1330c372ccf49c0d49ddb5d01bef25e84636da7c
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2018 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "psympriv.h"
57 #include <sys/stat.h>
58 #include "completer.h"
59 #include "vec.h"
60 #include "c-lang.h"
61 #include "go-lang.h"
62 #include "valprint.h"
63 #include "gdbcore.h" /* for gnutarget */
64 #include "gdb/gdb-index.h"
65 #include <ctype.h>
66 #include "gdb_bfd.h"
67 #include "f-lang.h"
68 #include "source.h"
69 #include "filestuff.h"
70 #include "build-id.h"
71 #include "namespace.h"
72 #include "common/gdb_unlinker.h"
73 #include "common/function-view.h"
74 #include "common/gdb_optional.h"
75 #include "common/underlying.h"
76 #include "common/byte-vector.h"
77 #include "common/hash_enum.h"
78 #include "filename-seen-cache.h"
79 #include "producer.h"
80 #include <fcntl.h>
81 #include <sys/types.h>
82 #include <algorithm>
83 #include <unordered_set>
84 #include <unordered_map>
85 #include "selftest.h"
86 #include <cmath>
87 #include <set>
88 #include <forward_list>
89
90 typedef struct symbol *symbolp;
91 DEF_VEC_P (symbolp);
92
93 /* When == 1, print basic high level tracing messages.
94 When > 1, be more verbose.
95 This is in contrast to the low level DIE reading of dwarf_die_debug. */
96 static unsigned int dwarf_read_debug = 0;
97
98 /* When non-zero, dump DIEs after they are read in. */
99 static unsigned int dwarf_die_debug = 0;
100
101 /* When non-zero, dump line number entries as they are read in. */
102 static unsigned int dwarf_line_debug = 0;
103
104 /* When non-zero, cross-check physname against demangler. */
105 static int check_physname = 0;
106
107 /* When non-zero, do not reject deprecated .gdb_index sections. */
108 static int use_deprecated_index_sections = 0;
109
110 static const struct objfile_data *dwarf2_objfile_data_key;
111
112 /* The "aclass" indices for various kinds of computed DWARF symbols. */
113
114 static int dwarf2_locexpr_index;
115 static int dwarf2_loclist_index;
116 static int dwarf2_locexpr_block_index;
117 static int dwarf2_loclist_block_index;
118
119 /* A descriptor for dwarf sections.
120
121 S.ASECTION, SIZE are typically initialized when the objfile is first
122 scanned. BUFFER, READIN are filled in later when the section is read.
123 If the section contained compressed data then SIZE is updated to record
124 the uncompressed size of the section.
125
126 DWP file format V2 introduces a wrinkle that is easiest to handle by
127 creating the concept of virtual sections contained within a real section.
128 In DWP V2 the sections of the input DWO files are concatenated together
129 into one section, but section offsets are kept relative to the original
130 input section.
131 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
132 the real section this "virtual" section is contained in, and BUFFER,SIZE
133 describe the virtual section. */
134
135 struct dwarf2_section_info
136 {
137 union
138 {
139 /* If this is a real section, the bfd section. */
140 asection *section;
141 /* If this is a virtual section, pointer to the containing ("real")
142 section. */
143 struct dwarf2_section_info *containing_section;
144 } s;
145 /* Pointer to section data, only valid if readin. */
146 const gdb_byte *buffer;
147 /* The size of the section, real or virtual. */
148 bfd_size_type size;
149 /* If this is a virtual section, the offset in the real section.
150 Only valid if is_virtual. */
151 bfd_size_type virtual_offset;
152 /* True if we have tried to read this section. */
153 char readin;
154 /* True if this is a virtual section, False otherwise.
155 This specifies which of s.section and s.containing_section to use. */
156 char is_virtual;
157 };
158
159 typedef struct dwarf2_section_info dwarf2_section_info_def;
160 DEF_VEC_O (dwarf2_section_info_def);
161
162 /* All offsets in the index are of this type. It must be
163 architecture-independent. */
164 typedef uint32_t offset_type;
165
166 DEF_VEC_I (offset_type);
167
168 /* Ensure only legit values are used. */
169 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
170 do { \
171 gdb_assert ((unsigned int) (value) <= 1); \
172 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
173 } while (0)
174
175 /* Ensure only legit values are used. */
176 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
177 do { \
178 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
179 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
180 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
181 } while (0)
182
183 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
184 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
185 do { \
186 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
187 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
188 } while (0)
189
190 #if WORDS_BIGENDIAN
191
192 /* Convert VALUE between big- and little-endian. */
193
194 static offset_type
195 byte_swap (offset_type value)
196 {
197 offset_type result;
198
199 result = (value & 0xff) << 24;
200 result |= (value & 0xff00) << 8;
201 result |= (value & 0xff0000) >> 8;
202 result |= (value & 0xff000000) >> 24;
203 return result;
204 }
205
206 #define MAYBE_SWAP(V) byte_swap (V)
207
208 #else
209 #define MAYBE_SWAP(V) static_cast<offset_type> (V)
210 #endif /* WORDS_BIGENDIAN */
211
212 /* An index into a (C++) symbol name component in a symbol name as
213 recorded in the mapped_index's symbol table. For each C++ symbol
214 in the symbol table, we record one entry for the start of each
215 component in the symbol in a table of name components, and then
216 sort the table, in order to be able to binary search symbol names,
217 ignoring leading namespaces, both completion and regular look up.
218 For example, for symbol "A::B::C", we'll have an entry that points
219 to "A::B::C", another that points to "B::C", and another for "C".
220 Note that function symbols in GDB index have no parameter
221 information, just the function/method names. You can convert a
222 name_component to a "const char *" using the
223 'mapped_index::symbol_name_at(offset_type)' method. */
224
225 struct name_component
226 {
227 /* Offset in the symbol name where the component starts. Stored as
228 a (32-bit) offset instead of a pointer to save memory and improve
229 locality on 64-bit architectures. */
230 offset_type name_offset;
231
232 /* The symbol's index in the symbol and constant pool tables of a
233 mapped_index. */
234 offset_type idx;
235 };
236
237 /* Base class containing bits shared by both .gdb_index and
238 .debug_name indexes. */
239
240 struct mapped_index_base
241 {
242 /* The name_component table (a sorted vector). See name_component's
243 description above. */
244 std::vector<name_component> name_components;
245
246 /* How NAME_COMPONENTS is sorted. */
247 enum case_sensitivity name_components_casing;
248
249 /* Return the number of names in the symbol table. */
250 virtual size_t symbol_name_count () const = 0;
251
252 /* Get the name of the symbol at IDX in the symbol table. */
253 virtual const char *symbol_name_at (offset_type idx) const = 0;
254
255 /* Return whether the name at IDX in the symbol table should be
256 ignored. */
257 virtual bool symbol_name_slot_invalid (offset_type idx) const
258 {
259 return false;
260 }
261
262 /* Build the symbol name component sorted vector, if we haven't
263 yet. */
264 void build_name_components ();
265
266 /* Returns the lower (inclusive) and upper (exclusive) bounds of the
267 possible matches for LN_NO_PARAMS in the name component
268 vector. */
269 std::pair<std::vector<name_component>::const_iterator,
270 std::vector<name_component>::const_iterator>
271 find_name_components_bounds (const lookup_name_info &ln_no_params) const;
272
273 /* Prevent deleting/destroying via a base class pointer. */
274 protected:
275 ~mapped_index_base() = default;
276 };
277
278 /* A description of the mapped index. The file format is described in
279 a comment by the code that writes the index. */
280 struct mapped_index final : public mapped_index_base
281 {
282 /* A slot/bucket in the symbol table hash. */
283 struct symbol_table_slot
284 {
285 const offset_type name;
286 const offset_type vec;
287 };
288
289 /* Index data format version. */
290 int version;
291
292 /* The total length of the buffer. */
293 off_t total_size;
294
295 /* The address table data. */
296 gdb::array_view<const gdb_byte> address_table;
297
298 /* The symbol table, implemented as a hash table. */
299 gdb::array_view<symbol_table_slot> symbol_table;
300
301 /* A pointer to the constant pool. */
302 const char *constant_pool;
303
304 bool symbol_name_slot_invalid (offset_type idx) const override
305 {
306 const auto &bucket = this->symbol_table[idx];
307 return bucket.name == 0 && bucket.vec;
308 }
309
310 /* Convenience method to get at the name of the symbol at IDX in the
311 symbol table. */
312 const char *symbol_name_at (offset_type idx) const override
313 { return this->constant_pool + MAYBE_SWAP (this->symbol_table[idx].name); }
314
315 size_t symbol_name_count () const override
316 { return this->symbol_table.size (); }
317 };
318
319 /* A description of the mapped .debug_names.
320 Uninitialized map has CU_COUNT 0. */
321 struct mapped_debug_names final : public mapped_index_base
322 {
323 mapped_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile_)
324 : dwarf2_per_objfile (dwarf2_per_objfile_)
325 {}
326
327 struct dwarf2_per_objfile *dwarf2_per_objfile;
328 bfd_endian dwarf5_byte_order;
329 bool dwarf5_is_dwarf64;
330 bool augmentation_is_gdb;
331 uint8_t offset_size;
332 uint32_t cu_count = 0;
333 uint32_t tu_count, bucket_count, name_count;
334 const gdb_byte *cu_table_reordered, *tu_table_reordered;
335 const uint32_t *bucket_table_reordered, *hash_table_reordered;
336 const gdb_byte *name_table_string_offs_reordered;
337 const gdb_byte *name_table_entry_offs_reordered;
338 const gdb_byte *entry_pool;
339
340 struct index_val
341 {
342 ULONGEST dwarf_tag;
343 struct attr
344 {
345 /* Attribute name DW_IDX_*. */
346 ULONGEST dw_idx;
347
348 /* Attribute form DW_FORM_*. */
349 ULONGEST form;
350
351 /* Value if FORM is DW_FORM_implicit_const. */
352 LONGEST implicit_const;
353 };
354 std::vector<attr> attr_vec;
355 };
356
357 std::unordered_map<ULONGEST, index_val> abbrev_map;
358
359 const char *namei_to_name (uint32_t namei) const;
360
361 /* Implementation of the mapped_index_base virtual interface, for
362 the name_components cache. */
363
364 const char *symbol_name_at (offset_type idx) const override
365 { return namei_to_name (idx); }
366
367 size_t symbol_name_count () const override
368 { return this->name_count; }
369 };
370
371 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
372 DEF_VEC_P (dwarf2_per_cu_ptr);
373
374 struct tu_stats
375 {
376 int nr_uniq_abbrev_tables;
377 int nr_symtabs;
378 int nr_symtab_sharers;
379 int nr_stmt_less_type_units;
380 int nr_all_type_units_reallocs;
381 };
382
383 /* Collection of data recorded per objfile.
384 This hangs off of dwarf2_objfile_data_key. */
385
386 struct dwarf2_per_objfile
387 {
388 /* Construct a dwarf2_per_objfile for OBJFILE. NAMES points to the
389 dwarf2 section names, or is NULL if the standard ELF names are
390 used. */
391 dwarf2_per_objfile (struct objfile *objfile,
392 const dwarf2_debug_sections *names);
393
394 ~dwarf2_per_objfile ();
395
396 DISABLE_COPY_AND_ASSIGN (dwarf2_per_objfile);
397
398 /* Free all cached compilation units. */
399 void free_cached_comp_units ();
400 private:
401 /* This function is mapped across the sections and remembers the
402 offset and size of each of the debugging sections we are
403 interested in. */
404 void locate_sections (bfd *abfd, asection *sectp,
405 const dwarf2_debug_sections &names);
406
407 public:
408 dwarf2_section_info info {};
409 dwarf2_section_info abbrev {};
410 dwarf2_section_info line {};
411 dwarf2_section_info loc {};
412 dwarf2_section_info loclists {};
413 dwarf2_section_info macinfo {};
414 dwarf2_section_info macro {};
415 dwarf2_section_info str {};
416 dwarf2_section_info line_str {};
417 dwarf2_section_info ranges {};
418 dwarf2_section_info rnglists {};
419 dwarf2_section_info addr {};
420 dwarf2_section_info frame {};
421 dwarf2_section_info eh_frame {};
422 dwarf2_section_info gdb_index {};
423 dwarf2_section_info debug_names {};
424 dwarf2_section_info debug_aranges {};
425
426 VEC (dwarf2_section_info_def) *types = NULL;
427
428 /* Back link. */
429 struct objfile *objfile = NULL;
430
431 /* Table of all the compilation units. This is used to locate
432 the target compilation unit of a particular reference. */
433 struct dwarf2_per_cu_data **all_comp_units = NULL;
434
435 /* The number of compilation units in ALL_COMP_UNITS. */
436 int n_comp_units = 0;
437
438 /* The number of .debug_types-related CUs. */
439 int n_type_units = 0;
440
441 /* The number of elements allocated in all_type_units.
442 If there are skeleton-less TUs, we add them to all_type_units lazily. */
443 int n_allocated_type_units = 0;
444
445 /* The .debug_types-related CUs (TUs).
446 This is stored in malloc space because we may realloc it. */
447 struct signatured_type **all_type_units = NULL;
448
449 /* Table of struct type_unit_group objects.
450 The hash key is the DW_AT_stmt_list value. */
451 htab_t type_unit_groups {};
452
453 /* A table mapping .debug_types signatures to its signatured_type entry.
454 This is NULL if the .debug_types section hasn't been read in yet. */
455 htab_t signatured_types {};
456
457 /* Type unit statistics, to see how well the scaling improvements
458 are doing. */
459 struct tu_stats tu_stats {};
460
461 /* A chain of compilation units that are currently read in, so that
462 they can be freed later. */
463 dwarf2_per_cu_data *read_in_chain = NULL;
464
465 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
466 This is NULL if the table hasn't been allocated yet. */
467 htab_t dwo_files {};
468
469 /* True if we've checked for whether there is a DWP file. */
470 bool dwp_checked = false;
471
472 /* The DWP file if there is one, or NULL. */
473 struct dwp_file *dwp_file = NULL;
474
475 /* The shared '.dwz' file, if one exists. This is used when the
476 original data was compressed using 'dwz -m'. */
477 struct dwz_file *dwz_file = NULL;
478
479 /* A flag indicating whether this objfile has a section loaded at a
480 VMA of 0. */
481 bool has_section_at_zero = false;
482
483 /* True if we are using the mapped index,
484 or we are faking it for OBJF_READNOW's sake. */
485 bool using_index = false;
486
487 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
488 mapped_index *index_table = NULL;
489
490 /* The mapped index, or NULL if .debug_names is missing or not being used. */
491 std::unique_ptr<mapped_debug_names> debug_names_table;
492
493 /* When using index_table, this keeps track of all quick_file_names entries.
494 TUs typically share line table entries with a CU, so we maintain a
495 separate table of all line table entries to support the sharing.
496 Note that while there can be way more TUs than CUs, we've already
497 sorted all the TUs into "type unit groups", grouped by their
498 DW_AT_stmt_list value. Therefore the only sharing done here is with a
499 CU and its associated TU group if there is one. */
500 htab_t quick_file_names_table {};
501
502 /* Set during partial symbol reading, to prevent queueing of full
503 symbols. */
504 bool reading_partial_symbols = false;
505
506 /* Table mapping type DIEs to their struct type *.
507 This is NULL if not allocated yet.
508 The mapping is done via (CU/TU + DIE offset) -> type. */
509 htab_t die_type_hash {};
510
511 /* The CUs we recently read. */
512 VEC (dwarf2_per_cu_ptr) *just_read_cus = NULL;
513
514 /* Table containing line_header indexed by offset and offset_in_dwz. */
515 htab_t line_header_hash {};
516
517 /* Table containing all filenames. This is an optional because the
518 table is lazily constructed on first access. */
519 gdb::optional<filename_seen_cache> filenames_cache;
520 };
521
522 /* Get the dwarf2_per_objfile associated to OBJFILE. */
523
524 struct dwarf2_per_objfile *
525 get_dwarf2_per_objfile (struct objfile *objfile)
526 {
527 return ((struct dwarf2_per_objfile *)
528 objfile_data (objfile, dwarf2_objfile_data_key));
529 }
530
531 /* Set the dwarf2_per_objfile associated to OBJFILE. */
532
533 void
534 set_dwarf2_per_objfile (struct objfile *objfile,
535 struct dwarf2_per_objfile *dwarf2_per_objfile)
536 {
537 gdb_assert (get_dwarf2_per_objfile (objfile) == NULL);
538 set_objfile_data (objfile, dwarf2_objfile_data_key, dwarf2_per_objfile);
539 }
540
541 /* Default names of the debugging sections. */
542
543 /* Note that if the debugging section has been compressed, it might
544 have a name like .zdebug_info. */
545
546 static const struct dwarf2_debug_sections dwarf2_elf_names =
547 {
548 { ".debug_info", ".zdebug_info" },
549 { ".debug_abbrev", ".zdebug_abbrev" },
550 { ".debug_line", ".zdebug_line" },
551 { ".debug_loc", ".zdebug_loc" },
552 { ".debug_loclists", ".zdebug_loclists" },
553 { ".debug_macinfo", ".zdebug_macinfo" },
554 { ".debug_macro", ".zdebug_macro" },
555 { ".debug_str", ".zdebug_str" },
556 { ".debug_line_str", ".zdebug_line_str" },
557 { ".debug_ranges", ".zdebug_ranges" },
558 { ".debug_rnglists", ".zdebug_rnglists" },
559 { ".debug_types", ".zdebug_types" },
560 { ".debug_addr", ".zdebug_addr" },
561 { ".debug_frame", ".zdebug_frame" },
562 { ".eh_frame", NULL },
563 { ".gdb_index", ".zgdb_index" },
564 { ".debug_names", ".zdebug_names" },
565 { ".debug_aranges", ".zdebug_aranges" },
566 23
567 };
568
569 /* List of DWO/DWP sections. */
570
571 static const struct dwop_section_names
572 {
573 struct dwarf2_section_names abbrev_dwo;
574 struct dwarf2_section_names info_dwo;
575 struct dwarf2_section_names line_dwo;
576 struct dwarf2_section_names loc_dwo;
577 struct dwarf2_section_names loclists_dwo;
578 struct dwarf2_section_names macinfo_dwo;
579 struct dwarf2_section_names macro_dwo;
580 struct dwarf2_section_names str_dwo;
581 struct dwarf2_section_names str_offsets_dwo;
582 struct dwarf2_section_names types_dwo;
583 struct dwarf2_section_names cu_index;
584 struct dwarf2_section_names tu_index;
585 }
586 dwop_section_names =
587 {
588 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
589 { ".debug_info.dwo", ".zdebug_info.dwo" },
590 { ".debug_line.dwo", ".zdebug_line.dwo" },
591 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
592 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
593 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
594 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
595 { ".debug_str.dwo", ".zdebug_str.dwo" },
596 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
597 { ".debug_types.dwo", ".zdebug_types.dwo" },
598 { ".debug_cu_index", ".zdebug_cu_index" },
599 { ".debug_tu_index", ".zdebug_tu_index" },
600 };
601
602 /* local data types */
603
604 /* The data in a compilation unit header, after target2host
605 translation, looks like this. */
606 struct comp_unit_head
607 {
608 unsigned int length;
609 short version;
610 unsigned char addr_size;
611 unsigned char signed_addr_p;
612 sect_offset abbrev_sect_off;
613
614 /* Size of file offsets; either 4 or 8. */
615 unsigned int offset_size;
616
617 /* Size of the length field; either 4 or 12. */
618 unsigned int initial_length_size;
619
620 enum dwarf_unit_type unit_type;
621
622 /* Offset to the first byte of this compilation unit header in the
623 .debug_info section, for resolving relative reference dies. */
624 sect_offset sect_off;
625
626 /* Offset to first die in this cu from the start of the cu.
627 This will be the first byte following the compilation unit header. */
628 cu_offset first_die_cu_offset;
629
630 /* 64-bit signature of this type unit - it is valid only for
631 UNIT_TYPE DW_UT_type. */
632 ULONGEST signature;
633
634 /* For types, offset in the type's DIE of the type defined by this TU. */
635 cu_offset type_cu_offset_in_tu;
636 };
637
638 /* Type used for delaying computation of method physnames.
639 See comments for compute_delayed_physnames. */
640 struct delayed_method_info
641 {
642 /* The type to which the method is attached, i.e., its parent class. */
643 struct type *type;
644
645 /* The index of the method in the type's function fieldlists. */
646 int fnfield_index;
647
648 /* The index of the method in the fieldlist. */
649 int index;
650
651 /* The name of the DIE. */
652 const char *name;
653
654 /* The DIE associated with this method. */
655 struct die_info *die;
656 };
657
658 typedef struct delayed_method_info delayed_method_info;
659 DEF_VEC_O (delayed_method_info);
660
661 /* Internal state when decoding a particular compilation unit. */
662 struct dwarf2_cu
663 {
664 /* The header of the compilation unit. */
665 struct comp_unit_head header;
666
667 /* Base address of this compilation unit. */
668 CORE_ADDR base_address;
669
670 /* Non-zero if base_address has been set. */
671 int base_known;
672
673 /* The language we are debugging. */
674 enum language language;
675 const struct language_defn *language_defn;
676
677 const char *producer;
678
679 /* The generic symbol table building routines have separate lists for
680 file scope symbols and all all other scopes (local scopes). So
681 we need to select the right one to pass to add_symbol_to_list().
682 We do it by keeping a pointer to the correct list in list_in_scope.
683
684 FIXME: The original dwarf code just treated the file scope as the
685 first local scope, and all other local scopes as nested local
686 scopes, and worked fine. Check to see if we really need to
687 distinguish these in buildsym.c. */
688 struct pending **list_in_scope;
689
690 /* The abbrev table for this CU.
691 Normally this points to the abbrev table in the objfile.
692 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
693 struct abbrev_table *abbrev_table;
694
695 /* Hash table holding all the loaded partial DIEs
696 with partial_die->offset.SECT_OFF as hash. */
697 htab_t partial_dies;
698
699 /* Storage for things with the same lifetime as this read-in compilation
700 unit, including partial DIEs. */
701 struct obstack comp_unit_obstack;
702
703 /* When multiple dwarf2_cu structures are living in memory, this field
704 chains them all together, so that they can be released efficiently.
705 We will probably also want a generation counter so that most-recently-used
706 compilation units are cached... */
707 struct dwarf2_per_cu_data *read_in_chain;
708
709 /* Backlink to our per_cu entry. */
710 struct dwarf2_per_cu_data *per_cu;
711
712 /* How many compilation units ago was this CU last referenced? */
713 int last_used;
714
715 /* A hash table of DIE cu_offset for following references with
716 die_info->offset.sect_off as hash. */
717 htab_t die_hash;
718
719 /* Full DIEs if read in. */
720 struct die_info *dies;
721
722 /* A set of pointers to dwarf2_per_cu_data objects for compilation
723 units referenced by this one. Only set during full symbol processing;
724 partial symbol tables do not have dependencies. */
725 htab_t dependencies;
726
727 /* Header data from the line table, during full symbol processing. */
728 struct line_header *line_header;
729 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
730 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
731 this is the DW_TAG_compile_unit die for this CU. We'll hold on
732 to the line header as long as this DIE is being processed. See
733 process_die_scope. */
734 die_info *line_header_die_owner;
735
736 /* A list of methods which need to have physnames computed
737 after all type information has been read. */
738 VEC (delayed_method_info) *method_list;
739
740 /* To be copied to symtab->call_site_htab. */
741 htab_t call_site_htab;
742
743 /* Non-NULL if this CU came from a DWO file.
744 There is an invariant here that is important to remember:
745 Except for attributes copied from the top level DIE in the "main"
746 (or "stub") file in preparation for reading the DWO file
747 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
748 Either there isn't a DWO file (in which case this is NULL and the point
749 is moot), or there is and either we're not going to read it (in which
750 case this is NULL) or there is and we are reading it (in which case this
751 is non-NULL). */
752 struct dwo_unit *dwo_unit;
753
754 /* The DW_AT_addr_base attribute if present, zero otherwise
755 (zero is a valid value though).
756 Note this value comes from the Fission stub CU/TU's DIE. */
757 ULONGEST addr_base;
758
759 /* The DW_AT_ranges_base attribute if present, zero otherwise
760 (zero is a valid value though).
761 Note this value comes from the Fission stub CU/TU's DIE.
762 Also note that the value is zero in the non-DWO case so this value can
763 be used without needing to know whether DWO files are in use or not.
764 N.B. This does not apply to DW_AT_ranges appearing in
765 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
766 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
767 DW_AT_ranges_base *would* have to be applied, and we'd have to care
768 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
769 ULONGEST ranges_base;
770
771 /* Mark used when releasing cached dies. */
772 unsigned int mark : 1;
773
774 /* This CU references .debug_loc. See the symtab->locations_valid field.
775 This test is imperfect as there may exist optimized debug code not using
776 any location list and still facing inlining issues if handled as
777 unoptimized code. For a future better test see GCC PR other/32998. */
778 unsigned int has_loclist : 1;
779
780 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
781 if all the producer_is_* fields are valid. This information is cached
782 because profiling CU expansion showed excessive time spent in
783 producer_is_gxx_lt_4_6. */
784 unsigned int checked_producer : 1;
785 unsigned int producer_is_gxx_lt_4_6 : 1;
786 unsigned int producer_is_gcc_lt_4_3 : 1;
787 unsigned int producer_is_icc_lt_14 : 1;
788
789 /* When set, the file that we're processing is known to have
790 debugging info for C++ namespaces. GCC 3.3.x did not produce
791 this information, but later versions do. */
792
793 unsigned int processing_has_namespace_info : 1;
794 };
795
796 /* Persistent data held for a compilation unit, even when not
797 processing it. We put a pointer to this structure in the
798 read_symtab_private field of the psymtab. */
799
800 struct dwarf2_per_cu_data
801 {
802 /* The start offset and length of this compilation unit.
803 NOTE: Unlike comp_unit_head.length, this length includes
804 initial_length_size.
805 If the DIE refers to a DWO file, this is always of the original die,
806 not the DWO file. */
807 sect_offset sect_off;
808 unsigned int length;
809
810 /* DWARF standard version this data has been read from (such as 4 or 5). */
811 short dwarf_version;
812
813 /* Flag indicating this compilation unit will be read in before
814 any of the current compilation units are processed. */
815 unsigned int queued : 1;
816
817 /* This flag will be set when reading partial DIEs if we need to load
818 absolutely all DIEs for this compilation unit, instead of just the ones
819 we think are interesting. It gets set if we look for a DIE in the
820 hash table and don't find it. */
821 unsigned int load_all_dies : 1;
822
823 /* Non-zero if this CU is from .debug_types.
824 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
825 this is non-zero. */
826 unsigned int is_debug_types : 1;
827
828 /* Non-zero if this CU is from the .dwz file. */
829 unsigned int is_dwz : 1;
830
831 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
832 This flag is only valid if is_debug_types is true.
833 We can't read a CU directly from a DWO file: There are required
834 attributes in the stub. */
835 unsigned int reading_dwo_directly : 1;
836
837 /* Non-zero if the TU has been read.
838 This is used to assist the "Stay in DWO Optimization" for Fission:
839 When reading a DWO, it's faster to read TUs from the DWO instead of
840 fetching them from random other DWOs (due to comdat folding).
841 If the TU has already been read, the optimization is unnecessary
842 (and unwise - we don't want to change where gdb thinks the TU lives
843 "midflight").
844 This flag is only valid if is_debug_types is true. */
845 unsigned int tu_read : 1;
846
847 /* The section this CU/TU lives in.
848 If the DIE refers to a DWO file, this is always the original die,
849 not the DWO file. */
850 struct dwarf2_section_info *section;
851
852 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
853 of the CU cache it gets reset to NULL again. This is left as NULL for
854 dummy CUs (a CU header, but nothing else). */
855 struct dwarf2_cu *cu;
856
857 /* The corresponding dwarf2_per_objfile. */
858 struct dwarf2_per_objfile *dwarf2_per_objfile;
859
860 /* When dwarf2_per_objfile->using_index is true, the 'quick' field
861 is active. Otherwise, the 'psymtab' field is active. */
862 union
863 {
864 /* The partial symbol table associated with this compilation unit,
865 or NULL for unread partial units. */
866 struct partial_symtab *psymtab;
867
868 /* Data needed by the "quick" functions. */
869 struct dwarf2_per_cu_quick_data *quick;
870 } v;
871
872 /* The CUs we import using DW_TAG_imported_unit. This is filled in
873 while reading psymtabs, used to compute the psymtab dependencies,
874 and then cleared. Then it is filled in again while reading full
875 symbols, and only deleted when the objfile is destroyed.
876
877 This is also used to work around a difference between the way gold
878 generates .gdb_index version <=7 and the way gdb does. Arguably this
879 is a gold bug. For symbols coming from TUs, gold records in the index
880 the CU that includes the TU instead of the TU itself. This breaks
881 dw2_lookup_symbol: It assumes that if the index says symbol X lives
882 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
883 will find X. Alas TUs live in their own symtab, so after expanding CU Y
884 we need to look in TU Z to find X. Fortunately, this is akin to
885 DW_TAG_imported_unit, so we just use the same mechanism: For
886 .gdb_index version <=7 this also records the TUs that the CU referred
887 to. Concurrently with this change gdb was modified to emit version 8
888 indices so we only pay a price for gold generated indices.
889 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
890 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
891 };
892
893 /* Entry in the signatured_types hash table. */
894
895 struct signatured_type
896 {
897 /* The "per_cu" object of this type.
898 This struct is used iff per_cu.is_debug_types.
899 N.B.: This is the first member so that it's easy to convert pointers
900 between them. */
901 struct dwarf2_per_cu_data per_cu;
902
903 /* The type's signature. */
904 ULONGEST signature;
905
906 /* Offset in the TU of the type's DIE, as read from the TU header.
907 If this TU is a DWO stub and the definition lives in a DWO file
908 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
909 cu_offset type_offset_in_tu;
910
911 /* Offset in the section of the type's DIE.
912 If the definition lives in a DWO file, this is the offset in the
913 .debug_types.dwo section.
914 The value is zero until the actual value is known.
915 Zero is otherwise not a valid section offset. */
916 sect_offset type_offset_in_section;
917
918 /* Type units are grouped by their DW_AT_stmt_list entry so that they
919 can share them. This points to the containing symtab. */
920 struct type_unit_group *type_unit_group;
921
922 /* The type.
923 The first time we encounter this type we fully read it in and install it
924 in the symbol tables. Subsequent times we only need the type. */
925 struct type *type;
926
927 /* Containing DWO unit.
928 This field is valid iff per_cu.reading_dwo_directly. */
929 struct dwo_unit *dwo_unit;
930 };
931
932 typedef struct signatured_type *sig_type_ptr;
933 DEF_VEC_P (sig_type_ptr);
934
935 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
936 This includes type_unit_group and quick_file_names. */
937
938 struct stmt_list_hash
939 {
940 /* The DWO unit this table is from or NULL if there is none. */
941 struct dwo_unit *dwo_unit;
942
943 /* Offset in .debug_line or .debug_line.dwo. */
944 sect_offset line_sect_off;
945 };
946
947 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
948 an object of this type. */
949
950 struct type_unit_group
951 {
952 /* dwarf2read.c's main "handle" on a TU symtab.
953 To simplify things we create an artificial CU that "includes" all the
954 type units using this stmt_list so that the rest of the code still has
955 a "per_cu" handle on the symtab.
956 This PER_CU is recognized by having no section. */
957 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
958 struct dwarf2_per_cu_data per_cu;
959
960 /* The TUs that share this DW_AT_stmt_list entry.
961 This is added to while parsing type units to build partial symtabs,
962 and is deleted afterwards and not used again. */
963 VEC (sig_type_ptr) *tus;
964
965 /* The compunit symtab.
966 Type units in a group needn't all be defined in the same source file,
967 so we create an essentially anonymous symtab as the compunit symtab. */
968 struct compunit_symtab *compunit_symtab;
969
970 /* The data used to construct the hash key. */
971 struct stmt_list_hash hash;
972
973 /* The number of symtabs from the line header.
974 The value here must match line_header.num_file_names. */
975 unsigned int num_symtabs;
976
977 /* The symbol tables for this TU (obtained from the files listed in
978 DW_AT_stmt_list).
979 WARNING: The order of entries here must match the order of entries
980 in the line header. After the first TU using this type_unit_group, the
981 line header for the subsequent TUs is recreated from this. This is done
982 because we need to use the same symtabs for each TU using the same
983 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
984 there's no guarantee the line header doesn't have duplicate entries. */
985 struct symtab **symtabs;
986 };
987
988 /* These sections are what may appear in a (real or virtual) DWO file. */
989
990 struct dwo_sections
991 {
992 struct dwarf2_section_info abbrev;
993 struct dwarf2_section_info line;
994 struct dwarf2_section_info loc;
995 struct dwarf2_section_info loclists;
996 struct dwarf2_section_info macinfo;
997 struct dwarf2_section_info macro;
998 struct dwarf2_section_info str;
999 struct dwarf2_section_info str_offsets;
1000 /* In the case of a virtual DWO file, these two are unused. */
1001 struct dwarf2_section_info info;
1002 VEC (dwarf2_section_info_def) *types;
1003 };
1004
1005 /* CUs/TUs in DWP/DWO files. */
1006
1007 struct dwo_unit
1008 {
1009 /* Backlink to the containing struct dwo_file. */
1010 struct dwo_file *dwo_file;
1011
1012 /* The "id" that distinguishes this CU/TU.
1013 .debug_info calls this "dwo_id", .debug_types calls this "signature".
1014 Since signatures came first, we stick with it for consistency. */
1015 ULONGEST signature;
1016
1017 /* The section this CU/TU lives in, in the DWO file. */
1018 struct dwarf2_section_info *section;
1019
1020 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
1021 sect_offset sect_off;
1022 unsigned int length;
1023
1024 /* For types, offset in the type's DIE of the type defined by this TU. */
1025 cu_offset type_offset_in_tu;
1026 };
1027
1028 /* include/dwarf2.h defines the DWP section codes.
1029 It defines a max value but it doesn't define a min value, which we
1030 use for error checking, so provide one. */
1031
1032 enum dwp_v2_section_ids
1033 {
1034 DW_SECT_MIN = 1
1035 };
1036
1037 /* Data for one DWO file.
1038
1039 This includes virtual DWO files (a virtual DWO file is a DWO file as it
1040 appears in a DWP file). DWP files don't really have DWO files per se -
1041 comdat folding of types "loses" the DWO file they came from, and from
1042 a high level view DWP files appear to contain a mass of random types.
1043 However, to maintain consistency with the non-DWP case we pretend DWP
1044 files contain virtual DWO files, and we assign each TU with one virtual
1045 DWO file (generally based on the line and abbrev section offsets -
1046 a heuristic that seems to work in practice). */
1047
1048 struct dwo_file
1049 {
1050 /* The DW_AT_GNU_dwo_name attribute.
1051 For virtual DWO files the name is constructed from the section offsets
1052 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
1053 from related CU+TUs. */
1054 const char *dwo_name;
1055
1056 /* The DW_AT_comp_dir attribute. */
1057 const char *comp_dir;
1058
1059 /* The bfd, when the file is open. Otherwise this is NULL.
1060 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
1061 bfd *dbfd;
1062
1063 /* The sections that make up this DWO file.
1064 Remember that for virtual DWO files in DWP V2, these are virtual
1065 sections (for lack of a better name). */
1066 struct dwo_sections sections;
1067
1068 /* The CUs in the file.
1069 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
1070 an extension to handle LLVM's Link Time Optimization output (where
1071 multiple source files may be compiled into a single object/dwo pair). */
1072 htab_t cus;
1073
1074 /* Table of TUs in the file.
1075 Each element is a struct dwo_unit. */
1076 htab_t tus;
1077 };
1078
1079 /* These sections are what may appear in a DWP file. */
1080
1081 struct dwp_sections
1082 {
1083 /* These are used by both DWP version 1 and 2. */
1084 struct dwarf2_section_info str;
1085 struct dwarf2_section_info cu_index;
1086 struct dwarf2_section_info tu_index;
1087
1088 /* These are only used by DWP version 2 files.
1089 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
1090 sections are referenced by section number, and are not recorded here.
1091 In DWP version 2 there is at most one copy of all these sections, each
1092 section being (effectively) comprised of the concatenation of all of the
1093 individual sections that exist in the version 1 format.
1094 To keep the code simple we treat each of these concatenated pieces as a
1095 section itself (a virtual section?). */
1096 struct dwarf2_section_info abbrev;
1097 struct dwarf2_section_info info;
1098 struct dwarf2_section_info line;
1099 struct dwarf2_section_info loc;
1100 struct dwarf2_section_info macinfo;
1101 struct dwarf2_section_info macro;
1102 struct dwarf2_section_info str_offsets;
1103 struct dwarf2_section_info types;
1104 };
1105
1106 /* These sections are what may appear in a virtual DWO file in DWP version 1.
1107 A virtual DWO file is a DWO file as it appears in a DWP file. */
1108
1109 struct virtual_v1_dwo_sections
1110 {
1111 struct dwarf2_section_info abbrev;
1112 struct dwarf2_section_info line;
1113 struct dwarf2_section_info loc;
1114 struct dwarf2_section_info macinfo;
1115 struct dwarf2_section_info macro;
1116 struct dwarf2_section_info str_offsets;
1117 /* Each DWP hash table entry records one CU or one TU.
1118 That is recorded here, and copied to dwo_unit.section. */
1119 struct dwarf2_section_info info_or_types;
1120 };
1121
1122 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
1123 In version 2, the sections of the DWO files are concatenated together
1124 and stored in one section of that name. Thus each ELF section contains
1125 several "virtual" sections. */
1126
1127 struct virtual_v2_dwo_sections
1128 {
1129 bfd_size_type abbrev_offset;
1130 bfd_size_type abbrev_size;
1131
1132 bfd_size_type line_offset;
1133 bfd_size_type line_size;
1134
1135 bfd_size_type loc_offset;
1136 bfd_size_type loc_size;
1137
1138 bfd_size_type macinfo_offset;
1139 bfd_size_type macinfo_size;
1140
1141 bfd_size_type macro_offset;
1142 bfd_size_type macro_size;
1143
1144 bfd_size_type str_offsets_offset;
1145 bfd_size_type str_offsets_size;
1146
1147 /* Each DWP hash table entry records one CU or one TU.
1148 That is recorded here, and copied to dwo_unit.section. */
1149 bfd_size_type info_or_types_offset;
1150 bfd_size_type info_or_types_size;
1151 };
1152
1153 /* Contents of DWP hash tables. */
1154
1155 struct dwp_hash_table
1156 {
1157 uint32_t version, nr_columns;
1158 uint32_t nr_units, nr_slots;
1159 const gdb_byte *hash_table, *unit_table;
1160 union
1161 {
1162 struct
1163 {
1164 const gdb_byte *indices;
1165 } v1;
1166 struct
1167 {
1168 /* This is indexed by column number and gives the id of the section
1169 in that column. */
1170 #define MAX_NR_V2_DWO_SECTIONS \
1171 (1 /* .debug_info or .debug_types */ \
1172 + 1 /* .debug_abbrev */ \
1173 + 1 /* .debug_line */ \
1174 + 1 /* .debug_loc */ \
1175 + 1 /* .debug_str_offsets */ \
1176 + 1 /* .debug_macro or .debug_macinfo */)
1177 int section_ids[MAX_NR_V2_DWO_SECTIONS];
1178 const gdb_byte *offsets;
1179 const gdb_byte *sizes;
1180 } v2;
1181 } section_pool;
1182 };
1183
1184 /* Data for one DWP file. */
1185
1186 struct dwp_file
1187 {
1188 /* Name of the file. */
1189 const char *name;
1190
1191 /* File format version. */
1192 int version;
1193
1194 /* The bfd. */
1195 bfd *dbfd;
1196
1197 /* Section info for this file. */
1198 struct dwp_sections sections;
1199
1200 /* Table of CUs in the file. */
1201 const struct dwp_hash_table *cus;
1202
1203 /* Table of TUs in the file. */
1204 const struct dwp_hash_table *tus;
1205
1206 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
1207 htab_t loaded_cus;
1208 htab_t loaded_tus;
1209
1210 /* Table to map ELF section numbers to their sections.
1211 This is only needed for the DWP V1 file format. */
1212 unsigned int num_sections;
1213 asection **elf_sections;
1214 };
1215
1216 /* This represents a '.dwz' file. */
1217
1218 struct dwz_file
1219 {
1220 /* A dwz file can only contain a few sections. */
1221 struct dwarf2_section_info abbrev;
1222 struct dwarf2_section_info info;
1223 struct dwarf2_section_info str;
1224 struct dwarf2_section_info line;
1225 struct dwarf2_section_info macro;
1226 struct dwarf2_section_info gdb_index;
1227 struct dwarf2_section_info debug_names;
1228
1229 /* The dwz's BFD. */
1230 bfd *dwz_bfd;
1231 };
1232
1233 /* Struct used to pass misc. parameters to read_die_and_children, et
1234 al. which are used for both .debug_info and .debug_types dies.
1235 All parameters here are unchanging for the life of the call. This
1236 struct exists to abstract away the constant parameters of die reading. */
1237
1238 struct die_reader_specs
1239 {
1240 /* The bfd of die_section. */
1241 bfd* abfd;
1242
1243 /* The CU of the DIE we are parsing. */
1244 struct dwarf2_cu *cu;
1245
1246 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
1247 struct dwo_file *dwo_file;
1248
1249 /* The section the die comes from.
1250 This is either .debug_info or .debug_types, or the .dwo variants. */
1251 struct dwarf2_section_info *die_section;
1252
1253 /* die_section->buffer. */
1254 const gdb_byte *buffer;
1255
1256 /* The end of the buffer. */
1257 const gdb_byte *buffer_end;
1258
1259 /* The value of the DW_AT_comp_dir attribute. */
1260 const char *comp_dir;
1261 };
1262
1263 /* Type of function passed to init_cutu_and_read_dies, et.al. */
1264 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
1265 const gdb_byte *info_ptr,
1266 struct die_info *comp_unit_die,
1267 int has_children,
1268 void *data);
1269
1270 /* A 1-based directory index. This is a strong typedef to prevent
1271 accidentally using a directory index as a 0-based index into an
1272 array/vector. */
1273 enum class dir_index : unsigned int {};
1274
1275 /* Likewise, a 1-based file name index. */
1276 enum class file_name_index : unsigned int {};
1277
1278 struct file_entry
1279 {
1280 file_entry () = default;
1281
1282 file_entry (const char *name_, dir_index d_index_,
1283 unsigned int mod_time_, unsigned int length_)
1284 : name (name_),
1285 d_index (d_index_),
1286 mod_time (mod_time_),
1287 length (length_)
1288 {}
1289
1290 /* Return the include directory at D_INDEX stored in LH. Returns
1291 NULL if D_INDEX is out of bounds. */
1292 const char *include_dir (const line_header *lh) const;
1293
1294 /* The file name. Note this is an observing pointer. The memory is
1295 owned by debug_line_buffer. */
1296 const char *name {};
1297
1298 /* The directory index (1-based). */
1299 dir_index d_index {};
1300
1301 unsigned int mod_time {};
1302
1303 unsigned int length {};
1304
1305 /* True if referenced by the Line Number Program. */
1306 bool included_p {};
1307
1308 /* The associated symbol table, if any. */
1309 struct symtab *symtab {};
1310 };
1311
1312 /* The line number information for a compilation unit (found in the
1313 .debug_line section) begins with a "statement program header",
1314 which contains the following information. */
1315 struct line_header
1316 {
1317 line_header ()
1318 : offset_in_dwz {}
1319 {}
1320
1321 /* Add an entry to the include directory table. */
1322 void add_include_dir (const char *include_dir);
1323
1324 /* Add an entry to the file name table. */
1325 void add_file_name (const char *name, dir_index d_index,
1326 unsigned int mod_time, unsigned int length);
1327
1328 /* Return the include dir at INDEX (1-based). Returns NULL if INDEX
1329 is out of bounds. */
1330 const char *include_dir_at (dir_index index) const
1331 {
1332 /* Convert directory index number (1-based) to vector index
1333 (0-based). */
1334 size_t vec_index = to_underlying (index) - 1;
1335
1336 if (vec_index >= include_dirs.size ())
1337 return NULL;
1338 return include_dirs[vec_index];
1339 }
1340
1341 /* Return the file name at INDEX (1-based). Returns NULL if INDEX
1342 is out of bounds. */
1343 file_entry *file_name_at (file_name_index index)
1344 {
1345 /* Convert file name index number (1-based) to vector index
1346 (0-based). */
1347 size_t vec_index = to_underlying (index) - 1;
1348
1349 if (vec_index >= file_names.size ())
1350 return NULL;
1351 return &file_names[vec_index];
1352 }
1353
1354 /* Const version of the above. */
1355 const file_entry *file_name_at (unsigned int index) const
1356 {
1357 if (index >= file_names.size ())
1358 return NULL;
1359 return &file_names[index];
1360 }
1361
1362 /* Offset of line number information in .debug_line section. */
1363 sect_offset sect_off {};
1364
1365 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1366 unsigned offset_in_dwz : 1; /* Can't initialize bitfields in-class. */
1367
1368 unsigned int total_length {};
1369 unsigned short version {};
1370 unsigned int header_length {};
1371 unsigned char minimum_instruction_length {};
1372 unsigned char maximum_ops_per_instruction {};
1373 unsigned char default_is_stmt {};
1374 int line_base {};
1375 unsigned char line_range {};
1376 unsigned char opcode_base {};
1377
1378 /* standard_opcode_lengths[i] is the number of operands for the
1379 standard opcode whose value is i. This means that
1380 standard_opcode_lengths[0] is unused, and the last meaningful
1381 element is standard_opcode_lengths[opcode_base - 1]. */
1382 std::unique_ptr<unsigned char[]> standard_opcode_lengths;
1383
1384 /* The include_directories table. Note these are observing
1385 pointers. The memory is owned by debug_line_buffer. */
1386 std::vector<const char *> include_dirs;
1387
1388 /* The file_names table. */
1389 std::vector<file_entry> file_names;
1390
1391 /* The start and end of the statement program following this
1392 header. These point into dwarf2_per_objfile->line_buffer. */
1393 const gdb_byte *statement_program_start {}, *statement_program_end {};
1394 };
1395
1396 typedef std::unique_ptr<line_header> line_header_up;
1397
1398 const char *
1399 file_entry::include_dir (const line_header *lh) const
1400 {
1401 return lh->include_dir_at (d_index);
1402 }
1403
1404 /* When we construct a partial symbol table entry we only
1405 need this much information. */
1406 struct partial_die_info
1407 {
1408 /* Offset of this DIE. */
1409 sect_offset sect_off;
1410
1411 /* DWARF-2 tag for this DIE. */
1412 ENUM_BITFIELD(dwarf_tag) tag : 16;
1413
1414 /* Assorted flags describing the data found in this DIE. */
1415 unsigned int has_children : 1;
1416 unsigned int is_external : 1;
1417 unsigned int is_declaration : 1;
1418 unsigned int has_type : 1;
1419 unsigned int has_specification : 1;
1420 unsigned int has_pc_info : 1;
1421 unsigned int may_be_inlined : 1;
1422
1423 /* This DIE has been marked DW_AT_main_subprogram. */
1424 unsigned int main_subprogram : 1;
1425
1426 /* Flag set if the SCOPE field of this structure has been
1427 computed. */
1428 unsigned int scope_set : 1;
1429
1430 /* Flag set if the DIE has a byte_size attribute. */
1431 unsigned int has_byte_size : 1;
1432
1433 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1434 unsigned int has_const_value : 1;
1435
1436 /* Flag set if any of the DIE's children are template arguments. */
1437 unsigned int has_template_arguments : 1;
1438
1439 /* Flag set if fixup_partial_die has been called on this die. */
1440 unsigned int fixup_called : 1;
1441
1442 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1443 unsigned int is_dwz : 1;
1444
1445 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1446 unsigned int spec_is_dwz : 1;
1447
1448 /* The name of this DIE. Normally the value of DW_AT_name, but
1449 sometimes a default name for unnamed DIEs. */
1450 const char *name;
1451
1452 /* The linkage name, if present. */
1453 const char *linkage_name;
1454
1455 /* The scope to prepend to our children. This is generally
1456 allocated on the comp_unit_obstack, so will disappear
1457 when this compilation unit leaves the cache. */
1458 const char *scope;
1459
1460 /* Some data associated with the partial DIE. The tag determines
1461 which field is live. */
1462 union
1463 {
1464 /* The location description associated with this DIE, if any. */
1465 struct dwarf_block *locdesc;
1466 /* The offset of an import, for DW_TAG_imported_unit. */
1467 sect_offset sect_off;
1468 } d;
1469
1470 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1471 CORE_ADDR lowpc;
1472 CORE_ADDR highpc;
1473
1474 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1475 DW_AT_sibling, if any. */
1476 /* NOTE: This member isn't strictly necessary, read_partial_die could
1477 return DW_AT_sibling values to its caller load_partial_dies. */
1478 const gdb_byte *sibling;
1479
1480 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1481 DW_AT_specification (or DW_AT_abstract_origin or
1482 DW_AT_extension). */
1483 sect_offset spec_offset;
1484
1485 /* Pointers to this DIE's parent, first child, and next sibling,
1486 if any. */
1487 struct partial_die_info *die_parent, *die_child, *die_sibling;
1488 };
1489
1490 /* This data structure holds the information of an abbrev. */
1491 struct abbrev_info
1492 {
1493 unsigned int number; /* number identifying abbrev */
1494 enum dwarf_tag tag; /* dwarf tag */
1495 unsigned short has_children; /* boolean */
1496 unsigned short num_attrs; /* number of attributes */
1497 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1498 struct abbrev_info *next; /* next in chain */
1499 };
1500
1501 struct attr_abbrev
1502 {
1503 ENUM_BITFIELD(dwarf_attribute) name : 16;
1504 ENUM_BITFIELD(dwarf_form) form : 16;
1505
1506 /* It is valid only if FORM is DW_FORM_implicit_const. */
1507 LONGEST implicit_const;
1508 };
1509
1510 /* Size of abbrev_table.abbrev_hash_table. */
1511 #define ABBREV_HASH_SIZE 121
1512
1513 /* Top level data structure to contain an abbreviation table. */
1514
1515 struct abbrev_table
1516 {
1517 /* Where the abbrev table came from.
1518 This is used as a sanity check when the table is used. */
1519 sect_offset sect_off;
1520
1521 /* Storage for the abbrev table. */
1522 struct obstack abbrev_obstack;
1523
1524 /* Hash table of abbrevs.
1525 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1526 It could be statically allocated, but the previous code didn't so we
1527 don't either. */
1528 struct abbrev_info **abbrevs;
1529 };
1530
1531 /* Attributes have a name and a value. */
1532 struct attribute
1533 {
1534 ENUM_BITFIELD(dwarf_attribute) name : 16;
1535 ENUM_BITFIELD(dwarf_form) form : 15;
1536
1537 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1538 field should be in u.str (existing only for DW_STRING) but it is kept
1539 here for better struct attribute alignment. */
1540 unsigned int string_is_canonical : 1;
1541
1542 union
1543 {
1544 const char *str;
1545 struct dwarf_block *blk;
1546 ULONGEST unsnd;
1547 LONGEST snd;
1548 CORE_ADDR addr;
1549 ULONGEST signature;
1550 }
1551 u;
1552 };
1553
1554 /* This data structure holds a complete die structure. */
1555 struct die_info
1556 {
1557 /* DWARF-2 tag for this DIE. */
1558 ENUM_BITFIELD(dwarf_tag) tag : 16;
1559
1560 /* Number of attributes */
1561 unsigned char num_attrs;
1562
1563 /* True if we're presently building the full type name for the
1564 type derived from this DIE. */
1565 unsigned char building_fullname : 1;
1566
1567 /* True if this die is in process. PR 16581. */
1568 unsigned char in_process : 1;
1569
1570 /* Abbrev number */
1571 unsigned int abbrev;
1572
1573 /* Offset in .debug_info or .debug_types section. */
1574 sect_offset sect_off;
1575
1576 /* The dies in a compilation unit form an n-ary tree. PARENT
1577 points to this die's parent; CHILD points to the first child of
1578 this node; and all the children of a given node are chained
1579 together via their SIBLING fields. */
1580 struct die_info *child; /* Its first child, if any. */
1581 struct die_info *sibling; /* Its next sibling, if any. */
1582 struct die_info *parent; /* Its parent, if any. */
1583
1584 /* An array of attributes, with NUM_ATTRS elements. There may be
1585 zero, but it's not common and zero-sized arrays are not
1586 sufficiently portable C. */
1587 struct attribute attrs[1];
1588 };
1589
1590 /* Get at parts of an attribute structure. */
1591
1592 #define DW_STRING(attr) ((attr)->u.str)
1593 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1594 #define DW_UNSND(attr) ((attr)->u.unsnd)
1595 #define DW_BLOCK(attr) ((attr)->u.blk)
1596 #define DW_SND(attr) ((attr)->u.snd)
1597 #define DW_ADDR(attr) ((attr)->u.addr)
1598 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1599
1600 /* Blocks are a bunch of untyped bytes. */
1601 struct dwarf_block
1602 {
1603 size_t size;
1604
1605 /* Valid only if SIZE is not zero. */
1606 const gdb_byte *data;
1607 };
1608
1609 #ifndef ATTR_ALLOC_CHUNK
1610 #define ATTR_ALLOC_CHUNK 4
1611 #endif
1612
1613 /* Allocate fields for structs, unions and enums in this size. */
1614 #ifndef DW_FIELD_ALLOC_CHUNK
1615 #define DW_FIELD_ALLOC_CHUNK 4
1616 #endif
1617
1618 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1619 but this would require a corresponding change in unpack_field_as_long
1620 and friends. */
1621 static int bits_per_byte = 8;
1622
1623 struct nextfield
1624 {
1625 struct nextfield *next;
1626 int accessibility;
1627 int virtuality;
1628 struct field field;
1629 };
1630
1631 struct nextfnfield
1632 {
1633 struct nextfnfield *next;
1634 struct fn_field fnfield;
1635 };
1636
1637 struct fnfieldlist
1638 {
1639 const char *name;
1640 int length;
1641 struct nextfnfield *head;
1642 };
1643
1644 struct decl_field_list
1645 {
1646 struct decl_field field;
1647 struct decl_field_list *next;
1648 };
1649
1650 /* The routines that read and process dies for a C struct or C++ class
1651 pass lists of data member fields and lists of member function fields
1652 in an instance of a field_info structure, as defined below. */
1653 struct field_info
1654 {
1655 /* List of data member and baseclasses fields. */
1656 struct nextfield *fields, *baseclasses;
1657
1658 /* Number of fields (including baseclasses). */
1659 int nfields;
1660
1661 /* Number of baseclasses. */
1662 int nbaseclasses;
1663
1664 /* Set if the accesibility of one of the fields is not public. */
1665 int non_public_fields;
1666
1667 /* Member function fieldlist array, contains name of possibly overloaded
1668 member function, number of overloaded member functions and a pointer
1669 to the head of the member function field chain. */
1670 struct fnfieldlist *fnfieldlists;
1671
1672 /* Number of entries in the fnfieldlists array. */
1673 int nfnfields;
1674
1675 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1676 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1677 struct decl_field_list *typedef_field_list;
1678 unsigned typedef_field_list_count;
1679
1680 /* Nested types defined by this class and the number of elements in this
1681 list. */
1682 struct decl_field_list *nested_types_list;
1683 unsigned nested_types_list_count;
1684 };
1685
1686 /* One item on the queue of compilation units to read in full symbols
1687 for. */
1688 struct dwarf2_queue_item
1689 {
1690 struct dwarf2_per_cu_data *per_cu;
1691 enum language pretend_language;
1692 struct dwarf2_queue_item *next;
1693 };
1694
1695 /* The current queue. */
1696 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1697
1698 /* Loaded secondary compilation units are kept in memory until they
1699 have not been referenced for the processing of this many
1700 compilation units. Set this to zero to disable caching. Cache
1701 sizes of up to at least twenty will improve startup time for
1702 typical inter-CU-reference binaries, at an obvious memory cost. */
1703 static int dwarf_max_cache_age = 5;
1704 static void
1705 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1706 struct cmd_list_element *c, const char *value)
1707 {
1708 fprintf_filtered (file, _("The upper bound on the age of cached "
1709 "DWARF compilation units is %s.\n"),
1710 value);
1711 }
1712 \f
1713 /* local function prototypes */
1714
1715 static const char *get_section_name (const struct dwarf2_section_info *);
1716
1717 static const char *get_section_file_name (const struct dwarf2_section_info *);
1718
1719 static void dwarf2_find_base_address (struct die_info *die,
1720 struct dwarf2_cu *cu);
1721
1722 static struct partial_symtab *create_partial_symtab
1723 (struct dwarf2_per_cu_data *per_cu, const char *name);
1724
1725 static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1726 const gdb_byte *info_ptr,
1727 struct die_info *type_unit_die,
1728 int has_children, void *data);
1729
1730 static void dwarf2_build_psymtabs_hard
1731 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1732
1733 static void scan_partial_symbols (struct partial_die_info *,
1734 CORE_ADDR *, CORE_ADDR *,
1735 int, struct dwarf2_cu *);
1736
1737 static void add_partial_symbol (struct partial_die_info *,
1738 struct dwarf2_cu *);
1739
1740 static void add_partial_namespace (struct partial_die_info *pdi,
1741 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1742 int set_addrmap, struct dwarf2_cu *cu);
1743
1744 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1745 CORE_ADDR *highpc, int set_addrmap,
1746 struct dwarf2_cu *cu);
1747
1748 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1749 struct dwarf2_cu *cu);
1750
1751 static void add_partial_subprogram (struct partial_die_info *pdi,
1752 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1753 int need_pc, struct dwarf2_cu *cu);
1754
1755 static void dwarf2_read_symtab (struct partial_symtab *,
1756 struct objfile *);
1757
1758 static void psymtab_to_symtab_1 (struct partial_symtab *);
1759
1760 static struct abbrev_info *abbrev_table_lookup_abbrev
1761 (const struct abbrev_table *, unsigned int);
1762
1763 static struct abbrev_table *abbrev_table_read_table
1764 (struct dwarf2_per_objfile *dwarf2_per_objfile, struct dwarf2_section_info *,
1765 sect_offset);
1766
1767 static void abbrev_table_free (struct abbrev_table *);
1768
1769 static void abbrev_table_free_cleanup (void *);
1770
1771 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1772 struct dwarf2_section_info *);
1773
1774 static void dwarf2_free_abbrev_table (void *);
1775
1776 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1777
1778 static struct partial_die_info *load_partial_dies
1779 (const struct die_reader_specs *, const gdb_byte *, int);
1780
1781 static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1782 struct partial_die_info *,
1783 struct abbrev_info *,
1784 unsigned int,
1785 const gdb_byte *);
1786
1787 static struct partial_die_info *find_partial_die (sect_offset, int,
1788 struct dwarf2_cu *);
1789
1790 static void fixup_partial_die (struct partial_die_info *,
1791 struct dwarf2_cu *);
1792
1793 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1794 struct attribute *, struct attr_abbrev *,
1795 const gdb_byte *);
1796
1797 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1798
1799 static int read_1_signed_byte (bfd *, const gdb_byte *);
1800
1801 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1802
1803 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1804
1805 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1806
1807 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1808 unsigned int *);
1809
1810 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1811
1812 static LONGEST read_checked_initial_length_and_offset
1813 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1814 unsigned int *, unsigned int *);
1815
1816 static LONGEST read_offset (bfd *, const gdb_byte *,
1817 const struct comp_unit_head *,
1818 unsigned int *);
1819
1820 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1821
1822 static sect_offset read_abbrev_offset
1823 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1824 struct dwarf2_section_info *, sect_offset);
1825
1826 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1827
1828 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1829
1830 static const char *read_indirect_string
1831 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1832 const struct comp_unit_head *, unsigned int *);
1833
1834 static const char *read_indirect_line_string
1835 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1836 const struct comp_unit_head *, unsigned int *);
1837
1838 static const char *read_indirect_string_at_offset
1839 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
1840 LONGEST str_offset);
1841
1842 static const char *read_indirect_string_from_dwz
1843 (struct objfile *objfile, struct dwz_file *, LONGEST);
1844
1845 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1846
1847 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1848 const gdb_byte *,
1849 unsigned int *);
1850
1851 static const char *read_str_index (const struct die_reader_specs *reader,
1852 ULONGEST str_index);
1853
1854 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1855
1856 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1857 struct dwarf2_cu *);
1858
1859 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1860 unsigned int);
1861
1862 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1863 struct dwarf2_cu *cu);
1864
1865 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1866 struct dwarf2_cu *cu);
1867
1868 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1869
1870 static struct die_info *die_specification (struct die_info *die,
1871 struct dwarf2_cu **);
1872
1873 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1874 struct dwarf2_cu *cu);
1875
1876 static void dwarf_decode_lines (struct line_header *, const char *,
1877 struct dwarf2_cu *, struct partial_symtab *,
1878 CORE_ADDR, int decode_mapping);
1879
1880 static void dwarf2_start_subfile (const char *, const char *);
1881
1882 static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1883 const char *, const char *,
1884 CORE_ADDR);
1885
1886 static struct symbol *new_symbol (struct die_info *, struct type *,
1887 struct dwarf2_cu *);
1888
1889 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1890 struct dwarf2_cu *, struct symbol *);
1891
1892 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1893 struct dwarf2_cu *);
1894
1895 static void dwarf2_const_value_attr (const struct attribute *attr,
1896 struct type *type,
1897 const char *name,
1898 struct obstack *obstack,
1899 struct dwarf2_cu *cu, LONGEST *value,
1900 const gdb_byte **bytes,
1901 struct dwarf2_locexpr_baton **baton);
1902
1903 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1904
1905 static int need_gnat_info (struct dwarf2_cu *);
1906
1907 static struct type *die_descriptive_type (struct die_info *,
1908 struct dwarf2_cu *);
1909
1910 static void set_descriptive_type (struct type *, struct die_info *,
1911 struct dwarf2_cu *);
1912
1913 static struct type *die_containing_type (struct die_info *,
1914 struct dwarf2_cu *);
1915
1916 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1917 struct dwarf2_cu *);
1918
1919 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1920
1921 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1922
1923 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1924
1925 static char *typename_concat (struct obstack *obs, const char *prefix,
1926 const char *suffix, int physname,
1927 struct dwarf2_cu *cu);
1928
1929 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1930
1931 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1932
1933 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1934
1935 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1936
1937 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1938
1939 static void read_variable (struct die_info *die, struct dwarf2_cu *cu);
1940
1941 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1942 struct dwarf2_cu *, struct partial_symtab *);
1943
1944 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1945 values. Keep the items ordered with increasing constraints compliance. */
1946 enum pc_bounds_kind
1947 {
1948 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1949 PC_BOUNDS_NOT_PRESENT,
1950
1951 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1952 were present but they do not form a valid range of PC addresses. */
1953 PC_BOUNDS_INVALID,
1954
1955 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1956 PC_BOUNDS_RANGES,
1957
1958 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1959 PC_BOUNDS_HIGH_LOW,
1960 };
1961
1962 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1963 CORE_ADDR *, CORE_ADDR *,
1964 struct dwarf2_cu *,
1965 struct partial_symtab *);
1966
1967 static void get_scope_pc_bounds (struct die_info *,
1968 CORE_ADDR *, CORE_ADDR *,
1969 struct dwarf2_cu *);
1970
1971 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1972 CORE_ADDR, struct dwarf2_cu *);
1973
1974 static void dwarf2_add_field (struct field_info *, struct die_info *,
1975 struct dwarf2_cu *);
1976
1977 static void dwarf2_attach_fields_to_type (struct field_info *,
1978 struct type *, struct dwarf2_cu *);
1979
1980 static void dwarf2_add_member_fn (struct field_info *,
1981 struct die_info *, struct type *,
1982 struct dwarf2_cu *);
1983
1984 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1985 struct type *,
1986 struct dwarf2_cu *);
1987
1988 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1989
1990 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1991
1992 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1993
1994 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1995
1996 static struct using_direct **using_directives (enum language);
1997
1998 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1999
2000 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
2001
2002 static struct type *read_module_type (struct die_info *die,
2003 struct dwarf2_cu *cu);
2004
2005 static const char *namespace_name (struct die_info *die,
2006 int *is_anonymous, struct dwarf2_cu *);
2007
2008 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
2009
2010 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
2011
2012 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
2013 struct dwarf2_cu *);
2014
2015 static struct die_info *read_die_and_siblings_1
2016 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
2017 struct die_info *);
2018
2019 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
2020 const gdb_byte *info_ptr,
2021 const gdb_byte **new_info_ptr,
2022 struct die_info *parent);
2023
2024 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
2025 struct die_info **, const gdb_byte *,
2026 int *, int);
2027
2028 static const gdb_byte *read_full_die (const struct die_reader_specs *,
2029 struct die_info **, const gdb_byte *,
2030 int *);
2031
2032 static void process_die (struct die_info *, struct dwarf2_cu *);
2033
2034 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
2035 struct obstack *);
2036
2037 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
2038
2039 static const char *dwarf2_full_name (const char *name,
2040 struct die_info *die,
2041 struct dwarf2_cu *cu);
2042
2043 static const char *dwarf2_physname (const char *name, struct die_info *die,
2044 struct dwarf2_cu *cu);
2045
2046 static struct die_info *dwarf2_extension (struct die_info *die,
2047 struct dwarf2_cu **);
2048
2049 static const char *dwarf_tag_name (unsigned int);
2050
2051 static const char *dwarf_attr_name (unsigned int);
2052
2053 static const char *dwarf_form_name (unsigned int);
2054
2055 static const char *dwarf_bool_name (unsigned int);
2056
2057 static const char *dwarf_type_encoding_name (unsigned int);
2058
2059 static struct die_info *sibling_die (struct die_info *);
2060
2061 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
2062
2063 static void dump_die_for_error (struct die_info *);
2064
2065 static void dump_die_1 (struct ui_file *, int level, int max_level,
2066 struct die_info *);
2067
2068 /*static*/ void dump_die (struct die_info *, int max_level);
2069
2070 static void store_in_ref_table (struct die_info *,
2071 struct dwarf2_cu *);
2072
2073 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
2074
2075 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
2076
2077 static struct die_info *follow_die_ref_or_sig (struct die_info *,
2078 const struct attribute *,
2079 struct dwarf2_cu **);
2080
2081 static struct die_info *follow_die_ref (struct die_info *,
2082 const struct attribute *,
2083 struct dwarf2_cu **);
2084
2085 static struct die_info *follow_die_sig (struct die_info *,
2086 const struct attribute *,
2087 struct dwarf2_cu **);
2088
2089 static struct type *get_signatured_type (struct die_info *, ULONGEST,
2090 struct dwarf2_cu *);
2091
2092 static struct type *get_DW_AT_signature_type (struct die_info *,
2093 const struct attribute *,
2094 struct dwarf2_cu *);
2095
2096 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
2097
2098 static void read_signatured_type (struct signatured_type *);
2099
2100 static int attr_to_dynamic_prop (const struct attribute *attr,
2101 struct die_info *die, struct dwarf2_cu *cu,
2102 struct dynamic_prop *prop);
2103
2104 /* memory allocation interface */
2105
2106 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
2107
2108 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
2109
2110 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
2111
2112 static int attr_form_is_block (const struct attribute *);
2113
2114 static int attr_form_is_section_offset (const struct attribute *);
2115
2116 static int attr_form_is_constant (const struct attribute *);
2117
2118 static int attr_form_is_ref (const struct attribute *);
2119
2120 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
2121 struct dwarf2_loclist_baton *baton,
2122 const struct attribute *attr);
2123
2124 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
2125 struct symbol *sym,
2126 struct dwarf2_cu *cu,
2127 int is_block);
2128
2129 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
2130 const gdb_byte *info_ptr,
2131 struct abbrev_info *abbrev);
2132
2133 static void free_stack_comp_unit (void *);
2134
2135 static hashval_t partial_die_hash (const void *item);
2136
2137 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
2138
2139 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
2140 (sect_offset sect_off, unsigned int offset_in_dwz,
2141 struct dwarf2_per_objfile *dwarf2_per_objfile);
2142
2143 static void init_one_comp_unit (struct dwarf2_cu *cu,
2144 struct dwarf2_per_cu_data *per_cu);
2145
2146 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
2147 struct die_info *comp_unit_die,
2148 enum language pretend_language);
2149
2150 static void free_heap_comp_unit (void *);
2151
2152 static void free_cached_comp_units (void *);
2153
2154 static void age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
2155
2156 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
2157
2158 static struct type *set_die_type (struct die_info *, struct type *,
2159 struct dwarf2_cu *);
2160
2161 static void create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
2162
2163 static int create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
2164
2165 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
2166 enum language);
2167
2168 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
2169 enum language);
2170
2171 static void process_full_type_unit (struct dwarf2_per_cu_data *,
2172 enum language);
2173
2174 static void dwarf2_add_dependence (struct dwarf2_cu *,
2175 struct dwarf2_per_cu_data *);
2176
2177 static void dwarf2_mark (struct dwarf2_cu *);
2178
2179 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
2180
2181 static struct type *get_die_type_at_offset (sect_offset,
2182 struct dwarf2_per_cu_data *);
2183
2184 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
2185
2186 static void dwarf2_release_queue (void *dummy);
2187
2188 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
2189 enum language pretend_language);
2190
2191 static void process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile);
2192
2193 /* The return type of find_file_and_directory. Note, the enclosed
2194 string pointers are only valid while this object is valid. */
2195
2196 struct file_and_directory
2197 {
2198 /* The filename. This is never NULL. */
2199 const char *name;
2200
2201 /* The compilation directory. NULL if not known. If we needed to
2202 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
2203 points directly to the DW_AT_comp_dir string attribute owned by
2204 the obstack that owns the DIE. */
2205 const char *comp_dir;
2206
2207 /* If we needed to build a new string for comp_dir, this is what
2208 owns the storage. */
2209 std::string comp_dir_storage;
2210 };
2211
2212 static file_and_directory find_file_and_directory (struct die_info *die,
2213 struct dwarf2_cu *cu);
2214
2215 static char *file_full_name (int file, struct line_header *lh,
2216 const char *comp_dir);
2217
2218 /* Expected enum dwarf_unit_type for read_comp_unit_head. */
2219 enum class rcuh_kind { COMPILE, TYPE };
2220
2221 static const gdb_byte *read_and_check_comp_unit_head
2222 (struct dwarf2_per_objfile* dwarf2_per_objfile,
2223 struct comp_unit_head *header,
2224 struct dwarf2_section_info *section,
2225 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
2226 rcuh_kind section_kind);
2227
2228 static void init_cutu_and_read_dies
2229 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
2230 int use_existing_cu, int keep,
2231 die_reader_func_ftype *die_reader_func, void *data);
2232
2233 static void init_cutu_and_read_dies_simple
2234 (struct dwarf2_per_cu_data *this_cu,
2235 die_reader_func_ftype *die_reader_func, void *data);
2236
2237 static htab_t allocate_signatured_type_table (struct objfile *objfile);
2238
2239 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
2240
2241 static struct dwo_unit *lookup_dwo_unit_in_dwp
2242 (struct dwarf2_per_objfile *dwarf2_per_objfile,
2243 struct dwp_file *dwp_file, const char *comp_dir,
2244 ULONGEST signature, int is_debug_types);
2245
2246 static struct dwp_file *get_dwp_file
2247 (struct dwarf2_per_objfile *dwarf2_per_objfile);
2248
2249 static struct dwo_unit *lookup_dwo_comp_unit
2250 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
2251
2252 static struct dwo_unit *lookup_dwo_type_unit
2253 (struct signatured_type *, const char *, const char *);
2254
2255 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
2256
2257 static void free_dwo_file_cleanup (void *);
2258
2259 struct free_dwo_file_cleanup_data
2260 {
2261 struct dwo_file *dwo_file;
2262 struct dwarf2_per_objfile *dwarf2_per_objfile;
2263 };
2264
2265 static void process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile);
2266
2267 static void check_producer (struct dwarf2_cu *cu);
2268
2269 static void free_line_header_voidp (void *arg);
2270 \f
2271 /* Various complaints about symbol reading that don't abort the process. */
2272
2273 static void
2274 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2275 {
2276 complaint (&symfile_complaints,
2277 _("statement list doesn't fit in .debug_line section"));
2278 }
2279
2280 static void
2281 dwarf2_debug_line_missing_file_complaint (void)
2282 {
2283 complaint (&symfile_complaints,
2284 _(".debug_line section has line data without a file"));
2285 }
2286
2287 static void
2288 dwarf2_debug_line_missing_end_sequence_complaint (void)
2289 {
2290 complaint (&symfile_complaints,
2291 _(".debug_line section has line "
2292 "program sequence without an end"));
2293 }
2294
2295 static void
2296 dwarf2_complex_location_expr_complaint (void)
2297 {
2298 complaint (&symfile_complaints, _("location expression too complex"));
2299 }
2300
2301 static void
2302 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
2303 int arg3)
2304 {
2305 complaint (&symfile_complaints,
2306 _("const value length mismatch for '%s', got %d, expected %d"),
2307 arg1, arg2, arg3);
2308 }
2309
2310 static void
2311 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2312 {
2313 complaint (&symfile_complaints,
2314 _("debug info runs off end of %s section"
2315 " [in module %s]"),
2316 get_section_name (section),
2317 get_section_file_name (section));
2318 }
2319
2320 static void
2321 dwarf2_macro_malformed_definition_complaint (const char *arg1)
2322 {
2323 complaint (&symfile_complaints,
2324 _("macro debug info contains a "
2325 "malformed macro definition:\n`%s'"),
2326 arg1);
2327 }
2328
2329 static void
2330 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
2331 {
2332 complaint (&symfile_complaints,
2333 _("invalid attribute class or form for '%s' in '%s'"),
2334 arg1, arg2);
2335 }
2336
2337 /* Hash function for line_header_hash. */
2338
2339 static hashval_t
2340 line_header_hash (const struct line_header *ofs)
2341 {
2342 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
2343 }
2344
2345 /* Hash function for htab_create_alloc_ex for line_header_hash. */
2346
2347 static hashval_t
2348 line_header_hash_voidp (const void *item)
2349 {
2350 const struct line_header *ofs = (const struct line_header *) item;
2351
2352 return line_header_hash (ofs);
2353 }
2354
2355 /* Equality function for line_header_hash. */
2356
2357 static int
2358 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
2359 {
2360 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
2361 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
2362
2363 return (ofs_lhs->sect_off == ofs_rhs->sect_off
2364 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2365 }
2366
2367 \f
2368
2369 /* Read the given attribute value as an address, taking the attribute's
2370 form into account. */
2371
2372 static CORE_ADDR
2373 attr_value_as_address (struct attribute *attr)
2374 {
2375 CORE_ADDR addr;
2376
2377 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2378 {
2379 /* Aside from a few clearly defined exceptions, attributes that
2380 contain an address must always be in DW_FORM_addr form.
2381 Unfortunately, some compilers happen to be violating this
2382 requirement by encoding addresses using other forms, such
2383 as DW_FORM_data4 for example. For those broken compilers,
2384 we try to do our best, without any guarantee of success,
2385 to interpret the address correctly. It would also be nice
2386 to generate a complaint, but that would require us to maintain
2387 a list of legitimate cases where a non-address form is allowed,
2388 as well as update callers to pass in at least the CU's DWARF
2389 version. This is more overhead than what we're willing to
2390 expand for a pretty rare case. */
2391 addr = DW_UNSND (attr);
2392 }
2393 else
2394 addr = DW_ADDR (attr);
2395
2396 return addr;
2397 }
2398
2399 /* The suffix for an index file. */
2400 #define INDEX4_SUFFIX ".gdb-index"
2401 #define INDEX5_SUFFIX ".debug_names"
2402 #define DEBUG_STR_SUFFIX ".debug_str"
2403
2404 /* See declaration. */
2405
2406 dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
2407 const dwarf2_debug_sections *names)
2408 : objfile (objfile_)
2409 {
2410 if (names == NULL)
2411 names = &dwarf2_elf_names;
2412
2413 bfd *obfd = objfile->obfd;
2414
2415 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
2416 locate_sections (obfd, sec, *names);
2417 }
2418
2419 dwarf2_per_objfile::~dwarf2_per_objfile ()
2420 {
2421 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
2422 free_cached_comp_units ();
2423
2424 if (quick_file_names_table)
2425 htab_delete (quick_file_names_table);
2426
2427 if (line_header_hash)
2428 htab_delete (line_header_hash);
2429
2430 /* Everything else should be on the objfile obstack. */
2431 }
2432
2433 /* See declaration. */
2434
2435 void
2436 dwarf2_per_objfile::free_cached_comp_units ()
2437 {
2438 dwarf2_per_cu_data *per_cu = read_in_chain;
2439 dwarf2_per_cu_data **last_chain = &read_in_chain;
2440 while (per_cu != NULL)
2441 {
2442 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
2443
2444 free_heap_comp_unit (per_cu->cu);
2445 *last_chain = next_cu;
2446 per_cu = next_cu;
2447 }
2448 }
2449
2450 /* Try to locate the sections we need for DWARF 2 debugging
2451 information and return true if we have enough to do something.
2452 NAMES points to the dwarf2 section names, or is NULL if the standard
2453 ELF names are used. */
2454
2455 int
2456 dwarf2_has_info (struct objfile *objfile,
2457 const struct dwarf2_debug_sections *names)
2458 {
2459 if (objfile->flags & OBJF_READNEVER)
2460 return 0;
2461
2462 struct dwarf2_per_objfile *dwarf2_per_objfile
2463 = get_dwarf2_per_objfile (objfile);
2464
2465 if (dwarf2_per_objfile == NULL)
2466 {
2467 /* Initialize per-objfile state. */
2468 struct dwarf2_per_objfile *data
2469 = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_objfile);
2470
2471 dwarf2_per_objfile = new (data) struct dwarf2_per_objfile (objfile, names);
2472 set_dwarf2_per_objfile (objfile, dwarf2_per_objfile);
2473 }
2474 return (!dwarf2_per_objfile->info.is_virtual
2475 && dwarf2_per_objfile->info.s.section != NULL
2476 && !dwarf2_per_objfile->abbrev.is_virtual
2477 && dwarf2_per_objfile->abbrev.s.section != NULL);
2478 }
2479
2480 /* Return the containing section of virtual section SECTION. */
2481
2482 static struct dwarf2_section_info *
2483 get_containing_section (const struct dwarf2_section_info *section)
2484 {
2485 gdb_assert (section->is_virtual);
2486 return section->s.containing_section;
2487 }
2488
2489 /* Return the bfd owner of SECTION. */
2490
2491 static struct bfd *
2492 get_section_bfd_owner (const struct dwarf2_section_info *section)
2493 {
2494 if (section->is_virtual)
2495 {
2496 section = get_containing_section (section);
2497 gdb_assert (!section->is_virtual);
2498 }
2499 return section->s.section->owner;
2500 }
2501
2502 /* Return the bfd section of SECTION.
2503 Returns NULL if the section is not present. */
2504
2505 static asection *
2506 get_section_bfd_section (const struct dwarf2_section_info *section)
2507 {
2508 if (section->is_virtual)
2509 {
2510 section = get_containing_section (section);
2511 gdb_assert (!section->is_virtual);
2512 }
2513 return section->s.section;
2514 }
2515
2516 /* Return the name of SECTION. */
2517
2518 static const char *
2519 get_section_name (const struct dwarf2_section_info *section)
2520 {
2521 asection *sectp = get_section_bfd_section (section);
2522
2523 gdb_assert (sectp != NULL);
2524 return bfd_section_name (get_section_bfd_owner (section), sectp);
2525 }
2526
2527 /* Return the name of the file SECTION is in. */
2528
2529 static const char *
2530 get_section_file_name (const struct dwarf2_section_info *section)
2531 {
2532 bfd *abfd = get_section_bfd_owner (section);
2533
2534 return bfd_get_filename (abfd);
2535 }
2536
2537 /* Return the id of SECTION.
2538 Returns 0 if SECTION doesn't exist. */
2539
2540 static int
2541 get_section_id (const struct dwarf2_section_info *section)
2542 {
2543 asection *sectp = get_section_bfd_section (section);
2544
2545 if (sectp == NULL)
2546 return 0;
2547 return sectp->id;
2548 }
2549
2550 /* Return the flags of SECTION.
2551 SECTION (or containing section if this is a virtual section) must exist. */
2552
2553 static int
2554 get_section_flags (const struct dwarf2_section_info *section)
2555 {
2556 asection *sectp = get_section_bfd_section (section);
2557
2558 gdb_assert (sectp != NULL);
2559 return bfd_get_section_flags (sectp->owner, sectp);
2560 }
2561
2562 /* When loading sections, we look either for uncompressed section or for
2563 compressed section names. */
2564
2565 static int
2566 section_is_p (const char *section_name,
2567 const struct dwarf2_section_names *names)
2568 {
2569 if (names->normal != NULL
2570 && strcmp (section_name, names->normal) == 0)
2571 return 1;
2572 if (names->compressed != NULL
2573 && strcmp (section_name, names->compressed) == 0)
2574 return 1;
2575 return 0;
2576 }
2577
2578 /* See declaration. */
2579
2580 void
2581 dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
2582 const dwarf2_debug_sections &names)
2583 {
2584 flagword aflag = bfd_get_section_flags (abfd, sectp);
2585
2586 if ((aflag & SEC_HAS_CONTENTS) == 0)
2587 {
2588 }
2589 else if (section_is_p (sectp->name, &names.info))
2590 {
2591 this->info.s.section = sectp;
2592 this->info.size = bfd_get_section_size (sectp);
2593 }
2594 else if (section_is_p (sectp->name, &names.abbrev))
2595 {
2596 this->abbrev.s.section = sectp;
2597 this->abbrev.size = bfd_get_section_size (sectp);
2598 }
2599 else if (section_is_p (sectp->name, &names.line))
2600 {
2601 this->line.s.section = sectp;
2602 this->line.size = bfd_get_section_size (sectp);
2603 }
2604 else if (section_is_p (sectp->name, &names.loc))
2605 {
2606 this->loc.s.section = sectp;
2607 this->loc.size = bfd_get_section_size (sectp);
2608 }
2609 else if (section_is_p (sectp->name, &names.loclists))
2610 {
2611 this->loclists.s.section = sectp;
2612 this->loclists.size = bfd_get_section_size (sectp);
2613 }
2614 else if (section_is_p (sectp->name, &names.macinfo))
2615 {
2616 this->macinfo.s.section = sectp;
2617 this->macinfo.size = bfd_get_section_size (sectp);
2618 }
2619 else if (section_is_p (sectp->name, &names.macro))
2620 {
2621 this->macro.s.section = sectp;
2622 this->macro.size = bfd_get_section_size (sectp);
2623 }
2624 else if (section_is_p (sectp->name, &names.str))
2625 {
2626 this->str.s.section = sectp;
2627 this->str.size = bfd_get_section_size (sectp);
2628 }
2629 else if (section_is_p (sectp->name, &names.line_str))
2630 {
2631 this->line_str.s.section = sectp;
2632 this->line_str.size = bfd_get_section_size (sectp);
2633 }
2634 else if (section_is_p (sectp->name, &names.addr))
2635 {
2636 this->addr.s.section = sectp;
2637 this->addr.size = bfd_get_section_size (sectp);
2638 }
2639 else if (section_is_p (sectp->name, &names.frame))
2640 {
2641 this->frame.s.section = sectp;
2642 this->frame.size = bfd_get_section_size (sectp);
2643 }
2644 else if (section_is_p (sectp->name, &names.eh_frame))
2645 {
2646 this->eh_frame.s.section = sectp;
2647 this->eh_frame.size = bfd_get_section_size (sectp);
2648 }
2649 else if (section_is_p (sectp->name, &names.ranges))
2650 {
2651 this->ranges.s.section = sectp;
2652 this->ranges.size = bfd_get_section_size (sectp);
2653 }
2654 else if (section_is_p (sectp->name, &names.rnglists))
2655 {
2656 this->rnglists.s.section = sectp;
2657 this->rnglists.size = bfd_get_section_size (sectp);
2658 }
2659 else if (section_is_p (sectp->name, &names.types))
2660 {
2661 struct dwarf2_section_info type_section;
2662
2663 memset (&type_section, 0, sizeof (type_section));
2664 type_section.s.section = sectp;
2665 type_section.size = bfd_get_section_size (sectp);
2666
2667 VEC_safe_push (dwarf2_section_info_def, this->types,
2668 &type_section);
2669 }
2670 else if (section_is_p (sectp->name, &names.gdb_index))
2671 {
2672 this->gdb_index.s.section = sectp;
2673 this->gdb_index.size = bfd_get_section_size (sectp);
2674 }
2675 else if (section_is_p (sectp->name, &names.debug_names))
2676 {
2677 this->debug_names.s.section = sectp;
2678 this->debug_names.size = bfd_get_section_size (sectp);
2679 }
2680 else if (section_is_p (sectp->name, &names.debug_aranges))
2681 {
2682 this->debug_aranges.s.section = sectp;
2683 this->debug_aranges.size = bfd_get_section_size (sectp);
2684 }
2685
2686 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2687 && bfd_section_vma (abfd, sectp) == 0)
2688 this->has_section_at_zero = true;
2689 }
2690
2691 /* A helper function that decides whether a section is empty,
2692 or not present. */
2693
2694 static int
2695 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2696 {
2697 if (section->is_virtual)
2698 return section->size == 0;
2699 return section->s.section == NULL || section->size == 0;
2700 }
2701
2702 /* Read the contents of the section INFO.
2703 OBJFILE is the main object file, but not necessarily the file where
2704 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2705 of the DWO file.
2706 If the section is compressed, uncompress it before returning. */
2707
2708 static void
2709 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
2710 {
2711 asection *sectp;
2712 bfd *abfd;
2713 gdb_byte *buf, *retbuf;
2714
2715 if (info->readin)
2716 return;
2717 info->buffer = NULL;
2718 info->readin = 1;
2719
2720 if (dwarf2_section_empty_p (info))
2721 return;
2722
2723 sectp = get_section_bfd_section (info);
2724
2725 /* If this is a virtual section we need to read in the real one first. */
2726 if (info->is_virtual)
2727 {
2728 struct dwarf2_section_info *containing_section =
2729 get_containing_section (info);
2730
2731 gdb_assert (sectp != NULL);
2732 if ((sectp->flags & SEC_RELOC) != 0)
2733 {
2734 error (_("Dwarf Error: DWP format V2 with relocations is not"
2735 " supported in section %s [in module %s]"),
2736 get_section_name (info), get_section_file_name (info));
2737 }
2738 dwarf2_read_section (objfile, containing_section);
2739 /* Other code should have already caught virtual sections that don't
2740 fit. */
2741 gdb_assert (info->virtual_offset + info->size
2742 <= containing_section->size);
2743 /* If the real section is empty or there was a problem reading the
2744 section we shouldn't get here. */
2745 gdb_assert (containing_section->buffer != NULL);
2746 info->buffer = containing_section->buffer + info->virtual_offset;
2747 return;
2748 }
2749
2750 /* If the section has relocations, we must read it ourselves.
2751 Otherwise we attach it to the BFD. */
2752 if ((sectp->flags & SEC_RELOC) == 0)
2753 {
2754 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2755 return;
2756 }
2757
2758 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2759 info->buffer = buf;
2760
2761 /* When debugging .o files, we may need to apply relocations; see
2762 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2763 We never compress sections in .o files, so we only need to
2764 try this when the section is not compressed. */
2765 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2766 if (retbuf != NULL)
2767 {
2768 info->buffer = retbuf;
2769 return;
2770 }
2771
2772 abfd = get_section_bfd_owner (info);
2773 gdb_assert (abfd != NULL);
2774
2775 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2776 || bfd_bread (buf, info->size, abfd) != info->size)
2777 {
2778 error (_("Dwarf Error: Can't read DWARF data"
2779 " in section %s [in module %s]"),
2780 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2781 }
2782 }
2783
2784 /* A helper function that returns the size of a section in a safe way.
2785 If you are positive that the section has been read before using the
2786 size, then it is safe to refer to the dwarf2_section_info object's
2787 "size" field directly. In other cases, you must call this
2788 function, because for compressed sections the size field is not set
2789 correctly until the section has been read. */
2790
2791 static bfd_size_type
2792 dwarf2_section_size (struct objfile *objfile,
2793 struct dwarf2_section_info *info)
2794 {
2795 if (!info->readin)
2796 dwarf2_read_section (objfile, info);
2797 return info->size;
2798 }
2799
2800 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2801 SECTION_NAME. */
2802
2803 void
2804 dwarf2_get_section_info (struct objfile *objfile,
2805 enum dwarf2_section_enum sect,
2806 asection **sectp, const gdb_byte **bufp,
2807 bfd_size_type *sizep)
2808 {
2809 struct dwarf2_per_objfile *data
2810 = (struct dwarf2_per_objfile *) objfile_data (objfile,
2811 dwarf2_objfile_data_key);
2812 struct dwarf2_section_info *info;
2813
2814 /* We may see an objfile without any DWARF, in which case we just
2815 return nothing. */
2816 if (data == NULL)
2817 {
2818 *sectp = NULL;
2819 *bufp = NULL;
2820 *sizep = 0;
2821 return;
2822 }
2823 switch (sect)
2824 {
2825 case DWARF2_DEBUG_FRAME:
2826 info = &data->frame;
2827 break;
2828 case DWARF2_EH_FRAME:
2829 info = &data->eh_frame;
2830 break;
2831 default:
2832 gdb_assert_not_reached ("unexpected section");
2833 }
2834
2835 dwarf2_read_section (objfile, info);
2836
2837 *sectp = get_section_bfd_section (info);
2838 *bufp = info->buffer;
2839 *sizep = info->size;
2840 }
2841
2842 /* A helper function to find the sections for a .dwz file. */
2843
2844 static void
2845 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2846 {
2847 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2848
2849 /* Note that we only support the standard ELF names, because .dwz
2850 is ELF-only (at the time of writing). */
2851 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2852 {
2853 dwz_file->abbrev.s.section = sectp;
2854 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2855 }
2856 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2857 {
2858 dwz_file->info.s.section = sectp;
2859 dwz_file->info.size = bfd_get_section_size (sectp);
2860 }
2861 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2862 {
2863 dwz_file->str.s.section = sectp;
2864 dwz_file->str.size = bfd_get_section_size (sectp);
2865 }
2866 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2867 {
2868 dwz_file->line.s.section = sectp;
2869 dwz_file->line.size = bfd_get_section_size (sectp);
2870 }
2871 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2872 {
2873 dwz_file->macro.s.section = sectp;
2874 dwz_file->macro.size = bfd_get_section_size (sectp);
2875 }
2876 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2877 {
2878 dwz_file->gdb_index.s.section = sectp;
2879 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2880 }
2881 else if (section_is_p (sectp->name, &dwarf2_elf_names.debug_names))
2882 {
2883 dwz_file->debug_names.s.section = sectp;
2884 dwz_file->debug_names.size = bfd_get_section_size (sectp);
2885 }
2886 }
2887
2888 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2889 there is no .gnu_debugaltlink section in the file. Error if there
2890 is such a section but the file cannot be found. */
2891
2892 static struct dwz_file *
2893 dwarf2_get_dwz_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
2894 {
2895 const char *filename;
2896 struct dwz_file *result;
2897 bfd_size_type buildid_len_arg;
2898 size_t buildid_len;
2899 bfd_byte *buildid;
2900
2901 if (dwarf2_per_objfile->dwz_file != NULL)
2902 return dwarf2_per_objfile->dwz_file;
2903
2904 bfd_set_error (bfd_error_no_error);
2905 gdb::unique_xmalloc_ptr<char> data
2906 (bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2907 &buildid_len_arg, &buildid));
2908 if (data == NULL)
2909 {
2910 if (bfd_get_error () == bfd_error_no_error)
2911 return NULL;
2912 error (_("could not read '.gnu_debugaltlink' section: %s"),
2913 bfd_errmsg (bfd_get_error ()));
2914 }
2915
2916 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
2917
2918 buildid_len = (size_t) buildid_len_arg;
2919
2920 filename = data.get ();
2921
2922 std::string abs_storage;
2923 if (!IS_ABSOLUTE_PATH (filename))
2924 {
2925 gdb::unique_xmalloc_ptr<char> abs
2926 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2927
2928 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
2929 filename = abs_storage.c_str ();
2930 }
2931
2932 /* First try the file name given in the section. If that doesn't
2933 work, try to use the build-id instead. */
2934 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2935 if (dwz_bfd != NULL)
2936 {
2937 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2938 dwz_bfd.release ();
2939 }
2940
2941 if (dwz_bfd == NULL)
2942 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2943
2944 if (dwz_bfd == NULL)
2945 error (_("could not find '.gnu_debugaltlink' file for %s"),
2946 objfile_name (dwarf2_per_objfile->objfile));
2947
2948 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2949 struct dwz_file);
2950 result->dwz_bfd = dwz_bfd.release ();
2951
2952 bfd_map_over_sections (result->dwz_bfd, locate_dwz_sections, result);
2953
2954 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, result->dwz_bfd);
2955 dwarf2_per_objfile->dwz_file = result;
2956 return result;
2957 }
2958 \f
2959 /* DWARF quick_symbols_functions support. */
2960
2961 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2962 unique line tables, so we maintain a separate table of all .debug_line
2963 derived entries to support the sharing.
2964 All the quick functions need is the list of file names. We discard the
2965 line_header when we're done and don't need to record it here. */
2966 struct quick_file_names
2967 {
2968 /* The data used to construct the hash key. */
2969 struct stmt_list_hash hash;
2970
2971 /* The number of entries in file_names, real_names. */
2972 unsigned int num_file_names;
2973
2974 /* The file names from the line table, after being run through
2975 file_full_name. */
2976 const char **file_names;
2977
2978 /* The file names from the line table after being run through
2979 gdb_realpath. These are computed lazily. */
2980 const char **real_names;
2981 };
2982
2983 /* When using the index (and thus not using psymtabs), each CU has an
2984 object of this type. This is used to hold information needed by
2985 the various "quick" methods. */
2986 struct dwarf2_per_cu_quick_data
2987 {
2988 /* The file table. This can be NULL if there was no file table
2989 or it's currently not read in.
2990 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2991 struct quick_file_names *file_names;
2992
2993 /* The corresponding symbol table. This is NULL if symbols for this
2994 CU have not yet been read. */
2995 struct compunit_symtab *compunit_symtab;
2996
2997 /* A temporary mark bit used when iterating over all CUs in
2998 expand_symtabs_matching. */
2999 unsigned int mark : 1;
3000
3001 /* True if we've tried to read the file table and found there isn't one.
3002 There will be no point in trying to read it again next time. */
3003 unsigned int no_file_data : 1;
3004 };
3005
3006 /* Utility hash function for a stmt_list_hash. */
3007
3008 static hashval_t
3009 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
3010 {
3011 hashval_t v = 0;
3012
3013 if (stmt_list_hash->dwo_unit != NULL)
3014 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
3015 v += to_underlying (stmt_list_hash->line_sect_off);
3016 return v;
3017 }
3018
3019 /* Utility equality function for a stmt_list_hash. */
3020
3021 static int
3022 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
3023 const struct stmt_list_hash *rhs)
3024 {
3025 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
3026 return 0;
3027 if (lhs->dwo_unit != NULL
3028 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
3029 return 0;
3030
3031 return lhs->line_sect_off == rhs->line_sect_off;
3032 }
3033
3034 /* Hash function for a quick_file_names. */
3035
3036 static hashval_t
3037 hash_file_name_entry (const void *e)
3038 {
3039 const struct quick_file_names *file_data
3040 = (const struct quick_file_names *) e;
3041
3042 return hash_stmt_list_entry (&file_data->hash);
3043 }
3044
3045 /* Equality function for a quick_file_names. */
3046
3047 static int
3048 eq_file_name_entry (const void *a, const void *b)
3049 {
3050 const struct quick_file_names *ea = (const struct quick_file_names *) a;
3051 const struct quick_file_names *eb = (const struct quick_file_names *) b;
3052
3053 return eq_stmt_list_entry (&ea->hash, &eb->hash);
3054 }
3055
3056 /* Delete function for a quick_file_names. */
3057
3058 static void
3059 delete_file_name_entry (void *e)
3060 {
3061 struct quick_file_names *file_data = (struct quick_file_names *) e;
3062 int i;
3063
3064 for (i = 0; i < file_data->num_file_names; ++i)
3065 {
3066 xfree ((void*) file_data->file_names[i]);
3067 if (file_data->real_names)
3068 xfree ((void*) file_data->real_names[i]);
3069 }
3070
3071 /* The space for the struct itself lives on objfile_obstack,
3072 so we don't free it here. */
3073 }
3074
3075 /* Create a quick_file_names hash table. */
3076
3077 static htab_t
3078 create_quick_file_names_table (unsigned int nr_initial_entries)
3079 {
3080 return htab_create_alloc (nr_initial_entries,
3081 hash_file_name_entry, eq_file_name_entry,
3082 delete_file_name_entry, xcalloc, xfree);
3083 }
3084
3085 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
3086 have to be created afterwards. You should call age_cached_comp_units after
3087 processing PER_CU->CU. dw2_setup must have been already called. */
3088
3089 static void
3090 load_cu (struct dwarf2_per_cu_data *per_cu)
3091 {
3092 if (per_cu->is_debug_types)
3093 load_full_type_unit (per_cu);
3094 else
3095 load_full_comp_unit (per_cu, language_minimal);
3096
3097 if (per_cu->cu == NULL)
3098 return; /* Dummy CU. */
3099
3100 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
3101 }
3102
3103 /* Read in the symbols for PER_CU. */
3104
3105 static void
3106 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
3107 {
3108 struct cleanup *back_to;
3109 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
3110
3111 /* Skip type_unit_groups, reading the type units they contain
3112 is handled elsewhere. */
3113 if (IS_TYPE_UNIT_GROUP (per_cu))
3114 return;
3115
3116 back_to = make_cleanup (dwarf2_release_queue, NULL);
3117
3118 if (dwarf2_per_objfile->using_index
3119 ? per_cu->v.quick->compunit_symtab == NULL
3120 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
3121 {
3122 queue_comp_unit (per_cu, language_minimal);
3123 load_cu (per_cu);
3124
3125 /* If we just loaded a CU from a DWO, and we're working with an index
3126 that may badly handle TUs, load all the TUs in that DWO as well.
3127 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
3128 if (!per_cu->is_debug_types
3129 && per_cu->cu != NULL
3130 && per_cu->cu->dwo_unit != NULL
3131 && dwarf2_per_objfile->index_table != NULL
3132 && dwarf2_per_objfile->index_table->version <= 7
3133 /* DWP files aren't supported yet. */
3134 && get_dwp_file (dwarf2_per_objfile) == NULL)
3135 queue_and_load_all_dwo_tus (per_cu);
3136 }
3137
3138 process_queue (dwarf2_per_objfile);
3139
3140 /* Age the cache, releasing compilation units that have not
3141 been used recently. */
3142 age_cached_comp_units (dwarf2_per_objfile);
3143
3144 do_cleanups (back_to);
3145 }
3146
3147 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
3148 the objfile from which this CU came. Returns the resulting symbol
3149 table. */
3150
3151 static struct compunit_symtab *
3152 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
3153 {
3154 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
3155
3156 gdb_assert (dwarf2_per_objfile->using_index);
3157 if (!per_cu->v.quick->compunit_symtab)
3158 {
3159 struct cleanup *back_to = make_cleanup (free_cached_comp_units,
3160 dwarf2_per_objfile);
3161 scoped_restore decrementer = increment_reading_symtab ();
3162 dw2_do_instantiate_symtab (per_cu);
3163 process_cu_includes (dwarf2_per_objfile);
3164 do_cleanups (back_to);
3165 }
3166
3167 return per_cu->v.quick->compunit_symtab;
3168 }
3169
3170 /* Return the CU/TU given its index.
3171
3172 This is intended for loops like:
3173
3174 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3175 + dwarf2_per_objfile->n_type_units); ++i)
3176 {
3177 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3178
3179 ...;
3180 }
3181 */
3182
3183 static struct dwarf2_per_cu_data *
3184 dw2_get_cutu (struct dwarf2_per_objfile *dwarf2_per_objfile,
3185 int index)
3186 {
3187 if (index >= dwarf2_per_objfile->n_comp_units)
3188 {
3189 index -= dwarf2_per_objfile->n_comp_units;
3190 gdb_assert (index < dwarf2_per_objfile->n_type_units);
3191 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
3192 }
3193
3194 return dwarf2_per_objfile->all_comp_units[index];
3195 }
3196
3197 /* Return the CU given its index.
3198 This differs from dw2_get_cutu in that it's for when you know INDEX
3199 refers to a CU. */
3200
3201 static struct dwarf2_per_cu_data *
3202 dw2_get_cu (struct dwarf2_per_objfile *dwarf2_per_objfile, int index)
3203 {
3204 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
3205
3206 return dwarf2_per_objfile->all_comp_units[index];
3207 }
3208
3209 /* Return a new dwarf2_per_cu_data allocated on OBJFILE's
3210 objfile_obstack, and constructed with the specified field
3211 values. */
3212
3213 static dwarf2_per_cu_data *
3214 create_cu_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
3215 struct dwarf2_section_info *section,
3216 int is_dwz,
3217 sect_offset sect_off, ULONGEST length)
3218 {
3219 struct objfile *objfile = dwarf2_per_objfile->objfile;
3220 dwarf2_per_cu_data *the_cu
3221 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3222 struct dwarf2_per_cu_data);
3223 the_cu->sect_off = sect_off;
3224 the_cu->length = length;
3225 the_cu->dwarf2_per_objfile = dwarf2_per_objfile;
3226 the_cu->section = section;
3227 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3228 struct dwarf2_per_cu_quick_data);
3229 the_cu->is_dwz = is_dwz;
3230 return the_cu;
3231 }
3232
3233 /* A helper for create_cus_from_index that handles a given list of
3234 CUs. */
3235
3236 static void
3237 create_cus_from_index_list (struct objfile *objfile,
3238 const gdb_byte *cu_list, offset_type n_elements,
3239 struct dwarf2_section_info *section,
3240 int is_dwz,
3241 int base_offset)
3242 {
3243 offset_type i;
3244 struct dwarf2_per_objfile *dwarf2_per_objfile
3245 = get_dwarf2_per_objfile (objfile);
3246
3247 for (i = 0; i < n_elements; i += 2)
3248 {
3249 gdb_static_assert (sizeof (ULONGEST) >= 8);
3250
3251 sect_offset sect_off
3252 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
3253 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
3254 cu_list += 2 * 8;
3255
3256 dwarf2_per_objfile->all_comp_units[base_offset + i / 2]
3257 = create_cu_from_index_list (dwarf2_per_objfile, section, is_dwz,
3258 sect_off, length);
3259 }
3260 }
3261
3262 /* Read the CU list from the mapped index, and use it to create all
3263 the CU objects for this objfile. */
3264
3265 static void
3266 create_cus_from_index (struct objfile *objfile,
3267 const gdb_byte *cu_list, offset_type cu_list_elements,
3268 const gdb_byte *dwz_list, offset_type dwz_elements)
3269 {
3270 struct dwz_file *dwz;
3271 struct dwarf2_per_objfile *dwarf2_per_objfile
3272 = get_dwarf2_per_objfile (objfile);
3273
3274 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
3275 dwarf2_per_objfile->all_comp_units =
3276 XOBNEWVEC (&objfile->objfile_obstack, struct dwarf2_per_cu_data *,
3277 dwarf2_per_objfile->n_comp_units);
3278
3279 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
3280 &dwarf2_per_objfile->info, 0, 0);
3281
3282 if (dwz_elements == 0)
3283 return;
3284
3285 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3286 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
3287 cu_list_elements / 2);
3288 }
3289
3290 /* Create the signatured type hash table from the index. */
3291
3292 static void
3293 create_signatured_type_table_from_index (struct objfile *objfile,
3294 struct dwarf2_section_info *section,
3295 const gdb_byte *bytes,
3296 offset_type elements)
3297 {
3298 offset_type i;
3299 htab_t sig_types_hash;
3300 struct dwarf2_per_objfile *dwarf2_per_objfile
3301 = get_dwarf2_per_objfile (objfile);
3302
3303 dwarf2_per_objfile->n_type_units
3304 = dwarf2_per_objfile->n_allocated_type_units
3305 = elements / 3;
3306 dwarf2_per_objfile->all_type_units =
3307 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
3308
3309 sig_types_hash = allocate_signatured_type_table (objfile);
3310
3311 for (i = 0; i < elements; i += 3)
3312 {
3313 struct signatured_type *sig_type;
3314 ULONGEST signature;
3315 void **slot;
3316 cu_offset type_offset_in_tu;
3317
3318 gdb_static_assert (sizeof (ULONGEST) >= 8);
3319 sect_offset sect_off
3320 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
3321 type_offset_in_tu
3322 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
3323 BFD_ENDIAN_LITTLE);
3324 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
3325 bytes += 3 * 8;
3326
3327 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3328 struct signatured_type);
3329 sig_type->signature = signature;
3330 sig_type->type_offset_in_tu = type_offset_in_tu;
3331 sig_type->per_cu.is_debug_types = 1;
3332 sig_type->per_cu.section = section;
3333 sig_type->per_cu.sect_off = sect_off;
3334 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3335 sig_type->per_cu.v.quick
3336 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3337 struct dwarf2_per_cu_quick_data);
3338
3339 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3340 *slot = sig_type;
3341
3342 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
3343 }
3344
3345 dwarf2_per_objfile->signatured_types = sig_types_hash;
3346 }
3347
3348 /* Create the signatured type hash table from .debug_names. */
3349
3350 static void
3351 create_signatured_type_table_from_debug_names
3352 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3353 const mapped_debug_names &map,
3354 struct dwarf2_section_info *section,
3355 struct dwarf2_section_info *abbrev_section)
3356 {
3357 struct objfile *objfile = dwarf2_per_objfile->objfile;
3358
3359 dwarf2_read_section (objfile, section);
3360 dwarf2_read_section (objfile, abbrev_section);
3361
3362 dwarf2_per_objfile->n_type_units
3363 = dwarf2_per_objfile->n_allocated_type_units
3364 = map.tu_count;
3365 dwarf2_per_objfile->all_type_units
3366 = XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
3367
3368 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3369
3370 for (uint32_t i = 0; i < map.tu_count; ++i)
3371 {
3372 struct signatured_type *sig_type;
3373 ULONGEST signature;
3374 void **slot;
3375 cu_offset type_offset_in_tu;
3376
3377 sect_offset sect_off
3378 = (sect_offset) (extract_unsigned_integer
3379 (map.tu_table_reordered + i * map.offset_size,
3380 map.offset_size,
3381 map.dwarf5_byte_order));
3382
3383 comp_unit_head cu_header;
3384 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
3385 abbrev_section,
3386 section->buffer + to_underlying (sect_off),
3387 rcuh_kind::TYPE);
3388
3389 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3390 struct signatured_type);
3391 sig_type->signature = cu_header.signature;
3392 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
3393 sig_type->per_cu.is_debug_types = 1;
3394 sig_type->per_cu.section = section;
3395 sig_type->per_cu.sect_off = sect_off;
3396 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3397 sig_type->per_cu.v.quick
3398 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3399 struct dwarf2_per_cu_quick_data);
3400
3401 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3402 *slot = sig_type;
3403
3404 dwarf2_per_objfile->all_type_units[i] = sig_type;
3405 }
3406
3407 dwarf2_per_objfile->signatured_types = sig_types_hash;
3408 }
3409
3410 /* Read the address map data from the mapped index, and use it to
3411 populate the objfile's psymtabs_addrmap. */
3412
3413 static void
3414 create_addrmap_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3415 struct mapped_index *index)
3416 {
3417 struct objfile *objfile = dwarf2_per_objfile->objfile;
3418 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3419 const gdb_byte *iter, *end;
3420 struct addrmap *mutable_map;
3421 CORE_ADDR baseaddr;
3422
3423 auto_obstack temp_obstack;
3424
3425 mutable_map = addrmap_create_mutable (&temp_obstack);
3426
3427 iter = index->address_table.data ();
3428 end = iter + index->address_table.size ();
3429
3430 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3431
3432 while (iter < end)
3433 {
3434 ULONGEST hi, lo, cu_index;
3435 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3436 iter += 8;
3437 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3438 iter += 8;
3439 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
3440 iter += 4;
3441
3442 if (lo > hi)
3443 {
3444 complaint (&symfile_complaints,
3445 _(".gdb_index address table has invalid range (%s - %s)"),
3446 hex_string (lo), hex_string (hi));
3447 continue;
3448 }
3449
3450 if (cu_index >= dwarf2_per_objfile->n_comp_units)
3451 {
3452 complaint (&symfile_complaints,
3453 _(".gdb_index address table has invalid CU number %u"),
3454 (unsigned) cu_index);
3455 continue;
3456 }
3457
3458 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
3459 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
3460 addrmap_set_empty (mutable_map, lo, hi - 1,
3461 dw2_get_cutu (dwarf2_per_objfile, cu_index));
3462 }
3463
3464 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3465 &objfile->objfile_obstack);
3466 }
3467
3468 /* Read the address map data from DWARF-5 .debug_aranges, and use it to
3469 populate the objfile's psymtabs_addrmap. */
3470
3471 static void
3472 create_addrmap_from_aranges (struct dwarf2_per_objfile *dwarf2_per_objfile,
3473 struct dwarf2_section_info *section)
3474 {
3475 struct objfile *objfile = dwarf2_per_objfile->objfile;
3476 bfd *abfd = objfile->obfd;
3477 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3478 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
3479 SECT_OFF_TEXT (objfile));
3480
3481 auto_obstack temp_obstack;
3482 addrmap *mutable_map = addrmap_create_mutable (&temp_obstack);
3483
3484 std::unordered_map<sect_offset,
3485 dwarf2_per_cu_data *,
3486 gdb::hash_enum<sect_offset>>
3487 debug_info_offset_to_per_cu;
3488 for (int cui = 0; cui < dwarf2_per_objfile->n_comp_units; ++cui)
3489 {
3490 dwarf2_per_cu_data *per_cu = dw2_get_cutu (dwarf2_per_objfile, cui);
3491 const auto insertpair
3492 = debug_info_offset_to_per_cu.emplace (per_cu->sect_off, per_cu);
3493 if (!insertpair.second)
3494 {
3495 warning (_("Section .debug_aranges in %s has duplicate "
3496 "debug_info_offset %u, ignoring .debug_aranges."),
3497 objfile_name (objfile), to_underlying (per_cu->sect_off));
3498 return;
3499 }
3500 }
3501
3502 dwarf2_read_section (objfile, section);
3503
3504 const bfd_endian dwarf5_byte_order = gdbarch_byte_order (gdbarch);
3505
3506 const gdb_byte *addr = section->buffer;
3507
3508 while (addr < section->buffer + section->size)
3509 {
3510 const gdb_byte *const entry_addr = addr;
3511 unsigned int bytes_read;
3512
3513 const LONGEST entry_length = read_initial_length (abfd, addr,
3514 &bytes_read);
3515 addr += bytes_read;
3516
3517 const gdb_byte *const entry_end = addr + entry_length;
3518 const bool dwarf5_is_dwarf64 = bytes_read != 4;
3519 const uint8_t offset_size = dwarf5_is_dwarf64 ? 8 : 4;
3520 if (addr + entry_length > section->buffer + section->size)
3521 {
3522 warning (_("Section .debug_aranges in %s entry at offset %zu "
3523 "length %s exceeds section length %s, "
3524 "ignoring .debug_aranges."),
3525 objfile_name (objfile), entry_addr - section->buffer,
3526 plongest (bytes_read + entry_length),
3527 pulongest (section->size));
3528 return;
3529 }
3530
3531 /* The version number. */
3532 const uint16_t version = read_2_bytes (abfd, addr);
3533 addr += 2;
3534 if (version != 2)
3535 {
3536 warning (_("Section .debug_aranges in %s entry at offset %zu "
3537 "has unsupported version %d, ignoring .debug_aranges."),
3538 objfile_name (objfile), entry_addr - section->buffer,
3539 version);
3540 return;
3541 }
3542
3543 const uint64_t debug_info_offset
3544 = extract_unsigned_integer (addr, offset_size, dwarf5_byte_order);
3545 addr += offset_size;
3546 const auto per_cu_it
3547 = debug_info_offset_to_per_cu.find (sect_offset (debug_info_offset));
3548 if (per_cu_it == debug_info_offset_to_per_cu.cend ())
3549 {
3550 warning (_("Section .debug_aranges in %s entry at offset %zu "
3551 "debug_info_offset %s does not exists, "
3552 "ignoring .debug_aranges."),
3553 objfile_name (objfile), entry_addr - section->buffer,
3554 pulongest (debug_info_offset));
3555 return;
3556 }
3557 dwarf2_per_cu_data *const per_cu = per_cu_it->second;
3558
3559 const uint8_t address_size = *addr++;
3560 if (address_size < 1 || address_size > 8)
3561 {
3562 warning (_("Section .debug_aranges in %s entry at offset %zu "
3563 "address_size %u is invalid, ignoring .debug_aranges."),
3564 objfile_name (objfile), entry_addr - section->buffer,
3565 address_size);
3566 return;
3567 }
3568
3569 const uint8_t segment_selector_size = *addr++;
3570 if (segment_selector_size != 0)
3571 {
3572 warning (_("Section .debug_aranges in %s entry at offset %zu "
3573 "segment_selector_size %u is not supported, "
3574 "ignoring .debug_aranges."),
3575 objfile_name (objfile), entry_addr - section->buffer,
3576 segment_selector_size);
3577 return;
3578 }
3579
3580 /* Must pad to an alignment boundary that is twice the address
3581 size. It is undocumented by the DWARF standard but GCC does
3582 use it. */
3583 for (size_t padding = ((-(addr - section->buffer))
3584 & (2 * address_size - 1));
3585 padding > 0; padding--)
3586 if (*addr++ != 0)
3587 {
3588 warning (_("Section .debug_aranges in %s entry at offset %zu "
3589 "padding is not zero, ignoring .debug_aranges."),
3590 objfile_name (objfile), entry_addr - section->buffer);
3591 return;
3592 }
3593
3594 for (;;)
3595 {
3596 if (addr + 2 * address_size > entry_end)
3597 {
3598 warning (_("Section .debug_aranges in %s entry at offset %zu "
3599 "address list is not properly terminated, "
3600 "ignoring .debug_aranges."),
3601 objfile_name (objfile), entry_addr - section->buffer);
3602 return;
3603 }
3604 ULONGEST start = extract_unsigned_integer (addr, address_size,
3605 dwarf5_byte_order);
3606 addr += address_size;
3607 ULONGEST length = extract_unsigned_integer (addr, address_size,
3608 dwarf5_byte_order);
3609 addr += address_size;
3610 if (start == 0 && length == 0)
3611 break;
3612 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
3613 {
3614 /* Symbol was eliminated due to a COMDAT group. */
3615 continue;
3616 }
3617 ULONGEST end = start + length;
3618 start = gdbarch_adjust_dwarf2_addr (gdbarch, start + baseaddr);
3619 end = gdbarch_adjust_dwarf2_addr (gdbarch, end + baseaddr);
3620 addrmap_set_empty (mutable_map, start, end - 1, per_cu);
3621 }
3622 }
3623
3624 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3625 &objfile->objfile_obstack);
3626 }
3627
3628 /* The hash function for strings in the mapped index. This is the same as
3629 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
3630 implementation. This is necessary because the hash function is tied to the
3631 format of the mapped index file. The hash values do not have to match with
3632 SYMBOL_HASH_NEXT.
3633
3634 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
3635
3636 static hashval_t
3637 mapped_index_string_hash (int index_version, const void *p)
3638 {
3639 const unsigned char *str = (const unsigned char *) p;
3640 hashval_t r = 0;
3641 unsigned char c;
3642
3643 while ((c = *str++) != 0)
3644 {
3645 if (index_version >= 5)
3646 c = tolower (c);
3647 r = r * 67 + c - 113;
3648 }
3649
3650 return r;
3651 }
3652
3653 /* Find a slot in the mapped index INDEX for the object named NAME.
