3bb84ceaa326a7af7f8239f9fba3f8dfb28823c5
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2013 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "jv-lang.h"
57 #include "psympriv.h"
58 #include "exceptions.h"
59 #include "gdb_stat.h"
60 #include "completer.h"
61 #include "vec.h"
62 #include "c-lang.h"
63 #include "go-lang.h"
64 #include "valprint.h"
65 #include "gdbcore.h" /* for gnutarget */
66 #include "gdb/gdb-index.h"
67 #include <ctype.h>
68 #include "gdb_bfd.h"
69 #include "f-lang.h"
70 #include "source.h"
71 #include "filestuff.h"
72
73 #include <fcntl.h>
74 #include "gdb_string.h"
75 #include "gdb_assert.h"
76 #include <sys/types.h>
77
78 typedef struct symbol *symbolp;
79 DEF_VEC_P (symbolp);
80
81 /* When non-zero, print basic high level tracing messages.
82 This is in contrast to the low level DIE reading of dwarf2_die_debug. */
83 static int dwarf2_read_debug = 0;
84
85 /* When non-zero, dump DIEs after they are read in. */
86 static unsigned int dwarf2_die_debug = 0;
87
88 /* When non-zero, cross-check physname against demangler. */
89 static int check_physname = 0;
90
91 /* When non-zero, do not reject deprecated .gdb_index sections. */
92 static int use_deprecated_index_sections = 0;
93
94 static const struct objfile_data *dwarf2_objfile_data_key;
95
96 /* The "aclass" indices for various kinds of computed DWARF symbols. */
97
98 static int dwarf2_locexpr_index;
99 static int dwarf2_loclist_index;
100 static int dwarf2_locexpr_block_index;
101 static int dwarf2_loclist_block_index;
102
103 struct dwarf2_section_info
104 {
105 asection *asection;
106 const gdb_byte *buffer;
107 bfd_size_type size;
108 /* True if we have tried to read this section. */
109 int readin;
110 };
111
112 typedef struct dwarf2_section_info dwarf2_section_info_def;
113 DEF_VEC_O (dwarf2_section_info_def);
114
115 /* All offsets in the index are of this type. It must be
116 architecture-independent. */
117 typedef uint32_t offset_type;
118
119 DEF_VEC_I (offset_type);
120
121 /* Ensure only legit values are used. */
122 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
123 do { \
124 gdb_assert ((unsigned int) (value) <= 1); \
125 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
126 } while (0)
127
128 /* Ensure only legit values are used. */
129 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
130 do { \
131 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
132 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
133 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
134 } while (0)
135
136 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
137 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
138 do { \
139 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
140 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
141 } while (0)
142
143 /* A description of the mapped index. The file format is described in
144 a comment by the code that writes the index. */
145 struct mapped_index
146 {
147 /* Index data format version. */
148 int version;
149
150 /* The total length of the buffer. */
151 off_t total_size;
152
153 /* A pointer to the address table data. */
154 const gdb_byte *address_table;
155
156 /* Size of the address table data in bytes. */
157 offset_type address_table_size;
158
159 /* The symbol table, implemented as a hash table. */
160 const offset_type *symbol_table;
161
162 /* Size in slots, each slot is 2 offset_types. */
163 offset_type symbol_table_slots;
164
165 /* A pointer to the constant pool. */
166 const char *constant_pool;
167 };
168
169 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
170 DEF_VEC_P (dwarf2_per_cu_ptr);
171
172 /* Collection of data recorded per objfile.
173 This hangs off of dwarf2_objfile_data_key. */
174
175 struct dwarf2_per_objfile
176 {
177 struct dwarf2_section_info info;
178 struct dwarf2_section_info abbrev;
179 struct dwarf2_section_info line;
180 struct dwarf2_section_info loc;
181 struct dwarf2_section_info macinfo;
182 struct dwarf2_section_info macro;
183 struct dwarf2_section_info str;
184 struct dwarf2_section_info ranges;
185 struct dwarf2_section_info addr;
186 struct dwarf2_section_info frame;
187 struct dwarf2_section_info eh_frame;
188 struct dwarf2_section_info gdb_index;
189
190 VEC (dwarf2_section_info_def) *types;
191
192 /* Back link. */
193 struct objfile *objfile;
194
195 /* Table of all the compilation units. This is used to locate
196 the target compilation unit of a particular reference. */
197 struct dwarf2_per_cu_data **all_comp_units;
198
199 /* The number of compilation units in ALL_COMP_UNITS. */
200 int n_comp_units;
201
202 /* The number of .debug_types-related CUs. */
203 int n_type_units;
204
205 /* The .debug_types-related CUs (TUs).
206 This is stored in malloc space because we may realloc it. */
207 struct signatured_type **all_type_units;
208
209 /* The number of entries in all_type_unit_groups. */
210 int n_type_unit_groups;
211
212 /* Table of type unit groups.
213 This exists to make it easy to iterate over all CUs and TU groups. */
214 struct type_unit_group **all_type_unit_groups;
215
216 /* Table of struct type_unit_group objects.
217 The hash key is the DW_AT_stmt_list value. */
218 htab_t type_unit_groups;
219
220 /* A table mapping .debug_types signatures to its signatured_type entry.
221 This is NULL if the .debug_types section hasn't been read in yet. */
222 htab_t signatured_types;
223
224 /* Type unit statistics, to see how well the scaling improvements
225 are doing. */
226 struct tu_stats
227 {
228 int nr_uniq_abbrev_tables;
229 int nr_symtabs;
230 int nr_symtab_sharers;
231 int nr_stmt_less_type_units;
232 } tu_stats;
233
234 /* A chain of compilation units that are currently read in, so that
235 they can be freed later. */
236 struct dwarf2_per_cu_data *read_in_chain;
237
238 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
239 This is NULL if the table hasn't been allocated yet. */
240 htab_t dwo_files;
241
242 /* Non-zero if we've check for whether there is a DWP file. */
243 int dwp_checked;
244
245 /* The DWP file if there is one, or NULL. */
246 struct dwp_file *dwp_file;
247
248 /* The shared '.dwz' file, if one exists. This is used when the
249 original data was compressed using 'dwz -m'. */
250 struct dwz_file *dwz_file;
251
252 /* A flag indicating wether this objfile has a section loaded at a
253 VMA of 0. */
254 int has_section_at_zero;
255
256 /* True if we are using the mapped index,
257 or we are faking it for OBJF_READNOW's sake. */
258 unsigned char using_index;
259
260 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
261 struct mapped_index *index_table;
262
263 /* When using index_table, this keeps track of all quick_file_names entries.
264 TUs typically share line table entries with a CU, so we maintain a
265 separate table of all line table entries to support the sharing.
266 Note that while there can be way more TUs than CUs, we've already
267 sorted all the TUs into "type unit groups", grouped by their
268 DW_AT_stmt_list value. Therefore the only sharing done here is with a
269 CU and its associated TU group if there is one. */
270 htab_t quick_file_names_table;
271
272 /* Set during partial symbol reading, to prevent queueing of full
273 symbols. */
274 int reading_partial_symbols;
275
276 /* Table mapping type DIEs to their struct type *.
277 This is NULL if not allocated yet.
278 The mapping is done via (CU/TU + DIE offset) -> type. */
279 htab_t die_type_hash;
280
281 /* The CUs we recently read. */
282 VEC (dwarf2_per_cu_ptr) *just_read_cus;
283 };
284
285 static struct dwarf2_per_objfile *dwarf2_per_objfile;
286
287 /* Default names of the debugging sections. */
288
289 /* Note that if the debugging section has been compressed, it might
290 have a name like .zdebug_info. */
291
292 static const struct dwarf2_debug_sections dwarf2_elf_names =
293 {
294 { ".debug_info", ".zdebug_info" },
295 { ".debug_abbrev", ".zdebug_abbrev" },
296 { ".debug_line", ".zdebug_line" },
297 { ".debug_loc", ".zdebug_loc" },
298 { ".debug_macinfo", ".zdebug_macinfo" },
299 { ".debug_macro", ".zdebug_macro" },
300 { ".debug_str", ".zdebug_str" },
301 { ".debug_ranges", ".zdebug_ranges" },
302 { ".debug_types", ".zdebug_types" },
303 { ".debug_addr", ".zdebug_addr" },
304 { ".debug_frame", ".zdebug_frame" },
305 { ".eh_frame", NULL },
306 { ".gdb_index", ".zgdb_index" },
307 23
308 };
309
310 /* List of DWO/DWP sections. */
311
312 static const struct dwop_section_names
313 {
314 struct dwarf2_section_names abbrev_dwo;
315 struct dwarf2_section_names info_dwo;
316 struct dwarf2_section_names line_dwo;
317 struct dwarf2_section_names loc_dwo;
318 struct dwarf2_section_names macinfo_dwo;
319 struct dwarf2_section_names macro_dwo;
320 struct dwarf2_section_names str_dwo;
321 struct dwarf2_section_names str_offsets_dwo;
322 struct dwarf2_section_names types_dwo;
323 struct dwarf2_section_names cu_index;
324 struct dwarf2_section_names tu_index;
325 }
326 dwop_section_names =
327 {
328 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
329 { ".debug_info.dwo", ".zdebug_info.dwo" },
330 { ".debug_line.dwo", ".zdebug_line.dwo" },
331 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
332 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
333 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
334 { ".debug_str.dwo", ".zdebug_str.dwo" },
335 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
336 { ".debug_types.dwo", ".zdebug_types.dwo" },
337 { ".debug_cu_index", ".zdebug_cu_index" },
338 { ".debug_tu_index", ".zdebug_tu_index" },
339 };
340
341 /* local data types */
342
343 /* The data in a compilation unit header, after target2host
344 translation, looks like this. */
345 struct comp_unit_head
346 {
347 unsigned int length;
348 short version;
349 unsigned char addr_size;
350 unsigned char signed_addr_p;
351 sect_offset abbrev_offset;
352
353 /* Size of file offsets; either 4 or 8. */
354 unsigned int offset_size;
355
356 /* Size of the length field; either 4 or 12. */
357 unsigned int initial_length_size;
358
359 /* Offset to the first byte of this compilation unit header in the
360 .debug_info section, for resolving relative reference dies. */
361 sect_offset offset;
362
363 /* Offset to first die in this cu from the start of the cu.
364 This will be the first byte following the compilation unit header. */
365 cu_offset first_die_offset;
366 };
367
368 /* Type used for delaying computation of method physnames.
369 See comments for compute_delayed_physnames. */
370 struct delayed_method_info
371 {
372 /* The type to which the method is attached, i.e., its parent class. */
373 struct type *type;
374
375 /* The index of the method in the type's function fieldlists. */
376 int fnfield_index;
377
378 /* The index of the method in the fieldlist. */
379 int index;
380
381 /* The name of the DIE. */
382 const char *name;
383
384 /* The DIE associated with this method. */
385 struct die_info *die;
386 };
387
388 typedef struct delayed_method_info delayed_method_info;
389 DEF_VEC_O (delayed_method_info);
390
391 /* Internal state when decoding a particular compilation unit. */
392 struct dwarf2_cu
393 {
394 /* The objfile containing this compilation unit. */
395 struct objfile *objfile;
396
397 /* The header of the compilation unit. */
398 struct comp_unit_head header;
399
400 /* Base address of this compilation unit. */
401 CORE_ADDR base_address;
402
403 /* Non-zero if base_address has been set. */
404 int base_known;
405
406 /* The language we are debugging. */
407 enum language language;
408 const struct language_defn *language_defn;
409
410 const char *producer;
411
412 /* The generic symbol table building routines have separate lists for
413 file scope symbols and all all other scopes (local scopes). So
414 we need to select the right one to pass to add_symbol_to_list().
415 We do it by keeping a pointer to the correct list in list_in_scope.
416
417 FIXME: The original dwarf code just treated the file scope as the
418 first local scope, and all other local scopes as nested local
419 scopes, and worked fine. Check to see if we really need to
420 distinguish these in buildsym.c. */
421 struct pending **list_in_scope;
422
423 /* The abbrev table for this CU.
424 Normally this points to the abbrev table in the objfile.
425 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
426 struct abbrev_table *abbrev_table;
427
428 /* Hash table holding all the loaded partial DIEs
429 with partial_die->offset.SECT_OFF as hash. */
430 htab_t partial_dies;
431
432 /* Storage for things with the same lifetime as this read-in compilation
433 unit, including partial DIEs. */
434 struct obstack comp_unit_obstack;
435
436 /* When multiple dwarf2_cu structures are living in memory, this field
437 chains them all together, so that they can be released efficiently.
438 We will probably also want a generation counter so that most-recently-used
439 compilation units are cached... */
440 struct dwarf2_per_cu_data *read_in_chain;
441
442 /* Backchain to our per_cu entry if the tree has been built. */
443 struct dwarf2_per_cu_data *per_cu;
444
445 /* How many compilation units ago was this CU last referenced? */
446 int last_used;
447
448 /* A hash table of DIE cu_offset for following references with
449 die_info->offset.sect_off as hash. */
450 htab_t die_hash;
451
452 /* Full DIEs if read in. */
453 struct die_info *dies;
454
455 /* A set of pointers to dwarf2_per_cu_data objects for compilation
456 units referenced by this one. Only set during full symbol processing;
457 partial symbol tables do not have dependencies. */
458 htab_t dependencies;
459
460 /* Header data from the line table, during full symbol processing. */
461 struct line_header *line_header;
462
463 /* A list of methods which need to have physnames computed
464 after all type information has been read. */
465 VEC (delayed_method_info) *method_list;
466
467 /* To be copied to symtab->call_site_htab. */
468 htab_t call_site_htab;
469
470 /* Non-NULL if this CU came from a DWO file.
471 There is an invariant here that is important to remember:
472 Except for attributes copied from the top level DIE in the "main"
473 (or "stub") file in preparation for reading the DWO file
474 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
475 Either there isn't a DWO file (in which case this is NULL and the point
476 is moot), or there is and either we're not going to read it (in which
477 case this is NULL) or there is and we are reading it (in which case this
478 is non-NULL). */
479 struct dwo_unit *dwo_unit;
480
481 /* The DW_AT_addr_base attribute if present, zero otherwise
482 (zero is a valid value though).
483 Note this value comes from the stub CU/TU's DIE. */
484 ULONGEST addr_base;
485
486 /* The DW_AT_ranges_base attribute if present, zero otherwise
487 (zero is a valid value though).
488 Note this value comes from the stub CU/TU's DIE.
489 Also note that the value is zero in the non-DWO case so this value can
490 be used without needing to know whether DWO files are in use or not.
491 N.B. This does not apply to DW_AT_ranges appearing in
492 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
493 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
494 DW_AT_ranges_base *would* have to be applied, and we'd have to care
495 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
496 ULONGEST ranges_base;
497
498 /* Mark used when releasing cached dies. */
499 unsigned int mark : 1;
500
501 /* This CU references .debug_loc. See the symtab->locations_valid field.
502 This test is imperfect as there may exist optimized debug code not using
503 any location list and still facing inlining issues if handled as
504 unoptimized code. For a future better test see GCC PR other/32998. */
505 unsigned int has_loclist : 1;
506
507 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
508 if all the producer_is_* fields are valid. This information is cached
509 because profiling CU expansion showed excessive time spent in
510 producer_is_gxx_lt_4_6. */
511 unsigned int checked_producer : 1;
512 unsigned int producer_is_gxx_lt_4_6 : 1;
513 unsigned int producer_is_gcc_lt_4_3 : 1;
514 unsigned int producer_is_icc : 1;
515
516 /* When set, the file that we're processing is known to have
517 debugging info for C++ namespaces. GCC 3.3.x did not produce
518 this information, but later versions do. */
519
520 unsigned int processing_has_namespace_info : 1;
521 };
522
523 /* Persistent data held for a compilation unit, even when not
524 processing it. We put a pointer to this structure in the
525 read_symtab_private field of the psymtab. */
526
527 struct dwarf2_per_cu_data
528 {
529 /* The start offset and length of this compilation unit.
530 NOTE: Unlike comp_unit_head.length, this length includes
531 initial_length_size.
532 If the DIE refers to a DWO file, this is always of the original die,
533 not the DWO file. */
534 sect_offset offset;
535 unsigned int length;
536
537 /* Flag indicating this compilation unit will be read in before
538 any of the current compilation units are processed. */
539 unsigned int queued : 1;
540
541 /* This flag will be set when reading partial DIEs if we need to load
542 absolutely all DIEs for this compilation unit, instead of just the ones
543 we think are interesting. It gets set if we look for a DIE in the
544 hash table and don't find it. */
545 unsigned int load_all_dies : 1;
546
547 /* Non-zero if this CU is from .debug_types.
548 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
549 this is non-zero. */
550 unsigned int is_debug_types : 1;
551
552 /* Non-zero if this CU is from the .dwz file. */
553 unsigned int is_dwz : 1;
554
555 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
556 This flag is only valid if is_debug_types is true.
557 We can't read a CU directly from a DWO file: There are required
558 attributes in the stub. */
559 unsigned int reading_dwo_directly : 1;
560
561 /* The section this CU/TU lives in.
562 If the DIE refers to a DWO file, this is always the original die,
563 not the DWO file. */
564 struct dwarf2_section_info *section;
565
566 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
567 of the CU cache it gets reset to NULL again. */
568 struct dwarf2_cu *cu;
569
570 /* The corresponding objfile.
571 Normally we can get the objfile from dwarf2_per_objfile.
572 However we can enter this file with just a "per_cu" handle. */
573 struct objfile *objfile;
574
575 /* When using partial symbol tables, the 'psymtab' field is active.
576 Otherwise the 'quick' field is active. */
577 union
578 {
579 /* The partial symbol table associated with this compilation unit,
580 or NULL for unread partial units. */
581 struct partial_symtab *psymtab;
582
583 /* Data needed by the "quick" functions. */
584 struct dwarf2_per_cu_quick_data *quick;
585 } v;
586
587 /* The CUs we import using DW_TAG_imported_unit. This is filled in
588 while reading psymtabs, used to compute the psymtab dependencies,
589 and then cleared. Then it is filled in again while reading full
590 symbols, and only deleted when the objfile is destroyed.
591
592 This is also used to work around a difference between the way gold
593 generates .gdb_index version <=7 and the way gdb does. Arguably this
594 is a gold bug. For symbols coming from TUs, gold records in the index
595 the CU that includes the TU instead of the TU itself. This breaks
596 dw2_lookup_symbol: It assumes that if the index says symbol X lives
597 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
598 will find X. Alas TUs live in their own symtab, so after expanding CU Y
599 we need to look in TU Z to find X. Fortunately, this is akin to
600 DW_TAG_imported_unit, so we just use the same mechanism: For
601 .gdb_index version <=7 this also records the TUs that the CU referred
602 to. Concurrently with this change gdb was modified to emit version 8
603 indices so we only pay a price for gold generated indices. */
604 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
605 };
606
607 /* Entry in the signatured_types hash table. */
608
609 struct signatured_type
610 {
611 /* The "per_cu" object of this type.
612 This struct is used iff per_cu.is_debug_types.
613 N.B.: This is the first member so that it's easy to convert pointers
614 between them. */
615 struct dwarf2_per_cu_data per_cu;
616
617 /* The type's signature. */
618 ULONGEST signature;
619
620 /* Offset in the TU of the type's DIE, as read from the TU header.
621 If this TU is a DWO stub and the definition lives in a DWO file
622 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
623 cu_offset type_offset_in_tu;
624
625 /* Offset in the section of the type's DIE.
626 If the definition lives in a DWO file, this is the offset in the
627 .debug_types.dwo section.
628 The value is zero until the actual value is known.
629 Zero is otherwise not a valid section offset. */
630 sect_offset type_offset_in_section;
631
632 /* Type units are grouped by their DW_AT_stmt_list entry so that they
633 can share them. This points to the containing symtab. */
634 struct type_unit_group *type_unit_group;
635
636 /* The type.
637 The first time we encounter this type we fully read it in and install it
638 in the symbol tables. Subsequent times we only need the type. */
639 struct type *type;
640
641 /* Containing DWO unit.
642 This field is valid iff per_cu.reading_dwo_directly. */
643 struct dwo_unit *dwo_unit;
644 };
645
646 typedef struct signatured_type *sig_type_ptr;
647 DEF_VEC_P (sig_type_ptr);
648
649 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
650 This includes type_unit_group and quick_file_names. */
651
652 struct stmt_list_hash
653 {
654 /* The DWO unit this table is from or NULL if there is none. */
655 struct dwo_unit *dwo_unit;
656
657 /* Offset in .debug_line or .debug_line.dwo. */
658 sect_offset line_offset;
659 };
660
661 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
662 an object of this type. */
663
664 struct type_unit_group
665 {
666 /* dwarf2read.c's main "handle" on a TU symtab.
667 To simplify things we create an artificial CU that "includes" all the
668 type units using this stmt_list so that the rest of the code still has
669 a "per_cu" handle on the symtab.
670 This PER_CU is recognized by having no section. */
671 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
672 struct dwarf2_per_cu_data per_cu;
673
674 /* The TUs that share this DW_AT_stmt_list entry.
675 This is added to while parsing type units to build partial symtabs,
676 and is deleted afterwards and not used again. */
677 VEC (sig_type_ptr) *tus;
678
679 /* The primary symtab.
680 Type units in a group needn't all be defined in the same source file,
681 so we create an essentially anonymous symtab as the primary symtab. */
682 struct symtab *primary_symtab;
683
684 /* The data used to construct the hash key. */
685 struct stmt_list_hash hash;
686
687 /* The number of symtabs from the line header.
688 The value here must match line_header.num_file_names. */
689 unsigned int num_symtabs;
690
691 /* The symbol tables for this TU (obtained from the files listed in
692 DW_AT_stmt_list).
693 WARNING: The order of entries here must match the order of entries
694 in the line header. After the first TU using this type_unit_group, the
695 line header for the subsequent TUs is recreated from this. This is done
696 because we need to use the same symtabs for each TU using the same
697 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
698 there's no guarantee the line header doesn't have duplicate entries. */
699 struct symtab **symtabs;
700 };
701
702 /* These sections are what may appear in a DWO file. */
703
704 struct dwo_sections
705 {
706 struct dwarf2_section_info abbrev;
707 struct dwarf2_section_info line;
708 struct dwarf2_section_info loc;
709 struct dwarf2_section_info macinfo;
710 struct dwarf2_section_info macro;
711 struct dwarf2_section_info str;
712 struct dwarf2_section_info str_offsets;
713 /* In the case of a virtual DWO file, these two are unused. */
714 struct dwarf2_section_info info;
715 VEC (dwarf2_section_info_def) *types;
716 };
717
718 /* CUs/TUs in DWP/DWO files. */
719
720 struct dwo_unit
721 {
722 /* Backlink to the containing struct dwo_file. */
723 struct dwo_file *dwo_file;
724
725 /* The "id" that distinguishes this CU/TU.
726 .debug_info calls this "dwo_id", .debug_types calls this "signature".
727 Since signatures came first, we stick with it for consistency. */
728 ULONGEST signature;
729
730 /* The section this CU/TU lives in, in the DWO file. */
731 struct dwarf2_section_info *section;
732
733 /* Same as dwarf2_per_cu_data:{offset,length} but for the DWO section. */
734 sect_offset offset;
735 unsigned int length;
736
737 /* For types, offset in the type's DIE of the type defined by this TU. */
738 cu_offset type_offset_in_tu;
739 };
740
741 /* Data for one DWO file.
742 This includes virtual DWO files that have been packaged into a
743 DWP file. */
744
745 struct dwo_file
746 {
747 /* The DW_AT_GNU_dwo_name attribute.
748 For virtual DWO files the name is constructed from the section offsets
749 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
750 from related CU+TUs. */
751 const char *dwo_name;
752
753 /* The DW_AT_comp_dir attribute. */
754 const char *comp_dir;
755
756 /* The bfd, when the file is open. Otherwise this is NULL.
757 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
758 bfd *dbfd;
759
760 /* Section info for this file. */
761 struct dwo_sections sections;
762
763 /* The CU in the file.
764 We only support one because having more than one requires hacking the
765 dwo_name of each to match, which is highly unlikely to happen.
766 Doing this means all TUs can share comp_dir: We also assume that
767 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
768 struct dwo_unit *cu;
769
770 /* Table of TUs in the file.
771 Each element is a struct dwo_unit. */
772 htab_t tus;
773 };
774
775 /* These sections are what may appear in a DWP file. */
776
777 struct dwp_sections
778 {
779 struct dwarf2_section_info str;
780 struct dwarf2_section_info cu_index;
781 struct dwarf2_section_info tu_index;
782 /* The .debug_info.dwo, .debug_types.dwo, and other sections are referenced
783 by section number. We don't need to record them here. */
784 };
785
786 /* These sections are what may appear in a virtual DWO file. */
787
788 struct virtual_dwo_sections
789 {
790 struct dwarf2_section_info abbrev;
791 struct dwarf2_section_info line;
792 struct dwarf2_section_info loc;
793 struct dwarf2_section_info macinfo;
794 struct dwarf2_section_info macro;
795 struct dwarf2_section_info str_offsets;
796 /* Each DWP hash table entry records one CU or one TU.
797 That is recorded here, and copied to dwo_unit.section. */
798 struct dwarf2_section_info info_or_types;
799 };
800
801 /* Contents of DWP hash tables. */
802
803 struct dwp_hash_table
804 {
805 uint32_t nr_units, nr_slots;
806 const gdb_byte *hash_table, *unit_table, *section_pool;
807 };
808
809 /* Data for one DWP file. */
810
811 struct dwp_file
812 {
813 /* Name of the file. */
814 const char *name;
815
816 /* The bfd. */
817 bfd *dbfd;
818
819 /* Section info for this file. */
820 struct dwp_sections sections;
821
822 /* Table of CUs in the file. */
823 const struct dwp_hash_table *cus;
824
825 /* Table of TUs in the file. */
826 const struct dwp_hash_table *tus;
827
828 /* Table of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
829 htab_t loaded_cutus;
830
831 /* Table to map ELF section numbers to their sections. */
832 unsigned int num_sections;
833 asection **elf_sections;
834 };
835
836 /* This represents a '.dwz' file. */
837
838 struct dwz_file
839 {
840 /* A dwz file can only contain a few sections. */
841 struct dwarf2_section_info abbrev;
842 struct dwarf2_section_info info;
843 struct dwarf2_section_info str;
844 struct dwarf2_section_info line;
845 struct dwarf2_section_info macro;
846 struct dwarf2_section_info gdb_index;
847
848 /* The dwz's BFD. */
849 bfd *dwz_bfd;
850 };
851
852 /* Struct used to pass misc. parameters to read_die_and_children, et
853 al. which are used for both .debug_info and .debug_types dies.
854 All parameters here are unchanging for the life of the call. This
855 struct exists to abstract away the constant parameters of die reading. */
856
857 struct die_reader_specs
858 {
859 /* die_section->asection->owner. */
860 bfd* abfd;
861
862 /* The CU of the DIE we are parsing. */
863 struct dwarf2_cu *cu;
864
865 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
866 struct dwo_file *dwo_file;
867
868 /* The section the die comes from.
869 This is either .debug_info or .debug_types, or the .dwo variants. */
870 struct dwarf2_section_info *die_section;
871
872 /* die_section->buffer. */
873 const gdb_byte *buffer;
874
875 /* The end of the buffer. */
876 const gdb_byte *buffer_end;
877
878 /* The value of the DW_AT_comp_dir attribute. */
879 const char *comp_dir;
880 };
881
882 /* Type of function passed to init_cutu_and_read_dies, et.al. */
883 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
884 const gdb_byte *info_ptr,
885 struct die_info *comp_unit_die,
886 int has_children,
887 void *data);
888
889 /* The line number information for a compilation unit (found in the
890 .debug_line section) begins with a "statement program header",
891 which contains the following information. */
892 struct line_header
893 {
894 unsigned int total_length;
895 unsigned short version;
896 unsigned int header_length;
897 unsigned char minimum_instruction_length;
898 unsigned char maximum_ops_per_instruction;
899 unsigned char default_is_stmt;
900 int line_base;
901 unsigned char line_range;
902 unsigned char opcode_base;
903
904 /* standard_opcode_lengths[i] is the number of operands for the
905 standard opcode whose value is i. This means that
906 standard_opcode_lengths[0] is unused, and the last meaningful
907 element is standard_opcode_lengths[opcode_base - 1]. */
908 unsigned char *standard_opcode_lengths;
909
910 /* The include_directories table. NOTE! These strings are not
911 allocated with xmalloc; instead, they are pointers into
912 debug_line_buffer. If you try to free them, `free' will get
913 indigestion. */
914 unsigned int num_include_dirs, include_dirs_size;
915 const char **include_dirs;
916
917 /* The file_names table. NOTE! These strings are not allocated
918 with xmalloc; instead, they are pointers into debug_line_buffer.
919 Don't try to free them directly. */
920 unsigned int num_file_names, file_names_size;
921 struct file_entry
922 {
923 const char *name;
924 unsigned int dir_index;
925 unsigned int mod_time;
926 unsigned int length;
927 int included_p; /* Non-zero if referenced by the Line Number Program. */
928 struct symtab *symtab; /* The associated symbol table, if any. */
929 } *file_names;
930
931 /* The start and end of the statement program following this
932 header. These point into dwarf2_per_objfile->line_buffer. */
933 const gdb_byte *statement_program_start, *statement_program_end;
934 };
935
936 /* When we construct a partial symbol table entry we only
937 need this much information. */
938 struct partial_die_info
939 {
940 /* Offset of this DIE. */
941 sect_offset offset;
942
943 /* DWARF-2 tag for this DIE. */
944 ENUM_BITFIELD(dwarf_tag) tag : 16;
945
946 /* Assorted flags describing the data found in this DIE. */
947 unsigned int has_children : 1;
948 unsigned int is_external : 1;
949 unsigned int is_declaration : 1;
950 unsigned int has_type : 1;
951 unsigned int has_specification : 1;
952 unsigned int has_pc_info : 1;
953 unsigned int may_be_inlined : 1;
954
955 /* Flag set if the SCOPE field of this structure has been
956 computed. */
957 unsigned int scope_set : 1;
958
959 /* Flag set if the DIE has a byte_size attribute. */
960 unsigned int has_byte_size : 1;
961
962 /* Flag set if any of the DIE's children are template arguments. */
963 unsigned int has_template_arguments : 1;
964
965 /* Flag set if fixup_partial_die has been called on this die. */
966 unsigned int fixup_called : 1;
967
968 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
969 unsigned int is_dwz : 1;
970
971 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
972 unsigned int spec_is_dwz : 1;
973
974 /* The name of this DIE. Normally the value of DW_AT_name, but
975 sometimes a default name for unnamed DIEs. */
976 const char *name;
977
978 /* The linkage name, if present. */
979 const char *linkage_name;
980
981 /* The scope to prepend to our children. This is generally
982 allocated on the comp_unit_obstack, so will disappear
983 when this compilation unit leaves the cache. */
984 const char *scope;
985
986 /* Some data associated with the partial DIE. The tag determines
987 which field is live. */
988 union
989 {
990 /* The location description associated with this DIE, if any. */
991 struct dwarf_block *locdesc;
992 /* The offset of an import, for DW_TAG_imported_unit. */
993 sect_offset offset;
994 } d;
995
996 /* If HAS_PC_INFO, the PC range associated with this DIE. */
997 CORE_ADDR lowpc;
998 CORE_ADDR highpc;
999
1000 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1001 DW_AT_sibling, if any. */
1002 /* NOTE: This member isn't strictly necessary, read_partial_die could
1003 return DW_AT_sibling values to its caller load_partial_dies. */
1004 const gdb_byte *sibling;
1005
1006 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1007 DW_AT_specification (or DW_AT_abstract_origin or
1008 DW_AT_extension). */
1009 sect_offset spec_offset;
1010
1011 /* Pointers to this DIE's parent, first child, and next sibling,
1012 if any. */
1013 struct partial_die_info *die_parent, *die_child, *die_sibling;
1014 };
1015
1016 /* This data structure holds the information of an abbrev. */
1017 struct abbrev_info
1018 {
1019 unsigned int number; /* number identifying abbrev */
1020 enum dwarf_tag tag; /* dwarf tag */
1021 unsigned short has_children; /* boolean */
1022 unsigned short num_attrs; /* number of attributes */
1023 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1024 struct abbrev_info *next; /* next in chain */
1025 };
1026
1027 struct attr_abbrev
1028 {
1029 ENUM_BITFIELD(dwarf_attribute) name : 16;
1030 ENUM_BITFIELD(dwarf_form) form : 16;
1031 };
1032
1033 /* Size of abbrev_table.abbrev_hash_table. */
1034 #define ABBREV_HASH_SIZE 121
1035
1036 /* Top level data structure to contain an abbreviation table. */
1037
1038 struct abbrev_table
1039 {
1040 /* Where the abbrev table came from.
1041 This is used as a sanity check when the table is used. */
1042 sect_offset offset;
1043
1044 /* Storage for the abbrev table. */
1045 struct obstack abbrev_obstack;
1046
1047 /* Hash table of abbrevs.
1048 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1049 It could be statically allocated, but the previous code didn't so we
1050 don't either. */
1051 struct abbrev_info **abbrevs;
1052 };
1053
1054 /* Attributes have a name and a value. */
1055 struct attribute
1056 {
1057 ENUM_BITFIELD(dwarf_attribute) name : 16;
1058 ENUM_BITFIELD(dwarf_form) form : 15;
1059
1060 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1061 field should be in u.str (existing only for DW_STRING) but it is kept
1062 here for better struct attribute alignment. */
1063 unsigned int string_is_canonical : 1;
1064
1065 union
1066 {
1067 const char *str;
1068 struct dwarf_block *blk;
1069 ULONGEST unsnd;
1070 LONGEST snd;
1071 CORE_ADDR addr;
1072 ULONGEST signature;
1073 }
1074 u;
1075 };
1076
1077 /* This data structure holds a complete die structure. */
1078 struct die_info
1079 {
1080 /* DWARF-2 tag for this DIE. */
1081 ENUM_BITFIELD(dwarf_tag) tag : 16;
1082
1083 /* Number of attributes */
1084 unsigned char num_attrs;
1085
1086 /* True if we're presently building the full type name for the
1087 type derived from this DIE. */
1088 unsigned char building_fullname : 1;
1089
1090 /* Abbrev number */
1091 unsigned int abbrev;
1092
1093 /* Offset in .debug_info or .debug_types section. */
1094 sect_offset offset;
1095
1096 /* The dies in a compilation unit form an n-ary tree. PARENT
1097 points to this die's parent; CHILD points to the first child of
1098 this node; and all the children of a given node are chained
1099 together via their SIBLING fields. */
1100 struct die_info *child; /* Its first child, if any. */
1101 struct die_info *sibling; /* Its next sibling, if any. */
1102 struct die_info *parent; /* Its parent, if any. */
1103
1104 /* An array of attributes, with NUM_ATTRS elements. There may be
1105 zero, but it's not common and zero-sized arrays are not
1106 sufficiently portable C. */
1107 struct attribute attrs[1];
1108 };
1109
1110 /* Get at parts of an attribute structure. */
1111
1112 #define DW_STRING(attr) ((attr)->u.str)
1113 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1114 #define DW_UNSND(attr) ((attr)->u.unsnd)
1115 #define DW_BLOCK(attr) ((attr)->u.blk)
1116 #define DW_SND(attr) ((attr)->u.snd)
1117 #define DW_ADDR(attr) ((attr)->u.addr)
1118 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1119
1120 /* Blocks are a bunch of untyped bytes. */
1121 struct dwarf_block
1122 {
1123 size_t size;
1124
1125 /* Valid only if SIZE is not zero. */
1126 const gdb_byte *data;
1127 };
1128
1129 #ifndef ATTR_ALLOC_CHUNK
1130 #define ATTR_ALLOC_CHUNK 4
1131 #endif
1132
1133 /* Allocate fields for structs, unions and enums in this size. */
1134 #ifndef DW_FIELD_ALLOC_CHUNK
1135 #define DW_FIELD_ALLOC_CHUNK 4
1136 #endif
1137
1138 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1139 but this would require a corresponding change in unpack_field_as_long
1140 and friends. */
1141 static int bits_per_byte = 8;
1142
1143 /* The routines that read and process dies for a C struct or C++ class
1144 pass lists of data member fields and lists of member function fields
1145 in an instance of a field_info structure, as defined below. */
1146 struct field_info
1147 {
1148 /* List of data member and baseclasses fields. */
1149 struct nextfield
1150 {
1151 struct nextfield *next;
1152 int accessibility;
1153 int virtuality;
1154 struct field field;
1155 }
1156 *fields, *baseclasses;
1157
1158 /* Number of fields (including baseclasses). */
1159 int nfields;
1160
1161 /* Number of baseclasses. */
1162 int nbaseclasses;
1163
1164 /* Set if the accesibility of one of the fields is not public. */
1165 int non_public_fields;
1166
1167 /* Member function fields array, entries are allocated in the order they
1168 are encountered in the object file. */
1169 struct nextfnfield
1170 {
1171 struct nextfnfield *next;
1172 struct fn_field fnfield;
1173 }
1174 *fnfields;
1175
1176 /* Member function fieldlist array, contains name of possibly overloaded
1177 member function, number of overloaded member functions and a pointer
1178 to the head of the member function field chain. */
1179 struct fnfieldlist
1180 {
1181 const char *name;
1182 int length;
1183 struct nextfnfield *head;
1184 }
1185 *fnfieldlists;
1186
1187 /* Number of entries in the fnfieldlists array. */
1188 int nfnfields;
1189
1190 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1191 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1192 struct typedef_field_list
1193 {
1194 struct typedef_field field;
1195 struct typedef_field_list *next;
1196 }
1197 *typedef_field_list;
1198 unsigned typedef_field_list_count;
1199 };
1200
1201 /* One item on the queue of compilation units to read in full symbols
1202 for. */
1203 struct dwarf2_queue_item
1204 {
1205 struct dwarf2_per_cu_data *per_cu;
1206 enum language pretend_language;
1207 struct dwarf2_queue_item *next;
1208 };
1209
1210 /* The current queue. */
1211 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1212
1213 /* Loaded secondary compilation units are kept in memory until they
1214 have not been referenced for the processing of this many
1215 compilation units. Set this to zero to disable caching. Cache
1216 sizes of up to at least twenty will improve startup time for
1217 typical inter-CU-reference binaries, at an obvious memory cost. */
1218 static int dwarf2_max_cache_age = 5;
1219 static void
1220 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
1221 struct cmd_list_element *c, const char *value)
1222 {
1223 fprintf_filtered (file, _("The upper bound on the age of cached "
1224 "dwarf2 compilation units is %s.\n"),
1225 value);
1226 }
1227
1228
1229 /* Various complaints about symbol reading that don't abort the process. */
1230
1231 static void
1232 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1233 {
1234 complaint (&symfile_complaints,
1235 _("statement list doesn't fit in .debug_line section"));
1236 }
1237
1238 static void
1239 dwarf2_debug_line_missing_file_complaint (void)
1240 {
1241 complaint (&symfile_complaints,
1242 _(".debug_line section has line data without a file"));
1243 }
1244
1245 static void
1246 dwarf2_debug_line_missing_end_sequence_complaint (void)
1247 {
1248 complaint (&symfile_complaints,
1249 _(".debug_line section has line "
1250 "program sequence without an end"));
1251 }
1252
1253 static void
1254 dwarf2_complex_location_expr_complaint (void)
1255 {
1256 complaint (&symfile_complaints, _("location expression too complex"));
1257 }
1258
1259 static void
1260 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1261 int arg3)
1262 {
1263 complaint (&symfile_complaints,
1264 _("const value length mismatch for '%s', got %d, expected %d"),
1265 arg1, arg2, arg3);
1266 }
1267
1268 static void
1269 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1270 {
1271 complaint (&symfile_complaints,
1272 _("debug info runs off end of %s section"
1273 " [in module %s]"),
1274 section->asection->name,
1275 bfd_get_filename (section->asection->owner));
1276 }
1277
1278 static void
1279 dwarf2_macro_malformed_definition_complaint (const char *arg1)
1280 {
1281 complaint (&symfile_complaints,
1282 _("macro debug info contains a "
1283 "malformed macro definition:\n`%s'"),
1284 arg1);
1285 }
1286
1287 static void
1288 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1289 {
1290 complaint (&symfile_complaints,
1291 _("invalid attribute class or form for '%s' in '%s'"),
1292 arg1, arg2);
1293 }
1294
1295 /* local function prototypes */
1296
1297 static void dwarf2_locate_sections (bfd *, asection *, void *);
1298
1299 static void dwarf2_find_base_address (struct die_info *die,
1300 struct dwarf2_cu *cu);
1301
1302 static struct partial_symtab *create_partial_symtab
1303 (struct dwarf2_per_cu_data *per_cu, const char *name);
1304
1305 static void dwarf2_build_psymtabs_hard (struct objfile *);
1306
1307 static void scan_partial_symbols (struct partial_die_info *,
1308 CORE_ADDR *, CORE_ADDR *,
1309 int, struct dwarf2_cu *);
1310
1311 static void add_partial_symbol (struct partial_die_info *,
1312 struct dwarf2_cu *);
1313
1314 static void add_partial_namespace (struct partial_die_info *pdi,
1315 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1316 int need_pc, struct dwarf2_cu *cu);
1317
1318 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1319 CORE_ADDR *highpc, int need_pc,
1320 struct dwarf2_cu *cu);
1321
1322 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1323 struct dwarf2_cu *cu);
1324
1325 static void add_partial_subprogram (struct partial_die_info *pdi,
1326 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1327 int need_pc, struct dwarf2_cu *cu);
1328
1329 static void dwarf2_read_symtab (struct partial_symtab *,
1330 struct objfile *);
1331
1332 static void psymtab_to_symtab_1 (struct partial_symtab *);
1333
1334 static struct abbrev_info *abbrev_table_lookup_abbrev
1335 (const struct abbrev_table *, unsigned int);
1336
1337 static struct abbrev_table *abbrev_table_read_table
1338 (struct dwarf2_section_info *, sect_offset);
1339
1340 static void abbrev_table_free (struct abbrev_table *);
1341
1342 static void abbrev_table_free_cleanup (void *);
1343
1344 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1345 struct dwarf2_section_info *);
1346
1347 static void dwarf2_free_abbrev_table (void *);
1348
1349 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1350
1351 static struct partial_die_info *load_partial_dies
1352 (const struct die_reader_specs *, const gdb_byte *, int);
1353
1354 static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1355 struct partial_die_info *,
1356 struct abbrev_info *,
1357 unsigned int,
1358 const gdb_byte *);
1359
1360 static struct partial_die_info *find_partial_die (sect_offset, int,
1361 struct dwarf2_cu *);
1362
1363 static void fixup_partial_die (struct partial_die_info *,
1364 struct dwarf2_cu *);
1365
1366 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1367 struct attribute *, struct attr_abbrev *,
1368 const gdb_byte *);
1369
1370 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1371
1372 static int read_1_signed_byte (bfd *, const gdb_byte *);
1373
1374 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1375
1376 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1377
1378 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1379
1380 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1381 unsigned int *);
1382
1383 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1384
1385 static LONGEST read_checked_initial_length_and_offset
1386 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1387 unsigned int *, unsigned int *);
1388
1389 static LONGEST read_offset (bfd *, const gdb_byte *,
1390 const struct comp_unit_head *,
1391 unsigned int *);
1392
1393 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1394
1395 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1396 sect_offset);
1397
1398 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1399
1400 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1401
1402 static const char *read_indirect_string (bfd *, const gdb_byte *,
1403 const struct comp_unit_head *,
1404 unsigned int *);
1405
1406 static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1407
1408 static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
1409
1410 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1411
1412 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1413 const gdb_byte *,
1414 unsigned int *);
1415
1416 static const char *read_str_index (const struct die_reader_specs *reader,
1417 struct dwarf2_cu *cu, ULONGEST str_index);
1418
1419 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1420
1421 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1422 struct dwarf2_cu *);
1423
1424 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1425 unsigned int);
1426
1427 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1428 struct dwarf2_cu *cu);
1429
1430 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1431
1432 static struct die_info *die_specification (struct die_info *die,
1433 struct dwarf2_cu **);
1434
1435 static void free_line_header (struct line_header *lh);
1436
1437 static struct line_header *dwarf_decode_line_header (unsigned int offset,
1438 struct dwarf2_cu *cu);
1439
1440 static void dwarf_decode_lines (struct line_header *, const char *,
1441 struct dwarf2_cu *, struct partial_symtab *,
1442 int);
1443
1444 static void dwarf2_start_subfile (const char *, const char *, const char *);
1445
1446 static void dwarf2_start_symtab (struct dwarf2_cu *,
1447 const char *, const char *, CORE_ADDR);
1448
1449 static struct symbol *new_symbol (struct die_info *, struct type *,
1450 struct dwarf2_cu *);
1451
1452 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1453 struct dwarf2_cu *, struct symbol *);
1454
1455 static void dwarf2_const_value (struct attribute *, struct symbol *,
1456 struct dwarf2_cu *);
1457
1458 static void dwarf2_const_value_attr (struct attribute *attr,
1459 struct type *type,
1460 const char *name,
1461 struct obstack *obstack,
1462 struct dwarf2_cu *cu, LONGEST *value,
1463 const gdb_byte **bytes,
1464 struct dwarf2_locexpr_baton **baton);
1465
1466 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1467
1468 static int need_gnat_info (struct dwarf2_cu *);
1469
1470 static struct type *die_descriptive_type (struct die_info *,
1471 struct dwarf2_cu *);
1472
1473 static void set_descriptive_type (struct type *, struct die_info *,
1474 struct dwarf2_cu *);
1475
1476 static struct type *die_containing_type (struct die_info *,
1477 struct dwarf2_cu *);
1478
1479 static struct type *lookup_die_type (struct die_info *, struct attribute *,
1480 struct dwarf2_cu *);
1481
1482 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1483
1484 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1485
1486 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1487
1488 static char *typename_concat (struct obstack *obs, const char *prefix,
1489 const char *suffix, int physname,
1490 struct dwarf2_cu *cu);
1491
1492 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1493
1494 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1495
1496 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1497
1498 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1499
1500 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1501
1502 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1503 struct dwarf2_cu *, struct partial_symtab *);
1504
1505 static int dwarf2_get_pc_bounds (struct die_info *,
1506 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1507 struct partial_symtab *);
1508
1509 static void get_scope_pc_bounds (struct die_info *,
1510 CORE_ADDR *, CORE_ADDR *,
1511 struct dwarf2_cu *);
1512
1513 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1514 CORE_ADDR, struct dwarf2_cu *);
1515
1516 static void dwarf2_add_field (struct field_info *, struct die_info *,
1517 struct dwarf2_cu *);
1518
1519 static void dwarf2_attach_fields_to_type (struct field_info *,
1520 struct type *, struct dwarf2_cu *);
1521
1522 static void dwarf2_add_member_fn (struct field_info *,
1523 struct die_info *, struct type *,
1524 struct dwarf2_cu *);
1525
1526 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1527 struct type *,
1528 struct dwarf2_cu *);
1529
1530 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1531
1532 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1533
1534 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1535
1536 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1537
1538 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1539
1540 static struct type *read_module_type (struct die_info *die,
1541 struct dwarf2_cu *cu);
1542
1543 static const char *namespace_name (struct die_info *die,
1544 int *is_anonymous, struct dwarf2_cu *);
1545
1546 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1547
1548 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1549
1550 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1551 struct dwarf2_cu *);
1552
1553 static struct die_info *read_die_and_siblings_1
1554 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1555 struct die_info *);
1556
1557 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1558 const gdb_byte *info_ptr,
1559 const gdb_byte **new_info_ptr,
1560 struct die_info *parent);
1561
1562 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1563 struct die_info **, const gdb_byte *,
1564 int *, int);
1565
1566 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1567 struct die_info **, const gdb_byte *,
1568 int *);
1569
1570 static void process_die (struct die_info *, struct dwarf2_cu *);
1571
1572 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1573 struct obstack *);
1574
1575 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1576
1577 static const char *dwarf2_full_name (const char *name,
1578 struct die_info *die,
1579 struct dwarf2_cu *cu);
1580
1581 static const char *dwarf2_physname (const char *name, struct die_info *die,
1582 struct dwarf2_cu *cu);
1583
1584 static struct die_info *dwarf2_extension (struct die_info *die,
1585 struct dwarf2_cu **);
1586
1587 static const char *dwarf_tag_name (unsigned int);
1588
1589 static const char *dwarf_attr_name (unsigned int);
1590
1591 static const char *dwarf_form_name (unsigned int);
1592
1593 static char *dwarf_bool_name (unsigned int);
1594
1595 static const char *dwarf_type_encoding_name (unsigned int);
1596
1597 static struct die_info *sibling_die (struct die_info *);
1598
1599 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1600
1601 static void dump_die_for_error (struct die_info *);
1602
1603 static void dump_die_1 (struct ui_file *, int level, int max_level,
1604 struct die_info *);
1605
1606 /*static*/ void dump_die (struct die_info *, int max_level);
1607
1608 static void store_in_ref_table (struct die_info *,
1609 struct dwarf2_cu *);
1610
1611 static int is_ref_attr (struct attribute *);
1612
1613 static sect_offset dwarf2_get_ref_die_offset (struct attribute *);
1614
1615 static LONGEST dwarf2_get_attr_constant_value (struct attribute *, int);
1616
1617 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1618 struct attribute *,
1619 struct dwarf2_cu **);
1620
1621 static struct die_info *follow_die_ref (struct die_info *,
1622 struct attribute *,
1623 struct dwarf2_cu **);
1624
1625 static struct die_info *follow_die_sig (struct die_info *,
1626 struct attribute *,
1627 struct dwarf2_cu **);
1628
1629 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1630 struct dwarf2_cu *);
1631
1632 static struct type *get_DW_AT_signature_type (struct die_info *,
1633 struct attribute *,
1634 struct dwarf2_cu *);
1635
1636 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1637
1638 static void read_signatured_type (struct signatured_type *);
1639
1640 static struct type_unit_group *get_type_unit_group
1641 (struct dwarf2_cu *, struct attribute *);
1642
1643 static void build_type_unit_groups (die_reader_func_ftype *, void *);
1644
1645 /* memory allocation interface */
1646
1647 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1648
1649 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1650
1651 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int,
1652 const char *, int);
1653
1654 static int attr_form_is_block (struct attribute *);
1655
1656 static int attr_form_is_section_offset (struct attribute *);
1657
1658 static int attr_form_is_constant (struct attribute *);
1659
1660 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1661 struct dwarf2_loclist_baton *baton,
1662 struct attribute *attr);
1663
1664 static void dwarf2_symbol_mark_computed (struct attribute *attr,
1665 struct symbol *sym,
1666 struct dwarf2_cu *cu,
1667 int is_block);
1668
1669 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1670 const gdb_byte *info_ptr,
1671 struct abbrev_info *abbrev);
1672
1673 static void free_stack_comp_unit (void *);
1674
1675 static hashval_t partial_die_hash (const void *item);
1676
1677 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1678
1679 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1680 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
1681
1682 static void init_one_comp_unit (struct dwarf2_cu *cu,
1683 struct dwarf2_per_cu_data *per_cu);
1684
1685 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1686 struct die_info *comp_unit_die,
1687 enum language pretend_language);
1688
1689 static void free_heap_comp_unit (void *);
1690
1691 static void free_cached_comp_units (void *);
1692
1693 static void age_cached_comp_units (void);
1694
1695 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1696
1697 static struct type *set_die_type (struct die_info *, struct type *,
1698 struct dwarf2_cu *);
1699
1700 static void create_all_comp_units (struct objfile *);
1701
1702 static int create_all_type_units (struct objfile *);
1703
1704 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1705 enum language);
1706
1707 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1708 enum language);
1709
1710 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1711 enum language);
1712
1713 static void dwarf2_add_dependence (struct dwarf2_cu *,
1714 struct dwarf2_per_cu_data *);
1715
1716 static void dwarf2_mark (struct dwarf2_cu *);
1717
1718 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1719
1720 static struct type *get_die_type_at_offset (sect_offset,
1721 struct dwarf2_per_cu_data *);
1722
1723 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1724
1725 static void dwarf2_release_queue (void *dummy);
1726
1727 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1728 enum language pretend_language);
1729
1730 static int maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
1731 struct dwarf2_per_cu_data *per_cu,
1732 enum language pretend_language);
1733
1734 static void process_queue (void);
1735
1736 static void find_file_and_directory (struct die_info *die,
1737 struct dwarf2_cu *cu,
1738 const char **name, const char **comp_dir);
1739
1740 static char *file_full_name (int file, struct line_header *lh,
1741 const char *comp_dir);
1742
1743 static const gdb_byte *read_and_check_comp_unit_head
1744 (struct comp_unit_head *header,
1745 struct dwarf2_section_info *section,
1746 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1747 int is_debug_types_section);
1748
1749 static void init_cutu_and_read_dies
1750 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1751 int use_existing_cu, int keep,
1752 die_reader_func_ftype *die_reader_func, void *data);
1753
1754 static void init_cutu_and_read_dies_simple
1755 (struct dwarf2_per_cu_data *this_cu,
1756 die_reader_func_ftype *die_reader_func, void *data);
1757
1758 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1759
1760 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1761
1762 static struct dwo_unit *lookup_dwo_in_dwp
1763 (struct dwp_file *dwp_file, const struct dwp_hash_table *htab,
1764 const char *comp_dir, ULONGEST signature, int is_debug_types);
1765
1766 static struct dwp_file *get_dwp_file (void);
1767
1768 static struct dwo_unit *lookup_dwo_comp_unit
1769 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1770
1771 static struct dwo_unit *lookup_dwo_type_unit
1772 (struct signatured_type *, const char *, const char *);
1773
1774 static void free_dwo_file_cleanup (void *);
1775
1776 static void process_cu_includes (void);
1777
1778 static void check_producer (struct dwarf2_cu *cu);
1779
1780 #if WORDS_BIGENDIAN
1781
1782 /* Convert VALUE between big- and little-endian. */
1783 static offset_type
1784 byte_swap (offset_type value)
1785 {
1786 offset_type result;
1787
1788 result = (value & 0xff) << 24;
1789 result |= (value & 0xff00) << 8;
1790 result |= (value & 0xff0000) >> 8;
1791 result |= (value & 0xff000000) >> 24;
1792 return result;
1793 }
1794
1795 #define MAYBE_SWAP(V) byte_swap (V)
1796
1797 #else
1798 #define MAYBE_SWAP(V) (V)
1799 #endif /* WORDS_BIGENDIAN */
1800
1801 /* The suffix for an index file. */
1802 #define INDEX_SUFFIX ".gdb-index"
1803
1804 /* Try to locate the sections we need for DWARF 2 debugging
1805 information and return true if we have enough to do something.
1806 NAMES points to the dwarf2 section names, or is NULL if the standard
1807 ELF names are used. */
1808
1809 int
1810 dwarf2_has_info (struct objfile *objfile,
1811 const struct dwarf2_debug_sections *names)
1812 {
1813 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1814 if (!dwarf2_per_objfile)
1815 {
1816 /* Initialize per-objfile state. */
1817 struct dwarf2_per_objfile *data
1818 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1819
1820 memset (data, 0, sizeof (*data));
1821 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1822 dwarf2_per_objfile = data;
1823
1824 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
1825 (void *) names);
1826 dwarf2_per_objfile->objfile = objfile;
1827 }
1828 return (dwarf2_per_objfile->info.asection != NULL
1829 && dwarf2_per_objfile->abbrev.asection != NULL);
1830 }
1831
1832 /* When loading sections, we look either for uncompressed section or for
1833 compressed section names. */
1834
1835 static int
1836 section_is_p (const char *section_name,
1837 const struct dwarf2_section_names *names)
1838 {
1839 if (names->normal != NULL
1840 && strcmp (section_name, names->normal) == 0)
1841 return 1;
1842 if (names->compressed != NULL
1843 && strcmp (section_name, names->compressed) == 0)
1844 return 1;
1845 return 0;
1846 }
1847
1848 /* This function is mapped across the sections and remembers the
1849 offset and size of each of the debugging sections we are interested
1850 in. */
1851
1852 static void
1853 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
1854 {
1855 const struct dwarf2_debug_sections *names;
1856 flagword aflag = bfd_get_section_flags (abfd, sectp);
1857
1858 if (vnames == NULL)
1859 names = &dwarf2_elf_names;
1860 else
1861 names = (const struct dwarf2_debug_sections *) vnames;
1862
1863 if ((aflag & SEC_HAS_CONTENTS) == 0)
1864 {
1865 }
1866 else if (section_is_p (sectp->name, &names->info))
1867 {
1868 dwarf2_per_objfile->info.asection = sectp;
1869 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
1870 }
1871 else if (section_is_p (sectp->name, &names->abbrev))
1872 {
1873 dwarf2_per_objfile->abbrev.asection = sectp;
1874 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
1875 }
1876 else if (section_is_p (sectp->name, &names->line))
1877 {
1878 dwarf2_per_objfile->line.asection = sectp;
1879 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
1880 }
1881 else if (section_is_p (sectp->name, &names->loc))
1882 {
1883 dwarf2_per_objfile->loc.asection = sectp;
1884 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
1885 }
1886 else if (section_is_p (sectp->name, &names->macinfo))
1887 {
1888 dwarf2_per_objfile->macinfo.asection = sectp;
1889 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
1890 }
1891 else if (section_is_p (sectp->name, &names->macro))
1892 {
1893 dwarf2_per_objfile->macro.asection = sectp;
1894 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
1895 }
1896 else if (section_is_p (sectp->name, &names->str))
1897 {
1898 dwarf2_per_objfile->str.asection = sectp;
1899 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
1900 }
1901 else if (section_is_p (sectp->name, &names->addr))
1902 {
1903 dwarf2_per_objfile->addr.asection = sectp;
1904 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
1905 }
1906 else if (section_is_p (sectp->name, &names->frame))
1907 {
1908 dwarf2_per_objfile->frame.asection = sectp;
1909 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
1910 }
1911 else if (section_is_p (sectp->name, &names->eh_frame))
1912 {
1913 dwarf2_per_objfile->eh_frame.asection = sectp;
1914 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
1915 }
1916 else if (section_is_p (sectp->name, &names->ranges))
1917 {
1918 dwarf2_per_objfile->ranges.asection = sectp;
1919 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
1920 }
1921 else if (section_is_p (sectp->name, &names->types))
1922 {
1923 struct dwarf2_section_info type_section;
1924
1925 memset (&type_section, 0, sizeof (type_section));
1926 type_section.asection = sectp;
1927 type_section.size = bfd_get_section_size (sectp);
1928
1929 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
1930 &type_section);
1931 }
1932 else if (section_is_p (sectp->name, &names->gdb_index))
1933 {
1934 dwarf2_per_objfile->gdb_index.asection = sectp;
1935 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
1936 }
1937
1938 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
1939 && bfd_section_vma (abfd, sectp) == 0)
1940 dwarf2_per_objfile->has_section_at_zero = 1;
1941 }
1942
1943 /* A helper function that decides whether a section is empty,
1944 or not present. */
1945
1946 static int
1947 dwarf2_section_empty_p (struct dwarf2_section_info *info)
1948 {
1949 return info->asection == NULL || info->size == 0;
1950 }
1951
1952 /* Read the contents of the section INFO.
1953 OBJFILE is the main object file, but not necessarily the file where
1954 the section comes from. E.g., for DWO files INFO->asection->owner
1955 is the bfd of the DWO file.
1956 If the section is compressed, uncompress it before returning. */
1957
1958 static void
1959 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
1960 {
1961 asection *sectp = info->asection;
1962 bfd *abfd;
1963 gdb_byte *buf, *retbuf;
1964 unsigned char header[4];
1965
1966 if (info->readin)
1967 return;
1968 info->buffer = NULL;
1969 info->readin = 1;
1970
1971 if (dwarf2_section_empty_p (info))
1972 return;
1973
1974 abfd = sectp->owner;
1975
1976 /* If the section has relocations, we must read it ourselves.
1977 Otherwise we attach it to the BFD. */
1978 if ((sectp->flags & SEC_RELOC) == 0)
1979 {
1980 info->buffer = gdb_bfd_map_section (sectp, &info->size);
1981 return;
1982 }
1983
1984 buf = obstack_alloc (&objfile->objfile_obstack, info->size);
1985 info->buffer = buf;
1986
1987 /* When debugging .o files, we may need to apply relocations; see
1988 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
1989 We never compress sections in .o files, so we only need to
1990 try this when the section is not compressed. */
1991 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
1992 if (retbuf != NULL)
1993 {
1994 info->buffer = retbuf;
1995 return;
1996 }
1997
1998 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1999 || bfd_bread (buf, info->size, abfd) != info->size)
2000 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
2001 bfd_get_filename (abfd));
2002 }
2003
2004 /* A helper function that returns the size of a section in a safe way.
2005 If you are positive that the section has been read before using the
2006 size, then it is safe to refer to the dwarf2_section_info object's
2007 "size" field directly. In other cases, you must call this
2008 function, because for compressed sections the size field is not set
2009 correctly until the section has been read. */
2010
2011 static bfd_size_type
2012 dwarf2_section_size (struct objfile *objfile,
2013 struct dwarf2_section_info *info)
2014 {
2015 if (!info->readin)
2016 dwarf2_read_section (objfile, info);
2017 return info->size;
2018 }
2019
2020 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2021 SECTION_NAME. */
2022
2023 void
2024 dwarf2_get_section_info (struct objfile *objfile,
2025 enum dwarf2_section_enum sect,
2026 asection **sectp, const gdb_byte **bufp,
2027 bfd_size_type *sizep)
2028 {
2029 struct dwarf2_per_objfile *data
2030 = objfile_data (objfile, dwarf2_objfile_data_key);
2031 struct dwarf2_section_info *info;
2032
2033 /* We may see an objfile without any DWARF, in which case we just
2034 return nothing. */
2035 if (data == NULL)
2036 {
2037 *sectp = NULL;
2038 *bufp = NULL;
2039 *sizep = 0;
2040 return;
2041 }
2042 switch (sect)
2043 {
2044 case DWARF2_DEBUG_FRAME:
2045 info = &data->frame;
2046 break;
2047 case DWARF2_EH_FRAME:
2048 info = &data->eh_frame;
2049 break;
2050 default:
2051 gdb_assert_not_reached ("unexpected section");
2052 }
2053
2054 dwarf2_read_section (objfile, info);
2055
2056 *sectp = info->asection;
2057 *bufp = info->buffer;
2058 *sizep = info->size;
2059 }
2060
2061 /* A helper function to find the sections for a .dwz file. */
2062
2063 static void
2064 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2065 {
2066 struct dwz_file *dwz_file = arg;
2067
2068 /* Note that we only support the standard ELF names, because .dwz
2069 is ELF-only (at the time of writing). */
2070 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2071 {
2072 dwz_file->abbrev.asection = sectp;
2073 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2074 }
2075 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2076 {
2077 dwz_file->info.asection = sectp;
2078 dwz_file->info.size = bfd_get_section_size (sectp);
2079 }
2080 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2081 {
2082 dwz_file->str.asection = sectp;
2083 dwz_file->str.size = bfd_get_section_size (sectp);
2084 }
2085 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2086 {
2087 dwz_file->line.asection = sectp;
2088 dwz_file->line.size = bfd_get_section_size (sectp);
2089 }
2090 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2091 {
2092 dwz_file->macro.asection = sectp;
2093 dwz_file->macro.size = bfd_get_section_size (sectp);
2094 }
2095 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2096 {
2097 dwz_file->gdb_index.asection = sectp;
2098 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2099 }
2100 }
2101
2102 /* Open the separate '.dwz' debug file, if needed. Error if the file
2103 cannot be found. */
2104
2105 static struct dwz_file *
2106 dwarf2_get_dwz_file (void)
2107 {
2108 bfd *abfd, *dwz_bfd;
2109 asection *section;
2110 gdb_byte *data;
2111 struct cleanup *cleanup;
2112 const char *filename;
2113 struct dwz_file *result;
2114
2115 if (dwarf2_per_objfile->dwz_file != NULL)
2116 return dwarf2_per_objfile->dwz_file;
2117
2118 abfd = dwarf2_per_objfile->objfile->obfd;
2119 section = bfd_get_section_by_name (abfd, ".gnu_debugaltlink");
2120 if (section == NULL)
2121 error (_("could not find '.gnu_debugaltlink' section"));
2122 if (!bfd_malloc_and_get_section (abfd, section, &data))
2123 error (_("could not read '.gnu_debugaltlink' section: %s"),
2124 bfd_errmsg (bfd_get_error ()));
2125 cleanup = make_cleanup (xfree, data);
2126
2127 filename = (const char *) data;
2128 if (!IS_ABSOLUTE_PATH (filename))
2129 {
2130 char *abs = gdb_realpath (dwarf2_per_objfile->objfile->name);
2131 char *rel;
2132
2133 make_cleanup (xfree, abs);
2134 abs = ldirname (abs);
2135 make_cleanup (xfree, abs);
2136
2137 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2138 make_cleanup (xfree, rel);
2139 filename = rel;
2140 }
2141
2142 /* The format is just a NUL-terminated file name, followed by the
2143 build-id. For now, though, we ignore the build-id. */
2144 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
2145 if (dwz_bfd == NULL)
2146 error (_("could not read '%s': %s"), filename,
2147 bfd_errmsg (bfd_get_error ()));
2148
2149 if (!bfd_check_format (dwz_bfd, bfd_object))
2150 {
2151 gdb_bfd_unref (dwz_bfd);
2152 error (_("file '%s' was not usable: %s"), filename,
2153 bfd_errmsg (bfd_get_error ()));
2154 }
2155
2156 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2157 struct dwz_file);
2158 result->dwz_bfd = dwz_bfd;
2159
2160 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2161
2162 do_cleanups (cleanup);
2163
2164 dwarf2_per_objfile->dwz_file = result;
2165 return result;
2166 }
2167 \f
2168 /* DWARF quick_symbols_functions support. */
2169
2170 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2171 unique line tables, so we maintain a separate table of all .debug_line
2172 derived entries to support the sharing.
