Fix ARC TLS support.
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2016 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "jv-lang.h"
57 #include "psympriv.h"
58 #include <sys/stat.h>
59 #include "completer.h"
60 #include "vec.h"
61 #include "c-lang.h"
62 #include "go-lang.h"
63 #include "valprint.h"
64 #include "gdbcore.h" /* for gnutarget */
65 #include "gdb/gdb-index.h"
66 #include <ctype.h>
67 #include "gdb_bfd.h"
68 #include "f-lang.h"
69 #include "source.h"
70 #include "filestuff.h"
71 #include "build-id.h"
72 #include "namespace.h"
73
74 #include <fcntl.h>
75 #include <sys/types.h>
76
77 typedef struct symbol *symbolp;
78 DEF_VEC_P (symbolp);
79
80 /* When == 1, print basic high level tracing messages.
81 When > 1, be more verbose.
82 This is in contrast to the low level DIE reading of dwarf_die_debug. */
83 static unsigned int dwarf_read_debug = 0;
84
85 /* When non-zero, dump DIEs after they are read in. */
86 static unsigned int dwarf_die_debug = 0;
87
88 /* When non-zero, dump line number entries as they are read in. */
89 static unsigned int dwarf_line_debug = 0;
90
91 /* When non-zero, cross-check physname against demangler. */
92 static int check_physname = 0;
93
94 /* When non-zero, do not reject deprecated .gdb_index sections. */
95 static int use_deprecated_index_sections = 0;
96
97 static const struct objfile_data *dwarf2_objfile_data_key;
98
99 /* The "aclass" indices for various kinds of computed DWARF symbols. */
100
101 static int dwarf2_locexpr_index;
102 static int dwarf2_loclist_index;
103 static int dwarf2_locexpr_block_index;
104 static int dwarf2_loclist_block_index;
105
106 /* A descriptor for dwarf sections.
107
108 S.ASECTION, SIZE are typically initialized when the objfile is first
109 scanned. BUFFER, READIN are filled in later when the section is read.
110 If the section contained compressed data then SIZE is updated to record
111 the uncompressed size of the section.
112
113 DWP file format V2 introduces a wrinkle that is easiest to handle by
114 creating the concept of virtual sections contained within a real section.
115 In DWP V2 the sections of the input DWO files are concatenated together
116 into one section, but section offsets are kept relative to the original
117 input section.
118 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
119 the real section this "virtual" section is contained in, and BUFFER,SIZE
120 describe the virtual section. */
121
122 struct dwarf2_section_info
123 {
124 union
125 {
126 /* If this is a real section, the bfd section. */
127 asection *section;
128 /* If this is a virtual section, pointer to the containing ("real")
129 section. */
130 struct dwarf2_section_info *containing_section;
131 } s;
132 /* Pointer to section data, only valid if readin. */
133 const gdb_byte *buffer;
134 /* The size of the section, real or virtual. */
135 bfd_size_type size;
136 /* If this is a virtual section, the offset in the real section.
137 Only valid if is_virtual. */
138 bfd_size_type virtual_offset;
139 /* True if we have tried to read this section. */
140 char readin;
141 /* True if this is a virtual section, False otherwise.
142 This specifies which of s.section and s.containing_section to use. */
143 char is_virtual;
144 };
145
146 typedef struct dwarf2_section_info dwarf2_section_info_def;
147 DEF_VEC_O (dwarf2_section_info_def);
148
149 /* All offsets in the index are of this type. It must be
150 architecture-independent. */
151 typedef uint32_t offset_type;
152
153 DEF_VEC_I (offset_type);
154
155 /* Ensure only legit values are used. */
156 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
157 do { \
158 gdb_assert ((unsigned int) (value) <= 1); \
159 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
160 } while (0)
161
162 /* Ensure only legit values are used. */
163 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
164 do { \
165 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
166 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
167 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
168 } while (0)
169
170 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
171 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
172 do { \
173 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
174 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
175 } while (0)
176
177 /* A description of the mapped index. The file format is described in
178 a comment by the code that writes the index. */
179 struct mapped_index
180 {
181 /* Index data format version. */
182 int version;
183
184 /* The total length of the buffer. */
185 off_t total_size;
186
187 /* A pointer to the address table data. */
188 const gdb_byte *address_table;
189
190 /* Size of the address table data in bytes. */
191 offset_type address_table_size;
192
193 /* The symbol table, implemented as a hash table. */
194 const offset_type *symbol_table;
195
196 /* Size in slots, each slot is 2 offset_types. */
197 offset_type symbol_table_slots;
198
199 /* A pointer to the constant pool. */
200 const char *constant_pool;
201 };
202
203 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
204 DEF_VEC_P (dwarf2_per_cu_ptr);
205
206 struct tu_stats
207 {
208 int nr_uniq_abbrev_tables;
209 int nr_symtabs;
210 int nr_symtab_sharers;
211 int nr_stmt_less_type_units;
212 int nr_all_type_units_reallocs;
213 };
214
215 /* Collection of data recorded per objfile.
216 This hangs off of dwarf2_objfile_data_key. */
217
218 struct dwarf2_per_objfile
219 {
220 struct dwarf2_section_info info;
221 struct dwarf2_section_info abbrev;
222 struct dwarf2_section_info line;
223 struct dwarf2_section_info loc;
224 struct dwarf2_section_info macinfo;
225 struct dwarf2_section_info macro;
226 struct dwarf2_section_info str;
227 struct dwarf2_section_info ranges;
228 struct dwarf2_section_info addr;
229 struct dwarf2_section_info frame;
230 struct dwarf2_section_info eh_frame;
231 struct dwarf2_section_info gdb_index;
232
233 VEC (dwarf2_section_info_def) *types;
234
235 /* Back link. */
236 struct objfile *objfile;
237
238 /* Table of all the compilation units. This is used to locate
239 the target compilation unit of a particular reference. */
240 struct dwarf2_per_cu_data **all_comp_units;
241
242 /* The number of compilation units in ALL_COMP_UNITS. */
243 int n_comp_units;
244
245 /* The number of .debug_types-related CUs. */
246 int n_type_units;
247
248 /* The number of elements allocated in all_type_units.
249 If there are skeleton-less TUs, we add them to all_type_units lazily. */
250 int n_allocated_type_units;
251
252 /* The .debug_types-related CUs (TUs).
253 This is stored in malloc space because we may realloc it. */
254 struct signatured_type **all_type_units;
255
256 /* Table of struct type_unit_group objects.
257 The hash key is the DW_AT_stmt_list value. */
258 htab_t type_unit_groups;
259
260 /* A table mapping .debug_types signatures to its signatured_type entry.
261 This is NULL if the .debug_types section hasn't been read in yet. */
262 htab_t signatured_types;
263
264 /* Type unit statistics, to see how well the scaling improvements
265 are doing. */
266 struct tu_stats tu_stats;
267
268 /* A chain of compilation units that are currently read in, so that
269 they can be freed later. */
270 struct dwarf2_per_cu_data *read_in_chain;
271
272 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
273 This is NULL if the table hasn't been allocated yet. */
274 htab_t dwo_files;
275
276 /* Non-zero if we've check for whether there is a DWP file. */
277 int dwp_checked;
278
279 /* The DWP file if there is one, or NULL. */
280 struct dwp_file *dwp_file;
281
282 /* The shared '.dwz' file, if one exists. This is used when the
283 original data was compressed using 'dwz -m'. */
284 struct dwz_file *dwz_file;
285
286 /* A flag indicating wether this objfile has a section loaded at a
287 VMA of 0. */
288 int has_section_at_zero;
289
290 /* True if we are using the mapped index,
291 or we are faking it for OBJF_READNOW's sake. */
292 unsigned char using_index;
293
294 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
295 struct mapped_index *index_table;
296
297 /* When using index_table, this keeps track of all quick_file_names entries.
298 TUs typically share line table entries with a CU, so we maintain a
299 separate table of all line table entries to support the sharing.
300 Note that while there can be way more TUs than CUs, we've already
301 sorted all the TUs into "type unit groups", grouped by their
302 DW_AT_stmt_list value. Therefore the only sharing done here is with a
303 CU and its associated TU group if there is one. */
304 htab_t quick_file_names_table;
305
306 /* Set during partial symbol reading, to prevent queueing of full
307 symbols. */
308 int reading_partial_symbols;
309
310 /* Table mapping type DIEs to their struct type *.
311 This is NULL if not allocated yet.
312 The mapping is done via (CU/TU + DIE offset) -> type. */
313 htab_t die_type_hash;
314
315 /* The CUs we recently read. */
316 VEC (dwarf2_per_cu_ptr) *just_read_cus;
317
318 /* Table containing line_header indexed by offset and offset_in_dwz. */
319 htab_t line_header_hash;
320 };
321
322 static struct dwarf2_per_objfile *dwarf2_per_objfile;
323
324 /* Default names of the debugging sections. */
325
326 /* Note that if the debugging section has been compressed, it might
327 have a name like .zdebug_info. */
328
329 static const struct dwarf2_debug_sections dwarf2_elf_names =
330 {
331 { ".debug_info", ".zdebug_info" },
332 { ".debug_abbrev", ".zdebug_abbrev" },
333 { ".debug_line", ".zdebug_line" },
334 { ".debug_loc", ".zdebug_loc" },
335 { ".debug_macinfo", ".zdebug_macinfo" },
336 { ".debug_macro", ".zdebug_macro" },
337 { ".debug_str", ".zdebug_str" },
338 { ".debug_ranges", ".zdebug_ranges" },
339 { ".debug_types", ".zdebug_types" },
340 { ".debug_addr", ".zdebug_addr" },
341 { ".debug_frame", ".zdebug_frame" },
342 { ".eh_frame", NULL },
343 { ".gdb_index", ".zgdb_index" },
344 23
345 };
346
347 /* List of DWO/DWP sections. */
348
349 static const struct dwop_section_names
350 {
351 struct dwarf2_section_names abbrev_dwo;
352 struct dwarf2_section_names info_dwo;
353 struct dwarf2_section_names line_dwo;
354 struct dwarf2_section_names loc_dwo;
355 struct dwarf2_section_names macinfo_dwo;
356 struct dwarf2_section_names macro_dwo;
357 struct dwarf2_section_names str_dwo;
358 struct dwarf2_section_names str_offsets_dwo;
359 struct dwarf2_section_names types_dwo;
360 struct dwarf2_section_names cu_index;
361 struct dwarf2_section_names tu_index;
362 }
363 dwop_section_names =
364 {
365 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
366 { ".debug_info.dwo", ".zdebug_info.dwo" },
367 { ".debug_line.dwo", ".zdebug_line.dwo" },
368 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
369 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
370 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
371 { ".debug_str.dwo", ".zdebug_str.dwo" },
372 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
373 { ".debug_types.dwo", ".zdebug_types.dwo" },
374 { ".debug_cu_index", ".zdebug_cu_index" },
375 { ".debug_tu_index", ".zdebug_tu_index" },
376 };
377
378 /* local data types */
379
380 /* The data in a compilation unit header, after target2host
381 translation, looks like this. */
382 struct comp_unit_head
383 {
384 unsigned int length;
385 short version;
386 unsigned char addr_size;
387 unsigned char signed_addr_p;
388 sect_offset abbrev_offset;
389
390 /* Size of file offsets; either 4 or 8. */
391 unsigned int offset_size;
392
393 /* Size of the length field; either 4 or 12. */
394 unsigned int initial_length_size;
395
396 /* Offset to the first byte of this compilation unit header in the
397 .debug_info section, for resolving relative reference dies. */
398 sect_offset offset;
399
400 /* Offset to first die in this cu from the start of the cu.
401 This will be the first byte following the compilation unit header. */
402 cu_offset first_die_offset;
403 };
404
405 /* Type used for delaying computation of method physnames.
406 See comments for compute_delayed_physnames. */
407 struct delayed_method_info
408 {
409 /* The type to which the method is attached, i.e., its parent class. */
410 struct type *type;
411
412 /* The index of the method in the type's function fieldlists. */
413 int fnfield_index;
414
415 /* The index of the method in the fieldlist. */
416 int index;
417
418 /* The name of the DIE. */
419 const char *name;
420
421 /* The DIE associated with this method. */
422 struct die_info *die;
423 };
424
425 typedef struct delayed_method_info delayed_method_info;
426 DEF_VEC_O (delayed_method_info);
427
428 /* Internal state when decoding a particular compilation unit. */
429 struct dwarf2_cu
430 {
431 /* The objfile containing this compilation unit. */
432 struct objfile *objfile;
433
434 /* The header of the compilation unit. */
435 struct comp_unit_head header;
436
437 /* Base address of this compilation unit. */
438 CORE_ADDR base_address;
439
440 /* Non-zero if base_address has been set. */
441 int base_known;
442
443 /* The language we are debugging. */
444 enum language language;
445 const struct language_defn *language_defn;
446
447 const char *producer;
448
449 /* The generic symbol table building routines have separate lists for
450 file scope symbols and all all other scopes (local scopes). So
451 we need to select the right one to pass to add_symbol_to_list().
452 We do it by keeping a pointer to the correct list in list_in_scope.
453
454 FIXME: The original dwarf code just treated the file scope as the
455 first local scope, and all other local scopes as nested local
456 scopes, and worked fine. Check to see if we really need to
457 distinguish these in buildsym.c. */
458 struct pending **list_in_scope;
459
460 /* The abbrev table for this CU.
461 Normally this points to the abbrev table in the objfile.
462 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
463 struct abbrev_table *abbrev_table;
464
465 /* Hash table holding all the loaded partial DIEs
466 with partial_die->offset.SECT_OFF as hash. */
467 htab_t partial_dies;
468
469 /* Storage for things with the same lifetime as this read-in compilation
470 unit, including partial DIEs. */
471 struct obstack comp_unit_obstack;
472
473 /* When multiple dwarf2_cu structures are living in memory, this field
474 chains them all together, so that they can be released efficiently.
475 We will probably also want a generation counter so that most-recently-used
476 compilation units are cached... */
477 struct dwarf2_per_cu_data *read_in_chain;
478
479 /* Backlink to our per_cu entry. */
480 struct dwarf2_per_cu_data *per_cu;
481
482 /* How many compilation units ago was this CU last referenced? */
483 int last_used;
484
485 /* A hash table of DIE cu_offset for following references with
486 die_info->offset.sect_off as hash. */
487 htab_t die_hash;
488
489 /* Full DIEs if read in. */
490 struct die_info *dies;
491
492 /* A set of pointers to dwarf2_per_cu_data objects for compilation
493 units referenced by this one. Only set during full symbol processing;
494 partial symbol tables do not have dependencies. */
495 htab_t dependencies;
496
497 /* Header data from the line table, during full symbol processing. */
498 struct line_header *line_header;
499
500 /* A list of methods which need to have physnames computed
501 after all type information has been read. */
502 VEC (delayed_method_info) *method_list;
503
504 /* To be copied to symtab->call_site_htab. */
505 htab_t call_site_htab;
506
507 /* Non-NULL if this CU came from a DWO file.
508 There is an invariant here that is important to remember:
509 Except for attributes copied from the top level DIE in the "main"
510 (or "stub") file in preparation for reading the DWO file
511 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
512 Either there isn't a DWO file (in which case this is NULL and the point
513 is moot), or there is and either we're not going to read it (in which
514 case this is NULL) or there is and we are reading it (in which case this
515 is non-NULL). */
516 struct dwo_unit *dwo_unit;
517
518 /* The DW_AT_addr_base attribute if present, zero otherwise
519 (zero is a valid value though).
520 Note this value comes from the Fission stub CU/TU's DIE. */
521 ULONGEST addr_base;
522
523 /* The DW_AT_ranges_base attribute if present, zero otherwise
524 (zero is a valid value though).
525 Note this value comes from the Fission stub CU/TU's DIE.
526 Also note that the value is zero in the non-DWO case so this value can
527 be used without needing to know whether DWO files are in use or not.
528 N.B. This does not apply to DW_AT_ranges appearing in
529 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
530 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
531 DW_AT_ranges_base *would* have to be applied, and we'd have to care
532 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
533 ULONGEST ranges_base;
534
535 /* Mark used when releasing cached dies. */
536 unsigned int mark : 1;
537
538 /* This CU references .debug_loc. See the symtab->locations_valid field.
539 This test is imperfect as there may exist optimized debug code not using
540 any location list and still facing inlining issues if handled as
541 unoptimized code. For a future better test see GCC PR other/32998. */
542 unsigned int has_loclist : 1;
543
544 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
545 if all the producer_is_* fields are valid. This information is cached
546 because profiling CU expansion showed excessive time spent in
547 producer_is_gxx_lt_4_6. */
548 unsigned int checked_producer : 1;
549 unsigned int producer_is_gxx_lt_4_6 : 1;
550 unsigned int producer_is_gcc_lt_4_3 : 1;
551 unsigned int producer_is_icc : 1;
552
553 /* When set, the file that we're processing is known to have
554 debugging info for C++ namespaces. GCC 3.3.x did not produce
555 this information, but later versions do. */
556
557 unsigned int processing_has_namespace_info : 1;
558 };
559
560 /* Persistent data held for a compilation unit, even when not
561 processing it. We put a pointer to this structure in the
562 read_symtab_private field of the psymtab. */
563
564 struct dwarf2_per_cu_data
565 {
566 /* The start offset and length of this compilation unit.
567 NOTE: Unlike comp_unit_head.length, this length includes
568 initial_length_size.
569 If the DIE refers to a DWO file, this is always of the original die,
570 not the DWO file. */
571 sect_offset offset;
572 unsigned int length;
573
574 /* Flag indicating this compilation unit will be read in before
575 any of the current compilation units are processed. */
576 unsigned int queued : 1;
577
578 /* This flag will be set when reading partial DIEs if we need to load
579 absolutely all DIEs for this compilation unit, instead of just the ones
580 we think are interesting. It gets set if we look for a DIE in the
581 hash table and don't find it. */
582 unsigned int load_all_dies : 1;
583
584 /* Non-zero if this CU is from .debug_types.
585 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
586 this is non-zero. */
587 unsigned int is_debug_types : 1;
588
589 /* Non-zero if this CU is from the .dwz file. */
590 unsigned int is_dwz : 1;
591
592 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
593 This flag is only valid if is_debug_types is true.
594 We can't read a CU directly from a DWO file: There are required
595 attributes in the stub. */
596 unsigned int reading_dwo_directly : 1;
597
598 /* Non-zero if the TU has been read.
599 This is used to assist the "Stay in DWO Optimization" for Fission:
600 When reading a DWO, it's faster to read TUs from the DWO instead of
601 fetching them from random other DWOs (due to comdat folding).
602 If the TU has already been read, the optimization is unnecessary
603 (and unwise - we don't want to change where gdb thinks the TU lives
604 "midflight").
605 This flag is only valid if is_debug_types is true. */
606 unsigned int tu_read : 1;
607
608 /* The section this CU/TU lives in.
609 If the DIE refers to a DWO file, this is always the original die,
610 not the DWO file. */
611 struct dwarf2_section_info *section;
612
613 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
614 of the CU cache it gets reset to NULL again. This is left as NULL for
615 dummy CUs (a CU header, but nothing else). */
616 struct dwarf2_cu *cu;
617
618 /* The corresponding objfile.
619 Normally we can get the objfile from dwarf2_per_objfile.
620 However we can enter this file with just a "per_cu" handle. */
621 struct objfile *objfile;
622
623 /* When dwarf2_per_objfile->using_index is true, the 'quick' field
624 is active. Otherwise, the 'psymtab' field is active. */
625 union
626 {
627 /* The partial symbol table associated with this compilation unit,
628 or NULL for unread partial units. */
629 struct partial_symtab *psymtab;
630
631 /* Data needed by the "quick" functions. */
632 struct dwarf2_per_cu_quick_data *quick;
633 } v;
634
635 /* The CUs we import using DW_TAG_imported_unit. This is filled in
636 while reading psymtabs, used to compute the psymtab dependencies,
637 and then cleared. Then it is filled in again while reading full
638 symbols, and only deleted when the objfile is destroyed.
639
640 This is also used to work around a difference between the way gold
641 generates .gdb_index version <=7 and the way gdb does. Arguably this
642 is a gold bug. For symbols coming from TUs, gold records in the index
643 the CU that includes the TU instead of the TU itself. This breaks
644 dw2_lookup_symbol: It assumes that if the index says symbol X lives
645 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
646 will find X. Alas TUs live in their own symtab, so after expanding CU Y
647 we need to look in TU Z to find X. Fortunately, this is akin to
648 DW_TAG_imported_unit, so we just use the same mechanism: For
649 .gdb_index version <=7 this also records the TUs that the CU referred
650 to. Concurrently with this change gdb was modified to emit version 8
651 indices so we only pay a price for gold generated indices.
652 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
653 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
654 };
655
656 /* Entry in the signatured_types hash table. */
657
658 struct signatured_type
659 {
660 /* The "per_cu" object of this type.
661 This struct is used iff per_cu.is_debug_types.
662 N.B.: This is the first member so that it's easy to convert pointers
663 between them. */
664 struct dwarf2_per_cu_data per_cu;
665
666 /* The type's signature. */
667 ULONGEST signature;
668
669 /* Offset in the TU of the type's DIE, as read from the TU header.
670 If this TU is a DWO stub and the definition lives in a DWO file
671 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
672 cu_offset type_offset_in_tu;
673
674 /* Offset in the section of the type's DIE.
675 If the definition lives in a DWO file, this is the offset in the
676 .debug_types.dwo section.
677 The value is zero until the actual value is known.
678 Zero is otherwise not a valid section offset. */
679 sect_offset type_offset_in_section;
680
681 /* Type units are grouped by their DW_AT_stmt_list entry so that they
682 can share them. This points to the containing symtab. */
683 struct type_unit_group *type_unit_group;
684
685 /* The type.
686 The first time we encounter this type we fully read it in and install it
687 in the symbol tables. Subsequent times we only need the type. */
688 struct type *type;
689
690 /* Containing DWO unit.
691 This field is valid iff per_cu.reading_dwo_directly. */
692 struct dwo_unit *dwo_unit;
693 };
694
695 typedef struct signatured_type *sig_type_ptr;
696 DEF_VEC_P (sig_type_ptr);
697
698 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
699 This includes type_unit_group and quick_file_names. */
700
701 struct stmt_list_hash
702 {
703 /* The DWO unit this table is from or NULL if there is none. */
704 struct dwo_unit *dwo_unit;
705
706 /* Offset in .debug_line or .debug_line.dwo. */
707 sect_offset line_offset;
708 };
709
710 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
711 an object of this type. */
712
713 struct type_unit_group
714 {
715 /* dwarf2read.c's main "handle" on a TU symtab.
716 To simplify things we create an artificial CU that "includes" all the
717 type units using this stmt_list so that the rest of the code still has
718 a "per_cu" handle on the symtab.
719 This PER_CU is recognized by having no section. */
720 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
721 struct dwarf2_per_cu_data per_cu;
722
723 /* The TUs that share this DW_AT_stmt_list entry.
724 This is added to while parsing type units to build partial symtabs,
725 and is deleted afterwards and not used again. */
726 VEC (sig_type_ptr) *tus;
727
728 /* The compunit symtab.
729 Type units in a group needn't all be defined in the same source file,
730 so we create an essentially anonymous symtab as the compunit symtab. */
731 struct compunit_symtab *compunit_symtab;
732
733 /* The data used to construct the hash key. */
734 struct stmt_list_hash hash;
735
736 /* The number of symtabs from the line header.
737 The value here must match line_header.num_file_names. */
738 unsigned int num_symtabs;
739
740 /* The symbol tables for this TU (obtained from the files listed in
741 DW_AT_stmt_list).
742 WARNING: The order of entries here must match the order of entries
743 in the line header. After the first TU using this type_unit_group, the
744 line header for the subsequent TUs is recreated from this. This is done
745 because we need to use the same symtabs for each TU using the same
746 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
747 there's no guarantee the line header doesn't have duplicate entries. */
748 struct symtab **symtabs;
749 };
750
751 /* These sections are what may appear in a (real or virtual) DWO file. */
752
753 struct dwo_sections
754 {
755 struct dwarf2_section_info abbrev;
756 struct dwarf2_section_info line;
757 struct dwarf2_section_info loc;
758 struct dwarf2_section_info macinfo;
759 struct dwarf2_section_info macro;
760 struct dwarf2_section_info str;
761 struct dwarf2_section_info str_offsets;
762 /* In the case of a virtual DWO file, these two are unused. */
763 struct dwarf2_section_info info;
764 VEC (dwarf2_section_info_def) *types;
765 };
766
767 /* CUs/TUs in DWP/DWO files. */
768
769 struct dwo_unit
770 {
771 /* Backlink to the containing struct dwo_file. */
772 struct dwo_file *dwo_file;
773
774 /* The "id" that distinguishes this CU/TU.
775 .debug_info calls this "dwo_id", .debug_types calls this "signature".
776 Since signatures came first, we stick with it for consistency. */
777 ULONGEST signature;
778
779 /* The section this CU/TU lives in, in the DWO file. */
780 struct dwarf2_section_info *section;
781
782 /* Same as dwarf2_per_cu_data:{offset,length} but in the DWO section. */
783 sect_offset offset;
784 unsigned int length;
785
786 /* For types, offset in the type's DIE of the type defined by this TU. */
787 cu_offset type_offset_in_tu;
788 };
789
790 /* include/dwarf2.h defines the DWP section codes.
791 It defines a max value but it doesn't define a min value, which we
792 use for error checking, so provide one. */
793
794 enum dwp_v2_section_ids
795 {
796 DW_SECT_MIN = 1
797 };
798
799 /* Data for one DWO file.
800
801 This includes virtual DWO files (a virtual DWO file is a DWO file as it
802 appears in a DWP file). DWP files don't really have DWO files per se -
803 comdat folding of types "loses" the DWO file they came from, and from
804 a high level view DWP files appear to contain a mass of random types.
805 However, to maintain consistency with the non-DWP case we pretend DWP
806 files contain virtual DWO files, and we assign each TU with one virtual
807 DWO file (generally based on the line and abbrev section offsets -
808 a heuristic that seems to work in practice). */
809
810 struct dwo_file
811 {
812 /* The DW_AT_GNU_dwo_name attribute.
813 For virtual DWO files the name is constructed from the section offsets
814 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
815 from related CU+TUs. */
816 const char *dwo_name;
817
818 /* The DW_AT_comp_dir attribute. */
819 const char *comp_dir;
820
821 /* The bfd, when the file is open. Otherwise this is NULL.
822 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
823 bfd *dbfd;
824
825 /* The sections that make up this DWO file.
826 Remember that for virtual DWO files in DWP V2, these are virtual
827 sections (for lack of a better name). */
828 struct dwo_sections sections;
829
830 /* The CU in the file.
831 We only support one because having more than one requires hacking the
832 dwo_name of each to match, which is highly unlikely to happen.
833 Doing this means all TUs can share comp_dir: We also assume that
834 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
835 struct dwo_unit *cu;
836
837 /* Table of TUs in the file.
838 Each element is a struct dwo_unit. */
839 htab_t tus;
840 };
841
842 /* These sections are what may appear in a DWP file. */
843
844 struct dwp_sections
845 {
846 /* These are used by both DWP version 1 and 2. */
847 struct dwarf2_section_info str;
848 struct dwarf2_section_info cu_index;
849 struct dwarf2_section_info tu_index;
850
851 /* These are only used by DWP version 2 files.
852 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
853 sections are referenced by section number, and are not recorded here.
854 In DWP version 2 there is at most one copy of all these sections, each
855 section being (effectively) comprised of the concatenation of all of the
856 individual sections that exist in the version 1 format.
857 To keep the code simple we treat each of these concatenated pieces as a
858 section itself (a virtual section?). */
859 struct dwarf2_section_info abbrev;
860 struct dwarf2_section_info info;
861 struct dwarf2_section_info line;
862 struct dwarf2_section_info loc;
863 struct dwarf2_section_info macinfo;
864 struct dwarf2_section_info macro;
865 struct dwarf2_section_info str_offsets;
866 struct dwarf2_section_info types;
867 };
868
869 /* These sections are what may appear in a virtual DWO file in DWP version 1.
870 A virtual DWO file is a DWO file as it appears in a DWP file. */
871
872 struct virtual_v1_dwo_sections
873 {
874 struct dwarf2_section_info abbrev;
875 struct dwarf2_section_info line;
876 struct dwarf2_section_info loc;
877 struct dwarf2_section_info macinfo;
878 struct dwarf2_section_info macro;
879 struct dwarf2_section_info str_offsets;
880 /* Each DWP hash table entry records one CU or one TU.
881 That is recorded here, and copied to dwo_unit.section. */
882 struct dwarf2_section_info info_or_types;
883 };
884
885 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
886 In version 2, the sections of the DWO files are concatenated together
887 and stored in one section of that name. Thus each ELF section contains
888 several "virtual" sections. */
889
890 struct virtual_v2_dwo_sections
891 {
892 bfd_size_type abbrev_offset;
893 bfd_size_type abbrev_size;
894
895 bfd_size_type line_offset;
896 bfd_size_type line_size;
897
898 bfd_size_type loc_offset;
899 bfd_size_type loc_size;
900
901 bfd_size_type macinfo_offset;
902 bfd_size_type macinfo_size;
903
904 bfd_size_type macro_offset;
905 bfd_size_type macro_size;
906
907 bfd_size_type str_offsets_offset;
908 bfd_size_type str_offsets_size;
909
910 /* Each DWP hash table entry records one CU or one TU.
911 That is recorded here, and copied to dwo_unit.section. */
912 bfd_size_type info_or_types_offset;
913 bfd_size_type info_or_types_size;
914 };
915
916 /* Contents of DWP hash tables. */
917
918 struct dwp_hash_table
919 {
920 uint32_t version, nr_columns;
921 uint32_t nr_units, nr_slots;
922 const gdb_byte *hash_table, *unit_table;
923 union
924 {
925 struct
926 {
927 const gdb_byte *indices;
928 } v1;
929 struct
930 {
931 /* This is indexed by column number and gives the id of the section
932 in that column. */
933 #define MAX_NR_V2_DWO_SECTIONS \
934 (1 /* .debug_info or .debug_types */ \
935 + 1 /* .debug_abbrev */ \
936 + 1 /* .debug_line */ \
937 + 1 /* .debug_loc */ \
938 + 1 /* .debug_str_offsets */ \
939 + 1 /* .debug_macro or .debug_macinfo */)
940 int section_ids[MAX_NR_V2_DWO_SECTIONS];
941 const gdb_byte *offsets;
942 const gdb_byte *sizes;
943 } v2;
944 } section_pool;
945 };
946
947 /* Data for one DWP file. */
948
949 struct dwp_file
950 {
951 /* Name of the file. */
952 const char *name;
953
954 /* File format version. */
955 int version;
956
957 /* The bfd. */
958 bfd *dbfd;
959
960 /* Section info for this file. */
961 struct dwp_sections sections;
962
963 /* Table of CUs in the file. */
964 const struct dwp_hash_table *cus;
965
966 /* Table of TUs in the file. */
967 const struct dwp_hash_table *tus;
968
969 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
970 htab_t loaded_cus;
971 htab_t loaded_tus;
972
973 /* Table to map ELF section numbers to their sections.
974 This is only needed for the DWP V1 file format. */
975 unsigned int num_sections;
976 asection **elf_sections;
977 };
978
979 /* This represents a '.dwz' file. */
980
981 struct dwz_file
982 {
983 /* A dwz file can only contain a few sections. */
984 struct dwarf2_section_info abbrev;
985 struct dwarf2_section_info info;
986 struct dwarf2_section_info str;
987 struct dwarf2_section_info line;
988 struct dwarf2_section_info macro;
989 struct dwarf2_section_info gdb_index;
990
991 /* The dwz's BFD. */
992 bfd *dwz_bfd;
993 };
994
995 /* Struct used to pass misc. parameters to read_die_and_children, et
996 al. which are used for both .debug_info and .debug_types dies.
997 All parameters here are unchanging for the life of the call. This
998 struct exists to abstract away the constant parameters of die reading. */
999
1000 struct die_reader_specs
1001 {
1002 /* The bfd of die_section. */
1003 bfd* abfd;
1004
1005 /* The CU of the DIE we are parsing. */
1006 struct dwarf2_cu *cu;
1007
1008 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
1009 struct dwo_file *dwo_file;
1010
1011 /* The section the die comes from.
1012 This is either .debug_info or .debug_types, or the .dwo variants. */
1013 struct dwarf2_section_info *die_section;
1014
1015 /* die_section->buffer. */
1016 const gdb_byte *buffer;
1017
1018 /* The end of the buffer. */
1019 const gdb_byte *buffer_end;
1020
1021 /* The value of the DW_AT_comp_dir attribute. */
1022 const char *comp_dir;
1023 };
1024
1025 /* Type of function passed to init_cutu_and_read_dies, et.al. */
1026 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
1027 const gdb_byte *info_ptr,
1028 struct die_info *comp_unit_die,
1029 int has_children,
1030 void *data);
1031
1032 struct file_entry
1033 {
1034 const char *name;
1035 unsigned int dir_index;
1036 unsigned int mod_time;
1037 unsigned int length;
1038 /* Non-zero if referenced by the Line Number Program. */
1039 int included_p;
1040 /* The associated symbol table, if any. */
1041 struct symtab *symtab;
1042 };
1043
1044 /* The line number information for a compilation unit (found in the
1045 .debug_line section) begins with a "statement program header",
1046 which contains the following information. */
1047 struct line_header
1048 {
1049 /* Offset of line number information in .debug_line section. */
1050 sect_offset offset;
1051
1052 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1053 unsigned offset_in_dwz : 1;
1054
1055 unsigned int total_length;
1056 unsigned short version;
1057 unsigned int header_length;
1058 unsigned char minimum_instruction_length;
1059 unsigned char maximum_ops_per_instruction;
1060 unsigned char default_is_stmt;
1061 int line_base;
1062 unsigned char line_range;
1063 unsigned char opcode_base;
1064
1065 /* standard_opcode_lengths[i] is the number of operands for the
1066 standard opcode whose value is i. This means that
1067 standard_opcode_lengths[0] is unused, and the last meaningful
1068 element is standard_opcode_lengths[opcode_base - 1]. */
1069 unsigned char *standard_opcode_lengths;
1070
1071 /* The include_directories table. NOTE! These strings are not
1072 allocated with xmalloc; instead, they are pointers into
1073 debug_line_buffer. If you try to free them, `free' will get
1074 indigestion. */
1075 unsigned int num_include_dirs, include_dirs_size;
1076 const char **include_dirs;
1077
1078 /* The file_names table. NOTE! These strings are not allocated
1079 with xmalloc; instead, they are pointers into debug_line_buffer.
1080 Don't try to free them directly. */
1081 unsigned int num_file_names, file_names_size;
1082 struct file_entry *file_names;
1083
1084 /* The start and end of the statement program following this
1085 header. These point into dwarf2_per_objfile->line_buffer. */
1086 const gdb_byte *statement_program_start, *statement_program_end;
1087 };
1088
1089 /* When we construct a partial symbol table entry we only
1090 need this much information. */
1091 struct partial_die_info
1092 {
1093 /* Offset of this DIE. */
1094 sect_offset offset;
1095
1096 /* DWARF-2 tag for this DIE. */
1097 ENUM_BITFIELD(dwarf_tag) tag : 16;
1098
1099 /* Assorted flags describing the data found in this DIE. */
1100 unsigned int has_children : 1;
1101 unsigned int is_external : 1;
1102 unsigned int is_declaration : 1;
1103 unsigned int has_type : 1;
1104 unsigned int has_specification : 1;
1105 unsigned int has_pc_info : 1;
1106 unsigned int may_be_inlined : 1;
1107
1108 /* Flag set if the SCOPE field of this structure has been
1109 computed. */
1110 unsigned int scope_set : 1;
1111
1112 /* Flag set if the DIE has a byte_size attribute. */
1113 unsigned int has_byte_size : 1;
1114
1115 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1116 unsigned int has_const_value : 1;
1117
1118 /* Flag set if any of the DIE's children are template arguments. */
1119 unsigned int has_template_arguments : 1;
1120
1121 /* Flag set if fixup_partial_die has been called on this die. */
1122 unsigned int fixup_called : 1;
1123
1124 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1125 unsigned int is_dwz : 1;
1126
1127 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1128 unsigned int spec_is_dwz : 1;
1129
1130 /* The name of this DIE. Normally the value of DW_AT_name, but
1131 sometimes a default name for unnamed DIEs. */
1132 const char *name;
1133
1134 /* The linkage name, if present. */
1135 const char *linkage_name;
1136
1137 /* The scope to prepend to our children. This is generally
1138 allocated on the comp_unit_obstack, so will disappear
1139 when this compilation unit leaves the cache. */
1140 const char *scope;
1141
1142 /* Some data associated with the partial DIE. The tag determines
1143 which field is live. */
1144 union
1145 {
1146 /* The location description associated with this DIE, if any. */
1147 struct dwarf_block *locdesc;
1148 /* The offset of an import, for DW_TAG_imported_unit. */
1149 sect_offset offset;
1150 } d;
1151
1152 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1153 CORE_ADDR lowpc;
1154 CORE_ADDR highpc;
1155
1156 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1157 DW_AT_sibling, if any. */
1158 /* NOTE: This member isn't strictly necessary, read_partial_die could
1159 return DW_AT_sibling values to its caller load_partial_dies. */
1160 const gdb_byte *sibling;
1161
1162 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1163 DW_AT_specification (or DW_AT_abstract_origin or
1164 DW_AT_extension). */
1165 sect_offset spec_offset;
1166
1167 /* Pointers to this DIE's parent, first child, and next sibling,
1168 if any. */
1169 struct partial_die_info *die_parent, *die_child, *die_sibling;
1170 };
1171
1172 /* This data structure holds the information of an abbrev. */
1173 struct abbrev_info
1174 {
1175 unsigned int number; /* number identifying abbrev */
1176 enum dwarf_tag tag; /* dwarf tag */
1177 unsigned short has_children; /* boolean */
1178 unsigned short num_attrs; /* number of attributes */
1179 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1180 struct abbrev_info *next; /* next in chain */
1181 };
1182
1183 struct attr_abbrev
1184 {
1185 ENUM_BITFIELD(dwarf_attribute) name : 16;
1186 ENUM_BITFIELD(dwarf_form) form : 16;
1187 };
1188
1189 /* Size of abbrev_table.abbrev_hash_table. */
1190 #define ABBREV_HASH_SIZE 121
1191
1192 /* Top level data structure to contain an abbreviation table. */
1193
1194 struct abbrev_table
1195 {
1196 /* Where the abbrev table came from.
1197 This is used as a sanity check when the table is used. */
1198 sect_offset offset;
1199
1200 /* Storage for the abbrev table. */
1201 struct obstack abbrev_obstack;
1202
1203 /* Hash table of abbrevs.
1204 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1205 It could be statically allocated, but the previous code didn't so we
1206 don't either. */
1207 struct abbrev_info **abbrevs;
1208 };
1209
1210 /* Attributes have a name and a value. */
1211 struct attribute
1212 {
1213 ENUM_BITFIELD(dwarf_attribute) name : 16;
1214 ENUM_BITFIELD(dwarf_form) form : 15;
1215
1216 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1217 field should be in u.str (existing only for DW_STRING) but it is kept
1218 here for better struct attribute alignment. */
1219 unsigned int string_is_canonical : 1;
1220
1221 union
1222 {
1223 const char *str;
1224 struct dwarf_block *blk;
1225 ULONGEST unsnd;
1226 LONGEST snd;
1227 CORE_ADDR addr;
1228 ULONGEST signature;
1229 }
1230 u;
1231 };
1232
1233 /* This data structure holds a complete die structure. */
1234 struct die_info
1235 {
1236 /* DWARF-2 tag for this DIE. */
1237 ENUM_BITFIELD(dwarf_tag) tag : 16;
1238
1239 /* Number of attributes */
1240 unsigned char num_attrs;
1241
1242 /* True if we're presently building the full type name for the
1243 type derived from this DIE. */
1244 unsigned char building_fullname : 1;
1245
1246 /* True if this die is in process. PR 16581. */
1247 unsigned char in_process : 1;
1248
1249 /* Abbrev number */
1250 unsigned int abbrev;
1251
1252 /* Offset in .debug_info or .debug_types section. */
1253 sect_offset offset;
1254
1255 /* The dies in a compilation unit form an n-ary tree. PARENT
1256 points to this die's parent; CHILD points to the first child of
1257 this node; and all the children of a given node are chained
1258 together via their SIBLING fields. */
1259 struct die_info *child; /* Its first child, if any. */
1260 struct die_info *sibling; /* Its next sibling, if any. */
1261 struct die_info *parent; /* Its parent, if any. */
1262
1263 /* An array of attributes, with NUM_ATTRS elements. There may be
1264 zero, but it's not common and zero-sized arrays are not
1265 sufficiently portable C. */
1266 struct attribute attrs[1];
1267 };
1268
1269 /* Get at parts of an attribute structure. */
1270
1271 #define DW_STRING(attr) ((attr)->u.str)
1272 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1273 #define DW_UNSND(attr) ((attr)->u.unsnd)
1274 #define DW_BLOCK(attr) ((attr)->u.blk)
1275 #define DW_SND(attr) ((attr)->u.snd)
1276 #define DW_ADDR(attr) ((attr)->u.addr)
1277 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1278
1279 /* Blocks are a bunch of untyped bytes. */
1280 struct dwarf_block
1281 {
1282 size_t size;
1283
1284 /* Valid only if SIZE is not zero. */
1285 const gdb_byte *data;
1286 };
1287
1288 #ifndef ATTR_ALLOC_CHUNK
1289 #define ATTR_ALLOC_CHUNK 4
1290 #endif
1291
1292 /* Allocate fields for structs, unions and enums in this size. */
1293 #ifndef DW_FIELD_ALLOC_CHUNK
1294 #define DW_FIELD_ALLOC_CHUNK 4
1295 #endif
1296
1297 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1298 but this would require a corresponding change in unpack_field_as_long
1299 and friends. */
1300 static int bits_per_byte = 8;
1301
1302 struct nextfield
1303 {
1304 struct nextfield *next;
1305 int accessibility;
1306 int virtuality;
1307 struct field field;
1308 };
1309
1310 struct nextfnfield
1311 {
1312 struct nextfnfield *next;
1313 struct fn_field fnfield;
1314 };
1315
1316 struct fnfieldlist
1317 {
1318 const char *name;
1319 int length;
1320 struct nextfnfield *head;
1321 };
1322
1323 struct typedef_field_list
1324 {
1325 struct typedef_field field;
1326 struct typedef_field_list *next;
1327 };
1328
1329 /* The routines that read and process dies for a C struct or C++ class
1330 pass lists of data member fields and lists of member function fields
1331 in an instance of a field_info structure, as defined below. */
1332 struct field_info
1333 {
1334 /* List of data member and baseclasses fields. */
1335 struct nextfield *fields, *baseclasses;
1336
1337 /* Number of fields (including baseclasses). */
1338 int nfields;
1339
1340 /* Number of baseclasses. */
1341 int nbaseclasses;
1342
1343 /* Set if the accesibility of one of the fields is not public. */
1344 int non_public_fields;
1345
1346 /* Member function fields array, entries are allocated in the order they
1347 are encountered in the object file. */
1348 struct nextfnfield *fnfields;
1349
1350 /* Member function fieldlist array, contains name of possibly overloaded
1351 member function, number of overloaded member functions and a pointer
1352 to the head of the member function field chain. */
1353 struct fnfieldlist *fnfieldlists;
1354
1355 /* Number of entries in the fnfieldlists array. */
1356 int nfnfields;
1357
1358 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1359 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1360 struct typedef_field_list *typedef_field_list;
1361 unsigned typedef_field_list_count;
1362 };
1363
1364 /* One item on the queue of compilation units to read in full symbols
1365 for. */
1366 struct dwarf2_queue_item
1367 {
1368 struct dwarf2_per_cu_data *per_cu;
1369 enum language pretend_language;
1370 struct dwarf2_queue_item *next;
1371 };
1372
1373 /* The current queue. */
1374 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1375
1376 /* Loaded secondary compilation units are kept in memory until they
1377 have not been referenced for the processing of this many
1378 compilation units. Set this to zero to disable caching. Cache
1379 sizes of up to at least twenty will improve startup time for
1380 typical inter-CU-reference binaries, at an obvious memory cost. */
1381 static int dwarf_max_cache_age = 5;
1382 static void
1383 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1384 struct cmd_list_element *c, const char *value)
1385 {
1386 fprintf_filtered (file, _("The upper bound on the age of cached "
1387 "DWARF compilation units is %s.\n"),
1388 value);
1389 }
1390 \f
1391 /* local function prototypes */
1392
1393 static const char *get_section_name (const struct dwarf2_section_info *);
1394
1395 static const char *get_section_file_name (const struct dwarf2_section_info *);
1396
1397 static void dwarf2_locate_sections (bfd *, asection *, void *);
1398
1399 static void dwarf2_find_base_address (struct die_info *die,
1400 struct dwarf2_cu *cu);
1401
1402 static struct partial_symtab *create_partial_symtab
1403 (struct dwarf2_per_cu_data *per_cu, const char *name);
1404
1405 static void dwarf2_build_psymtabs_hard (struct objfile *);
1406
1407 static void scan_partial_symbols (struct partial_die_info *,
1408 CORE_ADDR *, CORE_ADDR *,
1409 int, struct dwarf2_cu *);
1410
1411 static void add_partial_symbol (struct partial_die_info *,
1412 struct dwarf2_cu *);
1413
1414 static void add_partial_namespace (struct partial_die_info *pdi,
1415 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1416 int set_addrmap, struct dwarf2_cu *cu);
1417
1418 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1419 CORE_ADDR *highpc, int set_addrmap,
1420 struct dwarf2_cu *cu);
1421
1422 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1423 struct dwarf2_cu *cu);
1424
1425 static void add_partial_subprogram (struct partial_die_info *pdi,
1426 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1427 int need_pc, struct dwarf2_cu *cu);
1428
1429 static void dwarf2_read_symtab (struct partial_symtab *,
1430 struct objfile *);
1431
1432 static void psymtab_to_symtab_1 (struct partial_symtab *);
1433
1434 static struct abbrev_info *abbrev_table_lookup_abbrev
1435 (const struct abbrev_table *, unsigned int);
1436
1437 static struct abbrev_table *abbrev_table_read_table
1438 (struct dwarf2_section_info *, sect_offset);
1439
1440 static void abbrev_table_free (struct abbrev_table *);
1441
1442 static void abbrev_table_free_cleanup (void *);
1443
1444 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1445 struct dwarf2_section_info *);
1446
1447 static void dwarf2_free_abbrev_table (void *);
1448
1449 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1450
1451 static struct partial_die_info *load_partial_dies
1452 (const struct die_reader_specs *, const gdb_byte *, int);
1453
1454 static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1455 struct partial_die_info *,
1456 struct abbrev_info *,
1457 unsigned int,
1458 const gdb_byte *);
1459
1460 static struct partial_die_info *find_partial_die (sect_offset, int,
1461 struct dwarf2_cu *);
1462
1463 static void fixup_partial_die (struct partial_die_info *,
1464 struct dwarf2_cu *);
1465
1466 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1467 struct attribute *, struct attr_abbrev *,
1468 const gdb_byte *);
1469
1470 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1471
1472 static int read_1_signed_byte (bfd *, const gdb_byte *);
1473
1474 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1475
1476 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1477
1478 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1479
1480 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1481 unsigned int *);
1482
1483 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1484
1485 static LONGEST read_checked_initial_length_and_offset
1486 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1487 unsigned int *, unsigned int *);
1488
1489 static LONGEST read_offset (bfd *, const gdb_byte *,
1490 const struct comp_unit_head *,
1491 unsigned int *);
1492
1493 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1494
1495 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1496 sect_offset);
1497
1498 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1499
1500 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1501
1502 static const char *read_indirect_string (bfd *, const gdb_byte *,
1503 const struct comp_unit_head *,
1504 unsigned int *);
1505
1506 static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1507
1508 static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
1509
1510 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1511
1512 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1513 const gdb_byte *,
1514 unsigned int *);
1515
1516 static const char *read_str_index (const struct die_reader_specs *reader,
1517 ULONGEST str_index);
1518
1519 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1520
1521 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1522 struct dwarf2_cu *);
1523
1524 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1525 unsigned int);
1526
1527 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1528 struct dwarf2_cu *cu);
1529
1530 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1531 struct dwarf2_cu *cu);
1532
1533 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1534
1535 static struct die_info *die_specification (struct die_info *die,
1536 struct dwarf2_cu **);
1537
1538 static void free_line_header (struct line_header *lh);
1539
1540 static struct line_header *dwarf_decode_line_header (unsigned int offset,
1541 struct dwarf2_cu *cu);
1542
1543 static void dwarf_decode_lines (struct line_header *, const char *,
1544 struct dwarf2_cu *, struct partial_symtab *,
1545 CORE_ADDR, int decode_mapping);
1546
1547 static void dwarf2_start_subfile (const char *, const char *);
1548
1549 static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1550 const char *, const char *,
1551 CORE_ADDR);
1552
1553 static struct symbol *new_symbol (struct die_info *, struct type *,
1554 struct dwarf2_cu *);
1555
1556 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1557 struct dwarf2_cu *, struct symbol *);
1558
1559 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1560 struct dwarf2_cu *);
1561
1562 static void dwarf2_const_value_attr (const struct attribute *attr,
1563 struct type *type,
1564 const char *name,
1565 struct obstack *obstack,
1566 struct dwarf2_cu *cu, LONGEST *value,
1567 const gdb_byte **bytes,
1568 struct dwarf2_locexpr_baton **baton);
1569
1570 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1571
1572 static int need_gnat_info (struct dwarf2_cu *);
1573
1574 static struct type *die_descriptive_type (struct die_info *,
1575 struct dwarf2_cu *);
1576
1577 static void set_descriptive_type (struct type *, struct die_info *,
1578 struct dwarf2_cu *);
1579
1580 static struct type *die_containing_type (struct die_info *,
1581 struct dwarf2_cu *);
1582
1583 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1584 struct dwarf2_cu *);
1585
1586 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1587
1588 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1589
1590 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1591
1592 static char *typename_concat (struct obstack *obs, const char *prefix,
1593 const char *suffix, int physname,
1594 struct dwarf2_cu *cu);
1595
1596 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1597
1598 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1599
1600 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1601
1602 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1603
1604 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1605
1606 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1607 struct dwarf2_cu *, struct partial_symtab *);
1608
1609 static int dwarf2_get_pc_bounds (struct die_info *,
1610 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1611 struct partial_symtab *);
1612
1613 static void get_scope_pc_bounds (struct die_info *,
1614 CORE_ADDR *, CORE_ADDR *,
1615 struct dwarf2_cu *);
1616
1617 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1618 CORE_ADDR, struct dwarf2_cu *);
1619
1620 static void dwarf2_add_field (struct field_info *, struct die_info *,
1621 struct dwarf2_cu *);
1622
1623 static void dwarf2_attach_fields_to_type (struct field_info *,
1624 struct type *, struct dwarf2_cu *);
1625
1626 static void dwarf2_add_member_fn (struct field_info *,
1627 struct die_info *, struct type *,
1628 struct dwarf2_cu *);
1629
1630 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1631 struct type *,
1632 struct dwarf2_cu *);
1633
1634 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1635
1636 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1637
1638 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1639
1640 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1641
1642 static struct using_direct **using_directives (enum language);
1643
1644 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1645
1646 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1647
1648 static struct type *read_module_type (struct die_info *die,
1649 struct dwarf2_cu *cu);
1650
1651 static const char *namespace_name (struct die_info *die,
1652 int *is_anonymous, struct dwarf2_cu *);
1653
1654 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1655
1656 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1657
1658 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1659 struct dwarf2_cu *);
1660
1661 static struct die_info *read_die_and_siblings_1
1662 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1663 struct die_info *);
1664
1665 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1666 const gdb_byte *info_ptr,
1667 const gdb_byte **new_info_ptr,
1668 struct die_info *parent);
1669
1670 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1671 struct die_info **, const gdb_byte *,
1672 int *, int);
1673
1674 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1675 struct die_info **, const gdb_byte *,
1676 int *);
1677
1678 static void process_die (struct die_info *, struct dwarf2_cu *);
1679
1680 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1681 struct obstack *);
1682
1683 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1684
1685 static const char *dwarf2_full_name (const char *name,
1686 struct die_info *die,
1687 struct dwarf2_cu *cu);
1688
1689 static const char *dwarf2_physname (const char *name, struct die_info *die,
1690 struct dwarf2_cu *cu);
1691
1692 static struct die_info *dwarf2_extension (struct die_info *die,
1693 struct dwarf2_cu **);
1694
1695 static const char *dwarf_tag_name (unsigned int);
1696
1697 static const char *dwarf_attr_name (unsigned int);
1698
1699 static const char *dwarf_form_name (unsigned int);
1700
1701 static char *dwarf_bool_name (unsigned int);
1702
1703 static const char *dwarf_type_encoding_name (unsigned int);
1704
1705 static struct die_info *sibling_die (struct die_info *);
1706
1707 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1708
1709 static void dump_die_for_error (struct die_info *);
1710
1711 static void dump_die_1 (struct ui_file *, int level, int max_level,
1712 struct die_info *);
1713
1714 /*static*/ void dump_die (struct die_info *, int max_level);
1715
1716 static void store_in_ref_table (struct die_info *,
1717 struct dwarf2_cu *);
1718
1719 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1720
1721 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1722
1723 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1724 const struct attribute *,
1725 struct dwarf2_cu **);
1726
1727 static struct die_info *follow_die_ref (struct die_info *,
1728 const struct attribute *,
1729 struct dwarf2_cu **);
1730
1731 static struct die_info *follow_die_sig (struct die_info *,
1732 const struct attribute *,
1733 struct dwarf2_cu **);
1734
1735 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1736 struct dwarf2_cu *);
1737
1738 static struct type *get_DW_AT_signature_type (struct die_info *,
1739 const struct attribute *,
1740 struct dwarf2_cu *);
1741
1742 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1743
1744 static void read_signatured_type (struct signatured_type *);
1745
1746 static int attr_to_dynamic_prop (const struct attribute *attr,
1747 struct die_info *die, struct dwarf2_cu *cu,
1748 struct dynamic_prop *prop);
1749
1750 /* memory allocation interface */
1751
1752 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1753
1754 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1755
1756 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1757
1758 static int attr_form_is_block (const struct attribute *);
1759
1760 static int attr_form_is_section_offset (const struct attribute *);
1761
1762 static int attr_form_is_constant (const struct attribute *);
1763
1764 static int attr_form_is_ref (const struct attribute *);
1765
1766 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1767 struct dwarf2_loclist_baton *baton,
1768 const struct attribute *attr);
1769
1770 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1771 struct symbol *sym,
1772 struct dwarf2_cu *cu,
1773 int is_block);
1774
1775 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1776 const gdb_byte *info_ptr,
1777 struct abbrev_info *abbrev);
1778
1779 static void free_stack_comp_unit (void *);
1780
1781 static hashval_t partial_die_hash (const void *item);
1782
1783 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1784
1785 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1786 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
1787
1788 static void init_one_comp_unit (struct dwarf2_cu *cu,
1789 struct dwarf2_per_cu_data *per_cu);
1790
1791 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1792 struct die_info *comp_unit_die,
1793 enum language pretend_language);
1794
1795 static void free_heap_comp_unit (void *);
1796
1797 static void free_cached_comp_units (void *);
1798
1799 static void age_cached_comp_units (void);
1800
1801 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1802
1803 static struct type *set_die_type (struct die_info *, struct type *,
1804 struct dwarf2_cu *);
1805
1806 static void create_all_comp_units (struct objfile *);
1807
1808 static int create_all_type_units (struct objfile *);
1809
1810 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1811 enum language);
1812
1813 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1814 enum language);
1815
1816 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1817 enum language);
1818
1819 static void dwarf2_add_dependence (struct dwarf2_cu *,
1820 struct dwarf2_per_cu_data *);
1821
1822 static void dwarf2_mark (struct dwarf2_cu *);
1823
1824 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1825
1826 static struct type *get_die_type_at_offset (sect_offset,
1827 struct dwarf2_per_cu_data *);
1828
1829 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1830
1831 static void dwarf2_release_queue (void *dummy);
1832
1833 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1834 enum language pretend_language);
1835
1836 static void process_queue (void);
1837
1838 static void find_file_and_directory (struct die_info *die,
1839 struct dwarf2_cu *cu,
1840 const char **name, const char **comp_dir);
1841
1842 static char *file_full_name (int file, struct line_header *lh,
1843 const char *comp_dir);
1844
1845 static const gdb_byte *read_and_check_comp_unit_head
1846 (struct comp_unit_head *header,
1847 struct dwarf2_section_info *section,
1848 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1849 int is_debug_types_section);
1850
1851 static void init_cutu_and_read_dies
1852 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1853 int use_existing_cu, int keep,
1854 die_reader_func_ftype *die_reader_func, void *data);
1855
1856 static void init_cutu_and_read_dies_simple
1857 (struct dwarf2_per_cu_data *this_cu,
1858 die_reader_func_ftype *die_reader_func, void *data);
1859
1860 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1861
1862 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1863
1864 static struct dwo_unit *lookup_dwo_unit_in_dwp
1865 (struct dwp_file *dwp_file, const char *comp_dir,
1866 ULONGEST signature, int is_debug_types);
1867
1868 static struct dwp_file *get_dwp_file (void);
1869
1870 static struct dwo_unit *lookup_dwo_comp_unit
1871 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1872
1873 static struct dwo_unit *lookup_dwo_type_unit
1874 (struct signatured_type *, const char *, const char *);
1875
1876 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1877
1878 static void free_dwo_file_cleanup (void *);
1879
1880 static void process_cu_includes (void);
1881
1882 static void check_producer (struct dwarf2_cu *cu);
1883
1884 static void free_line_header_voidp (void *arg);
1885 \f
1886 /* Various complaints about symbol reading that don't abort the process. */
1887
1888 static void
1889 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1890 {
1891 complaint (&symfile_complaints,
1892 _("statement list doesn't fit in .debug_line section"));
1893 }
1894
1895 static void
1896 dwarf2_debug_line_missing_file_complaint (void)
1897 {
1898 complaint (&symfile_complaints,
1899 _(".debug_line section has line data without a file"));
1900 }
1901
1902 static void
1903 dwarf2_debug_line_missing_end_sequence_complaint (void)
1904 {
1905 complaint (&symfile_complaints,
1906 _(".debug_line section has line "
1907 "program sequence without an end"));
1908 }
1909
1910 static void
1911 dwarf2_complex_location_expr_complaint (void)
1912 {
1913 complaint (&symfile_complaints, _("location expression too complex"));
1914 }
1915
1916 static void
1917 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1918 int arg3)
1919 {
1920 complaint (&symfile_complaints,
1921 _("const value length mismatch for '%s', got %d, expected %d"),
1922 arg1, arg2, arg3);
1923 }
1924
1925 static void
1926 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1927 {
1928 complaint (&symfile_complaints,
1929 _("debug info runs off end of %s section"
1930 " [in module %s]"),
1931 get_section_name (section),
1932 get_section_file_name (section));
1933 }
1934
1935 static void
1936 dwarf2_macro_malformed_definition_complaint (const char *arg1)
1937 {
1938 complaint (&symfile_complaints,
1939 _("macro debug info contains a "
1940 "malformed macro definition:\n`%s'"),
1941 arg1);
1942 }
1943
1944 static void
1945 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1946 {
1947 complaint (&symfile_complaints,
1948 _("invalid attribute class or form for '%s' in '%s'"),
1949 arg1, arg2);
1950 }
1951
1952 /* Hash function for line_header_hash. */
1953
1954 static hashval_t
1955 line_header_hash (const struct line_header *ofs)
1956 {
1957 return ofs->offset.sect_off ^ ofs->offset_in_dwz;
1958 }
1959
1960 /* Hash function for htab_create_alloc_ex for line_header_hash. */
1961
1962 static hashval_t
1963 line_header_hash_voidp (const void *item)
1964 {
1965 const struct line_header *ofs = (const struct line_header *) item;
1966
1967 return line_header_hash (ofs);
1968 }
1969
1970 /* Equality function for line_header_hash. */
1971
1972 static int
1973 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
1974 {
1975 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
1976 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
1977
1978 return (ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off
1979 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
1980 }
1981
1982 \f
1983 #if WORDS_BIGENDIAN
1984
1985 /* Convert VALUE between big- and little-endian. */
1986 static offset_type
1987 byte_swap (offset_type value)
1988 {
1989 offset_type result;
1990
1991 result = (value & 0xff) << 24;
1992 result |= (value & 0xff00) << 8;
1993 result |= (value & 0xff0000) >> 8;
1994 result |= (value & 0xff000000) >> 24;
1995 return result;
1996 }
1997
1998 #define MAYBE_SWAP(V) byte_swap (V)
1999
2000 #else
2001 #define MAYBE_SWAP(V) (V)
2002 #endif /* WORDS_BIGENDIAN */
2003
2004 /* Read the given attribute value as an address, taking the attribute's
2005 form into account. */
2006
2007 static CORE_ADDR
2008 attr_value_as_address (struct attribute *attr)
2009 {
2010 CORE_ADDR addr;
2011
2012 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2013 {
2014 /* Aside from a few clearly defined exceptions, attributes that
2015 contain an address must always be in DW_FORM_addr form.
2016 Unfortunately, some compilers happen to be violating this
2017 requirement by encoding addresses using other forms, such
2018 as DW_FORM_data4 for example. For those broken compilers,
2019 we try to do our best, without any guarantee of success,
2020 to interpret the address correctly. It would also be nice
2021 to generate a complaint, but that would require us to maintain
2022 a list of legitimate cases where a non-address form is allowed,
2023 as well as update callers to pass in at least the CU's DWARF
2024 version. This is more overhead than what we're willing to
2025 expand for a pretty rare case. */
2026 addr = DW_UNSND (attr);
2027 }
2028 else
2029 addr = DW_ADDR (attr);
2030
2031 return addr;
2032 }
2033
2034 /* The suffix for an index file. */
2035 #define INDEX_SUFFIX ".gdb-index"
2036
2037 /* Try to locate the sections we need for DWARF 2 debugging
2038 information and return true if we have enough to do something.
2039 NAMES points to the dwarf2 section names, or is NULL if the standard
2040 ELF names are used. */
2041
2042 int
2043 dwarf2_has_info (struct objfile *objfile,
2044 const struct dwarf2_debug_sections *names)
2045 {
2046 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
2047 objfile_data (objfile, dwarf2_objfile_data_key));
2048 if (!dwarf2_per_objfile)
2049 {
2050 /* Initialize per-objfile state. */
2051 struct dwarf2_per_objfile *data
2052 = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_objfile);
2053
2054 memset (data, 0, sizeof (*data));
2055 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
2056 dwarf2_per_objfile = data;
2057
2058 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
2059 (void *) names);
2060 dwarf2_per_objfile->objfile = objfile;
2061 }
2062 return (!dwarf2_per_objfile->info.is_virtual
2063 && dwarf2_per_objfile->info.s.section != NULL
2064 && !dwarf2_per_objfile->abbrev.is_virtual
2065 && dwarf2_per_objfile->abbrev.s.section != NULL);
2066 }
2067
2068 /* Return the containing section of virtual section SECTION. */
2069
2070 static struct dwarf2_section_info *
2071 get_containing_section (const struct dwarf2_section_info *section)
2072 {
2073 gdb_assert (section->is_virtual);
2074 return section->s.containing_section;
2075 }
2076
2077 /* Return the bfd owner of SECTION. */
2078
2079 static struct bfd *
2080 get_section_bfd_owner (const struct dwarf2_section_info *section)
2081 {
2082 if (section->is_virtual)
2083 {
2084 section = get_containing_section (section);
2085 gdb_assert (!section->is_virtual);
2086 }
2087 return section->s.section->owner;
2088 }
2089
2090 /* Return the bfd section of SECTION.
2091 Returns NULL if the section is not present. */
2092
2093 static asection *
2094 get_section_bfd_section (const struct dwarf2_section_info *section)
2095 {
2096 if (section->is_virtual)
2097 {
2098 section = get_containing_section (section);
2099 gdb_assert (!section->is_virtual);
2100 }
2101 return section->s.section;
2102 }
2103
2104 /* Return the name of SECTION. */
2105
2106 static const char *
2107 get_section_name (const struct dwarf2_section_info *section)
2108 {
2109 asection *sectp = get_section_bfd_section (section);
2110
2111 gdb_assert (sectp != NULL);
2112 return bfd_section_name (get_section_bfd_owner (section), sectp);
2113 }
2114
2115 /* Return the name of the file SECTION is in. */
2116
2117 static const char *
2118 get_section_file_name (const struct dwarf2_section_info *section)
2119 {
2120 bfd *abfd = get_section_bfd_owner (section);
2121
2122 return bfd_get_filename (abfd);
2123 }
2124
2125 /* Return the id of SECTION.
2126 Returns 0 if SECTION doesn't exist. */
2127
2128 static int
2129 get_section_id (const struct dwarf2_section_info *section)
2130 {
2131 asection *sectp = get_section_bfd_section (section);
2132
2133 if (sectp == NULL)
2134 return 0;
2135 return sectp->id;
2136 }
2137
2138 /* Return the flags of SECTION.
2139 SECTION (or containing section if this is a virtual section) must exist. */
2140
2141 static int
2142 get_section_flags (const struct dwarf2_section_info *section)
2143 {
2144 asection *sectp = get_section_bfd_section (section);
2145
2146 gdb_assert (sectp != NULL);
2147 return bfd_get_section_flags (sectp->owner, sectp);
2148 }
2149
2150 /* When loading sections, we look either for uncompressed section or for
2151 compressed section names. */
2152
2153 static int
2154 section_is_p (const char *section_name,
2155 const struct dwarf2_section_names *names)
2156 {
2157 if (names->normal != NULL
2158 && strcmp (section_name, names->normal) == 0)
2159 return 1;
2160 if (names->compressed != NULL
2161 && strcmp (section_name, names->compressed) == 0)
2162 return 1;
2163 return 0;
2164 }
2165
2166 /* This function is mapped across the sections and remembers the
2167 offset and size of each of the debugging sections we are interested
2168 in. */
2169
2170 static void
2171 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
2172 {
2173 const struct dwarf2_debug_sections *names;
2174 flagword aflag = bfd_get_section_flags (abfd, sectp);
2175
2176 if (vnames == NULL)
2177 names = &dwarf2_elf_names;
2178 else
2179 names = (const struct dwarf2_debug_sections *) vnames;
2180
2181 if ((aflag & SEC_HAS_CONTENTS) == 0)
2182 {
2183 }
2184 else if (section_is_p (sectp->name, &names->info))
2185 {
2186 dwarf2_per_objfile->info.s.section = sectp;
2187 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
2188 }
2189 else if (section_is_p (sectp->name, &names->abbrev))
2190 {
2191 dwarf2_per_objfile->abbrev.s.section = sectp;
2192 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
2193 }
2194 else if (section_is_p (sectp->name, &names->line))
2195 {
2196 dwarf2_per_objfile->line.s.section = sectp;
2197 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
2198 }
2199 else if (section_is_p (sectp->name, &names->loc))
2200 {
2201 dwarf2_per_objfile->loc.s.section = sectp;
2202 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
2203 }
2204 else if (section_is_p (sectp->name, &names->macinfo))
2205 {
2206 dwarf2_per_objfile->macinfo.s.section = sectp;
2207 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
2208 }
2209 else if (section_is_p (sectp->name, &names->macro))
2210 {
2211 dwarf2_per_objfile->macro.s.section = sectp;
2212 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
2213 }
2214 else if (section_is_p (sectp->name, &names->str))
2215 {
2216 dwarf2_per_objfile->str.s.section = sectp;
2217 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
2218 }
2219 else if (section_is_p (sectp->name, &names->addr))
2220 {
2221 dwarf2_per_objfile->addr.s.section = sectp;
2222 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
2223 }
2224 else if (section_is_p (sectp->name, &names->frame))
2225 {
2226 dwarf2_per_objfile->frame.s.section = sectp;
2227 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
2228 }
2229 else if (section_is_p (sectp->name, &names->eh_frame))
2230 {
2231 dwarf2_per_objfile->eh_frame.s.section = sectp;
2232 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
2233 }
2234 else if (section_is_p (sectp->name, &names->ranges))
2235 {
2236 dwarf2_per_objfile->ranges.s.section = sectp;
2237 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
2238 }
2239 else if (section_is_p (sectp->name, &names->types))
2240 {
2241 struct dwarf2_section_info type_section;
2242
2243 memset (&type_section, 0, sizeof (type_section));
2244 type_section.s.section = sectp;
2245 type_section.size = bfd_get_section_size (sectp);
2246
2247 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
2248 &type_section);
2249 }
2250 else if (section_is_p (sectp->name, &names->gdb_index))
2251 {
2252 dwarf2_per_objfile->gdb_index.s.section = sectp;
2253 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
2254 }
2255
2256 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2257 && bfd_section_vma (abfd, sectp) == 0)
2258 dwarf2_per_objfile->has_section_at_zero = 1;
2259 }
2260
2261 /* A helper function that decides whether a section is empty,
2262 or not present. */
2263
2264 static int
2265 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2266 {
2267 if (section->is_virtual)
2268 return section->size == 0;
2269 return section->s.section == NULL || section->size == 0;
2270 }
2271
2272 /* Read the contents of the section INFO.
2273 OBJFILE is the main object file, but not necessarily the file where
2274 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2275 of the DWO file.
2276 If the section is compressed, uncompress it before returning. */
2277
2278 static void
2279 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
2280 {
2281 asection *sectp;
2282 bfd *abfd;
2283 gdb_byte *buf, *retbuf;
2284
2285 if (info->readin)
2286 return;
2287 info->buffer = NULL;
2288 info->readin = 1;
2289
2290 if (dwarf2_section_empty_p (info))
2291 return;
2292
2293 sectp = get_section_bfd_section (info);
2294
2295 /* If this is a virtual section we need to read in the real one first. */
2296 if (info->is_virtual)
2297 {
2298 struct dwarf2_section_info *containing_section =
2299 get_containing_section (info);
2300
2301 gdb_assert (sectp != NULL);
2302 if ((sectp->flags & SEC_RELOC) != 0)
2303 {
2304 error (_("Dwarf Error: DWP format V2 with relocations is not"
2305 " supported in section %s [in module %s]"),
2306 get_section_name (info), get_section_file_name (info));
2307 }
2308 dwarf2_read_section (objfile, containing_section);
2309 /* Other code should have already caught virtual sections that don't
2310 fit. */
2311 gdb_assert (info->virtual_offset + info->size
2312 <= containing_section->size);
2313 /* If the real section is empty or there was a problem reading the
2314 section we shouldn't get here. */
2315 gdb_assert (containing_section->buffer != NULL);
2316 info->buffer = containing_section->buffer + info->virtual_offset;
2317 return;
2318 }
2319
2320 /* If the section has relocations, we must read it ourselves.
2321 Otherwise we attach it to the BFD. */
2322 if ((sectp->flags & SEC_RELOC) == 0)
2323 {
2324 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2325 return;
2326 }
2327
2328 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2329 info->buffer = buf;
2330
2331 /* When debugging .o files, we may need to apply relocations; see
2332 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2333 We never compress sections in .o files, so we only need to
2334 try this when the section is not compressed. */
2335 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2336 if (retbuf != NULL)
2337 {
2338 info->buffer = retbuf;
2339 return;
2340 }
2341
2342 abfd = get_section_bfd_owner (info);
2343 gdb_assert (abfd != NULL);
2344
2345 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2346 || bfd_bread (buf, info->size, abfd) != info->size)
2347 {
2348 error (_("Dwarf Error: Can't read DWARF data"
2349 " in section %s [in module %s]"),
2350 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2351 }
2352 }
2353
2354 /* A helper function that returns the size of a section in a safe way.
2355 If you are positive that the section has been read before using the
2356 size, then it is safe to refer to the dwarf2_section_info object's
2357 "size" field directly. In other cases, you must call this
2358 function, because for compressed sections the size field is not set
2359 correctly until the section has been read. */
2360
2361 static bfd_size_type
2362 dwarf2_section_size (struct objfile *objfile,
2363 struct dwarf2_section_info *info)
2364 {
2365 if (!info->readin)
2366 dwarf2_read_section (objfile, info);
2367 return info->size;
2368 }
2369
2370 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2371 SECTION_NAME. */
2372
2373 void
2374 dwarf2_get_section_info (struct objfile *objfile,
2375 enum dwarf2_section_enum sect,
2376 asection **sectp, const gdb_byte **bufp,
2377 bfd_size_type *sizep)
2378 {
2379 struct dwarf2_per_objfile *data
2380 = (struct dwarf2_per_objfile *) objfile_data (objfile,
2381 dwarf2_objfile_data_key);
2382 struct dwarf2_section_info *info;
2383
2384 /* We may see an objfile without any DWARF, in which case we just
2385 return nothing. */
2386 if (data == NULL)
2387 {
2388 *sectp = NULL;
2389 *bufp = NULL;
2390 *sizep = 0;
2391 return;
2392 }
2393 switch (sect)
2394 {
2395 case DWARF2_DEBUG_FRAME:
2396 info = &data->frame;
2397 break;
2398 case DWARF2_EH_FRAME:
2399 info = &data->eh_frame;
2400 break;
2401 default:
2402 gdb_assert_not_reached ("unexpected section");
2403 }
2404
2405 dwarf2_read_section (objfile, info);
2406
2407 *sectp = get_section_bfd_section (info);
2408 *bufp = info->buffer;
2409 *sizep = info->size;
2410 }
2411
2412 /* A helper function to find the sections for a .dwz file. */
2413
2414 static void
2415 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2416 {
2417 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2418
2419 /* Note that we only support the standard ELF names, because .dwz
2420 is ELF-only (at the time of writing). */
2421 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2422 {
2423 dwz_file->abbrev.s.section = sectp;
2424 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2425 }
2426 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2427 {
2428 dwz_file->info.s.section = sectp;
2429 dwz_file->info.size = bfd_get_section_size (sectp);
2430 }
2431 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2432 {
2433 dwz_file->str.s.section = sectp;
2434 dwz_file->str.size = bfd_get_section_size (sectp);
2435 }
2436 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2437 {
2438 dwz_file->line.s.section = sectp;
2439 dwz_file->line.size = bfd_get_section_size (sectp);
2440 }
2441 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2442 {
2443 dwz_file->macro.s.section = sectp;
2444 dwz_file->macro.size = bfd_get_section_size (sectp);
2445 }
2446 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2447 {
2448 dwz_file->gdb_index.s.section = sectp;
2449 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2450 }
2451 }
2452
2453 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2454 there is no .gnu_debugaltlink section in the file. Error if there
2455 is such a section but the file cannot be found. */
2456
2457 static struct dwz_file *
2458 dwarf2_get_dwz_file (void)
2459 {
2460 bfd *dwz_bfd;
2461 char *data;
2462 struct cleanup *cleanup;
2463 const char *filename;
2464 struct dwz_file *result;
2465 bfd_size_type buildid_len_arg;
2466 size_t buildid_len;
2467 bfd_byte *buildid;
2468
2469 if (dwarf2_per_objfile->dwz_file != NULL)
2470 return dwarf2_per_objfile->dwz_file;
2471
2472 bfd_set_error (bfd_error_no_error);
2473 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2474 &buildid_len_arg, &buildid);
2475 if (data == NULL)
2476 {
2477 if (bfd_get_error () == bfd_error_no_error)
2478 return NULL;
2479 error (_("could not read '.gnu_debugaltlink' section: %s"),
2480 bfd_errmsg (bfd_get_error ()));
2481 }
2482 cleanup = make_cleanup (xfree, data);
2483 make_cleanup (xfree, buildid);
2484
2485 buildid_len = (size_t) buildid_len_arg;
2486
2487 filename = (const char *) data;
2488 if (!IS_ABSOLUTE_PATH (filename))
2489 {
2490 char *abs = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2491 char *rel;
2492
2493 make_cleanup (xfree, abs);
2494 abs = ldirname (abs);
2495 make_cleanup (xfree, abs);
2496
2497 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2498 make_cleanup (xfree, rel);
2499 filename = rel;
2500 }
2501
2502 /* First try the file name given in the section. If that doesn't
2503 work, try to use the build-id instead. */
2504 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
2505 if (dwz_bfd != NULL)
2506 {
2507 if (!build_id_verify (dwz_bfd, buildid_len, buildid))
2508 {
2509 gdb_bfd_unref (dwz_bfd);
2510 dwz_bfd = NULL;
2511 }
2512 }
2513
2514 if (dwz_bfd == NULL)
2515 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2516
2517 if (dwz_bfd == NULL)
2518 error (_("could not find '.gnu_debugaltlink' file for %s"),
2519 objfile_name (dwarf2_per_objfile->objfile));
2520
2521 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2522 struct dwz_file);
2523 result->dwz_bfd = dwz_bfd;
2524
2525 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2526
2527 do_cleanups (cleanup);
2528
2529 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, dwz_bfd);
2530 dwarf2_per_objfile->dwz_file = result;
2531 return result;
2532 }
2533 \f
2534 /* DWARF quick_symbols_functions support. */
2535
2536 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2537 unique line tables, so we maintain a separate table of all .debug_line
2538 derived entries to support the sharing.
2539 All the quick functions need is the list of file names. We discard the
2540 line_header when we're done and don't need to record it here. */
2541 struct quick_file_names
2542 {
2543 /* The data used to construct the hash key. */
2544 struct stmt_list_hash hash;
2545
2546 /* The number of entries in file_names, real_names. */
2547 unsigned int num_file_names;
2548
2549 /* The file names from the line table, after being run through
2550 file_full_name. */
2551 const char **file_names;
2552
2553 /* The file names from the line table after being run through
2554 gdb_realpath. These are computed lazily. */
2555 const char **real_names;
2556 };
2557
2558 /* When using the index (and thus not using psymtabs), each CU has an
2559 object of this type. This is used to hold information needed by
2560 the various "quick" methods. */
2561 struct dwarf2_per_cu_quick_data
2562 {
2563 /* The file table. This can be NULL if there was no file table
2564 or it's currently not read in.
2565 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2566 struct quick_file_names *file_names;
2567
2568 /* The corresponding symbol table. This is NULL if symbols for this
2569 CU have not yet been read. */
2570 struct compunit_symtab *compunit_symtab;
2571
2572 /* A temporary mark bit used when iterating over all CUs in
2573 expand_symtabs_matching. */
2574 unsigned int mark : 1;
2575
2576 /* True if we've tried to read the file table and found there isn't one.
2577 There will be no point in trying to read it again next time. */
2578 unsigned int no_file_data : 1;
2579 };
2580
2581 /* Utility hash function for a stmt_list_hash. */
2582
2583 static hashval_t
2584 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2585 {
2586 hashval_t v = 0;
2587
2588 if (stmt_list_hash->dwo_unit != NULL)
2589 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2590 v += stmt_list_hash->line_offset.sect_off;
2591 return v;
2592 }
2593
2594 /* Utility equality function for a stmt_list_hash. */
2595
2596 static int
2597 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2598 const struct stmt_list_hash *rhs)
2599 {
2600 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2601 return 0;
2602 if (lhs->dwo_unit != NULL
2603 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2604 return 0;
2605
2606 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2607 }
2608
2609 /* Hash function for a quick_file_names. */
2610
2611 static hashval_t
2612 hash_file_name_entry (const void *e)
2613 {
2614 const struct quick_file_names *file_data
2615 = (const struct quick_file_names *) e;
2616
2617 return hash_stmt_list_entry (&file_data->hash);
2618 }
2619
2620 /* Equality function for a quick_file_names. */
2621
2622 static int
2623 eq_file_name_entry (const void *a, const void *b)
2624 {
2625 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2626 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2627
2628 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2629 }
2630
2631 /* Delete function for a quick_file_names. */
2632
2633 static void
2634 delete_file_name_entry (void *e)
2635 {
2636 struct quick_file_names *file_data = (struct quick_file_names *) e;
2637 int i;
2638
2639 for (i = 0; i < file_data->num_file_names; ++i)
2640 {
2641 xfree ((void*) file_data->file_names[i]);
2642 if (file_data->real_names)
2643 xfree ((void*) file_data->real_names[i]);
2644 }
2645
2646 /* The space for the struct itself lives on objfile_obstack,
2647 so we don't free it here. */
2648 }
2649
2650 /* Create a quick_file_names hash table. */
2651
2652 static htab_t
2653 create_quick_file_names_table (unsigned int nr_initial_entries)
2654 {
2655 return htab_create_alloc (nr_initial_entries,
2656 hash_file_name_entry, eq_file_name_entry,
2657 delete_file_name_entry, xcalloc, xfree);
2658 }
2659
2660 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2661 have to be created afterwards. You should call age_cached_comp_units after
2662 processing PER_CU->CU. dw2_setup must have been already called. */
2663
2664 static void
2665 load_cu (struct dwarf2_per_cu_data *per_cu)
2666 {
2667 if (per_cu->is_debug_types)
2668 load_full_type_unit (per_cu);
2669 else
2670 load_full_comp_unit (per_cu, language_minimal);
2671
2672 if (per_cu->cu == NULL)
2673 return; /* Dummy CU. */
2674
2675 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2676 }
2677
2678 /* Read in the symbols for PER_CU. */
2679
2680 static void
2681 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2682 {
2683 struct cleanup *back_to;
2684
2685 /* Skip type_unit_groups, reading the type units they contain
2686 is handled elsewhere. */
2687 if (IS_TYPE_UNIT_GROUP (per_cu))
2688 return;
2689
2690 back_to = make_cleanup (dwarf2_release_queue, NULL);
2691
2692 if (dwarf2_per_objfile->using_index
2693 ? per_cu->v.quick->compunit_symtab == NULL
2694 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2695 {
2696 queue_comp_unit (per_cu, language_minimal);
2697 load_cu (per_cu);
2698
2699 /* If we just loaded a CU from a DWO, and we're working with an index
2700 that may badly handle TUs, load all the TUs in that DWO as well.
2701 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2702 if (!per_cu->is_debug_types
2703 && per_cu->cu != NULL
2704 && per_cu->cu->dwo_unit != NULL
2705 && dwarf2_per_objfile->index_table != NULL
2706 && dwarf2_per_objfile->index_table->version <= 7
2707 /* DWP files aren't supported yet. */
2708 && get_dwp_file () == NULL)
2709 queue_and_load_all_dwo_tus (per_cu);
2710 }
2711
2712 process_queue ();
2713
2714 /* Age the cache, releasing compilation units that have not
2715 been used recently. */
2716 age_cached_comp_units ();
2717
2718 do_cleanups (back_to);
2719 }
2720
2721 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2722 the objfile from which this CU came. Returns the resulting symbol
2723 table. */
2724
2725 static struct compunit_symtab *
2726 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2727 {
2728 gdb_assert (dwarf2_per_objfile->using_index);
2729 if (!per_cu->v.quick->compunit_symtab)
2730 {
2731 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2732 increment_reading_symtab ();
2733 dw2_do_instantiate_symtab (per_cu);
2734 process_cu_includes ();
2735 do_cleanups (back_to);
2736 }
2737
2738 return per_cu->v.quick->compunit_symtab;
2739 }
2740
2741 /* Return the CU/TU given its index.
2742
2743 This is intended for loops like:
2744
2745 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2746 + dwarf2_per_objfile->n_type_units); ++i)
2747 {
2748 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
2749
2750 ...;
2751 }
2752 */
2753
2754 static struct dwarf2_per_cu_data *
2755 dw2_get_cutu (int index)
2756 {
2757 if (index >= dwarf2_per_objfile->n_comp_units)
2758 {
2759 index -= dwarf2_per_objfile->n_comp_units;
2760 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2761 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2762 }
2763
2764 return dwarf2_per_objfile->all_comp_units[index];
2765 }
2766
2767 /* Return the CU given its index.
2768 This differs from dw2_get_cutu in that it's for when you know INDEX
2769 refers to a CU. */
2770
2771 static struct dwarf2_per_cu_data *
2772 dw2_get_cu (int index)
2773 {
2774 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
2775
2776 return dwarf2_per_objfile->all_comp_units[index];
2777 }
2778
2779 /* A helper for create_cus_from_index that handles a given list of
2780 CUs. */
2781
2782 static void
2783 create_cus_from_index_list (struct objfile *objfile,
2784 const gdb_byte *cu_list, offset_type n_elements,
2785 struct dwarf2_section_info *section,
2786 int is_dwz,
2787 int base_offset)
2788 {
2789 offset_type i;
2790
2791 for (i = 0; i < n_elements; i += 2)
2792 {
2793 struct dwarf2_per_cu_data *the_cu;
2794 ULONGEST offset, length;
2795
2796 gdb_static_assert (sizeof (ULONGEST) >= 8);
2797 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2798 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2799 cu_list += 2 * 8;
2800
2801 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2802 struct dwarf2_per_cu_data);
2803 the_cu->offset.sect_off = offset;
2804 the_cu->length = length;
2805 the_cu->objfile = objfile;
2806 the_cu->section = section;
2807 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2808 struct dwarf2_per_cu_quick_data);
2809 the_cu->is_dwz = is_dwz;
2810 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
2811 }
2812 }
2813
2814 /* Read the CU list from the mapped index, and use it to create all
2815 the CU objects for this objfile. */
2816
2817 static void
2818 create_cus_from_index (struct objfile *objfile,
2819 const gdb_byte *cu_list, offset_type cu_list_elements,
2820 const gdb_byte *dwz_list, offset_type dwz_elements)
2821 {
2822 struct dwz_file *dwz;
2823
2824 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2825 dwarf2_per_objfile->all_comp_units =
2826 XOBNEWVEC (&objfile->objfile_obstack, struct dwarf2_per_cu_data *,
2827 dwarf2_per_objfile->n_comp_units);
2828
2829 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2830 &dwarf2_per_objfile->info, 0, 0);
2831
2832 if (dwz_elements == 0)
2833 return;
2834
2835 dwz = dwarf2_get_dwz_file ();
2836 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2837 cu_list_elements / 2);
2838 }
2839
2840 /* Create the signatured type hash table from the index. */
2841
2842 static void
2843 create_signatured_type_table_from_index (struct objfile *objfile,
2844 struct dwarf2_section_info *section,
2845 const gdb_byte *bytes,
2846 offset_type elements)
2847 {
2848 offset_type i;
2849 htab_t sig_types_hash;
2850
2851 dwarf2_per_objfile->n_type_units
2852 = dwarf2_per_objfile->n_allocated_type_units
2853 = elements / 3;
2854 dwarf2_per_objfile->all_type_units =
2855 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
2856
2857 sig_types_hash = allocate_signatured_type_table (objfile);
2858
2859 for (i = 0; i < elements; i += 3)
2860 {
2861 struct signatured_type *sig_type;
2862 ULONGEST offset, type_offset_in_tu, signature;
2863 void **slot;
2864
2865 gdb_static_assert (sizeof (ULONGEST) >= 8);
2866 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2867 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2868 BFD_ENDIAN_LITTLE);
2869 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2870 bytes += 3 * 8;
2871
2872 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2873 struct signatured_type);
2874 sig_type->signature = signature;
2875 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2876 sig_type->per_cu.is_debug_types = 1;
2877 sig_type->per_cu.section = section;
2878 sig_type->per_cu.offset.sect_off = offset;
2879 sig_type->per_cu.objfile = objfile;
2880 sig_type->per_cu.v.quick
2881 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2882 struct dwarf2_per_cu_quick_data);
2883
2884 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2885 *slot = sig_type;
2886
2887 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
2888 }
2889
2890 dwarf2_per_objfile->signatured_types = sig_types_hash;
2891 }
2892
2893 /* Read the address map data from the mapped index, and use it to
2894 populate the objfile's psymtabs_addrmap. */
2895
2896 static void
2897 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2898 {
2899 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2900 const gdb_byte *iter, *end;
2901 struct obstack temp_obstack;
2902 struct addrmap *mutable_map;
2903 struct cleanup *cleanup;
2904 CORE_ADDR baseaddr;
2905
2906 obstack_init (&temp_obstack);
2907 cleanup = make_cleanup_obstack_free (&temp_obstack);
2908 mutable_map = addrmap_create_mutable (&temp_obstack);
2909
2910 iter = index->address_table;
2911 end = iter + index->address_table_size;
2912
2913 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2914
2915 while (iter < end)
2916 {
2917 ULONGEST hi, lo, cu_index;
2918 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2919 iter += 8;
2920 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2921 iter += 8;
2922 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2923 iter += 4;
2924
2925 if (lo > hi)
2926 {
2927 complaint (&symfile_complaints,
2928 _(".gdb_index address table has invalid range (%s - %s)"),
2929 hex_string (lo), hex_string (hi));
2930 continue;
2931 }
2932
2933 if (cu_index >= dwarf2_per_objfile->n_comp_units)
2934 {
2935 complaint (&symfile_complaints,
2936 _(".gdb_index address table has invalid CU number %u"),
2937 (unsigned) cu_index);
2938 continue;
2939 }
2940
2941 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
2942 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
2943 addrmap_set_empty (mutable_map, lo, hi - 1, dw2_get_cutu (cu_index));
2944 }
2945
2946 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2947 &objfile->objfile_obstack);
2948 do_cleanups (cleanup);
2949 }
2950
2951 /* The hash function for strings in the mapped index. This is the same as
2952 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2953 implementation. This is necessary because the hash function is tied to the
2954 format of the mapped index file. The hash values do not have to match with
2955 SYMBOL_HASH_NEXT.
2956
2957 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2958
2959 static hashval_t
2960 mapped_index_string_hash (int index_version, const void *p)
2961 {
2962 const unsigned char *str = (const unsigned char *) p;
2963 hashval_t r = 0;
2964 unsigned char c;
2965
2966 while ((c = *str++) != 0)
2967 {
2968 if (index_version >= 5)
2969 c = tolower (c);
2970 r = r * 67 + c - 113;
2971 }
2972
2973 return r;
2974 }
2975
2976 /* Find a slot in the mapped index INDEX for the object named NAME.
2977 If NAME is found, set *VEC_OUT to point to the CU vector in the
2978 constant pool and return 1. If NAME cannot be found, return 0. */
2979
2980 static int
2981 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2982 offset_type **vec_out)
2983 {
2984 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2985 offset_type hash;
2986 offset_type slot, step;
2987 int (*cmp) (const char *, const char *);
2988
2989 if (current_language->la_language == language_cplus
2990 || current_language->la_language == language_java
2991 || current_language->la_language == language_fortran
2992 || current_language->la_language == language_d)
2993 {
2994 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2995 not contain any. */
2996
2997 if (strchr (name, '(') != NULL)
2998 {
2999 char *without_params = cp_remove_params (name);
3000
3001 if (without_params != NULL)
3002 {
3003 make_cleanup (xfree, without_params);
3004 name = without_params;
3005 }
3006 }
3007 }
3008
3009 /* Index version 4 did not support case insensitive searches. But the
3010 indices for case insensitive languages are built in lowercase, therefore
3011 simulate our NAME being searched is also lowercased. */
3012 hash = mapped_index_string_hash ((index->version == 4
3013 && case_sensitivity == case_sensitive_off
3014 ? 5 : index->version),
3015 name);
3016
3017 slot = hash & (index->symbol_table_slots - 1);
3018 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
3019 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3020
3021 for (;;)
3022 {
3023 /* Convert a slot number to an offset into the table. */
3024 offset_type i = 2 * slot;
3025 const char *str;
3026 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
3027 {
3028 do_cleanups (back_to);
3029 return 0;
3030 }
3031
3032 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
3033 if (!cmp (name, str))
3034 {
3035 *vec_out = (offset_type *) (index->constant_pool
3036 + MAYBE_SWAP (index->symbol_table[i + 1]));
3037 do_cleanups (back_to);
3038 return 1;
3039 }
3040
3041 slot = (slot + step) & (index->symbol_table_slots - 1);
3042 }
3043 }
3044
3045 /* A helper function that reads the .gdb_index from SECTION and fills
3046 in MAP. FILENAME is the name of the file containing the section;
3047 it is used for error reporting. DEPRECATED_OK is nonzero if it is
3048 ok to use deprecated sections.