3654 If NAME is found, set *VEC_OUT to point to the CU vector in the
3655 constant pool and return true. If NAME cannot be found, return
3656 false. */
3657
3658 static bool
3659 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3660 offset_type **vec_out)
3661 {
3662 offset_type hash;
3663 offset_type slot, step;
3664 int (*cmp) (const char *, const char *);
3665
3666 gdb::unique_xmalloc_ptr<char> without_params;
3667 if (current_language->la_language == language_cplus
3668 || current_language->la_language == language_fortran
3669 || current_language->la_language == language_d)
3670 {
3671 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3672 not contain any. */
3673
3674 if (strchr (name, '(') != NULL)
3675 {
3676 without_params = cp_remove_params (name);
3677
3678 if (without_params != NULL)
3679 name = without_params.get ();
3680 }
3681 }
3682
3683 /* Index version 4 did not support case insensitive searches. But the
3684 indices for case insensitive languages are built in lowercase, therefore
3685 simulate our NAME being searched is also lowercased. */
3686 hash = mapped_index_string_hash ((index->version == 4
3687 && case_sensitivity == case_sensitive_off
3688 ? 5 : index->version),
3689 name);
3690
3691 slot = hash & (index->symbol_table.size () - 1);
3692 step = ((hash * 17) & (index->symbol_table.size () - 1)) | 1;
3693 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3694
3695 for (;;)
3696 {
3697 const char *str;
3698
3699 const auto &bucket = index->symbol_table[slot];
3700 if (bucket.name == 0 && bucket.vec == 0)
3701 return false;
3702
3703 str = index->constant_pool + MAYBE_SWAP (bucket.name);
3704 if (!cmp (name, str))
3705 {
3706 *vec_out = (offset_type *) (index->constant_pool
3707 + MAYBE_SWAP (bucket.vec));
3708 return true;
3709 }
3710
3711 slot = (slot + step) & (index->symbol_table.size () - 1);
3712 }
3713 }
3714
3715 /* A helper function that reads the .gdb_index from SECTION and fills
3716 in MAP. FILENAME is the name of the file containing the section;
3717 it is used for error reporting. DEPRECATED_OK is nonzero if it is
3718 ok to use deprecated sections.
3719
3720 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3721 out parameters that are filled in with information about the CU and
3722 TU lists in the section.
3723
3724 Returns 1 if all went well, 0 otherwise. */
3725
3726 static int
3727 read_index_from_section (struct objfile *objfile,
3728 const char *filename,
3729 int deprecated_ok,
3730 struct dwarf2_section_info *section,
3731 struct mapped_index *map,
3732 const gdb_byte **cu_list,
3733 offset_type *cu_list_elements,
3734 const gdb_byte **types_list,
3735 offset_type *types_list_elements)
3736 {
3737 const gdb_byte *addr;
3738 offset_type version;
3739 offset_type *metadata;
3740 int i;
3741
3742 if (dwarf2_section_empty_p (section))
3743 return 0;
3744
3745 /* Older elfutils strip versions could keep the section in the main
3746 executable while splitting it for the separate debug info file. */
3747 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
3748 return 0;
3749
3750 dwarf2_read_section (objfile, section);
3751
3752 addr = section->buffer;
3753 /* Version check. */
3754 version = MAYBE_SWAP (*(offset_type *) addr);
3755 /* Versions earlier than 3 emitted every copy of a psymbol. This
3756 causes the index to behave very poorly for certain requests. Version 3
3757 contained incomplete addrmap. So, it seems better to just ignore such
3758 indices. */
3759 if (version < 4)
3760 {
3761 static int warning_printed = 0;
3762 if (!warning_printed)
3763 {
3764 warning (_("Skipping obsolete .gdb_index section in %s."),
3765 filename);
3766 warning_printed = 1;
3767 }
3768 return 0;
3769 }
3770 /* Index version 4 uses a different hash function than index version
3771 5 and later.
3772
3773 Versions earlier than 6 did not emit psymbols for inlined
3774 functions. Using these files will cause GDB not to be able to
3775 set breakpoints on inlined functions by name, so we ignore these
3776 indices unless the user has done
3777 "set use-deprecated-index-sections on". */
3778 if (version < 6 && !deprecated_ok)
3779 {
3780 static int warning_printed = 0;
3781 if (!warning_printed)
3782 {
3783 warning (_("\
3784 Skipping deprecated .gdb_index section in %s.\n\
3785 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3786 to use the section anyway."),
3787 filename);
3788 warning_printed = 1;
3789 }
3790 return 0;
3791 }
3792 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3793 of the TU (for symbols coming from TUs),
3794 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3795 Plus gold-generated indices can have duplicate entries for global symbols,
3796 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3797 These are just performance bugs, and we can't distinguish gdb-generated
3798 indices from gold-generated ones, so issue no warning here. */
3799
3800 /* Indexes with higher version than the one supported by GDB may be no
3801 longer backward compatible. */
3802 if (version > 8)
3803 return 0;
3804
3805 map->version = version;
3806 map->total_size = section->size;
3807
3808 metadata = (offset_type *) (addr + sizeof (offset_type));
3809
3810 i = 0;
3811 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3812 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3813 / 8);
3814 ++i;
3815
3816 *types_list = addr + MAYBE_SWAP (metadata[i]);
3817 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3818 - MAYBE_SWAP (metadata[i]))
3819 / 8);
3820 ++i;
3821
3822 const gdb_byte *address_table = addr + MAYBE_SWAP (metadata[i]);
3823 const gdb_byte *address_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3824 map->address_table
3825 = gdb::array_view<const gdb_byte> (address_table, address_table_end);
3826 ++i;
3827
3828 const gdb_byte *symbol_table = addr + MAYBE_SWAP (metadata[i]);
3829 const gdb_byte *symbol_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3830 map->symbol_table
3831 = gdb::array_view<mapped_index::symbol_table_slot>
3832 ((mapped_index::symbol_table_slot *) symbol_table,
3833 (mapped_index::symbol_table_slot *) symbol_table_end);
3834
3835 ++i;
3836 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3837
3838 return 1;
3839 }
3840
3841 /* Read .gdb_index. If everything went ok, initialize the "quick"
3842 elements of all the CUs and return 1. Otherwise, return 0. */
3843
3844 static int
3845 dwarf2_read_index (struct objfile *objfile)
3846 {
3847 struct mapped_index local_map, *map;
3848 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3849 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3850 struct dwz_file *dwz;
3851 struct dwarf2_per_objfile *dwarf2_per_objfile
3852 = get_dwarf2_per_objfile (objfile);
3853
3854 if (!read_index_from_section (objfile, objfile_name (objfile),
3855 use_deprecated_index_sections,
3856 &dwarf2_per_objfile->gdb_index, &local_map,
3857 &cu_list, &cu_list_elements,
3858 &types_list, &types_list_elements))
3859 return 0;
3860
3861 /* Don't use the index if it's empty. */
3862 if (local_map.symbol_table.empty ())
3863 return 0;
3864
3865 /* If there is a .dwz file, read it so we can get its CU list as
3866 well. */
3867 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3868 if (dwz != NULL)
3869 {
3870 struct mapped_index dwz_map;
3871 const gdb_byte *dwz_types_ignore;
3872 offset_type dwz_types_elements_ignore;
3873
3874 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3875 1,
3876 &dwz->gdb_index, &dwz_map,
3877 &dwz_list, &dwz_list_elements,
3878 &dwz_types_ignore,
3879 &dwz_types_elements_ignore))
3880 {
3881 warning (_("could not read '.gdb_index' section from %s; skipping"),
3882 bfd_get_filename (dwz->dwz_bfd));
3883 return 0;
3884 }
3885 }
3886
3887 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3888 dwz_list_elements);
3889
3890 if (types_list_elements)
3891 {
3892 struct dwarf2_section_info *section;
3893
3894 /* We can only handle a single .debug_types when we have an
3895 index. */
3896 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3897 return 0;
3898
3899 section = VEC_index (dwarf2_section_info_def,
3900 dwarf2_per_objfile->types, 0);
3901
3902 create_signatured_type_table_from_index (objfile, section, types_list,
3903 types_list_elements);
3904 }
3905
3906 create_addrmap_from_index (dwarf2_per_objfile, &local_map);
3907
3908 map = XOBNEW (&objfile->objfile_obstack, struct mapped_index);
3909 map = new (map) mapped_index ();
3910 *map = local_map;
3911
3912 dwarf2_per_objfile->index_table = map;
3913 dwarf2_per_objfile->using_index = 1;
3914 dwarf2_per_objfile->quick_file_names_table =
3915 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3916
3917 return 1;
3918 }
3919
3920 /* die_reader_func for dw2_get_file_names. */
3921
3922 static void
3923 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3924 const gdb_byte *info_ptr,
3925 struct die_info *comp_unit_die,
3926 int has_children,
3927 void *data)
3928 {
3929 struct dwarf2_cu *cu = reader->cu;
3930 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3931 struct dwarf2_per_objfile *dwarf2_per_objfile
3932 = cu->per_cu->dwarf2_per_objfile;
3933 struct objfile *objfile = dwarf2_per_objfile->objfile;
3934 struct dwarf2_per_cu_data *lh_cu;
3935 struct attribute *attr;
3936 int i;
3937 void **slot;
3938 struct quick_file_names *qfn;
3939
3940 gdb_assert (! this_cu->is_debug_types);
3941
3942 /* Our callers never want to match partial units -- instead they
3943 will match the enclosing full CU. */
3944 if (comp_unit_die->tag == DW_TAG_partial_unit)
3945 {
3946 this_cu->v.quick->no_file_data = 1;
3947 return;
3948 }
3949
3950 lh_cu = this_cu;
3951 slot = NULL;
3952
3953 line_header_up lh;
3954 sect_offset line_offset {};
3955
3956 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3957 if (attr)
3958 {
3959 struct quick_file_names find_entry;
3960
3961 line_offset = (sect_offset) DW_UNSND (attr);
3962
3963 /* We may have already read in this line header (TU line header sharing).
3964 If we have we're done. */
3965 find_entry.hash.dwo_unit = cu->dwo_unit;
3966 find_entry.hash.line_sect_off = line_offset;
3967 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3968 &find_entry, INSERT);
3969 if (*slot != NULL)
3970 {
3971 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3972 return;
3973 }
3974
3975 lh = dwarf_decode_line_header (line_offset, cu);
3976 }
3977 if (lh == NULL)
3978 {
3979 lh_cu->v.quick->no_file_data = 1;
3980 return;
3981 }
3982
3983 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3984 qfn->hash.dwo_unit = cu->dwo_unit;
3985 qfn->hash.line_sect_off = line_offset;
3986 gdb_assert (slot != NULL);
3987 *slot = qfn;
3988
3989 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3990
3991 qfn->num_file_names = lh->file_names.size ();
3992 qfn->file_names =
3993 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->file_names.size ());
3994 for (i = 0; i < lh->file_names.size (); ++i)
3995 qfn->file_names[i] = file_full_name (i + 1, lh.get (), fnd.comp_dir);
3996 qfn->real_names = NULL;
3997
3998 lh_cu->v.quick->file_names = qfn;
3999 }
4000
4001 /* A helper for the "quick" functions which attempts to read the line
4002 table for THIS_CU. */
4003
4004 static struct quick_file_names *
4005 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
4006 {
4007 /* This should never be called for TUs. */
4008 gdb_assert (! this_cu->is_debug_types);
4009 /* Nor type unit groups. */
4010 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
4011
4012 if (this_cu->v.quick->file_names != NULL)
4013 return this_cu->v.quick->file_names;
4014 /* If we know there is no line data, no point in looking again. */
4015 if (this_cu->v.quick->no_file_data)
4016 return NULL;
4017
4018 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
4019
4020 if (this_cu->v.quick->no_file_data)
4021 return NULL;
4022 return this_cu->v.quick->file_names;
4023 }
4024
4025 /* A helper for the "quick" functions which computes and caches the
4026 real path for a given file name from the line table. */
4027
4028 static const char *
4029 dw2_get_real_path (struct objfile *objfile,
4030 struct quick_file_names *qfn, int index)
4031 {
4032 if (qfn->real_names == NULL)
4033 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
4034 qfn->num_file_names, const char *);
4035
4036 if (qfn->real_names[index] == NULL)
4037 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
4038
4039 return qfn->real_names[index];
4040 }
4041
4042 static struct symtab *
4043 dw2_find_last_source_symtab (struct objfile *objfile)
4044 {
4045 struct dwarf2_per_objfile *dwarf2_per_objfile
4046 = get_dwarf2_per_objfile (objfile);
4047 int index = dwarf2_per_objfile->n_comp_units - 1;
4048 dwarf2_per_cu_data *dwarf_cu = dw2_get_cutu (dwarf2_per_objfile, index);
4049 compunit_symtab *cust = dw2_instantiate_symtab (dwarf_cu);
4050
4051 if (cust == NULL)
4052 return NULL;
4053
4054 return compunit_primary_filetab (cust);
4055 }
4056
4057 /* Traversal function for dw2_forget_cached_source_info. */
4058
4059 static int
4060 dw2_free_cached_file_names (void **slot, void *info)
4061 {
4062 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
4063
4064 if (file_data->real_names)
4065 {
4066 int i;
4067
4068 for (i = 0; i < file_data->num_file_names; ++i)
4069 {
4070 xfree ((void*) file_data->real_names[i]);
4071 file_data->real_names[i] = NULL;
4072 }
4073 }
4074
4075 return 1;
4076 }
4077
4078 static void
4079 dw2_forget_cached_source_info (struct objfile *objfile)
4080 {
4081 struct dwarf2_per_objfile *dwarf2_per_objfile
4082 = get_dwarf2_per_objfile (objfile);
4083
4084 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
4085 dw2_free_cached_file_names, NULL);
4086 }
4087
4088 /* Helper function for dw2_map_symtabs_matching_filename that expands
4089 the symtabs and calls the iterator. */
4090
4091 static int
4092 dw2_map_expand_apply (struct objfile *objfile,
4093 struct dwarf2_per_cu_data *per_cu,
4094 const char *name, const char *real_path,
4095 gdb::function_view<bool (symtab *)> callback)
4096 {
4097 struct compunit_symtab *last_made = objfile->compunit_symtabs;
4098
4099 /* Don't visit already-expanded CUs. */
4100 if (per_cu->v.quick->compunit_symtab)
4101 return 0;
4102
4103 /* This may expand more than one symtab, and we want to iterate over
4104 all of them. */
4105 dw2_instantiate_symtab (per_cu);
4106
4107 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
4108 last_made, callback);
4109 }
4110
4111 /* Implementation of the map_symtabs_matching_filename method. */
4112
4113 static bool
4114 dw2_map_symtabs_matching_filename
4115 (struct objfile *objfile, const char *name, const char *real_path,
4116 gdb::function_view<bool (symtab *)> callback)
4117 {
4118 int i;
4119 const char *name_basename = lbasename (name);
4120 struct dwarf2_per_objfile *dwarf2_per_objfile
4121 = get_dwarf2_per_objfile (objfile);
4122
4123 /* The rule is CUs specify all the files, including those used by
4124 any TU, so there's no need to scan TUs here. */
4125
4126 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4127 {
4128 int j;
4129 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (dwarf2_per_objfile, i);
4130 struct quick_file_names *file_data;
4131
4132 /* We only need to look at symtabs not already expanded. */
4133 if (per_cu->v.quick->compunit_symtab)
4134 continue;
4135
4136 file_data = dw2_get_file_names (per_cu);
4137 if (file_data == NULL)
4138 continue;
4139
4140 for (j = 0; j < file_data->num_file_names; ++j)
4141 {
4142 const char *this_name = file_data->file_names[j];
4143 const char *this_real_name;
4144
4145 if (compare_filenames_for_search (this_name, name))
4146 {
4147 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
4148 callback))
4149 return true;
4150 continue;
4151 }
4152
4153 /* Before we invoke realpath, which can get expensive when many
4154 files are involved, do a quick comparison of the basenames. */
4155 if (! basenames_may_differ
4156 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
4157 continue;
4158
4159 this_real_name = dw2_get_real_path (objfile, file_data, j);
4160 if (compare_filenames_for_search (this_real_name, name))
4161 {
4162 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
4163 callback))
4164 return true;
4165 continue;
4166 }
4167
4168 if (real_path != NULL)
4169 {
4170 gdb_assert (IS_ABSOLUTE_PATH (real_path));
4171 gdb_assert (IS_ABSOLUTE_PATH (name));
4172 if (this_real_name != NULL
4173 && FILENAME_CMP (real_path, this_real_name) == 0)
4174 {
4175 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
4176 callback))
4177 return true;
4178 continue;
4179 }
4180 }
4181 }
4182 }
4183
4184 return false;
4185 }
4186
4187 /* Struct used to manage iterating over all CUs looking for a symbol. */
4188
4189 struct dw2_symtab_iterator
4190 {
4191 /* The dwarf2_per_objfile owning the CUs we are iterating on. */
4192 struct dwarf2_per_objfile *dwarf2_per_objfile;
4193 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
4194 int want_specific_block;
4195 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
4196 Unused if !WANT_SPECIFIC_BLOCK. */
4197 int block_index;
4198 /* The kind of symbol we're looking for. */
4199 domain_enum domain;
4200 /* The list of CUs from the index entry of the symbol,
4201 or NULL if not found. */
4202 offset_type *vec;
4203 /* The next element in VEC to look at. */
4204 int next;
4205 /* The number of elements in VEC, or zero if there is no match. */
4206 int length;
4207 /* Have we seen a global version of the symbol?
4208 If so we can ignore all further global instances.
4209 This is to work around gold/15646, inefficient gold-generated
4210 indices. */
4211 int global_seen;
4212 };
4213
4214 /* Initialize the index symtab iterator ITER.
4215 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
4216 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
4217
4218 static void
4219 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
4220 struct dwarf2_per_objfile *dwarf2_per_objfile,
4221 int want_specific_block,
4222 int block_index,
4223 domain_enum domain,
4224 const char *name)
4225 {
4226 iter->dwarf2_per_objfile = dwarf2_per_objfile;
4227 iter->want_specific_block = want_specific_block;
4228 iter->block_index = block_index;
4229 iter->domain = domain;
4230 iter->next = 0;
4231 iter->global_seen = 0;
4232
4233 mapped_index *index = dwarf2_per_objfile->index_table;
4234
4235 /* index is NULL if OBJF_READNOW. */
4236 if (index != NULL && find_slot_in_mapped_hash (index, name, &iter->vec))
4237 iter->length = MAYBE_SWAP (*iter->vec);
4238 else
4239 {
4240 iter->vec = NULL;
4241 iter->length = 0;
4242 }
4243 }
4244
4245 /* Return the next matching CU or NULL if there are no more. */
4246
4247 static struct dwarf2_per_cu_data *
4248 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
4249 {
4250 struct dwarf2_per_objfile *dwarf2_per_objfile = iter->dwarf2_per_objfile;
4251
4252 for ( ; iter->next < iter->length; ++iter->next)
4253 {
4254 offset_type cu_index_and_attrs =
4255 MAYBE_SWAP (iter->vec[iter->next + 1]);
4256 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
4257 struct dwarf2_per_cu_data *per_cu;
4258 int want_static = iter->block_index != GLOBAL_BLOCK;
4259 /* This value is only valid for index versions >= 7. */
4260 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
4261 gdb_index_symbol_kind symbol_kind =
4262 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
4263 /* Only check the symbol attributes if they're present.
4264 Indices prior to version 7 don't record them,
4265 and indices >= 7 may elide them for certain symbols
4266 (gold does this). */
4267 int attrs_valid =
4268 (dwarf2_per_objfile->index_table->version >= 7
4269 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
4270
4271 /* Don't crash on bad data. */
4272 if (cu_index >= (dwarf2_per_objfile->n_comp_units
4273 + dwarf2_per_objfile->n_type_units))
4274 {
4275 complaint (&symfile_complaints,
4276 _(".gdb_index entry has bad CU index"
4277 " [in module %s]"),
4278 objfile_name (dwarf2_per_objfile->objfile));
4279 continue;
4280 }
4281
4282 per_cu = dw2_get_cutu (dwarf2_per_objfile, cu_index);
4283
4284 /* Skip if already read in. */
4285 if (per_cu->v.quick->compunit_symtab)
4286 continue;
4287
4288 /* Check static vs global. */
4289 if (attrs_valid)
4290 {
4291 if (iter->want_specific_block
4292 && want_static != is_static)
4293 continue;
4294 /* Work around gold/15646. */
4295 if (!is_static && iter->global_seen)
4296 continue;
4297 if (!is_static)
4298 iter->global_seen = 1;
4299 }
4300
4301 /* Only check the symbol's kind if it has one. */
4302 if (attrs_valid)
4303 {
4304 switch (iter->domain)
4305 {
4306 case VAR_DOMAIN:
4307 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
4308 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
4309 /* Some types are also in VAR_DOMAIN. */
4310 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4311 continue;
4312 break;
4313 case STRUCT_DOMAIN:
4314 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4315 continue;
4316 break;
4317 case LABEL_DOMAIN:
4318 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
4319 continue;
4320 break;
4321 default:
4322 break;
4323 }
4324 }
4325
4326 ++iter->next;
4327 return per_cu;
4328 }
4329
4330 return NULL;
4331 }
4332
4333 static struct compunit_symtab *
4334 dw2_lookup_symbol (struct objfile *objfile, int block_index,
4335 const char *name, domain_enum domain)
4336 {
4337 struct compunit_symtab *stab_best = NULL;
4338 struct dwarf2_per_objfile *dwarf2_per_objfile
4339 = get_dwarf2_per_objfile (objfile);
4340
4341 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
4342
4343 struct dw2_symtab_iterator iter;
4344 struct dwarf2_per_cu_data *per_cu;
4345
4346 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 1, block_index, domain, name);
4347
4348 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4349 {
4350 struct symbol *sym, *with_opaque = NULL;
4351 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
4352 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
4353 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
4354
4355 sym = block_find_symbol (block, name, domain,
4356 block_find_non_opaque_type_preferred,
4357 &with_opaque);
4358
4359 /* Some caution must be observed with overloaded functions
4360 and methods, since the index will not contain any overload
4361 information (but NAME might contain it). */
4362
4363 if (sym != NULL
4364 && SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
4365 return stab;
4366 if (with_opaque != NULL
4367 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
4368 stab_best = stab;
4369
4370 /* Keep looking through other CUs. */
4371 }
4372
4373 return stab_best;
4374 }
4375
4376 static void
4377 dw2_print_stats (struct objfile *objfile)
4378 {
4379 struct dwarf2_per_objfile *dwarf2_per_objfile
4380 = get_dwarf2_per_objfile (objfile);
4381 int total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
4382 int count = 0;
4383
4384 for (int i = 0; i < total; ++i)
4385 {
4386 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (dwarf2_per_objfile, i);
4387
4388 if (!per_cu->v.quick->compunit_symtab)
4389 ++count;
4390 }
4391 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
4392 printf_filtered (_(" Number of unread CUs: %d\n"), count);
4393 }
4394
4395 /* This dumps minimal information about the index.
4396 It is called via "mt print objfiles".
4397 One use is to verify .gdb_index has been loaded by the
4398 gdb.dwarf2/gdb-index.exp testcase. */
4399
4400 static void
4401 dw2_dump (struct objfile *objfile)
4402 {
4403 struct dwarf2_per_objfile *dwarf2_per_objfile
4404 = get_dwarf2_per_objfile (objfile);
4405
4406 gdb_assert (dwarf2_per_objfile->using_index);
4407 printf_filtered (".gdb_index:");
4408 if (dwarf2_per_objfile->index_table != NULL)
4409 {
4410 printf_filtered (" version %d\n",
4411 dwarf2_per_objfile->index_table->version);
4412 }
4413 else
4414 printf_filtered (" faked for \"readnow\"\n");
4415 printf_filtered ("\n");
4416 }
4417
4418 static void
4419 dw2_relocate (struct objfile *objfile,
4420 const struct section_offsets *new_offsets,
4421 const struct section_offsets *delta)
4422 {
4423 /* There's nothing to relocate here. */
4424 }
4425
4426 static void
4427 dw2_expand_symtabs_for_function (struct objfile *objfile,
4428 const char *func_name)
4429 {
4430 struct dwarf2_per_objfile *dwarf2_per_objfile
4431 = get_dwarf2_per_objfile (objfile);
4432
4433 struct dw2_symtab_iterator iter;
4434 struct dwarf2_per_cu_data *per_cu;
4435
4436 /* Note: It doesn't matter what we pass for block_index here. */
4437 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 0, GLOBAL_BLOCK, VAR_DOMAIN,
4438 func_name);
4439
4440 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4441 dw2_instantiate_symtab (per_cu);
4442
4443 }
4444
4445 static void
4446 dw2_expand_all_symtabs (struct objfile *objfile)
4447 {
4448 struct dwarf2_per_objfile *dwarf2_per_objfile
4449 = get_dwarf2_per_objfile (objfile);
4450 int total_units = (dwarf2_per_objfile->n_comp_units
4451 + dwarf2_per_objfile->n_type_units);
4452
4453 for (int i = 0; i < total_units; ++i)
4454 {
4455 struct dwarf2_per_cu_data *per_cu
4456 = dw2_get_cutu (dwarf2_per_objfile, i);
4457
4458 dw2_instantiate_symtab (per_cu);
4459 }
4460 }
4461
4462 static void
4463 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
4464 const char *fullname)
4465 {
4466 struct dwarf2_per_objfile *dwarf2_per_objfile
4467 = get_dwarf2_per_objfile (objfile);
4468
4469 /* We don't need to consider type units here.
4470 This is only called for examining code, e.g. expand_line_sal.
4471 There can be an order of magnitude (or more) more type units
4472 than comp units, and we avoid them if we can. */
4473
4474 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4475 {
4476 int j;
4477 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (dwarf2_per_objfile, i);
4478 struct quick_file_names *file_data;
4479
4480 /* We only need to look at symtabs not already expanded. */
4481 if (per_cu->v.quick->compunit_symtab)
4482 continue;
4483
4484 file_data = dw2_get_file_names (per_cu);
4485 if (file_data == NULL)
4486 continue;
4487
4488 for (j = 0; j < file_data->num_file_names; ++j)
4489 {
4490 const char *this_fullname = file_data->file_names[j];
4491
4492 if (filename_cmp (this_fullname, fullname) == 0)
4493 {
4494 dw2_instantiate_symtab (per_cu);
4495 break;
4496 }
4497 }
4498 }
4499 }
4500
4501 static void
4502 dw2_map_matching_symbols (struct objfile *objfile,
4503 const char * name, domain_enum domain,
4504 int global,
4505 int (*callback) (struct block *,
4506 struct symbol *, void *),
4507 void *data, symbol_name_match_type match,
4508 symbol_compare_ftype *ordered_compare)
4509 {
4510 /* Currently unimplemented; used for Ada. The function can be called if the
4511 current language is Ada for a non-Ada objfile using GNU index. As Ada
4512 does not look for non-Ada symbols this function should just return. */
4513 }
4514
4515 /* Symbol name matcher for .gdb_index names.
4516
4517 Symbol names in .gdb_index have a few particularities:
4518
4519 - There's no indication of which is the language of each symbol.
4520
4521 Since each language has its own symbol name matching algorithm,
4522 and we don't know which language is the right one, we must match
4523 each symbol against all languages. This would be a potential
4524 performance problem if it were not mitigated by the
4525 mapped_index::name_components lookup table, which significantly
4526 reduces the number of times we need to call into this matcher,
4527 making it a non-issue.
4528
4529 - Symbol names in the index have no overload (parameter)
4530 information. I.e., in C++, "foo(int)" and "foo(long)" both
4531 appear as "foo" in the index, for example.
4532
4533 This means that the lookup names passed to the symbol name
4534 matcher functions must have no parameter information either
4535 because (e.g.) symbol search name "foo" does not match
4536 lookup-name "foo(int)" [while swapping search name for lookup
4537 name would match].
4538 */
4539 class gdb_index_symbol_name_matcher
4540 {
4541 public:
4542 /* Prepares the vector of comparison functions for LOOKUP_NAME. */
4543 gdb_index_symbol_name_matcher (const lookup_name_info &lookup_name);
4544
4545 /* Walk all the matcher routines and match SYMBOL_NAME against them.
4546 Returns true if any matcher matches. */
4547 bool matches (const char *symbol_name);
4548
4549 private:
4550 /* A reference to the lookup name we're matching against. */
4551 const lookup_name_info &m_lookup_name;
4552
4553 /* A vector holding all the different symbol name matchers, for all
4554 languages. */
4555 std::vector<symbol_name_matcher_ftype *> m_symbol_name_matcher_funcs;
4556 };
4557
4558 gdb_index_symbol_name_matcher::gdb_index_symbol_name_matcher
4559 (const lookup_name_info &lookup_name)
4560 : m_lookup_name (lookup_name)
4561 {
4562 /* Prepare the vector of comparison functions upfront, to avoid
4563 doing the same work for each symbol. Care is taken to avoid
4564 matching with the same matcher more than once if/when multiple
4565 languages use the same matcher function. */
4566 auto &matchers = m_symbol_name_matcher_funcs;
4567 matchers.reserve (nr_languages);
4568
4569 matchers.push_back (default_symbol_name_matcher);
4570
4571 for (int i = 0; i < nr_languages; i++)
4572 {
4573 const language_defn *lang = language_def ((enum language) i);
4574 if (lang->la_get_symbol_name_matcher != NULL)
4575 {
4576 symbol_name_matcher_ftype *name_matcher
4577 = lang->la_get_symbol_name_matcher (m_lookup_name);
4578
4579 /* Don't insert the same comparison routine more than once.
4580 Note that we do this linear walk instead of a cheaper
4581 sorted insert, or use a std::set or something like that,
4582 because relative order of function addresses is not
4583 stable. This is not a problem in practice because the
4584 number of supported languages is low, and the cost here
4585 is tiny compared to the number of searches we'll do
4586 afterwards using this object. */
4587 if (std::find (matchers.begin (), matchers.end (), name_matcher)
4588 == matchers.end ())
4589 matchers.push_back (name_matcher);
4590 }
4591 }
4592 }
4593
4594 bool
4595 gdb_index_symbol_name_matcher::matches (const char *symbol_name)
4596 {
4597 for (auto matches_name : m_symbol_name_matcher_funcs)
4598 if (matches_name (symbol_name, m_lookup_name, NULL))
4599 return true;
4600
4601 return false;
4602 }
4603
4604 /* Starting from a search name, return the string that finds the upper
4605 bound of all strings that start with SEARCH_NAME in a sorted name
4606 list. Returns the empty string to indicate that the upper bound is
4607 the end of the list. */
4608
4609 static std::string
4610 make_sort_after_prefix_name (const char *search_name)
4611 {
4612 /* When looking to complete "func", we find the upper bound of all
4613 symbols that start with "func" by looking for where we'd insert
4614 the closest string that would follow "func" in lexicographical
4615 order. Usually, that's "func"-with-last-character-incremented,
4616 i.e. "fund". Mind non-ASCII characters, though. Usually those
4617 will be UTF-8 multi-byte sequences, but we can't be certain.
4618 Especially mind the 0xff character, which is a valid character in
4619 non-UTF-8 source character sets (e.g. Latin1 'ÿ'), and we can't
4620 rule out compilers allowing it in identifiers. Note that
4621 conveniently, strcmp/strcasecmp are specified to compare
4622 characters interpreted as unsigned char. So what we do is treat
4623 the whole string as a base 256 number composed of a sequence of
4624 base 256 "digits" and add 1 to it. I.e., adding 1 to 0xff wraps
4625 to 0, and carries 1 to the following more-significant position.
4626 If the very first character in SEARCH_NAME ends up incremented
4627 and carries/overflows, then the upper bound is the end of the
4628 list. The string after the empty string is also the empty
4629 string.
4630
4631 Some examples of this operation:
4632
4633 SEARCH_NAME => "+1" RESULT
4634
4635 "abc" => "abd"
4636 "ab\xff" => "ac"
4637 "\xff" "a" "\xff" => "\xff" "b"
4638 "\xff" => ""
4639 "\xff\xff" => ""
4640 "" => ""
4641
4642 Then, with these symbols for example:
4643
4644 func
4645 func1
4646 fund
4647
4648 completing "func" looks for symbols between "func" and
4649 "func"-with-last-character-incremented, i.e. "fund" (exclusive),
4650 which finds "func" and "func1", but not "fund".
4651
4652 And with:
4653
4654 funcÿ (Latin1 'ÿ' [0xff])
4655 funcÿ1
4656 fund
4657
4658 completing "funcÿ" looks for symbols between "funcÿ" and "fund"
4659 (exclusive), which finds "funcÿ" and "funcÿ1", but not "fund".
4660
4661 And with:
4662
4663 ÿÿ (Latin1 'ÿ' [0xff])
4664 ÿÿ1
4665
4666 completing "ÿ" or "ÿÿ" looks for symbols between between "ÿÿ" and
4667 the end of the list.
4668 */
4669 std::string after = search_name;
4670 while (!after.empty () && (unsigned char) after.back () == 0xff)
4671 after.pop_back ();
4672 if (!after.empty ())
4673 after.back () = (unsigned char) after.back () + 1;
4674 return after;
4675 }
4676
4677 /* See declaration. */
4678
4679 std::pair<std::vector<name_component>::const_iterator,
4680 std::vector<name_component>::const_iterator>
4681 mapped_index_base::find_name_components_bounds
4682 (const lookup_name_info &lookup_name_without_params) const
4683 {
4684 auto *name_cmp
4685 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4686
4687 const char *cplus
4688 = lookup_name_without_params.cplus ().lookup_name ().c_str ();
4689
4690 /* Comparison function object for lower_bound that matches against a
4691 given symbol name. */
4692 auto lookup_compare_lower = [&] (const name_component &elem,
4693 const char *name)
4694 {
4695 const char *elem_qualified = this->symbol_name_at (elem.idx);
4696 const char *elem_name = elem_qualified + elem.name_offset;
4697 return name_cmp (elem_name, name) < 0;
4698 };
4699
4700 /* Comparison function object for upper_bound that matches against a
4701 given symbol name. */
4702 auto lookup_compare_upper = [&] (const char *name,
4703 const name_component &elem)
4704 {
4705 const char *elem_qualified = this->symbol_name_at (elem.idx);
4706 const char *elem_name = elem_qualified + elem.name_offset;
4707 return name_cmp (name, elem_name) < 0;
4708 };
4709
4710 auto begin = this->name_components.begin ();
4711 auto end = this->name_components.end ();
4712
4713 /* Find the lower bound. */
4714 auto lower = [&] ()
4715 {
4716 if (lookup_name_without_params.completion_mode () && cplus[0] == '\0')
4717 return begin;
4718 else
4719 return std::lower_bound (begin, end, cplus, lookup_compare_lower);
4720 } ();
4721
4722 /* Find the upper bound. */
4723 auto upper = [&] ()
4724 {
4725 if (lookup_name_without_params.completion_mode ())
4726 {
4727 /* In completion mode, we want UPPER to point past all
4728 symbols names that have the same prefix. I.e., with
4729 these symbols, and completing "func":
4730
4731 function << lower bound
4732 function1
4733 other_function << upper bound
4734
4735 We find the upper bound by looking for the insertion
4736 point of "func"-with-last-character-incremented,
4737 i.e. "fund". */
4738 std::string after = make_sort_after_prefix_name (cplus);
4739 if (after.empty ())
4740 return end;
4741 return std::lower_bound (lower, end, after.c_str (),
4742 lookup_compare_lower);
4743 }
4744 else
4745 return std::upper_bound (lower, end, cplus, lookup_compare_upper);
4746 } ();
4747
4748 return {lower, upper};
4749 }
4750
4751 /* See declaration. */
4752
4753 void
4754 mapped_index_base::build_name_components ()
4755 {
4756 if (!this->name_components.empty ())
4757 return;
4758
4759 this->name_components_casing = case_sensitivity;
4760 auto *name_cmp
4761 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4762
4763 /* The code below only knows how to break apart components of C++
4764 symbol names (and other languages that use '::' as
4765 namespace/module separator). If we add support for wild matching
4766 to some language that uses some other operator (E.g., Ada, Go and
4767 D use '.'), then we'll need to try splitting the symbol name
4768 according to that language too. Note that Ada does support wild
4769 matching, but doesn't currently support .gdb_index. */
4770 auto count = this->symbol_name_count ();
4771 for (offset_type idx = 0; idx < count; idx++)
4772 {
4773 if (this->symbol_name_slot_invalid (idx))
4774 continue;
4775
4776 const char *name = this->symbol_name_at (idx);
4777
4778 /* Add each name component to the name component table. */
4779 unsigned int previous_len = 0;
4780 for (unsigned int current_len = cp_find_first_component (name);
4781 name[current_len] != '\0';
4782 current_len += cp_find_first_component (name + current_len))
4783 {
4784 gdb_assert (name[current_len] == ':');
4785 this->name_components.push_back ({previous_len, idx});
4786 /* Skip the '::'. */
4787 current_len += 2;
4788 previous_len = current_len;
4789 }
4790 this->name_components.push_back ({previous_len, idx});
4791 }
4792
4793 /* Sort name_components elements by name. */
4794 auto name_comp_compare = [&] (const name_component &left,
4795 const name_component &right)
4796 {
4797 const char *left_qualified = this->symbol_name_at (left.idx);
4798 const char *right_qualified = this->symbol_name_at (right.idx);
4799
4800 const char *left_name = left_qualified + left.name_offset;
4801 const char *right_name = right_qualified + right.name_offset;
4802
4803 return name_cmp (left_name, right_name) < 0;
4804 };
4805
4806 std::sort (this->name_components.begin (),
4807 this->name_components.end (),
4808 name_comp_compare);
4809 }
4810
4811 /* Helper for dw2_expand_symtabs_matching that works with a
4812 mapped_index_base instead of the containing objfile. This is split
4813 to a separate function in order to be able to unit test the
4814 name_components matching using a mock mapped_index_base. For each
4815 symbol name that matches, calls MATCH_CALLBACK, passing it the
4816 symbol's index in the mapped_index_base symbol table. */
4817
4818 static void
4819 dw2_expand_symtabs_matching_symbol
4820 (mapped_index_base &index,
4821 const lookup_name_info &lookup_name_in,
4822 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4823 enum search_domain kind,
4824 gdb::function_view<void (offset_type)> match_callback)
4825 {
4826 lookup_name_info lookup_name_without_params
4827 = lookup_name_in.make_ignore_params ();
4828 gdb_index_symbol_name_matcher lookup_name_matcher
4829 (lookup_name_without_params);
4830
4831 /* Build the symbol name component sorted vector, if we haven't
4832 yet. */
4833 index.build_name_components ();
4834
4835 auto bounds = index.find_name_components_bounds (lookup_name_without_params);
4836
4837 /* Now for each symbol name in range, check to see if we have a name
4838 match, and if so, call the MATCH_CALLBACK callback. */
4839
4840 /* The same symbol may appear more than once in the range though.
4841 E.g., if we're looking for symbols that complete "w", and we have
4842 a symbol named "w1::w2", we'll find the two name components for
4843 that same symbol in the range. To be sure we only call the
4844 callback once per symbol, we first collect the symbol name
4845 indexes that matched in a temporary vector and ignore
4846 duplicates. */
4847 std::vector<offset_type> matches;
4848 matches.reserve (std::distance (bounds.first, bounds.second));
4849
4850 for (; bounds.first != bounds.second; ++bounds.first)
4851 {
4852 const char *qualified = index.symbol_name_at (bounds.first->idx);
4853
4854 if (!lookup_name_matcher.matches (qualified)
4855 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
4856 continue;
4857
4858 matches.push_back (bounds.first->idx);
4859 }
4860
4861 std::sort (matches.begin (), matches.end ());
4862
4863 /* Finally call the callback, once per match. */
4864 ULONGEST prev = -1;
4865 for (offset_type idx : matches)
4866 {
4867 if (prev != idx)
4868 {
4869 match_callback (idx);
4870 prev = idx;
4871 }
4872 }
4873
4874 /* Above we use a type wider than idx's for 'prev', since 0 and
4875 (offset_type)-1 are both possible values. */
4876 static_assert (sizeof (prev) > sizeof (offset_type), "");
4877 }
4878
4879 #if GDB_SELF_TEST
4880
4881 namespace selftests { namespace dw2_expand_symtabs_matching {
4882
4883 /* A mock .gdb_index/.debug_names-like name index table, enough to
4884 exercise dw2_expand_symtabs_matching_symbol, which works with the
4885 mapped_index_base interface. Builds an index from the symbol list
4886 passed as parameter to the constructor. */
4887 class mock_mapped_index : public mapped_index_base
4888 {
4889 public:
4890 mock_mapped_index (gdb::array_view<const char *> symbols)
4891 : m_symbol_table (symbols)
4892 {}
4893
4894 DISABLE_COPY_AND_ASSIGN (mock_mapped_index);
4895
4896 /* Return the number of names in the symbol table. */
4897 virtual size_t symbol_name_count () const
4898 {
4899 return m_symbol_table.size ();
4900 }
4901
4902 /* Get the name of the symbol at IDX in the symbol table. */
4903 virtual const char *symbol_name_at (offset_type idx) const
4904 {
4905 return m_symbol_table[idx];
4906 }
4907
4908 private:
4909 gdb::array_view<const char *> m_symbol_table;
4910 };
4911
4912 /* Convenience function that converts a NULL pointer to a "<null>"
4913 string, to pass to print routines. */
4914
4915 static const char *
4916 string_or_null (const char *str)
4917 {
4918 return str != NULL ? str : "<null>";
4919 }
4920
4921 /* Check if a lookup_name_info built from
4922 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
4923 index. EXPECTED_LIST is the list of expected matches, in expected
4924 matching order. If no match expected, then an empty list is
4925 specified. Returns true on success. On failure prints a warning
4926 indicating the file:line that failed, and returns false. */
4927
4928 static bool
4929 check_match (const char *file, int line,
4930 mock_mapped_index &mock_index,
4931 const char *name, symbol_name_match_type match_type,
4932 bool completion_mode,
4933 std::initializer_list<const char *> expected_list)
4934 {
4935 lookup_name_info lookup_name (name, match_type, completion_mode);
4936
4937 bool matched = true;
4938
4939 auto mismatch = [&] (const char *expected_str,
4940 const char *got)
4941 {
4942 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
4943 "expected=\"%s\", got=\"%s\"\n"),
4944 file, line,
4945 (match_type == symbol_name_match_type::FULL
4946 ? "FULL" : "WILD"),
4947 name, string_or_null (expected_str), string_or_null (got));
4948 matched = false;
4949 };
4950
4951 auto expected_it = expected_list.begin ();
4952 auto expected_end = expected_list.end ();
4953
4954 dw2_expand_symtabs_matching_symbol (mock_index, lookup_name,
4955 NULL, ALL_DOMAIN,
4956 [&] (offset_type idx)
4957 {
4958 const char *matched_name = mock_index.symbol_name_at (idx);
4959 const char *expected_str
4960 = expected_it == expected_end ? NULL : *expected_it++;
4961
4962 if (expected_str == NULL || strcmp (expected_str, matched_name) != 0)
4963 mismatch (expected_str, matched_name);
4964 });
4965
4966 const char *expected_str
4967 = expected_it == expected_end ? NULL : *expected_it++;
4968 if (expected_str != NULL)
4969 mismatch (expected_str, NULL);
4970
4971 return matched;
4972 }
4973
4974 /* The symbols added to the mock mapped_index for testing (in
4975 canonical form). */
4976 static const char *test_symbols[] = {
4977 "function",
4978 "std::bar",
4979 "std::zfunction",
4980 "std::zfunction2",
4981 "w1::w2",
4982 "ns::foo<char*>",
4983 "ns::foo<int>",
4984 "ns::foo<long>",
4985 "ns2::tmpl<int>::foo2",
4986 "(anonymous namespace)::A::B::C",
4987
4988 /* These are used to check that the increment-last-char in the
4989 matching algorithm for completion doesn't match "t1_fund" when
4990 completing "t1_func". */
4991 "t1_func",
4992 "t1_func1",
4993 "t1_fund",
4994 "t1_fund1",
4995
4996 /* A UTF-8 name with multi-byte sequences to make sure that
4997 cp-name-parser understands this as a single identifier ("função"
4998 is "function" in PT). */
4999 u8"u8função",
5000
5001 /* \377 (0xff) is Latin1 'ÿ'. */
5002 "yfunc\377",
5003
5004 /* \377 (0xff) is Latin1 'ÿ'. */
5005 "\377",
5006 "\377\377123",
5007
5008 /* A name with all sorts of complications. Starts with "z" to make
5009 it easier for the completion tests below. */
5010 #define Z_SYM_NAME \
5011 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
5012 "::tuple<(anonymous namespace)::ui*, " \
5013 "std::default_delete<(anonymous namespace)::ui>, void>"
5014
5015 Z_SYM_NAME
5016 };
5017
5018 /* Returns true if the mapped_index_base::find_name_component_bounds
5019 method finds EXPECTED_SYMS in INDEX when looking for SEARCH_NAME,
5020 in completion mode. */
5021
5022 static bool
5023 check_find_bounds_finds (mapped_index_base &index,
5024 const char *search_name,
5025 gdb::array_view<const char *> expected_syms)
5026 {
5027 lookup_name_info lookup_name (search_name,
5028 symbol_name_match_type::FULL, true);
5029
5030 auto bounds = index.find_name_components_bounds (lookup_name);
5031
5032 size_t distance = std::distance (bounds.first, bounds.second);
5033 if (distance != expected_syms.size ())
5034 return false;
5035
5036 for (size_t exp_elem = 0; exp_elem < distance; exp_elem++)
5037 {
5038 auto nc_elem = bounds.first + exp_elem;
5039 const char *qualified = index.symbol_name_at (nc_elem->idx);
5040 if (strcmp (qualified, expected_syms[exp_elem]) != 0)
5041 return false;
5042 }
5043
5044 return true;
5045 }
5046
5047 /* Test the lower-level mapped_index::find_name_component_bounds
5048 method. */
5049
5050 static void
5051 test_mapped_index_find_name_component_bounds ()
5052 {
5053 mock_mapped_index mock_index (test_symbols);
5054
5055 mock_index.build_name_components ();
5056
5057 /* Test the lower-level mapped_index::find_name_component_bounds
5058 method in completion mode. */
5059 {
5060 static const char *expected_syms[] = {
5061 "t1_func",
5062 "t1_func1",
5063 };
5064
5065 SELF_CHECK (check_find_bounds_finds (mock_index,
5066 "t1_func", expected_syms));
5067 }
5068
5069 /* Check that the increment-last-char in the name matching algorithm
5070 for completion doesn't get confused with Ansi1 'ÿ' / 0xff. */
5071 {
5072 static const char *expected_syms1[] = {
5073 "\377",
5074 "\377\377123",
5075 };
5076 SELF_CHECK (check_find_bounds_finds (mock_index,
5077 "\377", expected_syms1));
5078
5079 static const char *expected_syms2[] = {
5080 "\377\377123",
5081 };
5082 SELF_CHECK (check_find_bounds_finds (mock_index,
5083 "\377\377", expected_syms2));
5084 }
5085 }
5086
5087 /* Test dw2_expand_symtabs_matching_symbol. */
5088
5089 static void
5090 test_dw2_expand_symtabs_matching_symbol ()
5091 {
5092 mock_mapped_index mock_index (test_symbols);
5093
5094 /* We let all tests run until the end even if some fails, for debug
5095 convenience. */
5096 bool any_mismatch = false;
5097
5098 /* Create the expected symbols list (an initializer_list). Needed
5099 because lists have commas, and we need to pass them to CHECK,
5100 which is a macro. */
5101 #define EXPECT(...) { __VA_ARGS__ }
5102
5103 /* Wrapper for check_match that passes down the current
5104 __FILE__/__LINE__. */
5105 #define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
5106 any_mismatch |= !check_match (__FILE__, __LINE__, \
5107 mock_index, \
5108 NAME, MATCH_TYPE, COMPLETION_MODE, \
5109 EXPECTED_LIST)
5110
5111 /* Identity checks. */
5112 for (const char *sym : test_symbols)
5113 {
5114 /* Should be able to match all existing symbols. */
5115 CHECK_MATCH (sym, symbol_name_match_type::FULL, false,
5116 EXPECT (sym));
5117
5118 /* Should be able to match all existing symbols with
5119 parameters. */
5120 std::string with_params = std::string (sym) + "(int)";
5121 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
5122 EXPECT (sym));
5123
5124 /* Should be able to match all existing symbols with
5125 parameters and qualifiers. */
5126 with_params = std::string (sym) + " ( int ) const";
5127 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
5128 EXPECT (sym));
5129
5130 /* This should really find sym, but cp-name-parser.y doesn't
5131 know about lvalue/rvalue qualifiers yet. */
5132 with_params = std::string (sym) + " ( int ) &&";
5133 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
5134 {});
5135 }
5136
5137 /* Check that the name matching algorithm for completion doesn't get
5138 confused with Latin1 'ÿ' / 0xff. */
5139 {
5140 static const char str[] = "\377";
5141 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
5142 EXPECT ("\377", "\377\377123"));
5143 }
5144
5145 /* Check that the increment-last-char in the matching algorithm for
5146 completion doesn't match "t1_fund" when completing "t1_func". */
5147 {
5148 static const char str[] = "t1_func";
5149 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
5150 EXPECT ("t1_func", "t1_func1"));
5151 }
5152
5153 /* Check that completion mode works at each prefix of the expected
5154 symbol name. */
5155 {
5156 static const char str[] = "function(int)";
5157 size_t len = strlen (str);
5158 std::string lookup;
5159
5160 for (size_t i = 1; i < len; i++)
5161 {
5162 lookup.assign (str, i);
5163 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
5164 EXPECT ("function"));
5165 }
5166 }
5167
5168 /* While "w" is a prefix of both components, the match function
5169 should still only be called once. */
5170 {
5171 CHECK_MATCH ("w", symbol_name_match_type::FULL, true,
5172 EXPECT ("w1::w2"));
5173 CHECK_MATCH ("w", symbol_name_match_type::WILD, true,
5174 EXPECT ("w1::w2"));
5175 }
5176
5177 /* Same, with a "complicated" symbol. */
5178 {
5179 static const char str[] = Z_SYM_NAME;
5180 size_t len = strlen (str);
5181 std::string lookup;
5182
5183 for (size_t i = 1; i < len; i++)
5184 {
5185 lookup.assign (str, i);
5186 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
5187 EXPECT (Z_SYM_NAME));
5188 }
5189 }
5190
5191 /* In FULL mode, an incomplete symbol doesn't match. */
5192 {
5193 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false,
5194 {});
5195 }
5196
5197 /* A complete symbol with parameters matches any overload, since the
5198 index has no overload info. */
5199 {
5200 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true,
5201 EXPECT ("std::zfunction", "std::zfunction2"));
5202 CHECK_MATCH ("zfunction(int)", symbol_name_match_type::WILD, true,
5203 EXPECT ("std::zfunction", "std::zfunction2"));
5204 CHECK_MATCH ("zfunc", symbol_name_match_type::WILD, true,
5205 EXPECT ("std::zfunction", "std::zfunction2"));
5206 }
5207
5208 /* Check that whitespace is ignored appropriately. A symbol with a
5209 template argument list. */
5210 {
5211 static const char expected[] = "ns::foo<int>";
5212 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false,
5213 EXPECT (expected));
5214 CHECK_MATCH ("foo < int > ", symbol_name_match_type::WILD, false,
5215 EXPECT (expected));
5216 }
5217
5218 /* Check that whitespace is ignored appropriately. A symbol with a
5219 template argument list that includes a pointer. */
5220 {
5221 static const char expected[] = "ns::foo<char*>";
5222 /* Try both completion and non-completion modes. */
5223 static const bool completion_mode[2] = {false, true};
5224 for (size_t i = 0; i < 2; i++)
5225 {
5226 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL,
5227 completion_mode[i], EXPECT (expected));
5228 CHECK_MATCH ("foo < char * >", symbol_name_match_type::WILD,
5229 completion_mode[i], EXPECT (expected));
5230
5231 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL,
5232 completion_mode[i], EXPECT (expected));
5233 CHECK_MATCH ("foo < char * > (int)", symbol_name_match_type::WILD,
5234 completion_mode[i], EXPECT (expected));
5235 }
5236 }
5237
5238 {
5239 /* Check method qualifiers are ignored. */
5240 static const char expected[] = "ns::foo<char*>";
5241 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
5242 symbol_name_match_type::FULL, true, EXPECT (expected));
5243 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
5244 symbol_name_match_type::FULL, true, EXPECT (expected));
5245 CHECK_MATCH ("foo < char * > ( int ) const",
5246 symbol_name_match_type::WILD, true, EXPECT (expected));
5247 CHECK_MATCH ("foo < char * > ( int ) &&",
5248 symbol_name_match_type::WILD, true, EXPECT (expected));
5249 }
5250
5251 /* Test lookup names that don't match anything. */
5252 {
5253 CHECK_MATCH ("bar2", symbol_name_match_type::WILD, false,
5254 {});
5255
5256 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false,
5257 {});
5258 }
5259
5260 /* Some wild matching tests, exercising "(anonymous namespace)",
5261 which should not be confused with a parameter list. */
5262 {
5263 static const char *syms[] = {
5264 "A::B::C",
5265 "B::C",
5266 "C",
5267 "A :: B :: C ( int )",
5268 "B :: C ( int )",
5269 "C ( int )",
5270 };
5271
5272 for (const char *s : syms)
5273 {
5274 CHECK_MATCH (s, symbol_name_match_type::WILD, false,
5275 EXPECT ("(anonymous namespace)::A::B::C"));
5276 }
5277 }
5278
5279 {
5280 static const char expected[] = "ns2::tmpl<int>::foo2";
5281 CHECK_MATCH ("tmp", symbol_name_match_type::WILD, true,
5282 EXPECT (expected));
5283 CHECK_MATCH ("tmpl<", symbol_name_match_type::WILD, true,
5284 EXPECT (expected));
5285 }
5286
5287 SELF_CHECK (!any_mismatch);
5288
5289 #undef EXPECT
5290 #undef CHECK_MATCH
5291 }
5292
5293 static void
5294 run_test ()
5295 {
5296 test_mapped_index_find_name_component_bounds ();
5297 test_dw2_expand_symtabs_matching_symbol ();
5298 }
5299
5300 }} // namespace selftests::dw2_expand_symtabs_matching
5301
5302 #endif /* GDB_SELF_TEST */
5303
5304 /* If FILE_MATCHER is NULL or if PER_CU has
5305 dwarf2_per_cu_quick_data::MARK set (see
5306 dw_expand_symtabs_matching_file_matcher), expand the CU and call
5307 EXPANSION_NOTIFY on it. */
5308
5309 static void
5310 dw2_expand_symtabs_matching_one
5311 (struct dwarf2_per_cu_data *per_cu,
5312 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5313 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify)
5314 {
5315 if (file_matcher == NULL || per_cu->v.quick->mark)
5316 {
5317 bool symtab_was_null
5318 = (per_cu->v.quick->compunit_symtab == NULL);
5319
5320 dw2_instantiate_symtab (per_cu);
5321
5322 if (expansion_notify != NULL
5323 && symtab_was_null
5324 && per_cu->v.quick->compunit_symtab != NULL)
5325 expansion_notify (per_cu->v.quick->compunit_symtab);
5326 }
5327 }
5328
5329 /* Helper for dw2_expand_matching symtabs. Called on each symbol
5330 matched, to expand corresponding CUs that were marked. IDX is the
5331 index of the symbol name that matched. */
5332
5333 static void
5334 dw2_expand_marked_cus
5335 (struct dwarf2_per_objfile *dwarf2_per_objfile, offset_type idx,
5336 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5337 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5338 search_domain kind)
5339 {
5340 offset_type *vec, vec_len, vec_idx;
5341 bool global_seen = false;
5342 mapped_index &index = *dwarf2_per_objfile->index_table;
5343
5344 vec = (offset_type *) (index.constant_pool
5345 + MAYBE_SWAP (index.symbol_table[idx].vec));
5346 vec_len = MAYBE_SWAP (vec[0]);
5347 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
5348 {
5349 struct dwarf2_per_cu_data *per_cu;
5350 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
5351 /* This value is only valid for index versions >= 7. */
5352 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
5353 gdb_index_symbol_kind symbol_kind =
5354 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
5355 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
5356 /* Only check the symbol attributes if they're present.
5357 Indices prior to version 7 don't record them,
5358 and indices >= 7 may elide them for certain symbols
5359 (gold does this). */
5360 int attrs_valid =
5361 (index.version >= 7
5362 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
5363
5364 /* Work around gold/15646. */
5365 if (attrs_valid)
5366 {
5367 if (!is_static && global_seen)
5368 continue;
5369 if (!is_static)
5370 global_seen = true;
5371 }
5372
5373 /* Only check the symbol's kind if it has one. */
5374 if (attrs_valid)
5375 {
5376 switch (kind)
5377 {
5378 case VARIABLES_DOMAIN:
5379 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
5380 continue;
5381 break;
5382 case FUNCTIONS_DOMAIN:
5383 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
5384 continue;
5385 break;
5386 case TYPES_DOMAIN:
5387 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
5388 continue;
5389 break;
5390 default:
5391 break;
5392 }
5393 }
5394
5395 /* Don't crash on bad data. */
5396 if (cu_index >= (dwarf2_per_objfile->n_comp_units
5397 + dwarf2_per_objfile->n_type_units))
5398 {
5399 complaint (&symfile_complaints,
5400 _(".gdb_index entry has bad CU index"
5401 " [in module %s]"),
5402 objfile_name (dwarf2_per_objfile->objfile));
5403 continue;
5404 }
5405
5406 per_cu = dw2_get_cutu (dwarf2_per_objfile, cu_index);
5407 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
5408 expansion_notify);
5409 }
5410 }
5411
5412 /* If FILE_MATCHER is non-NULL, set all the
5413 dwarf2_per_cu_quick_data::MARK of the current DWARF2_PER_OBJFILE
5414 that match FILE_MATCHER. */
5415
5416 static void
5417 dw_expand_symtabs_matching_file_matcher
5418 (struct dwarf2_per_objfile *dwarf2_per_objfile,
5419 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher)
5420 {
5421 if (file_matcher == NULL)
5422 return;
5423
5424 objfile *const objfile = dwarf2_per_objfile->objfile;
5425
5426 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
5427 htab_eq_pointer,
5428 NULL, xcalloc, xfree));
5429 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
5430 htab_eq_pointer,
5431 NULL, xcalloc, xfree));
5432
5433 /* The rule is CUs specify all the files, including those used by
5434 any TU, so there's no need to scan TUs here. */
5435
5436 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
5437 {
5438 int j;
5439 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (dwarf2_per_objfile, i);
5440 struct quick_file_names *file_data;
5441 void **slot;
5442
5443 QUIT;
5444
5445 per_cu->v.quick->mark = 0;
5446
5447 /* We only need to look at symtabs not already expanded. */
5448 if (per_cu->v.quick->compunit_symtab)
5449 continue;
5450
5451 file_data = dw2_get_file_names (per_cu);
5452 if (file_data == NULL)
5453 continue;
5454
5455 if (htab_find (visited_not_found.get (), file_data) != NULL)
5456 continue;
5457 else if (htab_find (visited_found.get (), file_data) != NULL)
5458 {
5459 per_cu->v.quick->mark = 1;
5460 continue;
5461 }
5462
5463 for (j = 0; j < file_data->num_file_names; ++j)
5464 {
5465 const char *this_real_name;
5466
5467 if (file_matcher (file_data->file_names[j], false))
5468 {
5469 per_cu->v.quick->mark = 1;
5470 break;
5471 }
5472
5473 /* Before we invoke realpath, which can get expensive when many
5474 files are involved, do a quick comparison of the basenames. */
5475 if (!basenames_may_differ
5476 && !file_matcher (lbasename (file_data->file_names[j]),
5477 true))
5478 continue;
5479
5480 this_real_name = dw2_get_real_path (objfile, file_data, j);
5481 if (file_matcher (this_real_name, false))
5482 {
5483 per_cu->v.quick->mark = 1;
5484 break;
5485 }
5486 }
5487
5488 slot = htab_find_slot (per_cu->v.quick->mark
5489 ? visited_found.get ()
5490 : visited_not_found.get (),
5491 file_data, INSERT);
5492 *slot = file_data;
5493 }
5494 }
5495
5496 static void
5497 dw2_expand_symtabs_matching
5498 (struct objfile *objfile,
5499 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5500 const lookup_name_info &lookup_name,
5501 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
5502 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5503 enum search_domain kind)
5504 {
5505 struct dwarf2_per_objfile *dwarf2_per_objfile
5506 = get_dwarf2_per_objfile (objfile);
5507
5508 /* index_table is NULL if OBJF_READNOW. */
5509 if (!dwarf2_per_objfile->index_table)
5510 return;
5511
5512 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
5513
5514 mapped_index &index = *dwarf2_per_objfile->index_table;
5515
5516 dw2_expand_symtabs_matching_symbol (index, lookup_name,
5517 symbol_matcher,
5518 kind, [&] (offset_type idx)
5519 {
5520 dw2_expand_marked_cus (dwarf2_per_objfile, idx, file_matcher,
5521 expansion_notify, kind);
5522 });
5523 }
5524
5525 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
5526 symtab. */
5527
5528 static struct compunit_symtab *
5529 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
5530 CORE_ADDR pc)
5531 {
5532 int i;
5533
5534 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
5535 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
5536 return cust;
5537
5538 if (cust->includes == NULL)
5539 return NULL;
5540
5541 for (i = 0; cust->includes[i]; ++i)
5542 {
5543 struct compunit_symtab *s = cust->includes[i];
5544
5545 s = recursively_find_pc_sect_compunit_symtab (s, pc);
5546 if (s != NULL)
5547 return s;
5548 }
5549
5550 return NULL;
5551 }
5552
5553 static struct compunit_symtab *
5554 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
5555 struct bound_minimal_symbol msymbol,
5556 CORE_ADDR pc,
5557 struct obj_section *section,
5558 int warn_if_readin)
5559 {
5560 struct dwarf2_per_cu_data *data;
5561 struct compunit_symtab *result;
5562
5563 if (!objfile->psymtabs_addrmap)
5564 return NULL;
5565
5566 data = (struct dwarf2_per_cu_data *) addrmap_find (objfile->psymtabs_addrmap,
5567 pc);
5568 if (!data)
5569 return NULL;
5570
5571 if (warn_if_readin && data->v.quick->compunit_symtab)
5572 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
5573 paddress (get_objfile_arch (objfile), pc));
5574
5575 result
5576 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data),
5577 pc);
5578 gdb_assert (result != NULL);
5579 return result;
5580 }
5581
5582 static void
5583 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
5584 void *data, int need_fullname)
5585 {
5586 struct dwarf2_per_objfile *dwarf2_per_objfile
5587 = get_dwarf2_per_objfile (objfile);
5588
5589 if (!dwarf2_per_objfile->filenames_cache)
5590 {
5591 dwarf2_per_objfile->filenames_cache.emplace ();
5592
5593 htab_up visited (htab_create_alloc (10,
5594 htab_hash_pointer, htab_eq_pointer,
5595 NULL, xcalloc, xfree));
5596
5597 /* The rule is CUs specify all the files, including those used
5598 by any TU, so there's no need to scan TUs here. We can
5599 ignore file names coming from already-expanded CUs. */
5600
5601 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
5602 {
5603 dwarf2_per_cu_data *per_cu = dw2_get_cutu (dwarf2_per_objfile, i);
5604
5605 if (per_cu->v.quick->compunit_symtab)
5606 {
5607 void **slot = htab_find_slot (visited.get (),
5608 per_cu->v.quick->file_names,
5609 INSERT);
5610
5611 *slot = per_cu->v.quick->file_names;
5612 }
5613 }
5614
5615 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
5616 {
5617 dwarf2_per_cu_data *per_cu = dw2_get_cu (dwarf2_per_objfile, i);
5618 struct quick_file_names *file_data;
5619 void **slot;
5620
5621 /* We only need to look at symtabs not already expanded. */
5622 if (per_cu->v.quick->compunit_symtab)
5623 continue;
5624
5625 file_data = dw2_get_file_names (per_cu);
5626 if (file_data == NULL)
5627 continue;
5628
5629 slot = htab_find_slot (visited.get (), file_data, INSERT);
5630 if (*slot)
5631 {
5632 /* Already visited. */
5633 continue;
5634 }
5635 *slot = file_data;
5636
5637 for (int j = 0; j < file_data->num_file_names; ++j)
5638 {
5639 const char *filename = file_data->file_names[j];
5640 dwarf2_per_objfile->filenames_cache->seen (filename);
5641 }
5642 }
5643 }
5644
5645 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
5646 {
5647 gdb::unique_xmalloc_ptr<char> this_real_name;
5648
5649 if (need_fullname)
5650 this_real_name = gdb_realpath (filename);
5651 (*fun) (filename, this_real_name.get (), data);
5652 });
5653 }
5654
5655 static int
5656 dw2_has_symbols (struct objfile *objfile)
5657 {
5658 return 1;
5659 }
5660
5661 const struct quick_symbol_functions dwarf2_gdb_index_functions =
5662 {
5663 dw2_has_symbols,
5664 dw2_find_last_source_symtab,
5665 dw2_forget_cached_source_info,
5666 dw2_map_symtabs_matching_filename,
5667 dw2_lookup_symbol,
5668 dw2_print_stats,
5669 dw2_dump,
5670 dw2_relocate,
5671 dw2_expand_symtabs_for_function,
5672 dw2_expand_all_symtabs,
5673 dw2_expand_symtabs_with_fullname,
5674 dw2_map_matching_symbols,
5675 dw2_expand_symtabs_matching,
5676 dw2_find_pc_sect_compunit_symtab,
5677 NULL,
5678 dw2_map_symbol_filenames
5679 };
5680
5681 /* DWARF-5 debug_names reader. */
5682
5683 /* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
5684 static const gdb_byte dwarf5_augmentation[] = { 'G', 'D', 'B', 0 };
5685
5686 /* A helper function that reads the .debug_names section in SECTION
5687 and fills in MAP. FILENAME is the name of the file containing the
5688 section; it is used for error reporting.
5689
5690 Returns true if all went well, false otherwise. */
5691
5692 static bool
5693 read_debug_names_from_section (struct objfile *objfile,
5694 const char *filename,
5695 struct dwarf2_section_info *section,
5696 mapped_debug_names &map)
5697 {
5698 if (dwarf2_section_empty_p (section))
5699 return false;
5700
5701 /* Older elfutils strip versions could keep the section in the main
5702 executable while splitting it for the separate debug info file. */
5703 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
5704 return false;
5705
5706 dwarf2_read_section (objfile, section);
5707
5708 map.dwarf5_byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
5709
5710 const gdb_byte *addr = section->buffer;
5711
5712 bfd *const abfd = get_section_bfd_owner (section);
5713
5714 unsigned int bytes_read;
5715 LONGEST length = read_initial_length (abfd, addr, &bytes_read);
5716 addr += bytes_read;
5717
5718 map.dwarf5_is_dwarf64 = bytes_read != 4;
5719 map.offset_size = map.dwarf5_is_dwarf64 ? 8 : 4;
5720 if (bytes_read + length != section->size)
5721 {
5722 /* There may be multiple per-CU indices. */
5723 warning (_("Section .debug_names in %s length %s does not match "
5724 "section length %s, ignoring .debug_names."),
5725 filename, plongest (bytes_read + length),
5726 pulongest (section->size));
5727 return false;
5728 }
5729
5730 /* The version number. */
5731 uint16_t version = read_2_bytes (abfd, addr);
5732 addr += 2;
5733 if (version != 5)
5734 {
5735 warning (_("Section .debug_names in %s has unsupported version %d, "
5736 "ignoring .debug_names."),
5737 filename, version);
5738 return false;
5739 }
5740
5741 /* Padding. */
5742 uint16_t padding = read_2_bytes (abfd, addr);
5743 addr += 2;
5744 if (padding != 0)
5745 {
5746 warning (_("Section .debug_names in %s has unsupported padding %d, "
5747 "ignoring .debug_names."),
5748 filename, padding);
5749 return false;
5750 }
5751
5752 /* comp_unit_count - The number of CUs in the CU list. */
5753 map.cu_count = read_4_bytes (abfd, addr);
5754 addr += 4;
5755
5756 /* local_type_unit_count - The number of TUs in the local TU
5757 list. */
5758 map.tu_count = read_4_bytes (abfd, addr);
5759 addr += 4;
5760
5761 /* foreign_type_unit_count - The number of TUs in the foreign TU
5762 list. */
5763 uint32_t foreign_tu_count = read_4_bytes (abfd, addr);
5764 addr += 4;
5765 if (foreign_tu_count != 0)
5766 {
5767 warning (_("Section .debug_names in %s has unsupported %lu foreign TUs, "
5768 "ignoring .debug_names."),
5769 filename, static_cast<unsigned long> (foreign_tu_count));
5770 return false;
5771 }
5772
5773 /* bucket_count - The number of hash buckets in the hash lookup
5774 table. */
5775 map.bucket_count = read_4_bytes (abfd, addr);
5776 addr += 4;
5777
5778 /* name_count - The number of unique names in the index. */
5779 map.name_count = read_4_bytes (abfd, addr);
5780 addr += 4;
5781
5782 /* abbrev_table_size - The size in bytes of the abbreviations
5783 table. */
5784 uint32_t abbrev_table_size = read_4_bytes (abfd, addr);
5785 addr += 4;
5786
5787 /* augmentation_string_size - The size in bytes of the augmentation
5788 string. This value is rounded up to a multiple of 4. */
5789 uint32_t augmentation_string_size = read_4_bytes (abfd, addr);
5790 addr += 4;
5791 map.augmentation_is_gdb = ((augmentation_string_size
5792 == sizeof (dwarf5_augmentation))
5793 && memcmp (addr, dwarf5_augmentation,
5794 sizeof (dwarf5_augmentation)) == 0);
5795 augmentation_string_size += (-augmentation_string_size) & 3;
5796 addr += augmentation_string_size;
5797
5798 /* List of CUs */
5799 map.cu_table_reordered = addr;
5800 addr += map.cu_count * map.offset_size;
5801
5802 /* List of Local TUs */
5803 map.tu_table_reordered = addr;
5804 addr += map.tu_count * map.offset_size;
5805
5806 /* Hash Lookup Table */
5807 map.bucket_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5808 addr += map.bucket_count * 4;
5809 map.hash_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5810 addr += map.name_count * 4;
5811
5812 /* Name Table */
5813 map.name_table_string_offs_reordered = addr;
5814 addr += map.name_count * map.offset_size;
5815 map.name_table_entry_offs_reordered = addr;
5816 addr += map.name_count * map.offset_size;
5817
5818 const gdb_byte *abbrev_table_start = addr;
5819 for (;;)
5820 {
5821 unsigned int bytes_read;
5822 const ULONGEST index_num = read_unsigned_leb128 (abfd, addr, &bytes_read);
5823 addr += bytes_read;
5824 if (index_num == 0)
5825 break;
5826
5827 const auto insertpair
5828 = map.abbrev_map.emplace (index_num, mapped_debug_names::index_val ());
5829 if (!insertpair.second)
5830 {
5831 warning (_("Section .debug_names in %s has duplicate index %s, "
5832 "ignoring .debug_names."),
5833 filename, pulongest (index_num));
5834 return false;
5835 }
5836 mapped_debug_names::index_val &indexval = insertpair.first->second;
5837 indexval.dwarf_tag = read_unsigned_leb128 (abfd, addr, &bytes_read);
5838 addr += bytes_read;
5839
5840 for (;;)
5841 {
5842 mapped_debug_names::index_val::attr attr;
5843 attr.dw_idx = read_unsigned_leb128 (abfd, addr, &bytes_read);
5844 addr += bytes_read;
5845 attr.form = read_unsigned_leb128 (abfd, addr, &bytes_read);
5846 addr += bytes_read;
5847 if (attr.form == DW_FORM_implicit_const)
5848 {
5849 attr.implicit_const = read_signed_leb128 (abfd, addr,
5850 &bytes_read);
5851 addr += bytes_read;
5852 }
5853 if (attr.dw_idx == 0 && attr.form == 0)
5854 break;
5855 indexval.attr_vec.push_back (std::move (attr));
5856 }
5857 }
5858 if (addr != abbrev_table_start + abbrev_table_size)
5859 {
5860 warning (_("Section .debug_names in %s has abbreviation_table "
5861 "of size %zu vs. written as %u, ignoring .debug_names."),
5862 filename, addr - abbrev_table_start, abbrev_table_size);
5863 return false;
5864 }
5865 map.entry_pool = addr;
5866
5867 return true;
5868 }
5869
5870 /* A helper for create_cus_from_debug_names that handles the MAP's CU
5871 list. */
5872
5873 static void
5874 create_cus_from_debug_names_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
5875 const mapped_debug_names &map,
5876 dwarf2_section_info &section,
5877 bool is_dwz, int base_offset)
5878 {
5879 sect_offset sect_off_prev;
5880 for (uint32_t i = 0; i <= map.cu_count; ++i)
5881 {
5882 sect_offset sect_off_next;
5883 if (i < map.cu_count)
5884 {
5885 sect_off_next
5886 = (sect_offset) (extract_unsigned_integer
5887 (map.cu_table_reordered + i * map.offset_size,
5888 map.offset_size,
5889 map.dwarf5_byte_order));
5890 }
5891 else
5892 sect_off_next = (sect_offset) section.size;
5893 if (i >= 1)
5894 {
5895 const ULONGEST length = sect_off_next - sect_off_prev;
5896 dwarf2_per_objfile->all_comp_units[base_offset + (i - 1)]
5897 = create_cu_from_index_list (dwarf2_per_objfile, &section, is_dwz,
5898 sect_off_prev, length);
5899 }
5900 sect_off_prev = sect_off_next;
5901 }
5902 }
5903
5904 /* Read the CU list from the mapped index, and use it to create all
5905 the CU objects for this dwarf2_per_objfile. */
5906
5907 static void
5908 create_cus_from_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile,
5909 const mapped_debug_names &map,
5910 const mapped_debug_names &dwz_map)
5911 {
5912 struct objfile *objfile = dwarf2_per_objfile->objfile;
5913
5914 dwarf2_per_objfile->n_comp_units = map.cu_count + dwz_map.cu_count;
5915 dwarf2_per_objfile->all_comp_units
5916 = XOBNEWVEC (&objfile->objfile_obstack, struct dwarf2_per_cu_data *,
5917 dwarf2_per_objfile->n_comp_units);
5918
5919 create_cus_from_debug_names_list (dwarf2_per_objfile, map,
5920 dwarf2_per_objfile->info,
5921 false /* is_dwz */,
5922 0 /* base_offset */);
5923
5924 if (dwz_map.cu_count == 0)
5925 return;
5926
5927 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5928 create_cus_from_debug_names_list (dwarf2_per_objfile, dwz_map, dwz->info,
5929 true /* is_dwz */,
5930 map.cu_count /* base_offset */);
5931 }
5932
5933 /* Read .debug_names. If everything went ok, initialize the "quick"
5934 elements of all the CUs and return true. Otherwise, return false. */
5935
5936 static bool
5937 dwarf2_read_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile)
5938 {
5939 mapped_debug_names local_map (dwarf2_per_objfile);
5940 mapped_debug_names dwz_map (dwarf2_per_objfile);
5941 struct objfile *objfile = dwarf2_per_objfile->objfile;
5942
5943 if (!read_debug_names_from_section (objfile, objfile_name (objfile),
5944 &dwarf2_per_objfile->debug_names,
5945 local_map))
5946 return false;
5947
5948 /* Don't use the index if it's empty. */
5949 if (local_map.name_count == 0)
5950 return false;
5951
5952 /* If there is a .dwz file, read it so we can get its CU list as
5953 well. */
5954 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5955 if (dwz != NULL)
5956 {
5957 if (!read_debug_names_from_section (objfile,
5958 bfd_get_filename (dwz->dwz_bfd),
5959 &dwz->debug_names, dwz_map))
5960 {
5961 warning (_("could not read '.debug_names' section from %s; skipping"),
5962 bfd_get_filename (dwz->dwz_bfd));
5963 return false;
5964 }
5965 }
5966
5967 create_cus_from_debug_names (dwarf2_per_objfile, local_map, dwz_map);
5968
5969 if (local_map.tu_count != 0)
5970 {
5971 /* We can only handle a single .debug_types when we have an
5972 index. */
5973 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
5974 return false;
5975
5976 dwarf2_section_info *section = VEC_index (dwarf2_section_info_def,
5977 dwarf2_per_objfile->types, 0);
5978
5979 create_signatured_type_table_from_debug_names
5980 (dwarf2_per_objfile, local_map, section, &dwarf2_per_objfile->abbrev);
5981 }
5982
5983 create_addrmap_from_aranges (dwarf2_per_objfile,
5984 &dwarf2_per_objfile->debug_aranges);
5985
5986 dwarf2_per_objfile->debug_names_table.reset
5987 (new mapped_debug_names (dwarf2_per_objfile));
5988 *dwarf2_per_objfile->debug_names_table = std::move (local_map);
5989 dwarf2_per_objfile->using_index = 1;
5990 dwarf2_per_objfile->quick_file_names_table =
5991 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
5992
5993 return true;
5994 }
5995
5996 /* Symbol name hashing function as specified by DWARF-5. */
5997
5998 static uint32_t
5999 dwarf5_djb_hash (const char *str_)
6000 {
6001 const unsigned char *str = (const unsigned char *) str_;
6002
6003 /* Note: tolower here ignores UTF-8, which isn't fully compliant.
6004 See http://dwarfstd.org/ShowIssue.php?issue=161027.1. */
6005
6006 uint32_t hash = 5381;
6007 while (int c = *str++)
6008 hash = hash * 33 + tolower (c);
6009 return hash;
6010 }
6011
6012 /* Type used to manage iterating over all CUs looking for a symbol for
6013 .debug_names. */
6014
6015 class dw2_debug_names_iterator
6016 {
6017 public:
6018 /* If WANT_SPECIFIC_BLOCK is true, only look for symbols in block
6019 BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
6020 dw2_debug_names_iterator (const mapped_debug_names &map,
6021 bool want_specific_block,
6022 block_enum block_index, domain_enum domain,
6023 const char *name)
6024 : m_map (map), m_want_specific_block (want_specific_block),
6025 m_block_index (block_index), m_domain (domain),
6026 m_addr (find_vec_in_debug_names (map, name))
6027 {}
6028
6029 dw2_debug_names_iterator (const mapped_debug_names &map,
6030 search_domain search, uint32_t namei)
6031 : m_map (map),
6032 m_search (search),
6033 m_addr (find_vec_in_debug_names (map, namei))
6034 {}
6035
6036 /* Return the next matching CU or NULL if there are no more. */
6037 dwarf2_per_cu_data *next ();
6038
6039 private:
6040 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
6041 const char *name);
6042 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
6043 uint32_t namei);
6044
6045 /* The internalized form of .debug_names. */
6046 const mapped_debug_names &m_map;
6047
6048 /* If true, only look for symbols that match BLOCK_INDEX. */
6049 const bool m_want_specific_block = false;
6050
6051 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
6052 Unused if !WANT_SPECIFIC_BLOCK - FIRST_LOCAL_BLOCK is an invalid
6053 value. */
6054 const block_enum m_block_index = FIRST_LOCAL_BLOCK;
6055
6056 /* The kind of symbol we're looking for. */
6057 const domain_enum m_domain = UNDEF_DOMAIN;
6058 const search_domain m_search = ALL_DOMAIN;
6059
6060 /* The list of CUs from the index entry of the symbol, or NULL if
6061 not found. */
6062 const gdb_byte *m_addr;
6063 };
6064
6065 const char *
6066 mapped_debug_names::namei_to_name (uint32_t namei) const
6067 {
6068 const ULONGEST namei_string_offs
6069 = extract_unsigned_integer ((name_table_string_offs_reordered
6070 + namei * offset_size),
6071 offset_size,
6072 dwarf5_byte_order);
6073 return read_indirect_string_at_offset
6074 (dwarf2_per_objfile, dwarf2_per_objfile->objfile->obfd, namei_string_offs);
6075 }
6076
6077 /* Find a slot in .debug_names for the object named NAME. If NAME is
6078 found, return pointer to its pool data. If NAME cannot be found,
6079 return NULL. */
6080
6081 const gdb_byte *
6082 dw2_debug_names_iterator::find_vec_in_debug_names
6083 (const mapped_debug_names &map, const char *name)
6084 {
6085 int (*cmp) (const char *, const char *);
6086
6087 if (current_language->la_language == language_cplus
6088 || current_language->la_language == language_fortran
6089 || current_language->la_language == language_d)
6090 {
6091 /* NAME is already canonical. Drop any qualifiers as
6092 .debug_names does not contain any. */
6093
6094 if (strchr (name, '(') != NULL)
6095 {
6096 gdb::unique_xmalloc_ptr<char> without_params
6097 = cp_remove_params (name);
6098
6099 if (without_params != NULL)
6100 {
6101 name = without_params.get();
6102 }
6103 }
6104 }
6105
6106 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
6107
6108 const uint32_t full_hash = dwarf5_djb_hash (name);
6109 uint32_t namei
6110 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
6111 (map.bucket_table_reordered
6112 + (full_hash % map.bucket_count)), 4,
6113 map.dwarf5_byte_order);
6114 if (namei == 0)
6115 return NULL;
6116 --namei;
6117 if (namei >= map.name_count)
6118 {
6119 complaint (&symfile_complaints,
6120 _("Wrong .debug_names with name index %u but name_count=%u "
6121 "[in module %s]"),
6122 namei, map.name_count,
6123 objfile_name (map.dwarf2_per_objfile->objfile));
6124 return NULL;
6125 }
6126
6127 for (;;)
6128 {
6129 const uint32_t namei_full_hash
6130 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
6131 (map.hash_table_reordered + namei), 4,
6132 map.dwarf5_byte_order);
6133 if (full_hash % map.bucket_count != namei_full_hash % map.bucket_count)
6134 return NULL;
6135
6136 if (full_hash == namei_full_hash)
6137 {
6138 const char *const namei_string = map.namei_to_name (namei);
6139
6140 #if 0 /* An expensive sanity check. */
6141 if (namei_full_hash != dwarf5_djb_hash (namei_string))
6142 {
6143 complaint (&symfile_complaints,
6144 _("Wrong .debug_names hash for string at index %u "
6145 "[in module %s]"),
6146 namei, objfile_name (dwarf2_per_objfile->objfile));
6147 return NULL;
6148 }
6149 #endif
6150
6151 if (cmp (namei_string, name) == 0)
6152 {
6153 const ULONGEST namei_entry_offs
6154 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
6155 + namei * map.offset_size),
6156 map.offset_size, map.dwarf5_byte_order);
6157 return map.entry_pool + namei_entry_offs;
6158 }
6159 }
6160
6161 ++namei;
6162 if (namei >= map.name_count)
6163 return NULL;
6164 }
6165 }
6166
6167 const gdb_byte *
6168 dw2_debug_names_iterator::find_vec_in_debug_names
6169 (const mapped_debug_names &map, uint32_t namei)
6170 {
6171 if (namei >= map.name_count)
6172 {
6173 complaint (&symfile_complaints,
6174 _("Wrong .debug_names with name index %u but name_count=%u "
6175 "[in module %s]"),
6176 namei, map.name_count,
6177 objfile_name (map.dwarf2_per_objfile->objfile));
6178 return NULL;
6179 }
6180
6181 const ULONGEST namei_entry_offs
6182 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
6183 + namei * map.offset_size),
6184 map.offset_size, map.dwarf5_byte_order);
6185 return map.entry_pool + namei_entry_offs;
6186 }
6187
6188 /* See dw2_debug_names_iterator. */
6189
6190 dwarf2_per_cu_data *
6191 dw2_debug_names_iterator::next ()
6192 {
6193 if (m_addr == NULL)
6194 return NULL;
6195
6196 struct dwarf2_per_objfile *dwarf2_per_objfile = m_map.dwarf2_per_objfile;
6197 struct objfile *objfile = dwarf2_per_objfile->objfile;
6198 bfd *const abfd = objfile->obfd;
6199
6200 again:
6201
6202 unsigned int bytes_read;
6203 const ULONGEST abbrev = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
6204 m_addr += bytes_read;
6205 if (abbrev == 0)
6206 return NULL;
6207
6208 const auto indexval_it = m_map.abbrev_map.find (abbrev);
6209 if (indexval_it == m_map.abbrev_map.cend ())
6210 {
6211 complaint (&symfile_complaints,
6212 _("Wrong .debug_names undefined abbrev code %s "
6213 "[in module %s]"),
6214 pulongest (abbrev), objfile_name (objfile));
6215 return NULL;
6216 }
6217 const mapped_debug_names::index_val &indexval = indexval_it->second;
6218 bool have_is_static = false;
6219 bool is_static;
6220 dwarf2_per_cu_data *per_cu = NULL;
6221 for (const mapped_debug_names::index_val::attr &attr : indexval.attr_vec)
6222 {
6223 ULONGEST ull;
6224 switch (attr.form)
6225 {
6226 case DW_FORM_implicit_const:
6227 ull = attr.implicit_const;
6228 break;
6229 case DW_FORM_flag_present:
6230 ull = 1;
6231 break;
6232 case DW_FORM_udata:
6233 ull = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
6234 m_addr += bytes_read;
6235 break;
6236 default:
6237 complaint (&symfile_complaints,
6238 _("Unsupported .debug_names form %s [in module %s]"),
6239 dwarf_form_name (attr.form),
6240 objfile_name (objfile));
6241 return NULL;
6242 }
6243 switch (attr.dw_idx)
6244 {
6245 case DW_IDX_compile_unit:
6246 /* Don't crash on bad data. */
6247 if (ull >= dwarf2_per_objfile->n_comp_units)
6248 {
6249 complaint (&symfile_complaints,
6250 _(".debug_names entry has bad CU index %s"
6251 " [in module %s]"),
6252 pulongest (ull),
6253 objfile_name (dwarf2_per_objfile->objfile));
6254 continue;
6255 }
6256 per_cu = dw2_get_cutu (dwarf2_per_objfile, ull);
6257 break;
6258 case DW_IDX_type_unit:
6259 /* Don't crash on bad data. */
6260 if (ull >= dwarf2_per_objfile->n_type_units)
6261 {
6262 complaint (&symfile_complaints,
6263 _(".debug_names entry has bad TU index %s"
6264 " [in module %s]"),
6265 pulongest (ull),
6266 objfile_name (dwarf2_per_objfile->objfile));
6267 continue;
6268 }
6269 per_cu = dw2_get_cutu (dwarf2_per_objfile,
6270 dwarf2_per_objfile->n_comp_units + ull);
6271 break;
6272 case DW_IDX_GNU_internal:
6273 if (!m_map.augmentation_is_gdb)
6274 break;
6275 have_is_static = true;
6276 is_static = true;
6277 break;
6278 case DW_IDX_GNU_external:
6279 if (!m_map.augmentation_is_gdb)
6280 break;
6281 have_is_static = true;
6282 is_static = false;
6283 break;
6284 }
6285 }
6286
6287 /* Skip if already read in. */
6288 if (per_cu->v.quick->compunit_symtab)
6289 goto again;
6290
6291 /* Check static vs global. */
6292 if (have_is_static)
6293 {
6294 const bool want_static = m_block_index != GLOBAL_BLOCK;
6295 if (m_want_specific_block && want_static != is_static)
6296 goto again;
6297 }
6298
6299 /* Match dw2_symtab_iter_next, symbol_kind
6300 and debug_names::psymbol_tag. */
6301 switch (m_domain)
6302 {
6303 case VAR_DOMAIN:
6304 switch (indexval.dwarf_tag)
6305 {
6306 case DW_TAG_variable:
6307 case DW_TAG_subprogram:
6308 /* Some types are also in VAR_DOMAIN. */
6309 case DW_TAG_typedef:
6310 case DW_TAG_structure_type:
6311 break;
6312 default:
6313 goto again;
6314 }
6315 break;
6316 case STRUCT_DOMAIN:
6317 switch (indexval.dwarf_tag)
6318 {
6319 case DW_TAG_typedef:
6320 case DW_TAG_structure_type:
6321 break;
6322 default:
6323 goto again;
6324 }
6325 break;
6326 case LABEL_DOMAIN:
6327 switch (indexval.dwarf_tag)
6328 {
6329 case 0:
6330 case DW_TAG_variable:
6331 break;
6332 default:
6333 goto again;
6334 }
6335 break;
6336 default:
6337 break;
6338 }
6339
6340 /* Match dw2_expand_symtabs_matching, symbol_kind and
6341 debug_names::psymbol_tag. */
6342 switch (m_search)
6343 {
6344 case VARIABLES_DOMAIN:
6345 switch (indexval.dwarf_tag)
6346 {
6347 case DW_TAG_variable:
6348 break;
6349 default:
6350 goto again;
6351 }
6352 break;
6353 case FUNCTIONS_DOMAIN:
6354 switch (indexval.dwarf_tag)
6355 {
6356 case DW_TAG_subprogram:
6357 break;
6358 default:
6359 goto again;
6360 }
6361 break;
6362 case TYPES_DOMAIN:
6363 switch (indexval.dwarf_tag)
6364 {
6365 case DW_TAG_typedef:
6366 case DW_TAG_structure_type:
6367 break;
6368 default:
6369 goto again;
6370 }
6371 break;
6372 default:
6373 break;
6374 }
6375
6376 return per_cu;
6377 }
6378
6379 static struct compunit_symtab *
6380 dw2_debug_names_lookup_symbol (struct objfile *objfile, int block_index_int,
6381 const char *name, domain_enum domain)
6382 {
6383 const block_enum block_index = static_cast<block_enum> (block_index_int);
6384 struct dwarf2_per_objfile *dwarf2_per_objfile
6385 = get_dwarf2_per_objfile (objfile);
6386
6387 const auto &mapp = dwarf2_per_objfile->debug_names_table;
6388 if (!mapp)
6389 {
6390 /* index is NULL if OBJF_READNOW. */
6391 return NULL;
6392 }
6393 const auto &map = *mapp;
6394
6395 dw2_debug_names_iterator iter (map, true /* want_specific_block */,
6396 block_index, domain, name);
6397
6398 struct compunit_symtab *stab_best = NULL;
6399 struct dwarf2_per_cu_data *per_cu;
6400 while ((per_cu = iter.next ()) != NULL)
6401 {
6402 struct symbol *sym, *with_opaque = NULL;
6403 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
6404 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
6405 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
6406
6407 sym = block_find_symbol (block, name, domain,
6408 block_find_non_opaque_type_preferred,
6409 &with_opaque);
6410
6411 /* Some caution must be observed with overloaded functions and
6412 methods, since the index will not contain any overload
6413 information (but NAME might contain it). */
6414
6415 if (sym != NULL
6416 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
6417 return stab;
6418 if (with_opaque != NULL
6419 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
6420 stab_best = stab;
6421
6422 /* Keep looking through other CUs. */
6423 }
6424
6425 return stab_best;
6426 }
6427
6428 /* This dumps minimal information about .debug_names. It is called
6429 via "mt print objfiles". The gdb.dwarf2/gdb-index.exp testcase
6430 uses this to verify that .debug_names has been loaded. */
6431
6432 static void
6433 dw2_debug_names_dump (struct objfile *objfile)
6434 {
6435 struct dwarf2_per_objfile *dwarf2_per_objfile
6436 = get_dwarf2_per_objfile (objfile);
6437
6438 gdb_assert (dwarf2_per_objfile->using_index);
6439 printf_filtered (".debug_names:");
6440 if (dwarf2_per_objfile->debug_names_table)
6441 printf_filtered (" exists\n");
6442 else
6443 printf_filtered (" faked for \"readnow\"\n");
6444 printf_filtered ("\n");
6445 }
6446
6447 static void
6448 dw2_debug_names_expand_symtabs_for_function (struct objfile *objfile,
6449 const char *func_name)
6450 {
6451 struct dwarf2_per_objfile *dwarf2_per_objfile
6452 = get_dwarf2_per_objfile (objfile);
6453
6454 /* dwarf2_per_objfile->debug_names_table is NULL if OBJF_READNOW. */
6455 if (dwarf2_per_objfile->debug_names_table)
6456 {
6457 const mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6458
6459 /* Note: It doesn't matter what we pass for block_index here. */
6460 dw2_debug_names_iterator iter (map, false /* want_specific_block */,
6461 GLOBAL_BLOCK, VAR_DOMAIN, func_name);
6462
6463 struct dwarf2_per_cu_data *per_cu;
6464 while ((per_cu = iter.next ()) != NULL)
6465 dw2_instantiate_symtab (per_cu);
6466 }
6467 }
6468
6469 static void
6470 dw2_debug_names_expand_symtabs_matching
6471 (struct objfile *objfile,
6472 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
6473 const lookup_name_info &lookup_name,
6474 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
6475 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
6476 enum search_domain kind)
6477 {
6478 struct dwarf2_per_objfile *dwarf2_per_objfile
6479 = get_dwarf2_per_objfile (objfile);
6480
6481 /* debug_names_table is NULL if OBJF_READNOW. */
6482 if (!dwarf2_per_objfile->debug_names_table)
6483 return;
6484
6485 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
6486
6487 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6488
6489 dw2_expand_symtabs_matching_symbol (map, lookup_name,
6490 symbol_matcher,
6491 kind, [&] (offset_type namei)
6492 {
6493 /* The name was matched, now expand corresponding CUs that were
6494 marked. */
6495 dw2_debug_names_iterator iter (map, kind, namei);
6496
6497 struct dwarf2_per_cu_data *per_cu;
6498 while ((per_cu = iter.next ()) != NULL)
6499 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
6500 expansion_notify);
6501 });
6502 }
6503
6504 const struct quick_symbol_functions dwarf2_debug_names_functions =
6505 {
6506 dw2_has_symbols,
6507 dw2_find_last_source_symtab,
6508 dw2_forget_cached_source_info,
6509 dw2_map_symtabs_matching_filename,
6510 dw2_debug_names_lookup_symbol,
6511 dw2_print_stats,
6512 dw2_debug_names_dump,
6513 dw2_relocate,
6514 dw2_debug_names_expand_symtabs_for_function,
6515 dw2_expand_all_symtabs,
6516 dw2_expand_symtabs_with_fullname,
6517 dw2_map_matching_symbols,
6518 dw2_debug_names_expand_symtabs_matching,
6519 dw2_find_pc_sect_compunit_symtab,
6520 NULL,
6521 dw2_map_symbol_filenames
6522 };
6523
6524 /* See symfile.h. */
6525
6526 bool
6527 dwarf2_initialize_objfile (struct objfile *objfile, dw_index_kind *index_kind)
6528 {
6529 struct dwarf2_per_objfile *dwarf2_per_objfile
6530 = get_dwarf2_per_objfile (objfile);
6531
6532 /* If we're about to read full symbols, don't bother with the
6533 indices. In this case we also don't care if some other debug
6534 format is making psymtabs, because they are all about to be
6535 expanded anyway. */
6536 if ((objfile->flags & OBJF_READNOW))
6537 {
6538 int i;
6539
6540 dwarf2_per_objfile->using_index = 1;
6541 create_all_comp_units (dwarf2_per_objfile);
6542 create_all_type_units (dwarf2_per_objfile);
6543 dwarf2_per_objfile->quick_file_names_table =
6544 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
6545
6546 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
6547 + dwarf2_per_objfile->n_type_units); ++i)
6548 {
6549 dwarf2_per_cu_data *per_cu = dw2_get_cutu (dwarf2_per_objfile, i);
6550
6551 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6552 struct dwarf2_per_cu_quick_data);
6553 }
6554
6555 /* Return 1 so that gdb sees the "quick" functions. However,
6556 these functions will be no-ops because we will have expanded
6557 all symtabs. */
6558 *index_kind = dw_index_kind::GDB_INDEX;
6559 return true;
6560 }
6561
6562 if (dwarf2_read_debug_names (dwarf2_per_objfile))
6563 {
6564 *index_kind = dw_index_kind::DEBUG_NAMES;
6565 return true;
6566 }
6567
6568 if (dwarf2_read_index (objfile))
6569 {
6570 *index_kind = dw_index_kind::GDB_INDEX;
6571 return true;
6572 }
6573
6574 return false;
6575 }
6576
6577 \f
6578
6579 /* Build a partial symbol table. */
6580
6581 void
6582 dwarf2_build_psymtabs (struct objfile *objfile)
6583 {
6584 struct dwarf2_per_objfile *dwarf2_per_objfile
6585 = get_dwarf2_per_objfile (objfile);
6586
6587 if (objfile->global_psymbols.capacity () == 0
6588 && objfile->static_psymbols.capacity () == 0)
6589 init_psymbol_list (objfile, 1024);
6590
6591 TRY
6592 {
6593 /* This isn't really ideal: all the data we allocate on the
6594 objfile's obstack is still uselessly kept around. However,
6595 freeing it seems unsafe. */
6596 psymtab_discarder psymtabs (objfile);
6597 dwarf2_build_psymtabs_hard (dwarf2_per_objfile);
6598 psymtabs.keep ();
6599 }
6600 CATCH (except, RETURN_MASK_ERROR)
6601 {
6602 exception_print (gdb_stderr, except);
6603 }
6604 END_CATCH
6605 }
6606
6607 /* Return the total length of the CU described by HEADER. */
6608
6609 static unsigned int
6610 get_cu_length (const struct comp_unit_head *header)
6611 {
6612 return header->initial_length_size + header->length;
6613 }
6614
6615 /* Return TRUE if SECT_OFF is within CU_HEADER. */
6616
6617 static inline bool
6618 offset_in_cu_p (const comp_unit_head *cu_header, sect_offset sect_off)
6619 {
6620 sect_offset bottom = cu_header->sect_off;
6621 sect_offset top = cu_header->sect_off + get_cu_length (cu_header);
6622
6623 return sect_off >= bottom && sect_off < top;
6624 }
6625
6626 /* Find the base address of the compilation unit for range lists and
6627 location lists. It will normally be specified by DW_AT_low_pc.
6628 In DWARF-3 draft 4, the base address could be overridden by
6629 DW_AT_entry_pc. It's been removed, but GCC still uses this for
6630 compilation units with discontinuous ranges. */
6631
6632 static void
6633 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
6634 {
6635 struct attribute *attr;
6636
6637 cu->base_known = 0;
6638 cu->base_address = 0;
6639
6640 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
6641 if (attr)
6642 {
6643 cu->base_address = attr_value_as_address (attr);
6644 cu->base_known = 1;
6645 }
6646 else
6647 {
6648 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6649 if (attr)
6650 {
6651 cu->base_address = attr_value_as_address (attr);
6652 cu->base_known = 1;
6653 }
6654 }
6655 }
6656
6657 /* Read in the comp unit header information from the debug_info at info_ptr.
6658 Use rcuh_kind::COMPILE as the default type if not known by the caller.
6659 NOTE: This leaves members offset, first_die_offset to be filled in
6660 by the caller. */
6661
6662 static const gdb_byte *
6663 read_comp_unit_head (struct comp_unit_head *cu_header,
6664 const gdb_byte *info_ptr,
6665 struct dwarf2_section_info *section,
6666 rcuh_kind section_kind)
6667 {
6668 int signed_addr;
6669 unsigned int bytes_read;
6670 const char *filename = get_section_file_name (section);
6671 bfd *abfd = get_section_bfd_owner (section);
6672
6673 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
6674 cu_header->initial_length_size = bytes_read;
6675 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
6676 info_ptr += bytes_read;
6677 cu_header->version = read_2_bytes (abfd, info_ptr);
6678 info_ptr += 2;
6679 if (cu_header->version < 5)
6680 switch (section_kind)
6681 {
6682 case rcuh_kind::COMPILE:
6683 cu_header->unit_type = DW_UT_compile;
6684 break;
6685 case rcuh_kind::TYPE:
6686 cu_header->unit_type = DW_UT_type;
6687 break;
6688 default:
6689 internal_error (__FILE__, __LINE__,
6690 _("read_comp_unit_head: invalid section_kind"));
6691 }
6692 else
6693 {
6694 cu_header->unit_type = static_cast<enum dwarf_unit_type>
6695 (read_1_byte (abfd, info_ptr));
6696 info_ptr += 1;
6697 switch (cu_header->unit_type)
6698 {
6699 case DW_UT_compile:
6700 if (section_kind != rcuh_kind::COMPILE)
6701 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6702 "(is DW_UT_compile, should be DW_UT_type) [in module %s]"),
6703 filename);
6704 break;
6705 case DW_UT_type:
6706 section_kind = rcuh_kind::TYPE;
6707 break;
6708 default:
6709 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6710 "(is %d, should be %d or %d) [in module %s]"),
6711 cu_header->unit_type, DW_UT_compile, DW_UT_type, filename);
6712 }
6713
6714 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6715 info_ptr += 1;
6716 }
6717 cu_header->abbrev_sect_off = (sect_offset) read_offset (abfd, info_ptr,
6718 cu_header,
6719 &bytes_read);
6720 info_ptr += bytes_read;
6721 if (cu_header->version < 5)
6722 {
6723 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6724 info_ptr += 1;
6725 }
6726 signed_addr = bfd_get_sign_extend_vma (abfd);
6727 if (signed_addr < 0)
6728 internal_error (__FILE__, __LINE__,
6729 _("read_comp_unit_head: dwarf from non elf file"));
6730 cu_header->signed_addr_p = signed_addr;
6731
6732 if (section_kind == rcuh_kind::TYPE)
6733 {
6734 LONGEST type_offset;
6735
6736 cu_header->signature = read_8_bytes (abfd, info_ptr);
6737 info_ptr += 8;
6738
6739 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
6740 info_ptr += bytes_read;
6741 cu_header->type_cu_offset_in_tu = (cu_offset) type_offset;
6742 if (to_underlying (cu_header->type_cu_offset_in_tu) != type_offset)
6743 error (_("Dwarf Error: Too big type_offset in compilation unit "
6744 "header (is %s) [in module %s]"), plongest (type_offset),
6745 filename);
6746 }
6747
6748 return info_ptr;
6749 }
6750
6751 /* Helper function that returns the proper abbrev section for
6752 THIS_CU. */
6753
6754 static struct dwarf2_section_info *
6755 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
6756 {
6757 struct dwarf2_section_info *abbrev;
6758 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6759
6760 if (this_cu->is_dwz)
6761 abbrev = &dwarf2_get_dwz_file (dwarf2_per_objfile)->abbrev;
6762 else
6763 abbrev = &dwarf2_per_objfile->abbrev;
6764
6765 return abbrev;
6766 }
6767
6768 /* Subroutine of read_and_check_comp_unit_head and
6769 read_and_check_type_unit_head to simplify them.
6770 Perform various error checking on the header. */
6771
6772 static void
6773 error_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6774 struct comp_unit_head *header,
6775 struct dwarf2_section_info *section,
6776 struct dwarf2_section_info *abbrev_section)
6777 {
6778 const char *filename = get_section_file_name (section);
6779
6780 if (header->version < 2 || header->version > 5)
6781 error (_("Dwarf Error: wrong version in compilation unit header "
6782 "(is %d, should be 2, 3, 4 or 5) [in module %s]"), header->version,
6783 filename);
6784
6785 if (to_underlying (header->abbrev_sect_off)
6786 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
6787 error (_("Dwarf Error: bad offset (0x%x) in compilation unit header "
6788 "(offset 0x%x + 6) [in module %s]"),
6789 to_underlying (header->abbrev_sect_off),
6790 to_underlying (header->sect_off),
6791 filename);
6792
6793 /* Cast to ULONGEST to use 64-bit arithmetic when possible to
6794 avoid potential 32-bit overflow. */
6795 if (((ULONGEST) header->sect_off + get_cu_length (header))
6796 > section->size)
6797 error (_("Dwarf Error: bad length (0x%x) in compilation unit header "
6798 "(offset 0x%x + 0) [in module %s]"),
6799 header->length, to_underlying (header->sect_off),
6800 filename);
6801 }
6802
6803 /* Read in a CU/TU header and perform some basic error checking.
