Make buildsym set-up/tear-down more consistent, and document it.
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2014 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "jv-lang.h"
57 #include "psympriv.h"
58 #include <sys/stat.h>
59 #include "completer.h"
60 #include "vec.h"
61 #include "c-lang.h"
62 #include "go-lang.h"
63 #include "valprint.h"
64 #include "gdbcore.h" /* for gnutarget */
65 #include "gdb/gdb-index.h"
66 #include <ctype.h>
67 #include "gdb_bfd.h"
68 #include "f-lang.h"
69 #include "source.h"
70 #include "filestuff.h"
71 #include "build-id.h"
72
73 #include <fcntl.h>
74 #include <sys/types.h>
75
76 typedef struct symbol *symbolp;
77 DEF_VEC_P (symbolp);
78
79 /* When == 1, print basic high level tracing messages.
80 When > 1, be more verbose.
81 This is in contrast to the low level DIE reading of dwarf2_die_debug. */
82 static unsigned int dwarf2_read_debug = 0;
83
84 /* When non-zero, dump DIEs after they are read in. */
85 static unsigned int dwarf2_die_debug = 0;
86
87 /* When non-zero, cross-check physname against demangler. */
88 static int check_physname = 0;
89
90 /* When non-zero, do not reject deprecated .gdb_index sections. */
91 static int use_deprecated_index_sections = 0;
92
93 static const struct objfile_data *dwarf2_objfile_data_key;
94
95 /* The "aclass" indices for various kinds of computed DWARF symbols. */
96
97 static int dwarf2_locexpr_index;
98 static int dwarf2_loclist_index;
99 static int dwarf2_locexpr_block_index;
100 static int dwarf2_loclist_block_index;
101
102 /* A descriptor for dwarf sections.
103
104 S.ASECTION, SIZE are typically initialized when the objfile is first
105 scanned. BUFFER, READIN are filled in later when the section is read.
106 If the section contained compressed data then SIZE is updated to record
107 the uncompressed size of the section.
108
109 DWP file format V2 introduces a wrinkle that is easiest to handle by
110 creating the concept of virtual sections contained within a real section.
111 In DWP V2 the sections of the input DWO files are concatenated together
112 into one section, but section offsets are kept relative to the original
113 input section.
114 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
115 the real section this "virtual" section is contained in, and BUFFER,SIZE
116 describe the virtual section. */
117
118 struct dwarf2_section_info
119 {
120 union
121 {
122 /* If this is a real section, the bfd section. */
123 asection *asection;
124 /* If this is a virtual section, pointer to the containing ("real")
125 section. */
126 struct dwarf2_section_info *containing_section;
127 } s;
128 /* Pointer to section data, only valid if readin. */
129 const gdb_byte *buffer;
130 /* The size of the section, real or virtual. */
131 bfd_size_type size;
132 /* If this is a virtual section, the offset in the real section.
133 Only valid if is_virtual. */
134 bfd_size_type virtual_offset;
135 /* True if we have tried to read this section. */
136 char readin;
137 /* True if this is a virtual section, False otherwise.
138 This specifies which of s.asection and s.containing_section to use. */
139 char is_virtual;
140 };
141
142 typedef struct dwarf2_section_info dwarf2_section_info_def;
143 DEF_VEC_O (dwarf2_section_info_def);
144
145 /* All offsets in the index are of this type. It must be
146 architecture-independent. */
147 typedef uint32_t offset_type;
148
149 DEF_VEC_I (offset_type);
150
151 /* Ensure only legit values are used. */
152 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
153 do { \
154 gdb_assert ((unsigned int) (value) <= 1); \
155 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
156 } while (0)
157
158 /* Ensure only legit values are used. */
159 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
160 do { \
161 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
162 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
163 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
164 } while (0)
165
166 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
167 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
168 do { \
169 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
170 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
171 } while (0)
172
173 /* A description of the mapped index. The file format is described in
174 a comment by the code that writes the index. */
175 struct mapped_index
176 {
177 /* Index data format version. */
178 int version;
179
180 /* The total length of the buffer. */
181 off_t total_size;
182
183 /* A pointer to the address table data. */
184 const gdb_byte *address_table;
185
186 /* Size of the address table data in bytes. */
187 offset_type address_table_size;
188
189 /* The symbol table, implemented as a hash table. */
190 const offset_type *symbol_table;
191
192 /* Size in slots, each slot is 2 offset_types. */
193 offset_type symbol_table_slots;
194
195 /* A pointer to the constant pool. */
196 const char *constant_pool;
197 };
198
199 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
200 DEF_VEC_P (dwarf2_per_cu_ptr);
201
202 /* Collection of data recorded per objfile.
203 This hangs off of dwarf2_objfile_data_key. */
204
205 struct dwarf2_per_objfile
206 {
207 struct dwarf2_section_info info;
208 struct dwarf2_section_info abbrev;
209 struct dwarf2_section_info line;
210 struct dwarf2_section_info loc;
211 struct dwarf2_section_info macinfo;
212 struct dwarf2_section_info macro;
213 struct dwarf2_section_info str;
214 struct dwarf2_section_info ranges;
215 struct dwarf2_section_info addr;
216 struct dwarf2_section_info frame;
217 struct dwarf2_section_info eh_frame;
218 struct dwarf2_section_info gdb_index;
219
220 VEC (dwarf2_section_info_def) *types;
221
222 /* Back link. */
223 struct objfile *objfile;
224
225 /* Table of all the compilation units. This is used to locate
226 the target compilation unit of a particular reference. */
227 struct dwarf2_per_cu_data **all_comp_units;
228
229 /* The number of compilation units in ALL_COMP_UNITS. */
230 int n_comp_units;
231
232 /* The number of .debug_types-related CUs. */
233 int n_type_units;
234
235 /* The number of elements allocated in all_type_units.
236 If there are skeleton-less TUs, we add them to all_type_units lazily. */
237 int n_allocated_type_units;
238
239 /* The .debug_types-related CUs (TUs).
240 This is stored in malloc space because we may realloc it. */
241 struct signatured_type **all_type_units;
242
243 /* Table of struct type_unit_group objects.
244 The hash key is the DW_AT_stmt_list value. */
245 htab_t type_unit_groups;
246
247 /* A table mapping .debug_types signatures to its signatured_type entry.
248 This is NULL if the .debug_types section hasn't been read in yet. */
249 htab_t signatured_types;
250
251 /* Type unit statistics, to see how well the scaling improvements
252 are doing. */
253 struct tu_stats
254 {
255 int nr_uniq_abbrev_tables;
256 int nr_symtabs;
257 int nr_symtab_sharers;
258 int nr_stmt_less_type_units;
259 int nr_all_type_units_reallocs;
260 } tu_stats;
261
262 /* A chain of compilation units that are currently read in, so that
263 they can be freed later. */
264 struct dwarf2_per_cu_data *read_in_chain;
265
266 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
267 This is NULL if the table hasn't been allocated yet. */
268 htab_t dwo_files;
269
270 /* Non-zero if we've check for whether there is a DWP file. */
271 int dwp_checked;
272
273 /* The DWP file if there is one, or NULL. */
274 struct dwp_file *dwp_file;
275
276 /* The shared '.dwz' file, if one exists. This is used when the
277 original data was compressed using 'dwz -m'. */
278 struct dwz_file *dwz_file;
279
280 /* A flag indicating wether this objfile has a section loaded at a
281 VMA of 0. */
282 int has_section_at_zero;
283
284 /* True if we are using the mapped index,
285 or we are faking it for OBJF_READNOW's sake. */
286 unsigned char using_index;
287
288 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
289 struct mapped_index *index_table;
290
291 /* When using index_table, this keeps track of all quick_file_names entries.
292 TUs typically share line table entries with a CU, so we maintain a
293 separate table of all line table entries to support the sharing.
294 Note that while there can be way more TUs than CUs, we've already
295 sorted all the TUs into "type unit groups", grouped by their
296 DW_AT_stmt_list value. Therefore the only sharing done here is with a
297 CU and its associated TU group if there is one. */
298 htab_t quick_file_names_table;
299
300 /* Set during partial symbol reading, to prevent queueing of full
301 symbols. */
302 int reading_partial_symbols;
303
304 /* Table mapping type DIEs to their struct type *.
305 This is NULL if not allocated yet.
306 The mapping is done via (CU/TU + DIE offset) -> type. */
307 htab_t die_type_hash;
308
309 /* The CUs we recently read. */
310 VEC (dwarf2_per_cu_ptr) *just_read_cus;
311 };
312
313 static struct dwarf2_per_objfile *dwarf2_per_objfile;
314
315 /* Default names of the debugging sections. */
316
317 /* Note that if the debugging section has been compressed, it might
318 have a name like .zdebug_info. */
319
320 static const struct dwarf2_debug_sections dwarf2_elf_names =
321 {
322 { ".debug_info", ".zdebug_info" },
323 { ".debug_abbrev", ".zdebug_abbrev" },
324 { ".debug_line", ".zdebug_line" },
325 { ".debug_loc", ".zdebug_loc" },
326 { ".debug_macinfo", ".zdebug_macinfo" },
327 { ".debug_macro", ".zdebug_macro" },
328 { ".debug_str", ".zdebug_str" },
329 { ".debug_ranges", ".zdebug_ranges" },
330 { ".debug_types", ".zdebug_types" },
331 { ".debug_addr", ".zdebug_addr" },
332 { ".debug_frame", ".zdebug_frame" },
333 { ".eh_frame", NULL },
334 { ".gdb_index", ".zgdb_index" },
335 23
336 };
337
338 /* List of DWO/DWP sections. */
339
340 static const struct dwop_section_names
341 {
342 struct dwarf2_section_names abbrev_dwo;
343 struct dwarf2_section_names info_dwo;
344 struct dwarf2_section_names line_dwo;
345 struct dwarf2_section_names loc_dwo;
346 struct dwarf2_section_names macinfo_dwo;
347 struct dwarf2_section_names macro_dwo;
348 struct dwarf2_section_names str_dwo;
349 struct dwarf2_section_names str_offsets_dwo;
350 struct dwarf2_section_names types_dwo;
351 struct dwarf2_section_names cu_index;
352 struct dwarf2_section_names tu_index;
353 }
354 dwop_section_names =
355 {
356 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
357 { ".debug_info.dwo", ".zdebug_info.dwo" },
358 { ".debug_line.dwo", ".zdebug_line.dwo" },
359 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
360 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
361 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
362 { ".debug_str.dwo", ".zdebug_str.dwo" },
363 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
364 { ".debug_types.dwo", ".zdebug_types.dwo" },
365 { ".debug_cu_index", ".zdebug_cu_index" },
366 { ".debug_tu_index", ".zdebug_tu_index" },
367 };
368
369 /* local data types */
370
371 /* The data in a compilation unit header, after target2host
372 translation, looks like this. */
373 struct comp_unit_head
374 {
375 unsigned int length;
376 short version;
377 unsigned char addr_size;
378 unsigned char signed_addr_p;
379 sect_offset abbrev_offset;
380
381 /* Size of file offsets; either 4 or 8. */
382 unsigned int offset_size;
383
384 /* Size of the length field; either 4 or 12. */
385 unsigned int initial_length_size;
386
387 /* Offset to the first byte of this compilation unit header in the
388 .debug_info section, for resolving relative reference dies. */
389 sect_offset offset;
390
391 /* Offset to first die in this cu from the start of the cu.
392 This will be the first byte following the compilation unit header. */
393 cu_offset first_die_offset;
394 };
395
396 /* Type used for delaying computation of method physnames.
397 See comments for compute_delayed_physnames. */
398 struct delayed_method_info
399 {
400 /* The type to which the method is attached, i.e., its parent class. */
401 struct type *type;
402
403 /* The index of the method in the type's function fieldlists. */
404 int fnfield_index;
405
406 /* The index of the method in the fieldlist. */
407 int index;
408
409 /* The name of the DIE. */
410 const char *name;
411
412 /* The DIE associated with this method. */
413 struct die_info *die;
414 };
415
416 typedef struct delayed_method_info delayed_method_info;
417 DEF_VEC_O (delayed_method_info);
418
419 /* Internal state when decoding a particular compilation unit. */
420 struct dwarf2_cu
421 {
422 /* The objfile containing this compilation unit. */
423 struct objfile *objfile;
424
425 /* The header of the compilation unit. */
426 struct comp_unit_head header;
427
428 /* Base address of this compilation unit. */
429 CORE_ADDR base_address;
430
431 /* Non-zero if base_address has been set. */
432 int base_known;
433
434 /* The language we are debugging. */
435 enum language language;
436 const struct language_defn *language_defn;
437
438 const char *producer;
439
440 /* The generic symbol table building routines have separate lists for
441 file scope symbols and all all other scopes (local scopes). So
442 we need to select the right one to pass to add_symbol_to_list().
443 We do it by keeping a pointer to the correct list in list_in_scope.
444
445 FIXME: The original dwarf code just treated the file scope as the
446 first local scope, and all other local scopes as nested local
447 scopes, and worked fine. Check to see if we really need to
448 distinguish these in buildsym.c. */
449 struct pending **list_in_scope;
450
451 /* The abbrev table for this CU.
452 Normally this points to the abbrev table in the objfile.
453 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
454 struct abbrev_table *abbrev_table;
455
456 /* Hash table holding all the loaded partial DIEs
457 with partial_die->offset.SECT_OFF as hash. */
458 htab_t partial_dies;
459
460 /* Storage for things with the same lifetime as this read-in compilation
461 unit, including partial DIEs. */
462 struct obstack comp_unit_obstack;
463
464 /* When multiple dwarf2_cu structures are living in memory, this field
465 chains them all together, so that they can be released efficiently.
466 We will probably also want a generation counter so that most-recently-used
467 compilation units are cached... */
468 struct dwarf2_per_cu_data *read_in_chain;
469
470 /* Backlink to our per_cu entry. */
471 struct dwarf2_per_cu_data *per_cu;
472
473 /* How many compilation units ago was this CU last referenced? */
474 int last_used;
475
476 /* A hash table of DIE cu_offset for following references with
477 die_info->offset.sect_off as hash. */
478 htab_t die_hash;
479
480 /* Full DIEs if read in. */
481 struct die_info *dies;
482
483 /* A set of pointers to dwarf2_per_cu_data objects for compilation
484 units referenced by this one. Only set during full symbol processing;
485 partial symbol tables do not have dependencies. */
486 htab_t dependencies;
487
488 /* Header data from the line table, during full symbol processing. */
489 struct line_header *line_header;
490
491 /* A list of methods which need to have physnames computed
492 after all type information has been read. */
493 VEC (delayed_method_info) *method_list;
494
495 /* To be copied to symtab->call_site_htab. */
496 htab_t call_site_htab;
497
498 /* Non-NULL if this CU came from a DWO file.
499 There is an invariant here that is important to remember:
500 Except for attributes copied from the top level DIE in the "main"
501 (or "stub") file in preparation for reading the DWO file
502 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
503 Either there isn't a DWO file (in which case this is NULL and the point
504 is moot), or there is and either we're not going to read it (in which
505 case this is NULL) or there is and we are reading it (in which case this
506 is non-NULL). */
507 struct dwo_unit *dwo_unit;
508
509 /* The DW_AT_addr_base attribute if present, zero otherwise
510 (zero is a valid value though).
511 Note this value comes from the Fission stub CU/TU's DIE. */
512 ULONGEST addr_base;
513
514 /* The DW_AT_ranges_base attribute if present, zero otherwise
515 (zero is a valid value though).
516 Note this value comes from the Fission stub CU/TU's DIE.
517 Also note that the value is zero in the non-DWO case so this value can
518 be used without needing to know whether DWO files are in use or not.
519 N.B. This does not apply to DW_AT_ranges appearing in
520 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
521 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
522 DW_AT_ranges_base *would* have to be applied, and we'd have to care
523 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
524 ULONGEST ranges_base;
525
526 /* Mark used when releasing cached dies. */
527 unsigned int mark : 1;
528
529 /* This CU references .debug_loc. See the symtab->locations_valid field.
530 This test is imperfect as there may exist optimized debug code not using
531 any location list and still facing inlining issues if handled as
532 unoptimized code. For a future better test see GCC PR other/32998. */
533 unsigned int has_loclist : 1;
534
535 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
536 if all the producer_is_* fields are valid. This information is cached
537 because profiling CU expansion showed excessive time spent in
538 producer_is_gxx_lt_4_6. */
539 unsigned int checked_producer : 1;
540 unsigned int producer_is_gxx_lt_4_6 : 1;
541 unsigned int producer_is_gcc_lt_4_3 : 1;
542 unsigned int producer_is_icc : 1;
543
544 /* When set, the file that we're processing is known to have
545 debugging info for C++ namespaces. GCC 3.3.x did not produce
546 this information, but later versions do. */
547
548 unsigned int processing_has_namespace_info : 1;
549 };
550
551 /* Persistent data held for a compilation unit, even when not
552 processing it. We put a pointer to this structure in the
553 read_symtab_private field of the psymtab. */
554
555 struct dwarf2_per_cu_data
556 {
557 /* The start offset and length of this compilation unit.
558 NOTE: Unlike comp_unit_head.length, this length includes
559 initial_length_size.
560 If the DIE refers to a DWO file, this is always of the original die,
561 not the DWO file. */
562 sect_offset offset;
563 unsigned int length;
564
565 /* Flag indicating this compilation unit will be read in before
566 any of the current compilation units are processed. */
567 unsigned int queued : 1;
568
569 /* This flag will be set when reading partial DIEs if we need to load
570 absolutely all DIEs for this compilation unit, instead of just the ones
571 we think are interesting. It gets set if we look for a DIE in the
572 hash table and don't find it. */
573 unsigned int load_all_dies : 1;
574
575 /* Non-zero if this CU is from .debug_types.
576 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
577 this is non-zero. */
578 unsigned int is_debug_types : 1;
579
580 /* Non-zero if this CU is from the .dwz file. */
581 unsigned int is_dwz : 1;
582
583 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
584 This flag is only valid if is_debug_types is true.
585 We can't read a CU directly from a DWO file: There are required
586 attributes in the stub. */
587 unsigned int reading_dwo_directly : 1;
588
589 /* Non-zero if the TU has been read.
590 This is used to assist the "Stay in DWO Optimization" for Fission:
591 When reading a DWO, it's faster to read TUs from the DWO instead of
592 fetching them from random other DWOs (due to comdat folding).
593 If the TU has already been read, the optimization is unnecessary
594 (and unwise - we don't want to change where gdb thinks the TU lives
595 "midflight").
596 This flag is only valid if is_debug_types is true. */
597 unsigned int tu_read : 1;
598
599 /* The section this CU/TU lives in.
600 If the DIE refers to a DWO file, this is always the original die,
601 not the DWO file. */
602 struct dwarf2_section_info *section;
603
604 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
605 of the CU cache it gets reset to NULL again. */
606 struct dwarf2_cu *cu;
607
608 /* The corresponding objfile.
609 Normally we can get the objfile from dwarf2_per_objfile.
610 However we can enter this file with just a "per_cu" handle. */
611 struct objfile *objfile;
612
613 /* When dwarf2_per_objfile->using_index is true, the 'quick' field
614 is active. Otherwise, the 'psymtab' field is active. */
615 union
616 {
617 /* The partial symbol table associated with this compilation unit,
618 or NULL for unread partial units. */
619 struct partial_symtab *psymtab;
620
621 /* Data needed by the "quick" functions. */
622 struct dwarf2_per_cu_quick_data *quick;
623 } v;
624
625 /* The CUs we import using DW_TAG_imported_unit. This is filled in
626 while reading psymtabs, used to compute the psymtab dependencies,
627 and then cleared. Then it is filled in again while reading full
628 symbols, and only deleted when the objfile is destroyed.
629
630 This is also used to work around a difference between the way gold
631 generates .gdb_index version <=7 and the way gdb does. Arguably this
632 is a gold bug. For symbols coming from TUs, gold records in the index
633 the CU that includes the TU instead of the TU itself. This breaks
634 dw2_lookup_symbol: It assumes that if the index says symbol X lives
635 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
636 will find X. Alas TUs live in their own symtab, so after expanding CU Y
637 we need to look in TU Z to find X. Fortunately, this is akin to
638 DW_TAG_imported_unit, so we just use the same mechanism: For
639 .gdb_index version <=7 this also records the TUs that the CU referred
640 to. Concurrently with this change gdb was modified to emit version 8
641 indices so we only pay a price for gold generated indices.
642 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
643 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
644 };
645
646 /* Entry in the signatured_types hash table. */
647
648 struct signatured_type
649 {
650 /* The "per_cu" object of this type.
651 This struct is used iff per_cu.is_debug_types.
652 N.B.: This is the first member so that it's easy to convert pointers
653 between them. */
654 struct dwarf2_per_cu_data per_cu;
655
656 /* The type's signature. */
657 ULONGEST signature;
658
659 /* Offset in the TU of the type's DIE, as read from the TU header.
660 If this TU is a DWO stub and the definition lives in a DWO file
661 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
662 cu_offset type_offset_in_tu;
663
664 /* Offset in the section of the type's DIE.
665 If the definition lives in a DWO file, this is the offset in the
666 .debug_types.dwo section.
667 The value is zero until the actual value is known.
668 Zero is otherwise not a valid section offset. */
669 sect_offset type_offset_in_section;
670
671 /* Type units are grouped by their DW_AT_stmt_list entry so that they
672 can share them. This points to the containing symtab. */
673 struct type_unit_group *type_unit_group;
674
675 /* The type.
676 The first time we encounter this type we fully read it in and install it
677 in the symbol tables. Subsequent times we only need the type. */
678 struct type *type;
679
680 /* Containing DWO unit.
681 This field is valid iff per_cu.reading_dwo_directly. */
682 struct dwo_unit *dwo_unit;
683 };
684
685 typedef struct signatured_type *sig_type_ptr;
686 DEF_VEC_P (sig_type_ptr);
687
688 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
689 This includes type_unit_group and quick_file_names. */
690
691 struct stmt_list_hash
692 {
693 /* The DWO unit this table is from or NULL if there is none. */
694 struct dwo_unit *dwo_unit;
695
696 /* Offset in .debug_line or .debug_line.dwo. */
697 sect_offset line_offset;
698 };
699
700 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
701 an object of this type. */
702
703 struct type_unit_group
704 {
705 /* dwarf2read.c's main "handle" on a TU symtab.
706 To simplify things we create an artificial CU that "includes" all the
707 type units using this stmt_list so that the rest of the code still has
708 a "per_cu" handle on the symtab.
709 This PER_CU is recognized by having no section. */
710 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
711 struct dwarf2_per_cu_data per_cu;
712
713 /* The TUs that share this DW_AT_stmt_list entry.
714 This is added to while parsing type units to build partial symtabs,
715 and is deleted afterwards and not used again. */
716 VEC (sig_type_ptr) *tus;
717
718 /* The compunit symtab.
719 Type units in a group needn't all be defined in the same source file,
720 so we create an essentially anonymous symtab as the compunit symtab. */
721 struct compunit_symtab *compunit_symtab;
722
723 /* The data used to construct the hash key. */
724 struct stmt_list_hash hash;
725
726 /* The number of symtabs from the line header.
727 The value here must match line_header.num_file_names. */
728 unsigned int num_symtabs;
729
730 /* The symbol tables for this TU (obtained from the files listed in
731 DW_AT_stmt_list).
732 WARNING: The order of entries here must match the order of entries
733 in the line header. After the first TU using this type_unit_group, the
734 line header for the subsequent TUs is recreated from this. This is done
735 because we need to use the same symtabs for each TU using the same
736 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
737 there's no guarantee the line header doesn't have duplicate entries. */
738 struct symtab **symtabs;
739 };
740
741 /* These sections are what may appear in a (real or virtual) DWO file. */
742
743 struct dwo_sections
744 {
745 struct dwarf2_section_info abbrev;
746 struct dwarf2_section_info line;
747 struct dwarf2_section_info loc;
748 struct dwarf2_section_info macinfo;
749 struct dwarf2_section_info macro;
750 struct dwarf2_section_info str;
751 struct dwarf2_section_info str_offsets;
752 /* In the case of a virtual DWO file, these two are unused. */
753 struct dwarf2_section_info info;
754 VEC (dwarf2_section_info_def) *types;
755 };
756
757 /* CUs/TUs in DWP/DWO files. */
758
759 struct dwo_unit
760 {
761 /* Backlink to the containing struct dwo_file. */
762 struct dwo_file *dwo_file;
763
764 /* The "id" that distinguishes this CU/TU.
765 .debug_info calls this "dwo_id", .debug_types calls this "signature".
766 Since signatures came first, we stick with it for consistency. */
767 ULONGEST signature;
768
769 /* The section this CU/TU lives in, in the DWO file. */
770 struct dwarf2_section_info *section;
771
772 /* Same as dwarf2_per_cu_data:{offset,length} but in the DWO section. */
773 sect_offset offset;
774 unsigned int length;
775
776 /* For types, offset in the type's DIE of the type defined by this TU. */
777 cu_offset type_offset_in_tu;
778 };
779
780 /* include/dwarf2.h defines the DWP section codes.
781 It defines a max value but it doesn't define a min value, which we
782 use for error checking, so provide one. */
783
784 enum dwp_v2_section_ids
785 {
786 DW_SECT_MIN = 1
787 };
788
789 /* Data for one DWO file.
790
791 This includes virtual DWO files (a virtual DWO file is a DWO file as it
792 appears in a DWP file). DWP files don't really have DWO files per se -
793 comdat folding of types "loses" the DWO file they came from, and from
794 a high level view DWP files appear to contain a mass of random types.
795 However, to maintain consistency with the non-DWP case we pretend DWP
796 files contain virtual DWO files, and we assign each TU with one virtual
797 DWO file (generally based on the line and abbrev section offsets -
798 a heuristic that seems to work in practice). */
799
800 struct dwo_file
801 {
802 /* The DW_AT_GNU_dwo_name attribute.
803 For virtual DWO files the name is constructed from the section offsets
804 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
805 from related CU+TUs. */
806 const char *dwo_name;
807
808 /* The DW_AT_comp_dir attribute. */
809 const char *comp_dir;
810
811 /* The bfd, when the file is open. Otherwise this is NULL.
812 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
813 bfd *dbfd;
814
815 /* The sections that make up this DWO file.
816 Remember that for virtual DWO files in DWP V2, these are virtual
817 sections (for lack of a better name). */
818 struct dwo_sections sections;
819
820 /* The CU in the file.
821 We only support one because having more than one requires hacking the
822 dwo_name of each to match, which is highly unlikely to happen.
823 Doing this means all TUs can share comp_dir: We also assume that
824 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
825 struct dwo_unit *cu;
826
827 /* Table of TUs in the file.
828 Each element is a struct dwo_unit. */
829 htab_t tus;
830 };
831
832 /* These sections are what may appear in a DWP file. */
833
834 struct dwp_sections
835 {
836 /* These are used by both DWP version 1 and 2. */
837 struct dwarf2_section_info str;
838 struct dwarf2_section_info cu_index;
839 struct dwarf2_section_info tu_index;
840
841 /* These are only used by DWP version 2 files.
842 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
843 sections are referenced by section number, and are not recorded here.
844 In DWP version 2 there is at most one copy of all these sections, each
845 section being (effectively) comprised of the concatenation of all of the
846 individual sections that exist in the version 1 format.
847 To keep the code simple we treat each of these concatenated pieces as a
848 section itself (a virtual section?). */
849 struct dwarf2_section_info abbrev;
850 struct dwarf2_section_info info;
851 struct dwarf2_section_info line;
852 struct dwarf2_section_info loc;
853 struct dwarf2_section_info macinfo;
854 struct dwarf2_section_info macro;
855 struct dwarf2_section_info str_offsets;
856 struct dwarf2_section_info types;
857 };
858
859 /* These sections are what may appear in a virtual DWO file in DWP version 1.
860 A virtual DWO file is a DWO file as it appears in a DWP file. */
861
862 struct virtual_v1_dwo_sections
863 {
864 struct dwarf2_section_info abbrev;
865 struct dwarf2_section_info line;
866 struct dwarf2_section_info loc;
867 struct dwarf2_section_info macinfo;
868 struct dwarf2_section_info macro;
869 struct dwarf2_section_info str_offsets;
870 /* Each DWP hash table entry records one CU or one TU.
871 That is recorded here, and copied to dwo_unit.section. */
872 struct dwarf2_section_info info_or_types;
873 };
874
875 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
876 In version 2, the sections of the DWO files are concatenated together
877 and stored in one section of that name. Thus each ELF section contains
878 several "virtual" sections. */
879
880 struct virtual_v2_dwo_sections
881 {
882 bfd_size_type abbrev_offset;
883 bfd_size_type abbrev_size;
884
885 bfd_size_type line_offset;
886 bfd_size_type line_size;
887
888 bfd_size_type loc_offset;
889 bfd_size_type loc_size;
890
891 bfd_size_type macinfo_offset;
892 bfd_size_type macinfo_size;
893
894 bfd_size_type macro_offset;
895 bfd_size_type macro_size;
896
897 bfd_size_type str_offsets_offset;
898 bfd_size_type str_offsets_size;
899
900 /* Each DWP hash table entry records one CU or one TU.
901 That is recorded here, and copied to dwo_unit.section. */
902 bfd_size_type info_or_types_offset;
903 bfd_size_type info_or_types_size;
904 };
905
906 /* Contents of DWP hash tables. */
907
908 struct dwp_hash_table
909 {
910 uint32_t version, nr_columns;
911 uint32_t nr_units, nr_slots;
912 const gdb_byte *hash_table, *unit_table;
913 union
914 {
915 struct
916 {
917 const gdb_byte *indices;
918 } v1;
919 struct
920 {
921 /* This is indexed by column number and gives the id of the section
922 in that column. */
923 #define MAX_NR_V2_DWO_SECTIONS \
924 (1 /* .debug_info or .debug_types */ \
925 + 1 /* .debug_abbrev */ \
926 + 1 /* .debug_line */ \
927 + 1 /* .debug_loc */ \
928 + 1 /* .debug_str_offsets */ \
929 + 1 /* .debug_macro or .debug_macinfo */)
930 int section_ids[MAX_NR_V2_DWO_SECTIONS];
931 const gdb_byte *offsets;
932 const gdb_byte *sizes;
933 } v2;
934 } section_pool;
935 };
936
937 /* Data for one DWP file. */
938
939 struct dwp_file
940 {
941 /* Name of the file. */
942 const char *name;
943
944 /* File format version. */
945 int version;
946
947 /* The bfd. */
948 bfd *dbfd;
949
950 /* Section info for this file. */
951 struct dwp_sections sections;
952
953 /* Table of CUs in the file. */
954 const struct dwp_hash_table *cus;
955
956 /* Table of TUs in the file. */
957 const struct dwp_hash_table *tus;
958
959 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
960 htab_t loaded_cus;
961 htab_t loaded_tus;
962
963 /* Table to map ELF section numbers to their sections.
964 This is only needed for the DWP V1 file format. */
965 unsigned int num_sections;
966 asection **elf_sections;
967 };
968
969 /* This represents a '.dwz' file. */
970
971 struct dwz_file
972 {
973 /* A dwz file can only contain a few sections. */
974 struct dwarf2_section_info abbrev;
975 struct dwarf2_section_info info;
976 struct dwarf2_section_info str;
977 struct dwarf2_section_info line;
978 struct dwarf2_section_info macro;
979 struct dwarf2_section_info gdb_index;
980
981 /* The dwz's BFD. */
982 bfd *dwz_bfd;
983 };
984
985 /* Struct used to pass misc. parameters to read_die_and_children, et
986 al. which are used for both .debug_info and .debug_types dies.
987 All parameters here are unchanging for the life of the call. This
988 struct exists to abstract away the constant parameters of die reading. */
989
990 struct die_reader_specs
991 {
992 /* The bfd of die_section. */
993 bfd* abfd;
994
995 /* The CU of the DIE we are parsing. */
996 struct dwarf2_cu *cu;
997
998 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
999 struct dwo_file *dwo_file;
1000
1001 /* The section the die comes from.
1002 This is either .debug_info or .debug_types, or the .dwo variants. */
1003 struct dwarf2_section_info *die_section;
1004
1005 /* die_section->buffer. */
1006 const gdb_byte *buffer;
1007
1008 /* The end of the buffer. */
1009 const gdb_byte *buffer_end;
1010
1011 /* The value of the DW_AT_comp_dir attribute. */
1012 const char *comp_dir;
1013 };
1014
1015 /* Type of function passed to init_cutu_and_read_dies, et.al. */
1016 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
1017 const gdb_byte *info_ptr,
1018 struct die_info *comp_unit_die,
1019 int has_children,
1020 void *data);
1021
1022 /* The line number information for a compilation unit (found in the
1023 .debug_line section) begins with a "statement program header",
1024 which contains the following information. */
1025 struct line_header
1026 {
1027 unsigned int total_length;
1028 unsigned short version;
1029 unsigned int header_length;
1030 unsigned char minimum_instruction_length;
1031 unsigned char maximum_ops_per_instruction;
1032 unsigned char default_is_stmt;
1033 int line_base;
1034 unsigned char line_range;
1035 unsigned char opcode_base;
1036
1037 /* standard_opcode_lengths[i] is the number of operands for the
1038 standard opcode whose value is i. This means that
1039 standard_opcode_lengths[0] is unused, and the last meaningful
1040 element is standard_opcode_lengths[opcode_base - 1]. */
1041 unsigned char *standard_opcode_lengths;
1042
1043 /* The include_directories table. NOTE! These strings are not
1044 allocated with xmalloc; instead, they are pointers into
1045 debug_line_buffer. If you try to free them, `free' will get
1046 indigestion. */
1047 unsigned int num_include_dirs, include_dirs_size;
1048 const char **include_dirs;
1049
1050 /* The file_names table. NOTE! These strings are not allocated
1051 with xmalloc; instead, they are pointers into debug_line_buffer.
1052 Don't try to free them directly. */
1053 unsigned int num_file_names, file_names_size;
1054 struct file_entry
1055 {
1056 const char *name;
1057 unsigned int dir_index;
1058 unsigned int mod_time;
1059 unsigned int length;
1060 int included_p; /* Non-zero if referenced by the Line Number Program. */
1061 struct symtab *symtab; /* The associated symbol table, if any. */
1062 } *file_names;
1063
1064 /* The start and end of the statement program following this
1065 header. These point into dwarf2_per_objfile->line_buffer. */
1066 const gdb_byte *statement_program_start, *statement_program_end;
1067 };
1068
1069 /* When we construct a partial symbol table entry we only
1070 need this much information. */
1071 struct partial_die_info
1072 {
1073 /* Offset of this DIE. */
1074 sect_offset offset;
1075
1076 /* DWARF-2 tag for this DIE. */
1077 ENUM_BITFIELD(dwarf_tag) tag : 16;
1078
1079 /* Assorted flags describing the data found in this DIE. */
1080 unsigned int has_children : 1;
1081 unsigned int is_external : 1;
1082 unsigned int is_declaration : 1;
1083 unsigned int has_type : 1;
1084 unsigned int has_specification : 1;
1085 unsigned int has_pc_info : 1;
1086 unsigned int may_be_inlined : 1;
1087
1088 /* Flag set if the SCOPE field of this structure has been
1089 computed. */
1090 unsigned int scope_set : 1;
1091
1092 /* Flag set if the DIE has a byte_size attribute. */
1093 unsigned int has_byte_size : 1;
1094
1095 /* Flag set if any of the DIE's children are template arguments. */
1096 unsigned int has_template_arguments : 1;
1097
1098 /* Flag set if fixup_partial_die has been called on this die. */
1099 unsigned int fixup_called : 1;
1100
1101 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1102 unsigned int is_dwz : 1;
1103
1104 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1105 unsigned int spec_is_dwz : 1;
1106
1107 /* The name of this DIE. Normally the value of DW_AT_name, but
1108 sometimes a default name for unnamed DIEs. */
1109 const char *name;
1110
1111 /* The linkage name, if present. */
1112 const char *linkage_name;
1113
1114 /* The scope to prepend to our children. This is generally
1115 allocated on the comp_unit_obstack, so will disappear
1116 when this compilation unit leaves the cache. */
1117 const char *scope;
1118
1119 /* Some data associated with the partial DIE. The tag determines
1120 which field is live. */
1121 union
1122 {
1123 /* The location description associated with this DIE, if any. */
1124 struct dwarf_block *locdesc;
1125 /* The offset of an import, for DW_TAG_imported_unit. */
1126 sect_offset offset;
1127 } d;
1128
1129 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1130 CORE_ADDR lowpc;
1131 CORE_ADDR highpc;
1132
1133 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1134 DW_AT_sibling, if any. */
1135 /* NOTE: This member isn't strictly necessary, read_partial_die could
1136 return DW_AT_sibling values to its caller load_partial_dies. */
1137 const gdb_byte *sibling;
1138
1139 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1140 DW_AT_specification (or DW_AT_abstract_origin or
1141 DW_AT_extension). */
1142 sect_offset spec_offset;
1143
1144 /* Pointers to this DIE's parent, first child, and next sibling,
1145 if any. */
1146 struct partial_die_info *die_parent, *die_child, *die_sibling;
1147 };
1148
1149 /* This data structure holds the information of an abbrev. */
1150 struct abbrev_info
1151 {
1152 unsigned int number; /* number identifying abbrev */
1153 enum dwarf_tag tag; /* dwarf tag */
1154 unsigned short has_children; /* boolean */
1155 unsigned short num_attrs; /* number of attributes */
1156 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1157 struct abbrev_info *next; /* next in chain */
1158 };
1159
1160 struct attr_abbrev
1161 {
1162 ENUM_BITFIELD(dwarf_attribute) name : 16;
1163 ENUM_BITFIELD(dwarf_form) form : 16;
1164 };
1165
1166 /* Size of abbrev_table.abbrev_hash_table. */
1167 #define ABBREV_HASH_SIZE 121
1168
1169 /* Top level data structure to contain an abbreviation table. */
1170
1171 struct abbrev_table
1172 {
1173 /* Where the abbrev table came from.
1174 This is used as a sanity check when the table is used. */
1175 sect_offset offset;
1176
1177 /* Storage for the abbrev table. */
1178 struct obstack abbrev_obstack;
1179
1180 /* Hash table of abbrevs.
1181 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1182 It could be statically allocated, but the previous code didn't so we
1183 don't either. */
1184 struct abbrev_info **abbrevs;
1185 };
1186
1187 /* Attributes have a name and a value. */
1188 struct attribute
1189 {
1190 ENUM_BITFIELD(dwarf_attribute) name : 16;
1191 ENUM_BITFIELD(dwarf_form) form : 15;
1192
1193 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1194 field should be in u.str (existing only for DW_STRING) but it is kept
1195 here for better struct attribute alignment. */
1196 unsigned int string_is_canonical : 1;
1197
1198 union
1199 {
1200 const char *str;
1201 struct dwarf_block *blk;
1202 ULONGEST unsnd;
1203 LONGEST snd;
1204 CORE_ADDR addr;
1205 ULONGEST signature;
1206 }
1207 u;
1208 };
1209
1210 /* This data structure holds a complete die structure. */
1211 struct die_info
1212 {
1213 /* DWARF-2 tag for this DIE. */
1214 ENUM_BITFIELD(dwarf_tag) tag : 16;
1215
1216 /* Number of attributes */
1217 unsigned char num_attrs;
1218
1219 /* True if we're presently building the full type name for the
1220 type derived from this DIE. */
1221 unsigned char building_fullname : 1;
1222
1223 /* True if this die is in process. PR 16581. */
1224 unsigned char in_process : 1;
1225
1226 /* Abbrev number */
1227 unsigned int abbrev;
1228
1229 /* Offset in .debug_info or .debug_types section. */
1230 sect_offset offset;
1231
1232 /* The dies in a compilation unit form an n-ary tree. PARENT
1233 points to this die's parent; CHILD points to the first child of
1234 this node; and all the children of a given node are chained
1235 together via their SIBLING fields. */
1236 struct die_info *child; /* Its first child, if any. */
1237 struct die_info *sibling; /* Its next sibling, if any. */
1238 struct die_info *parent; /* Its parent, if any. */
1239
1240 /* An array of attributes, with NUM_ATTRS elements. There may be
1241 zero, but it's not common and zero-sized arrays are not
1242 sufficiently portable C. */
1243 struct attribute attrs[1];
1244 };
1245
1246 /* Get at parts of an attribute structure. */
1247
1248 #define DW_STRING(attr) ((attr)->u.str)
1249 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1250 #define DW_UNSND(attr) ((attr)->u.unsnd)
1251 #define DW_BLOCK(attr) ((attr)->u.blk)
1252 #define DW_SND(attr) ((attr)->u.snd)
1253 #define DW_ADDR(attr) ((attr)->u.addr)
1254 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1255
1256 /* Blocks are a bunch of untyped bytes. */
1257 struct dwarf_block
1258 {
1259 size_t size;
1260
1261 /* Valid only if SIZE is not zero. */
1262 const gdb_byte *data;
1263 };
1264
1265 #ifndef ATTR_ALLOC_CHUNK
1266 #define ATTR_ALLOC_CHUNK 4
1267 #endif
1268
1269 /* Allocate fields for structs, unions and enums in this size. */
1270 #ifndef DW_FIELD_ALLOC_CHUNK
1271 #define DW_FIELD_ALLOC_CHUNK 4
1272 #endif
1273
1274 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1275 but this would require a corresponding change in unpack_field_as_long
1276 and friends. */
1277 static int bits_per_byte = 8;
1278
1279 /* The routines that read and process dies for a C struct or C++ class
1280 pass lists of data member fields and lists of member function fields
1281 in an instance of a field_info structure, as defined below. */
1282 struct field_info
1283 {
1284 /* List of data member and baseclasses fields. */
1285 struct nextfield
1286 {
1287 struct nextfield *next;
1288 int accessibility;
1289 int virtuality;
1290 struct field field;
1291 }
1292 *fields, *baseclasses;
1293
1294 /* Number of fields (including baseclasses). */
1295 int nfields;
1296
1297 /* Number of baseclasses. */
1298 int nbaseclasses;
1299
1300 /* Set if the accesibility of one of the fields is not public. */
1301 int non_public_fields;
1302
1303 /* Member function fields array, entries are allocated in the order they
1304 are encountered in the object file. */
1305 struct nextfnfield
1306 {
1307 struct nextfnfield *next;
1308 struct fn_field fnfield;
1309 }
1310 *fnfields;
1311
1312 /* Member function fieldlist array, contains name of possibly overloaded
1313 member function, number of overloaded member functions and a pointer
1314 to the head of the member function field chain. */
1315 struct fnfieldlist
1316 {
1317 const char *name;
1318 int length;
1319 struct nextfnfield *head;
1320 }
1321 *fnfieldlists;
1322
1323 /* Number of entries in the fnfieldlists array. */
1324 int nfnfields;
1325
1326 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1327 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1328 struct typedef_field_list
1329 {
1330 struct typedef_field field;
1331 struct typedef_field_list *next;
1332 }
1333 *typedef_field_list;
1334 unsigned typedef_field_list_count;
1335 };
1336
1337 /* One item on the queue of compilation units to read in full symbols
1338 for. */
1339 struct dwarf2_queue_item
1340 {
1341 struct dwarf2_per_cu_data *per_cu;
1342 enum language pretend_language;
1343 struct dwarf2_queue_item *next;
1344 };
1345
1346 /* The current queue. */
1347 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1348
1349 /* Loaded secondary compilation units are kept in memory until they
1350 have not been referenced for the processing of this many
1351 compilation units. Set this to zero to disable caching. Cache
1352 sizes of up to at least twenty will improve startup time for
1353 typical inter-CU-reference binaries, at an obvious memory cost. */
1354 static int dwarf2_max_cache_age = 5;
1355 static void
1356 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
1357 struct cmd_list_element *c, const char *value)
1358 {
1359 fprintf_filtered (file, _("The upper bound on the age of cached "
1360 "dwarf2 compilation units is %s.\n"),
1361 value);
1362 }
1363 \f
1364 /* local function prototypes */
1365
1366 static const char *get_section_name (const struct dwarf2_section_info *);
1367
1368 static const char *get_section_file_name (const struct dwarf2_section_info *);
1369
1370 static void dwarf2_locate_sections (bfd *, asection *, void *);
1371
1372 static void dwarf2_find_base_address (struct die_info *die,
1373 struct dwarf2_cu *cu);
1374
1375 static struct partial_symtab *create_partial_symtab
1376 (struct dwarf2_per_cu_data *per_cu, const char *name);
1377
1378 static void dwarf2_build_psymtabs_hard (struct objfile *);
1379
1380 static void scan_partial_symbols (struct partial_die_info *,
1381 CORE_ADDR *, CORE_ADDR *,
1382 int, struct dwarf2_cu *);
1383
1384 static void add_partial_symbol (struct partial_die_info *,
1385 struct dwarf2_cu *);
1386
1387 static void add_partial_namespace (struct partial_die_info *pdi,
1388 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1389 int set_addrmap, struct dwarf2_cu *cu);
1390
1391 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1392 CORE_ADDR *highpc, int set_addrmap,
1393 struct dwarf2_cu *cu);
1394
1395 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1396 struct dwarf2_cu *cu);
1397
1398 static void add_partial_subprogram (struct partial_die_info *pdi,
1399 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1400 int need_pc, struct dwarf2_cu *cu);
1401
1402 static void dwarf2_read_symtab (struct partial_symtab *,
1403 struct objfile *);
1404
1405 static void psymtab_to_symtab_1 (struct partial_symtab *);
1406
1407 static struct abbrev_info *abbrev_table_lookup_abbrev
1408 (const struct abbrev_table *, unsigned int);
1409
1410 static struct abbrev_table *abbrev_table_read_table
1411 (struct dwarf2_section_info *, sect_offset);
1412
1413 static void abbrev_table_free (struct abbrev_table *);
1414
1415 static void abbrev_table_free_cleanup (void *);
1416
1417 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1418 struct dwarf2_section_info *);
1419
1420 static void dwarf2_free_abbrev_table (void *);
1421
1422 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1423
1424 static struct partial_die_info *load_partial_dies
1425 (const struct die_reader_specs *, const gdb_byte *, int);
1426
1427 static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1428 struct partial_die_info *,
1429 struct abbrev_info *,
1430 unsigned int,
1431 const gdb_byte *);
1432
1433 static struct partial_die_info *find_partial_die (sect_offset, int,
1434 struct dwarf2_cu *);
1435
1436 static void fixup_partial_die (struct partial_die_info *,
1437 struct dwarf2_cu *);
1438
1439 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1440 struct attribute *, struct attr_abbrev *,
1441 const gdb_byte *);
1442
1443 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1444
1445 static int read_1_signed_byte (bfd *, const gdb_byte *);
1446
1447 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1448
1449 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1450
1451 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1452
1453 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1454 unsigned int *);
1455
1456 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1457
1458 static LONGEST read_checked_initial_length_and_offset
1459 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1460 unsigned int *, unsigned int *);
1461
1462 static LONGEST read_offset (bfd *, const gdb_byte *,
1463 const struct comp_unit_head *,
1464 unsigned int *);
1465
1466 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1467
1468 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1469 sect_offset);
1470
1471 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1472
1473 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1474
1475 static const char *read_indirect_string (bfd *, const gdb_byte *,
1476 const struct comp_unit_head *,
1477 unsigned int *);
1478
1479 static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1480
1481 static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
1482
1483 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1484
1485 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1486 const gdb_byte *,
1487 unsigned int *);
1488
1489 static const char *read_str_index (const struct die_reader_specs *reader,
1490 ULONGEST str_index);
1491
1492 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1493
1494 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1495 struct dwarf2_cu *);
1496
1497 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1498 unsigned int);
1499
1500 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1501 struct dwarf2_cu *cu);
1502
1503 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1504
1505 static struct die_info *die_specification (struct die_info *die,
1506 struct dwarf2_cu **);
1507
1508 static void free_line_header (struct line_header *lh);
1509
1510 static struct line_header *dwarf_decode_line_header (unsigned int offset,
1511 struct dwarf2_cu *cu);
1512
1513 static void dwarf_decode_lines (struct line_header *, const char *,
1514 struct dwarf2_cu *, struct partial_symtab *,
1515 CORE_ADDR);
1516
1517 static void dwarf2_start_subfile (const char *, const char *);
1518
1519 static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1520 const char *, const char *,
1521 CORE_ADDR);
1522
1523 static struct symbol *new_symbol (struct die_info *, struct type *,
1524 struct dwarf2_cu *);
1525
1526 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1527 struct dwarf2_cu *, struct symbol *);
1528
1529 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1530 struct dwarf2_cu *);
1531
1532 static void dwarf2_const_value_attr (const struct attribute *attr,
1533 struct type *type,
1534 const char *name,
1535 struct obstack *obstack,
1536 struct dwarf2_cu *cu, LONGEST *value,
1537 const gdb_byte **bytes,
1538 struct dwarf2_locexpr_baton **baton);
1539
1540 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1541
1542 static int need_gnat_info (struct dwarf2_cu *);
1543
1544 static struct type *die_descriptive_type (struct die_info *,
1545 struct dwarf2_cu *);
1546
1547 static void set_descriptive_type (struct type *, struct die_info *,
1548 struct dwarf2_cu *);
1549
1550 static struct type *die_containing_type (struct die_info *,
1551 struct dwarf2_cu *);
1552
1553 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1554 struct dwarf2_cu *);
1555
1556 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1557
1558 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1559
1560 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1561
1562 static char *typename_concat (struct obstack *obs, const char *prefix,
1563 const char *suffix, int physname,
1564 struct dwarf2_cu *cu);
1565
1566 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1567
1568 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1569
1570 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1571
1572 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1573
1574 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1575
1576 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1577 struct dwarf2_cu *, struct partial_symtab *);
1578
1579 static int dwarf2_get_pc_bounds (struct die_info *,
1580 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1581 struct partial_symtab *);
1582
1583 static void get_scope_pc_bounds (struct die_info *,
1584 CORE_ADDR *, CORE_ADDR *,
1585 struct dwarf2_cu *);
1586
1587 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1588 CORE_ADDR, struct dwarf2_cu *);
1589
1590 static void dwarf2_add_field (struct field_info *, struct die_info *,
1591 struct dwarf2_cu *);
1592
1593 static void dwarf2_attach_fields_to_type (struct field_info *,
1594 struct type *, struct dwarf2_cu *);
1595
1596 static void dwarf2_add_member_fn (struct field_info *,
1597 struct die_info *, struct type *,
1598 struct dwarf2_cu *);
1599
1600 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1601 struct type *,
1602 struct dwarf2_cu *);
1603
1604 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1605
1606 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1607
1608 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1609
1610 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1611
1612 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1613
1614 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1615
1616 static struct type *read_module_type (struct die_info *die,
1617 struct dwarf2_cu *cu);
1618
1619 static const char *namespace_name (struct die_info *die,
1620 int *is_anonymous, struct dwarf2_cu *);
1621
1622 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1623
1624 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1625
1626 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1627 struct dwarf2_cu *);
1628
1629 static struct die_info *read_die_and_siblings_1
1630 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1631 struct die_info *);
1632
1633 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1634 const gdb_byte *info_ptr,
1635 const gdb_byte **new_info_ptr,
1636 struct die_info *parent);
1637
1638 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1639 struct die_info **, const gdb_byte *,
1640 int *, int);
1641
1642 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1643 struct die_info **, const gdb_byte *,
1644 int *);
1645
1646 static void process_die (struct die_info *, struct dwarf2_cu *);
1647
1648 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1649 struct obstack *);
1650
1651 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1652
1653 static const char *dwarf2_full_name (const char *name,
1654 struct die_info *die,
1655 struct dwarf2_cu *cu);
1656
1657 static const char *dwarf2_physname (const char *name, struct die_info *die,
1658 struct dwarf2_cu *cu);
1659
1660 static struct die_info *dwarf2_extension (struct die_info *die,
1661 struct dwarf2_cu **);
1662
1663 static const char *dwarf_tag_name (unsigned int);
1664
1665 static const char *dwarf_attr_name (unsigned int);
1666
1667 static const char *dwarf_form_name (unsigned int);
1668
1669 static char *dwarf_bool_name (unsigned int);
1670
1671 static const char *dwarf_type_encoding_name (unsigned int);
1672
1673 static struct die_info *sibling_die (struct die_info *);
1674
1675 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1676
1677 static void dump_die_for_error (struct die_info *);
1678
1679 static void dump_die_1 (struct ui_file *, int level, int max_level,
1680 struct die_info *);
1681
1682 /*static*/ void dump_die (struct die_info *, int max_level);
1683
1684 static void store_in_ref_table (struct die_info *,
1685 struct dwarf2_cu *);
1686
1687 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1688
1689 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1690
1691 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1692 const struct attribute *,
1693 struct dwarf2_cu **);
1694
1695 static struct die_info *follow_die_ref (struct die_info *,
1696 const struct attribute *,
1697 struct dwarf2_cu **);
1698
1699 static struct die_info *follow_die_sig (struct die_info *,
1700 const struct attribute *,
1701 struct dwarf2_cu **);
1702
1703 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1704 struct dwarf2_cu *);
1705
1706 static struct type *get_DW_AT_signature_type (struct die_info *,
1707 const struct attribute *,
1708 struct dwarf2_cu *);
1709
1710 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1711
1712 static void read_signatured_type (struct signatured_type *);
1713
1714 /* memory allocation interface */
1715
1716 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1717
1718 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1719
1720 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1721
1722 static int attr_form_is_block (const struct attribute *);
1723
1724 static int attr_form_is_section_offset (const struct attribute *);
1725
1726 static int attr_form_is_constant (const struct attribute *);
1727
1728 static int attr_form_is_ref (const struct attribute *);
1729
1730 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1731 struct dwarf2_loclist_baton *baton,
1732 const struct attribute *attr);
1733
1734 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1735 struct symbol *sym,
1736 struct dwarf2_cu *cu,
1737 int is_block);
1738
1739 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1740 const gdb_byte *info_ptr,
1741 struct abbrev_info *abbrev);
1742
1743 static void free_stack_comp_unit (void *);
1744
1745 static hashval_t partial_die_hash (const void *item);
1746
1747 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1748
1749 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1750 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
1751
1752 static void init_one_comp_unit (struct dwarf2_cu *cu,
1753 struct dwarf2_per_cu_data *per_cu);
1754
1755 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1756 struct die_info *comp_unit_die,
1757 enum language pretend_language);
1758
1759 static void free_heap_comp_unit (void *);
1760
1761 static void free_cached_comp_units (void *);
1762
1763 static void age_cached_comp_units (void);
1764
1765 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1766
1767 static struct type *set_die_type (struct die_info *, struct type *,
1768 struct dwarf2_cu *);
1769
1770 static void create_all_comp_units (struct objfile *);
1771
1772 static int create_all_type_units (struct objfile *);
1773
1774 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1775 enum language);
1776
1777 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1778 enum language);
1779
1780 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1781 enum language);
1782
1783 static void dwarf2_add_dependence (struct dwarf2_cu *,
1784 struct dwarf2_per_cu_data *);
1785
1786 static void dwarf2_mark (struct dwarf2_cu *);
1787
1788 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1789
1790 static struct type *get_die_type_at_offset (sect_offset,
1791 struct dwarf2_per_cu_data *);
1792
1793 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1794
1795 static void dwarf2_release_queue (void *dummy);
1796
1797 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1798 enum language pretend_language);
1799
1800 static void process_queue (void);
1801
1802 static void find_file_and_directory (struct die_info *die,
1803 struct dwarf2_cu *cu,
1804 const char **name, const char **comp_dir);
1805
1806 static char *file_full_name (int file, struct line_header *lh,
1807 const char *comp_dir);
1808
1809 static const gdb_byte *read_and_check_comp_unit_head
1810 (struct comp_unit_head *header,
1811 struct dwarf2_section_info *section,
1812 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1813 int is_debug_types_section);
1814
1815 static void init_cutu_and_read_dies
1816 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1817 int use_existing_cu, int keep,
1818 die_reader_func_ftype *die_reader_func, void *data);
1819
1820 static void init_cutu_and_read_dies_simple
1821 (struct dwarf2_per_cu_data *this_cu,
1822 die_reader_func_ftype *die_reader_func, void *data);
1823
1824 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1825
1826 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1827
1828 static struct dwo_unit *lookup_dwo_unit_in_dwp
1829 (struct dwp_file *dwp_file, const char *comp_dir,
1830 ULONGEST signature, int is_debug_types);
1831
1832 static struct dwp_file *get_dwp_file (void);
1833
1834 static struct dwo_unit *lookup_dwo_comp_unit
1835 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1836
1837 static struct dwo_unit *lookup_dwo_type_unit
1838 (struct signatured_type *, const char *, const char *);
1839
1840 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1841
1842 static void free_dwo_file_cleanup (void *);
1843
1844 static void process_cu_includes (void);
1845
1846 static void check_producer (struct dwarf2_cu *cu);
1847 \f
1848 /* Various complaints about symbol reading that don't abort the process. */
1849
1850 static void
1851 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1852 {
1853 complaint (&symfile_complaints,
1854 _("statement list doesn't fit in .debug_line section"));
1855 }
1856
1857 static void
1858 dwarf2_debug_line_missing_file_complaint (void)
1859 {
1860 complaint (&symfile_complaints,
1861 _(".debug_line section has line data without a file"));
1862 }
1863
1864 static void
1865 dwarf2_debug_line_missing_end_sequence_complaint (void)
1866 {
1867 complaint (&symfile_complaints,
1868 _(".debug_line section has line "
1869 "program sequence without an end"));
1870 }
1871
1872 static void
1873 dwarf2_complex_location_expr_complaint (void)
1874 {
1875 complaint (&symfile_complaints, _("location expression too complex"));
1876 }
1877
1878 static void
1879 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1880 int arg3)
1881 {
1882 complaint (&symfile_complaints,
1883 _("const value length mismatch for '%s', got %d, expected %d"),
1884 arg1, arg2, arg3);
1885 }
1886
1887 static void
1888 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1889 {
1890 complaint (&symfile_complaints,
1891 _("debug info runs off end of %s section"
1892 " [in module %s]"),
1893 get_section_name (section),
1894 get_section_file_name (section));
1895 }
1896
1897 static void
1898 dwarf2_macro_malformed_definition_complaint (const char *arg1)
1899 {
1900 complaint (&symfile_complaints,
1901 _("macro debug info contains a "
1902 "malformed macro definition:\n`%s'"),
1903 arg1);
1904 }
1905
1906 static void
1907 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1908 {
1909 complaint (&symfile_complaints,
1910 _("invalid attribute class or form for '%s' in '%s'"),
1911 arg1, arg2);
1912 }
1913 \f
1914 #if WORDS_BIGENDIAN
1915
1916 /* Convert VALUE between big- and little-endian. */
1917 static offset_type
1918 byte_swap (offset_type value)
1919 {
1920 offset_type result;
1921
1922 result = (value & 0xff) << 24;
1923 result |= (value & 0xff00) << 8;
1924 result |= (value & 0xff0000) >> 8;
1925 result |= (value & 0xff000000) >> 24;
1926 return result;
1927 }
1928
1929 #define MAYBE_SWAP(V) byte_swap (V)
1930
1931 #else
1932 #define MAYBE_SWAP(V) (V)
1933 #endif /* WORDS_BIGENDIAN */
1934
1935 /* Read the given attribute value as an address, taking the attribute's
1936 form into account. */
1937
1938 static CORE_ADDR
1939 attr_value_as_address (struct attribute *attr)
1940 {
1941 CORE_ADDR addr;
1942
1943 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
1944 {
1945 /* Aside from a few clearly defined exceptions, attributes that
1946 contain an address must always be in DW_FORM_addr form.
1947 Unfortunately, some compilers happen to be violating this
1948 requirement by encoding addresses using other forms, such
1949 as DW_FORM_data4 for example. For those broken compilers,
1950 we try to do our best, without any guarantee of success,
1951 to interpret the address correctly. It would also be nice
1952 to generate a complaint, but that would require us to maintain
1953 a list of legitimate cases where a non-address form is allowed,
1954 as well as update callers to pass in at least the CU's DWARF
1955 version. This is more overhead than what we're willing to
1956 expand for a pretty rare case. */
1957 addr = DW_UNSND (attr);
1958 }
1959 else
1960 addr = DW_ADDR (attr);
1961
1962 return addr;
1963 }
1964
1965 /* The suffix for an index file. */
1966 #define INDEX_SUFFIX ".gdb-index"
1967
1968 /* Try to locate the sections we need for DWARF 2 debugging
1969 information and return true if we have enough to do something.
1970 NAMES points to the dwarf2 section names, or is NULL if the standard
1971 ELF names are used. */
1972
1973 int
1974 dwarf2_has_info (struct objfile *objfile,
1975 const struct dwarf2_debug_sections *names)
1976 {
1977 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1978 if (!dwarf2_per_objfile)
1979 {
1980 /* Initialize per-objfile state. */
1981 struct dwarf2_per_objfile *data
1982 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1983
1984 memset (data, 0, sizeof (*data));
1985 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1986 dwarf2_per_objfile = data;
1987
1988 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
1989 (void *) names);
1990 dwarf2_per_objfile->objfile = objfile;
1991 }
1992 return (!dwarf2_per_objfile->info.is_virtual
1993 && dwarf2_per_objfile->info.s.asection != NULL
1994 && !dwarf2_per_objfile->abbrev.is_virtual
1995 && dwarf2_per_objfile->abbrev.s.asection != NULL);
1996 }
1997
1998 /* Return the containing section of virtual section SECTION. */
1999
2000 static struct dwarf2_section_info *
2001 get_containing_section (const struct dwarf2_section_info *section)
2002 {
2003 gdb_assert (section->is_virtual);
2004 return section->s.containing_section;
2005 }
2006
2007 /* Return the bfd owner of SECTION. */
2008
2009 static struct bfd *
2010 get_section_bfd_owner (const struct dwarf2_section_info *section)
2011 {
2012 if (section->is_virtual)
2013 {
2014 section = get_containing_section (section);
2015 gdb_assert (!section->is_virtual);
2016 }
2017 return section->s.asection->owner;
2018 }
2019
2020 /* Return the bfd section of SECTION.
2021 Returns NULL if the section is not present. */
2022
2023 static asection *
2024 get_section_bfd_section (const struct dwarf2_section_info *section)
2025 {
2026 if (section->is_virtual)
2027 {
2028 section = get_containing_section (section);
2029 gdb_assert (!section->is_virtual);
2030 }
2031 return section->s.asection;
2032 }
2033
2034 /* Return the name of SECTION. */
2035
2036 static const char *
2037 get_section_name (const struct dwarf2_section_info *section)
2038 {
2039 asection *sectp = get_section_bfd_section (section);
2040
2041 gdb_assert (sectp != NULL);
2042 return bfd_section_name (get_section_bfd_owner (section), sectp);
2043 }
2044
2045 /* Return the name of the file SECTION is in. */
2046
2047 static const char *
2048 get_section_file_name (const struct dwarf2_section_info *section)
2049 {
2050 bfd *abfd = get_section_bfd_owner (section);
2051
2052 return bfd_get_filename (abfd);
2053 }
2054
2055 /* Return the id of SECTION.
2056 Returns 0 if SECTION doesn't exist. */
2057
2058 static int
2059 get_section_id (const struct dwarf2_section_info *section)
2060 {
2061 asection *sectp = get_section_bfd_section (section);
2062
2063 if (sectp == NULL)
2064 return 0;
2065 return sectp->id;
2066 }
2067
2068 /* Return the flags of SECTION.
2069 SECTION (or containing section if this is a virtual section) must exist. */
2070
2071 static int
2072 get_section_flags (const struct dwarf2_section_info *section)
2073 {
2074 asection *sectp = get_section_bfd_section (section);
2075
2076 gdb_assert (sectp != NULL);
2077 return bfd_get_section_flags (sectp->owner, sectp);
2078 }
2079
2080 /* When loading sections, we look either for uncompressed section or for
2081 compressed section names. */
2082
2083 static int
2084 section_is_p (const char *section_name,
2085 const struct dwarf2_section_names *names)
2086 {
2087 if (names->normal != NULL
2088 && strcmp (section_name, names->normal) == 0)
2089 return 1;
2090 if (names->compressed != NULL
2091 && strcmp (section_name, names->compressed) == 0)
2092 return 1;
2093 return 0;
2094 }
2095
2096 /* This function is mapped across the sections and remembers the
2097 offset and size of each of the debugging sections we are interested
2098 in. */
2099
2100 static void
2101 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
2102 {
2103 const struct dwarf2_debug_sections *names;
2104 flagword aflag = bfd_get_section_flags (abfd, sectp);
2105
2106 if (vnames == NULL)
2107 names = &dwarf2_elf_names;
2108 else
2109 names = (const struct dwarf2_debug_sections *) vnames;
2110
2111 if ((aflag & SEC_HAS_CONTENTS) == 0)
2112 {
2113 }
2114 else if (section_is_p (sectp->name, &names->info))
2115 {
2116 dwarf2_per_objfile->info.s.asection = sectp;
2117 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
2118 }
2119 else if (section_is_p (sectp->name, &names->abbrev))
2120 {
2121 dwarf2_per_objfile->abbrev.s.asection = sectp;
2122 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
2123 }
2124 else if (section_is_p (sectp->name, &names->line))
2125 {
2126 dwarf2_per_objfile->line.s.asection = sectp;
2127 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
2128 }
2129 else if (section_is_p (sectp->name, &names->loc))
2130 {
2131 dwarf2_per_objfile->loc.s.asection = sectp;
2132 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
2133 }
2134 else if (section_is_p (sectp->name, &names->macinfo))
2135 {
2136 dwarf2_per_objfile->macinfo.s.asection = sectp;
2137 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
2138 }
2139 else if (section_is_p (sectp->name, &names->macro))
2140 {
2141 dwarf2_per_objfile->macro.s.asection = sectp;
2142 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
2143 }
2144 else if (section_is_p (sectp->name, &names->str))
2145 {
2146 dwarf2_per_objfile->str.s.asection = sectp;
2147 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
2148 }
2149 else if (section_is_p (sectp->name, &names->addr))
2150 {
2151 dwarf2_per_objfile->addr.s.asection = sectp;
2152 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
2153 }
2154 else if (section_is_p (sectp->name, &names->frame))
2155 {
2156 dwarf2_per_objfile->frame.s.asection = sectp;
2157 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
2158 }
2159 else if (section_is_p (sectp->name, &names->eh_frame))
2160 {
2161 dwarf2_per_objfile->eh_frame.s.asection = sectp;
2162 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
2163 }
2164 else if (section_is_p (sectp->name, &names->ranges))
2165 {
2166 dwarf2_per_objfile->ranges.s.asection = sectp;
2167 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
2168 }
2169 else if (section_is_p (sectp->name, &names->types))
2170 {
2171 struct dwarf2_section_info type_section;
2172
2173 memset (&type_section, 0, sizeof (type_section));
2174 type_section.s.asection = sectp;
2175 type_section.size = bfd_get_section_size (sectp);
2176
2177 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
2178 &type_section);
2179 }
2180 else if (section_is_p (sectp->name, &names->gdb_index))
2181 {
2182 dwarf2_per_objfile->gdb_index.s.asection = sectp;
2183 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
2184 }
2185
2186 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
2187 && bfd_section_vma (abfd, sectp) == 0)
2188 dwarf2_per_objfile->has_section_at_zero = 1;
2189 }
2190
2191 /* A helper function that decides whether a section is empty,
2192 or not present. */
2193
2194 static int
2195 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2196 {
2197 if (section->is_virtual)
2198 return section->size == 0;
2199 return section->s.asection == NULL || section->size == 0;
2200 }
2201
2202 /* Read the contents of the section INFO.
2203 OBJFILE is the main object file, but not necessarily the file where
2204 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2205 of the DWO file.
2206 If the section is compressed, uncompress it before returning. */
2207
2208 static void
2209 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
2210 {
2211 asection *sectp;
2212 bfd *abfd;
2213 gdb_byte *buf, *retbuf;
2214
2215 if (info->readin)
2216 return;
2217 info->buffer = NULL;
2218 info->readin = 1;
2219
2220 if (dwarf2_section_empty_p (info))
2221 return;
2222
2223 sectp = get_section_bfd_section (info);
2224
2225 /* If this is a virtual section we need to read in the real one first. */
2226 if (info->is_virtual)
2227 {
2228 struct dwarf2_section_info *containing_section =
2229 get_containing_section (info);
2230
2231 gdb_assert (sectp != NULL);
2232 if ((sectp->flags & SEC_RELOC) != 0)
2233 {
2234 error (_("Dwarf Error: DWP format V2 with relocations is not"
2235 " supported in section %s [in module %s]"),
2236 get_section_name (info), get_section_file_name (info));
2237 }
2238 dwarf2_read_section (objfile, containing_section);
2239 /* Other code should have already caught virtual sections that don't
2240 fit. */
2241 gdb_assert (info->virtual_offset + info->size
2242 <= containing_section->size);
2243 /* If the real section is empty or there was a problem reading the
2244 section we shouldn't get here. */
2245 gdb_assert (containing_section->buffer != NULL);
2246 info->buffer = containing_section->buffer + info->virtual_offset;
2247 return;
2248 }
2249
2250 /* If the section has relocations, we must read it ourselves.
2251 Otherwise we attach it to the BFD. */
2252 if ((sectp->flags & SEC_RELOC) == 0)
2253 {
2254 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2255 return;
2256 }
2257
2258 buf = obstack_alloc (&objfile->objfile_obstack, info->size);
2259 info->buffer = buf;
2260
2261 /* When debugging .o files, we may need to apply relocations; see
2262 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2263 We never compress sections in .o files, so we only need to
2264 try this when the section is not compressed. */
2265 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2266 if (retbuf != NULL)
2267 {
2268 info->buffer = retbuf;
2269 return;
2270 }
2271
2272 abfd = get_section_bfd_owner (info);
2273 gdb_assert (abfd != NULL);
2274
2275 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2276 || bfd_bread (buf, info->size, abfd) != info->size)
2277 {
2278 error (_("Dwarf Error: Can't read DWARF data"
2279 " in section %s [in module %s]"),
2280 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2281 }
2282 }
2283
2284 /* A helper function that returns the size of a section in a safe way.
2285 If you are positive that the section has been read before using the
2286 size, then it is safe to refer to the dwarf2_section_info object's
2287 "size" field directly. In other cases, you must call this
2288 function, because for compressed sections the size field is not set
2289 correctly until the section has been read. */
2290
2291 static bfd_size_type
2292 dwarf2_section_size (struct objfile *objfile,
2293 struct dwarf2_section_info *info)
2294 {
2295 if (!info->readin)
2296 dwarf2_read_section (objfile, info);
2297 return info->size;
2298 }
2299
2300 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2301 SECTION_NAME. */
2302
2303 void
2304 dwarf2_get_section_info (struct objfile *objfile,
2305 enum dwarf2_section_enum sect,
2306 asection **sectp, const gdb_byte **bufp,
2307 bfd_size_type *sizep)
2308 {
2309 struct dwarf2_per_objfile *data
2310 = objfile_data (objfile, dwarf2_objfile_data_key);
2311 struct dwarf2_section_info *info;
2312
2313 /* We may see an objfile without any DWARF, in which case we just
2314 return nothing. */
2315 if (data == NULL)
2316 {
2317 *sectp = NULL;
2318 *bufp = NULL;
2319 *sizep = 0;
2320 return;
2321 }
2322 switch (sect)
2323 {
2324 case DWARF2_DEBUG_FRAME:
2325 info = &data->frame;
2326 break;
2327 case DWARF2_EH_FRAME:
2328 info = &data->eh_frame;
2329 break;
2330 default:
2331 gdb_assert_not_reached ("unexpected section");
2332 }
2333
2334 dwarf2_read_section (objfile, info);
2335
2336 *sectp = get_section_bfd_section (info);
2337 *bufp = info->buffer;
2338 *sizep = info->size;
2339 }
2340
2341 /* A helper function to find the sections for a .dwz file. */
2342
2343 static void
2344 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2345 {
2346 struct dwz_file *dwz_file = arg;
2347
2348 /* Note that we only support the standard ELF names, because .dwz
2349 is ELF-only (at the time of writing). */
2350 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2351 {
2352 dwz_file->abbrev.s.asection = sectp;
2353 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2354 }
2355 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2356 {
2357 dwz_file->info.s.asection = sectp;
2358 dwz_file->info.size = bfd_get_section_size (sectp);
2359 }
2360 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2361 {
2362 dwz_file->str.s.asection = sectp;
2363 dwz_file->str.size = bfd_get_section_size (sectp);
2364 }
2365 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2366 {
2367 dwz_file->line.s.asection = sectp;
2368 dwz_file->line.size = bfd_get_section_size (sectp);
2369 }
2370 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2371 {
2372 dwz_file->macro.s.asection = sectp;
2373 dwz_file->macro.size = bfd_get_section_size (sectp);
2374 }
2375 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2376 {
2377 dwz_file->gdb_index.s.asection = sectp;
2378 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2379 }
2380 }
2381
2382 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2383 there is no .gnu_debugaltlink section in the file. Error if there
2384 is such a section but the file cannot be found. */
2385
2386 static struct dwz_file *
2387 dwarf2_get_dwz_file (void)
2388 {
2389 bfd *dwz_bfd;
2390 char *data;
2391 struct cleanup *cleanup;
2392 const char *filename;
2393 struct dwz_file *result;
2394 bfd_size_type buildid_len_arg;
2395 size_t buildid_len;
2396 bfd_byte *buildid;
2397
2398 if (dwarf2_per_objfile->dwz_file != NULL)
2399 return dwarf2_per_objfile->dwz_file;
2400
2401 bfd_set_error (bfd_error_no_error);
2402 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2403 &buildid_len_arg, &buildid);
2404 if (data == NULL)
2405 {
2406 if (bfd_get_error () == bfd_error_no_error)
2407 return NULL;
2408 error (_("could not read '.gnu_debugaltlink' section: %s"),
2409 bfd_errmsg (bfd_get_error ()));
2410 }
2411 cleanup = make_cleanup (xfree, data);
2412 make_cleanup (xfree, buildid);
2413
2414 buildid_len = (size_t) buildid_len_arg;
2415
2416 filename = (const char *) data;
2417 if (!IS_ABSOLUTE_PATH (filename))
2418 {
2419 char *abs = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2420 char *rel;
2421
2422 make_cleanup (xfree, abs);
2423 abs = ldirname (abs);
2424 make_cleanup (xfree, abs);
2425
2426 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2427 make_cleanup (xfree, rel);
2428 filename = rel;
2429 }
2430
2431 /* First try the file name given in the section. If that doesn't
2432 work, try to use the build-id instead. */
2433 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
2434 if (dwz_bfd != NULL)
2435 {
2436 if (!build_id_verify (dwz_bfd, buildid_len, buildid))
2437 {
2438 gdb_bfd_unref (dwz_bfd);
2439 dwz_bfd = NULL;
2440 }
2441 }
2442
2443 if (dwz_bfd == NULL)
2444 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2445
2446 if (dwz_bfd == NULL)
2447 error (_("could not find '.gnu_debugaltlink' file for %s"),
2448 objfile_name (dwarf2_per_objfile->objfile));
2449
2450 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2451 struct dwz_file);
2452 result->dwz_bfd = dwz_bfd;
2453
2454 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2455
2456 do_cleanups (cleanup);
2457
2458 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, dwz_bfd);
2459 dwarf2_per_objfile->dwz_file = result;
2460 return result;
2461 }
2462 \f
2463 /* DWARF quick_symbols_functions support. */
2464
2465 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2466 unique line tables, so we maintain a separate table of all .debug_line
2467 derived entries to support the sharing.
2468 All the quick functions need is the list of file names. We discard the
2469 line_header when we're done and don't need to record it here. */
2470 struct quick_file_names
2471 {
2472 /* The data used to construct the hash key. */
2473 struct stmt_list_hash hash;
2474
2475 /* The number of entries in file_names, real_names. */
2476 unsigned int num_file_names;
2477
2478 /* The file names from the line table, after being run through
2479 file_full_name. */
2480 const char **file_names;
2481
2482 /* The file names from the line table after being run through
2483 gdb_realpath. These are computed lazily. */
2484 const char **real_names;
2485 };
2486
2487 /* When using the index (and thus not using psymtabs), each CU has an
2488 object of this type. This is used to hold information needed by
2489 the various "quick" methods. */
2490 struct dwarf2_per_cu_quick_data
2491 {
2492 /* The file table. This can be NULL if there was no file table
2493 or it's currently not read in.
2494 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2495 struct quick_file_names *file_names;
2496
2497 /* The corresponding symbol table. This is NULL if symbols for this
2498 CU have not yet been read. */
2499 struct compunit_symtab *compunit_symtab;
2500
2501 /* A temporary mark bit used when iterating over all CUs in
2502 expand_symtabs_matching. */
2503 unsigned int mark : 1;
2504
2505 /* True if we've tried to read the file table and found there isn't one.
2506 There will be no point in trying to read it again next time. */
2507 unsigned int no_file_data : 1;
2508 };
2509
2510 /* Utility hash function for a stmt_list_hash. */
2511
2512 static hashval_t
2513 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2514 {
2515 hashval_t v = 0;
2516
2517 if (stmt_list_hash->dwo_unit != NULL)
2518 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2519 v += stmt_list_hash->line_offset.sect_off;
2520 return v;
2521 }
2522
2523 /* Utility equality function for a stmt_list_hash. */
2524
2525 static int
2526 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2527 const struct stmt_list_hash *rhs)
2528 {
2529 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2530 return 0;
2531 if (lhs->dwo_unit != NULL
2532 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2533 return 0;
2534
2535 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2536 }
2537
2538 /* Hash function for a quick_file_names. */
2539
2540 static hashval_t
2541 hash_file_name_entry (const void *e)
2542 {
2543 const struct quick_file_names *file_data = e;
2544
2545 return hash_stmt_list_entry (&file_data->hash);
2546 }
2547
2548 /* Equality function for a quick_file_names. */
2549
2550 static int
2551 eq_file_name_entry (const void *a, const void *b)
2552 {
2553 const struct quick_file_names *ea = a;
2554 const struct quick_file_names *eb = b;
2555
2556 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2557 }
2558
2559 /* Delete function for a quick_file_names. */
2560
2561 static void
2562 delete_file_name_entry (void *e)
2563 {
2564 struct quick_file_names *file_data = e;
2565 int i;
2566
2567 for (i = 0; i < file_data->num_file_names; ++i)
2568 {
2569 xfree ((void*) file_data->file_names[i]);
2570 if (file_data->real_names)
2571 xfree ((void*) file_data->real_names[i]);
2572 }
2573
2574 /* The space for the struct itself lives on objfile_obstack,
2575 so we don't free it here. */
2576 }
2577
2578 /* Create a quick_file_names hash table. */
2579
2580 static htab_t
2581 create_quick_file_names_table (unsigned int nr_initial_entries)
2582 {
2583 return htab_create_alloc (nr_initial_entries,
2584 hash_file_name_entry, eq_file_name_entry,
2585 delete_file_name_entry, xcalloc, xfree);
2586 }
2587
2588 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2589 have to be created afterwards. You should call age_cached_comp_units after
2590 processing PER_CU->CU. dw2_setup must have been already called. */
2591
2592 static void
2593 load_cu (struct dwarf2_per_cu_data *per_cu)
2594 {
2595 if (per_cu->is_debug_types)
2596 load_full_type_unit (per_cu);
2597 else
2598 load_full_comp_unit (per_cu, language_minimal);
2599
2600 gdb_assert (per_cu->cu != NULL);
2601
2602 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2603 }
2604
2605 /* Read in the symbols for PER_CU. */
2606
2607 static void
2608 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2609 {
2610 struct cleanup *back_to;
2611
2612 /* Skip type_unit_groups, reading the type units they contain
2613 is handled elsewhere. */
2614 if (IS_TYPE_UNIT_GROUP (per_cu))
2615 return;
2616
2617 back_to = make_cleanup (dwarf2_release_queue, NULL);
2618
2619 if (dwarf2_per_objfile->using_index
2620 ? per_cu->v.quick->compunit_symtab == NULL
2621 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2622 {
2623 queue_comp_unit (per_cu, language_minimal);
2624 load_cu (per_cu);
2625
2626 /* If we just loaded a CU from a DWO, and we're working with an index
2627 that may badly handle TUs, load all the TUs in that DWO as well.
2628 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2629 if (!per_cu->is_debug_types
2630 && per_cu->cu->dwo_unit != NULL
2631 && dwarf2_per_objfile->index_table != NULL
2632 && dwarf2_per_objfile->index_table->version <= 7
2633 /* DWP files aren't supported yet. */
2634 && get_dwp_file () == NULL)
2635 queue_and_load_all_dwo_tus (per_cu);
2636 }
2637
2638 process_queue ();
2639
2640 /* Age the cache, releasing compilation units that have not
2641 been used recently. */
2642 age_cached_comp_units ();
2643
2644 do_cleanups (back_to);
2645 }
2646
2647 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2648 the objfile from which this CU came. Returns the resulting symbol
2649 table. */
2650
2651 static struct compunit_symtab *
2652 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2653 {
2654 gdb_assert (dwarf2_per_objfile->using_index);
2655 if (!per_cu->v.quick->compunit_symtab)
2656 {
2657 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2658 increment_reading_symtab ();
2659 dw2_do_instantiate_symtab (per_cu);
2660 process_cu_includes ();
2661 do_cleanups (back_to);
2662 }
2663
2664 return per_cu->v.quick->compunit_symtab;
2665 }
2666
2667 /* Return the CU/TU given its index.
2668
2669 This is intended for loops like:
2670
2671 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2672 + dwarf2_per_objfile->n_type_units); ++i)
2673 {
2674 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
2675
2676 ...;
2677 }
2678 */
2679
2680 static struct dwarf2_per_cu_data *
2681 dw2_get_cutu (int index)
2682 {
2683 if (index >= dwarf2_per_objfile->n_comp_units)
2684 {
2685 index -= dwarf2_per_objfile->n_comp_units;
2686 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2687 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2688 }
2689
2690 return dwarf2_per_objfile->all_comp_units[index];
2691 }
2692
2693 /* Return the CU given its index.
2694 This differs from dw2_get_cutu in that it's for when you know INDEX
2695 refers to a CU. */
2696
2697 static struct dwarf2_per_cu_data *
2698 dw2_get_cu (int index)
2699 {
2700 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
2701
2702 return dwarf2_per_objfile->all_comp_units[index];
2703 }
2704
2705 /* A helper for create_cus_from_index that handles a given list of
2706 CUs. */
2707
2708 static void
2709 create_cus_from_index_list (struct objfile *objfile,
2710 const gdb_byte *cu_list, offset_type n_elements,
2711 struct dwarf2_section_info *section,
2712 int is_dwz,
2713 int base_offset)
2714 {
2715 offset_type i;
2716
2717 for (i = 0; i < n_elements; i += 2)
2718 {
2719 struct dwarf2_per_cu_data *the_cu;
2720 ULONGEST offset, length;
2721
2722 gdb_static_assert (sizeof (ULONGEST) >= 8);
2723 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2724 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2725 cu_list += 2 * 8;
2726
2727 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2728 struct dwarf2_per_cu_data);
2729 the_cu->offset.sect_off = offset;
2730 the_cu->length = length;
2731 the_cu->objfile = objfile;
2732 the_cu->section = section;
2733 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2734 struct dwarf2_per_cu_quick_data);
2735 the_cu->is_dwz = is_dwz;
2736 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
2737 }
2738 }
2739
2740 /* Read the CU list from the mapped index, and use it to create all
2741 the CU objects for this objfile. */
2742
2743 static void
2744 create_cus_from_index (struct objfile *objfile,
2745 const gdb_byte *cu_list, offset_type cu_list_elements,
2746 const gdb_byte *dwz_list, offset_type dwz_elements)
2747 {
2748 struct dwz_file *dwz;
2749
2750 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2751 dwarf2_per_objfile->all_comp_units
2752 = obstack_alloc (&objfile->objfile_obstack,
2753 dwarf2_per_objfile->n_comp_units
2754 * sizeof (struct dwarf2_per_cu_data *));
2755
2756 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2757 &dwarf2_per_objfile->info, 0, 0);
2758
2759 if (dwz_elements == 0)
2760 return;
2761
2762 dwz = dwarf2_get_dwz_file ();
2763 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2764 cu_list_elements / 2);
2765 }
2766
2767 /* Create the signatured type hash table from the index. */
2768
2769 static void
2770 create_signatured_type_table_from_index (struct objfile *objfile,
2771 struct dwarf2_section_info *section,
2772 const gdb_byte *bytes,
2773 offset_type elements)
2774 {
2775 offset_type i;
2776 htab_t sig_types_hash;
2777
2778 dwarf2_per_objfile->n_type_units
2779 = dwarf2_per_objfile->n_allocated_type_units
2780 = elements / 3;
2781 dwarf2_per_objfile->all_type_units
2782 = xmalloc (dwarf2_per_objfile->n_type_units
2783 * sizeof (struct signatured_type *));
2784
2785 sig_types_hash = allocate_signatured_type_table (objfile);
2786
2787 for (i = 0; i < elements; i += 3)
2788 {
2789 struct signatured_type *sig_type;
2790 ULONGEST offset, type_offset_in_tu, signature;
2791 void **slot;
2792
2793 gdb_static_assert (sizeof (ULONGEST) >= 8);
2794 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2795 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2796 BFD_ENDIAN_LITTLE);
2797 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2798 bytes += 3 * 8;
2799
2800 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2801 struct signatured_type);
2802 sig_type->signature = signature;
2803 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2804 sig_type->per_cu.is_debug_types = 1;
2805 sig_type->per_cu.section = section;
2806 sig_type->per_cu.offset.sect_off = offset;
2807 sig_type->per_cu.objfile = objfile;
2808 sig_type->per_cu.v.quick
2809 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2810 struct dwarf2_per_cu_quick_data);
2811
2812 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2813 *slot = sig_type;
2814
2815 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
2816 }
2817
2818 dwarf2_per_objfile->signatured_types = sig_types_hash;
2819 }
2820
2821 /* Read the address map data from the mapped index, and use it to
2822 populate the objfile's psymtabs_addrmap. */
2823
2824 static void
2825 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2826 {
2827 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2828 const gdb_byte *iter, *end;
2829 struct obstack temp_obstack;
2830 struct addrmap *mutable_map;
2831 struct cleanup *cleanup;
2832 CORE_ADDR baseaddr;
2833
2834 obstack_init (&temp_obstack);
2835 cleanup = make_cleanup_obstack_free (&temp_obstack);
2836 mutable_map = addrmap_create_mutable (&temp_obstack);
2837
2838 iter = index->address_table;
2839 end = iter + index->address_table_size;
2840
2841 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2842
2843 while (iter < end)
2844 {
2845 ULONGEST hi, lo, cu_index;
2846 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2847 iter += 8;
2848 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2849 iter += 8;
2850 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2851 iter += 4;
2852
2853 if (lo > hi)
2854 {
2855 complaint (&symfile_complaints,
2856 _(".gdb_index address table has invalid range (%s - %s)"),
2857 hex_string (lo), hex_string (hi));
2858 continue;
2859 }
2860
2861 if (cu_index >= dwarf2_per_objfile->n_comp_units)
2862 {
2863 complaint (&symfile_complaints,
2864 _(".gdb_index address table has invalid CU number %u"),
2865 (unsigned) cu_index);
2866 continue;
2867 }
2868
2869 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
2870 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
2871 addrmap_set_empty (mutable_map, lo, hi - 1, dw2_get_cutu (cu_index));
2872 }
2873
2874 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2875 &objfile->objfile_obstack);
2876 do_cleanups (cleanup);
2877 }
2878
2879 /* The hash function for strings in the mapped index. This is the same as
2880 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2881 implementation. This is necessary because the hash function is tied to the
2882 format of the mapped index file. The hash values do not have to match with
2883 SYMBOL_HASH_NEXT.
2884
2885 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2886
2887 static hashval_t
2888 mapped_index_string_hash (int index_version, const void *p)
2889 {
2890 const unsigned char *str = (const unsigned char *) p;
2891 hashval_t r = 0;
2892 unsigned char c;
2893
2894 while ((c = *str++) != 0)
2895 {
2896 if (index_version >= 5)
2897 c = tolower (c);
2898 r = r * 67 + c - 113;
2899 }
2900
2901 return r;
2902 }
2903
2904 /* Find a slot in the mapped index INDEX for the object named NAME.
2905 If NAME is found, set *VEC_OUT to point to the CU vector in the
2906 constant pool and return 1. If NAME cannot be found, return 0. */
2907
2908 static int
2909 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2910 offset_type **vec_out)
2911 {
2912 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2913 offset_type hash;
2914 offset_type slot, step;
2915 int (*cmp) (const char *, const char *);
2916
2917 if (current_language->la_language == language_cplus
2918 || current_language->la_language == language_java
2919 || current_language->la_language == language_fortran)
2920 {
2921 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2922 not contain any. */
2923
2924 if (strchr (name, '(') != NULL)
2925 {
2926 char *without_params = cp_remove_params (name);
2927
2928 if (without_params != NULL)
2929 {
2930 make_cleanup (xfree, without_params);
2931 name = without_params;
2932 }
2933 }
2934 }
2935
2936 /* Index version 4 did not support case insensitive searches. But the
2937 indices for case insensitive languages are built in lowercase, therefore
2938 simulate our NAME being searched is also lowercased. */
2939 hash = mapped_index_string_hash ((index->version == 4
2940 && case_sensitivity == case_sensitive_off
2941 ? 5 : index->version),
2942 name);
2943
2944 slot = hash & (index->symbol_table_slots - 1);
2945 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
2946 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
2947
2948 for (;;)
2949 {
2950 /* Convert a slot number to an offset into the table. */
2951 offset_type i = 2 * slot;
2952 const char *str;
2953 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
2954 {
2955 do_cleanups (back_to);
2956 return 0;
2957 }
2958
2959 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
2960 if (!cmp (name, str))
2961 {
2962 *vec_out = (offset_type *) (index->constant_pool
2963 + MAYBE_SWAP (index->symbol_table[i + 1]));
2964 do_cleanups (back_to);
2965 return 1;
2966 }
2967
2968 slot = (slot + step) & (index->symbol_table_slots - 1);
2969 }
2970 }
2971
2972 /* A helper function that reads the .gdb_index from SECTION and fills
2973 in MAP. FILENAME is the name of the file containing the section;
2974 it is used for error reporting. DEPRECATED_OK is nonzero if it is
2975 ok to use deprecated sections.