3049
3050 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3051 out parameters that are filled in with information about the CU and
3052 TU lists in the section.
3053
3054 Returns 1 if all went well, 0 otherwise. */
3055
3056 static int
3057 read_index_from_section (struct objfile *objfile,
3058 const char *filename,
3059 int deprecated_ok,
3060 struct dwarf2_section_info *section,
3061 struct mapped_index *map,
3062 const gdb_byte **cu_list,
3063 offset_type *cu_list_elements,
3064 const gdb_byte **types_list,
3065 offset_type *types_list_elements)
3066 {
3067 const gdb_byte *addr;
3068 offset_type version;
3069 offset_type *metadata;
3070 int i;
3071
3072 if (dwarf2_section_empty_p (section))
3073 return 0;
3074
3075 /* Older elfutils strip versions could keep the section in the main
3076 executable while splitting it for the separate debug info file. */
3077 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
3078 return 0;
3079
3080 dwarf2_read_section (objfile, section);
3081
3082 addr = section->buffer;
3083 /* Version check. */
3084 version = MAYBE_SWAP (*(offset_type *) addr);
3085 /* Versions earlier than 3 emitted every copy of a psymbol. This
3086 causes the index to behave very poorly for certain requests. Version 3
3087 contained incomplete addrmap. So, it seems better to just ignore such
3088 indices. */
3089 if (version < 4)
3090 {
3091 static int warning_printed = 0;
3092 if (!warning_printed)
3093 {
3094 warning (_("Skipping obsolete .gdb_index section in %s."),
3095 filename);
3096 warning_printed = 1;
3097 }
3098 return 0;
3099 }
3100 /* Index version 4 uses a different hash function than index version
3101 5 and later.
3102
3103 Versions earlier than 6 did not emit psymbols for inlined
3104 functions. Using these files will cause GDB not to be able to
3105 set breakpoints on inlined functions by name, so we ignore these
3106 indices unless the user has done
3107 "set use-deprecated-index-sections on". */
3108 if (version < 6 && !deprecated_ok)
3109 {
3110 static int warning_printed = 0;
3111 if (!warning_printed)
3112 {
3113 warning (_("\
3114 Skipping deprecated .gdb_index section in %s.\n\
3115 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3116 to use the section anyway."),
3117 filename);
3118 warning_printed = 1;
3119 }
3120 return 0;
3121 }
3122 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3123 of the TU (for symbols coming from TUs),
3124 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3125 Plus gold-generated indices can have duplicate entries for global symbols,
3126 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3127 These are just performance bugs, and we can't distinguish gdb-generated
3128 indices from gold-generated ones, so issue no warning here. */
3129
3130 /* Indexes with higher version than the one supported by GDB may be no
3131 longer backward compatible. */
3132 if (version > 8)
3133 return 0;
3134
3135 map->version = version;
3136 map->total_size = section->size;
3137
3138 metadata = (offset_type *) (addr + sizeof (offset_type));
3139
3140 i = 0;
3141 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3142 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3143 / 8);
3144 ++i;
3145
3146 *types_list = addr + MAYBE_SWAP (metadata[i]);
3147 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3148 - MAYBE_SWAP (metadata[i]))
3149 / 8);
3150 ++i;
3151
3152 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3153 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3154 - MAYBE_SWAP (metadata[i]));
3155 ++i;
3156
3157 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3158 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3159 - MAYBE_SWAP (metadata[i]))
3160 / (2 * sizeof (offset_type)));
3161 ++i;
3162
3163 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3164
3165 return 1;
3166 }
3167
3168
3169 /* Read the index file. If everything went ok, initialize the "quick"
3170 elements of all the CUs and return 1. Otherwise, return 0. */
3171
3172 static int
3173 dwarf2_read_index (struct objfile *objfile)
3174 {
3175 struct mapped_index local_map, *map;
3176 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3177 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3178 struct dwz_file *dwz;
3179
3180 if (!read_index_from_section (objfile, objfile_name (objfile),
3181 use_deprecated_index_sections,
3182 &dwarf2_per_objfile->gdb_index, &local_map,
3183 &cu_list, &cu_list_elements,
3184 &types_list, &types_list_elements))
3185 return 0;
3186
3187 /* Don't use the index if it's empty. */
3188 if (local_map.symbol_table_slots == 0)
3189 return 0;
3190
3191 /* If there is a .dwz file, read it so we can get its CU list as
3192 well. */
3193 dwz = dwarf2_get_dwz_file ();
3194 if (dwz != NULL)
3195 {
3196 struct mapped_index dwz_map;
3197 const gdb_byte *dwz_types_ignore;
3198 offset_type dwz_types_elements_ignore;
3199
3200 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3201 1,
3202 &dwz->gdb_index, &dwz_map,
3203 &dwz_list, &dwz_list_elements,
3204 &dwz_types_ignore,
3205 &dwz_types_elements_ignore))
3206 {
3207 warning (_("could not read '.gdb_index' section from %s; skipping"),
3208 bfd_get_filename (dwz->dwz_bfd));
3209 return 0;
3210 }
3211 }
3212
3213 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3214 dwz_list_elements);
3215
3216 if (types_list_elements)
3217 {
3218 struct dwarf2_section_info *section;
3219
3220 /* We can only handle a single .debug_types when we have an
3221 index. */
3222 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3223 return 0;
3224
3225 section = VEC_index (dwarf2_section_info_def,
3226 dwarf2_per_objfile->types, 0);
3227
3228 create_signatured_type_table_from_index (objfile, section, types_list,
3229 types_list_elements);
3230 }
3231
3232 create_addrmap_from_index (objfile, &local_map);
3233
3234 map = XOBNEW (&objfile->objfile_obstack, struct mapped_index);
3235 *map = local_map;
3236
3237 dwarf2_per_objfile->index_table = map;
3238 dwarf2_per_objfile->using_index = 1;
3239 dwarf2_per_objfile->quick_file_names_table =
3240 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3241
3242 return 1;
3243 }
3244
3245 /* A helper for the "quick" functions which sets the global
3246 dwarf2_per_objfile according to OBJFILE. */
3247
3248 static void
3249 dw2_setup (struct objfile *objfile)
3250 {
3251 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
3252 objfile_data (objfile, dwarf2_objfile_data_key));
3253 gdb_assert (dwarf2_per_objfile);
3254 }
3255
3256 /* die_reader_func for dw2_get_file_names. */
3257
3258 static void
3259 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3260 const gdb_byte *info_ptr,
3261 struct die_info *comp_unit_die,
3262 int has_children,
3263 void *data)
3264 {
3265 struct dwarf2_cu *cu = reader->cu;
3266 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3267 struct objfile *objfile = dwarf2_per_objfile->objfile;
3268 struct dwarf2_per_cu_data *lh_cu;
3269 struct line_header *lh;
3270 struct attribute *attr;
3271 int i;
3272 const char *name, *comp_dir;
3273 void **slot;
3274 struct quick_file_names *qfn;
3275 unsigned int line_offset;
3276
3277 gdb_assert (! this_cu->is_debug_types);
3278
3279 /* Our callers never want to match partial units -- instead they
3280 will match the enclosing full CU. */
3281 if (comp_unit_die->tag == DW_TAG_partial_unit)
3282 {
3283 this_cu->v.quick->no_file_data = 1;
3284 return;
3285 }
3286
3287 lh_cu = this_cu;
3288 lh = NULL;
3289 slot = NULL;
3290 line_offset = 0;
3291
3292 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3293 if (attr)
3294 {
3295 struct quick_file_names find_entry;
3296
3297 line_offset = DW_UNSND (attr);
3298
3299 /* We may have already read in this line header (TU line header sharing).
3300 If we have we're done. */
3301 find_entry.hash.dwo_unit = cu->dwo_unit;
3302 find_entry.hash.line_offset.sect_off = line_offset;
3303 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3304 &find_entry, INSERT);
3305 if (*slot != NULL)
3306 {
3307 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3308 return;
3309 }
3310
3311 lh = dwarf_decode_line_header (line_offset, cu);
3312 }
3313 if (lh == NULL)
3314 {
3315 lh_cu->v.quick->no_file_data = 1;
3316 return;
3317 }
3318
3319 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3320 qfn->hash.dwo_unit = cu->dwo_unit;
3321 qfn->hash.line_offset.sect_off = line_offset;
3322 gdb_assert (slot != NULL);
3323 *slot = qfn;
3324
3325 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
3326
3327 qfn->num_file_names = lh->num_file_names;
3328 qfn->file_names =
3329 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->num_file_names);
3330 for (i = 0; i < lh->num_file_names; ++i)
3331 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
3332 qfn->real_names = NULL;
3333
3334 free_line_header (lh);
3335
3336 lh_cu->v.quick->file_names = qfn;
3337 }
3338
3339 /* A helper for the "quick" functions which attempts to read the line
3340 table for THIS_CU. */
3341
3342 static struct quick_file_names *
3343 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3344 {
3345 /* This should never be called for TUs. */
3346 gdb_assert (! this_cu->is_debug_types);
3347 /* Nor type unit groups. */
3348 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3349
3350 if (this_cu->v.quick->file_names != NULL)
3351 return this_cu->v.quick->file_names;
3352 /* If we know there is no line data, no point in looking again. */
3353 if (this_cu->v.quick->no_file_data)
3354 return NULL;
3355
3356 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3357
3358 if (this_cu->v.quick->no_file_data)
3359 return NULL;
3360 return this_cu->v.quick->file_names;
3361 }
3362
3363 /* A helper for the "quick" functions which computes and caches the
3364 real path for a given file name from the line table. */
3365
3366 static const char *
3367 dw2_get_real_path (struct objfile *objfile,
3368 struct quick_file_names *qfn, int index)
3369 {
3370 if (qfn->real_names == NULL)
3371 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3372 qfn->num_file_names, const char *);
3373
3374 if (qfn->real_names[index] == NULL)
3375 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
3376
3377 return qfn->real_names[index];
3378 }
3379
3380 static struct symtab *
3381 dw2_find_last_source_symtab (struct objfile *objfile)
3382 {
3383 struct compunit_symtab *cust;
3384 int index;
3385
3386 dw2_setup (objfile);
3387 index = dwarf2_per_objfile->n_comp_units - 1;
3388 cust = dw2_instantiate_symtab (dw2_get_cutu (index));
3389 if (cust == NULL)
3390 return NULL;
3391 return compunit_primary_filetab (cust);
3392 }
3393
3394 /* Traversal function for dw2_forget_cached_source_info. */
3395
3396 static int
3397 dw2_free_cached_file_names (void **slot, void *info)
3398 {
3399 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3400
3401 if (file_data->real_names)
3402 {
3403 int i;
3404
3405 for (i = 0; i < file_data->num_file_names; ++i)
3406 {
3407 xfree ((void*) file_data->real_names[i]);
3408 file_data->real_names[i] = NULL;
3409 }
3410 }
3411
3412 return 1;
3413 }
3414
3415 static void
3416 dw2_forget_cached_source_info (struct objfile *objfile)
3417 {
3418 dw2_setup (objfile);
3419
3420 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3421 dw2_free_cached_file_names, NULL);
3422 }
3423
3424 /* Helper function for dw2_map_symtabs_matching_filename that expands
3425 the symtabs and calls the iterator. */
3426
3427 static int
3428 dw2_map_expand_apply (struct objfile *objfile,
3429 struct dwarf2_per_cu_data *per_cu,
3430 const char *name, const char *real_path,
3431 int (*callback) (struct symtab *, void *),
3432 void *data)
3433 {
3434 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3435
3436 /* Don't visit already-expanded CUs. */
3437 if (per_cu->v.quick->compunit_symtab)
3438 return 0;
3439
3440 /* This may expand more than one symtab, and we want to iterate over
3441 all of them. */
3442 dw2_instantiate_symtab (per_cu);
3443
3444 return iterate_over_some_symtabs (name, real_path, callback, data,
3445 objfile->compunit_symtabs, last_made);
3446 }
3447
3448 /* Implementation of the map_symtabs_matching_filename method. */
3449
3450 static int
3451 dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
3452 const char *real_path,
3453 int (*callback) (struct symtab *, void *),
3454 void *data)
3455 {
3456 int i;
3457 const char *name_basename = lbasename (name);
3458
3459 dw2_setup (objfile);
3460
3461 /* The rule is CUs specify all the files, including those used by
3462 any TU, so there's no need to scan TUs here. */
3463
3464 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3465 {
3466 int j;
3467 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3468 struct quick_file_names *file_data;
3469
3470 /* We only need to look at symtabs not already expanded. */
3471 if (per_cu->v.quick->compunit_symtab)
3472 continue;
3473
3474 file_data = dw2_get_file_names (per_cu);
3475 if (file_data == NULL)
3476 continue;
3477
3478 for (j = 0; j < file_data->num_file_names; ++j)
3479 {
3480 const char *this_name = file_data->file_names[j];
3481 const char *this_real_name;
3482
3483 if (compare_filenames_for_search (this_name, name))
3484 {
3485 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3486 callback, data))
3487 return 1;
3488 continue;
3489 }
3490
3491 /* Before we invoke realpath, which can get expensive when many
3492 files are involved, do a quick comparison of the basenames. */
3493 if (! basenames_may_differ
3494 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3495 continue;
3496
3497 this_real_name = dw2_get_real_path (objfile, file_data, j);
3498 if (compare_filenames_for_search (this_real_name, name))
3499 {
3500 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3501 callback, data))
3502 return 1;
3503 continue;
3504 }
3505
3506 if (real_path != NULL)
3507 {
3508 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3509 gdb_assert (IS_ABSOLUTE_PATH (name));
3510 if (this_real_name != NULL
3511 && FILENAME_CMP (real_path, this_real_name) == 0)
3512 {
3513 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3514 callback, data))
3515 return 1;
3516 continue;
3517 }
3518 }
3519 }
3520 }
3521
3522 return 0;
3523 }
3524
3525 /* Struct used to manage iterating over all CUs looking for a symbol. */
3526
3527 struct dw2_symtab_iterator
3528 {
3529 /* The internalized form of .gdb_index. */
3530 struct mapped_index *index;
3531 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3532 int want_specific_block;
3533 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3534 Unused if !WANT_SPECIFIC_BLOCK. */
3535 int block_index;
3536 /* The kind of symbol we're looking for. */
3537 domain_enum domain;
3538 /* The list of CUs from the index entry of the symbol,
3539 or NULL if not found. */
3540 offset_type *vec;
3541 /* The next element in VEC to look at. */
3542 int next;
3543 /* The number of elements in VEC, or zero if there is no match. */
3544 int length;
3545 /* Have we seen a global version of the symbol?
3546 If so we can ignore all further global instances.
3547 This is to work around gold/15646, inefficient gold-generated
3548 indices. */
3549 int global_seen;
3550 };
3551
3552 /* Initialize the index symtab iterator ITER.
3553 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3554 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3555
3556 static void
3557 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3558 struct mapped_index *index,
3559 int want_specific_block,
3560 int block_index,
3561 domain_enum domain,
3562 const char *name)
3563 {
3564 iter->index = index;
3565 iter->want_specific_block = want_specific_block;
3566 iter->block_index = block_index;
3567 iter->domain = domain;
3568 iter->next = 0;
3569 iter->global_seen = 0;
3570
3571 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3572 iter->length = MAYBE_SWAP (*iter->vec);
3573 else
3574 {
3575 iter->vec = NULL;
3576 iter->length = 0;
3577 }
3578 }
3579
3580 /* Return the next matching CU or NULL if there are no more. */
3581
3582 static struct dwarf2_per_cu_data *
3583 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3584 {
3585 for ( ; iter->next < iter->length; ++iter->next)
3586 {
3587 offset_type cu_index_and_attrs =
3588 MAYBE_SWAP (iter->vec[iter->next + 1]);
3589 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3590 struct dwarf2_per_cu_data *per_cu;
3591 int want_static = iter->block_index != GLOBAL_BLOCK;
3592 /* This value is only valid for index versions >= 7. */
3593 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3594 gdb_index_symbol_kind symbol_kind =
3595 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3596 /* Only check the symbol attributes if they're present.
3597 Indices prior to version 7 don't record them,
3598 and indices >= 7 may elide them for certain symbols
3599 (gold does this). */
3600 int attrs_valid =
3601 (iter->index->version >= 7
3602 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3603
3604 /* Don't crash on bad data. */
3605 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3606 + dwarf2_per_objfile->n_type_units))
3607 {
3608 complaint (&symfile_complaints,
3609 _(".gdb_index entry has bad CU index"
3610 " [in module %s]"),
3611 objfile_name (dwarf2_per_objfile->objfile));
3612 continue;
3613 }
3614
3615 per_cu = dw2_get_cutu (cu_index);
3616
3617 /* Skip if already read in. */
3618 if (per_cu->v.quick->compunit_symtab)
3619 continue;
3620
3621 /* Check static vs global. */
3622 if (attrs_valid)
3623 {
3624 if (iter->want_specific_block
3625 && want_static != is_static)
3626 continue;
3627 /* Work around gold/15646. */
3628 if (!is_static && iter->global_seen)
3629 continue;
3630 if (!is_static)
3631 iter->global_seen = 1;
3632 }
3633
3634 /* Only check the symbol's kind if it has one. */
3635 if (attrs_valid)
3636 {
3637 switch (iter->domain)
3638 {
3639 case VAR_DOMAIN:
3640 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3641 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3642 /* Some types are also in VAR_DOMAIN. */
3643 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3644 continue;
3645 break;
3646 case STRUCT_DOMAIN:
3647 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3648 continue;
3649 break;
3650 case LABEL_DOMAIN:
3651 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3652 continue;
3653 break;
3654 default:
3655 break;
3656 }
3657 }
3658
3659 ++iter->next;
3660 return per_cu;
3661 }
3662
3663 return NULL;
3664 }
3665
3666 static struct compunit_symtab *
3667 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3668 const char *name, domain_enum domain)
3669 {
3670 struct compunit_symtab *stab_best = NULL;
3671 struct mapped_index *index;
3672
3673 dw2_setup (objfile);
3674
3675 index = dwarf2_per_objfile->index_table;
3676
3677 /* index is NULL if OBJF_READNOW. */
3678 if (index)
3679 {
3680 struct dw2_symtab_iterator iter;
3681 struct dwarf2_per_cu_data *per_cu;
3682
3683 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3684
3685 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3686 {
3687 struct symbol *sym, *with_opaque = NULL;
3688 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
3689 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
3690 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3691
3692 sym = block_find_symbol (block, name, domain,
3693 block_find_non_opaque_type_preferred,
3694 &with_opaque);
3695
3696 /* Some caution must be observed with overloaded functions
3697 and methods, since the index will not contain any overload
3698 information (but NAME might contain it). */
3699
3700 if (sym != NULL
3701 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3702 return stab;
3703 if (with_opaque != NULL
3704 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
3705 stab_best = stab;
3706
3707 /* Keep looking through other CUs. */
3708 }
3709 }
3710
3711 return stab_best;
3712 }
3713
3714 static void
3715 dw2_print_stats (struct objfile *objfile)
3716 {
3717 int i, total, count;
3718
3719 dw2_setup (objfile);
3720 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
3721 count = 0;
3722 for (i = 0; i < total; ++i)
3723 {
3724 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3725
3726 if (!per_cu->v.quick->compunit_symtab)
3727 ++count;
3728 }
3729 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3730 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3731 }
3732
3733 /* This dumps minimal information about the index.
3734 It is called via "mt print objfiles".
3735 One use is to verify .gdb_index has been loaded by the
3736 gdb.dwarf2/gdb-index.exp testcase. */
3737
3738 static void
3739 dw2_dump (struct objfile *objfile)
3740 {
3741 dw2_setup (objfile);
3742 gdb_assert (dwarf2_per_objfile->using_index);
3743 printf_filtered (".gdb_index:");
3744 if (dwarf2_per_objfile->index_table != NULL)
3745 {
3746 printf_filtered (" version %d\n",
3747 dwarf2_per_objfile->index_table->version);
3748 }
3749 else
3750 printf_filtered (" faked for \"readnow\"\n");
3751 printf_filtered ("\n");
3752 }
3753
3754 static void
3755 dw2_relocate (struct objfile *objfile,
3756 const struct section_offsets *new_offsets,
3757 const struct section_offsets *delta)
3758 {
3759 /* There's nothing to relocate here. */
3760 }
3761
3762 static void
3763 dw2_expand_symtabs_for_function (struct objfile *objfile,
3764 const char *func_name)
3765 {
3766 struct mapped_index *index;
3767
3768 dw2_setup (objfile);
3769
3770 index = dwarf2_per_objfile->index_table;
3771
3772 /* index is NULL if OBJF_READNOW. */
3773 if (index)
3774 {
3775 struct dw2_symtab_iterator iter;
3776 struct dwarf2_per_cu_data *per_cu;
3777
3778 /* Note: It doesn't matter what we pass for block_index here. */
3779 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3780 func_name);
3781
3782 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3783 dw2_instantiate_symtab (per_cu);
3784 }
3785 }
3786
3787 static void
3788 dw2_expand_all_symtabs (struct objfile *objfile)
3789 {
3790 int i;
3791
3792 dw2_setup (objfile);
3793
3794 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3795 + dwarf2_per_objfile->n_type_units); ++i)
3796 {
3797 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3798
3799 dw2_instantiate_symtab (per_cu);
3800 }
3801 }
3802
3803 static void
3804 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3805 const char *fullname)
3806 {
3807 int i;
3808
3809 dw2_setup (objfile);
3810
3811 /* We don't need to consider type units here.
3812 This is only called for examining code, e.g. expand_line_sal.
3813 There can be an order of magnitude (or more) more type units
3814 than comp units, and we avoid them if we can. */
3815
3816 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3817 {
3818 int j;
3819 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3820 struct quick_file_names *file_data;
3821
3822 /* We only need to look at symtabs not already expanded. */
3823 if (per_cu->v.quick->compunit_symtab)
3824 continue;
3825
3826 file_data = dw2_get_file_names (per_cu);
3827 if (file_data == NULL)
3828 continue;
3829
3830 for (j = 0; j < file_data->num_file_names; ++j)
3831 {
3832 const char *this_fullname = file_data->file_names[j];
3833
3834 if (filename_cmp (this_fullname, fullname) == 0)
3835 {
3836 dw2_instantiate_symtab (per_cu);
3837 break;
3838 }
3839 }
3840 }
3841 }
3842
3843 static void
3844 dw2_map_matching_symbols (struct objfile *objfile,
3845 const char * name, domain_enum domain,
3846 int global,
3847 int (*callback) (struct block *,
3848 struct symbol *, void *),
3849 void *data, symbol_compare_ftype *match,
3850 symbol_compare_ftype *ordered_compare)
3851 {
3852 /* Currently unimplemented; used for Ada. The function can be called if the
3853 current language is Ada for a non-Ada objfile using GNU index. As Ada
3854 does not look for non-Ada symbols this function should just return. */
3855 }
3856
3857 static void
3858 dw2_expand_symtabs_matching
3859 (struct objfile *objfile,
3860 expand_symtabs_file_matcher_ftype *file_matcher,
3861 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
3862 expand_symtabs_exp_notify_ftype *expansion_notify,
3863 enum search_domain kind,
3864 void *data)
3865 {
3866 int i;
3867 offset_type iter;
3868 struct mapped_index *index;
3869
3870 dw2_setup (objfile);
3871
3872 /* index_table is NULL if OBJF_READNOW. */
3873 if (!dwarf2_per_objfile->index_table)
3874 return;
3875 index = dwarf2_per_objfile->index_table;
3876
3877 if (file_matcher != NULL)
3878 {
3879 struct cleanup *cleanup;
3880 htab_t visited_found, visited_not_found;
3881
3882 visited_found = htab_create_alloc (10,
3883 htab_hash_pointer, htab_eq_pointer,
3884 NULL, xcalloc, xfree);
3885 cleanup = make_cleanup_htab_delete (visited_found);
3886 visited_not_found = htab_create_alloc (10,
3887 htab_hash_pointer, htab_eq_pointer,
3888 NULL, xcalloc, xfree);
3889 make_cleanup_htab_delete (visited_not_found);
3890
3891 /* The rule is CUs specify all the files, including those used by
3892 any TU, so there's no need to scan TUs here. */
3893
3894 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3895 {
3896 int j;
3897 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3898 struct quick_file_names *file_data;
3899 void **slot;
3900
3901 QUIT;
3902
3903 per_cu->v.quick->mark = 0;
3904
3905 /* We only need to look at symtabs not already expanded. */
3906 if (per_cu->v.quick->compunit_symtab)
3907 continue;
3908
3909 file_data = dw2_get_file_names (per_cu);
3910 if (file_data == NULL)
3911 continue;
3912
3913 if (htab_find (visited_not_found, file_data) != NULL)
3914 continue;
3915 else if (htab_find (visited_found, file_data) != NULL)
3916 {
3917 per_cu->v.quick->mark = 1;
3918 continue;
3919 }
3920
3921 for (j = 0; j < file_data->num_file_names; ++j)
3922 {
3923 const char *this_real_name;
3924
3925 if (file_matcher (file_data->file_names[j], data, 0))
3926 {
3927 per_cu->v.quick->mark = 1;
3928 break;
3929 }
3930
3931 /* Before we invoke realpath, which can get expensive when many
3932 files are involved, do a quick comparison of the basenames. */
3933 if (!basenames_may_differ
3934 && !file_matcher (lbasename (file_data->file_names[j]),
3935 data, 1))
3936 continue;
3937
3938 this_real_name = dw2_get_real_path (objfile, file_data, j);
3939 if (file_matcher (this_real_name, data, 0))
3940 {
3941 per_cu->v.quick->mark = 1;
3942 break;
3943 }
3944 }
3945
3946 slot = htab_find_slot (per_cu->v.quick->mark
3947 ? visited_found
3948 : visited_not_found,
3949 file_data, INSERT);
3950 *slot = file_data;
3951 }
3952
3953 do_cleanups (cleanup);
3954 }
3955
3956 for (iter = 0; iter < index->symbol_table_slots; ++iter)
3957 {
3958 offset_type idx = 2 * iter;
3959 const char *name;
3960 offset_type *vec, vec_len, vec_idx;
3961 int global_seen = 0;
3962
3963 QUIT;
3964
3965 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
3966 continue;
3967
3968 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
3969
3970 if (! (*symbol_matcher) (name, data))
3971 continue;
3972
3973 /* The name was matched, now expand corresponding CUs that were
3974 marked. */
3975 vec = (offset_type *) (index->constant_pool
3976 + MAYBE_SWAP (index->symbol_table[idx + 1]));
3977 vec_len = MAYBE_SWAP (vec[0]);
3978 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3979 {
3980 struct dwarf2_per_cu_data *per_cu;
3981 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
3982 /* This value is only valid for index versions >= 7. */
3983 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3984 gdb_index_symbol_kind symbol_kind =
3985 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3986 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3987 /* Only check the symbol attributes if they're present.
3988 Indices prior to version 7 don't record them,
3989 and indices >= 7 may elide them for certain symbols
3990 (gold does this). */
3991 int attrs_valid =
3992 (index->version >= 7
3993 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3994
3995 /* Work around gold/15646. */
3996 if (attrs_valid)
3997 {
3998 if (!is_static && global_seen)
3999 continue;
4000 if (!is_static)
4001 global_seen = 1;
4002 }
4003
4004 /* Only check the symbol's kind if it has one. */
4005 if (attrs_valid)
4006 {
4007 switch (kind)
4008 {
4009 case VARIABLES_DOMAIN:
4010 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
4011 continue;
4012 break;
4013 case FUNCTIONS_DOMAIN:
4014 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
4015 continue;
4016 break;
4017 case TYPES_DOMAIN:
4018 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4019 continue;
4020 break;
4021 default:
4022 break;
4023 }
4024 }
4025
4026 /* Don't crash on bad data. */
4027 if (cu_index >= (dwarf2_per_objfile->n_comp_units
4028 + dwarf2_per_objfile->n_type_units))
4029 {
4030 complaint (&symfile_complaints,
4031 _(".gdb_index entry has bad CU index"
4032 " [in module %s]"), objfile_name (objfile));
4033 continue;
4034 }
4035
4036 per_cu = dw2_get_cutu (cu_index);
4037 if (file_matcher == NULL || per_cu->v.quick->mark)
4038 {
4039 int symtab_was_null =
4040 (per_cu->v.quick->compunit_symtab == NULL);
4041
4042 dw2_instantiate_symtab (per_cu);
4043
4044 if (expansion_notify != NULL
4045 && symtab_was_null
4046 && per_cu->v.quick->compunit_symtab != NULL)
4047 {
4048 expansion_notify (per_cu->v.quick->compunit_symtab,
4049 data);
4050 }
4051 }
4052 }
4053 }
4054 }
4055
4056 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
4057 symtab. */
4058
4059 static struct compunit_symtab *
4060 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
4061 CORE_ADDR pc)
4062 {
4063 int i;
4064
4065 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
4066 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
4067 return cust;
4068
4069 if (cust->includes == NULL)
4070 return NULL;
4071
4072 for (i = 0; cust->includes[i]; ++i)
4073 {
4074 struct compunit_symtab *s = cust->includes[i];
4075
4076 s = recursively_find_pc_sect_compunit_symtab (s, pc);
4077 if (s != NULL)
4078 return s;
4079 }
4080
4081 return NULL;
4082 }
4083
4084 static struct compunit_symtab *
4085 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
4086 struct bound_minimal_symbol msymbol,
4087 CORE_ADDR pc,
4088 struct obj_section *section,
4089 int warn_if_readin)
4090 {
4091 struct dwarf2_per_cu_data *data;
4092 struct compunit_symtab *result;
4093
4094 dw2_setup (objfile);
4095
4096 if (!objfile->psymtabs_addrmap)
4097 return NULL;
4098
4099 data = (struct dwarf2_per_cu_data *) addrmap_find (objfile->psymtabs_addrmap,
4100 pc);
4101 if (!data)
4102 return NULL;
4103
4104 if (warn_if_readin && data->v.quick->compunit_symtab)
4105 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
4106 paddress (get_objfile_arch (objfile), pc));
4107
4108 result
4109 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data),
4110 pc);
4111 gdb_assert (result != NULL);
4112 return result;
4113 }
4114
4115 static void
4116 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
4117 void *data, int need_fullname)
4118 {
4119 int i;
4120 struct cleanup *cleanup;
4121 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
4122 NULL, xcalloc, xfree);
4123
4124 cleanup = make_cleanup_htab_delete (visited);
4125 dw2_setup (objfile);
4126
4127 /* The rule is CUs specify all the files, including those used by
4128 any TU, so there's no need to scan TUs here.
4129 We can ignore file names coming from already-expanded CUs. */
4130
4131 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4132 {
4133 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4134
4135 if (per_cu->v.quick->compunit_symtab)
4136 {
4137 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
4138 INSERT);
4139
4140 *slot = per_cu->v.quick->file_names;
4141 }
4142 }
4143
4144 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4145 {
4146 int j;
4147 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4148 struct quick_file_names *file_data;
4149 void **slot;
4150
4151 /* We only need to look at symtabs not already expanded. */
4152 if (per_cu->v.quick->compunit_symtab)
4153 continue;
4154
4155 file_data = dw2_get_file_names (per_cu);
4156 if (file_data == NULL)
4157 continue;
4158
4159 slot = htab_find_slot (visited, file_data, INSERT);
4160 if (*slot)
4161 {
4162 /* Already visited. */
4163 continue;
4164 }
4165 *slot = file_data;
4166
4167 for (j = 0; j < file_data->num_file_names; ++j)
4168 {
4169 const char *this_real_name;
4170
4171 if (need_fullname)
4172 this_real_name = dw2_get_real_path (objfile, file_data, j);
4173 else
4174 this_real_name = NULL;
4175 (*fun) (file_data->file_names[j], this_real_name, data);
4176 }
4177 }
4178
4179 do_cleanups (cleanup);
4180 }
4181
4182 static int
4183 dw2_has_symbols (struct objfile *objfile)
4184 {
4185 return 1;
4186 }
4187
4188 const struct quick_symbol_functions dwarf2_gdb_index_functions =
4189 {
4190 dw2_has_symbols,
4191 dw2_find_last_source_symtab,
4192 dw2_forget_cached_source_info,
4193 dw2_map_symtabs_matching_filename,
4194 dw2_lookup_symbol,
4195 dw2_print_stats,
4196 dw2_dump,
4197 dw2_relocate,
4198 dw2_expand_symtabs_for_function,
4199 dw2_expand_all_symtabs,
4200 dw2_expand_symtabs_with_fullname,
4201 dw2_map_matching_symbols,
4202 dw2_expand_symtabs_matching,
4203 dw2_find_pc_sect_compunit_symtab,
4204 dw2_map_symbol_filenames
4205 };
4206
4207 /* Initialize for reading DWARF for this objfile. Return 0 if this
4208 file will use psymtabs, or 1 if using the GNU index. */
4209
4210 int
4211 dwarf2_initialize_objfile (struct objfile *objfile)
4212 {
4213 /* If we're about to read full symbols, don't bother with the
4214 indices. In this case we also don't care if some other debug
4215 format is making psymtabs, because they are all about to be
4216 expanded anyway. */
4217 if ((objfile->flags & OBJF_READNOW))
4218 {
4219 int i;
4220
4221 dwarf2_per_objfile->using_index = 1;
4222 create_all_comp_units (objfile);
4223 create_all_type_units (objfile);
4224 dwarf2_per_objfile->quick_file_names_table =
4225 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
4226
4227 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
4228 + dwarf2_per_objfile->n_type_units); ++i)
4229 {
4230 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4231
4232 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4233 struct dwarf2_per_cu_quick_data);
4234 }
4235
4236 /* Return 1 so that gdb sees the "quick" functions. However,
4237 these functions will be no-ops because we will have expanded
4238 all symtabs. */
4239 return 1;
4240 }
4241
4242 if (dwarf2_read_index (objfile))
4243 return 1;
4244
4245 return 0;
4246 }
4247
4248 \f
4249
4250 /* Build a partial symbol table. */
4251
4252 void
4253 dwarf2_build_psymtabs (struct objfile *objfile)
4254 {
4255
4256 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
4257 {
4258 init_psymbol_list (objfile, 1024);
4259 }
4260
4261 TRY
4262 {
4263 /* This isn't really ideal: all the data we allocate on the
4264 objfile's obstack is still uselessly kept around. However,
4265 freeing it seems unsafe. */
4266 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
4267
4268 dwarf2_build_psymtabs_hard (objfile);
4269 discard_cleanups (cleanups);
4270 }
4271 CATCH (except, RETURN_MASK_ERROR)
4272 {
4273 exception_print (gdb_stderr, except);
4274 }
4275 END_CATCH
4276 }
4277
4278 /* Return the total length of the CU described by HEADER. */
4279
4280 static unsigned int
4281 get_cu_length (const struct comp_unit_head *header)
4282 {
4283 return header->initial_length_size + header->length;
4284 }
4285
4286 /* Return TRUE if OFFSET is within CU_HEADER. */
4287
4288 static inline int
4289 offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
4290 {
4291 sect_offset bottom = { cu_header->offset.sect_off };
4292 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
4293
4294 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
4295 }
4296
4297 /* Find the base address of the compilation unit for range lists and
4298 location lists. It will normally be specified by DW_AT_low_pc.
4299 In DWARF-3 draft 4, the base address could be overridden by
4300 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4301 compilation units with discontinuous ranges. */
4302
4303 static void
4304 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4305 {
4306 struct attribute *attr;
4307
4308 cu->base_known = 0;
4309 cu->base_address = 0;
4310
4311 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4312 if (attr)
4313 {
4314 cu->base_address = attr_value_as_address (attr);
4315 cu->base_known = 1;
4316 }
4317 else
4318 {
4319 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4320 if (attr)
4321 {
4322 cu->base_address = attr_value_as_address (attr);
4323 cu->base_known = 1;
4324 }
4325 }
4326 }
4327
4328 /* Read in the comp unit header information from the debug_info at info_ptr.
4329 NOTE: This leaves members offset, first_die_offset to be filled in
4330 by the caller. */
4331
4332 static const gdb_byte *
4333 read_comp_unit_head (struct comp_unit_head *cu_header,
4334 const gdb_byte *info_ptr, bfd *abfd)
4335 {
4336 int signed_addr;
4337 unsigned int bytes_read;
4338
4339 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4340 cu_header->initial_length_size = bytes_read;
4341 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
4342 info_ptr += bytes_read;
4343 cu_header->version = read_2_bytes (abfd, info_ptr);
4344 info_ptr += 2;
4345 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
4346 &bytes_read);
4347 info_ptr += bytes_read;
4348 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4349 info_ptr += 1;
4350 signed_addr = bfd_get_sign_extend_vma (abfd);
4351 if (signed_addr < 0)
4352 internal_error (__FILE__, __LINE__,
4353 _("read_comp_unit_head: dwarf from non elf file"));
4354 cu_header->signed_addr_p = signed_addr;
4355
4356 return info_ptr;
4357 }
4358
4359 /* Helper function that returns the proper abbrev section for
4360 THIS_CU. */
4361
4362 static struct dwarf2_section_info *
4363 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4364 {
4365 struct dwarf2_section_info *abbrev;
4366
4367 if (this_cu->is_dwz)
4368 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4369 else
4370 abbrev = &dwarf2_per_objfile->abbrev;
4371
4372 return abbrev;
4373 }
4374
4375 /* Subroutine of read_and_check_comp_unit_head and
4376 read_and_check_type_unit_head to simplify them.
4377 Perform various error checking on the header. */
4378
4379 static void
4380 error_check_comp_unit_head (struct comp_unit_head *header,
4381 struct dwarf2_section_info *section,
4382 struct dwarf2_section_info *abbrev_section)
4383 {
4384 bfd *abfd = get_section_bfd_owner (section);
4385 const char *filename = get_section_file_name (section);
4386
4387 if (header->version != 2 && header->version != 3 && header->version != 4)
4388 error (_("Dwarf Error: wrong version in compilation unit header "
4389 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
4390 filename);
4391
4392 if (header->abbrev_offset.sect_off
4393 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
4394 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
4395 "(offset 0x%lx + 6) [in module %s]"),
4396 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
4397 filename);
4398
4399 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4400 avoid potential 32-bit overflow. */
4401 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
4402 > section->size)
4403 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4404 "(offset 0x%lx + 0) [in module %s]"),
4405 (long) header->length, (long) header->offset.sect_off,
4406 filename);
4407 }
4408
4409 /* Read in a CU/TU header and perform some basic error checking.
4410 The contents of the header are stored in HEADER.
4411 The result is a pointer to the start of the first DIE. */
4412
4413 static const gdb_byte *
4414 read_and_check_comp_unit_head (struct comp_unit_head *header,
4415 struct dwarf2_section_info *section,
4416 struct dwarf2_section_info *abbrev_section,
4417 const gdb_byte *info_ptr,
4418 int is_debug_types_section)
4419 {
4420 const gdb_byte *beg_of_comp_unit = info_ptr;
4421 bfd *abfd = get_section_bfd_owner (section);
4422
4423 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4424
4425 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4426
4427 /* If we're reading a type unit, skip over the signature and
4428 type_offset fields. */
4429 if (is_debug_types_section)
4430 info_ptr += 8 /*signature*/ + header->offset_size;
4431
4432 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4433
4434 error_check_comp_unit_head (header, section, abbrev_section);
4435
4436 return info_ptr;
4437 }
4438
4439 /* Read in the types comp unit header information from .debug_types entry at
4440 types_ptr. The result is a pointer to one past the end of the header. */
4441
4442 static const gdb_byte *
4443 read_and_check_type_unit_head (struct comp_unit_head *header,
4444 struct dwarf2_section_info *section,
4445 struct dwarf2_section_info *abbrev_section,
4446 const gdb_byte *info_ptr,
4447 ULONGEST *signature,
4448 cu_offset *type_offset_in_tu)
4449 {
4450 const gdb_byte *beg_of_comp_unit = info_ptr;
4451 bfd *abfd = get_section_bfd_owner (section);
4452
4453 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4454
4455 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4456
4457 /* If we're reading a type unit, skip over the signature and
4458 type_offset fields. */
4459 if (signature != NULL)
4460 *signature = read_8_bytes (abfd, info_ptr);
4461 info_ptr += 8;
4462 if (type_offset_in_tu != NULL)
4463 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4464 header->offset_size);
4465 info_ptr += header->offset_size;
4466
4467 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4468
4469 error_check_comp_unit_head (header, section, abbrev_section);
4470
4471 return info_ptr;
4472 }
4473
4474 /* Fetch the abbreviation table offset from a comp or type unit header. */
4475
4476 static sect_offset
4477 read_abbrev_offset (struct dwarf2_section_info *section,
4478 sect_offset offset)
4479 {
4480 bfd *abfd = get_section_bfd_owner (section);
4481 const gdb_byte *info_ptr;
4482 unsigned int length, initial_length_size, offset_size;
4483 sect_offset abbrev_offset;
4484
4485 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4486 info_ptr = section->buffer + offset.sect_off;
4487 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4488 offset_size = initial_length_size == 4 ? 4 : 8;
4489 info_ptr += initial_length_size + 2 /*version*/;
4490 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4491 return abbrev_offset;
4492 }
4493
4494 /* Allocate a new partial symtab for file named NAME and mark this new
4495 partial symtab as being an include of PST. */
4496
4497 static void
4498 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
4499 struct objfile *objfile)
4500 {
4501 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4502
4503 if (!IS_ABSOLUTE_PATH (subpst->filename))
4504 {
4505 /* It shares objfile->objfile_obstack. */
4506 subpst->dirname = pst->dirname;
4507 }
4508
4509 subpst->textlow = 0;
4510 subpst->texthigh = 0;
4511
4512 subpst->dependencies
4513 = XOBNEW (&objfile->objfile_obstack, struct partial_symtab *);
4514 subpst->dependencies[0] = pst;
4515 subpst->number_of_dependencies = 1;
4516
4517 subpst->globals_offset = 0;
4518 subpst->n_global_syms = 0;
4519 subpst->statics_offset = 0;
4520 subpst->n_static_syms = 0;
4521 subpst->compunit_symtab = NULL;
4522 subpst->read_symtab = pst->read_symtab;
4523 subpst->readin = 0;
4524
4525 /* No private part is necessary for include psymtabs. This property
4526 can be used to differentiate between such include psymtabs and
4527 the regular ones. */
4528 subpst->read_symtab_private = NULL;
4529 }
4530
4531 /* Read the Line Number Program data and extract the list of files
4532 included by the source file represented by PST. Build an include
4533 partial symtab for each of these included files. */
4534
4535 static void
4536 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4537 struct die_info *die,
4538 struct partial_symtab *pst)
4539 {
4540 struct line_header *lh = NULL;
4541 struct attribute *attr;
4542
4543 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4544 if (attr)
4545 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
4546 if (lh == NULL)
4547 return; /* No linetable, so no includes. */
4548
4549 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4550 dwarf_decode_lines (lh, pst->dirname, cu, pst, pst->textlow, 1);
4551
4552 free_line_header (lh);
4553 }
4554
4555 static hashval_t
4556 hash_signatured_type (const void *item)
4557 {
4558 const struct signatured_type *sig_type
4559 = (const struct signatured_type *) item;
4560
4561 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4562 return sig_type->signature;
4563 }
4564
4565 static int
4566 eq_signatured_type (const void *item_lhs, const void *item_rhs)
4567 {
4568 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
4569 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
4570
4571 return lhs->signature == rhs->signature;
4572 }
4573
4574 /* Allocate a hash table for signatured types. */
4575
4576 static htab_t
4577 allocate_signatured_type_table (struct objfile *objfile)
4578 {
4579 return htab_create_alloc_ex (41,
4580 hash_signatured_type,
4581 eq_signatured_type,
4582 NULL,
4583 &objfile->objfile_obstack,
4584 hashtab_obstack_allocate,
4585 dummy_obstack_deallocate);
4586 }
4587
4588 /* A helper function to add a signatured type CU to a table. */
4589
4590 static int
4591 add_signatured_type_cu_to_table (void **slot, void *datum)
4592 {
4593 struct signatured_type *sigt = (struct signatured_type *) *slot;
4594 struct signatured_type ***datap = (struct signatured_type ***) datum;
4595
4596 **datap = sigt;
4597 ++*datap;
4598
4599 return 1;
4600 }
4601
4602 /* Create the hash table of all entries in the .debug_types
4603 (or .debug_types.dwo) section(s).
4604 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4605 otherwise it is NULL.
4606
4607 The result is a pointer to the hash table or NULL if there are no types.
4608
4609 Note: This function processes DWO files only, not DWP files. */
4610
4611 static htab_t
4612 create_debug_types_hash_table (struct dwo_file *dwo_file,
4613 VEC (dwarf2_section_info_def) *types)
4614 {
4615 struct objfile *objfile = dwarf2_per_objfile->objfile;
4616 htab_t types_htab = NULL;
4617 int ix;
4618 struct dwarf2_section_info *section;
4619 struct dwarf2_section_info *abbrev_section;
4620
4621 if (VEC_empty (dwarf2_section_info_def, types))
4622 return NULL;
4623
4624 abbrev_section = (dwo_file != NULL
4625 ? &dwo_file->sections.abbrev
4626 : &dwarf2_per_objfile->abbrev);
4627
4628 if (dwarf_read_debug)
4629 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4630 dwo_file ? ".dwo" : "",
4631 get_section_file_name (abbrev_section));
4632
4633 for (ix = 0;
4634 VEC_iterate (dwarf2_section_info_def, types, ix, section);
4635 ++ix)
4636 {
4637 bfd *abfd;
4638 const gdb_byte *info_ptr, *end_ptr;
4639
4640 dwarf2_read_section (objfile, section);
4641 info_ptr = section->buffer;
4642
4643 if (info_ptr == NULL)
4644 continue;
4645
4646 /* We can't set abfd until now because the section may be empty or
4647 not present, in which case the bfd is unknown. */
4648 abfd = get_section_bfd_owner (section);
4649
4650 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4651 because we don't need to read any dies: the signature is in the
4652 header. */
4653
4654 end_ptr = info_ptr + section->size;
4655 while (info_ptr < end_ptr)
4656 {
4657 sect_offset offset;
4658 cu_offset type_offset_in_tu;
4659 ULONGEST signature;
4660 struct signatured_type *sig_type;
4661 struct dwo_unit *dwo_tu;
4662 void **slot;
4663 const gdb_byte *ptr = info_ptr;
4664 struct comp_unit_head header;
4665 unsigned int length;
4666
4667 offset.sect_off = ptr - section->buffer;
4668
4669 /* We need to read the type's signature in order to build the hash
4670 table, but we don't need anything else just yet. */
4671
4672 ptr = read_and_check_type_unit_head (&header, section,
4673 abbrev_section, ptr,
4674 &signature, &type_offset_in_tu);
4675
4676 length = get_cu_length (&header);
4677
4678 /* Skip dummy type units. */
4679 if (ptr >= info_ptr + length
4680 || peek_abbrev_code (abfd, ptr) == 0)
4681 {
4682 info_ptr += length;
4683 continue;
4684 }
4685
4686 if (types_htab == NULL)
4687 {
4688 if (dwo_file)
4689 types_htab = allocate_dwo_unit_table (objfile);
4690 else
4691 types_htab = allocate_signatured_type_table (objfile);
4692 }
4693
4694 if (dwo_file)
4695 {
4696 sig_type = NULL;
4697 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4698 struct dwo_unit);
4699 dwo_tu->dwo_file = dwo_file;
4700 dwo_tu->signature = signature;
4701 dwo_tu->type_offset_in_tu = type_offset_in_tu;
4702 dwo_tu->section = section;
4703 dwo_tu->offset = offset;
4704 dwo_tu->length = length;
4705 }
4706 else
4707 {
4708 /* N.B.: type_offset is not usable if this type uses a DWO file.
4709 The real type_offset is in the DWO file. */
4710 dwo_tu = NULL;
4711 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4712 struct signatured_type);
4713 sig_type->signature = signature;
4714 sig_type->type_offset_in_tu = type_offset_in_tu;
4715 sig_type->per_cu.objfile = objfile;
4716 sig_type->per_cu.is_debug_types = 1;
4717 sig_type->per_cu.section = section;
4718 sig_type->per_cu.offset = offset;
4719 sig_type->per_cu.length = length;
4720 }
4721
4722 slot = htab_find_slot (types_htab,
4723 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4724 INSERT);
4725 gdb_assert (slot != NULL);
4726 if (*slot != NULL)
4727 {
4728 sect_offset dup_offset;
4729
4730 if (dwo_file)
4731 {
4732 const struct dwo_unit *dup_tu
4733 = (const struct dwo_unit *) *slot;
4734
4735 dup_offset = dup_tu->offset;
4736 }
4737 else
4738 {
4739 const struct signatured_type *dup_tu
4740 = (const struct signatured_type *) *slot;
4741
4742 dup_offset = dup_tu->per_cu.offset;
4743 }
4744
4745 complaint (&symfile_complaints,
4746 _("debug type entry at offset 0x%x is duplicate to"
4747 " the entry at offset 0x%x, signature %s"),
4748 offset.sect_off, dup_offset.sect_off,
4749 hex_string (signature));
4750 }
4751 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4752
4753 if (dwarf_read_debug > 1)
4754 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
4755 offset.sect_off,
4756 hex_string (signature));
4757
4758 info_ptr += length;
4759 }
4760 }
4761
4762 return types_htab;
4763 }
4764
4765 /* Create the hash table of all entries in the .debug_types section,
4766 and initialize all_type_units.
4767 The result is zero if there is an error (e.g. missing .debug_types section),
4768 otherwise non-zero. */
4769
4770 static int
4771 create_all_type_units (struct objfile *objfile)
4772 {
4773 htab_t types_htab;
4774 struct signatured_type **iter;
4775
4776 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4777 if (types_htab == NULL)
4778 {
4779 dwarf2_per_objfile->signatured_types = NULL;
4780 return 0;
4781 }
4782
4783 dwarf2_per_objfile->signatured_types = types_htab;
4784
4785 dwarf2_per_objfile->n_type_units
4786 = dwarf2_per_objfile->n_allocated_type_units
4787 = htab_elements (types_htab);
4788 dwarf2_per_objfile->all_type_units =
4789 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
4790 iter = &dwarf2_per_objfile->all_type_units[0];
4791 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4792 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4793 == dwarf2_per_objfile->n_type_units);
4794
4795 return 1;
4796 }
4797
4798 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
4799 If SLOT is non-NULL, it is the entry to use in the hash table.
4800 Otherwise we find one. */
4801
4802 static struct signatured_type *
4803 add_type_unit (ULONGEST sig, void **slot)
4804 {
4805 struct objfile *objfile = dwarf2_per_objfile->objfile;
4806 int n_type_units = dwarf2_per_objfile->n_type_units;
4807 struct signatured_type *sig_type;
4808
4809 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
4810 ++n_type_units;
4811 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
4812 {
4813 if (dwarf2_per_objfile->n_allocated_type_units == 0)
4814 dwarf2_per_objfile->n_allocated_type_units = 1;
4815 dwarf2_per_objfile->n_allocated_type_units *= 2;
4816 dwarf2_per_objfile->all_type_units
4817 = XRESIZEVEC (struct signatured_type *,
4818 dwarf2_per_objfile->all_type_units,
4819 dwarf2_per_objfile->n_allocated_type_units);
4820 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
4821 }
4822 dwarf2_per_objfile->n_type_units = n_type_units;
4823
4824 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4825 struct signatured_type);
4826 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4827 sig_type->signature = sig;
4828 sig_type->per_cu.is_debug_types = 1;
4829 if (dwarf2_per_objfile->using_index)
4830 {
4831 sig_type->per_cu.v.quick =
4832 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4833 struct dwarf2_per_cu_quick_data);
4834 }
4835
4836 if (slot == NULL)
4837 {
4838 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4839 sig_type, INSERT);
4840 }
4841 gdb_assert (*slot == NULL);
4842 *slot = sig_type;
4843 /* The rest of sig_type must be filled in by the caller. */
4844 return sig_type;
4845 }
4846
4847 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4848 Fill in SIG_ENTRY with DWO_ENTRY. */
4849
4850 static void
4851 fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4852 struct signatured_type *sig_entry,
4853 struct dwo_unit *dwo_entry)
4854 {
4855 /* Make sure we're not clobbering something we don't expect to. */
4856 gdb_assert (! sig_entry->per_cu.queued);
4857 gdb_assert (sig_entry->per_cu.cu == NULL);
4858 if (dwarf2_per_objfile->using_index)
4859 {
4860 gdb_assert (sig_entry->per_cu.v.quick != NULL);
4861 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
4862 }
4863 else
4864 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
4865 gdb_assert (sig_entry->signature == dwo_entry->signature);
4866 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4867 gdb_assert (sig_entry->type_unit_group == NULL);
4868 gdb_assert (sig_entry->dwo_unit == NULL);
4869
4870 sig_entry->per_cu.section = dwo_entry->section;
4871 sig_entry->per_cu.offset = dwo_entry->offset;
4872 sig_entry->per_cu.length = dwo_entry->length;
4873 sig_entry->per_cu.reading_dwo_directly = 1;
4874 sig_entry->per_cu.objfile = objfile;
4875 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4876 sig_entry->dwo_unit = dwo_entry;
4877 }
4878
4879 /* Subroutine of lookup_signatured_type.
4880 If we haven't read the TU yet, create the signatured_type data structure
4881 for a TU to be read in directly from a DWO file, bypassing the stub.
4882 This is the "Stay in DWO Optimization": When there is no DWP file and we're
4883 using .gdb_index, then when reading a CU we want to stay in the DWO file
4884 containing that CU. Otherwise we could end up reading several other DWO
4885 files (due to comdat folding) to process the transitive closure of all the
4886 mentioned TUs, and that can be slow. The current DWO file will have every
4887 type signature that it needs.
4888 We only do this for .gdb_index because in the psymtab case we already have
4889 to read all the DWOs to build the type unit groups. */
4890
4891 static struct signatured_type *
4892 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4893 {
4894 struct objfile *objfile = dwarf2_per_objfile->objfile;
4895 struct dwo_file *dwo_file;
4896 struct dwo_unit find_dwo_entry, *dwo_entry;
4897 struct signatured_type find_sig_entry, *sig_entry;
4898 void **slot;
4899
4900 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4901
4902 /* If TU skeletons have been removed then we may not have read in any
4903 TUs yet. */
4904 if (dwarf2_per_objfile->signatured_types == NULL)
4905 {
4906 dwarf2_per_objfile->signatured_types
4907 = allocate_signatured_type_table (objfile);
4908 }
4909
4910 /* We only ever need to read in one copy of a signatured type.
4911 Use the global signatured_types array to do our own comdat-folding
4912 of types. If this is the first time we're reading this TU, and
4913 the TU has an entry in .gdb_index, replace the recorded data from
4914 .gdb_index with this TU. */
4915
4916 find_sig_entry.signature = sig;
4917 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4918 &find_sig_entry, INSERT);
4919 sig_entry = (struct signatured_type *) *slot;
4920
4921 /* We can get here with the TU already read, *or* in the process of being
4922 read. Don't reassign the global entry to point to this DWO if that's
4923 the case. Also note that if the TU is already being read, it may not
4924 have come from a DWO, the program may be a mix of Fission-compiled
4925 code and non-Fission-compiled code. */
4926
4927 /* Have we already tried to read this TU?
4928 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4929 needn't exist in the global table yet). */
4930 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
4931 return sig_entry;
4932
4933 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
4934 dwo_unit of the TU itself. */
4935 dwo_file = cu->dwo_unit->dwo_file;
4936
4937 /* Ok, this is the first time we're reading this TU. */
4938 if (dwo_file->tus == NULL)
4939 return NULL;
4940 find_dwo_entry.signature = sig;
4941 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
4942 if (dwo_entry == NULL)
4943 return NULL;
4944
4945 /* If the global table doesn't have an entry for this TU, add one. */
4946 if (sig_entry == NULL)
4947 sig_entry = add_type_unit (sig, slot);
4948
4949 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4950 sig_entry->per_cu.tu_read = 1;
4951 return sig_entry;
4952 }
4953
4954 /* Subroutine of lookup_signatured_type.
4955 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
4956 then try the DWP file. If the TU stub (skeleton) has been removed then
4957 it won't be in .gdb_index. */
4958
4959 static struct signatured_type *
4960 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4961 {
4962 struct objfile *objfile = dwarf2_per_objfile->objfile;
4963 struct dwp_file *dwp_file = get_dwp_file ();
4964 struct dwo_unit *dwo_entry;
4965 struct signatured_type find_sig_entry, *sig_entry;
4966 void **slot;
4967
4968 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4969 gdb_assert (dwp_file != NULL);
4970
4971 /* If TU skeletons have been removed then we may not have read in any
4972 TUs yet. */
4973 if (dwarf2_per_objfile->signatured_types == NULL)
4974 {
4975 dwarf2_per_objfile->signatured_types
4976 = allocate_signatured_type_table (objfile);
4977 }
4978
4979 find_sig_entry.signature = sig;
4980 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4981 &find_sig_entry, INSERT);
4982 sig_entry = (struct signatured_type *) *slot;
4983
4984 /* Have we already tried to read this TU?
4985 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4986 needn't exist in the global table yet). */
4987 if (sig_entry != NULL)
4988 return sig_entry;
4989
4990 if (dwp_file->tus == NULL)
4991 return NULL;
4992 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
4993 sig, 1 /* is_debug_types */);
4994 if (dwo_entry == NULL)
4995 return NULL;
4996
4997 sig_entry = add_type_unit (sig, slot);
4998 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4999
5000 return sig_entry;
5001 }
5002
5003 /* Lookup a signature based type for DW_FORM_ref_sig8.
5004 Returns NULL if signature SIG is not present in the table.
5005 It is up to the caller to complain about this. */
5006
5007 static struct signatured_type *
5008 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
5009 {
5010 if (cu->dwo_unit
5011 && dwarf2_per_objfile->using_index)
5012 {
5013 /* We're in a DWO/DWP file, and we're using .gdb_index.
5014 These cases require special processing. */
5015 if (get_dwp_file () == NULL)
5016 return lookup_dwo_signatured_type (cu, sig);
5017 else
5018 return lookup_dwp_signatured_type (cu, sig);
5019 }
5020 else
5021 {
5022 struct signatured_type find_entry, *entry;
5023
5024 if (dwarf2_per_objfile->signatured_types == NULL)
5025 return NULL;
5026 find_entry.signature = sig;
5027 entry = ((struct signatured_type *)
5028 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
5029 return entry;
5030 }
5031 }
5032 \f
5033 /* Low level DIE reading support. */
5034
5035 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
5036
5037 static void
5038 init_cu_die_reader (struct die_reader_specs *reader,
5039 struct dwarf2_cu *cu,
5040 struct dwarf2_section_info *section,
5041 struct dwo_file *dwo_file)
5042 {
5043 gdb_assert (section->readin && section->buffer != NULL);
5044 reader->abfd = get_section_bfd_owner (section);
5045 reader->cu = cu;
5046 reader->dwo_file = dwo_file;
5047 reader->die_section = section;
5048 reader->buffer = section->buffer;
5049 reader->buffer_end = section->buffer + section->size;
5050 reader->comp_dir = NULL;
5051 }
5052
5053 /* Subroutine of init_cutu_and_read_dies to simplify it.
5054 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
5055 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
5056 already.
5057
5058 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
5059 from it to the DIE in the DWO. If NULL we are skipping the stub.
5060 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
5061 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
5062 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
5063 STUB_COMP_DIR may be non-NULL.
5064 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
5065 are filled in with the info of the DIE from the DWO file.
5066 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
5067 provided an abbrev table to use.
5068 The result is non-zero if a valid (non-dummy) DIE was found. */
5069
5070 static int
5071 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
5072 struct dwo_unit *dwo_unit,
5073 int abbrev_table_provided,
5074 struct die_info *stub_comp_unit_die,
5075 const char *stub_comp_dir,
5076 struct die_reader_specs *result_reader,
5077 const gdb_byte **result_info_ptr,
5078 struct die_info **result_comp_unit_die,
5079 int *result_has_children)
5080 {
5081 struct objfile *objfile = dwarf2_per_objfile->objfile;
5082 struct dwarf2_cu *cu = this_cu->cu;
5083 struct dwarf2_section_info *section;
5084 bfd *abfd;
5085 const gdb_byte *begin_info_ptr, *info_ptr;
5086 ULONGEST signature; /* Or dwo_id. */
5087 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
5088 int i,num_extra_attrs;
5089 struct dwarf2_section_info *dwo_abbrev_section;
5090 struct attribute *attr;
5091 struct die_info *comp_unit_die;
5092
5093 /* At most one of these may be provided. */
5094 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
5095
5096 /* These attributes aren't processed until later:
5097 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
5098 DW_AT_comp_dir is used now, to find the DWO file, but it is also
5099 referenced later. However, these attributes are found in the stub
5100 which we won't have later. In order to not impose this complication
5101 on the rest of the code, we read them here and copy them to the
5102 DWO CU/TU die. */
5103
5104 stmt_list = NULL;
5105 low_pc = NULL;
5106 high_pc = NULL;
5107 ranges = NULL;
5108 comp_dir = NULL;
5109
5110 if (stub_comp_unit_die != NULL)
5111 {
5112 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
5113 DWO file. */
5114 if (! this_cu->is_debug_types)
5115 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
5116 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
5117 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
5118 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
5119 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
5120
5121 /* There should be a DW_AT_addr_base attribute here (if needed).
5122 We need the value before we can process DW_FORM_GNU_addr_index. */
5123 cu->addr_base = 0;
5124 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
5125 if (attr)
5126 cu->addr_base = DW_UNSND (attr);
5127
5128 /* There should be a DW_AT_ranges_base attribute here (if needed).
5129 We need the value before we can process DW_AT_ranges. */
5130 cu->ranges_base = 0;
5131 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
5132 if (attr)
5133 cu->ranges_base = DW_UNSND (attr);
5134 }
5135 else if (stub_comp_dir != NULL)
5136 {
5137 /* Reconstruct the comp_dir attribute to simplify the code below. */
5138 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
5139 comp_dir->name = DW_AT_comp_dir;
5140 comp_dir->form = DW_FORM_string;
5141 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5142 DW_STRING (comp_dir) = stub_comp_dir;
5143 }
5144
5145 /* Set up for reading the DWO CU/TU. */
5146 cu->dwo_unit = dwo_unit;
5147 section = dwo_unit->section;
5148 dwarf2_read_section (objfile, section);
5149 abfd = get_section_bfd_owner (section);
5150 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
5151 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5152 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5153
5154 if (this_cu->is_debug_types)
5155 {
5156 ULONGEST header_signature;
5157 cu_offset type_offset_in_tu;
5158 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5159
5160 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5161 dwo_abbrev_section,
5162 info_ptr,
5163 &header_signature,
5164 &type_offset_in_tu);
5165 /* This is not an assert because it can be caused by bad debug info. */
5166 if (sig_type->signature != header_signature)
5167 {
5168 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5169 " TU at offset 0x%x [in module %s]"),
5170 hex_string (sig_type->signature),
5171 hex_string (header_signature),
5172 dwo_unit->offset.sect_off,
5173 bfd_get_filename (abfd));
5174 }
5175 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5176 /* For DWOs coming from DWP files, we don't know the CU length
5177 nor the type's offset in the TU until now. */
5178 dwo_unit->length = get_cu_length (&cu->header);
5179 dwo_unit->type_offset_in_tu = type_offset_in_tu;
5180
5181 /* Establish the type offset that can be used to lookup the type.
5182 For DWO files, we don't know it until now. */
5183 sig_type->type_offset_in_section.sect_off =
5184 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
5185 }
5186 else
5187 {
5188 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5189 dwo_abbrev_section,
5190 info_ptr, 0);
5191 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5192 /* For DWOs coming from DWP files, we don't know the CU length
5193 until now. */
5194 dwo_unit->length = get_cu_length (&cu->header);
5195 }
5196
5197 /* Replace the CU's original abbrev table with the DWO's.
5198 Reminder: We can't read the abbrev table until we've read the header. */
5199 if (abbrev_table_provided)
5200 {
5201 /* Don't free the provided abbrev table, the caller of
5202 init_cutu_and_read_dies owns it. */
5203 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5204 /* Ensure the DWO abbrev table gets freed. */
5205 make_cleanup (dwarf2_free_abbrev_table, cu);
5206 }
5207 else
5208 {
5209 dwarf2_free_abbrev_table (cu);
5210 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5211 /* Leave any existing abbrev table cleanup as is. */
5212 }
5213
5214 /* Read in the die, but leave space to copy over the attributes
5215 from the stub. This has the benefit of simplifying the rest of
5216 the code - all the work to maintain the illusion of a single
5217 DW_TAG_{compile,type}_unit DIE is done here. */
5218 num_extra_attrs = ((stmt_list != NULL)
5219 + (low_pc != NULL)
5220 + (high_pc != NULL)
5221 + (ranges != NULL)
5222 + (comp_dir != NULL));
5223 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5224 result_has_children, num_extra_attrs);
5225
5226 /* Copy over the attributes from the stub to the DIE we just read in. */
5227 comp_unit_die = *result_comp_unit_die;
5228 i = comp_unit_die->num_attrs;
5229 if (stmt_list != NULL)
5230 comp_unit_die->attrs[i++] = *stmt_list;
5231 if (low_pc != NULL)
5232 comp_unit_die->attrs[i++] = *low_pc;
5233 if (high_pc != NULL)
5234 comp_unit_die->attrs[i++] = *high_pc;
5235 if (ranges != NULL)
5236 comp_unit_die->attrs[i++] = *ranges;
5237 if (comp_dir != NULL)
5238 comp_unit_die->attrs[i++] = *comp_dir;
5239 comp_unit_die->num_attrs += num_extra_attrs;
5240
5241 if (dwarf_die_debug)
5242 {
5243 fprintf_unfiltered (gdb_stdlog,
5244 "Read die from %s@0x%x of %s:\n",
5245 get_section_name (section),
5246 (unsigned) (begin_info_ptr - section->buffer),
5247 bfd_get_filename (abfd));
5248 dump_die (comp_unit_die, dwarf_die_debug);
5249 }
5250
5251 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5252 TUs by skipping the stub and going directly to the entry in the DWO file.
5253 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5254 to get it via circuitous means. Blech. */
5255 if (comp_dir != NULL)
5256 result_reader->comp_dir = DW_STRING (comp_dir);
5257
5258 /* Skip dummy compilation units. */
5259 if (info_ptr >= begin_info_ptr + dwo_unit->length
5260 || peek_abbrev_code (abfd, info_ptr) == 0)
5261 return 0;
5262
5263 *result_info_ptr = info_ptr;
5264 return 1;
5265 }
5266
5267 /* Subroutine of init_cutu_and_read_dies to simplify it.
5268 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
5269 Returns NULL if the specified DWO unit cannot be found. */
5270
5271 static struct dwo_unit *
5272 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5273 struct die_info *comp_unit_die)
5274 {
5275 struct dwarf2_cu *cu = this_cu->cu;
5276 struct attribute *attr;
5277 ULONGEST signature;
5278 struct dwo_unit *dwo_unit;
5279 const char *comp_dir, *dwo_name;
5280
5281 gdb_assert (cu != NULL);
5282
5283 /* Yeah, we look dwo_name up again, but it simplifies the code. */
5284 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5285 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
5286
5287 if (this_cu->is_debug_types)
5288 {
5289 struct signatured_type *sig_type;
5290
5291 /* Since this_cu is the first member of struct signatured_type,
5292 we can go from a pointer to one to a pointer to the other. */
5293 sig_type = (struct signatured_type *) this_cu;
5294 signature = sig_type->signature;
5295 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5296 }
5297 else
5298 {
5299 struct attribute *attr;
5300
5301 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5302 if (! attr)
5303 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5304 " [in module %s]"),
5305 dwo_name, objfile_name (this_cu->objfile));
5306 signature = DW_UNSND (attr);
5307 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5308 signature);
5309 }
5310
5311 return dwo_unit;
5312 }
5313
5314 /* Subroutine of init_cutu_and_read_dies to simplify it.
5315 See it for a description of the parameters.
5316 Read a TU directly from a DWO file, bypassing the stub.
5317
5318 Note: This function could be a little bit simpler if we shared cleanups
5319 with our caller, init_cutu_and_read_dies. That's generally a fragile thing
5320 to do, so we keep this function self-contained. Or we could move this
5321 into our caller, but it's complex enough already. */
5322
5323 static void
5324 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
5325 int use_existing_cu, int keep,
5326 die_reader_func_ftype *die_reader_func,
5327 void *data)
5328 {
5329 struct dwarf2_cu *cu;
5330 struct signatured_type *sig_type;
5331 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5332 struct die_reader_specs reader;
5333 const gdb_byte *info_ptr;
5334 struct die_info *comp_unit_die;
5335 int has_children;
5336
5337 /* Verify we can do the following downcast, and that we have the
5338 data we need. */
5339 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5340 sig_type = (struct signatured_type *) this_cu;
5341 gdb_assert (sig_type->dwo_unit != NULL);
5342
5343 cleanups = make_cleanup (null_cleanup, NULL);
5344
5345 if (use_existing_cu && this_cu->cu != NULL)
5346 {
5347 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
5348 cu = this_cu->cu;
5349 /* There's no need to do the rereading_dwo_cu handling that
5350 init_cutu_and_read_dies does since we don't read the stub. */
5351 }
5352 else
5353 {
5354 /* If !use_existing_cu, this_cu->cu must be NULL. */
5355 gdb_assert (this_cu->cu == NULL);
5356 cu = XNEW (struct dwarf2_cu);
5357 init_one_comp_unit (cu, this_cu);
5358 /* If an error occurs while loading, release our storage. */
5359 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5360 }
5361
5362 /* A future optimization, if needed, would be to use an existing
5363 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
5364 could share abbrev tables. */
5365
5366 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5367 0 /* abbrev_table_provided */,
5368 NULL /* stub_comp_unit_die */,
5369 sig_type->dwo_unit->dwo_file->comp_dir,
5370 &reader, &info_ptr,
5371 &comp_unit_die, &has_children) == 0)
5372 {
5373 /* Dummy die. */
5374 do_cleanups (cleanups);
5375 return;
5376 }
5377
5378 /* All the "real" work is done here. */
5379 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5380
5381 /* This duplicates the code in init_cutu_and_read_dies,
5382 but the alternative is making the latter more complex.
5383 This function is only for the special case of using DWO files directly:
5384 no point in overly complicating the general case just to handle this. */
5385 if (free_cu_cleanup != NULL)
5386 {
5387 if (keep)
5388 {
5389 /* We've successfully allocated this compilation unit. Let our
5390 caller clean it up when finished with it. */
5391 discard_cleanups (free_cu_cleanup);
5392
5393 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5394 So we have to manually free the abbrev table. */
5395 dwarf2_free_abbrev_table (cu);
5396
5397 /* Link this CU into read_in_chain. */
5398 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5399 dwarf2_per_objfile->read_in_chain = this_cu;
5400 }
5401 else
5402 do_cleanups (free_cu_cleanup);
5403 }
5404
5405 do_cleanups (cleanups);
5406 }
5407
5408 /* Initialize a CU (or TU) and read its DIEs.
5409 If the CU defers to a DWO file, read the DWO file as well.
5410
5411 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5412 Otherwise the table specified in the comp unit header is read in and used.
5413 This is an optimization for when we already have the abbrev table.
5414
5415 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5416 Otherwise, a new CU is allocated with xmalloc.
5417
5418 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5419 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5420
5421 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5422 linker) then DIE_READER_FUNC will not get called. */
5423
5424 static void
5425 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
5426 struct abbrev_table *abbrev_table,
5427 int use_existing_cu, int keep,
5428 die_reader_func_ftype *die_reader_func,
5429 void *data)
5430 {
5431 struct objfile *objfile = dwarf2_per_objfile->objfile;
5432 struct dwarf2_section_info *section = this_cu->section;
5433 bfd *abfd = get_section_bfd_owner (section);
5434 struct dwarf2_cu *cu;
5435 const gdb_byte *begin_info_ptr, *info_ptr;
5436 struct die_reader_specs reader;
5437 struct die_info *comp_unit_die;
5438 int has_children;
5439 struct attribute *attr;
5440 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5441 struct signatured_type *sig_type = NULL;
5442 struct dwarf2_section_info *abbrev_section;
5443 /* Non-zero if CU currently points to a DWO file and we need to
5444 reread it. When this happens we need to reread the skeleton die
5445 before we can reread the DWO file (this only applies to CUs, not TUs). */
5446 int rereading_dwo_cu = 0;
5447
5448 if (dwarf_die_debug)
5449 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5450 this_cu->is_debug_types ? "type" : "comp",
5451 this_cu->offset.sect_off);
5452
5453 if (use_existing_cu)
5454 gdb_assert (keep);
5455
5456 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5457 file (instead of going through the stub), short-circuit all of this. */
5458 if (this_cu->reading_dwo_directly)
5459 {
5460 /* Narrow down the scope of possibilities to have to understand. */
5461 gdb_assert (this_cu->is_debug_types);
5462 gdb_assert (abbrev_table == NULL);
5463 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
5464 die_reader_func, data);
5465 return;
5466 }
5467
5468 cleanups = make_cleanup (null_cleanup, NULL);
5469
5470 /* This is cheap if the section is already read in. */
5471 dwarf2_read_section (objfile, section);
5472
5473 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5474
5475 abbrev_section = get_abbrev_section_for_cu (this_cu);
5476
5477 if (use_existing_cu && this_cu->cu != NULL)
5478 {
5479 cu = this_cu->cu;
5480 /* If this CU is from a DWO file we need to start over, we need to
5481 refetch the attributes from the skeleton CU.
5482 This could be optimized by retrieving those attributes from when we
5483 were here the first time: the previous comp_unit_die was stored in
5484 comp_unit_obstack. But there's no data yet that we need this
5485 optimization. */
5486 if (cu->dwo_unit != NULL)
5487 rereading_dwo_cu = 1;
5488 }
5489 else
5490 {
5491 /* If !use_existing_cu, this_cu->cu must be NULL. */
5492 gdb_assert (this_cu->cu == NULL);
5493 cu = XNEW (struct dwarf2_cu);
5494 init_one_comp_unit (cu, this_cu);
5495 /* If an error occurs while loading, release our storage. */
5496 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5497 }
5498
5499 /* Get the header. */
5500 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5501 {
5502 /* We already have the header, there's no need to read it in again. */
5503 info_ptr += cu->header.first_die_offset.cu_off;
5504 }
5505 else
5506 {
5507 if (this_cu->is_debug_types)
5508 {
5509 ULONGEST signature;
5510 cu_offset type_offset_in_tu;
5511
5512 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5513 abbrev_section, info_ptr,
5514 &signature,
5515 &type_offset_in_tu);
5516
5517 /* Since per_cu is the first member of struct signatured_type,
5518 we can go from a pointer to one to a pointer to the other. */
5519 sig_type = (struct signatured_type *) this_cu;
5520 gdb_assert (sig_type->signature == signature);
5521 gdb_assert (sig_type->type_offset_in_tu.cu_off
5522 == type_offset_in_tu.cu_off);
5523 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5524
5525 /* LENGTH has not been set yet for type units if we're
5526 using .gdb_index. */
5527 this_cu->length = get_cu_length (&cu->header);
5528
5529 /* Establish the type offset that can be used to lookup the type. */
5530 sig_type->type_offset_in_section.sect_off =
5531 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
5532 }
5533 else
5534 {
5535 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5536 abbrev_section,
5537 info_ptr, 0);
5538
5539 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5540 gdb_assert (this_cu->length == get_cu_length (&cu->header));
5541 }
5542 }
5543
5544 /* Skip dummy compilation units. */
5545 if (info_ptr >= begin_info_ptr + this_cu->length
5546 || peek_abbrev_code (abfd, info_ptr) == 0)
5547 {
5548 do_cleanups (cleanups);
5549 return;
5550 }
5551
5552 /* If we don't have them yet, read the abbrevs for this compilation unit.
5553 And if we need to read them now, make sure they're freed when we're
5554 done. Note that it's important that if the CU had an abbrev table
5555 on entry we don't free it when we're done: Somewhere up the call stack
5556 it may be in use. */
5557 if (abbrev_table != NULL)
5558 {
5559 gdb_assert (cu->abbrev_table == NULL);
5560 gdb_assert (cu->header.abbrev_offset.sect_off
5561 == abbrev_table->offset.sect_off);
5562 cu->abbrev_table = abbrev_table;
5563 }
5564 else if (cu->abbrev_table == NULL)
5565 {
5566 dwarf2_read_abbrevs (cu, abbrev_section);
5567 make_cleanup (dwarf2_free_abbrev_table, cu);
5568 }
5569 else if (rereading_dwo_cu)
5570 {
5571 dwarf2_free_abbrev_table (cu);
5572 dwarf2_read_abbrevs (cu, abbrev_section);
5573 }
5574
5575 /* Read the top level CU/TU die. */
5576 init_cu_die_reader (&reader, cu, section, NULL);
5577 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5578
5579 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5580 from the DWO file.
5581 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5582 DWO CU, that this test will fail (the attribute will not be present). */
5583 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5584 if (attr)
5585 {
5586 struct dwo_unit *dwo_unit;
5587 struct die_info *dwo_comp_unit_die;
5588
5589 if (has_children)
5590 {
5591 complaint (&symfile_complaints,
5592 _("compilation unit with DW_AT_GNU_dwo_name"
5593 " has children (offset 0x%x) [in module %s]"),
5594 this_cu->offset.sect_off, bfd_get_filename (abfd));
5595 }
5596 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
5597 if (dwo_unit != NULL)
5598 {
5599 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5600 abbrev_table != NULL,
5601 comp_unit_die, NULL,
5602 &reader, &info_ptr,
5603 &dwo_comp_unit_die, &has_children) == 0)
5604 {
5605 /* Dummy die. */
5606 do_cleanups (cleanups);
5607 return;
5608 }
5609 comp_unit_die = dwo_comp_unit_die;
5610 }
5611 else
5612 {
5613 /* Yikes, we couldn't find the rest of the DIE, we only have
5614 the stub. A complaint has already been logged. There's
5615 not much more we can do except pass on the stub DIE to
5616 die_reader_func. We don't want to throw an error on bad
5617 debug info. */
5618 }
5619 }
5620
5621 /* All of the above is setup for this call. Yikes. */
5622 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5623
5624 /* Done, clean up. */
5625 if (free_cu_cleanup != NULL)
5626 {
5627 if (keep)
5628 {
5629 /* We've successfully allocated this compilation unit. Let our
5630 caller clean it up when finished with it. */
5631 discard_cleanups (free_cu_cleanup);
5632
5633 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5634 So we have to manually free the abbrev table. */
5635 dwarf2_free_abbrev_table (cu);
5636
5637 /* Link this CU into read_in_chain. */
5638 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5639 dwarf2_per_objfile->read_in_chain = this_cu;
5640 }
5641 else
5642 do_cleanups (free_cu_cleanup);
5643 }
5644
5645 do_cleanups (cleanups);
5646 }
5647
5648 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
5649 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
5650 to have already done the lookup to find the DWO file).
5651
5652 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
5653 THIS_CU->is_debug_types, but nothing else.
5654
5655 We fill in THIS_CU->length.
5656
5657 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5658 linker) then DIE_READER_FUNC will not get called.
5659
5660 THIS_CU->cu is always freed when done.
5661 This is done in order to not leave THIS_CU->cu in a state where we have
5662 to care whether it refers to the "main" CU or the DWO CU. */
5663
5664 static void
5665 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
5666 struct dwo_file *dwo_file,
5667 die_reader_func_ftype *die_reader_func,
5668 void *data)
5669 {
5670 struct objfile *objfile = dwarf2_per_objfile->objfile;
5671 struct dwarf2_section_info *section = this_cu->section;
5672 bfd *abfd = get_section_bfd_owner (section);
5673 struct dwarf2_section_info *abbrev_section;
5674 struct dwarf2_cu cu;
5675 const gdb_byte *begin_info_ptr, *info_ptr;
5676 struct die_reader_specs reader;
5677 struct cleanup *cleanups;
5678 struct die_info *comp_unit_die;
5679 int has_children;
5680
5681 if (dwarf_die_debug)
5682 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5683 this_cu->is_debug_types ? "type" : "comp",
5684 this_cu->offset.sect_off);
5685
5686 gdb_assert (this_cu->cu == NULL);
5687
5688 abbrev_section = (dwo_file != NULL
5689 ? &dwo_file->sections.abbrev
5690 : get_abbrev_section_for_cu (this_cu));
5691
5692 /* This is cheap if the section is already read in. */
5693 dwarf2_read_section (objfile, section);
5694
5695 init_one_comp_unit (&cu, this_cu);
5696
5697 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5698
5699 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5700 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5701 abbrev_section, info_ptr,
5702 this_cu->is_debug_types);
5703
5704 this_cu->length = get_cu_length (&cu.header);
5705
5706 /* Skip dummy compilation units. */
5707 if (info_ptr >= begin_info_ptr + this_cu->length
5708 || peek_abbrev_code (abfd, info_ptr) == 0)
5709 {
5710 do_cleanups (cleanups);
5711 return;
5712 }
5713
5714 dwarf2_read_abbrevs (&cu, abbrev_section);
5715 make_cleanup (dwarf2_free_abbrev_table, &cu);
5716
5717 init_cu_die_reader (&reader, &cu, section, dwo_file);
5718 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5719
5720 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5721
5722 do_cleanups (cleanups);
5723 }
5724
5725 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5726 does not lookup the specified DWO file.
5727 This cannot be used to read DWO files.
5728
5729 THIS_CU->cu is always freed when done.
5730 This is done in order to not leave THIS_CU->cu in a state where we have
5731 to care whether it refers to the "main" CU or the DWO CU.
5732 We can revisit this if the data shows there's a performance issue. */
5733
5734 static void
5735 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5736 die_reader_func_ftype *die_reader_func,
5737 void *data)
5738 {
5739 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
5740 }
5741 \f
5742 /* Type Unit Groups.
5743
5744 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5745 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5746 so that all types coming from the same compilation (.o file) are grouped
5747 together. A future step could be to put the types in the same symtab as
5748 the CU the types ultimately came from. */
5749
5750 static hashval_t
5751 hash_type_unit_group (const void *item)
5752 {
5753 const struct type_unit_group *tu_group
5754 = (const struct type_unit_group *) item;
5755
5756 return hash_stmt_list_entry (&tu_group->hash);
5757 }
5758
5759 static int
5760 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
5761 {
5762 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
5763 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
5764
5765 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
5766 }
5767
5768 /* Allocate a hash table for type unit groups. */
5769
5770 static htab_t
5771 allocate_type_unit_groups_table (void)
5772 {
5773 return htab_create_alloc_ex (3,
5774 hash_type_unit_group,
5775 eq_type_unit_group,
5776 NULL,
5777 &dwarf2_per_objfile->objfile->objfile_obstack,
5778 hashtab_obstack_allocate,
5779 dummy_obstack_deallocate);
5780 }
5781
5782 /* Type units that don't have DW_AT_stmt_list are grouped into their own
5783 partial symtabs. We combine several TUs per psymtab to not let the size
5784 of any one psymtab grow too big. */
5785 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5786 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
5787
5788 /* Helper routine for get_type_unit_group.
5789 Create the type_unit_group object used to hold one or more TUs. */
5790
5791 static struct type_unit_group *
5792 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
5793 {
5794 struct objfile *objfile = dwarf2_per_objfile->objfile;
5795 struct dwarf2_per_cu_data *per_cu;
5796 struct type_unit_group *tu_group;
5797
5798 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5799 struct type_unit_group);
5800 per_cu = &tu_group->per_cu;
5801 per_cu->objfile = objfile;
5802
5803 if (dwarf2_per_objfile->using_index)
5804 {
5805 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5806 struct dwarf2_per_cu_quick_data);
5807 }
5808 else
5809 {
5810 unsigned int line_offset = line_offset_struct.sect_off;
5811 struct partial_symtab *pst;
5812 char *name;
5813
5814 /* Give the symtab a useful name for debug purposes. */
5815 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5816 name = xstrprintf ("<type_units_%d>",
5817 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5818 else
5819 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5820
5821 pst = create_partial_symtab (per_cu, name);
5822 pst->anonymous = 1;
5823
5824 xfree (name);
5825 }
5826
5827 tu_group->hash.dwo_unit = cu->dwo_unit;
5828 tu_group->hash.line_offset = line_offset_struct;
5829
5830 return tu_group;
5831 }
5832
5833 /* Look up the type_unit_group for type unit CU, and create it if necessary.
5834 STMT_LIST is a DW_AT_stmt_list attribute. */
5835
5836 static struct type_unit_group *
5837 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
5838 {
5839 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5840 struct type_unit_group *tu_group;
5841 void **slot;
5842 unsigned int line_offset;
5843 struct type_unit_group type_unit_group_for_lookup;
5844
5845 if (dwarf2_per_objfile->type_unit_groups == NULL)
5846 {
5847 dwarf2_per_objfile->type_unit_groups =
5848 allocate_type_unit_groups_table ();
5849 }
5850
5851 /* Do we need to create a new group, or can we use an existing one? */
5852
5853 if (stmt_list)
5854 {
5855 line_offset = DW_UNSND (stmt_list);
5856 ++tu_stats->nr_symtab_sharers;
5857 }
5858 else
5859 {
5860 /* Ugh, no stmt_list. Rare, but we have to handle it.
5861 We can do various things here like create one group per TU or
5862 spread them over multiple groups to split up the expansion work.
5863 To avoid worst case scenarios (too many groups or too large groups)
5864 we, umm, group them in bunches. */
5865 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5866 | (tu_stats->nr_stmt_less_type_units
5867 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5868 ++tu_stats->nr_stmt_less_type_units;
5869 }
5870
5871 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5872 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
5873 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5874 &type_unit_group_for_lookup, INSERT);
5875 if (*slot != NULL)
5876 {
5877 tu_group = (struct type_unit_group *) *slot;
5878 gdb_assert (tu_group != NULL);
5879 }
5880 else
5881 {
5882 sect_offset line_offset_struct;
5883
5884 line_offset_struct.sect_off = line_offset;
5885 tu_group = create_type_unit_group (cu, line_offset_struct);
5886 *slot = tu_group;
5887 ++tu_stats->nr_symtabs;
5888 }
5889
5890 return tu_group;
5891 }
5892 \f
5893 /* Partial symbol tables. */
5894
5895 /* Create a psymtab named NAME and assign it to PER_CU.
5896
5897 The caller must fill in the following details:
5898 dirname, textlow, texthigh. */
5899
5900 static struct partial_symtab *
5901 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5902 {
5903 struct objfile *objfile = per_cu->objfile;
5904 struct partial_symtab *pst;
5905
5906 pst = start_psymtab_common (objfile, name, 0,
5907 objfile->global_psymbols.next,
5908 objfile->static_psymbols.next);
5909
5910 pst->psymtabs_addrmap_supported = 1;
5911
5912 /* This is the glue that links PST into GDB's symbol API. */
5913 pst->read_symtab_private = per_cu;
5914 pst->read_symtab = dwarf2_read_symtab;
5915 per_cu->v.psymtab = pst;
5916
5917 return pst;
5918 }
5919
5920 /* The DATA object passed to process_psymtab_comp_unit_reader has this
5921 type. */
5922
5923 struct process_psymtab_comp_unit_data
5924 {
5925 /* True if we are reading a DW_TAG_partial_unit. */
5926
5927 int want_partial_unit;
5928
5929 /* The "pretend" language that is used if the CU doesn't declare a
5930 language. */
5931
5932 enum language pretend_language;
5933 };
5934
5935 /* die_reader_func for process_psymtab_comp_unit. */
5936
5937 static void
5938 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
5939 const gdb_byte *info_ptr,
5940 struct die_info *comp_unit_die,
5941 int has_children,
5942 void *data)
5943 {
5944 struct dwarf2_cu *cu = reader->cu;
5945 struct objfile *objfile = cu->objfile;
5946 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5947 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5948 CORE_ADDR baseaddr;
5949 CORE_ADDR best_lowpc = 0, best_highpc = 0;
5950 struct partial_symtab *pst;
5951 int has_pc_info;
5952 const char *filename;
5953 struct process_psymtab_comp_unit_data *info
5954 = (struct process_psymtab_comp_unit_data *) data;
5955
5956 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
5957 return;
5958
5959 gdb_assert (! per_cu->is_debug_types);
5960
5961 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
5962
5963 cu->list_in_scope = &file_symbols;
5964
5965 /* Allocate a new partial symbol table structure. */
5966 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
5967 if (filename == NULL)
5968 filename = "";
5969
5970 pst = create_partial_symtab (per_cu, filename);
5971
5972 /* This must be done before calling dwarf2_build_include_psymtabs. */
5973 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
5974
5975 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5976
5977 dwarf2_find_base_address (comp_unit_die, cu);
5978
5979 /* Possibly set the default values of LOWPC and HIGHPC from
5980 `DW_AT_ranges'. */
5981 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
5982 &best_highpc, cu, pst);
5983 if (has_pc_info == 1 && best_lowpc < best_highpc)
5984 /* Store the contiguous range if it is not empty; it can be empty for
5985 CUs with no code. */
5986 addrmap_set_empty (objfile->psymtabs_addrmap,
5987 gdbarch_adjust_dwarf2_addr (gdbarch,
5988 best_lowpc + baseaddr),
5989 gdbarch_adjust_dwarf2_addr (gdbarch,
5990 best_highpc + baseaddr) - 1,
5991 pst);
5992
5993 /* Check if comp unit has_children.
5994 If so, read the rest of the partial symbols from this comp unit.
5995 If not, there's no more debug_info for this comp unit. */
5996 if (has_children)
5997 {
5998 struct partial_die_info *first_die;
5999 CORE_ADDR lowpc, highpc;
6000
6001 lowpc = ((CORE_ADDR) -1);
6002 highpc = ((CORE_ADDR) 0);
6003
6004 first_die = load_partial_dies (reader, info_ptr, 1);
6005
6006 scan_partial_symbols (first_die, &lowpc, &highpc,
6007 ! has_pc_info, cu);
6008
6009 /* If we didn't find a lowpc, set it to highpc to avoid
6010 complaints from `maint check'. */
6011 if (lowpc == ((CORE_ADDR) -1))
6012 lowpc = highpc;
6013
6014 /* If the compilation unit didn't have an explicit address range,
6015 then use the information extracted from its child dies. */
6016 if (! has_pc_info)
6017 {
6018 best_lowpc = lowpc;
6019 best_highpc = highpc;
6020 }
6021 }
6022 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
6023 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
6024
6025 end_psymtab_common (objfile, pst);
6026
6027 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
6028 {
6029 int i;
6030 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6031 struct dwarf2_per_cu_data *iter;
6032
6033 /* Fill in 'dependencies' here; we fill in 'users' in a
6034 post-pass. */
6035 pst->number_of_dependencies = len;
6036 pst->dependencies =
6037 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
6038 for (i = 0;
6039 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
6040 i, iter);
6041 ++i)
6042 pst->dependencies[i] = iter->v.psymtab;
6043
6044 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6045 }
6046
6047 /* Get the list of files included in the current compilation unit,
6048 and build a psymtab for each of them. */
6049 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
6050
6051 if (dwarf_read_debug)
6052 {
6053 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6054
6055 fprintf_unfiltered (gdb_stdlog,
6056 "Psymtab for %s unit @0x%x: %s - %s"
6057 ", %d global, %d static syms\n",
6058 per_cu->is_debug_types ? "type" : "comp",
6059 per_cu->offset.sect_off,
6060 paddress (gdbarch, pst->textlow),
6061 paddress (gdbarch, pst->texthigh),
6062 pst->n_global_syms, pst->n_static_syms);
6063 }
6064 }
6065
6066 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6067 Process compilation unit THIS_CU for a psymtab. */
6068
6069 static void
6070 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
6071 int want_partial_unit,
6072 enum language pretend_language)
6073 {
6074 struct process_psymtab_comp_unit_data info;
6075
6076 /* If this compilation unit was already read in, free the
6077 cached copy in order to read it in again. This is
6078 necessary because we skipped some symbols when we first
6079 read in the compilation unit (see load_partial_dies).