6804 The contents of the header are stored in HEADER.
6805 The result is a pointer to the start of the first DIE. */
6806
6807 static const gdb_byte *
6808 read_and_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6809 struct comp_unit_head *header,
6810 struct dwarf2_section_info *section,
6811 struct dwarf2_section_info *abbrev_section,
6812 const gdb_byte *info_ptr,
6813 rcuh_kind section_kind)
6814 {
6815 const gdb_byte *beg_of_comp_unit = info_ptr;
6816
6817 header->sect_off = (sect_offset) (beg_of_comp_unit - section->buffer);
6818
6819 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
6820
6821 header->first_die_cu_offset = (cu_offset) (info_ptr - beg_of_comp_unit);
6822
6823 error_check_comp_unit_head (dwarf2_per_objfile, header, section,
6824 abbrev_section);
6825
6826 return info_ptr;
6827 }
6828
6829 /* Fetch the abbreviation table offset from a comp or type unit header. */
6830
6831 static sect_offset
6832 read_abbrev_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
6833 struct dwarf2_section_info *section,
6834 sect_offset sect_off)
6835 {
6836 bfd *abfd = get_section_bfd_owner (section);
6837 const gdb_byte *info_ptr;
6838 unsigned int initial_length_size, offset_size;
6839 uint16_t version;
6840
6841 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
6842 info_ptr = section->buffer + to_underlying (sect_off);
6843 read_initial_length (abfd, info_ptr, &initial_length_size);
6844 offset_size = initial_length_size == 4 ? 4 : 8;
6845 info_ptr += initial_length_size;
6846
6847 version = read_2_bytes (abfd, info_ptr);
6848 info_ptr += 2;
6849 if (version >= 5)
6850 {
6851 /* Skip unit type and address size. */
6852 info_ptr += 2;
6853 }
6854
6855 return (sect_offset) read_offset_1 (abfd, info_ptr, offset_size);
6856 }
6857
6858 /* Allocate a new partial symtab for file named NAME and mark this new
6859 partial symtab as being an include of PST. */
6860
6861 static void
6862 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
6863 struct objfile *objfile)
6864 {
6865 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
6866
6867 if (!IS_ABSOLUTE_PATH (subpst->filename))
6868 {
6869 /* It shares objfile->objfile_obstack. */
6870 subpst->dirname = pst->dirname;
6871 }
6872
6873 subpst->textlow = 0;
6874 subpst->texthigh = 0;
6875
6876 subpst->dependencies
6877 = XOBNEW (&objfile->objfile_obstack, struct partial_symtab *);
6878 subpst->dependencies[0] = pst;
6879 subpst->number_of_dependencies = 1;
6880
6881 subpst->globals_offset = 0;
6882 subpst->n_global_syms = 0;
6883 subpst->statics_offset = 0;
6884 subpst->n_static_syms = 0;
6885 subpst->compunit_symtab = NULL;
6886 subpst->read_symtab = pst->read_symtab;
6887 subpst->readin = 0;
6888
6889 /* No private part is necessary for include psymtabs. This property
6890 can be used to differentiate between such include psymtabs and
6891 the regular ones. */
6892 subpst->read_symtab_private = NULL;
6893 }
6894
6895 /* Read the Line Number Program data and extract the list of files
6896 included by the source file represented by PST. Build an include
6897 partial symtab for each of these included files. */
6898
6899 static void
6900 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
6901 struct die_info *die,
6902 struct partial_symtab *pst)
6903 {
6904 line_header_up lh;
6905 struct attribute *attr;
6906
6907 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
6908 if (attr)
6909 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
6910 if (lh == NULL)
6911 return; /* No linetable, so no includes. */
6912
6913 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
6914 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst, pst->textlow, 1);
6915 }
6916
6917 static hashval_t
6918 hash_signatured_type (const void *item)
6919 {
6920 const struct signatured_type *sig_type
6921 = (const struct signatured_type *) item;
6922
6923 /* This drops the top 32 bits of the signature, but is ok for a hash. */
6924 return sig_type->signature;
6925 }
6926
6927 static int
6928 eq_signatured_type (const void *item_lhs, const void *item_rhs)
6929 {
6930 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
6931 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
6932
6933 return lhs->signature == rhs->signature;
6934 }
6935
6936 /* Allocate a hash table for signatured types. */
6937
6938 static htab_t
6939 allocate_signatured_type_table (struct objfile *objfile)
6940 {
6941 return htab_create_alloc_ex (41,
6942 hash_signatured_type,
6943 eq_signatured_type,
6944 NULL,
6945 &objfile->objfile_obstack,
6946 hashtab_obstack_allocate,
6947 dummy_obstack_deallocate);
6948 }
6949
6950 /* A helper function to add a signatured type CU to a table. */
6951
6952 static int
6953 add_signatured_type_cu_to_table (void **slot, void *datum)
6954 {
6955 struct signatured_type *sigt = (struct signatured_type *) *slot;
6956 struct signatured_type ***datap = (struct signatured_type ***) datum;
6957
6958 **datap = sigt;
6959 ++*datap;
6960
6961 return 1;
6962 }
6963
6964 /* A helper for create_debug_types_hash_table. Read types from SECTION
6965 and fill them into TYPES_HTAB. It will process only type units,
6966 therefore DW_UT_type. */
6967
6968 static void
6969 create_debug_type_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6970 struct dwo_file *dwo_file,
6971 dwarf2_section_info *section, htab_t &types_htab,
6972 rcuh_kind section_kind)
6973 {
6974 struct objfile *objfile = dwarf2_per_objfile->objfile;
6975 struct dwarf2_section_info *abbrev_section;
6976 bfd *abfd;
6977 const gdb_byte *info_ptr, *end_ptr;
6978
6979 abbrev_section = (dwo_file != NULL
6980 ? &dwo_file->sections.abbrev
6981 : &dwarf2_per_objfile->abbrev);
6982
6983 if (dwarf_read_debug)
6984 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
6985 get_section_name (section),
6986 get_section_file_name (abbrev_section));
6987
6988 dwarf2_read_section (objfile, section);
6989 info_ptr = section->buffer;
6990
6991 if (info_ptr == NULL)
6992 return;
6993
6994 /* We can't set abfd until now because the section may be empty or
6995 not present, in which case the bfd is unknown. */
6996 abfd = get_section_bfd_owner (section);
6997
6998 /* We don't use init_cutu_and_read_dies_simple, or some such, here
6999 because we don't need to read any dies: the signature is in the
7000 header. */
7001
7002 end_ptr = info_ptr + section->size;
7003 while (info_ptr < end_ptr)
7004 {
7005 struct signatured_type *sig_type;
7006 struct dwo_unit *dwo_tu;
7007 void **slot;
7008 const gdb_byte *ptr = info_ptr;
7009 struct comp_unit_head header;
7010 unsigned int length;
7011
7012 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
7013
7014 /* Initialize it due to a false compiler warning. */
7015 header.signature = -1;
7016 header.type_cu_offset_in_tu = (cu_offset) -1;
7017
7018 /* We need to read the type's signature in order to build the hash
7019 table, but we don't need anything else just yet. */
7020
7021 ptr = read_and_check_comp_unit_head (dwarf2_per_objfile, &header, section,
7022 abbrev_section, ptr, section_kind);
7023
7024 length = get_cu_length (&header);
7025
7026 /* Skip dummy type units. */
7027 if (ptr >= info_ptr + length
7028 || peek_abbrev_code (abfd, ptr) == 0
7029 || header.unit_type != DW_UT_type)
7030 {
7031 info_ptr += length;
7032 continue;
7033 }
7034
7035 if (types_htab == NULL)
7036 {
7037 if (dwo_file)
7038 types_htab = allocate_dwo_unit_table (objfile);
7039 else
7040 types_htab = allocate_signatured_type_table (objfile);
7041 }
7042
7043 if (dwo_file)
7044 {
7045 sig_type = NULL;
7046 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7047 struct dwo_unit);
7048 dwo_tu->dwo_file = dwo_file;
7049 dwo_tu->signature = header.signature;
7050 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
7051 dwo_tu->section = section;
7052 dwo_tu->sect_off = sect_off;
7053 dwo_tu->length = length;
7054 }
7055 else
7056 {
7057 /* N.B.: type_offset is not usable if this type uses a DWO file.
7058 The real type_offset is in the DWO file. */
7059 dwo_tu = NULL;
7060 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7061 struct signatured_type);
7062 sig_type->signature = header.signature;
7063 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
7064 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
7065 sig_type->per_cu.is_debug_types = 1;
7066 sig_type->per_cu.section = section;
7067 sig_type->per_cu.sect_off = sect_off;
7068 sig_type->per_cu.length = length;
7069 }
7070
7071 slot = htab_find_slot (types_htab,
7072 dwo_file ? (void*) dwo_tu : (void *) sig_type,
7073 INSERT);
7074 gdb_assert (slot != NULL);
7075 if (*slot != NULL)
7076 {
7077 sect_offset dup_sect_off;
7078
7079 if (dwo_file)
7080 {
7081 const struct dwo_unit *dup_tu
7082 = (const struct dwo_unit *) *slot;
7083
7084 dup_sect_off = dup_tu->sect_off;
7085 }
7086 else
7087 {
7088 const struct signatured_type *dup_tu
7089 = (const struct signatured_type *) *slot;
7090
7091 dup_sect_off = dup_tu->per_cu.sect_off;
7092 }
7093
7094 complaint (&symfile_complaints,
7095 _("debug type entry at offset 0x%x is duplicate to"
7096 " the entry at offset 0x%x, signature %s"),
7097 to_underlying (sect_off), to_underlying (dup_sect_off),
7098 hex_string (header.signature));
7099 }
7100 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
7101
7102 if (dwarf_read_debug > 1)
7103 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
7104 to_underlying (sect_off),
7105 hex_string (header.signature));
7106
7107 info_ptr += length;
7108 }
7109 }
7110
7111 /* Create the hash table of all entries in the .debug_types
7112 (or .debug_types.dwo) section(s).
7113 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
7114 otherwise it is NULL.
7115
7116 The result is a pointer to the hash table or NULL if there are no types.
7117
7118 Note: This function processes DWO files only, not DWP files. */
7119
7120 static void
7121 create_debug_types_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
7122 struct dwo_file *dwo_file,
7123 VEC (dwarf2_section_info_def) *types,
7124 htab_t &types_htab)
7125 {
7126 int ix;
7127 struct dwarf2_section_info *section;
7128
7129 if (VEC_empty (dwarf2_section_info_def, types))
7130 return;
7131
7132 for (ix = 0;
7133 VEC_iterate (dwarf2_section_info_def, types, ix, section);
7134 ++ix)
7135 create_debug_type_hash_table (dwarf2_per_objfile, dwo_file, section,
7136 types_htab, rcuh_kind::TYPE);
7137 }
7138
7139 /* Create the hash table of all entries in the .debug_types section,
7140 and initialize all_type_units.
7141 The result is zero if there is an error (e.g. missing .debug_types section),
7142 otherwise non-zero. */
7143
7144 static int
7145 create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
7146 {
7147 htab_t types_htab = NULL;
7148 struct signatured_type **iter;
7149
7150 create_debug_type_hash_table (dwarf2_per_objfile, NULL,
7151 &dwarf2_per_objfile->info, types_htab,
7152 rcuh_kind::COMPILE);
7153 create_debug_types_hash_table (dwarf2_per_objfile, NULL,
7154 dwarf2_per_objfile->types, types_htab);
7155 if (types_htab == NULL)
7156 {
7157 dwarf2_per_objfile->signatured_types = NULL;
7158 return 0;
7159 }
7160
7161 dwarf2_per_objfile->signatured_types = types_htab;
7162
7163 dwarf2_per_objfile->n_type_units
7164 = dwarf2_per_objfile->n_allocated_type_units
7165 = htab_elements (types_htab);
7166 dwarf2_per_objfile->all_type_units =
7167 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
7168 iter = &dwarf2_per_objfile->all_type_units[0];
7169 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
7170 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
7171 == dwarf2_per_objfile->n_type_units);
7172
7173 return 1;
7174 }
7175
7176 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
7177 If SLOT is non-NULL, it is the entry to use in the hash table.
7178 Otherwise we find one. */
7179
7180 static struct signatured_type *
7181 add_type_unit (struct dwarf2_per_objfile *dwarf2_per_objfile, ULONGEST sig,
7182 void **slot)
7183 {
7184 struct objfile *objfile = dwarf2_per_objfile->objfile;
7185 int n_type_units = dwarf2_per_objfile->n_type_units;
7186 struct signatured_type *sig_type;
7187
7188 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
7189 ++n_type_units;
7190 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
7191 {
7192 if (dwarf2_per_objfile->n_allocated_type_units == 0)
7193 dwarf2_per_objfile->n_allocated_type_units = 1;
7194 dwarf2_per_objfile->n_allocated_type_units *= 2;
7195 dwarf2_per_objfile->all_type_units
7196 = XRESIZEVEC (struct signatured_type *,
7197 dwarf2_per_objfile->all_type_units,
7198 dwarf2_per_objfile->n_allocated_type_units);
7199 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
7200 }
7201 dwarf2_per_objfile->n_type_units = n_type_units;
7202
7203 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7204 struct signatured_type);
7205 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
7206 sig_type->signature = sig;
7207 sig_type->per_cu.is_debug_types = 1;
7208 if (dwarf2_per_objfile->using_index)
7209 {
7210 sig_type->per_cu.v.quick =
7211 OBSTACK_ZALLOC (&objfile->objfile_obstack,
7212 struct dwarf2_per_cu_quick_data);
7213 }
7214
7215 if (slot == NULL)
7216 {
7217 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
7218 sig_type, INSERT);
7219 }
7220 gdb_assert (*slot == NULL);
7221 *slot = sig_type;
7222 /* The rest of sig_type must be filled in by the caller. */
7223 return sig_type;
7224 }
7225
7226 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
7227 Fill in SIG_ENTRY with DWO_ENTRY. */
7228
7229 static void
7230 fill_in_sig_entry_from_dwo_entry (struct dwarf2_per_objfile *dwarf2_per_objfile,
7231 struct signatured_type *sig_entry,
7232 struct dwo_unit *dwo_entry)
7233 {
7234 /* Make sure we're not clobbering something we don't expect to. */
7235 gdb_assert (! sig_entry->per_cu.queued);
7236 gdb_assert (sig_entry->per_cu.cu == NULL);
7237 if (dwarf2_per_objfile->using_index)
7238 {
7239 gdb_assert (sig_entry->per_cu.v.quick != NULL);
7240 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
7241 }
7242 else
7243 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
7244 gdb_assert (sig_entry->signature == dwo_entry->signature);
7245 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
7246 gdb_assert (sig_entry->type_unit_group == NULL);
7247 gdb_assert (sig_entry->dwo_unit == NULL);
7248
7249 sig_entry->per_cu.section = dwo_entry->section;
7250 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
7251 sig_entry->per_cu.length = dwo_entry->length;
7252 sig_entry->per_cu.reading_dwo_directly = 1;
7253 sig_entry->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
7254 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
7255 sig_entry->dwo_unit = dwo_entry;
7256 }
7257
7258 /* Subroutine of lookup_signatured_type.
7259 If we haven't read the TU yet, create the signatured_type data structure
7260 for a TU to be read in directly from a DWO file, bypassing the stub.
7261 This is the "Stay in DWO Optimization": When there is no DWP file and we're
7262 using .gdb_index, then when reading a CU we want to stay in the DWO file
7263 containing that CU. Otherwise we could end up reading several other DWO
7264 files (due to comdat folding) to process the transitive closure of all the
7265 mentioned TUs, and that can be slow. The current DWO file will have every
7266 type signature that it needs.
7267 We only do this for .gdb_index because in the psymtab case we already have
7268 to read all the DWOs to build the type unit groups. */
7269
7270 static struct signatured_type *
7271 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7272 {
7273 struct dwarf2_per_objfile *dwarf2_per_objfile
7274 = cu->per_cu->dwarf2_per_objfile;
7275 struct objfile *objfile = dwarf2_per_objfile->objfile;
7276 struct dwo_file *dwo_file;
7277 struct dwo_unit find_dwo_entry, *dwo_entry;
7278 struct signatured_type find_sig_entry, *sig_entry;
7279 void **slot;
7280
7281 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
7282
7283 /* If TU skeletons have been removed then we may not have read in any
7284 TUs yet. */
7285 if (dwarf2_per_objfile->signatured_types == NULL)
7286 {
7287 dwarf2_per_objfile->signatured_types
7288 = allocate_signatured_type_table (objfile);
7289 }
7290
7291 /* We only ever need to read in one copy of a signatured type.
7292 Use the global signatured_types array to do our own comdat-folding
7293 of types. If this is the first time we're reading this TU, and
7294 the TU has an entry in .gdb_index, replace the recorded data from
7295 .gdb_index with this TU. */
7296
7297 find_sig_entry.signature = sig;
7298 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
7299 &find_sig_entry, INSERT);
7300 sig_entry = (struct signatured_type *) *slot;
7301
7302 /* We can get here with the TU already read, *or* in the process of being
7303 read. Don't reassign the global entry to point to this DWO if that's
7304 the case. Also note that if the TU is already being read, it may not
7305 have come from a DWO, the program may be a mix of Fission-compiled
7306 code and non-Fission-compiled code. */
7307
7308 /* Have we already tried to read this TU?
7309 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7310 needn't exist in the global table yet). */
7311 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
7312 return sig_entry;
7313
7314 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
7315 dwo_unit of the TU itself. */
7316 dwo_file = cu->dwo_unit->dwo_file;
7317
7318 /* Ok, this is the first time we're reading this TU. */
7319 if (dwo_file->tus == NULL)
7320 return NULL;
7321 find_dwo_entry.signature = sig;
7322 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
7323 if (dwo_entry == NULL)
7324 return NULL;
7325
7326 /* If the global table doesn't have an entry for this TU, add one. */
7327 if (sig_entry == NULL)
7328 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7329
7330 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7331 sig_entry->per_cu.tu_read = 1;
7332 return sig_entry;
7333 }
7334
7335 /* Subroutine of lookup_signatured_type.
7336 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
7337 then try the DWP file. If the TU stub (skeleton) has been removed then
7338 it won't be in .gdb_index. */
7339
7340 static struct signatured_type *
7341 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7342 {
7343 struct dwarf2_per_objfile *dwarf2_per_objfile
7344 = cu->per_cu->dwarf2_per_objfile;
7345 struct objfile *objfile = dwarf2_per_objfile->objfile;
7346 struct dwp_file *dwp_file = get_dwp_file (dwarf2_per_objfile);
7347 struct dwo_unit *dwo_entry;
7348 struct signatured_type find_sig_entry, *sig_entry;
7349 void **slot;
7350
7351 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
7352 gdb_assert (dwp_file != NULL);
7353
7354 /* If TU skeletons have been removed then we may not have read in any
7355 TUs yet. */
7356 if (dwarf2_per_objfile->signatured_types == NULL)
7357 {
7358 dwarf2_per_objfile->signatured_types
7359 = allocate_signatured_type_table (objfile);
7360 }
7361
7362 find_sig_entry.signature = sig;
7363 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
7364 &find_sig_entry, INSERT);
7365 sig_entry = (struct signatured_type *) *slot;
7366
7367 /* Have we already tried to read this TU?
7368 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7369 needn't exist in the global table yet). */
7370 if (sig_entry != NULL)
7371 return sig_entry;
7372
7373 if (dwp_file->tus == NULL)
7374 return NULL;
7375 dwo_entry = lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, NULL,
7376 sig, 1 /* is_debug_types */);
7377 if (dwo_entry == NULL)
7378 return NULL;
7379
7380 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7381 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7382
7383 return sig_entry;
7384 }
7385
7386 /* Lookup a signature based type for DW_FORM_ref_sig8.
7387 Returns NULL if signature SIG is not present in the table.
7388 It is up to the caller to complain about this. */
7389
7390 static struct signatured_type *
7391 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7392 {
7393 struct dwarf2_per_objfile *dwarf2_per_objfile
7394 = cu->per_cu->dwarf2_per_objfile;
7395
7396 if (cu->dwo_unit
7397 && dwarf2_per_objfile->using_index)
7398 {
7399 /* We're in a DWO/DWP file, and we're using .gdb_index.
7400 These cases require special processing. */
7401 if (get_dwp_file (dwarf2_per_objfile) == NULL)
7402 return lookup_dwo_signatured_type (cu, sig);
7403 else
7404 return lookup_dwp_signatured_type (cu, sig);
7405 }
7406 else
7407 {
7408 struct signatured_type find_entry, *entry;
7409
7410 if (dwarf2_per_objfile->signatured_types == NULL)
7411 return NULL;
7412 find_entry.signature = sig;
7413 entry = ((struct signatured_type *)
7414 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
7415 return entry;
7416 }
7417 }
7418 \f
7419 /* Low level DIE reading support. */
7420
7421 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
7422
7423 static void
7424 init_cu_die_reader (struct die_reader_specs *reader,
7425 struct dwarf2_cu *cu,
7426 struct dwarf2_section_info *section,
7427 struct dwo_file *dwo_file)
7428 {
7429 gdb_assert (section->readin && section->buffer != NULL);
7430 reader->abfd = get_section_bfd_owner (section);
7431 reader->cu = cu;
7432 reader->dwo_file = dwo_file;
7433 reader->die_section = section;
7434 reader->buffer = section->buffer;
7435 reader->buffer_end = section->buffer + section->size;
7436 reader->comp_dir = NULL;
7437 }
7438
7439 /* Subroutine of init_cutu_and_read_dies to simplify it.
7440 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
7441 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
7442 already.
7443
7444 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
7445 from it to the DIE in the DWO. If NULL we are skipping the stub.
7446 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
7447 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
7448 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
7449 STUB_COMP_DIR may be non-NULL.
7450 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
7451 are filled in with the info of the DIE from the DWO file.
7452 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
7453 provided an abbrev table to use.
7454 The result is non-zero if a valid (non-dummy) DIE was found. */
7455
7456 static int
7457 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
7458 struct dwo_unit *dwo_unit,
7459 int abbrev_table_provided,
7460 struct die_info *stub_comp_unit_die,
7461 const char *stub_comp_dir,
7462 struct die_reader_specs *result_reader,
7463 const gdb_byte **result_info_ptr,
7464 struct die_info **result_comp_unit_die,
7465 int *result_has_children)
7466 {
7467 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7468 struct objfile *objfile = dwarf2_per_objfile->objfile;
7469 struct dwarf2_cu *cu = this_cu->cu;
7470 struct dwarf2_section_info *section;
7471 bfd *abfd;
7472 const gdb_byte *begin_info_ptr, *info_ptr;
7473 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
7474 int i,num_extra_attrs;
7475 struct dwarf2_section_info *dwo_abbrev_section;
7476 struct attribute *attr;
7477 struct die_info *comp_unit_die;
7478
7479 /* At most one of these may be provided. */
7480 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
7481
7482 /* These attributes aren't processed until later:
7483 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
7484 DW_AT_comp_dir is used now, to find the DWO file, but it is also
7485 referenced later. However, these attributes are found in the stub
7486 which we won't have later. In order to not impose this complication
7487 on the rest of the code, we read them here and copy them to the
7488 DWO CU/TU die. */
7489
7490 stmt_list = NULL;
7491 low_pc = NULL;
7492 high_pc = NULL;
7493 ranges = NULL;
7494 comp_dir = NULL;
7495
7496 if (stub_comp_unit_die != NULL)
7497 {
7498 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
7499 DWO file. */
7500 if (! this_cu->is_debug_types)
7501 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
7502 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
7503 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
7504 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
7505 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
7506
7507 /* There should be a DW_AT_addr_base attribute here (if needed).
7508 We need the value before we can process DW_FORM_GNU_addr_index. */
7509 cu->addr_base = 0;
7510 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
7511 if (attr)
7512 cu->addr_base = DW_UNSND (attr);
7513
7514 /* There should be a DW_AT_ranges_base attribute here (if needed).
7515 We need the value before we can process DW_AT_ranges. */
7516 cu->ranges_base = 0;
7517 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
7518 if (attr)
7519 cu->ranges_base = DW_UNSND (attr);
7520 }
7521 else if (stub_comp_dir != NULL)
7522 {
7523 /* Reconstruct the comp_dir attribute to simplify the code below. */
7524 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
7525 comp_dir->name = DW_AT_comp_dir;
7526 comp_dir->form = DW_FORM_string;
7527 DW_STRING_IS_CANONICAL (comp_dir) = 0;
7528 DW_STRING (comp_dir) = stub_comp_dir;
7529 }
7530
7531 /* Set up for reading the DWO CU/TU. */
7532 cu->dwo_unit = dwo_unit;
7533 section = dwo_unit->section;
7534 dwarf2_read_section (objfile, section);
7535 abfd = get_section_bfd_owner (section);
7536 begin_info_ptr = info_ptr = (section->buffer
7537 + to_underlying (dwo_unit->sect_off));
7538 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
7539 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
7540
7541 if (this_cu->is_debug_types)
7542 {
7543 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
7544
7545 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7546 &cu->header, section,
7547 dwo_abbrev_section,
7548 info_ptr, rcuh_kind::TYPE);
7549 /* This is not an assert because it can be caused by bad debug info. */
7550 if (sig_type->signature != cu->header.signature)
7551 {
7552 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
7553 " TU at offset 0x%x [in module %s]"),
7554 hex_string (sig_type->signature),
7555 hex_string (cu->header.signature),
7556 to_underlying (dwo_unit->sect_off),
7557 bfd_get_filename (abfd));
7558 }
7559 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7560 /* For DWOs coming from DWP files, we don't know the CU length
7561 nor the type's offset in the TU until now. */
7562 dwo_unit->length = get_cu_length (&cu->header);
7563 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
7564
7565 /* Establish the type offset that can be used to lookup the type.
7566 For DWO files, we don't know it until now. */
7567 sig_type->type_offset_in_section
7568 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
7569 }
7570 else
7571 {
7572 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7573 &cu->header, section,
7574 dwo_abbrev_section,
7575 info_ptr, rcuh_kind::COMPILE);
7576 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7577 /* For DWOs coming from DWP files, we don't know the CU length
7578 until now. */
7579 dwo_unit->length = get_cu_length (&cu->header);
7580 }
7581
7582 /* Replace the CU's original abbrev table with the DWO's.
7583 Reminder: We can't read the abbrev table until we've read the header. */
7584 if (abbrev_table_provided)
7585 {
7586 /* Don't free the provided abbrev table, the caller of
7587 init_cutu_and_read_dies owns it. */
7588 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
7589 /* Ensure the DWO abbrev table gets freed. */
7590 make_cleanup (dwarf2_free_abbrev_table, cu);
7591 }
7592 else
7593 {
7594 dwarf2_free_abbrev_table (cu);
7595 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
7596 /* Leave any existing abbrev table cleanup as is. */
7597 }
7598
7599 /* Read in the die, but leave space to copy over the attributes
7600 from the stub. This has the benefit of simplifying the rest of
7601 the code - all the work to maintain the illusion of a single
7602 DW_TAG_{compile,type}_unit DIE is done here. */
7603 num_extra_attrs = ((stmt_list != NULL)
7604 + (low_pc != NULL)
7605 + (high_pc != NULL)
7606 + (ranges != NULL)
7607 + (comp_dir != NULL));
7608 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
7609 result_has_children, num_extra_attrs);
7610
7611 /* Copy over the attributes from the stub to the DIE we just read in. */
7612 comp_unit_die = *result_comp_unit_die;
7613 i = comp_unit_die->num_attrs;
7614 if (stmt_list != NULL)
7615 comp_unit_die->attrs[i++] = *stmt_list;
7616 if (low_pc != NULL)
7617 comp_unit_die->attrs[i++] = *low_pc;
7618 if (high_pc != NULL)
7619 comp_unit_die->attrs[i++] = *high_pc;
7620 if (ranges != NULL)
7621 comp_unit_die->attrs[i++] = *ranges;
7622 if (comp_dir != NULL)
7623 comp_unit_die->attrs[i++] = *comp_dir;
7624 comp_unit_die->num_attrs += num_extra_attrs;
7625
7626 if (dwarf_die_debug)
7627 {
7628 fprintf_unfiltered (gdb_stdlog,
7629 "Read die from %s@0x%x of %s:\n",
7630 get_section_name (section),
7631 (unsigned) (begin_info_ptr - section->buffer),
7632 bfd_get_filename (abfd));
7633 dump_die (comp_unit_die, dwarf_die_debug);
7634 }
7635
7636 /* Save the comp_dir attribute. If there is no DWP file then we'll read
7637 TUs by skipping the stub and going directly to the entry in the DWO file.
7638 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
7639 to get it via circuitous means. Blech. */
7640 if (comp_dir != NULL)
7641 result_reader->comp_dir = DW_STRING (comp_dir);
7642
7643 /* Skip dummy compilation units. */
7644 if (info_ptr >= begin_info_ptr + dwo_unit->length
7645 || peek_abbrev_code (abfd, info_ptr) == 0)
7646 return 0;
7647
7648 *result_info_ptr = info_ptr;
7649 return 1;
7650 }
7651
7652 /* Subroutine of init_cutu_and_read_dies to simplify it.
7653 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
7654 Returns NULL if the specified DWO unit cannot be found. */
7655
7656 static struct dwo_unit *
7657 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
7658 struct die_info *comp_unit_die)
7659 {
7660 struct dwarf2_cu *cu = this_cu->cu;
7661 ULONGEST signature;
7662 struct dwo_unit *dwo_unit;
7663 const char *comp_dir, *dwo_name;
7664
7665 gdb_assert (cu != NULL);
7666
7667 /* Yeah, we look dwo_name up again, but it simplifies the code. */
7668 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7669 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7670
7671 if (this_cu->is_debug_types)
7672 {
7673 struct signatured_type *sig_type;
7674
7675 /* Since this_cu is the first member of struct signatured_type,
7676 we can go from a pointer to one to a pointer to the other. */
7677 sig_type = (struct signatured_type *) this_cu;
7678 signature = sig_type->signature;
7679 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
7680 }
7681 else
7682 {
7683 struct attribute *attr;
7684
7685 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
7686 if (! attr)
7687 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
7688 " [in module %s]"),
7689 dwo_name, objfile_name (this_cu->dwarf2_per_objfile->objfile));
7690 signature = DW_UNSND (attr);
7691 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
7692 signature);
7693 }
7694
7695 return dwo_unit;
7696 }
7697
7698 /* Subroutine of init_cutu_and_read_dies to simplify it.
7699 See it for a description of the parameters.
7700 Read a TU directly from a DWO file, bypassing the stub.
7701
7702 Note: This function could be a little bit simpler if we shared cleanups
7703 with our caller, init_cutu_and_read_dies. That's generally a fragile thing
7704 to do, so we keep this function self-contained. Or we could move this
7705 into our caller, but it's complex enough already. */
7706
7707 static void
7708 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
7709 int use_existing_cu, int keep,
7710 die_reader_func_ftype *die_reader_func,
7711 void *data)
7712 {
7713 struct dwarf2_cu *cu;
7714 struct signatured_type *sig_type;
7715 struct cleanup *cleanups, *free_cu_cleanup = NULL;
7716 struct die_reader_specs reader;
7717 const gdb_byte *info_ptr;
7718 struct die_info *comp_unit_die;
7719 int has_children;
7720 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7721
7722 /* Verify we can do the following downcast, and that we have the
7723 data we need. */
7724 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
7725 sig_type = (struct signatured_type *) this_cu;
7726 gdb_assert (sig_type->dwo_unit != NULL);
7727
7728 cleanups = make_cleanup (null_cleanup, NULL);
7729
7730 if (use_existing_cu && this_cu->cu != NULL)
7731 {
7732 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
7733 cu = this_cu->cu;
7734 /* There's no need to do the rereading_dwo_cu handling that
7735 init_cutu_and_read_dies does since we don't read the stub. */
7736 }
7737 else
7738 {
7739 /* If !use_existing_cu, this_cu->cu must be NULL. */
7740 gdb_assert (this_cu->cu == NULL);
7741 cu = XNEW (struct dwarf2_cu);
7742 init_one_comp_unit (cu, this_cu);
7743 /* If an error occurs while loading, release our storage. */
7744 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
7745 }
7746
7747 /* A future optimization, if needed, would be to use an existing
7748 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
7749 could share abbrev tables. */
7750
7751 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
7752 0 /* abbrev_table_provided */,
7753 NULL /* stub_comp_unit_die */,
7754 sig_type->dwo_unit->dwo_file->comp_dir,
7755 &reader, &info_ptr,
7756 &comp_unit_die, &has_children) == 0)
7757 {
7758 /* Dummy die. */
7759 do_cleanups (cleanups);
7760 return;
7761 }
7762
7763 /* All the "real" work is done here. */
7764 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7765
7766 /* This duplicates the code in init_cutu_and_read_dies,
7767 but the alternative is making the latter more complex.
7768 This function is only for the special case of using DWO files directly:
7769 no point in overly complicating the general case just to handle this. */
7770 if (free_cu_cleanup != NULL)
7771 {
7772 if (keep)
7773 {
7774 /* We've successfully allocated this compilation unit. Let our
7775 caller clean it up when finished with it. */
7776 discard_cleanups (free_cu_cleanup);
7777
7778 /* We can only discard free_cu_cleanup and all subsequent cleanups.
7779 So we have to manually free the abbrev table. */
7780 dwarf2_free_abbrev_table (cu);
7781
7782 /* Link this CU into read_in_chain. */
7783 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7784 dwarf2_per_objfile->read_in_chain = this_cu;
7785 }
7786 else
7787 do_cleanups (free_cu_cleanup);
7788 }
7789
7790 do_cleanups (cleanups);
7791 }
7792
7793 /* Initialize a CU (or TU) and read its DIEs.
7794 If the CU defers to a DWO file, read the DWO file as well.
7795
7796 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
7797 Otherwise the table specified in the comp unit header is read in and used.
7798 This is an optimization for when we already have the abbrev table.
7799
7800 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
7801 Otherwise, a new CU is allocated with xmalloc.
7802
7803 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
7804 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
7805
7806 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7807 linker) then DIE_READER_FUNC will not get called. */
7808
7809 static void
7810 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
7811 struct abbrev_table *abbrev_table,
7812 int use_existing_cu, int keep,
7813 die_reader_func_ftype *die_reader_func,
7814 void *data)
7815 {
7816 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7817 struct objfile *objfile = dwarf2_per_objfile->objfile;
7818 struct dwarf2_section_info *section = this_cu->section;
7819 bfd *abfd = get_section_bfd_owner (section);
7820 struct dwarf2_cu *cu;
7821 const gdb_byte *begin_info_ptr, *info_ptr;
7822 struct die_reader_specs reader;
7823 struct die_info *comp_unit_die;
7824 int has_children;
7825 struct attribute *attr;
7826 struct cleanup *cleanups, *free_cu_cleanup = NULL;
7827 struct signatured_type *sig_type = NULL;
7828 struct dwarf2_section_info *abbrev_section;
7829 /* Non-zero if CU currently points to a DWO file and we need to
7830 reread it. When this happens we need to reread the skeleton die
7831 before we can reread the DWO file (this only applies to CUs, not TUs). */
7832 int rereading_dwo_cu = 0;
7833
7834 if (dwarf_die_debug)
7835 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
7836 this_cu->is_debug_types ? "type" : "comp",
7837 to_underlying (this_cu->sect_off));
7838
7839 if (use_existing_cu)
7840 gdb_assert (keep);
7841
7842 /* If we're reading a TU directly from a DWO file, including a virtual DWO
7843 file (instead of going through the stub), short-circuit all of this. */
7844 if (this_cu->reading_dwo_directly)
7845 {
7846 /* Narrow down the scope of possibilities to have to understand. */
7847 gdb_assert (this_cu->is_debug_types);
7848 gdb_assert (abbrev_table == NULL);
7849 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
7850 die_reader_func, data);
7851 return;
7852 }
7853
7854 cleanups = make_cleanup (null_cleanup, NULL);
7855
7856 /* This is cheap if the section is already read in. */
7857 dwarf2_read_section (objfile, section);
7858
7859 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7860
7861 abbrev_section = get_abbrev_section_for_cu (this_cu);
7862
7863 if (use_existing_cu && this_cu->cu != NULL)
7864 {
7865 cu = this_cu->cu;
7866 /* If this CU is from a DWO file we need to start over, we need to
7867 refetch the attributes from the skeleton CU.
7868 This could be optimized by retrieving those attributes from when we
7869 were here the first time: the previous comp_unit_die was stored in
7870 comp_unit_obstack. But there's no data yet that we need this
7871 optimization. */
7872 if (cu->dwo_unit != NULL)
7873 rereading_dwo_cu = 1;
7874 }
7875 else
7876 {
7877 /* If !use_existing_cu, this_cu->cu must be NULL. */
7878 gdb_assert (this_cu->cu == NULL);
7879 cu = XNEW (struct dwarf2_cu);
7880 init_one_comp_unit (cu, this_cu);
7881 /* If an error occurs while loading, release our storage. */
7882 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
7883 }
7884
7885 /* Get the header. */
7886 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
7887 {
7888 /* We already have the header, there's no need to read it in again. */
7889 info_ptr += to_underlying (cu->header.first_die_cu_offset);
7890 }
7891 else
7892 {
7893 if (this_cu->is_debug_types)
7894 {
7895 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7896 &cu->header, section,
7897 abbrev_section, info_ptr,
7898 rcuh_kind::TYPE);
7899
7900 /* Since per_cu is the first member of struct signatured_type,
7901 we can go from a pointer to one to a pointer to the other. */
7902 sig_type = (struct signatured_type *) this_cu;
7903 gdb_assert (sig_type->signature == cu->header.signature);
7904 gdb_assert (sig_type->type_offset_in_tu
7905 == cu->header.type_cu_offset_in_tu);
7906 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7907
7908 /* LENGTH has not been set yet for type units if we're
7909 using .gdb_index. */
7910 this_cu->length = get_cu_length (&cu->header);
7911
7912 /* Establish the type offset that can be used to lookup the type. */
7913 sig_type->type_offset_in_section =
7914 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
7915
7916 this_cu->dwarf_version = cu->header.version;
7917 }
7918 else
7919 {
7920 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7921 &cu->header, section,
7922 abbrev_section,
7923 info_ptr,
7924 rcuh_kind::COMPILE);
7925
7926 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7927 gdb_assert (this_cu->length == get_cu_length (&cu->header));
7928 this_cu->dwarf_version = cu->header.version;
7929 }
7930 }
7931
7932 /* Skip dummy compilation units. */
7933 if (info_ptr >= begin_info_ptr + this_cu->length
7934 || peek_abbrev_code (abfd, info_ptr) == 0)
7935 {
7936 do_cleanups (cleanups);
7937 return;
7938 }
7939
7940 /* If we don't have them yet, read the abbrevs for this compilation unit.
7941 And if we need to read them now, make sure they're freed when we're
7942 done. Note that it's important that if the CU had an abbrev table
7943 on entry we don't free it when we're done: Somewhere up the call stack
7944 it may be in use. */
7945 if (abbrev_table != NULL)
7946 {
7947 gdb_assert (cu->abbrev_table == NULL);
7948 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
7949 cu->abbrev_table = abbrev_table;
7950 }
7951 else if (cu->abbrev_table == NULL)
7952 {
7953 dwarf2_read_abbrevs (cu, abbrev_section);
7954 make_cleanup (dwarf2_free_abbrev_table, cu);
7955 }
7956 else if (rereading_dwo_cu)
7957 {
7958 dwarf2_free_abbrev_table (cu);
7959 dwarf2_read_abbrevs (cu, abbrev_section);
7960 }
7961
7962 /* Read the top level CU/TU die. */
7963 init_cu_die_reader (&reader, cu, section, NULL);
7964 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7965
7966 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
7967 from the DWO file.
7968 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
7969 DWO CU, that this test will fail (the attribute will not be present). */
7970 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7971 if (attr)
7972 {
7973 struct dwo_unit *dwo_unit;
7974 struct die_info *dwo_comp_unit_die;
7975
7976 if (has_children)
7977 {
7978 complaint (&symfile_complaints,
7979 _("compilation unit with DW_AT_GNU_dwo_name"
7980 " has children (offset 0x%x) [in module %s]"),
7981 to_underlying (this_cu->sect_off), bfd_get_filename (abfd));
7982 }
7983 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
7984 if (dwo_unit != NULL)
7985 {
7986 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
7987 abbrev_table != NULL,
7988 comp_unit_die, NULL,
7989 &reader, &info_ptr,
7990 &dwo_comp_unit_die, &has_children) == 0)
7991 {
7992 /* Dummy die. */
7993 do_cleanups (cleanups);
7994 return;
7995 }
7996 comp_unit_die = dwo_comp_unit_die;
7997 }
7998 else
7999 {
8000 /* Yikes, we couldn't find the rest of the DIE, we only have
8001 the stub. A complaint has already been logged. There's
8002 not much more we can do except pass on the stub DIE to
8003 die_reader_func. We don't want to throw an error on bad
8004 debug info. */
8005 }
8006 }
8007
8008 /* All of the above is setup for this call. Yikes. */
8009 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
8010
8011 /* Done, clean up. */
8012 if (free_cu_cleanup != NULL)
8013 {
8014 if (keep)
8015 {
8016 /* We've successfully allocated this compilation unit. Let our
8017 caller clean it up when finished with it. */
8018 discard_cleanups (free_cu_cleanup);
8019
8020 /* We can only discard free_cu_cleanup and all subsequent cleanups.
8021 So we have to manually free the abbrev table. */
8022 dwarf2_free_abbrev_table (cu);
8023
8024 /* Link this CU into read_in_chain. */
8025 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
8026 dwarf2_per_objfile->read_in_chain = this_cu;
8027 }
8028 else
8029 do_cleanups (free_cu_cleanup);
8030 }
8031
8032 do_cleanups (cleanups);
8033 }
8034
8035 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
8036 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
8037 to have already done the lookup to find the DWO file).
8038
8039 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
8040 THIS_CU->is_debug_types, but nothing else.
8041
8042 We fill in THIS_CU->length.
8043
8044 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
8045 linker) then DIE_READER_FUNC will not get called.
8046
8047 THIS_CU->cu is always freed when done.
8048 This is done in order to not leave THIS_CU->cu in a state where we have
8049 to care whether it refers to the "main" CU or the DWO CU. */
8050
8051 static void
8052 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
8053 struct dwo_file *dwo_file,
8054 die_reader_func_ftype *die_reader_func,
8055 void *data)
8056 {
8057 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
8058 struct objfile *objfile = dwarf2_per_objfile->objfile;
8059 struct dwarf2_section_info *section = this_cu->section;
8060 bfd *abfd = get_section_bfd_owner (section);
8061 struct dwarf2_section_info *abbrev_section;
8062 struct dwarf2_cu cu;
8063 const gdb_byte *begin_info_ptr, *info_ptr;
8064 struct die_reader_specs reader;
8065 struct cleanup *cleanups;
8066 struct die_info *comp_unit_die;
8067 int has_children;
8068
8069 if (dwarf_die_debug)
8070 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
8071 this_cu->is_debug_types ? "type" : "comp",
8072 to_underlying (this_cu->sect_off));
8073
8074 gdb_assert (this_cu->cu == NULL);
8075
8076 abbrev_section = (dwo_file != NULL
8077 ? &dwo_file->sections.abbrev
8078 : get_abbrev_section_for_cu (this_cu));
8079
8080 /* This is cheap if the section is already read in. */
8081 dwarf2_read_section (objfile, section);
8082
8083 init_one_comp_unit (&cu, this_cu);
8084
8085 cleanups = make_cleanup (free_stack_comp_unit, &cu);
8086
8087 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
8088 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
8089 &cu.header, section,
8090 abbrev_section, info_ptr,
8091 (this_cu->is_debug_types
8092 ? rcuh_kind::TYPE
8093 : rcuh_kind::COMPILE));
8094
8095 this_cu->length = get_cu_length (&cu.header);
8096
8097 /* Skip dummy compilation units. */
8098 if (info_ptr >= begin_info_ptr + this_cu->length
8099 || peek_abbrev_code (abfd, info_ptr) == 0)
8100 {
8101 do_cleanups (cleanups);
8102 return;
8103 }
8104
8105 dwarf2_read_abbrevs (&cu, abbrev_section);
8106 make_cleanup (dwarf2_free_abbrev_table, &cu);
8107
8108 init_cu_die_reader (&reader, &cu, section, dwo_file);
8109 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
8110
8111 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
8112
8113 do_cleanups (cleanups);
8114 }
8115
8116 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
8117 does not lookup the specified DWO file.
8118 This cannot be used to read DWO files.
8119
8120 THIS_CU->cu is always freed when done.
8121 This is done in order to not leave THIS_CU->cu in a state where we have
8122 to care whether it refers to the "main" CU or the DWO CU.
8123 We can revisit this if the data shows there's a performance issue. */
8124
8125 static void
8126 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
8127 die_reader_func_ftype *die_reader_func,
8128 void *data)
8129 {
8130 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
8131 }
8132 \f
8133 /* Type Unit Groups.
8134
8135 Type Unit Groups are a way to collapse the set of all TUs (type units) into
8136 a more manageable set. The grouping is done by DW_AT_stmt_list entry
8137 so that all types coming from the same compilation (.o file) are grouped
8138 together. A future step could be to put the types in the same symtab as
8139 the CU the types ultimately came from. */
8140
8141 static hashval_t
8142 hash_type_unit_group (const void *item)
8143 {
8144 const struct type_unit_group *tu_group
8145 = (const struct type_unit_group *) item;
8146
8147 return hash_stmt_list_entry (&tu_group->hash);
8148 }
8149
8150 static int
8151 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
8152 {
8153 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
8154 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
8155
8156 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
8157 }
8158
8159 /* Allocate a hash table for type unit groups. */
8160
8161 static htab_t
8162 allocate_type_unit_groups_table (struct objfile *objfile)
8163 {
8164 return htab_create_alloc_ex (3,
8165 hash_type_unit_group,
8166 eq_type_unit_group,
8167 NULL,
8168 &objfile->objfile_obstack,
8169 hashtab_obstack_allocate,
8170 dummy_obstack_deallocate);
8171 }
8172
8173 /* Type units that don't have DW_AT_stmt_list are grouped into their own
8174 partial symtabs. We combine several TUs per psymtab to not let the size
8175 of any one psymtab grow too big. */
8176 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
8177 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
8178
8179 /* Helper routine for get_type_unit_group.
8180 Create the type_unit_group object used to hold one or more TUs. */
8181
8182 static struct type_unit_group *
8183 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
8184 {
8185 struct dwarf2_per_objfile *dwarf2_per_objfile
8186 = cu->per_cu->dwarf2_per_objfile;
8187 struct objfile *objfile = dwarf2_per_objfile->objfile;
8188 struct dwarf2_per_cu_data *per_cu;
8189 struct type_unit_group *tu_group;
8190
8191 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
8192 struct type_unit_group);
8193 per_cu = &tu_group->per_cu;
8194 per_cu->dwarf2_per_objfile = dwarf2_per_objfile;
8195
8196 if (dwarf2_per_objfile->using_index)
8197 {
8198 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
8199 struct dwarf2_per_cu_quick_data);
8200 }
8201 else
8202 {
8203 unsigned int line_offset = to_underlying (line_offset_struct);
8204 struct partial_symtab *pst;
8205 char *name;
8206
8207 /* Give the symtab a useful name for debug purposes. */
8208 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
8209 name = xstrprintf ("<type_units_%d>",
8210 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
8211 else
8212 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
8213
8214 pst = create_partial_symtab (per_cu, name);
8215 pst->anonymous = 1;
8216
8217 xfree (name);
8218 }
8219
8220 tu_group->hash.dwo_unit = cu->dwo_unit;
8221 tu_group->hash.line_sect_off = line_offset_struct;
8222
8223 return tu_group;
8224 }
8225
8226 /* Look up the type_unit_group for type unit CU, and create it if necessary.
8227 STMT_LIST is a DW_AT_stmt_list attribute. */
8228
8229 static struct type_unit_group *
8230 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
8231 {
8232 struct dwarf2_per_objfile *dwarf2_per_objfile
8233 = cu->per_cu->dwarf2_per_objfile;
8234 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8235 struct type_unit_group *tu_group;
8236 void **slot;
8237 unsigned int line_offset;
8238 struct type_unit_group type_unit_group_for_lookup;
8239
8240 if (dwarf2_per_objfile->type_unit_groups == NULL)
8241 {
8242 dwarf2_per_objfile->type_unit_groups =
8243 allocate_type_unit_groups_table (dwarf2_per_objfile->objfile);
8244 }
8245
8246 /* Do we need to create a new group, or can we use an existing one? */
8247
8248 if (stmt_list)
8249 {
8250 line_offset = DW_UNSND (stmt_list);
8251 ++tu_stats->nr_symtab_sharers;
8252 }
8253 else
8254 {
8255 /* Ugh, no stmt_list. Rare, but we have to handle it.
8256 We can do various things here like create one group per TU or
8257 spread them over multiple groups to split up the expansion work.
8258 To avoid worst case scenarios (too many groups or too large groups)
8259 we, umm, group them in bunches. */
8260 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
8261 | (tu_stats->nr_stmt_less_type_units
8262 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
8263 ++tu_stats->nr_stmt_less_type_units;
8264 }
8265
8266 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
8267 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
8268 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
8269 &type_unit_group_for_lookup, INSERT);
8270 if (*slot != NULL)
8271 {
8272 tu_group = (struct type_unit_group *) *slot;
8273 gdb_assert (tu_group != NULL);
8274 }
8275 else
8276 {
8277 sect_offset line_offset_struct = (sect_offset) line_offset;
8278 tu_group = create_type_unit_group (cu, line_offset_struct);
8279 *slot = tu_group;
8280 ++tu_stats->nr_symtabs;
8281 }
8282
8283 return tu_group;
8284 }
8285 \f
8286 /* Partial symbol tables. */
8287
8288 /* Create a psymtab named NAME and assign it to PER_CU.
8289
8290 The caller must fill in the following details:
8291 dirname, textlow, texthigh. */
8292
8293 static struct partial_symtab *
8294 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
8295 {
8296 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
8297 struct partial_symtab *pst;
8298
8299 pst = start_psymtab_common (objfile, name, 0,
8300 objfile->global_psymbols,
8301 objfile->static_psymbols);
8302
8303 pst->psymtabs_addrmap_supported = 1;
8304
8305 /* This is the glue that links PST into GDB's symbol API. */
8306 pst->read_symtab_private = per_cu;
8307 pst->read_symtab = dwarf2_read_symtab;
8308 per_cu->v.psymtab = pst;
8309
8310 return pst;
8311 }
8312
8313 /* The DATA object passed to process_psymtab_comp_unit_reader has this
8314 type. */
8315
8316 struct process_psymtab_comp_unit_data
8317 {
8318 /* True if we are reading a DW_TAG_partial_unit. */
8319
8320 int want_partial_unit;
8321
8322 /* The "pretend" language that is used if the CU doesn't declare a
8323 language. */
8324
8325 enum language pretend_language;
8326 };
8327
8328 /* die_reader_func for process_psymtab_comp_unit. */
8329
8330 static void
8331 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
8332 const gdb_byte *info_ptr,
8333 struct die_info *comp_unit_die,
8334 int has_children,
8335 void *data)
8336 {
8337 struct dwarf2_cu *cu = reader->cu;
8338 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
8339 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8340 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8341 CORE_ADDR baseaddr;
8342 CORE_ADDR best_lowpc = 0, best_highpc = 0;
8343 struct partial_symtab *pst;
8344 enum pc_bounds_kind cu_bounds_kind;
8345 const char *filename;
8346 struct process_psymtab_comp_unit_data *info
8347 = (struct process_psymtab_comp_unit_data *) data;
8348
8349 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
8350 return;
8351
8352 gdb_assert (! per_cu->is_debug_types);
8353
8354 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
8355
8356 cu->list_in_scope = &file_symbols;
8357
8358 /* Allocate a new partial symbol table structure. */
8359 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
8360 if (filename == NULL)
8361 filename = "";
8362
8363 pst = create_partial_symtab (per_cu, filename);
8364
8365 /* This must be done before calling dwarf2_build_include_psymtabs. */
8366 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
8367
8368 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8369
8370 dwarf2_find_base_address (comp_unit_die, cu);
8371
8372 /* Possibly set the default values of LOWPC and HIGHPC from
8373 `DW_AT_ranges'. */
8374 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
8375 &best_highpc, cu, pst);
8376 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
8377 /* Store the contiguous range if it is not empty; it can be empty for
8378 CUs with no code. */
8379 addrmap_set_empty (objfile->psymtabs_addrmap,
8380 gdbarch_adjust_dwarf2_addr (gdbarch,
8381 best_lowpc + baseaddr),
8382 gdbarch_adjust_dwarf2_addr (gdbarch,
8383 best_highpc + baseaddr) - 1,
8384 pst);
8385
8386 /* Check if comp unit has_children.
8387 If so, read the rest of the partial symbols from this comp unit.
8388 If not, there's no more debug_info for this comp unit. */
8389 if (has_children)
8390 {
8391 struct partial_die_info *first_die;
8392 CORE_ADDR lowpc, highpc;
8393
8394 lowpc = ((CORE_ADDR) -1);
8395 highpc = ((CORE_ADDR) 0);
8396
8397 first_die = load_partial_dies (reader, info_ptr, 1);
8398
8399 scan_partial_symbols (first_die, &lowpc, &highpc,
8400 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
8401
8402 /* If we didn't find a lowpc, set it to highpc to avoid
8403 complaints from `maint check'. */
8404 if (lowpc == ((CORE_ADDR) -1))
8405 lowpc = highpc;
8406
8407 /* If the compilation unit didn't have an explicit address range,
8408 then use the information extracted from its child dies. */
8409 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
8410 {
8411 best_lowpc = lowpc;
8412 best_highpc = highpc;
8413 }
8414 }
8415 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
8416 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
8417
8418 end_psymtab_common (objfile, pst);
8419
8420 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
8421 {
8422 int i;
8423 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8424 struct dwarf2_per_cu_data *iter;
8425
8426 /* Fill in 'dependencies' here; we fill in 'users' in a
8427 post-pass. */
8428 pst->number_of_dependencies = len;
8429 pst->dependencies =
8430 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
8431 for (i = 0;
8432 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8433 i, iter);
8434 ++i)
8435 pst->dependencies[i] = iter->v.psymtab;
8436
8437 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8438 }
8439
8440 /* Get the list of files included in the current compilation unit,
8441 and build a psymtab for each of them. */
8442 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
8443
8444 if (dwarf_read_debug)
8445 {
8446 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8447
8448 fprintf_unfiltered (gdb_stdlog,
8449 "Psymtab for %s unit @0x%x: %s - %s"
8450 ", %d global, %d static syms\n",
8451 per_cu->is_debug_types ? "type" : "comp",
8452 to_underlying (per_cu->sect_off),
8453 paddress (gdbarch, pst->textlow),
8454 paddress (gdbarch, pst->texthigh),
8455 pst->n_global_syms, pst->n_static_syms);
8456 }
8457 }
8458
8459 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8460 Process compilation unit THIS_CU for a psymtab. */
8461
8462 static void
8463 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
8464 int want_partial_unit,
8465 enum language pretend_language)
8466 {
8467 /* If this compilation unit was already read in, free the
8468 cached copy in order to read it in again. This is
8469 necessary because we skipped some symbols when we first
8470 read in the compilation unit (see load_partial_dies).
8471 This problem could be avoided, but the benefit is unclear. */
8472 if (this_cu->cu != NULL)
8473 free_one_cached_comp_unit (this_cu);
8474
8475 if (this_cu->is_debug_types)
8476 init_cutu_and_read_dies (this_cu, NULL, 0, 0, build_type_psymtabs_reader,
8477 NULL);
8478 else
8479 {
8480 process_psymtab_comp_unit_data info;
8481 info.want_partial_unit = want_partial_unit;
8482 info.pretend_language = pretend_language;
8483 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
8484 process_psymtab_comp_unit_reader, &info);
8485 }
8486
8487 /* Age out any secondary CUs. */
8488 age_cached_comp_units (this_cu->dwarf2_per_objfile);
8489 }
8490
8491 /* Reader function for build_type_psymtabs. */
8492
8493 static void
8494 build_type_psymtabs_reader (const struct die_reader_specs *reader,
8495 const gdb_byte *info_ptr,
8496 struct die_info *type_unit_die,
8497 int has_children,
8498 void *data)
8499 {
8500 struct dwarf2_per_objfile *dwarf2_per_objfile
8501 = reader->cu->per_cu->dwarf2_per_objfile;
8502 struct objfile *objfile = dwarf2_per_objfile->objfile;
8503 struct dwarf2_cu *cu = reader->cu;
8504 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8505 struct signatured_type *sig_type;
8506 struct type_unit_group *tu_group;
8507 struct attribute *attr;
8508 struct partial_die_info *first_die;
8509 CORE_ADDR lowpc, highpc;
8510 struct partial_symtab *pst;
8511
8512 gdb_assert (data == NULL);
8513 gdb_assert (per_cu->is_debug_types);
8514 sig_type = (struct signatured_type *) per_cu;
8515
8516 if (! has_children)
8517 return;
8518
8519 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
8520 tu_group = get_type_unit_group (cu, attr);
8521
8522 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
8523
8524 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
8525 cu->list_in_scope = &file_symbols;
8526 pst = create_partial_symtab (per_cu, "");
8527 pst->anonymous = 1;
8528
8529 first_die = load_partial_dies (reader, info_ptr, 1);
8530
8531 lowpc = (CORE_ADDR) -1;
8532 highpc = (CORE_ADDR) 0;
8533 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
8534
8535 end_psymtab_common (objfile, pst);
8536 }
8537
8538 /* Struct used to sort TUs by their abbreviation table offset. */
8539
8540 struct tu_abbrev_offset
8541 {
8542 struct signatured_type *sig_type;
8543 sect_offset abbrev_offset;
8544 };
8545
8546 /* Helper routine for build_type_psymtabs_1, passed to qsort. */
8547
8548 static int
8549 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
8550 {
8551 const struct tu_abbrev_offset * const *a
8552 = (const struct tu_abbrev_offset * const*) ap;
8553 const struct tu_abbrev_offset * const *b
8554 = (const struct tu_abbrev_offset * const*) bp;
8555 sect_offset aoff = (*a)->abbrev_offset;
8556 sect_offset boff = (*b)->abbrev_offset;
8557
8558 return (aoff > boff) - (aoff < boff);
8559 }
8560
8561 /* Efficiently read all the type units.
8562 This does the bulk of the work for build_type_psymtabs.
8563
8564 The efficiency is because we sort TUs by the abbrev table they use and
8565 only read each abbrev table once. In one program there are 200K TUs
8566 sharing 8K abbrev tables.
8567
8568 The main purpose of this function is to support building the
8569 dwarf2_per_objfile->type_unit_groups table.
8570 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
8571 can collapse the search space by grouping them by stmt_list.
8572 The savings can be significant, in the same program from above the 200K TUs
8573 share 8K stmt_list tables.
8574
8575 FUNC is expected to call get_type_unit_group, which will create the
8576 struct type_unit_group if necessary and add it to
8577 dwarf2_per_objfile->type_unit_groups. */
8578
8579 static void
8580 build_type_psymtabs_1 (struct dwarf2_per_objfile *dwarf2_per_objfile)
8581 {
8582 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8583 struct cleanup *cleanups;
8584 struct abbrev_table *abbrev_table;
8585 sect_offset abbrev_offset;
8586 struct tu_abbrev_offset *sorted_by_abbrev;
8587 int i;
8588
8589 /* It's up to the caller to not call us multiple times. */
8590 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
8591
8592 if (dwarf2_per_objfile->n_type_units == 0)
8593 return;
8594
8595 /* TUs typically share abbrev tables, and there can be way more TUs than
8596 abbrev tables. Sort by abbrev table to reduce the number of times we
8597 read each abbrev table in.
8598 Alternatives are to punt or to maintain a cache of abbrev tables.
8599 This is simpler and efficient enough for now.
8600
8601 Later we group TUs by their DW_AT_stmt_list value (as this defines the
8602 symtab to use). Typically TUs with the same abbrev offset have the same
8603 stmt_list value too so in practice this should work well.
8604
8605 The basic algorithm here is:
8606
8607 sort TUs by abbrev table
8608 for each TU with same abbrev table:
8609 read abbrev table if first user
8610 read TU top level DIE
8611 [IWBN if DWO skeletons had DW_AT_stmt_list]
8612 call FUNC */
8613
8614 if (dwarf_read_debug)
8615 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
8616
8617 /* Sort in a separate table to maintain the order of all_type_units
8618 for .gdb_index: TU indices directly index all_type_units. */
8619 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
8620 dwarf2_per_objfile->n_type_units);
8621 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
8622 {
8623 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
8624
8625 sorted_by_abbrev[i].sig_type = sig_type;
8626 sorted_by_abbrev[i].abbrev_offset =
8627 read_abbrev_offset (dwarf2_per_objfile,
8628 sig_type->per_cu.section,
8629 sig_type->per_cu.sect_off);
8630 }
8631 cleanups = make_cleanup (xfree, sorted_by_abbrev);
8632 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
8633 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
8634
8635 abbrev_offset = (sect_offset) ~(unsigned) 0;
8636 abbrev_table = NULL;
8637 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
8638
8639 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
8640 {
8641 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
8642
8643 /* Switch to the next abbrev table if necessary. */
8644 if (abbrev_table == NULL
8645 || tu->abbrev_offset != abbrev_offset)
8646 {
8647 if (abbrev_table != NULL)
8648 {
8649 abbrev_table_free (abbrev_table);
8650 /* Reset to NULL in case abbrev_table_read_table throws
8651 an error: abbrev_table_free_cleanup will get called. */
8652 abbrev_table = NULL;
8653 }
8654 abbrev_offset = tu->abbrev_offset;
8655 abbrev_table =
8656 abbrev_table_read_table (dwarf2_per_objfile,
8657 &dwarf2_per_objfile->abbrev,
8658 abbrev_offset);
8659 ++tu_stats->nr_uniq_abbrev_tables;
8660 }
8661
8662 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
8663 build_type_psymtabs_reader, NULL);
8664 }
8665
8666 do_cleanups (cleanups);
8667 }
8668
8669 /* Print collected type unit statistics. */
8670
8671 static void
8672 print_tu_stats (struct dwarf2_per_objfile *dwarf2_per_objfile)
8673 {
8674 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8675
8676 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
8677 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
8678 dwarf2_per_objfile->n_type_units);
8679 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
8680 tu_stats->nr_uniq_abbrev_tables);
8681 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
8682 tu_stats->nr_symtabs);
8683 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
8684 tu_stats->nr_symtab_sharers);
8685 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
8686 tu_stats->nr_stmt_less_type_units);
8687 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
8688 tu_stats->nr_all_type_units_reallocs);
8689 }
8690
8691 /* Traversal function for build_type_psymtabs. */
8692
8693 static int
8694 build_type_psymtab_dependencies (void **slot, void *info)
8695 {
8696 struct dwarf2_per_objfile *dwarf2_per_objfile
8697 = (struct dwarf2_per_objfile *) info;
8698 struct objfile *objfile = dwarf2_per_objfile->objfile;
8699 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
8700 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
8701 struct partial_symtab *pst = per_cu->v.psymtab;
8702 int len = VEC_length (sig_type_ptr, tu_group->tus);
8703 struct signatured_type *iter;
8704 int i;
8705
8706 gdb_assert (len > 0);
8707 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
8708
8709 pst->number_of_dependencies = len;
8710 pst->dependencies =
8711 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
8712 for (i = 0;
8713 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
8714 ++i)
8715 {
8716 gdb_assert (iter->per_cu.is_debug_types);
8717 pst->dependencies[i] = iter->per_cu.v.psymtab;
8718 iter->type_unit_group = tu_group;
8719 }
8720
8721 VEC_free (sig_type_ptr, tu_group->tus);
8722
8723 return 1;
8724 }
8725
8726 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8727 Build partial symbol tables for the .debug_types comp-units. */
8728
8729 static void
8730 build_type_psymtabs (struct dwarf2_per_objfile *dwarf2_per_objfile)
8731 {
8732 if (! create_all_type_units (dwarf2_per_objfile))
8733 return;
8734
8735 build_type_psymtabs_1 (dwarf2_per_objfile);
8736 }
8737
8738 /* Traversal function for process_skeletonless_type_unit.
8739 Read a TU in a DWO file and build partial symbols for it. */
8740
8741 static int
8742 process_skeletonless_type_unit (void **slot, void *info)
8743 {
8744 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
8745 struct dwarf2_per_objfile *dwarf2_per_objfile
8746 = (struct dwarf2_per_objfile *) info;
8747 struct signatured_type find_entry, *entry;
8748
8749 /* If this TU doesn't exist in the global table, add it and read it in. */
8750
8751 if (dwarf2_per_objfile->signatured_types == NULL)
8752 {
8753 dwarf2_per_objfile->signatured_types
8754 = allocate_signatured_type_table (dwarf2_per_objfile->objfile);
8755 }
8756
8757 find_entry.signature = dwo_unit->signature;
8758 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
8759 INSERT);
8760 /* If we've already seen this type there's nothing to do. What's happening
8761 is we're doing our own version of comdat-folding here. */
8762 if (*slot != NULL)
8763 return 1;
8764
8765 /* This does the job that create_all_type_units would have done for
8766 this TU. */
8767 entry = add_type_unit (dwarf2_per_objfile, dwo_unit->signature, slot);
8768 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, entry, dwo_unit);
8769 *slot = entry;
8770
8771 /* This does the job that build_type_psymtabs_1 would have done. */
8772 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
8773 build_type_psymtabs_reader, NULL);
8774
8775 return 1;
8776 }
8777
8778 /* Traversal function for process_skeletonless_type_units. */
8779
8780 static int
8781 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
8782 {
8783 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
8784
8785 if (dwo_file->tus != NULL)
8786 {
8787 htab_traverse_noresize (dwo_file->tus,
8788 process_skeletonless_type_unit, info);
8789 }
8790
8791 return 1;
8792 }
8793
8794 /* Scan all TUs of DWO files, verifying we've processed them.
8795 This is needed in case a TU was emitted without its skeleton.
8796 Note: This can't be done until we know what all the DWO files are. */
8797
8798 static void
8799 process_skeletonless_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8800 {
8801 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
8802 if (get_dwp_file (dwarf2_per_objfile) == NULL
8803 && dwarf2_per_objfile->dwo_files != NULL)
8804 {
8805 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
8806 process_dwo_file_for_skeletonless_type_units,
8807 dwarf2_per_objfile);
8808 }
8809 }
8810
8811 /* Compute the 'user' field for each psymtab in DWARF2_PER_OBJFILE. */
8812
8813 static void
8814 set_partial_user (struct dwarf2_per_objfile *dwarf2_per_objfile)
8815 {
8816 int i;
8817
8818 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
8819 {
8820 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (dwarf2_per_objfile, i);
8821 struct partial_symtab *pst = per_cu->v.psymtab;
8822 int j;
8823
8824 if (pst == NULL)
8825 continue;
8826
8827 for (j = 0; j < pst->number_of_dependencies; ++j)
8828 {
8829 /* Set the 'user' field only if it is not already set. */
8830 if (pst->dependencies[j]->user == NULL)
8831 pst->dependencies[j]->user = pst;
8832 }
8833 }
8834 }
8835
8836 /* Build the partial symbol table by doing a quick pass through the
8837 .debug_info and .debug_abbrev sections. */
8838
8839 static void
8840 dwarf2_build_psymtabs_hard (struct dwarf2_per_objfile *dwarf2_per_objfile)
8841 {
8842 struct cleanup *back_to;
8843 int i;
8844 struct objfile *objfile = dwarf2_per_objfile->objfile;
8845
8846 if (dwarf_read_debug)
8847 {
8848 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
8849 objfile_name (objfile));
8850 }
8851
8852 dwarf2_per_objfile->reading_partial_symbols = 1;
8853
8854 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
8855
8856 /* Any cached compilation units will be linked by the per-objfile
8857 read_in_chain. Make sure to free them when we're done. */
8858 back_to = make_cleanup (free_cached_comp_units, dwarf2_per_objfile);
8859
8860 build_type_psymtabs (dwarf2_per_objfile);
8861
8862 create_all_comp_units (dwarf2_per_objfile);
8863
8864 /* Create a temporary address map on a temporary obstack. We later
8865 copy this to the final obstack. */
8866 auto_obstack temp_obstack;
8867
8868 scoped_restore save_psymtabs_addrmap
8869 = make_scoped_restore (&objfile->psymtabs_addrmap,
8870 addrmap_create_mutable (&temp_obstack));
8871
8872 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
8873 {
8874 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (dwarf2_per_objfile, i);
8875
8876 process_psymtab_comp_unit (per_cu, 0, language_minimal);
8877 }
8878
8879 /* This has to wait until we read the CUs, we need the list of DWOs. */
8880 process_skeletonless_type_units (dwarf2_per_objfile);
8881
8882 /* Now that all TUs have been processed we can fill in the dependencies. */
8883 if (dwarf2_per_objfile->type_unit_groups != NULL)
8884 {
8885 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
8886 build_type_psymtab_dependencies, dwarf2_per_objfile);
8887 }
8888
8889 if (dwarf_read_debug)
8890 print_tu_stats (dwarf2_per_objfile);
8891
8892 set_partial_user (dwarf2_per_objfile);
8893
8894 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
8895 &objfile->objfile_obstack);
8896 /* At this point we want to keep the address map. */
8897 save_psymtabs_addrmap.release ();
8898
8899 do_cleanups (back_to);
8900
8901 if (dwarf_read_debug)
8902 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
8903 objfile_name (objfile));
8904 }
8905
8906 /* die_reader_func for load_partial_comp_unit. */
8907
8908 static void
8909 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
8910 const gdb_byte *info_ptr,
8911 struct die_info *comp_unit_die,
8912 int has_children,
8913 void *data)
8914 {
8915 struct dwarf2_cu *cu = reader->cu;
8916
8917 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
8918
8919 /* Check if comp unit has_children.
8920 If so, read the rest of the partial symbols from this comp unit.
8921 If not, there's no more debug_info for this comp unit. */
8922 if (has_children)
8923 load_partial_dies (reader, info_ptr, 0);
8924 }
8925
8926 /* Load the partial DIEs for a secondary CU into memory.
8927 This is also used when rereading a primary CU with load_all_dies. */
8928
8929 static void
8930 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
8931 {
8932 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
8933 load_partial_comp_unit_reader, NULL);
8934 }
8935
8936 static void
8937 read_comp_units_from_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
8938 struct dwarf2_section_info *section,
8939 struct dwarf2_section_info *abbrev_section,
8940 unsigned int is_dwz,
8941 int *n_allocated,
8942 int *n_comp_units,
8943 struct dwarf2_per_cu_data ***all_comp_units)
8944 {
8945 const gdb_byte *info_ptr;
8946 struct objfile *objfile = dwarf2_per_objfile->objfile;
8947
8948 if (dwarf_read_debug)
8949 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
8950 get_section_name (section),
8951 get_section_file_name (section));
8952
8953 dwarf2_read_section (objfile, section);
8954
8955 info_ptr = section->buffer;
8956
8957 while (info_ptr < section->buffer + section->size)
8958 {
8959 struct dwarf2_per_cu_data *this_cu;
8960
8961 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
8962
8963 comp_unit_head cu_header;
8964 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
8965 abbrev_section, info_ptr,
8966 rcuh_kind::COMPILE);
8967
8968 /* Save the compilation unit for later lookup. */
8969 if (cu_header.unit_type != DW_UT_type)
8970 {
8971 this_cu = XOBNEW (&objfile->objfile_obstack,
8972 struct dwarf2_per_cu_data);
8973 memset (this_cu, 0, sizeof (*this_cu));
8974 }
8975 else
8976 {
8977 auto sig_type = XOBNEW (&objfile->objfile_obstack,
8978 struct signatured_type);
8979 memset (sig_type, 0, sizeof (*sig_type));
8980 sig_type->signature = cu_header.signature;
8981 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
8982 this_cu = &sig_type->per_cu;
8983 }
8984 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
8985 this_cu->sect_off = sect_off;
8986 this_cu->length = cu_header.length + cu_header.initial_length_size;
8987 this_cu->is_dwz = is_dwz;
8988 this_cu->dwarf2_per_objfile = dwarf2_per_objfile;
8989 this_cu->section = section;
8990
8991 if (*n_comp_units == *n_allocated)
8992 {
8993 *n_allocated *= 2;
8994 *all_comp_units = XRESIZEVEC (struct dwarf2_per_cu_data *,
8995 *all_comp_units, *n_allocated);
8996 }
8997 (*all_comp_units)[*n_comp_units] = this_cu;
8998 ++*n_comp_units;
8999
9000 info_ptr = info_ptr + this_cu->length;
9001 }
9002 }
9003
9004 /* Create a list of all compilation units in OBJFILE.
9005 This is only done for -readnow and building partial symtabs. */
9006
9007 static void
9008 create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
9009 {
9010 int n_allocated;
9011 int n_comp_units;
9012 struct dwarf2_per_cu_data **all_comp_units;
9013 struct dwz_file *dwz;
9014 struct objfile *objfile = dwarf2_per_objfile->objfile;
9015
9016 n_comp_units = 0;
9017 n_allocated = 10;
9018 all_comp_units = XNEWVEC (struct dwarf2_per_cu_data *, n_allocated);
9019
9020 read_comp_units_from_section (dwarf2_per_objfile, &dwarf2_per_objfile->info,
9021 &dwarf2_per_objfile->abbrev, 0,
9022 &n_allocated, &n_comp_units, &all_comp_units);
9023
9024 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
9025 if (dwz != NULL)
9026 read_comp_units_from_section (dwarf2_per_objfile, &dwz->info, &dwz->abbrev,
9027 1, &n_allocated, &n_comp_units,
9028 &all_comp_units);
9029
9030 dwarf2_per_objfile->all_comp_units = XOBNEWVEC (&objfile->objfile_obstack,
9031 struct dwarf2_per_cu_data *,
9032 n_comp_units);
9033 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
9034 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
9035 xfree (all_comp_units);
9036 dwarf2_per_objfile->n_comp_units = n_comp_units;
9037 }
9038
9039 /* Process all loaded DIEs for compilation unit CU, starting at
9040 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
9041 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
9042 DW_AT_ranges). See the comments of add_partial_subprogram on how
9043 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
9044
9045 static void
9046 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
9047 CORE_ADDR *highpc, int set_addrmap,
9048 struct dwarf2_cu *cu)
9049 {
9050 struct partial_die_info *pdi;
9051
9052 /* Now, march along the PDI's, descending into ones which have
9053 interesting children but skipping the children of the other ones,
9054 until we reach the end of the compilation unit. */
9055
9056 pdi = first_die;
9057
9058 while (pdi != NULL)
9059 {
9060 fixup_partial_die (pdi, cu);
9061
9062 /* Anonymous namespaces or modules have no name but have interesting
9063 children, so we need to look at them. Ditto for anonymous
9064 enums. */
9065
9066 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
9067 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
9068 || pdi->tag == DW_TAG_imported_unit)
9069 {
9070 switch (pdi->tag)
9071 {
9072 case DW_TAG_subprogram:
9073 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
9074 break;
9075 case DW_TAG_constant:
9076 case DW_TAG_variable:
9077 case DW_TAG_typedef:
9078 case DW_TAG_union_type:
9079 if (!pdi->is_declaration)
9080 {
9081 add_partial_symbol (pdi, cu);
9082 }
9083 break;
9084 case DW_TAG_class_type:
9085 case DW_TAG_interface_type:
9086 case DW_TAG_structure_type:
9087 if (!pdi->is_declaration)
9088 {
9089 add_partial_symbol (pdi, cu);
9090 }
9091 if (cu->language == language_rust && pdi->has_children)
9092 scan_partial_symbols (pdi->die_child, lowpc, highpc,
9093 set_addrmap, cu);
9094 break;
9095 case DW_TAG_enumeration_type:
9096 if (!pdi->is_declaration)
9097 add_partial_enumeration (pdi, cu);
9098 break;
9099 case DW_TAG_base_type:
9100 case DW_TAG_subrange_type:
9101 /* File scope base type definitions are added to the partial
9102 symbol table. */
9103 add_partial_symbol (pdi, cu);
9104 break;
9105 case DW_TAG_namespace:
9106 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
9107 break;
9108 case DW_TAG_module:
9109 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
9110 break;
9111 case DW_TAG_imported_unit:
9112 {
9113 struct dwarf2_per_cu_data *per_cu;
9114
9115 /* For now we don't handle imported units in type units. */
9116 if (cu->per_cu->is_debug_types)
9117 {
9118 error (_("Dwarf Error: DW_TAG_imported_unit is not"
9119 " supported in type units [in module %s]"),
9120 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
9121 }
9122
9123 per_cu = dwarf2_find_containing_comp_unit
9124 (pdi->d.sect_off, pdi->is_dwz,
9125 cu->per_cu->dwarf2_per_objfile);
9126
9127 /* Go read the partial unit, if needed. */
9128 if (per_cu->v.psymtab == NULL)
9129 process_psymtab_comp_unit (per_cu, 1, cu->language);
9130
9131 VEC_safe_push (dwarf2_per_cu_ptr,
9132 cu->per_cu->imported_symtabs, per_cu);
9133 }
9134 break;
9135 case DW_TAG_imported_declaration:
9136 add_partial_symbol (pdi, cu);
9137 break;
9138 default:
9139 break;
9140 }
9141 }
9142
9143 /* If the die has a sibling, skip to the sibling. */
9144
9145 pdi = pdi->die_sibling;
9146 }
9147 }
9148
9149 /* Functions used to compute the fully scoped name of a partial DIE.
9150
9151 Normally, this is simple. For C++, the parent DIE's fully scoped
9152 name is concatenated with "::" and the partial DIE's name.
9153 Enumerators are an exception; they use the scope of their parent
9154 enumeration type, i.e. the name of the enumeration type is not
9155 prepended to the enumerator.
9156
9157 There are two complexities. One is DW_AT_specification; in this
9158 case "parent" means the parent of the target of the specification,
9159 instead of the direct parent of the DIE. The other is compilers
9160 which do not emit DW_TAG_namespace; in this case we try to guess
9161 the fully qualified name of structure types from their members'
9162 linkage names. This must be done using the DIE's children rather
9163 than the children of any DW_AT_specification target. We only need
9164 to do this for structures at the top level, i.e. if the target of
9165 any DW_AT_specification (if any; otherwise the DIE itself) does not
9166 have a parent. */
9167
9168 /* Compute the scope prefix associated with PDI's parent, in
9169 compilation unit CU. The result will be allocated on CU's
9170 comp_unit_obstack, or a copy of the already allocated PDI->NAME
9171 field. NULL is returned if no prefix is necessary. */
9172 static const char *
9173 partial_die_parent_scope (struct partial_die_info *pdi,
9174 struct dwarf2_cu *cu)
9175 {
9176 const char *grandparent_scope;
9177 struct partial_die_info *parent, *real_pdi;
9178
9179 /* We need to look at our parent DIE; if we have a DW_AT_specification,
9180 then this means the parent of the specification DIE. */
9181
9182 real_pdi = pdi;
9183 while (real_pdi->has_specification)
9184 real_pdi = find_partial_die (real_pdi->spec_offset,
9185 real_pdi->spec_is_dwz, cu);
9186
9187 parent = real_pdi->die_parent;
9188 if (parent == NULL)
9189 return NULL;
9190
9191 if (parent->scope_set)
9192 return parent->scope;
9193
9194 fixup_partial_die (parent, cu);
9195
9196 grandparent_scope = partial_die_parent_scope (parent, cu);
9197
9198 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
9199 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
9200 Work around this problem here. */
9201 if (cu->language == language_cplus
9202 && parent->tag == DW_TAG_namespace
9203 && strcmp (parent->name, "::") == 0
9204 && grandparent_scope == NULL)
9205 {
9206 parent->scope = NULL;
9207 parent->scope_set = 1;
9208 return NULL;
9209 }
9210
9211 if (pdi->tag == DW_TAG_enumerator)
9212 /* Enumerators should not get the name of the enumeration as a prefix. */
9213 parent->scope = grandparent_scope;
9214 else if (parent->tag == DW_TAG_namespace
9215 || parent->tag == DW_TAG_module
9216 || parent->tag == DW_TAG_structure_type
9217 || parent->tag == DW_TAG_class_type
9218 || parent->tag == DW_TAG_interface_type
9219 || parent->tag == DW_TAG_union_type
9220 || parent->tag == DW_TAG_enumeration_type)
9221 {
9222 if (grandparent_scope == NULL)
9223 parent->scope = parent->name;
9224 else
9225 parent->scope = typename_concat (&cu->comp_unit_obstack,
9226 grandparent_scope,
9227 parent->name, 0, cu);
9228 }
9229 else
9230 {
9231 /* FIXME drow/2004-04-01: What should we be doing with
9232 function-local names? For partial symbols, we should probably be
9233 ignoring them. */
9234 complaint (&symfile_complaints,
9235 _("unhandled containing DIE tag %d for DIE at %d"),
9236 parent->tag, to_underlying (pdi->sect_off));
9237 parent->scope = grandparent_scope;
9238 }
9239
9240 parent->scope_set = 1;
9241 return parent->scope;
9242 }
9243
9244 /* Return the fully scoped name associated with PDI, from compilation unit
9245 CU. The result will be allocated with malloc. */
9246
9247 static char *
9248 partial_die_full_name (struct partial_die_info *pdi,
9249 struct dwarf2_cu *cu)
9250 {
9251 const char *parent_scope;
9252
9253 /* If this is a template instantiation, we can not work out the
9254 template arguments from partial DIEs. So, unfortunately, we have
9255 to go through the full DIEs. At least any work we do building
9256 types here will be reused if full symbols are loaded later. */
9257 if (pdi->has_template_arguments)
9258 {
9259 fixup_partial_die (pdi, cu);
9260
9261 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
9262 {
9263 struct die_info *die;
9264 struct attribute attr;
9265 struct dwarf2_cu *ref_cu = cu;
9266
9267 /* DW_FORM_ref_addr is using section offset. */
9268 attr.name = (enum dwarf_attribute) 0;
9269 attr.form = DW_FORM_ref_addr;
9270 attr.u.unsnd = to_underlying (pdi->sect_off);
9271 die = follow_die_ref (NULL, &attr, &ref_cu);
9272
9273 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
9274 }
9275 }
9276
9277 parent_scope = partial_die_parent_scope (pdi, cu);
9278 if (parent_scope == NULL)
9279 return NULL;
9280 else
9281 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
9282 }
9283
9284 static void
9285 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
9286 {
9287 struct dwarf2_per_objfile *dwarf2_per_objfile
9288 = cu->per_cu->dwarf2_per_objfile;
9289 struct objfile *objfile = dwarf2_per_objfile->objfile;
9290 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9291 CORE_ADDR addr = 0;
9292 const char *actual_name = NULL;
9293 CORE_ADDR baseaddr;
9294 char *built_actual_name;
9295
9296 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9297
9298 built_actual_name = partial_die_full_name (pdi, cu);
9299 if (built_actual_name != NULL)
9300 actual_name = built_actual_name;
9301
9302 if (actual_name == NULL)
9303 actual_name = pdi->name;
9304
9305 switch (pdi->tag)
9306 {
9307 case DW_TAG_subprogram:
9308 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
9309 if (pdi->is_external || cu->language == language_ada)
9310 {
9311 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
9312 of the global scope. But in Ada, we want to be able to access
9313 nested procedures globally. So all Ada subprograms are stored
9314 in the global scope. */
9315 add_psymbol_to_list (actual_name, strlen (actual_name),
9316 built_actual_name != NULL,
9317 VAR_DOMAIN, LOC_BLOCK,
9318 &objfile->global_psymbols,
9319 addr, cu->language, objfile);
9320 }
9321 else
9322 {
9323 add_psymbol_to_list (actual_name, strlen (actual_name),
9324 built_actual_name != NULL,
9325 VAR_DOMAIN, LOC_BLOCK,
9326 &objfile->static_psymbols,
9327 addr, cu->language, objfile);
9328 }
9329
9330 if (pdi->main_subprogram && actual_name != NULL)
9331 set_objfile_main_name (objfile, actual_name, cu->language);
9332 break;
9333 case DW_TAG_constant:
9334 {
9335 std::vector<partial_symbol *> *list;
9336
9337 if (pdi->is_external)
9338 list = &objfile->global_psymbols;
9339 else
9340 list = &objfile->static_psymbols;
9341 add_psymbol_to_list (actual_name, strlen (actual_name),
9342 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
9343 list, 0, cu->language, objfile);
9344 }
9345 break;
9346 case DW_TAG_variable:
9347 if (pdi->d.locdesc)
9348 addr = decode_locdesc (pdi->d.locdesc, cu);
9349
9350 if (pdi->d.locdesc
9351 && addr == 0
9352 && !dwarf2_per_objfile->has_section_at_zero)
9353 {
9354 /* A global or static variable may also have been stripped
9355 out by the linker if unused, in which case its address
9356 will be nullified; do not add such variables into partial
9357 symbol table then. */
9358 }
9359 else if (pdi->is_external)
9360 {
9361 /* Global Variable.
9362 Don't enter into the minimal symbol tables as there is
9363 a minimal symbol table entry from the ELF symbols already.
9364 Enter into partial symbol table if it has a location
9365 descriptor or a type.
9366 If the location descriptor is missing, new_symbol will create
9367 a LOC_UNRESOLVED symbol, the address of the variable will then
9368 be determined from the minimal symbol table whenever the variable
9369 is referenced.
9370 The address for the partial symbol table entry is not
9371 used by GDB, but it comes in handy for debugging partial symbol
9372 table building. */
9373
9374 if (pdi->d.locdesc || pdi->has_type)
9375 add_psymbol_to_list (actual_name, strlen (actual_name),
9376 built_actual_name != NULL,
9377 VAR_DOMAIN, LOC_STATIC,
9378 &objfile->global_psymbols,
9379 addr + baseaddr,
9380 cu->language, objfile);
9381 }
9382 else
9383 {
9384 int has_loc = pdi->d.locdesc != NULL;
9385
9386 /* Static Variable. Skip symbols whose value we cannot know (those
9387 without location descriptors or constant values). */
9388 if (!has_loc && !pdi->has_const_value)
9389 {
9390 xfree (built_actual_name);
9391 return;
9392 }
9393
9394 add_psymbol_to_list (actual_name, strlen (actual_name),
9395 built_actual_name != NULL,
9396 VAR_DOMAIN, LOC_STATIC,
9397 &objfile->static_psymbols,
9398 has_loc ? addr + baseaddr : (CORE_ADDR) 0,
9399 cu->language, objfile);
9400 }
9401 break;
9402 case DW_TAG_typedef:
9403 case DW_TAG_base_type:
9404 case DW_TAG_subrange_type:
9405 add_psymbol_to_list (actual_name, strlen (actual_name),
9406 built_actual_name != NULL,
9407 VAR_DOMAIN, LOC_TYPEDEF,
9408 &objfile->static_psymbols,
9409 0, cu->language, objfile);
9410 break;
9411 case DW_TAG_imported_declaration:
9412 case DW_TAG_namespace:
9413 add_psymbol_to_list (actual_name, strlen (actual_name),
9414 built_actual_name != NULL,
9415 VAR_DOMAIN, LOC_TYPEDEF,
9416 &objfile->global_psymbols,
9417 0, cu->language, objfile);
9418 break;
9419 case DW_TAG_module:
9420 add_psymbol_to_list (actual_name, strlen (actual_name),
9421 built_actual_name != NULL,
9422 MODULE_DOMAIN, LOC_TYPEDEF,
9423 &objfile->global_psymbols,
9424 0, cu->language, objfile);
9425 break;
9426 case DW_TAG_class_type:
9427 case DW_TAG_interface_type:
9428 case DW_TAG_structure_type:
9429 case DW_TAG_union_type:
9430 case DW_TAG_enumeration_type:
9431 /* Skip external references. The DWARF standard says in the section
9432 about "Structure, Union, and Class Type Entries": "An incomplete
9433 structure, union or class type is represented by a structure,
9434 union or class entry that does not have a byte size attribute
9435 and that has a DW_AT_declaration attribute." */
9436 if (!pdi->has_byte_size && pdi->is_declaration)
9437 {
9438 xfree (built_actual_name);
9439 return;
9440 }
9441
9442 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
9443 static vs. global. */
9444 add_psymbol_to_list (actual_name, strlen (actual_name),
9445 built_actual_name != NULL,
9446 STRUCT_DOMAIN, LOC_TYPEDEF,
9447 cu->language == language_cplus
9448 ? &objfile->global_psymbols
9449 : &objfile->static_psymbols,
9450 0, cu->language, objfile);
9451
9452 break;
9453 case DW_TAG_enumerator:
9454 add_psymbol_to_list (actual_name, strlen (actual_name),
9455 built_actual_name != NULL,
9456 VAR_DOMAIN, LOC_CONST,
9457 cu->language == language_cplus
9458 ? &objfile->global_psymbols
9459 : &objfile->static_psymbols,
9460 0, cu->language, objfile);
9461 break;
9462 default:
9463 break;
9464 }
9465
9466 xfree (built_actual_name);
9467 }
9468
9469 /* Read a partial die corresponding to a namespace; also, add a symbol
9470 corresponding to that namespace to the symbol table. NAMESPACE is
9471 the name of the enclosing namespace. */
9472
9473 static void
9474 add_partial_namespace (struct partial_die_info *pdi,
9475 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9476 int set_addrmap, struct dwarf2_cu *cu)
9477 {
9478 /* Add a symbol for the namespace. */
9479
9480 add_partial_symbol (pdi, cu);
9481
9482 /* Now scan partial symbols in that namespace. */
9483
9484 if (pdi->has_children)
9485 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9486 }
9487
9488 /* Read a partial die corresponding to a Fortran module. */
9489
9490 static void
9491 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
9492 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
9493 {
9494 /* Add a symbol for the namespace. */
9495
9496 add_partial_symbol (pdi, cu);
9497
9498 /* Now scan partial symbols in that module. */
9499
9500 if (pdi->has_children)
9501 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9502 }
9503
9504 /* Read a partial die corresponding to a subprogram and create a partial
9505 symbol for that subprogram. When the CU language allows it, this
9506 routine also defines a partial symbol for each nested subprogram
9507 that this subprogram contains. If SET_ADDRMAP is true, record the
9508 covered ranges in the addrmap. Set *LOWPC and *HIGHPC to the lowest
9509 and highest PC values found in PDI.
9510
9511 PDI may also be a lexical block, in which case we simply search
9512 recursively for subprograms defined inside that lexical block.
9513 Again, this is only performed when the CU language allows this
9514 type of definitions. */
9515
9516 static void
9517 add_partial_subprogram (struct partial_die_info *pdi,
9518 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9519 int set_addrmap, struct dwarf2_cu *cu)
9520 {
9521 if (pdi->tag == DW_TAG_subprogram)
9522 {
9523 if (pdi->has_pc_info)
9524 {
9525 if (pdi->lowpc < *lowpc)
9526 *lowpc = pdi->lowpc;
9527 if (pdi->highpc > *highpc)
9528 *highpc = pdi->highpc;
9529 if (set_addrmap)
9530 {
9531 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9532 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9533 CORE_ADDR baseaddr;
9534 CORE_ADDR highpc;
9535 CORE_ADDR lowpc;
9536
9537 baseaddr = ANOFFSET (objfile->section_offsets,
9538 SECT_OFF_TEXT (objfile));
9539 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
9540 pdi->lowpc + baseaddr);
9541 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
9542 pdi->highpc + baseaddr);
9543 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
9544 cu->per_cu->v.psymtab);
9545 }
9546 }
9547
9548 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
9549 {
9550 if (!pdi->is_declaration)
9551 /* Ignore subprogram DIEs that do not have a name, they are
9552 illegal. Do not emit a complaint at this point, we will
9553 do so when we convert this psymtab into a symtab. */
9554 if (pdi->name)
9555 add_partial_symbol (pdi, cu);
9556 }
9557 }
9558
9559 if (! pdi->has_children)
9560 return;
9561
9562 if (cu->language == language_ada)
9563 {
9564 pdi = pdi->die_child;
9565 while (pdi != NULL)
9566 {
9567 fixup_partial_die (pdi, cu);
9568 if (pdi->tag == DW_TAG_subprogram
9569 || pdi->tag == DW_TAG_lexical_block)
9570 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
9571 pdi = pdi->die_sibling;
9572 }
9573 }
9574 }
9575
9576 /* Read a partial die corresponding to an enumeration type. */
9577
9578 static void
9579 add_partial_enumeration (struct partial_die_info *enum_pdi,
9580 struct dwarf2_cu *cu)
9581 {
9582 struct partial_die_info *pdi;
9583
9584 if (enum_pdi->name != NULL)
9585 add_partial_symbol (enum_pdi, cu);
9586
9587 pdi = enum_pdi->die_child;
9588 while (pdi)
9589 {
9590 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
9591 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
9592 else
9593 add_partial_symbol (pdi, cu);
9594 pdi = pdi->die_sibling;
9595 }
9596 }
9597
9598 /* Return the initial uleb128 in the die at INFO_PTR. */
9599
9600 static unsigned int
9601 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
9602 {
9603 unsigned int bytes_read;
9604
9605 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9606 }
9607
9608 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
9609 Return the corresponding abbrev, or NULL if the number is zero (indicating
9610 an empty DIE). In either case *BYTES_READ will be set to the length of
9611 the initial number. */
9612
9613 static struct abbrev_info *
9614 peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
9615 struct dwarf2_cu *cu)
9616 {
9617 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
9618 unsigned int abbrev_number;
9619 struct abbrev_info *abbrev;
9620
9621 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
9622
9623 if (abbrev_number == 0)
9624 return NULL;
9625
9626 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
9627 if (!abbrev)
9628 {
9629 error (_("Dwarf Error: Could not find abbrev number %d in %s"
9630 " at offset 0x%x [in module %s]"),
9631 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
9632 to_underlying (cu->header.sect_off), bfd_get_filename (abfd));
9633 }
9634
9635 return abbrev;
9636 }
9637
9638 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9639 Returns a pointer to the end of a series of DIEs, terminated by an empty
9640 DIE. Any children of the skipped DIEs will also be skipped. */
9641
9642 static const gdb_byte *
9643 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
9644 {
9645 struct dwarf2_cu *cu = reader->cu;
9646 struct abbrev_info *abbrev;
9647 unsigned int bytes_read;
9648
9649 while (1)
9650 {
9651 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
9652 if (abbrev == NULL)
9653 return info_ptr + bytes_read;
9654 else
9655 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
9656 }
9657 }
9658
9659 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9660 INFO_PTR should point just after the initial uleb128 of a DIE, and the
9661 abbrev corresponding to that skipped uleb128 should be passed in
9662 ABBREV. Returns a pointer to this DIE's sibling, skipping any
9663 children. */
9664
9665 static const gdb_byte *
9666 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
9667 struct abbrev_info *abbrev)
9668 {
9669 unsigned int bytes_read;
9670 struct attribute attr;
9671 bfd *abfd = reader->abfd;
9672 struct dwarf2_cu *cu = reader->cu;
9673 const gdb_byte *buffer = reader->buffer;
9674 const gdb_byte *buffer_end = reader->buffer_end;
9675 unsigned int form, i;
9676
9677 for (i = 0; i < abbrev->num_attrs; i++)
9678 {
9679 /* The only abbrev we care about is DW_AT_sibling. */
9680 if (abbrev->attrs[i].name == DW_AT_sibling)
9681 {
9682 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
9683 if (attr.form == DW_FORM_ref_addr)
9684 complaint (&symfile_complaints,
9685 _("ignoring absolute DW_AT_sibling"));
9686 else
9687 {
9688 sect_offset off = dwarf2_get_ref_die_offset (&attr);
9689 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
9690
9691 if (sibling_ptr < info_ptr)
9692 complaint (&symfile_complaints,
9693 _("DW_AT_sibling points backwards"));
9694 else if (sibling_ptr > reader->buffer_end)
9695 dwarf2_section_buffer_overflow_complaint (reader->die_section);
9696 else
9697 return sibling_ptr;
9698 }
9699 }
9700
9701 /* If it isn't DW_AT_sibling, skip this attribute. */
9702 form = abbrev->attrs[i].form;
9703 skip_attribute:
9704 switch (form)
9705 {
9706 case DW_FORM_ref_addr:
9707 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
9708 and later it is offset sized. */
9709 if (cu->header.version == 2)
9710 info_ptr += cu->header.addr_size;
9711 else
9712 info_ptr += cu->header.offset_size;
9713 break;
9714 case DW_FORM_GNU_ref_alt:
9715 info_ptr += cu->header.offset_size;
9716 break;
9717 case DW_FORM_addr:
9718 info_ptr += cu->header.addr_size;
9719 break;
9720 case DW_FORM_data1:
9721 case DW_FORM_ref1:
9722 case DW_FORM_flag:
9723 info_ptr += 1;
9724 break;
9725 case DW_FORM_flag_present:
9726 case DW_FORM_implicit_const:
9727 break;
9728 case DW_FORM_data2:
9729 case DW_FORM_ref2:
9730 info_ptr += 2;
9731 break;
9732 case DW_FORM_data4:
9733 case DW_FORM_ref4:
9734 info_ptr += 4;
9735 break;
9736 case DW_FORM_data8:
9737 case DW_FORM_ref8:
9738 case DW_FORM_ref_sig8:
9739 info_ptr += 8;
9740 break;
9741 case DW_FORM_data16:
9742 info_ptr += 16;
9743 break;
9744 case DW_FORM_string:
9745 read_direct_string (abfd, info_ptr, &bytes_read);
9746 info_ptr += bytes_read;
9747 break;
9748 case DW_FORM_sec_offset:
9749 case DW_FORM_strp:
9750 case DW_FORM_GNU_strp_alt:
9751 info_ptr += cu->header.offset_size;
9752 break;
9753 case DW_FORM_exprloc:
9754 case DW_FORM_block:
9755 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9756 info_ptr += bytes_read;
9757 break;
9758 case DW_FORM_block1:
9759 info_ptr += 1 + read_1_byte (abfd, info_ptr);
9760 break;
9761 case DW_FORM_block2:
9762 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
9763 break;
9764 case DW_FORM_block4:
9765 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
9766 break;
9767 case DW_FORM_sdata:
9768 case DW_FORM_udata:
9769 case DW_FORM_ref_udata:
9770 case DW_FORM_GNU_addr_index:
9771 case DW_FORM_GNU_str_index:
9772 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
9773 break;
9774 case DW_FORM_indirect:
9775 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9776 info_ptr += bytes_read;
9777 /* We need to continue parsing from here, so just go back to
9778 the top. */
9779 goto skip_attribute;
9780
9781 default:
9782 error (_("Dwarf Error: Cannot handle %s "
9783 "in DWARF reader [in module %s]"),
9784 dwarf_form_name (form),
9785 bfd_get_filename (abfd));
9786 }
9787 }
9788
9789 if (abbrev->has_children)
9790 return skip_children (reader, info_ptr);
9791 else
9792 return info_ptr;
9793 }
9794
9795 /* Locate ORIG_PDI's sibling.
9796 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
9797
9798 static const gdb_byte *
9799 locate_pdi_sibling (const struct die_reader_specs *reader,
9800 struct partial_die_info *orig_pdi,
9801 const gdb_byte *info_ptr)
9802 {
9803 /* Do we know the sibling already? */
9804
9805 if (orig_pdi->sibling)
9806 return orig_pdi->sibling;
9807
9808 /* Are there any children to deal with? */
9809
9810 if (!orig_pdi->has_children)
9811 return info_ptr;
9812
9813 /* Skip the children the long way. */
9814
9815 return skip_children (reader, info_ptr);
9816 }
9817
9818 /* Expand this partial symbol table into a full symbol table. SELF is
9819 not NULL. */
9820
9821 static void
9822 dwarf2_read_symtab (struct partial_symtab *self,
9823 struct objfile *objfile)
9824 {
9825 struct dwarf2_per_objfile *dwarf2_per_objfile
9826 = get_dwarf2_per_objfile (objfile);
9827
9828 if (self->readin)
9829 {
9830 warning (_("bug: psymtab for %s is already read in."),
9831 self->filename);
9832 }
9833 else
9834 {
9835 if (info_verbose)
9836 {
9837 printf_filtered (_("Reading in symbols for %s..."),
9838 self->filename);
9839 gdb_flush (gdb_stdout);
9840 }
9841
9842 /* If this psymtab is constructed from a debug-only objfile, the
9843 has_section_at_zero flag will not necessarily be correct. We
9844 can get the correct value for this flag by looking at the data
9845 associated with the (presumably stripped) associated objfile. */
9846 if (objfile->separate_debug_objfile_backlink)
9847 {
9848 struct dwarf2_per_objfile *dpo_backlink
9849 = get_dwarf2_per_objfile (objfile->separate_debug_objfile_backlink);
9850
9851 dwarf2_per_objfile->has_section_at_zero
9852 = dpo_backlink->has_section_at_zero;
9853 }
9854
9855 dwarf2_per_objfile->reading_partial_symbols = 0;
9856
9857 psymtab_to_symtab_1 (self);
9858
9859 /* Finish up the debug error message. */
9860 if (info_verbose)
9861 printf_filtered (_("done.\n"));
9862 }
9863
9864 process_cu_includes (dwarf2_per_objfile);
9865 }
9866 \f
9867 /* Reading in full CUs. */
9868
9869 /* Add PER_CU to the queue. */
9870
9871 static void
9872 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
9873 enum language pretend_language)
9874 {
9875 struct dwarf2_queue_item *item;
9876
9877 per_cu->queued = 1;
9878 item = XNEW (struct dwarf2_queue_item);
9879 item->per_cu = per_cu;
9880 item->pretend_language = pretend_language;
9881 item->next = NULL;
9882
9883 if (dwarf2_queue == NULL)
9884 dwarf2_queue = item;
9885 else
9886 dwarf2_queue_tail->next = item;
9887
9888 dwarf2_queue_tail = item;
9889 }
9890
9891 /* If PER_CU is not yet queued, add it to the queue.
9892 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
9893 dependency.
9894 The result is non-zero if PER_CU was queued, otherwise the result is zero
9895 meaning either PER_CU is already queued or it is already loaded.
9896
9897 N.B. There is an invariant here that if a CU is queued then it is loaded.
9898 The caller is required to load PER_CU if we return non-zero. */
9899
9900 static int
9901 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
9902 struct dwarf2_per_cu_data *per_cu,
9903 enum language pretend_language)
9904 {
9905 /* We may arrive here during partial symbol reading, if we need full
9906 DIEs to process an unusual case (e.g. template arguments). Do
9907 not queue PER_CU, just tell our caller to load its DIEs. */
9908 if (per_cu->dwarf2_per_objfile->reading_partial_symbols)
9909 {
9910 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
9911 return 1;
9912 return 0;
9913 }
9914
9915 /* Mark the dependence relation so that we don't flush PER_CU
9916 too early. */
9917 if (dependent_cu != NULL)
9918 dwarf2_add_dependence (dependent_cu, per_cu);
9919
9920 /* If it's already on the queue, we have nothing to do. */
9921 if (per_cu->queued)
9922 return 0;
9923
9924 /* If the compilation unit is already loaded, just mark it as
9925 used. */
9926 if (per_cu->cu != NULL)
9927 {
9928 per_cu->cu->last_used = 0;
9929 return 0;
9930 }
9931
9932 /* Add it to the queue. */
9933 queue_comp_unit (per_cu, pretend_language);
9934
9935 return 1;
9936 }
9937
9938 /* Process the queue. */
9939
9940 static void
9941 process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile)
9942 {
9943 struct dwarf2_queue_item *item, *next_item;
9944
9945 if (dwarf_read_debug)
9946 {
9947 fprintf_unfiltered (gdb_stdlog,
9948 "Expanding one or more symtabs of objfile %s ...\n",
9949 objfile_name (dwarf2_per_objfile->objfile));
9950 }
9951
9952 /* The queue starts out with one item, but following a DIE reference
9953 may load a new CU, adding it to the end of the queue. */
9954 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
9955 {
9956 if ((dwarf2_per_objfile->using_index
9957 ? !item->per_cu->v.quick->compunit_symtab
9958 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
9959 /* Skip dummy CUs. */
9960 && item->per_cu->cu != NULL)
9961 {
9962 struct dwarf2_per_cu_data *per_cu = item->per_cu;
9963 unsigned int debug_print_threshold;
9964 char buf[100];
9965
9966 if (per_cu->is_debug_types)
9967 {
9968 struct signatured_type *sig_type =
9969 (struct signatured_type *) per_cu;
9970
9971 sprintf (buf, "TU %s at offset 0x%x",
9972 hex_string (sig_type->signature),
9973 to_underlying (per_cu->sect_off));
9974 /* There can be 100s of TUs.
9975 Only print them in verbose mode. */
9976 debug_print_threshold = 2;
9977 }
9978 else
9979 {
9980 sprintf (buf, "CU at offset 0x%x",
9981 to_underlying (per_cu->sect_off));
9982 debug_print_threshold = 1;
9983 }
9984
9985 if (dwarf_read_debug >= debug_print_threshold)
9986 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
9987
9988 if (per_cu->is_debug_types)
9989 process_full_type_unit (per_cu, item->pretend_language);
9990 else
9991 process_full_comp_unit (per_cu, item->pretend_language);
9992
9993 if (dwarf_read_debug >= debug_print_threshold)
9994 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
9995 }
9996
9997 item->per_cu->queued = 0;
9998 next_item = item->next;
9999 xfree (item);
10000 }
10001
10002 dwarf2_queue_tail = NULL;
10003
10004 if (dwarf_read_debug)
10005 {
10006 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
10007 objfile_name (dwarf2_per_objfile->objfile));
10008 }
10009 }
10010
10011 /* Free all allocated queue entries. This function only releases anything if
10012 an error was thrown; if the queue was processed then it would have been
10013 freed as we went along. */
10014
10015 static void
10016 dwarf2_release_queue (void *dummy)
10017 {
10018 struct dwarf2_queue_item *item, *last;
10019
10020 item = dwarf2_queue;
10021 while (item)
10022 {
10023 /* Anything still marked queued is likely to be in an
10024 inconsistent state, so discard it. */
10025 if (item->per_cu->queued)
10026 {
10027 if (item->per_cu->cu != NULL)
10028 free_one_cached_comp_unit (item->per_cu);
10029 item->per_cu->queued = 0;
10030 }
10031
10032 last = item;
10033 item = item->next;
10034 xfree (last);
10035 }
10036
10037 dwarf2_queue = dwarf2_queue_tail = NULL;
10038 }
10039
10040 /* Read in full symbols for PST, and anything it depends on. */
10041
10042 static void
10043 psymtab_to_symtab_1 (struct partial_symtab *pst)
10044 {
10045 struct dwarf2_per_cu_data *per_cu;
10046 int i;
10047
10048 if (pst->readin)
10049 return;
10050
10051 for (i = 0; i < pst->number_of_dependencies; i++)
10052 if (!pst->dependencies[i]->readin
10053 && pst->dependencies[i]->user == NULL)
10054 {
10055 /* Inform about additional files that need to be read in. */
10056 if (info_verbose)
10057 {
10058 /* FIXME: i18n: Need to make this a single string. */
10059 fputs_filtered (" ", gdb_stdout);
10060 wrap_here ("");
10061 fputs_filtered ("and ", gdb_stdout);
10062 wrap_here ("");
10063 printf_filtered ("%s...", pst->dependencies[i]->filename);
10064 wrap_here (""); /* Flush output. */
10065 gdb_flush (gdb_stdout);
10066 }
10067 psymtab_to_symtab_1 (pst->dependencies[i]);
10068 }
10069
10070 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
10071
10072 if (per_cu == NULL)
10073 {
10074 /* It's an include file, no symbols to read for it.
10075 Everything is in the parent symtab. */
10076 pst->readin = 1;
10077 return;
10078 }
10079
10080 dw2_do_instantiate_symtab (per_cu);
10081 }
10082
10083 /* Trivial hash function for die_info: the hash value of a DIE
10084 is its offset in .debug_info for this objfile. */
10085
10086 static hashval_t
10087 die_hash (const void *item)
10088 {
10089 const struct die_info *die = (const struct die_info *) item;
10090
10091 return to_underlying (die->sect_off);
10092 }
10093
10094 /* Trivial comparison function for die_info structures: two DIEs
10095 are equal if they have the same offset. */
10096
10097 static int
10098 die_eq (const void *item_lhs, const void *item_rhs)
10099 {
10100 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
10101 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
10102
10103 return die_lhs->sect_off == die_rhs->sect_off;
10104 }
10105
10106 /* die_reader_func for load_full_comp_unit.
10107 This is identical to read_signatured_type_reader,
10108 but is kept separate for now. */
10109
10110 static void
10111 load_full_comp_unit_reader (const struct die_reader_specs *reader,
10112 const gdb_byte *info_ptr,
10113 struct die_info *comp_unit_die,
10114 int has_children,
10115 void *data)
10116 {
10117 struct dwarf2_cu *cu = reader->cu;
10118 enum language *language_ptr = (enum language *) data;
10119
10120 gdb_assert (cu->die_hash == NULL);
10121 cu->die_hash =
10122 htab_create_alloc_ex (cu->header.length / 12,
10123 die_hash,
10124 die_eq,
10125 NULL,
10126 &cu->comp_unit_obstack,
10127 hashtab_obstack_allocate,
10128 dummy_obstack_deallocate);
10129
10130 if (has_children)
10131 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
10132 &info_ptr, comp_unit_die);
10133 cu->dies = comp_unit_die;
10134 /* comp_unit_die is not stored in die_hash, no need. */
10135
10136 /* We try not to read any attributes in this function, because not
10137 all CUs needed for references have been loaded yet, and symbol
10138 table processing isn't initialized. But we have to set the CU language,
10139 or we won't be able to build types correctly.
10140 Similarly, if we do not read the producer, we can not apply
10141 producer-specific interpretation. */
10142 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
10143 }
10144
10145 /* Load the DIEs associated with PER_CU into memory. */
10146
10147 static void
10148 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
10149 enum language pretend_language)
10150 {
10151 gdb_assert (! this_cu->is_debug_types);
10152
10153 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
10154 load_full_comp_unit_reader, &pretend_language);
10155 }
10156
10157 /* Add a DIE to the delayed physname list. */
10158
10159 static void
10160 add_to_method_list (struct type *type, int fnfield_index, int index,
10161 const char *name, struct die_info *die,
10162 struct dwarf2_cu *cu)
10163 {
10164 struct delayed_method_info mi;
10165 mi.type = type;
10166 mi.fnfield_index = fnfield_index;
10167 mi.index = index;
10168 mi.name = name;
10169 mi.die = die;
10170 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
10171 }
10172
10173 /* A cleanup for freeing the delayed method list. */
10174
10175 static void
10176 free_delayed_list (void *ptr)
10177 {
10178 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
10179 if (cu->method_list != NULL)
10180 {
10181 VEC_free (delayed_method_info, cu->method_list);
10182 cu->method_list = NULL;
10183 }
10184 }
10185
10186 /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
10187 "const" / "volatile". If so, decrements LEN by the length of the
10188 modifier and return true. Otherwise return false. */
10189
10190 template<size_t N>
10191 static bool
10192 check_modifier (const char *physname, size_t &len, const char (&mod)[N])
10193 {
10194 size_t mod_len = sizeof (mod) - 1;
10195 if (len > mod_len && startswith (physname + (len - mod_len), mod))
10196 {
10197 len -= mod_len;
10198 return true;
10199 }
10200 return false;
10201 }
10202
10203 /* Compute the physnames of any methods on the CU's method list.