2976
2977 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
2978 out parameters that are filled in with information about the CU and
2979 TU lists in the section.
2980
2981 Returns 1 if all went well, 0 otherwise. */
2982
2983 static int
2984 read_index_from_section (struct objfile *objfile,
2985 const char *filename,
2986 int deprecated_ok,
2987 struct dwarf2_section_info *section,
2988 struct mapped_index *map,
2989 const gdb_byte **cu_list,
2990 offset_type *cu_list_elements,
2991 const gdb_byte **types_list,
2992 offset_type *types_list_elements)
2993 {
2994 const gdb_byte *addr;
2995 offset_type version;
2996 offset_type *metadata;
2997 int i;
2998
2999 if (dwarf2_section_empty_p (section))
3000 return 0;
3001
3002 /* Older elfutils strip versions could keep the section in the main
3003 executable while splitting it for the separate debug info file. */
3004 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
3005 return 0;
3006
3007 dwarf2_read_section (objfile, section);
3008
3009 addr = section->buffer;
3010 /* Version check. */
3011 version = MAYBE_SWAP (*(offset_type *) addr);
3012 /* Versions earlier than 3 emitted every copy of a psymbol. This
3013 causes the index to behave very poorly for certain requests. Version 3
3014 contained incomplete addrmap. So, it seems better to just ignore such
3015 indices. */
3016 if (version < 4)
3017 {
3018 static int warning_printed = 0;
3019 if (!warning_printed)
3020 {
3021 warning (_("Skipping obsolete .gdb_index section in %s."),
3022 filename);
3023 warning_printed = 1;
3024 }
3025 return 0;
3026 }
3027 /* Index version 4 uses a different hash function than index version
3028 5 and later.
3029
3030 Versions earlier than 6 did not emit psymbols for inlined
3031 functions. Using these files will cause GDB not to be able to
3032 set breakpoints on inlined functions by name, so we ignore these
3033 indices unless the user has done
3034 "set use-deprecated-index-sections on". */
3035 if (version < 6 && !deprecated_ok)
3036 {
3037 static int warning_printed = 0;
3038 if (!warning_printed)
3039 {
3040 warning (_("\
3041 Skipping deprecated .gdb_index section in %s.\n\
3042 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3043 to use the section anyway."),
3044 filename);
3045 warning_printed = 1;
3046 }
3047 return 0;
3048 }
3049 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3050 of the TU (for symbols coming from TUs),
3051 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3052 Plus gold-generated indices can have duplicate entries for global symbols,
3053 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3054 These are just performance bugs, and we can't distinguish gdb-generated
3055 indices from gold-generated ones, so issue no warning here. */
3056
3057 /* Indexes with higher version than the one supported by GDB may be no
3058 longer backward compatible. */
3059 if (version > 8)
3060 return 0;
3061
3062 map->version = version;
3063 map->total_size = section->size;
3064
3065 metadata = (offset_type *) (addr + sizeof (offset_type));
3066
3067 i = 0;
3068 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3069 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3070 / 8);
3071 ++i;
3072
3073 *types_list = addr + MAYBE_SWAP (metadata[i]);
3074 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3075 - MAYBE_SWAP (metadata[i]))
3076 / 8);
3077 ++i;
3078
3079 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3080 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3081 - MAYBE_SWAP (metadata[i]));
3082 ++i;
3083
3084 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3085 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3086 - MAYBE_SWAP (metadata[i]))
3087 / (2 * sizeof (offset_type)));
3088 ++i;
3089
3090 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3091
3092 return 1;
3093 }
3094
3095
3096 /* Read the index file. If everything went ok, initialize the "quick"
3097 elements of all the CUs and return 1. Otherwise, return 0. */
3098
3099 static int
3100 dwarf2_read_index (struct objfile *objfile)
3101 {
3102 struct mapped_index local_map, *map;
3103 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3104 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3105 struct dwz_file *dwz;
3106
3107 if (!read_index_from_section (objfile, objfile_name (objfile),
3108 use_deprecated_index_sections,
3109 &dwarf2_per_objfile->gdb_index, &local_map,
3110 &cu_list, &cu_list_elements,
3111 &types_list, &types_list_elements))
3112 return 0;
3113
3114 /* Don't use the index if it's empty. */
3115 if (local_map.symbol_table_slots == 0)
3116 return 0;
3117
3118 /* If there is a .dwz file, read it so we can get its CU list as
3119 well. */
3120 dwz = dwarf2_get_dwz_file ();
3121 if (dwz != NULL)
3122 {
3123 struct mapped_index dwz_map;
3124 const gdb_byte *dwz_types_ignore;
3125 offset_type dwz_types_elements_ignore;
3126
3127 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3128 1,
3129 &dwz->gdb_index, &dwz_map,
3130 &dwz_list, &dwz_list_elements,
3131 &dwz_types_ignore,
3132 &dwz_types_elements_ignore))
3133 {
3134 warning (_("could not read '.gdb_index' section from %s; skipping"),
3135 bfd_get_filename (dwz->dwz_bfd));
3136 return 0;
3137 }
3138 }
3139
3140 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3141 dwz_list_elements);
3142
3143 if (types_list_elements)
3144 {
3145 struct dwarf2_section_info *section;
3146
3147 /* We can only handle a single .debug_types when we have an
3148 index. */
3149 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3150 return 0;
3151
3152 section = VEC_index (dwarf2_section_info_def,
3153 dwarf2_per_objfile->types, 0);
3154
3155 create_signatured_type_table_from_index (objfile, section, types_list,
3156 types_list_elements);
3157 }
3158
3159 create_addrmap_from_index (objfile, &local_map);
3160
3161 map = obstack_alloc (&objfile->objfile_obstack, sizeof (struct mapped_index));
3162 *map = local_map;
3163
3164 dwarf2_per_objfile->index_table = map;
3165 dwarf2_per_objfile->using_index = 1;
3166 dwarf2_per_objfile->quick_file_names_table =
3167 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3168
3169 return 1;
3170 }
3171
3172 /* A helper for the "quick" functions which sets the global
3173 dwarf2_per_objfile according to OBJFILE. */
3174
3175 static void
3176 dw2_setup (struct objfile *objfile)
3177 {
3178 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
3179 gdb_assert (dwarf2_per_objfile);
3180 }
3181
3182 /* die_reader_func for dw2_get_file_names. */
3183
3184 static void
3185 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3186 const gdb_byte *info_ptr,
3187 struct die_info *comp_unit_die,
3188 int has_children,
3189 void *data)
3190 {
3191 struct dwarf2_cu *cu = reader->cu;
3192 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3193 struct objfile *objfile = dwarf2_per_objfile->objfile;
3194 struct dwarf2_per_cu_data *lh_cu;
3195 struct line_header *lh;
3196 struct attribute *attr;
3197 int i;
3198 const char *name, *comp_dir;
3199 void **slot;
3200 struct quick_file_names *qfn;
3201 unsigned int line_offset;
3202
3203 gdb_assert (! this_cu->is_debug_types);
3204
3205 /* Our callers never want to match partial units -- instead they
3206 will match the enclosing full CU. */
3207 if (comp_unit_die->tag == DW_TAG_partial_unit)
3208 {
3209 this_cu->v.quick->no_file_data = 1;
3210 return;
3211 }
3212
3213 lh_cu = this_cu;
3214 lh = NULL;
3215 slot = NULL;
3216 line_offset = 0;
3217
3218 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3219 if (attr)
3220 {
3221 struct quick_file_names find_entry;
3222
3223 line_offset = DW_UNSND (attr);
3224
3225 /* We may have already read in this line header (TU line header sharing).
3226 If we have we're done. */
3227 find_entry.hash.dwo_unit = cu->dwo_unit;
3228 find_entry.hash.line_offset.sect_off = line_offset;
3229 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3230 &find_entry, INSERT);
3231 if (*slot != NULL)
3232 {
3233 lh_cu->v.quick->file_names = *slot;
3234 return;
3235 }
3236
3237 lh = dwarf_decode_line_header (line_offset, cu);
3238 }
3239 if (lh == NULL)
3240 {
3241 lh_cu->v.quick->no_file_data = 1;
3242 return;
3243 }
3244
3245 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
3246 qfn->hash.dwo_unit = cu->dwo_unit;
3247 qfn->hash.line_offset.sect_off = line_offset;
3248 gdb_assert (slot != NULL);
3249 *slot = qfn;
3250
3251 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
3252
3253 qfn->num_file_names = lh->num_file_names;
3254 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
3255 lh->num_file_names * sizeof (char *));
3256 for (i = 0; i < lh->num_file_names; ++i)
3257 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
3258 qfn->real_names = NULL;
3259
3260 free_line_header (lh);
3261
3262 lh_cu->v.quick->file_names = qfn;
3263 }
3264
3265 /* A helper for the "quick" functions which attempts to read the line
3266 table for THIS_CU. */
3267
3268 static struct quick_file_names *
3269 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3270 {
3271 /* This should never be called for TUs. */
3272 gdb_assert (! this_cu->is_debug_types);
3273 /* Nor type unit groups. */
3274 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3275
3276 if (this_cu->v.quick->file_names != NULL)
3277 return this_cu->v.quick->file_names;
3278 /* If we know there is no line data, no point in looking again. */
3279 if (this_cu->v.quick->no_file_data)
3280 return NULL;
3281
3282 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3283
3284 if (this_cu->v.quick->no_file_data)
3285 return NULL;
3286 return this_cu->v.quick->file_names;
3287 }
3288
3289 /* A helper for the "quick" functions which computes and caches the
3290 real path for a given file name from the line table. */
3291
3292 static const char *
3293 dw2_get_real_path (struct objfile *objfile,
3294 struct quick_file_names *qfn, int index)
3295 {
3296 if (qfn->real_names == NULL)
3297 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3298 qfn->num_file_names, const char *);
3299
3300 if (qfn->real_names[index] == NULL)
3301 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
3302
3303 return qfn->real_names[index];
3304 }
3305
3306 static struct symtab *
3307 dw2_find_last_source_symtab (struct objfile *objfile)
3308 {
3309 struct compunit_symtab *cust;
3310 int index;
3311
3312 dw2_setup (objfile);
3313 index = dwarf2_per_objfile->n_comp_units - 1;
3314 cust = dw2_instantiate_symtab (dw2_get_cutu (index));
3315 if (cust == NULL)
3316 return NULL;
3317 return compunit_primary_filetab (cust);
3318 }
3319
3320 /* Traversal function for dw2_forget_cached_source_info. */
3321
3322 static int
3323 dw2_free_cached_file_names (void **slot, void *info)
3324 {
3325 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3326
3327 if (file_data->real_names)
3328 {
3329 int i;
3330
3331 for (i = 0; i < file_data->num_file_names; ++i)
3332 {
3333 xfree ((void*) file_data->real_names[i]);
3334 file_data->real_names[i] = NULL;
3335 }
3336 }
3337
3338 return 1;
3339 }
3340
3341 static void
3342 dw2_forget_cached_source_info (struct objfile *objfile)
3343 {
3344 dw2_setup (objfile);
3345
3346 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3347 dw2_free_cached_file_names, NULL);
3348 }
3349
3350 /* Helper function for dw2_map_symtabs_matching_filename that expands
3351 the symtabs and calls the iterator. */
3352
3353 static int
3354 dw2_map_expand_apply (struct objfile *objfile,
3355 struct dwarf2_per_cu_data *per_cu,
3356 const char *name, const char *real_path,
3357 int (*callback) (struct symtab *, void *),
3358 void *data)
3359 {
3360 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3361
3362 /* Don't visit already-expanded CUs. */
3363 if (per_cu->v.quick->compunit_symtab)
3364 return 0;
3365
3366 /* This may expand more than one symtab, and we want to iterate over
3367 all of them. */
3368 dw2_instantiate_symtab (per_cu);
3369
3370 return iterate_over_some_symtabs (name, real_path, callback, data,
3371 objfile->compunit_symtabs, last_made);
3372 }
3373
3374 /* Implementation of the map_symtabs_matching_filename method. */
3375
3376 static int
3377 dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
3378 const char *real_path,
3379 int (*callback) (struct symtab *, void *),
3380 void *data)
3381 {
3382 int i;
3383 const char *name_basename = lbasename (name);
3384
3385 dw2_setup (objfile);
3386
3387 /* The rule is CUs specify all the files, including those used by
3388 any TU, so there's no need to scan TUs here. */
3389
3390 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3391 {
3392 int j;
3393 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3394 struct quick_file_names *file_data;
3395
3396 /* We only need to look at symtabs not already expanded. */
3397 if (per_cu->v.quick->compunit_symtab)
3398 continue;
3399
3400 file_data = dw2_get_file_names (per_cu);
3401 if (file_data == NULL)
3402 continue;
3403
3404 for (j = 0; j < file_data->num_file_names; ++j)
3405 {
3406 const char *this_name = file_data->file_names[j];
3407 const char *this_real_name;
3408
3409 if (compare_filenames_for_search (this_name, name))
3410 {
3411 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3412 callback, data))
3413 return 1;
3414 continue;
3415 }
3416
3417 /* Before we invoke realpath, which can get expensive when many
3418 files are involved, do a quick comparison of the basenames. */
3419 if (! basenames_may_differ
3420 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3421 continue;
3422
3423 this_real_name = dw2_get_real_path (objfile, file_data, j);
3424 if (compare_filenames_for_search (this_real_name, name))
3425 {
3426 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3427 callback, data))
3428 return 1;
3429 continue;
3430 }
3431
3432 if (real_path != NULL)
3433 {
3434 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3435 gdb_assert (IS_ABSOLUTE_PATH (name));
3436 if (this_real_name != NULL
3437 && FILENAME_CMP (real_path, this_real_name) == 0)
3438 {
3439 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3440 callback, data))
3441 return 1;
3442 continue;
3443 }
3444 }
3445 }
3446 }
3447
3448 return 0;
3449 }
3450
3451 /* Struct used to manage iterating over all CUs looking for a symbol. */
3452
3453 struct dw2_symtab_iterator
3454 {
3455 /* The internalized form of .gdb_index. */
3456 struct mapped_index *index;
3457 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3458 int want_specific_block;
3459 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3460 Unused if !WANT_SPECIFIC_BLOCK. */
3461 int block_index;
3462 /* The kind of symbol we're looking for. */
3463 domain_enum domain;
3464 /* The list of CUs from the index entry of the symbol,
3465 or NULL if not found. */
3466 offset_type *vec;
3467 /* The next element in VEC to look at. */
3468 int next;
3469 /* The number of elements in VEC, or zero if there is no match. */
3470 int length;
3471 /* Have we seen a global version of the symbol?
3472 If so we can ignore all further global instances.
3473 This is to work around gold/15646, inefficient gold-generated
3474 indices. */
3475 int global_seen;
3476 };
3477
3478 /* Initialize the index symtab iterator ITER.
3479 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3480 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3481
3482 static void
3483 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3484 struct mapped_index *index,
3485 int want_specific_block,
3486 int block_index,
3487 domain_enum domain,
3488 const char *name)
3489 {
3490 iter->index = index;
3491 iter->want_specific_block = want_specific_block;
3492 iter->block_index = block_index;
3493 iter->domain = domain;
3494 iter->next = 0;
3495 iter->global_seen = 0;
3496
3497 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3498 iter->length = MAYBE_SWAP (*iter->vec);
3499 else
3500 {
3501 iter->vec = NULL;
3502 iter->length = 0;
3503 }
3504 }
3505
3506 /* Return the next matching CU or NULL if there are no more. */
3507
3508 static struct dwarf2_per_cu_data *
3509 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3510 {
3511 for ( ; iter->next < iter->length; ++iter->next)
3512 {
3513 offset_type cu_index_and_attrs =
3514 MAYBE_SWAP (iter->vec[iter->next + 1]);
3515 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3516 struct dwarf2_per_cu_data *per_cu;
3517 int want_static = iter->block_index != GLOBAL_BLOCK;
3518 /* This value is only valid for index versions >= 7. */
3519 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3520 gdb_index_symbol_kind symbol_kind =
3521 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3522 /* Only check the symbol attributes if they're present.
3523 Indices prior to version 7 don't record them,
3524 and indices >= 7 may elide them for certain symbols
3525 (gold does this). */
3526 int attrs_valid =
3527 (iter->index->version >= 7
3528 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3529
3530 /* Don't crash on bad data. */
3531 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3532 + dwarf2_per_objfile->n_type_units))
3533 {
3534 complaint (&symfile_complaints,
3535 _(".gdb_index entry has bad CU index"
3536 " [in module %s]"),
3537 objfile_name (dwarf2_per_objfile->objfile));
3538 continue;
3539 }
3540
3541 per_cu = dw2_get_cutu (cu_index);
3542
3543 /* Skip if already read in. */
3544 if (per_cu->v.quick->compunit_symtab)
3545 continue;
3546
3547 /* Check static vs global. */
3548 if (attrs_valid)
3549 {
3550 if (iter->want_specific_block
3551 && want_static != is_static)
3552 continue;
3553 /* Work around gold/15646. */
3554 if (!is_static && iter->global_seen)
3555 continue;
3556 if (!is_static)
3557 iter->global_seen = 1;
3558 }
3559
3560 /* Only check the symbol's kind if it has one. */
3561 if (attrs_valid)
3562 {
3563 switch (iter->domain)
3564 {
3565 case VAR_DOMAIN:
3566 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3567 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3568 /* Some types are also in VAR_DOMAIN. */
3569 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3570 continue;
3571 break;
3572 case STRUCT_DOMAIN:
3573 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3574 continue;
3575 break;
3576 case LABEL_DOMAIN:
3577 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3578 continue;
3579 break;
3580 default:
3581 break;
3582 }
3583 }
3584
3585 ++iter->next;
3586 return per_cu;
3587 }
3588
3589 return NULL;
3590 }
3591
3592 static struct compunit_symtab *
3593 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3594 const char *name, domain_enum domain)
3595 {
3596 struct compunit_symtab *stab_best = NULL;
3597 struct mapped_index *index;
3598
3599 dw2_setup (objfile);
3600
3601 index = dwarf2_per_objfile->index_table;
3602
3603 /* index is NULL if OBJF_READNOW. */
3604 if (index)
3605 {
3606 struct dw2_symtab_iterator iter;
3607 struct dwarf2_per_cu_data *per_cu;
3608
3609 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3610
3611 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3612 {
3613 struct symbol *sym = NULL;
3614 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
3615 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
3616 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3617
3618 /* Some caution must be observed with overloaded functions
3619 and methods, since the index will not contain any overload
3620 information (but NAME might contain it). */
3621 sym = block_lookup_symbol (block, name, domain);
3622
3623 if (sym && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3624 {
3625 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
3626 return stab;
3627
3628 stab_best = stab;
3629 }
3630
3631 /* Keep looking through other CUs. */
3632 }
3633 }
3634
3635 return stab_best;
3636 }
3637
3638 static void
3639 dw2_print_stats (struct objfile *objfile)
3640 {
3641 int i, total, count;
3642
3643 dw2_setup (objfile);
3644 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
3645 count = 0;
3646 for (i = 0; i < total; ++i)
3647 {
3648 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3649
3650 if (!per_cu->v.quick->compunit_symtab)
3651 ++count;
3652 }
3653 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3654 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3655 }
3656
3657 /* This dumps minimal information about the index.
3658 It is called via "mt print objfiles".
3659 One use is to verify .gdb_index has been loaded by the
3660 gdb.dwarf2/gdb-index.exp testcase. */
3661
3662 static void
3663 dw2_dump (struct objfile *objfile)
3664 {
3665 dw2_setup (objfile);
3666 gdb_assert (dwarf2_per_objfile->using_index);
3667 printf_filtered (".gdb_index:");
3668 if (dwarf2_per_objfile->index_table != NULL)
3669 {
3670 printf_filtered (" version %d\n",
3671 dwarf2_per_objfile->index_table->version);
3672 }
3673 else
3674 printf_filtered (" faked for \"readnow\"\n");
3675 printf_filtered ("\n");
3676 }
3677
3678 static void
3679 dw2_relocate (struct objfile *objfile,
3680 const struct section_offsets *new_offsets,
3681 const struct section_offsets *delta)
3682 {
3683 /* There's nothing to relocate here. */
3684 }
3685
3686 static void
3687 dw2_expand_symtabs_for_function (struct objfile *objfile,
3688 const char *func_name)
3689 {
3690 struct mapped_index *index;
3691
3692 dw2_setup (objfile);
3693
3694 index = dwarf2_per_objfile->index_table;
3695
3696 /* index is NULL if OBJF_READNOW. */
3697 if (index)
3698 {
3699 struct dw2_symtab_iterator iter;
3700 struct dwarf2_per_cu_data *per_cu;
3701
3702 /* Note: It doesn't matter what we pass for block_index here. */
3703 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3704 func_name);
3705
3706 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3707 dw2_instantiate_symtab (per_cu);
3708 }
3709 }
3710
3711 static void
3712 dw2_expand_all_symtabs (struct objfile *objfile)
3713 {
3714 int i;
3715
3716 dw2_setup (objfile);
3717
3718 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3719 + dwarf2_per_objfile->n_type_units); ++i)
3720 {
3721 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3722
3723 dw2_instantiate_symtab (per_cu);
3724 }
3725 }
3726
3727 static void
3728 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3729 const char *fullname)
3730 {
3731 int i;
3732
3733 dw2_setup (objfile);
3734
3735 /* We don't need to consider type units here.
3736 This is only called for examining code, e.g. expand_line_sal.
3737 There can be an order of magnitude (or more) more type units
3738 than comp units, and we avoid them if we can. */
3739
3740 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3741 {
3742 int j;
3743 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3744 struct quick_file_names *file_data;
3745
3746 /* We only need to look at symtabs not already expanded. */
3747 if (per_cu->v.quick->compunit_symtab)
3748 continue;
3749
3750 file_data = dw2_get_file_names (per_cu);
3751 if (file_data == NULL)
3752 continue;
3753
3754 for (j = 0; j < file_data->num_file_names; ++j)
3755 {
3756 const char *this_fullname = file_data->file_names[j];
3757
3758 if (filename_cmp (this_fullname, fullname) == 0)
3759 {
3760 dw2_instantiate_symtab (per_cu);
3761 break;
3762 }
3763 }
3764 }
3765 }
3766
3767 static void
3768 dw2_map_matching_symbols (struct objfile *objfile,
3769 const char * name, domain_enum namespace,
3770 int global,
3771 int (*callback) (struct block *,
3772 struct symbol *, void *),
3773 void *data, symbol_compare_ftype *match,
3774 symbol_compare_ftype *ordered_compare)
3775 {
3776 /* Currently unimplemented; used for Ada. The function can be called if the
3777 current language is Ada for a non-Ada objfile using GNU index. As Ada
3778 does not look for non-Ada symbols this function should just return. */
3779 }
3780
3781 static void
3782 dw2_expand_symtabs_matching
3783 (struct objfile *objfile,
3784 expand_symtabs_file_matcher_ftype *file_matcher,
3785 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
3786 enum search_domain kind,
3787 void *data)
3788 {
3789 int i;
3790 offset_type iter;
3791 struct mapped_index *index;
3792
3793 dw2_setup (objfile);
3794
3795 /* index_table is NULL if OBJF_READNOW. */
3796 if (!dwarf2_per_objfile->index_table)
3797 return;
3798 index = dwarf2_per_objfile->index_table;
3799
3800 if (file_matcher != NULL)
3801 {
3802 struct cleanup *cleanup;
3803 htab_t visited_found, visited_not_found;
3804
3805 visited_found = htab_create_alloc (10,
3806 htab_hash_pointer, htab_eq_pointer,
3807 NULL, xcalloc, xfree);
3808 cleanup = make_cleanup_htab_delete (visited_found);
3809 visited_not_found = htab_create_alloc (10,
3810 htab_hash_pointer, htab_eq_pointer,
3811 NULL, xcalloc, xfree);
3812 make_cleanup_htab_delete (visited_not_found);
3813
3814 /* The rule is CUs specify all the files, including those used by
3815 any TU, so there's no need to scan TUs here. */
3816
3817 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3818 {
3819 int j;
3820 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3821 struct quick_file_names *file_data;
3822 void **slot;
3823
3824 per_cu->v.quick->mark = 0;
3825
3826 /* We only need to look at symtabs not already expanded. */
3827 if (per_cu->v.quick->compunit_symtab)
3828 continue;
3829
3830 file_data = dw2_get_file_names (per_cu);
3831 if (file_data == NULL)
3832 continue;
3833
3834 if (htab_find (visited_not_found, file_data) != NULL)
3835 continue;
3836 else if (htab_find (visited_found, file_data) != NULL)
3837 {
3838 per_cu->v.quick->mark = 1;
3839 continue;
3840 }
3841
3842 for (j = 0; j < file_data->num_file_names; ++j)
3843 {
3844 const char *this_real_name;
3845
3846 if (file_matcher (file_data->file_names[j], data, 0))
3847 {
3848 per_cu->v.quick->mark = 1;
3849 break;
3850 }
3851
3852 /* Before we invoke realpath, which can get expensive when many
3853 files are involved, do a quick comparison of the basenames. */
3854 if (!basenames_may_differ
3855 && !file_matcher (lbasename (file_data->file_names[j]),
3856 data, 1))
3857 continue;
3858
3859 this_real_name = dw2_get_real_path (objfile, file_data, j);
3860 if (file_matcher (this_real_name, data, 0))
3861 {
3862 per_cu->v.quick->mark = 1;
3863 break;
3864 }
3865 }
3866
3867 slot = htab_find_slot (per_cu->v.quick->mark
3868 ? visited_found
3869 : visited_not_found,
3870 file_data, INSERT);
3871 *slot = file_data;
3872 }
3873
3874 do_cleanups (cleanup);
3875 }
3876
3877 for (iter = 0; iter < index->symbol_table_slots; ++iter)
3878 {
3879 offset_type idx = 2 * iter;
3880 const char *name;
3881 offset_type *vec, vec_len, vec_idx;
3882 int global_seen = 0;
3883
3884 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
3885 continue;
3886
3887 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
3888
3889 if (! (*symbol_matcher) (name, data))
3890 continue;
3891
3892 /* The name was matched, now expand corresponding CUs that were
3893 marked. */
3894 vec = (offset_type *) (index->constant_pool
3895 + MAYBE_SWAP (index->symbol_table[idx + 1]));
3896 vec_len = MAYBE_SWAP (vec[0]);
3897 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3898 {
3899 struct dwarf2_per_cu_data *per_cu;
3900 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
3901 /* This value is only valid for index versions >= 7. */
3902 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3903 gdb_index_symbol_kind symbol_kind =
3904 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3905 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3906 /* Only check the symbol attributes if they're present.
3907 Indices prior to version 7 don't record them,
3908 and indices >= 7 may elide them for certain symbols
3909 (gold does this). */
3910 int attrs_valid =
3911 (index->version >= 7
3912 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3913
3914 /* Work around gold/15646. */
3915 if (attrs_valid)
3916 {
3917 if (!is_static && global_seen)
3918 continue;
3919 if (!is_static)
3920 global_seen = 1;
3921 }
3922
3923 /* Only check the symbol's kind if it has one. */
3924 if (attrs_valid)
3925 {
3926 switch (kind)
3927 {
3928 case VARIABLES_DOMAIN:
3929 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
3930 continue;
3931 break;
3932 case FUNCTIONS_DOMAIN:
3933 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
3934 continue;
3935 break;
3936 case TYPES_DOMAIN:
3937 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3938 continue;
3939 break;
3940 default:
3941 break;
3942 }
3943 }
3944
3945 /* Don't crash on bad data. */
3946 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3947 + dwarf2_per_objfile->n_type_units))
3948 {
3949 complaint (&symfile_complaints,
3950 _(".gdb_index entry has bad CU index"
3951 " [in module %s]"), objfile_name (objfile));
3952 continue;
3953 }
3954
3955 per_cu = dw2_get_cutu (cu_index);
3956 if (file_matcher == NULL || per_cu->v.quick->mark)
3957 dw2_instantiate_symtab (per_cu);
3958 }
3959 }
3960 }
3961
3962 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
3963 symtab. */
3964
3965 static struct compunit_symtab *
3966 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
3967 CORE_ADDR pc)
3968 {
3969 int i;
3970
3971 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
3972 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
3973 return cust;
3974
3975 if (cust->includes == NULL)
3976 return NULL;
3977
3978 for (i = 0; cust->includes[i]; ++i)
3979 {
3980 struct compunit_symtab *s = cust->includes[i];
3981
3982 s = recursively_find_pc_sect_compunit_symtab (s, pc);
3983 if (s != NULL)
3984 return s;
3985 }
3986
3987 return NULL;
3988 }
3989
3990 static struct compunit_symtab *
3991 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
3992 struct bound_minimal_symbol msymbol,
3993 CORE_ADDR pc,
3994 struct obj_section *section,
3995 int warn_if_readin)
3996 {
3997 struct dwarf2_per_cu_data *data;
3998 struct compunit_symtab *result;
3999
4000 dw2_setup (objfile);
4001
4002 if (!objfile->psymtabs_addrmap)
4003 return NULL;
4004
4005 data = addrmap_find (objfile->psymtabs_addrmap, pc);
4006 if (!data)
4007 return NULL;
4008
4009 if (warn_if_readin && data->v.quick->compunit_symtab)
4010 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
4011 paddress (get_objfile_arch (objfile), pc));
4012
4013 result
4014 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data),
4015 pc);
4016 gdb_assert (result != NULL);
4017 return result;
4018 }
4019
4020 static void
4021 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
4022 void *data, int need_fullname)
4023 {
4024 int i;
4025 struct cleanup *cleanup;
4026 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
4027 NULL, xcalloc, xfree);
4028
4029 cleanup = make_cleanup_htab_delete (visited);
4030 dw2_setup (objfile);
4031
4032 /* The rule is CUs specify all the files, including those used by
4033 any TU, so there's no need to scan TUs here.
4034 We can ignore file names coming from already-expanded CUs. */
4035
4036 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4037 {
4038 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4039
4040 if (per_cu->v.quick->compunit_symtab)
4041 {
4042 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
4043 INSERT);
4044
4045 *slot = per_cu->v.quick->file_names;
4046 }
4047 }
4048
4049 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4050 {
4051 int j;
4052 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4053 struct quick_file_names *file_data;
4054 void **slot;
4055
4056 /* We only need to look at symtabs not already expanded. */
4057 if (per_cu->v.quick->compunit_symtab)
4058 continue;
4059
4060 file_data = dw2_get_file_names (per_cu);
4061 if (file_data == NULL)
4062 continue;
4063
4064 slot = htab_find_slot (visited, file_data, INSERT);
4065 if (*slot)
4066 {
4067 /* Already visited. */
4068 continue;
4069 }
4070 *slot = file_data;
4071
4072 for (j = 0; j < file_data->num_file_names; ++j)
4073 {
4074 const char *this_real_name;
4075
4076 if (need_fullname)
4077 this_real_name = dw2_get_real_path (objfile, file_data, j);
4078 else
4079 this_real_name = NULL;
4080 (*fun) (file_data->file_names[j], this_real_name, data);
4081 }
4082 }
4083
4084 do_cleanups (cleanup);
4085 }
4086
4087 static int
4088 dw2_has_symbols (struct objfile *objfile)
4089 {
4090 return 1;
4091 }
4092
4093 const struct quick_symbol_functions dwarf2_gdb_index_functions =
4094 {
4095 dw2_has_symbols,
4096 dw2_find_last_source_symtab,
4097 dw2_forget_cached_source_info,
4098 dw2_map_symtabs_matching_filename,
4099 dw2_lookup_symbol,
4100 dw2_print_stats,
4101 dw2_dump,
4102 dw2_relocate,
4103 dw2_expand_symtabs_for_function,
4104 dw2_expand_all_symtabs,
4105 dw2_expand_symtabs_with_fullname,
4106 dw2_map_matching_symbols,
4107 dw2_expand_symtabs_matching,
4108 dw2_find_pc_sect_compunit_symtab,
4109 dw2_map_symbol_filenames
4110 };
4111
4112 /* Initialize for reading DWARF for this objfile. Return 0 if this
4113 file will use psymtabs, or 1 if using the GNU index. */
4114
4115 int
4116 dwarf2_initialize_objfile (struct objfile *objfile)
4117 {
4118 /* If we're about to read full symbols, don't bother with the
4119 indices. In this case we also don't care if some other debug
4120 format is making psymtabs, because they are all about to be
4121 expanded anyway. */
4122 if ((objfile->flags & OBJF_READNOW))
4123 {
4124 int i;
4125
4126 dwarf2_per_objfile->using_index = 1;
4127 create_all_comp_units (objfile);
4128 create_all_type_units (objfile);
4129 dwarf2_per_objfile->quick_file_names_table =
4130 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
4131
4132 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
4133 + dwarf2_per_objfile->n_type_units); ++i)
4134 {
4135 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4136
4137 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4138 struct dwarf2_per_cu_quick_data);
4139 }
4140
4141 /* Return 1 so that gdb sees the "quick" functions. However,
4142 these functions will be no-ops because we will have expanded
4143 all symtabs. */
4144 return 1;
4145 }
4146
4147 if (dwarf2_read_index (objfile))
4148 return 1;
4149
4150 return 0;
4151 }
4152
4153 \f
4154
4155 /* Build a partial symbol table. */
4156
4157 void
4158 dwarf2_build_psymtabs (struct objfile *objfile)
4159 {
4160 volatile struct gdb_exception except;
4161
4162 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
4163 {
4164 init_psymbol_list (objfile, 1024);
4165 }
4166
4167 TRY_CATCH (except, RETURN_MASK_ERROR)
4168 {
4169 /* This isn't really ideal: all the data we allocate on the
4170 objfile's obstack is still uselessly kept around. However,
4171 freeing it seems unsafe. */
4172 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
4173
4174 dwarf2_build_psymtabs_hard (objfile);
4175 discard_cleanups (cleanups);
4176 }
4177 if (except.reason < 0)
4178 exception_print (gdb_stderr, except);
4179 }
4180
4181 /* Return the total length of the CU described by HEADER. */
4182
4183 static unsigned int
4184 get_cu_length (const struct comp_unit_head *header)
4185 {
4186 return header->initial_length_size + header->length;
4187 }
4188
4189 /* Return TRUE if OFFSET is within CU_HEADER. */
4190
4191 static inline int
4192 offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
4193 {
4194 sect_offset bottom = { cu_header->offset.sect_off };
4195 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
4196
4197 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
4198 }
4199
4200 /* Find the base address of the compilation unit for range lists and
4201 location lists. It will normally be specified by DW_AT_low_pc.
4202 In DWARF-3 draft 4, the base address could be overridden by
4203 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4204 compilation units with discontinuous ranges. */
4205
4206 static void
4207 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4208 {
4209 struct attribute *attr;
4210
4211 cu->base_known = 0;
4212 cu->base_address = 0;
4213
4214 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4215 if (attr)
4216 {
4217 cu->base_address = attr_value_as_address (attr);
4218 cu->base_known = 1;
4219 }
4220 else
4221 {
4222 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4223 if (attr)
4224 {
4225 cu->base_address = attr_value_as_address (attr);
4226 cu->base_known = 1;
4227 }
4228 }
4229 }
4230
4231 /* Read in the comp unit header information from the debug_info at info_ptr.
4232 NOTE: This leaves members offset, first_die_offset to be filled in
4233 by the caller. */
4234
4235 static const gdb_byte *
4236 read_comp_unit_head (struct comp_unit_head *cu_header,
4237 const gdb_byte *info_ptr, bfd *abfd)
4238 {
4239 int signed_addr;
4240 unsigned int bytes_read;
4241
4242 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4243 cu_header->initial_length_size = bytes_read;
4244 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
4245 info_ptr += bytes_read;
4246 cu_header->version = read_2_bytes (abfd, info_ptr);
4247 info_ptr += 2;
4248 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
4249 &bytes_read);
4250 info_ptr += bytes_read;
4251 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4252 info_ptr += 1;
4253 signed_addr = bfd_get_sign_extend_vma (abfd);
4254 if (signed_addr < 0)
4255 internal_error (__FILE__, __LINE__,
4256 _("read_comp_unit_head: dwarf from non elf file"));
4257 cu_header->signed_addr_p = signed_addr;
4258
4259 return info_ptr;
4260 }
4261
4262 /* Helper function that returns the proper abbrev section for
4263 THIS_CU. */
4264
4265 static struct dwarf2_section_info *
4266 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4267 {
4268 struct dwarf2_section_info *abbrev;
4269
4270 if (this_cu->is_dwz)
4271 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4272 else
4273 abbrev = &dwarf2_per_objfile->abbrev;
4274
4275 return abbrev;
4276 }
4277
4278 /* Subroutine of read_and_check_comp_unit_head and
4279 read_and_check_type_unit_head to simplify them.
4280 Perform various error checking on the header. */
4281
4282 static void
4283 error_check_comp_unit_head (struct comp_unit_head *header,
4284 struct dwarf2_section_info *section,
4285 struct dwarf2_section_info *abbrev_section)
4286 {
4287 bfd *abfd = get_section_bfd_owner (section);
4288 const char *filename = get_section_file_name (section);
4289
4290 if (header->version != 2 && header->version != 3 && header->version != 4)
4291 error (_("Dwarf Error: wrong version in compilation unit header "
4292 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
4293 filename);
4294
4295 if (header->abbrev_offset.sect_off
4296 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
4297 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
4298 "(offset 0x%lx + 6) [in module %s]"),
4299 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
4300 filename);
4301
4302 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4303 avoid potential 32-bit overflow. */
4304 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
4305 > section->size)
4306 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4307 "(offset 0x%lx + 0) [in module %s]"),
4308 (long) header->length, (long) header->offset.sect_off,
4309 filename);
4310 }
4311
4312 /* Read in a CU/TU header and perform some basic error checking.
4313 The contents of the header are stored in HEADER.
4314 The result is a pointer to the start of the first DIE. */
4315
4316 static const gdb_byte *
4317 read_and_check_comp_unit_head (struct comp_unit_head *header,
4318 struct dwarf2_section_info *section,
4319 struct dwarf2_section_info *abbrev_section,
4320 const gdb_byte *info_ptr,
4321 int is_debug_types_section)
4322 {
4323 const gdb_byte *beg_of_comp_unit = info_ptr;
4324 bfd *abfd = get_section_bfd_owner (section);
4325
4326 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4327
4328 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4329
4330 /* If we're reading a type unit, skip over the signature and
4331 type_offset fields. */
4332 if (is_debug_types_section)
4333 info_ptr += 8 /*signature*/ + header->offset_size;
4334
4335 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4336
4337 error_check_comp_unit_head (header, section, abbrev_section);
4338
4339 return info_ptr;
4340 }
4341
4342 /* Read in the types comp unit header information from .debug_types entry at
4343 types_ptr. The result is a pointer to one past the end of the header. */
4344
4345 static const gdb_byte *
4346 read_and_check_type_unit_head (struct comp_unit_head *header,
4347 struct dwarf2_section_info *section,
4348 struct dwarf2_section_info *abbrev_section,
4349 const gdb_byte *info_ptr,
4350 ULONGEST *signature,
4351 cu_offset *type_offset_in_tu)
4352 {
4353 const gdb_byte *beg_of_comp_unit = info_ptr;
4354 bfd *abfd = get_section_bfd_owner (section);
4355
4356 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4357
4358 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4359
4360 /* If we're reading a type unit, skip over the signature and
4361 type_offset fields. */
4362 if (signature != NULL)
4363 *signature = read_8_bytes (abfd, info_ptr);
4364 info_ptr += 8;
4365 if (type_offset_in_tu != NULL)
4366 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4367 header->offset_size);
4368 info_ptr += header->offset_size;
4369
4370 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4371
4372 error_check_comp_unit_head (header, section, abbrev_section);
4373
4374 return info_ptr;
4375 }
4376
4377 /* Fetch the abbreviation table offset from a comp or type unit header. */
4378
4379 static sect_offset
4380 read_abbrev_offset (struct dwarf2_section_info *section,
4381 sect_offset offset)
4382 {
4383 bfd *abfd = get_section_bfd_owner (section);
4384 const gdb_byte *info_ptr;
4385 unsigned int length, initial_length_size, offset_size;
4386 sect_offset abbrev_offset;
4387
4388 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4389 info_ptr = section->buffer + offset.sect_off;
4390 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4391 offset_size = initial_length_size == 4 ? 4 : 8;
4392 info_ptr += initial_length_size + 2 /*version*/;
4393 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4394 return abbrev_offset;
4395 }
4396
4397 /* Allocate a new partial symtab for file named NAME and mark this new
4398 partial symtab as being an include of PST. */
4399
4400 static void
4401 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
4402 struct objfile *objfile)
4403 {
4404 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4405
4406 if (!IS_ABSOLUTE_PATH (subpst->filename))
4407 {
4408 /* It shares objfile->objfile_obstack. */
4409 subpst->dirname = pst->dirname;
4410 }
4411
4412 subpst->section_offsets = pst->section_offsets;
4413 subpst->textlow = 0;
4414 subpst->texthigh = 0;
4415
4416 subpst->dependencies = (struct partial_symtab **)
4417 obstack_alloc (&objfile->objfile_obstack,
4418 sizeof (struct partial_symtab *));
4419 subpst->dependencies[0] = pst;
4420 subpst->number_of_dependencies = 1;
4421
4422 subpst->globals_offset = 0;
4423 subpst->n_global_syms = 0;
4424 subpst->statics_offset = 0;
4425 subpst->n_static_syms = 0;
4426 subpst->compunit_symtab = NULL;
4427 subpst->read_symtab = pst->read_symtab;
4428 subpst->readin = 0;
4429
4430 /* No private part is necessary for include psymtabs. This property
4431 can be used to differentiate between such include psymtabs and
4432 the regular ones. */
4433 subpst->read_symtab_private = NULL;
4434 }
4435
4436 /* Read the Line Number Program data and extract the list of files
4437 included by the source file represented by PST. Build an include
4438 partial symtab for each of these included files. */
4439
4440 static void
4441 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4442 struct die_info *die,
4443 struct partial_symtab *pst)
4444 {
4445 struct line_header *lh = NULL;
4446 struct attribute *attr;
4447
4448 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4449 if (attr)
4450 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
4451 if (lh == NULL)
4452 return; /* No linetable, so no includes. */
4453
4454 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4455 dwarf_decode_lines (lh, pst->dirname, cu, pst, pst->textlow);
4456
4457 free_line_header (lh);
4458 }
4459
4460 static hashval_t
4461 hash_signatured_type (const void *item)
4462 {
4463 const struct signatured_type *sig_type = item;
4464
4465 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4466 return sig_type->signature;
4467 }
4468
4469 static int
4470 eq_signatured_type (const void *item_lhs, const void *item_rhs)
4471 {
4472 const struct signatured_type *lhs = item_lhs;
4473 const struct signatured_type *rhs = item_rhs;
4474
4475 return lhs->signature == rhs->signature;
4476 }
4477
4478 /* Allocate a hash table for signatured types. */
4479
4480 static htab_t
4481 allocate_signatured_type_table (struct objfile *objfile)
4482 {
4483 return htab_create_alloc_ex (41,
4484 hash_signatured_type,
4485 eq_signatured_type,
4486 NULL,
4487 &objfile->objfile_obstack,
4488 hashtab_obstack_allocate,
4489 dummy_obstack_deallocate);
4490 }
4491
4492 /* A helper function to add a signatured type CU to a table. */
4493
4494 static int
4495 add_signatured_type_cu_to_table (void **slot, void *datum)
4496 {
4497 struct signatured_type *sigt = *slot;
4498 struct signatured_type ***datap = datum;
4499
4500 **datap = sigt;
4501 ++*datap;
4502
4503 return 1;
4504 }
4505
4506 /* Create the hash table of all entries in the .debug_types
4507 (or .debug_types.dwo) section(s).
4508 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4509 otherwise it is NULL.
4510
4511 The result is a pointer to the hash table or NULL if there are no types.
4512
4513 Note: This function processes DWO files only, not DWP files. */
4514
4515 static htab_t
4516 create_debug_types_hash_table (struct dwo_file *dwo_file,
4517 VEC (dwarf2_section_info_def) *types)
4518 {
4519 struct objfile *objfile = dwarf2_per_objfile->objfile;
4520 htab_t types_htab = NULL;
4521 int ix;
4522 struct dwarf2_section_info *section;
4523 struct dwarf2_section_info *abbrev_section;
4524
4525 if (VEC_empty (dwarf2_section_info_def, types))
4526 return NULL;
4527
4528 abbrev_section = (dwo_file != NULL
4529 ? &dwo_file->sections.abbrev
4530 : &dwarf2_per_objfile->abbrev);
4531
4532 if (dwarf2_read_debug)
4533 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4534 dwo_file ? ".dwo" : "",
4535 get_section_file_name (abbrev_section));
4536
4537 for (ix = 0;
4538 VEC_iterate (dwarf2_section_info_def, types, ix, section);
4539 ++ix)
4540 {
4541 bfd *abfd;
4542 const gdb_byte *info_ptr, *end_ptr;
4543
4544 dwarf2_read_section (objfile, section);
4545 info_ptr = section->buffer;
4546
4547 if (info_ptr == NULL)
4548 continue;
4549
4550 /* We can't set abfd until now because the section may be empty or
4551 not present, in which case the bfd is unknown. */
4552 abfd = get_section_bfd_owner (section);
4553
4554 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4555 because we don't need to read any dies: the signature is in the
4556 header. */
4557
4558 end_ptr = info_ptr + section->size;
4559 while (info_ptr < end_ptr)
4560 {
4561 sect_offset offset;
4562 cu_offset type_offset_in_tu;
4563 ULONGEST signature;
4564 struct signatured_type *sig_type;
4565 struct dwo_unit *dwo_tu;
4566 void **slot;
4567 const gdb_byte *ptr = info_ptr;
4568 struct comp_unit_head header;
4569 unsigned int length;
4570
4571 offset.sect_off = ptr - section->buffer;
4572
4573 /* We need to read the type's signature in order to build the hash
4574 table, but we don't need anything else just yet. */
4575
4576 ptr = read_and_check_type_unit_head (&header, section,
4577 abbrev_section, ptr,
4578 &signature, &type_offset_in_tu);
4579
4580 length = get_cu_length (&header);
4581
4582 /* Skip dummy type units. */
4583 if (ptr >= info_ptr + length
4584 || peek_abbrev_code (abfd, ptr) == 0)
4585 {
4586 info_ptr += length;
4587 continue;
4588 }
4589
4590 if (types_htab == NULL)
4591 {
4592 if (dwo_file)
4593 types_htab = allocate_dwo_unit_table (objfile);
4594 else
4595 types_htab = allocate_signatured_type_table (objfile);
4596 }
4597
4598 if (dwo_file)
4599 {
4600 sig_type = NULL;
4601 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4602 struct dwo_unit);
4603 dwo_tu->dwo_file = dwo_file;
4604 dwo_tu->signature = signature;
4605 dwo_tu->type_offset_in_tu = type_offset_in_tu;
4606 dwo_tu->section = section;
4607 dwo_tu->offset = offset;
4608 dwo_tu->length = length;
4609 }
4610 else
4611 {
4612 /* N.B.: type_offset is not usable if this type uses a DWO file.
4613 The real type_offset is in the DWO file. */
4614 dwo_tu = NULL;
4615 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4616 struct signatured_type);
4617 sig_type->signature = signature;
4618 sig_type->type_offset_in_tu = type_offset_in_tu;
4619 sig_type->per_cu.objfile = objfile;
4620 sig_type->per_cu.is_debug_types = 1;
4621 sig_type->per_cu.section = section;
4622 sig_type->per_cu.offset = offset;
4623 sig_type->per_cu.length = length;
4624 }
4625
4626 slot = htab_find_slot (types_htab,
4627 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4628 INSERT);
4629 gdb_assert (slot != NULL);
4630 if (*slot != NULL)
4631 {
4632 sect_offset dup_offset;
4633
4634 if (dwo_file)
4635 {
4636 const struct dwo_unit *dup_tu = *slot;
4637
4638 dup_offset = dup_tu->offset;
4639 }
4640 else
4641 {
4642 const struct signatured_type *dup_tu = *slot;
4643
4644 dup_offset = dup_tu->per_cu.offset;
4645 }
4646
4647 complaint (&symfile_complaints,
4648 _("debug type entry at offset 0x%x is duplicate to"
4649 " the entry at offset 0x%x, signature %s"),
4650 offset.sect_off, dup_offset.sect_off,
4651 hex_string (signature));
4652 }
4653 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4654
4655 if (dwarf2_read_debug > 1)
4656 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
4657 offset.sect_off,
4658 hex_string (signature));
4659
4660 info_ptr += length;
4661 }
4662 }
4663
4664 return types_htab;
4665 }
4666
4667 /* Create the hash table of all entries in the .debug_types section,
4668 and initialize all_type_units.
4669 The result is zero if there is an error (e.g. missing .debug_types section),
4670 otherwise non-zero. */
4671
4672 static int
4673 create_all_type_units (struct objfile *objfile)
4674 {
4675 htab_t types_htab;
4676 struct signatured_type **iter;
4677
4678 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4679 if (types_htab == NULL)
4680 {
4681 dwarf2_per_objfile->signatured_types = NULL;
4682 return 0;
4683 }
4684
4685 dwarf2_per_objfile->signatured_types = types_htab;
4686
4687 dwarf2_per_objfile->n_type_units
4688 = dwarf2_per_objfile->n_allocated_type_units
4689 = htab_elements (types_htab);
4690 dwarf2_per_objfile->all_type_units
4691 = xmalloc (dwarf2_per_objfile->n_type_units
4692 * sizeof (struct signatured_type *));
4693 iter = &dwarf2_per_objfile->all_type_units[0];
4694 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4695 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4696 == dwarf2_per_objfile->n_type_units);
4697
4698 return 1;
4699 }
4700
4701 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
4702 If SLOT is non-NULL, it is the entry to use in the hash table.
4703 Otherwise we find one. */
4704
4705 static struct signatured_type *
4706 add_type_unit (ULONGEST sig, void **slot)
4707 {
4708 struct objfile *objfile = dwarf2_per_objfile->objfile;
4709 int n_type_units = dwarf2_per_objfile->n_type_units;
4710 struct signatured_type *sig_type;
4711
4712 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
4713 ++n_type_units;
4714 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
4715 {
4716 if (dwarf2_per_objfile->n_allocated_type_units == 0)
4717 dwarf2_per_objfile->n_allocated_type_units = 1;
4718 dwarf2_per_objfile->n_allocated_type_units *= 2;
4719 dwarf2_per_objfile->all_type_units
4720 = xrealloc (dwarf2_per_objfile->all_type_units,
4721 dwarf2_per_objfile->n_allocated_type_units
4722 * sizeof (struct signatured_type *));
4723 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
4724 }
4725 dwarf2_per_objfile->n_type_units = n_type_units;
4726
4727 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4728 struct signatured_type);
4729 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4730 sig_type->signature = sig;
4731 sig_type->per_cu.is_debug_types = 1;
4732 if (dwarf2_per_objfile->using_index)
4733 {
4734 sig_type->per_cu.v.quick =
4735 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4736 struct dwarf2_per_cu_quick_data);
4737 }
4738
4739 if (slot == NULL)
4740 {
4741 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4742 sig_type, INSERT);
4743 }
4744 gdb_assert (*slot == NULL);
4745 *slot = sig_type;
4746 /* The rest of sig_type must be filled in by the caller. */
4747 return sig_type;
4748 }
4749
4750 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4751 Fill in SIG_ENTRY with DWO_ENTRY. */
4752
4753 static void
4754 fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4755 struct signatured_type *sig_entry,
4756 struct dwo_unit *dwo_entry)
4757 {
4758 /* Make sure we're not clobbering something we don't expect to. */
4759 gdb_assert (! sig_entry->per_cu.queued);
4760 gdb_assert (sig_entry->per_cu.cu == NULL);
4761 if (dwarf2_per_objfile->using_index)
4762 {
4763 gdb_assert (sig_entry->per_cu.v.quick != NULL);
4764 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
4765 }
4766 else
4767 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
4768 gdb_assert (sig_entry->signature == dwo_entry->signature);
4769 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4770 gdb_assert (sig_entry->type_unit_group == NULL);
4771 gdb_assert (sig_entry->dwo_unit == NULL);
4772
4773 sig_entry->per_cu.section = dwo_entry->section;
4774 sig_entry->per_cu.offset = dwo_entry->offset;
4775 sig_entry->per_cu.length = dwo_entry->length;
4776 sig_entry->per_cu.reading_dwo_directly = 1;
4777 sig_entry->per_cu.objfile = objfile;
4778 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4779 sig_entry->dwo_unit = dwo_entry;
4780 }
4781
4782 /* Subroutine of lookup_signatured_type.
4783 If we haven't read the TU yet, create the signatured_type data structure
4784 for a TU to be read in directly from a DWO file, bypassing the stub.
4785 This is the "Stay in DWO Optimization": When there is no DWP file and we're
4786 using .gdb_index, then when reading a CU we want to stay in the DWO file
4787 containing that CU. Otherwise we could end up reading several other DWO
4788 files (due to comdat folding) to process the transitive closure of all the
4789 mentioned TUs, and that can be slow. The current DWO file will have every
4790 type signature that it needs.
4791 We only do this for .gdb_index because in the psymtab case we already have
4792 to read all the DWOs to build the type unit groups. */
4793
4794 static struct signatured_type *
4795 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4796 {
4797 struct objfile *objfile = dwarf2_per_objfile->objfile;
4798 struct dwo_file *dwo_file;
4799 struct dwo_unit find_dwo_entry, *dwo_entry;
4800 struct signatured_type find_sig_entry, *sig_entry;
4801 void **slot;
4802
4803 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4804
4805 /* If TU skeletons have been removed then we may not have read in any
4806 TUs yet. */
4807 if (dwarf2_per_objfile->signatured_types == NULL)
4808 {
4809 dwarf2_per_objfile->signatured_types
4810 = allocate_signatured_type_table (objfile);
4811 }
4812
4813 /* We only ever need to read in one copy of a signatured type.
4814 Use the global signatured_types array to do our own comdat-folding
4815 of types. If this is the first time we're reading this TU, and
4816 the TU has an entry in .gdb_index, replace the recorded data from
4817 .gdb_index with this TU. */
4818
4819 find_sig_entry.signature = sig;
4820 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4821 &find_sig_entry, INSERT);
4822 sig_entry = *slot;
4823
4824 /* We can get here with the TU already read, *or* in the process of being
4825 read. Don't reassign the global entry to point to this DWO if that's
4826 the case. Also note that if the TU is already being read, it may not
4827 have come from a DWO, the program may be a mix of Fission-compiled
4828 code and non-Fission-compiled code. */
4829
4830 /* Have we already tried to read this TU?
4831 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4832 needn't exist in the global table yet). */
4833 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
4834 return sig_entry;
4835
4836 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
4837 dwo_unit of the TU itself. */
4838 dwo_file = cu->dwo_unit->dwo_file;
4839
4840 /* Ok, this is the first time we're reading this TU. */
4841 if (dwo_file->tus == NULL)
4842 return NULL;
4843 find_dwo_entry.signature = sig;
4844 dwo_entry = htab_find (dwo_file->tus, &find_dwo_entry);
4845 if (dwo_entry == NULL)
4846 return NULL;
4847
4848 /* If the global table doesn't have an entry for this TU, add one. */
4849 if (sig_entry == NULL)
4850 sig_entry = add_type_unit (sig, slot);
4851
4852 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4853 sig_entry->per_cu.tu_read = 1;
4854 return sig_entry;
4855 }
4856
4857 /* Subroutine of lookup_signatured_type.
4858 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
4859 then try the DWP file. If the TU stub (skeleton) has been removed then
4860 it won't be in .gdb_index. */
4861
4862 static struct signatured_type *
4863 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4864 {
4865 struct objfile *objfile = dwarf2_per_objfile->objfile;
4866 struct dwp_file *dwp_file = get_dwp_file ();
4867 struct dwo_unit *dwo_entry;
4868 struct signatured_type find_sig_entry, *sig_entry;
4869 void **slot;
4870
4871 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4872 gdb_assert (dwp_file != NULL);
4873
4874 /* If TU skeletons have been removed then we may not have read in any
4875 TUs yet. */
4876 if (dwarf2_per_objfile->signatured_types == NULL)
4877 {
4878 dwarf2_per_objfile->signatured_types
4879 = allocate_signatured_type_table (objfile);
4880 }
4881
4882 find_sig_entry.signature = sig;
4883 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4884 &find_sig_entry, INSERT);
4885 sig_entry = *slot;
4886
4887 /* Have we already tried to read this TU?
4888 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4889 needn't exist in the global table yet). */
4890 if (sig_entry != NULL)
4891 return sig_entry;
4892
4893 if (dwp_file->tus == NULL)
4894 return NULL;
4895 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
4896 sig, 1 /* is_debug_types */);
4897 if (dwo_entry == NULL)
4898 return NULL;
4899
4900 sig_entry = add_type_unit (sig, slot);
4901 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4902
4903 return sig_entry;
4904 }
4905
4906 /* Lookup a signature based type for DW_FORM_ref_sig8.
4907 Returns NULL if signature SIG is not present in the table.
4908 It is up to the caller to complain about this. */
4909
4910 static struct signatured_type *
4911 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4912 {
4913 if (cu->dwo_unit
4914 && dwarf2_per_objfile->using_index)
4915 {
4916 /* We're in a DWO/DWP file, and we're using .gdb_index.
4917 These cases require special processing. */
4918 if (get_dwp_file () == NULL)
4919 return lookup_dwo_signatured_type (cu, sig);
4920 else
4921 return lookup_dwp_signatured_type (cu, sig);
4922 }
4923 else
4924 {
4925 struct signatured_type find_entry, *entry;
4926
4927 if (dwarf2_per_objfile->signatured_types == NULL)
4928 return NULL;
4929 find_entry.signature = sig;
4930 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
4931 return entry;
4932 }
4933 }
4934 \f
4935 /* Low level DIE reading support. */
4936
4937 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
4938
4939 static void
4940 init_cu_die_reader (struct die_reader_specs *reader,
4941 struct dwarf2_cu *cu,
4942 struct dwarf2_section_info *section,
4943 struct dwo_file *dwo_file)
4944 {
4945 gdb_assert (section->readin && section->buffer != NULL);
4946 reader->abfd = get_section_bfd_owner (section);
4947 reader->cu = cu;
4948 reader->dwo_file = dwo_file;
4949 reader->die_section = section;
4950 reader->buffer = section->buffer;
4951 reader->buffer_end = section->buffer + section->size;
4952 reader->comp_dir = NULL;
4953 }
4954
4955 /* Subroutine of init_cutu_and_read_dies to simplify it.
4956 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
4957 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
4958 already.
4959
4960 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
4961 from it to the DIE in the DWO. If NULL we are skipping the stub.
4962 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
4963 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
4964 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
4965 STUB_COMP_DIR may be non-NULL.
4966 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
4967 are filled in with the info of the DIE from the DWO file.
4968 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
4969 provided an abbrev table to use.
4970 The result is non-zero if a valid (non-dummy) DIE was found. */
4971
4972 static int
4973 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
4974 struct dwo_unit *dwo_unit,
4975 int abbrev_table_provided,
4976 struct die_info *stub_comp_unit_die,
4977 const char *stub_comp_dir,
4978 struct die_reader_specs *result_reader,
4979 const gdb_byte **result_info_ptr,
4980 struct die_info **result_comp_unit_die,
4981 int *result_has_children)
4982 {
4983 struct objfile *objfile = dwarf2_per_objfile->objfile;
4984 struct dwarf2_cu *cu = this_cu->cu;
4985 struct dwarf2_section_info *section;
4986 bfd *abfd;
4987 const gdb_byte *begin_info_ptr, *info_ptr;
4988 ULONGEST signature; /* Or dwo_id. */
4989 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
4990 int i,num_extra_attrs;
4991 struct dwarf2_section_info *dwo_abbrev_section;
4992 struct attribute *attr;
4993 struct die_info *comp_unit_die;
4994
4995 /* At most one of these may be provided. */
4996 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
4997
4998 /* These attributes aren't processed until later:
4999 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
5000 DW_AT_comp_dir is used now, to find the DWO file, but it is also
5001 referenced later. However, these attributes are found in the stub
5002 which we won't have later. In order to not impose this complication
5003 on the rest of the code, we read them here and copy them to the
5004 DWO CU/TU die. */
5005
5006 stmt_list = NULL;
5007 low_pc = NULL;
5008 high_pc = NULL;
5009 ranges = NULL;
5010 comp_dir = NULL;
5011
5012 if (stub_comp_unit_die != NULL)
5013 {
5014 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
5015 DWO file. */
5016 if (! this_cu->is_debug_types)
5017 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
5018 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
5019 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
5020 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
5021 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
5022
5023 /* There should be a DW_AT_addr_base attribute here (if needed).
5024 We need the value before we can process DW_FORM_GNU_addr_index. */
5025 cu->addr_base = 0;
5026 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
5027 if (attr)
5028 cu->addr_base = DW_UNSND (attr);
5029
5030 /* There should be a DW_AT_ranges_base attribute here (if needed).
5031 We need the value before we can process DW_AT_ranges. */
5032 cu->ranges_base = 0;
5033 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
5034 if (attr)
5035 cu->ranges_base = DW_UNSND (attr);
5036 }
5037 else if (stub_comp_dir != NULL)
5038 {
5039 /* Reconstruct the comp_dir attribute to simplify the code below. */
5040 comp_dir = (struct attribute *)
5041 obstack_alloc (&cu->comp_unit_obstack, sizeof (*comp_dir));
5042 comp_dir->name = DW_AT_comp_dir;
5043 comp_dir->form = DW_FORM_string;
5044 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5045 DW_STRING (comp_dir) = stub_comp_dir;
5046 }
5047
5048 /* Set up for reading the DWO CU/TU. */
5049 cu->dwo_unit = dwo_unit;
5050 section = dwo_unit->section;
5051 dwarf2_read_section (objfile, section);
5052 abfd = get_section_bfd_owner (section);
5053 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
5054 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5055 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5056
5057 if (this_cu->is_debug_types)
5058 {
5059 ULONGEST header_signature;
5060 cu_offset type_offset_in_tu;
5061 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5062
5063 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5064 dwo_abbrev_section,
5065 info_ptr,
5066 &header_signature,
5067 &type_offset_in_tu);
5068 /* This is not an assert because it can be caused by bad debug info. */
5069 if (sig_type->signature != header_signature)
5070 {
5071 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5072 " TU at offset 0x%x [in module %s]"),
5073 hex_string (sig_type->signature),
5074 hex_string (header_signature),
5075 dwo_unit->offset.sect_off,
5076 bfd_get_filename (abfd));
5077 }
5078 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5079 /* For DWOs coming from DWP files, we don't know the CU length
5080 nor the type's offset in the TU until now. */
5081 dwo_unit->length = get_cu_length (&cu->header);
5082 dwo_unit->type_offset_in_tu = type_offset_in_tu;
5083
5084 /* Establish the type offset that can be used to lookup the type.
5085 For DWO files, we don't know it until now. */
5086 sig_type->type_offset_in_section.sect_off =
5087 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
5088 }
5089 else
5090 {
5091 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5092 dwo_abbrev_section,
5093 info_ptr, 0);
5094 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5095 /* For DWOs coming from DWP files, we don't know the CU length
5096 until now. */
5097 dwo_unit->length = get_cu_length (&cu->header);
5098 }
5099
5100 /* Replace the CU's original abbrev table with the DWO's.
5101 Reminder: We can't read the abbrev table until we've read the header. */
5102 if (abbrev_table_provided)
5103 {
5104 /* Don't free the provided abbrev table, the caller of
5105 init_cutu_and_read_dies owns it. */
5106 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5107 /* Ensure the DWO abbrev table gets freed. */
5108 make_cleanup (dwarf2_free_abbrev_table, cu);
5109 }
5110 else
5111 {
5112 dwarf2_free_abbrev_table (cu);
5113 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5114 /* Leave any existing abbrev table cleanup as is. */
5115 }
5116
5117 /* Read in the die, but leave space to copy over the attributes
5118 from the stub. This has the benefit of simplifying the rest of
5119 the code - all the work to maintain the illusion of a single
5120 DW_TAG_{compile,type}_unit DIE is done here. */
5121 num_extra_attrs = ((stmt_list != NULL)
5122 + (low_pc != NULL)
5123 + (high_pc != NULL)
5124 + (ranges != NULL)
5125 + (comp_dir != NULL));
5126 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5127 result_has_children, num_extra_attrs);
5128
5129 /* Copy over the attributes from the stub to the DIE we just read in. */
5130 comp_unit_die = *result_comp_unit_die;
5131 i = comp_unit_die->num_attrs;
5132 if (stmt_list != NULL)
5133 comp_unit_die->attrs[i++] = *stmt_list;
5134 if (low_pc != NULL)
5135 comp_unit_die->attrs[i++] = *low_pc;
5136 if (high_pc != NULL)
5137 comp_unit_die->attrs[i++] = *high_pc;
5138 if (ranges != NULL)
5139 comp_unit_die->attrs[i++] = *ranges;
5140 if (comp_dir != NULL)
5141 comp_unit_die->attrs[i++] = *comp_dir;
5142 comp_unit_die->num_attrs += num_extra_attrs;
5143
5144 if (dwarf2_die_debug)
5145 {
5146 fprintf_unfiltered (gdb_stdlog,
5147 "Read die from %s@0x%x of %s:\n",
5148 get_section_name (section),
5149 (unsigned) (begin_info_ptr - section->buffer),
5150 bfd_get_filename (abfd));
5151 dump_die (comp_unit_die, dwarf2_die_debug);
5152 }
5153
5154 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5155 TUs by skipping the stub and going directly to the entry in the DWO file.
5156 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5157 to get it via circuitous means. Blech. */
5158 if (comp_dir != NULL)
5159 result_reader->comp_dir = DW_STRING (comp_dir);
5160
5161 /* Skip dummy compilation units. */
5162 if (info_ptr >= begin_info_ptr + dwo_unit->length
5163 || peek_abbrev_code (abfd, info_ptr) == 0)
5164 return 0;
5165
5166 *result_info_ptr = info_ptr;
5167 return 1;
5168 }
5169
5170 /* Subroutine of init_cutu_and_read_dies to simplify it.
5171 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
5172 Returns NULL if the specified DWO unit cannot be found. */
5173
5174 static struct dwo_unit *
5175 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5176 struct die_info *comp_unit_die)
5177 {
5178 struct dwarf2_cu *cu = this_cu->cu;
5179 struct attribute *attr;
5180 ULONGEST signature;
5181 struct dwo_unit *dwo_unit;
5182 const char *comp_dir, *dwo_name;
5183
5184 gdb_assert (cu != NULL);
5185
5186 /* Yeah, we look dwo_name up again, but it simplifies the code. */
5187 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5188 gdb_assert (attr != NULL);
5189 dwo_name = DW_STRING (attr);
5190 comp_dir = NULL;
5191 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5192 if (attr)
5193 comp_dir = DW_STRING (attr);
5194
5195 if (this_cu->is_debug_types)
5196 {
5197 struct signatured_type *sig_type;
5198
5199 /* Since this_cu is the first member of struct signatured_type,
5200 we can go from a pointer to one to a pointer to the other. */
5201 sig_type = (struct signatured_type *) this_cu;
5202 signature = sig_type->signature;
5203 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5204 }
5205 else
5206 {
5207 struct attribute *attr;
5208
5209 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5210 if (! attr)
5211 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5212 " [in module %s]"),
5213 dwo_name, objfile_name (this_cu->objfile));
5214 signature = DW_UNSND (attr);
5215 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5216 signature);
5217 }
5218
5219 return dwo_unit;
5220 }
5221
5222 /* Subroutine of init_cutu_and_read_dies to simplify it.
5223 See it for a description of the parameters.
5224 Read a TU directly from a DWO file, bypassing the stub.
5225
5226 Note: This function could be a little bit simpler if we shared cleanups
5227 with our caller, init_cutu_and_read_dies. That's generally a fragile thing
5228 to do, so we keep this function self-contained. Or we could move this
5229 into our caller, but it's complex enough already. */
5230
5231 static void
5232 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
5233 int use_existing_cu, int keep,
5234 die_reader_func_ftype *die_reader_func,
5235 void *data)
5236 {
5237 struct dwarf2_cu *cu;
5238 struct signatured_type *sig_type;
5239 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5240 struct die_reader_specs reader;
5241 const gdb_byte *info_ptr;
5242 struct die_info *comp_unit_die;
5243 int has_children;
5244
5245 /* Verify we can do the following downcast, and that we have the
5246 data we need. */
5247 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5248 sig_type = (struct signatured_type *) this_cu;
5249 gdb_assert (sig_type->dwo_unit != NULL);
5250
5251 cleanups = make_cleanup (null_cleanup, NULL);
5252
5253 if (use_existing_cu && this_cu->cu != NULL)
5254 {
5255 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
5256 cu = this_cu->cu;
5257 /* There's no need to do the rereading_dwo_cu handling that
5258 init_cutu_and_read_dies does since we don't read the stub. */
5259 }
5260 else
5261 {
5262 /* If !use_existing_cu, this_cu->cu must be NULL. */
5263 gdb_assert (this_cu->cu == NULL);
5264 cu = xmalloc (sizeof (*cu));
5265 init_one_comp_unit (cu, this_cu);
5266 /* If an error occurs while loading, release our storage. */
5267 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5268 }
5269
5270 /* A future optimization, if needed, would be to use an existing
5271 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
5272 could share abbrev tables. */
5273
5274 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5275 0 /* abbrev_table_provided */,
5276 NULL /* stub_comp_unit_die */,
5277 sig_type->dwo_unit->dwo_file->comp_dir,
5278 &reader, &info_ptr,
5279 &comp_unit_die, &has_children) == 0)
5280 {
5281 /* Dummy die. */
5282 do_cleanups (cleanups);
5283 return;
5284 }
5285
5286 /* All the "real" work is done here. */
5287 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5288
5289 /* This duplicates the code in init_cutu_and_read_dies,
5290 but the alternative is making the latter more complex.
5291 This function is only for the special case of using DWO files directly:
5292 no point in overly complicating the general case just to handle this. */
5293 if (free_cu_cleanup != NULL)
5294 {
5295 if (keep)
5296 {
5297 /* We've successfully allocated this compilation unit. Let our
5298 caller clean it up when finished with it. */
5299 discard_cleanups (free_cu_cleanup);
5300
5301 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5302 So we have to manually free the abbrev table. */
5303 dwarf2_free_abbrev_table (cu);
5304
5305 /* Link this CU into read_in_chain. */
5306 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5307 dwarf2_per_objfile->read_in_chain = this_cu;
5308 }
5309 else
5310 do_cleanups (free_cu_cleanup);
5311 }
5312
5313 do_cleanups (cleanups);
5314 }
5315
5316 /* Initialize a CU (or TU) and read its DIEs.
5317 If the CU defers to a DWO file, read the DWO file as well.
5318
5319 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5320 Otherwise the table specified in the comp unit header is read in and used.
5321 This is an optimization for when we already have the abbrev table.
5322
5323 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5324 Otherwise, a new CU is allocated with xmalloc.
5325
5326 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5327 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5328
5329 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5330 linker) then DIE_READER_FUNC will not get called. */
5331
5332 static void
5333 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
5334 struct abbrev_table *abbrev_table,
5335 int use_existing_cu, int keep,
5336 die_reader_func_ftype *die_reader_func,
5337 void *data)
5338 {
5339 struct objfile *objfile = dwarf2_per_objfile->objfile;
5340 struct dwarf2_section_info *section = this_cu->section;
5341 bfd *abfd = get_section_bfd_owner (section);
5342 struct dwarf2_cu *cu;
5343 const gdb_byte *begin_info_ptr, *info_ptr;
5344 struct die_reader_specs reader;
5345 struct die_info *comp_unit_die;
5346 int has_children;
5347 struct attribute *attr;
5348 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5349 struct signatured_type *sig_type = NULL;
5350 struct dwarf2_section_info *abbrev_section;
5351 /* Non-zero if CU currently points to a DWO file and we need to
5352 reread it. When this happens we need to reread the skeleton die
5353 before we can reread the DWO file (this only applies to CUs, not TUs). */
5354 int rereading_dwo_cu = 0;
5355
5356 if (dwarf2_die_debug)
5357 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5358 this_cu->is_debug_types ? "type" : "comp",
5359 this_cu->offset.sect_off);
5360
5361 if (use_existing_cu)
5362 gdb_assert (keep);
5363
5364 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5365 file (instead of going through the stub), short-circuit all of this. */
5366 if (this_cu->reading_dwo_directly)
5367 {
5368 /* Narrow down the scope of possibilities to have to understand. */
5369 gdb_assert (this_cu->is_debug_types);
5370 gdb_assert (abbrev_table == NULL);
5371 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
5372 die_reader_func, data);
5373 return;
5374 }
5375
5376 cleanups = make_cleanup (null_cleanup, NULL);
5377
5378 /* This is cheap if the section is already read in. */
5379 dwarf2_read_section (objfile, section);
5380
5381 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5382
5383 abbrev_section = get_abbrev_section_for_cu (this_cu);
5384
5385 if (use_existing_cu && this_cu->cu != NULL)
5386 {
5387 cu = this_cu->cu;
5388 /* If this CU is from a DWO file we need to start over, we need to
5389 refetch the attributes from the skeleton CU.
5390 This could be optimized by retrieving those attributes from when we
5391 were here the first time: the previous comp_unit_die was stored in
5392 comp_unit_obstack. But there's no data yet that we need this
5393 optimization. */
5394 if (cu->dwo_unit != NULL)
5395 rereading_dwo_cu = 1;
5396 }
5397 else
5398 {
5399 /* If !use_existing_cu, this_cu->cu must be NULL. */
5400 gdb_assert (this_cu->cu == NULL);
5401 cu = xmalloc (sizeof (*cu));
5402 init_one_comp_unit (cu, this_cu);
5403 /* If an error occurs while loading, release our storage. */
5404 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5405 }
5406
5407 /* Get the header. */
5408 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5409 {
5410 /* We already have the header, there's no need to read it in again. */
5411 info_ptr += cu->header.first_die_offset.cu_off;
5412 }
5413 else
5414 {
5415 if (this_cu->is_debug_types)
5416 {
5417 ULONGEST signature;
5418 cu_offset type_offset_in_tu;
5419
5420 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5421 abbrev_section, info_ptr,
5422 &signature,
5423 &type_offset_in_tu);
5424
5425 /* Since per_cu is the first member of struct signatured_type,
5426 we can go from a pointer to one to a pointer to the other. */
5427 sig_type = (struct signatured_type *) this_cu;
5428 gdb_assert (sig_type->signature == signature);
5429 gdb_assert (sig_type->type_offset_in_tu.cu_off
5430 == type_offset_in_tu.cu_off);
5431 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5432
5433 /* LENGTH has not been set yet for type units if we're
5434 using .gdb_index. */
5435 this_cu->length = get_cu_length (&cu->header);
5436
5437 /* Establish the type offset that can be used to lookup the type. */
5438 sig_type->type_offset_in_section.sect_off =
5439 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
5440 }
5441 else
5442 {
5443 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5444 abbrev_section,
5445 info_ptr, 0);
5446
5447 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5448 gdb_assert (this_cu->length == get_cu_length (&cu->header));
5449 }
5450 }
5451
5452 /* Skip dummy compilation units. */
5453 if (info_ptr >= begin_info_ptr + this_cu->length
5454 || peek_abbrev_code (abfd, info_ptr) == 0)
5455 {
5456 do_cleanups (cleanups);
5457 return;
5458 }
5459
5460 /* If we don't have them yet, read the abbrevs for this compilation unit.
5461 And if we need to read them now, make sure they're freed when we're
5462 done. Note that it's important that if the CU had an abbrev table
5463 on entry we don't free it when we're done: Somewhere up the call stack
5464 it may be in use. */
5465 if (abbrev_table != NULL)
5466 {
5467 gdb_assert (cu->abbrev_table == NULL);
5468 gdb_assert (cu->header.abbrev_offset.sect_off
5469 == abbrev_table->offset.sect_off);
5470 cu->abbrev_table = abbrev_table;
5471 }
5472 else if (cu->abbrev_table == NULL)
5473 {
5474 dwarf2_read_abbrevs (cu, abbrev_section);
5475 make_cleanup (dwarf2_free_abbrev_table, cu);
5476 }
5477 else if (rereading_dwo_cu)
5478 {
5479 dwarf2_free_abbrev_table (cu);
5480 dwarf2_read_abbrevs (cu, abbrev_section);
5481 }
5482
5483 /* Read the top level CU/TU die. */
5484 init_cu_die_reader (&reader, cu, section, NULL);
5485 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5486
5487 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5488 from the DWO file.
5489 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5490 DWO CU, that this test will fail (the attribute will not be present). */
5491 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5492 if (attr)
5493 {
5494 struct dwo_unit *dwo_unit;
5495 struct die_info *dwo_comp_unit_die;
5496
5497 if (has_children)
5498 {
5499 complaint (&symfile_complaints,
5500 _("compilation unit with DW_AT_GNU_dwo_name"
5501 " has children (offset 0x%x) [in module %s]"),
5502 this_cu->offset.sect_off, bfd_get_filename (abfd));
5503 }
5504 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
5505 if (dwo_unit != NULL)
5506 {
5507 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5508 abbrev_table != NULL,
5509 comp_unit_die, NULL,
5510 &reader, &info_ptr,
5511 &dwo_comp_unit_die, &has_children) == 0)
5512 {
5513 /* Dummy die. */
5514 do_cleanups (cleanups);
5515 return;
5516 }
5517 comp_unit_die = dwo_comp_unit_die;
5518 }
5519 else
5520 {
5521 /* Yikes, we couldn't find the rest of the DIE, we only have
5522 the stub. A complaint has already been logged. There's
5523 not much more we can do except pass on the stub DIE to
5524 die_reader_func. We don't want to throw an error on bad
5525 debug info. */
5526 }
5527 }
5528
5529 /* All of the above is setup for this call. Yikes. */
5530 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5531
5532 /* Done, clean up. */
5533 if (free_cu_cleanup != NULL)
5534 {
5535 if (keep)
5536 {
5537 /* We've successfully allocated this compilation unit. Let our
5538 caller clean it up when finished with it. */
5539 discard_cleanups (free_cu_cleanup);
5540
5541 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5542 So we have to manually free the abbrev table. */
5543 dwarf2_free_abbrev_table (cu);
5544
5545 /* Link this CU into read_in_chain. */
5546 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5547 dwarf2_per_objfile->read_in_chain = this_cu;
5548 }
5549 else
5550 do_cleanups (free_cu_cleanup);
5551 }
5552
5553 do_cleanups (cleanups);
5554 }
5555
5556 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
5557 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
5558 to have already done the lookup to find the DWO file).
5559
5560 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
5561 THIS_CU->is_debug_types, but nothing else.
5562
5563 We fill in THIS_CU->length.
5564
5565 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5566 linker) then DIE_READER_FUNC will not get called.
5567
5568 THIS_CU->cu is always freed when done.
5569 This is done in order to not leave THIS_CU->cu in a state where we have
5570 to care whether it refers to the "main" CU or the DWO CU. */
5571
5572 static void
5573 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
5574 struct dwo_file *dwo_file,
5575 die_reader_func_ftype *die_reader_func,
5576 void *data)
5577 {
5578 struct objfile *objfile = dwarf2_per_objfile->objfile;
5579 struct dwarf2_section_info *section = this_cu->section;
5580 bfd *abfd = get_section_bfd_owner (section);
5581 struct dwarf2_section_info *abbrev_section;
5582 struct dwarf2_cu cu;
5583 const gdb_byte *begin_info_ptr, *info_ptr;
5584 struct die_reader_specs reader;
5585 struct cleanup *cleanups;
5586 struct die_info *comp_unit_die;
5587 int has_children;
5588
5589 if (dwarf2_die_debug)
5590 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5591 this_cu->is_debug_types ? "type" : "comp",
5592 this_cu->offset.sect_off);
5593
5594 gdb_assert (this_cu->cu == NULL);
5595
5596 abbrev_section = (dwo_file != NULL
5597 ? &dwo_file->sections.abbrev
5598 : get_abbrev_section_for_cu (this_cu));
5599
5600 /* This is cheap if the section is already read in. */
5601 dwarf2_read_section (objfile, section);
5602
5603 init_one_comp_unit (&cu, this_cu);
5604
5605 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5606
5607 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5608 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5609 abbrev_section, info_ptr,
5610 this_cu->is_debug_types);
5611
5612 this_cu->length = get_cu_length (&cu.header);
5613
5614 /* Skip dummy compilation units. */
5615 if (info_ptr >= begin_info_ptr + this_cu->length
5616 || peek_abbrev_code (abfd, info_ptr) == 0)
5617 {
5618 do_cleanups (cleanups);
5619 return;
5620 }
5621
5622 dwarf2_read_abbrevs (&cu, abbrev_section);
5623 make_cleanup (dwarf2_free_abbrev_table, &cu);
5624
5625 init_cu_die_reader (&reader, &cu, section, dwo_file);
5626 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5627
5628 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5629
5630 do_cleanups (cleanups);
5631 }
5632
5633 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5634 does not lookup the specified DWO file.
5635 This cannot be used to read DWO files.
5636
5637 THIS_CU->cu is always freed when done.
5638 This is done in order to not leave THIS_CU->cu in a state where we have
5639 to care whether it refers to the "main" CU or the DWO CU.
5640 We can revisit this if the data shows there's a performance issue. */
5641
5642 static void
5643 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5644 die_reader_func_ftype *die_reader_func,
5645 void *data)
5646 {
5647 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
5648 }
5649 \f
5650 /* Type Unit Groups.
5651
5652 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5653 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5654 so that all types coming from the same compilation (.o file) are grouped
5655 together. A future step could be to put the types in the same symtab as
5656 the CU the types ultimately came from. */
5657
5658 static hashval_t
5659 hash_type_unit_group (const void *item)
5660 {
5661 const struct type_unit_group *tu_group = item;
5662
5663 return hash_stmt_list_entry (&tu_group->hash);
5664 }
5665
5666 static int
5667 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
5668 {
5669 const struct type_unit_group *lhs = item_lhs;
5670 const struct type_unit_group *rhs = item_rhs;
5671
5672 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
5673 }
5674
5675 /* Allocate a hash table for type unit groups. */
5676
5677 static htab_t
5678 allocate_type_unit_groups_table (void)
5679 {
5680 return htab_create_alloc_ex (3,
5681 hash_type_unit_group,
5682 eq_type_unit_group,
5683 NULL,
5684 &dwarf2_per_objfile->objfile->objfile_obstack,
5685 hashtab_obstack_allocate,
5686 dummy_obstack_deallocate);
5687 }
5688
5689 /* Type units that don't have DW_AT_stmt_list are grouped into their own
5690 partial symtabs. We combine several TUs per psymtab to not let the size
5691 of any one psymtab grow too big. */
5692 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5693 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
5694
5695 /* Helper routine for get_type_unit_group.
5696 Create the type_unit_group object used to hold one or more TUs. */
5697
5698 static struct type_unit_group *
5699 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
5700 {
5701 struct objfile *objfile = dwarf2_per_objfile->objfile;
5702 struct dwarf2_per_cu_data *per_cu;
5703 struct type_unit_group *tu_group;
5704
5705 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5706 struct type_unit_group);
5707 per_cu = &tu_group->per_cu;
5708 per_cu->objfile = objfile;
5709
5710 if (dwarf2_per_objfile->using_index)
5711 {
5712 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5713 struct dwarf2_per_cu_quick_data);
5714 }
5715 else
5716 {
5717 unsigned int line_offset = line_offset_struct.sect_off;
5718 struct partial_symtab *pst;
5719 char *name;
5720
5721 /* Give the symtab a useful name for debug purposes. */
5722 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5723 name = xstrprintf ("<type_units_%d>",
5724 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5725 else
5726 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5727
5728 pst = create_partial_symtab (per_cu, name);
5729 pst->anonymous = 1;
5730
5731 xfree (name);
5732 }
5733
5734 tu_group->hash.dwo_unit = cu->dwo_unit;
5735 tu_group->hash.line_offset = line_offset_struct;
5736
5737 return tu_group;
5738 }
5739
5740 /* Look up the type_unit_group for type unit CU, and create it if necessary.
5741 STMT_LIST is a DW_AT_stmt_list attribute. */
5742
5743 static struct type_unit_group *
5744 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
5745 {
5746 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5747 struct type_unit_group *tu_group;
5748 void **slot;
5749 unsigned int line_offset;
5750 struct type_unit_group type_unit_group_for_lookup;
5751
5752 if (dwarf2_per_objfile->type_unit_groups == NULL)
5753 {
5754 dwarf2_per_objfile->type_unit_groups =
5755 allocate_type_unit_groups_table ();
5756 }
5757
5758 /* Do we need to create a new group, or can we use an existing one? */
5759
5760 if (stmt_list)
5761 {
5762 line_offset = DW_UNSND (stmt_list);
5763 ++tu_stats->nr_symtab_sharers;
5764 }
5765 else
5766 {
5767 /* Ugh, no stmt_list. Rare, but we have to handle it.
5768 We can do various things here like create one group per TU or
5769 spread them over multiple groups to split up the expansion work.
5770 To avoid worst case scenarios (too many groups or too large groups)
5771 we, umm, group them in bunches. */
5772 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5773 | (tu_stats->nr_stmt_less_type_units
5774 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5775 ++tu_stats->nr_stmt_less_type_units;
5776 }
5777
5778 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5779 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
5780 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5781 &type_unit_group_for_lookup, INSERT);
5782 if (*slot != NULL)
5783 {
5784 tu_group = *slot;
5785 gdb_assert (tu_group != NULL);
5786 }
5787 else
5788 {
5789 sect_offset line_offset_struct;
5790
5791 line_offset_struct.sect_off = line_offset;
5792 tu_group = create_type_unit_group (cu, line_offset_struct);
5793 *slot = tu_group;
5794 ++tu_stats->nr_symtabs;
5795 }
5796
5797 return tu_group;
5798 }
5799 \f
5800 /* Partial symbol tables. */
5801
5802 /* Create a psymtab named NAME and assign it to PER_CU.
5803
5804 The caller must fill in the following details:
5805 dirname, textlow, texthigh. */
5806
5807 static struct partial_symtab *
5808 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5809 {
5810 struct objfile *objfile = per_cu->objfile;
5811 struct partial_symtab *pst;
5812
5813 pst = start_psymtab_common (objfile, objfile->section_offsets,
5814 name, 0,
5815 objfile->global_psymbols.next,
5816 objfile->static_psymbols.next);
5817
5818 pst->psymtabs_addrmap_supported = 1;
5819
5820 /* This is the glue that links PST into GDB's symbol API. */
5821 pst->read_symtab_private = per_cu;
5822 pst->read_symtab = dwarf2_read_symtab;
5823 per_cu->v.psymtab = pst;
5824
5825 return pst;
5826 }
5827
5828 /* The DATA object passed to process_psymtab_comp_unit_reader has this
5829 type. */
5830
5831 struct process_psymtab_comp_unit_data
5832 {
5833 /* True if we are reading a DW_TAG_partial_unit. */
5834
5835 int want_partial_unit;
5836
5837 /* The "pretend" language that is used if the CU doesn't declare a
5838 language. */
5839
5840 enum language pretend_language;
5841 };
5842
5843 /* die_reader_func for process_psymtab_comp_unit. */
5844
5845 static void
5846 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
5847 const gdb_byte *info_ptr,
5848 struct die_info *comp_unit_die,
5849 int has_children,
5850 void *data)
5851 {
5852 struct dwarf2_cu *cu = reader->cu;
5853 struct objfile *objfile = cu->objfile;
5854 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5855 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5856 struct attribute *attr;
5857 CORE_ADDR baseaddr;
5858 CORE_ADDR best_lowpc = 0, best_highpc = 0;
5859 struct partial_symtab *pst;
5860 int has_pc_info;
5861 const char *filename;
5862 struct process_psymtab_comp_unit_data *info = data;
5863
5864 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
5865 return;
5866
5867 gdb_assert (! per_cu->is_debug_types);
5868
5869 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
5870
5871 cu->list_in_scope = &file_symbols;
5872
5873 /* Allocate a new partial symbol table structure. */
5874 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
5875 if (attr == NULL || !DW_STRING (attr))
5876 filename = "";
5877 else
5878 filename = DW_STRING (attr);
5879
5880 pst = create_partial_symtab (per_cu, filename);
5881
5882 /* This must be done before calling dwarf2_build_include_psymtabs. */
5883 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5884 if (attr != NULL)
5885 pst->dirname = DW_STRING (attr);
5886
5887 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5888
5889 dwarf2_find_base_address (comp_unit_die, cu);
5890
5891 /* Possibly set the default values of LOWPC and HIGHPC from
5892 `DW_AT_ranges'. */
5893 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
5894 &best_highpc, cu, pst);
5895 if (has_pc_info == 1 && best_lowpc < best_highpc)
5896 /* Store the contiguous range if it is not empty; it can be empty for
5897 CUs with no code. */
5898 addrmap_set_empty (objfile->psymtabs_addrmap,
5899 gdbarch_adjust_dwarf2_addr (gdbarch,
5900 best_lowpc + baseaddr),
5901 gdbarch_adjust_dwarf2_addr (gdbarch,
5902 best_highpc + baseaddr) - 1,
5903 pst);
5904
5905 /* Check if comp unit has_children.