6080 This problem could be avoided, but the benefit is unclear. */
6081 if (this_cu->cu != NULL)
6082 free_one_cached_comp_unit (this_cu);
6083
6084 gdb_assert (! this_cu->is_debug_types);
6085 info.want_partial_unit = want_partial_unit;
6086 info.pretend_language = pretend_language;
6087 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
6088 process_psymtab_comp_unit_reader,
6089 &info);
6090
6091 /* Age out any secondary CUs. */
6092 age_cached_comp_units ();
6093 }
6094
6095 /* Reader function for build_type_psymtabs. */
6096
6097 static void
6098 build_type_psymtabs_reader (const struct die_reader_specs *reader,
6099 const gdb_byte *info_ptr,
6100 struct die_info *type_unit_die,
6101 int has_children,
6102 void *data)
6103 {
6104 struct objfile *objfile = dwarf2_per_objfile->objfile;
6105 struct dwarf2_cu *cu = reader->cu;
6106 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6107 struct signatured_type *sig_type;
6108 struct type_unit_group *tu_group;
6109 struct attribute *attr;
6110 struct partial_die_info *first_die;
6111 CORE_ADDR lowpc, highpc;
6112 struct partial_symtab *pst;
6113
6114 gdb_assert (data == NULL);
6115 gdb_assert (per_cu->is_debug_types);
6116 sig_type = (struct signatured_type *) per_cu;
6117
6118 if (! has_children)
6119 return;
6120
6121 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
6122 tu_group = get_type_unit_group (cu, attr);
6123
6124 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
6125
6126 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6127 cu->list_in_scope = &file_symbols;
6128 pst = create_partial_symtab (per_cu, "");
6129 pst->anonymous = 1;
6130
6131 first_die = load_partial_dies (reader, info_ptr, 1);
6132
6133 lowpc = (CORE_ADDR) -1;
6134 highpc = (CORE_ADDR) 0;
6135 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6136
6137 end_psymtab_common (objfile, pst);
6138 }
6139
6140 /* Struct used to sort TUs by their abbreviation table offset. */
6141
6142 struct tu_abbrev_offset
6143 {
6144 struct signatured_type *sig_type;
6145 sect_offset abbrev_offset;
6146 };
6147
6148 /* Helper routine for build_type_psymtabs_1, passed to qsort. */
6149
6150 static int
6151 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
6152 {
6153 const struct tu_abbrev_offset * const *a
6154 = (const struct tu_abbrev_offset * const*) ap;
6155 const struct tu_abbrev_offset * const *b
6156 = (const struct tu_abbrev_offset * const*) bp;
6157 unsigned int aoff = (*a)->abbrev_offset.sect_off;
6158 unsigned int boff = (*b)->abbrev_offset.sect_off;
6159
6160 return (aoff > boff) - (aoff < boff);
6161 }
6162
6163 /* Efficiently read all the type units.
6164 This does the bulk of the work for build_type_psymtabs.
6165
6166 The efficiency is because we sort TUs by the abbrev table they use and
6167 only read each abbrev table once. In one program there are 200K TUs
6168 sharing 8K abbrev tables.
6169
6170 The main purpose of this function is to support building the
6171 dwarf2_per_objfile->type_unit_groups table.
6172 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
6173 can collapse the search space by grouping them by stmt_list.
6174 The savings can be significant, in the same program from above the 200K TUs
6175 share 8K stmt_list tables.
6176
6177 FUNC is expected to call get_type_unit_group, which will create the
6178 struct type_unit_group if necessary and add it to
6179 dwarf2_per_objfile->type_unit_groups. */
6180
6181 static void
6182 build_type_psymtabs_1 (void)
6183 {
6184 struct objfile *objfile = dwarf2_per_objfile->objfile;
6185 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6186 struct cleanup *cleanups;
6187 struct abbrev_table *abbrev_table;
6188 sect_offset abbrev_offset;
6189 struct tu_abbrev_offset *sorted_by_abbrev;
6190 struct type_unit_group **iter;
6191 int i;
6192
6193 /* It's up to the caller to not call us multiple times. */
6194 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
6195
6196 if (dwarf2_per_objfile->n_type_units == 0)
6197 return;
6198
6199 /* TUs typically share abbrev tables, and there can be way more TUs than
6200 abbrev tables. Sort by abbrev table to reduce the number of times we
6201 read each abbrev table in.
6202 Alternatives are to punt or to maintain a cache of abbrev tables.
6203 This is simpler and efficient enough for now.
6204
6205 Later we group TUs by their DW_AT_stmt_list value (as this defines the
6206 symtab to use). Typically TUs with the same abbrev offset have the same
6207 stmt_list value too so in practice this should work well.
6208
6209 The basic algorithm here is:
6210
6211 sort TUs by abbrev table
6212 for each TU with same abbrev table:
6213 read abbrev table if first user
6214 read TU top level DIE
6215 [IWBN if DWO skeletons had DW_AT_stmt_list]
6216 call FUNC */
6217
6218 if (dwarf_read_debug)
6219 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
6220
6221 /* Sort in a separate table to maintain the order of all_type_units
6222 for .gdb_index: TU indices directly index all_type_units. */
6223 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
6224 dwarf2_per_objfile->n_type_units);
6225 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6226 {
6227 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
6228
6229 sorted_by_abbrev[i].sig_type = sig_type;
6230 sorted_by_abbrev[i].abbrev_offset =
6231 read_abbrev_offset (sig_type->per_cu.section,
6232 sig_type->per_cu.offset);
6233 }
6234 cleanups = make_cleanup (xfree, sorted_by_abbrev);
6235 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
6236 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
6237
6238 abbrev_offset.sect_off = ~(unsigned) 0;
6239 abbrev_table = NULL;
6240 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
6241
6242 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6243 {
6244 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
6245
6246 /* Switch to the next abbrev table if necessary. */
6247 if (abbrev_table == NULL
6248 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
6249 {
6250 if (abbrev_table != NULL)
6251 {
6252 abbrev_table_free (abbrev_table);
6253 /* Reset to NULL in case abbrev_table_read_table throws
6254 an error: abbrev_table_free_cleanup will get called. */
6255 abbrev_table = NULL;
6256 }
6257 abbrev_offset = tu->abbrev_offset;
6258 abbrev_table =
6259 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
6260 abbrev_offset);
6261 ++tu_stats->nr_uniq_abbrev_tables;
6262 }
6263
6264 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
6265 build_type_psymtabs_reader, NULL);
6266 }
6267
6268 do_cleanups (cleanups);
6269 }
6270
6271 /* Print collected type unit statistics. */
6272
6273 static void
6274 print_tu_stats (void)
6275 {
6276 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6277
6278 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
6279 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
6280 dwarf2_per_objfile->n_type_units);
6281 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
6282 tu_stats->nr_uniq_abbrev_tables);
6283 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
6284 tu_stats->nr_symtabs);
6285 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
6286 tu_stats->nr_symtab_sharers);
6287 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
6288 tu_stats->nr_stmt_less_type_units);
6289 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
6290 tu_stats->nr_all_type_units_reallocs);
6291 }
6292
6293 /* Traversal function for build_type_psymtabs. */
6294
6295 static int
6296 build_type_psymtab_dependencies (void **slot, void *info)
6297 {
6298 struct objfile *objfile = dwarf2_per_objfile->objfile;
6299 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
6300 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
6301 struct partial_symtab *pst = per_cu->v.psymtab;
6302 int len = VEC_length (sig_type_ptr, tu_group->tus);
6303 struct signatured_type *iter;
6304 int i;
6305
6306 gdb_assert (len > 0);
6307 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
6308
6309 pst->number_of_dependencies = len;
6310 pst->dependencies =
6311 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
6312 for (i = 0;
6313 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
6314 ++i)
6315 {
6316 gdb_assert (iter->per_cu.is_debug_types);
6317 pst->dependencies[i] = iter->per_cu.v.psymtab;
6318 iter->type_unit_group = tu_group;
6319 }
6320
6321 VEC_free (sig_type_ptr, tu_group->tus);
6322
6323 return 1;
6324 }
6325
6326 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6327 Build partial symbol tables for the .debug_types comp-units. */
6328
6329 static void
6330 build_type_psymtabs (struct objfile *objfile)
6331 {
6332 if (! create_all_type_units (objfile))
6333 return;
6334
6335 build_type_psymtabs_1 ();
6336 }
6337
6338 /* Traversal function for process_skeletonless_type_unit.
6339 Read a TU in a DWO file and build partial symbols for it. */
6340
6341 static int
6342 process_skeletonless_type_unit (void **slot, void *info)
6343 {
6344 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
6345 struct objfile *objfile = (struct objfile *) info;
6346 struct signatured_type find_entry, *entry;
6347
6348 /* If this TU doesn't exist in the global table, add it and read it in. */
6349
6350 if (dwarf2_per_objfile->signatured_types == NULL)
6351 {
6352 dwarf2_per_objfile->signatured_types
6353 = allocate_signatured_type_table (objfile);
6354 }
6355
6356 find_entry.signature = dwo_unit->signature;
6357 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
6358 INSERT);
6359 /* If we've already seen this type there's nothing to do. What's happening
6360 is we're doing our own version of comdat-folding here. */
6361 if (*slot != NULL)
6362 return 1;
6363
6364 /* This does the job that create_all_type_units would have done for
6365 this TU. */
6366 entry = add_type_unit (dwo_unit->signature, slot);
6367 fill_in_sig_entry_from_dwo_entry (objfile, entry, dwo_unit);
6368 *slot = entry;
6369
6370 /* This does the job that build_type_psymtabs_1 would have done. */
6371 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
6372 build_type_psymtabs_reader, NULL);
6373
6374 return 1;
6375 }
6376
6377 /* Traversal function for process_skeletonless_type_units. */
6378
6379 static int
6380 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
6381 {
6382 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
6383
6384 if (dwo_file->tus != NULL)
6385 {
6386 htab_traverse_noresize (dwo_file->tus,
6387 process_skeletonless_type_unit, info);
6388 }
6389
6390 return 1;
6391 }
6392
6393 /* Scan all TUs of DWO files, verifying we've processed them.
6394 This is needed in case a TU was emitted without its skeleton.
6395 Note: This can't be done until we know what all the DWO files are. */
6396
6397 static void
6398 process_skeletonless_type_units (struct objfile *objfile)
6399 {
6400 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
6401 if (get_dwp_file () == NULL
6402 && dwarf2_per_objfile->dwo_files != NULL)
6403 {
6404 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
6405 process_dwo_file_for_skeletonless_type_units,
6406 objfile);
6407 }
6408 }
6409
6410 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
6411
6412 static void
6413 psymtabs_addrmap_cleanup (void *o)
6414 {
6415 struct objfile *objfile = (struct objfile *) o;
6416
6417 objfile->psymtabs_addrmap = NULL;
6418 }
6419
6420 /* Compute the 'user' field for each psymtab in OBJFILE. */
6421
6422 static void
6423 set_partial_user (struct objfile *objfile)
6424 {
6425 int i;
6426
6427 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6428 {
6429 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6430 struct partial_symtab *pst = per_cu->v.psymtab;
6431 int j;
6432
6433 if (pst == NULL)
6434 continue;
6435
6436 for (j = 0; j < pst->number_of_dependencies; ++j)
6437 {
6438 /* Set the 'user' field only if it is not already set. */
6439 if (pst->dependencies[j]->user == NULL)
6440 pst->dependencies[j]->user = pst;
6441 }
6442 }
6443 }
6444
6445 /* Build the partial symbol table by doing a quick pass through the
6446 .debug_info and .debug_abbrev sections. */
6447
6448 static void
6449 dwarf2_build_psymtabs_hard (struct objfile *objfile)
6450 {
6451 struct cleanup *back_to, *addrmap_cleanup;
6452 struct obstack temp_obstack;
6453 int i;
6454
6455 if (dwarf_read_debug)
6456 {
6457 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
6458 objfile_name (objfile));
6459 }
6460
6461 dwarf2_per_objfile->reading_partial_symbols = 1;
6462
6463 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
6464
6465 /* Any cached compilation units will be linked by the per-objfile
6466 read_in_chain. Make sure to free them when we're done. */
6467 back_to = make_cleanup (free_cached_comp_units, NULL);
6468
6469 build_type_psymtabs (objfile);
6470
6471 create_all_comp_units (objfile);
6472
6473 /* Create a temporary address map on a temporary obstack. We later
6474 copy this to the final obstack. */
6475 obstack_init (&temp_obstack);
6476 make_cleanup_obstack_free (&temp_obstack);
6477 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6478 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
6479
6480 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6481 {
6482 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6483
6484 process_psymtab_comp_unit (per_cu, 0, language_minimal);
6485 }
6486
6487 /* This has to wait until we read the CUs, we need the list of DWOs. */
6488 process_skeletonless_type_units (objfile);
6489
6490 /* Now that all TUs have been processed we can fill in the dependencies. */
6491 if (dwarf2_per_objfile->type_unit_groups != NULL)
6492 {
6493 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6494 build_type_psymtab_dependencies, NULL);
6495 }
6496
6497 if (dwarf_read_debug)
6498 print_tu_stats ();
6499
6500 set_partial_user (objfile);
6501
6502 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6503 &objfile->objfile_obstack);
6504 discard_cleanups (addrmap_cleanup);
6505
6506 do_cleanups (back_to);
6507
6508 if (dwarf_read_debug)
6509 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
6510 objfile_name (objfile));
6511 }
6512
6513 /* die_reader_func for load_partial_comp_unit. */
6514
6515 static void
6516 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
6517 const gdb_byte *info_ptr,
6518 struct die_info *comp_unit_die,
6519 int has_children,
6520 void *data)
6521 {
6522 struct dwarf2_cu *cu = reader->cu;
6523
6524 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
6525
6526 /* Check if comp unit has_children.
6527 If so, read the rest of the partial symbols from this comp unit.
6528 If not, there's no more debug_info for this comp unit. */
6529 if (has_children)
6530 load_partial_dies (reader, info_ptr, 0);
6531 }
6532
6533 /* Load the partial DIEs for a secondary CU into memory.
6534 This is also used when rereading a primary CU with load_all_dies. */
6535
6536 static void
6537 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6538 {
6539 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6540 load_partial_comp_unit_reader, NULL);
6541 }
6542
6543 static void
6544 read_comp_units_from_section (struct objfile *objfile,
6545 struct dwarf2_section_info *section,
6546 unsigned int is_dwz,
6547 int *n_allocated,
6548 int *n_comp_units,
6549 struct dwarf2_per_cu_data ***all_comp_units)
6550 {
6551 const gdb_byte *info_ptr;
6552 bfd *abfd = get_section_bfd_owner (section);
6553
6554 if (dwarf_read_debug)
6555 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
6556 get_section_name (section),
6557 get_section_file_name (section));
6558
6559 dwarf2_read_section (objfile, section);
6560
6561 info_ptr = section->buffer;
6562
6563 while (info_ptr < section->buffer + section->size)
6564 {
6565 unsigned int length, initial_length_size;
6566 struct dwarf2_per_cu_data *this_cu;
6567 sect_offset offset;
6568
6569 offset.sect_off = info_ptr - section->buffer;
6570
6571 /* Read just enough information to find out where the next
6572 compilation unit is. */
6573 length = read_initial_length (abfd, info_ptr, &initial_length_size);
6574
6575 /* Save the compilation unit for later lookup. */
6576 this_cu = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_cu_data);
6577 memset (this_cu, 0, sizeof (*this_cu));
6578 this_cu->offset = offset;
6579 this_cu->length = length + initial_length_size;
6580 this_cu->is_dwz = is_dwz;
6581 this_cu->objfile = objfile;
6582 this_cu->section = section;
6583
6584 if (*n_comp_units == *n_allocated)
6585 {
6586 *n_allocated *= 2;
6587 *all_comp_units = XRESIZEVEC (struct dwarf2_per_cu_data *,
6588 *all_comp_units, *n_allocated);
6589 }
6590 (*all_comp_units)[*n_comp_units] = this_cu;
6591 ++*n_comp_units;
6592
6593 info_ptr = info_ptr + this_cu->length;
6594 }
6595 }
6596
6597 /* Create a list of all compilation units in OBJFILE.
6598 This is only done for -readnow and building partial symtabs. */
6599
6600 static void
6601 create_all_comp_units (struct objfile *objfile)
6602 {
6603 int n_allocated;
6604 int n_comp_units;
6605 struct dwarf2_per_cu_data **all_comp_units;
6606 struct dwz_file *dwz;
6607
6608 n_comp_units = 0;
6609 n_allocated = 10;
6610 all_comp_units = XNEWVEC (struct dwarf2_per_cu_data *, n_allocated);
6611
6612 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6613 &n_allocated, &n_comp_units, &all_comp_units);
6614
6615 dwz = dwarf2_get_dwz_file ();
6616 if (dwz != NULL)
6617 read_comp_units_from_section (objfile, &dwz->info, 1,
6618 &n_allocated, &n_comp_units,
6619 &all_comp_units);
6620
6621 dwarf2_per_objfile->all_comp_units = XOBNEWVEC (&objfile->objfile_obstack,
6622 struct dwarf2_per_cu_data *,
6623 n_comp_units);
6624 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6625 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6626 xfree (all_comp_units);
6627 dwarf2_per_objfile->n_comp_units = n_comp_units;
6628 }
6629
6630 /* Process all loaded DIEs for compilation unit CU, starting at
6631 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
6632 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
6633 DW_AT_ranges). See the comments of add_partial_subprogram on how
6634 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
6635
6636 static void
6637 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
6638 CORE_ADDR *highpc, int set_addrmap,
6639 struct dwarf2_cu *cu)
6640 {
6641 struct partial_die_info *pdi;
6642
6643 /* Now, march along the PDI's, descending into ones which have
6644 interesting children but skipping the children of the other ones,
6645 until we reach the end of the compilation unit. */
6646
6647 pdi = first_die;
6648
6649 while (pdi != NULL)
6650 {
6651 fixup_partial_die (pdi, cu);
6652
6653 /* Anonymous namespaces or modules have no name but have interesting
6654 children, so we need to look at them. Ditto for anonymous
6655 enums. */
6656
6657 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
6658 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6659 || pdi->tag == DW_TAG_imported_unit)
6660 {
6661 switch (pdi->tag)
6662 {
6663 case DW_TAG_subprogram:
6664 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
6665 break;
6666 case DW_TAG_constant:
6667 case DW_TAG_variable:
6668 case DW_TAG_typedef:
6669 case DW_TAG_union_type:
6670 if (!pdi->is_declaration)
6671 {
6672 add_partial_symbol (pdi, cu);
6673 }
6674 break;
6675 case DW_TAG_class_type:
6676 case DW_TAG_interface_type:
6677 case DW_TAG_structure_type:
6678 if (!pdi->is_declaration)
6679 {
6680 add_partial_symbol (pdi, cu);
6681 }
6682 break;
6683 case DW_TAG_enumeration_type:
6684 if (!pdi->is_declaration)
6685 add_partial_enumeration (pdi, cu);
6686 break;
6687 case DW_TAG_base_type:
6688 case DW_TAG_subrange_type:
6689 /* File scope base type definitions are added to the partial
6690 symbol table. */
6691 add_partial_symbol (pdi, cu);
6692 break;
6693 case DW_TAG_namespace:
6694 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
6695 break;
6696 case DW_TAG_module:
6697 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
6698 break;
6699 case DW_TAG_imported_unit:
6700 {
6701 struct dwarf2_per_cu_data *per_cu;
6702
6703 /* For now we don't handle imported units in type units. */
6704 if (cu->per_cu->is_debug_types)
6705 {
6706 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6707 " supported in type units [in module %s]"),
6708 objfile_name (cu->objfile));
6709 }
6710
6711 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
6712 pdi->is_dwz,
6713 cu->objfile);
6714
6715 /* Go read the partial unit, if needed. */
6716 if (per_cu->v.psymtab == NULL)
6717 process_psymtab_comp_unit (per_cu, 1, cu->language);
6718
6719 VEC_safe_push (dwarf2_per_cu_ptr,
6720 cu->per_cu->imported_symtabs, per_cu);
6721 }
6722 break;
6723 case DW_TAG_imported_declaration:
6724 add_partial_symbol (pdi, cu);
6725 break;
6726 default:
6727 break;
6728 }
6729 }
6730
6731 /* If the die has a sibling, skip to the sibling. */
6732
6733 pdi = pdi->die_sibling;
6734 }
6735 }
6736
6737 /* Functions used to compute the fully scoped name of a partial DIE.
6738
6739 Normally, this is simple. For C++, the parent DIE's fully scoped
6740 name is concatenated with "::" and the partial DIE's name. For
6741 Java, the same thing occurs except that "." is used instead of "::".
6742 Enumerators are an exception; they use the scope of their parent
6743 enumeration type, i.e. the name of the enumeration type is not
6744 prepended to the enumerator.
6745
6746 There are two complexities. One is DW_AT_specification; in this
6747 case "parent" means the parent of the target of the specification,
6748 instead of the direct parent of the DIE. The other is compilers
6749 which do not emit DW_TAG_namespace; in this case we try to guess
6750 the fully qualified name of structure types from their members'
6751 linkage names. This must be done using the DIE's children rather
6752 than the children of any DW_AT_specification target. We only need
6753 to do this for structures at the top level, i.e. if the target of
6754 any DW_AT_specification (if any; otherwise the DIE itself) does not
6755 have a parent. */
6756
6757 /* Compute the scope prefix associated with PDI's parent, in
6758 compilation unit CU. The result will be allocated on CU's
6759 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6760 field. NULL is returned if no prefix is necessary. */
6761 static const char *
6762 partial_die_parent_scope (struct partial_die_info *pdi,
6763 struct dwarf2_cu *cu)
6764 {
6765 const char *grandparent_scope;
6766 struct partial_die_info *parent, *real_pdi;
6767
6768 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6769 then this means the parent of the specification DIE. */
6770
6771 real_pdi = pdi;
6772 while (real_pdi->has_specification)
6773 real_pdi = find_partial_die (real_pdi->spec_offset,
6774 real_pdi->spec_is_dwz, cu);
6775
6776 parent = real_pdi->die_parent;
6777 if (parent == NULL)
6778 return NULL;
6779
6780 if (parent->scope_set)
6781 return parent->scope;
6782
6783 fixup_partial_die (parent, cu);
6784
6785 grandparent_scope = partial_die_parent_scope (parent, cu);
6786
6787 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6788 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6789 Work around this problem here. */
6790 if (cu->language == language_cplus
6791 && parent->tag == DW_TAG_namespace
6792 && strcmp (parent->name, "::") == 0
6793 && grandparent_scope == NULL)
6794 {
6795 parent->scope = NULL;
6796 parent->scope_set = 1;
6797 return NULL;
6798 }
6799
6800 if (pdi->tag == DW_TAG_enumerator)
6801 /* Enumerators should not get the name of the enumeration as a prefix. */
6802 parent->scope = grandparent_scope;
6803 else if (parent->tag == DW_TAG_namespace
6804 || parent->tag == DW_TAG_module
6805 || parent->tag == DW_TAG_structure_type
6806 || parent->tag == DW_TAG_class_type
6807 || parent->tag == DW_TAG_interface_type
6808 || parent->tag == DW_TAG_union_type
6809 || parent->tag == DW_TAG_enumeration_type)
6810 {
6811 if (grandparent_scope == NULL)
6812 parent->scope = parent->name;
6813 else
6814 parent->scope = typename_concat (&cu->comp_unit_obstack,
6815 grandparent_scope,
6816 parent->name, 0, cu);
6817 }
6818 else
6819 {
6820 /* FIXME drow/2004-04-01: What should we be doing with
6821 function-local names? For partial symbols, we should probably be
6822 ignoring them. */
6823 complaint (&symfile_complaints,
6824 _("unhandled containing DIE tag %d for DIE at %d"),
6825 parent->tag, pdi->offset.sect_off);
6826 parent->scope = grandparent_scope;
6827 }
6828
6829 parent->scope_set = 1;
6830 return parent->scope;
6831 }
6832
6833 /* Return the fully scoped name associated with PDI, from compilation unit
6834 CU. The result will be allocated with malloc. */
6835
6836 static char *
6837 partial_die_full_name (struct partial_die_info *pdi,
6838 struct dwarf2_cu *cu)
6839 {
6840 const char *parent_scope;
6841
6842 /* If this is a template instantiation, we can not work out the
6843 template arguments from partial DIEs. So, unfortunately, we have
6844 to go through the full DIEs. At least any work we do building
6845 types here will be reused if full symbols are loaded later. */
6846 if (pdi->has_template_arguments)
6847 {
6848 fixup_partial_die (pdi, cu);
6849
6850 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6851 {
6852 struct die_info *die;
6853 struct attribute attr;
6854 struct dwarf2_cu *ref_cu = cu;
6855
6856 /* DW_FORM_ref_addr is using section offset. */
6857 attr.name = (enum dwarf_attribute) 0;
6858 attr.form = DW_FORM_ref_addr;
6859 attr.u.unsnd = pdi->offset.sect_off;
6860 die = follow_die_ref (NULL, &attr, &ref_cu);
6861
6862 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6863 }
6864 }
6865
6866 parent_scope = partial_die_parent_scope (pdi, cu);
6867 if (parent_scope == NULL)
6868 return NULL;
6869 else
6870 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
6871 }
6872
6873 static void
6874 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
6875 {
6876 struct objfile *objfile = cu->objfile;
6877 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6878 CORE_ADDR addr = 0;
6879 const char *actual_name = NULL;
6880 CORE_ADDR baseaddr;
6881 char *built_actual_name;
6882
6883 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6884
6885 built_actual_name = partial_die_full_name (pdi, cu);
6886 if (built_actual_name != NULL)
6887 actual_name = built_actual_name;
6888
6889 if (actual_name == NULL)
6890 actual_name = pdi->name;
6891
6892 switch (pdi->tag)
6893 {
6894 case DW_TAG_subprogram:
6895 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
6896 if (pdi->is_external || cu->language == language_ada)
6897 {
6898 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6899 of the global scope. But in Ada, we want to be able to access
6900 nested procedures globally. So all Ada subprograms are stored
6901 in the global scope. */
6902 add_psymbol_to_list (actual_name, strlen (actual_name),
6903 built_actual_name != NULL,
6904 VAR_DOMAIN, LOC_BLOCK,
6905 &objfile->global_psymbols,
6906 addr, cu->language, objfile);
6907 }
6908 else
6909 {
6910 add_psymbol_to_list (actual_name, strlen (actual_name),
6911 built_actual_name != NULL,
6912 VAR_DOMAIN, LOC_BLOCK,
6913 &objfile->static_psymbols,
6914 addr, cu->language, objfile);
6915 }
6916 break;
6917 case DW_TAG_constant:
6918 {
6919 struct psymbol_allocation_list *list;
6920
6921 if (pdi->is_external)
6922 list = &objfile->global_psymbols;
6923 else
6924 list = &objfile->static_psymbols;
6925 add_psymbol_to_list (actual_name, strlen (actual_name),
6926 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
6927 list, 0, cu->language, objfile);
6928 }
6929 break;
6930 case DW_TAG_variable:
6931 if (pdi->d.locdesc)
6932 addr = decode_locdesc (pdi->d.locdesc, cu);
6933
6934 if (pdi->d.locdesc
6935 && addr == 0
6936 && !dwarf2_per_objfile->has_section_at_zero)
6937 {
6938 /* A global or static variable may also have been stripped
6939 out by the linker if unused, in which case its address
6940 will be nullified; do not add such variables into partial
6941 symbol table then. */
6942 }
6943 else if (pdi->is_external)
6944 {
6945 /* Global Variable.
6946 Don't enter into the minimal symbol tables as there is
6947 a minimal symbol table entry from the ELF symbols already.
6948 Enter into partial symbol table if it has a location
6949 descriptor or a type.
6950 If the location descriptor is missing, new_symbol will create
6951 a LOC_UNRESOLVED symbol, the address of the variable will then
6952 be determined from the minimal symbol table whenever the variable
6953 is referenced.
6954 The address for the partial symbol table entry is not
6955 used by GDB, but it comes in handy for debugging partial symbol
6956 table building. */
6957
6958 if (pdi->d.locdesc || pdi->has_type)
6959 add_psymbol_to_list (actual_name, strlen (actual_name),
6960 built_actual_name != NULL,
6961 VAR_DOMAIN, LOC_STATIC,
6962 &objfile->global_psymbols,
6963 addr + baseaddr,
6964 cu->language, objfile);
6965 }
6966 else
6967 {
6968 int has_loc = pdi->d.locdesc != NULL;
6969
6970 /* Static Variable. Skip symbols whose value we cannot know (those
6971 without location descriptors or constant values). */
6972 if (!has_loc && !pdi->has_const_value)
6973 {
6974 xfree (built_actual_name);
6975 return;
6976 }
6977
6978 add_psymbol_to_list (actual_name, strlen (actual_name),
6979 built_actual_name != NULL,
6980 VAR_DOMAIN, LOC_STATIC,
6981 &objfile->static_psymbols,
6982 has_loc ? addr + baseaddr : (CORE_ADDR) 0,
6983 cu->language, objfile);
6984 }
6985 break;
6986 case DW_TAG_typedef:
6987 case DW_TAG_base_type:
6988 case DW_TAG_subrange_type:
6989 add_psymbol_to_list (actual_name, strlen (actual_name),
6990 built_actual_name != NULL,
6991 VAR_DOMAIN, LOC_TYPEDEF,
6992 &objfile->static_psymbols,
6993 0, cu->language, objfile);
6994 break;
6995 case DW_TAG_imported_declaration:
6996 case DW_TAG_namespace:
6997 add_psymbol_to_list (actual_name, strlen (actual_name),
6998 built_actual_name != NULL,
6999 VAR_DOMAIN, LOC_TYPEDEF,
7000 &objfile->global_psymbols,
7001 0, cu->language, objfile);
7002 break;
7003 case DW_TAG_module:
7004 add_psymbol_to_list (actual_name, strlen (actual_name),
7005 built_actual_name != NULL,
7006 MODULE_DOMAIN, LOC_TYPEDEF,
7007 &objfile->global_psymbols,
7008 0, cu->language, objfile);
7009 break;
7010 case DW_TAG_class_type:
7011 case DW_TAG_interface_type:
7012 case DW_TAG_structure_type:
7013 case DW_TAG_union_type:
7014 case DW_TAG_enumeration_type:
7015 /* Skip external references. The DWARF standard says in the section
7016 about "Structure, Union, and Class Type Entries": "An incomplete
7017 structure, union or class type is represented by a structure,
7018 union or class entry that does not have a byte size attribute
7019 and that has a DW_AT_declaration attribute." */
7020 if (!pdi->has_byte_size && pdi->is_declaration)
7021 {
7022 xfree (built_actual_name);
7023 return;
7024 }
7025
7026 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
7027 static vs. global. */
7028 add_psymbol_to_list (actual_name, strlen (actual_name),
7029 built_actual_name != NULL,
7030 STRUCT_DOMAIN, LOC_TYPEDEF,
7031 (cu->language == language_cplus
7032 || cu->language == language_java)
7033 ? &objfile->global_psymbols
7034 : &objfile->static_psymbols,
7035 0, cu->language, objfile);
7036
7037 break;
7038 case DW_TAG_enumerator:
7039 add_psymbol_to_list (actual_name, strlen (actual_name),
7040 built_actual_name != NULL,
7041 VAR_DOMAIN, LOC_CONST,
7042 (cu->language == language_cplus
7043 || cu->language == language_java)
7044 ? &objfile->global_psymbols
7045 : &objfile->static_psymbols,
7046 0, cu->language, objfile);
7047 break;
7048 default:
7049 break;
7050 }
7051
7052 xfree (built_actual_name);
7053 }
7054
7055 /* Read a partial die corresponding to a namespace; also, add a symbol
7056 corresponding to that namespace to the symbol table. NAMESPACE is
7057 the name of the enclosing namespace. */
7058
7059 static void
7060 add_partial_namespace (struct partial_die_info *pdi,
7061 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7062 int set_addrmap, struct dwarf2_cu *cu)
7063 {
7064 /* Add a symbol for the namespace. */
7065
7066 add_partial_symbol (pdi, cu);
7067
7068 /* Now scan partial symbols in that namespace. */
7069
7070 if (pdi->has_children)
7071 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7072 }
7073
7074 /* Read a partial die corresponding to a Fortran module. */
7075
7076 static void
7077 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
7078 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
7079 {
7080 /* Add a symbol for the namespace. */
7081
7082 add_partial_symbol (pdi, cu);
7083
7084 /* Now scan partial symbols in that module. */
7085
7086 if (pdi->has_children)
7087 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7088 }
7089
7090 /* Read a partial die corresponding to a subprogram and create a partial
7091 symbol for that subprogram. When the CU language allows it, this
7092 routine also defines a partial symbol for each nested subprogram
7093 that this subprogram contains. If SET_ADDRMAP is true, record the
7094 covered ranges in the addrmap. Set *LOWPC and *HIGHPC to the lowest
7095 and highest PC values found in PDI.
7096
7097 PDI may also be a lexical block, in which case we simply search
7098 recursively for subprograms defined inside that lexical block.
7099 Again, this is only performed when the CU language allows this
7100 type of definitions. */
7101
7102 static void
7103 add_partial_subprogram (struct partial_die_info *pdi,
7104 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7105 int set_addrmap, struct dwarf2_cu *cu)
7106 {
7107 if (pdi->tag == DW_TAG_subprogram)
7108 {
7109 if (pdi->has_pc_info)
7110 {
7111 if (pdi->lowpc < *lowpc)
7112 *lowpc = pdi->lowpc;
7113 if (pdi->highpc > *highpc)
7114 *highpc = pdi->highpc;
7115 if (set_addrmap)
7116 {
7117 struct objfile *objfile = cu->objfile;
7118 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7119 CORE_ADDR baseaddr;
7120 CORE_ADDR highpc;
7121 CORE_ADDR lowpc;
7122
7123 baseaddr = ANOFFSET (objfile->section_offsets,
7124 SECT_OFF_TEXT (objfile));
7125 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7126 pdi->lowpc + baseaddr);
7127 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7128 pdi->highpc + baseaddr);
7129 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
7130 cu->per_cu->v.psymtab);
7131 }
7132 }
7133
7134 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
7135 {
7136 if (!pdi->is_declaration)
7137 /* Ignore subprogram DIEs that do not have a name, they are
7138 illegal. Do not emit a complaint at this point, we will
7139 do so when we convert this psymtab into a symtab. */
7140 if (pdi->name)
7141 add_partial_symbol (pdi, cu);
7142 }
7143 }
7144
7145 if (! pdi->has_children)
7146 return;
7147
7148 if (cu->language == language_ada)
7149 {
7150 pdi = pdi->die_child;
7151 while (pdi != NULL)
7152 {
7153 fixup_partial_die (pdi, cu);
7154 if (pdi->tag == DW_TAG_subprogram
7155 || pdi->tag == DW_TAG_lexical_block)
7156 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
7157 pdi = pdi->die_sibling;
7158 }
7159 }
7160 }
7161
7162 /* Read a partial die corresponding to an enumeration type. */
7163
7164 static void
7165 add_partial_enumeration (struct partial_die_info *enum_pdi,
7166 struct dwarf2_cu *cu)
7167 {
7168 struct partial_die_info *pdi;
7169
7170 if (enum_pdi->name != NULL)
7171 add_partial_symbol (enum_pdi, cu);
7172
7173 pdi = enum_pdi->die_child;
7174 while (pdi)
7175 {
7176 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
7177 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
7178 else
7179 add_partial_symbol (pdi, cu);
7180 pdi = pdi->die_sibling;
7181 }
7182 }
7183
7184 /* Return the initial uleb128 in the die at INFO_PTR. */
7185
7186 static unsigned int
7187 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
7188 {
7189 unsigned int bytes_read;
7190
7191 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7192 }
7193
7194 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
7195 Return the corresponding abbrev, or NULL if the number is zero (indicating
7196 an empty DIE). In either case *BYTES_READ will be set to the length of
7197 the initial number. */
7198
7199 static struct abbrev_info *
7200 peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
7201 struct dwarf2_cu *cu)
7202 {
7203 bfd *abfd = cu->objfile->obfd;
7204 unsigned int abbrev_number;
7205 struct abbrev_info *abbrev;
7206
7207 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7208
7209 if (abbrev_number == 0)
7210 return NULL;
7211
7212 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
7213 if (!abbrev)
7214 {
7215 error (_("Dwarf Error: Could not find abbrev number %d in %s"
7216 " at offset 0x%x [in module %s]"),
7217 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
7218 cu->header.offset.sect_off, bfd_get_filename (abfd));
7219 }
7220
7221 return abbrev;
7222 }
7223
7224 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7225 Returns a pointer to the end of a series of DIEs, terminated by an empty
7226 DIE. Any children of the skipped DIEs will also be skipped. */
7227
7228 static const gdb_byte *
7229 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
7230 {
7231 struct dwarf2_cu *cu = reader->cu;
7232 struct abbrev_info *abbrev;
7233 unsigned int bytes_read;
7234
7235 while (1)
7236 {
7237 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7238 if (abbrev == NULL)
7239 return info_ptr + bytes_read;
7240 else
7241 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
7242 }
7243 }
7244
7245 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7246 INFO_PTR should point just after the initial uleb128 of a DIE, and the
7247 abbrev corresponding to that skipped uleb128 should be passed in
7248 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7249 children. */
7250
7251 static const gdb_byte *
7252 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
7253 struct abbrev_info *abbrev)
7254 {
7255 unsigned int bytes_read;
7256 struct attribute attr;
7257 bfd *abfd = reader->abfd;
7258 struct dwarf2_cu *cu = reader->cu;
7259 const gdb_byte *buffer = reader->buffer;
7260 const gdb_byte *buffer_end = reader->buffer_end;
7261 const gdb_byte *start_info_ptr = info_ptr;
7262 unsigned int form, i;
7263
7264 for (i = 0; i < abbrev->num_attrs; i++)
7265 {
7266 /* The only abbrev we care about is DW_AT_sibling. */
7267 if (abbrev->attrs[i].name == DW_AT_sibling)
7268 {
7269 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
7270 if (attr.form == DW_FORM_ref_addr)
7271 complaint (&symfile_complaints,
7272 _("ignoring absolute DW_AT_sibling"));
7273 else
7274 {
7275 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
7276 const gdb_byte *sibling_ptr = buffer + off;
7277
7278 if (sibling_ptr < info_ptr)
7279 complaint (&symfile_complaints,
7280 _("DW_AT_sibling points backwards"));
7281 else if (sibling_ptr > reader->buffer_end)
7282 dwarf2_section_buffer_overflow_complaint (reader->die_section);
7283 else
7284 return sibling_ptr;
7285 }
7286 }
7287
7288 /* If it isn't DW_AT_sibling, skip this attribute. */
7289 form = abbrev->attrs[i].form;
7290 skip_attribute:
7291 switch (form)
7292 {
7293 case DW_FORM_ref_addr:
7294 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7295 and later it is offset sized. */
7296 if (cu->header.version == 2)
7297 info_ptr += cu->header.addr_size;
7298 else
7299 info_ptr += cu->header.offset_size;
7300 break;
7301 case DW_FORM_GNU_ref_alt:
7302 info_ptr += cu->header.offset_size;
7303 break;
7304 case DW_FORM_addr:
7305 info_ptr += cu->header.addr_size;
7306 break;
7307 case DW_FORM_data1:
7308 case DW_FORM_ref1:
7309 case DW_FORM_flag:
7310 info_ptr += 1;
7311 break;
7312 case DW_FORM_flag_present:
7313 break;
7314 case DW_FORM_data2:
7315 case DW_FORM_ref2:
7316 info_ptr += 2;
7317 break;
7318 case DW_FORM_data4:
7319 case DW_FORM_ref4:
7320 info_ptr += 4;
7321 break;
7322 case DW_FORM_data8:
7323 case DW_FORM_ref8:
7324 case DW_FORM_ref_sig8:
7325 info_ptr += 8;
7326 break;
7327 case DW_FORM_string:
7328 read_direct_string (abfd, info_ptr, &bytes_read);
7329 info_ptr += bytes_read;
7330 break;
7331 case DW_FORM_sec_offset:
7332 case DW_FORM_strp:
7333 case DW_FORM_GNU_strp_alt:
7334 info_ptr += cu->header.offset_size;
7335 break;
7336 case DW_FORM_exprloc:
7337 case DW_FORM_block:
7338 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7339 info_ptr += bytes_read;
7340 break;
7341 case DW_FORM_block1:
7342 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7343 break;
7344 case DW_FORM_block2:
7345 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7346 break;
7347 case DW_FORM_block4:
7348 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7349 break;
7350 case DW_FORM_sdata:
7351 case DW_FORM_udata:
7352 case DW_FORM_ref_udata:
7353 case DW_FORM_GNU_addr_index:
7354 case DW_FORM_GNU_str_index:
7355 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
7356 break;
7357 case DW_FORM_indirect:
7358 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7359 info_ptr += bytes_read;
7360 /* We need to continue parsing from here, so just go back to
7361 the top. */
7362 goto skip_attribute;
7363
7364 default:
7365 error (_("Dwarf Error: Cannot handle %s "
7366 "in DWARF reader [in module %s]"),
7367 dwarf_form_name (form),
7368 bfd_get_filename (abfd));
7369 }
7370 }
7371
7372 if (abbrev->has_children)
7373 return skip_children (reader, info_ptr);
7374 else
7375 return info_ptr;
7376 }
7377
7378 /* Locate ORIG_PDI's sibling.
7379 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
7380
7381 static const gdb_byte *
7382 locate_pdi_sibling (const struct die_reader_specs *reader,
7383 struct partial_die_info *orig_pdi,
7384 const gdb_byte *info_ptr)
7385 {
7386 /* Do we know the sibling already? */
7387
7388 if (orig_pdi->sibling)
7389 return orig_pdi->sibling;
7390
7391 /* Are there any children to deal with? */
7392
7393 if (!orig_pdi->has_children)
7394 return info_ptr;
7395
7396 /* Skip the children the long way. */
7397
7398 return skip_children (reader, info_ptr);
7399 }
7400
7401 /* Expand this partial symbol table into a full symbol table. SELF is
7402 not NULL. */
7403
7404 static void
7405 dwarf2_read_symtab (struct partial_symtab *self,
7406 struct objfile *objfile)
7407 {
7408 if (self->readin)
7409 {
7410 warning (_("bug: psymtab for %s is already read in."),
7411 self->filename);
7412 }
7413 else
7414 {
7415 if (info_verbose)
7416 {
7417 printf_filtered (_("Reading in symbols for %s..."),
7418 self->filename);
7419 gdb_flush (gdb_stdout);
7420 }
7421
7422 /* Restore our global data. */
7423 dwarf2_per_objfile
7424 = (struct dwarf2_per_objfile *) objfile_data (objfile,
7425 dwarf2_objfile_data_key);
7426
7427 /* If this psymtab is constructed from a debug-only objfile, the
7428 has_section_at_zero flag will not necessarily be correct. We
7429 can get the correct value for this flag by looking at the data
7430 associated with the (presumably stripped) associated objfile. */
7431 if (objfile->separate_debug_objfile_backlink)
7432 {
7433 struct dwarf2_per_objfile *dpo_backlink
7434 = ((struct dwarf2_per_objfile *)
7435 objfile_data (objfile->separate_debug_objfile_backlink,
7436 dwarf2_objfile_data_key));
7437
7438 dwarf2_per_objfile->has_section_at_zero
7439 = dpo_backlink->has_section_at_zero;
7440 }
7441
7442 dwarf2_per_objfile->reading_partial_symbols = 0;
7443
7444 psymtab_to_symtab_1 (self);
7445
7446 /* Finish up the debug error message. */
7447 if (info_verbose)
7448 printf_filtered (_("done.\n"));
7449 }
7450
7451 process_cu_includes ();
7452 }
7453 \f
7454 /* Reading in full CUs. */
7455
7456 /* Add PER_CU to the queue. */
7457
7458 static void
7459 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7460 enum language pretend_language)
7461 {
7462 struct dwarf2_queue_item *item;
7463
7464 per_cu->queued = 1;
7465 item = XNEW (struct dwarf2_queue_item);
7466 item->per_cu = per_cu;
7467 item->pretend_language = pretend_language;
7468 item->next = NULL;
7469
7470 if (dwarf2_queue == NULL)
7471 dwarf2_queue = item;
7472 else
7473 dwarf2_queue_tail->next = item;
7474
7475 dwarf2_queue_tail = item;
7476 }
7477
7478 /* If PER_CU is not yet queued, add it to the queue.
7479 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7480 dependency.
7481 The result is non-zero if PER_CU was queued, otherwise the result is zero
7482 meaning either PER_CU is already queued or it is already loaded.
7483
7484 N.B. There is an invariant here that if a CU is queued then it is loaded.
7485 The caller is required to load PER_CU if we return non-zero. */
7486
7487 static int
7488 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
7489 struct dwarf2_per_cu_data *per_cu,
7490 enum language pretend_language)
7491 {
7492 /* We may arrive here during partial symbol reading, if we need full
7493 DIEs to process an unusual case (e.g. template arguments). Do
7494 not queue PER_CU, just tell our caller to load its DIEs. */
7495 if (dwarf2_per_objfile->reading_partial_symbols)
7496 {
7497 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7498 return 1;
7499 return 0;
7500 }
7501
7502 /* Mark the dependence relation so that we don't flush PER_CU
7503 too early. */
7504 if (dependent_cu != NULL)
7505 dwarf2_add_dependence (dependent_cu, per_cu);
7506
7507 /* If it's already on the queue, we have nothing to do. */
7508 if (per_cu->queued)
7509 return 0;
7510
7511 /* If the compilation unit is already loaded, just mark it as
7512 used. */
7513 if (per_cu->cu != NULL)
7514 {
7515 per_cu->cu->last_used = 0;
7516 return 0;
7517 }
7518
7519 /* Add it to the queue. */
7520 queue_comp_unit (per_cu, pretend_language);
7521
7522 return 1;
7523 }
7524
7525 /* Process the queue. */
7526
7527 static void
7528 process_queue (void)
7529 {
7530 struct dwarf2_queue_item *item, *next_item;
7531
7532 if (dwarf_read_debug)
7533 {
7534 fprintf_unfiltered (gdb_stdlog,
7535 "Expanding one or more symtabs of objfile %s ...\n",
7536 objfile_name (dwarf2_per_objfile->objfile));
7537 }
7538
7539 /* The queue starts out with one item, but following a DIE reference
7540 may load a new CU, adding it to the end of the queue. */
7541 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7542 {
7543 if ((dwarf2_per_objfile->using_index
7544 ? !item->per_cu->v.quick->compunit_symtab
7545 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7546 /* Skip dummy CUs. */
7547 && item->per_cu->cu != NULL)
7548 {
7549 struct dwarf2_per_cu_data *per_cu = item->per_cu;
7550 unsigned int debug_print_threshold;
7551 char buf[100];
7552
7553 if (per_cu->is_debug_types)
7554 {
7555 struct signatured_type *sig_type =
7556 (struct signatured_type *) per_cu;
7557
7558 sprintf (buf, "TU %s at offset 0x%x",
7559 hex_string (sig_type->signature),
7560 per_cu->offset.sect_off);
7561 /* There can be 100s of TUs.
7562 Only print them in verbose mode. */
7563 debug_print_threshold = 2;
7564 }
7565 else
7566 {
7567 sprintf (buf, "CU at offset 0x%x", per_cu->offset.sect_off);
7568 debug_print_threshold = 1;
7569 }
7570
7571 if (dwarf_read_debug >= debug_print_threshold)
7572 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
7573
7574 if (per_cu->is_debug_types)
7575 process_full_type_unit (per_cu, item->pretend_language);
7576 else
7577 process_full_comp_unit (per_cu, item->pretend_language);
7578
7579 if (dwarf_read_debug >= debug_print_threshold)
7580 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
7581 }
7582
7583 item->per_cu->queued = 0;
7584 next_item = item->next;
7585 xfree (item);
7586 }
7587
7588 dwarf2_queue_tail = NULL;
7589
7590 if (dwarf_read_debug)
7591 {
7592 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
7593 objfile_name (dwarf2_per_objfile->objfile));
7594 }
7595 }
7596
7597 /* Free all allocated queue entries. This function only releases anything if
7598 an error was thrown; if the queue was processed then it would have been
7599 freed as we went along. */
7600
7601 static void
7602 dwarf2_release_queue (void *dummy)
7603 {
7604 struct dwarf2_queue_item *item, *last;
7605
7606 item = dwarf2_queue;
7607 while (item)
7608 {
7609 /* Anything still marked queued is likely to be in an
7610 inconsistent state, so discard it. */
7611 if (item->per_cu->queued)
7612 {
7613 if (item->per_cu->cu != NULL)
7614 free_one_cached_comp_unit (item->per_cu);
7615 item->per_cu->queued = 0;
7616 }
7617
7618 last = item;
7619 item = item->next;
7620 xfree (last);
7621 }
7622
7623 dwarf2_queue = dwarf2_queue_tail = NULL;
7624 }
7625
7626 /* Read in full symbols for PST, and anything it depends on. */
7627
7628 static void
7629 psymtab_to_symtab_1 (struct partial_symtab *pst)
7630 {
7631 struct dwarf2_per_cu_data *per_cu;
7632 int i;
7633
7634 if (pst->readin)
7635 return;
7636
7637 for (i = 0; i < pst->number_of_dependencies; i++)
7638 if (!pst->dependencies[i]->readin
7639 && pst->dependencies[i]->user == NULL)
7640 {
7641 /* Inform about additional files that need to be read in. */
7642 if (info_verbose)
7643 {
7644 /* FIXME: i18n: Need to make this a single string. */
7645 fputs_filtered (" ", gdb_stdout);
7646 wrap_here ("");
7647 fputs_filtered ("and ", gdb_stdout);
7648 wrap_here ("");
7649 printf_filtered ("%s...", pst->dependencies[i]->filename);
7650 wrap_here (""); /* Flush output. */
7651 gdb_flush (gdb_stdout);
7652 }
7653 psymtab_to_symtab_1 (pst->dependencies[i]);
7654 }
7655
7656 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
7657
7658 if (per_cu == NULL)
7659 {
7660 /* It's an include file, no symbols to read for it.
7661 Everything is in the parent symtab. */
7662 pst->readin = 1;
7663 return;
7664 }
7665
7666 dw2_do_instantiate_symtab (per_cu);
7667 }
7668
7669 /* Trivial hash function for die_info: the hash value of a DIE
7670 is its offset in .debug_info for this objfile. */
7671
7672 static hashval_t
7673 die_hash (const void *item)
7674 {
7675 const struct die_info *die = (const struct die_info *) item;
7676
7677 return die->offset.sect_off;
7678 }
7679
7680 /* Trivial comparison function for die_info structures: two DIEs
7681 are equal if they have the same offset. */
7682
7683 static int
7684 die_eq (const void *item_lhs, const void *item_rhs)
7685 {
7686 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
7687 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
7688
7689 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7690 }
7691
7692 /* die_reader_func for load_full_comp_unit.
7693 This is identical to read_signatured_type_reader,
7694 but is kept separate for now. */
7695
7696 static void
7697 load_full_comp_unit_reader (const struct die_reader_specs *reader,
7698 const gdb_byte *info_ptr,
7699 struct die_info *comp_unit_die,
7700 int has_children,
7701 void *data)
7702 {
7703 struct dwarf2_cu *cu = reader->cu;
7704 enum language *language_ptr = (enum language *) data;
7705
7706 gdb_assert (cu->die_hash == NULL);
7707 cu->die_hash =
7708 htab_create_alloc_ex (cu->header.length / 12,
7709 die_hash,
7710 die_eq,
7711 NULL,
7712 &cu->comp_unit_obstack,
7713 hashtab_obstack_allocate,
7714 dummy_obstack_deallocate);
7715
7716 if (has_children)
7717 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7718 &info_ptr, comp_unit_die);
7719 cu->dies = comp_unit_die;
7720 /* comp_unit_die is not stored in die_hash, no need. */
7721
7722 /* We try not to read any attributes in this function, because not
7723 all CUs needed for references have been loaded yet, and symbol
7724 table processing isn't initialized. But we have to set the CU language,
7725 or we won't be able to build types correctly.
7726 Similarly, if we do not read the producer, we can not apply
7727 producer-specific interpretation. */
7728 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
7729 }
7730
7731 /* Load the DIEs associated with PER_CU into memory. */
7732
7733 static void
7734 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7735 enum language pretend_language)
7736 {
7737 gdb_assert (! this_cu->is_debug_types);
7738
7739 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7740 load_full_comp_unit_reader, &pretend_language);
7741 }
7742
7743 /* Add a DIE to the delayed physname list. */
7744
7745 static void
7746 add_to_method_list (struct type *type, int fnfield_index, int index,
7747 const char *name, struct die_info *die,
7748 struct dwarf2_cu *cu)
7749 {
7750 struct delayed_method_info mi;
7751 mi.type = type;
7752 mi.fnfield_index = fnfield_index;
7753 mi.index = index;
7754 mi.name = name;
7755 mi.die = die;
7756 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7757 }
7758
7759 /* A cleanup for freeing the delayed method list. */
7760
7761 static void
7762 free_delayed_list (void *ptr)
7763 {
7764 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7765 if (cu->method_list != NULL)
7766 {
7767 VEC_free (delayed_method_info, cu->method_list);
7768 cu->method_list = NULL;
7769 }
7770 }
7771
7772 /* Compute the physnames of any methods on the CU's method list.
7773
7774 The computation of method physnames is delayed in order to avoid the
7775 (bad) condition that one of the method's formal parameters is of an as yet
7776 incomplete type. */
7777
7778 static void
7779 compute_delayed_physnames (struct dwarf2_cu *cu)
7780 {
7781 int i;
7782 struct delayed_method_info *mi;
7783 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7784 {
7785 const char *physname;
7786 struct fn_fieldlist *fn_flp
7787 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7788 physname = dwarf2_physname (mi->name, mi->die, cu);
7789 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi->index)
7790 = physname ? physname : "";
7791 }
7792 }
7793
7794 /* Go objects should be embedded in a DW_TAG_module DIE,
7795 and it's not clear if/how imported objects will appear.
7796 To keep Go support simple until that's worked out,
7797 go back through what we've read and create something usable.
7798 We could do this while processing each DIE, and feels kinda cleaner,
7799 but that way is more invasive.
7800 This is to, for example, allow the user to type "p var" or "b main"
7801 without having to specify the package name, and allow lookups
7802 of module.object to work in contexts that use the expression
7803 parser. */
7804
7805 static void
7806 fixup_go_packaging (struct dwarf2_cu *cu)
7807 {
7808 char *package_name = NULL;
7809 struct pending *list;
7810 int i;
7811
7812 for (list = global_symbols; list != NULL; list = list->next)
7813 {
7814 for (i = 0; i < list->nsyms; ++i)
7815 {
7816 struct symbol *sym = list->symbol[i];
7817
7818 if (SYMBOL_LANGUAGE (sym) == language_go
7819 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7820 {
7821 char *this_package_name = go_symbol_package_name (sym);
7822
7823 if (this_package_name == NULL)
7824 continue;
7825 if (package_name == NULL)
7826 package_name = this_package_name;
7827 else
7828 {
7829 if (strcmp (package_name, this_package_name) != 0)
7830 complaint (&symfile_complaints,
7831 _("Symtab %s has objects from two different Go packages: %s and %s"),
7832 (symbol_symtab (sym) != NULL
7833 ? symtab_to_filename_for_display
7834 (symbol_symtab (sym))
7835 : objfile_name (cu->objfile)),
7836 this_package_name, package_name);
7837 xfree (this_package_name);
7838 }
7839 }
7840 }
7841 }
7842
7843 if (package_name != NULL)
7844 {
7845 struct objfile *objfile = cu->objfile;
7846 const char *saved_package_name
7847 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
7848 package_name,
7849 strlen (package_name));
7850 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
7851 saved_package_name, objfile);
7852 struct symbol *sym;
7853
7854 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7855
7856 sym = allocate_symbol (objfile);
7857 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
7858 SYMBOL_SET_NAMES (sym, saved_package_name,
7859 strlen (saved_package_name), 0, objfile);
7860 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7861 e.g., "main" finds the "main" module and not C's main(). */
7862 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
7863 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
7864 SYMBOL_TYPE (sym) = type;
7865
7866 add_symbol_to_list (sym, &global_symbols);
7867
7868 xfree (package_name);
7869 }
7870 }
7871
7872 /* Return the symtab for PER_CU. This works properly regardless of
7873 whether we're using the index or psymtabs. */
7874
7875 static struct compunit_symtab *
7876 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
7877 {
7878 return (dwarf2_per_objfile->using_index
7879 ? per_cu->v.quick->compunit_symtab
7880 : per_cu->v.psymtab->compunit_symtab);
7881 }
7882
7883 /* A helper function for computing the list of all symbol tables
7884 included by PER_CU. */
7885
7886 static void
7887 recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
7888 htab_t all_children, htab_t all_type_symtabs,
7889 struct dwarf2_per_cu_data *per_cu,
7890 struct compunit_symtab *immediate_parent)
7891 {
7892 void **slot;
7893 int ix;
7894 struct compunit_symtab *cust;
7895 struct dwarf2_per_cu_data *iter;
7896
7897 slot = htab_find_slot (all_children, per_cu, INSERT);
7898 if (*slot != NULL)
7899 {
7900 /* This inclusion and its children have been processed. */
7901 return;
7902 }
7903
7904 *slot = per_cu;
7905 /* Only add a CU if it has a symbol table. */
7906 cust = get_compunit_symtab (per_cu);
7907 if (cust != NULL)
7908 {
7909 /* If this is a type unit only add its symbol table if we haven't
7910 seen it yet (type unit per_cu's can share symtabs). */
7911 if (per_cu->is_debug_types)
7912 {
7913 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
7914 if (*slot == NULL)
7915 {
7916 *slot = cust;
7917 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7918 if (cust->user == NULL)
7919 cust->user = immediate_parent;
7920 }
7921 }
7922 else
7923 {
7924 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7925 if (cust->user == NULL)
7926 cust->user = immediate_parent;
7927 }
7928 }
7929
7930 for (ix = 0;
7931 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
7932 ++ix)
7933 {
7934 recursively_compute_inclusions (result, all_children,
7935 all_type_symtabs, iter, cust);
7936 }
7937 }
7938
7939 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
7940 PER_CU. */
7941
7942 static void
7943 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
7944 {
7945 gdb_assert (! per_cu->is_debug_types);
7946
7947 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
7948 {
7949 int ix, len;
7950 struct dwarf2_per_cu_data *per_cu_iter;
7951 struct compunit_symtab *compunit_symtab_iter;
7952 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
7953 htab_t all_children, all_type_symtabs;
7954 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
7955
7956 /* If we don't have a symtab, we can just skip this case. */
7957 if (cust == NULL)
7958 return;
7959
7960 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7961 NULL, xcalloc, xfree);
7962 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7963 NULL, xcalloc, xfree);
7964
7965 for (ix = 0;
7966 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
7967 ix, per_cu_iter);
7968 ++ix)
7969 {
7970 recursively_compute_inclusions (&result_symtabs, all_children,
7971 all_type_symtabs, per_cu_iter,
7972 cust);
7973 }
7974
7975 /* Now we have a transitive closure of all the included symtabs. */
7976 len = VEC_length (compunit_symtab_ptr, result_symtabs);
7977 cust->includes
7978 = XOBNEWVEC (&dwarf2_per_objfile->objfile->objfile_obstack,
7979 struct compunit_symtab *, len + 1);
7980 for (ix = 0;
7981 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
7982 compunit_symtab_iter);
7983 ++ix)
7984 cust->includes[ix] = compunit_symtab_iter;
7985 cust->includes[len] = NULL;
7986
7987 VEC_free (compunit_symtab_ptr, result_symtabs);
7988 htab_delete (all_children);
7989 htab_delete (all_type_symtabs);
7990 }
7991 }
7992
7993 /* Compute the 'includes' field for the symtabs of all the CUs we just
7994 read. */
7995
7996 static void
7997 process_cu_includes (void)
7998 {
7999 int ix;
8000 struct dwarf2_per_cu_data *iter;
8001
8002 for (ix = 0;
8003 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
8004 ix, iter);
8005 ++ix)
8006 {
8007 if (! iter->is_debug_types)
8008 compute_compunit_symtab_includes (iter);
8009 }
8010
8011 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
8012 }
8013
8014 /* Generate full symbol information for PER_CU, whose DIEs have
8015 already been loaded into memory. */
8016
8017 static void
8018 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
8019 enum language pretend_language)
8020 {
8021 struct dwarf2_cu *cu = per_cu->cu;
8022 struct objfile *objfile = per_cu->objfile;
8023 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8024 CORE_ADDR lowpc, highpc;
8025 struct compunit_symtab *cust;
8026 struct cleanup *back_to, *delayed_list_cleanup;
8027 CORE_ADDR baseaddr;
8028 struct block *static_block;
8029 CORE_ADDR addr;
8030
8031 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8032
8033 buildsym_init ();
8034 back_to = make_cleanup (really_free_pendings, NULL);
8035 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8036
8037 cu->list_in_scope = &file_symbols;
8038
8039 cu->language = pretend_language;
8040 cu->language_defn = language_def (cu->language);
8041
8042 /* Do line number decoding in read_file_scope () */
8043 process_die (cu->dies, cu);
8044
8045 /* For now fudge the Go package. */
8046 if (cu->language == language_go)
8047 fixup_go_packaging (cu);
8048
8049 /* Now that we have processed all the DIEs in the CU, all the types
8050 should be complete, and it should now be safe to compute all of the
8051 physnames. */
8052 compute_delayed_physnames (cu);
8053 do_cleanups (delayed_list_cleanup);
8054
8055 /* Some compilers don't define a DW_AT_high_pc attribute for the
8056 compilation unit. If the DW_AT_high_pc is missing, synthesize
8057 it, by scanning the DIE's below the compilation unit. */
8058 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
8059
8060 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
8061 static_block = end_symtab_get_static_block (addr, 0, 1);
8062
8063 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
8064 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
8065 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
8066 addrmap to help ensure it has an accurate map of pc values belonging to
8067 this comp unit. */
8068 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
8069
8070 cust = end_symtab_from_static_block (static_block,
8071 SECT_OFF_TEXT (objfile), 0);
8072
8073 if (cust != NULL)
8074 {
8075 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
8076
8077 /* Set symtab language to language from DW_AT_language. If the
8078 compilation is from a C file generated by language preprocessors, do
8079 not set the language if it was already deduced by start_subfile. */
8080 if (!(cu->language == language_c
8081 && COMPUNIT_FILETABS (cust)->language != language_unknown))
8082 COMPUNIT_FILETABS (cust)->language = cu->language;
8083
8084 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
8085 produce DW_AT_location with location lists but it can be possibly
8086 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
8087 there were bugs in prologue debug info, fixed later in GCC-4.5
8088 by "unwind info for epilogues" patch (which is not directly related).
8089
8090 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
8091 needed, it would be wrong due to missing DW_AT_producer there.
8092
8093 Still one can confuse GDB by using non-standard GCC compilation
8094 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
8095 */
8096 if (cu->has_loclist && gcc_4_minor >= 5)
8097 cust->locations_valid = 1;
8098
8099 if (gcc_4_minor >= 5)
8100 cust->epilogue_unwind_valid = 1;
8101
8102 cust->call_site_htab = cu->call_site_htab;
8103 }
8104
8105 if (dwarf2_per_objfile->using_index)
8106 per_cu->v.quick->compunit_symtab = cust;
8107 else
8108 {
8109 struct partial_symtab *pst = per_cu->v.psymtab;
8110 pst->compunit_symtab = cust;
8111 pst->readin = 1;
8112 }
8113
8114 /* Push it for inclusion processing later. */
8115 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
8116
8117 do_cleanups (back_to);
8118 }
8119
8120 /* Generate full symbol information for type unit PER_CU, whose DIEs have
8121 already been loaded into memory. */
8122
8123 static void
8124 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
8125 enum language pretend_language)
8126 {
8127 struct dwarf2_cu *cu = per_cu->cu;
8128 struct objfile *objfile = per_cu->objfile;
8129 struct compunit_symtab *cust;
8130 struct cleanup *back_to, *delayed_list_cleanup;
8131 struct signatured_type *sig_type;
8132
8133 gdb_assert (per_cu->is_debug_types);
8134 sig_type = (struct signatured_type *) per_cu;
8135
8136 buildsym_init ();
8137 back_to = make_cleanup (really_free_pendings, NULL);
8138 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8139
8140 cu->list_in_scope = &file_symbols;
8141
8142 cu->language = pretend_language;
8143 cu->language_defn = language_def (cu->language);
8144
8145 /* The symbol tables are set up in read_type_unit_scope. */
8146 process_die (cu->dies, cu);
8147
8148 /* For now fudge the Go package. */
8149 if (cu->language == language_go)
8150 fixup_go_packaging (cu);
8151
8152 /* Now that we have processed all the DIEs in the CU, all the types
8153 should be complete, and it should now be safe to compute all of the
8154 physnames. */
8155 compute_delayed_physnames (cu);
8156 do_cleanups (delayed_list_cleanup);
8157
8158 /* TUs share symbol tables.
8159 If this is the first TU to use this symtab, complete the construction
8160 of it with end_expandable_symtab. Otherwise, complete the addition of
8161 this TU's symbols to the existing symtab. */
8162 if (sig_type->type_unit_group->compunit_symtab == NULL)
8163 {
8164 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
8165 sig_type->type_unit_group->compunit_symtab = cust;
8166
8167 if (cust != NULL)
8168 {
8169 /* Set symtab language to language from DW_AT_language. If the
8170 compilation is from a C file generated by language preprocessors,
8171 do not set the language if it was already deduced by
8172 start_subfile. */
8173 if (!(cu->language == language_c
8174 && COMPUNIT_FILETABS (cust)->language != language_c))
8175 COMPUNIT_FILETABS (cust)->language = cu->language;
8176 }
8177 }
8178 else
8179 {
8180 augment_type_symtab ();
8181 cust = sig_type->type_unit_group->compunit_symtab;
8182 }
8183
8184 if (dwarf2_per_objfile->using_index)
8185 per_cu->v.quick->compunit_symtab = cust;
8186 else
8187 {
8188 struct partial_symtab *pst = per_cu->v.psymtab;
8189 pst->compunit_symtab = cust;
8190 pst->readin = 1;
8191 }
8192
8193 do_cleanups (back_to);
8194 }
8195
8196 /* Process an imported unit DIE. */
8197
8198 static void
8199 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
8200 {
8201 struct attribute *attr;
8202
8203 /* For now we don't handle imported units in type units. */
8204 if (cu->per_cu->is_debug_types)
8205 {
8206 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8207 " supported in type units [in module %s]"),
8208 objfile_name (cu->objfile));
8209 }
8210
8211 attr = dwarf2_attr (die, DW_AT_import, cu);
8212 if (attr != NULL)
8213 {
8214 struct dwarf2_per_cu_data *per_cu;
8215 struct symtab *imported_symtab;
8216 sect_offset offset;
8217 int is_dwz;
8218
8219 offset = dwarf2_get_ref_die_offset (attr);
8220 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8221 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
8222
8223 /* If necessary, add it to the queue and load its DIEs. */
8224 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8225 load_full_comp_unit (per_cu, cu->language);
8226
8227 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8228 per_cu);
8229 }
8230 }
8231
8232 /* Reset the in_process bit of a die. */
8233
8234 static void
8235 reset_die_in_process (void *arg)
8236 {
8237 struct die_info *die = (struct die_info *) arg;
8238
8239 die->in_process = 0;
8240 }
8241
8242 /* Process a die and its children. */
8243
8244 static void
8245 process_die (struct die_info *die, struct dwarf2_cu *cu)
8246 {
8247 struct cleanup *in_process;
8248
8249 /* We should only be processing those not already in process. */
8250 gdb_assert (!die->in_process);
8251
8252 die->in_process = 1;
8253 in_process = make_cleanup (reset_die_in_process,die);
8254
8255 switch (die->tag)
8256 {
8257 case DW_TAG_padding:
8258 break;
8259 case DW_TAG_compile_unit:
8260 case DW_TAG_partial_unit:
8261 read_file_scope (die, cu);
8262 break;
8263 case DW_TAG_type_unit:
8264 read_type_unit_scope (die, cu);
8265 break;
8266 case DW_TAG_subprogram:
8267 case DW_TAG_inlined_subroutine:
8268 read_func_scope (die, cu);
8269 break;
8270 case DW_TAG_lexical_block:
8271 case DW_TAG_try_block:
8272 case DW_TAG_catch_block:
8273 read_lexical_block_scope (die, cu);
8274 break;
8275 case DW_TAG_GNU_call_site:
8276 read_call_site_scope (die, cu);
8277 break;
8278 case DW_TAG_class_type:
8279 case DW_TAG_interface_type:
8280 case DW_TAG_structure_type:
8281 case DW_TAG_union_type:
8282 process_structure_scope (die, cu);
8283 break;
8284 case DW_TAG_enumeration_type:
8285 process_enumeration_scope (die, cu);
8286 break;
8287
8288 /* These dies have a type, but processing them does not create
8289 a symbol or recurse to process the children. Therefore we can
8290 read them on-demand through read_type_die. */
8291 case DW_TAG_subroutine_type:
8292 case DW_TAG_set_type:
8293 case DW_TAG_array_type:
8294 case DW_TAG_pointer_type:
8295 case DW_TAG_ptr_to_member_type:
8296 case DW_TAG_reference_type:
8297 case DW_TAG_string_type:
8298 break;
8299
8300 case DW_TAG_base_type:
8301 case DW_TAG_subrange_type:
8302 case DW_TAG_typedef:
8303 /* Add a typedef symbol for the type definition, if it has a
8304 DW_AT_name. */
8305 new_symbol (die, read_type_die (die, cu), cu);
8306 break;
8307 case DW_TAG_common_block:
8308 read_common_block (die, cu);
8309 break;
8310 case DW_TAG_common_inclusion:
8311 break;
8312 case DW_TAG_namespace:
8313 cu->processing_has_namespace_info = 1;
8314 read_namespace (die, cu);
8315 break;
8316 case DW_TAG_module:
8317 cu->processing_has_namespace_info = 1;
8318 read_module (die, cu);
8319 break;
8320 case DW_TAG_imported_declaration:
8321 cu->processing_has_namespace_info = 1;
8322 if (read_namespace_alias (die, cu))
8323 break;
8324 /* The declaration is not a global namespace alias: fall through. */
8325 case DW_TAG_imported_module:
8326 cu->processing_has_namespace_info = 1;
8327 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8328 || cu->language != language_fortran))
8329 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8330 dwarf_tag_name (die->tag));
8331 read_import_statement (die, cu);
8332 break;
8333
8334 case DW_TAG_imported_unit:
8335 process_imported_unit_die (die, cu);
8336 break;
8337
8338 default:
8339 new_symbol (die, NULL, cu);
8340 break;
8341 }
8342
8343 do_cleanups (in_process);
8344 }
8345 \f
8346 /* DWARF name computation. */
8347
8348 /* A helper function for dwarf2_compute_name which determines whether DIE
8349 needs to have the name of the scope prepended to the name listed in the
8350 die. */
8351
8352 static int
8353 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8354 {
8355 struct attribute *attr;
8356
8357 switch (die->tag)
8358 {
8359 case DW_TAG_namespace:
8360 case DW_TAG_typedef:
8361 case DW_TAG_class_type:
8362 case DW_TAG_interface_type:
8363 case DW_TAG_structure_type:
8364 case DW_TAG_union_type:
8365 case DW_TAG_enumeration_type:
8366 case DW_TAG_enumerator:
8367 case DW_TAG_subprogram:
8368 case DW_TAG_inlined_subroutine:
8369 case DW_TAG_member:
8370 case DW_TAG_imported_declaration:
8371 return 1;
8372
8373 case DW_TAG_variable:
8374 case DW_TAG_constant:
8375 /* We only need to prefix "globally" visible variables. These include
8376 any variable marked with DW_AT_external or any variable that
8377 lives in a namespace. [Variables in anonymous namespaces
8378 require prefixing, but they are not DW_AT_external.] */
8379
8380 if (dwarf2_attr (die, DW_AT_specification, cu))
8381 {
8382 struct dwarf2_cu *spec_cu = cu;
8383
8384 return die_needs_namespace (die_specification (die, &spec_cu),
8385 spec_cu);
8386 }
8387
8388 attr = dwarf2_attr (die, DW_AT_external, cu);
8389 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8390 && die->parent->tag != DW_TAG_module)
8391 return 0;
8392 /* A variable in a lexical block of some kind does not need a
8393 namespace, even though in C++ such variables may be external
8394 and have a mangled name. */
8395 if (die->parent->tag == DW_TAG_lexical_block
8396 || die->parent->tag == DW_TAG_try_block
8397 || die->parent->tag == DW_TAG_catch_block
8398 || die->parent->tag == DW_TAG_subprogram)
8399 return 0;
8400 return 1;
8401
8402 default:
8403 return 0;
8404 }
8405 }
8406
8407 /* Retrieve the last character from a mem_file. */
8408
8409 static void
8410 do_ui_file_peek_last (void *object, const char *buffer, long length)
8411 {
8412 char *last_char_p = (char *) object;
8413
8414 if (length > 0)
8415 *last_char_p = buffer[length - 1];
8416 }
8417
8418 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
8419 compute the physname for the object, which include a method's:
8420 - formal parameters (C++/Java),
8421 - receiver type (Go),
8422 - return type (Java).
8423
8424 The term "physname" is a bit confusing.
8425 For C++, for example, it is the demangled name.
8426 For Go, for example, it's the mangled name.
8427
8428 For Ada, return the DIE's linkage name rather than the fully qualified
8429 name. PHYSNAME is ignored..
8430
8431 The result is allocated on the objfile_obstack and canonicalized. */
8432
8433 static const char *
8434 dwarf2_compute_name (const char *name,
8435 struct die_info *die, struct dwarf2_cu *cu,
8436 int physname)
8437 {
8438 struct objfile *objfile = cu->objfile;
8439
8440 if (name == NULL)
8441 name = dwarf2_name (die, cu);
8442
8443 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
8444 but otherwise compute it by typename_concat inside GDB.
8445 FIXME: Actually this is not really true, or at least not always true.
8446 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
8447 Fortran names because there is no mangling standard. So new_symbol_full
8448 will set the demangled name to the result of dwarf2_full_name, and it is
8449 the demangled name that GDB uses if it exists. */
8450 if (cu->language == language_ada
8451 || (cu->language == language_fortran && physname))
8452 {
8453 /* For Ada unit, we prefer the linkage name over the name, as
8454 the former contains the exported name, which the user expects
8455 to be able to reference. Ideally, we want the user to be able
8456 to reference this entity using either natural or linkage name,
8457 but we haven't started looking at this enhancement yet. */
8458 const char *linkage_name;
8459
8460 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
8461 if (linkage_name == NULL)
8462 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
8463 if (linkage_name != NULL)
8464 return linkage_name;
8465 }
8466
8467 /* These are the only languages we know how to qualify names in. */
8468 if (name != NULL
8469 && (cu->language == language_cplus || cu->language == language_java
8470 || cu->language == language_fortran || cu->language == language_d))
8471 {
8472 if (die_needs_namespace (die, cu))
8473 {
8474 long length;
8475 const char *prefix;
8476 struct ui_file *buf;
8477 char *intermediate_name;
8478 const char *canonical_name = NULL;
8479
8480 prefix = determine_prefix (die, cu);
8481 buf = mem_fileopen ();
8482 if (*prefix != '\0')
8483 {
8484 char *prefixed_name = typename_concat (NULL, prefix, name,
8485 physname, cu);
8486
8487 fputs_unfiltered (prefixed_name, buf);
8488 xfree (prefixed_name);
8489 }
8490 else
8491 fputs_unfiltered (name, buf);
8492
8493 /* Template parameters may be specified in the DIE's DW_AT_name, or
8494 as children with DW_TAG_template_type_param or
8495 DW_TAG_value_type_param. If the latter, add them to the name
8496 here. If the name already has template parameters, then
8497 skip this step; some versions of GCC emit both, and
8498 it is more efficient to use the pre-computed name.
8499
8500 Something to keep in mind about this process: it is very
8501 unlikely, or in some cases downright impossible, to produce
8502 something that will match the mangled name of a function.
8503 If the definition of the function has the same debug info,
8504 we should be able to match up with it anyway. But fallbacks
8505 using the minimal symbol, for instance to find a method
8506 implemented in a stripped copy of libstdc++, will not work.
8507 If we do not have debug info for the definition, we will have to
8508 match them up some other way.
8509
8510 When we do name matching there is a related problem with function
8511 templates; two instantiated function templates are allowed to
8512 differ only by their return types, which we do not add here. */
8513
8514 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8515 {
8516 struct attribute *attr;
8517 struct die_info *child;
8518 int first = 1;
8519
8520 die->building_fullname = 1;
8521
8522 for (child = die->child; child != NULL; child = child->sibling)
8523 {
8524 struct type *type;
8525 LONGEST value;
8526 const gdb_byte *bytes;
8527 struct dwarf2_locexpr_baton *baton;
8528 struct value *v;
8529
8530 if (child->tag != DW_TAG_template_type_param
8531 && child->tag != DW_TAG_template_value_param)
8532 continue;
8533
8534 if (first)
8535 {
8536 fputs_unfiltered ("<", buf);
8537 first = 0;
8538 }
8539 else
8540 fputs_unfiltered (", ", buf);
8541
8542 attr = dwarf2_attr (child, DW_AT_type, cu);
8543 if (attr == NULL)
8544 {
8545 complaint (&symfile_complaints,
8546 _("template parameter missing DW_AT_type"));
8547 fputs_unfiltered ("UNKNOWN_TYPE", buf);
8548 continue;
8549 }
8550 type = die_type (child, cu);
8551
8552 if (child->tag == DW_TAG_template_type_param)
8553 {
8554 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
8555 continue;
8556 }
8557
8558 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8559 if (attr == NULL)
8560 {
8561 complaint (&symfile_complaints,
8562 _("template parameter missing "
8563 "DW_AT_const_value"));
8564 fputs_unfiltered ("UNKNOWN_VALUE", buf);
8565 continue;
8566 }
8567
8568 dwarf2_const_value_attr (attr, type, name,
8569 &cu->comp_unit_obstack, cu,
8570 &value, &bytes, &baton);
8571
8572 if (TYPE_NOSIGN (type))
8573 /* GDB prints characters as NUMBER 'CHAR'. If that's
8574 changed, this can use value_print instead. */
8575 c_printchar (value, type, buf);
8576 else
8577 {
8578 struct value_print_options opts;
8579
8580 if (baton != NULL)
8581 v = dwarf2_evaluate_loc_desc (type, NULL,
8582 baton->data,
8583 baton->size,
8584 baton->per_cu);
8585 else if (bytes != NULL)
8586 {
8587 v = allocate_value (type);
8588 memcpy (value_contents_writeable (v), bytes,
8589 TYPE_LENGTH (type));
8590 }
8591 else
8592 v = value_from_longest (type, value);
8593
8594 /* Specify decimal so that we do not depend on
8595 the radix. */
8596 get_formatted_print_options (&opts, 'd');
8597 opts.raw = 1;
8598 value_print (v, buf, &opts);
8599 release_value (v);
8600 value_free (v);
8601 }
8602 }
8603
8604 die->building_fullname = 0;
8605
8606 if (!first)
8607 {
8608 /* Close the argument list, with a space if necessary
8609 (nested templates). */
8610 char last_char = '\0';
8611 ui_file_put (buf, do_ui_file_peek_last, &last_char);
8612 if (last_char == '>')
8613 fputs_unfiltered (" >", buf);
8614 else
8615 fputs_unfiltered (">", buf);
8616 }
8617 }
8618
8619 /* For Java and C++ methods, append formal parameter type
8620 information, if PHYSNAME. */
8621
8622 if (physname && die->tag == DW_TAG_subprogram
8623 && (cu->language == language_cplus
8624 || cu->language == language_java))
8625 {
8626 struct type *type = read_type_die (die, cu);
8627
8628 c_type_print_args (type, buf, 1, cu->language,
8629 &type_print_raw_options);
8630
8631 if (cu->language == language_java)
8632 {
8633 /* For java, we must append the return type to method
8634 names. */
8635 if (die->tag == DW_TAG_subprogram)
8636 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
8637 0, 0, &type_print_raw_options);
8638 }
8639 else if (cu->language == language_cplus)
8640 {
8641 /* Assume that an artificial first parameter is
8642 "this", but do not crash if it is not. RealView
8643 marks unnamed (and thus unused) parameters as
8644 artificial; there is no way to differentiate
8645 the two cases. */
8646 if (TYPE_NFIELDS (type) > 0
8647 && TYPE_FIELD_ARTIFICIAL (type, 0)
8648 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
8649 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8650 0))))
8651 fputs_unfiltered (" const", buf);
8652 }
8653 }
8654
8655 intermediate_name = ui_file_xstrdup (buf, &length);
8656 ui_file_delete (buf);
8657
8658 if (cu->language == language_cplus)
8659 canonical_name
8660 = dwarf2_canonicalize_name (intermediate_name, cu,
8661 &objfile->per_bfd->storage_obstack);
8662
8663 /* If we only computed INTERMEDIATE_NAME, or if
8664 INTERMEDIATE_NAME is already canonical, then we need to
8665 copy it to the appropriate obstack. */
8666 if (canonical_name == NULL || canonical_name == intermediate_name)
8667 name = ((const char *)
8668 obstack_copy0 (&objfile->per_bfd->storage_obstack,
8669 intermediate_name,
8670 strlen (intermediate_name)));
8671 else
8672 name = canonical_name;
8673
8674 xfree (intermediate_name);
8675 }
8676 }
8677
8678 return name;
8679 }
8680
8681 /* Return the fully qualified name of DIE, based on its DW_AT_name.
8682 If scope qualifiers are appropriate they will be added. The result
8683 will be allocated on the storage_obstack, or NULL if the DIE does
8684 not have a name. NAME may either be from a previous call to
8685 dwarf2_name or NULL.
8686
8687 The output string will be canonicalized (if C++/Java). */
8688
8689 static const char *
8690 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8691 {
8692 return dwarf2_compute_name (name, die, cu, 0);
8693 }
8694
8695 /* Construct a physname for the given DIE in CU. NAME may either be
8696 from a previous call to dwarf2_name or NULL. The result will be
8697 allocated on the objfile_objstack or NULL if the DIE does not have a
8698 name.
8699
8700 The output string will be canonicalized (if C++/Java). */
8701
8702 static const char *
8703 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8704 {
8705 struct objfile *objfile = cu->objfile;
8706 struct attribute *attr;
8707 const char *retval, *mangled = NULL, *canon = NULL;
8708 struct cleanup *back_to;
8709 int need_copy = 1;
8710
8711 /* In this case dwarf2_compute_name is just a shortcut not building anything
8712 on its own. */
8713 if (!die_needs_namespace (die, cu))
8714 return dwarf2_compute_name (name, die, cu, 1);
8715
8716 back_to = make_cleanup (null_cleanup, NULL);
8717
8718 mangled = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
8719 if (mangled == NULL)
8720 mangled = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
8721
8722 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8723 has computed. */
8724 if (mangled != NULL)
8725 {
8726 char *demangled;
8727
8728 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8729 type. It is easier for GDB users to search for such functions as
8730 `name(params)' than `long name(params)'. In such case the minimal
8731 symbol names do not match the full symbol names but for template
8732 functions there is never a need to look up their definition from their
8733 declaration so the only disadvantage remains the minimal symbol
8734 variant `long name(params)' does not have the proper inferior type.
8735 */
8736
8737 if (cu->language == language_go)
8738 {
8739 /* This is a lie, but we already lie to the caller new_symbol_full.
8740 new_symbol_full assumes we return the mangled name.
8741 This just undoes that lie until things are cleaned up. */
8742 demangled = NULL;
8743 }
8744 else
8745 {
8746 demangled = gdb_demangle (mangled,
8747 (DMGL_PARAMS | DMGL_ANSI
8748 | (cu->language == language_java
8749 ? DMGL_JAVA | DMGL_RET_POSTFIX
8750 : DMGL_RET_DROP)));
8751 }
8752 if (demangled)
8753 {
8754 make_cleanup (xfree, demangled);
8755 canon = demangled;
8756 }
8757 else
8758 {
8759 canon = mangled;
8760 need_copy = 0;
8761 }
8762 }
8763
8764 if (canon == NULL || check_physname)
8765 {
8766 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8767
8768 if (canon != NULL && strcmp (physname, canon) != 0)
8769 {
8770 /* It may not mean a bug in GDB. The compiler could also
8771 compute DW_AT_linkage_name incorrectly. But in such case
8772 GDB would need to be bug-to-bug compatible. */
8773
8774 complaint (&symfile_complaints,
8775 _("Computed physname <%s> does not match demangled <%s> "
8776 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
8777 physname, canon, mangled, die->offset.sect_off,
8778 objfile_name (objfile));
8779
8780 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8781 is available here - over computed PHYSNAME. It is safer
8782 against both buggy GDB and buggy compilers. */
8783
8784 retval = canon;
8785 }
8786 else
8787 {
8788 retval = physname;
8789 need_copy = 0;
8790 }
8791 }
8792 else
8793 retval = canon;
8794
8795 if (need_copy)
8796 retval = ((const char *)
8797 obstack_copy0 (&objfile->per_bfd->storage_obstack,
8798 retval, strlen (retval)));
8799
8800 do_cleanups (back_to);
8801 return retval;
8802 }
8803
8804 /* Inspect DIE in CU for a namespace alias. If one exists, record
8805 a new symbol for it.
8806
8807 Returns 1 if a namespace alias was recorded, 0 otherwise. */
8808
8809 static int
8810 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
8811 {
8812 struct attribute *attr;
8813
8814 /* If the die does not have a name, this is not a namespace
8815 alias. */
8816 attr = dwarf2_attr (die, DW_AT_name, cu);
8817 if (attr != NULL)
8818 {
8819 int num;
8820 struct die_info *d = die;
8821 struct dwarf2_cu *imported_cu = cu;
8822
8823 /* If the compiler has nested DW_AT_imported_declaration DIEs,
8824 keep inspecting DIEs until we hit the underlying import. */
8825 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
8826 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
8827 {
8828 attr = dwarf2_attr (d, DW_AT_import, cu);
8829 if (attr == NULL)
8830 break;
8831
8832 d = follow_die_ref (d, attr, &imported_cu);
8833 if (d->tag != DW_TAG_imported_declaration)
8834 break;
8835 }
8836
8837 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
8838 {
8839 complaint (&symfile_complaints,
8840 _("DIE at 0x%x has too many recursively imported "
8841 "declarations"), d->offset.sect_off);
8842 return 0;
8843 }
8844
8845 if (attr != NULL)
8846 {
8847 struct type *type;
8848 sect_offset offset = dwarf2_get_ref_die_offset (attr);
8849
8850 type = get_die_type_at_offset (offset, cu->per_cu);
8851 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
8852 {
8853 /* This declaration is a global namespace alias. Add
8854 a symbol for it whose type is the aliased namespace. */
8855 new_symbol (die, type, cu);
8856 return 1;
8857 }
8858 }
8859 }
8860
8861 return 0;
8862 }
8863
8864 /* Return the using directives repository (global or local?) to use in the
8865 current context for LANGUAGE.
8866
8867 For Ada, imported declarations can materialize renamings, which *may* be
8868 global. However it is impossible (for now?) in DWARF to distinguish
8869 "external" imported declarations and "static" ones. As all imported
8870 declarations seem to be static in all other languages, make them all CU-wide
8871 global only in Ada. */
8872
8873 static struct using_direct **
8874 using_directives (enum language language)
8875 {
8876 if (language == language_ada && context_stack_depth == 0)
8877 return &global_using_directives;
8878 else
8879 return &local_using_directives;
8880 }
8881
8882 /* Read the import statement specified by the given die and record it. */
8883
8884 static void
8885 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8886 {
8887 struct objfile *objfile = cu->objfile;
8888 struct attribute *import_attr;
8889 struct die_info *imported_die, *child_die;
8890 struct dwarf2_cu *imported_cu;
8891 const char *imported_name;
8892 const char *imported_name_prefix;
8893 const char *canonical_name;
8894 const char *import_alias;
8895 const char *imported_declaration = NULL;
8896 const char *import_prefix;
8897 VEC (const_char_ptr) *excludes = NULL;
8898 struct cleanup *cleanups;
8899
8900 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8901 if (import_attr == NULL)
8902 {
8903 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8904 dwarf_tag_name (die->tag));
8905 return;
8906 }
8907
8908 imported_cu = cu;
8909 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8910 imported_name = dwarf2_name (imported_die, imported_cu);
8911 if (imported_name == NULL)
8912 {
8913 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8914
8915 The import in the following code:
8916 namespace A
8917 {
8918 typedef int B;
8919 }
8920
8921 int main ()
8922 {
8923 using A::B;
8924 B b;
8925 return b;
8926 }
8927
8928 ...
8929 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8930 <52> DW_AT_decl_file : 1
8931 <53> DW_AT_decl_line : 6
8932 <54> DW_AT_import : <0x75>
8933 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8934 <59> DW_AT_name : B
8935 <5b> DW_AT_decl_file : 1
8936 <5c> DW_AT_decl_line : 2
8937 <5d> DW_AT_type : <0x6e>
8938 ...
8939 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
8940 <76> DW_AT_byte_size : 4
8941 <77> DW_AT_encoding : 5 (signed)
8942
8943 imports the wrong die ( 0x75 instead of 0x58 ).
8944 This case will be ignored until the gcc bug is fixed. */
8945 return;
8946 }
8947
8948 /* Figure out the local name after import. */
8949 import_alias = dwarf2_name (die, cu);
8950
8951 /* Figure out where the statement is being imported to. */
8952 import_prefix = determine_prefix (die, cu);
8953
8954 /* Figure out what the scope of the imported die is and prepend it
8955 to the name of the imported die. */
8956 imported_name_prefix = determine_prefix (imported_die, imported_cu);
8957
8958 if (imported_die->tag != DW_TAG_namespace
8959 && imported_die->tag != DW_TAG_module)
8960 {
8961 imported_declaration = imported_name;
8962 canonical_name = imported_name_prefix;
8963 }
8964 else if (strlen (imported_name_prefix) > 0)
8965 canonical_name = obconcat (&objfile->objfile_obstack,
8966 imported_name_prefix,
8967 (cu->language == language_d ? "." : "::"),
8968 imported_name, (char *) NULL);
8969 else
8970 canonical_name = imported_name;
8971
8972 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
8973
8974 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
8975 for (child_die = die->child; child_die && child_die->tag;
8976 child_die = sibling_die (child_die))
8977 {
8978 /* DWARF-4: A Fortran use statement with a “rename list” may be
8979 represented by an imported module entry with an import attribute
8980 referring to the module and owned entries corresponding to those
8981 entities that are renamed as part of being imported. */
8982
8983 if (child_die->tag != DW_TAG_imported_declaration)
8984 {
8985 complaint (&symfile_complaints,
8986 _("child DW_TAG_imported_declaration expected "
8987 "- DIE at 0x%x [in module %s]"),
8988 child_die->offset.sect_off, objfile_name (objfile));
8989 continue;
8990 }
8991
8992 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
8993 if (import_attr == NULL)
8994 {
8995 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8996 dwarf_tag_name (child_die->tag));
8997 continue;
8998 }
8999
9000 imported_cu = cu;
9001 imported_die = follow_die_ref_or_sig (child_die, import_attr,
9002 &imported_cu);
9003 imported_name = dwarf2_name (imported_die, imported_cu);
9004 if (imported_name == NULL)
9005 {
9006 complaint (&symfile_complaints,
9007 _("child DW_TAG_imported_declaration has unknown "
9008 "imported name - DIE at 0x%x [in module %s]"),
9009 child_die->offset.sect_off, objfile_name (objfile));
9010 continue;
9011 }
9012
9013 VEC_safe_push (const_char_ptr, excludes, imported_name);
9014
9015 process_die (child_die, cu);
9016 }
9017
9018 add_using_directive (using_directives (cu->language),
9019 import_prefix,
9020 canonical_name,
9021 import_alias,
9022 imported_declaration,
9023 excludes,
9024 0,
9025 &objfile->objfile_obstack);
9026
9027 do_cleanups (cleanups);
9028 }
9029
9030 /* Cleanup function for handle_DW_AT_stmt_list. */
9031
9032 static void
9033 free_cu_line_header (void *arg)
9034 {
9035 struct dwarf2_cu *cu = (struct dwarf2_cu *) arg;
9036
9037 free_line_header (cu->line_header);
9038 cu->line_header = NULL;
9039 }
9040
9041 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
9042 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
9043 this, it was first present in GCC release 4.3.0. */
9044
9045 static int
9046 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
9047 {
9048 if (!cu->checked_producer)
9049 check_producer (cu);
9050
9051 return cu->producer_is_gcc_lt_4_3;
9052 }
9053
9054 static void
9055 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
9056 const char **name, const char **comp_dir)
9057 {
9058 /* Find the filename. Do not use dwarf2_name here, since the filename
9059 is not a source language identifier. */
9060 *name = dwarf2_string_attr (die, DW_AT_name, cu);
9061 *comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
9062
9063 if (*comp_dir == NULL
9064 && producer_is_gcc_lt_4_3 (cu) && *name != NULL
9065 && IS_ABSOLUTE_PATH (*name))
9066 {
9067 char *d = ldirname (*name);
9068
9069 *comp_dir = d;
9070 if (d != NULL)
9071 make_cleanup (xfree, d);
9072 }
9073 if (*comp_dir != NULL)
9074 {
9075 /* Irix 6.2 native cc prepends <machine>.: to the compilation
9076 directory, get rid of it. */
9077 const char *cp = strchr (*comp_dir, ':');
9078
9079 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
9080 *comp_dir = cp + 1;
9081 }
9082
9083 if (*name == NULL)
9084 *name = "<unknown>";
9085 }
9086
9087 /* Handle DW_AT_stmt_list for a compilation unit.