10204
10205 The computation of method physnames is delayed in order to avoid the
10206 (bad) condition that one of the method's formal parameters is of an as yet
10207 incomplete type. */
10208
10209 static void
10210 compute_delayed_physnames (struct dwarf2_cu *cu)
10211 {
10212 int i;
10213 struct delayed_method_info *mi;
10214
10215 /* Only C++ delays computing physnames. */
10216 if (VEC_empty (delayed_method_info, cu->method_list))
10217 return;
10218 gdb_assert (cu->language == language_cplus);
10219
10220 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
10221 {
10222 const char *physname;
10223 struct fn_fieldlist *fn_flp
10224 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
10225 physname = dwarf2_physname (mi->name, mi->die, cu);
10226 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi->index)
10227 = physname ? physname : "";
10228
10229 /* Since there's no tag to indicate whether a method is a
10230 const/volatile overload, extract that information out of the
10231 demangled name. */
10232 if (physname != NULL)
10233 {
10234 size_t len = strlen (physname);
10235
10236 while (1)
10237 {
10238 if (physname[len] == ')') /* shortcut */
10239 break;
10240 else if (check_modifier (physname, len, " const"))
10241 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi->index) = 1;
10242 else if (check_modifier (physname, len, " volatile"))
10243 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi->index) = 1;
10244 else
10245 break;
10246 }
10247 }
10248 }
10249 }
10250
10251 /* Go objects should be embedded in a DW_TAG_module DIE,
10252 and it's not clear if/how imported objects will appear.
10253 To keep Go support simple until that's worked out,
10254 go back through what we've read and create something usable.
10255 We could do this while processing each DIE, and feels kinda cleaner,
10256 but that way is more invasive.
10257 This is to, for example, allow the user to type "p var" or "b main"
10258 without having to specify the package name, and allow lookups
10259 of module.object to work in contexts that use the expression
10260 parser. */
10261
10262 static void
10263 fixup_go_packaging (struct dwarf2_cu *cu)
10264 {
10265 char *package_name = NULL;
10266 struct pending *list;
10267 int i;
10268
10269 for (list = global_symbols; list != NULL; list = list->next)
10270 {
10271 for (i = 0; i < list->nsyms; ++i)
10272 {
10273 struct symbol *sym = list->symbol[i];
10274
10275 if (SYMBOL_LANGUAGE (sym) == language_go
10276 && SYMBOL_CLASS (sym) == LOC_BLOCK)
10277 {
10278 char *this_package_name = go_symbol_package_name (sym);
10279
10280 if (this_package_name == NULL)
10281 continue;
10282 if (package_name == NULL)
10283 package_name = this_package_name;
10284 else
10285 {
10286 struct objfile *objfile
10287 = cu->per_cu->dwarf2_per_objfile->objfile;
10288 if (strcmp (package_name, this_package_name) != 0)
10289 complaint (&symfile_complaints,
10290 _("Symtab %s has objects from two different Go packages: %s and %s"),
10291 (symbol_symtab (sym) != NULL
10292 ? symtab_to_filename_for_display
10293 (symbol_symtab (sym))
10294 : objfile_name (objfile)),
10295 this_package_name, package_name);
10296 xfree (this_package_name);
10297 }
10298 }
10299 }
10300 }
10301
10302 if (package_name != NULL)
10303 {
10304 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10305 const char *saved_package_name
10306 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
10307 package_name,
10308 strlen (package_name));
10309 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
10310 saved_package_name);
10311 struct symbol *sym;
10312
10313 TYPE_TAG_NAME (type) = TYPE_NAME (type);
10314
10315 sym = allocate_symbol (objfile);
10316 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
10317 SYMBOL_SET_NAMES (sym, saved_package_name,
10318 strlen (saved_package_name), 0, objfile);
10319 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
10320 e.g., "main" finds the "main" module and not C's main(). */
10321 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
10322 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
10323 SYMBOL_TYPE (sym) = type;
10324
10325 add_symbol_to_list (sym, &global_symbols);
10326
10327 xfree (package_name);
10328 }
10329 }
10330
10331 /* Return the symtab for PER_CU. This works properly regardless of
10332 whether we're using the index or psymtabs. */
10333
10334 static struct compunit_symtab *
10335 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
10336 {
10337 return (per_cu->dwarf2_per_objfile->using_index
10338 ? per_cu->v.quick->compunit_symtab
10339 : per_cu->v.psymtab->compunit_symtab);
10340 }
10341
10342 /* A helper function for computing the list of all symbol tables
10343 included by PER_CU. */
10344
10345 static void
10346 recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
10347 htab_t all_children, htab_t all_type_symtabs,
10348 struct dwarf2_per_cu_data *per_cu,
10349 struct compunit_symtab *immediate_parent)
10350 {
10351 void **slot;
10352 int ix;
10353 struct compunit_symtab *cust;
10354 struct dwarf2_per_cu_data *iter;
10355
10356 slot = htab_find_slot (all_children, per_cu, INSERT);
10357 if (*slot != NULL)
10358 {
10359 /* This inclusion and its children have been processed. */
10360 return;
10361 }
10362
10363 *slot = per_cu;
10364 /* Only add a CU if it has a symbol table. */
10365 cust = get_compunit_symtab (per_cu);
10366 if (cust != NULL)
10367 {
10368 /* If this is a type unit only add its symbol table if we haven't
10369 seen it yet (type unit per_cu's can share symtabs). */
10370 if (per_cu->is_debug_types)
10371 {
10372 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
10373 if (*slot == NULL)
10374 {
10375 *slot = cust;
10376 VEC_safe_push (compunit_symtab_ptr, *result, cust);
10377 if (cust->user == NULL)
10378 cust->user = immediate_parent;
10379 }
10380 }
10381 else
10382 {
10383 VEC_safe_push (compunit_symtab_ptr, *result, cust);
10384 if (cust->user == NULL)
10385 cust->user = immediate_parent;
10386 }
10387 }
10388
10389 for (ix = 0;
10390 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
10391 ++ix)
10392 {
10393 recursively_compute_inclusions (result, all_children,
10394 all_type_symtabs, iter, cust);
10395 }
10396 }
10397
10398 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
10399 PER_CU. */
10400
10401 static void
10402 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
10403 {
10404 gdb_assert (! per_cu->is_debug_types);
10405
10406 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
10407 {
10408 int ix, len;
10409 struct dwarf2_per_cu_data *per_cu_iter;
10410 struct compunit_symtab *compunit_symtab_iter;
10411 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
10412 htab_t all_children, all_type_symtabs;
10413 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
10414
10415 /* If we don't have a symtab, we can just skip this case. */
10416 if (cust == NULL)
10417 return;
10418
10419 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10420 NULL, xcalloc, xfree);
10421 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10422 NULL, xcalloc, xfree);
10423
10424 for (ix = 0;
10425 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
10426 ix, per_cu_iter);
10427 ++ix)
10428 {
10429 recursively_compute_inclusions (&result_symtabs, all_children,
10430 all_type_symtabs, per_cu_iter,
10431 cust);
10432 }
10433
10434 /* Now we have a transitive closure of all the included symtabs. */
10435 len = VEC_length (compunit_symtab_ptr, result_symtabs);
10436 cust->includes
10437 = XOBNEWVEC (&per_cu->dwarf2_per_objfile->objfile->objfile_obstack,
10438 struct compunit_symtab *, len + 1);
10439 for (ix = 0;
10440 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
10441 compunit_symtab_iter);
10442 ++ix)
10443 cust->includes[ix] = compunit_symtab_iter;
10444 cust->includes[len] = NULL;
10445
10446 VEC_free (compunit_symtab_ptr, result_symtabs);
10447 htab_delete (all_children);
10448 htab_delete (all_type_symtabs);
10449 }
10450 }
10451
10452 /* Compute the 'includes' field for the symtabs of all the CUs we just
10453 read. */
10454
10455 static void
10456 process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile)
10457 {
10458 int ix;
10459 struct dwarf2_per_cu_data *iter;
10460
10461 for (ix = 0;
10462 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
10463 ix, iter);
10464 ++ix)
10465 {
10466 if (! iter->is_debug_types)
10467 compute_compunit_symtab_includes (iter);
10468 }
10469
10470 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
10471 }
10472
10473 /* Generate full symbol information for PER_CU, whose DIEs have
10474 already been loaded into memory. */
10475
10476 static void
10477 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
10478 enum language pretend_language)
10479 {
10480 struct dwarf2_cu *cu = per_cu->cu;
10481 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10482 struct objfile *objfile = dwarf2_per_objfile->objfile;
10483 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10484 CORE_ADDR lowpc, highpc;
10485 struct compunit_symtab *cust;
10486 struct cleanup *delayed_list_cleanup;
10487 CORE_ADDR baseaddr;
10488 struct block *static_block;
10489 CORE_ADDR addr;
10490
10491 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10492
10493 buildsym_init ();
10494 scoped_free_pendings free_pending;
10495 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
10496
10497 cu->list_in_scope = &file_symbols;
10498
10499 cu->language = pretend_language;
10500 cu->language_defn = language_def (cu->language);
10501
10502 /* Do line number decoding in read_file_scope () */
10503 process_die (cu->dies, cu);
10504
10505 /* For now fudge the Go package. */
10506 if (cu->language == language_go)
10507 fixup_go_packaging (cu);
10508
10509 /* Now that we have processed all the DIEs in the CU, all the types
10510 should be complete, and it should now be safe to compute all of the
10511 physnames. */
10512 compute_delayed_physnames (cu);
10513 do_cleanups (delayed_list_cleanup);
10514
10515 /* Some compilers don't define a DW_AT_high_pc attribute for the
10516 compilation unit. If the DW_AT_high_pc is missing, synthesize
10517 it, by scanning the DIE's below the compilation unit. */
10518 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
10519
10520 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
10521 static_block = end_symtab_get_static_block (addr, 0, 1);
10522
10523 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
10524 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
10525 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
10526 addrmap to help ensure it has an accurate map of pc values belonging to
10527 this comp unit. */
10528 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
10529
10530 cust = end_symtab_from_static_block (static_block,
10531 SECT_OFF_TEXT (objfile), 0);
10532
10533 if (cust != NULL)
10534 {
10535 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
10536
10537 /* Set symtab language to language from DW_AT_language. If the
10538 compilation is from a C file generated by language preprocessors, do
10539 not set the language if it was already deduced by start_subfile. */
10540 if (!(cu->language == language_c
10541 && COMPUNIT_FILETABS (cust)->language != language_unknown))
10542 COMPUNIT_FILETABS (cust)->language = cu->language;
10543
10544 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
10545 produce DW_AT_location with location lists but it can be possibly
10546 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
10547 there were bugs in prologue debug info, fixed later in GCC-4.5
10548 by "unwind info for epilogues" patch (which is not directly related).
10549
10550 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
10551 needed, it would be wrong due to missing DW_AT_producer there.
10552
10553 Still one can confuse GDB by using non-standard GCC compilation
10554 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
10555 */
10556 if (cu->has_loclist && gcc_4_minor >= 5)
10557 cust->locations_valid = 1;
10558
10559 if (gcc_4_minor >= 5)
10560 cust->epilogue_unwind_valid = 1;
10561
10562 cust->call_site_htab = cu->call_site_htab;
10563 }
10564
10565 if (dwarf2_per_objfile->using_index)
10566 per_cu->v.quick->compunit_symtab = cust;
10567 else
10568 {
10569 struct partial_symtab *pst = per_cu->v.psymtab;
10570 pst->compunit_symtab = cust;
10571 pst->readin = 1;
10572 }
10573
10574 /* Push it for inclusion processing later. */
10575 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
10576 }
10577
10578 /* Generate full symbol information for type unit PER_CU, whose DIEs have
10579 already been loaded into memory. */
10580
10581 static void
10582 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
10583 enum language pretend_language)
10584 {
10585 struct dwarf2_cu *cu = per_cu->cu;
10586 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10587 struct objfile *objfile = dwarf2_per_objfile->objfile;
10588 struct compunit_symtab *cust;
10589 struct cleanup *delayed_list_cleanup;
10590 struct signatured_type *sig_type;
10591
10592 gdb_assert (per_cu->is_debug_types);
10593 sig_type = (struct signatured_type *) per_cu;
10594
10595 buildsym_init ();
10596 scoped_free_pendings free_pending;
10597 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
10598
10599 cu->list_in_scope = &file_symbols;
10600
10601 cu->language = pretend_language;
10602 cu->language_defn = language_def (cu->language);
10603
10604 /* The symbol tables are set up in read_type_unit_scope. */
10605 process_die (cu->dies, cu);
10606
10607 /* For now fudge the Go package. */
10608 if (cu->language == language_go)
10609 fixup_go_packaging (cu);
10610
10611 /* Now that we have processed all the DIEs in the CU, all the types
10612 should be complete, and it should now be safe to compute all of the
10613 physnames. */
10614 compute_delayed_physnames (cu);
10615 do_cleanups (delayed_list_cleanup);
10616
10617 /* TUs share symbol tables.
10618 If this is the first TU to use this symtab, complete the construction
10619 of it with end_expandable_symtab. Otherwise, complete the addition of
10620 this TU's symbols to the existing symtab. */
10621 if (sig_type->type_unit_group->compunit_symtab == NULL)
10622 {
10623 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
10624 sig_type->type_unit_group->compunit_symtab = cust;
10625
10626 if (cust != NULL)
10627 {
10628 /* Set symtab language to language from DW_AT_language. If the
10629 compilation is from a C file generated by language preprocessors,
10630 do not set the language if it was already deduced by
10631 start_subfile. */
10632 if (!(cu->language == language_c
10633 && COMPUNIT_FILETABS (cust)->language != language_c))
10634 COMPUNIT_FILETABS (cust)->language = cu->language;
10635 }
10636 }
10637 else
10638 {
10639 augment_type_symtab ();
10640 cust = sig_type->type_unit_group->compunit_symtab;
10641 }
10642
10643 if (dwarf2_per_objfile->using_index)
10644 per_cu->v.quick->compunit_symtab = cust;
10645 else
10646 {
10647 struct partial_symtab *pst = per_cu->v.psymtab;
10648 pst->compunit_symtab = cust;
10649 pst->readin = 1;
10650 }
10651 }
10652
10653 /* Process an imported unit DIE. */
10654
10655 static void
10656 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
10657 {
10658 struct attribute *attr;
10659
10660 /* For now we don't handle imported units in type units. */
10661 if (cu->per_cu->is_debug_types)
10662 {
10663 error (_("Dwarf Error: DW_TAG_imported_unit is not"
10664 " supported in type units [in module %s]"),
10665 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
10666 }
10667
10668 attr = dwarf2_attr (die, DW_AT_import, cu);
10669 if (attr != NULL)
10670 {
10671 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
10672 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
10673 dwarf2_per_cu_data *per_cu
10674 = dwarf2_find_containing_comp_unit (sect_off, is_dwz,
10675 cu->per_cu->dwarf2_per_objfile);
10676
10677 /* If necessary, add it to the queue and load its DIEs. */
10678 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
10679 load_full_comp_unit (per_cu, cu->language);
10680
10681 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
10682 per_cu);
10683 }
10684 }
10685
10686 /* RAII object that represents a process_die scope: i.e.,
10687 starts/finishes processing a DIE. */
10688 class process_die_scope
10689 {
10690 public:
10691 process_die_scope (die_info *die, dwarf2_cu *cu)
10692 : m_die (die), m_cu (cu)
10693 {
10694 /* We should only be processing DIEs not already in process. */
10695 gdb_assert (!m_die->in_process);
10696 m_die->in_process = true;
10697 }
10698
10699 ~process_die_scope ()
10700 {
10701 m_die->in_process = false;
10702
10703 /* If we're done processing the DIE for the CU that owns the line
10704 header, we don't need the line header anymore. */
10705 if (m_cu->line_header_die_owner == m_die)
10706 {
10707 delete m_cu->line_header;
10708 m_cu->line_header = NULL;
10709 m_cu->line_header_die_owner = NULL;
10710 }
10711 }
10712
10713 private:
10714 die_info *m_die;
10715 dwarf2_cu *m_cu;
10716 };
10717
10718 /* Process a die and its children. */
10719
10720 static void
10721 process_die (struct die_info *die, struct dwarf2_cu *cu)
10722 {
10723 process_die_scope scope (die, cu);
10724
10725 switch (die->tag)
10726 {
10727 case DW_TAG_padding:
10728 break;
10729 case DW_TAG_compile_unit:
10730 case DW_TAG_partial_unit:
10731 read_file_scope (die, cu);
10732 break;
10733 case DW_TAG_type_unit:
10734 read_type_unit_scope (die, cu);
10735 break;
10736 case DW_TAG_subprogram:
10737 case DW_TAG_inlined_subroutine:
10738 read_func_scope (die, cu);
10739 break;
10740 case DW_TAG_lexical_block:
10741 case DW_TAG_try_block:
10742 case DW_TAG_catch_block:
10743 read_lexical_block_scope (die, cu);
10744 break;
10745 case DW_TAG_call_site:
10746 case DW_TAG_GNU_call_site:
10747 read_call_site_scope (die, cu);
10748 break;
10749 case DW_TAG_class_type:
10750 case DW_TAG_interface_type:
10751 case DW_TAG_structure_type:
10752 case DW_TAG_union_type:
10753 process_structure_scope (die, cu);
10754 break;
10755 case DW_TAG_enumeration_type:
10756 process_enumeration_scope (die, cu);
10757 break;
10758
10759 /* These dies have a type, but processing them does not create
10760 a symbol or recurse to process the children. Therefore we can
10761 read them on-demand through read_type_die. */
10762 case DW_TAG_subroutine_type:
10763 case DW_TAG_set_type:
10764 case DW_TAG_array_type:
10765 case DW_TAG_pointer_type:
10766 case DW_TAG_ptr_to_member_type:
10767 case DW_TAG_reference_type:
10768 case DW_TAG_rvalue_reference_type:
10769 case DW_TAG_string_type:
10770 break;
10771
10772 case DW_TAG_base_type:
10773 case DW_TAG_subrange_type:
10774 case DW_TAG_typedef:
10775 /* Add a typedef symbol for the type definition, if it has a
10776 DW_AT_name. */
10777 new_symbol (die, read_type_die (die, cu), cu);
10778 break;
10779 case DW_TAG_common_block:
10780 read_common_block (die, cu);
10781 break;
10782 case DW_TAG_common_inclusion:
10783 break;
10784 case DW_TAG_namespace:
10785 cu->processing_has_namespace_info = 1;
10786 read_namespace (die, cu);
10787 break;
10788 case DW_TAG_module:
10789 cu->processing_has_namespace_info = 1;
10790 read_module (die, cu);
10791 break;
10792 case DW_TAG_imported_declaration:
10793 cu->processing_has_namespace_info = 1;
10794 if (read_namespace_alias (die, cu))
10795 break;
10796 /* The declaration is not a global namespace alias: fall through. */
10797 case DW_TAG_imported_module:
10798 cu->processing_has_namespace_info = 1;
10799 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
10800 || cu->language != language_fortran))
10801 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
10802 dwarf_tag_name (die->tag));
10803 read_import_statement (die, cu);
10804 break;
10805
10806 case DW_TAG_imported_unit:
10807 process_imported_unit_die (die, cu);
10808 break;
10809
10810 case DW_TAG_variable:
10811 read_variable (die, cu);
10812 break;
10813
10814 default:
10815 new_symbol (die, NULL, cu);
10816 break;
10817 }
10818 }
10819 \f
10820 /* DWARF name computation. */
10821
10822 /* A helper function for dwarf2_compute_name which determines whether DIE
10823 needs to have the name of the scope prepended to the name listed in the
10824 die. */
10825
10826 static int
10827 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
10828 {
10829 struct attribute *attr;
10830
10831 switch (die->tag)
10832 {
10833 case DW_TAG_namespace:
10834 case DW_TAG_typedef:
10835 case DW_TAG_class_type:
10836 case DW_TAG_interface_type:
10837 case DW_TAG_structure_type:
10838 case DW_TAG_union_type:
10839 case DW_TAG_enumeration_type:
10840 case DW_TAG_enumerator:
10841 case DW_TAG_subprogram:
10842 case DW_TAG_inlined_subroutine:
10843 case DW_TAG_member:
10844 case DW_TAG_imported_declaration:
10845 return 1;
10846
10847 case DW_TAG_variable:
10848 case DW_TAG_constant:
10849 /* We only need to prefix "globally" visible variables. These include
10850 any variable marked with DW_AT_external or any variable that
10851 lives in a namespace. [Variables in anonymous namespaces
10852 require prefixing, but they are not DW_AT_external.] */
10853
10854 if (dwarf2_attr (die, DW_AT_specification, cu))
10855 {
10856 struct dwarf2_cu *spec_cu = cu;
10857
10858 return die_needs_namespace (die_specification (die, &spec_cu),
10859 spec_cu);
10860 }
10861
10862 attr = dwarf2_attr (die, DW_AT_external, cu);
10863 if (attr == NULL && die->parent->tag != DW_TAG_namespace
10864 && die->parent->tag != DW_TAG_module)
10865 return 0;
10866 /* A variable in a lexical block of some kind does not need a
10867 namespace, even though in C++ such variables may be external
10868 and have a mangled name. */
10869 if (die->parent->tag == DW_TAG_lexical_block
10870 || die->parent->tag == DW_TAG_try_block
10871 || die->parent->tag == DW_TAG_catch_block
10872 || die->parent->tag == DW_TAG_subprogram)
10873 return 0;
10874 return 1;
10875
10876 default:
10877 return 0;
10878 }
10879 }
10880
10881 /* Return the DIE's linkage name attribute, either DW_AT_linkage_name
10882 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10883 defined for the given DIE. */
10884
10885 static struct attribute *
10886 dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
10887 {
10888 struct attribute *attr;
10889
10890 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
10891 if (attr == NULL)
10892 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
10893
10894 return attr;
10895 }
10896
10897 /* Return the DIE's linkage name as a string, either DW_AT_linkage_name
10898 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10899 defined for the given DIE. */
10900
10901 static const char *
10902 dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
10903 {
10904 const char *linkage_name;
10905
10906 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
10907 if (linkage_name == NULL)
10908 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
10909
10910 return linkage_name;
10911 }
10912
10913 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
10914 compute the physname for the object, which include a method's:
10915 - formal parameters (C++),
10916 - receiver type (Go),
10917
10918 The term "physname" is a bit confusing.
10919 For C++, for example, it is the demangled name.
10920 For Go, for example, it's the mangled name.
10921
10922 For Ada, return the DIE's linkage name rather than the fully qualified
10923 name. PHYSNAME is ignored..
10924
10925 The result is allocated on the objfile_obstack and canonicalized. */
10926
10927 static const char *
10928 dwarf2_compute_name (const char *name,
10929 struct die_info *die, struct dwarf2_cu *cu,
10930 int physname)
10931 {
10932 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10933
10934 if (name == NULL)
10935 name = dwarf2_name (die, cu);
10936
10937 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
10938 but otherwise compute it by typename_concat inside GDB.
10939 FIXME: Actually this is not really true, or at least not always true.
10940 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
10941 Fortran names because there is no mangling standard. So new_symbol_full
10942 will set the demangled name to the result of dwarf2_full_name, and it is
10943 the demangled name that GDB uses if it exists. */
10944 if (cu->language == language_ada
10945 || (cu->language == language_fortran && physname))
10946 {
10947 /* For Ada unit, we prefer the linkage name over the name, as
10948 the former contains the exported name, which the user expects
10949 to be able to reference. Ideally, we want the user to be able
10950 to reference this entity using either natural or linkage name,
10951 but we haven't started looking at this enhancement yet. */
10952 const char *linkage_name = dw2_linkage_name (die, cu);
10953
10954 if (linkage_name != NULL)
10955 return linkage_name;
10956 }
10957
10958 /* These are the only languages we know how to qualify names in. */
10959 if (name != NULL
10960 && (cu->language == language_cplus
10961 || cu->language == language_fortran || cu->language == language_d
10962 || cu->language == language_rust))
10963 {
10964 if (die_needs_namespace (die, cu))
10965 {
10966 const char *prefix;
10967 const char *canonical_name = NULL;
10968
10969 string_file buf;
10970
10971 prefix = determine_prefix (die, cu);
10972 if (*prefix != '\0')
10973 {
10974 char *prefixed_name = typename_concat (NULL, prefix, name,
10975 physname, cu);
10976
10977 buf.puts (prefixed_name);
10978 xfree (prefixed_name);
10979 }
10980 else
10981 buf.puts (name);
10982
10983 /* Template parameters may be specified in the DIE's DW_AT_name, or
10984 as children with DW_TAG_template_type_param or
10985 DW_TAG_value_type_param. If the latter, add them to the name
10986 here. If the name already has template parameters, then
10987 skip this step; some versions of GCC emit both, and
10988 it is more efficient to use the pre-computed name.
10989
10990 Something to keep in mind about this process: it is very
10991 unlikely, or in some cases downright impossible, to produce
10992 something that will match the mangled name of a function.
10993 If the definition of the function has the same debug info,
10994 we should be able to match up with it anyway. But fallbacks
10995 using the minimal symbol, for instance to find a method
10996 implemented in a stripped copy of libstdc++, will not work.
10997 If we do not have debug info for the definition, we will have to
10998 match them up some other way.
10999
11000 When we do name matching there is a related problem with function
11001 templates; two instantiated function templates are allowed to
11002 differ only by their return types, which we do not add here. */
11003
11004 if (cu->language == language_cplus && strchr (name, '<') == NULL)
11005 {
11006 struct attribute *attr;
11007 struct die_info *child;
11008 int first = 1;
11009
11010 die->building_fullname = 1;
11011
11012 for (child = die->child; child != NULL; child = child->sibling)
11013 {
11014 struct type *type;
11015 LONGEST value;
11016 const gdb_byte *bytes;
11017 struct dwarf2_locexpr_baton *baton;
11018 struct value *v;
11019
11020 if (child->tag != DW_TAG_template_type_param
11021 && child->tag != DW_TAG_template_value_param)
11022 continue;
11023
11024 if (first)
11025 {
11026 buf.puts ("<");
11027 first = 0;
11028 }
11029 else
11030 buf.puts (", ");
11031
11032 attr = dwarf2_attr (child, DW_AT_type, cu);
11033 if (attr == NULL)
11034 {
11035 complaint (&symfile_complaints,
11036 _("template parameter missing DW_AT_type"));
11037 buf.puts ("UNKNOWN_TYPE");
11038 continue;
11039 }
11040 type = die_type (child, cu);
11041
11042 if (child->tag == DW_TAG_template_type_param)
11043 {
11044 c_print_type (type, "", &buf, -1, 0, &type_print_raw_options);
11045 continue;
11046 }
11047
11048 attr = dwarf2_attr (child, DW_AT_const_value, cu);
11049 if (attr == NULL)
11050 {
11051 complaint (&symfile_complaints,
11052 _("template parameter missing "
11053 "DW_AT_const_value"));
11054 buf.puts ("UNKNOWN_VALUE");
11055 continue;
11056 }
11057
11058 dwarf2_const_value_attr (attr, type, name,
11059 &cu->comp_unit_obstack, cu,
11060 &value, &bytes, &baton);
11061
11062 if (TYPE_NOSIGN (type))
11063 /* GDB prints characters as NUMBER 'CHAR'. If that's
11064 changed, this can use value_print instead. */
11065 c_printchar (value, type, &buf);
11066 else
11067 {
11068 struct value_print_options opts;
11069
11070 if (baton != NULL)
11071 v = dwarf2_evaluate_loc_desc (type, NULL,
11072 baton->data,
11073 baton->size,
11074 baton->per_cu);
11075 else if (bytes != NULL)
11076 {
11077 v = allocate_value (type);
11078 memcpy (value_contents_writeable (v), bytes,
11079 TYPE_LENGTH (type));
11080 }
11081 else
11082 v = value_from_longest (type, value);
11083
11084 /* Specify decimal so that we do not depend on
11085 the radix. */
11086 get_formatted_print_options (&opts, 'd');
11087 opts.raw = 1;
11088 value_print (v, &buf, &opts);
11089 release_value (v);
11090 value_free (v);
11091 }
11092 }
11093
11094 die->building_fullname = 0;
11095
11096 if (!first)
11097 {
11098 /* Close the argument list, with a space if necessary
11099 (nested templates). */
11100 if (!buf.empty () && buf.string ().back () == '>')
11101 buf.puts (" >");
11102 else
11103 buf.puts (">");
11104 }
11105 }
11106
11107 /* For C++ methods, append formal parameter type
11108 information, if PHYSNAME. */
11109
11110 if (physname && die->tag == DW_TAG_subprogram
11111 && cu->language == language_cplus)
11112 {
11113 struct type *type = read_type_die (die, cu);
11114
11115 c_type_print_args (type, &buf, 1, cu->language,
11116 &type_print_raw_options);
11117
11118 if (cu->language == language_cplus)
11119 {
11120 /* Assume that an artificial first parameter is
11121 "this", but do not crash if it is not. RealView
11122 marks unnamed (and thus unused) parameters as
11123 artificial; there is no way to differentiate
11124 the two cases. */
11125 if (TYPE_NFIELDS (type) > 0
11126 && TYPE_FIELD_ARTIFICIAL (type, 0)
11127 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
11128 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
11129 0))))
11130 buf.puts (" const");
11131 }
11132 }
11133
11134 const std::string &intermediate_name = buf.string ();
11135
11136 if (cu->language == language_cplus)
11137 canonical_name
11138 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
11139 &objfile->per_bfd->storage_obstack);
11140
11141 /* If we only computed INTERMEDIATE_NAME, or if
11142 INTERMEDIATE_NAME is already canonical, then we need to
11143 copy it to the appropriate obstack. */
11144 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
11145 name = ((const char *)
11146 obstack_copy0 (&objfile->per_bfd->storage_obstack,
11147 intermediate_name.c_str (),
11148 intermediate_name.length ()));
11149 else
11150 name = canonical_name;
11151 }
11152 }
11153
11154 return name;
11155 }
11156
11157 /* Return the fully qualified name of DIE, based on its DW_AT_name.
11158 If scope qualifiers are appropriate they will be added. The result
11159 will be allocated on the storage_obstack, or NULL if the DIE does
11160 not have a name. NAME may either be from a previous call to
11161 dwarf2_name or NULL.
11162
11163 The output string will be canonicalized (if C++). */
11164
11165 static const char *
11166 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
11167 {
11168 return dwarf2_compute_name (name, die, cu, 0);
11169 }
11170
11171 /* Construct a physname for the given DIE in CU. NAME may either be
11172 from a previous call to dwarf2_name or NULL. The result will be
11173 allocated on the objfile_objstack or NULL if the DIE does not have a
11174 name.
11175
11176 The output string will be canonicalized (if C++). */
11177
11178 static const char *
11179 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
11180 {
11181 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11182 const char *retval, *mangled = NULL, *canon = NULL;
11183 int need_copy = 1;
11184
11185 /* In this case dwarf2_compute_name is just a shortcut not building anything
11186 on its own. */
11187 if (!die_needs_namespace (die, cu))
11188 return dwarf2_compute_name (name, die, cu, 1);
11189
11190 mangled = dw2_linkage_name (die, cu);
11191
11192 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
11193 See https://github.com/rust-lang/rust/issues/32925. */
11194 if (cu->language == language_rust && mangled != NULL
11195 && strchr (mangled, '{') != NULL)
11196 mangled = NULL;
11197
11198 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
11199 has computed. */
11200 gdb::unique_xmalloc_ptr<char> demangled;
11201 if (mangled != NULL)
11202 {
11203 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
11204 type. It is easier for GDB users to search for such functions as
11205 `name(params)' than `long name(params)'. In such case the minimal
11206 symbol names do not match the full symbol names but for template
11207 functions there is never a need to look up their definition from their
11208 declaration so the only disadvantage remains the minimal symbol
11209 variant `long name(params)' does not have the proper inferior type.
11210 */
11211
11212 if (cu->language == language_go)
11213 {
11214 /* This is a lie, but we already lie to the caller new_symbol_full.
11215 new_symbol_full assumes we return the mangled name.
11216 This just undoes that lie until things are cleaned up. */
11217 }
11218 else
11219 {
11220 demangled.reset (gdb_demangle (mangled,
11221 (DMGL_PARAMS | DMGL_ANSI
11222 | DMGL_RET_DROP)));
11223 }
11224 if (demangled)
11225 canon = demangled.get ();
11226 else
11227 {
11228 canon = mangled;
11229 need_copy = 0;
11230 }
11231 }
11232
11233 if (canon == NULL || check_physname)
11234 {
11235 const char *physname = dwarf2_compute_name (name, die, cu, 1);
11236
11237 if (canon != NULL && strcmp (physname, canon) != 0)
11238 {
11239 /* It may not mean a bug in GDB. The compiler could also
11240 compute DW_AT_linkage_name incorrectly. But in such case
11241 GDB would need to be bug-to-bug compatible. */
11242
11243 complaint (&symfile_complaints,
11244 _("Computed physname <%s> does not match demangled <%s> "
11245 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
11246 physname, canon, mangled, to_underlying (die->sect_off),
11247 objfile_name (objfile));
11248
11249 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
11250 is available here - over computed PHYSNAME. It is safer
11251 against both buggy GDB and buggy compilers. */
11252
11253 retval = canon;
11254 }
11255 else
11256 {
11257 retval = physname;
11258 need_copy = 0;
11259 }
11260 }
11261 else
11262 retval = canon;
11263
11264 if (need_copy)
11265 retval = ((const char *)
11266 obstack_copy0 (&objfile->per_bfd->storage_obstack,
11267 retval, strlen (retval)));
11268
11269 return retval;
11270 }
11271
11272 /* Inspect DIE in CU for a namespace alias. If one exists, record
11273 a new symbol for it.
11274
11275 Returns 1 if a namespace alias was recorded, 0 otherwise. */
11276
11277 static int
11278 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
11279 {
11280 struct attribute *attr;
11281
11282 /* If the die does not have a name, this is not a namespace
11283 alias. */
11284 attr = dwarf2_attr (die, DW_AT_name, cu);
11285 if (attr != NULL)
11286 {
11287 int num;
11288 struct die_info *d = die;
11289 struct dwarf2_cu *imported_cu = cu;
11290
11291 /* If the compiler has nested DW_AT_imported_declaration DIEs,
11292 keep inspecting DIEs until we hit the underlying import. */
11293 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
11294 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
11295 {
11296 attr = dwarf2_attr (d, DW_AT_import, cu);
11297 if (attr == NULL)
11298 break;
11299
11300 d = follow_die_ref (d, attr, &imported_cu);
11301 if (d->tag != DW_TAG_imported_declaration)
11302 break;
11303 }
11304
11305 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
11306 {
11307 complaint (&symfile_complaints,
11308 _("DIE at 0x%x has too many recursively imported "
11309 "declarations"), to_underlying (d->sect_off));
11310 return 0;
11311 }
11312
11313 if (attr != NULL)
11314 {
11315 struct type *type;
11316 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
11317
11318 type = get_die_type_at_offset (sect_off, cu->per_cu);
11319 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
11320 {
11321 /* This declaration is a global namespace alias. Add
11322 a symbol for it whose type is the aliased namespace. */
11323 new_symbol (die, type, cu);
11324 return 1;
11325 }
11326 }
11327 }
11328
11329 return 0;
11330 }
11331
11332 /* Return the using directives repository (global or local?) to use in the
11333 current context for LANGUAGE.
11334
11335 For Ada, imported declarations can materialize renamings, which *may* be
11336 global. However it is impossible (for now?) in DWARF to distinguish
11337 "external" imported declarations and "static" ones. As all imported
11338 declarations seem to be static in all other languages, make them all CU-wide
11339 global only in Ada. */
11340
11341 static struct using_direct **
11342 using_directives (enum language language)
11343 {
11344 if (language == language_ada && context_stack_depth == 0)
11345 return &global_using_directives;
11346 else
11347 return &local_using_directives;
11348 }
11349
11350 /* Read the import statement specified by the given die and record it. */
11351
11352 static void
11353 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
11354 {
11355 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11356 struct attribute *import_attr;
11357 struct die_info *imported_die, *child_die;
11358 struct dwarf2_cu *imported_cu;
11359 const char *imported_name;
11360 const char *imported_name_prefix;
11361 const char *canonical_name;
11362 const char *import_alias;
11363 const char *imported_declaration = NULL;
11364 const char *import_prefix;
11365 std::vector<const char *> excludes;
11366
11367 import_attr = dwarf2_attr (die, DW_AT_import, cu);
11368 if (import_attr == NULL)
11369 {
11370 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
11371 dwarf_tag_name (die->tag));
11372 return;
11373 }
11374
11375 imported_cu = cu;
11376 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
11377 imported_name = dwarf2_name (imported_die, imported_cu);
11378 if (imported_name == NULL)
11379 {
11380 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
11381
11382 The import in the following code:
11383 namespace A
11384 {
11385 typedef int B;
11386 }
11387
11388 int main ()
11389 {
11390 using A::B;
11391 B b;
11392 return b;
11393 }
11394
11395 ...
11396 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
11397 <52> DW_AT_decl_file : 1
11398 <53> DW_AT_decl_line : 6
11399 <54> DW_AT_import : <0x75>
11400 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
11401 <59> DW_AT_name : B
11402 <5b> DW_AT_decl_file : 1
11403 <5c> DW_AT_decl_line : 2
11404 <5d> DW_AT_type : <0x6e>
11405 ...
11406 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
11407 <76> DW_AT_byte_size : 4
11408 <77> DW_AT_encoding : 5 (signed)
11409
11410 imports the wrong die ( 0x75 instead of 0x58 ).
11411 This case will be ignored until the gcc bug is fixed. */
11412 return;
11413 }
11414
11415 /* Figure out the local name after import. */
11416 import_alias = dwarf2_name (die, cu);
11417
11418 /* Figure out where the statement is being imported to. */
11419 import_prefix = determine_prefix (die, cu);
11420
11421 /* Figure out what the scope of the imported die is and prepend it
11422 to the name of the imported die. */
11423 imported_name_prefix = determine_prefix (imported_die, imported_cu);
11424
11425 if (imported_die->tag != DW_TAG_namespace
11426 && imported_die->tag != DW_TAG_module)
11427 {
11428 imported_declaration = imported_name;
11429 canonical_name = imported_name_prefix;
11430 }
11431 else if (strlen (imported_name_prefix) > 0)
11432 canonical_name = obconcat (&objfile->objfile_obstack,
11433 imported_name_prefix,
11434 (cu->language == language_d ? "." : "::"),
11435 imported_name, (char *) NULL);
11436 else
11437 canonical_name = imported_name;
11438
11439 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
11440 for (child_die = die->child; child_die && child_die->tag;
11441 child_die = sibling_die (child_die))
11442 {
11443 /* DWARF-4: A Fortran use statement with a “rename list” may be
11444 represented by an imported module entry with an import attribute
11445 referring to the module and owned entries corresponding to those
11446 entities that are renamed as part of being imported. */
11447
11448 if (child_die->tag != DW_TAG_imported_declaration)
11449 {
11450 complaint (&symfile_complaints,
11451 _("child DW_TAG_imported_declaration expected "
11452 "- DIE at 0x%x [in module %s]"),
11453 to_underlying (child_die->sect_off), objfile_name (objfile));
11454 continue;
11455 }
11456
11457 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
11458 if (import_attr == NULL)
11459 {
11460 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
11461 dwarf_tag_name (child_die->tag));
11462 continue;
11463 }
11464
11465 imported_cu = cu;
11466 imported_die = follow_die_ref_or_sig (child_die, import_attr,
11467 &imported_cu);
11468 imported_name = dwarf2_name (imported_die, imported_cu);
11469 if (imported_name == NULL)
11470 {
11471 complaint (&symfile_complaints,
11472 _("child DW_TAG_imported_declaration has unknown "
11473 "imported name - DIE at 0x%x [in module %s]"),
11474 to_underlying (child_die->sect_off), objfile_name (objfile));
11475 continue;
11476 }
11477
11478 excludes.push_back (imported_name);
11479
11480 process_die (child_die, cu);
11481 }
11482
11483 add_using_directive (using_directives (cu->language),
11484 import_prefix,
11485 canonical_name,
11486 import_alias,
11487 imported_declaration,
11488 excludes,
11489 0,
11490 &objfile->objfile_obstack);
11491 }
11492
11493 /* ICC<14 does not output the required DW_AT_declaration on incomplete
11494 types, but gives them a size of zero. Starting with version 14,
11495 ICC is compatible with GCC. */
11496
11497 static int
11498 producer_is_icc_lt_14 (struct dwarf2_cu *cu)
11499 {
11500 if (!cu->checked_producer)
11501 check_producer (cu);
11502
11503 return cu->producer_is_icc_lt_14;
11504 }
11505
11506 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
11507 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
11508 this, it was first present in GCC release 4.3.0. */
11509
11510 static int
11511 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
11512 {
11513 if (!cu->checked_producer)
11514 check_producer (cu);
11515
11516 return cu->producer_is_gcc_lt_4_3;
11517 }
11518
11519 static file_and_directory
11520 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
11521 {
11522 file_and_directory res;
11523
11524 /* Find the filename. Do not use dwarf2_name here, since the filename
11525 is not a source language identifier. */
11526 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
11527 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
11528
11529 if (res.comp_dir == NULL
11530 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
11531 && IS_ABSOLUTE_PATH (res.name))
11532 {
11533 res.comp_dir_storage = ldirname (res.name);
11534 if (!res.comp_dir_storage.empty ())
11535 res.comp_dir = res.comp_dir_storage.c_str ();
11536 }
11537 if (res.comp_dir != NULL)
11538 {
11539 /* Irix 6.2 native cc prepends <machine>.: to the compilation
11540 directory, get rid of it. */
11541 const char *cp = strchr (res.comp_dir, ':');
11542
11543 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
11544 res.comp_dir = cp + 1;
11545 }
11546
11547 if (res.name == NULL)
11548 res.name = "<unknown>";
11549
11550 return res;
11551 }
11552
11553 /* Handle DW_AT_stmt_list for a compilation unit.
11554 DIE is the DW_TAG_compile_unit die for CU.
11555 COMP_DIR is the compilation directory. LOWPC is passed to
11556 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
11557
11558 static void
11559 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
11560 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
11561 {
11562 struct dwarf2_per_objfile *dwarf2_per_objfile
11563 = cu->per_cu->dwarf2_per_objfile;
11564 struct objfile *objfile = dwarf2_per_objfile->objfile;
11565 struct attribute *attr;
11566 struct line_header line_header_local;
11567 hashval_t line_header_local_hash;
11568 void **slot;
11569 int decode_mapping;
11570
11571 gdb_assert (! cu->per_cu->is_debug_types);
11572
11573 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11574 if (attr == NULL)
11575 return;
11576
11577 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11578
11579 /* The line header hash table is only created if needed (it exists to
11580 prevent redundant reading of the line table for partial_units).
11581 If we're given a partial_unit, we'll need it. If we're given a
11582 compile_unit, then use the line header hash table if it's already
11583 created, but don't create one just yet. */
11584
11585 if (dwarf2_per_objfile->line_header_hash == NULL
11586 && die->tag == DW_TAG_partial_unit)
11587 {
11588 dwarf2_per_objfile->line_header_hash
11589 = htab_create_alloc_ex (127, line_header_hash_voidp,
11590 line_header_eq_voidp,
11591 free_line_header_voidp,
11592 &objfile->objfile_obstack,
11593 hashtab_obstack_allocate,
11594 dummy_obstack_deallocate);
11595 }
11596
11597 line_header_local.sect_off = line_offset;
11598 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
11599 line_header_local_hash = line_header_hash (&line_header_local);
11600 if (dwarf2_per_objfile->line_header_hash != NULL)
11601 {
11602 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11603 &line_header_local,
11604 line_header_local_hash, NO_INSERT);
11605
11606 /* For DW_TAG_compile_unit we need info like symtab::linetable which
11607 is not present in *SLOT (since if there is something in *SLOT then
11608 it will be for a partial_unit). */
11609 if (die->tag == DW_TAG_partial_unit && slot != NULL)
11610 {
11611 gdb_assert (*slot != NULL);
11612 cu->line_header = (struct line_header *) *slot;
11613 return;
11614 }
11615 }
11616
11617 /* dwarf_decode_line_header does not yet provide sufficient information.
11618 We always have to call also dwarf_decode_lines for it. */
11619 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
11620 if (lh == NULL)
11621 return;
11622
11623 cu->line_header = lh.release ();
11624 cu->line_header_die_owner = die;
11625
11626 if (dwarf2_per_objfile->line_header_hash == NULL)
11627 slot = NULL;
11628 else
11629 {
11630 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11631 &line_header_local,
11632 line_header_local_hash, INSERT);
11633 gdb_assert (slot != NULL);
11634 }
11635 if (slot != NULL && *slot == NULL)
11636 {
11637 /* This newly decoded line number information unit will be owned
11638 by line_header_hash hash table. */
11639 *slot = cu->line_header;
11640 cu->line_header_die_owner = NULL;
11641 }
11642 else
11643 {
11644 /* We cannot free any current entry in (*slot) as that struct line_header
11645 may be already used by multiple CUs. Create only temporary decoded
11646 line_header for this CU - it may happen at most once for each line
11647 number information unit. And if we're not using line_header_hash
11648 then this is what we want as well. */
11649 gdb_assert (die->tag != DW_TAG_partial_unit);
11650 }
11651 decode_mapping = (die->tag != DW_TAG_partial_unit);
11652 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
11653 decode_mapping);
11654
11655 }
11656
11657 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
11658
11659 static void
11660 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
11661 {
11662 struct dwarf2_per_objfile *dwarf2_per_objfile
11663 = cu->per_cu->dwarf2_per_objfile;
11664 struct objfile *objfile = dwarf2_per_objfile->objfile;
11665 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11666 CORE_ADDR lowpc = ((CORE_ADDR) -1);
11667 CORE_ADDR highpc = ((CORE_ADDR) 0);
11668 struct attribute *attr;
11669 struct die_info *child_die;
11670 CORE_ADDR baseaddr;
11671
11672 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11673
11674 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
11675
11676 /* If we didn't find a lowpc, set it to highpc to avoid complaints
11677 from finish_block. */
11678 if (lowpc == ((CORE_ADDR) -1))
11679 lowpc = highpc;
11680 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11681
11682 file_and_directory fnd = find_file_and_directory (die, cu);
11683
11684 prepare_one_comp_unit (cu, die, cu->language);
11685
11686 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
11687 standardised yet. As a workaround for the language detection we fall
11688 back to the DW_AT_producer string. */
11689 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
11690 cu->language = language_opencl;
11691
11692 /* Similar hack for Go. */
11693 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
11694 set_cu_language (DW_LANG_Go, cu);
11695
11696 dwarf2_start_symtab (cu, fnd.name, fnd.comp_dir, lowpc);
11697
11698 /* Decode line number information if present. We do this before
11699 processing child DIEs, so that the line header table is available
11700 for DW_AT_decl_file. */
11701 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
11702
11703 /* Process all dies in compilation unit. */
11704 if (die->child != NULL)
11705 {
11706 child_die = die->child;
11707 while (child_die && child_die->tag)
11708 {
11709 process_die (child_die, cu);
11710 child_die = sibling_die (child_die);
11711 }
11712 }
11713
11714 /* Decode macro information, if present. Dwarf 2 macro information
11715 refers to information in the line number info statement program
11716 header, so we can only read it if we've read the header
11717 successfully. */
11718 attr = dwarf2_attr (die, DW_AT_macros, cu);
11719 if (attr == NULL)
11720 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
11721 if (attr && cu->line_header)
11722 {
11723 if (dwarf2_attr (die, DW_AT_macro_info, cu))
11724 complaint (&symfile_complaints,
11725 _("CU refers to both DW_AT_macros and DW_AT_macro_info"));
11726
11727 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
11728 }
11729 else
11730 {
11731 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
11732 if (attr && cu->line_header)
11733 {
11734 unsigned int macro_offset = DW_UNSND (attr);
11735
11736 dwarf_decode_macros (cu, macro_offset, 0);
11737 }
11738 }
11739 }
11740
11741 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
11742 Create the set of symtabs used by this TU, or if this TU is sharing
11743 symtabs with another TU and the symtabs have already been created
11744 then restore those symtabs in the line header.
11745 We don't need the pc/line-number mapping for type units. */
11746
11747 static void
11748 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
11749 {
11750 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
11751 struct type_unit_group *tu_group;
11752 int first_time;
11753 struct attribute *attr;
11754 unsigned int i;
11755 struct signatured_type *sig_type;
11756
11757 gdb_assert (per_cu->is_debug_types);
11758 sig_type = (struct signatured_type *) per_cu;
11759
11760 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11761
11762 /* If we're using .gdb_index (includes -readnow) then
11763 per_cu->type_unit_group may not have been set up yet. */
11764 if (sig_type->type_unit_group == NULL)
11765 sig_type->type_unit_group = get_type_unit_group (cu, attr);
11766 tu_group = sig_type->type_unit_group;
11767
11768 /* If we've already processed this stmt_list there's no real need to
11769 do it again, we could fake it and just recreate the part we need
11770 (file name,index -> symtab mapping). If data shows this optimization
11771 is useful we can do it then. */
11772 first_time = tu_group->compunit_symtab == NULL;
11773
11774 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
11775 debug info. */
11776 line_header_up lh;
11777 if (attr != NULL)
11778 {
11779 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11780 lh = dwarf_decode_line_header (line_offset, cu);
11781 }
11782 if (lh == NULL)
11783 {
11784 if (first_time)
11785 dwarf2_start_symtab (cu, "", NULL, 0);
11786 else
11787 {
11788 gdb_assert (tu_group->symtabs == NULL);
11789 restart_symtab (tu_group->compunit_symtab, "", 0);
11790 }
11791 return;
11792 }
11793
11794 cu->line_header = lh.release ();
11795 cu->line_header_die_owner = die;
11796
11797 if (first_time)
11798 {
11799 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
11800
11801 /* Note: We don't assign tu_group->compunit_symtab yet because we're
11802 still initializing it, and our caller (a few levels up)
11803 process_full_type_unit still needs to know if this is the first
11804 time. */
11805
11806 tu_group->num_symtabs = cu->line_header->file_names.size ();
11807 tu_group->symtabs = XNEWVEC (struct symtab *,
11808 cu->line_header->file_names.size ());
11809
11810 for (i = 0; i < cu->line_header->file_names.size (); ++i)
11811 {
11812 file_entry &fe = cu->line_header->file_names[i];
11813
11814 dwarf2_start_subfile (fe.name, fe.include_dir (cu->line_header));
11815
11816 if (current_subfile->symtab == NULL)
11817 {
11818 /* NOTE: start_subfile will recognize when it's been
11819 passed a file it has already seen. So we can't
11820 assume there's a simple mapping from
11821 cu->line_header->file_names to subfiles, plus
11822 cu->line_header->file_names may contain dups. */
11823 current_subfile->symtab
11824 = allocate_symtab (cust, current_subfile->name);
11825 }
11826
11827 fe.symtab = current_subfile->symtab;
11828 tu_group->symtabs[i] = fe.symtab;
11829 }
11830 }
11831 else
11832 {
11833 restart_symtab (tu_group->compunit_symtab, "", 0);
11834
11835 for (i = 0; i < cu->line_header->file_names.size (); ++i)
11836 {
11837 file_entry &fe = cu->line_header->file_names[i];
11838
11839 fe.symtab = tu_group->symtabs[i];
11840 }
11841 }
11842
11843 /* The main symtab is allocated last. Type units don't have DW_AT_name
11844 so they don't have a "real" (so to speak) symtab anyway.
11845 There is later code that will assign the main symtab to all symbols
11846 that don't have one. We need to handle the case of a symbol with a
11847 missing symtab (DW_AT_decl_file) anyway. */
11848 }
11849
11850 /* Process DW_TAG_type_unit.
11851 For TUs we want to skip the first top level sibling if it's not the
11852 actual type being defined by this TU. In this case the first top
11853 level sibling is there to provide context only. */
11854
11855 static void
11856 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
11857 {
11858 struct die_info *child_die;
11859
11860 prepare_one_comp_unit (cu, die, language_minimal);
11861
11862 /* Initialize (or reinitialize) the machinery for building symtabs.
11863 We do this before processing child DIEs, so that the line header table
11864 is available for DW_AT_decl_file. */
11865 setup_type_unit_groups (die, cu);
11866
11867 if (die->child != NULL)
11868 {
11869 child_die = die->child;
11870 while (child_die && child_die->tag)
11871 {
11872 process_die (child_die, cu);
11873 child_die = sibling_die (child_die);
11874 }
11875 }
11876 }
11877 \f
11878 /* DWO/DWP files.
11879
11880 http://gcc.gnu.org/wiki/DebugFission
11881 http://gcc.gnu.org/wiki/DebugFissionDWP
11882
11883 To simplify handling of both DWO files ("object" files with the DWARF info)
11884 and DWP files (a file with the DWOs packaged up into one file), we treat
11885 DWP files as having a collection of virtual DWO files. */
11886
11887 static hashval_t
11888 hash_dwo_file (const void *item)
11889 {
11890 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
11891 hashval_t hash;
11892
11893 hash = htab_hash_string (dwo_file->dwo_name);
11894 if (dwo_file->comp_dir != NULL)
11895 hash += htab_hash_string (dwo_file->comp_dir);
11896 return hash;
11897 }
11898
11899 static int
11900 eq_dwo_file (const void *item_lhs, const void *item_rhs)
11901 {
11902 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
11903 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
11904
11905 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
11906 return 0;
11907 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
11908 return lhs->comp_dir == rhs->comp_dir;
11909 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
11910 }
11911
11912 /* Allocate a hash table for DWO files. */
11913
11914 static htab_t
11915 allocate_dwo_file_hash_table (struct objfile *objfile)
11916 {
11917 return htab_create_alloc_ex (41,
11918 hash_dwo_file,
11919 eq_dwo_file,
11920 NULL,
11921 &objfile->objfile_obstack,
11922 hashtab_obstack_allocate,
11923 dummy_obstack_deallocate);
11924 }
11925
11926 /* Lookup DWO file DWO_NAME. */
11927
11928 static void **
11929 lookup_dwo_file_slot (struct dwarf2_per_objfile *dwarf2_per_objfile,
11930 const char *dwo_name,
11931 const char *comp_dir)
11932 {
11933 struct dwo_file find_entry;
11934 void **slot;
11935
11936 if (dwarf2_per_objfile->dwo_files == NULL)
11937 dwarf2_per_objfile->dwo_files
11938 = allocate_dwo_file_hash_table (dwarf2_per_objfile->objfile);
11939
11940 memset (&find_entry, 0, sizeof (find_entry));
11941 find_entry.dwo_name = dwo_name;
11942 find_entry.comp_dir = comp_dir;
11943 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
11944
11945 return slot;
11946 }
11947
11948 static hashval_t
11949 hash_dwo_unit (const void *item)
11950 {
11951 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
11952
11953 /* This drops the top 32 bits of the id, but is ok for a hash. */
11954 return dwo_unit->signature;
11955 }
11956
11957 static int
11958 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
11959 {
11960 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
11961 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
11962
11963 /* The signature is assumed to be unique within the DWO file.
11964 So while object file CU dwo_id's always have the value zero,
11965 that's OK, assuming each object file DWO file has only one CU,
11966 and that's the rule for now. */
11967 return lhs->signature == rhs->signature;
11968 }
11969
11970 /* Allocate a hash table for DWO CUs,TUs.
11971 There is one of these tables for each of CUs,TUs for each DWO file. */
11972
11973 static htab_t
11974 allocate_dwo_unit_table (struct objfile *objfile)
11975 {
11976 /* Start out with a pretty small number.
11977 Generally DWO files contain only one CU and maybe some TUs. */
11978 return htab_create_alloc_ex (3,
11979 hash_dwo_unit,
11980 eq_dwo_unit,
11981 NULL,
11982 &objfile->objfile_obstack,
11983 hashtab_obstack_allocate,
11984 dummy_obstack_deallocate);
11985 }
11986
11987 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
11988
11989 struct create_dwo_cu_data
11990 {
11991 struct dwo_file *dwo_file;
11992 struct dwo_unit dwo_unit;
11993 };
11994
11995 /* die_reader_func for create_dwo_cu. */
11996
11997 static void
11998 create_dwo_cu_reader (const struct die_reader_specs *reader,
11999 const gdb_byte *info_ptr,
12000 struct die_info *comp_unit_die,
12001 int has_children,
12002 void *datap)
12003 {
12004 struct dwarf2_cu *cu = reader->cu;
12005 sect_offset sect_off = cu->per_cu->sect_off;
12006 struct dwarf2_section_info *section = cu->per_cu->section;
12007 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
12008 struct dwo_file *dwo_file = data->dwo_file;
12009 struct dwo_unit *dwo_unit = &data->dwo_unit;
12010 struct attribute *attr;
12011
12012 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
12013 if (attr == NULL)
12014 {
12015 complaint (&symfile_complaints,
12016 _("Dwarf Error: debug entry at offset 0x%x is missing"
12017 " its dwo_id [in module %s]"),
12018 to_underlying (sect_off), dwo_file->dwo_name);
12019 return;
12020 }
12021
12022 dwo_unit->dwo_file = dwo_file;
12023 dwo_unit->signature = DW_UNSND (attr);
12024 dwo_unit->section = section;
12025 dwo_unit->sect_off = sect_off;
12026 dwo_unit->length = cu->per_cu->length;
12027
12028 if (dwarf_read_debug)
12029 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
12030 to_underlying (sect_off),
12031 hex_string (dwo_unit->signature));
12032 }
12033
12034 /* Create the dwo_units for the CUs in a DWO_FILE.
12035 Note: This function processes DWO files only, not DWP files. */
12036
12037 static void
12038 create_cus_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
12039 struct dwo_file &dwo_file, dwarf2_section_info &section,
12040 htab_t &cus_htab)
12041 {
12042 struct objfile *objfile = dwarf2_per_objfile->objfile;
12043 const gdb_byte *info_ptr, *end_ptr;
12044
12045 dwarf2_read_section (objfile, &section);
12046 info_ptr = section.buffer;
12047
12048 if (info_ptr == NULL)
12049 return;
12050
12051 if (dwarf_read_debug)
12052 {
12053 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
12054 get_section_name (&section),
12055 get_section_file_name (&section));
12056 }
12057
12058 end_ptr = info_ptr + section.size;
12059 while (info_ptr < end_ptr)
12060 {
12061 struct dwarf2_per_cu_data per_cu;
12062 struct create_dwo_cu_data create_dwo_cu_data;
12063 struct dwo_unit *dwo_unit;
12064 void **slot;
12065 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
12066
12067 memset (&create_dwo_cu_data.dwo_unit, 0,
12068 sizeof (create_dwo_cu_data.dwo_unit));
12069 memset (&per_cu, 0, sizeof (per_cu));
12070 per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
12071 per_cu.is_debug_types = 0;
12072 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
12073 per_cu.section = &section;
12074 create_dwo_cu_data.dwo_file = &dwo_file;
12075
12076 init_cutu_and_read_dies_no_follow (
12077 &per_cu, &dwo_file, create_dwo_cu_reader, &create_dwo_cu_data);
12078 info_ptr += per_cu.length;
12079
12080 // If the unit could not be parsed, skip it.
12081 if (create_dwo_cu_data.dwo_unit.dwo_file == NULL)
12082 continue;
12083
12084 if (cus_htab == NULL)
12085 cus_htab = allocate_dwo_unit_table (objfile);
12086
12087 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12088 *dwo_unit = create_dwo_cu_data.dwo_unit;
12089 slot = htab_find_slot (cus_htab, dwo_unit, INSERT);
12090 gdb_assert (slot != NULL);
12091 if (*slot != NULL)
12092 {
12093 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
12094 sect_offset dup_sect_off = dup_cu->sect_off;
12095
12096 complaint (&symfile_complaints,
12097 _("debug cu entry at offset 0x%x is duplicate to"
12098 " the entry at offset 0x%x, signature %s"),
12099 to_underlying (sect_off), to_underlying (dup_sect_off),
12100 hex_string (dwo_unit->signature));
12101 }
12102 *slot = (void *)dwo_unit;
12103 }
12104 }
12105
12106 /* DWP file .debug_{cu,tu}_index section format:
12107 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
12108
12109 DWP Version 1:
12110
12111 Both index sections have the same format, and serve to map a 64-bit
12112 signature to a set of section numbers. Each section begins with a header,
12113 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
12114 indexes, and a pool of 32-bit section numbers. The index sections will be
12115 aligned at 8-byte boundaries in the file.
12116
12117 The index section header consists of:
12118
12119 V, 32 bit version number
12120 -, 32 bits unused
12121 N, 32 bit number of compilation units or type units in the index
12122 M, 32 bit number of slots in the hash table
12123
12124 Numbers are recorded using the byte order of the application binary.
12125
12126 The hash table begins at offset 16 in the section, and consists of an array
12127 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
12128 order of the application binary). Unused slots in the hash table are 0.
12129 (We rely on the extreme unlikeliness of a signature being exactly 0.)
12130
12131 The parallel table begins immediately after the hash table
12132 (at offset 16 + 8 * M from the beginning of the section), and consists of an
12133 array of 32-bit indexes (using the byte order of the application binary),
12134 corresponding 1-1 with slots in the hash table. Each entry in the parallel
12135 table contains a 32-bit index into the pool of section numbers. For unused
12136 hash table slots, the corresponding entry in the parallel table will be 0.
12137
12138 The pool of section numbers begins immediately following the hash table
12139 (at offset 16 + 12 * M from the beginning of the section). The pool of
12140 section numbers consists of an array of 32-bit words (using the byte order
12141 of the application binary). Each item in the array is indexed starting
12142 from 0. The hash table entry provides the index of the first section
12143 number in the set. Additional section numbers in the set follow, and the
12144 set is terminated by a 0 entry (section number 0 is not used in ELF).
12145
12146 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
12147 section must be the first entry in the set, and the .debug_abbrev.dwo must
12148 be the second entry. Other members of the set may follow in any order.
12149
12150 ---
12151
12152 DWP Version 2:
12153
12154 DWP Version 2 combines all the .debug_info, etc. sections into one,
12155 and the entries in the index tables are now offsets into these sections.
12156 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
12157 section.
12158
12159 Index Section Contents:
12160 Header
12161 Hash Table of Signatures dwp_hash_table.hash_table
12162 Parallel Table of Indices dwp_hash_table.unit_table
12163 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
12164 Table of Section Sizes dwp_hash_table.v2.sizes
12165
12166 The index section header consists of:
12167
12168 V, 32 bit version number
12169 L, 32 bit number of columns in the table of section offsets
12170 N, 32 bit number of compilation units or type units in the index
12171 M, 32 bit number of slots in the hash table
12172
12173 Numbers are recorded using the byte order of the application binary.
12174
12175 The hash table has the same format as version 1.
12176 The parallel table of indices has the same format as version 1,
12177 except that the entries are origin-1 indices into the table of sections
12178 offsets and the table of section sizes.
12179
12180 The table of offsets begins immediately following the parallel table
12181 (at offset 16 + 12 * M from the beginning of the section). The table is
12182 a two-dimensional array of 32-bit words (using the byte order of the
12183 application binary), with L columns and N+1 rows, in row-major order.
12184 Each row in the array is indexed starting from 0. The first row provides
12185 a key to the remaining rows: each column in this row provides an identifier
12186 for a debug section, and the offsets in the same column of subsequent rows
12187 refer to that section. The section identifiers are:
12188
12189 DW_SECT_INFO 1 .debug_info.dwo
12190 DW_SECT_TYPES 2 .debug_types.dwo
12191 DW_SECT_ABBREV 3 .debug_abbrev.dwo
12192 DW_SECT_LINE 4 .debug_line.dwo
12193 DW_SECT_LOC 5 .debug_loc.dwo
12194 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
12195 DW_SECT_MACINFO 7 .debug_macinfo.dwo
12196 DW_SECT_MACRO 8 .debug_macro.dwo
12197
12198 The offsets provided by the CU and TU index sections are the base offsets
12199 for the contributions made by each CU or TU to the corresponding section
12200 in the package file. Each CU and TU header contains an abbrev_offset
12201 field, used to find the abbreviations table for that CU or TU within the
12202 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
12203 be interpreted as relative to the base offset given in the index section.
12204 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
12205 should be interpreted as relative to the base offset for .debug_line.dwo,
12206 and offsets into other debug sections obtained from DWARF attributes should
12207 also be interpreted as relative to the corresponding base offset.
12208
12209 The table of sizes begins immediately following the table of offsets.
12210 Like the table of offsets, it is a two-dimensional array of 32-bit words,
12211 with L columns and N rows, in row-major order. Each row in the array is
12212 indexed starting from 1 (row 0 is shared by the two tables).
12213
12214 ---
12215
12216 Hash table lookup is handled the same in version 1 and 2:
12217
12218 We assume that N and M will not exceed 2^32 - 1.
12219 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
12220
12221 Given a 64-bit compilation unit signature or a type signature S, an entry
12222 in the hash table is located as follows:
12223
12224 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
12225 the low-order k bits all set to 1.
12226
12227 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
12228
12229 3) If the hash table entry at index H matches the signature, use that
12230 entry. If the hash table entry at index H is unused (all zeroes),
12231 terminate the search: the signature is not present in the table.
12232
12233 4) Let H = (H + H') modulo M. Repeat at Step 3.
12234
12235 Because M > N and H' and M are relatively prime, the search is guaranteed
12236 to stop at an unused slot or find the match. */
12237
12238 /* Create a hash table to map DWO IDs to their CU/TU entry in
12239 .debug_{info,types}.dwo in DWP_FILE.
12240 Returns NULL if there isn't one.
12241 Note: This function processes DWP files only, not DWO files. */
12242
12243 static struct dwp_hash_table *
12244 create_dwp_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
12245 struct dwp_file *dwp_file, int is_debug_types)
12246 {
12247 struct objfile *objfile = dwarf2_per_objfile->objfile;
12248 bfd *dbfd = dwp_file->dbfd;
12249 const gdb_byte *index_ptr, *index_end;
12250 struct dwarf2_section_info *index;
12251 uint32_t version, nr_columns, nr_units, nr_slots;
12252 struct dwp_hash_table *htab;
12253
12254 if (is_debug_types)
12255 index = &dwp_file->sections.tu_index;
12256 else
12257 index = &dwp_file->sections.cu_index;
12258
12259 if (dwarf2_section_empty_p (index))
12260 return NULL;
12261 dwarf2_read_section (objfile, index);
12262
12263 index_ptr = index->buffer;
12264 index_end = index_ptr + index->size;
12265
12266 version = read_4_bytes (dbfd, index_ptr);
12267 index_ptr += 4;
12268 if (version == 2)
12269 nr_columns = read_4_bytes (dbfd, index_ptr);
12270 else
12271 nr_columns = 0;
12272 index_ptr += 4;
12273 nr_units = read_4_bytes (dbfd, index_ptr);
12274 index_ptr += 4;
12275 nr_slots = read_4_bytes (dbfd, index_ptr);
12276 index_ptr += 4;
12277
12278 if (version != 1 && version != 2)
12279 {
12280 error (_("Dwarf Error: unsupported DWP file version (%s)"
12281 " [in module %s]"),
12282 pulongest (version), dwp_file->name);
12283 }
12284 if (nr_slots != (nr_slots & -nr_slots))
12285 {
12286 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
12287 " is not power of 2 [in module %s]"),
12288 pulongest (nr_slots), dwp_file->name);
12289 }
12290
12291 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
12292 htab->version = version;
12293 htab->nr_columns = nr_columns;
12294 htab->nr_units = nr_units;
12295 htab->nr_slots = nr_slots;
12296 htab->hash_table = index_ptr;
12297 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
12298
12299 /* Exit early if the table is empty. */
12300 if (nr_slots == 0 || nr_units == 0
12301 || (version == 2 && nr_columns == 0))
12302 {
12303 /* All must be zero. */
12304 if (nr_slots != 0 || nr_units != 0
12305 || (version == 2 && nr_columns != 0))
12306 {
12307 complaint (&symfile_complaints,
12308 _("Empty DWP but nr_slots,nr_units,nr_columns not"
12309 " all zero [in modules %s]"),
12310 dwp_file->name);
12311 }
12312 return htab;
12313 }
12314
12315 if (version == 1)
12316 {
12317 htab->section_pool.v1.indices =
12318 htab->unit_table + sizeof (uint32_t) * nr_slots;
12319 /* It's harder to decide whether the section is too small in v1.
12320 V1 is deprecated anyway so we punt. */
12321 }
12322 else
12323 {
12324 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
12325 int *ids = htab->section_pool.v2.section_ids;
12326 /* Reverse map for error checking. */
12327 int ids_seen[DW_SECT_MAX + 1];
12328 int i;
12329
12330 if (nr_columns < 2)
12331 {
12332 error (_("Dwarf Error: bad DWP hash table, too few columns"
12333 " in section table [in module %s]"),
12334 dwp_file->name);
12335 }
12336 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
12337 {
12338 error (_("Dwarf Error: bad DWP hash table, too many columns"
12339 " in section table [in module %s]"),
12340 dwp_file->name);
12341 }
12342 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
12343 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
12344 for (i = 0; i < nr_columns; ++i)
12345 {
12346 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
12347
12348 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
12349 {
12350 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
12351 " in section table [in module %s]"),
12352 id, dwp_file->name);
12353 }
12354 if (ids_seen[id] != -1)
12355 {
12356 error (_("Dwarf Error: bad DWP hash table, duplicate section"
12357 " id %d in section table [in module %s]"),
12358 id, dwp_file->name);
12359 }
12360 ids_seen[id] = i;
12361 ids[i] = id;
12362 }
12363 /* Must have exactly one info or types section. */
12364 if (((ids_seen[DW_SECT_INFO] != -1)
12365 + (ids_seen[DW_SECT_TYPES] != -1))
12366 != 1)
12367 {
12368 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
12369 " DWO info/types section [in module %s]"),
12370 dwp_file->name);
12371 }
12372 /* Must have an abbrev section. */
12373 if (ids_seen[DW_SECT_ABBREV] == -1)
12374 {
12375 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
12376 " section [in module %s]"),
12377 dwp_file->name);
12378 }
12379 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
12380 htab->section_pool.v2.sizes =
12381 htab->section_pool.v2.offsets + (sizeof (uint32_t)
12382 * nr_units * nr_columns);
12383 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
12384 * nr_units * nr_columns))
12385 > index_end)
12386 {
12387 error (_("Dwarf Error: DWP index section is corrupt (too small)"
12388 " [in module %s]"),
12389 dwp_file->name);
12390 }
12391 }
12392
12393 return htab;
12394 }
12395
12396 /* Update SECTIONS with the data from SECTP.
12397
12398 This function is like the other "locate" section routines that are
12399 passed to bfd_map_over_sections, but in this context the sections to
12400 read comes from the DWP V1 hash table, not the full ELF section table.
12401
12402 The result is non-zero for success, or zero if an error was found. */
12403
12404 static int
12405 locate_v1_virtual_dwo_sections (asection *sectp,
12406 struct virtual_v1_dwo_sections *sections)
12407 {
12408 const struct dwop_section_names *names = &dwop_section_names;
12409
12410 if (section_is_p (sectp->name, &names->abbrev_dwo))
12411 {
12412 /* There can be only one. */
12413 if (sections->abbrev.s.section != NULL)
12414 return 0;
12415 sections->abbrev.s.section = sectp;
12416 sections->abbrev.size = bfd_get_section_size (sectp);
12417 }
12418 else if (section_is_p (sectp->name, &names->info_dwo)
12419 || section_is_p (sectp->name, &names->types_dwo))
12420 {
12421 /* There can be only one. */
12422 if (sections->info_or_types.s.section != NULL)
12423 return 0;
12424 sections->info_or_types.s.section = sectp;
12425 sections->info_or_types.size = bfd_get_section_size (sectp);
12426 }
12427 else if (section_is_p (sectp->name, &names->line_dwo))
12428 {
12429 /* There can be only one. */
12430 if (sections->line.s.section != NULL)
12431 return 0;
12432 sections->line.s.section = sectp;
12433 sections->line.size = bfd_get_section_size (sectp);
12434 }
12435 else if (section_is_p (sectp->name, &names->loc_dwo))
12436 {
12437 /* There can be only one. */
12438 if (sections->loc.s.section != NULL)
12439 return 0;
12440 sections->loc.s.section = sectp;
12441 sections->loc.size = bfd_get_section_size (sectp);
12442 }
12443 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12444 {
12445 /* There can be only one. */
12446 if (sections->macinfo.s.section != NULL)
12447 return 0;
12448 sections->macinfo.s.section = sectp;
12449 sections->macinfo.size = bfd_get_section_size (sectp);
12450 }
12451 else if (section_is_p (sectp->name, &names->macro_dwo))
12452 {
12453 /* There can be only one. */
12454 if (sections->macro.s.section != NULL)
12455 return 0;
12456 sections->macro.s.section = sectp;
12457 sections->macro.size = bfd_get_section_size (sectp);
12458 }
12459 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12460 {
12461 /* There can be only one. */
12462 if (sections->str_offsets.s.section != NULL)
12463 return 0;
12464 sections->str_offsets.s.section = sectp;
12465 sections->str_offsets.size = bfd_get_section_size (sectp);
12466 }
12467 else
12468 {
12469 /* No other kind of section is valid. */
12470 return 0;
12471 }
12472
12473 return 1;
12474 }
12475
12476 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12477 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12478 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12479 This is for DWP version 1 files. */
12480
12481 static struct dwo_unit *
12482 create_dwo_unit_in_dwp_v1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12483 struct dwp_file *dwp_file,
12484 uint32_t unit_index,
12485 const char *comp_dir,
12486 ULONGEST signature, int is_debug_types)
12487 {
12488 struct objfile *objfile = dwarf2_per_objfile->objfile;
12489 const struct dwp_hash_table *dwp_htab =
12490 is_debug_types ? dwp_file->tus : dwp_file->cus;
12491 bfd *dbfd = dwp_file->dbfd;
12492 const char *kind = is_debug_types ? "TU" : "CU";
12493 struct dwo_file *dwo_file;
12494 struct dwo_unit *dwo_unit;
12495 struct virtual_v1_dwo_sections sections;
12496 void **dwo_file_slot;
12497 int i;
12498
12499 gdb_assert (dwp_file->version == 1);
12500
12501 if (dwarf_read_debug)
12502 {
12503 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
12504 kind,
12505 pulongest (unit_index), hex_string (signature),
12506 dwp_file->name);
12507 }
12508
12509 /* Fetch the sections of this DWO unit.
12510 Put a limit on the number of sections we look for so that bad data
12511 doesn't cause us to loop forever. */
12512
12513 #define MAX_NR_V1_DWO_SECTIONS \
12514 (1 /* .debug_info or .debug_types */ \
12515 + 1 /* .debug_abbrev */ \
12516 + 1 /* .debug_line */ \
12517 + 1 /* .debug_loc */ \
12518 + 1 /* .debug_str_offsets */ \
12519 + 1 /* .debug_macro or .debug_macinfo */ \
12520 + 1 /* trailing zero */)
12521
12522 memset (&sections, 0, sizeof (sections));
12523
12524 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
12525 {
12526 asection *sectp;
12527 uint32_t section_nr =
12528 read_4_bytes (dbfd,
12529 dwp_htab->section_pool.v1.indices
12530 + (unit_index + i) * sizeof (uint32_t));
12531
12532 if (section_nr == 0)
12533 break;
12534 if (section_nr >= dwp_file->num_sections)
12535 {
12536 error (_("Dwarf Error: bad DWP hash table, section number too large"
12537 " [in module %s]"),
12538 dwp_file->name);
12539 }
12540
12541 sectp = dwp_file->elf_sections[section_nr];
12542 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
12543 {
12544 error (_("Dwarf Error: bad DWP hash table, invalid section found"
12545 " [in module %s]"),
12546 dwp_file->name);
12547 }
12548 }
12549
12550 if (i < 2
12551 || dwarf2_section_empty_p (&sections.info_or_types)
12552 || dwarf2_section_empty_p (&sections.abbrev))
12553 {
12554 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
12555 " [in module %s]"),
12556 dwp_file->name);
12557 }
12558 if (i == MAX_NR_V1_DWO_SECTIONS)
12559 {
12560 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
12561 " [in module %s]"),
12562 dwp_file->name);
12563 }
12564
12565 /* It's easier for the rest of the code if we fake a struct dwo_file and
12566 have dwo_unit "live" in that. At least for now.
12567
12568 The DWP file can be made up of a random collection of CUs and TUs.
12569 However, for each CU + set of TUs that came from the same original DWO
12570 file, we can combine them back into a virtual DWO file to save space
12571 (fewer struct dwo_file objects to allocate). Remember that for really
12572 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12573
12574 std::string virtual_dwo_name =
12575 string_printf ("virtual-dwo/%d-%d-%d-%d",
12576 get_section_id (&sections.abbrev),
12577 get_section_id (&sections.line),
12578 get_section_id (&sections.loc),
12579 get_section_id (&sections.str_offsets));
12580 /* Can we use an existing virtual DWO file? */
12581 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12582 virtual_dwo_name.c_str (),
12583 comp_dir);
12584 /* Create one if necessary. */
12585 if (*dwo_file_slot == NULL)
12586 {
12587 if (dwarf_read_debug)
12588 {
12589 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12590 virtual_dwo_name.c_str ());
12591 }
12592 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12593 dwo_file->dwo_name
12594 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12595 virtual_dwo_name.c_str (),
12596 virtual_dwo_name.size ());
12597 dwo_file->comp_dir = comp_dir;
12598 dwo_file->sections.abbrev = sections.abbrev;
12599 dwo_file->sections.line = sections.line;
12600 dwo_file->sections.loc = sections.loc;
12601 dwo_file->sections.macinfo = sections.macinfo;
12602 dwo_file->sections.macro = sections.macro;
12603 dwo_file->sections.str_offsets = sections.str_offsets;
12604 /* The "str" section is global to the entire DWP file. */
12605 dwo_file->sections.str = dwp_file->sections.str;
12606 /* The info or types section is assigned below to dwo_unit,
12607 there's no need to record it in dwo_file.
12608 Also, we can't simply record type sections in dwo_file because
12609 we record a pointer into the vector in dwo_unit. As we collect more
12610 types we'll grow the vector and eventually have to reallocate space
12611 for it, invalidating all copies of pointers into the previous
12612 contents. */
12613 *dwo_file_slot = dwo_file;
12614 }
12615 else
12616 {
12617 if (dwarf_read_debug)
12618 {
12619 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12620 virtual_dwo_name.c_str ());
12621 }
12622 dwo_file = (struct dwo_file *) *dwo_file_slot;
12623 }
12624
12625 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12626 dwo_unit->dwo_file = dwo_file;
12627 dwo_unit->signature = signature;
12628 dwo_unit->section =
12629 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12630 *dwo_unit->section = sections.info_or_types;
12631 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12632
12633 return dwo_unit;
12634 }
12635
12636 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
12637 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
12638 piece within that section used by a TU/CU, return a virtual section
12639 of just that piece. */
12640
12641 static struct dwarf2_section_info
12642 create_dwp_v2_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
12643 struct dwarf2_section_info *section,
12644 bfd_size_type offset, bfd_size_type size)
12645 {
12646 struct dwarf2_section_info result;
12647 asection *sectp;
12648
12649 gdb_assert (section != NULL);
12650 gdb_assert (!section->is_virtual);
12651
12652 memset (&result, 0, sizeof (result));
12653 result.s.containing_section = section;
12654 result.is_virtual = 1;
12655
12656 if (size == 0)
12657 return result;
12658
12659 sectp = get_section_bfd_section (section);
12660
12661 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
12662 bounds of the real section. This is a pretty-rare event, so just
12663 flag an error (easier) instead of a warning and trying to cope. */
12664 if (sectp == NULL
12665 || offset + size > bfd_get_section_size (sectp))
12666 {
12667 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
12668 " in section %s [in module %s]"),
12669 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
12670 objfile_name (dwarf2_per_objfile->objfile));
12671 }
12672
12673 result.virtual_offset = offset;
12674 result.size = size;
12675 return result;
12676 }
12677
12678 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12679 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12680 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12681 This is for DWP version 2 files. */
12682
12683 static struct dwo_unit *
12684 create_dwo_unit_in_dwp_v2 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12685 struct dwp_file *dwp_file,
12686 uint32_t unit_index,
12687 const char *comp_dir,
12688 ULONGEST signature, int is_debug_types)
12689 {
12690 struct objfile *objfile = dwarf2_per_objfile->objfile;
12691 const struct dwp_hash_table *dwp_htab =
12692 is_debug_types ? dwp_file->tus : dwp_file->cus;
12693 bfd *dbfd = dwp_file->dbfd;
12694 const char *kind = is_debug_types ? "TU" : "CU";
12695 struct dwo_file *dwo_file;
12696 struct dwo_unit *dwo_unit;
12697 struct virtual_v2_dwo_sections sections;
12698 void **dwo_file_slot;
12699 int i;
12700
12701 gdb_assert (dwp_file->version == 2);
12702
12703 if (dwarf_read_debug)
12704 {
12705 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
12706 kind,
12707 pulongest (unit_index), hex_string (signature),
12708 dwp_file->name);
12709 }
12710
12711 /* Fetch the section offsets of this DWO unit. */
12712
12713 memset (&sections, 0, sizeof (sections));
12714
12715 for (i = 0; i < dwp_htab->nr_columns; ++i)
12716 {
12717 uint32_t offset = read_4_bytes (dbfd,
12718 dwp_htab->section_pool.v2.offsets
12719 + (((unit_index - 1) * dwp_htab->nr_columns
12720 + i)
12721 * sizeof (uint32_t)));
12722 uint32_t size = read_4_bytes (dbfd,
12723 dwp_htab->section_pool.v2.sizes
12724 + (((unit_index - 1) * dwp_htab->nr_columns
12725 + i)
12726 * sizeof (uint32_t)));
12727
12728 switch (dwp_htab->section_pool.v2.section_ids[i])
12729 {
12730 case DW_SECT_INFO:
12731 case DW_SECT_TYPES:
12732 sections.info_or_types_offset = offset;
12733 sections.info_or_types_size = size;
12734 break;
12735 case DW_SECT_ABBREV:
12736 sections.abbrev_offset = offset;
12737 sections.abbrev_size = size;
12738 break;
12739 case DW_SECT_LINE:
12740 sections.line_offset = offset;
12741 sections.line_size = size;
12742 break;
12743 case DW_SECT_LOC:
12744 sections.loc_offset = offset;
12745 sections.loc_size = size;
12746 break;
12747 case DW_SECT_STR_OFFSETS:
12748 sections.str_offsets_offset = offset;
12749 sections.str_offsets_size = size;
12750 break;
12751 case DW_SECT_MACINFO:
12752 sections.macinfo_offset = offset;
12753 sections.macinfo_size = size;
12754 break;
12755 case DW_SECT_MACRO:
12756 sections.macro_offset = offset;
12757 sections.macro_size = size;
12758 break;
12759 }
12760 }
12761
12762 /* It's easier for the rest of the code if we fake a struct dwo_file and
12763 have dwo_unit "live" in that. At least for now.
12764
12765 The DWP file can be made up of a random collection of CUs and TUs.
12766 However, for each CU + set of TUs that came from the same original DWO
12767 file, we can combine them back into a virtual DWO file to save space
12768 (fewer struct dwo_file objects to allocate). Remember that for really
12769 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12770
12771 std::string virtual_dwo_name =
12772 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
12773 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
12774 (long) (sections.line_size ? sections.line_offset : 0),
12775 (long) (sections.loc_size ? sections.loc_offset : 0),
12776 (long) (sections.str_offsets_size
12777 ? sections.str_offsets_offset : 0));
12778 /* Can we use an existing virtual DWO file? */
12779 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12780 virtual_dwo_name.c_str (),
12781 comp_dir);
12782 /* Create one if necessary. */
12783 if (*dwo_file_slot == NULL)
12784 {
12785 if (dwarf_read_debug)
12786 {
12787 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12788 virtual_dwo_name.c_str ());
12789 }
12790 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12791 dwo_file->dwo_name
12792 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12793 virtual_dwo_name.c_str (),
12794 virtual_dwo_name.size ());
12795 dwo_file->comp_dir = comp_dir;
12796 dwo_file->sections.abbrev =
12797 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.abbrev,
12798 sections.abbrev_offset, sections.abbrev_size);
12799 dwo_file->sections.line =
12800 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.line,
12801 sections.line_offset, sections.line_size);
12802 dwo_file->sections.loc =
12803 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.loc,
12804 sections.loc_offset, sections.loc_size);
12805 dwo_file->sections.macinfo =
12806 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macinfo,
12807 sections.macinfo_offset, sections.macinfo_size);
12808 dwo_file->sections.macro =
12809 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macro,
12810 sections.macro_offset, sections.macro_size);
12811 dwo_file->sections.str_offsets =
12812 create_dwp_v2_section (dwarf2_per_objfile,
12813 &dwp_file->sections.str_offsets,
12814 sections.str_offsets_offset,
12815 sections.str_offsets_size);
12816 /* The "str" section is global to the entire DWP file. */
12817 dwo_file->sections.str = dwp_file->sections.str;
12818 /* The info or types section is assigned below to dwo_unit,
12819 there's no need to record it in dwo_file.
12820 Also, we can't simply record type sections in dwo_file because
12821 we record a pointer into the vector in dwo_unit. As we collect more
12822 types we'll grow the vector and eventually have to reallocate space
12823 for it, invalidating all copies of pointers into the previous
12824 contents. */
12825 *dwo_file_slot = dwo_file;
12826 }
12827 else
12828 {
12829 if (dwarf_read_debug)
12830 {
12831 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12832 virtual_dwo_name.c_str ());
12833 }
12834 dwo_file = (struct dwo_file *) *dwo_file_slot;
12835 }
12836
12837 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12838 dwo_unit->dwo_file = dwo_file;
12839 dwo_unit->signature = signature;
12840 dwo_unit->section =
12841 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12842 *dwo_unit->section = create_dwp_v2_section (dwarf2_per_objfile,
12843 is_debug_types
12844 ? &dwp_file->sections.types
12845 : &dwp_file->sections.info,
12846 sections.info_or_types_offset,
12847 sections.info_or_types_size);
12848 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12849
12850 return dwo_unit;
12851 }
12852
12853 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
12854 Returns NULL if the signature isn't found. */
12855
12856 static struct dwo_unit *
12857 lookup_dwo_unit_in_dwp (struct dwarf2_per_objfile *dwarf2_per_objfile,
12858 struct dwp_file *dwp_file, const char *comp_dir,
12859 ULONGEST signature, int is_debug_types)
12860 {
12861 const struct dwp_hash_table *dwp_htab =
12862 is_debug_types ? dwp_file->tus : dwp_file->cus;
12863 bfd *dbfd = dwp_file->dbfd;
12864 uint32_t mask = dwp_htab->nr_slots - 1;
12865 uint32_t hash = signature & mask;
12866 uint32_t hash2 = ((signature >> 32) & mask) | 1;
12867 unsigned int i;
12868 void **slot;
12869 struct dwo_unit find_dwo_cu;
12870
12871 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
12872 find_dwo_cu.signature = signature;
12873 slot = htab_find_slot (is_debug_types
12874 ? dwp_file->loaded_tus
12875 : dwp_file->loaded_cus,
12876 &find_dwo_cu, INSERT);
12877
12878 if (*slot != NULL)
12879 return (struct dwo_unit *) *slot;
12880
12881 /* Use a for loop so that we don't loop forever on bad debug info. */
12882 for (i = 0; i < dwp_htab->nr_slots; ++i)
12883 {
12884 ULONGEST signature_in_table;
12885
12886 signature_in_table =
12887 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
12888 if (signature_in_table == signature)
12889 {
12890 uint32_t unit_index =
12891 read_4_bytes (dbfd,
12892 dwp_htab->unit_table + hash * sizeof (uint32_t));
12893
12894 if (dwp_file->version == 1)
12895 {
12896 *slot = create_dwo_unit_in_dwp_v1 (dwarf2_per_objfile,
12897 dwp_file, unit_index,
12898 comp_dir, signature,
12899 is_debug_types);
12900 }
12901 else
12902 {
12903 *slot = create_dwo_unit_in_dwp_v2 (dwarf2_per_objfile,
12904 dwp_file, unit_index,
12905 comp_dir, signature,
12906 is_debug_types);
12907 }
12908 return (struct dwo_unit *) *slot;
12909 }
12910 if (signature_in_table == 0)
12911 return NULL;
12912 hash = (hash + hash2) & mask;
12913 }
12914
12915 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
12916 " [in module %s]"),
12917 dwp_file->name);
12918 }
12919
12920 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
12921 Open the file specified by FILE_NAME and hand it off to BFD for
12922 preliminary analysis. Return a newly initialized bfd *, which
12923 includes a canonicalized copy of FILE_NAME.
12924 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
12925 SEARCH_CWD is true if the current directory is to be searched.
12926 It will be searched before debug-file-directory.
12927 If successful, the file is added to the bfd include table of the
12928 objfile's bfd (see gdb_bfd_record_inclusion).
12929 If unable to find/open the file, return NULL.
12930 NOTE: This function is derived from symfile_bfd_open. */
12931
12932 static gdb_bfd_ref_ptr
12933 try_open_dwop_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12934 const char *file_name, int is_dwp, int search_cwd)
12935 {
12936 int desc, flags;
12937 char *absolute_name;
12938 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
12939 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
12940 to debug_file_directory. */
12941 char *search_path;
12942 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
12943
12944 if (search_cwd)
12945 {
12946 if (*debug_file_directory != '\0')
12947 search_path = concat (".", dirname_separator_string,
12948 debug_file_directory, (char *) NULL);
12949 else
12950 search_path = xstrdup (".");
12951 }
12952 else
12953 search_path = xstrdup (debug_file_directory);
12954
12955 flags = OPF_RETURN_REALPATH;
12956 if (is_dwp)
12957 flags |= OPF_SEARCH_IN_PATH;
12958 desc = openp (search_path, flags, file_name,
12959 O_RDONLY | O_BINARY, &absolute_name);
12960 xfree (search_path);
12961 if (desc < 0)
12962 return NULL;
12963
12964 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name, gnutarget, desc));
12965 xfree (absolute_name);
12966 if (sym_bfd == NULL)
12967 return NULL;
12968 bfd_set_cacheable (sym_bfd.get (), 1);
12969
12970 if (!bfd_check_format (sym_bfd.get (), bfd_object))
12971 return NULL;
12972
12973 /* Success. Record the bfd as having been included by the objfile's bfd.
12974 This is important because things like demangled_names_hash lives in the
12975 objfile's per_bfd space and may have references to things like symbol
12976 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
12977 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
12978
12979 return sym_bfd;
12980 }
12981
12982 /* Try to open DWO file FILE_NAME.
12983 COMP_DIR is the DW_AT_comp_dir attribute.
12984 The result is the bfd handle of the file.
12985 If there is a problem finding or opening the file, return NULL.
12986 Upon success, the canonicalized path of the file is stored in the bfd,
12987 same as symfile_bfd_open. */
12988
12989 static gdb_bfd_ref_ptr
12990 open_dwo_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12991 const char *file_name, const char *comp_dir)
12992 {
12993 if (IS_ABSOLUTE_PATH (file_name))
12994 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12995 0 /*is_dwp*/, 0 /*search_cwd*/);
12996
12997 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
12998
12999 if (comp_dir != NULL)
13000 {
13001 char *path_to_try = concat (comp_dir, SLASH_STRING,
13002 file_name, (char *) NULL);
13003
13004 /* NOTE: If comp_dir is a relative path, this will also try the
13005 search path, which seems useful. */
13006 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile,
13007 path_to_try,
13008 0 /*is_dwp*/,
13009 1 /*search_cwd*/));
13010 xfree (path_to_try);
13011 if (abfd != NULL)
13012 return abfd;
13013 }
13014
13015 /* That didn't work, try debug-file-directory, which, despite its name,
13016 is a list of paths. */
13017
13018 if (*debug_file_directory == '\0')
13019 return NULL;
13020
13021 return try_open_dwop_file (dwarf2_per_objfile, file_name,
13022 0 /*is_dwp*/, 1 /*search_cwd*/);
13023 }
13024
13025 /* This function is mapped across the sections and remembers the offset and
13026 size of each of the DWO debugging sections we are interested in. */
13027
13028 static void
13029 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
13030 {
13031 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
13032 const struct dwop_section_names *names = &dwop_section_names;
13033
13034 if (section_is_p (sectp->name, &names->abbrev_dwo))
13035 {
13036 dwo_sections->abbrev.s.section = sectp;
13037 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
13038 }
13039 else if (section_is_p (sectp->name, &names->info_dwo))
13040 {
13041 dwo_sections->info.s.section = sectp;
13042 dwo_sections->info.size = bfd_get_section_size (sectp);
13043 }
13044 else if (section_is_p (sectp->name, &names->line_dwo))
13045 {
13046 dwo_sections->line.s.section = sectp;
13047 dwo_sections->line.size = bfd_get_section_size (sectp);
13048 }
13049 else if (section_is_p (sectp->name, &names->loc_dwo))
13050 {
13051 dwo_sections->loc.s.section = sectp;
13052 dwo_sections->loc.size = bfd_get_section_size (sectp);
13053 }
13054 else if (section_is_p (sectp->name, &names->macinfo_dwo))
13055 {
13056 dwo_sections->macinfo.s.section = sectp;
13057 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
13058 }
13059 else if (section_is_p (sectp->name, &names->macro_dwo))
13060 {
13061 dwo_sections->macro.s.section = sectp;
13062 dwo_sections->macro.size = bfd_get_section_size (sectp);
13063 }
13064 else if (section_is_p (sectp->name, &names->str_dwo))
13065 {
13066 dwo_sections->str.s.section = sectp;
13067 dwo_sections->str.size = bfd_get_section_size (sectp);
13068 }
13069 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
13070 {
13071 dwo_sections->str_offsets.s.section = sectp;
13072 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
13073 }
13074 else if (section_is_p (sectp->name, &names->types_dwo))
13075 {
13076 struct dwarf2_section_info type_section;
13077
13078 memset (&type_section, 0, sizeof (type_section));
13079 type_section.s.section = sectp;
13080 type_section.size = bfd_get_section_size (sectp);
13081 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
13082 &type_section);
13083 }
13084 }
13085
13086 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
13087 by PER_CU. This is for the non-DWP case.
13088 The result is NULL if DWO_NAME can't be found. */
13089
13090 static struct dwo_file *
13091 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
13092 const char *dwo_name, const char *comp_dir)
13093 {
13094 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
13095 struct objfile *objfile = dwarf2_per_objfile->objfile;
13096 struct dwo_file *dwo_file;
13097 struct cleanup *cleanups;
13098
13099 gdb_bfd_ref_ptr dbfd (open_dwo_file (dwarf2_per_objfile, dwo_name, comp_dir));
13100 if (dbfd == NULL)
13101 {
13102 if (dwarf_read_debug)
13103 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
13104 return NULL;
13105 }
13106 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
13107 dwo_file->dwo_name = dwo_name;
13108 dwo_file->comp_dir = comp_dir;
13109 dwo_file->dbfd = dbfd.release ();
13110
13111 free_dwo_file_cleanup_data *cleanup_data = XNEW (free_dwo_file_cleanup_data);
13112 cleanup_data->dwo_file = dwo_file;
13113 cleanup_data->dwarf2_per_objfile = dwarf2_per_objfile;
13114
13115 cleanups = make_cleanup (free_dwo_file_cleanup, cleanup_data);
13116
13117 bfd_map_over_sections (dwo_file->dbfd, dwarf2_locate_dwo_sections,
13118 &dwo_file->sections);
13119
13120 create_cus_hash_table (dwarf2_per_objfile, *dwo_file, dwo_file->sections.info,
13121 dwo_file->cus);
13122
13123 create_debug_types_hash_table (dwarf2_per_objfile, dwo_file,
13124 dwo_file->sections.types, dwo_file->tus);
13125
13126 discard_cleanups (cleanups);
13127
13128 if (dwarf_read_debug)
13129 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
13130
13131 return dwo_file;
13132 }
13133
13134 /* This function is mapped across the sections and remembers the offset and
13135 size of each of the DWP debugging sections common to version 1 and 2 that
13136 we are interested in. */
13137
13138 static void
13139 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
13140 void *dwp_file_ptr)
13141 {
13142 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
13143 const struct dwop_section_names *names = &dwop_section_names;
13144 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
13145
13146 /* Record the ELF section number for later lookup: this is what the
13147 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
13148 gdb_assert (elf_section_nr < dwp_file->num_sections);
13149 dwp_file->elf_sections[elf_section_nr] = sectp;
13150
13151 /* Look for specific sections that we need. */
13152 if (section_is_p (sectp->name, &names->str_dwo))
13153 {
13154 dwp_file->sections.str.s.section = sectp;
13155 dwp_file->sections.str.size = bfd_get_section_size (sectp);
13156 }
13157 else if (section_is_p (sectp->name, &names->cu_index))
13158 {
13159 dwp_file->sections.cu_index.s.section = sectp;
13160 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
13161 }
13162 else if (section_is_p (sectp->name, &names->tu_index))
13163 {
13164 dwp_file->sections.tu_index.s.section = sectp;
13165 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
13166 }
13167 }
13168
13169 /* This function is mapped across the sections and remembers the offset and
13170 size of each of the DWP version 2 debugging sections that we are interested
13171 in. This is split into a separate function because we don't know if we
13172 have version 1 or 2 until we parse the cu_index/tu_index sections. */
13173
13174 static void
13175 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
13176 {
13177 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
13178 const struct dwop_section_names *names = &dwop_section_names;
13179 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
13180
13181 /* Record the ELF section number for later lookup: this is what the
13182 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
13183 gdb_assert (elf_section_nr < dwp_file->num_sections);
13184 dwp_file->elf_sections[elf_section_nr] = sectp;
13185
13186 /* Look for specific sections that we need. */
13187 if (section_is_p (sectp->name, &names->abbrev_dwo))
13188 {
13189 dwp_file->sections.abbrev.s.section = sectp;
13190 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
13191 }
13192 else if (section_is_p (sectp->name, &names->info_dwo))
13193 {
13194 dwp_file->sections.info.s.section = sectp;
13195 dwp_file->sections.info.size = bfd_get_section_size (sectp);
13196 }
13197 else if (section_is_p (sectp->name, &names->line_dwo))
13198 {
13199 dwp_file->sections.line.s.section = sectp;
13200 dwp_file->sections.line.size = bfd_get_section_size (sectp);
13201 }
13202 else if (section_is_p (sectp->name, &names->loc_dwo))
13203 {
13204 dwp_file->sections.loc.s.section = sectp;
13205 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
13206 }
13207 else if (section_is_p (sectp->name, &names->macinfo_dwo))
13208 {
13209 dwp_file->sections.macinfo.s.section = sectp;
13210 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
13211 }
13212 else if (section_is_p (sectp->name, &names->macro_dwo))
13213 {
13214 dwp_file->sections.macro.s.section = sectp;
13215 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
13216 }
13217 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
13218 {
13219 dwp_file->sections.str_offsets.s.section = sectp;
13220 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
13221 }
13222 else if (section_is_p (sectp->name, &names->types_dwo))
13223 {
13224 dwp_file->sections.types.s.section = sectp;
13225 dwp_file->sections.types.size = bfd_get_section_size (sectp);
13226 }
13227 }
13228
13229 /* Hash function for dwp_file loaded CUs/TUs. */
13230
13231 static hashval_t
13232 hash_dwp_loaded_cutus (const void *item)
13233 {
13234 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
13235
13236 /* This drops the top 32 bits of the signature, but is ok for a hash. */
13237 return dwo_unit->signature;
13238 }
13239
13240 /* Equality function for dwp_file loaded CUs/TUs. */
13241
13242 static int
13243 eq_dwp_loaded_cutus (const void *a, const void *b)
13244 {
13245 const struct dwo_unit *dua = (const struct dwo_unit *) a;
13246 const struct dwo_unit *dub = (const struct dwo_unit *) b;
13247
13248 return dua->signature == dub->signature;
13249 }
13250
13251 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
13252
13253 static htab_t
13254 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
13255 {
13256 return htab_create_alloc_ex (3,
13257 hash_dwp_loaded_cutus,
13258 eq_dwp_loaded_cutus,
13259 NULL,
13260 &objfile->objfile_obstack,
13261 hashtab_obstack_allocate,
13262 dummy_obstack_deallocate);
13263 }
13264
13265 /* Try to open DWP file FILE_NAME.
13266 The result is the bfd handle of the file.
13267 If there is a problem finding or opening the file, return NULL.
13268 Upon success, the canonicalized path of the file is stored in the bfd,
13269 same as symfile_bfd_open. */
13270
13271 static gdb_bfd_ref_ptr
13272 open_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
13273 const char *file_name)
13274 {
13275 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile, file_name,
13276 1 /*is_dwp*/,
13277 1 /*search_cwd*/));
13278 if (abfd != NULL)
13279 return abfd;
13280
13281 /* Work around upstream bug 15652.
13282 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
13283 [Whether that's a "bug" is debatable, but it is getting in our way.]
13284 We have no real idea where the dwp file is, because gdb's realpath-ing
13285 of the executable's path may have discarded the needed info.
13286 [IWBN if the dwp file name was recorded in the executable, akin to
13287 .gnu_debuglink, but that doesn't exist yet.]
13288 Strip the directory from FILE_NAME and search again. */
13289 if (*debug_file_directory != '\0')
13290 {
13291 /* Don't implicitly search the current directory here.
13292 If the user wants to search "." to handle this case,
13293 it must be added to debug-file-directory. */
13294 return try_open_dwop_file (dwarf2_per_objfile,
13295 lbasename (file_name), 1 /*is_dwp*/,
13296 0 /*search_cwd*/);
13297 }
13298
13299 return NULL;
13300 }
13301
13302 /* Initialize the use of the DWP file for the current objfile.
13303 By convention the name of the DWP file is ${objfile}.dwp.
13304 The result is NULL if it can't be found. */
13305
13306 static struct dwp_file *
13307 open_and_init_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13308 {
13309 struct objfile *objfile = dwarf2_per_objfile->objfile;
13310 struct dwp_file *dwp_file;
13311
13312 /* Try to find first .dwp for the binary file before any symbolic links
13313 resolving. */
13314
13315 /* If the objfile is a debug file, find the name of the real binary
13316 file and get the name of dwp file from there. */
13317 std::string dwp_name;
13318 if (objfile->separate_debug_objfile_backlink != NULL)
13319 {
13320 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
13321 const char *backlink_basename = lbasename (backlink->original_name);
13322
13323 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
13324 }
13325 else
13326 dwp_name = objfile->original_name;
13327
13328 dwp_name += ".dwp";
13329
13330 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ()));
13331 if (dbfd == NULL
13332 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
13333 {
13334 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
13335 dwp_name = objfile_name (objfile);
13336 dwp_name += ".dwp";
13337 dbfd = open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ());
13338 }
13339
13340 if (dbfd == NULL)
13341 {
13342 if (dwarf_read_debug)
13343 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
13344 return NULL;
13345 }
13346 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
13347 dwp_file->name = bfd_get_filename (dbfd.get ());
13348 dwp_file->dbfd = dbfd.release ();
13349
13350 /* +1: section 0 is unused */
13351 dwp_file->num_sections = bfd_count_sections (dwp_file->dbfd) + 1;
13352 dwp_file->elf_sections =
13353 OBSTACK_CALLOC (&objfile->objfile_obstack,
13354 dwp_file->num_sections, asection *);
13355
13356 bfd_map_over_sections (dwp_file->dbfd, dwarf2_locate_common_dwp_sections,
13357 dwp_file);
13358
13359 dwp_file->cus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file, 0);
13360
13361 dwp_file->tus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file, 1);
13362
13363 /* The DWP file version is stored in the hash table. Oh well. */
13364 if (dwp_file->cus && dwp_file->tus
13365 && dwp_file->cus->version != dwp_file->tus->version)
13366 {
13367 /* Technically speaking, we should try to limp along, but this is
13368 pretty bizarre. We use pulongest here because that's the established
13369 portability solution (e.g, we cannot use %u for uint32_t). */
13370 error (_("Dwarf Error: DWP file CU version %s doesn't match"
13371 " TU version %s [in DWP file %s]"),
13372 pulongest (dwp_file->cus->version),
13373 pulongest (dwp_file->tus->version), dwp_name.c_str ());
13374 }
13375
13376 if (dwp_file->cus)
13377 dwp_file->version = dwp_file->cus->version;
13378 else if (dwp_file->tus)
13379 dwp_file->version = dwp_file->tus->version;
13380 else
13381 dwp_file->version = 2;
13382
13383 if (dwp_file->version == 2)
13384 bfd_map_over_sections (dwp_file->dbfd, dwarf2_locate_v2_dwp_sections,
13385 dwp_file);
13386
13387 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
13388 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
13389
13390 if (dwarf_read_debug)
13391 {
13392 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
13393 fprintf_unfiltered (gdb_stdlog,
13394 " %s CUs, %s TUs\n",
13395 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
13396 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
13397 }
13398
13399 return dwp_file;
13400 }
13401
13402 /* Wrapper around open_and_init_dwp_file, only open it once. */
13403
13404 static struct dwp_file *
13405 get_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13406 {
13407 if (! dwarf2_per_objfile->dwp_checked)
13408 {
13409 dwarf2_per_objfile->dwp_file
13410 = open_and_init_dwp_file (dwarf2_per_objfile);
13411 dwarf2_per_objfile->dwp_checked = 1;
13412 }
13413 return dwarf2_per_objfile->dwp_file;
13414 }
13415
13416 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
13417 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
13418 or in the DWP file for the objfile, referenced by THIS_UNIT.
13419 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
13420 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
13421
13422 This is called, for example, when wanting to read a variable with a
13423 complex location. Therefore we don't want to do file i/o for every call.
13424 Therefore we don't want to look for a DWO file on every call.
13425 Therefore we first see if we've already seen SIGNATURE in a DWP file,
13426 then we check if we've already seen DWO_NAME, and only THEN do we check
13427 for a DWO file.
13428
13429 The result is a pointer to the dwo_unit object or NULL if we didn't find it
13430 (dwo_id mismatch or couldn't find the DWO/DWP file). */
13431
13432 static struct dwo_unit *
13433 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
13434 const char *dwo_name, const char *comp_dir,
13435 ULONGEST signature, int is_debug_types)
13436 {
13437 struct dwarf2_per_objfile *dwarf2_per_objfile = this_unit->dwarf2_per_objfile;
13438 struct objfile *objfile = dwarf2_per_objfile->objfile;
13439 const char *kind = is_debug_types ? "TU" : "CU";
13440 void **dwo_file_slot;
13441 struct dwo_file *dwo_file;
13442 struct dwp_file *dwp_file;
13443
13444 /* First see if there's a DWP file.
13445 If we have a DWP file but didn't find the DWO inside it, don't
13446 look for the original DWO file. It makes gdb behave differently
13447 depending on whether one is debugging in the build tree. */
13448
13449 dwp_file = get_dwp_file (dwarf2_per_objfile);
13450 if (dwp_file != NULL)
13451 {
13452 const struct dwp_hash_table *dwp_htab =
13453 is_debug_types ? dwp_file->tus : dwp_file->cus;
13454
13455 if (dwp_htab != NULL)
13456 {
13457 struct dwo_unit *dwo_cutu =
13458 lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, comp_dir,
13459 signature, is_debug_types);
13460
13461 if (dwo_cutu != NULL)
13462 {
13463 if (dwarf_read_debug)
13464 {
13465 fprintf_unfiltered (gdb_stdlog,
13466 "Virtual DWO %s %s found: @%s\n",
13467 kind, hex_string (signature),
13468 host_address_to_string (dwo_cutu));
13469 }
13470 return dwo_cutu;
13471 }
13472 }
13473 }
13474 else
13475 {
13476 /* No DWP file, look for the DWO file. */
13477
13478 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
13479 dwo_name, comp_dir);
13480 if (*dwo_file_slot == NULL)
13481 {
13482 /* Read in the file and build a table of the CUs/TUs it contains. */
13483 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
13484 }
13485 /* NOTE: This will be NULL if unable to open the file. */
13486 dwo_file = (struct dwo_file *) *dwo_file_slot;
13487
13488 if (dwo_file != NULL)
13489 {
13490 struct dwo_unit *dwo_cutu = NULL;
13491
13492 if (is_debug_types && dwo_file->tus)
13493 {
13494 struct dwo_unit find_dwo_cutu;
13495
13496 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13497 find_dwo_cutu.signature = signature;
13498 dwo_cutu
13499 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
13500 }
13501 else if (!is_debug_types && dwo_file->cus)
13502 {
13503 struct dwo_unit find_dwo_cutu;
13504
13505 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13506 find_dwo_cutu.signature = signature;
13507 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus,
13508 &find_dwo_cutu);
13509 }
13510
13511 if (dwo_cutu != NULL)
13512 {
13513 if (dwarf_read_debug)
13514 {
13515 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
13516 kind, dwo_name, hex_string (signature),
13517 host_address_to_string (dwo_cutu));
13518 }
13519 return dwo_cutu;
13520 }
13521 }
13522 }
13523
13524 /* We didn't find it. This could mean a dwo_id mismatch, or
13525 someone deleted the DWO/DWP file, or the search path isn't set up
13526 correctly to find the file. */
13527
13528 if (dwarf_read_debug)
13529 {
13530 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
13531 kind, dwo_name, hex_string (signature));
13532 }
13533
13534 /* This is a warning and not a complaint because it can be caused by
13535 pilot error (e.g., user accidentally deleting the DWO). */
13536 {
13537 /* Print the name of the DWP file if we looked there, helps the user
13538 better diagnose the problem. */
13539 std::string dwp_text;
13540
13541 if (dwp_file != NULL)
13542 dwp_text = string_printf (" [in DWP file %s]",
13543 lbasename (dwp_file->name));
13544
13545 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
13546 " [in module %s]"),
13547 kind, dwo_name, hex_string (signature),
13548 dwp_text.c_str (),
13549 this_unit->is_debug_types ? "TU" : "CU",
13550 to_underlying (this_unit->sect_off), objfile_name (objfile));
13551 }
13552 return NULL;
13553 }
13554
13555 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
13556 See lookup_dwo_cutu_unit for details. */
13557
13558 static struct dwo_unit *
13559 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
13560 const char *dwo_name, const char *comp_dir,
13561 ULONGEST signature)
13562 {
13563 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
13564 }
13565
13566 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
13567 See lookup_dwo_cutu_unit for details. */
13568
13569 static struct dwo_unit *
13570 lookup_dwo_type_unit (struct signatured_type *this_tu,
13571 const char *dwo_name, const char *comp_dir)
13572 {
13573 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
13574 }
13575
13576 /* Traversal function for queue_and_load_all_dwo_tus. */
13577
13578 static int
13579 queue_and_load_dwo_tu (void **slot, void *info)
13580 {
13581 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
13582 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
13583 ULONGEST signature = dwo_unit->signature;
13584 struct signatured_type *sig_type =
13585 lookup_dwo_signatured_type (per_cu->cu, signature);
13586
13587 if (sig_type != NULL)
13588 {
13589 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
13590
13591 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
13592 a real dependency of PER_CU on SIG_TYPE. That is detected later
13593 while processing PER_CU. */
13594 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
13595 load_full_type_unit (sig_cu);
13596 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
13597 }
13598
13599 return 1;
13600 }
13601
13602 /* Queue all TUs contained in the DWO of PER_CU to be read in.