2173 All the quick functions need is the list of file names. We discard the
2174 line_header when we're done and don't need to record it here. */
2175 struct quick_file_names
2176 {
2177 /* The data used to construct the hash key. */
2178 struct stmt_list_hash hash;
2179
2180 /* The number of entries in file_names, real_names. */
2181 unsigned int num_file_names;
2182
2183 /* The file names from the line table, after being run through
2184 file_full_name. */
2185 const char **file_names;
2186
2187 /* The file names from the line table after being run through
2188 gdb_realpath. These are computed lazily. */
2189 const char **real_names;
2190 };
2191
2192 /* When using the index (and thus not using psymtabs), each CU has an
2193 object of this type. This is used to hold information needed by
2194 the various "quick" methods. */
2195 struct dwarf2_per_cu_quick_data
2196 {
2197 /* The file table. This can be NULL if there was no file table
2198 or it's currently not read in.
2199 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2200 struct quick_file_names *file_names;
2201
2202 /* The corresponding symbol table. This is NULL if symbols for this
2203 CU have not yet been read. */
2204 struct symtab *symtab;
2205
2206 /* A temporary mark bit used when iterating over all CUs in
2207 expand_symtabs_matching. */
2208 unsigned int mark : 1;
2209
2210 /* True if we've tried to read the file table and found there isn't one.
2211 There will be no point in trying to read it again next time. */
2212 unsigned int no_file_data : 1;
2213 };
2214
2215 /* Utility hash function for a stmt_list_hash. */
2216
2217 static hashval_t
2218 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2219 {
2220 hashval_t v = 0;
2221
2222 if (stmt_list_hash->dwo_unit != NULL)
2223 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2224 v += stmt_list_hash->line_offset.sect_off;
2225 return v;
2226 }
2227
2228 /* Utility equality function for a stmt_list_hash. */
2229
2230 static int
2231 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2232 const struct stmt_list_hash *rhs)
2233 {
2234 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2235 return 0;
2236 if (lhs->dwo_unit != NULL
2237 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2238 return 0;
2239
2240 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2241 }
2242
2243 /* Hash function for a quick_file_names. */
2244
2245 static hashval_t
2246 hash_file_name_entry (const void *e)
2247 {
2248 const struct quick_file_names *file_data = e;
2249
2250 return hash_stmt_list_entry (&file_data->hash);
2251 }
2252
2253 /* Equality function for a quick_file_names. */
2254
2255 static int
2256 eq_file_name_entry (const void *a, const void *b)
2257 {
2258 const struct quick_file_names *ea = a;
2259 const struct quick_file_names *eb = b;
2260
2261 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2262 }
2263
2264 /* Delete function for a quick_file_names. */
2265
2266 static void
2267 delete_file_name_entry (void *e)
2268 {
2269 struct quick_file_names *file_data = e;
2270 int i;
2271
2272 for (i = 0; i < file_data->num_file_names; ++i)
2273 {
2274 xfree ((void*) file_data->file_names[i]);
2275 if (file_data->real_names)
2276 xfree ((void*) file_data->real_names[i]);
2277 }
2278
2279 /* The space for the struct itself lives on objfile_obstack,
2280 so we don't free it here. */
2281 }
2282
2283 /* Create a quick_file_names hash table. */
2284
2285 static htab_t
2286 create_quick_file_names_table (unsigned int nr_initial_entries)
2287 {
2288 return htab_create_alloc (nr_initial_entries,
2289 hash_file_name_entry, eq_file_name_entry,
2290 delete_file_name_entry, xcalloc, xfree);
2291 }
2292
2293 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2294 have to be created afterwards. You should call age_cached_comp_units after
2295 processing PER_CU->CU. dw2_setup must have been already called. */
2296
2297 static void
2298 load_cu (struct dwarf2_per_cu_data *per_cu)
2299 {
2300 if (per_cu->is_debug_types)
2301 load_full_type_unit (per_cu);
2302 else
2303 load_full_comp_unit (per_cu, language_minimal);
2304
2305 gdb_assert (per_cu->cu != NULL);
2306
2307 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2308 }
2309
2310 /* Read in the symbols for PER_CU. */
2311
2312 static void
2313 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2314 {
2315 struct cleanup *back_to;
2316
2317 /* Skip type_unit_groups, reading the type units they contain
2318 is handled elsewhere. */
2319 if (IS_TYPE_UNIT_GROUP (per_cu))
2320 return;
2321
2322 back_to = make_cleanup (dwarf2_release_queue, NULL);
2323
2324 if (dwarf2_per_objfile->using_index
2325 ? per_cu->v.quick->symtab == NULL
2326 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2327 {
2328 queue_comp_unit (per_cu, language_minimal);
2329 load_cu (per_cu);
2330 }
2331
2332 process_queue ();
2333
2334 /* Age the cache, releasing compilation units that have not
2335 been used recently. */
2336 age_cached_comp_units ();
2337
2338 do_cleanups (back_to);
2339 }
2340
2341 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2342 the objfile from which this CU came. Returns the resulting symbol
2343 table. */
2344
2345 static struct symtab *
2346 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2347 {
2348 gdb_assert (dwarf2_per_objfile->using_index);
2349 if (!per_cu->v.quick->symtab)
2350 {
2351 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2352 increment_reading_symtab ();
2353 dw2_do_instantiate_symtab (per_cu);
2354 process_cu_includes ();
2355 do_cleanups (back_to);
2356 }
2357 return per_cu->v.quick->symtab;
2358 }
2359
2360 /* Return the CU given its index.
2361
2362 This is intended for loops like:
2363
2364 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2365 + dwarf2_per_objfile->n_type_units); ++i)
2366 {
2367 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2368
2369 ...;
2370 }
2371 */
2372
2373 static struct dwarf2_per_cu_data *
2374 dw2_get_cu (int index)
2375 {
2376 if (index >= dwarf2_per_objfile->n_comp_units)
2377 {
2378 index -= dwarf2_per_objfile->n_comp_units;
2379 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2380 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2381 }
2382
2383 return dwarf2_per_objfile->all_comp_units[index];
2384 }
2385
2386 /* Return the primary CU given its index.
2387 The difference between this function and dw2_get_cu is in the handling
2388 of type units (TUs). Here we return the type_unit_group object.
2389
2390 This is intended for loops like:
2391
2392 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2393 + dwarf2_per_objfile->n_type_unit_groups); ++i)
2394 {
2395 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
2396
2397 ...;
2398 }
2399 */
2400
2401 static struct dwarf2_per_cu_data *
2402 dw2_get_primary_cu (int index)
2403 {
2404 if (index >= dwarf2_per_objfile->n_comp_units)
2405 {
2406 index -= dwarf2_per_objfile->n_comp_units;
2407 gdb_assert (index < dwarf2_per_objfile->n_type_unit_groups);
2408 return &dwarf2_per_objfile->all_type_unit_groups[index]->per_cu;
2409 }
2410
2411 return dwarf2_per_objfile->all_comp_units[index];
2412 }
2413
2414 /* A helper for create_cus_from_index that handles a given list of
2415 CUs. */
2416
2417 static void
2418 create_cus_from_index_list (struct objfile *objfile,
2419 const gdb_byte *cu_list, offset_type n_elements,
2420 struct dwarf2_section_info *section,
2421 int is_dwz,
2422 int base_offset)
2423 {
2424 offset_type i;
2425
2426 for (i = 0; i < n_elements; i += 2)
2427 {
2428 struct dwarf2_per_cu_data *the_cu;
2429 ULONGEST offset, length;
2430
2431 gdb_static_assert (sizeof (ULONGEST) >= 8);
2432 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2433 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2434 cu_list += 2 * 8;
2435
2436 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2437 struct dwarf2_per_cu_data);
2438 the_cu->offset.sect_off = offset;
2439 the_cu->length = length;
2440 the_cu->objfile = objfile;
2441 the_cu->section = section;
2442 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2443 struct dwarf2_per_cu_quick_data);
2444 the_cu->is_dwz = is_dwz;
2445 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
2446 }
2447 }
2448
2449 /* Read the CU list from the mapped index, and use it to create all
2450 the CU objects for this objfile. */
2451
2452 static void
2453 create_cus_from_index (struct objfile *objfile,
2454 const gdb_byte *cu_list, offset_type cu_list_elements,
2455 const gdb_byte *dwz_list, offset_type dwz_elements)
2456 {
2457 struct dwz_file *dwz;
2458
2459 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2460 dwarf2_per_objfile->all_comp_units
2461 = obstack_alloc (&objfile->objfile_obstack,
2462 dwarf2_per_objfile->n_comp_units
2463 * sizeof (struct dwarf2_per_cu_data *));
2464
2465 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2466 &dwarf2_per_objfile->info, 0, 0);
2467
2468 if (dwz_elements == 0)
2469 return;
2470
2471 dwz = dwarf2_get_dwz_file ();
2472 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2473 cu_list_elements / 2);
2474 }
2475
2476 /* Create the signatured type hash table from the index. */
2477
2478 static void
2479 create_signatured_type_table_from_index (struct objfile *objfile,
2480 struct dwarf2_section_info *section,
2481 const gdb_byte *bytes,
2482 offset_type elements)
2483 {
2484 offset_type i;
2485 htab_t sig_types_hash;
2486
2487 dwarf2_per_objfile->n_type_units = elements / 3;
2488 dwarf2_per_objfile->all_type_units
2489 = xmalloc (dwarf2_per_objfile->n_type_units
2490 * sizeof (struct signatured_type *));
2491
2492 sig_types_hash = allocate_signatured_type_table (objfile);
2493
2494 for (i = 0; i < elements; i += 3)
2495 {
2496 struct signatured_type *sig_type;
2497 ULONGEST offset, type_offset_in_tu, signature;
2498 void **slot;
2499
2500 gdb_static_assert (sizeof (ULONGEST) >= 8);
2501 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2502 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2503 BFD_ENDIAN_LITTLE);
2504 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2505 bytes += 3 * 8;
2506
2507 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2508 struct signatured_type);
2509 sig_type->signature = signature;
2510 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2511 sig_type->per_cu.is_debug_types = 1;
2512 sig_type->per_cu.section = section;
2513 sig_type->per_cu.offset.sect_off = offset;
2514 sig_type->per_cu.objfile = objfile;
2515 sig_type->per_cu.v.quick
2516 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2517 struct dwarf2_per_cu_quick_data);
2518
2519 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2520 *slot = sig_type;
2521
2522 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
2523 }
2524
2525 dwarf2_per_objfile->signatured_types = sig_types_hash;
2526 }
2527
2528 /* Read the address map data from the mapped index, and use it to
2529 populate the objfile's psymtabs_addrmap. */
2530
2531 static void
2532 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2533 {
2534 const gdb_byte *iter, *end;
2535 struct obstack temp_obstack;
2536 struct addrmap *mutable_map;
2537 struct cleanup *cleanup;
2538 CORE_ADDR baseaddr;
2539
2540 obstack_init (&temp_obstack);
2541 cleanup = make_cleanup_obstack_free (&temp_obstack);
2542 mutable_map = addrmap_create_mutable (&temp_obstack);
2543
2544 iter = index->address_table;
2545 end = iter + index->address_table_size;
2546
2547 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2548
2549 while (iter < end)
2550 {
2551 ULONGEST hi, lo, cu_index;
2552 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2553 iter += 8;
2554 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2555 iter += 8;
2556 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2557 iter += 4;
2558
2559 if (cu_index < dwarf2_per_objfile->n_comp_units)
2560 {
2561 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
2562 dw2_get_cu (cu_index));
2563 }
2564 else
2565 {
2566 complaint (&symfile_complaints,
2567 _(".gdb_index address table has invalid CU number %u"),
2568 (unsigned) cu_index);
2569 }
2570 }
2571
2572 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2573 &objfile->objfile_obstack);
2574 do_cleanups (cleanup);
2575 }
2576
2577 /* The hash function for strings in the mapped index. This is the same as
2578 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2579 implementation. This is necessary because the hash function is tied to the
2580 format of the mapped index file. The hash values do not have to match with
2581 SYMBOL_HASH_NEXT.
2582
2583 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2584
2585 static hashval_t
2586 mapped_index_string_hash (int index_version, const void *p)
2587 {
2588 const unsigned char *str = (const unsigned char *) p;
2589 hashval_t r = 0;
2590 unsigned char c;
2591
2592 while ((c = *str++) != 0)
2593 {
2594 if (index_version >= 5)
2595 c = tolower (c);
2596 r = r * 67 + c - 113;
2597 }
2598
2599 return r;
2600 }
2601
2602 /* Find a slot in the mapped index INDEX for the object named NAME.
2603 If NAME is found, set *VEC_OUT to point to the CU vector in the
2604 constant pool and return 1. If NAME cannot be found, return 0. */
2605
2606 static int
2607 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2608 offset_type **vec_out)
2609 {
2610 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2611 offset_type hash;
2612 offset_type slot, step;
2613 int (*cmp) (const char *, const char *);
2614
2615 if (current_language->la_language == language_cplus
2616 || current_language->la_language == language_java
2617 || current_language->la_language == language_fortran)
2618 {
2619 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2620 not contain any. */
2621 const char *paren = strchr (name, '(');
2622
2623 if (paren)
2624 {
2625 char *dup;
2626
2627 dup = xmalloc (paren - name + 1);
2628 memcpy (dup, name, paren - name);
2629 dup[paren - name] = 0;
2630
2631 make_cleanup (xfree, dup);
2632 name = dup;
2633 }
2634 }
2635
2636 /* Index version 4 did not support case insensitive searches. But the
2637 indices for case insensitive languages are built in lowercase, therefore
2638 simulate our NAME being searched is also lowercased. */
2639 hash = mapped_index_string_hash ((index->version == 4
2640 && case_sensitivity == case_sensitive_off
2641 ? 5 : index->version),
2642 name);
2643
2644 slot = hash & (index->symbol_table_slots - 1);
2645 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
2646 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
2647
2648 for (;;)
2649 {
2650 /* Convert a slot number to an offset into the table. */
2651 offset_type i = 2 * slot;
2652 const char *str;
2653 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
2654 {
2655 do_cleanups (back_to);
2656 return 0;
2657 }
2658
2659 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
2660 if (!cmp (name, str))
2661 {
2662 *vec_out = (offset_type *) (index->constant_pool
2663 + MAYBE_SWAP (index->symbol_table[i + 1]));
2664 do_cleanups (back_to);
2665 return 1;
2666 }
2667
2668 slot = (slot + step) & (index->symbol_table_slots - 1);
2669 }
2670 }
2671
2672 /* A helper function that reads the .gdb_index from SECTION and fills
2673 in MAP. FILENAME is the name of the file containing the section;
2674 it is used for error reporting. DEPRECATED_OK is nonzero if it is
2675 ok to use deprecated sections.
2676
2677 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
2678 out parameters that are filled in with information about the CU and
2679 TU lists in the section.
2680
2681 Returns 1 if all went well, 0 otherwise. */
2682
2683 static int
2684 read_index_from_section (struct objfile *objfile,
2685 const char *filename,
2686 int deprecated_ok,
2687 struct dwarf2_section_info *section,
2688 struct mapped_index *map,
2689 const gdb_byte **cu_list,
2690 offset_type *cu_list_elements,
2691 const gdb_byte **types_list,
2692 offset_type *types_list_elements)
2693 {
2694 const gdb_byte *addr;
2695 offset_type version;
2696 offset_type *metadata;
2697 int i;
2698
2699 if (dwarf2_section_empty_p (section))
2700 return 0;
2701
2702 /* Older elfutils strip versions could keep the section in the main
2703 executable while splitting it for the separate debug info file. */
2704 if ((bfd_get_file_flags (section->asection) & SEC_HAS_CONTENTS) == 0)
2705 return 0;
2706
2707 dwarf2_read_section (objfile, section);
2708
2709 addr = section->buffer;
2710 /* Version check. */
2711 version = MAYBE_SWAP (*(offset_type *) addr);
2712 /* Versions earlier than 3 emitted every copy of a psymbol. This
2713 causes the index to behave very poorly for certain requests. Version 3
2714 contained incomplete addrmap. So, it seems better to just ignore such
2715 indices. */
2716 if (version < 4)
2717 {
2718 static int warning_printed = 0;
2719 if (!warning_printed)
2720 {
2721 warning (_("Skipping obsolete .gdb_index section in %s."),
2722 filename);
2723 warning_printed = 1;
2724 }
2725 return 0;
2726 }
2727 /* Index version 4 uses a different hash function than index version
2728 5 and later.
2729
2730 Versions earlier than 6 did not emit psymbols for inlined
2731 functions. Using these files will cause GDB not to be able to
2732 set breakpoints on inlined functions by name, so we ignore these
2733 indices unless the user has done
2734 "set use-deprecated-index-sections on". */
2735 if (version < 6 && !deprecated_ok)
2736 {
2737 static int warning_printed = 0;
2738 if (!warning_printed)
2739 {
2740 warning (_("\
2741 Skipping deprecated .gdb_index section in %s.\n\
2742 Do \"set use-deprecated-index-sections on\" before the file is read\n\
2743 to use the section anyway."),
2744 filename);
2745 warning_printed = 1;
2746 }
2747 return 0;
2748 }
2749 /* Version 7 indices generated by gold refer to the CU for a symbol instead
2750 of the TU (for symbols coming from TUs). It's just a performance bug, and
2751 we can't distinguish gdb-generated indices from gold-generated ones, so
2752 nothing to do here. */
2753
2754 /* Indexes with higher version than the one supported by GDB may be no
2755 longer backward compatible. */
2756 if (version > 8)
2757 return 0;
2758
2759 map->version = version;
2760 map->total_size = section->size;
2761
2762 metadata = (offset_type *) (addr + sizeof (offset_type));
2763
2764 i = 0;
2765 *cu_list = addr + MAYBE_SWAP (metadata[i]);
2766 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
2767 / 8);
2768 ++i;
2769
2770 *types_list = addr + MAYBE_SWAP (metadata[i]);
2771 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
2772 - MAYBE_SWAP (metadata[i]))
2773 / 8);
2774 ++i;
2775
2776 map->address_table = addr + MAYBE_SWAP (metadata[i]);
2777 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
2778 - MAYBE_SWAP (metadata[i]));
2779 ++i;
2780
2781 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
2782 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
2783 - MAYBE_SWAP (metadata[i]))
2784 / (2 * sizeof (offset_type)));
2785 ++i;
2786
2787 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
2788
2789 return 1;
2790 }
2791
2792
2793 /* Read the index file. If everything went ok, initialize the "quick"
2794 elements of all the CUs and return 1. Otherwise, return 0. */
2795
2796 static int
2797 dwarf2_read_index (struct objfile *objfile)
2798 {
2799 struct mapped_index local_map, *map;
2800 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
2801 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
2802
2803 if (!read_index_from_section (objfile, objfile->name,
2804 use_deprecated_index_sections,
2805 &dwarf2_per_objfile->gdb_index, &local_map,
2806 &cu_list, &cu_list_elements,
2807 &types_list, &types_list_elements))
2808 return 0;
2809
2810 /* Don't use the index if it's empty. */
2811 if (local_map.symbol_table_slots == 0)
2812 return 0;
2813
2814 /* If there is a .dwz file, read it so we can get its CU list as
2815 well. */
2816 if (bfd_get_section_by_name (objfile->obfd, ".gnu_debugaltlink") != NULL)
2817 {
2818 struct dwz_file *dwz = dwarf2_get_dwz_file ();
2819 struct mapped_index dwz_map;
2820 const gdb_byte *dwz_types_ignore;
2821 offset_type dwz_types_elements_ignore;
2822
2823 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
2824 1,
2825 &dwz->gdb_index, &dwz_map,
2826 &dwz_list, &dwz_list_elements,
2827 &dwz_types_ignore,
2828 &dwz_types_elements_ignore))
2829 {
2830 warning (_("could not read '.gdb_index' section from %s; skipping"),
2831 bfd_get_filename (dwz->dwz_bfd));
2832 return 0;
2833 }
2834 }
2835
2836 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
2837 dwz_list_elements);
2838
2839 if (types_list_elements)
2840 {
2841 struct dwarf2_section_info *section;
2842
2843 /* We can only handle a single .debug_types when we have an
2844 index. */
2845 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
2846 return 0;
2847
2848 section = VEC_index (dwarf2_section_info_def,
2849 dwarf2_per_objfile->types, 0);
2850
2851 create_signatured_type_table_from_index (objfile, section, types_list,
2852 types_list_elements);
2853 }
2854
2855 create_addrmap_from_index (objfile, &local_map);
2856
2857 map = obstack_alloc (&objfile->objfile_obstack, sizeof (struct mapped_index));
2858 *map = local_map;
2859
2860 dwarf2_per_objfile->index_table = map;
2861 dwarf2_per_objfile->using_index = 1;
2862 dwarf2_per_objfile->quick_file_names_table =
2863 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
2864
2865 return 1;
2866 }
2867
2868 /* A helper for the "quick" functions which sets the global
2869 dwarf2_per_objfile according to OBJFILE. */
2870
2871 static void
2872 dw2_setup (struct objfile *objfile)
2873 {
2874 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
2875 gdb_assert (dwarf2_per_objfile);
2876 }
2877
2878 /* die_reader_func for dw2_get_file_names. */
2879
2880 static void
2881 dw2_get_file_names_reader (const struct die_reader_specs *reader,
2882 const gdb_byte *info_ptr,
2883 struct die_info *comp_unit_die,
2884 int has_children,
2885 void *data)
2886 {
2887 struct dwarf2_cu *cu = reader->cu;
2888 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
2889 struct objfile *objfile = dwarf2_per_objfile->objfile;
2890 struct dwarf2_per_cu_data *lh_cu;
2891 struct line_header *lh;
2892 struct attribute *attr;
2893 int i;
2894 const char *name, *comp_dir;
2895 void **slot;
2896 struct quick_file_names *qfn;
2897 unsigned int line_offset;
2898
2899 gdb_assert (! this_cu->is_debug_types);
2900
2901 /* Our callers never want to match partial units -- instead they
2902 will match the enclosing full CU. */
2903 if (comp_unit_die->tag == DW_TAG_partial_unit)
2904 {
2905 this_cu->v.quick->no_file_data = 1;
2906 return;
2907 }
2908
2909 lh_cu = this_cu;
2910 lh = NULL;
2911 slot = NULL;
2912 line_offset = 0;
2913
2914 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
2915 if (attr)
2916 {
2917 struct quick_file_names find_entry;
2918
2919 line_offset = DW_UNSND (attr);
2920
2921 /* We may have already read in this line header (TU line header sharing).
2922 If we have we're done. */
2923 find_entry.hash.dwo_unit = cu->dwo_unit;
2924 find_entry.hash.line_offset.sect_off = line_offset;
2925 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
2926 &find_entry, INSERT);
2927 if (*slot != NULL)
2928 {
2929 lh_cu->v.quick->file_names = *slot;
2930 return;
2931 }
2932
2933 lh = dwarf_decode_line_header (line_offset, cu);
2934 }
2935 if (lh == NULL)
2936 {
2937 lh_cu->v.quick->no_file_data = 1;
2938 return;
2939 }
2940
2941 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
2942 qfn->hash.dwo_unit = cu->dwo_unit;
2943 qfn->hash.line_offset.sect_off = line_offset;
2944 gdb_assert (slot != NULL);
2945 *slot = qfn;
2946
2947 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
2948
2949 qfn->num_file_names = lh->num_file_names;
2950 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
2951 lh->num_file_names * sizeof (char *));
2952 for (i = 0; i < lh->num_file_names; ++i)
2953 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
2954 qfn->real_names = NULL;
2955
2956 free_line_header (lh);
2957
2958 lh_cu->v.quick->file_names = qfn;
2959 }
2960
2961 /* A helper for the "quick" functions which attempts to read the line
2962 table for THIS_CU. */
2963
2964 static struct quick_file_names *
2965 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
2966 {
2967 /* This should never be called for TUs. */
2968 gdb_assert (! this_cu->is_debug_types);
2969 /* Nor type unit groups. */
2970 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
2971
2972 if (this_cu->v.quick->file_names != NULL)
2973 return this_cu->v.quick->file_names;
2974 /* If we know there is no line data, no point in looking again. */
2975 if (this_cu->v.quick->no_file_data)
2976 return NULL;
2977
2978 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
2979
2980 if (this_cu->v.quick->no_file_data)
2981 return NULL;
2982 return this_cu->v.quick->file_names;
2983 }
2984
2985 /* A helper for the "quick" functions which computes and caches the
2986 real path for a given file name from the line table. */
2987
2988 static const char *
2989 dw2_get_real_path (struct objfile *objfile,
2990 struct quick_file_names *qfn, int index)
2991 {
2992 if (qfn->real_names == NULL)
2993 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
2994 qfn->num_file_names, sizeof (char *));
2995
2996 if (qfn->real_names[index] == NULL)
2997 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
2998
2999 return qfn->real_names[index];
3000 }
3001
3002 static struct symtab *
3003 dw2_find_last_source_symtab (struct objfile *objfile)
3004 {
3005 int index;
3006
3007 dw2_setup (objfile);
3008 index = dwarf2_per_objfile->n_comp_units - 1;
3009 return dw2_instantiate_symtab (dw2_get_cu (index));
3010 }
3011
3012 /* Traversal function for dw2_forget_cached_source_info. */
3013
3014 static int
3015 dw2_free_cached_file_names (void **slot, void *info)
3016 {
3017 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3018
3019 if (file_data->real_names)
3020 {
3021 int i;
3022
3023 for (i = 0; i < file_data->num_file_names; ++i)
3024 {
3025 xfree ((void*) file_data->real_names[i]);
3026 file_data->real_names[i] = NULL;
3027 }
3028 }
3029
3030 return 1;
3031 }
3032
3033 static void
3034 dw2_forget_cached_source_info (struct objfile *objfile)
3035 {
3036 dw2_setup (objfile);
3037
3038 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3039 dw2_free_cached_file_names, NULL);
3040 }
3041
3042 /* Helper function for dw2_map_symtabs_matching_filename that expands
3043 the symtabs and calls the iterator. */
3044
3045 static int
3046 dw2_map_expand_apply (struct objfile *objfile,
3047 struct dwarf2_per_cu_data *per_cu,
3048 const char *name, const char *real_path,
3049 int (*callback) (struct symtab *, void *),
3050 void *data)
3051 {
3052 struct symtab *last_made = objfile->symtabs;
3053
3054 /* Don't visit already-expanded CUs. */
3055 if (per_cu->v.quick->symtab)
3056 return 0;
3057
3058 /* This may expand more than one symtab, and we want to iterate over
3059 all of them. */
3060 dw2_instantiate_symtab (per_cu);
3061
3062 return iterate_over_some_symtabs (name, real_path, callback, data,
3063 objfile->symtabs, last_made);
3064 }
3065
3066 /* Implementation of the map_symtabs_matching_filename method. */
3067
3068 static int
3069 dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
3070 const char *real_path,
3071 int (*callback) (struct symtab *, void *),
3072 void *data)
3073 {
3074 int i;
3075 const char *name_basename = lbasename (name);
3076
3077 dw2_setup (objfile);
3078
3079 /* The rule is CUs specify all the files, including those used by
3080 any TU, so there's no need to scan TUs here. */
3081
3082 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3083 {
3084 int j;
3085 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3086 struct quick_file_names *file_data;
3087
3088 /* We only need to look at symtabs not already expanded. */
3089 if (per_cu->v.quick->symtab)
3090 continue;
3091
3092 file_data = dw2_get_file_names (per_cu);
3093 if (file_data == NULL)
3094 continue;
3095
3096 for (j = 0; j < file_data->num_file_names; ++j)
3097 {
3098 const char *this_name = file_data->file_names[j];
3099 const char *this_real_name;
3100
3101 if (compare_filenames_for_search (this_name, name))
3102 {
3103 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3104 callback, data))
3105 return 1;
3106 continue;
3107 }
3108
3109 /* Before we invoke realpath, which can get expensive when many
3110 files are involved, do a quick comparison of the basenames. */
3111 if (! basenames_may_differ
3112 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3113 continue;
3114
3115 this_real_name = dw2_get_real_path (objfile, file_data, j);
3116 if (compare_filenames_for_search (this_real_name, name))
3117 {
3118 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3119 callback, data))
3120 return 1;
3121 continue;
3122 }
3123
3124 if (real_path != NULL)
3125 {
3126 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3127 gdb_assert (IS_ABSOLUTE_PATH (name));
3128 if (this_real_name != NULL
3129 && FILENAME_CMP (real_path, this_real_name) == 0)
3130 {
3131 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3132 callback, data))
3133 return 1;
3134 continue;
3135 }
3136 }
3137 }
3138 }
3139
3140 return 0;
3141 }
3142
3143 /* Struct used to manage iterating over all CUs looking for a symbol. */
3144
3145 struct dw2_symtab_iterator
3146 {
3147 /* The internalized form of .gdb_index. */
3148 struct mapped_index *index;
3149 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3150 int want_specific_block;
3151 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3152 Unused if !WANT_SPECIFIC_BLOCK. */
3153 int block_index;
3154 /* The kind of symbol we're looking for. */
3155 domain_enum domain;
3156 /* The list of CUs from the index entry of the symbol,
3157 or NULL if not found. */
3158 offset_type *vec;
3159 /* The next element in VEC to look at. */
3160 int next;
3161 /* The number of elements in VEC, or zero if there is no match. */
3162 int length;
3163 };
3164
3165 /* Initialize the index symtab iterator ITER.
3166 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3167 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3168
3169 static void
3170 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3171 struct mapped_index *index,
3172 int want_specific_block,
3173 int block_index,
3174 domain_enum domain,
3175 const char *name)
3176 {
3177 iter->index = index;
3178 iter->want_specific_block = want_specific_block;
3179 iter->block_index = block_index;
3180 iter->domain = domain;
3181 iter->next = 0;
3182
3183 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3184 iter->length = MAYBE_SWAP (*iter->vec);
3185 else
3186 {
3187 iter->vec = NULL;
3188 iter->length = 0;
3189 }
3190 }
3191
3192 /* Return the next matching CU or NULL if there are no more. */
3193
3194 static struct dwarf2_per_cu_data *
3195 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3196 {
3197 for ( ; iter->next < iter->length; ++iter->next)
3198 {
3199 offset_type cu_index_and_attrs =
3200 MAYBE_SWAP (iter->vec[iter->next + 1]);
3201 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3202 struct dwarf2_per_cu_data *per_cu;
3203 int want_static = iter->block_index != GLOBAL_BLOCK;
3204 /* This value is only valid for index versions >= 7. */
3205 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3206 gdb_index_symbol_kind symbol_kind =
3207 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3208 /* Only check the symbol attributes if they're present.
3209 Indices prior to version 7 don't record them,
3210 and indices >= 7 may elide them for certain symbols
3211 (gold does this). */
3212 int attrs_valid =
3213 (iter->index->version >= 7
3214 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3215
3216 /* Don't crash on bad data. */
3217 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3218 + dwarf2_per_objfile->n_type_units))
3219 {
3220 complaint (&symfile_complaints,
3221 _(".gdb_index entry has bad CU index"
3222 " [in module %s]"), dwarf2_per_objfile->objfile->name);
3223 continue;
3224 }
3225
3226 per_cu = dw2_get_cu (cu_index);
3227
3228 /* Skip if already read in. */
3229 if (per_cu->v.quick->symtab)
3230 continue;
3231
3232 if (attrs_valid
3233 && iter->want_specific_block
3234 && want_static != is_static)
3235 continue;
3236
3237 /* Only check the symbol's kind if it has one. */
3238 if (attrs_valid)
3239 {
3240 switch (iter->domain)
3241 {
3242 case VAR_DOMAIN:
3243 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3244 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3245 /* Some types are also in VAR_DOMAIN. */
3246 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3247 continue;
3248 break;
3249 case STRUCT_DOMAIN:
3250 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3251 continue;
3252 break;
3253 case LABEL_DOMAIN:
3254 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3255 continue;
3256 break;
3257 default:
3258 break;
3259 }
3260 }
3261
3262 ++iter->next;
3263 return per_cu;
3264 }
3265
3266 return NULL;
3267 }
3268
3269 static struct symtab *
3270 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3271 const char *name, domain_enum domain)
3272 {
3273 struct symtab *stab_best = NULL;
3274 struct mapped_index *index;
3275
3276 dw2_setup (objfile);
3277
3278 index = dwarf2_per_objfile->index_table;
3279
3280 /* index is NULL if OBJF_READNOW. */
3281 if (index)
3282 {
3283 struct dw2_symtab_iterator iter;
3284 struct dwarf2_per_cu_data *per_cu;
3285
3286 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3287
3288 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3289 {
3290 struct symbol *sym = NULL;
3291 struct symtab *stab = dw2_instantiate_symtab (per_cu);
3292
3293 /* Some caution must be observed with overloaded functions
3294 and methods, since the index will not contain any overload
3295 information (but NAME might contain it). */
3296 if (stab->primary)
3297 {
3298 struct blockvector *bv = BLOCKVECTOR (stab);
3299 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3300
3301 sym = lookup_block_symbol (block, name, domain);
3302 }
3303
3304 if (sym && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3305 {
3306 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
3307 return stab;
3308
3309 stab_best = stab;
3310 }
3311
3312 /* Keep looking through other CUs. */
3313 }
3314 }
3315
3316 return stab_best;
3317 }
3318
3319 static void
3320 dw2_print_stats (struct objfile *objfile)
3321 {
3322 int i, total, count;
3323
3324 dw2_setup (objfile);
3325 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
3326 count = 0;
3327 for (i = 0; i < total; ++i)
3328 {
3329 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3330
3331 if (!per_cu->v.quick->symtab)
3332 ++count;
3333 }
3334 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3335 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3336 }
3337
3338 static void
3339 dw2_dump (struct objfile *objfile)
3340 {
3341 /* Nothing worth printing. */
3342 }
3343
3344 static void
3345 dw2_relocate (struct objfile *objfile,
3346 const struct section_offsets *new_offsets,
3347 const struct section_offsets *delta)
3348 {
3349 /* There's nothing to relocate here. */
3350 }
3351
3352 static void
3353 dw2_expand_symtabs_for_function (struct objfile *objfile,
3354 const char *func_name)
3355 {
3356 struct mapped_index *index;
3357
3358 dw2_setup (objfile);
3359
3360 index = dwarf2_per_objfile->index_table;
3361
3362 /* index is NULL if OBJF_READNOW. */
3363 if (index)
3364 {
3365 struct dw2_symtab_iterator iter;
3366 struct dwarf2_per_cu_data *per_cu;
3367
3368 /* Note: It doesn't matter what we pass for block_index here. */
3369 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3370 func_name);
3371
3372 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3373 dw2_instantiate_symtab (per_cu);
3374 }
3375 }
3376
3377 static void
3378 dw2_expand_all_symtabs (struct objfile *objfile)
3379 {
3380 int i;
3381
3382 dw2_setup (objfile);
3383
3384 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3385 + dwarf2_per_objfile->n_type_units); ++i)
3386 {
3387 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3388
3389 dw2_instantiate_symtab (per_cu);
3390 }
3391 }
3392
3393 static void
3394 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3395 const char *fullname)
3396 {
3397 int i;
3398
3399 dw2_setup (objfile);
3400
3401 /* We don't need to consider type units here.
3402 This is only called for examining code, e.g. expand_line_sal.
3403 There can be an order of magnitude (or more) more type units
3404 than comp units, and we avoid them if we can. */
3405
3406 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3407 {
3408 int j;
3409 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3410 struct quick_file_names *file_data;
3411
3412 /* We only need to look at symtabs not already expanded. */
3413 if (per_cu->v.quick->symtab)
3414 continue;
3415
3416 file_data = dw2_get_file_names (per_cu);
3417 if (file_data == NULL)
3418 continue;
3419
3420 for (j = 0; j < file_data->num_file_names; ++j)
3421 {
3422 const char *this_fullname = file_data->file_names[j];
3423
3424 if (filename_cmp (this_fullname, fullname) == 0)
3425 {
3426 dw2_instantiate_symtab (per_cu);
3427 break;
3428 }
3429 }
3430 }
3431 }
3432
3433 /* A helper function for dw2_find_symbol_file that finds the primary
3434 file name for a given CU. This is a die_reader_func. */
3435
3436 static void
3437 dw2_get_primary_filename_reader (const struct die_reader_specs *reader,
3438 const gdb_byte *info_ptr,
3439 struct die_info *comp_unit_die,
3440 int has_children,
3441 void *data)
3442 {
3443 const char **result_ptr = data;
3444 struct dwarf2_cu *cu = reader->cu;
3445 struct attribute *attr;
3446
3447 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
3448 if (attr == NULL)
3449 *result_ptr = NULL;
3450 else
3451 *result_ptr = DW_STRING (attr);
3452 }
3453
3454 static const char *
3455 dw2_find_symbol_file (struct objfile *objfile, const char *name)
3456 {
3457 struct dwarf2_per_cu_data *per_cu;
3458 offset_type *vec;
3459 const char *filename;
3460
3461 dw2_setup (objfile);
3462
3463 /* index_table is NULL if OBJF_READNOW. */
3464 if (!dwarf2_per_objfile->index_table)
3465 {
3466 struct symtab *s;
3467
3468 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
3469 {
3470 struct blockvector *bv = BLOCKVECTOR (s);
3471 const struct block *block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
3472 struct symbol *sym = lookup_block_symbol (block, name, VAR_DOMAIN);
3473
3474 if (sym)
3475 {
3476 /* Only file extension of returned filename is recognized. */
3477 return SYMBOL_SYMTAB (sym)->filename;
3478 }
3479 }
3480 return NULL;
3481 }
3482
3483 if (!find_slot_in_mapped_hash (dwarf2_per_objfile->index_table,
3484 name, &vec))
3485 return NULL;
3486
3487 /* Note that this just looks at the very first one named NAME -- but
3488 actually we are looking for a function. find_main_filename
3489 should be rewritten so that it doesn't require a custom hook. It
3490 could just use the ordinary symbol tables. */
3491 /* vec[0] is the length, which must always be >0. */
3492 per_cu = dw2_get_cu (GDB_INDEX_CU_VALUE (MAYBE_SWAP (vec[1])));
3493
3494 if (per_cu->v.quick->symtab != NULL)
3495 {
3496 /* Only file extension of returned filename is recognized. */
3497 return per_cu->v.quick->symtab->filename;
3498 }
3499
3500 /* Initialize filename in case there's a problem reading the DWARF,
3501 dw2_get_primary_filename_reader may not get called. */
3502 filename = NULL;
3503 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
3504 dw2_get_primary_filename_reader, &filename);
3505
3506 /* Only file extension of returned filename is recognized. */
3507 return filename;
3508 }
3509
3510 static void
3511 dw2_map_matching_symbols (const char * name, domain_enum namespace,
3512 struct objfile *objfile, int global,
3513 int (*callback) (struct block *,
3514 struct symbol *, void *),
3515 void *data, symbol_compare_ftype *match,
3516 symbol_compare_ftype *ordered_compare)
3517 {
3518 /* Currently unimplemented; used for Ada. The function can be called if the
3519 current language is Ada for a non-Ada objfile using GNU index. As Ada
3520 does not look for non-Ada symbols this function should just return. */
3521 }
3522
3523 static void
3524 dw2_expand_symtabs_matching
3525 (struct objfile *objfile,
3526 int (*file_matcher) (const char *, void *, int basenames),
3527 int (*name_matcher) (const char *, void *),
3528 enum search_domain kind,
3529 void *data)
3530 {
3531 int i;
3532 offset_type iter;
3533 struct mapped_index *index;
3534
3535 dw2_setup (objfile);
3536
3537 /* index_table is NULL if OBJF_READNOW. */
3538 if (!dwarf2_per_objfile->index_table)
3539 return;
3540 index = dwarf2_per_objfile->index_table;
3541
3542 if (file_matcher != NULL)
3543 {
3544 struct cleanup *cleanup;
3545 htab_t visited_found, visited_not_found;
3546
3547 visited_found = htab_create_alloc (10,
3548 htab_hash_pointer, htab_eq_pointer,
3549 NULL, xcalloc, xfree);
3550 cleanup = make_cleanup_htab_delete (visited_found);
3551 visited_not_found = htab_create_alloc (10,
3552 htab_hash_pointer, htab_eq_pointer,
3553 NULL, xcalloc, xfree);
3554 make_cleanup_htab_delete (visited_not_found);
3555
3556 /* The rule is CUs specify all the files, including those used by
3557 any TU, so there's no need to scan TUs here. */
3558
3559 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3560 {
3561 int j;
3562 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3563 struct quick_file_names *file_data;
3564 void **slot;
3565
3566 per_cu->v.quick->mark = 0;
3567
3568 /* We only need to look at symtabs not already expanded. */
3569 if (per_cu->v.quick->symtab)
3570 continue;
3571
3572 file_data = dw2_get_file_names (per_cu);
3573 if (file_data == NULL)
3574 continue;
3575
3576 if (htab_find (visited_not_found, file_data) != NULL)
3577 continue;
3578 else if (htab_find (visited_found, file_data) != NULL)
3579 {
3580 per_cu->v.quick->mark = 1;
3581 continue;
3582 }
3583
3584 for (j = 0; j < file_data->num_file_names; ++j)
3585 {
3586 const char *this_real_name;
3587
3588 if (file_matcher (file_data->file_names[j], data, 0))
3589 {
3590 per_cu->v.quick->mark = 1;
3591 break;
3592 }
3593
3594 /* Before we invoke realpath, which can get expensive when many
3595 files are involved, do a quick comparison of the basenames. */
3596 if (!basenames_may_differ
3597 && !file_matcher (lbasename (file_data->file_names[j]),
3598 data, 1))
3599 continue;
3600
3601 this_real_name = dw2_get_real_path (objfile, file_data, j);
3602 if (file_matcher (this_real_name, data, 0))
3603 {
3604 per_cu->v.quick->mark = 1;
3605 break;
3606 }
3607 }
3608
3609 slot = htab_find_slot (per_cu->v.quick->mark
3610 ? visited_found
3611 : visited_not_found,
3612 file_data, INSERT);
3613 *slot = file_data;
3614 }
3615
3616 do_cleanups (cleanup);
3617 }
3618
3619 for (iter = 0; iter < index->symbol_table_slots; ++iter)
3620 {
3621 offset_type idx = 2 * iter;
3622 const char *name;
3623 offset_type *vec, vec_len, vec_idx;
3624
3625 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
3626 continue;
3627
3628 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
3629
3630 if (! (*name_matcher) (name, data))
3631 continue;
3632
3633 /* The name was matched, now expand corresponding CUs that were
3634 marked. */
3635 vec = (offset_type *) (index->constant_pool
3636 + MAYBE_SWAP (index->symbol_table[idx + 1]));
3637 vec_len = MAYBE_SWAP (vec[0]);
3638 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3639 {
3640 struct dwarf2_per_cu_data *per_cu;
3641 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
3642 gdb_index_symbol_kind symbol_kind =
3643 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3644 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3645 /* Only check the symbol attributes if they're present.
3646 Indices prior to version 7 don't record them,
3647 and indices >= 7 may elide them for certain symbols
3648 (gold does this). */
3649 int attrs_valid =
3650 (index->version >= 7
3651 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3652
3653 /* Only check the symbol's kind if it has one. */
3654 if (attrs_valid)
3655 {
3656 switch (kind)
3657 {
3658 case VARIABLES_DOMAIN:
3659 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
3660 continue;
3661 break;
3662 case FUNCTIONS_DOMAIN:
3663 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
3664 continue;
3665 break;
3666 case TYPES_DOMAIN:
3667 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3668 continue;
3669 break;
3670 default:
3671 break;
3672 }
3673 }
3674
3675 /* Don't crash on bad data. */
3676 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3677 + dwarf2_per_objfile->n_type_units))
3678 {
3679 complaint (&symfile_complaints,
3680 _(".gdb_index entry has bad CU index"
3681 " [in module %s]"), objfile->name);
3682 continue;
3683 }
3684
3685 per_cu = dw2_get_cu (cu_index);
3686 if (file_matcher == NULL || per_cu->v.quick->mark)
3687 dw2_instantiate_symtab (per_cu);
3688 }
3689 }
3690 }
3691
3692 /* A helper for dw2_find_pc_sect_symtab which finds the most specific
3693 symtab. */
3694
3695 static struct symtab *
3696 recursively_find_pc_sect_symtab (struct symtab *symtab, CORE_ADDR pc)
3697 {
3698 int i;
3699
3700 if (BLOCKVECTOR (symtab) != NULL
3701 && blockvector_contains_pc (BLOCKVECTOR (symtab), pc))
3702 return symtab;
3703
3704 if (symtab->includes == NULL)
3705 return NULL;
3706
3707 for (i = 0; symtab->includes[i]; ++i)
3708 {
3709 struct symtab *s = symtab->includes[i];
3710
3711 s = recursively_find_pc_sect_symtab (s, pc);
3712 if (s != NULL)
3713 return s;
3714 }
3715
3716 return NULL;
3717 }
3718
3719 static struct symtab *
3720 dw2_find_pc_sect_symtab (struct objfile *objfile,
3721 struct minimal_symbol *msymbol,
3722 CORE_ADDR pc,
3723 struct obj_section *section,
3724 int warn_if_readin)
3725 {
3726 struct dwarf2_per_cu_data *data;
3727 struct symtab *result;
3728
3729 dw2_setup (objfile);
3730
3731 if (!objfile->psymtabs_addrmap)
3732 return NULL;
3733
3734 data = addrmap_find (objfile->psymtabs_addrmap, pc);
3735 if (!data)
3736 return NULL;
3737
3738 if (warn_if_readin && data->v.quick->symtab)
3739 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
3740 paddress (get_objfile_arch (objfile), pc));
3741
3742 result = recursively_find_pc_sect_symtab (dw2_instantiate_symtab (data), pc);
3743 gdb_assert (result != NULL);
3744 return result;
3745 }
3746
3747 static void
3748 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
3749 void *data, int need_fullname)
3750 {
3751 int i;
3752 struct cleanup *cleanup;
3753 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
3754 NULL, xcalloc, xfree);
3755
3756 cleanup = make_cleanup_htab_delete (visited);
3757 dw2_setup (objfile);
3758
3759 /* The rule is CUs specify all the files, including those used by
3760 any TU, so there's no need to scan TUs here.
3761 We can ignore file names coming from already-expanded CUs. */
3762
3763 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3764 {
3765 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3766
3767 if (per_cu->v.quick->symtab)
3768 {
3769 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
3770 INSERT);
3771
3772 *slot = per_cu->v.quick->file_names;
3773 }
3774 }
3775
3776 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3777 {
3778 int j;
3779 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3780 struct quick_file_names *file_data;
3781 void **slot;
3782
3783 /* We only need to look at symtabs not already expanded. */
3784 if (per_cu->v.quick->symtab)
3785 continue;
3786
3787 file_data = dw2_get_file_names (per_cu);
3788 if (file_data == NULL)
3789 continue;
3790
3791 slot = htab_find_slot (visited, file_data, INSERT);
3792 if (*slot)
3793 {
3794 /* Already visited. */
3795 continue;
3796 }
3797 *slot = file_data;
3798
3799 for (j = 0; j < file_data->num_file_names; ++j)
3800 {
3801 const char *this_real_name;
3802
3803 if (need_fullname)
3804 this_real_name = dw2_get_real_path (objfile, file_data, j);
3805 else
3806 this_real_name = NULL;
3807 (*fun) (file_data->file_names[j], this_real_name, data);
3808 }
3809 }
3810
3811 do_cleanups (cleanup);
3812 }
3813
3814 static int
3815 dw2_has_symbols (struct objfile *objfile)
3816 {
3817 return 1;
3818 }
3819
3820 const struct quick_symbol_functions dwarf2_gdb_index_functions =
3821 {
3822 dw2_has_symbols,
3823 dw2_find_last_source_symtab,
3824 dw2_forget_cached_source_info,
3825 dw2_map_symtabs_matching_filename,
3826 dw2_lookup_symbol,
3827 dw2_print_stats,
3828 dw2_dump,
3829 dw2_relocate,
3830 dw2_expand_symtabs_for_function,
3831 dw2_expand_all_symtabs,
3832 dw2_expand_symtabs_with_fullname,
3833 dw2_find_symbol_file,
3834 dw2_map_matching_symbols,
3835 dw2_expand_symtabs_matching,
3836 dw2_find_pc_sect_symtab,
3837 dw2_map_symbol_filenames
3838 };
3839
3840 /* Initialize for reading DWARF for this objfile. Return 0 if this
3841 file will use psymtabs, or 1 if using the GNU index. */
3842
3843 int
3844 dwarf2_initialize_objfile (struct objfile *objfile)
3845 {
3846 /* If we're about to read full symbols, don't bother with the
3847 indices. In this case we also don't care if some other debug
3848 format is making psymtabs, because they are all about to be
3849 expanded anyway. */
3850 if ((objfile->flags & OBJF_READNOW))
3851 {
3852 int i;
3853
3854 dwarf2_per_objfile->using_index = 1;
3855 create_all_comp_units (objfile);
3856 create_all_type_units (objfile);
3857 dwarf2_per_objfile->quick_file_names_table =
3858 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3859
3860 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3861 + dwarf2_per_objfile->n_type_units); ++i)
3862 {
3863 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3864
3865 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3866 struct dwarf2_per_cu_quick_data);
3867 }
3868
3869 /* Return 1 so that gdb sees the "quick" functions. However,
3870 these functions will be no-ops because we will have expanded
3871 all symtabs. */
3872 return 1;
3873 }
3874
3875 if (dwarf2_read_index (objfile))
3876 return 1;
3877
3878 return 0;
3879 }
3880
3881 \f
3882
3883 /* Build a partial symbol table. */
3884
3885 void
3886 dwarf2_build_psymtabs (struct objfile *objfile)
3887 {
3888 volatile struct gdb_exception except;
3889
3890 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
3891 {
3892 init_psymbol_list (objfile, 1024);
3893 }
3894
3895 TRY_CATCH (except, RETURN_MASK_ERROR)
3896 {
3897 /* This isn't really ideal: all the data we allocate on the
3898 objfile's obstack is still uselessly kept around. However,
3899 freeing it seems unsafe. */
3900 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
3901
3902 dwarf2_build_psymtabs_hard (objfile);
3903 discard_cleanups (cleanups);
3904 }
3905 if (except.reason < 0)
3906 exception_print (gdb_stderr, except);
3907 }
3908
3909 /* Return the total length of the CU described by HEADER. */
3910
3911 static unsigned int
3912 get_cu_length (const struct comp_unit_head *header)
3913 {
3914 return header->initial_length_size + header->length;
3915 }
3916
3917 /* Return TRUE if OFFSET is within CU_HEADER. */
3918
3919 static inline int
3920 offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
3921 {
3922 sect_offset bottom = { cu_header->offset.sect_off };
3923 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
3924
3925 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
3926 }
3927
3928 /* Find the base address of the compilation unit for range lists and
3929 location lists. It will normally be specified by DW_AT_low_pc.
3930 In DWARF-3 draft 4, the base address could be overridden by
3931 DW_AT_entry_pc. It's been removed, but GCC still uses this for
3932 compilation units with discontinuous ranges. */
3933
3934 static void
3935 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
3936 {
3937 struct attribute *attr;
3938
3939 cu->base_known = 0;
3940 cu->base_address = 0;
3941
3942 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
3943 if (attr)
3944 {
3945 cu->base_address = DW_ADDR (attr);
3946 cu->base_known = 1;
3947 }
3948 else
3949 {
3950 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
3951 if (attr)
3952 {
3953 cu->base_address = DW_ADDR (attr);
3954 cu->base_known = 1;
3955 }
3956 }
3957 }
3958
3959 /* Read in the comp unit header information from the debug_info at info_ptr.
3960 NOTE: This leaves members offset, first_die_offset to be filled in
3961 by the caller. */
3962
3963 static const gdb_byte *
3964 read_comp_unit_head (struct comp_unit_head *cu_header,
3965 const gdb_byte *info_ptr, bfd *abfd)
3966 {
3967 int signed_addr;
3968 unsigned int bytes_read;
3969
3970 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
3971 cu_header->initial_length_size = bytes_read;
3972 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
3973 info_ptr += bytes_read;
3974 cu_header->version = read_2_bytes (abfd, info_ptr);
3975 info_ptr += 2;
3976 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
3977 &bytes_read);
3978 info_ptr += bytes_read;
3979 cu_header->addr_size = read_1_byte (abfd, info_ptr);
3980 info_ptr += 1;
3981 signed_addr = bfd_get_sign_extend_vma (abfd);
3982 if (signed_addr < 0)
3983 internal_error (__FILE__, __LINE__,
3984 _("read_comp_unit_head: dwarf from non elf file"));
3985 cu_header->signed_addr_p = signed_addr;
3986
3987 return info_ptr;
3988 }
3989
3990 /* Helper function that returns the proper abbrev section for
3991 THIS_CU. */
3992
3993 static struct dwarf2_section_info *
3994 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
3995 {
3996 struct dwarf2_section_info *abbrev;
3997
3998 if (this_cu->is_dwz)
3999 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4000 else
4001 abbrev = &dwarf2_per_objfile->abbrev;
4002
4003 return abbrev;
4004 }
4005
4006 /* Subroutine of read_and_check_comp_unit_head and
4007 read_and_check_type_unit_head to simplify them.
4008 Perform various error checking on the header. */
4009
4010 static void
4011 error_check_comp_unit_head (struct comp_unit_head *header,
4012 struct dwarf2_section_info *section,
4013 struct dwarf2_section_info *abbrev_section)
4014 {
4015 bfd *abfd = section->asection->owner;
4016 const char *filename = bfd_get_filename (abfd);
4017
4018 if (header->version != 2 && header->version != 3 && header->version != 4)
4019 error (_("Dwarf Error: wrong version in compilation unit header "
4020 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
4021 filename);
4022
4023 if (header->abbrev_offset.sect_off
4024 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
4025 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
4026 "(offset 0x%lx + 6) [in module %s]"),
4027 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
4028 filename);
4029
4030 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4031 avoid potential 32-bit overflow. */
4032 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
4033 > section->size)
4034 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4035 "(offset 0x%lx + 0) [in module %s]"),
4036 (long) header->length, (long) header->offset.sect_off,
4037 filename);
4038 }
4039
4040 /* Read in a CU/TU header and perform some basic error checking.
4041 The contents of the header are stored in HEADER.
4042 The result is a pointer to the start of the first DIE. */
4043
4044 static const gdb_byte *
4045 read_and_check_comp_unit_head (struct comp_unit_head *header,
4046 struct dwarf2_section_info *section,
4047 struct dwarf2_section_info *abbrev_section,
4048 const gdb_byte *info_ptr,
4049 int is_debug_types_section)
4050 {
4051 const gdb_byte *beg_of_comp_unit = info_ptr;
4052 bfd *abfd = section->asection->owner;
4053
4054 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4055
4056 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4057
4058 /* If we're reading a type unit, skip over the signature and
4059 type_offset fields. */
4060 if (is_debug_types_section)
4061 info_ptr += 8 /*signature*/ + header->offset_size;
4062
4063 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4064
4065 error_check_comp_unit_head (header, section, abbrev_section);
4066
4067 return info_ptr;
4068 }
4069
4070 /* Read in the types comp unit header information from .debug_types entry at
4071 types_ptr. The result is a pointer to one past the end of the header. */
4072
4073 static const gdb_byte *
4074 read_and_check_type_unit_head (struct comp_unit_head *header,
4075 struct dwarf2_section_info *section,
4076 struct dwarf2_section_info *abbrev_section,
4077 const gdb_byte *info_ptr,
4078 ULONGEST *signature,
4079 cu_offset *type_offset_in_tu)
4080 {
4081 const gdb_byte *beg_of_comp_unit = info_ptr;
4082 bfd *abfd = section->asection->owner;
4083
4084 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4085
4086 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4087
4088 /* If we're reading a type unit, skip over the signature and
4089 type_offset fields. */
4090 if (signature != NULL)
4091 *signature = read_8_bytes (abfd, info_ptr);
4092 info_ptr += 8;
4093 if (type_offset_in_tu != NULL)
4094 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4095 header->offset_size);
4096 info_ptr += header->offset_size;
4097
4098 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4099
4100 error_check_comp_unit_head (header, section, abbrev_section);
4101
4102 return info_ptr;
4103 }
4104
4105 /* Fetch the abbreviation table offset from a comp or type unit header. */
4106
4107 static sect_offset
4108 read_abbrev_offset (struct dwarf2_section_info *section,
4109 sect_offset offset)
4110 {
4111 bfd *abfd = section->asection->owner;
4112 const gdb_byte *info_ptr;
4113 unsigned int length, initial_length_size, offset_size;
4114 sect_offset abbrev_offset;
4115
4116 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4117 info_ptr = section->buffer + offset.sect_off;
4118 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4119 offset_size = initial_length_size == 4 ? 4 : 8;
4120 info_ptr += initial_length_size + 2 /*version*/;
4121 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4122 return abbrev_offset;
4123 }
4124
4125 /* Allocate a new partial symtab for file named NAME and mark this new
4126 partial symtab as being an include of PST. */
4127
4128 static void
4129 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
4130 struct objfile *objfile)
4131 {
4132 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4133
4134 if (!IS_ABSOLUTE_PATH (subpst->filename))
4135 {
4136 /* It shares objfile->objfile_obstack. */
4137 subpst->dirname = pst->dirname;
4138 }
4139
4140 subpst->section_offsets = pst->section_offsets;
4141 subpst->textlow = 0;
4142 subpst->texthigh = 0;
4143
4144 subpst->dependencies = (struct partial_symtab **)
4145 obstack_alloc (&objfile->objfile_obstack,
4146 sizeof (struct partial_symtab *));
4147 subpst->dependencies[0] = pst;
4148 subpst->number_of_dependencies = 1;
4149
4150 subpst->globals_offset = 0;
4151 subpst->n_global_syms = 0;
4152 subpst->statics_offset = 0;
4153 subpst->n_static_syms = 0;
4154 subpst->symtab = NULL;
4155 subpst->read_symtab = pst->read_symtab;
4156 subpst->readin = 0;
4157
4158 /* No private part is necessary for include psymtabs. This property
4159 can be used to differentiate between such include psymtabs and
4160 the regular ones. */
4161 subpst->read_symtab_private = NULL;
4162 }
4163
4164 /* Read the Line Number Program data and extract the list of files
4165 included by the source file represented by PST. Build an include
4166 partial symtab for each of these included files. */
4167
4168 static void
4169 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4170 struct die_info *die,
4171 struct partial_symtab *pst)
4172 {
4173 struct line_header *lh = NULL;
4174 struct attribute *attr;
4175
4176 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4177 if (attr)
4178 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
4179 if (lh == NULL)
4180 return; /* No linetable, so no includes. */
4181
4182 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4183 dwarf_decode_lines (lh, pst->dirname, cu, pst, 1);
4184
4185 free_line_header (lh);
4186 }
4187
4188 static hashval_t
4189 hash_signatured_type (const void *item)
4190 {
4191 const struct signatured_type *sig_type = item;
4192
4193 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4194 return sig_type->signature;
4195 }
4196
4197 static int
4198 eq_signatured_type (const void *item_lhs, const void *item_rhs)
4199 {
4200 const struct signatured_type *lhs = item_lhs;
4201 const struct signatured_type *rhs = item_rhs;
4202
4203 return lhs->signature == rhs->signature;
4204 }
4205
4206 /* Allocate a hash table for signatured types. */
4207
4208 static htab_t
4209 allocate_signatured_type_table (struct objfile *objfile)
4210 {
4211 return htab_create_alloc_ex (41,
4212 hash_signatured_type,
4213 eq_signatured_type,
4214 NULL,
4215 &objfile->objfile_obstack,
4216 hashtab_obstack_allocate,
4217 dummy_obstack_deallocate);
4218 }
4219
4220 /* A helper function to add a signatured type CU to a table. */
4221
4222 static int
4223 add_signatured_type_cu_to_table (void **slot, void *datum)
4224 {
4225 struct signatured_type *sigt = *slot;
4226 struct signatured_type ***datap = datum;
4227
4228 **datap = sigt;
4229 ++*datap;
4230
4231 return 1;
4232 }
4233
4234 /* Create the hash table of all entries in the .debug_types
4235 (or .debug_types.dwo) section(s).
4236 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4237 otherwise it is NULL.
4238
4239 The result is a pointer to the hash table or NULL if there are no types.
4240
4241 Note: This function processes DWO files only, not DWP files. */
4242
4243 static htab_t
4244 create_debug_types_hash_table (struct dwo_file *dwo_file,
4245 VEC (dwarf2_section_info_def) *types)
4246 {
4247 struct objfile *objfile = dwarf2_per_objfile->objfile;
4248 htab_t types_htab = NULL;
4249 int ix;
4250 struct dwarf2_section_info *section;
4251 struct dwarf2_section_info *abbrev_section;
4252
4253 if (VEC_empty (dwarf2_section_info_def, types))
4254 return NULL;
4255
4256 abbrev_section = (dwo_file != NULL
4257 ? &dwo_file->sections.abbrev
4258 : &dwarf2_per_objfile->abbrev);
4259
4260 if (dwarf2_read_debug)
4261 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4262 dwo_file ? ".dwo" : "",
4263 bfd_get_filename (abbrev_section->asection->owner));
4264
4265 for (ix = 0;
4266 VEC_iterate (dwarf2_section_info_def, types, ix, section);
4267 ++ix)
4268 {
4269 bfd *abfd;
4270 const gdb_byte *info_ptr, *end_ptr;
4271 struct dwarf2_section_info *abbrev_section;
4272
4273 dwarf2_read_section (objfile, section);
4274 info_ptr = section->buffer;
4275
4276 if (info_ptr == NULL)
4277 continue;
4278
4279 /* We can't set abfd until now because the section may be empty or
4280 not present, in which case section->asection will be NULL. */
4281 abfd = section->asection->owner;
4282
4283 if (dwo_file)
4284 abbrev_section = &dwo_file->sections.abbrev;
4285 else
4286 abbrev_section = &dwarf2_per_objfile->abbrev;
4287
4288 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4289 because we don't need to read any dies: the signature is in the
4290 header. */
4291
4292 end_ptr = info_ptr + section->size;
4293 while (info_ptr < end_ptr)
4294 {
4295 sect_offset offset;
4296 cu_offset type_offset_in_tu;
4297 ULONGEST signature;
4298 struct signatured_type *sig_type;
4299 struct dwo_unit *dwo_tu;
4300 void **slot;
4301 const gdb_byte *ptr = info_ptr;
4302 struct comp_unit_head header;
4303 unsigned int length;
4304
4305 offset.sect_off = ptr - section->buffer;
4306
4307 /* We need to read the type's signature in order to build the hash
4308 table, but we don't need anything else just yet. */
4309
4310 ptr = read_and_check_type_unit_head (&header, section,
4311 abbrev_section, ptr,
4312 &signature, &type_offset_in_tu);
4313
4314 length = get_cu_length (&header);
4315
4316 /* Skip dummy type units. */
4317 if (ptr >= info_ptr + length
4318 || peek_abbrev_code (abfd, ptr) == 0)
4319 {
4320 info_ptr += length;
4321 continue;
4322 }
4323
4324 if (types_htab == NULL)
4325 {
4326 if (dwo_file)
4327 types_htab = allocate_dwo_unit_table (objfile);
4328 else
4329 types_htab = allocate_signatured_type_table (objfile);
4330 }
4331
4332 if (dwo_file)
4333 {
4334 sig_type = NULL;
4335 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4336 struct dwo_unit);
4337 dwo_tu->dwo_file = dwo_file;
4338 dwo_tu->signature = signature;
4339 dwo_tu->type_offset_in_tu = type_offset_in_tu;
4340 dwo_tu->section = section;
4341 dwo_tu->offset = offset;
4342 dwo_tu->length = length;
4343 }
4344 else
4345 {
4346 /* N.B.: type_offset is not usable if this type uses a DWO file.
4347 The real type_offset is in the DWO file. */
4348 dwo_tu = NULL;
4349 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4350 struct signatured_type);
4351 sig_type->signature = signature;
4352 sig_type->type_offset_in_tu = type_offset_in_tu;
4353 sig_type->per_cu.objfile = objfile;
4354 sig_type->per_cu.is_debug_types = 1;
4355 sig_type->per_cu.section = section;
4356 sig_type->per_cu.offset = offset;
4357 sig_type->per_cu.length = length;
4358 }
4359
4360 slot = htab_find_slot (types_htab,
4361 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4362 INSERT);
4363 gdb_assert (slot != NULL);
4364 if (*slot != NULL)
4365 {
4366 sect_offset dup_offset;
4367
4368 if (dwo_file)
4369 {
4370 const struct dwo_unit *dup_tu = *slot;
4371
4372 dup_offset = dup_tu->offset;
4373 }
4374 else
4375 {
4376 const struct signatured_type *dup_tu = *slot;
4377
4378 dup_offset = dup_tu->per_cu.offset;
4379 }
4380
4381 complaint (&symfile_complaints,
4382 _("debug type entry at offset 0x%x is duplicate to"
4383 " the entry at offset 0x%x, signature %s"),
4384 offset.sect_off, dup_offset.sect_off,
4385 hex_string (signature));
4386 }
4387 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4388
4389 if (dwarf2_read_debug)
4390 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
4391 offset.sect_off,
4392 hex_string (signature));
4393
4394 info_ptr += length;
4395 }
4396 }
4397
4398 return types_htab;
4399 }
4400
4401 /* Create the hash table of all entries in the .debug_types section,
4402 and initialize all_type_units.