9088 DIE is the DW_TAG_compile_unit die for CU.
9089 COMP_DIR is the compilation directory. LOWPC is passed to
9090 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
9091
9092 static void
9093 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
9094 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
9095 {
9096 struct objfile *objfile = dwarf2_per_objfile->objfile;
9097 struct attribute *attr;
9098 unsigned int line_offset;
9099 struct line_header line_header_local;
9100 hashval_t line_header_local_hash;
9101 unsigned u;
9102 void **slot;
9103 int decode_mapping;
9104
9105 gdb_assert (! cu->per_cu->is_debug_types);
9106
9107 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9108 if (attr == NULL)
9109 return;
9110
9111 line_offset = DW_UNSND (attr);
9112
9113 /* The line header hash table is only created if needed (it exists to
9114 prevent redundant reading of the line table for partial_units).
9115 If we're given a partial_unit, we'll need it. If we're given a
9116 compile_unit, then use the line header hash table if it's already
9117 created, but don't create one just yet. */
9118
9119 if (dwarf2_per_objfile->line_header_hash == NULL
9120 && die->tag == DW_TAG_partial_unit)
9121 {
9122 dwarf2_per_objfile->line_header_hash
9123 = htab_create_alloc_ex (127, line_header_hash_voidp,
9124 line_header_eq_voidp,
9125 free_line_header_voidp,
9126 &objfile->objfile_obstack,
9127 hashtab_obstack_allocate,
9128 dummy_obstack_deallocate);
9129 }
9130
9131 line_header_local.offset.sect_off = line_offset;
9132 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
9133 line_header_local_hash = line_header_hash (&line_header_local);
9134 if (dwarf2_per_objfile->line_header_hash != NULL)
9135 {
9136 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9137 &line_header_local,
9138 line_header_local_hash, NO_INSERT);
9139
9140 /* For DW_TAG_compile_unit we need info like symtab::linetable which
9141 is not present in *SLOT (since if there is something in *SLOT then
9142 it will be for a partial_unit). */
9143 if (die->tag == DW_TAG_partial_unit && slot != NULL)
9144 {
9145 gdb_assert (*slot != NULL);
9146 cu->line_header = (struct line_header *) *slot;
9147 return;
9148 }
9149 }
9150
9151 /* dwarf_decode_line_header does not yet provide sufficient information.
9152 We always have to call also dwarf_decode_lines for it. */
9153 cu->line_header = dwarf_decode_line_header (line_offset, cu);
9154 if (cu->line_header == NULL)
9155 return;
9156
9157 if (dwarf2_per_objfile->line_header_hash == NULL)
9158 slot = NULL;
9159 else
9160 {
9161 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9162 &line_header_local,
9163 line_header_local_hash, INSERT);
9164 gdb_assert (slot != NULL);
9165 }
9166 if (slot != NULL && *slot == NULL)
9167 {
9168 /* This newly decoded line number information unit will be owned
9169 by line_header_hash hash table. */
9170 *slot = cu->line_header;
9171 }
9172 else
9173 {
9174 /* We cannot free any current entry in (*slot) as that struct line_header
9175 may be already used by multiple CUs. Create only temporary decoded
9176 line_header for this CU - it may happen at most once for each line
9177 number information unit. And if we're not using line_header_hash
9178 then this is what we want as well. */
9179 gdb_assert (die->tag != DW_TAG_partial_unit);
9180 make_cleanup (free_cu_line_header, cu);
9181 }
9182 decode_mapping = (die->tag != DW_TAG_partial_unit);
9183 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
9184 decode_mapping);
9185 }
9186
9187 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
9188
9189 static void
9190 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
9191 {
9192 struct objfile *objfile = dwarf2_per_objfile->objfile;
9193 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9194 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
9195 CORE_ADDR lowpc = ((CORE_ADDR) -1);
9196 CORE_ADDR highpc = ((CORE_ADDR) 0);
9197 struct attribute *attr;
9198 const char *name = NULL;
9199 const char *comp_dir = NULL;
9200 struct die_info *child_die;
9201 bfd *abfd = objfile->obfd;
9202 CORE_ADDR baseaddr;
9203
9204 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9205
9206 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
9207
9208 /* If we didn't find a lowpc, set it to highpc to avoid complaints
9209 from finish_block. */
9210 if (lowpc == ((CORE_ADDR) -1))
9211 lowpc = highpc;
9212 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
9213
9214 find_file_and_directory (die, cu, &name, &comp_dir);
9215
9216 prepare_one_comp_unit (cu, die, cu->language);
9217
9218 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
9219 standardised yet. As a workaround for the language detection we fall
9220 back to the DW_AT_producer string. */
9221 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
9222 cu->language = language_opencl;
9223
9224 /* Similar hack for Go. */
9225 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
9226 set_cu_language (DW_LANG_Go, cu);
9227
9228 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
9229
9230 /* Decode line number information if present. We do this before
9231 processing child DIEs, so that the line header table is available
9232 for DW_AT_decl_file. */
9233 handle_DW_AT_stmt_list (die, cu, comp_dir, lowpc);
9234
9235 /* Process all dies in compilation unit. */
9236 if (die->child != NULL)
9237 {
9238 child_die = die->child;
9239 while (child_die && child_die->tag)
9240 {
9241 process_die (child_die, cu);
9242 child_die = sibling_die (child_die);
9243 }
9244 }
9245
9246 /* Decode macro information, if present. Dwarf 2 macro information
9247 refers to information in the line number info statement program
9248 header, so we can only read it if we've read the header
9249 successfully. */
9250 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
9251 if (attr && cu->line_header)
9252 {
9253 if (dwarf2_attr (die, DW_AT_macro_info, cu))
9254 complaint (&symfile_complaints,
9255 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
9256
9257 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
9258 }
9259 else
9260 {
9261 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
9262 if (attr && cu->line_header)
9263 {
9264 unsigned int macro_offset = DW_UNSND (attr);
9265
9266 dwarf_decode_macros (cu, macro_offset, 0);
9267 }
9268 }
9269
9270 do_cleanups (back_to);
9271 }
9272
9273 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
9274 Create the set of symtabs used by this TU, or if this TU is sharing
9275 symtabs with another TU and the symtabs have already been created
9276 then restore those symtabs in the line header.
9277 We don't need the pc/line-number mapping for type units. */
9278
9279 static void
9280 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
9281 {
9282 struct objfile *objfile = dwarf2_per_objfile->objfile;
9283 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
9284 struct type_unit_group *tu_group;
9285 int first_time;
9286 struct line_header *lh;
9287 struct attribute *attr;
9288 unsigned int i, line_offset;
9289 struct signatured_type *sig_type;
9290
9291 gdb_assert (per_cu->is_debug_types);
9292 sig_type = (struct signatured_type *) per_cu;
9293
9294 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9295
9296 /* If we're using .gdb_index (includes -readnow) then
9297 per_cu->type_unit_group may not have been set up yet. */
9298 if (sig_type->type_unit_group == NULL)
9299 sig_type->type_unit_group = get_type_unit_group (cu, attr);
9300 tu_group = sig_type->type_unit_group;
9301
9302 /* If we've already processed this stmt_list there's no real need to
9303 do it again, we could fake it and just recreate the part we need
9304 (file name,index -> symtab mapping). If data shows this optimization
9305 is useful we can do it then. */
9306 first_time = tu_group->compunit_symtab == NULL;
9307
9308 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
9309 debug info. */
9310 lh = NULL;
9311 if (attr != NULL)
9312 {
9313 line_offset = DW_UNSND (attr);
9314 lh = dwarf_decode_line_header (line_offset, cu);
9315 }
9316 if (lh == NULL)
9317 {
9318 if (first_time)
9319 dwarf2_start_symtab (cu, "", NULL, 0);
9320 else
9321 {
9322 gdb_assert (tu_group->symtabs == NULL);
9323 restart_symtab (tu_group->compunit_symtab, "", 0);
9324 }
9325 return;
9326 }
9327
9328 cu->line_header = lh;
9329 make_cleanup (free_cu_line_header, cu);
9330
9331 if (first_time)
9332 {
9333 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
9334
9335 /* Note: We don't assign tu_group->compunit_symtab yet because we're
9336 still initializing it, and our caller (a few levels up)
9337 process_full_type_unit still needs to know if this is the first
9338 time. */
9339
9340 tu_group->num_symtabs = lh->num_file_names;
9341 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
9342
9343 for (i = 0; i < lh->num_file_names; ++i)
9344 {
9345 const char *dir = NULL;
9346 struct file_entry *fe = &lh->file_names[i];
9347
9348 if (fe->dir_index && lh->include_dirs != NULL)
9349 dir = lh->include_dirs[fe->dir_index - 1];
9350 dwarf2_start_subfile (fe->name, dir);
9351
9352 if (current_subfile->symtab == NULL)
9353 {
9354 /* NOTE: start_subfile will recognize when it's been passed
9355 a file it has already seen. So we can't assume there's a
9356 simple mapping from lh->file_names to subfiles, plus
9357 lh->file_names may contain dups. */
9358 current_subfile->symtab
9359 = allocate_symtab (cust, current_subfile->name);
9360 }
9361
9362 fe->symtab = current_subfile->symtab;
9363 tu_group->symtabs[i] = fe->symtab;
9364 }
9365 }
9366 else
9367 {
9368 restart_symtab (tu_group->compunit_symtab, "", 0);
9369
9370 for (i = 0; i < lh->num_file_names; ++i)
9371 {
9372 struct file_entry *fe = &lh->file_names[i];
9373
9374 fe->symtab = tu_group->symtabs[i];
9375 }
9376 }
9377
9378 /* The main symtab is allocated last. Type units don't have DW_AT_name
9379 so they don't have a "real" (so to speak) symtab anyway.
9380 There is later code that will assign the main symtab to all symbols
9381 that don't have one. We need to handle the case of a symbol with a
9382 missing symtab (DW_AT_decl_file) anyway. */
9383 }
9384
9385 /* Process DW_TAG_type_unit.
9386 For TUs we want to skip the first top level sibling if it's not the
9387 actual type being defined by this TU. In this case the first top
9388 level sibling is there to provide context only. */
9389
9390 static void
9391 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9392 {
9393 struct die_info *child_die;
9394
9395 prepare_one_comp_unit (cu, die, language_minimal);
9396
9397 /* Initialize (or reinitialize) the machinery for building symtabs.
9398 We do this before processing child DIEs, so that the line header table
9399 is available for DW_AT_decl_file. */
9400 setup_type_unit_groups (die, cu);
9401
9402 if (die->child != NULL)
9403 {
9404 child_die = die->child;
9405 while (child_die && child_die->tag)
9406 {
9407 process_die (child_die, cu);
9408 child_die = sibling_die (child_die);
9409 }
9410 }
9411 }
9412 \f
9413 /* DWO/DWP files.
9414
9415 http://gcc.gnu.org/wiki/DebugFission
9416 http://gcc.gnu.org/wiki/DebugFissionDWP
9417
9418 To simplify handling of both DWO files ("object" files with the DWARF info)
9419 and DWP files (a file with the DWOs packaged up into one file), we treat
9420 DWP files as having a collection of virtual DWO files. */
9421
9422 static hashval_t
9423 hash_dwo_file (const void *item)
9424 {
9425 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
9426 hashval_t hash;
9427
9428 hash = htab_hash_string (dwo_file->dwo_name);
9429 if (dwo_file->comp_dir != NULL)
9430 hash += htab_hash_string (dwo_file->comp_dir);
9431 return hash;
9432 }
9433
9434 static int
9435 eq_dwo_file (const void *item_lhs, const void *item_rhs)
9436 {
9437 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
9438 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
9439
9440 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9441 return 0;
9442 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9443 return lhs->comp_dir == rhs->comp_dir;
9444 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
9445 }
9446
9447 /* Allocate a hash table for DWO files. */
9448
9449 static htab_t
9450 allocate_dwo_file_hash_table (void)
9451 {
9452 struct objfile *objfile = dwarf2_per_objfile->objfile;
9453
9454 return htab_create_alloc_ex (41,
9455 hash_dwo_file,
9456 eq_dwo_file,
9457 NULL,
9458 &objfile->objfile_obstack,
9459 hashtab_obstack_allocate,
9460 dummy_obstack_deallocate);
9461 }
9462
9463 /* Lookup DWO file DWO_NAME. */
9464
9465 static void **
9466 lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
9467 {
9468 struct dwo_file find_entry;
9469 void **slot;
9470
9471 if (dwarf2_per_objfile->dwo_files == NULL)
9472 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9473
9474 memset (&find_entry, 0, sizeof (find_entry));
9475 find_entry.dwo_name = dwo_name;
9476 find_entry.comp_dir = comp_dir;
9477 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9478
9479 return slot;
9480 }
9481
9482 static hashval_t
9483 hash_dwo_unit (const void *item)
9484 {
9485 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
9486
9487 /* This drops the top 32 bits of the id, but is ok for a hash. */
9488 return dwo_unit->signature;
9489 }
9490
9491 static int
9492 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9493 {
9494 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
9495 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
9496
9497 /* The signature is assumed to be unique within the DWO file.
9498 So while object file CU dwo_id's always have the value zero,
9499 that's OK, assuming each object file DWO file has only one CU,
9500 and that's the rule for now. */
9501 return lhs->signature == rhs->signature;
9502 }
9503
9504 /* Allocate a hash table for DWO CUs,TUs.
9505 There is one of these tables for each of CUs,TUs for each DWO file. */
9506
9507 static htab_t
9508 allocate_dwo_unit_table (struct objfile *objfile)
9509 {
9510 /* Start out with a pretty small number.
9511 Generally DWO files contain only one CU and maybe some TUs. */
9512 return htab_create_alloc_ex (3,
9513 hash_dwo_unit,
9514 eq_dwo_unit,
9515 NULL,
9516 &objfile->objfile_obstack,
9517 hashtab_obstack_allocate,
9518 dummy_obstack_deallocate);
9519 }
9520
9521 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
9522
9523 struct create_dwo_cu_data
9524 {
9525 struct dwo_file *dwo_file;
9526 struct dwo_unit dwo_unit;
9527 };
9528
9529 /* die_reader_func for create_dwo_cu. */
9530
9531 static void
9532 create_dwo_cu_reader (const struct die_reader_specs *reader,
9533 const gdb_byte *info_ptr,
9534 struct die_info *comp_unit_die,
9535 int has_children,
9536 void *datap)
9537 {
9538 struct dwarf2_cu *cu = reader->cu;
9539 struct objfile *objfile = dwarf2_per_objfile->objfile;
9540 sect_offset offset = cu->per_cu->offset;
9541 struct dwarf2_section_info *section = cu->per_cu->section;
9542 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
9543 struct dwo_file *dwo_file = data->dwo_file;
9544 struct dwo_unit *dwo_unit = &data->dwo_unit;
9545 struct attribute *attr;
9546
9547 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9548 if (attr == NULL)
9549 {
9550 complaint (&symfile_complaints,
9551 _("Dwarf Error: debug entry at offset 0x%x is missing"
9552 " its dwo_id [in module %s]"),
9553 offset.sect_off, dwo_file->dwo_name);
9554 return;
9555 }
9556
9557 dwo_unit->dwo_file = dwo_file;
9558 dwo_unit->signature = DW_UNSND (attr);
9559 dwo_unit->section = section;
9560 dwo_unit->offset = offset;
9561 dwo_unit->length = cu->per_cu->length;
9562
9563 if (dwarf_read_debug)
9564 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9565 offset.sect_off, hex_string (dwo_unit->signature));
9566 }
9567
9568 /* Create the dwo_unit for the lone CU in DWO_FILE.
9569 Note: This function processes DWO files only, not DWP files. */
9570
9571 static struct dwo_unit *
9572 create_dwo_cu (struct dwo_file *dwo_file)
9573 {
9574 struct objfile *objfile = dwarf2_per_objfile->objfile;
9575 struct dwarf2_section_info *section = &dwo_file->sections.info;
9576 bfd *abfd;
9577 htab_t cu_htab;
9578 const gdb_byte *info_ptr, *end_ptr;
9579 struct create_dwo_cu_data create_dwo_cu_data;
9580 struct dwo_unit *dwo_unit;
9581
9582 dwarf2_read_section (objfile, section);
9583 info_ptr = section->buffer;
9584
9585 if (info_ptr == NULL)
9586 return NULL;
9587
9588 /* We can't set abfd until now because the section may be empty or
9589 not present, in which case section->asection will be NULL. */
9590 abfd = get_section_bfd_owner (section);
9591
9592 if (dwarf_read_debug)
9593 {
9594 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
9595 get_section_name (section),
9596 get_section_file_name (section));
9597 }
9598
9599 create_dwo_cu_data.dwo_file = dwo_file;
9600 dwo_unit = NULL;
9601
9602 end_ptr = info_ptr + section->size;
9603 while (info_ptr < end_ptr)
9604 {
9605 struct dwarf2_per_cu_data per_cu;
9606
9607 memset (&create_dwo_cu_data.dwo_unit, 0,
9608 sizeof (create_dwo_cu_data.dwo_unit));
9609 memset (&per_cu, 0, sizeof (per_cu));
9610 per_cu.objfile = objfile;
9611 per_cu.is_debug_types = 0;
9612 per_cu.offset.sect_off = info_ptr - section->buffer;
9613 per_cu.section = section;
9614
9615 init_cutu_and_read_dies_no_follow (&per_cu, dwo_file,
9616 create_dwo_cu_reader,
9617 &create_dwo_cu_data);
9618
9619 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
9620 {
9621 /* If we've already found one, complain. We only support one
9622 because having more than one requires hacking the dwo_name of
9623 each to match, which is highly unlikely to happen. */
9624 if (dwo_unit != NULL)
9625 {
9626 complaint (&symfile_complaints,
9627 _("Multiple CUs in DWO file %s [in module %s]"),
9628 dwo_file->dwo_name, objfile_name (objfile));
9629 break;
9630 }
9631
9632 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9633 *dwo_unit = create_dwo_cu_data.dwo_unit;
9634 }
9635
9636 info_ptr += per_cu.length;
9637 }
9638
9639 return dwo_unit;
9640 }
9641
9642 /* DWP file .debug_{cu,tu}_index section format:
9643 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9644
9645 DWP Version 1:
9646
9647 Both index sections have the same format, and serve to map a 64-bit
9648 signature to a set of section numbers. Each section begins with a header,
9649 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9650 indexes, and a pool of 32-bit section numbers. The index sections will be
9651 aligned at 8-byte boundaries in the file.
9652
9653 The index section header consists of:
9654
9655 V, 32 bit version number
9656 -, 32 bits unused
9657 N, 32 bit number of compilation units or type units in the index
9658 M, 32 bit number of slots in the hash table
9659
9660 Numbers are recorded using the byte order of the application binary.
9661
9662 The hash table begins at offset 16 in the section, and consists of an array
9663 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9664 order of the application binary). Unused slots in the hash table are 0.
9665 (We rely on the extreme unlikeliness of a signature being exactly 0.)
9666
9667 The parallel table begins immediately after the hash table
9668 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9669 array of 32-bit indexes (using the byte order of the application binary),
9670 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9671 table contains a 32-bit index into the pool of section numbers. For unused
9672 hash table slots, the corresponding entry in the parallel table will be 0.
9673
9674 The pool of section numbers begins immediately following the hash table
9675 (at offset 16 + 12 * M from the beginning of the section). The pool of
9676 section numbers consists of an array of 32-bit words (using the byte order
9677 of the application binary). Each item in the array is indexed starting
9678 from 0. The hash table entry provides the index of the first section
9679 number in the set. Additional section numbers in the set follow, and the
9680 set is terminated by a 0 entry (section number 0 is not used in ELF).
9681
9682 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9683 section must be the first entry in the set, and the .debug_abbrev.dwo must
9684 be the second entry. Other members of the set may follow in any order.
9685
9686 ---
9687
9688 DWP Version 2:
9689
9690 DWP Version 2 combines all the .debug_info, etc. sections into one,
9691 and the entries in the index tables are now offsets into these sections.
9692 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9693 section.
9694
9695 Index Section Contents:
9696 Header
9697 Hash Table of Signatures dwp_hash_table.hash_table
9698 Parallel Table of Indices dwp_hash_table.unit_table
9699 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9700 Table of Section Sizes dwp_hash_table.v2.sizes
9701
9702 The index section header consists of:
9703
9704 V, 32 bit version number
9705 L, 32 bit number of columns in the table of section offsets
9706 N, 32 bit number of compilation units or type units in the index
9707 M, 32 bit number of slots in the hash table
9708
9709 Numbers are recorded using the byte order of the application binary.
9710
9711 The hash table has the same format as version 1.
9712 The parallel table of indices has the same format as version 1,
9713 except that the entries are origin-1 indices into the table of sections
9714 offsets and the table of section sizes.
9715
9716 The table of offsets begins immediately following the parallel table
9717 (at offset 16 + 12 * M from the beginning of the section). The table is
9718 a two-dimensional array of 32-bit words (using the byte order of the
9719 application binary), with L columns and N+1 rows, in row-major order.
9720 Each row in the array is indexed starting from 0. The first row provides
9721 a key to the remaining rows: each column in this row provides an identifier
9722 for a debug section, and the offsets in the same column of subsequent rows
9723 refer to that section. The section identifiers are:
9724
9725 DW_SECT_INFO 1 .debug_info.dwo
9726 DW_SECT_TYPES 2 .debug_types.dwo
9727 DW_SECT_ABBREV 3 .debug_abbrev.dwo
9728 DW_SECT_LINE 4 .debug_line.dwo
9729 DW_SECT_LOC 5 .debug_loc.dwo
9730 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
9731 DW_SECT_MACINFO 7 .debug_macinfo.dwo
9732 DW_SECT_MACRO 8 .debug_macro.dwo
9733
9734 The offsets provided by the CU and TU index sections are the base offsets
9735 for the contributions made by each CU or TU to the corresponding section
9736 in the package file. Each CU and TU header contains an abbrev_offset
9737 field, used to find the abbreviations table for that CU or TU within the
9738 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
9739 be interpreted as relative to the base offset given in the index section.
9740 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
9741 should be interpreted as relative to the base offset for .debug_line.dwo,
9742 and offsets into other debug sections obtained from DWARF attributes should
9743 also be interpreted as relative to the corresponding base offset.
9744
9745 The table of sizes begins immediately following the table of offsets.
9746 Like the table of offsets, it is a two-dimensional array of 32-bit words,
9747 with L columns and N rows, in row-major order. Each row in the array is
9748 indexed starting from 1 (row 0 is shared by the two tables).
9749
9750 ---
9751
9752 Hash table lookup is handled the same in version 1 and 2:
9753
9754 We assume that N and M will not exceed 2^32 - 1.
9755 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
9756
9757 Given a 64-bit compilation unit signature or a type signature S, an entry
9758 in the hash table is located as follows:
9759
9760 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
9761 the low-order k bits all set to 1.
9762
9763 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
9764
9765 3) If the hash table entry at index H matches the signature, use that
9766 entry. If the hash table entry at index H is unused (all zeroes),
9767 terminate the search: the signature is not present in the table.
9768
9769 4) Let H = (H + H') modulo M. Repeat at Step 3.
9770
9771 Because M > N and H' and M are relatively prime, the search is guaranteed
9772 to stop at an unused slot or find the match. */
9773
9774 /* Create a hash table to map DWO IDs to their CU/TU entry in
9775 .debug_{info,types}.dwo in DWP_FILE.
9776 Returns NULL if there isn't one.
9777 Note: This function processes DWP files only, not DWO files. */
9778
9779 static struct dwp_hash_table *
9780 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
9781 {
9782 struct objfile *objfile = dwarf2_per_objfile->objfile;
9783 bfd *dbfd = dwp_file->dbfd;
9784 const gdb_byte *index_ptr, *index_end;
9785 struct dwarf2_section_info *index;
9786 uint32_t version, nr_columns, nr_units, nr_slots;
9787 struct dwp_hash_table *htab;
9788
9789 if (is_debug_types)
9790 index = &dwp_file->sections.tu_index;
9791 else
9792 index = &dwp_file->sections.cu_index;
9793
9794 if (dwarf2_section_empty_p (index))
9795 return NULL;
9796 dwarf2_read_section (objfile, index);
9797
9798 index_ptr = index->buffer;
9799 index_end = index_ptr + index->size;
9800
9801 version = read_4_bytes (dbfd, index_ptr);
9802 index_ptr += 4;
9803 if (version == 2)
9804 nr_columns = read_4_bytes (dbfd, index_ptr);
9805 else
9806 nr_columns = 0;
9807 index_ptr += 4;
9808 nr_units = read_4_bytes (dbfd, index_ptr);
9809 index_ptr += 4;
9810 nr_slots = read_4_bytes (dbfd, index_ptr);
9811 index_ptr += 4;
9812
9813 if (version != 1 && version != 2)
9814 {
9815 error (_("Dwarf Error: unsupported DWP file version (%s)"
9816 " [in module %s]"),
9817 pulongest (version), dwp_file->name);
9818 }
9819 if (nr_slots != (nr_slots & -nr_slots))
9820 {
9821 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
9822 " is not power of 2 [in module %s]"),
9823 pulongest (nr_slots), dwp_file->name);
9824 }
9825
9826 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
9827 htab->version = version;
9828 htab->nr_columns = nr_columns;
9829 htab->nr_units = nr_units;
9830 htab->nr_slots = nr_slots;
9831 htab->hash_table = index_ptr;
9832 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
9833
9834 /* Exit early if the table is empty. */
9835 if (nr_slots == 0 || nr_units == 0
9836 || (version == 2 && nr_columns == 0))
9837 {
9838 /* All must be zero. */
9839 if (nr_slots != 0 || nr_units != 0
9840 || (version == 2 && nr_columns != 0))
9841 {
9842 complaint (&symfile_complaints,
9843 _("Empty DWP but nr_slots,nr_units,nr_columns not"
9844 " all zero [in modules %s]"),
9845 dwp_file->name);
9846 }
9847 return htab;
9848 }
9849
9850 if (version == 1)
9851 {
9852 htab->section_pool.v1.indices =
9853 htab->unit_table + sizeof (uint32_t) * nr_slots;
9854 /* It's harder to decide whether the section is too small in v1.
9855 V1 is deprecated anyway so we punt. */
9856 }
9857 else
9858 {
9859 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
9860 int *ids = htab->section_pool.v2.section_ids;
9861 /* Reverse map for error checking. */
9862 int ids_seen[DW_SECT_MAX + 1];
9863 int i;
9864
9865 if (nr_columns < 2)
9866 {
9867 error (_("Dwarf Error: bad DWP hash table, too few columns"
9868 " in section table [in module %s]"),
9869 dwp_file->name);
9870 }
9871 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
9872 {
9873 error (_("Dwarf Error: bad DWP hash table, too many columns"
9874 " in section table [in module %s]"),
9875 dwp_file->name);
9876 }
9877 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9878 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9879 for (i = 0; i < nr_columns; ++i)
9880 {
9881 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
9882
9883 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
9884 {
9885 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
9886 " in section table [in module %s]"),
9887 id, dwp_file->name);
9888 }
9889 if (ids_seen[id] != -1)
9890 {
9891 error (_("Dwarf Error: bad DWP hash table, duplicate section"
9892 " id %d in section table [in module %s]"),
9893 id, dwp_file->name);
9894 }
9895 ids_seen[id] = i;
9896 ids[i] = id;
9897 }
9898 /* Must have exactly one info or types section. */
9899 if (((ids_seen[DW_SECT_INFO] != -1)
9900 + (ids_seen[DW_SECT_TYPES] != -1))
9901 != 1)
9902 {
9903 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
9904 " DWO info/types section [in module %s]"),
9905 dwp_file->name);
9906 }
9907 /* Must have an abbrev section. */
9908 if (ids_seen[DW_SECT_ABBREV] == -1)
9909 {
9910 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
9911 " section [in module %s]"),
9912 dwp_file->name);
9913 }
9914 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
9915 htab->section_pool.v2.sizes =
9916 htab->section_pool.v2.offsets + (sizeof (uint32_t)
9917 * nr_units * nr_columns);
9918 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
9919 * nr_units * nr_columns))
9920 > index_end)
9921 {
9922 error (_("Dwarf Error: DWP index section is corrupt (too small)"
9923 " [in module %s]"),
9924 dwp_file->name);
9925 }
9926 }
9927
9928 return htab;
9929 }
9930
9931 /* Update SECTIONS with the data from SECTP.
9932
9933 This function is like the other "locate" section routines that are
9934 passed to bfd_map_over_sections, but in this context the sections to
9935 read comes from the DWP V1 hash table, not the full ELF section table.
9936
9937 The result is non-zero for success, or zero if an error was found. */
9938
9939 static int
9940 locate_v1_virtual_dwo_sections (asection *sectp,
9941 struct virtual_v1_dwo_sections *sections)
9942 {
9943 const struct dwop_section_names *names = &dwop_section_names;
9944
9945 if (section_is_p (sectp->name, &names->abbrev_dwo))
9946 {
9947 /* There can be only one. */
9948 if (sections->abbrev.s.section != NULL)
9949 return 0;
9950 sections->abbrev.s.section = sectp;
9951 sections->abbrev.size = bfd_get_section_size (sectp);
9952 }
9953 else if (section_is_p (sectp->name, &names->info_dwo)
9954 || section_is_p (sectp->name, &names->types_dwo))
9955 {
9956 /* There can be only one. */
9957 if (sections->info_or_types.s.section != NULL)
9958 return 0;
9959 sections->info_or_types.s.section = sectp;
9960 sections->info_or_types.size = bfd_get_section_size (sectp);
9961 }
9962 else if (section_is_p (sectp->name, &names->line_dwo))
9963 {
9964 /* There can be only one. */
9965 if (sections->line.s.section != NULL)
9966 return 0;
9967 sections->line.s.section = sectp;
9968 sections->line.size = bfd_get_section_size (sectp);
9969 }
9970 else if (section_is_p (sectp->name, &names->loc_dwo))
9971 {
9972 /* There can be only one. */
9973 if (sections->loc.s.section != NULL)
9974 return 0;
9975 sections->loc.s.section = sectp;
9976 sections->loc.size = bfd_get_section_size (sectp);
9977 }
9978 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9979 {
9980 /* There can be only one. */
9981 if (sections->macinfo.s.section != NULL)
9982 return 0;
9983 sections->macinfo.s.section = sectp;
9984 sections->macinfo.size = bfd_get_section_size (sectp);
9985 }
9986 else if (section_is_p (sectp->name, &names->macro_dwo))
9987 {
9988 /* There can be only one. */
9989 if (sections->macro.s.section != NULL)
9990 return 0;
9991 sections->macro.s.section = sectp;
9992 sections->macro.size = bfd_get_section_size (sectp);
9993 }
9994 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9995 {
9996 /* There can be only one. */
9997 if (sections->str_offsets.s.section != NULL)
9998 return 0;
9999 sections->str_offsets.s.section = sectp;
10000 sections->str_offsets.size = bfd_get_section_size (sectp);
10001 }
10002 else
10003 {
10004 /* No other kind of section is valid. */
10005 return 0;
10006 }
10007
10008 return 1;
10009 }
10010
10011 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10012 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10013 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10014 This is for DWP version 1 files. */
10015
10016 static struct dwo_unit *
10017 create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
10018 uint32_t unit_index,
10019 const char *comp_dir,
10020 ULONGEST signature, int is_debug_types)
10021 {
10022 struct objfile *objfile = dwarf2_per_objfile->objfile;
10023 const struct dwp_hash_table *dwp_htab =
10024 is_debug_types ? dwp_file->tus : dwp_file->cus;
10025 bfd *dbfd = dwp_file->dbfd;
10026 const char *kind = is_debug_types ? "TU" : "CU";
10027 struct dwo_file *dwo_file;
10028 struct dwo_unit *dwo_unit;
10029 struct virtual_v1_dwo_sections sections;
10030 void **dwo_file_slot;
10031 char *virtual_dwo_name;
10032 struct dwarf2_section_info *cutu;
10033 struct cleanup *cleanups;
10034 int i;
10035
10036 gdb_assert (dwp_file->version == 1);
10037
10038 if (dwarf_read_debug)
10039 {
10040 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
10041 kind,
10042 pulongest (unit_index), hex_string (signature),
10043 dwp_file->name);
10044 }
10045
10046 /* Fetch the sections of this DWO unit.
10047 Put a limit on the number of sections we look for so that bad data
10048 doesn't cause us to loop forever. */
10049
10050 #define MAX_NR_V1_DWO_SECTIONS \
10051 (1 /* .debug_info or .debug_types */ \
10052 + 1 /* .debug_abbrev */ \
10053 + 1 /* .debug_line */ \
10054 + 1 /* .debug_loc */ \
10055 + 1 /* .debug_str_offsets */ \
10056 + 1 /* .debug_macro or .debug_macinfo */ \
10057 + 1 /* trailing zero */)
10058
10059 memset (&sections, 0, sizeof (sections));
10060 cleanups = make_cleanup (null_cleanup, 0);
10061
10062 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
10063 {
10064 asection *sectp;
10065 uint32_t section_nr =
10066 read_4_bytes (dbfd,
10067 dwp_htab->section_pool.v1.indices
10068 + (unit_index + i) * sizeof (uint32_t));
10069
10070 if (section_nr == 0)
10071 break;
10072 if (section_nr >= dwp_file->num_sections)
10073 {
10074 error (_("Dwarf Error: bad DWP hash table, section number too large"
10075 " [in module %s]"),
10076 dwp_file->name);
10077 }
10078
10079 sectp = dwp_file->elf_sections[section_nr];
10080 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
10081 {
10082 error (_("Dwarf Error: bad DWP hash table, invalid section found"
10083 " [in module %s]"),
10084 dwp_file->name);
10085 }
10086 }
10087
10088 if (i < 2
10089 || dwarf2_section_empty_p (&sections.info_or_types)
10090 || dwarf2_section_empty_p (&sections.abbrev))
10091 {
10092 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
10093 " [in module %s]"),
10094 dwp_file->name);
10095 }
10096 if (i == MAX_NR_V1_DWO_SECTIONS)
10097 {
10098 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
10099 " [in module %s]"),
10100 dwp_file->name);
10101 }
10102
10103 /* It's easier for the rest of the code if we fake a struct dwo_file and
10104 have dwo_unit "live" in that. At least for now.
10105
10106 The DWP file can be made up of a random collection of CUs and TUs.
10107 However, for each CU + set of TUs that came from the same original DWO
10108 file, we can combine them back into a virtual DWO file to save space
10109 (fewer struct dwo_file objects to allocate). Remember that for really
10110 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10111
10112 virtual_dwo_name =
10113 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
10114 get_section_id (&sections.abbrev),
10115 get_section_id (&sections.line),
10116 get_section_id (&sections.loc),
10117 get_section_id (&sections.str_offsets));
10118 make_cleanup (xfree, virtual_dwo_name);
10119 /* Can we use an existing virtual DWO file? */
10120 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10121 /* Create one if necessary. */
10122 if (*dwo_file_slot == NULL)
10123 {
10124 if (dwarf_read_debug)
10125 {
10126 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10127 virtual_dwo_name);
10128 }
10129 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10130 dwo_file->dwo_name
10131 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
10132 virtual_dwo_name,
10133 strlen (virtual_dwo_name));
10134 dwo_file->comp_dir = comp_dir;
10135 dwo_file->sections.abbrev = sections.abbrev;
10136 dwo_file->sections.line = sections.line;
10137 dwo_file->sections.loc = sections.loc;
10138 dwo_file->sections.macinfo = sections.macinfo;
10139 dwo_file->sections.macro = sections.macro;
10140 dwo_file->sections.str_offsets = sections.str_offsets;
10141 /* The "str" section is global to the entire DWP file. */
10142 dwo_file->sections.str = dwp_file->sections.str;
10143 /* The info or types section is assigned below to dwo_unit,
10144 there's no need to record it in dwo_file.
10145 Also, we can't simply record type sections in dwo_file because
10146 we record a pointer into the vector in dwo_unit. As we collect more
10147 types we'll grow the vector and eventually have to reallocate space
10148 for it, invalidating all copies of pointers into the previous
10149 contents. */
10150 *dwo_file_slot = dwo_file;
10151 }
10152 else
10153 {
10154 if (dwarf_read_debug)
10155 {
10156 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10157 virtual_dwo_name);
10158 }
10159 dwo_file = (struct dwo_file *) *dwo_file_slot;
10160 }
10161 do_cleanups (cleanups);
10162
10163 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10164 dwo_unit->dwo_file = dwo_file;
10165 dwo_unit->signature = signature;
10166 dwo_unit->section =
10167 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
10168 *dwo_unit->section = sections.info_or_types;
10169 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10170
10171 return dwo_unit;
10172 }
10173
10174 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
10175 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
10176 piece within that section used by a TU/CU, return a virtual section
10177 of just that piece. */
10178
10179 static struct dwarf2_section_info
10180 create_dwp_v2_section (struct dwarf2_section_info *section,
10181 bfd_size_type offset, bfd_size_type size)
10182 {
10183 struct dwarf2_section_info result;
10184 asection *sectp;
10185
10186 gdb_assert (section != NULL);
10187 gdb_assert (!section->is_virtual);
10188
10189 memset (&result, 0, sizeof (result));
10190 result.s.containing_section = section;
10191 result.is_virtual = 1;
10192
10193 if (size == 0)
10194 return result;
10195
10196 sectp = get_section_bfd_section (section);
10197
10198 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
10199 bounds of the real section. This is a pretty-rare event, so just
10200 flag an error (easier) instead of a warning and trying to cope. */
10201 if (sectp == NULL
10202 || offset + size > bfd_get_section_size (sectp))
10203 {
10204 bfd *abfd = sectp->owner;
10205
10206 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
10207 " in section %s [in module %s]"),
10208 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
10209 objfile_name (dwarf2_per_objfile->objfile));
10210 }
10211
10212 result.virtual_offset = offset;
10213 result.size = size;
10214 return result;
10215 }
10216
10217 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10218 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10219 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10220 This is for DWP version 2 files. */
10221
10222 static struct dwo_unit *
10223 create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
10224 uint32_t unit_index,
10225 const char *comp_dir,
10226 ULONGEST signature, int is_debug_types)
10227 {
10228 struct objfile *objfile = dwarf2_per_objfile->objfile;
10229 const struct dwp_hash_table *dwp_htab =
10230 is_debug_types ? dwp_file->tus : dwp_file->cus;
10231 bfd *dbfd = dwp_file->dbfd;
10232 const char *kind = is_debug_types ? "TU" : "CU";
10233 struct dwo_file *dwo_file;
10234 struct dwo_unit *dwo_unit;
10235 struct virtual_v2_dwo_sections sections;
10236 void **dwo_file_slot;
10237 char *virtual_dwo_name;
10238 struct dwarf2_section_info *cutu;
10239 struct cleanup *cleanups;
10240 int i;
10241
10242 gdb_assert (dwp_file->version == 2);
10243
10244 if (dwarf_read_debug)
10245 {
10246 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
10247 kind,
10248 pulongest (unit_index), hex_string (signature),
10249 dwp_file->name);
10250 }
10251
10252 /* Fetch the section offsets of this DWO unit. */
10253
10254 memset (&sections, 0, sizeof (sections));
10255 cleanups = make_cleanup (null_cleanup, 0);
10256
10257 for (i = 0; i < dwp_htab->nr_columns; ++i)
10258 {
10259 uint32_t offset = read_4_bytes (dbfd,
10260 dwp_htab->section_pool.v2.offsets
10261 + (((unit_index - 1) * dwp_htab->nr_columns
10262 + i)
10263 * sizeof (uint32_t)));
10264 uint32_t size = read_4_bytes (dbfd,
10265 dwp_htab->section_pool.v2.sizes
10266 + (((unit_index - 1) * dwp_htab->nr_columns
10267 + i)
10268 * sizeof (uint32_t)));
10269
10270 switch (dwp_htab->section_pool.v2.section_ids[i])
10271 {
10272 case DW_SECT_INFO:
10273 case DW_SECT_TYPES:
10274 sections.info_or_types_offset = offset;
10275 sections.info_or_types_size = size;
10276 break;
10277 case DW_SECT_ABBREV:
10278 sections.abbrev_offset = offset;
10279 sections.abbrev_size = size;
10280 break;
10281 case DW_SECT_LINE:
10282 sections.line_offset = offset;
10283 sections.line_size = size;
10284 break;
10285 case DW_SECT_LOC:
10286 sections.loc_offset = offset;
10287 sections.loc_size = size;
10288 break;
10289 case DW_SECT_STR_OFFSETS:
10290 sections.str_offsets_offset = offset;
10291 sections.str_offsets_size = size;
10292 break;
10293 case DW_SECT_MACINFO:
10294 sections.macinfo_offset = offset;
10295 sections.macinfo_size = size;
10296 break;
10297 case DW_SECT_MACRO:
10298 sections.macro_offset = offset;
10299 sections.macro_size = size;
10300 break;
10301 }
10302 }
10303
10304 /* It's easier for the rest of the code if we fake a struct dwo_file and
10305 have dwo_unit "live" in that. At least for now.
10306
10307 The DWP file can be made up of a random collection of CUs and TUs.
10308 However, for each CU + set of TUs that came from the same original DWO
10309 file, we can combine them back into a virtual DWO file to save space
10310 (fewer struct dwo_file objects to allocate). Remember that for really
10311 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10312
10313 virtual_dwo_name =
10314 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
10315 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
10316 (long) (sections.line_size ? sections.line_offset : 0),
10317 (long) (sections.loc_size ? sections.loc_offset : 0),
10318 (long) (sections.str_offsets_size
10319 ? sections.str_offsets_offset : 0));
10320 make_cleanup (xfree, virtual_dwo_name);
10321 /* Can we use an existing virtual DWO file? */
10322 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10323 /* Create one if necessary. */
10324 if (*dwo_file_slot == NULL)
10325 {
10326 if (dwarf_read_debug)
10327 {
10328 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10329 virtual_dwo_name);
10330 }
10331 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10332 dwo_file->dwo_name
10333 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
10334 virtual_dwo_name,
10335 strlen (virtual_dwo_name));
10336 dwo_file->comp_dir = comp_dir;
10337 dwo_file->sections.abbrev =
10338 create_dwp_v2_section (&dwp_file->sections.abbrev,
10339 sections.abbrev_offset, sections.abbrev_size);
10340 dwo_file->sections.line =
10341 create_dwp_v2_section (&dwp_file->sections.line,
10342 sections.line_offset, sections.line_size);
10343 dwo_file->sections.loc =
10344 create_dwp_v2_section (&dwp_file->sections.loc,
10345 sections.loc_offset, sections.loc_size);
10346 dwo_file->sections.macinfo =
10347 create_dwp_v2_section (&dwp_file->sections.macinfo,
10348 sections.macinfo_offset, sections.macinfo_size);
10349 dwo_file->sections.macro =
10350 create_dwp_v2_section (&dwp_file->sections.macro,
10351 sections.macro_offset, sections.macro_size);
10352 dwo_file->sections.str_offsets =
10353 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10354 sections.str_offsets_offset,
10355 sections.str_offsets_size);
10356 /* The "str" section is global to the entire DWP file. */
10357 dwo_file->sections.str = dwp_file->sections.str;
10358 /* The info or types section is assigned below to dwo_unit,
10359 there's no need to record it in dwo_file.
10360 Also, we can't simply record type sections in dwo_file because
10361 we record a pointer into the vector in dwo_unit. As we collect more
10362 types we'll grow the vector and eventually have to reallocate space
10363 for it, invalidating all copies of pointers into the previous
10364 contents. */
10365 *dwo_file_slot = dwo_file;
10366 }
10367 else
10368 {
10369 if (dwarf_read_debug)
10370 {
10371 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10372 virtual_dwo_name);
10373 }
10374 dwo_file = (struct dwo_file *) *dwo_file_slot;
10375 }
10376 do_cleanups (cleanups);
10377
10378 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10379 dwo_unit->dwo_file = dwo_file;
10380 dwo_unit->signature = signature;
10381 dwo_unit->section =
10382 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
10383 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10384 ? &dwp_file->sections.types
10385 : &dwp_file->sections.info,
10386 sections.info_or_types_offset,
10387 sections.info_or_types_size);
10388 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10389
10390 return dwo_unit;
10391 }
10392
10393 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10394 Returns NULL if the signature isn't found. */
10395
10396 static struct dwo_unit *
10397 lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10398 ULONGEST signature, int is_debug_types)
10399 {
10400 const struct dwp_hash_table *dwp_htab =
10401 is_debug_types ? dwp_file->tus : dwp_file->cus;
10402 bfd *dbfd = dwp_file->dbfd;
10403 uint32_t mask = dwp_htab->nr_slots - 1;
10404 uint32_t hash = signature & mask;
10405 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10406 unsigned int i;
10407 void **slot;
10408 struct dwo_unit find_dwo_cu, *dwo_cu;
10409
10410 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10411 find_dwo_cu.signature = signature;
10412 slot = htab_find_slot (is_debug_types
10413 ? dwp_file->loaded_tus
10414 : dwp_file->loaded_cus,
10415 &find_dwo_cu, INSERT);
10416
10417 if (*slot != NULL)
10418 return (struct dwo_unit *) *slot;
10419
10420 /* Use a for loop so that we don't loop forever on bad debug info. */
10421 for (i = 0; i < dwp_htab->nr_slots; ++i)
10422 {
10423 ULONGEST signature_in_table;
10424
10425 signature_in_table =
10426 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
10427 if (signature_in_table == signature)
10428 {
10429 uint32_t unit_index =
10430 read_4_bytes (dbfd,
10431 dwp_htab->unit_table + hash * sizeof (uint32_t));
10432
10433 if (dwp_file->version == 1)
10434 {
10435 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10436 comp_dir, signature,
10437 is_debug_types);
10438 }
10439 else
10440 {
10441 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10442 comp_dir, signature,
10443 is_debug_types);
10444 }
10445 return (struct dwo_unit *) *slot;
10446 }
10447 if (signature_in_table == 0)
10448 return NULL;
10449 hash = (hash + hash2) & mask;
10450 }
10451
10452 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10453 " [in module %s]"),
10454 dwp_file->name);
10455 }
10456
10457 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
10458 Open the file specified by FILE_NAME and hand it off to BFD for
10459 preliminary analysis. Return a newly initialized bfd *, which
10460 includes a canonicalized copy of FILE_NAME.
10461 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
10462 SEARCH_CWD is true if the current directory is to be searched.
10463 It will be searched before debug-file-directory.
10464 If successful, the file is added to the bfd include table of the
10465 objfile's bfd (see gdb_bfd_record_inclusion).
10466 If unable to find/open the file, return NULL.
10467 NOTE: This function is derived from symfile_bfd_open. */
10468
10469 static bfd *
10470 try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
10471 {
10472 bfd *sym_bfd;
10473 int desc, flags;
10474 char *absolute_name;
10475 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10476 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10477 to debug_file_directory. */
10478 char *search_path;
10479 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10480
10481 if (search_cwd)
10482 {
10483 if (*debug_file_directory != '\0')
10484 search_path = concat (".", dirname_separator_string,
10485 debug_file_directory, NULL);
10486 else
10487 search_path = xstrdup (".");
10488 }
10489 else
10490 search_path = xstrdup (debug_file_directory);
10491
10492 flags = OPF_RETURN_REALPATH;
10493 if (is_dwp)
10494 flags |= OPF_SEARCH_IN_PATH;
10495 desc = openp (search_path, flags, file_name,
10496 O_RDONLY | O_BINARY, &absolute_name);
10497 xfree (search_path);
10498 if (desc < 0)
10499 return NULL;
10500
10501 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
10502 xfree (absolute_name);
10503 if (sym_bfd == NULL)
10504 return NULL;
10505 bfd_set_cacheable (sym_bfd, 1);
10506
10507 if (!bfd_check_format (sym_bfd, bfd_object))
10508 {
10509 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
10510 return NULL;
10511 }
10512
10513 /* Success. Record the bfd as having been included by the objfile's bfd.
10514 This is important because things like demangled_names_hash lives in the
10515 objfile's per_bfd space and may have references to things like symbol
10516 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
10517 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd);
10518
10519 return sym_bfd;
10520 }
10521
10522 /* Try to open DWO file FILE_NAME.
10523 COMP_DIR is the DW_AT_comp_dir attribute.
10524 The result is the bfd handle of the file.
10525 If there is a problem finding or opening the file, return NULL.
10526 Upon success, the canonicalized path of the file is stored in the bfd,
10527 same as symfile_bfd_open. */
10528
10529 static bfd *
10530 open_dwo_file (const char *file_name, const char *comp_dir)
10531 {
10532 bfd *abfd;
10533
10534 if (IS_ABSOLUTE_PATH (file_name))
10535 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
10536
10537 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10538
10539 if (comp_dir != NULL)
10540 {
10541 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
10542
10543 /* NOTE: If comp_dir is a relative path, this will also try the
10544 search path, which seems useful. */
10545 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/, 1 /*search_cwd*/);
10546 xfree (path_to_try);
10547 if (abfd != NULL)
10548 return abfd;
10549 }
10550
10551 /* That didn't work, try debug-file-directory, which, despite its name,
10552 is a list of paths. */
10553
10554 if (*debug_file_directory == '\0')
10555 return NULL;
10556
10557 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
10558 }
10559
10560 /* This function is mapped across the sections and remembers the offset and
10561 size of each of the DWO debugging sections we are interested in. */
10562
10563 static void
10564 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10565 {
10566 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
10567 const struct dwop_section_names *names = &dwop_section_names;
10568
10569 if (section_is_p (sectp->name, &names->abbrev_dwo))
10570 {
10571 dwo_sections->abbrev.s.section = sectp;
10572 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10573 }
10574 else if (section_is_p (sectp->name, &names->info_dwo))
10575 {
10576 dwo_sections->info.s.section = sectp;
10577 dwo_sections->info.size = bfd_get_section_size (sectp);
10578 }
10579 else if (section_is_p (sectp->name, &names->line_dwo))
10580 {
10581 dwo_sections->line.s.section = sectp;
10582 dwo_sections->line.size = bfd_get_section_size (sectp);
10583 }
10584 else if (section_is_p (sectp->name, &names->loc_dwo))
10585 {
10586 dwo_sections->loc.s.section = sectp;
10587 dwo_sections->loc.size = bfd_get_section_size (sectp);
10588 }
10589 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10590 {
10591 dwo_sections->macinfo.s.section = sectp;
10592 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10593 }
10594 else if (section_is_p (sectp->name, &names->macro_dwo))
10595 {
10596 dwo_sections->macro.s.section = sectp;
10597 dwo_sections->macro.size = bfd_get_section_size (sectp);
10598 }
10599 else if (section_is_p (sectp->name, &names->str_dwo))
10600 {
10601 dwo_sections->str.s.section = sectp;
10602 dwo_sections->str.size = bfd_get_section_size (sectp);
10603 }
10604 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10605 {
10606 dwo_sections->str_offsets.s.section = sectp;
10607 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10608 }
10609 else if (section_is_p (sectp->name, &names->types_dwo))
10610 {
10611 struct dwarf2_section_info type_section;
10612
10613 memset (&type_section, 0, sizeof (type_section));
10614 type_section.s.section = sectp;
10615 type_section.size = bfd_get_section_size (sectp);
10616 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10617 &type_section);
10618 }
10619 }
10620
10621 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
10622 by PER_CU. This is for the non-DWP case.
10623 The result is NULL if DWO_NAME can't be found. */
10624
10625 static struct dwo_file *
10626 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10627 const char *dwo_name, const char *comp_dir)
10628 {
10629 struct objfile *objfile = dwarf2_per_objfile->objfile;
10630 struct dwo_file *dwo_file;
10631 bfd *dbfd;
10632 struct cleanup *cleanups;
10633
10634 dbfd = open_dwo_file (dwo_name, comp_dir);
10635 if (dbfd == NULL)
10636 {
10637 if (dwarf_read_debug)
10638 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10639 return NULL;
10640 }
10641 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10642 dwo_file->dwo_name = dwo_name;
10643 dwo_file->comp_dir = comp_dir;
10644 dwo_file->dbfd = dbfd;
10645
10646 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10647
10648 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
10649
10650 dwo_file->cu = create_dwo_cu (dwo_file);
10651
10652 dwo_file->tus = create_debug_types_hash_table (dwo_file,
10653 dwo_file->sections.types);
10654
10655 discard_cleanups (cleanups);
10656
10657 if (dwarf_read_debug)
10658 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10659
10660 return dwo_file;
10661 }
10662
10663 /* This function is mapped across the sections and remembers the offset and
10664 size of each of the DWP debugging sections common to version 1 and 2 that
10665 we are interested in. */
10666
10667 static void
10668 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10669 void *dwp_file_ptr)
10670 {
10671 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
10672 const struct dwop_section_names *names = &dwop_section_names;
10673 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10674
10675 /* Record the ELF section number for later lookup: this is what the
10676 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10677 gdb_assert (elf_section_nr < dwp_file->num_sections);
10678 dwp_file->elf_sections[elf_section_nr] = sectp;
10679
10680 /* Look for specific sections that we need. */
10681 if (section_is_p (sectp->name, &names->str_dwo))
10682 {
10683 dwp_file->sections.str.s.section = sectp;
10684 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10685 }
10686 else if (section_is_p (sectp->name, &names->cu_index))
10687 {
10688 dwp_file->sections.cu_index.s.section = sectp;
10689 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10690 }
10691 else if (section_is_p (sectp->name, &names->tu_index))
10692 {
10693 dwp_file->sections.tu_index.s.section = sectp;
10694 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10695 }
10696 }
10697
10698 /* This function is mapped across the sections and remembers the offset and
10699 size of each of the DWP version 2 debugging sections that we are interested
10700 in. This is split into a separate function because we don't know if we
10701 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10702
10703 static void
10704 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10705 {
10706 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
10707 const struct dwop_section_names *names = &dwop_section_names;
10708 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10709
10710 /* Record the ELF section number for later lookup: this is what the
10711 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10712 gdb_assert (elf_section_nr < dwp_file->num_sections);
10713 dwp_file->elf_sections[elf_section_nr] = sectp;
10714
10715 /* Look for specific sections that we need. */
10716 if (section_is_p (sectp->name, &names->abbrev_dwo))
10717 {
10718 dwp_file->sections.abbrev.s.section = sectp;
10719 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10720 }
10721 else if (section_is_p (sectp->name, &names->info_dwo))
10722 {
10723 dwp_file->sections.info.s.section = sectp;
10724 dwp_file->sections.info.size = bfd_get_section_size (sectp);
10725 }
10726 else if (section_is_p (sectp->name, &names->line_dwo))
10727 {
10728 dwp_file->sections.line.s.section = sectp;
10729 dwp_file->sections.line.size = bfd_get_section_size (sectp);
10730 }
10731 else if (section_is_p (sectp->name, &names->loc_dwo))
10732 {
10733 dwp_file->sections.loc.s.section = sectp;
10734 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
10735 }
10736 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10737 {
10738 dwp_file->sections.macinfo.s.section = sectp;
10739 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
10740 }
10741 else if (section_is_p (sectp->name, &names->macro_dwo))
10742 {
10743 dwp_file->sections.macro.s.section = sectp;
10744 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
10745 }
10746 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10747 {
10748 dwp_file->sections.str_offsets.s.section = sectp;
10749 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
10750 }
10751 else if (section_is_p (sectp->name, &names->types_dwo))
10752 {
10753 dwp_file->sections.types.s.section = sectp;
10754 dwp_file->sections.types.size = bfd_get_section_size (sectp);
10755 }
10756 }
10757
10758 /* Hash function for dwp_file loaded CUs/TUs. */
10759
10760 static hashval_t
10761 hash_dwp_loaded_cutus (const void *item)
10762 {
10763 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
10764
10765 /* This drops the top 32 bits of the signature, but is ok for a hash. */
10766 return dwo_unit->signature;
10767 }
10768
10769 /* Equality function for dwp_file loaded CUs/TUs. */
10770
10771 static int
10772 eq_dwp_loaded_cutus (const void *a, const void *b)
10773 {
10774 const struct dwo_unit *dua = (const struct dwo_unit *) a;
10775 const struct dwo_unit *dub = (const struct dwo_unit *) b;
10776
10777 return dua->signature == dub->signature;
10778 }
10779
10780 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
10781
10782 static htab_t
10783 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
10784 {
10785 return htab_create_alloc_ex (3,
10786 hash_dwp_loaded_cutus,
10787 eq_dwp_loaded_cutus,
10788 NULL,
10789 &objfile->objfile_obstack,
10790 hashtab_obstack_allocate,
10791 dummy_obstack_deallocate);
10792 }
10793
10794 /* Try to open DWP file FILE_NAME.
10795 The result is the bfd handle of the file.
10796 If there is a problem finding or opening the file, return NULL.
10797 Upon success, the canonicalized path of the file is stored in the bfd,
10798 same as symfile_bfd_open. */
10799
10800 static bfd *
10801 open_dwp_file (const char *file_name)
10802 {
10803 bfd *abfd;
10804
10805 abfd = try_open_dwop_file (file_name, 1 /*is_dwp*/, 1 /*search_cwd*/);
10806 if (abfd != NULL)
10807 return abfd;
10808
10809 /* Work around upstream bug 15652.
10810 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
10811 [Whether that's a "bug" is debatable, but it is getting in our way.]
10812 We have no real idea where the dwp file is, because gdb's realpath-ing
10813 of the executable's path may have discarded the needed info.
10814 [IWBN if the dwp file name was recorded in the executable, akin to
10815 .gnu_debuglink, but that doesn't exist yet.]
10816 Strip the directory from FILE_NAME and search again. */
10817 if (*debug_file_directory != '\0')
10818 {
10819 /* Don't implicitly search the current directory here.
10820 If the user wants to search "." to handle this case,
10821 it must be added to debug-file-directory. */
10822 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
10823 0 /*search_cwd*/);
10824 }
10825
10826 return NULL;
10827 }
10828
10829 /* Initialize the use of the DWP file for the current objfile.
10830 By convention the name of the DWP file is ${objfile}.dwp.
10831 The result is NULL if it can't be found. */
10832
10833 static struct dwp_file *
10834 open_and_init_dwp_file (void)
10835 {
10836 struct objfile *objfile = dwarf2_per_objfile->objfile;
10837 struct dwp_file *dwp_file;
10838 char *dwp_name;
10839 bfd *dbfd;
10840 struct cleanup *cleanups;
10841
10842 /* Try to find first .dwp for the binary file before any symbolic links
10843 resolving. */
10844 dwp_name = xstrprintf ("%s.dwp", objfile->original_name);
10845 cleanups = make_cleanup (xfree, dwp_name);
10846
10847 dbfd = open_dwp_file (dwp_name);
10848 if (dbfd == NULL
10849 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
10850 {
10851 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
10852 dwp_name = xstrprintf ("%s.dwp", objfile_name (objfile));
10853 make_cleanup (xfree, dwp_name);
10854 dbfd = open_dwp_file (dwp_name);
10855 }
10856
10857 if (dbfd == NULL)
10858 {
10859 if (dwarf_read_debug)
10860 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
10861 do_cleanups (cleanups);
10862 return NULL;
10863 }
10864 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
10865 dwp_file->name = bfd_get_filename (dbfd);
10866 dwp_file->dbfd = dbfd;
10867 do_cleanups (cleanups);
10868
10869 /* +1: section 0 is unused */
10870 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
10871 dwp_file->elf_sections =
10872 OBSTACK_CALLOC (&objfile->objfile_obstack,
10873 dwp_file->num_sections, asection *);
10874
10875 bfd_map_over_sections (dbfd, dwarf2_locate_common_dwp_sections, dwp_file);
10876
10877 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
10878
10879 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
10880
10881 /* The DWP file version is stored in the hash table. Oh well. */
10882 if (dwp_file->cus->version != dwp_file->tus->version)
10883 {
10884 /* Technically speaking, we should try to limp along, but this is
10885 pretty bizarre. We use pulongest here because that's the established
10886 portability solution (e.g, we cannot use %u for uint32_t). */
10887 error (_("Dwarf Error: DWP file CU version %s doesn't match"
10888 " TU version %s [in DWP file %s]"),
10889 pulongest (dwp_file->cus->version),
10890 pulongest (dwp_file->tus->version), dwp_name);
10891 }
10892 dwp_file->version = dwp_file->cus->version;
10893
10894 if (dwp_file->version == 2)
10895 bfd_map_over_sections (dbfd, dwarf2_locate_v2_dwp_sections, dwp_file);
10896
10897 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
10898 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
10899
10900 if (dwarf_read_debug)
10901 {
10902 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
10903 fprintf_unfiltered (gdb_stdlog,
10904 " %s CUs, %s TUs\n",
10905 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
10906 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
10907 }
10908
10909 return dwp_file;
10910 }
10911
10912 /* Wrapper around open_and_init_dwp_file, only open it once. */
10913
10914 static struct dwp_file *
10915 get_dwp_file (void)
10916 {
10917 if (! dwarf2_per_objfile->dwp_checked)
10918 {
10919 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
10920 dwarf2_per_objfile->dwp_checked = 1;
10921 }
10922 return dwarf2_per_objfile->dwp_file;
10923 }
10924
10925 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
10926 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
10927 or in the DWP file for the objfile, referenced by THIS_UNIT.
10928 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
10929 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
10930
10931 This is called, for example, when wanting to read a variable with a
10932 complex location. Therefore we don't want to do file i/o for every call.
10933 Therefore we don't want to look for a DWO file on every call.
10934 Therefore we first see if we've already seen SIGNATURE in a DWP file,
10935 then we check if we've already seen DWO_NAME, and only THEN do we check
10936 for a DWO file.
10937
10938 The result is a pointer to the dwo_unit object or NULL if we didn't find it
10939 (dwo_id mismatch or couldn't find the DWO/DWP file). */
10940
10941 static struct dwo_unit *
10942 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
10943 const char *dwo_name, const char *comp_dir,
10944 ULONGEST signature, int is_debug_types)
10945 {
10946 struct objfile *objfile = dwarf2_per_objfile->objfile;
10947 const char *kind = is_debug_types ? "TU" : "CU";
10948 void **dwo_file_slot;
10949 struct dwo_file *dwo_file;
10950 struct dwp_file *dwp_file;
10951
10952 /* First see if there's a DWP file.
10953 If we have a DWP file but didn't find the DWO inside it, don't
10954 look for the original DWO file. It makes gdb behave differently
10955 depending on whether one is debugging in the build tree. */
10956
10957 dwp_file = get_dwp_file ();
10958 if (dwp_file != NULL)
10959 {
10960 const struct dwp_hash_table *dwp_htab =
10961 is_debug_types ? dwp_file->tus : dwp_file->cus;
10962
10963 if (dwp_htab != NULL)
10964 {
10965 struct dwo_unit *dwo_cutu =
10966 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
10967 signature, is_debug_types);
10968
10969 if (dwo_cutu != NULL)
10970 {
10971 if (dwarf_read_debug)
10972 {
10973 fprintf_unfiltered (gdb_stdlog,
10974 "Virtual DWO %s %s found: @%s\n",
10975 kind, hex_string (signature),
10976 host_address_to_string (dwo_cutu));
10977 }
10978 return dwo_cutu;
10979 }
10980 }
10981 }
10982 else
10983 {
10984 /* No DWP file, look for the DWO file. */
10985
10986 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
10987 if (*dwo_file_slot == NULL)
10988 {
10989 /* Read in the file and build a table of the CUs/TUs it contains. */
10990 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
10991 }
10992 /* NOTE: This will be NULL if unable to open the file. */
10993 dwo_file = (struct dwo_file *) *dwo_file_slot;
10994
10995 if (dwo_file != NULL)
10996 {
10997 struct dwo_unit *dwo_cutu = NULL;
10998
10999 if (is_debug_types && dwo_file->tus)
11000 {
11001 struct dwo_unit find_dwo_cutu;
11002
11003 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
11004 find_dwo_cutu.signature = signature;
11005 dwo_cutu
11006 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
11007 }
11008 else if (!is_debug_types && dwo_file->cu)
11009 {
11010 if (signature == dwo_file->cu->signature)
11011 dwo_cutu = dwo_file->cu;
11012 }
11013
11014 if (dwo_cutu != NULL)
11015 {
11016 if (dwarf_read_debug)
11017 {
11018 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
11019 kind, dwo_name, hex_string (signature),
11020 host_address_to_string (dwo_cutu));
11021 }
11022 return dwo_cutu;
11023 }
11024 }
11025 }
11026
11027 /* We didn't find it. This could mean a dwo_id mismatch, or
11028 someone deleted the DWO/DWP file, or the search path isn't set up
11029 correctly to find the file. */
11030
11031 if (dwarf_read_debug)
11032 {
11033 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
11034 kind, dwo_name, hex_string (signature));
11035 }
11036
11037 /* This is a warning and not a complaint because it can be caused by
11038 pilot error (e.g., user accidentally deleting the DWO). */
11039 {
11040 /* Print the name of the DWP file if we looked there, helps the user
11041 better diagnose the problem. */
11042 char *dwp_text = NULL;
11043 struct cleanup *cleanups;
11044
11045 if (dwp_file != NULL)
11046 dwp_text = xstrprintf (" [in DWP file %s]", lbasename (dwp_file->name));
11047 cleanups = make_cleanup (xfree, dwp_text);
11048
11049 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
11050 " [in module %s]"),
11051 kind, dwo_name, hex_string (signature),
11052 dwp_text != NULL ? dwp_text : "",
11053 this_unit->is_debug_types ? "TU" : "CU",
11054 this_unit->offset.sect_off, objfile_name (objfile));
11055
11056 do_cleanups (cleanups);
11057 }
11058 return NULL;
11059 }
11060
11061 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
11062 See lookup_dwo_cutu_unit for details. */
11063
11064 static struct dwo_unit *
11065 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
11066 const char *dwo_name, const char *comp_dir,
11067 ULONGEST signature)
11068 {
11069 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
11070 }
11071
11072 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
11073 See lookup_dwo_cutu_unit for details. */
11074
11075 static struct dwo_unit *
11076 lookup_dwo_type_unit (struct signatured_type *this_tu,
11077 const char *dwo_name, const char *comp_dir)
11078 {
11079 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
11080 }
11081
11082 /* Traversal function for queue_and_load_all_dwo_tus. */
11083
11084 static int
11085 queue_and_load_dwo_tu (void **slot, void *info)
11086 {
11087 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
11088 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
11089 ULONGEST signature = dwo_unit->signature;
11090 struct signatured_type *sig_type =
11091 lookup_dwo_signatured_type (per_cu->cu, signature);
11092
11093 if (sig_type != NULL)
11094 {
11095 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
11096
11097 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
11098 a real dependency of PER_CU on SIG_TYPE. That is detected later
11099 while processing PER_CU. */
11100 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
11101 load_full_type_unit (sig_cu);
11102 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
11103 }
11104
11105 return 1;
11106 }
11107
11108 /* Queue all TUs contained in the DWO of PER_CU to be read in.
11109 The DWO may have the only definition of the type, though it may not be
11110 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
11111 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
11112
11113 static void
11114 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
11115 {
11116 struct dwo_unit *dwo_unit;
11117 struct dwo_file *dwo_file;
11118
11119 gdb_assert (!per_cu->is_debug_types);
11120 gdb_assert (get_dwp_file () == NULL);
11121 gdb_assert (per_cu->cu != NULL);
11122
11123 dwo_unit = per_cu->cu->dwo_unit;
11124 gdb_assert (dwo_unit != NULL);
11125
11126 dwo_file = dwo_unit->dwo_file;
11127 if (dwo_file->tus != NULL)
11128 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
11129 }
11130
11131 /* Free all resources associated with DWO_FILE.
11132 Close the DWO file and munmap the sections.
11133 All memory should be on the objfile obstack. */
11134
11135 static void
11136 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
11137 {
11138 int ix;
11139 struct dwarf2_section_info *section;
11140
11141 /* Note: dbfd is NULL for virtual DWO files. */
11142 gdb_bfd_unref (dwo_file->dbfd);
11143
11144 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
11145 }
11146
11147 /* Wrapper for free_dwo_file for use in cleanups. */
11148
11149 static void
11150 free_dwo_file_cleanup (void *arg)
11151 {
11152 struct dwo_file *dwo_file = (struct dwo_file *) arg;
11153 struct objfile *objfile = dwarf2_per_objfile->objfile;
11154
11155 free_dwo_file (dwo_file, objfile);
11156 }
11157
11158 /* Traversal function for free_dwo_files. */
11159
11160 static int
11161 free_dwo_file_from_slot (void **slot, void *info)
11162 {
11163 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
11164 struct objfile *objfile = (struct objfile *) info;
11165
11166 free_dwo_file (dwo_file, objfile);
11167
11168 return 1;
11169 }
11170
11171 /* Free all resources associated with DWO_FILES. */
11172
11173 static void
11174 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
11175 {
11176 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
11177 }
11178 \f
11179 /* Read in various DIEs. */
11180
11181 /* qsort helper for inherit_abstract_dies. */
11182
11183 static int
11184 unsigned_int_compar (const void *ap, const void *bp)
11185 {
11186 unsigned int a = *(unsigned int *) ap;
11187 unsigned int b = *(unsigned int *) bp;
11188
11189 return (a > b) - (b > a);
11190 }
11191
11192 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
11193 Inherit only the children of the DW_AT_abstract_origin DIE not being
11194 already referenced by DW_AT_abstract_origin from the children of the
11195 current DIE. */
11196
11197 static void
11198 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
11199 {
11200 struct die_info *child_die;
11201 unsigned die_children_count;
11202 /* CU offsets which were referenced by children of the current DIE. */
11203 sect_offset *offsets;
11204 sect_offset *offsets_end, *offsetp;
11205 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
11206 struct die_info *origin_die;
11207 /* Iterator of the ORIGIN_DIE children. */
11208 struct die_info *origin_child_die;
11209 struct cleanup *cleanups;
11210 struct attribute *attr;
11211 struct dwarf2_cu *origin_cu;
11212 struct pending **origin_previous_list_in_scope;
11213
11214 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11215 if (!attr)
11216 return;
11217
11218 /* Note that following die references may follow to a die in a
11219 different cu. */
11220
11221 origin_cu = cu;
11222 origin_die = follow_die_ref (die, attr, &origin_cu);
11223
11224 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
11225 symbols in. */
11226 origin_previous_list_in_scope = origin_cu->list_in_scope;
11227 origin_cu->list_in_scope = cu->list_in_scope;
11228
11229 if (die->tag != origin_die->tag
11230 && !(die->tag == DW_TAG_inlined_subroutine
11231 && origin_die->tag == DW_TAG_subprogram))
11232 complaint (&symfile_complaints,
11233 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
11234 die->offset.sect_off, origin_die->offset.sect_off);
11235
11236 child_die = die->child;
11237 die_children_count = 0;
11238 while (child_die && child_die->tag)
11239 {
11240 child_die = sibling_die (child_die);
11241 die_children_count++;
11242 }
11243 offsets = XNEWVEC (sect_offset, die_children_count);
11244 cleanups = make_cleanup (xfree, offsets);
11245
11246 offsets_end = offsets;
11247 for (child_die = die->child;
11248 child_die && child_die->tag;
11249 child_die = sibling_die (child_die))
11250 {
11251 struct die_info *child_origin_die;
11252 struct dwarf2_cu *child_origin_cu;
11253
11254 /* We are trying to process concrete instance entries:
11255 DW_TAG_GNU_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
11256 it's not relevant to our analysis here. i.e. detecting DIEs that are
11257 present in the abstract instance but not referenced in the concrete
11258 one. */
11259 if (child_die->tag == DW_TAG_GNU_call_site)
11260 continue;
11261
11262 /* For each CHILD_DIE, find the corresponding child of
11263 ORIGIN_DIE. If there is more than one layer of
11264 DW_AT_abstract_origin, follow them all; there shouldn't be,
11265 but GCC versions at least through 4.4 generate this (GCC PR
11266 40573). */
11267 child_origin_die = child_die;
11268 child_origin_cu = cu;
11269 while (1)
11270 {
11271 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
11272 child_origin_cu);
11273 if (attr == NULL)
11274 break;
11275 child_origin_die = follow_die_ref (child_origin_die, attr,
11276 &child_origin_cu);
11277 }
11278
11279 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
11280 counterpart may exist. */
11281 if (child_origin_die != child_die)
11282 {
11283 if (child_die->tag != child_origin_die->tag
11284 && !(child_die->tag == DW_TAG_inlined_subroutine
11285 && child_origin_die->tag == DW_TAG_subprogram))
11286 complaint (&symfile_complaints,
11287 _("Child DIE 0x%x and its abstract origin 0x%x have "
11288 "different tags"), child_die->offset.sect_off,
11289 child_origin_die->offset.sect_off);
11290 if (child_origin_die->parent != origin_die)
11291 complaint (&symfile_complaints,
11292 _("Child DIE 0x%x and its abstract origin 0x%x have "
11293 "different parents"), child_die->offset.sect_off,
11294 child_origin_die->offset.sect_off);
11295 else
11296 *offsets_end++ = child_origin_die->offset;
11297 }
11298 }
11299 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
11300 unsigned_int_compar);
11301 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
11302 if (offsetp[-1].sect_off == offsetp->sect_off)
11303 complaint (&symfile_complaints,
11304 _("Multiple children of DIE 0x%x refer "
11305 "to DIE 0x%x as their abstract origin"),
11306 die->offset.sect_off, offsetp->sect_off);
11307
11308 offsetp = offsets;
11309 origin_child_die = origin_die->child;
11310 while (origin_child_die && origin_child_die->tag)
11311 {
11312 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
11313 while (offsetp < offsets_end
11314 && offsetp->sect_off < origin_child_die->offset.sect_off)
11315 offsetp++;
11316 if (offsetp >= offsets_end
11317 || offsetp->sect_off > origin_child_die->offset.sect_off)
11318 {
11319 /* Found that ORIGIN_CHILD_DIE is really not referenced.
11320 Check whether we're already processing ORIGIN_CHILD_DIE.
11321 This can happen with mutually referenced abstract_origins.
11322 PR 16581. */
11323 if (!origin_child_die->in_process)
11324 process_die (origin_child_die, origin_cu);
11325 }
11326 origin_child_die = sibling_die (origin_child_die);
11327 }
11328 origin_cu->list_in_scope = origin_previous_list_in_scope;
11329
11330 do_cleanups (cleanups);
11331 }
11332
11333 static void
11334 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
11335 {
11336 struct objfile *objfile = cu->objfile;
11337 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11338 struct context_stack *newobj;
11339 CORE_ADDR lowpc;
11340 CORE_ADDR highpc;
11341 struct die_info *child_die;
11342 struct attribute *attr, *call_line, *call_file;
11343 const char *name;
11344 CORE_ADDR baseaddr;
11345 struct block *block;
11346 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
11347 VEC (symbolp) *template_args = NULL;
11348 struct template_symbol *templ_func = NULL;
11349
11350 if (inlined_func)
11351 {
11352 /* If we do not have call site information, we can't show the
11353 caller of this inlined function. That's too confusing, so
11354 only use the scope for local variables. */
11355 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11356 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11357 if (call_line == NULL || call_file == NULL)
11358 {
11359 read_lexical_block_scope (die, cu);
11360 return;
11361 }
11362 }
11363
11364 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11365
11366 name = dwarf2_name (die, cu);
11367
11368 /* Ignore functions with missing or empty names. These are actually
11369 illegal according to the DWARF standard. */
11370 if (name == NULL)
11371 {
11372 complaint (&symfile_complaints,
11373 _("missing name for subprogram DIE at %d"),
11374 die->offset.sect_off);
11375 return;
11376 }
11377
11378 /* Ignore functions with missing or invalid low and high pc attributes. */
11379 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11380 {
11381 attr = dwarf2_attr (die, DW_AT_external, cu);
11382 if (!attr || !DW_UNSND (attr))
11383 complaint (&symfile_complaints,
11384 _("cannot get low and high bounds "
11385 "for subprogram DIE at %d"),
11386 die->offset.sect_off);
11387 return;
11388 }
11389
11390 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11391 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
11392
11393 /* If we have any template arguments, then we must allocate a
11394 different sort of symbol. */
11395 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11396 {
11397 if (child_die->tag == DW_TAG_template_type_param
11398 || child_die->tag == DW_TAG_template_value_param)
11399 {
11400 templ_func = allocate_template_symbol (objfile);
11401 templ_func->base.is_cplus_template_function = 1;
11402 break;
11403 }
11404 }
11405
11406 newobj = push_context (0, lowpc);
11407 newobj->name = new_symbol_full (die, read_type_die (die, cu), cu,
11408 (struct symbol *) templ_func);
11409
11410 /* If there is a location expression for DW_AT_frame_base, record
11411 it. */
11412 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
11413 if (attr)
11414 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
11415
11416 /* If there is a location for the static link, record it. */
11417 newobj->static_link = NULL;
11418 attr = dwarf2_attr (die, DW_AT_static_link, cu);
11419 if (attr)
11420 {
11421 newobj->static_link
11422 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
11423 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
11424 }
11425
11426 cu->list_in_scope = &local_symbols;
11427
11428 if (die->child != NULL)
11429 {
11430 child_die = die->child;
11431 while (child_die && child_die->tag)
11432 {
11433 if (child_die->tag == DW_TAG_template_type_param
11434 || child_die->tag == DW_TAG_template_value_param)
11435 {
11436 struct symbol *arg = new_symbol (child_die, NULL, cu);
11437
11438 if (arg != NULL)
11439 VEC_safe_push (symbolp, template_args, arg);
11440 }
11441 else
11442 process_die (child_die, cu);
11443 child_die = sibling_die (child_die);
11444 }
11445 }
11446
11447 inherit_abstract_dies (die, cu);
11448
11449 /* If we have a DW_AT_specification, we might need to import using
11450 directives from the context of the specification DIE. See the
11451 comment in determine_prefix. */
11452 if (cu->language == language_cplus
11453 && dwarf2_attr (die, DW_AT_specification, cu))
11454 {
11455 struct dwarf2_cu *spec_cu = cu;
11456 struct die_info *spec_die = die_specification (die, &spec_cu);
11457
11458 while (spec_die)
11459 {
11460 child_die = spec_die->child;
11461 while (child_die && child_die->tag)
11462 {
11463 if (child_die->tag == DW_TAG_imported_module)
11464 process_die (child_die, spec_cu);
11465 child_die = sibling_die (child_die);
11466 }
11467
11468 /* In some cases, GCC generates specification DIEs that
11469 themselves contain DW_AT_specification attributes. */
11470 spec_die = die_specification (spec_die, &spec_cu);
11471 }
11472 }
11473
11474 newobj = pop_context ();
11475 /* Make a block for the local symbols within. */
11476 block = finish_block (newobj->name, &local_symbols, newobj->old_blocks,
11477 newobj->static_link, lowpc, highpc);
11478
11479 /* For C++, set the block's scope. */
11480 if ((cu->language == language_cplus
11481 || cu->language == language_fortran
11482 || cu->language == language_d)
11483 && cu->processing_has_namespace_info)
11484 block_set_scope (block, determine_prefix (die, cu),
11485 &objfile->objfile_obstack);
11486
11487 /* If we have address ranges, record them. */
11488 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11489
11490 gdbarch_make_symbol_special (gdbarch, newobj->name, objfile);
11491
11492 /* Attach template arguments to function. */
11493 if (! VEC_empty (symbolp, template_args))
11494 {
11495 gdb_assert (templ_func != NULL);
11496
11497 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11498 templ_func->template_arguments
11499 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
11500 templ_func->n_template_arguments);
11501 memcpy (templ_func->template_arguments,
11502 VEC_address (symbolp, template_args),
11503 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11504 VEC_free (symbolp, template_args);
11505 }
11506
11507 /* In C++, we can have functions nested inside functions (e.g., when
11508 a function declares a class that has methods). This means that
11509 when we finish processing a function scope, we may need to go
11510 back to building a containing block's symbol lists. */
11511 local_symbols = newobj->locals;
11512 local_using_directives = newobj->local_using_directives;
11513
11514 /* If we've finished processing a top-level function, subsequent
11515 symbols go in the file symbol list. */
11516 if (outermost_context_p ())
11517 cu->list_in_scope = &file_symbols;
11518 }
11519
11520 /* Process all the DIES contained within a lexical block scope. Start
11521 a new scope, process the dies, and then close the scope. */
11522
11523 static void
11524 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
11525 {
11526 struct objfile *objfile = cu->objfile;
11527 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11528 struct context_stack *newobj;
11529 CORE_ADDR lowpc, highpc;
11530 struct die_info *child_die;
11531 CORE_ADDR baseaddr;
11532
11533 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11534
11535 /* Ignore blocks with missing or invalid low and high pc attributes. */
11536 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11537 as multiple lexical blocks? Handling children in a sane way would
11538 be nasty. Might be easier to properly extend generic blocks to
11539 describe ranges. */
11540 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11541 return;
11542 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11543 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
11544
11545 push_context (0, lowpc);
11546 if (die->child != NULL)
11547 {
11548 child_die = die->child;
11549 while (child_die && child_die->tag)
11550 {
11551 process_die (child_die, cu);
11552 child_die = sibling_die (child_die);
11553 }
11554 }
11555 inherit_abstract_dies (die, cu);
11556 newobj = pop_context ();
11557
11558 if (local_symbols != NULL || local_using_directives != NULL)
11559 {
11560 struct block *block
11561 = finish_block (0, &local_symbols, newobj->old_blocks, NULL,
11562 newobj->start_addr, highpc);
11563
11564 /* Note that recording ranges after traversing children, as we
11565 do here, means that recording a parent's ranges entails
11566 walking across all its children's ranges as they appear in
11567 the address map, which is quadratic behavior.
11568
11569 It would be nicer to record the parent's ranges before
11570 traversing its children, simply overriding whatever you find
11571 there. But since we don't even decide whether to create a
11572 block until after we've traversed its children, that's hard
11573 to do. */
11574 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11575 }
11576 local_symbols = newobj->locals;
11577 local_using_directives = newobj->local_using_directives;
11578 }
11579
11580 /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
11581
11582 static void
11583 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11584 {
11585 struct objfile *objfile = cu->objfile;
11586 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11587 CORE_ADDR pc, baseaddr;
11588 struct attribute *attr;
11589 struct call_site *call_site, call_site_local;
11590 void **slot;
11591 int nparams;
11592 struct die_info *child_die;
11593
11594 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11595
11596 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11597 if (!attr)
11598 {
11599 complaint (&symfile_complaints,
11600 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
11601 "DIE 0x%x [in module %s]"),
11602 die->offset.sect_off, objfile_name (objfile));
11603 return;
11604 }
11605 pc = attr_value_as_address (attr) + baseaddr;
11606 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
11607
11608 if (cu->call_site_htab == NULL)
11609 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11610 NULL, &objfile->objfile_obstack,
11611 hashtab_obstack_allocate, NULL);
11612 call_site_local.pc = pc;
11613 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11614 if (*slot != NULL)
11615 {
11616 complaint (&symfile_complaints,
11617 _("Duplicate PC %s for DW_TAG_GNU_call_site "
11618 "DIE 0x%x [in module %s]"),
11619 paddress (gdbarch, pc), die->offset.sect_off,
11620 objfile_name (objfile));
11621 return;
11622 }
11623
11624 /* Count parameters at the caller. */
11625
11626 nparams = 0;
11627 for (child_die = die->child; child_die && child_die->tag;
11628 child_die = sibling_die (child_die))
11629 {
11630 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11631 {
11632 complaint (&symfile_complaints,
11633 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
11634 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11635 child_die->tag, child_die->offset.sect_off,
11636 objfile_name (objfile));
11637 continue;
11638 }
11639
11640 nparams++;
11641 }
11642
11643 call_site
11644 = ((struct call_site *)
11645 obstack_alloc (&objfile->objfile_obstack,
11646 sizeof (*call_site)
11647 + (sizeof (*call_site->parameter) * (nparams - 1))));
11648 *slot = call_site;
11649 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11650 call_site->pc = pc;
11651
11652 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
11653 {
11654 struct die_info *func_die;
11655
11656 /* Skip also over DW_TAG_inlined_subroutine. */
11657 for (func_die = die->parent;
11658 func_die && func_die->tag != DW_TAG_subprogram
11659 && func_die->tag != DW_TAG_subroutine_type;
11660 func_die = func_die->parent);
11661
11662 /* DW_AT_GNU_all_call_sites is a superset
11663 of DW_AT_GNU_all_tail_call_sites. */
11664 if (func_die
11665 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
11666 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11667 {
11668 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11669 not complete. But keep CALL_SITE for look ups via call_site_htab,
11670 both the initial caller containing the real return address PC and
11671 the final callee containing the current PC of a chain of tail
11672 calls do not need to have the tail call list complete. But any
11673 function candidate for a virtual tail call frame searched via
11674 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11675 determined unambiguously. */
11676 }
11677 else
11678 {
11679 struct type *func_type = NULL;
11680
11681 if (func_die)
11682 func_type = get_die_type (func_die, cu);
11683 if (func_type != NULL)
11684 {
11685 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11686
11687 /* Enlist this call site to the function. */
11688 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11689 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11690 }
11691 else
11692 complaint (&symfile_complaints,
11693 _("Cannot find function owning DW_TAG_GNU_call_site "
11694 "DIE 0x%x [in module %s]"),
11695 die->offset.sect_off, objfile_name (objfile));
11696 }
11697 }
11698
11699 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11700 if (attr == NULL)
11701 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11702 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
11703 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
11704 /* Keep NULL DWARF_BLOCK. */;
11705 else if (attr_form_is_block (attr))
11706 {
11707 struct dwarf2_locexpr_baton *dlbaton;
11708
11709 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
11710 dlbaton->data = DW_BLOCK (attr)->data;
11711 dlbaton->size = DW_BLOCK (attr)->size;
11712 dlbaton->per_cu = cu->per_cu;
11713
11714 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
11715 }
11716 else if (attr_form_is_ref (attr))
11717 {
11718 struct dwarf2_cu *target_cu = cu;
11719 struct die_info *target_die;
11720
11721 target_die = follow_die_ref (die, attr, &target_cu);
11722 gdb_assert (target_cu->objfile == objfile);
11723 if (die_is_declaration (target_die, target_cu))
11724 {
11725 const char *target_physname;
11726
11727 /* Prefer the mangled name; otherwise compute the demangled one. */
11728 target_physname = dwarf2_string_attr (target_die,
11729 DW_AT_linkage_name,
11730 target_cu);
11731 if (target_physname == NULL)
11732 target_physname = dwarf2_string_attr (target_die,
11733 DW_AT_MIPS_linkage_name,
11734 target_cu);
11735 if (target_physname == NULL)
11736 target_physname = dwarf2_physname (NULL, target_die, target_cu);
11737 if (target_physname == NULL)
11738 complaint (&symfile_complaints,
11739 _("DW_AT_GNU_call_site_target target DIE has invalid "
11740 "physname, for referencing DIE 0x%x [in module %s]"),
11741 die->offset.sect_off, objfile_name (objfile));
11742 else
11743 SET_FIELD_PHYSNAME (call_site->target, target_physname);
11744 }
11745 else
11746 {
11747 CORE_ADDR lowpc;
11748
11749 /* DW_AT_entry_pc should be preferred. */
11750 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
11751 complaint (&symfile_complaints,
11752 _("DW_AT_GNU_call_site_target target DIE has invalid "
11753 "low pc, for referencing DIE 0x%x [in module %s]"),
11754 die->offset.sect_off, objfile_name (objfile));
11755 else
11756 {
11757 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11758 SET_FIELD_PHYSADDR (call_site->target, lowpc);
11759 }
11760 }
11761 }
11762 else
11763 complaint (&symfile_complaints,
11764 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
11765 "block nor reference, for DIE 0x%x [in module %s]"),
11766 die->offset.sect_off, objfile_name (objfile));
11767
11768 call_site->per_cu = cu->per_cu;
11769
11770 for (child_die = die->child;
11771 child_die && child_die->tag;
11772 child_die = sibling_die (child_die))
11773 {
11774 struct call_site_parameter *parameter;
11775 struct attribute *loc, *origin;
11776
11777 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11778 {
11779 /* Already printed the complaint above. */
11780 continue;
11781 }
11782
11783 gdb_assert (call_site->parameter_count < nparams);
11784 parameter = &call_site->parameter[call_site->parameter_count];
11785
11786 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
11787 specifies DW_TAG_formal_parameter. Value of the data assumed for the
11788 register is contained in DW_AT_GNU_call_site_value. */
11789
11790 loc = dwarf2_attr (child_die, DW_AT_location, cu);
11791 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
11792 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
11793 {
11794 sect_offset offset;
11795
11796 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
11797 offset = dwarf2_get_ref_die_offset (origin);
11798 if (!offset_in_cu_p (&cu->header, offset))
11799 {
11800 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
11801 binding can be done only inside one CU. Such referenced DIE
11802 therefore cannot be even moved to DW_TAG_partial_unit. */
11803 complaint (&symfile_complaints,
11804 _("DW_AT_abstract_origin offset is not in CU for "
11805 "DW_TAG_GNU_call_site child DIE 0x%x "
11806 "[in module %s]"),
11807 child_die->offset.sect_off, objfile_name (objfile));
11808 continue;
11809 }
11810 parameter->u.param_offset.cu_off = (offset.sect_off
11811 - cu->header.offset.sect_off);
11812 }
11813 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
11814 {
11815 complaint (&symfile_complaints,
11816 _("No DW_FORM_block* DW_AT_location for "
11817 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11818 child_die->offset.sect_off, objfile_name (objfile));
11819 continue;
11820 }
11821 else
11822 {
11823 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
11824 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
11825 if (parameter->u.dwarf_reg != -1)
11826 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
11827 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
11828 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
11829 &parameter->u.fb_offset))
11830 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
11831 else
11832 {
11833 complaint (&symfile_complaints,
11834 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
11835 "for DW_FORM_block* DW_AT_location is supported for "
11836 "DW_TAG_GNU_call_site child DIE 0x%x "
11837 "[in module %s]"),
11838 child_die->offset.sect_off, objfile_name (objfile));
11839 continue;
11840 }
11841 }
11842
11843 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
11844 if (!attr_form_is_block (attr))
11845 {
11846 complaint (&symfile_complaints,
11847 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
11848 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11849 child_die->offset.sect_off, objfile_name (objfile));
11850 continue;
11851 }
11852 parameter->value = DW_BLOCK (attr)->data;
11853 parameter->value_size = DW_BLOCK (attr)->size;
11854
11855 /* Parameters are not pre-cleared by memset above. */
11856 parameter->data_value = NULL;
11857 parameter->data_value_size = 0;
11858 call_site->parameter_count++;
11859
11860 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
11861 if (attr)
11862 {
11863 if (!attr_form_is_block (attr))
11864 complaint (&symfile_complaints,
11865 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
11866 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11867 child_die->offset.sect_off, objfile_name (objfile));
11868 else
11869 {
11870 parameter->data_value = DW_BLOCK (attr)->data;
11871 parameter->data_value_size = DW_BLOCK (attr)->size;
11872 }
11873 }
11874 }
11875 }
11876
11877 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
11878 Return 1 if the attributes are present and valid, otherwise, return 0.
11879 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
11880
11881 static int
11882 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
11883 CORE_ADDR *high_return, struct dwarf2_cu *cu,
11884 struct partial_symtab *ranges_pst)
11885 {
11886 struct objfile *objfile = cu->objfile;
11887 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11888 struct comp_unit_head *cu_header = &cu->header;
11889 bfd *obfd = objfile->obfd;
11890 unsigned int addr_size = cu_header->addr_size;
11891 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11892 /* Base address selection entry. */
11893 CORE_ADDR base;
11894 int found_base;
11895 unsigned int dummy;
11896 const gdb_byte *buffer;
11897 int low_set;
11898 CORE_ADDR low = 0;
11899 CORE_ADDR high = 0;
11900 CORE_ADDR baseaddr;
11901
11902 found_base = cu->base_known;
11903 base = cu->base_address;
11904
11905 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
11906 if (offset >= dwarf2_per_objfile->ranges.size)
11907 {
11908 complaint (&symfile_complaints,
11909 _("Offset %d out of bounds for DW_AT_ranges attribute"),
11910 offset);
11911 return 0;
11912 }
11913 buffer = dwarf2_per_objfile->ranges.buffer + offset;
11914
11915 low_set = 0;
11916
11917 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11918
11919 while (1)
11920 {
11921 CORE_ADDR range_beginning, range_end;
11922
11923 range_beginning = read_address (obfd, buffer, cu, &dummy);
11924 buffer += addr_size;
11925 range_end = read_address (obfd, buffer, cu, &dummy);
11926 buffer += addr_size;
11927 offset += 2 * addr_size;
11928
11929 /* An end of list marker is a pair of zero addresses. */
11930 if (range_beginning == 0 && range_end == 0)
11931 /* Found the end of list entry. */
11932 break;
11933
11934 /* Each base address selection entry is a pair of 2 values.