13603 The DWO may have the only definition of the type, though it may not be
13604 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
13605 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
13606
13607 static void
13608 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
13609 {
13610 struct dwo_unit *dwo_unit;
13611 struct dwo_file *dwo_file;
13612
13613 gdb_assert (!per_cu->is_debug_types);
13614 gdb_assert (get_dwp_file (per_cu->dwarf2_per_objfile) == NULL);
13615 gdb_assert (per_cu->cu != NULL);
13616
13617 dwo_unit = per_cu->cu->dwo_unit;
13618 gdb_assert (dwo_unit != NULL);
13619
13620 dwo_file = dwo_unit->dwo_file;
13621 if (dwo_file->tus != NULL)
13622 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
13623 }
13624
13625 /* Free all resources associated with DWO_FILE.
13626 Close the DWO file and munmap the sections.
13627 All memory should be on the objfile obstack. */
13628
13629 static void
13630 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
13631 {
13632
13633 /* Note: dbfd is NULL for virtual DWO files. */
13634 gdb_bfd_unref (dwo_file->dbfd);
13635
13636 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
13637 }
13638
13639 /* Wrapper for free_dwo_file for use in cleanups. */
13640
13641 static void
13642 free_dwo_file_cleanup (void *arg)
13643 {
13644 struct free_dwo_file_cleanup_data *data
13645 = (struct free_dwo_file_cleanup_data *) arg;
13646 struct objfile *objfile = data->dwarf2_per_objfile->objfile;
13647
13648 free_dwo_file (data->dwo_file, objfile);
13649
13650 xfree (data);
13651 }
13652
13653 /* Traversal function for free_dwo_files. */
13654
13655 static int
13656 free_dwo_file_from_slot (void **slot, void *info)
13657 {
13658 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
13659 struct objfile *objfile = (struct objfile *) info;
13660
13661 free_dwo_file (dwo_file, objfile);
13662
13663 return 1;
13664 }
13665
13666 /* Free all resources associated with DWO_FILES. */
13667
13668 static void
13669 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
13670 {
13671 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
13672 }
13673 \f
13674 /* Read in various DIEs. */
13675
13676 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
13677 Inherit only the children of the DW_AT_abstract_origin DIE not being
13678 already referenced by DW_AT_abstract_origin from the children of the
13679 current DIE. */
13680
13681 static void
13682 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
13683 {
13684 struct die_info *child_die;
13685 sect_offset *offsetp;
13686 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
13687 struct die_info *origin_die;
13688 /* Iterator of the ORIGIN_DIE children. */
13689 struct die_info *origin_child_die;
13690 struct attribute *attr;
13691 struct dwarf2_cu *origin_cu;
13692 struct pending **origin_previous_list_in_scope;
13693
13694 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13695 if (!attr)
13696 return;
13697
13698 /* Note that following die references may follow to a die in a
13699 different cu. */
13700
13701 origin_cu = cu;
13702 origin_die = follow_die_ref (die, attr, &origin_cu);
13703
13704 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
13705 symbols in. */
13706 origin_previous_list_in_scope = origin_cu->list_in_scope;
13707 origin_cu->list_in_scope = cu->list_in_scope;
13708
13709 if (die->tag != origin_die->tag
13710 && !(die->tag == DW_TAG_inlined_subroutine
13711 && origin_die->tag == DW_TAG_subprogram))
13712 complaint (&symfile_complaints,
13713 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
13714 to_underlying (die->sect_off),
13715 to_underlying (origin_die->sect_off));
13716
13717 std::vector<sect_offset> offsets;
13718
13719 for (child_die = die->child;
13720 child_die && child_die->tag;
13721 child_die = sibling_die (child_die))
13722 {
13723 struct die_info *child_origin_die;
13724 struct dwarf2_cu *child_origin_cu;
13725
13726 /* We are trying to process concrete instance entries:
13727 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
13728 it's not relevant to our analysis here. i.e. detecting DIEs that are
13729 present in the abstract instance but not referenced in the concrete
13730 one. */
13731 if (child_die->tag == DW_TAG_call_site
13732 || child_die->tag == DW_TAG_GNU_call_site)
13733 continue;
13734
13735 /* For each CHILD_DIE, find the corresponding child of
13736 ORIGIN_DIE. If there is more than one layer of
13737 DW_AT_abstract_origin, follow them all; there shouldn't be,
13738 but GCC versions at least through 4.4 generate this (GCC PR
13739 40573). */
13740 child_origin_die = child_die;
13741 child_origin_cu = cu;
13742 while (1)
13743 {
13744 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
13745 child_origin_cu);
13746 if (attr == NULL)
13747 break;
13748 child_origin_die = follow_die_ref (child_origin_die, attr,
13749 &child_origin_cu);
13750 }
13751
13752 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
13753 counterpart may exist. */
13754 if (child_origin_die != child_die)
13755 {
13756 if (child_die->tag != child_origin_die->tag
13757 && !(child_die->tag == DW_TAG_inlined_subroutine
13758 && child_origin_die->tag == DW_TAG_subprogram))
13759 complaint (&symfile_complaints,
13760 _("Child DIE 0x%x and its abstract origin 0x%x have "
13761 "different tags"),
13762 to_underlying (child_die->sect_off),
13763 to_underlying (child_origin_die->sect_off));
13764 if (child_origin_die->parent != origin_die)
13765 complaint (&symfile_complaints,
13766 _("Child DIE 0x%x and its abstract origin 0x%x have "
13767 "different parents"),
13768 to_underlying (child_die->sect_off),
13769 to_underlying (child_origin_die->sect_off));
13770 else
13771 offsets.push_back (child_origin_die->sect_off);
13772 }
13773 }
13774 std::sort (offsets.begin (), offsets.end ());
13775 sect_offset *offsets_end = offsets.data () + offsets.size ();
13776 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
13777 if (offsetp[-1] == *offsetp)
13778 complaint (&symfile_complaints,
13779 _("Multiple children of DIE 0x%x refer "
13780 "to DIE 0x%x as their abstract origin"),
13781 to_underlying (die->sect_off), to_underlying (*offsetp));
13782
13783 offsetp = offsets.data ();
13784 origin_child_die = origin_die->child;
13785 while (origin_child_die && origin_child_die->tag)
13786 {
13787 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
13788 while (offsetp < offsets_end
13789 && *offsetp < origin_child_die->sect_off)
13790 offsetp++;
13791 if (offsetp >= offsets_end
13792 || *offsetp > origin_child_die->sect_off)
13793 {
13794 /* Found that ORIGIN_CHILD_DIE is really not referenced.
13795 Check whether we're already processing ORIGIN_CHILD_DIE.
13796 This can happen with mutually referenced abstract_origins.
13797 PR 16581. */
13798 if (!origin_child_die->in_process)
13799 process_die (origin_child_die, origin_cu);
13800 }
13801 origin_child_die = sibling_die (origin_child_die);
13802 }
13803 origin_cu->list_in_scope = origin_previous_list_in_scope;
13804 }
13805
13806 static void
13807 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
13808 {
13809 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13810 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13811 struct context_stack *newobj;
13812 CORE_ADDR lowpc;
13813 CORE_ADDR highpc;
13814 struct die_info *child_die;
13815 struct attribute *attr, *call_line, *call_file;
13816 const char *name;
13817 CORE_ADDR baseaddr;
13818 struct block *block;
13819 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
13820 std::vector<struct symbol *> template_args;
13821 struct template_symbol *templ_func = NULL;
13822
13823 if (inlined_func)
13824 {
13825 /* If we do not have call site information, we can't show the
13826 caller of this inlined function. That's too confusing, so
13827 only use the scope for local variables. */
13828 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
13829 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
13830 if (call_line == NULL || call_file == NULL)
13831 {
13832 read_lexical_block_scope (die, cu);
13833 return;
13834 }
13835 }
13836
13837 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13838
13839 name = dwarf2_name (die, cu);
13840
13841 /* Ignore functions with missing or empty names. These are actually
13842 illegal according to the DWARF standard. */
13843 if (name == NULL)
13844 {
13845 complaint (&symfile_complaints,
13846 _("missing name for subprogram DIE at %d"),
13847 to_underlying (die->sect_off));
13848 return;
13849 }
13850
13851 /* Ignore functions with missing or invalid low and high pc attributes. */
13852 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
13853 <= PC_BOUNDS_INVALID)
13854 {
13855 attr = dwarf2_attr (die, DW_AT_external, cu);
13856 if (!attr || !DW_UNSND (attr))
13857 complaint (&symfile_complaints,
13858 _("cannot get low and high bounds "
13859 "for subprogram DIE at %d"),
13860 to_underlying (die->sect_off));
13861 return;
13862 }
13863
13864 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13865 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13866
13867 /* If we have any template arguments, then we must allocate a
13868 different sort of symbol. */
13869 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
13870 {
13871 if (child_die->tag == DW_TAG_template_type_param
13872 || child_die->tag == DW_TAG_template_value_param)
13873 {
13874 templ_func = allocate_template_symbol (objfile);
13875 templ_func->subclass = SYMBOL_TEMPLATE;
13876 break;
13877 }
13878 }
13879
13880 newobj = push_context (0, lowpc);
13881 newobj->name = new_symbol_full (die, read_type_die (die, cu), cu,
13882 (struct symbol *) templ_func);
13883
13884 /* If there is a location expression for DW_AT_frame_base, record
13885 it. */
13886 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
13887 if (attr)
13888 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
13889
13890 /* If there is a location for the static link, record it. */
13891 newobj->static_link = NULL;
13892 attr = dwarf2_attr (die, DW_AT_static_link, cu);
13893 if (attr)
13894 {
13895 newobj->static_link
13896 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
13897 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
13898 }
13899
13900 cu->list_in_scope = &local_symbols;
13901
13902 if (die->child != NULL)
13903 {
13904 child_die = die->child;
13905 while (child_die && child_die->tag)
13906 {
13907 if (child_die->tag == DW_TAG_template_type_param
13908 || child_die->tag == DW_TAG_template_value_param)
13909 {
13910 struct symbol *arg = new_symbol (child_die, NULL, cu);
13911
13912 if (arg != NULL)
13913 template_args.push_back (arg);
13914 }
13915 else
13916 process_die (child_die, cu);
13917 child_die = sibling_die (child_die);
13918 }
13919 }
13920
13921 inherit_abstract_dies (die, cu);
13922
13923 /* If we have a DW_AT_specification, we might need to import using
13924 directives from the context of the specification DIE. See the
13925 comment in determine_prefix. */
13926 if (cu->language == language_cplus
13927 && dwarf2_attr (die, DW_AT_specification, cu))
13928 {
13929 struct dwarf2_cu *spec_cu = cu;
13930 struct die_info *spec_die = die_specification (die, &spec_cu);
13931
13932 while (spec_die)
13933 {
13934 child_die = spec_die->child;
13935 while (child_die && child_die->tag)
13936 {
13937 if (child_die->tag == DW_TAG_imported_module)
13938 process_die (child_die, spec_cu);
13939 child_die = sibling_die (child_die);
13940 }
13941
13942 /* In some cases, GCC generates specification DIEs that
13943 themselves contain DW_AT_specification attributes. */
13944 spec_die = die_specification (spec_die, &spec_cu);
13945 }
13946 }
13947
13948 newobj = pop_context ();
13949 /* Make a block for the local symbols within. */
13950 block = finish_block (newobj->name, &local_symbols, newobj->old_blocks,
13951 newobj->static_link, lowpc, highpc);
13952
13953 /* For C++, set the block's scope. */
13954 if ((cu->language == language_cplus
13955 || cu->language == language_fortran
13956 || cu->language == language_d
13957 || cu->language == language_rust)
13958 && cu->processing_has_namespace_info)
13959 block_set_scope (block, determine_prefix (die, cu),
13960 &objfile->objfile_obstack);
13961
13962 /* If we have address ranges, record them. */
13963 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13964
13965 gdbarch_make_symbol_special (gdbarch, newobj->name, objfile);
13966
13967 /* Attach template arguments to function. */
13968 if (!template_args.empty ())
13969 {
13970 gdb_assert (templ_func != NULL);
13971
13972 templ_func->n_template_arguments = template_args.size ();
13973 templ_func->template_arguments
13974 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
13975 templ_func->n_template_arguments);
13976 memcpy (templ_func->template_arguments,
13977 template_args.data (),
13978 (templ_func->n_template_arguments * sizeof (struct symbol *)));
13979 }
13980
13981 /* In C++, we can have functions nested inside functions (e.g., when
13982 a function declares a class that has methods). This means that
13983 when we finish processing a function scope, we may need to go
13984 back to building a containing block's symbol lists. */
13985 local_symbols = newobj->locals;
13986 local_using_directives = newobj->local_using_directives;
13987
13988 /* If we've finished processing a top-level function, subsequent
13989 symbols go in the file symbol list. */
13990 if (outermost_context_p ())
13991 cu->list_in_scope = &file_symbols;
13992 }
13993
13994 /* Process all the DIES contained within a lexical block scope. Start
13995 a new scope, process the dies, and then close the scope. */
13996
13997 static void
13998 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
13999 {
14000 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14001 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14002 struct context_stack *newobj;
14003 CORE_ADDR lowpc, highpc;
14004 struct die_info *child_die;
14005 CORE_ADDR baseaddr;
14006
14007 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14008
14009 /* Ignore blocks with missing or invalid low and high pc attributes. */
14010 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
14011 as multiple lexical blocks? Handling children in a sane way would
14012 be nasty. Might be easier to properly extend generic blocks to
14013 describe ranges. */
14014 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
14015 {
14016 case PC_BOUNDS_NOT_PRESENT:
14017 /* DW_TAG_lexical_block has no attributes, process its children as if
14018 there was no wrapping by that DW_TAG_lexical_block.
14019 GCC does no longer produces such DWARF since GCC r224161. */
14020 for (child_die = die->child;
14021 child_die != NULL && child_die->tag;
14022 child_die = sibling_die (child_die))
14023 process_die (child_die, cu);
14024 return;
14025 case PC_BOUNDS_INVALID:
14026 return;
14027 }
14028 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
14029 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
14030
14031 push_context (0, lowpc);
14032 if (die->child != NULL)
14033 {
14034 child_die = die->child;
14035 while (child_die && child_die->tag)
14036 {
14037 process_die (child_die, cu);
14038 child_die = sibling_die (child_die);
14039 }
14040 }
14041 inherit_abstract_dies (die, cu);
14042 newobj = pop_context ();
14043
14044 if (local_symbols != NULL || local_using_directives != NULL)
14045 {
14046 struct block *block
14047 = finish_block (0, &local_symbols, newobj->old_blocks, NULL,
14048 newobj->start_addr, highpc);
14049
14050 /* Note that recording ranges after traversing children, as we
14051 do here, means that recording a parent's ranges entails
14052 walking across all its children's ranges as they appear in
14053 the address map, which is quadratic behavior.
14054
14055 It would be nicer to record the parent's ranges before
14056 traversing its children, simply overriding whatever you find
14057 there. But since we don't even decide whether to create a
14058 block until after we've traversed its children, that's hard
14059 to do. */
14060 dwarf2_record_block_ranges (die, block, baseaddr, cu);
14061 }
14062 local_symbols = newobj->locals;
14063 local_using_directives = newobj->local_using_directives;
14064 }
14065
14066 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
14067
14068 static void
14069 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
14070 {
14071 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14072 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14073 CORE_ADDR pc, baseaddr;
14074 struct attribute *attr;
14075 struct call_site *call_site, call_site_local;
14076 void **slot;
14077 int nparams;
14078 struct die_info *child_die;
14079
14080 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14081
14082 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
14083 if (attr == NULL)
14084 {
14085 /* This was a pre-DWARF-5 GNU extension alias
14086 for DW_AT_call_return_pc. */
14087 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14088 }
14089 if (!attr)
14090 {
14091 complaint (&symfile_complaints,
14092 _("missing DW_AT_call_return_pc for DW_TAG_call_site "
14093 "DIE 0x%x [in module %s]"),
14094 to_underlying (die->sect_off), objfile_name (objfile));
14095 return;
14096 }
14097 pc = attr_value_as_address (attr) + baseaddr;
14098 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
14099
14100 if (cu->call_site_htab == NULL)
14101 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
14102 NULL, &objfile->objfile_obstack,
14103 hashtab_obstack_allocate, NULL);
14104 call_site_local.pc = pc;
14105 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
14106 if (*slot != NULL)
14107 {
14108 complaint (&symfile_complaints,
14109 _("Duplicate PC %s for DW_TAG_call_site "
14110 "DIE 0x%x [in module %s]"),
14111 paddress (gdbarch, pc), to_underlying (die->sect_off),
14112 objfile_name (objfile));
14113 return;
14114 }
14115
14116 /* Count parameters at the caller. */
14117
14118 nparams = 0;
14119 for (child_die = die->child; child_die && child_die->tag;
14120 child_die = sibling_die (child_die))
14121 {
14122 if (child_die->tag != DW_TAG_call_site_parameter
14123 && child_die->tag != DW_TAG_GNU_call_site_parameter)
14124 {
14125 complaint (&symfile_complaints,
14126 _("Tag %d is not DW_TAG_call_site_parameter in "
14127 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
14128 child_die->tag, to_underlying (child_die->sect_off),
14129 objfile_name (objfile));
14130 continue;
14131 }
14132
14133 nparams++;
14134 }
14135
14136 call_site
14137 = ((struct call_site *)
14138 obstack_alloc (&objfile->objfile_obstack,
14139 sizeof (*call_site)
14140 + (sizeof (*call_site->parameter) * (nparams - 1))));
14141 *slot = call_site;
14142 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
14143 call_site->pc = pc;
14144
14145 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
14146 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
14147 {
14148 struct die_info *func_die;
14149
14150 /* Skip also over DW_TAG_inlined_subroutine. */
14151 for (func_die = die->parent;
14152 func_die && func_die->tag != DW_TAG_subprogram
14153 && func_die->tag != DW_TAG_subroutine_type;
14154 func_die = func_die->parent);
14155
14156 /* DW_AT_call_all_calls is a superset
14157 of DW_AT_call_all_tail_calls. */
14158 if (func_die
14159 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
14160 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
14161 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
14162 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
14163 {
14164 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
14165 not complete. But keep CALL_SITE for look ups via call_site_htab,
14166 both the initial caller containing the real return address PC and
14167 the final callee containing the current PC of a chain of tail
14168 calls do not need to have the tail call list complete. But any
14169 function candidate for a virtual tail call frame searched via
14170 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
14171 determined unambiguously. */
14172 }
14173 else
14174 {
14175 struct type *func_type = NULL;
14176
14177 if (func_die)
14178 func_type = get_die_type (func_die, cu);
14179 if (func_type != NULL)
14180 {
14181 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
14182
14183 /* Enlist this call site to the function. */
14184 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
14185 TYPE_TAIL_CALL_LIST (func_type) = call_site;
14186 }
14187 else
14188 complaint (&symfile_complaints,
14189 _("Cannot find function owning DW_TAG_call_site "
14190 "DIE 0x%x [in module %s]"),
14191 to_underlying (die->sect_off), objfile_name (objfile));
14192 }
14193 }
14194
14195 attr = dwarf2_attr (die, DW_AT_call_target, cu);
14196 if (attr == NULL)
14197 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
14198 if (attr == NULL)
14199 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
14200 if (attr == NULL)
14201 {
14202 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
14203 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
14204 }
14205 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
14206 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
14207 /* Keep NULL DWARF_BLOCK. */;
14208 else if (attr_form_is_block (attr))
14209 {
14210 struct dwarf2_locexpr_baton *dlbaton;
14211
14212 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
14213 dlbaton->data = DW_BLOCK (attr)->data;
14214 dlbaton->size = DW_BLOCK (attr)->size;
14215 dlbaton->per_cu = cu->per_cu;
14216
14217 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
14218 }
14219 else if (attr_form_is_ref (attr))
14220 {
14221 struct dwarf2_cu *target_cu = cu;
14222 struct die_info *target_die;
14223
14224 target_die = follow_die_ref (die, attr, &target_cu);
14225 gdb_assert (target_cu->per_cu->dwarf2_per_objfile->objfile == objfile);
14226 if (die_is_declaration (target_die, target_cu))
14227 {
14228 const char *target_physname;
14229
14230 /* Prefer the mangled name; otherwise compute the demangled one. */
14231 target_physname = dw2_linkage_name (target_die, target_cu);
14232 if (target_physname == NULL)
14233 target_physname = dwarf2_physname (NULL, target_die, target_cu);
14234 if (target_physname == NULL)
14235 complaint (&symfile_complaints,
14236 _("DW_AT_call_target target DIE has invalid "
14237 "physname, for referencing DIE 0x%x [in module %s]"),
14238 to_underlying (die->sect_off), objfile_name (objfile));
14239 else
14240 SET_FIELD_PHYSNAME (call_site->target, target_physname);
14241 }
14242 else
14243 {
14244 CORE_ADDR lowpc;
14245
14246 /* DW_AT_entry_pc should be preferred. */
14247 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
14248 <= PC_BOUNDS_INVALID)
14249 complaint (&symfile_complaints,
14250 _("DW_AT_call_target target DIE has invalid "
14251 "low pc, for referencing DIE 0x%x [in module %s]"),
14252 to_underlying (die->sect_off), objfile_name (objfile));
14253 else
14254 {
14255 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
14256 SET_FIELD_PHYSADDR (call_site->target, lowpc);
14257 }
14258 }
14259 }
14260 else
14261 complaint (&symfile_complaints,
14262 _("DW_TAG_call_site DW_AT_call_target is neither "
14263 "block nor reference, for DIE 0x%x [in module %s]"),
14264 to_underlying (die->sect_off), objfile_name (objfile));
14265
14266 call_site->per_cu = cu->per_cu;
14267
14268 for (child_die = die->child;
14269 child_die && child_die->tag;
14270 child_die = sibling_die (child_die))
14271 {
14272 struct call_site_parameter *parameter;
14273 struct attribute *loc, *origin;
14274
14275 if (child_die->tag != DW_TAG_call_site_parameter
14276 && child_die->tag != DW_TAG_GNU_call_site_parameter)
14277 {
14278 /* Already printed the complaint above. */
14279 continue;
14280 }
14281
14282 gdb_assert (call_site->parameter_count < nparams);
14283 parameter = &call_site->parameter[call_site->parameter_count];
14284
14285 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
14286 specifies DW_TAG_formal_parameter. Value of the data assumed for the
14287 register is contained in DW_AT_call_value. */
14288
14289 loc = dwarf2_attr (child_die, DW_AT_location, cu);
14290 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
14291 if (origin == NULL)
14292 {
14293 /* This was a pre-DWARF-5 GNU extension alias
14294 for DW_AT_call_parameter. */
14295 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
14296 }
14297 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
14298 {
14299 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
14300
14301 sect_offset sect_off
14302 = (sect_offset) dwarf2_get_ref_die_offset (origin);
14303 if (!offset_in_cu_p (&cu->header, sect_off))
14304 {
14305 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
14306 binding can be done only inside one CU. Such referenced DIE
14307 therefore cannot be even moved to DW_TAG_partial_unit. */
14308 complaint (&symfile_complaints,
14309 _("DW_AT_call_parameter offset is not in CU for "
14310 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
14311 to_underlying (child_die->sect_off),
14312 objfile_name (objfile));
14313 continue;
14314 }
14315 parameter->u.param_cu_off
14316 = (cu_offset) (sect_off - cu->header.sect_off);
14317 }
14318 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
14319 {
14320 complaint (&symfile_complaints,
14321 _("No DW_FORM_block* DW_AT_location for "
14322 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
14323 to_underlying (child_die->sect_off), objfile_name (objfile));
14324 continue;
14325 }
14326 else
14327 {
14328 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
14329 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
14330 if (parameter->u.dwarf_reg != -1)
14331 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
14332 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
14333 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
14334 &parameter->u.fb_offset))
14335 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
14336 else
14337 {
14338 complaint (&symfile_complaints,
14339 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
14340 "for DW_FORM_block* DW_AT_location is supported for "
14341 "DW_TAG_call_site child DIE 0x%x "
14342 "[in module %s]"),
14343 to_underlying (child_die->sect_off),
14344 objfile_name (objfile));
14345 continue;
14346 }
14347 }
14348
14349 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
14350 if (attr == NULL)
14351 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
14352 if (!attr_form_is_block (attr))
14353 {
14354 complaint (&symfile_complaints,
14355 _("No DW_FORM_block* DW_AT_call_value for "
14356 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
14357 to_underlying (child_die->sect_off),
14358 objfile_name (objfile));
14359 continue;
14360 }
14361 parameter->value = DW_BLOCK (attr)->data;
14362 parameter->value_size = DW_BLOCK (attr)->size;
14363
14364 /* Parameters are not pre-cleared by memset above. */
14365 parameter->data_value = NULL;
14366 parameter->data_value_size = 0;
14367 call_site->parameter_count++;
14368
14369 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
14370 if (attr == NULL)
14371 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
14372 if (attr)
14373 {
14374 if (!attr_form_is_block (attr))
14375 complaint (&symfile_complaints,
14376 _("No DW_FORM_block* DW_AT_call_data_value for "
14377 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
14378 to_underlying (child_die->sect_off),
14379 objfile_name (objfile));
14380 else
14381 {
14382 parameter->data_value = DW_BLOCK (attr)->data;
14383 parameter->data_value_size = DW_BLOCK (attr)->size;
14384 }
14385 }
14386 }
14387 }
14388
14389 /* Helper function for read_variable. If DIE represents a virtual
14390 table, then return the type of the concrete object that is
14391 associated with the virtual table. Otherwise, return NULL. */
14392
14393 static struct type *
14394 rust_containing_type (struct die_info *die, struct dwarf2_cu *cu)
14395 {
14396 struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu);
14397 if (attr == NULL)
14398 return NULL;
14399
14400 /* Find the type DIE. */
14401 struct die_info *type_die = NULL;
14402 struct dwarf2_cu *type_cu = cu;
14403
14404 if (attr_form_is_ref (attr))
14405 type_die = follow_die_ref (die, attr, &type_cu);
14406 if (type_die == NULL)
14407 return NULL;
14408
14409 if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL)
14410 return NULL;
14411 return die_containing_type (type_die, type_cu);
14412 }
14413
14414 /* Read a variable (DW_TAG_variable) DIE and create a new symbol. */
14415
14416 static void
14417 read_variable (struct die_info *die, struct dwarf2_cu *cu)
14418 {
14419 struct rust_vtable_symbol *storage = NULL;
14420
14421 if (cu->language == language_rust)
14422 {
14423 struct type *containing_type = rust_containing_type (die, cu);
14424
14425 if (containing_type != NULL)
14426 {
14427 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14428
14429 storage = OBSTACK_ZALLOC (&objfile->objfile_obstack,
14430 struct rust_vtable_symbol);
14431 initialize_objfile_symbol (storage);
14432 storage->concrete_type = containing_type;
14433 storage->subclass = SYMBOL_RUST_VTABLE;
14434 }
14435 }
14436
14437 new_symbol_full (die, NULL, cu, storage);
14438 }
14439
14440 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
14441 reading .debug_rnglists.
14442 Callback's type should be:
14443 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14444 Return true if the attributes are present and valid, otherwise,
14445 return false. */
14446
14447 template <typename Callback>
14448 static bool
14449 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
14450 Callback &&callback)
14451 {
14452 struct dwarf2_per_objfile *dwarf2_per_objfile
14453 = cu->per_cu->dwarf2_per_objfile;
14454 struct objfile *objfile = dwarf2_per_objfile->objfile;
14455 bfd *obfd = objfile->obfd;
14456 /* Base address selection entry. */
14457 CORE_ADDR base;
14458 int found_base;
14459 const gdb_byte *buffer;
14460 CORE_ADDR baseaddr;
14461 bool overflow = false;
14462
14463 found_base = cu->base_known;
14464 base = cu->base_address;
14465
14466 dwarf2_read_section (objfile, &dwarf2_per_objfile->rnglists);
14467 if (offset >= dwarf2_per_objfile->rnglists.size)
14468 {
14469 complaint (&symfile_complaints,
14470 _("Offset %d out of bounds for DW_AT_ranges attribute"),
14471 offset);
14472 return false;
14473 }
14474 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
14475
14476 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14477
14478 while (1)
14479 {
14480 /* Initialize it due to a false compiler warning. */
14481 CORE_ADDR range_beginning = 0, range_end = 0;
14482 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
14483 + dwarf2_per_objfile->rnglists.size);
14484 unsigned int bytes_read;
14485
14486 if (buffer == buf_end)
14487 {
14488 overflow = true;
14489 break;
14490 }
14491 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
14492 switch (rlet)
14493 {
14494 case DW_RLE_end_of_list:
14495 break;
14496 case DW_RLE_base_address:
14497 if (buffer + cu->header.addr_size > buf_end)
14498 {
14499 overflow = true;
14500 break;
14501 }
14502 base = read_address (obfd, buffer, cu, &bytes_read);
14503 found_base = 1;
14504 buffer += bytes_read;
14505 break;
14506 case DW_RLE_start_length:
14507 if (buffer + cu->header.addr_size > buf_end)
14508 {
14509 overflow = true;
14510 break;
14511 }
14512 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14513 buffer += bytes_read;
14514 range_end = (range_beginning
14515 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
14516 buffer += bytes_read;
14517 if (buffer > buf_end)
14518 {
14519 overflow = true;
14520 break;
14521 }
14522 break;
14523 case DW_RLE_offset_pair:
14524 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14525 buffer += bytes_read;
14526 if (buffer > buf_end)
14527 {
14528 overflow = true;
14529 break;
14530 }
14531 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14532 buffer += bytes_read;
14533 if (buffer > buf_end)
14534 {
14535 overflow = true;
14536 break;
14537 }
14538 break;
14539 case DW_RLE_start_end:
14540 if (buffer + 2 * cu->header.addr_size > buf_end)
14541 {
14542 overflow = true;
14543 break;
14544 }
14545 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14546 buffer += bytes_read;
14547 range_end = read_address (obfd, buffer, cu, &bytes_read);
14548 buffer += bytes_read;
14549 break;
14550 default:
14551 complaint (&symfile_complaints,
14552 _("Invalid .debug_rnglists data (no base address)"));
14553 return false;
14554 }
14555 if (rlet == DW_RLE_end_of_list || overflow)
14556 break;
14557 if (rlet == DW_RLE_base_address)
14558 continue;
14559
14560 if (!found_base)
14561 {
14562 /* We have no valid base address for the ranges
14563 data. */
14564 complaint (&symfile_complaints,
14565 _("Invalid .debug_rnglists data (no base address)"));
14566 return false;
14567 }
14568
14569 if (range_beginning > range_end)
14570 {
14571 /* Inverted range entries are invalid. */
14572 complaint (&symfile_complaints,
14573 _("Invalid .debug_rnglists data (inverted range)"));
14574 return false;
14575 }
14576
14577 /* Empty range entries have no effect. */
14578 if (range_beginning == range_end)
14579 continue;
14580
14581 range_beginning += base;
14582 range_end += base;
14583
14584 /* A not-uncommon case of bad debug info.
14585 Don't pollute the addrmap with bad data. */
14586 if (range_beginning + baseaddr == 0
14587 && !dwarf2_per_objfile->has_section_at_zero)
14588 {
14589 complaint (&symfile_complaints,
14590 _(".debug_rnglists entry has start address of zero"
14591 " [in module %s]"), objfile_name (objfile));
14592 continue;
14593 }
14594
14595 callback (range_beginning, range_end);
14596 }
14597
14598 if (overflow)
14599 {
14600 complaint (&symfile_complaints,
14601 _("Offset %d is not terminated "
14602 "for DW_AT_ranges attribute"),
14603 offset);
14604 return false;
14605 }
14606
14607 return true;
14608 }
14609
14610 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
14611 Callback's type should be:
14612 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14613 Return 1 if the attributes are present and valid, otherwise, return 0. */
14614
14615 template <typename Callback>
14616 static int
14617 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
14618 Callback &&callback)
14619 {
14620 struct dwarf2_per_objfile *dwarf2_per_objfile
14621 = cu->per_cu->dwarf2_per_objfile;
14622 struct objfile *objfile = dwarf2_per_objfile->objfile;
14623 struct comp_unit_head *cu_header = &cu->header;
14624 bfd *obfd = objfile->obfd;
14625 unsigned int addr_size = cu_header->addr_size;
14626 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
14627 /* Base address selection entry. */
14628 CORE_ADDR base;
14629 int found_base;
14630 unsigned int dummy;
14631 const gdb_byte *buffer;
14632 CORE_ADDR baseaddr;
14633
14634 if (cu_header->version >= 5)
14635 return dwarf2_rnglists_process (offset, cu, callback);
14636
14637 found_base = cu->base_known;
14638 base = cu->base_address;
14639
14640 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
14641 if (offset >= dwarf2_per_objfile->ranges.size)
14642 {
14643 complaint (&symfile_complaints,
14644 _("Offset %d out of bounds for DW_AT_ranges attribute"),
14645 offset);
14646 return 0;
14647 }
14648 buffer = dwarf2_per_objfile->ranges.buffer + offset;
14649
14650 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14651
14652 while (1)
14653 {
14654 CORE_ADDR range_beginning, range_end;
14655
14656 range_beginning = read_address (obfd, buffer, cu, &dummy);
14657 buffer += addr_size;
14658 range_end = read_address (obfd, buffer, cu, &dummy);
14659 buffer += addr_size;
14660 offset += 2 * addr_size;
14661
14662 /* An end of list marker is a pair of zero addresses. */
14663 if (range_beginning == 0 && range_end == 0)
14664 /* Found the end of list entry. */
14665 break;
14666
14667 /* Each base address selection entry is a pair of 2 values.
14668 The first is the largest possible address, the second is
14669 the base address. Check for a base address here. */
14670 if ((range_beginning & mask) == mask)
14671 {
14672 /* If we found the largest possible address, then we already
14673 have the base address in range_end. */
14674 base = range_end;
14675 found_base = 1;
14676 continue;
14677 }
14678
14679 if (!found_base)
14680 {
14681 /* We have no valid base address for the ranges
14682 data. */
14683 complaint (&symfile_complaints,
14684 _("Invalid .debug_ranges data (no base address)"));
14685 return 0;
14686 }
14687
14688 if (range_beginning > range_end)
14689 {
14690 /* Inverted range entries are invalid. */
14691 complaint (&symfile_complaints,
14692 _("Invalid .debug_ranges data (inverted range)"));
14693 return 0;
14694 }
14695
14696 /* Empty range entries have no effect. */
14697 if (range_beginning == range_end)
14698 continue;
14699
14700 range_beginning += base;
14701 range_end += base;
14702
14703 /* A not-uncommon case of bad debug info.
14704 Don't pollute the addrmap with bad data. */
14705 if (range_beginning + baseaddr == 0
14706 && !dwarf2_per_objfile->has_section_at_zero)
14707 {
14708 complaint (&symfile_complaints,
14709 _(".debug_ranges entry has start address of zero"
14710 " [in module %s]"), objfile_name (objfile));
14711 continue;
14712 }
14713
14714 callback (range_beginning, range_end);
14715 }
14716
14717 return 1;
14718 }
14719
14720 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
14721 Return 1 if the attributes are present and valid, otherwise, return 0.
14722 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
14723
14724 static int
14725 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
14726 CORE_ADDR *high_return, struct dwarf2_cu *cu,
14727 struct partial_symtab *ranges_pst)
14728 {
14729 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14730 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14731 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
14732 SECT_OFF_TEXT (objfile));
14733 int low_set = 0;
14734 CORE_ADDR low = 0;
14735 CORE_ADDR high = 0;
14736 int retval;
14737
14738 retval = dwarf2_ranges_process (offset, cu,
14739 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
14740 {
14741 if (ranges_pst != NULL)
14742 {
14743 CORE_ADDR lowpc;
14744 CORE_ADDR highpc;
14745
14746 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
14747 range_beginning + baseaddr);
14748 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
14749 range_end + baseaddr);
14750 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
14751 ranges_pst);
14752 }
14753
14754 /* FIXME: This is recording everything as a low-high
14755 segment of consecutive addresses. We should have a
14756 data structure for discontiguous block ranges
14757 instead. */
14758 if (! low_set)
14759 {
14760 low = range_beginning;
14761 high = range_end;
14762 low_set = 1;
14763 }
14764 else
14765 {
14766 if (range_beginning < low)
14767 low = range_beginning;
14768 if (range_end > high)
14769 high = range_end;
14770 }
14771 });
14772 if (!retval)
14773 return 0;
14774
14775 if (! low_set)
14776 /* If the first entry is an end-of-list marker, the range
14777 describes an empty scope, i.e. no instructions. */
14778 return 0;
14779
14780 if (low_return)
14781 *low_return = low;
14782 if (high_return)
14783 *high_return = high;
14784 return 1;
14785 }
14786
14787 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
14788 definition for the return value. *LOWPC and *HIGHPC are set iff
14789 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
14790
14791 static enum pc_bounds_kind
14792 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
14793 CORE_ADDR *highpc, struct dwarf2_cu *cu,
14794 struct partial_symtab *pst)
14795 {
14796 struct dwarf2_per_objfile *dwarf2_per_objfile
14797 = cu->per_cu->dwarf2_per_objfile;
14798 struct attribute *attr;
14799 struct attribute *attr_high;
14800 CORE_ADDR low = 0;
14801 CORE_ADDR high = 0;
14802 enum pc_bounds_kind ret;
14803
14804 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14805 if (attr_high)
14806 {
14807 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14808 if (attr)
14809 {
14810 low = attr_value_as_address (attr);
14811 high = attr_value_as_address (attr_high);
14812 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14813 high += low;
14814 }
14815 else
14816 /* Found high w/o low attribute. */
14817 return PC_BOUNDS_INVALID;
14818
14819 /* Found consecutive range of addresses. */
14820 ret = PC_BOUNDS_HIGH_LOW;
14821 }
14822 else
14823 {
14824 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14825 if (attr != NULL)
14826 {
14827 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14828 We take advantage of the fact that DW_AT_ranges does not appear
14829 in DW_TAG_compile_unit of DWO files. */
14830 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14831 unsigned int ranges_offset = (DW_UNSND (attr)
14832 + (need_ranges_base
14833 ? cu->ranges_base
14834 : 0));
14835
14836 /* Value of the DW_AT_ranges attribute is the offset in the
14837 .debug_ranges section. */
14838 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
14839 return PC_BOUNDS_INVALID;
14840 /* Found discontinuous range of addresses. */
14841 ret = PC_BOUNDS_RANGES;
14842 }
14843 else
14844 return PC_BOUNDS_NOT_PRESENT;
14845 }
14846
14847 /* read_partial_die has also the strict LOW < HIGH requirement. */
14848 if (high <= low)
14849 return PC_BOUNDS_INVALID;
14850
14851 /* When using the GNU linker, .gnu.linkonce. sections are used to
14852 eliminate duplicate copies of functions and vtables and such.
14853 The linker will arbitrarily choose one and discard the others.
14854 The AT_*_pc values for such functions refer to local labels in
14855 these sections. If the section from that file was discarded, the
14856 labels are not in the output, so the relocs get a value of 0.
14857 If this is a discarded function, mark the pc bounds as invalid,
14858 so that GDB will ignore it. */
14859 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
14860 return PC_BOUNDS_INVALID;
14861
14862 *lowpc = low;
14863 if (highpc)
14864 *highpc = high;
14865 return ret;
14866 }
14867
14868 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
14869 its low and high PC addresses. Do nothing if these addresses could not
14870 be determined. Otherwise, set LOWPC to the low address if it is smaller,
14871 and HIGHPC to the high address if greater than HIGHPC. */
14872
14873 static void
14874 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
14875 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14876 struct dwarf2_cu *cu)
14877 {
14878 CORE_ADDR low, high;
14879 struct die_info *child = die->child;
14880
14881 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
14882 {
14883 *lowpc = std::min (*lowpc, low);
14884 *highpc = std::max (*highpc, high);
14885 }
14886
14887 /* If the language does not allow nested subprograms (either inside
14888 subprograms or lexical blocks), we're done. */
14889 if (cu->language != language_ada)
14890 return;
14891
14892 /* Check all the children of the given DIE. If it contains nested
14893 subprograms, then check their pc bounds. Likewise, we need to
14894 check lexical blocks as well, as they may also contain subprogram
14895 definitions. */
14896 while (child && child->tag)
14897 {
14898 if (child->tag == DW_TAG_subprogram
14899 || child->tag == DW_TAG_lexical_block)
14900 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
14901 child = sibling_die (child);
14902 }
14903 }
14904
14905 /* Get the low and high pc's represented by the scope DIE, and store
14906 them in *LOWPC and *HIGHPC. If the correct values can't be
14907 determined, set *LOWPC to -1 and *HIGHPC to 0. */
14908
14909 static void
14910 get_scope_pc_bounds (struct die_info *die,
14911 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14912 struct dwarf2_cu *cu)
14913 {
14914 CORE_ADDR best_low = (CORE_ADDR) -1;
14915 CORE_ADDR best_high = (CORE_ADDR) 0;
14916 CORE_ADDR current_low, current_high;
14917
14918 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
14919 >= PC_BOUNDS_RANGES)
14920 {
14921 best_low = current_low;
14922 best_high = current_high;
14923 }
14924 else
14925 {
14926 struct die_info *child = die->child;
14927
14928 while (child && child->tag)
14929 {
14930 switch (child->tag) {
14931 case DW_TAG_subprogram:
14932 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
14933 break;
14934 case DW_TAG_namespace:
14935 case DW_TAG_module:
14936 /* FIXME: carlton/2004-01-16: Should we do this for
14937 DW_TAG_class_type/DW_TAG_structure_type, too? I think
14938 that current GCC's always emit the DIEs corresponding
14939 to definitions of methods of classes as children of a
14940 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
14941 the DIEs giving the declarations, which could be
14942 anywhere). But I don't see any reason why the
14943 standards says that they have to be there. */
14944 get_scope_pc_bounds (child, &current_low, &current_high, cu);
14945
14946 if (current_low != ((CORE_ADDR) -1))
14947 {
14948 best_low = std::min (best_low, current_low);
14949 best_high = std::max (best_high, current_high);
14950 }
14951 break;
14952 default:
14953 /* Ignore. */
14954 break;
14955 }
14956
14957 child = sibling_die (child);
14958 }
14959 }
14960
14961 *lowpc = best_low;
14962 *highpc = best_high;
14963 }
14964
14965 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
14966 in DIE. */
14967
14968 static void
14969 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
14970 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
14971 {
14972 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14973 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14974 struct attribute *attr;
14975 struct attribute *attr_high;
14976
14977 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14978 if (attr_high)
14979 {
14980 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14981 if (attr)
14982 {
14983 CORE_ADDR low = attr_value_as_address (attr);
14984 CORE_ADDR high = attr_value_as_address (attr_high);
14985
14986 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14987 high += low;
14988
14989 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
14990 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
14991 record_block_range (block, low, high - 1);
14992 }
14993 }
14994
14995 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14996 if (attr)
14997 {
14998 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14999 We take advantage of the fact that DW_AT_ranges does not appear
15000 in DW_TAG_compile_unit of DWO files. */
15001 int need_ranges_base = die->tag != DW_TAG_compile_unit;
15002
15003 /* The value of the DW_AT_ranges attribute is the offset of the
15004 address range list in the .debug_ranges section. */
15005 unsigned long offset = (DW_UNSND (attr)
15006 + (need_ranges_base ? cu->ranges_base : 0));
15007 const gdb_byte *buffer;
15008
15009 /* For some target architectures, but not others, the
15010 read_address function sign-extends the addresses it returns.
15011 To recognize base address selection entries, we need a
15012 mask. */
15013 unsigned int addr_size = cu->header.addr_size;
15014 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
15015
15016 /* The base address, to which the next pair is relative. Note
15017 that this 'base' is a DWARF concept: most entries in a range
15018 list are relative, to reduce the number of relocs against the
15019 debugging information. This is separate from this function's
15020 'baseaddr' argument, which GDB uses to relocate debugging
15021 information from a shared library based on the address at
15022 which the library was loaded. */
15023 CORE_ADDR base = cu->base_address;
15024 int base_known = cu->base_known;
15025
15026 dwarf2_ranges_process (offset, cu,
15027 [&] (CORE_ADDR start, CORE_ADDR end)
15028 {
15029 start += baseaddr;
15030 end += baseaddr;
15031 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
15032 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
15033 record_block_range (block, start, end - 1);
15034 });
15035 }
15036 }
15037
15038 /* Check whether the producer field indicates either of GCC < 4.6, or the
15039 Intel C/C++ compiler, and cache the result in CU. */
15040
15041 static void
15042 check_producer (struct dwarf2_cu *cu)
15043 {
15044 int major, minor;
15045
15046 if (cu->producer == NULL)
15047 {
15048 /* For unknown compilers expect their behavior is DWARF version
15049 compliant.
15050
15051 GCC started to support .debug_types sections by -gdwarf-4 since
15052 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
15053 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
15054 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
15055 interpreted incorrectly by GDB now - GCC PR debug/48229. */
15056 }
15057 else if (producer_is_gcc (cu->producer, &major, &minor))
15058 {
15059 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
15060 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
15061 }
15062 else if (producer_is_icc (cu->producer, &major, &minor))
15063 cu->producer_is_icc_lt_14 = major < 14;
15064 else
15065 {
15066 /* For other non-GCC compilers, expect their behavior is DWARF version
15067 compliant. */
15068 }
15069
15070 cu->checked_producer = 1;
15071 }
15072
15073 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
15074 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
15075 during 4.6.0 experimental. */
15076
15077 static int
15078 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
15079 {
15080 if (!cu->checked_producer)
15081 check_producer (cu);
15082
15083 return cu->producer_is_gxx_lt_4_6;
15084 }
15085
15086 /* Return the default accessibility type if it is not overriden by
15087 DW_AT_accessibility. */
15088
15089 static enum dwarf_access_attribute
15090 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
15091 {
15092 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
15093 {
15094 /* The default DWARF 2 accessibility for members is public, the default
15095 accessibility for inheritance is private. */
15096
15097 if (die->tag != DW_TAG_inheritance)
15098 return DW_ACCESS_public;
15099 else
15100 return DW_ACCESS_private;
15101 }
15102 else
15103 {
15104 /* DWARF 3+ defines the default accessibility a different way. The same
15105 rules apply now for DW_TAG_inheritance as for the members and it only
15106 depends on the container kind. */
15107
15108 if (die->parent->tag == DW_TAG_class_type)
15109 return DW_ACCESS_private;
15110 else
15111 return DW_ACCESS_public;
15112 }
15113 }
15114
15115 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
15116 offset. If the attribute was not found return 0, otherwise return
15117 1. If it was found but could not properly be handled, set *OFFSET
15118 to 0. */
15119
15120 static int
15121 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
15122 LONGEST *offset)
15123 {
15124 struct attribute *attr;
15125
15126 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
15127 if (attr != NULL)
15128 {
15129 *offset = 0;
15130
15131 /* Note that we do not check for a section offset first here.
15132 This is because DW_AT_data_member_location is new in DWARF 4,
15133 so if we see it, we can assume that a constant form is really
15134 a constant and not a section offset. */
15135 if (attr_form_is_constant (attr))
15136 *offset = dwarf2_get_attr_constant_value (attr, 0);
15137 else if (attr_form_is_section_offset (attr))
15138 dwarf2_complex_location_expr_complaint ();
15139 else if (attr_form_is_block (attr))
15140 *offset = decode_locdesc (DW_BLOCK (attr), cu);
15141 else
15142 dwarf2_complex_location_expr_complaint ();
15143
15144 return 1;
15145 }
15146
15147 return 0;
15148 }
15149
15150 /* Add an aggregate field to the field list. */
15151
15152 static void
15153 dwarf2_add_field (struct field_info *fip, struct die_info *die,
15154 struct dwarf2_cu *cu)
15155 {
15156 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15157 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15158 struct nextfield *new_field;
15159 struct attribute *attr;
15160 struct field *fp;
15161 const char *fieldname = "";
15162
15163 /* Allocate a new field list entry and link it in. */
15164 new_field = XNEW (struct nextfield);
15165 make_cleanup (xfree, new_field);
15166 memset (new_field, 0, sizeof (struct nextfield));
15167
15168 if (die->tag == DW_TAG_inheritance)
15169 {
15170 new_field->next = fip->baseclasses;
15171 fip->baseclasses = new_field;
15172 }
15173 else
15174 {
15175 new_field->next = fip->fields;
15176 fip->fields = new_field;
15177 }
15178 fip->nfields++;
15179
15180 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15181 if (attr)
15182 new_field->accessibility = DW_UNSND (attr);
15183 else
15184 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
15185 if (new_field->accessibility != DW_ACCESS_public)
15186 fip->non_public_fields = 1;
15187
15188 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15189 if (attr)
15190 new_field->virtuality = DW_UNSND (attr);
15191 else
15192 new_field->virtuality = DW_VIRTUALITY_none;
15193
15194 fp = &new_field->field;
15195
15196 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
15197 {
15198 LONGEST offset;
15199
15200 /* Data member other than a C++ static data member. */
15201
15202 /* Get type of field. */
15203 fp->type = die_type (die, cu);
15204
15205 SET_FIELD_BITPOS (*fp, 0);
15206
15207 /* Get bit size of field (zero if none). */
15208 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
15209 if (attr)
15210 {
15211 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
15212 }
15213 else
15214 {
15215 FIELD_BITSIZE (*fp) = 0;
15216 }
15217
15218 /* Get bit offset of field. */
15219 if (handle_data_member_location (die, cu, &offset))
15220 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15221 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
15222 if (attr)
15223 {
15224 if (gdbarch_bits_big_endian (gdbarch))
15225 {
15226 /* For big endian bits, the DW_AT_bit_offset gives the
15227 additional bit offset from the MSB of the containing
15228 anonymous object to the MSB of the field. We don't
15229 have to do anything special since we don't need to
15230 know the size of the anonymous object. */
15231 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
15232 }
15233 else
15234 {
15235 /* For little endian bits, compute the bit offset to the
15236 MSB of the anonymous object, subtract off the number of
15237 bits from the MSB of the field to the MSB of the
15238 object, and then subtract off the number of bits of
15239 the field itself. The result is the bit offset of
15240 the LSB of the field. */
15241 int anonymous_size;
15242 int bit_offset = DW_UNSND (attr);
15243
15244 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15245 if (attr)
15246 {
15247 /* The size of the anonymous object containing
15248 the bit field is explicit, so use the
15249 indicated size (in bytes). */
15250 anonymous_size = DW_UNSND (attr);
15251 }
15252 else
15253 {
15254 /* The size of the anonymous object containing
15255 the bit field must be inferred from the type
15256 attribute of the data member containing the
15257 bit field. */
15258 anonymous_size = TYPE_LENGTH (fp->type);
15259 }
15260 SET_FIELD_BITPOS (*fp,
15261 (FIELD_BITPOS (*fp)
15262 + anonymous_size * bits_per_byte
15263 - bit_offset - FIELD_BITSIZE (*fp)));
15264 }
15265 }
15266 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
15267 if (attr != NULL)
15268 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
15269 + dwarf2_get_attr_constant_value (attr, 0)));
15270
15271 /* Get name of field. */
15272 fieldname = dwarf2_name (die, cu);
15273 if (fieldname == NULL)
15274 fieldname = "";
15275
15276 /* The name is already allocated along with this objfile, so we don't
15277 need to duplicate it for the type. */
15278 fp->name = fieldname;
15279
15280 /* Change accessibility for artificial fields (e.g. virtual table
15281 pointer or virtual base class pointer) to private. */
15282 if (dwarf2_attr (die, DW_AT_artificial, cu))
15283 {
15284 FIELD_ARTIFICIAL (*fp) = 1;
15285 new_field->accessibility = DW_ACCESS_private;
15286 fip->non_public_fields = 1;
15287 }
15288 }
15289 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
15290 {
15291 /* C++ static member. */
15292
15293 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
15294 is a declaration, but all versions of G++ as of this writing
15295 (so through at least 3.2.1) incorrectly generate
15296 DW_TAG_variable tags. */
15297
15298 const char *physname;
15299
15300 /* Get name of field. */
15301 fieldname = dwarf2_name (die, cu);
15302 if (fieldname == NULL)
15303 return;
15304
15305 attr = dwarf2_attr (die, DW_AT_const_value, cu);
15306 if (attr
15307 /* Only create a symbol if this is an external value.
15308 new_symbol checks this and puts the value in the global symbol
15309 table, which we want. If it is not external, new_symbol
15310 will try to put the value in cu->list_in_scope which is wrong. */
15311 && dwarf2_flag_true_p (die, DW_AT_external, cu))
15312 {
15313 /* A static const member, not much different than an enum as far as
15314 we're concerned, except that we can support more types. */
15315 new_symbol (die, NULL, cu);
15316 }
15317
15318 /* Get physical name. */
15319 physname = dwarf2_physname (fieldname, die, cu);
15320
15321 /* The name is already allocated along with this objfile, so we don't
15322 need to duplicate it for the type. */
15323 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
15324 FIELD_TYPE (*fp) = die_type (die, cu);
15325 FIELD_NAME (*fp) = fieldname;
15326 }
15327 else if (die->tag == DW_TAG_inheritance)
15328 {
15329 LONGEST offset;
15330
15331 /* C++ base class field. */
15332 if (handle_data_member_location (die, cu, &offset))
15333 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15334 FIELD_BITSIZE (*fp) = 0;
15335 FIELD_TYPE (*fp) = die_type (die, cu);
15336 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
15337 fip->nbaseclasses++;
15338 }
15339 }
15340
15341 /* Can the type given by DIE define another type? */
15342
15343 static bool
15344 type_can_define_types (const struct die_info *die)
15345 {
15346 switch (die->tag)
15347 {
15348 case DW_TAG_typedef:
15349 case DW_TAG_class_type:
15350 case DW_TAG_structure_type:
15351 case DW_TAG_union_type:
15352 case DW_TAG_enumeration_type:
15353 return true;
15354
15355 default:
15356 return false;
15357 }
15358 }
15359
15360 /* Add a type definition defined in the scope of the FIP's class. */
15361
15362 static void
15363 dwarf2_add_type_defn (struct field_info *fip, struct die_info *die,
15364 struct dwarf2_cu *cu)
15365 {
15366 struct decl_field_list *new_field;
15367 struct decl_field *fp;
15368
15369 /* Allocate a new field list entry and link it in. */
15370 new_field = XCNEW (struct decl_field_list);
15371 make_cleanup (xfree, new_field);
15372
15373 gdb_assert (type_can_define_types (die));
15374
15375 fp = &new_field->field;
15376
15377 /* Get name of field. NULL is okay here, meaning an anonymous type. */
15378 fp->name = dwarf2_name (die, cu);
15379 fp->type = read_type_die (die, cu);
15380
15381 /* Save accessibility. */
15382 enum dwarf_access_attribute accessibility;
15383 struct attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15384 if (attr != NULL)
15385 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15386 else
15387 accessibility = dwarf2_default_access_attribute (die, cu);
15388 switch (accessibility)
15389 {
15390 case DW_ACCESS_public:
15391 /* The assumed value if neither private nor protected. */
15392 break;
15393 case DW_ACCESS_private:
15394 fp->is_private = 1;
15395 break;
15396 case DW_ACCESS_protected:
15397 fp->is_protected = 1;
15398 break;
15399 default:
15400 complaint (&symfile_complaints,
15401 _("Unhandled DW_AT_accessibility value (%x)"), accessibility);
15402 }
15403
15404 if (die->tag == DW_TAG_typedef)
15405 {
15406 new_field->next = fip->typedef_field_list;
15407 fip->typedef_field_list = new_field;
15408 fip->typedef_field_list_count++;
15409 }
15410 else
15411 {
15412 new_field->next = fip->nested_types_list;
15413 fip->nested_types_list = new_field;
15414 fip->nested_types_list_count++;
15415 }
15416 }
15417
15418 /* Create the vector of fields, and attach it to the type. */
15419
15420 static void
15421 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
15422 struct dwarf2_cu *cu)
15423 {
15424 int nfields = fip->nfields;
15425
15426 /* Record the field count, allocate space for the array of fields,
15427 and create blank accessibility bitfields if necessary. */
15428 TYPE_NFIELDS (type) = nfields;
15429 TYPE_FIELDS (type) = (struct field *)
15430 TYPE_ALLOC (type, sizeof (struct field) * nfields);
15431 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
15432
15433 if (fip->non_public_fields && cu->language != language_ada)
15434 {
15435 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15436
15437 TYPE_FIELD_PRIVATE_BITS (type) =
15438 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15439 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
15440
15441 TYPE_FIELD_PROTECTED_BITS (type) =
15442 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15443 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
15444
15445 TYPE_FIELD_IGNORE_BITS (type) =
15446 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15447 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
15448 }
15449
15450 /* If the type has baseclasses, allocate and clear a bit vector for
15451 TYPE_FIELD_VIRTUAL_BITS. */
15452 if (fip->nbaseclasses && cu->language != language_ada)
15453 {
15454 int num_bytes = B_BYTES (fip->nbaseclasses);
15455 unsigned char *pointer;
15456
15457 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15458 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
15459 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
15460 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
15461 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
15462 }
15463
15464 /* Copy the saved-up fields into the field vector. Start from the head of
15465 the list, adding to the tail of the field array, so that they end up in
15466 the same order in the array in which they were added to the list. */
15467 while (nfields-- > 0)
15468 {
15469 struct nextfield *fieldp;
15470
15471 if (fip->fields)
15472 {
15473 fieldp = fip->fields;
15474 fip->fields = fieldp->next;
15475 }
15476 else
15477 {
15478 fieldp = fip->baseclasses;
15479 fip->baseclasses = fieldp->next;
15480 }
15481
15482 TYPE_FIELD (type, nfields) = fieldp->field;
15483 switch (fieldp->accessibility)
15484 {
15485 case DW_ACCESS_private:
15486 if (cu->language != language_ada)
15487 SET_TYPE_FIELD_PRIVATE (type, nfields);
15488 break;
15489
15490 case DW_ACCESS_protected:
15491 if (cu->language != language_ada)
15492 SET_TYPE_FIELD_PROTECTED (type, nfields);
15493 break;
15494
15495 case DW_ACCESS_public:
15496 break;
15497
15498 default:
15499 /* Unknown accessibility. Complain and treat it as public. */
15500 {
15501 complaint (&symfile_complaints, _("unsupported accessibility %d"),
15502 fieldp->accessibility);
15503 }
15504 break;
15505 }
15506 if (nfields < fip->nbaseclasses)
15507 {
15508 switch (fieldp->virtuality)
15509 {
15510 case DW_VIRTUALITY_virtual:
15511 case DW_VIRTUALITY_pure_virtual:
15512 if (cu->language == language_ada)
15513 error (_("unexpected virtuality in component of Ada type"));
15514 SET_TYPE_FIELD_VIRTUAL (type, nfields);
15515 break;
15516 }
15517 }
15518 }
15519 }
15520
15521 /* Return true if this member function is a constructor, false
15522 otherwise. */
15523
15524 static int
15525 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
15526 {
15527 const char *fieldname;
15528 const char *type_name;
15529 int len;
15530
15531 if (die->parent == NULL)
15532 return 0;
15533
15534 if (die->parent->tag != DW_TAG_structure_type
15535 && die->parent->tag != DW_TAG_union_type
15536 && die->parent->tag != DW_TAG_class_type)
15537 return 0;
15538
15539 fieldname = dwarf2_name (die, cu);
15540 type_name = dwarf2_name (die->parent, cu);
15541 if (fieldname == NULL || type_name == NULL)
15542 return 0;
15543
15544 len = strlen (fieldname);
15545 return (strncmp (fieldname, type_name, len) == 0
15546 && (type_name[len] == '\0' || type_name[len] == '<'));
15547 }
15548
15549 /* Add a member function to the proper fieldlist. */
15550
15551 static void
15552 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
15553 struct type *type, struct dwarf2_cu *cu)
15554 {
15555 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15556 struct attribute *attr;
15557 struct fnfieldlist *flp;
15558 int i;
15559 struct fn_field *fnp;
15560 const char *fieldname;
15561 struct nextfnfield *new_fnfield;
15562 struct type *this_type;
15563 enum dwarf_access_attribute accessibility;
15564
15565 if (cu->language == language_ada)
15566 error (_("unexpected member function in Ada type"));
15567
15568 /* Get name of member function. */
15569 fieldname = dwarf2_name (die, cu);
15570 if (fieldname == NULL)
15571 return;
15572
15573 /* Look up member function name in fieldlist. */
15574 for (i = 0; i < fip->nfnfields; i++)
15575 {
15576 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
15577 break;
15578 }
15579
15580 /* Create new list element if necessary. */
15581 if (i < fip->nfnfields)
15582 flp = &fip->fnfieldlists[i];
15583 else
15584 {
15585 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
15586 {
15587 fip->fnfieldlists = (struct fnfieldlist *)
15588 xrealloc (fip->fnfieldlists,
15589 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
15590 * sizeof (struct fnfieldlist));
15591 if (fip->nfnfields == 0)
15592 make_cleanup (free_current_contents, &fip->fnfieldlists);
15593 }
15594 flp = &fip->fnfieldlists[fip->nfnfields];
15595 flp->name = fieldname;
15596 flp->length = 0;
15597 flp->head = NULL;
15598 i = fip->nfnfields++;
15599 }
15600
15601 /* Create a new member function field and chain it to the field list
15602 entry. */
15603 new_fnfield = XNEW (struct nextfnfield);
15604 make_cleanup (xfree, new_fnfield);
15605 memset (new_fnfield, 0, sizeof (struct nextfnfield));
15606 new_fnfield->next = flp->head;
15607 flp->head = new_fnfield;
15608 flp->length++;
15609
15610 /* Fill in the member function field info. */
15611 fnp = &new_fnfield->fnfield;
15612
15613 /* Delay processing of the physname until later. */
15614 if (cu->language == language_cplus)
15615 {
15616 add_to_method_list (type, i, flp->length - 1, fieldname,
15617 die, cu);
15618 }
15619 else
15620 {
15621 const char *physname = dwarf2_physname (fieldname, die, cu);
15622 fnp->physname = physname ? physname : "";
15623 }
15624
15625 fnp->type = alloc_type (objfile);
15626 this_type = read_type_die (die, cu);
15627 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
15628 {
15629 int nparams = TYPE_NFIELDS (this_type);
15630
15631 /* TYPE is the domain of this method, and THIS_TYPE is the type
15632 of the method itself (TYPE_CODE_METHOD). */
15633 smash_to_method_type (fnp->type, type,
15634 TYPE_TARGET_TYPE (this_type),
15635 TYPE_FIELDS (this_type),
15636 TYPE_NFIELDS (this_type),
15637 TYPE_VARARGS (this_type));
15638
15639 /* Handle static member functions.
15640 Dwarf2 has no clean way to discern C++ static and non-static
15641 member functions. G++ helps GDB by marking the first
15642 parameter for non-static member functions (which is the this
15643 pointer) as artificial. We obtain this information from
15644 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
15645 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
15646 fnp->voffset = VOFFSET_STATIC;
15647 }
15648 else
15649 complaint (&symfile_complaints, _("member function type missing for '%s'"),
15650 dwarf2_full_name (fieldname, die, cu));
15651
15652 /* Get fcontext from DW_AT_containing_type if present. */
15653 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15654 fnp->fcontext = die_containing_type (die, cu);
15655
15656 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
15657 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
15658
15659 /* Get accessibility. */
15660 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15661 if (attr)
15662 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15663 else
15664 accessibility = dwarf2_default_access_attribute (die, cu);
15665 switch (accessibility)
15666 {
15667 case DW_ACCESS_private:
15668 fnp->is_private = 1;
15669 break;
15670 case DW_ACCESS_protected:
15671 fnp->is_protected = 1;
15672 break;
15673 }
15674
15675 /* Check for artificial methods. */
15676 attr = dwarf2_attr (die, DW_AT_artificial, cu);
15677 if (attr && DW_UNSND (attr) != 0)
15678 fnp->is_artificial = 1;
15679
15680 fnp->is_constructor = dwarf2_is_constructor (die, cu);
15681
15682 /* Get index in virtual function table if it is a virtual member
15683 function. For older versions of GCC, this is an offset in the
15684 appropriate virtual table, as specified by DW_AT_containing_type.
15685 For everyone else, it is an expression to be evaluated relative
15686 to the object address. */
15687
15688 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
15689 if (attr)
15690 {
15691 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
15692 {
15693 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
15694 {
15695 /* Old-style GCC. */
15696 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
15697 }
15698 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
15699 || (DW_BLOCK (attr)->size > 1
15700 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
15701 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
15702 {
15703 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
15704 if ((fnp->voffset % cu->header.addr_size) != 0)
15705 dwarf2_complex_location_expr_complaint ();
15706 else
15707 fnp->voffset /= cu->header.addr_size;
15708 fnp->voffset += 2;
15709 }
15710 else
15711 dwarf2_complex_location_expr_complaint ();
15712
15713 if (!fnp->fcontext)
15714 {
15715 /* If there is no `this' field and no DW_AT_containing_type,
15716 we cannot actually find a base class context for the
15717 vtable! */
15718 if (TYPE_NFIELDS (this_type) == 0
15719 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
15720 {
15721 complaint (&symfile_complaints,
15722 _("cannot determine context for virtual member "
15723 "function \"%s\" (offset %d)"),
15724 fieldname, to_underlying (die->sect_off));
15725 }
15726 else
15727 {
15728 fnp->fcontext
15729 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
15730 }
15731 }
15732 }
15733 else if (attr_form_is_section_offset (attr))
15734 {
15735 dwarf2_complex_location_expr_complaint ();
15736 }
15737 else
15738 {
15739 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
15740 fieldname);
15741 }
15742 }
15743 else
15744 {
15745 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15746 if (attr && DW_UNSND (attr))
15747 {
15748 /* GCC does this, as of 2008-08-25; PR debug/37237. */
15749 complaint (&symfile_complaints,
15750 _("Member function \"%s\" (offset %d) is virtual "
15751 "but the vtable offset is not specified"),
15752 fieldname, to_underlying (die->sect_off));
15753 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15754 TYPE_CPLUS_DYNAMIC (type) = 1;
15755 }
15756 }
15757 }
15758
15759 /* Create the vector of member function fields, and attach it to the type. */
15760
15761 static void
15762 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
15763 struct dwarf2_cu *cu)
15764 {
15765 struct fnfieldlist *flp;
15766 int i;
15767
15768 if (cu->language == language_ada)
15769 error (_("unexpected member functions in Ada type"));
15770
15771 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15772 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
15773 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
15774
15775 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
15776 {
15777 struct nextfnfield *nfp = flp->head;
15778 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
15779 int k;
15780
15781 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
15782 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
15783 fn_flp->fn_fields = (struct fn_field *)
15784 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
15785 for (k = flp->length; (k--, nfp); nfp = nfp->next)
15786 fn_flp->fn_fields[k] = nfp->fnfield;
15787 }
15788
15789 TYPE_NFN_FIELDS (type) = fip->nfnfields;
15790 }
15791
15792 /* Returns non-zero if NAME is the name of a vtable member in CU's
15793 language, zero otherwise. */
15794 static int
15795 is_vtable_name (const char *name, struct dwarf2_cu *cu)
15796 {
15797 static const char vptr[] = "_vptr";
15798
15799 /* Look for the C++ form of the vtable. */
15800 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
15801 return 1;
15802
15803 return 0;
15804 }
15805
15806 /* GCC outputs unnamed structures that are really pointers to member
15807 functions, with the ABI-specified layout. If TYPE describes
15808 such a structure, smash it into a member function type.
15809
15810 GCC shouldn't do this; it should just output pointer to member DIEs.
15811 This is GCC PR debug/28767. */
15812
15813 static void
15814 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
15815 {
15816 struct type *pfn_type, *self_type, *new_type;
15817
15818 /* Check for a structure with no name and two children. */
15819 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
15820 return;
15821
15822 /* Check for __pfn and __delta members. */
15823 if (TYPE_FIELD_NAME (type, 0) == NULL
15824 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
15825 || TYPE_FIELD_NAME (type, 1) == NULL
15826 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
15827 return;
15828
15829 /* Find the type of the method. */
15830 pfn_type = TYPE_FIELD_TYPE (type, 0);
15831 if (pfn_type == NULL
15832 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
15833 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
15834 return;
15835
15836 /* Look for the "this" argument. */
15837 pfn_type = TYPE_TARGET_TYPE (pfn_type);
15838 if (TYPE_NFIELDS (pfn_type) == 0
15839 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
15840 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
15841 return;
15842
15843 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
15844 new_type = alloc_type (objfile);
15845 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
15846 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
15847 TYPE_VARARGS (pfn_type));
15848 smash_to_methodptr_type (type, new_type);
15849 }
15850
15851
15852 /* Called when we find the DIE that starts a structure or union scope
15853 (definition) to create a type for the structure or union. Fill in
15854 the type's name and general properties; the members will not be
15855 processed until process_structure_scope. A symbol table entry for
15856 the type will also not be done until process_structure_scope (assuming
15857 the type has a name).
15858
15859 NOTE: we need to call these functions regardless of whether or not the
15860 DIE has a DW_AT_name attribute, since it might be an anonymous
15861 structure or union. This gets the type entered into our set of
15862 user defined types. */
15863
15864 static struct type *
15865 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
15866 {
15867 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15868 struct type *type;
15869 struct attribute *attr;
15870 const char *name;
15871
15872 /* If the definition of this type lives in .debug_types, read that type.
15873 Don't follow DW_AT_specification though, that will take us back up
15874 the chain and we want to go down. */
15875 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
15876 if (attr)
15877 {
15878 type = get_DW_AT_signature_type (die, attr, cu);
15879
15880 /* The type's CU may not be the same as CU.
15881 Ensure TYPE is recorded with CU in die_type_hash. */
15882 return set_die_type (die, type, cu);
15883 }
15884
15885 type = alloc_type (objfile);
15886 INIT_CPLUS_SPECIFIC (type);
15887
15888 name = dwarf2_name (die, cu);
15889 if (name != NULL)
15890 {
15891 if (cu->language == language_cplus
15892 || cu->language == language_d
15893 || cu->language == language_rust)
15894 {
15895 const char *full_name = dwarf2_full_name (name, die, cu);
15896
15897 /* dwarf2_full_name might have already finished building the DIE's
15898 type. If so, there is no need to continue. */
15899 if (get_die_type (die, cu) != NULL)
15900 return get_die_type (die, cu);
15901
15902 TYPE_TAG_NAME (type) = full_name;
15903 if (die->tag == DW_TAG_structure_type
15904 || die->tag == DW_TAG_class_type)
15905 TYPE_NAME (type) = TYPE_TAG_NAME (type);
15906 }
15907 else
15908 {
15909 /* The name is already allocated along with this objfile, so
15910 we don't need to duplicate it for the type. */
15911 TYPE_TAG_NAME (type) = name;
15912 if (die->tag == DW_TAG_class_type)
15913 TYPE_NAME (type) = TYPE_TAG_NAME (type);
15914 }
15915 }
15916
15917 if (die->tag == DW_TAG_structure_type)
15918 {
15919 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15920 }
15921 else if (die->tag == DW_TAG_union_type)
15922 {
15923 TYPE_CODE (type) = TYPE_CODE_UNION;
15924 }
15925 else
15926 {
15927 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15928 }
15929
15930 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
15931 TYPE_DECLARED_CLASS (type) = 1;
15932
15933 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15934 if (attr)
15935 {
15936 if (attr_form_is_constant (attr))
15937 TYPE_LENGTH (type) = DW_UNSND (attr);
15938 else
15939 {
15940 /* For the moment, dynamic type sizes are not supported
15941 by GDB's struct type. The actual size is determined
15942 on-demand when resolving the type of a given object,
15943 so set the type's length to zero for now. Otherwise,
15944 we record an expression as the length, and that expression
15945 could lead to a very large value, which could eventually
15946 lead to us trying to allocate that much memory when creating
15947 a value of that type. */
15948 TYPE_LENGTH (type) = 0;
15949 }
15950 }
15951 else
15952 {
15953 TYPE_LENGTH (type) = 0;
15954 }
15955
15956 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
15957 {
15958 /* ICC<14 does not output the required DW_AT_declaration on
15959 incomplete types, but gives them a size of zero. */
15960 TYPE_STUB (type) = 1;
15961 }
15962 else
15963 TYPE_STUB_SUPPORTED (type) = 1;
15964
15965 if (die_is_declaration (die, cu))
15966 TYPE_STUB (type) = 1;
15967 else if (attr == NULL && die->child == NULL
15968 && producer_is_realview (cu->producer))
15969 /* RealView does not output the required DW_AT_declaration
15970 on incomplete types. */
15971 TYPE_STUB (type) = 1;
15972
15973 /* We need to add the type field to the die immediately so we don't
15974 infinitely recurse when dealing with pointers to the structure
15975 type within the structure itself. */
15976 set_die_type (die, type, cu);
15977
15978 /* set_die_type should be already done. */
15979 set_descriptive_type (type, die, cu);
15980
15981 return type;
15982 }
15983
15984 /* Finish creating a structure or union type, including filling in
15985 its members and creating a symbol for it. */
15986
15987 static void
15988 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
15989 {
15990 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15991 struct die_info *child_die;
15992 struct type *type;
15993
15994 type = get_die_type (die, cu);
15995 if (type == NULL)
15996 type = read_structure_type (die, cu);
15997
15998 if (die->child != NULL && ! die_is_declaration (die, cu))
15999 {
16000 struct field_info fi;
16001 std::vector<struct symbol *> template_args;
16002 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
16003
16004 memset (&fi, 0, sizeof (struct field_info));
16005
16006 child_die = die->child;
16007
16008 while (child_die && child_die->tag)
16009 {
16010 if (child_die->tag == DW_TAG_member
16011 || child_die->tag == DW_TAG_variable)
16012 {
16013 /* NOTE: carlton/2002-11-05: A C++ static data member
16014 should be a DW_TAG_member that is a declaration, but
16015 all versions of G++ as of this writing (so through at
16016 least 3.2.1) incorrectly generate DW_TAG_variable
16017 tags for them instead. */
16018 dwarf2_add_field (&fi, child_die, cu);
16019 }
16020 else if (child_die->tag == DW_TAG_subprogram)
16021 {
16022 /* Rust doesn't have member functions in the C++ sense.
16023 However, it does emit ordinary functions as children
16024 of a struct DIE. */
16025 if (cu->language == language_rust)
16026 read_func_scope (child_die, cu);
16027 else
16028 {
16029 /* C++ member function. */
16030 dwarf2_add_member_fn (&fi, child_die, type, cu);
16031 }
16032 }
16033 else if (child_die->tag == DW_TAG_inheritance)
16034 {
16035 /* C++ base class field. */
16036 dwarf2_add_field (&fi, child_die, cu);
16037 }
16038 else if (type_can_define_types (child_die))
16039 dwarf2_add_type_defn (&fi, child_die, cu);
16040 else if (child_die->tag == DW_TAG_template_type_param
16041 || child_die->tag == DW_TAG_template_value_param)
16042 {
16043 struct symbol *arg = new_symbol (child_die, NULL, cu);
16044
16045 if (arg != NULL)
16046 template_args.push_back (arg);
16047 }
16048
16049 child_die = sibling_die (child_die);
16050 }
16051
16052 /* Attach template arguments to type. */
16053 if (!template_args.empty ())
16054 {
16055 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16056 TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size ();
16057 TYPE_TEMPLATE_ARGUMENTS (type)
16058 = XOBNEWVEC (&objfile->objfile_obstack,
16059 struct symbol *,
16060 TYPE_N_TEMPLATE_ARGUMENTS (type));
16061 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
16062 template_args.data (),
16063 (TYPE_N_TEMPLATE_ARGUMENTS (type)
16064 * sizeof (struct symbol *)));
16065 }
16066
16067 /* Attach fields and member functions to the type. */
16068 if (fi.nfields)
16069 dwarf2_attach_fields_to_type (&fi, type, cu);
16070 if (fi.nfnfields)
16071 {
16072 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
16073
16074 /* Get the type which refers to the base class (possibly this
16075 class itself) which contains the vtable pointer for the current
16076 class from the DW_AT_containing_type attribute. This use of
16077 DW_AT_containing_type is a GNU extension. */
16078
16079 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
16080 {
16081 struct type *t = die_containing_type (die, cu);
16082
16083 set_type_vptr_basetype (type, t);
16084 if (type == t)
16085 {
16086 int i;
16087
16088 /* Our own class provides vtbl ptr. */
16089 for (i = TYPE_NFIELDS (t) - 1;
16090 i >= TYPE_N_BASECLASSES (t);
16091 --i)
16092 {
16093 const char *fieldname = TYPE_FIELD_NAME (t, i);
16094
16095 if (is_vtable_name (fieldname, cu))
16096 {
16097 set_type_vptr_fieldno (type, i);
16098 break;
16099 }
16100 }
16101
16102 /* Complain if virtual function table field not found. */
16103 if (i < TYPE_N_BASECLASSES (t))
16104 complaint (&symfile_complaints,
16105 _("virtual function table pointer "
16106 "not found when defining class '%s'"),
16107 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
16108 "");
16109 }
16110 else
16111 {
16112 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
16113 }
16114 }
16115 else if (cu->producer
16116 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
16117 {
16118 /* The IBM XLC compiler does not provide direct indication
16119 of the containing type, but the vtable pointer is
16120 always named __vfp. */
16121
16122 int i;
16123
16124 for (i = TYPE_NFIELDS (type) - 1;
16125 i >= TYPE_N_BASECLASSES (type);
16126 --i)
16127 {
16128 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
16129 {
16130 set_type_vptr_fieldno (type, i);
16131 set_type_vptr_basetype (type, type);
16132 break;
16133 }
16134 }
16135 }
16136 }
16137
16138 /* Copy fi.typedef_field_list linked list elements content into the
16139 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
16140 if (fi.typedef_field_list)
16141 {
16142 int i = fi.typedef_field_list_count;
16143
16144 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16145 TYPE_TYPEDEF_FIELD_ARRAY (type)
16146 = ((struct decl_field *)
16147 TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i));
16148 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
16149
16150 /* Reverse the list order to keep the debug info elements order. */
16151 while (--i >= 0)
16152 {
16153 struct decl_field *dest, *src;
16154
16155 dest = &TYPE_TYPEDEF_FIELD (type, i);
16156 src = &fi.typedef_field_list->field;
16157 fi.typedef_field_list = fi.typedef_field_list->next;
16158 *dest = *src;
16159 }
16160 }
16161
16162 /* Copy fi.nested_types_list linked list elements content into the
16163 allocated array TYPE_NESTED_TYPES_ARRAY (type). */
16164 if (fi.nested_types_list != NULL && cu->language != language_ada)
16165 {
16166 int i = fi.nested_types_list_count;
16167
16168 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16169 TYPE_NESTED_TYPES_ARRAY (type)
16170 = ((struct decl_field *)
16171 TYPE_ALLOC (type, sizeof (struct decl_field) * i));
16172 TYPE_NESTED_TYPES_COUNT (type) = i;
16173
16174 /* Reverse the list order to keep the debug info elements order. */
16175 while (--i >= 0)
16176 {
16177 struct decl_field *dest, *src;
16178
16179 dest = &TYPE_NESTED_TYPES_FIELD (type, i);
16180 src = &fi.nested_types_list->field;
16181 fi.nested_types_list = fi.nested_types_list->next;
16182 *dest = *src;
16183 }
16184 }
16185
16186 do_cleanups (back_to);
16187 }
16188
16189 quirk_gcc_member_function_pointer (type, objfile);
16190
16191 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
16192 snapshots) has been known to create a die giving a declaration
16193 for a class that has, as a child, a die giving a definition for a
16194 nested class. So we have to process our children even if the
16195 current die is a declaration. Normally, of course, a declaration
16196 won't have any children at all. */
16197
16198 child_die = die->child;
16199
16200 while (child_die != NULL && child_die->tag)
16201 {
16202 if (child_die->tag == DW_TAG_member
16203 || child_die->tag == DW_TAG_variable
16204 || child_die->tag == DW_TAG_inheritance
16205 || child_die->tag == DW_TAG_template_value_param
16206 || child_die->tag == DW_TAG_template_type_param)
16207 {
16208 /* Do nothing. */
16209 }
16210 else
16211 process_die (child_die, cu);
16212
16213 child_die = sibling_die (child_die);
16214 }
16215
16216 /* Do not consider external references. According to the DWARF standard,
16217 these DIEs are identified by the fact that they have no byte_size
16218 attribute, and a declaration attribute. */
16219 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
16220 || !die_is_declaration (die, cu))
16221 new_symbol (die, type, cu);
16222 }
16223
16224 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
16225 update TYPE using some information only available in DIE's children. */
16226
16227 static void
16228 update_enumeration_type_from_children (struct die_info *die,
16229 struct type *type,
16230 struct dwarf2_cu *cu)
16231 {
16232 struct die_info *child_die;
16233 int unsigned_enum = 1;
16234 int flag_enum = 1;
16235 ULONGEST mask = 0;
16236
16237 auto_obstack obstack;
16238
16239 for (child_die = die->child;
16240 child_die != NULL && child_die->tag;
16241 child_die = sibling_die (child_die))
16242 {
16243 struct attribute *attr;
16244 LONGEST value;
16245 const gdb_byte *bytes;
16246 struct dwarf2_locexpr_baton *baton;
16247 const char *name;
16248
16249 if (child_die->tag != DW_TAG_enumerator)
16250 continue;
16251
16252 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
16253 if (attr == NULL)
16254 continue;
16255
16256 name = dwarf2_name (child_die, cu);
16257 if (name == NULL)
16258 name = "<anonymous enumerator>";
16259
16260 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
16261 &value, &bytes, &baton);
16262 if (value < 0)
16263 {
16264 unsigned_enum = 0;
16265 flag_enum = 0;
16266 }
16267 else if ((mask & value) != 0)
16268 flag_enum = 0;
16269 else
16270 mask |= value;
16271
16272 /* If we already know that the enum type is neither unsigned, nor
16273 a flag type, no need to look at the rest of the enumerates. */
16274 if (!unsigned_enum && !flag_enum)
16275 break;
16276 }
16277
16278 if (unsigned_enum)
16279 TYPE_UNSIGNED (type) = 1;
16280 if (flag_enum)
16281 TYPE_FLAG_ENUM (type) = 1;
16282 }
16283
16284 /* Given a DW_AT_enumeration_type die, set its type. We do not
16285 complete the type's fields yet, or create any symbols. */
16286
16287 static struct type *
16288 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
16289 {
16290 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16291 struct type *type;
16292 struct attribute *attr;
16293 const char *name;
16294
16295 /* If the definition of this type lives in .debug_types, read that type.
16296 Don't follow DW_AT_specification though, that will take us back up
16297 the chain and we want to go down. */
16298 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
16299 if (attr)
16300 {
16301 type = get_DW_AT_signature_type (die, attr, cu);
16302
16303 /* The type's CU may not be the same as CU.
16304 Ensure TYPE is recorded with CU in die_type_hash. */
16305 return set_die_type (die, type, cu);
16306 }
16307
16308 type = alloc_type (objfile);
16309
16310 TYPE_CODE (type) = TYPE_CODE_ENUM;
16311 name = dwarf2_full_name (NULL, die, cu);
16312 if (name != NULL)
16313 TYPE_TAG_NAME (type) = name;
16314
16315 attr = dwarf2_attr (die, DW_AT_type, cu);
16316 if (attr != NULL)
16317 {
16318 struct type *underlying_type = die_type (die, cu);
16319
16320 TYPE_TARGET_TYPE (type) = underlying_type;
16321 }
16322
16323 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16324 if (attr)
16325 {
16326 TYPE_LENGTH (type) = DW_UNSND (attr);
16327 }
16328 else
16329 {
16330 TYPE_LENGTH (type) = 0;
16331 }
16332
16333 /* The enumeration DIE can be incomplete. In Ada, any type can be
16334 declared as private in the package spec, and then defined only
16335 inside the package body. Such types are known as Taft Amendment
16336 Types. When another package uses such a type, an incomplete DIE
16337 may be generated by the compiler. */
16338 if (die_is_declaration (die, cu))
16339 TYPE_STUB (type) = 1;
16340
16341 /* Finish the creation of this type by using the enum's children.
16342 We must call this even when the underlying type has been provided
16343 so that we can determine if we're looking at a "flag" enum. */
16344 update_enumeration_type_from_children (die, type, cu);
16345
16346 /* If this type has an underlying type that is not a stub, then we
16347 may use its attributes. We always use the "unsigned" attribute
16348 in this situation, because ordinarily we guess whether the type
16349 is unsigned -- but the guess can be wrong and the underlying type
16350 can tell us the reality. However, we defer to a local size
16351 attribute if one exists, because this lets the compiler override
16352 the underlying type if needed. */
16353 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
16354 {
16355 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
16356 if (TYPE_LENGTH (type) == 0)
16357 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
16358 }
16359
16360 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
16361
16362 return set_die_type (die, type, cu);
16363 }
16364
16365 /* Given a pointer to a die which begins an enumeration, process all
16366 the dies that define the members of the enumeration, and create the
16367 symbol for the enumeration type.
16368
16369 NOTE: We reverse the order of the element list. */
16370
16371 static void
16372 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
16373 {
16374 struct type *this_type;
16375
16376 this_type = get_die_type (die, cu);
16377 if (this_type == NULL)
16378 this_type = read_enumeration_type (die, cu);
16379
16380 if (die->child != NULL)
16381 {
16382 struct die_info *child_die;
16383 struct symbol *sym;
16384 struct field *fields = NULL;
16385 int num_fields = 0;
16386 const char *name;
16387
16388 child_die = die->child;
16389 while (child_die && child_die->tag)
16390 {
16391 if (child_die->tag != DW_TAG_enumerator)
16392 {
16393 process_die (child_die, cu);
16394 }
16395 else
16396 {
16397 name = dwarf2_name (child_die, cu);
16398 if (name)
16399 {
16400 sym = new_symbol (child_die, this_type, cu);
16401
16402 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
16403 {
16404 fields = (struct field *)
16405 xrealloc (fields,
16406 (num_fields + DW_FIELD_ALLOC_CHUNK)
16407 * sizeof (struct field));
16408 }
16409
16410 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
16411 FIELD_TYPE (fields[num_fields]) = NULL;
16412 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
16413 FIELD_BITSIZE (fields[num_fields]) = 0;
16414
16415 num_fields++;
16416 }
16417 }
16418
16419 child_die = sibling_die (child_die);
16420 }
16421
16422 if (num_fields)
16423 {
16424 TYPE_NFIELDS (this_type) = num_fields;
16425 TYPE_FIELDS (this_type) = (struct field *)
16426 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
16427 memcpy (TYPE_FIELDS (this_type), fields,
16428 sizeof (struct field) * num_fields);
16429 xfree (fields);
16430 }
16431 }
16432
16433 /* If we are reading an enum from a .debug_types unit, and the enum
16434 is a declaration, and the enum is not the signatured type in the
16435 unit, then we do not want to add a symbol for it. Adding a
16436 symbol would in some cases obscure the true definition of the
16437 enum, giving users an incomplete type when the definition is
16438 actually available. Note that we do not want to do this for all
16439 enums which are just declarations, because C++0x allows forward
16440 enum declarations. */
16441 if (cu->per_cu->is_debug_types
16442 && die_is_declaration (die, cu))
16443 {
16444 struct signatured_type *sig_type;
16445
16446 sig_type = (struct signatured_type *) cu->per_cu;
16447 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
16448 if (sig_type->type_offset_in_section != die->sect_off)
16449 return;
16450 }
16451
16452 new_symbol (die, this_type, cu);
16453 }
16454
16455 /* Extract all information from a DW_TAG_array_type DIE and put it in
16456 the DIE's type field. For now, this only handles one dimensional
16457 arrays. */
16458
16459 static struct type *
16460 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
16461 {
16462 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16463 struct die_info *child_die;
16464 struct type *type;
16465 struct type *element_type, *range_type, *index_type;
16466 struct attribute *attr;
16467 const char *name;
16468 struct dynamic_prop *byte_stride_prop = NULL;
16469 unsigned int bit_stride = 0;
16470
16471 element_type = die_type (die, cu);
16472
16473 /* The die_type call above may have already set the type for this DIE. */
16474 type = get_die_type (die, cu);
16475 if (type)
16476 return type;
16477
16478 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
16479 if (attr != NULL)
16480 {
16481 int stride_ok;
16482
16483 byte_stride_prop
16484 = (struct dynamic_prop *) alloca (sizeof (struct dynamic_prop));
16485 stride_ok = attr_to_dynamic_prop (attr, die, cu, byte_stride_prop);
16486 if (!stride_ok)
16487 {
16488 complaint (&symfile_complaints,
16489 _("unable to read array DW_AT_byte_stride "
16490 " - DIE at 0x%x [in module %s]"),
16491 to_underlying (die->sect_off),
16492 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16493 /* Ignore this attribute. We will likely not be able to print
16494 arrays of this type correctly, but there is little we can do
16495 to help if we cannot read the attribute's value. */
16496 byte_stride_prop = NULL;
16497 }
16498 }
16499
16500 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
16501 if (attr != NULL)
16502 bit_stride = DW_UNSND (attr);
16503
16504 /* Irix 6.2 native cc creates array types without children for
16505 arrays with unspecified length. */
16506 if (die->child == NULL)
16507 {
16508 index_type = objfile_type (objfile)->builtin_int;
16509 range_type = create_static_range_type (NULL, index_type, 0, -1);
16510 type = create_array_type_with_stride (NULL, element_type, range_type,
16511 byte_stride_prop, bit_stride);
16512 return set_die_type (die, type, cu);
16513 }
16514
16515 std::vector<struct type *> range_types;
16516 child_die = die->child;
16517 while (child_die && child_die->tag)
16518 {
16519 if (child_die->tag == DW_TAG_subrange_type)
16520 {
16521 struct type *child_type = read_type_die (child_die, cu);
16522
16523 if (child_type != NULL)
16524 {
16525 /* The range type was succesfully read. Save it for the
16526 array type creation. */
16527 range_types.push_back (child_type);
16528 }
16529 }
16530 child_die = sibling_die (child_die);
16531 }
16532
16533 /* Dwarf2 dimensions are output from left to right, create the
16534 necessary array types in backwards order. */
16535
16536 type = element_type;
16537
16538 if (read_array_order (die, cu) == DW_ORD_col_major)
16539 {
16540 int i = 0;
16541
16542 while (i < range_types.size ())
16543 type = create_array_type_with_stride (NULL, type, range_types[i++],
16544 byte_stride_prop, bit_stride);
16545 }
16546 else
16547 {
16548 size_t ndim = range_types.size ();
16549 while (ndim-- > 0)
16550 type = create_array_type_with_stride (NULL, type, range_types[ndim],
16551 byte_stride_prop, bit_stride);
16552 }
16553
16554 /* Understand Dwarf2 support for vector types (like they occur on
16555 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
16556 array type. This is not part of the Dwarf2/3 standard yet, but a
16557 custom vendor extension. The main difference between a regular
16558 array and the vector variant is that vectors are passed by value
16559 to functions. */
16560 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
16561 if (attr)
16562 make_vector_type (type);
16563
16564 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
16565 implementation may choose to implement triple vectors using this
16566 attribute. */
16567 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16568 if (attr)
16569 {
16570 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
16571 TYPE_LENGTH (type) = DW_UNSND (attr);
16572 else
16573 complaint (&symfile_complaints,
16574 _("DW_AT_byte_size for array type smaller "
16575 "than the total size of elements"));
16576 }
16577
16578 name = dwarf2_name (die, cu);
16579 if (name)
16580 TYPE_NAME (type) = name;
16581
16582 /* Install the type in the die. */
16583 set_die_type (die, type, cu);
16584
16585 /* set_die_type should be already done. */
16586 set_descriptive_type (type, die, cu);
16587
16588 return type;
16589 }
16590
16591 static enum dwarf_array_dim_ordering
16592 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
16593 {
16594 struct attribute *attr;
16595
16596 attr = dwarf2_attr (die, DW_AT_ordering, cu);
16597
16598 if (attr)
16599 return (enum dwarf_array_dim_ordering) DW_SND (attr);
16600
16601 /* GNU F77 is a special case, as at 08/2004 array type info is the
16602 opposite order to the dwarf2 specification, but data is still
16603 laid out as per normal fortran.
16604
16605 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
16606 version checking. */
16607
16608 if (cu->language == language_fortran
16609 && cu->producer && strstr (cu->producer, "GNU F77"))
16610 {
16611 return DW_ORD_row_major;
16612 }
16613
16614 switch (cu->language_defn->la_array_ordering)
16615 {
16616 case array_column_major:
16617 return DW_ORD_col_major;
16618 case array_row_major:
16619 default:
16620 return DW_ORD_row_major;
16621 };
16622 }
16623
16624 /* Extract all information from a DW_TAG_set_type DIE and put it in
16625 the DIE's type field. */
16626
16627 static struct type *
16628 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
16629 {
16630 struct type *domain_type, *set_type;
16631 struct attribute *attr;
16632
16633 domain_type = die_type (die, cu);
16634
16635 /* The die_type call above may have already set the type for this DIE. */
16636 set_type = get_die_type (die, cu);
16637 if (set_type)
16638 return set_type;
16639
16640 set_type = create_set_type (NULL, domain_type);
16641
16642 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16643 if (attr)
16644 TYPE_LENGTH (set_type) = DW_UNSND (attr);
16645
16646 return set_die_type (die, set_type, cu);
16647 }
16648
16649 /* A helper for read_common_block that creates a locexpr baton.
16650 SYM is the symbol which we are marking as computed.
16651 COMMON_DIE is the DIE for the common block.
16652 COMMON_LOC is the location expression attribute for the common
16653 block itself.
16654 MEMBER_LOC is the location expression attribute for the particular
16655 member of the common block that we are processing.
16656 CU is the CU from which the above come. */
16657
16658 static void
16659 mark_common_block_symbol_computed (struct symbol *sym,
16660 struct die_info *common_die,
16661 struct attribute *common_loc,
16662 struct attribute *member_loc,
16663 struct dwarf2_cu *cu)
16664 {
16665 struct dwarf2_per_objfile *dwarf2_per_objfile
16666 = cu->per_cu->dwarf2_per_objfile;
16667 struct objfile *objfile = dwarf2_per_objfile->objfile;
16668 struct dwarf2_locexpr_baton *baton;
16669 gdb_byte *ptr;
16670 unsigned int cu_off;
16671 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
16672 LONGEST offset = 0;
16673
16674 gdb_assert (common_loc && member_loc);
16675 gdb_assert (attr_form_is_block (common_loc));
16676 gdb_assert (attr_form_is_block (member_loc)
16677 || attr_form_is_constant (member_loc));
16678
16679 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
16680 baton->per_cu = cu->per_cu;
16681 gdb_assert (baton->per_cu);
16682
16683 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
16684
16685 if (attr_form_is_constant (member_loc))
16686 {
16687 offset = dwarf2_get_attr_constant_value (member_loc, 0);
16688 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
16689 }
16690 else
16691 baton->size += DW_BLOCK (member_loc)->size;
16692
16693 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
16694 baton->data = ptr;
16695
16696 *ptr++ = DW_OP_call4;
16697 cu_off = common_die->sect_off - cu->per_cu->sect_off;
16698 store_unsigned_integer (ptr, 4, byte_order, cu_off);
16699 ptr += 4;
16700
16701 if (attr_form_is_constant (member_loc))
16702 {
16703 *ptr++ = DW_OP_addr;
16704 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
16705 ptr += cu->header.addr_size;
16706 }
16707 else
16708 {
16709 /* We have to copy the data here, because DW_OP_call4 will only
16710 use a DW_AT_location attribute. */
16711 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
16712 ptr += DW_BLOCK (member_loc)->size;
16713 }
16714
16715 *ptr++ = DW_OP_plus;
16716 gdb_assert (ptr - baton->data == baton->size);
16717
16718 SYMBOL_LOCATION_BATON (sym) = baton;
16719 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
16720 }
16721
16722 /* Create appropriate locally-scoped variables for all the
16723 DW_TAG_common_block entries. Also create a struct common_block
16724 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
16725 is used to sepate the common blocks name namespace from regular
16726 variable names. */
16727
16728 static void
16729 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
16730 {
16731 struct attribute *attr;
16732
16733 attr = dwarf2_attr (die, DW_AT_location, cu);
16734 if (attr)
16735 {
16736 /* Support the .debug_loc offsets. */
16737 if (attr_form_is_block (attr))
16738 {
16739 /* Ok. */
16740 }
16741 else if (attr_form_is_section_offset (attr))
16742 {
16743 dwarf2_complex_location_expr_complaint ();
16744 attr = NULL;
16745 }
16746 else
16747 {
16748 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16749 "common block member");
16750 attr = NULL;
16751 }
16752 }
16753
16754 if (die->child != NULL)
16755 {
16756 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16757 struct die_info *child_die;
16758 size_t n_entries = 0, size;
16759 struct common_block *common_block;
16760 struct symbol *sym;
16761
16762 for (child_die = die->child;
16763 child_die && child_die->tag;
16764 child_die = sibling_die (child_die))
16765 ++n_entries;
16766
16767 size = (sizeof (struct common_block)
16768 + (n_entries - 1) * sizeof (struct symbol *));
16769 common_block
16770 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
16771 size);
16772 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
16773 common_block->n_entries = 0;
16774
16775 for (child_die = die->child;
16776 child_die && child_die->tag;
16777 child_die = sibling_die (child_die))
16778 {
16779 /* Create the symbol in the DW_TAG_common_block block in the current
16780 symbol scope. */
16781 sym = new_symbol (child_die, NULL, cu);
16782 if (sym != NULL)
16783 {
16784 struct attribute *member_loc;
16785
16786 common_block->contents[common_block->n_entries++] = sym;
16787
16788 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
16789 cu);
16790 if (member_loc)
16791 {
16792 /* GDB has handled this for a long time, but it is
16793 not specified by DWARF. It seems to have been
16794 emitted by gfortran at least as recently as:
16795 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
16796 complaint (&symfile_complaints,
16797 _("Variable in common block has "
16798 "DW_AT_data_member_location "
16799 "- DIE at 0x%x [in module %s]"),
16800 to_underlying (child_die->sect_off),
16801 objfile_name (objfile));
16802
16803 if (attr_form_is_section_offset (member_loc))
16804 dwarf2_complex_location_expr_complaint ();
16805 else if (attr_form_is_constant (member_loc)
16806 || attr_form_is_block (member_loc))
16807 {
16808 if (attr)
16809 mark_common_block_symbol_computed (sym, die, attr,
16810 member_loc, cu);
16811 }
16812 else
16813 dwarf2_complex_location_expr_complaint ();
16814 }
16815 }
16816 }
16817
16818 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
16819 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
16820 }
16821 }
16822
16823 /* Create a type for a C++ namespace. */
16824
16825 static struct type *
16826 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
16827 {
16828 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16829 const char *previous_prefix, *name;
16830 int is_anonymous;
16831 struct type *type;
16832
16833 /* For extensions, reuse the type of the original namespace. */
16834 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
16835 {
16836 struct die_info *ext_die;
16837 struct dwarf2_cu *ext_cu = cu;
16838
16839 ext_die = dwarf2_extension (die, &ext_cu);
16840 type = read_type_die (ext_die, ext_cu);
16841
16842 /* EXT_CU may not be the same as CU.
16843 Ensure TYPE is recorded with CU in die_type_hash. */
16844 return set_die_type (die, type, cu);
16845 }
16846
16847 name = namespace_name (die, &is_anonymous, cu);
16848
16849 /* Now build the name of the current namespace. */
16850
16851 previous_prefix = determine_prefix (die, cu);
16852 if (previous_prefix[0] != '\0')
16853 name = typename_concat (&objfile->objfile_obstack,
16854 previous_prefix, name, 0, cu);
16855
16856 /* Create the type. */
16857 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
16858 TYPE_TAG_NAME (type) = TYPE_NAME (type);
16859
16860 return set_die_type (die, type, cu);
16861 }
16862
16863 /* Read a namespace scope. */
16864
16865 static void
16866 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
16867 {
16868 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16869 int is_anonymous;
16870
16871 /* Add a symbol associated to this if we haven't seen the namespace
16872 before. Also, add a using directive if it's an anonymous
16873 namespace. */
16874
16875 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
16876 {
16877 struct type *type;
16878
16879 type = read_type_die (die, cu);
16880 new_symbol (die, type, cu);
16881
16882 namespace_name (die, &is_anonymous, cu);
16883 if (is_anonymous)
16884 {
16885 const char *previous_prefix = determine_prefix (die, cu);
16886
16887 std::vector<const char *> excludes;
16888 add_using_directive (using_directives (cu->language),
16889 previous_prefix, TYPE_NAME (type), NULL,
16890 NULL, excludes, 0, &objfile->objfile_obstack);
16891 }
16892 }
16893
16894 if (die->child != NULL)
16895 {
16896 struct die_info *child_die = die->child;
16897
16898 while (child_die && child_die->tag)
16899 {
16900 process_die (child_die, cu);
16901 child_die = sibling_die (child_die);
16902 }
16903 }
16904 }
16905
16906 /* Read a Fortran module as type. This DIE can be only a declaration used for
16907 imported module. Still we need that type as local Fortran "use ... only"
16908 declaration imports depend on the created type in determine_prefix. */
16909
16910 static struct type *
16911 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
16912 {
16913 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16914 const char *module_name;
16915 struct type *type;
16916
16917 module_name = dwarf2_name (die, cu);
16918 if (!module_name)
16919 complaint (&symfile_complaints,
16920 _("DW_TAG_module has no name, offset 0x%x"),
16921 to_underlying (die->sect_off));
16922 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
16923
16924 /* determine_prefix uses TYPE_TAG_NAME. */
16925 TYPE_TAG_NAME (type) = TYPE_NAME (type);
16926
16927 return set_die_type (die, type, cu);
16928 }
16929
16930 /* Read a Fortran module. */
16931
16932 static void
16933 read_module (struct die_info *die, struct dwarf2_cu *cu)
16934 {
16935 struct die_info *child_die = die->child;
16936 struct type *type;
16937
16938 type = read_type_die (die, cu);
16939 new_symbol (die, type, cu);
16940
16941 while (child_die && child_die->tag)
16942 {
16943 process_die (child_die, cu);
16944 child_die = sibling_die (child_die);
16945 }
16946 }
16947
16948 /* Return the name of the namespace represented by DIE. Set
16949 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
16950 namespace. */
16951
16952 static const char *
16953 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
16954 {
16955 struct die_info *current_die;
16956 const char *name = NULL;
16957
16958 /* Loop through the extensions until we find a name. */
16959
16960 for (current_die = die;
16961 current_die != NULL;
16962 current_die = dwarf2_extension (die, &cu))
16963 {
16964 /* We don't use dwarf2_name here so that we can detect the absence
16965 of a name -> anonymous namespace. */
16966 name = dwarf2_string_attr (die, DW_AT_name, cu);
16967
16968 if (name != NULL)
16969 break;
16970 }
16971
16972 /* Is it an anonymous namespace? */
16973
16974 *is_anonymous = (name == NULL);
16975 if (*is_anonymous)
16976 name = CP_ANONYMOUS_NAMESPACE_STR;
16977
16978 return name;
16979 }
16980
16981 /* Extract all information from a DW_TAG_pointer_type DIE and add to
16982 the user defined type vector. */
16983
16984 static struct type *
16985 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
16986 {
16987 struct gdbarch *gdbarch
16988 = get_objfile_arch (cu->per_cu->dwarf2_per_objfile->objfile);
16989 struct comp_unit_head *cu_header = &cu->header;
16990 struct type *type;
16991 struct attribute *attr_byte_size;
16992 struct attribute *attr_address_class;
16993 int byte_size, addr_class;
16994 struct type *target_type;
16995
16996 target_type = die_type (die, cu);
16997
16998 /* The die_type call above may have already set the type for this DIE. */
16999 type = get_die_type (die, cu);
17000 if (type)
17001 return type;
17002
17003 type = lookup_pointer_type (target_type);
17004
17005 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
17006 if (attr_byte_size)
17007 byte_size = DW_UNSND (attr_byte_size);
17008 else
17009 byte_size = cu_header->addr_size;
17010
17011 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
17012 if (attr_address_class)
17013 addr_class = DW_UNSND (attr_address_class);
17014 else
17015 addr_class = DW_ADDR_none;
17016
17017 /* If the pointer size or address class is different than the
17018 default, create a type variant marked as such and set the
17019 length accordingly. */
17020 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
17021 {
17022 if (gdbarch_address_class_type_flags_p (gdbarch))
17023 {
17024 int type_flags;
17025
17026 type_flags = gdbarch_address_class_type_flags
17027 (gdbarch, byte_size, addr_class);
17028 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
17029 == 0);
17030 type = make_type_with_address_space (type, type_flags);
17031 }
17032 else if (TYPE_LENGTH (type) != byte_size)
17033 {
17034 complaint (&symfile_complaints,
17035 _("invalid pointer size %d"), byte_size);
17036 }
17037 else
17038 {
17039 /* Should we also complain about unhandled address classes? */
17040 }
17041 }
17042
17043 TYPE_LENGTH (type) = byte_size;
17044 return set_die_type (die, type, cu);
17045 }
17046
17047 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
17048 the user defined type vector. */
17049
17050 static struct type *
17051 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
17052 {
17053 struct type *type;
17054 struct type *to_type;
17055 struct type *domain;
17056
17057 to_type = die_type (die, cu);
17058 domain = die_containing_type (die, cu);
17059
17060 /* The calls above may have already set the type for this DIE. */
17061 type = get_die_type (die, cu);
17062 if (type)
17063 return type;
17064
17065 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
17066 type = lookup_methodptr_type (to_type);
17067 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
17068 {
17069 struct type *new_type
17070 = alloc_type (cu->per_cu->dwarf2_per_objfile->objfile);
17071
17072 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
17073 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
17074 TYPE_VARARGS (to_type));
17075 type = lookup_methodptr_type (new_type);
17076 }
17077 else
17078 type = lookup_memberptr_type (to_type, domain);
17079
17080 return set_die_type (die, type, cu);
17081 }
17082
17083 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
17084 the user defined type vector. */
17085
17086 static struct type *
17087 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
17088 enum type_code refcode)
17089 {
17090 struct comp_unit_head *cu_header = &cu->header;
17091 struct type *type, *target_type;
17092 struct attribute *attr;
17093
17094 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
17095
17096 target_type = die_type (die, cu);
17097
17098 /* The die_type call above may have already set the type for this DIE. */
17099 type = get_die_type (die, cu);
17100 if (type)
17101 return type;
17102
17103 type = lookup_reference_type (target_type, refcode);
17104 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17105 if (attr)
17106 {
17107 TYPE_LENGTH (type) = DW_UNSND (attr);
17108 }
17109 else
17110 {
17111 TYPE_LENGTH (type) = cu_header->addr_size;
17112 }
17113 return set_die_type (die, type, cu);
17114 }
17115
17116 /* Add the given cv-qualifiers to the element type of the array. GCC
17117 outputs DWARF type qualifiers that apply to an array, not the
17118 element type. But GDB relies on the array element type to carry
17119 the cv-qualifiers. This mimics section 6.7.3 of the C99
17120 specification. */
17121
17122 static struct type *
17123 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
17124 struct type *base_type, int cnst, int voltl)
17125 {
17126 struct type *el_type, *inner_array;
17127
17128 base_type = copy_type (base_type);
17129 inner_array = base_type;
17130
17131 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
17132 {
17133 TYPE_TARGET_TYPE (inner_array) =
17134 copy_type (TYPE_TARGET_TYPE (inner_array));
17135 inner_array = TYPE_TARGET_TYPE (inner_array);
17136 }
17137
17138 el_type = TYPE_TARGET_TYPE (inner_array);
17139 cnst |= TYPE_CONST (el_type);
17140 voltl |= TYPE_VOLATILE (el_type);
17141 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
17142
17143 return set_die_type (die, base_type, cu);
17144 }
17145
17146 static struct type *
17147 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
17148 {
17149 struct type *base_type, *cv_type;
17150
17151 base_type = die_type (die, cu);
17152
17153 /* The die_type call above may have already set the type for this DIE. */
17154 cv_type = get_die_type (die, cu);
17155 if (cv_type)
17156 return cv_type;
17157
17158 /* In case the const qualifier is applied to an array type, the element type
17159 is so qualified, not the array type (section 6.7.3 of C99). */
17160 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17161 return add_array_cv_type (die, cu, base_type, 1, 0);
17162
17163 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
17164 return set_die_type (die, cv_type, cu);
17165 }
17166
17167 static struct type *
17168 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
17169 {
17170 struct type *base_type, *cv_type;
17171
17172 base_type = die_type (die, cu);
17173
17174 /* The die_type call above may have already set the type for this DIE. */
17175 cv_type = get_die_type (die, cu);
17176 if (cv_type)
17177 return cv_type;
17178
17179 /* In case the volatile qualifier is applied to an array type, the
17180 element type is so qualified, not the array type (section 6.7.3
17181 of C99). */
17182 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17183 return add_array_cv_type (die, cu, base_type, 0, 1);
17184
17185 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
17186 return set_die_type (die, cv_type, cu);
17187 }
17188
17189 /* Handle DW_TAG_restrict_type. */
17190
17191 static struct type *
17192 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
17193 {
17194 struct type *base_type, *cv_type;
17195
17196 base_type = die_type (die, cu);
17197
17198 /* The die_type call above may have already set the type for this DIE. */
17199 cv_type = get_die_type (die, cu);
17200 if (cv_type)
17201 return cv_type;
17202
17203 cv_type = make_restrict_type (base_type);
17204 return set_die_type (die, cv_type, cu);
17205 }
17206
17207 /* Handle DW_TAG_atomic_type. */
17208
17209 static struct type *
17210 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
17211 {
17212 struct type *base_type, *cv_type;
17213
17214 base_type = die_type (die, cu);
17215
17216 /* The die_type call above may have already set the type for this DIE. */
17217 cv_type = get_die_type (die, cu);
17218 if (cv_type)
17219 return cv_type;
17220
17221 cv_type = make_atomic_type (base_type);
17222 return set_die_type (die, cv_type, cu);
17223 }
17224
17225 /* Extract all information from a DW_TAG_string_type DIE and add to
17226 the user defined type vector. It isn't really a user defined type,
17227 but it behaves like one, with other DIE's using an AT_user_def_type
17228 attribute to reference it. */
17229
17230 static struct type *
17231 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
17232 {
17233 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17234 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17235 struct type *type, *range_type, *index_type, *char_type;
17236 struct attribute *attr;
17237 unsigned int length;
17238
17239 attr = dwarf2_attr (die, DW_AT_string_length, cu);
17240 if (attr)
17241 {
17242 length = DW_UNSND (attr);
17243 }
17244 else
17245 {
17246 /* Check for the DW_AT_byte_size attribute. */
17247 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17248 if (attr)
17249 {
17250 length = DW_UNSND (attr);
17251 }
17252 else
17253 {
17254 length = 1;
17255 }
17256 }
17257
17258 index_type = objfile_type (objfile)->builtin_int;
17259 range_type = create_static_range_type (NULL, index_type, 1, length);
17260 char_type = language_string_char_type (cu->language_defn, gdbarch);
17261 type = create_string_type (NULL, char_type, range_type);
17262
17263 return set_die_type (die, type, cu);
17264 }
17265
17266 /* Assuming that DIE corresponds to a function, returns nonzero
17267 if the function is prototyped. */
17268
17269 static int
17270 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
17271 {
17272 struct attribute *attr;
17273
17274 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
17275 if (attr && (DW_UNSND (attr) != 0))
17276 return 1;
17277
17278 /* The DWARF standard implies that the DW_AT_prototyped attribute
17279 is only meaninful for C, but the concept also extends to other
17280 languages that allow unprototyped functions (Eg: Objective C).