5906 If so, read the rest of the partial symbols from this comp unit.
5907 If not, there's no more debug_info for this comp unit. */
5908 if (has_children)
5909 {
5910 struct partial_die_info *first_die;
5911 CORE_ADDR lowpc, highpc;
5912
5913 lowpc = ((CORE_ADDR) -1);
5914 highpc = ((CORE_ADDR) 0);
5915
5916 first_die = load_partial_dies (reader, info_ptr, 1);
5917
5918 scan_partial_symbols (first_die, &lowpc, &highpc,
5919 ! has_pc_info, cu);
5920
5921 /* If we didn't find a lowpc, set it to highpc to avoid
5922 complaints from `maint check'. */
5923 if (lowpc == ((CORE_ADDR) -1))
5924 lowpc = highpc;
5925
5926 /* If the compilation unit didn't have an explicit address range,
5927 then use the information extracted from its child dies. */
5928 if (! has_pc_info)
5929 {
5930 best_lowpc = lowpc;
5931 best_highpc = highpc;
5932 }
5933 }
5934 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
5935 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
5936
5937 pst->n_global_syms = objfile->global_psymbols.next -
5938 (objfile->global_psymbols.list + pst->globals_offset);
5939 pst->n_static_syms = objfile->static_psymbols.next -
5940 (objfile->static_psymbols.list + pst->statics_offset);
5941 sort_pst_symbols (objfile, pst);
5942
5943 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
5944 {
5945 int i;
5946 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
5947 struct dwarf2_per_cu_data *iter;
5948
5949 /* Fill in 'dependencies' here; we fill in 'users' in a
5950 post-pass. */
5951 pst->number_of_dependencies = len;
5952 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
5953 len * sizeof (struct symtab *));
5954 for (i = 0;
5955 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
5956 i, iter);
5957 ++i)
5958 pst->dependencies[i] = iter->v.psymtab;
5959
5960 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
5961 }
5962
5963 /* Get the list of files included in the current compilation unit,
5964 and build a psymtab for each of them. */
5965 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
5966
5967 if (dwarf2_read_debug)
5968 {
5969 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5970
5971 fprintf_unfiltered (gdb_stdlog,
5972 "Psymtab for %s unit @0x%x: %s - %s"
5973 ", %d global, %d static syms\n",
5974 per_cu->is_debug_types ? "type" : "comp",
5975 per_cu->offset.sect_off,
5976 paddress (gdbarch, pst->textlow),
5977 paddress (gdbarch, pst->texthigh),
5978 pst->n_global_syms, pst->n_static_syms);
5979 }
5980 }
5981
5982 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
5983 Process compilation unit THIS_CU for a psymtab. */
5984
5985 static void
5986 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
5987 int want_partial_unit,
5988 enum language pretend_language)
5989 {
5990 struct process_psymtab_comp_unit_data info;
5991
5992 /* If this compilation unit was already read in, free the
5993 cached copy in order to read it in again. This is
5994 necessary because we skipped some symbols when we first
5995 read in the compilation unit (see load_partial_dies).
5996 This problem could be avoided, but the benefit is unclear. */
5997 if (this_cu->cu != NULL)
5998 free_one_cached_comp_unit (this_cu);
5999
6000 gdb_assert (! this_cu->is_debug_types);
6001 info.want_partial_unit = want_partial_unit;
6002 info.pretend_language = pretend_language;
6003 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
6004 process_psymtab_comp_unit_reader,
6005 &info);
6006
6007 /* Age out any secondary CUs. */
6008 age_cached_comp_units ();
6009 }
6010
6011 /* Reader function for build_type_psymtabs. */
6012
6013 static void
6014 build_type_psymtabs_reader (const struct die_reader_specs *reader,
6015 const gdb_byte *info_ptr,
6016 struct die_info *type_unit_die,
6017 int has_children,
6018 void *data)
6019 {
6020 struct objfile *objfile = dwarf2_per_objfile->objfile;
6021 struct dwarf2_cu *cu = reader->cu;
6022 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6023 struct signatured_type *sig_type;
6024 struct type_unit_group *tu_group;
6025 struct attribute *attr;
6026 struct partial_die_info *first_die;
6027 CORE_ADDR lowpc, highpc;
6028 struct partial_symtab *pst;
6029
6030 gdb_assert (data == NULL);
6031 gdb_assert (per_cu->is_debug_types);
6032 sig_type = (struct signatured_type *) per_cu;
6033
6034 if (! has_children)
6035 return;
6036
6037 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
6038 tu_group = get_type_unit_group (cu, attr);
6039
6040 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
6041
6042 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6043 cu->list_in_scope = &file_symbols;
6044 pst = create_partial_symtab (per_cu, "");
6045 pst->anonymous = 1;
6046
6047 first_die = load_partial_dies (reader, info_ptr, 1);
6048
6049 lowpc = (CORE_ADDR) -1;
6050 highpc = (CORE_ADDR) 0;
6051 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6052
6053 pst->n_global_syms = objfile->global_psymbols.next -
6054 (objfile->global_psymbols.list + pst->globals_offset);
6055 pst->n_static_syms = objfile->static_psymbols.next -
6056 (objfile->static_psymbols.list + pst->statics_offset);
6057 sort_pst_symbols (objfile, pst);
6058 }
6059
6060 /* Struct used to sort TUs by their abbreviation table offset. */
6061
6062 struct tu_abbrev_offset
6063 {
6064 struct signatured_type *sig_type;
6065 sect_offset abbrev_offset;
6066 };
6067
6068 /* Helper routine for build_type_psymtabs_1, passed to qsort. */
6069
6070 static int
6071 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
6072 {
6073 const struct tu_abbrev_offset * const *a = ap;
6074 const struct tu_abbrev_offset * const *b = bp;
6075 unsigned int aoff = (*a)->abbrev_offset.sect_off;
6076 unsigned int boff = (*b)->abbrev_offset.sect_off;
6077
6078 return (aoff > boff) - (aoff < boff);
6079 }
6080
6081 /* Efficiently read all the type units.
6082 This does the bulk of the work for build_type_psymtabs.
6083
6084 The efficiency is because we sort TUs by the abbrev table they use and
6085 only read each abbrev table once. In one program there are 200K TUs
6086 sharing 8K abbrev tables.
6087
6088 The main purpose of this function is to support building the
6089 dwarf2_per_objfile->type_unit_groups table.
6090 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
6091 can collapse the search space by grouping them by stmt_list.
6092 The savings can be significant, in the same program from above the 200K TUs
6093 share 8K stmt_list tables.
6094
6095 FUNC is expected to call get_type_unit_group, which will create the
6096 struct type_unit_group if necessary and add it to
6097 dwarf2_per_objfile->type_unit_groups. */
6098
6099 static void
6100 build_type_psymtabs_1 (void)
6101 {
6102 struct objfile *objfile = dwarf2_per_objfile->objfile;
6103 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6104 struct cleanup *cleanups;
6105 struct abbrev_table *abbrev_table;
6106 sect_offset abbrev_offset;
6107 struct tu_abbrev_offset *sorted_by_abbrev;
6108 struct type_unit_group **iter;
6109 int i;
6110
6111 /* It's up to the caller to not call us multiple times. */
6112 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
6113
6114 if (dwarf2_per_objfile->n_type_units == 0)
6115 return;
6116
6117 /* TUs typically share abbrev tables, and there can be way more TUs than
6118 abbrev tables. Sort by abbrev table to reduce the number of times we
6119 read each abbrev table in.
6120 Alternatives are to punt or to maintain a cache of abbrev tables.
6121 This is simpler and efficient enough for now.
6122
6123 Later we group TUs by their DW_AT_stmt_list value (as this defines the
6124 symtab to use). Typically TUs with the same abbrev offset have the same
6125 stmt_list value too so in practice this should work well.
6126
6127 The basic algorithm here is:
6128
6129 sort TUs by abbrev table
6130 for each TU with same abbrev table:
6131 read abbrev table if first user
6132 read TU top level DIE
6133 [IWBN if DWO skeletons had DW_AT_stmt_list]
6134 call FUNC */
6135
6136 if (dwarf2_read_debug)
6137 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
6138
6139 /* Sort in a separate table to maintain the order of all_type_units
6140 for .gdb_index: TU indices directly index all_type_units. */
6141 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
6142 dwarf2_per_objfile->n_type_units);
6143 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6144 {
6145 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
6146
6147 sorted_by_abbrev[i].sig_type = sig_type;
6148 sorted_by_abbrev[i].abbrev_offset =
6149 read_abbrev_offset (sig_type->per_cu.section,
6150 sig_type->per_cu.offset);
6151 }
6152 cleanups = make_cleanup (xfree, sorted_by_abbrev);
6153 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
6154 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
6155
6156 abbrev_offset.sect_off = ~(unsigned) 0;
6157 abbrev_table = NULL;
6158 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
6159
6160 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6161 {
6162 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
6163
6164 /* Switch to the next abbrev table if necessary. */
6165 if (abbrev_table == NULL
6166 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
6167 {
6168 if (abbrev_table != NULL)
6169 {
6170 abbrev_table_free (abbrev_table);
6171 /* Reset to NULL in case abbrev_table_read_table throws
6172 an error: abbrev_table_free_cleanup will get called. */
6173 abbrev_table = NULL;
6174 }
6175 abbrev_offset = tu->abbrev_offset;
6176 abbrev_table =
6177 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
6178 abbrev_offset);
6179 ++tu_stats->nr_uniq_abbrev_tables;
6180 }
6181
6182 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
6183 build_type_psymtabs_reader, NULL);
6184 }
6185
6186 do_cleanups (cleanups);
6187 }
6188
6189 /* Print collected type unit statistics. */
6190
6191 static void
6192 print_tu_stats (void)
6193 {
6194 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6195
6196 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
6197 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
6198 dwarf2_per_objfile->n_type_units);
6199 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
6200 tu_stats->nr_uniq_abbrev_tables);
6201 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
6202 tu_stats->nr_symtabs);
6203 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
6204 tu_stats->nr_symtab_sharers);
6205 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
6206 tu_stats->nr_stmt_less_type_units);
6207 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
6208 tu_stats->nr_all_type_units_reallocs);
6209 }
6210
6211 /* Traversal function for build_type_psymtabs. */
6212
6213 static int
6214 build_type_psymtab_dependencies (void **slot, void *info)
6215 {
6216 struct objfile *objfile = dwarf2_per_objfile->objfile;
6217 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
6218 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
6219 struct partial_symtab *pst = per_cu->v.psymtab;
6220 int len = VEC_length (sig_type_ptr, tu_group->tus);
6221 struct signatured_type *iter;
6222 int i;
6223
6224 gdb_assert (len > 0);
6225 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
6226
6227 pst->number_of_dependencies = len;
6228 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
6229 len * sizeof (struct psymtab *));
6230 for (i = 0;
6231 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
6232 ++i)
6233 {
6234 gdb_assert (iter->per_cu.is_debug_types);
6235 pst->dependencies[i] = iter->per_cu.v.psymtab;
6236 iter->type_unit_group = tu_group;
6237 }
6238
6239 VEC_free (sig_type_ptr, tu_group->tus);
6240
6241 return 1;
6242 }
6243
6244 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6245 Build partial symbol tables for the .debug_types comp-units. */
6246
6247 static void
6248 build_type_psymtabs (struct objfile *objfile)
6249 {
6250 if (! create_all_type_units (objfile))
6251 return;
6252
6253 build_type_psymtabs_1 ();
6254 }
6255
6256 /* Traversal function for process_skeletonless_type_unit.
6257 Read a TU in a DWO file and build partial symbols for it. */
6258
6259 static int
6260 process_skeletonless_type_unit (void **slot, void *info)
6261 {
6262 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
6263 struct objfile *objfile = info;
6264 struct signatured_type find_entry, *entry;
6265
6266 /* If this TU doesn't exist in the global table, add it and read it in. */
6267
6268 if (dwarf2_per_objfile->signatured_types == NULL)
6269 {
6270 dwarf2_per_objfile->signatured_types
6271 = allocate_signatured_type_table (objfile);
6272 }
6273
6274 find_entry.signature = dwo_unit->signature;
6275 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
6276 INSERT);
6277 /* If we've already seen this type there's nothing to do. What's happening
6278 is we're doing our own version of comdat-folding here. */
6279 if (*slot != NULL)
6280 return 1;
6281
6282 /* This does the job that create_all_type_units would have done for
6283 this TU. */
6284 entry = add_type_unit (dwo_unit->signature, slot);
6285 fill_in_sig_entry_from_dwo_entry (objfile, entry, dwo_unit);
6286 *slot = entry;
6287
6288 /* This does the job that build_type_psymtabs_1 would have done. */
6289 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
6290 build_type_psymtabs_reader, NULL);
6291
6292 return 1;
6293 }
6294
6295 /* Traversal function for process_skeletonless_type_units. */
6296
6297 static int
6298 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
6299 {
6300 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
6301
6302 if (dwo_file->tus != NULL)
6303 {
6304 htab_traverse_noresize (dwo_file->tus,
6305 process_skeletonless_type_unit, info);
6306 }
6307
6308 return 1;
6309 }
6310
6311 /* Scan all TUs of DWO files, verifying we've processed them.
6312 This is needed in case a TU was emitted without its skeleton.
6313 Note: This can't be done until we know what all the DWO files are. */
6314
6315 static void
6316 process_skeletonless_type_units (struct objfile *objfile)
6317 {
6318 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
6319 if (get_dwp_file () == NULL
6320 && dwarf2_per_objfile->dwo_files != NULL)
6321 {
6322 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
6323 process_dwo_file_for_skeletonless_type_units,
6324 objfile);
6325 }
6326 }
6327
6328 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
6329
6330 static void
6331 psymtabs_addrmap_cleanup (void *o)
6332 {
6333 struct objfile *objfile = o;
6334
6335 objfile->psymtabs_addrmap = NULL;
6336 }
6337
6338 /* Compute the 'user' field for each psymtab in OBJFILE. */
6339
6340 static void
6341 set_partial_user (struct objfile *objfile)
6342 {
6343 int i;
6344
6345 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6346 {
6347 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6348 struct partial_symtab *pst = per_cu->v.psymtab;
6349 int j;
6350
6351 if (pst == NULL)
6352 continue;
6353
6354 for (j = 0; j < pst->number_of_dependencies; ++j)
6355 {
6356 /* Set the 'user' field only if it is not already set. */
6357 if (pst->dependencies[j]->user == NULL)
6358 pst->dependencies[j]->user = pst;
6359 }
6360 }
6361 }
6362
6363 /* Build the partial symbol table by doing a quick pass through the
6364 .debug_info and .debug_abbrev sections. */
6365
6366 static void
6367 dwarf2_build_psymtabs_hard (struct objfile *objfile)
6368 {
6369 struct cleanup *back_to, *addrmap_cleanup;
6370 struct obstack temp_obstack;
6371 int i;
6372
6373 if (dwarf2_read_debug)
6374 {
6375 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
6376 objfile_name (objfile));
6377 }
6378
6379 dwarf2_per_objfile->reading_partial_symbols = 1;
6380
6381 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
6382
6383 /* Any cached compilation units will be linked by the per-objfile
6384 read_in_chain. Make sure to free them when we're done. */
6385 back_to = make_cleanup (free_cached_comp_units, NULL);
6386
6387 build_type_psymtabs (objfile);
6388
6389 create_all_comp_units (objfile);
6390
6391 /* Create a temporary address map on a temporary obstack. We later
6392 copy this to the final obstack. */
6393 obstack_init (&temp_obstack);
6394 make_cleanup_obstack_free (&temp_obstack);
6395 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6396 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
6397
6398 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6399 {
6400 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6401
6402 process_psymtab_comp_unit (per_cu, 0, language_minimal);
6403 }
6404
6405 /* This has to wait until we read the CUs, we need the list of DWOs. */
6406 process_skeletonless_type_units (objfile);
6407
6408 /* Now that all TUs have been processed we can fill in the dependencies. */
6409 if (dwarf2_per_objfile->type_unit_groups != NULL)
6410 {
6411 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6412 build_type_psymtab_dependencies, NULL);
6413 }
6414
6415 if (dwarf2_read_debug)
6416 print_tu_stats ();
6417
6418 set_partial_user (objfile);
6419
6420 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6421 &objfile->objfile_obstack);
6422 discard_cleanups (addrmap_cleanup);
6423
6424 do_cleanups (back_to);
6425
6426 if (dwarf2_read_debug)
6427 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
6428 objfile_name (objfile));
6429 }
6430
6431 /* die_reader_func for load_partial_comp_unit. */
6432
6433 static void
6434 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
6435 const gdb_byte *info_ptr,
6436 struct die_info *comp_unit_die,
6437 int has_children,
6438 void *data)
6439 {
6440 struct dwarf2_cu *cu = reader->cu;
6441
6442 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
6443
6444 /* Check if comp unit has_children.
6445 If so, read the rest of the partial symbols from this comp unit.
6446 If not, there's no more debug_info for this comp unit. */
6447 if (has_children)
6448 load_partial_dies (reader, info_ptr, 0);
6449 }
6450
6451 /* Load the partial DIEs for a secondary CU into memory.
6452 This is also used when rereading a primary CU with load_all_dies. */
6453
6454 static void
6455 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6456 {
6457 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6458 load_partial_comp_unit_reader, NULL);
6459 }
6460
6461 static void
6462 read_comp_units_from_section (struct objfile *objfile,
6463 struct dwarf2_section_info *section,
6464 unsigned int is_dwz,
6465 int *n_allocated,
6466 int *n_comp_units,
6467 struct dwarf2_per_cu_data ***all_comp_units)
6468 {
6469 const gdb_byte *info_ptr;
6470 bfd *abfd = get_section_bfd_owner (section);
6471
6472 if (dwarf2_read_debug)
6473 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
6474 get_section_name (section),
6475 get_section_file_name (section));
6476
6477 dwarf2_read_section (objfile, section);
6478
6479 info_ptr = section->buffer;
6480
6481 while (info_ptr < section->buffer + section->size)
6482 {
6483 unsigned int length, initial_length_size;
6484 struct dwarf2_per_cu_data *this_cu;
6485 sect_offset offset;
6486
6487 offset.sect_off = info_ptr - section->buffer;
6488
6489 /* Read just enough information to find out where the next
6490 compilation unit is. */
6491 length = read_initial_length (abfd, info_ptr, &initial_length_size);
6492
6493 /* Save the compilation unit for later lookup. */
6494 this_cu = obstack_alloc (&objfile->objfile_obstack,
6495 sizeof (struct dwarf2_per_cu_data));
6496 memset (this_cu, 0, sizeof (*this_cu));
6497 this_cu->offset = offset;
6498 this_cu->length = length + initial_length_size;
6499 this_cu->is_dwz = is_dwz;
6500 this_cu->objfile = objfile;
6501 this_cu->section = section;
6502
6503 if (*n_comp_units == *n_allocated)
6504 {
6505 *n_allocated *= 2;
6506 *all_comp_units = xrealloc (*all_comp_units,
6507 *n_allocated
6508 * sizeof (struct dwarf2_per_cu_data *));
6509 }
6510 (*all_comp_units)[*n_comp_units] = this_cu;
6511 ++*n_comp_units;
6512
6513 info_ptr = info_ptr + this_cu->length;
6514 }
6515 }
6516
6517 /* Create a list of all compilation units in OBJFILE.
6518 This is only done for -readnow and building partial symtabs. */
6519
6520 static void
6521 create_all_comp_units (struct objfile *objfile)
6522 {
6523 int n_allocated;
6524 int n_comp_units;
6525 struct dwarf2_per_cu_data **all_comp_units;
6526 struct dwz_file *dwz;
6527
6528 n_comp_units = 0;
6529 n_allocated = 10;
6530 all_comp_units = xmalloc (n_allocated
6531 * sizeof (struct dwarf2_per_cu_data *));
6532
6533 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6534 &n_allocated, &n_comp_units, &all_comp_units);
6535
6536 dwz = dwarf2_get_dwz_file ();
6537 if (dwz != NULL)
6538 read_comp_units_from_section (objfile, &dwz->info, 1,
6539 &n_allocated, &n_comp_units,
6540 &all_comp_units);
6541
6542 dwarf2_per_objfile->all_comp_units
6543 = obstack_alloc (&objfile->objfile_obstack,
6544 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6545 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6546 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6547 xfree (all_comp_units);
6548 dwarf2_per_objfile->n_comp_units = n_comp_units;
6549 }
6550
6551 /* Process all loaded DIEs for compilation unit CU, starting at
6552 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
6553 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
6554 DW_AT_ranges). See the comments of add_partial_subprogram on how
6555 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
6556
6557 static void
6558 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
6559 CORE_ADDR *highpc, int set_addrmap,
6560 struct dwarf2_cu *cu)
6561 {
6562 struct partial_die_info *pdi;
6563
6564 /* Now, march along the PDI's, descending into ones which have
6565 interesting children but skipping the children of the other ones,
6566 until we reach the end of the compilation unit. */
6567
6568 pdi = first_die;
6569
6570 while (pdi != NULL)
6571 {
6572 fixup_partial_die (pdi, cu);
6573
6574 /* Anonymous namespaces or modules have no name but have interesting
6575 children, so we need to look at them. Ditto for anonymous
6576 enums. */
6577
6578 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
6579 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6580 || pdi->tag == DW_TAG_imported_unit)
6581 {
6582 switch (pdi->tag)
6583 {
6584 case DW_TAG_subprogram:
6585 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
6586 break;
6587 case DW_TAG_constant:
6588 case DW_TAG_variable:
6589 case DW_TAG_typedef:
6590 case DW_TAG_union_type:
6591 if (!pdi->is_declaration)
6592 {
6593 add_partial_symbol (pdi, cu);
6594 }
6595 break;
6596 case DW_TAG_class_type:
6597 case DW_TAG_interface_type:
6598 case DW_TAG_structure_type:
6599 if (!pdi->is_declaration)
6600 {
6601 add_partial_symbol (pdi, cu);
6602 }
6603 break;
6604 case DW_TAG_enumeration_type:
6605 if (!pdi->is_declaration)
6606 add_partial_enumeration (pdi, cu);
6607 break;
6608 case DW_TAG_base_type:
6609 case DW_TAG_subrange_type:
6610 /* File scope base type definitions are added to the partial
6611 symbol table. */
6612 add_partial_symbol (pdi, cu);
6613 break;
6614 case DW_TAG_namespace:
6615 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
6616 break;
6617 case DW_TAG_module:
6618 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
6619 break;
6620 case DW_TAG_imported_unit:
6621 {
6622 struct dwarf2_per_cu_data *per_cu;
6623
6624 /* For now we don't handle imported units in type units. */
6625 if (cu->per_cu->is_debug_types)
6626 {
6627 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6628 " supported in type units [in module %s]"),
6629 objfile_name (cu->objfile));
6630 }
6631
6632 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
6633 pdi->is_dwz,
6634 cu->objfile);
6635
6636 /* Go read the partial unit, if needed. */
6637 if (per_cu->v.psymtab == NULL)
6638 process_psymtab_comp_unit (per_cu, 1, cu->language);
6639
6640 VEC_safe_push (dwarf2_per_cu_ptr,
6641 cu->per_cu->imported_symtabs, per_cu);
6642 }
6643 break;
6644 case DW_TAG_imported_declaration:
6645 add_partial_symbol (pdi, cu);
6646 break;
6647 default:
6648 break;
6649 }
6650 }
6651
6652 /* If the die has a sibling, skip to the sibling. */
6653
6654 pdi = pdi->die_sibling;
6655 }
6656 }
6657
6658 /* Functions used to compute the fully scoped name of a partial DIE.
6659
6660 Normally, this is simple. For C++, the parent DIE's fully scoped
6661 name is concatenated with "::" and the partial DIE's name. For
6662 Java, the same thing occurs except that "." is used instead of "::".
6663 Enumerators are an exception; they use the scope of their parent
6664 enumeration type, i.e. the name of the enumeration type is not
6665 prepended to the enumerator.
6666
6667 There are two complexities. One is DW_AT_specification; in this
6668 case "parent" means the parent of the target of the specification,
6669 instead of the direct parent of the DIE. The other is compilers
6670 which do not emit DW_TAG_namespace; in this case we try to guess
6671 the fully qualified name of structure types from their members'
6672 linkage names. This must be done using the DIE's children rather
6673 than the children of any DW_AT_specification target. We only need
6674 to do this for structures at the top level, i.e. if the target of
6675 any DW_AT_specification (if any; otherwise the DIE itself) does not
6676 have a parent. */
6677
6678 /* Compute the scope prefix associated with PDI's parent, in
6679 compilation unit CU. The result will be allocated on CU's
6680 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6681 field. NULL is returned if no prefix is necessary. */
6682 static const char *
6683 partial_die_parent_scope (struct partial_die_info *pdi,
6684 struct dwarf2_cu *cu)
6685 {
6686 const char *grandparent_scope;
6687 struct partial_die_info *parent, *real_pdi;
6688
6689 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6690 then this means the parent of the specification DIE. */
6691
6692 real_pdi = pdi;
6693 while (real_pdi->has_specification)
6694 real_pdi = find_partial_die (real_pdi->spec_offset,
6695 real_pdi->spec_is_dwz, cu);
6696
6697 parent = real_pdi->die_parent;
6698 if (parent == NULL)
6699 return NULL;
6700
6701 if (parent->scope_set)
6702 return parent->scope;
6703
6704 fixup_partial_die (parent, cu);
6705
6706 grandparent_scope = partial_die_parent_scope (parent, cu);
6707
6708 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6709 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6710 Work around this problem here. */
6711 if (cu->language == language_cplus
6712 && parent->tag == DW_TAG_namespace
6713 && strcmp (parent->name, "::") == 0
6714 && grandparent_scope == NULL)
6715 {
6716 parent->scope = NULL;
6717 parent->scope_set = 1;
6718 return NULL;
6719 }
6720
6721 if (pdi->tag == DW_TAG_enumerator)
6722 /* Enumerators should not get the name of the enumeration as a prefix. */
6723 parent->scope = grandparent_scope;
6724 else if (parent->tag == DW_TAG_namespace
6725 || parent->tag == DW_TAG_module
6726 || parent->tag == DW_TAG_structure_type
6727 || parent->tag == DW_TAG_class_type
6728 || parent->tag == DW_TAG_interface_type
6729 || parent->tag == DW_TAG_union_type
6730 || parent->tag == DW_TAG_enumeration_type)
6731 {
6732 if (grandparent_scope == NULL)
6733 parent->scope = parent->name;
6734 else
6735 parent->scope = typename_concat (&cu->comp_unit_obstack,
6736 grandparent_scope,
6737 parent->name, 0, cu);
6738 }
6739 else
6740 {
6741 /* FIXME drow/2004-04-01: What should we be doing with
6742 function-local names? For partial symbols, we should probably be
6743 ignoring them. */
6744 complaint (&symfile_complaints,
6745 _("unhandled containing DIE tag %d for DIE at %d"),
6746 parent->tag, pdi->offset.sect_off);
6747 parent->scope = grandparent_scope;
6748 }
6749
6750 parent->scope_set = 1;
6751 return parent->scope;
6752 }
6753
6754 /* Return the fully scoped name associated with PDI, from compilation unit
6755 CU. The result will be allocated with malloc. */
6756
6757 static char *
6758 partial_die_full_name (struct partial_die_info *pdi,
6759 struct dwarf2_cu *cu)
6760 {
6761 const char *parent_scope;
6762
6763 /* If this is a template instantiation, we can not work out the
6764 template arguments from partial DIEs. So, unfortunately, we have
6765 to go through the full DIEs. At least any work we do building
6766 types here will be reused if full symbols are loaded later. */
6767 if (pdi->has_template_arguments)
6768 {
6769 fixup_partial_die (pdi, cu);
6770
6771 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6772 {
6773 struct die_info *die;
6774 struct attribute attr;
6775 struct dwarf2_cu *ref_cu = cu;
6776
6777 /* DW_FORM_ref_addr is using section offset. */
6778 attr.name = 0;
6779 attr.form = DW_FORM_ref_addr;
6780 attr.u.unsnd = pdi->offset.sect_off;
6781 die = follow_die_ref (NULL, &attr, &ref_cu);
6782
6783 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6784 }
6785 }
6786
6787 parent_scope = partial_die_parent_scope (pdi, cu);
6788 if (parent_scope == NULL)
6789 return NULL;
6790 else
6791 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
6792 }
6793
6794 static void
6795 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
6796 {
6797 struct objfile *objfile = cu->objfile;
6798 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6799 CORE_ADDR addr = 0;
6800 const char *actual_name = NULL;
6801 CORE_ADDR baseaddr;
6802 char *built_actual_name;
6803
6804 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6805
6806 built_actual_name = partial_die_full_name (pdi, cu);
6807 if (built_actual_name != NULL)
6808 actual_name = built_actual_name;
6809
6810 if (actual_name == NULL)
6811 actual_name = pdi->name;
6812
6813 switch (pdi->tag)
6814 {
6815 case DW_TAG_subprogram:
6816 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
6817 if (pdi->is_external || cu->language == language_ada)
6818 {
6819 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6820 of the global scope. But in Ada, we want to be able to access
6821 nested procedures globally. So all Ada subprograms are stored
6822 in the global scope. */
6823 /* prim_record_minimal_symbol (actual_name, addr, mst_text,
6824 objfile); */
6825 add_psymbol_to_list (actual_name, strlen (actual_name),
6826 built_actual_name != NULL,
6827 VAR_DOMAIN, LOC_BLOCK,
6828 &objfile->global_psymbols,
6829 0, addr, cu->language, objfile);
6830 }
6831 else
6832 {
6833 /* prim_record_minimal_symbol (actual_name, addr, mst_file_text,
6834 objfile); */
6835 add_psymbol_to_list (actual_name, strlen (actual_name),
6836 built_actual_name != NULL,
6837 VAR_DOMAIN, LOC_BLOCK,
6838 &objfile->static_psymbols,
6839 0, addr, cu->language, objfile);
6840 }
6841 break;
6842 case DW_TAG_constant:
6843 {
6844 struct psymbol_allocation_list *list;
6845
6846 if (pdi->is_external)
6847 list = &objfile->global_psymbols;
6848 else
6849 list = &objfile->static_psymbols;
6850 add_psymbol_to_list (actual_name, strlen (actual_name),
6851 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
6852 list, 0, 0, cu->language, objfile);
6853 }
6854 break;
6855 case DW_TAG_variable:
6856 if (pdi->d.locdesc)
6857 addr = decode_locdesc (pdi->d.locdesc, cu);
6858
6859 if (pdi->d.locdesc
6860 && addr == 0
6861 && !dwarf2_per_objfile->has_section_at_zero)
6862 {
6863 /* A global or static variable may also have been stripped
6864 out by the linker if unused, in which case its address
6865 will be nullified; do not add such variables into partial
6866 symbol table then. */
6867 }
6868 else if (pdi->is_external)
6869 {
6870 /* Global Variable.
6871 Don't enter into the minimal symbol tables as there is
6872 a minimal symbol table entry from the ELF symbols already.
6873 Enter into partial symbol table if it has a location
6874 descriptor or a type.
6875 If the location descriptor is missing, new_symbol will create
6876 a LOC_UNRESOLVED symbol, the address of the variable will then
6877 be determined from the minimal symbol table whenever the variable
6878 is referenced.
6879 The address for the partial symbol table entry is not
6880 used by GDB, but it comes in handy for debugging partial symbol
6881 table building. */
6882
6883 if (pdi->d.locdesc || pdi->has_type)
6884 add_psymbol_to_list (actual_name, strlen (actual_name),
6885 built_actual_name != NULL,
6886 VAR_DOMAIN, LOC_STATIC,
6887 &objfile->global_psymbols,
6888 0, addr + baseaddr,
6889 cu->language, objfile);
6890 }
6891 else
6892 {
6893 /* Static Variable. Skip symbols without location descriptors. */
6894 if (pdi->d.locdesc == NULL)
6895 {
6896 xfree (built_actual_name);
6897 return;
6898 }
6899 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
6900 mst_file_data, objfile); */
6901 add_psymbol_to_list (actual_name, strlen (actual_name),
6902 built_actual_name != NULL,
6903 VAR_DOMAIN, LOC_STATIC,
6904 &objfile->static_psymbols,
6905 0, addr + baseaddr,
6906 cu->language, objfile);
6907 }
6908 break;
6909 case DW_TAG_typedef:
6910 case DW_TAG_base_type:
6911 case DW_TAG_subrange_type:
6912 add_psymbol_to_list (actual_name, strlen (actual_name),
6913 built_actual_name != NULL,
6914 VAR_DOMAIN, LOC_TYPEDEF,
6915 &objfile->static_psymbols,
6916 0, (CORE_ADDR) 0, cu->language, objfile);
6917 break;
6918 case DW_TAG_imported_declaration:
6919 case DW_TAG_namespace:
6920 add_psymbol_to_list (actual_name, strlen (actual_name),
6921 built_actual_name != NULL,
6922 VAR_DOMAIN, LOC_TYPEDEF,
6923 &objfile->global_psymbols,
6924 0, (CORE_ADDR) 0, cu->language, objfile);
6925 break;
6926 case DW_TAG_module:
6927 add_psymbol_to_list (actual_name, strlen (actual_name),
6928 built_actual_name != NULL,
6929 MODULE_DOMAIN, LOC_TYPEDEF,
6930 &objfile->global_psymbols,
6931 0, (CORE_ADDR) 0, cu->language, objfile);
6932 break;
6933 case DW_TAG_class_type:
6934 case DW_TAG_interface_type:
6935 case DW_TAG_structure_type:
6936 case DW_TAG_union_type:
6937 case DW_TAG_enumeration_type:
6938 /* Skip external references. The DWARF standard says in the section
6939 about "Structure, Union, and Class Type Entries": "An incomplete
6940 structure, union or class type is represented by a structure,
6941 union or class entry that does not have a byte size attribute
6942 and that has a DW_AT_declaration attribute." */
6943 if (!pdi->has_byte_size && pdi->is_declaration)
6944 {
6945 xfree (built_actual_name);
6946 return;
6947 }
6948
6949 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
6950 static vs. global. */
6951 add_psymbol_to_list (actual_name, strlen (actual_name),
6952 built_actual_name != NULL,
6953 STRUCT_DOMAIN, LOC_TYPEDEF,
6954 (cu->language == language_cplus
6955 || cu->language == language_java)
6956 ? &objfile->global_psymbols
6957 : &objfile->static_psymbols,
6958 0, (CORE_ADDR) 0, cu->language, objfile);
6959
6960 break;
6961 case DW_TAG_enumerator:
6962 add_psymbol_to_list (actual_name, strlen (actual_name),
6963 built_actual_name != NULL,
6964 VAR_DOMAIN, LOC_CONST,
6965 (cu->language == language_cplus
6966 || cu->language == language_java)
6967 ? &objfile->global_psymbols
6968 : &objfile->static_psymbols,
6969 0, (CORE_ADDR) 0, cu->language, objfile);
6970 break;
6971 default:
6972 break;
6973 }
6974
6975 xfree (built_actual_name);
6976 }
6977
6978 /* Read a partial die corresponding to a namespace; also, add a symbol
6979 corresponding to that namespace to the symbol table. NAMESPACE is
6980 the name of the enclosing namespace. */
6981
6982 static void
6983 add_partial_namespace (struct partial_die_info *pdi,
6984 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6985 int set_addrmap, struct dwarf2_cu *cu)
6986 {
6987 /* Add a symbol for the namespace. */
6988
6989 add_partial_symbol (pdi, cu);
6990
6991 /* Now scan partial symbols in that namespace. */
6992
6993 if (pdi->has_children)
6994 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
6995 }
6996
6997 /* Read a partial die corresponding to a Fortran module. */
6998
6999 static void
7000 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
7001 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
7002 {
7003 /* Add a symbol for the namespace. */
7004
7005 add_partial_symbol (pdi, cu);
7006
7007 /* Now scan partial symbols in that module. */
7008
7009 if (pdi->has_children)
7010 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7011 }
7012
7013 /* Read a partial die corresponding to a subprogram and create a partial
7014 symbol for that subprogram. When the CU language allows it, this
7015 routine also defines a partial symbol for each nested subprogram
7016 that this subprogram contains. If SET_ADDRMAP is true, record the
7017 covered ranges in the addrmap. Set *LOWPC and *HIGHPC to the lowest
7018 and highest PC values found in PDI.
7019
7020 PDI may also be a lexical block, in which case we simply search
7021 recursively for subprograms defined inside that lexical block.
7022 Again, this is only performed when the CU language allows this
7023 type of definitions. */
7024
7025 static void
7026 add_partial_subprogram (struct partial_die_info *pdi,
7027 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7028 int set_addrmap, struct dwarf2_cu *cu)
7029 {
7030 if (pdi->tag == DW_TAG_subprogram)
7031 {
7032 if (pdi->has_pc_info)
7033 {
7034 if (pdi->lowpc < *lowpc)
7035 *lowpc = pdi->lowpc;
7036 if (pdi->highpc > *highpc)
7037 *highpc = pdi->highpc;
7038 if (set_addrmap)
7039 {
7040 struct objfile *objfile = cu->objfile;
7041 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7042 CORE_ADDR baseaddr;
7043 CORE_ADDR highpc;
7044 CORE_ADDR lowpc;
7045
7046 baseaddr = ANOFFSET (objfile->section_offsets,
7047 SECT_OFF_TEXT (objfile));
7048 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7049 pdi->lowpc + baseaddr);
7050 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7051 pdi->highpc + baseaddr);
7052 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
7053 cu->per_cu->v.psymtab);
7054 }
7055 }
7056
7057 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
7058 {
7059 if (!pdi->is_declaration)
7060 /* Ignore subprogram DIEs that do not have a name, they are
7061 illegal. Do not emit a complaint at this point, we will
7062 do so when we convert this psymtab into a symtab. */
7063 if (pdi->name)
7064 add_partial_symbol (pdi, cu);
7065 }
7066 }
7067
7068 if (! pdi->has_children)
7069 return;
7070
7071 if (cu->language == language_ada)
7072 {
7073 pdi = pdi->die_child;
7074 while (pdi != NULL)
7075 {
7076 fixup_partial_die (pdi, cu);
7077 if (pdi->tag == DW_TAG_subprogram
7078 || pdi->tag == DW_TAG_lexical_block)
7079 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
7080 pdi = pdi->die_sibling;
7081 }
7082 }
7083 }
7084
7085 /* Read a partial die corresponding to an enumeration type. */
7086
7087 static void
7088 add_partial_enumeration (struct partial_die_info *enum_pdi,
7089 struct dwarf2_cu *cu)
7090 {
7091 struct partial_die_info *pdi;
7092
7093 if (enum_pdi->name != NULL)
7094 add_partial_symbol (enum_pdi, cu);
7095
7096 pdi = enum_pdi->die_child;
7097 while (pdi)
7098 {
7099 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
7100 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
7101 else
7102 add_partial_symbol (pdi, cu);
7103 pdi = pdi->die_sibling;
7104 }
7105 }
7106
7107 /* Return the initial uleb128 in the die at INFO_PTR. */
7108
7109 static unsigned int
7110 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
7111 {
7112 unsigned int bytes_read;
7113
7114 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7115 }
7116
7117 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
7118 Return the corresponding abbrev, or NULL if the number is zero (indicating
7119 an empty DIE). In either case *BYTES_READ will be set to the length of
7120 the initial number. */
7121
7122 static struct abbrev_info *
7123 peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
7124 struct dwarf2_cu *cu)
7125 {
7126 bfd *abfd = cu->objfile->obfd;
7127 unsigned int abbrev_number;
7128 struct abbrev_info *abbrev;
7129
7130 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7131
7132 if (abbrev_number == 0)
7133 return NULL;
7134
7135 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
7136 if (!abbrev)
7137 {
7138 error (_("Dwarf Error: Could not find abbrev number %d in %s"
7139 " at offset 0x%x [in module %s]"),
7140 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
7141 cu->header.offset.sect_off, bfd_get_filename (abfd));
7142 }
7143
7144 return abbrev;
7145 }
7146
7147 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7148 Returns a pointer to the end of a series of DIEs, terminated by an empty
7149 DIE. Any children of the skipped DIEs will also be skipped. */
7150
7151 static const gdb_byte *
7152 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
7153 {
7154 struct dwarf2_cu *cu = reader->cu;
7155 struct abbrev_info *abbrev;
7156 unsigned int bytes_read;
7157
7158 while (1)
7159 {
7160 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7161 if (abbrev == NULL)
7162 return info_ptr + bytes_read;
7163 else
7164 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
7165 }
7166 }
7167
7168 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7169 INFO_PTR should point just after the initial uleb128 of a DIE, and the
7170 abbrev corresponding to that skipped uleb128 should be passed in
7171 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7172 children. */
7173
7174 static const gdb_byte *
7175 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
7176 struct abbrev_info *abbrev)
7177 {
7178 unsigned int bytes_read;
7179 struct attribute attr;
7180 bfd *abfd = reader->abfd;
7181 struct dwarf2_cu *cu = reader->cu;
7182 const gdb_byte *buffer = reader->buffer;
7183 const gdb_byte *buffer_end = reader->buffer_end;
7184 const gdb_byte *start_info_ptr = info_ptr;
7185 unsigned int form, i;
7186
7187 for (i = 0; i < abbrev->num_attrs; i++)
7188 {
7189 /* The only abbrev we care about is DW_AT_sibling. */
7190 if (abbrev->attrs[i].name == DW_AT_sibling)
7191 {
7192 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
7193 if (attr.form == DW_FORM_ref_addr)
7194 complaint (&symfile_complaints,
7195 _("ignoring absolute DW_AT_sibling"));
7196 else
7197 {
7198 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
7199 const gdb_byte *sibling_ptr = buffer + off;
7200
7201 if (sibling_ptr < info_ptr)
7202 complaint (&symfile_complaints,
7203 _("DW_AT_sibling points backwards"));
7204 else if (sibling_ptr > reader->buffer_end)
7205 dwarf2_section_buffer_overflow_complaint (reader->die_section);
7206 else
7207 return sibling_ptr;
7208 }
7209 }
7210
7211 /* If it isn't DW_AT_sibling, skip this attribute. */
7212 form = abbrev->attrs[i].form;
7213 skip_attribute:
7214 switch (form)
7215 {
7216 case DW_FORM_ref_addr:
7217 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7218 and later it is offset sized. */
7219 if (cu->header.version == 2)
7220 info_ptr += cu->header.addr_size;
7221 else
7222 info_ptr += cu->header.offset_size;
7223 break;
7224 case DW_FORM_GNU_ref_alt:
7225 info_ptr += cu->header.offset_size;
7226 break;
7227 case DW_FORM_addr:
7228 info_ptr += cu->header.addr_size;
7229 break;
7230 case DW_FORM_data1:
7231 case DW_FORM_ref1:
7232 case DW_FORM_flag:
7233 info_ptr += 1;
7234 break;
7235 case DW_FORM_flag_present:
7236 break;
7237 case DW_FORM_data2:
7238 case DW_FORM_ref2:
7239 info_ptr += 2;
7240 break;
7241 case DW_FORM_data4:
7242 case DW_FORM_ref4:
7243 info_ptr += 4;
7244 break;
7245 case DW_FORM_data8:
7246 case DW_FORM_ref8:
7247 case DW_FORM_ref_sig8:
7248 info_ptr += 8;
7249 break;
7250 case DW_FORM_string:
7251 read_direct_string (abfd, info_ptr, &bytes_read);
7252 info_ptr += bytes_read;
7253 break;
7254 case DW_FORM_sec_offset:
7255 case DW_FORM_strp:
7256 case DW_FORM_GNU_strp_alt:
7257 info_ptr += cu->header.offset_size;
7258 break;
7259 case DW_FORM_exprloc:
7260 case DW_FORM_block:
7261 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7262 info_ptr += bytes_read;
7263 break;
7264 case DW_FORM_block1:
7265 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7266 break;
7267 case DW_FORM_block2:
7268 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7269 break;
7270 case DW_FORM_block4:
7271 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7272 break;
7273 case DW_FORM_sdata:
7274 case DW_FORM_udata:
7275 case DW_FORM_ref_udata:
7276 case DW_FORM_GNU_addr_index:
7277 case DW_FORM_GNU_str_index:
7278 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
7279 break;
7280 case DW_FORM_indirect:
7281 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7282 info_ptr += bytes_read;
7283 /* We need to continue parsing from here, so just go back to
7284 the top. */
7285 goto skip_attribute;
7286
7287 default:
7288 error (_("Dwarf Error: Cannot handle %s "
7289 "in DWARF reader [in module %s]"),
7290 dwarf_form_name (form),
7291 bfd_get_filename (abfd));
7292 }
7293 }
7294
7295 if (abbrev->has_children)
7296 return skip_children (reader, info_ptr);
7297 else
7298 return info_ptr;
7299 }
7300
7301 /* Locate ORIG_PDI's sibling.
7302 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
7303
7304 static const gdb_byte *
7305 locate_pdi_sibling (const struct die_reader_specs *reader,
7306 struct partial_die_info *orig_pdi,
7307 const gdb_byte *info_ptr)
7308 {
7309 /* Do we know the sibling already? */
7310
7311 if (orig_pdi->sibling)
7312 return orig_pdi->sibling;
7313
7314 /* Are there any children to deal with? */
7315
7316 if (!orig_pdi->has_children)
7317 return info_ptr;
7318
7319 /* Skip the children the long way. */
7320
7321 return skip_children (reader, info_ptr);
7322 }
7323
7324 /* Expand this partial symbol table into a full symbol table. SELF is
7325 not NULL. */
7326
7327 static void
7328 dwarf2_read_symtab (struct partial_symtab *self,
7329 struct objfile *objfile)
7330 {
7331 if (self->readin)
7332 {
7333 warning (_("bug: psymtab for %s is already read in."),
7334 self->filename);
7335 }
7336 else
7337 {
7338 if (info_verbose)
7339 {
7340 printf_filtered (_("Reading in symbols for %s..."),
7341 self->filename);
7342 gdb_flush (gdb_stdout);
7343 }
7344
7345 /* Restore our global data. */
7346 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
7347
7348 /* If this psymtab is constructed from a debug-only objfile, the
7349 has_section_at_zero flag will not necessarily be correct. We
7350 can get the correct value for this flag by looking at the data
7351 associated with the (presumably stripped) associated objfile. */
7352 if (objfile->separate_debug_objfile_backlink)
7353 {
7354 struct dwarf2_per_objfile *dpo_backlink
7355 = objfile_data (objfile->separate_debug_objfile_backlink,
7356 dwarf2_objfile_data_key);
7357
7358 dwarf2_per_objfile->has_section_at_zero
7359 = dpo_backlink->has_section_at_zero;
7360 }
7361
7362 dwarf2_per_objfile->reading_partial_symbols = 0;
7363
7364 psymtab_to_symtab_1 (self);
7365
7366 /* Finish up the debug error message. */
7367 if (info_verbose)
7368 printf_filtered (_("done.\n"));
7369 }
7370
7371 process_cu_includes ();
7372 }
7373 \f
7374 /* Reading in full CUs. */
7375
7376 /* Add PER_CU to the queue. */
7377
7378 static void
7379 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7380 enum language pretend_language)
7381 {
7382 struct dwarf2_queue_item *item;
7383
7384 per_cu->queued = 1;
7385 item = xmalloc (sizeof (*item));
7386 item->per_cu = per_cu;
7387 item->pretend_language = pretend_language;
7388 item->next = NULL;
7389
7390 if (dwarf2_queue == NULL)
7391 dwarf2_queue = item;
7392 else
7393 dwarf2_queue_tail->next = item;
7394
7395 dwarf2_queue_tail = item;
7396 }
7397
7398 /* If PER_CU is not yet queued, add it to the queue.
7399 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7400 dependency.
7401 The result is non-zero if PER_CU was queued, otherwise the result is zero
7402 meaning either PER_CU is already queued or it is already loaded.
7403
7404 N.B. There is an invariant here that if a CU is queued then it is loaded.
7405 The caller is required to load PER_CU if we return non-zero. */
7406
7407 static int
7408 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
7409 struct dwarf2_per_cu_data *per_cu,
7410 enum language pretend_language)
7411 {
7412 /* We may arrive here during partial symbol reading, if we need full
7413 DIEs to process an unusual case (e.g. template arguments). Do
7414 not queue PER_CU, just tell our caller to load its DIEs. */
7415 if (dwarf2_per_objfile->reading_partial_symbols)
7416 {
7417 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7418 return 1;
7419 return 0;
7420 }
7421
7422 /* Mark the dependence relation so that we don't flush PER_CU
7423 too early. */
7424 if (dependent_cu != NULL)
7425 dwarf2_add_dependence (dependent_cu, per_cu);
7426
7427 /* If it's already on the queue, we have nothing to do. */
7428 if (per_cu->queued)
7429 return 0;
7430
7431 /* If the compilation unit is already loaded, just mark it as
7432 used. */
7433 if (per_cu->cu != NULL)
7434 {
7435 per_cu->cu->last_used = 0;
7436 return 0;
7437 }
7438
7439 /* Add it to the queue. */
7440 queue_comp_unit (per_cu, pretend_language);
7441
7442 return 1;
7443 }
7444
7445 /* Process the queue. */
7446
7447 static void
7448 process_queue (void)
7449 {
7450 struct dwarf2_queue_item *item, *next_item;
7451
7452 if (dwarf2_read_debug)
7453 {
7454 fprintf_unfiltered (gdb_stdlog,
7455 "Expanding one or more symtabs of objfile %s ...\n",
7456 objfile_name (dwarf2_per_objfile->objfile));
7457 }
7458
7459 /* The queue starts out with one item, but following a DIE reference
7460 may load a new CU, adding it to the end of the queue. */
7461 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7462 {
7463 if (dwarf2_per_objfile->using_index
7464 ? !item->per_cu->v.quick->compunit_symtab
7465 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7466 {
7467 struct dwarf2_per_cu_data *per_cu = item->per_cu;
7468 unsigned int debug_print_threshold;
7469 char buf[100];
7470
7471 if (per_cu->is_debug_types)
7472 {
7473 struct signatured_type *sig_type =
7474 (struct signatured_type *) per_cu;
7475
7476 sprintf (buf, "TU %s at offset 0x%x",
7477 hex_string (sig_type->signature),
7478 per_cu->offset.sect_off);
7479 /* There can be 100s of TUs.
7480 Only print them in verbose mode. */
7481 debug_print_threshold = 2;
7482 }
7483 else
7484 {
7485 sprintf (buf, "CU at offset 0x%x", per_cu->offset.sect_off);
7486 debug_print_threshold = 1;
7487 }
7488
7489 if (dwarf2_read_debug >= debug_print_threshold)
7490 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
7491
7492 if (per_cu->is_debug_types)
7493 process_full_type_unit (per_cu, item->pretend_language);
7494 else
7495 process_full_comp_unit (per_cu, item->pretend_language);
7496
7497 if (dwarf2_read_debug >= debug_print_threshold)
7498 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
7499 }
7500
7501 item->per_cu->queued = 0;
7502 next_item = item->next;
7503 xfree (item);
7504 }
7505
7506 dwarf2_queue_tail = NULL;
7507
7508 if (dwarf2_read_debug)
7509 {
7510 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
7511 objfile_name (dwarf2_per_objfile->objfile));
7512 }
7513 }
7514
7515 /* Free all allocated queue entries. This function only releases anything if
7516 an error was thrown; if the queue was processed then it would have been
7517 freed as we went along. */
7518
7519 static void
7520 dwarf2_release_queue (void *dummy)
7521 {
7522 struct dwarf2_queue_item *item, *last;
7523
7524 item = dwarf2_queue;
7525 while (item)
7526 {
7527 /* Anything still marked queued is likely to be in an
7528 inconsistent state, so discard it. */
7529 if (item->per_cu->queued)
7530 {
7531 if (item->per_cu->cu != NULL)
7532 free_one_cached_comp_unit (item->per_cu);
7533 item->per_cu->queued = 0;
7534 }
7535
7536 last = item;
7537 item = item->next;
7538 xfree (last);
7539 }
7540
7541 dwarf2_queue = dwarf2_queue_tail = NULL;
7542 }
7543
7544 /* Read in full symbols for PST, and anything it depends on. */
7545
7546 static void
7547 psymtab_to_symtab_1 (struct partial_symtab *pst)
7548 {
7549 struct dwarf2_per_cu_data *per_cu;
7550 int i;
7551
7552 if (pst->readin)
7553 return;
7554
7555 for (i = 0; i < pst->number_of_dependencies; i++)
7556 if (!pst->dependencies[i]->readin
7557 && pst->dependencies[i]->user == NULL)
7558 {
7559 /* Inform about additional files that need to be read in. */
7560 if (info_verbose)
7561 {
7562 /* FIXME: i18n: Need to make this a single string. */
7563 fputs_filtered (" ", gdb_stdout);
7564 wrap_here ("");
7565 fputs_filtered ("and ", gdb_stdout);
7566 wrap_here ("");
7567 printf_filtered ("%s...", pst->dependencies[i]->filename);
7568 wrap_here (""); /* Flush output. */
7569 gdb_flush (gdb_stdout);
7570 }
7571 psymtab_to_symtab_1 (pst->dependencies[i]);
7572 }
7573
7574 per_cu = pst->read_symtab_private;
7575
7576 if (per_cu == NULL)
7577 {
7578 /* It's an include file, no symbols to read for it.
7579 Everything is in the parent symtab. */
7580 pst->readin = 1;
7581 return;
7582 }
7583
7584 dw2_do_instantiate_symtab (per_cu);
7585 }
7586
7587 /* Trivial hash function for die_info: the hash value of a DIE
7588 is its offset in .debug_info for this objfile. */
7589
7590 static hashval_t
7591 die_hash (const void *item)
7592 {
7593 const struct die_info *die = item;
7594
7595 return die->offset.sect_off;
7596 }
7597
7598 /* Trivial comparison function for die_info structures: two DIEs
7599 are equal if they have the same offset. */
7600
7601 static int
7602 die_eq (const void *item_lhs, const void *item_rhs)
7603 {
7604 const struct die_info *die_lhs = item_lhs;
7605 const struct die_info *die_rhs = item_rhs;
7606
7607 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7608 }
7609
7610 /* die_reader_func for load_full_comp_unit.
7611 This is identical to read_signatured_type_reader,
7612 but is kept separate for now. */
7613
7614 static void
7615 load_full_comp_unit_reader (const struct die_reader_specs *reader,
7616 const gdb_byte *info_ptr,
7617 struct die_info *comp_unit_die,
7618 int has_children,
7619 void *data)
7620 {
7621 struct dwarf2_cu *cu = reader->cu;
7622 enum language *language_ptr = data;
7623
7624 gdb_assert (cu->die_hash == NULL);
7625 cu->die_hash =
7626 htab_create_alloc_ex (cu->header.length / 12,
7627 die_hash,
7628 die_eq,
7629 NULL,
7630 &cu->comp_unit_obstack,
7631 hashtab_obstack_allocate,
7632 dummy_obstack_deallocate);
7633
7634 if (has_children)
7635 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7636 &info_ptr, comp_unit_die);
7637 cu->dies = comp_unit_die;
7638 /* comp_unit_die is not stored in die_hash, no need. */
7639
7640 /* We try not to read any attributes in this function, because not
7641 all CUs needed for references have been loaded yet, and symbol
7642 table processing isn't initialized. But we have to set the CU language,
7643 or we won't be able to build types correctly.
7644 Similarly, if we do not read the producer, we can not apply
7645 producer-specific interpretation. */
7646 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
7647 }
7648
7649 /* Load the DIEs associated with PER_CU into memory. */
7650
7651 static void
7652 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7653 enum language pretend_language)
7654 {
7655 gdb_assert (! this_cu->is_debug_types);
7656
7657 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7658 load_full_comp_unit_reader, &pretend_language);
7659 }
7660
7661 /* Add a DIE to the delayed physname list. */
7662
7663 static void
7664 add_to_method_list (struct type *type, int fnfield_index, int index,
7665 const char *name, struct die_info *die,
7666 struct dwarf2_cu *cu)
7667 {
7668 struct delayed_method_info mi;
7669 mi.type = type;
7670 mi.fnfield_index = fnfield_index;
7671 mi.index = index;
7672 mi.name = name;
7673 mi.die = die;
7674 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7675 }
7676
7677 /* A cleanup for freeing the delayed method list. */
7678
7679 static void
7680 free_delayed_list (void *ptr)
7681 {
7682 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7683 if (cu->method_list != NULL)
7684 {
7685 VEC_free (delayed_method_info, cu->method_list);
7686 cu->method_list = NULL;
7687 }
7688 }
7689
7690 /* Compute the physnames of any methods on the CU's method list.
7691
7692 The computation of method physnames is delayed in order to avoid the
7693 (bad) condition that one of the method's formal parameters is of an as yet
7694 incomplete type. */
7695
7696 static void
7697 compute_delayed_physnames (struct dwarf2_cu *cu)
7698 {
7699 int i;
7700 struct delayed_method_info *mi;
7701 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7702 {
7703 const char *physname;
7704 struct fn_fieldlist *fn_flp
7705 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7706 physname = dwarf2_physname (mi->name, mi->die, cu);
7707 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
7708 }
7709 }
7710
7711 /* Go objects should be embedded in a DW_TAG_module DIE,
7712 and it's not clear if/how imported objects will appear.
7713 To keep Go support simple until that's worked out,
7714 go back through what we've read and create something usable.
7715 We could do this while processing each DIE, and feels kinda cleaner,
7716 but that way is more invasive.
7717 This is to, for example, allow the user to type "p var" or "b main"
7718 without having to specify the package name, and allow lookups
7719 of module.object to work in contexts that use the expression
7720 parser. */
7721
7722 static void
7723 fixup_go_packaging (struct dwarf2_cu *cu)
7724 {
7725 char *package_name = NULL;
7726 struct pending *list;
7727 int i;
7728
7729 for (list = global_symbols; list != NULL; list = list->next)
7730 {
7731 for (i = 0; i < list->nsyms; ++i)
7732 {
7733 struct symbol *sym = list->symbol[i];
7734
7735 if (SYMBOL_LANGUAGE (sym) == language_go
7736 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7737 {
7738 char *this_package_name = go_symbol_package_name (sym);
7739
7740 if (this_package_name == NULL)
7741 continue;
7742 if (package_name == NULL)
7743 package_name = this_package_name;
7744 else
7745 {
7746 if (strcmp (package_name, this_package_name) != 0)
7747 complaint (&symfile_complaints,
7748 _("Symtab %s has objects from two different Go packages: %s and %s"),
7749 (SYMBOL_SYMTAB (sym)
7750 ? symtab_to_filename_for_display (SYMBOL_SYMTAB (sym))
7751 : objfile_name (cu->objfile)),
7752 this_package_name, package_name);
7753 xfree (this_package_name);
7754 }
7755 }
7756 }
7757 }
7758
7759 if (package_name != NULL)
7760 {
7761 struct objfile *objfile = cu->objfile;
7762 const char *saved_package_name
7763 = obstack_copy0 (&objfile->per_bfd->storage_obstack,
7764 package_name,
7765 strlen (package_name));
7766 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
7767 saved_package_name, objfile);
7768 struct symbol *sym;
7769
7770 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7771
7772 sym = allocate_symbol (objfile);
7773 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
7774 SYMBOL_SET_NAMES (sym, saved_package_name,
7775 strlen (saved_package_name), 0, objfile);
7776 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7777 e.g., "main" finds the "main" module and not C's main(). */
7778 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
7779 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
7780 SYMBOL_TYPE (sym) = type;
7781
7782 add_symbol_to_list (sym, &global_symbols);
7783
7784 xfree (package_name);
7785 }
7786 }
7787
7788 /* Return the symtab for PER_CU. This works properly regardless of
7789 whether we're using the index or psymtabs. */
7790
7791 static struct compunit_symtab *
7792 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
7793 {
7794 return (dwarf2_per_objfile->using_index
7795 ? per_cu->v.quick->compunit_symtab
7796 : per_cu->v.psymtab->compunit_symtab);
7797 }
7798
7799 /* A helper function for computing the list of all symbol tables
7800 included by PER_CU. */
7801
7802 static void
7803 recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
7804 htab_t all_children, htab_t all_type_symtabs,
7805 struct dwarf2_per_cu_data *per_cu,
7806 struct compunit_symtab *immediate_parent)
7807 {
7808 void **slot;
7809 int ix;
7810 struct compunit_symtab *cust;
7811 struct dwarf2_per_cu_data *iter;
7812
7813 slot = htab_find_slot (all_children, per_cu, INSERT);
7814 if (*slot != NULL)
7815 {
7816 /* This inclusion and its children have been processed. */
7817 return;
7818 }
7819
7820 *slot = per_cu;
7821 /* Only add a CU if it has a symbol table. */
7822 cust = get_compunit_symtab (per_cu);
7823 if (cust != NULL)
7824 {
7825 /* If this is a type unit only add its symbol table if we haven't
7826 seen it yet (type unit per_cu's can share symtabs). */
7827 if (per_cu->is_debug_types)
7828 {
7829 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
7830 if (*slot == NULL)
7831 {
7832 *slot = cust;
7833 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7834 if (cust->user == NULL)
7835 cust->user = immediate_parent;
7836 }
7837 }
7838 else
7839 {
7840 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7841 if (cust->user == NULL)
7842 cust->user = immediate_parent;
7843 }
7844 }
7845
7846 for (ix = 0;
7847 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
7848 ++ix)
7849 {
7850 recursively_compute_inclusions (result, all_children,
7851 all_type_symtabs, iter, cust);
7852 }
7853 }
7854
7855 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
7856 PER_CU. */
7857
7858 static void
7859 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
7860 {
7861 gdb_assert (! per_cu->is_debug_types);
7862
7863 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
7864 {
7865 int ix, len;
7866 struct dwarf2_per_cu_data *per_cu_iter;
7867 struct compunit_symtab *compunit_symtab_iter;
7868 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
7869 htab_t all_children, all_type_symtabs;
7870 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
7871
7872 /* If we don't have a symtab, we can just skip this case. */
7873 if (cust == NULL)
7874 return;
7875
7876 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7877 NULL, xcalloc, xfree);
7878 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7879 NULL, xcalloc, xfree);
7880
7881 for (ix = 0;
7882 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
7883 ix, per_cu_iter);
7884 ++ix)
7885 {
7886 recursively_compute_inclusions (&result_symtabs, all_children,
7887 all_type_symtabs, per_cu_iter,
7888 cust);
7889 }
7890
7891 /* Now we have a transitive closure of all the included symtabs. */
7892 len = VEC_length (compunit_symtab_ptr, result_symtabs);
7893 cust->includes
7894 = obstack_alloc (&dwarf2_per_objfile->objfile->objfile_obstack,
7895 (len + 1) * sizeof (struct symtab *));
7896 for (ix = 0;
7897 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
7898 compunit_symtab_iter);
7899 ++ix)
7900 cust->includes[ix] = compunit_symtab_iter;
7901 cust->includes[len] = NULL;
7902
7903 VEC_free (compunit_symtab_ptr, result_symtabs);
7904 htab_delete (all_children);
7905 htab_delete (all_type_symtabs);
7906 }
7907 }
7908
7909 /* Compute the 'includes' field for the symtabs of all the CUs we just
7910 read. */
7911
7912 static void
7913 process_cu_includes (void)
7914 {
7915 int ix;
7916 struct dwarf2_per_cu_data *iter;
7917
7918 for (ix = 0;
7919 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
7920 ix, iter);
7921 ++ix)
7922 {
7923 if (! iter->is_debug_types)
7924 compute_compunit_symtab_includes (iter);
7925 }
7926
7927 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
7928 }
7929
7930 /* Generate full symbol information for PER_CU, whose DIEs have
7931 already been loaded into memory. */
7932
7933 static void
7934 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
7935 enum language pretend_language)
7936 {
7937 struct dwarf2_cu *cu = per_cu->cu;
7938 struct objfile *objfile = per_cu->objfile;
7939 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7940 CORE_ADDR lowpc, highpc;
7941 struct compunit_symtab *cust;
7942 struct cleanup *back_to, *delayed_list_cleanup;
7943 CORE_ADDR baseaddr;
7944 struct block *static_block;
7945 CORE_ADDR addr;
7946
7947 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7948
7949 buildsym_init ();
7950 back_to = make_cleanup (really_free_pendings, NULL);
7951 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
7952
7953 cu->list_in_scope = &file_symbols;
7954
7955 cu->language = pretend_language;
7956 cu->language_defn = language_def (cu->language);
7957
7958 /* Do line number decoding in read_file_scope () */
7959 process_die (cu->dies, cu);
7960
7961 /* For now fudge the Go package. */
7962 if (cu->language == language_go)
7963 fixup_go_packaging (cu);
7964
7965 /* Now that we have processed all the DIEs in the CU, all the types
7966 should be complete, and it should now be safe to compute all of the
7967 physnames. */
7968 compute_delayed_physnames (cu);
7969 do_cleanups (delayed_list_cleanup);
7970
7971 /* Some compilers don't define a DW_AT_high_pc attribute for the
7972 compilation unit. If the DW_AT_high_pc is missing, synthesize
7973 it, by scanning the DIE's below the compilation unit. */
7974 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
7975
7976 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
7977 static_block = end_symtab_get_static_block (addr, 0, 1);
7978
7979 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
7980 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
7981 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
7982 addrmap to help ensure it has an accurate map of pc values belonging to
7983 this comp unit. */
7984 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
7985
7986 cust = end_symtab_from_static_block (static_block,
7987 SECT_OFF_TEXT (objfile), 0);
7988
7989 if (cust != NULL)
7990 {
7991 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
7992
7993 /* Set symtab language to language from DW_AT_language. If the
7994 compilation is from a C file generated by language preprocessors, do
7995 not set the language if it was already deduced by start_subfile. */
7996 if (!(cu->language == language_c
7997 && COMPUNIT_FILETABS (cust)->language != language_c))
7998 COMPUNIT_FILETABS (cust)->language = cu->language;
7999
8000 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
8001 produce DW_AT_location with location lists but it can be possibly
8002 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
8003 there were bugs in prologue debug info, fixed later in GCC-4.5
8004 by "unwind info for epilogues" patch (which is not directly related).
8005
8006 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
8007 needed, it would be wrong due to missing DW_AT_producer there.
8008
8009 Still one can confuse GDB by using non-standard GCC compilation
8010 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
8011 */
8012 if (cu->has_loclist && gcc_4_minor >= 5)
8013 cust->locations_valid = 1;
8014
8015 if (gcc_4_minor >= 5)
8016 cust->epilogue_unwind_valid = 1;
8017
8018 cust->call_site_htab = cu->call_site_htab;
8019 }
8020
8021 if (dwarf2_per_objfile->using_index)
8022 per_cu->v.quick->compunit_symtab = cust;
8023 else
8024 {
8025 struct partial_symtab *pst = per_cu->v.psymtab;
8026 pst->compunit_symtab = cust;
8027 pst->readin = 1;
8028 }
8029
8030 /* Push it for inclusion processing later. */
8031 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
8032
8033 do_cleanups (back_to);
8034 }
8035
8036 /* Generate full symbol information for type unit PER_CU, whose DIEs have
8037 already been loaded into memory. */
8038
8039 static void
8040 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
8041 enum language pretend_language)
8042 {
8043 struct dwarf2_cu *cu = per_cu->cu;
8044 struct objfile *objfile = per_cu->objfile;
8045 struct compunit_symtab *cust;
8046 struct cleanup *back_to, *delayed_list_cleanup;
8047 struct signatured_type *sig_type;
8048
8049 gdb_assert (per_cu->is_debug_types);
8050 sig_type = (struct signatured_type *) per_cu;
8051
8052 buildsym_init ();
8053 back_to = make_cleanup (really_free_pendings, NULL);
8054 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8055
8056 cu->list_in_scope = &file_symbols;
8057
8058 cu->language = pretend_language;
8059 cu->language_defn = language_def (cu->language);
8060
8061 /* The symbol tables are set up in read_type_unit_scope. */
8062 process_die (cu->dies, cu);
8063
8064 /* For now fudge the Go package. */
8065 if (cu->language == language_go)
8066 fixup_go_packaging (cu);
8067
8068 /* Now that we have processed all the DIEs in the CU, all the types
8069 should be complete, and it should now be safe to compute all of the
8070 physnames. */
8071 compute_delayed_physnames (cu);
8072 do_cleanups (delayed_list_cleanup);
8073
8074 /* TUs share symbol tables.
8075 If this is the first TU to use this symtab, complete the construction
8076 of it with end_expandable_symtab. Otherwise, complete the addition of
8077 this TU's symbols to the existing symtab. */
8078 if (sig_type->type_unit_group->compunit_symtab == NULL)
8079 {
8080 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
8081 sig_type->type_unit_group->compunit_symtab = cust;
8082
8083 if (cust != NULL)
8084 {
8085 /* Set symtab language to language from DW_AT_language. If the
8086 compilation is from a C file generated by language preprocessors,
8087 do not set the language if it was already deduced by
8088 start_subfile. */
8089 if (!(cu->language == language_c
8090 && COMPUNIT_FILETABS (cust)->language != language_c))
8091 COMPUNIT_FILETABS (cust)->language = cu->language;
8092 }
8093 }
8094 else
8095 {
8096 augment_type_symtab ();
8097 cust = sig_type->type_unit_group->compunit_symtab;
8098 }
8099
8100 if (dwarf2_per_objfile->using_index)
8101 per_cu->v.quick->compunit_symtab = cust;
8102 else
8103 {
8104 struct partial_symtab *pst = per_cu->v.psymtab;
8105 pst->compunit_symtab = cust;
8106 pst->readin = 1;
8107 }
8108
8109 do_cleanups (back_to);
8110 }
8111
8112 /* Process an imported unit DIE. */
8113
8114 static void
8115 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
8116 {
8117 struct attribute *attr;
8118
8119 /* For now we don't handle imported units in type units. */
8120 if (cu->per_cu->is_debug_types)
8121 {
8122 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8123 " supported in type units [in module %s]"),
8124 objfile_name (cu->objfile));
8125 }
8126
8127 attr = dwarf2_attr (die, DW_AT_import, cu);
8128 if (attr != NULL)
8129 {
8130 struct dwarf2_per_cu_data *per_cu;
8131 struct symtab *imported_symtab;
8132 sect_offset offset;
8133 int is_dwz;
8134
8135 offset = dwarf2_get_ref_die_offset (attr);
8136 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8137 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
8138
8139 /* If necessary, add it to the queue and load its DIEs. */
8140 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8141 load_full_comp_unit (per_cu, cu->language);
8142
8143 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8144 per_cu);
8145 }
8146 }
8147
8148 /* Reset the in_process bit of a die. */
8149
8150 static void
8151 reset_die_in_process (void *arg)
8152 {
8153 struct die_info *die = arg;
8154
8155 die->in_process = 0;
8156 }
8157
8158 /* Process a die and its children. */
8159
8160 static void
8161 process_die (struct die_info *die, struct dwarf2_cu *cu)
8162 {
8163 struct cleanup *in_process;
8164
8165 /* We should only be processing those not already in process. */
8166 gdb_assert (!die->in_process);
8167
8168 die->in_process = 1;
8169 in_process = make_cleanup (reset_die_in_process,die);
8170
8171 switch (die->tag)
8172 {
8173 case DW_TAG_padding:
8174 break;
8175 case DW_TAG_compile_unit:
8176 case DW_TAG_partial_unit:
8177 read_file_scope (die, cu);
8178 break;
8179 case DW_TAG_type_unit:
8180 read_type_unit_scope (die, cu);
8181 break;
8182 case DW_TAG_subprogram:
8183 case DW_TAG_inlined_subroutine:
8184 read_func_scope (die, cu);
8185 break;
8186 case DW_TAG_lexical_block:
8187 case DW_TAG_try_block:
8188 case DW_TAG_catch_block:
8189 read_lexical_block_scope (die, cu);
8190 break;
8191 case DW_TAG_GNU_call_site:
8192 read_call_site_scope (die, cu);
8193 break;
8194 case DW_TAG_class_type:
8195 case DW_TAG_interface_type:
8196 case DW_TAG_structure_type:
8197 case DW_TAG_union_type:
8198 process_structure_scope (die, cu);
8199 break;
8200 case DW_TAG_enumeration_type:
8201 process_enumeration_scope (die, cu);
8202 break;
8203
8204 /* These dies have a type, but processing them does not create
8205 a symbol or recurse to process the children. Therefore we can
8206 read them on-demand through read_type_die. */
8207 case DW_TAG_subroutine_type:
8208 case DW_TAG_set_type:
8209 case DW_TAG_array_type:
8210 case DW_TAG_pointer_type:
8211 case DW_TAG_ptr_to_member_type:
8212 case DW_TAG_reference_type:
8213 case DW_TAG_string_type:
8214 break;
8215
8216 case DW_TAG_base_type:
8217 case DW_TAG_subrange_type:
8218 case DW_TAG_typedef:
8219 /* Add a typedef symbol for the type definition, if it has a
8220 DW_AT_name. */
8221 new_symbol (die, read_type_die (die, cu), cu);
8222 break;
8223 case DW_TAG_common_block:
8224 read_common_block (die, cu);
8225 break;
8226 case DW_TAG_common_inclusion:
8227 break;
8228 case DW_TAG_namespace:
8229 cu->processing_has_namespace_info = 1;
8230 read_namespace (die, cu);
8231 break;
8232 case DW_TAG_module:
8233 cu->processing_has_namespace_info = 1;
8234 read_module (die, cu);
8235 break;
8236 case DW_TAG_imported_declaration:
8237 cu->processing_has_namespace_info = 1;
8238 if (read_namespace_alias (die, cu))
8239 break;
8240 /* The declaration is not a global namespace alias: fall through. */
8241 case DW_TAG_imported_module:
8242 cu->processing_has_namespace_info = 1;
8243 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8244 || cu->language != language_fortran))
8245 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8246 dwarf_tag_name (die->tag));
8247 read_import_statement (die, cu);
8248 break;
8249
8250 case DW_TAG_imported_unit:
8251 process_imported_unit_die (die, cu);
8252 break;
8253
8254 default:
8255 new_symbol (die, NULL, cu);
8256 break;
8257 }
8258
8259 do_cleanups (in_process);
8260 }
8261 \f
8262 /* DWARF name computation. */
8263
8264 /* A helper function for dwarf2_compute_name which determines whether DIE
8265 needs to have the name of the scope prepended to the name listed in the
8266 die. */
8267
8268 static int
8269 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8270 {
8271 struct attribute *attr;
8272
8273 switch (die->tag)
8274 {
8275 case DW_TAG_namespace:
8276 case DW_TAG_typedef:
8277 case DW_TAG_class_type:
8278 case DW_TAG_interface_type:
8279 case DW_TAG_structure_type:
8280 case DW_TAG_union_type:
8281 case DW_TAG_enumeration_type:
8282 case DW_TAG_enumerator:
8283 case DW_TAG_subprogram:
8284 case DW_TAG_member:
8285 case DW_TAG_imported_declaration:
8286 return 1;
8287
8288 case DW_TAG_variable:
8289 case DW_TAG_constant:
8290 /* We only need to prefix "globally" visible variables. These include
8291 any variable marked with DW_AT_external or any variable that
8292 lives in a namespace. [Variables in anonymous namespaces
8293 require prefixing, but they are not DW_AT_external.] */
8294
8295 if (dwarf2_attr (die, DW_AT_specification, cu))
8296 {
8297 struct dwarf2_cu *spec_cu = cu;
8298
8299 return die_needs_namespace (die_specification (die, &spec_cu),
8300 spec_cu);
8301 }
8302
8303 attr = dwarf2_attr (die, DW_AT_external, cu);
8304 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8305 && die->parent->tag != DW_TAG_module)
8306 return 0;
8307 /* A variable in a lexical block of some kind does not need a
8308 namespace, even though in C++ such variables may be external
8309 and have a mangled name. */
8310 if (die->parent->tag == DW_TAG_lexical_block
8311 || die->parent->tag == DW_TAG_try_block
8312 || die->parent->tag == DW_TAG_catch_block
8313 || die->parent->tag == DW_TAG_subprogram)
8314 return 0;
8315 return 1;
8316
8317 default:
8318 return 0;
8319 }
8320 }
8321
8322 /* Retrieve the last character from a mem_file. */
8323
8324 static void
8325 do_ui_file_peek_last (void *object, const char *buffer, long length)
8326 {
8327 char *last_char_p = (char *) object;
8328
8329 if (length > 0)
8330 *last_char_p = buffer[length - 1];
8331 }
8332
8333 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
8334 compute the physname for the object, which include a method's:
8335 - formal parameters (C++/Java),
8336 - receiver type (Go),
8337 - return type (Java).
8338
8339 The term "physname" is a bit confusing.
8340 For C++, for example, it is the demangled name.
8341 For Go, for example, it's the mangled name.
8342
8343 For Ada, return the DIE's linkage name rather than the fully qualified
8344 name. PHYSNAME is ignored..
8345
8346 The result is allocated on the objfile_obstack and canonicalized. */
8347
8348 static const char *
8349 dwarf2_compute_name (const char *name,
8350 struct die_info *die, struct dwarf2_cu *cu,
8351 int physname)
8352 {
8353 struct objfile *objfile = cu->objfile;
8354
8355 if (name == NULL)
8356 name = dwarf2_name (die, cu);
8357
8358 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
8359 compute it by typename_concat inside GDB. */
8360 if (cu->language == language_ada
8361 || (cu->language == language_fortran && physname))
8362 {
8363 /* For Ada unit, we prefer the linkage name over the name, as
8364 the former contains the exported name, which the user expects
8365 to be able to reference. Ideally, we want the user to be able
8366 to reference this entity using either natural or linkage name,
8367 but we haven't started looking at this enhancement yet. */
8368 struct attribute *attr;
8369
8370 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8371 if (attr == NULL)
8372 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8373 if (attr && DW_STRING (attr))
8374 return DW_STRING (attr);
8375 }
8376
8377 /* These are the only languages we know how to qualify names in. */
8378 if (name != NULL
8379 && (cu->language == language_cplus || cu->language == language_java
8380 || cu->language == language_fortran))
8381 {
8382 if (die_needs_namespace (die, cu))
8383 {
8384 long length;
8385 const char *prefix;
8386 struct ui_file *buf;
8387 char *intermediate_name;
8388 const char *canonical_name = NULL;
8389
8390 prefix = determine_prefix (die, cu);
8391 buf = mem_fileopen ();
8392 if (*prefix != '\0')
8393 {
8394 char *prefixed_name = typename_concat (NULL, prefix, name,
8395 physname, cu);
8396
8397 fputs_unfiltered (prefixed_name, buf);
8398 xfree (prefixed_name);
8399 }
8400 else
8401 fputs_unfiltered (name, buf);
8402
8403 /* Template parameters may be specified in the DIE's DW_AT_name, or
8404 as children with DW_TAG_template_type_param or
8405 DW_TAG_value_type_param. If the latter, add them to the name
8406 here. If the name already has template parameters, then
8407 skip this step; some versions of GCC emit both, and
8408 it is more efficient to use the pre-computed name.
8409
8410 Something to keep in mind about this process: it is very
8411 unlikely, or in some cases downright impossible, to produce
8412 something that will match the mangled name of a function.
8413 If the definition of the function has the same debug info,
8414 we should be able to match up with it anyway. But fallbacks
8415 using the minimal symbol, for instance to find a method
8416 implemented in a stripped copy of libstdc++, will not work.
8417 If we do not have debug info for the definition, we will have to
8418 match them up some other way.
8419
8420 When we do name matching there is a related problem with function
8421 templates; two instantiated function templates are allowed to
8422 differ only by their return types, which we do not add here. */
8423
8424 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8425 {
8426 struct attribute *attr;
8427 struct die_info *child;
8428 int first = 1;
8429
8430 die->building_fullname = 1;
8431
8432 for (child = die->child; child != NULL; child = child->sibling)
8433 {
8434 struct type *type;
8435 LONGEST value;
8436 const gdb_byte *bytes;
8437 struct dwarf2_locexpr_baton *baton;
8438 struct value *v;
8439
8440 if (child->tag != DW_TAG_template_type_param
8441 && child->tag != DW_TAG_template_value_param)
8442 continue;
8443
8444 if (first)
8445 {
8446 fputs_unfiltered ("<", buf);
8447 first = 0;
8448 }
8449 else
8450 fputs_unfiltered (", ", buf);
8451
8452 attr = dwarf2_attr (child, DW_AT_type, cu);
8453 if (attr == NULL)
8454 {
8455 complaint (&symfile_complaints,
8456 _("template parameter missing DW_AT_type"));
8457 fputs_unfiltered ("UNKNOWN_TYPE", buf);
8458 continue;
8459 }
8460 type = die_type (child, cu);
8461
8462 if (child->tag == DW_TAG_template_type_param)
8463 {
8464 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
8465 continue;
8466 }
8467
8468 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8469 if (attr == NULL)
8470 {
8471 complaint (&symfile_complaints,
8472 _("template parameter missing "
8473 "DW_AT_const_value"));
8474 fputs_unfiltered ("UNKNOWN_VALUE", buf);
8475 continue;
8476 }
8477
8478 dwarf2_const_value_attr (attr, type, name,
8479 &cu->comp_unit_obstack, cu,
8480 &value, &bytes, &baton);
8481
8482 if (TYPE_NOSIGN (type))
8483 /* GDB prints characters as NUMBER 'CHAR'. If that's
8484 changed, this can use value_print instead. */
8485 c_printchar (value, type, buf);
8486 else
8487 {
8488 struct value_print_options opts;
8489
8490 if (baton != NULL)
8491 v = dwarf2_evaluate_loc_desc (type, NULL,
8492 baton->data,
8493 baton->size,
8494 baton->per_cu);
8495 else if (bytes != NULL)
8496 {
8497 v = allocate_value (type);
8498 memcpy (value_contents_writeable (v), bytes,
8499 TYPE_LENGTH (type));
8500 }
8501 else
8502 v = value_from_longest (type, value);
8503
8504 /* Specify decimal so that we do not depend on
8505 the radix. */
8506 get_formatted_print_options (&opts, 'd');
8507 opts.raw = 1;
8508 value_print (v, buf, &opts);
8509 release_value (v);
8510 value_free (v);
8511 }
8512 }
8513
8514 die->building_fullname = 0;
8515
8516 if (!first)
8517 {
8518 /* Close the argument list, with a space if necessary
8519 (nested templates). */
8520 char last_char = '\0';
8521 ui_file_put (buf, do_ui_file_peek_last, &last_char);
8522 if (last_char == '>')
8523 fputs_unfiltered (" >", buf);
8524 else
8525 fputs_unfiltered (">", buf);
8526 }
8527 }
8528
8529 /* For Java and C++ methods, append formal parameter type
8530 information, if PHYSNAME. */
8531
8532 if (physname && die->tag == DW_TAG_subprogram
8533 && (cu->language == language_cplus
8534 || cu->language == language_java))
8535 {
8536 struct type *type = read_type_die (die, cu);
8537
8538 c_type_print_args (type, buf, 1, cu->language,
8539 &type_print_raw_options);
8540
8541 if (cu->language == language_java)
8542 {
8543 /* For java, we must append the return type to method
8544 names. */
8545 if (die->tag == DW_TAG_subprogram)
8546 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
8547 0, 0, &type_print_raw_options);
8548 }
8549 else if (cu->language == language_cplus)
8550 {
8551 /* Assume that an artificial first parameter is
8552 "this", but do not crash if it is not. RealView
8553 marks unnamed (and thus unused) parameters as
8554 artificial; there is no way to differentiate
8555 the two cases. */
8556 if (TYPE_NFIELDS (type) > 0
8557 && TYPE_FIELD_ARTIFICIAL (type, 0)
8558 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
8559 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8560 0))))
8561 fputs_unfiltered (" const", buf);
8562 }
8563 }
8564
8565 intermediate_name = ui_file_xstrdup (buf, &length);
8566 ui_file_delete (buf);
8567
8568 if (cu->language == language_cplus)
8569 canonical_name
8570 = dwarf2_canonicalize_name (intermediate_name, cu,
8571 &objfile->per_bfd->storage_obstack);
8572
8573 /* If we only computed INTERMEDIATE_NAME, or if
8574 INTERMEDIATE_NAME is already canonical, then we need to
8575 copy it to the appropriate obstack. */
8576 if (canonical_name == NULL || canonical_name == intermediate_name)
8577 name = obstack_copy0 (&objfile->per_bfd->storage_obstack,
8578 intermediate_name,
8579 strlen (intermediate_name));
8580 else
8581 name = canonical_name;
8582
8583 xfree (intermediate_name);
8584 }
8585 }
8586
8587 return name;
8588 }
8589
8590 /* Return the fully qualified name of DIE, based on its DW_AT_name.
8591 If scope qualifiers are appropriate they will be added. The result
8592 will be allocated on the storage_obstack, or NULL if the DIE does
8593 not have a name. NAME may either be from a previous call to
8594 dwarf2_name or NULL.
8595
8596 The output string will be canonicalized (if C++/Java). */
8597
8598 static const char *
8599 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8600 {
8601 return dwarf2_compute_name (name, die, cu, 0);
8602 }
8603
8604 /* Construct a physname for the given DIE in CU. NAME may either be
8605 from a previous call to dwarf2_name or NULL. The result will be
8606 allocated on the objfile_objstack or NULL if the DIE does not have a
8607 name.
8608
8609 The output string will be canonicalized (if C++/Java). */
8610
8611 static const char *
8612 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8613 {
8614 struct objfile *objfile = cu->objfile;
8615 struct attribute *attr;
8616 const char *retval, *mangled = NULL, *canon = NULL;
8617 struct cleanup *back_to;
8618 int need_copy = 1;
8619
8620 /* In this case dwarf2_compute_name is just a shortcut not building anything
8621 on its own. */
8622 if (!die_needs_namespace (die, cu))
8623 return dwarf2_compute_name (name, die, cu, 1);
8624
8625 back_to = make_cleanup (null_cleanup, NULL);
8626
8627 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8628 if (!attr)
8629 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8630
8631 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8632 has computed. */
8633 if (attr && DW_STRING (attr))
8634 {
8635 char *demangled;
8636
8637 mangled = DW_STRING (attr);
8638
8639 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8640 type. It is easier for GDB users to search for such functions as
8641 `name(params)' than `long name(params)'. In such case the minimal
8642 symbol names do not match the full symbol names but for template
8643 functions there is never a need to look up their definition from their
8644 declaration so the only disadvantage remains the minimal symbol
8645 variant `long name(params)' does not have the proper inferior type.
8646 */
8647
8648 if (cu->language == language_go)
8649 {
8650 /* This is a lie, but we already lie to the caller new_symbol_full.
8651 new_symbol_full assumes we return the mangled name.
8652 This just undoes that lie until things are cleaned up. */
8653 demangled = NULL;
8654 }
8655 else
8656 {
8657 demangled = gdb_demangle (mangled,
8658 (DMGL_PARAMS | DMGL_ANSI
8659 | (cu->language == language_java
8660 ? DMGL_JAVA | DMGL_RET_POSTFIX
8661 : DMGL_RET_DROP)));
8662 }
8663 if (demangled)
8664 {
8665 make_cleanup (xfree, demangled);
8666 canon = demangled;
8667 }
8668 else
8669 {
8670 canon = mangled;
8671 need_copy = 0;
8672 }
8673 }
8674
8675 if (canon == NULL || check_physname)
8676 {
8677 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8678
8679 if (canon != NULL && strcmp (physname, canon) != 0)
8680 {
8681 /* It may not mean a bug in GDB. The compiler could also
8682 compute DW_AT_linkage_name incorrectly. But in such case
8683 GDB would need to be bug-to-bug compatible. */
8684
8685 complaint (&symfile_complaints,
8686 _("Computed physname <%s> does not match demangled <%s> "
8687 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
8688 physname, canon, mangled, die->offset.sect_off,
8689 objfile_name (objfile));
8690
8691 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8692 is available here - over computed PHYSNAME. It is safer
8693 against both buggy GDB and buggy compilers. */
8694
8695 retval = canon;
8696 }
8697 else
8698 {
8699 retval = physname;
8700 need_copy = 0;
8701 }
8702 }
8703 else
8704 retval = canon;
8705
8706 if (need_copy)
8707 retval = obstack_copy0 (&objfile->per_bfd->storage_obstack,
8708 retval, strlen (retval));
8709
8710 do_cleanups (back_to);
8711 return retval;
8712 }
8713
8714 /* Inspect DIE in CU for a namespace alias. If one exists, record
8715 a new symbol for it.
8716
8717 Returns 1 if a namespace alias was recorded, 0 otherwise. */
8718
8719 static int
8720 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
8721 {
8722 struct attribute *attr;
8723
8724 /* If the die does not have a name, this is not a namespace
8725 alias. */
8726 attr = dwarf2_attr (die, DW_AT_name, cu);
8727 if (attr != NULL)
8728 {
8729 int num;
8730 struct die_info *d = die;
8731 struct dwarf2_cu *imported_cu = cu;
8732
8733 /* If the compiler has nested DW_AT_imported_declaration DIEs,
8734 keep inspecting DIEs until we hit the underlying import. */
8735 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
8736 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
8737 {
8738 attr = dwarf2_attr (d, DW_AT_import, cu);
8739 if (attr == NULL)
8740 break;
8741
8742 d = follow_die_ref (d, attr, &imported_cu);
8743 if (d->tag != DW_TAG_imported_declaration)
8744 break;
8745 }
8746
8747 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
8748 {
8749 complaint (&symfile_complaints,
8750 _("DIE at 0x%x has too many recursively imported "
8751 "declarations"), d->offset.sect_off);
8752 return 0;
8753 }
8754
8755 if (attr != NULL)
8756 {
8757 struct type *type;
8758 sect_offset offset = dwarf2_get_ref_die_offset (attr);
8759
8760 type = get_die_type_at_offset (offset, cu->per_cu);
8761 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
8762 {
8763 /* This declaration is a global namespace alias. Add
8764 a symbol for it whose type is the aliased namespace. */
8765 new_symbol (die, type, cu);
8766 return 1;
8767 }
8768 }
8769 }
8770
8771 return 0;
8772 }
8773
8774 /* Read the import statement specified by the given die and record it. */
8775
8776 static void
8777 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8778 {
8779 struct objfile *objfile = cu->objfile;
8780 struct attribute *import_attr;
8781 struct die_info *imported_die, *child_die;
8782 struct dwarf2_cu *imported_cu;
8783 const char *imported_name;
8784 const char *imported_name_prefix;
8785 const char *canonical_name;
8786 const char *import_alias;
8787 const char *imported_declaration = NULL;
8788 const char *import_prefix;
8789 VEC (const_char_ptr) *excludes = NULL;
8790 struct cleanup *cleanups;
8791
8792 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8793 if (import_attr == NULL)
8794 {
8795 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8796 dwarf_tag_name (die->tag));
8797 return;
8798 }
8799
8800 imported_cu = cu;
8801 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8802 imported_name = dwarf2_name (imported_die, imported_cu);
8803 if (imported_name == NULL)
8804 {
8805 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8806
8807 The import in the following code:
8808 namespace A
8809 {
8810 typedef int B;
8811 }
8812
8813 int main ()
8814 {
8815 using A::B;
8816 B b;
8817 return b;
8818 }
8819
8820 ...