4403 The result is zero if there is an error (e.g. missing .debug_types section),
4404 otherwise non-zero. */
4405
4406 static int
4407 create_all_type_units (struct objfile *objfile)
4408 {
4409 htab_t types_htab;
4410 struct signatured_type **iter;
4411
4412 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4413 if (types_htab == NULL)
4414 {
4415 dwarf2_per_objfile->signatured_types = NULL;
4416 return 0;
4417 }
4418
4419 dwarf2_per_objfile->signatured_types = types_htab;
4420
4421 dwarf2_per_objfile->n_type_units = htab_elements (types_htab);
4422 dwarf2_per_objfile->all_type_units
4423 = xmalloc (dwarf2_per_objfile->n_type_units
4424 * sizeof (struct signatured_type *));
4425 iter = &dwarf2_per_objfile->all_type_units[0];
4426 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4427 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4428 == dwarf2_per_objfile->n_type_units);
4429
4430 return 1;
4431 }
4432
4433 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4434 Fill in SIG_ENTRY with DWO_ENTRY. */
4435
4436 static void
4437 fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4438 struct signatured_type *sig_entry,
4439 struct dwo_unit *dwo_entry)
4440 {
4441 sig_entry->per_cu.section = dwo_entry->section;
4442 sig_entry->per_cu.offset = dwo_entry->offset;
4443 sig_entry->per_cu.length = dwo_entry->length;
4444 sig_entry->per_cu.reading_dwo_directly = 1;
4445 sig_entry->per_cu.objfile = objfile;
4446 gdb_assert (! sig_entry->per_cu.queued);
4447 gdb_assert (sig_entry->per_cu.cu == NULL);
4448 gdb_assert (sig_entry->per_cu.v.quick != NULL);
4449 gdb_assert (sig_entry->per_cu.v.quick->symtab == NULL);
4450 gdb_assert (sig_entry->signature == dwo_entry->signature);
4451 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4452 gdb_assert (sig_entry->type_unit_group == NULL);
4453 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4454 sig_entry->dwo_unit = dwo_entry;
4455 }
4456
4457 /* Subroutine of lookup_signatured_type.
4458 Create the signatured_type data structure for a TU to be read in
4459 directly from a DWO file, bypassing the stub.
4460 We do this for the case where there is no DWP file and we're using
4461 .gdb_index: When reading a CU we want to stay in the DWO file containing
4462 that CU. Otherwise we could end up reading several other DWO files (due
4463 to comdat folding) to process the transitive closure of all the mentioned
4464 TUs, and that can be slow. The current DWO file will have every type
4465 signature that it needs.
4466 We only do this for .gdb_index because in the psymtab case we already have
4467 to read all the DWOs to build the type unit groups. */
4468
4469 static struct signatured_type *
4470 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4471 {
4472 struct objfile *objfile = dwarf2_per_objfile->objfile;
4473 struct dwo_file *dwo_file;
4474 struct dwo_unit find_dwo_entry, *dwo_entry;
4475 struct signatured_type find_sig_entry, *sig_entry;
4476
4477 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4478
4479 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
4480 dwo_unit of the TU itself. */
4481 dwo_file = cu->dwo_unit->dwo_file;
4482
4483 /* We only ever need to read in one copy of a signatured type.
4484 Just use the global signatured_types array. If this is the first time
4485 we're reading this type, replace the recorded data from .gdb_index with
4486 this TU. */
4487
4488 if (dwarf2_per_objfile->signatured_types == NULL)
4489 return NULL;
4490 find_sig_entry.signature = sig;
4491 sig_entry = htab_find (dwarf2_per_objfile->signatured_types, &find_sig_entry);
4492 if (sig_entry == NULL)
4493 return NULL;
4494 /* Have we already tried to read this TU? */
4495 if (sig_entry->dwo_unit != NULL)
4496 return sig_entry;
4497
4498 /* Ok, this is the first time we're reading this TU. */
4499 if (dwo_file->tus == NULL)
4500 return NULL;
4501 find_dwo_entry.signature = sig;
4502 dwo_entry = htab_find (dwo_file->tus, &find_dwo_entry);
4503 if (dwo_entry == NULL)
4504 return NULL;
4505
4506 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4507 return sig_entry;
4508 }
4509
4510 /* Subroutine of lookup_dwp_signatured_type.
4511 Add an entry for signature SIG to dwarf2_per_objfile->signatured_types. */
4512
4513 static struct signatured_type *
4514 add_type_unit (ULONGEST sig)
4515 {
4516 struct objfile *objfile = dwarf2_per_objfile->objfile;
4517 int n_type_units = dwarf2_per_objfile->n_type_units;
4518 struct signatured_type *sig_type;
4519 void **slot;
4520
4521 ++n_type_units;
4522 dwarf2_per_objfile->all_type_units =
4523 xrealloc (dwarf2_per_objfile->all_type_units,
4524 n_type_units * sizeof (struct signatured_type *));
4525 dwarf2_per_objfile->n_type_units = n_type_units;
4526 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4527 struct signatured_type);
4528 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4529 sig_type->signature = sig;
4530 sig_type->per_cu.is_debug_types = 1;
4531 sig_type->per_cu.v.quick =
4532 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4533 struct dwarf2_per_cu_quick_data);
4534 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4535 sig_type, INSERT);
4536 gdb_assert (*slot == NULL);
4537 *slot = sig_type;
4538 /* The rest of sig_type must be filled in by the caller. */
4539 return sig_type;
4540 }
4541
4542 /* Subroutine of lookup_signatured_type.
4543 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
4544 then try the DWP file.
4545 Normally this "can't happen", but if there's a bug in signature
4546 generation and/or the DWP file is built incorrectly, it can happen.
4547 Using the type directly from the DWP file means we don't have the stub
4548 which has some useful attributes (e.g., DW_AT_comp_dir), but they're
4549 not critical. [Eventually the stub may go away for type units anyway.] */
4550
4551 static struct signatured_type *
4552 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4553 {
4554 struct objfile *objfile = dwarf2_per_objfile->objfile;
4555 struct dwp_file *dwp_file = get_dwp_file ();
4556 struct dwo_unit *dwo_entry;
4557 struct signatured_type find_sig_entry, *sig_entry;
4558
4559 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4560 gdb_assert (dwp_file != NULL);
4561
4562 if (dwarf2_per_objfile->signatured_types != NULL)
4563 {
4564 find_sig_entry.signature = sig;
4565 sig_entry = htab_find (dwarf2_per_objfile->signatured_types,
4566 &find_sig_entry);
4567 if (sig_entry != NULL)
4568 return sig_entry;
4569 }
4570
4571 /* This is the "shouldn't happen" case.
4572 Try the DWP file and hope for the best. */
4573 if (dwp_file->tus == NULL)
4574 return NULL;
4575 dwo_entry = lookup_dwo_in_dwp (dwp_file, dwp_file->tus, NULL,
4576 sig, 1 /* is_debug_types */);
4577 if (dwo_entry == NULL)
4578 return NULL;
4579
4580 sig_entry = add_type_unit (sig);
4581 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4582
4583 /* The caller will signal a complaint if we return NULL.
4584 Here we don't return NULL but we still want to complain. */
4585 complaint (&symfile_complaints,
4586 _("Bad type signature %s referenced by %s at 0x%x,"
4587 " coping by using copy in DWP [in module %s]"),
4588 hex_string (sig),
4589 cu->per_cu->is_debug_types ? "TU" : "CU",
4590 cu->per_cu->offset.sect_off,
4591 objfile->name);
4592
4593 return sig_entry;
4594 }
4595
4596 /* Lookup a signature based type for DW_FORM_ref_sig8.
4597 Returns NULL if signature SIG is not present in the table.
4598 It is up to the caller to complain about this. */
4599
4600 static struct signatured_type *
4601 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4602 {
4603 if (cu->dwo_unit
4604 && dwarf2_per_objfile->using_index)
4605 {
4606 /* We're in a DWO/DWP file, and we're using .gdb_index.
4607 These cases require special processing. */
4608 if (get_dwp_file () == NULL)
4609 return lookup_dwo_signatured_type (cu, sig);
4610 else
4611 return lookup_dwp_signatured_type (cu, sig);
4612 }
4613 else
4614 {
4615 struct signatured_type find_entry, *entry;
4616
4617 if (dwarf2_per_objfile->signatured_types == NULL)
4618 return NULL;
4619 find_entry.signature = sig;
4620 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
4621 return entry;
4622 }
4623 }
4624 \f
4625 /* Low level DIE reading support. */
4626
4627 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
4628
4629 static void
4630 init_cu_die_reader (struct die_reader_specs *reader,
4631 struct dwarf2_cu *cu,
4632 struct dwarf2_section_info *section,
4633 struct dwo_file *dwo_file)
4634 {
4635 gdb_assert (section->readin && section->buffer != NULL);
4636 reader->abfd = section->asection->owner;
4637 reader->cu = cu;
4638 reader->dwo_file = dwo_file;
4639 reader->die_section = section;
4640 reader->buffer = section->buffer;
4641 reader->buffer_end = section->buffer + section->size;
4642 reader->comp_dir = NULL;
4643 }
4644
4645 /* Subroutine of init_cutu_and_read_dies to simplify it.
4646 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
4647 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
4648 already.
4649
4650 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
4651 from it to the DIE in the DWO. If NULL we are skipping the stub.
4652 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
4653 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
4654 attribute of the referencing CU. Exactly one of STUB_COMP_UNIT_DIE and
4655 COMP_DIR must be non-NULL.
4656 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
4657 are filled in with the info of the DIE from the DWO file.
4658 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
4659 provided an abbrev table to use.
4660 The result is non-zero if a valid (non-dummy) DIE was found. */
4661
4662 static int
4663 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
4664 struct dwo_unit *dwo_unit,
4665 int abbrev_table_provided,
4666 struct die_info *stub_comp_unit_die,
4667 const char *stub_comp_dir,
4668 struct die_reader_specs *result_reader,
4669 const gdb_byte **result_info_ptr,
4670 struct die_info **result_comp_unit_die,
4671 int *result_has_children)
4672 {
4673 struct objfile *objfile = dwarf2_per_objfile->objfile;
4674 struct dwarf2_cu *cu = this_cu->cu;
4675 struct dwarf2_section_info *section;
4676 bfd *abfd;
4677 const gdb_byte *begin_info_ptr, *info_ptr;
4678 const char *comp_dir_string;
4679 ULONGEST signature; /* Or dwo_id. */
4680 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
4681 int i,num_extra_attrs;
4682 struct dwarf2_section_info *dwo_abbrev_section;
4683 struct attribute *attr;
4684 struct attribute comp_dir_attr;
4685 struct die_info *comp_unit_die;
4686
4687 /* Both can't be provided. */
4688 gdb_assert (! (stub_comp_unit_die && stub_comp_dir));
4689
4690 /* These attributes aren't processed until later:
4691 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
4692 However, the attribute is found in the stub which we won't have later.
4693 In order to not impose this complication on the rest of the code,
4694 we read them here and copy them to the DWO CU/TU die. */
4695
4696 stmt_list = NULL;
4697 low_pc = NULL;
4698 high_pc = NULL;
4699 ranges = NULL;
4700 comp_dir = NULL;
4701
4702 if (stub_comp_unit_die != NULL)
4703 {
4704 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
4705 DWO file. */
4706 if (! this_cu->is_debug_types)
4707 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
4708 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
4709 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
4710 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
4711 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
4712
4713 /* There should be a DW_AT_addr_base attribute here (if needed).
4714 We need the value before we can process DW_FORM_GNU_addr_index. */
4715 cu->addr_base = 0;
4716 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
4717 if (attr)
4718 cu->addr_base = DW_UNSND (attr);
4719
4720 /* There should be a DW_AT_ranges_base attribute here (if needed).
4721 We need the value before we can process DW_AT_ranges. */
4722 cu->ranges_base = 0;
4723 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
4724 if (attr)
4725 cu->ranges_base = DW_UNSND (attr);
4726 }
4727 else if (stub_comp_dir != NULL)
4728 {
4729 /* Reconstruct the comp_dir attribute to simplify the code below. */
4730 comp_dir = (struct attribute *)
4731 obstack_alloc (&cu->comp_unit_obstack, sizeof (*comp_dir));
4732 comp_dir->name = DW_AT_comp_dir;
4733 comp_dir->form = DW_FORM_string;
4734 DW_STRING_IS_CANONICAL (comp_dir) = 0;
4735 DW_STRING (comp_dir) = stub_comp_dir;
4736 }
4737
4738 /* Set up for reading the DWO CU/TU. */
4739 cu->dwo_unit = dwo_unit;
4740 section = dwo_unit->section;
4741 dwarf2_read_section (objfile, section);
4742 abfd = section->asection->owner;
4743 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
4744 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
4745 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
4746
4747 if (this_cu->is_debug_types)
4748 {
4749 ULONGEST header_signature;
4750 cu_offset type_offset_in_tu;
4751 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
4752
4753 info_ptr = read_and_check_type_unit_head (&cu->header, section,
4754 dwo_abbrev_section,
4755 info_ptr,
4756 &header_signature,
4757 &type_offset_in_tu);
4758 /* This is not an assert because it can be caused by bad debug info. */
4759 if (sig_type->signature != header_signature)
4760 {
4761 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
4762 " TU at offset 0x%x [in module %s]"),
4763 hex_string (sig_type->signature),
4764 hex_string (header_signature),
4765 dwo_unit->offset.sect_off,
4766 bfd_get_filename (abfd));
4767 }
4768 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
4769 /* For DWOs coming from DWP files, we don't know the CU length
4770 nor the type's offset in the TU until now. */
4771 dwo_unit->length = get_cu_length (&cu->header);
4772 dwo_unit->type_offset_in_tu = type_offset_in_tu;
4773
4774 /* Establish the type offset that can be used to lookup the type.
4775 For DWO files, we don't know it until now. */
4776 sig_type->type_offset_in_section.sect_off =
4777 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
4778 }
4779 else
4780 {
4781 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
4782 dwo_abbrev_section,
4783 info_ptr, 0);
4784 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
4785 /* For DWOs coming from DWP files, we don't know the CU length
4786 until now. */
4787 dwo_unit->length = get_cu_length (&cu->header);
4788 }
4789
4790 /* Replace the CU's original abbrev table with the DWO's.
4791 Reminder: We can't read the abbrev table until we've read the header. */
4792 if (abbrev_table_provided)
4793 {
4794 /* Don't free the provided abbrev table, the caller of
4795 init_cutu_and_read_dies owns it. */
4796 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
4797 /* Ensure the DWO abbrev table gets freed. */
4798 make_cleanup (dwarf2_free_abbrev_table, cu);
4799 }
4800 else
4801 {
4802 dwarf2_free_abbrev_table (cu);
4803 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
4804 /* Leave any existing abbrev table cleanup as is. */
4805 }
4806
4807 /* Read in the die, but leave space to copy over the attributes
4808 from the stub. This has the benefit of simplifying the rest of
4809 the code - all the work to maintain the illusion of a single
4810 DW_TAG_{compile,type}_unit DIE is done here. */
4811 num_extra_attrs = ((stmt_list != NULL)
4812 + (low_pc != NULL)
4813 + (high_pc != NULL)
4814 + (ranges != NULL)
4815 + (comp_dir != NULL));
4816 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
4817 result_has_children, num_extra_attrs);
4818
4819 /* Copy over the attributes from the stub to the DIE we just read in. */
4820 comp_unit_die = *result_comp_unit_die;
4821 i = comp_unit_die->num_attrs;
4822 if (stmt_list != NULL)
4823 comp_unit_die->attrs[i++] = *stmt_list;
4824 if (low_pc != NULL)
4825 comp_unit_die->attrs[i++] = *low_pc;
4826 if (high_pc != NULL)
4827 comp_unit_die->attrs[i++] = *high_pc;
4828 if (ranges != NULL)
4829 comp_unit_die->attrs[i++] = *ranges;
4830 if (comp_dir != NULL)
4831 comp_unit_die->attrs[i++] = *comp_dir;
4832 comp_unit_die->num_attrs += num_extra_attrs;
4833
4834 if (dwarf2_die_debug)
4835 {
4836 fprintf_unfiltered (gdb_stdlog,
4837 "Read die from %s@0x%x of %s:\n",
4838 bfd_section_name (abfd, section->asection),
4839 (unsigned) (begin_info_ptr - section->buffer),
4840 bfd_get_filename (abfd));
4841 dump_die (comp_unit_die, dwarf2_die_debug);
4842 }
4843
4844 /* Save the comp_dir attribute. If there is no DWP file then we'll read
4845 TUs by skipping the stub and going directly to the entry in the DWO file.
4846 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
4847 to get it via circuitous means. Blech. */
4848 if (comp_dir != NULL)
4849 result_reader->comp_dir = DW_STRING (comp_dir);
4850
4851 /* Skip dummy compilation units. */
4852 if (info_ptr >= begin_info_ptr + dwo_unit->length
4853 || peek_abbrev_code (abfd, info_ptr) == 0)
4854 return 0;
4855
4856 *result_info_ptr = info_ptr;
4857 return 1;
4858 }
4859
4860 /* Subroutine of init_cutu_and_read_dies to simplify it.
4861 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
4862 Returns NULL if the specified DWO unit cannot be found. */
4863
4864 static struct dwo_unit *
4865 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
4866 struct die_info *comp_unit_die)
4867 {
4868 struct dwarf2_cu *cu = this_cu->cu;
4869 struct attribute *attr;
4870 ULONGEST signature;
4871 struct dwo_unit *dwo_unit;
4872 const char *comp_dir, *dwo_name;
4873
4874 gdb_assert (cu != NULL);
4875
4876 /* Yeah, we look dwo_name up again, but it simplifies the code. */
4877 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
4878 gdb_assert (attr != NULL);
4879 dwo_name = DW_STRING (attr);
4880 comp_dir = NULL;
4881 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
4882 if (attr)
4883 comp_dir = DW_STRING (attr);
4884
4885 if (this_cu->is_debug_types)
4886 {
4887 struct signatured_type *sig_type;
4888
4889 /* Since this_cu is the first member of struct signatured_type,
4890 we can go from a pointer to one to a pointer to the other. */
4891 sig_type = (struct signatured_type *) this_cu;
4892 signature = sig_type->signature;
4893 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
4894 }
4895 else
4896 {
4897 struct attribute *attr;
4898
4899 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
4900 if (! attr)
4901 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
4902 " [in module %s]"),
4903 dwo_name, this_cu->objfile->name);
4904 signature = DW_UNSND (attr);
4905 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
4906 signature);
4907 }
4908
4909 return dwo_unit;
4910 }
4911
4912 /* Subroutine of init_cutu_and_read_dies to simplify it.
4913 Read a TU directly from a DWO file, bypassing the stub. */
4914
4915 static void
4916 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu, int keep,
4917 die_reader_func_ftype *die_reader_func,
4918 void *data)
4919 {
4920 struct dwarf2_cu *cu;
4921 struct signatured_type *sig_type;
4922 struct cleanup *cleanups, *free_cu_cleanup;
4923 struct die_reader_specs reader;
4924 const gdb_byte *info_ptr;
4925 struct die_info *comp_unit_die;
4926 int has_children;
4927
4928 /* Verify we can do the following downcast, and that we have the
4929 data we need. */
4930 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
4931 sig_type = (struct signatured_type *) this_cu;
4932 gdb_assert (sig_type->dwo_unit != NULL);
4933
4934 cleanups = make_cleanup (null_cleanup, NULL);
4935
4936 gdb_assert (this_cu->cu == NULL);
4937 cu = xmalloc (sizeof (*cu));
4938 init_one_comp_unit (cu, this_cu);
4939 /* If an error occurs while loading, release our storage. */
4940 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
4941
4942 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
4943 0 /* abbrev_table_provided */,
4944 NULL /* stub_comp_unit_die */,
4945 sig_type->dwo_unit->dwo_file->comp_dir,
4946 &reader, &info_ptr,
4947 &comp_unit_die, &has_children) == 0)
4948 {
4949 /* Dummy die. */
4950 do_cleanups (cleanups);
4951 return;
4952 }
4953
4954 /* All the "real" work is done here. */
4955 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
4956
4957 /* This duplicates some code in init_cutu_and_read_dies,
4958 but the alternative is making the latter more complex.
4959 This function is only for the special case of using DWO files directly:
4960 no point in overly complicating the general case just to handle this. */
4961 if (keep)
4962 {
4963 /* We've successfully allocated this compilation unit. Let our
4964 caller clean it up when finished with it. */
4965 discard_cleanups (free_cu_cleanup);
4966
4967 /* We can only discard free_cu_cleanup and all subsequent cleanups.
4968 So we have to manually free the abbrev table. */
4969 dwarf2_free_abbrev_table (cu);
4970
4971 /* Link this CU into read_in_chain. */
4972 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
4973 dwarf2_per_objfile->read_in_chain = this_cu;
4974 }
4975 else
4976 do_cleanups (free_cu_cleanup);
4977
4978 do_cleanups (cleanups);
4979 }
4980
4981 /* Initialize a CU (or TU) and read its DIEs.
4982 If the CU defers to a DWO file, read the DWO file as well.
4983
4984 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
4985 Otherwise the table specified in the comp unit header is read in and used.
4986 This is an optimization for when we already have the abbrev table.
4987
4988 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
4989 Otherwise, a new CU is allocated with xmalloc.
4990
4991 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
4992 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
4993
4994 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
4995 linker) then DIE_READER_FUNC will not get called. */
4996
4997 static void
4998 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
4999 struct abbrev_table *abbrev_table,
5000 int use_existing_cu, int keep,
5001 die_reader_func_ftype *die_reader_func,
5002 void *data)
5003 {
5004 struct objfile *objfile = dwarf2_per_objfile->objfile;
5005 struct dwarf2_section_info *section = this_cu->section;
5006 bfd *abfd = section->asection->owner;
5007 struct dwarf2_cu *cu;
5008 const gdb_byte *begin_info_ptr, *info_ptr;
5009 struct die_reader_specs reader;
5010 struct die_info *comp_unit_die;
5011 int has_children;
5012 struct attribute *attr;
5013 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5014 struct signatured_type *sig_type = NULL;
5015 struct dwarf2_section_info *abbrev_section;
5016 /* Non-zero if CU currently points to a DWO file and we need to
5017 reread it. When this happens we need to reread the skeleton die
5018 before we can reread the DWO file (this only applies to CUs, not TUs). */
5019 int rereading_dwo_cu = 0;
5020
5021 if (dwarf2_die_debug)
5022 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5023 this_cu->is_debug_types ? "type" : "comp",
5024 this_cu->offset.sect_off);
5025
5026 if (use_existing_cu)
5027 gdb_assert (keep);
5028
5029 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5030 file (instead of going through the stub), short-circuit all of this. */
5031 if (this_cu->reading_dwo_directly)
5032 {
5033 /* Narrow down the scope of possibilities to have to understand. */
5034 gdb_assert (this_cu->is_debug_types);
5035 gdb_assert (abbrev_table == NULL);
5036 gdb_assert (!use_existing_cu);
5037 init_tu_and_read_dwo_dies (this_cu, keep, die_reader_func, data);
5038 return;
5039 }
5040
5041 cleanups = make_cleanup (null_cleanup, NULL);
5042
5043 /* This is cheap if the section is already read in. */
5044 dwarf2_read_section (objfile, section);
5045
5046 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5047
5048 abbrev_section = get_abbrev_section_for_cu (this_cu);
5049
5050 if (use_existing_cu && this_cu->cu != NULL)
5051 {
5052 cu = this_cu->cu;
5053
5054 /* If this CU is from a DWO file we need to start over, we need to
5055 refetch the attributes from the skeleton CU.
5056 This could be optimized by retrieving those attributes from when we
5057 were here the first time: the previous comp_unit_die was stored in
5058 comp_unit_obstack. But there's no data yet that we need this
5059 optimization. */
5060 if (cu->dwo_unit != NULL)
5061 rereading_dwo_cu = 1;
5062 }
5063 else
5064 {
5065 /* If !use_existing_cu, this_cu->cu must be NULL. */
5066 gdb_assert (this_cu->cu == NULL);
5067
5068 cu = xmalloc (sizeof (*cu));
5069 init_one_comp_unit (cu, this_cu);
5070
5071 /* If an error occurs while loading, release our storage. */
5072 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5073 }
5074
5075 /* Get the header. */
5076 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5077 {
5078 /* We already have the header, there's no need to read it in again. */
5079 info_ptr += cu->header.first_die_offset.cu_off;
5080 }
5081 else
5082 {
5083 if (this_cu->is_debug_types)
5084 {
5085 ULONGEST signature;
5086 cu_offset type_offset_in_tu;
5087
5088 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5089 abbrev_section, info_ptr,
5090 &signature,
5091 &type_offset_in_tu);
5092
5093 /* Since per_cu is the first member of struct signatured_type,
5094 we can go from a pointer to one to a pointer to the other. */
5095 sig_type = (struct signatured_type *) this_cu;
5096 gdb_assert (sig_type->signature == signature);
5097 gdb_assert (sig_type->type_offset_in_tu.cu_off
5098 == type_offset_in_tu.cu_off);
5099 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5100
5101 /* LENGTH has not been set yet for type units if we're
5102 using .gdb_index. */
5103 this_cu->length = get_cu_length (&cu->header);
5104
5105 /* Establish the type offset that can be used to lookup the type. */
5106 sig_type->type_offset_in_section.sect_off =
5107 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
5108 }
5109 else
5110 {
5111 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5112 abbrev_section,
5113 info_ptr, 0);
5114
5115 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5116 gdb_assert (this_cu->length == get_cu_length (&cu->header));
5117 }
5118 }
5119
5120 /* Skip dummy compilation units. */
5121 if (info_ptr >= begin_info_ptr + this_cu->length
5122 || peek_abbrev_code (abfd, info_ptr) == 0)
5123 {
5124 do_cleanups (cleanups);
5125 return;
5126 }
5127
5128 /* If we don't have them yet, read the abbrevs for this compilation unit.
5129 And if we need to read them now, make sure they're freed when we're
5130 done. Note that it's important that if the CU had an abbrev table
5131 on entry we don't free it when we're done: Somewhere up the call stack
5132 it may be in use. */
5133 if (abbrev_table != NULL)
5134 {
5135 gdb_assert (cu->abbrev_table == NULL);
5136 gdb_assert (cu->header.abbrev_offset.sect_off
5137 == abbrev_table->offset.sect_off);
5138 cu->abbrev_table = abbrev_table;
5139 }
5140 else if (cu->abbrev_table == NULL)
5141 {
5142 dwarf2_read_abbrevs (cu, abbrev_section);
5143 make_cleanup (dwarf2_free_abbrev_table, cu);
5144 }
5145 else if (rereading_dwo_cu)
5146 {
5147 dwarf2_free_abbrev_table (cu);
5148 dwarf2_read_abbrevs (cu, abbrev_section);
5149 }
5150
5151 /* Read the top level CU/TU die. */
5152 init_cu_die_reader (&reader, cu, section, NULL);
5153 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5154
5155 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5156 from the DWO file.
5157 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5158 DWO CU, that this test will fail (the attribute will not be present). */
5159 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5160 if (attr)
5161 {
5162 struct dwo_unit *dwo_unit;
5163 struct die_info *dwo_comp_unit_die;
5164
5165 if (has_children)
5166 {
5167 complaint (&symfile_complaints,
5168 _("compilation unit with DW_AT_GNU_dwo_name"
5169 " has children (offset 0x%x) [in module %s]"),
5170 this_cu->offset.sect_off, bfd_get_filename (abfd));
5171 }
5172 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
5173 if (dwo_unit != NULL)
5174 {
5175 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5176 abbrev_table != NULL,
5177 comp_unit_die, NULL,
5178 &reader, &info_ptr,
5179 &dwo_comp_unit_die, &has_children) == 0)
5180 {
5181 /* Dummy die. */
5182 do_cleanups (cleanups);
5183 return;
5184 }
5185 comp_unit_die = dwo_comp_unit_die;
5186 }
5187 else
5188 {
5189 /* Yikes, we couldn't find the rest of the DIE, we only have
5190 the stub. A complaint has already been logged. There's
5191 not much more we can do except pass on the stub DIE to
5192 die_reader_func. We don't want to throw an error on bad
5193 debug info. */
5194 }
5195 }
5196
5197 /* All of the above is setup for this call. Yikes. */
5198 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5199
5200 /* Done, clean up. */
5201 if (free_cu_cleanup != NULL)
5202 {
5203 if (keep)
5204 {
5205 /* We've successfully allocated this compilation unit. Let our
5206 caller clean it up when finished with it. */
5207 discard_cleanups (free_cu_cleanup);
5208
5209 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5210 So we have to manually free the abbrev table. */
5211 dwarf2_free_abbrev_table (cu);
5212
5213 /* Link this CU into read_in_chain. */
5214 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5215 dwarf2_per_objfile->read_in_chain = this_cu;
5216 }
5217 else
5218 do_cleanups (free_cu_cleanup);
5219 }
5220
5221 do_cleanups (cleanups);
5222 }
5223
5224 /* Read CU/TU THIS_CU in section SECTION,
5225 but do not follow DW_AT_GNU_dwo_name if present.
5226 DWOP_FILE, if non-NULL, is the DWO/DWP file to read (the caller is assumed
5227 to have already done the lookup to find the DWO/DWP file).
5228
5229 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
5230 THIS_CU->is_debug_types, but nothing else.
5231
5232 We fill in THIS_CU->length.
5233
5234 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5235 linker) then DIE_READER_FUNC will not get called.
5236
5237 THIS_CU->cu is always freed when done.
5238 This is done in order to not leave THIS_CU->cu in a state where we have
5239 to care whether it refers to the "main" CU or the DWO CU. */
5240
5241 static void
5242 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
5243 struct dwarf2_section_info *abbrev_section,
5244 struct dwo_file *dwo_file,
5245 die_reader_func_ftype *die_reader_func,
5246 void *data)
5247 {
5248 struct objfile *objfile = dwarf2_per_objfile->objfile;
5249 struct dwarf2_section_info *section = this_cu->section;
5250 bfd *abfd = section->asection->owner;
5251 struct dwarf2_cu cu;
5252 const gdb_byte *begin_info_ptr, *info_ptr;
5253 struct die_reader_specs reader;
5254 struct cleanup *cleanups;
5255 struct die_info *comp_unit_die;
5256 int has_children;
5257
5258 if (dwarf2_die_debug)
5259 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5260 this_cu->is_debug_types ? "type" : "comp",
5261 this_cu->offset.sect_off);
5262
5263 gdb_assert (this_cu->cu == NULL);
5264
5265 /* This is cheap if the section is already read in. */
5266 dwarf2_read_section (objfile, section);
5267
5268 init_one_comp_unit (&cu, this_cu);
5269
5270 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5271
5272 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5273 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5274 abbrev_section, info_ptr,
5275 this_cu->is_debug_types);
5276
5277 this_cu->length = get_cu_length (&cu.header);
5278
5279 /* Skip dummy compilation units. */
5280 if (info_ptr >= begin_info_ptr + this_cu->length
5281 || peek_abbrev_code (abfd, info_ptr) == 0)
5282 {
5283 do_cleanups (cleanups);
5284 return;
5285 }
5286
5287 dwarf2_read_abbrevs (&cu, abbrev_section);
5288 make_cleanup (dwarf2_free_abbrev_table, &cu);
5289
5290 init_cu_die_reader (&reader, &cu, section, dwo_file);
5291 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5292
5293 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5294
5295 do_cleanups (cleanups);
5296 }
5297
5298 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5299 does not lookup the specified DWO file.
5300 This cannot be used to read DWO files.
5301
5302 THIS_CU->cu is always freed when done.
5303 This is done in order to not leave THIS_CU->cu in a state where we have
5304 to care whether it refers to the "main" CU or the DWO CU.
5305 We can revisit this if the data shows there's a performance issue. */
5306
5307 static void
5308 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5309 die_reader_func_ftype *die_reader_func,
5310 void *data)
5311 {
5312 init_cutu_and_read_dies_no_follow (this_cu,
5313 get_abbrev_section_for_cu (this_cu),
5314 NULL,
5315 die_reader_func, data);
5316 }
5317 \f
5318 /* Type Unit Groups.
5319
5320 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5321 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5322 so that all types coming from the same compilation (.o file) are grouped
5323 together. A future step could be to put the types in the same symtab as
5324 the CU the types ultimately came from. */
5325
5326 static hashval_t
5327 hash_type_unit_group (const void *item)
5328 {
5329 const struct type_unit_group *tu_group = item;
5330
5331 return hash_stmt_list_entry (&tu_group->hash);
5332 }
5333
5334 static int
5335 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
5336 {
5337 const struct type_unit_group *lhs = item_lhs;
5338 const struct type_unit_group *rhs = item_rhs;
5339
5340 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
5341 }
5342
5343 /* Allocate a hash table for type unit groups. */
5344
5345 static htab_t
5346 allocate_type_unit_groups_table (void)
5347 {
5348 return htab_create_alloc_ex (3,
5349 hash_type_unit_group,
5350 eq_type_unit_group,
5351 NULL,
5352 &dwarf2_per_objfile->objfile->objfile_obstack,
5353 hashtab_obstack_allocate,
5354 dummy_obstack_deallocate);
5355 }
5356
5357 /* Type units that don't have DW_AT_stmt_list are grouped into their own
5358 partial symtabs. We combine several TUs per psymtab to not let the size
5359 of any one psymtab grow too big. */
5360 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5361 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
5362
5363 /* Helper routine for get_type_unit_group.
5364 Create the type_unit_group object used to hold one or more TUs. */
5365
5366 static struct type_unit_group *
5367 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
5368 {
5369 struct objfile *objfile = dwarf2_per_objfile->objfile;
5370 struct dwarf2_per_cu_data *per_cu;
5371 struct type_unit_group *tu_group;
5372
5373 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5374 struct type_unit_group);
5375 per_cu = &tu_group->per_cu;
5376 per_cu->objfile = objfile;
5377
5378 if (dwarf2_per_objfile->using_index)
5379 {
5380 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5381 struct dwarf2_per_cu_quick_data);
5382 }
5383 else
5384 {
5385 unsigned int line_offset = line_offset_struct.sect_off;
5386 struct partial_symtab *pst;
5387 char *name;
5388
5389 /* Give the symtab a useful name for debug purposes. */
5390 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5391 name = xstrprintf ("<type_units_%d>",
5392 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5393 else
5394 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5395
5396 pst = create_partial_symtab (per_cu, name);
5397 pst->anonymous = 1;
5398
5399 xfree (name);
5400 }
5401
5402 tu_group->hash.dwo_unit = cu->dwo_unit;
5403 tu_group->hash.line_offset = line_offset_struct;
5404
5405 return tu_group;
5406 }
5407
5408 /* Look up the type_unit_group for type unit CU, and create it if necessary.
5409 STMT_LIST is a DW_AT_stmt_list attribute. */
5410
5411 static struct type_unit_group *
5412 get_type_unit_group (struct dwarf2_cu *cu, struct attribute *stmt_list)
5413 {
5414 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5415 struct type_unit_group *tu_group;
5416 void **slot;
5417 unsigned int line_offset;
5418 struct type_unit_group type_unit_group_for_lookup;
5419
5420 if (dwarf2_per_objfile->type_unit_groups == NULL)
5421 {
5422 dwarf2_per_objfile->type_unit_groups =
5423 allocate_type_unit_groups_table ();
5424 }
5425
5426 /* Do we need to create a new group, or can we use an existing one? */
5427
5428 if (stmt_list)
5429 {
5430 line_offset = DW_UNSND (stmt_list);
5431 ++tu_stats->nr_symtab_sharers;
5432 }
5433 else
5434 {
5435 /* Ugh, no stmt_list. Rare, but we have to handle it.
5436 We can do various things here like create one group per TU or
5437 spread them over multiple groups to split up the expansion work.
5438 To avoid worst case scenarios (too many groups or too large groups)
5439 we, umm, group them in bunches. */
5440 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5441 | (tu_stats->nr_stmt_less_type_units
5442 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5443 ++tu_stats->nr_stmt_less_type_units;
5444 }
5445
5446 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5447 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
5448 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5449 &type_unit_group_for_lookup, INSERT);
5450 if (*slot != NULL)
5451 {
5452 tu_group = *slot;
5453 gdb_assert (tu_group != NULL);
5454 }
5455 else
5456 {
5457 sect_offset line_offset_struct;
5458
5459 line_offset_struct.sect_off = line_offset;
5460 tu_group = create_type_unit_group (cu, line_offset_struct);
5461 *slot = tu_group;
5462 ++tu_stats->nr_symtabs;
5463 }
5464
5465 return tu_group;
5466 }
5467
5468 /* Struct used to sort TUs by their abbreviation table offset. */
5469
5470 struct tu_abbrev_offset
5471 {
5472 struct signatured_type *sig_type;
5473 sect_offset abbrev_offset;
5474 };
5475
5476 /* Helper routine for build_type_unit_groups, passed to qsort. */
5477
5478 static int
5479 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
5480 {
5481 const struct tu_abbrev_offset * const *a = ap;
5482 const struct tu_abbrev_offset * const *b = bp;
5483 unsigned int aoff = (*a)->abbrev_offset.sect_off;
5484 unsigned int boff = (*b)->abbrev_offset.sect_off;
5485
5486 return (aoff > boff) - (aoff < boff);
5487 }
5488
5489 /* A helper function to add a type_unit_group to a table. */
5490
5491 static int
5492 add_type_unit_group_to_table (void **slot, void *datum)
5493 {
5494 struct type_unit_group *tu_group = *slot;
5495 struct type_unit_group ***datap = datum;
5496
5497 **datap = tu_group;
5498 ++*datap;
5499
5500 return 1;
5501 }
5502
5503 /* Efficiently read all the type units, calling init_cutu_and_read_dies on
5504 each one passing FUNC,DATA.
5505
5506 The efficiency is because we sort TUs by the abbrev table they use and
5507 only read each abbrev table once. In one program there are 200K TUs
5508 sharing 8K abbrev tables.
5509
5510 The main purpose of this function is to support building the
5511 dwarf2_per_objfile->type_unit_groups table.
5512 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
5513 can collapse the search space by grouping them by stmt_list.
5514 The savings can be significant, in the same program from above the 200K TUs
5515 share 8K stmt_list tables.
5516
5517 FUNC is expected to call get_type_unit_group, which will create the
5518 struct type_unit_group if necessary and add it to
5519 dwarf2_per_objfile->type_unit_groups. */
5520
5521 static void
5522 build_type_unit_groups (die_reader_func_ftype *func, void *data)
5523 {
5524 struct objfile *objfile = dwarf2_per_objfile->objfile;
5525 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5526 struct cleanup *cleanups;
5527 struct abbrev_table *abbrev_table;
5528 sect_offset abbrev_offset;
5529 struct tu_abbrev_offset *sorted_by_abbrev;
5530 struct type_unit_group **iter;
5531 int i;
5532
5533 /* It's up to the caller to not call us multiple times. */
5534 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
5535
5536 if (dwarf2_per_objfile->n_type_units == 0)
5537 return;
5538
5539 /* TUs typically share abbrev tables, and there can be way more TUs than
5540 abbrev tables. Sort by abbrev table to reduce the number of times we
5541 read each abbrev table in.
5542 Alternatives are to punt or to maintain a cache of abbrev tables.
5543 This is simpler and efficient enough for now.
5544
5545 Later we group TUs by their DW_AT_stmt_list value (as this defines the
5546 symtab to use). Typically TUs with the same abbrev offset have the same
5547 stmt_list value too so in practice this should work well.
5548
5549 The basic algorithm here is:
5550
5551 sort TUs by abbrev table
5552 for each TU with same abbrev table:
5553 read abbrev table if first user
5554 read TU top level DIE
5555 [IWBN if DWO skeletons had DW_AT_stmt_list]
5556 call FUNC */
5557
5558 if (dwarf2_read_debug)
5559 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
5560
5561 /* Sort in a separate table to maintain the order of all_type_units
5562 for .gdb_index: TU indices directly index all_type_units. */
5563 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
5564 dwarf2_per_objfile->n_type_units);
5565 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5566 {
5567 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
5568
5569 sorted_by_abbrev[i].sig_type = sig_type;
5570 sorted_by_abbrev[i].abbrev_offset =
5571 read_abbrev_offset (sig_type->per_cu.section,
5572 sig_type->per_cu.offset);
5573 }
5574 cleanups = make_cleanup (xfree, sorted_by_abbrev);
5575 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
5576 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
5577
5578 /* Note: In the .gdb_index case, get_type_unit_group may have already been
5579 called any number of times, so we don't reset tu_stats here. */
5580
5581 abbrev_offset.sect_off = ~(unsigned) 0;
5582 abbrev_table = NULL;
5583 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
5584
5585 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5586 {
5587 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
5588
5589 /* Switch to the next abbrev table if necessary. */
5590 if (abbrev_table == NULL
5591 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
5592 {
5593 if (abbrev_table != NULL)
5594 {
5595 abbrev_table_free (abbrev_table);
5596 /* Reset to NULL in case abbrev_table_read_table throws
5597 an error: abbrev_table_free_cleanup will get called. */
5598 abbrev_table = NULL;
5599 }
5600 abbrev_offset = tu->abbrev_offset;
5601 abbrev_table =
5602 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
5603 abbrev_offset);
5604 ++tu_stats->nr_uniq_abbrev_tables;
5605 }
5606
5607 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
5608 func, data);
5609 }
5610
5611 /* type_unit_groups can be NULL if there is an error in the debug info.
5612 Just create an empty table so the rest of gdb doesn't have to watch
5613 for this error case. */
5614 if (dwarf2_per_objfile->type_unit_groups == NULL)
5615 {
5616 dwarf2_per_objfile->type_unit_groups =
5617 allocate_type_unit_groups_table ();
5618 dwarf2_per_objfile->n_type_unit_groups = 0;
5619 }
5620
5621 /* Create a vector of pointers to primary type units to make it easy to
5622 iterate over them and CUs. See dw2_get_primary_cu. */
5623 dwarf2_per_objfile->n_type_unit_groups =
5624 htab_elements (dwarf2_per_objfile->type_unit_groups);
5625 dwarf2_per_objfile->all_type_unit_groups =
5626 obstack_alloc (&objfile->objfile_obstack,
5627 dwarf2_per_objfile->n_type_unit_groups
5628 * sizeof (struct type_unit_group *));
5629 iter = &dwarf2_per_objfile->all_type_unit_groups[0];
5630 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
5631 add_type_unit_group_to_table, &iter);
5632 gdb_assert (iter - &dwarf2_per_objfile->all_type_unit_groups[0]
5633 == dwarf2_per_objfile->n_type_unit_groups);
5634
5635 do_cleanups (cleanups);
5636
5637 if (dwarf2_read_debug)
5638 {
5639 fprintf_unfiltered (gdb_stdlog, "Done building type unit groups:\n");
5640 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
5641 dwarf2_per_objfile->n_type_units);
5642 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
5643 tu_stats->nr_uniq_abbrev_tables);
5644 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
5645 tu_stats->nr_symtabs);
5646 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
5647 tu_stats->nr_symtab_sharers);
5648 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
5649 tu_stats->nr_stmt_less_type_units);
5650 }
5651 }
5652 \f
5653 /* Partial symbol tables. */
5654
5655 /* Create a psymtab named NAME and assign it to PER_CU.
5656
5657 The caller must fill in the following details:
5658 dirname, textlow, texthigh. */
5659
5660 static struct partial_symtab *
5661 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5662 {
5663 struct objfile *objfile = per_cu->objfile;
5664 struct partial_symtab *pst;
5665
5666 pst = start_psymtab_common (objfile, objfile->section_offsets,
5667 name, 0,
5668 objfile->global_psymbols.next,
5669 objfile->static_psymbols.next);
5670
5671 pst->psymtabs_addrmap_supported = 1;
5672
5673 /* This is the glue that links PST into GDB's symbol API. */
5674 pst->read_symtab_private = per_cu;
5675 pst->read_symtab = dwarf2_read_symtab;
5676 per_cu->v.psymtab = pst;
5677
5678 return pst;
5679 }
5680
5681 /* die_reader_func for process_psymtab_comp_unit. */
5682
5683 static void
5684 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
5685 const gdb_byte *info_ptr,
5686 struct die_info *comp_unit_die,
5687 int has_children,
5688 void *data)
5689 {
5690 struct dwarf2_cu *cu = reader->cu;
5691 struct objfile *objfile = cu->objfile;
5692 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5693 struct attribute *attr;
5694 CORE_ADDR baseaddr;
5695 CORE_ADDR best_lowpc = 0, best_highpc = 0;
5696 struct partial_symtab *pst;
5697 int has_pc_info;
5698 const char *filename;
5699 int *want_partial_unit_ptr = data;
5700
5701 if (comp_unit_die->tag == DW_TAG_partial_unit
5702 && (want_partial_unit_ptr == NULL
5703 || !*want_partial_unit_ptr))
5704 return;
5705
5706 gdb_assert (! per_cu->is_debug_types);
5707
5708 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
5709
5710 cu->list_in_scope = &file_symbols;
5711
5712 /* Allocate a new partial symbol table structure. */
5713 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
5714 if (attr == NULL || !DW_STRING (attr))
5715 filename = "";
5716 else
5717 filename = DW_STRING (attr);
5718
5719 pst = create_partial_symtab (per_cu, filename);
5720
5721 /* This must be done before calling dwarf2_build_include_psymtabs. */
5722 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5723 if (attr != NULL)
5724 pst->dirname = DW_STRING (attr);
5725
5726 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5727
5728 dwarf2_find_base_address (comp_unit_die, cu);
5729
5730 /* Possibly set the default values of LOWPC and HIGHPC from
5731 `DW_AT_ranges'. */
5732 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
5733 &best_highpc, cu, pst);
5734 if (has_pc_info == 1 && best_lowpc < best_highpc)
5735 /* Store the contiguous range if it is not empty; it can be empty for
5736 CUs with no code. */
5737 addrmap_set_empty (objfile->psymtabs_addrmap,
5738 best_lowpc + baseaddr,
5739 best_highpc + baseaddr - 1, pst);
5740
5741 /* Check if comp unit has_children.
5742 If so, read the rest of the partial symbols from this comp unit.
5743 If not, there's no more debug_info for this comp unit. */
5744 if (has_children)
5745 {
5746 struct partial_die_info *first_die;
5747 CORE_ADDR lowpc, highpc;
5748
5749 lowpc = ((CORE_ADDR) -1);
5750 highpc = ((CORE_ADDR) 0);
5751
5752 first_die = load_partial_dies (reader, info_ptr, 1);
5753
5754 scan_partial_symbols (first_die, &lowpc, &highpc,
5755 ! has_pc_info, cu);
5756
5757 /* If we didn't find a lowpc, set it to highpc to avoid
5758 complaints from `maint check'. */
5759 if (lowpc == ((CORE_ADDR) -1))
5760 lowpc = highpc;
5761
5762 /* If the compilation unit didn't have an explicit address range,
5763 then use the information extracted from its child dies. */
5764 if (! has_pc_info)
5765 {
5766 best_lowpc = lowpc;
5767 best_highpc = highpc;
5768 }
5769 }
5770 pst->textlow = best_lowpc + baseaddr;
5771 pst->texthigh = best_highpc + baseaddr;
5772
5773 pst->n_global_syms = objfile->global_psymbols.next -
5774 (objfile->global_psymbols.list + pst->globals_offset);
5775 pst->n_static_syms = objfile->static_psymbols.next -
5776 (objfile->static_psymbols.list + pst->statics_offset);
5777 sort_pst_symbols (objfile, pst);
5778
5779 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
5780 {
5781 int i;
5782 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
5783 struct dwarf2_per_cu_data *iter;
5784
5785 /* Fill in 'dependencies' here; we fill in 'users' in a
5786 post-pass. */
5787 pst->number_of_dependencies = len;
5788 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
5789 len * sizeof (struct symtab *));
5790 for (i = 0;
5791 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
5792 i, iter);
5793 ++i)
5794 pst->dependencies[i] = iter->v.psymtab;
5795
5796 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
5797 }
5798
5799 /* Get the list of files included in the current compilation unit,
5800 and build a psymtab for each of them. */
5801 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
5802
5803 if (dwarf2_read_debug)
5804 {
5805 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5806
5807 fprintf_unfiltered (gdb_stdlog,
5808 "Psymtab for %s unit @0x%x: %s - %s"
5809 ", %d global, %d static syms\n",
5810 per_cu->is_debug_types ? "type" : "comp",
5811 per_cu->offset.sect_off,
5812 paddress (gdbarch, pst->textlow),
5813 paddress (gdbarch, pst->texthigh),
5814 pst->n_global_syms, pst->n_static_syms);
5815 }
5816 }
5817
5818 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
5819 Process compilation unit THIS_CU for a psymtab. */
5820
5821 static void
5822 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
5823 int want_partial_unit)
5824 {
5825 /* If this compilation unit was already read in, free the
5826 cached copy in order to read it in again. This is
5827 necessary because we skipped some symbols when we first
5828 read in the compilation unit (see load_partial_dies).
5829 This problem could be avoided, but the benefit is unclear. */
5830 if (this_cu->cu != NULL)
5831 free_one_cached_comp_unit (this_cu);
5832
5833 gdb_assert (! this_cu->is_debug_types);
5834 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
5835 process_psymtab_comp_unit_reader,
5836 &want_partial_unit);
5837
5838 /* Age out any secondary CUs. */
5839 age_cached_comp_units ();
5840 }
5841
5842 /* Reader function for build_type_psymtabs. */
5843
5844 static void
5845 build_type_psymtabs_reader (const struct die_reader_specs *reader,
5846 const gdb_byte *info_ptr,
5847 struct die_info *type_unit_die,
5848 int has_children,
5849 void *data)
5850 {
5851 struct objfile *objfile = dwarf2_per_objfile->objfile;
5852 struct dwarf2_cu *cu = reader->cu;
5853 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5854 struct signatured_type *sig_type;
5855 struct type_unit_group *tu_group;
5856 struct attribute *attr;
5857 struct partial_die_info *first_die;
5858 CORE_ADDR lowpc, highpc;
5859 struct partial_symtab *pst;
5860
5861 gdb_assert (data == NULL);
5862 gdb_assert (per_cu->is_debug_types);
5863 sig_type = (struct signatured_type *) per_cu;
5864
5865 if (! has_children)
5866 return;
5867
5868 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
5869 tu_group = get_type_unit_group (cu, attr);
5870
5871 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
5872
5873 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
5874 cu->list_in_scope = &file_symbols;
5875 pst = create_partial_symtab (per_cu, "");
5876 pst->anonymous = 1;
5877
5878 first_die = load_partial_dies (reader, info_ptr, 1);
5879
5880 lowpc = (CORE_ADDR) -1;
5881 highpc = (CORE_ADDR) 0;
5882 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
5883
5884 pst->n_global_syms = objfile->global_psymbols.next -
5885 (objfile->global_psymbols.list + pst->globals_offset);
5886 pst->n_static_syms = objfile->static_psymbols.next -
5887 (objfile->static_psymbols.list + pst->statics_offset);
5888 sort_pst_symbols (objfile, pst);
5889 }
5890
5891 /* Traversal function for build_type_psymtabs. */
5892
5893 static int
5894 build_type_psymtab_dependencies (void **slot, void *info)
5895 {
5896 struct objfile *objfile = dwarf2_per_objfile->objfile;
5897 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
5898 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
5899 struct partial_symtab *pst = per_cu->v.psymtab;
5900 int len = VEC_length (sig_type_ptr, tu_group->tus);
5901 struct signatured_type *iter;
5902 int i;
5903
5904 gdb_assert (len > 0);
5905 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
5906
5907 pst->number_of_dependencies = len;
5908 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
5909 len * sizeof (struct psymtab *));
5910 for (i = 0;
5911 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
5912 ++i)
5913 {
5914 gdb_assert (iter->per_cu.is_debug_types);
5915 pst->dependencies[i] = iter->per_cu.v.psymtab;
5916 iter->type_unit_group = tu_group;
5917 }
5918
5919 VEC_free (sig_type_ptr, tu_group->tus);
5920
5921 return 1;
5922 }
5923
5924 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
5925 Build partial symbol tables for the .debug_types comp-units. */
5926
5927 static void
5928 build_type_psymtabs (struct objfile *objfile)
5929 {
5930 if (! create_all_type_units (objfile))
5931 return;
5932
5933 build_type_unit_groups (build_type_psymtabs_reader, NULL);
5934
5935 /* Now that all TUs have been processed we can fill in the dependencies. */
5936 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
5937 build_type_psymtab_dependencies, NULL);
5938 }
5939
5940 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
5941
5942 static void
5943 psymtabs_addrmap_cleanup (void *o)
5944 {
5945 struct objfile *objfile = o;
5946
5947 objfile->psymtabs_addrmap = NULL;
5948 }
5949
5950 /* Compute the 'user' field for each psymtab in OBJFILE. */
5951
5952 static void
5953 set_partial_user (struct objfile *objfile)
5954 {
5955 int i;
5956
5957 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
5958 {
5959 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
5960 struct partial_symtab *pst = per_cu->v.psymtab;
5961 int j;
5962
5963 if (pst == NULL)
5964 continue;
5965
5966 for (j = 0; j < pst->number_of_dependencies; ++j)
5967 {
5968 /* Set the 'user' field only if it is not already set. */
5969 if (pst->dependencies[j]->user == NULL)
5970 pst->dependencies[j]->user = pst;
5971 }
5972 }
5973 }
5974
5975 /* Build the partial symbol table by doing a quick pass through the
5976 .debug_info and .debug_abbrev sections. */
5977
5978 static void
5979 dwarf2_build_psymtabs_hard (struct objfile *objfile)
5980 {
5981 struct cleanup *back_to, *addrmap_cleanup;
5982 struct obstack temp_obstack;
5983 int i;
5984
5985 if (dwarf2_read_debug)
5986 {
5987 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
5988 objfile->name);
5989 }
5990
5991 dwarf2_per_objfile->reading_partial_symbols = 1;
5992
5993 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
5994
5995 /* Any cached compilation units will be linked by the per-objfile
5996 read_in_chain. Make sure to free them when we're done. */
5997 back_to = make_cleanup (free_cached_comp_units, NULL);
5998
5999 build_type_psymtabs (objfile);
6000
6001 create_all_comp_units (objfile);
6002
6003 /* Create a temporary address map on a temporary obstack. We later
6004 copy this to the final obstack. */
6005 obstack_init (&temp_obstack);
6006 make_cleanup_obstack_free (&temp_obstack);
6007 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6008 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
6009
6010 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6011 {
6012 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
6013
6014 process_psymtab_comp_unit (per_cu, 0);
6015 }
6016
6017 set_partial_user (objfile);
6018
6019 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6020 &objfile->objfile_obstack);
6021 discard_cleanups (addrmap_cleanup);
6022
6023 do_cleanups (back_to);
6024
6025 if (dwarf2_read_debug)
6026 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
6027 objfile->name);
6028 }
6029
6030 /* die_reader_func for load_partial_comp_unit. */
6031
6032 static void
6033 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
6034 const gdb_byte *info_ptr,
6035 struct die_info *comp_unit_die,
6036 int has_children,
6037 void *data)
6038 {
6039 struct dwarf2_cu *cu = reader->cu;
6040
6041 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
6042
6043 /* Check if comp unit has_children.
6044 If so, read the rest of the partial symbols from this comp unit.
6045 If not, there's no more debug_info for this comp unit. */
6046 if (has_children)
6047 load_partial_dies (reader, info_ptr, 0);
6048 }
6049
6050 /* Load the partial DIEs for a secondary CU into memory.
6051 This is also used when rereading a primary CU with load_all_dies. */
6052
6053 static void
6054 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6055 {
6056 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6057 load_partial_comp_unit_reader, NULL);
6058 }
6059
6060 static void
6061 read_comp_units_from_section (struct objfile *objfile,
6062 struct dwarf2_section_info *section,
6063 unsigned int is_dwz,
6064 int *n_allocated,
6065 int *n_comp_units,
6066 struct dwarf2_per_cu_data ***all_comp_units)
6067 {
6068 const gdb_byte *info_ptr;
6069 bfd *abfd = section->asection->owner;
6070
6071 if (dwarf2_read_debug)
6072 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
6073 section->asection->name, bfd_get_filename (abfd));
6074
6075 dwarf2_read_section (objfile, section);
6076
6077 info_ptr = section->buffer;
6078
6079 while (info_ptr < section->buffer + section->size)
6080 {
6081 unsigned int length, initial_length_size;
6082 struct dwarf2_per_cu_data *this_cu;
6083 sect_offset offset;
6084
6085 offset.sect_off = info_ptr - section->buffer;
6086
6087 /* Read just enough information to find out where the next
6088 compilation unit is. */
6089 length = read_initial_length (abfd, info_ptr, &initial_length_size);
6090
6091 /* Save the compilation unit for later lookup. */
6092 this_cu = obstack_alloc (&objfile->objfile_obstack,
6093 sizeof (struct dwarf2_per_cu_data));
6094 memset (this_cu, 0, sizeof (*this_cu));
6095 this_cu->offset = offset;
6096 this_cu->length = length + initial_length_size;
6097 this_cu->is_dwz = is_dwz;
6098 this_cu->objfile = objfile;
6099 this_cu->section = section;
6100
6101 if (*n_comp_units == *n_allocated)
6102 {
6103 *n_allocated *= 2;
6104 *all_comp_units = xrealloc (*all_comp_units,
6105 *n_allocated
6106 * sizeof (struct dwarf2_per_cu_data *));
6107 }
6108 (*all_comp_units)[*n_comp_units] = this_cu;
6109 ++*n_comp_units;
6110
6111 info_ptr = info_ptr + this_cu->length;
6112 }
6113 }
6114
6115 /* Create a list of all compilation units in OBJFILE.
6116 This is only done for -readnow and building partial symtabs. */
6117
6118 static void
6119 create_all_comp_units (struct objfile *objfile)
6120 {
6121 int n_allocated;
6122 int n_comp_units;
6123 struct dwarf2_per_cu_data **all_comp_units;
6124
6125 n_comp_units = 0;
6126 n_allocated = 10;
6127 all_comp_units = xmalloc (n_allocated
6128 * sizeof (struct dwarf2_per_cu_data *));
6129
6130 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6131 &n_allocated, &n_comp_units, &all_comp_units);
6132
6133 if (bfd_get_section_by_name (objfile->obfd, ".gnu_debugaltlink") != NULL)
6134 {
6135 struct dwz_file *dwz = dwarf2_get_dwz_file ();
6136
6137 read_comp_units_from_section (objfile, &dwz->info, 1,
6138 &n_allocated, &n_comp_units,
6139 &all_comp_units);
6140 }
6141
6142 dwarf2_per_objfile->all_comp_units
6143 = obstack_alloc (&objfile->objfile_obstack,
6144 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6145 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6146 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6147 xfree (all_comp_units);
6148 dwarf2_per_objfile->n_comp_units = n_comp_units;
6149 }
6150
6151 /* Process all loaded DIEs for compilation unit CU, starting at
6152 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
6153 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
6154 DW_AT_ranges). If NEED_PC is set, then this function will set
6155 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
6156 and record the covered ranges in the addrmap. */
6157
6158 static void
6159 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
6160 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
6161 {
6162 struct partial_die_info *pdi;
6163
6164 /* Now, march along the PDI's, descending into ones which have
6165 interesting children but skipping the children of the other ones,
6166 until we reach the end of the compilation unit. */
6167
6168 pdi = first_die;
6169
6170 while (pdi != NULL)
6171 {
6172 fixup_partial_die (pdi, cu);
6173
6174 /* Anonymous namespaces or modules have no name but have interesting
6175 children, so we need to look at them. Ditto for anonymous
6176 enums. */
6177
6178 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
6179 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6180 || pdi->tag == DW_TAG_imported_unit)
6181 {
6182 switch (pdi->tag)
6183 {
6184 case DW_TAG_subprogram:
6185 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
6186 break;
6187 case DW_TAG_constant:
6188 case DW_TAG_variable:
6189 case DW_TAG_typedef:
6190 case DW_TAG_union_type:
6191 if (!pdi->is_declaration)
6192 {
6193 add_partial_symbol (pdi, cu);
6194 }
6195 break;
6196 case DW_TAG_class_type:
6197 case DW_TAG_interface_type:
6198 case DW_TAG_structure_type:
6199 if (!pdi->is_declaration)
6200 {
6201 add_partial_symbol (pdi, cu);
6202 }
6203 break;
6204 case DW_TAG_enumeration_type:
6205 if (!pdi->is_declaration)
6206 add_partial_enumeration (pdi, cu);
6207 break;
6208 case DW_TAG_base_type:
6209 case DW_TAG_subrange_type:
6210 /* File scope base type definitions are added to the partial
6211 symbol table. */
6212 add_partial_symbol (pdi, cu);
6213 break;
6214 case DW_TAG_namespace:
6215 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
6216 break;
6217 case DW_TAG_module:
6218 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
6219 break;
6220 case DW_TAG_imported_unit:
6221 {
6222 struct dwarf2_per_cu_data *per_cu;
6223
6224 /* For now we don't handle imported units in type units. */
6225 if (cu->per_cu->is_debug_types)
6226 {
6227 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6228 " supported in type units [in module %s]"),
6229 cu->objfile->name);
6230 }
6231
6232 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
6233 pdi->is_dwz,
6234 cu->objfile);
6235
6236 /* Go read the partial unit, if needed. */
6237 if (per_cu->v.psymtab == NULL)
6238 process_psymtab_comp_unit (per_cu, 1);
6239
6240 VEC_safe_push (dwarf2_per_cu_ptr,
6241 cu->per_cu->imported_symtabs, per_cu);
6242 }
6243 break;
6244 default:
6245 break;
6246 }
6247 }
6248
6249 /* If the die has a sibling, skip to the sibling. */
6250
6251 pdi = pdi->die_sibling;
6252 }
6253 }
6254
6255 /* Functions used to compute the fully scoped name of a partial DIE.
6256
6257 Normally, this is simple. For C++, the parent DIE's fully scoped
6258 name is concatenated with "::" and the partial DIE's name. For
6259 Java, the same thing occurs except that "." is used instead of "::".
6260 Enumerators are an exception; they use the scope of their parent
6261 enumeration type, i.e. the name of the enumeration type is not
6262 prepended to the enumerator.