11935 The first is the largest possible address, the second is
11936 the base address. Check for a base address here. */
11937 if ((range_beginning & mask) == mask)
11938 {
11939 /* If we found the largest possible address, then we already
11940 have the base address in range_end. */
11941 base = range_end;
11942 found_base = 1;
11943 continue;
11944 }
11945
11946 if (!found_base)
11947 {
11948 /* We have no valid base address for the ranges
11949 data. */
11950 complaint (&symfile_complaints,
11951 _("Invalid .debug_ranges data (no base address)"));
11952 return 0;
11953 }
11954
11955 if (range_beginning > range_end)
11956 {
11957 /* Inverted range entries are invalid. */
11958 complaint (&symfile_complaints,
11959 _("Invalid .debug_ranges data (inverted range)"));
11960 return 0;
11961 }
11962
11963 /* Empty range entries have no effect. */
11964 if (range_beginning == range_end)
11965 continue;
11966
11967 range_beginning += base;
11968 range_end += base;
11969
11970 /* A not-uncommon case of bad debug info.
11971 Don't pollute the addrmap with bad data. */
11972 if (range_beginning + baseaddr == 0
11973 && !dwarf2_per_objfile->has_section_at_zero)
11974 {
11975 complaint (&symfile_complaints,
11976 _(".debug_ranges entry has start address of zero"
11977 " [in module %s]"), objfile_name (objfile));
11978 continue;
11979 }
11980
11981 if (ranges_pst != NULL)
11982 {
11983 CORE_ADDR lowpc;
11984 CORE_ADDR highpc;
11985
11986 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
11987 range_beginning + baseaddr);
11988 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
11989 range_end + baseaddr);
11990 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
11991 ranges_pst);
11992 }
11993
11994 /* FIXME: This is recording everything as a low-high
11995 segment of consecutive addresses. We should have a
11996 data structure for discontiguous block ranges
11997 instead. */
11998 if (! low_set)
11999 {
12000 low = range_beginning;
12001 high = range_end;
12002 low_set = 1;
12003 }
12004 else
12005 {
12006 if (range_beginning < low)
12007 low = range_beginning;
12008 if (range_end > high)
12009 high = range_end;
12010 }
12011 }
12012
12013 if (! low_set)
12014 /* If the first entry is an end-of-list marker, the range
12015 describes an empty scope, i.e. no instructions. */
12016 return 0;
12017
12018 if (low_return)
12019 *low_return = low;
12020 if (high_return)
12021 *high_return = high;
12022 return 1;
12023 }
12024
12025 /* Get low and high pc attributes from a die. Return 1 if the attributes
12026 are present and valid, otherwise, return 0. Return -1 if the range is
12027 discontinuous, i.e. derived from DW_AT_ranges information. */
12028
12029 static int
12030 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
12031 CORE_ADDR *highpc, struct dwarf2_cu *cu,
12032 struct partial_symtab *pst)
12033 {
12034 struct attribute *attr;
12035 struct attribute *attr_high;
12036 CORE_ADDR low = 0;
12037 CORE_ADDR high = 0;
12038 int ret = 0;
12039
12040 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12041 if (attr_high)
12042 {
12043 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12044 if (attr)
12045 {
12046 low = attr_value_as_address (attr);
12047 high = attr_value_as_address (attr_high);
12048 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12049 high += low;
12050 }
12051 else
12052 /* Found high w/o low attribute. */
12053 return 0;
12054
12055 /* Found consecutive range of addresses. */
12056 ret = 1;
12057 }
12058 else
12059 {
12060 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12061 if (attr != NULL)
12062 {
12063 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12064 We take advantage of the fact that DW_AT_ranges does not appear
12065 in DW_TAG_compile_unit of DWO files. */
12066 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12067 unsigned int ranges_offset = (DW_UNSND (attr)
12068 + (need_ranges_base
12069 ? cu->ranges_base
12070 : 0));
12071
12072 /* Value of the DW_AT_ranges attribute is the offset in the
12073 .debug_ranges section. */
12074 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
12075 return 0;
12076 /* Found discontinuous range of addresses. */
12077 ret = -1;
12078 }
12079 }
12080
12081 /* read_partial_die has also the strict LOW < HIGH requirement. */
12082 if (high <= low)
12083 return 0;
12084
12085 /* When using the GNU linker, .gnu.linkonce. sections are used to
12086 eliminate duplicate copies of functions and vtables and such.
12087 The linker will arbitrarily choose one and discard the others.
12088 The AT_*_pc values for such functions refer to local labels in
12089 these sections. If the section from that file was discarded, the
12090 labels are not in the output, so the relocs get a value of 0.
12091 If this is a discarded function, mark the pc bounds as invalid,
12092 so that GDB will ignore it. */
12093 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
12094 return 0;
12095
12096 *lowpc = low;
12097 if (highpc)
12098 *highpc = high;
12099 return ret;
12100 }
12101
12102 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
12103 its low and high PC addresses. Do nothing if these addresses could not
12104 be determined. Otherwise, set LOWPC to the low address if it is smaller,
12105 and HIGHPC to the high address if greater than HIGHPC. */
12106
12107 static void
12108 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
12109 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12110 struct dwarf2_cu *cu)
12111 {
12112 CORE_ADDR low, high;
12113 struct die_info *child = die->child;
12114
12115 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
12116 {
12117 *lowpc = min (*lowpc, low);
12118 *highpc = max (*highpc, high);
12119 }
12120
12121 /* If the language does not allow nested subprograms (either inside
12122 subprograms or lexical blocks), we're done. */
12123 if (cu->language != language_ada)
12124 return;
12125
12126 /* Check all the children of the given DIE. If it contains nested
12127 subprograms, then check their pc bounds. Likewise, we need to
12128 check lexical blocks as well, as they may also contain subprogram
12129 definitions. */
12130 while (child && child->tag)
12131 {
12132 if (child->tag == DW_TAG_subprogram
12133 || child->tag == DW_TAG_lexical_block)
12134 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
12135 child = sibling_die (child);
12136 }
12137 }
12138
12139 /* Get the low and high pc's represented by the scope DIE, and store
12140 them in *LOWPC and *HIGHPC. If the correct values can't be
12141 determined, set *LOWPC to -1 and *HIGHPC to 0. */
12142
12143 static void
12144 get_scope_pc_bounds (struct die_info *die,
12145 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12146 struct dwarf2_cu *cu)
12147 {
12148 CORE_ADDR best_low = (CORE_ADDR) -1;
12149 CORE_ADDR best_high = (CORE_ADDR) 0;
12150 CORE_ADDR current_low, current_high;
12151
12152 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
12153 {
12154 best_low = current_low;
12155 best_high = current_high;
12156 }
12157 else
12158 {
12159 struct die_info *child = die->child;
12160
12161 while (child && child->tag)
12162 {
12163 switch (child->tag) {
12164 case DW_TAG_subprogram:
12165 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
12166 break;
12167 case DW_TAG_namespace:
12168 case DW_TAG_module:
12169 /* FIXME: carlton/2004-01-16: Should we do this for
12170 DW_TAG_class_type/DW_TAG_structure_type, too? I think
12171 that current GCC's always emit the DIEs corresponding
12172 to definitions of methods of classes as children of a
12173 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
12174 the DIEs giving the declarations, which could be
12175 anywhere). But I don't see any reason why the
12176 standards says that they have to be there. */
12177 get_scope_pc_bounds (child, &current_low, &current_high, cu);
12178
12179 if (current_low != ((CORE_ADDR) -1))
12180 {
12181 best_low = min (best_low, current_low);
12182 best_high = max (best_high, current_high);
12183 }
12184 break;
12185 default:
12186 /* Ignore. */
12187 break;
12188 }
12189
12190 child = sibling_die (child);
12191 }
12192 }
12193
12194 *lowpc = best_low;
12195 *highpc = best_high;
12196 }
12197
12198 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
12199 in DIE. */
12200
12201 static void
12202 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
12203 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
12204 {
12205 struct objfile *objfile = cu->objfile;
12206 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12207 struct attribute *attr;
12208 struct attribute *attr_high;
12209
12210 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12211 if (attr_high)
12212 {
12213 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12214 if (attr)
12215 {
12216 CORE_ADDR low = attr_value_as_address (attr);
12217 CORE_ADDR high = attr_value_as_address (attr_high);
12218
12219 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12220 high += low;
12221
12222 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
12223 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
12224 record_block_range (block, low, high - 1);
12225 }
12226 }
12227
12228 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12229 if (attr)
12230 {
12231 bfd *obfd = objfile->obfd;
12232 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12233 We take advantage of the fact that DW_AT_ranges does not appear
12234 in DW_TAG_compile_unit of DWO files. */
12235 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12236
12237 /* The value of the DW_AT_ranges attribute is the offset of the
12238 address range list in the .debug_ranges section. */
12239 unsigned long offset = (DW_UNSND (attr)
12240 + (need_ranges_base ? cu->ranges_base : 0));
12241 const gdb_byte *buffer;
12242
12243 /* For some target architectures, but not others, the
12244 read_address function sign-extends the addresses it returns.
12245 To recognize base address selection entries, we need a
12246 mask. */
12247 unsigned int addr_size = cu->header.addr_size;
12248 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12249
12250 /* The base address, to which the next pair is relative. Note
12251 that this 'base' is a DWARF concept: most entries in a range
12252 list are relative, to reduce the number of relocs against the
12253 debugging information. This is separate from this function's
12254 'baseaddr' argument, which GDB uses to relocate debugging
12255 information from a shared library based on the address at
12256 which the library was loaded. */
12257 CORE_ADDR base = cu->base_address;
12258 int base_known = cu->base_known;
12259
12260 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
12261 if (offset >= dwarf2_per_objfile->ranges.size)
12262 {
12263 complaint (&symfile_complaints,
12264 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
12265 offset);
12266 return;
12267 }
12268 buffer = dwarf2_per_objfile->ranges.buffer + offset;
12269
12270 for (;;)
12271 {
12272 unsigned int bytes_read;
12273 CORE_ADDR start, end;
12274
12275 start = read_address (obfd, buffer, cu, &bytes_read);
12276 buffer += bytes_read;
12277 end = read_address (obfd, buffer, cu, &bytes_read);
12278 buffer += bytes_read;
12279
12280 /* Did we find the end of the range list? */
12281 if (start == 0 && end == 0)
12282 break;
12283
12284 /* Did we find a base address selection entry? */
12285 else if ((start & base_select_mask) == base_select_mask)
12286 {
12287 base = end;
12288 base_known = 1;
12289 }
12290
12291 /* We found an ordinary address range. */
12292 else
12293 {
12294 if (!base_known)
12295 {
12296 complaint (&symfile_complaints,
12297 _("Invalid .debug_ranges data "
12298 "(no base address)"));
12299 return;
12300 }
12301
12302 if (start > end)
12303 {
12304 /* Inverted range entries are invalid. */
12305 complaint (&symfile_complaints,
12306 _("Invalid .debug_ranges data "
12307 "(inverted range)"));
12308 return;
12309 }
12310
12311 /* Empty range entries have no effect. */
12312 if (start == end)
12313 continue;
12314
12315 start += base + baseaddr;
12316 end += base + baseaddr;
12317
12318 /* A not-uncommon case of bad debug info.
12319 Don't pollute the addrmap with bad data. */
12320 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
12321 {
12322 complaint (&symfile_complaints,
12323 _(".debug_ranges entry has start address of zero"
12324 " [in module %s]"), objfile_name (objfile));
12325 continue;
12326 }
12327
12328 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
12329 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
12330 record_block_range (block, start, end - 1);
12331 }
12332 }
12333 }
12334 }
12335
12336 /* Check whether the producer field indicates either of GCC < 4.6, or the
12337 Intel C/C++ compiler, and cache the result in CU. */
12338
12339 static void
12340 check_producer (struct dwarf2_cu *cu)
12341 {
12342 const char *cs;
12343 int major, minor;
12344
12345 if (cu->producer == NULL)
12346 {
12347 /* For unknown compilers expect their behavior is DWARF version
12348 compliant.
12349
12350 GCC started to support .debug_types sections by -gdwarf-4 since
12351 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
12352 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
12353 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
12354 interpreted incorrectly by GDB now - GCC PR debug/48229. */
12355 }
12356 else if (producer_is_gcc (cu->producer, &major, &minor))
12357 {
12358 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
12359 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
12360 }
12361 else if (startswith (cu->producer, "Intel(R) C"))
12362 cu->producer_is_icc = 1;
12363 else
12364 {
12365 /* For other non-GCC compilers, expect their behavior is DWARF version
12366 compliant. */
12367 }
12368
12369 cu->checked_producer = 1;
12370 }
12371
12372 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12373 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12374 during 4.6.0 experimental. */
12375
12376 static int
12377 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12378 {
12379 if (!cu->checked_producer)
12380 check_producer (cu);
12381
12382 return cu->producer_is_gxx_lt_4_6;
12383 }
12384
12385 /* Return the default accessibility type if it is not overriden by
12386 DW_AT_accessibility. */
12387
12388 static enum dwarf_access_attribute
12389 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12390 {
12391 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12392 {
12393 /* The default DWARF 2 accessibility for members is public, the default
12394 accessibility for inheritance is private. */
12395
12396 if (die->tag != DW_TAG_inheritance)
12397 return DW_ACCESS_public;
12398 else
12399 return DW_ACCESS_private;
12400 }
12401 else
12402 {
12403 /* DWARF 3+ defines the default accessibility a different way. The same
12404 rules apply now for DW_TAG_inheritance as for the members and it only
12405 depends on the container kind. */
12406
12407 if (die->parent->tag == DW_TAG_class_type)
12408 return DW_ACCESS_private;
12409 else
12410 return DW_ACCESS_public;
12411 }
12412 }
12413
12414 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12415 offset. If the attribute was not found return 0, otherwise return
12416 1. If it was found but could not properly be handled, set *OFFSET
12417 to 0. */
12418
12419 static int
12420 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12421 LONGEST *offset)
12422 {
12423 struct attribute *attr;
12424
12425 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12426 if (attr != NULL)
12427 {
12428 *offset = 0;
12429
12430 /* Note that we do not check for a section offset first here.
12431 This is because DW_AT_data_member_location is new in DWARF 4,
12432 so if we see it, we can assume that a constant form is really
12433 a constant and not a section offset. */
12434 if (attr_form_is_constant (attr))
12435 *offset = dwarf2_get_attr_constant_value (attr, 0);
12436 else if (attr_form_is_section_offset (attr))
12437 dwarf2_complex_location_expr_complaint ();
12438 else if (attr_form_is_block (attr))
12439 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12440 else
12441 dwarf2_complex_location_expr_complaint ();
12442
12443 return 1;
12444 }
12445
12446 return 0;
12447 }
12448
12449 /* Add an aggregate field to the field list. */
12450
12451 static void
12452 dwarf2_add_field (struct field_info *fip, struct die_info *die,
12453 struct dwarf2_cu *cu)
12454 {
12455 struct objfile *objfile = cu->objfile;
12456 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12457 struct nextfield *new_field;
12458 struct attribute *attr;
12459 struct field *fp;
12460 const char *fieldname = "";
12461
12462 /* Allocate a new field list entry and link it in. */
12463 new_field = XNEW (struct nextfield);
12464 make_cleanup (xfree, new_field);
12465 memset (new_field, 0, sizeof (struct nextfield));
12466
12467 if (die->tag == DW_TAG_inheritance)
12468 {
12469 new_field->next = fip->baseclasses;
12470 fip->baseclasses = new_field;
12471 }
12472 else
12473 {
12474 new_field->next = fip->fields;
12475 fip->fields = new_field;
12476 }
12477 fip->nfields++;
12478
12479 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12480 if (attr)
12481 new_field->accessibility = DW_UNSND (attr);
12482 else
12483 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
12484 if (new_field->accessibility != DW_ACCESS_public)
12485 fip->non_public_fields = 1;
12486
12487 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12488 if (attr)
12489 new_field->virtuality = DW_UNSND (attr);
12490 else
12491 new_field->virtuality = DW_VIRTUALITY_none;
12492
12493 fp = &new_field->field;
12494
12495 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
12496 {
12497 LONGEST offset;
12498
12499 /* Data member other than a C++ static data member. */
12500
12501 /* Get type of field. */
12502 fp->type = die_type (die, cu);
12503
12504 SET_FIELD_BITPOS (*fp, 0);
12505
12506 /* Get bit size of field (zero if none). */
12507 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
12508 if (attr)
12509 {
12510 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12511 }
12512 else
12513 {
12514 FIELD_BITSIZE (*fp) = 0;
12515 }
12516
12517 /* Get bit offset of field. */
12518 if (handle_data_member_location (die, cu, &offset))
12519 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12520 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
12521 if (attr)
12522 {
12523 if (gdbarch_bits_big_endian (gdbarch))
12524 {
12525 /* For big endian bits, the DW_AT_bit_offset gives the
12526 additional bit offset from the MSB of the containing
12527 anonymous object to the MSB of the field. We don't
12528 have to do anything special since we don't need to
12529 know the size of the anonymous object. */
12530 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
12531 }
12532 else
12533 {
12534 /* For little endian bits, compute the bit offset to the
12535 MSB of the anonymous object, subtract off the number of
12536 bits from the MSB of the field to the MSB of the
12537 object, and then subtract off the number of bits of
12538 the field itself. The result is the bit offset of
12539 the LSB of the field. */
12540 int anonymous_size;
12541 int bit_offset = DW_UNSND (attr);
12542
12543 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12544 if (attr)
12545 {
12546 /* The size of the anonymous object containing
12547 the bit field is explicit, so use the
12548 indicated size (in bytes). */
12549 anonymous_size = DW_UNSND (attr);
12550 }
12551 else
12552 {
12553 /* The size of the anonymous object containing
12554 the bit field must be inferred from the type
12555 attribute of the data member containing the
12556 bit field. */
12557 anonymous_size = TYPE_LENGTH (fp->type);
12558 }
12559 SET_FIELD_BITPOS (*fp,
12560 (FIELD_BITPOS (*fp)
12561 + anonymous_size * bits_per_byte
12562 - bit_offset - FIELD_BITSIZE (*fp)));
12563 }
12564 }
12565
12566 /* Get name of field. */
12567 fieldname = dwarf2_name (die, cu);
12568 if (fieldname == NULL)
12569 fieldname = "";
12570
12571 /* The name is already allocated along with this objfile, so we don't
12572 need to duplicate it for the type. */
12573 fp->name = fieldname;
12574
12575 /* Change accessibility for artificial fields (e.g. virtual table
12576 pointer or virtual base class pointer) to private. */
12577 if (dwarf2_attr (die, DW_AT_artificial, cu))
12578 {
12579 FIELD_ARTIFICIAL (*fp) = 1;
12580 new_field->accessibility = DW_ACCESS_private;
12581 fip->non_public_fields = 1;
12582 }
12583 }
12584 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
12585 {
12586 /* C++ static member. */
12587
12588 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
12589 is a declaration, but all versions of G++ as of this writing
12590 (so through at least 3.2.1) incorrectly generate
12591 DW_TAG_variable tags. */
12592
12593 const char *physname;
12594
12595 /* Get name of field. */
12596 fieldname = dwarf2_name (die, cu);
12597 if (fieldname == NULL)
12598 return;
12599
12600 attr = dwarf2_attr (die, DW_AT_const_value, cu);
12601 if (attr
12602 /* Only create a symbol if this is an external value.
12603 new_symbol checks this and puts the value in the global symbol
12604 table, which we want. If it is not external, new_symbol
12605 will try to put the value in cu->list_in_scope which is wrong. */
12606 && dwarf2_flag_true_p (die, DW_AT_external, cu))
12607 {
12608 /* A static const member, not much different than an enum as far as
12609 we're concerned, except that we can support more types. */
12610 new_symbol (die, NULL, cu);
12611 }
12612
12613 /* Get physical name. */
12614 physname = dwarf2_physname (fieldname, die, cu);
12615
12616 /* The name is already allocated along with this objfile, so we don't
12617 need to duplicate it for the type. */
12618 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
12619 FIELD_TYPE (*fp) = die_type (die, cu);
12620 FIELD_NAME (*fp) = fieldname;
12621 }
12622 else if (die->tag == DW_TAG_inheritance)
12623 {
12624 LONGEST offset;
12625
12626 /* C++ base class field. */
12627 if (handle_data_member_location (die, cu, &offset))
12628 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12629 FIELD_BITSIZE (*fp) = 0;
12630 FIELD_TYPE (*fp) = die_type (die, cu);
12631 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
12632 fip->nbaseclasses++;
12633 }
12634 }
12635
12636 /* Add a typedef defined in the scope of the FIP's class. */
12637
12638 static void
12639 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
12640 struct dwarf2_cu *cu)
12641 {
12642 struct objfile *objfile = cu->objfile;
12643 struct typedef_field_list *new_field;
12644 struct attribute *attr;
12645 struct typedef_field *fp;
12646 char *fieldname = "";
12647
12648 /* Allocate a new field list entry and link it in. */
12649 new_field = XCNEW (struct typedef_field_list);
12650 make_cleanup (xfree, new_field);
12651
12652 gdb_assert (die->tag == DW_TAG_typedef);
12653
12654 fp = &new_field->field;
12655
12656 /* Get name of field. */
12657 fp->name = dwarf2_name (die, cu);
12658 if (fp->name == NULL)
12659 return;
12660
12661 fp->type = read_type_die (die, cu);
12662
12663 new_field->next = fip->typedef_field_list;
12664 fip->typedef_field_list = new_field;
12665 fip->typedef_field_list_count++;
12666 }
12667
12668 /* Create the vector of fields, and attach it to the type. */
12669
12670 static void
12671 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
12672 struct dwarf2_cu *cu)
12673 {
12674 int nfields = fip->nfields;
12675
12676 /* Record the field count, allocate space for the array of fields,
12677 and create blank accessibility bitfields if necessary. */
12678 TYPE_NFIELDS (type) = nfields;
12679 TYPE_FIELDS (type) = (struct field *)
12680 TYPE_ALLOC (type, sizeof (struct field) * nfields);
12681 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
12682
12683 if (fip->non_public_fields && cu->language != language_ada)
12684 {
12685 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12686
12687 TYPE_FIELD_PRIVATE_BITS (type) =
12688 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12689 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
12690
12691 TYPE_FIELD_PROTECTED_BITS (type) =
12692 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12693 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
12694
12695 TYPE_FIELD_IGNORE_BITS (type) =
12696 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12697 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
12698 }
12699
12700 /* If the type has baseclasses, allocate and clear a bit vector for
12701 TYPE_FIELD_VIRTUAL_BITS. */
12702 if (fip->nbaseclasses && cu->language != language_ada)
12703 {
12704 int num_bytes = B_BYTES (fip->nbaseclasses);
12705 unsigned char *pointer;
12706
12707 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12708 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
12709 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
12710 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
12711 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
12712 }
12713
12714 /* Copy the saved-up fields into the field vector. Start from the head of
12715 the list, adding to the tail of the field array, so that they end up in
12716 the same order in the array in which they were added to the list. */
12717 while (nfields-- > 0)
12718 {
12719 struct nextfield *fieldp;
12720
12721 if (fip->fields)
12722 {
12723 fieldp = fip->fields;
12724 fip->fields = fieldp->next;
12725 }
12726 else
12727 {
12728 fieldp = fip->baseclasses;
12729 fip->baseclasses = fieldp->next;
12730 }
12731
12732 TYPE_FIELD (type, nfields) = fieldp->field;
12733 switch (fieldp->accessibility)
12734 {
12735 case DW_ACCESS_private:
12736 if (cu->language != language_ada)
12737 SET_TYPE_FIELD_PRIVATE (type, nfields);
12738 break;
12739
12740 case DW_ACCESS_protected:
12741 if (cu->language != language_ada)
12742 SET_TYPE_FIELD_PROTECTED (type, nfields);
12743 break;
12744
12745 case DW_ACCESS_public:
12746 break;
12747
12748 default:
12749 /* Unknown accessibility. Complain and treat it as public. */
12750 {
12751 complaint (&symfile_complaints, _("unsupported accessibility %d"),
12752 fieldp->accessibility);
12753 }
12754 break;
12755 }
12756 if (nfields < fip->nbaseclasses)
12757 {
12758 switch (fieldp->virtuality)
12759 {
12760 case DW_VIRTUALITY_virtual:
12761 case DW_VIRTUALITY_pure_virtual:
12762 if (cu->language == language_ada)
12763 error (_("unexpected virtuality in component of Ada type"));
12764 SET_TYPE_FIELD_VIRTUAL (type, nfields);
12765 break;
12766 }
12767 }
12768 }
12769 }
12770
12771 /* Return true if this member function is a constructor, false
12772 otherwise. */
12773
12774 static int
12775 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
12776 {
12777 const char *fieldname;
12778 const char *type_name;
12779 int len;
12780
12781 if (die->parent == NULL)
12782 return 0;
12783
12784 if (die->parent->tag != DW_TAG_structure_type
12785 && die->parent->tag != DW_TAG_union_type
12786 && die->parent->tag != DW_TAG_class_type)
12787 return 0;
12788
12789 fieldname = dwarf2_name (die, cu);
12790 type_name = dwarf2_name (die->parent, cu);
12791 if (fieldname == NULL || type_name == NULL)
12792 return 0;
12793
12794 len = strlen (fieldname);
12795 return (strncmp (fieldname, type_name, len) == 0
12796 && (type_name[len] == '\0' || type_name[len] == '<'));
12797 }
12798
12799 /* Add a member function to the proper fieldlist. */
12800
12801 static void
12802 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
12803 struct type *type, struct dwarf2_cu *cu)
12804 {
12805 struct objfile *objfile = cu->objfile;
12806 struct attribute *attr;
12807 struct fnfieldlist *flp;
12808 int i;
12809 struct fn_field *fnp;
12810 const char *fieldname;
12811 struct nextfnfield *new_fnfield;
12812 struct type *this_type;
12813 enum dwarf_access_attribute accessibility;
12814
12815 if (cu->language == language_ada)
12816 error (_("unexpected member function in Ada type"));
12817
12818 /* Get name of member function. */
12819 fieldname = dwarf2_name (die, cu);
12820 if (fieldname == NULL)
12821 return;
12822
12823 /* Look up member function name in fieldlist. */
12824 for (i = 0; i < fip->nfnfields; i++)
12825 {
12826 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
12827 break;
12828 }
12829
12830 /* Create new list element if necessary. */
12831 if (i < fip->nfnfields)
12832 flp = &fip->fnfieldlists[i];
12833 else
12834 {
12835 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
12836 {
12837 fip->fnfieldlists = (struct fnfieldlist *)
12838 xrealloc (fip->fnfieldlists,
12839 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
12840 * sizeof (struct fnfieldlist));
12841 if (fip->nfnfields == 0)
12842 make_cleanup (free_current_contents, &fip->fnfieldlists);
12843 }
12844 flp = &fip->fnfieldlists[fip->nfnfields];
12845 flp->name = fieldname;
12846 flp->length = 0;
12847 flp->head = NULL;
12848 i = fip->nfnfields++;
12849 }
12850
12851 /* Create a new member function field and chain it to the field list
12852 entry. */
12853 new_fnfield = XNEW (struct nextfnfield);
12854 make_cleanup (xfree, new_fnfield);
12855 memset (new_fnfield, 0, sizeof (struct nextfnfield));
12856 new_fnfield->next = flp->head;
12857 flp->head = new_fnfield;
12858 flp->length++;
12859
12860 /* Fill in the member function field info. */
12861 fnp = &new_fnfield->fnfield;
12862
12863 /* Delay processing of the physname until later. */
12864 if (cu->language == language_cplus || cu->language == language_java)
12865 {
12866 add_to_method_list (type, i, flp->length - 1, fieldname,
12867 die, cu);
12868 }
12869 else
12870 {
12871 const char *physname = dwarf2_physname (fieldname, die, cu);
12872 fnp->physname = physname ? physname : "";
12873 }
12874
12875 fnp->type = alloc_type (objfile);
12876 this_type = read_type_die (die, cu);
12877 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
12878 {
12879 int nparams = TYPE_NFIELDS (this_type);
12880
12881 /* TYPE is the domain of this method, and THIS_TYPE is the type
12882 of the method itself (TYPE_CODE_METHOD). */
12883 smash_to_method_type (fnp->type, type,
12884 TYPE_TARGET_TYPE (this_type),
12885 TYPE_FIELDS (this_type),
12886 TYPE_NFIELDS (this_type),
12887 TYPE_VARARGS (this_type));
12888
12889 /* Handle static member functions.
12890 Dwarf2 has no clean way to discern C++ static and non-static
12891 member functions. G++ helps GDB by marking the first
12892 parameter for non-static member functions (which is the this
12893 pointer) as artificial. We obtain this information from
12894 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
12895 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
12896 fnp->voffset = VOFFSET_STATIC;
12897 }
12898 else
12899 complaint (&symfile_complaints, _("member function type missing for '%s'"),
12900 dwarf2_full_name (fieldname, die, cu));
12901
12902 /* Get fcontext from DW_AT_containing_type if present. */
12903 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
12904 fnp->fcontext = die_containing_type (die, cu);
12905
12906 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
12907 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
12908
12909 /* Get accessibility. */
12910 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12911 if (attr)
12912 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
12913 else
12914 accessibility = dwarf2_default_access_attribute (die, cu);
12915 switch (accessibility)
12916 {
12917 case DW_ACCESS_private:
12918 fnp->is_private = 1;
12919 break;
12920 case DW_ACCESS_protected:
12921 fnp->is_protected = 1;
12922 break;
12923 }
12924
12925 /* Check for artificial methods. */
12926 attr = dwarf2_attr (die, DW_AT_artificial, cu);
12927 if (attr && DW_UNSND (attr) != 0)
12928 fnp->is_artificial = 1;
12929
12930 fnp->is_constructor = dwarf2_is_constructor (die, cu);
12931
12932 /* Get index in virtual function table if it is a virtual member
12933 function. For older versions of GCC, this is an offset in the
12934 appropriate virtual table, as specified by DW_AT_containing_type.
12935 For everyone else, it is an expression to be evaluated relative
12936 to the object address. */
12937
12938 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
12939 if (attr)
12940 {
12941 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
12942 {
12943 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
12944 {
12945 /* Old-style GCC. */
12946 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
12947 }
12948 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
12949 || (DW_BLOCK (attr)->size > 1
12950 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
12951 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
12952 {
12953 struct dwarf_block blk;
12954 int offset;
12955
12956 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
12957 ? 1 : 2);
12958 blk.size = DW_BLOCK (attr)->size - offset;
12959 blk.data = DW_BLOCK (attr)->data + offset;
12960 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
12961 if ((fnp->voffset % cu->header.addr_size) != 0)
12962 dwarf2_complex_location_expr_complaint ();
12963 else
12964 fnp->voffset /= cu->header.addr_size;
12965 fnp->voffset += 2;
12966 }
12967 else
12968 dwarf2_complex_location_expr_complaint ();
12969
12970 if (!fnp->fcontext)
12971 {
12972 /* If there is no `this' field and no DW_AT_containing_type,
12973 we cannot actually find a base class context for the
12974 vtable! */
12975 if (TYPE_NFIELDS (this_type) == 0
12976 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
12977 {
12978 complaint (&symfile_complaints,
12979 _("cannot determine context for virtual member "
12980 "function \"%s\" (offset %d)"),
12981 fieldname, die->offset.sect_off);
12982 }
12983 else
12984 {
12985 fnp->fcontext
12986 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
12987 }
12988 }
12989 }
12990 else if (attr_form_is_section_offset (attr))
12991 {
12992 dwarf2_complex_location_expr_complaint ();
12993 }
12994 else
12995 {
12996 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
12997 fieldname);
12998 }
12999 }
13000 else
13001 {
13002 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
13003 if (attr && DW_UNSND (attr))
13004 {
13005 /* GCC does this, as of 2008-08-25; PR debug/37237. */
13006 complaint (&symfile_complaints,
13007 _("Member function \"%s\" (offset %d) is virtual "
13008 "but the vtable offset is not specified"),
13009 fieldname, die->offset.sect_off);
13010 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13011 TYPE_CPLUS_DYNAMIC (type) = 1;
13012 }
13013 }
13014 }
13015
13016 /* Create the vector of member function fields, and attach it to the type. */
13017
13018 static void
13019 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
13020 struct dwarf2_cu *cu)
13021 {
13022 struct fnfieldlist *flp;
13023 int i;
13024
13025 if (cu->language == language_ada)
13026 error (_("unexpected member functions in Ada type"));
13027
13028 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13029 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
13030 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
13031
13032 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
13033 {
13034 struct nextfnfield *nfp = flp->head;
13035 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
13036 int k;
13037
13038 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
13039 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
13040 fn_flp->fn_fields = (struct fn_field *)
13041 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
13042 for (k = flp->length; (k--, nfp); nfp = nfp->next)
13043 fn_flp->fn_fields[k] = nfp->fnfield;
13044 }
13045
13046 TYPE_NFN_FIELDS (type) = fip->nfnfields;
13047 }
13048
13049 /* Returns non-zero if NAME is the name of a vtable member in CU's
13050 language, zero otherwise. */
13051 static int
13052 is_vtable_name (const char *name, struct dwarf2_cu *cu)
13053 {
13054 static const char vptr[] = "_vptr";
13055 static const char vtable[] = "vtable";
13056
13057 /* Look for the C++ and Java forms of the vtable. */
13058 if ((cu->language == language_java
13059 && startswith (name, vtable))
13060 || (startswith (name, vptr)
13061 && is_cplus_marker (name[sizeof (vptr) - 1])))
13062 return 1;
13063
13064 return 0;
13065 }
13066
13067 /* GCC outputs unnamed structures that are really pointers to member
13068 functions, with the ABI-specified layout. If TYPE describes
13069 such a structure, smash it into a member function type.
13070
13071 GCC shouldn't do this; it should just output pointer to member DIEs.
13072 This is GCC PR debug/28767. */
13073
13074 static void
13075 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
13076 {
13077 struct type *pfn_type, *self_type, *new_type;
13078
13079 /* Check for a structure with no name and two children. */
13080 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
13081 return;
13082
13083 /* Check for __pfn and __delta members. */
13084 if (TYPE_FIELD_NAME (type, 0) == NULL
13085 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
13086 || TYPE_FIELD_NAME (type, 1) == NULL
13087 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
13088 return;
13089
13090 /* Find the type of the method. */
13091 pfn_type = TYPE_FIELD_TYPE (type, 0);
13092 if (pfn_type == NULL
13093 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
13094 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
13095 return;
13096
13097 /* Look for the "this" argument. */
13098 pfn_type = TYPE_TARGET_TYPE (pfn_type);
13099 if (TYPE_NFIELDS (pfn_type) == 0
13100 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
13101 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
13102 return;
13103
13104 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
13105 new_type = alloc_type (objfile);
13106 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
13107 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
13108 TYPE_VARARGS (pfn_type));
13109 smash_to_methodptr_type (type, new_type);
13110 }
13111
13112 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
13113 (icc). */
13114
13115 static int
13116 producer_is_icc (struct dwarf2_cu *cu)
13117 {
13118 if (!cu->checked_producer)
13119 check_producer (cu);
13120
13121 return cu->producer_is_icc;
13122 }
13123
13124 /* Called when we find the DIE that starts a structure or union scope
13125 (definition) to create a type for the structure or union. Fill in
13126 the type's name and general properties; the members will not be
13127 processed until process_structure_scope. A symbol table entry for
13128 the type will also not be done until process_structure_scope (assuming
13129 the type has a name).
13130
13131 NOTE: we need to call these functions regardless of whether or not the
13132 DIE has a DW_AT_name attribute, since it might be an anonymous
13133 structure or union. This gets the type entered into our set of
13134 user defined types. */
13135
13136 static struct type *
13137 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
13138 {
13139 struct objfile *objfile = cu->objfile;
13140 struct type *type;
13141 struct attribute *attr;
13142 const char *name;
13143
13144 /* If the definition of this type lives in .debug_types, read that type.
13145 Don't follow DW_AT_specification though, that will take us back up
13146 the chain and we want to go down. */
13147 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13148 if (attr)
13149 {
13150 type = get_DW_AT_signature_type (die, attr, cu);
13151
13152 /* The type's CU may not be the same as CU.
13153 Ensure TYPE is recorded with CU in die_type_hash. */
13154 return set_die_type (die, type, cu);
13155 }
13156
13157 type = alloc_type (objfile);
13158 INIT_CPLUS_SPECIFIC (type);
13159
13160 name = dwarf2_name (die, cu);
13161 if (name != NULL)
13162 {
13163 if (cu->language == language_cplus
13164 || cu->language == language_java
13165 || cu->language == language_d)
13166 {
13167 const char *full_name = dwarf2_full_name (name, die, cu);
13168
13169 /* dwarf2_full_name might have already finished building the DIE's
13170 type. If so, there is no need to continue. */
13171 if (get_die_type (die, cu) != NULL)
13172 return get_die_type (die, cu);
13173
13174 TYPE_TAG_NAME (type) = full_name;
13175 if (die->tag == DW_TAG_structure_type
13176 || die->tag == DW_TAG_class_type)
13177 TYPE_NAME (type) = TYPE_TAG_NAME (type);
13178 }
13179 else
13180 {
13181 /* The name is already allocated along with this objfile, so
13182 we don't need to duplicate it for the type. */
13183 TYPE_TAG_NAME (type) = name;
13184 if (die->tag == DW_TAG_class_type)
13185 TYPE_NAME (type) = TYPE_TAG_NAME (type);
13186 }
13187 }
13188
13189 if (die->tag == DW_TAG_structure_type)
13190 {
13191 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13192 }
13193 else if (die->tag == DW_TAG_union_type)
13194 {
13195 TYPE_CODE (type) = TYPE_CODE_UNION;
13196 }
13197 else
13198 {
13199 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13200 }
13201
13202 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
13203 TYPE_DECLARED_CLASS (type) = 1;
13204
13205 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13206 if (attr)
13207 {
13208 if (attr_form_is_constant (attr))
13209 TYPE_LENGTH (type) = DW_UNSND (attr);
13210 else
13211 {
13212 /* For the moment, dynamic type sizes are not supported
13213 by GDB's struct type. The actual size is determined
13214 on-demand when resolving the type of a given object,
13215 so set the type's length to zero for now. Otherwise,
13216 we record an expression as the length, and that expression
13217 could lead to a very large value, which could eventually
13218 lead to us trying to allocate that much memory when creating
13219 a value of that type. */
13220 TYPE_LENGTH (type) = 0;
13221 }
13222 }
13223 else
13224 {
13225 TYPE_LENGTH (type) = 0;
13226 }
13227
13228 if (producer_is_icc (cu) && (TYPE_LENGTH (type) == 0))
13229 {
13230 /* ICC does not output the required DW_AT_declaration
13231 on incomplete types, but gives them a size of zero. */
13232 TYPE_STUB (type) = 1;
13233 }
13234 else
13235 TYPE_STUB_SUPPORTED (type) = 1;
13236
13237 if (die_is_declaration (die, cu))
13238 TYPE_STUB (type) = 1;
13239 else if (attr == NULL && die->child == NULL
13240 && producer_is_realview (cu->producer))
13241 /* RealView does not output the required DW_AT_declaration
13242 on incomplete types. */
13243 TYPE_STUB (type) = 1;
13244
13245 /* We need to add the type field to the die immediately so we don't
13246 infinitely recurse when dealing with pointers to the structure
13247 type within the structure itself. */
13248 set_die_type (die, type, cu);
13249
13250 /* set_die_type should be already done. */
13251 set_descriptive_type (type, die, cu);
13252
13253 return type;
13254 }
13255
13256 /* Finish creating a structure or union type, including filling in
13257 its members and creating a symbol for it. */
13258
13259 static void
13260 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
13261 {
13262 struct objfile *objfile = cu->objfile;
13263 struct die_info *child_die;
13264 struct type *type;
13265
13266 type = get_die_type (die, cu);
13267 if (type == NULL)
13268 type = read_structure_type (die, cu);
13269
13270 if (die->child != NULL && ! die_is_declaration (die, cu))
13271 {
13272 struct field_info fi;
13273 VEC (symbolp) *template_args = NULL;
13274 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
13275
13276 memset (&fi, 0, sizeof (struct field_info));
13277
13278 child_die = die->child;
13279
13280 while (child_die && child_die->tag)
13281 {
13282 if (child_die->tag == DW_TAG_member
13283 || child_die->tag == DW_TAG_variable)
13284 {
13285 /* NOTE: carlton/2002-11-05: A C++ static data member
13286 should be a DW_TAG_member that is a declaration, but
13287 all versions of G++ as of this writing (so through at
13288 least 3.2.1) incorrectly generate DW_TAG_variable
13289 tags for them instead. */
13290 dwarf2_add_field (&fi, child_die, cu);
13291 }
13292 else if (child_die->tag == DW_TAG_subprogram)
13293 {
13294 /* C++ member function. */
13295 dwarf2_add_member_fn (&fi, child_die, type, cu);
13296 }
13297 else if (child_die->tag == DW_TAG_inheritance)
13298 {
13299 /* C++ base class field. */
13300 dwarf2_add_field (&fi, child_die, cu);
13301 }
13302 else if (child_die->tag == DW_TAG_typedef)
13303 dwarf2_add_typedef (&fi, child_die, cu);
13304 else if (child_die->tag == DW_TAG_template_type_param
13305 || child_die->tag == DW_TAG_template_value_param)
13306 {
13307 struct symbol *arg = new_symbol (child_die, NULL, cu);
13308
13309 if (arg != NULL)
13310 VEC_safe_push (symbolp, template_args, arg);
13311 }
13312
13313 child_die = sibling_die (child_die);
13314 }
13315
13316 /* Attach template arguments to type. */
13317 if (! VEC_empty (symbolp, template_args))
13318 {
13319 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13320 TYPE_N_TEMPLATE_ARGUMENTS (type)
13321 = VEC_length (symbolp, template_args);
13322 TYPE_TEMPLATE_ARGUMENTS (type)
13323 = XOBNEWVEC (&objfile->objfile_obstack,
13324 struct symbol *,
13325 TYPE_N_TEMPLATE_ARGUMENTS (type));
13326 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
13327 VEC_address (symbolp, template_args),
13328 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13329 * sizeof (struct symbol *)));
13330 VEC_free (symbolp, template_args);
13331 }
13332
13333 /* Attach fields and member functions to the type. */
13334 if (fi.nfields)
13335 dwarf2_attach_fields_to_type (&fi, type, cu);
13336 if (fi.nfnfields)
13337 {
13338 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
13339
13340 /* Get the type which refers to the base class (possibly this
13341 class itself) which contains the vtable pointer for the current
13342 class from the DW_AT_containing_type attribute. This use of
13343 DW_AT_containing_type is a GNU extension. */
13344
13345 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
13346 {
13347 struct type *t = die_containing_type (die, cu);
13348
13349 set_type_vptr_basetype (type, t);
13350 if (type == t)
13351 {
13352 int i;
13353
13354 /* Our own class provides vtbl ptr. */
13355 for (i = TYPE_NFIELDS (t) - 1;
13356 i >= TYPE_N_BASECLASSES (t);
13357 --i)
13358 {
13359 const char *fieldname = TYPE_FIELD_NAME (t, i);
13360
13361 if (is_vtable_name (fieldname, cu))
13362 {
13363 set_type_vptr_fieldno (type, i);
13364 break;
13365 }
13366 }
13367
13368 /* Complain if virtual function table field not found. */
13369 if (i < TYPE_N_BASECLASSES (t))
13370 complaint (&symfile_complaints,
13371 _("virtual function table pointer "
13372 "not found when defining class '%s'"),
13373 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
13374 "");
13375 }
13376 else
13377 {
13378 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
13379 }
13380 }
13381 else if (cu->producer
13382 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
13383 {
13384 /* The IBM XLC compiler does not provide direct indication
13385 of the containing type, but the vtable pointer is
13386 always named __vfp. */
13387
13388 int i;
13389
13390 for (i = TYPE_NFIELDS (type) - 1;
13391 i >= TYPE_N_BASECLASSES (type);
13392 --i)
13393 {
13394 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13395 {
13396 set_type_vptr_fieldno (type, i);
13397 set_type_vptr_basetype (type, type);
13398 break;
13399 }
13400 }
13401 }
13402 }
13403
13404 /* Copy fi.typedef_field_list linked list elements content into the
13405 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13406 if (fi.typedef_field_list)
13407 {
13408 int i = fi.typedef_field_list_count;
13409
13410 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13411 TYPE_TYPEDEF_FIELD_ARRAY (type)
13412 = ((struct typedef_field *)
13413 TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i));
13414 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13415
13416 /* Reverse the list order to keep the debug info elements order. */
13417 while (--i >= 0)
13418 {
13419 struct typedef_field *dest, *src;
13420
13421 dest = &TYPE_TYPEDEF_FIELD (type, i);
13422 src = &fi.typedef_field_list->field;
13423 fi.typedef_field_list = fi.typedef_field_list->next;
13424 *dest = *src;
13425 }
13426 }
13427
13428 do_cleanups (back_to);
13429
13430 if (HAVE_CPLUS_STRUCT (type))
13431 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
13432 }
13433
13434 quirk_gcc_member_function_pointer (type, objfile);
13435
13436 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13437 snapshots) has been known to create a die giving a declaration
13438 for a class that has, as a child, a die giving a definition for a
13439 nested class. So we have to process our children even if the
13440 current die is a declaration. Normally, of course, a declaration
13441 won't have any children at all. */
13442
13443 child_die = die->child;
13444
13445 while (child_die != NULL && child_die->tag)
13446 {
13447 if (child_die->tag == DW_TAG_member
13448 || child_die->tag == DW_TAG_variable
13449 || child_die->tag == DW_TAG_inheritance
13450 || child_die->tag == DW_TAG_template_value_param
13451 || child_die->tag == DW_TAG_template_type_param)
13452 {
13453 /* Do nothing. */
13454 }
13455 else
13456 process_die (child_die, cu);
13457
13458 child_die = sibling_die (child_die);
13459 }
13460
13461 /* Do not consider external references. According to the DWARF standard,
13462 these DIEs are identified by the fact that they have no byte_size
13463 attribute, and a declaration attribute. */
13464 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13465 || !die_is_declaration (die, cu))
13466 new_symbol (die, type, cu);
13467 }
13468
13469 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
13470 update TYPE using some information only available in DIE's children. */
13471
13472 static void
13473 update_enumeration_type_from_children (struct die_info *die,
13474 struct type *type,
13475 struct dwarf2_cu *cu)
13476 {
13477 struct obstack obstack;
13478 struct die_info *child_die;
13479 int unsigned_enum = 1;
13480 int flag_enum = 1;
13481 ULONGEST mask = 0;
13482 struct cleanup *old_chain;
13483
13484 obstack_init (&obstack);
13485 old_chain = make_cleanup_obstack_free (&obstack);
13486
13487 for (child_die = die->child;
13488 child_die != NULL && child_die->tag;
13489 child_die = sibling_die (child_die))
13490 {
13491 struct attribute *attr;
13492 LONGEST value;
13493 const gdb_byte *bytes;
13494 struct dwarf2_locexpr_baton *baton;
13495 const char *name;
13496
13497 if (child_die->tag != DW_TAG_enumerator)
13498 continue;
13499
13500 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
13501 if (attr == NULL)
13502 continue;
13503
13504 name = dwarf2_name (child_die, cu);
13505 if (name == NULL)
13506 name = "<anonymous enumerator>";
13507
13508 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
13509 &value, &bytes, &baton);
13510 if (value < 0)
13511 {
13512 unsigned_enum = 0;
13513 flag_enum = 0;
13514 }
13515 else if ((mask & value) != 0)
13516 flag_enum = 0;
13517 else
13518 mask |= value;
13519
13520 /* If we already know that the enum type is neither unsigned, nor
13521 a flag type, no need to look at the rest of the enumerates. */
13522 if (!unsigned_enum && !flag_enum)
13523 break;
13524 }
13525
13526 if (unsigned_enum)
13527 TYPE_UNSIGNED (type) = 1;
13528 if (flag_enum)
13529 TYPE_FLAG_ENUM (type) = 1;
13530
13531 do_cleanups (old_chain);
13532 }
13533
13534 /* Given a DW_AT_enumeration_type die, set its type. We do not
13535 complete the type's fields yet, or create any symbols. */
13536
13537 static struct type *
13538 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
13539 {
13540 struct objfile *objfile = cu->objfile;
13541 struct type *type;
13542 struct attribute *attr;
13543 const char *name;
13544
13545 /* If the definition of this type lives in .debug_types, read that type.
13546 Don't follow DW_AT_specification though, that will take us back up
13547 the chain and we want to go down. */
13548 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13549 if (attr)
13550 {
13551 type = get_DW_AT_signature_type (die, attr, cu);
13552
13553 /* The type's CU may not be the same as CU.
13554 Ensure TYPE is recorded with CU in die_type_hash. */
13555 return set_die_type (die, type, cu);
13556 }
13557
13558 type = alloc_type (objfile);
13559
13560 TYPE_CODE (type) = TYPE_CODE_ENUM;
13561 name = dwarf2_full_name (NULL, die, cu);
13562 if (name != NULL)
13563 TYPE_TAG_NAME (type) = name;
13564
13565 attr = dwarf2_attr (die, DW_AT_type, cu);
13566 if (attr != NULL)
13567 {
13568 struct type *underlying_type = die_type (die, cu);
13569
13570 TYPE_TARGET_TYPE (type) = underlying_type;
13571 }
13572
13573 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13574 if (attr)
13575 {
13576 TYPE_LENGTH (type) = DW_UNSND (attr);
13577 }
13578 else
13579 {
13580 TYPE_LENGTH (type) = 0;
13581 }
13582
13583 /* The enumeration DIE can be incomplete. In Ada, any type can be
13584 declared as private in the package spec, and then defined only
13585 inside the package body. Such types are known as Taft Amendment
13586 Types. When another package uses such a type, an incomplete DIE
13587 may be generated by the compiler. */
13588 if (die_is_declaration (die, cu))
13589 TYPE_STUB (type) = 1;
13590
13591 /* Finish the creation of this type by using the enum's children.
13592 We must call this even when the underlying type has been provided
13593 so that we can determine if we're looking at a "flag" enum. */
13594 update_enumeration_type_from_children (die, type, cu);
13595
13596 /* If this type has an underlying type that is not a stub, then we
13597 may use its attributes. We always use the "unsigned" attribute
13598 in this situation, because ordinarily we guess whether the type
13599 is unsigned -- but the guess can be wrong and the underlying type
13600 can tell us the reality. However, we defer to a local size
13601 attribute if one exists, because this lets the compiler override
13602 the underlying type if needed. */
13603 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
13604 {
13605 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
13606 if (TYPE_LENGTH (type) == 0)
13607 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
13608 }
13609
13610 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
13611
13612 return set_die_type (die, type, cu);
13613 }
13614
13615 /* Given a pointer to a die which begins an enumeration, process all
13616 the dies that define the members of the enumeration, and create the
13617 symbol for the enumeration type.
13618
13619 NOTE: We reverse the order of the element list. */
13620
13621 static void
13622 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
13623 {
13624 struct type *this_type;
13625
13626 this_type = get_die_type (die, cu);
13627 if (this_type == NULL)
13628 this_type = read_enumeration_type (die, cu);
13629
13630 if (die->child != NULL)
13631 {
13632 struct die_info *child_die;
13633 struct symbol *sym;
13634 struct field *fields = NULL;
13635 int num_fields = 0;
13636 const char *name;
13637
13638 child_die = die->child;
13639 while (child_die && child_die->tag)
13640 {
13641 if (child_die->tag != DW_TAG_enumerator)
13642 {
13643 process_die (child_die, cu);
13644 }
13645 else
13646 {
13647 name = dwarf2_name (child_die, cu);
13648 if (name)
13649 {
13650 sym = new_symbol (child_die, this_type, cu);
13651
13652 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
13653 {
13654 fields = (struct field *)
13655 xrealloc (fields,
13656 (num_fields + DW_FIELD_ALLOC_CHUNK)
13657 * sizeof (struct field));
13658 }
13659
13660 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
13661 FIELD_TYPE (fields[num_fields]) = NULL;
13662 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
13663 FIELD_BITSIZE (fields[num_fields]) = 0;
13664
13665 num_fields++;
13666 }
13667 }
13668
13669 child_die = sibling_die (child_die);
13670 }
13671
13672 if (num_fields)
13673 {
13674 TYPE_NFIELDS (this_type) = num_fields;
13675 TYPE_FIELDS (this_type) = (struct field *)
13676 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
13677 memcpy (TYPE_FIELDS (this_type), fields,
13678 sizeof (struct field) * num_fields);
13679 xfree (fields);
13680 }
13681 }
13682
13683 /* If we are reading an enum from a .debug_types unit, and the enum
13684 is a declaration, and the enum is not the signatured type in the
13685 unit, then we do not want to add a symbol for it. Adding a
13686 symbol would in some cases obscure the true definition of the
13687 enum, giving users an incomplete type when the definition is
13688 actually available. Note that we do not want to do this for all
13689 enums which are just declarations, because C++0x allows forward
13690 enum declarations. */
13691 if (cu->per_cu->is_debug_types
13692 && die_is_declaration (die, cu))
13693 {
13694 struct signatured_type *sig_type;
13695
13696 sig_type = (struct signatured_type *) cu->per_cu;
13697 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
13698 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
13699 return;
13700 }
13701
13702 new_symbol (die, this_type, cu);
13703 }
13704
13705 /* Extract all information from a DW_TAG_array_type DIE and put it in
13706 the DIE's type field. For now, this only handles one dimensional
13707 arrays. */
13708
13709 static struct type *
13710 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
13711 {
13712 struct objfile *objfile = cu->objfile;
13713 struct die_info *child_die;
13714 struct type *type;
13715 struct type *element_type, *range_type, *index_type;
13716 struct type **range_types = NULL;
13717 struct attribute *attr;
13718 int ndim = 0;
13719 struct cleanup *back_to;
13720 const char *name;
13721 unsigned int bit_stride = 0;
13722
13723 element_type = die_type (die, cu);
13724
13725 /* The die_type call above may have already set the type for this DIE. */
13726 type = get_die_type (die, cu);
13727 if (type)
13728 return type;
13729
13730 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
13731 if (attr != NULL)
13732 bit_stride = DW_UNSND (attr) * 8;
13733
13734 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
13735 if (attr != NULL)
13736 bit_stride = DW_UNSND (attr);
13737
13738 /* Irix 6.2 native cc creates array types without children for
13739 arrays with unspecified length. */
13740 if (die->child == NULL)
13741 {
13742 index_type = objfile_type (objfile)->builtin_int;
13743 range_type = create_static_range_type (NULL, index_type, 0, -1);
13744 type = create_array_type_with_stride (NULL, element_type, range_type,
13745 bit_stride);
13746 return set_die_type (die, type, cu);
13747 }
13748
13749 back_to = make_cleanup (null_cleanup, NULL);
13750 child_die = die->child;
13751 while (child_die && child_die->tag)
13752 {
13753 if (child_die->tag == DW_TAG_subrange_type)
13754 {
13755 struct type *child_type = read_type_die (child_die, cu);
13756
13757 if (child_type != NULL)
13758 {
13759 /* The range type was succesfully read. Save it for the
13760 array type creation. */
13761 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
13762 {
13763 range_types = (struct type **)
13764 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
13765 * sizeof (struct type *));
13766 if (ndim == 0)
13767 make_cleanup (free_current_contents, &range_types);
13768 }
13769 range_types[ndim++] = child_type;
13770 }
13771 }
13772 child_die = sibling_die (child_die);
13773 }
13774
13775 /* Dwarf2 dimensions are output from left to right, create the
13776 necessary array types in backwards order. */
13777
13778 type = element_type;
13779
13780 if (read_array_order (die, cu) == DW_ORD_col_major)
13781 {
13782 int i = 0;
13783
13784 while (i < ndim)
13785 type = create_array_type_with_stride (NULL, type, range_types[i++],
13786 bit_stride);
13787 }
13788 else
13789 {
13790 while (ndim-- > 0)
13791 type = create_array_type_with_stride (NULL, type, range_types[ndim],
13792 bit_stride);
13793 }
13794
13795 /* Understand Dwarf2 support for vector types (like they occur on
13796 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
13797 array type. This is not part of the Dwarf2/3 standard yet, but a
13798 custom vendor extension. The main difference between a regular
13799 array and the vector variant is that vectors are passed by value
13800 to functions. */
13801 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
13802 if (attr)
13803 make_vector_type (type);
13804
13805 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
13806 implementation may choose to implement triple vectors using this
13807 attribute. */
13808 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13809 if (attr)
13810 {
13811 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
13812 TYPE_LENGTH (type) = DW_UNSND (attr);
13813 else
13814 complaint (&symfile_complaints,
13815 _("DW_AT_byte_size for array type smaller "
13816 "than the total size of elements"));
13817 }
13818
13819 name = dwarf2_name (die, cu);
13820 if (name)
13821 TYPE_NAME (type) = name;
13822
13823 /* Install the type in the die. */
13824 set_die_type (die, type, cu);
13825
13826 /* set_die_type should be already done. */
13827 set_descriptive_type (type, die, cu);
13828
13829 do_cleanups (back_to);
13830
13831 return type;
13832 }
13833
13834 static enum dwarf_array_dim_ordering
13835 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
13836 {
13837 struct attribute *attr;
13838
13839 attr = dwarf2_attr (die, DW_AT_ordering, cu);
13840
13841 if (attr)
13842 return (enum dwarf_array_dim_ordering) DW_SND (attr);
13843
13844 /* GNU F77 is a special case, as at 08/2004 array type info is the
13845 opposite order to the dwarf2 specification, but data is still
13846 laid out as per normal fortran.
13847
13848 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
13849 version checking. */
13850
13851 if (cu->language == language_fortran
13852 && cu->producer && strstr (cu->producer, "GNU F77"))
13853 {
13854 return DW_ORD_row_major;
13855 }
13856
13857 switch (cu->language_defn->la_array_ordering)
13858 {
13859 case array_column_major:
13860 return DW_ORD_col_major;
13861 case array_row_major:
13862 default:
13863 return DW_ORD_row_major;
13864 };
13865 }
13866
13867 /* Extract all information from a DW_TAG_set_type DIE and put it in
13868 the DIE's type field. */
13869
13870 static struct type *
13871 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
13872 {
13873 struct type *domain_type, *set_type;
13874 struct attribute *attr;
13875
13876 domain_type = die_type (die, cu);
13877
13878 /* The die_type call above may have already set the type for this DIE. */
13879 set_type = get_die_type (die, cu);
13880 if (set_type)
13881 return set_type;
13882
13883 set_type = create_set_type (NULL, domain_type);
13884
13885 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13886 if (attr)
13887 TYPE_LENGTH (set_type) = DW_UNSND (attr);
13888
13889 return set_die_type (die, set_type, cu);
13890 }
13891
13892 /* A helper for read_common_block that creates a locexpr baton.
13893 SYM is the symbol which we are marking as computed.
13894 COMMON_DIE is the DIE for the common block.
13895 COMMON_LOC is the location expression attribute for the common
13896 block itself.
13897 MEMBER_LOC is the location expression attribute for the particular
13898 member of the common block that we are processing.
13899 CU is the CU from which the above come. */
13900
13901 static void
13902 mark_common_block_symbol_computed (struct symbol *sym,
13903 struct die_info *common_die,
13904 struct attribute *common_loc,
13905 struct attribute *member_loc,
13906 struct dwarf2_cu *cu)
13907 {
13908 struct objfile *objfile = dwarf2_per_objfile->objfile;
13909 struct dwarf2_locexpr_baton *baton;
13910 gdb_byte *ptr;
13911 unsigned int cu_off;
13912 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
13913 LONGEST offset = 0;
13914
13915 gdb_assert (common_loc && member_loc);
13916 gdb_assert (attr_form_is_block (common_loc));
13917 gdb_assert (attr_form_is_block (member_loc)
13918 || attr_form_is_constant (member_loc));
13919
13920 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
13921 baton->per_cu = cu->per_cu;
13922 gdb_assert (baton->per_cu);
13923
13924 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
13925
13926 if (attr_form_is_constant (member_loc))
13927 {
13928 offset = dwarf2_get_attr_constant_value (member_loc, 0);
13929 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
13930 }
13931 else
13932 baton->size += DW_BLOCK (member_loc)->size;
13933
13934 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
13935 baton->data = ptr;
13936
13937 *ptr++ = DW_OP_call4;
13938 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
13939 store_unsigned_integer (ptr, 4, byte_order, cu_off);
13940 ptr += 4;
13941
13942 if (attr_form_is_constant (member_loc))
13943 {
13944 *ptr++ = DW_OP_addr;
13945 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
13946 ptr += cu->header.addr_size;
13947 }
13948 else
13949 {
13950 /* We have to copy the data here, because DW_OP_call4 will only
13951 use a DW_AT_location attribute. */
13952 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
13953 ptr += DW_BLOCK (member_loc)->size;
13954 }
13955
13956 *ptr++ = DW_OP_plus;
13957 gdb_assert (ptr - baton->data == baton->size);
13958
13959 SYMBOL_LOCATION_BATON (sym) = baton;
13960 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
13961 }
13962
13963 /* Create appropriate locally-scoped variables for all the
13964 DW_TAG_common_block entries. Also create a struct common_block
13965 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
13966 is used to sepate the common blocks name namespace from regular
13967 variable names. */
13968
13969 static void
13970 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
13971 {
13972 struct attribute *attr;
13973
13974 attr = dwarf2_attr (die, DW_AT_location, cu);
13975 if (attr)
13976 {
13977 /* Support the .debug_loc offsets. */
13978 if (attr_form_is_block (attr))
13979 {
13980 /* Ok. */
13981 }
13982 else if (attr_form_is_section_offset (attr))
13983 {
13984 dwarf2_complex_location_expr_complaint ();
13985 attr = NULL;
13986 }
13987 else
13988 {
13989 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
13990 "common block member");
13991 attr = NULL;
13992 }
13993 }
13994
13995 if (die->child != NULL)
13996 {
13997 struct objfile *objfile = cu->objfile;
13998 struct die_info *child_die;
13999 size_t n_entries = 0, size;
14000 struct common_block *common_block;
14001 struct symbol *sym;
14002
14003 for (child_die = die->child;
14004 child_die && child_die->tag;
14005 child_die = sibling_die (child_die))
14006 ++n_entries;
14007
14008 size = (sizeof (struct common_block)
14009 + (n_entries - 1) * sizeof (struct symbol *));
14010 common_block
14011 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
14012 size);
14013 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
14014 common_block->n_entries = 0;
14015
14016 for (child_die = die->child;
14017 child_die && child_die->tag;
14018 child_die = sibling_die (child_die))
14019 {
14020 /* Create the symbol in the DW_TAG_common_block block in the current
14021 symbol scope. */
14022 sym = new_symbol (child_die, NULL, cu);
14023 if (sym != NULL)
14024 {
14025 struct attribute *member_loc;
14026
14027 common_block->contents[common_block->n_entries++] = sym;
14028
14029 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
14030 cu);
14031 if (member_loc)
14032 {
14033 /* GDB has handled this for a long time, but it is
14034 not specified by DWARF. It seems to have been
14035 emitted by gfortran at least as recently as:
14036 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
14037 complaint (&symfile_complaints,
14038 _("Variable in common block has "
14039 "DW_AT_data_member_location "
14040 "- DIE at 0x%x [in module %s]"),
14041 child_die->offset.sect_off,
14042 objfile_name (cu->objfile));
14043
14044 if (attr_form_is_section_offset (member_loc))
14045 dwarf2_complex_location_expr_complaint ();
14046 else if (attr_form_is_constant (member_loc)
14047 || attr_form_is_block (member_loc))
14048 {
14049 if (attr)
14050 mark_common_block_symbol_computed (sym, die, attr,
14051 member_loc, cu);
14052 }
14053 else
14054 dwarf2_complex_location_expr_complaint ();
14055 }
14056 }
14057 }
14058
14059 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
14060 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
14061 }
14062 }
14063
14064 /* Create a type for a C++ namespace. */
14065
14066 static struct type *
14067 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
14068 {
14069 struct objfile *objfile = cu->objfile;
14070 const char *previous_prefix, *name;
14071 int is_anonymous;
14072 struct type *type;
14073
14074 /* For extensions, reuse the type of the original namespace. */
14075 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
14076 {
14077 struct die_info *ext_die;
14078 struct dwarf2_cu *ext_cu = cu;
14079
14080 ext_die = dwarf2_extension (die, &ext_cu);
14081 type = read_type_die (ext_die, ext_cu);
14082
14083 /* EXT_CU may not be the same as CU.
14084 Ensure TYPE is recorded with CU in die_type_hash. */
14085 return set_die_type (die, type, cu);
14086 }
14087
14088 name = namespace_name (die, &is_anonymous, cu);
14089
14090 /* Now build the name of the current namespace. */
14091
14092 previous_prefix = determine_prefix (die, cu);
14093 if (previous_prefix[0] != '\0')
14094 name = typename_concat (&objfile->objfile_obstack,
14095 previous_prefix, name, 0, cu);
14096
14097 /* Create the type. */
14098 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
14099 objfile);
14100 TYPE_NAME (type) = name;
14101 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14102
14103 return set_die_type (die, type, cu);
14104 }
14105
14106 /* Read a namespace scope. */
14107
14108 static void
14109 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
14110 {
14111 struct objfile *objfile = cu->objfile;
14112 int is_anonymous;
14113
14114 /* Add a symbol associated to this if we haven't seen the namespace
14115 before. Also, add a using directive if it's an anonymous
14116 namespace. */
14117
14118 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
14119 {
14120 struct type *type;
14121
14122 type = read_type_die (die, cu);
14123 new_symbol (die, type, cu);
14124
14125 namespace_name (die, &is_anonymous, cu);
14126 if (is_anonymous)
14127 {
14128 const char *previous_prefix = determine_prefix (die, cu);
14129
14130 add_using_directive (using_directives (cu->language),
14131 previous_prefix, TYPE_NAME (type), NULL,
14132 NULL, NULL, 0, &objfile->objfile_obstack);
14133 }
14134 }
14135
14136 if (die->child != NULL)
14137 {
14138 struct die_info *child_die = die->child;
14139
14140 while (child_die && child_die->tag)
14141 {
14142 process_die (child_die, cu);
14143 child_die = sibling_die (child_die);
14144 }
14145 }
14146 }
14147
14148 /* Read a Fortran module as type. This DIE can be only a declaration used for
14149 imported module. Still we need that type as local Fortran "use ... only"
14150 declaration imports depend on the created type in determine_prefix. */
14151
14152 static struct type *
14153 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
14154 {
14155 struct objfile *objfile = cu->objfile;
14156 const char *module_name;
14157 struct type *type;
14158
14159 module_name = dwarf2_name (die, cu);
14160 if (!module_name)
14161 complaint (&symfile_complaints,
14162 _("DW_TAG_module has no name, offset 0x%x"),
14163 die->offset.sect_off);
14164 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
14165
14166 /* determine_prefix uses TYPE_TAG_NAME. */
14167 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14168
14169 return set_die_type (die, type, cu);
14170 }
14171
14172 /* Read a Fortran module. */
14173
14174 static void
14175 read_module (struct die_info *die, struct dwarf2_cu *cu)
14176 {
14177 struct die_info *child_die = die->child;
14178 struct type *type;
14179
14180 type = read_type_die (die, cu);
14181 new_symbol (die, type, cu);
14182
14183 while (child_die && child_die->tag)
14184 {
14185 process_die (child_die, cu);
14186 child_die = sibling_die (child_die);
14187 }
14188 }
14189
14190 /* Return the name of the namespace represented by DIE. Set
14191 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
14192 namespace. */
14193
14194 static const char *
14195 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
14196 {
14197 struct die_info *current_die;
14198 const char *name = NULL;
14199
14200 /* Loop through the extensions until we find a name. */
14201
14202 for (current_die = die;
14203 current_die != NULL;
14204 current_die = dwarf2_extension (die, &cu))
14205 {
14206 /* We don't use dwarf2_name here so that we can detect the absence
14207 of a name -> anonymous namespace. */
14208 name = dwarf2_string_attr (die, DW_AT_name, cu);
14209
14210 if (name != NULL)
14211 break;
14212 }
14213
14214 /* Is it an anonymous namespace? */
14215
14216 *is_anonymous = (name == NULL);
14217 if (*is_anonymous)
14218 name = CP_ANONYMOUS_NAMESPACE_STR;
14219
14220 return name;
14221 }
14222
14223 /* Extract all information from a DW_TAG_pointer_type DIE and add to
14224 the user defined type vector. */
14225
14226 static struct type *
14227 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
14228 {
14229 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
14230 struct comp_unit_head *cu_header = &cu->header;
14231 struct type *type;
14232 struct attribute *attr_byte_size;
14233 struct attribute *attr_address_class;
14234 int byte_size, addr_class;
14235 struct type *target_type;
14236
14237 target_type = die_type (die, cu);
14238
14239 /* The die_type call above may have already set the type for this DIE. */
14240 type = get_die_type (die, cu);
14241 if (type)
14242 return type;
14243
14244 type = lookup_pointer_type (target_type);
14245
14246 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
14247 if (attr_byte_size)
14248 byte_size = DW_UNSND (attr_byte_size);
14249 else
14250 byte_size = cu_header->addr_size;
14251
14252 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
14253 if (attr_address_class)
14254 addr_class = DW_UNSND (attr_address_class);
14255 else
14256 addr_class = DW_ADDR_none;
14257
14258 /* If the pointer size or address class is different than the
14259 default, create a type variant marked as such and set the
14260 length accordingly. */
14261 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
14262 {
14263 if (gdbarch_address_class_type_flags_p (gdbarch))
14264 {
14265 int type_flags;
14266
14267 type_flags = gdbarch_address_class_type_flags
14268 (gdbarch, byte_size, addr_class);
14269 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
14270 == 0);
14271 type = make_type_with_address_space (type, type_flags);
14272 }
14273 else if (TYPE_LENGTH (type) != byte_size)
14274 {
14275 complaint (&symfile_complaints,
14276 _("invalid pointer size %d"), byte_size);
14277 }
14278 else
14279 {
14280 /* Should we also complain about unhandled address classes? */
14281 }
14282 }
14283
14284 TYPE_LENGTH (type) = byte_size;
14285 return set_die_type (die, type, cu);
14286 }
14287
14288 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
14289 the user defined type vector. */
14290
14291 static struct type *
14292 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
14293 {
14294 struct type *type;
14295 struct type *to_type;
14296 struct type *domain;
14297
14298 to_type = die_type (die, cu);
14299 domain = die_containing_type (die, cu);
14300
14301 /* The calls above may have already set the type for this DIE. */
14302 type = get_die_type (die, cu);
14303 if (type)
14304 return type;
14305
14306 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
14307 type = lookup_methodptr_type (to_type);
14308 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
14309 {
14310 struct type *new_type = alloc_type (cu->objfile);
14311
14312 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
14313 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
14314 TYPE_VARARGS (to_type));
14315 type = lookup_methodptr_type (new_type);
14316 }
14317 else
14318 type = lookup_memberptr_type (to_type, domain);
14319
14320 return set_die_type (die, type, cu);
14321 }
14322
14323 /* Extract all information from a DW_TAG_reference_type DIE and add to
14324 the user defined type vector. */
14325
14326 static struct type *
14327 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
14328 {
14329 struct comp_unit_head *cu_header = &cu->header;
14330 struct type *type, *target_type;
14331 struct attribute *attr;
14332
14333 target_type = die_type (die, cu);
14334
14335 /* The die_type call above may have already set the type for this DIE. */
14336 type = get_die_type (die, cu);
14337 if (type)
14338 return type;
14339
14340 type = lookup_reference_type (target_type);
14341 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14342 if (attr)
14343 {
14344 TYPE_LENGTH (type) = DW_UNSND (attr);
14345 }
14346 else
14347 {
14348 TYPE_LENGTH (type) = cu_header->addr_size;
14349 }
14350 return set_die_type (die, type, cu);
14351 }
14352
14353 /* Add the given cv-qualifiers to the element type of the array. GCC
14354 outputs DWARF type qualifiers that apply to an array, not the
14355 element type. But GDB relies on the array element type to carry
14356 the cv-qualifiers. This mimics section 6.7.3 of the C99
14357 specification. */
14358
14359 static struct type *
14360 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
14361 struct type *base_type, int cnst, int voltl)
14362 {
14363 struct type *el_type, *inner_array;
14364
14365 base_type = copy_type (base_type);
14366 inner_array = base_type;
14367
14368 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
14369 {
14370 TYPE_TARGET_TYPE (inner_array) =
14371 copy_type (TYPE_TARGET_TYPE (inner_array));
14372 inner_array = TYPE_TARGET_TYPE (inner_array);
14373 }
14374
14375 el_type = TYPE_TARGET_TYPE (inner_array);
14376 cnst |= TYPE_CONST (el_type);
14377 voltl |= TYPE_VOLATILE (el_type);
14378 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
14379
14380 return set_die_type (die, base_type, cu);
14381 }
14382
14383 static struct type *
14384 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
14385 {
14386 struct type *base_type, *cv_type;
14387
14388 base_type = die_type (die, cu);
14389
14390 /* The die_type call above may have already set the type for this DIE. */
14391 cv_type = get_die_type (die, cu);
14392 if (cv_type)
14393 return cv_type;
14394
14395 /* In case the const qualifier is applied to an array type, the element type
14396 is so qualified, not the array type (section 6.7.3 of C99). */
14397 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14398 return add_array_cv_type (die, cu, base_type, 1, 0);
14399
14400 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
14401 return set_die_type (die, cv_type, cu);
14402 }
14403
14404 static struct type *
14405 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
14406 {
14407 struct type *base_type, *cv_type;
14408
14409 base_type = die_type (die, cu);
14410
14411 /* The die_type call above may have already set the type for this DIE. */
14412 cv_type = get_die_type (die, cu);
14413 if (cv_type)
14414 return cv_type;
14415
14416 /* In case the volatile qualifier is applied to an array type, the
14417 element type is so qualified, not the array type (section 6.7.3
14418 of C99). */
14419 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14420 return add_array_cv_type (die, cu, base_type, 0, 1);
14421
14422 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
14423 return set_die_type (die, cv_type, cu);
14424 }
14425
14426 /* Handle DW_TAG_restrict_type. */
14427
14428 static struct type *
14429 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
14430 {
14431 struct type *base_type, *cv_type;
14432
14433 base_type = die_type (die, cu);
14434
14435 /* The die_type call above may have already set the type for this DIE. */
14436 cv_type = get_die_type (die, cu);
14437 if (cv_type)
14438 return cv_type;
14439
14440 cv_type = make_restrict_type (base_type);
14441 return set_die_type (die, cv_type, cu);
14442 }
14443
14444 /* Handle DW_TAG_atomic_type. */
14445
14446 static struct type *
14447 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
14448 {
14449 struct type *base_type, *cv_type;
14450
14451 base_type = die_type (die, cu);
14452
14453 /* The die_type call above may have already set the type for this DIE. */
14454 cv_type = get_die_type (die, cu);
14455 if (cv_type)
14456 return cv_type;
14457
14458 cv_type = make_atomic_type (base_type);
14459 return set_die_type (die, cv_type, cu);
14460 }
14461
14462 /* Extract all information from a DW_TAG_string_type DIE and add to
14463 the user defined type vector. It isn't really a user defined type,
14464 but it behaves like one, with other DIE's using an AT_user_def_type
14465 attribute to reference it. */
14466
14467 static struct type *
14468 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
14469 {
14470 struct objfile *objfile = cu->objfile;
14471 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14472 struct type *type, *range_type, *index_type, *char_type;
14473 struct attribute *attr;
14474 unsigned int length;
14475
14476 attr = dwarf2_attr (die, DW_AT_string_length, cu);
14477 if (attr)
14478 {
14479 length = DW_UNSND (attr);
14480 }
14481 else
14482 {
14483 /* Check for the DW_AT_byte_size attribute. */
14484 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14485 if (attr)
14486 {
14487 length = DW_UNSND (attr);
14488 }
14489 else
14490 {
14491 length = 1;
14492 }
14493 }
14494
14495 index_type = objfile_type (objfile)->builtin_int;
14496 range_type = create_static_range_type (NULL, index_type, 1, length);
14497 char_type = language_string_char_type (cu->language_defn, gdbarch);
14498 type = create_string_type (NULL, char_type, range_type);
14499
14500 return set_die_type (die, type, cu);
14501 }
14502
14503 /* Assuming that DIE corresponds to a function, returns nonzero
14504 if the function is prototyped. */
14505
14506 static int
14507 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
14508 {
14509 struct attribute *attr;
14510
14511 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
14512 if (attr && (DW_UNSND (attr) != 0))
14513 return 1;
14514
14515 /* The DWARF standard implies that the DW_AT_prototyped attribute
14516 is only meaninful for C, but the concept also extends to other
14517 languages that allow unprototyped functions (Eg: Objective C).
14518 For all other languages, assume that functions are always
14519 prototyped. */
14520 if (cu->language != language_c
14521 && cu->language != language_objc
14522 && cu->language != language_opencl)
14523 return 1;
14524
14525 /* RealView does not emit DW_AT_prototyped. We can not distinguish
14526 prototyped and unprototyped functions; default to prototyped,
14527 since that is more common in modern code (and RealView warns
14528 about unprototyped functions). */
14529 if (producer_is_realview (cu->producer))
14530 return 1;
14531
14532 return 0;
14533 }
14534
14535 /* Handle DIES due to C code like:
14536
14537 struct foo
14538 {
14539 int (*funcp)(int a, long l);
14540 int b;
14541 };
14542
14543 ('funcp' generates a DW_TAG_subroutine_type DIE). */
14544
14545 static struct type *
14546 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
14547 {
14548 struct objfile *objfile = cu->objfile;
14549 struct type *type; /* Type that this function returns. */
14550 struct type *ftype; /* Function that returns above type. */
14551 struct attribute *attr;
14552
14553 type = die_type (die, cu);
14554
14555 /* The die_type call above may have already set the type for this DIE. */
14556 ftype = get_die_type (die, cu);
14557 if (ftype)
14558 return ftype;
14559
14560 ftype = lookup_function_type (type);
14561
14562 if (prototyped_function_p (die, cu))
14563 TYPE_PROTOTYPED (ftype) = 1;
14564
14565 /* Store the calling convention in the type if it's available in
14566 the subroutine die. Otherwise set the calling convention to
14567 the default value DW_CC_normal. */
14568 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
14569 if (attr)
14570 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
14571 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
14572 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
14573 else
14574 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
14575
14576 /* Record whether the function returns normally to its caller or not
14577 if the DWARF producer set that information. */
14578 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
14579 if (attr && (DW_UNSND (attr) != 0))
14580 TYPE_NO_RETURN (ftype) = 1;
14581
14582 /* We need to add the subroutine type to the die immediately so
14583 we don't infinitely recurse when dealing with parameters
14584 declared as the same subroutine type. */
14585 set_die_type (die, ftype, cu);
14586
14587 if (die->child != NULL)
14588 {
14589 struct type *void_type = objfile_type (objfile)->builtin_void;
14590 struct die_info *child_die;
14591 int nparams, iparams;
14592
14593 /* Count the number of parameters.
14594 FIXME: GDB currently ignores vararg functions, but knows about
14595 vararg member functions. */
14596 nparams = 0;
14597 child_die = die->child;
14598 while (child_die && child_die->tag)
14599 {
14600 if (child_die->tag == DW_TAG_formal_parameter)
14601 nparams++;
14602 else if (child_die->tag == DW_TAG_unspecified_parameters)
14603 TYPE_VARARGS (ftype) = 1;
14604 child_die = sibling_die (child_die);
14605 }
14606
14607 /* Allocate storage for parameters and fill them in. */
14608 TYPE_NFIELDS (ftype) = nparams;
14609 TYPE_FIELDS (ftype) = (struct field *)
14610 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
14611
14612 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
14613 even if we error out during the parameters reading below. */
14614 for (iparams = 0; iparams < nparams; iparams++)
14615 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
14616
14617 iparams = 0;
14618 child_die = die->child;
14619 while (child_die && child_die->tag)
14620 {
14621 if (child_die->tag == DW_TAG_formal_parameter)
14622 {
14623 struct type *arg_type;
14624
14625 /* DWARF version 2 has no clean way to discern C++
14626 static and non-static member functions. G++ helps
14627 GDB by marking the first parameter for non-static
14628 member functions (which is the this pointer) as
14629 artificial. We pass this information to
14630 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
14631
14632 DWARF version 3 added DW_AT_object_pointer, which GCC
14633 4.5 does not yet generate. */
14634 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
14635 if (attr)
14636 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
14637 else
14638 {
14639 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
14640
14641 /* GCC/43521: In java, the formal parameter
14642 "this" is sometimes not marked with DW_AT_artificial. */
14643 if (cu->language == language_java)
14644 {
14645 const char *name = dwarf2_name (child_die, cu);
14646
14647 if (name && !strcmp (name, "this"))
14648 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
14649 }
14650 }
14651 arg_type = die_type (child_die, cu);
14652
14653 /* RealView does not mark THIS as const, which the testsuite
14654 expects. GCC marks THIS as const in method definitions,
14655 but not in the class specifications (GCC PR 43053). */
14656 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
14657 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
14658 {
14659 int is_this = 0;
14660 struct dwarf2_cu *arg_cu = cu;
14661 const char *name = dwarf2_name (child_die, cu);
14662
14663 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
14664 if (attr)
14665 {
14666 /* If the compiler emits this, use it. */
14667 if (follow_die_ref (die, attr, &arg_cu) == child_die)
14668 is_this = 1;
14669 }
14670 else if (name && strcmp (name, "this") == 0)
14671 /* Function definitions will have the argument names. */
14672 is_this = 1;
14673 else if (name == NULL && iparams == 0)
14674 /* Declarations may not have the names, so like
14675 elsewhere in GDB, assume an artificial first
14676 argument is "this". */
14677 is_this = 1;
14678
14679 if (is_this)
14680 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
14681 arg_type, 0);
14682 }
14683
14684 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
14685 iparams++;
14686 }
14687 child_die = sibling_die (child_die);
14688 }
14689 }
14690
14691 return ftype;
14692 }
14693
14694 static struct type *
14695 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
14696 {
14697 struct objfile *objfile = cu->objfile;
14698 const char *name = NULL;
14699 struct type *this_type, *target_type;
14700
14701 name = dwarf2_full_name (NULL, die, cu);
14702 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
14703 TYPE_FLAG_TARGET_STUB, NULL, objfile);
14704 TYPE_NAME (this_type) = name;
14705 set_die_type (die, this_type, cu);
14706 target_type = die_type (die, cu);
14707 if (target_type != this_type)
14708 TYPE_TARGET_TYPE (this_type) = target_type;
14709 else
14710 {
14711 /* Self-referential typedefs are, it seems, not allowed by the DWARF
14712 spec and cause infinite loops in GDB. */
14713 complaint (&symfile_complaints,
14714 _("Self-referential DW_TAG_typedef "
14715 "- DIE at 0x%x [in module %s]"),
14716 die->offset.sect_off, objfile_name (objfile));
14717 TYPE_TARGET_TYPE (this_type) = NULL;
14718 }
14719 return this_type;
14720 }
14721
14722 /* Find a representation of a given base type and install
14723 it in the TYPE field of the die. */
14724
14725 static struct type *
14726 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
14727 {
14728 struct objfile *objfile = cu->objfile;
14729 struct type *type;
14730 struct attribute *attr;
14731 int encoding = 0, size = 0;
14732 const char *name;
14733 enum type_code code = TYPE_CODE_INT;
14734 int type_flags = 0;
14735 struct type *target_type = NULL;
14736
14737 attr = dwarf2_attr (die, DW_AT_encoding, cu);
14738 if (attr)
14739 {
14740 encoding = DW_UNSND (attr);
14741 }
14742 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14743 if (attr)
14744 {
14745 size = DW_UNSND (attr);
14746 }
14747 name = dwarf2_name (die, cu);
14748 if (!name)
14749 {
14750 complaint (&symfile_complaints,
14751 _("DW_AT_name missing from DW_TAG_base_type"));
14752 }
14753
14754 switch (encoding)
14755 {
14756 case DW_ATE_address:
14757 /* Turn DW_ATE_address into a void * pointer. */
14758 code = TYPE_CODE_PTR;
14759 type_flags |= TYPE_FLAG_UNSIGNED;
14760 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
14761 break;
14762 case DW_ATE_boolean:
14763 code = TYPE_CODE_BOOL;
14764 type_flags |= TYPE_FLAG_UNSIGNED;
14765 break;
14766 case DW_ATE_complex_float:
14767 code = TYPE_CODE_COMPLEX;
14768 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
14769 break;
14770 case DW_ATE_decimal_float:
14771 code = TYPE_CODE_DECFLOAT;
14772 break;
14773 case DW_ATE_float:
14774 code = TYPE_CODE_FLT;
14775 break;
14776 case DW_ATE_signed:
14777 break;
14778 case DW_ATE_unsigned:
14779 type_flags |= TYPE_FLAG_UNSIGNED;
14780 if (cu->language == language_fortran
14781 && name
14782 && startswith (name, "character("))
14783 code = TYPE_CODE_CHAR;
14784 break;
14785 case DW_ATE_signed_char:
14786 if (cu->language == language_ada || cu->language == language_m2
14787 || cu->language == language_pascal
14788 || cu->language == language_fortran)
14789 code = TYPE_CODE_CHAR;
14790 break;
14791 case DW_ATE_unsigned_char:
14792 if (cu->language == language_ada || cu->language == language_m2
14793 || cu->language == language_pascal
14794 || cu->language == language_fortran)
14795 code = TYPE_CODE_CHAR;
14796 type_flags |= TYPE_FLAG_UNSIGNED;
14797 break;
14798 case DW_ATE_UTF:
14799 /* We just treat this as an integer and then recognize the
14800 type by name elsewhere. */
14801 break;
14802
14803 default:
14804 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
14805 dwarf_type_encoding_name (encoding));
14806 break;
14807 }
14808
14809 type = init_type (code, size, type_flags, NULL, objfile);
14810 TYPE_NAME (type) = name;
14811 TYPE_TARGET_TYPE (type) = target_type;
14812
14813 if (name && strcmp (name, "char") == 0)
14814 TYPE_NOSIGN (type) = 1;
14815
14816 return set_die_type (die, type, cu);
14817 }
14818
14819 /* Parse dwarf attribute if it's a block, reference or constant and put the
14820 resulting value of the attribute into struct bound_prop.
14821 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
14822
14823 static int
14824 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
14825 struct dwarf2_cu *cu, struct dynamic_prop *prop)
14826 {
14827 struct dwarf2_property_baton *baton;
14828 struct obstack *obstack = &cu->objfile->objfile_obstack;
14829
14830 if (attr == NULL || prop == NULL)
14831 return 0;
14832
14833 if (attr_form_is_block (attr))
14834 {
14835 baton = XOBNEW (obstack, struct dwarf2_property_baton);
14836 baton->referenced_type = NULL;
14837 baton->locexpr.per_cu = cu->per_cu;
14838 baton->locexpr.size = DW_BLOCK (attr)->size;
14839 baton->locexpr.data = DW_BLOCK (attr)->data;
14840 prop->data.baton = baton;
14841 prop->kind = PROP_LOCEXPR;
14842 gdb_assert (prop->data.baton != NULL);
14843 }
14844 else if (attr_form_is_ref (attr))
14845 {
14846 struct dwarf2_cu *target_cu = cu;
14847 struct die_info *target_die;
14848 struct attribute *target_attr;
14849
14850 target_die = follow_die_ref (die, attr, &target_cu);
14851 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
14852 if (target_attr == NULL)
14853 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
14854 target_cu);
14855 if (target_attr == NULL)
14856 return 0;
14857
14858 switch (target_attr->name)
14859 {
14860 case DW_AT_location:
14861 if (attr_form_is_section_offset (target_attr))
14862 {
14863 baton = XOBNEW (obstack, struct dwarf2_property_baton);
14864 baton->referenced_type = die_type (target_die, target_cu);
14865 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
14866 prop->data.baton = baton;
14867 prop->kind = PROP_LOCLIST;
14868 gdb_assert (prop->data.baton != NULL);
14869 }
14870 else if (attr_form_is_block (target_attr))
14871 {
14872 baton = XOBNEW (obstack, struct dwarf2_property_baton);
14873 baton->referenced_type = die_type (target_die, target_cu);
14874 baton->locexpr.per_cu = cu->per_cu;
14875 baton->locexpr.size = DW_BLOCK (target_attr)->size;
14876 baton->locexpr.data = DW_BLOCK (target_attr)->data;
14877 prop->data.baton = baton;
14878 prop->kind = PROP_LOCEXPR;
14879 gdb_assert (prop->data.baton != NULL);
14880 }
14881 else
14882 {
14883 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14884 "dynamic property");
14885 return 0;
14886 }
14887 break;
14888 case DW_AT_data_member_location:
14889 {
14890 LONGEST offset;
14891
14892 if (!handle_data_member_location (target_die, target_cu,
14893 &offset))
14894 return 0;
14895
14896 baton = XOBNEW (obstack, struct dwarf2_property_baton);
14897 baton->referenced_type = read_type_die (target_die->parent,
14898 target_cu);
14899 baton->offset_info.offset = offset;
14900 baton->offset_info.type = die_type (target_die, target_cu);
14901 prop->data.baton = baton;
14902 prop->kind = PROP_ADDR_OFFSET;
14903 break;
14904 }
14905 }
14906 }
14907 else if (attr_form_is_constant (attr))
14908 {
14909 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
14910 prop->kind = PROP_CONST;
14911 }
14912 else
14913 {
14914 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
14915 dwarf2_name (die, cu));
14916 return 0;
14917 }
14918
14919 return 1;
14920 }
14921
14922 /* Read the given DW_AT_subrange DIE. */
14923
14924 static struct type *
14925 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
14926 {
14927 struct type *base_type, *orig_base_type;
14928 struct type *range_type;
14929 struct attribute *attr;
14930 struct dynamic_prop low, high;
14931 int low_default_is_valid;
14932 int high_bound_is_count = 0;
14933 const char *name;
14934 LONGEST negative_mask;
14935
14936 orig_base_type = die_type (die, cu);
14937 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
14938 whereas the real type might be. So, we use ORIG_BASE_TYPE when
14939 creating the range type, but we use the result of check_typedef
14940 when examining properties of the type. */
14941 base_type = check_typedef (orig_base_type);
14942
14943 /* The die_type call above may have already set the type for this DIE. */
14944 range_type = get_die_type (die, cu);
14945 if (range_type)
14946 return range_type;
14947
14948 low.kind = PROP_CONST;
14949 high.kind = PROP_CONST;
14950 high.data.const_val = 0;
14951
14952 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
14953 omitting DW_AT_lower_bound. */
14954 switch (cu->language)
14955 {
14956 case language_c:
14957 case language_cplus:
14958 low.data.const_val = 0;
14959 low_default_is_valid = 1;
14960 break;
14961 case language_fortran:
14962 low.data.const_val = 1;
14963 low_default_is_valid = 1;
14964 break;
14965 case language_d:
14966 case language_java:
14967 case language_objc:
14968 low.data.const_val = 0;
14969 low_default_is_valid = (cu->header.version >= 4);
14970 break;
14971 case language_ada:
14972 case language_m2:
14973 case language_pascal:
14974 low.data.const_val = 1;
14975 low_default_is_valid = (cu->header.version >= 4);
14976 break;
14977 default:
14978 low.data.const_val = 0;
14979 low_default_is_valid = 0;
14980 break;
14981 }
14982
14983 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
14984 if (attr)
14985 attr_to_dynamic_prop (attr, die, cu, &low);
14986 else if (!low_default_is_valid)
14987 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
14988 "- DIE at 0x%x [in module %s]"),
14989 die->offset.sect_off, objfile_name (cu->objfile));
14990
14991 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
14992 if (!attr_to_dynamic_prop (attr, die, cu, &high))
14993 {
14994 attr = dwarf2_attr (die, DW_AT_count, cu);
14995 if (attr_to_dynamic_prop (attr, die, cu, &high))
14996 {
14997 /* If bounds are constant do the final calculation here. */
14998 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
14999 high.data.const_val = low.data.const_val + high.data.const_val - 1;
15000 else
15001 high_bound_is_count = 1;
15002 }
15003 }
15004
15005 /* Dwarf-2 specifications explicitly allows to create subrange types
15006 without specifying a base type.