8821 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8822 <52> DW_AT_decl_file : 1
8823 <53> DW_AT_decl_line : 6
8824 <54> DW_AT_import : <0x75>
8825 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8826 <59> DW_AT_name : B
8827 <5b> DW_AT_decl_file : 1
8828 <5c> DW_AT_decl_line : 2
8829 <5d> DW_AT_type : <0x6e>
8830 ...
8831 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
8832 <76> DW_AT_byte_size : 4
8833 <77> DW_AT_encoding : 5 (signed)
8834
8835 imports the wrong die ( 0x75 instead of 0x58 ).
8836 This case will be ignored until the gcc bug is fixed. */
8837 return;
8838 }
8839
8840 /* Figure out the local name after import. */
8841 import_alias = dwarf2_name (die, cu);
8842
8843 /* Figure out where the statement is being imported to. */
8844 import_prefix = determine_prefix (die, cu);
8845
8846 /* Figure out what the scope of the imported die is and prepend it
8847 to the name of the imported die. */
8848 imported_name_prefix = determine_prefix (imported_die, imported_cu);
8849
8850 if (imported_die->tag != DW_TAG_namespace
8851 && imported_die->tag != DW_TAG_module)
8852 {
8853 imported_declaration = imported_name;
8854 canonical_name = imported_name_prefix;
8855 }
8856 else if (strlen (imported_name_prefix) > 0)
8857 canonical_name = obconcat (&objfile->objfile_obstack,
8858 imported_name_prefix, "::", imported_name,
8859 (char *) NULL);
8860 else
8861 canonical_name = imported_name;
8862
8863 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
8864
8865 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
8866 for (child_die = die->child; child_die && child_die->tag;
8867 child_die = sibling_die (child_die))
8868 {
8869 /* DWARF-4: A Fortran use statement with a “rename list” may be
8870 represented by an imported module entry with an import attribute
8871 referring to the module and owned entries corresponding to those
8872 entities that are renamed as part of being imported. */
8873
8874 if (child_die->tag != DW_TAG_imported_declaration)
8875 {
8876 complaint (&symfile_complaints,
8877 _("child DW_TAG_imported_declaration expected "
8878 "- DIE at 0x%x [in module %s]"),
8879 child_die->offset.sect_off, objfile_name (objfile));
8880 continue;
8881 }
8882
8883 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
8884 if (import_attr == NULL)
8885 {
8886 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8887 dwarf_tag_name (child_die->tag));
8888 continue;
8889 }
8890
8891 imported_cu = cu;
8892 imported_die = follow_die_ref_or_sig (child_die, import_attr,
8893 &imported_cu);
8894 imported_name = dwarf2_name (imported_die, imported_cu);
8895 if (imported_name == NULL)
8896 {
8897 complaint (&symfile_complaints,
8898 _("child DW_TAG_imported_declaration has unknown "
8899 "imported name - DIE at 0x%x [in module %s]"),
8900 child_die->offset.sect_off, objfile_name (objfile));
8901 continue;
8902 }
8903
8904 VEC_safe_push (const_char_ptr, excludes, imported_name);
8905
8906 process_die (child_die, cu);
8907 }
8908
8909 cp_add_using_directive (import_prefix,
8910 canonical_name,
8911 import_alias,
8912 imported_declaration,
8913 excludes,
8914 0,
8915 &objfile->objfile_obstack);
8916
8917 do_cleanups (cleanups);
8918 }
8919
8920 /* Cleanup function for handle_DW_AT_stmt_list. */
8921
8922 static void
8923 free_cu_line_header (void *arg)
8924 {
8925 struct dwarf2_cu *cu = arg;
8926
8927 free_line_header (cu->line_header);
8928 cu->line_header = NULL;
8929 }
8930
8931 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
8932 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
8933 this, it was first present in GCC release 4.3.0. */
8934
8935 static int
8936 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
8937 {
8938 if (!cu->checked_producer)
8939 check_producer (cu);
8940
8941 return cu->producer_is_gcc_lt_4_3;
8942 }
8943
8944 static void
8945 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
8946 const char **name, const char **comp_dir)
8947 {
8948 struct attribute *attr;
8949
8950 *name = NULL;
8951 *comp_dir = NULL;
8952
8953 /* Find the filename. Do not use dwarf2_name here, since the filename
8954 is not a source language identifier. */
8955 attr = dwarf2_attr (die, DW_AT_name, cu);
8956 if (attr)
8957 {
8958 *name = DW_STRING (attr);
8959 }
8960
8961 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
8962 if (attr)
8963 *comp_dir = DW_STRING (attr);
8964 else if (producer_is_gcc_lt_4_3 (cu) && *name != NULL
8965 && IS_ABSOLUTE_PATH (*name))
8966 {
8967 char *d = ldirname (*name);
8968
8969 *comp_dir = d;
8970 if (d != NULL)
8971 make_cleanup (xfree, d);
8972 }
8973 if (*comp_dir != NULL)
8974 {
8975 /* Irix 6.2 native cc prepends <machine>.: to the compilation
8976 directory, get rid of it. */
8977 char *cp = strchr (*comp_dir, ':');
8978
8979 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
8980 *comp_dir = cp + 1;
8981 }
8982
8983 if (*name == NULL)
8984 *name = "<unknown>";
8985 }
8986
8987 /* Handle DW_AT_stmt_list for a compilation unit.
8988 DIE is the DW_TAG_compile_unit die for CU.
8989 COMP_DIR is the compilation directory. LOWPC is passed to
8990 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
8991
8992 static void
8993 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
8994 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
8995 {
8996 struct attribute *attr;
8997
8998 gdb_assert (! cu->per_cu->is_debug_types);
8999
9000 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9001 if (attr)
9002 {
9003 unsigned int line_offset = DW_UNSND (attr);
9004 struct line_header *line_header
9005 = dwarf_decode_line_header (line_offset, cu);
9006
9007 if (line_header)
9008 {
9009 cu->line_header = line_header;
9010 make_cleanup (free_cu_line_header, cu);
9011 dwarf_decode_lines (line_header, comp_dir, cu, NULL, lowpc);
9012 }
9013 }
9014 }
9015
9016 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
9017
9018 static void
9019 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
9020 {
9021 struct objfile *objfile = dwarf2_per_objfile->objfile;
9022 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9023 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
9024 CORE_ADDR lowpc = ((CORE_ADDR) -1);
9025 CORE_ADDR highpc = ((CORE_ADDR) 0);
9026 struct attribute *attr;
9027 const char *name = NULL;
9028 const char *comp_dir = NULL;
9029 struct die_info *child_die;
9030 bfd *abfd = objfile->obfd;
9031 CORE_ADDR baseaddr;
9032
9033 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9034
9035 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
9036
9037 /* If we didn't find a lowpc, set it to highpc to avoid complaints
9038 from finish_block. */
9039 if (lowpc == ((CORE_ADDR) -1))
9040 lowpc = highpc;
9041 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
9042
9043 find_file_and_directory (die, cu, &name, &comp_dir);
9044
9045 prepare_one_comp_unit (cu, die, cu->language);
9046
9047 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
9048 standardised yet. As a workaround for the language detection we fall
9049 back to the DW_AT_producer string. */
9050 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
9051 cu->language = language_opencl;
9052
9053 /* Similar hack for Go. */
9054 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
9055 set_cu_language (DW_LANG_Go, cu);
9056
9057 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
9058
9059 /* Decode line number information if present. We do this before
9060 processing child DIEs, so that the line header table is available
9061 for DW_AT_decl_file. */
9062 handle_DW_AT_stmt_list (die, cu, comp_dir, lowpc);
9063
9064 /* Process all dies in compilation unit. */
9065 if (die->child != NULL)
9066 {
9067 child_die = die->child;
9068 while (child_die && child_die->tag)
9069 {
9070 process_die (child_die, cu);
9071 child_die = sibling_die (child_die);
9072 }
9073 }
9074
9075 /* Decode macro information, if present. Dwarf 2 macro information
9076 refers to information in the line number info statement program
9077 header, so we can only read it if we've read the header
9078 successfully. */
9079 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
9080 if (attr && cu->line_header)
9081 {
9082 if (dwarf2_attr (die, DW_AT_macro_info, cu))
9083 complaint (&symfile_complaints,
9084 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
9085
9086 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
9087 }
9088 else
9089 {
9090 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
9091 if (attr && cu->line_header)
9092 {
9093 unsigned int macro_offset = DW_UNSND (attr);
9094
9095 dwarf_decode_macros (cu, macro_offset, 0);
9096 }
9097 }
9098
9099 do_cleanups (back_to);
9100 }
9101
9102 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
9103 Create the set of symtabs used by this TU, or if this TU is sharing
9104 symtabs with another TU and the symtabs have already been created
9105 then restore those symtabs in the line header.
9106 We don't need the pc/line-number mapping for type units. */
9107
9108 static void
9109 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
9110 {
9111 struct objfile *objfile = dwarf2_per_objfile->objfile;
9112 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
9113 struct type_unit_group *tu_group;
9114 int first_time;
9115 struct line_header *lh;
9116 struct attribute *attr;
9117 unsigned int i, line_offset;
9118 struct signatured_type *sig_type;
9119
9120 gdb_assert (per_cu->is_debug_types);
9121 sig_type = (struct signatured_type *) per_cu;
9122
9123 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9124
9125 /* If we're using .gdb_index (includes -readnow) then
9126 per_cu->type_unit_group may not have been set up yet. */
9127 if (sig_type->type_unit_group == NULL)
9128 sig_type->type_unit_group = get_type_unit_group (cu, attr);
9129 tu_group = sig_type->type_unit_group;
9130
9131 /* If we've already processed this stmt_list there's no real need to
9132 do it again, we could fake it and just recreate the part we need
9133 (file name,index -> symtab mapping). If data shows this optimization
9134 is useful we can do it then. */
9135 first_time = tu_group->compunit_symtab == NULL;
9136
9137 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
9138 debug info. */
9139 lh = NULL;
9140 if (attr != NULL)
9141 {
9142 line_offset = DW_UNSND (attr);
9143 lh = dwarf_decode_line_header (line_offset, cu);
9144 }
9145 if (lh == NULL)
9146 {
9147 if (first_time)
9148 dwarf2_start_symtab (cu, "", NULL, 0);
9149 else
9150 {
9151 gdb_assert (tu_group->symtabs == NULL);
9152 restart_symtab (tu_group->compunit_symtab, "", 0);
9153 }
9154 /* Note: The compunit symtab will get allocated at the end. */
9155 return;
9156 }
9157
9158 cu->line_header = lh;
9159 make_cleanup (free_cu_line_header, cu);
9160
9161 if (first_time)
9162 {
9163 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
9164
9165 tu_group->num_symtabs = lh->num_file_names;
9166 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
9167
9168 for (i = 0; i < lh->num_file_names; ++i)
9169 {
9170 const char *dir = NULL;
9171 struct file_entry *fe = &lh->file_names[i];
9172
9173 if (fe->dir_index)
9174 dir = lh->include_dirs[fe->dir_index - 1];
9175 dwarf2_start_subfile (fe->name, dir);
9176
9177 if (current_subfile->symtab == NULL)
9178 {
9179 /* NOTE: start_subfile will recognize when it's been passed
9180 a file it has already seen. So we can't assume there's a
9181 simple mapping from lh->file_names to subfiles, plus
9182 lh->file_names may contain dups. */
9183 current_subfile->symtab
9184 = allocate_symtab (cust, current_subfile->name);
9185 }
9186
9187 fe->symtab = current_subfile->symtab;
9188 tu_group->symtabs[i] = fe->symtab;
9189 }
9190 }
9191 else
9192 {
9193 restart_symtab (tu_group->compunit_symtab, "", 0);
9194
9195 for (i = 0; i < lh->num_file_names; ++i)
9196 {
9197 struct file_entry *fe = &lh->file_names[i];
9198
9199 fe->symtab = tu_group->symtabs[i];
9200 }
9201 }
9202
9203 /* The main symtab is allocated last. Type units don't have DW_AT_name
9204 so they don't have a "real" (so to speak) symtab anyway.
9205 There is later code that will assign the main symtab to all symbols
9206 that don't have one. We need to handle the case of a symbol with a
9207 missing symtab (DW_AT_decl_file) anyway. */
9208 }
9209
9210 /* Process DW_TAG_type_unit.
9211 For TUs we want to skip the first top level sibling if it's not the
9212 actual type being defined by this TU. In this case the first top
9213 level sibling is there to provide context only. */
9214
9215 static void
9216 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9217 {
9218 struct die_info *child_die;
9219
9220 prepare_one_comp_unit (cu, die, language_minimal);
9221
9222 /* Initialize (or reinitialize) the machinery for building symtabs.
9223 We do this before processing child DIEs, so that the line header table
9224 is available for DW_AT_decl_file. */
9225 setup_type_unit_groups (die, cu);
9226
9227 if (die->child != NULL)
9228 {
9229 child_die = die->child;
9230 while (child_die && child_die->tag)
9231 {
9232 process_die (child_die, cu);
9233 child_die = sibling_die (child_die);
9234 }
9235 }
9236 }
9237 \f
9238 /* DWO/DWP files.
9239
9240 http://gcc.gnu.org/wiki/DebugFission
9241 http://gcc.gnu.org/wiki/DebugFissionDWP
9242
9243 To simplify handling of both DWO files ("object" files with the DWARF info)
9244 and DWP files (a file with the DWOs packaged up into one file), we treat
9245 DWP files as having a collection of virtual DWO files. */
9246
9247 static hashval_t
9248 hash_dwo_file (const void *item)
9249 {
9250 const struct dwo_file *dwo_file = item;
9251 hashval_t hash;
9252
9253 hash = htab_hash_string (dwo_file->dwo_name);
9254 if (dwo_file->comp_dir != NULL)
9255 hash += htab_hash_string (dwo_file->comp_dir);
9256 return hash;
9257 }
9258
9259 static int
9260 eq_dwo_file (const void *item_lhs, const void *item_rhs)
9261 {
9262 const struct dwo_file *lhs = item_lhs;
9263 const struct dwo_file *rhs = item_rhs;
9264
9265 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9266 return 0;
9267 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9268 return lhs->comp_dir == rhs->comp_dir;
9269 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
9270 }
9271
9272 /* Allocate a hash table for DWO files. */
9273
9274 static htab_t
9275 allocate_dwo_file_hash_table (void)
9276 {
9277 struct objfile *objfile = dwarf2_per_objfile->objfile;
9278
9279 return htab_create_alloc_ex (41,
9280 hash_dwo_file,
9281 eq_dwo_file,
9282 NULL,
9283 &objfile->objfile_obstack,
9284 hashtab_obstack_allocate,
9285 dummy_obstack_deallocate);
9286 }
9287
9288 /* Lookup DWO file DWO_NAME. */
9289
9290 static void **
9291 lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
9292 {
9293 struct dwo_file find_entry;
9294 void **slot;
9295
9296 if (dwarf2_per_objfile->dwo_files == NULL)
9297 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9298
9299 memset (&find_entry, 0, sizeof (find_entry));
9300 find_entry.dwo_name = dwo_name;
9301 find_entry.comp_dir = comp_dir;
9302 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9303
9304 return slot;
9305 }
9306
9307 static hashval_t
9308 hash_dwo_unit (const void *item)
9309 {
9310 const struct dwo_unit *dwo_unit = item;
9311
9312 /* This drops the top 32 bits of the id, but is ok for a hash. */
9313 return dwo_unit->signature;
9314 }
9315
9316 static int
9317 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9318 {
9319 const struct dwo_unit *lhs = item_lhs;
9320 const struct dwo_unit *rhs = item_rhs;
9321
9322 /* The signature is assumed to be unique within the DWO file.
9323 So while object file CU dwo_id's always have the value zero,
9324 that's OK, assuming each object file DWO file has only one CU,
9325 and that's the rule for now. */
9326 return lhs->signature == rhs->signature;
9327 }
9328
9329 /* Allocate a hash table for DWO CUs,TUs.
9330 There is one of these tables for each of CUs,TUs for each DWO file. */
9331
9332 static htab_t
9333 allocate_dwo_unit_table (struct objfile *objfile)
9334 {
9335 /* Start out with a pretty small number.
9336 Generally DWO files contain only one CU and maybe some TUs. */
9337 return htab_create_alloc_ex (3,
9338 hash_dwo_unit,
9339 eq_dwo_unit,
9340 NULL,
9341 &objfile->objfile_obstack,
9342 hashtab_obstack_allocate,
9343 dummy_obstack_deallocate);
9344 }
9345
9346 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
9347
9348 struct create_dwo_cu_data
9349 {
9350 struct dwo_file *dwo_file;
9351 struct dwo_unit dwo_unit;
9352 };
9353
9354 /* die_reader_func for create_dwo_cu. */
9355
9356 static void
9357 create_dwo_cu_reader (const struct die_reader_specs *reader,
9358 const gdb_byte *info_ptr,
9359 struct die_info *comp_unit_die,
9360 int has_children,
9361 void *datap)
9362 {
9363 struct dwarf2_cu *cu = reader->cu;
9364 struct objfile *objfile = dwarf2_per_objfile->objfile;
9365 sect_offset offset = cu->per_cu->offset;
9366 struct dwarf2_section_info *section = cu->per_cu->section;
9367 struct create_dwo_cu_data *data = datap;
9368 struct dwo_file *dwo_file = data->dwo_file;
9369 struct dwo_unit *dwo_unit = &data->dwo_unit;
9370 struct attribute *attr;
9371
9372 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9373 if (attr == NULL)
9374 {
9375 complaint (&symfile_complaints,
9376 _("Dwarf Error: debug entry at offset 0x%x is missing"
9377 " its dwo_id [in module %s]"),
9378 offset.sect_off, dwo_file->dwo_name);
9379 return;
9380 }
9381
9382 dwo_unit->dwo_file = dwo_file;
9383 dwo_unit->signature = DW_UNSND (attr);
9384 dwo_unit->section = section;
9385 dwo_unit->offset = offset;
9386 dwo_unit->length = cu->per_cu->length;
9387
9388 if (dwarf2_read_debug)
9389 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9390 offset.sect_off, hex_string (dwo_unit->signature));
9391 }
9392
9393 /* Create the dwo_unit for the lone CU in DWO_FILE.
9394 Note: This function processes DWO files only, not DWP files. */
9395
9396 static struct dwo_unit *
9397 create_dwo_cu (struct dwo_file *dwo_file)
9398 {
9399 struct objfile *objfile = dwarf2_per_objfile->objfile;
9400 struct dwarf2_section_info *section = &dwo_file->sections.info;
9401 bfd *abfd;
9402 htab_t cu_htab;
9403 const gdb_byte *info_ptr, *end_ptr;
9404 struct create_dwo_cu_data create_dwo_cu_data;
9405 struct dwo_unit *dwo_unit;
9406
9407 dwarf2_read_section (objfile, section);
9408 info_ptr = section->buffer;
9409
9410 if (info_ptr == NULL)
9411 return NULL;
9412
9413 /* We can't set abfd until now because the section may be empty or
9414 not present, in which case section->asection will be NULL. */
9415 abfd = get_section_bfd_owner (section);
9416
9417 if (dwarf2_read_debug)
9418 {
9419 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
9420 get_section_name (section),
9421 get_section_file_name (section));
9422 }
9423
9424 create_dwo_cu_data.dwo_file = dwo_file;
9425 dwo_unit = NULL;
9426
9427 end_ptr = info_ptr + section->size;
9428 while (info_ptr < end_ptr)
9429 {
9430 struct dwarf2_per_cu_data per_cu;
9431
9432 memset (&create_dwo_cu_data.dwo_unit, 0,
9433 sizeof (create_dwo_cu_data.dwo_unit));
9434 memset (&per_cu, 0, sizeof (per_cu));
9435 per_cu.objfile = objfile;
9436 per_cu.is_debug_types = 0;
9437 per_cu.offset.sect_off = info_ptr - section->buffer;
9438 per_cu.section = section;
9439
9440 init_cutu_and_read_dies_no_follow (&per_cu, dwo_file,
9441 create_dwo_cu_reader,
9442 &create_dwo_cu_data);
9443
9444 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
9445 {
9446 /* If we've already found one, complain. We only support one
9447 because having more than one requires hacking the dwo_name of
9448 each to match, which is highly unlikely to happen. */
9449 if (dwo_unit != NULL)
9450 {
9451 complaint (&symfile_complaints,
9452 _("Multiple CUs in DWO file %s [in module %s]"),
9453 dwo_file->dwo_name, objfile_name (objfile));
9454 break;
9455 }
9456
9457 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9458 *dwo_unit = create_dwo_cu_data.dwo_unit;
9459 }
9460
9461 info_ptr += per_cu.length;
9462 }
9463
9464 return dwo_unit;
9465 }
9466
9467 /* DWP file .debug_{cu,tu}_index section format:
9468 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9469
9470 DWP Version 1:
9471
9472 Both index sections have the same format, and serve to map a 64-bit
9473 signature to a set of section numbers. Each section begins with a header,
9474 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9475 indexes, and a pool of 32-bit section numbers. The index sections will be
9476 aligned at 8-byte boundaries in the file.
9477
9478 The index section header consists of:
9479
9480 V, 32 bit version number
9481 -, 32 bits unused
9482 N, 32 bit number of compilation units or type units in the index
9483 M, 32 bit number of slots in the hash table
9484
9485 Numbers are recorded using the byte order of the application binary.
9486
9487 The hash table begins at offset 16 in the section, and consists of an array
9488 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9489 order of the application binary). Unused slots in the hash table are 0.
9490 (We rely on the extreme unlikeliness of a signature being exactly 0.)
9491
9492 The parallel table begins immediately after the hash table
9493 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9494 array of 32-bit indexes (using the byte order of the application binary),
9495 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9496 table contains a 32-bit index into the pool of section numbers. For unused
9497 hash table slots, the corresponding entry in the parallel table will be 0.
9498
9499 The pool of section numbers begins immediately following the hash table
9500 (at offset 16 + 12 * M from the beginning of the section). The pool of
9501 section numbers consists of an array of 32-bit words (using the byte order
9502 of the application binary). Each item in the array is indexed starting
9503 from 0. The hash table entry provides the index of the first section
9504 number in the set. Additional section numbers in the set follow, and the
9505 set is terminated by a 0 entry (section number 0 is not used in ELF).
9506
9507 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9508 section must be the first entry in the set, and the .debug_abbrev.dwo must
9509 be the second entry. Other members of the set may follow in any order.
9510
9511 ---
9512
9513 DWP Version 2:
9514
9515 DWP Version 2 combines all the .debug_info, etc. sections into one,
9516 and the entries in the index tables are now offsets into these sections.
9517 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9518 section.
9519
9520 Index Section Contents:
9521 Header
9522 Hash Table of Signatures dwp_hash_table.hash_table
9523 Parallel Table of Indices dwp_hash_table.unit_table
9524 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9525 Table of Section Sizes dwp_hash_table.v2.sizes
9526
9527 The index section header consists of:
9528
9529 V, 32 bit version number
9530 L, 32 bit number of columns in the table of section offsets
9531 N, 32 bit number of compilation units or type units in the index
9532 M, 32 bit number of slots in the hash table
9533
9534 Numbers are recorded using the byte order of the application binary.
9535
9536 The hash table has the same format as version 1.
9537 The parallel table of indices has the same format as version 1,
9538 except that the entries are origin-1 indices into the table of sections
9539 offsets and the table of section sizes.
9540
9541 The table of offsets begins immediately following the parallel table
9542 (at offset 16 + 12 * M from the beginning of the section). The table is
9543 a two-dimensional array of 32-bit words (using the byte order of the
9544 application binary), with L columns and N+1 rows, in row-major order.
9545 Each row in the array is indexed starting from 0. The first row provides
9546 a key to the remaining rows: each column in this row provides an identifier
9547 for a debug section, and the offsets in the same column of subsequent rows
9548 refer to that section. The section identifiers are:
9549
9550 DW_SECT_INFO 1 .debug_info.dwo
9551 DW_SECT_TYPES 2 .debug_types.dwo
9552 DW_SECT_ABBREV 3 .debug_abbrev.dwo
9553 DW_SECT_LINE 4 .debug_line.dwo
9554 DW_SECT_LOC 5 .debug_loc.dwo
9555 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
9556 DW_SECT_MACINFO 7 .debug_macinfo.dwo
9557 DW_SECT_MACRO 8 .debug_macro.dwo
9558
9559 The offsets provided by the CU and TU index sections are the base offsets
9560 for the contributions made by each CU or TU to the corresponding section
9561 in the package file. Each CU and TU header contains an abbrev_offset
9562 field, used to find the abbreviations table for that CU or TU within the
9563 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
9564 be interpreted as relative to the base offset given in the index section.
9565 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
9566 should be interpreted as relative to the base offset for .debug_line.dwo,
9567 and offsets into other debug sections obtained from DWARF attributes should
9568 also be interpreted as relative to the corresponding base offset.
9569
9570 The table of sizes begins immediately following the table of offsets.
9571 Like the table of offsets, it is a two-dimensional array of 32-bit words,
9572 with L columns and N rows, in row-major order. Each row in the array is
9573 indexed starting from 1 (row 0 is shared by the two tables).
9574
9575 ---
9576
9577 Hash table lookup is handled the same in version 1 and 2:
9578
9579 We assume that N and M will not exceed 2^32 - 1.
9580 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
9581
9582 Given a 64-bit compilation unit signature or a type signature S, an entry
9583 in the hash table is located as follows:
9584
9585 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
9586 the low-order k bits all set to 1.
9587
9588 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
9589
9590 3) If the hash table entry at index H matches the signature, use that
9591 entry. If the hash table entry at index H is unused (all zeroes),
9592 terminate the search: the signature is not present in the table.
9593
9594 4) Let H = (H + H') modulo M. Repeat at Step 3.
9595
9596 Because M > N and H' and M are relatively prime, the search is guaranteed
9597 to stop at an unused slot or find the match. */
9598
9599 /* Create a hash table to map DWO IDs to their CU/TU entry in
9600 .debug_{info,types}.dwo in DWP_FILE.
9601 Returns NULL if there isn't one.
9602 Note: This function processes DWP files only, not DWO files. */
9603
9604 static struct dwp_hash_table *
9605 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
9606 {
9607 struct objfile *objfile = dwarf2_per_objfile->objfile;
9608 bfd *dbfd = dwp_file->dbfd;
9609 const gdb_byte *index_ptr, *index_end;
9610 struct dwarf2_section_info *index;
9611 uint32_t version, nr_columns, nr_units, nr_slots;
9612 struct dwp_hash_table *htab;
9613
9614 if (is_debug_types)
9615 index = &dwp_file->sections.tu_index;
9616 else
9617 index = &dwp_file->sections.cu_index;
9618
9619 if (dwarf2_section_empty_p (index))
9620 return NULL;
9621 dwarf2_read_section (objfile, index);
9622
9623 index_ptr = index->buffer;
9624 index_end = index_ptr + index->size;
9625
9626 version = read_4_bytes (dbfd, index_ptr);
9627 index_ptr += 4;
9628 if (version == 2)
9629 nr_columns = read_4_bytes (dbfd, index_ptr);
9630 else
9631 nr_columns = 0;
9632 index_ptr += 4;
9633 nr_units = read_4_bytes (dbfd, index_ptr);
9634 index_ptr += 4;
9635 nr_slots = read_4_bytes (dbfd, index_ptr);
9636 index_ptr += 4;
9637
9638 if (version != 1 && version != 2)
9639 {
9640 error (_("Dwarf Error: unsupported DWP file version (%s)"
9641 " [in module %s]"),
9642 pulongest (version), dwp_file->name);
9643 }
9644 if (nr_slots != (nr_slots & -nr_slots))
9645 {
9646 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
9647 " is not power of 2 [in module %s]"),
9648 pulongest (nr_slots), dwp_file->name);
9649 }
9650
9651 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
9652 htab->version = version;
9653 htab->nr_columns = nr_columns;
9654 htab->nr_units = nr_units;
9655 htab->nr_slots = nr_slots;
9656 htab->hash_table = index_ptr;
9657 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
9658
9659 /* Exit early if the table is empty. */
9660 if (nr_slots == 0 || nr_units == 0
9661 || (version == 2 && nr_columns == 0))
9662 {
9663 /* All must be zero. */
9664 if (nr_slots != 0 || nr_units != 0
9665 || (version == 2 && nr_columns != 0))
9666 {
9667 complaint (&symfile_complaints,
9668 _("Empty DWP but nr_slots,nr_units,nr_columns not"
9669 " all zero [in modules %s]"),
9670 dwp_file->name);
9671 }
9672 return htab;
9673 }
9674
9675 if (version == 1)
9676 {
9677 htab->section_pool.v1.indices =
9678 htab->unit_table + sizeof (uint32_t) * nr_slots;
9679 /* It's harder to decide whether the section is too small in v1.
9680 V1 is deprecated anyway so we punt. */
9681 }
9682 else
9683 {
9684 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
9685 int *ids = htab->section_pool.v2.section_ids;
9686 /* Reverse map for error checking. */
9687 int ids_seen[DW_SECT_MAX + 1];
9688 int i;
9689
9690 if (nr_columns < 2)
9691 {
9692 error (_("Dwarf Error: bad DWP hash table, too few columns"
9693 " in section table [in module %s]"),
9694 dwp_file->name);
9695 }
9696 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
9697 {
9698 error (_("Dwarf Error: bad DWP hash table, too many columns"
9699 " in section table [in module %s]"),
9700 dwp_file->name);
9701 }
9702 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9703 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9704 for (i = 0; i < nr_columns; ++i)
9705 {
9706 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
9707
9708 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
9709 {
9710 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
9711 " in section table [in module %s]"),
9712 id, dwp_file->name);
9713 }
9714 if (ids_seen[id] != -1)
9715 {
9716 error (_("Dwarf Error: bad DWP hash table, duplicate section"
9717 " id %d in section table [in module %s]"),
9718 id, dwp_file->name);
9719 }
9720 ids_seen[id] = i;
9721 ids[i] = id;
9722 }
9723 /* Must have exactly one info or types section. */
9724 if (((ids_seen[DW_SECT_INFO] != -1)
9725 + (ids_seen[DW_SECT_TYPES] != -1))
9726 != 1)
9727 {
9728 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
9729 " DWO info/types section [in module %s]"),
9730 dwp_file->name);
9731 }
9732 /* Must have an abbrev section. */
9733 if (ids_seen[DW_SECT_ABBREV] == -1)
9734 {
9735 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
9736 " section [in module %s]"),
9737 dwp_file->name);
9738 }
9739 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
9740 htab->section_pool.v2.sizes =
9741 htab->section_pool.v2.offsets + (sizeof (uint32_t)
9742 * nr_units * nr_columns);
9743 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
9744 * nr_units * nr_columns))
9745 > index_end)
9746 {
9747 error (_("Dwarf Error: DWP index section is corrupt (too small)"
9748 " [in module %s]"),
9749 dwp_file->name);
9750 }
9751 }
9752
9753 return htab;
9754 }
9755
9756 /* Update SECTIONS with the data from SECTP.
9757
9758 This function is like the other "locate" section routines that are
9759 passed to bfd_map_over_sections, but in this context the sections to
9760 read comes from the DWP V1 hash table, not the full ELF section table.
9761
9762 The result is non-zero for success, or zero if an error was found. */
9763
9764 static int
9765 locate_v1_virtual_dwo_sections (asection *sectp,
9766 struct virtual_v1_dwo_sections *sections)
9767 {
9768 const struct dwop_section_names *names = &dwop_section_names;
9769
9770 if (section_is_p (sectp->name, &names->abbrev_dwo))
9771 {
9772 /* There can be only one. */
9773 if (sections->abbrev.s.asection != NULL)
9774 return 0;
9775 sections->abbrev.s.asection = sectp;
9776 sections->abbrev.size = bfd_get_section_size (sectp);
9777 }
9778 else if (section_is_p (sectp->name, &names->info_dwo)
9779 || section_is_p (sectp->name, &names->types_dwo))
9780 {
9781 /* There can be only one. */
9782 if (sections->info_or_types.s.asection != NULL)
9783 return 0;
9784 sections->info_or_types.s.asection = sectp;
9785 sections->info_or_types.size = bfd_get_section_size (sectp);
9786 }
9787 else if (section_is_p (sectp->name, &names->line_dwo))
9788 {
9789 /* There can be only one. */
9790 if (sections->line.s.asection != NULL)
9791 return 0;
9792 sections->line.s.asection = sectp;
9793 sections->line.size = bfd_get_section_size (sectp);
9794 }
9795 else if (section_is_p (sectp->name, &names->loc_dwo))
9796 {
9797 /* There can be only one. */
9798 if (sections->loc.s.asection != NULL)
9799 return 0;
9800 sections->loc.s.asection = sectp;
9801 sections->loc.size = bfd_get_section_size (sectp);
9802 }
9803 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9804 {
9805 /* There can be only one. */
9806 if (sections->macinfo.s.asection != NULL)
9807 return 0;
9808 sections->macinfo.s.asection = sectp;
9809 sections->macinfo.size = bfd_get_section_size (sectp);
9810 }
9811 else if (section_is_p (sectp->name, &names->macro_dwo))
9812 {
9813 /* There can be only one. */
9814 if (sections->macro.s.asection != NULL)
9815 return 0;
9816 sections->macro.s.asection = sectp;
9817 sections->macro.size = bfd_get_section_size (sectp);
9818 }
9819 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9820 {
9821 /* There can be only one. */
9822 if (sections->str_offsets.s.asection != NULL)
9823 return 0;
9824 sections->str_offsets.s.asection = sectp;
9825 sections->str_offsets.size = bfd_get_section_size (sectp);
9826 }
9827 else
9828 {
9829 /* No other kind of section is valid. */
9830 return 0;
9831 }
9832
9833 return 1;
9834 }
9835
9836 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
9837 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
9838 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
9839 This is for DWP version 1 files. */
9840
9841 static struct dwo_unit *
9842 create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
9843 uint32_t unit_index,
9844 const char *comp_dir,
9845 ULONGEST signature, int is_debug_types)
9846 {
9847 struct objfile *objfile = dwarf2_per_objfile->objfile;
9848 const struct dwp_hash_table *dwp_htab =
9849 is_debug_types ? dwp_file->tus : dwp_file->cus;
9850 bfd *dbfd = dwp_file->dbfd;
9851 const char *kind = is_debug_types ? "TU" : "CU";
9852 struct dwo_file *dwo_file;
9853 struct dwo_unit *dwo_unit;
9854 struct virtual_v1_dwo_sections sections;
9855 void **dwo_file_slot;
9856 char *virtual_dwo_name;
9857 struct dwarf2_section_info *cutu;
9858 struct cleanup *cleanups;
9859 int i;
9860
9861 gdb_assert (dwp_file->version == 1);
9862
9863 if (dwarf2_read_debug)
9864 {
9865 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
9866 kind,
9867 pulongest (unit_index), hex_string (signature),
9868 dwp_file->name);
9869 }
9870
9871 /* Fetch the sections of this DWO unit.
9872 Put a limit on the number of sections we look for so that bad data
9873 doesn't cause us to loop forever. */
9874
9875 #define MAX_NR_V1_DWO_SECTIONS \
9876 (1 /* .debug_info or .debug_types */ \
9877 + 1 /* .debug_abbrev */ \
9878 + 1 /* .debug_line */ \
9879 + 1 /* .debug_loc */ \
9880 + 1 /* .debug_str_offsets */ \
9881 + 1 /* .debug_macro or .debug_macinfo */ \
9882 + 1 /* trailing zero */)
9883
9884 memset (&sections, 0, sizeof (sections));
9885 cleanups = make_cleanup (null_cleanup, 0);
9886
9887 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
9888 {
9889 asection *sectp;
9890 uint32_t section_nr =
9891 read_4_bytes (dbfd,
9892 dwp_htab->section_pool.v1.indices
9893 + (unit_index + i) * sizeof (uint32_t));
9894
9895 if (section_nr == 0)
9896 break;
9897 if (section_nr >= dwp_file->num_sections)
9898 {
9899 error (_("Dwarf Error: bad DWP hash table, section number too large"
9900 " [in module %s]"),
9901 dwp_file->name);
9902 }
9903
9904 sectp = dwp_file->elf_sections[section_nr];
9905 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
9906 {
9907 error (_("Dwarf Error: bad DWP hash table, invalid section found"
9908 " [in module %s]"),
9909 dwp_file->name);
9910 }
9911 }
9912
9913 if (i < 2
9914 || dwarf2_section_empty_p (&sections.info_or_types)
9915 || dwarf2_section_empty_p (&sections.abbrev))
9916 {
9917 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
9918 " [in module %s]"),
9919 dwp_file->name);
9920 }
9921 if (i == MAX_NR_V1_DWO_SECTIONS)
9922 {
9923 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
9924 " [in module %s]"),
9925 dwp_file->name);
9926 }
9927
9928 /* It's easier for the rest of the code if we fake a struct dwo_file and
9929 have dwo_unit "live" in that. At least for now.
9930
9931 The DWP file can be made up of a random collection of CUs and TUs.
9932 However, for each CU + set of TUs that came from the same original DWO
9933 file, we can combine them back into a virtual DWO file to save space
9934 (fewer struct dwo_file objects to allocate). Remember that for really
9935 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
9936
9937 virtual_dwo_name =
9938 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
9939 get_section_id (&sections.abbrev),
9940 get_section_id (&sections.line),
9941 get_section_id (&sections.loc),
9942 get_section_id (&sections.str_offsets));
9943 make_cleanup (xfree, virtual_dwo_name);
9944 /* Can we use an existing virtual DWO file? */
9945 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
9946 /* Create one if necessary. */
9947 if (*dwo_file_slot == NULL)
9948 {
9949 if (dwarf2_read_debug)
9950 {
9951 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
9952 virtual_dwo_name);
9953 }
9954 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
9955 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
9956 virtual_dwo_name,
9957 strlen (virtual_dwo_name));
9958 dwo_file->comp_dir = comp_dir;
9959 dwo_file->sections.abbrev = sections.abbrev;
9960 dwo_file->sections.line = sections.line;
9961 dwo_file->sections.loc = sections.loc;
9962 dwo_file->sections.macinfo = sections.macinfo;
9963 dwo_file->sections.macro = sections.macro;
9964 dwo_file->sections.str_offsets = sections.str_offsets;
9965 /* The "str" section is global to the entire DWP file. */
9966 dwo_file->sections.str = dwp_file->sections.str;
9967 /* The info or types section is assigned below to dwo_unit,
9968 there's no need to record it in dwo_file.
9969 Also, we can't simply record type sections in dwo_file because
9970 we record a pointer into the vector in dwo_unit. As we collect more
9971 types we'll grow the vector and eventually have to reallocate space
9972 for it, invalidating all copies of pointers into the previous
9973 contents. */
9974 *dwo_file_slot = dwo_file;
9975 }
9976 else
9977 {
9978 if (dwarf2_read_debug)
9979 {
9980 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
9981 virtual_dwo_name);
9982 }
9983 dwo_file = *dwo_file_slot;
9984 }
9985 do_cleanups (cleanups);
9986
9987 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9988 dwo_unit->dwo_file = dwo_file;
9989 dwo_unit->signature = signature;
9990 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
9991 sizeof (struct dwarf2_section_info));
9992 *dwo_unit->section = sections.info_or_types;
9993 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
9994
9995 return dwo_unit;
9996 }
9997
9998 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
9999 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
10000 piece within that section used by a TU/CU, return a virtual section
10001 of just that piece. */
10002
10003 static struct dwarf2_section_info
10004 create_dwp_v2_section (struct dwarf2_section_info *section,
10005 bfd_size_type offset, bfd_size_type size)
10006 {
10007 struct dwarf2_section_info result;
10008 asection *sectp;
10009
10010 gdb_assert (section != NULL);
10011 gdb_assert (!section->is_virtual);
10012
10013 memset (&result, 0, sizeof (result));
10014 result.s.containing_section = section;
10015 result.is_virtual = 1;
10016
10017 if (size == 0)
10018 return result;
10019
10020 sectp = get_section_bfd_section (section);
10021
10022 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
10023 bounds of the real section. This is a pretty-rare event, so just
10024 flag an error (easier) instead of a warning and trying to cope. */
10025 if (sectp == NULL
10026 || offset + size > bfd_get_section_size (sectp))
10027 {
10028 bfd *abfd = sectp->owner;
10029
10030 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
10031 " in section %s [in module %s]"),
10032 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
10033 objfile_name (dwarf2_per_objfile->objfile));
10034 }
10035
10036 result.virtual_offset = offset;
10037 result.size = size;
10038 return result;
10039 }
10040
10041 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10042 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10043 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10044 This is for DWP version 2 files. */
10045
10046 static struct dwo_unit *
10047 create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
10048 uint32_t unit_index,
10049 const char *comp_dir,
10050 ULONGEST signature, int is_debug_types)
10051 {
10052 struct objfile *objfile = dwarf2_per_objfile->objfile;
10053 const struct dwp_hash_table *dwp_htab =
10054 is_debug_types ? dwp_file->tus : dwp_file->cus;
10055 bfd *dbfd = dwp_file->dbfd;
10056 const char *kind = is_debug_types ? "TU" : "CU";
10057 struct dwo_file *dwo_file;
10058 struct dwo_unit *dwo_unit;
10059 struct virtual_v2_dwo_sections sections;
10060 void **dwo_file_slot;
10061 char *virtual_dwo_name;
10062 struct dwarf2_section_info *cutu;
10063 struct cleanup *cleanups;
10064 int i;
10065
10066 gdb_assert (dwp_file->version == 2);
10067
10068 if (dwarf2_read_debug)
10069 {
10070 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
10071 kind,
10072 pulongest (unit_index), hex_string (signature),
10073 dwp_file->name);
10074 }
10075
10076 /* Fetch the section offsets of this DWO unit. */
10077
10078 memset (&sections, 0, sizeof (sections));
10079 cleanups = make_cleanup (null_cleanup, 0);
10080
10081 for (i = 0; i < dwp_htab->nr_columns; ++i)
10082 {
10083 uint32_t offset = read_4_bytes (dbfd,
10084 dwp_htab->section_pool.v2.offsets
10085 + (((unit_index - 1) * dwp_htab->nr_columns
10086 + i)
10087 * sizeof (uint32_t)));
10088 uint32_t size = read_4_bytes (dbfd,
10089 dwp_htab->section_pool.v2.sizes
10090 + (((unit_index - 1) * dwp_htab->nr_columns
10091 + i)
10092 * sizeof (uint32_t)));
10093
10094 switch (dwp_htab->section_pool.v2.section_ids[i])
10095 {
10096 case DW_SECT_INFO:
10097 case DW_SECT_TYPES:
10098 sections.info_or_types_offset = offset;
10099 sections.info_or_types_size = size;
10100 break;
10101 case DW_SECT_ABBREV:
10102 sections.abbrev_offset = offset;
10103 sections.abbrev_size = size;
10104 break;
10105 case DW_SECT_LINE:
10106 sections.line_offset = offset;
10107 sections.line_size = size;
10108 break;
10109 case DW_SECT_LOC:
10110 sections.loc_offset = offset;
10111 sections.loc_size = size;
10112 break;
10113 case DW_SECT_STR_OFFSETS:
10114 sections.str_offsets_offset = offset;
10115 sections.str_offsets_size = size;
10116 break;
10117 case DW_SECT_MACINFO:
10118 sections.macinfo_offset = offset;
10119 sections.macinfo_size = size;
10120 break;
10121 case DW_SECT_MACRO:
10122 sections.macro_offset = offset;
10123 sections.macro_size = size;
10124 break;
10125 }
10126 }
10127
10128 /* It's easier for the rest of the code if we fake a struct dwo_file and
10129 have dwo_unit "live" in that. At least for now.
10130
10131 The DWP file can be made up of a random collection of CUs and TUs.
10132 However, for each CU + set of TUs that came from the same original DWO
10133 file, we can combine them back into a virtual DWO file to save space
10134 (fewer struct dwo_file objects to allocate). Remember that for really
10135 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10136
10137 virtual_dwo_name =
10138 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
10139 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
10140 (long) (sections.line_size ? sections.line_offset : 0),
10141 (long) (sections.loc_size ? sections.loc_offset : 0),
10142 (long) (sections.str_offsets_size
10143 ? sections.str_offsets_offset : 0));
10144 make_cleanup (xfree, virtual_dwo_name);
10145 /* Can we use an existing virtual DWO file? */
10146 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10147 /* Create one if necessary. */
10148 if (*dwo_file_slot == NULL)
10149 {
10150 if (dwarf2_read_debug)
10151 {
10152 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10153 virtual_dwo_name);
10154 }
10155 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10156 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
10157 virtual_dwo_name,
10158 strlen (virtual_dwo_name));
10159 dwo_file->comp_dir = comp_dir;
10160 dwo_file->sections.abbrev =
10161 create_dwp_v2_section (&dwp_file->sections.abbrev,
10162 sections.abbrev_offset, sections.abbrev_size);
10163 dwo_file->sections.line =
10164 create_dwp_v2_section (&dwp_file->sections.line,
10165 sections.line_offset, sections.line_size);
10166 dwo_file->sections.loc =
10167 create_dwp_v2_section (&dwp_file->sections.loc,
10168 sections.loc_offset, sections.loc_size);
10169 dwo_file->sections.macinfo =
10170 create_dwp_v2_section (&dwp_file->sections.macinfo,
10171 sections.macinfo_offset, sections.macinfo_size);
10172 dwo_file->sections.macro =
10173 create_dwp_v2_section (&dwp_file->sections.macro,
10174 sections.macro_offset, sections.macro_size);
10175 dwo_file->sections.str_offsets =
10176 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10177 sections.str_offsets_offset,
10178 sections.str_offsets_size);
10179 /* The "str" section is global to the entire DWP file. */
10180 dwo_file->sections.str = dwp_file->sections.str;
10181 /* The info or types section is assigned below to dwo_unit,
10182 there's no need to record it in dwo_file.
10183 Also, we can't simply record type sections in dwo_file because
10184 we record a pointer into the vector in dwo_unit. As we collect more
10185 types we'll grow the vector and eventually have to reallocate space
10186 for it, invalidating all copies of pointers into the previous
10187 contents. */
10188 *dwo_file_slot = dwo_file;
10189 }
10190 else
10191 {
10192 if (dwarf2_read_debug)
10193 {
10194 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10195 virtual_dwo_name);
10196 }
10197 dwo_file = *dwo_file_slot;
10198 }
10199 do_cleanups (cleanups);
10200
10201 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10202 dwo_unit->dwo_file = dwo_file;
10203 dwo_unit->signature = signature;
10204 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
10205 sizeof (struct dwarf2_section_info));
10206 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10207 ? &dwp_file->sections.types
10208 : &dwp_file->sections.info,
10209 sections.info_or_types_offset,
10210 sections.info_or_types_size);
10211 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10212
10213 return dwo_unit;
10214 }
10215
10216 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10217 Returns NULL if the signature isn't found. */
10218
10219 static struct dwo_unit *
10220 lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10221 ULONGEST signature, int is_debug_types)
10222 {
10223 const struct dwp_hash_table *dwp_htab =
10224 is_debug_types ? dwp_file->tus : dwp_file->cus;
10225 bfd *dbfd = dwp_file->dbfd;
10226 uint32_t mask = dwp_htab->nr_slots - 1;
10227 uint32_t hash = signature & mask;
10228 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10229 unsigned int i;
10230 void **slot;
10231 struct dwo_unit find_dwo_cu, *dwo_cu;
10232
10233 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10234 find_dwo_cu.signature = signature;
10235 slot = htab_find_slot (is_debug_types
10236 ? dwp_file->loaded_tus
10237 : dwp_file->loaded_cus,
10238 &find_dwo_cu, INSERT);
10239
10240 if (*slot != NULL)
10241 return *slot;
10242
10243 /* Use a for loop so that we don't loop forever on bad debug info. */
10244 for (i = 0; i < dwp_htab->nr_slots; ++i)
10245 {
10246 ULONGEST signature_in_table;
10247
10248 signature_in_table =
10249 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
10250 if (signature_in_table == signature)
10251 {
10252 uint32_t unit_index =
10253 read_4_bytes (dbfd,
10254 dwp_htab->unit_table + hash * sizeof (uint32_t));
10255
10256 if (dwp_file->version == 1)
10257 {
10258 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10259 comp_dir, signature,
10260 is_debug_types);
10261 }
10262 else
10263 {
10264 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10265 comp_dir, signature,
10266 is_debug_types);
10267 }
10268 return *slot;
10269 }
10270 if (signature_in_table == 0)
10271 return NULL;
10272 hash = (hash + hash2) & mask;
10273 }
10274
10275 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10276 " [in module %s]"),
10277 dwp_file->name);
10278 }
10279
10280 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
10281 Open the file specified by FILE_NAME and hand it off to BFD for
10282 preliminary analysis. Return a newly initialized bfd *, which
10283 includes a canonicalized copy of FILE_NAME.
10284 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
10285 SEARCH_CWD is true if the current directory is to be searched.
10286 It will be searched before debug-file-directory.
10287 If successful, the file is added to the bfd include table of the
10288 objfile's bfd (see gdb_bfd_record_inclusion).
10289 If unable to find/open the file, return NULL.
10290 NOTE: This function is derived from symfile_bfd_open. */
10291
10292 static bfd *
10293 try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
10294 {
10295 bfd *sym_bfd;
10296 int desc, flags;
10297 char *absolute_name;
10298 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10299 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10300 to debug_file_directory. */
10301 char *search_path;
10302 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10303
10304 if (search_cwd)
10305 {
10306 if (*debug_file_directory != '\0')
10307 search_path = concat (".", dirname_separator_string,
10308 debug_file_directory, NULL);
10309 else
10310 search_path = xstrdup (".");
10311 }
10312 else
10313 search_path = xstrdup (debug_file_directory);
10314
10315 flags = OPF_RETURN_REALPATH;
10316 if (is_dwp)
10317 flags |= OPF_SEARCH_IN_PATH;
10318 desc = openp (search_path, flags, file_name,
10319 O_RDONLY | O_BINARY, &absolute_name);
10320 xfree (search_path);
10321 if (desc < 0)
10322 return NULL;
10323
10324 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
10325 xfree (absolute_name);
10326 if (sym_bfd == NULL)
10327 return NULL;
10328 bfd_set_cacheable (sym_bfd, 1);
10329
10330 if (!bfd_check_format (sym_bfd, bfd_object))
10331 {
10332 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
10333 return NULL;
10334 }
10335
10336 /* Success. Record the bfd as having been included by the objfile's bfd.
10337 This is important because things like demangled_names_hash lives in the
10338 objfile's per_bfd space and may have references to things like symbol
10339 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
10340 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd);
10341
10342 return sym_bfd;
10343 }
10344
10345 /* Try to open DWO file FILE_NAME.
10346 COMP_DIR is the DW_AT_comp_dir attribute.
10347 The result is the bfd handle of the file.
10348 If there is a problem finding or opening the file, return NULL.
10349 Upon success, the canonicalized path of the file is stored in the bfd,
10350 same as symfile_bfd_open. */
10351
10352 static bfd *
10353 open_dwo_file (const char *file_name, const char *comp_dir)
10354 {
10355 bfd *abfd;
10356
10357 if (IS_ABSOLUTE_PATH (file_name))
10358 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
10359
10360 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10361
10362 if (comp_dir != NULL)
10363 {
10364 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
10365
10366 /* NOTE: If comp_dir is a relative path, this will also try the
10367 search path, which seems useful. */
10368 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/, 1 /*search_cwd*/);
10369 xfree (path_to_try);
10370 if (abfd != NULL)
10371 return abfd;
10372 }
10373
10374 /* That didn't work, try debug-file-directory, which, despite its name,
10375 is a list of paths. */
10376
10377 if (*debug_file_directory == '\0')
10378 return NULL;
10379
10380 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
10381 }
10382
10383 /* This function is mapped across the sections and remembers the offset and
10384 size of each of the DWO debugging sections we are interested in. */
10385
10386 static void
10387 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10388 {
10389 struct dwo_sections *dwo_sections = dwo_sections_ptr;
10390 const struct dwop_section_names *names = &dwop_section_names;
10391
10392 if (section_is_p (sectp->name, &names->abbrev_dwo))
10393 {
10394 dwo_sections->abbrev.s.asection = sectp;
10395 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10396 }
10397 else if (section_is_p (sectp->name, &names->info_dwo))
10398 {
10399 dwo_sections->info.s.asection = sectp;
10400 dwo_sections->info.size = bfd_get_section_size (sectp);
10401 }
10402 else if (section_is_p (sectp->name, &names->line_dwo))
10403 {
10404 dwo_sections->line.s.asection = sectp;
10405 dwo_sections->line.size = bfd_get_section_size (sectp);
10406 }
10407 else if (section_is_p (sectp->name, &names->loc_dwo))
10408 {
10409 dwo_sections->loc.s.asection = sectp;
10410 dwo_sections->loc.size = bfd_get_section_size (sectp);
10411 }
10412 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10413 {
10414 dwo_sections->macinfo.s.asection = sectp;
10415 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10416 }
10417 else if (section_is_p (sectp->name, &names->macro_dwo))
10418 {
10419 dwo_sections->macro.s.asection = sectp;
10420 dwo_sections->macro.size = bfd_get_section_size (sectp);
10421 }
10422 else if (section_is_p (sectp->name, &names->str_dwo))
10423 {
10424 dwo_sections->str.s.asection = sectp;
10425 dwo_sections->str.size = bfd_get_section_size (sectp);
10426 }
10427 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10428 {
10429 dwo_sections->str_offsets.s.asection = sectp;
10430 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10431 }
10432 else if (section_is_p (sectp->name, &names->types_dwo))
10433 {
10434 struct dwarf2_section_info type_section;
10435
10436 memset (&type_section, 0, sizeof (type_section));
10437 type_section.s.asection = sectp;
10438 type_section.size = bfd_get_section_size (sectp);
10439 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10440 &type_section);
10441 }
10442 }
10443
10444 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
10445 by PER_CU. This is for the non-DWP case.
10446 The result is NULL if DWO_NAME can't be found. */
10447
10448 static struct dwo_file *
10449 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10450 const char *dwo_name, const char *comp_dir)
10451 {
10452 struct objfile *objfile = dwarf2_per_objfile->objfile;
10453 struct dwo_file *dwo_file;
10454 bfd *dbfd;
10455 struct cleanup *cleanups;
10456
10457 dbfd = open_dwo_file (dwo_name, comp_dir);
10458 if (dbfd == NULL)
10459 {
10460 if (dwarf2_read_debug)
10461 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10462 return NULL;
10463 }
10464 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10465 dwo_file->dwo_name = dwo_name;
10466 dwo_file->comp_dir = comp_dir;
10467 dwo_file->dbfd = dbfd;
10468
10469 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10470
10471 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
10472
10473 dwo_file->cu = create_dwo_cu (dwo_file);
10474
10475 dwo_file->tus = create_debug_types_hash_table (dwo_file,
10476 dwo_file->sections.types);
10477
10478 discard_cleanups (cleanups);
10479
10480 if (dwarf2_read_debug)
10481 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10482
10483 return dwo_file;
10484 }
10485
10486 /* This function is mapped across the sections and remembers the offset and
10487 size of each of the DWP debugging sections common to version 1 and 2 that
10488 we are interested in. */
10489
10490 static void
10491 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10492 void *dwp_file_ptr)
10493 {
10494 struct dwp_file *dwp_file = dwp_file_ptr;
10495 const struct dwop_section_names *names = &dwop_section_names;
10496 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10497
10498 /* Record the ELF section number for later lookup: this is what the
10499 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10500 gdb_assert (elf_section_nr < dwp_file->num_sections);
10501 dwp_file->elf_sections[elf_section_nr] = sectp;
10502
10503 /* Look for specific sections that we need. */
10504 if (section_is_p (sectp->name, &names->str_dwo))
10505 {
10506 dwp_file->sections.str.s.asection = sectp;
10507 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10508 }
10509 else if (section_is_p (sectp->name, &names->cu_index))
10510 {
10511 dwp_file->sections.cu_index.s.asection = sectp;
10512 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10513 }
10514 else if (section_is_p (sectp->name, &names->tu_index))
10515 {
10516 dwp_file->sections.tu_index.s.asection = sectp;
10517 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10518 }
10519 }
10520
10521 /* This function is mapped across the sections and remembers the offset and
10522 size of each of the DWP version 2 debugging sections that we are interested
10523 in. This is split into a separate function because we don't know if we
10524 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10525
10526 static void
10527 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10528 {
10529 struct dwp_file *dwp_file = dwp_file_ptr;
10530 const struct dwop_section_names *names = &dwop_section_names;
10531 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10532
10533 /* Record the ELF section number for later lookup: this is what the
10534 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10535 gdb_assert (elf_section_nr < dwp_file->num_sections);
10536 dwp_file->elf_sections[elf_section_nr] = sectp;
10537
10538 /* Look for specific sections that we need. */
10539 if (section_is_p (sectp->name, &names->abbrev_dwo))
10540 {
10541 dwp_file->sections.abbrev.s.asection = sectp;
10542 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10543 }
10544 else if (section_is_p (sectp->name, &names->info_dwo))
10545 {
10546 dwp_file->sections.info.s.asection = sectp;
10547 dwp_file->sections.info.size = bfd_get_section_size (sectp);
10548 }
10549 else if (section_is_p (sectp->name, &names->line_dwo))
10550 {
10551 dwp_file->sections.line.s.asection = sectp;
10552 dwp_file->sections.line.size = bfd_get_section_size (sectp);
10553 }
10554 else if (section_is_p (sectp->name, &names->loc_dwo))
10555 {
10556 dwp_file->sections.loc.s.asection = sectp;
10557 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
10558 }
10559 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10560 {
10561 dwp_file->sections.macinfo.s.asection = sectp;
10562 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
10563 }
10564 else if (section_is_p (sectp->name, &names->macro_dwo))
10565 {
10566 dwp_file->sections.macro.s.asection = sectp;
10567 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
10568 }
10569 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10570 {
10571 dwp_file->sections.str_offsets.s.asection = sectp;
10572 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
10573 }
10574 else if (section_is_p (sectp->name, &names->types_dwo))
10575 {
10576 dwp_file->sections.types.s.asection = sectp;
10577 dwp_file->sections.types.size = bfd_get_section_size (sectp);
10578 }
10579 }
10580
10581 /* Hash function for dwp_file loaded CUs/TUs. */
10582
10583 static hashval_t
10584 hash_dwp_loaded_cutus (const void *item)
10585 {
10586 const struct dwo_unit *dwo_unit = item;
10587
10588 /* This drops the top 32 bits of the signature, but is ok for a hash. */
10589 return dwo_unit->signature;
10590 }
10591
10592 /* Equality function for dwp_file loaded CUs/TUs. */
10593
10594 static int
10595 eq_dwp_loaded_cutus (const void *a, const void *b)
10596 {
10597 const struct dwo_unit *dua = a;
10598 const struct dwo_unit *dub = b;
10599
10600 return dua->signature == dub->signature;
10601 }
10602
10603 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
10604
10605 static htab_t
10606 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
10607 {
10608 return htab_create_alloc_ex (3,
10609 hash_dwp_loaded_cutus,
10610 eq_dwp_loaded_cutus,
10611 NULL,
10612 &objfile->objfile_obstack,
10613 hashtab_obstack_allocate,
10614 dummy_obstack_deallocate);
10615 }
10616
10617 /* Try to open DWP file FILE_NAME.
10618 The result is the bfd handle of the file.
10619 If there is a problem finding or opening the file, return NULL.
10620 Upon success, the canonicalized path of the file is stored in the bfd,
10621 same as symfile_bfd_open. */
10622
10623 static bfd *
10624 open_dwp_file (const char *file_name)
10625 {
10626 bfd *abfd;
10627
10628 abfd = try_open_dwop_file (file_name, 1 /*is_dwp*/, 1 /*search_cwd*/);
10629 if (abfd != NULL)
10630 return abfd;
10631
10632 /* Work around upstream bug 15652.
10633 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
10634 [Whether that's a "bug" is debatable, but it is getting in our way.]
10635 We have no real idea where the dwp file is, because gdb's realpath-ing
10636 of the executable's path may have discarded the needed info.
10637 [IWBN if the dwp file name was recorded in the executable, akin to
10638 .gnu_debuglink, but that doesn't exist yet.]
10639 Strip the directory from FILE_NAME and search again. */
10640 if (*debug_file_directory != '\0')
10641 {
10642 /* Don't implicitly search the current directory here.
10643 If the user wants to search "." to handle this case,
10644 it must be added to debug-file-directory. */
10645 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
10646 0 /*search_cwd*/);
10647 }
10648
10649 return NULL;
10650 }
10651
10652 /* Initialize the use of the DWP file for the current objfile.
10653 By convention the name of the DWP file is ${objfile}.dwp.
10654 The result is NULL if it can't be found. */
10655
10656 static struct dwp_file *
10657 open_and_init_dwp_file (void)
10658 {
10659 struct objfile *objfile = dwarf2_per_objfile->objfile;
10660 struct dwp_file *dwp_file;
10661 char *dwp_name;
10662 bfd *dbfd;
10663 struct cleanup *cleanups;
10664
10665 /* Try to find first .dwp for the binary file before any symbolic links
10666 resolving. */
10667 dwp_name = xstrprintf ("%s.dwp", objfile->original_name);
10668 cleanups = make_cleanup (xfree, dwp_name);
10669
10670 dbfd = open_dwp_file (dwp_name);
10671 if (dbfd == NULL
10672 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
10673 {
10674 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
10675 dwp_name = xstrprintf ("%s.dwp", objfile_name (objfile));
10676 make_cleanup (xfree, dwp_name);
10677 dbfd = open_dwp_file (dwp_name);
10678 }
10679
10680 if (dbfd == NULL)
10681 {
10682 if (dwarf2_read_debug)
10683 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
10684 do_cleanups (cleanups);
10685 return NULL;
10686 }
10687 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
10688 dwp_file->name = bfd_get_filename (dbfd);
10689 dwp_file->dbfd = dbfd;
10690 do_cleanups (cleanups);
10691
10692 /* +1: section 0 is unused */
10693 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
10694 dwp_file->elf_sections =
10695 OBSTACK_CALLOC (&objfile->objfile_obstack,
10696 dwp_file->num_sections, asection *);
10697
10698 bfd_map_over_sections (dbfd, dwarf2_locate_common_dwp_sections, dwp_file);
10699
10700 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
10701
10702 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
10703
10704 /* The DWP file version is stored in the hash table. Oh well. */
10705 if (dwp_file->cus->version != dwp_file->tus->version)
10706 {
10707 /* Technically speaking, we should try to limp along, but this is
10708 pretty bizarre. We use pulongest here because that's the established
10709 portability solution (e.g, we cannot use %u for uint32_t). */
10710 error (_("Dwarf Error: DWP file CU version %s doesn't match"
10711 " TU version %s [in DWP file %s]"),
10712 pulongest (dwp_file->cus->version),
10713 pulongest (dwp_file->tus->version), dwp_name);
10714 }
10715 dwp_file->version = dwp_file->cus->version;
10716
10717 if (dwp_file->version == 2)
10718 bfd_map_over_sections (dbfd, dwarf2_locate_v2_dwp_sections, dwp_file);
10719
10720 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
10721 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
10722
10723 if (dwarf2_read_debug)
10724 {
10725 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
10726 fprintf_unfiltered (gdb_stdlog,
10727 " %s CUs, %s TUs\n",
10728 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
10729 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
10730 }
10731
10732 return dwp_file;
10733 }
10734
10735 /* Wrapper around open_and_init_dwp_file, only open it once. */
10736
10737 static struct dwp_file *
10738 get_dwp_file (void)
10739 {
10740 if (! dwarf2_per_objfile->dwp_checked)
10741 {
10742 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
10743 dwarf2_per_objfile->dwp_checked = 1;
10744 }
10745 return dwarf2_per_objfile->dwp_file;
10746 }
10747
10748 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
10749 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
10750 or in the DWP file for the objfile, referenced by THIS_UNIT.
10751 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
10752 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
10753
10754 This is called, for example, when wanting to read a variable with a
10755 complex location. Therefore we don't want to do file i/o for every call.
10756 Therefore we don't want to look for a DWO file on every call.
10757 Therefore we first see if we've already seen SIGNATURE in a DWP file,
10758 then we check if we've already seen DWO_NAME, and only THEN do we check
10759 for a DWO file.
10760
10761 The result is a pointer to the dwo_unit object or NULL if we didn't find it
10762 (dwo_id mismatch or couldn't find the DWO/DWP file). */
10763
10764 static struct dwo_unit *
10765 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
10766 const char *dwo_name, const char *comp_dir,
10767 ULONGEST signature, int is_debug_types)
10768 {
10769 struct objfile *objfile = dwarf2_per_objfile->objfile;
10770 const char *kind = is_debug_types ? "TU" : "CU";
10771 void **dwo_file_slot;
10772 struct dwo_file *dwo_file;
10773 struct dwp_file *dwp_file;
10774
10775 /* First see if there's a DWP file.
10776 If we have a DWP file but didn't find the DWO inside it, don't
10777 look for the original DWO file. It makes gdb behave differently
10778 depending on whether one is debugging in the build tree. */
10779
10780 dwp_file = get_dwp_file ();
10781 if (dwp_file != NULL)
10782 {
10783 const struct dwp_hash_table *dwp_htab =
10784 is_debug_types ? dwp_file->tus : dwp_file->cus;
10785
10786 if (dwp_htab != NULL)
10787 {
10788 struct dwo_unit *dwo_cutu =
10789 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
10790 signature, is_debug_types);
10791
10792 if (dwo_cutu != NULL)
10793 {
10794 if (dwarf2_read_debug)
10795 {
10796 fprintf_unfiltered (gdb_stdlog,
10797 "Virtual DWO %s %s found: @%s\n",
10798 kind, hex_string (signature),
10799 host_address_to_string (dwo_cutu));
10800 }
10801 return dwo_cutu;
10802 }
10803 }
10804 }
10805 else
10806 {
10807 /* No DWP file, look for the DWO file. */
10808
10809 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
10810 if (*dwo_file_slot == NULL)
10811 {
10812 /* Read in the file and build a table of the CUs/TUs it contains. */
10813 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
10814 }
10815 /* NOTE: This will be NULL if unable to open the file. */
10816 dwo_file = *dwo_file_slot;
10817
10818 if (dwo_file != NULL)
10819 {
10820 struct dwo_unit *dwo_cutu = NULL;
10821
10822 if (is_debug_types && dwo_file->tus)
10823 {
10824 struct dwo_unit find_dwo_cutu;
10825
10826 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
10827 find_dwo_cutu.signature = signature;
10828 dwo_cutu = htab_find (dwo_file->tus, &find_dwo_cutu);
10829 }
10830 else if (!is_debug_types && dwo_file->cu)
10831 {
10832 if (signature == dwo_file->cu->signature)
10833 dwo_cutu = dwo_file->cu;
10834 }
10835
10836 if (dwo_cutu != NULL)
10837 {
10838 if (dwarf2_read_debug)
10839 {
10840 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
10841 kind, dwo_name, hex_string (signature),
10842 host_address_to_string (dwo_cutu));
10843 }
10844 return dwo_cutu;
10845 }
10846 }
10847 }
10848
10849 /* We didn't find it. This could mean a dwo_id mismatch, or
10850 someone deleted the DWO/DWP file, or the search path isn't set up
10851 correctly to find the file. */
10852
10853 if (dwarf2_read_debug)
10854 {
10855 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
10856 kind, dwo_name, hex_string (signature));
10857 }
10858
10859 /* This is a warning and not a complaint because it can be caused by
10860 pilot error (e.g., user accidentally deleting the DWO). */
10861 {
10862 /* Print the name of the DWP file if we looked there, helps the user
10863 better diagnose the problem. */
10864 char *dwp_text = NULL;
10865 struct cleanup *cleanups;
10866
10867 if (dwp_file != NULL)
10868 dwp_text = xstrprintf (" [in DWP file %s]", lbasename (dwp_file->name));
10869 cleanups = make_cleanup (xfree, dwp_text);
10870
10871 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
10872 " [in module %s]"),
10873 kind, dwo_name, hex_string (signature),
10874 dwp_text != NULL ? dwp_text : "",
10875 this_unit->is_debug_types ? "TU" : "CU",
10876 this_unit->offset.sect_off, objfile_name (objfile));
10877
10878 do_cleanups (cleanups);
10879 }
10880 return NULL;
10881 }
10882
10883 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
10884 See lookup_dwo_cutu_unit for details. */
10885
10886 static struct dwo_unit *
10887 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
10888 const char *dwo_name, const char *comp_dir,
10889 ULONGEST signature)
10890 {
10891 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
10892 }
10893
10894 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
10895 See lookup_dwo_cutu_unit for details. */
10896
10897 static struct dwo_unit *
10898 lookup_dwo_type_unit (struct signatured_type *this_tu,
10899 const char *dwo_name, const char *comp_dir)
10900 {
10901 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
10902 }
10903
10904 /* Traversal function for queue_and_load_all_dwo_tus. */
10905
10906 static int
10907 queue_and_load_dwo_tu (void **slot, void *info)
10908 {
10909 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
10910 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
10911 ULONGEST signature = dwo_unit->signature;
10912 struct signatured_type *sig_type =
10913 lookup_dwo_signatured_type (per_cu->cu, signature);
10914
10915 if (sig_type != NULL)
10916 {
10917 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
10918
10919 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
10920 a real dependency of PER_CU on SIG_TYPE. That is detected later
10921 while processing PER_CU. */
10922 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
10923 load_full_type_unit (sig_cu);
10924 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
10925 }
10926
10927 return 1;
10928 }
10929
10930 /* Queue all TUs contained in the DWO of PER_CU to be read in.
10931 The DWO may have the only definition of the type, though it may not be
10932 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
10933 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
10934
10935 static void
10936 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
10937 {
10938 struct dwo_unit *dwo_unit;
10939 struct dwo_file *dwo_file;
10940
10941 gdb_assert (!per_cu->is_debug_types);
10942 gdb_assert (get_dwp_file () == NULL);
10943 gdb_assert (per_cu->cu != NULL);
10944
10945 dwo_unit = per_cu->cu->dwo_unit;
10946 gdb_assert (dwo_unit != NULL);
10947
10948 dwo_file = dwo_unit->dwo_file;
10949 if (dwo_file->tus != NULL)
10950 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
10951 }
10952
10953 /* Free all resources associated with DWO_FILE.
10954 Close the DWO file and munmap the sections.
10955 All memory should be on the objfile obstack. */
10956
10957 static void
10958 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
10959 {
10960 int ix;
10961 struct dwarf2_section_info *section;
10962
10963 /* Note: dbfd is NULL for virtual DWO files. */
10964 gdb_bfd_unref (dwo_file->dbfd);
10965
10966 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
10967 }
10968
10969 /* Wrapper for free_dwo_file for use in cleanups. */
10970
10971 static void
10972 free_dwo_file_cleanup (void *arg)
10973 {
10974 struct dwo_file *dwo_file = (struct dwo_file *) arg;
10975 struct objfile *objfile = dwarf2_per_objfile->objfile;
10976
10977 free_dwo_file (dwo_file, objfile);
10978 }
10979
10980 /* Traversal function for free_dwo_files. */
10981
10982 static int
10983 free_dwo_file_from_slot (void **slot, void *info)
10984 {
10985 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
10986 struct objfile *objfile = (struct objfile *) info;
10987
10988 free_dwo_file (dwo_file, objfile);
10989
10990 return 1;
10991 }
10992
10993 /* Free all resources associated with DWO_FILES. */
10994
10995 static void
10996 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
10997 {
10998 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
10999 }
11000 \f
11001 /* Read in various DIEs. */
11002
11003 /* qsort helper for inherit_abstract_dies. */
11004
11005 static int
11006 unsigned_int_compar (const void *ap, const void *bp)
11007 {
11008 unsigned int a = *(unsigned int *) ap;
11009 unsigned int b = *(unsigned int *) bp;
11010
11011 return (a > b) - (b > a);
11012 }
11013
11014 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
11015 Inherit only the children of the DW_AT_abstract_origin DIE not being
11016 already referenced by DW_AT_abstract_origin from the children of the
11017 current DIE. */
11018
11019 static void
11020 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
11021 {
11022 struct die_info *child_die;
11023 unsigned die_children_count;
11024 /* CU offsets which were referenced by children of the current DIE. */
11025 sect_offset *offsets;
11026 sect_offset *offsets_end, *offsetp;
11027 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
11028 struct die_info *origin_die;
11029 /* Iterator of the ORIGIN_DIE children. */
11030 struct die_info *origin_child_die;
11031 struct cleanup *cleanups;
11032 struct attribute *attr;
11033 struct dwarf2_cu *origin_cu;
11034 struct pending **origin_previous_list_in_scope;
11035
11036 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11037 if (!attr)
11038 return;
11039
11040 /* Note that following die references may follow to a die in a
11041 different cu. */
11042
11043 origin_cu = cu;
11044 origin_die = follow_die_ref (die, attr, &origin_cu);
11045
11046 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
11047 symbols in. */
11048 origin_previous_list_in_scope = origin_cu->list_in_scope;
11049 origin_cu->list_in_scope = cu->list_in_scope;
11050
11051 if (die->tag != origin_die->tag
11052 && !(die->tag == DW_TAG_inlined_subroutine
11053 && origin_die->tag == DW_TAG_subprogram))
11054 complaint (&symfile_complaints,
11055 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
11056 die->offset.sect_off, origin_die->offset.sect_off);
11057
11058 child_die = die->child;
11059 die_children_count = 0;
11060 while (child_die && child_die->tag)
11061 {
11062 child_die = sibling_die (child_die);
11063 die_children_count++;
11064 }
11065 offsets = xmalloc (sizeof (*offsets) * die_children_count);
11066 cleanups = make_cleanup (xfree, offsets);
11067
11068 offsets_end = offsets;
11069 child_die = die->child;
11070 while (child_die && child_die->tag)
11071 {
11072 /* For each CHILD_DIE, find the corresponding child of
11073 ORIGIN_DIE. If there is more than one layer of
11074 DW_AT_abstract_origin, follow them all; there shouldn't be,
11075 but GCC versions at least through 4.4 generate this (GCC PR
11076 40573). */
11077 struct die_info *child_origin_die = child_die;
11078 struct dwarf2_cu *child_origin_cu = cu;
11079
11080 while (1)
11081 {
11082 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
11083 child_origin_cu);
11084 if (attr == NULL)
11085 break;
11086 child_origin_die = follow_die_ref (child_origin_die, attr,
11087 &child_origin_cu);
11088 }
11089
11090 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
11091 counterpart may exist. */
11092 if (child_origin_die != child_die)
11093 {
11094 if (child_die->tag != child_origin_die->tag
11095 && !(child_die->tag == DW_TAG_inlined_subroutine
11096 && child_origin_die->tag == DW_TAG_subprogram))
11097 complaint (&symfile_complaints,
11098 _("Child DIE 0x%x and its abstract origin 0x%x have "
11099 "different tags"), child_die->offset.sect_off,
11100 child_origin_die->offset.sect_off);
11101 if (child_origin_die->parent != origin_die)
11102 complaint (&symfile_complaints,
11103 _("Child DIE 0x%x and its abstract origin 0x%x have "
11104 "different parents"), child_die->offset.sect_off,
11105 child_origin_die->offset.sect_off);
11106 else
11107 *offsets_end++ = child_origin_die->offset;
11108 }
11109 child_die = sibling_die (child_die);
11110 }
11111 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
11112 unsigned_int_compar);
11113 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
11114 if (offsetp[-1].sect_off == offsetp->sect_off)
11115 complaint (&symfile_complaints,
11116 _("Multiple children of DIE 0x%x refer "
11117 "to DIE 0x%x as their abstract origin"),
11118 die->offset.sect_off, offsetp->sect_off);
11119
11120 offsetp = offsets;
11121 origin_child_die = origin_die->child;
11122 while (origin_child_die && origin_child_die->tag)
11123 {
11124 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
11125 while (offsetp < offsets_end
11126 && offsetp->sect_off < origin_child_die->offset.sect_off)
11127 offsetp++;
11128 if (offsetp >= offsets_end
11129 || offsetp->sect_off > origin_child_die->offset.sect_off)
11130 {
11131 /* Found that ORIGIN_CHILD_DIE is really not referenced.
11132 Check whether we're already processing ORIGIN_CHILD_DIE.
11133 This can happen with mutually referenced abstract_origins.
11134 PR 16581. */
11135 if (!origin_child_die->in_process)
11136 process_die (origin_child_die, origin_cu);
11137 }
11138 origin_child_die = sibling_die (origin_child_die);
11139 }
11140 origin_cu->list_in_scope = origin_previous_list_in_scope;
11141
11142 do_cleanups (cleanups);
11143 }
11144
11145 static void
11146 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
11147 {
11148 struct objfile *objfile = cu->objfile;
11149 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11150 struct context_stack *new;
11151 CORE_ADDR lowpc;
11152 CORE_ADDR highpc;
11153 struct die_info *child_die;
11154 struct attribute *attr, *call_line, *call_file;
11155 const char *name;
11156 CORE_ADDR baseaddr;
11157 struct block *block;
11158 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
11159 VEC (symbolp) *template_args = NULL;
11160 struct template_symbol *templ_func = NULL;
11161
11162 if (inlined_func)
11163 {
11164 /* If we do not have call site information, we can't show the
11165 caller of this inlined function. That's too confusing, so
11166 only use the scope for local variables. */
11167 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11168 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11169 if (call_line == NULL || call_file == NULL)
11170 {
11171 read_lexical_block_scope (die, cu);
11172 return;
11173 }
11174 }
11175
11176 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11177
11178 name = dwarf2_name (die, cu);
11179
11180 /* Ignore functions with missing or empty names. These are actually
11181 illegal according to the DWARF standard. */
11182 if (name == NULL)
11183 {
11184 complaint (&symfile_complaints,
11185 _("missing name for subprogram DIE at %d"),
11186 die->offset.sect_off);
11187 return;
11188 }
11189
11190 /* Ignore functions with missing or invalid low and high pc attributes. */
11191 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11192 {
11193 attr = dwarf2_attr (die, DW_AT_external, cu);
11194 if (!attr || !DW_UNSND (attr))
11195 complaint (&symfile_complaints,
11196 _("cannot get low and high bounds "
11197 "for subprogram DIE at %d"),
11198 die->offset.sect_off);
11199 return;
11200 }
11201
11202 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11203 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
11204
11205 /* If we have any template arguments, then we must allocate a
11206 different sort of symbol. */
11207 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11208 {
11209 if (child_die->tag == DW_TAG_template_type_param
11210 || child_die->tag == DW_TAG_template_value_param)
11211 {
11212 templ_func = allocate_template_symbol (objfile);
11213 templ_func->base.is_cplus_template_function = 1;
11214 break;
11215 }
11216 }
11217
11218 new = push_context (0, lowpc);
11219 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
11220 (struct symbol *) templ_func);
11221
11222 /* If there is a location expression for DW_AT_frame_base, record
11223 it. */
11224 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
11225 if (attr)
11226 dwarf2_symbol_mark_computed (attr, new->name, cu, 1);
11227
11228 cu->list_in_scope = &local_symbols;
11229
11230 if (die->child != NULL)
11231 {
11232 child_die = die->child;
11233 while (child_die && child_die->tag)
11234 {
11235 if (child_die->tag == DW_TAG_template_type_param
11236 || child_die->tag == DW_TAG_template_value_param)
11237 {
11238 struct symbol *arg = new_symbol (child_die, NULL, cu);
11239
11240 if (arg != NULL)
11241 VEC_safe_push (symbolp, template_args, arg);
11242 }
11243 else
11244 process_die (child_die, cu);
11245 child_die = sibling_die (child_die);
11246 }
11247 }
11248
11249 inherit_abstract_dies (die, cu);
11250
11251 /* If we have a DW_AT_specification, we might need to import using
11252 directives from the context of the specification DIE. See the
11253 comment in determine_prefix. */
11254 if (cu->language == language_cplus
11255 && dwarf2_attr (die, DW_AT_specification, cu))
11256 {
11257 struct dwarf2_cu *spec_cu = cu;
11258 struct die_info *spec_die = die_specification (die, &spec_cu);
11259
11260 while (spec_die)
11261 {
11262 child_die = spec_die->child;
11263 while (child_die && child_die->tag)
11264 {
11265 if (child_die->tag == DW_TAG_imported_module)
11266 process_die (child_die, spec_cu);
11267 child_die = sibling_die (child_die);
11268 }
11269
11270 /* In some cases, GCC generates specification DIEs that
11271 themselves contain DW_AT_specification attributes. */
11272 spec_die = die_specification (spec_die, &spec_cu);
11273 }
11274 }
11275
11276 new = pop_context ();
11277 /* Make a block for the local symbols within. */
11278 block = finish_block (new->name, &local_symbols, new->old_blocks,
11279 lowpc, highpc);
11280
11281 /* For C++, set the block's scope. */
11282 if ((cu->language == language_cplus || cu->language == language_fortran)
11283 && cu->processing_has_namespace_info)
11284 block_set_scope (block, determine_prefix (die, cu),
11285 &objfile->objfile_obstack);
11286
11287 /* If we have address ranges, record them. */
11288 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11289
11290 gdbarch_make_symbol_special (gdbarch, new->name, objfile);
11291
11292 /* Attach template arguments to function. */
11293 if (! VEC_empty (symbolp, template_args))
11294 {
11295 gdb_assert (templ_func != NULL);
11296
11297 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11298 templ_func->template_arguments
11299 = obstack_alloc (&objfile->objfile_obstack,
11300 (templ_func->n_template_arguments
11301 * sizeof (struct symbol *)));
11302 memcpy (templ_func->template_arguments,
11303 VEC_address (symbolp, template_args),
11304 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11305 VEC_free (symbolp, template_args);
11306 }
11307
11308 /* In C++, we can have functions nested inside functions (e.g., when
11309 a function declares a class that has methods). This means that
11310 when we finish processing a function scope, we may need to go
11311 back to building a containing block's symbol lists. */
11312 local_symbols = new->locals;
11313 using_directives = new->using_directives;
11314
11315 /* If we've finished processing a top-level function, subsequent
11316 symbols go in the file symbol list. */
11317 if (outermost_context_p ())
11318 cu->list_in_scope = &file_symbols;
11319 }
11320
11321 /* Process all the DIES contained within a lexical block scope. Start
11322 a new scope, process the dies, and then close the scope. */
11323
11324 static void
11325 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
11326 {
11327 struct objfile *objfile = cu->objfile;
11328 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11329 struct context_stack *new;
11330 CORE_ADDR lowpc, highpc;
11331 struct die_info *child_die;
11332 CORE_ADDR baseaddr;
11333
11334 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11335
11336 /* Ignore blocks with missing or invalid low and high pc attributes. */
11337 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11338 as multiple lexical blocks? Handling children in a sane way would
11339 be nasty. Might be easier to properly extend generic blocks to
11340 describe ranges. */
11341 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11342 return;
11343 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11344 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
11345
11346 push_context (0, lowpc);
11347 if (die->child != NULL)
11348 {
11349 child_die = die->child;
11350 while (child_die && child_die->tag)
11351 {
11352 process_die (child_die, cu);
11353 child_die = sibling_die (child_die);
11354 }
11355 }
11356 new = pop_context ();
11357
11358 if (local_symbols != NULL || using_directives != NULL)
11359 {
11360 struct block *block
11361 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
11362 highpc);
11363
11364 /* Note that recording ranges after traversing children, as we
11365 do here, means that recording a parent's ranges entails
11366 walking across all its children's ranges as they appear in
11367 the address map, which is quadratic behavior.
11368
11369 It would be nicer to record the parent's ranges before
11370 traversing its children, simply overriding whatever you find
11371 there. But since we don't even decide whether to create a
11372 block until after we've traversed its children, that's hard
11373 to do. */
11374 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11375 }
11376 local_symbols = new->locals;
11377 using_directives = new->using_directives;
11378 }
11379
11380 /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
11381
11382 static void
11383 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11384 {
11385 struct objfile *objfile = cu->objfile;
11386 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11387 CORE_ADDR pc, baseaddr;
11388 struct attribute *attr;
11389 struct call_site *call_site, call_site_local;
11390 void **slot;
11391 int nparams;
11392 struct die_info *child_die;
11393
11394 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11395
11396 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11397 if (!attr)
11398 {
11399 complaint (&symfile_complaints,
11400 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
11401 "DIE 0x%x [in module %s]"),
11402 die->offset.sect_off, objfile_name (objfile));
11403 return;
11404 }
11405 pc = attr_value_as_address (attr) + baseaddr;
11406 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
11407
11408 if (cu->call_site_htab == NULL)
11409 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11410 NULL, &objfile->objfile_obstack,
11411 hashtab_obstack_allocate, NULL);
11412 call_site_local.pc = pc;
11413 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11414 if (*slot != NULL)
11415 {
11416 complaint (&symfile_complaints,
11417 _("Duplicate PC %s for DW_TAG_GNU_call_site "
11418 "DIE 0x%x [in module %s]"),
11419 paddress (gdbarch, pc), die->offset.sect_off,
11420 objfile_name (objfile));
11421 return;
11422 }
11423
11424 /* Count parameters at the caller. */
11425
11426 nparams = 0;
11427 for (child_die = die->child; child_die && child_die->tag;
11428 child_die = sibling_die (child_die))
11429 {
11430 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11431 {
11432 complaint (&symfile_complaints,
11433 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
11434 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11435 child_die->tag, child_die->offset.sect_off,
11436 objfile_name (objfile));
11437 continue;
11438 }
11439
11440 nparams++;
11441 }
11442
11443 call_site = obstack_alloc (&objfile->objfile_obstack,
11444 (sizeof (*call_site)
11445 + (sizeof (*call_site->parameter)
11446 * (nparams - 1))));
11447 *slot = call_site;
11448 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11449 call_site->pc = pc;
11450
11451 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
11452 {
11453 struct die_info *func_die;
11454
11455 /* Skip also over DW_TAG_inlined_subroutine. */
11456 for (func_die = die->parent;
11457 func_die && func_die->tag != DW_TAG_subprogram
11458 && func_die->tag != DW_TAG_subroutine_type;
11459 func_die = func_die->parent);
11460
11461 /* DW_AT_GNU_all_call_sites is a superset
11462 of DW_AT_GNU_all_tail_call_sites. */
11463 if (func_die
11464 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
11465 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11466 {
11467 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11468 not complete. But keep CALL_SITE for look ups via call_site_htab,
11469 both the initial caller containing the real return address PC and
11470 the final callee containing the current PC of a chain of tail
11471 calls do not need to have the tail call list complete. But any
11472 function candidate for a virtual tail call frame searched via
11473 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11474 determined unambiguously. */
11475 }
11476 else
11477 {
11478 struct type *func_type = NULL;
11479
11480 if (func_die)
11481 func_type = get_die_type (func_die, cu);
11482 if (func_type != NULL)
11483 {
11484 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11485
11486 /* Enlist this call site to the function. */
11487 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11488 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11489 }
11490 else
11491 complaint (&symfile_complaints,
11492 _("Cannot find function owning DW_TAG_GNU_call_site "
11493 "DIE 0x%x [in module %s]"),
11494 die->offset.sect_off, objfile_name (objfile));
11495 }
11496 }
11497
11498 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11499 if (attr == NULL)
11500 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11501 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
11502 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
11503 /* Keep NULL DWARF_BLOCK. */;
11504 else if (attr_form_is_block (attr))
11505 {
11506 struct dwarf2_locexpr_baton *dlbaton;
11507
11508 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
11509 dlbaton->data = DW_BLOCK (attr)->data;
11510 dlbaton->size = DW_BLOCK (attr)->size;
11511 dlbaton->per_cu = cu->per_cu;
11512
11513 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
11514 }
11515 else if (attr_form_is_ref (attr))
11516 {
11517 struct dwarf2_cu *target_cu = cu;
11518 struct die_info *target_die;
11519
11520 target_die = follow_die_ref (die, attr, &target_cu);
11521 gdb_assert (target_cu->objfile == objfile);
11522 if (die_is_declaration (target_die, target_cu))
11523 {
11524 const char *target_physname = NULL;
11525 struct attribute *target_attr;
11526
11527 /* Prefer the mangled name; otherwise compute the demangled one. */
11528 target_attr = dwarf2_attr (target_die, DW_AT_linkage_name, target_cu);
11529 if (target_attr == NULL)
11530 target_attr = dwarf2_attr (target_die, DW_AT_MIPS_linkage_name,
11531 target_cu);
11532 if (target_attr != NULL && DW_STRING (target_attr) != NULL)
11533 target_physname = DW_STRING (target_attr);
11534 else
11535 target_physname = dwarf2_physname (NULL, target_die, target_cu);
11536 if (target_physname == NULL)
11537 complaint (&symfile_complaints,
11538 _("DW_AT_GNU_call_site_target target DIE has invalid "
11539 "physname, for referencing DIE 0x%x [in module %s]"),
11540 die->offset.sect_off, objfile_name (objfile));
11541 else
11542 SET_FIELD_PHYSNAME (call_site->target, target_physname);
11543 }
11544 else
11545 {
11546 CORE_ADDR lowpc;
11547
11548 /* DW_AT_entry_pc should be preferred. */
11549 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
11550 complaint (&symfile_complaints,
11551 _("DW_AT_GNU_call_site_target target DIE has invalid "
11552 "low pc, for referencing DIE 0x%x [in module %s]"),
11553 die->offset.sect_off, objfile_name (objfile));
11554 else
11555 {
11556 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11557 SET_FIELD_PHYSADDR (call_site->target, lowpc);
11558 }
11559 }
11560 }
11561 else
11562 complaint (&symfile_complaints,
11563 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
11564 "block nor reference, for DIE 0x%x [in module %s]"),
11565 die->offset.sect_off, objfile_name (objfile));
11566
11567 call_site->per_cu = cu->per_cu;
11568
11569 for (child_die = die->child;
11570 child_die && child_die->tag;
11571 child_die = sibling_die (child_die))
11572 {
11573 struct call_site_parameter *parameter;
11574 struct attribute *loc, *origin;
11575
11576 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11577 {
11578 /* Already printed the complaint above. */
11579 continue;
11580 }
11581
11582 gdb_assert (call_site->parameter_count < nparams);
11583 parameter = &call_site->parameter[call_site->parameter_count];
11584
11585 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
11586 specifies DW_TAG_formal_parameter. Value of the data assumed for the
11587 register is contained in DW_AT_GNU_call_site_value. */
11588
11589 loc = dwarf2_attr (child_die, DW_AT_location, cu);
11590 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
11591 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
11592 {
11593 sect_offset offset;
11594
11595 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
11596 offset = dwarf2_get_ref_die_offset (origin);
11597 if (!offset_in_cu_p (&cu->header, offset))
11598 {
11599 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
11600 binding can be done only inside one CU. Such referenced DIE
11601 therefore cannot be even moved to DW_TAG_partial_unit. */
11602 complaint (&symfile_complaints,
11603 _("DW_AT_abstract_origin offset is not in CU for "
11604 "DW_TAG_GNU_call_site child DIE 0x%x "
11605 "[in module %s]"),
11606 child_die->offset.sect_off, objfile_name (objfile));
11607 continue;
11608 }
11609 parameter->u.param_offset.cu_off = (offset.sect_off
11610 - cu->header.offset.sect_off);
11611 }
11612 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
11613 {
11614 complaint (&symfile_complaints,
11615 _("No DW_FORM_block* DW_AT_location for "
11616 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11617 child_die->offset.sect_off, objfile_name (objfile));
11618 continue;
11619 }
11620 else
11621 {
11622 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
11623 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
11624 if (parameter->u.dwarf_reg != -1)
11625 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
11626 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
11627 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
11628 &parameter->u.fb_offset))
11629 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
11630 else
11631 {
11632 complaint (&symfile_complaints,
11633 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
11634 "for DW_FORM_block* DW_AT_location is supported for "
11635 "DW_TAG_GNU_call_site child DIE 0x%x "
11636 "[in module %s]"),
11637 child_die->offset.sect_off, objfile_name (objfile));
11638 continue;
11639 }
11640 }
11641
11642 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
11643 if (!attr_form_is_block (attr))
11644 {
11645 complaint (&symfile_complaints,
11646 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
11647 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11648 child_die->offset.sect_off, objfile_name (objfile));
11649 continue;
11650 }
11651 parameter->value = DW_BLOCK (attr)->data;
11652 parameter->value_size = DW_BLOCK (attr)->size;
11653
11654 /* Parameters are not pre-cleared by memset above. */
11655 parameter->data_value = NULL;
11656 parameter->data_value_size = 0;
11657 call_site->parameter_count++;
11658
11659 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
11660 if (attr)
11661 {
11662 if (!attr_form_is_block (attr))
11663 complaint (&symfile_complaints,
11664 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
11665 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11666 child_die->offset.sect_off, objfile_name (objfile));
11667 else
11668 {
11669 parameter->data_value = DW_BLOCK (attr)->data;
11670 parameter->data_value_size = DW_BLOCK (attr)->size;
11671 }
11672 }
11673 }
11674 }
11675
11676 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
11677 Return 1 if the attributes are present and valid, otherwise, return 0.
11678 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
11679
11680 static int
11681 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
11682 CORE_ADDR *high_return, struct dwarf2_cu *cu,
11683 struct partial_symtab *ranges_pst)
11684 {
11685 struct objfile *objfile = cu->objfile;
11686 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11687 struct comp_unit_head *cu_header = &cu->header;
11688 bfd *obfd = objfile->obfd;
11689 unsigned int addr_size = cu_header->addr_size;
11690 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11691 /* Base address selection entry. */
11692 CORE_ADDR base;
11693 int found_base;
11694 unsigned int dummy;
11695 const gdb_byte *buffer;
11696 CORE_ADDR marker;
11697 int low_set;
11698 CORE_ADDR low = 0;
11699 CORE_ADDR high = 0;
11700 CORE_ADDR baseaddr;
11701
11702 found_base = cu->base_known;
11703 base = cu->base_address;
11704
11705 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
11706 if (offset >= dwarf2_per_objfile->ranges.size)
11707 {
11708 complaint (&symfile_complaints,
11709 _("Offset %d out of bounds for DW_AT_ranges attribute"),
11710 offset);
11711 return 0;
11712 }
11713 buffer = dwarf2_per_objfile->ranges.buffer + offset;
11714
11715 /* Read in the largest possible address. */
11716 marker = read_address (obfd, buffer, cu, &dummy);
11717 if ((marker & mask) == mask)
11718 {
11719 /* If we found the largest possible address, then
11720 read the base address. */
11721 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11722 buffer += 2 * addr_size;
11723 offset += 2 * addr_size;
11724 found_base = 1;
11725 }
11726
11727 low_set = 0;
11728
11729 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11730
11731 while (1)
11732 {
11733 CORE_ADDR range_beginning, range_end;
11734
11735 range_beginning = read_address (obfd, buffer, cu, &dummy);
11736 buffer += addr_size;
11737 range_end = read_address (obfd, buffer, cu, &dummy);
11738 buffer += addr_size;
11739 offset += 2 * addr_size;
11740
11741 /* An end of list marker is a pair of zero addresses. */
11742 if (range_beginning == 0 && range_end == 0)
11743 /* Found the end of list entry. */
11744 break;
11745
11746 /* Each base address selection entry is a pair of 2 values.
