14951 attribute of the data member containing the
14952 bit field. */
14953 anonymous_size = TYPE_LENGTH (fp->type);
14954 }
14955 SET_FIELD_BITPOS (*fp,
14956 (FIELD_BITPOS (*fp)
14957 + anonymous_size * bits_per_byte
14958 - bit_offset - FIELD_BITSIZE (*fp)));
14959 }
14960 }
14961 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
14962 if (attr != NULL)
14963 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
14964 + dwarf2_get_attr_constant_value (attr, 0)));
14965
14966 /* Get name of field. */
14967 fieldname = dwarf2_name (die, cu);
14968 if (fieldname == NULL)
14969 fieldname = "";
14970
14971 /* The name is already allocated along with this objfile, so we don't
14972 need to duplicate it for the type. */
14973 fp->name = fieldname;
14974
14975 /* Change accessibility for artificial fields (e.g. virtual table
14976 pointer or virtual base class pointer) to private. */
14977 if (dwarf2_attr (die, DW_AT_artificial, cu))
14978 {
14979 FIELD_ARTIFICIAL (*fp) = 1;
14980 new_field->accessibility = DW_ACCESS_private;
14981 fip->non_public_fields = 1;
14982 }
14983 }
14984 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
14985 {
14986 /* C++ static member. */
14987
14988 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
14989 is a declaration, but all versions of G++ as of this writing
14990 (so through at least 3.2.1) incorrectly generate
14991 DW_TAG_variable tags. */
14992
14993 const char *physname;
14994
14995 /* Get name of field. */
14996 fieldname = dwarf2_name (die, cu);
14997 if (fieldname == NULL)
14998 return;
14999
15000 attr = dwarf2_attr (die, DW_AT_const_value, cu);
15001 if (attr
15002 /* Only create a symbol if this is an external value.
15003 new_symbol checks this and puts the value in the global symbol
15004 table, which we want. If it is not external, new_symbol
15005 will try to put the value in cu->list_in_scope which is wrong. */
15006 && dwarf2_flag_true_p (die, DW_AT_external, cu))
15007 {
15008 /* A static const member, not much different than an enum as far as
15009 we're concerned, except that we can support more types. */
15010 new_symbol (die, NULL, cu);
15011 }
15012
15013 /* Get physical name. */
15014 physname = dwarf2_physname (fieldname, die, cu);
15015
15016 /* The name is already allocated along with this objfile, so we don't
15017 need to duplicate it for the type. */
15018 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
15019 FIELD_TYPE (*fp) = die_type (die, cu);
15020 FIELD_NAME (*fp) = fieldname;
15021 }
15022 else if (die->tag == DW_TAG_inheritance)
15023 {
15024 LONGEST offset;
15025
15026 /* C++ base class field. */
15027 if (handle_data_member_location (die, cu, &offset))
15028 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15029 FIELD_BITSIZE (*fp) = 0;
15030 FIELD_TYPE (*fp) = die_type (die, cu);
15031 FIELD_NAME (*fp) = TYPE_NAME (fp->type);
15032 }
15033 else if (die->tag == DW_TAG_variant_part)
15034 {
15035 /* process_structure_scope will treat this DIE as a union. */
15036 process_structure_scope (die, cu);
15037
15038 /* The variant part is relative to the start of the enclosing
15039 structure. */
15040 SET_FIELD_BITPOS (*fp, 0);
15041 fp->type = get_die_type (die, cu);
15042 fp->artificial = 1;
15043 fp->name = "<<variant>>";
15044 }
15045 else
15046 gdb_assert_not_reached ("missing case in dwarf2_add_field");
15047 }
15048
15049 /* Can the type given by DIE define another type? */
15050
15051 static bool
15052 type_can_define_types (const struct die_info *die)
15053 {
15054 switch (die->tag)
15055 {
15056 case DW_TAG_typedef:
15057 case DW_TAG_class_type:
15058 case DW_TAG_structure_type:
15059 case DW_TAG_union_type:
15060 case DW_TAG_enumeration_type:
15061 return true;
15062
15063 default:
15064 return false;
15065 }
15066 }
15067
15068 /* Add a type definition defined in the scope of the FIP's class. */
15069
15070 static void
15071 dwarf2_add_type_defn (struct field_info *fip, struct die_info *die,
15072 struct dwarf2_cu *cu)
15073 {
15074 struct decl_field fp;
15075 memset (&fp, 0, sizeof (fp));
15076
15077 gdb_assert (type_can_define_types (die));
15078
15079 /* Get name of field. NULL is okay here, meaning an anonymous type. */
15080 fp.name = dwarf2_name (die, cu);
15081 fp.type = read_type_die (die, cu);
15082
15083 /* Save accessibility. */
15084 enum dwarf_access_attribute accessibility;
15085 struct attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15086 if (attr != NULL)
15087 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15088 else
15089 accessibility = dwarf2_default_access_attribute (die, cu);
15090 switch (accessibility)
15091 {
15092 case DW_ACCESS_public:
15093 /* The assumed value if neither private nor protected. */
15094 break;
15095 case DW_ACCESS_private:
15096 fp.is_private = 1;
15097 break;
15098 case DW_ACCESS_protected:
15099 fp.is_protected = 1;
15100 break;
15101 default:
15102 complaint (_("Unhandled DW_AT_accessibility value (%x)"), accessibility);
15103 }
15104
15105 if (die->tag == DW_TAG_typedef)
15106 fip->typedef_field_list.push_back (fp);
15107 else
15108 fip->nested_types_list.push_back (fp);
15109 }
15110
15111 /* Create the vector of fields, and attach it to the type. */
15112
15113 static void
15114 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
15115 struct dwarf2_cu *cu)
15116 {
15117 int nfields = fip->nfields;
15118
15119 /* Record the field count, allocate space for the array of fields,
15120 and create blank accessibility bitfields if necessary. */
15121 TYPE_NFIELDS (type) = nfields;
15122 TYPE_FIELDS (type) = (struct field *)
15123 TYPE_ZALLOC (type, sizeof (struct field) * nfields);
15124
15125 if (fip->non_public_fields && cu->language != language_ada)
15126 {
15127 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15128
15129 TYPE_FIELD_PRIVATE_BITS (type) =
15130 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15131 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
15132
15133 TYPE_FIELD_PROTECTED_BITS (type) =
15134 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15135 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
15136
15137 TYPE_FIELD_IGNORE_BITS (type) =
15138 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15139 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
15140 }
15141
15142 /* If the type has baseclasses, allocate and clear a bit vector for
15143 TYPE_FIELD_VIRTUAL_BITS. */
15144 if (!fip->baseclasses.empty () && cu->language != language_ada)
15145 {
15146 int num_bytes = B_BYTES (fip->baseclasses.size ());
15147 unsigned char *pointer;
15148
15149 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15150 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
15151 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
15152 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->baseclasses.size ());
15153 TYPE_N_BASECLASSES (type) = fip->baseclasses.size ();
15154 }
15155
15156 if (TYPE_FLAG_DISCRIMINATED_UNION (type))
15157 {
15158 struct discriminant_info *di = alloc_discriminant_info (type, -1, -1);
15159
15160 for (int index = 0; index < nfields; ++index)
15161 {
15162 struct nextfield &field = fip->fields[index];
15163
15164 if (field.variant.is_discriminant)
15165 di->discriminant_index = index;
15166 else if (field.variant.default_branch)
15167 di->default_index = index;
15168 else
15169 di->discriminants[index] = field.variant.discriminant_value;
15170 }
15171 }
15172
15173 /* Copy the saved-up fields into the field vector. */
15174 for (int i = 0; i < nfields; ++i)
15175 {
15176 struct nextfield &field
15177 = ((i < fip->baseclasses.size ()) ? fip->baseclasses[i]
15178 : fip->fields[i - fip->baseclasses.size ()]);
15179
15180 TYPE_FIELD (type, i) = field.field;
15181 switch (field.accessibility)
15182 {
15183 case DW_ACCESS_private:
15184 if (cu->language != language_ada)
15185 SET_TYPE_FIELD_PRIVATE (type, i);
15186 break;
15187
15188 case DW_ACCESS_protected:
15189 if (cu->language != language_ada)
15190 SET_TYPE_FIELD_PROTECTED (type, i);
15191 break;
15192
15193 case DW_ACCESS_public:
15194 break;
15195
15196 default:
15197 /* Unknown accessibility. Complain and treat it as public. */
15198 {
15199 complaint (_("unsupported accessibility %d"),
15200 field.accessibility);
15201 }
15202 break;
15203 }
15204 if (i < fip->baseclasses.size ())
15205 {
15206 switch (field.virtuality)
15207 {
15208 case DW_VIRTUALITY_virtual:
15209 case DW_VIRTUALITY_pure_virtual:
15210 if (cu->language == language_ada)
15211 error (_("unexpected virtuality in component of Ada type"));
15212 SET_TYPE_FIELD_VIRTUAL (type, i);
15213 break;
15214 }
15215 }
15216 }
15217 }
15218
15219 /* Return true if this member function is a constructor, false
15220 otherwise. */
15221
15222 static int
15223 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
15224 {
15225 const char *fieldname;
15226 const char *type_name;
15227 int len;
15228
15229 if (die->parent == NULL)
15230 return 0;
15231
15232 if (die->parent->tag != DW_TAG_structure_type
15233 && die->parent->tag != DW_TAG_union_type
15234 && die->parent->tag != DW_TAG_class_type)
15235 return 0;
15236
15237 fieldname = dwarf2_name (die, cu);
15238 type_name = dwarf2_name (die->parent, cu);
15239 if (fieldname == NULL || type_name == NULL)
15240 return 0;
15241
15242 len = strlen (fieldname);
15243 return (strncmp (fieldname, type_name, len) == 0
15244 && (type_name[len] == '\0' || type_name[len] == '<'));
15245 }
15246
15247 /* Add a member function to the proper fieldlist. */
15248
15249 static void
15250 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
15251 struct type *type, struct dwarf2_cu *cu)
15252 {
15253 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15254 struct attribute *attr;
15255 int i;
15256 struct fnfieldlist *flp = nullptr;
15257 struct fn_field *fnp;
15258 const char *fieldname;
15259 struct type *this_type;
15260 enum dwarf_access_attribute accessibility;
15261
15262 if (cu->language == language_ada)
15263 error (_("unexpected member function in Ada type"));
15264
15265 /* Get name of member function. */
15266 fieldname = dwarf2_name (die, cu);
15267 if (fieldname == NULL)
15268 return;
15269
15270 /* Look up member function name in fieldlist. */
15271 for (i = 0; i < fip->fnfieldlists.size (); i++)
15272 {
15273 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
15274 {
15275 flp = &fip->fnfieldlists[i];
15276 break;
15277 }
15278 }
15279
15280 /* Create a new fnfieldlist if necessary. */
15281 if (flp == nullptr)
15282 {
15283 fip->fnfieldlists.emplace_back ();
15284 flp = &fip->fnfieldlists.back ();
15285 flp->name = fieldname;
15286 i = fip->fnfieldlists.size () - 1;
15287 }
15288
15289 /* Create a new member function field and add it to the vector of
15290 fnfieldlists. */
15291 flp->fnfields.emplace_back ();
15292 fnp = &flp->fnfields.back ();
15293
15294 /* Delay processing of the physname until later. */
15295 if (cu->language == language_cplus)
15296 add_to_method_list (type, i, flp->fnfields.size () - 1, fieldname,
15297 die, cu);
15298 else
15299 {
15300 const char *physname = dwarf2_physname (fieldname, die, cu);
15301 fnp->physname = physname ? physname : "";
15302 }
15303
15304 fnp->type = alloc_type (objfile);
15305 this_type = read_type_die (die, cu);
15306 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
15307 {
15308 int nparams = TYPE_NFIELDS (this_type);
15309
15310 /* TYPE is the domain of this method, and THIS_TYPE is the type
15311 of the method itself (TYPE_CODE_METHOD). */
15312 smash_to_method_type (fnp->type, type,
15313 TYPE_TARGET_TYPE (this_type),
15314 TYPE_FIELDS (this_type),
15315 TYPE_NFIELDS (this_type),
15316 TYPE_VARARGS (this_type));
15317
15318 /* Handle static member functions.
15319 Dwarf2 has no clean way to discern C++ static and non-static
15320 member functions. G++ helps GDB by marking the first
15321 parameter for non-static member functions (which is the this
15322 pointer) as artificial. We obtain this information from
15323 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
15324 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
15325 fnp->voffset = VOFFSET_STATIC;
15326 }
15327 else
15328 complaint (_("member function type missing for '%s'"),
15329 dwarf2_full_name (fieldname, die, cu));
15330
15331 /* Get fcontext from DW_AT_containing_type if present. */
15332 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15333 fnp->fcontext = die_containing_type (die, cu);
15334
15335 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
15336 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
15337
15338 /* Get accessibility. */
15339 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15340 if (attr)
15341 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15342 else
15343 accessibility = dwarf2_default_access_attribute (die, cu);
15344 switch (accessibility)
15345 {
15346 case DW_ACCESS_private:
15347 fnp->is_private = 1;
15348 break;
15349 case DW_ACCESS_protected:
15350 fnp->is_protected = 1;
15351 break;
15352 }
15353
15354 /* Check for artificial methods. */
15355 attr = dwarf2_attr (die, DW_AT_artificial, cu);
15356 if (attr && DW_UNSND (attr) != 0)
15357 fnp->is_artificial = 1;
15358
15359 fnp->is_constructor = dwarf2_is_constructor (die, cu);
15360
15361 /* Get index in virtual function table if it is a virtual member
15362 function. For older versions of GCC, this is an offset in the
15363 appropriate virtual table, as specified by DW_AT_containing_type.
15364 For everyone else, it is an expression to be evaluated relative
15365 to the object address. */
15366
15367 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
15368 if (attr)
15369 {
15370 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
15371 {
15372 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
15373 {
15374 /* Old-style GCC. */
15375 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
15376 }
15377 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
15378 || (DW_BLOCK (attr)->size > 1
15379 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
15380 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
15381 {
15382 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
15383 if ((fnp->voffset % cu->header.addr_size) != 0)
15384 dwarf2_complex_location_expr_complaint ();
15385 else
15386 fnp->voffset /= cu->header.addr_size;
15387 fnp->voffset += 2;
15388 }
15389 else
15390 dwarf2_complex_location_expr_complaint ();
15391
15392 if (!fnp->fcontext)
15393 {
15394 /* If there is no `this' field and no DW_AT_containing_type,
15395 we cannot actually find a base class context for the
15396 vtable! */
15397 if (TYPE_NFIELDS (this_type) == 0
15398 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
15399 {
15400 complaint (_("cannot determine context for virtual member "
15401 "function \"%s\" (offset %s)"),
15402 fieldname, sect_offset_str (die->sect_off));
15403 }
15404 else
15405 {
15406 fnp->fcontext
15407 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
15408 }
15409 }
15410 }
15411 else if (attr_form_is_section_offset (attr))
15412 {
15413 dwarf2_complex_location_expr_complaint ();
15414 }
15415 else
15416 {
15417 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
15418 fieldname);
15419 }
15420 }
15421 else
15422 {
15423 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15424 if (attr && DW_UNSND (attr))
15425 {
15426 /* GCC does this, as of 2008-08-25; PR debug/37237. */
15427 complaint (_("Member function \"%s\" (offset %s) is virtual "
15428 "but the vtable offset is not specified"),
15429 fieldname, sect_offset_str (die->sect_off));
15430 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15431 TYPE_CPLUS_DYNAMIC (type) = 1;
15432 }
15433 }
15434 }
15435
15436 /* Create the vector of member function fields, and attach it to the type. */
15437
15438 static void
15439 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
15440 struct dwarf2_cu *cu)
15441 {
15442 if (cu->language == language_ada)
15443 error (_("unexpected member functions in Ada type"));
15444
15445 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15446 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
15447 TYPE_ALLOC (type,
15448 sizeof (struct fn_fieldlist) * fip->fnfieldlists.size ());
15449
15450 for (int i = 0; i < fip->fnfieldlists.size (); i++)
15451 {
15452 struct fnfieldlist &nf = fip->fnfieldlists[i];
15453 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
15454
15455 TYPE_FN_FIELDLIST_NAME (type, i) = nf.name;
15456 TYPE_FN_FIELDLIST_LENGTH (type, i) = nf.fnfields.size ();
15457 fn_flp->fn_fields = (struct fn_field *)
15458 TYPE_ALLOC (type, sizeof (struct fn_field) * nf.fnfields.size ());
15459
15460 for (int k = 0; k < nf.fnfields.size (); ++k)
15461 fn_flp->fn_fields[k] = nf.fnfields[k];
15462 }
15463
15464 TYPE_NFN_FIELDS (type) = fip->fnfieldlists.size ();
15465 }
15466
15467 /* Returns non-zero if NAME is the name of a vtable member in CU's
15468 language, zero otherwise. */
15469 static int
15470 is_vtable_name (const char *name, struct dwarf2_cu *cu)
15471 {
15472 static const char vptr[] = "_vptr";
15473
15474 /* Look for the C++ form of the vtable. */
15475 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
15476 return 1;
15477
15478 return 0;
15479 }
15480
15481 /* GCC outputs unnamed structures that are really pointers to member
15482 functions, with the ABI-specified layout. If TYPE describes
15483 such a structure, smash it into a member function type.
15484
15485 GCC shouldn't do this; it should just output pointer to member DIEs.
15486 This is GCC PR debug/28767. */
15487
15488 static void
15489 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
15490 {
15491 struct type *pfn_type, *self_type, *new_type;
15492
15493 /* Check for a structure with no name and two children. */
15494 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
15495 return;
15496
15497 /* Check for __pfn and __delta members. */
15498 if (TYPE_FIELD_NAME (type, 0) == NULL
15499 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
15500 || TYPE_FIELD_NAME (type, 1) == NULL
15501 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
15502 return;
15503
15504 /* Find the type of the method. */
15505 pfn_type = TYPE_FIELD_TYPE (type, 0);
15506 if (pfn_type == NULL
15507 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
15508 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
15509 return;
15510
15511 /* Look for the "this" argument. */
15512 pfn_type = TYPE_TARGET_TYPE (pfn_type);
15513 if (TYPE_NFIELDS (pfn_type) == 0
15514 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
15515 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
15516 return;
15517
15518 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
15519 new_type = alloc_type (objfile);
15520 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
15521 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
15522 TYPE_VARARGS (pfn_type));
15523 smash_to_methodptr_type (type, new_type);
15524 }
15525
15526 /* If the DIE has a DW_AT_alignment attribute, return its value, doing
15527 appropriate error checking and issuing complaints if there is a
15528 problem. */
15529
15530 static ULONGEST
15531 get_alignment (struct dwarf2_cu *cu, struct die_info *die)
15532 {
15533 struct attribute *attr = dwarf2_attr (die, DW_AT_alignment, cu);
15534
15535 if (attr == nullptr)
15536 return 0;
15537
15538 if (!attr_form_is_constant (attr))
15539 {
15540 complaint (_("DW_AT_alignment must have constant form"
15541 " - DIE at %s [in module %s]"),
15542 sect_offset_str (die->sect_off),
15543 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15544 return 0;
15545 }
15546
15547 ULONGEST align;
15548 if (attr->form == DW_FORM_sdata)
15549 {
15550 LONGEST val = DW_SND (attr);
15551 if (val < 0)
15552 {
15553 complaint (_("DW_AT_alignment value must not be negative"
15554 " - DIE at %s [in module %s]"),
15555 sect_offset_str (die->sect_off),
15556 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15557 return 0;
15558 }
15559 align = val;
15560 }
15561 else
15562 align = DW_UNSND (attr);
15563
15564 if (align == 0)
15565 {
15566 complaint (_("DW_AT_alignment value must not be zero"
15567 " - DIE at %s [in module %s]"),
15568 sect_offset_str (die->sect_off),
15569 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15570 return 0;
15571 }
15572 if ((align & (align - 1)) != 0)
15573 {
15574 complaint (_("DW_AT_alignment value must be a power of 2"
15575 " - DIE at %s [in module %s]"),
15576 sect_offset_str (die->sect_off),
15577 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15578 return 0;
15579 }
15580
15581 return align;
15582 }
15583
15584 /* If the DIE has a DW_AT_alignment attribute, use its value to set
15585 the alignment for TYPE. */
15586
15587 static void
15588 maybe_set_alignment (struct dwarf2_cu *cu, struct die_info *die,
15589 struct type *type)
15590 {
15591 if (!set_type_align (type, get_alignment (cu, die)))
15592 complaint (_("DW_AT_alignment value too large"
15593 " - DIE at %s [in module %s]"),
15594 sect_offset_str (die->sect_off),
15595 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15596 }
15597
15598 /* Called when we find the DIE that starts a structure or union scope
15599 (definition) to create a type for the structure or union. Fill in
15600 the type's name and general properties; the members will not be
15601 processed until process_structure_scope. A symbol table entry for
15602 the type will also not be done until process_structure_scope (assuming
15603 the type has a name).
15604
15605 NOTE: we need to call these functions regardless of whether or not the
15606 DIE has a DW_AT_name attribute, since it might be an anonymous
15607 structure or union. This gets the type entered into our set of
15608 user defined types. */
15609
15610 static struct type *
15611 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
15612 {
15613 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15614 struct type *type;
15615 struct attribute *attr;
15616 const char *name;
15617
15618 /* If the definition of this type lives in .debug_types, read that type.
15619 Don't follow DW_AT_specification though, that will take us back up
15620 the chain and we want to go down. */
15621 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
15622 if (attr)
15623 {
15624 type = get_DW_AT_signature_type (die, attr, cu);
15625
15626 /* The type's CU may not be the same as CU.
15627 Ensure TYPE is recorded with CU in die_type_hash. */
15628 return set_die_type (die, type, cu);
15629 }
15630
15631 type = alloc_type (objfile);
15632 INIT_CPLUS_SPECIFIC (type);
15633
15634 name = dwarf2_name (die, cu);
15635 if (name != NULL)
15636 {
15637 if (cu->language == language_cplus
15638 || cu->language == language_d
15639 || cu->language == language_rust)
15640 {
15641 const char *full_name = dwarf2_full_name (name, die, cu);
15642
15643 /* dwarf2_full_name might have already finished building the DIE's
15644 type. If so, there is no need to continue. */
15645 if (get_die_type (die, cu) != NULL)
15646 return get_die_type (die, cu);
15647
15648 TYPE_NAME (type) = full_name;
15649 }
15650 else
15651 {
15652 /* The name is already allocated along with this objfile, so
15653 we don't need to duplicate it for the type. */
15654 TYPE_NAME (type) = name;
15655 }
15656 }
15657
15658 if (die->tag == DW_TAG_structure_type)
15659 {
15660 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15661 }
15662 else if (die->tag == DW_TAG_union_type)
15663 {
15664 TYPE_CODE (type) = TYPE_CODE_UNION;
15665 }
15666 else if (die->tag == DW_TAG_variant_part)
15667 {
15668 TYPE_CODE (type) = TYPE_CODE_UNION;
15669 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
15670 }
15671 else
15672 {
15673 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15674 }
15675
15676 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
15677 TYPE_DECLARED_CLASS (type) = 1;
15678
15679 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15680 if (attr)
15681 {
15682 if (attr_form_is_constant (attr))
15683 TYPE_LENGTH (type) = DW_UNSND (attr);
15684 else
15685 {
15686 /* For the moment, dynamic type sizes are not supported
15687 by GDB's struct type. The actual size is determined
15688 on-demand when resolving the type of a given object,
15689 so set the type's length to zero for now. Otherwise,
15690 we record an expression as the length, and that expression
15691 could lead to a very large value, which could eventually
15692 lead to us trying to allocate that much memory when creating
15693 a value of that type. */
15694 TYPE_LENGTH (type) = 0;
15695 }
15696 }
15697 else
15698 {
15699 TYPE_LENGTH (type) = 0;
15700 }
15701
15702 maybe_set_alignment (cu, die, type);
15703
15704 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
15705 {
15706 /* ICC<14 does not output the required DW_AT_declaration on
15707 incomplete types, but gives them a size of zero. */
15708 TYPE_STUB (type) = 1;
15709 }
15710 else
15711 TYPE_STUB_SUPPORTED (type) = 1;
15712
15713 if (die_is_declaration (die, cu))
15714 TYPE_STUB (type) = 1;
15715 else if (attr == NULL && die->child == NULL
15716 && producer_is_realview (cu->producer))
15717 /* RealView does not output the required DW_AT_declaration
15718 on incomplete types. */
15719 TYPE_STUB (type) = 1;
15720
15721 /* We need to add the type field to the die immediately so we don't
15722 infinitely recurse when dealing with pointers to the structure
15723 type within the structure itself. */
15724 set_die_type (die, type, cu);
15725
15726 /* set_die_type should be already done. */
15727 set_descriptive_type (type, die, cu);
15728
15729 return type;
15730 }
15731
15732 /* A helper for process_structure_scope that handles a single member
15733 DIE. */
15734
15735 static void
15736 handle_struct_member_die (struct die_info *child_die, struct type *type,
15737 struct field_info *fi,
15738 std::vector<struct symbol *> *template_args,
15739 struct dwarf2_cu *cu)
15740 {
15741 if (child_die->tag == DW_TAG_member
15742 || child_die->tag == DW_TAG_variable
15743 || child_die->tag == DW_TAG_variant_part)
15744 {
15745 /* NOTE: carlton/2002-11-05: A C++ static data member
15746 should be a DW_TAG_member that is a declaration, but
15747 all versions of G++ as of this writing (so through at
15748 least 3.2.1) incorrectly generate DW_TAG_variable
15749 tags for them instead. */
15750 dwarf2_add_field (fi, child_die, cu);
15751 }
15752 else if (child_die->tag == DW_TAG_subprogram)
15753 {
15754 /* Rust doesn't have member functions in the C++ sense.
15755 However, it does emit ordinary functions as children
15756 of a struct DIE. */
15757 if (cu->language == language_rust)
15758 read_func_scope (child_die, cu);
15759 else
15760 {
15761 /* C++ member function. */
15762 dwarf2_add_member_fn (fi, child_die, type, cu);
15763 }
15764 }
15765 else if (child_die->tag == DW_TAG_inheritance)
15766 {
15767 /* C++ base class field. */
15768 dwarf2_add_field (fi, child_die, cu);
15769 }
15770 else if (type_can_define_types (child_die))
15771 dwarf2_add_type_defn (fi, child_die, cu);
15772 else if (child_die->tag == DW_TAG_template_type_param
15773 || child_die->tag == DW_TAG_template_value_param)
15774 {
15775 struct symbol *arg = new_symbol (child_die, NULL, cu);
15776
15777 if (arg != NULL)
15778 template_args->push_back (arg);
15779 }
15780 else if (child_die->tag == DW_TAG_variant)
15781 {
15782 /* In a variant we want to get the discriminant and also add a
15783 field for our sole member child. */
15784 struct attribute *discr = dwarf2_attr (child_die, DW_AT_discr_value, cu);
15785
15786 for (struct die_info *variant_child = child_die->child;
15787 variant_child != NULL;
15788 variant_child = sibling_die (variant_child))
15789 {
15790 if (variant_child->tag == DW_TAG_member)
15791 {
15792 handle_struct_member_die (variant_child, type, fi,
15793 template_args, cu);
15794 /* Only handle the one. */
15795 break;
15796 }
15797 }
15798
15799 /* We don't handle this but we might as well report it if we see
15800 it. */
15801 if (dwarf2_attr (child_die, DW_AT_discr_list, cu) != nullptr)
15802 complaint (_("DW_AT_discr_list is not supported yet"
15803 " - DIE at %s [in module %s]"),
15804 sect_offset_str (child_die->sect_off),
15805 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15806
15807 /* The first field was just added, so we can stash the
15808 discriminant there. */
15809 gdb_assert (!fi->fields.empty ());
15810 if (discr == NULL)
15811 fi->fields.back ().variant.default_branch = true;
15812 else
15813 fi->fields.back ().variant.discriminant_value = DW_UNSND (discr);
15814 }
15815 }
15816
15817 /* Finish creating a structure or union type, including filling in
15818 its members and creating a symbol for it. */
15819
15820 static void
15821 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
15822 {
15823 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15824 struct die_info *child_die;
15825 struct type *type;
15826
15827 type = get_die_type (die, cu);
15828 if (type == NULL)
15829 type = read_structure_type (die, cu);
15830
15831 /* When reading a DW_TAG_variant_part, we need to notice when we
15832 read the discriminant member, so we can record it later in the
15833 discriminant_info. */
15834 bool is_variant_part = TYPE_FLAG_DISCRIMINATED_UNION (type);
15835 sect_offset discr_offset;
15836
15837 if (is_variant_part)
15838 {
15839 struct attribute *discr = dwarf2_attr (die, DW_AT_discr, cu);
15840 if (discr == NULL)
15841 {
15842 /* Maybe it's a univariant form, an extension we support.
15843 In this case arrange not to check the offset. */
15844 is_variant_part = false;
15845 }
15846 else if (attr_form_is_ref (discr))
15847 {
15848 struct dwarf2_cu *target_cu = cu;
15849 struct die_info *target_die = follow_die_ref (die, discr, &target_cu);
15850
15851 discr_offset = target_die->sect_off;
15852 }
15853 else
15854 {
15855 complaint (_("DW_AT_discr does not have DIE reference form"
15856 " - DIE at %s [in module %s]"),
15857 sect_offset_str (die->sect_off),
15858 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15859 is_variant_part = false;
15860 }
15861 }
15862
15863 if (die->child != NULL && ! die_is_declaration (die, cu))
15864 {
15865 struct field_info fi;
15866 std::vector<struct symbol *> template_args;
15867
15868 child_die = die->child;
15869
15870 while (child_die && child_die->tag)
15871 {
15872 handle_struct_member_die (child_die, type, &fi, &template_args, cu);
15873
15874 if (is_variant_part && discr_offset == child_die->sect_off)
15875 fi.fields.back ().variant.is_discriminant = true;
15876
15877 child_die = sibling_die (child_die);
15878 }
15879
15880 /* Attach template arguments to type. */
15881 if (!template_args.empty ())
15882 {
15883 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15884 TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size ();
15885 TYPE_TEMPLATE_ARGUMENTS (type)
15886 = XOBNEWVEC (&objfile->objfile_obstack,
15887 struct symbol *,
15888 TYPE_N_TEMPLATE_ARGUMENTS (type));
15889 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
15890 template_args.data (),
15891 (TYPE_N_TEMPLATE_ARGUMENTS (type)
15892 * sizeof (struct symbol *)));
15893 }
15894
15895 /* Attach fields and member functions to the type. */
15896 if (fi.nfields)
15897 dwarf2_attach_fields_to_type (&fi, type, cu);
15898 if (!fi.fnfieldlists.empty ())
15899 {
15900 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
15901
15902 /* Get the type which refers to the base class (possibly this
15903 class itself) which contains the vtable pointer for the current
15904 class from the DW_AT_containing_type attribute. This use of
15905 DW_AT_containing_type is a GNU extension. */
15906
15907 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15908 {
15909 struct type *t = die_containing_type (die, cu);
15910
15911 set_type_vptr_basetype (type, t);
15912 if (type == t)
15913 {
15914 int i;
15915
15916 /* Our own class provides vtbl ptr. */
15917 for (i = TYPE_NFIELDS (t) - 1;
15918 i >= TYPE_N_BASECLASSES (t);
15919 --i)
15920 {
15921 const char *fieldname = TYPE_FIELD_NAME (t, i);
15922
15923 if (is_vtable_name (fieldname, cu))
15924 {
15925 set_type_vptr_fieldno (type, i);
15926 break;
15927 }
15928 }
15929
15930 /* Complain if virtual function table field not found. */
15931 if (i < TYPE_N_BASECLASSES (t))
15932 complaint (_("virtual function table pointer "
15933 "not found when defining class '%s'"),
15934 TYPE_NAME (type) ? TYPE_NAME (type) : "");
15935 }
15936 else
15937 {
15938 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
15939 }
15940 }
15941 else if (cu->producer
15942 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
15943 {
15944 /* The IBM XLC compiler does not provide direct indication
15945 of the containing type, but the vtable pointer is
15946 always named __vfp. */
15947
15948 int i;
15949
15950 for (i = TYPE_NFIELDS (type) - 1;
15951 i >= TYPE_N_BASECLASSES (type);
15952 --i)
15953 {
15954 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
15955 {
15956 set_type_vptr_fieldno (type, i);
15957 set_type_vptr_basetype (type, type);
15958 break;
15959 }
15960 }
15961 }
15962 }
15963
15964 /* Copy fi.typedef_field_list linked list elements content into the
15965 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
15966 if (!fi.typedef_field_list.empty ())
15967 {
15968 int count = fi.typedef_field_list.size ();
15969
15970 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15971 TYPE_TYPEDEF_FIELD_ARRAY (type)
15972 = ((struct decl_field *)
15973 TYPE_ALLOC (type,
15974 sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * count));
15975 TYPE_TYPEDEF_FIELD_COUNT (type) = count;
15976
15977 for (int i = 0; i < fi.typedef_field_list.size (); ++i)
15978 TYPE_TYPEDEF_FIELD (type, i) = fi.typedef_field_list[i];
15979 }
15980
15981 /* Copy fi.nested_types_list linked list elements content into the
15982 allocated array TYPE_NESTED_TYPES_ARRAY (type). */
15983 if (!fi.nested_types_list.empty () && cu->language != language_ada)
15984 {
15985 int count = fi.nested_types_list.size ();
15986
15987 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15988 TYPE_NESTED_TYPES_ARRAY (type)
15989 = ((struct decl_field *)
15990 TYPE_ALLOC (type, sizeof (struct decl_field) * count));
15991 TYPE_NESTED_TYPES_COUNT (type) = count;
15992
15993 for (int i = 0; i < fi.nested_types_list.size (); ++i)
15994 TYPE_NESTED_TYPES_FIELD (type, i) = fi.nested_types_list[i];
15995 }
15996 }
15997
15998 quirk_gcc_member_function_pointer (type, objfile);
15999 if (cu->language == language_rust && die->tag == DW_TAG_union_type)
16000 cu->rust_unions.push_back (type);
16001
16002 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
16003 snapshots) has been known to create a die giving a declaration
16004 for a class that has, as a child, a die giving a definition for a
16005 nested class. So we have to process our children even if the
16006 current die is a declaration. Normally, of course, a declaration
16007 won't have any children at all. */
16008
16009 child_die = die->child;
16010
16011 while (child_die != NULL && child_die->tag)
16012 {
16013 if (child_die->tag == DW_TAG_member
16014 || child_die->tag == DW_TAG_variable
16015 || child_die->tag == DW_TAG_inheritance
16016 || child_die->tag == DW_TAG_template_value_param
16017 || child_die->tag == DW_TAG_template_type_param)
16018 {
16019 /* Do nothing. */
16020 }
16021 else
16022 process_die (child_die, cu);
16023
16024 child_die = sibling_die (child_die);
16025 }
16026
16027 /* Do not consider external references. According to the DWARF standard,
16028 these DIEs are identified by the fact that they have no byte_size
16029 attribute, and a declaration attribute. */
16030 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
16031 || !die_is_declaration (die, cu))
16032 new_symbol (die, type, cu);
16033 }
16034
16035 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
16036 update TYPE using some information only available in DIE's children. */
16037
16038 static void
16039 update_enumeration_type_from_children (struct die_info *die,
16040 struct type *type,
16041 struct dwarf2_cu *cu)
16042 {
16043 struct die_info *child_die;
16044 int unsigned_enum = 1;
16045 int flag_enum = 1;
16046 ULONGEST mask = 0;
16047
16048 auto_obstack obstack;
16049
16050 for (child_die = die->child;
16051 child_die != NULL && child_die->tag;
16052 child_die = sibling_die (child_die))
16053 {
16054 struct attribute *attr;
16055 LONGEST value;
16056 const gdb_byte *bytes;
16057 struct dwarf2_locexpr_baton *baton;
16058 const char *name;
16059
16060 if (child_die->tag != DW_TAG_enumerator)
16061 continue;
16062
16063 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
16064 if (attr == NULL)
16065 continue;
16066
16067 name = dwarf2_name (child_die, cu);
16068 if (name == NULL)
16069 name = "<anonymous enumerator>";
16070
16071 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
16072 &value, &bytes, &baton);
16073 if (value < 0)
16074 {
16075 unsigned_enum = 0;
16076 flag_enum = 0;
16077 }
16078 else if ((mask & value) != 0)
16079 flag_enum = 0;
16080 else
16081 mask |= value;
16082
16083 /* If we already know that the enum type is neither unsigned, nor
16084 a flag type, no need to look at the rest of the enumerates. */
16085 if (!unsigned_enum && !flag_enum)
16086 break;
16087 }
16088
16089 if (unsigned_enum)
16090 TYPE_UNSIGNED (type) = 1;
16091 if (flag_enum)
16092 TYPE_FLAG_ENUM (type) = 1;
16093 }
16094
16095 /* Given a DW_AT_enumeration_type die, set its type. We do not
16096 complete the type's fields yet, or create any symbols. */
16097
16098 static struct type *
16099 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
16100 {
16101 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16102 struct type *type;
16103 struct attribute *attr;
16104 const char *name;
16105
16106 /* If the definition of this type lives in .debug_types, read that type.
16107 Don't follow DW_AT_specification though, that will take us back up
16108 the chain and we want to go down. */
16109 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
16110 if (attr)
16111 {
16112 type = get_DW_AT_signature_type (die, attr, cu);
16113
16114 /* The type's CU may not be the same as CU.
16115 Ensure TYPE is recorded with CU in die_type_hash. */
16116 return set_die_type (die, type, cu);
16117 }
16118
16119 type = alloc_type (objfile);
16120
16121 TYPE_CODE (type) = TYPE_CODE_ENUM;
16122 name = dwarf2_full_name (NULL, die, cu);
16123 if (name != NULL)
16124 TYPE_NAME (type) = name;
16125
16126 attr = dwarf2_attr (die, DW_AT_type, cu);
16127 if (attr != NULL)
16128 {
16129 struct type *underlying_type = die_type (die, cu);
16130
16131 TYPE_TARGET_TYPE (type) = underlying_type;
16132 }
16133
16134 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16135 if (attr)
16136 {
16137 TYPE_LENGTH (type) = DW_UNSND (attr);
16138 }
16139 else
16140 {
16141 TYPE_LENGTH (type) = 0;
16142 }
16143
16144 maybe_set_alignment (cu, die, type);
16145
16146 /* The enumeration DIE can be incomplete. In Ada, any type can be
16147 declared as private in the package spec, and then defined only
16148 inside the package body. Such types are known as Taft Amendment
16149 Types. When another package uses such a type, an incomplete DIE
16150 may be generated by the compiler. */
16151 if (die_is_declaration (die, cu))
16152 TYPE_STUB (type) = 1;
16153
16154 /* Finish the creation of this type by using the enum's children.
16155 We must call this even when the underlying type has been provided
16156 so that we can determine if we're looking at a "flag" enum. */
16157 update_enumeration_type_from_children (die, type, cu);
16158
16159 /* If this type has an underlying type that is not a stub, then we
16160 may use its attributes. We always use the "unsigned" attribute
16161 in this situation, because ordinarily we guess whether the type
16162 is unsigned -- but the guess can be wrong and the underlying type
16163 can tell us the reality. However, we defer to a local size
16164 attribute if one exists, because this lets the compiler override
16165 the underlying type if needed. */
16166 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
16167 {
16168 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
16169 if (TYPE_LENGTH (type) == 0)
16170 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
16171 if (TYPE_RAW_ALIGN (type) == 0
16172 && TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)) != 0)
16173 set_type_align (type, TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)));
16174 }
16175
16176 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
16177
16178 return set_die_type (die, type, cu);
16179 }
16180
16181 /* Given a pointer to a die which begins an enumeration, process all
16182 the dies that define the members of the enumeration, and create the
16183 symbol for the enumeration type.