17281 For all other languages, assume that functions are always
17282 prototyped. */
17283 if (cu->language != language_c
17284 && cu->language != language_objc
17285 && cu->language != language_opencl)
17286 return 1;
17287
17288 /* RealView does not emit DW_AT_prototyped. We can not distinguish
17289 prototyped and unprototyped functions; default to prototyped,
17290 since that is more common in modern code (and RealView warns
17291 about unprototyped functions). */
17292 if (producer_is_realview (cu->producer))
17293 return 1;
17294
17295 return 0;
17296 }
17297
17298 /* Handle DIES due to C code like:
17299
17300 struct foo
17301 {
17302 int (*funcp)(int a, long l);
17303 int b;
17304 };
17305
17306 ('funcp' generates a DW_TAG_subroutine_type DIE). */
17307
17308 static struct type *
17309 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
17310 {
17311 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17312 struct type *type; /* Type that this function returns. */
17313 struct type *ftype; /* Function that returns above type. */
17314 struct attribute *attr;
17315
17316 type = die_type (die, cu);
17317
17318 /* The die_type call above may have already set the type for this DIE. */
17319 ftype = get_die_type (die, cu);
17320 if (ftype)
17321 return ftype;
17322
17323 ftype = lookup_function_type (type);
17324
17325 if (prototyped_function_p (die, cu))
17326 TYPE_PROTOTYPED (ftype) = 1;
17327
17328 /* Store the calling convention in the type if it's available in
17329 the subroutine die. Otherwise set the calling convention to
17330 the default value DW_CC_normal. */
17331 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
17332 if (attr)
17333 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
17334 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
17335 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
17336 else
17337 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
17338
17339 /* Record whether the function returns normally to its caller or not
17340 if the DWARF producer set that information. */
17341 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
17342 if (attr && (DW_UNSND (attr) != 0))
17343 TYPE_NO_RETURN (ftype) = 1;
17344
17345 /* We need to add the subroutine type to the die immediately so
17346 we don't infinitely recurse when dealing with parameters
17347 declared as the same subroutine type. */
17348 set_die_type (die, ftype, cu);
17349
17350 if (die->child != NULL)
17351 {
17352 struct type *void_type = objfile_type (objfile)->builtin_void;
17353 struct die_info *child_die;
17354 int nparams, iparams;
17355
17356 /* Count the number of parameters.
17357 FIXME: GDB currently ignores vararg functions, but knows about
17358 vararg member functions. */
17359 nparams = 0;
17360 child_die = die->child;
17361 while (child_die && child_die->tag)
17362 {
17363 if (child_die->tag == DW_TAG_formal_parameter)
17364 nparams++;
17365 else if (child_die->tag == DW_TAG_unspecified_parameters)
17366 TYPE_VARARGS (ftype) = 1;
17367 child_die = sibling_die (child_die);
17368 }
17369
17370 /* Allocate storage for parameters and fill them in. */
17371 TYPE_NFIELDS (ftype) = nparams;
17372 TYPE_FIELDS (ftype) = (struct field *)
17373 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
17374
17375 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
17376 even if we error out during the parameters reading below. */
17377 for (iparams = 0; iparams < nparams; iparams++)
17378 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
17379
17380 iparams = 0;
17381 child_die = die->child;
17382 while (child_die && child_die->tag)
17383 {
17384 if (child_die->tag == DW_TAG_formal_parameter)
17385 {
17386 struct type *arg_type;
17387
17388 /* DWARF version 2 has no clean way to discern C++
17389 static and non-static member functions. G++ helps
17390 GDB by marking the first parameter for non-static
17391 member functions (which is the this pointer) as
17392 artificial. We pass this information to
17393 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
17394
17395 DWARF version 3 added DW_AT_object_pointer, which GCC
17396 4.5 does not yet generate. */
17397 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
17398 if (attr)
17399 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
17400 else
17401 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
17402 arg_type = die_type (child_die, cu);
17403
17404 /* RealView does not mark THIS as const, which the testsuite
17405 expects. GCC marks THIS as const in method definitions,
17406 but not in the class specifications (GCC PR 43053). */
17407 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
17408 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
17409 {
17410 int is_this = 0;
17411 struct dwarf2_cu *arg_cu = cu;
17412 const char *name = dwarf2_name (child_die, cu);
17413
17414 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
17415 if (attr)
17416 {
17417 /* If the compiler emits this, use it. */
17418 if (follow_die_ref (die, attr, &arg_cu) == child_die)
17419 is_this = 1;
17420 }
17421 else if (name && strcmp (name, "this") == 0)
17422 /* Function definitions will have the argument names. */
17423 is_this = 1;
17424 else if (name == NULL && iparams == 0)
17425 /* Declarations may not have the names, so like
17426 elsewhere in GDB, assume an artificial first
17427 argument is "this". */
17428 is_this = 1;
17429
17430 if (is_this)
17431 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
17432 arg_type, 0);
17433 }
17434
17435 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
17436 iparams++;
17437 }
17438 child_die = sibling_die (child_die);
17439 }
17440 }
17441
17442 return ftype;
17443 }
17444
17445 static struct type *
17446 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
17447 {
17448 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17449 const char *name = NULL;
17450 struct type *this_type, *target_type;
17451
17452 name = dwarf2_full_name (NULL, die, cu);
17453 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
17454 TYPE_TARGET_STUB (this_type) = 1;
17455 set_die_type (die, this_type, cu);
17456 target_type = die_type (die, cu);
17457 if (target_type != this_type)
17458 TYPE_TARGET_TYPE (this_type) = target_type;
17459 else
17460 {
17461 /* Self-referential typedefs are, it seems, not allowed by the DWARF
17462 spec and cause infinite loops in GDB. */
17463 complaint (&symfile_complaints,
17464 _("Self-referential DW_TAG_typedef "
17465 "- DIE at 0x%x [in module %s]"),
17466 to_underlying (die->sect_off), objfile_name (objfile));
17467 TYPE_TARGET_TYPE (this_type) = NULL;
17468 }
17469 return this_type;
17470 }
17471
17472 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
17473 (which may be different from NAME) to the architecture back-end to allow
17474 it to guess the correct format if necessary. */
17475
17476 static struct type *
17477 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
17478 const char *name_hint)
17479 {
17480 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17481 const struct floatformat **format;
17482 struct type *type;
17483
17484 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
17485 if (format)
17486 type = init_float_type (objfile, bits, name, format);
17487 else
17488 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17489
17490 return type;
17491 }
17492
17493 /* Find a representation of a given base type and install
17494 it in the TYPE field of the die. */
17495
17496 static struct type *
17497 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
17498 {
17499 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17500 struct type *type;
17501 struct attribute *attr;
17502 int encoding = 0, bits = 0;
17503 const char *name;
17504
17505 attr = dwarf2_attr (die, DW_AT_encoding, cu);
17506 if (attr)
17507 {
17508 encoding = DW_UNSND (attr);
17509 }
17510 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17511 if (attr)
17512 {
17513 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
17514 }
17515 name = dwarf2_name (die, cu);
17516 if (!name)
17517 {
17518 complaint (&symfile_complaints,
17519 _("DW_AT_name missing from DW_TAG_base_type"));
17520 }
17521
17522 switch (encoding)
17523 {
17524 case DW_ATE_address:
17525 /* Turn DW_ATE_address into a void * pointer. */
17526 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
17527 type = init_pointer_type (objfile, bits, name, type);
17528 break;
17529 case DW_ATE_boolean:
17530 type = init_boolean_type (objfile, bits, 1, name);
17531 break;
17532 case DW_ATE_complex_float:
17533 type = dwarf2_init_float_type (objfile, bits / 2, NULL, name);
17534 type = init_complex_type (objfile, name, type);
17535 break;
17536 case DW_ATE_decimal_float:
17537 type = init_decfloat_type (objfile, bits, name);
17538 break;
17539 case DW_ATE_float:
17540 type = dwarf2_init_float_type (objfile, bits, name, name);
17541 break;
17542 case DW_ATE_signed:
17543 type = init_integer_type (objfile, bits, 0, name);
17544 break;
17545 case DW_ATE_unsigned:
17546 if (cu->language == language_fortran
17547 && name
17548 && startswith (name, "character("))
17549 type = init_character_type (objfile, bits, 1, name);
17550 else
17551 type = init_integer_type (objfile, bits, 1, name);
17552 break;
17553 case DW_ATE_signed_char:
17554 if (cu->language == language_ada || cu->language == language_m2
17555 || cu->language == language_pascal
17556 || cu->language == language_fortran)
17557 type = init_character_type (objfile, bits, 0, name);
17558 else
17559 type = init_integer_type (objfile, bits, 0, name);
17560 break;
17561 case DW_ATE_unsigned_char:
17562 if (cu->language == language_ada || cu->language == language_m2
17563 || cu->language == language_pascal
17564 || cu->language == language_fortran
17565 || cu->language == language_rust)
17566 type = init_character_type (objfile, bits, 1, name);
17567 else
17568 type = init_integer_type (objfile, bits, 1, name);
17569 break;
17570 case DW_ATE_UTF:
17571 {
17572 gdbarch *arch = get_objfile_arch (objfile);
17573
17574 if (bits == 16)
17575 type = builtin_type (arch)->builtin_char16;
17576 else if (bits == 32)
17577 type = builtin_type (arch)->builtin_char32;
17578 else
17579 {
17580 complaint (&symfile_complaints,
17581 _("unsupported DW_ATE_UTF bit size: '%d'"),
17582 bits);
17583 type = init_integer_type (objfile, bits, 1, name);
17584 }
17585 return set_die_type (die, type, cu);
17586 }
17587 break;
17588
17589 default:
17590 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
17591 dwarf_type_encoding_name (encoding));
17592 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17593 break;
17594 }
17595
17596 if (name && strcmp (name, "char") == 0)
17597 TYPE_NOSIGN (type) = 1;
17598
17599 return set_die_type (die, type, cu);
17600 }
17601
17602 /* Parse dwarf attribute if it's a block, reference or constant and put the
17603 resulting value of the attribute into struct bound_prop.
17604 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
17605
17606 static int
17607 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
17608 struct dwarf2_cu *cu, struct dynamic_prop *prop)
17609 {
17610 struct dwarf2_property_baton *baton;
17611 struct obstack *obstack
17612 = &cu->per_cu->dwarf2_per_objfile->objfile->objfile_obstack;
17613
17614 if (attr == NULL || prop == NULL)
17615 return 0;
17616
17617 if (attr_form_is_block (attr))
17618 {
17619 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17620 baton->referenced_type = NULL;
17621 baton->locexpr.per_cu = cu->per_cu;
17622 baton->locexpr.size = DW_BLOCK (attr)->size;
17623 baton->locexpr.data = DW_BLOCK (attr)->data;
17624 prop->data.baton = baton;
17625 prop->kind = PROP_LOCEXPR;
17626 gdb_assert (prop->data.baton != NULL);
17627 }
17628 else if (attr_form_is_ref (attr))
17629 {
17630 struct dwarf2_cu *target_cu = cu;
17631 struct die_info *target_die;
17632 struct attribute *target_attr;
17633
17634 target_die = follow_die_ref (die, attr, &target_cu);
17635 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
17636 if (target_attr == NULL)
17637 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
17638 target_cu);
17639 if (target_attr == NULL)
17640 return 0;
17641
17642 switch (target_attr->name)
17643 {
17644 case DW_AT_location:
17645 if (attr_form_is_section_offset (target_attr))
17646 {
17647 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17648 baton->referenced_type = die_type (target_die, target_cu);
17649 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
17650 prop->data.baton = baton;
17651 prop->kind = PROP_LOCLIST;
17652 gdb_assert (prop->data.baton != NULL);
17653 }
17654 else if (attr_form_is_block (target_attr))
17655 {
17656 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17657 baton->referenced_type = die_type (target_die, target_cu);
17658 baton->locexpr.per_cu = cu->per_cu;
17659 baton->locexpr.size = DW_BLOCK (target_attr)->size;
17660 baton->locexpr.data = DW_BLOCK (target_attr)->data;
17661 prop->data.baton = baton;
17662 prop->kind = PROP_LOCEXPR;
17663 gdb_assert (prop->data.baton != NULL);
17664 }
17665 else
17666 {
17667 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
17668 "dynamic property");
17669 return 0;
17670 }
17671 break;
17672 case DW_AT_data_member_location:
17673 {
17674 LONGEST offset;
17675
17676 if (!handle_data_member_location (target_die, target_cu,
17677 &offset))
17678 return 0;
17679
17680 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17681 baton->referenced_type = read_type_die (target_die->parent,
17682 target_cu);
17683 baton->offset_info.offset = offset;
17684 baton->offset_info.type = die_type (target_die, target_cu);
17685 prop->data.baton = baton;
17686 prop->kind = PROP_ADDR_OFFSET;
17687 break;
17688 }
17689 }
17690 }
17691 else if (attr_form_is_constant (attr))
17692 {
17693 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
17694 prop->kind = PROP_CONST;
17695 }
17696 else
17697 {
17698 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
17699 dwarf2_name (die, cu));
17700 return 0;
17701 }
17702
17703 return 1;
17704 }
17705
17706 /* Read the given DW_AT_subrange DIE. */
17707
17708 static struct type *
17709 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
17710 {
17711 struct type *base_type, *orig_base_type;
17712 struct type *range_type;
17713 struct attribute *attr;
17714 struct dynamic_prop low, high;
17715 int low_default_is_valid;
17716 int high_bound_is_count = 0;
17717 const char *name;
17718 LONGEST negative_mask;
17719
17720 orig_base_type = die_type (die, cu);
17721 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
17722 whereas the real type might be. So, we use ORIG_BASE_TYPE when
17723 creating the range type, but we use the result of check_typedef
17724 when examining properties of the type. */
17725 base_type = check_typedef (orig_base_type);
17726
17727 /* The die_type call above may have already set the type for this DIE. */
17728 range_type = get_die_type (die, cu);
17729 if (range_type)
17730 return range_type;
17731
17732 low.kind = PROP_CONST;
17733 high.kind = PROP_CONST;
17734 high.data.const_val = 0;
17735
17736 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
17737 omitting DW_AT_lower_bound. */
17738 switch (cu->language)
17739 {
17740 case language_c:
17741 case language_cplus:
17742 low.data.const_val = 0;
17743 low_default_is_valid = 1;
17744 break;
17745 case language_fortran:
17746 low.data.const_val = 1;
17747 low_default_is_valid = 1;
17748 break;
17749 case language_d:
17750 case language_objc:
17751 case language_rust:
17752 low.data.const_val = 0;
17753 low_default_is_valid = (cu->header.version >= 4);
17754 break;
17755 case language_ada:
17756 case language_m2:
17757 case language_pascal:
17758 low.data.const_val = 1;
17759 low_default_is_valid = (cu->header.version >= 4);
17760 break;
17761 default:
17762 low.data.const_val = 0;
17763 low_default_is_valid = 0;
17764 break;
17765 }
17766
17767 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
17768 if (attr)
17769 attr_to_dynamic_prop (attr, die, cu, &low);
17770 else if (!low_default_is_valid)
17771 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
17772 "- DIE at 0x%x [in module %s]"),
17773 to_underlying (die->sect_off),
17774 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17775
17776 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
17777 if (!attr_to_dynamic_prop (attr, die, cu, &high))
17778 {
17779 attr = dwarf2_attr (die, DW_AT_count, cu);
17780 if (attr_to_dynamic_prop (attr, die, cu, &high))
17781 {
17782 /* If bounds are constant do the final calculation here. */
17783 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
17784 high.data.const_val = low.data.const_val + high.data.const_val - 1;
17785 else
17786 high_bound_is_count = 1;
17787 }
17788 }
17789
17790 /* Dwarf-2 specifications explicitly allows to create subrange types
17791 without specifying a base type.
17792 In that case, the base type must be set to the type of
17793 the lower bound, upper bound or count, in that order, if any of these
17794 three attributes references an object that has a type.
17795 If no base type is found, the Dwarf-2 specifications say that
17796 a signed integer type of size equal to the size of an address should
17797 be used.
17798 For the following C code: `extern char gdb_int [];'
17799 GCC produces an empty range DIE.
17800 FIXME: muller/2010-05-28: Possible references to object for low bound,
17801 high bound or count are not yet handled by this code. */
17802 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
17803 {
17804 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17805 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17806 int addr_size = gdbarch_addr_bit (gdbarch) /8;
17807 struct type *int_type = objfile_type (objfile)->builtin_int;
17808
17809 /* Test "int", "long int", and "long long int" objfile types,
17810 and select the first one having a size above or equal to the
17811 architecture address size. */
17812 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17813 base_type = int_type;
17814 else
17815 {
17816 int_type = objfile_type (objfile)->builtin_long;
17817 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17818 base_type = int_type;
17819 else
17820 {
17821 int_type = objfile_type (objfile)->builtin_long_long;
17822 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17823 base_type = int_type;
17824 }
17825 }
17826 }
17827
17828 /* Normally, the DWARF producers are expected to use a signed
17829 constant form (Eg. DW_FORM_sdata) to express negative bounds.
17830 But this is unfortunately not always the case, as witnessed
17831 with GCC, for instance, where the ambiguous DW_FORM_dataN form
17832 is used instead. To work around that ambiguity, we treat
17833 the bounds as signed, and thus sign-extend their values, when
17834 the base type is signed. */
17835 negative_mask =
17836 -((LONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
17837 if (low.kind == PROP_CONST
17838 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
17839 low.data.const_val |= negative_mask;
17840 if (high.kind == PROP_CONST
17841 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
17842 high.data.const_val |= negative_mask;
17843
17844 range_type = create_range_type (NULL, orig_base_type, &low, &high);
17845
17846 if (high_bound_is_count)
17847 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
17848
17849 /* Ada expects an empty array on no boundary attributes. */
17850 if (attr == NULL && cu->language != language_ada)
17851 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
17852
17853 name = dwarf2_name (die, cu);
17854 if (name)
17855 TYPE_NAME (range_type) = name;
17856
17857 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17858 if (attr)
17859 TYPE_LENGTH (range_type) = DW_UNSND (attr);
17860
17861 set_die_type (die, range_type, cu);
17862
17863 /* set_die_type should be already done. */
17864 set_descriptive_type (range_type, die, cu);
17865
17866 return range_type;
17867 }
17868
17869 static struct type *
17870 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
17871 {
17872 struct type *type;
17873
17874 type = init_type (cu->per_cu->dwarf2_per_objfile->objfile, TYPE_CODE_VOID,0,
17875 NULL);
17876 TYPE_NAME (type) = dwarf2_name (die, cu);
17877
17878 /* In Ada, an unspecified type is typically used when the description
17879 of the type is defered to a different unit. When encountering
17880 such a type, we treat it as a stub, and try to resolve it later on,
17881 when needed. */
17882 if (cu->language == language_ada)
17883 TYPE_STUB (type) = 1;
17884
17885 return set_die_type (die, type, cu);
17886 }
17887
17888 /* Read a single die and all its descendents. Set the die's sibling
17889 field to NULL; set other fields in the die correctly, and set all
17890 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
17891 location of the info_ptr after reading all of those dies. PARENT
17892 is the parent of the die in question. */
17893
17894 static struct die_info *
17895 read_die_and_children (const struct die_reader_specs *reader,
17896 const gdb_byte *info_ptr,
17897 const gdb_byte **new_info_ptr,
17898 struct die_info *parent)
17899 {
17900 struct die_info *die;
17901 const gdb_byte *cur_ptr;
17902 int has_children;
17903
17904 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
17905 if (die == NULL)
17906 {
17907 *new_info_ptr = cur_ptr;
17908 return NULL;
17909 }
17910 store_in_ref_table (die, reader->cu);
17911
17912 if (has_children)
17913 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
17914 else
17915 {
17916 die->child = NULL;
17917 *new_info_ptr = cur_ptr;
17918 }
17919
17920 die->sibling = NULL;
17921 die->parent = parent;
17922 return die;
17923 }
17924
17925 /* Read a die, all of its descendents, and all of its siblings; set
17926 all of the fields of all of the dies correctly. Arguments are as
17927 in read_die_and_children. */
17928
17929 static struct die_info *
17930 read_die_and_siblings_1 (const struct die_reader_specs *reader,
17931 const gdb_byte *info_ptr,
17932 const gdb_byte **new_info_ptr,
17933 struct die_info *parent)
17934 {
17935 struct die_info *first_die, *last_sibling;
17936 const gdb_byte *cur_ptr;
17937
17938 cur_ptr = info_ptr;
17939 first_die = last_sibling = NULL;
17940
17941 while (1)
17942 {
17943 struct die_info *die
17944 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
17945
17946 if (die == NULL)
17947 {
17948 *new_info_ptr = cur_ptr;
17949 return first_die;
17950 }
17951
17952 if (!first_die)
17953 first_die = die;
17954 else
17955 last_sibling->sibling = die;
17956
17957 last_sibling = die;
17958 }
17959 }
17960
17961 /* Read a die, all of its descendents, and all of its siblings; set
17962 all of the fields of all of the dies correctly. Arguments are as
17963 in read_die_and_children.
17964 This the main entry point for reading a DIE and all its children. */
17965
17966 static struct die_info *
17967 read_die_and_siblings (const struct die_reader_specs *reader,
17968 const gdb_byte *info_ptr,
17969 const gdb_byte **new_info_ptr,
17970 struct die_info *parent)
17971 {
17972 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
17973 new_info_ptr, parent);
17974
17975 if (dwarf_die_debug)
17976 {
17977 fprintf_unfiltered (gdb_stdlog,
17978 "Read die from %s@0x%x of %s:\n",
17979 get_section_name (reader->die_section),
17980 (unsigned) (info_ptr - reader->die_section->buffer),
17981 bfd_get_filename (reader->abfd));
17982 dump_die (die, dwarf_die_debug);
17983 }
17984
17985 return die;
17986 }
17987
17988 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
17989 attributes.
17990 The caller is responsible for filling in the extra attributes
17991 and updating (*DIEP)->num_attrs.
17992 Set DIEP to point to a newly allocated die with its information,
17993 except for its child, sibling, and parent fields.
17994 Set HAS_CHILDREN to tell whether the die has children or not. */
17995
17996 static const gdb_byte *
17997 read_full_die_1 (const struct die_reader_specs *reader,
17998 struct die_info **diep, const gdb_byte *info_ptr,
17999 int *has_children, int num_extra_attrs)
18000 {
18001 unsigned int abbrev_number, bytes_read, i;
18002 struct abbrev_info *abbrev;
18003 struct die_info *die;
18004 struct dwarf2_cu *cu = reader->cu;
18005 bfd *abfd = reader->abfd;
18006
18007 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
18008 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18009 info_ptr += bytes_read;
18010 if (!abbrev_number)
18011 {
18012 *diep = NULL;
18013 *has_children = 0;
18014 return info_ptr;
18015 }
18016
18017 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
18018 if (!abbrev)
18019 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
18020 abbrev_number,
18021 bfd_get_filename (abfd));
18022
18023 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
18024 die->sect_off = sect_off;
18025 die->tag = abbrev->tag;
18026 die->abbrev = abbrev_number;
18027
18028 /* Make the result usable.
18029 The caller needs to update num_attrs after adding the extra
18030 attributes. */
18031 die->num_attrs = abbrev->num_attrs;
18032
18033 for (i = 0; i < abbrev->num_attrs; ++i)
18034 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
18035 info_ptr);
18036
18037 *diep = die;
18038 *has_children = abbrev->has_children;
18039 return info_ptr;
18040 }
18041
18042 /* Read a die and all its attributes.
18043 Set DIEP to point to a newly allocated die with its information,
18044 except for its child, sibling, and parent fields.
18045 Set HAS_CHILDREN to tell whether the die has children or not. */
18046
18047 static const gdb_byte *
18048 read_full_die (const struct die_reader_specs *reader,
18049 struct die_info **diep, const gdb_byte *info_ptr,
18050 int *has_children)
18051 {
18052 const gdb_byte *result;
18053
18054 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
18055
18056 if (dwarf_die_debug)
18057 {
18058 fprintf_unfiltered (gdb_stdlog,
18059 "Read die from %s@0x%x of %s:\n",
18060 get_section_name (reader->die_section),
18061 (unsigned) (info_ptr - reader->die_section->buffer),
18062 bfd_get_filename (reader->abfd));
18063 dump_die (*diep, dwarf_die_debug);
18064 }
18065
18066 return result;
18067 }
18068 \f
18069 /* Abbreviation tables.
18070
18071 In DWARF version 2, the description of the debugging information is
18072 stored in a separate .debug_abbrev section. Before we read any
18073 dies from a section we read in all abbreviations and install them
18074 in a hash table. */
18075
18076 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
18077
18078 static struct abbrev_info *
18079 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
18080 {
18081 struct abbrev_info *abbrev;
18082
18083 abbrev = XOBNEW (&abbrev_table->abbrev_obstack, struct abbrev_info);
18084 memset (abbrev, 0, sizeof (struct abbrev_info));
18085
18086 return abbrev;
18087 }
18088
18089 /* Add an abbreviation to the table. */
18090
18091 static void
18092 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
18093 unsigned int abbrev_number,
18094 struct abbrev_info *abbrev)
18095 {
18096 unsigned int hash_number;
18097
18098 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18099 abbrev->next = abbrev_table->abbrevs[hash_number];
18100 abbrev_table->abbrevs[hash_number] = abbrev;
18101 }
18102
18103 /* Look up an abbrev in the table.
18104 Returns NULL if the abbrev is not found. */
18105
18106 static struct abbrev_info *
18107 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
18108 unsigned int abbrev_number)
18109 {
18110 unsigned int hash_number;
18111 struct abbrev_info *abbrev;
18112
18113 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18114 abbrev = abbrev_table->abbrevs[hash_number];
18115
18116 while (abbrev)
18117 {
18118 if (abbrev->number == abbrev_number)
18119 return abbrev;
18120 abbrev = abbrev->next;
18121 }
18122 return NULL;
18123 }
18124
18125 /* Read in an abbrev table. */
18126
18127 static struct abbrev_table *
18128 abbrev_table_read_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
18129 struct dwarf2_section_info *section,
18130 sect_offset sect_off)
18131 {
18132 struct objfile *objfile = dwarf2_per_objfile->objfile;
18133 bfd *abfd = get_section_bfd_owner (section);
18134 struct abbrev_table *abbrev_table;
18135 const gdb_byte *abbrev_ptr;
18136 struct abbrev_info *cur_abbrev;
18137 unsigned int abbrev_number, bytes_read, abbrev_name;
18138 unsigned int abbrev_form;
18139 struct attr_abbrev *cur_attrs;
18140 unsigned int allocated_attrs;
18141
18142 abbrev_table = XNEW (struct abbrev_table);
18143 abbrev_table->sect_off = sect_off;
18144 obstack_init (&abbrev_table->abbrev_obstack);
18145 abbrev_table->abbrevs =
18146 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct abbrev_info *,
18147 ABBREV_HASH_SIZE);
18148 memset (abbrev_table->abbrevs, 0,
18149 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
18150
18151 dwarf2_read_section (objfile, section);
18152 abbrev_ptr = section->buffer + to_underlying (sect_off);
18153 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18154 abbrev_ptr += bytes_read;
18155
18156 allocated_attrs = ATTR_ALLOC_CHUNK;
18157 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
18158
18159 /* Loop until we reach an abbrev number of 0. */
18160 while (abbrev_number)
18161 {
18162 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
18163
18164 /* read in abbrev header */
18165 cur_abbrev->number = abbrev_number;
18166 cur_abbrev->tag
18167 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18168 abbrev_ptr += bytes_read;
18169 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
18170 abbrev_ptr += 1;
18171
18172 /* now read in declarations */
18173 for (;;)
18174 {
18175 LONGEST implicit_const;
18176
18177 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18178 abbrev_ptr += bytes_read;
18179 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18180 abbrev_ptr += bytes_read;
18181 if (abbrev_form == DW_FORM_implicit_const)
18182 {
18183 implicit_const = read_signed_leb128 (abfd, abbrev_ptr,
18184 &bytes_read);
18185 abbrev_ptr += bytes_read;
18186 }
18187 else
18188 {
18189 /* Initialize it due to a false compiler warning. */
18190 implicit_const = -1;
18191 }
18192
18193 if (abbrev_name == 0)
18194 break;
18195
18196 if (cur_abbrev->num_attrs == allocated_attrs)
18197 {
18198 allocated_attrs += ATTR_ALLOC_CHUNK;
18199 cur_attrs
18200 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
18201 }
18202
18203 cur_attrs[cur_abbrev->num_attrs].name
18204 = (enum dwarf_attribute) abbrev_name;
18205 cur_attrs[cur_abbrev->num_attrs].form
18206 = (enum dwarf_form) abbrev_form;
18207 cur_attrs[cur_abbrev->num_attrs].implicit_const = implicit_const;
18208 ++cur_abbrev->num_attrs;
18209 }
18210
18211 cur_abbrev->attrs =
18212 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
18213 cur_abbrev->num_attrs);
18214 memcpy (cur_abbrev->attrs, cur_attrs,
18215 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
18216
18217 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
18218
18219 /* Get next abbreviation.
18220 Under Irix6 the abbreviations for a compilation unit are not
18221 always properly terminated with an abbrev number of 0.
18222 Exit loop if we encounter an abbreviation which we have
18223 already read (which means we are about to read the abbreviations
18224 for the next compile unit) or if the end of the abbreviation
18225 table is reached. */
18226 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
18227 break;
18228 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18229 abbrev_ptr += bytes_read;
18230 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
18231 break;
18232 }
18233
18234 xfree (cur_attrs);
18235 return abbrev_table;
18236 }
18237
18238 /* Free the resources held by ABBREV_TABLE. */
18239
18240 static void
18241 abbrev_table_free (struct abbrev_table *abbrev_table)
18242 {
18243 obstack_free (&abbrev_table->abbrev_obstack, NULL);
18244 xfree (abbrev_table);
18245 }
18246
18247 /* Same as abbrev_table_free but as a cleanup.
18248 We pass in a pointer to the pointer to the table so that we can
18249 set the pointer to NULL when we're done. It also simplifies
18250 build_type_psymtabs_1. */
18251
18252 static void
18253 abbrev_table_free_cleanup (void *table_ptr)
18254 {
18255 struct abbrev_table **abbrev_table_ptr = (struct abbrev_table **) table_ptr;
18256
18257 if (*abbrev_table_ptr != NULL)
18258 abbrev_table_free (*abbrev_table_ptr);
18259 *abbrev_table_ptr = NULL;
18260 }
18261
18262 /* Read the abbrev table for CU from ABBREV_SECTION. */
18263
18264 static void
18265 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
18266 struct dwarf2_section_info *abbrev_section)
18267 {
18268 cu->abbrev_table =
18269 abbrev_table_read_table (cu->per_cu->dwarf2_per_objfile, abbrev_section,
18270 cu->header.abbrev_sect_off);
18271 }
18272
18273 /* Release the memory used by the abbrev table for a compilation unit. */
18274
18275 static void
18276 dwarf2_free_abbrev_table (void *ptr_to_cu)
18277 {
18278 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr_to_cu;
18279
18280 if (cu->abbrev_table != NULL)
18281 abbrev_table_free (cu->abbrev_table);
18282 /* Set this to NULL so that we SEGV if we try to read it later,
18283 and also because free_comp_unit verifies this is NULL. */
18284 cu->abbrev_table = NULL;
18285 }
18286 \f
18287 /* Returns nonzero if TAG represents a type that we might generate a partial
18288 symbol for. */
18289
18290 static int
18291 is_type_tag_for_partial (int tag)
18292 {
18293 switch (tag)
18294 {
18295 #if 0
18296 /* Some types that would be reasonable to generate partial symbols for,
18297 that we don't at present. */
18298 case DW_TAG_array_type:
18299 case DW_TAG_file_type:
18300 case DW_TAG_ptr_to_member_type:
18301 case DW_TAG_set_type:
18302 case DW_TAG_string_type:
18303 case DW_TAG_subroutine_type:
18304 #endif
18305 case DW_TAG_base_type:
18306 case DW_TAG_class_type:
18307 case DW_TAG_interface_type:
18308 case DW_TAG_enumeration_type:
18309 case DW_TAG_structure_type:
18310 case DW_TAG_subrange_type:
18311 case DW_TAG_typedef:
18312 case DW_TAG_union_type:
18313 return 1;
18314 default:
18315 return 0;
18316 }
18317 }
18318
18319 /* Load all DIEs that are interesting for partial symbols into memory. */
18320
18321 static struct partial_die_info *
18322 load_partial_dies (const struct die_reader_specs *reader,
18323 const gdb_byte *info_ptr, int building_psymtab)
18324 {
18325 struct dwarf2_cu *cu = reader->cu;
18326 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18327 struct partial_die_info *part_die;
18328 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
18329 struct abbrev_info *abbrev;
18330 unsigned int bytes_read;
18331 unsigned int load_all = 0;
18332 int nesting_level = 1;
18333
18334 parent_die = NULL;
18335 last_die = NULL;
18336
18337 gdb_assert (cu->per_cu != NULL);
18338 if (cu->per_cu->load_all_dies)
18339 load_all = 1;
18340
18341 cu->partial_dies
18342 = htab_create_alloc_ex (cu->header.length / 12,
18343 partial_die_hash,
18344 partial_die_eq,
18345 NULL,
18346 &cu->comp_unit_obstack,
18347 hashtab_obstack_allocate,
18348 dummy_obstack_deallocate);
18349
18350 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
18351
18352 while (1)
18353 {
18354 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
18355
18356 /* A NULL abbrev means the end of a series of children. */
18357 if (abbrev == NULL)
18358 {
18359 if (--nesting_level == 0)
18360 {
18361 /* PART_DIE was probably the last thing allocated on the
18362 comp_unit_obstack, so we could call obstack_free
18363 here. We don't do that because the waste is small,
18364 and will be cleaned up when we're done with this
18365 compilation unit. This way, we're also more robust
18366 against other users of the comp_unit_obstack. */
18367 return first_die;
18368 }
18369 info_ptr += bytes_read;
18370 last_die = parent_die;
18371 parent_die = parent_die->die_parent;
18372 continue;
18373 }
18374
18375 /* Check for template arguments. We never save these; if
18376 they're seen, we just mark the parent, and go on our way. */
18377 if (parent_die != NULL
18378 && cu->language == language_cplus
18379 && (abbrev->tag == DW_TAG_template_type_param
18380 || abbrev->tag == DW_TAG_template_value_param))
18381 {
18382 parent_die->has_template_arguments = 1;
18383
18384 if (!load_all)
18385 {
18386 /* We don't need a partial DIE for the template argument. */
18387 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18388 continue;
18389 }
18390 }
18391
18392 /* We only recurse into c++ subprograms looking for template arguments.
18393 Skip their other children. */
18394 if (!load_all
18395 && cu->language == language_cplus
18396 && parent_die != NULL
18397 && parent_die->tag == DW_TAG_subprogram)
18398 {
18399 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18400 continue;
18401 }
18402
18403 /* Check whether this DIE is interesting enough to save. Normally
18404 we would not be interested in members here, but there may be
18405 later variables referencing them via DW_AT_specification (for
18406 static members). */
18407 if (!load_all
18408 && !is_type_tag_for_partial (abbrev->tag)
18409 && abbrev->tag != DW_TAG_constant
18410 && abbrev->tag != DW_TAG_enumerator
18411 && abbrev->tag != DW_TAG_subprogram
18412 && abbrev->tag != DW_TAG_lexical_block
18413 && abbrev->tag != DW_TAG_variable
18414 && abbrev->tag != DW_TAG_namespace
18415 && abbrev->tag != DW_TAG_module
18416 && abbrev->tag != DW_TAG_member
18417 && abbrev->tag != DW_TAG_imported_unit
18418 && abbrev->tag != DW_TAG_imported_declaration)
18419 {
18420 /* Otherwise we skip to the next sibling, if any. */
18421 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18422 continue;
18423 }
18424
18425 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
18426 info_ptr);
18427
18428 /* This two-pass algorithm for processing partial symbols has a
18429 high cost in cache pressure. Thus, handle some simple cases
18430 here which cover the majority of C partial symbols. DIEs
18431 which neither have specification tags in them, nor could have
18432 specification tags elsewhere pointing at them, can simply be
18433 processed and discarded.
18434
18435 This segment is also optional; scan_partial_symbols and
18436 add_partial_symbol will handle these DIEs if we chain
18437 them in normally. When compilers which do not emit large
18438 quantities of duplicate debug information are more common,
18439 this code can probably be removed. */
18440
18441 /* Any complete simple types at the top level (pretty much all
18442 of them, for a language without namespaces), can be processed
18443 directly. */
18444 if (parent_die == NULL
18445 && part_die->has_specification == 0
18446 && part_die->is_declaration == 0
18447 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
18448 || part_die->tag == DW_TAG_base_type
18449 || part_die->tag == DW_TAG_subrange_type))
18450 {
18451 if (building_psymtab && part_die->name != NULL)
18452 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
18453 VAR_DOMAIN, LOC_TYPEDEF,
18454 &objfile->static_psymbols,
18455 0, cu->language, objfile);
18456 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
18457 continue;
18458 }
18459
18460 /* The exception for DW_TAG_typedef with has_children above is
18461 a workaround of GCC PR debug/47510. In the case of this complaint
18462 type_name_no_tag_or_error will error on such types later.
18463
18464 GDB skipped children of DW_TAG_typedef by the shortcut above and then
18465 it could not find the child DIEs referenced later, this is checked
18466 above. In correct DWARF DW_TAG_typedef should have no children. */
18467
18468 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
18469 complaint (&symfile_complaints,
18470 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
18471 "- DIE at 0x%x [in module %s]"),
18472 to_underlying (part_die->sect_off), objfile_name (objfile));
18473
18474 /* If we're at the second level, and we're an enumerator, and
18475 our parent has no specification (meaning possibly lives in a
18476 namespace elsewhere), then we can add the partial symbol now
18477 instead of queueing it. */
18478 if (part_die->tag == DW_TAG_enumerator
18479 && parent_die != NULL
18480 && parent_die->die_parent == NULL
18481 && parent_die->tag == DW_TAG_enumeration_type
18482 && parent_die->has_specification == 0)
18483 {
18484 if (part_die->name == NULL)
18485 complaint (&symfile_complaints,
18486 _("malformed enumerator DIE ignored"));
18487 else if (building_psymtab)
18488 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
18489 VAR_DOMAIN, LOC_CONST,
18490 cu->language == language_cplus
18491 ? &objfile->global_psymbols
18492 : &objfile->static_psymbols,
18493 0, cu->language, objfile);
18494
18495 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
18496 continue;
18497 }
18498
18499 /* We'll save this DIE so link it in. */
18500 part_die->die_parent = parent_die;
18501 part_die->die_sibling = NULL;
18502 part_die->die_child = NULL;
18503
18504 if (last_die && last_die == parent_die)
18505 last_die->die_child = part_die;
18506 else if (last_die)
18507 last_die->die_sibling = part_die;
18508
18509 last_die = part_die;
18510
18511 if (first_die == NULL)
18512 first_die = part_die;
18513
18514 /* Maybe add the DIE to the hash table. Not all DIEs that we
18515 find interesting need to be in the hash table, because we
18516 also have the parent/sibling/child chains; only those that we
18517 might refer to by offset later during partial symbol reading.
18518
18519 For now this means things that might have be the target of a
18520 DW_AT_specification, DW_AT_abstract_origin, or
18521 DW_AT_extension. DW_AT_extension will refer only to
18522 namespaces; DW_AT_abstract_origin refers to functions (and
18523 many things under the function DIE, but we do not recurse
18524 into function DIEs during partial symbol reading) and
18525 possibly variables as well; DW_AT_specification refers to
18526 declarations. Declarations ought to have the DW_AT_declaration
18527 flag. It happens that GCC forgets to put it in sometimes, but
18528 only for functions, not for types.
18529
18530 Adding more things than necessary to the hash table is harmless
18531 except for the performance cost. Adding too few will result in
18532 wasted time in find_partial_die, when we reread the compilation
18533 unit with load_all_dies set. */
18534
18535 if (load_all
18536 || abbrev->tag == DW_TAG_constant
18537 || abbrev->tag == DW_TAG_subprogram
18538 || abbrev->tag == DW_TAG_variable
18539 || abbrev->tag == DW_TAG_namespace
18540 || part_die->is_declaration)
18541 {
18542 void **slot;
18543
18544 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
18545 to_underlying (part_die->sect_off),
18546 INSERT);
18547 *slot = part_die;
18548 }
18549
18550 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
18551
18552 /* For some DIEs we want to follow their children (if any). For C
18553 we have no reason to follow the children of structures; for other
18554 languages we have to, so that we can get at method physnames
18555 to infer fully qualified class names, for DW_AT_specification,
18556 and for C++ template arguments. For C++, we also look one level
18557 inside functions to find template arguments (if the name of the
18558 function does not already contain the template arguments).
18559
18560 For Ada, we need to scan the children of subprograms and lexical
18561 blocks as well because Ada allows the definition of nested
18562 entities that could be interesting for the debugger, such as
18563 nested subprograms for instance. */
18564 if (last_die->has_children
18565 && (load_all
18566 || last_die->tag == DW_TAG_namespace
18567 || last_die->tag == DW_TAG_module
18568 || last_die->tag == DW_TAG_enumeration_type
18569 || (cu->language == language_cplus
18570 && last_die->tag == DW_TAG_subprogram
18571 && (last_die->name == NULL
18572 || strchr (last_die->name, '<') == NULL))
18573 || (cu->language != language_c
18574 && (last_die->tag == DW_TAG_class_type
18575 || last_die->tag == DW_TAG_interface_type
18576 || last_die->tag == DW_TAG_structure_type
18577 || last_die->tag == DW_TAG_union_type))
18578 || (cu->language == language_ada
18579 && (last_die->tag == DW_TAG_subprogram
18580 || last_die->tag == DW_TAG_lexical_block))))
18581 {
18582 nesting_level++;
18583 parent_die = last_die;
18584 continue;
18585 }
18586
18587 /* Otherwise we skip to the next sibling, if any. */
18588 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
18589
18590 /* Back to the top, do it again. */
18591 }
18592 }
18593
18594 /* Read a minimal amount of information into the minimal die structure. */
18595
18596 static const gdb_byte *
18597 read_partial_die (const struct die_reader_specs *reader,
18598 struct partial_die_info *part_die,
18599 struct abbrev_info *abbrev, unsigned int abbrev_len,
18600 const gdb_byte *info_ptr)
18601 {
18602 struct dwarf2_cu *cu = reader->cu;
18603 struct dwarf2_per_objfile *dwarf2_per_objfile
18604 = cu->per_cu->dwarf2_per_objfile;
18605 struct objfile *objfile = dwarf2_per_objfile->objfile;
18606 const gdb_byte *buffer = reader->buffer;
18607 unsigned int i;
18608 struct attribute attr;
18609 int has_low_pc_attr = 0;
18610 int has_high_pc_attr = 0;
18611 int high_pc_relative = 0;
18612
18613 memset (part_die, 0, sizeof (struct partial_die_info));
18614
18615 part_die->sect_off = (sect_offset) (info_ptr - buffer);
18616
18617 info_ptr += abbrev_len;
18618
18619 if (abbrev == NULL)
18620 return info_ptr;
18621
18622 part_die->tag = abbrev->tag;
18623 part_die->has_children = abbrev->has_children;
18624
18625 for (i = 0; i < abbrev->num_attrs; ++i)
18626 {
18627 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
18628
18629 /* Store the data if it is of an attribute we want to keep in a
18630 partial symbol table. */
18631 switch (attr.name)
18632 {
18633 case DW_AT_name:
18634 switch (part_die->tag)
18635 {
18636 case DW_TAG_compile_unit:
18637 case DW_TAG_partial_unit:
18638 case DW_TAG_type_unit:
18639 /* Compilation units have a DW_AT_name that is a filename, not
18640 a source language identifier. */
18641 case DW_TAG_enumeration_type:
18642 case DW_TAG_enumerator:
18643 /* These tags always have simple identifiers already; no need
18644 to canonicalize them. */
18645 part_die->name = DW_STRING (&attr);
18646 break;
18647 default:
18648 part_die->name
18649 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
18650 &objfile->per_bfd->storage_obstack);
18651 break;
18652 }
18653 break;
18654 case DW_AT_linkage_name:
18655 case DW_AT_MIPS_linkage_name:
18656 /* Note that both forms of linkage name might appear. We
18657 assume they will be the same, and we only store the last
18658 one we see. */
18659 if (cu->language == language_ada)
18660 part_die->name = DW_STRING (&attr);
18661 part_die->linkage_name = DW_STRING (&attr);
18662 break;
18663 case DW_AT_low_pc:
18664 has_low_pc_attr = 1;
18665 part_die->lowpc = attr_value_as_address (&attr);
18666 break;
18667 case DW_AT_high_pc:
18668 has_high_pc_attr = 1;
18669 part_die->highpc = attr_value_as_address (&attr);
18670 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
18671 high_pc_relative = 1;
18672 break;
18673 case DW_AT_location:
18674 /* Support the .debug_loc offsets. */
18675 if (attr_form_is_block (&attr))
18676 {
18677 part_die->d.locdesc = DW_BLOCK (&attr);
18678 }
18679 else if (attr_form_is_section_offset (&attr))
18680 {
18681 dwarf2_complex_location_expr_complaint ();
18682 }
18683 else
18684 {
18685 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
18686 "partial symbol information");
18687 }
18688 break;
18689 case DW_AT_external:
18690 part_die->is_external = DW_UNSND (&attr);
18691 break;
18692 case DW_AT_declaration:
18693 part_die->is_declaration = DW_UNSND (&attr);
18694 break;
18695 case DW_AT_type:
18696 part_die->has_type = 1;
18697 break;
18698 case DW_AT_abstract_origin:
18699 case DW_AT_specification:
18700 case DW_AT_extension:
18701 part_die->has_specification = 1;
18702 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
18703 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18704 || cu->per_cu->is_dwz);
18705 break;
18706 case DW_AT_sibling:
18707 /* Ignore absolute siblings, they might point outside of
18708 the current compile unit. */
18709 if (attr.form == DW_FORM_ref_addr)
18710 complaint (&symfile_complaints,
18711 _("ignoring absolute DW_AT_sibling"));
18712 else
18713 {
18714 sect_offset off = dwarf2_get_ref_die_offset (&attr);
18715 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
18716
18717 if (sibling_ptr < info_ptr)
18718 complaint (&symfile_complaints,
18719 _("DW_AT_sibling points backwards"));
18720 else if (sibling_ptr > reader->buffer_end)
18721 dwarf2_section_buffer_overflow_complaint (reader->die_section);
18722 else
18723 part_die->sibling = sibling_ptr;
18724 }
18725 break;
18726 case DW_AT_byte_size:
18727 part_die->has_byte_size = 1;
18728 break;
18729 case DW_AT_const_value:
18730 part_die->has_const_value = 1;
18731 break;
18732 case DW_AT_calling_convention:
18733 /* DWARF doesn't provide a way to identify a program's source-level
18734 entry point. DW_AT_calling_convention attributes are only meant
18735 to describe functions' calling conventions.
18736
18737 However, because it's a necessary piece of information in
18738 Fortran, and before DWARF 4 DW_CC_program was the only
18739 piece of debugging information whose definition refers to
18740 a 'main program' at all, several compilers marked Fortran
18741 main programs with DW_CC_program --- even when those
18742 functions use the standard calling conventions.
18743
18744 Although DWARF now specifies a way to provide this
18745 information, we support this practice for backward
18746 compatibility. */
18747 if (DW_UNSND (&attr) == DW_CC_program
18748 && cu->language == language_fortran)
18749 part_die->main_subprogram = 1;
18750 break;
18751 case DW_AT_inline:
18752 if (DW_UNSND (&attr) == DW_INL_inlined
18753 || DW_UNSND (&attr) == DW_INL_declared_inlined)
18754 part_die->may_be_inlined = 1;
18755 break;
18756
18757 case DW_AT_import:
18758 if (part_die->tag == DW_TAG_imported_unit)
18759 {
18760 part_die->d.sect_off = dwarf2_get_ref_die_offset (&attr);
18761 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18762 || cu->per_cu->is_dwz);
18763 }
18764 break;
18765
18766 case DW_AT_main_subprogram:
18767 part_die->main_subprogram = DW_UNSND (&attr);
18768 break;
18769
18770 default:
18771 break;
18772 }
18773 }
18774
18775 if (high_pc_relative)
18776 part_die->highpc += part_die->lowpc;
18777
18778 if (has_low_pc_attr && has_high_pc_attr)
18779 {
18780 /* When using the GNU linker, .gnu.linkonce. sections are used to
18781 eliminate duplicate copies of functions and vtables and such.
18782 The linker will arbitrarily choose one and discard the others.
18783 The AT_*_pc values for such functions refer to local labels in
18784 these sections. If the section from that file was discarded, the
18785 labels are not in the output, so the relocs get a value of 0.
18786 If this is a discarded function, mark the pc bounds as invalid,
18787 so that GDB will ignore it. */
18788 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
18789 {
18790 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18791
18792 complaint (&symfile_complaints,
18793 _("DW_AT_low_pc %s is zero "
18794 "for DIE at 0x%x [in module %s]"),
18795 paddress (gdbarch, part_die->lowpc),
18796 to_underlying (part_die->sect_off), objfile_name (objfile));
18797 }
18798 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
18799 else if (part_die->lowpc >= part_die->highpc)
18800 {
18801 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18802
18803 complaint (&symfile_complaints,
18804 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
18805 "for DIE at 0x%x [in module %s]"),
18806 paddress (gdbarch, part_die->lowpc),
18807 paddress (gdbarch, part_die->highpc),
18808 to_underlying (part_die->sect_off),
18809 objfile_name (objfile));
18810 }
18811 else
18812 part_die->has_pc_info = 1;
18813 }
18814
18815 return info_ptr;
18816 }
18817
18818 /* Find a cached partial DIE at OFFSET in CU. */
18819
18820 static struct partial_die_info *
18821 find_partial_die_in_comp_unit (sect_offset sect_off, struct dwarf2_cu *cu)
18822 {
18823 struct partial_die_info *lookup_die = NULL;
18824 struct partial_die_info part_die;
18825
18826 part_die.sect_off = sect_off;
18827 lookup_die = ((struct partial_die_info *)
18828 htab_find_with_hash (cu->partial_dies, &part_die,
18829 to_underlying (sect_off)));
18830
18831 return lookup_die;
18832 }
18833
18834 /* Find a partial DIE at OFFSET, which may or may not be in CU,
18835 except in the case of .debug_types DIEs which do not reference
18836 outside their CU (they do however referencing other types via
18837 DW_FORM_ref_sig8). */
18838
18839 static struct partial_die_info *
18840 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
18841 {
18842 struct dwarf2_per_objfile *dwarf2_per_objfile
18843 = cu->per_cu->dwarf2_per_objfile;
18844 struct objfile *objfile = dwarf2_per_objfile->objfile;
18845 struct dwarf2_per_cu_data *per_cu = NULL;
18846 struct partial_die_info *pd = NULL;
18847
18848 if (offset_in_dwz == cu->per_cu->is_dwz
18849 && offset_in_cu_p (&cu->header, sect_off))
18850 {
18851 pd = find_partial_die_in_comp_unit (sect_off, cu);
18852 if (pd != NULL)
18853 return pd;
18854 /* We missed recording what we needed.
18855 Load all dies and try again. */
18856 per_cu = cu->per_cu;
18857 }
18858 else
18859 {
18860 /* TUs don't reference other CUs/TUs (except via type signatures). */
18861 if (cu->per_cu->is_debug_types)
18862 {
18863 error (_("Dwarf Error: Type Unit at offset 0x%x contains"
18864 " external reference to offset 0x%x [in module %s].\n"),
18865 to_underlying (cu->header.sect_off), to_underlying (sect_off),
18866 bfd_get_filename (objfile->obfd));
18867 }
18868 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
18869 dwarf2_per_objfile);
18870
18871 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
18872 load_partial_comp_unit (per_cu);
18873
18874 per_cu->cu->last_used = 0;
18875 pd = find_partial_die_in_comp_unit (sect_off, per_cu->cu);
18876 }
18877
18878 /* If we didn't find it, and not all dies have been loaded,
18879 load them all and try again. */
18880
18881 if (pd == NULL && per_cu->load_all_dies == 0)
18882 {
18883 per_cu->load_all_dies = 1;
18884
18885 /* This is nasty. When we reread the DIEs, somewhere up the call chain
18886 THIS_CU->cu may already be in use. So we can't just free it and
18887 replace its DIEs with the ones we read in. Instead, we leave those
18888 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
18889 and clobber THIS_CU->cu->partial_dies with the hash table for the new
18890 set. */
18891 load_partial_comp_unit (per_cu);
18892
18893 pd = find_partial_die_in_comp_unit (sect_off, per_cu->cu);
18894 }
18895
18896 if (pd == NULL)
18897 internal_error (__FILE__, __LINE__,
18898 _("could not find partial DIE 0x%x "
18899 "in cache [from module %s]\n"),
18900 to_underlying (sect_off), bfd_get_filename (objfile->obfd));
18901 return pd;
18902 }
18903
18904 /* See if we can figure out if the class lives in a namespace. We do
18905 this by looking for a member function; its demangled name will
18906 contain namespace info, if there is any. */
18907
18908 static void
18909 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
18910 struct dwarf2_cu *cu)
18911 {
18912 /* NOTE: carlton/2003-10-07: Getting the info this way changes
18913 what template types look like, because the demangler
18914 frequently doesn't give the same name as the debug info. We
18915 could fix this by only using the demangled name to get the
18916 prefix (but see comment in read_structure_type). */
18917
18918 struct partial_die_info *real_pdi;
18919 struct partial_die_info *child_pdi;
18920
18921 /* If this DIE (this DIE's specification, if any) has a parent, then
18922 we should not do this. We'll prepend the parent's fully qualified
18923 name when we create the partial symbol. */
18924
18925 real_pdi = struct_pdi;
18926 while (real_pdi->has_specification)
18927 real_pdi = find_partial_die (real_pdi->spec_offset,
18928 real_pdi->spec_is_dwz, cu);
18929
18930 if (real_pdi->die_parent != NULL)
18931 return;
18932
18933 for (child_pdi = struct_pdi->die_child;
18934 child_pdi != NULL;
18935 child_pdi = child_pdi->die_sibling)
18936 {
18937 if (child_pdi->tag == DW_TAG_subprogram
18938 && child_pdi->linkage_name != NULL)
18939 {
18940 char *actual_class_name
18941 = language_class_name_from_physname (cu->language_defn,
18942 child_pdi->linkage_name);
18943 if (actual_class_name != NULL)
18944 {
18945 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18946 struct_pdi->name
18947 = ((const char *)
18948 obstack_copy0 (&objfile->per_bfd->storage_obstack,
18949 actual_class_name,
18950 strlen (actual_class_name)));
18951 xfree (actual_class_name);
18952 }
18953 break;
18954 }
18955 }
18956 }
18957
18958 /* Adjust PART_DIE before generating a symbol for it. This function
18959 may set the is_external flag or change the DIE's name. */
18960
18961 static void
18962 fixup_partial_die (struct partial_die_info *part_die,
18963 struct dwarf2_cu *cu)
18964 {
18965 /* Once we've fixed up a die, there's no point in doing so again.
18966 This also avoids a memory leak if we were to call
18967 guess_partial_die_structure_name multiple times. */
18968 if (part_die->fixup_called)
18969 return;
18970
18971 /* If we found a reference attribute and the DIE has no name, try
18972 to find a name in the referred to DIE. */
18973
18974 if (part_die->name == NULL && part_die->has_specification)
18975 {
18976 struct partial_die_info *spec_die;
18977
18978 spec_die = find_partial_die (part_die->spec_offset,
18979 part_die->spec_is_dwz, cu);
18980
18981 fixup_partial_die (spec_die, cu);
18982
18983 if (spec_die->name)
18984 {
18985 part_die->name = spec_die->name;
18986
18987 /* Copy DW_AT_external attribute if it is set. */
18988 if (spec_die->is_external)
18989 part_die->is_external = spec_die->is_external;
18990 }
18991 }
18992
18993 /* Set default names for some unnamed DIEs. */
18994
18995 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
18996 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
18997
18998 /* If there is no parent die to provide a namespace, and there are
18999 children, see if we can determine the namespace from their linkage
19000 name. */
19001 if (cu->language == language_cplus
19002 && !VEC_empty (dwarf2_section_info_def,
19003 cu->per_cu->dwarf2_per_objfile->types)
19004 && part_die->die_parent == NULL
19005 && part_die->has_children
19006 && (part_die->tag == DW_TAG_class_type
19007 || part_die->tag == DW_TAG_structure_type
19008 || part_die->tag == DW_TAG_union_type))
19009 guess_partial_die_structure_name (part_die, cu);
19010
19011 /* GCC might emit a nameless struct or union that has a linkage
19012 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19013 if (part_die->name == NULL
19014 && (part_die->tag == DW_TAG_class_type
19015 || part_die->tag == DW_TAG_interface_type
19016 || part_die->tag == DW_TAG_structure_type
19017 || part_die->tag == DW_TAG_union_type)
19018 && part_die->linkage_name != NULL)
19019 {
19020 char *demangled;
19021
19022 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
19023 if (demangled)
19024 {
19025 const char *base;
19026
19027 /* Strip any leading namespaces/classes, keep only the base name.
19028 DW_AT_name for named DIEs does not contain the prefixes. */
19029 base = strrchr (demangled, ':');
19030 if (base && base > demangled && base[-1] == ':')
19031 base++;
19032 else
19033 base = demangled;
19034
19035 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
19036 part_die->name
19037 = ((const char *)
19038 obstack_copy0 (&objfile->per_bfd->storage_obstack,
19039 base, strlen (base)));
19040 xfree (demangled);
19041 }
19042 }
19043
19044 part_die->fixup_called = 1;
19045 }
19046
19047 /* Read an attribute value described by an attribute form. */
19048
19049 static const gdb_byte *
19050 read_attribute_value (const struct die_reader_specs *reader,
19051 struct attribute *attr, unsigned form,
19052 LONGEST implicit_const, const gdb_byte *info_ptr)
19053 {
19054 struct dwarf2_cu *cu = reader->cu;
19055 struct dwarf2_per_objfile *dwarf2_per_objfile
19056 = cu->per_cu->dwarf2_per_objfile;
19057 struct objfile *objfile = dwarf2_per_objfile->objfile;
19058 struct gdbarch *gdbarch = get_objfile_arch (objfile);
19059 bfd *abfd = reader->abfd;
19060 struct comp_unit_head *cu_header = &cu->header;
19061 unsigned int bytes_read;
19062 struct dwarf_block *blk;
19063
19064 attr->form = (enum dwarf_form) form;
19065 switch (form)
19066 {
19067 case DW_FORM_ref_addr:
19068 if (cu->header.version == 2)
19069 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
19070 else
19071 DW_UNSND (attr) = read_offset (abfd, info_ptr,
19072 &cu->header, &bytes_read);
19073 info_ptr += bytes_read;
19074 break;
19075 case DW_FORM_GNU_ref_alt:
19076 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19077 info_ptr += bytes_read;
19078 break;
19079 case DW_FORM_addr:
19080 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
19081 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
19082 info_ptr += bytes_read;
19083 break;
19084 case DW_FORM_block2:
19085 blk = dwarf_alloc_block (cu);
19086 blk->size = read_2_bytes (abfd, info_ptr);
19087 info_ptr += 2;
19088 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19089 info_ptr += blk->size;
19090 DW_BLOCK (attr) = blk;
19091 break;
19092 case DW_FORM_block4:
19093 blk = dwarf_alloc_block (cu);
19094 blk->size = read_4_bytes (abfd, info_ptr);
19095 info_ptr += 4;
19096 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19097 info_ptr += blk->size;
19098 DW_BLOCK (attr) = blk;
19099 break;
19100 case DW_FORM_data2:
19101 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
19102 info_ptr += 2;
19103 break;
19104 case DW_FORM_data4:
19105 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
19106 info_ptr += 4;
19107 break;
19108 case DW_FORM_data8:
19109 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
19110 info_ptr += 8;
19111 break;
19112 case DW_FORM_data16:
19113 blk = dwarf_alloc_block (cu);
19114 blk->size = 16;
19115 blk->data = read_n_bytes (abfd, info_ptr, 16);
19116 info_ptr += 16;
19117 DW_BLOCK (attr) = blk;
19118 break;
19119 case DW_FORM_sec_offset:
19120 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19121 info_ptr += bytes_read;
19122 break;
19123 case DW_FORM_string:
19124 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
19125 DW_STRING_IS_CANONICAL (attr) = 0;
19126 info_ptr += bytes_read;
19127 break;
19128 case DW_FORM_strp:
19129 if (!cu->per_cu->is_dwz)
19130 {
19131 DW_STRING (attr) = read_indirect_string (dwarf2_per_objfile,
19132 abfd, info_ptr, cu_header,
19133 &bytes_read);
19134 DW_STRING_IS_CANONICAL (attr) = 0;
19135 info_ptr += bytes_read;
19136 break;
19137 }
19138 /* FALLTHROUGH */
19139 case DW_FORM_line_strp:
19140 if (!cu->per_cu->is_dwz)
19141 {
19142 DW_STRING (attr) = read_indirect_line_string (dwarf2_per_objfile,
19143 abfd, info_ptr,
19144 cu_header, &bytes_read);
19145 DW_STRING_IS_CANONICAL (attr) = 0;
19146 info_ptr += bytes_read;
19147 break;
19148 }
19149 /* FALLTHROUGH */
19150 case DW_FORM_GNU_strp_alt:
19151 {
19152 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
19153 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
19154 &bytes_read);
19155
19156 DW_STRING (attr) = read_indirect_string_from_dwz (objfile,
19157 dwz, str_offset);
19158 DW_STRING_IS_CANONICAL (attr) = 0;
19159 info_ptr += bytes_read;
19160 }
19161 break;
19162 case DW_FORM_exprloc:
19163 case DW_FORM_block:
19164 blk = dwarf_alloc_block (cu);
19165 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19166 info_ptr += bytes_read;
19167 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19168 info_ptr += blk->size;
19169 DW_BLOCK (attr) = blk;
19170 break;
19171 case DW_FORM_block1:
19172 blk = dwarf_alloc_block (cu);
19173 blk->size = read_1_byte (abfd, info_ptr);
19174 info_ptr += 1;
19175 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19176 info_ptr += blk->size;
19177 DW_BLOCK (attr) = blk;
19178 break;
19179 case DW_FORM_data1:
19180 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19181 info_ptr += 1;
19182 break;
19183 case DW_FORM_flag:
19184 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19185 info_ptr += 1;
19186 break;
19187 case DW_FORM_flag_present:
19188 DW_UNSND (attr) = 1;
19189 break;
19190 case DW_FORM_sdata:
19191 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19192 info_ptr += bytes_read;
19193 break;
19194 case DW_FORM_udata:
19195 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19196 info_ptr += bytes_read;
19197 break;
19198 case DW_FORM_ref1:
19199 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19200 + read_1_byte (abfd, info_ptr));
19201 info_ptr += 1;
19202 break;
19203 case DW_FORM_ref2:
19204 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19205 + read_2_bytes (abfd, info_ptr));
19206 info_ptr += 2;
19207 break;
19208 case DW_FORM_ref4:
19209 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19210 + read_4_bytes (abfd, info_ptr));
19211 info_ptr += 4;
19212 break;
19213 case DW_FORM_ref8:
19214 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19215 + read_8_bytes (abfd, info_ptr));
19216 info_ptr += 8;
19217 break;
19218 case DW_FORM_ref_sig8:
19219 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
19220 info_ptr += 8;
19221 break;
19222 case DW_FORM_ref_udata:
19223 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19224 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
19225 info_ptr += bytes_read;
19226 break;
19227 case DW_FORM_indirect:
19228 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19229 info_ptr += bytes_read;
19230 if (form == DW_FORM_implicit_const)
19231 {
19232 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19233 info_ptr += bytes_read;
19234 }
19235 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
19236 info_ptr);
19237 break;
19238 case DW_FORM_implicit_const:
19239 DW_SND (attr) = implicit_const;
19240 break;
19241 case DW_FORM_GNU_addr_index:
19242 if (reader->dwo_file == NULL)
19243 {
19244 /* For now flag a hard error.
19245 Later we can turn this into a complaint. */
19246 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19247 dwarf_form_name (form),
19248 bfd_get_filename (abfd));
19249 }
19250 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
19251 info_ptr += bytes_read;
19252 break;
19253 case DW_FORM_GNU_str_index:
19254 if (reader->dwo_file == NULL)
19255 {
19256 /* For now flag a hard error.
19257 Later we can turn this into a complaint if warranted. */
19258 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19259 dwarf_form_name (form),
19260 bfd_get_filename (abfd));
19261 }
19262 {
19263 ULONGEST str_index =
19264 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19265
19266 DW_STRING (attr) = read_str_index (reader, str_index);
19267 DW_STRING_IS_CANONICAL (attr) = 0;
19268 info_ptr += bytes_read;
19269 }
19270 break;
19271 default:
19272 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
19273 dwarf_form_name (form),
19274 bfd_get_filename (abfd));
19275 }
19276
19277 /* Super hack. */
19278 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
19279 attr->form = DW_FORM_GNU_ref_alt;
19280
19281 /* We have seen instances where the compiler tried to emit a byte
19282 size attribute of -1 which ended up being encoded as an unsigned
19283 0xffffffff. Although 0xffffffff is technically a valid size value,
19284 an object of this size seems pretty unlikely so we can relatively
19285 safely treat these cases as if the size attribute was invalid and
19286 treat them as zero by default. */
19287 if (attr->name == DW_AT_byte_size
19288 && form == DW_FORM_data4
19289 && DW_UNSND (attr) >= 0xffffffff)
19290 {
19291 complaint
19292 (&symfile_complaints,
19293 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
19294 hex_string (DW_UNSND (attr)));
19295 DW_UNSND (attr) = 0;
19296 }
19297
19298 return info_ptr;
19299 }
19300
19301 /* Read an attribute described by an abbreviated attribute. */
19302
19303 static const gdb_byte *
19304 read_attribute (const struct die_reader_specs *reader,
19305 struct attribute *attr, struct attr_abbrev *abbrev,
19306 const gdb_byte *info_ptr)
19307 {
19308 attr->name = abbrev->name;
19309 return read_attribute_value (reader, attr, abbrev->form,
19310 abbrev->implicit_const, info_ptr);
19311 }
19312
19313 /* Read dwarf information from a buffer. */
19314
19315 static unsigned int
19316 read_1_byte (bfd *abfd, const gdb_byte *buf)
19317 {
19318 return bfd_get_8 (abfd, buf);
19319 }
19320
19321 static int
19322 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
19323 {
19324 return bfd_get_signed_8 (abfd, buf);
19325 }
19326
19327 static unsigned int
19328 read_2_bytes (bfd *abfd, const gdb_byte *buf)
19329 {
19330 return bfd_get_16 (abfd, buf);
19331 }
19332
19333 static int
19334 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
19335 {
19336 return bfd_get_signed_16 (abfd, buf);
19337 }
19338
19339 static unsigned int
19340 read_4_bytes (bfd *abfd, const gdb_byte *buf)
19341 {
19342 return bfd_get_32 (abfd, buf);
19343 }
19344
19345 static int
19346 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
19347 {
19348 return bfd_get_signed_32 (abfd, buf);
19349 }
19350
19351 static ULONGEST
19352 read_8_bytes (bfd *abfd, const gdb_byte *buf)
19353 {
19354 return bfd_get_64 (abfd, buf);
19355 }
19356
19357 static CORE_ADDR
19358 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
19359 unsigned int *bytes_read)
19360 {
19361 struct comp_unit_head *cu_header = &cu->header;
19362 CORE_ADDR retval = 0;
19363
19364 if (cu_header->signed_addr_p)
19365 {
19366 switch (cu_header->addr_size)
19367 {
19368 case 2:
19369 retval = bfd_get_signed_16 (abfd, buf);
19370 break;
19371 case 4:
19372 retval = bfd_get_signed_32 (abfd, buf);
19373 break;
19374 case 8:
19375 retval = bfd_get_signed_64 (abfd, buf);
19376 break;
19377 default:
19378 internal_error (__FILE__, __LINE__,
19379 _("read_address: bad switch, signed [in module %s]"),
19380 bfd_get_filename (abfd));
19381 }
19382 }
19383 else
19384 {
19385 switch (cu_header->addr_size)
19386 {
19387 case 2:
19388 retval = bfd_get_16 (abfd, buf);
19389 break;
19390 case 4:
19391 retval = bfd_get_32 (abfd, buf);
19392 break;
19393 case 8:
19394 retval = bfd_get_64 (abfd, buf);
19395 break;
19396 default:
19397 internal_error (__FILE__, __LINE__,
19398 _("read_address: bad switch, "
19399 "unsigned [in module %s]"),
19400 bfd_get_filename (abfd));
19401 }
19402 }
19403
19404 *bytes_read = cu_header->addr_size;
19405 return retval;
19406 }
19407
19408 /* Read the initial length from a section. The (draft) DWARF 3
19409 specification allows the initial length to take up either 4 bytes
19410 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
19411 bytes describe the length and all offsets will be 8 bytes in length
19412 instead of 4.
19413
19414 An older, non-standard 64-bit format is also handled by this
19415 function. The older format in question stores the initial length
19416 as an 8-byte quantity without an escape value. Lengths greater
19417 than 2^32 aren't very common which means that the initial 4 bytes
19418 is almost always zero. Since a length value of zero doesn't make
19419 sense for the 32-bit format, this initial zero can be considered to
19420 be an escape value which indicates the presence of the older 64-bit
19421 format. As written, the code can't detect (old format) lengths
19422 greater than 4GB. If it becomes necessary to handle lengths
19423 somewhat larger than 4GB, we could allow other small values (such
19424 as the non-sensical values of 1, 2, and 3) to also be used as
19425 escape values indicating the presence of the old format.
19426
19427 The value returned via bytes_read should be used to increment the
19428 relevant pointer after calling read_initial_length().
19429
19430 [ Note: read_initial_length() and read_offset() are based on the
19431 document entitled "DWARF Debugging Information Format", revision
19432 3, draft 8, dated November 19, 2001. This document was obtained
19433 from:
19434
19435 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
19436
19437 This document is only a draft and is subject to change. (So beware.)
19438
19439 Details regarding the older, non-standard 64-bit format were
19440 determined empirically by examining 64-bit ELF files produced by
19441 the SGI toolchain on an IRIX 6.5 machine.
19442
19443 - Kevin, July 16, 2002
19444 ] */
19445
19446 static LONGEST
19447 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
19448 {
19449 LONGEST length = bfd_get_32 (abfd, buf);
19450
19451 if (length == 0xffffffff)
19452 {
19453 length = bfd_get_64 (abfd, buf + 4);
19454 *bytes_read = 12;
19455 }
19456 else if (length == 0)
19457 {
19458 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
19459 length = bfd_get_64 (abfd, buf);
19460 *bytes_read = 8;
19461 }
19462 else
19463 {
19464 *bytes_read = 4;
19465 }
19466
19467 return length;
19468 }
19469
19470 /* Cover function for read_initial_length.
19471 Returns the length of the object at BUF, and stores the size of the
19472 initial length in *BYTES_READ and stores the size that offsets will be in
19473 *OFFSET_SIZE.
19474 If the initial length size is not equivalent to that specified in
19475 CU_HEADER then issue a complaint.
19476 This is useful when reading non-comp-unit headers. */
19477
19478 static LONGEST
19479 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
19480 const struct comp_unit_head *cu_header,
19481 unsigned int *bytes_read,
19482 unsigned int *offset_size)
19483 {
19484 LONGEST length = read_initial_length (abfd, buf, bytes_read);
19485
19486 gdb_assert (cu_header->initial_length_size == 4
19487 || cu_header->initial_length_size == 8
19488 || cu_header->initial_length_size == 12);
19489
19490 if (cu_header->initial_length_size != *bytes_read)
19491 complaint (&symfile_complaints,
19492 _("intermixed 32-bit and 64-bit DWARF sections"));
19493
19494 *offset_size = (*bytes_read == 4) ? 4 : 8;
19495 return length;
19496 }
19497
19498 /* Read an offset from the data stream. The size of the offset is
19499 given by cu_header->offset_size. */
19500
19501 static LONGEST
19502 read_offset (bfd *abfd, const gdb_byte *buf,
19503 const struct comp_unit_head *cu_header,
19504 unsigned int *bytes_read)
19505 {
19506 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
19507
19508 *bytes_read = cu_header->offset_size;
19509 return offset;
19510 }
19511
19512 /* Read an offset from the data stream. */
19513
19514 static LONGEST
19515 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
19516 {
19517 LONGEST retval = 0;
19518
19519 switch (offset_size)
19520 {
19521 case 4:
19522 retval = bfd_get_32 (abfd, buf);
19523 break;
19524 case 8:
19525 retval = bfd_get_64 (abfd, buf);
19526 break;
19527 default:
19528 internal_error (__FILE__, __LINE__,
19529 _("read_offset_1: bad switch [in module %s]"),
19530 bfd_get_filename (abfd));
19531 }
19532
19533 return retval;
19534 }
19535
19536 static const gdb_byte *
19537 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
19538 {
19539 /* If the size of a host char is 8 bits, we can return a pointer
19540 to the buffer, otherwise we have to copy the data to a buffer
19541 allocated on the temporary obstack. */
19542 gdb_assert (HOST_CHAR_BIT == 8);
19543 return buf;
19544 }
19545
19546 static const char *
19547 read_direct_string (bfd *abfd, const gdb_byte *buf,
19548 unsigned int *bytes_read_ptr)
19549 {
19550 /* If the size of a host char is 8 bits, we can return a pointer
19551 to the string, otherwise we have to copy the string to a buffer
19552 allocated on the temporary obstack. */
19553 gdb_assert (HOST_CHAR_BIT == 8);
19554 if (*buf == '\0')
19555 {
19556 *bytes_read_ptr = 1;
19557 return NULL;
19558 }
19559 *bytes_read_ptr = strlen ((const char *) buf) + 1;
19560 return (const char *) buf;
19561 }
19562
19563 /* Return pointer to string at section SECT offset STR_OFFSET with error
19564 reporting strings FORM_NAME and SECT_NAME. */
19565
19566 static const char *
19567 read_indirect_string_at_offset_from (struct objfile *objfile,
19568 bfd *abfd, LONGEST str_offset,
19569 struct dwarf2_section_info *sect,
19570 const char *form_name,
19571 const char *sect_name)
19572 {
19573 dwarf2_read_section (objfile, sect);
19574 if (sect->buffer == NULL)
19575 error (_("%s used without %s section [in module %s]"),
19576 form_name, sect_name, bfd_get_filename (abfd));
19577 if (str_offset >= sect->size)
19578 error (_("%s pointing outside of %s section [in module %s]"),
19579 form_name, sect_name, bfd_get_filename (abfd));
19580 gdb_assert (HOST_CHAR_BIT == 8);
19581 if (sect->buffer[str_offset] == '\0')
19582 return NULL;
19583 return (const char *) (sect->buffer + str_offset);
19584 }
19585
19586 /* Return pointer to string at .debug_str offset STR_OFFSET. */
19587
19588 static const char *
19589 read_indirect_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19590 bfd *abfd, LONGEST str_offset)
19591 {
19592 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19593 abfd, str_offset,
19594 &dwarf2_per_objfile->str,
19595 "DW_FORM_strp", ".debug_str");
19596 }
19597
19598 /* Return pointer to string at .debug_line_str offset STR_OFFSET. */
19599
19600 static const char *
19601 read_indirect_line_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19602 bfd *abfd, LONGEST str_offset)
19603 {
19604 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19605 abfd, str_offset,
19606 &dwarf2_per_objfile->line_str,
19607 "DW_FORM_line_strp",
19608 ".debug_line_str");
19609 }
19610
19611 /* Read a string at offset STR_OFFSET in the .debug_str section from
19612 the .dwz file DWZ. Throw an error if the offset is too large. If
19613 the string consists of a single NUL byte, return NULL; otherwise
19614 return a pointer to the string. */
19615
19616 static const char *
19617 read_indirect_string_from_dwz (struct objfile *objfile, struct dwz_file *dwz,
19618 LONGEST str_offset)
19619 {
19620 dwarf2_read_section (objfile, &dwz->str);
19621
19622 if (dwz->str.buffer == NULL)
19623 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
19624 "section [in module %s]"),
19625 bfd_get_filename (dwz->dwz_bfd));
19626 if (str_offset >= dwz->str.size)
19627 error (_("DW_FORM_GNU_strp_alt pointing outside of "
19628 ".debug_str section [in module %s]"),
19629 bfd_get_filename (dwz->dwz_bfd));
19630 gdb_assert (HOST_CHAR_BIT == 8);
19631 if (dwz->str.buffer[str_offset] == '\0')
19632 return NULL;
19633 return (const char *) (dwz->str.buffer + str_offset);
19634 }
19635
19636 /* Return pointer to string at .debug_str offset as read from BUF.
19637 BUF is assumed to be in a compilation unit described by CU_HEADER.
19638 Return *BYTES_READ_PTR count of bytes read from BUF. */
19639
19640 static const char *
19641 read_indirect_string (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
19642 const gdb_byte *buf,
19643 const struct comp_unit_head *cu_header,
19644 unsigned int *bytes_read_ptr)
19645 {
19646 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19647
19648 return read_indirect_string_at_offset (dwarf2_per_objfile, abfd, str_offset);
19649 }
19650
19651 /* Return pointer to string at .debug_line_str offset as read from BUF.
19652 BUF is assumed to be in a compilation unit described by CU_HEADER.
19653 Return *BYTES_READ_PTR count of bytes read from BUF. */
19654
19655 static const char *
19656 read_indirect_line_string (struct dwarf2_per_objfile *dwarf2_per_objfile,
19657 bfd *abfd, const gdb_byte *buf,
19658 const struct comp_unit_head *cu_header,
19659 unsigned int *bytes_read_ptr)
19660 {
19661 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19662
19663 return read_indirect_line_string_at_offset (dwarf2_per_objfile, abfd,
19664 str_offset);
19665 }
19666
19667 ULONGEST
19668 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
19669 unsigned int *bytes_read_ptr)
19670 {
19671 ULONGEST result;
19672 unsigned int num_read;
19673 int shift;
19674 unsigned char byte;
19675
19676 result = 0;
19677 shift = 0;
19678 num_read = 0;
19679 while (1)
19680 {
19681 byte = bfd_get_8 (abfd, buf);
19682 buf++;
19683 num_read++;
19684 result |= ((ULONGEST) (byte & 127) << shift);
19685 if ((byte & 128) == 0)
19686 {
19687 break;
19688 }
19689 shift += 7;
19690 }
19691 *bytes_read_ptr = num_read;
19692 return result;
19693 }
19694
19695 static LONGEST
19696 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
19697 unsigned int *bytes_read_ptr)
19698 {
19699 LONGEST result;
19700 int shift, num_read;
19701 unsigned char byte;
19702
19703 result = 0;
19704 shift = 0;
19705 num_read = 0;
19706 while (1)
19707 {
19708 byte = bfd_get_8 (abfd, buf);
19709 buf++;
19710 num_read++;
19711 result |= ((LONGEST) (byte & 127) << shift);
19712 shift += 7;
19713 if ((byte & 128) == 0)
19714 {
19715 break;
19716 }
19717 }
19718 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
19719 result |= -(((LONGEST) 1) << shift);
19720 *bytes_read_ptr = num_read;
19721 return result;
19722 }
19723
19724 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
19725 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
19726 ADDR_SIZE is the size of addresses from the CU header. */
19727
19728 static CORE_ADDR
19729 read_addr_index_1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
19730 unsigned int addr_index, ULONGEST addr_base, int addr_size)
19731 {
19732 struct objfile *objfile = dwarf2_per_objfile->objfile;
19733 bfd *abfd = objfile->obfd;
19734 const gdb_byte *info_ptr;
19735
19736 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
19737 if (dwarf2_per_objfile->addr.buffer == NULL)
19738 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
19739 objfile_name (objfile));
19740 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
19741 error (_("DW_FORM_addr_index pointing outside of "
19742 ".debug_addr section [in module %s]"),
19743 objfile_name (objfile));
19744 info_ptr = (dwarf2_per_objfile->addr.buffer
19745 + addr_base + addr_index * addr_size);
19746 if (addr_size == 4)
19747 return bfd_get_32 (abfd, info_ptr);
19748 else
19749 return bfd_get_64 (abfd, info_ptr);
19750 }
19751
19752 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
19753
19754 static CORE_ADDR
19755 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
19756 {
19757 return read_addr_index_1 (cu->per_cu->dwarf2_per_objfile, addr_index,
19758 cu->addr_base, cu->header.addr_size);
19759 }
19760
19761 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
19762
19763 static CORE_ADDR
19764 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
19765 unsigned int *bytes_read)
19766 {
19767 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
19768 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
19769
19770 return read_addr_index (cu, addr_index);
19771 }
19772
19773 /* Data structure to pass results from dwarf2_read_addr_index_reader
19774 back to dwarf2_read_addr_index. */
19775
19776 struct dwarf2_read_addr_index_data
19777 {
19778 ULONGEST addr_base;
19779 int addr_size;
19780 };
19781
19782 /* die_reader_func for dwarf2_read_addr_index. */
19783
19784 static void
19785 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
19786 const gdb_byte *info_ptr,
19787 struct die_info *comp_unit_die,
19788 int has_children,
19789 void *data)
19790 {
19791 struct dwarf2_cu *cu = reader->cu;
19792 struct dwarf2_read_addr_index_data *aidata =
19793 (struct dwarf2_read_addr_index_data *) data;
19794
19795 aidata->addr_base = cu->addr_base;
19796 aidata->addr_size = cu->header.addr_size;
19797 }
19798
19799 /* Given an index in .debug_addr, fetch the value.
19800 NOTE: This can be called during dwarf expression evaluation,
19801 long after the debug information has been read, and thus per_cu->cu
19802 may no longer exist. */
19803
19804 CORE_ADDR
19805 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
19806 unsigned int addr_index)
19807 {
19808 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
19809 struct objfile *objfile = dwarf2_per_objfile->objfile;
19810 struct dwarf2_cu *cu = per_cu->cu;
19811 ULONGEST addr_base;
19812 int addr_size;
19813
19814 /* We need addr_base and addr_size.
19815 If we don't have PER_CU->cu, we have to get it.
19816 Nasty, but the alternative is storing the needed info in PER_CU,
19817 which at this point doesn't seem justified: it's not clear how frequently
19818 it would get used and it would increase the size of every PER_CU.
19819 Entry points like dwarf2_per_cu_addr_size do a similar thing
19820 so we're not in uncharted territory here.
19821 Alas we need to be a bit more complicated as addr_base is contained
19822 in the DIE.
19823
19824 We don't need to read the entire CU(/TU).
19825 We just need the header and top level die.
19826
19827 IWBN to use the aging mechanism to let us lazily later discard the CU.
19828 For now we skip this optimization. */
19829
19830 if (cu != NULL)
19831 {
19832 addr_base = cu->addr_base;
19833 addr_size = cu->header.addr_size;
19834 }
19835 else
19836 {
19837 struct dwarf2_read_addr_index_data aidata;
19838
19839 /* Note: We can't use init_cutu_and_read_dies_simple here,
19840 we need addr_base. */
19841 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
19842 dwarf2_read_addr_index_reader, &aidata);
19843 addr_base = aidata.addr_base;
19844 addr_size = aidata.addr_size;
19845 }
19846
19847 return read_addr_index_1 (dwarf2_per_objfile, addr_index, addr_base,
19848 addr_size);
19849 }
19850
19851 /* Given a DW_FORM_GNU_str_index, fetch the string.
19852 This is only used by the Fission support. */
19853
19854 static const char *
19855 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
19856 {
19857 struct dwarf2_cu *cu = reader->cu;
19858 struct dwarf2_per_objfile *dwarf2_per_objfile
19859 = cu->per_cu->dwarf2_per_objfile;
19860 struct objfile *objfile = dwarf2_per_objfile->objfile;
19861 const char *objf_name = objfile_name (objfile);
19862 bfd *abfd = objfile->obfd;
19863 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
19864 struct dwarf2_section_info *str_offsets_section =
19865 &reader->dwo_file->sections.str_offsets;
19866 const gdb_byte *info_ptr;
19867 ULONGEST str_offset;
19868 static const char form_name[] = "DW_FORM_GNU_str_index";
19869
19870 dwarf2_read_section (objfile, str_section);
19871 dwarf2_read_section (objfile, str_offsets_section);
19872 if (str_section->buffer == NULL)
19873 error (_("%s used without .debug_str.dwo section"
19874 " in CU at offset 0x%x [in module %s]"),
19875 form_name, to_underlying (cu->header.sect_off), objf_name);
19876 if (str_offsets_section->buffer == NULL)
19877 error (_("%s used without .debug_str_offsets.dwo section"
19878 " in CU at offset 0x%x [in module %s]"),
19879 form_name, to_underlying (cu->header.sect_off), objf_name);
19880 if (str_index * cu->header.offset_size >= str_offsets_section->size)
19881 error (_("%s pointing outside of .debug_str_offsets.dwo"
19882 " section in CU at offset 0x%x [in module %s]"),
19883 form_name, to_underlying (cu->header.sect_off), objf_name);
19884 info_ptr = (str_offsets_section->buffer
19885 + str_index * cu->header.offset_size);
19886 if (cu->header.offset_size == 4)
19887 str_offset = bfd_get_32 (abfd, info_ptr);
19888 else
19889 str_offset = bfd_get_64 (abfd, info_ptr);
19890 if (str_offset >= str_section->size)
19891 error (_("Offset from %s pointing outside of"
19892 " .debug_str.dwo section in CU at offset 0x%x [in module %s]"),
19893 form_name, to_underlying (cu->header.sect_off), objf_name);
19894 return (const char *) (str_section->buffer + str_offset);
19895 }
19896
19897 /* Return the length of an LEB128 number in BUF. */
19898
19899 static int
19900 leb128_size (const gdb_byte *buf)
19901 {
19902 const gdb_byte *begin = buf;
19903 gdb_byte byte;
19904
19905 while (1)
19906 {
19907 byte = *buf++;
19908 if ((byte & 128) == 0)
19909 return buf - begin;
19910 }
19911 }
19912
19913 static void
19914 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
19915 {
19916 switch (lang)
19917 {
19918 case DW_LANG_C89:
19919 case DW_LANG_C99:
19920 case DW_LANG_C11:
19921 case DW_LANG_C:
19922 case DW_LANG_UPC:
19923 cu->language = language_c;
19924 break;
19925 case DW_LANG_Java:
19926 case DW_LANG_C_plus_plus:
19927 case DW_LANG_C_plus_plus_11:
19928 case DW_LANG_C_plus_plus_14:
19929 cu->language = language_cplus;
19930 break;
19931 case DW_LANG_D:
19932 cu->language = language_d;
19933 break;
19934 case DW_LANG_Fortran77:
19935 case DW_LANG_Fortran90:
19936 case DW_LANG_Fortran95:
19937 case DW_LANG_Fortran03:
19938 case DW_LANG_Fortran08:
19939 cu->language = language_fortran;
19940 break;
19941 case DW_LANG_Go:
19942 cu->language = language_go;
19943 break;
19944 case DW_LANG_Mips_Assembler:
19945 cu->language = language_asm;
19946 break;
19947 case DW_LANG_Ada83:
19948 case DW_LANG_Ada95:
19949 cu->language = language_ada;
19950 break;
19951 case DW_LANG_Modula2:
19952 cu->language = language_m2;
19953 break;
19954 case DW_LANG_Pascal83:
19955 cu->language = language_pascal;
19956 break;
19957 case DW_LANG_ObjC:
19958 cu->language = language_objc;
19959 break;
19960 case DW_LANG_Rust:
19961 case DW_LANG_Rust_old:
19962 cu->language = language_rust;
19963 break;
19964 case DW_LANG_Cobol74:
19965 case DW_LANG_Cobol85:
19966 default:
19967 cu->language = language_minimal;
19968 break;
19969 }
19970 cu->language_defn = language_def (cu->language);
19971 }
19972
19973 /* Return the named attribute or NULL if not there. */
19974
19975 static struct attribute *
19976 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19977 {
19978 for (;;)
19979 {
19980 unsigned int i;
19981 struct attribute *spec = NULL;
19982
19983 for (i = 0; i < die->num_attrs; ++i)
19984 {
19985 if (die->attrs[i].name == name)
19986 return &die->attrs[i];
19987 if (die->attrs[i].name == DW_AT_specification
19988 || die->attrs[i].name == DW_AT_abstract_origin)
19989 spec = &die->attrs[i];
19990 }
19991
19992 if (!spec)
19993 break;
19994
19995 die = follow_die_ref (die, spec, &cu);
19996 }
19997
19998 return NULL;
19999 }
20000
20001 /* Return the named attribute or NULL if not there,
20002 but do not follow DW_AT_specification, etc.
20003 This is for use in contexts where we're reading .debug_types dies.
20004 Following DW_AT_specification, DW_AT_abstract_origin will take us
20005 back up the chain, and we want to go down. */
20006
20007 static struct attribute *
20008 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
20009 {
20010 unsigned int i;
20011
20012 for (i = 0; i < die->num_attrs; ++i)
20013 if (die->attrs[i].name == name)
20014 return &die->attrs[i];
20015
20016 return NULL;
20017 }
20018
20019 /* Return the string associated with a string-typed attribute, or NULL if it
20020 is either not found or is of an incorrect type. */
20021
20022 static const char *
20023 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
20024 {
20025 struct attribute *attr;
20026 const char *str = NULL;
20027
20028 attr = dwarf2_attr (die, name, cu);
20029
20030 if (attr != NULL)
20031 {
20032 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
20033 || attr->form == DW_FORM_string
20034 || attr->form == DW_FORM_GNU_str_index
20035 || attr->form == DW_FORM_GNU_strp_alt)
20036 str = DW_STRING (attr);
20037 else
20038 complaint (&symfile_complaints,
20039 _("string type expected for attribute %s for "
20040 "DIE at 0x%x in module %s"),
20041 dwarf_attr_name (name), to_underlying (die->sect_off),
20042 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
20043 }
20044
20045 return str;
20046 }
20047
20048 /* Return non-zero iff the attribute NAME is defined for the given DIE,
20049 and holds a non-zero value. This function should only be used for
20050 DW_FORM_flag or DW_FORM_flag_present attributes. */
20051
20052 static int
20053 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
20054 {
20055 struct attribute *attr = dwarf2_attr (die, name, cu);
20056
20057 return (attr && DW_UNSND (attr));
20058 }
20059
20060 static int
20061 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
20062 {
20063 /* A DIE is a declaration if it has a DW_AT_declaration attribute
20064 which value is non-zero. However, we have to be careful with
20065 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
20066 (via dwarf2_flag_true_p) follows this attribute. So we may
20067 end up accidently finding a declaration attribute that belongs
20068 to a different DIE referenced by the specification attribute,
20069 even though the given DIE does not have a declaration attribute. */
20070 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
20071 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
20072 }
20073
20074 /* Return the die giving the specification for DIE, if there is
20075 one. *SPEC_CU is the CU containing DIE on input, and the CU
20076 containing the return value on output. If there is no
20077 specification, but there is an abstract origin, that is
20078 returned. */
20079
20080 static struct die_info *
20081 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
20082 {
20083 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
20084 *spec_cu);
20085
20086 if (spec_attr == NULL)
20087 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
20088
20089 if (spec_attr == NULL)
20090 return NULL;
20091 else
20092 return follow_die_ref (die, spec_attr, spec_cu);
20093 }
20094
20095 /* Stub for free_line_header to match void * callback types. */
20096
20097 static void
20098 free_line_header_voidp (void *arg)
20099 {
20100 struct line_header *lh = (struct line_header *) arg;
20101
20102 delete lh;
20103 }
20104
20105 void
20106 line_header::add_include_dir (const char *include_dir)
20107 {
20108 if (dwarf_line_debug >= 2)
20109 fprintf_unfiltered (gdb_stdlog, "Adding dir %zu: %s\n",
20110 include_dirs.size () + 1, include_dir);
20111
20112 include_dirs.push_back (include_dir);
20113 }
20114
20115 void
20116 line_header::add_file_name (const char *name,
20117 dir_index d_index,
20118 unsigned int mod_time,
20119 unsigned int length)
20120 {
20121 if (dwarf_line_debug >= 2)
20122 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
20123 (unsigned) file_names.size () + 1, name);
20124
20125 file_names.emplace_back (name, d_index, mod_time, length);
20126 }
20127
20128 /* A convenience function to find the proper .debug_line section for a CU. */
20129
20130 static struct dwarf2_section_info *
20131 get_debug_line_section (struct dwarf2_cu *cu)
20132 {
20133 struct dwarf2_section_info *section;
20134 struct dwarf2_per_objfile *dwarf2_per_objfile
20135 = cu->per_cu->dwarf2_per_objfile;
20136
20137 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
20138 DWO file. */
20139 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20140 section = &cu->dwo_unit->dwo_file->sections.line;
20141 else if (cu->per_cu->is_dwz)
20142 {
20143 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
20144
20145 section = &dwz->line;
20146 }
20147 else
20148 section = &dwarf2_per_objfile->line;
20149
20150 return section;
20151 }
20152
20153 /* Read directory or file name entry format, starting with byte of
20154 format count entries, ULEB128 pairs of entry formats, ULEB128 of
20155 entries count and the entries themselves in the described entry
20156 format. */
20157
20158 static void
20159 read_formatted_entries (struct dwarf2_per_objfile *dwarf2_per_objfile,
20160 bfd *abfd, const gdb_byte **bufp,
20161 struct line_header *lh,
20162 const struct comp_unit_head *cu_header,
20163 void (*callback) (struct line_header *lh,
20164 const char *name,
20165 dir_index d_index,
20166 unsigned int mod_time,
20167 unsigned int length))
20168 {
20169 gdb_byte format_count, formati;
20170 ULONGEST data_count, datai;
20171 const gdb_byte *buf = *bufp;
20172 const gdb_byte *format_header_data;
20173 unsigned int bytes_read;
20174
20175 format_count = read_1_byte (abfd, buf);
20176 buf += 1;
20177 format_header_data = buf;
20178 for (formati = 0; formati < format_count; formati++)
20179 {
20180 read_unsigned_leb128 (abfd, buf, &bytes_read);
20181 buf += bytes_read;
20182 read_unsigned_leb128 (abfd, buf, &bytes_read);
20183 buf += bytes_read;
20184 }
20185
20186 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
20187 buf += bytes_read;
20188 for (datai = 0; datai < data_count; datai++)
20189 {
20190 const gdb_byte *format = format_header_data;
20191 struct file_entry fe;
20192
20193 for (formati = 0; formati < format_count; formati++)
20194 {
20195 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
20196 format += bytes_read;
20197
20198 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
20199 format += bytes_read;
20200
20201 gdb::optional<const char *> string;
20202 gdb::optional<unsigned int> uint;
20203
20204 switch (form)
20205 {
20206 case DW_FORM_string:
20207 string.emplace (read_direct_string (abfd, buf, &bytes_read));
20208 buf += bytes_read;
20209 break;
20210
20211 case DW_FORM_line_strp:
20212 string.emplace (read_indirect_line_string (dwarf2_per_objfile,
20213 abfd, buf,
20214 cu_header,
20215 &bytes_read));
20216 buf += bytes_read;
20217 break;
20218
20219 case DW_FORM_data1:
20220 uint.emplace (read_1_byte (abfd, buf));
20221 buf += 1;
20222 break;
20223
20224 case DW_FORM_data2:
20225 uint.emplace (read_2_bytes (abfd, buf));
20226 buf += 2;
20227 break;
20228
20229 case DW_FORM_data4:
20230 uint.emplace (read_4_bytes (abfd, buf));
20231 buf += 4;
20232 break;
20233
20234 case DW_FORM_data8:
20235 uint.emplace (read_8_bytes (abfd, buf));
20236 buf += 8;
20237 break;
20238
20239 case DW_FORM_udata:
20240 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
20241 buf += bytes_read;
20242 break;
20243
20244 case DW_FORM_block:
20245 /* It is valid only for DW_LNCT_timestamp which is ignored by
20246 current GDB. */
20247 break;
20248 }
20249
20250 switch (content_type)
20251 {
20252 case DW_LNCT_path:
20253 if (string.has_value ())
20254 fe.name = *string;
20255 break;
20256 case DW_LNCT_directory_index:
20257 if (uint.has_value ())
20258 fe.d_index = (dir_index) *uint;
20259 break;
20260 case DW_LNCT_timestamp:
20261 if (uint.has_value ())
20262 fe.mod_time = *uint;
20263 break;
20264 case DW_LNCT_size:
20265 if (uint.has_value ())
20266 fe.length = *uint;
20267 break;
20268 case DW_LNCT_MD5:
20269 break;
20270 default:
20271 complaint (&symfile_complaints,
20272 _("Unknown format content type %s"),
20273 pulongest (content_type));
20274 }
20275 }
20276
20277 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
20278 }
20279
20280 *bufp = buf;
20281 }
20282
20283 /* Read the statement program header starting at OFFSET in
20284 .debug_line, or .debug_line.dwo. Return a pointer
20285 to a struct line_header, allocated using xmalloc.
20286 Returns NULL if there is a problem reading the header, e.g., if it
20287 has a version we don't understand.
20288
20289 NOTE: the strings in the include directory and file name tables of
20290 the returned object point into the dwarf line section buffer,
20291 and must not be freed. */
20292
20293 static line_header_up
20294 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
20295 {
20296 const gdb_byte *line_ptr;
20297 unsigned int bytes_read, offset_size;
20298 int i;
20299 const char *cur_dir, *cur_file;
20300 struct dwarf2_section_info *section;
20301 bfd *abfd;
20302 struct dwarf2_per_objfile *dwarf2_per_objfile
20303 = cu->per_cu->dwarf2_per_objfile;
20304
20305 section = get_debug_line_section (cu);
20306 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
20307 if (section->buffer == NULL)
20308 {
20309 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20310 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
20311 else
20312 complaint (&symfile_complaints, _("missing .debug_line section"));
20313 return 0;
20314 }
20315
20316 /* We can't do this until we know the section is non-empty.
20317 Only then do we know we have such a section. */
20318 abfd = get_section_bfd_owner (section);
20319
20320 /* Make sure that at least there's room for the total_length field.
20321 That could be 12 bytes long, but we're just going to fudge that. */
20322 if (to_underlying (sect_off) + 4 >= section->size)
20323 {
20324 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20325 return 0;
20326 }
20327
20328 line_header_up lh (new line_header ());
20329
20330 lh->sect_off = sect_off;
20331 lh->offset_in_dwz = cu->per_cu->is_dwz;
20332
20333 line_ptr = section->buffer + to_underlying (sect_off);
20334
20335 /* Read in the header. */
20336 lh->total_length =
20337 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
20338 &bytes_read, &offset_size);
20339 line_ptr += bytes_read;
20340 if (line_ptr + lh->total_length > (section->buffer + section->size))
20341 {
20342 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20343 return 0;
20344 }
20345 lh->statement_program_end = line_ptr + lh->total_length;
20346 lh->version = read_2_bytes (abfd, line_ptr);
20347 line_ptr += 2;
20348 if (lh->version > 5)
20349 {
20350 /* This is a version we don't understand. The format could have
20351 changed in ways we don't handle properly so just punt. */
20352 complaint (&symfile_complaints,
20353 _("unsupported version in .debug_line section"));
20354 return NULL;
20355 }
20356 if (lh->version >= 5)
20357 {
20358 gdb_byte segment_selector_size;
20359
20360 /* Skip address size. */
20361 read_1_byte (abfd, line_ptr);
20362 line_ptr += 1;
20363
20364 segment_selector_size = read_1_byte (abfd, line_ptr);
20365 line_ptr += 1;
20366 if (segment_selector_size != 0)
20367 {
20368 complaint (&symfile_complaints,
20369 _("unsupported segment selector size %u "
20370 "in .debug_line section"),
20371 segment_selector_size);
20372 return NULL;
20373 }
20374 }
20375 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
20376 line_ptr += offset_size;
20377 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
20378 line_ptr += 1;
20379 if (lh->version >= 4)
20380 {
20381 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
20382 line_ptr += 1;
20383 }
20384 else
20385 lh->maximum_ops_per_instruction = 1;
20386
20387 if (lh->maximum_ops_per_instruction == 0)
20388 {
20389 lh->maximum_ops_per_instruction = 1;
20390 complaint (&symfile_complaints,
20391 _("invalid maximum_ops_per_instruction "
20392 "in `.debug_line' section"));
20393 }
20394
20395 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
20396 line_ptr += 1;
20397 lh->line_base = read_1_signed_byte (abfd, line_ptr);
20398 line_ptr += 1;
20399 lh->line_range = read_1_byte (abfd, line_ptr);
20400 line_ptr += 1;
20401 lh->opcode_base = read_1_byte (abfd, line_ptr);
20402 line_ptr += 1;
20403 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
20404
20405 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
20406 for (i = 1; i < lh->opcode_base; ++i)
20407 {
20408 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
20409 line_ptr += 1;
20410 }
20411
20412 if (lh->version >= 5)
20413 {
20414 /* Read directory table. */
20415 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20416 &cu->header,
20417 [] (struct line_header *lh, const char *name,
20418 dir_index d_index, unsigned int mod_time,
20419 unsigned int length)
20420 {
20421 lh->add_include_dir (name);
20422 });
20423
20424 /* Read file name table. */
20425 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20426 &cu->header,
20427 [] (struct line_header *lh, const char *name,
20428 dir_index d_index, unsigned int mod_time,
20429 unsigned int length)
20430 {
20431 lh->add_file_name (name, d_index, mod_time, length);
20432 });
20433 }
20434 else
20435 {
20436 /* Read directory table. */
20437 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20438 {
20439 line_ptr += bytes_read;
20440 lh->add_include_dir (cur_dir);
20441 }
20442 line_ptr += bytes_read;
20443
20444 /* Read file name table. */
20445 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20446 {
20447 unsigned int mod_time, length;
20448 dir_index d_index;
20449
20450 line_ptr += bytes_read;
20451 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20452 line_ptr += bytes_read;
20453 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20454 line_ptr += bytes_read;
20455 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20456 line_ptr += bytes_read;
20457
20458 lh->add_file_name (cur_file, d_index, mod_time, length);
20459 }
20460 line_ptr += bytes_read;
20461 }
20462 lh->statement_program_start = line_ptr;
20463
20464 if (line_ptr > (section->buffer + section->size))
20465 complaint (&symfile_complaints,
20466 _("line number info header doesn't "
20467 "fit in `.debug_line' section"));
20468
20469 return lh;
20470 }
20471
20472 /* Subroutine of dwarf_decode_lines to simplify it.
20473 Return the file name of the psymtab for included file FILE_INDEX
20474 in line header LH of PST.
20475 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20476 If space for the result is malloc'd, it will be freed by a cleanup.
20477 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
20478
20479 The function creates dangling cleanup registration. */
20480
20481 static const char *
20482 psymtab_include_file_name (const struct line_header *lh, int file_index,
20483 const struct partial_symtab *pst,
20484 const char *comp_dir)
20485 {
20486 const file_entry &fe = lh->file_names[file_index];
20487 const char *include_name = fe.name;
20488 const char *include_name_to_compare = include_name;
20489 const char *pst_filename;
20490 char *copied_name = NULL;
20491 int file_is_pst;
20492
20493 const char *dir_name = fe.include_dir (lh);
20494
20495 if (!IS_ABSOLUTE_PATH (include_name)
20496 && (dir_name != NULL || comp_dir != NULL))
20497 {
20498 /* Avoid creating a duplicate psymtab for PST.
20499 We do this by comparing INCLUDE_NAME and PST_FILENAME.
20500 Before we do the comparison, however, we need to account
20501 for DIR_NAME and COMP_DIR.
20502 First prepend dir_name (if non-NULL). If we still don't
20503 have an absolute path prepend comp_dir (if non-NULL).
20504 However, the directory we record in the include-file's
20505 psymtab does not contain COMP_DIR (to match the
20506 corresponding symtab(s)).
20507
20508 Example:
20509
20510 bash$ cd /tmp
20511 bash$ gcc -g ./hello.c
20512 include_name = "hello.c"
20513 dir_name = "."
20514 DW_AT_comp_dir = comp_dir = "/tmp"
20515 DW_AT_name = "./hello.c"
20516
20517 */
20518
20519 if (dir_name != NULL)
20520 {
20521 char *tem = concat (dir_name, SLASH_STRING,
20522 include_name, (char *)NULL);
20523
20524 make_cleanup (xfree, tem);
20525 include_name = tem;
20526 include_name_to_compare = include_name;
20527 }
20528 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
20529 {
20530 char *tem = concat (comp_dir, SLASH_STRING,
20531 include_name, (char *)NULL);
20532
20533 make_cleanup (xfree, tem);
20534 include_name_to_compare = tem;
20535 }
20536 }
20537
20538 pst_filename = pst->filename;
20539 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
20540 {
20541 copied_name = concat (pst->dirname, SLASH_STRING,
20542 pst_filename, (char *)NULL);
20543 pst_filename = copied_name;
20544 }
20545
20546 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
20547
20548 if (copied_name != NULL)
20549 xfree (copied_name);
20550
20551 if (file_is_pst)
20552 return NULL;
20553 return include_name;
20554 }
20555
20556 /* State machine to track the state of the line number program. */
20557
20558 class lnp_state_machine
20559 {
20560 public:
20561 /* Initialize a machine state for the start of a line number
20562 program. */
20563 lnp_state_machine (gdbarch *arch, line_header *lh, bool record_lines_p);
20564
20565 file_entry *current_file ()
20566 {
20567 /* lh->file_names is 0-based, but the file name numbers in the
20568 statement program are 1-based. */
20569 return m_line_header->file_name_at (m_file);
20570 }
20571
20572 /* Record the line in the state machine. END_SEQUENCE is true if
20573 we're processing the end of a sequence. */
20574 void record_line (bool end_sequence);
20575
20576 /* Check address and if invalid nop-out the rest of the lines in this
20577 sequence. */
20578 void check_line_address (struct dwarf2_cu *cu,
20579 const gdb_byte *line_ptr,
20580 CORE_ADDR lowpc, CORE_ADDR address);
20581
20582 void handle_set_discriminator (unsigned int discriminator)
20583 {
20584 m_discriminator = discriminator;
20585 m_line_has_non_zero_discriminator |= discriminator != 0;
20586 }
20587
20588 /* Handle DW_LNE_set_address. */
20589 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
20590 {
20591 m_op_index = 0;
20592 address += baseaddr;
20593 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
20594 }
20595
20596 /* Handle DW_LNS_advance_pc. */
20597 void handle_advance_pc (CORE_ADDR adjust);
20598
20599 /* Handle a special opcode. */
20600 void handle_special_opcode (unsigned char op_code);
20601
20602 /* Handle DW_LNS_advance_line. */
20603 void handle_advance_line (int line_delta)
20604 {
20605 advance_line (line_delta);
20606 }
20607
20608 /* Handle DW_LNS_set_file. */
20609 void handle_set_file (file_name_index file);
20610
20611 /* Handle DW_LNS_negate_stmt. */
20612 void handle_negate_stmt ()
20613 {
20614 m_is_stmt = !m_is_stmt;
20615 }
20616
20617 /* Handle DW_LNS_const_add_pc. */
20618 void handle_const_add_pc ();
20619
20620 /* Handle DW_LNS_fixed_advance_pc. */
20621 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
20622 {
20623 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20624 m_op_index = 0;
20625 }
20626
20627 /* Handle DW_LNS_copy. */
20628 void handle_copy ()
20629 {
20630 record_line (false);
20631 m_discriminator = 0;
20632 }
20633
20634 /* Handle DW_LNE_end_sequence. */
20635 void handle_end_sequence ()
20636 {
20637 m_record_line_callback = ::record_line;
20638 }
20639
20640 private:
20641 /* Advance the line by LINE_DELTA. */
20642 void advance_line (int line_delta)
20643 {
20644 m_line += line_delta;
20645
20646 if (line_delta != 0)
20647 m_line_has_non_zero_discriminator = m_discriminator != 0;
20648 }
20649
20650 gdbarch *m_gdbarch;
20651
20652 /* True if we're recording lines.
20653 Otherwise we're building partial symtabs and are just interested in
20654 finding include files mentioned by the line number program. */
20655 bool m_record_lines_p;
20656
20657 /* The line number header. */
20658 line_header *m_line_header;
20659
20660 /* These are part of the standard DWARF line number state machine,
20661 and initialized according to the DWARF spec. */
20662
20663 unsigned char m_op_index = 0;
20664 /* The line table index (1-based) of the current file. */
20665 file_name_index m_file = (file_name_index) 1;
20666 unsigned int m_line = 1;
20667
20668 /* These are initialized in the constructor. */
20669
20670 CORE_ADDR m_address;
20671 bool m_is_stmt;
20672 unsigned int m_discriminator;
20673
20674 /* Additional bits of state we need to track. */
20675
20676 /* The last file that we called dwarf2_start_subfile for.