11747 The first is the largest possible address, the second is
11748 the base address. Check for a base address here. */
11749 if ((range_beginning & mask) == mask)
11750 {
11751 /* If we found the largest possible address, then
11752 read the base address. */
11753 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11754 found_base = 1;
11755 continue;
11756 }
11757
11758 if (!found_base)
11759 {
11760 /* We have no valid base address for the ranges
11761 data. */
11762 complaint (&symfile_complaints,
11763 _("Invalid .debug_ranges data (no base address)"));
11764 return 0;
11765 }
11766
11767 if (range_beginning > range_end)
11768 {
11769 /* Inverted range entries are invalid. */
11770 complaint (&symfile_complaints,
11771 _("Invalid .debug_ranges data (inverted range)"));
11772 return 0;
11773 }
11774
11775 /* Empty range entries have no effect. */
11776 if (range_beginning == range_end)
11777 continue;
11778
11779 range_beginning += base;
11780 range_end += base;
11781
11782 /* A not-uncommon case of bad debug info.
11783 Don't pollute the addrmap with bad data. */
11784 if (range_beginning + baseaddr == 0
11785 && !dwarf2_per_objfile->has_section_at_zero)
11786 {
11787 complaint (&symfile_complaints,
11788 _(".debug_ranges entry has start address of zero"
11789 " [in module %s]"), objfile_name (objfile));
11790 continue;
11791 }
11792
11793 if (ranges_pst != NULL)
11794 {
11795 CORE_ADDR lowpc;
11796 CORE_ADDR highpc;
11797
11798 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
11799 range_beginning + baseaddr);
11800 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
11801 range_end + baseaddr);
11802 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
11803 ranges_pst);
11804 }
11805
11806 /* FIXME: This is recording everything as a low-high
11807 segment of consecutive addresses. We should have a
11808 data structure for discontiguous block ranges
11809 instead. */
11810 if (! low_set)
11811 {
11812 low = range_beginning;
11813 high = range_end;
11814 low_set = 1;
11815 }
11816 else
11817 {
11818 if (range_beginning < low)
11819 low = range_beginning;
11820 if (range_end > high)
11821 high = range_end;
11822 }
11823 }
11824
11825 if (! low_set)
11826 /* If the first entry is an end-of-list marker, the range
11827 describes an empty scope, i.e. no instructions. */
11828 return 0;
11829
11830 if (low_return)
11831 *low_return = low;
11832 if (high_return)
11833 *high_return = high;
11834 return 1;
11835 }
11836
11837 /* Get low and high pc attributes from a die. Return 1 if the attributes
11838 are present and valid, otherwise, return 0. Return -1 if the range is
11839 discontinuous, i.e. derived from DW_AT_ranges information. */
11840
11841 static int
11842 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
11843 CORE_ADDR *highpc, struct dwarf2_cu *cu,
11844 struct partial_symtab *pst)
11845 {
11846 struct attribute *attr;
11847 struct attribute *attr_high;
11848 CORE_ADDR low = 0;
11849 CORE_ADDR high = 0;
11850 int ret = 0;
11851
11852 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
11853 if (attr_high)
11854 {
11855 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11856 if (attr)
11857 {
11858 low = attr_value_as_address (attr);
11859 high = attr_value_as_address (attr_high);
11860 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
11861 high += low;
11862 }
11863 else
11864 /* Found high w/o low attribute. */
11865 return 0;
11866
11867 /* Found consecutive range of addresses. */
11868 ret = 1;
11869 }
11870 else
11871 {
11872 attr = dwarf2_attr (die, DW_AT_ranges, cu);
11873 if (attr != NULL)
11874 {
11875 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
11876 We take advantage of the fact that DW_AT_ranges does not appear
11877 in DW_TAG_compile_unit of DWO files. */
11878 int need_ranges_base = die->tag != DW_TAG_compile_unit;
11879 unsigned int ranges_offset = (DW_UNSND (attr)
11880 + (need_ranges_base
11881 ? cu->ranges_base
11882 : 0));
11883
11884 /* Value of the DW_AT_ranges attribute is the offset in the
11885 .debug_ranges section. */
11886 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
11887 return 0;
11888 /* Found discontinuous range of addresses. */
11889 ret = -1;
11890 }
11891 }
11892
11893 /* read_partial_die has also the strict LOW < HIGH requirement. */
11894 if (high <= low)
11895 return 0;
11896
11897 /* When using the GNU linker, .gnu.linkonce. sections are used to
11898 eliminate duplicate copies of functions and vtables and such.
11899 The linker will arbitrarily choose one and discard the others.
11900 The AT_*_pc values for such functions refer to local labels in
11901 these sections. If the section from that file was discarded, the
11902 labels are not in the output, so the relocs get a value of 0.
11903 If this is a discarded function, mark the pc bounds as invalid,
11904 so that GDB will ignore it. */
11905 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
11906 return 0;
11907
11908 *lowpc = low;
11909 if (highpc)
11910 *highpc = high;
11911 return ret;
11912 }
11913
11914 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
11915 its low and high PC addresses. Do nothing if these addresses could not
11916 be determined. Otherwise, set LOWPC to the low address if it is smaller,
11917 and HIGHPC to the high address if greater than HIGHPC. */
11918
11919 static void
11920 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
11921 CORE_ADDR *lowpc, CORE_ADDR *highpc,
11922 struct dwarf2_cu *cu)
11923 {
11924 CORE_ADDR low, high;
11925 struct die_info *child = die->child;
11926
11927 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
11928 {
11929 *lowpc = min (*lowpc, low);
11930 *highpc = max (*highpc, high);
11931 }
11932
11933 /* If the language does not allow nested subprograms (either inside
11934 subprograms or lexical blocks), we're done. */
11935 if (cu->language != language_ada)
11936 return;
11937
11938 /* Check all the children of the given DIE. If it contains nested
11939 subprograms, then check their pc bounds. Likewise, we need to
11940 check lexical blocks as well, as they may also contain subprogram
11941 definitions. */
11942 while (child && child->tag)
11943 {
11944 if (child->tag == DW_TAG_subprogram
11945 || child->tag == DW_TAG_lexical_block)
11946 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
11947 child = sibling_die (child);
11948 }
11949 }
11950
11951 /* Get the low and high pc's represented by the scope DIE, and store
11952 them in *LOWPC and *HIGHPC. If the correct values can't be
11953 determined, set *LOWPC to -1 and *HIGHPC to 0. */
11954
11955 static void
11956 get_scope_pc_bounds (struct die_info *die,
11957 CORE_ADDR *lowpc, CORE_ADDR *highpc,
11958 struct dwarf2_cu *cu)
11959 {
11960 CORE_ADDR best_low = (CORE_ADDR) -1;
11961 CORE_ADDR best_high = (CORE_ADDR) 0;
11962 CORE_ADDR current_low, current_high;
11963
11964 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
11965 {
11966 best_low = current_low;
11967 best_high = current_high;
11968 }
11969 else
11970 {
11971 struct die_info *child = die->child;
11972
11973 while (child && child->tag)
11974 {
11975 switch (child->tag) {
11976 case DW_TAG_subprogram:
11977 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
11978 break;
11979 case DW_TAG_namespace:
11980 case DW_TAG_module:
11981 /* FIXME: carlton/2004-01-16: Should we do this for
11982 DW_TAG_class_type/DW_TAG_structure_type, too? I think
11983 that current GCC's always emit the DIEs corresponding
11984 to definitions of methods of classes as children of a
11985 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
11986 the DIEs giving the declarations, which could be
11987 anywhere). But I don't see any reason why the
11988 standards says that they have to be there. */
11989 get_scope_pc_bounds (child, &current_low, &current_high, cu);
11990
11991 if (current_low != ((CORE_ADDR) -1))
11992 {
11993 best_low = min (best_low, current_low);
11994 best_high = max (best_high, current_high);
11995 }
11996 break;
11997 default:
11998 /* Ignore. */
11999 break;
12000 }
12001
12002 child = sibling_die (child);
12003 }
12004 }
12005
12006 *lowpc = best_low;
12007 *highpc = best_high;
12008 }
12009
12010 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
12011 in DIE. */
12012
12013 static void
12014 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
12015 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
12016 {
12017 struct objfile *objfile = cu->objfile;
12018 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12019 struct attribute *attr;
12020 struct attribute *attr_high;
12021
12022 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12023 if (attr_high)
12024 {
12025 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12026 if (attr)
12027 {
12028 CORE_ADDR low = attr_value_as_address (attr);
12029 CORE_ADDR high = attr_value_as_address (attr_high);
12030
12031 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12032 high += low;
12033
12034 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
12035 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
12036 record_block_range (block, low, high - 1);
12037 }
12038 }
12039
12040 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12041 if (attr)
12042 {
12043 bfd *obfd = objfile->obfd;
12044 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12045 We take advantage of the fact that DW_AT_ranges does not appear
12046 in DW_TAG_compile_unit of DWO files. */
12047 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12048
12049 /* The value of the DW_AT_ranges attribute is the offset of the
12050 address range list in the .debug_ranges section. */
12051 unsigned long offset = (DW_UNSND (attr)
12052 + (need_ranges_base ? cu->ranges_base : 0));
12053 const gdb_byte *buffer;
12054
12055 /* For some target architectures, but not others, the
12056 read_address function sign-extends the addresses it returns.
12057 To recognize base address selection entries, we need a
12058 mask. */
12059 unsigned int addr_size = cu->header.addr_size;
12060 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12061
12062 /* The base address, to which the next pair is relative. Note
12063 that this 'base' is a DWARF concept: most entries in a range
12064 list are relative, to reduce the number of relocs against the
12065 debugging information. This is separate from this function's
12066 'baseaddr' argument, which GDB uses to relocate debugging
12067 information from a shared library based on the address at
12068 which the library was loaded. */
12069 CORE_ADDR base = cu->base_address;
12070 int base_known = cu->base_known;
12071
12072 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
12073 if (offset >= dwarf2_per_objfile->ranges.size)
12074 {
12075 complaint (&symfile_complaints,
12076 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
12077 offset);
12078 return;
12079 }
12080 buffer = dwarf2_per_objfile->ranges.buffer + offset;
12081
12082 for (;;)
12083 {
12084 unsigned int bytes_read;
12085 CORE_ADDR start, end;
12086
12087 start = read_address (obfd, buffer, cu, &bytes_read);
12088 buffer += bytes_read;
12089 end = read_address (obfd, buffer, cu, &bytes_read);
12090 buffer += bytes_read;
12091
12092 /* Did we find the end of the range list? */
12093 if (start == 0 && end == 0)
12094 break;
12095
12096 /* Did we find a base address selection entry? */
12097 else if ((start & base_select_mask) == base_select_mask)
12098 {
12099 base = end;
12100 base_known = 1;
12101 }
12102
12103 /* We found an ordinary address range. */
12104 else
12105 {
12106 if (!base_known)
12107 {
12108 complaint (&symfile_complaints,
12109 _("Invalid .debug_ranges data "
12110 "(no base address)"));
12111 return;
12112 }
12113
12114 if (start > end)
12115 {
12116 /* Inverted range entries are invalid. */
12117 complaint (&symfile_complaints,
12118 _("Invalid .debug_ranges data "
12119 "(inverted range)"));
12120 return;
12121 }
12122
12123 /* Empty range entries have no effect. */
12124 if (start == end)
12125 continue;
12126
12127 start += base + baseaddr;
12128 end += base + baseaddr;
12129
12130 /* A not-uncommon case of bad debug info.
12131 Don't pollute the addrmap with bad data. */
12132 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
12133 {
12134 complaint (&symfile_complaints,
12135 _(".debug_ranges entry has start address of zero"
12136 " [in module %s]"), objfile_name (objfile));
12137 continue;
12138 }
12139
12140 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
12141 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
12142 record_block_range (block, start, end - 1);
12143 }
12144 }
12145 }
12146 }
12147
12148 /* Check whether the producer field indicates either of GCC < 4.6, or the
12149 Intel C/C++ compiler, and cache the result in CU. */
12150
12151 static void
12152 check_producer (struct dwarf2_cu *cu)
12153 {
12154 const char *cs;
12155 int major, minor, release;
12156
12157 if (cu->producer == NULL)
12158 {
12159 /* For unknown compilers expect their behavior is DWARF version
12160 compliant.
12161
12162 GCC started to support .debug_types sections by -gdwarf-4 since
12163 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
12164 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
12165 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
12166 interpreted incorrectly by GDB now - GCC PR debug/48229. */
12167 }
12168 else if (strncmp (cu->producer, "GNU ", strlen ("GNU ")) == 0)
12169 {
12170 /* Skip any identifier after "GNU " - such as "C++" or "Java". */
12171
12172 cs = &cu->producer[strlen ("GNU ")];
12173 while (*cs && !isdigit (*cs))
12174 cs++;
12175 if (sscanf (cs, "%d.%d.%d", &major, &minor, &release) != 3)
12176 {
12177 /* Not recognized as GCC. */
12178 }
12179 else
12180 {
12181 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
12182 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
12183 }
12184 }
12185 else if (strncmp (cu->producer, "Intel(R) C", strlen ("Intel(R) C")) == 0)
12186 cu->producer_is_icc = 1;
12187 else
12188 {
12189 /* For other non-GCC compilers, expect their behavior is DWARF version
12190 compliant. */
12191 }
12192
12193 cu->checked_producer = 1;
12194 }
12195
12196 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12197 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12198 during 4.6.0 experimental. */
12199
12200 static int
12201 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12202 {
12203 if (!cu->checked_producer)
12204 check_producer (cu);
12205
12206 return cu->producer_is_gxx_lt_4_6;
12207 }
12208
12209 /* Return the default accessibility type if it is not overriden by
12210 DW_AT_accessibility. */
12211
12212 static enum dwarf_access_attribute
12213 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12214 {
12215 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12216 {
12217 /* The default DWARF 2 accessibility for members is public, the default
12218 accessibility for inheritance is private. */
12219
12220 if (die->tag != DW_TAG_inheritance)
12221 return DW_ACCESS_public;
12222 else
12223 return DW_ACCESS_private;
12224 }
12225 else
12226 {
12227 /* DWARF 3+ defines the default accessibility a different way. The same
12228 rules apply now for DW_TAG_inheritance as for the members and it only
12229 depends on the container kind. */
12230
12231 if (die->parent->tag == DW_TAG_class_type)
12232 return DW_ACCESS_private;
12233 else
12234 return DW_ACCESS_public;
12235 }
12236 }
12237
12238 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12239 offset. If the attribute was not found return 0, otherwise return
12240 1. If it was found but could not properly be handled, set *OFFSET
12241 to 0. */
12242
12243 static int
12244 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12245 LONGEST *offset)
12246 {
12247 struct attribute *attr;
12248
12249 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12250 if (attr != NULL)
12251 {
12252 *offset = 0;
12253
12254 /* Note that we do not check for a section offset first here.
12255 This is because DW_AT_data_member_location is new in DWARF 4,
12256 so if we see it, we can assume that a constant form is really
12257 a constant and not a section offset. */
12258 if (attr_form_is_constant (attr))
12259 *offset = dwarf2_get_attr_constant_value (attr, 0);
12260 else if (attr_form_is_section_offset (attr))
12261 dwarf2_complex_location_expr_complaint ();
12262 else if (attr_form_is_block (attr))
12263 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12264 else
12265 dwarf2_complex_location_expr_complaint ();
12266
12267 return 1;
12268 }
12269
12270 return 0;
12271 }
12272
12273 /* Add an aggregate field to the field list. */
12274
12275 static void
12276 dwarf2_add_field (struct field_info *fip, struct die_info *die,
12277 struct dwarf2_cu *cu)
12278 {
12279 struct objfile *objfile = cu->objfile;
12280 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12281 struct nextfield *new_field;
12282 struct attribute *attr;
12283 struct field *fp;
12284 const char *fieldname = "";
12285
12286 /* Allocate a new field list entry and link it in. */
12287 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
12288 make_cleanup (xfree, new_field);
12289 memset (new_field, 0, sizeof (struct nextfield));
12290
12291 if (die->tag == DW_TAG_inheritance)
12292 {
12293 new_field->next = fip->baseclasses;
12294 fip->baseclasses = new_field;
12295 }
12296 else
12297 {
12298 new_field->next = fip->fields;
12299 fip->fields = new_field;
12300 }
12301 fip->nfields++;
12302
12303 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12304 if (attr)
12305 new_field->accessibility = DW_UNSND (attr);
12306 else
12307 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
12308 if (new_field->accessibility != DW_ACCESS_public)
12309 fip->non_public_fields = 1;
12310
12311 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12312 if (attr)
12313 new_field->virtuality = DW_UNSND (attr);
12314 else
12315 new_field->virtuality = DW_VIRTUALITY_none;
12316
12317 fp = &new_field->field;
12318
12319 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
12320 {
12321 LONGEST offset;
12322
12323 /* Data member other than a C++ static data member. */
12324
12325 /* Get type of field. */
12326 fp->type = die_type (die, cu);
12327
12328 SET_FIELD_BITPOS (*fp, 0);
12329
12330 /* Get bit size of field (zero if none). */
12331 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
12332 if (attr)
12333 {
12334 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12335 }
12336 else
12337 {
12338 FIELD_BITSIZE (*fp) = 0;
12339 }
12340
12341 /* Get bit offset of field. */
12342 if (handle_data_member_location (die, cu, &offset))
12343 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12344 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
12345 if (attr)
12346 {
12347 if (gdbarch_bits_big_endian (gdbarch))
12348 {
12349 /* For big endian bits, the DW_AT_bit_offset gives the
12350 additional bit offset from the MSB of the containing
12351 anonymous object to the MSB of the field. We don't
12352 have to do anything special since we don't need to
12353 know the size of the anonymous object. */
12354 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
12355 }
12356 else
12357 {
12358 /* For little endian bits, compute the bit offset to the
12359 MSB of the anonymous object, subtract off the number of
12360 bits from the MSB of the field to the MSB of the
12361 object, and then subtract off the number of bits of
12362 the field itself. The result is the bit offset of
12363 the LSB of the field. */
12364 int anonymous_size;
12365 int bit_offset = DW_UNSND (attr);
12366
12367 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12368 if (attr)
12369 {
12370 /* The size of the anonymous object containing
12371 the bit field is explicit, so use the
12372 indicated size (in bytes). */
12373 anonymous_size = DW_UNSND (attr);
12374 }
12375 else
12376 {
12377 /* The size of the anonymous object containing
12378 the bit field must be inferred from the type
12379 attribute of the data member containing the
12380 bit field. */
12381 anonymous_size = TYPE_LENGTH (fp->type);
12382 }
12383 SET_FIELD_BITPOS (*fp,
12384 (FIELD_BITPOS (*fp)
12385 + anonymous_size * bits_per_byte
12386 - bit_offset - FIELD_BITSIZE (*fp)));
12387 }
12388 }
12389
12390 /* Get name of field. */
12391 fieldname = dwarf2_name (die, cu);
12392 if (fieldname == NULL)
12393 fieldname = "";
12394
12395 /* The name is already allocated along with this objfile, so we don't
12396 need to duplicate it for the type. */
12397 fp->name = fieldname;
12398
12399 /* Change accessibility for artificial fields (e.g. virtual table
12400 pointer or virtual base class pointer) to private. */
12401 if (dwarf2_attr (die, DW_AT_artificial, cu))
12402 {
12403 FIELD_ARTIFICIAL (*fp) = 1;
12404 new_field->accessibility = DW_ACCESS_private;
12405 fip->non_public_fields = 1;
12406 }
12407 }
12408 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
12409 {
12410 /* C++ static member. */
12411
12412 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
12413 is a declaration, but all versions of G++ as of this writing
12414 (so through at least 3.2.1) incorrectly generate
12415 DW_TAG_variable tags. */
12416
12417 const char *physname;
12418
12419 /* Get name of field. */
12420 fieldname = dwarf2_name (die, cu);
12421 if (fieldname == NULL)
12422 return;
12423
12424 attr = dwarf2_attr (die, DW_AT_const_value, cu);
12425 if (attr
12426 /* Only create a symbol if this is an external value.
12427 new_symbol checks this and puts the value in the global symbol
12428 table, which we want. If it is not external, new_symbol
12429 will try to put the value in cu->list_in_scope which is wrong. */
12430 && dwarf2_flag_true_p (die, DW_AT_external, cu))
12431 {
12432 /* A static const member, not much different than an enum as far as
12433 we're concerned, except that we can support more types. */
12434 new_symbol (die, NULL, cu);
12435 }
12436
12437 /* Get physical name. */
12438 physname = dwarf2_physname (fieldname, die, cu);
12439
12440 /* The name is already allocated along with this objfile, so we don't
12441 need to duplicate it for the type. */
12442 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
12443 FIELD_TYPE (*fp) = die_type (die, cu);
12444 FIELD_NAME (*fp) = fieldname;
12445 }
12446 else if (die->tag == DW_TAG_inheritance)
12447 {
12448 LONGEST offset;
12449
12450 /* C++ base class field. */
12451 if (handle_data_member_location (die, cu, &offset))
12452 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12453 FIELD_BITSIZE (*fp) = 0;
12454 FIELD_TYPE (*fp) = die_type (die, cu);
12455 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
12456 fip->nbaseclasses++;
12457 }
12458 }
12459
12460 /* Add a typedef defined in the scope of the FIP's class. */
12461
12462 static void
12463 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
12464 struct dwarf2_cu *cu)
12465 {
12466 struct objfile *objfile = cu->objfile;
12467 struct typedef_field_list *new_field;
12468 struct attribute *attr;
12469 struct typedef_field *fp;
12470 char *fieldname = "";
12471
12472 /* Allocate a new field list entry and link it in. */
12473 new_field = xzalloc (sizeof (*new_field));
12474 make_cleanup (xfree, new_field);
12475
12476 gdb_assert (die->tag == DW_TAG_typedef);
12477
12478 fp = &new_field->field;
12479
12480 /* Get name of field. */
12481 fp->name = dwarf2_name (die, cu);
12482 if (fp->name == NULL)
12483 return;
12484
12485 fp->type = read_type_die (die, cu);
12486
12487 new_field->next = fip->typedef_field_list;
12488 fip->typedef_field_list = new_field;
12489 fip->typedef_field_list_count++;
12490 }
12491
12492 /* Create the vector of fields, and attach it to the type. */
12493
12494 static void
12495 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
12496 struct dwarf2_cu *cu)
12497 {
12498 int nfields = fip->nfields;
12499
12500 /* Record the field count, allocate space for the array of fields,
12501 and create blank accessibility bitfields if necessary. */
12502 TYPE_NFIELDS (type) = nfields;
12503 TYPE_FIELDS (type) = (struct field *)
12504 TYPE_ALLOC (type, sizeof (struct field) * nfields);
12505 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
12506
12507 if (fip->non_public_fields && cu->language != language_ada)
12508 {
12509 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12510
12511 TYPE_FIELD_PRIVATE_BITS (type) =
12512 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12513 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
12514
12515 TYPE_FIELD_PROTECTED_BITS (type) =
12516 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12517 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
12518
12519 TYPE_FIELD_IGNORE_BITS (type) =
12520 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12521 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
12522 }
12523
12524 /* If the type has baseclasses, allocate and clear a bit vector for
12525 TYPE_FIELD_VIRTUAL_BITS. */
12526 if (fip->nbaseclasses && cu->language != language_ada)
12527 {
12528 int num_bytes = B_BYTES (fip->nbaseclasses);
12529 unsigned char *pointer;
12530
12531 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12532 pointer = TYPE_ALLOC (type, num_bytes);
12533 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
12534 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
12535 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
12536 }
12537
12538 /* Copy the saved-up fields into the field vector. Start from the head of
12539 the list, adding to the tail of the field array, so that they end up in
12540 the same order in the array in which they were added to the list. */
12541 while (nfields-- > 0)
12542 {
12543 struct nextfield *fieldp;
12544
12545 if (fip->fields)
12546 {
12547 fieldp = fip->fields;
12548 fip->fields = fieldp->next;
12549 }
12550 else
12551 {
12552 fieldp = fip->baseclasses;
12553 fip->baseclasses = fieldp->next;
12554 }
12555
12556 TYPE_FIELD (type, nfields) = fieldp->field;
12557 switch (fieldp->accessibility)
12558 {
12559 case DW_ACCESS_private:
12560 if (cu->language != language_ada)
12561 SET_TYPE_FIELD_PRIVATE (type, nfields);
12562 break;
12563
12564 case DW_ACCESS_protected:
12565 if (cu->language != language_ada)
12566 SET_TYPE_FIELD_PROTECTED (type, nfields);
12567 break;
12568
12569 case DW_ACCESS_public:
12570 break;
12571
12572 default:
12573 /* Unknown accessibility. Complain and treat it as public. */
12574 {
12575 complaint (&symfile_complaints, _("unsupported accessibility %d"),
12576 fieldp->accessibility);
12577 }
12578 break;
12579 }
12580 if (nfields < fip->nbaseclasses)
12581 {
12582 switch (fieldp->virtuality)
12583 {
12584 case DW_VIRTUALITY_virtual:
12585 case DW_VIRTUALITY_pure_virtual:
12586 if (cu->language == language_ada)
12587 error (_("unexpected virtuality in component of Ada type"));
12588 SET_TYPE_FIELD_VIRTUAL (type, nfields);
12589 break;
12590 }
12591 }
12592 }
12593 }
12594
12595 /* Return true if this member function is a constructor, false
12596 otherwise. */
12597
12598 static int
12599 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
12600 {
12601 const char *fieldname;
12602 const char *typename;
12603 int len;
12604
12605 if (die->parent == NULL)
12606 return 0;
12607
12608 if (die->parent->tag != DW_TAG_structure_type
12609 && die->parent->tag != DW_TAG_union_type
12610 && die->parent->tag != DW_TAG_class_type)
12611 return 0;
12612
12613 fieldname = dwarf2_name (die, cu);
12614 typename = dwarf2_name (die->parent, cu);
12615 if (fieldname == NULL || typename == NULL)
12616 return 0;
12617
12618 len = strlen (fieldname);
12619 return (strncmp (fieldname, typename, len) == 0
12620 && (typename[len] == '\0' || typename[len] == '<'));
12621 }
12622
12623 /* Add a member function to the proper fieldlist. */
12624
12625 static void
12626 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
12627 struct type *type, struct dwarf2_cu *cu)
12628 {
12629 struct objfile *objfile = cu->objfile;
12630 struct attribute *attr;
12631 struct fnfieldlist *flp;
12632 int i;
12633 struct fn_field *fnp;
12634 const char *fieldname;
12635 struct nextfnfield *new_fnfield;
12636 struct type *this_type;
12637 enum dwarf_access_attribute accessibility;
12638
12639 if (cu->language == language_ada)
12640 error (_("unexpected member function in Ada type"));
12641
12642 /* Get name of member function. */
12643 fieldname = dwarf2_name (die, cu);
12644 if (fieldname == NULL)
12645 return;
12646
12647 /* Look up member function name in fieldlist. */
12648 for (i = 0; i < fip->nfnfields; i++)
12649 {
12650 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
12651 break;
12652 }
12653
12654 /* Create new list element if necessary. */
12655 if (i < fip->nfnfields)
12656 flp = &fip->fnfieldlists[i];
12657 else
12658 {
12659 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
12660 {
12661 fip->fnfieldlists = (struct fnfieldlist *)
12662 xrealloc (fip->fnfieldlists,
12663 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
12664 * sizeof (struct fnfieldlist));
12665 if (fip->nfnfields == 0)
12666 make_cleanup (free_current_contents, &fip->fnfieldlists);
12667 }
12668 flp = &fip->fnfieldlists[fip->nfnfields];
12669 flp->name = fieldname;
12670 flp->length = 0;
12671 flp->head = NULL;
12672 i = fip->nfnfields++;
12673 }
12674
12675 /* Create a new member function field and chain it to the field list
12676 entry. */
12677 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
12678 make_cleanup (xfree, new_fnfield);
12679 memset (new_fnfield, 0, sizeof (struct nextfnfield));
12680 new_fnfield->next = flp->head;
12681 flp->head = new_fnfield;
12682 flp->length++;
12683
12684 /* Fill in the member function field info. */
12685 fnp = &new_fnfield->fnfield;
12686
12687 /* Delay processing of the physname until later. */
12688 if (cu->language == language_cplus || cu->language == language_java)
12689 {
12690 add_to_method_list (type, i, flp->length - 1, fieldname,
12691 die, cu);
12692 }
12693 else
12694 {
12695 const char *physname = dwarf2_physname (fieldname, die, cu);
12696 fnp->physname = physname ? physname : "";
12697 }
12698
12699 fnp->type = alloc_type (objfile);
12700 this_type = read_type_die (die, cu);
12701 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
12702 {
12703 int nparams = TYPE_NFIELDS (this_type);
12704
12705 /* TYPE is the domain of this method, and THIS_TYPE is the type
12706 of the method itself (TYPE_CODE_METHOD). */
12707 smash_to_method_type (fnp->type, type,
12708 TYPE_TARGET_TYPE (this_type),
12709 TYPE_FIELDS (this_type),
12710 TYPE_NFIELDS (this_type),
12711 TYPE_VARARGS (this_type));
12712
12713 /* Handle static member functions.
12714 Dwarf2 has no clean way to discern C++ static and non-static
12715 member functions. G++ helps GDB by marking the first
12716 parameter for non-static member functions (which is the this
12717 pointer) as artificial. We obtain this information from
12718 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
12719 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
12720 fnp->voffset = VOFFSET_STATIC;
12721 }
12722 else
12723 complaint (&symfile_complaints, _("member function type missing for '%s'"),
12724 dwarf2_full_name (fieldname, die, cu));
12725
12726 /* Get fcontext from DW_AT_containing_type if present. */
12727 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
12728 fnp->fcontext = die_containing_type (die, cu);
12729
12730 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
12731 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
12732
12733 /* Get accessibility. */
12734 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12735 if (attr)
12736 accessibility = DW_UNSND (attr);
12737 else
12738 accessibility = dwarf2_default_access_attribute (die, cu);
12739 switch (accessibility)
12740 {
12741 case DW_ACCESS_private:
12742 fnp->is_private = 1;
12743 break;
12744 case DW_ACCESS_protected:
12745 fnp->is_protected = 1;
12746 break;
12747 }
12748
12749 /* Check for artificial methods. */
12750 attr = dwarf2_attr (die, DW_AT_artificial, cu);
12751 if (attr && DW_UNSND (attr) != 0)
12752 fnp->is_artificial = 1;
12753
12754 fnp->is_constructor = dwarf2_is_constructor (die, cu);
12755
12756 /* Get index in virtual function table if it is a virtual member
12757 function. For older versions of GCC, this is an offset in the
12758 appropriate virtual table, as specified by DW_AT_containing_type.
12759 For everyone else, it is an expression to be evaluated relative
12760 to the object address. */
12761
12762 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
12763 if (attr)
12764 {
12765 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
12766 {
12767 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
12768 {
12769 /* Old-style GCC. */
12770 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
12771 }
12772 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
12773 || (DW_BLOCK (attr)->size > 1
12774 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
12775 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
12776 {
12777 struct dwarf_block blk;
12778 int offset;
12779
12780 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
12781 ? 1 : 2);
12782 blk.size = DW_BLOCK (attr)->size - offset;
12783 blk.data = DW_BLOCK (attr)->data + offset;
12784 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
12785 if ((fnp->voffset % cu->header.addr_size) != 0)
12786 dwarf2_complex_location_expr_complaint ();
12787 else
12788 fnp->voffset /= cu->header.addr_size;
12789 fnp->voffset += 2;
12790 }
12791 else
12792 dwarf2_complex_location_expr_complaint ();
12793
12794 if (!fnp->fcontext)
12795 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
12796 }
12797 else if (attr_form_is_section_offset (attr))
12798 {
12799 dwarf2_complex_location_expr_complaint ();
12800 }
12801 else
12802 {
12803 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
12804 fieldname);
12805 }
12806 }
12807 else
12808 {
12809 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12810 if (attr && DW_UNSND (attr))
12811 {
12812 /* GCC does this, as of 2008-08-25; PR debug/37237. */
12813 complaint (&symfile_complaints,
12814 _("Member function \"%s\" (offset %d) is virtual "
12815 "but the vtable offset is not specified"),
12816 fieldname, die->offset.sect_off);
12817 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12818 TYPE_CPLUS_DYNAMIC (type) = 1;
12819 }
12820 }
12821 }
12822
12823 /* Create the vector of member function fields, and attach it to the type. */
12824
12825 static void
12826 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
12827 struct dwarf2_cu *cu)
12828 {
12829 struct fnfieldlist *flp;
12830 int i;
12831
12832 if (cu->language == language_ada)
12833 error (_("unexpected member functions in Ada type"));
12834
12835 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12836 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
12837 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
12838
12839 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
12840 {
12841 struct nextfnfield *nfp = flp->head;
12842 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
12843 int k;
12844
12845 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
12846 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
12847 fn_flp->fn_fields = (struct fn_field *)
12848 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
12849 for (k = flp->length; (k--, nfp); nfp = nfp->next)
12850 fn_flp->fn_fields[k] = nfp->fnfield;
12851 }
12852
12853 TYPE_NFN_FIELDS (type) = fip->nfnfields;
12854 }
12855
12856 /* Returns non-zero if NAME is the name of a vtable member in CU's
12857 language, zero otherwise. */
12858 static int
12859 is_vtable_name (const char *name, struct dwarf2_cu *cu)
12860 {
12861 static const char vptr[] = "_vptr";
12862 static const char vtable[] = "vtable";
12863
12864 /* Look for the C++ and Java forms of the vtable. */
12865 if ((cu->language == language_java
12866 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
12867 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
12868 && is_cplus_marker (name[sizeof (vptr) - 1])))
12869 return 1;
12870
12871 return 0;
12872 }
12873
12874 /* GCC outputs unnamed structures that are really pointers to member
12875 functions, with the ABI-specified layout. If TYPE describes
12876 such a structure, smash it into a member function type.
12877
12878 GCC shouldn't do this; it should just output pointer to member DIEs.
12879 This is GCC PR debug/28767. */
12880
12881 static void
12882 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
12883 {
12884 struct type *pfn_type, *domain_type, *new_type;
12885
12886 /* Check for a structure with no name and two children. */
12887 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
12888 return;
12889
12890 /* Check for __pfn and __delta members. */
12891 if (TYPE_FIELD_NAME (type, 0) == NULL
12892 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
12893 || TYPE_FIELD_NAME (type, 1) == NULL
12894 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
12895 return;
12896
12897 /* Find the type of the method. */
12898 pfn_type = TYPE_FIELD_TYPE (type, 0);
12899 if (pfn_type == NULL
12900 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
12901 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
12902 return;
12903
12904 /* Look for the "this" argument. */
12905 pfn_type = TYPE_TARGET_TYPE (pfn_type);
12906 if (TYPE_NFIELDS (pfn_type) == 0
12907 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
12908 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
12909 return;
12910
12911 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
12912 new_type = alloc_type (objfile);
12913 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
12914 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
12915 TYPE_VARARGS (pfn_type));
12916 smash_to_methodptr_type (type, new_type);
12917 }
12918
12919 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
12920 (icc). */
12921
12922 static int
12923 producer_is_icc (struct dwarf2_cu *cu)
12924 {
12925 if (!cu->checked_producer)
12926 check_producer (cu);
12927
12928 return cu->producer_is_icc;
12929 }
12930
12931 /* Called when we find the DIE that starts a structure or union scope
12932 (definition) to create a type for the structure or union. Fill in
12933 the type's name and general properties; the members will not be
12934 processed until process_structure_scope. A symbol table entry for
12935 the type will also not be done until process_structure_scope (assuming
12936 the type has a name).
12937
12938 NOTE: we need to call these functions regardless of whether or not the
12939 DIE has a DW_AT_name attribute, since it might be an anonymous
12940 structure or union. This gets the type entered into our set of
12941 user defined types. */
12942
12943 static struct type *
12944 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
12945 {
12946 struct objfile *objfile = cu->objfile;
12947 struct type *type;
12948 struct attribute *attr;
12949 const char *name;
12950
12951 /* If the definition of this type lives in .debug_types, read that type.
12952 Don't follow DW_AT_specification though, that will take us back up
12953 the chain and we want to go down. */
12954 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
12955 if (attr)
12956 {
12957 type = get_DW_AT_signature_type (die, attr, cu);
12958
12959 /* The type's CU may not be the same as CU.
12960 Ensure TYPE is recorded with CU in die_type_hash. */
12961 return set_die_type (die, type, cu);
12962 }
12963
12964 type = alloc_type (objfile);
12965 INIT_CPLUS_SPECIFIC (type);
12966
12967 name = dwarf2_name (die, cu);
12968 if (name != NULL)
12969 {
12970 if (cu->language == language_cplus
12971 || cu->language == language_java)
12972 {
12973 const char *full_name = dwarf2_full_name (name, die, cu);
12974
12975 /* dwarf2_full_name might have already finished building the DIE's
12976 type. If so, there is no need to continue. */
12977 if (get_die_type (die, cu) != NULL)
12978 return get_die_type (die, cu);
12979
12980 TYPE_TAG_NAME (type) = full_name;
12981 if (die->tag == DW_TAG_structure_type
12982 || die->tag == DW_TAG_class_type)
12983 TYPE_NAME (type) = TYPE_TAG_NAME (type);
12984 }
12985 else
12986 {
12987 /* The name is already allocated along with this objfile, so
12988 we don't need to duplicate it for the type. */
12989 TYPE_TAG_NAME (type) = name;
12990 if (die->tag == DW_TAG_class_type)
12991 TYPE_NAME (type) = TYPE_TAG_NAME (type);
12992 }
12993 }
12994
12995 if (die->tag == DW_TAG_structure_type)
12996 {
12997 TYPE_CODE (type) = TYPE_CODE_STRUCT;
12998 }
12999 else if (die->tag == DW_TAG_union_type)
13000 {
13001 TYPE_CODE (type) = TYPE_CODE_UNION;
13002 }
13003 else
13004 {
13005 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13006 }
13007
13008 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
13009 TYPE_DECLARED_CLASS (type) = 1;
13010
13011 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13012 if (attr)
13013 {
13014 TYPE_LENGTH (type) = DW_UNSND (attr);
13015 }
13016 else
13017 {
13018 TYPE_LENGTH (type) = 0;
13019 }
13020
13021 if (producer_is_icc (cu) && (TYPE_LENGTH (type) == 0))
13022 {
13023 /* ICC does not output the required DW_AT_declaration
13024 on incomplete types, but gives them a size of zero. */
13025 TYPE_STUB (type) = 1;
13026 }
13027 else
13028 TYPE_STUB_SUPPORTED (type) = 1;
13029
13030 if (die_is_declaration (die, cu))
13031 TYPE_STUB (type) = 1;
13032 else if (attr == NULL && die->child == NULL
13033 && producer_is_realview (cu->producer))
13034 /* RealView does not output the required DW_AT_declaration
13035 on incomplete types. */
13036 TYPE_STUB (type) = 1;
13037
13038 /* We need to add the type field to the die immediately so we don't
13039 infinitely recurse when dealing with pointers to the structure
13040 type within the structure itself. */
13041 set_die_type (die, type, cu);
13042
13043 /* set_die_type should be already done. */
13044 set_descriptive_type (type, die, cu);
13045
13046 return type;
13047 }
13048
13049 /* Finish creating a structure or union type, including filling in
13050 its members and creating a symbol for it. */
13051
13052 static void
13053 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
13054 {
13055 struct objfile *objfile = cu->objfile;
13056 struct die_info *child_die;
13057 struct type *type;
13058
13059 type = get_die_type (die, cu);
13060 if (type == NULL)
13061 type = read_structure_type (die, cu);
13062
13063 if (die->child != NULL && ! die_is_declaration (die, cu))
13064 {
13065 struct field_info fi;
13066 VEC (symbolp) *template_args = NULL;
13067 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
13068
13069 memset (&fi, 0, sizeof (struct field_info));
13070
13071 child_die = die->child;
13072
13073 while (child_die && child_die->tag)
13074 {
13075 if (child_die->tag == DW_TAG_member
13076 || child_die->tag == DW_TAG_variable)
13077 {
13078 /* NOTE: carlton/2002-11-05: A C++ static data member
13079 should be a DW_TAG_member that is a declaration, but
13080 all versions of G++ as of this writing (so through at
13081 least 3.2.1) incorrectly generate DW_TAG_variable
13082 tags for them instead. */
13083 dwarf2_add_field (&fi, child_die, cu);
13084 }
13085 else if (child_die->tag == DW_TAG_subprogram)
13086 {
13087 /* C++ member function. */
13088 dwarf2_add_member_fn (&fi, child_die, type, cu);
13089 }
13090 else if (child_die->tag == DW_TAG_inheritance)
13091 {
13092 /* C++ base class field. */
13093 dwarf2_add_field (&fi, child_die, cu);
13094 }
13095 else if (child_die->tag == DW_TAG_typedef)
13096 dwarf2_add_typedef (&fi, child_die, cu);
13097 else if (child_die->tag == DW_TAG_template_type_param
13098 || child_die->tag == DW_TAG_template_value_param)
13099 {
13100 struct symbol *arg = new_symbol (child_die, NULL, cu);
13101
13102 if (arg != NULL)
13103 VEC_safe_push (symbolp, template_args, arg);
13104 }
13105
13106 child_die = sibling_die (child_die);
13107 }
13108
13109 /* Attach template arguments to type. */
13110 if (! VEC_empty (symbolp, template_args))
13111 {
13112 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13113 TYPE_N_TEMPLATE_ARGUMENTS (type)
13114 = VEC_length (symbolp, template_args);
13115 TYPE_TEMPLATE_ARGUMENTS (type)
13116 = obstack_alloc (&objfile->objfile_obstack,
13117 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13118 * sizeof (struct symbol *)));
13119 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
13120 VEC_address (symbolp, template_args),
13121 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13122 * sizeof (struct symbol *)));
13123 VEC_free (symbolp, template_args);
13124 }
13125
13126 /* Attach fields and member functions to the type. */
13127 if (fi.nfields)
13128 dwarf2_attach_fields_to_type (&fi, type, cu);
13129 if (fi.nfnfields)
13130 {
13131 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
13132
13133 /* Get the type which refers to the base class (possibly this
13134 class itself) which contains the vtable pointer for the current
13135 class from the DW_AT_containing_type attribute. This use of
13136 DW_AT_containing_type is a GNU extension. */
13137
13138 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
13139 {
13140 struct type *t = die_containing_type (die, cu);
13141
13142 TYPE_VPTR_BASETYPE (type) = t;
13143 if (type == t)
13144 {
13145 int i;
13146
13147 /* Our own class provides vtbl ptr. */
13148 for (i = TYPE_NFIELDS (t) - 1;
13149 i >= TYPE_N_BASECLASSES (t);
13150 --i)
13151 {
13152 const char *fieldname = TYPE_FIELD_NAME (t, i);
13153
13154 if (is_vtable_name (fieldname, cu))
13155 {
13156 TYPE_VPTR_FIELDNO (type) = i;
13157 break;
13158 }
13159 }
13160
13161 /* Complain if virtual function table field not found. */
13162 if (i < TYPE_N_BASECLASSES (t))
13163 complaint (&symfile_complaints,
13164 _("virtual function table pointer "
13165 "not found when defining class '%s'"),
13166 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
13167 "");
13168 }
13169 else
13170 {
13171 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
13172 }
13173 }
13174 else if (cu->producer
13175 && strncmp (cu->producer,
13176 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
13177 {
13178 /* The IBM XLC compiler does not provide direct indication
13179 of the containing type, but the vtable pointer is
13180 always named __vfp. */
13181
13182 int i;
13183
13184 for (i = TYPE_NFIELDS (type) - 1;
13185 i >= TYPE_N_BASECLASSES (type);
13186 --i)
13187 {
13188 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13189 {
13190 TYPE_VPTR_FIELDNO (type) = i;
13191 TYPE_VPTR_BASETYPE (type) = type;
13192 break;
13193 }
13194 }
13195 }
13196 }
13197
13198 /* Copy fi.typedef_field_list linked list elements content into the
13199 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13200 if (fi.typedef_field_list)
13201 {
13202 int i = fi.typedef_field_list_count;
13203
13204 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13205 TYPE_TYPEDEF_FIELD_ARRAY (type)
13206 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
13207 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13208
13209 /* Reverse the list order to keep the debug info elements order. */
13210 while (--i >= 0)
13211 {
13212 struct typedef_field *dest, *src;
13213
13214 dest = &TYPE_TYPEDEF_FIELD (type, i);
13215 src = &fi.typedef_field_list->field;
13216 fi.typedef_field_list = fi.typedef_field_list->next;
13217 *dest = *src;
13218 }
13219 }
13220
13221 do_cleanups (back_to);
13222
13223 if (HAVE_CPLUS_STRUCT (type))
13224 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
13225 }
13226
13227 quirk_gcc_member_function_pointer (type, objfile);
13228
13229 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13230 snapshots) has been known to create a die giving a declaration
13231 for a class that has, as a child, a die giving a definition for a
13232 nested class. So we have to process our children even if the
13233 current die is a declaration. Normally, of course, a declaration
13234 won't have any children at all. */
13235
13236 child_die = die->child;
13237
13238 while (child_die != NULL && child_die->tag)
13239 {
13240 if (child_die->tag == DW_TAG_member
13241 || child_die->tag == DW_TAG_variable
13242 || child_die->tag == DW_TAG_inheritance
13243 || child_die->tag == DW_TAG_template_value_param
13244 || child_die->tag == DW_TAG_template_type_param)
13245 {
13246 /* Do nothing. */
13247 }
13248 else
13249 process_die (child_die, cu);
13250
13251 child_die = sibling_die (child_die);
13252 }
13253
13254 /* Do not consider external references. According to the DWARF standard,
13255 these DIEs are identified by the fact that they have no byte_size
13256 attribute, and a declaration attribute. */
13257 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13258 || !die_is_declaration (die, cu))
13259 new_symbol (die, type, cu);
13260 }
13261
13262 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
13263 update TYPE using some information only available in DIE's children. */
13264
13265 static void
13266 update_enumeration_type_from_children (struct die_info *die,
13267 struct type *type,
13268 struct dwarf2_cu *cu)
13269 {
13270 struct obstack obstack;
13271 struct die_info *child_die;
13272 int unsigned_enum = 1;
13273 int flag_enum = 1;
13274 ULONGEST mask = 0;
13275 struct cleanup *old_chain;
13276
13277 obstack_init (&obstack);
13278 old_chain = make_cleanup_obstack_free (&obstack);
13279
13280 for (child_die = die->child;
13281 child_die != NULL && child_die->tag;
13282 child_die = sibling_die (child_die))
13283 {
13284 struct attribute *attr;
13285 LONGEST value;
13286 const gdb_byte *bytes;
13287 struct dwarf2_locexpr_baton *baton;
13288 const char *name;
13289
13290 if (child_die->tag != DW_TAG_enumerator)
13291 continue;
13292
13293 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
13294 if (attr == NULL)
13295 continue;
13296
13297 name = dwarf2_name (child_die, cu);
13298 if (name == NULL)
13299 name = "<anonymous enumerator>";
13300
13301 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
13302 &value, &bytes, &baton);
13303 if (value < 0)
13304 {
13305 unsigned_enum = 0;
13306 flag_enum = 0;
13307 }
13308 else if ((mask & value) != 0)
13309 flag_enum = 0;
13310 else
13311 mask |= value;
13312
13313 /* If we already know that the enum type is neither unsigned, nor
13314 a flag type, no need to look at the rest of the enumerates. */
13315 if (!unsigned_enum && !flag_enum)
13316 break;
13317 }
13318
13319 if (unsigned_enum)
13320 TYPE_UNSIGNED (type) = 1;
13321 if (flag_enum)
13322 TYPE_FLAG_ENUM (type) = 1;
13323
13324 do_cleanups (old_chain);
13325 }
13326
13327 /* Given a DW_AT_enumeration_type die, set its type. We do not
13328 complete the type's fields yet, or create any symbols. */
13329
13330 static struct type *
13331 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
13332 {
13333 struct objfile *objfile = cu->objfile;
13334 struct type *type;
13335 struct attribute *attr;
13336 const char *name;
13337
13338 /* If the definition of this type lives in .debug_types, read that type.
13339 Don't follow DW_AT_specification though, that will take us back up
13340 the chain and we want to go down. */
13341 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13342 if (attr)
13343 {
13344 type = get_DW_AT_signature_type (die, attr, cu);
13345
13346 /* The type's CU may not be the same as CU.
13347 Ensure TYPE is recorded with CU in die_type_hash. */
13348 return set_die_type (die, type, cu);
13349 }
13350
13351 type = alloc_type (objfile);
13352
13353 TYPE_CODE (type) = TYPE_CODE_ENUM;
13354 name = dwarf2_full_name (NULL, die, cu);
13355 if (name != NULL)
13356 TYPE_TAG_NAME (type) = name;
13357
13358 attr = dwarf2_attr (die, DW_AT_type, cu);
13359 if (attr != NULL)
13360 {
13361 struct type *underlying_type = die_type (die, cu);
13362
13363 TYPE_TARGET_TYPE (type) = underlying_type;
13364 }
13365
13366 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13367 if (attr)
13368 {
13369 TYPE_LENGTH (type) = DW_UNSND (attr);
13370 }
13371 else
13372 {
13373 TYPE_LENGTH (type) = 0;
13374 }
13375
13376 /* The enumeration DIE can be incomplete. In Ada, any type can be
13377 declared as private in the package spec, and then defined only
13378 inside the package body. Such types are known as Taft Amendment
13379 Types. When another package uses such a type, an incomplete DIE
13380 may be generated by the compiler. */
13381 if (die_is_declaration (die, cu))
13382 TYPE_STUB (type) = 1;
13383
13384 /* Finish the creation of this type by using the enum's children.
13385 We must call this even when the underlying type has been provided
13386 so that we can determine if we're looking at a "flag" enum. */
13387 update_enumeration_type_from_children (die, type, cu);
13388
13389 /* If this type has an underlying type that is not a stub, then we
13390 may use its attributes. We always use the "unsigned" attribute
13391 in this situation, because ordinarily we guess whether the type
13392 is unsigned -- but the guess can be wrong and the underlying type
13393 can tell us the reality. However, we defer to a local size
13394 attribute if one exists, because this lets the compiler override
13395 the underlying type if needed. */
13396 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
13397 {
13398 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
13399 if (TYPE_LENGTH (type) == 0)
13400 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
13401 }
13402
13403 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
13404
13405 return set_die_type (die, type, cu);
13406 }
13407
13408 /* Given a pointer to a die which begins an enumeration, process all
13409 the dies that define the members of the enumeration, and create the
13410 symbol for the enumeration type.
13411
13412 NOTE: We reverse the order of the element list. */
13413
13414 static void
13415 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
13416 {
13417 struct type *this_type;
13418
13419 this_type = get_die_type (die, cu);
13420 if (this_type == NULL)
13421 this_type = read_enumeration_type (die, cu);
13422
13423 if (die->child != NULL)
13424 {
13425 struct die_info *child_die;
13426 struct symbol *sym;
13427 struct field *fields = NULL;
13428 int num_fields = 0;
13429 const char *name;
13430
13431 child_die = die->child;
13432 while (child_die && child_die->tag)
13433 {
13434 if (child_die->tag != DW_TAG_enumerator)
13435 {
13436 process_die (child_die, cu);
13437 }
13438 else
13439 {
13440 name = dwarf2_name (child_die, cu);
13441 if (name)
13442 {
13443 sym = new_symbol (child_die, this_type, cu);
13444
13445 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
13446 {
13447 fields = (struct field *)
13448 xrealloc (fields,
13449 (num_fields + DW_FIELD_ALLOC_CHUNK)
13450 * sizeof (struct field));
13451 }
13452
13453 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
13454 FIELD_TYPE (fields[num_fields]) = NULL;
13455 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
13456 FIELD_BITSIZE (fields[num_fields]) = 0;
13457
13458 num_fields++;
13459 }
13460 }
13461
13462 child_die = sibling_die (child_die);
13463 }
13464
13465 if (num_fields)
13466 {
13467 TYPE_NFIELDS (this_type) = num_fields;
13468 TYPE_FIELDS (this_type) = (struct field *)
13469 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
13470 memcpy (TYPE_FIELDS (this_type), fields,
13471 sizeof (struct field) * num_fields);
13472 xfree (fields);
13473 }
13474 }
13475
13476 /* If we are reading an enum from a .debug_types unit, and the enum
13477 is a declaration, and the enum is not the signatured type in the
13478 unit, then we do not want to add a symbol for it. Adding a
13479 symbol would in some cases obscure the true definition of the
13480 enum, giving users an incomplete type when the definition is
13481 actually available. Note that we do not want to do this for all
13482 enums which are just declarations, because C++0x allows forward
13483 enum declarations. */
13484 if (cu->per_cu->is_debug_types
13485 && die_is_declaration (die, cu))
13486 {
13487 struct signatured_type *sig_type;
13488
13489 sig_type = (struct signatured_type *) cu->per_cu;
13490 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
13491 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
13492 return;
13493 }
13494
13495 new_symbol (die, this_type, cu);
13496 }
13497
13498 /* Extract all information from a DW_TAG_array_type DIE and put it in
13499 the DIE's type field. For now, this only handles one dimensional
13500 arrays. */
13501
13502 static struct type *
13503 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
13504 {
13505 struct objfile *objfile = cu->objfile;
13506 struct die_info *child_die;
13507 struct type *type;
13508 struct type *element_type, *range_type, *index_type;
13509 struct type **range_types = NULL;
13510 struct attribute *attr;
13511 int ndim = 0;
13512 struct cleanup *back_to;
13513 const char *name;
13514 unsigned int bit_stride = 0;
13515
13516 element_type = die_type (die, cu);
13517
13518 /* The die_type call above may have already set the type for this DIE. */
13519 type = get_die_type (die, cu);
13520 if (type)
13521 return type;
13522
13523 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
13524 if (attr != NULL)
13525 bit_stride = DW_UNSND (attr) * 8;
13526
13527 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
13528 if (attr != NULL)
13529 bit_stride = DW_UNSND (attr);
13530
13531 /* Irix 6.2 native cc creates array types without children for
13532 arrays with unspecified length. */
13533 if (die->child == NULL)
13534 {
13535 index_type = objfile_type (objfile)->builtin_int;
13536 range_type = create_static_range_type (NULL, index_type, 0, -1);
13537 type = create_array_type_with_stride (NULL, element_type, range_type,
13538 bit_stride);
13539 return set_die_type (die, type, cu);
13540 }
13541
13542 back_to = make_cleanup (null_cleanup, NULL);
13543 child_die = die->child;
13544 while (child_die && child_die->tag)
13545 {
13546 if (child_die->tag == DW_TAG_subrange_type)
13547 {
13548 struct type *child_type = read_type_die (child_die, cu);
13549
13550 if (child_type != NULL)
13551 {
13552 /* The range type was succesfully read. Save it for the
13553 array type creation. */
13554 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
13555 {
13556 range_types = (struct type **)
13557 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
13558 * sizeof (struct type *));
13559 if (ndim == 0)
13560 make_cleanup (free_current_contents, &range_types);
13561 }
13562 range_types[ndim++] = child_type;
13563 }
13564 }
13565 child_die = sibling_die (child_die);
13566 }
13567
13568 /* Dwarf2 dimensions are output from left to right, create the
13569 necessary array types in backwards order. */
13570
13571 type = element_type;
13572
13573 if (read_array_order (die, cu) == DW_ORD_col_major)
13574 {
13575 int i = 0;
13576
13577 while (i < ndim)
13578 type = create_array_type_with_stride (NULL, type, range_types[i++],
13579 bit_stride);
13580 }
13581 else
13582 {
13583 while (ndim-- > 0)
13584 type = create_array_type_with_stride (NULL, type, range_types[ndim],
13585 bit_stride);
13586 }
13587
13588 /* Understand Dwarf2 support for vector types (like they occur on
13589 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
13590 array type. This is not part of the Dwarf2/3 standard yet, but a
13591 custom vendor extension. The main difference between a regular
13592 array and the vector variant is that vectors are passed by value
13593 to functions. */
13594 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
13595 if (attr)
13596 make_vector_type (type);
13597
13598 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
13599 implementation may choose to implement triple vectors using this
13600 attribute. */
13601 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13602 if (attr)
13603 {
13604 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
13605 TYPE_LENGTH (type) = DW_UNSND (attr);
13606 else
13607 complaint (&symfile_complaints,
13608 _("DW_AT_byte_size for array type smaller "
13609 "than the total size of elements"));
13610 }
13611
13612 name = dwarf2_name (die, cu);
13613 if (name)
13614 TYPE_NAME (type) = name;
13615
13616 /* Install the type in the die. */
13617 set_die_type (die, type, cu);
13618
13619 /* set_die_type should be already done. */
13620 set_descriptive_type (type, die, cu);
13621
13622 do_cleanups (back_to);
13623
13624 return type;
13625 }
13626
13627 static enum dwarf_array_dim_ordering
13628 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
13629 {
13630 struct attribute *attr;
13631
13632 attr = dwarf2_attr (die, DW_AT_ordering, cu);
13633
13634 if (attr) return DW_SND (attr);
13635
13636 /* GNU F77 is a special case, as at 08/2004 array type info is the
13637 opposite order to the dwarf2 specification, but data is still
13638 laid out as per normal fortran.
13639
13640 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
13641 version checking. */
13642
13643 if (cu->language == language_fortran
13644 && cu->producer && strstr (cu->producer, "GNU F77"))
13645 {
13646 return DW_ORD_row_major;
13647 }
13648
13649 switch (cu->language_defn->la_array_ordering)
13650 {
13651 case array_column_major:
13652 return DW_ORD_col_major;
13653 case array_row_major:
13654 default:
13655 return DW_ORD_row_major;
13656 };
13657 }
13658
13659 /* Extract all information from a DW_TAG_set_type DIE and put it in
13660 the DIE's type field. */
13661
13662 static struct type *
13663 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
13664 {
13665 struct type *domain_type, *set_type;
13666 struct attribute *attr;
13667
13668 domain_type = die_type (die, cu);
13669
13670 /* The die_type call above may have already set the type for this DIE. */
13671 set_type = get_die_type (die, cu);
13672 if (set_type)
13673 return set_type;
13674
13675 set_type = create_set_type (NULL, domain_type);
13676
13677 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13678 if (attr)
13679 TYPE_LENGTH (set_type) = DW_UNSND (attr);
13680
13681 return set_die_type (die, set_type, cu);
13682 }
13683
13684 /* A helper for read_common_block that creates a locexpr baton.
13685 SYM is the symbol which we are marking as computed.
13686 COMMON_DIE is the DIE for the common block.
13687 COMMON_LOC is the location expression attribute for the common
13688 block itself.
13689 MEMBER_LOC is the location expression attribute for the particular
13690 member of the common block that we are processing.
13691 CU is the CU from which the above come. */
13692
13693 static void
13694 mark_common_block_symbol_computed (struct symbol *sym,
13695 struct die_info *common_die,
13696 struct attribute *common_loc,
13697 struct attribute *member_loc,
13698 struct dwarf2_cu *cu)
13699 {
13700 struct objfile *objfile = dwarf2_per_objfile->objfile;
13701 struct dwarf2_locexpr_baton *baton;
13702 gdb_byte *ptr;
13703 unsigned int cu_off;
13704 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
13705 LONGEST offset = 0;
13706
13707 gdb_assert (common_loc && member_loc);
13708 gdb_assert (attr_form_is_block (common_loc));
13709 gdb_assert (attr_form_is_block (member_loc)
13710 || attr_form_is_constant (member_loc));
13711
13712 baton = obstack_alloc (&objfile->objfile_obstack,
13713 sizeof (struct dwarf2_locexpr_baton));
13714 baton->per_cu = cu->per_cu;
13715 gdb_assert (baton->per_cu);
13716
13717 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
13718
13719 if (attr_form_is_constant (member_loc))
13720 {
13721 offset = dwarf2_get_attr_constant_value (member_loc, 0);
13722 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
13723 }
13724 else
13725 baton->size += DW_BLOCK (member_loc)->size;
13726
13727 ptr = obstack_alloc (&objfile->objfile_obstack, baton->size);
13728 baton->data = ptr;
13729
13730 *ptr++ = DW_OP_call4;
13731 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
13732 store_unsigned_integer (ptr, 4, byte_order, cu_off);
13733 ptr += 4;
13734
13735 if (attr_form_is_constant (member_loc))
13736 {
13737 *ptr++ = DW_OP_addr;
13738 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
13739 ptr += cu->header.addr_size;
13740 }
13741 else
13742 {
13743 /* We have to copy the data here, because DW_OP_call4 will only
13744 use a DW_AT_location attribute. */
13745 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
13746 ptr += DW_BLOCK (member_loc)->size;
13747 }
13748
13749 *ptr++ = DW_OP_plus;
13750 gdb_assert (ptr - baton->data == baton->size);
13751
13752 SYMBOL_LOCATION_BATON (sym) = baton;
13753 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
13754 }
13755
13756 /* Create appropriate locally-scoped variables for all the
13757 DW_TAG_common_block entries. Also create a struct common_block
13758 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
13759 is used to sepate the common blocks name namespace from regular
13760 variable names. */
13761
13762 static void
13763 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
13764 {
13765 struct attribute *attr;
13766
13767 attr = dwarf2_attr (die, DW_AT_location, cu);
13768 if (attr)
13769 {
13770 /* Support the .debug_loc offsets. */
13771 if (attr_form_is_block (attr))
13772 {
13773 /* Ok. */
13774 }
13775 else if (attr_form_is_section_offset (attr))
13776 {
13777 dwarf2_complex_location_expr_complaint ();
13778 attr = NULL;
13779 }
13780 else
13781 {
13782 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
13783 "common block member");
13784 attr = NULL;
13785 }
13786 }
13787
13788 if (die->child != NULL)
13789 {
13790 struct objfile *objfile = cu->objfile;
13791 struct die_info *child_die;
13792 size_t n_entries = 0, size;
13793 struct common_block *common_block;
13794 struct symbol *sym;
13795
13796 for (child_die = die->child;
13797 child_die && child_die->tag;
13798 child_die = sibling_die (child_die))
13799 ++n_entries;
13800
13801 size = (sizeof (struct common_block)
13802 + (n_entries - 1) * sizeof (struct symbol *));
13803 common_block = obstack_alloc (&objfile->objfile_obstack, size);
13804 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
13805 common_block->n_entries = 0;
13806
13807 for (child_die = die->child;
13808 child_die && child_die->tag;
13809 child_die = sibling_die (child_die))
13810 {
13811 /* Create the symbol in the DW_TAG_common_block block in the current
13812 symbol scope. */
13813 sym = new_symbol (child_die, NULL, cu);
13814 if (sym != NULL)
13815 {
13816 struct attribute *member_loc;
13817
13818 common_block->contents[common_block->n_entries++] = sym;
13819
13820 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
13821 cu);
13822 if (member_loc)
13823 {
13824 /* GDB has handled this for a long time, but it is
13825 not specified by DWARF. It seems to have been
13826 emitted by gfortran at least as recently as:
13827 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
13828 complaint (&symfile_complaints,
13829 _("Variable in common block has "
13830 "DW_AT_data_member_location "
13831 "- DIE at 0x%x [in module %s]"),
13832 child_die->offset.sect_off,
13833 objfile_name (cu->objfile));
13834
13835 if (attr_form_is_section_offset (member_loc))
13836 dwarf2_complex_location_expr_complaint ();
13837 else if (attr_form_is_constant (member_loc)
13838 || attr_form_is_block (member_loc))
13839 {
13840 if (attr)
13841 mark_common_block_symbol_computed (sym, die, attr,
13842 member_loc, cu);
13843 }
13844 else
13845 dwarf2_complex_location_expr_complaint ();
13846 }
13847 }
13848 }
13849
13850 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
13851 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
13852 }
13853 }
13854
13855 /* Create a type for a C++ namespace. */
13856
13857 static struct type *
13858 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
13859 {
13860 struct objfile *objfile = cu->objfile;
13861 const char *previous_prefix, *name;
13862 int is_anonymous;
13863 struct type *type;
13864
13865 /* For extensions, reuse the type of the original namespace. */
13866 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
13867 {
13868 struct die_info *ext_die;
13869 struct dwarf2_cu *ext_cu = cu;
13870
13871 ext_die = dwarf2_extension (die, &ext_cu);
13872 type = read_type_die (ext_die, ext_cu);
13873
13874 /* EXT_CU may not be the same as CU.
13875 Ensure TYPE is recorded with CU in die_type_hash. */
13876 return set_die_type (die, type, cu);
13877 }
13878
13879 name = namespace_name (die, &is_anonymous, cu);
13880
13881 /* Now build the name of the current namespace. */
13882
13883 previous_prefix = determine_prefix (die, cu);
13884 if (previous_prefix[0] != '\0')
13885 name = typename_concat (&objfile->objfile_obstack,
13886 previous_prefix, name, 0, cu);
13887
13888 /* Create the type. */
13889 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
13890 objfile);
13891 TYPE_NAME (type) = name;
13892 TYPE_TAG_NAME (type) = TYPE_NAME (type);
13893
13894 return set_die_type (die, type, cu);
13895 }
13896
13897 /* Read a C++ namespace. */
13898
13899 static void
13900 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
13901 {
13902 struct objfile *objfile = cu->objfile;
13903 int is_anonymous;
13904
13905 /* Add a symbol associated to this if we haven't seen the namespace
13906 before. Also, add a using directive if it's an anonymous
13907 namespace. */
13908
13909 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
13910 {
13911 struct type *type;
13912
13913 type = read_type_die (die, cu);
13914 new_symbol (die, type, cu);
13915
13916 namespace_name (die, &is_anonymous, cu);
13917 if (is_anonymous)
13918 {
13919 const char *previous_prefix = determine_prefix (die, cu);
13920
13921 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
13922 NULL, NULL, 0, &objfile->objfile_obstack);
13923 }
13924 }
13925
13926 if (die->child != NULL)
13927 {
13928 struct die_info *child_die = die->child;
13929
13930 while (child_die && child_die->tag)
13931 {
13932 process_die (child_die, cu);
13933 child_die = sibling_die (child_die);
13934 }
13935 }
13936 }
13937
13938 /* Read a Fortran module as type. This DIE can be only a declaration used for
13939 imported module. Still we need that type as local Fortran "use ... only"
13940 declaration imports depend on the created type in determine_prefix. */
13941
13942 static struct type *
13943 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
13944 {
13945 struct objfile *objfile = cu->objfile;
13946 const char *module_name;
13947 struct type *type;
13948
13949 module_name = dwarf2_name (die, cu);
13950 if (!module_name)
13951 complaint (&symfile_complaints,
13952 _("DW_TAG_module has no name, offset 0x%x"),
13953 die->offset.sect_off);
13954 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
13955
13956 /* determine_prefix uses TYPE_TAG_NAME. */
13957 TYPE_TAG_NAME (type) = TYPE_NAME (type);
13958
13959 return set_die_type (die, type, cu);
13960 }
13961
13962 /* Read a Fortran module. */
13963
13964 static void
13965 read_module (struct die_info *die, struct dwarf2_cu *cu)
13966 {
13967 struct die_info *child_die = die->child;
13968 struct type *type;
13969
13970 type = read_type_die (die, cu);
13971 new_symbol (die, type, cu);
13972
13973 while (child_die && child_die->tag)
13974 {
13975 process_die (child_die, cu);
13976 child_die = sibling_die (child_die);
13977 }
13978 }
13979
13980 /* Return the name of the namespace represented by DIE. Set
13981 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
13982 namespace. */
13983
13984 static const char *
13985 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
13986 {
13987 struct die_info *current_die;
13988 const char *name = NULL;
13989
13990 /* Loop through the extensions until we find a name. */
13991
13992 for (current_die = die;
13993 current_die != NULL;
13994 current_die = dwarf2_extension (die, &cu))
13995 {
13996 name = dwarf2_name (current_die, cu);
13997 if (name != NULL)
13998 break;
13999 }
14000
14001 /* Is it an anonymous namespace? */
14002
14003 *is_anonymous = (name == NULL);
14004 if (*is_anonymous)
14005 name = CP_ANONYMOUS_NAMESPACE_STR;
14006
14007 return name;
14008 }
14009
14010 /* Extract all information from a DW_TAG_pointer_type DIE and add to
14011 the user defined type vector. */
14012
14013 static struct type *
14014 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
14015 {
14016 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
14017 struct comp_unit_head *cu_header = &cu->header;
14018 struct type *type;
14019 struct attribute *attr_byte_size;
14020 struct attribute *attr_address_class;
14021 int byte_size, addr_class;
14022 struct type *target_type;
14023
14024 target_type = die_type (die, cu);
14025
14026 /* The die_type call above may have already set the type for this DIE. */
14027 type = get_die_type (die, cu);
14028 if (type)
14029 return type;
14030
14031 type = lookup_pointer_type (target_type);
14032
14033 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
14034 if (attr_byte_size)
14035 byte_size = DW_UNSND (attr_byte_size);
14036 else
14037 byte_size = cu_header->addr_size;
14038
14039 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
14040 if (attr_address_class)
14041 addr_class = DW_UNSND (attr_address_class);
14042 else
14043 addr_class = DW_ADDR_none;
14044
14045 /* If the pointer size or address class is different than the
14046 default, create a type variant marked as such and set the
14047 length accordingly. */
14048 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
14049 {
14050 if (gdbarch_address_class_type_flags_p (gdbarch))
14051 {
14052 int type_flags;
14053
14054 type_flags = gdbarch_address_class_type_flags
14055 (gdbarch, byte_size, addr_class);
14056 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
14057 == 0);
14058 type = make_type_with_address_space (type, type_flags);
14059 }
14060 else if (TYPE_LENGTH (type) != byte_size)
14061 {
14062 complaint (&symfile_complaints,
14063 _("invalid pointer size %d"), byte_size);
14064 }
14065 else
14066 {
14067 /* Should we also complain about unhandled address classes? */
14068 }
14069 }
14070
14071 TYPE_LENGTH (type) = byte_size;
14072 return set_die_type (die, type, cu);
14073 }
14074
14075 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
14076 the user defined type vector. */
14077
14078 static struct type *
14079 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
14080 {
14081 struct type *type;
14082 struct type *to_type;
14083 struct type *domain;
14084
14085 to_type = die_type (die, cu);
14086 domain = die_containing_type (die, cu);
14087
14088 /* The calls above may have already set the type for this DIE. */
14089 type = get_die_type (die, cu);
14090 if (type)
14091 return type;
14092
14093 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
14094 type = lookup_methodptr_type (to_type);
14095 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
14096 {
14097 struct type *new_type = alloc_type (cu->objfile);
14098
14099 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
14100 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
14101 TYPE_VARARGS (to_type));
14102 type = lookup_methodptr_type (new_type);
14103 }
14104 else
14105 type = lookup_memberptr_type (to_type, domain);
14106
14107 return set_die_type (die, type, cu);
14108 }
14109
14110 /* Extract all information from a DW_TAG_reference_type DIE and add to
14111 the user defined type vector. */
14112
14113 static struct type *
14114 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
14115 {
14116 struct comp_unit_head *cu_header = &cu->header;
14117 struct type *type, *target_type;
14118 struct attribute *attr;
14119
14120 target_type = die_type (die, cu);
14121
14122 /* The die_type call above may have already set the type for this DIE. */
14123 type = get_die_type (die, cu);
14124 if (type)
14125 return type;
14126
14127 type = lookup_reference_type (target_type);
14128 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14129 if (attr)
14130 {
14131 TYPE_LENGTH (type) = DW_UNSND (attr);
14132 }
14133 else
14134 {
14135 TYPE_LENGTH (type) = cu_header->addr_size;
14136 }
14137 return set_die_type (die, type, cu);
14138 }
14139
14140 /* Add the given cv-qualifiers to the element type of the array. GCC
14141 outputs DWARF type qualifiers that apply to an array, not the
14142 element type. But GDB relies on the array element type to carry
14143 the cv-qualifiers. This mimics section 6.7.3 of the C99
14144 specification. */
14145
14146 static struct type *
14147 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
14148 struct type *base_type, int cnst, int voltl)
14149 {
14150 struct type *el_type, *inner_array;
14151
14152 base_type = copy_type (base_type);
14153 inner_array = base_type;
14154
14155 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
14156 {
14157 TYPE_TARGET_TYPE (inner_array) =
14158 copy_type (TYPE_TARGET_TYPE (inner_array));
14159 inner_array = TYPE_TARGET_TYPE (inner_array);
14160 }
14161
14162 el_type = TYPE_TARGET_TYPE (inner_array);
14163 cnst |= TYPE_CONST (el_type);
14164 voltl |= TYPE_VOLATILE (el_type);
14165 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
14166
14167 return set_die_type (die, base_type, cu);
14168 }
14169
14170 static struct type *
14171 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
14172 {
14173 struct type *base_type, *cv_type;
14174
14175 base_type = die_type (die, cu);
14176
14177 /* The die_type call above may have already set the type for this DIE. */
14178 cv_type = get_die_type (die, cu);
14179 if (cv_type)
14180 return cv_type;
14181
14182 /* In case the const qualifier is applied to an array type, the element type
14183 is so qualified, not the array type (section 6.7.3 of C99). */
14184 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14185 return add_array_cv_type (die, cu, base_type, 1, 0);
14186
14187 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
14188 return set_die_type (die, cv_type, cu);
14189 }
14190
14191 static struct type *
14192 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
14193 {
14194 struct type *base_type, *cv_type;
14195
14196 base_type = die_type (die, cu);
14197
14198 /* The die_type call above may have already set the type for this DIE. */
14199 cv_type = get_die_type (die, cu);
14200 if (cv_type)
14201 return cv_type;
14202
14203 /* In case the volatile qualifier is applied to an array type, the
14204 element type is so qualified, not the array type (section 6.7.3
14205 of C99). */
14206 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14207 return add_array_cv_type (die, cu, base_type, 0, 1);
14208
14209 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
14210 return set_die_type (die, cv_type, cu);
14211 }
14212
14213 /* Handle DW_TAG_restrict_type. */
14214
14215 static struct type *
14216 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
14217 {
14218 struct type *base_type, *cv_type;
14219
14220 base_type = die_type (die, cu);
14221
14222 /* The die_type call above may have already set the type for this DIE. */
14223 cv_type = get_die_type (die, cu);
14224 if (cv_type)
14225 return cv_type;
14226
14227 cv_type = make_restrict_type (base_type);
14228 return set_die_type (die, cv_type, cu);
14229 }
14230
14231 /* Extract all information from a DW_TAG_string_type DIE and add to
14232 the user defined type vector. It isn't really a user defined type,
14233 but it behaves like one, with other DIE's using an AT_user_def_type
14234 attribute to reference it. */
14235
14236 static struct type *
14237 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
14238 {
14239 struct objfile *objfile = cu->objfile;
14240 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14241 struct type *type, *range_type, *index_type, *char_type;
14242 struct attribute *attr;
14243 unsigned int length;
14244
14245 attr = dwarf2_attr (die, DW_AT_string_length, cu);
14246 if (attr)
14247 {
14248 length = DW_UNSND (attr);
14249 }
14250 else
14251 {
14252 /* Check for the DW_AT_byte_size attribute. */
14253 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14254 if (attr)
14255 {
14256 length = DW_UNSND (attr);
14257 }
14258 else
14259 {
14260 length = 1;
14261 }
14262 }
14263
14264 index_type = objfile_type (objfile)->builtin_int;
14265 range_type = create_static_range_type (NULL, index_type, 1, length);
14266 char_type = language_string_char_type (cu->language_defn, gdbarch);
14267 type = create_string_type (NULL, char_type, range_type);
14268
14269 return set_die_type (die, type, cu);
14270 }
14271
14272 /* Assuming that DIE corresponds to a function, returns nonzero
14273 if the function is prototyped. */
14274
14275 static int
14276 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
14277 {
14278 struct attribute *attr;
14279
14280 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
14281 if (attr && (DW_UNSND (attr) != 0))
14282 return 1;
14283
14284 /* The DWARF standard implies that the DW_AT_prototyped attribute
14285 is only meaninful for C, but the concept also extends to other
14286 languages that allow unprototyped functions (Eg: Objective C).
14287 For all other languages, assume that functions are always
14288 prototyped. */
14289 if (cu->language != language_c
14290 && cu->language != language_objc
14291 && cu->language != language_opencl)
14292 return 1;
14293
14294 /* RealView does not emit DW_AT_prototyped. We can not distinguish
14295 prototyped and unprototyped functions; default to prototyped,
14296 since that is more common in modern code (and RealView warns
14297 about unprototyped functions). */
14298 if (producer_is_realview (cu->producer))
14299 return 1;
14300
14301 return 0;
14302 }
14303
14304 /* Handle DIES due to C code like:
14305
14306 struct foo
14307 {
14308 int (*funcp)(int a, long l);
14309 int b;
14310 };
14311
14312 ('funcp' generates a DW_TAG_subroutine_type DIE). */
14313
14314 static struct type *
14315 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
14316 {
14317 struct objfile *objfile = cu->objfile;
14318 struct type *type; /* Type that this function returns. */
14319 struct type *ftype; /* Function that returns above type. */
14320 struct attribute *attr;
14321
14322 type = die_type (die, cu);
14323
14324 /* The die_type call above may have already set the type for this DIE. */
14325 ftype = get_die_type (die, cu);
14326 if (ftype)
14327 return ftype;
14328
14329 ftype = lookup_function_type (type);
14330
14331 if (prototyped_function_p (die, cu))
14332 TYPE_PROTOTYPED (ftype) = 1;
14333
14334 /* Store the calling convention in the type if it's available in
14335 the subroutine die. Otherwise set the calling convention to
14336 the default value DW_CC_normal. */
14337 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
14338 if (attr)
14339 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
14340 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
14341 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
14342 else
14343 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
14344
14345 /* We need to add the subroutine type to the die immediately so
14346 we don't infinitely recurse when dealing with parameters
14347 declared as the same subroutine type. */
14348 set_die_type (die, ftype, cu);
14349
14350 if (die->child != NULL)
14351 {
14352 struct type *void_type = objfile_type (objfile)->builtin_void;
14353 struct die_info *child_die;
14354 int nparams, iparams;
14355
14356 /* Count the number of parameters.
14357 FIXME: GDB currently ignores vararg functions, but knows about
14358 vararg member functions. */
14359 nparams = 0;
14360 child_die = die->child;
14361 while (child_die && child_die->tag)
14362 {
14363 if (child_die->tag == DW_TAG_formal_parameter)
14364 nparams++;
14365 else if (child_die->tag == DW_TAG_unspecified_parameters)
14366 TYPE_VARARGS (ftype) = 1;
14367 child_die = sibling_die (child_die);
14368 }
14369
14370 /* Allocate storage for parameters and fill them in. */
14371 TYPE_NFIELDS (ftype) = nparams;
14372 TYPE_FIELDS (ftype) = (struct field *)
14373 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
14374
14375 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
14376 even if we error out during the parameters reading below. */
14377 for (iparams = 0; iparams < nparams; iparams++)
14378 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
14379
14380 iparams = 0;
14381 child_die = die->child;
14382 while (child_die && child_die->tag)
14383 {
14384 if (child_die->tag == DW_TAG_formal_parameter)
14385 {
14386 struct type *arg_type;
14387
14388 /* DWARF version 2 has no clean way to discern C++
14389 static and non-static member functions. G++ helps
14390 GDB by marking the first parameter for non-static
14391 member functions (which is the this pointer) as
14392 artificial. We pass this information to
14393 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
14394
14395 DWARF version 3 added DW_AT_object_pointer, which GCC
14396 4.5 does not yet generate. */
14397 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
14398 if (attr)
14399 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
14400 else
14401 {
14402 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
14403
14404 /* GCC/43521: In java, the formal parameter
14405 "this" is sometimes not marked with DW_AT_artificial. */
14406 if (cu->language == language_java)
14407 {
14408 const char *name = dwarf2_name (child_die, cu);
14409
14410 if (name && !strcmp (name, "this"))
14411 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
14412 }
14413 }
14414 arg_type = die_type (child_die, cu);
14415
14416 /* RealView does not mark THIS as const, which the testsuite
14417 expects. GCC marks THIS as const in method definitions,
14418 but not in the class specifications (GCC PR 43053). */
14419 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
14420 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
14421 {
14422 int is_this = 0;
14423 struct dwarf2_cu *arg_cu = cu;
14424 const char *name = dwarf2_name (child_die, cu);
14425
14426 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
14427 if (attr)
14428 {
14429 /* If the compiler emits this, use it. */
14430 if (follow_die_ref (die, attr, &arg_cu) == child_die)
14431 is_this = 1;
14432 }
14433 else if (name && strcmp (name, "this") == 0)
14434 /* Function definitions will have the argument names. */
14435 is_this = 1;
14436 else if (name == NULL && iparams == 0)
14437 /* Declarations may not have the names, so like
14438 elsewhere in GDB, assume an artificial first
14439 argument is "this". */
14440 is_this = 1;
14441
14442 if (is_this)
14443 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
14444 arg_type, 0);
14445 }
14446
14447 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
14448 iparams++;
14449 }
14450 child_die = sibling_die (child_die);
14451 }
14452 }
14453
14454 return ftype;
14455 }
14456
14457 static struct type *
14458 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
14459 {
14460 struct objfile *objfile = cu->objfile;
14461 const char *name = NULL;
14462 struct type *this_type, *target_type;
14463
14464 name = dwarf2_full_name (NULL, die, cu);
14465 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
14466 TYPE_FLAG_TARGET_STUB, NULL, objfile);
14467 TYPE_NAME (this_type) = name;
14468 set_die_type (die, this_type, cu);
14469 target_type = die_type (die, cu);
14470 if (target_type != this_type)
14471 TYPE_TARGET_TYPE (this_type) = target_type;
14472 else
14473 {
14474 /* Self-referential typedefs are, it seems, not allowed by the DWARF
14475 spec and cause infinite loops in GDB. */
14476 complaint (&symfile_complaints,
14477 _("Self-referential DW_TAG_typedef "
14478 "- DIE at 0x%x [in module %s]"),
14479 die->offset.sect_off, objfile_name (objfile));
14480 TYPE_TARGET_TYPE (this_type) = NULL;
14481 }
14482 return this_type;
14483 }
14484
14485 /* Find a representation of a given base type and install
14486 it in the TYPE field of the die. */
14487
14488 static struct type *
14489 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
14490 {
14491 struct objfile *objfile = cu->objfile;
14492 struct type *type;
14493 struct attribute *attr;
14494 int encoding = 0, size = 0;
14495 const char *name;
14496 enum type_code code = TYPE_CODE_INT;
14497 int type_flags = 0;
14498 struct type *target_type = NULL;
14499
14500 attr = dwarf2_attr (die, DW_AT_encoding, cu);
14501 if (attr)
14502 {
14503 encoding = DW_UNSND (attr);
14504 }
14505 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14506 if (attr)
14507 {
14508 size = DW_UNSND (attr);
14509 }
14510 name = dwarf2_name (die, cu);
14511 if (!name)
14512 {
14513 complaint (&symfile_complaints,
14514 _("DW_AT_name missing from DW_TAG_base_type"));
14515 }
14516
14517 switch (encoding)
14518 {
14519 case DW_ATE_address:
14520 /* Turn DW_ATE_address into a void * pointer. */
14521 code = TYPE_CODE_PTR;
14522 type_flags |= TYPE_FLAG_UNSIGNED;
14523 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
14524 break;
14525 case DW_ATE_boolean:
14526 code = TYPE_CODE_BOOL;
14527 type_flags |= TYPE_FLAG_UNSIGNED;
14528 break;
14529 case DW_ATE_complex_float:
14530 code = TYPE_CODE_COMPLEX;
14531 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
14532 break;
14533 case DW_ATE_decimal_float:
14534 code = TYPE_CODE_DECFLOAT;
14535 break;
14536 case DW_ATE_float:
14537 code = TYPE_CODE_FLT;
14538 break;
14539 case DW_ATE_signed:
14540 break;
14541 case DW_ATE_unsigned:
14542 type_flags |= TYPE_FLAG_UNSIGNED;
14543 if (cu->language == language_fortran
14544 && name
14545 && strncmp (name, "character(", sizeof ("character(") - 1) == 0)
14546 code = TYPE_CODE_CHAR;
14547 break;
14548 case DW_ATE_signed_char:
14549 if (cu->language == language_ada || cu->language == language_m2
14550 || cu->language == language_pascal
14551 || cu->language == language_fortran)
14552 code = TYPE_CODE_CHAR;
14553 break;
14554 case DW_ATE_unsigned_char:
14555 if (cu->language == language_ada || cu->language == language_m2
14556 || cu->language == language_pascal
14557 || cu->language == language_fortran)
14558 code = TYPE_CODE_CHAR;
14559 type_flags |= TYPE_FLAG_UNSIGNED;
14560 break;
14561 case DW_ATE_UTF:
14562 /* We just treat this as an integer and then recognize the
14563 type by name elsewhere. */
14564 break;
14565
14566 default:
14567 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
14568 dwarf_type_encoding_name (encoding));
14569 break;
14570 }
14571
14572 type = init_type (code, size, type_flags, NULL, objfile);
14573 TYPE_NAME (type) = name;
14574 TYPE_TARGET_TYPE (type) = target_type;
14575
14576 if (name && strcmp (name, "char") == 0)
14577 TYPE_NOSIGN (type) = 1;
14578
14579 return set_die_type (die, type, cu);
14580 }
14581
14582 /* Parse dwarf attribute if it's a block, reference or constant and put the
14583 resulting value of the attribute into struct bound_prop.