6263
6264 There are two complexities. One is DW_AT_specification; in this
6265 case "parent" means the parent of the target of the specification,
6266 instead of the direct parent of the DIE. The other is compilers
6267 which do not emit DW_TAG_namespace; in this case we try to guess
6268 the fully qualified name of structure types from their members'
6269 linkage names. This must be done using the DIE's children rather
6270 than the children of any DW_AT_specification target. We only need
6271 to do this for structures at the top level, i.e. if the target of
6272 any DW_AT_specification (if any; otherwise the DIE itself) does not
6273 have a parent. */
6274
6275 /* Compute the scope prefix associated with PDI's parent, in
6276 compilation unit CU. The result will be allocated on CU's
6277 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6278 field. NULL is returned if no prefix is necessary. */
6279 static const char *
6280 partial_die_parent_scope (struct partial_die_info *pdi,
6281 struct dwarf2_cu *cu)
6282 {
6283 const char *grandparent_scope;
6284 struct partial_die_info *parent, *real_pdi;
6285
6286 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6287 then this means the parent of the specification DIE. */
6288
6289 real_pdi = pdi;
6290 while (real_pdi->has_specification)
6291 real_pdi = find_partial_die (real_pdi->spec_offset,
6292 real_pdi->spec_is_dwz, cu);
6293
6294 parent = real_pdi->die_parent;
6295 if (parent == NULL)
6296 return NULL;
6297
6298 if (parent->scope_set)
6299 return parent->scope;
6300
6301 fixup_partial_die (parent, cu);
6302
6303 grandparent_scope = partial_die_parent_scope (parent, cu);
6304
6305 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6306 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6307 Work around this problem here. */
6308 if (cu->language == language_cplus
6309 && parent->tag == DW_TAG_namespace
6310 && strcmp (parent->name, "::") == 0
6311 && grandparent_scope == NULL)
6312 {
6313 parent->scope = NULL;
6314 parent->scope_set = 1;
6315 return NULL;
6316 }
6317
6318 if (pdi->tag == DW_TAG_enumerator)
6319 /* Enumerators should not get the name of the enumeration as a prefix. */
6320 parent->scope = grandparent_scope;
6321 else if (parent->tag == DW_TAG_namespace
6322 || parent->tag == DW_TAG_module
6323 || parent->tag == DW_TAG_structure_type
6324 || parent->tag == DW_TAG_class_type
6325 || parent->tag == DW_TAG_interface_type
6326 || parent->tag == DW_TAG_union_type
6327 || parent->tag == DW_TAG_enumeration_type)
6328 {
6329 if (grandparent_scope == NULL)
6330 parent->scope = parent->name;
6331 else
6332 parent->scope = typename_concat (&cu->comp_unit_obstack,
6333 grandparent_scope,
6334 parent->name, 0, cu);
6335 }
6336 else
6337 {
6338 /* FIXME drow/2004-04-01: What should we be doing with
6339 function-local names? For partial symbols, we should probably be
6340 ignoring them. */
6341 complaint (&symfile_complaints,
6342 _("unhandled containing DIE tag %d for DIE at %d"),
6343 parent->tag, pdi->offset.sect_off);
6344 parent->scope = grandparent_scope;
6345 }
6346
6347 parent->scope_set = 1;
6348 return parent->scope;
6349 }
6350
6351 /* Return the fully scoped name associated with PDI, from compilation unit
6352 CU. The result will be allocated with malloc. */
6353
6354 static char *
6355 partial_die_full_name (struct partial_die_info *pdi,
6356 struct dwarf2_cu *cu)
6357 {
6358 const char *parent_scope;
6359
6360 /* If this is a template instantiation, we can not work out the
6361 template arguments from partial DIEs. So, unfortunately, we have
6362 to go through the full DIEs. At least any work we do building
6363 types here will be reused if full symbols are loaded later. */
6364 if (pdi->has_template_arguments)
6365 {
6366 fixup_partial_die (pdi, cu);
6367
6368 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6369 {
6370 struct die_info *die;
6371 struct attribute attr;
6372 struct dwarf2_cu *ref_cu = cu;
6373
6374 /* DW_FORM_ref_addr is using section offset. */
6375 attr.name = 0;
6376 attr.form = DW_FORM_ref_addr;
6377 attr.u.unsnd = pdi->offset.sect_off;
6378 die = follow_die_ref (NULL, &attr, &ref_cu);
6379
6380 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6381 }
6382 }
6383
6384 parent_scope = partial_die_parent_scope (pdi, cu);
6385 if (parent_scope == NULL)
6386 return NULL;
6387 else
6388 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
6389 }
6390
6391 static void
6392 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
6393 {
6394 struct objfile *objfile = cu->objfile;
6395 CORE_ADDR addr = 0;
6396 const char *actual_name = NULL;
6397 CORE_ADDR baseaddr;
6398 char *built_actual_name;
6399
6400 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6401
6402 built_actual_name = partial_die_full_name (pdi, cu);
6403 if (built_actual_name != NULL)
6404 actual_name = built_actual_name;
6405
6406 if (actual_name == NULL)
6407 actual_name = pdi->name;
6408
6409 switch (pdi->tag)
6410 {
6411 case DW_TAG_subprogram:
6412 if (pdi->is_external || cu->language == language_ada)
6413 {
6414 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6415 of the global scope. But in Ada, we want to be able to access
6416 nested procedures globally. So all Ada subprograms are stored
6417 in the global scope. */
6418 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
6419 mst_text, objfile); */
6420 add_psymbol_to_list (actual_name, strlen (actual_name),
6421 built_actual_name != NULL,
6422 VAR_DOMAIN, LOC_BLOCK,
6423 &objfile->global_psymbols,
6424 0, pdi->lowpc + baseaddr,
6425 cu->language, objfile);
6426 }
6427 else
6428 {
6429 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
6430 mst_file_text, objfile); */
6431 add_psymbol_to_list (actual_name, strlen (actual_name),
6432 built_actual_name != NULL,
6433 VAR_DOMAIN, LOC_BLOCK,
6434 &objfile->static_psymbols,
6435 0, pdi->lowpc + baseaddr,
6436 cu->language, objfile);
6437 }
6438 break;
6439 case DW_TAG_constant:
6440 {
6441 struct psymbol_allocation_list *list;
6442
6443 if (pdi->is_external)
6444 list = &objfile->global_psymbols;
6445 else
6446 list = &objfile->static_psymbols;
6447 add_psymbol_to_list (actual_name, strlen (actual_name),
6448 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
6449 list, 0, 0, cu->language, objfile);
6450 }
6451 break;
6452 case DW_TAG_variable:
6453 if (pdi->d.locdesc)
6454 addr = decode_locdesc (pdi->d.locdesc, cu);
6455
6456 if (pdi->d.locdesc
6457 && addr == 0
6458 && !dwarf2_per_objfile->has_section_at_zero)
6459 {
6460 /* A global or static variable may also have been stripped
6461 out by the linker if unused, in which case its address
6462 will be nullified; do not add such variables into partial
6463 symbol table then. */
6464 }
6465 else if (pdi->is_external)
6466 {
6467 /* Global Variable.
6468 Don't enter into the minimal symbol tables as there is
6469 a minimal symbol table entry from the ELF symbols already.
6470 Enter into partial symbol table if it has a location
6471 descriptor or a type.
6472 If the location descriptor is missing, new_symbol will create
6473 a LOC_UNRESOLVED symbol, the address of the variable will then
6474 be determined from the minimal symbol table whenever the variable
6475 is referenced.
6476 The address for the partial symbol table entry is not
6477 used by GDB, but it comes in handy for debugging partial symbol
6478 table building. */
6479
6480 if (pdi->d.locdesc || pdi->has_type)
6481 add_psymbol_to_list (actual_name, strlen (actual_name),
6482 built_actual_name != NULL,
6483 VAR_DOMAIN, LOC_STATIC,
6484 &objfile->global_psymbols,
6485 0, addr + baseaddr,
6486 cu->language, objfile);
6487 }
6488 else
6489 {
6490 /* Static Variable. Skip symbols without location descriptors. */
6491 if (pdi->d.locdesc == NULL)
6492 {
6493 xfree (built_actual_name);
6494 return;
6495 }
6496 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
6497 mst_file_data, objfile); */
6498 add_psymbol_to_list (actual_name, strlen (actual_name),
6499 built_actual_name != NULL,
6500 VAR_DOMAIN, LOC_STATIC,
6501 &objfile->static_psymbols,
6502 0, addr + baseaddr,
6503 cu->language, objfile);
6504 }
6505 break;
6506 case DW_TAG_typedef:
6507 case DW_TAG_base_type:
6508 case DW_TAG_subrange_type:
6509 add_psymbol_to_list (actual_name, strlen (actual_name),
6510 built_actual_name != NULL,
6511 VAR_DOMAIN, LOC_TYPEDEF,
6512 &objfile->static_psymbols,
6513 0, (CORE_ADDR) 0, cu->language, objfile);
6514 break;
6515 case DW_TAG_namespace:
6516 add_psymbol_to_list (actual_name, strlen (actual_name),
6517 built_actual_name != NULL,
6518 VAR_DOMAIN, LOC_TYPEDEF,
6519 &objfile->global_psymbols,
6520 0, (CORE_ADDR) 0, cu->language, objfile);
6521 break;
6522 case DW_TAG_class_type:
6523 case DW_TAG_interface_type:
6524 case DW_TAG_structure_type:
6525 case DW_TAG_union_type:
6526 case DW_TAG_enumeration_type:
6527 /* Skip external references. The DWARF standard says in the section
6528 about "Structure, Union, and Class Type Entries": "An incomplete
6529 structure, union or class type is represented by a structure,
6530 union or class entry that does not have a byte size attribute
6531 and that has a DW_AT_declaration attribute." */
6532 if (!pdi->has_byte_size && pdi->is_declaration)
6533 {
6534 xfree (built_actual_name);
6535 return;
6536 }
6537
6538 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
6539 static vs. global. */
6540 add_psymbol_to_list (actual_name, strlen (actual_name),
6541 built_actual_name != NULL,
6542 STRUCT_DOMAIN, LOC_TYPEDEF,
6543 (cu->language == language_cplus
6544 || cu->language == language_java)
6545 ? &objfile->global_psymbols
6546 : &objfile->static_psymbols,
6547 0, (CORE_ADDR) 0, cu->language, objfile);
6548
6549 break;
6550 case DW_TAG_enumerator:
6551 add_psymbol_to_list (actual_name, strlen (actual_name),
6552 built_actual_name != NULL,
6553 VAR_DOMAIN, LOC_CONST,
6554 (cu->language == language_cplus
6555 || cu->language == language_java)
6556 ? &objfile->global_psymbols
6557 : &objfile->static_psymbols,
6558 0, (CORE_ADDR) 0, cu->language, objfile);
6559 break;
6560 default:
6561 break;
6562 }
6563
6564 xfree (built_actual_name);
6565 }
6566
6567 /* Read a partial die corresponding to a namespace; also, add a symbol
6568 corresponding to that namespace to the symbol table. NAMESPACE is
6569 the name of the enclosing namespace. */
6570
6571 static void
6572 add_partial_namespace (struct partial_die_info *pdi,
6573 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6574 int need_pc, struct dwarf2_cu *cu)
6575 {
6576 /* Add a symbol for the namespace. */
6577
6578 add_partial_symbol (pdi, cu);
6579
6580 /* Now scan partial symbols in that namespace. */
6581
6582 if (pdi->has_children)
6583 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
6584 }
6585
6586 /* Read a partial die corresponding to a Fortran module. */
6587
6588 static void
6589 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
6590 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
6591 {
6592 /* Now scan partial symbols in that module. */
6593
6594 if (pdi->has_children)
6595 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
6596 }
6597
6598 /* Read a partial die corresponding to a subprogram and create a partial
6599 symbol for that subprogram. When the CU language allows it, this
6600 routine also defines a partial symbol for each nested subprogram
6601 that this subprogram contains.
6602
6603 DIE my also be a lexical block, in which case we simply search
6604 recursively for suprograms defined inside that lexical block.
6605 Again, this is only performed when the CU language allows this
6606 type of definitions. */
6607
6608 static void
6609 add_partial_subprogram (struct partial_die_info *pdi,
6610 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6611 int need_pc, struct dwarf2_cu *cu)
6612 {
6613 if (pdi->tag == DW_TAG_subprogram)
6614 {
6615 if (pdi->has_pc_info)
6616 {
6617 if (pdi->lowpc < *lowpc)
6618 *lowpc = pdi->lowpc;
6619 if (pdi->highpc > *highpc)
6620 *highpc = pdi->highpc;
6621 if (need_pc)
6622 {
6623 CORE_ADDR baseaddr;
6624 struct objfile *objfile = cu->objfile;
6625
6626 baseaddr = ANOFFSET (objfile->section_offsets,
6627 SECT_OFF_TEXT (objfile));
6628 addrmap_set_empty (objfile->psymtabs_addrmap,
6629 pdi->lowpc + baseaddr,
6630 pdi->highpc - 1 + baseaddr,
6631 cu->per_cu->v.psymtab);
6632 }
6633 }
6634
6635 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
6636 {
6637 if (!pdi->is_declaration)
6638 /* Ignore subprogram DIEs that do not have a name, they are
6639 illegal. Do not emit a complaint at this point, we will
6640 do so when we convert this psymtab into a symtab. */
6641 if (pdi->name)
6642 add_partial_symbol (pdi, cu);
6643 }
6644 }
6645
6646 if (! pdi->has_children)
6647 return;
6648
6649 if (cu->language == language_ada)
6650 {
6651 pdi = pdi->die_child;
6652 while (pdi != NULL)
6653 {
6654 fixup_partial_die (pdi, cu);
6655 if (pdi->tag == DW_TAG_subprogram
6656 || pdi->tag == DW_TAG_lexical_block)
6657 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
6658 pdi = pdi->die_sibling;
6659 }
6660 }
6661 }
6662
6663 /* Read a partial die corresponding to an enumeration type. */
6664
6665 static void
6666 add_partial_enumeration (struct partial_die_info *enum_pdi,
6667 struct dwarf2_cu *cu)
6668 {
6669 struct partial_die_info *pdi;
6670
6671 if (enum_pdi->name != NULL)
6672 add_partial_symbol (enum_pdi, cu);
6673
6674 pdi = enum_pdi->die_child;
6675 while (pdi)
6676 {
6677 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
6678 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
6679 else
6680 add_partial_symbol (pdi, cu);
6681 pdi = pdi->die_sibling;
6682 }
6683 }
6684
6685 /* Return the initial uleb128 in the die at INFO_PTR. */
6686
6687 static unsigned int
6688 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
6689 {
6690 unsigned int bytes_read;
6691
6692 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6693 }
6694
6695 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
6696 Return the corresponding abbrev, or NULL if the number is zero (indicating
6697 an empty DIE). In either case *BYTES_READ will be set to the length of
6698 the initial number. */
6699
6700 static struct abbrev_info *
6701 peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
6702 struct dwarf2_cu *cu)
6703 {
6704 bfd *abfd = cu->objfile->obfd;
6705 unsigned int abbrev_number;
6706 struct abbrev_info *abbrev;
6707
6708 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
6709
6710 if (abbrev_number == 0)
6711 return NULL;
6712
6713 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
6714 if (!abbrev)
6715 {
6716 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"),
6717 abbrev_number, bfd_get_filename (abfd));
6718 }
6719
6720 return abbrev;
6721 }
6722
6723 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
6724 Returns a pointer to the end of a series of DIEs, terminated by an empty
6725 DIE. Any children of the skipped DIEs will also be skipped. */
6726
6727 static const gdb_byte *
6728 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
6729 {
6730 struct dwarf2_cu *cu = reader->cu;
6731 struct abbrev_info *abbrev;
6732 unsigned int bytes_read;
6733
6734 while (1)
6735 {
6736 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
6737 if (abbrev == NULL)
6738 return info_ptr + bytes_read;
6739 else
6740 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
6741 }
6742 }
6743
6744 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
6745 INFO_PTR should point just after the initial uleb128 of a DIE, and the
6746 abbrev corresponding to that skipped uleb128 should be passed in
6747 ABBREV. Returns a pointer to this DIE's sibling, skipping any
6748 children. */
6749
6750 static const gdb_byte *
6751 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
6752 struct abbrev_info *abbrev)
6753 {
6754 unsigned int bytes_read;
6755 struct attribute attr;
6756 bfd *abfd = reader->abfd;
6757 struct dwarf2_cu *cu = reader->cu;
6758 const gdb_byte *buffer = reader->buffer;
6759 const gdb_byte *buffer_end = reader->buffer_end;
6760 const gdb_byte *start_info_ptr = info_ptr;
6761 unsigned int form, i;
6762
6763 for (i = 0; i < abbrev->num_attrs; i++)
6764 {
6765 /* The only abbrev we care about is DW_AT_sibling. */
6766 if (abbrev->attrs[i].name == DW_AT_sibling)
6767 {
6768 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
6769 if (attr.form == DW_FORM_ref_addr)
6770 complaint (&symfile_complaints,
6771 _("ignoring absolute DW_AT_sibling"));
6772 else
6773 return buffer + dwarf2_get_ref_die_offset (&attr).sect_off;
6774 }
6775
6776 /* If it isn't DW_AT_sibling, skip this attribute. */
6777 form = abbrev->attrs[i].form;
6778 skip_attribute:
6779 switch (form)
6780 {
6781 case DW_FORM_ref_addr:
6782 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
6783 and later it is offset sized. */
6784 if (cu->header.version == 2)
6785 info_ptr += cu->header.addr_size;
6786 else
6787 info_ptr += cu->header.offset_size;
6788 break;
6789 case DW_FORM_GNU_ref_alt:
6790 info_ptr += cu->header.offset_size;
6791 break;
6792 case DW_FORM_addr:
6793 info_ptr += cu->header.addr_size;
6794 break;
6795 case DW_FORM_data1:
6796 case DW_FORM_ref1:
6797 case DW_FORM_flag:
6798 info_ptr += 1;
6799 break;
6800 case DW_FORM_flag_present:
6801 break;
6802 case DW_FORM_data2:
6803 case DW_FORM_ref2:
6804 info_ptr += 2;
6805 break;
6806 case DW_FORM_data4:
6807 case DW_FORM_ref4:
6808 info_ptr += 4;
6809 break;
6810 case DW_FORM_data8:
6811 case DW_FORM_ref8:
6812 case DW_FORM_ref_sig8:
6813 info_ptr += 8;
6814 break;
6815 case DW_FORM_string:
6816 read_direct_string (abfd, info_ptr, &bytes_read);
6817 info_ptr += bytes_read;
6818 break;
6819 case DW_FORM_sec_offset:
6820 case DW_FORM_strp:
6821 case DW_FORM_GNU_strp_alt:
6822 info_ptr += cu->header.offset_size;
6823 break;
6824 case DW_FORM_exprloc:
6825 case DW_FORM_block:
6826 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6827 info_ptr += bytes_read;
6828 break;
6829 case DW_FORM_block1:
6830 info_ptr += 1 + read_1_byte (abfd, info_ptr);
6831 break;
6832 case DW_FORM_block2:
6833 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
6834 break;
6835 case DW_FORM_block4:
6836 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
6837 break;
6838 case DW_FORM_sdata:
6839 case DW_FORM_udata:
6840 case DW_FORM_ref_udata:
6841 case DW_FORM_GNU_addr_index:
6842 case DW_FORM_GNU_str_index:
6843 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
6844 break;
6845 case DW_FORM_indirect:
6846 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6847 info_ptr += bytes_read;
6848 /* We need to continue parsing from here, so just go back to
6849 the top. */
6850 goto skip_attribute;
6851
6852 default:
6853 error (_("Dwarf Error: Cannot handle %s "
6854 "in DWARF reader [in module %s]"),
6855 dwarf_form_name (form),
6856 bfd_get_filename (abfd));
6857 }
6858 }
6859
6860 if (abbrev->has_children)
6861 return skip_children (reader, info_ptr);
6862 else
6863 return info_ptr;
6864 }
6865
6866 /* Locate ORIG_PDI's sibling.
6867 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
6868
6869 static const gdb_byte *
6870 locate_pdi_sibling (const struct die_reader_specs *reader,
6871 struct partial_die_info *orig_pdi,
6872 const gdb_byte *info_ptr)
6873 {
6874 /* Do we know the sibling already? */
6875
6876 if (orig_pdi->sibling)
6877 return orig_pdi->sibling;
6878
6879 /* Are there any children to deal with? */
6880
6881 if (!orig_pdi->has_children)
6882 return info_ptr;
6883
6884 /* Skip the children the long way. */
6885
6886 return skip_children (reader, info_ptr);
6887 }
6888
6889 /* Expand this partial symbol table into a full symbol table. SELF is
6890 not NULL. */
6891
6892 static void
6893 dwarf2_read_symtab (struct partial_symtab *self,
6894 struct objfile *objfile)
6895 {
6896 if (self->readin)
6897 {
6898 warning (_("bug: psymtab for %s is already read in."),
6899 self->filename);
6900 }
6901 else
6902 {
6903 if (info_verbose)
6904 {
6905 printf_filtered (_("Reading in symbols for %s..."),
6906 self->filename);
6907 gdb_flush (gdb_stdout);
6908 }
6909
6910 /* Restore our global data. */
6911 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
6912
6913 /* If this psymtab is constructed from a debug-only objfile, the
6914 has_section_at_zero flag will not necessarily be correct. We
6915 can get the correct value for this flag by looking at the data
6916 associated with the (presumably stripped) associated objfile. */
6917 if (objfile->separate_debug_objfile_backlink)
6918 {
6919 struct dwarf2_per_objfile *dpo_backlink
6920 = objfile_data (objfile->separate_debug_objfile_backlink,
6921 dwarf2_objfile_data_key);
6922
6923 dwarf2_per_objfile->has_section_at_zero
6924 = dpo_backlink->has_section_at_zero;
6925 }
6926
6927 dwarf2_per_objfile->reading_partial_symbols = 0;
6928
6929 psymtab_to_symtab_1 (self);
6930
6931 /* Finish up the debug error message. */
6932 if (info_verbose)
6933 printf_filtered (_("done.\n"));
6934 }
6935
6936 process_cu_includes ();
6937 }
6938 \f
6939 /* Reading in full CUs. */
6940
6941 /* Add PER_CU to the queue. */
6942
6943 static void
6944 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
6945 enum language pretend_language)
6946 {
6947 struct dwarf2_queue_item *item;
6948
6949 per_cu->queued = 1;
6950 item = xmalloc (sizeof (*item));
6951 item->per_cu = per_cu;
6952 item->pretend_language = pretend_language;
6953 item->next = NULL;
6954
6955 if (dwarf2_queue == NULL)
6956 dwarf2_queue = item;
6957 else
6958 dwarf2_queue_tail->next = item;
6959
6960 dwarf2_queue_tail = item;
6961 }
6962
6963 /* THIS_CU has a reference to PER_CU. If necessary, load the new compilation
6964 unit and add it to our queue.
6965 The result is non-zero if PER_CU was queued, otherwise the result is zero
6966 meaning either PER_CU is already queued or it is already loaded. */
6967
6968 static int
6969 maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
6970 struct dwarf2_per_cu_data *per_cu,
6971 enum language pretend_language)
6972 {
6973 /* We may arrive here during partial symbol reading, if we need full
6974 DIEs to process an unusual case (e.g. template arguments). Do
6975 not queue PER_CU, just tell our caller to load its DIEs. */
6976 if (dwarf2_per_objfile->reading_partial_symbols)
6977 {
6978 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
6979 return 1;
6980 return 0;
6981 }
6982
6983 /* Mark the dependence relation so that we don't flush PER_CU
6984 too early. */
6985 dwarf2_add_dependence (this_cu, per_cu);
6986
6987 /* If it's already on the queue, we have nothing to do. */
6988 if (per_cu->queued)
6989 return 0;
6990
6991 /* If the compilation unit is already loaded, just mark it as
6992 used. */
6993 if (per_cu->cu != NULL)
6994 {
6995 per_cu->cu->last_used = 0;
6996 return 0;
6997 }
6998
6999 /* Add it to the queue. */
7000 queue_comp_unit (per_cu, pretend_language);
7001
7002 return 1;
7003 }
7004
7005 /* Process the queue. */
7006
7007 static void
7008 process_queue (void)
7009 {
7010 struct dwarf2_queue_item *item, *next_item;
7011
7012 if (dwarf2_read_debug)
7013 {
7014 fprintf_unfiltered (gdb_stdlog,
7015 "Expanding one or more symtabs of objfile %s ...\n",
7016 dwarf2_per_objfile->objfile->name);
7017 }
7018
7019 /* The queue starts out with one item, but following a DIE reference
7020 may load a new CU, adding it to the end of the queue. */
7021 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7022 {
7023 if (dwarf2_per_objfile->using_index
7024 ? !item->per_cu->v.quick->symtab
7025 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7026 {
7027 struct dwarf2_per_cu_data *per_cu = item->per_cu;
7028
7029 if (dwarf2_read_debug)
7030 {
7031 fprintf_unfiltered (gdb_stdlog,
7032 "Expanding symtab of %s at offset 0x%x\n",
7033 per_cu->is_debug_types ? "TU" : "CU",
7034 per_cu->offset.sect_off);
7035 }
7036
7037 if (per_cu->is_debug_types)
7038 process_full_type_unit (per_cu, item->pretend_language);
7039 else
7040 process_full_comp_unit (per_cu, item->pretend_language);
7041
7042 if (dwarf2_read_debug)
7043 {
7044 fprintf_unfiltered (gdb_stdlog,
7045 "Done expanding %s at offset 0x%x\n",
7046 per_cu->is_debug_types ? "TU" : "CU",
7047 per_cu->offset.sect_off);
7048 }
7049 }
7050
7051 item->per_cu->queued = 0;
7052 next_item = item->next;
7053 xfree (item);
7054 }
7055
7056 dwarf2_queue_tail = NULL;
7057
7058 if (dwarf2_read_debug)
7059 {
7060 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
7061 dwarf2_per_objfile->objfile->name);
7062 }
7063 }
7064
7065 /* Free all allocated queue entries. This function only releases anything if
7066 an error was thrown; if the queue was processed then it would have been
7067 freed as we went along. */
7068
7069 static void
7070 dwarf2_release_queue (void *dummy)
7071 {
7072 struct dwarf2_queue_item *item, *last;
7073
7074 item = dwarf2_queue;
7075 while (item)
7076 {
7077 /* Anything still marked queued is likely to be in an
7078 inconsistent state, so discard it. */
7079 if (item->per_cu->queued)
7080 {
7081 if (item->per_cu->cu != NULL)
7082 free_one_cached_comp_unit (item->per_cu);
7083 item->per_cu->queued = 0;
7084 }
7085
7086 last = item;
7087 item = item->next;
7088 xfree (last);
7089 }
7090
7091 dwarf2_queue = dwarf2_queue_tail = NULL;
7092 }
7093
7094 /* Read in full symbols for PST, and anything it depends on. */
7095
7096 static void
7097 psymtab_to_symtab_1 (struct partial_symtab *pst)
7098 {
7099 struct dwarf2_per_cu_data *per_cu;
7100 int i;
7101
7102 if (pst->readin)
7103 return;
7104
7105 for (i = 0; i < pst->number_of_dependencies; i++)
7106 if (!pst->dependencies[i]->readin
7107 && pst->dependencies[i]->user == NULL)
7108 {
7109 /* Inform about additional files that need to be read in. */
7110 if (info_verbose)
7111 {
7112 /* FIXME: i18n: Need to make this a single string. */
7113 fputs_filtered (" ", gdb_stdout);
7114 wrap_here ("");
7115 fputs_filtered ("and ", gdb_stdout);
7116 wrap_here ("");
7117 printf_filtered ("%s...", pst->dependencies[i]->filename);
7118 wrap_here (""); /* Flush output. */
7119 gdb_flush (gdb_stdout);
7120 }
7121 psymtab_to_symtab_1 (pst->dependencies[i]);
7122 }
7123
7124 per_cu = pst->read_symtab_private;
7125
7126 if (per_cu == NULL)
7127 {
7128 /* It's an include file, no symbols to read for it.
7129 Everything is in the parent symtab. */
7130 pst->readin = 1;
7131 return;
7132 }
7133
7134 dw2_do_instantiate_symtab (per_cu);
7135 }
7136
7137 /* Trivial hash function for die_info: the hash value of a DIE
7138 is its offset in .debug_info for this objfile. */
7139
7140 static hashval_t
7141 die_hash (const void *item)
7142 {
7143 const struct die_info *die = item;
7144
7145 return die->offset.sect_off;
7146 }
7147
7148 /* Trivial comparison function for die_info structures: two DIEs
7149 are equal if they have the same offset. */
7150
7151 static int
7152 die_eq (const void *item_lhs, const void *item_rhs)
7153 {
7154 const struct die_info *die_lhs = item_lhs;
7155 const struct die_info *die_rhs = item_rhs;
7156
7157 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7158 }
7159
7160 /* die_reader_func for load_full_comp_unit.
7161 This is identical to read_signatured_type_reader,
7162 but is kept separate for now. */
7163
7164 static void
7165 load_full_comp_unit_reader (const struct die_reader_specs *reader,
7166 const gdb_byte *info_ptr,
7167 struct die_info *comp_unit_die,
7168 int has_children,
7169 void *data)
7170 {
7171 struct dwarf2_cu *cu = reader->cu;
7172 enum language *language_ptr = data;
7173
7174 gdb_assert (cu->die_hash == NULL);
7175 cu->die_hash =
7176 htab_create_alloc_ex (cu->header.length / 12,
7177 die_hash,
7178 die_eq,
7179 NULL,
7180 &cu->comp_unit_obstack,
7181 hashtab_obstack_allocate,
7182 dummy_obstack_deallocate);
7183
7184 if (has_children)
7185 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7186 &info_ptr, comp_unit_die);
7187 cu->dies = comp_unit_die;
7188 /* comp_unit_die is not stored in die_hash, no need. */
7189
7190 /* We try not to read any attributes in this function, because not
7191 all CUs needed for references have been loaded yet, and symbol
7192 table processing isn't initialized. But we have to set the CU language,
7193 or we won't be able to build types correctly.
7194 Similarly, if we do not read the producer, we can not apply
7195 producer-specific interpretation. */
7196 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
7197 }
7198
7199 /* Load the DIEs associated with PER_CU into memory. */
7200
7201 static void
7202 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7203 enum language pretend_language)
7204 {
7205 gdb_assert (! this_cu->is_debug_types);
7206
7207 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7208 load_full_comp_unit_reader, &pretend_language);
7209 }
7210
7211 /* Add a DIE to the delayed physname list. */
7212
7213 static void
7214 add_to_method_list (struct type *type, int fnfield_index, int index,
7215 const char *name, struct die_info *die,
7216 struct dwarf2_cu *cu)
7217 {
7218 struct delayed_method_info mi;
7219 mi.type = type;
7220 mi.fnfield_index = fnfield_index;
7221 mi.index = index;
7222 mi.name = name;
7223 mi.die = die;
7224 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7225 }
7226
7227 /* A cleanup for freeing the delayed method list. */
7228
7229 static void
7230 free_delayed_list (void *ptr)
7231 {
7232 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7233 if (cu->method_list != NULL)
7234 {
7235 VEC_free (delayed_method_info, cu->method_list);
7236 cu->method_list = NULL;
7237 }
7238 }
7239
7240 /* Compute the physnames of any methods on the CU's method list.
7241
7242 The computation of method physnames is delayed in order to avoid the
7243 (bad) condition that one of the method's formal parameters is of an as yet
7244 incomplete type. */
7245
7246 static void
7247 compute_delayed_physnames (struct dwarf2_cu *cu)
7248 {
7249 int i;
7250 struct delayed_method_info *mi;
7251 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7252 {
7253 const char *physname;
7254 struct fn_fieldlist *fn_flp
7255 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7256 physname = dwarf2_physname (mi->name, mi->die, cu);
7257 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
7258 }
7259 }
7260
7261 /* Go objects should be embedded in a DW_TAG_module DIE,
7262 and it's not clear if/how imported objects will appear.
7263 To keep Go support simple until that's worked out,
7264 go back through what we've read and create something usable.
7265 We could do this while processing each DIE, and feels kinda cleaner,
7266 but that way is more invasive.
7267 This is to, for example, allow the user to type "p var" or "b main"
7268 without having to specify the package name, and allow lookups
7269 of module.object to work in contexts that use the expression
7270 parser. */
7271
7272 static void
7273 fixup_go_packaging (struct dwarf2_cu *cu)
7274 {
7275 char *package_name = NULL;
7276 struct pending *list;
7277 int i;
7278
7279 for (list = global_symbols; list != NULL; list = list->next)
7280 {
7281 for (i = 0; i < list->nsyms; ++i)
7282 {
7283 struct symbol *sym = list->symbol[i];
7284
7285 if (SYMBOL_LANGUAGE (sym) == language_go
7286 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7287 {
7288 char *this_package_name = go_symbol_package_name (sym);
7289
7290 if (this_package_name == NULL)
7291 continue;
7292 if (package_name == NULL)
7293 package_name = this_package_name;
7294 else
7295 {
7296 if (strcmp (package_name, this_package_name) != 0)
7297 complaint (&symfile_complaints,
7298 _("Symtab %s has objects from two different Go packages: %s and %s"),
7299 (SYMBOL_SYMTAB (sym)
7300 ? symtab_to_filename_for_display (SYMBOL_SYMTAB (sym))
7301 : cu->objfile->name),
7302 this_package_name, package_name);
7303 xfree (this_package_name);
7304 }
7305 }
7306 }
7307 }
7308
7309 if (package_name != NULL)
7310 {
7311 struct objfile *objfile = cu->objfile;
7312 const char *saved_package_name = obstack_copy0 (&objfile->objfile_obstack,
7313 package_name,
7314 strlen (package_name));
7315 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
7316 saved_package_name, objfile);
7317 struct symbol *sym;
7318
7319 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7320
7321 sym = allocate_symbol (objfile);
7322 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
7323 SYMBOL_SET_NAMES (sym, saved_package_name,
7324 strlen (saved_package_name), 0, objfile);
7325 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7326 e.g., "main" finds the "main" module and not C's main(). */
7327 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
7328 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
7329 SYMBOL_TYPE (sym) = type;
7330
7331 add_symbol_to_list (sym, &global_symbols);
7332
7333 xfree (package_name);
7334 }
7335 }
7336
7337 /* Return the symtab for PER_CU. This works properly regardless of
7338 whether we're using the index or psymtabs. */
7339
7340 static struct symtab *
7341 get_symtab (struct dwarf2_per_cu_data *per_cu)
7342 {
7343 return (dwarf2_per_objfile->using_index
7344 ? per_cu->v.quick->symtab
7345 : per_cu->v.psymtab->symtab);
7346 }
7347
7348 /* A helper function for computing the list of all symbol tables
7349 included by PER_CU. */
7350
7351 static void
7352 recursively_compute_inclusions (VEC (dwarf2_per_cu_ptr) **result,
7353 htab_t all_children,
7354 struct dwarf2_per_cu_data *per_cu)
7355 {
7356 void **slot;
7357 int ix;
7358 struct dwarf2_per_cu_data *iter;
7359
7360 slot = htab_find_slot (all_children, per_cu, INSERT);
7361 if (*slot != NULL)
7362 {
7363 /* This inclusion and its children have been processed. */
7364 return;
7365 }
7366
7367 *slot = per_cu;
7368 /* Only add a CU if it has a symbol table. */
7369 if (get_symtab (per_cu) != NULL)
7370 VEC_safe_push (dwarf2_per_cu_ptr, *result, per_cu);
7371
7372 for (ix = 0;
7373 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
7374 ++ix)
7375 recursively_compute_inclusions (result, all_children, iter);
7376 }
7377
7378 /* Compute the symtab 'includes' fields for the symtab related to
7379 PER_CU. */
7380
7381 static void
7382 compute_symtab_includes (struct dwarf2_per_cu_data *per_cu)
7383 {
7384 gdb_assert (! per_cu->is_debug_types);
7385
7386 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
7387 {
7388 int ix, len;
7389 struct dwarf2_per_cu_data *iter;
7390 VEC (dwarf2_per_cu_ptr) *result_children = NULL;
7391 htab_t all_children;
7392 struct symtab *symtab = get_symtab (per_cu);
7393
7394 /* If we don't have a symtab, we can just skip this case. */
7395 if (symtab == NULL)
7396 return;
7397
7398 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7399 NULL, xcalloc, xfree);
7400
7401 for (ix = 0;
7402 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
7403 ix, iter);
7404 ++ix)
7405 recursively_compute_inclusions (&result_children, all_children, iter);
7406
7407 /* Now we have a transitive closure of all the included CUs, and
7408 for .gdb_index version 7 the included TUs, so we can convert it
7409 to a list of symtabs. */
7410 len = VEC_length (dwarf2_per_cu_ptr, result_children);
7411 symtab->includes
7412 = obstack_alloc (&dwarf2_per_objfile->objfile->objfile_obstack,
7413 (len + 1) * sizeof (struct symtab *));
7414 for (ix = 0;
7415 VEC_iterate (dwarf2_per_cu_ptr, result_children, ix, iter);
7416 ++ix)
7417 symtab->includes[ix] = get_symtab (iter);
7418 symtab->includes[len] = NULL;
7419
7420 VEC_free (dwarf2_per_cu_ptr, result_children);
7421 htab_delete (all_children);
7422 }
7423 }
7424
7425 /* Compute the 'includes' field for the symtabs of all the CUs we just
7426 read. */
7427
7428 static void
7429 process_cu_includes (void)
7430 {
7431 int ix;
7432 struct dwarf2_per_cu_data *iter;
7433
7434 for (ix = 0;
7435 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
7436 ix, iter);
7437 ++ix)
7438 {
7439 if (! iter->is_debug_types)
7440 compute_symtab_includes (iter);
7441 }
7442
7443 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
7444 }
7445
7446 /* Generate full symbol information for PER_CU, whose DIEs have
7447 already been loaded into memory. */
7448
7449 static void
7450 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
7451 enum language pretend_language)
7452 {
7453 struct dwarf2_cu *cu = per_cu->cu;
7454 struct objfile *objfile = per_cu->objfile;
7455 CORE_ADDR lowpc, highpc;
7456 struct symtab *symtab;
7457 struct cleanup *back_to, *delayed_list_cleanup;
7458 CORE_ADDR baseaddr;
7459 struct block *static_block;
7460
7461 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7462
7463 buildsym_init ();
7464 back_to = make_cleanup (really_free_pendings, NULL);
7465 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
7466
7467 cu->list_in_scope = &file_symbols;
7468
7469 cu->language = pretend_language;
7470 cu->language_defn = language_def (cu->language);
7471
7472 /* Do line number decoding in read_file_scope () */
7473 process_die (cu->dies, cu);
7474
7475 /* For now fudge the Go package. */
7476 if (cu->language == language_go)
7477 fixup_go_packaging (cu);
7478
7479 /* Now that we have processed all the DIEs in the CU, all the types
7480 should be complete, and it should now be safe to compute all of the
7481 physnames. */
7482 compute_delayed_physnames (cu);
7483 do_cleanups (delayed_list_cleanup);
7484
7485 /* Some compilers don't define a DW_AT_high_pc attribute for the
7486 compilation unit. If the DW_AT_high_pc is missing, synthesize
7487 it, by scanning the DIE's below the compilation unit. */
7488 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
7489
7490 static_block
7491 = end_symtab_get_static_block (highpc + baseaddr, objfile, 0, 1);
7492
7493 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
7494 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
7495 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
7496 addrmap to help ensure it has an accurate map of pc values belonging to
7497 this comp unit. */
7498 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
7499
7500 symtab = end_symtab_from_static_block (static_block, objfile,
7501 SECT_OFF_TEXT (objfile), 0);
7502
7503 if (symtab != NULL)
7504 {
7505 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
7506
7507 /* Set symtab language to language from DW_AT_language. If the
7508 compilation is from a C file generated by language preprocessors, do
7509 not set the language if it was already deduced by start_subfile. */
7510 if (!(cu->language == language_c && symtab->language != language_c))
7511 symtab->language = cu->language;
7512
7513 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
7514 produce DW_AT_location with location lists but it can be possibly
7515 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
7516 there were bugs in prologue debug info, fixed later in GCC-4.5
7517 by "unwind info for epilogues" patch (which is not directly related).
7518
7519 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
7520 needed, it would be wrong due to missing DW_AT_producer there.
7521
7522 Still one can confuse GDB by using non-standard GCC compilation
7523 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
7524 */
7525 if (cu->has_loclist && gcc_4_minor >= 5)
7526 symtab->locations_valid = 1;
7527
7528 if (gcc_4_minor >= 5)
7529 symtab->epilogue_unwind_valid = 1;
7530
7531 symtab->call_site_htab = cu->call_site_htab;
7532 }
7533
7534 if (dwarf2_per_objfile->using_index)
7535 per_cu->v.quick->symtab = symtab;
7536 else
7537 {
7538 struct partial_symtab *pst = per_cu->v.psymtab;
7539 pst->symtab = symtab;
7540 pst->readin = 1;
7541 }
7542
7543 /* Push it for inclusion processing later. */
7544 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
7545
7546 do_cleanups (back_to);
7547 }
7548
7549 /* Generate full symbol information for type unit PER_CU, whose DIEs have
7550 already been loaded into memory. */
7551
7552 static void
7553 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
7554 enum language pretend_language)
7555 {
7556 struct dwarf2_cu *cu = per_cu->cu;
7557 struct objfile *objfile = per_cu->objfile;
7558 struct symtab *symtab;
7559 struct cleanup *back_to, *delayed_list_cleanup;
7560 struct signatured_type *sig_type;
7561
7562 gdb_assert (per_cu->is_debug_types);
7563 sig_type = (struct signatured_type *) per_cu;
7564
7565 buildsym_init ();
7566 back_to = make_cleanup (really_free_pendings, NULL);
7567 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
7568
7569 cu->list_in_scope = &file_symbols;
7570
7571 cu->language = pretend_language;
7572 cu->language_defn = language_def (cu->language);
7573
7574 /* The symbol tables are set up in read_type_unit_scope. */
7575 process_die (cu->dies, cu);
7576
7577 /* For now fudge the Go package. */
7578 if (cu->language == language_go)
7579 fixup_go_packaging (cu);
7580
7581 /* Now that we have processed all the DIEs in the CU, all the types
7582 should be complete, and it should now be safe to compute all of the
7583 physnames. */
7584 compute_delayed_physnames (cu);
7585 do_cleanups (delayed_list_cleanup);
7586
7587 /* TUs share symbol tables.
7588 If this is the first TU to use this symtab, complete the construction
7589 of it with end_expandable_symtab. Otherwise, complete the addition of
7590 this TU's symbols to the existing symtab. */
7591 if (sig_type->type_unit_group->primary_symtab == NULL)
7592 {
7593 symtab = end_expandable_symtab (0, objfile, SECT_OFF_TEXT (objfile));
7594 sig_type->type_unit_group->primary_symtab = symtab;
7595
7596 if (symtab != NULL)
7597 {
7598 /* Set symtab language to language from DW_AT_language. If the
7599 compilation is from a C file generated by language preprocessors,
7600 do not set the language if it was already deduced by
7601 start_subfile. */
7602 if (!(cu->language == language_c && symtab->language != language_c))
7603 symtab->language = cu->language;
7604 }
7605 }
7606 else
7607 {
7608 augment_type_symtab (objfile,
7609 sig_type->type_unit_group->primary_symtab);
7610 symtab = sig_type->type_unit_group->primary_symtab;
7611 }
7612
7613 if (dwarf2_per_objfile->using_index)
7614 per_cu->v.quick->symtab = symtab;
7615 else
7616 {
7617 struct partial_symtab *pst = per_cu->v.psymtab;
7618 pst->symtab = symtab;
7619 pst->readin = 1;
7620 }
7621
7622 do_cleanups (back_to);
7623 }
7624
7625 /* Process an imported unit DIE. */
7626
7627 static void
7628 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
7629 {
7630 struct attribute *attr;
7631
7632 /* For now we don't handle imported units in type units. */
7633 if (cu->per_cu->is_debug_types)
7634 {
7635 error (_("Dwarf Error: DW_TAG_imported_unit is not"
7636 " supported in type units [in module %s]"),
7637 cu->objfile->name);
7638 }
7639
7640 attr = dwarf2_attr (die, DW_AT_import, cu);
7641 if (attr != NULL)
7642 {
7643 struct dwarf2_per_cu_data *per_cu;
7644 struct symtab *imported_symtab;
7645 sect_offset offset;
7646 int is_dwz;
7647
7648 offset = dwarf2_get_ref_die_offset (attr);
7649 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
7650 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
7651
7652 /* Queue the unit, if needed. */
7653 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
7654 load_full_comp_unit (per_cu, cu->language);
7655
7656 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
7657 per_cu);
7658 }
7659 }
7660
7661 /* Process a die and its children. */
7662
7663 static void
7664 process_die (struct die_info *die, struct dwarf2_cu *cu)
7665 {
7666 switch (die->tag)
7667 {
7668 case DW_TAG_padding:
7669 break;
7670 case DW_TAG_compile_unit:
7671 case DW_TAG_partial_unit:
7672 read_file_scope (die, cu);
7673 break;
7674 case DW_TAG_type_unit:
7675 read_type_unit_scope (die, cu);
7676 break;
7677 case DW_TAG_subprogram:
7678 case DW_TAG_inlined_subroutine:
7679 read_func_scope (die, cu);
7680 break;
7681 case DW_TAG_lexical_block:
7682 case DW_TAG_try_block:
7683 case DW_TAG_catch_block:
7684 read_lexical_block_scope (die, cu);
7685 break;
7686 case DW_TAG_GNU_call_site:
7687 read_call_site_scope (die, cu);
7688 break;
7689 case DW_TAG_class_type:
7690 case DW_TAG_interface_type:
7691 case DW_TAG_structure_type:
7692 case DW_TAG_union_type:
7693 process_structure_scope (die, cu);
7694 break;
7695 case DW_TAG_enumeration_type:
7696 process_enumeration_scope (die, cu);
7697 break;
7698
7699 /* These dies have a type, but processing them does not create
7700 a symbol or recurse to process the children. Therefore we can
7701 read them on-demand through read_type_die. */
7702 case DW_TAG_subroutine_type:
7703 case DW_TAG_set_type:
7704 case DW_TAG_array_type:
7705 case DW_TAG_pointer_type:
7706 case DW_TAG_ptr_to_member_type:
7707 case DW_TAG_reference_type:
7708 case DW_TAG_string_type:
7709 break;
7710
7711 case DW_TAG_base_type:
7712 case DW_TAG_subrange_type:
7713 case DW_TAG_typedef:
7714 /* Add a typedef symbol for the type definition, if it has a
7715 DW_AT_name. */
7716 new_symbol (die, read_type_die (die, cu), cu);
7717 break;
7718 case DW_TAG_common_block:
7719 read_common_block (die, cu);
7720 break;
7721 case DW_TAG_common_inclusion:
7722 break;
7723 case DW_TAG_namespace:
7724 cu->processing_has_namespace_info = 1;
7725 read_namespace (die, cu);
7726 break;
7727 case DW_TAG_module:
7728 cu->processing_has_namespace_info = 1;
7729 read_module (die, cu);
7730 break;
7731 case DW_TAG_imported_declaration:
7732 case DW_TAG_imported_module:
7733 cu->processing_has_namespace_info = 1;
7734 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
7735 || cu->language != language_fortran))
7736 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
7737 dwarf_tag_name (die->tag));
7738 read_import_statement (die, cu);
7739 break;
7740
7741 case DW_TAG_imported_unit:
7742 process_imported_unit_die (die, cu);
7743 break;
7744
7745 default:
7746 new_symbol (die, NULL, cu);
7747 break;
7748 }
7749 }
7750 \f
7751 /* DWARF name computation. */
7752
7753 /* A helper function for dwarf2_compute_name which determines whether DIE
7754 needs to have the name of the scope prepended to the name listed in the
7755 die. */
7756
7757 static int
7758 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
7759 {
7760 struct attribute *attr;
7761
7762 switch (die->tag)
7763 {
7764 case DW_TAG_namespace:
7765 case DW_TAG_typedef:
7766 case DW_TAG_class_type:
7767 case DW_TAG_interface_type:
7768 case DW_TAG_structure_type:
7769 case DW_TAG_union_type:
7770 case DW_TAG_enumeration_type:
7771 case DW_TAG_enumerator:
7772 case DW_TAG_subprogram:
7773 case DW_TAG_member:
7774 return 1;
7775
7776 case DW_TAG_variable:
7777 case DW_TAG_constant:
7778 /* We only need to prefix "globally" visible variables. These include
7779 any variable marked with DW_AT_external or any variable that
7780 lives in a namespace. [Variables in anonymous namespaces
7781 require prefixing, but they are not DW_AT_external.] */
7782
7783 if (dwarf2_attr (die, DW_AT_specification, cu))
7784 {
7785 struct dwarf2_cu *spec_cu = cu;
7786
7787 return die_needs_namespace (die_specification (die, &spec_cu),
7788 spec_cu);
7789 }
7790
7791 attr = dwarf2_attr (die, DW_AT_external, cu);
7792 if (attr == NULL && die->parent->tag != DW_TAG_namespace
7793 && die->parent->tag != DW_TAG_module)
7794 return 0;
7795 /* A variable in a lexical block of some kind does not need a
7796 namespace, even though in C++ such variables may be external
7797 and have a mangled name. */
7798 if (die->parent->tag == DW_TAG_lexical_block
7799 || die->parent->tag == DW_TAG_try_block
7800 || die->parent->tag == DW_TAG_catch_block
7801 || die->parent->tag == DW_TAG_subprogram)
7802 return 0;
7803 return 1;
7804
7805 default:
7806 return 0;
7807 }
7808 }
7809
7810 /* Retrieve the last character from a mem_file. */
7811
7812 static void
7813 do_ui_file_peek_last (void *object, const char *buffer, long length)
7814 {
7815 char *last_char_p = (char *) object;
7816
7817 if (length > 0)
7818 *last_char_p = buffer[length - 1];
7819 }
7820
7821 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
7822 compute the physname for the object, which include a method's:
7823 - formal parameters (C++/Java),
7824 - receiver type (Go),
7825 - return type (Java).
7826
7827 The term "physname" is a bit confusing.
7828 For C++, for example, it is the demangled name.
7829 For Go, for example, it's the mangled name.
7830
7831 For Ada, return the DIE's linkage name rather than the fully qualified
7832 name. PHYSNAME is ignored..
7833
7834 The result is allocated on the objfile_obstack and canonicalized. */
7835
7836 static const char *
7837 dwarf2_compute_name (const char *name,
7838 struct die_info *die, struct dwarf2_cu *cu,
7839 int physname)
7840 {
7841 struct objfile *objfile = cu->objfile;
7842
7843 if (name == NULL)
7844 name = dwarf2_name (die, cu);
7845
7846 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
7847 compute it by typename_concat inside GDB. */
7848 if (cu->language == language_ada
7849 || (cu->language == language_fortran && physname))
7850 {
7851 /* For Ada unit, we prefer the linkage name over the name, as
7852 the former contains the exported name, which the user expects
7853 to be able to reference. Ideally, we want the user to be able
7854 to reference this entity using either natural or linkage name,
7855 but we haven't started looking at this enhancement yet. */
7856 struct attribute *attr;
7857
7858 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
7859 if (attr == NULL)
7860 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
7861 if (attr && DW_STRING (attr))
7862 return DW_STRING (attr);
7863 }
7864
7865 /* These are the only languages we know how to qualify names in. */
7866 if (name != NULL
7867 && (cu->language == language_cplus || cu->language == language_java
7868 || cu->language == language_fortran))
7869 {
7870 if (die_needs_namespace (die, cu))
7871 {
7872 long length;
7873 const char *prefix;
7874 struct ui_file *buf;
7875
7876 prefix = determine_prefix (die, cu);
7877 buf = mem_fileopen ();
7878 if (*prefix != '\0')
7879 {
7880 char *prefixed_name = typename_concat (NULL, prefix, name,
7881 physname, cu);
7882
7883 fputs_unfiltered (prefixed_name, buf);
7884 xfree (prefixed_name);
7885 }
7886 else
7887 fputs_unfiltered (name, buf);
7888
7889 /* Template parameters may be specified in the DIE's DW_AT_name, or
7890 as children with DW_TAG_template_type_param or
7891 DW_TAG_value_type_param. If the latter, add them to the name
7892 here. If the name already has template parameters, then
7893 skip this step; some versions of GCC emit both, and
7894 it is more efficient to use the pre-computed name.
7895
7896 Something to keep in mind about this process: it is very
7897 unlikely, or in some cases downright impossible, to produce
7898 something that will match the mangled name of a function.
7899 If the definition of the function has the same debug info,
7900 we should be able to match up with it anyway. But fallbacks
7901 using the minimal symbol, for instance to find a method
7902 implemented in a stripped copy of libstdc++, will not work.
7903 If we do not have debug info for the definition, we will have to
7904 match them up some other way.
7905
7906 When we do name matching there is a related problem with function
7907 templates; two instantiated function templates are allowed to
7908 differ only by their return types, which we do not add here. */
7909
7910 if (cu->language == language_cplus && strchr (name, '<') == NULL)
7911 {
7912 struct attribute *attr;
7913 struct die_info *child;
7914 int first = 1;
7915
7916 die->building_fullname = 1;
7917
7918 for (child = die->child; child != NULL; child = child->sibling)
7919 {
7920 struct type *type;
7921 LONGEST value;
7922 const gdb_byte *bytes;
7923 struct dwarf2_locexpr_baton *baton;
7924 struct value *v;
7925
7926 if (child->tag != DW_TAG_template_type_param
7927 && child->tag != DW_TAG_template_value_param)
7928 continue;
7929
7930 if (first)
7931 {
7932 fputs_unfiltered ("<", buf);
7933 first = 0;
7934 }
7935 else
7936 fputs_unfiltered (", ", buf);
7937
7938 attr = dwarf2_attr (child, DW_AT_type, cu);
7939 if (attr == NULL)
7940 {
7941 complaint (&symfile_complaints,
7942 _("template parameter missing DW_AT_type"));
7943 fputs_unfiltered ("UNKNOWN_TYPE", buf);
7944 continue;
7945 }
7946 type = die_type (child, cu);
7947
7948 if (child->tag == DW_TAG_template_type_param)
7949 {
7950 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
7951 continue;
7952 }
7953
7954 attr = dwarf2_attr (child, DW_AT_const_value, cu);
7955 if (attr == NULL)
7956 {
7957 complaint (&symfile_complaints,
7958 _("template parameter missing "
7959 "DW_AT_const_value"));
7960 fputs_unfiltered ("UNKNOWN_VALUE", buf);
7961 continue;
7962 }
7963
7964 dwarf2_const_value_attr (attr, type, name,
7965 &cu->comp_unit_obstack, cu,
7966 &value, &bytes, &baton);
7967
7968 if (TYPE_NOSIGN (type))
7969 /* GDB prints characters as NUMBER 'CHAR'. If that's
7970 changed, this can use value_print instead. */
7971 c_printchar (value, type, buf);
7972 else
7973 {
7974 struct value_print_options opts;
7975
7976 if (baton != NULL)
7977 v = dwarf2_evaluate_loc_desc (type, NULL,
7978 baton->data,
7979 baton->size,
7980 baton->per_cu);
7981 else if (bytes != NULL)
7982 {
7983 v = allocate_value (type);
7984 memcpy (value_contents_writeable (v), bytes,
7985 TYPE_LENGTH (type));
7986 }
7987 else
7988 v = value_from_longest (type, value);
7989
7990 /* Specify decimal so that we do not depend on
7991 the radix. */
7992 get_formatted_print_options (&opts, 'd');
7993 opts.raw = 1;
7994 value_print (v, buf, &opts);
7995 release_value (v);
7996 value_free (v);
7997 }
7998 }
7999
8000 die->building_fullname = 0;
8001
8002 if (!first)
8003 {
8004 /* Close the argument list, with a space if necessary
8005 (nested templates). */
8006 char last_char = '\0';
8007 ui_file_put (buf, do_ui_file_peek_last, &last_char);
8008 if (last_char == '>')
8009 fputs_unfiltered (" >", buf);
8010 else
8011 fputs_unfiltered (">", buf);
8012 }
8013 }
8014
8015 /* For Java and C++ methods, append formal parameter type
8016 information, if PHYSNAME. */
8017
8018 if (physname && die->tag == DW_TAG_subprogram
8019 && (cu->language == language_cplus
8020 || cu->language == language_java))
8021 {
8022 struct type *type = read_type_die (die, cu);
8023
8024 c_type_print_args (type, buf, 1, cu->language,
8025 &type_print_raw_options);
8026
8027 if (cu->language == language_java)
8028 {
8029 /* For java, we must append the return type to method
8030 names. */
8031 if (die->tag == DW_TAG_subprogram)
8032 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
8033 0, 0, &type_print_raw_options);
8034 }
8035 else if (cu->language == language_cplus)
8036 {
8037 /* Assume that an artificial first parameter is
8038 "this", but do not crash if it is not. RealView
8039 marks unnamed (and thus unused) parameters as
8040 artificial; there is no way to differentiate
8041 the two cases. */
8042 if (TYPE_NFIELDS (type) > 0
8043 && TYPE_FIELD_ARTIFICIAL (type, 0)
8044 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
8045 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8046 0))))
8047 fputs_unfiltered (" const", buf);
8048 }
8049 }
8050
8051 name = ui_file_obsavestring (buf, &objfile->objfile_obstack,
8052 &length);
8053 ui_file_delete (buf);
8054
8055 if (cu->language == language_cplus)
8056 {
8057 const char *cname
8058 = dwarf2_canonicalize_name (name, cu,
8059 &objfile->objfile_obstack);
8060
8061 if (cname != NULL)
8062 name = cname;
8063 }
8064 }
8065 }
8066
8067 return name;
8068 }
8069
8070 /* Return the fully qualified name of DIE, based on its DW_AT_name.
8071 If scope qualifiers are appropriate they will be added. The result
8072 will be allocated on the objfile_obstack, or NULL if the DIE does
8073 not have a name. NAME may either be from a previous call to
8074 dwarf2_name or NULL.
8075
8076 The output string will be canonicalized (if C++/Java). */
8077
8078 static const char *
8079 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8080 {
8081 return dwarf2_compute_name (name, die, cu, 0);
8082 }
8083
8084 /* Construct a physname for the given DIE in CU. NAME may either be
8085 from a previous call to dwarf2_name or NULL. The result will be
8086 allocated on the objfile_objstack or NULL if the DIE does not have a
8087 name.
8088
8089 The output string will be canonicalized (if C++/Java). */
8090
8091 static const char *
8092 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8093 {
8094 struct objfile *objfile = cu->objfile;
8095 struct attribute *attr;
8096 const char *retval, *mangled = NULL, *canon = NULL;
8097 struct cleanup *back_to;
8098 int need_copy = 1;
8099
8100 /* In this case dwarf2_compute_name is just a shortcut not building anything
8101 on its own. */
8102 if (!die_needs_namespace (die, cu))
8103 return dwarf2_compute_name (name, die, cu, 1);
8104
8105 back_to = make_cleanup (null_cleanup, NULL);
8106
8107 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8108 if (!attr)
8109 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8110
8111 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8112 has computed. */
8113 if (attr && DW_STRING (attr))
8114 {
8115 char *demangled;
8116
8117 mangled = DW_STRING (attr);
8118
8119 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8120 type. It is easier for GDB users to search for such functions as
8121 `name(params)' than `long name(params)'. In such case the minimal
8122 symbol names do not match the full symbol names but for template
8123 functions there is never a need to look up their definition from their
8124 declaration so the only disadvantage remains the minimal symbol
8125 variant `long name(params)' does not have the proper inferior type.
8126 */
8127
8128 if (cu->language == language_go)
8129 {
8130 /* This is a lie, but we already lie to the caller new_symbol_full.
8131 new_symbol_full assumes we return the mangled name.
8132 This just undoes that lie until things are cleaned up. */
8133 demangled = NULL;
8134 }
8135 else
8136 {
8137 demangled = gdb_demangle (mangled,
8138 (DMGL_PARAMS | DMGL_ANSI
8139 | (cu->language == language_java
8140 ? DMGL_JAVA | DMGL_RET_POSTFIX
8141 : DMGL_RET_DROP)));
8142 }
8143 if (demangled)
8144 {
8145 make_cleanup (xfree, demangled);
8146 canon = demangled;
8147 }
8148 else
8149 {
8150 canon = mangled;
8151 need_copy = 0;
8152 }
8153 }
8154
8155 if (canon == NULL || check_physname)
8156 {
8157 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8158
8159 if (canon != NULL && strcmp (physname, canon) != 0)
8160 {
8161 /* It may not mean a bug in GDB. The compiler could also
8162 compute DW_AT_linkage_name incorrectly. But in such case
8163 GDB would need to be bug-to-bug compatible. */
8164
8165 complaint (&symfile_complaints,
8166 _("Computed physname <%s> does not match demangled <%s> "
8167 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
8168 physname, canon, mangled, die->offset.sect_off, objfile->name);
8169
8170 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8171 is available here - over computed PHYSNAME. It is safer
8172 against both buggy GDB and buggy compilers. */
8173
8174 retval = canon;
8175 }
8176 else
8177 {
8178 retval = physname;
8179 need_copy = 0;
8180 }
8181 }
8182 else
8183 retval = canon;
8184
8185 if (need_copy)
8186 retval = obstack_copy0 (&objfile->objfile_obstack, retval, strlen (retval));
8187
8188 do_cleanups (back_to);
8189 return retval;
8190 }
8191
8192 /* Read the import statement specified by the given die and record it. */
8193
8194 static void
8195 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8196 {
8197 struct objfile *objfile = cu->objfile;
8198 struct attribute *import_attr;
8199 struct die_info *imported_die, *child_die;
8200 struct dwarf2_cu *imported_cu;
8201 const char *imported_name;
8202 const char *imported_name_prefix;
8203 const char *canonical_name;
8204 const char *import_alias;
8205 const char *imported_declaration = NULL;
8206 const char *import_prefix;
8207 VEC (const_char_ptr) *excludes = NULL;
8208 struct cleanup *cleanups;
8209
8210 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8211 if (import_attr == NULL)
8212 {
8213 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8214 dwarf_tag_name (die->tag));
8215 return;
8216 }
8217
8218 imported_cu = cu;
8219 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8220 imported_name = dwarf2_name (imported_die, imported_cu);
8221 if (imported_name == NULL)
8222 {
8223 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8224
8225 The import in the following code:
8226 namespace A
8227 {
8228 typedef int B;
8229 }
8230
8231 int main ()
8232 {
8233 using A::B;
8234 B b;
8235 return b;
8236 }
8237
8238 ...
8239 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8240 <52> DW_AT_decl_file : 1
8241 <53> DW_AT_decl_line : 6
8242 <54> DW_AT_import : <0x75>
8243 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8244 <59> DW_AT_name : B
8245 <5b> DW_AT_decl_file : 1
8246 <5c> DW_AT_decl_line : 2
8247 <5d> DW_AT_type : <0x6e>
8248 ...
8249 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
8250 <76> DW_AT_byte_size : 4
8251 <77> DW_AT_encoding : 5 (signed)
8252
8253 imports the wrong die ( 0x75 instead of 0x58 ).
8254 This case will be ignored until the gcc bug is fixed. */
8255 return;
8256 }
8257
8258 /* Figure out the local name after import. */
8259 import_alias = dwarf2_name (die, cu);
8260
8261 /* Figure out where the statement is being imported to. */
8262 import_prefix = determine_prefix (die, cu);
8263
8264 /* Figure out what the scope of the imported die is and prepend it
8265 to the name of the imported die. */
8266 imported_name_prefix = determine_prefix (imported_die, imported_cu);
8267
8268 if (imported_die->tag != DW_TAG_namespace
8269 && imported_die->tag != DW_TAG_module)
8270 {
8271 imported_declaration = imported_name;
8272 canonical_name = imported_name_prefix;
8273 }
8274 else if (strlen (imported_name_prefix) > 0)
8275 canonical_name = obconcat (&objfile->objfile_obstack,
8276 imported_name_prefix, "::", imported_name,
8277 (char *) NULL);
8278 else
8279 canonical_name = imported_name;
8280
8281 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
8282
8283 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
8284 for (child_die = die->child; child_die && child_die->tag;
8285 child_die = sibling_die (child_die))
8286 {
8287 /* DWARF-4: A Fortran use statement with a “rename list” may be
8288 represented by an imported module entry with an import attribute
8289 referring to the module and owned entries corresponding to those
8290 entities that are renamed as part of being imported. */
8291
8292 if (child_die->tag != DW_TAG_imported_declaration)
8293 {
8294 complaint (&symfile_complaints,
8295 _("child DW_TAG_imported_declaration expected "
8296 "- DIE at 0x%x [in module %s]"),
8297 child_die->offset.sect_off, objfile->name);
8298 continue;
8299 }
8300
8301 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
8302 if (import_attr == NULL)
8303 {
8304 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8305 dwarf_tag_name (child_die->tag));
8306 continue;
8307 }
8308
8309 imported_cu = cu;
8310 imported_die = follow_die_ref_or_sig (child_die, import_attr,
8311 &imported_cu);
8312 imported_name = dwarf2_name (imported_die, imported_cu);
8313 if (imported_name == NULL)
8314 {
8315 complaint (&symfile_complaints,
8316 _("child DW_TAG_imported_declaration has unknown "
8317 "imported name - DIE at 0x%x [in module %s]"),
8318 child_die->offset.sect_off, objfile->name);
8319 continue;
8320 }
8321
8322 VEC_safe_push (const_char_ptr, excludes, imported_name);
8323
8324 process_die (child_die, cu);
8325 }
8326
8327 cp_add_using_directive (import_prefix,
8328 canonical_name,
8329 import_alias,
8330 imported_declaration,
8331 excludes,
8332 0,
8333 &objfile->objfile_obstack);
8334
8335 do_cleanups (cleanups);
8336 }
8337
8338 /* Cleanup function for handle_DW_AT_stmt_list. */
8339
8340 static void
8341 free_cu_line_header (void *arg)
8342 {
8343 struct dwarf2_cu *cu = arg;
8344
8345 free_line_header (cu->line_header);
8346 cu->line_header = NULL;
8347 }
8348
8349 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
8350 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
8351 this, it was first present in GCC release 4.3.0. */
8352
8353 static int
8354 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
8355 {
8356 if (!cu->checked_producer)
8357 check_producer (cu);
8358
8359 return cu->producer_is_gcc_lt_4_3;
8360 }
8361
8362 static void
8363 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
8364 const char **name, const char **comp_dir)
8365 {
8366 struct attribute *attr;
8367
8368 *name = NULL;
8369 *comp_dir = NULL;
8370
8371 /* Find the filename. Do not use dwarf2_name here, since the filename
8372 is not a source language identifier. */
8373 attr = dwarf2_attr (die, DW_AT_name, cu);
8374 if (attr)
8375 {
8376 *name = DW_STRING (attr);
8377 }
8378
8379 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
8380 if (attr)
8381 *comp_dir = DW_STRING (attr);
8382 else if (producer_is_gcc_lt_4_3 (cu) && *name != NULL
8383 && IS_ABSOLUTE_PATH (*name))
8384 {
8385 char *d = ldirname (*name);
8386
8387 *comp_dir = d;
8388 if (d != NULL)
8389 make_cleanup (xfree, d);
8390 }
8391 if (*comp_dir != NULL)
8392 {
8393 /* Irix 6.2 native cc prepends <machine>.: to the compilation
8394 directory, get rid of it. */
8395 char *cp = strchr (*comp_dir, ':');
8396
8397 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
8398 *comp_dir = cp + 1;
8399 }
8400
8401 if (*name == NULL)
8402 *name = "<unknown>";
8403 }
8404
8405 /* Handle DW_AT_stmt_list for a compilation unit.