16184
16185 NOTE: We reverse the order of the element list. */
16186
16187 static void
16188 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
16189 {
16190 struct type *this_type;
16191
16192 this_type = get_die_type (die, cu);
16193 if (this_type == NULL)
16194 this_type = read_enumeration_type (die, cu);
16195
16196 if (die->child != NULL)
16197 {
16198 struct die_info *child_die;
16199 struct symbol *sym;
16200 struct field *fields = NULL;
16201 int num_fields = 0;
16202 const char *name;
16203
16204 child_die = die->child;
16205 while (child_die && child_die->tag)
16206 {
16207 if (child_die->tag != DW_TAG_enumerator)
16208 {
16209 process_die (child_die, cu);
16210 }
16211 else
16212 {
16213 name = dwarf2_name (child_die, cu);
16214 if (name)
16215 {
16216 sym = new_symbol (child_die, this_type, cu);
16217
16218 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
16219 {
16220 fields = (struct field *)
16221 xrealloc (fields,
16222 (num_fields + DW_FIELD_ALLOC_CHUNK)
16223 * sizeof (struct field));
16224 }
16225
16226 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
16227 FIELD_TYPE (fields[num_fields]) = NULL;
16228 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
16229 FIELD_BITSIZE (fields[num_fields]) = 0;
16230
16231 num_fields++;
16232 }
16233 }
16234
16235 child_die = sibling_die (child_die);
16236 }
16237
16238 if (num_fields)
16239 {
16240 TYPE_NFIELDS (this_type) = num_fields;
16241 TYPE_FIELDS (this_type) = (struct field *)
16242 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
16243 memcpy (TYPE_FIELDS (this_type), fields,
16244 sizeof (struct field) * num_fields);
16245 xfree (fields);
16246 }
16247 }
16248
16249 /* If we are reading an enum from a .debug_types unit, and the enum
16250 is a declaration, and the enum is not the signatured type in the
16251 unit, then we do not want to add a symbol for it. Adding a
16252 symbol would in some cases obscure the true definition of the
16253 enum, giving users an incomplete type when the definition is
16254 actually available. Note that we do not want to do this for all
16255 enums which are just declarations, because C++0x allows forward
16256 enum declarations. */
16257 if (cu->per_cu->is_debug_types
16258 && die_is_declaration (die, cu))
16259 {
16260 struct signatured_type *sig_type;
16261
16262 sig_type = (struct signatured_type *) cu->per_cu;
16263 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
16264 if (sig_type->type_offset_in_section != die->sect_off)
16265 return;
16266 }
16267
16268 new_symbol (die, this_type, cu);
16269 }
16270
16271 /* Extract all information from a DW_TAG_array_type DIE and put it in
16272 the DIE's type field. For now, this only handles one dimensional
16273 arrays. */
16274
16275 static struct type *
16276 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
16277 {
16278 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16279 struct die_info *child_die;
16280 struct type *type;
16281 struct type *element_type, *range_type, *index_type;
16282 struct attribute *attr;
16283 const char *name;
16284 struct dynamic_prop *byte_stride_prop = NULL;
16285 unsigned int bit_stride = 0;
16286
16287 element_type = die_type (die, cu);
16288
16289 /* The die_type call above may have already set the type for this DIE. */
16290 type = get_die_type (die, cu);
16291 if (type)
16292 return type;
16293
16294 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
16295 if (attr != NULL)
16296 {
16297 int stride_ok;
16298
16299 byte_stride_prop
16300 = (struct dynamic_prop *) alloca (sizeof (struct dynamic_prop));
16301 stride_ok = attr_to_dynamic_prop (attr, die, cu, byte_stride_prop);
16302 if (!stride_ok)
16303 {
16304 complaint (_("unable to read array DW_AT_byte_stride "
16305 " - DIE at %s [in module %s]"),
16306 sect_offset_str (die->sect_off),
16307 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16308 /* Ignore this attribute. We will likely not be able to print
16309 arrays of this type correctly, but there is little we can do
16310 to help if we cannot read the attribute's value. */
16311 byte_stride_prop = NULL;
16312 }
16313 }
16314
16315 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
16316 if (attr != NULL)
16317 bit_stride = DW_UNSND (attr);
16318
16319 /* Irix 6.2 native cc creates array types without children for
16320 arrays with unspecified length. */
16321 if (die->child == NULL)
16322 {
16323 index_type = objfile_type (objfile)->builtin_int;
16324 range_type = create_static_range_type (NULL, index_type, 0, -1);
16325 type = create_array_type_with_stride (NULL, element_type, range_type,
16326 byte_stride_prop, bit_stride);
16327 return set_die_type (die, type, cu);
16328 }
16329
16330 std::vector<struct type *> range_types;
16331 child_die = die->child;
16332 while (child_die && child_die->tag)
16333 {
16334 if (child_die->tag == DW_TAG_subrange_type)
16335 {
16336 struct type *child_type = read_type_die (child_die, cu);
16337
16338 if (child_type != NULL)
16339 {
16340 /* The range type was succesfully read. Save it for the
16341 array type creation. */
16342 range_types.push_back (child_type);
16343 }
16344 }
16345 child_die = sibling_die (child_die);
16346 }
16347
16348 /* Dwarf2 dimensions are output from left to right, create the
16349 necessary array types in backwards order. */
16350
16351 type = element_type;
16352
16353 if (read_array_order (die, cu) == DW_ORD_col_major)
16354 {
16355 int i = 0;
16356
16357 while (i < range_types.size ())
16358 type = create_array_type_with_stride (NULL, type, range_types[i++],
16359 byte_stride_prop, bit_stride);
16360 }
16361 else
16362 {
16363 size_t ndim = range_types.size ();
16364 while (ndim-- > 0)
16365 type = create_array_type_with_stride (NULL, type, range_types[ndim],
16366 byte_stride_prop, bit_stride);
16367 }
16368
16369 /* Understand Dwarf2 support for vector types (like they occur on
16370 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
16371 array type. This is not part of the Dwarf2/3 standard yet, but a
16372 custom vendor extension. The main difference between a regular
16373 array and the vector variant is that vectors are passed by value
16374 to functions. */
16375 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
16376 if (attr)
16377 make_vector_type (type);
16378
16379 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
16380 implementation may choose to implement triple vectors using this
16381 attribute. */
16382 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16383 if (attr)
16384 {
16385 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
16386 TYPE_LENGTH (type) = DW_UNSND (attr);
16387 else
16388 complaint (_("DW_AT_byte_size for array type smaller "
16389 "than the total size of elements"));
16390 }
16391
16392 name = dwarf2_name (die, cu);
16393 if (name)
16394 TYPE_NAME (type) = name;
16395
16396 maybe_set_alignment (cu, die, type);
16397
16398 /* Install the type in the die. */
16399 set_die_type (die, type, cu);
16400
16401 /* set_die_type should be already done. */
16402 set_descriptive_type (type, die, cu);
16403
16404 return type;
16405 }
16406
16407 static enum dwarf_array_dim_ordering
16408 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
16409 {
16410 struct attribute *attr;
16411
16412 attr = dwarf2_attr (die, DW_AT_ordering, cu);
16413
16414 if (attr)
16415 return (enum dwarf_array_dim_ordering) DW_SND (attr);
16416
16417 /* GNU F77 is a special case, as at 08/2004 array type info is the
16418 opposite order to the dwarf2 specification, but data is still
16419 laid out as per normal fortran.
16420
16421 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
16422 version checking. */
16423
16424 if (cu->language == language_fortran
16425 && cu->producer && strstr (cu->producer, "GNU F77"))
16426 {
16427 return DW_ORD_row_major;
16428 }
16429
16430 switch (cu->language_defn->la_array_ordering)
16431 {
16432 case array_column_major:
16433 return DW_ORD_col_major;
16434 case array_row_major:
16435 default:
16436 return DW_ORD_row_major;
16437 };
16438 }
16439
16440 /* Extract all information from a DW_TAG_set_type DIE and put it in
16441 the DIE's type field. */
16442
16443 static struct type *
16444 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
16445 {
16446 struct type *domain_type, *set_type;
16447 struct attribute *attr;
16448
16449 domain_type = die_type (die, cu);
16450
16451 /* The die_type call above may have already set the type for this DIE. */
16452 set_type = get_die_type (die, cu);
16453 if (set_type)
16454 return set_type;
16455
16456 set_type = create_set_type (NULL, domain_type);
16457
16458 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16459 if (attr)
16460 TYPE_LENGTH (set_type) = DW_UNSND (attr);
16461
16462 maybe_set_alignment (cu, die, set_type);
16463
16464 return set_die_type (die, set_type, cu);
16465 }
16466
16467 /* A helper for read_common_block that creates a locexpr baton.
16468 SYM is the symbol which we are marking as computed.
16469 COMMON_DIE is the DIE for the common block.
16470 COMMON_LOC is the location expression attribute for the common
16471 block itself.
16472 MEMBER_LOC is the location expression attribute for the particular
16473 member of the common block that we are processing.
16474 CU is the CU from which the above come. */
16475
16476 static void
16477 mark_common_block_symbol_computed (struct symbol *sym,
16478 struct die_info *common_die,
16479 struct attribute *common_loc,
16480 struct attribute *member_loc,
16481 struct dwarf2_cu *cu)
16482 {
16483 struct dwarf2_per_objfile *dwarf2_per_objfile
16484 = cu->per_cu->dwarf2_per_objfile;
16485 struct objfile *objfile = dwarf2_per_objfile->objfile;
16486 struct dwarf2_locexpr_baton *baton;
16487 gdb_byte *ptr;
16488 unsigned int cu_off;
16489 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
16490 LONGEST offset = 0;
16491
16492 gdb_assert (common_loc && member_loc);
16493 gdb_assert (attr_form_is_block (common_loc));
16494 gdb_assert (attr_form_is_block (member_loc)
16495 || attr_form_is_constant (member_loc));
16496
16497 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
16498 baton->per_cu = cu->per_cu;
16499 gdb_assert (baton->per_cu);
16500
16501 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
16502
16503 if (attr_form_is_constant (member_loc))
16504 {
16505 offset = dwarf2_get_attr_constant_value (member_loc, 0);
16506 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
16507 }
16508 else
16509 baton->size += DW_BLOCK (member_loc)->size;
16510
16511 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
16512 baton->data = ptr;
16513
16514 *ptr++ = DW_OP_call4;
16515 cu_off = common_die->sect_off - cu->per_cu->sect_off;
16516 store_unsigned_integer (ptr, 4, byte_order, cu_off);
16517 ptr += 4;
16518
16519 if (attr_form_is_constant (member_loc))
16520 {
16521 *ptr++ = DW_OP_addr;
16522 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
16523 ptr += cu->header.addr_size;
16524 }
16525 else
16526 {
16527 /* We have to copy the data here, because DW_OP_call4 will only
16528 use a DW_AT_location attribute. */
16529 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
16530 ptr += DW_BLOCK (member_loc)->size;
16531 }
16532
16533 *ptr++ = DW_OP_plus;
16534 gdb_assert (ptr - baton->data == baton->size);
16535
16536 SYMBOL_LOCATION_BATON (sym) = baton;
16537 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
16538 }
16539
16540 /* Create appropriate locally-scoped variables for all the
16541 DW_TAG_common_block entries. Also create a struct common_block
16542 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
16543 is used to sepate the common blocks name namespace from regular
16544 variable names. */
16545
16546 static void
16547 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
16548 {
16549 struct attribute *attr;
16550
16551 attr = dwarf2_attr (die, DW_AT_location, cu);
16552 if (attr)
16553 {
16554 /* Support the .debug_loc offsets. */
16555 if (attr_form_is_block (attr))
16556 {
16557 /* Ok. */
16558 }
16559 else if (attr_form_is_section_offset (attr))
16560 {
16561 dwarf2_complex_location_expr_complaint ();
16562 attr = NULL;
16563 }
16564 else
16565 {
16566 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16567 "common block member");
16568 attr = NULL;
16569 }
16570 }
16571
16572 if (die->child != NULL)
16573 {
16574 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16575 struct die_info *child_die;
16576 size_t n_entries = 0, size;
16577 struct common_block *common_block;
16578 struct symbol *sym;
16579
16580 for (child_die = die->child;
16581 child_die && child_die->tag;
16582 child_die = sibling_die (child_die))
16583 ++n_entries;
16584
16585 size = (sizeof (struct common_block)
16586 + (n_entries - 1) * sizeof (struct symbol *));
16587 common_block
16588 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
16589 size);
16590 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
16591 common_block->n_entries = 0;
16592
16593 for (child_die = die->child;
16594 child_die && child_die->tag;
16595 child_die = sibling_die (child_die))
16596 {
16597 /* Create the symbol in the DW_TAG_common_block block in the current
16598 symbol scope. */
16599 sym = new_symbol (child_die, NULL, cu);
16600 if (sym != NULL)
16601 {
16602 struct attribute *member_loc;
16603
16604 common_block->contents[common_block->n_entries++] = sym;
16605
16606 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
16607 cu);
16608 if (member_loc)
16609 {
16610 /* GDB has handled this for a long time, but it is
16611 not specified by DWARF. It seems to have been
16612 emitted by gfortran at least as recently as:
16613 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
16614 complaint (_("Variable in common block has "
16615 "DW_AT_data_member_location "
16616 "- DIE at %s [in module %s]"),
16617 sect_offset_str (child_die->sect_off),
16618 objfile_name (objfile));
16619
16620 if (attr_form_is_section_offset (member_loc))
16621 dwarf2_complex_location_expr_complaint ();
16622 else if (attr_form_is_constant (member_loc)
16623 || attr_form_is_block (member_loc))
16624 {
16625 if (attr)
16626 mark_common_block_symbol_computed (sym, die, attr,
16627 member_loc, cu);
16628 }
16629 else
16630 dwarf2_complex_location_expr_complaint ();
16631 }
16632 }
16633 }
16634
16635 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
16636 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
16637 }
16638 }
16639
16640 /* Create a type for a C++ namespace. */
16641
16642 static struct type *
16643 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
16644 {
16645 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16646 const char *previous_prefix, *name;
16647 int is_anonymous;
16648 struct type *type;
16649
16650 /* For extensions, reuse the type of the original namespace. */
16651 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
16652 {
16653 struct die_info *ext_die;
16654 struct dwarf2_cu *ext_cu = cu;
16655
16656 ext_die = dwarf2_extension (die, &ext_cu);
16657 type = read_type_die (ext_die, ext_cu);
16658
16659 /* EXT_CU may not be the same as CU.
16660 Ensure TYPE is recorded with CU in die_type_hash. */
16661 return set_die_type (die, type, cu);
16662 }
16663
16664 name = namespace_name (die, &is_anonymous, cu);
16665
16666 /* Now build the name of the current namespace. */
16667
16668 previous_prefix = determine_prefix (die, cu);
16669 if (previous_prefix[0] != '\0')
16670 name = typename_concat (&objfile->objfile_obstack,
16671 previous_prefix, name, 0, cu);
16672
16673 /* Create the type. */
16674 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
16675
16676 return set_die_type (die, type, cu);
16677 }
16678
16679 /* Read a namespace scope. */
16680
16681 static void
16682 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
16683 {
16684 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16685 int is_anonymous;
16686
16687 /* Add a symbol associated to this if we haven't seen the namespace
16688 before. Also, add a using directive if it's an anonymous
16689 namespace. */
16690
16691 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
16692 {
16693 struct type *type;
16694
16695 type = read_type_die (die, cu);
16696 new_symbol (die, type, cu);
16697
16698 namespace_name (die, &is_anonymous, cu);
16699 if (is_anonymous)
16700 {
16701 const char *previous_prefix = determine_prefix (die, cu);
16702
16703 std::vector<const char *> excludes;
16704 add_using_directive (using_directives (cu->language),
16705 previous_prefix, TYPE_NAME (type), NULL,
16706 NULL, excludes, 0, &objfile->objfile_obstack);
16707 }
16708 }
16709
16710 if (die->child != NULL)
16711 {
16712 struct die_info *child_die = die->child;
16713
16714 while (child_die && child_die->tag)
16715 {
16716 process_die (child_die, cu);
16717 child_die = sibling_die (child_die);
16718 }
16719 }
16720 }
16721
16722 /* Read a Fortran module as type. This DIE can be only a declaration used for
16723 imported module. Still we need that type as local Fortran "use ... only"
16724 declaration imports depend on the created type in determine_prefix. */
16725
16726 static struct type *
16727 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
16728 {
16729 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16730 const char *module_name;
16731 struct type *type;
16732
16733 module_name = dwarf2_name (die, cu);
16734 if (!module_name)
16735 complaint (_("DW_TAG_module has no name, offset %s"),
16736 sect_offset_str (die->sect_off));
16737 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
16738
16739 return set_die_type (die, type, cu);
16740 }
16741
16742 /* Read a Fortran module. */
16743
16744 static void
16745 read_module (struct die_info *die, struct dwarf2_cu *cu)
16746 {
16747 struct die_info *child_die = die->child;
16748 struct type *type;
16749
16750 type = read_type_die (die, cu);
16751 new_symbol (die, type, cu);
16752
16753 while (child_die && child_die->tag)
16754 {
16755 process_die (child_die, cu);
16756 child_die = sibling_die (child_die);
16757 }
16758 }
16759
16760 /* Return the name of the namespace represented by DIE. Set
16761 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
16762 namespace. */
16763
16764 static const char *
16765 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
16766 {
16767 struct die_info *current_die;
16768 const char *name = NULL;
16769
16770 /* Loop through the extensions until we find a name. */
16771
16772 for (current_die = die;
16773 current_die != NULL;
16774 current_die = dwarf2_extension (die, &cu))
16775 {
16776 /* We don't use dwarf2_name here so that we can detect the absence
16777 of a name -> anonymous namespace. */
16778 name = dwarf2_string_attr (die, DW_AT_name, cu);
16779
16780 if (name != NULL)
16781 break;
16782 }
16783
16784 /* Is it an anonymous namespace? */
16785
16786 *is_anonymous = (name == NULL);
16787 if (*is_anonymous)
16788 name = CP_ANONYMOUS_NAMESPACE_STR;
16789
16790 return name;
16791 }
16792
16793 /* Extract all information from a DW_TAG_pointer_type DIE and add to
16794 the user defined type vector. */
16795
16796 static struct type *
16797 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
16798 {
16799 struct gdbarch *gdbarch
16800 = get_objfile_arch (cu->per_cu->dwarf2_per_objfile->objfile);
16801 struct comp_unit_head *cu_header = &cu->header;
16802 struct type *type;
16803 struct attribute *attr_byte_size;
16804 struct attribute *attr_address_class;
16805 int byte_size, addr_class;
16806 struct type *target_type;
16807
16808 target_type = die_type (die, cu);
16809
16810 /* The die_type call above may have already set the type for this DIE. */
16811 type = get_die_type (die, cu);
16812 if (type)
16813 return type;
16814
16815 type = lookup_pointer_type (target_type);
16816
16817 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
16818 if (attr_byte_size)
16819 byte_size = DW_UNSND (attr_byte_size);
16820 else
16821 byte_size = cu_header->addr_size;
16822
16823 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
16824 if (attr_address_class)
16825 addr_class = DW_UNSND (attr_address_class);
16826 else
16827 addr_class = DW_ADDR_none;
16828
16829 ULONGEST alignment = get_alignment (cu, die);
16830
16831 /* If the pointer size, alignment, or address class is different
16832 than the default, create a type variant marked as such and set
16833 the length accordingly. */
16834 if (TYPE_LENGTH (type) != byte_size
16835 || (alignment != 0 && TYPE_RAW_ALIGN (type) != 0
16836 && alignment != TYPE_RAW_ALIGN (type))
16837 || addr_class != DW_ADDR_none)
16838 {
16839 if (gdbarch_address_class_type_flags_p (gdbarch))
16840 {
16841 int type_flags;
16842
16843 type_flags = gdbarch_address_class_type_flags
16844 (gdbarch, byte_size, addr_class);
16845 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
16846 == 0);
16847 type = make_type_with_address_space (type, type_flags);
16848 }
16849 else if (TYPE_LENGTH (type) != byte_size)
16850 {
16851 complaint (_("invalid pointer size %d"), byte_size);
16852 }
16853 else if (TYPE_RAW_ALIGN (type) != alignment)
16854 {
16855 complaint (_("Invalid DW_AT_alignment"
16856 " - DIE at %s [in module %s]"),
16857 sect_offset_str (die->sect_off),
16858 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16859 }
16860 else
16861 {
16862 /* Should we also complain about unhandled address classes? */
16863 }
16864 }
16865
16866 TYPE_LENGTH (type) = byte_size;
16867 set_type_align (type, alignment);
16868 return set_die_type (die, type, cu);
16869 }
16870
16871 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
16872 the user defined type vector. */
16873
16874 static struct type *
16875 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
16876 {
16877 struct type *type;
16878 struct type *to_type;
16879 struct type *domain;
16880
16881 to_type = die_type (die, cu);
16882 domain = die_containing_type (die, cu);
16883
16884 /* The calls above may have already set the type for this DIE. */
16885 type = get_die_type (die, cu);
16886 if (type)
16887 return type;
16888
16889 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
16890 type = lookup_methodptr_type (to_type);
16891 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
16892 {
16893 struct type *new_type
16894 = alloc_type (cu->per_cu->dwarf2_per_objfile->objfile);
16895
16896 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
16897 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
16898 TYPE_VARARGS (to_type));
16899 type = lookup_methodptr_type (new_type);
16900 }
16901 else
16902 type = lookup_memberptr_type (to_type, domain);
16903
16904 return set_die_type (die, type, cu);
16905 }
16906
16907 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
16908 the user defined type vector. */
16909
16910 static struct type *
16911 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
16912 enum type_code refcode)
16913 {
16914 struct comp_unit_head *cu_header = &cu->header;
16915 struct type *type, *target_type;
16916 struct attribute *attr;
16917
16918 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
16919
16920 target_type = die_type (die, cu);
16921
16922 /* The die_type call above may have already set the type for this DIE. */
16923 type = get_die_type (die, cu);
16924 if (type)
16925 return type;
16926
16927 type = lookup_reference_type (target_type, refcode);
16928 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16929 if (attr)
16930 {
16931 TYPE_LENGTH (type) = DW_UNSND (attr);
16932 }
16933 else
16934 {
16935 TYPE_LENGTH (type) = cu_header->addr_size;
16936 }
16937 maybe_set_alignment (cu, die, type);
16938 return set_die_type (die, type, cu);
16939 }
16940
16941 /* Add the given cv-qualifiers to the element type of the array. GCC
16942 outputs DWARF type qualifiers that apply to an array, not the
16943 element type. But GDB relies on the array element type to carry
16944 the cv-qualifiers. This mimics section 6.7.3 of the C99
16945 specification. */
16946
16947 static struct type *
16948 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
16949 struct type *base_type, int cnst, int voltl)
16950 {
16951 struct type *el_type, *inner_array;
16952
16953 base_type = copy_type (base_type);
16954 inner_array = base_type;
16955
16956 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
16957 {
16958 TYPE_TARGET_TYPE (inner_array) =
16959 copy_type (TYPE_TARGET_TYPE (inner_array));
16960 inner_array = TYPE_TARGET_TYPE (inner_array);
16961 }
16962
16963 el_type = TYPE_TARGET_TYPE (inner_array);
16964 cnst |= TYPE_CONST (el_type);
16965 voltl |= TYPE_VOLATILE (el_type);
16966 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
16967
16968 return set_die_type (die, base_type, cu);
16969 }
16970
16971 static struct type *
16972 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
16973 {
16974 struct type *base_type, *cv_type;
16975
16976 base_type = die_type (die, cu);
16977
16978 /* The die_type call above may have already set the type for this DIE. */
16979 cv_type = get_die_type (die, cu);
16980 if (cv_type)
16981 return cv_type;
16982
16983 /* In case the const qualifier is applied to an array type, the element type
16984 is so qualified, not the array type (section 6.7.3 of C99). */
16985 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
16986 return add_array_cv_type (die, cu, base_type, 1, 0);
16987
16988 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
16989 return set_die_type (die, cv_type, cu);
16990 }
16991
16992 static struct type *
16993 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
16994 {
16995 struct type *base_type, *cv_type;
16996
16997 base_type = die_type (die, cu);
16998
16999 /* The die_type call above may have already set the type for this DIE. */
17000 cv_type = get_die_type (die, cu);
17001 if (cv_type)
17002 return cv_type;
17003
17004 /* In case the volatile qualifier is applied to an array type, the
17005 element type is so qualified, not the array type (section 6.7.3
17006 of C99). */
17007 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17008 return add_array_cv_type (die, cu, base_type, 0, 1);
17009
17010 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
17011 return set_die_type (die, cv_type, cu);
17012 }
17013
17014 /* Handle DW_TAG_restrict_type. */
17015
17016 static struct type *
17017 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
17018 {
17019 struct type *base_type, *cv_type;
17020
17021 base_type = die_type (die, cu);
17022
17023 /* The die_type call above may have already set the type for this DIE. */
17024 cv_type = get_die_type (die, cu);
17025 if (cv_type)
17026 return cv_type;
17027
17028 cv_type = make_restrict_type (base_type);
17029 return set_die_type (die, cv_type, cu);
17030 }
17031
17032 /* Handle DW_TAG_atomic_type. */
17033
17034 static struct type *
17035 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
17036 {
17037 struct type *base_type, *cv_type;
17038
17039 base_type = die_type (die, cu);
17040
17041 /* The die_type call above may have already set the type for this DIE. */
17042 cv_type = get_die_type (die, cu);
17043 if (cv_type)
17044 return cv_type;
17045
17046 cv_type = make_atomic_type (base_type);
17047 return set_die_type (die, cv_type, cu);
17048 }
17049
17050 /* Extract all information from a DW_TAG_string_type DIE and add to
17051 the user defined type vector. It isn't really a user defined type,
17052 but it behaves like one, with other DIE's using an AT_user_def_type
17053 attribute to reference it. */
17054
17055 static struct type *
17056 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
17057 {
17058 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17059 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17060 struct type *type, *range_type, *index_type, *char_type;
17061 struct attribute *attr;
17062 unsigned int length;
17063
17064 attr = dwarf2_attr (die, DW_AT_string_length, cu);
17065 if (attr)
17066 {
17067 length = DW_UNSND (attr);
17068 }
17069 else
17070 {
17071 /* Check for the DW_AT_byte_size attribute. */
17072 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17073 if (attr)
17074 {
17075 length = DW_UNSND (attr);
17076 }
17077 else
17078 {
17079 length = 1;
17080 }
17081 }
17082
17083 index_type = objfile_type (objfile)->builtin_int;
17084 range_type = create_static_range_type (NULL, index_type, 1, length);
17085 char_type = language_string_char_type (cu->language_defn, gdbarch);
17086 type = create_string_type (NULL, char_type, range_type);
17087
17088 return set_die_type (die, type, cu);
17089 }
17090
17091 /* Assuming that DIE corresponds to a function, returns nonzero
17092 if the function is prototyped. */
17093
17094 static int
17095 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
17096 {
17097 struct attribute *attr;
17098
17099 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
17100 if (attr && (DW_UNSND (attr) != 0))
17101 return 1;
17102
17103 /* The DWARF standard implies that the DW_AT_prototyped attribute
17104 is only meaninful for C, but the concept also extends to other
17105 languages that allow unprototyped functions (Eg: Objective C).
17106 For all other languages, assume that functions are always
17107 prototyped. */
17108 if (cu->language != language_c
17109 && cu->language != language_objc
17110 && cu->language != language_opencl)
17111 return 1;
17112
17113 /* RealView does not emit DW_AT_prototyped. We can not distinguish
17114 prototyped and unprototyped functions; default to prototyped,
17115 since that is more common in modern code (and RealView warns
17116 about unprototyped functions). */
17117 if (producer_is_realview (cu->producer))
17118 return 1;
17119
17120 return 0;
17121 }
17122
17123 /* Handle DIES due to C code like:
17124
17125 struct foo
17126 {
17127 int (*funcp)(int a, long l);
17128 int b;
17129 };
17130
17131 ('funcp' generates a DW_TAG_subroutine_type DIE). */
17132
17133 static struct type *
17134 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
17135 {
17136 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17137 struct type *type; /* Type that this function returns. */
17138 struct type *ftype; /* Function that returns above type. */
17139 struct attribute *attr;
17140
17141 type = die_type (die, cu);
17142
17143 /* The die_type call above may have already set the type for this DIE. */
17144 ftype = get_die_type (die, cu);
17145 if (ftype)
17146 return ftype;
17147
17148 ftype = lookup_function_type (type);
17149
17150 if (prototyped_function_p (die, cu))
17151 TYPE_PROTOTYPED (ftype) = 1;
17152
17153 /* Store the calling convention in the type if it's available in
17154 the subroutine die. Otherwise set the calling convention to
17155 the default value DW_CC_normal. */
17156 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
17157 if (attr)
17158 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
17159 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
17160 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
17161 else
17162 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
17163
17164 /* Record whether the function returns normally to its caller or not
17165 if the DWARF producer set that information. */
17166 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
17167 if (attr && (DW_UNSND (attr) != 0))
17168 TYPE_NO_RETURN (ftype) = 1;
17169
17170 /* We need to add the subroutine type to the die immediately so
17171 we don't infinitely recurse when dealing with parameters
17172 declared as the same subroutine type. */
17173 set_die_type (die, ftype, cu);
17174
17175 if (die->child != NULL)
17176 {
17177 struct type *void_type = objfile_type (objfile)->builtin_void;
17178 struct die_info *child_die;
17179 int nparams, iparams;
17180
17181 /* Count the number of parameters.
17182 FIXME: GDB currently ignores vararg functions, but knows about
17183 vararg member functions. */
17184 nparams = 0;
17185 child_die = die->child;
17186 while (child_die && child_die->tag)
17187 {
17188 if (child_die->tag == DW_TAG_formal_parameter)
17189 nparams++;
17190 else if (child_die->tag == DW_TAG_unspecified_parameters)
17191 TYPE_VARARGS (ftype) = 1;
17192 child_die = sibling_die (child_die);
17193 }
17194
17195 /* Allocate storage for parameters and fill them in. */
17196 TYPE_NFIELDS (ftype) = nparams;
17197 TYPE_FIELDS (ftype) = (struct field *)
17198 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
17199
17200 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
17201 even if we error out during the parameters reading below. */
17202 for (iparams = 0; iparams < nparams; iparams++)
17203 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
17204
17205 iparams = 0;
17206 child_die = die->child;
17207 while (child_die && child_die->tag)
17208 {
17209 if (child_die->tag == DW_TAG_formal_parameter)
17210 {
17211 struct type *arg_type;
17212
17213 /* DWARF version 2 has no clean way to discern C++
17214 static and non-static member functions. G++ helps
17215 GDB by marking the first parameter for non-static
17216 member functions (which is the this pointer) as
17217 artificial. We pass this information to
17218 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
17219
17220 DWARF version 3 added DW_AT_object_pointer, which GCC
17221 4.5 does not yet generate. */
17222 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
17223 if (attr)
17224 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
17225 else
17226 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
17227 arg_type = die_type (child_die, cu);
17228
17229 /* RealView does not mark THIS as const, which the testsuite
17230 expects. GCC marks THIS as const in method definitions,
17231 but not in the class specifications (GCC PR 43053). */
17232 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
17233 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
17234 {
17235 int is_this = 0;
17236 struct dwarf2_cu *arg_cu = cu;
17237 const char *name = dwarf2_name (child_die, cu);
17238
17239 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
17240 if (attr)
17241 {
17242 /* If the compiler emits this, use it. */
17243 if (follow_die_ref (die, attr, &arg_cu) == child_die)
17244 is_this = 1;
17245 }
17246 else if (name && strcmp (name, "this") == 0)
17247 /* Function definitions will have the argument names. */
17248 is_this = 1;
17249 else if (name == NULL && iparams == 0)
17250 /* Declarations may not have the names, so like
17251 elsewhere in GDB, assume an artificial first
17252 argument is "this". */
17253 is_this = 1;
17254
17255 if (is_this)
17256 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
17257 arg_type, 0);
17258 }
17259
17260 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
17261 iparams++;
17262 }
17263 child_die = sibling_die (child_die);
17264 }
17265 }
17266
17267 return ftype;
17268 }
17269
17270 static struct type *
17271 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
17272 {
17273 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17274 const char *name = NULL;
17275 struct type *this_type, *target_type;
17276
17277 name = dwarf2_full_name (NULL, die, cu);
17278 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
17279 TYPE_TARGET_STUB (this_type) = 1;
17280 set_die_type (die, this_type, cu);
17281 target_type = die_type (die, cu);
17282 if (target_type != this_type)
17283 TYPE_TARGET_TYPE (this_type) = target_type;
17284 else
17285 {
17286 /* Self-referential typedefs are, it seems, not allowed by the DWARF
17287 spec and cause infinite loops in GDB. */
17288 complaint (_("Self-referential DW_TAG_typedef "
17289 "- DIE at %s [in module %s]"),
17290 sect_offset_str (die->sect_off), objfile_name (objfile));
17291 TYPE_TARGET_TYPE (this_type) = NULL;
17292 }
17293 return this_type;
17294 }
17295
17296 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
17297 (which may be different from NAME) to the architecture back-end to allow
17298 it to guess the correct format if necessary. */
17299
17300 static struct type *
17301 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
17302 const char *name_hint)
17303 {
17304 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17305 const struct floatformat **format;
17306 struct type *type;
17307
17308 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
17309 if (format)
17310 type = init_float_type (objfile, bits, name, format);
17311 else
17312 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17313
17314 return type;
17315 }
17316
17317 /* Find a representation of a given base type and install
17318 it in the TYPE field of the die. */
17319
17320 static struct type *
17321 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
17322 {
17323 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17324 struct type *type;
17325 struct attribute *attr;
17326 int encoding = 0, bits = 0;
17327 const char *name;
17328
17329 attr = dwarf2_attr (die, DW_AT_encoding, cu);
17330 if (attr)
17331 {
17332 encoding = DW_UNSND (attr);
17333 }
17334 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17335 if (attr)
17336 {
17337 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
17338 }
17339 name = dwarf2_name (die, cu);
17340 if (!name)
17341 {
17342 complaint (_("DW_AT_name missing from DW_TAG_base_type"));
17343 }
17344
17345 switch (encoding)
17346 {
17347 case DW_ATE_address:
17348 /* Turn DW_ATE_address into a void * pointer. */
17349 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
17350 type = init_pointer_type (objfile, bits, name, type);
17351 break;
17352 case DW_ATE_boolean:
17353 type = init_boolean_type (objfile, bits, 1, name);
17354 break;
17355 case DW_ATE_complex_float:
17356 type = dwarf2_init_float_type (objfile, bits / 2, NULL, name);
17357 type = init_complex_type (objfile, name, type);
17358 break;
17359 case DW_ATE_decimal_float:
17360 type = init_decfloat_type (objfile, bits, name);
17361 break;
17362 case DW_ATE_float:
17363 type = dwarf2_init_float_type (objfile, bits, name, name);
17364 break;
17365 case DW_ATE_signed:
17366 type = init_integer_type (objfile, bits, 0, name);
17367 break;
17368 case DW_ATE_unsigned:
17369 if (cu->language == language_fortran
17370 && name
17371 && startswith (name, "character("))
17372 type = init_character_type (objfile, bits, 1, name);
17373 else
17374 type = init_integer_type (objfile, bits, 1, name);
17375 break;
17376 case DW_ATE_signed_char:
17377 if (cu->language == language_ada || cu->language == language_m2
17378 || cu->language == language_pascal
17379 || cu->language == language_fortran)
17380 type = init_character_type (objfile, bits, 0, name);
17381 else
17382 type = init_integer_type (objfile, bits, 0, name);
17383 break;
17384 case DW_ATE_unsigned_char:
17385 if (cu->language == language_ada || cu->language == language_m2
17386 || cu->language == language_pascal
17387 || cu->language == language_fortran
17388 || cu->language == language_rust)
17389 type = init_character_type (objfile, bits, 1, name);
17390 else
17391 type = init_integer_type (objfile, bits, 1, name);
17392 break;
17393 case DW_ATE_UTF:
17394 {
17395 gdbarch *arch = get_objfile_arch (objfile);
17396
17397 if (bits == 16)
17398 type = builtin_type (arch)->builtin_char16;
17399 else if (bits == 32)
17400 type = builtin_type (arch)->builtin_char32;
17401 else
17402 {
17403 complaint (_("unsupported DW_ATE_UTF bit size: '%d'"),
17404 bits);
17405 type = init_integer_type (objfile, bits, 1, name);
17406 }
17407 return set_die_type (die, type, cu);
17408 }
17409 break;
17410
17411 default:
17412 complaint (_("unsupported DW_AT_encoding: '%s'"),
17413 dwarf_type_encoding_name (encoding));
17414 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17415 break;
17416 }
17417
17418 if (name && strcmp (name, "char") == 0)
17419 TYPE_NOSIGN (type) = 1;
17420
17421 maybe_set_alignment (cu, die, type);
17422
17423 return set_die_type (die, type, cu);
17424 }
17425
17426 /* Parse dwarf attribute if it's a block, reference or constant and put the
17427 resulting value of the attribute into struct bound_prop.
17428 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
17429
17430 static int
17431 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
17432 struct dwarf2_cu *cu, struct dynamic_prop *prop)
17433 {
17434 struct dwarf2_property_baton *baton;
17435 struct obstack *obstack
17436 = &cu->per_cu->dwarf2_per_objfile->objfile->objfile_obstack;
17437
17438 if (attr == NULL || prop == NULL)
17439 return 0;
17440
17441 if (attr_form_is_block (attr))
17442 {
17443 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17444 baton->referenced_type = NULL;
17445 baton->locexpr.per_cu = cu->per_cu;
17446 baton->locexpr.size = DW_BLOCK (attr)->size;
17447 baton->locexpr.data = DW_BLOCK (attr)->data;
17448 prop->data.baton = baton;
17449 prop->kind = PROP_LOCEXPR;
17450 gdb_assert (prop->data.baton != NULL);
17451 }
17452 else if (attr_form_is_ref (attr))
17453 {
17454 struct dwarf2_cu *target_cu = cu;
17455 struct die_info *target_die;
17456 struct attribute *target_attr;
17457
17458 target_die = follow_die_ref (die, attr, &target_cu);
17459 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
17460 if (target_attr == NULL)
17461 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
17462 target_cu);
17463 if (target_attr == NULL)
17464 return 0;
17465
17466 switch (target_attr->name)
17467 {
17468 case DW_AT_location:
17469 if (attr_form_is_section_offset (target_attr))
17470 {
17471 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17472 baton->referenced_type = die_type (target_die, target_cu);
17473 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
17474 prop->data.baton = baton;
17475 prop->kind = PROP_LOCLIST;
17476 gdb_assert (prop->data.baton != NULL);
17477 }
17478 else if (attr_form_is_block (target_attr))
17479 {
17480 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17481 baton->referenced_type = die_type (target_die, target_cu);
17482 baton->locexpr.per_cu = cu->per_cu;
17483 baton->locexpr.size = DW_BLOCK (target_attr)->size;
17484 baton->locexpr.data = DW_BLOCK (target_attr)->data;
17485 prop->data.baton = baton;
17486 prop->kind = PROP_LOCEXPR;
17487 gdb_assert (prop->data.baton != NULL);
17488 }
17489 else
17490 {
17491 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
17492 "dynamic property");
17493 return 0;
17494 }
17495 break;
17496 case DW_AT_data_member_location:
17497 {
17498 LONGEST offset;
17499
17500 if (!handle_data_member_location (target_die, target_cu,
17501 &offset))
17502 return 0;
17503
17504 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17505 baton->referenced_type = read_type_die (target_die->parent,
17506 target_cu);
17507 baton->offset_info.offset = offset;
17508 baton->offset_info.type = die_type (target_die, target_cu);
17509 prop->data.baton = baton;
17510 prop->kind = PROP_ADDR_OFFSET;
17511 break;
17512 }
17513 }
17514 }
17515 else if (attr_form_is_constant (attr))
17516 {
17517 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
17518 prop->kind = PROP_CONST;
17519 }
17520 else
17521 {
17522 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
17523 dwarf2_name (die, cu));
17524 return 0;
17525 }
17526
17527 return 1;
17528 }
17529
17530 /* Read the given DW_AT_subrange DIE. */
17531
17532 static struct type *
17533 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
17534 {
17535 struct type *base_type, *orig_base_type;
17536 struct type *range_type;
17537 struct attribute *attr;
17538 struct dynamic_prop low, high;
17539 int low_default_is_valid;
17540 int high_bound_is_count = 0;
17541 const char *name;
17542 LONGEST negative_mask;
17543
17544 orig_base_type = die_type (die, cu);
17545 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
17546 whereas the real type might be. So, we use ORIG_BASE_TYPE when
17547 creating the range type, but we use the result of check_typedef
17548 when examining properties of the type. */
17549 base_type = check_typedef (orig_base_type);
17550
17551 /* The die_type call above may have already set the type for this DIE. */
17552 range_type = get_die_type (die, cu);
17553 if (range_type)
17554 return range_type;
17555
17556 low.kind = PROP_CONST;
17557 high.kind = PROP_CONST;
17558 high.data.const_val = 0;
17559
17560 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
17561 omitting DW_AT_lower_bound. */
17562 switch (cu->language)
17563 {
17564 case language_c:
17565 case language_cplus:
17566 low.data.const_val = 0;
17567 low_default_is_valid = 1;
17568 break;
17569 case language_fortran:
17570 low.data.const_val = 1;
17571 low_default_is_valid = 1;
17572 break;
17573 case language_d:
17574 case language_objc:
17575 case language_rust:
17576 low.data.const_val = 0;
17577 low_default_is_valid = (cu->header.version >= 4);
17578 break;
17579 case language_ada:
17580 case language_m2:
17581 case language_pascal:
17582 low.data.const_val = 1;
17583 low_default_is_valid = (cu->header.version >= 4);
17584 break;
17585 default:
17586 low.data.const_val = 0;
17587 low_default_is_valid = 0;
17588 break;
17589 }
17590
17591 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
17592 if (attr)
17593 attr_to_dynamic_prop (attr, die, cu, &low);
17594 else if (!low_default_is_valid)
17595 complaint (_("Missing DW_AT_lower_bound "
17596 "- DIE at %s [in module %s]"),
17597 sect_offset_str (die->sect_off),
17598 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17599
17600 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
17601 if (!attr_to_dynamic_prop (attr, die, cu, &high))
17602 {
17603 attr = dwarf2_attr (die, DW_AT_count, cu);
17604 if (attr_to_dynamic_prop (attr, die, cu, &high))
17605 {
17606 /* If bounds are constant do the final calculation here. */
17607 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
17608 high.data.const_val = low.data.const_val + high.data.const_val - 1;
17609 else
17610 high_bound_is_count = 1;
17611 }
17612 }
17613
17614 /* Dwarf-2 specifications explicitly allows to create subrange types
17615 without specifying a base type.
17616 In that case, the base type must be set to the type of
17617 the lower bound, upper bound or count, in that order, if any of these
17618 three attributes references an object that has a type.
17619 If no base type is found, the Dwarf-2 specifications say that
17620 a signed integer type of size equal to the size of an address should
17621 be used.