20677 This is only used for TLLs. */
20678 unsigned int m_last_file = 0;
20679 /* The last file a line number was recorded for. */
20680 struct subfile *m_last_subfile = NULL;
20681
20682 /* The function to call to record a line. */
20683 record_line_ftype *m_record_line_callback = NULL;
20684
20685 /* The last line number that was recorded, used to coalesce
20686 consecutive entries for the same line. This can happen, for
20687 example, when discriminators are present. PR 17276. */
20688 unsigned int m_last_line = 0;
20689 bool m_line_has_non_zero_discriminator = false;
20690 };
20691
20692 void
20693 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
20694 {
20695 CORE_ADDR addr_adj = (((m_op_index + adjust)
20696 / m_line_header->maximum_ops_per_instruction)
20697 * m_line_header->minimum_instruction_length);
20698 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20699 m_op_index = ((m_op_index + adjust)
20700 % m_line_header->maximum_ops_per_instruction);
20701 }
20702
20703 void
20704 lnp_state_machine::handle_special_opcode (unsigned char op_code)
20705 {
20706 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
20707 CORE_ADDR addr_adj = (((m_op_index
20708 + (adj_opcode / m_line_header->line_range))
20709 / m_line_header->maximum_ops_per_instruction)
20710 * m_line_header->minimum_instruction_length);
20711 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20712 m_op_index = ((m_op_index + (adj_opcode / m_line_header->line_range))
20713 % m_line_header->maximum_ops_per_instruction);
20714
20715 int line_delta = (m_line_header->line_base
20716 + (adj_opcode % m_line_header->line_range));
20717 advance_line (line_delta);
20718 record_line (false);
20719 m_discriminator = 0;
20720 }
20721
20722 void
20723 lnp_state_machine::handle_set_file (file_name_index file)
20724 {
20725 m_file = file;
20726
20727 const file_entry *fe = current_file ();
20728 if (fe == NULL)
20729 dwarf2_debug_line_missing_file_complaint ();
20730 else if (m_record_lines_p)
20731 {
20732 const char *dir = fe->include_dir (m_line_header);
20733
20734 m_last_subfile = current_subfile;
20735 m_line_has_non_zero_discriminator = m_discriminator != 0;
20736 dwarf2_start_subfile (fe->name, dir);
20737 }
20738 }
20739
20740 void
20741 lnp_state_machine::handle_const_add_pc ()
20742 {
20743 CORE_ADDR adjust
20744 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
20745
20746 CORE_ADDR addr_adj
20747 = (((m_op_index + adjust)
20748 / m_line_header->maximum_ops_per_instruction)
20749 * m_line_header->minimum_instruction_length);
20750
20751 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20752 m_op_index = ((m_op_index + adjust)
20753 % m_line_header->maximum_ops_per_instruction);
20754 }
20755
20756 /* Ignore this record_line request. */
20757
20758 static void
20759 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
20760 {
20761 return;
20762 }
20763
20764 /* Return non-zero if we should add LINE to the line number table.
20765 LINE is the line to add, LAST_LINE is the last line that was added,
20766 LAST_SUBFILE is the subfile for LAST_LINE.
20767 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
20768 had a non-zero discriminator.
20769
20770 We have to be careful in the presence of discriminators.
20771 E.g., for this line:
20772
20773 for (i = 0; i < 100000; i++);
20774
20775 clang can emit four line number entries for that one line,
20776 each with a different discriminator.
20777 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
20778
20779 However, we want gdb to coalesce all four entries into one.
20780 Otherwise the user could stepi into the middle of the line and
20781 gdb would get confused about whether the pc really was in the
20782 middle of the line.
20783
20784 Things are further complicated by the fact that two consecutive
20785 line number entries for the same line is a heuristic used by gcc
20786 to denote the end of the prologue. So we can't just discard duplicate
20787 entries, we have to be selective about it. The heuristic we use is
20788 that we only collapse consecutive entries for the same line if at least
20789 one of those entries has a non-zero discriminator. PR 17276.
20790
20791 Note: Addresses in the line number state machine can never go backwards
20792 within one sequence, thus this coalescing is ok. */
20793
20794 static int
20795 dwarf_record_line_p (unsigned int line, unsigned int last_line,
20796 int line_has_non_zero_discriminator,
20797 struct subfile *last_subfile)
20798 {
20799 if (current_subfile != last_subfile)
20800 return 1;
20801 if (line != last_line)
20802 return 1;
20803 /* Same line for the same file that we've seen already.
20804 As a last check, for pr 17276, only record the line if the line
20805 has never had a non-zero discriminator. */
20806 if (!line_has_non_zero_discriminator)
20807 return 1;
20808 return 0;
20809 }
20810
20811 /* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
20812 in the line table of subfile SUBFILE. */
20813
20814 static void
20815 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
20816 unsigned int line, CORE_ADDR address,
20817 record_line_ftype p_record_line)
20818 {
20819 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
20820
20821 if (dwarf_line_debug)
20822 {
20823 fprintf_unfiltered (gdb_stdlog,
20824 "Recording line %u, file %s, address %s\n",
20825 line, lbasename (subfile->name),
20826 paddress (gdbarch, address));
20827 }
20828
20829 (*p_record_line) (subfile, line, addr);
20830 }
20831
20832 /* Subroutine of dwarf_decode_lines_1 to simplify it.
20833 Mark the end of a set of line number records.
20834 The arguments are the same as for dwarf_record_line_1.
20835 If SUBFILE is NULL the request is ignored. */
20836
20837 static void
20838 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
20839 CORE_ADDR address, record_line_ftype p_record_line)
20840 {
20841 if (subfile == NULL)
20842 return;
20843
20844 if (dwarf_line_debug)
20845 {
20846 fprintf_unfiltered (gdb_stdlog,
20847 "Finishing current line, file %s, address %s\n",
20848 lbasename (subfile->name),
20849 paddress (gdbarch, address));
20850 }
20851
20852 dwarf_record_line_1 (gdbarch, subfile, 0, address, p_record_line);
20853 }
20854
20855 void
20856 lnp_state_machine::record_line (bool end_sequence)
20857 {
20858 if (dwarf_line_debug)
20859 {
20860 fprintf_unfiltered (gdb_stdlog,
20861 "Processing actual line %u: file %u,"
20862 " address %s, is_stmt %u, discrim %u\n",
20863 m_line, to_underlying (m_file),
20864 paddress (m_gdbarch, m_address),
20865 m_is_stmt, m_discriminator);
20866 }
20867
20868 file_entry *fe = current_file ();
20869
20870 if (fe == NULL)
20871 dwarf2_debug_line_missing_file_complaint ();
20872 /* For now we ignore lines not starting on an instruction boundary.
20873 But not when processing end_sequence for compatibility with the
20874 previous version of the code. */
20875 else if (m_op_index == 0 || end_sequence)
20876 {
20877 fe->included_p = 1;
20878 if (m_record_lines_p && m_is_stmt)
20879 {
20880 if (m_last_subfile != current_subfile || end_sequence)
20881 {
20882 dwarf_finish_line (m_gdbarch, m_last_subfile,
20883 m_address, m_record_line_callback);
20884 }
20885
20886 if (!end_sequence)
20887 {
20888 if (dwarf_record_line_p (m_line, m_last_line,
20889 m_line_has_non_zero_discriminator,
20890 m_last_subfile))
20891 {
20892 dwarf_record_line_1 (m_gdbarch, current_subfile,
20893 m_line, m_address,
20894 m_record_line_callback);
20895 }
20896 m_last_subfile = current_subfile;
20897 m_last_line = m_line;
20898 }
20899 }
20900 }
20901 }
20902
20903 lnp_state_machine::lnp_state_machine (gdbarch *arch, line_header *lh,
20904 bool record_lines_p)
20905 {
20906 m_gdbarch = arch;
20907 m_record_lines_p = record_lines_p;
20908 m_line_header = lh;
20909
20910 m_record_line_callback = ::record_line;
20911
20912 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
20913 was a line entry for it so that the backend has a chance to adjust it
20914 and also record it in case it needs it. This is currently used by MIPS
20915 code, cf. `mips_adjust_dwarf2_line'. */
20916 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
20917 m_is_stmt = lh->default_is_stmt;
20918 m_discriminator = 0;
20919 }
20920
20921 void
20922 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
20923 const gdb_byte *line_ptr,
20924 CORE_ADDR lowpc, CORE_ADDR address)
20925 {
20926 /* If address < lowpc then it's not a usable value, it's outside the
20927 pc range of the CU. However, we restrict the test to only address
20928 values of zero to preserve GDB's previous behaviour which is to
20929 handle the specific case of a function being GC'd by the linker. */
20930
20931 if (address == 0 && address < lowpc)
20932 {
20933 /* This line table is for a function which has been
20934 GCd by the linker. Ignore it. PR gdb/12528 */
20935
20936 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20937 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
20938
20939 complaint (&symfile_complaints,
20940 _(".debug_line address at offset 0x%lx is 0 [in module %s]"),
20941 line_offset, objfile_name (objfile));
20942 m_record_line_callback = noop_record_line;
20943 /* Note: record_line_callback is left as noop_record_line until
20944 we see DW_LNE_end_sequence. */
20945 }
20946 }
20947
20948 /* Subroutine of dwarf_decode_lines to simplify it.
20949 Process the line number information in LH.
20950 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
20951 program in order to set included_p for every referenced header. */
20952
20953 static void
20954 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
20955 const int decode_for_pst_p, CORE_ADDR lowpc)
20956 {
20957 const gdb_byte *line_ptr, *extended_end;
20958 const gdb_byte *line_end;
20959 unsigned int bytes_read, extended_len;
20960 unsigned char op_code, extended_op;
20961 CORE_ADDR baseaddr;
20962 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20963 bfd *abfd = objfile->obfd;
20964 struct gdbarch *gdbarch = get_objfile_arch (objfile);
20965 /* True if we're recording line info (as opposed to building partial
20966 symtabs and just interested in finding include files mentioned by
20967 the line number program). */
20968 bool record_lines_p = !decode_for_pst_p;
20969
20970 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
20971
20972 line_ptr = lh->statement_program_start;
20973 line_end = lh->statement_program_end;
20974
20975 /* Read the statement sequences until there's nothing left. */
20976 while (line_ptr < line_end)
20977 {
20978 /* The DWARF line number program state machine. Reset the state
20979 machine at the start of each sequence. */
20980 lnp_state_machine state_machine (gdbarch, lh, record_lines_p);
20981 bool end_sequence = false;
20982
20983 if (record_lines_p)
20984 {
20985 /* Start a subfile for the current file of the state
20986 machine. */
20987 const file_entry *fe = state_machine.current_file ();
20988
20989 if (fe != NULL)
20990 dwarf2_start_subfile (fe->name, fe->include_dir (lh));
20991 }
20992
20993 /* Decode the table. */
20994 while (line_ptr < line_end && !end_sequence)
20995 {
20996 op_code = read_1_byte (abfd, line_ptr);
20997 line_ptr += 1;
20998
20999 if (op_code >= lh->opcode_base)
21000 {
21001 /* Special opcode. */
21002 state_machine.handle_special_opcode (op_code);
21003 }
21004 else switch (op_code)
21005 {
21006 case DW_LNS_extended_op:
21007 extended_len = read_unsigned_leb128 (abfd, line_ptr,
21008 &bytes_read);
21009 line_ptr += bytes_read;
21010 extended_end = line_ptr + extended_len;
21011 extended_op = read_1_byte (abfd, line_ptr);
21012 line_ptr += 1;
21013 switch (extended_op)
21014 {
21015 case DW_LNE_end_sequence:
21016 state_machine.handle_end_sequence ();
21017 end_sequence = true;
21018 break;
21019 case DW_LNE_set_address:
21020 {
21021 CORE_ADDR address
21022 = read_address (abfd, line_ptr, cu, &bytes_read);
21023 line_ptr += bytes_read;
21024
21025 state_machine.check_line_address (cu, line_ptr,
21026 lowpc, address);
21027 state_machine.handle_set_address (baseaddr, address);
21028 }
21029 break;
21030 case DW_LNE_define_file:
21031 {
21032 const char *cur_file;
21033 unsigned int mod_time, length;
21034 dir_index dindex;
21035
21036 cur_file = read_direct_string (abfd, line_ptr,
21037 &bytes_read);
21038 line_ptr += bytes_read;
21039 dindex = (dir_index)
21040 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21041 line_ptr += bytes_read;
21042 mod_time =
21043 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21044 line_ptr += bytes_read;
21045 length =
21046 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21047 line_ptr += bytes_read;
21048 lh->add_file_name (cur_file, dindex, mod_time, length);
21049 }
21050 break;
21051 case DW_LNE_set_discriminator:
21052 {
21053 /* The discriminator is not interesting to the
21054 debugger; just ignore it. We still need to
21055 check its value though:
21056 if there are consecutive entries for the same
21057 (non-prologue) line we want to coalesce them.
21058 PR 17276. */
21059 unsigned int discr
21060 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21061 line_ptr += bytes_read;
21062
21063 state_machine.handle_set_discriminator (discr);
21064 }
21065 break;
21066 default:
21067 complaint (&symfile_complaints,
21068 _("mangled .debug_line section"));
21069 return;
21070 }
21071 /* Make sure that we parsed the extended op correctly. If e.g.
21072 we expected a different address size than the producer used,
21073 we may have read the wrong number of bytes. */
21074 if (line_ptr != extended_end)
21075 {
21076 complaint (&symfile_complaints,
21077 _("mangled .debug_line section"));
21078 return;
21079 }
21080 break;
21081 case DW_LNS_copy:
21082 state_machine.handle_copy ();
21083 break;
21084 case DW_LNS_advance_pc:
21085 {
21086 CORE_ADDR adjust
21087 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21088 line_ptr += bytes_read;
21089
21090 state_machine.handle_advance_pc (adjust);
21091 }
21092 break;
21093 case DW_LNS_advance_line:
21094 {
21095 int line_delta
21096 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
21097 line_ptr += bytes_read;
21098
21099 state_machine.handle_advance_line (line_delta);
21100 }
21101 break;
21102 case DW_LNS_set_file:
21103 {
21104 file_name_index file
21105 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
21106 &bytes_read);
21107 line_ptr += bytes_read;
21108
21109 state_machine.handle_set_file (file);
21110 }
21111 break;
21112 case DW_LNS_set_column:
21113 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21114 line_ptr += bytes_read;
21115 break;
21116 case DW_LNS_negate_stmt:
21117 state_machine.handle_negate_stmt ();
21118 break;
21119 case DW_LNS_set_basic_block:
21120 break;
21121 /* Add to the address register of the state machine the
21122 address increment value corresponding to special opcode
21123 255. I.e., this value is scaled by the minimum
21124 instruction length since special opcode 255 would have
21125 scaled the increment. */
21126 case DW_LNS_const_add_pc:
21127 state_machine.handle_const_add_pc ();
21128 break;
21129 case DW_LNS_fixed_advance_pc:
21130 {
21131 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
21132 line_ptr += 2;
21133
21134 state_machine.handle_fixed_advance_pc (addr_adj);
21135 }
21136 break;
21137 default:
21138 {
21139 /* Unknown standard opcode, ignore it. */
21140 int i;
21141
21142 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
21143 {
21144 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21145 line_ptr += bytes_read;
21146 }
21147 }
21148 }
21149 }
21150
21151 if (!end_sequence)
21152 dwarf2_debug_line_missing_end_sequence_complaint ();
21153
21154 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
21155 in which case we still finish recording the last line). */
21156 state_machine.record_line (true);
21157 }
21158 }
21159
21160 /* Decode the Line Number Program (LNP) for the given line_header
21161 structure and CU. The actual information extracted and the type
21162 of structures created from the LNP depends on the value of PST.
21163
21164 1. If PST is NULL, then this procedure uses the data from the program
21165 to create all necessary symbol tables, and their linetables.
21166
21167 2. If PST is not NULL, this procedure reads the program to determine
21168 the list of files included by the unit represented by PST, and
21169 builds all the associated partial symbol tables.
21170
21171 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
21172 It is used for relative paths in the line table.
21173 NOTE: When processing partial symtabs (pst != NULL),
21174 comp_dir == pst->dirname.
21175
21176 NOTE: It is important that psymtabs have the same file name (via strcmp)
21177 as the corresponding symtab. Since COMP_DIR is not used in the name of the
21178 symtab we don't use it in the name of the psymtabs we create.
21179 E.g. expand_line_sal requires this when finding psymtabs to expand.
21180 A good testcase for this is mb-inline.exp.
21181
21182 LOWPC is the lowest address in CU (or 0 if not known).
21183
21184 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
21185 for its PC<->lines mapping information. Otherwise only the filename
21186 table is read in. */
21187
21188 static void
21189 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
21190 struct dwarf2_cu *cu, struct partial_symtab *pst,
21191 CORE_ADDR lowpc, int decode_mapping)
21192 {
21193 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21194 const int decode_for_pst_p = (pst != NULL);
21195
21196 if (decode_mapping)
21197 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
21198
21199 if (decode_for_pst_p)
21200 {
21201 int file_index;
21202
21203 /* Now that we're done scanning the Line Header Program, we can
21204 create the psymtab of each included file. */
21205 for (file_index = 0; file_index < lh->file_names.size (); file_index++)
21206 if (lh->file_names[file_index].included_p == 1)
21207 {
21208 const char *include_name =
21209 psymtab_include_file_name (lh, file_index, pst, comp_dir);
21210 if (include_name != NULL)
21211 dwarf2_create_include_psymtab (include_name, pst, objfile);
21212 }
21213 }
21214 else
21215 {
21216 /* Make sure a symtab is created for every file, even files
21217 which contain only variables (i.e. no code with associated
21218 line numbers). */
21219 struct compunit_symtab *cust = buildsym_compunit_symtab ();
21220 int i;
21221
21222 for (i = 0; i < lh->file_names.size (); i++)
21223 {
21224 file_entry &fe = lh->file_names[i];
21225
21226 dwarf2_start_subfile (fe.name, fe.include_dir (lh));
21227
21228 if (current_subfile->symtab == NULL)
21229 {
21230 current_subfile->symtab
21231 = allocate_symtab (cust, current_subfile->name);
21232 }
21233 fe.symtab = current_subfile->symtab;
21234 }
21235 }
21236 }
21237
21238 /* Start a subfile for DWARF. FILENAME is the name of the file and
21239 DIRNAME the name of the source directory which contains FILENAME
21240 or NULL if not known.
21241 This routine tries to keep line numbers from identical absolute and
21242 relative file names in a common subfile.
21243
21244 Using the `list' example from the GDB testsuite, which resides in
21245 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
21246 of /srcdir/list0.c yields the following debugging information for list0.c:
21247
21248 DW_AT_name: /srcdir/list0.c
21249 DW_AT_comp_dir: /compdir
21250 files.files[0].name: list0.h
21251 files.files[0].dir: /srcdir
21252 files.files[1].name: list0.c
21253 files.files[1].dir: /srcdir
21254
21255 The line number information for list0.c has to end up in a single
21256 subfile, so that `break /srcdir/list0.c:1' works as expected.
21257 start_subfile will ensure that this happens provided that we pass the
21258 concatenation of files.files[1].dir and files.files[1].name as the
21259 subfile's name. */
21260
21261 static void
21262 dwarf2_start_subfile (const char *filename, const char *dirname)
21263 {
21264 char *copy = NULL;
21265
21266 /* In order not to lose the line information directory,
21267 we concatenate it to the filename when it makes sense.
21268 Note that the Dwarf3 standard says (speaking of filenames in line
21269 information): ``The directory index is ignored for file names
21270 that represent full path names''. Thus ignoring dirname in the
21271 `else' branch below isn't an issue. */
21272
21273 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
21274 {
21275 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
21276 filename = copy;
21277 }
21278
21279 start_subfile (filename);
21280
21281 if (copy != NULL)
21282 xfree (copy);
21283 }
21284
21285 /* Start a symtab for DWARF.
21286 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
21287
21288 static struct compunit_symtab *
21289 dwarf2_start_symtab (struct dwarf2_cu *cu,
21290 const char *name, const char *comp_dir, CORE_ADDR low_pc)
21291 {
21292 struct compunit_symtab *cust
21293 = start_symtab (cu->per_cu->dwarf2_per_objfile->objfile, name, comp_dir,
21294 low_pc, cu->language);
21295
21296 record_debugformat ("DWARF 2");
21297 record_producer (cu->producer);
21298
21299 /* We assume that we're processing GCC output. */
21300 processing_gcc_compilation = 2;
21301
21302 cu->processing_has_namespace_info = 0;
21303
21304 return cust;
21305 }
21306
21307 static void
21308 var_decode_location (struct attribute *attr, struct symbol *sym,
21309 struct dwarf2_cu *cu)
21310 {
21311 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21312 struct comp_unit_head *cu_header = &cu->header;
21313
21314 /* NOTE drow/2003-01-30: There used to be a comment and some special
21315 code here to turn a symbol with DW_AT_external and a
21316 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
21317 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
21318 with some versions of binutils) where shared libraries could have
21319 relocations against symbols in their debug information - the
21320 minimal symbol would have the right address, but the debug info
21321 would not. It's no longer necessary, because we will explicitly
21322 apply relocations when we read in the debug information now. */
21323
21324 /* A DW_AT_location attribute with no contents indicates that a
21325 variable has been optimized away. */
21326 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
21327 {
21328 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21329 return;
21330 }
21331
21332 /* Handle one degenerate form of location expression specially, to
21333 preserve GDB's previous behavior when section offsets are
21334 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
21335 then mark this symbol as LOC_STATIC. */
21336
21337 if (attr_form_is_block (attr)
21338 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
21339 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
21340 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
21341 && (DW_BLOCK (attr)->size
21342 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
21343 {
21344 unsigned int dummy;
21345
21346 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
21347 SYMBOL_VALUE_ADDRESS (sym) =
21348 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
21349 else
21350 SYMBOL_VALUE_ADDRESS (sym) =
21351 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
21352 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
21353 fixup_symbol_section (sym, objfile);
21354 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
21355 SYMBOL_SECTION (sym));
21356 return;
21357 }
21358
21359 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
21360 expression evaluator, and use LOC_COMPUTED only when necessary
21361 (i.e. when the value of a register or memory location is
21362 referenced, or a thread-local block, etc.). Then again, it might
21363 not be worthwhile. I'm assuming that it isn't unless performance
21364 or memory numbers show me otherwise. */
21365
21366 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
21367
21368 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
21369 cu->has_loclist = 1;
21370 }
21371
21372 /* Given a pointer to a DWARF information entry, figure out if we need
21373 to make a symbol table entry for it, and if so, create a new entry
21374 and return a pointer to it.
21375 If TYPE is NULL, determine symbol type from the die, otherwise
21376 used the passed type.
21377 If SPACE is not NULL, use it to hold the new symbol. If it is
21378 NULL, allocate a new symbol on the objfile's obstack. */
21379
21380 static struct symbol *
21381 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
21382 struct symbol *space)
21383 {
21384 struct dwarf2_per_objfile *dwarf2_per_objfile
21385 = cu->per_cu->dwarf2_per_objfile;
21386 struct objfile *objfile = dwarf2_per_objfile->objfile;
21387 struct gdbarch *gdbarch = get_objfile_arch (objfile);
21388 struct symbol *sym = NULL;
21389 const char *name;
21390 struct attribute *attr = NULL;
21391 struct attribute *attr2 = NULL;
21392 CORE_ADDR baseaddr;
21393 struct pending **list_to_add = NULL;
21394
21395 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
21396
21397 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21398
21399 name = dwarf2_name (die, cu);
21400 if (name)
21401 {
21402 const char *linkagename;
21403 int suppress_add = 0;
21404
21405 if (space)
21406 sym = space;
21407 else
21408 sym = allocate_symbol (objfile);
21409 OBJSTAT (objfile, n_syms++);
21410
21411 /* Cache this symbol's name and the name's demangled form (if any). */
21412 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
21413 linkagename = dwarf2_physname (name, die, cu);
21414 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
21415
21416 /* Fortran does not have mangling standard and the mangling does differ
21417 between gfortran, iFort etc. */
21418 if (cu->language == language_fortran
21419 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
21420 symbol_set_demangled_name (&(sym->ginfo),
21421 dwarf2_full_name (name, die, cu),
21422 NULL);
21423
21424 /* Default assumptions.
21425 Use the passed type or decode it from the die. */
21426 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21427 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21428 if (type != NULL)
21429 SYMBOL_TYPE (sym) = type;
21430 else
21431 SYMBOL_TYPE (sym) = die_type (die, cu);
21432 attr = dwarf2_attr (die,
21433 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
21434 cu);
21435 if (attr)
21436 {
21437 SYMBOL_LINE (sym) = DW_UNSND (attr);
21438 }
21439
21440 attr = dwarf2_attr (die,
21441 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
21442 cu);
21443 if (attr)
21444 {
21445 file_name_index file_index = (file_name_index) DW_UNSND (attr);
21446 struct file_entry *fe;
21447
21448 if (cu->line_header != NULL)
21449 fe = cu->line_header->file_name_at (file_index);
21450 else
21451 fe = NULL;
21452
21453 if (fe == NULL)
21454 complaint (&symfile_complaints,
21455 _("file index out of range"));
21456 else
21457 symbol_set_symtab (sym, fe->symtab);
21458 }
21459
21460 switch (die->tag)
21461 {
21462 case DW_TAG_label:
21463 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
21464 if (attr)
21465 {
21466 CORE_ADDR addr;
21467
21468 addr = attr_value_as_address (attr);
21469 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
21470 SYMBOL_VALUE_ADDRESS (sym) = addr;
21471 }
21472 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
21473 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
21474 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
21475 add_symbol_to_list (sym, cu->list_in_scope);
21476 break;
21477 case DW_TAG_subprogram:
21478 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21479 finish_block. */
21480 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21481 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21482 if ((attr2 && (DW_UNSND (attr2) != 0))
21483 || cu->language == language_ada)
21484 {
21485 /* Subprograms marked external are stored as a global symbol.
21486 Ada subprograms, whether marked external or not, are always
21487 stored as a global symbol, because we want to be able to
21488 access them globally. For instance, we want to be able
21489 to break on a nested subprogram without having to
21490 specify the context. */
21491 list_to_add = &global_symbols;
21492 }
21493 else
21494 {
21495 list_to_add = cu->list_in_scope;
21496 }
21497 break;
21498 case DW_TAG_inlined_subroutine:
21499 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21500 finish_block. */
21501 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21502 SYMBOL_INLINED (sym) = 1;
21503 list_to_add = cu->list_in_scope;
21504 break;
21505 case DW_TAG_template_value_param:
21506 suppress_add = 1;
21507 /* Fall through. */
21508 case DW_TAG_constant:
21509 case DW_TAG_variable:
21510 case DW_TAG_member:
21511 /* Compilation with minimal debug info may result in
21512 variables with missing type entries. Change the
21513 misleading `void' type to something sensible. */
21514 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
21515 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
21516
21517 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21518 /* In the case of DW_TAG_member, we should only be called for
21519 static const members. */
21520 if (die->tag == DW_TAG_member)
21521 {
21522 /* dwarf2_add_field uses die_is_declaration,
21523 so we do the same. */
21524 gdb_assert (die_is_declaration (die, cu));
21525 gdb_assert (attr);
21526 }
21527 if (attr)
21528 {
21529 dwarf2_const_value (attr, sym, cu);
21530 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21531 if (!suppress_add)
21532 {
21533 if (attr2 && (DW_UNSND (attr2) != 0))
21534 list_to_add = &global_symbols;
21535 else
21536 list_to_add = cu->list_in_scope;
21537 }
21538 break;
21539 }
21540 attr = dwarf2_attr (die, DW_AT_location, cu);
21541 if (attr)
21542 {
21543 var_decode_location (attr, sym, cu);
21544 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21545
21546 /* Fortran explicitly imports any global symbols to the local
21547 scope by DW_TAG_common_block. */
21548 if (cu->language == language_fortran && die->parent
21549 && die->parent->tag == DW_TAG_common_block)
21550 attr2 = NULL;
21551
21552 if (SYMBOL_CLASS (sym) == LOC_STATIC
21553 && SYMBOL_VALUE_ADDRESS (sym) == 0
21554 && !dwarf2_per_objfile->has_section_at_zero)
21555 {
21556 /* When a static variable is eliminated by the linker,
21557 the corresponding debug information is not stripped
21558 out, but the variable address is set to null;
21559 do not add such variables into symbol table. */
21560 }
21561 else if (attr2 && (DW_UNSND (attr2) != 0))
21562 {
21563 /* Workaround gfortran PR debug/40040 - it uses
21564 DW_AT_location for variables in -fPIC libraries which may
21565 get overriden by other libraries/executable and get
21566 a different address. Resolve it by the minimal symbol
21567 which may come from inferior's executable using copy
21568 relocation. Make this workaround only for gfortran as for
21569 other compilers GDB cannot guess the minimal symbol
21570 Fortran mangling kind. */
21571 if (cu->language == language_fortran && die->parent
21572 && die->parent->tag == DW_TAG_module
21573 && cu->producer
21574 && startswith (cu->producer, "GNU Fortran"))
21575 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21576
21577 /* A variable with DW_AT_external is never static,
21578 but it may be block-scoped. */
21579 list_to_add = (cu->list_in_scope == &file_symbols
21580 ? &global_symbols : cu->list_in_scope);
21581 }
21582 else
21583 list_to_add = cu->list_in_scope;
21584 }
21585 else
21586 {
21587 /* We do not know the address of this symbol.
21588 If it is an external symbol and we have type information
21589 for it, enter the symbol as a LOC_UNRESOLVED symbol.
21590 The address of the variable will then be determined from
21591 the minimal symbol table whenever the variable is
21592 referenced. */
21593 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21594
21595 /* Fortran explicitly imports any global symbols to the local
21596 scope by DW_TAG_common_block. */
21597 if (cu->language == language_fortran && die->parent
21598 && die->parent->tag == DW_TAG_common_block)
21599 {
21600 /* SYMBOL_CLASS doesn't matter here because
21601 read_common_block is going to reset it. */
21602 if (!suppress_add)
21603 list_to_add = cu->list_in_scope;
21604 }
21605 else if (attr2 && (DW_UNSND (attr2) != 0)
21606 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
21607 {
21608 /* A variable with DW_AT_external is never static, but it
21609 may be block-scoped. */
21610 list_to_add = (cu->list_in_scope == &file_symbols
21611 ? &global_symbols : cu->list_in_scope);
21612
21613 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21614 }
21615 else if (!die_is_declaration (die, cu))
21616 {
21617 /* Use the default LOC_OPTIMIZED_OUT class. */
21618 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
21619 if (!suppress_add)
21620 list_to_add = cu->list_in_scope;
21621 }
21622 }
21623 break;
21624 case DW_TAG_formal_parameter:
21625 /* If we are inside a function, mark this as an argument. If
21626 not, we might be looking at an argument to an inlined function
21627 when we do not have enough information to show inlined frames;
21628 pretend it's a local variable in that case so that the user can
21629 still see it. */
21630 if (context_stack_depth > 0
21631 && context_stack[context_stack_depth - 1].name != NULL)
21632 SYMBOL_IS_ARGUMENT (sym) = 1;
21633 attr = dwarf2_attr (die, DW_AT_location, cu);
21634 if (attr)
21635 {
21636 var_decode_location (attr, sym, cu);
21637 }
21638 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21639 if (attr)
21640 {
21641 dwarf2_const_value (attr, sym, cu);
21642 }
21643
21644 list_to_add = cu->list_in_scope;
21645 break;
21646 case DW_TAG_unspecified_parameters:
21647 /* From varargs functions; gdb doesn't seem to have any
21648 interest in this information, so just ignore it for now.
21649 (FIXME?) */
21650 break;
21651 case DW_TAG_template_type_param:
21652 suppress_add = 1;
21653 /* Fall through. */
21654 case DW_TAG_class_type:
21655 case DW_TAG_interface_type:
21656 case DW_TAG_structure_type:
21657 case DW_TAG_union_type:
21658 case DW_TAG_set_type:
21659 case DW_TAG_enumeration_type:
21660 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21661 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
21662
21663 {
21664 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
21665 really ever be static objects: otherwise, if you try
21666 to, say, break of a class's method and you're in a file
21667 which doesn't mention that class, it won't work unless
21668 the check for all static symbols in lookup_symbol_aux
21669 saves you. See the OtherFileClass tests in
21670 gdb.c++/namespace.exp. */
21671
21672 if (!suppress_add)
21673 {
21674 list_to_add = (cu->list_in_scope == &file_symbols
21675 && cu->language == language_cplus
21676 ? &global_symbols : cu->list_in_scope);
21677
21678 /* The semantics of C++ state that "struct foo {
21679 ... }" also defines a typedef for "foo". */
21680 if (cu->language == language_cplus
21681 || cu->language == language_ada
21682 || cu->language == language_d
21683 || cu->language == language_rust)
21684 {
21685 /* The symbol's name is already allocated along
21686 with this objfile, so we don't need to
21687 duplicate it for the type. */
21688 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
21689 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
21690 }
21691 }
21692 }
21693 break;
21694 case DW_TAG_typedef:
21695 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21696 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21697 list_to_add = cu->list_in_scope;
21698 break;
21699 case DW_TAG_base_type:
21700 case DW_TAG_subrange_type:
21701 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21702 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21703 list_to_add = cu->list_in_scope;
21704 break;
21705 case DW_TAG_enumerator:
21706 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21707 if (attr)
21708 {
21709 dwarf2_const_value (attr, sym, cu);
21710 }
21711 {
21712 /* NOTE: carlton/2003-11-10: See comment above in the
21713 DW_TAG_class_type, etc. block. */
21714
21715 list_to_add = (cu->list_in_scope == &file_symbols
21716 && cu->language == language_cplus
21717 ? &global_symbols : cu->list_in_scope);
21718 }
21719 break;
21720 case DW_TAG_imported_declaration:
21721 case DW_TAG_namespace:
21722 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21723 list_to_add = &global_symbols;
21724 break;
21725 case DW_TAG_module:
21726 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21727 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
21728 list_to_add = &global_symbols;
21729 break;
21730 case DW_TAG_common_block:
21731 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
21732 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
21733 add_symbol_to_list (sym, cu->list_in_scope);
21734 break;
21735 default:
21736 /* Not a tag we recognize. Hopefully we aren't processing
21737 trash data, but since we must specifically ignore things
21738 we don't recognize, there is nothing else we should do at
21739 this point. */
21740 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
21741 dwarf_tag_name (die->tag));
21742 break;
21743 }
21744
21745 if (suppress_add)
21746 {
21747 sym->hash_next = objfile->template_symbols;
21748 objfile->template_symbols = sym;
21749 list_to_add = NULL;
21750 }
21751
21752 if (list_to_add != NULL)
21753 add_symbol_to_list (sym, list_to_add);
21754
21755 /* For the benefit of old versions of GCC, check for anonymous
21756 namespaces based on the demangled name. */
21757 if (!cu->processing_has_namespace_info
21758 && cu->language == language_cplus)
21759 cp_scan_for_anonymous_namespaces (sym, objfile);
21760 }
21761 return (sym);
21762 }
21763
21764 /* A wrapper for new_symbol_full that always allocates a new symbol. */
21765
21766 static struct symbol *
21767 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
21768 {
21769 return new_symbol_full (die, type, cu, NULL);
21770 }
21771
21772 /* Given an attr with a DW_FORM_dataN value in host byte order,
21773 zero-extend it as appropriate for the symbol's type. The DWARF
21774 standard (v4) is not entirely clear about the meaning of using
21775 DW_FORM_dataN for a constant with a signed type, where the type is
21776 wider than the data. The conclusion of a discussion on the DWARF
21777 list was that this is unspecified. We choose to always zero-extend
21778 because that is the interpretation long in use by GCC. */
21779
21780 static gdb_byte *
21781 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
21782 struct dwarf2_cu *cu, LONGEST *value, int bits)
21783 {
21784 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21785 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
21786 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
21787 LONGEST l = DW_UNSND (attr);
21788
21789 if (bits < sizeof (*value) * 8)
21790 {
21791 l &= ((LONGEST) 1 << bits) - 1;
21792 *value = l;
21793 }
21794 else if (bits == sizeof (*value) * 8)
21795 *value = l;
21796 else
21797 {
21798 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
21799 store_unsigned_integer (bytes, bits / 8, byte_order, l);
21800 return bytes;
21801 }
21802
21803 return NULL;
21804 }
21805
21806 /* Read a constant value from an attribute. Either set *VALUE, or if
21807 the value does not fit in *VALUE, set *BYTES - either already
21808 allocated on the objfile obstack, or newly allocated on OBSTACK,
21809 or, set *BATON, if we translated the constant to a location
21810 expression. */
21811
21812 static void
21813 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
21814 const char *name, struct obstack *obstack,
21815 struct dwarf2_cu *cu,
21816 LONGEST *value, const gdb_byte **bytes,
21817 struct dwarf2_locexpr_baton **baton)
21818 {
21819 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21820 struct comp_unit_head *cu_header = &cu->header;
21821 struct dwarf_block *blk;
21822 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
21823 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
21824
21825 *value = 0;
21826 *bytes = NULL;
21827 *baton = NULL;
21828
21829 switch (attr->form)
21830 {
21831 case DW_FORM_addr:
21832 case DW_FORM_GNU_addr_index:
21833 {
21834 gdb_byte *data;
21835
21836 if (TYPE_LENGTH (type) != cu_header->addr_size)
21837 dwarf2_const_value_length_mismatch_complaint (name,
21838 cu_header->addr_size,
21839 TYPE_LENGTH (type));
21840 /* Symbols of this form are reasonably rare, so we just
21841 piggyback on the existing location code rather than writing
21842 a new implementation of symbol_computed_ops. */
21843 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
21844 (*baton)->per_cu = cu->per_cu;
21845 gdb_assert ((*baton)->per_cu);
21846
21847 (*baton)->size = 2 + cu_header->addr_size;
21848 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
21849 (*baton)->data = data;
21850
21851 data[0] = DW_OP_addr;
21852 store_unsigned_integer (&data[1], cu_header->addr_size,
21853 byte_order, DW_ADDR (attr));
21854 data[cu_header->addr_size + 1] = DW_OP_stack_value;
21855 }
21856 break;
21857 case DW_FORM_string:
21858 case DW_FORM_strp:
21859 case DW_FORM_GNU_str_index:
21860 case DW_FORM_GNU_strp_alt:
21861 /* DW_STRING is already allocated on the objfile obstack, point
21862 directly to it. */
21863 *bytes = (const gdb_byte *) DW_STRING (attr);
21864 break;
21865 case DW_FORM_block1:
21866 case DW_FORM_block2:
21867 case DW_FORM_block4:
21868 case DW_FORM_block:
21869 case DW_FORM_exprloc:
21870 case DW_FORM_data16:
21871 blk = DW_BLOCK (attr);
21872 if (TYPE_LENGTH (type) != blk->size)
21873 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
21874 TYPE_LENGTH (type));
21875 *bytes = blk->data;
21876 break;
21877
21878 /* The DW_AT_const_value attributes are supposed to carry the
21879 symbol's value "represented as it would be on the target
21880 architecture." By the time we get here, it's already been
21881 converted to host endianness, so we just need to sign- or
21882 zero-extend it as appropriate. */
21883 case DW_FORM_data1:
21884 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
21885 break;
21886 case DW_FORM_data2:
21887 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
21888 break;
21889 case DW_FORM_data4:
21890 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
21891 break;
21892 case DW_FORM_data8:
21893 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
21894 break;
21895
21896 case DW_FORM_sdata:
21897 case DW_FORM_implicit_const:
21898 *value = DW_SND (attr);
21899 break;
21900
21901 case DW_FORM_udata:
21902 *value = DW_UNSND (attr);
21903 break;
21904
21905 default:
21906 complaint (&symfile_complaints,
21907 _("unsupported const value attribute form: '%s'"),
21908 dwarf_form_name (attr->form));
21909 *value = 0;
21910 break;
21911 }
21912 }
21913
21914
21915 /* Copy constant value from an attribute to a symbol. */
21916
21917 static void
21918 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
21919 struct dwarf2_cu *cu)
21920 {
21921 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21922 LONGEST value;
21923 const gdb_byte *bytes;
21924 struct dwarf2_locexpr_baton *baton;
21925
21926 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
21927 SYMBOL_PRINT_NAME (sym),
21928 &objfile->objfile_obstack, cu,
21929 &value, &bytes, &baton);
21930
21931 if (baton != NULL)
21932 {
21933 SYMBOL_LOCATION_BATON (sym) = baton;
21934 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
21935 }
21936 else if (bytes != NULL)
21937 {
21938 SYMBOL_VALUE_BYTES (sym) = bytes;
21939 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
21940 }
21941 else
21942 {
21943 SYMBOL_VALUE (sym) = value;
21944 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
21945 }
21946 }
21947
21948 /* Return the type of the die in question using its DW_AT_type attribute. */
21949
21950 static struct type *
21951 die_type (struct die_info *die, struct dwarf2_cu *cu)
21952 {
21953 struct attribute *type_attr;
21954
21955 type_attr = dwarf2_attr (die, DW_AT_type, cu);
21956 if (!type_attr)
21957 {
21958 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21959 /* A missing DW_AT_type represents a void type. */
21960 return objfile_type (objfile)->builtin_void;
21961 }
21962
21963 return lookup_die_type (die, type_attr, cu);
21964 }
21965
21966 /* True iff CU's producer generates GNAT Ada auxiliary information
21967 that allows to find parallel types through that information instead
21968 of having to do expensive parallel lookups by type name. */
21969
21970 static int
21971 need_gnat_info (struct dwarf2_cu *cu)
21972 {
21973 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
21974 of GNAT produces this auxiliary information, without any indication
21975 that it is produced. Part of enhancing the FSF version of GNAT
21976 to produce that information will be to put in place an indicator
21977 that we can use in order to determine whether the descriptive type
21978 info is available or not. One suggestion that has been made is
21979 to use a new attribute, attached to the CU die. For now, assume
21980 that the descriptive type info is not available. */
21981 return 0;
21982 }
21983
21984 /* Return the auxiliary type of the die in question using its
21985 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
21986 attribute is not present. */
21987
21988 static struct type *
21989 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
21990 {
21991 struct attribute *type_attr;
21992
21993 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
21994 if (!type_attr)
21995 return NULL;
21996
21997 return lookup_die_type (die, type_attr, cu);
21998 }
21999
22000 /* If DIE has a descriptive_type attribute, then set the TYPE's
22001 descriptive type accordingly. */
22002
22003 static void
22004 set_descriptive_type (struct type *type, struct die_info *die,
22005 struct dwarf2_cu *cu)
22006 {
22007 struct type *descriptive_type = die_descriptive_type (die, cu);
22008
22009 if (descriptive_type)
22010 {
22011 ALLOCATE_GNAT_AUX_TYPE (type);
22012 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
22013 }
22014 }
22015
22016 /* Return the containing type of the die in question using its
22017 DW_AT_containing_type attribute. */
22018
22019 static struct type *
22020 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
22021 {
22022 struct attribute *type_attr;
22023 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22024
22025 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
22026 if (!type_attr)
22027 error (_("Dwarf Error: Problem turning containing type into gdb type "
22028 "[in module %s]"), objfile_name (objfile));
22029
22030 return lookup_die_type (die, type_attr, cu);
22031 }
22032
22033 /* Return an error marker type to use for the ill formed type in DIE/CU. */
22034
22035 static struct type *
22036 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
22037 {
22038 struct dwarf2_per_objfile *dwarf2_per_objfile
22039 = cu->per_cu->dwarf2_per_objfile;
22040 struct objfile *objfile = dwarf2_per_objfile->objfile;
22041 char *message, *saved;
22042
22043 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
22044 objfile_name (objfile),
22045 to_underlying (cu->header.sect_off),
22046 to_underlying (die->sect_off));
22047 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
22048 message, strlen (message));
22049 xfree (message);
22050
22051 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
22052 }
22053
22054 /* Look up the type of DIE in CU using its type attribute ATTR.
22055 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
22056 DW_AT_containing_type.
22057 If there is no type substitute an error marker. */
22058
22059 static struct type *
22060 lookup_die_type (struct die_info *die, const struct attribute *attr,
22061 struct dwarf2_cu *cu)
22062 {
22063 struct dwarf2_per_objfile *dwarf2_per_objfile
22064 = cu->per_cu->dwarf2_per_objfile;
22065 struct objfile *objfile = dwarf2_per_objfile->objfile;
22066 struct type *this_type;
22067
22068 gdb_assert (attr->name == DW_AT_type
22069 || attr->name == DW_AT_GNAT_descriptive_type
22070 || attr->name == DW_AT_containing_type);
22071
22072 /* First see if we have it cached. */
22073
22074 if (attr->form == DW_FORM_GNU_ref_alt)
22075 {
22076 struct dwarf2_per_cu_data *per_cu;
22077 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22078
22079 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1,
22080 dwarf2_per_objfile);
22081 this_type = get_die_type_at_offset (sect_off, per_cu);
22082 }
22083 else if (attr_form_is_ref (attr))
22084 {
22085 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22086
22087 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
22088 }
22089 else if (attr->form == DW_FORM_ref_sig8)
22090 {
22091 ULONGEST signature = DW_SIGNATURE (attr);
22092
22093 return get_signatured_type (die, signature, cu);
22094 }
22095 else
22096 {
22097 complaint (&symfile_complaints,
22098 _("Dwarf Error: Bad type attribute %s in DIE"
22099 " at 0x%x [in module %s]"),
22100 dwarf_attr_name (attr->name), to_underlying (die->sect_off),
22101 objfile_name (objfile));
22102 return build_error_marker_type (cu, die);
22103 }
22104
22105 /* If not cached we need to read it in. */
22106
22107 if (this_type == NULL)
22108 {
22109 struct die_info *type_die = NULL;
22110 struct dwarf2_cu *type_cu = cu;
22111
22112 if (attr_form_is_ref (attr))
22113 type_die = follow_die_ref (die, attr, &type_cu);
22114 if (type_die == NULL)
22115 return build_error_marker_type (cu, die);
22116 /* If we find the type now, it's probably because the type came
22117 from an inter-CU reference and the type's CU got expanded before
22118 ours. */
22119 this_type = read_type_die (type_die, type_cu);
22120 }
22121
22122 /* If we still don't have a type use an error marker. */
22123
22124 if (this_type == NULL)
22125 return build_error_marker_type (cu, die);
22126
22127 return this_type;
22128 }
22129
22130 /* Return the type in DIE, CU.
22131 Returns NULL for invalid types.
22132
22133 This first does a lookup in die_type_hash,
22134 and only reads the die in if necessary.
22135
22136 NOTE: This can be called when reading in partial or full symbols. */
22137
22138 static struct type *
22139 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
22140 {
22141 struct type *this_type;
22142
22143 this_type = get_die_type (die, cu);
22144 if (this_type)
22145 return this_type;
22146
22147 return read_type_die_1 (die, cu);
22148 }
22149
22150 /* Read the type in DIE, CU.
22151 Returns NULL for invalid types. */
22152
22153 static struct type *
22154 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
22155 {
22156 struct type *this_type = NULL;
22157
22158 switch (die->tag)
22159 {
22160 case DW_TAG_class_type:
22161 case DW_TAG_interface_type:
22162 case DW_TAG_structure_type:
22163 case DW_TAG_union_type:
22164 this_type = read_structure_type (die, cu);
22165 break;
22166 case DW_TAG_enumeration_type:
22167 this_type = read_enumeration_type (die, cu);
22168 break;
22169 case DW_TAG_subprogram:
22170 case DW_TAG_subroutine_type:
22171 case DW_TAG_inlined_subroutine:
22172 this_type = read_subroutine_type (die, cu);
22173 break;
22174 case DW_TAG_array_type:
22175 this_type = read_array_type (die, cu);
22176 break;
22177 case DW_TAG_set_type:
22178 this_type = read_set_type (die, cu);
22179 break;
22180 case DW_TAG_pointer_type:
22181 this_type = read_tag_pointer_type (die, cu);
22182 break;
22183 case DW_TAG_ptr_to_member_type:
22184 this_type = read_tag_ptr_to_member_type (die, cu);
22185 break;
22186 case DW_TAG_reference_type:
22187 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
22188 break;
22189 case DW_TAG_rvalue_reference_type:
22190 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
22191 break;
22192 case DW_TAG_const_type:
22193 this_type = read_tag_const_type (die, cu);
22194 break;
22195 case DW_TAG_volatile_type:
22196 this_type = read_tag_volatile_type (die, cu);
22197 break;
22198 case DW_TAG_restrict_type:
22199 this_type = read_tag_restrict_type (die, cu);
22200 break;
22201 case DW_TAG_string_type:
22202 this_type = read_tag_string_type (die, cu);
22203 break;
22204 case DW_TAG_typedef:
22205 this_type = read_typedef (die, cu);
22206 break;
22207 case DW_TAG_subrange_type:
22208 this_type = read_subrange_type (die, cu);
22209 break;
22210 case DW_TAG_base_type:
22211 this_type = read_base_type (die, cu);
22212 break;
22213 case DW_TAG_unspecified_type:
22214 this_type = read_unspecified_type (die, cu);
22215 break;
22216 case DW_TAG_namespace:
22217 this_type = read_namespace_type (die, cu);
22218 break;
22219 case DW_TAG_module:
22220 this_type = read_module_type (die, cu);
22221 break;
22222 case DW_TAG_atomic_type:
22223 this_type = read_tag_atomic_type (die, cu);
22224 break;
22225 default:
22226 complaint (&symfile_complaints,
22227 _("unexpected tag in read_type_die: '%s'"),
22228 dwarf_tag_name (die->tag));
22229 break;
22230 }
22231
22232 return this_type;
22233 }
22234
22235 /* See if we can figure out if the class lives in a namespace. We do
22236 this by looking for a member function; its demangled name will
22237 contain namespace info, if there is any.
22238 Return the computed name or NULL.
22239 Space for the result is allocated on the objfile's obstack.
22240 This is the full-die version of guess_partial_die_structure_name.
22241 In this case we know DIE has no useful parent. */
22242
22243 static char *
22244 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
22245 {
22246 struct die_info *spec_die;
22247 struct dwarf2_cu *spec_cu;
22248 struct die_info *child;
22249 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22250
22251 spec_cu = cu;
22252 spec_die = die_specification (die, &spec_cu);
22253 if (spec_die != NULL)
22254 {
22255 die = spec_die;
22256 cu = spec_cu;
22257 }
22258
22259 for (child = die->child;
22260 child != NULL;
22261 child = child->sibling)
22262 {
22263 if (child->tag == DW_TAG_subprogram)
22264 {
22265 const char *linkage_name = dw2_linkage_name (child, cu);
22266
22267 if (linkage_name != NULL)
22268 {
22269 char *actual_name
22270 = language_class_name_from_physname (cu->language_defn,
22271 linkage_name);
22272 char *name = NULL;
22273
22274 if (actual_name != NULL)
22275 {
22276 const char *die_name = dwarf2_name (die, cu);
22277
22278 if (die_name != NULL
22279 && strcmp (die_name, actual_name) != 0)
22280 {
22281 /* Strip off the class name from the full name.
22282 We want the prefix. */
22283 int die_name_len = strlen (die_name);
22284 int actual_name_len = strlen (actual_name);
22285
22286 /* Test for '::' as a sanity check. */
22287 if (actual_name_len > die_name_len + 2
22288 && actual_name[actual_name_len
22289 - die_name_len - 1] == ':')
22290 name = (char *) obstack_copy0 (
22291 &objfile->per_bfd->storage_obstack,
22292 actual_name, actual_name_len - die_name_len - 2);
22293 }
22294 }
22295 xfree (actual_name);
22296 return name;
22297 }
22298 }
22299 }
22300
22301 return NULL;
22302 }
22303
22304 /* GCC might emit a nameless typedef that has a linkage name. Determine the
22305 prefix part in such case. See
22306 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22307
22308 static const char *
22309 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
22310 {
22311 struct attribute *attr;
22312 const char *base;
22313
22314 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
22315 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
22316 return NULL;
22317
22318 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
22319 return NULL;
22320
22321 attr = dw2_linkage_name_attr (die, cu);
22322 if (attr == NULL || DW_STRING (attr) == NULL)
22323 return NULL;
22324
22325 /* dwarf2_name had to be already called. */
22326 gdb_assert (DW_STRING_IS_CANONICAL (attr));
22327
22328 /* Strip the base name, keep any leading namespaces/classes. */
22329 base = strrchr (DW_STRING (attr), ':');
22330 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
22331 return "";
22332
22333 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22334 return (char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
22335 DW_STRING (attr),
22336 &base[-1] - DW_STRING (attr));
22337 }
22338
22339 /* Return the name of the namespace/class that DIE is defined within,
22340 or "" if we can't tell. The caller should not xfree the result.
22341
22342 For example, if we're within the method foo() in the following
22343 code:
22344
22345 namespace N {
22346 class C {
22347 void foo () {
22348 }
22349 };
22350 }
22351
22352 then determine_prefix on foo's die will return "N::C". */
22353
22354 static const char *
22355 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
22356 {
22357 struct dwarf2_per_objfile *dwarf2_per_objfile
22358 = cu->per_cu->dwarf2_per_objfile;
22359 struct die_info *parent, *spec_die;
22360 struct dwarf2_cu *spec_cu;
22361 struct type *parent_type;
22362 const char *retval;
22363
22364 if (cu->language != language_cplus
22365 && cu->language != language_fortran && cu->language != language_d
22366 && cu->language != language_rust)
22367 return "";
22368
22369 retval = anonymous_struct_prefix (die, cu);
22370 if (retval)
22371 return retval;
22372
22373 /* We have to be careful in the presence of DW_AT_specification.
22374 For example, with GCC 3.4, given the code
22375
22376 namespace N {
22377 void foo() {
22378 // Definition of N::foo.
22379 }
22380 }
22381
22382 then we'll have a tree of DIEs like this:
22383
22384 1: DW_TAG_compile_unit
22385 2: DW_TAG_namespace // N
22386 3: DW_TAG_subprogram // declaration of N::foo
22387 4: DW_TAG_subprogram // definition of N::foo
22388 DW_AT_specification // refers to die #3
22389
22390 Thus, when processing die #4, we have to pretend that we're in
22391 the context of its DW_AT_specification, namely the contex of die
22392 #3. */
22393 spec_cu = cu;
22394 spec_die = die_specification (die, &spec_cu);
22395 if (spec_die == NULL)
22396 parent = die->parent;
22397 else
22398 {
22399 parent = spec_die->parent;
22400 cu = spec_cu;
22401 }
22402
22403 if (parent == NULL)
22404 return "";
22405 else if (parent->building_fullname)
22406 {
22407 const char *name;
22408 const char *parent_name;
22409
22410 /* It has been seen on RealView 2.2 built binaries,
22411 DW_TAG_template_type_param types actually _defined_ as
22412 children of the parent class:
22413
22414 enum E {};
22415 template class <class Enum> Class{};
22416 Class<enum E> class_e;
22417
22418 1: DW_TAG_class_type (Class)
22419 2: DW_TAG_enumeration_type (E)
22420 3: DW_TAG_enumerator (enum1:0)
22421 3: DW_TAG_enumerator (enum2:1)
22422 ...
22423 2: DW_TAG_template_type_param
22424 DW_AT_type DW_FORM_ref_udata (E)
22425
22426 Besides being broken debug info, it can put GDB into an
22427 infinite loop. Consider:
22428
22429 When we're building the full name for Class<E>, we'll start
22430 at Class, and go look over its template type parameters,
22431 finding E. We'll then try to build the full name of E, and
22432 reach here. We're now trying to build the full name of E,
22433 and look over the parent DIE for containing scope. In the
22434 broken case, if we followed the parent DIE of E, we'd again
22435 find Class, and once again go look at its template type
22436 arguments, etc., etc. Simply don't consider such parent die
22437 as source-level parent of this die (it can't be, the language
22438 doesn't allow it), and break the loop here. */
22439 name = dwarf2_name (die, cu);
22440 parent_name = dwarf2_name (parent, cu);
22441 complaint (&symfile_complaints,
22442 _("template param type '%s' defined within parent '%s'"),
22443 name ? name : "<unknown>",
22444 parent_name ? parent_name : "<unknown>");
22445 return "";
22446 }
22447 else
22448 switch (parent->tag)
22449 {
22450 case DW_TAG_namespace:
22451 parent_type = read_type_die (parent, cu);
22452 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
22453 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
22454 Work around this problem here. */
22455 if (cu->language == language_cplus
22456 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
22457 return "";
22458 /* We give a name to even anonymous namespaces. */
22459 return TYPE_TAG_NAME (parent_type);
22460 case DW_TAG_class_type:
22461 case DW_TAG_interface_type:
22462 case DW_TAG_structure_type:
22463 case DW_TAG_union_type:
22464 case DW_TAG_module:
22465 parent_type = read_type_die (parent, cu);
22466 if (TYPE_TAG_NAME (parent_type) != NULL)
22467 return TYPE_TAG_NAME (parent_type);
22468 else
22469 /* An anonymous structure is only allowed non-static data
22470 members; no typedefs, no member functions, et cetera.
22471 So it does not need a prefix. */
22472 return "";
22473 case DW_TAG_compile_unit:
22474 case DW_TAG_partial_unit:
22475 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
22476 if (cu->language == language_cplus
22477 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
22478 && die->child != NULL
22479 && (die->tag == DW_TAG_class_type
22480 || die->tag == DW_TAG_structure_type
22481 || die->tag == DW_TAG_union_type))
22482 {
22483 char *name = guess_full_die_structure_name (die, cu);
22484 if (name != NULL)
22485 return name;
22486 }
22487 return "";
22488 case DW_TAG_enumeration_type:
22489 parent_type = read_type_die (parent, cu);
22490 if (TYPE_DECLARED_CLASS (parent_type))
22491 {
22492 if (TYPE_TAG_NAME (parent_type) != NULL)
22493 return TYPE_TAG_NAME (parent_type);
22494 return "";
22495 }
22496 /* Fall through. */
22497 default:
22498 return determine_prefix (parent, cu);
22499 }
22500 }
22501
22502 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
22503 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
22504 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
22505 an obconcat, otherwise allocate storage for the result. The CU argument is
22506 used to determine the language and hence, the appropriate separator. */
22507
22508 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
22509
22510 static char *
22511 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
22512 int physname, struct dwarf2_cu *cu)
22513 {
22514 const char *lead = "";
22515 const char *sep;
22516
22517 if (suffix == NULL || suffix[0] == '\0'
22518 || prefix == NULL || prefix[0] == '\0')
22519 sep = "";
22520 else if (cu->language == language_d)
22521 {
22522 /* For D, the 'main' function could be defined in any module, but it
22523 should never be prefixed. */
22524 if (strcmp (suffix, "D main") == 0)
22525 {
22526 prefix = "";
22527 sep = "";
22528 }
22529 else
22530 sep = ".";
22531 }
22532 else if (cu->language == language_fortran && physname)
22533 {
22534 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
22535 DW_AT_MIPS_linkage_name is preferred and used instead. */
22536
22537 lead = "__";
22538 sep = "_MOD_";
22539 }
22540 else
22541 sep = "::";
22542
22543 if (prefix == NULL)
22544 prefix = "";
22545 if (suffix == NULL)
22546 suffix = "";
22547
22548 if (obs == NULL)
22549 {
22550 char *retval
22551 = ((char *)
22552 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
22553
22554 strcpy (retval, lead);
22555 strcat (retval, prefix);
22556 strcat (retval, sep);
22557 strcat (retval, suffix);
22558 return retval;
22559 }
22560 else
22561 {
22562 /* We have an obstack. */
22563 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
22564 }
22565 }
22566
22567 /* Return sibling of die, NULL if no sibling. */
22568
22569 static struct die_info *
22570 sibling_die (struct die_info *die)
22571 {
22572 return die->sibling;
22573 }
22574
22575 /* Get name of a die, return NULL if not found. */
22576
22577 static const char *
22578 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
22579 struct obstack *obstack)
22580 {
22581 if (name && cu->language == language_cplus)
22582 {
22583 std::string canon_name = cp_canonicalize_string (name);
22584
22585 if (!canon_name.empty ())
22586 {
22587 if (canon_name != name)
22588 name = (const char *) obstack_copy0 (obstack,
22589 canon_name.c_str (),
22590 canon_name.length ());
22591 }
22592 }
22593
22594 return name;
22595 }
22596
22597 /* Get name of a die, return NULL if not found.
22598 Anonymous namespaces are converted to their magic string. */
22599
22600 static const char *
22601 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
22602 {
22603 struct attribute *attr;
22604 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22605
22606 attr = dwarf2_attr (die, DW_AT_name, cu);
22607 if ((!attr || !DW_STRING (attr))
22608 && die->tag != DW_TAG_namespace
22609 && die->tag != DW_TAG_class_type
22610 && die->tag != DW_TAG_interface_type
22611 && die->tag != DW_TAG_structure_type
22612 && die->tag != DW_TAG_union_type)
22613 return NULL;
22614
22615 switch (die->tag)
22616 {
22617 case DW_TAG_compile_unit:
22618 case DW_TAG_partial_unit:
22619 /* Compilation units have a DW_AT_name that is a filename, not
22620 a source language identifier. */
22621 case DW_TAG_enumeration_type:
22622 case DW_TAG_enumerator:
22623 /* These tags always have simple identifiers already; no need
22624 to canonicalize them. */
22625 return DW_STRING (attr);
22626
22627 case DW_TAG_namespace:
22628 if (attr != NULL && DW_STRING (attr) != NULL)
22629 return DW_STRING (attr);
22630 return CP_ANONYMOUS_NAMESPACE_STR;
22631
22632 case DW_TAG_class_type:
22633 case DW_TAG_interface_type:
22634 case DW_TAG_structure_type:
22635 case DW_TAG_union_type:
22636 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
22637 structures or unions. These were of the form "._%d" in GCC 4.1,
22638 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
22639 and GCC 4.4. We work around this problem by ignoring these. */
22640 if (attr && DW_STRING (attr)
22641 && (startswith (DW_STRING (attr), "._")
22642 || startswith (DW_STRING (attr), "<anonymous")))
22643 return NULL;
22644
22645 /* GCC might emit a nameless typedef that has a linkage name. See
22646 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22647 if (!attr || DW_STRING (attr) == NULL)
22648 {
22649 char *demangled = NULL;
22650
22651 attr = dw2_linkage_name_attr (die, cu);
22652 if (attr == NULL || DW_STRING (attr) == NULL)
22653 return NULL;
22654
22655 /* Avoid demangling DW_STRING (attr) the second time on a second
22656 call for the same DIE. */
22657 if (!DW_STRING_IS_CANONICAL (attr))
22658 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
22659
22660 if (demangled)
22661 {
22662 const char *base;
22663
22664 /* FIXME: we already did this for the partial symbol... */
22665 DW_STRING (attr)
22666 = ((const char *)
22667 obstack_copy0 (&objfile->per_bfd->storage_obstack,
22668 demangled, strlen (demangled)));
22669 DW_STRING_IS_CANONICAL (attr) = 1;
22670 xfree (demangled);
22671
22672 /* Strip any leading namespaces/classes, keep only the base name.
22673 DW_AT_name for named DIEs does not contain the prefixes. */
22674 base = strrchr (DW_STRING (attr), ':');
22675 if (base && base > DW_STRING (attr) && base[-1] == ':')
22676 return &base[1];
22677 else
22678 return DW_STRING (attr);
22679 }
22680 }
22681 break;
22682
22683 default:
22684 break;
22685 }
22686
22687 if (!DW_STRING_IS_CANONICAL (attr))
22688 {
22689 DW_STRING (attr)
22690 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
22691 &objfile->per_bfd->storage_obstack);
22692 DW_STRING_IS_CANONICAL (attr) = 1;
22693 }
22694 return DW_STRING (attr);
22695 }
22696
22697 /* Return the die that this die in an extension of, or NULL if there
22698 is none. *EXT_CU is the CU containing DIE on input, and the CU
22699 containing the return value on output. */
22700
22701 static struct die_info *
22702 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
22703 {
22704 struct attribute *attr;
22705
22706 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
22707 if (attr == NULL)
22708 return NULL;
22709
22710 return follow_die_ref (die, attr, ext_cu);
22711 }
22712
22713 /* Convert a DIE tag into its string name. */
22714
22715 static const char *
22716 dwarf_tag_name (unsigned tag)
22717 {
22718 const char *name = get_DW_TAG_name (tag);
22719
22720 if (name == NULL)
22721 return "DW_TAG_<unknown>";
22722
22723 return name;
22724 }
22725
22726 /* Convert a DWARF attribute code into its string name. */
22727
22728 static const char *
22729 dwarf_attr_name (unsigned attr)
22730 {
22731 const char *name;
22732
22733 #ifdef MIPS /* collides with DW_AT_HP_block_index */
22734 if (attr == DW_AT_MIPS_fde)
22735 return "DW_AT_MIPS_fde";
22736 #else
22737 if (attr == DW_AT_HP_block_index)
22738 return "DW_AT_HP_block_index";
22739 #endif
22740
22741 name = get_DW_AT_name (attr);
22742
22743 if (name == NULL)
22744 return "DW_AT_<unknown>";
22745
22746 return name;
22747 }
22748
22749 /* Convert a DWARF value form code into its string name. */
22750
22751 static const char *
22752 dwarf_form_name (unsigned form)
22753 {
22754 const char *name = get_DW_FORM_name (form);
22755
22756 if (name == NULL)
22757 return "DW_FORM_<unknown>";
22758
22759 return name;
22760 }
22761
22762 static const char *
22763 dwarf_bool_name (unsigned mybool)
22764 {
22765 if (mybool)
22766 return "TRUE";
22767 else
22768 return "FALSE";
22769 }
22770
22771 /* Convert a DWARF type code into its string name. */
22772
22773 static const char *
22774 dwarf_type_encoding_name (unsigned enc)
22775 {
22776 const char *name = get_DW_ATE_name (enc);
22777
22778 if (name == NULL)
22779 return "DW_ATE_<unknown>";
22780
22781 return name;
22782 }
22783
22784 static void
22785 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
22786 {
22787 unsigned int i;
22788
22789 print_spaces (indent, f);
22790 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
22791 dwarf_tag_name (die->tag), die->abbrev,
22792 to_underlying (die->sect_off));
22793
22794 if (die->parent != NULL)
22795 {
22796 print_spaces (indent, f);
22797 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
22798 to_underlying (die->parent->sect_off));
22799 }
22800
22801 print_spaces (indent, f);
22802 fprintf_unfiltered (f, " has children: %s\n",
22803 dwarf_bool_name (die->child != NULL));
22804
22805 print_spaces (indent, f);
22806 fprintf_unfiltered (f, " attributes:\n");
22807
22808 for (i = 0; i < die->num_attrs; ++i)
22809 {
22810 print_spaces (indent, f);
22811 fprintf_unfiltered (f, " %s (%s) ",
22812 dwarf_attr_name (die->attrs[i].name),
22813 dwarf_form_name (die->attrs[i].form));
22814
22815 switch (die->attrs[i].form)
22816 {
22817 case DW_FORM_addr:
22818 case DW_FORM_GNU_addr_index:
22819 fprintf_unfiltered (f, "address: ");
22820 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
22821 break;
22822 case DW_FORM_block2:
22823 case DW_FORM_block4:
22824 case DW_FORM_block:
22825 case DW_FORM_block1:
22826 fprintf_unfiltered (f, "block: size %s",
22827 pulongest (DW_BLOCK (&die->attrs[i])->size));
22828 break;
22829 case DW_FORM_exprloc:
22830 fprintf_unfiltered (f, "expression: size %s",
22831 pulongest (DW_BLOCK (&die->attrs[i])->size));
22832 break;
22833 case DW_FORM_data16:
22834 fprintf_unfiltered (f, "constant of 16 bytes");
22835 break;
22836 case DW_FORM_ref_addr:
22837 fprintf_unfiltered (f, "ref address: ");
22838 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22839 break;
22840 case DW_FORM_GNU_ref_alt:
22841 fprintf_unfiltered (f, "alt ref address: ");
22842 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22843 break;
22844 case DW_FORM_ref1:
22845 case DW_FORM_ref2:
22846 case DW_FORM_ref4:
22847 case DW_FORM_ref8:
22848 case DW_FORM_ref_udata:
22849 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
22850 (long) (DW_UNSND (&die->attrs[i])));
22851 break;
22852 case DW_FORM_data1:
22853 case DW_FORM_data2:
22854 case DW_FORM_data4:
22855 case DW_FORM_data8:
22856 case DW_FORM_udata:
22857 case DW_FORM_sdata:
22858 fprintf_unfiltered (f, "constant: %s",
22859 pulongest (DW_UNSND (&die->attrs[i])));
22860 break;
22861 case DW_FORM_sec_offset:
22862 fprintf_unfiltered (f, "section offset: %s",
22863 pulongest (DW_UNSND (&die->attrs[i])));
22864 break;
22865 case DW_FORM_ref_sig8:
22866 fprintf_unfiltered (f, "signature: %s",
22867 hex_string (DW_SIGNATURE (&die->attrs[i])));
22868 break;
22869 case DW_FORM_string:
22870 case DW_FORM_strp:
22871 case DW_FORM_line_strp:
22872 case DW_FORM_GNU_str_index:
22873 case DW_FORM_GNU_strp_alt:
22874 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
22875 DW_STRING (&die->attrs[i])
22876 ? DW_STRING (&die->attrs[i]) : "",
22877 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
22878 break;
22879 case DW_FORM_flag:
22880 if (DW_UNSND (&die->attrs[i]))
22881 fprintf_unfiltered (f, "flag: TRUE");
22882 else
22883 fprintf_unfiltered (f, "flag: FALSE");
22884 break;
22885 case DW_FORM_flag_present:
22886 fprintf_unfiltered (f, "flag: TRUE");
22887 break;
22888 case DW_FORM_indirect:
22889 /* The reader will have reduced the indirect form to
22890 the "base form" so this form should not occur. */
22891 fprintf_unfiltered (f,
22892 "unexpected attribute form: DW_FORM_indirect");
22893 break;
22894 case DW_FORM_implicit_const:
22895 fprintf_unfiltered (f, "constant: %s",
22896 plongest (DW_SND (&die->attrs[i])));
22897 break;
22898 default:
22899 fprintf_unfiltered (f, "unsupported attribute form: %d.",
22900 die->attrs[i].form);
22901 break;
22902 }
22903 fprintf_unfiltered (f, "\n");
22904 }
22905 }
22906
22907 static void
22908 dump_die_for_error (struct die_info *die)
22909 {
22910 dump_die_shallow (gdb_stderr, 0, die);
22911 }
22912
22913 static void
22914 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
22915 {
22916 int indent = level * 4;
22917
22918 gdb_assert (die != NULL);
22919
22920 if (level >= max_level)
22921 return;
22922
22923 dump_die_shallow (f, indent, die);
22924
22925 if (die->child != NULL)
22926 {
22927 print_spaces (indent, f);
22928 fprintf_unfiltered (f, " Children:");
22929 if (level + 1 < max_level)
22930 {
22931 fprintf_unfiltered (f, "\n");
22932 dump_die_1 (f, level + 1, max_level, die->child);
22933 }
22934 else
22935 {
22936 fprintf_unfiltered (f,
22937 " [not printed, max nesting level reached]\n");
22938 }
22939 }
22940
22941 if (die->sibling != NULL && level > 0)
22942 {
22943 dump_die_1 (f, level, max_level, die->sibling);
22944 }
22945 }
22946
22947 /* This is called from the pdie macro in gdbinit.in.
22948 It's not static so gcc will keep a copy callable from gdb. */
22949
22950 void
22951 dump_die (struct die_info *die, int max_level)
22952 {
22953 dump_die_1 (gdb_stdlog, 0, max_level, die);
22954 }
22955
22956 static void
22957 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
22958 {
22959 void **slot;
22960
22961 slot = htab_find_slot_with_hash (cu->die_hash, die,
22962 to_underlying (die->sect_off),
22963 INSERT);
22964
22965 *slot = die;
22966 }
22967
22968 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
22969 required kind. */
22970
22971 static sect_offset
22972 dwarf2_get_ref_die_offset (const struct attribute *attr)
22973 {
22974 if (attr_form_is_ref (attr))
22975 return (sect_offset) DW_UNSND (attr);
22976
22977 complaint (&symfile_complaints,
22978 _("unsupported die ref attribute form: '%s'"),
22979 dwarf_form_name (attr->form));
22980 return {};
22981 }
22982
22983 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
22984 * the value held by the attribute is not constant. */
22985
22986 static LONGEST
22987 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
22988 {
22989 if (attr->form == DW_FORM_sdata || attr->form == DW_FORM_implicit_const)
22990 return DW_SND (attr);
22991 else if (attr->form == DW_FORM_udata
22992 || attr->form == DW_FORM_data1
22993 || attr->form == DW_FORM_data2
22994 || attr->form == DW_FORM_data4
22995 || attr->form == DW_FORM_data8)
22996 return DW_UNSND (attr);
22997 else
22998 {
22999 /* For DW_FORM_data16 see attr_form_is_constant. */
23000 complaint (&symfile_complaints,
23001 _("Attribute value is not a constant (%s)"),
23002 dwarf_form_name (attr->form));
23003 return default_value;
23004 }
23005 }
23006
23007 /* Follow reference or signature attribute ATTR of SRC_DIE.
23008 On entry *REF_CU is the CU of SRC_DIE.
23009 On exit *REF_CU is the CU of the result. */
23010
23011 static struct die_info *
23012 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
23013 struct dwarf2_cu **ref_cu)
23014 {
23015 struct die_info *die;
23016
23017 if (attr_form_is_ref (attr))
23018 die = follow_die_ref (src_die, attr, ref_cu);
23019 else if (attr->form == DW_FORM_ref_sig8)
23020 die = follow_die_sig (src_die, attr, ref_cu);
23021 else
23022 {
23023 dump_die_for_error (src_die);
23024 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
23025 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23026 }
23027
23028 return die;
23029 }
23030
23031 /* Follow reference OFFSET.
23032 On entry *REF_CU is the CU of the source die referencing OFFSET.
23033 On exit *REF_CU is the CU of the result.
23034 Returns NULL if OFFSET is invalid. */
23035
23036 static struct die_info *
23037 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
23038 struct dwarf2_cu **ref_cu)
23039 {
23040 struct die_info temp_die;
23041 struct dwarf2_cu *target_cu, *cu = *ref_cu;
23042 struct dwarf2_per_objfile *dwarf2_per_objfile
23043 = cu->per_cu->dwarf2_per_objfile;
23044 struct objfile *objfile = dwarf2_per_objfile->objfile;
23045
23046 gdb_assert (cu->per_cu != NULL);
23047
23048 target_cu = cu;
23049
23050 if (cu->per_cu->is_debug_types)
23051 {
23052 /* .debug_types CUs cannot reference anything outside their CU.
23053 If they need to, they have to reference a signatured type via
23054 DW_FORM_ref_sig8. */
23055 if (!offset_in_cu_p (&cu->header, sect_off))
23056 return NULL;
23057 }
23058 else if (offset_in_dwz != cu->per_cu->is_dwz
23059 || !offset_in_cu_p (&cu->header, sect_off))
23060 {
23061 struct dwarf2_per_cu_data *per_cu;
23062
23063 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
23064 dwarf2_per_objfile);
23065
23066 /* If necessary, add it to the queue and load its DIEs. */
23067 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
23068 load_full_comp_unit (per_cu, cu->language);
23069
23070 target_cu = per_cu->cu;
23071 }
23072 else if (cu->dies == NULL)
23073 {
23074 /* We're loading full DIEs during partial symbol reading. */
23075 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
23076 load_full_comp_unit (cu->per_cu, language_minimal);
23077 }
23078
23079 *ref_cu = target_cu;
23080 temp_die.sect_off = sect_off;
23081 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
23082 &temp_die,
23083 to_underlying (sect_off));
23084 }
23085
23086 /* Follow reference attribute ATTR of SRC_DIE.
23087 On entry *REF_CU is the CU of SRC_DIE.
23088 On exit *REF_CU is the CU of the result. */
23089
23090 static struct die_info *
23091 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
23092 struct dwarf2_cu **ref_cu)
23093 {
23094 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
23095 struct dwarf2_cu *cu = *ref_cu;
23096 struct die_info *die;
23097
23098 die = follow_die_offset (sect_off,
23099 (attr->form == DW_FORM_GNU_ref_alt
23100 || cu->per_cu->is_dwz),
23101 ref_cu);
23102 if (!die)
23103 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
23104 "at 0x%x [in module %s]"),
23105 to_underlying (sect_off), to_underlying (src_die->sect_off),
23106 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
23107
23108 return die;
23109 }
23110
23111 /* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU.
23112 Returned value is intended for DW_OP_call*. Returned
23113 dwarf2_locexpr_baton->data has lifetime of
23114 PER_CU->DWARF2_PER_OBJFILE->OBJFILE. */
23115
23116 struct dwarf2_locexpr_baton
23117 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
23118 struct dwarf2_per_cu_data *per_cu,
23119 CORE_ADDR (*get_frame_pc) (void *baton),
23120 void *baton)
23121 {
23122 struct dwarf2_cu *cu;
23123 struct die_info *die;
23124 struct attribute *attr;
23125 struct dwarf2_locexpr_baton retval;
23126 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
23127 struct dwarf2_per_objfile *dwarf2_per_objfile
23128 = get_dwarf2_per_objfile (objfile);
23129
23130 if (per_cu->cu == NULL)
23131 load_cu (per_cu);
23132 cu = per_cu->cu;
23133 if (cu == NULL)
23134 {
23135 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23136 Instead just throw an error, not much else we can do. */
23137 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
23138 to_underlying (sect_off), objfile_name (objfile));
23139 }
23140
23141 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23142 if (!die)
23143 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
23144 to_underlying (sect_off), objfile_name (objfile));
23145
23146 attr = dwarf2_attr (die, DW_AT_location, cu);
23147 if (!attr)
23148 {
23149 /* DWARF: "If there is no such attribute, then there is no effect.".
23150 DATA is ignored if SIZE is 0. */
23151
23152 retval.data = NULL;
23153 retval.size = 0;
23154 }
23155 else if (attr_form_is_section_offset (attr))
23156 {
23157 struct dwarf2_loclist_baton loclist_baton;
23158 CORE_ADDR pc = (*get_frame_pc) (baton);
23159 size_t size;
23160
23161 fill_in_loclist_baton (cu, &loclist_baton, attr);
23162
23163 retval.data = dwarf2_find_location_expression (&loclist_baton,
23164 &size, pc);
23165 retval.size = size;
23166 }
23167 else
23168 {
23169 if (!attr_form_is_block (attr))
23170 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
23171 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
23172 to_underlying (sect_off), objfile_name (objfile));
23173
23174 retval.data = DW_BLOCK (attr)->data;
23175 retval.size = DW_BLOCK (attr)->size;
23176 }
23177 retval.per_cu = cu->per_cu;
23178
23179 age_cached_comp_units (dwarf2_per_objfile);
23180
23181 return retval;
23182 }
23183
23184 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
23185 offset. */
23186
23187 struct dwarf2_locexpr_baton
23188 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
23189 struct dwarf2_per_cu_data *per_cu,
23190 CORE_ADDR (*get_frame_pc) (void *baton),
23191 void *baton)
23192 {
23193 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
23194
23195 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
23196 }
23197
23198 /* Write a constant of a given type as target-ordered bytes into
23199 OBSTACK. */
23200
23201 static const gdb_byte *
23202 write_constant_as_bytes (struct obstack *obstack,
23203 enum bfd_endian byte_order,
23204 struct type *type,
23205 ULONGEST value,
23206 LONGEST *len)
23207 {
23208 gdb_byte *result;
23209
23210 *len = TYPE_LENGTH (type);
23211 result = (gdb_byte *) obstack_alloc (obstack, *len);
23212 store_unsigned_integer (result, *len, byte_order, value);
23213
23214 return result;
23215 }
23216
23217 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
23218 pointer to the constant bytes and set LEN to the length of the
23219 data. If memory is needed, allocate it on OBSTACK. If the DIE
23220 does not have a DW_AT_const_value, return NULL. */
23221
23222 const gdb_byte *
23223 dwarf2_fetch_constant_bytes (sect_offset sect_off,
23224 struct dwarf2_per_cu_data *per_cu,
23225 struct obstack *obstack,
23226 LONGEST *len)
23227 {
23228 struct dwarf2_cu *cu;
23229 struct die_info *die;
23230 struct attribute *attr;
23231 const gdb_byte *result = NULL;
23232 struct type *type;
23233 LONGEST value;
23234 enum bfd_endian byte_order;
23235 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
23236
23237 if (per_cu->cu == NULL)
23238 load_cu (per_cu);
23239 cu = per_cu->cu;
23240 if (cu == NULL)
23241 {
23242 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23243 Instead just throw an error, not much else we can do. */
23244 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
23245 to_underlying (sect_off), objfile_name (objfile));
23246 }
23247
23248 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23249 if (!die)
23250 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
23251 to_underlying (sect_off), objfile_name (objfile));
23252
23253
23254 attr = dwarf2_attr (die, DW_AT_const_value, cu);
23255 if (attr == NULL)
23256 return NULL;
23257
23258 byte_order = (bfd_big_endian (objfile->obfd)
23259 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
23260
23261 switch (attr->form)
23262 {
23263 case DW_FORM_addr:
23264 case DW_FORM_GNU_addr_index:
23265 {
23266 gdb_byte *tem;
23267
23268 *len = cu->header.addr_size;
23269 tem = (gdb_byte *) obstack_alloc (obstack, *len);
23270 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
23271 result = tem;
23272 }
23273 break;
23274 case DW_FORM_string:
23275 case DW_FORM_strp:
23276 case DW_FORM_GNU_str_index:
23277 case DW_FORM_GNU_strp_alt:
23278 /* DW_STRING is already allocated on the objfile obstack, point
23279 directly to it. */
23280 result = (const gdb_byte *) DW_STRING (attr);
23281 *len = strlen (DW_STRING (attr));
23282 break;
23283 case DW_FORM_block1:
23284 case DW_FORM_block2:
23285 case DW_FORM_block4:
23286 case DW_FORM_block:
23287 case DW_FORM_exprloc:
23288 case DW_FORM_data16:
23289 result = DW_BLOCK (attr)->data;
23290 *len = DW_BLOCK (attr)->size;
23291 break;
23292
23293 /* The DW_AT_const_value attributes are supposed to carry the
23294 symbol's value "represented as it would be on the target
23295 architecture." By the time we get here, it's already been
23296 converted to host endianness, so we just need to sign- or
23297 zero-extend it as appropriate. */
23298 case DW_FORM_data1:
23299 type = die_type (die, cu);
23300 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
23301 if (result == NULL)
23302 result = write_constant_as_bytes (obstack, byte_order,
23303 type, value, len);
23304 break;
23305 case DW_FORM_data2:
23306 type = die_type (die, cu);
23307 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
23308 if (result == NULL)
23309 result = write_constant_as_bytes (obstack, byte_order,
23310 type, value, len);
23311 break;
23312 case DW_FORM_data4:
23313 type = die_type (die, cu);
23314 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
23315 if (result == NULL)
23316 result = write_constant_as_bytes (obstack, byte_order,
23317 type, value, len);
23318 break;
23319 case DW_FORM_data8:
23320 type = die_type (die, cu);
23321 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
23322 if (result == NULL)
23323 result = write_constant_as_bytes (obstack, byte_order,
23324 type, value, len);
23325 break;
23326
23327 case DW_FORM_sdata:
23328 case DW_FORM_implicit_const:
23329 type = die_type (die, cu);
23330 result = write_constant_as_bytes (obstack, byte_order,
23331 type, DW_SND (attr), len);
23332 break;
23333
23334 case DW_FORM_udata:
23335 type = die_type (die, cu);
23336 result = write_constant_as_bytes (obstack, byte_order,
23337 type, DW_UNSND (attr), len);
23338 break;
23339
23340 default:
23341 complaint (&symfile_complaints,
23342 _("unsupported const value attribute form: '%s'"),
23343 dwarf_form_name (attr->form));
23344 break;
23345 }
23346
23347 return result;
23348 }
23349
23350 /* Return the type of the die at OFFSET in PER_CU. Return NULL if no
23351 valid type for this die is found. */
23352
23353 struct type *
23354 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
23355 struct dwarf2_per_cu_data *per_cu)
23356 {
23357 struct dwarf2_cu *cu;
23358 struct die_info *die;
23359
23360 if (per_cu->cu == NULL)
23361 load_cu (per_cu);
23362 cu = per_cu->cu;
23363 if (!cu)
23364 return NULL;
23365
23366 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23367 if (!die)
23368 return NULL;
23369
23370 return die_type (die, cu);
23371 }
23372
23373 /* Return the type of the DIE at DIE_OFFSET in the CU named by
23374 PER_CU. */
23375
23376 struct type *
23377 dwarf2_get_die_type (cu_offset die_offset,
23378 struct dwarf2_per_cu_data *per_cu)
23379 {
23380 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
23381 return get_die_type_at_offset (die_offset_sect, per_cu);
23382 }
23383
23384 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
23385 On entry *REF_CU is the CU of SRC_DIE.
23386 On exit *REF_CU is the CU of the result.
23387 Returns NULL if the referenced DIE isn't found. */
23388
23389 static struct die_info *
23390 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
23391 struct dwarf2_cu **ref_cu)
23392 {
23393 struct die_info temp_die;
23394 struct dwarf2_cu *sig_cu;
23395 struct die_info *die;
23396
23397 /* While it might be nice to assert sig_type->type == NULL here,
23398 we can get here for DW_AT_imported_declaration where we need
23399 the DIE not the type. */
23400
23401 /* If necessary, add it to the queue and load its DIEs. */
23402
23403 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
23404 read_signatured_type (sig_type);
23405
23406 sig_cu = sig_type->per_cu.cu;
23407 gdb_assert (sig_cu != NULL);
23408 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
23409 temp_die.sect_off = sig_type->type_offset_in_section;
23410 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
23411 to_underlying (temp_die.sect_off));
23412 if (die)
23413 {
23414 struct dwarf2_per_objfile *dwarf2_per_objfile
23415 = (*ref_cu)->per_cu->dwarf2_per_objfile;
23416
23417 /* For .gdb_index version 7 keep track of included TUs.
23418 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
23419 if (dwarf2_per_objfile->index_table != NULL
23420 && dwarf2_per_objfile->index_table->version <= 7)
23421 {
23422 VEC_safe_push (dwarf2_per_cu_ptr,
23423 (*ref_cu)->per_cu->imported_symtabs,
23424 sig_cu->per_cu);
23425 }
23426
23427 *ref_cu = sig_cu;
23428 return die;
23429 }
23430
23431 return NULL;
23432 }
23433
23434 /* Follow signatured type referenced by ATTR in SRC_DIE.
23435 On entry *REF_CU is the CU of SRC_DIE.
23436 On exit *REF_CU is the CU of the result.
23437 The result is the DIE of the type.
23438 If the referenced type cannot be found an error is thrown. */
23439
23440 static struct die_info *
23441 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
23442 struct dwarf2_cu **ref_cu)
23443 {
23444 ULONGEST signature = DW_SIGNATURE (attr);
23445 struct signatured_type *sig_type;
23446 struct die_info *die;
23447
23448 gdb_assert (attr->form == DW_FORM_ref_sig8);
23449
23450 sig_type = lookup_signatured_type (*ref_cu, signature);
23451 /* sig_type will be NULL if the signatured type is missing from
23452 the debug info. */
23453 if (sig_type == NULL)
23454 {
23455 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23456 " from DIE at 0x%x [in module %s]"),
23457 hex_string (signature), to_underlying (src_die->sect_off),
23458 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23459 }
23460
23461 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
23462 if (die == NULL)
23463 {
23464 dump_die_for_error (src_die);
23465 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23466 " from DIE at 0x%x [in module %s]"),
23467 hex_string (signature), to_underlying (src_die->sect_off),
23468 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23469 }
23470
23471 return die;
23472 }
23473
23474 /* Get the type specified by SIGNATURE referenced in DIE/CU,
23475 reading in and processing the type unit if necessary. */
23476
23477 static struct type *
23478 get_signatured_type (struct die_info *die, ULONGEST signature,
23479 struct dwarf2_cu *cu)
23480 {
23481 struct dwarf2_per_objfile *dwarf2_per_objfile
23482 = cu->per_cu->dwarf2_per_objfile;
23483 struct signatured_type *sig_type;
23484 struct dwarf2_cu *type_cu;
23485 struct die_info *type_die;
23486 struct type *type;
23487
23488 sig_type = lookup_signatured_type (cu, signature);
23489 /* sig_type will be NULL if the signatured type is missing from
23490 the debug info. */
23491 if (sig_type == NULL)
23492 {
23493 complaint (&symfile_complaints,
23494 _("Dwarf Error: Cannot find signatured DIE %s referenced"
23495 " from DIE at 0x%x [in module %s]"),
23496 hex_string (signature), to_underlying (die->sect_off),
23497 objfile_name (dwarf2_per_objfile->objfile));
23498 return build_error_marker_type (cu, die);
23499 }
23500
23501 /* If we already know the type we're done. */
23502 if (sig_type->type != NULL)
23503 return sig_type->type;
23504
23505 type_cu = cu;
23506 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
23507 if (type_die != NULL)
23508 {
23509 /* N.B. We need to call get_die_type to ensure only one type for this DIE
23510 is created. This is important, for example, because for c++ classes
23511 we need TYPE_NAME set which is only done by new_symbol. Blech. */
23512 type = read_type_die (type_die, type_cu);
23513 if (type == NULL)
23514 {
23515 complaint (&symfile_complaints,
23516 _("Dwarf Error: Cannot build signatured type %s"
23517 " referenced from DIE at 0x%x [in module %s]"),
23518 hex_string (signature), to_underlying (die->sect_off),
23519 objfile_name (dwarf2_per_objfile->objfile));
23520 type = build_error_marker_type (cu, die);
23521 }
23522 }
23523 else
23524 {
23525 complaint (&symfile_complaints,
23526 _("Dwarf Error: Problem reading signatured DIE %s referenced"
23527 " from DIE at 0x%x [in module %s]"),
23528 hex_string (signature), to_underlying (die->sect_off),
23529 objfile_name (dwarf2_per_objfile->objfile));
23530 type = build_error_marker_type (cu, die);
23531 }
23532 sig_type->type = type;
23533
23534 return type;
23535 }
23536
23537 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
23538 reading in and processing the type unit if necessary. */
23539
23540 static struct type *
23541 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
23542 struct dwarf2_cu *cu) /* ARI: editCase function */
23543 {
23544 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
23545 if (attr_form_is_ref (attr))
23546 {
23547 struct dwarf2_cu *type_cu = cu;
23548 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
23549
23550 return read_type_die (type_die, type_cu);
23551 }
23552 else if (attr->form == DW_FORM_ref_sig8)
23553 {
23554 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
23555 }
23556 else
23557 {
23558 struct dwarf2_per_objfile *dwarf2_per_objfile
23559 = cu->per_cu->dwarf2_per_objfile;
23560
23561 complaint (&symfile_complaints,
23562 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
23563 " at 0x%x [in module %s]"),
23564 dwarf_form_name (attr->form), to_underlying (die->sect_off),
23565 objfile_name (dwarf2_per_objfile->objfile));
23566 return build_error_marker_type (cu, die);
23567 }
23568 }
23569
23570 /* Load the DIEs associated with type unit PER_CU into memory. */
23571
23572 static void
23573 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
23574 {
23575 struct signatured_type *sig_type;
23576
23577 /* Caller is responsible for ensuring type_unit_groups don't get here. */
23578 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
23579
23580 /* We have the per_cu, but we need the signatured_type.
23581 Fortunately this is an easy translation. */
23582 gdb_assert (per_cu->is_debug_types);
23583 sig_type = (struct signatured_type *) per_cu;
23584
23585 gdb_assert (per_cu->cu == NULL);
23586
23587 read_signatured_type (sig_type);
23588
23589 gdb_assert (per_cu->cu != NULL);
23590 }
23591
23592 /* die_reader_func for read_signatured_type.
23593 This is identical to load_full_comp_unit_reader,
23594 but is kept separate for now. */
23595
23596 static void
23597 read_signatured_type_reader (const struct die_reader_specs *reader,
23598 const gdb_byte *info_ptr,
23599 struct die_info *comp_unit_die,
23600 int has_children,
23601 void *data)
23602 {
23603 struct dwarf2_cu *cu = reader->cu;
23604
23605 gdb_assert (cu->die_hash == NULL);
23606 cu->die_hash =
23607 htab_create_alloc_ex (cu->header.length / 12,
23608 die_hash,
23609 die_eq,
23610 NULL,
23611 &cu->comp_unit_obstack,
23612 hashtab_obstack_allocate,
23613 dummy_obstack_deallocate);
23614
23615 if (has_children)
23616 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
23617 &info_ptr, comp_unit_die);
23618 cu->dies = comp_unit_die;
23619 /* comp_unit_die is not stored in die_hash, no need. */
23620
23621 /* We try not to read any attributes in this function, because not
23622 all CUs needed for references have been loaded yet, and symbol
23623 table processing isn't initialized. But we have to set the CU language,
23624 or we won't be able to build types correctly.
23625 Similarly, if we do not read the producer, we can not apply
23626 producer-specific interpretation. */
23627 prepare_one_comp_unit (cu, cu->dies, language_minimal);
23628 }
23629
23630 /* Read in a signatured type and build its CU and DIEs.
23631 If the type is a stub for the real type in a DWO file,
23632 read in the real type from the DWO file as well. */
23633
23634 static void
23635 read_signatured_type (struct signatured_type *sig_type)
23636 {
23637 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
23638
23639 gdb_assert (per_cu->is_debug_types);
23640 gdb_assert (per_cu->cu == NULL);
23641
23642 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
23643 read_signatured_type_reader, NULL);
23644 sig_type->per_cu.tu_read = 1;
23645 }
23646
23647 /* Decode simple location descriptions.
23648 Given a pointer to a dwarf block that defines a location, compute
23649 the location and return the value.
23650
23651 NOTE drow/2003-11-18: This function is called in two situations
23652 now: for the address of static or global variables (partial symbols
23653 only) and for offsets into structures which are expected to be
23654 (more or less) constant. The partial symbol case should go away,
23655 and only the constant case should remain. That will let this
23656 function complain more accurately. A few special modes are allowed
23657 without complaint for global variables (for instance, global
23658 register values and thread-local values).
23659
23660 A location description containing no operations indicates that the
23661 object is optimized out. The return value is 0 for that case.
23662 FIXME drow/2003-11-16: No callers check for this case any more; soon all
23663 callers will only want a very basic result and this can become a
23664 complaint.
23665
23666 Note that stack[0] is unused except as a default error return. */
23667
23668 static CORE_ADDR
23669 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
23670 {
23671 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
23672 size_t i;
23673 size_t size = blk->size;
23674 const gdb_byte *data = blk->data;
23675 CORE_ADDR stack[64];
23676 int stacki;
23677 unsigned int bytes_read, unsnd;
23678 gdb_byte op;
23679
23680 i = 0;
23681 stacki = 0;
23682 stack[stacki] = 0;
23683 stack[++stacki] = 0;
23684
23685 while (i < size)
23686 {
23687 op = data[i++];
23688 switch (op)
23689 {
23690 case DW_OP_lit0:
23691 case DW_OP_lit1:
23692 case DW_OP_lit2:
23693 case DW_OP_lit3:
23694 case DW_OP_lit4:
23695 case DW_OP_lit5:
23696 case DW_OP_lit6:
23697 case DW_OP_lit7:
23698 case DW_OP_lit8:
23699 case DW_OP_lit9:
23700 case DW_OP_lit10:
23701 case DW_OP_lit11:
23702 case DW_OP_lit12:
23703 case DW_OP_lit13:
23704 case DW_OP_lit14:
23705 case DW_OP_lit15:
23706 case DW_OP_lit16:
23707 case DW_OP_lit17:
23708 case DW_OP_lit18:
23709 case DW_OP_lit19:
23710 case DW_OP_lit20:
23711 case DW_OP_lit21:
23712 case DW_OP_lit22:
23713 case DW_OP_lit23:
23714 case DW_OP_lit24:
23715 case DW_OP_lit25:
23716 case DW_OP_lit26:
23717 case DW_OP_lit27:
23718 case DW_OP_lit28:
23719 case DW_OP_lit29:
23720 case DW_OP_lit30:
23721 case DW_OP_lit31:
23722 stack[++stacki] = op - DW_OP_lit0;
23723 break;
23724
23725 case DW_OP_reg0:
23726 case DW_OP_reg1:
23727 case DW_OP_reg2:
23728 case DW_OP_reg3:
23729 case DW_OP_reg4:
23730 case DW_OP_reg5:
23731 case DW_OP_reg6:
23732 case DW_OP_reg7:
23733 case DW_OP_reg8:
23734 case DW_OP_reg9:
23735 case DW_OP_reg10:
23736 case DW_OP_reg11:
23737 case DW_OP_reg12:
23738 case DW_OP_reg13:
23739 case DW_OP_reg14:
23740 case DW_OP_reg15:
23741 case DW_OP_reg16:
23742 case DW_OP_reg17:
23743 case DW_OP_reg18:
23744 case DW_OP_reg19:
23745 case DW_OP_reg20:
23746 case DW_OP_reg21:
23747 case DW_OP_reg22:
23748 case DW_OP_reg23:
23749 case DW_OP_reg24:
23750 case DW_OP_reg25:
23751 case DW_OP_reg26:
23752 case DW_OP_reg27:
23753 case DW_OP_reg28:
23754 case DW_OP_reg29:
23755 case DW_OP_reg30:
23756 case DW_OP_reg31:
23757 stack[++stacki] = op - DW_OP_reg0;
23758 if (i < size)
23759 dwarf2_complex_location_expr_complaint ();
23760 break;
23761
23762 case DW_OP_regx:
23763 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
23764 i += bytes_read;
23765 stack[++stacki] = unsnd;
23766 if (i < size)
23767 dwarf2_complex_location_expr_complaint ();
23768 break;
23769
23770 case DW_OP_addr:
23771 stack[++stacki] = read_address (objfile->obfd, &data[i],
23772 cu, &bytes_read);
23773 i += bytes_read;
23774 break;
23775
23776 case DW_OP_const1u:
23777 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
23778 i += 1;
23779 break;
23780
23781 case DW_OP_const1s:
23782 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
23783 i += 1;
23784 break;
23785
23786 case DW_OP_const2u:
23787 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
23788 i += 2;
23789 break;
23790
23791 case DW_OP_const2s:
23792 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
23793 i += 2;
23794 break;
23795
23796 case DW_OP_const4u:
23797 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
23798 i += 4;
23799 break;
23800
23801 case DW_OP_const4s:
23802 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
23803 i += 4;
23804 break;
23805
23806 case DW_OP_const8u:
23807 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
23808 i += 8;
23809 break;
23810
23811 case DW_OP_constu:
23812 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
23813 &bytes_read);
23814 i += bytes_read;
23815 break;
23816
23817 case DW_OP_consts:
23818 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
23819 i += bytes_read;
23820 break;
23821
23822 case DW_OP_dup:
23823 stack[stacki + 1] = stack[stacki];
23824 stacki++;
23825 break;
23826
23827 case DW_OP_plus:
23828 stack[stacki - 1] += stack[stacki];
23829 stacki--;
23830 break;
23831
23832 case DW_OP_plus_uconst:
23833 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
23834 &bytes_read);
23835 i += bytes_read;
23836 break;
23837
23838 case DW_OP_minus:
23839 stack[stacki - 1] -= stack[stacki];
23840 stacki--;
23841 break;
23842
23843 case DW_OP_deref:
23844 /* If we're not the last op, then we definitely can't encode
23845 this using GDB's address_class enum. This is valid for partial
23846 global symbols, although the variable's address will be bogus
23847 in the psymtab. */
23848 if (i < size)
23849 dwarf2_complex_location_expr_complaint ();
23850 break;
23851
23852 case DW_OP_GNU_push_tls_address:
23853 case DW_OP_form_tls_address:
23854 /* The top of the stack has the offset from the beginning
23855 of the thread control block at which the variable is located. */
23856 /* Nothing should follow this operator, so the top of stack would
23857 be returned. */
23858 /* This is valid for partial global symbols, but the variable's
23859 address will be bogus in the psymtab. Make it always at least
23860 non-zero to not look as a variable garbage collected by linker
23861 which have DW_OP_addr 0. */
23862 if (i < size)
23863 dwarf2_complex_location_expr_complaint ();
23864 stack[stacki]++;
23865 break;
23866
23867 case DW_OP_GNU_uninit:
23868 break;
23869
23870 case DW_OP_GNU_addr_index:
23871 case DW_OP_GNU_const_index:
23872 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
23873 &bytes_read);
23874 i += bytes_read;
23875 break;
23876
23877 default:
23878 {
23879 const char *name = get_DW_OP_name (op);
23880
23881 if (name)
23882 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
23883 name);
23884 else
23885 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
23886 op);
23887 }
23888
23889 return (stack[stacki]);
23890 }
23891
23892 /* Enforce maximum stack depth of SIZE-1 to avoid writing
23893 outside of the allocated space. Also enforce minimum>0. */
23894 if (stacki >= ARRAY_SIZE (stack) - 1)
23895 {
23896 complaint (&symfile_complaints,
23897 _("location description stack overflow"));
23898 return 0;
23899 }
23900
23901 if (stacki <= 0)
23902 {
23903 complaint (&symfile_complaints,
23904 _("location description stack underflow"));
23905 return 0;
23906 }
23907 }
23908 return (stack[stacki]);
23909 }
23910
23911 /* memory allocation interface */
23912
23913 static struct dwarf_block *
23914 dwarf_alloc_block (struct dwarf2_cu *cu)
23915 {
23916 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
23917 }
23918
23919 static struct die_info *
23920 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
23921 {
23922 struct die_info *die;
23923 size_t size = sizeof (struct die_info);
23924
23925 if (num_attrs > 1)
23926 size += (num_attrs - 1) * sizeof (struct attribute);
23927
23928 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
23929 memset (die, 0, sizeof (struct die_info));
23930 return (die);
23931 }
23932
23933 \f
23934 /* Macro support. */
23935
23936 /* Return file name relative to the compilation directory of file number I in
23937 *LH's file name table. The result is allocated using xmalloc; the caller is
23938 responsible for freeing it. */
23939
23940 static char *
23941 file_file_name (int file, struct line_header *lh)
23942 {
23943 /* Is the file number a valid index into the line header's file name
23944 table? Remember that file numbers start with one, not zero. */
23945 if (1 <= file && file <= lh->file_names.size ())
23946 {
23947 const file_entry &fe = lh->file_names[file - 1];
23948
23949 if (!IS_ABSOLUTE_PATH (fe.name))
23950 {
23951 const char *dir = fe.include_dir (lh);
23952 if (dir != NULL)
23953 return concat (dir, SLASH_STRING, fe.name, (char *) NULL);
23954 }
23955 return xstrdup (fe.name);
23956 }
23957 else
23958 {
23959 /* The compiler produced a bogus file number. We can at least
23960 record the macro definitions made in the file, even if we
23961 won't be able to find the file by name. */
23962 char fake_name[80];
23963
23964 xsnprintf (fake_name, sizeof (fake_name),
23965 "<bad macro file number %d>", file);
23966
23967 complaint (&symfile_complaints,
23968 _("bad file number in macro information (%d)"),
23969 file);
23970
23971 return xstrdup (fake_name);
23972 }
23973 }
23974
23975 /* Return the full name of file number I in *LH's file name table.
23976 Use COMP_DIR as the name of the current directory of the
23977 compilation. The result is allocated using xmalloc; the caller is
23978 responsible for freeing it. */
23979 static char *
23980 file_full_name (int file, struct line_header *lh, const char *comp_dir)
23981 {
23982 /* Is the file number a valid index into the line header's file name
23983 table? Remember that file numbers start with one, not zero. */
23984 if (1 <= file && file <= lh->file_names.size ())
23985 {
23986 char *relative = file_file_name (file, lh);
23987
23988 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
23989 return relative;
23990 return reconcat (relative, comp_dir, SLASH_STRING,
23991 relative, (char *) NULL);
23992 }
23993 else
23994 return file_file_name (file, lh);
23995 }
23996
23997
23998 static struct macro_source_file *
23999 macro_start_file (int file, int line,
24000 struct macro_source_file *current_file,
24001 struct line_header *lh)
24002 {
24003 /* File name relative to the compilation directory of this source file. */
24004 char *file_name = file_file_name (file, lh);
24005
24006 if (! current_file)
24007 {
24008 /* Note: We don't create a macro table for this compilation unit
24009 at all until we actually get a filename. */
24010 struct macro_table *macro_table = get_macro_table ();
24011
24012 /* If we have no current file, then this must be the start_file
24013 directive for the compilation unit's main source file. */
24014 current_file = macro_set_main (macro_table, file_name);
24015 macro_define_special (macro_table);
24016 }
24017 else
24018 current_file = macro_include (current_file, line, file_name);
24019
24020 xfree (file_name);
24021
24022 return current_file;
24023 }
24024
24025 static const char *
24026 consume_improper_spaces (const char *p, const char *body)
24027 {
24028 if (*p == ' ')
24029 {
24030 complaint (&symfile_complaints,
24031 _("macro definition contains spaces "
24032 "in formal argument list:\n`%s'"),
24033 body);
24034
24035 while (*p == ' ')
24036 p++;
24037 }
24038
24039 return p;
24040 }
24041
24042
24043 static void
24044 parse_macro_definition (struct macro_source_file *file, int line,
24045 const char *body)
24046 {
24047 const char *p;
24048
24049 /* The body string takes one of two forms. For object-like macro
24050 definitions, it should be:
24051
24052 <macro name> " " <definition>
24053
24054 For function-like macro definitions, it should be:
24055
24056 <macro name> "() " <definition>
24057 or
24058 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
24059
24060 Spaces may appear only where explicitly indicated, and in the
24061 <definition>.
24062
24063 The Dwarf 2 spec says that an object-like macro's name is always
24064 followed by a space, but versions of GCC around March 2002 omit
24065 the space when the macro's definition is the empty string.
24066
24067 The Dwarf 2 spec says that there should be no spaces between the
24068 formal arguments in a function-like macro's formal argument list,
24069 but versions of GCC around March 2002 include spaces after the
24070 commas. */
24071
24072
24073 /* Find the extent of the macro name. The macro name is terminated
24074 by either a space or null character (for an object-like macro) or
24075 an opening paren (for a function-like macro). */
24076 for (p = body; *p; p++)
24077 if (*p == ' ' || *p == '(')
24078 break;
24079
24080 if (*p == ' ' || *p == '\0')
24081 {
24082 /* It's an object-like macro. */
24083 int name_len = p - body;
24084 char *name = savestring (body, name_len);
24085 const char *replacement;
24086
24087 if (*p == ' ')
24088 replacement = body + name_len + 1;
24089 else
24090 {
24091 dwarf2_macro_malformed_definition_complaint (body);
24092 replacement = body + name_len;
24093 }
24094
24095 macro_define_object (file, line, name, replacement);
24096
24097 xfree (name);
24098 }
24099 else if (*p == '(')
24100 {
24101 /* It's a function-like macro. */
24102 char *name = savestring (body, p - body);
24103 int argc = 0;
24104 int argv_size = 1;
24105 char **argv = XNEWVEC (char *, argv_size);
24106
24107 p++;
24108
24109 p = consume_improper_spaces (p, body);
24110
24111 /* Parse the formal argument list. */
24112 while (*p && *p != ')')
24113 {
24114 /* Find the extent of the current argument name. */
24115 const char *arg_start = p;
24116
24117 while (*p && *p != ',' && *p != ')' && *p != ' ')
24118 p++;
24119
24120 if (! *p || p == arg_start)
24121 dwarf2_macro_malformed_definition_complaint (body);
24122 else
24123 {
24124 /* Make sure argv has room for the new argument. */
24125 if (argc >= argv_size)
24126 {
24127 argv_size *= 2;
24128 argv = XRESIZEVEC (char *, argv, argv_size);
24129 }
24130
24131 argv[argc++] = savestring (arg_start, p - arg_start);
24132 }
24133
24134 p = consume_improper_spaces (p, body);
24135
24136 /* Consume the comma, if present. */
24137 if (*p == ',')
24138 {
24139 p++;
24140
24141 p = consume_improper_spaces (p, body);
24142 }
24143 }
24144
24145 if (*p == ')')
24146 {
24147 p++;
24148
24149 if (*p == ' ')
24150 /* Perfectly formed definition, no complaints. */
24151 macro_define_function (file, line, name,
24152 argc, (const char **) argv,
24153 p + 1);
24154 else if (*p == '\0')
24155 {
24156 /* Complain, but do define it. */
24157 dwarf2_macro_malformed_definition_complaint (body);
24158 macro_define_function (file, line, name,
24159 argc, (const char **) argv,
24160 p);
24161 }
24162 else
24163 /* Just complain. */
24164 dwarf2_macro_malformed_definition_complaint (body);
24165 }
24166 else
24167 /* Just complain. */
24168 dwarf2_macro_malformed_definition_complaint (body);
24169
24170 xfree (name);
24171 {
24172 int i;
24173
24174 for (i = 0; i < argc; i++)
24175 xfree (argv[i]);
24176 }
24177 xfree (argv);
24178 }
24179 else
24180 dwarf2_macro_malformed_definition_complaint (body);
24181 }
24182
24183 /* Skip some bytes from BYTES according to the form given in FORM.