15007 In that case, the base type must be set to the type of
15008 the lower bound, upper bound or count, in that order, if any of these
15009 three attributes references an object that has a type.
15010 If no base type is found, the Dwarf-2 specifications say that
15011 a signed integer type of size equal to the size of an address should
15012 be used.
15013 For the following C code: `extern char gdb_int [];'
15014 GCC produces an empty range DIE.
15015 FIXME: muller/2010-05-28: Possible references to object for low bound,
15016 high bound or count are not yet handled by this code. */
15017 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
15018 {
15019 struct objfile *objfile = cu->objfile;
15020 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15021 int addr_size = gdbarch_addr_bit (gdbarch) /8;
15022 struct type *int_type = objfile_type (objfile)->builtin_int;
15023
15024 /* Test "int", "long int", and "long long int" objfile types,
15025 and select the first one having a size above or equal to the
15026 architecture address size. */
15027 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15028 base_type = int_type;
15029 else
15030 {
15031 int_type = objfile_type (objfile)->builtin_long;
15032 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15033 base_type = int_type;
15034 else
15035 {
15036 int_type = objfile_type (objfile)->builtin_long_long;
15037 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15038 base_type = int_type;
15039 }
15040 }
15041 }
15042
15043 /* Normally, the DWARF producers are expected to use a signed
15044 constant form (Eg. DW_FORM_sdata) to express negative bounds.
15045 But this is unfortunately not always the case, as witnessed
15046 with GCC, for instance, where the ambiguous DW_FORM_dataN form
15047 is used instead. To work around that ambiguity, we treat
15048 the bounds as signed, and thus sign-extend their values, when
15049 the base type is signed. */
15050 negative_mask =
15051 -((LONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
15052 if (low.kind == PROP_CONST
15053 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
15054 low.data.const_val |= negative_mask;
15055 if (high.kind == PROP_CONST
15056 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
15057 high.data.const_val |= negative_mask;
15058
15059 range_type = create_range_type (NULL, orig_base_type, &low, &high);
15060
15061 if (high_bound_is_count)
15062 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
15063
15064 /* Ada expects an empty array on no boundary attributes. */
15065 if (attr == NULL && cu->language != language_ada)
15066 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
15067
15068 name = dwarf2_name (die, cu);
15069 if (name)
15070 TYPE_NAME (range_type) = name;
15071
15072 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15073 if (attr)
15074 TYPE_LENGTH (range_type) = DW_UNSND (attr);
15075
15076 set_die_type (die, range_type, cu);
15077
15078 /* set_die_type should be already done. */
15079 set_descriptive_type (range_type, die, cu);
15080
15081 return range_type;
15082 }
15083
15084 static struct type *
15085 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
15086 {
15087 struct type *type;
15088
15089 /* For now, we only support the C meaning of an unspecified type: void. */
15090
15091 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
15092 TYPE_NAME (type) = dwarf2_name (die, cu);
15093
15094 return set_die_type (die, type, cu);
15095 }
15096
15097 /* Read a single die and all its descendents. Set the die's sibling
15098 field to NULL; set other fields in the die correctly, and set all
15099 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
15100 location of the info_ptr after reading all of those dies. PARENT
15101 is the parent of the die in question. */
15102
15103 static struct die_info *
15104 read_die_and_children (const struct die_reader_specs *reader,
15105 const gdb_byte *info_ptr,
15106 const gdb_byte **new_info_ptr,
15107 struct die_info *parent)
15108 {
15109 struct die_info *die;
15110 const gdb_byte *cur_ptr;
15111 int has_children;
15112
15113 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
15114 if (die == NULL)
15115 {
15116 *new_info_ptr = cur_ptr;
15117 return NULL;
15118 }
15119 store_in_ref_table (die, reader->cu);
15120
15121 if (has_children)
15122 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
15123 else
15124 {
15125 die->child = NULL;
15126 *new_info_ptr = cur_ptr;
15127 }
15128
15129 die->sibling = NULL;
15130 die->parent = parent;
15131 return die;
15132 }
15133
15134 /* Read a die, all of its descendents, and all of its siblings; set
15135 all of the fields of all of the dies correctly. Arguments are as
15136 in read_die_and_children. */
15137
15138 static struct die_info *
15139 read_die_and_siblings_1 (const struct die_reader_specs *reader,
15140 const gdb_byte *info_ptr,
15141 const gdb_byte **new_info_ptr,
15142 struct die_info *parent)
15143 {
15144 struct die_info *first_die, *last_sibling;
15145 const gdb_byte *cur_ptr;
15146
15147 cur_ptr = info_ptr;
15148 first_die = last_sibling = NULL;
15149
15150 while (1)
15151 {
15152 struct die_info *die
15153 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
15154
15155 if (die == NULL)
15156 {
15157 *new_info_ptr = cur_ptr;
15158 return first_die;
15159 }
15160
15161 if (!first_die)
15162 first_die = die;
15163 else
15164 last_sibling->sibling = die;
15165
15166 last_sibling = die;
15167 }
15168 }
15169
15170 /* Read a die, all of its descendents, and all of its siblings; set
15171 all of the fields of all of the dies correctly. Arguments are as
15172 in read_die_and_children.
15173 This the main entry point for reading a DIE and all its children. */
15174
15175 static struct die_info *
15176 read_die_and_siblings (const struct die_reader_specs *reader,
15177 const gdb_byte *info_ptr,
15178 const gdb_byte **new_info_ptr,
15179 struct die_info *parent)
15180 {
15181 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
15182 new_info_ptr, parent);
15183
15184 if (dwarf_die_debug)
15185 {
15186 fprintf_unfiltered (gdb_stdlog,
15187 "Read die from %s@0x%x of %s:\n",
15188 get_section_name (reader->die_section),
15189 (unsigned) (info_ptr - reader->die_section->buffer),
15190 bfd_get_filename (reader->abfd));
15191 dump_die (die, dwarf_die_debug);
15192 }
15193
15194 return die;
15195 }
15196
15197 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
15198 attributes.
15199 The caller is responsible for filling in the extra attributes
15200 and updating (*DIEP)->num_attrs.
15201 Set DIEP to point to a newly allocated die with its information,
15202 except for its child, sibling, and parent fields.
15203 Set HAS_CHILDREN to tell whether the die has children or not. */
15204
15205 static const gdb_byte *
15206 read_full_die_1 (const struct die_reader_specs *reader,
15207 struct die_info **diep, const gdb_byte *info_ptr,
15208 int *has_children, int num_extra_attrs)
15209 {
15210 unsigned int abbrev_number, bytes_read, i;
15211 sect_offset offset;
15212 struct abbrev_info *abbrev;
15213 struct die_info *die;
15214 struct dwarf2_cu *cu = reader->cu;
15215 bfd *abfd = reader->abfd;
15216
15217 offset.sect_off = info_ptr - reader->buffer;
15218 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15219 info_ptr += bytes_read;
15220 if (!abbrev_number)
15221 {
15222 *diep = NULL;
15223 *has_children = 0;
15224 return info_ptr;
15225 }
15226
15227 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
15228 if (!abbrev)
15229 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
15230 abbrev_number,
15231 bfd_get_filename (abfd));
15232
15233 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
15234 die->offset = offset;
15235 die->tag = abbrev->tag;
15236 die->abbrev = abbrev_number;
15237
15238 /* Make the result usable.
15239 The caller needs to update num_attrs after adding the extra
15240 attributes. */
15241 die->num_attrs = abbrev->num_attrs;
15242
15243 for (i = 0; i < abbrev->num_attrs; ++i)
15244 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
15245 info_ptr);
15246
15247 *diep = die;
15248 *has_children = abbrev->has_children;
15249 return info_ptr;
15250 }
15251
15252 /* Read a die and all its attributes.
15253 Set DIEP to point to a newly allocated die with its information,
15254 except for its child, sibling, and parent fields.
15255 Set HAS_CHILDREN to tell whether the die has children or not. */
15256
15257 static const gdb_byte *
15258 read_full_die (const struct die_reader_specs *reader,
15259 struct die_info **diep, const gdb_byte *info_ptr,
15260 int *has_children)
15261 {
15262 const gdb_byte *result;
15263
15264 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
15265
15266 if (dwarf_die_debug)
15267 {
15268 fprintf_unfiltered (gdb_stdlog,
15269 "Read die from %s@0x%x of %s:\n",
15270 get_section_name (reader->die_section),
15271 (unsigned) (info_ptr - reader->die_section->buffer),
15272 bfd_get_filename (reader->abfd));
15273 dump_die (*diep, dwarf_die_debug);
15274 }
15275
15276 return result;
15277 }
15278 \f
15279 /* Abbreviation tables.
15280
15281 In DWARF version 2, the description of the debugging information is
15282 stored in a separate .debug_abbrev section. Before we read any
15283 dies from a section we read in all abbreviations and install them
15284 in a hash table. */
15285
15286 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
15287
15288 static struct abbrev_info *
15289 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
15290 {
15291 struct abbrev_info *abbrev;
15292
15293 abbrev = XOBNEW (&abbrev_table->abbrev_obstack, struct abbrev_info);
15294 memset (abbrev, 0, sizeof (struct abbrev_info));
15295
15296 return abbrev;
15297 }
15298
15299 /* Add an abbreviation to the table. */
15300
15301 static void
15302 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
15303 unsigned int abbrev_number,
15304 struct abbrev_info *abbrev)
15305 {
15306 unsigned int hash_number;
15307
15308 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15309 abbrev->next = abbrev_table->abbrevs[hash_number];
15310 abbrev_table->abbrevs[hash_number] = abbrev;
15311 }
15312
15313 /* Look up an abbrev in the table.
15314 Returns NULL if the abbrev is not found. */
15315
15316 static struct abbrev_info *
15317 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
15318 unsigned int abbrev_number)
15319 {
15320 unsigned int hash_number;
15321 struct abbrev_info *abbrev;
15322
15323 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15324 abbrev = abbrev_table->abbrevs[hash_number];
15325
15326 while (abbrev)
15327 {
15328 if (abbrev->number == abbrev_number)
15329 return abbrev;
15330 abbrev = abbrev->next;
15331 }
15332 return NULL;
15333 }
15334
15335 /* Read in an abbrev table. */
15336
15337 static struct abbrev_table *
15338 abbrev_table_read_table (struct dwarf2_section_info *section,
15339 sect_offset offset)
15340 {
15341 struct objfile *objfile = dwarf2_per_objfile->objfile;
15342 bfd *abfd = get_section_bfd_owner (section);
15343 struct abbrev_table *abbrev_table;
15344 const gdb_byte *abbrev_ptr;
15345 struct abbrev_info *cur_abbrev;
15346 unsigned int abbrev_number, bytes_read, abbrev_name;
15347 unsigned int abbrev_form;
15348 struct attr_abbrev *cur_attrs;
15349 unsigned int allocated_attrs;
15350
15351 abbrev_table = XNEW (struct abbrev_table);
15352 abbrev_table->offset = offset;
15353 obstack_init (&abbrev_table->abbrev_obstack);
15354 abbrev_table->abbrevs =
15355 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct abbrev_info *,
15356 ABBREV_HASH_SIZE);
15357 memset (abbrev_table->abbrevs, 0,
15358 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
15359
15360 dwarf2_read_section (objfile, section);
15361 abbrev_ptr = section->buffer + offset.sect_off;
15362 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15363 abbrev_ptr += bytes_read;
15364
15365 allocated_attrs = ATTR_ALLOC_CHUNK;
15366 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
15367
15368 /* Loop until we reach an abbrev number of 0. */
15369 while (abbrev_number)
15370 {
15371 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
15372
15373 /* read in abbrev header */
15374 cur_abbrev->number = abbrev_number;
15375 cur_abbrev->tag
15376 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15377 abbrev_ptr += bytes_read;
15378 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
15379 abbrev_ptr += 1;
15380
15381 /* now read in declarations */
15382 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15383 abbrev_ptr += bytes_read;
15384 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15385 abbrev_ptr += bytes_read;
15386 while (abbrev_name)
15387 {
15388 if (cur_abbrev->num_attrs == allocated_attrs)
15389 {
15390 allocated_attrs += ATTR_ALLOC_CHUNK;
15391 cur_attrs
15392 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
15393 }
15394
15395 cur_attrs[cur_abbrev->num_attrs].name
15396 = (enum dwarf_attribute) abbrev_name;
15397 cur_attrs[cur_abbrev->num_attrs++].form
15398 = (enum dwarf_form) abbrev_form;
15399 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15400 abbrev_ptr += bytes_read;
15401 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15402 abbrev_ptr += bytes_read;
15403 }
15404
15405 cur_abbrev->attrs =
15406 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
15407 cur_abbrev->num_attrs);
15408 memcpy (cur_abbrev->attrs, cur_attrs,
15409 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
15410
15411 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
15412
15413 /* Get next abbreviation.
15414 Under Irix6 the abbreviations for a compilation unit are not
15415 always properly terminated with an abbrev number of 0.
15416 Exit loop if we encounter an abbreviation which we have
15417 already read (which means we are about to read the abbreviations
15418 for the next compile unit) or if the end of the abbreviation
15419 table is reached. */
15420 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
15421 break;
15422 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15423 abbrev_ptr += bytes_read;
15424 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
15425 break;
15426 }
15427
15428 xfree (cur_attrs);
15429 return abbrev_table;
15430 }
15431
15432 /* Free the resources held by ABBREV_TABLE. */
15433
15434 static void
15435 abbrev_table_free (struct abbrev_table *abbrev_table)
15436 {
15437 obstack_free (&abbrev_table->abbrev_obstack, NULL);
15438 xfree (abbrev_table);
15439 }
15440
15441 /* Same as abbrev_table_free but as a cleanup.
15442 We pass in a pointer to the pointer to the table so that we can
15443 set the pointer to NULL when we're done. It also simplifies
15444 build_type_psymtabs_1. */
15445
15446 static void
15447 abbrev_table_free_cleanup (void *table_ptr)
15448 {
15449 struct abbrev_table **abbrev_table_ptr = (struct abbrev_table **) table_ptr;
15450
15451 if (*abbrev_table_ptr != NULL)
15452 abbrev_table_free (*abbrev_table_ptr);
15453 *abbrev_table_ptr = NULL;
15454 }
15455
15456 /* Read the abbrev table for CU from ABBREV_SECTION. */
15457
15458 static void
15459 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
15460 struct dwarf2_section_info *abbrev_section)
15461 {
15462 cu->abbrev_table =
15463 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
15464 }
15465
15466 /* Release the memory used by the abbrev table for a compilation unit. */
15467
15468 static void
15469 dwarf2_free_abbrev_table (void *ptr_to_cu)
15470 {
15471 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr_to_cu;
15472
15473 if (cu->abbrev_table != NULL)
15474 abbrev_table_free (cu->abbrev_table);
15475 /* Set this to NULL so that we SEGV if we try to read it later,
15476 and also because free_comp_unit verifies this is NULL. */
15477 cu->abbrev_table = NULL;
15478 }
15479 \f
15480 /* Returns nonzero if TAG represents a type that we might generate a partial
15481 symbol for. */
15482
15483 static int
15484 is_type_tag_for_partial (int tag)
15485 {
15486 switch (tag)
15487 {
15488 #if 0
15489 /* Some types that would be reasonable to generate partial symbols for,
15490 that we don't at present. */
15491 case DW_TAG_array_type:
15492 case DW_TAG_file_type:
15493 case DW_TAG_ptr_to_member_type:
15494 case DW_TAG_set_type:
15495 case DW_TAG_string_type:
15496 case DW_TAG_subroutine_type:
15497 #endif
15498 case DW_TAG_base_type:
15499 case DW_TAG_class_type:
15500 case DW_TAG_interface_type:
15501 case DW_TAG_enumeration_type:
15502 case DW_TAG_structure_type:
15503 case DW_TAG_subrange_type:
15504 case DW_TAG_typedef:
15505 case DW_TAG_union_type:
15506 return 1;
15507 default:
15508 return 0;
15509 }
15510 }
15511
15512 /* Load all DIEs that are interesting for partial symbols into memory. */
15513
15514 static struct partial_die_info *
15515 load_partial_dies (const struct die_reader_specs *reader,
15516 const gdb_byte *info_ptr, int building_psymtab)
15517 {
15518 struct dwarf2_cu *cu = reader->cu;
15519 struct objfile *objfile = cu->objfile;
15520 struct partial_die_info *part_die;
15521 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
15522 struct abbrev_info *abbrev;
15523 unsigned int bytes_read;
15524 unsigned int load_all = 0;
15525 int nesting_level = 1;
15526
15527 parent_die = NULL;
15528 last_die = NULL;
15529
15530 gdb_assert (cu->per_cu != NULL);
15531 if (cu->per_cu->load_all_dies)
15532 load_all = 1;
15533
15534 cu->partial_dies
15535 = htab_create_alloc_ex (cu->header.length / 12,
15536 partial_die_hash,
15537 partial_die_eq,
15538 NULL,
15539 &cu->comp_unit_obstack,
15540 hashtab_obstack_allocate,
15541 dummy_obstack_deallocate);
15542
15543 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
15544
15545 while (1)
15546 {
15547 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
15548
15549 /* A NULL abbrev means the end of a series of children. */
15550 if (abbrev == NULL)
15551 {
15552 if (--nesting_level == 0)
15553 {
15554 /* PART_DIE was probably the last thing allocated on the
15555 comp_unit_obstack, so we could call obstack_free
15556 here. We don't do that because the waste is small,
15557 and will be cleaned up when we're done with this
15558 compilation unit. This way, we're also more robust
15559 against other users of the comp_unit_obstack. */
15560 return first_die;
15561 }
15562 info_ptr += bytes_read;
15563 last_die = parent_die;
15564 parent_die = parent_die->die_parent;
15565 continue;
15566 }
15567
15568 /* Check for template arguments. We never save these; if
15569 they're seen, we just mark the parent, and go on our way. */
15570 if (parent_die != NULL
15571 && cu->language == language_cplus
15572 && (abbrev->tag == DW_TAG_template_type_param
15573 || abbrev->tag == DW_TAG_template_value_param))
15574 {
15575 parent_die->has_template_arguments = 1;
15576
15577 if (!load_all)
15578 {
15579 /* We don't need a partial DIE for the template argument. */
15580 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15581 continue;
15582 }
15583 }
15584
15585 /* We only recurse into c++ subprograms looking for template arguments.
15586 Skip their other children. */
15587 if (!load_all
15588 && cu->language == language_cplus
15589 && parent_die != NULL
15590 && parent_die->tag == DW_TAG_subprogram)
15591 {
15592 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15593 continue;
15594 }
15595
15596 /* Check whether this DIE is interesting enough to save. Normally
15597 we would not be interested in members here, but there may be
15598 later variables referencing them via DW_AT_specification (for
15599 static members). */
15600 if (!load_all
15601 && !is_type_tag_for_partial (abbrev->tag)
15602 && abbrev->tag != DW_TAG_constant
15603 && abbrev->tag != DW_TAG_enumerator
15604 && abbrev->tag != DW_TAG_subprogram
15605 && abbrev->tag != DW_TAG_lexical_block
15606 && abbrev->tag != DW_TAG_variable
15607 && abbrev->tag != DW_TAG_namespace
15608 && abbrev->tag != DW_TAG_module
15609 && abbrev->tag != DW_TAG_member
15610 && abbrev->tag != DW_TAG_imported_unit
15611 && abbrev->tag != DW_TAG_imported_declaration)
15612 {
15613 /* Otherwise we skip to the next sibling, if any. */
15614 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15615 continue;
15616 }
15617
15618 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
15619 info_ptr);
15620
15621 /* This two-pass algorithm for processing partial symbols has a
15622 high cost in cache pressure. Thus, handle some simple cases
15623 here which cover the majority of C partial symbols. DIEs
15624 which neither have specification tags in them, nor could have
15625 specification tags elsewhere pointing at them, can simply be
15626 processed and discarded.
15627
15628 This segment is also optional; scan_partial_symbols and
15629 add_partial_symbol will handle these DIEs if we chain
15630 them in normally. When compilers which do not emit large
15631 quantities of duplicate debug information are more common,
15632 this code can probably be removed. */
15633
15634 /* Any complete simple types at the top level (pretty much all
15635 of them, for a language without namespaces), can be processed
15636 directly. */
15637 if (parent_die == NULL
15638 && part_die->has_specification == 0
15639 && part_die->is_declaration == 0
15640 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
15641 || part_die->tag == DW_TAG_base_type
15642 || part_die->tag == DW_TAG_subrange_type))
15643 {
15644 if (building_psymtab && part_die->name != NULL)
15645 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15646 VAR_DOMAIN, LOC_TYPEDEF,
15647 &objfile->static_psymbols,
15648 0, cu->language, objfile);
15649 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15650 continue;
15651 }
15652
15653 /* The exception for DW_TAG_typedef with has_children above is
15654 a workaround of GCC PR debug/47510. In the case of this complaint
15655 type_name_no_tag_or_error will error on such types later.
15656
15657 GDB skipped children of DW_TAG_typedef by the shortcut above and then
15658 it could not find the child DIEs referenced later, this is checked
15659 above. In correct DWARF DW_TAG_typedef should have no children. */
15660
15661 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
15662 complaint (&symfile_complaints,
15663 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
15664 "- DIE at 0x%x [in module %s]"),
15665 part_die->offset.sect_off, objfile_name (objfile));
15666
15667 /* If we're at the second level, and we're an enumerator, and
15668 our parent has no specification (meaning possibly lives in a
15669 namespace elsewhere), then we can add the partial symbol now
15670 instead of queueing it. */
15671 if (part_die->tag == DW_TAG_enumerator
15672 && parent_die != NULL
15673 && parent_die->die_parent == NULL
15674 && parent_die->tag == DW_TAG_enumeration_type
15675 && parent_die->has_specification == 0)
15676 {
15677 if (part_die->name == NULL)
15678 complaint (&symfile_complaints,
15679 _("malformed enumerator DIE ignored"));
15680 else if (building_psymtab)
15681 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15682 VAR_DOMAIN, LOC_CONST,
15683 (cu->language == language_cplus
15684 || cu->language == language_java)
15685 ? &objfile->global_psymbols
15686 : &objfile->static_psymbols,
15687 0, cu->language, objfile);
15688
15689 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15690 continue;
15691 }
15692
15693 /* We'll save this DIE so link it in. */
15694 part_die->die_parent = parent_die;
15695 part_die->die_sibling = NULL;
15696 part_die->die_child = NULL;
15697
15698 if (last_die && last_die == parent_die)
15699 last_die->die_child = part_die;
15700 else if (last_die)
15701 last_die->die_sibling = part_die;
15702
15703 last_die = part_die;
15704
15705 if (first_die == NULL)
15706 first_die = part_die;
15707
15708 /* Maybe add the DIE to the hash table. Not all DIEs that we
15709 find interesting need to be in the hash table, because we
15710 also have the parent/sibling/child chains; only those that we
15711 might refer to by offset later during partial symbol reading.
15712
15713 For now this means things that might have be the target of a
15714 DW_AT_specification, DW_AT_abstract_origin, or
15715 DW_AT_extension. DW_AT_extension will refer only to
15716 namespaces; DW_AT_abstract_origin refers to functions (and
15717 many things under the function DIE, but we do not recurse
15718 into function DIEs during partial symbol reading) and
15719 possibly variables as well; DW_AT_specification refers to
15720 declarations. Declarations ought to have the DW_AT_declaration
15721 flag. It happens that GCC forgets to put it in sometimes, but
15722 only for functions, not for types.
15723
15724 Adding more things than necessary to the hash table is harmless
15725 except for the performance cost. Adding too few will result in
15726 wasted time in find_partial_die, when we reread the compilation
15727 unit with load_all_dies set. */
15728
15729 if (load_all
15730 || abbrev->tag == DW_TAG_constant
15731 || abbrev->tag == DW_TAG_subprogram
15732 || abbrev->tag == DW_TAG_variable
15733 || abbrev->tag == DW_TAG_namespace
15734 || part_die->is_declaration)
15735 {
15736 void **slot;
15737
15738 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
15739 part_die->offset.sect_off, INSERT);
15740 *slot = part_die;
15741 }
15742
15743 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
15744
15745 /* For some DIEs we want to follow their children (if any). For C
15746 we have no reason to follow the children of structures; for other
15747 languages we have to, so that we can get at method physnames
15748 to infer fully qualified class names, for DW_AT_specification,
15749 and for C++ template arguments. For C++, we also look one level
15750 inside functions to find template arguments (if the name of the
15751 function does not already contain the template arguments).
15752
15753 For Ada, we need to scan the children of subprograms and lexical
15754 blocks as well because Ada allows the definition of nested
15755 entities that could be interesting for the debugger, such as
15756 nested subprograms for instance. */
15757 if (last_die->has_children
15758 && (load_all
15759 || last_die->tag == DW_TAG_namespace
15760 || last_die->tag == DW_TAG_module
15761 || last_die->tag == DW_TAG_enumeration_type
15762 || (cu->language == language_cplus
15763 && last_die->tag == DW_TAG_subprogram
15764 && (last_die->name == NULL
15765 || strchr (last_die->name, '<') == NULL))
15766 || (cu->language != language_c
15767 && (last_die->tag == DW_TAG_class_type
15768 || last_die->tag == DW_TAG_interface_type
15769 || last_die->tag == DW_TAG_structure_type
15770 || last_die->tag == DW_TAG_union_type))
15771 || (cu->language == language_ada
15772 && (last_die->tag == DW_TAG_subprogram
15773 || last_die->tag == DW_TAG_lexical_block))))
15774 {
15775 nesting_level++;
15776 parent_die = last_die;
15777 continue;
15778 }
15779
15780 /* Otherwise we skip to the next sibling, if any. */
15781 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
15782
15783 /* Back to the top, do it again. */
15784 }
15785 }
15786
15787 /* Read a minimal amount of information into the minimal die structure. */
15788
15789 static const gdb_byte *
15790 read_partial_die (const struct die_reader_specs *reader,
15791 struct partial_die_info *part_die,
15792 struct abbrev_info *abbrev, unsigned int abbrev_len,
15793 const gdb_byte *info_ptr)
15794 {
15795 struct dwarf2_cu *cu = reader->cu;
15796 struct objfile *objfile = cu->objfile;
15797 const gdb_byte *buffer = reader->buffer;
15798 unsigned int i;
15799 struct attribute attr;
15800 int has_low_pc_attr = 0;
15801 int has_high_pc_attr = 0;
15802 int high_pc_relative = 0;
15803
15804 memset (part_die, 0, sizeof (struct partial_die_info));
15805
15806 part_die->offset.sect_off = info_ptr - buffer;
15807
15808 info_ptr += abbrev_len;
15809
15810 if (abbrev == NULL)
15811 return info_ptr;
15812
15813 part_die->tag = abbrev->tag;
15814 part_die->has_children = abbrev->has_children;
15815
15816 for (i = 0; i < abbrev->num_attrs; ++i)
15817 {
15818 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
15819
15820 /* Store the data if it is of an attribute we want to keep in a
15821 partial symbol table. */
15822 switch (attr.name)
15823 {
15824 case DW_AT_name:
15825 switch (part_die->tag)
15826 {
15827 case DW_TAG_compile_unit:
15828 case DW_TAG_partial_unit:
15829 case DW_TAG_type_unit:
15830 /* Compilation units have a DW_AT_name that is a filename, not
15831 a source language identifier. */
15832 case DW_TAG_enumeration_type:
15833 case DW_TAG_enumerator:
15834 /* These tags always have simple identifiers already; no need
15835 to canonicalize them. */
15836 part_die->name = DW_STRING (&attr);
15837 break;
15838 default:
15839 part_die->name
15840 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
15841 &objfile->per_bfd->storage_obstack);
15842 break;
15843 }
15844 break;
15845 case DW_AT_linkage_name:
15846 case DW_AT_MIPS_linkage_name:
15847 /* Note that both forms of linkage name might appear. We
15848 assume they will be the same, and we only store the last
15849 one we see. */
15850 if (cu->language == language_ada)
15851 part_die->name = DW_STRING (&attr);
15852 part_die->linkage_name = DW_STRING (&attr);
15853 break;
15854 case DW_AT_low_pc:
15855 has_low_pc_attr = 1;
15856 part_die->lowpc = attr_value_as_address (&attr);
15857 break;
15858 case DW_AT_high_pc:
15859 has_high_pc_attr = 1;
15860 part_die->highpc = attr_value_as_address (&attr);
15861 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
15862 high_pc_relative = 1;
15863 break;
15864 case DW_AT_location:
15865 /* Support the .debug_loc offsets. */
15866 if (attr_form_is_block (&attr))
15867 {
15868 part_die->d.locdesc = DW_BLOCK (&attr);
15869 }
15870 else if (attr_form_is_section_offset (&attr))
15871 {
15872 dwarf2_complex_location_expr_complaint ();
15873 }
15874 else
15875 {
15876 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15877 "partial symbol information");
15878 }
15879 break;
15880 case DW_AT_external:
15881 part_die->is_external = DW_UNSND (&attr);
15882 break;
15883 case DW_AT_declaration:
15884 part_die->is_declaration = DW_UNSND (&attr);
15885 break;
15886 case DW_AT_type:
15887 part_die->has_type = 1;
15888 break;
15889 case DW_AT_abstract_origin:
15890 case DW_AT_specification:
15891 case DW_AT_extension:
15892 part_die->has_specification = 1;
15893 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
15894 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15895 || cu->per_cu->is_dwz);
15896 break;
15897 case DW_AT_sibling:
15898 /* Ignore absolute siblings, they might point outside of
15899 the current compile unit. */
15900 if (attr.form == DW_FORM_ref_addr)
15901 complaint (&symfile_complaints,
15902 _("ignoring absolute DW_AT_sibling"));
15903 else
15904 {
15905 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
15906 const gdb_byte *sibling_ptr = buffer + off;
15907
15908 if (sibling_ptr < info_ptr)
15909 complaint (&symfile_complaints,
15910 _("DW_AT_sibling points backwards"));
15911 else if (sibling_ptr > reader->buffer_end)
15912 dwarf2_section_buffer_overflow_complaint (reader->die_section);
15913 else
15914 part_die->sibling = sibling_ptr;
15915 }
15916 break;
15917 case DW_AT_byte_size:
15918 part_die->has_byte_size = 1;
15919 break;
15920 case DW_AT_const_value:
15921 part_die->has_const_value = 1;
15922 break;
15923 case DW_AT_calling_convention:
15924 /* DWARF doesn't provide a way to identify a program's source-level
15925 entry point. DW_AT_calling_convention attributes are only meant
15926 to describe functions' calling conventions.
15927
15928 However, because it's a necessary piece of information in
15929 Fortran, and because DW_CC_program is the only piece of debugging
15930 information whose definition refers to a 'main program' at all,
15931 several compilers have begun marking Fortran main programs with
15932 DW_CC_program --- even when those functions use the standard
15933 calling conventions.
15934
15935 So until DWARF specifies a way to provide this information and
15936 compilers pick up the new representation, we'll support this
15937 practice. */
15938 if (DW_UNSND (&attr) == DW_CC_program
15939 && cu->language == language_fortran
15940 && part_die->name != NULL)
15941 set_objfile_main_name (objfile, part_die->name, language_fortran);
15942 break;
15943 case DW_AT_inline:
15944 if (DW_UNSND (&attr) == DW_INL_inlined
15945 || DW_UNSND (&attr) == DW_INL_declared_inlined)
15946 part_die->may_be_inlined = 1;
15947 break;
15948
15949 case DW_AT_import:
15950 if (part_die->tag == DW_TAG_imported_unit)
15951 {
15952 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
15953 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15954 || cu->per_cu->is_dwz);
15955 }
15956 break;
15957
15958 default:
15959 break;
15960 }
15961 }
15962
15963 if (high_pc_relative)
15964 part_die->highpc += part_die->lowpc;
15965
15966 if (has_low_pc_attr && has_high_pc_attr)
15967 {
15968 /* When using the GNU linker, .gnu.linkonce. sections are used to
15969 eliminate duplicate copies of functions and vtables and such.
15970 The linker will arbitrarily choose one and discard the others.
15971 The AT_*_pc values for such functions refer to local labels in
15972 these sections. If the section from that file was discarded, the
15973 labels are not in the output, so the relocs get a value of 0.
15974 If this is a discarded function, mark the pc bounds as invalid,
15975 so that GDB will ignore it. */
15976 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
15977 {
15978 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15979
15980 complaint (&symfile_complaints,
15981 _("DW_AT_low_pc %s is zero "
15982 "for DIE at 0x%x [in module %s]"),
15983 paddress (gdbarch, part_die->lowpc),
15984 part_die->offset.sect_off, objfile_name (objfile));
15985 }
15986 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
15987 else if (part_die->lowpc >= part_die->highpc)
15988 {
15989 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15990
15991 complaint (&symfile_complaints,
15992 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
15993 "for DIE at 0x%x [in module %s]"),
15994 paddress (gdbarch, part_die->lowpc),
15995 paddress (gdbarch, part_die->highpc),
15996 part_die->offset.sect_off, objfile_name (objfile));
15997 }
15998 else
15999 part_die->has_pc_info = 1;
16000 }
16001
16002 return info_ptr;
16003 }
16004
16005 /* Find a cached partial DIE at OFFSET in CU. */
16006
16007 static struct partial_die_info *
16008 find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
16009 {
16010 struct partial_die_info *lookup_die = NULL;
16011 struct partial_die_info part_die;
16012
16013 part_die.offset = offset;
16014 lookup_die = ((struct partial_die_info *)
16015 htab_find_with_hash (cu->partial_dies, &part_die,
16016 offset.sect_off));
16017
16018 return lookup_die;
16019 }
16020
16021 /* Find a partial DIE at OFFSET, which may or may not be in CU,
16022 except in the case of .debug_types DIEs which do not reference
16023 outside their CU (they do however referencing other types via
16024 DW_FORM_ref_sig8). */
16025
16026 static struct partial_die_info *
16027 find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
16028 {
16029 struct objfile *objfile = cu->objfile;
16030 struct dwarf2_per_cu_data *per_cu = NULL;
16031 struct partial_die_info *pd = NULL;
16032
16033 if (offset_in_dwz == cu->per_cu->is_dwz
16034 && offset_in_cu_p (&cu->header, offset))
16035 {
16036 pd = find_partial_die_in_comp_unit (offset, cu);
16037 if (pd != NULL)
16038 return pd;
16039 /* We missed recording what we needed.
16040 Load all dies and try again. */
16041 per_cu = cu->per_cu;
16042 }
16043 else
16044 {
16045 /* TUs don't reference other CUs/TUs (except via type signatures). */
16046 if (cu->per_cu->is_debug_types)
16047 {
16048 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
16049 " external reference to offset 0x%lx [in module %s].\n"),
16050 (long) cu->header.offset.sect_off, (long) offset.sect_off,
16051 bfd_get_filename (objfile->obfd));
16052 }
16053 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
16054 objfile);
16055
16056 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
16057 load_partial_comp_unit (per_cu);
16058
16059 per_cu->cu->last_used = 0;
16060 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
16061 }
16062
16063 /* If we didn't find it, and not all dies have been loaded,
16064 load them all and try again. */
16065
16066 if (pd == NULL && per_cu->load_all_dies == 0)
16067 {
16068 per_cu->load_all_dies = 1;
16069
16070 /* This is nasty. When we reread the DIEs, somewhere up the call chain
16071 THIS_CU->cu may already be in use. So we can't just free it and
16072 replace its DIEs with the ones we read in. Instead, we leave those
16073 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
16074 and clobber THIS_CU->cu->partial_dies with the hash table for the new
16075 set. */
16076 load_partial_comp_unit (per_cu);
16077
16078 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
16079 }
16080
16081 if (pd == NULL)
16082 internal_error (__FILE__, __LINE__,
16083 _("could not find partial DIE 0x%x "
16084 "in cache [from module %s]\n"),
16085 offset.sect_off, bfd_get_filename (objfile->obfd));
16086 return pd;
16087 }
16088
16089 /* See if we can figure out if the class lives in a namespace. We do
16090 this by looking for a member function; its demangled name will
16091 contain namespace info, if there is any. */
16092
16093 static void
16094 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
16095 struct dwarf2_cu *cu)
16096 {
16097 /* NOTE: carlton/2003-10-07: Getting the info this way changes
16098 what template types look like, because the demangler
16099 frequently doesn't give the same name as the debug info. We
16100 could fix this by only using the demangled name to get the
16101 prefix (but see comment in read_structure_type). */
16102
16103 struct partial_die_info *real_pdi;
16104 struct partial_die_info *child_pdi;
16105
16106 /* If this DIE (this DIE's specification, if any) has a parent, then
16107 we should not do this. We'll prepend the parent's fully qualified
16108 name when we create the partial symbol. */
16109
16110 real_pdi = struct_pdi;
16111 while (real_pdi->has_specification)
16112 real_pdi = find_partial_die (real_pdi->spec_offset,
16113 real_pdi->spec_is_dwz, cu);
16114
16115 if (real_pdi->die_parent != NULL)
16116 return;
16117
16118 for (child_pdi = struct_pdi->die_child;
16119 child_pdi != NULL;
16120 child_pdi = child_pdi->die_sibling)
16121 {
16122 if (child_pdi->tag == DW_TAG_subprogram
16123 && child_pdi->linkage_name != NULL)
16124 {
16125 char *actual_class_name
16126 = language_class_name_from_physname (cu->language_defn,
16127 child_pdi->linkage_name);
16128 if (actual_class_name != NULL)
16129 {
16130 struct_pdi->name
16131 = ((const char *)
16132 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16133 actual_class_name,
16134 strlen (actual_class_name)));
16135 xfree (actual_class_name);
16136 }
16137 break;
16138 }
16139 }
16140 }
16141
16142 /* Adjust PART_DIE before generating a symbol for it. This function
16143 may set the is_external flag or change the DIE's name. */
16144
16145 static void
16146 fixup_partial_die (struct partial_die_info *part_die,
16147 struct dwarf2_cu *cu)
16148 {
16149 /* Once we've fixed up a die, there's no point in doing so again.
16150 This also avoids a memory leak if we were to call
16151 guess_partial_die_structure_name multiple times. */
16152 if (part_die->fixup_called)
16153 return;
16154
16155 /* If we found a reference attribute and the DIE has no name, try
16156 to find a name in the referred to DIE. */
16157
16158 if (part_die->name == NULL && part_die->has_specification)
16159 {
16160 struct partial_die_info *spec_die;
16161
16162 spec_die = find_partial_die (part_die->spec_offset,
16163 part_die->spec_is_dwz, cu);
16164
16165 fixup_partial_die (spec_die, cu);
16166
16167 if (spec_die->name)
16168 {
16169 part_die->name = spec_die->name;
16170
16171 /* Copy DW_AT_external attribute if it is set. */
16172 if (spec_die->is_external)
16173 part_die->is_external = spec_die->is_external;
16174 }
16175 }
16176
16177 /* Set default names for some unnamed DIEs. */
16178
16179 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
16180 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
16181
16182 /* If there is no parent die to provide a namespace, and there are
16183 children, see if we can determine the namespace from their linkage
16184 name. */
16185 if (cu->language == language_cplus
16186 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
16187 && part_die->die_parent == NULL
16188 && part_die->has_children
16189 && (part_die->tag == DW_TAG_class_type
16190 || part_die->tag == DW_TAG_structure_type
16191 || part_die->tag == DW_TAG_union_type))
16192 guess_partial_die_structure_name (part_die, cu);
16193
16194 /* GCC might emit a nameless struct or union that has a linkage
16195 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16196 if (part_die->name == NULL
16197 && (part_die->tag == DW_TAG_class_type
16198 || part_die->tag == DW_TAG_interface_type
16199 || part_die->tag == DW_TAG_structure_type
16200 || part_die->tag == DW_TAG_union_type)
16201 && part_die->linkage_name != NULL)
16202 {
16203 char *demangled;
16204
16205 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
16206 if (demangled)
16207 {
16208 const char *base;
16209
16210 /* Strip any leading namespaces/classes, keep only the base name.
16211 DW_AT_name for named DIEs does not contain the prefixes. */
16212 base = strrchr (demangled, ':');
16213 if (base && base > demangled && base[-1] == ':')
16214 base++;
16215 else
16216 base = demangled;
16217
16218 part_die->name
16219 = ((const char *)
16220 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16221 base, strlen (base)));
16222 xfree (demangled);
16223 }
16224 }
16225
16226 part_die->fixup_called = 1;
16227 }
16228
16229 /* Read an attribute value described by an attribute form. */
16230
16231 static const gdb_byte *
16232 read_attribute_value (const struct die_reader_specs *reader,
16233 struct attribute *attr, unsigned form,
16234 const gdb_byte *info_ptr)
16235 {
16236 struct dwarf2_cu *cu = reader->cu;
16237 struct objfile *objfile = cu->objfile;
16238 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16239 bfd *abfd = reader->abfd;
16240 struct comp_unit_head *cu_header = &cu->header;
16241 unsigned int bytes_read;
16242 struct dwarf_block *blk;
16243
16244 attr->form = (enum dwarf_form) form;
16245 switch (form)
16246 {
16247 case DW_FORM_ref_addr:
16248 if (cu->header.version == 2)
16249 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
16250 else
16251 DW_UNSND (attr) = read_offset (abfd, info_ptr,
16252 &cu->header, &bytes_read);
16253 info_ptr += bytes_read;
16254 break;
16255 case DW_FORM_GNU_ref_alt:
16256 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16257 info_ptr += bytes_read;
16258 break;
16259 case DW_FORM_addr:
16260 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
16261 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
16262 info_ptr += bytes_read;
16263 break;
16264 case DW_FORM_block2:
16265 blk = dwarf_alloc_block (cu);
16266 blk->size = read_2_bytes (abfd, info_ptr);
16267 info_ptr += 2;
16268 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16269 info_ptr += blk->size;
16270 DW_BLOCK (attr) = blk;
16271 break;
16272 case DW_FORM_block4:
16273 blk = dwarf_alloc_block (cu);
16274 blk->size = read_4_bytes (abfd, info_ptr);
16275 info_ptr += 4;
16276 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16277 info_ptr += blk->size;
16278 DW_BLOCK (attr) = blk;
16279 break;
16280 case DW_FORM_data2:
16281 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
16282 info_ptr += 2;
16283 break;
16284 case DW_FORM_data4:
16285 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
16286 info_ptr += 4;
16287 break;
16288 case DW_FORM_data8:
16289 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
16290 info_ptr += 8;
16291 break;
16292 case DW_FORM_sec_offset:
16293 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16294 info_ptr += bytes_read;
16295 break;
16296 case DW_FORM_string:
16297 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
16298 DW_STRING_IS_CANONICAL (attr) = 0;
16299 info_ptr += bytes_read;
16300 break;
16301 case DW_FORM_strp:
16302 if (!cu->per_cu->is_dwz)
16303 {
16304 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
16305 &bytes_read);
16306 DW_STRING_IS_CANONICAL (attr) = 0;
16307 info_ptr += bytes_read;
16308 break;
16309 }
16310 /* FALLTHROUGH */
16311 case DW_FORM_GNU_strp_alt:
16312 {
16313 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16314 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
16315 &bytes_read);
16316
16317 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
16318 DW_STRING_IS_CANONICAL (attr) = 0;
16319 info_ptr += bytes_read;
16320 }
16321 break;
16322 case DW_FORM_exprloc:
16323 case DW_FORM_block:
16324 blk = dwarf_alloc_block (cu);
16325 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16326 info_ptr += bytes_read;
16327 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16328 info_ptr += blk->size;
16329 DW_BLOCK (attr) = blk;
16330 break;
16331 case DW_FORM_block1:
16332 blk = dwarf_alloc_block (cu);
16333 blk->size = read_1_byte (abfd, info_ptr);
16334 info_ptr += 1;
16335 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16336 info_ptr += blk->size;
16337 DW_BLOCK (attr) = blk;
16338 break;
16339 case DW_FORM_data1:
16340 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16341 info_ptr += 1;
16342 break;
16343 case DW_FORM_flag:
16344 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16345 info_ptr += 1;
16346 break;
16347 case DW_FORM_flag_present:
16348 DW_UNSND (attr) = 1;
16349 break;
16350 case DW_FORM_sdata:
16351 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16352 info_ptr += bytes_read;
16353 break;
16354 case DW_FORM_udata:
16355 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16356 info_ptr += bytes_read;
16357 break;
16358 case DW_FORM_ref1:
16359 DW_UNSND (attr) = (cu->header.offset.sect_off
16360 + read_1_byte (abfd, info_ptr));
16361 info_ptr += 1;
16362 break;
16363 case DW_FORM_ref2:
16364 DW_UNSND (attr) = (cu->header.offset.sect_off
16365 + read_2_bytes (abfd, info_ptr));
16366 info_ptr += 2;
16367 break;
16368 case DW_FORM_ref4:
16369 DW_UNSND (attr) = (cu->header.offset.sect_off
16370 + read_4_bytes (abfd, info_ptr));
16371 info_ptr += 4;
16372 break;
16373 case DW_FORM_ref8:
16374 DW_UNSND (attr) = (cu->header.offset.sect_off
16375 + read_8_bytes (abfd, info_ptr));
16376 info_ptr += 8;
16377 break;
16378 case DW_FORM_ref_sig8:
16379 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
16380 info_ptr += 8;
16381 break;
16382 case DW_FORM_ref_udata:
16383 DW_UNSND (attr) = (cu->header.offset.sect_off
16384 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
16385 info_ptr += bytes_read;
16386 break;
16387 case DW_FORM_indirect:
16388 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16389 info_ptr += bytes_read;
16390 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
16391 break;
16392 case DW_FORM_GNU_addr_index:
16393 if (reader->dwo_file == NULL)
16394 {
16395 /* For now flag a hard error.
16396 Later we can turn this into a complaint. */
16397 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16398 dwarf_form_name (form),
16399 bfd_get_filename (abfd));
16400 }
16401 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
16402 info_ptr += bytes_read;
16403 break;
16404 case DW_FORM_GNU_str_index:
16405 if (reader->dwo_file == NULL)
16406 {
16407 /* For now flag a hard error.
16408 Later we can turn this into a complaint if warranted. */
16409 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16410 dwarf_form_name (form),
16411 bfd_get_filename (abfd));
16412 }
16413 {
16414 ULONGEST str_index =
16415 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16416
16417 DW_STRING (attr) = read_str_index (reader, str_index);
16418 DW_STRING_IS_CANONICAL (attr) = 0;
16419 info_ptr += bytes_read;
16420 }
16421 break;
16422 default:
16423 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
16424 dwarf_form_name (form),
16425 bfd_get_filename (abfd));
16426 }
16427
16428 /* Super hack. */
16429 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
16430 attr->form = DW_FORM_GNU_ref_alt;
16431
16432 /* We have seen instances where the compiler tried to emit a byte
16433 size attribute of -1 which ended up being encoded as an unsigned
16434 0xffffffff. Although 0xffffffff is technically a valid size value,
16435 an object of this size seems pretty unlikely so we can relatively
16436 safely treat these cases as if the size attribute was invalid and
16437 treat them as zero by default. */
16438 if (attr->name == DW_AT_byte_size
16439 && form == DW_FORM_data4
16440 && DW_UNSND (attr) >= 0xffffffff)
16441 {
16442 complaint
16443 (&symfile_complaints,
16444 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
16445 hex_string (DW_UNSND (attr)));
16446 DW_UNSND (attr) = 0;
16447 }
16448
16449 return info_ptr;
16450 }
16451
16452 /* Read an attribute described by an abbreviated attribute. */
16453
16454 static const gdb_byte *
16455 read_attribute (const struct die_reader_specs *reader,
16456 struct attribute *attr, struct attr_abbrev *abbrev,
16457 const gdb_byte *info_ptr)
16458 {
16459 attr->name = abbrev->name;
16460 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
16461 }
16462
16463 /* Read dwarf information from a buffer. */
16464
16465 static unsigned int
16466 read_1_byte (bfd *abfd, const gdb_byte *buf)
16467 {
16468 return bfd_get_8 (abfd, buf);
16469 }
16470
16471 static int
16472 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
16473 {
16474 return bfd_get_signed_8 (abfd, buf);
16475 }
16476
16477 static unsigned int
16478 read_2_bytes (bfd *abfd, const gdb_byte *buf)
16479 {
16480 return bfd_get_16 (abfd, buf);
16481 }
16482
16483 static int
16484 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
16485 {
16486 return bfd_get_signed_16 (abfd, buf);
16487 }
16488
16489 static unsigned int
16490 read_4_bytes (bfd *abfd, const gdb_byte *buf)
16491 {
16492 return bfd_get_32 (abfd, buf);
16493 }
16494
16495 static int
16496 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
16497 {
16498 return bfd_get_signed_32 (abfd, buf);
16499 }
16500
16501 static ULONGEST
16502 read_8_bytes (bfd *abfd, const gdb_byte *buf)
16503 {
16504 return bfd_get_64 (abfd, buf);
16505 }
16506
16507 static CORE_ADDR
16508 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
16509 unsigned int *bytes_read)
16510 {
16511 struct comp_unit_head *cu_header = &cu->header;
16512 CORE_ADDR retval = 0;
16513
16514 if (cu_header->signed_addr_p)
16515 {
16516 switch (cu_header->addr_size)
16517 {
16518 case 2:
16519 retval = bfd_get_signed_16 (abfd, buf);
16520 break;
16521 case 4:
16522 retval = bfd_get_signed_32 (abfd, buf);
16523 break;
16524 case 8:
16525 retval = bfd_get_signed_64 (abfd, buf);
16526 break;
16527 default:
16528 internal_error (__FILE__, __LINE__,
16529 _("read_address: bad switch, signed [in module %s]"),
16530 bfd_get_filename (abfd));
16531 }
16532 }
16533 else
16534 {
16535 switch (cu_header->addr_size)
16536 {
16537 case 2:
16538 retval = bfd_get_16 (abfd, buf);
16539 break;
16540 case 4:
16541 retval = bfd_get_32 (abfd, buf);
16542 break;
16543 case 8:
16544 retval = bfd_get_64 (abfd, buf);
16545 break;
16546 default:
16547 internal_error (__FILE__, __LINE__,
16548 _("read_address: bad switch, "
16549 "unsigned [in module %s]"),
16550 bfd_get_filename (abfd));
16551 }
16552 }
16553
16554 *bytes_read = cu_header->addr_size;
16555 return retval;
16556 }
16557
16558 /* Read the initial length from a section. The (draft) DWARF 3
16559 specification allows the initial length to take up either 4 bytes
16560 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
16561 bytes describe the length and all offsets will be 8 bytes in length
16562 instead of 4.
16563
16564 An older, non-standard 64-bit format is also handled by this
16565 function. The older format in question stores the initial length
16566 as an 8-byte quantity without an escape value. Lengths greater
16567 than 2^32 aren't very common which means that the initial 4 bytes
16568 is almost always zero. Since a length value of zero doesn't make
16569 sense for the 32-bit format, this initial zero can be considered to
16570 be an escape value which indicates the presence of the older 64-bit
16571 format. As written, the code can't detect (old format) lengths
16572 greater than 4GB. If it becomes necessary to handle lengths
16573 somewhat larger than 4GB, we could allow other small values (such
16574 as the non-sensical values of 1, 2, and 3) to also be used as
16575 escape values indicating the presence of the old format.
16576
16577 The value returned via bytes_read should be used to increment the
16578 relevant pointer after calling read_initial_length().
16579
16580 [ Note: read_initial_length() and read_offset() are based on the
16581 document entitled "DWARF Debugging Information Format", revision
16582 3, draft 8, dated November 19, 2001. This document was obtained
16583 from:
16584
16585 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
16586
16587 This document is only a draft and is subject to change. (So beware.)
16588
16589 Details regarding the older, non-standard 64-bit format were
16590 determined empirically by examining 64-bit ELF files produced by
16591 the SGI toolchain on an IRIX 6.5 machine.
16592
16593 - Kevin, July 16, 2002
16594 ] */
16595
16596 static LONGEST
16597 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
16598 {
16599 LONGEST length = bfd_get_32 (abfd, buf);
16600
16601 if (length == 0xffffffff)
16602 {
16603 length = bfd_get_64 (abfd, buf + 4);
16604 *bytes_read = 12;
16605 }
16606 else if (length == 0)
16607 {
16608 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
16609 length = bfd_get_64 (abfd, buf);
16610 *bytes_read = 8;
16611 }
16612 else
16613 {
16614 *bytes_read = 4;
16615 }
16616
16617 return length;
16618 }
16619
16620 /* Cover function for read_initial_length.
16621 Returns the length of the object at BUF, and stores the size of the
16622 initial length in *BYTES_READ and stores the size that offsets will be in
16623 *OFFSET_SIZE.
16624 If the initial length size is not equivalent to that specified in
16625 CU_HEADER then issue a complaint.
16626 This is useful when reading non-comp-unit headers. */
16627
16628 static LONGEST
16629 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
16630 const struct comp_unit_head *cu_header,
16631 unsigned int *bytes_read,
16632 unsigned int *offset_size)
16633 {
16634 LONGEST length = read_initial_length (abfd, buf, bytes_read);
16635
16636 gdb_assert (cu_header->initial_length_size == 4
16637 || cu_header->initial_length_size == 8
16638 || cu_header->initial_length_size == 12);
16639
16640 if (cu_header->initial_length_size != *bytes_read)
16641 complaint (&symfile_complaints,
16642 _("intermixed 32-bit and 64-bit DWARF sections"));
16643
16644 *offset_size = (*bytes_read == 4) ? 4 : 8;
16645 return length;
16646 }
16647
16648 /* Read an offset from the data stream. The size of the offset is
16649 given by cu_header->offset_size. */
16650
16651 static LONGEST
16652 read_offset (bfd *abfd, const gdb_byte *buf,
16653 const struct comp_unit_head *cu_header,
16654 unsigned int *bytes_read)
16655 {
16656 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
16657
16658 *bytes_read = cu_header->offset_size;
16659 return offset;
16660 }
16661
16662 /* Read an offset from the data stream. */
16663
16664 static LONGEST
16665 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
16666 {
16667 LONGEST retval = 0;
16668
16669 switch (offset_size)
16670 {
16671 case 4:
16672 retval = bfd_get_32 (abfd, buf);
16673 break;
16674 case 8:
16675 retval = bfd_get_64 (abfd, buf);
16676 break;
16677 default:
16678 internal_error (__FILE__, __LINE__,
16679 _("read_offset_1: bad switch [in module %s]"),
16680 bfd_get_filename (abfd));
16681 }
16682
16683 return retval;
16684 }
16685
16686 static const gdb_byte *
16687 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
16688 {
16689 /* If the size of a host char is 8 bits, we can return a pointer
16690 to the buffer, otherwise we have to copy the data to a buffer
16691 allocated on the temporary obstack. */
16692 gdb_assert (HOST_CHAR_BIT == 8);
16693 return buf;
16694 }
16695
16696 static const char *
16697 read_direct_string (bfd *abfd, const gdb_byte *buf,
16698 unsigned int *bytes_read_ptr)
16699 {
16700 /* If the size of a host char is 8 bits, we can return a pointer
16701 to the string, otherwise we have to copy the string to a buffer
16702 allocated on the temporary obstack. */
16703 gdb_assert (HOST_CHAR_BIT == 8);
16704 if (*buf == '\0')
16705 {
16706 *bytes_read_ptr = 1;
16707 return NULL;
16708 }
16709 *bytes_read_ptr = strlen ((const char *) buf) + 1;
16710 return (const char *) buf;
16711 }
16712
16713 static const char *
16714 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
16715 {
16716 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
16717 if (dwarf2_per_objfile->str.buffer == NULL)
16718 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
16719 bfd_get_filename (abfd));
16720 if (str_offset >= dwarf2_per_objfile->str.size)
16721 error (_("DW_FORM_strp pointing outside of "
16722 ".debug_str section [in module %s]"),
16723 bfd_get_filename (abfd));
16724 gdb_assert (HOST_CHAR_BIT == 8);
16725 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
16726 return NULL;
16727 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
16728 }
16729
16730 /* Read a string at offset STR_OFFSET in the .debug_str section from
16731 the .dwz file DWZ. Throw an error if the offset is too large. If
16732 the string consists of a single NUL byte, return NULL; otherwise
16733 return a pointer to the string. */
16734
16735 static const char *
16736 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
16737 {
16738 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
16739
16740 if (dwz->str.buffer == NULL)
16741 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
16742 "section [in module %s]"),
16743 bfd_get_filename (dwz->dwz_bfd));
16744 if (str_offset >= dwz->str.size)
16745 error (_("DW_FORM_GNU_strp_alt pointing outside of "
16746 ".debug_str section [in module %s]"),
16747 bfd_get_filename (dwz->dwz_bfd));
16748 gdb_assert (HOST_CHAR_BIT == 8);
16749 if (dwz->str.buffer[str_offset] == '\0')
16750 return NULL;
16751 return (const char *) (dwz->str.buffer + str_offset);
16752 }
16753
16754 static const char *
16755 read_indirect_string (bfd *abfd, const gdb_byte *buf,
16756 const struct comp_unit_head *cu_header,
16757 unsigned int *bytes_read_ptr)
16758 {
16759 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
16760
16761 return read_indirect_string_at_offset (abfd, str_offset);
16762 }
16763
16764 static ULONGEST
16765 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
16766 unsigned int *bytes_read_ptr)
16767 {
16768 ULONGEST result;
16769 unsigned int num_read;
16770 int i, shift;
16771 unsigned char byte;
16772
16773 result = 0;
16774 shift = 0;
16775 num_read = 0;
16776 i = 0;
16777 while (1)
16778 {
16779 byte = bfd_get_8 (abfd, buf);
16780 buf++;
16781 num_read++;
16782 result |= ((ULONGEST) (byte & 127) << shift);
16783 if ((byte & 128) == 0)
16784 {
16785 break;
16786 }
16787 shift += 7;
16788 }
16789 *bytes_read_ptr = num_read;
16790 return result;
16791 }
16792
16793 static LONGEST
16794 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
16795 unsigned int *bytes_read_ptr)
16796 {
16797 LONGEST result;
16798 int i, shift, num_read;
16799 unsigned char byte;
16800
16801 result = 0;
16802 shift = 0;
16803 num_read = 0;
16804 i = 0;
16805 while (1)
16806 {
16807 byte = bfd_get_8 (abfd, buf);
16808 buf++;
16809 num_read++;
16810 result |= ((LONGEST) (byte & 127) << shift);
16811 shift += 7;
16812 if ((byte & 128) == 0)
16813 {
16814 break;
16815 }
16816 }
16817 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
16818 result |= -(((LONGEST) 1) << shift);
16819 *bytes_read_ptr = num_read;
16820 return result;
16821 }
16822
16823 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
16824 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
16825 ADDR_SIZE is the size of addresses from the CU header. */
16826
16827 static CORE_ADDR
16828 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
16829 {
16830 struct objfile *objfile = dwarf2_per_objfile->objfile;
16831 bfd *abfd = objfile->obfd;
16832 const gdb_byte *info_ptr;
16833
16834 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
16835 if (dwarf2_per_objfile->addr.buffer == NULL)
16836 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
16837 objfile_name (objfile));
16838 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
16839 error (_("DW_FORM_addr_index pointing outside of "
16840 ".debug_addr section [in module %s]"),
16841 objfile_name (objfile));
16842 info_ptr = (dwarf2_per_objfile->addr.buffer
16843 + addr_base + addr_index * addr_size);
16844 if (addr_size == 4)
16845 return bfd_get_32 (abfd, info_ptr);
16846 else
16847 return bfd_get_64 (abfd, info_ptr);
16848 }
16849
16850 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
16851
16852 static CORE_ADDR
16853 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
16854 {
16855 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
16856 }
16857
16858 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
16859
16860 static CORE_ADDR
16861 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
16862 unsigned int *bytes_read)
16863 {
16864 bfd *abfd = cu->objfile->obfd;
16865 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
16866
16867 return read_addr_index (cu, addr_index);
16868 }
16869
16870 /* Data structure to pass results from dwarf2_read_addr_index_reader
16871 back to dwarf2_read_addr_index. */
16872
16873 struct dwarf2_read_addr_index_data
16874 {
16875 ULONGEST addr_base;
16876 int addr_size;
16877 };
16878
16879 /* die_reader_func for dwarf2_read_addr_index. */
16880
16881 static void
16882 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
16883 const gdb_byte *info_ptr,
16884 struct die_info *comp_unit_die,
16885 int has_children,
16886 void *data)
16887 {
16888 struct dwarf2_cu *cu = reader->cu;
16889 struct dwarf2_read_addr_index_data *aidata =
16890 (struct dwarf2_read_addr_index_data *) data;
16891
16892 aidata->addr_base = cu->addr_base;
16893 aidata->addr_size = cu->header.addr_size;
16894 }
16895
16896 /* Given an index in .debug_addr, fetch the value.
16897 NOTE: This can be called during dwarf expression evaluation,
16898 long after the debug information has been read, and thus per_cu->cu
16899 may no longer exist. */
16900
16901 CORE_ADDR
16902 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
16903 unsigned int addr_index)
16904 {
16905 struct objfile *objfile = per_cu->objfile;
16906 struct dwarf2_cu *cu = per_cu->cu;
16907 ULONGEST addr_base;
16908 int addr_size;
16909
16910 /* This is intended to be called from outside this file. */
16911 dw2_setup (objfile);
16912
16913 /* We need addr_base and addr_size.
16914 If we don't have PER_CU->cu, we have to get it.
16915 Nasty, but the alternative is storing the needed info in PER_CU,
16916 which at this point doesn't seem justified: it's not clear how frequently
16917 it would get used and it would increase the size of every PER_CU.
16918 Entry points like dwarf2_per_cu_addr_size do a similar thing
16919 so we're not in uncharted territory here.
16920 Alas we need to be a bit more complicated as addr_base is contained
16921 in the DIE.
16922
16923 We don't need to read the entire CU(/TU).
16924 We just need the header and top level die.
16925
16926 IWBN to use the aging mechanism to let us lazily later discard the CU.
16927 For now we skip this optimization. */
16928
16929 if (cu != NULL)
16930 {
16931 addr_base = cu->addr_base;
16932 addr_size = cu->header.addr_size;
16933 }
16934 else
16935 {
16936 struct dwarf2_read_addr_index_data aidata;
16937
16938 /* Note: We can't use init_cutu_and_read_dies_simple here,
16939 we need addr_base. */
16940 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
16941 dwarf2_read_addr_index_reader, &aidata);
16942 addr_base = aidata.addr_base;
16943 addr_size = aidata.addr_size;
16944 }
16945
16946 return read_addr_index_1 (addr_index, addr_base, addr_size);
16947 }
16948
16949 /* Given a DW_FORM_GNU_str_index, fetch the string.
16950 This is only used by the Fission support. */
16951
16952 static const char *
16953 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
16954 {
16955 struct objfile *objfile = dwarf2_per_objfile->objfile;
16956 const char *objf_name = objfile_name (objfile);
16957 bfd *abfd = objfile->obfd;
16958 struct dwarf2_cu *cu = reader->cu;
16959 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
16960 struct dwarf2_section_info *str_offsets_section =
16961 &reader->dwo_file->sections.str_offsets;
16962 const gdb_byte *info_ptr;
16963 ULONGEST str_offset;
16964 static const char form_name[] = "DW_FORM_GNU_str_index";
16965
16966 dwarf2_read_section (objfile, str_section);
16967 dwarf2_read_section (objfile, str_offsets_section);
16968 if (str_section->buffer == NULL)
16969 error (_("%s used without .debug_str.dwo section"
16970 " in CU at offset 0x%lx [in module %s]"),
16971 form_name, (long) cu->header.offset.sect_off, objf_name);
16972 if (str_offsets_section->buffer == NULL)
16973 error (_("%s used without .debug_str_offsets.dwo section"
16974 " in CU at offset 0x%lx [in module %s]"),
16975 form_name, (long) cu->header.offset.sect_off, objf_name);
16976 if (str_index * cu->header.offset_size >= str_offsets_section->size)
16977 error (_("%s pointing outside of .debug_str_offsets.dwo"
16978 " section in CU at offset 0x%lx [in module %s]"),
16979 form_name, (long) cu->header.offset.sect_off, objf_name);
16980 info_ptr = (str_offsets_section->buffer
16981 + str_index * cu->header.offset_size);
16982 if (cu->header.offset_size == 4)
16983 str_offset = bfd_get_32 (abfd, info_ptr);
16984 else
16985 str_offset = bfd_get_64 (abfd, info_ptr);
16986 if (str_offset >= str_section->size)
16987 error (_("Offset from %s pointing outside of"
16988 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
16989 form_name, (long) cu->header.offset.sect_off, objf_name);
16990 return (const char *) (str_section->buffer + str_offset);
16991 }
16992
16993 /* Return the length of an LEB128 number in BUF. */
16994
16995 static int
16996 leb128_size (const gdb_byte *buf)
16997 {
16998 const gdb_byte *begin = buf;
16999 gdb_byte byte;
17000
17001 while (1)
17002 {
17003 byte = *buf++;
17004 if ((byte & 128) == 0)
17005 return buf - begin;
17006 }
17007 }
17008
17009 static void
17010 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
17011 {
17012 switch (lang)
17013 {
17014 case DW_LANG_C89:
17015 case DW_LANG_C99:
17016 case DW_LANG_C11:
17017 case DW_LANG_C:
17018 case DW_LANG_UPC:
17019 cu->language = language_c;
17020 break;
17021 case DW_LANG_C_plus_plus:
17022 case DW_LANG_C_plus_plus_11:
17023 case DW_LANG_C_plus_plus_14:
17024 cu->language = language_cplus;
17025 break;
17026 case DW_LANG_D:
17027 cu->language = language_d;
17028 break;
17029 case DW_LANG_Fortran77:
17030 case DW_LANG_Fortran90:
17031 case DW_LANG_Fortran95:
17032 case DW_LANG_Fortran03:
17033 case DW_LANG_Fortran08:
17034 cu->language = language_fortran;
17035 break;
17036 case DW_LANG_Go:
17037 cu->language = language_go;
17038 break;
17039 case DW_LANG_Mips_Assembler:
17040 cu->language = language_asm;
17041 break;
17042 case DW_LANG_Java:
17043 cu->language = language_java;
17044 break;
17045 case DW_LANG_Ada83:
17046 case DW_LANG_Ada95:
17047 cu->language = language_ada;
17048 break;
17049 case DW_LANG_Modula2:
17050 cu->language = language_m2;
17051 break;
17052 case DW_LANG_Pascal83:
17053 cu->language = language_pascal;
17054 break;
17055 case DW_LANG_ObjC:
17056 cu->language = language_objc;
17057 break;
17058 case DW_LANG_Cobol74:
17059 case DW_LANG_Cobol85:
17060 default:
17061 cu->language = language_minimal;
17062 break;
17063 }
17064 cu->language_defn = language_def (cu->language);
17065 }
17066
17067 /* Return the named attribute or NULL if not there. */
17068
17069 static struct attribute *
17070 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
17071 {
17072 for (;;)
17073 {
17074 unsigned int i;
17075 struct attribute *spec = NULL;
17076
17077 for (i = 0; i < die->num_attrs; ++i)
17078 {
17079 if (die->attrs[i].name == name)
17080 return &die->attrs[i];
17081 if (die->attrs[i].name == DW_AT_specification
17082 || die->attrs[i].name == DW_AT_abstract_origin)
17083 spec = &die->attrs[i];
17084 }
17085
17086 if (!spec)
17087 break;
17088
17089 die = follow_die_ref (die, spec, &cu);
17090 }
17091
17092 return NULL;
17093 }
17094
17095 /* Return the named attribute or NULL if not there,
17096 but do not follow DW_AT_specification, etc.
17097 This is for use in contexts where we're reading .debug_types dies.
17098 Following DW_AT_specification, DW_AT_abstract_origin will take us
17099 back up the chain, and we want to go down. */
17100
17101 static struct attribute *
17102 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
17103 {
17104 unsigned int i;
17105
17106 for (i = 0; i < die->num_attrs; ++i)
17107 if (die->attrs[i].name == name)
17108 return &die->attrs[i];
17109
17110 return NULL;
17111 }
17112
17113 /* Return the string associated with a string-typed attribute, or NULL if it
17114 is either not found or is of an incorrect type. */
17115
17116 static const char *
17117 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
17118 {
17119 struct attribute *attr;
17120 const char *str = NULL;
17121
17122 attr = dwarf2_attr (die, name, cu);
17123
17124 if (attr != NULL)
17125 {
17126 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_string
17127 || attr->form == DW_FORM_GNU_strp_alt)
17128 str = DW_STRING (attr);
17129 else
17130 complaint (&symfile_complaints,
17131 _("string type expected for attribute %s for "
17132 "DIE at 0x%x in module %s"),
17133 dwarf_attr_name (name), die->offset.sect_off,
17134 objfile_name (cu->objfile));
17135 }
17136
17137 return str;
17138 }
17139
17140 /* Return non-zero iff the attribute NAME is defined for the given DIE,
17141 and holds a non-zero value. This function should only be used for
17142 DW_FORM_flag or DW_FORM_flag_present attributes. */
17143
17144 static int
17145 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
17146 {
17147 struct attribute *attr = dwarf2_attr (die, name, cu);
17148
17149 return (attr && DW_UNSND (attr));
17150 }
17151
17152 static int
17153 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
17154 {
17155 /* A DIE is a declaration if it has a DW_AT_declaration attribute
17156 which value is non-zero. However, we have to be careful with
17157 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
17158 (via dwarf2_flag_true_p) follows this attribute. So we may
17159 end up accidently finding a declaration attribute that belongs
17160 to a different DIE referenced by the specification attribute,
17161 even though the given DIE does not have a declaration attribute. */
17162 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
17163 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
17164 }
17165
17166 /* Return the die giving the specification for DIE, if there is
17167 one. *SPEC_CU is the CU containing DIE on input, and the CU
17168 containing the return value on output. If there is no
17169 specification, but there is an abstract origin, that is
17170 returned. */
17171
17172 static struct die_info *
17173 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
17174 {
17175 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
17176 *spec_cu);
17177
17178 if (spec_attr == NULL)
17179 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
17180
17181 if (spec_attr == NULL)
17182 return NULL;
17183 else
17184 return follow_die_ref (die, spec_attr, spec_cu);
17185 }
17186
17187 /* Free the line_header structure *LH, and any arrays and strings it
17188 refers to.
17189 NOTE: This is also used as a "cleanup" function. */
17190
17191 static void
17192 free_line_header (struct line_header *lh)
17193 {
17194 if (lh->standard_opcode_lengths)
17195 xfree (lh->standard_opcode_lengths);
17196
17197 /* Remember that all the lh->file_names[i].name pointers are
17198 pointers into debug_line_buffer, and don't need to be freed. */
17199 if (lh->file_names)
17200 xfree (lh->file_names);
17201
17202 /* Similarly for the include directory names. */
17203 if (lh->include_dirs)
17204 xfree (lh->include_dirs);
17205
17206 xfree (lh);
17207 }
17208
17209 /* Stub for free_line_header to match void * callback types. */
17210
17211 static void
17212 free_line_header_voidp (void *arg)
17213 {
17214 struct line_header *lh = (struct line_header *) arg;
17215
17216 free_line_header (lh);
17217 }
17218
17219 /* Add an entry to LH's include directory table. */
17220
17221 static void
17222 add_include_dir (struct line_header *lh, const char *include_dir)
17223 {
17224 if (dwarf_line_debug >= 2)
17225 fprintf_unfiltered (gdb_stdlog, "Adding dir %u: %s\n",
17226 lh->num_include_dirs + 1, include_dir);
17227
17228 /* Grow the array if necessary. */
17229 if (lh->include_dirs_size == 0)
17230 {
17231 lh->include_dirs_size = 1; /* for testing */
17232 lh->include_dirs = XNEWVEC (const char *, lh->include_dirs_size);
17233 }
17234 else if (lh->num_include_dirs >= lh->include_dirs_size)
17235 {
17236 lh->include_dirs_size *= 2;
17237 lh->include_dirs = XRESIZEVEC (const char *, lh->include_dirs,
17238 lh->include_dirs_size);
17239 }
17240
17241 lh->include_dirs[lh->num_include_dirs++] = include_dir;
17242 }
17243
17244 /* Add an entry to LH's file name table. */
17245
17246 static void
17247 add_file_name (struct line_header *lh,
17248 const char *name,
17249 unsigned int dir_index,
17250 unsigned int mod_time,
17251 unsigned int length)
17252 {
17253 struct file_entry *fe;
17254
17255 if (dwarf_line_debug >= 2)
17256 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
17257 lh->num_file_names + 1, name);
17258
17259 /* Grow the array if necessary. */
17260 if (lh->file_names_size == 0)
17261 {
17262 lh->file_names_size = 1; /* for testing */
17263 lh->file_names = XNEWVEC (struct file_entry, lh->file_names_size);
17264 }
17265 else if (lh->num_file_names >= lh->file_names_size)
17266 {
17267 lh->file_names_size *= 2;
17268 lh->file_names
17269 = XRESIZEVEC (struct file_entry, lh->file_names, lh->file_names_size);
17270 }
17271
17272 fe = &lh->file_names[lh->num_file_names++];
17273 fe->name = name;
17274 fe->dir_index = dir_index;
17275 fe->mod_time = mod_time;
17276 fe->length = length;
17277 fe->included_p = 0;
17278 fe->symtab = NULL;
17279 }
17280
17281 /* A convenience function to find the proper .debug_line section for a CU. */
17282
17283 static struct dwarf2_section_info *
17284 get_debug_line_section (struct dwarf2_cu *cu)
17285 {
17286 struct dwarf2_section_info *section;
17287
17288 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
17289 DWO file. */
17290 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17291 section = &cu->dwo_unit->dwo_file->sections.line;
17292 else if (cu->per_cu->is_dwz)
17293 {
17294 struct dwz_file *dwz = dwarf2_get_dwz_file ();
17295
17296 section = &dwz->line;
17297 }
17298 else
17299 section = &dwarf2_per_objfile->line;
17300
17301 return section;
17302 }
17303
17304 /* Read the statement program header starting at OFFSET in
17305 .debug_line, or .debug_line.dwo. Return a pointer
17306 to a struct line_header, allocated using xmalloc.
17307 Returns NULL if there is a problem reading the header, e.g., if it
17308 has a version we don't understand.
17309
17310 NOTE: the strings in the include directory and file name tables of
17311 the returned object point into the dwarf line section buffer,
17312 and must not be freed. */
17313
17314 static struct line_header *
17315 dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
17316 {
17317 struct cleanup *back_to;
17318 struct line_header *lh;
17319 const gdb_byte *line_ptr;
17320 unsigned int bytes_read, offset_size;
17321 int i;
17322 const char *cur_dir, *cur_file;
17323 struct dwarf2_section_info *section;
17324 bfd *abfd;
17325
17326 section = get_debug_line_section (cu);
17327 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
17328 if (section->buffer == NULL)
17329 {
17330 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17331 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
17332 else
17333 complaint (&symfile_complaints, _("missing .debug_line section"));
17334 return 0;
17335 }
17336
17337 /* We can't do this until we know the section is non-empty.
17338 Only then do we know we have such a section. */
17339 abfd = get_section_bfd_owner (section);
17340
17341 /* Make sure that at least there's room for the total_length field.
17342 That could be 12 bytes long, but we're just going to fudge that. */
17343 if (offset + 4 >= section->size)
17344 {
17345 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17346 return 0;
17347 }
17348
17349 lh = XNEW (struct line_header);
17350 memset (lh, 0, sizeof (*lh));
17351 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
17352 (void *) lh);
17353
17354 lh->offset.sect_off = offset;
17355 lh->offset_in_dwz = cu->per_cu->is_dwz;
17356
17357 line_ptr = section->buffer + offset;
17358
17359 /* Read in the header. */
17360 lh->total_length =
17361 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
17362 &bytes_read, &offset_size);
17363 line_ptr += bytes_read;
17364 if (line_ptr + lh->total_length > (section->buffer + section->size))
17365 {
17366 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17367 do_cleanups (back_to);
17368 return 0;
17369 }
17370 lh->statement_program_end = line_ptr + lh->total_length;
17371 lh->version = read_2_bytes (abfd, line_ptr);
17372 line_ptr += 2;
17373 if (lh->version > 4)
17374 {
17375 /* This is a version we don't understand. The format could have
17376 changed in ways we don't handle properly so just punt. */
17377 complaint (&symfile_complaints,
17378 _("unsupported version in .debug_line section"));
17379 return NULL;
17380 }
17381 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
17382 line_ptr += offset_size;
17383 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
17384 line_ptr += 1;
17385 if (lh->version >= 4)
17386 {
17387 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
17388 line_ptr += 1;
17389 }
17390 else
17391 lh->maximum_ops_per_instruction = 1;
17392
17393 if (lh->maximum_ops_per_instruction == 0)
17394 {
17395 lh->maximum_ops_per_instruction = 1;
17396 complaint (&symfile_complaints,
17397 _("invalid maximum_ops_per_instruction "
17398 "in `.debug_line' section"));
17399 }
17400
17401 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
17402 line_ptr += 1;
17403 lh->line_base = read_1_signed_byte (abfd, line_ptr);
17404 line_ptr += 1;
17405 lh->line_range = read_1_byte (abfd, line_ptr);
17406 line_ptr += 1;
17407 lh->opcode_base = read_1_byte (abfd, line_ptr);
17408 line_ptr += 1;
17409 lh->standard_opcode_lengths = XNEWVEC (unsigned char, lh->opcode_base);
17410
17411 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
17412 for (i = 1; i < lh->opcode_base; ++i)
17413 {
17414 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
17415 line_ptr += 1;
17416 }
17417
17418 /* Read directory table. */
17419 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17420 {
17421 line_ptr += bytes_read;
17422 add_include_dir (lh, cur_dir);
17423 }
17424 line_ptr += bytes_read;
17425
17426 /* Read file name table. */
17427 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17428 {
17429 unsigned int dir_index, mod_time, length;
17430
17431 line_ptr += bytes_read;
17432 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17433 line_ptr += bytes_read;
17434 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17435 line_ptr += bytes_read;
17436 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17437 line_ptr += bytes_read;
17438
17439 add_file_name (lh, cur_file, dir_index, mod_time, length);
17440 }
17441 line_ptr += bytes_read;
17442 lh->statement_program_start = line_ptr;
17443
17444 if (line_ptr > (section->buffer + section->size))
17445 complaint (&symfile_complaints,
17446 _("line number info header doesn't "
17447 "fit in `.debug_line' section"));
17448
17449 discard_cleanups (back_to);
17450 return lh;
17451 }
17452
17453 /* Subroutine of dwarf_decode_lines to simplify it.
17454 Return the file name of the psymtab for included file FILE_INDEX
17455 in line header LH of PST.
17456 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17457 If space for the result is malloc'd, it will be freed by a cleanup.
17458 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
17459
17460 The function creates dangling cleanup registration. */
17461
17462 static const char *
17463 psymtab_include_file_name (const struct line_header *lh, int file_index,
17464 const struct partial_symtab *pst,
17465 const char *comp_dir)
17466 {
17467 const struct file_entry fe = lh->file_names [file_index];
17468 const char *include_name = fe.name;
17469 const char *include_name_to_compare = include_name;
17470 const char *dir_name = NULL;
17471 const char *pst_filename;
17472 char *copied_name = NULL;
17473 int file_is_pst;
17474
17475 if (fe.dir_index && lh->include_dirs != NULL)
17476 dir_name = lh->include_dirs[fe.dir_index - 1];
17477
17478 if (!IS_ABSOLUTE_PATH (include_name)
17479 && (dir_name != NULL || comp_dir != NULL))
17480 {
17481 /* Avoid creating a duplicate psymtab for PST.
17482 We do this by comparing INCLUDE_NAME and PST_FILENAME.
17483 Before we do the comparison, however, we need to account
17484 for DIR_NAME and COMP_DIR.
17485 First prepend dir_name (if non-NULL). If we still don't
17486 have an absolute path prepend comp_dir (if non-NULL).
17487 However, the directory we record in the include-file's
17488 psymtab does not contain COMP_DIR (to match the
17489 corresponding symtab(s)).
17490
17491 Example:
17492
17493 bash$ cd /tmp
17494 bash$ gcc -g ./hello.c
17495 include_name = "hello.c"
17496 dir_name = "."
17497 DW_AT_comp_dir = comp_dir = "/tmp"
17498 DW_AT_name = "./hello.c"
17499
17500 */
17501
17502 if (dir_name != NULL)
17503 {
17504 char *tem = concat (dir_name, SLASH_STRING,
17505 include_name, (char *)NULL);
17506
17507 make_cleanup (xfree, tem);
17508 include_name = tem;
17509 include_name_to_compare = include_name;
17510 }
17511 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
17512 {
17513 char *tem = concat (comp_dir, SLASH_STRING,
17514 include_name, (char *)NULL);
17515
17516 make_cleanup (xfree, tem);
17517 include_name_to_compare = tem;
17518 }
17519 }
17520
17521 pst_filename = pst->filename;
17522 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
17523 {
17524 copied_name = concat (pst->dirname, SLASH_STRING,
17525 pst_filename, (char *)NULL);
17526 pst_filename = copied_name;
17527 }
17528
17529 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
17530
17531 if (copied_name != NULL)
17532 xfree (copied_name);
17533
17534 if (file_is_pst)
17535 return NULL;
17536 return include_name;
17537 }
17538
17539 /* State machine to track the state of the line number program. */
17540
17541 typedef struct
17542 {
17543 /* These are part of the standard DWARF line number state machine. */
17544
17545 unsigned char op_index;
17546 unsigned int file;
17547 unsigned int line;
17548 CORE_ADDR address;
17549 int is_stmt;
17550 unsigned int discriminator;
17551
17552 /* Additional bits of state we need to track. */
17553
17554 /* The last file that we called dwarf2_start_subfile for.
17555 This is only used for TLLs. */
17556 unsigned int last_file;
17557 /* The last file a line number was recorded for. */
17558 struct subfile *last_subfile;
17559
17560 /* The function to call to record a line. */
17561 record_line_ftype *record_line;
17562
17563 /* The last line number that was recorded, used to coalesce
17564 consecutive entries for the same line. This can happen, for
17565 example, when discriminators are present. PR 17276. */
17566 unsigned int last_line;
17567 int line_has_non_zero_discriminator;
17568 } lnp_state_machine;
17569
17570 /* There's a lot of static state to pass to dwarf_record_line.
17571 This keeps it all together. */
17572
17573 typedef struct
17574 {
17575 /* The gdbarch. */
17576 struct gdbarch *gdbarch;
17577
17578 /* The line number header. */
17579 struct line_header *line_header;
17580
17581 /* Non-zero if we're recording lines.
17582 Otherwise we're building partial symtabs and are just interested in
17583 finding include files mentioned by the line number program. */
17584 int record_lines_p;
17585 } lnp_reader_state;
17586
17587 /* Ignore this record_line request. */
17588
17589 static void
17590 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
17591 {
17592 return;
17593 }
17594
17595 /* Return non-zero if we should add LINE to the line number table.
17596 LINE is the line to add, LAST_LINE is the last line that was added,
17597 LAST_SUBFILE is the subfile for LAST_LINE.
17598 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
17599 had a non-zero discriminator.
17600
17601 We have to be careful in the presence of discriminators.
17602 E.g., for this line:
17603
17604 for (i = 0; i < 100000; i++);
17605
17606 clang can emit four line number entries for that one line,
17607 each with a different discriminator.
17608 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
17609
17610 However, we want gdb to coalesce all four entries into one.
17611 Otherwise the user could stepi into the middle of the line and
17612 gdb would get confused about whether the pc really was in the
17613 middle of the line.
17614
17615 Things are further complicated by the fact that two consecutive
17616 line number entries for the same line is a heuristic used by gcc
17617 to denote the end of the prologue. So we can't just discard duplicate
17618 entries, we have to be selective about it. The heuristic we use is
17619 that we only collapse consecutive entries for the same line if at least
17620 one of those entries has a non-zero discriminator. PR 17276.
17621
17622 Note: Addresses in the line number state machine can never go backwards
17623 within one sequence, thus this coalescing is ok. */
17624
17625 static int
17626 dwarf_record_line_p (unsigned int line, unsigned int last_line,
17627 int line_has_non_zero_discriminator,
17628 struct subfile *last_subfile)
17629 {
17630 if (current_subfile != last_subfile)
17631 return 1;
17632 if (line != last_line)
17633 return 1;
17634 /* Same line for the same file that we've seen already.
17635 As a last check, for pr 17276, only record the line if the line
17636 has never had a non-zero discriminator. */
17637 if (!line_has_non_zero_discriminator)
17638 return 1;
17639 return 0;
17640 }
17641
17642 /* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
17643 in the line table of subfile SUBFILE. */
17644
17645 static void
17646 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
17647 unsigned int line, CORE_ADDR address,
17648 record_line_ftype p_record_line)
17649 {
17650 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
17651
17652 if (dwarf_line_debug)
17653 {
17654 fprintf_unfiltered (gdb_stdlog,
17655 "Recording line %u, file %s, address %s\n",
17656 line, lbasename (subfile->name),
17657 paddress (gdbarch, address));
17658 }
17659
17660 (*p_record_line) (subfile, line, addr);
17661 }
17662
17663 /* Subroutine of dwarf_decode_lines_1 to simplify it.
17664 Mark the end of a set of line number records.
17665 The arguments are the same as for dwarf_record_line_1.
17666 If SUBFILE is NULL the request is ignored. */
17667
17668 static void
17669 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
17670 CORE_ADDR address, record_line_ftype p_record_line)
17671 {
17672 if (subfile == NULL)
17673 return;
17674
17675 if (dwarf_line_debug)
17676 {
17677 fprintf_unfiltered (gdb_stdlog,
17678 "Finishing current line, file %s, address %s\n",
17679 lbasename (subfile->name),
17680 paddress (gdbarch, address));
17681 }
17682
17683 dwarf_record_line_1 (gdbarch, subfile, 0, address, p_record_line);
17684 }
17685
17686 /* Record the line in STATE.
17687 END_SEQUENCE is non-zero if we're processing the end of a sequence. */
17688
17689 static void
17690 dwarf_record_line (lnp_reader_state *reader, lnp_state_machine *state,
17691 int end_sequence)
17692 {
17693 const struct line_header *lh = reader->line_header;
17694 unsigned int file, line, discriminator;
17695 int is_stmt;
17696
17697 file = state->file;
17698 line = state->line;
17699 is_stmt = state->is_stmt;
17700 discriminator = state->discriminator;
17701
17702 if (dwarf_line_debug)
17703 {
17704 fprintf_unfiltered (gdb_stdlog,
17705 "Processing actual line %u: file %u,"
17706 " address %s, is_stmt %u, discrim %u\n",
17707 line, file,
17708 paddress (reader->gdbarch, state->address),
17709 is_stmt, discriminator);
17710 }
17711
17712 if (file == 0 || file - 1 >= lh->num_file_names)
17713 dwarf2_debug_line_missing_file_complaint ();
17714 /* For now we ignore lines not starting on an instruction boundary.
17715 But not when processing end_sequence for compatibility with the
17716 previous version of the code. */
17717 else if (state->op_index == 0 || end_sequence)
17718 {
17719 lh->file_names[file - 1].included_p = 1;
17720 if (reader->record_lines_p && is_stmt)
17721 {
17722 if (state->last_subfile != current_subfile || end_sequence)
17723 {
17724 dwarf_finish_line (reader->gdbarch, state->last_subfile,
17725 state->address, state->record_line);
17726 }
17727
17728 if (!end_sequence)
17729 {
17730 if (dwarf_record_line_p (line, state->last_line,
17731 state->line_has_non_zero_discriminator,
17732 state->last_subfile))
17733 {
17734 dwarf_record_line_1 (reader->gdbarch, current_subfile,
17735 line, state->address,
17736 state->record_line);
17737 }
17738 state->last_subfile = current_subfile;
17739 state->last_line = line;
17740 }
17741 }
17742 }
17743 }
17744
17745 /* Initialize STATE for the start of a line number program. */
17746
17747 static void
17748 init_lnp_state_machine (lnp_state_machine *state,
17749 const lnp_reader_state *reader)
17750 {
17751 memset (state, 0, sizeof (*state));
17752
17753 /* Just starting, there is no "last file". */
17754 state->last_file = 0;
17755 state->last_subfile = NULL;
17756
17757 state->record_line = record_line;
17758
17759 state->last_line = 0;
17760 state->line_has_non_zero_discriminator = 0;
17761
17762 /* Initialize these according to the DWARF spec. */
17763 state->op_index = 0;
17764 state->file = 1;
17765 state->line = 1;
17766 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
17767 was a line entry for it so that the backend has a chance to adjust it
17768 and also record it in case it needs it. This is currently used by MIPS
17769 code, cf. `mips_adjust_dwarf2_line'. */
17770 state->address = gdbarch_adjust_dwarf2_line (reader->gdbarch, 0, 0);
17771 state->is_stmt = reader->line_header->default_is_stmt;
17772 state->discriminator = 0;
17773 }
17774
17775 /* Check address and if invalid nop-out the rest of the lines in this
17776 sequence. */
17777
17778 static void
17779 check_line_address (struct dwarf2_cu *cu, lnp_state_machine *state,
17780 const gdb_byte *line_ptr,
17781 CORE_ADDR lowpc, CORE_ADDR address)
17782 {
17783 /* If address < lowpc then it's not a usable value, it's outside the
17784 pc range of the CU. However, we restrict the test to only address
17785 values of zero to preserve GDB's previous behaviour which is to
17786 handle the specific case of a function being GC'd by the linker. */
17787
17788 if (address == 0 && address < lowpc)
17789 {
17790 /* This line table is for a function which has been
17791 GCd by the linker. Ignore it. PR gdb/12528 */
17792
17793 struct objfile *objfile = cu->objfile;
17794 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
17795
17796 complaint (&symfile_complaints,
17797 _(".debug_line address at offset 0x%lx is 0 [in module %s]"),
17798 line_offset, objfile_name (objfile));
17799 state->record_line = noop_record_line;
17800 /* Note: sm.record_line is left as noop_record_line
17801 until we see DW_LNE_end_sequence. */
17802 }
17803 }
17804
17805 /* Subroutine of dwarf_decode_lines to simplify it.