17622 For the following C code: `extern char gdb_int [];'
17623 GCC produces an empty range DIE.
17624 FIXME: muller/2010-05-28: Possible references to object for low bound,
17625 high bound or count are not yet handled by this code. */
17626 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
17627 {
17628 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17629 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17630 int addr_size = gdbarch_addr_bit (gdbarch) /8;
17631 struct type *int_type = objfile_type (objfile)->builtin_int;
17632
17633 /* Test "int", "long int", and "long long int" objfile types,
17634 and select the first one having a size above or equal to the
17635 architecture address size. */
17636 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17637 base_type = int_type;
17638 else
17639 {
17640 int_type = objfile_type (objfile)->builtin_long;
17641 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17642 base_type = int_type;
17643 else
17644 {
17645 int_type = objfile_type (objfile)->builtin_long_long;
17646 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17647 base_type = int_type;
17648 }
17649 }
17650 }
17651
17652 /* Normally, the DWARF producers are expected to use a signed
17653 constant form (Eg. DW_FORM_sdata) to express negative bounds.
17654 But this is unfortunately not always the case, as witnessed
17655 with GCC, for instance, where the ambiguous DW_FORM_dataN form
17656 is used instead. To work around that ambiguity, we treat
17657 the bounds as signed, and thus sign-extend their values, when
17658 the base type is signed. */
17659 negative_mask =
17660 -((LONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
17661 if (low.kind == PROP_CONST
17662 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
17663 low.data.const_val |= negative_mask;
17664 if (high.kind == PROP_CONST
17665 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
17666 high.data.const_val |= negative_mask;
17667
17668 range_type = create_range_type (NULL, orig_base_type, &low, &high);
17669
17670 if (high_bound_is_count)
17671 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
17672
17673 /* Ada expects an empty array on no boundary attributes. */
17674 if (attr == NULL && cu->language != language_ada)
17675 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
17676
17677 name = dwarf2_name (die, cu);
17678 if (name)
17679 TYPE_NAME (range_type) = name;
17680
17681 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17682 if (attr)
17683 TYPE_LENGTH (range_type) = DW_UNSND (attr);
17684
17685 maybe_set_alignment (cu, die, range_type);
17686
17687 set_die_type (die, range_type, cu);
17688
17689 /* set_die_type should be already done. */
17690 set_descriptive_type (range_type, die, cu);
17691
17692 return range_type;
17693 }
17694
17695 static struct type *
17696 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
17697 {
17698 struct type *type;
17699
17700 type = init_type (cu->per_cu->dwarf2_per_objfile->objfile, TYPE_CODE_VOID,0,
17701 NULL);
17702 TYPE_NAME (type) = dwarf2_name (die, cu);
17703
17704 /* In Ada, an unspecified type is typically used when the description
17705 of the type is defered to a different unit. When encountering
17706 such a type, we treat it as a stub, and try to resolve it later on,
17707 when needed. */
17708 if (cu->language == language_ada)
17709 TYPE_STUB (type) = 1;
17710
17711 return set_die_type (die, type, cu);
17712 }
17713
17714 /* Read a single die and all its descendents. Set the die's sibling
17715 field to NULL; set other fields in the die correctly, and set all
17716 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
17717 location of the info_ptr after reading all of those dies. PARENT
17718 is the parent of the die in question. */
17719
17720 static struct die_info *
17721 read_die_and_children (const struct die_reader_specs *reader,
17722 const gdb_byte *info_ptr,
17723 const gdb_byte **new_info_ptr,
17724 struct die_info *parent)
17725 {
17726 struct die_info *die;
17727 const gdb_byte *cur_ptr;
17728 int has_children;
17729
17730 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
17731 if (die == NULL)
17732 {
17733 *new_info_ptr = cur_ptr;
17734 return NULL;
17735 }
17736 store_in_ref_table (die, reader->cu);
17737
17738 if (has_children)
17739 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
17740 else
17741 {
17742 die->child = NULL;
17743 *new_info_ptr = cur_ptr;
17744 }
17745
17746 die->sibling = NULL;
17747 die->parent = parent;
17748 return die;
17749 }
17750
17751 /* Read a die, all of its descendents, and all of its siblings; set
17752 all of the fields of all of the dies correctly. Arguments are as
17753 in read_die_and_children. */
17754
17755 static struct die_info *
17756 read_die_and_siblings_1 (const struct die_reader_specs *reader,
17757 const gdb_byte *info_ptr,
17758 const gdb_byte **new_info_ptr,
17759 struct die_info *parent)
17760 {
17761 struct die_info *first_die, *last_sibling;
17762 const gdb_byte *cur_ptr;
17763
17764 cur_ptr = info_ptr;
17765 first_die = last_sibling = NULL;
17766
17767 while (1)
17768 {
17769 struct die_info *die
17770 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
17771
17772 if (die == NULL)
17773 {
17774 *new_info_ptr = cur_ptr;
17775 return first_die;
17776 }
17777
17778 if (!first_die)
17779 first_die = die;
17780 else
17781 last_sibling->sibling = die;
17782
17783 last_sibling = die;
17784 }
17785 }
17786
17787 /* Read a die, all of its descendents, and all of its siblings; set
17788 all of the fields of all of the dies correctly. Arguments are as
17789 in read_die_and_children.
17790 This the main entry point for reading a DIE and all its children. */
17791
17792 static struct die_info *
17793 read_die_and_siblings (const struct die_reader_specs *reader,
17794 const gdb_byte *info_ptr,
17795 const gdb_byte **new_info_ptr,
17796 struct die_info *parent)
17797 {
17798 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
17799 new_info_ptr, parent);
17800
17801 if (dwarf_die_debug)
17802 {
17803 fprintf_unfiltered (gdb_stdlog,
17804 "Read die from %s@0x%x of %s:\n",
17805 get_section_name (reader->die_section),
17806 (unsigned) (info_ptr - reader->die_section->buffer),
17807 bfd_get_filename (reader->abfd));
17808 dump_die (die, dwarf_die_debug);
17809 }
17810
17811 return die;
17812 }
17813
17814 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
17815 attributes.
17816 The caller is responsible for filling in the extra attributes
17817 and updating (*DIEP)->num_attrs.
17818 Set DIEP to point to a newly allocated die with its information,
17819 except for its child, sibling, and parent fields.
17820 Set HAS_CHILDREN to tell whether the die has children or not. */
17821
17822 static const gdb_byte *
17823 read_full_die_1 (const struct die_reader_specs *reader,
17824 struct die_info **diep, const gdb_byte *info_ptr,
17825 int *has_children, int num_extra_attrs)
17826 {
17827 unsigned int abbrev_number, bytes_read, i;
17828 struct abbrev_info *abbrev;
17829 struct die_info *die;
17830 struct dwarf2_cu *cu = reader->cu;
17831 bfd *abfd = reader->abfd;
17832
17833 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
17834 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
17835 info_ptr += bytes_read;
17836 if (!abbrev_number)
17837 {
17838 *diep = NULL;
17839 *has_children = 0;
17840 return info_ptr;
17841 }
17842
17843 abbrev = reader->abbrev_table->lookup_abbrev (abbrev_number);
17844 if (!abbrev)
17845 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
17846 abbrev_number,
17847 bfd_get_filename (abfd));
17848
17849 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
17850 die->sect_off = sect_off;
17851 die->tag = abbrev->tag;
17852 die->abbrev = abbrev_number;
17853
17854 /* Make the result usable.
17855 The caller needs to update num_attrs after adding the extra
17856 attributes. */
17857 die->num_attrs = abbrev->num_attrs;
17858
17859 for (i = 0; i < abbrev->num_attrs; ++i)
17860 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
17861 info_ptr);
17862
17863 *diep = die;
17864 *has_children = abbrev->has_children;
17865 return info_ptr;
17866 }
17867
17868 /* Read a die and all its attributes.
17869 Set DIEP to point to a newly allocated die with its information,
17870 except for its child, sibling, and parent fields.
17871 Set HAS_CHILDREN to tell whether the die has children or not. */
17872
17873 static const gdb_byte *
17874 read_full_die (const struct die_reader_specs *reader,
17875 struct die_info **diep, const gdb_byte *info_ptr,
17876 int *has_children)
17877 {
17878 const gdb_byte *result;
17879
17880 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
17881
17882 if (dwarf_die_debug)
17883 {
17884 fprintf_unfiltered (gdb_stdlog,
17885 "Read die from %s@0x%x of %s:\n",
17886 get_section_name (reader->die_section),
17887 (unsigned) (info_ptr - reader->die_section->buffer),
17888 bfd_get_filename (reader->abfd));
17889 dump_die (*diep, dwarf_die_debug);
17890 }
17891
17892 return result;
17893 }
17894 \f
17895 /* Abbreviation tables.
17896
17897 In DWARF version 2, the description of the debugging information is
17898 stored in a separate .debug_abbrev section. Before we read any
17899 dies from a section we read in all abbreviations and install them
17900 in a hash table. */
17901
17902 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
17903
17904 struct abbrev_info *
17905 abbrev_table::alloc_abbrev ()
17906 {
17907 struct abbrev_info *abbrev;
17908
17909 abbrev = XOBNEW (&abbrev_obstack, struct abbrev_info);
17910 memset (abbrev, 0, sizeof (struct abbrev_info));
17911
17912 return abbrev;
17913 }
17914
17915 /* Add an abbreviation to the table. */
17916
17917 void
17918 abbrev_table::add_abbrev (unsigned int abbrev_number,
17919 struct abbrev_info *abbrev)
17920 {
17921 unsigned int hash_number;
17922
17923 hash_number = abbrev_number % ABBREV_HASH_SIZE;
17924 abbrev->next = m_abbrevs[hash_number];
17925 m_abbrevs[hash_number] = abbrev;
17926 }
17927
17928 /* Look up an abbrev in the table.
17929 Returns NULL if the abbrev is not found. */
17930
17931 struct abbrev_info *
17932 abbrev_table::lookup_abbrev (unsigned int abbrev_number)
17933 {
17934 unsigned int hash_number;
17935 struct abbrev_info *abbrev;
17936
17937 hash_number = abbrev_number % ABBREV_HASH_SIZE;
17938 abbrev = m_abbrevs[hash_number];
17939
17940 while (abbrev)
17941 {
17942 if (abbrev->number == abbrev_number)
17943 return abbrev;
17944 abbrev = abbrev->next;
17945 }
17946 return NULL;
17947 }
17948
17949 /* Read in an abbrev table. */
17950
17951 static abbrev_table_up
17952 abbrev_table_read_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
17953 struct dwarf2_section_info *section,
17954 sect_offset sect_off)
17955 {
17956 struct objfile *objfile = dwarf2_per_objfile->objfile;
17957 bfd *abfd = get_section_bfd_owner (section);
17958 const gdb_byte *abbrev_ptr;
17959 struct abbrev_info *cur_abbrev;
17960 unsigned int abbrev_number, bytes_read, abbrev_name;
17961 unsigned int abbrev_form;
17962 struct attr_abbrev *cur_attrs;
17963 unsigned int allocated_attrs;
17964
17965 abbrev_table_up abbrev_table (new struct abbrev_table (sect_off));
17966
17967 dwarf2_read_section (objfile, section);
17968 abbrev_ptr = section->buffer + to_underlying (sect_off);
17969 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
17970 abbrev_ptr += bytes_read;
17971
17972 allocated_attrs = ATTR_ALLOC_CHUNK;
17973 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
17974
17975 /* Loop until we reach an abbrev number of 0. */
17976 while (abbrev_number)
17977 {
17978 cur_abbrev = abbrev_table->alloc_abbrev ();
17979
17980 /* read in abbrev header */
17981 cur_abbrev->number = abbrev_number;
17982 cur_abbrev->tag
17983 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
17984 abbrev_ptr += bytes_read;
17985 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
17986 abbrev_ptr += 1;
17987
17988 /* now read in declarations */
17989 for (;;)
17990 {
17991 LONGEST implicit_const;
17992
17993 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
17994 abbrev_ptr += bytes_read;
17995 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
17996 abbrev_ptr += bytes_read;
17997 if (abbrev_form == DW_FORM_implicit_const)
17998 {
17999 implicit_const = read_signed_leb128 (abfd, abbrev_ptr,
18000 &bytes_read);
18001 abbrev_ptr += bytes_read;
18002 }
18003 else
18004 {
18005 /* Initialize it due to a false compiler warning. */
18006 implicit_const = -1;
18007 }
18008
18009 if (abbrev_name == 0)
18010 break;
18011
18012 if (cur_abbrev->num_attrs == allocated_attrs)
18013 {
18014 allocated_attrs += ATTR_ALLOC_CHUNK;
18015 cur_attrs
18016 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
18017 }
18018
18019 cur_attrs[cur_abbrev->num_attrs].name
18020 = (enum dwarf_attribute) abbrev_name;
18021 cur_attrs[cur_abbrev->num_attrs].form
18022 = (enum dwarf_form) abbrev_form;
18023 cur_attrs[cur_abbrev->num_attrs].implicit_const = implicit_const;
18024 ++cur_abbrev->num_attrs;
18025 }
18026
18027 cur_abbrev->attrs =
18028 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
18029 cur_abbrev->num_attrs);
18030 memcpy (cur_abbrev->attrs, cur_attrs,
18031 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
18032
18033 abbrev_table->add_abbrev (abbrev_number, cur_abbrev);
18034
18035 /* Get next abbreviation.
18036 Under Irix6 the abbreviations for a compilation unit are not
18037 always properly terminated with an abbrev number of 0.
18038 Exit loop if we encounter an abbreviation which we have
18039 already read (which means we are about to read the abbreviations
18040 for the next compile unit) or if the end of the abbreviation
18041 table is reached. */
18042 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
18043 break;
18044 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18045 abbrev_ptr += bytes_read;
18046 if (abbrev_table->lookup_abbrev (abbrev_number) != NULL)
18047 break;
18048 }
18049
18050 xfree (cur_attrs);
18051 return abbrev_table;
18052 }
18053
18054 /* Returns nonzero if TAG represents a type that we might generate a partial
18055 symbol for. */
18056
18057 static int
18058 is_type_tag_for_partial (int tag)
18059 {
18060 switch (tag)
18061 {
18062 #if 0
18063 /* Some types that would be reasonable to generate partial symbols for,
18064 that we don't at present. */
18065 case DW_TAG_array_type:
18066 case DW_TAG_file_type:
18067 case DW_TAG_ptr_to_member_type:
18068 case DW_TAG_set_type:
18069 case DW_TAG_string_type:
18070 case DW_TAG_subroutine_type:
18071 #endif
18072 case DW_TAG_base_type:
18073 case DW_TAG_class_type:
18074 case DW_TAG_interface_type:
18075 case DW_TAG_enumeration_type:
18076 case DW_TAG_structure_type:
18077 case DW_TAG_subrange_type:
18078 case DW_TAG_typedef:
18079 case DW_TAG_union_type:
18080 return 1;
18081 default:
18082 return 0;
18083 }
18084 }
18085
18086 /* Load all DIEs that are interesting for partial symbols into memory. */
18087
18088 static struct partial_die_info *
18089 load_partial_dies (const struct die_reader_specs *reader,
18090 const gdb_byte *info_ptr, int building_psymtab)
18091 {
18092 struct dwarf2_cu *cu = reader->cu;
18093 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18094 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
18095 unsigned int bytes_read;
18096 unsigned int load_all = 0;
18097 int nesting_level = 1;
18098
18099 parent_die = NULL;
18100 last_die = NULL;
18101
18102 gdb_assert (cu->per_cu != NULL);
18103 if (cu->per_cu->load_all_dies)
18104 load_all = 1;
18105
18106 cu->partial_dies
18107 = htab_create_alloc_ex (cu->header.length / 12,
18108 partial_die_hash,
18109 partial_die_eq,
18110 NULL,
18111 &cu->comp_unit_obstack,
18112 hashtab_obstack_allocate,
18113 dummy_obstack_deallocate);
18114
18115 while (1)
18116 {
18117 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
18118
18119 /* A NULL abbrev means the end of a series of children. */
18120 if (abbrev == NULL)
18121 {
18122 if (--nesting_level == 0)
18123 return first_die;
18124
18125 info_ptr += bytes_read;
18126 last_die = parent_die;
18127 parent_die = parent_die->die_parent;
18128 continue;
18129 }
18130
18131 /* Check for template arguments. We never save these; if
18132 they're seen, we just mark the parent, and go on our way. */
18133 if (parent_die != NULL
18134 && cu->language == language_cplus
18135 && (abbrev->tag == DW_TAG_template_type_param
18136 || abbrev->tag == DW_TAG_template_value_param))
18137 {
18138 parent_die->has_template_arguments = 1;
18139
18140 if (!load_all)
18141 {
18142 /* We don't need a partial DIE for the template argument. */
18143 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18144 continue;
18145 }
18146 }
18147
18148 /* We only recurse into c++ subprograms looking for template arguments.
18149 Skip their other children. */
18150 if (!load_all
18151 && cu->language == language_cplus
18152 && parent_die != NULL
18153 && parent_die->tag == DW_TAG_subprogram)
18154 {
18155 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18156 continue;
18157 }
18158
18159 /* Check whether this DIE is interesting enough to save. Normally
18160 we would not be interested in members here, but there may be
18161 later variables referencing them via DW_AT_specification (for
18162 static members). */
18163 if (!load_all
18164 && !is_type_tag_for_partial (abbrev->tag)
18165 && abbrev->tag != DW_TAG_constant
18166 && abbrev->tag != DW_TAG_enumerator
18167 && abbrev->tag != DW_TAG_subprogram
18168 && abbrev->tag != DW_TAG_inlined_subroutine
18169 && abbrev->tag != DW_TAG_lexical_block
18170 && abbrev->tag != DW_TAG_variable
18171 && abbrev->tag != DW_TAG_namespace
18172 && abbrev->tag != DW_TAG_module
18173 && abbrev->tag != DW_TAG_member
18174 && abbrev->tag != DW_TAG_imported_unit
18175 && abbrev->tag != DW_TAG_imported_declaration)
18176 {
18177 /* Otherwise we skip to the next sibling, if any. */
18178 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18179 continue;
18180 }
18181
18182 struct partial_die_info pdi ((sect_offset) (info_ptr - reader->buffer),
18183 abbrev);
18184
18185 info_ptr = pdi.read (reader, *abbrev, info_ptr + bytes_read);
18186
18187 /* This two-pass algorithm for processing partial symbols has a
18188 high cost in cache pressure. Thus, handle some simple cases
18189 here which cover the majority of C partial symbols. DIEs
18190 which neither have specification tags in them, nor could have
18191 specification tags elsewhere pointing at them, can simply be
18192 processed and discarded.
18193
18194 This segment is also optional; scan_partial_symbols and
18195 add_partial_symbol will handle these DIEs if we chain
18196 them in normally. When compilers which do not emit large
18197 quantities of duplicate debug information are more common,
18198 this code can probably be removed. */
18199
18200 /* Any complete simple types at the top level (pretty much all
18201 of them, for a language without namespaces), can be processed
18202 directly. */
18203 if (parent_die == NULL
18204 && pdi.has_specification == 0
18205 && pdi.is_declaration == 0
18206 && ((pdi.tag == DW_TAG_typedef && !pdi.has_children)
18207 || pdi.tag == DW_TAG_base_type
18208 || pdi.tag == DW_TAG_subrange_type))
18209 {
18210 if (building_psymtab && pdi.name != NULL)
18211 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18212 VAR_DOMAIN, LOC_TYPEDEF,
18213 &objfile->static_psymbols,
18214 0, cu->language, objfile);
18215 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18216 continue;
18217 }
18218
18219 /* The exception for DW_TAG_typedef with has_children above is
18220 a workaround of GCC PR debug/47510. In the case of this complaint
18221 type_name_or_error will error on such types later.
18222
18223 GDB skipped children of DW_TAG_typedef by the shortcut above and then
18224 it could not find the child DIEs referenced later, this is checked
18225 above. In correct DWARF DW_TAG_typedef should have no children. */
18226
18227 if (pdi.tag == DW_TAG_typedef && pdi.has_children)
18228 complaint (_("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
18229 "- DIE at %s [in module %s]"),
18230 sect_offset_str (pdi.sect_off), objfile_name (objfile));
18231
18232 /* If we're at the second level, and we're an enumerator, and
18233 our parent has no specification (meaning possibly lives in a
18234 namespace elsewhere), then we can add the partial symbol now
18235 instead of queueing it. */
18236 if (pdi.tag == DW_TAG_enumerator
18237 && parent_die != NULL
18238 && parent_die->die_parent == NULL
18239 && parent_die->tag == DW_TAG_enumeration_type
18240 && parent_die->has_specification == 0)
18241 {
18242 if (pdi.name == NULL)
18243 complaint (_("malformed enumerator DIE ignored"));
18244 else if (building_psymtab)
18245 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18246 VAR_DOMAIN, LOC_CONST,
18247 cu->language == language_cplus
18248 ? &objfile->global_psymbols
18249 : &objfile->static_psymbols,
18250 0, cu->language, objfile);
18251
18252 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18253 continue;
18254 }
18255
18256 struct partial_die_info *part_die
18257 = new (&cu->comp_unit_obstack) partial_die_info (pdi);
18258
18259 /* We'll save this DIE so link it in. */
18260 part_die->die_parent = parent_die;
18261 part_die->die_sibling = NULL;
18262 part_die->die_child = NULL;
18263
18264 if (last_die && last_die == parent_die)
18265 last_die->die_child = part_die;
18266 else if (last_die)
18267 last_die->die_sibling = part_die;
18268
18269 last_die = part_die;
18270
18271 if (first_die == NULL)
18272 first_die = part_die;
18273
18274 /* Maybe add the DIE to the hash table. Not all DIEs that we
18275 find interesting need to be in the hash table, because we
18276 also have the parent/sibling/child chains; only those that we
18277 might refer to by offset later during partial symbol reading.
18278
18279 For now this means things that might have be the target of a
18280 DW_AT_specification, DW_AT_abstract_origin, or
18281 DW_AT_extension. DW_AT_extension will refer only to
18282 namespaces; DW_AT_abstract_origin refers to functions (and
18283 many things under the function DIE, but we do not recurse
18284 into function DIEs during partial symbol reading) and
18285 possibly variables as well; DW_AT_specification refers to
18286 declarations. Declarations ought to have the DW_AT_declaration
18287 flag. It happens that GCC forgets to put it in sometimes, but
18288 only for functions, not for types.
18289
18290 Adding more things than necessary to the hash table is harmless
18291 except for the performance cost. Adding too few will result in
18292 wasted time in find_partial_die, when we reread the compilation
18293 unit with load_all_dies set. */
18294
18295 if (load_all
18296 || abbrev->tag == DW_TAG_constant
18297 || abbrev->tag == DW_TAG_subprogram
18298 || abbrev->tag == DW_TAG_variable
18299 || abbrev->tag == DW_TAG_namespace
18300 || part_die->is_declaration)
18301 {
18302 void **slot;
18303
18304 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
18305 to_underlying (part_die->sect_off),
18306 INSERT);
18307 *slot = part_die;
18308 }
18309
18310 /* For some DIEs we want to follow their children (if any). For C
18311 we have no reason to follow the children of structures; for other
18312 languages we have to, so that we can get at method physnames
18313 to infer fully qualified class names, for DW_AT_specification,
18314 and for C++ template arguments. For C++, we also look one level
18315 inside functions to find template arguments (if the name of the
18316 function does not already contain the template arguments).
18317
18318 For Ada, we need to scan the children of subprograms and lexical
18319 blocks as well because Ada allows the definition of nested
18320 entities that could be interesting for the debugger, such as
18321 nested subprograms for instance. */
18322 if (last_die->has_children
18323 && (load_all
18324 || last_die->tag == DW_TAG_namespace
18325 || last_die->tag == DW_TAG_module
18326 || last_die->tag == DW_TAG_enumeration_type
18327 || (cu->language == language_cplus
18328 && last_die->tag == DW_TAG_subprogram
18329 && (last_die->name == NULL
18330 || strchr (last_die->name, '<') == NULL))
18331 || (cu->language != language_c
18332 && (last_die->tag == DW_TAG_class_type
18333 || last_die->tag == DW_TAG_interface_type
18334 || last_die->tag == DW_TAG_structure_type
18335 || last_die->tag == DW_TAG_union_type))
18336 || (cu->language == language_ada
18337 && (last_die->tag == DW_TAG_subprogram
18338 || last_die->tag == DW_TAG_lexical_block))))
18339 {
18340 nesting_level++;
18341 parent_die = last_die;
18342 continue;
18343 }
18344
18345 /* Otherwise we skip to the next sibling, if any. */
18346 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
18347
18348 /* Back to the top, do it again. */
18349 }
18350 }
18351
18352 partial_die_info::partial_die_info (sect_offset sect_off_,
18353 struct abbrev_info *abbrev)
18354 : partial_die_info (sect_off_, abbrev->tag, abbrev->has_children)
18355 {
18356 }
18357
18358 /* Read a minimal amount of information into the minimal die structure.
18359 INFO_PTR should point just after the initial uleb128 of a DIE. */
18360
18361 const gdb_byte *
18362 partial_die_info::read (const struct die_reader_specs *reader,
18363 const struct abbrev_info &abbrev, const gdb_byte *info_ptr)
18364 {
18365 struct dwarf2_cu *cu = reader->cu;
18366 struct dwarf2_per_objfile *dwarf2_per_objfile
18367 = cu->per_cu->dwarf2_per_objfile;
18368 unsigned int i;
18369 int has_low_pc_attr = 0;
18370 int has_high_pc_attr = 0;
18371 int high_pc_relative = 0;
18372
18373 for (i = 0; i < abbrev.num_attrs; ++i)
18374 {
18375 struct attribute attr;
18376
18377 info_ptr = read_attribute (reader, &attr, &abbrev.attrs[i], info_ptr);
18378
18379 /* Store the data if it is of an attribute we want to keep in a
18380 partial symbol table. */
18381 switch (attr.name)
18382 {
18383 case DW_AT_name:
18384 switch (tag)
18385 {
18386 case DW_TAG_compile_unit:
18387 case DW_TAG_partial_unit:
18388 case DW_TAG_type_unit:
18389 /* Compilation units have a DW_AT_name that is a filename, not
18390 a source language identifier. */
18391 case DW_TAG_enumeration_type:
18392 case DW_TAG_enumerator:
18393 /* These tags always have simple identifiers already; no need
18394 to canonicalize them. */
18395 name = DW_STRING (&attr);
18396 break;
18397 default:
18398 {
18399 struct objfile *objfile = dwarf2_per_objfile->objfile;
18400
18401 name
18402 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
18403 &objfile->per_bfd->storage_obstack);
18404 }
18405 break;
18406 }
18407 break;
18408 case DW_AT_linkage_name:
18409 case DW_AT_MIPS_linkage_name:
18410 /* Note that both forms of linkage name might appear. We
18411 assume they will be the same, and we only store the last
18412 one we see. */
18413 if (cu->language == language_ada)
18414 name = DW_STRING (&attr);
18415 linkage_name = DW_STRING (&attr);
18416 break;
18417 case DW_AT_low_pc:
18418 has_low_pc_attr = 1;
18419 lowpc = attr_value_as_address (&attr);
18420 break;
18421 case DW_AT_high_pc:
18422 has_high_pc_attr = 1;
18423 highpc = attr_value_as_address (&attr);
18424 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
18425 high_pc_relative = 1;
18426 break;
18427 case DW_AT_location:
18428 /* Support the .debug_loc offsets. */
18429 if (attr_form_is_block (&attr))
18430 {
18431 d.locdesc = DW_BLOCK (&attr);
18432 }
18433 else if (attr_form_is_section_offset (&attr))
18434 {
18435 dwarf2_complex_location_expr_complaint ();
18436 }
18437 else
18438 {
18439 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
18440 "partial symbol information");
18441 }
18442 break;
18443 case DW_AT_external:
18444 is_external = DW_UNSND (&attr);
18445 break;
18446 case DW_AT_declaration:
18447 is_declaration = DW_UNSND (&attr);
18448 break;
18449 case DW_AT_type:
18450 has_type = 1;
18451 break;
18452 case DW_AT_abstract_origin:
18453 case DW_AT_specification:
18454 case DW_AT_extension:
18455 has_specification = 1;
18456 spec_offset = dwarf2_get_ref_die_offset (&attr);
18457 spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18458 || cu->per_cu->is_dwz);
18459 break;
18460 case DW_AT_sibling:
18461 /* Ignore absolute siblings, they might point outside of
18462 the current compile unit. */
18463 if (attr.form == DW_FORM_ref_addr)
18464 complaint (_("ignoring absolute DW_AT_sibling"));
18465 else
18466 {
18467 const gdb_byte *buffer = reader->buffer;
18468 sect_offset off = dwarf2_get_ref_die_offset (&attr);
18469 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
18470
18471 if (sibling_ptr < info_ptr)
18472 complaint (_("DW_AT_sibling points backwards"));
18473 else if (sibling_ptr > reader->buffer_end)
18474 dwarf2_section_buffer_overflow_complaint (reader->die_section);
18475 else
18476 sibling = sibling_ptr;
18477 }
18478 break;
18479 case DW_AT_byte_size:
18480 has_byte_size = 1;
18481 break;
18482 case DW_AT_const_value:
18483 has_const_value = 1;
18484 break;
18485 case DW_AT_calling_convention:
18486 /* DWARF doesn't provide a way to identify a program's source-level
18487 entry point. DW_AT_calling_convention attributes are only meant
18488 to describe functions' calling conventions.
18489
18490 However, because it's a necessary piece of information in
18491 Fortran, and before DWARF 4 DW_CC_program was the only
18492 piece of debugging information whose definition refers to
18493 a 'main program' at all, several compilers marked Fortran
18494 main programs with DW_CC_program --- even when those
18495 functions use the standard calling conventions.
18496
18497 Although DWARF now specifies a way to provide this
18498 information, we support this practice for backward
18499 compatibility. */
18500 if (DW_UNSND (&attr) == DW_CC_program
18501 && cu->language == language_fortran)
18502 main_subprogram = 1;
18503 break;
18504 case DW_AT_inline:
18505 if (DW_UNSND (&attr) == DW_INL_inlined
18506 || DW_UNSND (&attr) == DW_INL_declared_inlined)
18507 may_be_inlined = 1;
18508 break;
18509
18510 case DW_AT_import:
18511 if (tag == DW_TAG_imported_unit)
18512 {
18513 d.sect_off = dwarf2_get_ref_die_offset (&attr);
18514 is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18515 || cu->per_cu->is_dwz);
18516 }
18517 break;
18518
18519 case DW_AT_main_subprogram:
18520 main_subprogram = DW_UNSND (&attr);
18521 break;
18522
18523 default:
18524 break;
18525 }
18526 }
18527
18528 if (high_pc_relative)
18529 highpc += lowpc;
18530
18531 if (has_low_pc_attr && has_high_pc_attr)
18532 {
18533 /* When using the GNU linker, .gnu.linkonce. sections are used to
18534 eliminate duplicate copies of functions and vtables and such.
18535 The linker will arbitrarily choose one and discard the others.
18536 The AT_*_pc values for such functions refer to local labels in
18537 these sections. If the section from that file was discarded, the
18538 labels are not in the output, so the relocs get a value of 0.
18539 If this is a discarded function, mark the pc bounds as invalid,
18540 so that GDB will ignore it. */
18541 if (lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
18542 {
18543 struct objfile *objfile = dwarf2_per_objfile->objfile;
18544 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18545
18546 complaint (_("DW_AT_low_pc %s is zero "
18547 "for DIE at %s [in module %s]"),
18548 paddress (gdbarch, lowpc),
18549 sect_offset_str (sect_off),
18550 objfile_name (objfile));
18551 }
18552 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
18553 else if (lowpc >= highpc)
18554 {
18555 struct objfile *objfile = dwarf2_per_objfile->objfile;
18556 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18557
18558 complaint (_("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
18559 "for DIE at %s [in module %s]"),
18560 paddress (gdbarch, lowpc),
18561 paddress (gdbarch, highpc),
18562 sect_offset_str (sect_off),
18563 objfile_name (objfile));
18564 }
18565 else
18566 has_pc_info = 1;
18567 }
18568
18569 return info_ptr;
18570 }
18571
18572 /* Find a cached partial DIE at OFFSET in CU. */
18573
18574 struct partial_die_info *
18575 dwarf2_cu::find_partial_die (sect_offset sect_off)
18576 {
18577 struct partial_die_info *lookup_die = NULL;
18578 struct partial_die_info part_die (sect_off);
18579
18580 lookup_die = ((struct partial_die_info *)
18581 htab_find_with_hash (partial_dies, &part_die,
18582 to_underlying (sect_off)));
18583
18584 return lookup_die;
18585 }
18586
18587 /* Find a partial DIE at OFFSET, which may or may not be in CU,
18588 except in the case of .debug_types DIEs which do not reference
18589 outside their CU (they do however referencing other types via
18590 DW_FORM_ref_sig8). */
18591
18592 static struct partial_die_info *
18593 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
18594 {
18595 struct dwarf2_per_objfile *dwarf2_per_objfile
18596 = cu->per_cu->dwarf2_per_objfile;
18597 struct objfile *objfile = dwarf2_per_objfile->objfile;
18598 struct dwarf2_per_cu_data *per_cu = NULL;
18599 struct partial_die_info *pd = NULL;
18600
18601 if (offset_in_dwz == cu->per_cu->is_dwz
18602 && offset_in_cu_p (&cu->header, sect_off))
18603 {
18604 pd = cu->find_partial_die (sect_off);
18605 if (pd != NULL)
18606 return pd;
18607 /* We missed recording what we needed.
18608 Load all dies and try again. */
18609 per_cu = cu->per_cu;
18610 }
18611 else
18612 {
18613 /* TUs don't reference other CUs/TUs (except via type signatures). */
18614 if (cu->per_cu->is_debug_types)
18615 {
18616 error (_("Dwarf Error: Type Unit at offset %s contains"
18617 " external reference to offset %s [in module %s].\n"),
18618 sect_offset_str (cu->header.sect_off), sect_offset_str (sect_off),
18619 bfd_get_filename (objfile->obfd));
18620 }
18621 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
18622 dwarf2_per_objfile);
18623
18624 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
18625 load_partial_comp_unit (per_cu);
18626
18627 per_cu->cu->last_used = 0;
18628 pd = per_cu->cu->find_partial_die (sect_off);
18629 }
18630
18631 /* If we didn't find it, and not all dies have been loaded,
18632 load them all and try again. */
18633
18634 if (pd == NULL && per_cu->load_all_dies == 0)
18635 {
18636 per_cu->load_all_dies = 1;
18637
18638 /* This is nasty. When we reread the DIEs, somewhere up the call chain
18639 THIS_CU->cu may already be in use. So we can't just free it and
18640 replace its DIEs with the ones we read in. Instead, we leave those
18641 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
18642 and clobber THIS_CU->cu->partial_dies with the hash table for the new
18643 set. */
18644 load_partial_comp_unit (per_cu);
18645
18646 pd = per_cu->cu->find_partial_die (sect_off);
18647 }
18648
18649 if (pd == NULL)
18650 internal_error (__FILE__, __LINE__,
18651 _("could not find partial DIE %s "
18652 "in cache [from module %s]\n"),
18653 sect_offset_str (sect_off), bfd_get_filename (objfile->obfd));
18654 return pd;
18655 }
18656
18657 /* See if we can figure out if the class lives in a namespace. We do
18658 this by looking for a member function; its demangled name will
18659 contain namespace info, if there is any. */
18660
18661 static void
18662 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
18663 struct dwarf2_cu *cu)
18664 {
18665 /* NOTE: carlton/2003-10-07: Getting the info this way changes
18666 what template types look like, because the demangler
18667 frequently doesn't give the same name as the debug info. We
18668 could fix this by only using the demangled name to get the
18669 prefix (but see comment in read_structure_type). */
18670
18671 struct partial_die_info *real_pdi;
18672 struct partial_die_info *child_pdi;
18673
18674 /* If this DIE (this DIE's specification, if any) has a parent, then
18675 we should not do this. We'll prepend the parent's fully qualified
18676 name when we create the partial symbol. */
18677
18678 real_pdi = struct_pdi;
18679 while (real_pdi->has_specification)
18680 real_pdi = find_partial_die (real_pdi->spec_offset,
18681 real_pdi->spec_is_dwz, cu);
18682
18683 if (real_pdi->die_parent != NULL)
18684 return;
18685
18686 for (child_pdi = struct_pdi->die_child;
18687 child_pdi != NULL;
18688 child_pdi = child_pdi->die_sibling)
18689 {
18690 if (child_pdi->tag == DW_TAG_subprogram
18691 && child_pdi->linkage_name != NULL)
18692 {
18693 char *actual_class_name
18694 = language_class_name_from_physname (cu->language_defn,
18695 child_pdi->linkage_name);
18696 if (actual_class_name != NULL)
18697 {
18698 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18699 struct_pdi->name
18700 = ((const char *)
18701 obstack_copy0 (&objfile->per_bfd->storage_obstack,
18702 actual_class_name,
18703 strlen (actual_class_name)));
18704 xfree (actual_class_name);
18705 }
18706 break;
18707 }
18708 }
18709 }
18710
18711 void
18712 partial_die_info::fixup (struct dwarf2_cu *cu)
18713 {
18714 /* Once we've fixed up a die, there's no point in doing so again.
18715 This also avoids a memory leak if we were to call
18716 guess_partial_die_structure_name multiple times. */
18717 if (fixup_called)
18718 return;
18719
18720 /* If we found a reference attribute and the DIE has no name, try
18721 to find a name in the referred to DIE. */
18722
18723 if (name == NULL && has_specification)
18724 {
18725 struct partial_die_info *spec_die;
18726
18727 spec_die = find_partial_die (spec_offset, spec_is_dwz, cu);
18728
18729 spec_die->fixup (cu);
18730
18731 if (spec_die->name)
18732 {
18733 name = spec_die->name;
18734
18735 /* Copy DW_AT_external attribute if it is set. */
18736 if (spec_die->is_external)
18737 is_external = spec_die->is_external;
18738 }
18739 }
18740
18741 /* Set default names for some unnamed DIEs. */
18742
18743 if (name == NULL && tag == DW_TAG_namespace)
18744 name = CP_ANONYMOUS_NAMESPACE_STR;
18745
18746 /* If there is no parent die to provide a namespace, and there are
18747 children, see if we can determine the namespace from their linkage
18748 name. */
18749 if (cu->language == language_cplus
18750 && !VEC_empty (dwarf2_section_info_def,
18751 cu->per_cu->dwarf2_per_objfile->types)
18752 && die_parent == NULL
18753 && has_children
18754 && (tag == DW_TAG_class_type
18755 || tag == DW_TAG_structure_type
18756 || tag == DW_TAG_union_type))
18757 guess_partial_die_structure_name (this, cu);
18758
18759 /* GCC might emit a nameless struct or union that has a linkage
18760 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18761 if (name == NULL
18762 && (tag == DW_TAG_class_type
18763 || tag == DW_TAG_interface_type
18764 || tag == DW_TAG_structure_type
18765 || tag == DW_TAG_union_type)
18766 && linkage_name != NULL)
18767 {
18768 char *demangled;
18769
18770 demangled = gdb_demangle (linkage_name, DMGL_TYPES);
18771 if (demangled)
18772 {
18773 const char *base;
18774
18775 /* Strip any leading namespaces/classes, keep only the base name.