14584 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
14585
14586 static int
14587 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
14588 struct dwarf2_cu *cu, struct dynamic_prop *prop)
14589 {
14590 struct dwarf2_property_baton *baton;
14591 struct obstack *obstack = &cu->objfile->objfile_obstack;
14592
14593 if (attr == NULL || prop == NULL)
14594 return 0;
14595
14596 if (attr_form_is_block (attr))
14597 {
14598 baton = obstack_alloc (obstack, sizeof (*baton));
14599 baton->referenced_type = NULL;
14600 baton->locexpr.per_cu = cu->per_cu;
14601 baton->locexpr.size = DW_BLOCK (attr)->size;
14602 baton->locexpr.data = DW_BLOCK (attr)->data;
14603 prop->data.baton = baton;
14604 prop->kind = PROP_LOCEXPR;
14605 gdb_assert (prop->data.baton != NULL);
14606 }
14607 else if (attr_form_is_ref (attr))
14608 {
14609 struct dwarf2_cu *target_cu = cu;
14610 struct die_info *target_die;
14611 struct attribute *target_attr;
14612
14613 target_die = follow_die_ref (die, attr, &target_cu);
14614 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
14615 if (target_attr == NULL)
14616 return 0;
14617
14618 if (attr_form_is_section_offset (target_attr))
14619 {
14620 baton = obstack_alloc (obstack, sizeof (*baton));
14621 baton->referenced_type = die_type (target_die, target_cu);
14622 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
14623 prop->data.baton = baton;
14624 prop->kind = PROP_LOCLIST;
14625 gdb_assert (prop->data.baton != NULL);
14626 }
14627 else if (attr_form_is_block (target_attr))
14628 {
14629 baton = obstack_alloc (obstack, sizeof (*baton));
14630 baton->referenced_type = die_type (target_die, target_cu);
14631 baton->locexpr.per_cu = cu->per_cu;
14632 baton->locexpr.size = DW_BLOCK (target_attr)->size;
14633 baton->locexpr.data = DW_BLOCK (target_attr)->data;
14634 prop->data.baton = baton;
14635 prop->kind = PROP_LOCEXPR;
14636 gdb_assert (prop->data.baton != NULL);
14637 }
14638 else
14639 {
14640 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14641 "dynamic property");
14642 return 0;
14643 }
14644 }
14645 else if (attr_form_is_constant (attr))
14646 {
14647 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
14648 prop->kind = PROP_CONST;
14649 }
14650 else
14651 {
14652 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
14653 dwarf2_name (die, cu));
14654 return 0;
14655 }
14656
14657 return 1;
14658 }
14659
14660 /* Read the given DW_AT_subrange DIE. */
14661
14662 static struct type *
14663 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
14664 {
14665 struct type *base_type, *orig_base_type;
14666 struct type *range_type;
14667 struct attribute *attr;
14668 struct dynamic_prop low, high;
14669 int low_default_is_valid;
14670 int high_bound_is_count = 0;
14671 const char *name;
14672 LONGEST negative_mask;
14673
14674 orig_base_type = die_type (die, cu);
14675 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
14676 whereas the real type might be. So, we use ORIG_BASE_TYPE when
14677 creating the range type, but we use the result of check_typedef
14678 when examining properties of the type. */
14679 base_type = check_typedef (orig_base_type);
14680
14681 /* The die_type call above may have already set the type for this DIE. */
14682 range_type = get_die_type (die, cu);
14683 if (range_type)
14684 return range_type;
14685
14686 low.kind = PROP_CONST;
14687 high.kind = PROP_CONST;
14688 high.data.const_val = 0;
14689
14690 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
14691 omitting DW_AT_lower_bound. */
14692 switch (cu->language)
14693 {
14694 case language_c:
14695 case language_cplus:
14696 low.data.const_val = 0;
14697 low_default_is_valid = 1;
14698 break;
14699 case language_fortran:
14700 low.data.const_val = 1;
14701 low_default_is_valid = 1;
14702 break;
14703 case language_d:
14704 case language_java:
14705 case language_objc:
14706 low.data.const_val = 0;
14707 low_default_is_valid = (cu->header.version >= 4);
14708 break;
14709 case language_ada:
14710 case language_m2:
14711 case language_pascal:
14712 low.data.const_val = 1;
14713 low_default_is_valid = (cu->header.version >= 4);
14714 break;
14715 default:
14716 low.data.const_val = 0;
14717 low_default_is_valid = 0;
14718 break;
14719 }
14720
14721 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
14722 if (attr)
14723 attr_to_dynamic_prop (attr, die, cu, &low);
14724 else if (!low_default_is_valid)
14725 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
14726 "- DIE at 0x%x [in module %s]"),
14727 die->offset.sect_off, objfile_name (cu->objfile));
14728
14729 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
14730 if (!attr_to_dynamic_prop (attr, die, cu, &high))
14731 {
14732 attr = dwarf2_attr (die, DW_AT_count, cu);
14733 if (attr_to_dynamic_prop (attr, die, cu, &high))
14734 {
14735 /* If bounds are constant do the final calculation here. */
14736 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
14737 high.data.const_val = low.data.const_val + high.data.const_val - 1;
14738 else
14739 high_bound_is_count = 1;
14740 }
14741 }
14742
14743 /* Dwarf-2 specifications explicitly allows to create subrange types
14744 without specifying a base type.
14745 In that case, the base type must be set to the type of
14746 the lower bound, upper bound or count, in that order, if any of these
14747 three attributes references an object that has a type.
14748 If no base type is found, the Dwarf-2 specifications say that
14749 a signed integer type of size equal to the size of an address should
14750 be used.
14751 For the following C code: `extern char gdb_int [];'
14752 GCC produces an empty range DIE.
14753 FIXME: muller/2010-05-28: Possible references to object for low bound,
14754 high bound or count are not yet handled by this code. */
14755 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
14756 {
14757 struct objfile *objfile = cu->objfile;
14758 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14759 int addr_size = gdbarch_addr_bit (gdbarch) /8;
14760 struct type *int_type = objfile_type (objfile)->builtin_int;
14761
14762 /* Test "int", "long int", and "long long int" objfile types,
14763 and select the first one having a size above or equal to the
14764 architecture address size. */
14765 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14766 base_type = int_type;
14767 else
14768 {
14769 int_type = objfile_type (objfile)->builtin_long;
14770 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14771 base_type = int_type;
14772 else
14773 {
14774 int_type = objfile_type (objfile)->builtin_long_long;
14775 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14776 base_type = int_type;
14777 }
14778 }
14779 }
14780
14781 /* Normally, the DWARF producers are expected to use a signed
14782 constant form (Eg. DW_FORM_sdata) to express negative bounds.
14783 But this is unfortunately not always the case, as witnessed
14784 with GCC, for instance, where the ambiguous DW_FORM_dataN form
14785 is used instead. To work around that ambiguity, we treat
14786 the bounds as signed, and thus sign-extend their values, when
14787 the base type is signed. */
14788 negative_mask =
14789 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
14790 if (low.kind == PROP_CONST
14791 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
14792 low.data.const_val |= negative_mask;
14793 if (high.kind == PROP_CONST
14794 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
14795 high.data.const_val |= negative_mask;
14796
14797 range_type = create_range_type (NULL, orig_base_type, &low, &high);
14798
14799 if (high_bound_is_count)
14800 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
14801
14802 /* Ada expects an empty array on no boundary attributes. */
14803 if (attr == NULL && cu->language != language_ada)
14804 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
14805
14806 name = dwarf2_name (die, cu);
14807 if (name)
14808 TYPE_NAME (range_type) = name;
14809
14810 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14811 if (attr)
14812 TYPE_LENGTH (range_type) = DW_UNSND (attr);
14813
14814 set_die_type (die, range_type, cu);
14815
14816 /* set_die_type should be already done. */
14817 set_descriptive_type (range_type, die, cu);
14818
14819 return range_type;
14820 }
14821
14822 static struct type *
14823 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
14824 {
14825 struct type *type;
14826
14827 /* For now, we only support the C meaning of an unspecified type: void. */
14828
14829 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
14830 TYPE_NAME (type) = dwarf2_name (die, cu);
14831
14832 return set_die_type (die, type, cu);
14833 }
14834
14835 /* Read a single die and all its descendents. Set the die's sibling
14836 field to NULL; set other fields in the die correctly, and set all
14837 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
14838 location of the info_ptr after reading all of those dies. PARENT
14839 is the parent of the die in question. */
14840
14841 static struct die_info *
14842 read_die_and_children (const struct die_reader_specs *reader,
14843 const gdb_byte *info_ptr,
14844 const gdb_byte **new_info_ptr,
14845 struct die_info *parent)
14846 {
14847 struct die_info *die;
14848 const gdb_byte *cur_ptr;
14849 int has_children;
14850
14851 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
14852 if (die == NULL)
14853 {
14854 *new_info_ptr = cur_ptr;
14855 return NULL;
14856 }
14857 store_in_ref_table (die, reader->cu);
14858
14859 if (has_children)
14860 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
14861 else
14862 {
14863 die->child = NULL;
14864 *new_info_ptr = cur_ptr;
14865 }
14866
14867 die->sibling = NULL;
14868 die->parent = parent;
14869 return die;
14870 }
14871
14872 /* Read a die, all of its descendents, and all of its siblings; set
14873 all of the fields of all of the dies correctly. Arguments are as
14874 in read_die_and_children. */
14875
14876 static struct die_info *
14877 read_die_and_siblings_1 (const struct die_reader_specs *reader,
14878 const gdb_byte *info_ptr,
14879 const gdb_byte **new_info_ptr,
14880 struct die_info *parent)
14881 {
14882 struct die_info *first_die, *last_sibling;
14883 const gdb_byte *cur_ptr;
14884
14885 cur_ptr = info_ptr;
14886 first_die = last_sibling = NULL;
14887
14888 while (1)
14889 {
14890 struct die_info *die
14891 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
14892
14893 if (die == NULL)
14894 {
14895 *new_info_ptr = cur_ptr;
14896 return first_die;
14897 }
14898
14899 if (!first_die)
14900 first_die = die;
14901 else
14902 last_sibling->sibling = die;
14903
14904 last_sibling = die;
14905 }
14906 }
14907
14908 /* Read a die, all of its descendents, and all of its siblings; set
14909 all of the fields of all of the dies correctly. Arguments are as
14910 in read_die_and_children.
14911 This the main entry point for reading a DIE and all its children. */
14912
14913 static struct die_info *
14914 read_die_and_siblings (const struct die_reader_specs *reader,
14915 const gdb_byte *info_ptr,
14916 const gdb_byte **new_info_ptr,
14917 struct die_info *parent)
14918 {
14919 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
14920 new_info_ptr, parent);
14921
14922 if (dwarf2_die_debug)
14923 {
14924 fprintf_unfiltered (gdb_stdlog,
14925 "Read die from %s@0x%x of %s:\n",
14926 get_section_name (reader->die_section),
14927 (unsigned) (info_ptr - reader->die_section->buffer),
14928 bfd_get_filename (reader->abfd));
14929 dump_die (die, dwarf2_die_debug);
14930 }
14931
14932 return die;
14933 }
14934
14935 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
14936 attributes.
14937 The caller is responsible for filling in the extra attributes
14938 and updating (*DIEP)->num_attrs.
14939 Set DIEP to point to a newly allocated die with its information,
14940 except for its child, sibling, and parent fields.
14941 Set HAS_CHILDREN to tell whether the die has children or not. */
14942
14943 static const gdb_byte *
14944 read_full_die_1 (const struct die_reader_specs *reader,
14945 struct die_info **diep, const gdb_byte *info_ptr,
14946 int *has_children, int num_extra_attrs)
14947 {
14948 unsigned int abbrev_number, bytes_read, i;
14949 sect_offset offset;
14950 struct abbrev_info *abbrev;
14951 struct die_info *die;
14952 struct dwarf2_cu *cu = reader->cu;
14953 bfd *abfd = reader->abfd;
14954
14955 offset.sect_off = info_ptr - reader->buffer;
14956 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14957 info_ptr += bytes_read;
14958 if (!abbrev_number)
14959 {
14960 *diep = NULL;
14961 *has_children = 0;
14962 return info_ptr;
14963 }
14964
14965 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
14966 if (!abbrev)
14967 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
14968 abbrev_number,
14969 bfd_get_filename (abfd));
14970
14971 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
14972 die->offset = offset;
14973 die->tag = abbrev->tag;
14974 die->abbrev = abbrev_number;
14975
14976 /* Make the result usable.
14977 The caller needs to update num_attrs after adding the extra
14978 attributes. */
14979 die->num_attrs = abbrev->num_attrs;
14980
14981 for (i = 0; i < abbrev->num_attrs; ++i)
14982 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
14983 info_ptr);
14984
14985 *diep = die;
14986 *has_children = abbrev->has_children;
14987 return info_ptr;
14988 }
14989
14990 /* Read a die and all its attributes.
14991 Set DIEP to point to a newly allocated die with its information,
14992 except for its child, sibling, and parent fields.
14993 Set HAS_CHILDREN to tell whether the die has children or not. */
14994
14995 static const gdb_byte *
14996 read_full_die (const struct die_reader_specs *reader,
14997 struct die_info **diep, const gdb_byte *info_ptr,
14998 int *has_children)
14999 {
15000 const gdb_byte *result;
15001
15002 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
15003
15004 if (dwarf2_die_debug)
15005 {
15006 fprintf_unfiltered (gdb_stdlog,
15007 "Read die from %s@0x%x of %s:\n",
15008 get_section_name (reader->die_section),
15009 (unsigned) (info_ptr - reader->die_section->buffer),
15010 bfd_get_filename (reader->abfd));
15011 dump_die (*diep, dwarf2_die_debug);
15012 }
15013
15014 return result;
15015 }
15016 \f
15017 /* Abbreviation tables.
15018
15019 In DWARF version 2, the description of the debugging information is
15020 stored in a separate .debug_abbrev section. Before we read any
15021 dies from a section we read in all abbreviations and install them
15022 in a hash table. */
15023
15024 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
15025
15026 static struct abbrev_info *
15027 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
15028 {
15029 struct abbrev_info *abbrev;
15030
15031 abbrev = (struct abbrev_info *)
15032 obstack_alloc (&abbrev_table->abbrev_obstack, sizeof (struct abbrev_info));
15033 memset (abbrev, 0, sizeof (struct abbrev_info));
15034 return abbrev;
15035 }
15036
15037 /* Add an abbreviation to the table. */
15038
15039 static void
15040 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
15041 unsigned int abbrev_number,
15042 struct abbrev_info *abbrev)
15043 {
15044 unsigned int hash_number;
15045
15046 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15047 abbrev->next = abbrev_table->abbrevs[hash_number];
15048 abbrev_table->abbrevs[hash_number] = abbrev;
15049 }
15050
15051 /* Look up an abbrev in the table.
15052 Returns NULL if the abbrev is not found. */
15053
15054 static struct abbrev_info *
15055 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
15056 unsigned int abbrev_number)
15057 {
15058 unsigned int hash_number;
15059 struct abbrev_info *abbrev;
15060
15061 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15062 abbrev = abbrev_table->abbrevs[hash_number];
15063
15064 while (abbrev)
15065 {
15066 if (abbrev->number == abbrev_number)
15067 return abbrev;
15068 abbrev = abbrev->next;
15069 }
15070 return NULL;
15071 }
15072
15073 /* Read in an abbrev table. */
15074
15075 static struct abbrev_table *
15076 abbrev_table_read_table (struct dwarf2_section_info *section,
15077 sect_offset offset)
15078 {
15079 struct objfile *objfile = dwarf2_per_objfile->objfile;
15080 bfd *abfd = get_section_bfd_owner (section);
15081 struct abbrev_table *abbrev_table;
15082 const gdb_byte *abbrev_ptr;
15083 struct abbrev_info *cur_abbrev;
15084 unsigned int abbrev_number, bytes_read, abbrev_name;
15085 unsigned int abbrev_form;
15086 struct attr_abbrev *cur_attrs;
15087 unsigned int allocated_attrs;
15088
15089 abbrev_table = XNEW (struct abbrev_table);
15090 abbrev_table->offset = offset;
15091 obstack_init (&abbrev_table->abbrev_obstack);
15092 abbrev_table->abbrevs = obstack_alloc (&abbrev_table->abbrev_obstack,
15093 (ABBREV_HASH_SIZE
15094 * sizeof (struct abbrev_info *)));
15095 memset (abbrev_table->abbrevs, 0,
15096 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
15097
15098 dwarf2_read_section (objfile, section);
15099 abbrev_ptr = section->buffer + offset.sect_off;
15100 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15101 abbrev_ptr += bytes_read;
15102
15103 allocated_attrs = ATTR_ALLOC_CHUNK;
15104 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
15105
15106 /* Loop until we reach an abbrev number of 0. */
15107 while (abbrev_number)
15108 {
15109 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
15110
15111 /* read in abbrev header */
15112 cur_abbrev->number = abbrev_number;
15113 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15114 abbrev_ptr += bytes_read;
15115 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
15116 abbrev_ptr += 1;
15117
15118 /* now read in declarations */
15119 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15120 abbrev_ptr += bytes_read;
15121 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15122 abbrev_ptr += bytes_read;
15123 while (abbrev_name)
15124 {
15125 if (cur_abbrev->num_attrs == allocated_attrs)
15126 {
15127 allocated_attrs += ATTR_ALLOC_CHUNK;
15128 cur_attrs
15129 = xrealloc (cur_attrs, (allocated_attrs
15130 * sizeof (struct attr_abbrev)));
15131 }
15132
15133 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
15134 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
15135 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15136 abbrev_ptr += bytes_read;
15137 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15138 abbrev_ptr += bytes_read;
15139 }
15140
15141 cur_abbrev->attrs = obstack_alloc (&abbrev_table->abbrev_obstack,
15142 (cur_abbrev->num_attrs
15143 * sizeof (struct attr_abbrev)));
15144 memcpy (cur_abbrev->attrs, cur_attrs,
15145 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
15146
15147 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
15148
15149 /* Get next abbreviation.
15150 Under Irix6 the abbreviations for a compilation unit are not
15151 always properly terminated with an abbrev number of 0.
15152 Exit loop if we encounter an abbreviation which we have
15153 already read (which means we are about to read the abbreviations
15154 for the next compile unit) or if the end of the abbreviation
15155 table is reached. */
15156 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
15157 break;
15158 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15159 abbrev_ptr += bytes_read;
15160 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
15161 break;
15162 }
15163
15164 xfree (cur_attrs);
15165 return abbrev_table;
15166 }
15167
15168 /* Free the resources held by ABBREV_TABLE. */
15169
15170 static void
15171 abbrev_table_free (struct abbrev_table *abbrev_table)
15172 {
15173 obstack_free (&abbrev_table->abbrev_obstack, NULL);
15174 xfree (abbrev_table);
15175 }
15176
15177 /* Same as abbrev_table_free but as a cleanup.
15178 We pass in a pointer to the pointer to the table so that we can
15179 set the pointer to NULL when we're done. It also simplifies
15180 build_type_psymtabs_1. */
15181
15182 static void
15183 abbrev_table_free_cleanup (void *table_ptr)
15184 {
15185 struct abbrev_table **abbrev_table_ptr = table_ptr;
15186
15187 if (*abbrev_table_ptr != NULL)
15188 abbrev_table_free (*abbrev_table_ptr);
15189 *abbrev_table_ptr = NULL;
15190 }
15191
15192 /* Read the abbrev table for CU from ABBREV_SECTION. */
15193
15194 static void
15195 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
15196 struct dwarf2_section_info *abbrev_section)
15197 {
15198 cu->abbrev_table =
15199 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
15200 }
15201
15202 /* Release the memory used by the abbrev table for a compilation unit. */
15203
15204 static void
15205 dwarf2_free_abbrev_table (void *ptr_to_cu)
15206 {
15207 struct dwarf2_cu *cu = ptr_to_cu;
15208
15209 if (cu->abbrev_table != NULL)
15210 abbrev_table_free (cu->abbrev_table);
15211 /* Set this to NULL so that we SEGV if we try to read it later,
15212 and also because free_comp_unit verifies this is NULL. */
15213 cu->abbrev_table = NULL;
15214 }
15215 \f
15216 /* Returns nonzero if TAG represents a type that we might generate a partial
15217 symbol for. */
15218
15219 static int
15220 is_type_tag_for_partial (int tag)
15221 {
15222 switch (tag)
15223 {
15224 #if 0
15225 /* Some types that would be reasonable to generate partial symbols for,
15226 that we don't at present. */
15227 case DW_TAG_array_type:
15228 case DW_TAG_file_type:
15229 case DW_TAG_ptr_to_member_type:
15230 case DW_TAG_set_type:
15231 case DW_TAG_string_type:
15232 case DW_TAG_subroutine_type:
15233 #endif
15234 case DW_TAG_base_type:
15235 case DW_TAG_class_type:
15236 case DW_TAG_interface_type:
15237 case DW_TAG_enumeration_type:
15238 case DW_TAG_structure_type:
15239 case DW_TAG_subrange_type:
15240 case DW_TAG_typedef:
15241 case DW_TAG_union_type:
15242 return 1;
15243 default:
15244 return 0;
15245 }
15246 }
15247
15248 /* Load all DIEs that are interesting for partial symbols into memory. */
15249
15250 static struct partial_die_info *
15251 load_partial_dies (const struct die_reader_specs *reader,
15252 const gdb_byte *info_ptr, int building_psymtab)
15253 {
15254 struct dwarf2_cu *cu = reader->cu;
15255 struct objfile *objfile = cu->objfile;
15256 struct partial_die_info *part_die;
15257 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
15258 struct abbrev_info *abbrev;
15259 unsigned int bytes_read;
15260 unsigned int load_all = 0;
15261 int nesting_level = 1;
15262
15263 parent_die = NULL;
15264 last_die = NULL;
15265
15266 gdb_assert (cu->per_cu != NULL);
15267 if (cu->per_cu->load_all_dies)
15268 load_all = 1;
15269
15270 cu->partial_dies
15271 = htab_create_alloc_ex (cu->header.length / 12,
15272 partial_die_hash,
15273 partial_die_eq,
15274 NULL,
15275 &cu->comp_unit_obstack,
15276 hashtab_obstack_allocate,
15277 dummy_obstack_deallocate);
15278
15279 part_die = obstack_alloc (&cu->comp_unit_obstack,
15280 sizeof (struct partial_die_info));
15281
15282 while (1)
15283 {
15284 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
15285
15286 /* A NULL abbrev means the end of a series of children. */
15287 if (abbrev == NULL)
15288 {
15289 if (--nesting_level == 0)
15290 {
15291 /* PART_DIE was probably the last thing allocated on the
15292 comp_unit_obstack, so we could call obstack_free
15293 here. We don't do that because the waste is small,
15294 and will be cleaned up when we're done with this
15295 compilation unit. This way, we're also more robust
15296 against other users of the comp_unit_obstack. */
15297 return first_die;
15298 }
15299 info_ptr += bytes_read;
15300 last_die = parent_die;
15301 parent_die = parent_die->die_parent;
15302 continue;
15303 }
15304
15305 /* Check for template arguments. We never save these; if
15306 they're seen, we just mark the parent, and go on our way. */
15307 if (parent_die != NULL
15308 && cu->language == language_cplus
15309 && (abbrev->tag == DW_TAG_template_type_param
15310 || abbrev->tag == DW_TAG_template_value_param))
15311 {
15312 parent_die->has_template_arguments = 1;
15313
15314 if (!load_all)
15315 {
15316 /* We don't need a partial DIE for the template argument. */
15317 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15318 continue;
15319 }
15320 }
15321
15322 /* We only recurse into c++ subprograms looking for template arguments.
15323 Skip their other children. */
15324 if (!load_all
15325 && cu->language == language_cplus
15326 && parent_die != NULL
15327 && parent_die->tag == DW_TAG_subprogram)
15328 {
15329 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15330 continue;
15331 }
15332
15333 /* Check whether this DIE is interesting enough to save. Normally
15334 we would not be interested in members here, but there may be
15335 later variables referencing them via DW_AT_specification (for
15336 static members). */
15337 if (!load_all
15338 && !is_type_tag_for_partial (abbrev->tag)
15339 && abbrev->tag != DW_TAG_constant
15340 && abbrev->tag != DW_TAG_enumerator
15341 && abbrev->tag != DW_TAG_subprogram
15342 && abbrev->tag != DW_TAG_lexical_block
15343 && abbrev->tag != DW_TAG_variable
15344 && abbrev->tag != DW_TAG_namespace
15345 && abbrev->tag != DW_TAG_module
15346 && abbrev->tag != DW_TAG_member
15347 && abbrev->tag != DW_TAG_imported_unit
15348 && abbrev->tag != DW_TAG_imported_declaration)
15349 {
15350 /* Otherwise we skip to the next sibling, if any. */
15351 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15352 continue;
15353 }
15354
15355 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
15356 info_ptr);
15357
15358 /* This two-pass algorithm for processing partial symbols has a
15359 high cost in cache pressure. Thus, handle some simple cases
15360 here which cover the majority of C partial symbols. DIEs
15361 which neither have specification tags in them, nor could have
15362 specification tags elsewhere pointing at them, can simply be
15363 processed and discarded.
15364
15365 This segment is also optional; scan_partial_symbols and
15366 add_partial_symbol will handle these DIEs if we chain
15367 them in normally. When compilers which do not emit large
15368 quantities of duplicate debug information are more common,
15369 this code can probably be removed. */
15370
15371 /* Any complete simple types at the top level (pretty much all
15372 of them, for a language without namespaces), can be processed
15373 directly. */
15374 if (parent_die == NULL
15375 && part_die->has_specification == 0
15376 && part_die->is_declaration == 0
15377 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
15378 || part_die->tag == DW_TAG_base_type
15379 || part_die->tag == DW_TAG_subrange_type))
15380 {
15381 if (building_psymtab && part_die->name != NULL)
15382 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15383 VAR_DOMAIN, LOC_TYPEDEF,
15384 &objfile->static_psymbols,
15385 0, (CORE_ADDR) 0, cu->language, objfile);
15386 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15387 continue;
15388 }
15389
15390 /* The exception for DW_TAG_typedef with has_children above is
15391 a workaround of GCC PR debug/47510. In the case of this complaint
15392 type_name_no_tag_or_error will error on such types later.
15393
15394 GDB skipped children of DW_TAG_typedef by the shortcut above and then
15395 it could not find the child DIEs referenced later, this is checked
15396 above. In correct DWARF DW_TAG_typedef should have no children. */
15397
15398 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
15399 complaint (&symfile_complaints,
15400 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
15401 "- DIE at 0x%x [in module %s]"),
15402 part_die->offset.sect_off, objfile_name (objfile));
15403
15404 /* If we're at the second level, and we're an enumerator, and
15405 our parent has no specification (meaning possibly lives in a
15406 namespace elsewhere), then we can add the partial symbol now
15407 instead of queueing it. */
15408 if (part_die->tag == DW_TAG_enumerator
15409 && parent_die != NULL
15410 && parent_die->die_parent == NULL
15411 && parent_die->tag == DW_TAG_enumeration_type
15412 && parent_die->has_specification == 0)
15413 {
15414 if (part_die->name == NULL)
15415 complaint (&symfile_complaints,
15416 _("malformed enumerator DIE ignored"));
15417 else if (building_psymtab)
15418 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15419 VAR_DOMAIN, LOC_CONST,
15420 (cu->language == language_cplus
15421 || cu->language == language_java)
15422 ? &objfile->global_psymbols
15423 : &objfile->static_psymbols,
15424 0, (CORE_ADDR) 0, cu->language, objfile);
15425
15426 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15427 continue;
15428 }
15429
15430 /* We'll save this DIE so link it in. */
15431 part_die->die_parent = parent_die;
15432 part_die->die_sibling = NULL;
15433 part_die->die_child = NULL;
15434
15435 if (last_die && last_die == parent_die)
15436 last_die->die_child = part_die;
15437 else if (last_die)
15438 last_die->die_sibling = part_die;
15439
15440 last_die = part_die;
15441
15442 if (first_die == NULL)
15443 first_die = part_die;
15444
15445 /* Maybe add the DIE to the hash table. Not all DIEs that we
15446 find interesting need to be in the hash table, because we
15447 also have the parent/sibling/child chains; only those that we
15448 might refer to by offset later during partial symbol reading.
15449
15450 For now this means things that might have be the target of a
15451 DW_AT_specification, DW_AT_abstract_origin, or
15452 DW_AT_extension. DW_AT_extension will refer only to
15453 namespaces; DW_AT_abstract_origin refers to functions (and
15454 many things under the function DIE, but we do not recurse
15455 into function DIEs during partial symbol reading) and
15456 possibly variables as well; DW_AT_specification refers to
15457 declarations. Declarations ought to have the DW_AT_declaration
15458 flag. It happens that GCC forgets to put it in sometimes, but
15459 only for functions, not for types.
15460
15461 Adding more things than necessary to the hash table is harmless
15462 except for the performance cost. Adding too few will result in
15463 wasted time in find_partial_die, when we reread the compilation
15464 unit with load_all_dies set. */
15465
15466 if (load_all
15467 || abbrev->tag == DW_TAG_constant
15468 || abbrev->tag == DW_TAG_subprogram
15469 || abbrev->tag == DW_TAG_variable
15470 || abbrev->tag == DW_TAG_namespace
15471 || part_die->is_declaration)
15472 {
15473 void **slot;
15474
15475 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
15476 part_die->offset.sect_off, INSERT);
15477 *slot = part_die;
15478 }
15479
15480 part_die = obstack_alloc (&cu->comp_unit_obstack,
15481 sizeof (struct partial_die_info));
15482
15483 /* For some DIEs we want to follow their children (if any). For C
15484 we have no reason to follow the children of structures; for other
15485 languages we have to, so that we can get at method physnames
15486 to infer fully qualified class names, for DW_AT_specification,
15487 and for C++ template arguments. For C++, we also look one level
15488 inside functions to find template arguments (if the name of the
15489 function does not already contain the template arguments).
15490
15491 For Ada, we need to scan the children of subprograms and lexical
15492 blocks as well because Ada allows the definition of nested
15493 entities that could be interesting for the debugger, such as
15494 nested subprograms for instance. */
15495 if (last_die->has_children
15496 && (load_all
15497 || last_die->tag == DW_TAG_namespace
15498 || last_die->tag == DW_TAG_module
15499 || last_die->tag == DW_TAG_enumeration_type
15500 || (cu->language == language_cplus
15501 && last_die->tag == DW_TAG_subprogram
15502 && (last_die->name == NULL
15503 || strchr (last_die->name, '<') == NULL))
15504 || (cu->language != language_c
15505 && (last_die->tag == DW_TAG_class_type
15506 || last_die->tag == DW_TAG_interface_type
15507 || last_die->tag == DW_TAG_structure_type
15508 || last_die->tag == DW_TAG_union_type))
15509 || (cu->language == language_ada
15510 && (last_die->tag == DW_TAG_subprogram
15511 || last_die->tag == DW_TAG_lexical_block))))
15512 {
15513 nesting_level++;
15514 parent_die = last_die;
15515 continue;
15516 }
15517
15518 /* Otherwise we skip to the next sibling, if any. */
15519 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
15520
15521 /* Back to the top, do it again. */
15522 }
15523 }
15524
15525 /* Read a minimal amount of information into the minimal die structure. */
15526
15527 static const gdb_byte *
15528 read_partial_die (const struct die_reader_specs *reader,
15529 struct partial_die_info *part_die,
15530 struct abbrev_info *abbrev, unsigned int abbrev_len,
15531 const gdb_byte *info_ptr)
15532 {
15533 struct dwarf2_cu *cu = reader->cu;
15534 struct objfile *objfile = cu->objfile;
15535 const gdb_byte *buffer = reader->buffer;
15536 unsigned int i;
15537 struct attribute attr;
15538 int has_low_pc_attr = 0;
15539 int has_high_pc_attr = 0;
15540 int high_pc_relative = 0;
15541
15542 memset (part_die, 0, sizeof (struct partial_die_info));
15543
15544 part_die->offset.sect_off = info_ptr - buffer;
15545
15546 info_ptr += abbrev_len;
15547
15548 if (abbrev == NULL)
15549 return info_ptr;
15550
15551 part_die->tag = abbrev->tag;
15552 part_die->has_children = abbrev->has_children;
15553
15554 for (i = 0; i < abbrev->num_attrs; ++i)
15555 {
15556 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
15557
15558 /* Store the data if it is of an attribute we want to keep in a
15559 partial symbol table. */
15560 switch (attr.name)
15561 {
15562 case DW_AT_name:
15563 switch (part_die->tag)
15564 {
15565 case DW_TAG_compile_unit:
15566 case DW_TAG_partial_unit:
15567 case DW_TAG_type_unit:
15568 /* Compilation units have a DW_AT_name that is a filename, not
15569 a source language identifier. */
15570 case DW_TAG_enumeration_type:
15571 case DW_TAG_enumerator:
15572 /* These tags always have simple identifiers already; no need
15573 to canonicalize them. */
15574 part_die->name = DW_STRING (&attr);
15575 break;
15576 default:
15577 part_die->name
15578 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
15579 &objfile->per_bfd->storage_obstack);
15580 break;
15581 }
15582 break;
15583 case DW_AT_linkage_name:
15584 case DW_AT_MIPS_linkage_name:
15585 /* Note that both forms of linkage name might appear. We
15586 assume they will be the same, and we only store the last
15587 one we see. */
15588 if (cu->language == language_ada)
15589 part_die->name = DW_STRING (&attr);
15590 part_die->linkage_name = DW_STRING (&attr);
15591 break;
15592 case DW_AT_low_pc:
15593 has_low_pc_attr = 1;
15594 part_die->lowpc = attr_value_as_address (&attr);
15595 break;
15596 case DW_AT_high_pc:
15597 has_high_pc_attr = 1;
15598 part_die->highpc = attr_value_as_address (&attr);
15599 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
15600 high_pc_relative = 1;
15601 break;
15602 case DW_AT_location:
15603 /* Support the .debug_loc offsets. */
15604 if (attr_form_is_block (&attr))
15605 {
15606 part_die->d.locdesc = DW_BLOCK (&attr);
15607 }
15608 else if (attr_form_is_section_offset (&attr))
15609 {
15610 dwarf2_complex_location_expr_complaint ();
15611 }
15612 else
15613 {
15614 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15615 "partial symbol information");
15616 }
15617 break;
15618 case DW_AT_external:
15619 part_die->is_external = DW_UNSND (&attr);
15620 break;
15621 case DW_AT_declaration:
15622 part_die->is_declaration = DW_UNSND (&attr);
15623 break;
15624 case DW_AT_type:
15625 part_die->has_type = 1;
15626 break;
15627 case DW_AT_abstract_origin:
15628 case DW_AT_specification:
15629 case DW_AT_extension:
15630 part_die->has_specification = 1;
15631 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
15632 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15633 || cu->per_cu->is_dwz);
15634 break;
15635 case DW_AT_sibling:
15636 /* Ignore absolute siblings, they might point outside of
15637 the current compile unit. */
15638 if (attr.form == DW_FORM_ref_addr)
15639 complaint (&symfile_complaints,
15640 _("ignoring absolute DW_AT_sibling"));
15641 else
15642 {
15643 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
15644 const gdb_byte *sibling_ptr = buffer + off;
15645
15646 if (sibling_ptr < info_ptr)
15647 complaint (&symfile_complaints,
15648 _("DW_AT_sibling points backwards"));
15649 else if (sibling_ptr > reader->buffer_end)
15650 dwarf2_section_buffer_overflow_complaint (reader->die_section);
15651 else
15652 part_die->sibling = sibling_ptr;
15653 }
15654 break;
15655 case DW_AT_byte_size:
15656 part_die->has_byte_size = 1;
15657 break;
15658 case DW_AT_calling_convention:
15659 /* DWARF doesn't provide a way to identify a program's source-level
15660 entry point. DW_AT_calling_convention attributes are only meant
15661 to describe functions' calling conventions.
15662
15663 However, because it's a necessary piece of information in
15664 Fortran, and because DW_CC_program is the only piece of debugging
15665 information whose definition refers to a 'main program' at all,
15666 several compilers have begun marking Fortran main programs with
15667 DW_CC_program --- even when those functions use the standard
15668 calling conventions.
15669
15670 So until DWARF specifies a way to provide this information and
15671 compilers pick up the new representation, we'll support this
15672 practice. */
15673 if (DW_UNSND (&attr) == DW_CC_program
15674 && cu->language == language_fortran)
15675 set_objfile_main_name (objfile, part_die->name, language_fortran);
15676 break;
15677 case DW_AT_inline:
15678 if (DW_UNSND (&attr) == DW_INL_inlined
15679 || DW_UNSND (&attr) == DW_INL_declared_inlined)
15680 part_die->may_be_inlined = 1;
15681 break;
15682
15683 case DW_AT_import:
15684 if (part_die->tag == DW_TAG_imported_unit)
15685 {
15686 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
15687 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15688 || cu->per_cu->is_dwz);
15689 }
15690 break;
15691
15692 default:
15693 break;
15694 }
15695 }
15696
15697 if (high_pc_relative)
15698 part_die->highpc += part_die->lowpc;
15699
15700 if (has_low_pc_attr && has_high_pc_attr)
15701 {
15702 /* When using the GNU linker, .gnu.linkonce. sections are used to
15703 eliminate duplicate copies of functions and vtables and such.
15704 The linker will arbitrarily choose one and discard the others.
15705 The AT_*_pc values for such functions refer to local labels in
15706 these sections. If the section from that file was discarded, the
15707 labels are not in the output, so the relocs get a value of 0.
15708 If this is a discarded function, mark the pc bounds as invalid,
15709 so that GDB will ignore it. */
15710 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
15711 {
15712 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15713
15714 complaint (&symfile_complaints,
15715 _("DW_AT_low_pc %s is zero "
15716 "for DIE at 0x%x [in module %s]"),
15717 paddress (gdbarch, part_die->lowpc),
15718 part_die->offset.sect_off, objfile_name (objfile));
15719 }
15720 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
15721 else if (part_die->lowpc >= part_die->highpc)
15722 {
15723 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15724
15725 complaint (&symfile_complaints,
15726 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
15727 "for DIE at 0x%x [in module %s]"),
15728 paddress (gdbarch, part_die->lowpc),
15729 paddress (gdbarch, part_die->highpc),
15730 part_die->offset.sect_off, objfile_name (objfile));
15731 }
15732 else
15733 part_die->has_pc_info = 1;
15734 }
15735
15736 return info_ptr;
15737 }
15738
15739 /* Find a cached partial DIE at OFFSET in CU. */
15740
15741 static struct partial_die_info *
15742 find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
15743 {
15744 struct partial_die_info *lookup_die = NULL;
15745 struct partial_die_info part_die;
15746
15747 part_die.offset = offset;
15748 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
15749 offset.sect_off);
15750
15751 return lookup_die;
15752 }
15753
15754 /* Find a partial DIE at OFFSET, which may or may not be in CU,
15755 except in the case of .debug_types DIEs which do not reference
15756 outside their CU (they do however referencing other types via
15757 DW_FORM_ref_sig8). */
15758
15759 static struct partial_die_info *
15760 find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
15761 {
15762 struct objfile *objfile = cu->objfile;
15763 struct dwarf2_per_cu_data *per_cu = NULL;
15764 struct partial_die_info *pd = NULL;
15765
15766 if (offset_in_dwz == cu->per_cu->is_dwz
15767 && offset_in_cu_p (&cu->header, offset))
15768 {
15769 pd = find_partial_die_in_comp_unit (offset, cu);
15770 if (pd != NULL)
15771 return pd;
15772 /* We missed recording what we needed.
15773 Load all dies and try again. */
15774 per_cu = cu->per_cu;
15775 }
15776 else
15777 {
15778 /* TUs don't reference other CUs/TUs (except via type signatures). */
15779 if (cu->per_cu->is_debug_types)
15780 {
15781 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
15782 " external reference to offset 0x%lx [in module %s].\n"),
15783 (long) cu->header.offset.sect_off, (long) offset.sect_off,
15784 bfd_get_filename (objfile->obfd));
15785 }
15786 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
15787 objfile);
15788
15789 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
15790 load_partial_comp_unit (per_cu);
15791
15792 per_cu->cu->last_used = 0;
15793 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
15794 }
15795
15796 /* If we didn't find it, and not all dies have been loaded,
15797 load them all and try again. */
15798
15799 if (pd == NULL && per_cu->load_all_dies == 0)
15800 {
15801 per_cu->load_all_dies = 1;
15802
15803 /* This is nasty. When we reread the DIEs, somewhere up the call chain
15804 THIS_CU->cu may already be in use. So we can't just free it and
15805 replace its DIEs with the ones we read in. Instead, we leave those
15806 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
15807 and clobber THIS_CU->cu->partial_dies with the hash table for the new
15808 set. */
15809 load_partial_comp_unit (per_cu);
15810
15811 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
15812 }
15813
15814 if (pd == NULL)
15815 internal_error (__FILE__, __LINE__,
15816 _("could not find partial DIE 0x%x "
15817 "in cache [from module %s]\n"),
15818 offset.sect_off, bfd_get_filename (objfile->obfd));
15819 return pd;
15820 }
15821
15822 /* See if we can figure out if the class lives in a namespace. We do
15823 this by looking for a member function; its demangled name will
15824 contain namespace info, if there is any. */
15825
15826 static void
15827 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
15828 struct dwarf2_cu *cu)
15829 {
15830 /* NOTE: carlton/2003-10-07: Getting the info this way changes
15831 what template types look like, because the demangler
15832 frequently doesn't give the same name as the debug info. We
15833 could fix this by only using the demangled name to get the
15834 prefix (but see comment in read_structure_type). */
15835
15836 struct partial_die_info *real_pdi;
15837 struct partial_die_info *child_pdi;
15838
15839 /* If this DIE (this DIE's specification, if any) has a parent, then
15840 we should not do this. We'll prepend the parent's fully qualified
15841 name when we create the partial symbol. */
15842
15843 real_pdi = struct_pdi;
15844 while (real_pdi->has_specification)
15845 real_pdi = find_partial_die (real_pdi->spec_offset,
15846 real_pdi->spec_is_dwz, cu);
15847
15848 if (real_pdi->die_parent != NULL)
15849 return;
15850
15851 for (child_pdi = struct_pdi->die_child;
15852 child_pdi != NULL;
15853 child_pdi = child_pdi->die_sibling)
15854 {
15855 if (child_pdi->tag == DW_TAG_subprogram
15856 && child_pdi->linkage_name != NULL)
15857 {
15858 char *actual_class_name
15859 = language_class_name_from_physname (cu->language_defn,
15860 child_pdi->linkage_name);
15861 if (actual_class_name != NULL)
15862 {
15863 struct_pdi->name
15864 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
15865 actual_class_name,
15866 strlen (actual_class_name));
15867 xfree (actual_class_name);
15868 }
15869 break;
15870 }
15871 }
15872 }
15873
15874 /* Adjust PART_DIE before generating a symbol for it. This function
15875 may set the is_external flag or change the DIE's name. */
15876
15877 static void
15878 fixup_partial_die (struct partial_die_info *part_die,
15879 struct dwarf2_cu *cu)
15880 {
15881 /* Once we've fixed up a die, there's no point in doing so again.
15882 This also avoids a memory leak if we were to call
15883 guess_partial_die_structure_name multiple times. */
15884 if (part_die->fixup_called)
15885 return;
15886
15887 /* If we found a reference attribute and the DIE has no name, try
15888 to find a name in the referred to DIE. */
15889
15890 if (part_die->name == NULL && part_die->has_specification)
15891 {
15892 struct partial_die_info *spec_die;
15893
15894 spec_die = find_partial_die (part_die->spec_offset,
15895 part_die->spec_is_dwz, cu);
15896
15897 fixup_partial_die (spec_die, cu);
15898
15899 if (spec_die->name)
15900 {
15901 part_die->name = spec_die->name;
15902
15903 /* Copy DW_AT_external attribute if it is set. */
15904 if (spec_die->is_external)
15905 part_die->is_external = spec_die->is_external;
15906 }
15907 }
15908
15909 /* Set default names for some unnamed DIEs. */
15910
15911 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
15912 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
15913
15914 /* If there is no parent die to provide a namespace, and there are
15915 children, see if we can determine the namespace from their linkage
15916 name. */
15917 if (cu->language == language_cplus
15918 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
15919 && part_die->die_parent == NULL
15920 && part_die->has_children
15921 && (part_die->tag == DW_TAG_class_type
15922 || part_die->tag == DW_TAG_structure_type
15923 || part_die->tag == DW_TAG_union_type))
15924 guess_partial_die_structure_name (part_die, cu);
15925
15926 /* GCC might emit a nameless struct or union that has a linkage
15927 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
15928 if (part_die->name == NULL
15929 && (part_die->tag == DW_TAG_class_type
15930 || part_die->tag == DW_TAG_interface_type
15931 || part_die->tag == DW_TAG_structure_type
15932 || part_die->tag == DW_TAG_union_type)
15933 && part_die->linkage_name != NULL)
15934 {
15935 char *demangled;
15936
15937 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
15938 if (demangled)
15939 {
15940 const char *base;
15941
15942 /* Strip any leading namespaces/classes, keep only the base name.
15943 DW_AT_name for named DIEs does not contain the prefixes. */
15944 base = strrchr (demangled, ':');
15945 if (base && base > demangled && base[-1] == ':')
15946 base++;
15947 else
15948 base = demangled;
15949
15950 part_die->name
15951 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
15952 base, strlen (base));
15953 xfree (demangled);
15954 }
15955 }
15956
15957 part_die->fixup_called = 1;
15958 }
15959
15960 /* Read an attribute value described by an attribute form. */
15961
15962 static const gdb_byte *
15963 read_attribute_value (const struct die_reader_specs *reader,
15964 struct attribute *attr, unsigned form,
15965 const gdb_byte *info_ptr)
15966 {
15967 struct dwarf2_cu *cu = reader->cu;
15968 struct objfile *objfile = cu->objfile;
15969 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15970 bfd *abfd = reader->abfd;
15971 struct comp_unit_head *cu_header = &cu->header;
15972 unsigned int bytes_read;
15973 struct dwarf_block *blk;
15974
15975 attr->form = form;
15976 switch (form)
15977 {
15978 case DW_FORM_ref_addr:
15979 if (cu->header.version == 2)
15980 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
15981 else
15982 DW_UNSND (attr) = read_offset (abfd, info_ptr,
15983 &cu->header, &bytes_read);
15984 info_ptr += bytes_read;
15985 break;
15986 case DW_FORM_GNU_ref_alt:
15987 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
15988 info_ptr += bytes_read;
15989 break;
15990 case DW_FORM_addr:
15991 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
15992 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
15993 info_ptr += bytes_read;
15994 break;
15995 case DW_FORM_block2:
15996 blk = dwarf_alloc_block (cu);
15997 blk->size = read_2_bytes (abfd, info_ptr);
15998 info_ptr += 2;
15999 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16000 info_ptr += blk->size;
16001 DW_BLOCK (attr) = blk;
16002 break;
16003 case DW_FORM_block4:
16004 blk = dwarf_alloc_block (cu);
16005 blk->size = read_4_bytes (abfd, info_ptr);
16006 info_ptr += 4;
16007 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16008 info_ptr += blk->size;
16009 DW_BLOCK (attr) = blk;
16010 break;
16011 case DW_FORM_data2:
16012 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
16013 info_ptr += 2;
16014 break;
16015 case DW_FORM_data4:
16016 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
16017 info_ptr += 4;
16018 break;
16019 case DW_FORM_data8:
16020 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
16021 info_ptr += 8;
16022 break;
16023 case DW_FORM_sec_offset:
16024 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16025 info_ptr += bytes_read;
16026 break;
16027 case DW_FORM_string:
16028 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
16029 DW_STRING_IS_CANONICAL (attr) = 0;
16030 info_ptr += bytes_read;
16031 break;
16032 case DW_FORM_strp:
16033 if (!cu->per_cu->is_dwz)
16034 {
16035 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
16036 &bytes_read);
16037 DW_STRING_IS_CANONICAL (attr) = 0;
16038 info_ptr += bytes_read;
16039 break;
16040 }
16041 /* FALLTHROUGH */
16042 case DW_FORM_GNU_strp_alt:
16043 {
16044 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16045 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
16046 &bytes_read);
16047
16048 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
16049 DW_STRING_IS_CANONICAL (attr) = 0;
16050 info_ptr += bytes_read;
16051 }
16052 break;
16053 case DW_FORM_exprloc:
16054 case DW_FORM_block:
16055 blk = dwarf_alloc_block (cu);
16056 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16057 info_ptr += bytes_read;
16058 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16059 info_ptr += blk->size;
16060 DW_BLOCK (attr) = blk;
16061 break;
16062 case DW_FORM_block1:
16063 blk = dwarf_alloc_block (cu);
16064 blk->size = read_1_byte (abfd, info_ptr);
16065 info_ptr += 1;
16066 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16067 info_ptr += blk->size;
16068 DW_BLOCK (attr) = blk;
16069 break;
16070 case DW_FORM_data1:
16071 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16072 info_ptr += 1;
16073 break;
16074 case DW_FORM_flag:
16075 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16076 info_ptr += 1;
16077 break;
16078 case DW_FORM_flag_present:
16079 DW_UNSND (attr) = 1;
16080 break;
16081 case DW_FORM_sdata:
16082 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16083 info_ptr += bytes_read;
16084 break;
16085 case DW_FORM_udata:
16086 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16087 info_ptr += bytes_read;
16088 break;
16089 case DW_FORM_ref1:
16090 DW_UNSND (attr) = (cu->header.offset.sect_off
16091 + read_1_byte (abfd, info_ptr));
16092 info_ptr += 1;
16093 break;
16094 case DW_FORM_ref2:
16095 DW_UNSND (attr) = (cu->header.offset.sect_off
16096 + read_2_bytes (abfd, info_ptr));
16097 info_ptr += 2;
16098 break;
16099 case DW_FORM_ref4:
16100 DW_UNSND (attr) = (cu->header.offset.sect_off
16101 + read_4_bytes (abfd, info_ptr));
16102 info_ptr += 4;
16103 break;
16104 case DW_FORM_ref8:
16105 DW_UNSND (attr) = (cu->header.offset.sect_off
16106 + read_8_bytes (abfd, info_ptr));
16107 info_ptr += 8;
16108 break;
16109 case DW_FORM_ref_sig8:
16110 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
16111 info_ptr += 8;
16112 break;
16113 case DW_FORM_ref_udata:
16114 DW_UNSND (attr) = (cu->header.offset.sect_off
16115 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
16116 info_ptr += bytes_read;
16117 break;
16118 case DW_FORM_indirect:
16119 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16120 info_ptr += bytes_read;
16121 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
16122 break;
16123 case DW_FORM_GNU_addr_index:
16124 if (reader->dwo_file == NULL)
16125 {
16126 /* For now flag a hard error.
16127 Later we can turn this into a complaint. */
16128 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16129 dwarf_form_name (form),
16130 bfd_get_filename (abfd));
16131 }
16132 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
16133 info_ptr += bytes_read;
16134 break;
16135 case DW_FORM_GNU_str_index:
16136 if (reader->dwo_file == NULL)
16137 {
16138 /* For now flag a hard error.
16139 Later we can turn this into a complaint if warranted. */
16140 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16141 dwarf_form_name (form),
16142 bfd_get_filename (abfd));
16143 }
16144 {
16145 ULONGEST str_index =
16146 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16147
16148 DW_STRING (attr) = read_str_index (reader, str_index);
16149 DW_STRING_IS_CANONICAL (attr) = 0;
16150 info_ptr += bytes_read;
16151 }
16152 break;
16153 default:
16154 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
16155 dwarf_form_name (form),
16156 bfd_get_filename (abfd));
16157 }
16158
16159 /* Super hack. */
16160 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
16161 attr->form = DW_FORM_GNU_ref_alt;
16162
16163 /* We have seen instances where the compiler tried to emit a byte
16164 size attribute of -1 which ended up being encoded as an unsigned
16165 0xffffffff. Although 0xffffffff is technically a valid size value,
16166 an object of this size seems pretty unlikely so we can relatively
16167 safely treat these cases as if the size attribute was invalid and
16168 treat them as zero by default. */
16169 if (attr->name == DW_AT_byte_size
16170 && form == DW_FORM_data4
16171 && DW_UNSND (attr) >= 0xffffffff)
16172 {
16173 complaint
16174 (&symfile_complaints,
16175 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
16176 hex_string (DW_UNSND (attr)));
16177 DW_UNSND (attr) = 0;
16178 }
16179
16180 return info_ptr;
16181 }
16182
16183 /* Read an attribute described by an abbreviated attribute. */
16184
16185 static const gdb_byte *
16186 read_attribute (const struct die_reader_specs *reader,
16187 struct attribute *attr, struct attr_abbrev *abbrev,
16188 const gdb_byte *info_ptr)
16189 {
16190 attr->name = abbrev->name;
16191 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
16192 }
16193
16194 /* Read dwarf information from a buffer. */
16195
16196 static unsigned int
16197 read_1_byte (bfd *abfd, const gdb_byte *buf)
16198 {
16199 return bfd_get_8 (abfd, buf);
16200 }
16201
16202 static int
16203 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
16204 {
16205 return bfd_get_signed_8 (abfd, buf);
16206 }
16207
16208 static unsigned int
16209 read_2_bytes (bfd *abfd, const gdb_byte *buf)
16210 {
16211 return bfd_get_16 (abfd, buf);
16212 }
16213
16214 static int
16215 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
16216 {
16217 return bfd_get_signed_16 (abfd, buf);
16218 }
16219
16220 static unsigned int
16221 read_4_bytes (bfd *abfd, const gdb_byte *buf)
16222 {
16223 return bfd_get_32 (abfd, buf);
16224 }
16225
16226 static int
16227 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
16228 {
16229 return bfd_get_signed_32 (abfd, buf);
16230 }
16231
16232 static ULONGEST
16233 read_8_bytes (bfd *abfd, const gdb_byte *buf)
16234 {
16235 return bfd_get_64 (abfd, buf);
16236 }
16237
16238 static CORE_ADDR
16239 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
16240 unsigned int *bytes_read)
16241 {
16242 struct comp_unit_head *cu_header = &cu->header;
16243 CORE_ADDR retval = 0;
16244
16245 if (cu_header->signed_addr_p)
16246 {
16247 switch (cu_header->addr_size)
16248 {
16249 case 2:
16250 retval = bfd_get_signed_16 (abfd, buf);
16251 break;
16252 case 4:
16253 retval = bfd_get_signed_32 (abfd, buf);
16254 break;
16255 case 8:
16256 retval = bfd_get_signed_64 (abfd, buf);
16257 break;
16258 default:
16259 internal_error (__FILE__, __LINE__,
16260 _("read_address: bad switch, signed [in module %s]"),
16261 bfd_get_filename (abfd));
16262 }
16263 }
16264 else
16265 {
16266 switch (cu_header->addr_size)
16267 {
16268 case 2:
16269 retval = bfd_get_16 (abfd, buf);
16270 break;
16271 case 4:
16272 retval = bfd_get_32 (abfd, buf);
16273 break;
16274 case 8:
16275 retval = bfd_get_64 (abfd, buf);
16276 break;
16277 default:
16278 internal_error (__FILE__, __LINE__,
16279 _("read_address: bad switch, "
16280 "unsigned [in module %s]"),
16281 bfd_get_filename (abfd));
16282 }
16283 }
16284
16285 *bytes_read = cu_header->addr_size;
16286 return retval;
16287 }
16288
16289 /* Read the initial length from a section. The (draft) DWARF 3
16290 specification allows the initial length to take up either 4 bytes
16291 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
16292 bytes describe the length and all offsets will be 8 bytes in length
16293 instead of 4.
16294
16295 An older, non-standard 64-bit format is also handled by this
16296 function. The older format in question stores the initial length
16297 as an 8-byte quantity without an escape value. Lengths greater
16298 than 2^32 aren't very common which means that the initial 4 bytes
16299 is almost always zero. Since a length value of zero doesn't make
16300 sense for the 32-bit format, this initial zero can be considered to
16301 be an escape value which indicates the presence of the older 64-bit
16302 format. As written, the code can't detect (old format) lengths
16303 greater than 4GB. If it becomes necessary to handle lengths
16304 somewhat larger than 4GB, we could allow other small values (such
16305 as the non-sensical values of 1, 2, and 3) to also be used as
16306 escape values indicating the presence of the old format.
16307
16308 The value returned via bytes_read should be used to increment the
16309 relevant pointer after calling read_initial_length().
16310
16311 [ Note: read_initial_length() and read_offset() are based on the
16312 document entitled "DWARF Debugging Information Format", revision
16313 3, draft 8, dated November 19, 2001. This document was obtained
16314 from:
16315
16316 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
16317
16318 This document is only a draft and is subject to change. (So beware.)
16319
16320 Details regarding the older, non-standard 64-bit format were
16321 determined empirically by examining 64-bit ELF files produced by
16322 the SGI toolchain on an IRIX 6.5 machine.
16323
16324 - Kevin, July 16, 2002
16325 ] */
16326
16327 static LONGEST
16328 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
16329 {
16330 LONGEST length = bfd_get_32 (abfd, buf);
16331
16332 if (length == 0xffffffff)
16333 {
16334 length = bfd_get_64 (abfd, buf + 4);
16335 *bytes_read = 12;
16336 }
16337 else if (length == 0)
16338 {
16339 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
16340 length = bfd_get_64 (abfd, buf);
16341 *bytes_read = 8;
16342 }
16343 else
16344 {
16345 *bytes_read = 4;
16346 }
16347
16348 return length;
16349 }
16350
16351 /* Cover function for read_initial_length.
16352 Returns the length of the object at BUF, and stores the size of the
16353 initial length in *BYTES_READ and stores the size that offsets will be in
16354 *OFFSET_SIZE.
16355 If the initial length size is not equivalent to that specified in
16356 CU_HEADER then issue a complaint.
16357 This is useful when reading non-comp-unit headers. */
16358
16359 static LONGEST
16360 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
16361 const struct comp_unit_head *cu_header,
16362 unsigned int *bytes_read,
16363 unsigned int *offset_size)
16364 {
16365 LONGEST length = read_initial_length (abfd, buf, bytes_read);
16366
16367 gdb_assert (cu_header->initial_length_size == 4
16368 || cu_header->initial_length_size == 8
16369 || cu_header->initial_length_size == 12);
16370
16371 if (cu_header->initial_length_size != *bytes_read)
16372 complaint (&symfile_complaints,
16373 _("intermixed 32-bit and 64-bit DWARF sections"));
16374
16375 *offset_size = (*bytes_read == 4) ? 4 : 8;
16376 return length;
16377 }
16378
16379 /* Read an offset from the data stream. The size of the offset is
16380 given by cu_header->offset_size. */
16381
16382 static LONGEST
16383 read_offset (bfd *abfd, const gdb_byte *buf,
16384 const struct comp_unit_head *cu_header,
16385 unsigned int *bytes_read)
16386 {
16387 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
16388
16389 *bytes_read = cu_header->offset_size;
16390 return offset;
16391 }
16392
16393 /* Read an offset from the data stream. */
16394
16395 static LONGEST
16396 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
16397 {
16398 LONGEST retval = 0;
16399
16400 switch (offset_size)
16401 {
16402 case 4:
16403 retval = bfd_get_32 (abfd, buf);
16404 break;
16405 case 8:
16406 retval = bfd_get_64 (abfd, buf);
16407 break;
16408 default:
16409 internal_error (__FILE__, __LINE__,
16410 _("read_offset_1: bad switch [in module %s]"),
16411 bfd_get_filename (abfd));
16412 }
16413
16414 return retval;
16415 }
16416
16417 static const gdb_byte *
16418 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
16419 {
16420 /* If the size of a host char is 8 bits, we can return a pointer
16421 to the buffer, otherwise we have to copy the data to a buffer
16422 allocated on the temporary obstack. */
16423 gdb_assert (HOST_CHAR_BIT == 8);
16424 return buf;
16425 }
16426
16427 static const char *
16428 read_direct_string (bfd *abfd, const gdb_byte *buf,
16429 unsigned int *bytes_read_ptr)
16430 {
16431 /* If the size of a host char is 8 bits, we can return a pointer
16432 to the string, otherwise we have to copy the string to a buffer
16433 allocated on the temporary obstack. */
16434 gdb_assert (HOST_CHAR_BIT == 8);
16435 if (*buf == '\0')
16436 {
16437 *bytes_read_ptr = 1;
16438 return NULL;
16439 }
16440 *bytes_read_ptr = strlen ((const char *) buf) + 1;
16441 return (const char *) buf;
16442 }
16443
16444 static const char *
16445 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
16446 {
16447 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
16448 if (dwarf2_per_objfile->str.buffer == NULL)
16449 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
16450 bfd_get_filename (abfd));
16451 if (str_offset >= dwarf2_per_objfile->str.size)
16452 error (_("DW_FORM_strp pointing outside of "
16453 ".debug_str section [in module %s]"),
16454 bfd_get_filename (abfd));
16455 gdb_assert (HOST_CHAR_BIT == 8);
16456 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
16457 return NULL;
16458 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
16459 }
16460
16461 /* Read a string at offset STR_OFFSET in the .debug_str section from
16462 the .dwz file DWZ. Throw an error if the offset is too large. If
16463 the string consists of a single NUL byte, return NULL; otherwise
16464 return a pointer to the string. */
16465
16466 static const char *
16467 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
16468 {
16469 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
16470
16471 if (dwz->str.buffer == NULL)
16472 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
16473 "section [in module %s]"),
16474 bfd_get_filename (dwz->dwz_bfd));
16475 if (str_offset >= dwz->str.size)
16476 error (_("DW_FORM_GNU_strp_alt pointing outside of "
16477 ".debug_str section [in module %s]"),
16478 bfd_get_filename (dwz->dwz_bfd));
16479 gdb_assert (HOST_CHAR_BIT == 8);
16480 if (dwz->str.buffer[str_offset] == '\0')
16481 return NULL;
16482 return (const char *) (dwz->str.buffer + str_offset);
16483 }
16484
16485 static const char *
16486 read_indirect_string (bfd *abfd, const gdb_byte *buf,
16487 const struct comp_unit_head *cu_header,
16488 unsigned int *bytes_read_ptr)
16489 {
16490 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
16491
16492 return read_indirect_string_at_offset (abfd, str_offset);
16493 }
16494
16495 static ULONGEST
16496 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
16497 unsigned int *bytes_read_ptr)
16498 {
16499 ULONGEST result;
16500 unsigned int num_read;
16501 int i, shift;
16502 unsigned char byte;
16503
16504 result = 0;
16505 shift = 0;
16506 num_read = 0;
16507 i = 0;
16508 while (1)
16509 {
16510 byte = bfd_get_8 (abfd, buf);
16511 buf++;
16512 num_read++;
16513 result |= ((ULONGEST) (byte & 127) << shift);
16514 if ((byte & 128) == 0)
16515 {
16516 break;
16517 }
16518 shift += 7;
16519 }
16520 *bytes_read_ptr = num_read;
16521 return result;
16522 }
16523
16524 static LONGEST
16525 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
16526 unsigned int *bytes_read_ptr)
16527 {
16528 LONGEST result;
16529 int i, shift, num_read;
16530 unsigned char byte;
16531
16532 result = 0;
16533 shift = 0;
16534 num_read = 0;
16535 i = 0;
16536 while (1)
16537 {
16538 byte = bfd_get_8 (abfd, buf);
16539 buf++;
16540 num_read++;
16541 result |= ((LONGEST) (byte & 127) << shift);
16542 shift += 7;
16543 if ((byte & 128) == 0)
16544 {
16545 break;
16546 }
16547 }
16548 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
16549 result |= -(((LONGEST) 1) << shift);
16550 *bytes_read_ptr = num_read;
16551 return result;
16552 }
16553
16554 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
16555 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
16556 ADDR_SIZE is the size of addresses from the CU header. */
16557
16558 static CORE_ADDR
16559 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
16560 {
16561 struct objfile *objfile = dwarf2_per_objfile->objfile;
16562 bfd *abfd = objfile->obfd;
16563 const gdb_byte *info_ptr;
16564
16565 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
16566 if (dwarf2_per_objfile->addr.buffer == NULL)
16567 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
16568 objfile_name (objfile));
16569 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
16570 error (_("DW_FORM_addr_index pointing outside of "
16571 ".debug_addr section [in module %s]"),
16572 objfile_name (objfile));
16573 info_ptr = (dwarf2_per_objfile->addr.buffer
16574 + addr_base + addr_index * addr_size);
16575 if (addr_size == 4)
16576 return bfd_get_32 (abfd, info_ptr);
16577 else
16578 return bfd_get_64 (abfd, info_ptr);
16579 }
16580
16581 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
16582
16583 static CORE_ADDR
16584 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
16585 {
16586 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
16587 }
16588
16589 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
16590
16591 static CORE_ADDR
16592 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
16593 unsigned int *bytes_read)
16594 {
16595 bfd *abfd = cu->objfile->obfd;
16596 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
16597
16598 return read_addr_index (cu, addr_index);
16599 }
16600
16601 /* Data structure to pass results from dwarf2_read_addr_index_reader
16602 back to dwarf2_read_addr_index. */
16603
16604 struct dwarf2_read_addr_index_data
16605 {
16606 ULONGEST addr_base;
16607 int addr_size;
16608 };
16609
16610 /* die_reader_func for dwarf2_read_addr_index. */
16611
16612 static void
16613 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
16614 const gdb_byte *info_ptr,
16615 struct die_info *comp_unit_die,
16616 int has_children,
16617 void *data)
16618 {
16619 struct dwarf2_cu *cu = reader->cu;
16620 struct dwarf2_read_addr_index_data *aidata =
16621 (struct dwarf2_read_addr_index_data *) data;
16622
16623 aidata->addr_base = cu->addr_base;
16624 aidata->addr_size = cu->header.addr_size;
16625 }
16626
16627 /* Given an index in .debug_addr, fetch the value.
16628 NOTE: This can be called during dwarf expression evaluation,
16629 long after the debug information has been read, and thus per_cu->cu
16630 may no longer exist. */
16631
16632 CORE_ADDR
16633 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
16634 unsigned int addr_index)
16635 {
16636 struct objfile *objfile = per_cu->objfile;
16637 struct dwarf2_cu *cu = per_cu->cu;
16638 ULONGEST addr_base;
16639 int addr_size;
16640
16641 /* This is intended to be called from outside this file. */
16642 dw2_setup (objfile);
16643
16644 /* We need addr_base and addr_size.
16645 If we don't have PER_CU->cu, we have to get it.
16646 Nasty, but the alternative is storing the needed info in PER_CU,
16647 which at this point doesn't seem justified: it's not clear how frequently
16648 it would get used and it would increase the size of every PER_CU.
16649 Entry points like dwarf2_per_cu_addr_size do a similar thing
16650 so we're not in uncharted territory here.
16651 Alas we need to be a bit more complicated as addr_base is contained
16652 in the DIE.
16653
16654 We don't need to read the entire CU(/TU).
16655 We just need the header and top level die.
16656
16657 IWBN to use the aging mechanism to let us lazily later discard the CU.
16658 For now we skip this optimization. */
16659
16660 if (cu != NULL)
16661 {
16662 addr_base = cu->addr_base;
16663 addr_size = cu->header.addr_size;
16664 }
16665 else
16666 {
16667 struct dwarf2_read_addr_index_data aidata;
16668
16669 /* Note: We can't use init_cutu_and_read_dies_simple here,
16670 we need addr_base. */
16671 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
16672 dwarf2_read_addr_index_reader, &aidata);
16673 addr_base = aidata.addr_base;
16674 addr_size = aidata.addr_size;
16675 }
16676
16677 return read_addr_index_1 (addr_index, addr_base, addr_size);
16678 }
16679
16680 /* Given a DW_FORM_GNU_str_index, fetch the string.
16681 This is only used by the Fission support. */
16682
16683 static const char *
16684 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
16685 {
16686 struct objfile *objfile = dwarf2_per_objfile->objfile;
16687 const char *objf_name = objfile_name (objfile);
16688 bfd *abfd = objfile->obfd;
16689 struct dwarf2_cu *cu = reader->cu;
16690 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
16691 struct dwarf2_section_info *str_offsets_section =
16692 &reader->dwo_file->sections.str_offsets;
16693 const gdb_byte *info_ptr;
16694 ULONGEST str_offset;
16695 static const char form_name[] = "DW_FORM_GNU_str_index";
16696
16697 dwarf2_read_section (objfile, str_section);
16698 dwarf2_read_section (objfile, str_offsets_section);
16699 if (str_section->buffer == NULL)
16700 error (_("%s used without .debug_str.dwo section"
16701 " in CU at offset 0x%lx [in module %s]"),
16702 form_name, (long) cu->header.offset.sect_off, objf_name);
16703 if (str_offsets_section->buffer == NULL)
16704 error (_("%s used without .debug_str_offsets.dwo section"
16705 " in CU at offset 0x%lx [in module %s]"),
16706 form_name, (long) cu->header.offset.sect_off, objf_name);
16707 if (str_index * cu->header.offset_size >= str_offsets_section->size)
16708 error (_("%s pointing outside of .debug_str_offsets.dwo"
16709 " section in CU at offset 0x%lx [in module %s]"),
16710 form_name, (long) cu->header.offset.sect_off, objf_name);
16711 info_ptr = (str_offsets_section->buffer
16712 + str_index * cu->header.offset_size);
16713 if (cu->header.offset_size == 4)
16714 str_offset = bfd_get_32 (abfd, info_ptr);
16715 else
16716 str_offset = bfd_get_64 (abfd, info_ptr);
16717 if (str_offset >= str_section->size)
16718 error (_("Offset from %s pointing outside of"
16719 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
16720 form_name, (long) cu->header.offset.sect_off, objf_name);
16721 return (const char *) (str_section->buffer + str_offset);
16722 }
16723
16724 /* Return the length of an LEB128 number in BUF. */
16725
16726 static int
16727 leb128_size (const gdb_byte *buf)
16728 {
16729 const gdb_byte *begin = buf;
16730 gdb_byte byte;
16731
16732 while (1)
16733 {
16734 byte = *buf++;
16735 if ((byte & 128) == 0)
16736 return buf - begin;
16737 }
16738 }
16739
16740 static void
16741 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
16742 {
16743 switch (lang)
16744 {
16745 case DW_LANG_C89:
16746 case DW_LANG_C99:
16747 case DW_LANG_C11:
16748 case DW_LANG_C:
16749 case DW_LANG_UPC:
16750 cu->language = language_c;
16751 break;
16752 case DW_LANG_C_plus_plus:
16753 case DW_LANG_C_plus_plus_11:
16754 case DW_LANG_C_plus_plus_14:
16755 cu->language = language_cplus;
16756 break;
16757 case DW_LANG_D:
16758 cu->language = language_d;
16759 break;
16760 case DW_LANG_Fortran77:
16761 case DW_LANG_Fortran90:
16762 case DW_LANG_Fortran95:
16763 cu->language = language_fortran;
16764 break;
16765 case DW_LANG_Go:
16766 cu->language = language_go;
16767 break;
16768 case DW_LANG_Mips_Assembler:
16769 cu->language = language_asm;
16770 break;
16771 case DW_LANG_Java:
16772 cu->language = language_java;
16773 break;
16774 case DW_LANG_Ada83:
16775 case DW_LANG_Ada95:
16776 cu->language = language_ada;
16777 break;
16778 case DW_LANG_Modula2:
16779 cu->language = language_m2;
16780 break;
16781 case DW_LANG_Pascal83:
16782 cu->language = language_pascal;
16783 break;
16784 case DW_LANG_ObjC:
16785 cu->language = language_objc;
16786 break;
16787 case DW_LANG_Cobol74:
16788 case DW_LANG_Cobol85:
16789 default:
16790 cu->language = language_minimal;
16791 break;
16792 }
16793 cu->language_defn = language_def (cu->language);
16794 }
16795
16796 /* Return the named attribute or NULL if not there. */
16797
16798 static struct attribute *
16799 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
16800 {
16801 for (;;)
16802 {
16803 unsigned int i;
16804 struct attribute *spec = NULL;
16805
16806 for (i = 0; i < die->num_attrs; ++i)
16807 {
16808 if (die->attrs[i].name == name)
16809 return &die->attrs[i];
16810 if (die->attrs[i].name == DW_AT_specification
16811 || die->attrs[i].name == DW_AT_abstract_origin)
16812 spec = &die->attrs[i];
16813 }
16814
16815 if (!spec)
16816 break;
16817
16818 die = follow_die_ref (die, spec, &cu);
16819 }
16820
16821 return NULL;
16822 }
16823
16824 /* Return the named attribute or NULL if not there,
16825 but do not follow DW_AT_specification, etc.
16826 This is for use in contexts where we're reading .debug_types dies.
16827 Following DW_AT_specification, DW_AT_abstract_origin will take us
16828 back up the chain, and we want to go down. */
16829
16830 static struct attribute *
16831 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
16832 {
16833 unsigned int i;
16834
16835 for (i = 0; i < die->num_attrs; ++i)
16836 if (die->attrs[i].name == name)
16837 return &die->attrs[i];
16838
16839 return NULL;
16840 }
16841
16842 /* Return non-zero iff the attribute NAME is defined for the given DIE,
16843 and holds a non-zero value. This function should only be used for
16844 DW_FORM_flag or DW_FORM_flag_present attributes. */
16845
16846 static int
16847 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
16848 {
16849 struct attribute *attr = dwarf2_attr (die, name, cu);
16850
16851 return (attr && DW_UNSND (attr));
16852 }
16853
16854 static int
16855 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
16856 {
16857 /* A DIE is a declaration if it has a DW_AT_declaration attribute
16858 which value is non-zero. However, we have to be careful with
16859 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
16860 (via dwarf2_flag_true_p) follows this attribute. So we may
16861 end up accidently finding a declaration attribute that belongs
16862 to a different DIE referenced by the specification attribute,
16863 even though the given DIE does not have a declaration attribute. */
16864 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
16865 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
16866 }
16867
16868 /* Return the die giving the specification for DIE, if there is
16869 one. *SPEC_CU is the CU containing DIE on input, and the CU
16870 containing the return value on output. If there is no
16871 specification, but there is an abstract origin, that is
16872 returned. */
16873
16874 static struct die_info *
16875 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
16876 {
16877 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
16878 *spec_cu);
16879
16880 if (spec_attr == NULL)
16881 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
16882
16883 if (spec_attr == NULL)
16884 return NULL;
16885 else
16886 return follow_die_ref (die, spec_attr, spec_cu);
16887 }
16888
16889 /* Free the line_header structure *LH, and any arrays and strings it
16890 refers to.
16891 NOTE: This is also used as a "cleanup" function. */
16892
16893 static void
16894 free_line_header (struct line_header *lh)
16895 {
16896 if (lh->standard_opcode_lengths)
16897 xfree (lh->standard_opcode_lengths);
16898
16899 /* Remember that all the lh->file_names[i].name pointers are
16900 pointers into debug_line_buffer, and don't need to be freed. */
16901 if (lh->file_names)
16902 xfree (lh->file_names);
16903
16904 /* Similarly for the include directory names. */
16905 if (lh->include_dirs)
16906 xfree (lh->include_dirs);
16907
16908 xfree (lh);
16909 }
16910
16911 /* Add an entry to LH's include directory table. */
16912
16913 static void
16914 add_include_dir (struct line_header *lh, const char *include_dir)
16915 {
16916 /* Grow the array if necessary. */
16917 if (lh->include_dirs_size == 0)
16918 {
16919 lh->include_dirs_size = 1; /* for testing */
16920 lh->include_dirs = xmalloc (lh->include_dirs_size
16921 * sizeof (*lh->include_dirs));
16922 }
16923 else if (lh->num_include_dirs >= lh->include_dirs_size)
16924 {
16925 lh->include_dirs_size *= 2;
16926 lh->include_dirs = xrealloc (lh->include_dirs,
16927 (lh->include_dirs_size
16928 * sizeof (*lh->include_dirs)));
16929 }
16930
16931 lh->include_dirs[lh->num_include_dirs++] = include_dir;
16932 }
16933
16934 /* Add an entry to LH's file name table. */
16935
16936 static void
16937 add_file_name (struct line_header *lh,
16938 const char *name,
16939 unsigned int dir_index,
16940 unsigned int mod_time,
16941 unsigned int length)
16942 {
16943 struct file_entry *fe;
16944
16945 /* Grow the array if necessary. */
16946 if (lh->file_names_size == 0)
16947 {
16948 lh->file_names_size = 1; /* for testing */
16949 lh->file_names = xmalloc (lh->file_names_size
16950 * sizeof (*lh->file_names));
16951 }
16952 else if (lh->num_file_names >= lh->file_names_size)
16953 {
16954 lh->file_names_size *= 2;
16955 lh->file_names = xrealloc (lh->file_names,
16956 (lh->file_names_size
16957 * sizeof (*lh->file_names)));
16958 }
16959
16960 fe = &lh->file_names[lh->num_file_names++];
16961 fe->name = name;
16962 fe->dir_index = dir_index;
16963 fe->mod_time = mod_time;
16964 fe->length = length;
16965 fe->included_p = 0;
16966 fe->symtab = NULL;
16967 }
16968
16969 /* A convenience function to find the proper .debug_line section for a
16970 CU. */
16971
16972 static struct dwarf2_section_info *
16973 get_debug_line_section (struct dwarf2_cu *cu)
16974 {
16975 struct dwarf2_section_info *section;
16976
16977 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
16978 DWO file. */
16979 if (cu->dwo_unit && cu->per_cu->is_debug_types)
16980 section = &cu->dwo_unit->dwo_file->sections.line;
16981 else if (cu->per_cu->is_dwz)
16982 {
16983 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16984
16985 section = &dwz->line;
16986 }
16987 else
16988 section = &dwarf2_per_objfile->line;
16989
16990 return section;
16991 }
16992
16993 /* Read the statement program header starting at OFFSET in
16994 .debug_line, or .debug_line.dwo. Return a pointer
16995 to a struct line_header, allocated using xmalloc.
16996
16997 NOTE: the strings in the include directory and file name tables of
16998 the returned object point into the dwarf line section buffer,
16999 and must not be freed. */
17000
17001 static struct line_header *
17002 dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
17003 {
17004 struct cleanup *back_to;
17005 struct line_header *lh;
17006 const gdb_byte *line_ptr;
17007 unsigned int bytes_read, offset_size;
17008 int i;
17009 const char *cur_dir, *cur_file;
17010 struct dwarf2_section_info *section;
17011 bfd *abfd;
17012
17013 section = get_debug_line_section (cu);
17014 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
17015 if (section->buffer == NULL)
17016 {
17017 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17018 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
17019 else
17020 complaint (&symfile_complaints, _("missing .debug_line section"));
17021 return 0;
17022 }
17023
17024 /* We can't do this until we know the section is non-empty.
17025 Only then do we know we have such a section. */
17026 abfd = get_section_bfd_owner (section);
17027
17028 /* Make sure that at least there's room for the total_length field.
17029 That could be 12 bytes long, but we're just going to fudge that. */
17030 if (offset + 4 >= section->size)
17031 {
17032 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17033 return 0;
17034 }
17035
17036 lh = xmalloc (sizeof (*lh));
17037 memset (lh, 0, sizeof (*lh));
17038 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
17039 (void *) lh);
17040
17041 line_ptr = section->buffer + offset;
17042
17043 /* Read in the header. */
17044 lh->total_length =
17045 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
17046 &bytes_read, &offset_size);
17047 line_ptr += bytes_read;
17048 if (line_ptr + lh->total_length > (section->buffer + section->size))
17049 {
17050 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17051 do_cleanups (back_to);
17052 return 0;
17053 }
17054 lh->statement_program_end = line_ptr + lh->total_length;
17055 lh->version = read_2_bytes (abfd, line_ptr);
17056 line_ptr += 2;
17057 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
17058 line_ptr += offset_size;
17059 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
17060 line_ptr += 1;
17061 if (lh->version >= 4)
17062 {
17063 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
17064 line_ptr += 1;
17065 }
17066 else
17067 lh->maximum_ops_per_instruction = 1;
17068
17069 if (lh->maximum_ops_per_instruction == 0)
17070 {
17071 lh->maximum_ops_per_instruction = 1;
17072 complaint (&symfile_complaints,
17073 _("invalid maximum_ops_per_instruction "
17074 "in `.debug_line' section"));
17075 }
17076
17077 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
17078 line_ptr += 1;
17079 lh->line_base = read_1_signed_byte (abfd, line_ptr);
17080 line_ptr += 1;
17081 lh->line_range = read_1_byte (abfd, line_ptr);
17082 line_ptr += 1;
17083 lh->opcode_base = read_1_byte (abfd, line_ptr);
17084 line_ptr += 1;
17085 lh->standard_opcode_lengths
17086 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
17087
17088 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
17089 for (i = 1; i < lh->opcode_base; ++i)
17090 {
17091 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
17092 line_ptr += 1;
17093 }
17094
17095 /* Read directory table. */
17096 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17097 {
17098 line_ptr += bytes_read;
17099 add_include_dir (lh, cur_dir);
17100 }
17101 line_ptr += bytes_read;
17102
17103 /* Read file name table. */
17104 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17105 {
17106 unsigned int dir_index, mod_time, length;
17107
17108 line_ptr += bytes_read;
17109 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17110 line_ptr += bytes_read;
17111 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17112 line_ptr += bytes_read;
17113 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17114 line_ptr += bytes_read;
17115
17116 add_file_name (lh, cur_file, dir_index, mod_time, length);
17117 }
17118 line_ptr += bytes_read;
17119 lh->statement_program_start = line_ptr;
17120
17121 if (line_ptr > (section->buffer + section->size))
17122 complaint (&symfile_complaints,
17123 _("line number info header doesn't "
17124 "fit in `.debug_line' section"));
17125
17126 discard_cleanups (back_to);
17127 return lh;
17128 }
17129
17130 /* Subroutine of dwarf_decode_lines to simplify it.
17131 Return the file name of the psymtab for included file FILE_INDEX
17132 in line header LH of PST.
17133 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17134 If space for the result is malloc'd, it will be freed by a cleanup.
17135 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
17136
17137 The function creates dangling cleanup registration. */
17138
17139 static const char *
17140 psymtab_include_file_name (const struct line_header *lh, int file_index,
17141 const struct partial_symtab *pst,
17142 const char *comp_dir)
17143 {
17144 const struct file_entry fe = lh->file_names [file_index];
17145 const char *include_name = fe.name;
17146 const char *include_name_to_compare = include_name;
17147 const char *dir_name = NULL;
17148 const char *pst_filename;
17149 char *copied_name = NULL;
17150 int file_is_pst;
17151
17152 if (fe.dir_index)
17153 dir_name = lh->include_dirs[fe.dir_index - 1];
17154
17155 if (!IS_ABSOLUTE_PATH (include_name)
17156 && (dir_name != NULL || comp_dir != NULL))
17157 {
17158 /* Avoid creating a duplicate psymtab for PST.
17159 We do this by comparing INCLUDE_NAME and PST_FILENAME.
17160 Before we do the comparison, however, we need to account
17161 for DIR_NAME and COMP_DIR.
17162 First prepend dir_name (if non-NULL). If we still don't
17163 have an absolute path prepend comp_dir (if non-NULL).
17164 However, the directory we record in the include-file's
17165 psymtab does not contain COMP_DIR (to match the
17166 corresponding symtab(s)).
17167
17168 Example:
17169
17170 bash$ cd /tmp
17171 bash$ gcc -g ./hello.c
17172 include_name = "hello.c"
17173 dir_name = "."
17174 DW_AT_comp_dir = comp_dir = "/tmp"
17175 DW_AT_name = "./hello.c"
17176
17177 */
17178
17179 if (dir_name != NULL)
17180 {
17181 char *tem = concat (dir_name, SLASH_STRING,
17182 include_name, (char *)NULL);
17183
17184 make_cleanup (xfree, tem);
17185 include_name = tem;
17186 include_name_to_compare = include_name;
17187 }
17188 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
17189 {
17190 char *tem = concat (comp_dir, SLASH_STRING,
17191 include_name, (char *)NULL);
17192
17193 make_cleanup (xfree, tem);
17194 include_name_to_compare = tem;
17195 }
17196 }
17197
17198 pst_filename = pst->filename;
17199 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
17200 {
17201 copied_name = concat (pst->dirname, SLASH_STRING,
17202 pst_filename, (char *)NULL);
17203 pst_filename = copied_name;
17204 }
17205
17206 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
17207
17208 if (copied_name != NULL)
17209 xfree (copied_name);
17210
17211 if (file_is_pst)
17212 return NULL;
17213 return include_name;
17214 }
17215
17216 /* Ignore this record_line request. */
17217
17218 static void
17219 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
17220 {
17221 return;
17222 }
17223
17224 /* Return non-zero if we should add LINE to the line number table.
17225 LINE is the line to add, LAST_LINE is the last line that was added,
17226 LAST_SUBFILE is the subfile for LAST_LINE.
17227 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
17228 had a non-zero discriminator.
17229
17230 We have to be careful in the presence of discriminators.
17231 E.g., for this line:
17232
17233 for (i = 0; i < 100000; i++);
17234
17235 clang can emit four line number entries for that one line,
17236 each with a different discriminator.
17237 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
17238
17239 However, we want gdb to coalesce all four entries into one.
17240 Otherwise the user could stepi into the middle of the line and
17241 gdb would get confused about whether the pc really was in the
17242 middle of the line.
17243
17244 Things are further complicated by the fact that two consecutive
17245 line number entries for the same line is a heuristic used by gcc
17246 to denote the end of the prologue. So we can't just discard duplicate
17247 entries, we have to be selective about it. The heuristic we use is
17248 that we only collapse consecutive entries for the same line if at least
17249 one of those entries has a non-zero discriminator. PR 17276.
17250
17251 Note: Addresses in the line number state machine can never go backwards
17252 within one sequence, thus this coalescing is ok. */
17253
17254 static int
17255 dwarf_record_line_p (unsigned int line, unsigned int last_line,
17256 int line_has_non_zero_discriminator,
17257 struct subfile *last_subfile)
17258 {
17259 if (current_subfile != last_subfile)
17260 return 1;
17261 if (line != last_line)
17262 return 1;
17263 /* Same line for the same file that we've seen already.
17264 As a last check, for pr 17276, only record the line if the line
17265 has never had a non-zero discriminator. */
17266 if (!line_has_non_zero_discriminator)
17267 return 1;
17268 return 0;
17269 }
17270
17271 /* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
17272 in the line table of subfile SUBFILE. */
17273
17274 static void
17275 dwarf_record_line (struct gdbarch *gdbarch, struct subfile *subfile,
17276 unsigned int line, CORE_ADDR address,
17277 record_line_ftype p_record_line)
17278 {
17279 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
17280
17281 (*p_record_line) (subfile, line, addr);
17282 }
17283
17284 /* Subroutine of dwarf_decode_lines_1 to simplify it.
17285 Mark the end of a set of line number records.
17286 The arguments are the same as for dwarf_record_line.
17287 If SUBFILE is NULL the request is ignored. */
17288
17289 static void
17290 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
17291 CORE_ADDR address, record_line_ftype p_record_line)
17292 {
17293 if (subfile != NULL)
17294 dwarf_record_line (gdbarch, subfile, 0, address, p_record_line);
17295 }
17296
17297 /* Subroutine of dwarf_decode_lines to simplify it.