8406 DIE is the DW_TAG_compile_unit die for CU.
8407 COMP_DIR is the compilation directory.
8408 WANT_LINE_INFO is non-zero if the pc/line-number mapping is needed. */
8409
8410 static void
8411 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
8412 const char *comp_dir) /* ARI: editCase function */
8413 {
8414 struct attribute *attr;
8415
8416 gdb_assert (! cu->per_cu->is_debug_types);
8417
8418 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
8419 if (attr)
8420 {
8421 unsigned int line_offset = DW_UNSND (attr);
8422 struct line_header *line_header
8423 = dwarf_decode_line_header (line_offset, cu);
8424
8425 if (line_header)
8426 {
8427 cu->line_header = line_header;
8428 make_cleanup (free_cu_line_header, cu);
8429 dwarf_decode_lines (line_header, comp_dir, cu, NULL, 1);
8430 }
8431 }
8432 }
8433
8434 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
8435
8436 static void
8437 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
8438 {
8439 struct objfile *objfile = dwarf2_per_objfile->objfile;
8440 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
8441 CORE_ADDR lowpc = ((CORE_ADDR) -1);
8442 CORE_ADDR highpc = ((CORE_ADDR) 0);
8443 struct attribute *attr;
8444 const char *name = NULL;
8445 const char *comp_dir = NULL;
8446 struct die_info *child_die;
8447 bfd *abfd = objfile->obfd;
8448 CORE_ADDR baseaddr;
8449
8450 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8451
8452 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
8453
8454 /* If we didn't find a lowpc, set it to highpc to avoid complaints
8455 from finish_block. */
8456 if (lowpc == ((CORE_ADDR) -1))
8457 lowpc = highpc;
8458 lowpc += baseaddr;
8459 highpc += baseaddr;
8460
8461 find_file_and_directory (die, cu, &name, &comp_dir);
8462
8463 prepare_one_comp_unit (cu, die, cu->language);
8464
8465 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
8466 standardised yet. As a workaround for the language detection we fall
8467 back to the DW_AT_producer string. */
8468 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
8469 cu->language = language_opencl;
8470
8471 /* Similar hack for Go. */
8472 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
8473 set_cu_language (DW_LANG_Go, cu);
8474
8475 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
8476
8477 /* Decode line number information if present. We do this before
8478 processing child DIEs, so that the line header table is available
8479 for DW_AT_decl_file. */
8480 handle_DW_AT_stmt_list (die, cu, comp_dir);
8481
8482 /* Process all dies in compilation unit. */
8483 if (die->child != NULL)
8484 {
8485 child_die = die->child;
8486 while (child_die && child_die->tag)
8487 {
8488 process_die (child_die, cu);
8489 child_die = sibling_die (child_die);
8490 }
8491 }
8492
8493 /* Decode macro information, if present. Dwarf 2 macro information
8494 refers to information in the line number info statement program
8495 header, so we can only read it if we've read the header
8496 successfully. */
8497 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
8498 if (attr && cu->line_header)
8499 {
8500 if (dwarf2_attr (die, DW_AT_macro_info, cu))
8501 complaint (&symfile_complaints,
8502 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
8503
8504 dwarf_decode_macros (cu, DW_UNSND (attr), comp_dir, 1);
8505 }
8506 else
8507 {
8508 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
8509 if (attr && cu->line_header)
8510 {
8511 unsigned int macro_offset = DW_UNSND (attr);
8512
8513 dwarf_decode_macros (cu, macro_offset, comp_dir, 0);
8514 }
8515 }
8516
8517 do_cleanups (back_to);
8518 }
8519
8520 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
8521 Create the set of symtabs used by this TU, or if this TU is sharing
8522 symtabs with another TU and the symtabs have already been created
8523 then restore those symtabs in the line header.
8524 We don't need the pc/line-number mapping for type units. */
8525
8526 static void
8527 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
8528 {
8529 struct objfile *objfile = dwarf2_per_objfile->objfile;
8530 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8531 struct type_unit_group *tu_group;
8532 int first_time;
8533 struct line_header *lh;
8534 struct attribute *attr;
8535 unsigned int i, line_offset;
8536 struct signatured_type *sig_type;
8537
8538 gdb_assert (per_cu->is_debug_types);
8539 sig_type = (struct signatured_type *) per_cu;
8540
8541 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
8542
8543 /* If we're using .gdb_index (includes -readnow) then
8544 per_cu->type_unit_group may not have been set up yet. */
8545 if (sig_type->type_unit_group == NULL)
8546 sig_type->type_unit_group = get_type_unit_group (cu, attr);
8547 tu_group = sig_type->type_unit_group;
8548
8549 /* If we've already processed this stmt_list there's no real need to
8550 do it again, we could fake it and just recreate the part we need
8551 (file name,index -> symtab mapping). If data shows this optimization
8552 is useful we can do it then. */
8553 first_time = tu_group->primary_symtab == NULL;
8554
8555 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
8556 debug info. */
8557 lh = NULL;
8558 if (attr != NULL)
8559 {
8560 line_offset = DW_UNSND (attr);
8561 lh = dwarf_decode_line_header (line_offset, cu);
8562 }
8563 if (lh == NULL)
8564 {
8565 if (first_time)
8566 dwarf2_start_symtab (cu, "", NULL, 0);
8567 else
8568 {
8569 gdb_assert (tu_group->symtabs == NULL);
8570 restart_symtab (0);
8571 }
8572 /* Note: The primary symtab will get allocated at the end. */
8573 return;
8574 }
8575
8576 cu->line_header = lh;
8577 make_cleanup (free_cu_line_header, cu);
8578
8579 if (first_time)
8580 {
8581 dwarf2_start_symtab (cu, "", NULL, 0);
8582
8583 tu_group->num_symtabs = lh->num_file_names;
8584 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
8585
8586 for (i = 0; i < lh->num_file_names; ++i)
8587 {
8588 const char *dir = NULL;
8589 struct file_entry *fe = &lh->file_names[i];
8590
8591 if (fe->dir_index)
8592 dir = lh->include_dirs[fe->dir_index - 1];
8593 dwarf2_start_subfile (fe->name, dir, NULL);
8594
8595 /* Note: We don't have to watch for the main subfile here, type units
8596 don't have DW_AT_name. */
8597
8598 if (current_subfile->symtab == NULL)
8599 {
8600 /* NOTE: start_subfile will recognize when it's been passed
8601 a file it has already seen. So we can't assume there's a
8602 simple mapping from lh->file_names to subfiles,
8603 lh->file_names may contain dups. */
8604 current_subfile->symtab = allocate_symtab (current_subfile->name,
8605 objfile);
8606 }
8607
8608 fe->symtab = current_subfile->symtab;
8609 tu_group->symtabs[i] = fe->symtab;
8610 }
8611 }
8612 else
8613 {
8614 restart_symtab (0);
8615
8616 for (i = 0; i < lh->num_file_names; ++i)
8617 {
8618 struct file_entry *fe = &lh->file_names[i];
8619
8620 fe->symtab = tu_group->symtabs[i];
8621 }
8622 }
8623
8624 /* The main symtab is allocated last. Type units don't have DW_AT_name
8625 so they don't have a "real" (so to speak) symtab anyway.
8626 There is later code that will assign the main symtab to all symbols
8627 that don't have one. We need to handle the case of a symbol with a
8628 missing symtab (DW_AT_decl_file) anyway. */
8629 }
8630
8631 /* Process DW_TAG_type_unit.
8632 For TUs we want to skip the first top level sibling if it's not the
8633 actual type being defined by this TU. In this case the first top
8634 level sibling is there to provide context only. */
8635
8636 static void
8637 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
8638 {
8639 struct die_info *child_die;
8640
8641 prepare_one_comp_unit (cu, die, language_minimal);
8642
8643 /* Initialize (or reinitialize) the machinery for building symtabs.
8644 We do this before processing child DIEs, so that the line header table
8645 is available for DW_AT_decl_file. */
8646 setup_type_unit_groups (die, cu);
8647
8648 if (die->child != NULL)
8649 {
8650 child_die = die->child;
8651 while (child_die && child_die->tag)
8652 {
8653 process_die (child_die, cu);
8654 child_die = sibling_die (child_die);
8655 }
8656 }
8657 }
8658 \f
8659 /* DWO/DWP files.
8660
8661 http://gcc.gnu.org/wiki/DebugFission
8662 http://gcc.gnu.org/wiki/DebugFissionDWP
8663
8664 To simplify handling of both DWO files ("object" files with the DWARF info)
8665 and DWP files (a file with the DWOs packaged up into one file), we treat
8666 DWP files as having a collection of virtual DWO files. */
8667
8668 static hashval_t
8669 hash_dwo_file (const void *item)
8670 {
8671 const struct dwo_file *dwo_file = item;
8672 hashval_t hash;
8673
8674 hash = htab_hash_string (dwo_file->dwo_name);
8675 if (dwo_file->comp_dir != NULL)
8676 hash += htab_hash_string (dwo_file->comp_dir);
8677 return hash;
8678 }
8679
8680 static int
8681 eq_dwo_file (const void *item_lhs, const void *item_rhs)
8682 {
8683 const struct dwo_file *lhs = item_lhs;
8684 const struct dwo_file *rhs = item_rhs;
8685
8686 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
8687 return 0;
8688 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
8689 return lhs->comp_dir == rhs->comp_dir;
8690 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
8691 }
8692
8693 /* Allocate a hash table for DWO files. */
8694
8695 static htab_t
8696 allocate_dwo_file_hash_table (void)
8697 {
8698 struct objfile *objfile = dwarf2_per_objfile->objfile;
8699
8700 return htab_create_alloc_ex (41,
8701 hash_dwo_file,
8702 eq_dwo_file,
8703 NULL,
8704 &objfile->objfile_obstack,
8705 hashtab_obstack_allocate,
8706 dummy_obstack_deallocate);
8707 }
8708
8709 /* Lookup DWO file DWO_NAME. */
8710
8711 static void **
8712 lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
8713 {
8714 struct dwo_file find_entry;
8715 void **slot;
8716
8717 if (dwarf2_per_objfile->dwo_files == NULL)
8718 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
8719
8720 memset (&find_entry, 0, sizeof (find_entry));
8721 find_entry.dwo_name = dwo_name;
8722 find_entry.comp_dir = comp_dir;
8723 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
8724
8725 return slot;
8726 }
8727
8728 static hashval_t
8729 hash_dwo_unit (const void *item)
8730 {
8731 const struct dwo_unit *dwo_unit = item;
8732
8733 /* This drops the top 32 bits of the id, but is ok for a hash. */
8734 return dwo_unit->signature;
8735 }
8736
8737 static int
8738 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
8739 {
8740 const struct dwo_unit *lhs = item_lhs;
8741 const struct dwo_unit *rhs = item_rhs;
8742
8743 /* The signature is assumed to be unique within the DWO file.
8744 So while object file CU dwo_id's always have the value zero,
8745 that's OK, assuming each object file DWO file has only one CU,
8746 and that's the rule for now. */
8747 return lhs->signature == rhs->signature;
8748 }
8749
8750 /* Allocate a hash table for DWO CUs,TUs.
8751 There is one of these tables for each of CUs,TUs for each DWO file. */
8752
8753 static htab_t
8754 allocate_dwo_unit_table (struct objfile *objfile)
8755 {
8756 /* Start out with a pretty small number.
8757 Generally DWO files contain only one CU and maybe some TUs. */
8758 return htab_create_alloc_ex (3,
8759 hash_dwo_unit,
8760 eq_dwo_unit,
8761 NULL,
8762 &objfile->objfile_obstack,
8763 hashtab_obstack_allocate,
8764 dummy_obstack_deallocate);
8765 }
8766
8767 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
8768
8769 struct create_dwo_cu_data
8770 {
8771 struct dwo_file *dwo_file;
8772 struct dwo_unit dwo_unit;
8773 };
8774
8775 /* die_reader_func for create_dwo_cu. */
8776
8777 static void
8778 create_dwo_cu_reader (const struct die_reader_specs *reader,
8779 const gdb_byte *info_ptr,
8780 struct die_info *comp_unit_die,
8781 int has_children,
8782 void *datap)
8783 {
8784 struct dwarf2_cu *cu = reader->cu;
8785 struct objfile *objfile = dwarf2_per_objfile->objfile;
8786 sect_offset offset = cu->per_cu->offset;
8787 struct dwarf2_section_info *section = cu->per_cu->section;
8788 struct create_dwo_cu_data *data = datap;
8789 struct dwo_file *dwo_file = data->dwo_file;
8790 struct dwo_unit *dwo_unit = &data->dwo_unit;
8791 struct attribute *attr;
8792
8793 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
8794 if (attr == NULL)
8795 {
8796 complaint (&symfile_complaints,
8797 _("Dwarf Error: debug entry at offset 0x%x is missing"
8798 " its dwo_id [in module %s]"),
8799 offset.sect_off, dwo_file->dwo_name);
8800 return;
8801 }
8802
8803 dwo_unit->dwo_file = dwo_file;
8804 dwo_unit->signature = DW_UNSND (attr);
8805 dwo_unit->section = section;
8806 dwo_unit->offset = offset;
8807 dwo_unit->length = cu->per_cu->length;
8808
8809 if (dwarf2_read_debug)
8810 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
8811 offset.sect_off, hex_string (dwo_unit->signature));
8812 }
8813
8814 /* Create the dwo_unit for the lone CU in DWO_FILE.
8815 Note: This function processes DWO files only, not DWP files. */
8816
8817 static struct dwo_unit *
8818 create_dwo_cu (struct dwo_file *dwo_file)
8819 {
8820 struct objfile *objfile = dwarf2_per_objfile->objfile;
8821 struct dwarf2_section_info *section = &dwo_file->sections.info;
8822 bfd *abfd;
8823 htab_t cu_htab;
8824 const gdb_byte *info_ptr, *end_ptr;
8825 struct create_dwo_cu_data create_dwo_cu_data;
8826 struct dwo_unit *dwo_unit;
8827
8828 dwarf2_read_section (objfile, section);
8829 info_ptr = section->buffer;
8830
8831 if (info_ptr == NULL)
8832 return NULL;
8833
8834 /* We can't set abfd until now because the section may be empty or
8835 not present, in which case section->asection will be NULL. */
8836 abfd = section->asection->owner;
8837
8838 if (dwarf2_read_debug)
8839 {
8840 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
8841 bfd_section_name (abfd, section->asection),
8842 bfd_get_filename (abfd));
8843 }
8844
8845 create_dwo_cu_data.dwo_file = dwo_file;
8846 dwo_unit = NULL;
8847
8848 end_ptr = info_ptr + section->size;
8849 while (info_ptr < end_ptr)
8850 {
8851 struct dwarf2_per_cu_data per_cu;
8852
8853 memset (&create_dwo_cu_data.dwo_unit, 0,
8854 sizeof (create_dwo_cu_data.dwo_unit));
8855 memset (&per_cu, 0, sizeof (per_cu));
8856 per_cu.objfile = objfile;
8857 per_cu.is_debug_types = 0;
8858 per_cu.offset.sect_off = info_ptr - section->buffer;
8859 per_cu.section = section;
8860
8861 init_cutu_and_read_dies_no_follow (&per_cu,
8862 &dwo_file->sections.abbrev,
8863 dwo_file,
8864 create_dwo_cu_reader,
8865 &create_dwo_cu_data);
8866
8867 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
8868 {
8869 /* If we've already found one, complain. We only support one
8870 because having more than one requires hacking the dwo_name of
8871 each to match, which is highly unlikely to happen. */
8872 if (dwo_unit != NULL)
8873 {
8874 complaint (&symfile_complaints,
8875 _("Multiple CUs in DWO file %s [in module %s]"),
8876 dwo_file->dwo_name, objfile->name);
8877 break;
8878 }
8879
8880 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
8881 *dwo_unit = create_dwo_cu_data.dwo_unit;
8882 }
8883
8884 info_ptr += per_cu.length;
8885 }
8886
8887 return dwo_unit;
8888 }
8889
8890 /* DWP file .debug_{cu,tu}_index section format:
8891 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
8892
8893 DWP Version 1:
8894
8895 Both index sections have the same format, and serve to map a 64-bit
8896 signature to a set of section numbers. Each section begins with a header,
8897 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
8898 indexes, and a pool of 32-bit section numbers. The index sections will be
8899 aligned at 8-byte boundaries in the file.
8900
8901 The index section header consists of:
8902
8903 V, 32 bit version number
8904 -, 32 bits unused
8905 N, 32 bit number of compilation units or type units in the index
8906 M, 32 bit number of slots in the hash table
8907
8908 Numbers are recorded using the byte order of the application binary.
8909
8910 We assume that N and M will not exceed 2^32 - 1.
8911
8912 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
8913
8914 The hash table begins at offset 16 in the section, and consists of an array
8915 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
8916 order of the application binary). Unused slots in the hash table are 0.
8917 (We rely on the extreme unlikeliness of a signature being exactly 0.)
8918
8919 The parallel table begins immediately after the hash table
8920 (at offset 16 + 8 * M from the beginning of the section), and consists of an
8921 array of 32-bit indexes (using the byte order of the application binary),
8922 corresponding 1-1 with slots in the hash table. Each entry in the parallel
8923 table contains a 32-bit index into the pool of section numbers. For unused
8924 hash table slots, the corresponding entry in the parallel table will be 0.
8925
8926 Given a 64-bit compilation unit signature or a type signature S, an entry
8927 in the hash table is located as follows:
8928
8929 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
8930 the low-order k bits all set to 1.
8931
8932 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
8933
8934 3) If the hash table entry at index H matches the signature, use that
8935 entry. If the hash table entry at index H is unused (all zeroes),
8936 terminate the search: the signature is not present in the table.
8937
8938 4) Let H = (H + H') modulo M. Repeat at Step 3.
8939
8940 Because M > N and H' and M are relatively prime, the search is guaranteed
8941 to stop at an unused slot or find the match.
8942
8943 The pool of section numbers begins immediately following the hash table
8944 (at offset 16 + 12 * M from the beginning of the section). The pool of
8945 section numbers consists of an array of 32-bit words (using the byte order
8946 of the application binary). Each item in the array is indexed starting
8947 from 0. The hash table entry provides the index of the first section
8948 number in the set. Additional section numbers in the set follow, and the
8949 set is terminated by a 0 entry (section number 0 is not used in ELF).
8950
8951 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
8952 section must be the first entry in the set, and the .debug_abbrev.dwo must
8953 be the second entry. Other members of the set may follow in any order. */
8954
8955 /* Create a hash table to map DWO IDs to their CU/TU entry in
8956 .debug_{info,types}.dwo in DWP_FILE.
8957 Returns NULL if there isn't one.
8958 Note: This function processes DWP files only, not DWO files. */
8959
8960 static struct dwp_hash_table *
8961 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
8962 {
8963 struct objfile *objfile = dwarf2_per_objfile->objfile;
8964 bfd *dbfd = dwp_file->dbfd;
8965 const gdb_byte *index_ptr, *index_end;
8966 struct dwarf2_section_info *index;
8967 uint32_t version, nr_units, nr_slots;
8968 struct dwp_hash_table *htab;
8969
8970 if (is_debug_types)
8971 index = &dwp_file->sections.tu_index;
8972 else
8973 index = &dwp_file->sections.cu_index;
8974
8975 if (dwarf2_section_empty_p (index))
8976 return NULL;
8977 dwarf2_read_section (objfile, index);
8978
8979 index_ptr = index->buffer;
8980 index_end = index_ptr + index->size;
8981
8982 version = read_4_bytes (dbfd, index_ptr);
8983 index_ptr += 8; /* Skip the unused word. */
8984 nr_units = read_4_bytes (dbfd, index_ptr);
8985 index_ptr += 4;
8986 nr_slots = read_4_bytes (dbfd, index_ptr);
8987 index_ptr += 4;
8988
8989 if (version != 1)
8990 {
8991 error (_("Dwarf Error: unsupported DWP file version (%s)"
8992 " [in module %s]"),
8993 pulongest (version), dwp_file->name);
8994 }
8995 if (nr_slots != (nr_slots & -nr_slots))
8996 {
8997 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
8998 " is not power of 2 [in module %s]"),
8999 pulongest (nr_slots), dwp_file->name);
9000 }
9001
9002 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
9003 htab->nr_units = nr_units;
9004 htab->nr_slots = nr_slots;
9005 htab->hash_table = index_ptr;
9006 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
9007 htab->section_pool = htab->unit_table + sizeof (uint32_t) * nr_slots;
9008
9009 return htab;
9010 }
9011
9012 /* Update SECTIONS with the data from SECTP.
9013
9014 This function is like the other "locate" section routines that are
9015 passed to bfd_map_over_sections, but in this context the sections to
9016 read comes from the DWP hash table, not the full ELF section table.
9017
9018 The result is non-zero for success, or zero if an error was found. */
9019
9020 static int
9021 locate_virtual_dwo_sections (asection *sectp,
9022 struct virtual_dwo_sections *sections)
9023 {
9024 const struct dwop_section_names *names = &dwop_section_names;
9025
9026 if (section_is_p (sectp->name, &names->abbrev_dwo))
9027 {
9028 /* There can be only one. */
9029 if (sections->abbrev.asection != NULL)
9030 return 0;
9031 sections->abbrev.asection = sectp;
9032 sections->abbrev.size = bfd_get_section_size (sectp);
9033 }
9034 else if (section_is_p (sectp->name, &names->info_dwo)
9035 || section_is_p (sectp->name, &names->types_dwo))
9036 {
9037 /* There can be only one. */
9038 if (sections->info_or_types.asection != NULL)
9039 return 0;
9040 sections->info_or_types.asection = sectp;
9041 sections->info_or_types.size = bfd_get_section_size (sectp);
9042 }
9043 else if (section_is_p (sectp->name, &names->line_dwo))
9044 {
9045 /* There can be only one. */
9046 if (sections->line.asection != NULL)
9047 return 0;
9048 sections->line.asection = sectp;
9049 sections->line.size = bfd_get_section_size (sectp);
9050 }
9051 else if (section_is_p (sectp->name, &names->loc_dwo))
9052 {
9053 /* There can be only one. */
9054 if (sections->loc.asection != NULL)
9055 return 0;
9056 sections->loc.asection = sectp;
9057 sections->loc.size = bfd_get_section_size (sectp);
9058 }
9059 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9060 {
9061 /* There can be only one. */
9062 if (sections->macinfo.asection != NULL)
9063 return 0;
9064 sections->macinfo.asection = sectp;
9065 sections->macinfo.size = bfd_get_section_size (sectp);
9066 }
9067 else if (section_is_p (sectp->name, &names->macro_dwo))
9068 {
9069 /* There can be only one. */
9070 if (sections->macro.asection != NULL)
9071 return 0;
9072 sections->macro.asection = sectp;
9073 sections->macro.size = bfd_get_section_size (sectp);
9074 }
9075 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9076 {
9077 /* There can be only one. */
9078 if (sections->str_offsets.asection != NULL)
9079 return 0;
9080 sections->str_offsets.asection = sectp;
9081 sections->str_offsets.size = bfd_get_section_size (sectp);
9082 }
9083 else
9084 {
9085 /* No other kind of section is valid. */
9086 return 0;
9087 }
9088
9089 return 1;
9090 }
9091
9092 /* Create a dwo_unit object for the DWO with signature SIGNATURE.
9093 HTAB is the hash table from the DWP file.
9094 SECTION_INDEX is the index of the DWO in HTAB.
9095 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU. */
9096
9097 static struct dwo_unit *
9098 create_dwo_in_dwp (struct dwp_file *dwp_file,
9099 const struct dwp_hash_table *htab,
9100 uint32_t section_index,
9101 const char *comp_dir,
9102 ULONGEST signature, int is_debug_types)
9103 {
9104 struct objfile *objfile = dwarf2_per_objfile->objfile;
9105 bfd *dbfd = dwp_file->dbfd;
9106 const char *kind = is_debug_types ? "TU" : "CU";
9107 struct dwo_file *dwo_file;
9108 struct dwo_unit *dwo_unit;
9109 struct virtual_dwo_sections sections;
9110 void **dwo_file_slot;
9111 char *virtual_dwo_name;
9112 struct dwarf2_section_info *cutu;
9113 struct cleanup *cleanups;
9114 int i;
9115
9116 if (dwarf2_read_debug)
9117 {
9118 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP file: %s\n",
9119 kind,
9120 pulongest (section_index), hex_string (signature),
9121 dwp_file->name);
9122 }
9123
9124 /* Fetch the sections of this DWO.
9125 Put a limit on the number of sections we look for so that bad data
9126 doesn't cause us to loop forever. */
9127
9128 #define MAX_NR_DWO_SECTIONS \
9129 (1 /* .debug_info or .debug_types */ \
9130 + 1 /* .debug_abbrev */ \
9131 + 1 /* .debug_line */ \
9132 + 1 /* .debug_loc */ \
9133 + 1 /* .debug_str_offsets */ \
9134 + 1 /* .debug_macro */ \
9135 + 1 /* .debug_macinfo */ \
9136 + 1 /* trailing zero */)
9137
9138 memset (&sections, 0, sizeof (sections));
9139 cleanups = make_cleanup (null_cleanup, 0);
9140
9141 for (i = 0; i < MAX_NR_DWO_SECTIONS; ++i)
9142 {
9143 asection *sectp;
9144 uint32_t section_nr =
9145 read_4_bytes (dbfd,
9146 htab->section_pool
9147 + (section_index + i) * sizeof (uint32_t));
9148
9149 if (section_nr == 0)
9150 break;
9151 if (section_nr >= dwp_file->num_sections)
9152 {
9153 error (_("Dwarf Error: bad DWP hash table, section number too large"
9154 " [in module %s]"),
9155 dwp_file->name);
9156 }
9157
9158 sectp = dwp_file->elf_sections[section_nr];
9159 if (! locate_virtual_dwo_sections (sectp, &sections))
9160 {
9161 error (_("Dwarf Error: bad DWP hash table, invalid section found"
9162 " [in module %s]"),
9163 dwp_file->name);
9164 }
9165 }
9166
9167 if (i < 2
9168 || sections.info_or_types.asection == NULL
9169 || sections.abbrev.asection == NULL)
9170 {
9171 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
9172 " [in module %s]"),
9173 dwp_file->name);
9174 }
9175 if (i == MAX_NR_DWO_SECTIONS)
9176 {
9177 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
9178 " [in module %s]"),
9179 dwp_file->name);
9180 }
9181
9182 /* It's easier for the rest of the code if we fake a struct dwo_file and
9183 have dwo_unit "live" in that. At least for now.
9184
9185 The DWP file can be made up of a random collection of CUs and TUs.
9186 However, for each CU + set of TUs that came from the same original DWO
9187 file, we want to combine them back into a virtual DWO file to save space
9188 (fewer struct dwo_file objects to allocated). Remember that for really
9189 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
9190
9191 virtual_dwo_name =
9192 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
9193 sections.abbrev.asection ? sections.abbrev.asection->id : 0,
9194 sections.line.asection ? sections.line.asection->id : 0,
9195 sections.loc.asection ? sections.loc.asection->id : 0,
9196 (sections.str_offsets.asection
9197 ? sections.str_offsets.asection->id
9198 : 0));
9199 make_cleanup (xfree, virtual_dwo_name);
9200 /* Can we use an existing virtual DWO file? */
9201 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
9202 /* Create one if necessary. */
9203 if (*dwo_file_slot == NULL)
9204 {
9205 if (dwarf2_read_debug)
9206 {
9207 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
9208 virtual_dwo_name);
9209 }
9210 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
9211 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
9212 virtual_dwo_name,
9213 strlen (virtual_dwo_name));
9214 dwo_file->comp_dir = comp_dir;
9215 dwo_file->sections.abbrev = sections.abbrev;
9216 dwo_file->sections.line = sections.line;
9217 dwo_file->sections.loc = sections.loc;
9218 dwo_file->sections.macinfo = sections.macinfo;
9219 dwo_file->sections.macro = sections.macro;
9220 dwo_file->sections.str_offsets = sections.str_offsets;
9221 /* The "str" section is global to the entire DWP file. */
9222 dwo_file->sections.str = dwp_file->sections.str;
9223 /* The info or types section is assigned later to dwo_unit,
9224 there's no need to record it in dwo_file.
9225 Also, we can't simply record type sections in dwo_file because
9226 we record a pointer into the vector in dwo_unit. As we collect more
9227 types we'll grow the vector and eventually have to reallocate space
9228 for it, invalidating all the pointers into the current copy. */
9229 *dwo_file_slot = dwo_file;
9230 }
9231 else
9232 {
9233 if (dwarf2_read_debug)
9234 {
9235 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
9236 virtual_dwo_name);
9237 }
9238 dwo_file = *dwo_file_slot;
9239 }
9240 do_cleanups (cleanups);
9241
9242 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9243 dwo_unit->dwo_file = dwo_file;
9244 dwo_unit->signature = signature;
9245 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
9246 sizeof (struct dwarf2_section_info));
9247 *dwo_unit->section = sections.info_or_types;
9248 /* offset, length, type_offset_in_tu are set later. */
9249
9250 return dwo_unit;
9251 }
9252
9253 /* Lookup the DWO with SIGNATURE in DWP_FILE. */
9254
9255 static struct dwo_unit *
9256 lookup_dwo_in_dwp (struct dwp_file *dwp_file,
9257 const struct dwp_hash_table *htab,
9258 const char *comp_dir,
9259 ULONGEST signature, int is_debug_types)
9260 {
9261 bfd *dbfd = dwp_file->dbfd;
9262 uint32_t mask = htab->nr_slots - 1;
9263 uint32_t hash = signature & mask;
9264 uint32_t hash2 = ((signature >> 32) & mask) | 1;
9265 unsigned int i;
9266 void **slot;
9267 struct dwo_unit find_dwo_cu, *dwo_cu;
9268
9269 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
9270 find_dwo_cu.signature = signature;
9271 slot = htab_find_slot (dwp_file->loaded_cutus, &find_dwo_cu, INSERT);
9272
9273 if (*slot != NULL)
9274 return *slot;
9275
9276 /* Use a for loop so that we don't loop forever on bad debug info. */
9277 for (i = 0; i < htab->nr_slots; ++i)
9278 {
9279 ULONGEST signature_in_table;
9280
9281 signature_in_table =
9282 read_8_bytes (dbfd, htab->hash_table + hash * sizeof (uint64_t));
9283 if (signature_in_table == signature)
9284 {
9285 uint32_t section_index =
9286 read_4_bytes (dbfd, htab->unit_table + hash * sizeof (uint32_t));
9287
9288 *slot = create_dwo_in_dwp (dwp_file, htab, section_index,
9289 comp_dir, signature, is_debug_types);
9290 return *slot;
9291 }
9292 if (signature_in_table == 0)
9293 return NULL;
9294 hash = (hash + hash2) & mask;
9295 }
9296
9297 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
9298 " [in module %s]"),
9299 dwp_file->name);
9300 }
9301
9302 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
9303 Open the file specified by FILE_NAME and hand it off to BFD for
9304 preliminary analysis. Return a newly initialized bfd *, which
9305 includes a canonicalized copy of FILE_NAME.
9306 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
9307 SEARCH_CWD is true if the current directory is to be searched.
9308 It will be searched before debug-file-directory.
9309 If unable to find/open the file, return NULL.
9310 NOTE: This function is derived from symfile_bfd_open. */
9311
9312 static bfd *
9313 try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
9314 {
9315 bfd *sym_bfd;
9316 int desc, flags;
9317 char *absolute_name;
9318 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
9319 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
9320 to debug_file_directory. */
9321 char *search_path;
9322 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
9323
9324 if (search_cwd)
9325 {
9326 if (*debug_file_directory != '\0')
9327 search_path = concat (".", dirname_separator_string,
9328 debug_file_directory, NULL);
9329 else
9330 search_path = xstrdup (".");
9331 }
9332 else
9333 search_path = xstrdup (debug_file_directory);
9334
9335 flags = 0;
9336 if (is_dwp)
9337 flags |= OPF_SEARCH_IN_PATH;
9338 desc = openp (search_path, flags, file_name,
9339 O_RDONLY | O_BINARY, &absolute_name);
9340 xfree (search_path);
9341 if (desc < 0)
9342 return NULL;
9343
9344 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
9345 xfree (absolute_name);
9346 if (sym_bfd == NULL)
9347 return NULL;
9348 bfd_set_cacheable (sym_bfd, 1);
9349
9350 if (!bfd_check_format (sym_bfd, bfd_object))
9351 {
9352 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
9353 return NULL;
9354 }
9355
9356 return sym_bfd;
9357 }
9358
9359 /* Try to open DWO file FILE_NAME.
9360 COMP_DIR is the DW_AT_comp_dir attribute.
9361 The result is the bfd handle of the file.
9362 If there is a problem finding or opening the file, return NULL.
9363 Upon success, the canonicalized path of the file is stored in the bfd,
9364 same as symfile_bfd_open. */
9365
9366 static bfd *
9367 open_dwo_file (const char *file_name, const char *comp_dir)
9368 {
9369 bfd *abfd;
9370
9371 if (IS_ABSOLUTE_PATH (file_name))
9372 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
9373
9374 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
9375
9376 if (comp_dir != NULL)
9377 {
9378 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
9379
9380 /* NOTE: If comp_dir is a relative path, this will also try the
9381 search path, which seems useful. */
9382 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/, 1 /*search_cwd*/);
9383 xfree (path_to_try);
9384 if (abfd != NULL)
9385 return abfd;
9386 }
9387
9388 /* That didn't work, try debug-file-directory, which, despite its name,
9389 is a list of paths. */
9390
9391 if (*debug_file_directory == '\0')
9392 return NULL;
9393
9394 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
9395 }
9396
9397 /* This function is mapped across the sections and remembers the offset and
9398 size of each of the DWO debugging sections we are interested in. */
9399
9400 static void
9401 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
9402 {
9403 struct dwo_sections *dwo_sections = dwo_sections_ptr;
9404 const struct dwop_section_names *names = &dwop_section_names;
9405
9406 if (section_is_p (sectp->name, &names->abbrev_dwo))
9407 {
9408 dwo_sections->abbrev.asection = sectp;
9409 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
9410 }
9411 else if (section_is_p (sectp->name, &names->info_dwo))
9412 {
9413 dwo_sections->info.asection = sectp;
9414 dwo_sections->info.size = bfd_get_section_size (sectp);
9415 }
9416 else if (section_is_p (sectp->name, &names->line_dwo))
9417 {
9418 dwo_sections->line.asection = sectp;
9419 dwo_sections->line.size = bfd_get_section_size (sectp);
9420 }
9421 else if (section_is_p (sectp->name, &names->loc_dwo))
9422 {
9423 dwo_sections->loc.asection = sectp;
9424 dwo_sections->loc.size = bfd_get_section_size (sectp);
9425 }
9426 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9427 {
9428 dwo_sections->macinfo.asection = sectp;
9429 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
9430 }
9431 else if (section_is_p (sectp->name, &names->macro_dwo))
9432 {
9433 dwo_sections->macro.asection = sectp;
9434 dwo_sections->macro.size = bfd_get_section_size (sectp);
9435 }
9436 else if (section_is_p (sectp->name, &names->str_dwo))
9437 {
9438 dwo_sections->str.asection = sectp;
9439 dwo_sections->str.size = bfd_get_section_size (sectp);
9440 }
9441 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9442 {
9443 dwo_sections->str_offsets.asection = sectp;
9444 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
9445 }
9446 else if (section_is_p (sectp->name, &names->types_dwo))
9447 {
9448 struct dwarf2_section_info type_section;
9449
9450 memset (&type_section, 0, sizeof (type_section));
9451 type_section.asection = sectp;
9452 type_section.size = bfd_get_section_size (sectp);
9453 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
9454 &type_section);
9455 }
9456 }
9457
9458 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
9459 by PER_CU. This is for the non-DWP case.
9460 The result is NULL if DWO_NAME can't be found. */
9461
9462 static struct dwo_file *
9463 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
9464 const char *dwo_name, const char *comp_dir)
9465 {
9466 struct objfile *objfile = dwarf2_per_objfile->objfile;
9467 struct dwo_file *dwo_file;
9468 bfd *dbfd;
9469 struct cleanup *cleanups;
9470
9471 dbfd = open_dwo_file (dwo_name, comp_dir);
9472 if (dbfd == NULL)
9473 {
9474 if (dwarf2_read_debug)
9475 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
9476 return NULL;
9477 }
9478 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
9479 dwo_file->dwo_name = dwo_name;
9480 dwo_file->comp_dir = comp_dir;
9481 dwo_file->dbfd = dbfd;
9482
9483 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
9484
9485 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
9486
9487 dwo_file->cu = create_dwo_cu (dwo_file);
9488
9489 dwo_file->tus = create_debug_types_hash_table (dwo_file,
9490 dwo_file->sections.types);
9491
9492 discard_cleanups (cleanups);
9493
9494 if (dwarf2_read_debug)
9495 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
9496
9497 return dwo_file;
9498 }
9499
9500 /* This function is mapped across the sections and remembers the offset and
9501 size of each of the DWP debugging sections we are interested in. */
9502
9503 static void
9504 dwarf2_locate_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
9505 {
9506 struct dwp_file *dwp_file = dwp_file_ptr;
9507 const struct dwop_section_names *names = &dwop_section_names;
9508 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
9509
9510 /* Record the ELF section number for later lookup: this is what the
9511 .debug_cu_index,.debug_tu_index tables use. */
9512 gdb_assert (elf_section_nr < dwp_file->num_sections);
9513 dwp_file->elf_sections[elf_section_nr] = sectp;
9514
9515 /* Look for specific sections that we need. */
9516 if (section_is_p (sectp->name, &names->str_dwo))
9517 {
9518 dwp_file->sections.str.asection = sectp;
9519 dwp_file->sections.str.size = bfd_get_section_size (sectp);
9520 }
9521 else if (section_is_p (sectp->name, &names->cu_index))
9522 {
9523 dwp_file->sections.cu_index.asection = sectp;
9524 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
9525 }
9526 else if (section_is_p (sectp->name, &names->tu_index))
9527 {
9528 dwp_file->sections.tu_index.asection = sectp;
9529 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
9530 }
9531 }
9532
9533 /* Hash function for dwp_file loaded CUs/TUs. */
9534
9535 static hashval_t
9536 hash_dwp_loaded_cutus (const void *item)
9537 {
9538 const struct dwo_unit *dwo_unit = item;
9539
9540 /* This drops the top 32 bits of the signature, but is ok for a hash. */
9541 return dwo_unit->signature;
9542 }
9543
9544 /* Equality function for dwp_file loaded CUs/TUs. */
9545
9546 static int
9547 eq_dwp_loaded_cutus (const void *a, const void *b)
9548 {
9549 const struct dwo_unit *dua = a;
9550 const struct dwo_unit *dub = b;
9551
9552 return dua->signature == dub->signature;
9553 }
9554
9555 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
9556
9557 static htab_t
9558 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
9559 {
9560 return htab_create_alloc_ex (3,
9561 hash_dwp_loaded_cutus,
9562 eq_dwp_loaded_cutus,
9563 NULL,
9564 &objfile->objfile_obstack,
9565 hashtab_obstack_allocate,
9566 dummy_obstack_deallocate);
9567 }
9568
9569 /* Try to open DWP file FILE_NAME.
9570 The result is the bfd handle of the file.
9571 If there is a problem finding or opening the file, return NULL.
9572 Upon success, the canonicalized path of the file is stored in the bfd,
9573 same as symfile_bfd_open. */
9574
9575 static bfd *
9576 open_dwp_file (const char *file_name)
9577 {
9578 bfd *abfd;
9579
9580 abfd = try_open_dwop_file (file_name, 1 /*is_dwp*/, 1 /*search_cwd*/);
9581 if (abfd != NULL)
9582 return abfd;
9583
9584 /* Work around upstream bug 15652.
9585 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
9586 [Whether that's a "bug" is debatable, but it is getting in our way.]
9587 We have no real idea where the dwp file is, because gdb's realpath-ing
9588 of the executable's path may have discarded the needed info.
9589 [IWBN if the dwp file name was recorded in the executable, akin to
9590 .gnu_debuglink, but that doesn't exist yet.]
9591 Strip the directory from FILE_NAME and search again. */
9592 if (*debug_file_directory != '\0')
9593 {
9594 /* Don't implicitly search the current directory here.
9595 If the user wants to search "." to handle this case,
9596 it must be added to debug-file-directory. */
9597 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
9598 0 /*search_cwd*/);
9599 }
9600
9601 return NULL;
9602 }
9603
9604 /* Initialize the use of the DWP file for the current objfile.
9605 By convention the name of the DWP file is ${objfile}.dwp.
9606 The result is NULL if it can't be found. */
9607
9608 static struct dwp_file *
9609 open_and_init_dwp_file (void)
9610 {
9611 struct objfile *objfile = dwarf2_per_objfile->objfile;
9612 struct dwp_file *dwp_file;
9613 char *dwp_name;
9614 bfd *dbfd;
9615 struct cleanup *cleanups;
9616
9617 dwp_name = xstrprintf ("%s.dwp", dwarf2_per_objfile->objfile->name);
9618 cleanups = make_cleanup (xfree, dwp_name);
9619
9620 dbfd = open_dwp_file (dwp_name);
9621 if (dbfd == NULL)
9622 {
9623 if (dwarf2_read_debug)
9624 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
9625 do_cleanups (cleanups);
9626 return NULL;
9627 }
9628 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
9629 dwp_file->name = bfd_get_filename (dbfd);
9630 dwp_file->dbfd = dbfd;
9631 do_cleanups (cleanups);
9632
9633 /* +1: section 0 is unused */
9634 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
9635 dwp_file->elf_sections =
9636 OBSTACK_CALLOC (&objfile->objfile_obstack,
9637 dwp_file->num_sections, asection *);
9638
9639 bfd_map_over_sections (dbfd, dwarf2_locate_dwp_sections, dwp_file);
9640
9641 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
9642
9643 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
9644
9645 dwp_file->loaded_cutus = allocate_dwp_loaded_cutus_table (objfile);
9646
9647 if (dwarf2_read_debug)
9648 {
9649 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
9650 fprintf_unfiltered (gdb_stdlog,
9651 " %s CUs, %s TUs\n",
9652 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
9653 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
9654 }
9655
9656 return dwp_file;
9657 }
9658
9659 /* Wrapper around open_and_init_dwp_file, only open it once. */
9660
9661 static struct dwp_file *
9662 get_dwp_file (void)
9663 {
9664 if (! dwarf2_per_objfile->dwp_checked)
9665 {
9666 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
9667 dwarf2_per_objfile->dwp_checked = 1;
9668 }
9669 return dwarf2_per_objfile->dwp_file;
9670 }
9671
9672 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
9673 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
9674 or in the DWP file for the objfile, referenced by THIS_UNIT.
9675 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
9676 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
9677
9678 This is called, for example, when wanting to read a variable with a
9679 complex location. Therefore we don't want to do file i/o for every call.
9680 Therefore we don't want to look for a DWO file on every call.
9681 Therefore we first see if we've already seen SIGNATURE in a DWP file,
9682 then we check if we've already seen DWO_NAME, and only THEN do we check
9683 for a DWO file.
9684
9685 The result is a pointer to the dwo_unit object or NULL if we didn't find it
9686 (dwo_id mismatch or couldn't find the DWO/DWP file). */
9687
9688 static struct dwo_unit *
9689 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
9690 const char *dwo_name, const char *comp_dir,
9691 ULONGEST signature, int is_debug_types)
9692 {
9693 struct objfile *objfile = dwarf2_per_objfile->objfile;
9694 const char *kind = is_debug_types ? "TU" : "CU";
9695 void **dwo_file_slot;
9696 struct dwo_file *dwo_file;
9697 struct dwp_file *dwp_file;
9698
9699 /* First see if there's a DWP file.
9700 If we have a DWP file but didn't find the DWO inside it, don't
9701 look for the original DWO file. It makes gdb behave differently
9702 depending on whether one is debugging in the build tree. */
9703
9704 dwp_file = get_dwp_file ();
9705 if (dwp_file != NULL)
9706 {
9707 const struct dwp_hash_table *dwp_htab =
9708 is_debug_types ? dwp_file->tus : dwp_file->cus;
9709
9710 if (dwp_htab != NULL)
9711 {
9712 struct dwo_unit *dwo_cutu =
9713 lookup_dwo_in_dwp (dwp_file, dwp_htab, comp_dir,
9714 signature, is_debug_types);
9715
9716 if (dwo_cutu != NULL)
9717 {
9718 if (dwarf2_read_debug)
9719 {
9720 fprintf_unfiltered (gdb_stdlog,
9721 "Virtual DWO %s %s found: @%s\n",
9722 kind, hex_string (signature),
9723 host_address_to_string (dwo_cutu));
9724 }
9725 return dwo_cutu;
9726 }
9727 }
9728 }
9729 else
9730 {
9731 /* No DWP file, look for the DWO file. */
9732
9733 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
9734 if (*dwo_file_slot == NULL)
9735 {
9736 /* Read in the file and build a table of the CUs/TUs it contains. */
9737 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
9738 }
9739 /* NOTE: This will be NULL if unable to open the file. */
9740 dwo_file = *dwo_file_slot;
9741
9742 if (dwo_file != NULL)
9743 {
9744 struct dwo_unit *dwo_cutu = NULL;
9745
9746 if (is_debug_types && dwo_file->tus)
9747 {
9748 struct dwo_unit find_dwo_cutu;
9749
9750 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
9751 find_dwo_cutu.signature = signature;
9752 dwo_cutu = htab_find (dwo_file->tus, &find_dwo_cutu);
9753 }
9754 else if (!is_debug_types && dwo_file->cu)
9755 {
9756 if (signature == dwo_file->cu->signature)
9757 dwo_cutu = dwo_file->cu;
9758 }
9759
9760 if (dwo_cutu != NULL)
9761 {
9762 if (dwarf2_read_debug)
9763 {
9764 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
9765 kind, dwo_name, hex_string (signature),
9766 host_address_to_string (dwo_cutu));
9767 }
9768 return dwo_cutu;
9769 }
9770 }
9771 }
9772
9773 /* We didn't find it. This could mean a dwo_id mismatch, or
9774 someone deleted the DWO/DWP file, or the search path isn't set up
9775 correctly to find the file. */
9776
9777 if (dwarf2_read_debug)
9778 {
9779 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
9780 kind, dwo_name, hex_string (signature));
9781 }
9782
9783 complaint (&symfile_complaints,
9784 _("Could not find DWO %s %s(%s) referenced by %s at offset 0x%x"
9785 " [in module %s]"),
9786 kind, dwo_name, hex_string (signature),
9787 this_unit->is_debug_types ? "TU" : "CU",
9788 this_unit->offset.sect_off, objfile->name);
9789 return NULL;
9790 }
9791
9792 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
9793 See lookup_dwo_cutu_unit for details. */
9794
9795 static struct dwo_unit *
9796 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
9797 const char *dwo_name, const char *comp_dir,
9798 ULONGEST signature)
9799 {
9800 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
9801 }
9802
9803 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
9804 See lookup_dwo_cutu_unit for details. */
9805
9806 static struct dwo_unit *
9807 lookup_dwo_type_unit (struct signatured_type *this_tu,
9808 const char *dwo_name, const char *comp_dir)
9809 {
9810 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
9811 }
9812
9813 /* Free all resources associated with DWO_FILE.
9814 Close the DWO file and munmap the sections.
9815 All memory should be on the objfile obstack. */
9816
9817 static void
9818 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
9819 {
9820 int ix;
9821 struct dwarf2_section_info *section;
9822
9823 /* Note: dbfd is NULL for virtual DWO files. */
9824 gdb_bfd_unref (dwo_file->dbfd);
9825
9826 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
9827 }
9828
9829 /* Wrapper for free_dwo_file for use in cleanups. */
9830
9831 static void
9832 free_dwo_file_cleanup (void *arg)
9833 {
9834 struct dwo_file *dwo_file = (struct dwo_file *) arg;
9835 struct objfile *objfile = dwarf2_per_objfile->objfile;
9836
9837 free_dwo_file (dwo_file, objfile);
9838 }
9839
9840 /* Traversal function for free_dwo_files. */
9841
9842 static int
9843 free_dwo_file_from_slot (void **slot, void *info)
9844 {
9845 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
9846 struct objfile *objfile = (struct objfile *) info;
9847
9848 free_dwo_file (dwo_file, objfile);
9849
9850 return 1;
9851 }
9852
9853 /* Free all resources associated with DWO_FILES. */
9854
9855 static void
9856 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
9857 {
9858 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
9859 }
9860 \f
9861 /* Read in various DIEs. */
9862
9863 /* qsort helper for inherit_abstract_dies. */
9864
9865 static int
9866 unsigned_int_compar (const void *ap, const void *bp)
9867 {
9868 unsigned int a = *(unsigned int *) ap;
9869 unsigned int b = *(unsigned int *) bp;
9870
9871 return (a > b) - (b > a);
9872 }
9873
9874 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
9875 Inherit only the children of the DW_AT_abstract_origin DIE not being
9876 already referenced by DW_AT_abstract_origin from the children of the
9877 current DIE. */
9878
9879 static void
9880 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
9881 {
9882 struct die_info *child_die;
9883 unsigned die_children_count;
9884 /* CU offsets which were referenced by children of the current DIE. */
9885 sect_offset *offsets;
9886 sect_offset *offsets_end, *offsetp;
9887 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
9888 struct die_info *origin_die;
9889 /* Iterator of the ORIGIN_DIE children. */
9890 struct die_info *origin_child_die;
9891 struct cleanup *cleanups;
9892 struct attribute *attr;
9893 struct dwarf2_cu *origin_cu;
9894 struct pending **origin_previous_list_in_scope;
9895
9896 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
9897 if (!attr)
9898 return;
9899
9900 /* Note that following die references may follow to a die in a
9901 different cu. */
9902
9903 origin_cu = cu;
9904 origin_die = follow_die_ref (die, attr, &origin_cu);
9905
9906 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
9907 symbols in. */
9908 origin_previous_list_in_scope = origin_cu->list_in_scope;
9909 origin_cu->list_in_scope = cu->list_in_scope;
9910
9911 if (die->tag != origin_die->tag
9912 && !(die->tag == DW_TAG_inlined_subroutine
9913 && origin_die->tag == DW_TAG_subprogram))
9914 complaint (&symfile_complaints,
9915 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
9916 die->offset.sect_off, origin_die->offset.sect_off);
9917
9918 child_die = die->child;
9919 die_children_count = 0;
9920 while (child_die && child_die->tag)
9921 {
9922 child_die = sibling_die (child_die);
9923 die_children_count++;
9924 }
9925 offsets = xmalloc (sizeof (*offsets) * die_children_count);
9926 cleanups = make_cleanup (xfree, offsets);
9927
9928 offsets_end = offsets;
9929 child_die = die->child;
9930 while (child_die && child_die->tag)
9931 {
9932 /* For each CHILD_DIE, find the corresponding child of
9933 ORIGIN_DIE. If there is more than one layer of
9934 DW_AT_abstract_origin, follow them all; there shouldn't be,
9935 but GCC versions at least through 4.4 generate this (GCC PR
9936 40573). */
9937 struct die_info *child_origin_die = child_die;
9938 struct dwarf2_cu *child_origin_cu = cu;
9939
9940 while (1)
9941 {
9942 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
9943 child_origin_cu);
9944 if (attr == NULL)
9945 break;
9946 child_origin_die = follow_die_ref (child_origin_die, attr,
9947 &child_origin_cu);
9948 }
9949
9950 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
9951 counterpart may exist. */
9952 if (child_origin_die != child_die)
9953 {
9954 if (child_die->tag != child_origin_die->tag
9955 && !(child_die->tag == DW_TAG_inlined_subroutine
9956 && child_origin_die->tag == DW_TAG_subprogram))
9957 complaint (&symfile_complaints,
9958 _("Child DIE 0x%x and its abstract origin 0x%x have "
9959 "different tags"), child_die->offset.sect_off,
9960 child_origin_die->offset.sect_off);
9961 if (child_origin_die->parent != origin_die)
9962 complaint (&symfile_complaints,
9963 _("Child DIE 0x%x and its abstract origin 0x%x have "
9964 "different parents"), child_die->offset.sect_off,
9965 child_origin_die->offset.sect_off);
9966 else
9967 *offsets_end++ = child_origin_die->offset;
9968 }
9969 child_die = sibling_die (child_die);
9970 }
9971 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
9972 unsigned_int_compar);
9973 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
9974 if (offsetp[-1].sect_off == offsetp->sect_off)
9975 complaint (&symfile_complaints,
9976 _("Multiple children of DIE 0x%x refer "
9977 "to DIE 0x%x as their abstract origin"),
9978 die->offset.sect_off, offsetp->sect_off);
9979
9980 offsetp = offsets;
9981 origin_child_die = origin_die->child;
9982 while (origin_child_die && origin_child_die->tag)
9983 {
9984 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
9985 while (offsetp < offsets_end
9986 && offsetp->sect_off < origin_child_die->offset.sect_off)
9987 offsetp++;
9988 if (offsetp >= offsets_end
9989 || offsetp->sect_off > origin_child_die->offset.sect_off)
9990 {
9991 /* Found that ORIGIN_CHILD_DIE is really not referenced. */
9992 process_die (origin_child_die, origin_cu);
9993 }
9994 origin_child_die = sibling_die (origin_child_die);
9995 }
9996 origin_cu->list_in_scope = origin_previous_list_in_scope;
9997
9998 do_cleanups (cleanups);
9999 }
10000
10001 static void
10002 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
10003 {
10004 struct objfile *objfile = cu->objfile;
10005 struct context_stack *new;
10006 CORE_ADDR lowpc;
10007 CORE_ADDR highpc;
10008 struct die_info *child_die;
10009 struct attribute *attr, *call_line, *call_file;
10010 const char *name;
10011 CORE_ADDR baseaddr;
10012 struct block *block;
10013 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
10014 VEC (symbolp) *template_args = NULL;
10015 struct template_symbol *templ_func = NULL;
10016
10017 if (inlined_func)
10018 {
10019 /* If we do not have call site information, we can't show the
10020 caller of this inlined function. That's too confusing, so
10021 only use the scope for local variables. */
10022 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
10023 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
10024 if (call_line == NULL || call_file == NULL)
10025 {
10026 read_lexical_block_scope (die, cu);
10027 return;
10028 }
10029 }
10030
10031 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10032
10033 name = dwarf2_name (die, cu);
10034
10035 /* Ignore functions with missing or empty names. These are actually
10036 illegal according to the DWARF standard. */
10037 if (name == NULL)
10038 {
10039 complaint (&symfile_complaints,
10040 _("missing name for subprogram DIE at %d"),
10041 die->offset.sect_off);
10042 return;
10043 }
10044
10045 /* Ignore functions with missing or invalid low and high pc attributes. */
10046 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
10047 {
10048 attr = dwarf2_attr (die, DW_AT_external, cu);
10049 if (!attr || !DW_UNSND (attr))
10050 complaint (&symfile_complaints,
10051 _("cannot get low and high bounds "
10052 "for subprogram DIE at %d"),
10053 die->offset.sect_off);
10054 return;
10055 }
10056
10057 lowpc += baseaddr;
10058 highpc += baseaddr;
10059
10060 /* If we have any template arguments, then we must allocate a
10061 different sort of symbol. */
10062 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
10063 {
10064 if (child_die->tag == DW_TAG_template_type_param
10065 || child_die->tag == DW_TAG_template_value_param)
10066 {
10067 templ_func = allocate_template_symbol (objfile);
10068 templ_func->base.is_cplus_template_function = 1;
10069 break;
10070 }
10071 }
10072
10073 new = push_context (0, lowpc);
10074 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
10075 (struct symbol *) templ_func);
10076
10077 /* If there is a location expression for DW_AT_frame_base, record
10078 it. */
10079 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
10080 if (attr)
10081 dwarf2_symbol_mark_computed (attr, new->name, cu, 1);
10082
10083 cu->list_in_scope = &local_symbols;
10084
10085 if (die->child != NULL)
10086 {
10087 child_die = die->child;
10088 while (child_die && child_die->tag)
10089 {
10090 if (child_die->tag == DW_TAG_template_type_param
10091 || child_die->tag == DW_TAG_template_value_param)
10092 {
10093 struct symbol *arg = new_symbol (child_die, NULL, cu);
10094
10095 if (arg != NULL)
10096 VEC_safe_push (symbolp, template_args, arg);
10097 }
10098 else
10099 process_die (child_die, cu);
10100 child_die = sibling_die (child_die);
10101 }
10102 }
10103
10104 inherit_abstract_dies (die, cu);
10105
10106 /* If we have a DW_AT_specification, we might need to import using
10107 directives from the context of the specification DIE. See the
10108 comment in determine_prefix. */
10109 if (cu->language == language_cplus
10110 && dwarf2_attr (die, DW_AT_specification, cu))
10111 {
10112 struct dwarf2_cu *spec_cu = cu;
10113 struct die_info *spec_die = die_specification (die, &spec_cu);
10114
10115 while (spec_die)
10116 {
10117 child_die = spec_die->child;
10118 while (child_die && child_die->tag)
10119 {
10120 if (child_die->tag == DW_TAG_imported_module)
10121 process_die (child_die, spec_cu);
10122 child_die = sibling_die (child_die);
10123 }
10124
10125 /* In some cases, GCC generates specification DIEs that
10126 themselves contain DW_AT_specification attributes. */
10127 spec_die = die_specification (spec_die, &spec_cu);
10128 }
10129 }
10130
10131 new = pop_context ();
10132 /* Make a block for the local symbols within. */
10133 block = finish_block (new->name, &local_symbols, new->old_blocks,
10134 lowpc, highpc, objfile);
10135
10136 /* For C++, set the block's scope. */
10137 if ((cu->language == language_cplus || cu->language == language_fortran)
10138 && cu->processing_has_namespace_info)
10139 block_set_scope (block, determine_prefix (die, cu),
10140 &objfile->objfile_obstack);
10141
10142 /* If we have address ranges, record them. */
10143 dwarf2_record_block_ranges (die, block, baseaddr, cu);
10144
10145 /* Attach template arguments to function. */
10146 if (! VEC_empty (symbolp, template_args))
10147 {
10148 gdb_assert (templ_func != NULL);
10149
10150 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
10151 templ_func->template_arguments
10152 = obstack_alloc (&objfile->objfile_obstack,
10153 (templ_func->n_template_arguments
10154 * sizeof (struct symbol *)));
10155 memcpy (templ_func->template_arguments,
10156 VEC_address (symbolp, template_args),
10157 (templ_func->n_template_arguments * sizeof (struct symbol *)));
10158 VEC_free (symbolp, template_args);
10159 }
10160
10161 /* In C++, we can have functions nested inside functions (e.g., when
10162 a function declares a class that has methods). This means that
10163 when we finish processing a function scope, we may need to go
10164 back to building a containing block's symbol lists. */
10165 local_symbols = new->locals;
10166 using_directives = new->using_directives;
10167
10168 /* If we've finished processing a top-level function, subsequent
10169 symbols go in the file symbol list. */
10170 if (outermost_context_p ())
10171 cu->list_in_scope = &file_symbols;
10172 }
10173
10174 /* Process all the DIES contained within a lexical block scope. Start
10175 a new scope, process the dies, and then close the scope. */
10176
10177 static void
10178 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
10179 {
10180 struct objfile *objfile = cu->objfile;
10181 struct context_stack *new;
10182 CORE_ADDR lowpc, highpc;
10183 struct die_info *child_die;
10184 CORE_ADDR baseaddr;
10185
10186 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10187
10188 /* Ignore blocks with missing or invalid low and high pc attributes. */
10189 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
10190 as multiple lexical blocks? Handling children in a sane way would
10191 be nasty. Might be easier to properly extend generic blocks to
10192 describe ranges. */
10193 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
10194 return;
10195 lowpc += baseaddr;
10196 highpc += baseaddr;
10197
10198 push_context (0, lowpc);
10199 if (die->child != NULL)
10200 {
10201 child_die = die->child;
10202 while (child_die && child_die->tag)
10203 {
10204 process_die (child_die, cu);
10205 child_die = sibling_die (child_die);
10206 }
10207 }
10208 new = pop_context ();
10209
10210 if (local_symbols != NULL || using_directives != NULL)
10211 {
10212 struct block *block
10213 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
10214 highpc, objfile);
10215
10216 /* Note that recording ranges after traversing children, as we
10217 do here, means that recording a parent's ranges entails
10218 walking across all its children's ranges as they appear in
10219 the address map, which is quadratic behavior.