18776 DW_AT_name for named DIEs does not contain the prefixes. */
18777 base = strrchr (demangled, ':');
18778 if (base && base > demangled && base[-1] == ':')
18779 base++;
18780 else
18781 base = demangled;
18782
18783 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18784 name
18785 = ((const char *)
18786 obstack_copy0 (&objfile->per_bfd->storage_obstack,
18787 base, strlen (base)));
18788 xfree (demangled);
18789 }
18790 }
18791
18792 fixup_called = 1;
18793 }
18794
18795 /* Read an attribute value described by an attribute form. */
18796
18797 static const gdb_byte *
18798 read_attribute_value (const struct die_reader_specs *reader,
18799 struct attribute *attr, unsigned form,
18800 LONGEST implicit_const, const gdb_byte *info_ptr)
18801 {
18802 struct dwarf2_cu *cu = reader->cu;
18803 struct dwarf2_per_objfile *dwarf2_per_objfile
18804 = cu->per_cu->dwarf2_per_objfile;
18805 struct objfile *objfile = dwarf2_per_objfile->objfile;
18806 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18807 bfd *abfd = reader->abfd;
18808 struct comp_unit_head *cu_header = &cu->header;
18809 unsigned int bytes_read;
18810 struct dwarf_block *blk;
18811
18812 attr->form = (enum dwarf_form) form;
18813 switch (form)
18814 {
18815 case DW_FORM_ref_addr:
18816 if (cu->header.version == 2)
18817 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
18818 else
18819 DW_UNSND (attr) = read_offset (abfd, info_ptr,
18820 &cu->header, &bytes_read);
18821 info_ptr += bytes_read;
18822 break;
18823 case DW_FORM_GNU_ref_alt:
18824 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
18825 info_ptr += bytes_read;
18826 break;
18827 case DW_FORM_addr:
18828 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
18829 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
18830 info_ptr += bytes_read;
18831 break;
18832 case DW_FORM_block2:
18833 blk = dwarf_alloc_block (cu);
18834 blk->size = read_2_bytes (abfd, info_ptr);
18835 info_ptr += 2;
18836 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18837 info_ptr += blk->size;
18838 DW_BLOCK (attr) = blk;
18839 break;
18840 case DW_FORM_block4:
18841 blk = dwarf_alloc_block (cu);
18842 blk->size = read_4_bytes (abfd, info_ptr);
18843 info_ptr += 4;
18844 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18845 info_ptr += blk->size;
18846 DW_BLOCK (attr) = blk;
18847 break;
18848 case DW_FORM_data2:
18849 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
18850 info_ptr += 2;
18851 break;
18852 case DW_FORM_data4:
18853 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
18854 info_ptr += 4;
18855 break;
18856 case DW_FORM_data8:
18857 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
18858 info_ptr += 8;
18859 break;
18860 case DW_FORM_data16:
18861 blk = dwarf_alloc_block (cu);
18862 blk->size = 16;
18863 blk->data = read_n_bytes (abfd, info_ptr, 16);
18864 info_ptr += 16;
18865 DW_BLOCK (attr) = blk;
18866 break;
18867 case DW_FORM_sec_offset:
18868 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
18869 info_ptr += bytes_read;
18870 break;
18871 case DW_FORM_string:
18872 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
18873 DW_STRING_IS_CANONICAL (attr) = 0;
18874 info_ptr += bytes_read;
18875 break;
18876 case DW_FORM_strp:
18877 if (!cu->per_cu->is_dwz)
18878 {
18879 DW_STRING (attr) = read_indirect_string (dwarf2_per_objfile,
18880 abfd, info_ptr, cu_header,
18881 &bytes_read);
18882 DW_STRING_IS_CANONICAL (attr) = 0;
18883 info_ptr += bytes_read;
18884 break;
18885 }
18886 /* FALLTHROUGH */
18887 case DW_FORM_line_strp:
18888 if (!cu->per_cu->is_dwz)
18889 {
18890 DW_STRING (attr) = read_indirect_line_string (dwarf2_per_objfile,
18891 abfd, info_ptr,
18892 cu_header, &bytes_read);
18893 DW_STRING_IS_CANONICAL (attr) = 0;
18894 info_ptr += bytes_read;
18895 break;
18896 }
18897 /* FALLTHROUGH */
18898 case DW_FORM_GNU_strp_alt:
18899 {
18900 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
18901 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
18902 &bytes_read);
18903
18904 DW_STRING (attr) = read_indirect_string_from_dwz (objfile,
18905 dwz, str_offset);
18906 DW_STRING_IS_CANONICAL (attr) = 0;
18907 info_ptr += bytes_read;
18908 }
18909 break;
18910 case DW_FORM_exprloc:
18911 case DW_FORM_block:
18912 blk = dwarf_alloc_block (cu);
18913 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18914 info_ptr += bytes_read;
18915 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18916 info_ptr += blk->size;
18917 DW_BLOCK (attr) = blk;
18918 break;
18919 case DW_FORM_block1:
18920 blk = dwarf_alloc_block (cu);
18921 blk->size = read_1_byte (abfd, info_ptr);
18922 info_ptr += 1;
18923 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18924 info_ptr += blk->size;
18925 DW_BLOCK (attr) = blk;
18926 break;
18927 case DW_FORM_data1:
18928 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
18929 info_ptr += 1;
18930 break;
18931 case DW_FORM_flag:
18932 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
18933 info_ptr += 1;
18934 break;
18935 case DW_FORM_flag_present:
18936 DW_UNSND (attr) = 1;
18937 break;
18938 case DW_FORM_sdata:
18939 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
18940 info_ptr += bytes_read;
18941 break;
18942 case DW_FORM_udata:
18943 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18944 info_ptr += bytes_read;
18945 break;
18946 case DW_FORM_ref1:
18947 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
18948 + read_1_byte (abfd, info_ptr));
18949 info_ptr += 1;
18950 break;
18951 case DW_FORM_ref2:
18952 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
18953 + read_2_bytes (abfd, info_ptr));
18954 info_ptr += 2;
18955 break;
18956 case DW_FORM_ref4:
18957 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
18958 + read_4_bytes (abfd, info_ptr));
18959 info_ptr += 4;
18960 break;
18961 case DW_FORM_ref8:
18962 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
18963 + read_8_bytes (abfd, info_ptr));
18964 info_ptr += 8;
18965 break;
18966 case DW_FORM_ref_sig8:
18967 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
18968 info_ptr += 8;
18969 break;
18970 case DW_FORM_ref_udata:
18971 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
18972 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
18973 info_ptr += bytes_read;
18974 break;
18975 case DW_FORM_indirect:
18976 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18977 info_ptr += bytes_read;
18978 if (form == DW_FORM_implicit_const)
18979 {
18980 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
18981 info_ptr += bytes_read;
18982 }
18983 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
18984 info_ptr);
18985 break;
18986 case DW_FORM_implicit_const:
18987 DW_SND (attr) = implicit_const;
18988 break;
18989 case DW_FORM_GNU_addr_index:
18990 if (reader->dwo_file == NULL)
18991 {
18992 /* For now flag a hard error.
18993 Later we can turn this into a complaint. */
18994 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
18995 dwarf_form_name (form),
18996 bfd_get_filename (abfd));
18997 }
18998 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
18999 info_ptr += bytes_read;
19000 break;
19001 case DW_FORM_GNU_str_index:
19002 if (reader->dwo_file == NULL)
19003 {
19004 /* For now flag a hard error.
19005 Later we can turn this into a complaint if warranted. */
19006 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19007 dwarf_form_name (form),
19008 bfd_get_filename (abfd));
19009 }
19010 {
19011 ULONGEST str_index =
19012 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19013
19014 DW_STRING (attr) = read_str_index (reader, str_index);
19015 DW_STRING_IS_CANONICAL (attr) = 0;
19016 info_ptr += bytes_read;
19017 }
19018 break;
19019 default:
19020 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
19021 dwarf_form_name (form),
19022 bfd_get_filename (abfd));
19023 }
19024
19025 /* Super hack. */
19026 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
19027 attr->form = DW_FORM_GNU_ref_alt;
19028
19029 /* We have seen instances where the compiler tried to emit a byte
19030 size attribute of -1 which ended up being encoded as an unsigned
19031 0xffffffff. Although 0xffffffff is technically a valid size value,
19032 an object of this size seems pretty unlikely so we can relatively
19033 safely treat these cases as if the size attribute was invalid and
19034 treat them as zero by default. */
19035 if (attr->name == DW_AT_byte_size
19036 && form == DW_FORM_data4
19037 && DW_UNSND (attr) >= 0xffffffff)
19038 {
19039 complaint
19040 (_("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
19041 hex_string (DW_UNSND (attr)));
19042 DW_UNSND (attr) = 0;
19043 }
19044
19045 return info_ptr;
19046 }
19047
19048 /* Read an attribute described by an abbreviated attribute. */
19049
19050 static const gdb_byte *
19051 read_attribute (const struct die_reader_specs *reader,
19052 struct attribute *attr, struct attr_abbrev *abbrev,
19053 const gdb_byte *info_ptr)
19054 {
19055 attr->name = abbrev->name;
19056 return read_attribute_value (reader, attr, abbrev->form,
19057 abbrev->implicit_const, info_ptr);
19058 }
19059
19060 /* Read dwarf information from a buffer. */
19061
19062 static unsigned int
19063 read_1_byte (bfd *abfd, const gdb_byte *buf)
19064 {
19065 return bfd_get_8 (abfd, buf);
19066 }
19067
19068 static int
19069 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
19070 {
19071 return bfd_get_signed_8 (abfd, buf);
19072 }
19073
19074 static unsigned int
19075 read_2_bytes (bfd *abfd, const gdb_byte *buf)
19076 {
19077 return bfd_get_16 (abfd, buf);
19078 }
19079
19080 static int
19081 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
19082 {
19083 return bfd_get_signed_16 (abfd, buf);
19084 }
19085
19086 static unsigned int
19087 read_4_bytes (bfd *abfd, const gdb_byte *buf)
19088 {
19089 return bfd_get_32 (abfd, buf);
19090 }
19091
19092 static int
19093 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
19094 {
19095 return bfd_get_signed_32 (abfd, buf);
19096 }
19097
19098 static ULONGEST
19099 read_8_bytes (bfd *abfd, const gdb_byte *buf)
19100 {
19101 return bfd_get_64 (abfd, buf);
19102 }
19103
19104 static CORE_ADDR
19105 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
19106 unsigned int *bytes_read)
19107 {
19108 struct comp_unit_head *cu_header = &cu->header;
19109 CORE_ADDR retval = 0;
19110
19111 if (cu_header->signed_addr_p)
19112 {
19113 switch (cu_header->addr_size)
19114 {
19115 case 2:
19116 retval = bfd_get_signed_16 (abfd, buf);
19117 break;
19118 case 4:
19119 retval = bfd_get_signed_32 (abfd, buf);
19120 break;
19121 case 8:
19122 retval = bfd_get_signed_64 (abfd, buf);
19123 break;
19124 default:
19125 internal_error (__FILE__, __LINE__,
19126 _("read_address: bad switch, signed [in module %s]"),
19127 bfd_get_filename (abfd));
19128 }
19129 }
19130 else
19131 {
19132 switch (cu_header->addr_size)
19133 {
19134 case 2:
19135 retval = bfd_get_16 (abfd, buf);
19136 break;
19137 case 4:
19138 retval = bfd_get_32 (abfd, buf);
19139 break;
19140 case 8:
19141 retval = bfd_get_64 (abfd, buf);
19142 break;
19143 default:
19144 internal_error (__FILE__, __LINE__,
19145 _("read_address: bad switch, "
19146 "unsigned [in module %s]"),
19147 bfd_get_filename (abfd));
19148 }
19149 }
19150
19151 *bytes_read = cu_header->addr_size;
19152 return retval;
19153 }
19154
19155 /* Read the initial length from a section. The (draft) DWARF 3
19156 specification allows the initial length to take up either 4 bytes
19157 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
19158 bytes describe the length and all offsets will be 8 bytes in length
19159 instead of 4.
19160
19161 An older, non-standard 64-bit format is also handled by this
19162 function. The older format in question stores the initial length
19163 as an 8-byte quantity without an escape value. Lengths greater
19164 than 2^32 aren't very common which means that the initial 4 bytes
19165 is almost always zero. Since a length value of zero doesn't make
19166 sense for the 32-bit format, this initial zero can be considered to
19167 be an escape value which indicates the presence of the older 64-bit
19168 format. As written, the code can't detect (old format) lengths
19169 greater than 4GB. If it becomes necessary to handle lengths
19170 somewhat larger than 4GB, we could allow other small values (such
19171 as the non-sensical values of 1, 2, and 3) to also be used as
19172 escape values indicating the presence of the old format.
19173
19174 The value returned via bytes_read should be used to increment the
19175 relevant pointer after calling read_initial_length().
19176
19177 [ Note: read_initial_length() and read_offset() are based on the
19178 document entitled "DWARF Debugging Information Format", revision
19179 3, draft 8, dated November 19, 2001. This document was obtained
19180 from:
19181
19182 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
19183
19184 This document is only a draft and is subject to change. (So beware.)
19185
19186 Details regarding the older, non-standard 64-bit format were
19187 determined empirically by examining 64-bit ELF files produced by
19188 the SGI toolchain on an IRIX 6.5 machine.
19189
19190 - Kevin, July 16, 2002
19191 ] */
19192
19193 static LONGEST
19194 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
19195 {
19196 LONGEST length = bfd_get_32 (abfd, buf);
19197
19198 if (length == 0xffffffff)
19199 {
19200 length = bfd_get_64 (abfd, buf + 4);
19201 *bytes_read = 12;
19202 }
19203 else if (length == 0)
19204 {
19205 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
19206 length = bfd_get_64 (abfd, buf);
19207 *bytes_read = 8;
19208 }
19209 else
19210 {
19211 *bytes_read = 4;
19212 }
19213
19214 return length;
19215 }
19216
19217 /* Cover function for read_initial_length.
19218 Returns the length of the object at BUF, and stores the size of the
19219 initial length in *BYTES_READ and stores the size that offsets will be in
19220 *OFFSET_SIZE.
19221 If the initial length size is not equivalent to that specified in
19222 CU_HEADER then issue a complaint.
19223 This is useful when reading non-comp-unit headers. */
19224
19225 static LONGEST
19226 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
19227 const struct comp_unit_head *cu_header,
19228 unsigned int *bytes_read,
19229 unsigned int *offset_size)
19230 {
19231 LONGEST length = read_initial_length (abfd, buf, bytes_read);
19232
19233 gdb_assert (cu_header->initial_length_size == 4
19234 || cu_header->initial_length_size == 8
19235 || cu_header->initial_length_size == 12);
19236
19237 if (cu_header->initial_length_size != *bytes_read)
19238 complaint (_("intermixed 32-bit and 64-bit DWARF sections"));
19239
19240 *offset_size = (*bytes_read == 4) ? 4 : 8;
19241 return length;
19242 }
19243
19244 /* Read an offset from the data stream. The size of the offset is
19245 given by cu_header->offset_size. */
19246
19247 static LONGEST
19248 read_offset (bfd *abfd, const gdb_byte *buf,
19249 const struct comp_unit_head *cu_header,
19250 unsigned int *bytes_read)
19251 {
19252 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
19253
19254 *bytes_read = cu_header->offset_size;
19255 return offset;
19256 }
19257
19258 /* Read an offset from the data stream. */
19259
19260 static LONGEST
19261 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
19262 {
19263 LONGEST retval = 0;
19264
19265 switch (offset_size)
19266 {
19267 case 4:
19268 retval = bfd_get_32 (abfd, buf);
19269 break;
19270 case 8:
19271 retval = bfd_get_64 (abfd, buf);
19272 break;
19273 default:
19274 internal_error (__FILE__, __LINE__,
19275 _("read_offset_1: bad switch [in module %s]"),
19276 bfd_get_filename (abfd));
19277 }
19278
19279 return retval;
19280 }
19281
19282 static const gdb_byte *
19283 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
19284 {
19285 /* If the size of a host char is 8 bits, we can return a pointer
19286 to the buffer, otherwise we have to copy the data to a buffer
19287 allocated on the temporary obstack. */
19288 gdb_assert (HOST_CHAR_BIT == 8);
19289 return buf;
19290 }
19291
19292 static const char *
19293 read_direct_string (bfd *abfd, const gdb_byte *buf,
19294 unsigned int *bytes_read_ptr)
19295 {
19296 /* If the size of a host char is 8 bits, we can return a pointer
19297 to the string, otherwise we have to copy the string to a buffer
19298 allocated on the temporary obstack. */
19299 gdb_assert (HOST_CHAR_BIT == 8);
19300 if (*buf == '\0')
19301 {
19302 *bytes_read_ptr = 1;
19303 return NULL;
19304 }
19305 *bytes_read_ptr = strlen ((const char *) buf) + 1;
19306 return (const char *) buf;
19307 }
19308
19309 /* Return pointer to string at section SECT offset STR_OFFSET with error
19310 reporting strings FORM_NAME and SECT_NAME. */
19311
19312 static const char *
19313 read_indirect_string_at_offset_from (struct objfile *objfile,
19314 bfd *abfd, LONGEST str_offset,
19315 struct dwarf2_section_info *sect,
19316 const char *form_name,
19317 const char *sect_name)
19318 {
19319 dwarf2_read_section (objfile, sect);
19320 if (sect->buffer == NULL)
19321 error (_("%s used without %s section [in module %s]"),
19322 form_name, sect_name, bfd_get_filename (abfd));
19323 if (str_offset >= sect->size)
19324 error (_("%s pointing outside of %s section [in module %s]"),
19325 form_name, sect_name, bfd_get_filename (abfd));
19326 gdb_assert (HOST_CHAR_BIT == 8);
19327 if (sect->buffer[str_offset] == '\0')
19328 return NULL;
19329 return (const char *) (sect->buffer + str_offset);
19330 }
19331
19332 /* Return pointer to string at .debug_str offset STR_OFFSET. */
19333
19334 static const char *
19335 read_indirect_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19336 bfd *abfd, LONGEST str_offset)
19337 {
19338 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19339 abfd, str_offset,
19340 &dwarf2_per_objfile->str,
19341 "DW_FORM_strp", ".debug_str");
19342 }
19343
19344 /* Return pointer to string at .debug_line_str offset STR_OFFSET. */
19345
19346 static const char *
19347 read_indirect_line_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19348 bfd *abfd, LONGEST str_offset)
19349 {
19350 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19351 abfd, str_offset,
19352 &dwarf2_per_objfile->line_str,
19353 "DW_FORM_line_strp",
19354 ".debug_line_str");
19355 }
19356
19357 /* Read a string at offset STR_OFFSET in the .debug_str section from
19358 the .dwz file DWZ. Throw an error if the offset is too large. If
19359 the string consists of a single NUL byte, return NULL; otherwise
19360 return a pointer to the string. */
19361
19362 static const char *
19363 read_indirect_string_from_dwz (struct objfile *objfile, struct dwz_file *dwz,
19364 LONGEST str_offset)
19365 {
19366 dwarf2_read_section (objfile, &dwz->str);
19367
19368 if (dwz->str.buffer == NULL)
19369 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
19370 "section [in module %s]"),
19371 bfd_get_filename (dwz->dwz_bfd));
19372 if (str_offset >= dwz->str.size)
19373 error (_("DW_FORM_GNU_strp_alt pointing outside of "
19374 ".debug_str section [in module %s]"),
19375 bfd_get_filename (dwz->dwz_bfd));
19376 gdb_assert (HOST_CHAR_BIT == 8);
19377 if (dwz->str.buffer[str_offset] == '\0')
19378 return NULL;
19379 return (const char *) (dwz->str.buffer + str_offset);
19380 }
19381
19382 /* Return pointer to string at .debug_str offset as read from BUF.
19383 BUF is assumed to be in a compilation unit described by CU_HEADER.
19384 Return *BYTES_READ_PTR count of bytes read from BUF. */
19385
19386 static const char *
19387 read_indirect_string (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
19388 const gdb_byte *buf,
19389 const struct comp_unit_head *cu_header,
19390 unsigned int *bytes_read_ptr)
19391 {
19392 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19393
19394 return read_indirect_string_at_offset (dwarf2_per_objfile, abfd, str_offset);
19395 }
19396
19397 /* Return pointer to string at .debug_line_str offset as read from BUF.
19398 BUF is assumed to be in a compilation unit described by CU_HEADER.
19399 Return *BYTES_READ_PTR count of bytes read from BUF. */
19400
19401 static const char *
19402 read_indirect_line_string (struct dwarf2_per_objfile *dwarf2_per_objfile,
19403 bfd *abfd, const gdb_byte *buf,
19404 const struct comp_unit_head *cu_header,
19405 unsigned int *bytes_read_ptr)
19406 {
19407 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19408
19409 return read_indirect_line_string_at_offset (dwarf2_per_objfile, abfd,
19410 str_offset);
19411 }
19412
19413 ULONGEST
19414 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
19415 unsigned int *bytes_read_ptr)
19416 {
19417 ULONGEST result;
19418 unsigned int num_read;
19419 int shift;
19420 unsigned char byte;
19421
19422 result = 0;
19423 shift = 0;
19424 num_read = 0;
19425 while (1)
19426 {
19427 byte = bfd_get_8 (abfd, buf);
19428 buf++;
19429 num_read++;
19430 result |= ((ULONGEST) (byte & 127) << shift);
19431 if ((byte & 128) == 0)
19432 {
19433 break;
19434 }
19435 shift += 7;
19436 }
19437 *bytes_read_ptr = num_read;
19438 return result;
19439 }
19440
19441 static LONGEST
19442 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
19443 unsigned int *bytes_read_ptr)
19444 {
19445 LONGEST result;
19446 int shift, num_read;
19447 unsigned char byte;
19448
19449 result = 0;
19450 shift = 0;
19451 num_read = 0;
19452 while (1)
19453 {
19454 byte = bfd_get_8 (abfd, buf);
19455 buf++;
19456 num_read++;
19457 result |= ((LONGEST) (byte & 127) << shift);
19458 shift += 7;
19459 if ((byte & 128) == 0)
19460 {
19461 break;
19462 }
19463 }
19464 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
19465 result |= -(((LONGEST) 1) << shift);
19466 *bytes_read_ptr = num_read;
19467 return result;
19468 }
19469
19470 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
19471 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
19472 ADDR_SIZE is the size of addresses from the CU header. */
19473
19474 static CORE_ADDR
19475 read_addr_index_1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
19476 unsigned int addr_index, ULONGEST addr_base, int addr_size)
19477 {
19478 struct objfile *objfile = dwarf2_per_objfile->objfile;
19479 bfd *abfd = objfile->obfd;
19480 const gdb_byte *info_ptr;
19481
19482 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
19483 if (dwarf2_per_objfile->addr.buffer == NULL)
19484 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
19485 objfile_name (objfile));
19486 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
19487 error (_("DW_FORM_addr_index pointing outside of "
19488 ".debug_addr section [in module %s]"),
19489 objfile_name (objfile));
19490 info_ptr = (dwarf2_per_objfile->addr.buffer
19491 + addr_base + addr_index * addr_size);
19492 if (addr_size == 4)
19493 return bfd_get_32 (abfd, info_ptr);
19494 else
19495 return bfd_get_64 (abfd, info_ptr);
19496 }
19497
19498 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
19499
19500 static CORE_ADDR
19501 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
19502 {
19503 return read_addr_index_1 (cu->per_cu->dwarf2_per_objfile, addr_index,
19504 cu->addr_base, cu->header.addr_size);
19505 }
19506
19507 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
19508
19509 static CORE_ADDR
19510 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
19511 unsigned int *bytes_read)
19512 {
19513 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
19514 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
19515
19516 return read_addr_index (cu, addr_index);
19517 }
19518
19519 /* Data structure to pass results from dwarf2_read_addr_index_reader
19520 back to dwarf2_read_addr_index. */
19521
19522 struct dwarf2_read_addr_index_data
19523 {
19524 ULONGEST addr_base;
19525 int addr_size;
19526 };
19527
19528 /* die_reader_func for dwarf2_read_addr_index. */
19529
19530 static void
19531 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
19532 const gdb_byte *info_ptr,
19533 struct die_info *comp_unit_die,
19534 int has_children,
19535 void *data)
19536 {
19537 struct dwarf2_cu *cu = reader->cu;
19538 struct dwarf2_read_addr_index_data *aidata =
19539 (struct dwarf2_read_addr_index_data *) data;
19540
19541 aidata->addr_base = cu->addr_base;
19542 aidata->addr_size = cu->header.addr_size;
19543 }
19544
19545 /* Given an index in .debug_addr, fetch the value.
19546 NOTE: This can be called during dwarf expression evaluation,
19547 long after the debug information has been read, and thus per_cu->cu
19548 may no longer exist. */
19549
19550 CORE_ADDR
19551 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
19552 unsigned int addr_index)
19553 {
19554 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
19555 struct dwarf2_cu *cu = per_cu->cu;
19556 ULONGEST addr_base;
19557 int addr_size;
19558
19559 /* We need addr_base and addr_size.
19560 If we don't have PER_CU->cu, we have to get it.
19561 Nasty, but the alternative is storing the needed info in PER_CU,
19562 which at this point doesn't seem justified: it's not clear how frequently
19563 it would get used and it would increase the size of every PER_CU.
19564 Entry points like dwarf2_per_cu_addr_size do a similar thing
19565 so we're not in uncharted territory here.
19566 Alas we need to be a bit more complicated as addr_base is contained
19567 in the DIE.
19568
19569 We don't need to read the entire CU(/TU).
19570 We just need the header and top level die.
19571
19572 IWBN to use the aging mechanism to let us lazily later discard the CU.
19573 For now we skip this optimization. */
19574
19575 if (cu != NULL)
19576 {
19577 addr_base = cu->addr_base;
19578 addr_size = cu->header.addr_size;
19579 }
19580 else
19581 {
19582 struct dwarf2_read_addr_index_data aidata;
19583
19584 /* Note: We can't use init_cutu_and_read_dies_simple here,
19585 we need addr_base. */
19586 init_cutu_and_read_dies (per_cu, NULL, 0, 0, false,
19587 dwarf2_read_addr_index_reader, &aidata);
19588 addr_base = aidata.addr_base;
19589 addr_size = aidata.addr_size;
19590 }
19591
19592 return read_addr_index_1 (dwarf2_per_objfile, addr_index, addr_base,
19593 addr_size);
19594 }
19595
19596 /* Given a DW_FORM_GNU_str_index, fetch the string.
19597 This is only used by the Fission support. */
19598
19599 static const char *
19600 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
19601 {
19602 struct dwarf2_cu *cu = reader->cu;
19603 struct dwarf2_per_objfile *dwarf2_per_objfile
19604 = cu->per_cu->dwarf2_per_objfile;
19605 struct objfile *objfile = dwarf2_per_objfile->objfile;
19606 const char *objf_name = objfile_name (objfile);
19607 bfd *abfd = objfile->obfd;
19608 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
19609 struct dwarf2_section_info *str_offsets_section =
19610 &reader->dwo_file->sections.str_offsets;
19611 const gdb_byte *info_ptr;
19612 ULONGEST str_offset;
19613 static const char form_name[] = "DW_FORM_GNU_str_index";
19614
19615 dwarf2_read_section (objfile, str_section);
19616 dwarf2_read_section (objfile, str_offsets_section);
19617 if (str_section->buffer == NULL)
19618 error (_("%s used without .debug_str.dwo section"
19619 " in CU at offset %s [in module %s]"),
19620 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19621 if (str_offsets_section->buffer == NULL)
19622 error (_("%s used without .debug_str_offsets.dwo section"
19623 " in CU at offset %s [in module %s]"),
19624 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19625 if (str_index * cu->header.offset_size >= str_offsets_section->size)
19626 error (_("%s pointing outside of .debug_str_offsets.dwo"
19627 " section in CU at offset %s [in module %s]"),
19628 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19629 info_ptr = (str_offsets_section->buffer
19630 + str_index * cu->header.offset_size);
19631 if (cu->header.offset_size == 4)
19632 str_offset = bfd_get_32 (abfd, info_ptr);
19633 else
19634 str_offset = bfd_get_64 (abfd, info_ptr);
19635 if (str_offset >= str_section->size)
19636 error (_("Offset from %s pointing outside of"
19637 " .debug_str.dwo section in CU at offset %s [in module %s]"),
19638 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19639 return (const char *) (str_section->buffer + str_offset);
19640 }
19641
19642 /* Return the length of an LEB128 number in BUF. */
19643
19644 static int
19645 leb128_size (const gdb_byte *buf)
19646 {
19647 const gdb_byte *begin = buf;
19648 gdb_byte byte;
19649
19650 while (1)
19651 {
19652 byte = *buf++;
19653 if ((byte & 128) == 0)
19654 return buf - begin;
19655 }
19656 }
19657
19658 static void
19659 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
19660 {
19661 switch (lang)
19662 {
19663 case DW_LANG_C89:
19664 case DW_LANG_C99:
19665 case DW_LANG_C11:
19666 case DW_LANG_C:
19667 case DW_LANG_UPC:
19668 cu->language = language_c;
19669 break;
19670 case DW_LANG_Java:
19671 case DW_LANG_C_plus_plus:
19672 case DW_LANG_C_plus_plus_11:
19673 case DW_LANG_C_plus_plus_14:
19674 cu->language = language_cplus;
19675 break;
19676 case DW_LANG_D:
19677 cu->language = language_d;
19678 break;
19679 case DW_LANG_Fortran77:
19680 case DW_LANG_Fortran90:
19681 case DW_LANG_Fortran95:
19682 case DW_LANG_Fortran03:
19683 case DW_LANG_Fortran08:
19684 cu->language = language_fortran;
19685 break;
19686 case DW_LANG_Go:
19687 cu->language = language_go;
19688 break;
19689 case DW_LANG_Mips_Assembler:
19690 cu->language = language_asm;
19691 break;
19692 case DW_LANG_Ada83:
19693 case DW_LANG_Ada95:
19694 cu->language = language_ada;
19695 break;
19696 case DW_LANG_Modula2:
19697 cu->language = language_m2;
19698 break;
19699 case DW_LANG_Pascal83:
19700 cu->language = language_pascal;
19701 break;
19702 case DW_LANG_ObjC:
19703 cu->language = language_objc;
19704 break;
19705 case DW_LANG_Rust:
19706 case DW_LANG_Rust_old:
19707 cu->language = language_rust;
19708 break;
19709 case DW_LANG_Cobol74:
19710 case DW_LANG_Cobol85:
19711 default:
19712 cu->language = language_minimal;
19713 break;
19714 }
19715 cu->language_defn = language_def (cu->language);
19716 }
19717
19718 /* Return the named attribute or NULL if not there. */
19719
19720 static struct attribute *
19721 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19722 {
19723 for (;;)
19724 {
19725 unsigned int i;
19726 struct attribute *spec = NULL;
19727
19728 for (i = 0; i < die->num_attrs; ++i)
19729 {
19730 if (die->attrs[i].name == name)
19731 return &die->attrs[i];
19732 if (die->attrs[i].name == DW_AT_specification
19733 || die->attrs[i].name == DW_AT_abstract_origin)
19734 spec = &die->attrs[i];
19735 }
19736
19737 if (!spec)
19738 break;
19739
19740 die = follow_die_ref (die, spec, &cu);
19741 }
19742
19743 return NULL;
19744 }
19745
19746 /* Return the named attribute or NULL if not there,
19747 but do not follow DW_AT_specification, etc.
19748 This is for use in contexts where we're reading .debug_types dies.
19749 Following DW_AT_specification, DW_AT_abstract_origin will take us
19750 back up the chain, and we want to go down. */
19751
19752 static struct attribute *
19753 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
19754 {
19755 unsigned int i;
19756
19757 for (i = 0; i < die->num_attrs; ++i)
19758 if (die->attrs[i].name == name)
19759 return &die->attrs[i];
19760
19761 return NULL;
19762 }
19763
19764 /* Return the string associated with a string-typed attribute, or NULL if it
19765 is either not found or is of an incorrect type. */
19766
19767 static const char *
19768 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19769 {
19770 struct attribute *attr;
19771 const char *str = NULL;
19772
19773 attr = dwarf2_attr (die, name, cu);
19774
19775 if (attr != NULL)
19776 {
19777 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
19778 || attr->form == DW_FORM_string
19779 || attr->form == DW_FORM_GNU_str_index
19780 || attr->form == DW_FORM_GNU_strp_alt)
19781 str = DW_STRING (attr);
19782 else
19783 complaint (_("string type expected for attribute %s for "
19784 "DIE at %s in module %s"),
19785 dwarf_attr_name (name), sect_offset_str (die->sect_off),
19786 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
19787 }
19788
19789 return str;
19790 }
19791
19792 /* Return non-zero iff the attribute NAME is defined for the given DIE,
19793 and holds a non-zero value. This function should only be used for
19794 DW_FORM_flag or DW_FORM_flag_present attributes. */
19795
19796 static int
19797 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
19798 {
19799 struct attribute *attr = dwarf2_attr (die, name, cu);
19800
19801 return (attr && DW_UNSND (attr));
19802 }
19803
19804 static int
19805 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
19806 {
19807 /* A DIE is a declaration if it has a DW_AT_declaration attribute
19808 which value is non-zero. However, we have to be careful with
19809 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
19810 (via dwarf2_flag_true_p) follows this attribute. So we may
19811 end up accidently finding a declaration attribute that belongs
19812 to a different DIE referenced by the specification attribute,
19813 even though the given DIE does not have a declaration attribute. */
19814 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
19815 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
19816 }
19817
19818 /* Return the die giving the specification for DIE, if there is
19819 one. *SPEC_CU is the CU containing DIE on input, and the CU
19820 containing the return value on output. If there is no
19821 specification, but there is an abstract origin, that is
19822 returned. */
19823
19824 static struct die_info *
19825 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
19826 {
19827 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
19828 *spec_cu);
19829
19830 if (spec_attr == NULL)
19831 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
19832
19833 if (spec_attr == NULL)
19834 return NULL;
19835 else
19836 return follow_die_ref (die, spec_attr, spec_cu);
19837 }
19838
19839 /* Stub for free_line_header to match void * callback types. */
19840
19841 static void
19842 free_line_header_voidp (void *arg)
19843 {
19844 struct line_header *lh = (struct line_header *) arg;
19845
19846 delete lh;
19847 }
19848
19849 void
19850 line_header::add_include_dir (const char *include_dir)
19851 {
19852 if (dwarf_line_debug >= 2)
19853 fprintf_unfiltered (gdb_stdlog, "Adding dir %zu: %s\n",
19854 include_dirs.size () + 1, include_dir);
19855
19856 include_dirs.push_back (include_dir);
19857 }
19858
19859 void
19860 line_header::add_file_name (const char *name,
19861 dir_index d_index,
19862 unsigned int mod_time,
19863 unsigned int length)
19864 {
19865 if (dwarf_line_debug >= 2)
19866 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
19867 (unsigned) file_names.size () + 1, name);
19868
19869 file_names.emplace_back (name, d_index, mod_time, length);
19870 }
19871
19872 /* A convenience function to find the proper .debug_line section for a CU. */
19873
19874 static struct dwarf2_section_info *
19875 get_debug_line_section (struct dwarf2_cu *cu)
19876 {
19877 struct dwarf2_section_info *section;
19878 struct dwarf2_per_objfile *dwarf2_per_objfile
19879 = cu->per_cu->dwarf2_per_objfile;
19880
19881 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
19882 DWO file. */
19883 if (cu->dwo_unit && cu->per_cu->is_debug_types)
19884 section = &cu->dwo_unit->dwo_file->sections.line;
19885 else if (cu->per_cu->is_dwz)
19886 {
19887 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
19888
19889 section = &dwz->line;
19890 }
19891 else
19892 section = &dwarf2_per_objfile->line;
19893
19894 return section;
19895 }
19896
19897 /* Read directory or file name entry format, starting with byte of
19898 format count entries, ULEB128 pairs of entry formats, ULEB128 of
19899 entries count and the entries themselves in the described entry
19900 format. */
19901
19902 static void
19903 read_formatted_entries (struct dwarf2_per_objfile *dwarf2_per_objfile,
19904 bfd *abfd, const gdb_byte **bufp,
19905 struct line_header *lh,
19906 const struct comp_unit_head *cu_header,
19907 void (*callback) (struct line_header *lh,
19908 const char *name,
19909 dir_index d_index,
19910 unsigned int mod_time,
19911 unsigned int length))
19912 {
19913 gdb_byte format_count, formati;
19914 ULONGEST data_count, datai;
19915 const gdb_byte *buf = *bufp;
19916 const gdb_byte *format_header_data;
19917 unsigned int bytes_read;
19918
19919 format_count = read_1_byte (abfd, buf);
19920 buf += 1;
19921 format_header_data = buf;
19922 for (formati = 0; formati < format_count; formati++)
19923 {
19924 read_unsigned_leb128 (abfd, buf, &bytes_read);
19925 buf += bytes_read;
19926 read_unsigned_leb128 (abfd, buf, &bytes_read);
19927 buf += bytes_read;
19928 }
19929
19930 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
19931 buf += bytes_read;
19932 for (datai = 0; datai < data_count; datai++)
19933 {
19934 const gdb_byte *format = format_header_data;
19935 struct file_entry fe;
19936
19937 for (formati = 0; formati < format_count; formati++)
19938 {
19939 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
19940 format += bytes_read;
19941
19942 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
19943 format += bytes_read;
19944
19945 gdb::optional<const char *> string;
19946 gdb::optional<unsigned int> uint;
19947
19948 switch (form)
19949 {
19950 case DW_FORM_string:
19951 string.emplace (read_direct_string (abfd, buf, &bytes_read));
19952 buf += bytes_read;
19953 break;
19954
19955 case DW_FORM_line_strp:
19956 string.emplace (read_indirect_line_string (dwarf2_per_objfile,
19957 abfd, buf,
19958 cu_header,
19959 &bytes_read));
19960 buf += bytes_read;
19961 break;
19962
19963 case DW_FORM_data1:
19964 uint.emplace (read_1_byte (abfd, buf));
19965 buf += 1;
19966 break;
19967
19968 case DW_FORM_data2:
19969 uint.emplace (read_2_bytes (abfd, buf));
19970 buf += 2;
19971 break;
19972
19973 case DW_FORM_data4:
19974 uint.emplace (read_4_bytes (abfd, buf));
19975 buf += 4;
19976 break;
19977
19978 case DW_FORM_data8:
19979 uint.emplace (read_8_bytes (abfd, buf));
19980 buf += 8;
19981 break;
19982
19983 case DW_FORM_udata:
19984 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
19985 buf += bytes_read;
19986 break;
19987
19988 case DW_FORM_block:
19989 /* It is valid only for DW_LNCT_timestamp which is ignored by
19990 current GDB. */
19991 break;
19992 }
19993
19994 switch (content_type)
19995 {
19996 case DW_LNCT_path:
19997 if (string.has_value ())
19998 fe.name = *string;
19999 break;
20000 case DW_LNCT_directory_index:
20001 if (uint.has_value ())
20002 fe.d_index = (dir_index) *uint;
20003 break;
20004 case DW_LNCT_timestamp:
20005 if (uint.has_value ())
20006 fe.mod_time = *uint;
20007 break;
20008 case DW_LNCT_size:
20009 if (uint.has_value ())
20010 fe.length = *uint;
20011 break;
20012 case DW_LNCT_MD5:
20013 break;
20014 default:
20015 complaint (_("Unknown format content type %s"),
20016 pulongest (content_type));
20017 }
20018 }
20019
20020 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
20021 }
20022
20023 *bufp = buf;
20024 }
20025
20026 /* Read the statement program header starting at OFFSET in
20027 .debug_line, or .debug_line.dwo. Return a pointer
20028 to a struct line_header, allocated using xmalloc.
20029 Returns NULL if there is a problem reading the header, e.g., if it
20030 has a version we don't understand.
20031
20032 NOTE: the strings in the include directory and file name tables of
20033 the returned object point into the dwarf line section buffer,
20034 and must not be freed. */
20035
20036 static line_header_up
20037 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
20038 {
20039 const gdb_byte *line_ptr;
20040 unsigned int bytes_read, offset_size;
20041 int i;
20042 const char *cur_dir, *cur_file;
20043 struct dwarf2_section_info *section;
20044 bfd *abfd;
20045 struct dwarf2_per_objfile *dwarf2_per_objfile
20046 = cu->per_cu->dwarf2_per_objfile;
20047
20048 section = get_debug_line_section (cu);
20049 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
20050 if (section->buffer == NULL)
20051 {
20052 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20053 complaint (_("missing .debug_line.dwo section"));
20054 else
20055 complaint (_("missing .debug_line section"));
20056 return 0;
20057 }
20058
20059 /* We can't do this until we know the section is non-empty.
20060 Only then do we know we have such a section. */
20061 abfd = get_section_bfd_owner (section);
20062
20063 /* Make sure that at least there's room for the total_length field.
20064 That could be 12 bytes long, but we're just going to fudge that. */
20065 if (to_underlying (sect_off) + 4 >= section->size)
20066 {
20067 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20068 return 0;
20069 }
20070
20071 line_header_up lh (new line_header ());
20072
20073 lh->sect_off = sect_off;
20074 lh->offset_in_dwz = cu->per_cu->is_dwz;
20075
20076 line_ptr = section->buffer + to_underlying (sect_off);
20077
20078 /* Read in the header. */
20079 lh->total_length =
20080 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
20081 &bytes_read, &offset_size);
20082 line_ptr += bytes_read;
20083 if (line_ptr + lh->total_length > (section->buffer + section->size))
20084 {
20085 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20086 return 0;
20087 }
20088 lh->statement_program_end = line_ptr + lh->total_length;
20089 lh->version = read_2_bytes (abfd, line_ptr);
20090 line_ptr += 2;
20091 if (lh->version > 5)
20092 {
20093 /* This is a version we don't understand. The format could have
20094 changed in ways we don't handle properly so just punt. */
20095 complaint (_("unsupported version in .debug_line section"));
20096 return NULL;
20097 }
20098 if (lh->version >= 5)
20099 {
20100 gdb_byte segment_selector_size;
20101
20102 /* Skip address size. */
20103 read_1_byte (abfd, line_ptr);
20104 line_ptr += 1;
20105
20106 segment_selector_size = read_1_byte (abfd, line_ptr);
20107 line_ptr += 1;
20108 if (segment_selector_size != 0)
20109 {
20110 complaint (_("unsupported segment selector size %u "
20111 "in .debug_line section"),
20112 segment_selector_size);
20113 return NULL;
20114 }
20115 }
20116 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
20117 line_ptr += offset_size;
20118 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
20119 line_ptr += 1;
20120 if (lh->version >= 4)
20121 {
20122 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
20123 line_ptr += 1;
20124 }
20125 else
20126 lh->maximum_ops_per_instruction = 1;
20127
20128 if (lh->maximum_ops_per_instruction == 0)
20129 {
20130 lh->maximum_ops_per_instruction = 1;
20131 complaint (_("invalid maximum_ops_per_instruction "
20132 "in `.debug_line' section"));
20133 }
20134
20135 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
20136 line_ptr += 1;
20137 lh->line_base = read_1_signed_byte (abfd, line_ptr);
20138 line_ptr += 1;
20139 lh->line_range = read_1_byte (abfd, line_ptr);
20140 line_ptr += 1;
20141 lh->opcode_base = read_1_byte (abfd, line_ptr);
20142 line_ptr += 1;
20143 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
20144
20145 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
20146 for (i = 1; i < lh->opcode_base; ++i)
20147 {
20148 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
20149 line_ptr += 1;
20150 }
20151
20152 if (lh->version >= 5)
20153 {
20154 /* Read directory table. */
20155 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20156 &cu->header,
20157 [] (struct line_header *lh, const char *name,
20158 dir_index d_index, unsigned int mod_time,
20159 unsigned int length)
20160 {
20161 lh->add_include_dir (name);
20162 });
20163
20164 /* Read file name table. */
20165 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20166 &cu->header,
20167 [] (struct line_header *lh, const char *name,
20168 dir_index d_index, unsigned int mod_time,
20169 unsigned int length)
20170 {
20171 lh->add_file_name (name, d_index, mod_time, length);
20172 });
20173 }
20174 else
20175 {
20176 /* Read directory table. */
20177 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20178 {
20179 line_ptr += bytes_read;
20180 lh->add_include_dir (cur_dir);
20181 }
20182 line_ptr += bytes_read;
20183
20184 /* Read file name table. */
20185 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20186 {
20187 unsigned int mod_time, length;
20188 dir_index d_index;
20189
20190 line_ptr += bytes_read;
20191 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20192 line_ptr += bytes_read;
20193 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20194 line_ptr += bytes_read;
20195 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20196 line_ptr += bytes_read;
20197
20198 lh->add_file_name (cur_file, d_index, mod_time, length);
20199 }
20200 line_ptr += bytes_read;
20201 }
20202 lh->statement_program_start = line_ptr;
20203
20204 if (line_ptr > (section->buffer + section->size))
20205 complaint (_("line number info header doesn't "
20206 "fit in `.debug_line' section"));
20207
20208 return lh;
20209 }
20210
20211 /* Subroutine of dwarf_decode_lines to simplify it.