17298 Process the line number information in LH. */
17299
17300 static void
17301 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
17302 const int decode_for_pst_p, CORE_ADDR lowpc)
17303 {
17304 const gdb_byte *line_ptr, *extended_end;
17305 const gdb_byte *line_end;
17306 unsigned int bytes_read, extended_len;
17307 unsigned char op_code, extended_op;
17308 CORE_ADDR baseaddr;
17309 struct objfile *objfile = cu->objfile;
17310 bfd *abfd = objfile->obfd;
17311 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17312 struct subfile *last_subfile = NULL;
17313 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
17314 = record_line;
17315
17316 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
17317
17318 line_ptr = lh->statement_program_start;
17319 line_end = lh->statement_program_end;
17320
17321 /* Read the statement sequences until there's nothing left. */
17322 while (line_ptr < line_end)
17323 {
17324 /* State machine registers. Call `gdbarch_adjust_dwarf2_line'
17325 on the initial 0 address as if there was a line entry for it
17326 so that the backend has a chance to adjust it and also record
17327 it in case it needs it. This is currently used by MIPS code,
17328 cf. `mips_adjust_dwarf2_line'. */
17329 CORE_ADDR address = gdbarch_adjust_dwarf2_line (gdbarch, 0, 0);
17330 unsigned int file = 1;
17331 unsigned int line = 1;
17332 int is_stmt = lh->default_is_stmt;
17333 int end_sequence = 0;
17334 unsigned char op_index = 0;
17335 unsigned int discriminator = 0;
17336 /* The last line number that was recorded, used to coalesce
17337 consecutive entries for the same line. This can happen, for
17338 example, when discriminators are present. PR 17276. */
17339 unsigned int last_line = 0;
17340 int line_has_non_zero_discriminator = 0;
17341
17342 if (!decode_for_pst_p && lh->num_file_names >= file)
17343 {
17344 /* Start a subfile for the current file of the state machine. */
17345 /* lh->include_dirs and lh->file_names are 0-based, but the
17346 directory and file name numbers in the statement program
17347 are 1-based. */
17348 struct file_entry *fe = &lh->file_names[file - 1];
17349 const char *dir = NULL;
17350
17351 if (fe->dir_index)
17352 dir = lh->include_dirs[fe->dir_index - 1];
17353
17354 dwarf2_start_subfile (fe->name, dir);
17355 }
17356
17357 /* Decode the table. */
17358 while (!end_sequence)
17359 {
17360 op_code = read_1_byte (abfd, line_ptr);
17361 line_ptr += 1;
17362 if (line_ptr > line_end)
17363 {
17364 dwarf2_debug_line_missing_end_sequence_complaint ();
17365 break;
17366 }
17367
17368 if (op_code >= lh->opcode_base)
17369 {
17370 /* Special opcode. */
17371 unsigned char adj_opcode;
17372 CORE_ADDR addr_adj;
17373 int line_delta;
17374
17375 adj_opcode = op_code - lh->opcode_base;
17376 addr_adj = (((op_index + (adj_opcode / lh->line_range))
17377 / lh->maximum_ops_per_instruction)
17378 * lh->minimum_instruction_length);
17379 address += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17380 op_index = ((op_index + (adj_opcode / lh->line_range))
17381 % lh->maximum_ops_per_instruction);
17382 line_delta = lh->line_base + (adj_opcode % lh->line_range);
17383 line += line_delta;
17384 if (line_delta != 0)
17385 line_has_non_zero_discriminator = discriminator != 0;
17386 if (lh->num_file_names < file || file == 0)
17387 dwarf2_debug_line_missing_file_complaint ();
17388 /* For now we ignore lines not starting on an
17389 instruction boundary. */
17390 else if (op_index == 0)
17391 {
17392 lh->file_names[file - 1].included_p = 1;
17393 if (!decode_for_pst_p && is_stmt)
17394 {
17395 if (last_subfile != current_subfile)
17396 {
17397 dwarf_finish_line (gdbarch, last_subfile,
17398 address, p_record_line);
17399 }
17400 if (dwarf_record_line_p (line, last_line,
17401 line_has_non_zero_discriminator,
17402 last_subfile))
17403 {
17404 dwarf_record_line (gdbarch, current_subfile,
17405 line, address, p_record_line);
17406 }
17407 last_subfile = current_subfile;
17408 last_line = line;
17409 }
17410 }
17411 discriminator = 0;
17412 }
17413 else switch (op_code)
17414 {
17415 case DW_LNS_extended_op:
17416 extended_len = read_unsigned_leb128 (abfd, line_ptr,
17417 &bytes_read);
17418 line_ptr += bytes_read;
17419 extended_end = line_ptr + extended_len;
17420 extended_op = read_1_byte (abfd, line_ptr);
17421 line_ptr += 1;
17422 switch (extended_op)
17423 {
17424 case DW_LNE_end_sequence:
17425 p_record_line = record_line;
17426 end_sequence = 1;
17427 break;
17428 case DW_LNE_set_address:
17429 address = read_address (abfd, line_ptr, cu, &bytes_read);
17430
17431 /* If address < lowpc then it's not a usable value, it's
17432 outside the pc range of the CU. However, we restrict
17433 the test to only address values of zero to preserve
17434 GDB's previous behaviour which is to handle the specific
17435 case of a function being GC'd by the linker. */
17436 if (address == 0 && address < lowpc)
17437 {
17438 /* This line table is for a function which has been
17439 GCd by the linker. Ignore it. PR gdb/12528 */
17440
17441 long line_offset
17442 = line_ptr - get_debug_line_section (cu)->buffer;
17443
17444 complaint (&symfile_complaints,
17445 _(".debug_line address at offset 0x%lx is 0 "
17446 "[in module %s]"),
17447 line_offset, objfile_name (objfile));
17448 p_record_line = noop_record_line;
17449 /* Note: p_record_line is left as noop_record_line
17450 until we see DW_LNE_end_sequence. */
17451 }
17452
17453 op_index = 0;
17454 line_ptr += bytes_read;
17455 address += baseaddr;
17456 address = gdbarch_adjust_dwarf2_line (gdbarch, address, 0);
17457 break;
17458 case DW_LNE_define_file:
17459 {
17460 const char *cur_file;
17461 unsigned int dir_index, mod_time, length;
17462
17463 cur_file = read_direct_string (abfd, line_ptr,
17464 &bytes_read);
17465 line_ptr += bytes_read;
17466 dir_index =
17467 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17468 line_ptr += bytes_read;
17469 mod_time =
17470 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17471 line_ptr += bytes_read;
17472 length =
17473 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17474 line_ptr += bytes_read;
17475 add_file_name (lh, cur_file, dir_index, mod_time, length);
17476 }
17477 break;
17478 case DW_LNE_set_discriminator:
17479 /* The discriminator is not interesting to the debugger;
17480 just ignore it. We still need to check its value though:
17481 if there are consecutive entries for the same
17482 (non-prologue) line we want to coalesce them.
17483 PR 17276. */
17484 discriminator = read_unsigned_leb128 (abfd, line_ptr,
17485 &bytes_read);
17486 line_has_non_zero_discriminator |= discriminator != 0;
17487 line_ptr += bytes_read;
17488 break;
17489 default:
17490 complaint (&symfile_complaints,
17491 _("mangled .debug_line section"));
17492 return;
17493 }
17494 /* Make sure that we parsed the extended op correctly. If e.g.
17495 we expected a different address size than the producer used,
17496 we may have read the wrong number of bytes. */
17497 if (line_ptr != extended_end)
17498 {
17499 complaint (&symfile_complaints,
17500 _("mangled .debug_line section"));
17501 return;
17502 }
17503 break;
17504 case DW_LNS_copy:
17505 if (lh->num_file_names < file || file == 0)
17506 dwarf2_debug_line_missing_file_complaint ();
17507 else
17508 {
17509 lh->file_names[file - 1].included_p = 1;
17510 if (!decode_for_pst_p && is_stmt)
17511 {
17512 if (last_subfile != current_subfile)
17513 {
17514 dwarf_finish_line (gdbarch, last_subfile,
17515 address, p_record_line);
17516 }
17517 if (dwarf_record_line_p (line, last_line,
17518 line_has_non_zero_discriminator,
17519 last_subfile))
17520 {
17521 dwarf_record_line (gdbarch, current_subfile,
17522 line, address, p_record_line);
17523 }
17524 last_subfile = current_subfile;
17525 last_line = line;
17526 }
17527 }
17528 discriminator = 0;
17529 break;
17530 case DW_LNS_advance_pc:
17531 {
17532 CORE_ADDR adjust
17533 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17534 CORE_ADDR addr_adj;
17535
17536 addr_adj = (((op_index + adjust)
17537 / lh->maximum_ops_per_instruction)
17538 * lh->minimum_instruction_length);
17539 address += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17540 op_index = ((op_index + adjust)
17541 % lh->maximum_ops_per_instruction);
17542 line_ptr += bytes_read;
17543 }
17544 break;
17545 case DW_LNS_advance_line:
17546 {
17547 int line_delta
17548 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
17549
17550 line += line_delta;
17551 if (line_delta != 0)
17552 line_has_non_zero_discriminator = discriminator != 0;
17553 line_ptr += bytes_read;
17554 }
17555 break;
17556 case DW_LNS_set_file:
17557 {
17558 /* The arrays lh->include_dirs and lh->file_names are
17559 0-based, but the directory and file name numbers in
17560 the statement program are 1-based. */
17561 struct file_entry *fe;
17562 const char *dir = NULL;
17563
17564 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17565 line_ptr += bytes_read;
17566 if (lh->num_file_names < file || file == 0)
17567 dwarf2_debug_line_missing_file_complaint ();
17568 else
17569 {
17570 fe = &lh->file_names[file - 1];
17571 if (fe->dir_index)
17572 dir = lh->include_dirs[fe->dir_index - 1];
17573 if (!decode_for_pst_p)
17574 {
17575 last_subfile = current_subfile;
17576 line_has_non_zero_discriminator = discriminator != 0;
17577 dwarf2_start_subfile (fe->name, dir);
17578 }
17579 }
17580 }
17581 break;
17582 case DW_LNS_set_column:
17583 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17584 line_ptr += bytes_read;
17585 break;
17586 case DW_LNS_negate_stmt:
17587 is_stmt = (!is_stmt);
17588 break;
17589 case DW_LNS_set_basic_block:
17590 break;
17591 /* Add to the address register of the state machine the
17592 address increment value corresponding to special opcode
17593 255. I.e., this value is scaled by the minimum
17594 instruction length since special opcode 255 would have
17595 scaled the increment. */
17596 case DW_LNS_const_add_pc:
17597 {
17598 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
17599 CORE_ADDR addr_adj;
17600
17601 addr_adj = (((op_index + adjust)
17602 / lh->maximum_ops_per_instruction)
17603 * lh->minimum_instruction_length);
17604 address += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17605 op_index = ((op_index + adjust)
17606 % lh->maximum_ops_per_instruction);
17607 }
17608 break;
17609 case DW_LNS_fixed_advance_pc:
17610 {
17611 CORE_ADDR addr_adj;
17612
17613 addr_adj = read_2_bytes (abfd, line_ptr);
17614 address += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17615 op_index = 0;
17616 line_ptr += 2;
17617 }
17618 break;
17619 default:
17620 {
17621 /* Unknown standard opcode, ignore it. */
17622 int i;
17623
17624 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
17625 {
17626 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17627 line_ptr += bytes_read;
17628 }
17629 }
17630 }
17631 }
17632 if (lh->num_file_names < file || file == 0)
17633 dwarf2_debug_line_missing_file_complaint ();
17634 else
17635 {
17636 lh->file_names[file - 1].included_p = 1;
17637 if (!decode_for_pst_p)
17638 {
17639 dwarf_finish_line (gdbarch, current_subfile, address,
17640 p_record_line);
17641 }
17642 }
17643 }
17644 }
17645
17646 /* Decode the Line Number Program (LNP) for the given line_header
17647 structure and CU. The actual information extracted and the type
17648 of structures created from the LNP depends on the value of PST.
17649
17650 1. If PST is NULL, then this procedure uses the data from the program
17651 to create all necessary symbol tables, and their linetables.
17652
17653 2. If PST is not NULL, this procedure reads the program to determine
17654 the list of files included by the unit represented by PST, and
17655 builds all the associated partial symbol tables.
17656
17657 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17658 It is used for relative paths in the line table.
17659 NOTE: When processing partial symtabs (pst != NULL),
17660 comp_dir == pst->dirname.
17661
17662 NOTE: It is important that psymtabs have the same file name (via strcmp)
17663 as the corresponding symtab. Since COMP_DIR is not used in the name of the
17664 symtab we don't use it in the name of the psymtabs we create.
17665 E.g. expand_line_sal requires this when finding psymtabs to expand.
17666 A good testcase for this is mb-inline.exp.
17667
17668 LOWPC is the lowest address in CU (or 0 if not known). */
17669
17670 static void
17671 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
17672 struct dwarf2_cu *cu, struct partial_symtab *pst,
17673 CORE_ADDR lowpc)
17674 {
17675 struct objfile *objfile = cu->objfile;
17676 const int decode_for_pst_p = (pst != NULL);
17677
17678 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
17679
17680 if (decode_for_pst_p)
17681 {
17682 int file_index;
17683
17684 /* Now that we're done scanning the Line Header Program, we can
17685 create the psymtab of each included file. */
17686 for (file_index = 0; file_index < lh->num_file_names; file_index++)
17687 if (lh->file_names[file_index].included_p == 1)
17688 {
17689 const char *include_name =
17690 psymtab_include_file_name (lh, file_index, pst, comp_dir);
17691 if (include_name != NULL)
17692 dwarf2_create_include_psymtab (include_name, pst, objfile);
17693 }
17694 }
17695 else
17696 {
17697 /* Make sure a symtab is created for every file, even files
17698 which contain only variables (i.e. no code with associated
17699 line numbers). */
17700 struct compunit_symtab *cust = buildsym_compunit_symtab ();
17701 int i;
17702
17703 for (i = 0; i < lh->num_file_names; i++)
17704 {
17705 const char *dir = NULL;
17706 struct file_entry *fe;
17707
17708 fe = &lh->file_names[i];
17709 if (fe->dir_index)
17710 dir = lh->include_dirs[fe->dir_index - 1];
17711 dwarf2_start_subfile (fe->name, dir);
17712
17713 if (current_subfile->symtab == NULL)
17714 {
17715 current_subfile->symtab
17716 = allocate_symtab (cust, current_subfile->name);
17717 }
17718 fe->symtab = current_subfile->symtab;
17719 }
17720 }
17721 }
17722
17723 /* Start a subfile for DWARF. FILENAME is the name of the file and
17724 DIRNAME the name of the source directory which contains FILENAME
17725 or NULL if not known.
17726 This routine tries to keep line numbers from identical absolute and
17727 relative file names in a common subfile.
17728
17729 Using the `list' example from the GDB testsuite, which resides in
17730 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
17731 of /srcdir/list0.c yields the following debugging information for list0.c:
17732
17733 DW_AT_name: /srcdir/list0.c
17734 DW_AT_comp_dir: /compdir
17735 files.files[0].name: list0.h
17736 files.files[0].dir: /srcdir
17737 files.files[1].name: list0.c
17738 files.files[1].dir: /srcdir
17739
17740 The line number information for list0.c has to end up in a single
17741 subfile, so that `break /srcdir/list0.c:1' works as expected.
17742 start_subfile will ensure that this happens provided that we pass the
17743 concatenation of files.files[1].dir and files.files[1].name as the
17744 subfile's name. */
17745
17746 static void
17747 dwarf2_start_subfile (const char *filename, const char *dirname)
17748 {
17749 char *copy = NULL;
17750
17751 /* In order not to lose the line information directory,
17752 we concatenate it to the filename when it makes sense.
17753 Note that the Dwarf3 standard says (speaking of filenames in line
17754 information): ``The directory index is ignored for file names
17755 that represent full path names''. Thus ignoring dirname in the
17756 `else' branch below isn't an issue. */
17757
17758 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
17759 {
17760 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
17761 filename = copy;
17762 }
17763
17764 start_subfile (filename);
17765
17766 if (copy != NULL)
17767 xfree (copy);
17768 }
17769
17770 /* Start a symtab for DWARF.
17771 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
17772
17773 static struct compunit_symtab *
17774 dwarf2_start_symtab (struct dwarf2_cu *cu,
17775 const char *name, const char *comp_dir, CORE_ADDR low_pc)
17776 {
17777 struct compunit_symtab *cust
17778 = start_symtab (cu->objfile, name, comp_dir, low_pc);
17779
17780 record_debugformat ("DWARF 2");
17781 record_producer (cu->producer);
17782
17783 /* We assume that we're processing GCC output. */
17784 processing_gcc_compilation = 2;
17785
17786 cu->processing_has_namespace_info = 0;
17787
17788 return cust;
17789 }
17790
17791 static void
17792 var_decode_location (struct attribute *attr, struct symbol *sym,
17793 struct dwarf2_cu *cu)
17794 {
17795 struct objfile *objfile = cu->objfile;
17796 struct comp_unit_head *cu_header = &cu->header;
17797
17798 /* NOTE drow/2003-01-30: There used to be a comment and some special
17799 code here to turn a symbol with DW_AT_external and a
17800 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
17801 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
17802 with some versions of binutils) where shared libraries could have
17803 relocations against symbols in their debug information - the
17804 minimal symbol would have the right address, but the debug info
17805 would not. It's no longer necessary, because we will explicitly
17806 apply relocations when we read in the debug information now. */
17807
17808 /* A DW_AT_location attribute with no contents indicates that a
17809 variable has been optimized away. */
17810 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
17811 {
17812 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
17813 return;
17814 }
17815
17816 /* Handle one degenerate form of location expression specially, to
17817 preserve GDB's previous behavior when section offsets are
17818 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
17819 then mark this symbol as LOC_STATIC. */
17820
17821 if (attr_form_is_block (attr)
17822 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
17823 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
17824 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
17825 && (DW_BLOCK (attr)->size
17826 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
17827 {
17828 unsigned int dummy;
17829
17830 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
17831 SYMBOL_VALUE_ADDRESS (sym) =
17832 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
17833 else
17834 SYMBOL_VALUE_ADDRESS (sym) =
17835 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
17836 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
17837 fixup_symbol_section (sym, objfile);
17838 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
17839 SYMBOL_SECTION (sym));
17840 return;
17841 }
17842
17843 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
17844 expression evaluator, and use LOC_COMPUTED only when necessary
17845 (i.e. when the value of a register or memory location is
17846 referenced, or a thread-local block, etc.). Then again, it might
17847 not be worthwhile. I'm assuming that it isn't unless performance
17848 or memory numbers show me otherwise. */
17849
17850 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
17851
17852 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
17853 cu->has_loclist = 1;
17854 }
17855
17856 /* Given a pointer to a DWARF information entry, figure out if we need
17857 to make a symbol table entry for it, and if so, create a new entry
17858 and return a pointer to it.
17859 If TYPE is NULL, determine symbol type from the die, otherwise
17860 used the passed type.
17861 If SPACE is not NULL, use it to hold the new symbol. If it is
17862 NULL, allocate a new symbol on the objfile's obstack. */
17863
17864 static struct symbol *
17865 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
17866 struct symbol *space)
17867 {
17868 struct objfile *objfile = cu->objfile;
17869 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17870 struct symbol *sym = NULL;
17871 const char *name;
17872 struct attribute *attr = NULL;
17873 struct attribute *attr2 = NULL;
17874 CORE_ADDR baseaddr;
17875 struct pending **list_to_add = NULL;
17876
17877 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
17878
17879 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
17880
17881 name = dwarf2_name (die, cu);
17882 if (name)
17883 {
17884 const char *linkagename;
17885 int suppress_add = 0;
17886
17887 if (space)
17888 sym = space;
17889 else
17890 sym = allocate_symbol (objfile);
17891 OBJSTAT (objfile, n_syms++);
17892
17893 /* Cache this symbol's name and the name's demangled form (if any). */
17894 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
17895 linkagename = dwarf2_physname (name, die, cu);
17896 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
17897
17898 /* Fortran does not have mangling standard and the mangling does differ
17899 between gfortran, iFort etc. */
17900 if (cu->language == language_fortran
17901 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
17902 symbol_set_demangled_name (&(sym->ginfo),
17903 dwarf2_full_name (name, die, cu),
17904 NULL);
17905
17906 /* Default assumptions.
17907 Use the passed type or decode it from the die. */
17908 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
17909 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
17910 if (type != NULL)
17911 SYMBOL_TYPE (sym) = type;
17912 else
17913 SYMBOL_TYPE (sym) = die_type (die, cu);
17914 attr = dwarf2_attr (die,
17915 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
17916 cu);
17917 if (attr)
17918 {
17919 SYMBOL_LINE (sym) = DW_UNSND (attr);
17920 }
17921
17922 attr = dwarf2_attr (die,
17923 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
17924 cu);
17925 if (attr)
17926 {
17927 int file_index = DW_UNSND (attr);
17928
17929 if (cu->line_header == NULL
17930 || file_index > cu->line_header->num_file_names)
17931 complaint (&symfile_complaints,
17932 _("file index out of range"));
17933 else if (file_index > 0)
17934 {
17935 struct file_entry *fe;
17936
17937 fe = &cu->line_header->file_names[file_index - 1];
17938 SYMBOL_SYMTAB (sym) = fe->symtab;
17939 }
17940 }
17941
17942 switch (die->tag)
17943 {
17944 case DW_TAG_label:
17945 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
17946 if (attr)
17947 {
17948 CORE_ADDR addr;
17949
17950 addr = attr_value_as_address (attr);
17951 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
17952 SYMBOL_VALUE_ADDRESS (sym) = addr;
17953 }
17954 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
17955 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
17956 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
17957 add_symbol_to_list (sym, cu->list_in_scope);
17958 break;
17959 case DW_TAG_subprogram:
17960 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
17961 finish_block. */
17962 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
17963 attr2 = dwarf2_attr (die, DW_AT_external, cu);
17964 if ((attr2 && (DW_UNSND (attr2) != 0))
17965 || cu->language == language_ada)
17966 {
17967 /* Subprograms marked external are stored as a global symbol.
17968 Ada subprograms, whether marked external or not, are always
17969 stored as a global symbol, because we want to be able to
17970 access them globally. For instance, we want to be able
17971 to break on a nested subprogram without having to
17972 specify the context. */
17973 list_to_add = &global_symbols;
17974 }
17975 else
17976 {
17977 list_to_add = cu->list_in_scope;
17978 }
17979 break;
17980 case DW_TAG_inlined_subroutine:
17981 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
17982 finish_block. */
17983 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
17984 SYMBOL_INLINED (sym) = 1;
17985 list_to_add = cu->list_in_scope;
17986 break;
17987 case DW_TAG_template_value_param:
17988 suppress_add = 1;
17989 /* Fall through. */
17990 case DW_TAG_constant:
17991 case DW_TAG_variable:
17992 case DW_TAG_member:
17993 /* Compilation with minimal debug info may result in
17994 variables with missing type entries. Change the
17995 misleading `void' type to something sensible. */
17996 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
17997 SYMBOL_TYPE (sym)
17998 = objfile_type (objfile)->nodebug_data_symbol;
17999
18000 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18001 /* In the case of DW_TAG_member, we should only be called for
18002 static const members. */
18003 if (die->tag == DW_TAG_member)
18004 {
18005 /* dwarf2_add_field uses die_is_declaration,
18006 so we do the same. */
18007 gdb_assert (die_is_declaration (die, cu));
18008 gdb_assert (attr);
18009 }
18010 if (attr)
18011 {
18012 dwarf2_const_value (attr, sym, cu);
18013 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18014 if (!suppress_add)
18015 {
18016 if (attr2 && (DW_UNSND (attr2) != 0))
18017 list_to_add = &global_symbols;
18018 else
18019 list_to_add = cu->list_in_scope;
18020 }
18021 break;
18022 }
18023 attr = dwarf2_attr (die, DW_AT_location, cu);
18024 if (attr)
18025 {
18026 var_decode_location (attr, sym, cu);
18027 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18028
18029 /* Fortran explicitly imports any global symbols to the local
18030 scope by DW_TAG_common_block. */
18031 if (cu->language == language_fortran && die->parent
18032 && die->parent->tag == DW_TAG_common_block)
18033 attr2 = NULL;
18034
18035 if (SYMBOL_CLASS (sym) == LOC_STATIC
18036 && SYMBOL_VALUE_ADDRESS (sym) == 0
18037 && !dwarf2_per_objfile->has_section_at_zero)
18038 {
18039 /* When a static variable is eliminated by the linker,
18040 the corresponding debug information is not stripped
18041 out, but the variable address is set to null;
18042 do not add such variables into symbol table. */
18043 }
18044 else if (attr2 && (DW_UNSND (attr2) != 0))
18045 {
18046 /* Workaround gfortran PR debug/40040 - it uses
18047 DW_AT_location for variables in -fPIC libraries which may
18048 get overriden by other libraries/executable and get
18049 a different address. Resolve it by the minimal symbol
18050 which may come from inferior's executable using copy
18051 relocation. Make this workaround only for gfortran as for
18052 other compilers GDB cannot guess the minimal symbol
18053 Fortran mangling kind. */
18054 if (cu->language == language_fortran && die->parent
18055 && die->parent->tag == DW_TAG_module
18056 && cu->producer
18057 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
18058 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
18059
18060 /* A variable with DW_AT_external is never static,
18061 but it may be block-scoped. */
18062 list_to_add = (cu->list_in_scope == &file_symbols
18063 ? &global_symbols : cu->list_in_scope);
18064 }
18065 else
18066 list_to_add = cu->list_in_scope;
18067 }
18068 else
18069 {
18070 /* We do not know the address of this symbol.
18071 If it is an external symbol and we have type information
18072 for it, enter the symbol as a LOC_UNRESOLVED symbol.
18073 The address of the variable will then be determined from
18074 the minimal symbol table whenever the variable is
18075 referenced. */
18076 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18077
18078 /* Fortran explicitly imports any global symbols to the local
18079 scope by DW_TAG_common_block. */
18080 if (cu->language == language_fortran && die->parent
18081 && die->parent->tag == DW_TAG_common_block)
18082 {
18083 /* SYMBOL_CLASS doesn't matter here because
18084 read_common_block is going to reset it. */
18085 if (!suppress_add)
18086 list_to_add = cu->list_in_scope;
18087 }
18088 else if (attr2 && (DW_UNSND (attr2) != 0)
18089 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
18090 {
18091 /* A variable with DW_AT_external is never static, but it
18092 may be block-scoped. */
18093 list_to_add = (cu->list_in_scope == &file_symbols
18094 ? &global_symbols : cu->list_in_scope);
18095
18096 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
18097 }
18098 else if (!die_is_declaration (die, cu))
18099 {
18100 /* Use the default LOC_OPTIMIZED_OUT class. */
18101 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
18102 if (!suppress_add)
18103 list_to_add = cu->list_in_scope;
18104 }
18105 }
18106 break;
18107 case DW_TAG_formal_parameter:
18108 /* If we are inside a function, mark this as an argument. If
18109 not, we might be looking at an argument to an inlined function
18110 when we do not have enough information to show inlined frames;
18111 pretend it's a local variable in that case so that the user can
18112 still see it. */
18113 if (context_stack_depth > 0
18114 && context_stack[context_stack_depth - 1].name != NULL)
18115 SYMBOL_IS_ARGUMENT (sym) = 1;
18116 attr = dwarf2_attr (die, DW_AT_location, cu);
18117 if (attr)
18118 {
18119 var_decode_location (attr, sym, cu);
18120 }
18121 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18122 if (attr)
18123 {
18124 dwarf2_const_value (attr, sym, cu);
18125 }
18126
18127 list_to_add = cu->list_in_scope;
18128 break;
18129 case DW_TAG_unspecified_parameters:
18130 /* From varargs functions; gdb doesn't seem to have any
18131 interest in this information, so just ignore it for now.
18132 (FIXME?) */
18133 break;
18134 case DW_TAG_template_type_param:
18135 suppress_add = 1;
18136 /* Fall through. */
18137 case DW_TAG_class_type:
18138 case DW_TAG_interface_type:
18139 case DW_TAG_structure_type:
18140 case DW_TAG_union_type:
18141 case DW_TAG_set_type:
18142 case DW_TAG_enumeration_type:
18143 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18144 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
18145
18146 {
18147 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
18148 really ever be static objects: otherwise, if you try
18149 to, say, break of a class's method and you're in a file
18150 which doesn't mention that class, it won't work unless
18151 the check for all static symbols in lookup_symbol_aux
18152 saves you. See the OtherFileClass tests in
18153 gdb.c++/namespace.exp. */
18154
18155 if (!suppress_add)
18156 {
18157 list_to_add = (cu->list_in_scope == &file_symbols
18158 && (cu->language == language_cplus
18159 || cu->language == language_java)
18160 ? &global_symbols : cu->list_in_scope);
18161
18162 /* The semantics of C++ state that "struct foo {
18163 ... }" also defines a typedef for "foo". A Java
18164 class declaration also defines a typedef for the
18165 class. */
18166 if (cu->language == language_cplus
18167 || cu->language == language_java
18168 || cu->language == language_ada)
18169 {
18170 /* The symbol's name is already allocated along
18171 with this objfile, so we don't need to
18172 duplicate it for the type. */
18173 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
18174 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
18175 }
18176 }
18177 }
18178 break;
18179 case DW_TAG_typedef:
18180 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18181 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18182 list_to_add = cu->list_in_scope;
18183 break;
18184 case DW_TAG_base_type:
18185 case DW_TAG_subrange_type:
18186 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18187 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18188 list_to_add = cu->list_in_scope;
18189 break;
18190 case DW_TAG_enumerator:
18191 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18192 if (attr)
18193 {
18194 dwarf2_const_value (attr, sym, cu);
18195 }
18196 {
18197 /* NOTE: carlton/2003-11-10: See comment above in the
18198 DW_TAG_class_type, etc. block. */
18199
18200 list_to_add = (cu->list_in_scope == &file_symbols
18201 && (cu->language == language_cplus
18202 || cu->language == language_java)
18203 ? &global_symbols : cu->list_in_scope);
18204 }
18205 break;
18206 case DW_TAG_imported_declaration:
18207 case DW_TAG_namespace:
18208 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18209 list_to_add = &global_symbols;
18210 break;
18211 case DW_TAG_module:
18212 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18213 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
18214 list_to_add = &global_symbols;
18215 break;
18216 case DW_TAG_common_block:
18217 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
18218 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
18219 add_symbol_to_list (sym, cu->list_in_scope);
18220 break;
18221 default:
18222 /* Not a tag we recognize. Hopefully we aren't processing
18223 trash data, but since we must specifically ignore things
18224 we don't recognize, there is nothing else we should do at
18225 this point. */
18226 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
18227 dwarf_tag_name (die->tag));
18228 break;
18229 }
18230
18231 if (suppress_add)
18232 {
18233 sym->hash_next = objfile->template_symbols;
18234 objfile->template_symbols = sym;
18235 list_to_add = NULL;
18236 }
18237
18238 if (list_to_add != NULL)
18239 add_symbol_to_list (sym, list_to_add);
18240
18241 /* For the benefit of old versions of GCC, check for anonymous
18242 namespaces based on the demangled name. */
18243 if (!cu->processing_has_namespace_info
18244 && cu->language == language_cplus)
18245 cp_scan_for_anonymous_namespaces (sym, objfile);
18246 }
18247 return (sym);
18248 }
18249
18250 /* A wrapper for new_symbol_full that always allocates a new symbol. */
18251
18252 static struct symbol *
18253 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
18254 {
18255 return new_symbol_full (die, type, cu, NULL);
18256 }
18257
18258 /* Given an attr with a DW_FORM_dataN value in host byte order,
18259 zero-extend it as appropriate for the symbol's type. The DWARF
18260 standard (v4) is not entirely clear about the meaning of using
18261 DW_FORM_dataN for a constant with a signed type, where the type is
18262 wider than the data. The conclusion of a discussion on the DWARF
18263 list was that this is unspecified. We choose to always zero-extend
18264 because that is the interpretation long in use by GCC. */
18265
18266 static gdb_byte *
18267 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
18268 struct dwarf2_cu *cu, LONGEST *value, int bits)
18269 {
18270 struct objfile *objfile = cu->objfile;
18271 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
18272 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
18273 LONGEST l = DW_UNSND (attr);
18274
18275 if (bits < sizeof (*value) * 8)
18276 {
18277 l &= ((LONGEST) 1 << bits) - 1;
18278 *value = l;
18279 }
18280 else if (bits == sizeof (*value) * 8)
18281 *value = l;
18282 else
18283 {
18284 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
18285 store_unsigned_integer (bytes, bits / 8, byte_order, l);
18286 return bytes;
18287 }
18288
18289 return NULL;
18290 }
18291
18292 /* Read a constant value from an attribute. Either set *VALUE, or if
18293 the value does not fit in *VALUE, set *BYTES - either already
18294 allocated on the objfile obstack, or newly allocated on OBSTACK,
18295 or, set *BATON, if we translated the constant to a location
18296 expression. */
18297
18298 static void
18299 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
18300 const char *name, struct obstack *obstack,
18301 struct dwarf2_cu *cu,
18302 LONGEST *value, const gdb_byte **bytes,
18303 struct dwarf2_locexpr_baton **baton)
18304 {
18305 struct objfile *objfile = cu->objfile;
18306 struct comp_unit_head *cu_header = &cu->header;
18307 struct dwarf_block *blk;
18308 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
18309 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
18310
18311 *value = 0;
18312 *bytes = NULL;
18313 *baton = NULL;
18314
18315 switch (attr->form)
18316 {
18317 case DW_FORM_addr:
18318 case DW_FORM_GNU_addr_index:
18319 {
18320 gdb_byte *data;
18321
18322 if (TYPE_LENGTH (type) != cu_header->addr_size)
18323 dwarf2_const_value_length_mismatch_complaint (name,
18324 cu_header->addr_size,
18325 TYPE_LENGTH (type));
18326 /* Symbols of this form are reasonably rare, so we just
18327 piggyback on the existing location code rather than writing
18328 a new implementation of symbol_computed_ops. */
18329 *baton = obstack_alloc (obstack, sizeof (struct dwarf2_locexpr_baton));
18330 (*baton)->per_cu = cu->per_cu;
18331 gdb_assert ((*baton)->per_cu);
18332
18333 (*baton)->size = 2 + cu_header->addr_size;
18334 data = obstack_alloc (obstack, (*baton)->size);
18335 (*baton)->data = data;
18336
18337 data[0] = DW_OP_addr;
18338 store_unsigned_integer (&data[1], cu_header->addr_size,
18339 byte_order, DW_ADDR (attr));
18340 data[cu_header->addr_size + 1] = DW_OP_stack_value;
18341 }
18342 break;
18343 case DW_FORM_string:
18344 case DW_FORM_strp:
18345 case DW_FORM_GNU_str_index:
18346 case DW_FORM_GNU_strp_alt:
18347 /* DW_STRING is already allocated on the objfile obstack, point
18348 directly to it. */
18349 *bytes = (const gdb_byte *) DW_STRING (attr);
18350 break;
18351 case DW_FORM_block1:
18352 case DW_FORM_block2:
18353 case DW_FORM_block4:
18354 case DW_FORM_block:
18355 case DW_FORM_exprloc:
18356 blk = DW_BLOCK (attr);
18357 if (TYPE_LENGTH (type) != blk->size)
18358 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
18359 TYPE_LENGTH (type));
18360 *bytes = blk->data;
18361 break;
18362
18363 /* The DW_AT_const_value attributes are supposed to carry the
18364 symbol's value "represented as it would be on the target
18365 architecture." By the time we get here, it's already been
18366 converted to host endianness, so we just need to sign- or
18367 zero-extend it as appropriate. */
18368 case DW_FORM_data1:
18369 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
18370 break;
18371 case DW_FORM_data2:
18372 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
18373 break;
18374 case DW_FORM_data4:
18375 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
18376 break;
18377 case DW_FORM_data8:
18378 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
18379 break;
18380
18381 case DW_FORM_sdata:
18382 *value = DW_SND (attr);
18383 break;
18384
18385 case DW_FORM_udata:
18386 *value = DW_UNSND (attr);
18387 break;
18388
18389 default:
18390 complaint (&symfile_complaints,
18391 _("unsupported const value attribute form: '%s'"),
18392 dwarf_form_name (attr->form));
18393 *value = 0;
18394 break;
18395 }
18396 }
18397
18398
18399 /* Copy constant value from an attribute to a symbol. */
18400
18401 static void
18402 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
18403 struct dwarf2_cu *cu)
18404 {
18405 struct objfile *objfile = cu->objfile;
18406 struct comp_unit_head *cu_header = &cu->header;
18407 LONGEST value;
18408 const gdb_byte *bytes;
18409 struct dwarf2_locexpr_baton *baton;
18410
18411 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
18412 SYMBOL_PRINT_NAME (sym),
18413 &objfile->objfile_obstack, cu,
18414 &value, &bytes, &baton);
18415
18416 if (baton != NULL)
18417 {
18418 SYMBOL_LOCATION_BATON (sym) = baton;
18419 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
18420 }
18421 else if (bytes != NULL)
18422 {
18423 SYMBOL_VALUE_BYTES (sym) = bytes;
18424 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
18425 }
18426 else
18427 {
18428 SYMBOL_VALUE (sym) = value;
18429 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
18430 }
18431 }
18432
18433 /* Return the type of the die in question using its DW_AT_type attribute. */
18434
18435 static struct type *
18436 die_type (struct die_info *die, struct dwarf2_cu *cu)
18437 {
18438 struct attribute *type_attr;
18439
18440 type_attr = dwarf2_attr (die, DW_AT_type, cu);
18441 if (!type_attr)
18442 {
18443 /* A missing DW_AT_type represents a void type. */
18444 return objfile_type (cu->objfile)->builtin_void;
18445 }
18446
18447 return lookup_die_type (die, type_attr, cu);
18448 }
18449
18450 /* True iff CU's producer generates GNAT Ada auxiliary information
18451 that allows to find parallel types through that information instead
18452 of having to do expensive parallel lookups by type name. */
18453
18454 static int
18455 need_gnat_info (struct dwarf2_cu *cu)
18456 {
18457 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
18458 of GNAT produces this auxiliary information, without any indication
18459 that it is produced. Part of enhancing the FSF version of GNAT
18460 to produce that information will be to put in place an indicator
18461 that we can use in order to determine whether the descriptive type
18462 info is available or not. One suggestion that has been made is
18463 to use a new attribute, attached to the CU die. For now, assume
18464 that the descriptive type info is not available. */
18465 return 0;
18466 }
18467
18468 /* Return the auxiliary type of the die in question using its
18469 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
18470 attribute is not present. */
18471
18472 static struct type *
18473 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
18474 {
18475 struct attribute *type_attr;
18476
18477 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
18478 if (!type_attr)
18479 return NULL;
18480
18481 return lookup_die_type (die, type_attr, cu);
18482 }
18483
18484 /* If DIE has a descriptive_type attribute, then set the TYPE's
18485 descriptive type accordingly. */
18486
18487 static void
18488 set_descriptive_type (struct type *type, struct die_info *die,
18489 struct dwarf2_cu *cu)
18490 {
18491 struct type *descriptive_type = die_descriptive_type (die, cu);
18492
18493 if (descriptive_type)
18494 {
18495 ALLOCATE_GNAT_AUX_TYPE (type);
18496 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
18497 }
18498 }
18499
18500 /* Return the containing type of the die in question using its
18501 DW_AT_containing_type attribute. */
18502
18503 static struct type *
18504 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
18505 {
18506 struct attribute *type_attr;
18507
18508 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
18509 if (!type_attr)
18510 error (_("Dwarf Error: Problem turning containing type into gdb type "
18511 "[in module %s]"), objfile_name (cu->objfile));
18512
18513 return lookup_die_type (die, type_attr, cu);
18514 }
18515
18516 /* Return an error marker type to use for the ill formed type in DIE/CU. */
18517
18518 static struct type *
18519 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
18520 {
18521 struct objfile *objfile = dwarf2_per_objfile->objfile;
18522 char *message, *saved;
18523
18524 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
18525 objfile_name (objfile),
18526 cu->header.offset.sect_off,
18527 die->offset.sect_off);
18528 saved = obstack_copy0 (&objfile->objfile_obstack,
18529 message, strlen (message));
18530 xfree (message);
18531
18532 return init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
18533 }
18534
18535 /* Look up the type of DIE in CU using its type attribute ATTR.
18536 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
18537 DW_AT_containing_type.
18538 If there is no type substitute an error marker. */
18539
18540 static struct type *
18541 lookup_die_type (struct die_info *die, const struct attribute *attr,
18542 struct dwarf2_cu *cu)
18543 {
18544 struct objfile *objfile = cu->objfile;
18545 struct type *this_type;
18546
18547 gdb_assert (attr->name == DW_AT_type
18548 || attr->name == DW_AT_GNAT_descriptive_type
18549 || attr->name == DW_AT_containing_type);
18550
18551 /* First see if we have it cached. */
18552
18553 if (attr->form == DW_FORM_GNU_ref_alt)
18554 {
18555 struct dwarf2_per_cu_data *per_cu;
18556 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18557
18558 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
18559 this_type = get_die_type_at_offset (offset, per_cu);
18560 }
18561 else if (attr_form_is_ref (attr))
18562 {
18563 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18564
18565 this_type = get_die_type_at_offset (offset, cu->per_cu);
18566 }
18567 else if (attr->form == DW_FORM_ref_sig8)
18568 {
18569 ULONGEST signature = DW_SIGNATURE (attr);
18570
18571 return get_signatured_type (die, signature, cu);
18572 }
18573 else
18574 {
18575 complaint (&symfile_complaints,
18576 _("Dwarf Error: Bad type attribute %s in DIE"
18577 " at 0x%x [in module %s]"),
18578 dwarf_attr_name (attr->name), die->offset.sect_off,
18579 objfile_name (objfile));
18580 return build_error_marker_type (cu, die);
18581 }
18582
18583 /* If not cached we need to read it in. */
18584
18585 if (this_type == NULL)
18586 {
18587 struct die_info *type_die = NULL;
18588 struct dwarf2_cu *type_cu = cu;
18589
18590 if (attr_form_is_ref (attr))
18591 type_die = follow_die_ref (die, attr, &type_cu);
18592 if (type_die == NULL)
18593 return build_error_marker_type (cu, die);
18594 /* If we find the type now, it's probably because the type came
18595 from an inter-CU reference and the type's CU got expanded before
18596 ours. */
18597 this_type = read_type_die (type_die, type_cu);
18598 }
18599
18600 /* If we still don't have a type use an error marker. */
18601
18602 if (this_type == NULL)
18603 return build_error_marker_type (cu, die);
18604
18605 return this_type;
18606 }
18607
18608 /* Return the type in DIE, CU.
18609 Returns NULL for invalid types.
18610
18611 This first does a lookup in die_type_hash,
18612 and only reads the die in if necessary.
18613
18614 NOTE: This can be called when reading in partial or full symbols. */
18615
18616 static struct type *
18617 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
18618 {
18619 struct type *this_type;
18620
18621 this_type = get_die_type (die, cu);
18622 if (this_type)
18623 return this_type;
18624
18625 return read_type_die_1 (die, cu);
18626 }
18627
18628 /* Read the type in DIE, CU.
18629 Returns NULL for invalid types. */
18630
18631 static struct type *
18632 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
18633 {
18634 struct type *this_type = NULL;
18635
18636 switch (die->tag)
18637 {
18638 case DW_TAG_class_type:
18639 case DW_TAG_interface_type:
18640 case DW_TAG_structure_type:
18641 case DW_TAG_union_type:
18642 this_type = read_structure_type (die, cu);
18643 break;
18644 case DW_TAG_enumeration_type:
18645 this_type = read_enumeration_type (die, cu);
18646 break;
18647 case DW_TAG_subprogram:
18648 case DW_TAG_subroutine_type:
18649 case DW_TAG_inlined_subroutine:
18650 this_type = read_subroutine_type (die, cu);
18651 break;
18652 case DW_TAG_array_type:
18653 this_type = read_array_type (die, cu);
18654 break;
18655 case DW_TAG_set_type:
18656 this_type = read_set_type (die, cu);
18657 break;
18658 case DW_TAG_pointer_type:
18659 this_type = read_tag_pointer_type (die, cu);
18660 break;
18661 case DW_TAG_ptr_to_member_type:
18662 this_type = read_tag_ptr_to_member_type (die, cu);
18663 break;
18664 case DW_TAG_reference_type:
18665 this_type = read_tag_reference_type (die, cu);
18666 break;
18667 case DW_TAG_const_type:
18668 this_type = read_tag_const_type (die, cu);
18669 break;
18670 case DW_TAG_volatile_type:
18671 this_type = read_tag_volatile_type (die, cu);
18672 break;
18673 case DW_TAG_restrict_type:
18674 this_type = read_tag_restrict_type (die, cu);
18675 break;
18676 case DW_TAG_string_type:
18677 this_type = read_tag_string_type (die, cu);
18678 break;
18679 case DW_TAG_typedef:
18680 this_type = read_typedef (die, cu);
18681 break;
18682 case DW_TAG_subrange_type:
18683 this_type = read_subrange_type (die, cu);
18684 break;
18685 case DW_TAG_base_type:
18686 this_type = read_base_type (die, cu);
18687 break;
18688 case DW_TAG_unspecified_type:
18689 this_type = read_unspecified_type (die, cu);
18690 break;
18691 case DW_TAG_namespace:
18692 this_type = read_namespace_type (die, cu);
18693 break;
18694 case DW_TAG_module:
18695 this_type = read_module_type (die, cu);
18696 break;
18697 default:
18698 complaint (&symfile_complaints,
18699 _("unexpected tag in read_type_die: '%s'"),
18700 dwarf_tag_name (die->tag));
18701 break;
18702 }
18703
18704 return this_type;
18705 }
18706
18707 /* See if we can figure out if the class lives in a namespace. We do
18708 this by looking for a member function; its demangled name will
18709 contain namespace info, if there is any.
18710 Return the computed name or NULL.
18711 Space for the result is allocated on the objfile's obstack.
18712 This is the full-die version of guess_partial_die_structure_name.
18713 In this case we know DIE has no useful parent. */
18714
18715 static char *
18716 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
18717 {
18718 struct die_info *spec_die;
18719 struct dwarf2_cu *spec_cu;
18720 struct die_info *child;
18721
18722 spec_cu = cu;
18723 spec_die = die_specification (die, &spec_cu);
18724 if (spec_die != NULL)
18725 {
18726 die = spec_die;
18727 cu = spec_cu;
18728 }
18729
18730 for (child = die->child;
18731 child != NULL;
18732 child = child->sibling)
18733 {
18734 if (child->tag == DW_TAG_subprogram)
18735 {
18736 struct attribute *attr;
18737
18738 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
18739 if (attr == NULL)
18740 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
18741 if (attr != NULL)
18742 {
18743 char *actual_name
18744 = language_class_name_from_physname (cu->language_defn,
18745 DW_STRING (attr));
18746 char *name = NULL;
18747
18748 if (actual_name != NULL)
18749 {
18750 const char *die_name = dwarf2_name (die, cu);
18751
18752 if (die_name != NULL
18753 && strcmp (die_name, actual_name) != 0)
18754 {
18755 /* Strip off the class name from the full name.
18756 We want the prefix. */
18757 int die_name_len = strlen (die_name);
18758 int actual_name_len = strlen (actual_name);
18759
18760 /* Test for '::' as a sanity check. */
18761 if (actual_name_len > die_name_len + 2
18762 && actual_name[actual_name_len
18763 - die_name_len - 1] == ':')
18764 name =
18765 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
18766 actual_name,
18767 actual_name_len - die_name_len - 2);
18768 }
18769 }
18770 xfree (actual_name);
18771 return name;
18772 }
18773 }
18774 }
18775
18776 return NULL;
18777 }
18778
18779 /* GCC might emit a nameless typedef that has a linkage name. Determine the
18780 prefix part in such case. See
18781 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18782
18783 static char *
18784 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
18785 {
18786 struct attribute *attr;
18787 char *base;
18788
18789 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
18790 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
18791 return NULL;
18792
18793 attr = dwarf2_attr (die, DW_AT_name, cu);
18794 if (attr != NULL && DW_STRING (attr) != NULL)
18795 return NULL;
18796
18797 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
18798 if (attr == NULL)
18799 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
18800 if (attr == NULL || DW_STRING (attr) == NULL)
18801 return NULL;
18802
18803 /* dwarf2_name had to be already called. */
18804 gdb_assert (DW_STRING_IS_CANONICAL (attr));
18805
18806 /* Strip the base name, keep any leading namespaces/classes. */
18807 base = strrchr (DW_STRING (attr), ':');
18808 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
18809 return "";
18810
18811 return obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
18812 DW_STRING (attr), &base[-1] - DW_STRING (attr));
18813 }
18814
18815 /* Return the name of the namespace/class that DIE is defined within,
18816 or "" if we can't tell. The caller should not xfree the result.
18817
18818 For example, if we're within the method foo() in the following
18819 code:
18820
18821 namespace N {
18822 class C {
18823 void foo () {
18824 }
18825 };
18826 }
18827
18828 then determine_prefix on foo's die will return "N::C". */
18829
18830 static const char *
18831 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
18832 {
18833 struct die_info *parent, *spec_die;
18834 struct dwarf2_cu *spec_cu;
18835 struct type *parent_type;
18836 char *retval;
18837
18838 if (cu->language != language_cplus && cu->language != language_java
18839 && cu->language != language_fortran)
18840 return "";
18841
18842 retval = anonymous_struct_prefix (die, cu);
18843 if (retval)
18844 return retval;
18845
18846 /* We have to be careful in the presence of DW_AT_specification.
18847 For example, with GCC 3.4, given the code
18848
18849 namespace N {
18850 void foo() {
18851 // Definition of N::foo.
18852 }
18853 }
18854
18855 then we'll have a tree of DIEs like this:
18856
18857 1: DW_TAG_compile_unit
18858 2: DW_TAG_namespace // N
18859 3: DW_TAG_subprogram // declaration of N::foo
18860 4: DW_TAG_subprogram // definition of N::foo
18861 DW_AT_specification // refers to die #3
18862
18863 Thus, when processing die #4, we have to pretend that we're in
18864 the context of its DW_AT_specification, namely the contex of die
18865 #3. */
18866 spec_cu = cu;
18867 spec_die = die_specification (die, &spec_cu);
18868 if (spec_die == NULL)
18869 parent = die->parent;
18870 else
18871 {
18872 parent = spec_die->parent;
18873 cu = spec_cu;
18874 }
18875
18876 if (parent == NULL)
18877 return "";
18878 else if (parent->building_fullname)
18879 {
18880 const char *name;
18881 const char *parent_name;
18882
18883 /* It has been seen on RealView 2.2 built binaries,
18884 DW_TAG_template_type_param types actually _defined_ as
18885 children of the parent class:
18886
18887 enum E {};
18888 template class <class Enum> Class{};
18889 Class<enum E> class_e;
18890
18891 1: DW_TAG_class_type (Class)
18892 2: DW_TAG_enumeration_type (E)
18893 3: DW_TAG_enumerator (enum1:0)
18894 3: DW_TAG_enumerator (enum2:1)
18895 ...
18896 2: DW_TAG_template_type_param
18897 DW_AT_type DW_FORM_ref_udata (E)
18898
18899 Besides being broken debug info, it can put GDB into an
18900 infinite loop. Consider:
18901
18902 When we're building the full name for Class<E>, we'll start
18903 at Class, and go look over its template type parameters,
18904 finding E. We'll then try to build the full name of E, and
18905 reach here. We're now trying to build the full name of E,
18906 and look over the parent DIE for containing scope. In the
18907 broken case, if we followed the parent DIE of E, we'd again
18908 find Class, and once again go look at its template type
18909 arguments, etc., etc. Simply don't consider such parent die
18910 as source-level parent of this die (it can't be, the language
18911 doesn't allow it), and break the loop here. */
18912 name = dwarf2_name (die, cu);
18913 parent_name = dwarf2_name (parent, cu);
18914 complaint (&symfile_complaints,
18915 _("template param type '%s' defined within parent '%s'"),
18916 name ? name : "<unknown>",
18917 parent_name ? parent_name : "<unknown>");
18918 return "";
18919 }
18920 else
18921 switch (parent->tag)
18922 {
18923 case DW_TAG_namespace:
18924 parent_type = read_type_die (parent, cu);
18925 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
18926 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
18927 Work around this problem here. */
18928 if (cu->language == language_cplus
18929 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
18930 return "";
18931 /* We give a name to even anonymous namespaces. */
18932 return TYPE_TAG_NAME (parent_type);
18933 case DW_TAG_class_type:
18934 case DW_TAG_interface_type:
18935 case DW_TAG_structure_type:
18936 case DW_TAG_union_type:
18937 case DW_TAG_module:
18938 parent_type = read_type_die (parent, cu);
18939 if (TYPE_TAG_NAME (parent_type) != NULL)
18940 return TYPE_TAG_NAME (parent_type);
18941 else
18942 /* An anonymous structure is only allowed non-static data
18943 members; no typedefs, no member functions, et cetera.
18944 So it does not need a prefix. */
18945 return "";
18946 case DW_TAG_compile_unit:
18947 case DW_TAG_partial_unit:
18948 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
18949 if (cu->language == language_cplus
18950 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
18951 && die->child != NULL
18952 && (die->tag == DW_TAG_class_type
18953 || die->tag == DW_TAG_structure_type
18954 || die->tag == DW_TAG_union_type))
18955 {
18956 char *name = guess_full_die_structure_name (die, cu);
18957 if (name != NULL)
18958 return name;
18959 }
18960 return "";
18961 case DW_TAG_enumeration_type:
18962 parent_type = read_type_die (parent, cu);
18963 if (TYPE_DECLARED_CLASS (parent_type))
18964 {
18965 if (TYPE_TAG_NAME (parent_type) != NULL)
18966 return TYPE_TAG_NAME (parent_type);
18967 return "";
18968 }
18969 /* Fall through. */
18970 default:
18971 return determine_prefix (parent, cu);
18972 }
18973 }
18974
18975 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
18976 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
18977 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
18978 an obconcat, otherwise allocate storage for the result. The CU argument is
18979 used to determine the language and hence, the appropriate separator. */
18980
18981 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
18982
18983 static char *
18984 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
18985 int physname, struct dwarf2_cu *cu)
18986 {
18987 const char *lead = "";
18988 const char *sep;
18989
18990 if (suffix == NULL || suffix[0] == '\0'
18991 || prefix == NULL || prefix[0] == '\0')
18992 sep = "";
18993 else if (cu->language == language_java)
18994 sep = ".";
18995 else if (cu->language == language_fortran && physname)
18996 {
18997 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
18998 DW_AT_MIPS_linkage_name is preferred and used instead. */
18999
19000 lead = "__";
19001 sep = "_MOD_";
19002 }
19003 else
19004 sep = "::";
19005
19006 if (prefix == NULL)
19007 prefix = "";
19008 if (suffix == NULL)
19009 suffix = "";
19010
19011 if (obs == NULL)
19012 {
19013 char *retval
19014 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
19015
19016 strcpy (retval, lead);
19017 strcat (retval, prefix);
19018 strcat (retval, sep);
19019 strcat (retval, suffix);
19020 return retval;
19021 }
19022 else
19023 {
19024 /* We have an obstack. */
19025 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
19026 }
19027 }
19028
19029 /* Return sibling of die, NULL if no sibling. */
19030
19031 static struct die_info *
19032 sibling_die (struct die_info *die)
19033 {
19034 return die->sibling;
19035 }
19036
19037 /* Get name of a die, return NULL if not found. */
19038
19039 static const char *
19040 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
19041 struct obstack *obstack)
19042 {
19043 if (name && cu->language == language_cplus)
19044 {
19045 char *canon_name = cp_canonicalize_string (name);
19046
19047 if (canon_name != NULL)
19048 {
19049 if (strcmp (canon_name, name) != 0)
19050 name = obstack_copy0 (obstack, canon_name, strlen (canon_name));
19051 xfree (canon_name);
19052 }
19053 }
19054
19055 return name;
19056 }
19057
19058 /* Get name of a die, return NULL if not found. */
19059
19060 static const char *
19061 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
19062 {
19063 struct attribute *attr;
19064
19065 attr = dwarf2_attr (die, DW_AT_name, cu);
19066 if ((!attr || !DW_STRING (attr))
19067 && die->tag != DW_TAG_class_type
19068 && die->tag != DW_TAG_interface_type
19069 && die->tag != DW_TAG_structure_type
19070 && die->tag != DW_TAG_union_type)
19071 return NULL;
19072
19073 switch (die->tag)
19074 {
19075 case DW_TAG_compile_unit:
19076 case DW_TAG_partial_unit:
19077 /* Compilation units have a DW_AT_name that is a filename, not
19078 a source language identifier. */
19079 case DW_TAG_enumeration_type:
19080 case DW_TAG_enumerator:
19081 /* These tags always have simple identifiers already; no need
19082 to canonicalize them. */
19083 return DW_STRING (attr);
19084
19085 case DW_TAG_subprogram:
19086 /* Java constructors will all be named "<init>", so return
19087 the class name when we see this special case. */
19088 if (cu->language == language_java
19089 && DW_STRING (attr) != NULL
19090 && strcmp (DW_STRING (attr), "<init>") == 0)
19091 {
19092 struct dwarf2_cu *spec_cu = cu;
19093 struct die_info *spec_die;
19094
19095 /* GCJ will output '<init>' for Java constructor names.
19096 For this special case, return the name of the parent class. */
19097
19098 /* GCJ may output subprogram DIEs with AT_specification set.
19099 If so, use the name of the specified DIE. */
19100 spec_die = die_specification (die, &spec_cu);
19101 if (spec_die != NULL)
19102 return dwarf2_name (spec_die, spec_cu);
19103
19104 do
19105 {
19106 die = die->parent;
19107 if (die->tag == DW_TAG_class_type)
19108 return dwarf2_name (die, cu);
19109 }
19110 while (die->tag != DW_TAG_compile_unit
19111 && die->tag != DW_TAG_partial_unit);
19112 }
19113 break;
19114
19115 case DW_TAG_class_type:
19116 case DW_TAG_interface_type:
19117 case DW_TAG_structure_type:
19118 case DW_TAG_union_type:
19119 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
19120 structures or unions. These were of the form "._%d" in GCC 4.1,
19121 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
19122 and GCC 4.4. We work around this problem by ignoring these. */
19123 if (attr && DW_STRING (attr)
19124 && (strncmp (DW_STRING (attr), "._", 2) == 0
19125 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0))
19126 return NULL;
19127
19128 /* GCC might emit a nameless typedef that has a linkage name. See
19129 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19130 if (!attr || DW_STRING (attr) == NULL)
19131 {
19132 char *demangled = NULL;
19133
19134 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19135 if (attr == NULL)
19136 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19137
19138 if (attr == NULL || DW_STRING (attr) == NULL)
19139 return NULL;
19140
19141 /* Avoid demangling DW_STRING (attr) the second time on a second
19142 call for the same DIE. */
19143 if (!DW_STRING_IS_CANONICAL (attr))
19144 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
19145
19146 if (demangled)
19147 {
19148 char *base;
19149
19150 /* FIXME: we already did this for the partial symbol... */
19151 DW_STRING (attr)
19152 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19153 demangled, strlen (demangled));
19154 DW_STRING_IS_CANONICAL (attr) = 1;
19155 xfree (demangled);
19156
19157 /* Strip any leading namespaces/classes, keep only the base name.
19158 DW_AT_name for named DIEs does not contain the prefixes. */
19159 base = strrchr (DW_STRING (attr), ':');
19160 if (base && base > DW_STRING (attr) && base[-1] == ':')
19161 return &base[1];
19162 else
19163 return DW_STRING (attr);
19164 }
19165 }
19166 break;
19167
19168 default:
19169 break;
19170 }
19171
19172 if (!DW_STRING_IS_CANONICAL (attr))
19173 {
19174 DW_STRING (attr)
19175 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
19176 &cu->objfile->per_bfd->storage_obstack);
19177 DW_STRING_IS_CANONICAL (attr) = 1;
19178 }
19179 return DW_STRING (attr);
19180 }
19181
19182 /* Return the die that this die in an extension of, or NULL if there
19183 is none. *EXT_CU is the CU containing DIE on input, and the CU
19184 containing the return value on output. */
19185
19186 static struct die_info *
19187 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
19188 {
19189 struct attribute *attr;
19190
19191 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
19192 if (attr == NULL)
19193 return NULL;
19194
19195 return follow_die_ref (die, attr, ext_cu);
19196 }
19197
19198 /* Convert a DIE tag into its string name. */
19199
19200 static const char *
19201 dwarf_tag_name (unsigned tag)
19202 {
19203 const char *name = get_DW_TAG_name (tag);
19204
19205 if (name == NULL)
19206 return "DW_TAG_<unknown>";
19207
19208 return name;
19209 }
19210
19211 /* Convert a DWARF attribute code into its string name. */
19212
19213 static const char *
19214 dwarf_attr_name (unsigned attr)
19215 {
19216 const char *name;
19217
19218 #ifdef MIPS /* collides with DW_AT_HP_block_index */
19219 if (attr == DW_AT_MIPS_fde)
19220 return "DW_AT_MIPS_fde";
19221 #else
19222 if (attr == DW_AT_HP_block_index)
19223 return "DW_AT_HP_block_index";
19224 #endif
19225
19226 name = get_DW_AT_name (attr);
19227
19228 if (name == NULL)
19229 return "DW_AT_<unknown>";
19230
19231 return name;
19232 }
19233
19234 /* Convert a DWARF value form code into its string name. */
19235
19236 static const char *
19237 dwarf_form_name (unsigned form)
19238 {
19239 const char *name = get_DW_FORM_name (form);
19240
19241 if (name == NULL)
19242 return "DW_FORM_<unknown>";
19243
19244 return name;
19245 }
19246
19247 static char *
19248 dwarf_bool_name (unsigned mybool)
19249 {
19250 if (mybool)
19251 return "TRUE";
19252 else
19253 return "FALSE";
19254 }
19255
19256 /* Convert a DWARF type code into its string name. */
19257
19258 static const char *
19259 dwarf_type_encoding_name (unsigned enc)
19260 {
19261 const char *name = get_DW_ATE_name (enc);
19262
19263 if (name == NULL)
19264 return "DW_ATE_<unknown>";
19265
19266 return name;
19267 }
19268
19269 static void
19270 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
19271 {
19272 unsigned int i;
19273
19274 print_spaces (indent, f);
19275 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
19276 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
19277
19278 if (die->parent != NULL)
19279 {
19280 print_spaces (indent, f);
19281 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
19282 die->parent->offset.sect_off);
19283 }
19284
19285 print_spaces (indent, f);
19286 fprintf_unfiltered (f, " has children: %s\n",
19287 dwarf_bool_name (die->child != NULL));
19288
19289 print_spaces (indent, f);
19290 fprintf_unfiltered (f, " attributes:\n");
19291
19292 for (i = 0; i < die->num_attrs; ++i)
19293 {
19294 print_spaces (indent, f);
19295 fprintf_unfiltered (f, " %s (%s) ",
19296 dwarf_attr_name (die->attrs[i].name),
19297 dwarf_form_name (die->attrs[i].form));
19298
19299 switch (die->attrs[i].form)
19300 {
19301 case DW_FORM_addr:
19302 case DW_FORM_GNU_addr_index:
19303 fprintf_unfiltered (f, "address: ");
19304 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
19305 break;
19306 case DW_FORM_block2:
19307 case DW_FORM_block4:
19308 case DW_FORM_block:
19309 case DW_FORM_block1:
19310 fprintf_unfiltered (f, "block: size %s",
19311 pulongest (DW_BLOCK (&die->attrs[i])->size));
19312 break;
19313 case DW_FORM_exprloc:
19314 fprintf_unfiltered (f, "expression: size %s",
19315 pulongest (DW_BLOCK (&die->attrs[i])->size));
19316 break;
19317 case DW_FORM_ref_addr:
19318 fprintf_unfiltered (f, "ref address: ");
19319 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19320 break;
19321 case DW_FORM_GNU_ref_alt:
19322 fprintf_unfiltered (f, "alt ref address: ");
19323 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19324 break;
19325 case DW_FORM_ref1:
19326 case DW_FORM_ref2:
19327 case DW_FORM_ref4:
19328 case DW_FORM_ref8:
19329 case DW_FORM_ref_udata:
19330 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
19331 (long) (DW_UNSND (&die->attrs[i])));
19332 break;
19333 case DW_FORM_data1:
19334 case DW_FORM_data2:
19335 case DW_FORM_data4:
19336 case DW_FORM_data8:
19337 case DW_FORM_udata:
19338 case DW_FORM_sdata:
19339 fprintf_unfiltered (f, "constant: %s",
19340 pulongest (DW_UNSND (&die->attrs[i])));
19341 break;
19342 case DW_FORM_sec_offset:
19343 fprintf_unfiltered (f, "section offset: %s",
19344 pulongest (DW_UNSND (&die->attrs[i])));
19345 break;
19346 case DW_FORM_ref_sig8:
19347 fprintf_unfiltered (f, "signature: %s",
19348 hex_string (DW_SIGNATURE (&die->attrs[i])));
19349 break;
19350 case DW_FORM_string:
19351 case DW_FORM_strp:
19352 case DW_FORM_GNU_str_index:
19353 case DW_FORM_GNU_strp_alt:
19354 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
19355 DW_STRING (&die->attrs[i])
19356 ? DW_STRING (&die->attrs[i]) : "",
19357 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
19358 break;
19359 case DW_FORM_flag:
19360 if (DW_UNSND (&die->attrs[i]))
19361 fprintf_unfiltered (f, "flag: TRUE");
19362 else
19363 fprintf_unfiltered (f, "flag: FALSE");
19364 break;
19365 case DW_FORM_flag_present:
19366 fprintf_unfiltered (f, "flag: TRUE");
19367 break;
19368 case DW_FORM_indirect:
19369 /* The reader will have reduced the indirect form to
19370 the "base form" so this form should not occur. */
19371 fprintf_unfiltered (f,
19372 "unexpected attribute form: DW_FORM_indirect");
19373 break;
19374 default:
19375 fprintf_unfiltered (f, "unsupported attribute form: %d.",
19376 die->attrs[i].form);
19377 break;
19378 }
19379 fprintf_unfiltered (f, "\n");
19380 }
19381 }
19382
19383 static void
19384 dump_die_for_error (struct die_info *die)
19385 {
19386 dump_die_shallow (gdb_stderr, 0, die);
19387 }
19388
19389 static void
19390 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
19391 {
19392 int indent = level * 4;
19393
19394 gdb_assert (die != NULL);
19395
19396 if (level >= max_level)
19397 return;
19398
19399 dump_die_shallow (f, indent, die);
19400
19401 if (die->child != NULL)
19402 {
19403 print_spaces (indent, f);
19404 fprintf_unfiltered (f, " Children:");
19405 if (level + 1 < max_level)
19406 {
19407 fprintf_unfiltered (f, "\n");
19408 dump_die_1 (f, level + 1, max_level, die->child);
19409 }
19410 else
19411 {
19412 fprintf_unfiltered (f,
19413 " [not printed, max nesting level reached]\n");
19414 }
19415 }
19416
19417 if (die->sibling != NULL && level > 0)
19418 {
19419 dump_die_1 (f, level, max_level, die->sibling);
19420 }
19421 }
19422
19423 /* This is called from the pdie macro in gdbinit.in.
19424 It's not static so gcc will keep a copy callable from gdb. */
19425
19426 void
19427 dump_die (struct die_info *die, int max_level)
19428 {
19429 dump_die_1 (gdb_stdlog, 0, max_level, die);
19430 }
19431
19432 static void
19433 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
19434 {
19435 void **slot;
19436
19437 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
19438 INSERT);
19439
19440 *slot = die;
19441 }
19442
19443 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
19444 required kind. */
19445
19446 static sect_offset
19447 dwarf2_get_ref_die_offset (const struct attribute *attr)
19448 {
19449 sect_offset retval = { DW_UNSND (attr) };
19450
19451 if (attr_form_is_ref (attr))
19452 return retval;
19453
19454 retval.sect_off = 0;
19455 complaint (&symfile_complaints,
19456 _("unsupported die ref attribute form: '%s'"),
19457 dwarf_form_name (attr->form));
19458 return retval;
19459 }
19460
19461 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
19462 * the value held by the attribute is not constant. */
19463
19464 static LONGEST
19465 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
19466 {
19467 if (attr->form == DW_FORM_sdata)
19468 return DW_SND (attr);
19469 else if (attr->form == DW_FORM_udata
19470 || attr->form == DW_FORM_data1
19471 || attr->form == DW_FORM_data2
19472 || attr->form == DW_FORM_data4
19473 || attr->form == DW_FORM_data8)
19474 return DW_UNSND (attr);
19475 else
19476 {
19477 complaint (&symfile_complaints,
19478 _("Attribute value is not a constant (%s)"),
19479 dwarf_form_name (attr->form));
19480 return default_value;
19481 }
19482 }
19483
19484 /* Follow reference or signature attribute ATTR of SRC_DIE.
19485 On entry *REF_CU is the CU of SRC_DIE.
19486 On exit *REF_CU is the CU of the result. */
19487
19488 static struct die_info *
19489 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
19490 struct dwarf2_cu **ref_cu)
19491 {
19492 struct die_info *die;
19493
19494 if (attr_form_is_ref (attr))
19495 die = follow_die_ref (src_die, attr, ref_cu);
19496 else if (attr->form == DW_FORM_ref_sig8)
19497 die = follow_die_sig (src_die, attr, ref_cu);
19498 else
19499 {
19500 dump_die_for_error (src_die);
19501 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
19502 objfile_name ((*ref_cu)->objfile));
19503 }
19504
19505 return die;
19506 }
19507
19508 /* Follow reference OFFSET.
19509 On entry *REF_CU is the CU of the source die referencing OFFSET.
19510 On exit *REF_CU is the CU of the result.
19511 Returns NULL if OFFSET is invalid. */
19512
19513 static struct die_info *
19514 follow_die_offset (sect_offset offset, int offset_in_dwz,
19515 struct dwarf2_cu **ref_cu)
19516 {
19517 struct die_info temp_die;
19518 struct dwarf2_cu *target_cu, *cu = *ref_cu;
19519
19520 gdb_assert (cu->per_cu != NULL);
19521
19522 target_cu = cu;
19523
19524 if (cu->per_cu->is_debug_types)
19525 {
19526 /* .debug_types CUs cannot reference anything outside their CU.
19527 If they need to, they have to reference a signatured type via
19528 DW_FORM_ref_sig8. */
19529 if (! offset_in_cu_p (&cu->header, offset))
19530 return NULL;
19531 }
19532 else if (offset_in_dwz != cu->per_cu->is_dwz
19533 || ! offset_in_cu_p (&cu->header, offset))
19534 {
19535 struct dwarf2_per_cu_data *per_cu;
19536
19537 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
19538 cu->objfile);
19539
19540 /* If necessary, add it to the queue and load its DIEs. */
19541 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
19542 load_full_comp_unit (per_cu, cu->language);
19543
19544 target_cu = per_cu->cu;
19545 }
19546 else if (cu->dies == NULL)
19547 {
19548 /* We're loading full DIEs during partial symbol reading. */
19549 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
19550 load_full_comp_unit (cu->per_cu, language_minimal);
19551 }
19552
19553 *ref_cu = target_cu;
19554 temp_die.offset = offset;
19555 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
19556 }
19557
19558 /* Follow reference attribute ATTR of SRC_DIE.
19559 On entry *REF_CU is the CU of SRC_DIE.
19560 On exit *REF_CU is the CU of the result. */
19561
19562 static struct die_info *
19563 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
19564 struct dwarf2_cu **ref_cu)
19565 {
19566 sect_offset offset = dwarf2_get_ref_die_offset (attr);
19567 struct dwarf2_cu *cu = *ref_cu;
19568 struct die_info *die;
19569
19570 die = follow_die_offset (offset,
19571 (attr->form == DW_FORM_GNU_ref_alt
19572 || cu->per_cu->is_dwz),
19573 ref_cu);
19574 if (!die)
19575 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
19576 "at 0x%x [in module %s]"),
19577 offset.sect_off, src_die->offset.sect_off,
19578 objfile_name (cu->objfile));
19579
19580 return die;
19581 }
19582
19583 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
19584 Returned value is intended for DW_OP_call*. Returned
19585 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
19586
19587 struct dwarf2_locexpr_baton
19588 dwarf2_fetch_die_loc_sect_off (sect_offset offset,
19589 struct dwarf2_per_cu_data *per_cu,
19590 CORE_ADDR (*get_frame_pc) (void *baton),
19591 void *baton)
19592 {
19593 struct dwarf2_cu *cu;
19594 struct die_info *die;
19595 struct attribute *attr;
19596 struct dwarf2_locexpr_baton retval;
19597
19598 dw2_setup (per_cu->objfile);
19599
19600 if (per_cu->cu == NULL)
19601 load_cu (per_cu);
19602 cu = per_cu->cu;
19603
19604 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
19605 if (!die)
19606 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
19607 offset.sect_off, objfile_name (per_cu->objfile));
19608
19609 attr = dwarf2_attr (die, DW_AT_location, cu);
19610 if (!attr)
19611 {
19612 /* DWARF: "If there is no such attribute, then there is no effect.".
19613 DATA is ignored if SIZE is 0. */
19614
19615 retval.data = NULL;
19616 retval.size = 0;
19617 }
19618 else if (attr_form_is_section_offset (attr))
19619 {
19620 struct dwarf2_loclist_baton loclist_baton;
19621 CORE_ADDR pc = (*get_frame_pc) (baton);
19622 size_t size;
19623
19624 fill_in_loclist_baton (cu, &loclist_baton, attr);
19625
19626 retval.data = dwarf2_find_location_expression (&loclist_baton,
19627 &size, pc);
19628 retval.size = size;
19629 }
19630 else
19631 {
19632 if (!attr_form_is_block (attr))
19633 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
19634 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
19635 offset.sect_off, objfile_name (per_cu->objfile));
19636
19637 retval.data = DW_BLOCK (attr)->data;
19638 retval.size = DW_BLOCK (attr)->size;
19639 }
19640 retval.per_cu = cu->per_cu;
19641
19642 age_cached_comp_units ();
19643
19644 return retval;
19645 }
19646
19647 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
19648 offset. */
19649
19650 struct dwarf2_locexpr_baton
19651 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
19652 struct dwarf2_per_cu_data *per_cu,
19653 CORE_ADDR (*get_frame_pc) (void *baton),
19654 void *baton)
19655 {
19656 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
19657
19658 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
19659 }
19660
19661 /* Write a constant of a given type as target-ordered bytes into
19662 OBSTACK. */
19663
19664 static const gdb_byte *
19665 write_constant_as_bytes (struct obstack *obstack,
19666 enum bfd_endian byte_order,
19667 struct type *type,
19668 ULONGEST value,
19669 LONGEST *len)
19670 {
19671 gdb_byte *result;
19672
19673 *len = TYPE_LENGTH (type);
19674 result = obstack_alloc (obstack, *len);
19675 store_unsigned_integer (result, *len, byte_order, value);
19676
19677 return result;
19678 }
19679
19680 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
19681 pointer to the constant bytes and set LEN to the length of the
19682 data. If memory is needed, allocate it on OBSTACK. If the DIE
19683 does not have a DW_AT_const_value, return NULL. */
19684
19685 const gdb_byte *
19686 dwarf2_fetch_constant_bytes (sect_offset offset,
19687 struct dwarf2_per_cu_data *per_cu,
19688 struct obstack *obstack,
19689 LONGEST *len)
19690 {
19691 struct dwarf2_cu *cu;
19692 struct die_info *die;
19693 struct attribute *attr;
19694 const gdb_byte *result = NULL;
19695 struct type *type;
19696 LONGEST value;
19697 enum bfd_endian byte_order;
19698
19699 dw2_setup (per_cu->objfile);
19700
19701 if (per_cu->cu == NULL)
19702 load_cu (per_cu);
19703 cu = per_cu->cu;
19704
19705 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
19706 if (!die)
19707 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
19708 offset.sect_off, objfile_name (per_cu->objfile));
19709
19710
19711 attr = dwarf2_attr (die, DW_AT_const_value, cu);
19712 if (attr == NULL)
19713 return NULL;
19714
19715 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
19716 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
19717
19718 switch (attr->form)
19719 {
19720 case DW_FORM_addr:
19721 case DW_FORM_GNU_addr_index:
19722 {
19723 gdb_byte *tem;
19724
19725 *len = cu->header.addr_size;
19726 tem = obstack_alloc (obstack, *len);
19727 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
19728 result = tem;
19729 }
19730 break;
19731 case DW_FORM_string:
19732 case DW_FORM_strp:
19733 case DW_FORM_GNU_str_index:
19734 case DW_FORM_GNU_strp_alt:
19735 /* DW_STRING is already allocated on the objfile obstack, point
19736 directly to it. */
19737 result = (const gdb_byte *) DW_STRING (attr);
19738 *len = strlen (DW_STRING (attr));
19739 break;
19740 case DW_FORM_block1:
19741 case DW_FORM_block2:
19742 case DW_FORM_block4:
19743 case DW_FORM_block:
19744 case DW_FORM_exprloc:
19745 result = DW_BLOCK (attr)->data;
19746 *len = DW_BLOCK (attr)->size;
19747 break;
19748
19749 /* The DW_AT_const_value attributes are supposed to carry the
19750 symbol's value "represented as it would be on the target
19751 architecture." By the time we get here, it's already been
19752 converted to host endianness, so we just need to sign- or
19753 zero-extend it as appropriate. */
19754 case DW_FORM_data1:
19755 type = die_type (die, cu);
19756 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
19757 if (result == NULL)
19758 result = write_constant_as_bytes (obstack, byte_order,
19759 type, value, len);
19760 break;
19761 case DW_FORM_data2:
19762 type = die_type (die, cu);
19763 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
19764 if (result == NULL)
19765 result = write_constant_as_bytes (obstack, byte_order,
19766 type, value, len);
19767 break;
19768 case DW_FORM_data4:
19769 type = die_type (die, cu);
19770 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
19771 if (result == NULL)
19772 result = write_constant_as_bytes (obstack, byte_order,
19773 type, value, len);
19774 break;
19775 case DW_FORM_data8:
19776 type = die_type (die, cu);
19777 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
19778 if (result == NULL)
19779 result = write_constant_as_bytes (obstack, byte_order,
19780 type, value, len);
19781 break;
19782
19783 case DW_FORM_sdata:
19784 type = die_type (die, cu);
19785 result = write_constant_as_bytes (obstack, byte_order,
19786 type, DW_SND (attr), len);
19787 break;
19788
19789 case DW_FORM_udata:
19790 type = die_type (die, cu);
19791 result = write_constant_as_bytes (obstack, byte_order,
19792 type, DW_UNSND (attr), len);
19793 break;
19794
19795 default:
19796 complaint (&symfile_complaints,
19797 _("unsupported const value attribute form: '%s'"),
19798 dwarf_form_name (attr->form));
19799 break;
19800 }
19801
19802 return result;
19803 }
19804
19805 /* Return the type of the DIE at DIE_OFFSET in the CU named by
19806 PER_CU. */
19807
19808 struct type *
19809 dwarf2_get_die_type (cu_offset die_offset,
19810 struct dwarf2_per_cu_data *per_cu)
19811 {
19812 sect_offset die_offset_sect;
19813
19814 dw2_setup (per_cu->objfile);
19815
19816 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
19817 return get_die_type_at_offset (die_offset_sect, per_cu);
19818 }
19819
19820 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
19821 On entry *REF_CU is the CU of SRC_DIE.
19822 On exit *REF_CU is the CU of the result.
19823 Returns NULL if the referenced DIE isn't found. */
19824
19825 static struct die_info *
19826 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
19827 struct dwarf2_cu **ref_cu)
19828 {
19829 struct objfile *objfile = (*ref_cu)->objfile;
19830 struct die_info temp_die;
19831 struct dwarf2_cu *sig_cu;
19832 struct die_info *die;
19833
19834 /* While it might be nice to assert sig_type->type == NULL here,
19835 we can get here for DW_AT_imported_declaration where we need
19836 the DIE not the type. */
19837
19838 /* If necessary, add it to the queue and load its DIEs. */
19839
19840 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
19841 read_signatured_type (sig_type);
19842
19843 sig_cu = sig_type->per_cu.cu;
19844 gdb_assert (sig_cu != NULL);
19845 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
19846 temp_die.offset = sig_type->type_offset_in_section;
19847 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
19848 temp_die.offset.sect_off);
19849 if (die)
19850 {
19851 /* For .gdb_index version 7 keep track of included TUs.
19852 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
19853 if (dwarf2_per_objfile->index_table != NULL
19854 && dwarf2_per_objfile->index_table->version <= 7)
19855 {
19856 VEC_safe_push (dwarf2_per_cu_ptr,
19857 (*ref_cu)->per_cu->imported_symtabs,
19858 sig_cu->per_cu);
19859 }
19860
19861 *ref_cu = sig_cu;
19862 return die;
19863 }
19864
19865 return NULL;
19866 }
19867
19868 /* Follow signatured type referenced by ATTR in SRC_DIE.
19869 On entry *REF_CU is the CU of SRC_DIE.
19870 On exit *REF_CU is the CU of the result.
19871 The result is the DIE of the type.
19872 If the referenced type cannot be found an error is thrown. */
19873
19874 static struct die_info *
19875 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
19876 struct dwarf2_cu **ref_cu)
19877 {
19878 ULONGEST signature = DW_SIGNATURE (attr);
19879 struct signatured_type *sig_type;
19880 struct die_info *die;
19881
19882 gdb_assert (attr->form == DW_FORM_ref_sig8);
19883
19884 sig_type = lookup_signatured_type (*ref_cu, signature);
19885 /* sig_type will be NULL if the signatured type is missing from
19886 the debug info. */
19887 if (sig_type == NULL)
19888 {
19889 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
19890 " from DIE at 0x%x [in module %s]"),
19891 hex_string (signature), src_die->offset.sect_off,
19892 objfile_name ((*ref_cu)->objfile));
19893 }
19894
19895 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
19896 if (die == NULL)
19897 {
19898 dump_die_for_error (src_die);
19899 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
19900 " from DIE at 0x%x [in module %s]"),
19901 hex_string (signature), src_die->offset.sect_off,
19902 objfile_name ((*ref_cu)->objfile));
19903 }
19904
19905 return die;
19906 }
19907
19908 /* Get the type specified by SIGNATURE referenced in DIE/CU,
19909 reading in and processing the type unit if necessary. */
19910
19911 static struct type *
19912 get_signatured_type (struct die_info *die, ULONGEST signature,
19913 struct dwarf2_cu *cu)
19914 {
19915 struct signatured_type *sig_type;
19916 struct dwarf2_cu *type_cu;
19917 struct die_info *type_die;
19918 struct type *type;
19919
19920 sig_type = lookup_signatured_type (cu, signature);
19921 /* sig_type will be NULL if the signatured type is missing from
19922 the debug info. */
19923 if (sig_type == NULL)
19924 {
19925 complaint (&symfile_complaints,
19926 _("Dwarf Error: Cannot find signatured DIE %s referenced"
19927 " from DIE at 0x%x [in module %s]"),
19928 hex_string (signature), die->offset.sect_off,
19929 objfile_name (dwarf2_per_objfile->objfile));
19930 return build_error_marker_type (cu, die);
19931 }
19932
19933 /* If we already know the type we're done. */
19934 if (sig_type->type != NULL)
19935 return sig_type->type;
19936
19937 type_cu = cu;
19938 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
19939 if (type_die != NULL)
19940 {
19941 /* N.B. We need to call get_die_type to ensure only one type for this DIE
19942 is created. This is important, for example, because for c++ classes
19943 we need TYPE_NAME set which is only done by new_symbol. Blech. */
19944 type = read_type_die (type_die, type_cu);
19945 if (type == NULL)
19946 {
19947 complaint (&symfile_complaints,
19948 _("Dwarf Error: Cannot build signatured type %s"
19949 " referenced from DIE at 0x%x [in module %s]"),
19950 hex_string (signature), die->offset.sect_off,
19951 objfile_name (dwarf2_per_objfile->objfile));
19952 type = build_error_marker_type (cu, die);
19953 }
19954 }
19955 else
19956 {
19957 complaint (&symfile_complaints,
19958 _("Dwarf Error: Problem reading signatured DIE %s referenced"
19959 " from DIE at 0x%x [in module %s]"),
19960 hex_string (signature), die->offset.sect_off,
19961 objfile_name (dwarf2_per_objfile->objfile));
19962 type = build_error_marker_type (cu, die);
19963 }
19964 sig_type->type = type;
19965
19966 return type;
19967 }
19968
19969 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
19970 reading in and processing the type unit if necessary. */
19971
19972 static struct type *
19973 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
19974 struct dwarf2_cu *cu) /* ARI: editCase function */
19975 {
19976 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
19977 if (attr_form_is_ref (attr))
19978 {
19979 struct dwarf2_cu *type_cu = cu;
19980 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
19981
19982 return read_type_die (type_die, type_cu);
19983 }
19984 else if (attr->form == DW_FORM_ref_sig8)
19985 {
19986 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
19987 }
19988 else
19989 {
19990 complaint (&symfile_complaints,
19991 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
19992 " at 0x%x [in module %s]"),
19993 dwarf_form_name (attr->form), die->offset.sect_off,
19994 objfile_name (dwarf2_per_objfile->objfile));
19995 return build_error_marker_type (cu, die);
19996 }
19997 }
19998
19999 /* Load the DIEs associated with type unit PER_CU into memory. */
20000
20001 static void
20002 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
20003 {
20004 struct signatured_type *sig_type;
20005
20006 /* Caller is responsible for ensuring type_unit_groups don't get here. */
20007 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
20008
20009 /* We have the per_cu, but we need the signatured_type.
20010 Fortunately this is an easy translation. */
20011 gdb_assert (per_cu->is_debug_types);
20012 sig_type = (struct signatured_type *) per_cu;
20013
20014 gdb_assert (per_cu->cu == NULL);
20015
20016 read_signatured_type (sig_type);
20017
20018 gdb_assert (per_cu->cu != NULL);
20019 }
20020
20021 /* die_reader_func for read_signatured_type.
20022 This is identical to load_full_comp_unit_reader,
20023 but is kept separate for now. */
20024
20025 static void
20026 read_signatured_type_reader (const struct die_reader_specs *reader,
20027 const gdb_byte *info_ptr,
20028 struct die_info *comp_unit_die,
20029 int has_children,
20030 void *data)
20031 {
20032 struct dwarf2_cu *cu = reader->cu;
20033
20034 gdb_assert (cu->die_hash == NULL);
20035 cu->die_hash =
20036 htab_create_alloc_ex (cu->header.length / 12,
20037 die_hash,
20038 die_eq,
20039 NULL,
20040 &cu->comp_unit_obstack,
20041 hashtab_obstack_allocate,
20042 dummy_obstack_deallocate);
20043
20044 if (has_children)
20045 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
20046 &info_ptr, comp_unit_die);
20047 cu->dies = comp_unit_die;
20048 /* comp_unit_die is not stored in die_hash, no need. */
20049
20050 /* We try not to read any attributes in this function, because not
20051 all CUs needed for references have been loaded yet, and symbol
20052 table processing isn't initialized. But we have to set the CU language,
20053 or we won't be able to build types correctly.
20054 Similarly, if we do not read the producer, we can not apply
20055 producer-specific interpretation. */
20056 prepare_one_comp_unit (cu, cu->dies, language_minimal);
20057 }
20058
20059 /* Read in a signatured type and build its CU and DIEs.
20060 If the type is a stub for the real type in a DWO file,
20061 read in the real type from the DWO file as well. */
20062
20063 static void
20064 read_signatured_type (struct signatured_type *sig_type)
20065 {
20066 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
20067
20068 gdb_assert (per_cu->is_debug_types);
20069 gdb_assert (per_cu->cu == NULL);
20070
20071 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
20072 read_signatured_type_reader, NULL);
20073 sig_type->per_cu.tu_read = 1;
20074 }
20075
20076 /* Decode simple location descriptions.
20077 Given a pointer to a dwarf block that defines a location, compute
20078 the location and return the value.
20079
20080 NOTE drow/2003-11-18: This function is called in two situations
20081 now: for the address of static or global variables (partial symbols
20082 only) and for offsets into structures which are expected to be
20083 (more or less) constant. The partial symbol case should go away,
20084 and only the constant case should remain. That will let this
20085 function complain more accurately. A few special modes are allowed
20086 without complaint for global variables (for instance, global
20087 register values and thread-local values).
20088
20089 A location description containing no operations indicates that the
20090 object is optimized out. The return value is 0 for that case.
20091 FIXME drow/2003-11-16: No callers check for this case any more; soon all
20092 callers will only want a very basic result and this can become a
20093 complaint.