10220
10221 It would be nicer to record the parent's ranges before
10222 traversing its children, simply overriding whatever you find
10223 there. But since we don't even decide whether to create a
10224 block until after we've traversed its children, that's hard
10225 to do. */
10226 dwarf2_record_block_ranges (die, block, baseaddr, cu);
10227 }
10228 local_symbols = new->locals;
10229 using_directives = new->using_directives;
10230 }
10231
10232 /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
10233
10234 static void
10235 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
10236 {
10237 struct objfile *objfile = cu->objfile;
10238 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10239 CORE_ADDR pc, baseaddr;
10240 struct attribute *attr;
10241 struct call_site *call_site, call_site_local;
10242 void **slot;
10243 int nparams;
10244 struct die_info *child_die;
10245
10246 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10247
10248 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
10249 if (!attr)
10250 {
10251 complaint (&symfile_complaints,
10252 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
10253 "DIE 0x%x [in module %s]"),
10254 die->offset.sect_off, objfile->name);
10255 return;
10256 }
10257 pc = DW_ADDR (attr) + baseaddr;
10258
10259 if (cu->call_site_htab == NULL)
10260 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
10261 NULL, &objfile->objfile_obstack,
10262 hashtab_obstack_allocate, NULL);
10263 call_site_local.pc = pc;
10264 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
10265 if (*slot != NULL)
10266 {
10267 complaint (&symfile_complaints,
10268 _("Duplicate PC %s for DW_TAG_GNU_call_site "
10269 "DIE 0x%x [in module %s]"),
10270 paddress (gdbarch, pc), die->offset.sect_off, objfile->name);
10271 return;
10272 }
10273
10274 /* Count parameters at the caller. */
10275
10276 nparams = 0;
10277 for (child_die = die->child; child_die && child_die->tag;
10278 child_die = sibling_die (child_die))
10279 {
10280 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
10281 {
10282 complaint (&symfile_complaints,
10283 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
10284 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
10285 child_die->tag, child_die->offset.sect_off, objfile->name);
10286 continue;
10287 }
10288
10289 nparams++;
10290 }
10291
10292 call_site = obstack_alloc (&objfile->objfile_obstack,
10293 (sizeof (*call_site)
10294 + (sizeof (*call_site->parameter)
10295 * (nparams - 1))));
10296 *slot = call_site;
10297 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
10298 call_site->pc = pc;
10299
10300 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
10301 {
10302 struct die_info *func_die;
10303
10304 /* Skip also over DW_TAG_inlined_subroutine. */
10305 for (func_die = die->parent;
10306 func_die && func_die->tag != DW_TAG_subprogram
10307 && func_die->tag != DW_TAG_subroutine_type;
10308 func_die = func_die->parent);
10309
10310 /* DW_AT_GNU_all_call_sites is a superset
10311 of DW_AT_GNU_all_tail_call_sites. */
10312 if (func_die
10313 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
10314 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
10315 {
10316 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
10317 not complete. But keep CALL_SITE for look ups via call_site_htab,
10318 both the initial caller containing the real return address PC and
10319 the final callee containing the current PC of a chain of tail
10320 calls do not need to have the tail call list complete. But any
10321 function candidate for a virtual tail call frame searched via
10322 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
10323 determined unambiguously. */
10324 }
10325 else
10326 {
10327 struct type *func_type = NULL;
10328
10329 if (func_die)
10330 func_type = get_die_type (func_die, cu);
10331 if (func_type != NULL)
10332 {
10333 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
10334
10335 /* Enlist this call site to the function. */
10336 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
10337 TYPE_TAIL_CALL_LIST (func_type) = call_site;
10338 }
10339 else
10340 complaint (&symfile_complaints,
10341 _("Cannot find function owning DW_TAG_GNU_call_site "
10342 "DIE 0x%x [in module %s]"),
10343 die->offset.sect_off, objfile->name);
10344 }
10345 }
10346
10347 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
10348 if (attr == NULL)
10349 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
10350 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
10351 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
10352 /* Keep NULL DWARF_BLOCK. */;
10353 else if (attr_form_is_block (attr))
10354 {
10355 struct dwarf2_locexpr_baton *dlbaton;
10356
10357 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
10358 dlbaton->data = DW_BLOCK (attr)->data;
10359 dlbaton->size = DW_BLOCK (attr)->size;
10360 dlbaton->per_cu = cu->per_cu;
10361
10362 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
10363 }
10364 else if (is_ref_attr (attr))
10365 {
10366 struct dwarf2_cu *target_cu = cu;
10367 struct die_info *target_die;
10368
10369 target_die = follow_die_ref (die, attr, &target_cu);
10370 gdb_assert (target_cu->objfile == objfile);
10371 if (die_is_declaration (target_die, target_cu))
10372 {
10373 const char *target_physname = NULL;
10374 struct attribute *target_attr;
10375
10376 /* Prefer the mangled name; otherwise compute the demangled one. */
10377 target_attr = dwarf2_attr (target_die, DW_AT_linkage_name, target_cu);
10378 if (target_attr == NULL)
10379 target_attr = dwarf2_attr (target_die, DW_AT_MIPS_linkage_name,
10380 target_cu);
10381 if (target_attr != NULL && DW_STRING (target_attr) != NULL)
10382 target_physname = DW_STRING (target_attr);
10383 else
10384 target_physname = dwarf2_physname (NULL, target_die, target_cu);
10385 if (target_physname == NULL)
10386 complaint (&symfile_complaints,
10387 _("DW_AT_GNU_call_site_target target DIE has invalid "
10388 "physname, for referencing DIE 0x%x [in module %s]"),
10389 die->offset.sect_off, objfile->name);
10390 else
10391 SET_FIELD_PHYSNAME (call_site->target, target_physname);
10392 }
10393 else
10394 {
10395 CORE_ADDR lowpc;
10396
10397 /* DW_AT_entry_pc should be preferred. */
10398 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
10399 complaint (&symfile_complaints,
10400 _("DW_AT_GNU_call_site_target target DIE has invalid "
10401 "low pc, for referencing DIE 0x%x [in module %s]"),
10402 die->offset.sect_off, objfile->name);
10403 else
10404 SET_FIELD_PHYSADDR (call_site->target, lowpc + baseaddr);
10405 }
10406 }
10407 else
10408 complaint (&symfile_complaints,
10409 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
10410 "block nor reference, for DIE 0x%x [in module %s]"),
10411 die->offset.sect_off, objfile->name);
10412
10413 call_site->per_cu = cu->per_cu;
10414
10415 for (child_die = die->child;
10416 child_die && child_die->tag;
10417 child_die = sibling_die (child_die))
10418 {
10419 struct call_site_parameter *parameter;
10420 struct attribute *loc, *origin;
10421
10422 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
10423 {
10424 /* Already printed the complaint above. */
10425 continue;
10426 }
10427
10428 gdb_assert (call_site->parameter_count < nparams);
10429 parameter = &call_site->parameter[call_site->parameter_count];
10430
10431 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
10432 specifies DW_TAG_formal_parameter. Value of the data assumed for the
10433 register is contained in DW_AT_GNU_call_site_value. */
10434
10435 loc = dwarf2_attr (child_die, DW_AT_location, cu);
10436 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
10437 if (loc == NULL && origin != NULL && is_ref_attr (origin))
10438 {
10439 sect_offset offset;
10440
10441 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
10442 offset = dwarf2_get_ref_die_offset (origin);
10443 if (!offset_in_cu_p (&cu->header, offset))
10444 {
10445 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
10446 binding can be done only inside one CU. Such referenced DIE
10447 therefore cannot be even moved to DW_TAG_partial_unit. */
10448 complaint (&symfile_complaints,
10449 _("DW_AT_abstract_origin offset is not in CU for "
10450 "DW_TAG_GNU_call_site child DIE 0x%x "
10451 "[in module %s]"),
10452 child_die->offset.sect_off, objfile->name);
10453 continue;
10454 }
10455 parameter->u.param_offset.cu_off = (offset.sect_off
10456 - cu->header.offset.sect_off);
10457 }
10458 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
10459 {
10460 complaint (&symfile_complaints,
10461 _("No DW_FORM_block* DW_AT_location for "
10462 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
10463 child_die->offset.sect_off, objfile->name);
10464 continue;
10465 }
10466 else
10467 {
10468 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
10469 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
10470 if (parameter->u.dwarf_reg != -1)
10471 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
10472 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
10473 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
10474 &parameter->u.fb_offset))
10475 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
10476 else
10477 {
10478 complaint (&symfile_complaints,
10479 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
10480 "for DW_FORM_block* DW_AT_location is supported for "
10481 "DW_TAG_GNU_call_site child DIE 0x%x "
10482 "[in module %s]"),
10483 child_die->offset.sect_off, objfile->name);
10484 continue;
10485 }
10486 }
10487
10488 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
10489 if (!attr_form_is_block (attr))
10490 {
10491 complaint (&symfile_complaints,
10492 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
10493 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
10494 child_die->offset.sect_off, objfile->name);
10495 continue;
10496 }
10497 parameter->value = DW_BLOCK (attr)->data;
10498 parameter->value_size = DW_BLOCK (attr)->size;
10499
10500 /* Parameters are not pre-cleared by memset above. */
10501 parameter->data_value = NULL;
10502 parameter->data_value_size = 0;
10503 call_site->parameter_count++;
10504
10505 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
10506 if (attr)
10507 {
10508 if (!attr_form_is_block (attr))
10509 complaint (&symfile_complaints,
10510 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
10511 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
10512 child_die->offset.sect_off, objfile->name);
10513 else
10514 {
10515 parameter->data_value = DW_BLOCK (attr)->data;
10516 parameter->data_value_size = DW_BLOCK (attr)->size;
10517 }
10518 }
10519 }
10520 }
10521
10522 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
10523 Return 1 if the attributes are present and valid, otherwise, return 0.
10524 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
10525
10526 static int
10527 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
10528 CORE_ADDR *high_return, struct dwarf2_cu *cu,
10529 struct partial_symtab *ranges_pst)
10530 {
10531 struct objfile *objfile = cu->objfile;
10532 struct comp_unit_head *cu_header = &cu->header;
10533 bfd *obfd = objfile->obfd;
10534 unsigned int addr_size = cu_header->addr_size;
10535 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
10536 /* Base address selection entry. */
10537 CORE_ADDR base;
10538 int found_base;
10539 unsigned int dummy;
10540 const gdb_byte *buffer;
10541 CORE_ADDR marker;
10542 int low_set;
10543 CORE_ADDR low = 0;
10544 CORE_ADDR high = 0;
10545 CORE_ADDR baseaddr;
10546
10547 found_base = cu->base_known;
10548 base = cu->base_address;
10549
10550 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
10551 if (offset >= dwarf2_per_objfile->ranges.size)
10552 {
10553 complaint (&symfile_complaints,
10554 _("Offset %d out of bounds for DW_AT_ranges attribute"),
10555 offset);
10556 return 0;
10557 }
10558 buffer = dwarf2_per_objfile->ranges.buffer + offset;
10559
10560 /* Read in the largest possible address. */
10561 marker = read_address (obfd, buffer, cu, &dummy);
10562 if ((marker & mask) == mask)
10563 {
10564 /* If we found the largest possible address, then
10565 read the base address. */
10566 base = read_address (obfd, buffer + addr_size, cu, &dummy);
10567 buffer += 2 * addr_size;
10568 offset += 2 * addr_size;
10569 found_base = 1;
10570 }
10571
10572 low_set = 0;
10573
10574 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10575
10576 while (1)
10577 {
10578 CORE_ADDR range_beginning, range_end;
10579
10580 range_beginning = read_address (obfd, buffer, cu, &dummy);
10581 buffer += addr_size;
10582 range_end = read_address (obfd, buffer, cu, &dummy);
10583 buffer += addr_size;
10584 offset += 2 * addr_size;
10585
10586 /* An end of list marker is a pair of zero addresses. */
10587 if (range_beginning == 0 && range_end == 0)
10588 /* Found the end of list entry. */
10589 break;
10590
10591 /* Each base address selection entry is a pair of 2 values.
10592 The first is the largest possible address, the second is
10593 the base address. Check for a base address here. */
10594 if ((range_beginning & mask) == mask)
10595 {
10596 /* If we found the largest possible address, then
10597 read the base address. */
10598 base = read_address (obfd, buffer + addr_size, cu, &dummy);
10599 found_base = 1;
10600 continue;
10601 }
10602
10603 if (!found_base)
10604 {
10605 /* We have no valid base address for the ranges
10606 data. */
10607 complaint (&symfile_complaints,
10608 _("Invalid .debug_ranges data (no base address)"));
10609 return 0;
10610 }
10611
10612 if (range_beginning > range_end)
10613 {
10614 /* Inverted range entries are invalid. */
10615 complaint (&symfile_complaints,
10616 _("Invalid .debug_ranges data (inverted range)"));
10617 return 0;
10618 }
10619
10620 /* Empty range entries have no effect. */
10621 if (range_beginning == range_end)
10622 continue;
10623
10624 range_beginning += base;
10625 range_end += base;
10626
10627 /* A not-uncommon case of bad debug info.
10628 Don't pollute the addrmap with bad data. */
10629 if (range_beginning + baseaddr == 0
10630 && !dwarf2_per_objfile->has_section_at_zero)
10631 {
10632 complaint (&symfile_complaints,
10633 _(".debug_ranges entry has start address of zero"
10634 " [in module %s]"), objfile->name);
10635 continue;
10636 }
10637
10638 if (ranges_pst != NULL)
10639 addrmap_set_empty (objfile->psymtabs_addrmap,
10640 range_beginning + baseaddr,
10641 range_end - 1 + baseaddr,
10642 ranges_pst);
10643
10644 /* FIXME: This is recording everything as a low-high
10645 segment of consecutive addresses. We should have a
10646 data structure for discontiguous block ranges
10647 instead. */
10648 if (! low_set)
10649 {
10650 low = range_beginning;
10651 high = range_end;
10652 low_set = 1;
10653 }
10654 else
10655 {
10656 if (range_beginning < low)
10657 low = range_beginning;
10658 if (range_end > high)
10659 high = range_end;
10660 }
10661 }
10662
10663 if (! low_set)
10664 /* If the first entry is an end-of-list marker, the range
10665 describes an empty scope, i.e. no instructions. */
10666 return 0;
10667
10668 if (low_return)
10669 *low_return = low;
10670 if (high_return)
10671 *high_return = high;
10672 return 1;
10673 }
10674
10675 /* Get low and high pc attributes from a die. Return 1 if the attributes
10676 are present and valid, otherwise, return 0. Return -1 if the range is
10677 discontinuous, i.e. derived from DW_AT_ranges information. */
10678
10679 static int
10680 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
10681 CORE_ADDR *highpc, struct dwarf2_cu *cu,
10682 struct partial_symtab *pst)
10683 {
10684 struct attribute *attr;
10685 struct attribute *attr_high;
10686 CORE_ADDR low = 0;
10687 CORE_ADDR high = 0;
10688 int ret = 0;
10689
10690 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
10691 if (attr_high)
10692 {
10693 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
10694 if (attr)
10695 {
10696 low = DW_ADDR (attr);
10697 if (attr_high->form == DW_FORM_addr
10698 || attr_high->form == DW_FORM_GNU_addr_index)
10699 high = DW_ADDR (attr_high);
10700 else
10701 high = low + DW_UNSND (attr_high);
10702 }
10703 else
10704 /* Found high w/o low attribute. */
10705 return 0;
10706
10707 /* Found consecutive range of addresses. */
10708 ret = 1;
10709 }
10710 else
10711 {
10712 attr = dwarf2_attr (die, DW_AT_ranges, cu);
10713 if (attr != NULL)
10714 {
10715 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
10716 We take advantage of the fact that DW_AT_ranges does not appear
10717 in DW_TAG_compile_unit of DWO files. */
10718 int need_ranges_base = die->tag != DW_TAG_compile_unit;
10719 unsigned int ranges_offset = (DW_UNSND (attr)
10720 + (need_ranges_base
10721 ? cu->ranges_base
10722 : 0));
10723
10724 /* Value of the DW_AT_ranges attribute is the offset in the
10725 .debug_ranges section. */
10726 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
10727 return 0;
10728 /* Found discontinuous range of addresses. */
10729 ret = -1;
10730 }
10731 }
10732
10733 /* read_partial_die has also the strict LOW < HIGH requirement. */
10734 if (high <= low)
10735 return 0;
10736
10737 /* When using the GNU linker, .gnu.linkonce. sections are used to
10738 eliminate duplicate copies of functions and vtables and such.
10739 The linker will arbitrarily choose one and discard the others.
10740 The AT_*_pc values for such functions refer to local labels in
10741 these sections. If the section from that file was discarded, the
10742 labels are not in the output, so the relocs get a value of 0.
10743 If this is a discarded function, mark the pc bounds as invalid,
10744 so that GDB will ignore it. */
10745 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
10746 return 0;
10747
10748 *lowpc = low;
10749 if (highpc)
10750 *highpc = high;
10751 return ret;
10752 }
10753
10754 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
10755 its low and high PC addresses. Do nothing if these addresses could not
10756 be determined. Otherwise, set LOWPC to the low address if it is smaller,
10757 and HIGHPC to the high address if greater than HIGHPC. */
10758
10759 static void
10760 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
10761 CORE_ADDR *lowpc, CORE_ADDR *highpc,
10762 struct dwarf2_cu *cu)
10763 {
10764 CORE_ADDR low, high;
10765 struct die_info *child = die->child;
10766
10767 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
10768 {
10769 *lowpc = min (*lowpc, low);
10770 *highpc = max (*highpc, high);
10771 }
10772
10773 /* If the language does not allow nested subprograms (either inside
10774 subprograms or lexical blocks), we're done. */
10775 if (cu->language != language_ada)
10776 return;
10777
10778 /* Check all the children of the given DIE. If it contains nested
10779 subprograms, then check their pc bounds. Likewise, we need to
10780 check lexical blocks as well, as they may also contain subprogram
10781 definitions. */
10782 while (child && child->tag)
10783 {
10784 if (child->tag == DW_TAG_subprogram
10785 || child->tag == DW_TAG_lexical_block)
10786 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
10787 child = sibling_die (child);
10788 }
10789 }
10790
10791 /* Get the low and high pc's represented by the scope DIE, and store
10792 them in *LOWPC and *HIGHPC. If the correct values can't be
10793 determined, set *LOWPC to -1 and *HIGHPC to 0. */
10794
10795 static void
10796 get_scope_pc_bounds (struct die_info *die,
10797 CORE_ADDR *lowpc, CORE_ADDR *highpc,
10798 struct dwarf2_cu *cu)
10799 {
10800 CORE_ADDR best_low = (CORE_ADDR) -1;
10801 CORE_ADDR best_high = (CORE_ADDR) 0;
10802 CORE_ADDR current_low, current_high;
10803
10804 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
10805 {
10806 best_low = current_low;
10807 best_high = current_high;
10808 }
10809 else
10810 {
10811 struct die_info *child = die->child;
10812
10813 while (child && child->tag)
10814 {
10815 switch (child->tag) {
10816 case DW_TAG_subprogram:
10817 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
10818 break;
10819 case DW_TAG_namespace:
10820 case DW_TAG_module:
10821 /* FIXME: carlton/2004-01-16: Should we do this for
10822 DW_TAG_class_type/DW_TAG_structure_type, too? I think
10823 that current GCC's always emit the DIEs corresponding
10824 to definitions of methods of classes as children of a
10825 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
10826 the DIEs giving the declarations, which could be
10827 anywhere). But I don't see any reason why the
10828 standards says that they have to be there. */
10829 get_scope_pc_bounds (child, &current_low, &current_high, cu);
10830
10831 if (current_low != ((CORE_ADDR) -1))
10832 {
10833 best_low = min (best_low, current_low);
10834 best_high = max (best_high, current_high);
10835 }
10836 break;
10837 default:
10838 /* Ignore. */
10839 break;
10840 }
10841
10842 child = sibling_die (child);
10843 }
10844 }
10845
10846 *lowpc = best_low;
10847 *highpc = best_high;
10848 }
10849
10850 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
10851 in DIE. */
10852
10853 static void
10854 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
10855 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
10856 {
10857 struct objfile *objfile = cu->objfile;
10858 struct attribute *attr;
10859 struct attribute *attr_high;
10860
10861 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
10862 if (attr_high)
10863 {
10864 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
10865 if (attr)
10866 {
10867 CORE_ADDR low = DW_ADDR (attr);
10868 CORE_ADDR high;
10869 if (attr_high->form == DW_FORM_addr
10870 || attr_high->form == DW_FORM_GNU_addr_index)
10871 high = DW_ADDR (attr_high);
10872 else
10873 high = low + DW_UNSND (attr_high);
10874
10875 record_block_range (block, baseaddr + low, baseaddr + high - 1);
10876 }
10877 }
10878
10879 attr = dwarf2_attr (die, DW_AT_ranges, cu);
10880 if (attr)
10881 {
10882 bfd *obfd = objfile->obfd;
10883 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
10884 We take advantage of the fact that DW_AT_ranges does not appear
10885 in DW_TAG_compile_unit of DWO files. */
10886 int need_ranges_base = die->tag != DW_TAG_compile_unit;
10887
10888 /* The value of the DW_AT_ranges attribute is the offset of the
10889 address range list in the .debug_ranges section. */
10890 unsigned long offset = (DW_UNSND (attr)
10891 + (need_ranges_base ? cu->ranges_base : 0));
10892 const gdb_byte *buffer;
10893
10894 /* For some target architectures, but not others, the
10895 read_address function sign-extends the addresses it returns.
10896 To recognize base address selection entries, we need a
10897 mask. */
10898 unsigned int addr_size = cu->header.addr_size;
10899 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
10900
10901 /* The base address, to which the next pair is relative. Note
10902 that this 'base' is a DWARF concept: most entries in a range
10903 list are relative, to reduce the number of relocs against the
10904 debugging information. This is separate from this function's
10905 'baseaddr' argument, which GDB uses to relocate debugging
10906 information from a shared library based on the address at
10907 which the library was loaded. */
10908 CORE_ADDR base = cu->base_address;
10909 int base_known = cu->base_known;
10910
10911 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
10912 if (offset >= dwarf2_per_objfile->ranges.size)
10913 {
10914 complaint (&symfile_complaints,
10915 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
10916 offset);
10917 return;
10918 }
10919 buffer = dwarf2_per_objfile->ranges.buffer + offset;
10920
10921 for (;;)
10922 {
10923 unsigned int bytes_read;
10924 CORE_ADDR start, end;
10925
10926 start = read_address (obfd, buffer, cu, &bytes_read);
10927 buffer += bytes_read;
10928 end = read_address (obfd, buffer, cu, &bytes_read);
10929 buffer += bytes_read;
10930
10931 /* Did we find the end of the range list? */
10932 if (start == 0 && end == 0)
10933 break;
10934
10935 /* Did we find a base address selection entry? */
10936 else if ((start & base_select_mask) == base_select_mask)
10937 {
10938 base = end;
10939 base_known = 1;
10940 }
10941
10942 /* We found an ordinary address range. */
10943 else
10944 {
10945 if (!base_known)
10946 {
10947 complaint (&symfile_complaints,
10948 _("Invalid .debug_ranges data "
10949 "(no base address)"));
10950 return;
10951 }
10952
10953 if (start > end)
10954 {
10955 /* Inverted range entries are invalid. */
10956 complaint (&symfile_complaints,
10957 _("Invalid .debug_ranges data "
10958 "(inverted range)"));
10959 return;
10960 }
10961
10962 /* Empty range entries have no effect. */
10963 if (start == end)
10964 continue;
10965
10966 start += base + baseaddr;
10967 end += base + baseaddr;
10968
10969 /* A not-uncommon case of bad debug info.
10970 Don't pollute the addrmap with bad data. */
10971 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
10972 {
10973 complaint (&symfile_complaints,
10974 _(".debug_ranges entry has start address of zero"
10975 " [in module %s]"), objfile->name);
10976 continue;
10977 }
10978
10979 record_block_range (block, start, end - 1);
10980 }
10981 }
10982 }
10983 }
10984
10985 /* Check whether the producer field indicates either of GCC < 4.6, or the
10986 Intel C/C++ compiler, and cache the result in CU. */
10987
10988 static void
10989 check_producer (struct dwarf2_cu *cu)
10990 {
10991 const char *cs;
10992 int major, minor, release;
10993
10994 if (cu->producer == NULL)
10995 {
10996 /* For unknown compilers expect their behavior is DWARF version
10997 compliant.
10998
10999 GCC started to support .debug_types sections by -gdwarf-4 since
11000 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
11001 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
11002 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
11003 interpreted incorrectly by GDB now - GCC PR debug/48229. */
11004 }
11005 else if (strncmp (cu->producer, "GNU ", strlen ("GNU ")) == 0)
11006 {
11007 /* Skip any identifier after "GNU " - such as "C++" or "Java". */
11008
11009 cs = &cu->producer[strlen ("GNU ")];
11010 while (*cs && !isdigit (*cs))
11011 cs++;
11012 if (sscanf (cs, "%d.%d.%d", &major, &minor, &release) != 3)
11013 {
11014 /* Not recognized as GCC. */
11015 }
11016 else
11017 {
11018 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
11019 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
11020 }
11021 }
11022 else if (strncmp (cu->producer, "Intel(R) C", strlen ("Intel(R) C")) == 0)
11023 cu->producer_is_icc = 1;
11024 else
11025 {
11026 /* For other non-GCC compilers, expect their behavior is DWARF version
11027 compliant. */
11028 }
11029
11030 cu->checked_producer = 1;
11031 }
11032
11033 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
11034 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
11035 during 4.6.0 experimental. */
11036
11037 static int
11038 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
11039 {
11040 if (!cu->checked_producer)
11041 check_producer (cu);
11042
11043 return cu->producer_is_gxx_lt_4_6;
11044 }
11045
11046 /* Return the default accessibility type if it is not overriden by
11047 DW_AT_accessibility. */
11048
11049 static enum dwarf_access_attribute
11050 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
11051 {
11052 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
11053 {
11054 /* The default DWARF 2 accessibility for members is public, the default
11055 accessibility for inheritance is private. */
11056
11057 if (die->tag != DW_TAG_inheritance)
11058 return DW_ACCESS_public;
11059 else
11060 return DW_ACCESS_private;
11061 }
11062 else
11063 {
11064 /* DWARF 3+ defines the default accessibility a different way. The same
11065 rules apply now for DW_TAG_inheritance as for the members and it only
11066 depends on the container kind. */
11067
11068 if (die->parent->tag == DW_TAG_class_type)
11069 return DW_ACCESS_private;
11070 else
11071 return DW_ACCESS_public;
11072 }
11073 }
11074
11075 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
11076 offset. If the attribute was not found return 0, otherwise return
11077 1. If it was found but could not properly be handled, set *OFFSET
11078 to 0. */
11079
11080 static int
11081 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
11082 LONGEST *offset)
11083 {
11084 struct attribute *attr;
11085
11086 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
11087 if (attr != NULL)
11088 {
11089 *offset = 0;
11090
11091 /* Note that we do not check for a section offset first here.
11092 This is because DW_AT_data_member_location is new in DWARF 4,
11093 so if we see it, we can assume that a constant form is really
11094 a constant and not a section offset. */
11095 if (attr_form_is_constant (attr))
11096 *offset = dwarf2_get_attr_constant_value (attr, 0);
11097 else if (attr_form_is_section_offset (attr))
11098 dwarf2_complex_location_expr_complaint ();
11099 else if (attr_form_is_block (attr))
11100 *offset = decode_locdesc (DW_BLOCK (attr), cu);
11101 else
11102 dwarf2_complex_location_expr_complaint ();
11103
11104 return 1;
11105 }
11106
11107 return 0;
11108 }
11109
11110 /* Add an aggregate field to the field list. */
11111
11112 static void
11113 dwarf2_add_field (struct field_info *fip, struct die_info *die,
11114 struct dwarf2_cu *cu)
11115 {
11116 struct objfile *objfile = cu->objfile;
11117 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11118 struct nextfield *new_field;
11119 struct attribute *attr;
11120 struct field *fp;
11121 const char *fieldname = "";
11122
11123 /* Allocate a new field list entry and link it in. */
11124 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
11125 make_cleanup (xfree, new_field);
11126 memset (new_field, 0, sizeof (struct nextfield));
11127
11128 if (die->tag == DW_TAG_inheritance)
11129 {
11130 new_field->next = fip->baseclasses;
11131 fip->baseclasses = new_field;
11132 }
11133 else
11134 {
11135 new_field->next = fip->fields;
11136 fip->fields = new_field;
11137 }
11138 fip->nfields++;
11139
11140 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
11141 if (attr)
11142 new_field->accessibility = DW_UNSND (attr);
11143 else
11144 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
11145 if (new_field->accessibility != DW_ACCESS_public)
11146 fip->non_public_fields = 1;
11147
11148 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
11149 if (attr)
11150 new_field->virtuality = DW_UNSND (attr);
11151 else
11152 new_field->virtuality = DW_VIRTUALITY_none;
11153
11154 fp = &new_field->field;
11155
11156 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
11157 {
11158 LONGEST offset;
11159
11160 /* Data member other than a C++ static data member. */
11161
11162 /* Get type of field. */
11163 fp->type = die_type (die, cu);
11164
11165 SET_FIELD_BITPOS (*fp, 0);
11166
11167 /* Get bit size of field (zero if none). */
11168 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
11169 if (attr)
11170 {
11171 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
11172 }
11173 else
11174 {
11175 FIELD_BITSIZE (*fp) = 0;
11176 }
11177
11178 /* Get bit offset of field. */
11179 if (handle_data_member_location (die, cu, &offset))
11180 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
11181 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
11182 if (attr)
11183 {
11184 if (gdbarch_bits_big_endian (gdbarch))
11185 {
11186 /* For big endian bits, the DW_AT_bit_offset gives the
11187 additional bit offset from the MSB of the containing
11188 anonymous object to the MSB of the field. We don't
11189 have to do anything special since we don't need to
11190 know the size of the anonymous object. */
11191 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
11192 }
11193 else
11194 {
11195 /* For little endian bits, compute the bit offset to the
11196 MSB of the anonymous object, subtract off the number of
11197 bits from the MSB of the field to the MSB of the
11198 object, and then subtract off the number of bits of
11199 the field itself. The result is the bit offset of
11200 the LSB of the field. */
11201 int anonymous_size;
11202 int bit_offset = DW_UNSND (attr);
11203
11204 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11205 if (attr)
11206 {
11207 /* The size of the anonymous object containing
11208 the bit field is explicit, so use the
11209 indicated size (in bytes). */
11210 anonymous_size = DW_UNSND (attr);
11211 }
11212 else
11213 {
11214 /* The size of the anonymous object containing
11215 the bit field must be inferred from the type
11216 attribute of the data member containing the
11217 bit field. */
11218 anonymous_size = TYPE_LENGTH (fp->type);
11219 }
11220 SET_FIELD_BITPOS (*fp,
11221 (FIELD_BITPOS (*fp)
11222 + anonymous_size * bits_per_byte
11223 - bit_offset - FIELD_BITSIZE (*fp)));
11224 }
11225 }
11226
11227 /* Get name of field. */
11228 fieldname = dwarf2_name (die, cu);
11229 if (fieldname == NULL)
11230 fieldname = "";
11231
11232 /* The name is already allocated along with this objfile, so we don't
11233 need to duplicate it for the type. */
11234 fp->name = fieldname;
11235
11236 /* Change accessibility for artificial fields (e.g. virtual table
11237 pointer or virtual base class pointer) to private. */
11238 if (dwarf2_attr (die, DW_AT_artificial, cu))
11239 {
11240 FIELD_ARTIFICIAL (*fp) = 1;
11241 new_field->accessibility = DW_ACCESS_private;
11242 fip->non_public_fields = 1;
11243 }
11244 }
11245 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
11246 {
11247 /* C++ static member. */
11248
11249 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
11250 is a declaration, but all versions of G++ as of this writing
11251 (so through at least 3.2.1) incorrectly generate
11252 DW_TAG_variable tags. */
11253
11254 const char *physname;
11255
11256 /* Get name of field. */
11257 fieldname = dwarf2_name (die, cu);
11258 if (fieldname == NULL)
11259 return;
11260
11261 attr = dwarf2_attr (die, DW_AT_const_value, cu);
11262 if (attr
11263 /* Only create a symbol if this is an external value.
11264 new_symbol checks this and puts the value in the global symbol
11265 table, which we want. If it is not external, new_symbol
11266 will try to put the value in cu->list_in_scope which is wrong. */
11267 && dwarf2_flag_true_p (die, DW_AT_external, cu))
11268 {
11269 /* A static const member, not much different than an enum as far as
11270 we're concerned, except that we can support more types. */
11271 new_symbol (die, NULL, cu);
11272 }
11273
11274 /* Get physical name. */
11275 physname = dwarf2_physname (fieldname, die, cu);
11276
11277 /* The name is already allocated along with this objfile, so we don't
11278 need to duplicate it for the type. */
11279 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
11280 FIELD_TYPE (*fp) = die_type (die, cu);
11281 FIELD_NAME (*fp) = fieldname;
11282 }
11283 else if (die->tag == DW_TAG_inheritance)
11284 {
11285 LONGEST offset;
11286
11287 /* C++ base class field. */
11288 if (handle_data_member_location (die, cu, &offset))
11289 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
11290 FIELD_BITSIZE (*fp) = 0;
11291 FIELD_TYPE (*fp) = die_type (die, cu);
11292 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
11293 fip->nbaseclasses++;
11294 }
11295 }
11296
11297 /* Add a typedef defined in the scope of the FIP's class. */
11298
11299 static void
11300 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
11301 struct dwarf2_cu *cu)
11302 {
11303 struct objfile *objfile = cu->objfile;
11304 struct typedef_field_list *new_field;
11305 struct attribute *attr;
11306 struct typedef_field *fp;
11307 char *fieldname = "";
11308
11309 /* Allocate a new field list entry and link it in. */
11310 new_field = xzalloc (sizeof (*new_field));
11311 make_cleanup (xfree, new_field);
11312
11313 gdb_assert (die->tag == DW_TAG_typedef);
11314
11315 fp = &new_field->field;
11316
11317 /* Get name of field. */
11318 fp->name = dwarf2_name (die, cu);
11319 if (fp->name == NULL)
11320 return;
11321
11322 fp->type = read_type_die (die, cu);
11323
11324 new_field->next = fip->typedef_field_list;
11325 fip->typedef_field_list = new_field;
11326 fip->typedef_field_list_count++;
11327 }
11328
11329 /* Create the vector of fields, and attach it to the type. */
11330
11331 static void
11332 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
11333 struct dwarf2_cu *cu)
11334 {
11335 int nfields = fip->nfields;
11336
11337 /* Record the field count, allocate space for the array of fields,
11338 and create blank accessibility bitfields if necessary. */
11339 TYPE_NFIELDS (type) = nfields;
11340 TYPE_FIELDS (type) = (struct field *)
11341 TYPE_ALLOC (type, sizeof (struct field) * nfields);
11342 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
11343
11344 if (fip->non_public_fields && cu->language != language_ada)
11345 {
11346 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11347
11348 TYPE_FIELD_PRIVATE_BITS (type) =
11349 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
11350 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
11351
11352 TYPE_FIELD_PROTECTED_BITS (type) =
11353 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
11354 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
11355
11356 TYPE_FIELD_IGNORE_BITS (type) =
11357 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
11358 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
11359 }
11360
11361 /* If the type has baseclasses, allocate and clear a bit vector for
11362 TYPE_FIELD_VIRTUAL_BITS. */
11363 if (fip->nbaseclasses && cu->language != language_ada)
11364 {
11365 int num_bytes = B_BYTES (fip->nbaseclasses);
11366 unsigned char *pointer;
11367
11368 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11369 pointer = TYPE_ALLOC (type, num_bytes);
11370 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
11371 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
11372 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
11373 }
11374
11375 /* Copy the saved-up fields into the field vector. Start from the head of
11376 the list, adding to the tail of the field array, so that they end up in
11377 the same order in the array in which they were added to the list. */
11378 while (nfields-- > 0)
11379 {
11380 struct nextfield *fieldp;
11381
11382 if (fip->fields)
11383 {
11384 fieldp = fip->fields;
11385 fip->fields = fieldp->next;
11386 }
11387 else
11388 {
11389 fieldp = fip->baseclasses;
11390 fip->baseclasses = fieldp->next;
11391 }
11392
11393 TYPE_FIELD (type, nfields) = fieldp->field;
11394 switch (fieldp->accessibility)
11395 {
11396 case DW_ACCESS_private:
11397 if (cu->language != language_ada)
11398 SET_TYPE_FIELD_PRIVATE (type, nfields);
11399 break;
11400
11401 case DW_ACCESS_protected:
11402 if (cu->language != language_ada)
11403 SET_TYPE_FIELD_PROTECTED (type, nfields);
11404 break;
11405
11406 case DW_ACCESS_public:
11407 break;
11408
11409 default:
11410 /* Unknown accessibility. Complain and treat it as public. */
11411 {
11412 complaint (&symfile_complaints, _("unsupported accessibility %d"),
11413 fieldp->accessibility);
11414 }
11415 break;
11416 }
11417 if (nfields < fip->nbaseclasses)
11418 {
11419 switch (fieldp->virtuality)
11420 {
11421 case DW_VIRTUALITY_virtual:
11422 case DW_VIRTUALITY_pure_virtual:
11423 if (cu->language == language_ada)
11424 error (_("unexpected virtuality in component of Ada type"));
11425 SET_TYPE_FIELD_VIRTUAL (type, nfields);
11426 break;
11427 }
11428 }
11429 }
11430 }
11431
11432 /* Return true if this member function is a constructor, false
11433 otherwise. */
11434
11435 static int
11436 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
11437 {
11438 const char *fieldname;
11439 const char *typename;
11440 int len;
11441
11442 if (die->parent == NULL)
11443 return 0;
11444
11445 if (die->parent->tag != DW_TAG_structure_type
11446 && die->parent->tag != DW_TAG_union_type
11447 && die->parent->tag != DW_TAG_class_type)
11448 return 0;
11449
11450 fieldname = dwarf2_name (die, cu);
11451 typename = dwarf2_name (die->parent, cu);
11452 if (fieldname == NULL || typename == NULL)
11453 return 0;
11454
11455 len = strlen (fieldname);
11456 return (strncmp (fieldname, typename, len) == 0
11457 && (typename[len] == '\0' || typename[len] == '<'));
11458 }
11459
11460 /* Add a member function to the proper fieldlist. */
11461
11462 static void
11463 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
11464 struct type *type, struct dwarf2_cu *cu)
11465 {
11466 struct objfile *objfile = cu->objfile;
11467 struct attribute *attr;
11468 struct fnfieldlist *flp;
11469 int i;
11470 struct fn_field *fnp;
11471 const char *fieldname;
11472 struct nextfnfield *new_fnfield;
11473 struct type *this_type;
11474 enum dwarf_access_attribute accessibility;
11475
11476 if (cu->language == language_ada)
11477 error (_("unexpected member function in Ada type"));
11478
11479 /* Get name of member function. */
11480 fieldname = dwarf2_name (die, cu);
11481 if (fieldname == NULL)
11482 return;
11483
11484 /* Look up member function name in fieldlist. */
11485 for (i = 0; i < fip->nfnfields; i++)
11486 {
11487 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
11488 break;
11489 }
11490
11491 /* Create new list element if necessary. */
11492 if (i < fip->nfnfields)
11493 flp = &fip->fnfieldlists[i];
11494 else
11495 {
11496 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
11497 {
11498 fip->fnfieldlists = (struct fnfieldlist *)
11499 xrealloc (fip->fnfieldlists,
11500 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
11501 * sizeof (struct fnfieldlist));
11502 if (fip->nfnfields == 0)
11503 make_cleanup (free_current_contents, &fip->fnfieldlists);
11504 }
11505 flp = &fip->fnfieldlists[fip->nfnfields];
11506 flp->name = fieldname;
11507 flp->length = 0;
11508 flp->head = NULL;
11509 i = fip->nfnfields++;
11510 }
11511
11512 /* Create a new member function field and chain it to the field list
11513 entry. */
11514 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
11515 make_cleanup (xfree, new_fnfield);
11516 memset (new_fnfield, 0, sizeof (struct nextfnfield));
11517 new_fnfield->next = flp->head;
11518 flp->head = new_fnfield;
11519 flp->length++;
11520
11521 /* Fill in the member function field info. */
11522 fnp = &new_fnfield->fnfield;
11523
11524 /* Delay processing of the physname until later. */
11525 if (cu->language == language_cplus || cu->language == language_java)
11526 {
11527 add_to_method_list (type, i, flp->length - 1, fieldname,
11528 die, cu);
11529 }
11530 else
11531 {
11532 const char *physname = dwarf2_physname (fieldname, die, cu);
11533 fnp->physname = physname ? physname : "";
11534 }
11535
11536 fnp->type = alloc_type (objfile);
11537 this_type = read_type_die (die, cu);
11538 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
11539 {
11540 int nparams = TYPE_NFIELDS (this_type);
11541
11542 /* TYPE is the domain of this method, and THIS_TYPE is the type
11543 of the method itself (TYPE_CODE_METHOD). */
11544 smash_to_method_type (fnp->type, type,
11545 TYPE_TARGET_TYPE (this_type),
11546 TYPE_FIELDS (this_type),
11547 TYPE_NFIELDS (this_type),
11548 TYPE_VARARGS (this_type));
11549
11550 /* Handle static member functions.
11551 Dwarf2 has no clean way to discern C++ static and non-static
11552 member functions. G++ helps GDB by marking the first
11553 parameter for non-static member functions (which is the this
11554 pointer) as artificial. We obtain this information from
11555 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
11556 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
11557 fnp->voffset = VOFFSET_STATIC;
11558 }
11559 else
11560 complaint (&symfile_complaints, _("member function type missing for '%s'"),
11561 dwarf2_full_name (fieldname, die, cu));
11562
11563 /* Get fcontext from DW_AT_containing_type if present. */
11564 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
11565 fnp->fcontext = die_containing_type (die, cu);
11566
11567 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
11568 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
11569
11570 /* Get accessibility. */
11571 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
11572 if (attr)
11573 accessibility = DW_UNSND (attr);
11574 else
11575 accessibility = dwarf2_default_access_attribute (die, cu);
11576 switch (accessibility)
11577 {
11578 case DW_ACCESS_private:
11579 fnp->is_private = 1;
11580 break;
11581 case DW_ACCESS_protected:
11582 fnp->is_protected = 1;
11583 break;
11584 }
11585
11586 /* Check for artificial methods. */
11587 attr = dwarf2_attr (die, DW_AT_artificial, cu);
11588 if (attr && DW_UNSND (attr) != 0)
11589 fnp->is_artificial = 1;
11590
11591 fnp->is_constructor = dwarf2_is_constructor (die, cu);
11592
11593 /* Get index in virtual function table if it is a virtual member
11594 function. For older versions of GCC, this is an offset in the
11595 appropriate virtual table, as specified by DW_AT_containing_type.
11596 For everyone else, it is an expression to be evaluated relative
11597 to the object address. */
11598
11599 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
11600 if (attr)
11601 {
11602 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
11603 {
11604 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
11605 {
11606 /* Old-style GCC. */
11607 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
11608 }
11609 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
11610 || (DW_BLOCK (attr)->size > 1
11611 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
11612 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
11613 {
11614 struct dwarf_block blk;
11615 int offset;
11616
11617 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
11618 ? 1 : 2);
11619 blk.size = DW_BLOCK (attr)->size - offset;
11620 blk.data = DW_BLOCK (attr)->data + offset;
11621 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
11622 if ((fnp->voffset % cu->header.addr_size) != 0)
11623 dwarf2_complex_location_expr_complaint ();
11624 else
11625 fnp->voffset /= cu->header.addr_size;
11626 fnp->voffset += 2;
11627 }
11628 else
11629 dwarf2_complex_location_expr_complaint ();
11630
11631 if (!fnp->fcontext)
11632 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
11633 }
11634 else if (attr_form_is_section_offset (attr))
11635 {
11636 dwarf2_complex_location_expr_complaint ();
11637 }
11638 else
11639 {
11640 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
11641 fieldname);
11642 }
11643 }
11644 else
11645 {
11646 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
11647 if (attr && DW_UNSND (attr))
11648 {
11649 /* GCC does this, as of 2008-08-25; PR debug/37237. */
11650 complaint (&symfile_complaints,
11651 _("Member function \"%s\" (offset %d) is virtual "
11652 "but the vtable offset is not specified"),
11653 fieldname, die->offset.sect_off);
11654 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11655 TYPE_CPLUS_DYNAMIC (type) = 1;
11656 }
11657 }
11658 }
11659
11660 /* Create the vector of member function fields, and attach it to the type. */
11661
11662 static void
11663 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
11664 struct dwarf2_cu *cu)
11665 {
11666 struct fnfieldlist *flp;
11667 int i;
11668
11669 if (cu->language == language_ada)
11670 error (_("unexpected member functions in Ada type"));
11671
11672 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11673 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
11674 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
11675
11676 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
11677 {
11678 struct nextfnfield *nfp = flp->head;
11679 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
11680 int k;
11681
11682 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
11683 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
11684 fn_flp->fn_fields = (struct fn_field *)
11685 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
11686 for (k = flp->length; (k--, nfp); nfp = nfp->next)
11687 fn_flp->fn_fields[k] = nfp->fnfield;
11688 }
11689
11690 TYPE_NFN_FIELDS (type) = fip->nfnfields;
11691 }
11692
11693 /* Returns non-zero if NAME is the name of a vtable member in CU's
11694 language, zero otherwise. */
11695 static int
11696 is_vtable_name (const char *name, struct dwarf2_cu *cu)
11697 {
11698 static const char vptr[] = "_vptr";
11699 static const char vtable[] = "vtable";
11700
11701 /* Look for the C++ and Java forms of the vtable. */
11702 if ((cu->language == language_java
11703 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
11704 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
11705 && is_cplus_marker (name[sizeof (vptr) - 1])))
11706 return 1;
11707
11708 return 0;
11709 }
11710
11711 /* GCC outputs unnamed structures that are really pointers to member
11712 functions, with the ABI-specified layout. If TYPE describes
11713 such a structure, smash it into a member function type.
11714
11715 GCC shouldn't do this; it should just output pointer to member DIEs.
11716 This is GCC PR debug/28767. */
11717
11718 static void
11719 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
11720 {
11721 struct type *pfn_type, *domain_type, *new_type;
11722
11723 /* Check for a structure with no name and two children. */
11724 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
11725 return;
11726
11727 /* Check for __pfn and __delta members. */
11728 if (TYPE_FIELD_NAME (type, 0) == NULL
11729 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
11730 || TYPE_FIELD_NAME (type, 1) == NULL
11731 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
11732 return;
11733
11734 /* Find the type of the method. */
11735 pfn_type = TYPE_FIELD_TYPE (type, 0);
11736 if (pfn_type == NULL
11737 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
11738 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
11739 return;
11740
11741 /* Look for the "this" argument. */
11742 pfn_type = TYPE_TARGET_TYPE (pfn_type);
11743 if (TYPE_NFIELDS (pfn_type) == 0
11744 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
11745 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
11746 return;
11747
11748 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
11749 new_type = alloc_type (objfile);
11750 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
11751 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
11752 TYPE_VARARGS (pfn_type));
11753 smash_to_methodptr_type (type, new_type);
11754 }
11755
11756 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
11757 (icc). */
11758
11759 static int
11760 producer_is_icc (struct dwarf2_cu *cu)
11761 {
11762 if (!cu->checked_producer)
11763 check_producer (cu);
11764
11765 return cu->producer_is_icc;
11766 }
11767
11768 /* Called when we find the DIE that starts a structure or union scope
11769 (definition) to create a type for the structure or union. Fill in
11770 the type's name and general properties; the members will not be
11771 processed until process_structure_scope.
11772
11773 NOTE: we need to call these functions regardless of whether or not the
11774 DIE has a DW_AT_name attribute, since it might be an anonymous
11775 structure or union. This gets the type entered into our set of
11776 user defined types.
11777
11778 However, if the structure is incomplete (an opaque struct/union)
11779 then suppress creating a symbol table entry for it since gdb only
11780 wants to find the one with the complete definition. Note that if
11781 it is complete, we just call new_symbol, which does it's own
11782 checking about whether the struct/union is anonymous or not (and
11783 suppresses creating a symbol table entry itself). */
11784
11785 static struct type *
11786 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
11787 {
11788 struct objfile *objfile = cu->objfile;
11789 struct type *type;
11790 struct attribute *attr;
11791 const char *name;
11792
11793 /* If the definition of this type lives in .debug_types, read that type.
11794 Don't follow DW_AT_specification though, that will take us back up
11795 the chain and we want to go down. */
11796 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
11797 if (attr)
11798 {
11799 type = get_DW_AT_signature_type (die, attr, cu);
11800
11801 /* The type's CU may not be the same as CU.
11802 Ensure TYPE is recorded with CU in die_type_hash. */
11803 return set_die_type (die, type, cu);
11804 }
11805
11806 type = alloc_type (objfile);
11807 INIT_CPLUS_SPECIFIC (type);
11808
11809 name = dwarf2_name (die, cu);
11810 if (name != NULL)
11811 {
11812 if (cu->language == language_cplus
11813 || cu->language == language_java)
11814 {
11815 const char *full_name = dwarf2_full_name (name, die, cu);
11816
11817 /* dwarf2_full_name might have already finished building the DIE's
11818 type. If so, there is no need to continue. */
11819 if (get_die_type (die, cu) != NULL)
11820 return get_die_type (die, cu);
11821
11822 TYPE_TAG_NAME (type) = full_name;
11823 if (die->tag == DW_TAG_structure_type
11824 || die->tag == DW_TAG_class_type)
11825 TYPE_NAME (type) = TYPE_TAG_NAME (type);
11826 }
11827 else
11828 {
11829 /* The name is already allocated along with this objfile, so
11830 we don't need to duplicate it for the type. */
11831 TYPE_TAG_NAME (type) = name;
11832 if (die->tag == DW_TAG_class_type)
11833 TYPE_NAME (type) = TYPE_TAG_NAME (type);
11834 }
11835 }
11836
11837 if (die->tag == DW_TAG_structure_type)
11838 {
11839 TYPE_CODE (type) = TYPE_CODE_STRUCT;
11840 }
11841 else if (die->tag == DW_TAG_union_type)
11842 {
11843 TYPE_CODE (type) = TYPE_CODE_UNION;
11844 }
11845 else
11846 {
11847 TYPE_CODE (type) = TYPE_CODE_CLASS;
11848 }
11849
11850 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
11851 TYPE_DECLARED_CLASS (type) = 1;
11852
11853 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11854 if (attr)
11855 {
11856 TYPE_LENGTH (type) = DW_UNSND (attr);
11857 }
11858 else
11859 {
11860 TYPE_LENGTH (type) = 0;
11861 }
11862
11863 if (producer_is_icc (cu))
11864 {
11865 /* ICC does not output the required DW_AT_declaration
11866 on incomplete types, but gives them a size of zero. */
11867 }
11868 else
11869 TYPE_STUB_SUPPORTED (type) = 1;
11870
11871 if (die_is_declaration (die, cu))
11872 TYPE_STUB (type) = 1;
11873 else if (attr == NULL && die->child == NULL
11874 && producer_is_realview (cu->producer))
11875 /* RealView does not output the required DW_AT_declaration
11876 on incomplete types. */
11877 TYPE_STUB (type) = 1;
11878
11879 /* We need to add the type field to the die immediately so we don't
11880 infinitely recurse when dealing with pointers to the structure
11881 type within the structure itself. */
11882 set_die_type (die, type, cu);
11883
11884 /* set_die_type should be already done. */
11885 set_descriptive_type (type, die, cu);
11886
11887 return type;
11888 }
11889
11890 /* Finish creating a structure or union type, including filling in
11891 its members and creating a symbol for it. */
11892
11893 static void
11894 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
11895 {
11896 struct objfile *objfile = cu->objfile;
11897 struct die_info *child_die = die->child;
11898 struct type *type;
11899
11900 type = get_die_type (die, cu);
11901 if (type == NULL)
11902 type = read_structure_type (die, cu);
11903
11904 if (die->child != NULL && ! die_is_declaration (die, cu))
11905 {
11906 struct field_info fi;
11907 struct die_info *child_die;
11908 VEC (symbolp) *template_args = NULL;
11909 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
11910
11911 memset (&fi, 0, sizeof (struct field_info));
11912
11913 child_die = die->child;
11914
11915 while (child_die && child_die->tag)
11916 {
11917 if (child_die->tag == DW_TAG_member
11918 || child_die->tag == DW_TAG_variable)
11919 {
11920 /* NOTE: carlton/2002-11-05: A C++ static data member
11921 should be a DW_TAG_member that is a declaration, but
11922 all versions of G++ as of this writing (so through at
11923 least 3.2.1) incorrectly generate DW_TAG_variable
11924 tags for them instead. */
11925 dwarf2_add_field (&fi, child_die, cu);
11926 }
11927 else if (child_die->tag == DW_TAG_subprogram)
11928 {
11929 /* C++ member function. */
11930 dwarf2_add_member_fn (&fi, child_die, type, cu);
11931 }
11932 else if (child_die->tag == DW_TAG_inheritance)
11933 {
11934 /* C++ base class field. */
11935 dwarf2_add_field (&fi, child_die, cu);
11936 }
11937 else if (child_die->tag == DW_TAG_typedef)
11938 dwarf2_add_typedef (&fi, child_die, cu);
11939 else if (child_die->tag == DW_TAG_template_type_param
11940 || child_die->tag == DW_TAG_template_value_param)
11941 {
11942 struct symbol *arg = new_symbol (child_die, NULL, cu);
11943
11944 if (arg != NULL)
11945 VEC_safe_push (symbolp, template_args, arg);
11946 }
11947
11948 child_die = sibling_die (child_die);
11949 }
11950
11951 /* Attach template arguments to type. */
11952 if (! VEC_empty (symbolp, template_args))
11953 {
11954 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11955 TYPE_N_TEMPLATE_ARGUMENTS (type)
11956 = VEC_length (symbolp, template_args);
11957 TYPE_TEMPLATE_ARGUMENTS (type)
11958 = obstack_alloc (&objfile->objfile_obstack,
11959 (TYPE_N_TEMPLATE_ARGUMENTS (type)
11960 * sizeof (struct symbol *)));
11961 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
11962 VEC_address (symbolp, template_args),
11963 (TYPE_N_TEMPLATE_ARGUMENTS (type)
11964 * sizeof (struct symbol *)));
11965 VEC_free (symbolp, template_args);
11966 }
11967
11968 /* Attach fields and member functions to the type. */
11969 if (fi.nfields)
11970 dwarf2_attach_fields_to_type (&fi, type, cu);
11971 if (fi.nfnfields)
11972 {
11973 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
11974
11975 /* Get the type which refers to the base class (possibly this
11976 class itself) which contains the vtable pointer for the current
11977 class from the DW_AT_containing_type attribute. This use of
11978 DW_AT_containing_type is a GNU extension. */
11979
11980 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
11981 {
11982 struct type *t = die_containing_type (die, cu);
11983
11984 TYPE_VPTR_BASETYPE (type) = t;
11985 if (type == t)
11986 {
11987 int i;
11988
11989 /* Our own class provides vtbl ptr. */
11990 for (i = TYPE_NFIELDS (t) - 1;
11991 i >= TYPE_N_BASECLASSES (t);
11992 --i)
11993 {
11994 const char *fieldname = TYPE_FIELD_NAME (t, i);
11995
11996 if (is_vtable_name (fieldname, cu))
11997 {
11998 TYPE_VPTR_FIELDNO (type) = i;
11999 break;
12000 }
12001 }
12002
12003 /* Complain if virtual function table field not found. */
12004 if (i < TYPE_N_BASECLASSES (t))
12005 complaint (&symfile_complaints,
12006 _("virtual function table pointer "
12007 "not found when defining class '%s'"),
12008 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
12009 "");
12010 }
12011 else
12012 {
12013 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
12014 }
12015 }
12016 else if (cu->producer
12017 && strncmp (cu->producer,
12018 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
12019 {
12020 /* The IBM XLC compiler does not provide direct indication
12021 of the containing type, but the vtable pointer is
12022 always named __vfp. */
12023
12024 int i;
12025
12026 for (i = TYPE_NFIELDS (type) - 1;
12027 i >= TYPE_N_BASECLASSES (type);
12028 --i)
12029 {
12030 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
12031 {
12032 TYPE_VPTR_FIELDNO (type) = i;
12033 TYPE_VPTR_BASETYPE (type) = type;
12034 break;
12035 }
12036 }
12037 }
12038 }
12039
12040 /* Copy fi.typedef_field_list linked list elements content into the
12041 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
12042 if (fi.typedef_field_list)
12043 {
12044 int i = fi.typedef_field_list_count;
12045
12046 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12047 TYPE_TYPEDEF_FIELD_ARRAY (type)
12048 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
12049 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
12050
12051 /* Reverse the list order to keep the debug info elements order. */
12052 while (--i >= 0)
12053 {
12054 struct typedef_field *dest, *src;
12055
12056 dest = &TYPE_TYPEDEF_FIELD (type, i);
12057 src = &fi.typedef_field_list->field;
12058 fi.typedef_field_list = fi.typedef_field_list->next;
12059 *dest = *src;
12060 }
12061 }
12062
12063 do_cleanups (back_to);
12064
12065 if (HAVE_CPLUS_STRUCT (type))
12066 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
12067 }
12068
12069 quirk_gcc_member_function_pointer (type, objfile);
12070
12071 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
12072 snapshots) has been known to create a die giving a declaration
12073 for a class that has, as a child, a die giving a definition for a
12074 nested class. So we have to process our children even if the
12075 current die is a declaration. Normally, of course, a declaration
12076 won't have any children at all. */
12077
12078 while (child_die != NULL && child_die->tag)
12079 {
12080 if (child_die->tag == DW_TAG_member
12081 || child_die->tag == DW_TAG_variable
12082 || child_die->tag == DW_TAG_inheritance
12083 || child_die->tag == DW_TAG_template_value_param
12084 || child_die->tag == DW_TAG_template_type_param)
12085 {
12086 /* Do nothing. */
12087 }
12088 else
12089 process_die (child_die, cu);
12090
12091 child_die = sibling_die (child_die);
12092 }
12093
12094 /* Do not consider external references. According to the DWARF standard,
12095 these DIEs are identified by the fact that they have no byte_size
12096 attribute, and a declaration attribute. */
12097 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
12098 || !die_is_declaration (die, cu))
12099 new_symbol (die, type, cu);
12100 }
12101
12102 /* Given a DW_AT_enumeration_type die, set its type. We do not
12103 complete the type's fields yet, or create any symbols. */
12104
12105 static struct type *
12106 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
12107 {
12108 struct objfile *objfile = cu->objfile;
12109 struct type *type;
12110 struct attribute *attr;
12111 const char *name;
12112
12113 /* If the definition of this type lives in .debug_types, read that type.
12114 Don't follow DW_AT_specification though, that will take us back up
12115 the chain and we want to go down. */
12116 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
12117 if (attr)
12118 {
12119 type = get_DW_AT_signature_type (die, attr, cu);
12120
12121 /* The type's CU may not be the same as CU.
12122 Ensure TYPE is recorded with CU in die_type_hash. */
12123 return set_die_type (die, type, cu);
12124 }
12125
12126 type = alloc_type (objfile);
12127
12128 TYPE_CODE (type) = TYPE_CODE_ENUM;
12129 name = dwarf2_full_name (NULL, die, cu);
12130 if (name != NULL)
12131 TYPE_TAG_NAME (type) = name;
12132
12133 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12134 if (attr)
12135 {
12136 TYPE_LENGTH (type) = DW_UNSND (attr);
12137 }
12138 else
12139 {
12140 TYPE_LENGTH (type) = 0;
12141 }
12142
12143 /* The enumeration DIE can be incomplete. In Ada, any type can be
12144 declared as private in the package spec, and then defined only
12145 inside the package body. Such types are known as Taft Amendment
12146 Types. When another package uses such a type, an incomplete DIE
12147 may be generated by the compiler. */
12148 if (die_is_declaration (die, cu))
12149 TYPE_STUB (type) = 1;
12150
12151 return set_die_type (die, type, cu);
12152 }
12153
12154 /* Given a pointer to a die which begins an enumeration, process all
12155 the dies that define the members of the enumeration, and create the
12156 symbol for the enumeration type.
12157
12158 NOTE: We reverse the order of the element list. */
12159
12160 static void
12161 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
12162 {
12163 struct type *this_type;
12164
12165 this_type = get_die_type (die, cu);
12166 if (this_type == NULL)
12167 this_type = read_enumeration_type (die, cu);
12168
12169 if (die->child != NULL)
12170 {
12171 struct die_info *child_die;
12172 struct symbol *sym;
12173 struct field *fields = NULL;
12174 int num_fields = 0;
12175 int unsigned_enum = 1;
12176 const char *name;
12177 int flag_enum = 1;
12178 ULONGEST mask = 0;
12179
12180 child_die = die->child;
12181 while (child_die && child_die->tag)
12182 {
12183 if (child_die->tag != DW_TAG_enumerator)
12184 {
12185 process_die (child_die, cu);
12186 }
12187 else
12188 {
12189 name = dwarf2_name (child_die, cu);
12190 if (name)
12191 {
12192 sym = new_symbol (child_die, this_type, cu);
12193 if (SYMBOL_VALUE (sym) < 0)
12194 {
12195 unsigned_enum = 0;
12196 flag_enum = 0;
12197 }
12198 else if ((mask & SYMBOL_VALUE (sym)) != 0)
12199 flag_enum = 0;
12200 else
12201 mask |= SYMBOL_VALUE (sym);
12202
12203 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
12204 {
12205 fields = (struct field *)
12206 xrealloc (fields,
12207 (num_fields + DW_FIELD_ALLOC_CHUNK)
12208 * sizeof (struct field));
12209 }
12210
12211 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
12212 FIELD_TYPE (fields[num_fields]) = NULL;
12213 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
12214 FIELD_BITSIZE (fields[num_fields]) = 0;
12215
12216 num_fields++;
12217 }
12218 }
12219
12220 child_die = sibling_die (child_die);
12221 }
12222
12223 if (num_fields)
12224 {
12225 TYPE_NFIELDS (this_type) = num_fields;
12226 TYPE_FIELDS (this_type) = (struct field *)
12227 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
12228 memcpy (TYPE_FIELDS (this_type), fields,
12229 sizeof (struct field) * num_fields);
12230 xfree (fields);
12231 }
12232 if (unsigned_enum)
12233 TYPE_UNSIGNED (this_type) = 1;
12234 if (flag_enum)
12235 TYPE_FLAG_ENUM (this_type) = 1;
12236 }
12237
12238 /* If we are reading an enum from a .debug_types unit, and the enum
12239 is a declaration, and the enum is not the signatured type in the
12240 unit, then we do not want to add a symbol for it. Adding a
12241 symbol would in some cases obscure the true definition of the
12242 enum, giving users an incomplete type when the definition is
12243 actually available. Note that we do not want to do this for all
12244 enums which are just declarations, because C++0x allows forward
12245 enum declarations. */
12246 if (cu->per_cu->is_debug_types
12247 && die_is_declaration (die, cu))
12248 {
12249 struct signatured_type *sig_type;
12250
12251 sig_type = (struct signatured_type *) cu->per_cu;
12252 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
12253 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
12254 return;
12255 }
12256
12257 new_symbol (die, this_type, cu);
12258 }
12259
12260 /* Extract all information from a DW_TAG_array_type DIE and put it in
12261 the DIE's type field. For now, this only handles one dimensional
12262 arrays. */
12263
12264 static struct type *
12265 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
12266 {
12267 struct objfile *objfile = cu->objfile;
12268 struct die_info *child_die;
12269 struct type *type;
12270 struct type *element_type, *range_type, *index_type;
12271 struct type **range_types = NULL;
12272 struct attribute *attr;
12273 int ndim = 0;
12274 struct cleanup *back_to;
12275 const char *name;
12276
12277 element_type = die_type (die, cu);
12278
12279 /* The die_type call above may have already set the type for this DIE. */
12280 type = get_die_type (die, cu);
12281 if (type)
12282 return type;
12283
12284 /* Irix 6.2 native cc creates array types without children for
12285 arrays with unspecified length. */
12286 if (die->child == NULL)
12287 {
12288 index_type = objfile_type (objfile)->builtin_int;
12289 range_type = create_range_type (NULL, index_type, 0, -1);
12290 type = create_array_type (NULL, element_type, range_type);
12291 return set_die_type (die, type, cu);
12292 }
12293
12294 back_to = make_cleanup (null_cleanup, NULL);
12295 child_die = die->child;
12296 while (child_die && child_die->tag)
12297 {
12298 if (child_die->tag == DW_TAG_subrange_type)
12299 {
12300 struct type *child_type = read_type_die (child_die, cu);
12301
12302 if (child_type != NULL)
12303 {
12304 /* The range type was succesfully read. Save it for the
12305 array type creation. */
12306 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
12307 {
12308 range_types = (struct type **)
12309 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
12310 * sizeof (struct type *));
12311 if (ndim == 0)
12312 make_cleanup (free_current_contents, &range_types);
12313 }
12314 range_types[ndim++] = child_type;
12315 }
12316 }
12317 child_die = sibling_die (child_die);
12318 }
12319
12320 /* Dwarf2 dimensions are output from left to right, create the
12321 necessary array types in backwards order. */
12322
12323 type = element_type;
12324
12325 if (read_array_order (die, cu) == DW_ORD_col_major)
12326 {
12327 int i = 0;
12328
12329 while (i < ndim)
12330 type = create_array_type (NULL, type, range_types[i++]);
12331 }
12332 else
12333 {
12334 while (ndim-- > 0)
12335 type = create_array_type (NULL, type, range_types[ndim]);
12336 }
12337
12338 /* Understand Dwarf2 support for vector types (like they occur on
12339 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
12340 array type. This is not part of the Dwarf2/3 standard yet, but a
12341 custom vendor extension. The main difference between a regular
12342 array and the vector variant is that vectors are passed by value
12343 to functions. */
12344 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
12345 if (attr)
12346 make_vector_type (type);
12347
12348 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
12349 implementation may choose to implement triple vectors using this
12350 attribute. */
12351 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12352 if (attr)
12353 {
12354 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
12355 TYPE_LENGTH (type) = DW_UNSND (attr);
12356 else
12357 complaint (&symfile_complaints,
12358 _("DW_AT_byte_size for array type smaller "
12359 "than the total size of elements"));
12360 }
12361
12362 name = dwarf2_name (die, cu);
12363 if (name)
12364 TYPE_NAME (type) = name;
12365
12366 /* Install the type in the die. */
12367 set_die_type (die, type, cu);
12368
12369 /* set_die_type should be already done. */
12370 set_descriptive_type (type, die, cu);
12371
12372 do_cleanups (back_to);
12373
12374 return type;
12375 }
12376
12377 static enum dwarf_array_dim_ordering
12378 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
12379 {
12380 struct attribute *attr;
12381
12382 attr = dwarf2_attr (die, DW_AT_ordering, cu);
12383
12384 if (attr) return DW_SND (attr);
12385
12386 /* GNU F77 is a special case, as at 08/2004 array type info is the
12387 opposite order to the dwarf2 specification, but data is still
12388 laid out as per normal fortran.
12389
12390 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
12391 version checking. */
12392
12393 if (cu->language == language_fortran
12394 && cu->producer && strstr (cu->producer, "GNU F77"))
12395 {
12396 return DW_ORD_row_major;
12397 }
12398
12399 switch (cu->language_defn->la_array_ordering)
12400 {
12401 case array_column_major:
12402 return DW_ORD_col_major;
12403 case array_row_major:
12404 default:
12405 return DW_ORD_row_major;
12406 };
12407 }
12408
12409 /* Extract all information from a DW_TAG_set_type DIE and put it in
12410 the DIE's type field. */
12411
12412 static struct type *
12413 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
12414 {
12415 struct type *domain_type, *set_type;
12416 struct attribute *attr;
12417
12418 domain_type = die_type (die, cu);
12419
12420 /* The die_type call above may have already set the type for this DIE. */
12421 set_type = get_die_type (die, cu);
12422 if (set_type)
12423 return set_type;
12424
12425 set_type = create_set_type (NULL, domain_type);
12426
12427 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12428 if (attr)
12429 TYPE_LENGTH (set_type) = DW_UNSND (attr);
12430
12431 return set_die_type (die, set_type, cu);
12432 }
12433
12434 /* A helper for read_common_block that creates a locexpr baton.
12435 SYM is the symbol which we are marking as computed.
12436 COMMON_DIE is the DIE for the common block.
12437 COMMON_LOC is the location expression attribute for the common
12438 block itself.
12439 MEMBER_LOC is the location expression attribute for the particular
12440 member of the common block that we are processing.