20212 Return the file name of the psymtab for included file FILE_INDEX
20213 in line header LH of PST.
20214 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20215 If space for the result is malloc'd, *NAME_HOLDER will be set.
20216 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
20217
20218 static const char *
20219 psymtab_include_file_name (const struct line_header *lh, int file_index,
20220 const struct partial_symtab *pst,
20221 const char *comp_dir,
20222 gdb::unique_xmalloc_ptr<char> *name_holder)
20223 {
20224 const file_entry &fe = lh->file_names[file_index];
20225 const char *include_name = fe.name;
20226 const char *include_name_to_compare = include_name;
20227 const char *pst_filename;
20228 int file_is_pst;
20229
20230 const char *dir_name = fe.include_dir (lh);
20231
20232 gdb::unique_xmalloc_ptr<char> hold_compare;
20233 if (!IS_ABSOLUTE_PATH (include_name)
20234 && (dir_name != NULL || comp_dir != NULL))
20235 {
20236 /* Avoid creating a duplicate psymtab for PST.
20237 We do this by comparing INCLUDE_NAME and PST_FILENAME.
20238 Before we do the comparison, however, we need to account
20239 for DIR_NAME and COMP_DIR.
20240 First prepend dir_name (if non-NULL). If we still don't
20241 have an absolute path prepend comp_dir (if non-NULL).
20242 However, the directory we record in the include-file's
20243 psymtab does not contain COMP_DIR (to match the
20244 corresponding symtab(s)).
20245
20246 Example:
20247
20248 bash$ cd /tmp
20249 bash$ gcc -g ./hello.c
20250 include_name = "hello.c"
20251 dir_name = "."
20252 DW_AT_comp_dir = comp_dir = "/tmp"
20253 DW_AT_name = "./hello.c"
20254
20255 */
20256
20257 if (dir_name != NULL)
20258 {
20259 name_holder->reset (concat (dir_name, SLASH_STRING,
20260 include_name, (char *) NULL));
20261 include_name = name_holder->get ();
20262 include_name_to_compare = include_name;
20263 }
20264 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
20265 {
20266 hold_compare.reset (concat (comp_dir, SLASH_STRING,
20267 include_name, (char *) NULL));
20268 include_name_to_compare = hold_compare.get ();
20269 }
20270 }
20271
20272 pst_filename = pst->filename;
20273 gdb::unique_xmalloc_ptr<char> copied_name;
20274 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
20275 {
20276 copied_name.reset (concat (pst->dirname, SLASH_STRING,
20277 pst_filename, (char *) NULL));
20278 pst_filename = copied_name.get ();
20279 }
20280
20281 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
20282
20283 if (file_is_pst)
20284 return NULL;
20285 return include_name;
20286 }
20287
20288 /* State machine to track the state of the line number program. */
20289
20290 class lnp_state_machine
20291 {
20292 public:
20293 /* Initialize a machine state for the start of a line number
20294 program. */
20295 lnp_state_machine (gdbarch *arch, line_header *lh, bool record_lines_p);
20296
20297 file_entry *current_file ()
20298 {
20299 /* lh->file_names is 0-based, but the file name numbers in the
20300 statement program are 1-based. */
20301 return m_line_header->file_name_at (m_file);
20302 }
20303
20304 /* Record the line in the state machine. END_SEQUENCE is true if
20305 we're processing the end of a sequence. */
20306 void record_line (bool end_sequence);
20307
20308 /* Check ADDRESS is zero and less than UNRELOCATED_LOWPC and if true
20309 nop-out rest of the lines in this sequence. */
20310 void check_line_address (struct dwarf2_cu *cu,
20311 const gdb_byte *line_ptr,
20312 CORE_ADDR unrelocated_lowpc, CORE_ADDR address);
20313
20314 void handle_set_discriminator (unsigned int discriminator)
20315 {
20316 m_discriminator = discriminator;
20317 m_line_has_non_zero_discriminator |= discriminator != 0;
20318 }
20319
20320 /* Handle DW_LNE_set_address. */
20321 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
20322 {
20323 m_op_index = 0;
20324 address += baseaddr;
20325 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
20326 }
20327
20328 /* Handle DW_LNS_advance_pc. */
20329 void handle_advance_pc (CORE_ADDR adjust);
20330
20331 /* Handle a special opcode. */
20332 void handle_special_opcode (unsigned char op_code);
20333
20334 /* Handle DW_LNS_advance_line. */
20335 void handle_advance_line (int line_delta)
20336 {
20337 advance_line (line_delta);
20338 }
20339
20340 /* Handle DW_LNS_set_file. */
20341 void handle_set_file (file_name_index file);
20342
20343 /* Handle DW_LNS_negate_stmt. */
20344 void handle_negate_stmt ()
20345 {
20346 m_is_stmt = !m_is_stmt;
20347 }
20348
20349 /* Handle DW_LNS_const_add_pc. */
20350 void handle_const_add_pc ();
20351
20352 /* Handle DW_LNS_fixed_advance_pc. */
20353 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
20354 {
20355 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20356 m_op_index = 0;
20357 }
20358
20359 /* Handle DW_LNS_copy. */
20360 void handle_copy ()
20361 {
20362 record_line (false);
20363 m_discriminator = 0;
20364 }
20365
20366 /* Handle DW_LNE_end_sequence. */
20367 void handle_end_sequence ()
20368 {
20369 m_record_line_callback = ::record_line;
20370 }
20371
20372 private:
20373 /* Advance the line by LINE_DELTA. */
20374 void advance_line (int line_delta)
20375 {
20376 m_line += line_delta;
20377
20378 if (line_delta != 0)
20379 m_line_has_non_zero_discriminator = m_discriminator != 0;
20380 }
20381
20382 gdbarch *m_gdbarch;
20383
20384 /* True if we're recording lines.
20385 Otherwise we're building partial symtabs and are just interested in
20386 finding include files mentioned by the line number program. */
20387 bool m_record_lines_p;
20388
20389 /* The line number header. */
20390 line_header *m_line_header;
20391
20392 /* These are part of the standard DWARF line number state machine,
20393 and initialized according to the DWARF spec. */
20394
20395 unsigned char m_op_index = 0;
20396 /* The line table index (1-based) of the current file. */
20397 file_name_index m_file = (file_name_index) 1;
20398 unsigned int m_line = 1;
20399
20400 /* These are initialized in the constructor. */
20401
20402 CORE_ADDR m_address;
20403 bool m_is_stmt;
20404 unsigned int m_discriminator;
20405
20406 /* Additional bits of state we need to track. */
20407
20408 /* The last file that we called dwarf2_start_subfile for.
20409 This is only used for TLLs. */
20410 unsigned int m_last_file = 0;
20411 /* The last file a line number was recorded for. */
20412 struct subfile *m_last_subfile = NULL;
20413
20414 /* The function to call to record a line. */
20415 record_line_ftype *m_record_line_callback = NULL;
20416
20417 /* The last line number that was recorded, used to coalesce
20418 consecutive entries for the same line. This can happen, for
20419 example, when discriminators are present. PR 17276. */
20420 unsigned int m_last_line = 0;
20421 bool m_line_has_non_zero_discriminator = false;
20422 };
20423
20424 void
20425 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
20426 {
20427 CORE_ADDR addr_adj = (((m_op_index + adjust)
20428 / m_line_header->maximum_ops_per_instruction)
20429 * m_line_header->minimum_instruction_length);
20430 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20431 m_op_index = ((m_op_index + adjust)
20432 % m_line_header->maximum_ops_per_instruction);
20433 }
20434
20435 void
20436 lnp_state_machine::handle_special_opcode (unsigned char op_code)
20437 {
20438 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
20439 CORE_ADDR addr_adj = (((m_op_index
20440 + (adj_opcode / m_line_header->line_range))
20441 / m_line_header->maximum_ops_per_instruction)
20442 * m_line_header->minimum_instruction_length);
20443 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20444 m_op_index = ((m_op_index + (adj_opcode / m_line_header->line_range))
20445 % m_line_header->maximum_ops_per_instruction);
20446
20447 int line_delta = (m_line_header->line_base
20448 + (adj_opcode % m_line_header->line_range));
20449 advance_line (line_delta);
20450 record_line (false);
20451 m_discriminator = 0;
20452 }
20453
20454 void
20455 lnp_state_machine::handle_set_file (file_name_index file)
20456 {
20457 m_file = file;
20458
20459 const file_entry *fe = current_file ();
20460 if (fe == NULL)
20461 dwarf2_debug_line_missing_file_complaint ();
20462 else if (m_record_lines_p)
20463 {
20464 const char *dir = fe->include_dir (m_line_header);
20465
20466 m_last_subfile = current_subfile;
20467 m_line_has_non_zero_discriminator = m_discriminator != 0;
20468 dwarf2_start_subfile (fe->name, dir);
20469 }
20470 }
20471
20472 void
20473 lnp_state_machine::handle_const_add_pc ()
20474 {
20475 CORE_ADDR adjust
20476 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
20477
20478 CORE_ADDR addr_adj
20479 = (((m_op_index + adjust)
20480 / m_line_header->maximum_ops_per_instruction)
20481 * m_line_header->minimum_instruction_length);
20482
20483 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20484 m_op_index = ((m_op_index + adjust)
20485 % m_line_header->maximum_ops_per_instruction);
20486 }
20487
20488 /* Ignore this record_line request. */
20489
20490 static void
20491 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
20492 {
20493 return;
20494 }
20495
20496 /* Return non-zero if we should add LINE to the line number table.
20497 LINE is the line to add, LAST_LINE is the last line that was added,
20498 LAST_SUBFILE is the subfile for LAST_LINE.
20499 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
20500 had a non-zero discriminator.
20501
20502 We have to be careful in the presence of discriminators.
20503 E.g., for this line:
20504
20505 for (i = 0; i < 100000; i++);
20506
20507 clang can emit four line number entries for that one line,
20508 each with a different discriminator.
20509 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
20510
20511 However, we want gdb to coalesce all four entries into one.
20512 Otherwise the user could stepi into the middle of the line and
20513 gdb would get confused about whether the pc really was in the
20514 middle of the line.
20515
20516 Things are further complicated by the fact that two consecutive
20517 line number entries for the same line is a heuristic used by gcc
20518 to denote the end of the prologue. So we can't just discard duplicate
20519 entries, we have to be selective about it. The heuristic we use is
20520 that we only collapse consecutive entries for the same line if at least
20521 one of those entries has a non-zero discriminator. PR 17276.
20522
20523 Note: Addresses in the line number state machine can never go backwards
20524 within one sequence, thus this coalescing is ok. */
20525
20526 static int
20527 dwarf_record_line_p (unsigned int line, unsigned int last_line,
20528 int line_has_non_zero_discriminator,
20529 struct subfile *last_subfile)
20530 {
20531 if (current_subfile != last_subfile)
20532 return 1;
20533 if (line != last_line)
20534 return 1;
20535 /* Same line for the same file that we've seen already.
20536 As a last check, for pr 17276, only record the line if the line
20537 has never had a non-zero discriminator. */
20538 if (!line_has_non_zero_discriminator)
20539 return 1;
20540 return 0;
20541 }
20542
20543 /* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
20544 in the line table of subfile SUBFILE. */
20545
20546 static void
20547 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
20548 unsigned int line, CORE_ADDR address,
20549 record_line_ftype p_record_line)
20550 {
20551 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
20552
20553 if (dwarf_line_debug)
20554 {
20555 fprintf_unfiltered (gdb_stdlog,
20556 "Recording line %u, file %s, address %s\n",
20557 line, lbasename (subfile->name),
20558 paddress (gdbarch, address));
20559 }
20560
20561 (*p_record_line) (subfile, line, addr);
20562 }
20563
20564 /* Subroutine of dwarf_decode_lines_1 to simplify it.
20565 Mark the end of a set of line number records.
20566 The arguments are the same as for dwarf_record_line_1.
20567 If SUBFILE is NULL the request is ignored. */
20568
20569 static void
20570 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
20571 CORE_ADDR address, record_line_ftype p_record_line)
20572 {
20573 if (subfile == NULL)
20574 return;
20575
20576 if (dwarf_line_debug)
20577 {
20578 fprintf_unfiltered (gdb_stdlog,
20579 "Finishing current line, file %s, address %s\n",
20580 lbasename (subfile->name),
20581 paddress (gdbarch, address));
20582 }
20583
20584 dwarf_record_line_1 (gdbarch, subfile, 0, address, p_record_line);
20585 }
20586
20587 void
20588 lnp_state_machine::record_line (bool end_sequence)
20589 {
20590 if (dwarf_line_debug)
20591 {
20592 fprintf_unfiltered (gdb_stdlog,
20593 "Processing actual line %u: file %u,"
20594 " address %s, is_stmt %u, discrim %u\n",
20595 m_line, to_underlying (m_file),
20596 paddress (m_gdbarch, m_address),
20597 m_is_stmt, m_discriminator);
20598 }
20599
20600 file_entry *fe = current_file ();
20601
20602 if (fe == NULL)
20603 dwarf2_debug_line_missing_file_complaint ();
20604 /* For now we ignore lines not starting on an instruction boundary.
20605 But not when processing end_sequence for compatibility with the
20606 previous version of the code. */
20607 else if (m_op_index == 0 || end_sequence)
20608 {
20609 fe->included_p = 1;
20610 if (m_record_lines_p && m_is_stmt)
20611 {
20612 if (m_last_subfile != current_subfile || end_sequence)
20613 {
20614 dwarf_finish_line (m_gdbarch, m_last_subfile,
20615 m_address, m_record_line_callback);
20616 }
20617
20618 if (!end_sequence)
20619 {
20620 if (dwarf_record_line_p (m_line, m_last_line,
20621 m_line_has_non_zero_discriminator,
20622 m_last_subfile))
20623 {
20624 dwarf_record_line_1 (m_gdbarch, current_subfile,
20625 m_line, m_address,
20626 m_record_line_callback);
20627 }
20628 m_last_subfile = current_subfile;
20629 m_last_line = m_line;
20630 }
20631 }
20632 }
20633 }
20634
20635 lnp_state_machine::lnp_state_machine (gdbarch *arch, line_header *lh,
20636 bool record_lines_p)
20637 {
20638 m_gdbarch = arch;
20639 m_record_lines_p = record_lines_p;
20640 m_line_header = lh;
20641
20642 m_record_line_callback = ::record_line;
20643
20644 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
20645 was a line entry for it so that the backend has a chance to adjust it
20646 and also record it in case it needs it. This is currently used by MIPS
20647 code, cf. `mips_adjust_dwarf2_line'. */
20648 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
20649 m_is_stmt = lh->default_is_stmt;
20650 m_discriminator = 0;
20651 }
20652
20653 void
20654 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
20655 const gdb_byte *line_ptr,
20656 CORE_ADDR unrelocated_lowpc, CORE_ADDR address)
20657 {
20658 /* If ADDRESS < UNRELOCATED_LOWPC then it's not a usable value, it's outside
20659 the pc range of the CU. However, we restrict the test to only ADDRESS
20660 values of zero to preserve GDB's previous behaviour which is to handle
20661 the specific case of a function being GC'd by the linker. */
20662
20663 if (address == 0 && address < unrelocated_lowpc)
20664 {
20665 /* This line table is for a function which has been
20666 GCd by the linker. Ignore it. PR gdb/12528 */
20667
20668 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20669 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
20670
20671 complaint (_(".debug_line address at offset 0x%lx is 0 [in module %s]"),
20672 line_offset, objfile_name (objfile));
20673 m_record_line_callback = noop_record_line;
20674 /* Note: record_line_callback is left as noop_record_line until
20675 we see DW_LNE_end_sequence. */
20676 }
20677 }
20678
20679 /* Subroutine of dwarf_decode_lines to simplify it.
20680 Process the line number information in LH.
20681 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
20682 program in order to set included_p for every referenced header. */
20683
20684 static void
20685 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
20686 const int decode_for_pst_p, CORE_ADDR lowpc)
20687 {
20688 const gdb_byte *line_ptr, *extended_end;
20689 const gdb_byte *line_end;
20690 unsigned int bytes_read, extended_len;
20691 unsigned char op_code, extended_op;
20692 CORE_ADDR baseaddr;
20693 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20694 bfd *abfd = objfile->obfd;
20695 struct gdbarch *gdbarch = get_objfile_arch (objfile);
20696 /* True if we're recording line info (as opposed to building partial
20697 symtabs and just interested in finding include files mentioned by
20698 the line number program). */
20699 bool record_lines_p = !decode_for_pst_p;
20700
20701 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
20702
20703 line_ptr = lh->statement_program_start;
20704 line_end = lh->statement_program_end;
20705
20706 /* Read the statement sequences until there's nothing left. */
20707 while (line_ptr < line_end)
20708 {
20709 /* The DWARF line number program state machine. Reset the state
20710 machine at the start of each sequence. */
20711 lnp_state_machine state_machine (gdbarch, lh, record_lines_p);
20712 bool end_sequence = false;
20713
20714 if (record_lines_p)
20715 {
20716 /* Start a subfile for the current file of the state
20717 machine. */
20718 const file_entry *fe = state_machine.current_file ();
20719
20720 if (fe != NULL)
20721 dwarf2_start_subfile (fe->name, fe->include_dir (lh));
20722 }
20723
20724 /* Decode the table. */
20725 while (line_ptr < line_end && !end_sequence)
20726 {
20727 op_code = read_1_byte (abfd, line_ptr);
20728 line_ptr += 1;
20729
20730 if (op_code >= lh->opcode_base)
20731 {
20732 /* Special opcode. */
20733 state_machine.handle_special_opcode (op_code);
20734 }
20735 else switch (op_code)
20736 {
20737 case DW_LNS_extended_op:
20738 extended_len = read_unsigned_leb128 (abfd, line_ptr,
20739 &bytes_read);
20740 line_ptr += bytes_read;
20741 extended_end = line_ptr + extended_len;
20742 extended_op = read_1_byte (abfd, line_ptr);
20743 line_ptr += 1;
20744 switch (extended_op)
20745 {
20746 case DW_LNE_end_sequence:
20747 state_machine.handle_end_sequence ();
20748 end_sequence = true;
20749 break;
20750 case DW_LNE_set_address:
20751 {
20752 CORE_ADDR address
20753 = read_address (abfd, line_ptr, cu, &bytes_read);
20754 line_ptr += bytes_read;
20755
20756 state_machine.check_line_address (cu, line_ptr,
20757 lowpc - baseaddr, address);
20758 state_machine.handle_set_address (baseaddr, address);
20759 }
20760 break;
20761 case DW_LNE_define_file:
20762 {
20763 const char *cur_file;
20764 unsigned int mod_time, length;
20765 dir_index dindex;
20766
20767 cur_file = read_direct_string (abfd, line_ptr,
20768 &bytes_read);
20769 line_ptr += bytes_read;
20770 dindex = (dir_index)
20771 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20772 line_ptr += bytes_read;
20773 mod_time =
20774 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20775 line_ptr += bytes_read;
20776 length =
20777 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20778 line_ptr += bytes_read;
20779 lh->add_file_name (cur_file, dindex, mod_time, length);
20780 }
20781 break;
20782 case DW_LNE_set_discriminator:
20783 {
20784 /* The discriminator is not interesting to the
20785 debugger; just ignore it. We still need to
20786 check its value though:
20787 if there are consecutive entries for the same
20788 (non-prologue) line we want to coalesce them.
20789 PR 17276. */
20790 unsigned int discr
20791 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20792 line_ptr += bytes_read;
20793
20794 state_machine.handle_set_discriminator (discr);
20795 }
20796 break;
20797 default:
20798 complaint (_("mangled .debug_line section"));
20799 return;
20800 }
20801 /* Make sure that we parsed the extended op correctly. If e.g.
20802 we expected a different address size than the producer used,
20803 we may have read the wrong number of bytes. */
20804 if (line_ptr != extended_end)
20805 {
20806 complaint (_("mangled .debug_line section"));
20807 return;
20808 }
20809 break;
20810 case DW_LNS_copy:
20811 state_machine.handle_copy ();
20812 break;
20813 case DW_LNS_advance_pc:
20814 {
20815 CORE_ADDR adjust
20816 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20817 line_ptr += bytes_read;
20818
20819 state_machine.handle_advance_pc (adjust);
20820 }
20821 break;
20822 case DW_LNS_advance_line:
20823 {
20824 int line_delta
20825 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
20826 line_ptr += bytes_read;
20827
20828 state_machine.handle_advance_line (line_delta);
20829 }
20830 break;
20831 case DW_LNS_set_file:
20832 {
20833 file_name_index file
20834 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
20835 &bytes_read);
20836 line_ptr += bytes_read;
20837
20838 state_machine.handle_set_file (file);
20839 }
20840 break;
20841 case DW_LNS_set_column:
20842 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20843 line_ptr += bytes_read;
20844 break;
20845 case DW_LNS_negate_stmt:
20846 state_machine.handle_negate_stmt ();
20847 break;
20848 case DW_LNS_set_basic_block:
20849 break;
20850 /* Add to the address register of the state machine the
20851 address increment value corresponding to special opcode
20852 255. I.e., this value is scaled by the minimum
20853 instruction length since special opcode 255 would have
20854 scaled the increment. */
20855 case DW_LNS_const_add_pc:
20856 state_machine.handle_const_add_pc ();
20857 break;
20858 case DW_LNS_fixed_advance_pc:
20859 {
20860 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
20861 line_ptr += 2;
20862
20863 state_machine.handle_fixed_advance_pc (addr_adj);
20864 }
20865 break;
20866 default:
20867 {
20868 /* Unknown standard opcode, ignore it. */
20869 int i;
20870
20871 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
20872 {
20873 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20874 line_ptr += bytes_read;
20875 }
20876 }
20877 }
20878 }
20879
20880 if (!end_sequence)
20881 dwarf2_debug_line_missing_end_sequence_complaint ();
20882
20883 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
20884 in which case we still finish recording the last line). */
20885 state_machine.record_line (true);
20886 }
20887 }
20888
20889 /* Decode the Line Number Program (LNP) for the given line_header
20890 structure and CU. The actual information extracted and the type
20891 of structures created from the LNP depends on the value of PST.
20892
20893 1. If PST is NULL, then this procedure uses the data from the program
20894 to create all necessary symbol tables, and their linetables.
20895
20896 2. If PST is not NULL, this procedure reads the program to determine
20897 the list of files included by the unit represented by PST, and
20898 builds all the associated partial symbol tables.
20899
20900 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20901 It is used for relative paths in the line table.
20902 NOTE: When processing partial symtabs (pst != NULL),
20903 comp_dir == pst->dirname.
20904
20905 NOTE: It is important that psymtabs have the same file name (via strcmp)
20906 as the corresponding symtab. Since COMP_DIR is not used in the name of the
20907 symtab we don't use it in the name of the psymtabs we create.
20908 E.g. expand_line_sal requires this when finding psymtabs to expand.
20909 A good testcase for this is mb-inline.exp.
20910
20911 LOWPC is the lowest address in CU (or 0 if not known).
20912
20913 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
20914 for its PC<->lines mapping information. Otherwise only the filename
20915 table is read in. */
20916
20917 static void
20918 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
20919 struct dwarf2_cu *cu, struct partial_symtab *pst,
20920 CORE_ADDR lowpc, int decode_mapping)
20921 {
20922 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20923 const int decode_for_pst_p = (pst != NULL);
20924
20925 if (decode_mapping)
20926 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
20927
20928 if (decode_for_pst_p)
20929 {
20930 int file_index;
20931
20932 /* Now that we're done scanning the Line Header Program, we can
20933 create the psymtab of each included file. */
20934 for (file_index = 0; file_index < lh->file_names.size (); file_index++)
20935 if (lh->file_names[file_index].included_p == 1)
20936 {
20937 gdb::unique_xmalloc_ptr<char> name_holder;
20938 const char *include_name =
20939 psymtab_include_file_name (lh, file_index, pst, comp_dir,
20940 &name_holder);
20941 if (include_name != NULL)
20942 dwarf2_create_include_psymtab (include_name, pst, objfile);
20943 }
20944 }
20945 else
20946 {
20947 /* Make sure a symtab is created for every file, even files
20948 which contain only variables (i.e. no code with associated
20949 line numbers). */
20950 struct compunit_symtab *cust = buildsym_compunit_symtab ();
20951 int i;
20952
20953 for (i = 0; i < lh->file_names.size (); i++)
20954 {
20955 file_entry &fe = lh->file_names[i];
20956
20957 dwarf2_start_subfile (fe.name, fe.include_dir (lh));
20958
20959 if (current_subfile->symtab == NULL)
20960 {
20961 current_subfile->symtab
20962 = allocate_symtab (cust, current_subfile->name);
20963 }
20964 fe.symtab = current_subfile->symtab;
20965 }
20966 }
20967 }
20968
20969 /* Start a subfile for DWARF. FILENAME is the name of the file and
20970 DIRNAME the name of the source directory which contains FILENAME
20971 or NULL if not known.
20972 This routine tries to keep line numbers from identical absolute and
20973 relative file names in a common subfile.
20974
20975 Using the `list' example from the GDB testsuite, which resides in
20976 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
20977 of /srcdir/list0.c yields the following debugging information for list0.c:
20978
20979 DW_AT_name: /srcdir/list0.c
20980 DW_AT_comp_dir: /compdir
20981 files.files[0].name: list0.h
20982 files.files[0].dir: /srcdir
20983 files.files[1].name: list0.c
20984 files.files[1].dir: /srcdir
20985
20986 The line number information for list0.c has to end up in a single
20987 subfile, so that `break /srcdir/list0.c:1' works as expected.
20988 start_subfile will ensure that this happens provided that we pass the
20989 concatenation of files.files[1].dir and files.files[1].name as the
20990 subfile's name. */
20991
20992 static void
20993 dwarf2_start_subfile (const char *filename, const char *dirname)
20994 {
20995 char *copy = NULL;
20996
20997 /* In order not to lose the line information directory,
20998 we concatenate it to the filename when it makes sense.
20999 Note that the Dwarf3 standard says (speaking of filenames in line
21000 information): ``The directory index is ignored for file names
21001 that represent full path names''. Thus ignoring dirname in the
21002 `else' branch below isn't an issue. */
21003
21004 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
21005 {
21006 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
21007 filename = copy;
21008 }
21009
21010 start_subfile (filename);
21011
21012 if (copy != NULL)
21013 xfree (copy);
21014 }
21015
21016 /* Start a symtab for DWARF.
21017 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
21018
21019 static struct compunit_symtab *
21020 dwarf2_start_symtab (struct dwarf2_cu *cu,
21021 const char *name, const char *comp_dir, CORE_ADDR low_pc)
21022 {
21023 struct compunit_symtab *cust
21024 = start_symtab (cu->per_cu->dwarf2_per_objfile->objfile, name, comp_dir,
21025 low_pc, cu->language);
21026
21027 record_debugformat ("DWARF 2");
21028 record_producer (cu->producer);
21029
21030 /* We assume that we're processing GCC output. */
21031 processing_gcc_compilation = 2;
21032
21033 cu->processing_has_namespace_info = 0;
21034
21035 return cust;
21036 }
21037
21038 static void
21039 var_decode_location (struct attribute *attr, struct symbol *sym,
21040 struct dwarf2_cu *cu)
21041 {
21042 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21043 struct comp_unit_head *cu_header = &cu->header;
21044
21045 /* NOTE drow/2003-01-30: There used to be a comment and some special
21046 code here to turn a symbol with DW_AT_external and a
21047 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
21048 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
21049 with some versions of binutils) where shared libraries could have
21050 relocations against symbols in their debug information - the
21051 minimal symbol would have the right address, but the debug info
21052 would not. It's no longer necessary, because we will explicitly
21053 apply relocations when we read in the debug information now. */
21054
21055 /* A DW_AT_location attribute with no contents indicates that a
21056 variable has been optimized away. */
21057 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
21058 {
21059 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21060 return;
21061 }
21062
21063 /* Handle one degenerate form of location expression specially, to
21064 preserve GDB's previous behavior when section offsets are
21065 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
21066 then mark this symbol as LOC_STATIC. */
21067
21068 if (attr_form_is_block (attr)
21069 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
21070 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
21071 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
21072 && (DW_BLOCK (attr)->size
21073 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
21074 {
21075 unsigned int dummy;
21076
21077 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
21078 SYMBOL_VALUE_ADDRESS (sym) =
21079 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
21080 else
21081 SYMBOL_VALUE_ADDRESS (sym) =
21082 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
21083 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
21084 fixup_symbol_section (sym, objfile);
21085 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
21086 SYMBOL_SECTION (sym));
21087 return;
21088 }
21089
21090 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
21091 expression evaluator, and use LOC_COMPUTED only when necessary
21092 (i.e. when the value of a register or memory location is
21093 referenced, or a thread-local block, etc.). Then again, it might
21094 not be worthwhile. I'm assuming that it isn't unless performance
21095 or memory numbers show me otherwise. */
21096
21097 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
21098
21099 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
21100 cu->has_loclist = 1;
21101 }
21102
21103 /* Given a pointer to a DWARF information entry, figure out if we need
21104 to make a symbol table entry for it, and if so, create a new entry
21105 and return a pointer to it.
21106 If TYPE is NULL, determine symbol type from the die, otherwise
21107 used the passed type.
21108 If SPACE is not NULL, use it to hold the new symbol. If it is
21109 NULL, allocate a new symbol on the objfile's obstack. */
21110
21111 static struct symbol *
21112 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
21113 struct symbol *space)
21114 {
21115 struct dwarf2_per_objfile *dwarf2_per_objfile
21116 = cu->per_cu->dwarf2_per_objfile;
21117 struct objfile *objfile = dwarf2_per_objfile->objfile;
21118 struct gdbarch *gdbarch = get_objfile_arch (objfile);
21119 struct symbol *sym = NULL;
21120 const char *name;
21121 struct attribute *attr = NULL;
21122 struct attribute *attr2 = NULL;
21123 CORE_ADDR baseaddr;
21124 struct pending **list_to_add = NULL;
21125
21126 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
21127
21128 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21129
21130 name = dwarf2_name (die, cu);
21131 if (name)
21132 {
21133 const char *linkagename;
21134 int suppress_add = 0;
21135
21136 if (space)
21137 sym = space;
21138 else
21139 sym = allocate_symbol (objfile);
21140 OBJSTAT (objfile, n_syms++);
21141
21142 /* Cache this symbol's name and the name's demangled form (if any). */
21143 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
21144 linkagename = dwarf2_physname (name, die, cu);
21145 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
21146
21147 /* Fortran does not have mangling standard and the mangling does differ
21148 between gfortran, iFort etc. */
21149 if (cu->language == language_fortran
21150 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
21151 symbol_set_demangled_name (&(sym->ginfo),
21152 dwarf2_full_name (name, die, cu),
21153 NULL);
21154
21155 /* Default assumptions.
21156 Use the passed type or decode it from the die. */
21157 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21158 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21159 if (type != NULL)
21160 SYMBOL_TYPE (sym) = type;
21161 else
21162 SYMBOL_TYPE (sym) = die_type (die, cu);
21163 attr = dwarf2_attr (die,
21164 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
21165 cu);
21166 if (attr)
21167 {
21168 SYMBOL_LINE (sym) = DW_UNSND (attr);
21169 }
21170
21171 attr = dwarf2_attr (die,
21172 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
21173 cu);
21174 if (attr)
21175 {
21176 file_name_index file_index = (file_name_index) DW_UNSND (attr);
21177 struct file_entry *fe;
21178
21179 if (cu->line_header != NULL)
21180 fe = cu->line_header->file_name_at (file_index);
21181 else
21182 fe = NULL;
21183
21184 if (fe == NULL)
21185 complaint (_("file index out of range"));
21186 else
21187 symbol_set_symtab (sym, fe->symtab);
21188 }
21189
21190 switch (die->tag)
21191 {
21192 case DW_TAG_label:
21193 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
21194 if (attr)
21195 {
21196 CORE_ADDR addr;
21197
21198 addr = attr_value_as_address (attr);
21199 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
21200 SYMBOL_VALUE_ADDRESS (sym) = addr;
21201 }
21202 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
21203 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
21204 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
21205 add_symbol_to_list (sym, cu->list_in_scope);
21206 break;
21207 case DW_TAG_subprogram:
21208 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21209 finish_block. */
21210 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21211 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21212 if ((attr2 && (DW_UNSND (attr2) != 0))
21213 || cu->language == language_ada)
21214 {
21215 /* Subprograms marked external are stored as a global symbol.
21216 Ada subprograms, whether marked external or not, are always
21217 stored as a global symbol, because we want to be able to
21218 access them globally. For instance, we want to be able
21219 to break on a nested subprogram without having to
21220 specify the context. */
21221 list_to_add = &global_symbols;
21222 }
21223 else
21224 {
21225 list_to_add = cu->list_in_scope;
21226 }
21227 break;
21228 case DW_TAG_inlined_subroutine:
21229 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21230 finish_block. */
21231 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21232 SYMBOL_INLINED (sym) = 1;
21233 list_to_add = cu->list_in_scope;
21234 break;
21235 case DW_TAG_template_value_param:
21236 suppress_add = 1;
21237 /* Fall through. */
21238 case DW_TAG_constant:
21239 case DW_TAG_variable:
21240 case DW_TAG_member:
21241 /* Compilation with minimal debug info may result in
21242 variables with missing type entries. Change the
21243 misleading `void' type to something sensible. */
21244 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
21245 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
21246
21247 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21248 /* In the case of DW_TAG_member, we should only be called for
21249 static const members. */
21250 if (die->tag == DW_TAG_member)
21251 {
21252 /* dwarf2_add_field uses die_is_declaration,
21253 so we do the same. */
21254 gdb_assert (die_is_declaration (die, cu));
21255 gdb_assert (attr);
21256 }
21257 if (attr)
21258 {
21259 dwarf2_const_value (attr, sym, cu);
21260 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21261 if (!suppress_add)
21262 {
21263 if (attr2 && (DW_UNSND (attr2) != 0))
21264 list_to_add = &global_symbols;
21265 else
21266 list_to_add = cu->list_in_scope;
21267 }
21268 break;
21269 }
21270 attr = dwarf2_attr (die, DW_AT_location, cu);
21271 if (attr)
21272 {
21273 var_decode_location (attr, sym, cu);
21274 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21275
21276 /* Fortran explicitly imports any global symbols to the local
21277 scope by DW_TAG_common_block. */
21278 if (cu->language == language_fortran && die->parent
21279 && die->parent->tag == DW_TAG_common_block)
21280 attr2 = NULL;
21281
21282 if (SYMBOL_CLASS (sym) == LOC_STATIC
21283 && SYMBOL_VALUE_ADDRESS (sym) == 0
21284 && !dwarf2_per_objfile->has_section_at_zero)
21285 {
21286 /* When a static variable is eliminated by the linker,
21287 the corresponding debug information is not stripped
21288 out, but the variable address is set to null;
21289 do not add such variables into symbol table. */
21290 }
21291 else if (attr2 && (DW_UNSND (attr2) != 0))
21292 {
21293 /* Workaround gfortran PR debug/40040 - it uses
21294 DW_AT_location for variables in -fPIC libraries which may
21295 get overriden by other libraries/executable and get
21296 a different address. Resolve it by the minimal symbol
21297 which may come from inferior's executable using copy
21298 relocation. Make this workaround only for gfortran as for
21299 other compilers GDB cannot guess the minimal symbol
21300 Fortran mangling kind. */
21301 if (cu->language == language_fortran && die->parent
21302 && die->parent->tag == DW_TAG_module
21303 && cu->producer
21304 && startswith (cu->producer, "GNU Fortran"))
21305 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21306
21307 /* A variable with DW_AT_external is never static,
21308 but it may be block-scoped. */
21309 list_to_add = (cu->list_in_scope == &file_symbols
21310 ? &global_symbols : cu->list_in_scope);
21311 }
21312 else
21313 list_to_add = cu->list_in_scope;
21314 }
21315 else
21316 {
21317 /* We do not know the address of this symbol.
21318 If it is an external symbol and we have type information
21319 for it, enter the symbol as a LOC_UNRESOLVED symbol.
21320 The address of the variable will then be determined from
21321 the minimal symbol table whenever the variable is
21322 referenced. */
21323 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21324
21325 /* Fortran explicitly imports any global symbols to the local
21326 scope by DW_TAG_common_block. */
21327 if (cu->language == language_fortran && die->parent
21328 && die->parent->tag == DW_TAG_common_block)
21329 {
21330 /* SYMBOL_CLASS doesn't matter here because
21331 read_common_block is going to reset it. */
21332 if (!suppress_add)
21333 list_to_add = cu->list_in_scope;
21334 }
21335 else if (attr2 && (DW_UNSND (attr2) != 0)
21336 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
21337 {
21338 /* A variable with DW_AT_external is never static, but it
21339 may be block-scoped. */
21340 list_to_add = (cu->list_in_scope == &file_symbols
21341 ? &global_symbols : cu->list_in_scope);
21342
21343 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21344 }
21345 else if (!die_is_declaration (die, cu))
21346 {
21347 /* Use the default LOC_OPTIMIZED_OUT class. */
21348 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
21349 if (!suppress_add)
21350 list_to_add = cu->list_in_scope;
21351 }
21352 }
21353 break;
21354 case DW_TAG_formal_parameter:
21355 /* If we are inside a function, mark this as an argument. If
21356 not, we might be looking at an argument to an inlined function
21357 when we do not have enough information to show inlined frames;
21358 pretend it's a local variable in that case so that the user can
21359 still see it. */
21360 if (context_stack_depth > 0
21361 && context_stack[context_stack_depth - 1].name != NULL)
21362 SYMBOL_IS_ARGUMENT (sym) = 1;
21363 attr = dwarf2_attr (die, DW_AT_location, cu);
21364 if (attr)
21365 {
21366 var_decode_location (attr, sym, cu);
21367 }
21368 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21369 if (attr)
21370 {
21371 dwarf2_const_value (attr, sym, cu);
21372 }
21373
21374 list_to_add = cu->list_in_scope;
21375 break;
21376 case DW_TAG_unspecified_parameters:
21377 /* From varargs functions; gdb doesn't seem to have any
21378 interest in this information, so just ignore it for now.