20094
20095 Note that stack[0] is unused except as a default error return. */
20096
20097 static CORE_ADDR
20098 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
20099 {
20100 struct objfile *objfile = cu->objfile;
20101 size_t i;
20102 size_t size = blk->size;
20103 const gdb_byte *data = blk->data;
20104 CORE_ADDR stack[64];
20105 int stacki;
20106 unsigned int bytes_read, unsnd;
20107 gdb_byte op;
20108
20109 i = 0;
20110 stacki = 0;
20111 stack[stacki] = 0;
20112 stack[++stacki] = 0;
20113
20114 while (i < size)
20115 {
20116 op = data[i++];
20117 switch (op)
20118 {
20119 case DW_OP_lit0:
20120 case DW_OP_lit1:
20121 case DW_OP_lit2:
20122 case DW_OP_lit3:
20123 case DW_OP_lit4:
20124 case DW_OP_lit5:
20125 case DW_OP_lit6:
20126 case DW_OP_lit7:
20127 case DW_OP_lit8:
20128 case DW_OP_lit9:
20129 case DW_OP_lit10:
20130 case DW_OP_lit11:
20131 case DW_OP_lit12:
20132 case DW_OP_lit13:
20133 case DW_OP_lit14:
20134 case DW_OP_lit15:
20135 case DW_OP_lit16:
20136 case DW_OP_lit17:
20137 case DW_OP_lit18:
20138 case DW_OP_lit19:
20139 case DW_OP_lit20:
20140 case DW_OP_lit21:
20141 case DW_OP_lit22:
20142 case DW_OP_lit23:
20143 case DW_OP_lit24:
20144 case DW_OP_lit25:
20145 case DW_OP_lit26:
20146 case DW_OP_lit27:
20147 case DW_OP_lit28:
20148 case DW_OP_lit29:
20149 case DW_OP_lit30:
20150 case DW_OP_lit31:
20151 stack[++stacki] = op - DW_OP_lit0;
20152 break;
20153
20154 case DW_OP_reg0:
20155 case DW_OP_reg1:
20156 case DW_OP_reg2:
20157 case DW_OP_reg3:
20158 case DW_OP_reg4:
20159 case DW_OP_reg5:
20160 case DW_OP_reg6:
20161 case DW_OP_reg7:
20162 case DW_OP_reg8:
20163 case DW_OP_reg9:
20164 case DW_OP_reg10:
20165 case DW_OP_reg11:
20166 case DW_OP_reg12:
20167 case DW_OP_reg13:
20168 case DW_OP_reg14:
20169 case DW_OP_reg15:
20170 case DW_OP_reg16:
20171 case DW_OP_reg17:
20172 case DW_OP_reg18:
20173 case DW_OP_reg19:
20174 case DW_OP_reg20:
20175 case DW_OP_reg21:
20176 case DW_OP_reg22:
20177 case DW_OP_reg23:
20178 case DW_OP_reg24:
20179 case DW_OP_reg25:
20180 case DW_OP_reg26:
20181 case DW_OP_reg27:
20182 case DW_OP_reg28:
20183 case DW_OP_reg29:
20184 case DW_OP_reg30:
20185 case DW_OP_reg31:
20186 stack[++stacki] = op - DW_OP_reg0;
20187 if (i < size)
20188 dwarf2_complex_location_expr_complaint ();
20189 break;
20190
20191 case DW_OP_regx:
20192 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
20193 i += bytes_read;
20194 stack[++stacki] = unsnd;
20195 if (i < size)
20196 dwarf2_complex_location_expr_complaint ();
20197 break;
20198
20199 case DW_OP_addr:
20200 stack[++stacki] = read_address (objfile->obfd, &data[i],
20201 cu, &bytes_read);
20202 i += bytes_read;
20203 break;
20204
20205 case DW_OP_const1u:
20206 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
20207 i += 1;
20208 break;
20209
20210 case DW_OP_const1s:
20211 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
20212 i += 1;
20213 break;
20214
20215 case DW_OP_const2u:
20216 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
20217 i += 2;
20218 break;
20219
20220 case DW_OP_const2s:
20221 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
20222 i += 2;
20223 break;
20224
20225 case DW_OP_const4u:
20226 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
20227 i += 4;
20228 break;
20229
20230 case DW_OP_const4s:
20231 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
20232 i += 4;
20233 break;
20234
20235 case DW_OP_const8u:
20236 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
20237 i += 8;
20238 break;
20239
20240 case DW_OP_constu:
20241 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
20242 &bytes_read);
20243 i += bytes_read;
20244 break;
20245
20246 case DW_OP_consts:
20247 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
20248 i += bytes_read;
20249 break;
20250
20251 case DW_OP_dup:
20252 stack[stacki + 1] = stack[stacki];
20253 stacki++;
20254 break;
20255
20256 case DW_OP_plus:
20257 stack[stacki - 1] += stack[stacki];
20258 stacki--;
20259 break;
20260
20261 case DW_OP_plus_uconst:
20262 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
20263 &bytes_read);
20264 i += bytes_read;
20265 break;
20266
20267 case DW_OP_minus:
20268 stack[stacki - 1] -= stack[stacki];
20269 stacki--;
20270 break;
20271
20272 case DW_OP_deref:
20273 /* If we're not the last op, then we definitely can't encode
20274 this using GDB's address_class enum. This is valid for partial
20275 global symbols, although the variable's address will be bogus
20276 in the psymtab. */
20277 if (i < size)
20278 dwarf2_complex_location_expr_complaint ();
20279 break;
20280
20281 case DW_OP_GNU_push_tls_address:
20282 /* The top of the stack has the offset from the beginning
20283 of the thread control block at which the variable is located. */
20284 /* Nothing should follow this operator, so the top of stack would
20285 be returned. */
20286 /* This is valid for partial global symbols, but the variable's
20287 address will be bogus in the psymtab. Make it always at least
20288 non-zero to not look as a variable garbage collected by linker
20289 which have DW_OP_addr 0. */
20290 if (i < size)
20291 dwarf2_complex_location_expr_complaint ();
20292 stack[stacki]++;
20293 break;
20294
20295 case DW_OP_GNU_uninit:
20296 break;
20297
20298 case DW_OP_GNU_addr_index:
20299 case DW_OP_GNU_const_index:
20300 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
20301 &bytes_read);
20302 i += bytes_read;
20303 break;
20304
20305 default:
20306 {
20307 const char *name = get_DW_OP_name (op);
20308
20309 if (name)
20310 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
20311 name);
20312 else
20313 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
20314 op);
20315 }
20316
20317 return (stack[stacki]);
20318 }
20319
20320 /* Enforce maximum stack depth of SIZE-1 to avoid writing
20321 outside of the allocated space. Also enforce minimum>0. */
20322 if (stacki >= ARRAY_SIZE (stack) - 1)
20323 {
20324 complaint (&symfile_complaints,
20325 _("location description stack overflow"));
20326 return 0;
20327 }
20328
20329 if (stacki <= 0)
20330 {
20331 complaint (&symfile_complaints,
20332 _("location description stack underflow"));
20333 return 0;
20334 }
20335 }
20336 return (stack[stacki]);
20337 }
20338
20339 /* memory allocation interface */
20340
20341 static struct dwarf_block *
20342 dwarf_alloc_block (struct dwarf2_cu *cu)
20343 {
20344 struct dwarf_block *blk;
20345
20346 blk = (struct dwarf_block *)
20347 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
20348 return (blk);
20349 }
20350
20351 static struct die_info *
20352 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
20353 {
20354 struct die_info *die;
20355 size_t size = sizeof (struct die_info);
20356
20357 if (num_attrs > 1)
20358 size += (num_attrs - 1) * sizeof (struct attribute);
20359
20360 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
20361 memset (die, 0, sizeof (struct die_info));
20362 return (die);
20363 }
20364
20365 \f
20366 /* Macro support. */
20367
20368 /* Return file name relative to the compilation directory of file number I in
20369 *LH's file name table. The result is allocated using xmalloc; the caller is
20370 responsible for freeing it. */
20371
20372 static char *
20373 file_file_name (int file, struct line_header *lh)
20374 {
20375 /* Is the file number a valid index into the line header's file name
20376 table? Remember that file numbers start with one, not zero. */
20377 if (1 <= file && file <= lh->num_file_names)
20378 {
20379 struct file_entry *fe = &lh->file_names[file - 1];
20380
20381 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0)
20382 return xstrdup (fe->name);
20383 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
20384 fe->name, NULL);
20385 }
20386 else
20387 {
20388 /* The compiler produced a bogus file number. We can at least
20389 record the macro definitions made in the file, even if we
20390 won't be able to find the file by name. */
20391 char fake_name[80];
20392
20393 xsnprintf (fake_name, sizeof (fake_name),
20394 "<bad macro file number %d>", file);
20395
20396 complaint (&symfile_complaints,
20397 _("bad file number in macro information (%d)"),
20398 file);
20399
20400 return xstrdup (fake_name);
20401 }
20402 }
20403
20404 /* Return the full name of file number I in *LH's file name table.
20405 Use COMP_DIR as the name of the current directory of the
20406 compilation. The result is allocated using xmalloc; the caller is
20407 responsible for freeing it. */
20408 static char *
20409 file_full_name (int file, struct line_header *lh, const char *comp_dir)
20410 {
20411 /* Is the file number a valid index into the line header's file name
20412 table? Remember that file numbers start with one, not zero. */
20413 if (1 <= file && file <= lh->num_file_names)
20414 {
20415 char *relative = file_file_name (file, lh);
20416
20417 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
20418 return relative;
20419 return reconcat (relative, comp_dir, SLASH_STRING, relative, NULL);
20420 }
20421 else
20422 return file_file_name (file, lh);
20423 }
20424
20425
20426 static struct macro_source_file *
20427 macro_start_file (int file, int line,
20428 struct macro_source_file *current_file,
20429 struct line_header *lh)
20430 {
20431 /* File name relative to the compilation directory of this source file. */
20432 char *file_name = file_file_name (file, lh);
20433
20434 if (! current_file)
20435 {
20436 /* Note: We don't create a macro table for this compilation unit
20437 at all until we actually get a filename. */
20438 struct macro_table *macro_table = get_macro_table ();
20439
20440 /* If we have no current file, then this must be the start_file
20441 directive for the compilation unit's main source file. */
20442 current_file = macro_set_main (macro_table, file_name);
20443 macro_define_special (macro_table);
20444 }
20445 else
20446 current_file = macro_include (current_file, line, file_name);
20447
20448 xfree (file_name);
20449
20450 return current_file;
20451 }
20452
20453
20454 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
20455 followed by a null byte. */
20456 static char *
20457 copy_string (const char *buf, int len)
20458 {
20459 char *s = xmalloc (len + 1);
20460
20461 memcpy (s, buf, len);
20462 s[len] = '\0';
20463 return s;
20464 }
20465
20466
20467 static const char *
20468 consume_improper_spaces (const char *p, const char *body)
20469 {
20470 if (*p == ' ')
20471 {
20472 complaint (&symfile_complaints,
20473 _("macro definition contains spaces "
20474 "in formal argument list:\n`%s'"),
20475 body);
20476
20477 while (*p == ' ')
20478 p++;
20479 }
20480
20481 return p;
20482 }
20483
20484
20485 static void
20486 parse_macro_definition (struct macro_source_file *file, int line,
20487 const char *body)
20488 {
20489 const char *p;
20490
20491 /* The body string takes one of two forms. For object-like macro
20492 definitions, it should be:
20493
20494 <macro name> " " <definition>
20495
20496 For function-like macro definitions, it should be:
20497
20498 <macro name> "() " <definition>
20499 or
20500 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
20501
20502 Spaces may appear only where explicitly indicated, and in the
20503 <definition>.
20504
20505 The Dwarf 2 spec says that an object-like macro's name is always
20506 followed by a space, but versions of GCC around March 2002 omit
20507 the space when the macro's definition is the empty string.
20508
20509 The Dwarf 2 spec says that there should be no spaces between the
20510 formal arguments in a function-like macro's formal argument list,
20511 but versions of GCC around March 2002 include spaces after the
20512 commas. */
20513
20514
20515 /* Find the extent of the macro name. The macro name is terminated
20516 by either a space or null character (for an object-like macro) or
20517 an opening paren (for a function-like macro). */
20518 for (p = body; *p; p++)
20519 if (*p == ' ' || *p == '(')
20520 break;
20521
20522 if (*p == ' ' || *p == '\0')
20523 {
20524 /* It's an object-like macro. */
20525 int name_len = p - body;
20526 char *name = copy_string (body, name_len);
20527 const char *replacement;
20528
20529 if (*p == ' ')
20530 replacement = body + name_len + 1;
20531 else
20532 {
20533 dwarf2_macro_malformed_definition_complaint (body);
20534 replacement = body + name_len;
20535 }
20536
20537 macro_define_object (file, line, name, replacement);
20538
20539 xfree (name);
20540 }
20541 else if (*p == '(')
20542 {
20543 /* It's a function-like macro. */
20544 char *name = copy_string (body, p - body);
20545 int argc = 0;
20546 int argv_size = 1;
20547 char **argv = xmalloc (argv_size * sizeof (*argv));
20548
20549 p++;
20550
20551 p = consume_improper_spaces (p, body);
20552
20553 /* Parse the formal argument list. */
20554 while (*p && *p != ')')
20555 {
20556 /* Find the extent of the current argument name. */
20557 const char *arg_start = p;
20558
20559 while (*p && *p != ',' && *p != ')' && *p != ' ')
20560 p++;
20561
20562 if (! *p || p == arg_start)
20563 dwarf2_macro_malformed_definition_complaint (body);
20564 else
20565 {
20566 /* Make sure argv has room for the new argument. */
20567 if (argc >= argv_size)
20568 {
20569 argv_size *= 2;
20570 argv = xrealloc (argv, argv_size * sizeof (*argv));
20571 }
20572
20573 argv[argc++] = copy_string (arg_start, p - arg_start);
20574 }
20575
20576 p = consume_improper_spaces (p, body);
20577
20578 /* Consume the comma, if present. */
20579 if (*p == ',')
20580 {
20581 p++;
20582
20583 p = consume_improper_spaces (p, body);
20584 }
20585 }
20586
20587 if (*p == ')')
20588 {
20589 p++;
20590
20591 if (*p == ' ')
20592 /* Perfectly formed definition, no complaints. */
20593 macro_define_function (file, line, name,
20594 argc, (const char **) argv,
20595 p + 1);
20596 else if (*p == '\0')
20597 {
20598 /* Complain, but do define it. */
20599 dwarf2_macro_malformed_definition_complaint (body);
20600 macro_define_function (file, line, name,
20601 argc, (const char **) argv,
20602 p);
20603 }
20604 else
20605 /* Just complain. */
20606 dwarf2_macro_malformed_definition_complaint (body);
20607 }
20608 else
20609 /* Just complain. */
20610 dwarf2_macro_malformed_definition_complaint (body);
20611
20612 xfree (name);
20613 {
20614 int i;
20615
20616 for (i = 0; i < argc; i++)
20617 xfree (argv[i]);
20618 }
20619 xfree (argv);
20620 }
20621 else
20622 dwarf2_macro_malformed_definition_complaint (body);
20623 }
20624
20625 /* Skip some bytes from BYTES according to the form given in FORM.
20626 Returns the new pointer. */
20627
20628 static const gdb_byte *
20629 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
20630 enum dwarf_form form,
20631 unsigned int offset_size,
20632 struct dwarf2_section_info *section)
20633 {
20634 unsigned int bytes_read;
20635
20636 switch (form)
20637 {
20638 case DW_FORM_data1:
20639 case DW_FORM_flag:
20640 ++bytes;
20641 break;
20642
20643 case DW_FORM_data2:
20644 bytes += 2;
20645 break;
20646
20647 case DW_FORM_data4:
20648 bytes += 4;
20649 break;
20650
20651 case DW_FORM_data8:
20652 bytes += 8;
20653 break;
20654
20655 case DW_FORM_string:
20656 read_direct_string (abfd, bytes, &bytes_read);
20657 bytes += bytes_read;
20658 break;
20659
20660 case DW_FORM_sec_offset:
20661 case DW_FORM_strp:
20662 case DW_FORM_GNU_strp_alt:
20663 bytes += offset_size;
20664 break;
20665
20666 case DW_FORM_block:
20667 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
20668 bytes += bytes_read;
20669 break;
20670
20671 case DW_FORM_block1:
20672 bytes += 1 + read_1_byte (abfd, bytes);
20673 break;
20674 case DW_FORM_block2:
20675 bytes += 2 + read_2_bytes (abfd, bytes);
20676 break;
20677 case DW_FORM_block4:
20678 bytes += 4 + read_4_bytes (abfd, bytes);
20679 break;
20680
20681 case DW_FORM_sdata:
20682 case DW_FORM_udata:
20683 case DW_FORM_GNU_addr_index:
20684 case DW_FORM_GNU_str_index:
20685 bytes = gdb_skip_leb128 (bytes, buffer_end);
20686 if (bytes == NULL)
20687 {
20688 dwarf2_section_buffer_overflow_complaint (section);
20689 return NULL;
20690 }
20691 break;
20692
20693 default:
20694 {
20695 complain:
20696 complaint (&symfile_complaints,
20697 _("invalid form 0x%x in `%s'"),
20698 form, get_section_name (section));
20699 return NULL;
20700 }
20701 }
20702
20703 return bytes;
20704 }
20705
20706 /* A helper for dwarf_decode_macros that handles skipping an unknown
20707 opcode. Returns an updated pointer to the macro data buffer; or,
20708 on error, issues a complaint and returns NULL. */
20709
20710 static const gdb_byte *
20711 skip_unknown_opcode (unsigned int opcode,
20712 const gdb_byte **opcode_definitions,
20713 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
20714 bfd *abfd,
20715 unsigned int offset_size,
20716 struct dwarf2_section_info *section)
20717 {
20718 unsigned int bytes_read, i;
20719 unsigned long arg;
20720 const gdb_byte *defn;
20721
20722 if (opcode_definitions[opcode] == NULL)
20723 {
20724 complaint (&symfile_complaints,
20725 _("unrecognized DW_MACFINO opcode 0x%x"),
20726 opcode);
20727 return NULL;
20728 }
20729
20730 defn = opcode_definitions[opcode];
20731 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
20732 defn += bytes_read;
20733
20734 for (i = 0; i < arg; ++i)
20735 {
20736 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end, defn[i], offset_size,
20737 section);
20738 if (mac_ptr == NULL)
20739 {
20740 /* skip_form_bytes already issued the complaint. */
20741 return NULL;
20742 }
20743 }
20744
20745 return mac_ptr;
20746 }
20747
20748 /* A helper function which parses the header of a macro section.
20749 If the macro section is the extended (for now called "GNU") type,
20750 then this updates *OFFSET_SIZE. Returns a pointer to just after
20751 the header, or issues a complaint and returns NULL on error. */
20752
20753 static const gdb_byte *
20754 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
20755 bfd *abfd,
20756 const gdb_byte *mac_ptr,
20757 unsigned int *offset_size,
20758 int section_is_gnu)
20759 {
20760 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
20761
20762 if (section_is_gnu)
20763 {
20764 unsigned int version, flags;
20765
20766 version = read_2_bytes (abfd, mac_ptr);
20767 if (version != 4)
20768 {
20769 complaint (&symfile_complaints,
20770 _("unrecognized version `%d' in .debug_macro section"),
20771 version);
20772 return NULL;
20773 }
20774 mac_ptr += 2;
20775
20776 flags = read_1_byte (abfd, mac_ptr);
20777 ++mac_ptr;
20778 *offset_size = (flags & 1) ? 8 : 4;
20779
20780 if ((flags & 2) != 0)
20781 /* We don't need the line table offset. */
20782 mac_ptr += *offset_size;
20783
20784 /* Vendor opcode descriptions. */
20785 if ((flags & 4) != 0)
20786 {
20787 unsigned int i, count;
20788
20789 count = read_1_byte (abfd, mac_ptr);
20790 ++mac_ptr;
20791 for (i = 0; i < count; ++i)
20792 {
20793 unsigned int opcode, bytes_read;
20794 unsigned long arg;
20795
20796 opcode = read_1_byte (abfd, mac_ptr);
20797 ++mac_ptr;
20798 opcode_definitions[opcode] = mac_ptr;
20799 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20800 mac_ptr += bytes_read;
20801 mac_ptr += arg;
20802 }
20803 }
20804 }
20805
20806 return mac_ptr;
20807 }
20808
20809 /* A helper for dwarf_decode_macros that handles the GNU extensions,
20810 including DW_MACRO_GNU_transparent_include. */
20811
20812 static void
20813 dwarf_decode_macro_bytes (bfd *abfd,
20814 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
20815 struct macro_source_file *current_file,
20816 struct line_header *lh,
20817 struct dwarf2_section_info *section,
20818 int section_is_gnu, int section_is_dwz,
20819 unsigned int offset_size,
20820 htab_t include_hash)
20821 {
20822 struct objfile *objfile = dwarf2_per_objfile->objfile;
20823 enum dwarf_macro_record_type macinfo_type;
20824 int at_commandline;
20825 const gdb_byte *opcode_definitions[256];
20826
20827 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
20828 &offset_size, section_is_gnu);
20829 if (mac_ptr == NULL)
20830 {
20831 /* We already issued a complaint. */
20832 return;
20833 }
20834
20835 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
20836 GDB is still reading the definitions from command line. First
20837 DW_MACINFO_start_file will need to be ignored as it was already executed
20838 to create CURRENT_FILE for the main source holding also the command line
20839 definitions. On first met DW_MACINFO_start_file this flag is reset to
20840 normally execute all the remaining DW_MACINFO_start_file macinfos. */
20841
20842 at_commandline = 1;
20843
20844 do
20845 {
20846 /* Do we at least have room for a macinfo type byte? */
20847 if (mac_ptr >= mac_end)
20848 {
20849 dwarf2_section_buffer_overflow_complaint (section);
20850 break;
20851 }
20852
20853 macinfo_type = read_1_byte (abfd, mac_ptr);
20854 mac_ptr++;
20855
20856 /* Note that we rely on the fact that the corresponding GNU and
20857 DWARF constants are the same. */
20858 switch (macinfo_type)
20859 {
20860 /* A zero macinfo type indicates the end of the macro
20861 information. */
20862 case 0:
20863 break;
20864
20865 case DW_MACRO_GNU_define:
20866 case DW_MACRO_GNU_undef:
20867 case DW_MACRO_GNU_define_indirect:
20868 case DW_MACRO_GNU_undef_indirect:
20869 case DW_MACRO_GNU_define_indirect_alt:
20870 case DW_MACRO_GNU_undef_indirect_alt:
20871 {
20872 unsigned int bytes_read;
20873 int line;
20874 const char *body;
20875 int is_define;
20876
20877 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20878 mac_ptr += bytes_read;
20879
20880 if (macinfo_type == DW_MACRO_GNU_define
20881 || macinfo_type == DW_MACRO_GNU_undef)
20882 {
20883 body = read_direct_string (abfd, mac_ptr, &bytes_read);
20884 mac_ptr += bytes_read;
20885 }
20886 else
20887 {
20888 LONGEST str_offset;
20889
20890 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
20891 mac_ptr += offset_size;
20892
20893 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
20894 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
20895 || section_is_dwz)
20896 {
20897 struct dwz_file *dwz = dwarf2_get_dwz_file ();
20898
20899 body = read_indirect_string_from_dwz (dwz, str_offset);
20900 }
20901 else
20902 body = read_indirect_string_at_offset (abfd, str_offset);
20903 }
20904
20905 is_define = (macinfo_type == DW_MACRO_GNU_define
20906 || macinfo_type == DW_MACRO_GNU_define_indirect
20907 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
20908 if (! current_file)
20909 {
20910 /* DWARF violation as no main source is present. */
20911 complaint (&symfile_complaints,
20912 _("debug info with no main source gives macro %s "
20913 "on line %d: %s"),
20914 is_define ? _("definition") : _("undefinition"),
20915 line, body);
20916 break;
20917 }
20918 if ((line == 0 && !at_commandline)
20919 || (line != 0 && at_commandline))
20920 complaint (&symfile_complaints,
20921 _("debug info gives %s macro %s with %s line %d: %s"),
20922 at_commandline ? _("command-line") : _("in-file"),
20923 is_define ? _("definition") : _("undefinition"),
20924 line == 0 ? _("zero") : _("non-zero"), line, body);
20925
20926 if (is_define)
20927 parse_macro_definition (current_file, line, body);
20928 else
20929 {
20930 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
20931 || macinfo_type == DW_MACRO_GNU_undef_indirect
20932 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
20933 macro_undef (current_file, line, body);
20934 }
20935 }
20936 break;
20937
20938 case DW_MACRO_GNU_start_file:
20939 {
20940 unsigned int bytes_read;
20941 int line, file;
20942
20943 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20944 mac_ptr += bytes_read;
20945 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20946 mac_ptr += bytes_read;
20947
20948 if ((line == 0 && !at_commandline)
20949 || (line != 0 && at_commandline))
20950 complaint (&symfile_complaints,
20951 _("debug info gives source %d included "
20952 "from %s at %s line %d"),
20953 file, at_commandline ? _("command-line") : _("file"),
20954 line == 0 ? _("zero") : _("non-zero"), line);
20955
20956 if (at_commandline)
20957 {
20958 /* This DW_MACRO_GNU_start_file was executed in the
20959 pass one. */
20960 at_commandline = 0;
20961 }
20962 else
20963 current_file = macro_start_file (file, line, current_file, lh);
20964 }
20965 break;
20966
20967 case DW_MACRO_GNU_end_file:
20968 if (! current_file)
20969 complaint (&symfile_complaints,
20970 _("macro debug info has an unmatched "
20971 "`close_file' directive"));
20972 else
20973 {
20974 current_file = current_file->included_by;
20975 if (! current_file)
20976 {
20977 enum dwarf_macro_record_type next_type;
20978
20979 /* GCC circa March 2002 doesn't produce the zero
20980 type byte marking the end of the compilation
20981 unit. Complain if it's not there, but exit no
20982 matter what. */
20983
20984 /* Do we at least have room for a macinfo type byte? */
20985 if (mac_ptr >= mac_end)
20986 {
20987 dwarf2_section_buffer_overflow_complaint (section);
20988 return;
20989 }
20990
20991 /* We don't increment mac_ptr here, so this is just
20992 a look-ahead. */
20993 next_type = read_1_byte (abfd, mac_ptr);
20994 if (next_type != 0)
20995 complaint (&symfile_complaints,
20996 _("no terminating 0-type entry for "
20997 "macros in `.debug_macinfo' section"));
20998
20999 return;
21000 }
21001 }
21002 break;
21003
21004 case DW_MACRO_GNU_transparent_include:
21005 case DW_MACRO_GNU_transparent_include_alt:
21006 {
21007 LONGEST offset;
21008 void **slot;
21009 bfd *include_bfd = abfd;
21010 struct dwarf2_section_info *include_section = section;
21011 struct dwarf2_section_info alt_section;
21012 const gdb_byte *include_mac_end = mac_end;
21013 int is_dwz = section_is_dwz;
21014 const gdb_byte *new_mac_ptr;
21015
21016 offset = read_offset_1 (abfd, mac_ptr, offset_size);
21017 mac_ptr += offset_size;
21018
21019 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
21020 {
21021 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21022
21023 dwarf2_read_section (objfile, &dwz->macro);
21024
21025 include_section = &dwz->macro;
21026 include_bfd = get_section_bfd_owner (include_section);
21027 include_mac_end = dwz->macro.buffer + dwz->macro.size;
21028 is_dwz = 1;
21029 }
21030
21031 new_mac_ptr = include_section->buffer + offset;
21032 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
21033
21034 if (*slot != NULL)
21035 {
21036 /* This has actually happened; see
21037 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
21038 complaint (&symfile_complaints,
21039 _("recursive DW_MACRO_GNU_transparent_include in "
21040 ".debug_macro section"));
21041 }
21042 else
21043 {
21044 *slot = (void *) new_mac_ptr;
21045
21046 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
21047 include_mac_end, current_file, lh,
21048 section, section_is_gnu, is_dwz,
21049 offset_size, include_hash);
21050
21051 htab_remove_elt (include_hash, (void *) new_mac_ptr);
21052 }
21053 }
21054 break;
21055
21056 case DW_MACINFO_vendor_ext:
21057 if (!section_is_gnu)
21058 {
21059 unsigned int bytes_read;
21060 int constant;
21061
21062 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21063 mac_ptr += bytes_read;
21064 read_direct_string (abfd, mac_ptr, &bytes_read);
21065 mac_ptr += bytes_read;
21066
21067 /* We don't recognize any vendor extensions. */
21068 break;
21069 }
21070 /* FALLTHROUGH */
21071
21072 default:
21073 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
21074 mac_ptr, mac_end, abfd, offset_size,
21075 section);
21076 if (mac_ptr == NULL)
21077 return;
21078 break;
21079 }
21080 } while (macinfo_type != 0);
21081 }
21082
21083 static void
21084 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
21085 int section_is_gnu)
21086 {
21087 struct objfile *objfile = dwarf2_per_objfile->objfile;
21088 struct line_header *lh = cu->line_header;
21089 bfd *abfd;
21090 const gdb_byte *mac_ptr, *mac_end;
21091 struct macro_source_file *current_file = 0;
21092 enum dwarf_macro_record_type macinfo_type;
21093 unsigned int offset_size = cu->header.offset_size;
21094 const gdb_byte *opcode_definitions[256];
21095 struct cleanup *cleanup;
21096 htab_t include_hash;
21097 void **slot;
21098 struct dwarf2_section_info *section;
21099 const char *section_name;
21100
21101 if (cu->dwo_unit != NULL)
21102 {
21103 if (section_is_gnu)
21104 {
21105 section = &cu->dwo_unit->dwo_file->sections.macro;
21106 section_name = ".debug_macro.dwo";
21107 }
21108 else
21109 {
21110 section = &cu->dwo_unit->dwo_file->sections.macinfo;
21111 section_name = ".debug_macinfo.dwo";
21112 }
21113 }
21114 else
21115 {
21116 if (section_is_gnu)
21117 {
21118 section = &dwarf2_per_objfile->macro;
21119 section_name = ".debug_macro";
21120 }
21121 else
21122 {
21123 section = &dwarf2_per_objfile->macinfo;
21124 section_name = ".debug_macinfo";
21125 }
21126 }
21127
21128 dwarf2_read_section (objfile, section);
21129 if (section->buffer == NULL)
21130 {
21131 complaint (&symfile_complaints, _("missing %s section"), section_name);
21132 return;
21133 }
21134 abfd = get_section_bfd_owner (section);
21135
21136 /* First pass: Find the name of the base filename.
21137 This filename is needed in order to process all macros whose definition
21138 (or undefinition) comes from the command line. These macros are defined
21139 before the first DW_MACINFO_start_file entry, and yet still need to be
21140 associated to the base file.
21141
21142 To determine the base file name, we scan the macro definitions until we
21143 reach the first DW_MACINFO_start_file entry. We then initialize
21144 CURRENT_FILE accordingly so that any macro definition found before the
21145 first DW_MACINFO_start_file can still be associated to the base file. */
21146
21147 mac_ptr = section->buffer + offset;
21148 mac_end = section->buffer + section->size;
21149
21150 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21151 &offset_size, section_is_gnu);
21152 if (mac_ptr == NULL)
21153 {
21154 /* We already issued a complaint. */
21155 return;
21156 }
21157
21158 do
21159 {
21160 /* Do we at least have room for a macinfo type byte? */
21161 if (mac_ptr >= mac_end)
21162 {
21163 /* Complaint is printed during the second pass as GDB will probably
21164 stop the first pass earlier upon finding
21165 DW_MACINFO_start_file. */
21166 break;
21167 }
21168
21169 macinfo_type = read_1_byte (abfd, mac_ptr);
21170 mac_ptr++;
21171
21172 /* Note that we rely on the fact that the corresponding GNU and
21173 DWARF constants are the same. */
21174 switch (macinfo_type)
21175 {
21176 /* A zero macinfo type indicates the end of the macro
21177 information. */
21178 case 0:
21179 break;
21180
21181 case DW_MACRO_GNU_define:
21182 case DW_MACRO_GNU_undef:
21183 /* Only skip the data by MAC_PTR. */
21184 {
21185 unsigned int bytes_read;
21186
21187 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21188 mac_ptr += bytes_read;
21189 read_direct_string (abfd, mac_ptr, &bytes_read);
21190 mac_ptr += bytes_read;
21191 }
21192 break;
21193
21194 case DW_MACRO_GNU_start_file:
21195 {
21196 unsigned int bytes_read;
21197 int line, file;
21198
21199 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21200 mac_ptr += bytes_read;
21201 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21202 mac_ptr += bytes_read;
21203
21204 current_file = macro_start_file (file, line, current_file, lh);
21205 }
21206 break;
21207
21208 case DW_MACRO_GNU_end_file:
21209 /* No data to skip by MAC_PTR. */
21210 break;
21211
21212 case DW_MACRO_GNU_define_indirect:
21213 case DW_MACRO_GNU_undef_indirect:
21214 case DW_MACRO_GNU_define_indirect_alt:
21215 case DW_MACRO_GNU_undef_indirect_alt:
21216 {
21217 unsigned int bytes_read;
21218
21219 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21220 mac_ptr += bytes_read;
21221 mac_ptr += offset_size;
21222 }
21223 break;
21224
21225 case DW_MACRO_GNU_transparent_include:
21226 case DW_MACRO_GNU_transparent_include_alt:
21227 /* Note that, according to the spec, a transparent include
21228 chain cannot call DW_MACRO_GNU_start_file. So, we can just
21229 skip this opcode. */
21230 mac_ptr += offset_size;
21231 break;
21232
21233 case DW_MACINFO_vendor_ext:
21234 /* Only skip the data by MAC_PTR. */
21235 if (!section_is_gnu)
21236 {
21237 unsigned int bytes_read;
21238
21239 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21240 mac_ptr += bytes_read;
21241 read_direct_string (abfd, mac_ptr, &bytes_read);
21242 mac_ptr += bytes_read;
21243 }
21244 /* FALLTHROUGH */
21245
21246 default:
21247 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
21248 mac_ptr, mac_end, abfd, offset_size,
21249 section);
21250 if (mac_ptr == NULL)
21251 return;
21252 break;
21253 }
21254 } while (macinfo_type != 0 && current_file == NULL);
21255
21256 /* Second pass: Process all entries.
21257
21258 Use the AT_COMMAND_LINE flag to determine whether we are still processing
21259 command-line macro definitions/undefinitions. This flag is unset when we
21260 reach the first DW_MACINFO_start_file entry. */
21261
21262 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
21263 NULL, xcalloc, xfree);
21264 cleanup = make_cleanup_htab_delete (include_hash);
21265 mac_ptr = section->buffer + offset;
21266 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
21267 *slot = (void *) mac_ptr;
21268 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
21269 current_file, lh, section,
21270 section_is_gnu, 0, offset_size, include_hash);
21271 do_cleanups (cleanup);
21272 }
21273
21274 /* Check if the attribute's form is a DW_FORM_block*
21275 if so return true else false. */
21276
21277 static int
21278 attr_form_is_block (const struct attribute *attr)
21279 {
21280 return (attr == NULL ? 0 :
21281 attr->form == DW_FORM_block1
21282 || attr->form == DW_FORM_block2
21283 || attr->form == DW_FORM_block4
21284 || attr->form == DW_FORM_block
21285 || attr->form == DW_FORM_exprloc);
21286 }
21287
21288 /* Return non-zero if ATTR's value is a section offset --- classes
21289 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
21290 You may use DW_UNSND (attr) to retrieve such offsets.
21291
21292 Section 7.5.4, "Attribute Encodings", explains that no attribute
21293 may have a value that belongs to more than one of these classes; it
21294 would be ambiguous if we did, because we use the same forms for all
21295 of them. */
21296
21297 static int
21298 attr_form_is_section_offset (const struct attribute *attr)
21299 {
21300 return (attr->form == DW_FORM_data4
21301 || attr->form == DW_FORM_data8
21302 || attr->form == DW_FORM_sec_offset);
21303 }
21304
21305 /* Return non-zero if ATTR's value falls in the 'constant' class, or
21306 zero otherwise. When this function returns true, you can apply
21307 dwarf2_get_attr_constant_value to it.
21308
21309 However, note that for some attributes you must check
21310 attr_form_is_section_offset before using this test. DW_FORM_data4
21311 and DW_FORM_data8 are members of both the constant class, and of
21312 the classes that contain offsets into other debug sections
21313 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
21314 that, if an attribute's can be either a constant or one of the
21315 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
21316 taken as section offsets, not constants. */
21317
21318 static int
21319 attr_form_is_constant (const struct attribute *attr)
21320 {
21321 switch (attr->form)
21322 {
21323 case DW_FORM_sdata:
21324 case DW_FORM_udata:
21325 case DW_FORM_data1:
21326 case DW_FORM_data2:
21327 case DW_FORM_data4:
21328 case DW_FORM_data8:
21329 return 1;
21330 default:
21331 return 0;
21332 }
21333 }
21334
21335
21336 /* DW_ADDR is always stored already as sect_offset; despite for the forms
21337 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
21338
21339 static int
21340 attr_form_is_ref (const struct attribute *attr)
21341 {
21342 switch (attr->form)
21343 {
21344 case DW_FORM_ref_addr:
21345 case DW_FORM_ref1:
21346 case DW_FORM_ref2:
21347 case DW_FORM_ref4:
21348 case DW_FORM_ref8:
21349 case DW_FORM_ref_udata:
21350 case DW_FORM_GNU_ref_alt:
21351 return 1;
21352 default:
21353 return 0;
21354 }
21355 }
21356
21357 /* Return the .debug_loc section to use for CU.
21358 For DWO files use .debug_loc.dwo. */
21359
21360 static struct dwarf2_section_info *
21361 cu_debug_loc_section (struct dwarf2_cu *cu)
21362 {
21363 if (cu->dwo_unit)
21364 return &cu->dwo_unit->dwo_file->sections.loc;
21365 return &dwarf2_per_objfile->loc;
21366 }
21367
21368 /* A helper function that fills in a dwarf2_loclist_baton. */
21369
21370 static void
21371 fill_in_loclist_baton (struct dwarf2_cu *cu,
21372 struct dwarf2_loclist_baton *baton,
21373 const struct attribute *attr)
21374 {
21375 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21376
21377 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
21378
21379 baton->per_cu = cu->per_cu;
21380 gdb_assert (baton->per_cu);
21381 /* We don't know how long the location list is, but make sure we
21382 don't run off the edge of the section. */
21383 baton->size = section->size - DW_UNSND (attr);
21384 baton->data = section->buffer + DW_UNSND (attr);
21385 baton->base_address = cu->base_address;
21386 baton->from_dwo = cu->dwo_unit != NULL;
21387 }
21388
21389 static void
21390 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
21391 struct dwarf2_cu *cu, int is_block)
21392 {
21393 struct objfile *objfile = dwarf2_per_objfile->objfile;
21394 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21395
21396 if (attr_form_is_section_offset (attr)
21397 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
21398 the section. If so, fall through to the complaint in the
21399 other branch. */
21400 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
21401 {
21402 struct dwarf2_loclist_baton *baton;
21403
21404 baton = obstack_alloc (&objfile->objfile_obstack,
21405 sizeof (struct dwarf2_loclist_baton));
21406
21407 fill_in_loclist_baton (cu, baton, attr);
21408
21409 if (cu->base_known == 0)
21410 complaint (&symfile_complaints,
21411 _("Location list used without "
21412 "specifying the CU base address."));
21413
21414 SYMBOL_ACLASS_INDEX (sym) = (is_block
21415 ? dwarf2_loclist_block_index
21416 : dwarf2_loclist_index);
21417 SYMBOL_LOCATION_BATON (sym) = baton;
21418 }
21419 else
21420 {
21421 struct dwarf2_locexpr_baton *baton;
21422
21423 baton = obstack_alloc (&objfile->objfile_obstack,
21424 sizeof (struct dwarf2_locexpr_baton));
21425 baton->per_cu = cu->per_cu;
21426 gdb_assert (baton->per_cu);
21427
21428 if (attr_form_is_block (attr))
21429 {
21430 /* Note that we're just copying the block's data pointer
21431 here, not the actual data. We're still pointing into the
21432 info_buffer for SYM's objfile; right now we never release
21433 that buffer, but when we do clean up properly this may
21434 need to change. */
21435 baton->size = DW_BLOCK (attr)->size;
21436 baton->data = DW_BLOCK (attr)->data;
21437 }
21438 else
21439 {
21440 dwarf2_invalid_attrib_class_complaint ("location description",
21441 SYMBOL_NATURAL_NAME (sym));
21442 baton->size = 0;
21443 }
21444
21445 SYMBOL_ACLASS_INDEX (sym) = (is_block
21446 ? dwarf2_locexpr_block_index
21447 : dwarf2_locexpr_index);
21448 SYMBOL_LOCATION_BATON (sym) = baton;
21449 }
21450 }
21451
21452 /* Return the OBJFILE associated with the compilation unit CU. If CU
21453 came from a separate debuginfo file, then the master objfile is
21454 returned. */
21455
21456 struct objfile *
21457 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
21458 {
21459 struct objfile *objfile = per_cu->objfile;
21460
21461 /* Return the master objfile, so that we can report and look up the
21462 correct file containing this variable. */
21463 if (objfile->separate_debug_objfile_backlink)
21464 objfile = objfile->separate_debug_objfile_backlink;
21465
21466 return objfile;
21467 }
21468
21469 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
21470 (CU_HEADERP is unused in such case) or prepare a temporary copy at
21471 CU_HEADERP first. */
21472
21473 static const struct comp_unit_head *
21474 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
21475 struct dwarf2_per_cu_data *per_cu)
21476 {
21477 const gdb_byte *info_ptr;
21478
21479 if (per_cu->cu)
21480 return &per_cu->cu->header;
21481
21482 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
21483
21484 memset (cu_headerp, 0, sizeof (*cu_headerp));
21485 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
21486
21487 return cu_headerp;
21488 }
21489
21490 /* Return the address size given in the compilation unit header for CU. */
21491
21492 int
21493 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
21494 {
21495 struct comp_unit_head cu_header_local;
21496 const struct comp_unit_head *cu_headerp;
21497
21498 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21499
21500 return cu_headerp->addr_size;
21501 }
21502
21503 /* Return the offset size given in the compilation unit header for CU. */
21504
21505 int
21506 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
21507 {
21508 struct comp_unit_head cu_header_local;
21509 const struct comp_unit_head *cu_headerp;
21510
21511 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21512
21513 return cu_headerp->offset_size;
21514 }
21515
21516 /* See its dwarf2loc.h declaration. */
21517
21518 int
21519 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
21520 {
21521 struct comp_unit_head cu_header_local;
21522 const struct comp_unit_head *cu_headerp;
21523
21524 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21525
21526 if (cu_headerp->version == 2)
21527 return cu_headerp->addr_size;
21528 else
21529 return cu_headerp->offset_size;
21530 }
21531
21532 /* Return the text offset of the CU. The returned offset comes from
21533 this CU's objfile. If this objfile came from a separate debuginfo
21534 file, then the offset may be different from the corresponding
21535 offset in the parent objfile. */
21536
21537 CORE_ADDR
21538 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
21539 {
21540 struct objfile *objfile = per_cu->objfile;
21541
21542 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21543 }
21544
21545 /* Locate the .debug_info compilation unit from CU's objfile which contains
21546 the DIE at OFFSET. Raises an error on failure. */
21547
21548 static struct dwarf2_per_cu_data *
21549 dwarf2_find_containing_comp_unit (sect_offset offset,
21550 unsigned int offset_in_dwz,
21551 struct objfile *objfile)
21552 {
21553 struct dwarf2_per_cu_data *this_cu;
21554 int low, high;
21555 const sect_offset *cu_off;
21556
21557 low = 0;
21558 high = dwarf2_per_objfile->n_comp_units - 1;
21559 while (high > low)
21560 {
21561 struct dwarf2_per_cu_data *mid_cu;
21562 int mid = low + (high - low) / 2;
21563
21564 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
21565 cu_off = &mid_cu->offset;
21566 if (mid_cu->is_dwz > offset_in_dwz
21567 || (mid_cu->is_dwz == offset_in_dwz
21568 && cu_off->sect_off >= offset.sect_off))
21569 high = mid;
21570 else
21571 low = mid + 1;
21572 }
21573 gdb_assert (low == high);
21574 this_cu = dwarf2_per_objfile->all_comp_units[low];
21575 cu_off = &this_cu->offset;
21576 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
21577 {
21578 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
21579 error (_("Dwarf Error: could not find partial DIE containing "
21580 "offset 0x%lx [in module %s]"),
21581 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
21582
21583 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
21584 <= offset.sect_off);
21585 return dwarf2_per_objfile->all_comp_units[low-1];
21586 }
21587 else
21588 {
21589 this_cu = dwarf2_per_objfile->all_comp_units[low];
21590 if (low == dwarf2_per_objfile->n_comp_units - 1
21591 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
21592 error (_("invalid dwarf2 offset %u"), offset.sect_off);
21593 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
21594 return this_cu;
21595 }
21596 }
21597
21598 /* Initialize dwarf2_cu CU, owned by PER_CU. */
21599
21600 static void
21601 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
21602 {
21603 memset (cu, 0, sizeof (*cu));
21604 per_cu->cu = cu;
21605 cu->per_cu = per_cu;
21606 cu->objfile = per_cu->objfile;
21607 obstack_init (&cu->comp_unit_obstack);
21608 }
21609
21610 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
21611
21612 static void
21613 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
21614 enum language pretend_language)
21615 {
21616 struct attribute *attr;
21617
21618 /* Set the language we're debugging. */
21619 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
21620 if (attr)
21621 set_cu_language (DW_UNSND (attr), cu);
21622 else
21623 {
21624 cu->language = pretend_language;
21625 cu->language_defn = language_def (cu->language);
21626 }
21627
21628 attr = dwarf2_attr (comp_unit_die, DW_AT_producer, cu);
21629 if (attr)
21630 cu->producer = DW_STRING (attr);
21631 }
21632
21633 /* Release one cached compilation unit, CU. We unlink it from the tree
21634 of compilation units, but we don't remove it from the read_in_chain;
21635 the caller is responsible for that.
21636 NOTE: DATA is a void * because this function is also used as a
21637 cleanup routine. */
21638
21639 static void
21640 free_heap_comp_unit (void *data)
21641 {
21642 struct dwarf2_cu *cu = data;
21643
21644 gdb_assert (cu->per_cu != NULL);
21645 cu->per_cu->cu = NULL;
21646 cu->per_cu = NULL;
21647
21648 obstack_free (&cu->comp_unit_obstack, NULL);
21649
21650 xfree (cu);
21651 }
21652
21653 /* This cleanup function is passed the address of a dwarf2_cu on the stack
21654 when we're finished with it. We can't free the pointer itself, but be
21655 sure to unlink it from the cache. Also release any associated storage. */
21656
21657 static void
21658 free_stack_comp_unit (void *data)
21659 {
21660 struct dwarf2_cu *cu = data;
21661
21662 gdb_assert (cu->per_cu != NULL);
21663 cu->per_cu->cu = NULL;
21664 cu->per_cu = NULL;
21665
21666 obstack_free (&cu->comp_unit_obstack, NULL);
21667 cu->partial_dies = NULL;
21668 }
21669
21670 /* Free all cached compilation units. */
21671
21672 static void
21673 free_cached_comp_units (void *data)
21674 {
21675 struct dwarf2_per_cu_data *per_cu, **last_chain;
21676
21677 per_cu = dwarf2_per_objfile->read_in_chain;
21678 last_chain = &dwarf2_per_objfile->read_in_chain;
21679 while (per_cu != NULL)
21680 {
21681 struct dwarf2_per_cu_data *next_cu;
21682
21683 next_cu = per_cu->cu->read_in_chain;
21684
21685 free_heap_comp_unit (per_cu->cu);
21686 *last_chain = next_cu;
21687
21688 per_cu = next_cu;
21689 }
21690 }
21691
21692 /* Increase the age counter on each cached compilation unit, and free
21693 any that are too old. */
21694
21695 static void
21696 age_cached_comp_units (void)
21697 {
21698 struct dwarf2_per_cu_data *per_cu, **last_chain;
21699
21700 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
21701 per_cu = dwarf2_per_objfile->read_in_chain;
21702 while (per_cu != NULL)
21703 {
21704 per_cu->cu->last_used ++;
21705 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
21706 dwarf2_mark (per_cu->cu);
21707 per_cu = per_cu->cu->read_in_chain;
21708 }
21709
21710 per_cu = dwarf2_per_objfile->read_in_chain;
21711 last_chain = &dwarf2_per_objfile->read_in_chain;
21712 while (per_cu != NULL)
21713 {
21714 struct dwarf2_per_cu_data *next_cu;
21715
21716 next_cu = per_cu->cu->read_in_chain;
21717
21718 if (!per_cu->cu->mark)
21719 {
21720 free_heap_comp_unit (per_cu->cu);
21721 *last_chain = next_cu;
21722 }
21723 else
21724 last_chain = &per_cu->cu->read_in_chain;
21725
21726 per_cu = next_cu;
21727 }
21728 }
21729
21730 /* Remove a single compilation unit from the cache. */
21731
21732 static void
21733 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
21734 {
21735 struct dwarf2_per_cu_data *per_cu, **last_chain;
21736
21737 per_cu = dwarf2_per_objfile->read_in_chain;
21738 last_chain = &dwarf2_per_objfile->read_in_chain;
21739 while (per_cu != NULL)
21740 {
21741 struct dwarf2_per_cu_data *next_cu;
21742
21743 next_cu = per_cu->cu->read_in_chain;
21744
21745 if (per_cu == target_per_cu)
21746 {
21747 free_heap_comp_unit (per_cu->cu);
21748 per_cu->cu = NULL;
21749 *last_chain = next_cu;
21750 break;
21751 }
21752 else
21753 last_chain = &per_cu->cu->read_in_chain;
21754
21755 per_cu = next_cu;
21756 }
21757 }
21758
21759 /* Release all extra memory associated with OBJFILE. */
21760
21761 void
21762 dwarf2_free_objfile (struct objfile *objfile)
21763 {
21764 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
21765
21766 if (dwarf2_per_objfile == NULL)
21767 return;
21768
21769 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
21770 free_cached_comp_units (NULL);
21771
21772 if (dwarf2_per_objfile->quick_file_names_table)
21773 htab_delete (dwarf2_per_objfile->quick_file_names_table);
21774
21775 /* Everything else should be on the objfile obstack. */
21776 }
21777
21778 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
21779 We store these in a hash table separate from the DIEs, and preserve them
21780 when the DIEs are flushed out of cache.
21781
21782 The CU "per_cu" pointer is needed because offset alone is not enough to
21783 uniquely identify the type. A file may have multiple .debug_types sections,
21784 or the type may come from a DWO file. Furthermore, while it's more logical
21785 to use per_cu->section+offset, with Fission the section with the data is in
21786 the DWO file but we don't know that section at the point we need it.
21787 We have to use something in dwarf2_per_cu_data (or the pointer to it)
21788 because we can enter the lookup routine, get_die_type_at_offset, from
21789 outside this file, and thus won't necessarily have PER_CU->cu.
21790 Fortunately, PER_CU is stable for the life of the objfile. */
21791
21792 struct dwarf2_per_cu_offset_and_type
21793 {
21794 const struct dwarf2_per_cu_data *per_cu;
21795 sect_offset offset;
21796 struct type *type;
21797 };
21798
21799 /* Hash function for a dwarf2_per_cu_offset_and_type. */
21800
21801 static hashval_t
21802 per_cu_offset_and_type_hash (const void *item)
21803 {
21804 const struct dwarf2_per_cu_offset_and_type *ofs = item;
21805
21806 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
21807 }
21808
21809 /* Equality function for a dwarf2_per_cu_offset_and_type. */
21810
21811 static int
21812 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
21813 {
21814 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
21815 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
21816
21817 return (ofs_lhs->per_cu == ofs_rhs->per_cu
21818 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
21819 }
21820
21821 /* Set the type associated with DIE to TYPE. Save it in CU's hash
21822 table if necessary. For convenience, return TYPE.
21823
21824 The DIEs reading must have careful ordering to:
21825 * Not cause infite loops trying to read in DIEs as a prerequisite for
21826 reading current DIE.
21827 * Not trying to dereference contents of still incompletely read in types
21828 while reading in other DIEs.
21829 * Enable referencing still incompletely read in types just by a pointer to
21830 the type without accessing its fields.
21831
21832 Therefore caller should follow these rules:
21833 * Try to fetch any prerequisite types we may need to build this DIE type
21834 before building the type and calling set_die_type.
21835 * After building type call set_die_type for current DIE as soon as
21836 possible before fetching more types to complete the current type.
21837 * Make the type as complete as possible before fetching more types. */
21838
21839 static struct type *
21840 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
21841 {
21842 struct dwarf2_per_cu_offset_and_type **slot, ofs;
21843 struct objfile *objfile = cu->objfile;
21844 struct attribute *attr;
21845 struct dynamic_prop prop;
21846
21847 /* For Ada types, make sure that the gnat-specific data is always
21848 initialized (if not already set). There are a few types where
21849 we should not be doing so, because the type-specific area is
21850 already used to hold some other piece of info (eg: TYPE_CODE_FLT
21851 where the type-specific area is used to store the floatformat).
21852 But this is not a problem, because the gnat-specific information
21853 is actually not needed for these types. */
21854 if (need_gnat_info (cu)
21855 && TYPE_CODE (type) != TYPE_CODE_FUNC
21856 && TYPE_CODE (type) != TYPE_CODE_FLT
21857 && !HAVE_GNAT_AUX_INFO (type))
21858 INIT_GNAT_SPECIFIC (type);
21859
21860 /* Read DW_AT_data_location and set in type. */
21861 attr = dwarf2_attr (die, DW_AT_data_location, cu);
21862 if (attr_to_dynamic_prop (attr, die, cu, &prop))
21863 {
21864 TYPE_DATA_LOCATION (type)
21865 = obstack_alloc (&objfile->objfile_obstack, sizeof (prop));
21866 *TYPE_DATA_LOCATION (type) = prop;
21867 }
21868
21869 if (dwarf2_per_objfile->die_type_hash == NULL)
21870 {
21871 dwarf2_per_objfile->die_type_hash =
21872 htab_create_alloc_ex (127,
21873 per_cu_offset_and_type_hash,
21874 per_cu_offset_and_type_eq,
21875 NULL,
21876 &objfile->objfile_obstack,
21877 hashtab_obstack_allocate,
21878 dummy_obstack_deallocate);
21879 }
21880
21881 ofs.per_cu = cu->per_cu;
21882 ofs.offset = die->offset;
21883 ofs.type = type;
21884 slot = (struct dwarf2_per_cu_offset_and_type **)
21885 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
21886 if (*slot)
21887 complaint (&symfile_complaints,
21888 _("A problem internal to GDB: DIE 0x%x has type already set"),
21889 die->offset.sect_off);
21890 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
21891 **slot = ofs;
21892 return type;
21893 }
21894
21895 /* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
21896 or return NULL if the die does not have a saved type. */
21897
21898 static struct type *
21899 get_die_type_at_offset (sect_offset offset,
21900 struct dwarf2_per_cu_data *per_cu)
21901 {
21902 struct dwarf2_per_cu_offset_and_type *slot, ofs;
21903
21904 if (dwarf2_per_objfile->die_type_hash == NULL)
21905 return NULL;
21906
21907 ofs.per_cu = per_cu;
21908 ofs.offset = offset;
21909 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
21910 if (slot)
21911 return slot->type;
21912 else
21913 return NULL;
21914 }
21915
21916 /* Look up the type for DIE in CU in die_type_hash,
21917 or return NULL if DIE does not have a saved type. */
21918
21919 static struct type *
21920 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
21921 {
21922 return get_die_type_at_offset (die->offset, cu->per_cu);
21923 }
21924
21925 /* Add a dependence relationship from CU to REF_PER_CU. */
21926
21927 static void
21928 dwarf2_add_dependence (struct dwarf2_cu *cu,
21929 struct dwarf2_per_cu_data *ref_per_cu)
21930 {
21931 void **slot;
21932
21933 if (cu->dependencies == NULL)
21934 cu->dependencies
21935 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
21936 NULL, &cu->comp_unit_obstack,
21937 hashtab_obstack_allocate,
21938 dummy_obstack_deallocate);
21939
21940 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
21941 if (*slot == NULL)
21942 *slot = ref_per_cu;
21943 }
21944
21945 /* Subroutine of dwarf2_mark to pass to htab_traverse.
21946 Set the mark field in every compilation unit in the
21947 cache that we must keep because we are keeping CU. */
21948
21949 static int
21950 dwarf2_mark_helper (void **slot, void *data)
21951 {
21952 struct dwarf2_per_cu_data *per_cu;
21953
21954 per_cu = (struct dwarf2_per_cu_data *) *slot;
21955
21956 /* cu->dependencies references may not yet have been ever read if QUIT aborts
21957 reading of the chain. As such dependencies remain valid it is not much
21958 useful to track and undo them during QUIT cleanups. */
21959 if (per_cu->cu == NULL)
21960 return 1;
21961
21962 if (per_cu->cu->mark)
21963 return 1;
21964 per_cu->cu->mark = 1;
21965
21966 if (per_cu->cu->dependencies != NULL)
21967 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
21968
21969 return 1;
21970 }
21971
21972 /* Set the mark field in CU and in every other compilation unit in the
21973 cache that we must keep because we are keeping CU. */
21974
21975 static void
21976 dwarf2_mark (struct dwarf2_cu *cu)
21977 {
21978 if (cu->mark)
21979 return;
21980 cu->mark = 1;
21981 if (cu->dependencies != NULL)
21982 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
21983 }
21984
21985 static void
21986 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
21987 {
21988 while (per_cu)
21989 {
21990 per_cu->cu->mark = 0;
21991 per_cu = per_cu->cu->read_in_chain;
21992 }
21993 }
21994
21995 /* Trivial hash function for partial_die_info: the hash value of a DIE
21996 is its offset in .debug_info for this objfile. */
21997
21998 static hashval_t
21999 partial_die_hash (const void *item)
22000 {
22001 const struct partial_die_info *part_die = item;
22002
22003 return part_die->offset.sect_off;
22004 }
22005
22006 /* Trivial comparison function for partial_die_info structures: two DIEs
22007 are equal if they have the same offset. */
22008
22009 static int
22010 partial_die_eq (const void *item_lhs, const void *item_rhs)
22011 {
22012 const struct partial_die_info *part_die_lhs = item_lhs;
22013 const struct partial_die_info *part_die_rhs = item_rhs;
22014
22015 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
22016 }
22017
22018 static struct cmd_list_element *set_dwarf2_cmdlist;
22019 static struct cmd_list_element *show_dwarf2_cmdlist;
22020
22021 static void
22022 set_dwarf2_cmd (char *args, int from_tty)
22023 {
22024 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", all_commands,
22025 gdb_stdout);
22026 }
22027
22028 static void
22029 show_dwarf2_cmd (char *args, int from_tty)
22030 {
22031 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
22032 }
22033
22034 /* Free data associated with OBJFILE, if necessary. */
22035
22036 static void
22037 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
22038 {
22039 struct dwarf2_per_objfile *data = d;
22040 int ix;
22041
22042 /* Make sure we don't accidentally use dwarf2_per_objfile while
22043 cleaning up. */
22044 dwarf2_per_objfile = NULL;
22045
22046 for (ix = 0; ix < data->n_comp_units; ++ix)
22047 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
22048
22049 for (ix = 0; ix < data->n_type_units; ++ix)
22050 VEC_free (dwarf2_per_cu_ptr,
22051 data->all_type_units[ix]->per_cu.imported_symtabs);
22052 xfree (data->all_type_units);
22053
22054 VEC_free (dwarf2_section_info_def, data->types);
22055
22056 if (data->dwo_files)
22057 free_dwo_files (data->dwo_files, objfile);
22058 if (data->dwp_file)
22059 gdb_bfd_unref (data->dwp_file->dbfd);
22060
22061 if (data->dwz_file && data->dwz_file->dwz_bfd)
22062 gdb_bfd_unref (data->dwz_file->dwz_bfd);
22063 }
22064
22065 \f
22066 /* The "save gdb-index" command. */
22067
22068 /* The contents of the hash table we create when building the string
22069 table. */
22070 struct strtab_entry
22071 {
22072 offset_type offset;
22073 const char *str;
22074 };
22075
22076 /* Hash function for a strtab_entry.
22077
22078 Function is used only during write_hash_table so no index format backward
22079 compatibility is needed. */
22080
22081 static hashval_t
22082 hash_strtab_entry (const void *e)
22083 {
22084 const struct strtab_entry *entry = e;
22085 return mapped_index_string_hash (INT_MAX, entry->str);
22086 }
22087
22088 /* Equality function for a strtab_entry. */
22089
22090 static int
22091 eq_strtab_entry (const void *a, const void *b)
22092 {
22093 const struct strtab_entry *ea = a;
22094 const struct strtab_entry *eb = b;
22095 return !strcmp (ea->str, eb->str);
22096 }
22097
22098 /* Create a strtab_entry hash table. */
22099
22100 static htab_t
22101 create_strtab (void)
22102 {
22103 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
22104 xfree, xcalloc, xfree);
22105 }
22106
22107 /* Add a string to the constant pool. Return the string's offset in
22108 host order. */
22109
22110 static offset_type
22111 add_string (htab_t table, struct obstack *cpool, const char *str)
22112 {
22113 void **slot;
22114 struct strtab_entry entry;
22115 struct strtab_entry *result;
22116
22117 entry.str = str;
22118 slot = htab_find_slot (table, &entry, INSERT);
22119 if (*slot)
22120 result = *slot;
22121 else
22122 {
22123 result = XNEW (struct strtab_entry);
22124 result->offset = obstack_object_size (cpool);
22125 result->str = str;
22126 obstack_grow_str0 (cpool, str);
22127 *slot = result;
22128 }
22129 return result->offset;
22130 }
22131
22132 /* An entry in the symbol table. */
22133 struct symtab_index_entry
22134 {
22135 /* The name of the symbol. */
22136 const char *name;
22137 /* The offset of the name in the constant pool. */
22138 offset_type index_offset;
22139 /* A sorted vector of the indices of all the CUs that hold an object
22140 of this name. */
22141 VEC (offset_type) *cu_indices;
22142 };
22143
22144 /* The symbol table. This is a power-of-2-sized hash table. */
22145 struct mapped_symtab
22146 {
22147 offset_type n_elements;
22148 offset_type size;
22149 struct symtab_index_entry **data;
22150 };
22151
22152 /* Hash function for a symtab_index_entry. */
22153
22154 static hashval_t
22155 hash_symtab_entry (const void *e)
22156 {
22157 const struct symtab_index_entry *entry = e;
22158 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
22159 sizeof (offset_type) * VEC_length (offset_type,
22160 entry->cu_indices),
22161 0);
22162 }
22163
22164 /* Equality function for a symtab_index_entry. */
22165
22166 static int
22167 eq_symtab_entry (const void *a, const void *b)
22168 {
22169 const struct symtab_index_entry *ea = a;
22170 const struct symtab_index_entry *eb = b;
22171 int len = VEC_length (offset_type, ea->cu_indices);
22172 if (len != VEC_length (offset_type, eb->cu_indices))
22173 return 0;
22174 return !memcmp (VEC_address (offset_type, ea->cu_indices),
22175 VEC_address (offset_type, eb->cu_indices),
22176 sizeof (offset_type) * len);
22177 }
22178
22179 /* Destroy a symtab_index_entry. */
22180
22181 static void
22182 delete_symtab_entry (void *p)
22183 {
22184 struct symtab_index_entry *entry = p;
22185 VEC_free (offset_type, entry->cu_indices);
22186 xfree (entry);
22187 }
22188
22189 /* Create a hash table holding symtab_index_entry objects. */
22190
22191 static htab_t
22192 create_symbol_hash_table (void)
22193 {
22194 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
22195 delete_symtab_entry, xcalloc, xfree);
22196 }
22197
22198 /* Create a new mapped symtab object. */
22199
22200 static struct mapped_symtab *
22201 create_mapped_symtab (void)
22202 {
22203 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
22204 symtab->n_elements = 0;
22205 symtab->size = 1024;
22206 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22207 return symtab;
22208 }
22209
22210 /* Destroy a mapped_symtab. */
22211
22212 static void
22213 cleanup_mapped_symtab (void *p)
22214 {
22215 struct mapped_symtab *symtab = p;
22216 /* The contents of the array are freed when the other hash table is
22217 destroyed. */
22218 xfree (symtab->data);
22219 xfree (symtab);
22220 }
22221
22222 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
22223 the slot.
22224
22225 Function is used only during write_hash_table so no index format backward
22226 compatibility is needed. */
22227
22228 static struct symtab_index_entry **
22229 find_slot (struct mapped_symtab *symtab, const char *name)
22230 {
22231 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
22232
22233 index = hash & (symtab->size - 1);
22234 step = ((hash * 17) & (symtab->size - 1)) | 1;
22235
22236 for (;;)
22237 {
22238 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
22239 return &symtab->data[index];
22240 index = (index + step) & (symtab->size - 1);
22241 }
22242 }
22243
22244 /* Expand SYMTAB's hash table. */
22245
22246 static void
22247 hash_expand (struct mapped_symtab *symtab)
22248 {
22249 offset_type old_size = symtab->size;
22250 offset_type i;
22251 struct symtab_index_entry **old_entries = symtab->data;
22252
22253 symtab->size *= 2;
22254 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22255
22256 for (i = 0; i < old_size; ++i)
22257 {
22258 if (old_entries[i])
22259 {
22260 struct symtab_index_entry **slot = find_slot (symtab,
22261 old_entries[i]->name);
22262 *slot = old_entries[i];
22263 }
22264 }
22265
22266 xfree (old_entries);
22267 }
22268
22269 /* Add an entry to SYMTAB. NAME is the name of the symbol.
22270 CU_INDEX is the index of the CU in which the symbol appears.
22271 IS_STATIC is one if the symbol is static, otherwise zero (global). */
22272
22273 static void
22274 add_index_entry (struct mapped_symtab *symtab, const char *name,
22275 int is_static, gdb_index_symbol_kind kind,
22276 offset_type cu_index)
22277 {
22278 struct symtab_index_entry **slot;
22279 offset_type cu_index_and_attrs;
22280
22281 ++symtab->n_elements;
22282 if (4 * symtab->n_elements / 3 >= symtab->size)
22283 hash_expand (symtab);
22284
22285 slot = find_slot (symtab, name);
22286 if (!*slot)
22287 {
22288 *slot = XNEW (struct symtab_index_entry);
22289 (*slot)->name = name;
22290 /* index_offset is set later. */
22291 (*slot)->cu_indices = NULL;
22292 }
22293
22294 cu_index_and_attrs = 0;
22295 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
22296 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
22297 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
22298
22299 /* We don't want to record an index value twice as we want to avoid the
22300 duplication.
22301 We process all global symbols and then all static symbols
22302 (which would allow us to avoid the duplication by only having to check
22303 the last entry pushed), but a symbol could have multiple kinds in one CU.
22304 To keep things simple we don't worry about the duplication here and
22305 sort and uniqufy the list after we've processed all symbols. */
22306 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
22307 }
22308
22309 /* qsort helper routine for uniquify_cu_indices. */
22310
22311 static int
22312 offset_type_compare (const void *ap, const void *bp)
22313 {
22314 offset_type a = *(offset_type *) ap;
22315 offset_type b = *(offset_type *) bp;
22316
22317 return (a > b) - (b > a);
22318 }
22319
22320 /* Sort and remove duplicates of all symbols' cu_indices lists. */
22321
22322 static void
22323 uniquify_cu_indices (struct mapped_symtab *symtab)
22324 {
22325 int i;
22326
22327 for (i = 0; i < symtab->size; ++i)
22328 {
22329 struct symtab_index_entry *entry = symtab->data[i];
22330
22331 if (entry
22332 && entry->cu_indices != NULL)
22333 {
22334 unsigned int next_to_insert, next_to_check;
22335 offset_type last_value;
22336
22337 qsort (VEC_address (offset_type, entry->cu_indices),
22338 VEC_length (offset_type, entry->cu_indices),
22339 sizeof (offset_type), offset_type_compare);
22340
22341 last_value = VEC_index (offset_type, entry->cu_indices, 0);
22342 next_to_insert = 1;
22343 for (next_to_check = 1;
22344 next_to_check < VEC_length (offset_type, entry->cu_indices);
22345 ++next_to_check)
22346 {
22347 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
22348 != last_value)
22349 {
22350 last_value = VEC_index (offset_type, entry->cu_indices,
22351 next_to_check);
22352 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
22353 last_value);
22354 ++next_to_insert;
22355 }
22356 }
22357 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
22358 }
22359 }
22360 }
22361
22362 /* Add a vector of indices to the constant pool. */
22363
22364 static offset_type
22365 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
22366 struct symtab_index_entry *entry)
22367 {
22368 void **slot;
22369
22370 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
22371 if (!*slot)
22372 {
22373 offset_type len = VEC_length (offset_type, entry->cu_indices);
22374 offset_type val = MAYBE_SWAP (len);
22375 offset_type iter;
22376 int i;
22377
22378 *slot = entry;
22379 entry->index_offset = obstack_object_size (cpool);
22380
22381 obstack_grow (cpool, &val, sizeof (val));
22382 for (i = 0;
22383 VEC_iterate (offset_type, entry->cu_indices, i, iter);
22384 ++i)
22385 {
22386 val = MAYBE_SWAP (iter);
22387 obstack_grow (cpool, &val, sizeof (val));
22388 }
22389 }
22390 else
22391 {
22392 struct symtab_index_entry *old_entry = *slot;
22393 entry->index_offset = old_entry->index_offset;
22394 entry = old_entry;
22395 }
22396 return entry->index_offset;
22397 }
22398
22399 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
22400 constant pool entries going into the obstack CPOOL. */
22401
22402 static void
22403 write_hash_table (struct mapped_symtab *symtab,
22404 struct obstack *output, struct obstack *cpool)
22405 {
22406 offset_type i;
22407 htab_t symbol_hash_table;
22408 htab_t str_table;
22409
22410 symbol_hash_table = create_symbol_hash_table ();
22411 str_table = create_strtab ();
22412
22413 /* We add all the index vectors to the constant pool first, to
22414 ensure alignment is ok. */
22415 for (i = 0; i < symtab->size; ++i)
22416 {
22417 if (symtab->data[i])
22418 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
22419 }
22420
22421 /* Now write out the hash table. */
22422 for (i = 0; i < symtab->size; ++i)
22423 {
22424 offset_type str_off, vec_off;
22425
22426 if (symtab->data[i])
22427 {
22428 str_off = add_string (str_table, cpool, symtab->data[i]->name);
22429 vec_off = symtab->data[i]->index_offset;
22430 }
22431 else
22432 {
22433 /* While 0 is a valid constant pool index, it is not valid
22434 to have 0 for both offsets. */
22435 str_off = 0;
22436 vec_off = 0;
22437 }
22438
22439 str_off = MAYBE_SWAP (str_off);
22440 vec_off = MAYBE_SWAP (vec_off);
22441
22442 obstack_grow (output, &str_off, sizeof (str_off));
22443 obstack_grow (output, &vec_off, sizeof (vec_off));
22444 }
22445
22446 htab_delete (str_table);
22447 htab_delete (symbol_hash_table);
22448 }
22449
22450 /* Struct to map psymtab to CU index in the index file. */
22451 struct psymtab_cu_index_map
22452 {
22453 struct partial_symtab *psymtab;
22454 unsigned int cu_index;
22455 };
22456
22457 static hashval_t
22458 hash_psymtab_cu_index (const void *item)
22459 {
22460 const struct psymtab_cu_index_map *map = item;
22461
22462 return htab_hash_pointer (map->psymtab);
22463 }
22464
22465 static int
22466 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
22467 {
22468 const struct psymtab_cu_index_map *lhs = item_lhs;
22469 const struct psymtab_cu_index_map *rhs = item_rhs;
22470
22471 return lhs->psymtab == rhs->psymtab;
22472 }
22473
22474 /* Helper struct for building the address table. */
22475 struct addrmap_index_data
22476 {
22477 struct objfile *objfile;
22478 struct obstack *addr_obstack;
22479 htab_t cu_index_htab;
22480
22481 /* Non-zero if the previous_* fields are valid.
22482 We can't write an entry until we see the next entry (since it is only then
22483 that we know the end of the entry). */
22484 int previous_valid;
22485 /* Index of the CU in the table of all CUs in the index file. */
22486 unsigned int previous_cu_index;
22487 /* Start address of the CU. */
22488 CORE_ADDR previous_cu_start;
22489 };
22490
22491 /* Write an address entry to OBSTACK. */
22492
22493 static void
22494 add_address_entry (struct objfile *objfile, struct obstack *obstack,
22495 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
22496 {
22497 offset_type cu_index_to_write;
22498 gdb_byte addr[8];
22499 CORE_ADDR baseaddr;
22500
22501 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22502
22503 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
22504 obstack_grow (obstack, addr, 8);
22505 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
22506 obstack_grow (obstack, addr, 8);
22507 cu_index_to_write = MAYBE_SWAP (cu_index);
22508 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
22509 }
22510
22511 /* Worker function for traversing an addrmap to build the address table. */
22512
22513 static int
22514 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
22515 {
22516 struct addrmap_index_data *data = datap;
22517 struct partial_symtab *pst = obj;
22518
22519 if (data->previous_valid)
22520 add_address_entry (data->objfile, data->addr_obstack,
22521 data->previous_cu_start, start_addr,
22522 data->previous_cu_index);
22523
22524 data->previous_cu_start = start_addr;
22525 if (pst != NULL)
22526 {
22527 struct psymtab_cu_index_map find_map, *map;
22528 find_map.psymtab = pst;
22529 map = htab_find (data->cu_index_htab, &find_map);
22530 gdb_assert (map != NULL);
22531 data->previous_cu_index = map->cu_index;
22532 data->previous_valid = 1;
22533 }
22534 else
22535 data->previous_valid = 0;
22536
22537 return 0;
22538 }
22539
22540 /* Write OBJFILE's address map to OBSTACK.
22541 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
22542 in the index file. */
22543
22544 static void
22545 write_address_map (struct objfile *objfile, struct obstack *obstack,
22546 htab_t cu_index_htab)
22547 {
22548 struct addrmap_index_data addrmap_index_data;
22549
22550 /* When writing the address table, we have to cope with the fact that
22551 the addrmap iterator only provides the start of a region; we have to
22552 wait until the next invocation to get the start of the next region. */
22553
22554 addrmap_index_data.objfile = objfile;
22555 addrmap_index_data.addr_obstack = obstack;
22556 addrmap_index_data.cu_index_htab = cu_index_htab;
22557 addrmap_index_data.previous_valid = 0;
22558
22559 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
22560 &addrmap_index_data);
22561
22562 /* It's highly unlikely the last entry (end address = 0xff...ff)
22563 is valid, but we should still handle it.
22564 The end address is recorded as the start of the next region, but that
22565 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
22566 anyway. */
22567 if (addrmap_index_data.previous_valid)
22568 add_address_entry (objfile, obstack,
22569 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
22570 addrmap_index_data.previous_cu_index);
22571 }
22572
22573 /* Return the symbol kind of PSYM. */
22574
22575 static gdb_index_symbol_kind
22576 symbol_kind (struct partial_symbol *psym)
22577 {
22578 domain_enum domain = PSYMBOL_DOMAIN (psym);
22579 enum address_class aclass = PSYMBOL_CLASS (psym);
22580
22581 switch (domain)
22582 {
22583 case VAR_DOMAIN:
22584 switch (aclass)
22585 {
22586 case LOC_BLOCK:
22587 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
22588 case LOC_TYPEDEF:
22589 return GDB_INDEX_SYMBOL_KIND_TYPE;
22590 case LOC_COMPUTED:
22591 case LOC_CONST_BYTES:
22592 case LOC_OPTIMIZED_OUT:
22593 case LOC_STATIC:
22594 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
22595 case LOC_CONST:
22596 /* Note: It's currently impossible to recognize psyms as enum values
22597 short of reading the type info. For now punt. */
22598 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
22599 default:
22600 /* There are other LOC_FOO values that one might want to classify
22601 as variables, but dwarf2read.c doesn't currently use them. */
22602 return GDB_INDEX_SYMBOL_KIND_OTHER;
22603 }
22604 case STRUCT_DOMAIN:
22605 return GDB_INDEX_SYMBOL_KIND_TYPE;
22606 default:
22607 return GDB_INDEX_SYMBOL_KIND_OTHER;
22608 }
22609 }
22610
22611 /* Add a list of partial symbols to SYMTAB. */
22612
22613 static void
22614 write_psymbols (struct mapped_symtab *symtab,
22615 htab_t psyms_seen,
22616 struct partial_symbol **psymp,
22617 int count,
22618 offset_type cu_index,
22619 int is_static)
22620 {
22621 for (; count-- > 0; ++psymp)
22622 {
22623 struct partial_symbol *psym = *psymp;
22624 void **slot;
22625
22626 if (SYMBOL_LANGUAGE (psym) == language_ada)
22627 error (_("Ada is not currently supported by the index"));
22628
22629 /* Only add a given psymbol once. */
22630 slot = htab_find_slot (psyms_seen, psym, INSERT);
22631 if (!*slot)
22632 {
22633 gdb_index_symbol_kind kind = symbol_kind (psym);
22634
22635 *slot = psym;
22636 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
22637 is_static, kind, cu_index);
22638 }
22639 }
22640 }
22641
22642 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
22643 exception if there is an error. */
22644
22645 static void
22646 write_obstack (FILE *file, struct obstack *obstack)
22647 {
22648 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
22649 file)
22650 != obstack_object_size (obstack))
22651 error (_("couldn't data write to file"));
22652 }
22653
22654 /* Unlink a file if the argument is not NULL. */
22655
22656 static void
22657 unlink_if_set (void *p)
22658 {
22659 char **filename = p;
22660 if (*filename)
22661 unlink (*filename);
22662 }
22663
22664 /* A helper struct used when iterating over debug_types. */
22665 struct signatured_type_index_data
22666 {
22667 struct objfile *objfile;
22668 struct mapped_symtab *symtab;
22669 struct obstack *types_list;
22670 htab_t psyms_seen;
22671 int cu_index;
22672 };
22673
22674 /* A helper function that writes a single signatured_type to an
22675 obstack. */
22676
22677 static int
22678 write_one_signatured_type (void **slot, void *d)
22679 {
22680 struct signatured_type_index_data *info = d;
22681 struct signatured_type *entry = (struct signatured_type *) *slot;
22682 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
22683 gdb_byte val[8];
22684
22685 write_psymbols (info->symtab,
22686 info->psyms_seen,
22687 info->objfile->global_psymbols.list
22688 + psymtab->globals_offset,
22689 psymtab->n_global_syms, info->cu_index,
22690 0);
22691 write_psymbols (info->symtab,
22692 info->psyms_seen,
22693 info->objfile->static_psymbols.list
22694 + psymtab->statics_offset,
22695 psymtab->n_static_syms, info->cu_index,
22696 1);
22697
22698 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22699 entry->per_cu.offset.sect_off);
22700 obstack_grow (info->types_list, val, 8);
22701 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22702 entry->type_offset_in_tu.cu_off);
22703 obstack_grow (info->types_list, val, 8);
22704 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
22705 obstack_grow (info->types_list, val, 8);
22706
22707 ++info->cu_index;
22708
22709 return 1;
22710 }
22711
22712 /* Recurse into all "included" dependencies and write their symbols as
22713 if they appeared in this psymtab. */
22714
22715 static void
22716 recursively_write_psymbols (struct objfile *objfile,
22717 struct partial_symtab *psymtab,
22718 struct mapped_symtab *symtab,
22719 htab_t psyms_seen,
22720 offset_type cu_index)
22721 {
22722 int i;
22723
22724 for (i = 0; i < psymtab->number_of_dependencies; ++i)
22725 if (psymtab->dependencies[i]->user != NULL)
22726 recursively_write_psymbols (objfile, psymtab->dependencies[i],
22727 symtab, psyms_seen, cu_index);
22728
22729 write_psymbols (symtab,
22730 psyms_seen,
22731 objfile->global_psymbols.list + psymtab->globals_offset,
22732 psymtab->n_global_syms, cu_index,
22733 0);
22734 write_psymbols (symtab,
22735 psyms_seen,
22736 objfile->static_psymbols.list + psymtab->statics_offset,
22737 psymtab->n_static_syms, cu_index,
22738 1);
22739 }
22740
22741 /* Create an index file for OBJFILE in the directory DIR. */
22742
22743 static void
22744 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
22745 {
22746 struct cleanup *cleanup;
22747 char *filename, *cleanup_filename;
22748 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
22749 struct obstack cu_list, types_cu_list;
22750 int i;
22751 FILE *out_file;
22752 struct mapped_symtab *symtab;
22753 offset_type val, size_of_contents, total_len;
22754 struct stat st;
22755 htab_t psyms_seen;
22756 htab_t cu_index_htab;
22757 struct psymtab_cu_index_map *psymtab_cu_index_map;
22758
22759 if (dwarf2_per_objfile->using_index)
22760 error (_("Cannot use an index to create the index"));
22761
22762 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
22763 error (_("Cannot make an index when the file has multiple .debug_types sections"));
22764
22765 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
22766 return;
22767
22768 if (stat (objfile_name (objfile), &st) < 0)
22769 perror_with_name (objfile_name (objfile));
22770
22771 filename = concat (dir, SLASH_STRING, lbasename (objfile_name (objfile)),
22772 INDEX_SUFFIX, (char *) NULL);
22773 cleanup = make_cleanup (xfree, filename);
22774
22775 out_file = gdb_fopen_cloexec (filename, "wb");
22776 if (!out_file)
22777 error (_("Can't open `%s' for writing"), filename);
22778
22779 cleanup_filename = filename;
22780 make_cleanup (unlink_if_set, &cleanup_filename);
22781
22782 symtab = create_mapped_symtab ();
22783 make_cleanup (cleanup_mapped_symtab, symtab);
22784
22785 obstack_init (&addr_obstack);
22786 make_cleanup_obstack_free (&addr_obstack);
22787
22788 obstack_init (&cu_list);
22789 make_cleanup_obstack_free (&cu_list);
22790
22791 obstack_init (&types_cu_list);
22792 make_cleanup_obstack_free (&types_cu_list);
22793
22794 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
22795 NULL, xcalloc, xfree);
22796 make_cleanup_htab_delete (psyms_seen);
22797
22798 /* While we're scanning CU's create a table that maps a psymtab pointer
22799 (which is what addrmap records) to its index (which is what is recorded
22800 in the index file). This will later be needed to write the address
22801 table. */
22802 cu_index_htab = htab_create_alloc (100,
22803 hash_psymtab_cu_index,
22804 eq_psymtab_cu_index,
22805 NULL, xcalloc, xfree);
22806 make_cleanup_htab_delete (cu_index_htab);
22807 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
22808 xmalloc (sizeof (struct psymtab_cu_index_map)
22809 * dwarf2_per_objfile->n_comp_units);
22810 make_cleanup (xfree, psymtab_cu_index_map);
22811
22812 /* The CU list is already sorted, so we don't need to do additional
22813 work here. Also, the debug_types entries do not appear in
22814 all_comp_units, but only in their own hash table. */
22815 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
22816 {
22817 struct dwarf2_per_cu_data *per_cu
22818 = dwarf2_per_objfile->all_comp_units[i];
22819 struct partial_symtab *psymtab = per_cu->v.psymtab;
22820 gdb_byte val[8];
22821 struct psymtab_cu_index_map *map;
22822 void **slot;
22823
22824 /* CU of a shared file from 'dwz -m' may be unused by this main file.
22825 It may be referenced from a local scope but in such case it does not
22826 need to be present in .gdb_index. */
22827 if (psymtab == NULL)
22828 continue;
22829
22830 if (psymtab->user == NULL)
22831 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
22832
22833 map = &psymtab_cu_index_map[i];
22834 map->psymtab = psymtab;
22835 map->cu_index = i;
22836 slot = htab_find_slot (cu_index_htab, map, INSERT);
22837 gdb_assert (slot != NULL);
22838 gdb_assert (*slot == NULL);
22839 *slot = map;
22840
22841 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22842 per_cu->offset.sect_off);
22843 obstack_grow (&cu_list, val, 8);
22844 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
22845 obstack_grow (&cu_list, val, 8);
22846 }
22847
22848 /* Dump the address map. */
22849 write_address_map (objfile, &addr_obstack, cu_index_htab);
22850
22851 /* Write out the .debug_type entries, if any. */
22852 if (dwarf2_per_objfile->signatured_types)
22853 {
22854 struct signatured_type_index_data sig_data;
22855
22856 sig_data.objfile = objfile;
22857 sig_data.symtab = symtab;
22858 sig_data.types_list = &types_cu_list;
22859 sig_data.psyms_seen = psyms_seen;
22860 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
22861 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
22862 write_one_signatured_type, &sig_data);
22863 }
22864
22865 /* Now that we've processed all symbols we can shrink their cu_indices
22866 lists. */
22867 uniquify_cu_indices (symtab);
22868
22869 obstack_init (&constant_pool);
22870 make_cleanup_obstack_free (&constant_pool);
22871 obstack_init (&symtab_obstack);
22872 make_cleanup_obstack_free (&symtab_obstack);
22873 write_hash_table (symtab, &symtab_obstack, &constant_pool);
22874
22875 obstack_init (&contents);
22876 make_cleanup_obstack_free (&contents);
22877 size_of_contents = 6 * sizeof (offset_type);
22878 total_len = size_of_contents;
22879
22880 /* The version number. */
22881 val = MAYBE_SWAP (8);
22882 obstack_grow (&contents, &val, sizeof (val));
22883
22884 /* The offset of the CU list from the start of the file. */
22885 val = MAYBE_SWAP (total_len);
22886 obstack_grow (&contents, &val, sizeof (val));
22887 total_len += obstack_object_size (&cu_list);
22888
22889 /* The offset of the types CU list from the start of the file. */
22890 val = MAYBE_SWAP (total_len);
22891 obstack_grow (&contents, &val, sizeof (val));
22892 total_len += obstack_object_size (&types_cu_list);
22893
22894 /* The offset of the address table from the start of the file. */
22895 val = MAYBE_SWAP (total_len);
22896 obstack_grow (&contents, &val, sizeof (val));
22897 total_len += obstack_object_size (&addr_obstack);
22898
22899 /* The offset of the symbol table from the start of the file. */
22900 val = MAYBE_SWAP (total_len);
22901 obstack_grow (&contents, &val, sizeof (val));
22902 total_len += obstack_object_size (&symtab_obstack);
22903
22904 /* The offset of the constant pool from the start of the file. */
22905 val = MAYBE_SWAP (total_len);
22906 obstack_grow (&contents, &val, sizeof (val));
22907 total_len += obstack_object_size (&constant_pool);
22908
22909 gdb_assert (obstack_object_size (&contents) == size_of_contents);
22910
22911 write_obstack (out_file, &contents);
22912 write_obstack (out_file, &cu_list);
22913 write_obstack (out_file, &types_cu_list);
22914 write_obstack (out_file, &addr_obstack);
22915 write_obstack (out_file, &symtab_obstack);
22916 write_obstack (out_file, &constant_pool);
22917
22918 fclose (out_file);
22919
22920 /* We want to keep the file, so we set cleanup_filename to NULL
22921 here. See unlink_if_set. */
22922 cleanup_filename = NULL;
22923
22924 do_cleanups (cleanup);
22925 }
22926
22927 /* Implementation of the `save gdb-index' command.
22928
22929 Note that the file format used by this command is documented in the
22930 GDB manual. Any changes here must be documented there. */
22931
22932 static void
22933 save_gdb_index_command (char *arg, int from_tty)
22934 {
22935 struct objfile *objfile;
22936
22937 if (!arg || !*arg)
22938 error (_("usage: save gdb-index DIRECTORY"));
22939
22940 ALL_OBJFILES (objfile)
22941 {
22942 struct stat st;
22943
22944 /* If the objfile does not correspond to an actual file, skip it. */
22945 if (stat (objfile_name (objfile), &st) < 0)
22946 continue;
22947
22948 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
22949 if (dwarf2_per_objfile)
22950 {
22951 volatile struct gdb_exception except;
22952
22953 TRY_CATCH (except, RETURN_MASK_ERROR)
22954 {
22955 write_psymtabs_to_index (objfile, arg);
22956 }
22957 if (except.reason < 0)
22958 exception_fprintf (gdb_stderr, except,
22959 _("Error while writing index for `%s': "),
22960 objfile_name (objfile));
22961 }
22962 }
22963 }
22964
22965 \f
22966
22967 int dwarf2_always_disassemble;
22968
22969 static void
22970 show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
22971 struct cmd_list_element *c, const char *value)
22972 {
22973 fprintf_filtered (file,
22974 _("Whether to always disassemble "
22975 "DWARF expressions is %s.\n"),
22976 value);
22977 }
22978
22979 static void
22980 show_check_physname (struct ui_file *file, int from_tty,
22981 struct cmd_list_element *c, const char *value)
22982 {
22983 fprintf_filtered (file,
22984 _("Whether to check \"physname\" is %s.\n"),
22985 value);
22986 }
22987
22988 void _initialize_dwarf2_read (void);
22989
22990 void
22991 _initialize_dwarf2_read (void)
22992 {
22993 struct cmd_list_element *c;
22994
22995 dwarf2_objfile_data_key
22996 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
22997
22998 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
22999 Set DWARF 2 specific variables.\n\
23000 Configure DWARF 2 variables such as the cache size"),
23001 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
23002 0/*allow-unknown*/, &maintenance_set_cmdlist);
23003
23004 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
23005 Show DWARF 2 specific variables\n\
23006 Show DWARF 2 variables such as the cache size"),
23007 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
23008 0/*allow-unknown*/, &maintenance_show_cmdlist);
23009
23010 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
23011 &dwarf2_max_cache_age, _("\
23012 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
23013 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
23014 A higher limit means that cached compilation units will be stored\n\
23015 in memory longer, and more total memory will be used. Zero disables\n\
23016 caching, which can slow down startup."),
23017 NULL,
23018 show_dwarf2_max_cache_age,
23019 &set_dwarf2_cmdlist,
23020 &show_dwarf2_cmdlist);
23021
23022 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
23023 &dwarf2_always_disassemble, _("\
23024 Set whether `info address' always disassembles DWARF expressions."), _("\
23025 Show whether `info address' always disassembles DWARF expressions."), _("\
23026 When enabled, DWARF expressions are always printed in an assembly-like\n\
23027 syntax. When disabled, expressions will be printed in a more\n\
23028 conversational style, when possible."),
23029 NULL,
23030 show_dwarf2_always_disassemble,
23031 &set_dwarf2_cmdlist,
23032 &show_dwarf2_cmdlist);
23033
23034 add_setshow_zuinteger_cmd ("dwarf2-read", no_class, &dwarf2_read_debug, _("\
23035 Set debugging of the dwarf2 reader."), _("\
23036 Show debugging of the dwarf2 reader."), _("\
23037 When enabled (non-zero), debugging messages are printed during dwarf2\n\
23038 reading and symtab expansion. A value of 1 (one) provides basic\n\
23039 information. A value greater than 1 provides more verbose information."),
23040 NULL,
23041 NULL,
23042 &setdebuglist, &showdebuglist);
23043
23044 add_setshow_zuinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
23045 Set debugging of the dwarf2 DIE reader."), _("\
23046 Show debugging of the dwarf2 DIE reader."), _("\
23047 When enabled (non-zero), DIEs are dumped after they are read in.\n\
23048 The value is the maximum depth to print."),
23049 NULL,
23050 NULL,
23051 &setdebuglist, &showdebuglist);
23052
23053 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
23054 Set cross-checking of \"physname\" code against demangler."), _("\
23055 Show cross-checking of \"physname\" code against demangler."), _("\
23056 When enabled, GDB's internal \"physname\" code is checked against\n\
23057 the demangler."),
23058 NULL, show_check_physname,
23059 &setdebuglist, &showdebuglist);
23060
23061 add_setshow_boolean_cmd ("use-deprecated-index-sections",
23062 no_class, &use_deprecated_index_sections, _("\
23063 Set whether to use deprecated gdb_index sections."), _("\
23064 Show whether to use deprecated gdb_index sections."), _("\
23065 When enabled, deprecated .gdb_index sections are used anyway.\n\
23066 Normally they are ignored either because of a missing feature or\n\
23067 performance issue.\n\
23068 Warning: This option must be enabled before gdb reads the file."),
23069 NULL,
23070 NULL,
23071 &setlist, &showlist);
23072
23073 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
23074 _("\
23075 Save a gdb-index file.\n\
23076 Usage: save gdb-index DIRECTORY"),
23077 &save_cmdlist);
23078 set_cmd_completer (c, filename_completer);
23079
23080 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
23081 &dwarf2_locexpr_funcs);
23082 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
23083 &dwarf2_loclist_funcs);
23084
23085 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
23086 &dwarf2_block_frame_base_locexpr_funcs);
23087 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
23088 &dwarf2_block_frame_base_loclist_funcs);
23089 }
This page took 0.512526 seconds and 4 git commands to generate.