12441 CU is the CU from which the above come. */
12442
12443 static void
12444 mark_common_block_symbol_computed (struct symbol *sym,
12445 struct die_info *common_die,
12446 struct attribute *common_loc,
12447 struct attribute *member_loc,
12448 struct dwarf2_cu *cu)
12449 {
12450 struct objfile *objfile = dwarf2_per_objfile->objfile;
12451 struct dwarf2_locexpr_baton *baton;
12452 gdb_byte *ptr;
12453 unsigned int cu_off;
12454 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
12455 LONGEST offset = 0;
12456
12457 gdb_assert (common_loc && member_loc);
12458 gdb_assert (attr_form_is_block (common_loc));
12459 gdb_assert (attr_form_is_block (member_loc)
12460 || attr_form_is_constant (member_loc));
12461
12462 baton = obstack_alloc (&objfile->objfile_obstack,
12463 sizeof (struct dwarf2_locexpr_baton));
12464 baton->per_cu = cu->per_cu;
12465 gdb_assert (baton->per_cu);
12466
12467 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
12468
12469 if (attr_form_is_constant (member_loc))
12470 {
12471 offset = dwarf2_get_attr_constant_value (member_loc, 0);
12472 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
12473 }
12474 else
12475 baton->size += DW_BLOCK (member_loc)->size;
12476
12477 ptr = obstack_alloc (&objfile->objfile_obstack, baton->size);
12478 baton->data = ptr;
12479
12480 *ptr++ = DW_OP_call4;
12481 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
12482 store_unsigned_integer (ptr, 4, byte_order, cu_off);
12483 ptr += 4;
12484
12485 if (attr_form_is_constant (member_loc))
12486 {
12487 *ptr++ = DW_OP_addr;
12488 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
12489 ptr += cu->header.addr_size;
12490 }
12491 else
12492 {
12493 /* We have to copy the data here, because DW_OP_call4 will only
12494 use a DW_AT_location attribute. */
12495 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
12496 ptr += DW_BLOCK (member_loc)->size;
12497 }
12498
12499 *ptr++ = DW_OP_plus;
12500 gdb_assert (ptr - baton->data == baton->size);
12501
12502 SYMBOL_LOCATION_BATON (sym) = baton;
12503 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
12504 }
12505
12506 /* Create appropriate locally-scoped variables for all the
12507 DW_TAG_common_block entries. Also create a struct common_block
12508 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
12509 is used to sepate the common blocks name namespace from regular
12510 variable names. */
12511
12512 static void
12513 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
12514 {
12515 struct attribute *attr;
12516
12517 attr = dwarf2_attr (die, DW_AT_location, cu);
12518 if (attr)
12519 {
12520 /* Support the .debug_loc offsets. */
12521 if (attr_form_is_block (attr))
12522 {
12523 /* Ok. */
12524 }
12525 else if (attr_form_is_section_offset (attr))
12526 {
12527 dwarf2_complex_location_expr_complaint ();
12528 attr = NULL;
12529 }
12530 else
12531 {
12532 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
12533 "common block member");
12534 attr = NULL;
12535 }
12536 }
12537
12538 if (die->child != NULL)
12539 {
12540 struct objfile *objfile = cu->objfile;
12541 struct die_info *child_die;
12542 size_t n_entries = 0, size;
12543 struct common_block *common_block;
12544 struct symbol *sym;
12545
12546 for (child_die = die->child;
12547 child_die && child_die->tag;
12548 child_die = sibling_die (child_die))
12549 ++n_entries;
12550
12551 size = (sizeof (struct common_block)
12552 + (n_entries - 1) * sizeof (struct symbol *));
12553 common_block = obstack_alloc (&objfile->objfile_obstack, size);
12554 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
12555 common_block->n_entries = 0;
12556
12557 for (child_die = die->child;
12558 child_die && child_die->tag;
12559 child_die = sibling_die (child_die))
12560 {
12561 /* Create the symbol in the DW_TAG_common_block block in the current
12562 symbol scope. */
12563 sym = new_symbol (child_die, NULL, cu);
12564 if (sym != NULL)
12565 {
12566 struct attribute *member_loc;
12567
12568 common_block->contents[common_block->n_entries++] = sym;
12569
12570 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
12571 cu);
12572 if (member_loc)
12573 {
12574 /* GDB has handled this for a long time, but it is
12575 not specified by DWARF. It seems to have been
12576 emitted by gfortran at least as recently as:
12577 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
12578 complaint (&symfile_complaints,
12579 _("Variable in common block has "
12580 "DW_AT_data_member_location "
12581 "- DIE at 0x%x [in module %s]"),
12582 child_die->offset.sect_off, cu->objfile->name);
12583
12584 if (attr_form_is_section_offset (member_loc))
12585 dwarf2_complex_location_expr_complaint ();
12586 else if (attr_form_is_constant (member_loc)
12587 || attr_form_is_block (member_loc))
12588 {
12589 if (attr)
12590 mark_common_block_symbol_computed (sym, die, attr,
12591 member_loc, cu);
12592 }
12593 else
12594 dwarf2_complex_location_expr_complaint ();
12595 }
12596 }
12597 }
12598
12599 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
12600 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
12601 }
12602 }
12603
12604 /* Create a type for a C++ namespace. */
12605
12606 static struct type *
12607 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
12608 {
12609 struct objfile *objfile = cu->objfile;
12610 const char *previous_prefix, *name;
12611 int is_anonymous;
12612 struct type *type;
12613
12614 /* For extensions, reuse the type of the original namespace. */
12615 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
12616 {
12617 struct die_info *ext_die;
12618 struct dwarf2_cu *ext_cu = cu;
12619
12620 ext_die = dwarf2_extension (die, &ext_cu);
12621 type = read_type_die (ext_die, ext_cu);
12622
12623 /* EXT_CU may not be the same as CU.
12624 Ensure TYPE is recorded with CU in die_type_hash. */
12625 return set_die_type (die, type, cu);
12626 }
12627
12628 name = namespace_name (die, &is_anonymous, cu);
12629
12630 /* Now build the name of the current namespace. */
12631
12632 previous_prefix = determine_prefix (die, cu);
12633 if (previous_prefix[0] != '\0')
12634 name = typename_concat (&objfile->objfile_obstack,
12635 previous_prefix, name, 0, cu);
12636
12637 /* Create the type. */
12638 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
12639 objfile);
12640 TYPE_NAME (type) = name;
12641 TYPE_TAG_NAME (type) = TYPE_NAME (type);
12642
12643 return set_die_type (die, type, cu);
12644 }
12645
12646 /* Read a C++ namespace. */
12647
12648 static void
12649 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
12650 {
12651 struct objfile *objfile = cu->objfile;
12652 int is_anonymous;
12653
12654 /* Add a symbol associated to this if we haven't seen the namespace
12655 before. Also, add a using directive if it's an anonymous
12656 namespace. */
12657
12658 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
12659 {
12660 struct type *type;
12661
12662 type = read_type_die (die, cu);
12663 new_symbol (die, type, cu);
12664
12665 namespace_name (die, &is_anonymous, cu);
12666 if (is_anonymous)
12667 {
12668 const char *previous_prefix = determine_prefix (die, cu);
12669
12670 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
12671 NULL, NULL, 0, &objfile->objfile_obstack);
12672 }
12673 }
12674
12675 if (die->child != NULL)
12676 {
12677 struct die_info *child_die = die->child;
12678
12679 while (child_die && child_die->tag)
12680 {
12681 process_die (child_die, cu);
12682 child_die = sibling_die (child_die);
12683 }
12684 }
12685 }
12686
12687 /* Read a Fortran module as type. This DIE can be only a declaration used for
12688 imported module. Still we need that type as local Fortran "use ... only"
12689 declaration imports depend on the created type in determine_prefix. */
12690
12691 static struct type *
12692 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
12693 {
12694 struct objfile *objfile = cu->objfile;
12695 const char *module_name;
12696 struct type *type;
12697
12698 module_name = dwarf2_name (die, cu);
12699 if (!module_name)
12700 complaint (&symfile_complaints,
12701 _("DW_TAG_module has no name, offset 0x%x"),
12702 die->offset.sect_off);
12703 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
12704
12705 /* determine_prefix uses TYPE_TAG_NAME. */
12706 TYPE_TAG_NAME (type) = TYPE_NAME (type);
12707
12708 return set_die_type (die, type, cu);
12709 }
12710
12711 /* Read a Fortran module. */
12712
12713 static void
12714 read_module (struct die_info *die, struct dwarf2_cu *cu)
12715 {
12716 struct die_info *child_die = die->child;
12717
12718 while (child_die && child_die->tag)
12719 {
12720 process_die (child_die, cu);
12721 child_die = sibling_die (child_die);
12722 }
12723 }
12724
12725 /* Return the name of the namespace represented by DIE. Set
12726 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
12727 namespace. */
12728
12729 static const char *
12730 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
12731 {
12732 struct die_info *current_die;
12733 const char *name = NULL;
12734
12735 /* Loop through the extensions until we find a name. */
12736
12737 for (current_die = die;
12738 current_die != NULL;
12739 current_die = dwarf2_extension (die, &cu))
12740 {
12741 name = dwarf2_name (current_die, cu);
12742 if (name != NULL)
12743 break;
12744 }
12745
12746 /* Is it an anonymous namespace? */
12747
12748 *is_anonymous = (name == NULL);
12749 if (*is_anonymous)
12750 name = CP_ANONYMOUS_NAMESPACE_STR;
12751
12752 return name;
12753 }
12754
12755 /* Extract all information from a DW_TAG_pointer_type DIE and add to
12756 the user defined type vector. */
12757
12758 static struct type *
12759 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
12760 {
12761 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
12762 struct comp_unit_head *cu_header = &cu->header;
12763 struct type *type;
12764 struct attribute *attr_byte_size;
12765 struct attribute *attr_address_class;
12766 int byte_size, addr_class;
12767 struct type *target_type;
12768
12769 target_type = die_type (die, cu);
12770
12771 /* The die_type call above may have already set the type for this DIE. */
12772 type = get_die_type (die, cu);
12773 if (type)
12774 return type;
12775
12776 type = lookup_pointer_type (target_type);
12777
12778 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
12779 if (attr_byte_size)
12780 byte_size = DW_UNSND (attr_byte_size);
12781 else
12782 byte_size = cu_header->addr_size;
12783
12784 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
12785 if (attr_address_class)
12786 addr_class = DW_UNSND (attr_address_class);
12787 else
12788 addr_class = DW_ADDR_none;
12789
12790 /* If the pointer size or address class is different than the
12791 default, create a type variant marked as such and set the
12792 length accordingly. */
12793 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
12794 {
12795 if (gdbarch_address_class_type_flags_p (gdbarch))
12796 {
12797 int type_flags;
12798
12799 type_flags = gdbarch_address_class_type_flags
12800 (gdbarch, byte_size, addr_class);
12801 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
12802 == 0);
12803 type = make_type_with_address_space (type, type_flags);
12804 }
12805 else if (TYPE_LENGTH (type) != byte_size)
12806 {
12807 complaint (&symfile_complaints,
12808 _("invalid pointer size %d"), byte_size);
12809 }
12810 else
12811 {
12812 /* Should we also complain about unhandled address classes? */
12813 }
12814 }
12815
12816 TYPE_LENGTH (type) = byte_size;
12817 return set_die_type (die, type, cu);
12818 }
12819
12820 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
12821 the user defined type vector. */
12822
12823 static struct type *
12824 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
12825 {
12826 struct type *type;
12827 struct type *to_type;
12828 struct type *domain;
12829
12830 to_type = die_type (die, cu);
12831 domain = die_containing_type (die, cu);
12832
12833 /* The calls above may have already set the type for this DIE. */
12834 type = get_die_type (die, cu);
12835 if (type)
12836 return type;
12837
12838 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
12839 type = lookup_methodptr_type (to_type);
12840 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
12841 {
12842 struct type *new_type = alloc_type (cu->objfile);
12843
12844 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
12845 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
12846 TYPE_VARARGS (to_type));
12847 type = lookup_methodptr_type (new_type);
12848 }
12849 else
12850 type = lookup_memberptr_type (to_type, domain);
12851
12852 return set_die_type (die, type, cu);
12853 }
12854
12855 /* Extract all information from a DW_TAG_reference_type DIE and add to
12856 the user defined type vector. */
12857
12858 static struct type *
12859 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
12860 {
12861 struct comp_unit_head *cu_header = &cu->header;
12862 struct type *type, *target_type;
12863 struct attribute *attr;
12864
12865 target_type = die_type (die, cu);
12866
12867 /* The die_type call above may have already set the type for this DIE. */
12868 type = get_die_type (die, cu);
12869 if (type)
12870 return type;
12871
12872 type = lookup_reference_type (target_type);
12873 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12874 if (attr)
12875 {
12876 TYPE_LENGTH (type) = DW_UNSND (attr);
12877 }
12878 else
12879 {
12880 TYPE_LENGTH (type) = cu_header->addr_size;
12881 }
12882 return set_die_type (die, type, cu);
12883 }
12884
12885 static struct type *
12886 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
12887 {
12888 struct type *base_type, *cv_type;
12889
12890 base_type = die_type (die, cu);
12891
12892 /* The die_type call above may have already set the type for this DIE. */
12893 cv_type = get_die_type (die, cu);
12894 if (cv_type)
12895 return cv_type;
12896
12897 /* In case the const qualifier is applied to an array type, the element type
12898 is so qualified, not the array type (section 6.7.3 of C99). */
12899 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
12900 {
12901 struct type *el_type, *inner_array;
12902
12903 base_type = copy_type (base_type);
12904 inner_array = base_type;
12905
12906 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
12907 {
12908 TYPE_TARGET_TYPE (inner_array) =
12909 copy_type (TYPE_TARGET_TYPE (inner_array));
12910 inner_array = TYPE_TARGET_TYPE (inner_array);
12911 }
12912
12913 el_type = TYPE_TARGET_TYPE (inner_array);
12914 TYPE_TARGET_TYPE (inner_array) =
12915 make_cv_type (1, TYPE_VOLATILE (el_type), el_type, NULL);
12916
12917 return set_die_type (die, base_type, cu);
12918 }
12919
12920 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
12921 return set_die_type (die, cv_type, cu);
12922 }
12923
12924 static struct type *
12925 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
12926 {
12927 struct type *base_type, *cv_type;
12928
12929 base_type = die_type (die, cu);
12930
12931 /* The die_type call above may have already set the type for this DIE. */
12932 cv_type = get_die_type (die, cu);
12933 if (cv_type)
12934 return cv_type;
12935
12936 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
12937 return set_die_type (die, cv_type, cu);
12938 }
12939
12940 /* Handle DW_TAG_restrict_type. */
12941
12942 static struct type *
12943 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
12944 {
12945 struct type *base_type, *cv_type;
12946
12947 base_type = die_type (die, cu);
12948
12949 /* The die_type call above may have already set the type for this DIE. */
12950 cv_type = get_die_type (die, cu);
12951 if (cv_type)
12952 return cv_type;
12953
12954 cv_type = make_restrict_type (base_type);
12955 return set_die_type (die, cv_type, cu);
12956 }
12957
12958 /* Extract all information from a DW_TAG_string_type DIE and add to
12959 the user defined type vector. It isn't really a user defined type,
12960 but it behaves like one, with other DIE's using an AT_user_def_type
12961 attribute to reference it. */
12962
12963 static struct type *
12964 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
12965 {
12966 struct objfile *objfile = cu->objfile;
12967 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12968 struct type *type, *range_type, *index_type, *char_type;
12969 struct attribute *attr;
12970 unsigned int length;
12971
12972 attr = dwarf2_attr (die, DW_AT_string_length, cu);
12973 if (attr)
12974 {
12975 length = DW_UNSND (attr);
12976 }
12977 else
12978 {
12979 /* Check for the DW_AT_byte_size attribute. */
12980 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12981 if (attr)
12982 {
12983 length = DW_UNSND (attr);
12984 }
12985 else
12986 {
12987 length = 1;
12988 }
12989 }
12990
12991 index_type = objfile_type (objfile)->builtin_int;
12992 range_type = create_range_type (NULL, index_type, 1, length);
12993 char_type = language_string_char_type (cu->language_defn, gdbarch);
12994 type = create_string_type (NULL, char_type, range_type);
12995
12996 return set_die_type (die, type, cu);
12997 }
12998
12999 /* Assuming that DIE corresponds to a function, returns nonzero
13000 if the function is prototyped. */
13001
13002 static int
13003 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
13004 {
13005 struct attribute *attr;
13006
13007 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
13008 if (attr && (DW_UNSND (attr) != 0))
13009 return 1;
13010
13011 /* The DWARF standard implies that the DW_AT_prototyped attribute
13012 is only meaninful for C, but the concept also extends to other
13013 languages that allow unprototyped functions (Eg: Objective C).
13014 For all other languages, assume that functions are always
13015 prototyped. */
13016 if (cu->language != language_c
13017 && cu->language != language_objc
13018 && cu->language != language_opencl)
13019 return 1;
13020
13021 /* RealView does not emit DW_AT_prototyped. We can not distinguish
13022 prototyped and unprototyped functions; default to prototyped,
13023 since that is more common in modern code (and RealView warns
13024 about unprototyped functions). */
13025 if (producer_is_realview (cu->producer))
13026 return 1;
13027
13028 return 0;
13029 }
13030
13031 /* Handle DIES due to C code like:
13032
13033 struct foo
13034 {
13035 int (*funcp)(int a, long l);
13036 int b;
13037 };
13038
13039 ('funcp' generates a DW_TAG_subroutine_type DIE). */
13040
13041 static struct type *
13042 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
13043 {
13044 struct objfile *objfile = cu->objfile;
13045 struct type *type; /* Type that this function returns. */
13046 struct type *ftype; /* Function that returns above type. */
13047 struct attribute *attr;
13048
13049 type = die_type (die, cu);
13050
13051 /* The die_type call above may have already set the type for this DIE. */
13052 ftype = get_die_type (die, cu);
13053 if (ftype)
13054 return ftype;
13055
13056 ftype = lookup_function_type (type);
13057
13058 if (prototyped_function_p (die, cu))
13059 TYPE_PROTOTYPED (ftype) = 1;
13060
13061 /* Store the calling convention in the type if it's available in
13062 the subroutine die. Otherwise set the calling convention to
13063 the default value DW_CC_normal. */
13064 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
13065 if (attr)
13066 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
13067 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
13068 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
13069 else
13070 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
13071
13072 /* We need to add the subroutine type to the die immediately so
13073 we don't infinitely recurse when dealing with parameters
13074 declared as the same subroutine type. */
13075 set_die_type (die, ftype, cu);
13076
13077 if (die->child != NULL)
13078 {
13079 struct type *void_type = objfile_type (objfile)->builtin_void;
13080 struct die_info *child_die;
13081 int nparams, iparams;
13082
13083 /* Count the number of parameters.
13084 FIXME: GDB currently ignores vararg functions, but knows about
13085 vararg member functions. */
13086 nparams = 0;
13087 child_die = die->child;
13088 while (child_die && child_die->tag)
13089 {
13090 if (child_die->tag == DW_TAG_formal_parameter)
13091 nparams++;
13092 else if (child_die->tag == DW_TAG_unspecified_parameters)
13093 TYPE_VARARGS (ftype) = 1;
13094 child_die = sibling_die (child_die);
13095 }
13096
13097 /* Allocate storage for parameters and fill them in. */
13098 TYPE_NFIELDS (ftype) = nparams;
13099 TYPE_FIELDS (ftype) = (struct field *)
13100 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
13101
13102 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
13103 even if we error out during the parameters reading below. */
13104 for (iparams = 0; iparams < nparams; iparams++)
13105 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
13106
13107 iparams = 0;
13108 child_die = die->child;
13109 while (child_die && child_die->tag)
13110 {
13111 if (child_die->tag == DW_TAG_formal_parameter)
13112 {
13113 struct type *arg_type;
13114
13115 /* DWARF version 2 has no clean way to discern C++
13116 static and non-static member functions. G++ helps
13117 GDB by marking the first parameter for non-static
13118 member functions (which is the this pointer) as
13119 artificial. We pass this information to
13120 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
13121
13122 DWARF version 3 added DW_AT_object_pointer, which GCC
13123 4.5 does not yet generate. */
13124 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
13125 if (attr)
13126 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
13127 else
13128 {
13129 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
13130
13131 /* GCC/43521: In java, the formal parameter
13132 "this" is sometimes not marked with DW_AT_artificial. */
13133 if (cu->language == language_java)
13134 {
13135 const char *name = dwarf2_name (child_die, cu);
13136
13137 if (name && !strcmp (name, "this"))
13138 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
13139 }
13140 }
13141 arg_type = die_type (child_die, cu);
13142
13143 /* RealView does not mark THIS as const, which the testsuite
13144 expects. GCC marks THIS as const in method definitions,
13145 but not in the class specifications (GCC PR 43053). */
13146 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
13147 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
13148 {
13149 int is_this = 0;
13150 struct dwarf2_cu *arg_cu = cu;
13151 const char *name = dwarf2_name (child_die, cu);
13152
13153 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
13154 if (attr)
13155 {
13156 /* If the compiler emits this, use it. */
13157 if (follow_die_ref (die, attr, &arg_cu) == child_die)
13158 is_this = 1;
13159 }
13160 else if (name && strcmp (name, "this") == 0)
13161 /* Function definitions will have the argument names. */
13162 is_this = 1;
13163 else if (name == NULL && iparams == 0)
13164 /* Declarations may not have the names, so like
13165 elsewhere in GDB, assume an artificial first
13166 argument is "this". */
13167 is_this = 1;
13168
13169 if (is_this)
13170 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
13171 arg_type, 0);
13172 }
13173
13174 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
13175 iparams++;
13176 }
13177 child_die = sibling_die (child_die);
13178 }
13179 }
13180
13181 return ftype;
13182 }
13183
13184 static struct type *
13185 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
13186 {
13187 struct objfile *objfile = cu->objfile;
13188 const char *name = NULL;
13189 struct type *this_type, *target_type;
13190
13191 name = dwarf2_full_name (NULL, die, cu);
13192 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
13193 TYPE_FLAG_TARGET_STUB, NULL, objfile);
13194 TYPE_NAME (this_type) = name;
13195 set_die_type (die, this_type, cu);
13196 target_type = die_type (die, cu);
13197 if (target_type != this_type)
13198 TYPE_TARGET_TYPE (this_type) = target_type;
13199 else
13200 {
13201 /* Self-referential typedefs are, it seems, not allowed by the DWARF
13202 spec and cause infinite loops in GDB. */
13203 complaint (&symfile_complaints,
13204 _("Self-referential DW_TAG_typedef "
13205 "- DIE at 0x%x [in module %s]"),
13206 die->offset.sect_off, objfile->name);
13207 TYPE_TARGET_TYPE (this_type) = NULL;
13208 }
13209 return this_type;
13210 }
13211
13212 /* Find a representation of a given base type and install
13213 it in the TYPE field of the die. */
13214
13215 static struct type *
13216 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
13217 {
13218 struct objfile *objfile = cu->objfile;
13219 struct type *type;
13220 struct attribute *attr;
13221 int encoding = 0, size = 0;
13222 const char *name;
13223 enum type_code code = TYPE_CODE_INT;
13224 int type_flags = 0;
13225 struct type *target_type = NULL;
13226
13227 attr = dwarf2_attr (die, DW_AT_encoding, cu);
13228 if (attr)
13229 {
13230 encoding = DW_UNSND (attr);
13231 }
13232 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13233 if (attr)
13234 {
13235 size = DW_UNSND (attr);
13236 }
13237 name = dwarf2_name (die, cu);
13238 if (!name)
13239 {
13240 complaint (&symfile_complaints,
13241 _("DW_AT_name missing from DW_TAG_base_type"));
13242 }
13243
13244 switch (encoding)
13245 {
13246 case DW_ATE_address:
13247 /* Turn DW_ATE_address into a void * pointer. */
13248 code = TYPE_CODE_PTR;
13249 type_flags |= TYPE_FLAG_UNSIGNED;
13250 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
13251 break;
13252 case DW_ATE_boolean:
13253 code = TYPE_CODE_BOOL;
13254 type_flags |= TYPE_FLAG_UNSIGNED;
13255 break;
13256 case DW_ATE_complex_float:
13257 code = TYPE_CODE_COMPLEX;
13258 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
13259 break;
13260 case DW_ATE_decimal_float:
13261 code = TYPE_CODE_DECFLOAT;
13262 break;
13263 case DW_ATE_float:
13264 code = TYPE_CODE_FLT;
13265 break;
13266 case DW_ATE_signed:
13267 break;
13268 case DW_ATE_unsigned:
13269 type_flags |= TYPE_FLAG_UNSIGNED;
13270 if (cu->language == language_fortran
13271 && name
13272 && strncmp (name, "character(", sizeof ("character(") - 1) == 0)
13273 code = TYPE_CODE_CHAR;
13274 break;
13275 case DW_ATE_signed_char:
13276 if (cu->language == language_ada || cu->language == language_m2
13277 || cu->language == language_pascal
13278 || cu->language == language_fortran)
13279 code = TYPE_CODE_CHAR;
13280 break;
13281 case DW_ATE_unsigned_char:
13282 if (cu->language == language_ada || cu->language == language_m2
13283 || cu->language == language_pascal
13284 || cu->language == language_fortran)
13285 code = TYPE_CODE_CHAR;
13286 type_flags |= TYPE_FLAG_UNSIGNED;
13287 break;
13288 case DW_ATE_UTF:
13289 /* We just treat this as an integer and then recognize the
13290 type by name elsewhere. */
13291 break;
13292
13293 default:
13294 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
13295 dwarf_type_encoding_name (encoding));
13296 break;
13297 }
13298
13299 type = init_type (code, size, type_flags, NULL, objfile);
13300 TYPE_NAME (type) = name;
13301 TYPE_TARGET_TYPE (type) = target_type;
13302
13303 if (name && strcmp (name, "char") == 0)
13304 TYPE_NOSIGN (type) = 1;
13305
13306 return set_die_type (die, type, cu);
13307 }
13308
13309 /* Read the given DW_AT_subrange DIE. */
13310
13311 static struct type *
13312 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
13313 {
13314 struct type *base_type, *orig_base_type;
13315 struct type *range_type;
13316 struct attribute *attr;
13317 LONGEST low, high;
13318 int low_default_is_valid;
13319 const char *name;
13320 LONGEST negative_mask;
13321
13322 orig_base_type = die_type (die, cu);
13323 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
13324 whereas the real type might be. So, we use ORIG_BASE_TYPE when
13325 creating the range type, but we use the result of check_typedef
13326 when examining properties of the type. */
13327 base_type = check_typedef (orig_base_type);
13328
13329 /* The die_type call above may have already set the type for this DIE. */
13330 range_type = get_die_type (die, cu);
13331 if (range_type)
13332 return range_type;
13333
13334 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
13335 omitting DW_AT_lower_bound. */
13336 switch (cu->language)
13337 {
13338 case language_c:
13339 case language_cplus:
13340 low = 0;
13341 low_default_is_valid = 1;
13342 break;
13343 case language_fortran:
13344 low = 1;
13345 low_default_is_valid = 1;
13346 break;
13347 case language_d:
13348 case language_java:
13349 case language_objc:
13350 low = 0;
13351 low_default_is_valid = (cu->header.version >= 4);
13352 break;
13353 case language_ada:
13354 case language_m2:
13355 case language_pascal:
13356 low = 1;
13357 low_default_is_valid = (cu->header.version >= 4);
13358 break;
13359 default:
13360 low = 0;
13361 low_default_is_valid = 0;
13362 break;
13363 }
13364
13365 /* FIXME: For variable sized arrays either of these could be
13366 a variable rather than a constant value. We'll allow it,
13367 but we don't know how to handle it. */
13368 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
13369 if (attr)
13370 low = dwarf2_get_attr_constant_value (attr, low);
13371 else if (!low_default_is_valid)
13372 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
13373 "- DIE at 0x%x [in module %s]"),
13374 die->offset.sect_off, cu->objfile->name);
13375
13376 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
13377 if (attr)
13378 {
13379 if (attr_form_is_block (attr) || is_ref_attr (attr))
13380 {
13381 /* GCC encodes arrays with unspecified or dynamic length
13382 with a DW_FORM_block1 attribute or a reference attribute.
13383 FIXME: GDB does not yet know how to handle dynamic
13384 arrays properly, treat them as arrays with unspecified
13385 length for now.
13386
13387 FIXME: jimb/2003-09-22: GDB does not really know
13388 how to handle arrays of unspecified length
13389 either; we just represent them as zero-length
13390 arrays. Choose an appropriate upper bound given
13391 the lower bound we've computed above. */
13392 high = low - 1;
13393 }
13394 else
13395 high = dwarf2_get_attr_constant_value (attr, 1);
13396 }
13397 else
13398 {
13399 attr = dwarf2_attr (die, DW_AT_count, cu);
13400 if (attr)
13401 {
13402 int count = dwarf2_get_attr_constant_value (attr, 1);
13403 high = low + count - 1;
13404 }
13405 else
13406 {
13407 /* Unspecified array length. */
13408 high = low - 1;
13409 }
13410 }
13411
13412 /* Dwarf-2 specifications explicitly allows to create subrange types
13413 without specifying a base type.
13414 In that case, the base type must be set to the type of
13415 the lower bound, upper bound or count, in that order, if any of these
13416 three attributes references an object that has a type.
13417 If no base type is found, the Dwarf-2 specifications say that
13418 a signed integer type of size equal to the size of an address should
13419 be used.
13420 For the following C code: `extern char gdb_int [];'
13421 GCC produces an empty range DIE.
13422 FIXME: muller/2010-05-28: Possible references to object for low bound,
13423 high bound or count are not yet handled by this code. */
13424 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
13425 {
13426 struct objfile *objfile = cu->objfile;
13427 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13428 int addr_size = gdbarch_addr_bit (gdbarch) /8;
13429 struct type *int_type = objfile_type (objfile)->builtin_int;
13430
13431 /* Test "int", "long int", and "long long int" objfile types,
13432 and select the first one having a size above or equal to the
13433 architecture address size. */
13434 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
13435 base_type = int_type;
13436 else
13437 {
13438 int_type = objfile_type (objfile)->builtin_long;
13439 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
13440 base_type = int_type;
13441 else
13442 {
13443 int_type = objfile_type (objfile)->builtin_long_long;
13444 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
13445 base_type = int_type;
13446 }
13447 }
13448 }
13449
13450 negative_mask =
13451 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
13452 if (!TYPE_UNSIGNED (base_type) && (low & negative_mask))
13453 low |= negative_mask;
13454 if (!TYPE_UNSIGNED (base_type) && (high & negative_mask))
13455 high |= negative_mask;
13456
13457 range_type = create_range_type (NULL, orig_base_type, low, high);
13458
13459 /* Mark arrays with dynamic length at least as an array of unspecified
13460 length. GDB could check the boundary but before it gets implemented at
13461 least allow accessing the array elements. */
13462 if (attr && attr_form_is_block (attr))
13463 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
13464
13465 /* Ada expects an empty array on no boundary attributes. */
13466 if (attr == NULL && cu->language != language_ada)
13467 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
13468
13469 name = dwarf2_name (die, cu);
13470 if (name)
13471 TYPE_NAME (range_type) = name;
13472
13473 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13474 if (attr)
13475 TYPE_LENGTH (range_type) = DW_UNSND (attr);
13476
13477 set_die_type (die, range_type, cu);
13478
13479 /* set_die_type should be already done. */
13480 set_descriptive_type (range_type, die, cu);
13481
13482 return range_type;
13483 }
13484
13485 static struct type *
13486 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
13487 {
13488 struct type *type;
13489
13490 /* For now, we only support the C meaning of an unspecified type: void. */
13491
13492 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
13493 TYPE_NAME (type) = dwarf2_name (die, cu);
13494
13495 return set_die_type (die, type, cu);
13496 }
13497
13498 /* Read a single die and all its descendents. Set the die's sibling
13499 field to NULL; set other fields in the die correctly, and set all
13500 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
13501 location of the info_ptr after reading all of those dies. PARENT
13502 is the parent of the die in question. */
13503
13504 static struct die_info *
13505 read_die_and_children (const struct die_reader_specs *reader,
13506 const gdb_byte *info_ptr,
13507 const gdb_byte **new_info_ptr,
13508 struct die_info *parent)
13509 {
13510 struct die_info *die;
13511 const gdb_byte *cur_ptr;
13512 int has_children;
13513
13514 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
13515 if (die == NULL)
13516 {
13517 *new_info_ptr = cur_ptr;
13518 return NULL;
13519 }
13520 store_in_ref_table (die, reader->cu);
13521
13522 if (has_children)
13523 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
13524 else
13525 {
13526 die->child = NULL;
13527 *new_info_ptr = cur_ptr;
13528 }
13529
13530 die->sibling = NULL;
13531 die->parent = parent;
13532 return die;
13533 }
13534
13535 /* Read a die, all of its descendents, and all of its siblings; set
13536 all of the fields of all of the dies correctly. Arguments are as
13537 in read_die_and_children. */
13538
13539 static struct die_info *
13540 read_die_and_siblings_1 (const struct die_reader_specs *reader,
13541 const gdb_byte *info_ptr,
13542 const gdb_byte **new_info_ptr,
13543 struct die_info *parent)
13544 {
13545 struct die_info *first_die, *last_sibling;
13546 const gdb_byte *cur_ptr;
13547
13548 cur_ptr = info_ptr;
13549 first_die = last_sibling = NULL;
13550
13551 while (1)
13552 {
13553 struct die_info *die
13554 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
13555
13556 if (die == NULL)
13557 {
13558 *new_info_ptr = cur_ptr;
13559 return first_die;
13560 }
13561
13562 if (!first_die)
13563 first_die = die;
13564 else
13565 last_sibling->sibling = die;
13566
13567 last_sibling = die;
13568 }
13569 }
13570
13571 /* Read a die, all of its descendents, and all of its siblings; set
13572 all of the fields of all of the dies correctly. Arguments are as
13573 in read_die_and_children.
13574 This the main entry point for reading a DIE and all its children. */
13575
13576 static struct die_info *
13577 read_die_and_siblings (const struct die_reader_specs *reader,
13578 const gdb_byte *info_ptr,
13579 const gdb_byte **new_info_ptr,
13580 struct die_info *parent)
13581 {
13582 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
13583 new_info_ptr, parent);
13584
13585 if (dwarf2_die_debug)
13586 {
13587 fprintf_unfiltered (gdb_stdlog,
13588 "Read die from %s@0x%x of %s:\n",
13589 bfd_section_name (reader->abfd,
13590 reader->die_section->asection),
13591 (unsigned) (info_ptr - reader->die_section->buffer),
13592 bfd_get_filename (reader->abfd));
13593 dump_die (die, dwarf2_die_debug);
13594 }
13595
13596 return die;
13597 }
13598
13599 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
13600 attributes.
13601 The caller is responsible for filling in the extra attributes
13602 and updating (*DIEP)->num_attrs.
13603 Set DIEP to point to a newly allocated die with its information,
13604 except for its child, sibling, and parent fields.
13605 Set HAS_CHILDREN to tell whether the die has children or not. */
13606
13607 static const gdb_byte *
13608 read_full_die_1 (const struct die_reader_specs *reader,
13609 struct die_info **diep, const gdb_byte *info_ptr,
13610 int *has_children, int num_extra_attrs)
13611 {
13612 unsigned int abbrev_number, bytes_read, i;
13613 sect_offset offset;
13614 struct abbrev_info *abbrev;
13615 struct die_info *die;
13616 struct dwarf2_cu *cu = reader->cu;
13617 bfd *abfd = reader->abfd;
13618
13619 offset.sect_off = info_ptr - reader->buffer;
13620 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
13621 info_ptr += bytes_read;
13622 if (!abbrev_number)
13623 {
13624 *diep = NULL;
13625 *has_children = 0;
13626 return info_ptr;
13627 }
13628
13629 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
13630 if (!abbrev)
13631 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
13632 abbrev_number,
13633 bfd_get_filename (abfd));
13634
13635 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
13636 die->offset = offset;
13637 die->tag = abbrev->tag;
13638 die->abbrev = abbrev_number;
13639
13640 /* Make the result usable.
13641 The caller needs to update num_attrs after adding the extra
13642 attributes. */
13643 die->num_attrs = abbrev->num_attrs;
13644
13645 for (i = 0; i < abbrev->num_attrs; ++i)
13646 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
13647 info_ptr);
13648
13649 *diep = die;
13650 *has_children = abbrev->has_children;
13651 return info_ptr;
13652 }
13653
13654 /* Read a die and all its attributes.
13655 Set DIEP to point to a newly allocated die with its information,
13656 except for its child, sibling, and parent fields.
13657 Set HAS_CHILDREN to tell whether the die has children or not. */
13658
13659 static const gdb_byte *
13660 read_full_die (const struct die_reader_specs *reader,
13661 struct die_info **diep, const gdb_byte *info_ptr,
13662 int *has_children)
13663 {
13664 const gdb_byte *result;
13665
13666 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
13667
13668 if (dwarf2_die_debug)
13669 {
13670 fprintf_unfiltered (gdb_stdlog,
13671 "Read die from %s@0x%x of %s:\n",
13672 bfd_section_name (reader->abfd,
13673 reader->die_section->asection),
13674 (unsigned) (info_ptr - reader->die_section->buffer),
13675 bfd_get_filename (reader->abfd));
13676 dump_die (*diep, dwarf2_die_debug);
13677 }
13678
13679 return result;
13680 }
13681 \f
13682 /* Abbreviation tables.
13683
13684 In DWARF version 2, the description of the debugging information is
13685 stored in a separate .debug_abbrev section. Before we read any
13686 dies from a section we read in all abbreviations and install them
13687 in a hash table. */
13688
13689 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
13690
13691 static struct abbrev_info *
13692 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
13693 {
13694 struct abbrev_info *abbrev;
13695
13696 abbrev = (struct abbrev_info *)
13697 obstack_alloc (&abbrev_table->abbrev_obstack, sizeof (struct abbrev_info));
13698 memset (abbrev, 0, sizeof (struct abbrev_info));
13699 return abbrev;
13700 }
13701
13702 /* Add an abbreviation to the table. */
13703
13704 static void
13705 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
13706 unsigned int abbrev_number,
13707 struct abbrev_info *abbrev)
13708 {
13709 unsigned int hash_number;
13710
13711 hash_number = abbrev_number % ABBREV_HASH_SIZE;
13712 abbrev->next = abbrev_table->abbrevs[hash_number];
13713 abbrev_table->abbrevs[hash_number] = abbrev;
13714 }
13715
13716 /* Look up an abbrev in the table.
13717 Returns NULL if the abbrev is not found. */
13718
13719 static struct abbrev_info *
13720 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
13721 unsigned int abbrev_number)
13722 {
13723 unsigned int hash_number;
13724 struct abbrev_info *abbrev;
13725
13726 hash_number = abbrev_number % ABBREV_HASH_SIZE;
13727 abbrev = abbrev_table->abbrevs[hash_number];
13728
13729 while (abbrev)
13730 {
13731 if (abbrev->number == abbrev_number)
13732 return abbrev;
13733 abbrev = abbrev->next;
13734 }
13735 return NULL;
13736 }
13737
13738 /* Read in an abbrev table. */
13739
13740 static struct abbrev_table *
13741 abbrev_table_read_table (struct dwarf2_section_info *section,
13742 sect_offset offset)
13743 {
13744 struct objfile *objfile = dwarf2_per_objfile->objfile;
13745 bfd *abfd = section->asection->owner;
13746 struct abbrev_table *abbrev_table;
13747 const gdb_byte *abbrev_ptr;
13748 struct abbrev_info *cur_abbrev;
13749 unsigned int abbrev_number, bytes_read, abbrev_name;
13750 unsigned int abbrev_form;
13751 struct attr_abbrev *cur_attrs;
13752 unsigned int allocated_attrs;
13753
13754 abbrev_table = XMALLOC (struct abbrev_table);
13755 abbrev_table->offset = offset;
13756 obstack_init (&abbrev_table->abbrev_obstack);
13757 abbrev_table->abbrevs = obstack_alloc (&abbrev_table->abbrev_obstack,
13758 (ABBREV_HASH_SIZE
13759 * sizeof (struct abbrev_info *)));
13760 memset (abbrev_table->abbrevs, 0,
13761 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
13762
13763 dwarf2_read_section (objfile, section);
13764 abbrev_ptr = section->buffer + offset.sect_off;
13765 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13766 abbrev_ptr += bytes_read;
13767
13768 allocated_attrs = ATTR_ALLOC_CHUNK;
13769 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
13770
13771 /* Loop until we reach an abbrev number of 0. */
13772 while (abbrev_number)
13773 {
13774 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
13775
13776 /* read in abbrev header */
13777 cur_abbrev->number = abbrev_number;
13778 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13779 abbrev_ptr += bytes_read;
13780 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
13781 abbrev_ptr += 1;
13782
13783 /* now read in declarations */
13784 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13785 abbrev_ptr += bytes_read;
13786 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13787 abbrev_ptr += bytes_read;
13788 while (abbrev_name)
13789 {
13790 if (cur_abbrev->num_attrs == allocated_attrs)
13791 {
13792 allocated_attrs += ATTR_ALLOC_CHUNK;
13793 cur_attrs
13794 = xrealloc (cur_attrs, (allocated_attrs
13795 * sizeof (struct attr_abbrev)));
13796 }
13797
13798 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
13799 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
13800 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13801 abbrev_ptr += bytes_read;
13802 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13803 abbrev_ptr += bytes_read;
13804 }
13805
13806 cur_abbrev->attrs = obstack_alloc (&abbrev_table->abbrev_obstack,
13807 (cur_abbrev->num_attrs
13808 * sizeof (struct attr_abbrev)));
13809 memcpy (cur_abbrev->attrs, cur_attrs,
13810 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
13811
13812 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
13813
13814 /* Get next abbreviation.
13815 Under Irix6 the abbreviations for a compilation unit are not
13816 always properly terminated with an abbrev number of 0.
13817 Exit loop if we encounter an abbreviation which we have
13818 already read (which means we are about to read the abbreviations
13819 for the next compile unit) or if the end of the abbreviation
13820 table is reached. */
13821 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
13822 break;
13823 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13824 abbrev_ptr += bytes_read;
13825 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
13826 break;
13827 }
13828
13829 xfree (cur_attrs);
13830 return abbrev_table;
13831 }
13832
13833 /* Free the resources held by ABBREV_TABLE. */
13834
13835 static void
13836 abbrev_table_free (struct abbrev_table *abbrev_table)
13837 {
13838 obstack_free (&abbrev_table->abbrev_obstack, NULL);
13839 xfree (abbrev_table);
13840 }
13841
13842 /* Same as abbrev_table_free but as a cleanup.
13843 We pass in a pointer to the pointer to the table so that we can
13844 set the pointer to NULL when we're done. It also simplifies
13845 build_type_unit_groups. */
13846
13847 static void
13848 abbrev_table_free_cleanup (void *table_ptr)
13849 {
13850 struct abbrev_table **abbrev_table_ptr = table_ptr;
13851
13852 if (*abbrev_table_ptr != NULL)
13853 abbrev_table_free (*abbrev_table_ptr);
13854 *abbrev_table_ptr = NULL;
13855 }
13856
13857 /* Read the abbrev table for CU from ABBREV_SECTION. */
13858
13859 static void
13860 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
13861 struct dwarf2_section_info *abbrev_section)
13862 {
13863 cu->abbrev_table =
13864 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
13865 }
13866
13867 /* Release the memory used by the abbrev table for a compilation unit. */
13868
13869 static void
13870 dwarf2_free_abbrev_table (void *ptr_to_cu)
13871 {
13872 struct dwarf2_cu *cu = ptr_to_cu;
13873
13874 if (cu->abbrev_table != NULL)
13875 abbrev_table_free (cu->abbrev_table);
13876 /* Set this to NULL so that we SEGV if we try to read it later,
13877 and also because free_comp_unit verifies this is NULL. */
13878 cu->abbrev_table = NULL;
13879 }
13880 \f
13881 /* Returns nonzero if TAG represents a type that we might generate a partial
13882 symbol for. */
13883
13884 static int
13885 is_type_tag_for_partial (int tag)
13886 {
13887 switch (tag)
13888 {
13889 #if 0
13890 /* Some types that would be reasonable to generate partial symbols for,
13891 that we don't at present. */
13892 case DW_TAG_array_type:
13893 case DW_TAG_file_type:
13894 case DW_TAG_ptr_to_member_type:
13895 case DW_TAG_set_type:
13896 case DW_TAG_string_type:
13897 case DW_TAG_subroutine_type:
13898 #endif
13899 case DW_TAG_base_type:
13900 case DW_TAG_class_type:
13901 case DW_TAG_interface_type:
13902 case DW_TAG_enumeration_type:
13903 case DW_TAG_structure_type:
13904 case DW_TAG_subrange_type:
13905 case DW_TAG_typedef:
13906 case DW_TAG_union_type:
13907 return 1;
13908 default:
13909 return 0;
13910 }
13911 }
13912
13913 /* Load all DIEs that are interesting for partial symbols into memory. */
13914
13915 static struct partial_die_info *
13916 load_partial_dies (const struct die_reader_specs *reader,
13917 const gdb_byte *info_ptr, int building_psymtab)
13918 {
13919 struct dwarf2_cu *cu = reader->cu;
13920 struct objfile *objfile = cu->objfile;
13921 struct partial_die_info *part_die;
13922 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
13923 struct abbrev_info *abbrev;
13924 unsigned int bytes_read;
13925 unsigned int load_all = 0;
13926 int nesting_level = 1;
13927
13928 parent_die = NULL;
13929 last_die = NULL;
13930
13931 gdb_assert (cu->per_cu != NULL);
13932 if (cu->per_cu->load_all_dies)
13933 load_all = 1;
13934
13935 cu->partial_dies
13936 = htab_create_alloc_ex (cu->header.length / 12,
13937 partial_die_hash,
13938 partial_die_eq,
13939 NULL,
13940 &cu->comp_unit_obstack,
13941 hashtab_obstack_allocate,
13942 dummy_obstack_deallocate);
13943
13944 part_die = obstack_alloc (&cu->comp_unit_obstack,
13945 sizeof (struct partial_die_info));
13946
13947 while (1)
13948 {
13949 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
13950
13951 /* A NULL abbrev means the end of a series of children. */
13952 if (abbrev == NULL)
13953 {
13954 if (--nesting_level == 0)
13955 {
13956 /* PART_DIE was probably the last thing allocated on the
13957 comp_unit_obstack, so we could call obstack_free
13958 here. We don't do that because the waste is small,
13959 and will be cleaned up when we're done with this
13960 compilation unit. This way, we're also more robust
13961 against other users of the comp_unit_obstack. */
13962 return first_die;
13963 }
13964 info_ptr += bytes_read;
13965 last_die = parent_die;
13966 parent_die = parent_die->die_parent;
13967 continue;
13968 }
13969
13970 /* Check for template arguments. We never save these; if
13971 they're seen, we just mark the parent, and go on our way. */
13972 if (parent_die != NULL
13973 && cu->language == language_cplus
13974 && (abbrev->tag == DW_TAG_template_type_param
13975 || abbrev->tag == DW_TAG_template_value_param))
13976 {
13977 parent_die->has_template_arguments = 1;
13978
13979 if (!load_all)
13980 {
13981 /* We don't need a partial DIE for the template argument. */
13982 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
13983 continue;
13984 }
13985 }
13986
13987 /* We only recurse into c++ subprograms looking for template arguments.
13988 Skip their other children. */
13989 if (!load_all
13990 && cu->language == language_cplus
13991 && parent_die != NULL
13992 && parent_die->tag == DW_TAG_subprogram)
13993 {
13994 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
13995 continue;
13996 }
13997
13998 /* Check whether this DIE is interesting enough to save. Normally
13999 we would not be interested in members here, but there may be
14000 later variables referencing them via DW_AT_specification (for
14001 static members). */
14002 if (!load_all
14003 && !is_type_tag_for_partial (abbrev->tag)
14004 && abbrev->tag != DW_TAG_constant
14005 && abbrev->tag != DW_TAG_enumerator
14006 && abbrev->tag != DW_TAG_subprogram
14007 && abbrev->tag != DW_TAG_lexical_block
14008 && abbrev->tag != DW_TAG_variable
14009 && abbrev->tag != DW_TAG_namespace
14010 && abbrev->tag != DW_TAG_module
14011 && abbrev->tag != DW_TAG_member
14012 && abbrev->tag != DW_TAG_imported_unit)
14013 {
14014 /* Otherwise we skip to the next sibling, if any. */
14015 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
14016 continue;
14017 }
14018
14019 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
14020 info_ptr);
14021
14022 /* This two-pass algorithm for processing partial symbols has a
14023 high cost in cache pressure. Thus, handle some simple cases
14024 here which cover the majority of C partial symbols. DIEs
14025 which neither have specification tags in them, nor could have
14026 specification tags elsewhere pointing at them, can simply be
14027 processed and discarded.
14028
14029 This segment is also optional; scan_partial_symbols and
14030 add_partial_symbol will handle these DIEs if we chain
14031 them in normally. When compilers which do not emit large
14032 quantities of duplicate debug information are more common,
14033 this code can probably be removed. */
14034
14035 /* Any complete simple types at the top level (pretty much all
14036 of them, for a language without namespaces), can be processed
14037 directly. */
14038 if (parent_die == NULL
14039 && part_die->has_specification == 0
14040 && part_die->is_declaration == 0
14041 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
14042 || part_die->tag == DW_TAG_base_type
14043 || part_die->tag == DW_TAG_subrange_type))
14044 {
14045 if (building_psymtab && part_die->name != NULL)
14046 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
14047 VAR_DOMAIN, LOC_TYPEDEF,
14048 &objfile->static_psymbols,
14049 0, (CORE_ADDR) 0, cu->language, objfile);
14050 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
14051 continue;
14052 }
14053
14054 /* The exception for DW_TAG_typedef with has_children above is
14055 a workaround of GCC PR debug/47510. In the case of this complaint
14056 type_name_no_tag_or_error will error on such types later.
14057
14058 GDB skipped children of DW_TAG_typedef by the shortcut above and then
14059 it could not find the child DIEs referenced later, this is checked
14060 above. In correct DWARF DW_TAG_typedef should have no children. */
14061
14062 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
14063 complaint (&symfile_complaints,
14064 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
14065 "- DIE at 0x%x [in module %s]"),
14066 part_die->offset.sect_off, objfile->name);
14067
14068 /* If we're at the second level, and we're an enumerator, and
14069 our parent has no specification (meaning possibly lives in a
14070 namespace elsewhere), then we can add the partial symbol now
14071 instead of queueing it. */
14072 if (part_die->tag == DW_TAG_enumerator
14073 && parent_die != NULL
14074 && parent_die->die_parent == NULL
14075 && parent_die->tag == DW_TAG_enumeration_type
14076 && parent_die->has_specification == 0)
14077 {
14078 if (part_die->name == NULL)
14079 complaint (&symfile_complaints,
14080 _("malformed enumerator DIE ignored"));
14081 else if (building_psymtab)
14082 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
14083 VAR_DOMAIN, LOC_CONST,
14084 (cu->language == language_cplus
14085 || cu->language == language_java)
14086 ? &objfile->global_psymbols
14087 : &objfile->static_psymbols,
14088 0, (CORE_ADDR) 0, cu->language, objfile);
14089
14090 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
14091 continue;
14092 }
14093
14094 /* We'll save this DIE so link it in. */
14095 part_die->die_parent = parent_die;
14096 part_die->die_sibling = NULL;
14097 part_die->die_child = NULL;
14098
14099 if (last_die && last_die == parent_die)
14100 last_die->die_child = part_die;
14101 else if (last_die)
14102 last_die->die_sibling = part_die;
14103
14104 last_die = part_die;
14105
14106 if (first_die == NULL)
14107 first_die = part_die;
14108
14109 /* Maybe add the DIE to the hash table. Not all DIEs that we
14110 find interesting need to be in the hash table, because we
14111 also have the parent/sibling/child chains; only those that we
14112 might refer to by offset later during partial symbol reading.
14113
14114 For now this means things that might have be the target of a
14115 DW_AT_specification, DW_AT_abstract_origin, or
14116 DW_AT_extension. DW_AT_extension will refer only to
14117 namespaces; DW_AT_abstract_origin refers to functions (and
14118 many things under the function DIE, but we do not recurse
14119 into function DIEs during partial symbol reading) and
14120 possibly variables as well; DW_AT_specification refers to
14121 declarations. Declarations ought to have the DW_AT_declaration
14122 flag. It happens that GCC forgets to put it in sometimes, but
14123 only for functions, not for types.
14124
14125 Adding more things than necessary to the hash table is harmless
14126 except for the performance cost. Adding too few will result in
14127 wasted time in find_partial_die, when we reread the compilation
14128 unit with load_all_dies set. */
14129
14130 if (load_all
14131 || abbrev->tag == DW_TAG_constant
14132 || abbrev->tag == DW_TAG_subprogram
14133 || abbrev->tag == DW_TAG_variable
14134 || abbrev->tag == DW_TAG_namespace
14135 || part_die->is_declaration)
14136 {
14137 void **slot;
14138
14139 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
14140 part_die->offset.sect_off, INSERT);
14141 *slot = part_die;
14142 }
14143
14144 part_die = obstack_alloc (&cu->comp_unit_obstack,
14145 sizeof (struct partial_die_info));
14146
14147 /* For some DIEs we want to follow their children (if any). For C
14148 we have no reason to follow the children of structures; for other
14149 languages we have to, so that we can get at method physnames
14150 to infer fully qualified class names, for DW_AT_specification,
14151 and for C++ template arguments. For C++, we also look one level
14152 inside functions to find template arguments (if the name of the
14153 function does not already contain the template arguments).
14154
14155 For Ada, we need to scan the children of subprograms and lexical
14156 blocks as well because Ada allows the definition of nested
14157 entities that could be interesting for the debugger, such as
14158 nested subprograms for instance. */
14159 if (last_die->has_children
14160 && (load_all
14161 || last_die->tag == DW_TAG_namespace
14162 || last_die->tag == DW_TAG_module
14163 || last_die->tag == DW_TAG_enumeration_type
14164 || (cu->language == language_cplus
14165 && last_die->tag == DW_TAG_subprogram
14166 && (last_die->name == NULL
14167 || strchr (last_die->name, '<') == NULL))
14168 || (cu->language != language_c
14169 && (last_die->tag == DW_TAG_class_type
14170 || last_die->tag == DW_TAG_interface_type
14171 || last_die->tag == DW_TAG_structure_type
14172 || last_die->tag == DW_TAG_union_type))
14173 || (cu->language == language_ada
14174 && (last_die->tag == DW_TAG_subprogram
14175 || last_die->tag == DW_TAG_lexical_block))))
14176 {
14177 nesting_level++;
14178 parent_die = last_die;
14179 continue;
14180 }
14181
14182 /* Otherwise we skip to the next sibling, if any. */
14183 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
14184
14185 /* Back to the top, do it again. */
14186 }
14187 }
14188
14189 /* Read a minimal amount of information into the minimal die structure. */
14190
14191 static const gdb_byte *
14192 read_partial_die (const struct die_reader_specs *reader,
14193 struct partial_die_info *part_die,
14194 struct abbrev_info *abbrev, unsigned int abbrev_len,
14195 const gdb_byte *info_ptr)
14196 {
14197 struct dwarf2_cu *cu = reader->cu;
14198 struct objfile *objfile = cu->objfile;
14199 const gdb_byte *buffer = reader->buffer;
14200 unsigned int i;
14201 struct attribute attr;
14202 int has_low_pc_attr = 0;
14203 int has_high_pc_attr = 0;
14204 int high_pc_relative = 0;
14205
14206 memset (part_die, 0, sizeof (struct partial_die_info));
14207
14208 part_die->offset.sect_off = info_ptr - buffer;
14209
14210 info_ptr += abbrev_len;
14211
14212 if (abbrev == NULL)
14213 return info_ptr;
14214
14215 part_die->tag = abbrev->tag;
14216 part_die->has_children = abbrev->has_children;
14217
14218 for (i = 0; i < abbrev->num_attrs; ++i)
14219 {
14220 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
14221
14222 /* Store the data if it is of an attribute we want to keep in a
14223 partial symbol table. */
14224 switch (attr.name)
14225 {
14226 case DW_AT_name:
14227 switch (part_die->tag)
14228 {
14229 case DW_TAG_compile_unit:
14230 case DW_TAG_partial_unit:
14231 case DW_TAG_type_unit:
14232 /* Compilation units have a DW_AT_name that is a filename, not
14233 a source language identifier. */
14234 case DW_TAG_enumeration_type:
14235 case DW_TAG_enumerator:
14236 /* These tags always have simple identifiers already; no need
14237 to canonicalize them. */
14238 part_die->name = DW_STRING (&attr);
14239 break;
14240 default:
14241 part_die->name
14242 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
14243 &objfile->objfile_obstack);
14244 break;
14245 }
14246 break;
14247 case DW_AT_linkage_name:
14248 case DW_AT_MIPS_linkage_name:
14249 /* Note that both forms of linkage name might appear. We
14250 assume they will be the same, and we only store the last
14251 one we see. */
14252 if (cu->language == language_ada)
14253 part_die->name = DW_STRING (&attr);
14254 part_die->linkage_name = DW_STRING (&attr);
14255 break;
14256 case DW_AT_low_pc:
14257 has_low_pc_attr = 1;
14258 part_die->lowpc = DW_ADDR (&attr);
14259 break;
14260 case DW_AT_high_pc:
14261 has_high_pc_attr = 1;
14262 if (attr.form == DW_FORM_addr
14263 || attr.form == DW_FORM_GNU_addr_index)
14264 part_die->highpc = DW_ADDR (&attr);
14265 else
14266 {
14267 high_pc_relative = 1;
14268 part_die->highpc = DW_UNSND (&attr);
14269 }
14270 break;
14271 case DW_AT_location:
14272 /* Support the .debug_loc offsets. */
14273 if (attr_form_is_block (&attr))
14274 {
14275 part_die->d.locdesc = DW_BLOCK (&attr);
14276 }
14277 else if (attr_form_is_section_offset (&attr))
14278 {
14279 dwarf2_complex_location_expr_complaint ();
14280 }
14281 else
14282 {
14283 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14284 "partial symbol information");
14285 }
14286 break;
14287 case DW_AT_external:
14288 part_die->is_external = DW_UNSND (&attr);
14289 break;
14290 case DW_AT_declaration:
14291 part_die->is_declaration = DW_UNSND (&attr);
14292 break;
14293 case DW_AT_type:
14294 part_die->has_type = 1;
14295 break;
14296 case DW_AT_abstract_origin:
14297 case DW_AT_specification:
14298 case DW_AT_extension:
14299 part_die->has_specification = 1;
14300 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
14301 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
14302 || cu->per_cu->is_dwz);
14303 break;
14304 case DW_AT_sibling:
14305 /* Ignore absolute siblings, they might point outside of
14306 the current compile unit. */
14307 if (attr.form == DW_FORM_ref_addr)
14308 complaint (&symfile_complaints,
14309 _("ignoring absolute DW_AT_sibling"));
14310 else
14311 part_die->sibling = buffer + dwarf2_get_ref_die_offset (&attr).sect_off;
14312 break;
14313 case DW_AT_byte_size:
14314 part_die->has_byte_size = 1;
14315 break;
14316 case DW_AT_calling_convention:
14317 /* DWARF doesn't provide a way to identify a program's source-level
14318 entry point. DW_AT_calling_convention attributes are only meant
14319 to describe functions' calling conventions.
14320
14321 However, because it's a necessary piece of information in
14322 Fortran, and because DW_CC_program is the only piece of debugging
14323 information whose definition refers to a 'main program' at all,
14324 several compilers have begun marking Fortran main programs with
14325 DW_CC_program --- even when those functions use the standard
14326 calling conventions.
14327
14328 So until DWARF specifies a way to provide this information and
14329 compilers pick up the new representation, we'll support this
14330 practice. */
14331 if (DW_UNSND (&attr) == DW_CC_program
14332 && cu->language == language_fortran)
14333 {
14334 set_main_name (part_die->name);
14335
14336 /* As this DIE has a static linkage the name would be difficult
14337 to look up later. */
14338 language_of_main = language_fortran;
14339 }
14340 break;
14341 case DW_AT_inline:
14342 if (DW_UNSND (&attr) == DW_INL_inlined
14343 || DW_UNSND (&attr) == DW_INL_declared_inlined)
14344 part_die->may_be_inlined = 1;
14345 break;
14346
14347 case DW_AT_import:
14348 if (part_die->tag == DW_TAG_imported_unit)
14349 {
14350 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
14351 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
14352 || cu->per_cu->is_dwz);
14353 }
14354 break;
14355
14356 default:
14357 break;
14358 }
14359 }
14360
14361 if (high_pc_relative)
14362 part_die->highpc += part_die->lowpc;
14363
14364 if (has_low_pc_attr && has_high_pc_attr)
14365 {
14366 /* When using the GNU linker, .gnu.linkonce. sections are used to
14367 eliminate duplicate copies of functions and vtables and such.
14368 The linker will arbitrarily choose one and discard the others.
14369 The AT_*_pc values for such functions refer to local labels in
14370 these sections. If the section from that file was discarded, the
14371 labels are not in the output, so the relocs get a value of 0.
14372 If this is a discarded function, mark the pc bounds as invalid,
14373 so that GDB will ignore it. */
14374 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
14375 {
14376 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14377
14378 complaint (&symfile_complaints,
14379 _("DW_AT_low_pc %s is zero "
14380 "for DIE at 0x%x [in module %s]"),
14381 paddress (gdbarch, part_die->lowpc),
14382 part_die->offset.sect_off, objfile->name);
14383 }
14384 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
14385 else if (part_die->lowpc >= part_die->highpc)
14386 {
14387 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14388
14389 complaint (&symfile_complaints,
14390 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
14391 "for DIE at 0x%x [in module %s]"),
14392 paddress (gdbarch, part_die->lowpc),
14393 paddress (gdbarch, part_die->highpc),
14394 part_die->offset.sect_off, objfile->name);
14395 }
14396 else
14397 part_die->has_pc_info = 1;
14398 }
14399
14400 return info_ptr;
14401 }
14402
14403 /* Find a cached partial DIE at OFFSET in CU. */
14404
14405 static struct partial_die_info *
14406 find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
14407 {
14408 struct partial_die_info *lookup_die = NULL;
14409 struct partial_die_info part_die;
14410
14411 part_die.offset = offset;
14412 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
14413 offset.sect_off);
14414
14415 return lookup_die;
14416 }
14417
14418 /* Find a partial DIE at OFFSET, which may or may not be in CU,
14419 except in the case of .debug_types DIEs which do not reference
14420 outside their CU (they do however referencing other types via
14421 DW_FORM_ref_sig8). */
14422
14423 static struct partial_die_info *
14424 find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
14425 {
14426 struct objfile *objfile = cu->objfile;
14427 struct dwarf2_per_cu_data *per_cu = NULL;
14428 struct partial_die_info *pd = NULL;
14429
14430 if (offset_in_dwz == cu->per_cu->is_dwz
14431 && offset_in_cu_p (&cu->header, offset))
14432 {
14433 pd = find_partial_die_in_comp_unit (offset, cu);
14434 if (pd != NULL)
14435 return pd;
14436 /* We missed recording what we needed.
14437 Load all dies and try again. */
14438 per_cu = cu->per_cu;
14439 }
14440 else
14441 {
14442 /* TUs don't reference other CUs/TUs (except via type signatures). */
14443 if (cu->per_cu->is_debug_types)
14444 {
14445 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
14446 " external reference to offset 0x%lx [in module %s].\n"),
14447 (long) cu->header.offset.sect_off, (long) offset.sect_off,
14448 bfd_get_filename (objfile->obfd));
14449 }
14450 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
14451 objfile);
14452
14453 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
14454 load_partial_comp_unit (per_cu);
14455
14456 per_cu->cu->last_used = 0;
14457 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
14458 }
14459
14460 /* If we didn't find it, and not all dies have been loaded,
14461 load them all and try again. */
14462
14463 if (pd == NULL && per_cu->load_all_dies == 0)
14464 {
14465 per_cu->load_all_dies = 1;
14466
14467 /* This is nasty. When we reread the DIEs, somewhere up the call chain
14468 THIS_CU->cu may already be in use. So we can't just free it and
14469 replace its DIEs with the ones we read in. Instead, we leave those
14470 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
14471 and clobber THIS_CU->cu->partial_dies with the hash table for the new
14472 set. */
14473 load_partial_comp_unit (per_cu);
14474
14475 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
14476 }
14477
14478 if (pd == NULL)
14479 internal_error (__FILE__, __LINE__,
14480 _("could not find partial DIE 0x%x "
14481 "in cache [from module %s]\n"),
14482 offset.sect_off, bfd_get_filename (objfile->obfd));
14483 return pd;
14484 }
14485
14486 /* See if we can figure out if the class lives in a namespace. We do
14487 this by looking for a member function; its demangled name will
14488 contain namespace info, if there is any. */
14489
14490 static void
14491 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
14492 struct dwarf2_cu *cu)
14493 {
14494 /* NOTE: carlton/2003-10-07: Getting the info this way changes
14495 what template types look like, because the demangler
14496 frequently doesn't give the same name as the debug info. We
14497 could fix this by only using the demangled name to get the
14498 prefix (but see comment in read_structure_type). */
14499
14500 struct partial_die_info *real_pdi;
14501 struct partial_die_info *child_pdi;
14502
14503 /* If this DIE (this DIE's specification, if any) has a parent, then
14504 we should not do this. We'll prepend the parent's fully qualified
14505 name when we create the partial symbol. */
14506
14507 real_pdi = struct_pdi;
14508 while (real_pdi->has_specification)
14509 real_pdi = find_partial_die (real_pdi->spec_offset,
14510 real_pdi->spec_is_dwz, cu);
14511
14512 if (real_pdi->die_parent != NULL)
14513 return;
14514
14515 for (child_pdi = struct_pdi->die_child;
14516 child_pdi != NULL;
14517 child_pdi = child_pdi->die_sibling)
14518 {
14519 if (child_pdi->tag == DW_TAG_subprogram
14520 && child_pdi->linkage_name != NULL)
14521 {
14522 char *actual_class_name
14523 = language_class_name_from_physname (cu->language_defn,
14524 child_pdi->linkage_name);
14525 if (actual_class_name != NULL)
14526 {
14527 struct_pdi->name
14528 = obstack_copy0 (&cu->objfile->objfile_obstack,
14529 actual_class_name,
14530 strlen (actual_class_name));
14531 xfree (actual_class_name);
14532 }
14533 break;
14534 }
14535 }
14536 }
14537
14538 /* Adjust PART_DIE before generating a symbol for it. This function
14539 may set the is_external flag or change the DIE's name. */
14540
14541 static void
14542 fixup_partial_die (struct partial_die_info *part_die,
14543 struct dwarf2_cu *cu)
14544 {
14545 /* Once we've fixed up a die, there's no point in doing so again.