21379 (FIXME?) */
21380 break;
21381 case DW_TAG_template_type_param:
21382 suppress_add = 1;
21383 /* Fall through. */
21384 case DW_TAG_class_type:
21385 case DW_TAG_interface_type:
21386 case DW_TAG_structure_type:
21387 case DW_TAG_union_type:
21388 case DW_TAG_set_type:
21389 case DW_TAG_enumeration_type:
21390 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21391 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
21392
21393 {
21394 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
21395 really ever be static objects: otherwise, if you try
21396 to, say, break of a class's method and you're in a file
21397 which doesn't mention that class, it won't work unless
21398 the check for all static symbols in lookup_symbol_aux
21399 saves you. See the OtherFileClass tests in
21400 gdb.c++/namespace.exp. */
21401
21402 if (!suppress_add)
21403 {
21404 list_to_add = (cu->list_in_scope == &file_symbols
21405 && cu->language == language_cplus
21406 ? &global_symbols : cu->list_in_scope);
21407
21408 /* The semantics of C++ state that "struct foo {
21409 ... }" also defines a typedef for "foo". */
21410 if (cu->language == language_cplus
21411 || cu->language == language_ada
21412 || cu->language == language_d
21413 || cu->language == language_rust)
21414 {
21415 /* The symbol's name is already allocated along
21416 with this objfile, so we don't need to
21417 duplicate it for the type. */
21418 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
21419 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
21420 }
21421 }
21422 }
21423 break;
21424 case DW_TAG_typedef:
21425 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21426 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21427 list_to_add = cu->list_in_scope;
21428 break;
21429 case DW_TAG_base_type:
21430 case DW_TAG_subrange_type:
21431 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21432 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21433 list_to_add = cu->list_in_scope;
21434 break;
21435 case DW_TAG_enumerator:
21436 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21437 if (attr)
21438 {
21439 dwarf2_const_value (attr, sym, cu);
21440 }
21441 {
21442 /* NOTE: carlton/2003-11-10: See comment above in the
21443 DW_TAG_class_type, etc. block. */
21444
21445 list_to_add = (cu->list_in_scope == &file_symbols
21446 && cu->language == language_cplus
21447 ? &global_symbols : cu->list_in_scope);
21448 }
21449 break;
21450 case DW_TAG_imported_declaration:
21451 case DW_TAG_namespace:
21452 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21453 list_to_add = &global_symbols;
21454 break;
21455 case DW_TAG_module:
21456 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21457 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
21458 list_to_add = &global_symbols;
21459 break;
21460 case DW_TAG_common_block:
21461 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
21462 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
21463 add_symbol_to_list (sym, cu->list_in_scope);
21464 break;
21465 default:
21466 /* Not a tag we recognize. Hopefully we aren't processing
21467 trash data, but since we must specifically ignore things
21468 we don't recognize, there is nothing else we should do at
21469 this point. */
21470 complaint (_("unsupported tag: '%s'"),
21471 dwarf_tag_name (die->tag));
21472 break;
21473 }
21474
21475 if (suppress_add)
21476 {
21477 sym->hash_next = objfile->template_symbols;
21478 objfile->template_symbols = sym;
21479 list_to_add = NULL;
21480 }
21481
21482 if (list_to_add != NULL)
21483 add_symbol_to_list (sym, list_to_add);
21484
21485 /* For the benefit of old versions of GCC, check for anonymous
21486 namespaces based on the demangled name. */
21487 if (!cu->processing_has_namespace_info
21488 && cu->language == language_cplus)
21489 cp_scan_for_anonymous_namespaces (sym, objfile);
21490 }
21491 return (sym);
21492 }
21493
21494 /* Given an attr with a DW_FORM_dataN value in host byte order,
21495 zero-extend it as appropriate for the symbol's type. The DWARF
21496 standard (v4) is not entirely clear about the meaning of using
21497 DW_FORM_dataN for a constant with a signed type, where the type is
21498 wider than the data. The conclusion of a discussion on the DWARF
21499 list was that this is unspecified. We choose to always zero-extend
21500 because that is the interpretation long in use by GCC. */
21501
21502 static gdb_byte *
21503 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
21504 struct dwarf2_cu *cu, LONGEST *value, int bits)
21505 {
21506 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21507 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
21508 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
21509 LONGEST l = DW_UNSND (attr);
21510
21511 if (bits < sizeof (*value) * 8)
21512 {
21513 l &= ((LONGEST) 1 << bits) - 1;
21514 *value = l;
21515 }
21516 else if (bits == sizeof (*value) * 8)
21517 *value = l;
21518 else
21519 {
21520 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
21521 store_unsigned_integer (bytes, bits / 8, byte_order, l);
21522 return bytes;
21523 }
21524
21525 return NULL;
21526 }
21527
21528 /* Read a constant value from an attribute. Either set *VALUE, or if
21529 the value does not fit in *VALUE, set *BYTES - either already
21530 allocated on the objfile obstack, or newly allocated on OBSTACK,
21531 or, set *BATON, if we translated the constant to a location
21532 expression. */
21533
21534 static void
21535 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
21536 const char *name, struct obstack *obstack,
21537 struct dwarf2_cu *cu,
21538 LONGEST *value, const gdb_byte **bytes,
21539 struct dwarf2_locexpr_baton **baton)
21540 {
21541 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21542 struct comp_unit_head *cu_header = &cu->header;
21543 struct dwarf_block *blk;
21544 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
21545 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
21546
21547 *value = 0;
21548 *bytes = NULL;
21549 *baton = NULL;
21550
21551 switch (attr->form)
21552 {
21553 case DW_FORM_addr:
21554 case DW_FORM_GNU_addr_index:
21555 {
21556 gdb_byte *data;
21557
21558 if (TYPE_LENGTH (type) != cu_header->addr_size)
21559 dwarf2_const_value_length_mismatch_complaint (name,
21560 cu_header->addr_size,
21561 TYPE_LENGTH (type));
21562 /* Symbols of this form are reasonably rare, so we just
21563 piggyback on the existing location code rather than writing
21564 a new implementation of symbol_computed_ops. */
21565 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
21566 (*baton)->per_cu = cu->per_cu;
21567 gdb_assert ((*baton)->per_cu);
21568
21569 (*baton)->size = 2 + cu_header->addr_size;
21570 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
21571 (*baton)->data = data;
21572
21573 data[0] = DW_OP_addr;
21574 store_unsigned_integer (&data[1], cu_header->addr_size,
21575 byte_order, DW_ADDR (attr));
21576 data[cu_header->addr_size + 1] = DW_OP_stack_value;
21577 }
21578 break;
21579 case DW_FORM_string:
21580 case DW_FORM_strp:
21581 case DW_FORM_GNU_str_index:
21582 case DW_FORM_GNU_strp_alt:
21583 /* DW_STRING is already allocated on the objfile obstack, point
21584 directly to it. */
21585 *bytes = (const gdb_byte *) DW_STRING (attr);
21586 break;
21587 case DW_FORM_block1:
21588 case DW_FORM_block2:
21589 case DW_FORM_block4:
21590 case DW_FORM_block:
21591 case DW_FORM_exprloc:
21592 case DW_FORM_data16:
21593 blk = DW_BLOCK (attr);
21594 if (TYPE_LENGTH (type) != blk->size)
21595 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
21596 TYPE_LENGTH (type));
21597 *bytes = blk->data;
21598 break;
21599
21600 /* The DW_AT_const_value attributes are supposed to carry the
21601 symbol's value "represented as it would be on the target
21602 architecture." By the time we get here, it's already been
21603 converted to host endianness, so we just need to sign- or
21604 zero-extend it as appropriate. */
21605 case DW_FORM_data1:
21606 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
21607 break;
21608 case DW_FORM_data2:
21609 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
21610 break;
21611 case DW_FORM_data4:
21612 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
21613 break;
21614 case DW_FORM_data8:
21615 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
21616 break;
21617
21618 case DW_FORM_sdata:
21619 case DW_FORM_implicit_const:
21620 *value = DW_SND (attr);
21621 break;
21622
21623 case DW_FORM_udata:
21624 *value = DW_UNSND (attr);
21625 break;
21626
21627 default:
21628 complaint (_("unsupported const value attribute form: '%s'"),
21629 dwarf_form_name (attr->form));
21630 *value = 0;
21631 break;
21632 }
21633 }
21634
21635
21636 /* Copy constant value from an attribute to a symbol. */
21637
21638 static void
21639 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
21640 struct dwarf2_cu *cu)
21641 {
21642 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21643 LONGEST value;
21644 const gdb_byte *bytes;
21645 struct dwarf2_locexpr_baton *baton;
21646
21647 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
21648 SYMBOL_PRINT_NAME (sym),
21649 &objfile->objfile_obstack, cu,
21650 &value, &bytes, &baton);
21651
21652 if (baton != NULL)
21653 {
21654 SYMBOL_LOCATION_BATON (sym) = baton;
21655 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
21656 }
21657 else if (bytes != NULL)
21658 {
21659 SYMBOL_VALUE_BYTES (sym) = bytes;
21660 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
21661 }
21662 else
21663 {
21664 SYMBOL_VALUE (sym) = value;
21665 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
21666 }
21667 }
21668
21669 /* Return the type of the die in question using its DW_AT_type attribute. */
21670
21671 static struct type *
21672 die_type (struct die_info *die, struct dwarf2_cu *cu)
21673 {
21674 struct attribute *type_attr;
21675
21676 type_attr = dwarf2_attr (die, DW_AT_type, cu);
21677 if (!type_attr)
21678 {
21679 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21680 /* A missing DW_AT_type represents a void type. */
21681 return objfile_type (objfile)->builtin_void;
21682 }
21683
21684 return lookup_die_type (die, type_attr, cu);
21685 }
21686
21687 /* True iff CU's producer generates GNAT Ada auxiliary information
21688 that allows to find parallel types through that information instead
21689 of having to do expensive parallel lookups by type name. */
21690
21691 static int
21692 need_gnat_info (struct dwarf2_cu *cu)
21693 {
21694 /* Assume that the Ada compiler was GNAT, which always produces
21695 the auxiliary information. */
21696 return (cu->language == language_ada);
21697 }
21698
21699 /* Return the auxiliary type of the die in question using its
21700 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
21701 attribute is not present. */
21702
21703 static struct type *
21704 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
21705 {
21706 struct attribute *type_attr;
21707
21708 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
21709 if (!type_attr)
21710 return NULL;
21711
21712 return lookup_die_type (die, type_attr, cu);
21713 }
21714
21715 /* If DIE has a descriptive_type attribute, then set the TYPE's
21716 descriptive type accordingly. */
21717
21718 static void
21719 set_descriptive_type (struct type *type, struct die_info *die,
21720 struct dwarf2_cu *cu)
21721 {
21722 struct type *descriptive_type = die_descriptive_type (die, cu);
21723
21724 if (descriptive_type)
21725 {
21726 ALLOCATE_GNAT_AUX_TYPE (type);
21727 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
21728 }
21729 }
21730
21731 /* Return the containing type of the die in question using its
21732 DW_AT_containing_type attribute. */
21733
21734 static struct type *
21735 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
21736 {
21737 struct attribute *type_attr;
21738 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21739
21740 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
21741 if (!type_attr)
21742 error (_("Dwarf Error: Problem turning containing type into gdb type "
21743 "[in module %s]"), objfile_name (objfile));
21744
21745 return lookup_die_type (die, type_attr, cu);
21746 }
21747
21748 /* Return an error marker type to use for the ill formed type in DIE/CU. */
21749
21750 static struct type *
21751 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
21752 {
21753 struct dwarf2_per_objfile *dwarf2_per_objfile
21754 = cu->per_cu->dwarf2_per_objfile;
21755 struct objfile *objfile = dwarf2_per_objfile->objfile;
21756 char *message, *saved;
21757
21758 message = xstrprintf (_("<unknown type in %s, CU %s, DIE %s>"),
21759 objfile_name (objfile),
21760 sect_offset_str (cu->header.sect_off),
21761 sect_offset_str (die->sect_off));
21762 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
21763 message, strlen (message));
21764 xfree (message);
21765
21766 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
21767 }
21768
21769 /* Look up the type of DIE in CU using its type attribute ATTR.
21770 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
21771 DW_AT_containing_type.
21772 If there is no type substitute an error marker. */
21773
21774 static struct type *
21775 lookup_die_type (struct die_info *die, const struct attribute *attr,
21776 struct dwarf2_cu *cu)
21777 {
21778 struct dwarf2_per_objfile *dwarf2_per_objfile
21779 = cu->per_cu->dwarf2_per_objfile;
21780 struct objfile *objfile = dwarf2_per_objfile->objfile;
21781 struct type *this_type;
21782
21783 gdb_assert (attr->name == DW_AT_type
21784 || attr->name == DW_AT_GNAT_descriptive_type
21785 || attr->name == DW_AT_containing_type);
21786
21787 /* First see if we have it cached. */
21788
21789 if (attr->form == DW_FORM_GNU_ref_alt)
21790 {
21791 struct dwarf2_per_cu_data *per_cu;
21792 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
21793
21794 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1,
21795 dwarf2_per_objfile);
21796 this_type = get_die_type_at_offset (sect_off, per_cu);
21797 }
21798 else if (attr_form_is_ref (attr))
21799 {
21800 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
21801
21802 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
21803 }
21804 else if (attr->form == DW_FORM_ref_sig8)
21805 {
21806 ULONGEST signature = DW_SIGNATURE (attr);
21807
21808 return get_signatured_type (die, signature, cu);
21809 }
21810 else
21811 {
21812 complaint (_("Dwarf Error: Bad type attribute %s in DIE"
21813 " at %s [in module %s]"),
21814 dwarf_attr_name (attr->name), sect_offset_str (die->sect_off),
21815 objfile_name (objfile));
21816 return build_error_marker_type (cu, die);
21817 }
21818
21819 /* If not cached we need to read it in. */
21820
21821 if (this_type == NULL)
21822 {
21823 struct die_info *type_die = NULL;
21824 struct dwarf2_cu *type_cu = cu;
21825
21826 if (attr_form_is_ref (attr))
21827 type_die = follow_die_ref (die, attr, &type_cu);
21828 if (type_die == NULL)
21829 return build_error_marker_type (cu, die);
21830 /* If we find the type now, it's probably because the type came
21831 from an inter-CU reference and the type's CU got expanded before
21832 ours. */
21833 this_type = read_type_die (type_die, type_cu);
21834 }
21835
21836 /* If we still don't have a type use an error marker. */
21837
21838 if (this_type == NULL)
21839 return build_error_marker_type (cu, die);
21840
21841 return this_type;
21842 }
21843
21844 /* Return the type in DIE, CU.
21845 Returns NULL for invalid types.
21846
21847 This first does a lookup in die_type_hash,
21848 and only reads the die in if necessary.
21849
21850 NOTE: This can be called when reading in partial or full symbols. */
21851
21852 static struct type *
21853 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
21854 {
21855 struct type *this_type;
21856
21857 this_type = get_die_type (die, cu);
21858 if (this_type)
21859 return this_type;
21860
21861 return read_type_die_1 (die, cu);
21862 }
21863
21864 /* Read the type in DIE, CU.
21865 Returns NULL for invalid types. */
21866
21867 static struct type *
21868 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
21869 {
21870 struct type *this_type = NULL;
21871
21872 switch (die->tag)
21873 {
21874 case DW_TAG_class_type:
21875 case DW_TAG_interface_type:
21876 case DW_TAG_structure_type:
21877 case DW_TAG_union_type:
21878 this_type = read_structure_type (die, cu);
21879 break;
21880 case DW_TAG_enumeration_type:
21881 this_type = read_enumeration_type (die, cu);
21882 break;
21883 case DW_TAG_subprogram:
21884 case DW_TAG_subroutine_type:
21885 case DW_TAG_inlined_subroutine:
21886 this_type = read_subroutine_type (die, cu);
21887 break;
21888 case DW_TAG_array_type:
21889 this_type = read_array_type (die, cu);
21890 break;
21891 case DW_TAG_set_type:
21892 this_type = read_set_type (die, cu);
21893 break;
21894 case DW_TAG_pointer_type:
21895 this_type = read_tag_pointer_type (die, cu);
21896 break;
21897 case DW_TAG_ptr_to_member_type:
21898 this_type = read_tag_ptr_to_member_type (die, cu);
21899 break;
21900 case DW_TAG_reference_type:
21901 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
21902 break;
21903 case DW_TAG_rvalue_reference_type:
21904 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
21905 break;
21906 case DW_TAG_const_type:
21907 this_type = read_tag_const_type (die, cu);
21908 break;
21909 case DW_TAG_volatile_type:
21910 this_type = read_tag_volatile_type (die, cu);
21911 break;
21912 case DW_TAG_restrict_type:
21913 this_type = read_tag_restrict_type (die, cu);
21914 break;
21915 case DW_TAG_string_type:
21916 this_type = read_tag_string_type (die, cu);
21917 break;
21918 case DW_TAG_typedef:
21919 this_type = read_typedef (die, cu);
21920 break;
21921 case DW_TAG_subrange_type:
21922 this_type = read_subrange_type (die, cu);
21923 break;
21924 case DW_TAG_base_type:
21925 this_type = read_base_type (die, cu);
21926 break;
21927 case DW_TAG_unspecified_type:
21928 this_type = read_unspecified_type (die, cu);
21929 break;
21930 case DW_TAG_namespace:
21931 this_type = read_namespace_type (die, cu);
21932 break;
21933 case DW_TAG_module:
21934 this_type = read_module_type (die, cu);
21935 break;
21936 case DW_TAG_atomic_type:
21937 this_type = read_tag_atomic_type (die, cu);
21938 break;
21939 default:
21940 complaint (_("unexpected tag in read_type_die: '%s'"),
21941 dwarf_tag_name (die->tag));
21942 break;
21943 }
21944
21945 return this_type;
21946 }
21947
21948 /* See if we can figure out if the class lives in a namespace. We do
21949 this by looking for a member function; its demangled name will
21950 contain namespace info, if there is any.
21951 Return the computed name or NULL.
21952 Space for the result is allocated on the objfile's obstack.
21953 This is the full-die version of guess_partial_die_structure_name.
21954 In this case we know DIE has no useful parent. */
21955
21956 static char *
21957 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
21958 {
21959 struct die_info *spec_die;
21960 struct dwarf2_cu *spec_cu;
21961 struct die_info *child;
21962 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21963
21964 spec_cu = cu;
21965 spec_die = die_specification (die, &spec_cu);
21966 if (spec_die != NULL)
21967 {
21968 die = spec_die;
21969 cu = spec_cu;
21970 }
21971
21972 for (child = die->child;
21973 child != NULL;
21974 child = child->sibling)
21975 {
21976 if (child->tag == DW_TAG_subprogram)
21977 {
21978 const char *linkage_name = dw2_linkage_name (child, cu);
21979
21980 if (linkage_name != NULL)
21981 {
21982 char *actual_name
21983 = language_class_name_from_physname (cu->language_defn,
21984 linkage_name);
21985 char *name = NULL;
21986
21987 if (actual_name != NULL)
21988 {
21989 const char *die_name = dwarf2_name (die, cu);
21990
21991 if (die_name != NULL
21992 && strcmp (die_name, actual_name) != 0)
21993 {
21994 /* Strip off the class name from the full name.
21995 We want the prefix. */
21996 int die_name_len = strlen (die_name);
21997 int actual_name_len = strlen (actual_name);
21998
21999 /* Test for '::' as a sanity check. */
22000 if (actual_name_len > die_name_len + 2
22001 && actual_name[actual_name_len
22002 - die_name_len - 1] == ':')
22003 name = (char *) obstack_copy0 (
22004 &objfile->per_bfd->storage_obstack,
22005 actual_name, actual_name_len - die_name_len - 2);
22006 }
22007 }
22008 xfree (actual_name);
22009 return name;
22010 }
22011 }
22012 }
22013
22014 return NULL;
22015 }
22016
22017 /* GCC might emit a nameless typedef that has a linkage name. Determine the
22018 prefix part in such case. See
22019 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22020
22021 static const char *
22022 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
22023 {
22024 struct attribute *attr;
22025 const char *base;
22026
22027 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
22028 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
22029 return NULL;
22030
22031 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
22032 return NULL;
22033
22034 attr = dw2_linkage_name_attr (die, cu);
22035 if (attr == NULL || DW_STRING (attr) == NULL)
22036 return NULL;
22037
22038 /* dwarf2_name had to be already called. */
22039 gdb_assert (DW_STRING_IS_CANONICAL (attr));
22040
22041 /* Strip the base name, keep any leading namespaces/classes. */
22042 base = strrchr (DW_STRING (attr), ':');
22043 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
22044 return "";
22045
22046 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22047 return (char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
22048 DW_STRING (attr),
22049 &base[-1] - DW_STRING (attr));
22050 }
22051
22052 /* Return the name of the namespace/class that DIE is defined within,
22053 or "" if we can't tell. The caller should not xfree the result.
22054
22055 For example, if we're within the method foo() in the following
22056 code:
22057
22058 namespace N {
22059 class C {
22060 void foo () {
22061 }
22062 };
22063 }
22064
22065 then determine_prefix on foo's die will return "N::C". */
22066
22067 static const char *
22068 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
22069 {
22070 struct dwarf2_per_objfile *dwarf2_per_objfile
22071 = cu->per_cu->dwarf2_per_objfile;
22072 struct die_info *parent, *spec_die;
22073 struct dwarf2_cu *spec_cu;
22074 struct type *parent_type;
22075 const char *retval;
22076
22077 if (cu->language != language_cplus
22078 && cu->language != language_fortran && cu->language != language_d
22079 && cu->language != language_rust)
22080 return "";
22081
22082 retval = anonymous_struct_prefix (die, cu);
22083 if (retval)
22084 return retval;
22085
22086 /* We have to be careful in the presence of DW_AT_specification.
22087 For example, with GCC 3.4, given the code
22088
22089 namespace N {
22090 void foo() {
22091 // Definition of N::foo.
22092 }
22093 }
22094
22095 then we'll have a tree of DIEs like this:
22096
22097 1: DW_TAG_compile_unit
22098 2: DW_TAG_namespace // N
22099 3: DW_TAG_subprogram // declaration of N::foo
22100 4: DW_TAG_subprogram // definition of N::foo
22101 DW_AT_specification // refers to die #3
22102
22103 Thus, when processing die #4, we have to pretend that we're in
22104 the context of its DW_AT_specification, namely the contex of die
22105 #3. */
22106 spec_cu = cu;
22107 spec_die = die_specification (die, &spec_cu);
22108 if (spec_die == NULL)
22109 parent = die->parent;
22110 else
22111 {
22112 parent = spec_die->parent;
22113 cu = spec_cu;
22114 }
22115
22116 if (parent == NULL)
22117 return "";
22118 else if (parent->building_fullname)
22119 {
22120 const char *name;
22121 const char *parent_name;
22122
22123 /* It has been seen on RealView 2.2 built binaries,
22124 DW_TAG_template_type_param types actually _defined_ as
22125 children of the parent class:
22126
22127 enum E {};
22128 template class <class Enum> Class{};
22129 Class<enum E> class_e;
22130
22131 1: DW_TAG_class_type (Class)
22132 2: DW_TAG_enumeration_type (E)
22133 3: DW_TAG_enumerator (enum1:0)
22134 3: DW_TAG_enumerator (enum2:1)
22135 ...
22136 2: DW_TAG_template_type_param
22137 DW_AT_type DW_FORM_ref_udata (E)
22138
22139 Besides being broken debug info, it can put GDB into an
22140 infinite loop. Consider:
22141
22142 When we're building the full name for Class<E>, we'll start
22143 at Class, and go look over its template type parameters,
22144 finding E. We'll then try to build the full name of E, and
22145 reach here. We're now trying to build the full name of E,
22146 and look over the parent DIE for containing scope. In the
22147 broken case, if we followed the parent DIE of E, we'd again
22148 find Class, and once again go look at its template type
22149 arguments, etc., etc. Simply don't consider such parent die
22150 as source-level parent of this die (it can't be, the language
22151 doesn't allow it), and break the loop here. */
22152 name = dwarf2_name (die, cu);
22153 parent_name = dwarf2_name (parent, cu);
22154 complaint (_("template param type '%s' defined within parent '%s'"),
22155 name ? name : "<unknown>",
22156 parent_name ? parent_name : "<unknown>");
22157 return "";
22158 }
22159 else
22160 switch (parent->tag)
22161 {
22162 case DW_TAG_namespace:
22163 parent_type = read_type_die (parent, cu);
22164 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
22165 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
22166 Work around this problem here. */
22167 if (cu->language == language_cplus
22168 && strcmp (TYPE_NAME (parent_type), "::") == 0)
22169 return "";
22170 /* We give a name to even anonymous namespaces. */
22171 return TYPE_NAME (parent_type);
22172 case DW_TAG_class_type:
22173 case DW_TAG_interface_type:
22174 case DW_TAG_structure_type:
22175 case DW_TAG_union_type:
22176 case DW_TAG_module:
22177 parent_type = read_type_die (parent, cu);
22178 if (TYPE_NAME (parent_type) != NULL)
22179 return TYPE_NAME (parent_type);
22180 else
22181 /* An anonymous structure is only allowed non-static data
22182 members; no typedefs, no member functions, et cetera.
22183 So it does not need a prefix. */
22184 return "";
22185 case DW_TAG_compile_unit:
22186 case DW_TAG_partial_unit:
22187 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
22188 if (cu->language == language_cplus
22189 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
22190 && die->child != NULL
22191 && (die->tag == DW_TAG_class_type
22192 || die->tag == DW_TAG_structure_type
22193 || die->tag == DW_TAG_union_type))
22194 {
22195 char *name = guess_full_die_structure_name (die, cu);
22196 if (name != NULL)
22197 return name;
22198 }
22199 return "";
22200 case DW_TAG_enumeration_type:
22201 parent_type = read_type_die (parent, cu);
22202 if (TYPE_DECLARED_CLASS (parent_type))
22203 {
22204 if (TYPE_NAME (parent_type) != NULL)
22205 return TYPE_NAME (parent_type);
22206 return "";
22207 }
22208 /* Fall through. */
22209 default:
22210 return determine_prefix (parent, cu);
22211 }
22212 }
22213
22214 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
22215 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
22216 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
22217 an obconcat, otherwise allocate storage for the result. The CU argument is
22218 used to determine the language and hence, the appropriate separator. */
22219
22220 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
22221
22222 static char *
22223 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
22224 int physname, struct dwarf2_cu *cu)
22225 {
22226 const char *lead = "";
22227 const char *sep;
22228
22229 if (suffix == NULL || suffix[0] == '\0'
22230 || prefix == NULL || prefix[0] == '\0')
22231 sep = "";
22232 else if (cu->language == language_d)
22233 {
22234 /* For D, the 'main' function could be defined in any module, but it
22235 should never be prefixed. */
22236 if (strcmp (suffix, "D main") == 0)
22237 {
22238 prefix = "";
22239 sep = "";
22240 }
22241 else
22242 sep = ".";
22243 }
22244 else if (cu->language == language_fortran && physname)
22245 {
22246 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
22247 DW_AT_MIPS_linkage_name is preferred and used instead. */
22248
22249 lead = "__";
22250 sep = "_MOD_";
22251 }
22252 else
22253 sep = "::";
22254
22255 if (prefix == NULL)
22256 prefix = "";
22257 if (suffix == NULL)
22258 suffix = "";
22259
22260 if (obs == NULL)
22261 {
22262 char *retval
22263 = ((char *)
22264 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
22265
22266 strcpy (retval, lead);
22267 strcat (retval, prefix);
22268 strcat (retval, sep);
22269 strcat (retval, suffix);
22270 return retval;
22271 }
22272 else
22273 {
22274 /* We have an obstack. */
22275 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
22276 }
22277 }
22278
22279 /* Return sibling of die, NULL if no sibling. */
22280
22281 static struct die_info *
22282 sibling_die (struct die_info *die)
22283 {
22284 return die->sibling;
22285 }
22286
22287 /* Get name of a die, return NULL if not found. */
22288
22289 static const char *
22290 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
22291 struct obstack *obstack)
22292 {
22293 if (name && cu->language == language_cplus)
22294 {
22295 std::string canon_name = cp_canonicalize_string (name);
22296
22297 if (!canon_name.empty ())
22298 {
22299 if (canon_name != name)
22300 name = (const char *) obstack_copy0 (obstack,
22301 canon_name.c_str (),
22302 canon_name.length ());
22303 }
22304 }
22305
22306 return name;
22307 }
22308
22309 /* Get name of a die, return NULL if not found.
22310 Anonymous namespaces are converted to their magic string. */
22311
22312 static const char *
22313 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
22314 {
22315 struct attribute *attr;
22316 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22317
22318 attr = dwarf2_attr (die, DW_AT_name, cu);
22319 if ((!attr || !DW_STRING (attr))
22320 && die->tag != DW_TAG_namespace
22321 && die->tag != DW_TAG_class_type
22322 && die->tag != DW_TAG_interface_type
22323 && die->tag != DW_TAG_structure_type
22324 && die->tag != DW_TAG_union_type)
22325 return NULL;
22326
22327 switch (die->tag)
22328 {
22329 case DW_TAG_compile_unit:
22330 case DW_TAG_partial_unit:
22331 /* Compilation units have a DW_AT_name that is a filename, not
22332 a source language identifier. */
22333 case DW_TAG_enumeration_type:
22334 case DW_TAG_enumerator:
22335 /* These tags always have simple identifiers already; no need
22336 to canonicalize them. */
22337 return DW_STRING (attr);
22338
22339 case DW_TAG_namespace:
22340 if (attr != NULL && DW_STRING (attr) != NULL)
22341 return DW_STRING (attr);
22342 return CP_ANONYMOUS_NAMESPACE_STR;
22343
22344 case DW_TAG_class_type:
22345 case DW_TAG_interface_type:
22346 case DW_TAG_structure_type:
22347 case DW_TAG_union_type:
22348 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
22349 structures or unions. These were of the form "._%d" in GCC 4.1,
22350 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
22351 and GCC 4.4. We work around this problem by ignoring these. */
22352 if (attr && DW_STRING (attr)
22353 && (startswith (DW_STRING (attr), "._")
22354 || startswith (DW_STRING (attr), "<anonymous")))
22355 return NULL;
22356
22357 /* GCC might emit a nameless typedef that has a linkage name. See
22358 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22359 if (!attr || DW_STRING (attr) == NULL)
22360 {
22361 char *demangled = NULL;
22362
22363 attr = dw2_linkage_name_attr (die, cu);
22364 if (attr == NULL || DW_STRING (attr) == NULL)
22365 return NULL;
22366
22367 /* Avoid demangling DW_STRING (attr) the second time on a second
22368 call for the same DIE. */
22369 if (!DW_STRING_IS_CANONICAL (attr))
22370 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
22371
22372 if (demangled)
22373 {
22374 const char *base;
22375
22376 /* FIXME: we already did this for the partial symbol... */
22377 DW_STRING (attr)
22378 = ((const char *)
22379 obstack_copy0 (&objfile->per_bfd->storage_obstack,
22380 demangled, strlen (demangled)));
22381 DW_STRING_IS_CANONICAL (attr) = 1;
22382 xfree (demangled);
22383
22384 /* Strip any leading namespaces/classes, keep only the base name.
22385 DW_AT_name for named DIEs does not contain the prefixes. */
22386 base = strrchr (DW_STRING (attr), ':');
22387 if (base && base > DW_STRING (attr) && base[-1] == ':')
22388 return &base[1];
22389 else
22390 return DW_STRING (attr);
22391 }
22392 }
22393 break;
22394
22395 default:
22396 break;
22397 }
22398
22399 if (!DW_STRING_IS_CANONICAL (attr))
22400 {
22401 DW_STRING (attr)
22402 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
22403 &objfile->per_bfd->storage_obstack);
22404 DW_STRING_IS_CANONICAL (attr) = 1;
22405 }
22406 return DW_STRING (attr);
22407 }
22408
22409 /* Return the die that this die in an extension of, or NULL if there
22410 is none. *EXT_CU is the CU containing DIE on input, and the CU
22411 containing the return value on output. */
22412
22413 static struct die_info *
22414 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
22415 {
22416 struct attribute *attr;
22417
22418 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
22419 if (attr == NULL)
22420 return NULL;
22421
22422 return follow_die_ref (die, attr, ext_cu);
22423 }
22424
22425 /* Convert a DIE tag into its string name. */
22426
22427 static const char *
22428 dwarf_tag_name (unsigned tag)
22429 {
22430 const char *name = get_DW_TAG_name (tag);
22431
22432 if (name == NULL)
22433 return "DW_TAG_<unknown>";
22434
22435 return name;
22436 }
22437
22438 /* Convert a DWARF attribute code into its string name. */
22439
22440 static const char *
22441 dwarf_attr_name (unsigned attr)
22442 {
22443 const char *name;
22444
22445 #ifdef MIPS /* collides with DW_AT_HP_block_index */
22446 if (attr == DW_AT_MIPS_fde)
22447 return "DW_AT_MIPS_fde";
22448 #else
22449 if (attr == DW_AT_HP_block_index)
22450 return "DW_AT_HP_block_index";
22451 #endif
22452
22453 name = get_DW_AT_name (attr);
22454
22455 if (name == NULL)
22456 return "DW_AT_<unknown>";
22457
22458 return name;
22459 }
22460
22461 /* Convert a DWARF value form code into its string name. */
22462
22463 static const char *
22464 dwarf_form_name (unsigned form)
22465 {
22466 const char *name = get_DW_FORM_name (form);
22467
22468 if (name == NULL)
22469 return "DW_FORM_<unknown>";
22470
22471 return name;
22472 }
22473
22474 static const char *
22475 dwarf_bool_name (unsigned mybool)
22476 {
22477 if (mybool)
22478 return "TRUE";
22479 else
22480 return "FALSE";
22481 }
22482
22483 /* Convert a DWARF type code into its string name. */
22484
22485 static const char *
22486 dwarf_type_encoding_name (unsigned enc)
22487 {
22488 const char *name = get_DW_ATE_name (enc);
22489
22490 if (name == NULL)
22491 return "DW_ATE_<unknown>";
22492
22493 return name;
22494 }
22495
22496 static void
22497 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
22498 {
22499 unsigned int i;
22500
22501 print_spaces (indent, f);
22502 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset %s)\n",
22503 dwarf_tag_name (die->tag), die->abbrev,
22504 sect_offset_str (die->sect_off));
22505
22506 if (die->parent != NULL)
22507 {
22508 print_spaces (indent, f);
22509 fprintf_unfiltered (f, " parent at offset: %s\n",
22510 sect_offset_str (die->parent->sect_off));
22511 }
22512
22513 print_spaces (indent, f);
22514 fprintf_unfiltered (f, " has children: %s\n",
22515 dwarf_bool_name (die->child != NULL));
22516
22517 print_spaces (indent, f);
22518 fprintf_unfiltered (f, " attributes:\n");
22519
22520 for (i = 0; i < die->num_attrs; ++i)
22521 {
22522 print_spaces (indent, f);
22523 fprintf_unfiltered (f, " %s (%s) ",
22524 dwarf_attr_name (die->attrs[i].name),
22525 dwarf_form_name (die->attrs[i].form));
22526
22527 switch (die->attrs[i].form)
22528 {
22529 case DW_FORM_addr:
22530 case DW_FORM_GNU_addr_index:
22531 fprintf_unfiltered (f, "address: ");
22532 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
22533 break;
22534 case DW_FORM_block2:
22535 case DW_FORM_block4:
22536 case DW_FORM_block:
22537 case DW_FORM_block1:
22538 fprintf_unfiltered (f, "block: size %s",
22539 pulongest (DW_BLOCK (&die->attrs[i])->size));
22540 break;
22541 case DW_FORM_exprloc:
22542 fprintf_unfiltered (f, "expression: size %s",
22543 pulongest (DW_BLOCK (&die->attrs[i])->size));
22544 break;
22545 case DW_FORM_data16:
22546 fprintf_unfiltered (f, "constant of 16 bytes");
22547 break;
22548 case DW_FORM_ref_addr:
22549 fprintf_unfiltered (f, "ref address: ");
22550 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22551 break;
22552 case DW_FORM_GNU_ref_alt:
22553 fprintf_unfiltered (f, "alt ref address: ");
22554 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22555 break;
22556 case DW_FORM_ref1:
22557 case DW_FORM_ref2:
22558 case DW_FORM_ref4:
22559 case DW_FORM_ref8:
22560 case DW_FORM_ref_udata:
22561 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
22562 (long) (DW_UNSND (&die->attrs[i])));
22563 break;
22564 case DW_FORM_data1:
22565 case DW_FORM_data2:
22566 case DW_FORM_data4:
22567 case DW_FORM_data8:
22568 case DW_FORM_udata:
22569 case DW_FORM_sdata:
22570 fprintf_unfiltered (f, "constant: %s",
22571 pulongest (DW_UNSND (&die->attrs[i])));
22572 break;
22573 case DW_FORM_sec_offset:
22574 fprintf_unfiltered (f, "section offset: %s",
22575 pulongest (DW_UNSND (&die->attrs[i])));
22576 break;
22577 case DW_FORM_ref_sig8:
22578 fprintf_unfiltered (f, "signature: %s",
22579 hex_string (DW_SIGNATURE (&die->attrs[i])));
22580 break;
22581 case DW_FORM_string:
22582 case DW_FORM_strp:
22583 case DW_FORM_line_strp:
22584 case DW_FORM_GNU_str_index:
22585 case DW_FORM_GNU_strp_alt:
22586 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
22587 DW_STRING (&die->attrs[i])
22588 ? DW_STRING (&die->attrs[i]) : "",
22589 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
22590 break;
22591 case DW_FORM_flag:
22592 if (DW_UNSND (&die->attrs[i]))
22593 fprintf_unfiltered (f, "flag: TRUE");
22594 else
22595 fprintf_unfiltered (f, "flag: FALSE");
22596 break;
22597 case DW_FORM_flag_present:
22598 fprintf_unfiltered (f, "flag: TRUE");
22599 break;
22600 case DW_FORM_indirect:
22601 /* The reader will have reduced the indirect form to
22602 the "base form" so this form should not occur. */
22603 fprintf_unfiltered (f,
22604 "unexpected attribute form: DW_FORM_indirect");
22605 break;
22606 case DW_FORM_implicit_const:
22607 fprintf_unfiltered (f, "constant: %s",
22608 plongest (DW_SND (&die->attrs[i])));
22609 break;
22610 default:
22611 fprintf_unfiltered (f, "unsupported attribute form: %d.",
22612 die->attrs[i].form);
22613 break;
22614 }
22615 fprintf_unfiltered (f, "\n");
22616 }
22617 }
22618
22619 static void
22620 dump_die_for_error (struct die_info *die)
22621 {
22622 dump_die_shallow (gdb_stderr, 0, die);
22623 }
22624
22625 static void
22626 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
22627 {
22628 int indent = level * 4;
22629
22630 gdb_assert (die != NULL);
22631
22632 if (level >= max_level)
22633 return;
22634
22635 dump_die_shallow (f, indent, die);
22636
22637 if (die->child != NULL)
22638 {
22639 print_spaces (indent, f);
22640 fprintf_unfiltered (f, " Children:");
22641 if (level + 1 < max_level)
22642 {
22643 fprintf_unfiltered (f, "\n");
22644 dump_die_1 (f, level + 1, max_level, die->child);
22645 }
22646 else
22647 {
22648 fprintf_unfiltered (f,
22649 " [not printed, max nesting level reached]\n");
22650 }
22651 }
22652
22653 if (die->sibling != NULL && level > 0)
22654 {
22655 dump_die_1 (f, level, max_level, die->sibling);
22656 }
22657 }
22658
22659 /* This is called from the pdie macro in gdbinit.in.
22660 It's not static so gcc will keep a copy callable from gdb. */
22661
22662 void
22663 dump_die (struct die_info *die, int max_level)
22664 {
22665 dump_die_1 (gdb_stdlog, 0, max_level, die);
22666 }
22667
22668 static void
22669 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
22670 {
22671 void **slot;
22672
22673 slot = htab_find_slot_with_hash (cu->die_hash, die,
22674 to_underlying (die->sect_off),
22675 INSERT);
22676
22677 *slot = die;
22678 }
22679
22680 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
22681 required kind. */
22682
22683 static sect_offset
22684 dwarf2_get_ref_die_offset (const struct attribute *attr)
22685 {
22686 if (attr_form_is_ref (attr))
22687 return (sect_offset) DW_UNSND (attr);
22688
22689 complaint (_("unsupported die ref attribute form: '%s'"),
22690 dwarf_form_name (attr->form));
22691 return {};
22692 }
22693
22694 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
22695 * the value held by the attribute is not constant. */
22696
22697 static LONGEST
22698 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
22699 {
22700 if (attr->form == DW_FORM_sdata || attr->form == DW_FORM_implicit_const)
22701 return DW_SND (attr);
22702 else if (attr->form == DW_FORM_udata
22703 || attr->form == DW_FORM_data1
22704 || attr->form == DW_FORM_data2
22705 || attr->form == DW_FORM_data4
22706 || attr->form == DW_FORM_data8)
22707 return DW_UNSND (attr);
22708 else
22709 {
22710 /* For DW_FORM_data16 see attr_form_is_constant. */
22711 complaint (_("Attribute value is not a constant (%s)"),
22712 dwarf_form_name (attr->form));
22713 return default_value;
22714 }
22715 }
22716
22717 /* Follow reference or signature attribute ATTR of SRC_DIE.
22718 On entry *REF_CU is the CU of SRC_DIE.
22719 On exit *REF_CU is the CU of the result. */
22720
22721 static struct die_info *
22722 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
22723 struct dwarf2_cu **ref_cu)
22724 {
22725 struct die_info *die;
22726
22727 if (attr_form_is_ref (attr))
22728 die = follow_die_ref (src_die, attr, ref_cu);
22729 else if (attr->form == DW_FORM_ref_sig8)
22730 die = follow_die_sig (src_die, attr, ref_cu);
22731 else
22732 {
22733 dump_die_for_error (src_die);
22734 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
22735 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
22736 }
22737
22738 return die;
22739 }
22740
22741 /* Follow reference OFFSET.
22742 On entry *REF_CU is the CU of the source die referencing OFFSET.
22743 On exit *REF_CU is the CU of the result.
22744 Returns NULL if OFFSET is invalid. */
22745
22746 static struct die_info *
22747 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
22748 struct dwarf2_cu **ref_cu)
22749 {
22750 struct die_info temp_die;
22751 struct dwarf2_cu *target_cu, *cu = *ref_cu;
22752 struct dwarf2_per_objfile *dwarf2_per_objfile
22753 = cu->per_cu->dwarf2_per_objfile;
22754
22755 gdb_assert (cu->per_cu != NULL);
22756
22757 target_cu = cu;
22758
22759 if (cu->per_cu->is_debug_types)
22760 {
22761 /* .debug_types CUs cannot reference anything outside their CU.
22762 If they need to, they have to reference a signatured type via
22763 DW_FORM_ref_sig8. */
22764 if (!offset_in_cu_p (&cu->header, sect_off))
22765 return NULL;
22766 }
22767 else if (offset_in_dwz != cu->per_cu->is_dwz
22768 || !offset_in_cu_p (&cu->header, sect_off))
22769 {
22770 struct dwarf2_per_cu_data *per_cu;
22771
22772 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
22773 dwarf2_per_objfile);
22774
22775 /* If necessary, add it to the queue and load its DIEs. */
22776 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
22777 load_full_comp_unit (per_cu, false, cu->language);
22778
22779 target_cu = per_cu->cu;
22780 }
22781 else if (cu->dies == NULL)
22782 {
22783 /* We're loading full DIEs during partial symbol reading. */
22784 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
22785 load_full_comp_unit (cu->per_cu, false, language_minimal);
22786 }
22787
22788 *ref_cu = target_cu;
22789 temp_die.sect_off = sect_off;
22790 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
22791 &temp_die,
22792 to_underlying (sect_off));
22793 }
22794
22795 /* Follow reference attribute ATTR of SRC_DIE.