17806 Process the line number information in LH.
17807 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
17808 program in order to set included_p for every referenced header. */
17809
17810 static void
17811 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
17812 const int decode_for_pst_p, CORE_ADDR lowpc)
17813 {
17814 const gdb_byte *line_ptr, *extended_end;
17815 const gdb_byte *line_end;
17816 unsigned int bytes_read, extended_len;
17817 unsigned char op_code, extended_op;
17818 CORE_ADDR baseaddr;
17819 struct objfile *objfile = cu->objfile;
17820 bfd *abfd = objfile->obfd;
17821 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17822 /* Non-zero if we're recording line info (as opposed to building partial
17823 symtabs). */
17824 int record_lines_p = !decode_for_pst_p;
17825 /* A collection of things we need to pass to dwarf_record_line. */
17826 lnp_reader_state reader_state;
17827
17828 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
17829
17830 line_ptr = lh->statement_program_start;
17831 line_end = lh->statement_program_end;
17832
17833 reader_state.gdbarch = gdbarch;
17834 reader_state.line_header = lh;
17835 reader_state.record_lines_p = record_lines_p;
17836
17837 /* Read the statement sequences until there's nothing left. */
17838 while (line_ptr < line_end)
17839 {
17840 /* The DWARF line number program state machine. */
17841 lnp_state_machine state_machine;
17842 int end_sequence = 0;
17843
17844 /* Reset the state machine at the start of each sequence. */
17845 init_lnp_state_machine (&state_machine, &reader_state);
17846
17847 if (record_lines_p && lh->num_file_names >= state_machine.file)
17848 {
17849 /* Start a subfile for the current file of the state machine. */
17850 /* lh->include_dirs and lh->file_names are 0-based, but the
17851 directory and file name numbers in the statement program
17852 are 1-based. */
17853 struct file_entry *fe = &lh->file_names[state_machine.file - 1];
17854 const char *dir = NULL;
17855
17856 if (fe->dir_index && lh->include_dirs != NULL)
17857 dir = lh->include_dirs[fe->dir_index - 1];
17858
17859 dwarf2_start_subfile (fe->name, dir);
17860 }
17861
17862 /* Decode the table. */
17863 while (line_ptr < line_end && !end_sequence)
17864 {
17865 op_code = read_1_byte (abfd, line_ptr);
17866 line_ptr += 1;
17867
17868 if (op_code >= lh->opcode_base)
17869 {
17870 /* Special opcode. */
17871 unsigned char adj_opcode;
17872 CORE_ADDR addr_adj;
17873 int line_delta;
17874
17875 adj_opcode = op_code - lh->opcode_base;
17876 addr_adj = (((state_machine.op_index
17877 + (adj_opcode / lh->line_range))
17878 / lh->maximum_ops_per_instruction)
17879 * lh->minimum_instruction_length);
17880 state_machine.address
17881 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17882 state_machine.op_index = ((state_machine.op_index
17883 + (adj_opcode / lh->line_range))
17884 % lh->maximum_ops_per_instruction);
17885 line_delta = lh->line_base + (adj_opcode % lh->line_range);
17886 state_machine.line += line_delta;
17887 if (line_delta != 0)
17888 state_machine.line_has_non_zero_discriminator
17889 = state_machine.discriminator != 0;
17890
17891 dwarf_record_line (&reader_state, &state_machine, 0);
17892 state_machine.discriminator = 0;
17893 }
17894 else switch (op_code)
17895 {
17896 case DW_LNS_extended_op:
17897 extended_len = read_unsigned_leb128 (abfd, line_ptr,
17898 &bytes_read);
17899 line_ptr += bytes_read;
17900 extended_end = line_ptr + extended_len;
17901 extended_op = read_1_byte (abfd, line_ptr);
17902 line_ptr += 1;
17903 switch (extended_op)
17904 {
17905 case DW_LNE_end_sequence:
17906 state_machine.record_line = record_line;
17907 end_sequence = 1;
17908 break;
17909 case DW_LNE_set_address:
17910 {
17911 CORE_ADDR address
17912 = read_address (abfd, line_ptr, cu, &bytes_read);
17913
17914 line_ptr += bytes_read;
17915 check_line_address (cu, &state_machine, line_ptr,
17916 lowpc, address);
17917 state_machine.op_index = 0;
17918 address += baseaddr;
17919 state_machine.address
17920 = gdbarch_adjust_dwarf2_line (gdbarch, address, 0);
17921 }
17922 break;
17923 case DW_LNE_define_file:
17924 {
17925 const char *cur_file;
17926 unsigned int dir_index, mod_time, length;
17927
17928 cur_file = read_direct_string (abfd, line_ptr,
17929 &bytes_read);
17930 line_ptr += bytes_read;
17931 dir_index =
17932 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17933 line_ptr += bytes_read;
17934 mod_time =
17935 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17936 line_ptr += bytes_read;
17937 length =
17938 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17939 line_ptr += bytes_read;
17940 add_file_name (lh, cur_file, dir_index, mod_time, length);
17941 }
17942 break;
17943 case DW_LNE_set_discriminator:
17944 /* The discriminator is not interesting to the debugger;
17945 just ignore it. We still need to check its value though:
17946 if there are consecutive entries for the same
17947 (non-prologue) line we want to coalesce them.
17948 PR 17276. */
17949 state_machine.discriminator
17950 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17951 state_machine.line_has_non_zero_discriminator
17952 |= state_machine.discriminator != 0;
17953 line_ptr += bytes_read;
17954 break;
17955 default:
17956 complaint (&symfile_complaints,
17957 _("mangled .debug_line section"));
17958 return;
17959 }
17960 /* Make sure that we parsed the extended op correctly. If e.g.
17961 we expected a different address size than the producer used,
17962 we may have read the wrong number of bytes. */
17963 if (line_ptr != extended_end)
17964 {
17965 complaint (&symfile_complaints,
17966 _("mangled .debug_line section"));
17967 return;
17968 }
17969 break;
17970 case DW_LNS_copy:
17971 dwarf_record_line (&reader_state, &state_machine, 0);
17972 state_machine.discriminator = 0;
17973 break;
17974 case DW_LNS_advance_pc:
17975 {
17976 CORE_ADDR adjust
17977 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17978 CORE_ADDR addr_adj;
17979
17980 addr_adj = (((state_machine.op_index + adjust)
17981 / lh->maximum_ops_per_instruction)
17982 * lh->minimum_instruction_length);
17983 state_machine.address
17984 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17985 state_machine.op_index = ((state_machine.op_index + adjust)
17986 % lh->maximum_ops_per_instruction);
17987 line_ptr += bytes_read;
17988 }
17989 break;
17990 case DW_LNS_advance_line:
17991 {
17992 int line_delta
17993 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
17994
17995 state_machine.line += line_delta;
17996 if (line_delta != 0)
17997 state_machine.line_has_non_zero_discriminator
17998 = state_machine.discriminator != 0;
17999 line_ptr += bytes_read;
18000 }
18001 break;
18002 case DW_LNS_set_file:
18003 {
18004 /* The arrays lh->include_dirs and lh->file_names are
18005 0-based, but the directory and file name numbers in
18006 the statement program are 1-based. */
18007 struct file_entry *fe;
18008 const char *dir = NULL;
18009
18010 state_machine.file = read_unsigned_leb128 (abfd, line_ptr,
18011 &bytes_read);
18012 line_ptr += bytes_read;
18013 if (state_machine.file == 0
18014 || state_machine.file - 1 >= lh->num_file_names)
18015 dwarf2_debug_line_missing_file_complaint ();
18016 else
18017 {
18018 fe = &lh->file_names[state_machine.file - 1];
18019 if (fe->dir_index && lh->include_dirs != NULL)
18020 dir = lh->include_dirs[fe->dir_index - 1];
18021 if (record_lines_p)
18022 {
18023 state_machine.last_subfile = current_subfile;
18024 state_machine.line_has_non_zero_discriminator
18025 = state_machine.discriminator != 0;
18026 dwarf2_start_subfile (fe->name, dir);
18027 }
18028 }
18029 }
18030 break;
18031 case DW_LNS_set_column:
18032 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18033 line_ptr += bytes_read;
18034 break;
18035 case DW_LNS_negate_stmt:
18036 state_machine.is_stmt = (!state_machine.is_stmt);
18037 break;
18038 case DW_LNS_set_basic_block:
18039 break;
18040 /* Add to the address register of the state machine the
18041 address increment value corresponding to special opcode
18042 255. I.e., this value is scaled by the minimum
18043 instruction length since special opcode 255 would have
18044 scaled the increment. */
18045 case DW_LNS_const_add_pc:
18046 {
18047 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
18048 CORE_ADDR addr_adj;
18049
18050 addr_adj = (((state_machine.op_index + adjust)
18051 / lh->maximum_ops_per_instruction)
18052 * lh->minimum_instruction_length);
18053 state_machine.address
18054 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
18055 state_machine.op_index = ((state_machine.op_index + adjust)
18056 % lh->maximum_ops_per_instruction);
18057 }
18058 break;
18059 case DW_LNS_fixed_advance_pc:
18060 {
18061 CORE_ADDR addr_adj;
18062
18063 addr_adj = read_2_bytes (abfd, line_ptr);
18064 state_machine.address
18065 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
18066 state_machine.op_index = 0;
18067 line_ptr += 2;
18068 }
18069 break;
18070 default:
18071 {
18072 /* Unknown standard opcode, ignore it. */
18073 int i;
18074
18075 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
18076 {
18077 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18078 line_ptr += bytes_read;
18079 }
18080 }
18081 }
18082 }
18083
18084 if (!end_sequence)
18085 dwarf2_debug_line_missing_end_sequence_complaint ();
18086
18087 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
18088 in which case we still finish recording the last line). */
18089 dwarf_record_line (&reader_state, &state_machine, 1);
18090 }
18091 }
18092
18093 /* Decode the Line Number Program (LNP) for the given line_header
18094 structure and CU. The actual information extracted and the type
18095 of structures created from the LNP depends on the value of PST.
18096
18097 1. If PST is NULL, then this procedure uses the data from the program
18098 to create all necessary symbol tables, and their linetables.
18099
18100 2. If PST is not NULL, this procedure reads the program to determine
18101 the list of files included by the unit represented by PST, and
18102 builds all the associated partial symbol tables.
18103
18104 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
18105 It is used for relative paths in the line table.
18106 NOTE: When processing partial symtabs (pst != NULL),
18107 comp_dir == pst->dirname.
18108
18109 NOTE: It is important that psymtabs have the same file name (via strcmp)
18110 as the corresponding symtab. Since COMP_DIR is not used in the name of the
18111 symtab we don't use it in the name of the psymtabs we create.
18112 E.g. expand_line_sal requires this when finding psymtabs to expand.
18113 A good testcase for this is mb-inline.exp.
18114
18115 LOWPC is the lowest address in CU (or 0 if not known).
18116
18117 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
18118 for its PC<->lines mapping information. Otherwise only the filename
18119 table is read in. */
18120
18121 static void
18122 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
18123 struct dwarf2_cu *cu, struct partial_symtab *pst,
18124 CORE_ADDR lowpc, int decode_mapping)
18125 {
18126 struct objfile *objfile = cu->objfile;
18127 const int decode_for_pst_p = (pst != NULL);
18128
18129 if (decode_mapping)
18130 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
18131
18132 if (decode_for_pst_p)
18133 {
18134 int file_index;
18135
18136 /* Now that we're done scanning the Line Header Program, we can
18137 create the psymtab of each included file. */
18138 for (file_index = 0; file_index < lh->num_file_names; file_index++)
18139 if (lh->file_names[file_index].included_p == 1)
18140 {
18141 const char *include_name =
18142 psymtab_include_file_name (lh, file_index, pst, comp_dir);
18143 if (include_name != NULL)
18144 dwarf2_create_include_psymtab (include_name, pst, objfile);
18145 }
18146 }
18147 else
18148 {
18149 /* Make sure a symtab is created for every file, even files
18150 which contain only variables (i.e. no code with associated
18151 line numbers). */
18152 struct compunit_symtab *cust = buildsym_compunit_symtab ();
18153 int i;
18154
18155 for (i = 0; i < lh->num_file_names; i++)
18156 {
18157 const char *dir = NULL;
18158 struct file_entry *fe;
18159
18160 fe = &lh->file_names[i];
18161 if (fe->dir_index && lh->include_dirs != NULL)
18162 dir = lh->include_dirs[fe->dir_index - 1];
18163 dwarf2_start_subfile (fe->name, dir);
18164
18165 if (current_subfile->symtab == NULL)
18166 {
18167 current_subfile->symtab
18168 = allocate_symtab (cust, current_subfile->name);
18169 }
18170 fe->symtab = current_subfile->symtab;
18171 }
18172 }
18173 }
18174
18175 /* Start a subfile for DWARF. FILENAME is the name of the file and
18176 DIRNAME the name of the source directory which contains FILENAME
18177 or NULL if not known.
18178 This routine tries to keep line numbers from identical absolute and
18179 relative file names in a common subfile.
18180
18181 Using the `list' example from the GDB testsuite, which resides in
18182 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
18183 of /srcdir/list0.c yields the following debugging information for list0.c:
18184
18185 DW_AT_name: /srcdir/list0.c
18186 DW_AT_comp_dir: /compdir
18187 files.files[0].name: list0.h
18188 files.files[0].dir: /srcdir
18189 files.files[1].name: list0.c
18190 files.files[1].dir: /srcdir
18191
18192 The line number information for list0.c has to end up in a single
18193 subfile, so that `break /srcdir/list0.c:1' works as expected.
18194 start_subfile will ensure that this happens provided that we pass the
18195 concatenation of files.files[1].dir and files.files[1].name as the
18196 subfile's name. */
18197
18198 static void
18199 dwarf2_start_subfile (const char *filename, const char *dirname)
18200 {
18201 char *copy = NULL;
18202
18203 /* In order not to lose the line information directory,
18204 we concatenate it to the filename when it makes sense.
18205 Note that the Dwarf3 standard says (speaking of filenames in line
18206 information): ``The directory index is ignored for file names
18207 that represent full path names''. Thus ignoring dirname in the
18208 `else' branch below isn't an issue. */
18209
18210 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
18211 {
18212 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
18213 filename = copy;
18214 }
18215
18216 start_subfile (filename);
18217
18218 if (copy != NULL)
18219 xfree (copy);
18220 }
18221
18222 /* Start a symtab for DWARF.
18223 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
18224
18225 static struct compunit_symtab *
18226 dwarf2_start_symtab (struct dwarf2_cu *cu,
18227 const char *name, const char *comp_dir, CORE_ADDR low_pc)
18228 {
18229 struct compunit_symtab *cust
18230 = start_symtab (cu->objfile, name, comp_dir, low_pc);
18231
18232 record_debugformat ("DWARF 2");
18233 record_producer (cu->producer);
18234
18235 /* We assume that we're processing GCC output. */
18236 processing_gcc_compilation = 2;
18237
18238 cu->processing_has_namespace_info = 0;
18239
18240 return cust;
18241 }
18242
18243 static void
18244 var_decode_location (struct attribute *attr, struct symbol *sym,
18245 struct dwarf2_cu *cu)
18246 {
18247 struct objfile *objfile = cu->objfile;
18248 struct comp_unit_head *cu_header = &cu->header;
18249
18250 /* NOTE drow/2003-01-30: There used to be a comment and some special
18251 code here to turn a symbol with DW_AT_external and a
18252 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
18253 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
18254 with some versions of binutils) where shared libraries could have
18255 relocations against symbols in their debug information - the
18256 minimal symbol would have the right address, but the debug info
18257 would not. It's no longer necessary, because we will explicitly
18258 apply relocations when we read in the debug information now. */
18259
18260 /* A DW_AT_location attribute with no contents indicates that a
18261 variable has been optimized away. */
18262 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
18263 {
18264 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
18265 return;
18266 }
18267
18268 /* Handle one degenerate form of location expression specially, to
18269 preserve GDB's previous behavior when section offsets are
18270 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
18271 then mark this symbol as LOC_STATIC. */
18272
18273 if (attr_form_is_block (attr)
18274 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
18275 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
18276 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
18277 && (DW_BLOCK (attr)->size
18278 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
18279 {
18280 unsigned int dummy;
18281
18282 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
18283 SYMBOL_VALUE_ADDRESS (sym) =
18284 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
18285 else
18286 SYMBOL_VALUE_ADDRESS (sym) =
18287 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
18288 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
18289 fixup_symbol_section (sym, objfile);
18290 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
18291 SYMBOL_SECTION (sym));
18292 return;
18293 }
18294
18295 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
18296 expression evaluator, and use LOC_COMPUTED only when necessary
18297 (i.e. when the value of a register or memory location is
18298 referenced, or a thread-local block, etc.). Then again, it might
18299 not be worthwhile. I'm assuming that it isn't unless performance
18300 or memory numbers show me otherwise. */
18301
18302 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
18303
18304 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
18305 cu->has_loclist = 1;
18306 }
18307
18308 /* Given a pointer to a DWARF information entry, figure out if we need
18309 to make a symbol table entry for it, and if so, create a new entry
18310 and return a pointer to it.
18311 If TYPE is NULL, determine symbol type from the die, otherwise
18312 used the passed type.
18313 If SPACE is not NULL, use it to hold the new symbol. If it is
18314 NULL, allocate a new symbol on the objfile's obstack. */
18315
18316 static struct symbol *
18317 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
18318 struct symbol *space)
18319 {
18320 struct objfile *objfile = cu->objfile;
18321 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18322 struct symbol *sym = NULL;
18323 const char *name;
18324 struct attribute *attr = NULL;
18325 struct attribute *attr2 = NULL;
18326 CORE_ADDR baseaddr;
18327 struct pending **list_to_add = NULL;
18328
18329 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
18330
18331 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
18332
18333 name = dwarf2_name (die, cu);
18334 if (name)
18335 {
18336 const char *linkagename;
18337 int suppress_add = 0;
18338
18339 if (space)
18340 sym = space;
18341 else
18342 sym = allocate_symbol (objfile);
18343 OBJSTAT (objfile, n_syms++);
18344
18345 /* Cache this symbol's name and the name's demangled form (if any). */
18346 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
18347 linkagename = dwarf2_physname (name, die, cu);
18348 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
18349
18350 /* Fortran does not have mangling standard and the mangling does differ
18351 between gfortran, iFort etc. */
18352 if (cu->language == language_fortran
18353 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
18354 symbol_set_demangled_name (&(sym->ginfo),
18355 dwarf2_full_name (name, die, cu),
18356 NULL);
18357
18358 /* Default assumptions.
18359 Use the passed type or decode it from the die. */
18360 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18361 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
18362 if (type != NULL)
18363 SYMBOL_TYPE (sym) = type;
18364 else
18365 SYMBOL_TYPE (sym) = die_type (die, cu);
18366 attr = dwarf2_attr (die,
18367 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
18368 cu);
18369 if (attr)
18370 {
18371 SYMBOL_LINE (sym) = DW_UNSND (attr);
18372 }
18373
18374 attr = dwarf2_attr (die,
18375 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
18376 cu);
18377 if (attr)
18378 {
18379 int file_index = DW_UNSND (attr);
18380
18381 if (cu->line_header == NULL
18382 || file_index > cu->line_header->num_file_names)
18383 complaint (&symfile_complaints,
18384 _("file index out of range"));
18385 else if (file_index > 0)
18386 {
18387 struct file_entry *fe;
18388
18389 fe = &cu->line_header->file_names[file_index - 1];
18390 symbol_set_symtab (sym, fe->symtab);
18391 }
18392 }
18393
18394 switch (die->tag)
18395 {
18396 case DW_TAG_label:
18397 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
18398 if (attr)
18399 {
18400 CORE_ADDR addr;
18401
18402 addr = attr_value_as_address (attr);
18403 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
18404 SYMBOL_VALUE_ADDRESS (sym) = addr;
18405 }
18406 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
18407 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
18408 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
18409 add_symbol_to_list (sym, cu->list_in_scope);
18410 break;
18411 case DW_TAG_subprogram:
18412 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18413 finish_block. */
18414 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
18415 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18416 if ((attr2 && (DW_UNSND (attr2) != 0))
18417 || cu->language == language_ada)
18418 {
18419 /* Subprograms marked external are stored as a global symbol.
18420 Ada subprograms, whether marked external or not, are always
18421 stored as a global symbol, because we want to be able to
18422 access them globally. For instance, we want to be able
18423 to break on a nested subprogram without having to
18424 specify the context. */
18425 list_to_add = &global_symbols;
18426 }
18427 else
18428 {
18429 list_to_add = cu->list_in_scope;
18430 }
18431 break;
18432 case DW_TAG_inlined_subroutine:
18433 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18434 finish_block. */
18435 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
18436 SYMBOL_INLINED (sym) = 1;
18437 list_to_add = cu->list_in_scope;
18438 break;
18439 case DW_TAG_template_value_param:
18440 suppress_add = 1;
18441 /* Fall through. */
18442 case DW_TAG_constant:
18443 case DW_TAG_variable:
18444 case DW_TAG_member:
18445 /* Compilation with minimal debug info may result in
18446 variables with missing type entries. Change the
18447 misleading `void' type to something sensible. */
18448 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
18449 SYMBOL_TYPE (sym)
18450 = objfile_type (objfile)->nodebug_data_symbol;
18451
18452 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18453 /* In the case of DW_TAG_member, we should only be called for
18454 static const members. */
18455 if (die->tag == DW_TAG_member)
18456 {
18457 /* dwarf2_add_field uses die_is_declaration,
18458 so we do the same. */
18459 gdb_assert (die_is_declaration (die, cu));
18460 gdb_assert (attr);
18461 }
18462 if (attr)
18463 {
18464 dwarf2_const_value (attr, sym, cu);
18465 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18466 if (!suppress_add)
18467 {
18468 if (attr2 && (DW_UNSND (attr2) != 0))
18469 list_to_add = &global_symbols;
18470 else
18471 list_to_add = cu->list_in_scope;
18472 }
18473 break;
18474 }
18475 attr = dwarf2_attr (die, DW_AT_location, cu);
18476 if (attr)
18477 {
18478 var_decode_location (attr, sym, cu);
18479 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18480
18481 /* Fortran explicitly imports any global symbols to the local
18482 scope by DW_TAG_common_block. */
18483 if (cu->language == language_fortran && die->parent
18484 && die->parent->tag == DW_TAG_common_block)
18485 attr2 = NULL;
18486
18487 if (SYMBOL_CLASS (sym) == LOC_STATIC
18488 && SYMBOL_VALUE_ADDRESS (sym) == 0
18489 && !dwarf2_per_objfile->has_section_at_zero)
18490 {
18491 /* When a static variable is eliminated by the linker,
18492 the corresponding debug information is not stripped
18493 out, but the variable address is set to null;
18494 do not add such variables into symbol table. */
18495 }
18496 else if (attr2 && (DW_UNSND (attr2) != 0))
18497 {
18498 /* Workaround gfortran PR debug/40040 - it uses
18499 DW_AT_location for variables in -fPIC libraries which may
18500 get overriden by other libraries/executable and get
18501 a different address. Resolve it by the minimal symbol
18502 which may come from inferior's executable using copy
18503 relocation. Make this workaround only for gfortran as for
18504 other compilers GDB cannot guess the minimal symbol
18505 Fortran mangling kind. */
18506 if (cu->language == language_fortran && die->parent
18507 && die->parent->tag == DW_TAG_module
18508 && cu->producer
18509 && startswith (cu->producer, "GNU Fortran "))
18510 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
18511
18512 /* A variable with DW_AT_external is never static,
18513 but it may be block-scoped. */
18514 list_to_add = (cu->list_in_scope == &file_symbols
18515 ? &global_symbols : cu->list_in_scope);
18516 }
18517 else
18518 list_to_add = cu->list_in_scope;
18519 }
18520 else
18521 {
18522 /* We do not know the address of this symbol.
18523 If it is an external symbol and we have type information
18524 for it, enter the symbol as a LOC_UNRESOLVED symbol.
18525 The address of the variable will then be determined from
18526 the minimal symbol table whenever the variable is
18527 referenced. */
18528 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18529
18530 /* Fortran explicitly imports any global symbols to the local
18531 scope by DW_TAG_common_block. */
18532 if (cu->language == language_fortran && die->parent
18533 && die->parent->tag == DW_TAG_common_block)
18534 {
18535 /* SYMBOL_CLASS doesn't matter here because
18536 read_common_block is going to reset it. */
18537 if (!suppress_add)
18538 list_to_add = cu->list_in_scope;
18539 }
18540 else if (attr2 && (DW_UNSND (attr2) != 0)
18541 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
18542 {
18543 /* A variable with DW_AT_external is never static, but it
18544 may be block-scoped. */
18545 list_to_add = (cu->list_in_scope == &file_symbols
18546 ? &global_symbols : cu->list_in_scope);
18547
18548 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
18549 }
18550 else if (!die_is_declaration (die, cu))
18551 {
18552 /* Use the default LOC_OPTIMIZED_OUT class. */
18553 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
18554 if (!suppress_add)
18555 list_to_add = cu->list_in_scope;
18556 }
18557 }
18558 break;
18559 case DW_TAG_formal_parameter:
18560 /* If we are inside a function, mark this as an argument. If
18561 not, we might be looking at an argument to an inlined function
18562 when we do not have enough information to show inlined frames;
18563 pretend it's a local variable in that case so that the user can
18564 still see it. */
18565 if (context_stack_depth > 0
18566 && context_stack[context_stack_depth - 1].name != NULL)
18567 SYMBOL_IS_ARGUMENT (sym) = 1;
18568 attr = dwarf2_attr (die, DW_AT_location, cu);
18569 if (attr)
18570 {
18571 var_decode_location (attr, sym, cu);
18572 }
18573 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18574 if (attr)
18575 {
18576 dwarf2_const_value (attr, sym, cu);
18577 }
18578
18579 list_to_add = cu->list_in_scope;
18580 break;
18581 case DW_TAG_unspecified_parameters:
18582 /* From varargs functions; gdb doesn't seem to have any
18583 interest in this information, so just ignore it for now.
18584 (FIXME?) */
18585 break;
18586 case DW_TAG_template_type_param:
18587 suppress_add = 1;
18588 /* Fall through. */
18589 case DW_TAG_class_type:
18590 case DW_TAG_interface_type:
18591 case DW_TAG_structure_type:
18592 case DW_TAG_union_type:
18593 case DW_TAG_set_type:
18594 case DW_TAG_enumeration_type:
18595 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18596 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
18597
18598 {
18599 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
18600 really ever be static objects: otherwise, if you try
18601 to, say, break of a class's method and you're in a file
18602 which doesn't mention that class, it won't work unless
18603 the check for all static symbols in lookup_symbol_aux
18604 saves you. See the OtherFileClass tests in
18605 gdb.c++/namespace.exp. */
18606
18607 if (!suppress_add)
18608 {
18609 list_to_add = (cu->list_in_scope == &file_symbols
18610 && (cu->language == language_cplus
18611 || cu->language == language_java)
18612 ? &global_symbols : cu->list_in_scope);
18613
18614 /* The semantics of C++ state that "struct foo {
18615 ... }" also defines a typedef for "foo". A Java
18616 class declaration also defines a typedef for the
18617 class. */
18618 if (cu->language == language_cplus
18619 || cu->language == language_java
18620 || cu->language == language_ada
18621 || cu->language == language_d)
18622 {
18623 /* The symbol's name is already allocated along
18624 with this objfile, so we don't need to
18625 duplicate it for the type. */
18626 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
18627 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
18628 }
18629 }
18630 }
18631 break;
18632 case DW_TAG_typedef:
18633 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18634 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18635 list_to_add = cu->list_in_scope;
18636 break;
18637 case DW_TAG_base_type:
18638 case DW_TAG_subrange_type:
18639 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18640 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18641 list_to_add = cu->list_in_scope;
18642 break;
18643 case DW_TAG_enumerator:
18644 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18645 if (attr)
18646 {
18647 dwarf2_const_value (attr, sym, cu);
18648 }
18649 {
18650 /* NOTE: carlton/2003-11-10: See comment above in the
18651 DW_TAG_class_type, etc. block. */
18652
18653 list_to_add = (cu->list_in_scope == &file_symbols
18654 && (cu->language == language_cplus
18655 || cu->language == language_java)
18656 ? &global_symbols : cu->list_in_scope);
18657 }
18658 break;
18659 case DW_TAG_imported_declaration:
18660 case DW_TAG_namespace:
18661 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18662 list_to_add = &global_symbols;
18663 break;
18664 case DW_TAG_module:
18665 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18666 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
18667 list_to_add = &global_symbols;
18668 break;
18669 case DW_TAG_common_block:
18670 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
18671 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
18672 add_symbol_to_list (sym, cu->list_in_scope);
18673 break;
18674 default:
18675 /* Not a tag we recognize. Hopefully we aren't processing
18676 trash data, but since we must specifically ignore things
18677 we don't recognize, there is nothing else we should do at
18678 this point. */
18679 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
18680 dwarf_tag_name (die->tag));
18681 break;
18682 }
18683
18684 if (suppress_add)
18685 {
18686 sym->hash_next = objfile->template_symbols;
18687 objfile->template_symbols = sym;
18688 list_to_add = NULL;
18689 }
18690
18691 if (list_to_add != NULL)
18692 add_symbol_to_list (sym, list_to_add);
18693
18694 /* For the benefit of old versions of GCC, check for anonymous
18695 namespaces based on the demangled name. */
18696 if (!cu->processing_has_namespace_info
18697 && cu->language == language_cplus)
18698 cp_scan_for_anonymous_namespaces (sym, objfile);
18699 }
18700 return (sym);
18701 }
18702
18703 /* A wrapper for new_symbol_full that always allocates a new symbol. */
18704
18705 static struct symbol *
18706 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
18707 {
18708 return new_symbol_full (die, type, cu, NULL);
18709 }
18710
18711 /* Given an attr with a DW_FORM_dataN value in host byte order,
18712 zero-extend it as appropriate for the symbol's type. The DWARF
18713 standard (v4) is not entirely clear about the meaning of using
18714 DW_FORM_dataN for a constant with a signed type, where the type is
18715 wider than the data. The conclusion of a discussion on the DWARF
18716 list was that this is unspecified. We choose to always zero-extend
18717 because that is the interpretation long in use by GCC. */
18718
18719 static gdb_byte *
18720 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
18721 struct dwarf2_cu *cu, LONGEST *value, int bits)
18722 {
18723 struct objfile *objfile = cu->objfile;
18724 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
18725 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
18726 LONGEST l = DW_UNSND (attr);
18727
18728 if (bits < sizeof (*value) * 8)
18729 {
18730 l &= ((LONGEST) 1 << bits) - 1;
18731 *value = l;
18732 }
18733 else if (bits == sizeof (*value) * 8)
18734 *value = l;
18735 else
18736 {
18737 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
18738 store_unsigned_integer (bytes, bits / 8, byte_order, l);
18739 return bytes;
18740 }
18741
18742 return NULL;
18743 }
18744
18745 /* Read a constant value from an attribute. Either set *VALUE, or if
18746 the value does not fit in *VALUE, set *BYTES - either already
18747 allocated on the objfile obstack, or newly allocated on OBSTACK,
18748 or, set *BATON, if we translated the constant to a location
18749 expression. */
18750
18751 static void
18752 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
18753 const char *name, struct obstack *obstack,
18754 struct dwarf2_cu *cu,
18755 LONGEST *value, const gdb_byte **bytes,
18756 struct dwarf2_locexpr_baton **baton)
18757 {
18758 struct objfile *objfile = cu->objfile;
18759 struct comp_unit_head *cu_header = &cu->header;
18760 struct dwarf_block *blk;
18761 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
18762 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
18763
18764 *value = 0;
18765 *bytes = NULL;
18766 *baton = NULL;
18767
18768 switch (attr->form)
18769 {
18770 case DW_FORM_addr:
18771 case DW_FORM_GNU_addr_index:
18772 {
18773 gdb_byte *data;
18774
18775 if (TYPE_LENGTH (type) != cu_header->addr_size)
18776 dwarf2_const_value_length_mismatch_complaint (name,
18777 cu_header->addr_size,
18778 TYPE_LENGTH (type));
18779 /* Symbols of this form are reasonably rare, so we just
18780 piggyback on the existing location code rather than writing
18781 a new implementation of symbol_computed_ops. */
18782 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
18783 (*baton)->per_cu = cu->per_cu;
18784 gdb_assert ((*baton)->per_cu);
18785
18786 (*baton)->size = 2 + cu_header->addr_size;
18787 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
18788 (*baton)->data = data;
18789
18790 data[0] = DW_OP_addr;
18791 store_unsigned_integer (&data[1], cu_header->addr_size,
18792 byte_order, DW_ADDR (attr));
18793 data[cu_header->addr_size + 1] = DW_OP_stack_value;
18794 }
18795 break;
18796 case DW_FORM_string:
18797 case DW_FORM_strp:
18798 case DW_FORM_GNU_str_index:
18799 case DW_FORM_GNU_strp_alt:
18800 /* DW_STRING is already allocated on the objfile obstack, point
18801 directly to it. */
18802 *bytes = (const gdb_byte *) DW_STRING (attr);
18803 break;
18804 case DW_FORM_block1:
18805 case DW_FORM_block2:
18806 case DW_FORM_block4:
18807 case DW_FORM_block:
18808 case DW_FORM_exprloc:
18809 blk = DW_BLOCK (attr);
18810 if (TYPE_LENGTH (type) != blk->size)
18811 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
18812 TYPE_LENGTH (type));
18813 *bytes = blk->data;
18814 break;
18815
18816 /* The DW_AT_const_value attributes are supposed to carry the
18817 symbol's value "represented as it would be on the target
18818 architecture." By the time we get here, it's already been
18819 converted to host endianness, so we just need to sign- or
18820 zero-extend it as appropriate. */
18821 case DW_FORM_data1:
18822 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
18823 break;
18824 case DW_FORM_data2:
18825 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
18826 break;
18827 case DW_FORM_data4:
18828 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
18829 break;
18830 case DW_FORM_data8:
18831 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
18832 break;
18833
18834 case DW_FORM_sdata:
18835 *value = DW_SND (attr);
18836 break;
18837
18838 case DW_FORM_udata:
18839 *value = DW_UNSND (attr);
18840 break;
18841
18842 default:
18843 complaint (&symfile_complaints,
18844 _("unsupported const value attribute form: '%s'"),
18845 dwarf_form_name (attr->form));
18846 *value = 0;
18847 break;
18848 }
18849 }
18850
18851
18852 /* Copy constant value from an attribute to a symbol. */
18853
18854 static void
18855 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
18856 struct dwarf2_cu *cu)
18857 {
18858 struct objfile *objfile = cu->objfile;
18859 struct comp_unit_head *cu_header = &cu->header;
18860 LONGEST value;
18861 const gdb_byte *bytes;
18862 struct dwarf2_locexpr_baton *baton;
18863
18864 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
18865 SYMBOL_PRINT_NAME (sym),
18866 &objfile->objfile_obstack, cu,
18867 &value, &bytes, &baton);
18868
18869 if (baton != NULL)
18870 {
18871 SYMBOL_LOCATION_BATON (sym) = baton;
18872 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
18873 }
18874 else if (bytes != NULL)
18875 {
18876 SYMBOL_VALUE_BYTES (sym) = bytes;
18877 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
18878 }
18879 else
18880 {
18881 SYMBOL_VALUE (sym) = value;
18882 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
18883 }
18884 }
18885
18886 /* Return the type of the die in question using its DW_AT_type attribute. */
18887
18888 static struct type *
18889 die_type (struct die_info *die, struct dwarf2_cu *cu)
18890 {
18891 struct attribute *type_attr;
18892
18893 type_attr = dwarf2_attr (die, DW_AT_type, cu);
18894 if (!type_attr)
18895 {
18896 /* A missing DW_AT_type represents a void type. */
18897 return objfile_type (cu->objfile)->builtin_void;
18898 }
18899
18900 return lookup_die_type (die, type_attr, cu);
18901 }
18902
18903 /* True iff CU's producer generates GNAT Ada auxiliary information
18904 that allows to find parallel types through that information instead
18905 of having to do expensive parallel lookups by type name. */
18906
18907 static int
18908 need_gnat_info (struct dwarf2_cu *cu)
18909 {
18910 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
18911 of GNAT produces this auxiliary information, without any indication
18912 that it is produced. Part of enhancing the FSF version of GNAT
18913 to produce that information will be to put in place an indicator
18914 that we can use in order to determine whether the descriptive type
18915 info is available or not. One suggestion that has been made is
18916 to use a new attribute, attached to the CU die. For now, assume
18917 that the descriptive type info is not available. */
18918 return 0;
18919 }
18920
18921 /* Return the auxiliary type of the die in question using its
18922 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
18923 attribute is not present. */
18924
18925 static struct type *
18926 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
18927 {
18928 struct attribute *type_attr;
18929
18930 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
18931 if (!type_attr)
18932 return NULL;
18933
18934 return lookup_die_type (die, type_attr, cu);
18935 }
18936
18937 /* If DIE has a descriptive_type attribute, then set the TYPE's
18938 descriptive type accordingly. */
18939
18940 static void
18941 set_descriptive_type (struct type *type, struct die_info *die,
18942 struct dwarf2_cu *cu)
18943 {
18944 struct type *descriptive_type = die_descriptive_type (die, cu);
18945
18946 if (descriptive_type)
18947 {
18948 ALLOCATE_GNAT_AUX_TYPE (type);
18949 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
18950 }
18951 }
18952
18953 /* Return the containing type of the die in question using its
18954 DW_AT_containing_type attribute. */
18955
18956 static struct type *
18957 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
18958 {
18959 struct attribute *type_attr;
18960
18961 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
18962 if (!type_attr)
18963 error (_("Dwarf Error: Problem turning containing type into gdb type "
18964 "[in module %s]"), objfile_name (cu->objfile));
18965
18966 return lookup_die_type (die, type_attr, cu);
18967 }
18968
18969 /* Return an error marker type to use for the ill formed type in DIE/CU. */
18970
18971 static struct type *
18972 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
18973 {
18974 struct objfile *objfile = dwarf2_per_objfile->objfile;
18975 char *message, *saved;
18976
18977 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
18978 objfile_name (objfile),
18979 cu->header.offset.sect_off,
18980 die->offset.sect_off);
18981 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
18982 message, strlen (message));
18983 xfree (message);
18984
18985 return init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
18986 }
18987
18988 /* Look up the type of DIE in CU using its type attribute ATTR.
18989 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
18990 DW_AT_containing_type.
18991 If there is no type substitute an error marker. */
18992
18993 static struct type *
18994 lookup_die_type (struct die_info *die, const struct attribute *attr,
18995 struct dwarf2_cu *cu)
18996 {
18997 struct objfile *objfile = cu->objfile;
18998 struct type *this_type;
18999
19000 gdb_assert (attr->name == DW_AT_type
19001 || attr->name == DW_AT_GNAT_descriptive_type
19002 || attr->name == DW_AT_containing_type);
19003
19004 /* First see if we have it cached. */
19005
19006 if (attr->form == DW_FORM_GNU_ref_alt)
19007 {
19008 struct dwarf2_per_cu_data *per_cu;
19009 sect_offset offset = dwarf2_get_ref_die_offset (attr);
19010
19011 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
19012 this_type = get_die_type_at_offset (offset, per_cu);
19013 }
19014 else if (attr_form_is_ref (attr))
19015 {
19016 sect_offset offset = dwarf2_get_ref_die_offset (attr);
19017
19018 this_type = get_die_type_at_offset (offset, cu->per_cu);
19019 }
19020 else if (attr->form == DW_FORM_ref_sig8)
19021 {
19022 ULONGEST signature = DW_SIGNATURE (attr);
19023
19024 return get_signatured_type (die, signature, cu);
19025 }
19026 else
19027 {
19028 complaint (&symfile_complaints,
19029 _("Dwarf Error: Bad type attribute %s in DIE"
19030 " at 0x%x [in module %s]"),
19031 dwarf_attr_name (attr->name), die->offset.sect_off,
19032 objfile_name (objfile));
19033 return build_error_marker_type (cu, die);
19034 }
19035
19036 /* If not cached we need to read it in. */
19037
19038 if (this_type == NULL)
19039 {
19040 struct die_info *type_die = NULL;
19041 struct dwarf2_cu *type_cu = cu;
19042
19043 if (attr_form_is_ref (attr))
19044 type_die = follow_die_ref (die, attr, &type_cu);
19045 if (type_die == NULL)
19046 return build_error_marker_type (cu, die);
19047 /* If we find the type now, it's probably because the type came
19048 from an inter-CU reference and the type's CU got expanded before
19049 ours. */
19050 this_type = read_type_die (type_die, type_cu);
19051 }
19052
19053 /* If we still don't have a type use an error marker. */
19054
19055 if (this_type == NULL)
19056 return build_error_marker_type (cu, die);
19057
19058 return this_type;
19059 }
19060
19061 /* Return the type in DIE, CU.
19062 Returns NULL for invalid types.
19063
19064 This first does a lookup in die_type_hash,
19065 and only reads the die in if necessary.
19066
19067 NOTE: This can be called when reading in partial or full symbols. */
19068
19069 static struct type *
19070 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
19071 {
19072 struct type *this_type;
19073
19074 this_type = get_die_type (die, cu);
19075 if (this_type)
19076 return this_type;
19077
19078 return read_type_die_1 (die, cu);
19079 }
19080
19081 /* Read the type in DIE, CU.
19082 Returns NULL for invalid types. */
19083
19084 static struct type *
19085 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
19086 {
19087 struct type *this_type = NULL;
19088
19089 switch (die->tag)
19090 {
19091 case DW_TAG_class_type:
19092 case DW_TAG_interface_type:
19093 case DW_TAG_structure_type:
19094 case DW_TAG_union_type:
19095 this_type = read_structure_type (die, cu);
19096 break;
19097 case DW_TAG_enumeration_type:
19098 this_type = read_enumeration_type (die, cu);
19099 break;
19100 case DW_TAG_subprogram:
19101 case DW_TAG_subroutine_type:
19102 case DW_TAG_inlined_subroutine:
19103 this_type = read_subroutine_type (die, cu);
19104 break;
19105 case DW_TAG_array_type:
19106 this_type = read_array_type (die, cu);
19107 break;
19108 case DW_TAG_set_type:
19109 this_type = read_set_type (die, cu);
19110 break;
19111 case DW_TAG_pointer_type:
19112 this_type = read_tag_pointer_type (die, cu);
19113 break;
19114 case DW_TAG_ptr_to_member_type:
19115 this_type = read_tag_ptr_to_member_type (die, cu);
19116 break;
19117 case DW_TAG_reference_type:
19118 this_type = read_tag_reference_type (die, cu);
19119 break;
19120 case DW_TAG_const_type:
19121 this_type = read_tag_const_type (die, cu);
19122 break;
19123 case DW_TAG_volatile_type:
19124 this_type = read_tag_volatile_type (die, cu);
19125 break;
19126 case DW_TAG_restrict_type:
19127 this_type = read_tag_restrict_type (die, cu);
19128 break;
19129 case DW_TAG_string_type:
19130 this_type = read_tag_string_type (die, cu);
19131 break;
19132 case DW_TAG_typedef:
19133 this_type = read_typedef (die, cu);
19134 break;
19135 case DW_TAG_subrange_type:
19136 this_type = read_subrange_type (die, cu);
19137 break;
19138 case DW_TAG_base_type:
19139 this_type = read_base_type (die, cu);
19140 break;
19141 case DW_TAG_unspecified_type:
19142 this_type = read_unspecified_type (die, cu);
19143 break;
19144 case DW_TAG_namespace:
19145 this_type = read_namespace_type (die, cu);
19146 break;
19147 case DW_TAG_module:
19148 this_type = read_module_type (die, cu);
19149 break;
19150 case DW_TAG_atomic_type:
19151 this_type = read_tag_atomic_type (die, cu);
19152 break;
19153 default:
19154 complaint (&symfile_complaints,
19155 _("unexpected tag in read_type_die: '%s'"),
19156 dwarf_tag_name (die->tag));
19157 break;
19158 }
19159
19160 return this_type;
19161 }
19162
19163 /* See if we can figure out if the class lives in a namespace. We do
19164 this by looking for a member function; its demangled name will
19165 contain namespace info, if there is any.
19166 Return the computed name or NULL.
19167 Space for the result is allocated on the objfile's obstack.
19168 This is the full-die version of guess_partial_die_structure_name.
19169 In this case we know DIE has no useful parent. */
19170
19171 static char *
19172 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
19173 {
19174 struct die_info *spec_die;
19175 struct dwarf2_cu *spec_cu;
19176 struct die_info *child;
19177
19178 spec_cu = cu;
19179 spec_die = die_specification (die, &spec_cu);
19180 if (spec_die != NULL)
19181 {
19182 die = spec_die;
19183 cu = spec_cu;
19184 }
19185
19186 for (child = die->child;
19187 child != NULL;
19188 child = child->sibling)
19189 {
19190 if (child->tag == DW_TAG_subprogram)
19191 {
19192 const char *linkage_name;
19193
19194 linkage_name = dwarf2_string_attr (child, DW_AT_linkage_name, cu);
19195 if (linkage_name == NULL)
19196 linkage_name = dwarf2_string_attr (child, DW_AT_MIPS_linkage_name,
19197 cu);
19198 if (linkage_name != NULL)
19199 {
19200 char *actual_name
19201 = language_class_name_from_physname (cu->language_defn,
19202 linkage_name);
19203 char *name = NULL;
19204
19205 if (actual_name != NULL)
19206 {
19207 const char *die_name = dwarf2_name (die, cu);
19208
19209 if (die_name != NULL
19210 && strcmp (die_name, actual_name) != 0)
19211 {
19212 /* Strip off the class name from the full name.
19213 We want the prefix. */
19214 int die_name_len = strlen (die_name);
19215 int actual_name_len = strlen (actual_name);
19216
19217 /* Test for '::' as a sanity check. */
19218 if (actual_name_len > die_name_len + 2
19219 && actual_name[actual_name_len
19220 - die_name_len - 1] == ':')
19221 name = (char *) obstack_copy0 (
19222 &cu->objfile->per_bfd->storage_obstack,
19223 actual_name, actual_name_len - die_name_len - 2);
19224 }
19225 }
19226 xfree (actual_name);
19227 return name;
19228 }
19229 }
19230 }
19231
19232 return NULL;
19233 }
19234
19235 /* GCC might emit a nameless typedef that has a linkage name. Determine the
19236 prefix part in such case. See
19237 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19238
19239 static char *
19240 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
19241 {
19242 struct attribute *attr;
19243 const char *base;
19244
19245 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
19246 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
19247 return NULL;
19248
19249 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
19250 return NULL;
19251
19252 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19253 if (attr == NULL)
19254 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19255 if (attr == NULL || DW_STRING (attr) == NULL)
19256 return NULL;
19257
19258 /* dwarf2_name had to be already called. */
19259 gdb_assert (DW_STRING_IS_CANONICAL (attr));
19260
19261 /* Strip the base name, keep any leading namespaces/classes. */
19262 base = strrchr (DW_STRING (attr), ':');
19263 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
19264 return "";
19265
19266 return (char *) obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19267 DW_STRING (attr),
19268 &base[-1] - DW_STRING (attr));
19269 }
19270
19271 /* Return the name of the namespace/class that DIE is defined within,
19272 or "" if we can't tell. The caller should not xfree the result.
19273
19274 For example, if we're within the method foo() in the following
19275 code:
19276
19277 namespace N {
19278 class C {
19279 void foo () {
19280 }
19281 };
19282 }
19283
19284 then determine_prefix on foo's die will return "N::C". */
19285
19286 static const char *
19287 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
19288 {
19289 struct die_info *parent, *spec_die;
19290 struct dwarf2_cu *spec_cu;
19291 struct type *parent_type;
19292 char *retval;
19293
19294 if (cu->language != language_cplus && cu->language != language_java
19295 && cu->language != language_fortran && cu->language != language_d)
19296 return "";
19297
19298 retval = anonymous_struct_prefix (die, cu);
19299 if (retval)
19300 return retval;
19301
19302 /* We have to be careful in the presence of DW_AT_specification.
19303 For example, with GCC 3.4, given the code
19304
19305 namespace N {
19306 void foo() {
19307 // Definition of N::foo.
19308 }
19309 }
19310
19311 then we'll have a tree of DIEs like this:
19312
19313 1: DW_TAG_compile_unit
19314 2: DW_TAG_namespace // N
19315 3: DW_TAG_subprogram // declaration of N::foo
19316 4: DW_TAG_subprogram // definition of N::foo
19317 DW_AT_specification // refers to die #3
19318
19319 Thus, when processing die #4, we have to pretend that we're in
19320 the context of its DW_AT_specification, namely the contex of die
19321 #3. */
19322 spec_cu = cu;
19323 spec_die = die_specification (die, &spec_cu);
19324 if (spec_die == NULL)
19325 parent = die->parent;
19326 else
19327 {
19328 parent = spec_die->parent;
19329 cu = spec_cu;
19330 }
19331
19332 if (parent == NULL)
19333 return "";
19334 else if (parent->building_fullname)
19335 {
19336 const char *name;
19337 const char *parent_name;
19338
19339 /* It has been seen on RealView 2.2 built binaries,
19340 DW_TAG_template_type_param types actually _defined_ as
19341 children of the parent class:
19342
19343 enum E {};
19344 template class <class Enum> Class{};
19345 Class<enum E> class_e;
19346
19347 1: DW_TAG_class_type (Class)
19348 2: DW_TAG_enumeration_type (E)
19349 3: DW_TAG_enumerator (enum1:0)
19350 3: DW_TAG_enumerator (enum2:1)
19351 ...
19352 2: DW_TAG_template_type_param
19353 DW_AT_type DW_FORM_ref_udata (E)
19354
19355 Besides being broken debug info, it can put GDB into an
19356 infinite loop. Consider:
19357
19358 When we're building the full name for Class<E>, we'll start
19359 at Class, and go look over its template type parameters,
19360 finding E. We'll then try to build the full name of E, and
19361 reach here. We're now trying to build the full name of E,
19362 and look over the parent DIE for containing scope. In the
19363 broken case, if we followed the parent DIE of E, we'd again
19364 find Class, and once again go look at its template type
19365 arguments, etc., etc. Simply don't consider such parent die
19366 as source-level parent of this die (it can't be, the language
19367 doesn't allow it), and break the loop here. */
19368 name = dwarf2_name (die, cu);
19369 parent_name = dwarf2_name (parent, cu);
19370 complaint (&symfile_complaints,
19371 _("template param type '%s' defined within parent '%s'"),
19372 name ? name : "<unknown>",
19373 parent_name ? parent_name : "<unknown>");
19374 return "";
19375 }
19376 else
19377 switch (parent->tag)
19378 {
19379 case DW_TAG_namespace:
19380 parent_type = read_type_die (parent, cu);
19381 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
19382 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
19383 Work around this problem here. */
19384 if (cu->language == language_cplus
19385 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
19386 return "";
19387 /* We give a name to even anonymous namespaces. */
19388 return TYPE_TAG_NAME (parent_type);
19389 case DW_TAG_class_type:
19390 case DW_TAG_interface_type:
19391 case DW_TAG_structure_type:
19392 case DW_TAG_union_type:
19393 case DW_TAG_module:
19394 parent_type = read_type_die (parent, cu);
19395 if (TYPE_TAG_NAME (parent_type) != NULL)
19396 return TYPE_TAG_NAME (parent_type);
19397 else
19398 /* An anonymous structure is only allowed non-static data
19399 members; no typedefs, no member functions, et cetera.
19400 So it does not need a prefix. */
19401 return "";
19402 case DW_TAG_compile_unit:
19403 case DW_TAG_partial_unit:
19404 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
19405 if (cu->language == language_cplus
19406 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
19407 && die->child != NULL
19408 && (die->tag == DW_TAG_class_type
19409 || die->tag == DW_TAG_structure_type
19410 || die->tag == DW_TAG_union_type))
19411 {
19412 char *name = guess_full_die_structure_name (die, cu);
19413 if (name != NULL)
19414 return name;
19415 }
19416 return "";
19417 case DW_TAG_enumeration_type:
19418 parent_type = read_type_die (parent, cu);
19419 if (TYPE_DECLARED_CLASS (parent_type))
19420 {
19421 if (TYPE_TAG_NAME (parent_type) != NULL)
19422 return TYPE_TAG_NAME (parent_type);
19423 return "";
19424 }
19425 /* Fall through. */
19426 default:
19427 return determine_prefix (parent, cu);
19428 }
19429 }
19430
19431 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
19432 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
19433 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
19434 an obconcat, otherwise allocate storage for the result. The CU argument is
19435 used to determine the language and hence, the appropriate separator. */
19436
19437 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
19438
19439 static char *
19440 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
19441 int physname, struct dwarf2_cu *cu)
19442 {
19443 const char *lead = "";
19444 const char *sep;
19445
19446 if (suffix == NULL || suffix[0] == '\0'
19447 || prefix == NULL || prefix[0] == '\0')
19448 sep = "";
19449 else if (cu->language == language_java)
19450 sep = ".";
19451 else if (cu->language == language_d)
19452 {
19453 /* For D, the 'main' function could be defined in any module, but it
19454 should never be prefixed. */
19455 if (strcmp (suffix, "D main") == 0)
19456 {
19457 prefix = "";
19458 sep = "";
19459 }
19460 else
19461 sep = ".";
19462 }
19463 else if (cu->language == language_fortran && physname)
19464 {
19465 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
19466 DW_AT_MIPS_linkage_name is preferred and used instead. */
19467
19468 lead = "__";
19469 sep = "_MOD_";
19470 }
19471 else
19472 sep = "::";
19473
19474 if (prefix == NULL)
19475 prefix = "";
19476 if (suffix == NULL)
19477 suffix = "";
19478
19479 if (obs == NULL)
19480 {
19481 char *retval
19482 = ((char *)
19483 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
19484
19485 strcpy (retval, lead);
19486 strcat (retval, prefix);
19487 strcat (retval, sep);
19488 strcat (retval, suffix);
19489 return retval;
19490 }
19491 else
19492 {
19493 /* We have an obstack. */
19494 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
19495 }
19496 }
19497
19498 /* Return sibling of die, NULL if no sibling. */
19499
19500 static struct die_info *
19501 sibling_die (struct die_info *die)
19502 {
19503 return die->sibling;
19504 }
19505
19506 /* Get name of a die, return NULL if not found. */
19507
19508 static const char *
19509 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
19510 struct obstack *obstack)
19511 {
19512 if (name && cu->language == language_cplus)
19513 {
19514 char *canon_name = cp_canonicalize_string (name);
19515
19516 if (canon_name != NULL)
19517 {
19518 if (strcmp (canon_name, name) != 0)
19519 name = (const char *) obstack_copy0 (obstack, canon_name,
19520 strlen (canon_name));
19521 xfree (canon_name);
19522 }
19523 }
19524
19525 return name;
19526 }
19527
19528 /* Get name of a die, return NULL if not found.
19529 Anonymous namespaces are converted to their magic string. */
19530
19531 static const char *
19532 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
19533 {
19534 struct attribute *attr;
19535
19536 attr = dwarf2_attr (die, DW_AT_name, cu);
19537 if ((!attr || !DW_STRING (attr))
19538 && die->tag != DW_TAG_namespace
19539 && die->tag != DW_TAG_class_type
19540 && die->tag != DW_TAG_interface_type
19541 && die->tag != DW_TAG_structure_type
19542 && die->tag != DW_TAG_union_type)
19543 return NULL;
19544
19545 switch (die->tag)
19546 {
19547 case DW_TAG_compile_unit:
19548 case DW_TAG_partial_unit:
19549 /* Compilation units have a DW_AT_name that is a filename, not
19550 a source language identifier. */
19551 case DW_TAG_enumeration_type:
19552 case DW_TAG_enumerator:
19553 /* These tags always have simple identifiers already; no need
19554 to canonicalize them. */
19555 return DW_STRING (attr);
19556
19557 case DW_TAG_namespace:
19558 if (attr != NULL && DW_STRING (attr) != NULL)
19559 return DW_STRING (attr);
19560 return CP_ANONYMOUS_NAMESPACE_STR;
19561
19562 case DW_TAG_subprogram:
19563 /* Java constructors will all be named "<init>", so return
19564 the class name when we see this special case. */
19565 if (cu->language == language_java
19566 && DW_STRING (attr) != NULL
19567 && strcmp (DW_STRING (attr), "<init>") == 0)
19568 {
19569 struct dwarf2_cu *spec_cu = cu;
19570 struct die_info *spec_die;
19571
19572 /* GCJ will output '<init>' for Java constructor names.
19573 For this special case, return the name of the parent class. */
19574
19575 /* GCJ may output subprogram DIEs with AT_specification set.
19576 If so, use the name of the specified DIE. */
19577 spec_die = die_specification (die, &spec_cu);
19578 if (spec_die != NULL)
19579 return dwarf2_name (spec_die, spec_cu);
19580
19581 do
19582 {
19583 die = die->parent;
19584 if (die->tag == DW_TAG_class_type)
19585 return dwarf2_name (die, cu);
19586 }
19587 while (die->tag != DW_TAG_compile_unit
19588 && die->tag != DW_TAG_partial_unit);
19589 }
19590 break;
19591
19592 case DW_TAG_class_type:
19593 case DW_TAG_interface_type:
19594 case DW_TAG_structure_type:
19595 case DW_TAG_union_type:
19596 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
19597 structures or unions. These were of the form "._%d" in GCC 4.1,
19598 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
19599 and GCC 4.4. We work around this problem by ignoring these. */
19600 if (attr && DW_STRING (attr)
19601 && (startswith (DW_STRING (attr), "._")
19602 || startswith (DW_STRING (attr), "<anonymous")))
19603 return NULL;
19604
19605 /* GCC might emit a nameless typedef that has a linkage name. See
19606 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19607 if (!attr || DW_STRING (attr) == NULL)
19608 {
19609 char *demangled = NULL;
19610
19611 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19612 if (attr == NULL)
19613 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19614
19615 if (attr == NULL || DW_STRING (attr) == NULL)
19616 return NULL;
19617
19618 /* Avoid demangling DW_STRING (attr) the second time on a second
19619 call for the same DIE. */
19620 if (!DW_STRING_IS_CANONICAL (attr))
19621 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
19622
19623 if (demangled)
19624 {
19625 const char *base;
19626
19627 /* FIXME: we already did this for the partial symbol... */
19628 DW_STRING (attr)
19629 = ((const char *)
19630 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19631 demangled, strlen (demangled)));
19632 DW_STRING_IS_CANONICAL (attr) = 1;
19633 xfree (demangled);
19634
19635 /* Strip any leading namespaces/classes, keep only the base name.
19636 DW_AT_name for named DIEs does not contain the prefixes. */
19637 base = strrchr (DW_STRING (attr), ':');
19638 if (base && base > DW_STRING (attr) && base[-1] == ':')
19639 return &base[1];
19640 else
19641 return DW_STRING (attr);
19642 }
19643 }
19644 break;
19645
19646 default:
19647 break;
19648 }
19649
19650 if (!DW_STRING_IS_CANONICAL (attr))
19651 {
19652 DW_STRING (attr)
19653 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
19654 &cu->objfile->per_bfd->storage_obstack);
19655 DW_STRING_IS_CANONICAL (attr) = 1;
19656 }
19657 return DW_STRING (attr);
19658 }
19659
19660 /* Return the die that this die in an extension of, or NULL if there
19661 is none. *EXT_CU is the CU containing DIE on input, and the CU
19662 containing the return value on output. */
19663
19664 static struct die_info *
19665 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
19666 {
19667 struct attribute *attr;
19668
19669 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
19670 if (attr == NULL)
19671 return NULL;
19672
19673 return follow_die_ref (die, attr, ext_cu);
19674 }
19675
19676 /* Convert a DIE tag into its string name. */
19677
19678 static const char *
19679 dwarf_tag_name (unsigned tag)
19680 {
19681 const char *name = get_DW_TAG_name (tag);
19682
19683 if (name == NULL)
19684 return "DW_TAG_<unknown>";
19685
19686 return name;
19687 }
19688
19689 /* Convert a DWARF attribute code into its string name. */
19690
19691 static const char *
19692 dwarf_attr_name (unsigned attr)
19693 {
19694 const char *name;
19695
19696 #ifdef MIPS /* collides with DW_AT_HP_block_index */
19697 if (attr == DW_AT_MIPS_fde)
19698 return "DW_AT_MIPS_fde";
19699 #else
19700 if (attr == DW_AT_HP_block_index)
19701 return "DW_AT_HP_block_index";
19702 #endif
19703
19704 name = get_DW_AT_name (attr);
19705
19706 if (name == NULL)
19707 return "DW_AT_<unknown>";
19708
19709 return name;
19710 }
19711
19712 /* Convert a DWARF value form code into its string name. */
19713
19714 static const char *
19715 dwarf_form_name (unsigned form)
19716 {
19717 const char *name = get_DW_FORM_name (form);
19718
19719 if (name == NULL)
19720 return "DW_FORM_<unknown>";
19721
19722 return name;
19723 }
19724
19725 static char *
19726 dwarf_bool_name (unsigned mybool)
19727 {
19728 if (mybool)
19729 return "TRUE";
19730 else
19731 return "FALSE";
19732 }
19733
19734 /* Convert a DWARF type code into its string name. */
19735
19736 static const char *
19737 dwarf_type_encoding_name (unsigned enc)
19738 {
19739 const char *name = get_DW_ATE_name (enc);
19740
19741 if (name == NULL)
19742 return "DW_ATE_<unknown>";
19743
19744 return name;
19745 }
19746
19747 static void
19748 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
19749 {
19750 unsigned int i;
19751
19752 print_spaces (indent, f);
19753 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
19754 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
19755
19756 if (die->parent != NULL)
19757 {
19758 print_spaces (indent, f);
19759 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
19760 die->parent->offset.sect_off);
19761 }
19762
19763 print_spaces (indent, f);
19764 fprintf_unfiltered (f, " has children: %s\n",
19765 dwarf_bool_name (die->child != NULL));
19766
19767 print_spaces (indent, f);
19768 fprintf_unfiltered (f, " attributes:\n");
19769
19770 for (i = 0; i < die->num_attrs; ++i)
19771 {
19772 print_spaces (indent, f);
19773 fprintf_unfiltered (f, " %s (%s) ",
19774 dwarf_attr_name (die->attrs[i].name),
19775 dwarf_form_name (die->attrs[i].form));
19776
19777 switch (die->attrs[i].form)
19778 {
19779 case DW_FORM_addr:
19780 case DW_FORM_GNU_addr_index:
19781 fprintf_unfiltered (f, "address: ");
19782 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
19783 break;
19784 case DW_FORM_block2:
19785 case DW_FORM_block4:
19786 case DW_FORM_block:
19787 case DW_FORM_block1:
19788 fprintf_unfiltered (f, "block: size %s",
19789 pulongest (DW_BLOCK (&die->attrs[i])->size));
19790 break;
19791 case DW_FORM_exprloc:
19792 fprintf_unfiltered (f, "expression: size %s",
19793 pulongest (DW_BLOCK (&die->attrs[i])->size));
19794 break;
19795 case DW_FORM_ref_addr:
19796 fprintf_unfiltered (f, "ref address: ");
19797 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19798 break;
19799 case DW_FORM_GNU_ref_alt:
19800 fprintf_unfiltered (f, "alt ref address: ");
19801 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19802 break;
19803 case DW_FORM_ref1:
19804 case DW_FORM_ref2:
19805 case DW_FORM_ref4:
19806 case DW_FORM_ref8:
19807 case DW_FORM_ref_udata:
19808 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
19809 (long) (DW_UNSND (&die->attrs[i])));
19810 break;
19811 case DW_FORM_data1:
19812 case DW_FORM_data2:
19813 case DW_FORM_data4:
19814 case DW_FORM_data8:
19815 case DW_FORM_udata:
19816 case DW_FORM_sdata:
19817 fprintf_unfiltered (f, "constant: %s",
19818 pulongest (DW_UNSND (&die->attrs[i])));
19819 break;
19820 case DW_FORM_sec_offset:
19821 fprintf_unfiltered (f, "section offset: %s",
19822 pulongest (DW_UNSND (&die->attrs[i])));
19823 break;
19824 case DW_FORM_ref_sig8:
19825 fprintf_unfiltered (f, "signature: %s",
19826 hex_string (DW_SIGNATURE (&die->attrs[i])));
19827 break;
19828 case DW_FORM_string:
19829 case DW_FORM_strp:
19830 case DW_FORM_GNU_str_index:
19831 case DW_FORM_GNU_strp_alt:
19832 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
19833 DW_STRING (&die->attrs[i])
19834 ? DW_STRING (&die->attrs[i]) : "",
19835 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
19836 break;
19837 case DW_FORM_flag:
19838 if (DW_UNSND (&die->attrs[i]))
19839 fprintf_unfiltered (f, "flag: TRUE");
19840 else
19841 fprintf_unfiltered (f, "flag: FALSE");
19842 break;
19843 case DW_FORM_flag_present:
19844 fprintf_unfiltered (f, "flag: TRUE");
19845 break;
19846 case DW_FORM_indirect:
19847 /* The reader will have reduced the indirect form to
19848 the "base form" so this form should not occur. */
19849 fprintf_unfiltered (f,
19850 "unexpected attribute form: DW_FORM_indirect");
19851 break;
19852 default:
19853 fprintf_unfiltered (f, "unsupported attribute form: %d.",
19854 die->attrs[i].form);
19855 break;
19856 }
19857 fprintf_unfiltered (f, "\n");
19858 }
19859 }
19860
19861 static void
19862 dump_die_for_error (struct die_info *die)
19863 {
19864 dump_die_shallow (gdb_stderr, 0, die);
19865 }
19866
19867 static void
19868 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
19869 {
19870 int indent = level * 4;
19871
19872 gdb_assert (die != NULL);
19873
19874 if (level >= max_level)
19875 return;
19876
19877 dump_die_shallow (f, indent, die);
19878
19879 if (die->child != NULL)
19880 {
19881 print_spaces (indent, f);
19882 fprintf_unfiltered (f, " Children:");
19883 if (level + 1 < max_level)
19884 {
19885 fprintf_unfiltered (f, "\n");
19886 dump_die_1 (f, level + 1, max_level, die->child);
19887 }
19888 else
19889 {
19890 fprintf_unfiltered (f,
19891 " [not printed, max nesting level reached]\n");
19892 }
19893 }
19894
19895 if (die->sibling != NULL && level > 0)
19896 {
19897 dump_die_1 (f, level, max_level, die->sibling);
19898 }
19899 }
19900
19901 /* This is called from the pdie macro in gdbinit.in.
19902 It's not static so gcc will keep a copy callable from gdb. */
19903
19904 void
19905 dump_die (struct die_info *die, int max_level)
19906 {
19907 dump_die_1 (gdb_stdlog, 0, max_level, die);
19908 }
19909
19910 static void
19911 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
19912 {
19913 void **slot;
19914
19915 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
19916 INSERT);
19917
19918 *slot = die;
19919 }
19920
19921 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
19922 required kind. */
19923
19924 static sect_offset
19925 dwarf2_get_ref_die_offset (const struct attribute *attr)
19926 {
19927 sect_offset retval = { DW_UNSND (attr) };
19928
19929 if (attr_form_is_ref (attr))
19930 return retval;
19931
19932 retval.sect_off = 0;
19933 complaint (&symfile_complaints,
19934 _("unsupported die ref attribute form: '%s'"),
19935 dwarf_form_name (attr->form));
19936 return retval;
19937 }
19938
19939 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
19940 * the value held by the attribute is not constant. */
19941
19942 static LONGEST
19943 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
19944 {
19945 if (attr->form == DW_FORM_sdata)
19946 return DW_SND (attr);
19947 else if (attr->form == DW_FORM_udata
19948 || attr->form == DW_FORM_data1
19949 || attr->form == DW_FORM_data2
19950 || attr->form == DW_FORM_data4
19951 || attr->form == DW_FORM_data8)
19952 return DW_UNSND (attr);
19953 else
19954 {
19955 complaint (&symfile_complaints,
19956 _("Attribute value is not a constant (%s)"),
19957 dwarf_form_name (attr->form));
19958 return default_value;
19959 }
19960 }
19961
19962 /* Follow reference or signature attribute ATTR of SRC_DIE.
19963 On entry *REF_CU is the CU of SRC_DIE.
19964 On exit *REF_CU is the CU of the result. */
19965
19966 static struct die_info *
19967 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
19968 struct dwarf2_cu **ref_cu)
19969 {
19970 struct die_info *die;
19971
19972 if (attr_form_is_ref (attr))
19973 die = follow_die_ref (src_die, attr, ref_cu);
19974 else if (attr->form == DW_FORM_ref_sig8)
19975 die = follow_die_sig (src_die, attr, ref_cu);
19976 else
19977 {
19978 dump_die_for_error (src_die);
19979 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
19980 objfile_name ((*ref_cu)->objfile));
19981 }
19982
19983 return die;
19984 }
19985
19986 /* Follow reference OFFSET.
19987 On entry *REF_CU is the CU of the source die referencing OFFSET.
19988 On exit *REF_CU is the CU of the result.
19989 Returns NULL if OFFSET is invalid. */
19990
19991 static struct die_info *
19992 follow_die_offset (sect_offset offset, int offset_in_dwz,
19993 struct dwarf2_cu **ref_cu)
19994 {
19995 struct die_info temp_die;
19996 struct dwarf2_cu *target_cu, *cu = *ref_cu;
19997
19998 gdb_assert (cu->per_cu != NULL);
19999
20000 target_cu = cu;
20001
20002 if (cu->per_cu->is_debug_types)
20003 {
20004 /* .debug_types CUs cannot reference anything outside their CU.
20005 If they need to, they have to reference a signatured type via
20006 DW_FORM_ref_sig8. */
20007 if (! offset_in_cu_p (&cu->header, offset))
20008 return NULL;
20009 }
20010 else if (offset_in_dwz != cu->per_cu->is_dwz
20011 || ! offset_in_cu_p (&cu->header, offset))
20012 {
20013 struct dwarf2_per_cu_data *per_cu;
20014
20015 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
20016 cu->objfile);
20017
20018 /* If necessary, add it to the queue and load its DIEs. */
20019 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
20020 load_full_comp_unit (per_cu, cu->language);
20021
20022 target_cu = per_cu->cu;
20023 }
20024 else if (cu->dies == NULL)
20025 {
20026 /* We're loading full DIEs during partial symbol reading. */
20027 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
20028 load_full_comp_unit (cu->per_cu, language_minimal);
20029 }
20030
20031 *ref_cu = target_cu;
20032 temp_die.offset = offset;
20033 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
20034 &temp_die, offset.sect_off);
20035 }
20036
20037 /* Follow reference attribute ATTR of SRC_DIE.
20038 On entry *REF_CU is the CU of SRC_DIE.
20039 On exit *REF_CU is the CU of the result. */
20040
20041 static struct die_info *
20042 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
20043 struct dwarf2_cu **ref_cu)
20044 {
20045 sect_offset offset = dwarf2_get_ref_die_offset (attr);
20046 struct dwarf2_cu *cu = *ref_cu;
20047 struct die_info *die;
20048
20049 die = follow_die_offset (offset,
20050 (attr->form == DW_FORM_GNU_ref_alt
20051 || cu->per_cu->is_dwz),
20052 ref_cu);
20053 if (!die)
20054 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
20055 "at 0x%x [in module %s]"),
20056 offset.sect_off, src_die->offset.sect_off,
20057 objfile_name (cu->objfile));
20058
20059 return die;
20060 }
20061
20062 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
20063 Returned value is intended for DW_OP_call*. Returned
20064 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
20065
20066 struct dwarf2_locexpr_baton
20067 dwarf2_fetch_die_loc_sect_off (sect_offset offset,
20068 struct dwarf2_per_cu_data *per_cu,
20069 CORE_ADDR (*get_frame_pc) (void *baton),
20070 void *baton)
20071 {
20072 struct dwarf2_cu *cu;
20073 struct die_info *die;
20074 struct attribute *attr;
20075 struct dwarf2_locexpr_baton retval;
20076
20077 dw2_setup (per_cu->objfile);
20078
20079 if (per_cu->cu == NULL)
20080 load_cu (per_cu);
20081 cu = per_cu->cu;
20082 if (cu == NULL)
20083 {
20084 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20085 Instead just throw an error, not much else we can do. */
20086 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
20087 offset.sect_off, objfile_name (per_cu->objfile));
20088 }
20089
20090 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
20091 if (!die)
20092 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
20093 offset.sect_off, objfile_name (per_cu->objfile));
20094
20095 attr = dwarf2_attr (die, DW_AT_location, cu);
20096 if (!attr)
20097 {
20098 /* DWARF: "If there is no such attribute, then there is no effect.".
20099 DATA is ignored if SIZE is 0. */
20100
20101 retval.data = NULL;
20102 retval.size = 0;
20103 }
20104 else if (attr_form_is_section_offset (attr))
20105 {
20106 struct dwarf2_loclist_baton loclist_baton;
20107 CORE_ADDR pc = (*get_frame_pc) (baton);
20108 size_t size;
20109
20110 fill_in_loclist_baton (cu, &loclist_baton, attr);
20111
20112 retval.data = dwarf2_find_location_expression (&loclist_baton,
20113 &size, pc);
20114 retval.size = size;
20115 }
20116 else
20117 {
20118 if (!attr_form_is_block (attr))
20119 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
20120 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
20121 offset.sect_off, objfile_name (per_cu->objfile));
20122
20123 retval.data = DW_BLOCK (attr)->data;
20124 retval.size = DW_BLOCK (attr)->size;
20125 }
20126 retval.per_cu = cu->per_cu;
20127
20128 age_cached_comp_units ();
20129
20130 return retval;
20131 }
20132
20133 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
20134 offset. */
20135
20136 struct dwarf2_locexpr_baton
20137 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
20138 struct dwarf2_per_cu_data *per_cu,
20139 CORE_ADDR (*get_frame_pc) (void *baton),
20140 void *baton)
20141 {
20142 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
20143
20144 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
20145 }
20146
20147 /* Write a constant of a given type as target-ordered bytes into
20148 OBSTACK. */
20149
20150 static const gdb_byte *
20151 write_constant_as_bytes (struct obstack *obstack,
20152 enum bfd_endian byte_order,
20153 struct type *type,
20154 ULONGEST value,
20155 LONGEST *len)
20156 {
20157 gdb_byte *result;
20158
20159 *len = TYPE_LENGTH (type);
20160 result = (gdb_byte *) obstack_alloc (obstack, *len);
20161 store_unsigned_integer (result, *len, byte_order, value);
20162
20163 return result;
20164 }
20165
20166 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
20167 pointer to the constant bytes and set LEN to the length of the
20168 data. If memory is needed, allocate it on OBSTACK. If the DIE
20169 does not have a DW_AT_const_value, return NULL. */
20170
20171 const gdb_byte *
20172 dwarf2_fetch_constant_bytes (sect_offset offset,
20173 struct dwarf2_per_cu_data *per_cu,
20174 struct obstack *obstack,
20175 LONGEST *len)
20176 {
20177 struct dwarf2_cu *cu;
20178 struct die_info *die;
20179 struct attribute *attr;
20180 const gdb_byte *result = NULL;
20181 struct type *type;
20182 LONGEST value;
20183 enum bfd_endian byte_order;
20184
20185 dw2_setup (per_cu->objfile);
20186
20187 if (per_cu->cu == NULL)
20188 load_cu (per_cu);
20189 cu = per_cu->cu;
20190 if (cu == NULL)
20191 {
20192 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20193 Instead just throw an error, not much else we can do. */
20194 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
20195 offset.sect_off, objfile_name (per_cu->objfile));
20196 }
20197
20198 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
20199 if (!die)
20200 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
20201 offset.sect_off, objfile_name (per_cu->objfile));
20202
20203
20204 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20205 if (attr == NULL)
20206 return NULL;
20207
20208 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
20209 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
20210
20211 switch (attr->form)
20212 {
20213 case DW_FORM_addr:
20214 case DW_FORM_GNU_addr_index:
20215 {
20216 gdb_byte *tem;
20217
20218 *len = cu->header.addr_size;
20219 tem = (gdb_byte *) obstack_alloc (obstack, *len);
20220 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
20221 result = tem;
20222 }
20223 break;
20224 case DW_FORM_string:
20225 case DW_FORM_strp:
20226 case DW_FORM_GNU_str_index:
20227 case DW_FORM_GNU_strp_alt:
20228 /* DW_STRING is already allocated on the objfile obstack, point
20229 directly to it. */
20230 result = (const gdb_byte *) DW_STRING (attr);
20231 *len = strlen (DW_STRING (attr));
20232 break;
20233 case DW_FORM_block1:
20234 case DW_FORM_block2:
20235 case DW_FORM_block4:
20236 case DW_FORM_block:
20237 case DW_FORM_exprloc:
20238 result = DW_BLOCK (attr)->data;
20239 *len = DW_BLOCK (attr)->size;
20240 break;
20241
20242 /* The DW_AT_const_value attributes are supposed to carry the
20243 symbol's value "represented as it would be on the target
20244 architecture." By the time we get here, it's already been
20245 converted to host endianness, so we just need to sign- or
20246 zero-extend it as appropriate. */
20247 case DW_FORM_data1:
20248 type = die_type (die, cu);
20249 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
20250 if (result == NULL)
20251 result = write_constant_as_bytes (obstack, byte_order,
20252 type, value, len);
20253 break;
20254 case DW_FORM_data2:
20255 type = die_type (die, cu);
20256 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
20257 if (result == NULL)
20258 result = write_constant_as_bytes (obstack, byte_order,
20259 type, value, len);
20260 break;
20261 case DW_FORM_data4:
20262 type = die_type (die, cu);
20263 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
20264 if (result == NULL)
20265 result = write_constant_as_bytes (obstack, byte_order,
20266 type, value, len);
20267 break;
20268 case DW_FORM_data8:
20269 type = die_type (die, cu);
20270 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
20271 if (result == NULL)
20272 result = write_constant_as_bytes (obstack, byte_order,
20273 type, value, len);
20274 break;
20275
20276 case DW_FORM_sdata:
20277 type = die_type (die, cu);
20278 result = write_constant_as_bytes (obstack, byte_order,
20279 type, DW_SND (attr), len);
20280 break;
20281
20282 case DW_FORM_udata:
20283 type = die_type (die, cu);
20284 result = write_constant_as_bytes (obstack, byte_order,
20285 type, DW_UNSND (attr), len);
20286 break;
20287
20288 default:
20289 complaint (&symfile_complaints,
20290 _("unsupported const value attribute form: '%s'"),
20291 dwarf_form_name (attr->form));
20292 break;
20293 }
20294
20295 return result;
20296 }
20297
20298 /* Return the type of the DIE at DIE_OFFSET in the CU named by
20299 PER_CU. */
20300
20301 struct type *
20302 dwarf2_get_die_type (cu_offset die_offset,
20303 struct dwarf2_per_cu_data *per_cu)
20304 {
20305 sect_offset die_offset_sect;
20306
20307 dw2_setup (per_cu->objfile);
20308
20309 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
20310 return get_die_type_at_offset (die_offset_sect, per_cu);
20311 }
20312
20313 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
20314 On entry *REF_CU is the CU of SRC_DIE.
20315 On exit *REF_CU is the CU of the result.
20316 Returns NULL if the referenced DIE isn't found. */
20317
20318 static struct die_info *
20319 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
20320 struct dwarf2_cu **ref_cu)
20321 {
20322 struct objfile *objfile = (*ref_cu)->objfile;
20323 struct die_info temp_die;
20324 struct dwarf2_cu *sig_cu;
20325 struct die_info *die;
20326
20327 /* While it might be nice to assert sig_type->type == NULL here,
20328 we can get here for DW_AT_imported_declaration where we need
20329 the DIE not the type. */
20330
20331 /* If necessary, add it to the queue and load its DIEs. */
20332
20333 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
20334 read_signatured_type (sig_type);
20335
20336 sig_cu = sig_type->per_cu.cu;
20337 gdb_assert (sig_cu != NULL);
20338 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
20339 temp_die.offset = sig_type->type_offset_in_section;
20340 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
20341 temp_die.offset.sect_off);
20342 if (die)
20343 {
20344 /* For .gdb_index version 7 keep track of included TUs.
20345 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
20346 if (dwarf2_per_objfile->index_table != NULL
20347 && dwarf2_per_objfile->index_table->version <= 7)
20348 {
20349 VEC_safe_push (dwarf2_per_cu_ptr,
20350 (*ref_cu)->per_cu->imported_symtabs,
20351 sig_cu->per_cu);
20352 }
20353
20354 *ref_cu = sig_cu;
20355 return die;
20356 }
20357
20358 return NULL;
20359 }
20360
20361 /* Follow signatured type referenced by ATTR in SRC_DIE.
20362 On entry *REF_CU is the CU of SRC_DIE.
20363 On exit *REF_CU is the CU of the result.
20364 The result is the DIE of the type.
20365 If the referenced type cannot be found an error is thrown. */
20366
20367 static struct die_info *
20368 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
20369 struct dwarf2_cu **ref_cu)
20370 {
20371 ULONGEST signature = DW_SIGNATURE (attr);
20372 struct signatured_type *sig_type;
20373 struct die_info *die;
20374
20375 gdb_assert (attr->form == DW_FORM_ref_sig8);
20376
20377 sig_type = lookup_signatured_type (*ref_cu, signature);
20378 /* sig_type will be NULL if the signatured type is missing from
20379 the debug info. */
20380 if (sig_type == NULL)
20381 {
20382 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
20383 " from DIE at 0x%x [in module %s]"),
20384 hex_string (signature), src_die->offset.sect_off,
20385 objfile_name ((*ref_cu)->objfile));
20386 }
20387
20388 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
20389 if (die == NULL)
20390 {
20391 dump_die_for_error (src_die);
20392 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
20393 " from DIE at 0x%x [in module %s]"),
20394 hex_string (signature), src_die->offset.sect_off,
20395 objfile_name ((*ref_cu)->objfile));
20396 }
20397
20398 return die;
20399 }
20400
20401 /* Get the type specified by SIGNATURE referenced in DIE/CU,
20402 reading in and processing the type unit if necessary. */
20403
20404 static struct type *
20405 get_signatured_type (struct die_info *die, ULONGEST signature,
20406 struct dwarf2_cu *cu)
20407 {
20408 struct signatured_type *sig_type;
20409 struct dwarf2_cu *type_cu;
20410 struct die_info *type_die;
20411 struct type *type;
20412
20413 sig_type = lookup_signatured_type (cu, signature);
20414 /* sig_type will be NULL if the signatured type is missing from
20415 the debug info. */
20416 if (sig_type == NULL)
20417 {
20418 complaint (&symfile_complaints,
20419 _("Dwarf Error: Cannot find signatured DIE %s referenced"
20420 " from DIE at 0x%x [in module %s]"),
20421 hex_string (signature), die->offset.sect_off,
20422 objfile_name (dwarf2_per_objfile->objfile));
20423 return build_error_marker_type (cu, die);
20424 }
20425
20426 /* If we already know the type we're done. */
20427 if (sig_type->type != NULL)
20428 return sig_type->type;
20429
20430 type_cu = cu;
20431 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
20432 if (type_die != NULL)
20433 {
20434 /* N.B. We need to call get_die_type to ensure only one type for this DIE
20435 is created. This is important, for example, because for c++ classes
20436 we need TYPE_NAME set which is only done by new_symbol. Blech. */
20437 type = read_type_die (type_die, type_cu);
20438 if (type == NULL)
20439 {
20440 complaint (&symfile_complaints,
20441 _("Dwarf Error: Cannot build signatured type %s"
20442 " referenced from DIE at 0x%x [in module %s]"),
20443 hex_string (signature), die->offset.sect_off,
20444 objfile_name (dwarf2_per_objfile->objfile));
20445 type = build_error_marker_type (cu, die);
20446 }
20447 }
20448 else
20449 {
20450 complaint (&symfile_complaints,
20451 _("Dwarf Error: Problem reading signatured DIE %s referenced"
20452 " from DIE at 0x%x [in module %s]"),
20453 hex_string (signature), die->offset.sect_off,
20454 objfile_name (dwarf2_per_objfile->objfile));
20455 type = build_error_marker_type (cu, die);
20456 }
20457 sig_type->type = type;
20458
20459 return type;
20460 }
20461
20462 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
20463 reading in and processing the type unit if necessary. */
20464
20465 static struct type *
20466 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
20467 struct dwarf2_cu *cu) /* ARI: editCase function */
20468 {
20469 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
20470 if (attr_form_is_ref (attr))
20471 {
20472 struct dwarf2_cu *type_cu = cu;
20473 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
20474
20475 return read_type_die (type_die, type_cu);
20476 }
20477 else if (attr->form == DW_FORM_ref_sig8)
20478 {
20479 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
20480 }
20481 else
20482 {
20483 complaint (&symfile_complaints,
20484 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
20485 " at 0x%x [in module %s]"),
20486 dwarf_form_name (attr->form), die->offset.sect_off,
20487 objfile_name (dwarf2_per_objfile->objfile));
20488 return build_error_marker_type (cu, die);
20489 }
20490 }
20491
20492 /* Load the DIEs associated with type unit PER_CU into memory. */
20493
20494 static void
20495 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
20496 {
20497 struct signatured_type *sig_type;
20498
20499 /* Caller is responsible for ensuring type_unit_groups don't get here. */
20500 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
20501
20502 /* We have the per_cu, but we need the signatured_type.
20503 Fortunately this is an easy translation. */
20504 gdb_assert (per_cu->is_debug_types);
20505 sig_type = (struct signatured_type *) per_cu;
20506
20507 gdb_assert (per_cu->cu == NULL);
20508
20509 read_signatured_type (sig_type);
20510
20511 gdb_assert (per_cu->cu != NULL);
20512 }
20513
20514 /* die_reader_func for read_signatured_type.
20515 This is identical to load_full_comp_unit_reader,
20516 but is kept separate for now. */
20517
20518 static void
20519 read_signatured_type_reader (const struct die_reader_specs *reader,
20520 const gdb_byte *info_ptr,
20521 struct die_info *comp_unit_die,
20522 int has_children,
20523 void *data)
20524 {
20525 struct dwarf2_cu *cu = reader->cu;
20526
20527 gdb_assert (cu->die_hash == NULL);
20528 cu->die_hash =
20529 htab_create_alloc_ex (cu->header.length / 12,
20530 die_hash,
20531 die_eq,
20532 NULL,
20533 &cu->comp_unit_obstack,
20534 hashtab_obstack_allocate,
20535 dummy_obstack_deallocate);
20536
20537 if (has_children)
20538 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
20539 &info_ptr, comp_unit_die);
20540 cu->dies = comp_unit_die;
20541 /* comp_unit_die is not stored in die_hash, no need. */
20542
20543 /* We try not to read any attributes in this function, because not
20544 all CUs needed for references have been loaded yet, and symbol
20545 table processing isn't initialized. But we have to set the CU language,
20546 or we won't be able to build types correctly.
20547 Similarly, if we do not read the producer, we can not apply
20548 producer-specific interpretation. */
20549 prepare_one_comp_unit (cu, cu->dies, language_minimal);
20550 }
20551
20552 /* Read in a signatured type and build its CU and DIEs.
20553 If the type is a stub for the real type in a DWO file,
20554 read in the real type from the DWO file as well. */
20555
20556 static void
20557 read_signatured_type (struct signatured_type *sig_type)
20558 {
20559 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
20560
20561 gdb_assert (per_cu->is_debug_types);
20562 gdb_assert (per_cu->cu == NULL);
20563
20564 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
20565 read_signatured_type_reader, NULL);
20566 sig_type->per_cu.tu_read = 1;
20567 }
20568
20569 /* Decode simple location descriptions.
20570 Given a pointer to a dwarf block that defines a location, compute
20571 the location and return the value.
20572
20573 NOTE drow/2003-11-18: This function is called in two situations
20574 now: for the address of static or global variables (partial symbols
20575 only) and for offsets into structures which are expected to be
20576 (more or less) constant. The partial symbol case should go away,
20577 and only the constant case should remain. That will let this
20578 function complain more accurately. A few special modes are allowed
20579 without complaint for global variables (for instance, global
20580 register values and thread-local values).
20581
20582 A location description containing no operations indicates that the
20583 object is optimized out. The return value is 0 for that case.
20584 FIXME drow/2003-11-16: No callers check for this case any more; soon all
20585 callers will only want a very basic result and this can become a
20586 complaint.