24184 Returns the new pointer. */
24185
24186 static const gdb_byte *
24187 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
24188 enum dwarf_form form,
24189 unsigned int offset_size,
24190 struct dwarf2_section_info *section)
24191 {
24192 unsigned int bytes_read;
24193
24194 switch (form)
24195 {
24196 case DW_FORM_data1:
24197 case DW_FORM_flag:
24198 ++bytes;
24199 break;
24200
24201 case DW_FORM_data2:
24202 bytes += 2;
24203 break;
24204
24205 case DW_FORM_data4:
24206 bytes += 4;
24207 break;
24208
24209 case DW_FORM_data8:
24210 bytes += 8;
24211 break;
24212
24213 case DW_FORM_data16:
24214 bytes += 16;
24215 break;
24216
24217 case DW_FORM_string:
24218 read_direct_string (abfd, bytes, &bytes_read);
24219 bytes += bytes_read;
24220 break;
24221
24222 case DW_FORM_sec_offset:
24223 case DW_FORM_strp:
24224 case DW_FORM_GNU_strp_alt:
24225 bytes += offset_size;
24226 break;
24227
24228 case DW_FORM_block:
24229 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
24230 bytes += bytes_read;
24231 break;
24232
24233 case DW_FORM_block1:
24234 bytes += 1 + read_1_byte (abfd, bytes);
24235 break;
24236 case DW_FORM_block2:
24237 bytes += 2 + read_2_bytes (abfd, bytes);
24238 break;
24239 case DW_FORM_block4:
24240 bytes += 4 + read_4_bytes (abfd, bytes);
24241 break;
24242
24243 case DW_FORM_sdata:
24244 case DW_FORM_udata:
24245 case DW_FORM_GNU_addr_index:
24246 case DW_FORM_GNU_str_index:
24247 bytes = gdb_skip_leb128 (bytes, buffer_end);
24248 if (bytes == NULL)
24249 {
24250 dwarf2_section_buffer_overflow_complaint (section);
24251 return NULL;
24252 }
24253 break;
24254
24255 case DW_FORM_implicit_const:
24256 break;
24257
24258 default:
24259 {
24260 complaint (&symfile_complaints,
24261 _("invalid form 0x%x in `%s'"),
24262 form, get_section_name (section));
24263 return NULL;
24264 }
24265 }
24266
24267 return bytes;
24268 }
24269
24270 /* A helper for dwarf_decode_macros that handles skipping an unknown
24271 opcode. Returns an updated pointer to the macro data buffer; or,
24272 on error, issues a complaint and returns NULL. */
24273
24274 static const gdb_byte *
24275 skip_unknown_opcode (unsigned int opcode,
24276 const gdb_byte **opcode_definitions,
24277 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24278 bfd *abfd,
24279 unsigned int offset_size,
24280 struct dwarf2_section_info *section)
24281 {
24282 unsigned int bytes_read, i;
24283 unsigned long arg;
24284 const gdb_byte *defn;
24285
24286 if (opcode_definitions[opcode] == NULL)
24287 {
24288 complaint (&symfile_complaints,
24289 _("unrecognized DW_MACFINO opcode 0x%x"),
24290 opcode);
24291 return NULL;
24292 }
24293
24294 defn = opcode_definitions[opcode];
24295 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
24296 defn += bytes_read;
24297
24298 for (i = 0; i < arg; ++i)
24299 {
24300 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
24301 (enum dwarf_form) defn[i], offset_size,
24302 section);
24303 if (mac_ptr == NULL)
24304 {
24305 /* skip_form_bytes already issued the complaint. */
24306 return NULL;
24307 }
24308 }
24309
24310 return mac_ptr;
24311 }
24312
24313 /* A helper function which parses the header of a macro section.
24314 If the macro section is the extended (for now called "GNU") type,
24315 then this updates *OFFSET_SIZE. Returns a pointer to just after
24316 the header, or issues a complaint and returns NULL on error. */
24317
24318 static const gdb_byte *
24319 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
24320 bfd *abfd,
24321 const gdb_byte *mac_ptr,
24322 unsigned int *offset_size,
24323 int section_is_gnu)
24324 {
24325 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
24326
24327 if (section_is_gnu)
24328 {
24329 unsigned int version, flags;
24330
24331 version = read_2_bytes (abfd, mac_ptr);
24332 if (version != 4 && version != 5)
24333 {
24334 complaint (&symfile_complaints,
24335 _("unrecognized version `%d' in .debug_macro section"),
24336 version);
24337 return NULL;
24338 }
24339 mac_ptr += 2;
24340
24341 flags = read_1_byte (abfd, mac_ptr);
24342 ++mac_ptr;
24343 *offset_size = (flags & 1) ? 8 : 4;
24344
24345 if ((flags & 2) != 0)
24346 /* We don't need the line table offset. */
24347 mac_ptr += *offset_size;
24348
24349 /* Vendor opcode descriptions. */
24350 if ((flags & 4) != 0)
24351 {
24352 unsigned int i, count;
24353
24354 count = read_1_byte (abfd, mac_ptr);
24355 ++mac_ptr;
24356 for (i = 0; i < count; ++i)
24357 {
24358 unsigned int opcode, bytes_read;
24359 unsigned long arg;
24360
24361 opcode = read_1_byte (abfd, mac_ptr);
24362 ++mac_ptr;
24363 opcode_definitions[opcode] = mac_ptr;
24364 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24365 mac_ptr += bytes_read;
24366 mac_ptr += arg;
24367 }
24368 }
24369 }
24370
24371 return mac_ptr;
24372 }
24373
24374 /* A helper for dwarf_decode_macros that handles the GNU extensions,
24375 including DW_MACRO_import. */
24376
24377 static void
24378 dwarf_decode_macro_bytes (struct dwarf2_per_objfile *dwarf2_per_objfile,
24379 bfd *abfd,
24380 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24381 struct macro_source_file *current_file,
24382 struct line_header *lh,
24383 struct dwarf2_section_info *section,
24384 int section_is_gnu, int section_is_dwz,
24385 unsigned int offset_size,
24386 htab_t include_hash)
24387 {
24388 struct objfile *objfile = dwarf2_per_objfile->objfile;
24389 enum dwarf_macro_record_type macinfo_type;
24390 int at_commandline;
24391 const gdb_byte *opcode_definitions[256];
24392
24393 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24394 &offset_size, section_is_gnu);
24395 if (mac_ptr == NULL)
24396 {
24397 /* We already issued a complaint. */
24398 return;
24399 }
24400
24401 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
24402 GDB is still reading the definitions from command line. First
24403 DW_MACINFO_start_file will need to be ignored as it was already executed
24404 to create CURRENT_FILE for the main source holding also the command line
24405 definitions. On first met DW_MACINFO_start_file this flag is reset to
24406 normally execute all the remaining DW_MACINFO_start_file macinfos. */
24407
24408 at_commandline = 1;
24409
24410 do
24411 {
24412 /* Do we at least have room for a macinfo type byte? */
24413 if (mac_ptr >= mac_end)
24414 {
24415 dwarf2_section_buffer_overflow_complaint (section);
24416 break;
24417 }
24418
24419 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24420 mac_ptr++;
24421
24422 /* Note that we rely on the fact that the corresponding GNU and
24423 DWARF constants are the same. */
24424 DIAGNOSTIC_PUSH
24425 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24426 switch (macinfo_type)
24427 {
24428 /* A zero macinfo type indicates the end of the macro
24429 information. */
24430 case 0:
24431 break;
24432
24433 case DW_MACRO_define:
24434 case DW_MACRO_undef:
24435 case DW_MACRO_define_strp:
24436 case DW_MACRO_undef_strp:
24437 case DW_MACRO_define_sup:
24438 case DW_MACRO_undef_sup:
24439 {
24440 unsigned int bytes_read;
24441 int line;
24442 const char *body;
24443 int is_define;
24444
24445 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24446 mac_ptr += bytes_read;
24447
24448 if (macinfo_type == DW_MACRO_define
24449 || macinfo_type == DW_MACRO_undef)
24450 {
24451 body = read_direct_string (abfd, mac_ptr, &bytes_read);
24452 mac_ptr += bytes_read;
24453 }
24454 else
24455 {
24456 LONGEST str_offset;
24457
24458 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
24459 mac_ptr += offset_size;
24460
24461 if (macinfo_type == DW_MACRO_define_sup
24462 || macinfo_type == DW_MACRO_undef_sup
24463 || section_is_dwz)
24464 {
24465 struct dwz_file *dwz
24466 = dwarf2_get_dwz_file (dwarf2_per_objfile);
24467
24468 body = read_indirect_string_from_dwz (objfile,
24469 dwz, str_offset);
24470 }
24471 else
24472 body = read_indirect_string_at_offset (dwarf2_per_objfile,
24473 abfd, str_offset);
24474 }
24475
24476 is_define = (macinfo_type == DW_MACRO_define
24477 || macinfo_type == DW_MACRO_define_strp
24478 || macinfo_type == DW_MACRO_define_sup);
24479 if (! current_file)
24480 {
24481 /* DWARF violation as no main source is present. */
24482 complaint (&symfile_complaints,
24483 _("debug info with no main source gives macro %s "
24484 "on line %d: %s"),
24485 is_define ? _("definition") : _("undefinition"),
24486 line, body);
24487 break;
24488 }
24489 if ((line == 0 && !at_commandline)
24490 || (line != 0 && at_commandline))
24491 complaint (&symfile_complaints,
24492 _("debug info gives %s macro %s with %s line %d: %s"),
24493 at_commandline ? _("command-line") : _("in-file"),
24494 is_define ? _("definition") : _("undefinition"),
24495 line == 0 ? _("zero") : _("non-zero"), line, body);
24496
24497 if (is_define)
24498 parse_macro_definition (current_file, line, body);
24499 else
24500 {
24501 gdb_assert (macinfo_type == DW_MACRO_undef
24502 || macinfo_type == DW_MACRO_undef_strp
24503 || macinfo_type == DW_MACRO_undef_sup);
24504 macro_undef (current_file, line, body);
24505 }
24506 }
24507 break;
24508
24509 case DW_MACRO_start_file:
24510 {
24511 unsigned int bytes_read;
24512 int line, file;
24513
24514 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24515 mac_ptr += bytes_read;
24516 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24517 mac_ptr += bytes_read;
24518
24519 if ((line == 0 && !at_commandline)
24520 || (line != 0 && at_commandline))
24521 complaint (&symfile_complaints,
24522 _("debug info gives source %d included "
24523 "from %s at %s line %d"),
24524 file, at_commandline ? _("command-line") : _("file"),
24525 line == 0 ? _("zero") : _("non-zero"), line);
24526
24527 if (at_commandline)
24528 {
24529 /* This DW_MACRO_start_file was executed in the
24530 pass one. */
24531 at_commandline = 0;
24532 }
24533 else
24534 current_file = macro_start_file (file, line, current_file, lh);
24535 }
24536 break;
24537
24538 case DW_MACRO_end_file:
24539 if (! current_file)
24540 complaint (&symfile_complaints,
24541 _("macro debug info has an unmatched "
24542 "`close_file' directive"));
24543 else
24544 {
24545 current_file = current_file->included_by;
24546 if (! current_file)
24547 {
24548 enum dwarf_macro_record_type next_type;
24549
24550 /* GCC circa March 2002 doesn't produce the zero
24551 type byte marking the end of the compilation
24552 unit. Complain if it's not there, but exit no
24553 matter what. */
24554
24555 /* Do we at least have room for a macinfo type byte? */
24556 if (mac_ptr >= mac_end)
24557 {
24558 dwarf2_section_buffer_overflow_complaint (section);
24559 return;
24560 }
24561
24562 /* We don't increment mac_ptr here, so this is just
24563 a look-ahead. */
24564 next_type
24565 = (enum dwarf_macro_record_type) read_1_byte (abfd,
24566 mac_ptr);
24567 if (next_type != 0)
24568 complaint (&symfile_complaints,
24569 _("no terminating 0-type entry for "
24570 "macros in `.debug_macinfo' section"));
24571
24572 return;
24573 }
24574 }
24575 break;
24576
24577 case DW_MACRO_import:
24578 case DW_MACRO_import_sup:
24579 {
24580 LONGEST offset;
24581 void **slot;
24582 bfd *include_bfd = abfd;
24583 struct dwarf2_section_info *include_section = section;
24584 const gdb_byte *include_mac_end = mac_end;
24585 int is_dwz = section_is_dwz;
24586 const gdb_byte *new_mac_ptr;
24587
24588 offset = read_offset_1 (abfd, mac_ptr, offset_size);
24589 mac_ptr += offset_size;
24590
24591 if (macinfo_type == DW_MACRO_import_sup)
24592 {
24593 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
24594
24595 dwarf2_read_section (objfile, &dwz->macro);
24596
24597 include_section = &dwz->macro;
24598 include_bfd = get_section_bfd_owner (include_section);
24599 include_mac_end = dwz->macro.buffer + dwz->macro.size;
24600 is_dwz = 1;
24601 }
24602
24603 new_mac_ptr = include_section->buffer + offset;
24604 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
24605
24606 if (*slot != NULL)
24607 {
24608 /* This has actually happened; see
24609 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
24610 complaint (&symfile_complaints,
24611 _("recursive DW_MACRO_import in "
24612 ".debug_macro section"));
24613 }
24614 else
24615 {
24616 *slot = (void *) new_mac_ptr;
24617
24618 dwarf_decode_macro_bytes (dwarf2_per_objfile,
24619 include_bfd, new_mac_ptr,
24620 include_mac_end, current_file, lh,
24621 section, section_is_gnu, is_dwz,
24622 offset_size, include_hash);
24623
24624 htab_remove_elt (include_hash, (void *) new_mac_ptr);
24625 }
24626 }
24627 break;
24628
24629 case DW_MACINFO_vendor_ext:
24630 if (!section_is_gnu)
24631 {
24632 unsigned int bytes_read;
24633
24634 /* This reads the constant, but since we don't recognize
24635 any vendor extensions, we ignore it. */
24636 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24637 mac_ptr += bytes_read;
24638 read_direct_string (abfd, mac_ptr, &bytes_read);
24639 mac_ptr += bytes_read;
24640
24641 /* We don't recognize any vendor extensions. */
24642 break;
24643 }
24644 /* FALLTHROUGH */
24645
24646 default:
24647 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24648 mac_ptr, mac_end, abfd, offset_size,
24649 section);
24650 if (mac_ptr == NULL)
24651 return;
24652 break;
24653 }
24654 DIAGNOSTIC_POP
24655 } while (macinfo_type != 0);
24656 }
24657
24658 static void
24659 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
24660 int section_is_gnu)
24661 {
24662 struct dwarf2_per_objfile *dwarf2_per_objfile
24663 = cu->per_cu->dwarf2_per_objfile;
24664 struct objfile *objfile = dwarf2_per_objfile->objfile;
24665 struct line_header *lh = cu->line_header;
24666 bfd *abfd;
24667 const gdb_byte *mac_ptr, *mac_end;
24668 struct macro_source_file *current_file = 0;
24669 enum dwarf_macro_record_type macinfo_type;
24670 unsigned int offset_size = cu->header.offset_size;
24671 const gdb_byte *opcode_definitions[256];
24672 void **slot;
24673 struct dwarf2_section_info *section;
24674 const char *section_name;
24675
24676 if (cu->dwo_unit != NULL)
24677 {
24678 if (section_is_gnu)
24679 {
24680 section = &cu->dwo_unit->dwo_file->sections.macro;
24681 section_name = ".debug_macro.dwo";
24682 }
24683 else
24684 {
24685 section = &cu->dwo_unit->dwo_file->sections.macinfo;
24686 section_name = ".debug_macinfo.dwo";
24687 }
24688 }
24689 else
24690 {
24691 if (section_is_gnu)
24692 {
24693 section = &dwarf2_per_objfile->macro;
24694 section_name = ".debug_macro";
24695 }
24696 else
24697 {
24698 section = &dwarf2_per_objfile->macinfo;
24699 section_name = ".debug_macinfo";
24700 }
24701 }
24702
24703 dwarf2_read_section (objfile, section);
24704 if (section->buffer == NULL)
24705 {
24706 complaint (&symfile_complaints, _("missing %s section"), section_name);
24707 return;
24708 }
24709 abfd = get_section_bfd_owner (section);
24710
24711 /* First pass: Find the name of the base filename.
24712 This filename is needed in order to process all macros whose definition
24713 (or undefinition) comes from the command line. These macros are defined
24714 before the first DW_MACINFO_start_file entry, and yet still need to be
24715 associated to the base file.
24716
24717 To determine the base file name, we scan the macro definitions until we
24718 reach the first DW_MACINFO_start_file entry. We then initialize
24719 CURRENT_FILE accordingly so that any macro definition found before the
24720 first DW_MACINFO_start_file can still be associated to the base file. */
24721
24722 mac_ptr = section->buffer + offset;
24723 mac_end = section->buffer + section->size;
24724
24725 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24726 &offset_size, section_is_gnu);
24727 if (mac_ptr == NULL)
24728 {
24729 /* We already issued a complaint. */
24730 return;
24731 }
24732
24733 do
24734 {
24735 /* Do we at least have room for a macinfo type byte? */
24736 if (mac_ptr >= mac_end)
24737 {
24738 /* Complaint is printed during the second pass as GDB will probably
24739 stop the first pass earlier upon finding
24740 DW_MACINFO_start_file. */
24741 break;
24742 }
24743
24744 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24745 mac_ptr++;
24746
24747 /* Note that we rely on the fact that the corresponding GNU and
24748 DWARF constants are the same. */
24749 DIAGNOSTIC_PUSH
24750 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24751 switch (macinfo_type)
24752 {
24753 /* A zero macinfo type indicates the end of the macro
24754 information. */
24755 case 0:
24756 break;
24757
24758 case DW_MACRO_define:
24759 case DW_MACRO_undef:
24760 /* Only skip the data by MAC_PTR. */
24761 {
24762 unsigned int bytes_read;
24763
24764 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24765 mac_ptr += bytes_read;
24766 read_direct_string (abfd, mac_ptr, &bytes_read);
24767 mac_ptr += bytes_read;
24768 }
24769 break;
24770
24771 case DW_MACRO_start_file:
24772 {
24773 unsigned int bytes_read;
24774 int line, file;
24775
24776 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24777 mac_ptr += bytes_read;
24778 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24779 mac_ptr += bytes_read;
24780
24781 current_file = macro_start_file (file, line, current_file, lh);
24782 }
24783 break;
24784
24785 case DW_MACRO_end_file:
24786 /* No data to skip by MAC_PTR. */
24787 break;
24788
24789 case DW_MACRO_define_strp:
24790 case DW_MACRO_undef_strp:
24791 case DW_MACRO_define_sup:
24792 case DW_MACRO_undef_sup:
24793 {
24794 unsigned int bytes_read;
24795
24796 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24797 mac_ptr += bytes_read;
24798 mac_ptr += offset_size;
24799 }
24800 break;
24801
24802 case DW_MACRO_import:
24803 case DW_MACRO_import_sup:
24804 /* Note that, according to the spec, a transparent include
24805 chain cannot call DW_MACRO_start_file. So, we can just
24806 skip this opcode. */
24807 mac_ptr += offset_size;
24808 break;
24809
24810 case DW_MACINFO_vendor_ext:
24811 /* Only skip the data by MAC_PTR. */
24812 if (!section_is_gnu)
24813 {
24814 unsigned int bytes_read;
24815
24816 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24817 mac_ptr += bytes_read;
24818 read_direct_string (abfd, mac_ptr, &bytes_read);
24819 mac_ptr += bytes_read;
24820 }
24821 /* FALLTHROUGH */
24822
24823 default:
24824 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24825 mac_ptr, mac_end, abfd, offset_size,
24826 section);
24827 if (mac_ptr == NULL)
24828 return;
24829 break;
24830 }
24831 DIAGNOSTIC_POP
24832 } while (macinfo_type != 0 && current_file == NULL);
24833
24834 /* Second pass: Process all entries.
24835
24836 Use the AT_COMMAND_LINE flag to determine whether we are still processing
24837 command-line macro definitions/undefinitions. This flag is unset when we
24838 reach the first DW_MACINFO_start_file entry. */
24839
24840 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
24841 htab_eq_pointer,
24842 NULL, xcalloc, xfree));
24843 mac_ptr = section->buffer + offset;
24844 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
24845 *slot = (void *) mac_ptr;
24846 dwarf_decode_macro_bytes (dwarf2_per_objfile,
24847 abfd, mac_ptr, mac_end,
24848 current_file, lh, section,
24849 section_is_gnu, 0, offset_size,
24850 include_hash.get ());
24851 }
24852
24853 /* Check if the attribute's form is a DW_FORM_block*
24854 if so return true else false. */
24855
24856 static int
24857 attr_form_is_block (const struct attribute *attr)
24858 {
24859 return (attr == NULL ? 0 :
24860 attr->form == DW_FORM_block1
24861 || attr->form == DW_FORM_block2
24862 || attr->form == DW_FORM_block4
24863 || attr->form == DW_FORM_block
24864 || attr->form == DW_FORM_exprloc);
24865 }
24866
24867 /* Return non-zero if ATTR's value is a section offset --- classes
24868 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
24869 You may use DW_UNSND (attr) to retrieve such offsets.
24870
24871 Section 7.5.4, "Attribute Encodings", explains that no attribute
24872 may have a value that belongs to more than one of these classes; it
24873 would be ambiguous if we did, because we use the same forms for all
24874 of them. */
24875
24876 static int
24877 attr_form_is_section_offset (const struct attribute *attr)
24878 {
24879 return (attr->form == DW_FORM_data4
24880 || attr->form == DW_FORM_data8
24881 || attr->form == DW_FORM_sec_offset);
24882 }
24883
24884 /* Return non-zero if ATTR's value falls in the 'constant' class, or
24885 zero otherwise. When this function returns true, you can apply
24886 dwarf2_get_attr_constant_value to it.
24887
24888 However, note that for some attributes you must check
24889 attr_form_is_section_offset before using this test. DW_FORM_data4
24890 and DW_FORM_data8 are members of both the constant class, and of
24891 the classes that contain offsets into other debug sections
24892 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
24893 that, if an attribute's can be either a constant or one of the
24894 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
24895 taken as section offsets, not constants.
24896
24897 DW_FORM_data16 is not considered as dwarf2_get_attr_constant_value
24898 cannot handle that. */
24899
24900 static int
24901 attr_form_is_constant (const struct attribute *attr)
24902 {
24903 switch (attr->form)
24904 {
24905 case DW_FORM_sdata:
24906 case DW_FORM_udata:
24907 case DW_FORM_data1:
24908 case DW_FORM_data2:
24909 case DW_FORM_data4:
24910 case DW_FORM_data8:
24911 case DW_FORM_implicit_const:
24912 return 1;
24913 default:
24914 return 0;
24915 }
24916 }
24917
24918
24919 /* DW_ADDR is always stored already as sect_offset; despite for the forms
24920 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
24921
24922 static int
24923 attr_form_is_ref (const struct attribute *attr)
24924 {
24925 switch (attr->form)
24926 {
24927 case DW_FORM_ref_addr:
24928 case DW_FORM_ref1:
24929 case DW_FORM_ref2:
24930 case DW_FORM_ref4:
24931 case DW_FORM_ref8:
24932 case DW_FORM_ref_udata:
24933 case DW_FORM_GNU_ref_alt:
24934 return 1;
24935 default:
24936 return 0;
24937 }
24938 }
24939
24940 /* Return the .debug_loc section to use for CU.
24941 For DWO files use .debug_loc.dwo. */
24942
24943 static struct dwarf2_section_info *
24944 cu_debug_loc_section (struct dwarf2_cu *cu)
24945 {
24946 struct dwarf2_per_objfile *dwarf2_per_objfile
24947 = cu->per_cu->dwarf2_per_objfile;
24948
24949 if (cu->dwo_unit)
24950 {
24951 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
24952
24953 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
24954 }
24955 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
24956 : &dwarf2_per_objfile->loc);
24957 }
24958
24959 /* A helper function that fills in a dwarf2_loclist_baton. */
24960
24961 static void
24962 fill_in_loclist_baton (struct dwarf2_cu *cu,
24963 struct dwarf2_loclist_baton *baton,
24964 const struct attribute *attr)
24965 {
24966 struct dwarf2_per_objfile *dwarf2_per_objfile
24967 = cu->per_cu->dwarf2_per_objfile;
24968 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
24969
24970 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
24971
24972 baton->per_cu = cu->per_cu;
24973 gdb_assert (baton->per_cu);
24974 /* We don't know how long the location list is, but make sure we
24975 don't run off the edge of the section. */
24976 baton->size = section->size - DW_UNSND (attr);
24977 baton->data = section->buffer + DW_UNSND (attr);
24978 baton->base_address = cu->base_address;
24979 baton->from_dwo = cu->dwo_unit != NULL;
24980 }
24981
24982 static void
24983 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
24984 struct dwarf2_cu *cu, int is_block)
24985 {
24986 struct dwarf2_per_objfile *dwarf2_per_objfile
24987 = cu->per_cu->dwarf2_per_objfile;
24988 struct objfile *objfile = dwarf2_per_objfile->objfile;
24989 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
24990
24991 if (attr_form_is_section_offset (attr)
24992 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
24993 the section. If so, fall through to the complaint in the
24994 other branch. */
24995 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
24996 {
24997 struct dwarf2_loclist_baton *baton;
24998
24999 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
25000
25001 fill_in_loclist_baton (cu, baton, attr);
25002
25003 if (cu->base_known == 0)
25004 complaint (&symfile_complaints,
25005 _("Location list used without "
25006 "specifying the CU base address."));
25007
25008 SYMBOL_ACLASS_INDEX (sym) = (is_block
25009 ? dwarf2_loclist_block_index
25010 : dwarf2_loclist_index);
25011 SYMBOL_LOCATION_BATON (sym) = baton;
25012 }
25013 else
25014 {
25015 struct dwarf2_locexpr_baton *baton;
25016
25017 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
25018 baton->per_cu = cu->per_cu;
25019 gdb_assert (baton->per_cu);
25020
25021 if (attr_form_is_block (attr))
25022 {
25023 /* Note that we're just copying the block's data pointer
25024 here, not the actual data. We're still pointing into the
25025 info_buffer for SYM's objfile; right now we never release
25026 that buffer, but when we do clean up properly this may
25027 need to change. */
25028 baton->size = DW_BLOCK (attr)->size;
25029 baton->data = DW_BLOCK (attr)->data;
25030 }
25031 else
25032 {
25033 dwarf2_invalid_attrib_class_complaint ("location description",
25034 SYMBOL_NATURAL_NAME (sym));
25035 baton->size = 0;
25036 }
25037
25038 SYMBOL_ACLASS_INDEX (sym) = (is_block
25039 ? dwarf2_locexpr_block_index
25040 : dwarf2_locexpr_index);
25041 SYMBOL_LOCATION_BATON (sym) = baton;
25042 }
25043 }
25044
25045 /* Return the OBJFILE associated with the compilation unit CU. If CU
25046 came from a separate debuginfo file, then the master objfile is
25047 returned. */
25048
25049 struct objfile *
25050 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
25051 {
25052 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25053
25054 /* Return the master objfile, so that we can report and look up the
25055 correct file containing this variable. */
25056 if (objfile->separate_debug_objfile_backlink)
25057 objfile = objfile->separate_debug_objfile_backlink;
25058
25059 return objfile;
25060 }
25061
25062 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
25063 (CU_HEADERP is unused in such case) or prepare a temporary copy at
25064 CU_HEADERP first. */
25065
25066 static const struct comp_unit_head *
25067 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
25068 struct dwarf2_per_cu_data *per_cu)
25069 {
25070 const gdb_byte *info_ptr;
25071
25072 if (per_cu->cu)
25073 return &per_cu->cu->header;
25074
25075 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
25076
25077 memset (cu_headerp, 0, sizeof (*cu_headerp));
25078 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
25079 rcuh_kind::COMPILE);
25080
25081 return cu_headerp;
25082 }
25083
25084 /* Return the address size given in the compilation unit header for CU. */
25085
25086 int
25087 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
25088 {
25089 struct comp_unit_head cu_header_local;
25090 const struct comp_unit_head *cu_headerp;
25091
25092 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25093
25094 return cu_headerp->addr_size;
25095 }
25096
25097 /* Return the offset size given in the compilation unit header for CU. */
25098
25099 int
25100 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
25101 {
25102 struct comp_unit_head cu_header_local;
25103 const struct comp_unit_head *cu_headerp;
25104
25105 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25106
25107 return cu_headerp->offset_size;
25108 }
25109
25110 /* See its dwarf2loc.h declaration. */
25111
25112 int
25113 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
25114 {
25115 struct comp_unit_head cu_header_local;
25116 const struct comp_unit_head *cu_headerp;
25117
25118 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25119
25120 if (cu_headerp->version == 2)
25121 return cu_headerp->addr_size;
25122 else
25123 return cu_headerp->offset_size;
25124 }
25125
25126 /* Return the text offset of the CU. The returned offset comes from
25127 this CU's objfile. If this objfile came from a separate debuginfo
25128 file, then the offset may be different from the corresponding
25129 offset in the parent objfile. */
25130
25131 CORE_ADDR
25132 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
25133 {
25134 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25135
25136 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
25137 }
25138
25139 /* Return DWARF version number of PER_CU. */
25140
25141 short
25142 dwarf2_version (struct dwarf2_per_cu_data *per_cu)
25143 {
25144 return per_cu->dwarf_version;
25145 }
25146
25147 /* Locate the .debug_info compilation unit from CU's objfile which contains
25148 the DIE at OFFSET. Raises an error on failure. */
25149
25150 static struct dwarf2_per_cu_data *
25151 dwarf2_find_containing_comp_unit (sect_offset sect_off,
25152 unsigned int offset_in_dwz,
25153 struct dwarf2_per_objfile *dwarf2_per_objfile)
25154 {
25155 struct dwarf2_per_cu_data *this_cu;
25156 int low, high;
25157 const sect_offset *cu_off;
25158
25159 low = 0;
25160 high = dwarf2_per_objfile->n_comp_units - 1;
25161 while (high > low)
25162 {
25163 struct dwarf2_per_cu_data *mid_cu;
25164 int mid = low + (high - low) / 2;
25165
25166 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
25167 cu_off = &mid_cu->sect_off;
25168 if (mid_cu->is_dwz > offset_in_dwz
25169 || (mid_cu->is_dwz == offset_in_dwz && *cu_off >= sect_off))
25170 high = mid;
25171 else
25172 low = mid + 1;
25173 }
25174 gdb_assert (low == high);
25175 this_cu = dwarf2_per_objfile->all_comp_units[low];
25176 cu_off = &this_cu->sect_off;
25177 if (this_cu->is_dwz != offset_in_dwz || *cu_off > sect_off)
25178 {
25179 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
25180 error (_("Dwarf Error: could not find partial DIE containing "
25181 "offset 0x%x [in module %s]"),
25182 to_underlying (sect_off),
25183 bfd_get_filename (dwarf2_per_objfile->objfile->obfd));
25184
25185 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
25186 <= sect_off);
25187 return dwarf2_per_objfile->all_comp_units[low-1];
25188 }
25189 else
25190 {
25191 this_cu = dwarf2_per_objfile->all_comp_units[low];
25192 if (low == dwarf2_per_objfile->n_comp_units - 1
25193 && sect_off >= this_cu->sect_off + this_cu->length)
25194 error (_("invalid dwarf2 offset %u"), to_underlying (sect_off));
25195 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
25196 return this_cu;
25197 }
25198 }
25199
25200 /* Initialize dwarf2_cu CU, owned by PER_CU. */
25201
25202 static void
25203 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
25204 {
25205 memset (cu, 0, sizeof (*cu));
25206 per_cu->cu = cu;
25207 cu->per_cu = per_cu;
25208 obstack_init (&cu->comp_unit_obstack);
25209 }
25210
25211 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
25212
25213 static void
25214 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
25215 enum language pretend_language)
25216 {
25217 struct attribute *attr;
25218
25219 /* Set the language we're debugging. */
25220 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
25221 if (attr)
25222 set_cu_language (DW_UNSND (attr), cu);
25223 else
25224 {
25225 cu->language = pretend_language;
25226 cu->language_defn = language_def (cu->language);
25227 }
25228
25229 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
25230 }
25231
25232 /* Release one cached compilation unit, CU. We unlink it from the tree
25233 of compilation units, but we don't remove it from the read_in_chain;
25234 the caller is responsible for that.
25235 NOTE: DATA is a void * because this function is also used as a
25236 cleanup routine. */
25237
25238 static void
25239 free_heap_comp_unit (void *data)
25240 {
25241 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
25242
25243 gdb_assert (cu->per_cu != NULL);
25244 cu->per_cu->cu = NULL;
25245 cu->per_cu = NULL;
25246
25247 obstack_free (&cu->comp_unit_obstack, NULL);
25248
25249 xfree (cu);
25250 }
25251
25252 /* This cleanup function is passed the address of a dwarf2_cu on the stack
25253 when we're finished with it. We can't free the pointer itself, but be
25254 sure to unlink it from the cache. Also release any associated storage. */
25255
25256 static void
25257 free_stack_comp_unit (void *data)
25258 {
25259 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
25260
25261 gdb_assert (cu->per_cu != NULL);
25262 cu->per_cu->cu = NULL;
25263 cu->per_cu = NULL;
25264
25265 obstack_free (&cu->comp_unit_obstack, NULL);
25266 cu->partial_dies = NULL;
25267 }
25268
25269 /* Free all cached compilation units. */
25270
25271 static void
25272 free_cached_comp_units (void *data)
25273 {
25274 struct dwarf2_per_objfile *dwarf2_per_objfile
25275 = (struct dwarf2_per_objfile *) data;
25276
25277 dwarf2_per_objfile->free_cached_comp_units ();
25278 }
25279
25280 /* Increase the age counter on each cached compilation unit, and free
25281 any that are too old. */
25282
25283 static void
25284 age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
25285 {
25286 struct dwarf2_per_cu_data *per_cu, **last_chain;
25287
25288 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
25289 per_cu = dwarf2_per_objfile->read_in_chain;
25290 while (per_cu != NULL)
25291 {
25292 per_cu->cu->last_used ++;
25293 if (per_cu->cu->last_used <= dwarf_max_cache_age)
25294 dwarf2_mark (per_cu->cu);
25295 per_cu = per_cu->cu->read_in_chain;
25296 }
25297
25298 per_cu = dwarf2_per_objfile->read_in_chain;
25299 last_chain = &dwarf2_per_objfile->read_in_chain;
25300 while (per_cu != NULL)
25301 {
25302 struct dwarf2_per_cu_data *next_cu;
25303
25304 next_cu = per_cu->cu->read_in_chain;
25305
25306 if (!per_cu->cu->mark)
25307 {
25308 free_heap_comp_unit (per_cu->cu);
25309 *last_chain = next_cu;
25310 }
25311 else
25312 last_chain = &per_cu->cu->read_in_chain;
25313
25314 per_cu = next_cu;
25315 }
25316 }
25317
25318 /* Remove a single compilation unit from the cache. */
25319
25320 static void
25321 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
25322 {
25323 struct dwarf2_per_cu_data *per_cu, **last_chain;
25324 struct dwarf2_per_objfile *dwarf2_per_objfile
25325 = target_per_cu->dwarf2_per_objfile;
25326
25327 per_cu = dwarf2_per_objfile->read_in_chain;
25328 last_chain = &dwarf2_per_objfile->read_in_chain;
25329 while (per_cu != NULL)
25330 {
25331 struct dwarf2_per_cu_data *next_cu;
25332
25333 next_cu = per_cu->cu->read_in_chain;
25334
25335 if (per_cu == target_per_cu)
25336 {
25337 free_heap_comp_unit (per_cu->cu);
25338 per_cu->cu = NULL;
25339 *last_chain = next_cu;
25340 break;
25341 }
25342 else
25343 last_chain = &per_cu->cu->read_in_chain;
25344
25345 per_cu = next_cu;
25346 }
25347 }
25348
25349 /* Release all extra memory associated with OBJFILE. */
25350
25351 void
25352 dwarf2_free_objfile (struct objfile *objfile)
25353 {
25354 struct dwarf2_per_objfile *dwarf2_per_objfile
25355 = get_dwarf2_per_objfile (objfile);
25356
25357 if (dwarf2_per_objfile == NULL)
25358 return;
25359
25360 dwarf2_per_objfile->~dwarf2_per_objfile ();
25361 }
25362
25363 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
25364 We store these in a hash table separate from the DIEs, and preserve them
25365 when the DIEs are flushed out of cache.
25366
25367 The CU "per_cu" pointer is needed because offset alone is not enough to
25368 uniquely identify the type. A file may have multiple .debug_types sections,
25369 or the type may come from a DWO file. Furthermore, while it's more logical
25370 to use per_cu->section+offset, with Fission the section with the data is in
25371 the DWO file but we don't know that section at the point we need it.
25372 We have to use something in dwarf2_per_cu_data (or the pointer to it)
25373 because we can enter the lookup routine, get_die_type_at_offset, from
25374 outside this file, and thus won't necessarily have PER_CU->cu.
25375 Fortunately, PER_CU is stable for the life of the objfile. */
25376
25377 struct dwarf2_per_cu_offset_and_type
25378 {
25379 const struct dwarf2_per_cu_data *per_cu;
25380 sect_offset sect_off;
25381 struct type *type;
25382 };
25383
25384 /* Hash function for a dwarf2_per_cu_offset_and_type. */
25385
25386 static hashval_t
25387 per_cu_offset_and_type_hash (const void *item)
25388 {
25389 const struct dwarf2_per_cu_offset_and_type *ofs
25390 = (const struct dwarf2_per_cu_offset_and_type *) item;
25391
25392 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
25393 }
25394
25395 /* Equality function for a dwarf2_per_cu_offset_and_type. */
25396
25397 static int
25398 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
25399 {
25400 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
25401 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
25402 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
25403 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
25404
25405 return (ofs_lhs->per_cu == ofs_rhs->per_cu
25406 && ofs_lhs->sect_off == ofs_rhs->sect_off);
25407 }
25408
25409 /* Set the type associated with DIE to TYPE. Save it in CU's hash
25410 table if necessary. For convenience, return TYPE.
25411
25412 The DIEs reading must have careful ordering to:
25413 * Not cause infite loops trying to read in DIEs as a prerequisite for
25414 reading current DIE.
25415 * Not trying to dereference contents of still incompletely read in types
25416 while reading in other DIEs.
25417 * Enable referencing still incompletely read in types just by a pointer to
25418 the type without accessing its fields.
25419
25420 Therefore caller should follow these rules:
25421 * Try to fetch any prerequisite types we may need to build this DIE type
25422 before building the type and calling set_die_type.
25423 * After building type call set_die_type for current DIE as soon as
25424 possible before fetching more types to complete the current type.
25425 * Make the type as complete as possible before fetching more types. */
25426
25427 static struct type *
25428 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
25429 {
25430 struct dwarf2_per_objfile *dwarf2_per_objfile
25431 = cu->per_cu->dwarf2_per_objfile;
25432 struct dwarf2_per_cu_offset_and_type **slot, ofs;
25433 struct objfile *objfile = dwarf2_per_objfile->objfile;
25434 struct attribute *attr;
25435 struct dynamic_prop prop;
25436
25437 /* For Ada types, make sure that the gnat-specific data is always
25438 initialized (if not already set). There are a few types where
25439 we should not be doing so, because the type-specific area is
25440 already used to hold some other piece of info (eg: TYPE_CODE_FLT
25441 where the type-specific area is used to store the floatformat).
25442 But this is not a problem, because the gnat-specific information
25443 is actually not needed for these types. */
25444 if (need_gnat_info (cu)
25445 && TYPE_CODE (type) != TYPE_CODE_FUNC
25446 && TYPE_CODE (type) != TYPE_CODE_FLT
25447 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
25448 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
25449 && TYPE_CODE (type) != TYPE_CODE_METHOD
25450 && !HAVE_GNAT_AUX_INFO (type))
25451 INIT_GNAT_SPECIFIC (type);
25452
25453 /* Read DW_AT_allocated and set in type. */
25454 attr = dwarf2_attr (die, DW_AT_allocated, cu);
25455 if (attr_form_is_block (attr))
25456 {
25457 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25458 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type, objfile);
25459 }
25460 else if (attr != NULL)
25461 {
25462 complaint (&symfile_complaints,
25463 _("DW_AT_allocated has the wrong form (%s) at DIE 0x%x"),
25464 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25465 to_underlying (die->sect_off));
25466 }
25467
25468 /* Read DW_AT_associated and set in type. */
25469 attr = dwarf2_attr (die, DW_AT_associated, cu);
25470 if (attr_form_is_block (attr))
25471 {
25472 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25473 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type, objfile);
25474 }
25475 else if (attr != NULL)
25476 {
25477 complaint (&symfile_complaints,
25478 _("DW_AT_associated has the wrong form (%s) at DIE 0x%x"),
25479 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25480 to_underlying (die->sect_off));
25481 }
25482
25483 /* Read DW_AT_data_location and set in type. */
25484 attr = dwarf2_attr (die, DW_AT_data_location, cu);
25485 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25486 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type, objfile);
25487
25488 if (dwarf2_per_objfile->die_type_hash == NULL)
25489 {
25490 dwarf2_per_objfile->die_type_hash =
25491 htab_create_alloc_ex (127,
25492 per_cu_offset_and_type_hash,
25493 per_cu_offset_and_type_eq,
25494 NULL,
25495 &objfile->objfile_obstack,
25496 hashtab_obstack_allocate,
25497 dummy_obstack_deallocate);
25498 }
25499
25500 ofs.per_cu = cu->per_cu;
25501 ofs.sect_off = die->sect_off;
25502 ofs.type = type;
25503 slot = (struct dwarf2_per_cu_offset_and_type **)
25504 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
25505 if (*slot)
25506 complaint (&symfile_complaints,
25507 _("A problem internal to GDB: DIE 0x%x has type already set"),
25508 to_underlying (die->sect_off));
25509 *slot = XOBNEW (&objfile->objfile_obstack,
25510 struct dwarf2_per_cu_offset_and_type);
25511 **slot = ofs;
25512 return type;
25513 }
25514
25515 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
25516 or return NULL if the die does not have a saved type. */
25517
25518 static struct type *
25519 get_die_type_at_offset (sect_offset sect_off,
25520 struct dwarf2_per_cu_data *per_cu)
25521 {
25522 struct dwarf2_per_cu_offset_and_type *slot, ofs;
25523 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
25524
25525 if (dwarf2_per_objfile->die_type_hash == NULL)
25526 return NULL;
25527
25528 ofs.per_cu = per_cu;
25529 ofs.sect_off = sect_off;
25530 slot = ((struct dwarf2_per_cu_offset_and_type *)
25531 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
25532 if (slot)
25533 return slot->type;
25534 else
25535 return NULL;
25536 }
25537
25538 /* Look up the type for DIE in CU in die_type_hash,
25539 or return NULL if DIE does not have a saved type. */
25540
25541 static struct type *
25542 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
25543 {
25544 return get_die_type_at_offset (die->sect_off, cu->per_cu);
25545 }
25546
25547 /* Add a dependence relationship from CU to REF_PER_CU. */
25548
25549 static void
25550 dwarf2_add_dependence (struct dwarf2_cu *cu,
25551 struct dwarf2_per_cu_data *ref_per_cu)
25552 {
25553 void **slot;
25554
25555 if (cu->dependencies == NULL)
25556 cu->dependencies
25557 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
25558 NULL, &cu->comp_unit_obstack,
25559 hashtab_obstack_allocate,
25560 dummy_obstack_deallocate);
25561
25562 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
25563 if (*slot == NULL)
25564 *slot = ref_per_cu;
25565 }
25566
25567 /* Subroutine of dwarf2_mark to pass to htab_traverse.
25568 Set the mark field in every compilation unit in the
25569 cache that we must keep because we are keeping CU. */
25570
25571 static int
25572 dwarf2_mark_helper (void **slot, void *data)
25573 {
25574 struct dwarf2_per_cu_data *per_cu;
25575
25576 per_cu = (struct dwarf2_per_cu_data *) *slot;
25577
25578 /* cu->dependencies references may not yet have been ever read if QUIT aborts
25579 reading of the chain. As such dependencies remain valid it is not much
25580 useful to track and undo them during QUIT cleanups. */
25581 if (per_cu->cu == NULL)
25582 return 1;
25583
25584 if (per_cu->cu->mark)
25585 return 1;
25586 per_cu->cu->mark = 1;
25587
25588 if (per_cu->cu->dependencies != NULL)
25589 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
25590
25591 return 1;
25592 }
25593
25594 /* Set the mark field in CU and in every other compilation unit in the
25595 cache that we must keep because we are keeping CU. */
25596
25597 static void
25598 dwarf2_mark (struct dwarf2_cu *cu)
25599 {
25600 if (cu->mark)
25601 return;
25602 cu->mark = 1;
25603 if (cu->dependencies != NULL)
25604 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
25605 }
25606
25607 static void
25608 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
25609 {
25610 while (per_cu)
25611 {
25612 per_cu->cu->mark = 0;
25613 per_cu = per_cu->cu->read_in_chain;
25614 }
25615 }
25616
25617 /* Trivial hash function for partial_die_info: the hash value of a DIE
25618 is its offset in .debug_info for this objfile. */
25619
25620 static hashval_t
25621 partial_die_hash (const void *item)
25622 {
25623 const struct partial_die_info *part_die
25624 = (const struct partial_die_info *) item;
25625
25626 return to_underlying (part_die->sect_off);
25627 }
25628
25629 /* Trivial comparison function for partial_die_info structures: two DIEs
25630 are equal if they have the same offset. */
25631
25632 static int
25633 partial_die_eq (const void *item_lhs, const void *item_rhs)
25634 {
25635 const struct partial_die_info *part_die_lhs
25636 = (const struct partial_die_info *) item_lhs;
25637 const struct partial_die_info *part_die_rhs
25638 = (const struct partial_die_info *) item_rhs;
25639
25640 return part_die_lhs->sect_off == part_die_rhs->sect_off;
25641 }
25642
25643 static struct cmd_list_element *set_dwarf_cmdlist;
25644 static struct cmd_list_element *show_dwarf_cmdlist;
25645
25646 static void
25647 set_dwarf_cmd (const char *args, int from_tty)
25648 {
25649 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
25650 gdb_stdout);
25651 }
25652
25653 static void
25654 show_dwarf_cmd (const char *args, int from_tty)
25655 {
25656 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
25657 }
25658
25659 /* Free data associated with OBJFILE, if necessary. */
25660
25661 static void
25662 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
25663 {
25664 struct dwarf2_per_objfile *data = (struct dwarf2_per_objfile *) d;
25665 int ix;
25666
25667 for (ix = 0; ix < data->n_comp_units; ++ix)
25668 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
25669
25670 for (ix = 0; ix < data->n_type_units; ++ix)
25671 VEC_free (dwarf2_per_cu_ptr,
25672 data->all_type_units[ix]->per_cu.imported_symtabs);
25673 xfree (data->all_type_units);
25674
25675 VEC_free (dwarf2_section_info_def, data->types);
25676
25677 if (data->dwo_files)
25678 free_dwo_files (data->dwo_files, objfile);
25679 if (data->dwp_file)
25680 gdb_bfd_unref (data->dwp_file->dbfd);
25681
25682 if (data->dwz_file && data->dwz_file->dwz_bfd)
25683 gdb_bfd_unref (data->dwz_file->dwz_bfd);
25684
25685 if (data->index_table != NULL)
25686 data->index_table->~mapped_index ();
25687 }
25688
25689 \f
25690 /* The "save gdb-index" command. */
25691
25692 /* Write SIZE bytes from the buffer pointed to by DATA to FILE, with
25693 error checking. */
25694
25695 static void
25696 file_write (FILE *file, const void *data, size_t size)
25697 {
25698 if (fwrite (data, 1, size, file) != size)
25699 error (_("couldn't data write to file"));
25700 }
25701
25702 /* Write the contents of VEC to FILE, with error checking. */
25703
25704 template<typename Elem, typename Alloc>
25705 static void
25706 file_write (FILE *file, const std::vector<Elem, Alloc> &vec)
25707 {
25708 file_write (file, vec.data (), vec.size () * sizeof (vec[0]));
25709 }
25710
25711 /* In-memory buffer to prepare data to be written later to a file. */
25712 class data_buf
25713 {
25714 public:
25715 /* Copy DATA to the end of the buffer. */
25716 template<typename T>
25717 void append_data (const T &data)
25718 {
25719 std::copy (reinterpret_cast<const gdb_byte *> (&data),
25720 reinterpret_cast<const gdb_byte *> (&data + 1),
25721 grow (sizeof (data)));
25722 }
25723
25724 /* Copy CSTR (a zero-terminated string) to the end of buffer. The
25725 terminating zero is appended too. */
25726 void append_cstr0 (const char *cstr)
25727 {
25728 const size_t size = strlen (cstr) + 1;
25729 std::copy (cstr, cstr + size, grow (size));
25730 }
25731
25732 /* Store INPUT as ULEB128 to the end of buffer. */
25733 void append_unsigned_leb128 (ULONGEST input)
25734 {
25735 for (;;)
25736 {
25737 gdb_byte output = input & 0x7f;
25738 input >>= 7;
25739 if (input)
25740 output |= 0x80;
25741 append_data (output);
25742 if (input == 0)
25743 break;
25744 }
25745 }
25746
25747 /* Accept a host-format integer in VAL and append it to the buffer
25748 as a target-format integer which is LEN bytes long. */
25749 void append_uint (size_t len, bfd_endian byte_order, ULONGEST val)
25750 {
25751 ::store_unsigned_integer (grow (len), len, byte_order, val);
25752 }
25753
25754 /* Return the size of the buffer. */
25755 size_t size () const
25756 {
25757 return m_vec.size ();
25758 }
25759
25760 /* Return true iff the buffer is empty. */
25761 bool empty () const
25762 {
25763 return m_vec.empty ();
25764 }
25765
25766 /* Write the buffer to FILE. */
25767 void file_write (FILE *file) const
25768 {
25769 ::file_write (file, m_vec);
25770 }
25771
25772 private:
25773 /* Grow SIZE bytes at the end of the buffer. Returns a pointer to
25774 the start of the new block. */
25775 gdb_byte *grow (size_t size)
25776 {
25777 m_vec.resize (m_vec.size () + size);
25778 return &*m_vec.end () - size;
25779 }
25780
25781 gdb::byte_vector m_vec;
25782 };
25783
25784 /* An entry in the symbol table. */
25785 struct symtab_index_entry
25786 {
25787 /* The name of the symbol. */
25788 const char *name;
25789 /* The offset of the name in the constant pool. */
25790 offset_type index_offset;
25791 /* A sorted vector of the indices of all the CUs that hold an object
25792 of this name. */
25793 std::vector<offset_type> cu_indices;
25794 };
25795
25796 /* The symbol table. This is a power-of-2-sized hash table. */
25797 struct mapped_symtab
25798 {
25799 mapped_symtab ()
25800 {
25801 data.resize (1024);
25802 }
25803
25804 offset_type n_elements = 0;
25805 std::vector<symtab_index_entry> data;
25806 };
25807
25808 /* Find a slot in SYMTAB for the symbol NAME. Returns a reference to
25809 the slot.
25810
25811 Function is used only during write_hash_table so no index format backward
25812 compatibility is needed. */
25813
25814 static symtab_index_entry &
25815 find_slot (struct mapped_symtab *symtab, const char *name)
25816 {
25817 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
25818
25819 index = hash & (symtab->data.size () - 1);
25820 step = ((hash * 17) & (symtab->data.size () - 1)) | 1;
25821
25822 for (;;)
25823 {
25824 if (symtab->data[index].name == NULL
25825 || strcmp (name, symtab->data[index].name) == 0)
25826 return symtab->data[index];
25827 index = (index + step) & (symtab->data.size () - 1);
25828 }
25829 }
25830
25831 /* Expand SYMTAB's hash table. */
25832
25833 static void
25834 hash_expand (struct mapped_symtab *symtab)
25835 {
25836 auto old_entries = std::move (symtab->data);
25837
25838 symtab->data.clear ();
25839 symtab->data.resize (old_entries.size () * 2);
25840
25841 for (auto &it : old_entries)
25842 if (it.name != NULL)
25843 {
25844 auto &ref = find_slot (symtab, it.name);
25845 ref = std::move (it);
25846 }
25847 }
25848
25849 /* Add an entry to SYMTAB. NAME is the name of the symbol.
25850 CU_INDEX is the index of the CU in which the symbol appears.
25851 IS_STATIC is one if the symbol is static, otherwise zero (global). */
25852
25853 static void
25854 add_index_entry (struct mapped_symtab *symtab, const char *name,
25855 int is_static, gdb_index_symbol_kind kind,
25856 offset_type cu_index)
25857 {
25858 offset_type cu_index_and_attrs;
25859
25860 ++symtab->n_elements;
25861 if (4 * symtab->n_elements / 3 >= symtab->data.size ())
25862 hash_expand (symtab);
25863
25864 symtab_index_entry &slot = find_slot (symtab, name);
25865 if (slot.name == NULL)
25866 {
25867 slot.name = name;
25868 /* index_offset is set later. */
25869 }
25870
25871 cu_index_and_attrs = 0;
25872 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
25873 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
25874 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
25875
25876 /* We don't want to record an index value twice as we want to avoid the
25877 duplication.
25878 We process all global symbols and then all static symbols
25879 (which would allow us to avoid the duplication by only having to check
25880 the last entry pushed), but a symbol could have multiple kinds in one CU.
25881 To keep things simple we don't worry about the duplication here and
25882 sort and uniqufy the list after we've processed all symbols. */
25883 slot.cu_indices.push_back (cu_index_and_attrs);
25884 }
25885
25886 /* Sort and remove duplicates of all symbols' cu_indices lists. */
25887
25888 static void
25889 uniquify_cu_indices (struct mapped_symtab *symtab)
25890 {
25891 for (auto &entry : symtab->data)
25892 {
25893 if (entry.name != NULL && !entry.cu_indices.empty ())
25894 {
25895 auto &cu_indices = entry.cu_indices;
25896 std::sort (cu_indices.begin (), cu_indices.end ());
25897 auto from = std::unique (cu_indices.begin (), cu_indices.end ());
25898 cu_indices.erase (from, cu_indices.end ());
25899 }
25900 }
25901 }
25902
25903 /* A form of 'const char *' suitable for container keys. Only the
25904 pointer is stored. The strings themselves are compared, not the
25905 pointers. */
25906 class c_str_view
25907 {
25908 public:
25909 c_str_view (const char *cstr)
25910 : m_cstr (cstr)
25911 {}
25912
25913 bool operator== (const c_str_view &other) const
25914 {
25915 return strcmp (m_cstr, other.m_cstr) == 0;
25916 }
25917
25918 /* Return the underlying C string. Note, the returned string is
25919 only a reference with lifetime of this object. */
25920 const char *c_str () const
25921 {
25922 return m_cstr;
25923 }
25924
25925 private:
25926 friend class c_str_view_hasher;
25927 const char *const m_cstr;
25928 };
25929
25930 /* A std::unordered_map::hasher for c_str_view that uses the right
25931 hash function for strings in a mapped index. */
25932 class c_str_view_hasher
25933 {
25934 public:
25935 size_t operator () (const c_str_view &x) const
25936 {
25937 return mapped_index_string_hash (INT_MAX, x.m_cstr);
25938 }
25939 };
25940
25941 /* A std::unordered_map::hasher for std::vector<>. */
25942 template<typename T>
25943 class vector_hasher
25944 {
25945 public:
25946 size_t operator () (const std::vector<T> &key) const
25947 {
25948 return iterative_hash (key.data (),
25949 sizeof (key.front ()) * key.size (), 0);
25950 }
25951 };
25952
25953 /* Write the mapped hash table SYMTAB to the data buffer OUTPUT, with
25954 constant pool entries going into the data buffer CPOOL. */
25955
25956 static void
25957 write_hash_table (mapped_symtab *symtab, data_buf &output, data_buf &cpool)
25958 {
25959 {
25960 /* Elements are sorted vectors of the indices of all the CUs that
25961 hold an object of this name. */
25962 std::unordered_map<std::vector<offset_type>, offset_type,
25963 vector_hasher<offset_type>>
25964 symbol_hash_table;
25965
25966 /* We add all the index vectors to the constant pool first, to
25967 ensure alignment is ok. */
25968 for (symtab_index_entry &entry : symtab->data)
25969 {
25970 if (entry.name == NULL)
25971 continue;
25972 gdb_assert (entry.index_offset == 0);
25973
25974 /* Finding before inserting is faster than always trying to
25975 insert, because inserting always allocates a node, does the
25976 lookup, and then destroys the new node if another node
25977 already had the same key. C++17 try_emplace will avoid
25978 this. */
25979 const auto found
25980 = symbol_hash_table.find (entry.cu_indices);
25981 if (found != symbol_hash_table.end ())
25982 {
25983 entry.index_offset = found->second;
25984 continue;
25985 }
25986
25987 symbol_hash_table.emplace (entry.cu_indices, cpool.size ());
25988 entry.index_offset = cpool.size ();
25989 cpool.append_data (MAYBE_SWAP (entry.cu_indices.size ()));
25990 for (const auto index : entry.cu_indices)
25991 cpool.append_data (MAYBE_SWAP (index));
25992 }
25993 }
25994
25995 /* Now write out the hash table. */
25996 std::unordered_map<c_str_view, offset_type, c_str_view_hasher> str_table;
25997 for (const auto &entry : symtab->data)
25998 {
25999 offset_type str_off, vec_off;
26000
26001 if (entry.name != NULL)
26002 {
26003 const auto insertpair = str_table.emplace (entry.name, cpool.size ());
26004 if (insertpair.second)
26005 cpool.append_cstr0 (entry.name);
26006 str_off = insertpair.first->second;
26007 vec_off = entry.index_offset;
26008 }
26009 else
26010 {
26011 /* While 0 is a valid constant pool index, it is not valid
26012 to have 0 for both offsets. */
26013 str_off = 0;
26014 vec_off = 0;
26015 }
26016
26017 output.append_data (MAYBE_SWAP (str_off));
26018 output.append_data (MAYBE_SWAP (vec_off));
26019 }
26020 }
26021
26022 typedef std::unordered_map<partial_symtab *, unsigned int> psym_index_map;
26023
26024 /* Helper struct for building the address table. */
26025 struct addrmap_index_data
26026 {
26027 addrmap_index_data (data_buf &addr_vec_, psym_index_map &cu_index_htab_)
26028 : addr_vec (addr_vec_), cu_index_htab (cu_index_htab_)
26029 {}
26030
26031 struct objfile *objfile;
26032 data_buf &addr_vec;
26033 psym_index_map &cu_index_htab;
26034
26035 /* Non-zero if the previous_* fields are valid.
26036 We can't write an entry until we see the next entry (since it is only then
26037 that we know the end of the entry). */
26038 int previous_valid;
26039 /* Index of the CU in the table of all CUs in the index file. */
26040 unsigned int previous_cu_index;
26041 /* Start address of the CU. */
26042 CORE_ADDR previous_cu_start;
26043 };
26044
26045 /* Write an address entry to ADDR_VEC. */
26046
26047 static void
26048 add_address_entry (struct objfile *objfile, data_buf &addr_vec,
26049 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
26050 {
26051 CORE_ADDR baseaddr;
26052
26053 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
26054
26055 addr_vec.append_uint (8, BFD_ENDIAN_LITTLE, start - baseaddr);
26056 addr_vec.append_uint (8, BFD_ENDIAN_LITTLE, end - baseaddr);
26057 addr_vec.append_data (MAYBE_SWAP (cu_index));
26058 }
26059
26060 /* Worker function for traversing an addrmap to build the address table. */
26061
26062 static int
26063 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
26064 {
26065 struct addrmap_index_data *data = (struct addrmap_index_data *) datap;
26066 struct partial_symtab *pst = (struct partial_symtab *) obj;
26067
26068 if (data->previous_valid)
26069 add_address_entry (data->objfile, data->addr_vec,
26070 data->previous_cu_start, start_addr,
26071 data->previous_cu_index);
26072
26073 data->previous_cu_start = start_addr;
26074 if (pst != NULL)
26075 {
26076 const auto it = data->cu_index_htab.find (pst);
26077 gdb_assert (it != data->cu_index_htab.cend ());
26078 data->previous_cu_index = it->second;
26079 data->previous_valid = 1;
26080 }
26081 else
26082 data->previous_valid = 0;
26083
26084 return 0;
26085 }
26086
26087 /* Write OBJFILE's address map to ADDR_VEC.
26088 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
26089 in the index file. */
26090
26091 static void
26092 write_address_map (struct objfile *objfile, data_buf &addr_vec,
26093 psym_index_map &cu_index_htab)
26094 {
26095 struct addrmap_index_data addrmap_index_data (addr_vec, cu_index_htab);
26096
26097 /* When writing the address table, we have to cope with the fact that
26098 the addrmap iterator only provides the start of a region; we have to
26099 wait until the next invocation to get the start of the next region. */
26100
26101 addrmap_index_data.objfile = objfile;
26102 addrmap_index_data.previous_valid = 0;
26103
26104 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
26105 &addrmap_index_data);
26106
26107 /* It's highly unlikely the last entry (end address = 0xff...ff)
26108 is valid, but we should still handle it.
26109 The end address is recorded as the start of the next region, but that
26110 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
26111 anyway. */
26112 if (addrmap_index_data.previous_valid)
26113 add_address_entry (objfile, addr_vec,
26114 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
26115 addrmap_index_data.previous_cu_index);
26116 }
26117
26118 /* Return the symbol kind of PSYM. */
26119
26120 static gdb_index_symbol_kind
26121 symbol_kind (struct partial_symbol *psym)
26122 {
26123 domain_enum domain = PSYMBOL_DOMAIN (psym);
26124 enum address_class aclass = PSYMBOL_CLASS (psym);
26125
26126 switch (domain)
26127 {
26128 case VAR_DOMAIN:
26129 switch (aclass)
26130 {
26131 case LOC_BLOCK:
26132 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
26133 case LOC_TYPEDEF:
26134 return GDB_INDEX_SYMBOL_KIND_TYPE;
26135 case LOC_COMPUTED:
26136 case LOC_CONST_BYTES:
26137 case LOC_OPTIMIZED_OUT:
26138 case LOC_STATIC:
26139 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
26140 case LOC_CONST:
26141 /* Note: It's currently impossible to recognize psyms as enum values
26142 short of reading the type info. For now punt. */
26143 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
26144 default:
26145 /* There are other LOC_FOO values that one might want to classify
26146 as variables, but dwarf2read.c doesn't currently use them. */
26147 return GDB_INDEX_SYMBOL_KIND_OTHER;
26148 }
26149 case STRUCT_DOMAIN:
26150 return GDB_INDEX_SYMBOL_KIND_TYPE;
26151 default:
26152 return GDB_INDEX_SYMBOL_KIND_OTHER;
26153 }
26154 }
26155
26156 /* Add a list of partial symbols to SYMTAB. */
26157
26158 static void
26159 write_psymbols (struct mapped_symtab *symtab,
26160 std::unordered_set<partial_symbol *> &psyms_seen,
26161 struct partial_symbol **psymp,
26162 int count,
26163 offset_type cu_index,
26164 int is_static)
26165 {
26166 for (; count-- > 0; ++psymp)
26167 {
26168 struct partial_symbol *psym = *psymp;
26169
26170 if (SYMBOL_LANGUAGE (psym) == language_ada)
26171 error (_("Ada is not currently supported by the index"));
26172
26173 /* Only add a given psymbol once. */
26174 if (psyms_seen.insert (psym).second)
26175 {
26176 gdb_index_symbol_kind kind = symbol_kind (psym);
26177
26178 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
26179 is_static, kind, cu_index);
26180 }
26181 }
26182 }
26183
26184 /* A helper struct used when iterating over debug_types. */
26185 struct signatured_type_index_data
26186 {
26187 signatured_type_index_data (data_buf &types_list_,
26188 std::unordered_set<partial_symbol *> &psyms_seen_)
26189 : types_list (types_list_), psyms_seen (psyms_seen_)
26190 {}
26191
26192 struct objfile *objfile;
26193 struct mapped_symtab *symtab;
26194 data_buf &types_list;
26195 std::unordered_set<partial_symbol *> &psyms_seen;
26196 int cu_index;
26197 };
26198
26199 /* A helper function that writes a single signatured_type to an
26200 obstack. */
26201
26202 static int
26203 write_one_signatured_type (void **slot, void *d)
26204 {
26205 struct signatured_type_index_data *info
26206 = (struct signatured_type_index_data *) d;
26207 struct signatured_type *entry = (struct signatured_type *) *slot;
26208 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
26209
26210 write_psymbols (info->symtab,
26211 info->psyms_seen,
26212 &info->objfile->global_psymbols[psymtab->globals_offset],
26213 psymtab->n_global_syms, info->cu_index,
26214 0);
26215 write_psymbols (info->symtab,
26216 info->psyms_seen,
26217 &info->objfile->static_psymbols[psymtab->statics_offset],
26218 psymtab->n_static_syms, info->cu_index,
26219 1);
26220
26221 info->types_list.append_uint (8, BFD_ENDIAN_LITTLE,
26222 to_underlying (entry->per_cu.sect_off));
26223 info->types_list.append_uint (8, BFD_ENDIAN_LITTLE,
26224 to_underlying (entry->type_offset_in_tu));
26225 info->types_list.append_uint (8, BFD_ENDIAN_LITTLE, entry->signature);
26226
26227 ++info->cu_index;
26228
26229 return 1;
26230 }
26231
26232 /* Recurse into all "included" dependencies and count their symbols as
26233 if they appeared in this psymtab. */
26234
26235 static void
26236 recursively_count_psymbols (struct partial_symtab *psymtab,
26237 size_t &psyms_seen)
26238 {
26239 for (int i = 0; i < psymtab->number_of_dependencies; ++i)
26240 if (psymtab->dependencies[i]->user != NULL)
26241 recursively_count_psymbols (psymtab->dependencies[i],
26242 psyms_seen);
26243
26244 psyms_seen += psymtab->n_global_syms;
26245 psyms_seen += psymtab->n_static_syms;
26246 }
26247
26248 /* Recurse into all "included" dependencies and write their symbols as
26249 if they appeared in this psymtab. */
26250
26251 static void
26252 recursively_write_psymbols (struct objfile *objfile,
26253 struct partial_symtab *psymtab,
26254 struct mapped_symtab *symtab,
26255 std::unordered_set<partial_symbol *> &psyms_seen,
26256 offset_type cu_index)
26257 {
26258 int i;
26259
26260 for (i = 0; i < psymtab->number_of_dependencies; ++i)
26261 if (psymtab->dependencies[i]->user != NULL)
26262 recursively_write_psymbols (objfile, psymtab->dependencies[i],
26263 symtab, psyms_seen, cu_index);
26264
26265 write_psymbols (symtab,
26266 psyms_seen,
26267 &objfile->global_psymbols[psymtab->globals_offset],
26268 psymtab->n_global_syms, cu_index,
26269 0);
26270 write_psymbols (symtab,
26271 psyms_seen,
26272 &objfile->static_psymbols[psymtab->statics_offset],
26273 psymtab->n_static_syms, cu_index,
26274 1);
26275 }
26276
26277 /* DWARF-5 .debug_names builder. */
26278 class debug_names
26279 {
26280 public:
26281 debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile, bool is_dwarf64,
26282 bfd_endian dwarf5_byte_order)
26283 : m_dwarf5_byte_order (dwarf5_byte_order),
26284 m_dwarf32 (dwarf5_byte_order),
26285 m_dwarf64 (dwarf5_byte_order),
26286 m_dwarf (is_dwarf64
26287 ? static_cast<dwarf &> (m_dwarf64)
26288 : static_cast<dwarf &> (m_dwarf32)),
26289 m_name_table_string_offs (m_dwarf.name_table_string_offs),
26290 m_name_table_entry_offs (m_dwarf.name_table_entry_offs),
26291 m_debugstrlookup (dwarf2_per_objfile)
26292 {}
26293
26294 int dwarf5_offset_size () const
26295 {
26296 const bool dwarf5_is_dwarf64 = &m_dwarf == &m_dwarf64;
26297 return dwarf5_is_dwarf64 ? 8 : 4;
26298 }
26299
26300 /* Is this symbol from DW_TAG_compile_unit or DW_TAG_type_unit? */
26301 enum class unit_kind { cu, tu };
26302
26303 /* Insert one symbol. */
26304 void insert (const partial_symbol *psym, int cu_index, bool is_static,
26305 unit_kind kind)
26306 {
26307 const int dwarf_tag = psymbol_tag (psym);
26308 if (dwarf_tag == 0)
26309 return;
26310 const char *const name = SYMBOL_SEARCH_NAME (psym);
26311 const auto insertpair
26312 = m_name_to_value_set.emplace (c_str_view (name),
26313 std::set<symbol_value> ());
26314 std::set<symbol_value> &value_set = insertpair.first->second;
26315 value_set.emplace (symbol_value (dwarf_tag, cu_index, is_static, kind));
26316 }
26317
26318 /* Build all the tables. All symbols must be already inserted.
26319 This function does not call file_write, caller has to do it
26320 afterwards. */
26321 void build ()
26322 {
26323 /* Verify the build method has not be called twice. */
26324 gdb_assert (m_abbrev_table.empty ());
26325 const size_t name_count = m_name_to_value_set.size ();
26326 m_bucket_table.resize
26327 (std::pow (2, std::ceil (std::log2 (name_count * 4 / 3))));
26328 m_hash_table.reserve (name_count);
26329 m_name_table_string_offs.reserve (name_count);
26330 m_name_table_entry_offs.reserve (name_count);
26331
26332 /* Map each hash of symbol to its name and value. */
26333 struct hash_it_pair
26334 {
26335 uint32_t hash;
26336 decltype (m_name_to_value_set)::const_iterator it;
26337 };
26338 std::vector<std::forward_list<hash_it_pair>> bucket_hash;
26339 bucket_hash.resize (m_bucket_table.size ());
26340 for (decltype (m_name_to_value_set)::const_iterator it
26341 = m_name_to_value_set.cbegin ();
26342 it != m_name_to_value_set.cend ();
26343 ++it)
26344 {
26345 const char *const name = it->first.c_str ();
26346 const uint32_t hash = dwarf5_djb_hash (name);
26347 hash_it_pair hashitpair;
26348 hashitpair.hash = hash;
26349 hashitpair.it = it;
26350 auto &slot = bucket_hash[hash % bucket_hash.size()];
26351 slot.push_front (std::move (hashitpair));
26352 }
26353 for (size_t bucket_ix = 0; bucket_ix < bucket_hash.size (); ++bucket_ix)
26354 {
26355 const std::forward_list<hash_it_pair> &hashitlist
26356 = bucket_hash[bucket_ix];
26357 if (hashitlist.empty ())
26358 continue;
26359 uint32_t &bucket_slot = m_bucket_table[bucket_ix];
26360 /* The hashes array is indexed starting at 1. */
26361 store_unsigned_integer (reinterpret_cast<gdb_byte *> (&bucket_slot),
26362 sizeof (bucket_slot), m_dwarf5_byte_order,
26363 m_hash_table.size () + 1);
26364 for (const hash_it_pair &hashitpair : hashitlist)
26365 {
26366 m_hash_table.push_back (0);
26367 store_unsigned_integer (reinterpret_cast<gdb_byte *>
26368 (&m_hash_table.back ()),
26369 sizeof (m_hash_table.back ()),
26370 m_dwarf5_byte_order, hashitpair.hash);
26371 const c_str_view &name = hashitpair.it->first;
26372 const std::set<symbol_value> &value_set = hashitpair.it->second;
26373 m_name_table_string_offs.push_back_reorder
26374 (m_debugstrlookup.lookup (name.c_str ()));
26375 m_name_table_entry_offs.push_back_reorder (m_entry_pool.size ());
26376 gdb_assert (!value_set.empty ());
26377 for (const symbol_value &value : value_set)
26378 {
26379 int &idx = m_indexkey_to_idx[index_key (value.dwarf_tag,
26380 value.is_static,
26381 value.kind)];
26382 if (idx == 0)
26383 {
26384 idx = m_idx_next++;
26385 m_abbrev_table.append_unsigned_leb128 (idx);
26386 m_abbrev_table.append_unsigned_leb128 (value.dwarf_tag);
26387 m_abbrev_table.append_unsigned_leb128
26388 (value.kind == unit_kind::cu ? DW_IDX_compile_unit
26389 : DW_IDX_type_unit);
26390 m_abbrev_table.append_unsigned_leb128 (DW_FORM_udata);
26391 m_abbrev_table.append_unsigned_leb128 (value.is_static
26392 ? DW_IDX_GNU_internal
26393 : DW_IDX_GNU_external);
26394 m_abbrev_table.append_unsigned_leb128 (DW_FORM_flag_present);
26395
26396 /* Terminate attributes list. */
26397 m_abbrev_table.append_unsigned_leb128 (0);
26398 m_abbrev_table.append_unsigned_leb128 (0);
26399 }
26400
26401 m_entry_pool.append_unsigned_leb128 (idx);
26402 m_entry_pool.append_unsigned_leb128 (value.cu_index);
26403 }
26404
26405 /* Terminate the list of CUs. */
26406 m_entry_pool.append_unsigned_leb128 (0);
26407 }
26408 }
26409 gdb_assert (m_hash_table.size () == name_count);
26410
26411 /* Terminate tags list. */
26412 m_abbrev_table.append_unsigned_leb128 (0);
26413 }
26414
26415 /* Return .debug_names bucket count. This must be called only after
26416 calling the build method. */
26417 uint32_t bucket_count () const
26418 {
26419 /* Verify the build method has been already called. */
26420 gdb_assert (!m_abbrev_table.empty ());
26421 const uint32_t retval = m_bucket_table.size ();
26422
26423 /* Check for overflow. */
26424 gdb_assert (retval == m_bucket_table.size ());
26425 return retval;
26426 }
26427
26428 /* Return .debug_names names count. This must be called only after
26429 calling the build method. */
26430 uint32_t name_count () const
26431 {
26432 /* Verify the build method has been already called. */
26433 gdb_assert (!m_abbrev_table.empty ());
26434 const uint32_t retval = m_hash_table.size ();
26435
26436 /* Check for overflow. */
26437 gdb_assert (retval == m_hash_table.size ());
26438 return retval;
26439 }
26440
26441 /* Return number of bytes of .debug_names abbreviation table. This
26442 must be called only after calling the build method. */
26443 uint32_t abbrev_table_bytes () const
26444 {
26445 gdb_assert (!m_abbrev_table.empty ());
26446 return m_abbrev_table.size ();
26447 }
26448
26449 /* Recurse into all "included" dependencies and store their symbols
26450 as if they appeared in this psymtab. */
26451 void recursively_write_psymbols
26452 (struct objfile *objfile,
26453 struct partial_symtab *psymtab,
26454 std::unordered_set<partial_symbol *> &psyms_seen,
26455 int cu_index)
26456 {
26457 for (int i = 0; i < psymtab->number_of_dependencies; ++i)
26458 if (psymtab->dependencies[i]->user != NULL)
26459 recursively_write_psymbols (objfile, psymtab->dependencies[i],
26460 psyms_seen, cu_index);
26461
26462 write_psymbols (psyms_seen,
26463 &objfile->global_psymbols[psymtab->globals_offset],
26464 psymtab->n_global_syms, cu_index, false, unit_kind::cu);
26465 write_psymbols (psyms_seen,
26466 &objfile->static_psymbols[psymtab->statics_offset],
26467 psymtab->n_static_syms, cu_index, true, unit_kind::cu);
26468 }
26469
26470 /* Return number of bytes the .debug_names section will have. This
26471 must be called only after calling the build method. */
26472 size_t bytes () const
26473 {
26474 /* Verify the build method has been already called. */
26475 gdb_assert (!m_abbrev_table.empty ());
26476 size_t expected_bytes = 0;
26477 expected_bytes += m_bucket_table.size () * sizeof (m_bucket_table[0]);
26478 expected_bytes += m_hash_table.size () * sizeof (m_hash_table[0]);
26479 expected_bytes += m_name_table_string_offs.bytes ();
26480 expected_bytes += m_name_table_entry_offs.bytes ();
26481 expected_bytes += m_abbrev_table.size ();
26482 expected_bytes += m_entry_pool.size ();
26483 return expected_bytes;
26484 }
26485
26486 /* Write .debug_names to FILE_NAMES and .debug_str addition to
26487 FILE_STR. This must be called only after calling the build
26488 method. */
26489 void file_write (FILE *file_names, FILE *file_str) const
26490 {
26491 /* Verify the build method has been already called. */
26492 gdb_assert (!m_abbrev_table.empty ());
26493 ::file_write (file_names, m_bucket_table);
26494 ::file_write (file_names, m_hash_table);
26495 m_name_table_string_offs.file_write (file_names);
26496 m_name_table_entry_offs.file_write (file_names);
26497 m_abbrev_table.file_write (file_names);
26498 m_entry_pool.file_write (file_names);
26499 m_debugstrlookup.file_write (file_str);
26500 }
26501
26502 /* A helper user data for write_one_signatured_type. */
26503 class write_one_signatured_type_data
26504 {
26505 public:
26506 write_one_signatured_type_data (debug_names &nametable_,
26507 signatured_type_index_data &&info_)
26508 : nametable (nametable_), info (std::move (info_))
26509 {}
26510 debug_names &nametable;
26511 struct signatured_type_index_data info;
26512 };
26513
26514 /* A helper function to pass write_one_signatured_type to
26515 htab_traverse_noresize. */
26516 static int
26517 write_one_signatured_type (void **slot, void *d)
26518 {
26519 write_one_signatured_type_data *data = (write_one_signatured_type_data *) d;
26520 struct signatured_type_index_data *info = &data->info;
26521 struct signatured_type *entry = (struct signatured_type *) *slot;
26522
26523 data->nametable.write_one_signatured_type (entry, info);
26524
26525 return 1;
26526 }
26527
26528 private:
26529
26530 /* Storage for symbol names mapping them to their .debug_str section
26531 offsets. */
26532 class debug_str_lookup
26533 {
26534 public:
26535
26536 /* Object costructor to be called for current DWARF2_PER_OBJFILE.
26537 All .debug_str section strings are automatically stored. */
26538 debug_str_lookup (struct dwarf2_per_objfile *dwarf2_per_objfile)
26539 : m_abfd (dwarf2_per_objfile->objfile->obfd),
26540 m_dwarf2_per_objfile (dwarf2_per_objfile)
26541 {
26542 dwarf2_read_section (dwarf2_per_objfile->objfile,
26543 &dwarf2_per_objfile->str);
26544 if (dwarf2_per_objfile->str.buffer == NULL)
26545 return;
26546 for (const gdb_byte *data = dwarf2_per_objfile->str.buffer;
26547 data < (dwarf2_per_objfile->str.buffer
26548 + dwarf2_per_objfile->str.size);)
26549 {
26550 const char *const s = reinterpret_cast<const char *> (data);
26551 const auto insertpair
26552 = m_str_table.emplace (c_str_view (s),
26553 data - dwarf2_per_objfile->str.buffer);
26554 if (!insertpair.second)
26555 complaint (&symfile_complaints,
26556 _("Duplicate string \"%s\" in "
26557 ".debug_str section [in module %s]"),
26558 s, bfd_get_filename (m_abfd));
26559 data += strlen (s) + 1;
26560 }
26561 }
26562
26563 /* Return offset of symbol name S in the .debug_str section. Add
26564 such symbol to the section's end if it does not exist there
26565 yet. */
26566 size_t lookup (const char *s)
26567 {
26568 const auto it = m_str_table.find (c_str_view (s));
26569 if (it != m_str_table.end ())
26570 return it->second;
26571 const size_t offset = (m_dwarf2_per_objfile->str.size
26572 + m_str_add_buf.size ());
26573 m_str_table.emplace (c_str_view (s), offset);
26574 m_str_add_buf.append_cstr0 (s);
26575 return offset;
26576 }
26577
26578 /* Append the end of the .debug_str section to FILE. */
26579 void file_write (FILE *file) const
26580 {
26581 m_str_add_buf.file_write (file);
26582 }
26583
26584 private:
26585 std::unordered_map<c_str_view, size_t, c_str_view_hasher> m_str_table;
26586 bfd *const m_abfd;
26587 struct dwarf2_per_objfile *m_dwarf2_per_objfile;
26588
26589 /* Data to add at the end of .debug_str for new needed symbol names. */
26590 data_buf m_str_add_buf;
26591 };
26592
26593 /* Container to map used DWARF tags to their .debug_names abbreviation
26594 tags. */
26595 class index_key
26596 {
26597 public:
26598 index_key (int dwarf_tag_, bool is_static_, unit_kind kind_)
26599 : dwarf_tag (dwarf_tag_), is_static (is_static_), kind (kind_)
26600 {
26601 }
26602
26603 bool
26604 operator== (const index_key &other) const
26605 {
26606 return (dwarf_tag == other.dwarf_tag && is_static == other.is_static
26607 && kind == other.kind);
26608 }
26609
26610 const int dwarf_tag;
26611 const bool is_static;
26612 const unit_kind kind;
26613 };
26614
26615 /* Provide std::unordered_map::hasher for index_key. */
26616 class index_key_hasher
26617 {
26618 public:
26619 size_t
26620 operator () (const index_key &key) const
26621 {
26622 return (std::hash<int>() (key.dwarf_tag) << 1) | key.is_static;
26623 }
26624 };
26625
26626 /* Parameters of one symbol entry. */
26627 class symbol_value
26628 {
26629 public:
26630 const int dwarf_tag, cu_index;
26631 const bool is_static;
26632 const unit_kind kind;
26633
26634 symbol_value (int dwarf_tag_, int cu_index_, bool is_static_,
26635 unit_kind kind_)
26636 : dwarf_tag (dwarf_tag_), cu_index (cu_index_), is_static (is_static_),
26637 kind (kind_)
26638 {}
26639
26640 bool
26641 operator< (const symbol_value &other) const
26642 {
26643 #define X(n) \
26644 do \
26645 { \
26646 if (n < other.n) \
26647 return true; \
26648 if (n > other.n) \
26649 return false; \
26650 } \
26651 while (0)
26652 X (dwarf_tag);
26653 X (is_static);
26654 X (kind);
26655 X (cu_index);
26656 #undef X
26657 return false;
26658 }
26659 };
26660
26661 /* Abstract base class to unify DWARF-32 and DWARF-64 name table
26662 output. */
26663 class offset_vec
26664 {
26665 protected:
26666 const bfd_endian dwarf5_byte_order;
26667 public:
26668 explicit offset_vec (bfd_endian dwarf5_byte_order_)
26669 : dwarf5_byte_order (dwarf5_byte_order_)
26670 {}
26671
26672 /* Call std::vector::reserve for NELEM elements. */
26673 virtual void reserve (size_t nelem) = 0;
26674
26675 /* Call std::vector::push_back with store_unsigned_integer byte
26676 reordering for ELEM. */
26677 virtual void push_back_reorder (size_t elem) = 0;
26678
26679 /* Return expected output size in bytes. */
26680 virtual size_t bytes () const = 0;
26681
26682 /* Write name table to FILE. */
26683 virtual void file_write (FILE *file) const = 0;
26684 };
26685
26686 /* Template to unify DWARF-32 and DWARF-64 output. */
26687 template<typename OffsetSize>
26688 class offset_vec_tmpl : public offset_vec
26689 {
26690 public:
26691 explicit offset_vec_tmpl (bfd_endian dwarf5_byte_order_)
26692 : offset_vec (dwarf5_byte_order_)
26693 {}
26694
26695 /* Implement offset_vec::reserve. */
26696 void reserve (size_t nelem) override
26697 {
26698 m_vec.reserve (nelem);
26699 }
26700
26701 /* Implement offset_vec::push_back_reorder. */
26702 void push_back_reorder (size_t elem) override
26703 {
26704 m_vec.push_back (elem);
26705 /* Check for overflow. */
26706 gdb_assert (m_vec.back () == elem);
26707 store_unsigned_integer (reinterpret_cast<gdb_byte *> (&m_vec.back ()),
26708 sizeof (m_vec.back ()), dwarf5_byte_order, elem);
26709 }
26710
26711 /* Implement offset_vec::bytes. */
26712 size_t bytes () const override
26713 {
26714 return m_vec.size () * sizeof (m_vec[0]);
26715 }
26716
26717 /* Implement offset_vec::file_write. */
26718 void file_write (FILE *file) const override
26719 {
26720 ::file_write (file, m_vec);
26721 }
26722
26723 private:
26724 std::vector<OffsetSize> m_vec;
26725 };
26726
26727 /* Base class to unify DWARF-32 and DWARF-64 .debug_names output
26728 respecting name table width. */
26729 class dwarf
26730 {
26731 public:
26732 offset_vec &name_table_string_offs, &name_table_entry_offs;
26733
26734 dwarf (offset_vec &name_table_string_offs_,
26735 offset_vec &name_table_entry_offs_)
26736 : name_table_string_offs (name_table_string_offs_),
26737 name_table_entry_offs (name_table_entry_offs_)
26738 {
26739 }
26740 };
26741
26742 /* Template to unify DWARF-32 and DWARF-64 .debug_names output
26743 respecting name table width. */
26744 template<typename OffsetSize>
26745 class dwarf_tmpl : public dwarf
26746 {
26747 public:
26748 explicit dwarf_tmpl (bfd_endian dwarf5_byte_order_)
26749 : dwarf (m_name_table_string_offs, m_name_table_entry_offs),
26750 m_name_table_string_offs (dwarf5_byte_order_),
26751 m_name_table_entry_offs (dwarf5_byte_order_)
26752 {}
26753
26754 private:
26755 offset_vec_tmpl<OffsetSize> m_name_table_string_offs;
26756 offset_vec_tmpl<OffsetSize> m_name_table_entry_offs;
26757 };
26758
26759 /* Try to reconstruct original DWARF tag for given partial_symbol.
26760 This function is not DWARF-5 compliant but it is sufficient for
26761 GDB as a DWARF-5 index consumer. */
26762 static int psymbol_tag (const struct partial_symbol *psym)
26763 {
26764 domain_enum domain = PSYMBOL_DOMAIN (psym);
26765 enum address_class aclass = PSYMBOL_CLASS (psym);
26766
26767 switch (domain)
26768 {
26769 case VAR_DOMAIN:
26770 switch (aclass)
26771 {
26772 case LOC_BLOCK:
26773 return DW_TAG_subprogram;
26774 case LOC_TYPEDEF:
26775 return DW_TAG_typedef;
26776 case LOC_COMPUTED:
26777 case LOC_CONST_BYTES:
26778 case LOC_OPTIMIZED_OUT:
26779 case LOC_STATIC:
26780 return DW_TAG_variable;
26781 case LOC_CONST:
26782 /* Note: It's currently impossible to recognize psyms as enum values
26783 short of reading the type info. For now punt. */
26784 return DW_TAG_variable;
26785 default:
26786 /* There are other LOC_FOO values that one might want to classify
26787 as variables, but dwarf2read.c doesn't currently use them. */
26788 return DW_TAG_variable;
26789 }
26790 case STRUCT_DOMAIN:
26791 return DW_TAG_structure_type;
26792 default:
26793 return 0;
26794 }
26795 }
26796
26797 /* Call insert for all partial symbols and mark them in PSYMS_SEEN. */
26798 void write_psymbols (std::unordered_set<partial_symbol *> &psyms_seen,
26799 struct partial_symbol **psymp, int count, int cu_index,
26800 bool is_static, unit_kind kind)
26801 {
26802 for (; count-- > 0; ++psymp)
26803 {
26804 struct partial_symbol *psym = *psymp;
26805
26806 if (SYMBOL_LANGUAGE (psym) == language_ada)
26807 error (_("Ada is not currently supported by the index"));
26808
26809 /* Only add a given psymbol once. */
26810 if (psyms_seen.insert (psym).second)
26811 insert (psym, cu_index, is_static, kind);
26812 }
26813 }
26814
26815 /* A helper function that writes a single signatured_type
26816 to a debug_names. */
26817 void
26818 write_one_signatured_type (struct signatured_type *entry,
26819 struct signatured_type_index_data *info)
26820 {
26821 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
26822
26823 write_psymbols (info->psyms_seen,
26824 &info->objfile->global_psymbols[psymtab->globals_offset],
26825 psymtab->n_global_syms, info->cu_index, false,
26826 unit_kind::tu);
26827 write_psymbols (info->psyms_seen,
26828 &info->objfile->static_psymbols[psymtab->statics_offset],
26829 psymtab->n_static_syms, info->cu_index, true,
26830 unit_kind::tu);
26831
26832 info->types_list.append_uint (dwarf5_offset_size (), m_dwarf5_byte_order,
26833 to_underlying (entry->per_cu.sect_off));
26834
26835 ++info->cu_index;
26836 }
26837
26838 /* Store value of each symbol. */
26839 std::unordered_map<c_str_view, std::set<symbol_value>, c_str_view_hasher>
26840 m_name_to_value_set;
26841
26842 /* Tables of DWARF-5 .debug_names. They are in object file byte
26843 order. */
26844 std::vector<uint32_t> m_bucket_table;
26845 std::vector<uint32_t> m_hash_table;
26846
26847 const bfd_endian m_dwarf5_byte_order;
26848 dwarf_tmpl<uint32_t> m_dwarf32;
26849 dwarf_tmpl<uint64_t> m_dwarf64;
26850 dwarf &m_dwarf;
26851 offset_vec &m_name_table_string_offs, &m_name_table_entry_offs;
26852 debug_str_lookup m_debugstrlookup;
26853
26854 /* Map each used .debug_names abbreviation tag parameter to its
26855 index value. */
26856 std::unordered_map<index_key, int, index_key_hasher> m_indexkey_to_idx;
26857
26858 /* Next unused .debug_names abbreviation tag for
26859 m_indexkey_to_idx. */
26860 int m_idx_next = 1;
26861
26862 /* .debug_names abbreviation table. */
26863 data_buf m_abbrev_table;
26864
26865 /* .debug_names entry pool. */
26866 data_buf m_entry_pool;
26867 };
26868
26869 /* Return iff any of the needed offsets does not fit into 32-bit
26870 .debug_names section. */
26871
26872 static bool
26873 check_dwarf64_offsets (struct dwarf2_per_objfile *dwarf2_per_objfile)
26874 {
26875 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
26876 {
26877 const dwarf2_per_cu_data &per_cu = *dwarf2_per_objfile->all_comp_units[i];
26878
26879 if (to_underlying (per_cu.sect_off) >= (static_cast<uint64_t> (1) << 32))
26880 return true;
26881 }
26882 for (int i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
26883 {
26884 const signatured_type &sigtype = *dwarf2_per_objfile->all_type_units[i];
26885 const dwarf2_per_cu_data &per_cu = sigtype.per_cu;
26886
26887 if (to_underlying (per_cu.sect_off) >= (static_cast<uint64_t> (1) << 32))
26888 return true;
26889 }
26890 return false;
26891 }
26892
26893 /* The psyms_seen set is potentially going to be largish (~40k
26894 elements when indexing a -g3 build of GDB itself). Estimate the
26895 number of elements in order to avoid too many rehashes, which
26896 require rebuilding buckets and thus many trips to
26897 malloc/free. */
26898
26899 static size_t
26900 psyms_seen_size (struct dwarf2_per_objfile *dwarf2_per_objfile)
26901 {
26902 size_t psyms_count = 0;
26903 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
26904 {
26905 struct dwarf2_per_cu_data *per_cu
26906 = dwarf2_per_objfile->all_comp_units[i];
26907 struct partial_symtab *psymtab = per_cu->v.psymtab;
26908
26909 if (psymtab != NULL && psymtab->user == NULL)
26910 recursively_count_psymbols (psymtab, psyms_count);
26911 }
26912 /* Generating an index for gdb itself shows a ratio of
26913 TOTAL_SEEN_SYMS/UNIQUE_SYMS or ~5. 4 seems like a good bet. */
26914 return psyms_count / 4;
26915 }
26916
26917 /* Write new .gdb_index section for OBJFILE into OUT_FILE.
26918 Return how many bytes were expected to be written into OUT_FILE. */
26919
26920 static size_t
26921 write_gdbindex (struct dwarf2_per_objfile *dwarf2_per_objfile, FILE *out_file)
26922 {
26923 struct objfile *objfile = dwarf2_per_objfile->objfile;
26924 mapped_symtab symtab;
26925 data_buf cu_list;
26926
26927 /* While we're scanning CU's create a table that maps a psymtab pointer
26928 (which is what addrmap records) to its index (which is what is recorded
26929 in the index file). This will later be needed to write the address
26930 table. */
26931 psym_index_map cu_index_htab;
26932 cu_index_htab.reserve (dwarf2_per_objfile->n_comp_units);
26933
26934 /* The CU list is already sorted, so we don't need to do additional
26935 work here. Also, the debug_types entries do not appear in
26936 all_comp_units, but only in their own hash table. */
26937
26938 std::unordered_set<partial_symbol *> psyms_seen
26939 (psyms_seen_size (dwarf2_per_objfile));
26940 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
26941 {
26942 struct dwarf2_per_cu_data *per_cu
26943 = dwarf2_per_objfile->all_comp_units[i];
26944 struct partial_symtab *psymtab = per_cu->v.psymtab;
26945
26946 /* CU of a shared file from 'dwz -m' may be unused by this main file.
26947 It may be referenced from a local scope but in such case it does not
26948 need to be present in .gdb_index. */
26949 if (psymtab == NULL)
26950 continue;
26951
26952 if (psymtab->user == NULL)
26953 recursively_write_psymbols (objfile, psymtab, &symtab,
26954 psyms_seen, i);
26955
26956 const auto insertpair = cu_index_htab.emplace (psymtab, i);
26957 gdb_assert (insertpair.second);
26958
26959 cu_list.append_uint (8, BFD_ENDIAN_LITTLE,
26960 to_underlying (per_cu->sect_off));
26961 cu_list.append_uint (8, BFD_ENDIAN_LITTLE, per_cu->length);
26962 }
26963
26964 /* Dump the address map. */
26965 data_buf addr_vec;
26966 write_address_map (objfile, addr_vec, cu_index_htab);
26967
26968 /* Write out the .debug_type entries, if any. */
26969 data_buf types_cu_list;
26970 if (dwarf2_per_objfile->signatured_types)
26971 {
26972 signatured_type_index_data sig_data (types_cu_list,
26973 psyms_seen);
26974
26975 sig_data.objfile = objfile;
26976 sig_data.symtab = &symtab;
26977 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
26978 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
26979 write_one_signatured_type, &sig_data);
26980 }
26981
26982 /* Now that we've processed all symbols we can shrink their cu_indices
26983 lists. */
26984 uniquify_cu_indices (&symtab);
26985
26986 data_buf symtab_vec, constant_pool;
26987 write_hash_table (&symtab, symtab_vec, constant_pool);
26988
26989 data_buf contents;
26990 const offset_type size_of_contents = 6 * sizeof (offset_type);
26991 offset_type total_len = size_of_contents;
26992
26993 /* The version number. */
26994 contents.append_data (MAYBE_SWAP (8));
26995
26996 /* The offset of the CU list from the start of the file. */
26997 contents.append_data (MAYBE_SWAP (total_len));
26998 total_len += cu_list.size ();
26999
27000 /* The offset of the types CU list from the start of the file. */
27001 contents.append_data (MAYBE_SWAP (total_len));
27002 total_len += types_cu_list.size ();
27003
27004 /* The offset of the address table from the start of the file. */
27005 contents.append_data (MAYBE_SWAP (total_len));
27006 total_len += addr_vec.size ();
27007
27008 /* The offset of the symbol table from the start of the file. */
27009 contents.append_data (MAYBE_SWAP (total_len));
27010 total_len += symtab_vec.size ();
27011
27012 /* The offset of the constant pool from the start of the file. */
27013 contents.append_data (MAYBE_SWAP (total_len));
27014 total_len += constant_pool.size ();
27015
27016 gdb_assert (contents.size () == size_of_contents);
27017
27018 contents.file_write (out_file);
27019 cu_list.file_write (out_file);
27020 types_cu_list.file_write (out_file);
27021 addr_vec.file_write (out_file);
27022 symtab_vec.file_write (out_file);
27023 constant_pool.file_write (out_file);
27024
27025 return total_len;
27026 }
27027
27028 /* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
27029 static const gdb_byte dwarf5_gdb_augmentation[] = { 'G', 'D', 'B', 0 };
27030
27031 /* Write a new .debug_names section for OBJFILE into OUT_FILE, write
27032 needed addition to .debug_str section to OUT_FILE_STR. Return how
27033 many bytes were expected to be written into OUT_FILE. */
27034
27035 static size_t
27036 write_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile,
27037 FILE *out_file, FILE *out_file_str)
27038 {
27039 const bool dwarf5_is_dwarf64 = check_dwarf64_offsets (dwarf2_per_objfile);
27040 struct objfile *objfile = dwarf2_per_objfile->objfile;
27041 const enum bfd_endian dwarf5_byte_order
27042 = gdbarch_byte_order (get_objfile_arch (objfile));
27043
27044 /* The CU list is already sorted, so we don't need to do additional
27045 work here. Also, the debug_types entries do not appear in
27046 all_comp_units, but only in their own hash table. */
27047 data_buf cu_list;
27048 debug_names nametable (dwarf2_per_objfile, dwarf5_is_dwarf64,
27049 dwarf5_byte_order);
27050 std::unordered_set<partial_symbol *>
27051 psyms_seen (psyms_seen_size (dwarf2_per_objfile));
27052 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
27053 {
27054 const dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->all_comp_units[i];
27055 partial_symtab *psymtab = per_cu->v.psymtab;
27056
27057 /* CU of a shared file from 'dwz -m' may be unused by this main
27058 file. It may be referenced from a local scope but in such
27059 case it does not need to be present in .debug_names. */
27060 if (psymtab == NULL)
27061 continue;
27062
27063 if (psymtab->user == NULL)
27064 nametable.recursively_write_psymbols (objfile, psymtab, psyms_seen, i);
27065
27066 cu_list.append_uint (nametable.dwarf5_offset_size (), dwarf5_byte_order,
27067 to_underlying (per_cu->sect_off));
27068 }
27069
27070 /* Write out the .debug_type entries, if any. */
27071 data_buf types_cu_list;
27072 if (dwarf2_per_objfile->signatured_types)
27073 {
27074 debug_names::write_one_signatured_type_data sig_data (nametable,
27075 signatured_type_index_data (types_cu_list, psyms_seen));
27076
27077 sig_data.info.objfile = objfile;
27078 /* It is used only for gdb_index. */
27079 sig_data.info.symtab = nullptr;
27080 sig_data.info.cu_index = 0;
27081 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
27082 debug_names::write_one_signatured_type,
27083 &sig_data);
27084 }
27085
27086 nametable.build ();
27087
27088 /* No addr_vec - DWARF-5 uses .debug_aranges generated by GCC. */
27089
27090 const offset_type bytes_of_header
27091 = ((dwarf5_is_dwarf64 ? 12 : 4)
27092 + 2 + 2 + 7 * 4
27093 + sizeof (dwarf5_gdb_augmentation));
27094 size_t expected_bytes = 0;
27095 expected_bytes += bytes_of_header;
27096 expected_bytes += cu_list.size ();
27097 expected_bytes += types_cu_list.size ();
27098 expected_bytes += nametable.bytes ();
27099 data_buf header;
27100
27101 if (!dwarf5_is_dwarf64)
27102 {
27103 const uint64_t size64 = expected_bytes - 4;
27104 gdb_assert (size64 < 0xfffffff0);
27105 header.append_uint (4, dwarf5_byte_order, size64);
27106 }
27107 else
27108 {
27109 header.append_uint (4, dwarf5_byte_order, 0xffffffff);
27110 header.append_uint (8, dwarf5_byte_order, expected_bytes - 12);
27111 }
27112
27113 /* The version number. */
27114 header.append_uint (2, dwarf5_byte_order, 5);
27115
27116 /* Padding. */
27117 header.append_uint (2, dwarf5_byte_order, 0);
27118
27119 /* comp_unit_count - The number of CUs in the CU list. */
27120 header.append_uint (4, dwarf5_byte_order, dwarf2_per_objfile->n_comp_units);
27121
27122 /* local_type_unit_count - The number of TUs in the local TU
27123 list. */
27124 header.append_uint (4, dwarf5_byte_order, dwarf2_per_objfile->n_type_units);
27125
27126 /* foreign_type_unit_count - The number of TUs in the foreign TU
27127 list. */
27128 header.append_uint (4, dwarf5_byte_order, 0);
27129
27130 /* bucket_count - The number of hash buckets in the hash lookup
27131 table. */
27132 header.append_uint (4, dwarf5_byte_order, nametable.bucket_count ());
27133
27134 /* name_count - The number of unique names in the index. */
27135 header.append_uint (4, dwarf5_byte_order, nametable.name_count ());
27136
27137 /* abbrev_table_size - The size in bytes of the abbreviations
27138 table. */
27139 header.append_uint (4, dwarf5_byte_order, nametable.abbrev_table_bytes ());
27140
27141 /* augmentation_string_size - The size in bytes of the augmentation
27142 string. This value is rounded up to a multiple of 4. */
27143 static_assert (sizeof (dwarf5_gdb_augmentation) % 4 == 0, "");
27144 header.append_uint (4, dwarf5_byte_order, sizeof (dwarf5_gdb_augmentation));
27145 header.append_data (dwarf5_gdb_augmentation);
27146
27147 gdb_assert (header.size () == bytes_of_header);
27148
27149 header.file_write (out_file);
27150 cu_list.file_write (out_file);
27151 types_cu_list.file_write (out_file);
27152 nametable.file_write (out_file, out_file_str);
27153
27154 return expected_bytes;
27155 }
27156
27157 /* Assert that FILE's size is EXPECTED_SIZE. Assumes file's seek
27158 position is at the end of the file. */
27159
27160 static void
27161 assert_file_size (FILE *file, const char *filename, size_t expected_size)
27162 {
27163 const auto file_size = ftell (file);
27164 if (file_size == -1)
27165 error (_("Can't get `%s' size"), filename);
27166 gdb_assert (file_size == expected_size);
27167 }
27168
27169 /* Create an index file for OBJFILE in the directory DIR. */
27170
27171 static void
27172 write_psymtabs_to_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
27173 const char *dir,
27174 dw_index_kind index_kind)
27175 {
27176 struct objfile *objfile = dwarf2_per_objfile->objfile;
27177
27178 if (dwarf2_per_objfile->using_index)
27179 error (_("Cannot use an index to create the index"));
27180
27181 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
27182 error (_("Cannot make an index when the file has multiple .debug_types sections"));
27183
27184 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
27185 return;
27186
27187 struct stat st;
27188 if (stat (objfile_name (objfile), &st) < 0)
27189 perror_with_name (objfile_name (objfile));
27190
27191 std::string filename (std::string (dir) + SLASH_STRING
27192 + lbasename (objfile_name (objfile))
27193 + (index_kind == dw_index_kind::DEBUG_NAMES
27194 ? INDEX5_SUFFIX : INDEX4_SUFFIX));
27195
27196 FILE *out_file = gdb_fopen_cloexec (filename.c_str (), "wb").release ();
27197 if (!out_file)
27198 error (_("Can't open `%s' for writing"), filename.c_str ());
27199
27200 /* Order matters here; we want FILE to be closed before FILENAME is
27201 unlinked, because on MS-Windows one cannot delete a file that is
27202 still open. (Don't call anything here that might throw until
27203 file_closer is created.) */
27204 gdb::unlinker unlink_file (filename.c_str ());
27205 gdb_file_up close_out_file (out_file);
27206
27207 if (index_kind == dw_index_kind::DEBUG_NAMES)
27208 {
27209 std::string filename_str (std::string (dir) + SLASH_STRING
27210 + lbasename (objfile_name (objfile))
27211 + DEBUG_STR_SUFFIX);
27212 FILE *out_file_str
27213 = gdb_fopen_cloexec (filename_str.c_str (), "wb").release ();
27214 if (!out_file_str)
27215 error (_("Can't open `%s' for writing"), filename_str.c_str ());
27216 gdb::unlinker unlink_file_str (filename_str.c_str ());
27217 gdb_file_up close_out_file_str (out_file_str);
27218
27219 const size_t total_len
27220 = write_debug_names (dwarf2_per_objfile, out_file, out_file_str);
27221 assert_file_size (out_file, filename.c_str (), total_len);
27222
27223 /* We want to keep the file .debug_str file too. */
27224 unlink_file_str.keep ();
27225 }
27226 else
27227 {
27228 const size_t total_len
27229 = write_gdbindex (dwarf2_per_objfile, out_file);
27230 assert_file_size (out_file, filename.c_str (), total_len);
27231 }
27232
27233 /* We want to keep the file. */
27234 unlink_file.keep ();
27235 }
27236
27237 /* Implementation of the `save gdb-index' command.
27238
27239 Note that the .gdb_index file format used by this command is
27240 documented in the GDB manual. Any changes here must be documented
27241 there. */
27242
27243 static void
27244 save_gdb_index_command (const char *arg, int from_tty)
27245 {
27246 struct objfile *objfile;
27247 const char dwarf5space[] = "-dwarf-5 ";
27248 dw_index_kind index_kind = dw_index_kind::GDB_INDEX;
27249
27250 if (!arg)
27251 arg = "";
27252
27253 arg = skip_spaces (arg);
27254 if (strncmp (arg, dwarf5space, strlen (dwarf5space)) == 0)
27255 {
27256 index_kind = dw_index_kind::DEBUG_NAMES;
27257 arg += strlen (dwarf5space);
27258 arg = skip_spaces (arg);
27259 }
27260
27261 if (!*arg)
27262 error (_("usage: save gdb-index [-dwarf-5] DIRECTORY"));
27263
27264 ALL_OBJFILES (objfile)
27265 {
27266 struct stat st;
27267
27268 /* If the objfile does not correspond to an actual file, skip it. */
27269 if (stat (objfile_name (objfile), &st) < 0)
27270 continue;
27271
27272 struct dwarf2_per_objfile *dwarf2_per_objfile
27273 = get_dwarf2_per_objfile (objfile);
27274
27275 if (dwarf2_per_objfile != NULL)
27276 {
27277 TRY
27278 {
27279 write_psymtabs_to_index (dwarf2_per_objfile, arg, index_kind);
27280 }
27281 CATCH (except, RETURN_MASK_ERROR)
27282 {
27283 exception_fprintf (gdb_stderr, except,
27284 _("Error while writing index for `%s': "),
27285 objfile_name (objfile));
27286 }
27287 END_CATCH
27288 }
27289
27290 }
27291 }
27292
27293 \f
27294
27295 int dwarf_always_disassemble;
27296
27297 static void
27298 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
27299 struct cmd_list_element *c, const char *value)
27300 {
27301 fprintf_filtered (file,
27302 _("Whether to always disassemble "
27303 "DWARF expressions is %s.\n"),
27304 value);
27305 }
27306
27307 static void
27308 show_check_physname (struct ui_file *file, int from_tty,
27309 struct cmd_list_element *c, const char *value)
27310 {
27311 fprintf_filtered (file,
27312 _("Whether to check \"physname\" is %s.\n"),
27313 value);
27314 }
27315
27316 void
27317 _initialize_dwarf2_read (void)
27318 {
27319 struct cmd_list_element *c;
27320
27321 dwarf2_objfile_data_key
27322 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
27323
27324 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
27325 Set DWARF specific variables.\n\
27326 Configure DWARF variables such as the cache size"),
27327 &set_dwarf_cmdlist, "maintenance set dwarf ",
27328 0/*allow-unknown*/, &maintenance_set_cmdlist);
27329
27330 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
27331 Show DWARF specific variables\n\
27332 Show DWARF variables such as the cache size"),
27333 &show_dwarf_cmdlist, "maintenance show dwarf ",
27334 0/*allow-unknown*/, &maintenance_show_cmdlist);
27335
27336 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
27337 &dwarf_max_cache_age, _("\
27338 Set the upper bound on the age of cached DWARF compilation units."), _("\
27339 Show the upper bound on the age of cached DWARF compilation units."), _("\
27340 A higher limit means that cached compilation units will be stored\n\
27341 in memory longer, and more total memory will be used. Zero disables\n\
27342 caching, which can slow down startup."),
27343 NULL,
27344 show_dwarf_max_cache_age,
27345 &set_dwarf_cmdlist,
27346 &show_dwarf_cmdlist);
27347
27348 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
27349 &dwarf_always_disassemble, _("\
27350 Set whether `info address' always disassembles DWARF expressions."), _("\
27351 Show whether `info address' always disassembles DWARF expressions."), _("\
27352 When enabled, DWARF expressions are always printed in an assembly-like\n\
27353 syntax. When disabled, expressions will be printed in a more\n\
27354 conversational style, when possible."),
27355 NULL,
27356 show_dwarf_always_disassemble,
27357 &set_dwarf_cmdlist,
27358 &show_dwarf_cmdlist);
27359
27360 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
27361 Set debugging of the DWARF reader."), _("\
27362 Show debugging of the DWARF reader."), _("\
27363 When enabled (non-zero), debugging messages are printed during DWARF\n\
27364 reading and symtab expansion. A value of 1 (one) provides basic\n\
27365 information. A value greater than 1 provides more verbose information."),
27366 NULL,
27367 NULL,
27368 &setdebuglist, &showdebuglist);
27369
27370 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
27371 Set debugging of the DWARF DIE reader."), _("\
27372 Show debugging of the DWARF DIE reader."), _("\
27373 When enabled (non-zero), DIEs are dumped after they are read in.\n\
27374 The value is the maximum depth to print."),
27375 NULL,
27376 NULL,
27377 &setdebuglist, &showdebuglist);
27378
27379 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
27380 Set debugging of the dwarf line reader."), _("\
27381 Show debugging of the dwarf line reader."), _("\
27382 When enabled (non-zero), line number entries are dumped as they are read in.\n\
27383 A value of 1 (one) provides basic information.\n\
27384 A value greater than 1 provides more verbose information."),
27385 NULL,
27386 NULL,
27387 &setdebuglist, &showdebuglist);
27388
27389 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
27390 Set cross-checking of \"physname\" code against demangler."), _("\
27391 Show cross-checking of \"physname\" code against demangler."), _("\
27392 When enabled, GDB's internal \"physname\" code is checked against\n\
27393 the demangler."),
27394 NULL, show_check_physname,
27395 &setdebuglist, &showdebuglist);
27396
27397 add_setshow_boolean_cmd ("use-deprecated-index-sections",
27398 no_class, &use_deprecated_index_sections, _("\
27399 Set whether to use deprecated gdb_index sections."), _("\
27400 Show whether to use deprecated gdb_index sections."), _("\
27401 When enabled, deprecated .gdb_index sections are used anyway.\n\
27402 Normally they are ignored either because of a missing feature or\n\
27403 performance issue.\n\
27404 Warning: This option must be enabled before gdb reads the file."),
27405 NULL,
27406 NULL,
27407 &setlist, &showlist);
27408
27409 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
27410 _("\
27411 Save a gdb-index file.\n\
27412 Usage: save gdb-index [-dwarf-5] DIRECTORY\n\
27413 \n\
27414 No options create one file with .gdb-index extension for pre-DWARF-5\n\
27415 compatible .gdb_index section. With -dwarf-5 creates two files with\n\
27416 extension .debug_names and .debug_str for DWARF-5 .debug_names section."),
27417 &save_cmdlist);
27418 set_cmd_completer (c, filename_completer);
27419
27420 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
27421 &dwarf2_locexpr_funcs);
27422 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
27423 &dwarf2_loclist_funcs);
27424
27425 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
27426 &dwarf2_block_frame_base_locexpr_funcs);
27427 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
27428 &dwarf2_block_frame_base_loclist_funcs);
27429
27430 #if GDB_SELF_TEST
27431 selftests::register_test ("dw2_expand_symtabs_matching",
27432 selftests::dw2_expand_symtabs_matching::run_test);
27433 #endif
27434 }
This page took 0.676591 seconds and 4 git commands to generate.