22796 On entry *REF_CU is the CU of SRC_DIE.
22797 On exit *REF_CU is the CU of the result. */
22798
22799 static struct die_info *
22800 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
22801 struct dwarf2_cu **ref_cu)
22802 {
22803 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22804 struct dwarf2_cu *cu = *ref_cu;
22805 struct die_info *die;
22806
22807 die = follow_die_offset (sect_off,
22808 (attr->form == DW_FORM_GNU_ref_alt
22809 || cu->per_cu->is_dwz),
22810 ref_cu);
22811 if (!die)
22812 error (_("Dwarf Error: Cannot find DIE at %s referenced from DIE "
22813 "at %s [in module %s]"),
22814 sect_offset_str (sect_off), sect_offset_str (src_die->sect_off),
22815 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
22816
22817 return die;
22818 }
22819
22820 /* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU.
22821 Returned value is intended for DW_OP_call*. Returned
22822 dwarf2_locexpr_baton->data has lifetime of
22823 PER_CU->DWARF2_PER_OBJFILE->OBJFILE. */
22824
22825 struct dwarf2_locexpr_baton
22826 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
22827 struct dwarf2_per_cu_data *per_cu,
22828 CORE_ADDR (*get_frame_pc) (void *baton),
22829 void *baton)
22830 {
22831 struct dwarf2_cu *cu;
22832 struct die_info *die;
22833 struct attribute *attr;
22834 struct dwarf2_locexpr_baton retval;
22835 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
22836 struct objfile *objfile = dwarf2_per_objfile->objfile;
22837
22838 if (per_cu->cu == NULL)
22839 load_cu (per_cu, false);
22840 cu = per_cu->cu;
22841 if (cu == NULL)
22842 {
22843 /* We shouldn't get here for a dummy CU, but don't crash on the user.
22844 Instead just throw an error, not much else we can do. */
22845 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
22846 sect_offset_str (sect_off), objfile_name (objfile));
22847 }
22848
22849 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
22850 if (!die)
22851 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
22852 sect_offset_str (sect_off), objfile_name (objfile));
22853
22854 attr = dwarf2_attr (die, DW_AT_location, cu);
22855 if (!attr)
22856 {
22857 /* DWARF: "If there is no such attribute, then there is no effect.".
22858 DATA is ignored if SIZE is 0. */
22859
22860 retval.data = NULL;
22861 retval.size = 0;
22862 }
22863 else if (attr_form_is_section_offset (attr))
22864 {
22865 struct dwarf2_loclist_baton loclist_baton;
22866 CORE_ADDR pc = (*get_frame_pc) (baton);
22867 size_t size;
22868
22869 fill_in_loclist_baton (cu, &loclist_baton, attr);
22870
22871 retval.data = dwarf2_find_location_expression (&loclist_baton,
22872 &size, pc);
22873 retval.size = size;
22874 }
22875 else
22876 {
22877 if (!attr_form_is_block (attr))
22878 error (_("Dwarf Error: DIE at %s referenced in module %s "
22879 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
22880 sect_offset_str (sect_off), objfile_name (objfile));
22881
22882 retval.data = DW_BLOCK (attr)->data;
22883 retval.size = DW_BLOCK (attr)->size;
22884 }
22885 retval.per_cu = cu->per_cu;
22886
22887 age_cached_comp_units (dwarf2_per_objfile);
22888
22889 return retval;
22890 }
22891
22892 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
22893 offset. */
22894
22895 struct dwarf2_locexpr_baton
22896 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
22897 struct dwarf2_per_cu_data *per_cu,
22898 CORE_ADDR (*get_frame_pc) (void *baton),
22899 void *baton)
22900 {
22901 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
22902
22903 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
22904 }
22905
22906 /* Write a constant of a given type as target-ordered bytes into
22907 OBSTACK. */
22908
22909 static const gdb_byte *
22910 write_constant_as_bytes (struct obstack *obstack,
22911 enum bfd_endian byte_order,
22912 struct type *type,
22913 ULONGEST value,
22914 LONGEST *len)
22915 {
22916 gdb_byte *result;
22917
22918 *len = TYPE_LENGTH (type);
22919 result = (gdb_byte *) obstack_alloc (obstack, *len);
22920 store_unsigned_integer (result, *len, byte_order, value);
22921
22922 return result;
22923 }
22924
22925 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
22926 pointer to the constant bytes and set LEN to the length of the
22927 data. If memory is needed, allocate it on OBSTACK. If the DIE
22928 does not have a DW_AT_const_value, return NULL. */
22929
22930 const gdb_byte *
22931 dwarf2_fetch_constant_bytes (sect_offset sect_off,
22932 struct dwarf2_per_cu_data *per_cu,
22933 struct obstack *obstack,
22934 LONGEST *len)
22935 {
22936 struct dwarf2_cu *cu;
22937 struct die_info *die;
22938 struct attribute *attr;
22939 const gdb_byte *result = NULL;
22940 struct type *type;
22941 LONGEST value;
22942 enum bfd_endian byte_order;
22943 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
22944
22945 if (per_cu->cu == NULL)
22946 load_cu (per_cu, false);
22947 cu = per_cu->cu;
22948 if (cu == NULL)
22949 {
22950 /* We shouldn't get here for a dummy CU, but don't crash on the user.
22951 Instead just throw an error, not much else we can do. */
22952 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
22953 sect_offset_str (sect_off), objfile_name (objfile));
22954 }
22955
22956 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
22957 if (!die)
22958 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
22959 sect_offset_str (sect_off), objfile_name (objfile));
22960
22961 attr = dwarf2_attr (die, DW_AT_const_value, cu);
22962 if (attr == NULL)
22963 return NULL;
22964
22965 byte_order = (bfd_big_endian (objfile->obfd)
22966 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
22967
22968 switch (attr->form)
22969 {
22970 case DW_FORM_addr:
22971 case DW_FORM_GNU_addr_index:
22972 {
22973 gdb_byte *tem;
22974
22975 *len = cu->header.addr_size;
22976 tem = (gdb_byte *) obstack_alloc (obstack, *len);
22977 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
22978 result = tem;
22979 }
22980 break;
22981 case DW_FORM_string:
22982 case DW_FORM_strp:
22983 case DW_FORM_GNU_str_index:
22984 case DW_FORM_GNU_strp_alt:
22985 /* DW_STRING is already allocated on the objfile obstack, point
22986 directly to it. */
22987 result = (const gdb_byte *) DW_STRING (attr);
22988 *len = strlen (DW_STRING (attr));
22989 break;
22990 case DW_FORM_block1:
22991 case DW_FORM_block2:
22992 case DW_FORM_block4:
22993 case DW_FORM_block:
22994 case DW_FORM_exprloc:
22995 case DW_FORM_data16:
22996 result = DW_BLOCK (attr)->data;
22997 *len = DW_BLOCK (attr)->size;
22998 break;
22999
23000 /* The DW_AT_const_value attributes are supposed to carry the
23001 symbol's value "represented as it would be on the target
23002 architecture." By the time we get here, it's already been
23003 converted to host endianness, so we just need to sign- or
23004 zero-extend it as appropriate. */
23005 case DW_FORM_data1:
23006 type = die_type (die, cu);
23007 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
23008 if (result == NULL)
23009 result = write_constant_as_bytes (obstack, byte_order,
23010 type, value, len);
23011 break;
23012 case DW_FORM_data2:
23013 type = die_type (die, cu);
23014 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
23015 if (result == NULL)
23016 result = write_constant_as_bytes (obstack, byte_order,
23017 type, value, len);
23018 break;
23019 case DW_FORM_data4:
23020 type = die_type (die, cu);
23021 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
23022 if (result == NULL)
23023 result = write_constant_as_bytes (obstack, byte_order,
23024 type, value, len);
23025 break;
23026 case DW_FORM_data8:
23027 type = die_type (die, cu);
23028 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
23029 if (result == NULL)
23030 result = write_constant_as_bytes (obstack, byte_order,
23031 type, value, len);
23032 break;
23033
23034 case DW_FORM_sdata:
23035 case DW_FORM_implicit_const:
23036 type = die_type (die, cu);
23037 result = write_constant_as_bytes (obstack, byte_order,
23038 type, DW_SND (attr), len);
23039 break;
23040
23041 case DW_FORM_udata:
23042 type = die_type (die, cu);
23043 result = write_constant_as_bytes (obstack, byte_order,
23044 type, DW_UNSND (attr), len);
23045 break;
23046
23047 default:
23048 complaint (_("unsupported const value attribute form: '%s'"),
23049 dwarf_form_name (attr->form));
23050 break;
23051 }
23052
23053 return result;
23054 }
23055
23056 /* Return the type of the die at OFFSET in PER_CU. Return NULL if no
23057 valid type for this die is found. */
23058
23059 struct type *
23060 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
23061 struct dwarf2_per_cu_data *per_cu)
23062 {
23063 struct dwarf2_cu *cu;
23064 struct die_info *die;
23065
23066 if (per_cu->cu == NULL)
23067 load_cu (per_cu, false);
23068 cu = per_cu->cu;
23069 if (!cu)
23070 return NULL;
23071
23072 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23073 if (!die)
23074 return NULL;
23075
23076 return die_type (die, cu);
23077 }
23078
23079 /* Return the type of the DIE at DIE_OFFSET in the CU named by
23080 PER_CU. */
23081
23082 struct type *
23083 dwarf2_get_die_type (cu_offset die_offset,
23084 struct dwarf2_per_cu_data *per_cu)
23085 {
23086 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
23087 return get_die_type_at_offset (die_offset_sect, per_cu);
23088 }
23089
23090 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
23091 On entry *REF_CU is the CU of SRC_DIE.
23092 On exit *REF_CU is the CU of the result.
23093 Returns NULL if the referenced DIE isn't found. */
23094
23095 static struct die_info *
23096 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
23097 struct dwarf2_cu **ref_cu)
23098 {
23099 struct die_info temp_die;
23100 struct dwarf2_cu *sig_cu;
23101 struct die_info *die;
23102
23103 /* While it might be nice to assert sig_type->type == NULL here,
23104 we can get here for DW_AT_imported_declaration where we need
23105 the DIE not the type. */
23106
23107 /* If necessary, add it to the queue and load its DIEs. */
23108
23109 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
23110 read_signatured_type (sig_type);
23111
23112 sig_cu = sig_type->per_cu.cu;
23113 gdb_assert (sig_cu != NULL);
23114 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
23115 temp_die.sect_off = sig_type->type_offset_in_section;
23116 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
23117 to_underlying (temp_die.sect_off));
23118 if (die)
23119 {
23120 struct dwarf2_per_objfile *dwarf2_per_objfile
23121 = (*ref_cu)->per_cu->dwarf2_per_objfile;
23122
23123 /* For .gdb_index version 7 keep track of included TUs.
23124 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
23125 if (dwarf2_per_objfile->index_table != NULL
23126 && dwarf2_per_objfile->index_table->version <= 7)
23127 {
23128 VEC_safe_push (dwarf2_per_cu_ptr,
23129 (*ref_cu)->per_cu->imported_symtabs,
23130 sig_cu->per_cu);
23131 }
23132
23133 *ref_cu = sig_cu;
23134 return die;
23135 }
23136
23137 return NULL;
23138 }
23139
23140 /* Follow signatured type referenced by ATTR in SRC_DIE.
23141 On entry *REF_CU is the CU of SRC_DIE.
23142 On exit *REF_CU is the CU of the result.
23143 The result is the DIE of the type.
23144 If the referenced type cannot be found an error is thrown. */
23145
23146 static struct die_info *
23147 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
23148 struct dwarf2_cu **ref_cu)
23149 {
23150 ULONGEST signature = DW_SIGNATURE (attr);
23151 struct signatured_type *sig_type;
23152 struct die_info *die;
23153
23154 gdb_assert (attr->form == DW_FORM_ref_sig8);
23155
23156 sig_type = lookup_signatured_type (*ref_cu, signature);
23157 /* sig_type will be NULL if the signatured type is missing from
23158 the debug info. */
23159 if (sig_type == NULL)
23160 {
23161 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23162 " from DIE at %s [in module %s]"),
23163 hex_string (signature), sect_offset_str (src_die->sect_off),
23164 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23165 }
23166
23167 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
23168 if (die == NULL)
23169 {
23170 dump_die_for_error (src_die);
23171 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23172 " from DIE at %s [in module %s]"),
23173 hex_string (signature), sect_offset_str (src_die->sect_off),
23174 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23175 }
23176
23177 return die;
23178 }
23179
23180 /* Get the type specified by SIGNATURE referenced in DIE/CU,
23181 reading in and processing the type unit if necessary. */
23182
23183 static struct type *
23184 get_signatured_type (struct die_info *die, ULONGEST signature,
23185 struct dwarf2_cu *cu)
23186 {
23187 struct dwarf2_per_objfile *dwarf2_per_objfile
23188 = cu->per_cu->dwarf2_per_objfile;
23189 struct signatured_type *sig_type;
23190 struct dwarf2_cu *type_cu;
23191 struct die_info *type_die;
23192 struct type *type;
23193
23194 sig_type = lookup_signatured_type (cu, signature);
23195 /* sig_type will be NULL if the signatured type is missing from
23196 the debug info. */
23197 if (sig_type == NULL)
23198 {
23199 complaint (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23200 " from DIE at %s [in module %s]"),
23201 hex_string (signature), sect_offset_str (die->sect_off),
23202 objfile_name (dwarf2_per_objfile->objfile));
23203 return build_error_marker_type (cu, die);
23204 }
23205
23206 /* If we already know the type we're done. */
23207 if (sig_type->type != NULL)
23208 return sig_type->type;
23209
23210 type_cu = cu;
23211 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
23212 if (type_die != NULL)
23213 {
23214 /* N.B. We need to call get_die_type to ensure only one type for this DIE
23215 is created. This is important, for example, because for c++ classes
23216 we need TYPE_NAME set which is only done by new_symbol. Blech. */
23217 type = read_type_die (type_die, type_cu);
23218 if (type == NULL)
23219 {
23220 complaint (_("Dwarf Error: Cannot build signatured type %s"
23221 " referenced from DIE at %s [in module %s]"),
23222 hex_string (signature), sect_offset_str (die->sect_off),
23223 objfile_name (dwarf2_per_objfile->objfile));
23224 type = build_error_marker_type (cu, die);
23225 }
23226 }
23227 else
23228 {
23229 complaint (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23230 " from DIE at %s [in module %s]"),
23231 hex_string (signature), sect_offset_str (die->sect_off),
23232 objfile_name (dwarf2_per_objfile->objfile));
23233 type = build_error_marker_type (cu, die);
23234 }
23235 sig_type->type = type;
23236
23237 return type;
23238 }
23239
23240 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
23241 reading in and processing the type unit if necessary. */
23242
23243 static struct type *
23244 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
23245 struct dwarf2_cu *cu) /* ARI: editCase function */
23246 {
23247 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
23248 if (attr_form_is_ref (attr))
23249 {
23250 struct dwarf2_cu *type_cu = cu;
23251 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
23252
23253 return read_type_die (type_die, type_cu);
23254 }
23255 else if (attr->form == DW_FORM_ref_sig8)
23256 {
23257 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
23258 }
23259 else
23260 {
23261 struct dwarf2_per_objfile *dwarf2_per_objfile
23262 = cu->per_cu->dwarf2_per_objfile;
23263
23264 complaint (_("Dwarf Error: DW_AT_signature has bad form %s in DIE"
23265 " at %s [in module %s]"),
23266 dwarf_form_name (attr->form), sect_offset_str (die->sect_off),
23267 objfile_name (dwarf2_per_objfile->objfile));
23268 return build_error_marker_type (cu, die);
23269 }
23270 }
23271
23272 /* Load the DIEs associated with type unit PER_CU into memory. */
23273
23274 static void
23275 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
23276 {
23277 struct signatured_type *sig_type;
23278
23279 /* Caller is responsible for ensuring type_unit_groups don't get here. */
23280 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
23281
23282 /* We have the per_cu, but we need the signatured_type.
23283 Fortunately this is an easy translation. */
23284 gdb_assert (per_cu->is_debug_types);
23285 sig_type = (struct signatured_type *) per_cu;
23286
23287 gdb_assert (per_cu->cu == NULL);
23288
23289 read_signatured_type (sig_type);
23290
23291 gdb_assert (per_cu->cu != NULL);
23292 }
23293
23294 /* die_reader_func for read_signatured_type.
23295 This is identical to load_full_comp_unit_reader,
23296 but is kept separate for now. */
23297
23298 static void
23299 read_signatured_type_reader (const struct die_reader_specs *reader,
23300 const gdb_byte *info_ptr,
23301 struct die_info *comp_unit_die,
23302 int has_children,
23303 void *data)
23304 {
23305 struct dwarf2_cu *cu = reader->cu;
23306
23307 gdb_assert (cu->die_hash == NULL);
23308 cu->die_hash =
23309 htab_create_alloc_ex (cu->header.length / 12,
23310 die_hash,
23311 die_eq,
23312 NULL,
23313 &cu->comp_unit_obstack,
23314 hashtab_obstack_allocate,
23315 dummy_obstack_deallocate);
23316
23317 if (has_children)
23318 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
23319 &info_ptr, comp_unit_die);
23320 cu->dies = comp_unit_die;
23321 /* comp_unit_die is not stored in die_hash, no need. */
23322
23323 /* We try not to read any attributes in this function, because not
23324 all CUs needed for references have been loaded yet, and symbol
23325 table processing isn't initialized. But we have to set the CU language,
23326 or we won't be able to build types correctly.
23327 Similarly, if we do not read the producer, we can not apply
23328 producer-specific interpretation. */
23329 prepare_one_comp_unit (cu, cu->dies, language_minimal);
23330 }
23331
23332 /* Read in a signatured type and build its CU and DIEs.
23333 If the type is a stub for the real type in a DWO file,
23334 read in the real type from the DWO file as well. */
23335
23336 static void
23337 read_signatured_type (struct signatured_type *sig_type)
23338 {
23339 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
23340
23341 gdb_assert (per_cu->is_debug_types);
23342 gdb_assert (per_cu->cu == NULL);
23343
23344 init_cutu_and_read_dies (per_cu, NULL, 0, 1, false,
23345 read_signatured_type_reader, NULL);
23346 sig_type->per_cu.tu_read = 1;
23347 }
23348
23349 /* Decode simple location descriptions.
23350 Given a pointer to a dwarf block that defines a location, compute
23351 the location and return the value.
23352
23353 NOTE drow/2003-11-18: This function is called in two situations
23354 now: for the address of static or global variables (partial symbols
23355 only) and for offsets into structures which are expected to be
23356 (more or less) constant. The partial symbol case should go away,
23357 and only the constant case should remain. That will let this
23358 function complain more accurately. A few special modes are allowed
23359 without complaint for global variables (for instance, global
23360 register values and thread-local values).
23361
23362 A location description containing no operations indicates that the
23363 object is optimized out. The return value is 0 for that case.
23364 FIXME drow/2003-11-16: No callers check for this case any more; soon all
23365 callers will only want a very basic result and this can become a
23366 complaint.
23367
23368 Note that stack[0] is unused except as a default error return. */
23369
23370 static CORE_ADDR
23371 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
23372 {
23373 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
23374 size_t i;
23375 size_t size = blk->size;
23376 const gdb_byte *data = blk->data;
23377 CORE_ADDR stack[64];
23378 int stacki;
23379 unsigned int bytes_read, unsnd;
23380 gdb_byte op;
23381
23382 i = 0;
23383 stacki = 0;
23384 stack[stacki] = 0;
23385 stack[++stacki] = 0;
23386
23387 while (i < size)
23388 {
23389 op = data[i++];
23390 switch (op)
23391 {
23392 case DW_OP_lit0:
23393 case DW_OP_lit1:
23394 case DW_OP_lit2:
23395 case DW_OP_lit3:
23396 case DW_OP_lit4:
23397 case DW_OP_lit5:
23398 case DW_OP_lit6:
23399 case DW_OP_lit7:
23400 case DW_OP_lit8:
23401 case DW_OP_lit9:
23402 case DW_OP_lit10:
23403 case DW_OP_lit11:
23404 case DW_OP_lit12:
23405 case DW_OP_lit13:
23406 case DW_OP_lit14:
23407 case DW_OP_lit15:
23408 case DW_OP_lit16:
23409 case DW_OP_lit17:
23410 case DW_OP_lit18:
23411 case DW_OP_lit19:
23412 case DW_OP_lit20:
23413 case DW_OP_lit21:
23414 case DW_OP_lit22:
23415 case DW_OP_lit23:
23416 case DW_OP_lit24:
23417 case DW_OP_lit25:
23418 case DW_OP_lit26:
23419 case DW_OP_lit27:
23420 case DW_OP_lit28:
23421 case DW_OP_lit29:
23422 case DW_OP_lit30:
23423 case DW_OP_lit31:
23424 stack[++stacki] = op - DW_OP_lit0;
23425 break;
23426
23427 case DW_OP_reg0:
23428 case DW_OP_reg1:
23429 case DW_OP_reg2:
23430 case DW_OP_reg3:
23431 case DW_OP_reg4:
23432 case DW_OP_reg5:
23433 case DW_OP_reg6:
23434 case DW_OP_reg7:
23435 case DW_OP_reg8:
23436 case DW_OP_reg9:
23437 case DW_OP_reg10:
23438 case DW_OP_reg11:
23439 case DW_OP_reg12:
23440 case DW_OP_reg13:
23441 case DW_OP_reg14:
23442 case DW_OP_reg15:
23443 case DW_OP_reg16:
23444 case DW_OP_reg17:
23445 case DW_OP_reg18:
23446 case DW_OP_reg19:
23447 case DW_OP_reg20:
23448 case DW_OP_reg21:
23449 case DW_OP_reg22:
23450 case DW_OP_reg23:
23451 case DW_OP_reg24:
23452 case DW_OP_reg25:
23453 case DW_OP_reg26:
23454 case DW_OP_reg27:
23455 case DW_OP_reg28:
23456 case DW_OP_reg29:
23457 case DW_OP_reg30:
23458 case DW_OP_reg31:
23459 stack[++stacki] = op - DW_OP_reg0;
23460 if (i < size)
23461 dwarf2_complex_location_expr_complaint ();
23462 break;
23463
23464 case DW_OP_regx:
23465 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
23466 i += bytes_read;
23467 stack[++stacki] = unsnd;
23468 if (i < size)
23469 dwarf2_complex_location_expr_complaint ();
23470 break;
23471
23472 case DW_OP_addr:
23473 stack[++stacki] = read_address (objfile->obfd, &data[i],
23474 cu, &bytes_read);
23475 i += bytes_read;
23476 break;
23477
23478 case DW_OP_const1u:
23479 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
23480 i += 1;
23481 break;
23482
23483 case DW_OP_const1s:
23484 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
23485 i += 1;
23486 break;
23487
23488 case DW_OP_const2u:
23489 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
23490 i += 2;
23491 break;
23492
23493 case DW_OP_const2s:
23494 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
23495 i += 2;
23496 break;
23497
23498 case DW_OP_const4u:
23499 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
23500 i += 4;
23501 break;
23502
23503 case DW_OP_const4s:
23504 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
23505 i += 4;
23506 break;
23507
23508 case DW_OP_const8u:
23509 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
23510 i += 8;
23511 break;
23512
23513 case DW_OP_constu:
23514 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
23515 &bytes_read);
23516 i += bytes_read;
23517 break;
23518
23519 case DW_OP_consts:
23520 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
23521 i += bytes_read;
23522 break;
23523
23524 case DW_OP_dup:
23525 stack[stacki + 1] = stack[stacki];
23526 stacki++;
23527 break;
23528
23529 case DW_OP_plus:
23530 stack[stacki - 1] += stack[stacki];
23531 stacki--;
23532 break;
23533
23534 case DW_OP_plus_uconst:
23535 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
23536 &bytes_read);
23537 i += bytes_read;
23538 break;
23539
23540 case DW_OP_minus:
23541 stack[stacki - 1] -= stack[stacki];
23542 stacki--;
23543 break;
23544
23545 case DW_OP_deref:
23546 /* If we're not the last op, then we definitely can't encode
23547 this using GDB's address_class enum. This is valid for partial
23548 global symbols, although the variable's address will be bogus
23549 in the psymtab. */
23550 if (i < size)
23551 dwarf2_complex_location_expr_complaint ();
23552 break;
23553
23554 case DW_OP_GNU_push_tls_address:
23555 case DW_OP_form_tls_address:
23556 /* The top of the stack has the offset from the beginning
23557 of the thread control block at which the variable is located. */
23558 /* Nothing should follow this operator, so the top of stack would
23559 be returned. */
23560 /* This is valid for partial global symbols, but the variable's
23561 address will be bogus in the psymtab. Make it always at least
23562 non-zero to not look as a variable garbage collected by linker
23563 which have DW_OP_addr 0. */
23564 if (i < size)
23565 dwarf2_complex_location_expr_complaint ();
23566 stack[stacki]++;
23567 break;
23568
23569 case DW_OP_GNU_uninit:
23570 break;
23571
23572 case DW_OP_GNU_addr_index:
23573 case DW_OP_GNU_const_index:
23574 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
23575 &bytes_read);
23576 i += bytes_read;
23577 break;
23578
23579 default:
23580 {
23581 const char *name = get_DW_OP_name (op);
23582
23583 if (name)
23584 complaint (_("unsupported stack op: '%s'"),
23585 name);
23586 else
23587 complaint (_("unsupported stack op: '%02x'"),
23588 op);
23589 }
23590
23591 return (stack[stacki]);
23592 }
23593
23594 /* Enforce maximum stack depth of SIZE-1 to avoid writing
23595 outside of the allocated space. Also enforce minimum>0. */
23596 if (stacki >= ARRAY_SIZE (stack) - 1)
23597 {
23598 complaint (_("location description stack overflow"));
23599 return 0;
23600 }
23601
23602 if (stacki <= 0)
23603 {
23604 complaint (_("location description stack underflow"));
23605 return 0;
23606 }
23607 }
23608 return (stack[stacki]);
23609 }
23610
23611 /* memory allocation interface */
23612
23613 static struct dwarf_block *
23614 dwarf_alloc_block (struct dwarf2_cu *cu)
23615 {
23616 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
23617 }
23618
23619 static struct die_info *
23620 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
23621 {
23622 struct die_info *die;
23623 size_t size = sizeof (struct die_info);
23624
23625 if (num_attrs > 1)
23626 size += (num_attrs - 1) * sizeof (struct attribute);
23627
23628 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
23629 memset (die, 0, sizeof (struct die_info));
23630 return (die);
23631 }
23632
23633 \f
23634 /* Macro support. */
23635
23636 /* Return file name relative to the compilation directory of file number I in
23637 *LH's file name table. The result is allocated using xmalloc; the caller is
23638 responsible for freeing it. */
23639
23640 static char *
23641 file_file_name (int file, struct line_header *lh)
23642 {
23643 /* Is the file number a valid index into the line header's file name
23644 table? Remember that file numbers start with one, not zero. */
23645 if (1 <= file && file <= lh->file_names.size ())
23646 {
23647 const file_entry &fe = lh->file_names[file - 1];
23648
23649 if (!IS_ABSOLUTE_PATH (fe.name))
23650 {
23651 const char *dir = fe.include_dir (lh);
23652 if (dir != NULL)
23653 return concat (dir, SLASH_STRING, fe.name, (char *) NULL);
23654 }
23655 return xstrdup (fe.name);
23656 }
23657 else
23658 {
23659 /* The compiler produced a bogus file number. We can at least
23660 record the macro definitions made in the file, even if we
23661 won't be able to find the file by name. */
23662 char fake_name[80];
23663
23664 xsnprintf (fake_name, sizeof (fake_name),
23665 "<bad macro file number %d>", file);
23666
23667 complaint (_("bad file number in macro information (%d)"),
23668 file);
23669
23670 return xstrdup (fake_name);
23671 }
23672 }
23673
23674 /* Return the full name of file number I in *LH's file name table.
23675 Use COMP_DIR as the name of the current directory of the
23676 compilation. The result is allocated using xmalloc; the caller is
23677 responsible for freeing it. */
23678 static char *
23679 file_full_name (int file, struct line_header *lh, const char *comp_dir)
23680 {
23681 /* Is the file number a valid index into the line header's file name
23682 table? Remember that file numbers start with one, not zero. */
23683 if (1 <= file && file <= lh->file_names.size ())
23684 {
23685 char *relative = file_file_name (file, lh);
23686
23687 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
23688 return relative;
23689 return reconcat (relative, comp_dir, SLASH_STRING,
23690 relative, (char *) NULL);
23691 }
23692 else
23693 return file_file_name (file, lh);
23694 }
23695
23696
23697 static struct macro_source_file *
23698 macro_start_file (int file, int line,
23699 struct macro_source_file *current_file,
23700 struct line_header *lh)
23701 {
23702 /* File name relative to the compilation directory of this source file. */
23703 char *file_name = file_file_name (file, lh);
23704
23705 if (! current_file)
23706 {
23707 /* Note: We don't create a macro table for this compilation unit
23708 at all until we actually get a filename. */
23709 struct macro_table *macro_table = get_macro_table ();
23710
23711 /* If we have no current file, then this must be the start_file
23712 directive for the compilation unit's main source file. */
23713 current_file = macro_set_main (macro_table, file_name);
23714 macro_define_special (macro_table);
23715 }
23716 else
23717 current_file = macro_include (current_file, line, file_name);
23718
23719 xfree (file_name);
23720
23721 return current_file;
23722 }
23723
23724 static const char *
23725 consume_improper_spaces (const char *p, const char *body)
23726 {
23727 if (*p == ' ')
23728 {
23729 complaint (_("macro definition contains spaces "
23730 "in formal argument list:\n`%s'"),
23731 body);
23732
23733 while (*p == ' ')
23734 p++;
23735 }
23736
23737 return p;
23738 }
23739
23740
23741 static void
23742 parse_macro_definition (struct macro_source_file *file, int line,
23743 const char *body)
23744 {
23745 const char *p;
23746
23747 /* The body string takes one of two forms. For object-like macro
23748 definitions, it should be:
23749
23750 <macro name> " " <definition>
23751
23752 For function-like macro definitions, it should be:
23753
23754 <macro name> "() " <definition>
23755 or
23756 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
23757
23758 Spaces may appear only where explicitly indicated, and in the
23759 <definition>.
23760
23761 The Dwarf 2 spec says that an object-like macro's name is always
23762 followed by a space, but versions of GCC around March 2002 omit
23763 the space when the macro's definition is the empty string.
23764
23765 The Dwarf 2 spec says that there should be no spaces between the
23766 formal arguments in a function-like macro's formal argument list,
23767 but versions of GCC around March 2002 include spaces after the
23768 commas. */
23769
23770
23771 /* Find the extent of the macro name. The macro name is terminated
23772 by either a space or null character (for an object-like macro) or
23773 an opening paren (for a function-like macro). */
23774 for (p = body; *p; p++)
23775 if (*p == ' ' || *p == '(')
23776 break;
23777
23778 if (*p == ' ' || *p == '\0')
23779 {
23780 /* It's an object-like macro. */
23781 int name_len = p - body;
23782 char *name = savestring (body, name_len);
23783 const char *replacement;
23784
23785 if (*p == ' ')
23786 replacement = body + name_len + 1;
23787 else
23788 {
23789 dwarf2_macro_malformed_definition_complaint (body);
23790 replacement = body + name_len;
23791 }
23792
23793 macro_define_object (file, line, name, replacement);
23794
23795 xfree (name);
23796 }
23797 else if (*p == '(')
23798 {
23799 /* It's a function-like macro. */
23800 char *name = savestring (body, p - body);
23801 int argc = 0;
23802 int argv_size = 1;
23803 char **argv = XNEWVEC (char *, argv_size);
23804
23805 p++;
23806
23807 p = consume_improper_spaces (p, body);
23808
23809 /* Parse the formal argument list. */
23810 while (*p && *p != ')')
23811 {
23812 /* Find the extent of the current argument name. */
23813 const char *arg_start = p;
23814
23815 while (*p && *p != ',' && *p != ')' && *p != ' ')
23816 p++;
23817
23818 if (! *p || p == arg_start)
23819 dwarf2_macro_malformed_definition_complaint (body);
23820 else
23821 {
23822 /* Make sure argv has room for the new argument. */
23823 if (argc >= argv_size)
23824 {
23825 argv_size *= 2;
23826 argv = XRESIZEVEC (char *, argv, argv_size);
23827 }
23828
23829 argv[argc++] = savestring (arg_start, p - arg_start);
23830 }
23831
23832 p = consume_improper_spaces (p, body);
23833
23834 /* Consume the comma, if present. */
23835 if (*p == ',')
23836 {
23837 p++;
23838
23839 p = consume_improper_spaces (p, body);
23840 }
23841 }
23842
23843 if (*p == ')')
23844 {
23845 p++;
23846
23847 if (*p == ' ')
23848 /* Perfectly formed definition, no complaints. */
23849 macro_define_function (file, line, name,
23850 argc, (const char **) argv,
23851 p + 1);
23852 else if (*p == '\0')
23853 {
23854 /* Complain, but do define it. */
23855 dwarf2_macro_malformed_definition_complaint (body);
23856 macro_define_function (file, line, name,
23857 argc, (const char **) argv,
23858 p);
23859 }
23860 else
23861 /* Just complain. */
23862 dwarf2_macro_malformed_definition_complaint (body);
23863 }
23864 else
23865 /* Just complain. */
23866 dwarf2_macro_malformed_definition_complaint (body);
23867
23868 xfree (name);
23869 {
23870 int i;
23871
23872 for (i = 0; i < argc; i++)
23873 xfree (argv[i]);
23874 }
23875 xfree (argv);
23876 }
23877 else
23878 dwarf2_macro_malformed_definition_complaint (body);
23879 }
23880
23881 /* Skip some bytes from BYTES according to the form given in FORM.
23882 Returns the new pointer. */
23883
23884 static const gdb_byte *
23885 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
23886 enum dwarf_form form,
23887 unsigned int offset_size,
23888 struct dwarf2_section_info *section)
23889 {
23890 unsigned int bytes_read;
23891
23892 switch (form)
23893 {
23894 case DW_FORM_data1:
23895 case DW_FORM_flag:
23896 ++bytes;
23897 break;
23898
23899 case DW_FORM_data2:
23900 bytes += 2;
23901 break;
23902
23903 case DW_FORM_data4:
23904 bytes += 4;
23905 break;
23906
23907 case DW_FORM_data8:
23908 bytes += 8;
23909 break;
23910
23911 case DW_FORM_data16:
23912 bytes += 16;
23913 break;
23914
23915 case DW_FORM_string:
23916 read_direct_string (abfd, bytes, &bytes_read);
23917 bytes += bytes_read;
23918 break;
23919
23920 case DW_FORM_sec_offset:
23921 case DW_FORM_strp:
23922 case DW_FORM_GNU_strp_alt:
23923 bytes += offset_size;
23924 break;
23925
23926 case DW_FORM_block:
23927 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
23928 bytes += bytes_read;
23929 break;
23930
23931 case DW_FORM_block1:
23932 bytes += 1 + read_1_byte (abfd, bytes);
23933 break;
23934 case DW_FORM_block2:
23935 bytes += 2 + read_2_bytes (abfd, bytes);
23936 break;
23937 case DW_FORM_block4:
23938 bytes += 4 + read_4_bytes (abfd, bytes);
23939 break;
23940
23941 case DW_FORM_sdata:
23942 case DW_FORM_udata:
23943 case DW_FORM_GNU_addr_index:
23944 case DW_FORM_GNU_str_index:
23945 bytes = gdb_skip_leb128 (bytes, buffer_end);
23946 if (bytes == NULL)
23947 {
23948 dwarf2_section_buffer_overflow_complaint (section);
23949 return NULL;
23950 }
23951 break;
23952
23953 case DW_FORM_implicit_const:
23954 break;
23955
23956 default:
23957 {
23958 complaint (_("invalid form 0x%x in `%s'"),
23959 form, get_section_name (section));
23960 return NULL;
23961 }
23962 }
23963
23964 return bytes;
23965 }
23966
23967 /* A helper for dwarf_decode_macros that handles skipping an unknown
23968 opcode. Returns an updated pointer to the macro data buffer; or,
23969 on error, issues a complaint and returns NULL. */
23970
23971 static const gdb_byte *
23972 skip_unknown_opcode (unsigned int opcode,
23973 const gdb_byte **opcode_definitions,
23974 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
23975 bfd *abfd,
23976 unsigned int offset_size,
23977 struct dwarf2_section_info *section)
23978 {
23979 unsigned int bytes_read, i;
23980 unsigned long arg;
23981 const gdb_byte *defn;
23982
23983 if (opcode_definitions[opcode] == NULL)
23984 {
23985 complaint (_("unrecognized DW_MACFINO opcode 0x%x"),
23986 opcode);
23987 return NULL;
23988 }
23989
23990 defn = opcode_definitions[opcode];
23991 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
23992 defn += bytes_read;
23993
23994 for (i = 0; i < arg; ++i)
23995 {
23996 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
23997 (enum dwarf_form) defn[i], offset_size,
23998 section);
23999 if (mac_ptr == NULL)
24000 {
24001 /* skip_form_bytes already issued the complaint. */
24002 return NULL;
24003 }
24004 }
24005
24006 return mac_ptr;
24007 }
24008
24009 /* A helper function which parses the header of a macro section.