20587
20588 Note that stack[0] is unused except as a default error return. */
20589
20590 static CORE_ADDR
20591 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
20592 {
20593 struct objfile *objfile = cu->objfile;
20594 size_t i;
20595 size_t size = blk->size;
20596 const gdb_byte *data = blk->data;
20597 CORE_ADDR stack[64];
20598 int stacki;
20599 unsigned int bytes_read, unsnd;
20600 gdb_byte op;
20601
20602 i = 0;
20603 stacki = 0;
20604 stack[stacki] = 0;
20605 stack[++stacki] = 0;
20606
20607 while (i < size)
20608 {
20609 op = data[i++];
20610 switch (op)
20611 {
20612 case DW_OP_lit0:
20613 case DW_OP_lit1:
20614 case DW_OP_lit2:
20615 case DW_OP_lit3:
20616 case DW_OP_lit4:
20617 case DW_OP_lit5:
20618 case DW_OP_lit6:
20619 case DW_OP_lit7:
20620 case DW_OP_lit8:
20621 case DW_OP_lit9:
20622 case DW_OP_lit10:
20623 case DW_OP_lit11:
20624 case DW_OP_lit12:
20625 case DW_OP_lit13:
20626 case DW_OP_lit14:
20627 case DW_OP_lit15:
20628 case DW_OP_lit16:
20629 case DW_OP_lit17:
20630 case DW_OP_lit18:
20631 case DW_OP_lit19:
20632 case DW_OP_lit20:
20633 case DW_OP_lit21:
20634 case DW_OP_lit22:
20635 case DW_OP_lit23:
20636 case DW_OP_lit24:
20637 case DW_OP_lit25:
20638 case DW_OP_lit26:
20639 case DW_OP_lit27:
20640 case DW_OP_lit28:
20641 case DW_OP_lit29:
20642 case DW_OP_lit30:
20643 case DW_OP_lit31:
20644 stack[++stacki] = op - DW_OP_lit0;
20645 break;
20646
20647 case DW_OP_reg0:
20648 case DW_OP_reg1:
20649 case DW_OP_reg2:
20650 case DW_OP_reg3:
20651 case DW_OP_reg4:
20652 case DW_OP_reg5:
20653 case DW_OP_reg6:
20654 case DW_OP_reg7:
20655 case DW_OP_reg8:
20656 case DW_OP_reg9:
20657 case DW_OP_reg10:
20658 case DW_OP_reg11:
20659 case DW_OP_reg12:
20660 case DW_OP_reg13:
20661 case DW_OP_reg14:
20662 case DW_OP_reg15:
20663 case DW_OP_reg16:
20664 case DW_OP_reg17:
20665 case DW_OP_reg18:
20666 case DW_OP_reg19:
20667 case DW_OP_reg20:
20668 case DW_OP_reg21:
20669 case DW_OP_reg22:
20670 case DW_OP_reg23:
20671 case DW_OP_reg24:
20672 case DW_OP_reg25:
20673 case DW_OP_reg26:
20674 case DW_OP_reg27:
20675 case DW_OP_reg28:
20676 case DW_OP_reg29:
20677 case DW_OP_reg30:
20678 case DW_OP_reg31:
20679 stack[++stacki] = op - DW_OP_reg0;
20680 if (i < size)
20681 dwarf2_complex_location_expr_complaint ();
20682 break;
20683
20684 case DW_OP_regx:
20685 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
20686 i += bytes_read;
20687 stack[++stacki] = unsnd;
20688 if (i < size)
20689 dwarf2_complex_location_expr_complaint ();
20690 break;
20691
20692 case DW_OP_addr:
20693 stack[++stacki] = read_address (objfile->obfd, &data[i],
20694 cu, &bytes_read);
20695 i += bytes_read;
20696 break;
20697
20698 case DW_OP_const1u:
20699 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
20700 i += 1;
20701 break;
20702
20703 case DW_OP_const1s:
20704 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
20705 i += 1;
20706 break;
20707
20708 case DW_OP_const2u:
20709 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
20710 i += 2;
20711 break;
20712
20713 case DW_OP_const2s:
20714 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
20715 i += 2;
20716 break;
20717
20718 case DW_OP_const4u:
20719 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
20720 i += 4;
20721 break;
20722
20723 case DW_OP_const4s:
20724 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
20725 i += 4;
20726 break;
20727
20728 case DW_OP_const8u:
20729 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
20730 i += 8;
20731 break;
20732
20733 case DW_OP_constu:
20734 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
20735 &bytes_read);
20736 i += bytes_read;
20737 break;
20738
20739 case DW_OP_consts:
20740 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
20741 i += bytes_read;
20742 break;
20743
20744 case DW_OP_dup:
20745 stack[stacki + 1] = stack[stacki];
20746 stacki++;
20747 break;
20748
20749 case DW_OP_plus:
20750 stack[stacki - 1] += stack[stacki];
20751 stacki--;
20752 break;
20753
20754 case DW_OP_plus_uconst:
20755 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
20756 &bytes_read);
20757 i += bytes_read;
20758 break;
20759
20760 case DW_OP_minus:
20761 stack[stacki - 1] -= stack[stacki];
20762 stacki--;
20763 break;
20764
20765 case DW_OP_deref:
20766 /* If we're not the last op, then we definitely can't encode
20767 this using GDB's address_class enum. This is valid for partial
20768 global symbols, although the variable's address will be bogus
20769 in the psymtab. */
20770 if (i < size)
20771 dwarf2_complex_location_expr_complaint ();
20772 break;
20773
20774 case DW_OP_GNU_push_tls_address:
20775 /* The top of the stack has the offset from the beginning
20776 of the thread control block at which the variable is located. */
20777 /* Nothing should follow this operator, so the top of stack would
20778 be returned. */
20779 /* This is valid for partial global symbols, but the variable's
20780 address will be bogus in the psymtab. Make it always at least
20781 non-zero to not look as a variable garbage collected by linker
20782 which have DW_OP_addr 0. */
20783 if (i < size)
20784 dwarf2_complex_location_expr_complaint ();
20785 stack[stacki]++;
20786 break;
20787
20788 case DW_OP_GNU_uninit:
20789 break;
20790
20791 case DW_OP_GNU_addr_index:
20792 case DW_OP_GNU_const_index:
20793 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
20794 &bytes_read);
20795 i += bytes_read;
20796 break;
20797
20798 default:
20799 {
20800 const char *name = get_DW_OP_name (op);
20801
20802 if (name)
20803 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
20804 name);
20805 else
20806 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
20807 op);
20808 }
20809
20810 return (stack[stacki]);
20811 }
20812
20813 /* Enforce maximum stack depth of SIZE-1 to avoid writing
20814 outside of the allocated space. Also enforce minimum>0. */
20815 if (stacki >= ARRAY_SIZE (stack) - 1)
20816 {
20817 complaint (&symfile_complaints,
20818 _("location description stack overflow"));
20819 return 0;
20820 }
20821
20822 if (stacki <= 0)
20823 {
20824 complaint (&symfile_complaints,
20825 _("location description stack underflow"));
20826 return 0;
20827 }
20828 }
20829 return (stack[stacki]);
20830 }
20831
20832 /* memory allocation interface */
20833
20834 static struct dwarf_block *
20835 dwarf_alloc_block (struct dwarf2_cu *cu)
20836 {
20837 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
20838 }
20839
20840 static struct die_info *
20841 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
20842 {
20843 struct die_info *die;
20844 size_t size = sizeof (struct die_info);
20845
20846 if (num_attrs > 1)
20847 size += (num_attrs - 1) * sizeof (struct attribute);
20848
20849 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
20850 memset (die, 0, sizeof (struct die_info));
20851 return (die);
20852 }
20853
20854 \f
20855 /* Macro support. */
20856
20857 /* Return file name relative to the compilation directory of file number I in
20858 *LH's file name table. The result is allocated using xmalloc; the caller is
20859 responsible for freeing it. */
20860
20861 static char *
20862 file_file_name (int file, struct line_header *lh)
20863 {
20864 /* Is the file number a valid index into the line header's file name
20865 table? Remember that file numbers start with one, not zero. */
20866 if (1 <= file && file <= lh->num_file_names)
20867 {
20868 struct file_entry *fe = &lh->file_names[file - 1];
20869
20870 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0
20871 || lh->include_dirs == NULL)
20872 return xstrdup (fe->name);
20873 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
20874 fe->name, NULL);
20875 }
20876 else
20877 {
20878 /* The compiler produced a bogus file number. We can at least
20879 record the macro definitions made in the file, even if we
20880 won't be able to find the file by name. */
20881 char fake_name[80];
20882
20883 xsnprintf (fake_name, sizeof (fake_name),
20884 "<bad macro file number %d>", file);
20885
20886 complaint (&symfile_complaints,
20887 _("bad file number in macro information (%d)"),
20888 file);
20889
20890 return xstrdup (fake_name);
20891 }
20892 }
20893
20894 /* Return the full name of file number I in *LH's file name table.
20895 Use COMP_DIR as the name of the current directory of the
20896 compilation. The result is allocated using xmalloc; the caller is
20897 responsible for freeing it. */
20898 static char *
20899 file_full_name (int file, struct line_header *lh, const char *comp_dir)
20900 {
20901 /* Is the file number a valid index into the line header's file name
20902 table? Remember that file numbers start with one, not zero. */
20903 if (1 <= file && file <= lh->num_file_names)
20904 {
20905 char *relative = file_file_name (file, lh);
20906
20907 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
20908 return relative;
20909 return reconcat (relative, comp_dir, SLASH_STRING, relative, NULL);
20910 }
20911 else
20912 return file_file_name (file, lh);
20913 }
20914
20915
20916 static struct macro_source_file *
20917 macro_start_file (int file, int line,
20918 struct macro_source_file *current_file,
20919 struct line_header *lh)
20920 {
20921 /* File name relative to the compilation directory of this source file. */
20922 char *file_name = file_file_name (file, lh);
20923
20924 if (! current_file)
20925 {
20926 /* Note: We don't create a macro table for this compilation unit
20927 at all until we actually get a filename. */
20928 struct macro_table *macro_table = get_macro_table ();
20929
20930 /* If we have no current file, then this must be the start_file
20931 directive for the compilation unit's main source file. */
20932 current_file = macro_set_main (macro_table, file_name);
20933 macro_define_special (macro_table);
20934 }
20935 else
20936 current_file = macro_include (current_file, line, file_name);
20937
20938 xfree (file_name);
20939
20940 return current_file;
20941 }
20942
20943
20944 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
20945 followed by a null byte. */
20946 static char *
20947 copy_string (const char *buf, int len)
20948 {
20949 char *s = (char *) xmalloc (len + 1);
20950
20951 memcpy (s, buf, len);
20952 s[len] = '\0';
20953 return s;
20954 }
20955
20956
20957 static const char *
20958 consume_improper_spaces (const char *p, const char *body)
20959 {
20960 if (*p == ' ')
20961 {
20962 complaint (&symfile_complaints,
20963 _("macro definition contains spaces "
20964 "in formal argument list:\n`%s'"),
20965 body);
20966
20967 while (*p == ' ')
20968 p++;
20969 }
20970
20971 return p;
20972 }
20973
20974
20975 static void
20976 parse_macro_definition (struct macro_source_file *file, int line,
20977 const char *body)
20978 {
20979 const char *p;
20980
20981 /* The body string takes one of two forms. For object-like macro
20982 definitions, it should be:
20983
20984 <macro name> " " <definition>
20985
20986 For function-like macro definitions, it should be:
20987
20988 <macro name> "() " <definition>
20989 or
20990 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
20991
20992 Spaces may appear only where explicitly indicated, and in the
20993 <definition>.
20994
20995 The Dwarf 2 spec says that an object-like macro's name is always
20996 followed by a space, but versions of GCC around March 2002 omit
20997 the space when the macro's definition is the empty string.
20998
20999 The Dwarf 2 spec says that there should be no spaces between the
21000 formal arguments in a function-like macro's formal argument list,
21001 but versions of GCC around March 2002 include spaces after the
21002 commas. */
21003
21004
21005 /* Find the extent of the macro name. The macro name is terminated
21006 by either a space or null character (for an object-like macro) or
21007 an opening paren (for a function-like macro). */
21008 for (p = body; *p; p++)
21009 if (*p == ' ' || *p == '(')
21010 break;
21011
21012 if (*p == ' ' || *p == '\0')
21013 {
21014 /* It's an object-like macro. */
21015 int name_len = p - body;
21016 char *name = copy_string (body, name_len);
21017 const char *replacement;
21018
21019 if (*p == ' ')
21020 replacement = body + name_len + 1;
21021 else
21022 {
21023 dwarf2_macro_malformed_definition_complaint (body);
21024 replacement = body + name_len;
21025 }
21026
21027 macro_define_object (file, line, name, replacement);
21028
21029 xfree (name);
21030 }
21031 else if (*p == '(')
21032 {
21033 /* It's a function-like macro. */
21034 char *name = copy_string (body, p - body);
21035 int argc = 0;
21036 int argv_size = 1;
21037 char **argv = XNEWVEC (char *, argv_size);
21038
21039 p++;
21040
21041 p = consume_improper_spaces (p, body);
21042
21043 /* Parse the formal argument list. */
21044 while (*p && *p != ')')
21045 {
21046 /* Find the extent of the current argument name. */
21047 const char *arg_start = p;
21048
21049 while (*p && *p != ',' && *p != ')' && *p != ' ')
21050 p++;
21051
21052 if (! *p || p == arg_start)
21053 dwarf2_macro_malformed_definition_complaint (body);
21054 else
21055 {
21056 /* Make sure argv has room for the new argument. */
21057 if (argc >= argv_size)
21058 {
21059 argv_size *= 2;
21060 argv = XRESIZEVEC (char *, argv, argv_size);
21061 }
21062
21063 argv[argc++] = copy_string (arg_start, p - arg_start);
21064 }
21065
21066 p = consume_improper_spaces (p, body);
21067
21068 /* Consume the comma, if present. */
21069 if (*p == ',')
21070 {
21071 p++;
21072
21073 p = consume_improper_spaces (p, body);
21074 }
21075 }
21076
21077 if (*p == ')')
21078 {
21079 p++;
21080
21081 if (*p == ' ')
21082 /* Perfectly formed definition, no complaints. */
21083 macro_define_function (file, line, name,
21084 argc, (const char **) argv,
21085 p + 1);
21086 else if (*p == '\0')
21087 {
21088 /* Complain, but do define it. */
21089 dwarf2_macro_malformed_definition_complaint (body);
21090 macro_define_function (file, line, name,
21091 argc, (const char **) argv,
21092 p);
21093 }
21094 else
21095 /* Just complain. */
21096 dwarf2_macro_malformed_definition_complaint (body);
21097 }
21098 else
21099 /* Just complain. */
21100 dwarf2_macro_malformed_definition_complaint (body);
21101
21102 xfree (name);
21103 {
21104 int i;
21105
21106 for (i = 0; i < argc; i++)
21107 xfree (argv[i]);
21108 }
21109 xfree (argv);
21110 }
21111 else
21112 dwarf2_macro_malformed_definition_complaint (body);
21113 }
21114
21115 /* Skip some bytes from BYTES according to the form given in FORM.
21116 Returns the new pointer. */
21117
21118 static const gdb_byte *
21119 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
21120 enum dwarf_form form,
21121 unsigned int offset_size,
21122 struct dwarf2_section_info *section)
21123 {
21124 unsigned int bytes_read;
21125
21126 switch (form)
21127 {
21128 case DW_FORM_data1:
21129 case DW_FORM_flag:
21130 ++bytes;
21131 break;
21132
21133 case DW_FORM_data2:
21134 bytes += 2;
21135 break;
21136
21137 case DW_FORM_data4:
21138 bytes += 4;
21139 break;
21140
21141 case DW_FORM_data8:
21142 bytes += 8;
21143 break;
21144
21145 case DW_FORM_string:
21146 read_direct_string (abfd, bytes, &bytes_read);
21147 bytes += bytes_read;
21148 break;
21149
21150 case DW_FORM_sec_offset:
21151 case DW_FORM_strp:
21152 case DW_FORM_GNU_strp_alt:
21153 bytes += offset_size;
21154 break;
21155
21156 case DW_FORM_block:
21157 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
21158 bytes += bytes_read;
21159 break;
21160
21161 case DW_FORM_block1:
21162 bytes += 1 + read_1_byte (abfd, bytes);
21163 break;
21164 case DW_FORM_block2:
21165 bytes += 2 + read_2_bytes (abfd, bytes);
21166 break;
21167 case DW_FORM_block4:
21168 bytes += 4 + read_4_bytes (abfd, bytes);
21169 break;
21170
21171 case DW_FORM_sdata:
21172 case DW_FORM_udata:
21173 case DW_FORM_GNU_addr_index:
21174 case DW_FORM_GNU_str_index:
21175 bytes = gdb_skip_leb128 (bytes, buffer_end);
21176 if (bytes == NULL)
21177 {
21178 dwarf2_section_buffer_overflow_complaint (section);
21179 return NULL;
21180 }
21181 break;
21182
21183 default:
21184 {
21185 complain:
21186 complaint (&symfile_complaints,
21187 _("invalid form 0x%x in `%s'"),
21188 form, get_section_name (section));
21189 return NULL;
21190 }
21191 }
21192
21193 return bytes;
21194 }
21195
21196 /* A helper for dwarf_decode_macros that handles skipping an unknown
21197 opcode. Returns an updated pointer to the macro data buffer; or,
21198 on error, issues a complaint and returns NULL. */
21199
21200 static const gdb_byte *
21201 skip_unknown_opcode (unsigned int opcode,
21202 const gdb_byte **opcode_definitions,
21203 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
21204 bfd *abfd,
21205 unsigned int offset_size,
21206 struct dwarf2_section_info *section)
21207 {
21208 unsigned int bytes_read, i;
21209 unsigned long arg;
21210 const gdb_byte *defn;
21211
21212 if (opcode_definitions[opcode] == NULL)
21213 {
21214 complaint (&symfile_complaints,
21215 _("unrecognized DW_MACFINO opcode 0x%x"),
21216 opcode);
21217 return NULL;
21218 }
21219
21220 defn = opcode_definitions[opcode];
21221 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
21222 defn += bytes_read;
21223
21224 for (i = 0; i < arg; ++i)
21225 {
21226 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
21227 (enum dwarf_form) defn[i], offset_size,
21228 section);
21229 if (mac_ptr == NULL)
21230 {
21231 /* skip_form_bytes already issued the complaint. */
21232 return NULL;
21233 }
21234 }
21235
21236 return mac_ptr;
21237 }
21238
21239 /* A helper function which parses the header of a macro section.
21240 If the macro section is the extended (for now called "GNU") type,
21241 then this updates *OFFSET_SIZE. Returns a pointer to just after
21242 the header, or issues a complaint and returns NULL on error. */
21243
21244 static const gdb_byte *
21245 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
21246 bfd *abfd,
21247 const gdb_byte *mac_ptr,
21248 unsigned int *offset_size,
21249 int section_is_gnu)
21250 {
21251 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
21252
21253 if (section_is_gnu)
21254 {
21255 unsigned int version, flags;
21256
21257 version = read_2_bytes (abfd, mac_ptr);
21258 if (version != 4)
21259 {
21260 complaint (&symfile_complaints,
21261 _("unrecognized version `%d' in .debug_macro section"),
21262 version);
21263 return NULL;
21264 }
21265 mac_ptr += 2;
21266
21267 flags = read_1_byte (abfd, mac_ptr);
21268 ++mac_ptr;
21269 *offset_size = (flags & 1) ? 8 : 4;
21270
21271 if ((flags & 2) != 0)
21272 /* We don't need the line table offset. */
21273 mac_ptr += *offset_size;
21274
21275 /* Vendor opcode descriptions. */
21276 if ((flags & 4) != 0)
21277 {
21278 unsigned int i, count;
21279
21280 count = read_1_byte (abfd, mac_ptr);
21281 ++mac_ptr;
21282 for (i = 0; i < count; ++i)
21283 {
21284 unsigned int opcode, bytes_read;
21285 unsigned long arg;
21286
21287 opcode = read_1_byte (abfd, mac_ptr);
21288 ++mac_ptr;
21289 opcode_definitions[opcode] = mac_ptr;
21290 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21291 mac_ptr += bytes_read;
21292 mac_ptr += arg;
21293 }
21294 }
21295 }
21296
21297 return mac_ptr;
21298 }
21299
21300 /* A helper for dwarf_decode_macros that handles the GNU extensions,
21301 including DW_MACRO_GNU_transparent_include. */
21302
21303 static void
21304 dwarf_decode_macro_bytes (bfd *abfd,
21305 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
21306 struct macro_source_file *current_file,
21307 struct line_header *lh,
21308 struct dwarf2_section_info *section,
21309 int section_is_gnu, int section_is_dwz,
21310 unsigned int offset_size,
21311 htab_t include_hash)
21312 {
21313 struct objfile *objfile = dwarf2_per_objfile->objfile;
21314 enum dwarf_macro_record_type macinfo_type;
21315 int at_commandline;
21316 const gdb_byte *opcode_definitions[256];
21317
21318 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21319 &offset_size, section_is_gnu);
21320 if (mac_ptr == NULL)
21321 {
21322 /* We already issued a complaint. */
21323 return;
21324 }
21325
21326 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
21327 GDB is still reading the definitions from command line. First
21328 DW_MACINFO_start_file will need to be ignored as it was already executed
21329 to create CURRENT_FILE for the main source holding also the command line
21330 definitions. On first met DW_MACINFO_start_file this flag is reset to
21331 normally execute all the remaining DW_MACINFO_start_file macinfos. */
21332
21333 at_commandline = 1;
21334
21335 do
21336 {
21337 /* Do we at least have room for a macinfo type byte? */
21338 if (mac_ptr >= mac_end)
21339 {
21340 dwarf2_section_buffer_overflow_complaint (section);
21341 break;
21342 }
21343
21344 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
21345 mac_ptr++;
21346
21347 /* Note that we rely on the fact that the corresponding GNU and
21348 DWARF constants are the same. */
21349 switch (macinfo_type)
21350 {
21351 /* A zero macinfo type indicates the end of the macro
21352 information. */
21353 case 0:
21354 break;
21355
21356 case DW_MACRO_GNU_define:
21357 case DW_MACRO_GNU_undef:
21358 case DW_MACRO_GNU_define_indirect:
21359 case DW_MACRO_GNU_undef_indirect:
21360 case DW_MACRO_GNU_define_indirect_alt:
21361 case DW_MACRO_GNU_undef_indirect_alt:
21362 {
21363 unsigned int bytes_read;
21364 int line;
21365 const char *body;
21366 int is_define;
21367
21368 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21369 mac_ptr += bytes_read;
21370
21371 if (macinfo_type == DW_MACRO_GNU_define
21372 || macinfo_type == DW_MACRO_GNU_undef)
21373 {
21374 body = read_direct_string (abfd, mac_ptr, &bytes_read);
21375 mac_ptr += bytes_read;
21376 }
21377 else
21378 {
21379 LONGEST str_offset;
21380
21381 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
21382 mac_ptr += offset_size;
21383
21384 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
21385 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
21386 || section_is_dwz)
21387 {
21388 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21389
21390 body = read_indirect_string_from_dwz (dwz, str_offset);
21391 }
21392 else
21393 body = read_indirect_string_at_offset (abfd, str_offset);
21394 }
21395
21396 is_define = (macinfo_type == DW_MACRO_GNU_define
21397 || macinfo_type == DW_MACRO_GNU_define_indirect
21398 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
21399 if (! current_file)
21400 {
21401 /* DWARF violation as no main source is present. */
21402 complaint (&symfile_complaints,
21403 _("debug info with no main source gives macro %s "
21404 "on line %d: %s"),
21405 is_define ? _("definition") : _("undefinition"),
21406 line, body);
21407 break;
21408 }
21409 if ((line == 0 && !at_commandline)
21410 || (line != 0 && at_commandline))
21411 complaint (&symfile_complaints,
21412 _("debug info gives %s macro %s with %s line %d: %s"),
21413 at_commandline ? _("command-line") : _("in-file"),
21414 is_define ? _("definition") : _("undefinition"),
21415 line == 0 ? _("zero") : _("non-zero"), line, body);
21416
21417 if (is_define)
21418 parse_macro_definition (current_file, line, body);
21419 else
21420 {
21421 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
21422 || macinfo_type == DW_MACRO_GNU_undef_indirect
21423 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
21424 macro_undef (current_file, line, body);
21425 }
21426 }
21427 break;
21428
21429 case DW_MACRO_GNU_start_file:
21430 {
21431 unsigned int bytes_read;
21432 int line, file;
21433
21434 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21435 mac_ptr += bytes_read;
21436 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21437 mac_ptr += bytes_read;
21438
21439 if ((line == 0 && !at_commandline)
21440 || (line != 0 && at_commandline))
21441 complaint (&symfile_complaints,
21442 _("debug info gives source %d included "
21443 "from %s at %s line %d"),
21444 file, at_commandline ? _("command-line") : _("file"),
21445 line == 0 ? _("zero") : _("non-zero"), line);
21446
21447 if (at_commandline)
21448 {
21449 /* This DW_MACRO_GNU_start_file was executed in the
21450 pass one. */
21451 at_commandline = 0;
21452 }
21453 else
21454 current_file = macro_start_file (file, line, current_file, lh);
21455 }
21456 break;
21457
21458 case DW_MACRO_GNU_end_file:
21459 if (! current_file)
21460 complaint (&symfile_complaints,
21461 _("macro debug info has an unmatched "
21462 "`close_file' directive"));
21463 else
21464 {
21465 current_file = current_file->included_by;
21466 if (! current_file)
21467 {
21468 enum dwarf_macro_record_type next_type;
21469
21470 /* GCC circa March 2002 doesn't produce the zero
21471 type byte marking the end of the compilation
21472 unit. Complain if it's not there, but exit no
21473 matter what. */
21474
21475 /* Do we at least have room for a macinfo type byte? */
21476 if (mac_ptr >= mac_end)
21477 {
21478 dwarf2_section_buffer_overflow_complaint (section);
21479 return;
21480 }
21481
21482 /* We don't increment mac_ptr here, so this is just
21483 a look-ahead. */
21484 next_type
21485 = (enum dwarf_macro_record_type) read_1_byte (abfd,
21486 mac_ptr);
21487 if (next_type != 0)
21488 complaint (&symfile_complaints,
21489 _("no terminating 0-type entry for "
21490 "macros in `.debug_macinfo' section"));
21491
21492 return;
21493 }
21494 }
21495 break;
21496
21497 case DW_MACRO_GNU_transparent_include:
21498 case DW_MACRO_GNU_transparent_include_alt:
21499 {
21500 LONGEST offset;
21501 void **slot;
21502 bfd *include_bfd = abfd;
21503 struct dwarf2_section_info *include_section = section;
21504 struct dwarf2_section_info alt_section;
21505 const gdb_byte *include_mac_end = mac_end;
21506 int is_dwz = section_is_dwz;
21507 const gdb_byte *new_mac_ptr;
21508
21509 offset = read_offset_1 (abfd, mac_ptr, offset_size);
21510 mac_ptr += offset_size;
21511
21512 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
21513 {
21514 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21515
21516 dwarf2_read_section (objfile, &dwz->macro);
21517
21518 include_section = &dwz->macro;
21519 include_bfd = get_section_bfd_owner (include_section);
21520 include_mac_end = dwz->macro.buffer + dwz->macro.size;
21521 is_dwz = 1;
21522 }
21523
21524 new_mac_ptr = include_section->buffer + offset;
21525 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
21526
21527 if (*slot != NULL)
21528 {
21529 /* This has actually happened; see
21530 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
21531 complaint (&symfile_complaints,
21532 _("recursive DW_MACRO_GNU_transparent_include in "
21533 ".debug_macro section"));
21534 }
21535 else
21536 {
21537 *slot = (void *) new_mac_ptr;
21538
21539 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
21540 include_mac_end, current_file, lh,
21541 section, section_is_gnu, is_dwz,
21542 offset_size, include_hash);
21543
21544 htab_remove_elt (include_hash, (void *) new_mac_ptr);
21545 }
21546 }
21547 break;
21548
21549 case DW_MACINFO_vendor_ext:
21550 if (!section_is_gnu)
21551 {
21552 unsigned int bytes_read;
21553 int constant;
21554
21555 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21556 mac_ptr += bytes_read;
21557 read_direct_string (abfd, mac_ptr, &bytes_read);
21558 mac_ptr += bytes_read;
21559
21560 /* We don't recognize any vendor extensions. */
21561 break;
21562 }
21563 /* FALLTHROUGH */
21564
21565 default:
21566 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
21567 mac_ptr, mac_end, abfd, offset_size,
21568 section);
21569 if (mac_ptr == NULL)
21570 return;
21571 break;
21572 }
21573 } while (macinfo_type != 0);
21574 }
21575
21576 static void
21577 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
21578 int section_is_gnu)
21579 {
21580 struct objfile *objfile = dwarf2_per_objfile->objfile;
21581 struct line_header *lh = cu->line_header;
21582 bfd *abfd;
21583 const gdb_byte *mac_ptr, *mac_end;
21584 struct macro_source_file *current_file = 0;
21585 enum dwarf_macro_record_type macinfo_type;
21586 unsigned int offset_size = cu->header.offset_size;
21587 const gdb_byte *opcode_definitions[256];
21588 struct cleanup *cleanup;
21589 htab_t include_hash;
21590 void **slot;
21591 struct dwarf2_section_info *section;
21592 const char *section_name;
21593
21594 if (cu->dwo_unit != NULL)
21595 {
21596 if (section_is_gnu)
21597 {
21598 section = &cu->dwo_unit->dwo_file->sections.macro;
21599 section_name = ".debug_macro.dwo";
21600 }
21601 else
21602 {
21603 section = &cu->dwo_unit->dwo_file->sections.macinfo;
21604 section_name = ".debug_macinfo.dwo";
21605 }
21606 }
21607 else
21608 {
21609 if (section_is_gnu)
21610 {
21611 section = &dwarf2_per_objfile->macro;
21612 section_name = ".debug_macro";
21613 }
21614 else
21615 {
21616 section = &dwarf2_per_objfile->macinfo;
21617 section_name = ".debug_macinfo";
21618 }
21619 }
21620
21621 dwarf2_read_section (objfile, section);
21622 if (section->buffer == NULL)
21623 {
21624 complaint (&symfile_complaints, _("missing %s section"), section_name);
21625 return;
21626 }
21627 abfd = get_section_bfd_owner (section);
21628
21629 /* First pass: Find the name of the base filename.
21630 This filename is needed in order to process all macros whose definition
21631 (or undefinition) comes from the command line. These macros are defined
21632 before the first DW_MACINFO_start_file entry, and yet still need to be
21633 associated to the base file.
21634
21635 To determine the base file name, we scan the macro definitions until we
21636 reach the first DW_MACINFO_start_file entry. We then initialize
21637 CURRENT_FILE accordingly so that any macro definition found before the
21638 first DW_MACINFO_start_file can still be associated to the base file. */
21639
21640 mac_ptr = section->buffer + offset;
21641 mac_end = section->buffer + section->size;
21642
21643 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21644 &offset_size, section_is_gnu);
21645 if (mac_ptr == NULL)
21646 {
21647 /* We already issued a complaint. */
21648 return;
21649 }
21650
21651 do
21652 {
21653 /* Do we at least have room for a macinfo type byte? */
21654 if (mac_ptr >= mac_end)
21655 {
21656 /* Complaint is printed during the second pass as GDB will probably
21657 stop the first pass earlier upon finding
21658 DW_MACINFO_start_file. */
21659 break;
21660 }
21661
21662 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
21663 mac_ptr++;
21664
21665 /* Note that we rely on the fact that the corresponding GNU and
21666 DWARF constants are the same. */
21667 switch (macinfo_type)
21668 {
21669 /* A zero macinfo type indicates the end of the macro
21670 information. */
21671 case 0:
21672 break;
21673
21674 case DW_MACRO_GNU_define:
21675 case DW_MACRO_GNU_undef:
21676 /* Only skip the data by MAC_PTR. */
21677 {
21678 unsigned int bytes_read;
21679
21680 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21681 mac_ptr += bytes_read;
21682 read_direct_string (abfd, mac_ptr, &bytes_read);
21683 mac_ptr += bytes_read;
21684 }
21685 break;
21686
21687 case DW_MACRO_GNU_start_file:
21688 {
21689 unsigned int bytes_read;
21690 int line, file;
21691
21692 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21693 mac_ptr += bytes_read;
21694 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21695 mac_ptr += bytes_read;
21696
21697 current_file = macro_start_file (file, line, current_file, lh);
21698 }
21699 break;
21700
21701 case DW_MACRO_GNU_end_file:
21702 /* No data to skip by MAC_PTR. */
21703 break;
21704
21705 case DW_MACRO_GNU_define_indirect:
21706 case DW_MACRO_GNU_undef_indirect:
21707 case DW_MACRO_GNU_define_indirect_alt:
21708 case DW_MACRO_GNU_undef_indirect_alt:
21709 {
21710 unsigned int bytes_read;
21711
21712 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21713 mac_ptr += bytes_read;
21714 mac_ptr += offset_size;
21715 }
21716 break;
21717
21718 case DW_MACRO_GNU_transparent_include:
21719 case DW_MACRO_GNU_transparent_include_alt:
21720 /* Note that, according to the spec, a transparent include
21721 chain cannot call DW_MACRO_GNU_start_file. So, we can just
21722 skip this opcode. */
21723 mac_ptr += offset_size;
21724 break;
21725
21726 case DW_MACINFO_vendor_ext:
21727 /* Only skip the data by MAC_PTR. */
21728 if (!section_is_gnu)
21729 {
21730 unsigned int bytes_read;
21731
21732 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21733 mac_ptr += bytes_read;
21734 read_direct_string (abfd, mac_ptr, &bytes_read);
21735 mac_ptr += bytes_read;
21736 }
21737 /* FALLTHROUGH */
21738
21739 default:
21740 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
21741 mac_ptr, mac_end, abfd, offset_size,
21742 section);
21743 if (mac_ptr == NULL)
21744 return;
21745 break;
21746 }
21747 } while (macinfo_type != 0 && current_file == NULL);
21748
21749 /* Second pass: Process all entries.
21750
21751 Use the AT_COMMAND_LINE flag to determine whether we are still processing
21752 command-line macro definitions/undefinitions. This flag is unset when we
21753 reach the first DW_MACINFO_start_file entry. */
21754
21755 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
21756 NULL, xcalloc, xfree);
21757 cleanup = make_cleanup_htab_delete (include_hash);
21758 mac_ptr = section->buffer + offset;
21759 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
21760 *slot = (void *) mac_ptr;
21761 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
21762 current_file, lh, section,
21763 section_is_gnu, 0, offset_size, include_hash);
21764 do_cleanups (cleanup);
21765 }
21766
21767 /* Check if the attribute's form is a DW_FORM_block*
21768 if so return true else false. */
21769
21770 static int
21771 attr_form_is_block (const struct attribute *attr)
21772 {
21773 return (attr == NULL ? 0 :
21774 attr->form == DW_FORM_block1
21775 || attr->form == DW_FORM_block2
21776 || attr->form == DW_FORM_block4
21777 || attr->form == DW_FORM_block
21778 || attr->form == DW_FORM_exprloc);
21779 }
21780
21781 /* Return non-zero if ATTR's value is a section offset --- classes
21782 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
21783 You may use DW_UNSND (attr) to retrieve such offsets.
21784
21785 Section 7.5.4, "Attribute Encodings", explains that no attribute
21786 may have a value that belongs to more than one of these classes; it
21787 would be ambiguous if we did, because we use the same forms for all
21788 of them. */
21789
21790 static int
21791 attr_form_is_section_offset (const struct attribute *attr)
21792 {
21793 return (attr->form == DW_FORM_data4
21794 || attr->form == DW_FORM_data8
21795 || attr->form == DW_FORM_sec_offset);
21796 }
21797
21798 /* Return non-zero if ATTR's value falls in the 'constant' class, or
21799 zero otherwise. When this function returns true, you can apply
21800 dwarf2_get_attr_constant_value to it.
21801
21802 However, note that for some attributes you must check
21803 attr_form_is_section_offset before using this test. DW_FORM_data4
21804 and DW_FORM_data8 are members of both the constant class, and of
21805 the classes that contain offsets into other debug sections
21806 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
21807 that, if an attribute's can be either a constant or one of the
21808 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
21809 taken as section offsets, not constants. */
21810
21811 static int
21812 attr_form_is_constant (const struct attribute *attr)
21813 {
21814 switch (attr->form)
21815 {
21816 case DW_FORM_sdata:
21817 case DW_FORM_udata:
21818 case DW_FORM_data1:
21819 case DW_FORM_data2:
21820 case DW_FORM_data4:
21821 case DW_FORM_data8:
21822 return 1;
21823 default:
21824 return 0;
21825 }
21826 }
21827
21828
21829 /* DW_ADDR is always stored already as sect_offset; despite for the forms
21830 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
21831
21832 static int
21833 attr_form_is_ref (const struct attribute *attr)
21834 {
21835 switch (attr->form)
21836 {
21837 case DW_FORM_ref_addr:
21838 case DW_FORM_ref1:
21839 case DW_FORM_ref2:
21840 case DW_FORM_ref4:
21841 case DW_FORM_ref8:
21842 case DW_FORM_ref_udata:
21843 case DW_FORM_GNU_ref_alt:
21844 return 1;
21845 default:
21846 return 0;
21847 }
21848 }
21849
21850 /* Return the .debug_loc section to use for CU.
21851 For DWO files use .debug_loc.dwo. */
21852
21853 static struct dwarf2_section_info *
21854 cu_debug_loc_section (struct dwarf2_cu *cu)
21855 {
21856 if (cu->dwo_unit)
21857 return &cu->dwo_unit->dwo_file->sections.loc;
21858 return &dwarf2_per_objfile->loc;
21859 }
21860
21861 /* A helper function that fills in a dwarf2_loclist_baton. */
21862
21863 static void
21864 fill_in_loclist_baton (struct dwarf2_cu *cu,
21865 struct dwarf2_loclist_baton *baton,
21866 const struct attribute *attr)
21867 {
21868 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21869
21870 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
21871
21872 baton->per_cu = cu->per_cu;
21873 gdb_assert (baton->per_cu);
21874 /* We don't know how long the location list is, but make sure we
21875 don't run off the edge of the section. */
21876 baton->size = section->size - DW_UNSND (attr);
21877 baton->data = section->buffer + DW_UNSND (attr);
21878 baton->base_address = cu->base_address;
21879 baton->from_dwo = cu->dwo_unit != NULL;
21880 }
21881
21882 static void
21883 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
21884 struct dwarf2_cu *cu, int is_block)
21885 {
21886 struct objfile *objfile = dwarf2_per_objfile->objfile;
21887 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21888
21889 if (attr_form_is_section_offset (attr)
21890 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
21891 the section. If so, fall through to the complaint in the
21892 other branch. */
21893 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
21894 {
21895 struct dwarf2_loclist_baton *baton;
21896
21897 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
21898
21899 fill_in_loclist_baton (cu, baton, attr);
21900
21901 if (cu->base_known == 0)
21902 complaint (&symfile_complaints,
21903 _("Location list used without "
21904 "specifying the CU base address."));
21905
21906 SYMBOL_ACLASS_INDEX (sym) = (is_block
21907 ? dwarf2_loclist_block_index
21908 : dwarf2_loclist_index);
21909 SYMBOL_LOCATION_BATON (sym) = baton;
21910 }
21911 else
21912 {
21913 struct dwarf2_locexpr_baton *baton;
21914
21915 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
21916 baton->per_cu = cu->per_cu;
21917 gdb_assert (baton->per_cu);
21918
21919 if (attr_form_is_block (attr))
21920 {
21921 /* Note that we're just copying the block's data pointer
21922 here, not the actual data. We're still pointing into the
21923 info_buffer for SYM's objfile; right now we never release
21924 that buffer, but when we do clean up properly this may
21925 need to change. */
21926 baton->size = DW_BLOCK (attr)->size;
21927 baton->data = DW_BLOCK (attr)->data;
21928 }
21929 else
21930 {
21931 dwarf2_invalid_attrib_class_complaint ("location description",
21932 SYMBOL_NATURAL_NAME (sym));
21933 baton->size = 0;
21934 }
21935
21936 SYMBOL_ACLASS_INDEX (sym) = (is_block
21937 ? dwarf2_locexpr_block_index
21938 : dwarf2_locexpr_index);
21939 SYMBOL_LOCATION_BATON (sym) = baton;
21940 }
21941 }
21942
21943 /* Return the OBJFILE associated with the compilation unit CU. If CU
21944 came from a separate debuginfo file, then the master objfile is
21945 returned. */
21946
21947 struct objfile *
21948 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
21949 {
21950 struct objfile *objfile = per_cu->objfile;
21951
21952 /* Return the master objfile, so that we can report and look up the
21953 correct file containing this variable. */
21954 if (objfile->separate_debug_objfile_backlink)
21955 objfile = objfile->separate_debug_objfile_backlink;
21956
21957 return objfile;
21958 }
21959
21960 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
21961 (CU_HEADERP is unused in such case) or prepare a temporary copy at
21962 CU_HEADERP first. */
21963
21964 static const struct comp_unit_head *
21965 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
21966 struct dwarf2_per_cu_data *per_cu)
21967 {
21968 const gdb_byte *info_ptr;
21969
21970 if (per_cu->cu)
21971 return &per_cu->cu->header;
21972
21973 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
21974
21975 memset (cu_headerp, 0, sizeof (*cu_headerp));
21976 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
21977
21978 return cu_headerp;
21979 }
21980
21981 /* Return the address size given in the compilation unit header for CU. */
21982
21983 int
21984 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
21985 {
21986 struct comp_unit_head cu_header_local;
21987 const struct comp_unit_head *cu_headerp;
21988
21989 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21990
21991 return cu_headerp->addr_size;
21992 }
21993
21994 /* Return the offset size given in the compilation unit header for CU. */
21995
21996 int
21997 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
21998 {
21999 struct comp_unit_head cu_header_local;
22000 const struct comp_unit_head *cu_headerp;
22001
22002 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22003
22004 return cu_headerp->offset_size;
22005 }
22006
22007 /* See its dwarf2loc.h declaration. */
22008
22009 int
22010 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
22011 {
22012 struct comp_unit_head cu_header_local;
22013 const struct comp_unit_head *cu_headerp;
22014
22015 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22016
22017 if (cu_headerp->version == 2)
22018 return cu_headerp->addr_size;
22019 else
22020 return cu_headerp->offset_size;
22021 }
22022
22023 /* Return the text offset of the CU. The returned offset comes from
22024 this CU's objfile. If this objfile came from a separate debuginfo
22025 file, then the offset may be different from the corresponding
22026 offset in the parent objfile. */
22027
22028 CORE_ADDR
22029 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
22030 {
22031 struct objfile *objfile = per_cu->objfile;
22032
22033 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22034 }
22035
22036 /* Locate the .debug_info compilation unit from CU's objfile which contains
22037 the DIE at OFFSET. Raises an error on failure. */
22038
22039 static struct dwarf2_per_cu_data *
22040 dwarf2_find_containing_comp_unit (sect_offset offset,
22041 unsigned int offset_in_dwz,
22042 struct objfile *objfile)
22043 {
22044 struct dwarf2_per_cu_data *this_cu;
22045 int low, high;
22046 const sect_offset *cu_off;
22047
22048 low = 0;
22049 high = dwarf2_per_objfile->n_comp_units - 1;
22050 while (high > low)
22051 {
22052 struct dwarf2_per_cu_data *mid_cu;
22053 int mid = low + (high - low) / 2;
22054
22055 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
22056 cu_off = &mid_cu->offset;
22057 if (mid_cu->is_dwz > offset_in_dwz
22058 || (mid_cu->is_dwz == offset_in_dwz
22059 && cu_off->sect_off >= offset.sect_off))
22060 high = mid;
22061 else
22062 low = mid + 1;
22063 }
22064 gdb_assert (low == high);
22065 this_cu = dwarf2_per_objfile->all_comp_units[low];
22066 cu_off = &this_cu->offset;
22067 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
22068 {
22069 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
22070 error (_("Dwarf Error: could not find partial DIE containing "
22071 "offset 0x%lx [in module %s]"),
22072 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
22073
22074 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
22075 <= offset.sect_off);
22076 return dwarf2_per_objfile->all_comp_units[low-1];
22077 }
22078 else
22079 {
22080 this_cu = dwarf2_per_objfile->all_comp_units[low];
22081 if (low == dwarf2_per_objfile->n_comp_units - 1
22082 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
22083 error (_("invalid dwarf2 offset %u"), offset.sect_off);
22084 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
22085 return this_cu;
22086 }
22087 }
22088
22089 /* Initialize dwarf2_cu CU, owned by PER_CU. */
22090
22091 static void
22092 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
22093 {
22094 memset (cu, 0, sizeof (*cu));
22095 per_cu->cu = cu;
22096 cu->per_cu = per_cu;
22097 cu->objfile = per_cu->objfile;
22098 obstack_init (&cu->comp_unit_obstack);
22099 }
22100
22101 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
22102
22103 static void
22104 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
22105 enum language pretend_language)
22106 {
22107 struct attribute *attr;
22108
22109 /* Set the language we're debugging. */
22110 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
22111 if (attr)
22112 set_cu_language (DW_UNSND (attr), cu);
22113 else
22114 {
22115 cu->language = pretend_language;
22116 cu->language_defn = language_def (cu->language);
22117 }
22118
22119 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
22120 }
22121
22122 /* Release one cached compilation unit, CU. We unlink it from the tree
22123 of compilation units, but we don't remove it from the read_in_chain;
22124 the caller is responsible for that.
22125 NOTE: DATA is a void * because this function is also used as a
22126 cleanup routine. */
22127
22128 static void
22129 free_heap_comp_unit (void *data)
22130 {
22131 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
22132
22133 gdb_assert (cu->per_cu != NULL);
22134 cu->per_cu->cu = NULL;
22135 cu->per_cu = NULL;
22136
22137 obstack_free (&cu->comp_unit_obstack, NULL);
22138
22139 xfree (cu);
22140 }
22141
22142 /* This cleanup function is passed the address of a dwarf2_cu on the stack
22143 when we're finished with it. We can't free the pointer itself, but be
22144 sure to unlink it from the cache. Also release any associated storage. */
22145
22146 static void
22147 free_stack_comp_unit (void *data)
22148 {
22149 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
22150
22151 gdb_assert (cu->per_cu != NULL);
22152 cu->per_cu->cu = NULL;
22153 cu->per_cu = NULL;
22154
22155 obstack_free (&cu->comp_unit_obstack, NULL);
22156 cu->partial_dies = NULL;
22157 }
22158
22159 /* Free all cached compilation units. */
22160
22161 static void
22162 free_cached_comp_units (void *data)
22163 {
22164 struct dwarf2_per_cu_data *per_cu, **last_chain;
22165
22166 per_cu = dwarf2_per_objfile->read_in_chain;
22167 last_chain = &dwarf2_per_objfile->read_in_chain;
22168 while (per_cu != NULL)
22169 {
22170 struct dwarf2_per_cu_data *next_cu;
22171
22172 next_cu = per_cu->cu->read_in_chain;
22173
22174 free_heap_comp_unit (per_cu->cu);
22175 *last_chain = next_cu;
22176
22177 per_cu = next_cu;
22178 }
22179 }
22180
22181 /* Increase the age counter on each cached compilation unit, and free
22182 any that are too old. */
22183
22184 static void
22185 age_cached_comp_units (void)
22186 {
22187 struct dwarf2_per_cu_data *per_cu, **last_chain;
22188
22189 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
22190 per_cu = dwarf2_per_objfile->read_in_chain;
22191 while (per_cu != NULL)
22192 {
22193 per_cu->cu->last_used ++;
22194 if (per_cu->cu->last_used <= dwarf_max_cache_age)
22195 dwarf2_mark (per_cu->cu);
22196 per_cu = per_cu->cu->read_in_chain;
22197 }
22198
22199 per_cu = dwarf2_per_objfile->read_in_chain;
22200 last_chain = &dwarf2_per_objfile->read_in_chain;
22201 while (per_cu != NULL)
22202 {
22203 struct dwarf2_per_cu_data *next_cu;
22204
22205 next_cu = per_cu->cu->read_in_chain;
22206
22207 if (!per_cu->cu->mark)
22208 {
22209 free_heap_comp_unit (per_cu->cu);
22210 *last_chain = next_cu;
22211 }
22212 else
22213 last_chain = &per_cu->cu->read_in_chain;
22214
22215 per_cu = next_cu;
22216 }
22217 }
22218
22219 /* Remove a single compilation unit from the cache. */
22220
22221 static void
22222 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
22223 {
22224 struct dwarf2_per_cu_data *per_cu, **last_chain;
22225
22226 per_cu = dwarf2_per_objfile->read_in_chain;
22227 last_chain = &dwarf2_per_objfile->read_in_chain;
22228 while (per_cu != NULL)
22229 {
22230 struct dwarf2_per_cu_data *next_cu;
22231
22232 next_cu = per_cu->cu->read_in_chain;
22233
22234 if (per_cu == target_per_cu)
22235 {
22236 free_heap_comp_unit (per_cu->cu);
22237 per_cu->cu = NULL;
22238 *last_chain = next_cu;
22239 break;
22240 }
22241 else
22242 last_chain = &per_cu->cu->read_in_chain;
22243
22244 per_cu = next_cu;
22245 }
22246 }
22247
22248 /* Release all extra memory associated with OBJFILE. */
22249
22250 void
22251 dwarf2_free_objfile (struct objfile *objfile)
22252 {
22253 dwarf2_per_objfile
22254 = (struct dwarf2_per_objfile *) objfile_data (objfile,
22255 dwarf2_objfile_data_key);
22256
22257 if (dwarf2_per_objfile == NULL)
22258 return;
22259
22260 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
22261 free_cached_comp_units (NULL);
22262
22263 if (dwarf2_per_objfile->quick_file_names_table)
22264 htab_delete (dwarf2_per_objfile->quick_file_names_table);
22265
22266 if (dwarf2_per_objfile->line_header_hash)
22267 htab_delete (dwarf2_per_objfile->line_header_hash);
22268
22269 /* Everything else should be on the objfile obstack. */
22270 }
22271
22272 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
22273 We store these in a hash table separate from the DIEs, and preserve them
22274 when the DIEs are flushed out of cache.
22275
22276 The CU "per_cu" pointer is needed because offset alone is not enough to
22277 uniquely identify the type. A file may have multiple .debug_types sections,
22278 or the type may come from a DWO file. Furthermore, while it's more logical
22279 to use per_cu->section+offset, with Fission the section with the data is in
22280 the DWO file but we don't know that section at the point we need it.
22281 We have to use something in dwarf2_per_cu_data (or the pointer to it)
22282 because we can enter the lookup routine, get_die_type_at_offset, from
22283 outside this file, and thus won't necessarily have PER_CU->cu.
22284 Fortunately, PER_CU is stable for the life of the objfile. */
22285
22286 struct dwarf2_per_cu_offset_and_type
22287 {
22288 const struct dwarf2_per_cu_data *per_cu;
22289 sect_offset offset;
22290 struct type *type;
22291 };
22292
22293 /* Hash function for a dwarf2_per_cu_offset_and_type. */
22294
22295 static hashval_t
22296 per_cu_offset_and_type_hash (const void *item)
22297 {
22298 const struct dwarf2_per_cu_offset_and_type *ofs
22299 = (const struct dwarf2_per_cu_offset_and_type *) item;
22300
22301 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
22302 }
22303
22304 /* Equality function for a dwarf2_per_cu_offset_and_type. */
22305
22306 static int
22307 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
22308 {
22309 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
22310 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
22311 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
22312 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
22313
22314 return (ofs_lhs->per_cu == ofs_rhs->per_cu
22315 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
22316 }
22317
22318 /* Set the type associated with DIE to TYPE. Save it in CU's hash
22319 table if necessary. For convenience, return TYPE.
22320
22321 The DIEs reading must have careful ordering to:
22322 * Not cause infite loops trying to read in DIEs as a prerequisite for
22323 reading current DIE.
22324 * Not trying to dereference contents of still incompletely read in types
22325 while reading in other DIEs.
22326 * Enable referencing still incompletely read in types just by a pointer to
22327 the type without accessing its fields.
22328
22329 Therefore caller should follow these rules:
22330 * Try to fetch any prerequisite types we may need to build this DIE type
22331 before building the type and calling set_die_type.
22332 * After building type call set_die_type for current DIE as soon as
22333 possible before fetching more types to complete the current type.
22334 * Make the type as complete as possible before fetching more types. */
22335
22336 static struct type *
22337 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
22338 {
22339 struct dwarf2_per_cu_offset_and_type **slot, ofs;
22340 struct objfile *objfile = cu->objfile;
22341 struct attribute *attr;
22342 struct dynamic_prop prop;
22343
22344 /* For Ada types, make sure that the gnat-specific data is always
22345 initialized (if not already set). There are a few types where
22346 we should not be doing so, because the type-specific area is
22347 already used to hold some other piece of info (eg: TYPE_CODE_FLT
22348 where the type-specific area is used to store the floatformat).
22349 But this is not a problem, because the gnat-specific information
22350 is actually not needed for these types. */
22351 if (need_gnat_info (cu)
22352 && TYPE_CODE (type) != TYPE_CODE_FUNC
22353 && TYPE_CODE (type) != TYPE_CODE_FLT
22354 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
22355 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
22356 && TYPE_CODE (type) != TYPE_CODE_METHOD
22357 && !HAVE_GNAT_AUX_INFO (type))
22358 INIT_GNAT_SPECIFIC (type);
22359
22360 /* Read DW_AT_allocated and set in type. */
22361 attr = dwarf2_attr (die, DW_AT_allocated, cu);
22362 if (attr_form_is_block (attr))
22363 {
22364 if (attr_to_dynamic_prop (attr, die, cu, &prop))
22365 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type, objfile);
22366 }
22367 else if (attr != NULL)
22368 {
22369 complaint (&symfile_complaints,
22370 _("DW_AT_allocated has the wrong form (%s) at DIE 0x%x"),
22371 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
22372 die->offset.sect_off);
22373 }
22374
22375 /* Read DW_AT_associated and set in type. */
22376 attr = dwarf2_attr (die, DW_AT_associated, cu);
22377 if (attr_form_is_block (attr))
22378 {
22379 if (attr_to_dynamic_prop (attr, die, cu, &prop))
22380 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type, objfile);
22381 }
22382 else if (attr != NULL)
22383 {
22384 complaint (&symfile_complaints,
22385 _("DW_AT_associated has the wrong form (%s) at DIE 0x%x"),
22386 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
22387 die->offset.sect_off);
22388 }
22389
22390 /* Read DW_AT_data_location and set in type. */
22391 attr = dwarf2_attr (die, DW_AT_data_location, cu);
22392 if (attr_to_dynamic_prop (attr, die, cu, &prop))
22393 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type, objfile);
22394
22395 if (dwarf2_per_objfile->die_type_hash == NULL)
22396 {
22397 dwarf2_per_objfile->die_type_hash =
22398 htab_create_alloc_ex (127,
22399 per_cu_offset_and_type_hash,
22400 per_cu_offset_and_type_eq,
22401 NULL,
22402 &objfile->objfile_obstack,
22403 hashtab_obstack_allocate,
22404 dummy_obstack_deallocate);
22405 }
22406
22407 ofs.per_cu = cu->per_cu;
22408 ofs.offset = die->offset;
22409 ofs.type = type;
22410 slot = (struct dwarf2_per_cu_offset_and_type **)
22411 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
22412 if (*slot)
22413 complaint (&symfile_complaints,
22414 _("A problem internal to GDB: DIE 0x%x has type already set"),
22415 die->offset.sect_off);
22416 *slot = XOBNEW (&objfile->objfile_obstack,
22417 struct dwarf2_per_cu_offset_and_type);
22418 **slot = ofs;
22419 return type;
22420 }
22421
22422 /* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
22423 or return NULL if the die does not have a saved type. */
22424
22425 static struct type *
22426 get_die_type_at_offset (sect_offset offset,
22427 struct dwarf2_per_cu_data *per_cu)
22428 {
22429 struct dwarf2_per_cu_offset_and_type *slot, ofs;
22430
22431 if (dwarf2_per_objfile->die_type_hash == NULL)
22432 return NULL;
22433
22434 ofs.per_cu = per_cu;
22435 ofs.offset = offset;
22436 slot = ((struct dwarf2_per_cu_offset_and_type *)
22437 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
22438 if (slot)
22439 return slot->type;
22440 else
22441 return NULL;
22442 }
22443
22444 /* Look up the type for DIE in CU in die_type_hash,
22445 or return NULL if DIE does not have a saved type. */
22446
22447 static struct type *
22448 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
22449 {
22450 return get_die_type_at_offset (die->offset, cu->per_cu);
22451 }
22452
22453 /* Add a dependence relationship from CU to REF_PER_CU. */
22454
22455 static void
22456 dwarf2_add_dependence (struct dwarf2_cu *cu,
22457 struct dwarf2_per_cu_data *ref_per_cu)
22458 {
22459 void **slot;
22460
22461 if (cu->dependencies == NULL)
22462 cu->dependencies
22463 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
22464 NULL, &cu->comp_unit_obstack,
22465 hashtab_obstack_allocate,
22466 dummy_obstack_deallocate);
22467
22468 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
22469 if (*slot == NULL)
22470 *slot = ref_per_cu;
22471 }
22472
22473 /* Subroutine of dwarf2_mark to pass to htab_traverse.
22474 Set the mark field in every compilation unit in the
22475 cache that we must keep because we are keeping CU. */
22476
22477 static int
22478 dwarf2_mark_helper (void **slot, void *data)
22479 {
22480 struct dwarf2_per_cu_data *per_cu;
22481
22482 per_cu = (struct dwarf2_per_cu_data *) *slot;
22483
22484 /* cu->dependencies references may not yet have been ever read if QUIT aborts
22485 reading of the chain. As such dependencies remain valid it is not much
22486 useful to track and undo them during QUIT cleanups. */
22487 if (per_cu->cu == NULL)
22488 return 1;
22489
22490 if (per_cu->cu->mark)
22491 return 1;
22492 per_cu->cu->mark = 1;
22493
22494 if (per_cu->cu->dependencies != NULL)
22495 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
22496
22497 return 1;
22498 }
22499
22500 /* Set the mark field in CU and in every other compilation unit in the
22501 cache that we must keep because we are keeping CU. */
22502
22503 static void
22504 dwarf2_mark (struct dwarf2_cu *cu)
22505 {
22506 if (cu->mark)
22507 return;
22508 cu->mark = 1;
22509 if (cu->dependencies != NULL)
22510 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
22511 }
22512
22513 static void
22514 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
22515 {
22516 while (per_cu)
22517 {
22518 per_cu->cu->mark = 0;
22519 per_cu = per_cu->cu->read_in_chain;
22520 }
22521 }
22522
22523 /* Trivial hash function for partial_die_info: the hash value of a DIE
22524 is its offset in .debug_info for this objfile. */
22525
22526 static hashval_t
22527 partial_die_hash (const void *item)
22528 {
22529 const struct partial_die_info *part_die
22530 = (const struct partial_die_info *) item;
22531
22532 return part_die->offset.sect_off;
22533 }
22534
22535 /* Trivial comparison function for partial_die_info structures: two DIEs
22536 are equal if they have the same offset. */
22537
22538 static int
22539 partial_die_eq (const void *item_lhs, const void *item_rhs)
22540 {
22541 const struct partial_die_info *part_die_lhs
22542 = (const struct partial_die_info *) item_lhs;
22543 const struct partial_die_info *part_die_rhs
22544 = (const struct partial_die_info *) item_rhs;
22545
22546 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
22547 }
22548
22549 static struct cmd_list_element *set_dwarf_cmdlist;
22550 static struct cmd_list_element *show_dwarf_cmdlist;
22551
22552 static void
22553 set_dwarf_cmd (char *args, int from_tty)
22554 {
22555 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
22556 gdb_stdout);
22557 }
22558
22559 static void
22560 show_dwarf_cmd (char *args, int from_tty)
22561 {
22562 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
22563 }
22564
22565 /* Free data associated with OBJFILE, if necessary. */
22566
22567 static void
22568 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
22569 {
22570 struct dwarf2_per_objfile *data = (struct dwarf2_per_objfile *) d;
22571 int ix;
22572
22573 /* Make sure we don't accidentally use dwarf2_per_objfile while
22574 cleaning up. */
22575 dwarf2_per_objfile = NULL;
22576
22577 for (ix = 0; ix < data->n_comp_units; ++ix)
22578 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
22579
22580 for (ix = 0; ix < data->n_type_units; ++ix)
22581 VEC_free (dwarf2_per_cu_ptr,
22582 data->all_type_units[ix]->per_cu.imported_symtabs);
22583 xfree (data->all_type_units);
22584
22585 VEC_free (dwarf2_section_info_def, data->types);
22586
22587 if (data->dwo_files)
22588 free_dwo_files (data->dwo_files, objfile);
22589 if (data->dwp_file)
22590 gdb_bfd_unref (data->dwp_file->dbfd);
22591
22592 if (data->dwz_file && data->dwz_file->dwz_bfd)
22593 gdb_bfd_unref (data->dwz_file->dwz_bfd);
22594 }
22595
22596 \f
22597 /* The "save gdb-index" command. */
22598
22599 /* The contents of the hash table we create when building the string
22600 table. */
22601 struct strtab_entry
22602 {
22603 offset_type offset;
22604 const char *str;
22605 };
22606
22607 /* Hash function for a strtab_entry.
22608
22609 Function is used only during write_hash_table so no index format backward
22610 compatibility is needed. */
22611
22612 static hashval_t
22613 hash_strtab_entry (const void *e)
22614 {
22615 const struct strtab_entry *entry = (const struct strtab_entry *) e;
22616 return mapped_index_string_hash (INT_MAX, entry->str);
22617 }
22618
22619 /* Equality function for a strtab_entry. */
22620
22621 static int
22622 eq_strtab_entry (const void *a, const void *b)
22623 {
22624 const struct strtab_entry *ea = (const struct strtab_entry *) a;
22625 const struct strtab_entry *eb = (const struct strtab_entry *) b;
22626 return !strcmp (ea->str, eb->str);
22627 }
22628
22629 /* Create a strtab_entry hash table. */
22630
22631 static htab_t
22632 create_strtab (void)
22633 {
22634 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
22635 xfree, xcalloc, xfree);
22636 }
22637
22638 /* Add a string to the constant pool. Return the string's offset in
22639 host order. */
22640
22641 static offset_type
22642 add_string (htab_t table, struct obstack *cpool, const char *str)
22643 {
22644 void **slot;
22645 struct strtab_entry entry;
22646 struct strtab_entry *result;
22647
22648 entry.str = str;
22649 slot = htab_find_slot (table, &entry, INSERT);
22650 if (*slot)
22651 result = (struct strtab_entry *) *slot;
22652 else
22653 {
22654 result = XNEW (struct strtab_entry);
22655 result->offset = obstack_object_size (cpool);
22656 result->str = str;
22657 obstack_grow_str0 (cpool, str);
22658 *slot = result;
22659 }
22660 return result->offset;
22661 }
22662
22663 /* An entry in the symbol table. */
22664 struct symtab_index_entry
22665 {
22666 /* The name of the symbol. */
22667 const char *name;
22668 /* The offset of the name in the constant pool. */
22669 offset_type index_offset;
22670 /* A sorted vector of the indices of all the CUs that hold an object
22671 of this name. */
22672 VEC (offset_type) *cu_indices;
22673 };
22674
22675 /* The symbol table. This is a power-of-2-sized hash table. */
22676 struct mapped_symtab
22677 {
22678 offset_type n_elements;
22679 offset_type size;
22680 struct symtab_index_entry **data;
22681 };
22682
22683 /* Hash function for a symtab_index_entry. */
22684
22685 static hashval_t
22686 hash_symtab_entry (const void *e)
22687 {
22688 const struct symtab_index_entry *entry
22689 = (const struct symtab_index_entry *) e;
22690 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
22691 sizeof (offset_type) * VEC_length (offset_type,
22692 entry->cu_indices),
22693 0);
22694 }
22695
22696 /* Equality function for a symtab_index_entry. */
22697
22698 static int
22699 eq_symtab_entry (const void *a, const void *b)
22700 {
22701 const struct symtab_index_entry *ea = (const struct symtab_index_entry *) a;
22702 const struct symtab_index_entry *eb = (const struct symtab_index_entry *) b;
22703 int len = VEC_length (offset_type, ea->cu_indices);
22704 if (len != VEC_length (offset_type, eb->cu_indices))
22705 return 0;
22706 return !memcmp (VEC_address (offset_type, ea->cu_indices),
22707 VEC_address (offset_type, eb->cu_indices),
22708 sizeof (offset_type) * len);
22709 }
22710
22711 /* Destroy a symtab_index_entry. */
22712
22713 static void
22714 delete_symtab_entry (void *p)
22715 {
22716 struct symtab_index_entry *entry = (struct symtab_index_entry *) p;
22717 VEC_free (offset_type, entry->cu_indices);
22718 xfree (entry);
22719 }
22720
22721 /* Create a hash table holding symtab_index_entry objects. */
22722
22723 static htab_t
22724 create_symbol_hash_table (void)
22725 {
22726 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
22727 delete_symtab_entry, xcalloc, xfree);
22728 }
22729
22730 /* Create a new mapped symtab object. */
22731
22732 static struct mapped_symtab *
22733 create_mapped_symtab (void)
22734 {
22735 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
22736 symtab->n_elements = 0;
22737 symtab->size = 1024;
22738 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22739 return symtab;
22740 }
22741
22742 /* Destroy a mapped_symtab. */
22743
22744 static void
22745 cleanup_mapped_symtab (void *p)
22746 {
22747 struct mapped_symtab *symtab = (struct mapped_symtab *) p;
22748 /* The contents of the array are freed when the other hash table is
22749 destroyed. */
22750 xfree (symtab->data);
22751 xfree (symtab);
22752 }
22753
22754 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
22755 the slot.
22756
22757 Function is used only during write_hash_table so no index format backward
22758 compatibility is needed. */
22759
22760 static struct symtab_index_entry **
22761 find_slot (struct mapped_symtab *symtab, const char *name)
22762 {
22763 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
22764
22765 index = hash & (symtab->size - 1);
22766 step = ((hash * 17) & (symtab->size - 1)) | 1;
22767
22768 for (;;)
22769 {
22770 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
22771 return &symtab->data[index];
22772 index = (index + step) & (symtab->size - 1);
22773 }
22774 }
22775
22776 /* Expand SYMTAB's hash table. */
22777
22778 static void
22779 hash_expand (struct mapped_symtab *symtab)
22780 {
22781 offset_type old_size = symtab->size;
22782 offset_type i;
22783 struct symtab_index_entry **old_entries = symtab->data;
22784
22785 symtab->size *= 2;
22786 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22787
22788 for (i = 0; i < old_size; ++i)
22789 {
22790 if (old_entries[i])
22791 {
22792 struct symtab_index_entry **slot = find_slot (symtab,
22793 old_entries[i]->name);
22794 *slot = old_entries[i];
22795 }
22796 }
22797
22798 xfree (old_entries);
22799 }
22800
22801 /* Add an entry to SYMTAB. NAME is the name of the symbol.
22802 CU_INDEX is the index of the CU in which the symbol appears.
22803 IS_STATIC is one if the symbol is static, otherwise zero (global). */
22804
22805 static void
22806 add_index_entry (struct mapped_symtab *symtab, const char *name,
22807 int is_static, gdb_index_symbol_kind kind,
22808 offset_type cu_index)
22809 {
22810 struct symtab_index_entry **slot;
22811 offset_type cu_index_and_attrs;
22812
22813 ++symtab->n_elements;
22814 if (4 * symtab->n_elements / 3 >= symtab->size)
22815 hash_expand (symtab);
22816
22817 slot = find_slot (symtab, name);
22818 if (!*slot)
22819 {
22820 *slot = XNEW (struct symtab_index_entry);
22821 (*slot)->name = name;
22822 /* index_offset is set later. */
22823 (*slot)->cu_indices = NULL;
22824 }
22825
22826 cu_index_and_attrs = 0;
22827 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
22828 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
22829 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
22830
22831 /* We don't want to record an index value twice as we want to avoid the
22832 duplication.
22833 We process all global symbols and then all static symbols
22834 (which would allow us to avoid the duplication by only having to check
22835 the last entry pushed), but a symbol could have multiple kinds in one CU.
22836 To keep things simple we don't worry about the duplication here and
22837 sort and uniqufy the list after we've processed all symbols. */
22838 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
22839 }
22840
22841 /* qsort helper routine for uniquify_cu_indices. */
22842
22843 static int
22844 offset_type_compare (const void *ap, const void *bp)
22845 {
22846 offset_type a = *(offset_type *) ap;
22847 offset_type b = *(offset_type *) bp;
22848
22849 return (a > b) - (b > a);
22850 }
22851
22852 /* Sort and remove duplicates of all symbols' cu_indices lists. */
22853
22854 static void
22855 uniquify_cu_indices (struct mapped_symtab *symtab)
22856 {
22857 int i;
22858
22859 for (i = 0; i < symtab->size; ++i)
22860 {
22861 struct symtab_index_entry *entry = symtab->data[i];
22862
22863 if (entry
22864 && entry->cu_indices != NULL)
22865 {
22866 unsigned int next_to_insert, next_to_check;
22867 offset_type last_value;
22868
22869 qsort (VEC_address (offset_type, entry->cu_indices),
22870 VEC_length (offset_type, entry->cu_indices),
22871 sizeof (offset_type), offset_type_compare);
22872
22873 last_value = VEC_index (offset_type, entry->cu_indices, 0);
22874 next_to_insert = 1;
22875 for (next_to_check = 1;
22876 next_to_check < VEC_length (offset_type, entry->cu_indices);
22877 ++next_to_check)
22878 {
22879 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
22880 != last_value)
22881 {
22882 last_value = VEC_index (offset_type, entry->cu_indices,
22883 next_to_check);
22884 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
22885 last_value);
22886 ++next_to_insert;
22887 }
22888 }
22889 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
22890 }
22891 }
22892 }
22893
22894 /* Add a vector of indices to the constant pool. */
22895
22896 static offset_type
22897 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
22898 struct symtab_index_entry *entry)
22899 {
22900 void **slot;
22901
22902 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
22903 if (!*slot)
22904 {
22905 offset_type len = VEC_length (offset_type, entry->cu_indices);
22906 offset_type val = MAYBE_SWAP (len);
22907 offset_type iter;
22908 int i;
22909
22910 *slot = entry;
22911 entry->index_offset = obstack_object_size (cpool);
22912
22913 obstack_grow (cpool, &val, sizeof (val));
22914 for (i = 0;
22915 VEC_iterate (offset_type, entry->cu_indices, i, iter);
22916 ++i)
22917 {
22918 val = MAYBE_SWAP (iter);
22919 obstack_grow (cpool, &val, sizeof (val));
22920 }
22921 }
22922 else
22923 {
22924 struct symtab_index_entry *old_entry
22925 = (struct symtab_index_entry *) *slot;
22926 entry->index_offset = old_entry->index_offset;
22927 entry = old_entry;
22928 }
22929 return entry->index_offset;
22930 }
22931
22932 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
22933 constant pool entries going into the obstack CPOOL. */
22934
22935 static void
22936 write_hash_table (struct mapped_symtab *symtab,
22937 struct obstack *output, struct obstack *cpool)
22938 {
22939 offset_type i;
22940 htab_t symbol_hash_table;
22941 htab_t str_table;
22942
22943 symbol_hash_table = create_symbol_hash_table ();
22944 str_table = create_strtab ();
22945
22946 /* We add all the index vectors to the constant pool first, to
22947 ensure alignment is ok. */
22948 for (i = 0; i < symtab->size; ++i)
22949 {
22950 if (symtab->data[i])
22951 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
22952 }
22953
22954 /* Now write out the hash table. */
22955 for (i = 0; i < symtab->size; ++i)
22956 {
22957 offset_type str_off, vec_off;
22958
22959 if (symtab->data[i])
22960 {
22961 str_off = add_string (str_table, cpool, symtab->data[i]->name);
22962 vec_off = symtab->data[i]->index_offset;
22963 }
22964 else
22965 {
22966 /* While 0 is a valid constant pool index, it is not valid
22967 to have 0 for both offsets. */
22968 str_off = 0;
22969 vec_off = 0;
22970 }
22971
22972 str_off = MAYBE_SWAP (str_off);
22973 vec_off = MAYBE_SWAP (vec_off);
22974
22975 obstack_grow (output, &str_off, sizeof (str_off));
22976 obstack_grow (output, &vec_off, sizeof (vec_off));
22977 }
22978
22979 htab_delete (str_table);
22980 htab_delete (symbol_hash_table);
22981 }
22982
22983 /* Struct to map psymtab to CU index in the index file. */
22984 struct psymtab_cu_index_map
22985 {
22986 struct partial_symtab *psymtab;
22987 unsigned int cu_index;
22988 };
22989
22990 static hashval_t
22991 hash_psymtab_cu_index (const void *item)
22992 {
22993 const struct psymtab_cu_index_map *map
22994 = (const struct psymtab_cu_index_map *) item;
22995
22996 return htab_hash_pointer (map->psymtab);
22997 }
22998
22999 static int
23000 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
23001 {
23002 const struct psymtab_cu_index_map *lhs
23003 = (const struct psymtab_cu_index_map *) item_lhs;
23004 const struct psymtab_cu_index_map *rhs
23005 = (const struct psymtab_cu_index_map *) item_rhs;
23006
23007 return lhs->psymtab == rhs->psymtab;
23008 }
23009
23010 /* Helper struct for building the address table. */
23011 struct addrmap_index_data
23012 {
23013 struct objfile *objfile;
23014 struct obstack *addr_obstack;
23015 htab_t cu_index_htab;
23016
23017 /* Non-zero if the previous_* fields are valid.
23018 We can't write an entry until we see the next entry (since it is only then
23019 that we know the end of the entry). */
23020 int previous_valid;
23021 /* Index of the CU in the table of all CUs in the index file. */
23022 unsigned int previous_cu_index;
23023 /* Start address of the CU. */
23024 CORE_ADDR previous_cu_start;
23025 };
23026
23027 /* Write an address entry to OBSTACK. */
23028
23029 static void
23030 add_address_entry (struct objfile *objfile, struct obstack *obstack,
23031 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
23032 {
23033 offset_type cu_index_to_write;
23034 gdb_byte addr[8];
23035 CORE_ADDR baseaddr;
23036
23037 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
23038
23039 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
23040 obstack_grow (obstack, addr, 8);
23041 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
23042 obstack_grow (obstack, addr, 8);
23043 cu_index_to_write = MAYBE_SWAP (cu_index);
23044 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
23045 }
23046
23047 /* Worker function for traversing an addrmap to build the address table. */
23048
23049 static int
23050 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
23051 {
23052 struct addrmap_index_data *data = (struct addrmap_index_data *) datap;
23053 struct partial_symtab *pst = (struct partial_symtab *) obj;
23054
23055 if (data->previous_valid)
23056 add_address_entry (data->objfile, data->addr_obstack,
23057 data->previous_cu_start, start_addr,
23058 data->previous_cu_index);
23059
23060 data->previous_cu_start = start_addr;
23061 if (pst != NULL)
23062 {
23063 struct psymtab_cu_index_map find_map, *map;
23064 find_map.psymtab = pst;
23065 map = ((struct psymtab_cu_index_map *)
23066 htab_find (data->cu_index_htab, &find_map));
23067 gdb_assert (map != NULL);
23068 data->previous_cu_index = map->cu_index;
23069 data->previous_valid = 1;
23070 }
23071 else
23072 data->previous_valid = 0;
23073
23074 return 0;
23075 }
23076
23077 /* Write OBJFILE's address map to OBSTACK.
23078 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
23079 in the index file. */
23080
23081 static void
23082 write_address_map (struct objfile *objfile, struct obstack *obstack,
23083 htab_t cu_index_htab)
23084 {
23085 struct addrmap_index_data addrmap_index_data;
23086
23087 /* When writing the address table, we have to cope with the fact that
23088 the addrmap iterator only provides the start of a region; we have to
23089 wait until the next invocation to get the start of the next region. */
23090
23091 addrmap_index_data.objfile = objfile;
23092 addrmap_index_data.addr_obstack = obstack;
23093 addrmap_index_data.cu_index_htab = cu_index_htab;
23094 addrmap_index_data.previous_valid = 0;
23095
23096 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
23097 &addrmap_index_data);
23098
23099 /* It's highly unlikely the last entry (end address = 0xff...ff)
23100 is valid, but we should still handle it.
23101 The end address is recorded as the start of the next region, but that
23102 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
23103 anyway. */
23104 if (addrmap_index_data.previous_valid)
23105 add_address_entry (objfile, obstack,
23106 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
23107 addrmap_index_data.previous_cu_index);
23108 }
23109
23110 /* Return the symbol kind of PSYM. */
23111
23112 static gdb_index_symbol_kind
23113 symbol_kind (struct partial_symbol *psym)
23114 {
23115 domain_enum domain = PSYMBOL_DOMAIN (psym);
23116 enum address_class aclass = PSYMBOL_CLASS (psym);
23117
23118 switch (domain)
23119 {
23120 case VAR_DOMAIN:
23121 switch (aclass)
23122 {
23123 case LOC_BLOCK:
23124 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
23125 case LOC_TYPEDEF:
23126 return GDB_INDEX_SYMBOL_KIND_TYPE;
23127 case LOC_COMPUTED:
23128 case LOC_CONST_BYTES:
23129 case LOC_OPTIMIZED_OUT:
23130 case LOC_STATIC:
23131 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23132 case LOC_CONST:
23133 /* Note: It's currently impossible to recognize psyms as enum values
23134 short of reading the type info. For now punt. */
23135 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23136 default:
23137 /* There are other LOC_FOO values that one might want to classify
23138 as variables, but dwarf2read.c doesn't currently use them. */
23139 return GDB_INDEX_SYMBOL_KIND_OTHER;
23140 }
23141 case STRUCT_DOMAIN:
23142 return GDB_INDEX_SYMBOL_KIND_TYPE;
23143 default:
23144 return GDB_INDEX_SYMBOL_KIND_OTHER;
23145 }
23146 }
23147
23148 /* Add a list of partial symbols to SYMTAB. */
23149
23150 static void
23151 write_psymbols (struct mapped_symtab *symtab,
23152 htab_t psyms_seen,
23153 struct partial_symbol **psymp,
23154 int count,
23155 offset_type cu_index,
23156 int is_static)
23157 {
23158 for (; count-- > 0; ++psymp)
23159 {
23160 struct partial_symbol *psym = *psymp;
23161 void **slot;
23162
23163 if (SYMBOL_LANGUAGE (psym) == language_ada)
23164 error (_("Ada is not currently supported by the index"));
23165
23166 /* Only add a given psymbol once. */
23167 slot = htab_find_slot (psyms_seen, psym, INSERT);
23168 if (!*slot)
23169 {
23170 gdb_index_symbol_kind kind = symbol_kind (psym);
23171
23172 *slot = psym;
23173 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
23174 is_static, kind, cu_index);
23175 }
23176 }
23177 }
23178
23179 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
23180 exception if there is an error. */
23181
23182 static void
23183 write_obstack (FILE *file, struct obstack *obstack)
23184 {
23185 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
23186 file)
23187 != obstack_object_size (obstack))
23188 error (_("couldn't data write to file"));
23189 }
23190
23191 /* Unlink a file if the argument is not NULL. */
23192
23193 static void
23194 unlink_if_set (void *p)
23195 {
23196 char **filename = (char **) p;
23197 if (*filename)
23198 unlink (*filename);
23199 }
23200
23201 /* A helper struct used when iterating over debug_types. */
23202 struct signatured_type_index_data
23203 {
23204 struct objfile *objfile;
23205 struct mapped_symtab *symtab;
23206 struct obstack *types_list;
23207 htab_t psyms_seen;
23208 int cu_index;
23209 };
23210
23211 /* A helper function that writes a single signatured_type to an
23212 obstack. */
23213
23214 static int
23215 write_one_signatured_type (void **slot, void *d)
23216 {
23217 struct signatured_type_index_data *info
23218 = (struct signatured_type_index_data *) d;
23219 struct signatured_type *entry = (struct signatured_type *) *slot;
23220 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
23221 gdb_byte val[8];
23222
23223 write_psymbols (info->symtab,
23224 info->psyms_seen,
23225 info->objfile->global_psymbols.list
23226 + psymtab->globals_offset,
23227 psymtab->n_global_syms, info->cu_index,
23228 0);
23229 write_psymbols (info->symtab,
23230 info->psyms_seen,
23231 info->objfile->static_psymbols.list
23232 + psymtab->statics_offset,
23233 psymtab->n_static_syms, info->cu_index,
23234 1);
23235
23236 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23237 entry->per_cu.offset.sect_off);
23238 obstack_grow (info->types_list, val, 8);
23239 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23240 entry->type_offset_in_tu.cu_off);
23241 obstack_grow (info->types_list, val, 8);
23242 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
23243 obstack_grow (info->types_list, val, 8);
23244
23245 ++info->cu_index;
23246
23247 return 1;
23248 }
23249
23250 /* Recurse into all "included" dependencies and write their symbols as
23251 if they appeared in this psymtab. */
23252
23253 static void
23254 recursively_write_psymbols (struct objfile *objfile,
23255 struct partial_symtab *psymtab,
23256 struct mapped_symtab *symtab,
23257 htab_t psyms_seen,
23258 offset_type cu_index)
23259 {
23260 int i;
23261
23262 for (i = 0; i < psymtab->number_of_dependencies; ++i)
23263 if (psymtab->dependencies[i]->user != NULL)
23264 recursively_write_psymbols (objfile, psymtab->dependencies[i],
23265 symtab, psyms_seen, cu_index);
23266
23267 write_psymbols (symtab,
23268 psyms_seen,
23269 objfile->global_psymbols.list + psymtab->globals_offset,
23270 psymtab->n_global_syms, cu_index,
23271 0);
23272 write_psymbols (symtab,
23273 psyms_seen,
23274 objfile->static_psymbols.list + psymtab->statics_offset,
23275 psymtab->n_static_syms, cu_index,
23276 1);
23277 }
23278
23279 /* Create an index file for OBJFILE in the directory DIR. */
23280
23281 static void
23282 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
23283 {
23284 struct cleanup *cleanup;
23285 char *filename, *cleanup_filename;
23286 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
23287 struct obstack cu_list, types_cu_list;
23288 int i;
23289 FILE *out_file;
23290 struct mapped_symtab *symtab;
23291 offset_type val, size_of_contents, total_len;
23292 struct stat st;
23293 htab_t psyms_seen;
23294 htab_t cu_index_htab;
23295 struct psymtab_cu_index_map *psymtab_cu_index_map;
23296
23297 if (dwarf2_per_objfile->using_index)
23298 error (_("Cannot use an index to create the index"));
23299
23300 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
23301 error (_("Cannot make an index when the file has multiple .debug_types sections"));
23302
23303 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
23304 return;
23305
23306 if (stat (objfile_name (objfile), &st) < 0)
23307 perror_with_name (objfile_name (objfile));
23308
23309 filename = concat (dir, SLASH_STRING, lbasename (objfile_name (objfile)),
23310 INDEX_SUFFIX, (char *) NULL);
23311 cleanup = make_cleanup (xfree, filename);
23312
23313 out_file = gdb_fopen_cloexec (filename, "wb");
23314 if (!out_file)
23315 error (_("Can't open `%s' for writing"), filename);
23316
23317 cleanup_filename = filename;
23318 make_cleanup (unlink_if_set, &cleanup_filename);
23319
23320 symtab = create_mapped_symtab ();
23321 make_cleanup (cleanup_mapped_symtab, symtab);
23322
23323 obstack_init (&addr_obstack);
23324 make_cleanup_obstack_free (&addr_obstack);
23325
23326 obstack_init (&cu_list);
23327 make_cleanup_obstack_free (&cu_list);
23328
23329 obstack_init (&types_cu_list);
23330 make_cleanup_obstack_free (&types_cu_list);
23331
23332 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
23333 NULL, xcalloc, xfree);
23334 make_cleanup_htab_delete (psyms_seen);
23335
23336 /* While we're scanning CU's create a table that maps a psymtab pointer
23337 (which is what addrmap records) to its index (which is what is recorded
23338 in the index file). This will later be needed to write the address
23339 table. */
23340 cu_index_htab = htab_create_alloc (100,
23341 hash_psymtab_cu_index,
23342 eq_psymtab_cu_index,
23343 NULL, xcalloc, xfree);
23344 make_cleanup_htab_delete (cu_index_htab);
23345 psymtab_cu_index_map = XNEWVEC (struct psymtab_cu_index_map,
23346 dwarf2_per_objfile->n_comp_units);
23347 make_cleanup (xfree, psymtab_cu_index_map);
23348
23349 /* The CU list is already sorted, so we don't need to do additional
23350 work here. Also, the debug_types entries do not appear in
23351 all_comp_units, but only in their own hash table. */
23352 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
23353 {
23354 struct dwarf2_per_cu_data *per_cu
23355 = dwarf2_per_objfile->all_comp_units[i];
23356 struct partial_symtab *psymtab = per_cu->v.psymtab;
23357 gdb_byte val[8];
23358 struct psymtab_cu_index_map *map;
23359 void **slot;
23360
23361 /* CU of a shared file from 'dwz -m' may be unused by this main file.
23362 It may be referenced from a local scope but in such case it does not
23363 need to be present in .gdb_index. */
23364 if (psymtab == NULL)
23365 continue;
23366
23367 if (psymtab->user == NULL)
23368 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
23369
23370 map = &psymtab_cu_index_map[i];
23371 map->psymtab = psymtab;
23372 map->cu_index = i;
23373 slot = htab_find_slot (cu_index_htab, map, INSERT);
23374 gdb_assert (slot != NULL);
23375 gdb_assert (*slot == NULL);
23376 *slot = map;
23377
23378 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23379 per_cu->offset.sect_off);
23380 obstack_grow (&cu_list, val, 8);
23381 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
23382 obstack_grow (&cu_list, val, 8);
23383 }
23384
23385 /* Dump the address map. */
23386 write_address_map (objfile, &addr_obstack, cu_index_htab);
23387
23388 /* Write out the .debug_type entries, if any. */
23389 if (dwarf2_per_objfile->signatured_types)
23390 {
23391 struct signatured_type_index_data sig_data;
23392
23393 sig_data.objfile = objfile;
23394 sig_data.symtab = symtab;
23395 sig_data.types_list = &types_cu_list;
23396 sig_data.psyms_seen = psyms_seen;
23397 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
23398 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
23399 write_one_signatured_type, &sig_data);
23400 }
23401
23402 /* Now that we've processed all symbols we can shrink their cu_indices
23403 lists. */
23404 uniquify_cu_indices (symtab);
23405
23406 obstack_init (&constant_pool);
23407 make_cleanup_obstack_free (&constant_pool);
23408 obstack_init (&symtab_obstack);
23409 make_cleanup_obstack_free (&symtab_obstack);
23410 write_hash_table (symtab, &symtab_obstack, &constant_pool);
23411
23412 obstack_init (&contents);
23413 make_cleanup_obstack_free (&contents);
23414 size_of_contents = 6 * sizeof (offset_type);
23415 total_len = size_of_contents;
23416
23417 /* The version number. */
23418 val = MAYBE_SWAP (8);
23419 obstack_grow (&contents, &val, sizeof (val));
23420
23421 /* The offset of the CU list from the start of the file. */
23422 val = MAYBE_SWAP (total_len);
23423 obstack_grow (&contents, &val, sizeof (val));
23424 total_len += obstack_object_size (&cu_list);
23425
23426 /* The offset of the types CU list from the start of the file. */
23427 val = MAYBE_SWAP (total_len);
23428 obstack_grow (&contents, &val, sizeof (val));
23429 total_len += obstack_object_size (&types_cu_list);
23430
23431 /* The offset of the address table from the start of the file. */
23432 val = MAYBE_SWAP (total_len);
23433 obstack_grow (&contents, &val, sizeof (val));
23434 total_len += obstack_object_size (&addr_obstack);
23435
23436 /* The offset of the symbol table from the start of the file. */
23437 val = MAYBE_SWAP (total_len);
23438 obstack_grow (&contents, &val, sizeof (val));
23439 total_len += obstack_object_size (&symtab_obstack);
23440
23441 /* The offset of the constant pool from the start of the file. */
23442 val = MAYBE_SWAP (total_len);
23443 obstack_grow (&contents, &val, sizeof (val));
23444 total_len += obstack_object_size (&constant_pool);
23445
23446 gdb_assert (obstack_object_size (&contents) == size_of_contents);
23447
23448 write_obstack (out_file, &contents);
23449 write_obstack (out_file, &cu_list);
23450 write_obstack (out_file, &types_cu_list);
23451 write_obstack (out_file, &addr_obstack);
23452 write_obstack (out_file, &symtab_obstack);
23453 write_obstack (out_file, &constant_pool);
23454
23455 fclose (out_file);
23456
23457 /* We want to keep the file, so we set cleanup_filename to NULL
23458 here. See unlink_if_set. */
23459 cleanup_filename = NULL;
23460
23461 do_cleanups (cleanup);
23462 }
23463
23464 /* Implementation of the `save gdb-index' command.
23465
23466 Note that the file format used by this command is documented in the
23467 GDB manual. Any changes here must be documented there. */
23468
23469 static void
23470 save_gdb_index_command (char *arg, int from_tty)
23471 {
23472 struct objfile *objfile;
23473
23474 if (!arg || !*arg)
23475 error (_("usage: save gdb-index DIRECTORY"));
23476
23477 ALL_OBJFILES (objfile)
23478 {
23479 struct stat st;
23480
23481 /* If the objfile does not correspond to an actual file, skip it. */
23482 if (stat (objfile_name (objfile), &st) < 0)
23483 continue;
23484
23485 dwarf2_per_objfile
23486 = (struct dwarf2_per_objfile *) objfile_data (objfile,
23487 dwarf2_objfile_data_key);
23488 if (dwarf2_per_objfile)
23489 {
23490
23491 TRY
23492 {
23493 write_psymtabs_to_index (objfile, arg);
23494 }
23495 CATCH (except, RETURN_MASK_ERROR)
23496 {
23497 exception_fprintf (gdb_stderr, except,
23498 _("Error while writing index for `%s': "),
23499 objfile_name (objfile));
23500 }
23501 END_CATCH
23502 }
23503 }
23504 }
23505
23506 \f
23507
23508 int dwarf_always_disassemble;
23509
23510 static void
23511 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
23512 struct cmd_list_element *c, const char *value)
23513 {
23514 fprintf_filtered (file,
23515 _("Whether to always disassemble "
23516 "DWARF expressions is %s.\n"),
23517 value);
23518 }
23519
23520 static void
23521 show_check_physname (struct ui_file *file, int from_tty,
23522 struct cmd_list_element *c, const char *value)
23523 {
23524 fprintf_filtered (file,
23525 _("Whether to check \"physname\" is %s.\n"),
23526 value);
23527 }
23528
23529 void _initialize_dwarf2_read (void);
23530
23531 void
23532 _initialize_dwarf2_read (void)
23533 {
23534 struct cmd_list_element *c;
23535
23536 dwarf2_objfile_data_key
23537 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
23538
23539 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
23540 Set DWARF specific variables.\n\
23541 Configure DWARF variables such as the cache size"),
23542 &set_dwarf_cmdlist, "maintenance set dwarf ",
23543 0/*allow-unknown*/, &maintenance_set_cmdlist);
23544
23545 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
23546 Show DWARF specific variables\n\
23547 Show DWARF variables such as the cache size"),
23548 &show_dwarf_cmdlist, "maintenance show dwarf ",
23549 0/*allow-unknown*/, &maintenance_show_cmdlist);
23550
23551 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
23552 &dwarf_max_cache_age, _("\
23553 Set the upper bound on the age of cached DWARF compilation units."), _("\
23554 Show the upper bound on the age of cached DWARF compilation units."), _("\
23555 A higher limit means that cached compilation units will be stored\n\
23556 in memory longer, and more total memory will be used. Zero disables\n\
23557 caching, which can slow down startup."),
23558 NULL,
23559 show_dwarf_max_cache_age,
23560 &set_dwarf_cmdlist,
23561 &show_dwarf_cmdlist);
23562
23563 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
23564 &dwarf_always_disassemble, _("\
23565 Set whether `info address' always disassembles DWARF expressions."), _("\
23566 Show whether `info address' always disassembles DWARF expressions."), _("\
23567 When enabled, DWARF expressions are always printed in an assembly-like\n\
23568 syntax. When disabled, expressions will be printed in a more\n\
23569 conversational style, when possible."),
23570 NULL,
23571 show_dwarf_always_disassemble,
23572 &set_dwarf_cmdlist,
23573 &show_dwarf_cmdlist);
23574
23575 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
23576 Set debugging of the DWARF reader."), _("\
23577 Show debugging of the DWARF reader."), _("\
23578 When enabled (non-zero), debugging messages are printed during DWARF\n\
23579 reading and symtab expansion. A value of 1 (one) provides basic\n\
23580 information. A value greater than 1 provides more verbose information."),
23581 NULL,
23582 NULL,
23583 &setdebuglist, &showdebuglist);
23584
23585 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
23586 Set debugging of the DWARF DIE reader."), _("\
23587 Show debugging of the DWARF DIE reader."), _("\
23588 When enabled (non-zero), DIEs are dumped after they are read in.\n\
23589 The value is the maximum depth to print."),
23590 NULL,
23591 NULL,
23592 &setdebuglist, &showdebuglist);
23593
23594 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
23595 Set debugging of the dwarf line reader."), _("\
23596 Show debugging of the dwarf line reader."), _("\
23597 When enabled (non-zero), line number entries are dumped as they are read in.\n\
23598 A value of 1 (one) provides basic information.\n\
23599 A value greater than 1 provides more verbose information."),
23600 NULL,
23601 NULL,
23602 &setdebuglist, &showdebuglist);
23603
23604 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
23605 Set cross-checking of \"physname\" code against demangler."), _("\
23606 Show cross-checking of \"physname\" code against demangler."), _("\
23607 When enabled, GDB's internal \"physname\" code is checked against\n\
23608 the demangler."),
23609 NULL, show_check_physname,
23610 &setdebuglist, &showdebuglist);
23611
23612 add_setshow_boolean_cmd ("use-deprecated-index-sections",
23613 no_class, &use_deprecated_index_sections, _("\
23614 Set whether to use deprecated gdb_index sections."), _("\
23615 Show whether to use deprecated gdb_index sections."), _("\
23616 When enabled, deprecated .gdb_index sections are used anyway.\n\
23617 Normally they are ignored either because of a missing feature or\n\
23618 performance issue.\n\
23619 Warning: This option must be enabled before gdb reads the file."),
23620 NULL,
23621 NULL,
23622 &setlist, &showlist);
23623
23624 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
23625 _("\
23626 Save a gdb-index file.\n\
23627 Usage: save gdb-index DIRECTORY"),
23628 &save_cmdlist);
23629 set_cmd_completer (c, filename_completer);
23630
23631 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
23632 &dwarf2_locexpr_funcs);
23633 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
23634 &dwarf2_loclist_funcs);
23635
23636 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
23637 &dwarf2_block_frame_base_locexpr_funcs);
23638 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
23639 &dwarf2_block_frame_base_loclist_funcs);
23640 }
This page took 0.576126 seconds and 4 git commands to generate.