24010 If the macro section is the extended (for now called "GNU") type,
24011 then this updates *OFFSET_SIZE. Returns a pointer to just after
24012 the header, or issues a complaint and returns NULL on error. */
24013
24014 static const gdb_byte *
24015 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
24016 bfd *abfd,
24017 const gdb_byte *mac_ptr,
24018 unsigned int *offset_size,
24019 int section_is_gnu)
24020 {
24021 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
24022
24023 if (section_is_gnu)
24024 {
24025 unsigned int version, flags;
24026
24027 version = read_2_bytes (abfd, mac_ptr);
24028 if (version != 4 && version != 5)
24029 {
24030 complaint (_("unrecognized version `%d' in .debug_macro section"),
24031 version);
24032 return NULL;
24033 }
24034 mac_ptr += 2;
24035
24036 flags = read_1_byte (abfd, mac_ptr);
24037 ++mac_ptr;
24038 *offset_size = (flags & 1) ? 8 : 4;
24039
24040 if ((flags & 2) != 0)
24041 /* We don't need the line table offset. */
24042 mac_ptr += *offset_size;
24043
24044 /* Vendor opcode descriptions. */
24045 if ((flags & 4) != 0)
24046 {
24047 unsigned int i, count;
24048
24049 count = read_1_byte (abfd, mac_ptr);
24050 ++mac_ptr;
24051 for (i = 0; i < count; ++i)
24052 {
24053 unsigned int opcode, bytes_read;
24054 unsigned long arg;
24055
24056 opcode = read_1_byte (abfd, mac_ptr);
24057 ++mac_ptr;
24058 opcode_definitions[opcode] = mac_ptr;
24059 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24060 mac_ptr += bytes_read;
24061 mac_ptr += arg;
24062 }
24063 }
24064 }
24065
24066 return mac_ptr;
24067 }
24068
24069 /* A helper for dwarf_decode_macros that handles the GNU extensions,
24070 including DW_MACRO_import. */
24071
24072 static void
24073 dwarf_decode_macro_bytes (struct dwarf2_per_objfile *dwarf2_per_objfile,
24074 bfd *abfd,
24075 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24076 struct macro_source_file *current_file,
24077 struct line_header *lh,
24078 struct dwarf2_section_info *section,
24079 int section_is_gnu, int section_is_dwz,
24080 unsigned int offset_size,
24081 htab_t include_hash)
24082 {
24083 struct objfile *objfile = dwarf2_per_objfile->objfile;
24084 enum dwarf_macro_record_type macinfo_type;
24085 int at_commandline;
24086 const gdb_byte *opcode_definitions[256];
24087
24088 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24089 &offset_size, section_is_gnu);
24090 if (mac_ptr == NULL)
24091 {
24092 /* We already issued a complaint. */
24093 return;
24094 }
24095
24096 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
24097 GDB is still reading the definitions from command line. First
24098 DW_MACINFO_start_file will need to be ignored as it was already executed
24099 to create CURRENT_FILE for the main source holding also the command line
24100 definitions. On first met DW_MACINFO_start_file this flag is reset to
24101 normally execute all the remaining DW_MACINFO_start_file macinfos. */
24102
24103 at_commandline = 1;
24104
24105 do
24106 {
24107 /* Do we at least have room for a macinfo type byte? */
24108 if (mac_ptr >= mac_end)
24109 {
24110 dwarf2_section_buffer_overflow_complaint (section);
24111 break;
24112 }
24113
24114 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24115 mac_ptr++;
24116
24117 /* Note that we rely on the fact that the corresponding GNU and
24118 DWARF constants are the same. */
24119 DIAGNOSTIC_PUSH
24120 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24121 switch (macinfo_type)
24122 {
24123 /* A zero macinfo type indicates the end of the macro
24124 information. */
24125 case 0:
24126 break;
24127
24128 case DW_MACRO_define:
24129 case DW_MACRO_undef:
24130 case DW_MACRO_define_strp:
24131 case DW_MACRO_undef_strp:
24132 case DW_MACRO_define_sup:
24133 case DW_MACRO_undef_sup:
24134 {
24135 unsigned int bytes_read;
24136 int line;
24137 const char *body;
24138 int is_define;
24139
24140 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24141 mac_ptr += bytes_read;
24142
24143 if (macinfo_type == DW_MACRO_define
24144 || macinfo_type == DW_MACRO_undef)
24145 {
24146 body = read_direct_string (abfd, mac_ptr, &bytes_read);
24147 mac_ptr += bytes_read;
24148 }
24149 else
24150 {
24151 LONGEST str_offset;
24152
24153 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
24154 mac_ptr += offset_size;
24155
24156 if (macinfo_type == DW_MACRO_define_sup
24157 || macinfo_type == DW_MACRO_undef_sup
24158 || section_is_dwz)
24159 {
24160 struct dwz_file *dwz
24161 = dwarf2_get_dwz_file (dwarf2_per_objfile);
24162
24163 body = read_indirect_string_from_dwz (objfile,
24164 dwz, str_offset);
24165 }
24166 else
24167 body = read_indirect_string_at_offset (dwarf2_per_objfile,
24168 abfd, str_offset);
24169 }
24170
24171 is_define = (macinfo_type == DW_MACRO_define
24172 || macinfo_type == DW_MACRO_define_strp
24173 || macinfo_type == DW_MACRO_define_sup);
24174 if (! current_file)
24175 {
24176 /* DWARF violation as no main source is present. */
24177 complaint (_("debug info with no main source gives macro %s "
24178 "on line %d: %s"),
24179 is_define ? _("definition") : _("undefinition"),
24180 line, body);
24181 break;
24182 }
24183 if ((line == 0 && !at_commandline)
24184 || (line != 0 && at_commandline))
24185 complaint (_("debug info gives %s macro %s with %s line %d: %s"),
24186 at_commandline ? _("command-line") : _("in-file"),
24187 is_define ? _("definition") : _("undefinition"),
24188 line == 0 ? _("zero") : _("non-zero"), line, body);
24189
24190 if (is_define)
24191 parse_macro_definition (current_file, line, body);
24192 else
24193 {
24194 gdb_assert (macinfo_type == DW_MACRO_undef
24195 || macinfo_type == DW_MACRO_undef_strp
24196 || macinfo_type == DW_MACRO_undef_sup);
24197 macro_undef (current_file, line, body);
24198 }
24199 }
24200 break;
24201
24202 case DW_MACRO_start_file:
24203 {
24204 unsigned int bytes_read;
24205 int line, file;
24206
24207 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24208 mac_ptr += bytes_read;
24209 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24210 mac_ptr += bytes_read;
24211
24212 if ((line == 0 && !at_commandline)
24213 || (line != 0 && at_commandline))
24214 complaint (_("debug info gives source %d included "
24215 "from %s at %s line %d"),
24216 file, at_commandline ? _("command-line") : _("file"),
24217 line == 0 ? _("zero") : _("non-zero"), line);
24218
24219 if (at_commandline)
24220 {
24221 /* This DW_MACRO_start_file was executed in the
24222 pass one. */
24223 at_commandline = 0;
24224 }
24225 else
24226 current_file = macro_start_file (file, line, current_file, lh);
24227 }
24228 break;
24229
24230 case DW_MACRO_end_file:
24231 if (! current_file)
24232 complaint (_("macro debug info has an unmatched "
24233 "`close_file' directive"));
24234 else
24235 {
24236 current_file = current_file->included_by;
24237 if (! current_file)
24238 {
24239 enum dwarf_macro_record_type next_type;
24240
24241 /* GCC circa March 2002 doesn't produce the zero
24242 type byte marking the end of the compilation
24243 unit. Complain if it's not there, but exit no
24244 matter what. */
24245
24246 /* Do we at least have room for a macinfo type byte? */
24247 if (mac_ptr >= mac_end)
24248 {
24249 dwarf2_section_buffer_overflow_complaint (section);
24250 return;
24251 }
24252
24253 /* We don't increment mac_ptr here, so this is just
24254 a look-ahead. */
24255 next_type
24256 = (enum dwarf_macro_record_type) read_1_byte (abfd,
24257 mac_ptr);
24258 if (next_type != 0)
24259 complaint (_("no terminating 0-type entry for "
24260 "macros in `.debug_macinfo' section"));
24261
24262 return;
24263 }
24264 }
24265 break;
24266
24267 case DW_MACRO_import:
24268 case DW_MACRO_import_sup:
24269 {
24270 LONGEST offset;
24271 void **slot;
24272 bfd *include_bfd = abfd;
24273 struct dwarf2_section_info *include_section = section;
24274 const gdb_byte *include_mac_end = mac_end;
24275 int is_dwz = section_is_dwz;
24276 const gdb_byte *new_mac_ptr;
24277
24278 offset = read_offset_1 (abfd, mac_ptr, offset_size);
24279 mac_ptr += offset_size;
24280
24281 if (macinfo_type == DW_MACRO_import_sup)
24282 {
24283 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
24284
24285 dwarf2_read_section (objfile, &dwz->macro);
24286
24287 include_section = &dwz->macro;
24288 include_bfd = get_section_bfd_owner (include_section);
24289 include_mac_end = dwz->macro.buffer + dwz->macro.size;
24290 is_dwz = 1;
24291 }
24292
24293 new_mac_ptr = include_section->buffer + offset;
24294 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
24295
24296 if (*slot != NULL)
24297 {
24298 /* This has actually happened; see
24299 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
24300 complaint (_("recursive DW_MACRO_import in "
24301 ".debug_macro section"));
24302 }
24303 else
24304 {
24305 *slot = (void *) new_mac_ptr;
24306
24307 dwarf_decode_macro_bytes (dwarf2_per_objfile,
24308 include_bfd, new_mac_ptr,
24309 include_mac_end, current_file, lh,
24310 section, section_is_gnu, is_dwz,
24311 offset_size, include_hash);
24312
24313 htab_remove_elt (include_hash, (void *) new_mac_ptr);
24314 }
24315 }
24316 break;
24317
24318 case DW_MACINFO_vendor_ext:
24319 if (!section_is_gnu)
24320 {
24321 unsigned int bytes_read;
24322
24323 /* This reads the constant, but since we don't recognize
24324 any vendor extensions, we ignore it. */
24325 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24326 mac_ptr += bytes_read;
24327 read_direct_string (abfd, mac_ptr, &bytes_read);
24328 mac_ptr += bytes_read;
24329
24330 /* We don't recognize any vendor extensions. */
24331 break;
24332 }
24333 /* FALLTHROUGH */
24334
24335 default:
24336 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24337 mac_ptr, mac_end, abfd, offset_size,
24338 section);
24339 if (mac_ptr == NULL)
24340 return;
24341 break;
24342 }
24343 DIAGNOSTIC_POP
24344 } while (macinfo_type != 0);
24345 }
24346
24347 static void
24348 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
24349 int section_is_gnu)
24350 {
24351 struct dwarf2_per_objfile *dwarf2_per_objfile
24352 = cu->per_cu->dwarf2_per_objfile;
24353 struct objfile *objfile = dwarf2_per_objfile->objfile;
24354 struct line_header *lh = cu->line_header;
24355 bfd *abfd;
24356 const gdb_byte *mac_ptr, *mac_end;
24357 struct macro_source_file *current_file = 0;
24358 enum dwarf_macro_record_type macinfo_type;
24359 unsigned int offset_size = cu->header.offset_size;
24360 const gdb_byte *opcode_definitions[256];
24361 void **slot;
24362 struct dwarf2_section_info *section;
24363 const char *section_name;
24364
24365 if (cu->dwo_unit != NULL)
24366 {
24367 if (section_is_gnu)
24368 {
24369 section = &cu->dwo_unit->dwo_file->sections.macro;
24370 section_name = ".debug_macro.dwo";
24371 }
24372 else
24373 {
24374 section = &cu->dwo_unit->dwo_file->sections.macinfo;
24375 section_name = ".debug_macinfo.dwo";
24376 }
24377 }
24378 else
24379 {
24380 if (section_is_gnu)
24381 {
24382 section = &dwarf2_per_objfile->macro;
24383 section_name = ".debug_macro";
24384 }
24385 else
24386 {
24387 section = &dwarf2_per_objfile->macinfo;
24388 section_name = ".debug_macinfo";
24389 }
24390 }
24391
24392 dwarf2_read_section (objfile, section);
24393 if (section->buffer == NULL)
24394 {
24395 complaint (_("missing %s section"), section_name);
24396 return;
24397 }
24398 abfd = get_section_bfd_owner (section);
24399
24400 /* First pass: Find the name of the base filename.
24401 This filename is needed in order to process all macros whose definition
24402 (or undefinition) comes from the command line. These macros are defined
24403 before the first DW_MACINFO_start_file entry, and yet still need to be
24404 associated to the base file.
24405
24406 To determine the base file name, we scan the macro definitions until we
24407 reach the first DW_MACINFO_start_file entry. We then initialize
24408 CURRENT_FILE accordingly so that any macro definition found before the
24409 first DW_MACINFO_start_file can still be associated to the base file. */
24410
24411 mac_ptr = section->buffer + offset;
24412 mac_end = section->buffer + section->size;
24413
24414 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24415 &offset_size, section_is_gnu);
24416 if (mac_ptr == NULL)
24417 {
24418 /* We already issued a complaint. */
24419 return;
24420 }
24421
24422 do
24423 {
24424 /* Do we at least have room for a macinfo type byte? */
24425 if (mac_ptr >= mac_end)
24426 {
24427 /* Complaint is printed during the second pass as GDB will probably
24428 stop the first pass earlier upon finding
24429 DW_MACINFO_start_file. */
24430 break;
24431 }
24432
24433 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24434 mac_ptr++;
24435
24436 /* Note that we rely on the fact that the corresponding GNU and
24437 DWARF constants are the same. */
24438 DIAGNOSTIC_PUSH
24439 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24440 switch (macinfo_type)
24441 {
24442 /* A zero macinfo type indicates the end of the macro
24443 information. */
24444 case 0:
24445 break;
24446
24447 case DW_MACRO_define:
24448 case DW_MACRO_undef:
24449 /* Only skip the data by MAC_PTR. */
24450 {
24451 unsigned int bytes_read;
24452
24453 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24454 mac_ptr += bytes_read;
24455 read_direct_string (abfd, mac_ptr, &bytes_read);
24456 mac_ptr += bytes_read;
24457 }
24458 break;
24459
24460 case DW_MACRO_start_file:
24461 {
24462 unsigned int bytes_read;
24463 int line, file;
24464
24465 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24466 mac_ptr += bytes_read;
24467 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24468 mac_ptr += bytes_read;
24469
24470 current_file = macro_start_file (file, line, current_file, lh);
24471 }
24472 break;
24473
24474 case DW_MACRO_end_file:
24475 /* No data to skip by MAC_PTR. */
24476 break;
24477
24478 case DW_MACRO_define_strp:
24479 case DW_MACRO_undef_strp:
24480 case DW_MACRO_define_sup:
24481 case DW_MACRO_undef_sup:
24482 {
24483 unsigned int bytes_read;
24484
24485 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24486 mac_ptr += bytes_read;
24487 mac_ptr += offset_size;
24488 }
24489 break;
24490
24491 case DW_MACRO_import:
24492 case DW_MACRO_import_sup:
24493 /* Note that, according to the spec, a transparent include
24494 chain cannot call DW_MACRO_start_file. So, we can just
24495 skip this opcode. */
24496 mac_ptr += offset_size;
24497 break;
24498
24499 case DW_MACINFO_vendor_ext:
24500 /* Only skip the data by MAC_PTR. */
24501 if (!section_is_gnu)
24502 {
24503 unsigned int bytes_read;
24504
24505 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24506 mac_ptr += bytes_read;
24507 read_direct_string (abfd, mac_ptr, &bytes_read);
24508 mac_ptr += bytes_read;
24509 }
24510 /* FALLTHROUGH */
24511
24512 default:
24513 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24514 mac_ptr, mac_end, abfd, offset_size,
24515 section);
24516 if (mac_ptr == NULL)
24517 return;
24518 break;
24519 }
24520 DIAGNOSTIC_POP
24521 } while (macinfo_type != 0 && current_file == NULL);
24522
24523 /* Second pass: Process all entries.
24524
24525 Use the AT_COMMAND_LINE flag to determine whether we are still processing
24526 command-line macro definitions/undefinitions. This flag is unset when we
24527 reach the first DW_MACINFO_start_file entry. */
24528
24529 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
24530 htab_eq_pointer,
24531 NULL, xcalloc, xfree));
24532 mac_ptr = section->buffer + offset;
24533 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
24534 *slot = (void *) mac_ptr;
24535 dwarf_decode_macro_bytes (dwarf2_per_objfile,
24536 abfd, mac_ptr, mac_end,
24537 current_file, lh, section,
24538 section_is_gnu, 0, offset_size,
24539 include_hash.get ());
24540 }
24541
24542 /* Check if the attribute's form is a DW_FORM_block*
24543 if so return true else false. */
24544
24545 static int
24546 attr_form_is_block (const struct attribute *attr)
24547 {
24548 return (attr == NULL ? 0 :
24549 attr->form == DW_FORM_block1
24550 || attr->form == DW_FORM_block2
24551 || attr->form == DW_FORM_block4
24552 || attr->form == DW_FORM_block
24553 || attr->form == DW_FORM_exprloc);
24554 }
24555
24556 /* Return non-zero if ATTR's value is a section offset --- classes
24557 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
24558 You may use DW_UNSND (attr) to retrieve such offsets.
24559
24560 Section 7.5.4, "Attribute Encodings", explains that no attribute
24561 may have a value that belongs to more than one of these classes; it
24562 would be ambiguous if we did, because we use the same forms for all
24563 of them. */
24564
24565 static int
24566 attr_form_is_section_offset (const struct attribute *attr)
24567 {
24568 return (attr->form == DW_FORM_data4
24569 || attr->form == DW_FORM_data8
24570 || attr->form == DW_FORM_sec_offset);
24571 }
24572
24573 /* Return non-zero if ATTR's value falls in the 'constant' class, or
24574 zero otherwise. When this function returns true, you can apply
24575 dwarf2_get_attr_constant_value to it.
24576
24577 However, note that for some attributes you must check
24578 attr_form_is_section_offset before using this test. DW_FORM_data4
24579 and DW_FORM_data8 are members of both the constant class, and of
24580 the classes that contain offsets into other debug sections
24581 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
24582 that, if an attribute's can be either a constant or one of the
24583 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
24584 taken as section offsets, not constants.
24585
24586 DW_FORM_data16 is not considered as dwarf2_get_attr_constant_value
24587 cannot handle that. */
24588
24589 static int
24590 attr_form_is_constant (const struct attribute *attr)
24591 {
24592 switch (attr->form)
24593 {
24594 case DW_FORM_sdata:
24595 case DW_FORM_udata:
24596 case DW_FORM_data1:
24597 case DW_FORM_data2:
24598 case DW_FORM_data4:
24599 case DW_FORM_data8:
24600 case DW_FORM_implicit_const:
24601 return 1;
24602 default:
24603 return 0;
24604 }
24605 }
24606
24607
24608 /* DW_ADDR is always stored already as sect_offset; despite for the forms
24609 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
24610
24611 static int
24612 attr_form_is_ref (const struct attribute *attr)
24613 {
24614 switch (attr->form)
24615 {
24616 case DW_FORM_ref_addr:
24617 case DW_FORM_ref1:
24618 case DW_FORM_ref2:
24619 case DW_FORM_ref4:
24620 case DW_FORM_ref8:
24621 case DW_FORM_ref_udata:
24622 case DW_FORM_GNU_ref_alt:
24623 return 1;
24624 default:
24625 return 0;
24626 }
24627 }
24628
24629 /* Return the .debug_loc section to use for CU.
24630 For DWO files use .debug_loc.dwo. */
24631
24632 static struct dwarf2_section_info *
24633 cu_debug_loc_section (struct dwarf2_cu *cu)
24634 {
24635 struct dwarf2_per_objfile *dwarf2_per_objfile
24636 = cu->per_cu->dwarf2_per_objfile;
24637
24638 if (cu->dwo_unit)
24639 {
24640 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
24641
24642 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
24643 }
24644 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
24645 : &dwarf2_per_objfile->loc);
24646 }
24647
24648 /* A helper function that fills in a dwarf2_loclist_baton. */
24649
24650 static void
24651 fill_in_loclist_baton (struct dwarf2_cu *cu,
24652 struct dwarf2_loclist_baton *baton,
24653 const struct attribute *attr)
24654 {
24655 struct dwarf2_per_objfile *dwarf2_per_objfile
24656 = cu->per_cu->dwarf2_per_objfile;
24657 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
24658
24659 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
24660
24661 baton->per_cu = cu->per_cu;
24662 gdb_assert (baton->per_cu);
24663 /* We don't know how long the location list is, but make sure we
24664 don't run off the edge of the section. */
24665 baton->size = section->size - DW_UNSND (attr);
24666 baton->data = section->buffer + DW_UNSND (attr);
24667 baton->base_address = cu->base_address;
24668 baton->from_dwo = cu->dwo_unit != NULL;
24669 }
24670
24671 static void
24672 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
24673 struct dwarf2_cu *cu, int is_block)
24674 {
24675 struct dwarf2_per_objfile *dwarf2_per_objfile
24676 = cu->per_cu->dwarf2_per_objfile;
24677 struct objfile *objfile = dwarf2_per_objfile->objfile;
24678 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
24679
24680 if (attr_form_is_section_offset (attr)
24681 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
24682 the section. If so, fall through to the complaint in the
24683 other branch. */
24684 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
24685 {
24686 struct dwarf2_loclist_baton *baton;
24687
24688 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
24689
24690 fill_in_loclist_baton (cu, baton, attr);
24691
24692 if (cu->base_known == 0)
24693 complaint (_("Location list used without "
24694 "specifying the CU base address."));
24695
24696 SYMBOL_ACLASS_INDEX (sym) = (is_block
24697 ? dwarf2_loclist_block_index
24698 : dwarf2_loclist_index);
24699 SYMBOL_LOCATION_BATON (sym) = baton;
24700 }
24701 else
24702 {
24703 struct dwarf2_locexpr_baton *baton;
24704
24705 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
24706 baton->per_cu = cu->per_cu;
24707 gdb_assert (baton->per_cu);
24708
24709 if (attr_form_is_block (attr))
24710 {
24711 /* Note that we're just copying the block's data pointer
24712 here, not the actual data. We're still pointing into the
24713 info_buffer for SYM's objfile; right now we never release
24714 that buffer, but when we do clean up properly this may
24715 need to change. */
24716 baton->size = DW_BLOCK (attr)->size;
24717 baton->data = DW_BLOCK (attr)->data;
24718 }
24719 else
24720 {
24721 dwarf2_invalid_attrib_class_complaint ("location description",
24722 SYMBOL_NATURAL_NAME (sym));
24723 baton->size = 0;
24724 }
24725
24726 SYMBOL_ACLASS_INDEX (sym) = (is_block
24727 ? dwarf2_locexpr_block_index
24728 : dwarf2_locexpr_index);
24729 SYMBOL_LOCATION_BATON (sym) = baton;
24730 }
24731 }
24732
24733 /* Return the OBJFILE associated with the compilation unit CU. If CU
24734 came from a separate debuginfo file, then the master objfile is
24735 returned. */
24736
24737 struct objfile *
24738 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
24739 {
24740 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
24741
24742 /* Return the master objfile, so that we can report and look up the
24743 correct file containing this variable. */
24744 if (objfile->separate_debug_objfile_backlink)
24745 objfile = objfile->separate_debug_objfile_backlink;
24746
24747 return objfile;
24748 }
24749
24750 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
24751 (CU_HEADERP is unused in such case) or prepare a temporary copy at
24752 CU_HEADERP first. */
24753
24754 static const struct comp_unit_head *
24755 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
24756 struct dwarf2_per_cu_data *per_cu)
24757 {
24758 const gdb_byte *info_ptr;
24759
24760 if (per_cu->cu)
24761 return &per_cu->cu->header;
24762
24763 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
24764
24765 memset (cu_headerp, 0, sizeof (*cu_headerp));
24766 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
24767 rcuh_kind::COMPILE);
24768
24769 return cu_headerp;
24770 }
24771
24772 /* Return the address size given in the compilation unit header for CU. */
24773
24774 int
24775 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
24776 {
24777 struct comp_unit_head cu_header_local;
24778 const struct comp_unit_head *cu_headerp;
24779
24780 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
24781
24782 return cu_headerp->addr_size;
24783 }
24784
24785 /* Return the offset size given in the compilation unit header for CU. */
24786
24787 int
24788 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
24789 {
24790 struct comp_unit_head cu_header_local;
24791 const struct comp_unit_head *cu_headerp;
24792
24793 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
24794
24795 return cu_headerp->offset_size;
24796 }
24797
24798 /* See its dwarf2loc.h declaration. */
24799
24800 int
24801 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
24802 {
24803 struct comp_unit_head cu_header_local;
24804 const struct comp_unit_head *cu_headerp;
24805
24806 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
24807
24808 if (cu_headerp->version == 2)
24809 return cu_headerp->addr_size;
24810 else
24811 return cu_headerp->offset_size;
24812 }
24813
24814 /* Return the text offset of the CU. The returned offset comes from
24815 this CU's objfile. If this objfile came from a separate debuginfo
24816 file, then the offset may be different from the corresponding
24817 offset in the parent objfile. */
24818
24819 CORE_ADDR
24820 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
24821 {
24822 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
24823
24824 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
24825 }
24826
24827 /* Return DWARF version number of PER_CU. */
24828
24829 short
24830 dwarf2_version (struct dwarf2_per_cu_data *per_cu)
24831 {
24832 return per_cu->dwarf_version;
24833 }
24834
24835 /* Locate the .debug_info compilation unit from CU's objfile which contains
24836 the DIE at OFFSET. Raises an error on failure. */
24837
24838 static struct dwarf2_per_cu_data *
24839 dwarf2_find_containing_comp_unit (sect_offset sect_off,
24840 unsigned int offset_in_dwz,
24841 struct dwarf2_per_objfile *dwarf2_per_objfile)
24842 {
24843 struct dwarf2_per_cu_data *this_cu;
24844 int low, high;
24845 const sect_offset *cu_off;
24846
24847 low = 0;
24848 high = dwarf2_per_objfile->all_comp_units.size () - 1;
24849 while (high > low)
24850 {
24851 struct dwarf2_per_cu_data *mid_cu;
24852 int mid = low + (high - low) / 2;
24853
24854 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
24855 cu_off = &mid_cu->sect_off;
24856 if (mid_cu->is_dwz > offset_in_dwz
24857 || (mid_cu->is_dwz == offset_in_dwz && *cu_off >= sect_off))
24858 high = mid;
24859 else
24860 low = mid + 1;
24861 }
24862 gdb_assert (low == high);
24863 this_cu = dwarf2_per_objfile->all_comp_units[low];
24864 cu_off = &this_cu->sect_off;
24865 if (this_cu->is_dwz != offset_in_dwz || *cu_off > sect_off)
24866 {
24867 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
24868 error (_("Dwarf Error: could not find partial DIE containing "
24869 "offset %s [in module %s]"),
24870 sect_offset_str (sect_off),
24871 bfd_get_filename (dwarf2_per_objfile->objfile->obfd));
24872
24873 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
24874 <= sect_off);
24875 return dwarf2_per_objfile->all_comp_units[low-1];
24876 }
24877 else
24878 {
24879 this_cu = dwarf2_per_objfile->all_comp_units[low];
24880 if (low == dwarf2_per_objfile->all_comp_units.size () - 1
24881 && sect_off >= this_cu->sect_off + this_cu->length)
24882 error (_("invalid dwarf2 offset %s"), sect_offset_str (sect_off));
24883 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
24884 return this_cu;
24885 }
24886 }
24887
24888 /* Initialize dwarf2_cu CU, owned by PER_CU. */
24889
24890 dwarf2_cu::dwarf2_cu (struct dwarf2_per_cu_data *per_cu_)
24891 : per_cu (per_cu_),
24892 mark (0),
24893 has_loclist (0),
24894 checked_producer (0),
24895 producer_is_gxx_lt_4_6 (0),
24896 producer_is_gcc_lt_4_3 (0),
24897 producer_is_icc_lt_14 (0),
24898 processing_has_namespace_info (0)
24899 {
24900 per_cu->cu = this;
24901 }
24902
24903 /* Destroy a dwarf2_cu. */
24904
24905 dwarf2_cu::~dwarf2_cu ()
24906 {
24907 per_cu->cu = NULL;
24908 }
24909
24910 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
24911
24912 static void
24913 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
24914 enum language pretend_language)
24915 {
24916 struct attribute *attr;
24917
24918 /* Set the language we're debugging. */
24919 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
24920 if (attr)
24921 set_cu_language (DW_UNSND (attr), cu);
24922 else
24923 {
24924 cu->language = pretend_language;
24925 cu->language_defn = language_def (cu->language);
24926 }
24927
24928 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
24929 }
24930
24931 /* Increase the age counter on each cached compilation unit, and free
24932 any that are too old. */
24933
24934 static void
24935 age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
24936 {
24937 struct dwarf2_per_cu_data *per_cu, **last_chain;
24938
24939 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
24940 per_cu = dwarf2_per_objfile->read_in_chain;
24941 while (per_cu != NULL)
24942 {
24943 per_cu->cu->last_used ++;
24944 if (per_cu->cu->last_used <= dwarf_max_cache_age)
24945 dwarf2_mark (per_cu->cu);
24946 per_cu = per_cu->cu->read_in_chain;
24947 }
24948
24949 per_cu = dwarf2_per_objfile->read_in_chain;
24950 last_chain = &dwarf2_per_objfile->read_in_chain;
24951 while (per_cu != NULL)
24952 {
24953 struct dwarf2_per_cu_data *next_cu;
24954
24955 next_cu = per_cu->cu->read_in_chain;
24956
24957 if (!per_cu->cu->mark)
24958 {
24959 delete per_cu->cu;
24960 *last_chain = next_cu;
24961 }
24962 else
24963 last_chain = &per_cu->cu->read_in_chain;
24964
24965 per_cu = next_cu;
24966 }
24967 }
24968
24969 /* Remove a single compilation unit from the cache. */
24970
24971 static void
24972 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
24973 {
24974 struct dwarf2_per_cu_data *per_cu, **last_chain;
24975 struct dwarf2_per_objfile *dwarf2_per_objfile
24976 = target_per_cu->dwarf2_per_objfile;
24977
24978 per_cu = dwarf2_per_objfile->read_in_chain;
24979 last_chain = &dwarf2_per_objfile->read_in_chain;
24980 while (per_cu != NULL)
24981 {
24982 struct dwarf2_per_cu_data *next_cu;
24983
24984 next_cu = per_cu->cu->read_in_chain;
24985
24986 if (per_cu == target_per_cu)
24987 {
24988 delete per_cu->cu;
24989 per_cu->cu = NULL;
24990 *last_chain = next_cu;
24991 break;
24992 }
24993 else
24994 last_chain = &per_cu->cu->read_in_chain;
24995
24996 per_cu = next_cu;
24997 }
24998 }
24999
25000 /* Release all extra memory associated with OBJFILE. */
25001
25002 void
25003 dwarf2_free_objfile (struct objfile *objfile)
25004 {
25005 struct dwarf2_per_objfile *dwarf2_per_objfile
25006 = get_dwarf2_per_objfile (objfile);
25007
25008 delete dwarf2_per_objfile;
25009 }
25010
25011 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
25012 We store these in a hash table separate from the DIEs, and preserve them
25013 when the DIEs are flushed out of cache.
25014
25015 The CU "per_cu" pointer is needed because offset alone is not enough to
25016 uniquely identify the type. A file may have multiple .debug_types sections,
25017 or the type may come from a DWO file. Furthermore, while it's more logical
25018 to use per_cu->section+offset, with Fission the section with the data is in
25019 the DWO file but we don't know that section at the point we need it.
25020 We have to use something in dwarf2_per_cu_data (or the pointer to it)
25021 because we can enter the lookup routine, get_die_type_at_offset, from
25022 outside this file, and thus won't necessarily have PER_CU->cu.
25023 Fortunately, PER_CU is stable for the life of the objfile. */
25024
25025 struct dwarf2_per_cu_offset_and_type
25026 {
25027 const struct dwarf2_per_cu_data *per_cu;
25028 sect_offset sect_off;
25029 struct type *type;
25030 };
25031
25032 /* Hash function for a dwarf2_per_cu_offset_and_type. */
25033
25034 static hashval_t
25035 per_cu_offset_and_type_hash (const void *item)
25036 {
25037 const struct dwarf2_per_cu_offset_and_type *ofs
25038 = (const struct dwarf2_per_cu_offset_and_type *) item;
25039
25040 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
25041 }
25042
25043 /* Equality function for a dwarf2_per_cu_offset_and_type. */
25044
25045 static int
25046 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
25047 {
25048 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
25049 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
25050 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
25051 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
25052
25053 return (ofs_lhs->per_cu == ofs_rhs->per_cu
25054 && ofs_lhs->sect_off == ofs_rhs->sect_off);
25055 }
25056
25057 /* Set the type associated with DIE to TYPE. Save it in CU's hash
25058 table if necessary. For convenience, return TYPE.
25059
25060 The DIEs reading must have careful ordering to:
25061 * Not cause infite loops trying to read in DIEs as a prerequisite for
25062 reading current DIE.
25063 * Not trying to dereference contents of still incompletely read in types
25064 while reading in other DIEs.
25065 * Enable referencing still incompletely read in types just by a pointer to
25066 the type without accessing its fields.
25067
25068 Therefore caller should follow these rules:
25069 * Try to fetch any prerequisite types we may need to build this DIE type
25070 before building the type and calling set_die_type.
25071 * After building type call set_die_type for current DIE as soon as
25072 possible before fetching more types to complete the current type.
25073 * Make the type as complete as possible before fetching more types. */
25074
25075 static struct type *
25076 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
25077 {
25078 struct dwarf2_per_objfile *dwarf2_per_objfile
25079 = cu->per_cu->dwarf2_per_objfile;
25080 struct dwarf2_per_cu_offset_and_type **slot, ofs;
25081 struct objfile *objfile = dwarf2_per_objfile->objfile;
25082 struct attribute *attr;
25083 struct dynamic_prop prop;
25084
25085 /* For Ada types, make sure that the gnat-specific data is always
25086 initialized (if not already set). There are a few types where
25087 we should not be doing so, because the type-specific area is
25088 already used to hold some other piece of info (eg: TYPE_CODE_FLT
25089 where the type-specific area is used to store the floatformat).
25090 But this is not a problem, because the gnat-specific information
25091 is actually not needed for these types. */
25092 if (need_gnat_info (cu)
25093 && TYPE_CODE (type) != TYPE_CODE_FUNC
25094 && TYPE_CODE (type) != TYPE_CODE_FLT
25095 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
25096 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
25097 && TYPE_CODE (type) != TYPE_CODE_METHOD
25098 && !HAVE_GNAT_AUX_INFO (type))
25099 INIT_GNAT_SPECIFIC (type);
25100
25101 /* Read DW_AT_allocated and set in type. */
25102 attr = dwarf2_attr (die, DW_AT_allocated, cu);
25103 if (attr_form_is_block (attr))
25104 {
25105 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25106 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type);
25107 }
25108 else if (attr != NULL)
25109 {
25110 complaint (_("DW_AT_allocated has the wrong form (%s) at DIE %s"),
25111 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25112 sect_offset_str (die->sect_off));
25113 }
25114
25115 /* Read DW_AT_associated and set in type. */
25116 attr = dwarf2_attr (die, DW_AT_associated, cu);
25117 if (attr_form_is_block (attr))
25118 {
25119 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25120 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type);
25121 }
25122 else if (attr != NULL)
25123 {
25124 complaint (_("DW_AT_associated has the wrong form (%s) at DIE %s"),
25125 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25126 sect_offset_str (die->sect_off));
25127 }
25128
25129 /* Read DW_AT_data_location and set in type. */
25130 attr = dwarf2_attr (die, DW_AT_data_location, cu);
25131 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25132 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type);
25133
25134 if (dwarf2_per_objfile->die_type_hash == NULL)
25135 {
25136 dwarf2_per_objfile->die_type_hash =
25137 htab_create_alloc_ex (127,
25138 per_cu_offset_and_type_hash,
25139 per_cu_offset_and_type_eq,
25140 NULL,
25141 &objfile->objfile_obstack,
25142 hashtab_obstack_allocate,
25143 dummy_obstack_deallocate);
25144 }
25145
25146 ofs.per_cu = cu->per_cu;
25147 ofs.sect_off = die->sect_off;
25148 ofs.type = type;
25149 slot = (struct dwarf2_per_cu_offset_and_type **)
25150 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
25151 if (*slot)
25152 complaint (_("A problem internal to GDB: DIE %s has type already set"),
25153 sect_offset_str (die->sect_off));
25154 *slot = XOBNEW (&objfile->objfile_obstack,
25155 struct dwarf2_per_cu_offset_and_type);
25156 **slot = ofs;
25157 return type;
25158 }
25159
25160 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
25161 or return NULL if the die does not have a saved type. */
25162
25163 static struct type *
25164 get_die_type_at_offset (sect_offset sect_off,
25165 struct dwarf2_per_cu_data *per_cu)
25166 {
25167 struct dwarf2_per_cu_offset_and_type *slot, ofs;
25168 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
25169
25170 if (dwarf2_per_objfile->die_type_hash == NULL)
25171 return NULL;
25172
25173 ofs.per_cu = per_cu;
25174 ofs.sect_off = sect_off;
25175 slot = ((struct dwarf2_per_cu_offset_and_type *)
25176 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
25177 if (slot)
25178 return slot->type;
25179 else
25180 return NULL;
25181 }
25182
25183 /* Look up the type for DIE in CU in die_type_hash,
25184 or return NULL if DIE does not have a saved type. */
25185
25186 static struct type *
25187 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
25188 {
25189 return get_die_type_at_offset (die->sect_off, cu->per_cu);
25190 }
25191
25192 /* Add a dependence relationship from CU to REF_PER_CU. */
25193
25194 static void
25195 dwarf2_add_dependence (struct dwarf2_cu *cu,
25196 struct dwarf2_per_cu_data *ref_per_cu)
25197 {
25198 void **slot;
25199
25200 if (cu->dependencies == NULL)
25201 cu->dependencies
25202 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
25203 NULL, &cu->comp_unit_obstack,
25204 hashtab_obstack_allocate,
25205 dummy_obstack_deallocate);
25206
25207 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
25208 if (*slot == NULL)
25209 *slot = ref_per_cu;
25210 }
25211
25212 /* Subroutine of dwarf2_mark to pass to htab_traverse.
25213 Set the mark field in every compilation unit in the
25214 cache that we must keep because we are keeping CU. */
25215
25216 static int
25217 dwarf2_mark_helper (void **slot, void *data)
25218 {
25219 struct dwarf2_per_cu_data *per_cu;
25220
25221 per_cu = (struct dwarf2_per_cu_data *) *slot;
25222
25223 /* cu->dependencies references may not yet have been ever read if QUIT aborts
25224 reading of the chain. As such dependencies remain valid it is not much
25225 useful to track and undo them during QUIT cleanups. */
25226 if (per_cu->cu == NULL)
25227 return 1;
25228
25229 if (per_cu->cu->mark)
25230 return 1;
25231 per_cu->cu->mark = 1;
25232
25233 if (per_cu->cu->dependencies != NULL)
25234 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
25235
25236 return 1;
25237 }
25238
25239 /* Set the mark field in CU and in every other compilation unit in the
25240 cache that we must keep because we are keeping CU. */
25241
25242 static void
25243 dwarf2_mark (struct dwarf2_cu *cu)
25244 {
25245 if (cu->mark)
25246 return;
25247 cu->mark = 1;
25248 if (cu->dependencies != NULL)
25249 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
25250 }
25251
25252 static void
25253 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
25254 {
25255 while (per_cu)
25256 {
25257 per_cu->cu->mark = 0;
25258 per_cu = per_cu->cu->read_in_chain;
25259 }
25260 }
25261
25262 /* Trivial hash function for partial_die_info: the hash value of a DIE
25263 is its offset in .debug_info for this objfile. */
25264
25265 static hashval_t
25266 partial_die_hash (const void *item)
25267 {
25268 const struct partial_die_info *part_die
25269 = (const struct partial_die_info *) item;
25270
25271 return to_underlying (part_die->sect_off);
25272 }
25273
25274 /* Trivial comparison function for partial_die_info structures: two DIEs
25275 are equal if they have the same offset. */
25276
25277 static int
25278 partial_die_eq (const void *item_lhs, const void *item_rhs)
25279 {
25280 const struct partial_die_info *part_die_lhs
25281 = (const struct partial_die_info *) item_lhs;
25282 const struct partial_die_info *part_die_rhs
25283 = (const struct partial_die_info *) item_rhs;
25284
25285 return part_die_lhs->sect_off == part_die_rhs->sect_off;
25286 }
25287
25288 static struct cmd_list_element *set_dwarf_cmdlist;
25289 static struct cmd_list_element *show_dwarf_cmdlist;
25290
25291 static void
25292 set_dwarf_cmd (const char *args, int from_tty)
25293 {
25294 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
25295 gdb_stdout);
25296 }
25297
25298 static void
25299 show_dwarf_cmd (const char *args, int from_tty)
25300 {
25301 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
25302 }
25303
25304 int dwarf_always_disassemble;
25305
25306 static void
25307 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
25308 struct cmd_list_element *c, const char *value)
25309 {
25310 fprintf_filtered (file,
25311 _("Whether to always disassemble "
25312 "DWARF expressions is %s.\n"),
25313 value);
25314 }
25315
25316 static void
25317 show_check_physname (struct ui_file *file, int from_tty,
25318 struct cmd_list_element *c, const char *value)
25319 {
25320 fprintf_filtered (file,
25321 _("Whether to check \"physname\" is %s.\n"),
25322 value);
25323 }
25324
25325 void
25326 _initialize_dwarf2_read (void)
25327 {
25328
25329 dwarf2_objfile_data_key = register_objfile_data ();
25330
25331 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
25332 Set DWARF specific variables.\n\
25333 Configure DWARF variables such as the cache size"),
25334 &set_dwarf_cmdlist, "maintenance set dwarf ",
25335 0/*allow-unknown*/, &maintenance_set_cmdlist);
25336
25337 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
25338 Show DWARF specific variables\n\
25339 Show DWARF variables such as the cache size"),
25340 &show_dwarf_cmdlist, "maintenance show dwarf ",
25341 0/*allow-unknown*/, &maintenance_show_cmdlist);
25342
25343 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
25344 &dwarf_max_cache_age, _("\
25345 Set the upper bound on the age of cached DWARF compilation units."), _("\
25346 Show the upper bound on the age of cached DWARF compilation units."), _("\
25347 A higher limit means that cached compilation units will be stored\n\
25348 in memory longer, and more total memory will be used. Zero disables\n\
25349 caching, which can slow down startup."),
25350 NULL,
25351 show_dwarf_max_cache_age,
25352 &set_dwarf_cmdlist,
25353 &show_dwarf_cmdlist);
25354
25355 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
25356 &dwarf_always_disassemble, _("\
25357 Set whether `info address' always disassembles DWARF expressions."), _("\
25358 Show whether `info address' always disassembles DWARF expressions."), _("\
25359 When enabled, DWARF expressions are always printed in an assembly-like\n\
25360 syntax. When disabled, expressions will be printed in a more\n\
25361 conversational style, when possible."),
25362 NULL,
25363 show_dwarf_always_disassemble,
25364 &set_dwarf_cmdlist,
25365 &show_dwarf_cmdlist);
25366
25367 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
25368 Set debugging of the DWARF reader."), _("\
25369 Show debugging of the DWARF reader."), _("\
25370 When enabled (non-zero), debugging messages are printed during DWARF\n\
25371 reading and symtab expansion. A value of 1 (one) provides basic\n\
25372 information. A value greater than 1 provides more verbose information."),
25373 NULL,
25374 NULL,
25375 &setdebuglist, &showdebuglist);
25376
25377 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
25378 Set debugging of the DWARF DIE reader."), _("\
25379 Show debugging of the DWARF DIE reader."), _("\
25380 When enabled (non-zero), DIEs are dumped after they are read in.\n\
25381 The value is the maximum depth to print."),
25382 NULL,
25383 NULL,
25384 &setdebuglist, &showdebuglist);
25385
25386 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
25387 Set debugging of the dwarf line reader."), _("\
25388 Show debugging of the dwarf line reader."), _("\
25389 When enabled (non-zero), line number entries are dumped as they are read in.\n\
25390 A value of 1 (one) provides basic information.\n\
25391 A value greater than 1 provides more verbose information."),
25392 NULL,
25393 NULL,
25394 &setdebuglist, &showdebuglist);
25395
25396 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
25397 Set cross-checking of \"physname\" code against demangler."), _("\
25398 Show cross-checking of \"physname\" code against demangler."), _("\
25399 When enabled, GDB's internal \"physname\" code is checked against\n\
25400 the demangler."),
25401 NULL, show_check_physname,
25402 &setdebuglist, &showdebuglist);
25403
25404 add_setshow_boolean_cmd ("use-deprecated-index-sections",
25405 no_class, &use_deprecated_index_sections, _("\
25406 Set whether to use deprecated gdb_index sections."), _("\
25407 Show whether to use deprecated gdb_index sections."), _("\
25408 When enabled, deprecated .gdb_index sections are used anyway.\n\
25409 Normally they are ignored either because of a missing feature or\n\
25410 performance issue.\n\
25411 Warning: This option must be enabled before gdb reads the file."),
25412 NULL,
25413 NULL,
25414 &setlist, &showlist);
25415
25416 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
25417 &dwarf2_locexpr_funcs);
25418 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
25419 &dwarf2_loclist_funcs);
25420
25421 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
25422 &dwarf2_block_frame_base_locexpr_funcs);
25423 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
25424 &dwarf2_block_frame_base_loclist_funcs);
25425
25426 #if GDB_SELF_TEST
25427 selftests::register_test ("dw2_expand_symtabs_matching",
25428 selftests::dw2_expand_symtabs_matching::run_test);
25429 #endif
25430 }
This page took 0.622015 seconds and 4 git commands to generate.