14546 This also avoids a memory leak if we were to call
14547 guess_partial_die_structure_name multiple times. */
14548 if (part_die->fixup_called)
14549 return;
14550
14551 /* If we found a reference attribute and the DIE has no name, try
14552 to find a name in the referred to DIE. */
14553
14554 if (part_die->name == NULL && part_die->has_specification)
14555 {
14556 struct partial_die_info *spec_die;
14557
14558 spec_die = find_partial_die (part_die->spec_offset,
14559 part_die->spec_is_dwz, cu);
14560
14561 fixup_partial_die (spec_die, cu);
14562
14563 if (spec_die->name)
14564 {
14565 part_die->name = spec_die->name;
14566
14567 /* Copy DW_AT_external attribute if it is set. */
14568 if (spec_die->is_external)
14569 part_die->is_external = spec_die->is_external;
14570 }
14571 }
14572
14573 /* Set default names for some unnamed DIEs. */
14574
14575 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
14576 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
14577
14578 /* If there is no parent die to provide a namespace, and there are
14579 children, see if we can determine the namespace from their linkage
14580 name. */
14581 if (cu->language == language_cplus
14582 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
14583 && part_die->die_parent == NULL
14584 && part_die->has_children
14585 && (part_die->tag == DW_TAG_class_type
14586 || part_die->tag == DW_TAG_structure_type
14587 || part_die->tag == DW_TAG_union_type))
14588 guess_partial_die_structure_name (part_die, cu);
14589
14590 /* GCC might emit a nameless struct or union that has a linkage
14591 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
14592 if (part_die->name == NULL
14593 && (part_die->tag == DW_TAG_class_type
14594 || part_die->tag == DW_TAG_interface_type
14595 || part_die->tag == DW_TAG_structure_type
14596 || part_die->tag == DW_TAG_union_type)
14597 && part_die->linkage_name != NULL)
14598 {
14599 char *demangled;
14600
14601 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
14602 if (demangled)
14603 {
14604 const char *base;
14605
14606 /* Strip any leading namespaces/classes, keep only the base name.
14607 DW_AT_name for named DIEs does not contain the prefixes. */
14608 base = strrchr (demangled, ':');
14609 if (base && base > demangled && base[-1] == ':')
14610 base++;
14611 else
14612 base = demangled;
14613
14614 part_die->name = obstack_copy0 (&cu->objfile->objfile_obstack,
14615 base, strlen (base));
14616 xfree (demangled);
14617 }
14618 }
14619
14620 part_die->fixup_called = 1;
14621 }
14622
14623 /* Read an attribute value described by an attribute form. */
14624
14625 static const gdb_byte *
14626 read_attribute_value (const struct die_reader_specs *reader,
14627 struct attribute *attr, unsigned form,
14628 const gdb_byte *info_ptr)
14629 {
14630 struct dwarf2_cu *cu = reader->cu;
14631 bfd *abfd = reader->abfd;
14632 struct comp_unit_head *cu_header = &cu->header;
14633 unsigned int bytes_read;
14634 struct dwarf_block *blk;
14635
14636 attr->form = form;
14637 switch (form)
14638 {
14639 case DW_FORM_ref_addr:
14640 if (cu->header.version == 2)
14641 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
14642 else
14643 DW_UNSND (attr) = read_offset (abfd, info_ptr,
14644 &cu->header, &bytes_read);
14645 info_ptr += bytes_read;
14646 break;
14647 case DW_FORM_GNU_ref_alt:
14648 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
14649 info_ptr += bytes_read;
14650 break;
14651 case DW_FORM_addr:
14652 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
14653 info_ptr += bytes_read;
14654 break;
14655 case DW_FORM_block2:
14656 blk = dwarf_alloc_block (cu);
14657 blk->size = read_2_bytes (abfd, info_ptr);
14658 info_ptr += 2;
14659 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14660 info_ptr += blk->size;
14661 DW_BLOCK (attr) = blk;
14662 break;
14663 case DW_FORM_block4:
14664 blk = dwarf_alloc_block (cu);
14665 blk->size = read_4_bytes (abfd, info_ptr);
14666 info_ptr += 4;
14667 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14668 info_ptr += blk->size;
14669 DW_BLOCK (attr) = blk;
14670 break;
14671 case DW_FORM_data2:
14672 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
14673 info_ptr += 2;
14674 break;
14675 case DW_FORM_data4:
14676 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
14677 info_ptr += 4;
14678 break;
14679 case DW_FORM_data8:
14680 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
14681 info_ptr += 8;
14682 break;
14683 case DW_FORM_sec_offset:
14684 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
14685 info_ptr += bytes_read;
14686 break;
14687 case DW_FORM_string:
14688 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
14689 DW_STRING_IS_CANONICAL (attr) = 0;
14690 info_ptr += bytes_read;
14691 break;
14692 case DW_FORM_strp:
14693 if (!cu->per_cu->is_dwz)
14694 {
14695 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
14696 &bytes_read);
14697 DW_STRING_IS_CANONICAL (attr) = 0;
14698 info_ptr += bytes_read;
14699 break;
14700 }
14701 /* FALLTHROUGH */
14702 case DW_FORM_GNU_strp_alt:
14703 {
14704 struct dwz_file *dwz = dwarf2_get_dwz_file ();
14705 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
14706 &bytes_read);
14707
14708 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
14709 DW_STRING_IS_CANONICAL (attr) = 0;
14710 info_ptr += bytes_read;
14711 }
14712 break;
14713 case DW_FORM_exprloc:
14714 case DW_FORM_block:
14715 blk = dwarf_alloc_block (cu);
14716 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14717 info_ptr += bytes_read;
14718 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14719 info_ptr += blk->size;
14720 DW_BLOCK (attr) = blk;
14721 break;
14722 case DW_FORM_block1:
14723 blk = dwarf_alloc_block (cu);
14724 blk->size = read_1_byte (abfd, info_ptr);
14725 info_ptr += 1;
14726 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14727 info_ptr += blk->size;
14728 DW_BLOCK (attr) = blk;
14729 break;
14730 case DW_FORM_data1:
14731 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
14732 info_ptr += 1;
14733 break;
14734 case DW_FORM_flag:
14735 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
14736 info_ptr += 1;
14737 break;
14738 case DW_FORM_flag_present:
14739 DW_UNSND (attr) = 1;
14740 break;
14741 case DW_FORM_sdata:
14742 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
14743 info_ptr += bytes_read;
14744 break;
14745 case DW_FORM_udata:
14746 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14747 info_ptr += bytes_read;
14748 break;
14749 case DW_FORM_ref1:
14750 DW_UNSND (attr) = (cu->header.offset.sect_off
14751 + read_1_byte (abfd, info_ptr));
14752 info_ptr += 1;
14753 break;
14754 case DW_FORM_ref2:
14755 DW_UNSND (attr) = (cu->header.offset.sect_off
14756 + read_2_bytes (abfd, info_ptr));
14757 info_ptr += 2;
14758 break;
14759 case DW_FORM_ref4:
14760 DW_UNSND (attr) = (cu->header.offset.sect_off
14761 + read_4_bytes (abfd, info_ptr));
14762 info_ptr += 4;
14763 break;
14764 case DW_FORM_ref8:
14765 DW_UNSND (attr) = (cu->header.offset.sect_off
14766 + read_8_bytes (abfd, info_ptr));
14767 info_ptr += 8;
14768 break;
14769 case DW_FORM_ref_sig8:
14770 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
14771 info_ptr += 8;
14772 break;
14773 case DW_FORM_ref_udata:
14774 DW_UNSND (attr) = (cu->header.offset.sect_off
14775 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
14776 info_ptr += bytes_read;
14777 break;
14778 case DW_FORM_indirect:
14779 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14780 info_ptr += bytes_read;
14781 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
14782 break;
14783 case DW_FORM_GNU_addr_index:
14784 if (reader->dwo_file == NULL)
14785 {
14786 /* For now flag a hard error.
14787 Later we can turn this into a complaint. */
14788 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
14789 dwarf_form_name (form),
14790 bfd_get_filename (abfd));
14791 }
14792 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
14793 info_ptr += bytes_read;
14794 break;
14795 case DW_FORM_GNU_str_index:
14796 if (reader->dwo_file == NULL)
14797 {
14798 /* For now flag a hard error.
14799 Later we can turn this into a complaint if warranted. */
14800 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
14801 dwarf_form_name (form),
14802 bfd_get_filename (abfd));
14803 }
14804 {
14805 ULONGEST str_index =
14806 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14807
14808 DW_STRING (attr) = read_str_index (reader, cu, str_index);
14809 DW_STRING_IS_CANONICAL (attr) = 0;
14810 info_ptr += bytes_read;
14811 }
14812 break;
14813 default:
14814 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
14815 dwarf_form_name (form),
14816 bfd_get_filename (abfd));
14817 }
14818
14819 /* Super hack. */
14820 if (cu->per_cu->is_dwz && is_ref_attr (attr))
14821 attr->form = DW_FORM_GNU_ref_alt;
14822
14823 /* We have seen instances where the compiler tried to emit a byte
14824 size attribute of -1 which ended up being encoded as an unsigned
14825 0xffffffff. Although 0xffffffff is technically a valid size value,
14826 an object of this size seems pretty unlikely so we can relatively
14827 safely treat these cases as if the size attribute was invalid and
14828 treat them as zero by default. */
14829 if (attr->name == DW_AT_byte_size
14830 && form == DW_FORM_data4
14831 && DW_UNSND (attr) >= 0xffffffff)
14832 {
14833 complaint
14834 (&symfile_complaints,
14835 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
14836 hex_string (DW_UNSND (attr)));
14837 DW_UNSND (attr) = 0;
14838 }
14839
14840 return info_ptr;
14841 }
14842
14843 /* Read an attribute described by an abbreviated attribute. */
14844
14845 static const gdb_byte *
14846 read_attribute (const struct die_reader_specs *reader,
14847 struct attribute *attr, struct attr_abbrev *abbrev,
14848 const gdb_byte *info_ptr)
14849 {
14850 attr->name = abbrev->name;
14851 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
14852 }
14853
14854 /* Read dwarf information from a buffer. */
14855
14856 static unsigned int
14857 read_1_byte (bfd *abfd, const gdb_byte *buf)
14858 {
14859 return bfd_get_8 (abfd, buf);
14860 }
14861
14862 static int
14863 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
14864 {
14865 return bfd_get_signed_8 (abfd, buf);
14866 }
14867
14868 static unsigned int
14869 read_2_bytes (bfd *abfd, const gdb_byte *buf)
14870 {
14871 return bfd_get_16 (abfd, buf);
14872 }
14873
14874 static int
14875 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
14876 {
14877 return bfd_get_signed_16 (abfd, buf);
14878 }
14879
14880 static unsigned int
14881 read_4_bytes (bfd *abfd, const gdb_byte *buf)
14882 {
14883 return bfd_get_32 (abfd, buf);
14884 }
14885
14886 static int
14887 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
14888 {
14889 return bfd_get_signed_32 (abfd, buf);
14890 }
14891
14892 static ULONGEST
14893 read_8_bytes (bfd *abfd, const gdb_byte *buf)
14894 {
14895 return bfd_get_64 (abfd, buf);
14896 }
14897
14898 static CORE_ADDR
14899 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
14900 unsigned int *bytes_read)
14901 {
14902 struct comp_unit_head *cu_header = &cu->header;
14903 CORE_ADDR retval = 0;
14904
14905 if (cu_header->signed_addr_p)
14906 {
14907 switch (cu_header->addr_size)
14908 {
14909 case 2:
14910 retval = bfd_get_signed_16 (abfd, buf);
14911 break;
14912 case 4:
14913 retval = bfd_get_signed_32 (abfd, buf);
14914 break;
14915 case 8:
14916 retval = bfd_get_signed_64 (abfd, buf);
14917 break;
14918 default:
14919 internal_error (__FILE__, __LINE__,
14920 _("read_address: bad switch, signed [in module %s]"),
14921 bfd_get_filename (abfd));
14922 }
14923 }
14924 else
14925 {
14926 switch (cu_header->addr_size)
14927 {
14928 case 2:
14929 retval = bfd_get_16 (abfd, buf);
14930 break;
14931 case 4:
14932 retval = bfd_get_32 (abfd, buf);
14933 break;
14934 case 8:
14935 retval = bfd_get_64 (abfd, buf);
14936 break;
14937 default:
14938 internal_error (__FILE__, __LINE__,
14939 _("read_address: bad switch, "
14940 "unsigned [in module %s]"),
14941 bfd_get_filename (abfd));
14942 }
14943 }
14944
14945 *bytes_read = cu_header->addr_size;
14946 return retval;
14947 }
14948
14949 /* Read the initial length from a section. The (draft) DWARF 3
14950 specification allows the initial length to take up either 4 bytes
14951 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
14952 bytes describe the length and all offsets will be 8 bytes in length
14953 instead of 4.
14954
14955 An older, non-standard 64-bit format is also handled by this
14956 function. The older format in question stores the initial length
14957 as an 8-byte quantity without an escape value. Lengths greater
14958 than 2^32 aren't very common which means that the initial 4 bytes
14959 is almost always zero. Since a length value of zero doesn't make
14960 sense for the 32-bit format, this initial zero can be considered to
14961 be an escape value which indicates the presence of the older 64-bit
14962 format. As written, the code can't detect (old format) lengths
14963 greater than 4GB. If it becomes necessary to handle lengths
14964 somewhat larger than 4GB, we could allow other small values (such
14965 as the non-sensical values of 1, 2, and 3) to also be used as
14966 escape values indicating the presence of the old format.
14967
14968 The value returned via bytes_read should be used to increment the
14969 relevant pointer after calling read_initial_length().
14970
14971 [ Note: read_initial_length() and read_offset() are based on the
14972 document entitled "DWARF Debugging Information Format", revision
14973 3, draft 8, dated November 19, 2001. This document was obtained
14974 from:
14975
14976 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
14977
14978 This document is only a draft and is subject to change. (So beware.)
14979
14980 Details regarding the older, non-standard 64-bit format were
14981 determined empirically by examining 64-bit ELF files produced by
14982 the SGI toolchain on an IRIX 6.5 machine.
14983
14984 - Kevin, July 16, 2002
14985 ] */
14986
14987 static LONGEST
14988 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
14989 {
14990 LONGEST length = bfd_get_32 (abfd, buf);
14991
14992 if (length == 0xffffffff)
14993 {
14994 length = bfd_get_64 (abfd, buf + 4);
14995 *bytes_read = 12;
14996 }
14997 else if (length == 0)
14998 {
14999 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
15000 length = bfd_get_64 (abfd, buf);
15001 *bytes_read = 8;
15002 }
15003 else
15004 {
15005 *bytes_read = 4;
15006 }
15007
15008 return length;
15009 }
15010
15011 /* Cover function for read_initial_length.
15012 Returns the length of the object at BUF, and stores the size of the
15013 initial length in *BYTES_READ and stores the size that offsets will be in
15014 *OFFSET_SIZE.
15015 If the initial length size is not equivalent to that specified in
15016 CU_HEADER then issue a complaint.
15017 This is useful when reading non-comp-unit headers. */
15018
15019 static LONGEST
15020 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
15021 const struct comp_unit_head *cu_header,
15022 unsigned int *bytes_read,
15023 unsigned int *offset_size)
15024 {
15025 LONGEST length = read_initial_length (abfd, buf, bytes_read);
15026
15027 gdb_assert (cu_header->initial_length_size == 4
15028 || cu_header->initial_length_size == 8
15029 || cu_header->initial_length_size == 12);
15030
15031 if (cu_header->initial_length_size != *bytes_read)
15032 complaint (&symfile_complaints,
15033 _("intermixed 32-bit and 64-bit DWARF sections"));
15034
15035 *offset_size = (*bytes_read == 4) ? 4 : 8;
15036 return length;
15037 }
15038
15039 /* Read an offset from the data stream. The size of the offset is
15040 given by cu_header->offset_size. */
15041
15042 static LONGEST
15043 read_offset (bfd *abfd, const gdb_byte *buf,
15044 const struct comp_unit_head *cu_header,
15045 unsigned int *bytes_read)
15046 {
15047 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
15048
15049 *bytes_read = cu_header->offset_size;
15050 return offset;
15051 }
15052
15053 /* Read an offset from the data stream. */
15054
15055 static LONGEST
15056 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
15057 {
15058 LONGEST retval = 0;
15059
15060 switch (offset_size)
15061 {
15062 case 4:
15063 retval = bfd_get_32 (abfd, buf);
15064 break;
15065 case 8:
15066 retval = bfd_get_64 (abfd, buf);
15067 break;
15068 default:
15069 internal_error (__FILE__, __LINE__,
15070 _("read_offset_1: bad switch [in module %s]"),
15071 bfd_get_filename (abfd));
15072 }
15073
15074 return retval;
15075 }
15076
15077 static const gdb_byte *
15078 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
15079 {
15080 /* If the size of a host char is 8 bits, we can return a pointer
15081 to the buffer, otherwise we have to copy the data to a buffer
15082 allocated on the temporary obstack. */
15083 gdb_assert (HOST_CHAR_BIT == 8);
15084 return buf;
15085 }
15086
15087 static const char *
15088 read_direct_string (bfd *abfd, const gdb_byte *buf,
15089 unsigned int *bytes_read_ptr)
15090 {
15091 /* If the size of a host char is 8 bits, we can return a pointer
15092 to the string, otherwise we have to copy the string to a buffer
15093 allocated on the temporary obstack. */
15094 gdb_assert (HOST_CHAR_BIT == 8);
15095 if (*buf == '\0')
15096 {
15097 *bytes_read_ptr = 1;
15098 return NULL;
15099 }
15100 *bytes_read_ptr = strlen ((const char *) buf) + 1;
15101 return (const char *) buf;
15102 }
15103
15104 static const char *
15105 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
15106 {
15107 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
15108 if (dwarf2_per_objfile->str.buffer == NULL)
15109 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
15110 bfd_get_filename (abfd));
15111 if (str_offset >= dwarf2_per_objfile->str.size)
15112 error (_("DW_FORM_strp pointing outside of "
15113 ".debug_str section [in module %s]"),
15114 bfd_get_filename (abfd));
15115 gdb_assert (HOST_CHAR_BIT == 8);
15116 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
15117 return NULL;
15118 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
15119 }
15120
15121 /* Read a string at offset STR_OFFSET in the .debug_str section from
15122 the .dwz file DWZ. Throw an error if the offset is too large. If
15123 the string consists of a single NUL byte, return NULL; otherwise
15124 return a pointer to the string. */
15125
15126 static const char *
15127 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
15128 {
15129 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
15130
15131 if (dwz->str.buffer == NULL)
15132 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
15133 "section [in module %s]"),
15134 bfd_get_filename (dwz->dwz_bfd));
15135 if (str_offset >= dwz->str.size)
15136 error (_("DW_FORM_GNU_strp_alt pointing outside of "
15137 ".debug_str section [in module %s]"),
15138 bfd_get_filename (dwz->dwz_bfd));
15139 gdb_assert (HOST_CHAR_BIT == 8);
15140 if (dwz->str.buffer[str_offset] == '\0')
15141 return NULL;
15142 return (const char *) (dwz->str.buffer + str_offset);
15143 }
15144
15145 static const char *
15146 read_indirect_string (bfd *abfd, const gdb_byte *buf,
15147 const struct comp_unit_head *cu_header,
15148 unsigned int *bytes_read_ptr)
15149 {
15150 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
15151
15152 return read_indirect_string_at_offset (abfd, str_offset);
15153 }
15154
15155 static ULONGEST
15156 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
15157 unsigned int *bytes_read_ptr)
15158 {
15159 ULONGEST result;
15160 unsigned int num_read;
15161 int i, shift;
15162 unsigned char byte;
15163
15164 result = 0;
15165 shift = 0;
15166 num_read = 0;
15167 i = 0;
15168 while (1)
15169 {
15170 byte = bfd_get_8 (abfd, buf);
15171 buf++;
15172 num_read++;
15173 result |= ((ULONGEST) (byte & 127) << shift);
15174 if ((byte & 128) == 0)
15175 {
15176 break;
15177 }
15178 shift += 7;
15179 }
15180 *bytes_read_ptr = num_read;
15181 return result;
15182 }
15183
15184 static LONGEST
15185 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
15186 unsigned int *bytes_read_ptr)
15187 {
15188 LONGEST result;
15189 int i, shift, num_read;
15190 unsigned char byte;
15191
15192 result = 0;
15193 shift = 0;
15194 num_read = 0;
15195 i = 0;
15196 while (1)
15197 {
15198 byte = bfd_get_8 (abfd, buf);
15199 buf++;
15200 num_read++;
15201 result |= ((LONGEST) (byte & 127) << shift);
15202 shift += 7;
15203 if ((byte & 128) == 0)
15204 {
15205 break;
15206 }
15207 }
15208 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
15209 result |= -(((LONGEST) 1) << shift);
15210 *bytes_read_ptr = num_read;
15211 return result;
15212 }
15213
15214 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
15215 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
15216 ADDR_SIZE is the size of addresses from the CU header. */
15217
15218 static CORE_ADDR
15219 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
15220 {
15221 struct objfile *objfile = dwarf2_per_objfile->objfile;
15222 bfd *abfd = objfile->obfd;
15223 const gdb_byte *info_ptr;
15224
15225 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
15226 if (dwarf2_per_objfile->addr.buffer == NULL)
15227 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
15228 objfile->name);
15229 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
15230 error (_("DW_FORM_addr_index pointing outside of "
15231 ".debug_addr section [in module %s]"),
15232 objfile->name);
15233 info_ptr = (dwarf2_per_objfile->addr.buffer
15234 + addr_base + addr_index * addr_size);
15235 if (addr_size == 4)
15236 return bfd_get_32 (abfd, info_ptr);
15237 else
15238 return bfd_get_64 (abfd, info_ptr);
15239 }
15240
15241 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
15242
15243 static CORE_ADDR
15244 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
15245 {
15246 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
15247 }
15248
15249 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
15250
15251 static CORE_ADDR
15252 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
15253 unsigned int *bytes_read)
15254 {
15255 bfd *abfd = cu->objfile->obfd;
15256 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
15257
15258 return read_addr_index (cu, addr_index);
15259 }
15260
15261 /* Data structure to pass results from dwarf2_read_addr_index_reader
15262 back to dwarf2_read_addr_index. */
15263
15264 struct dwarf2_read_addr_index_data
15265 {
15266 ULONGEST addr_base;
15267 int addr_size;
15268 };
15269
15270 /* die_reader_func for dwarf2_read_addr_index. */
15271
15272 static void
15273 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
15274 const gdb_byte *info_ptr,
15275 struct die_info *comp_unit_die,
15276 int has_children,
15277 void *data)
15278 {
15279 struct dwarf2_cu *cu = reader->cu;
15280 struct dwarf2_read_addr_index_data *aidata =
15281 (struct dwarf2_read_addr_index_data *) data;
15282
15283 aidata->addr_base = cu->addr_base;
15284 aidata->addr_size = cu->header.addr_size;
15285 }
15286
15287 /* Given an index in .debug_addr, fetch the value.
15288 NOTE: This can be called during dwarf expression evaluation,
15289 long after the debug information has been read, and thus per_cu->cu
15290 may no longer exist. */
15291
15292 CORE_ADDR
15293 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
15294 unsigned int addr_index)
15295 {
15296 struct objfile *objfile = per_cu->objfile;
15297 struct dwarf2_cu *cu = per_cu->cu;
15298 ULONGEST addr_base;
15299 int addr_size;
15300
15301 /* This is intended to be called from outside this file. */
15302 dw2_setup (objfile);
15303
15304 /* We need addr_base and addr_size.
15305 If we don't have PER_CU->cu, we have to get it.
15306 Nasty, but the alternative is storing the needed info in PER_CU,
15307 which at this point doesn't seem justified: it's not clear how frequently
15308 it would get used and it would increase the size of every PER_CU.
15309 Entry points like dwarf2_per_cu_addr_size do a similar thing
15310 so we're not in uncharted territory here.
15311 Alas we need to be a bit more complicated as addr_base is contained
15312 in the DIE.
15313
15314 We don't need to read the entire CU(/TU).
15315 We just need the header and top level die.
15316
15317 IWBN to use the aging mechanism to let us lazily later discard the CU.
15318 For now we skip this optimization. */
15319
15320 if (cu != NULL)
15321 {
15322 addr_base = cu->addr_base;
15323 addr_size = cu->header.addr_size;
15324 }
15325 else
15326 {
15327 struct dwarf2_read_addr_index_data aidata;
15328
15329 /* Note: We can't use init_cutu_and_read_dies_simple here,
15330 we need addr_base. */
15331 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
15332 dwarf2_read_addr_index_reader, &aidata);
15333 addr_base = aidata.addr_base;
15334 addr_size = aidata.addr_size;
15335 }
15336
15337 return read_addr_index_1 (addr_index, addr_base, addr_size);
15338 }
15339
15340 /* Given a DW_AT_str_index, fetch the string. */
15341
15342 static const char *
15343 read_str_index (const struct die_reader_specs *reader,
15344 struct dwarf2_cu *cu, ULONGEST str_index)
15345 {
15346 struct objfile *objfile = dwarf2_per_objfile->objfile;
15347 const char *dwo_name = objfile->name;
15348 bfd *abfd = objfile->obfd;
15349 struct dwo_sections *sections = &reader->dwo_file->sections;
15350 const gdb_byte *info_ptr;
15351 ULONGEST str_offset;
15352
15353 dwarf2_read_section (objfile, &sections->str);
15354 dwarf2_read_section (objfile, &sections->str_offsets);
15355 if (sections->str.buffer == NULL)
15356 error (_("DW_FORM_str_index used without .debug_str.dwo section"
15357 " in CU at offset 0x%lx [in module %s]"),
15358 (long) cu->header.offset.sect_off, dwo_name);
15359 if (sections->str_offsets.buffer == NULL)
15360 error (_("DW_FORM_str_index used without .debug_str_offsets.dwo section"
15361 " in CU at offset 0x%lx [in module %s]"),
15362 (long) cu->header.offset.sect_off, dwo_name);
15363 if (str_index * cu->header.offset_size >= sections->str_offsets.size)
15364 error (_("DW_FORM_str_index pointing outside of .debug_str_offsets.dwo"
15365 " section in CU at offset 0x%lx [in module %s]"),
15366 (long) cu->header.offset.sect_off, dwo_name);
15367 info_ptr = (sections->str_offsets.buffer
15368 + str_index * cu->header.offset_size);
15369 if (cu->header.offset_size == 4)
15370 str_offset = bfd_get_32 (abfd, info_ptr);
15371 else
15372 str_offset = bfd_get_64 (abfd, info_ptr);
15373 if (str_offset >= sections->str.size)
15374 error (_("Offset from DW_FORM_str_index pointing outside of"
15375 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
15376 (long) cu->header.offset.sect_off, dwo_name);
15377 return (const char *) (sections->str.buffer + str_offset);
15378 }
15379
15380 /* Return the length of an LEB128 number in BUF. */
15381
15382 static int
15383 leb128_size (const gdb_byte *buf)
15384 {
15385 const gdb_byte *begin = buf;
15386 gdb_byte byte;
15387
15388 while (1)
15389 {
15390 byte = *buf++;
15391 if ((byte & 128) == 0)
15392 return buf - begin;
15393 }
15394 }
15395
15396 static void
15397 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
15398 {
15399 switch (lang)
15400 {
15401 case DW_LANG_C89:
15402 case DW_LANG_C99:
15403 case DW_LANG_C:
15404 case DW_LANG_UPC:
15405 cu->language = language_c;
15406 break;
15407 case DW_LANG_C_plus_plus:
15408 cu->language = language_cplus;
15409 break;
15410 case DW_LANG_D:
15411 cu->language = language_d;
15412 break;
15413 case DW_LANG_Fortran77:
15414 case DW_LANG_Fortran90:
15415 case DW_LANG_Fortran95:
15416 cu->language = language_fortran;
15417 break;
15418 case DW_LANG_Go:
15419 cu->language = language_go;
15420 break;
15421 case DW_LANG_Mips_Assembler:
15422 cu->language = language_asm;
15423 break;
15424 case DW_LANG_Java:
15425 cu->language = language_java;
15426 break;
15427 case DW_LANG_Ada83:
15428 case DW_LANG_Ada95:
15429 cu->language = language_ada;
15430 break;
15431 case DW_LANG_Modula2:
15432 cu->language = language_m2;
15433 break;
15434 case DW_LANG_Pascal83:
15435 cu->language = language_pascal;
15436 break;
15437 case DW_LANG_ObjC:
15438 cu->language = language_objc;
15439 break;
15440 case DW_LANG_Cobol74:
15441 case DW_LANG_Cobol85:
15442 default:
15443 cu->language = language_minimal;
15444 break;
15445 }
15446 cu->language_defn = language_def (cu->language);
15447 }
15448
15449 /* Return the named attribute or NULL if not there. */
15450
15451 static struct attribute *
15452 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
15453 {
15454 for (;;)
15455 {
15456 unsigned int i;
15457 struct attribute *spec = NULL;
15458
15459 for (i = 0; i < die->num_attrs; ++i)
15460 {
15461 if (die->attrs[i].name == name)
15462 return &die->attrs[i];
15463 if (die->attrs[i].name == DW_AT_specification
15464 || die->attrs[i].name == DW_AT_abstract_origin)
15465 spec = &die->attrs[i];
15466 }
15467
15468 if (!spec)
15469 break;
15470
15471 die = follow_die_ref (die, spec, &cu);
15472 }
15473
15474 return NULL;
15475 }
15476
15477 /* Return the named attribute or NULL if not there,
15478 but do not follow DW_AT_specification, etc.
15479 This is for use in contexts where we're reading .debug_types dies.
15480 Following DW_AT_specification, DW_AT_abstract_origin will take us
15481 back up the chain, and we want to go down. */
15482
15483 static struct attribute *
15484 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
15485 {
15486 unsigned int i;
15487
15488 for (i = 0; i < die->num_attrs; ++i)
15489 if (die->attrs[i].name == name)
15490 return &die->attrs[i];
15491
15492 return NULL;
15493 }
15494
15495 /* Return non-zero iff the attribute NAME is defined for the given DIE,
15496 and holds a non-zero value. This function should only be used for
15497 DW_FORM_flag or DW_FORM_flag_present attributes. */
15498
15499 static int
15500 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
15501 {
15502 struct attribute *attr = dwarf2_attr (die, name, cu);
15503
15504 return (attr && DW_UNSND (attr));
15505 }
15506
15507 static int
15508 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
15509 {
15510 /* A DIE is a declaration if it has a DW_AT_declaration attribute
15511 which value is non-zero. However, we have to be careful with
15512 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
15513 (via dwarf2_flag_true_p) follows this attribute. So we may
15514 end up accidently finding a declaration attribute that belongs
15515 to a different DIE referenced by the specification attribute,
15516 even though the given DIE does not have a declaration attribute. */
15517 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
15518 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
15519 }
15520
15521 /* Return the die giving the specification for DIE, if there is
15522 one. *SPEC_CU is the CU containing DIE on input, and the CU
15523 containing the return value on output. If there is no
15524 specification, but there is an abstract origin, that is
15525 returned. */
15526
15527 static struct die_info *
15528 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
15529 {
15530 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
15531 *spec_cu);
15532
15533 if (spec_attr == NULL)
15534 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
15535
15536 if (spec_attr == NULL)
15537 return NULL;
15538 else
15539 return follow_die_ref (die, spec_attr, spec_cu);
15540 }
15541
15542 /* Free the line_header structure *LH, and any arrays and strings it
15543 refers to.
15544 NOTE: This is also used as a "cleanup" function. */
15545
15546 static void
15547 free_line_header (struct line_header *lh)
15548 {
15549 if (lh->standard_opcode_lengths)
15550 xfree (lh->standard_opcode_lengths);
15551
15552 /* Remember that all the lh->file_names[i].name pointers are
15553 pointers into debug_line_buffer, and don't need to be freed. */
15554 if (lh->file_names)
15555 xfree (lh->file_names);
15556
15557 /* Similarly for the include directory names. */
15558 if (lh->include_dirs)
15559 xfree (lh->include_dirs);
15560
15561 xfree (lh);
15562 }
15563
15564 /* Add an entry to LH's include directory table. */
15565
15566 static void
15567 add_include_dir (struct line_header *lh, const char *include_dir)
15568 {
15569 /* Grow the array if necessary. */
15570 if (lh->include_dirs_size == 0)
15571 {
15572 lh->include_dirs_size = 1; /* for testing */
15573 lh->include_dirs = xmalloc (lh->include_dirs_size
15574 * sizeof (*lh->include_dirs));
15575 }
15576 else if (lh->num_include_dirs >= lh->include_dirs_size)
15577 {
15578 lh->include_dirs_size *= 2;
15579 lh->include_dirs = xrealloc (lh->include_dirs,
15580 (lh->include_dirs_size
15581 * sizeof (*lh->include_dirs)));
15582 }
15583
15584 lh->include_dirs[lh->num_include_dirs++] = include_dir;
15585 }
15586
15587 /* Add an entry to LH's file name table. */
15588
15589 static void
15590 add_file_name (struct line_header *lh,
15591 const char *name,
15592 unsigned int dir_index,
15593 unsigned int mod_time,
15594 unsigned int length)
15595 {
15596 struct file_entry *fe;
15597
15598 /* Grow the array if necessary. */
15599 if (lh->file_names_size == 0)
15600 {
15601 lh->file_names_size = 1; /* for testing */
15602 lh->file_names = xmalloc (lh->file_names_size
15603 * sizeof (*lh->file_names));
15604 }
15605 else if (lh->num_file_names >= lh->file_names_size)
15606 {
15607 lh->file_names_size *= 2;
15608 lh->file_names = xrealloc (lh->file_names,
15609 (lh->file_names_size
15610 * sizeof (*lh->file_names)));
15611 }
15612
15613 fe = &lh->file_names[lh->num_file_names++];
15614 fe->name = name;
15615 fe->dir_index = dir_index;
15616 fe->mod_time = mod_time;
15617 fe->length = length;
15618 fe->included_p = 0;
15619 fe->symtab = NULL;
15620 }
15621
15622 /* A convenience function to find the proper .debug_line section for a
15623 CU. */
15624
15625 static struct dwarf2_section_info *
15626 get_debug_line_section (struct dwarf2_cu *cu)
15627 {
15628 struct dwarf2_section_info *section;
15629
15630 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
15631 DWO file. */
15632 if (cu->dwo_unit && cu->per_cu->is_debug_types)
15633 section = &cu->dwo_unit->dwo_file->sections.line;
15634 else if (cu->per_cu->is_dwz)
15635 {
15636 struct dwz_file *dwz = dwarf2_get_dwz_file ();
15637
15638 section = &dwz->line;
15639 }
15640 else
15641 section = &dwarf2_per_objfile->line;
15642
15643 return section;
15644 }
15645
15646 /* Read the statement program header starting at OFFSET in
15647 .debug_line, or .debug_line.dwo. Return a pointer
15648 to a struct line_header, allocated using xmalloc.
15649
15650 NOTE: the strings in the include directory and file name tables of
15651 the returned object point into the dwarf line section buffer,
15652 and must not be freed. */
15653
15654 static struct line_header *
15655 dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
15656 {
15657 struct cleanup *back_to;
15658 struct line_header *lh;
15659 const gdb_byte *line_ptr;
15660 unsigned int bytes_read, offset_size;
15661 int i;
15662 const char *cur_dir, *cur_file;
15663 struct dwarf2_section_info *section;
15664 bfd *abfd;
15665
15666 section = get_debug_line_section (cu);
15667 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
15668 if (section->buffer == NULL)
15669 {
15670 if (cu->dwo_unit && cu->per_cu->is_debug_types)
15671 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
15672 else
15673 complaint (&symfile_complaints, _("missing .debug_line section"));
15674 return 0;
15675 }
15676
15677 /* We can't do this until we know the section is non-empty.
15678 Only then do we know we have such a section. */
15679 abfd = section->asection->owner;
15680
15681 /* Make sure that at least there's room for the total_length field.
15682 That could be 12 bytes long, but we're just going to fudge that. */
15683 if (offset + 4 >= section->size)
15684 {
15685 dwarf2_statement_list_fits_in_line_number_section_complaint ();
15686 return 0;
15687 }
15688
15689 lh = xmalloc (sizeof (*lh));
15690 memset (lh, 0, sizeof (*lh));
15691 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
15692 (void *) lh);
15693
15694 line_ptr = section->buffer + offset;
15695
15696 /* Read in the header. */
15697 lh->total_length =
15698 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
15699 &bytes_read, &offset_size);
15700 line_ptr += bytes_read;
15701 if (line_ptr + lh->total_length > (section->buffer + section->size))
15702 {
15703 dwarf2_statement_list_fits_in_line_number_section_complaint ();
15704 return 0;
15705 }
15706 lh->statement_program_end = line_ptr + lh->total_length;
15707 lh->version = read_2_bytes (abfd, line_ptr);
15708 line_ptr += 2;
15709 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
15710 line_ptr += offset_size;
15711 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
15712 line_ptr += 1;
15713 if (lh->version >= 4)
15714 {
15715 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
15716 line_ptr += 1;
15717 }
15718 else
15719 lh->maximum_ops_per_instruction = 1;
15720
15721 if (lh->maximum_ops_per_instruction == 0)
15722 {
15723 lh->maximum_ops_per_instruction = 1;
15724 complaint (&symfile_complaints,
15725 _("invalid maximum_ops_per_instruction "
15726 "in `.debug_line' section"));
15727 }
15728
15729 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
15730 line_ptr += 1;
15731 lh->line_base = read_1_signed_byte (abfd, line_ptr);
15732 line_ptr += 1;
15733 lh->line_range = read_1_byte (abfd, line_ptr);
15734 line_ptr += 1;
15735 lh->opcode_base = read_1_byte (abfd, line_ptr);
15736 line_ptr += 1;
15737 lh->standard_opcode_lengths
15738 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
15739
15740 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
15741 for (i = 1; i < lh->opcode_base; ++i)
15742 {
15743 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
15744 line_ptr += 1;
15745 }
15746
15747 /* Read directory table. */
15748 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
15749 {
15750 line_ptr += bytes_read;
15751 add_include_dir (lh, cur_dir);
15752 }
15753 line_ptr += bytes_read;
15754
15755 /* Read file name table. */
15756 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
15757 {
15758 unsigned int dir_index, mod_time, length;
15759
15760 line_ptr += bytes_read;
15761 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15762 line_ptr += bytes_read;
15763 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15764 line_ptr += bytes_read;
15765 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15766 line_ptr += bytes_read;
15767
15768 add_file_name (lh, cur_file, dir_index, mod_time, length);
15769 }
15770 line_ptr += bytes_read;
15771 lh->statement_program_start = line_ptr;
15772
15773 if (line_ptr > (section->buffer + section->size))
15774 complaint (&symfile_complaints,
15775 _("line number info header doesn't "
15776 "fit in `.debug_line' section"));
15777
15778 discard_cleanups (back_to);
15779 return lh;
15780 }
15781
15782 /* Subroutine of dwarf_decode_lines to simplify it.
15783 Return the file name of the psymtab for included file FILE_INDEX
15784 in line header LH of PST.
15785 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
15786 If space for the result is malloc'd, it will be freed by a cleanup.
15787 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
15788
15789 The function creates dangling cleanup registration. */
15790
15791 static const char *
15792 psymtab_include_file_name (const struct line_header *lh, int file_index,
15793 const struct partial_symtab *pst,
15794 const char *comp_dir)
15795 {
15796 const struct file_entry fe = lh->file_names [file_index];
15797 const char *include_name = fe.name;
15798 const char *include_name_to_compare = include_name;
15799 const char *dir_name = NULL;
15800 const char *pst_filename;
15801 char *copied_name = NULL;
15802 int file_is_pst;
15803
15804 if (fe.dir_index)
15805 dir_name = lh->include_dirs[fe.dir_index - 1];
15806
15807 if (!IS_ABSOLUTE_PATH (include_name)
15808 && (dir_name != NULL || comp_dir != NULL))
15809 {
15810 /* Avoid creating a duplicate psymtab for PST.
15811 We do this by comparing INCLUDE_NAME and PST_FILENAME.
15812 Before we do the comparison, however, we need to account
15813 for DIR_NAME and COMP_DIR.
15814 First prepend dir_name (if non-NULL). If we still don't
15815 have an absolute path prepend comp_dir (if non-NULL).
15816 However, the directory we record in the include-file's
15817 psymtab does not contain COMP_DIR (to match the
15818 corresponding symtab(s)).
15819
15820 Example:
15821
15822 bash$ cd /tmp
15823 bash$ gcc -g ./hello.c
15824 include_name = "hello.c"
15825 dir_name = "."
15826 DW_AT_comp_dir = comp_dir = "/tmp"
15827 DW_AT_name = "./hello.c" */
15828
15829 if (dir_name != NULL)
15830 {
15831 char *tem = concat (dir_name, SLASH_STRING,
15832 include_name, (char *)NULL);
15833
15834 make_cleanup (xfree, tem);
15835 include_name = tem;
15836 include_name_to_compare = include_name;
15837 }
15838 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
15839 {
15840 char *tem = concat (comp_dir, SLASH_STRING,
15841 include_name, (char *)NULL);
15842
15843 make_cleanup (xfree, tem);
15844 include_name_to_compare = tem;
15845 }
15846 }
15847
15848 pst_filename = pst->filename;
15849 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
15850 {
15851 copied_name = concat (pst->dirname, SLASH_STRING,
15852 pst_filename, (char *)NULL);
15853 pst_filename = copied_name;
15854 }
15855
15856 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
15857
15858 if (copied_name != NULL)
15859 xfree (copied_name);
15860
15861 if (file_is_pst)
15862 return NULL;
15863 return include_name;
15864 }
15865
15866 /* Ignore this record_line request. */
15867
15868 static void
15869 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
15870 {
15871 return;
15872 }
15873
15874 /* Subroutine of dwarf_decode_lines to simplify it.
15875 Process the line number information in LH. */
15876
15877 static void
15878 dwarf_decode_lines_1 (struct line_header *lh, const char *comp_dir,
15879 struct dwarf2_cu *cu, struct partial_symtab *pst)
15880 {
15881 const gdb_byte *line_ptr, *extended_end;
15882 const gdb_byte *line_end;
15883 unsigned int bytes_read, extended_len;
15884 unsigned char op_code, extended_op, adj_opcode;
15885 CORE_ADDR baseaddr;
15886 struct objfile *objfile = cu->objfile;
15887 bfd *abfd = objfile->obfd;
15888 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15889 const int decode_for_pst_p = (pst != NULL);
15890 struct subfile *last_subfile = NULL;
15891 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
15892 = record_line;
15893
15894 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
15895
15896 line_ptr = lh->statement_program_start;
15897 line_end = lh->statement_program_end;
15898
15899 /* Read the statement sequences until there's nothing left. */
15900 while (line_ptr < line_end)
15901 {
15902 /* state machine registers */
15903 CORE_ADDR address = 0;
15904 unsigned int file = 1;
15905 unsigned int line = 1;
15906 unsigned int column = 0;
15907 int is_stmt = lh->default_is_stmt;
15908 int basic_block = 0;
15909 int end_sequence = 0;
15910 CORE_ADDR addr;
15911 unsigned char op_index = 0;
15912
15913 if (!decode_for_pst_p && lh->num_file_names >= file)
15914 {
15915 /* Start a subfile for the current file of the state machine. */
15916 /* lh->include_dirs and lh->file_names are 0-based, but the
15917 directory and file name numbers in the statement program
15918 are 1-based. */
15919 struct file_entry *fe = &lh->file_names[file - 1];
15920 const char *dir = NULL;
15921
15922 if (fe->dir_index)
15923 dir = lh->include_dirs[fe->dir_index - 1];
15924
15925 dwarf2_start_subfile (fe->name, dir, comp_dir);
15926 }
15927
15928 /* Decode the table. */
15929 while (!end_sequence)
15930 {
15931 op_code = read_1_byte (abfd, line_ptr);
15932 line_ptr += 1;
15933 if (line_ptr > line_end)
15934 {
15935 dwarf2_debug_line_missing_end_sequence_complaint ();
15936 break;
15937 }
15938
15939 if (op_code >= lh->opcode_base)
15940 {
15941 /* Special operand. */
15942 adj_opcode = op_code - lh->opcode_base;
15943 address += (((op_index + (adj_opcode / lh->line_range))
15944 / lh->maximum_ops_per_instruction)
15945 * lh->minimum_instruction_length);
15946 op_index = ((op_index + (adj_opcode / lh->line_range))
15947 % lh->maximum_ops_per_instruction);
15948 line += lh->line_base + (adj_opcode % lh->line_range);
15949 if (lh->num_file_names < file || file == 0)
15950 dwarf2_debug_line_missing_file_complaint ();
15951 /* For now we ignore lines not starting on an
15952 instruction boundary. */
15953 else if (op_index == 0)
15954 {
15955 lh->file_names[file - 1].included_p = 1;
15956 if (!decode_for_pst_p && is_stmt)
15957 {
15958 if (last_subfile != current_subfile)
15959 {
15960 addr = gdbarch_addr_bits_remove (gdbarch, address);
15961 if (last_subfile)
15962 (*p_record_line) (last_subfile, 0, addr);
15963 last_subfile = current_subfile;
15964 }
15965 /* Append row to matrix using current values. */
15966 addr = gdbarch_addr_bits_remove (gdbarch, address);
15967 (*p_record_line) (current_subfile, line, addr);
15968 }
15969 }
15970 basic_block = 0;
15971 }
15972 else switch (op_code)
15973 {
15974 case DW_LNS_extended_op:
15975 extended_len = read_unsigned_leb128 (abfd, line_ptr,
15976 &bytes_read);
15977 line_ptr += bytes_read;
15978 extended_end = line_ptr + extended_len;
15979 extended_op = read_1_byte (abfd, line_ptr);
15980 line_ptr += 1;
15981 switch (extended_op)
15982 {
15983 case DW_LNE_end_sequence:
15984 p_record_line = record_line;
15985 end_sequence = 1;
15986 break;
15987 case DW_LNE_set_address:
15988 address = read_address (abfd, line_ptr, cu, &bytes_read);
15989
15990 if (address == 0 && !dwarf2_per_objfile->has_section_at_zero)
15991 {
15992 /* This line table is for a function which has been
15993 GCd by the linker. Ignore it. PR gdb/12528 */
15994
15995 long line_offset
15996 = line_ptr - get_debug_line_section (cu)->buffer;
15997
15998 complaint (&symfile_complaints,
15999 _(".debug_line address at offset 0x%lx is 0 "
16000 "[in module %s]"),
16001 line_offset, objfile->name);
16002 p_record_line = noop_record_line;
16003 }
16004
16005 op_index = 0;
16006 line_ptr += bytes_read;
16007 address += baseaddr;
16008 break;
16009 case DW_LNE_define_file:
16010 {
16011 const char *cur_file;
16012 unsigned int dir_index, mod_time, length;
16013
16014 cur_file = read_direct_string (abfd, line_ptr,
16015 &bytes_read);
16016 line_ptr += bytes_read;
16017 dir_index =
16018 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16019 line_ptr += bytes_read;
16020 mod_time =
16021 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16022 line_ptr += bytes_read;
16023 length =
16024 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16025 line_ptr += bytes_read;
16026 add_file_name (lh, cur_file, dir_index, mod_time, length);
16027 }
16028 break;
16029 case DW_LNE_set_discriminator:
16030 /* The discriminator is not interesting to the debugger;
16031 just ignore it. */
16032 line_ptr = extended_end;
16033 break;
16034 default:
16035 complaint (&symfile_complaints,
16036 _("mangled .debug_line section"));
16037 return;
16038 }
16039 /* Make sure that we parsed the extended op correctly. If e.g.
16040 we expected a different address size than the producer used,
16041 we may have read the wrong number of bytes. */
16042 if (line_ptr != extended_end)
16043 {
16044 complaint (&symfile_complaints,
16045 _("mangled .debug_line section"));
16046 return;
16047 }
16048 break;
16049 case DW_LNS_copy:
16050 if (lh->num_file_names < file || file == 0)
16051 dwarf2_debug_line_missing_file_complaint ();
16052 else
16053 {
16054 lh->file_names[file - 1].included_p = 1;
16055 if (!decode_for_pst_p && is_stmt)
16056 {
16057 if (last_subfile != current_subfile)
16058 {
16059 addr = gdbarch_addr_bits_remove (gdbarch, address);
16060 if (last_subfile)
16061 (*p_record_line) (last_subfile, 0, addr);
16062 last_subfile = current_subfile;
16063 }
16064 addr = gdbarch_addr_bits_remove (gdbarch, address);
16065 (*p_record_line) (current_subfile, line, addr);
16066 }
16067 }
16068 basic_block = 0;
16069 break;
16070 case DW_LNS_advance_pc:
16071 {
16072 CORE_ADDR adjust
16073 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16074
16075 address += (((op_index + adjust)
16076 / lh->maximum_ops_per_instruction)
16077 * lh->minimum_instruction_length);
16078 op_index = ((op_index + adjust)
16079 % lh->maximum_ops_per_instruction);
16080 line_ptr += bytes_read;
16081 }
16082 break;
16083 case DW_LNS_advance_line:
16084 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
16085 line_ptr += bytes_read;
16086 break;
16087 case DW_LNS_set_file:
16088 {
16089 /* The arrays lh->include_dirs and lh->file_names are
16090 0-based, but the directory and file name numbers in
16091 the statement program are 1-based. */
16092 struct file_entry *fe;
16093 const char *dir = NULL;
16094
16095 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16096 line_ptr += bytes_read;
16097 if (lh->num_file_names < file || file == 0)
16098 dwarf2_debug_line_missing_file_complaint ();
16099 else
16100 {
16101 fe = &lh->file_names[file - 1];
16102 if (fe->dir_index)
16103 dir = lh->include_dirs[fe->dir_index - 1];
16104 if (!decode_for_pst_p)
16105 {
16106 last_subfile = current_subfile;
16107 dwarf2_start_subfile (fe->name, dir, comp_dir);
16108 }
16109 }
16110 }
16111 break;
16112 case DW_LNS_set_column:
16113 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16114 line_ptr += bytes_read;
16115 break;
16116 case DW_LNS_negate_stmt:
16117 is_stmt = (!is_stmt);
16118 break;
16119 case DW_LNS_set_basic_block:
16120 basic_block = 1;
16121 break;
16122 /* Add to the address register of the state machine the
16123 address increment value corresponding to special opcode
16124 255. I.e., this value is scaled by the minimum
16125 instruction length since special opcode 255 would have
16126 scaled the increment. */
16127 case DW_LNS_const_add_pc:
16128 {
16129 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
16130
16131 address += (((op_index + adjust)
16132 / lh->maximum_ops_per_instruction)
16133 * lh->minimum_instruction_length);
16134 op_index = ((op_index + adjust)
16135 % lh->maximum_ops_per_instruction);
16136 }
16137 break;
16138 case DW_LNS_fixed_advance_pc:
16139 address += read_2_bytes (abfd, line_ptr);
16140 op_index = 0;
16141 line_ptr += 2;
16142 break;
16143 default:
16144 {
16145 /* Unknown standard opcode, ignore it. */
16146 int i;
16147
16148 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
16149 {
16150 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16151 line_ptr += bytes_read;
16152 }
16153 }
16154 }
16155 }
16156 if (lh->num_file_names < file || file == 0)
16157 dwarf2_debug_line_missing_file_complaint ();
16158 else
16159 {
16160 lh->file_names[file - 1].included_p = 1;
16161 if (!decode_for_pst_p)
16162 {
16163 addr = gdbarch_addr_bits_remove (gdbarch, address);
16164 (*p_record_line) (current_subfile, 0, addr);
16165 }
16166 }
16167 }
16168 }
16169
16170 /* Decode the Line Number Program (LNP) for the given line_header
16171 structure and CU. The actual information extracted and the type
16172 of structures created from the LNP depends on the value of PST.
16173
16174 1. If PST is NULL, then this procedure uses the data from the program
16175 to create all necessary symbol tables, and their linetables.
16176
16177 2. If PST is not NULL, this procedure reads the program to determine
16178 the list of files included by the unit represented by PST, and
16179 builds all the associated partial symbol tables.
16180
16181 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
16182 It is used for relative paths in the line table.
16183 NOTE: When processing partial symtabs (pst != NULL),
16184 comp_dir == pst->dirname.
16185
16186 NOTE: It is important that psymtabs have the same file name (via strcmp)
16187 as the corresponding symtab. Since COMP_DIR is not used in the name of the
16188 symtab we don't use it in the name of the psymtabs we create.
16189 E.g. expand_line_sal requires this when finding psymtabs to expand.
16190 A good testcase for this is mb-inline.exp. */
16191
16192 static void
16193 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
16194 struct dwarf2_cu *cu, struct partial_symtab *pst,
16195 int want_line_info)
16196 {
16197 struct objfile *objfile = cu->objfile;
16198 const int decode_for_pst_p = (pst != NULL);
16199 struct subfile *first_subfile = current_subfile;
16200
16201 if (want_line_info)
16202 dwarf_decode_lines_1 (lh, comp_dir, cu, pst);
16203
16204 if (decode_for_pst_p)
16205 {
16206 int file_index;
16207
16208 /* Now that we're done scanning the Line Header Program, we can
16209 create the psymtab of each included file. */
16210 for (file_index = 0; file_index < lh->num_file_names; file_index++)
16211 if (lh->file_names[file_index].included_p == 1)
16212 {
16213 const char *include_name =
16214 psymtab_include_file_name (lh, file_index, pst, comp_dir);
16215 if (include_name != NULL)
16216 dwarf2_create_include_psymtab (include_name, pst, objfile);
16217 }
16218 }
16219 else
16220 {
16221 /* Make sure a symtab is created for every file, even files
16222 which contain only variables (i.e. no code with associated
16223 line numbers). */
16224 int i;
16225
16226 for (i = 0; i < lh->num_file_names; i++)
16227 {
16228 const char *dir = NULL;
16229 struct file_entry *fe;
16230
16231 fe = &lh->file_names[i];
16232 if (fe->dir_index)
16233 dir = lh->include_dirs[fe->dir_index - 1];
16234 dwarf2_start_subfile (fe->name, dir, comp_dir);
16235
16236 /* Skip the main file; we don't need it, and it must be
16237 allocated last, so that it will show up before the
16238 non-primary symtabs in the objfile's symtab list. */
16239 if (current_subfile == first_subfile)
16240 continue;
16241
16242 if (current_subfile->symtab == NULL)
16243 current_subfile->symtab = allocate_symtab (current_subfile->name,
16244 objfile);
16245 fe->symtab = current_subfile->symtab;
16246 }
16247 }
16248 }
16249
16250 /* Start a subfile for DWARF. FILENAME is the name of the file and
16251 DIRNAME the name of the source directory which contains FILENAME
16252 or NULL if not known. COMP_DIR is the compilation directory for the
16253 linetable's compilation unit or NULL if not known.
16254 This routine tries to keep line numbers from identical absolute and
16255 relative file names in a common subfile.
16256
16257 Using the `list' example from the GDB testsuite, which resides in
16258 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
16259 of /srcdir/list0.c yields the following debugging information for list0.c:
16260
16261 DW_AT_name: /srcdir/list0.c
16262 DW_AT_comp_dir: /compdir
16263 files.files[0].name: list0.h
16264 files.files[0].dir: /srcdir
16265 files.files[1].name: list0.c
16266 files.files[1].dir: /srcdir
16267
16268 The line number information for list0.c has to end up in a single
16269 subfile, so that `break /srcdir/list0.c:1' works as expected.
16270 start_subfile will ensure that this happens provided that we pass the
16271 concatenation of files.files[1].dir and files.files[1].name as the
16272 subfile's name. */
16273
16274 static void
16275 dwarf2_start_subfile (const char *filename, const char *dirname,
16276 const char *comp_dir)
16277 {
16278 char *copy = NULL;
16279
16280 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
16281 `start_symtab' will always pass the contents of DW_AT_comp_dir as
16282 second argument to start_subfile. To be consistent, we do the
16283 same here. In order not to lose the line information directory,
16284 we concatenate it to the filename when it makes sense.
16285 Note that the Dwarf3 standard says (speaking of filenames in line
16286 information): ``The directory index is ignored for file names
16287 that represent full path names''. Thus ignoring dirname in the
16288 `else' branch below isn't an issue. */
16289
16290 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
16291 {
16292 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
16293 filename = copy;
16294 }
16295
16296 start_subfile (filename, comp_dir);
16297
16298 if (copy != NULL)
16299 xfree (copy);
16300 }
16301
16302 /* Start a symtab for DWARF.
16303 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
16304
16305 static void
16306 dwarf2_start_symtab (struct dwarf2_cu *cu,
16307 const char *name, const char *comp_dir, CORE_ADDR low_pc)
16308 {
16309 start_symtab (name, comp_dir, low_pc);
16310 record_debugformat ("DWARF 2");
16311 record_producer (cu->producer);
16312
16313 /* We assume that we're processing GCC output. */
16314 processing_gcc_compilation = 2;
16315
16316 cu->processing_has_namespace_info = 0;
16317 }
16318
16319 static void
16320 var_decode_location (struct attribute *attr, struct symbol *sym,
16321 struct dwarf2_cu *cu)
16322 {
16323 struct objfile *objfile = cu->objfile;
16324 struct comp_unit_head *cu_header = &cu->header;
16325
16326 /* NOTE drow/2003-01-30: There used to be a comment and some special
16327 code here to turn a symbol with DW_AT_external and a
16328 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
16329 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
16330 with some versions of binutils) where shared libraries could have
16331 relocations against symbols in their debug information - the
16332 minimal symbol would have the right address, but the debug info
16333 would not. It's no longer necessary, because we will explicitly
16334 apply relocations when we read in the debug information now. */
16335
16336 /* A DW_AT_location attribute with no contents indicates that a
16337 variable has been optimized away. */
16338 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
16339 {
16340 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
16341 return;
16342 }
16343
16344 /* Handle one degenerate form of location expression specially, to
16345 preserve GDB's previous behavior when section offsets are
16346 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
16347 then mark this symbol as LOC_STATIC. */
16348
16349 if (attr_form_is_block (attr)
16350 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
16351 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
16352 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
16353 && (DW_BLOCK (attr)->size
16354 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
16355 {
16356 unsigned int dummy;
16357
16358 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
16359 SYMBOL_VALUE_ADDRESS (sym) =
16360 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
16361 else
16362 SYMBOL_VALUE_ADDRESS (sym) =
16363 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
16364 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
16365 fixup_symbol_section (sym, objfile);
16366 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
16367 SYMBOL_SECTION (sym));
16368 return;
16369 }
16370
16371 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
16372 expression evaluator, and use LOC_COMPUTED only when necessary
16373 (i.e. when the value of a register or memory location is
16374 referenced, or a thread-local block, etc.). Then again, it might
16375 not be worthwhile. I'm assuming that it isn't unless performance
16376 or memory numbers show me otherwise. */
16377
16378 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
16379
16380 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
16381 cu->has_loclist = 1;
16382 }
16383
16384 /* Given a pointer to a DWARF information entry, figure out if we need
16385 to make a symbol table entry for it, and if so, create a new entry
16386 and return a pointer to it.
16387 If TYPE is NULL, determine symbol type from the die, otherwise
16388 used the passed type.
16389 If SPACE is not NULL, use it to hold the new symbol. If it is
16390 NULL, allocate a new symbol on the objfile's obstack. */
16391
16392 static struct symbol *
16393 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
16394 struct symbol *space)
16395 {
16396 struct objfile *objfile = cu->objfile;
16397 struct symbol *sym = NULL;
16398 const char *name;
16399 struct attribute *attr = NULL;
16400 struct attribute *attr2 = NULL;
16401 CORE_ADDR baseaddr;
16402 struct pending **list_to_add = NULL;
16403
16404 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
16405
16406 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
16407
16408 name = dwarf2_name (die, cu);
16409 if (name)
16410 {
16411 const char *linkagename;
16412 int suppress_add = 0;
16413
16414 if (space)
16415 sym = space;
16416 else
16417 sym = allocate_symbol (objfile);
16418 OBJSTAT (objfile, n_syms++);
16419
16420 /* Cache this symbol's name and the name's demangled form (if any). */
16421 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
16422 linkagename = dwarf2_physname (name, die, cu);
16423 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
16424
16425 /* Fortran does not have mangling standard and the mangling does differ
16426 between gfortran, iFort etc. */
16427 if (cu->language == language_fortran
16428 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
16429 symbol_set_demangled_name (&(sym->ginfo),
16430 dwarf2_full_name (name, die, cu),
16431 NULL);
16432
16433 /* Default assumptions.
16434 Use the passed type or decode it from the die. */
16435 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
16436 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
16437 if (type != NULL)
16438 SYMBOL_TYPE (sym) = type;
16439 else
16440 SYMBOL_TYPE (sym) = die_type (die, cu);
16441 attr = dwarf2_attr (die,
16442 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
16443 cu);
16444 if (attr)
16445 {
16446 SYMBOL_LINE (sym) = DW_UNSND (attr);
16447 }
16448
16449 attr = dwarf2_attr (die,
16450 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
16451 cu);
16452 if (attr)
16453 {
16454 int file_index = DW_UNSND (attr);
16455
16456 if (cu->line_header == NULL
16457 || file_index > cu->line_header->num_file_names)
16458 complaint (&symfile_complaints,
16459 _("file index out of range"));
16460 else if (file_index > 0)
16461 {
16462 struct file_entry *fe;
16463
16464 fe = &cu->line_header->file_names[file_index - 1];
16465 SYMBOL_SYMTAB (sym) = fe->symtab;
16466 }
16467 }
16468
16469 switch (die->tag)
16470 {
16471 case DW_TAG_label:
16472 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
16473 if (attr)
16474 {
16475 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
16476 }
16477 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
16478 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
16479 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
16480 add_symbol_to_list (sym, cu->list_in_scope);
16481 break;
16482 case DW_TAG_subprogram:
16483 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
16484 finish_block. */
16485 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
16486 attr2 = dwarf2_attr (die, DW_AT_external, cu);
16487 if ((attr2 && (DW_UNSND (attr2) != 0))
16488 || cu->language == language_ada)
16489 {
16490 /* Subprograms marked external are stored as a global symbol.
16491 Ada subprograms, whether marked external or not, are always
16492 stored as a global symbol, because we want to be able to
16493 access them globally. For instance, we want to be able
16494 to break on a nested subprogram without having to
16495 specify the context. */
16496 list_to_add = &global_symbols;
16497 }
16498 else
16499 {
16500 list_to_add = cu->list_in_scope;
16501 }
16502 break;
16503 case DW_TAG_inlined_subroutine:
16504 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
16505 finish_block. */
16506 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
16507 SYMBOL_INLINED (sym) = 1;
16508 list_to_add = cu->list_in_scope;
16509 break;
16510 case DW_TAG_template_value_param:
16511 suppress_add = 1;
16512 /* Fall through. */
16513 case DW_TAG_constant:
16514 case DW_TAG_variable:
16515 case DW_TAG_member:
16516 /* Compilation with minimal debug info may result in
16517 variables with missing type entries. Change the
16518 misleading `void' type to something sensible. */
16519 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
16520 SYMBOL_TYPE (sym)
16521 = objfile_type (objfile)->nodebug_data_symbol;
16522
16523 attr = dwarf2_attr (die, DW_AT_const_value, cu);
16524 /* In the case of DW_TAG_member, we should only be called for
16525 static const members. */
16526 if (die->tag == DW_TAG_member)
16527 {
16528 /* dwarf2_add_field uses die_is_declaration,
16529 so we do the same. */
16530 gdb_assert (die_is_declaration (die, cu));
16531 gdb_assert (attr);
16532 }
16533 if (attr)
16534 {
16535 dwarf2_const_value (attr, sym, cu);
16536 attr2 = dwarf2_attr (die, DW_AT_external, cu);
16537 if (!suppress_add)
16538 {
16539 if (attr2 && (DW_UNSND (attr2) != 0))
16540 list_to_add = &global_symbols;
16541 else
16542 list_to_add = cu->list_in_scope;
16543 }
16544 break;
16545 }
16546 attr = dwarf2_attr (die, DW_AT_location, cu);
16547 if (attr)
16548 {
16549 var_decode_location (attr, sym, cu);
16550 attr2 = dwarf2_attr (die, DW_AT_external, cu);
16551
16552 /* Fortran explicitly imports any global symbols to the local
16553 scope by DW_TAG_common_block. */
16554 if (cu->language == language_fortran && die->parent
16555 && die->parent->tag == DW_TAG_common_block)
16556 attr2 = NULL;
16557
16558 if (SYMBOL_CLASS (sym) == LOC_STATIC
16559 && SYMBOL_VALUE_ADDRESS (sym) == 0
16560 && !dwarf2_per_objfile->has_section_at_zero)
16561 {
16562 /* When a static variable is eliminated by the linker,
16563 the corresponding debug information is not stripped
16564 out, but the variable address is set to null;
16565 do not add such variables into symbol table. */
16566 }
16567 else if (attr2 && (DW_UNSND (attr2) != 0))
16568 {
16569 /* Workaround gfortran PR debug/40040 - it uses
16570 DW_AT_location for variables in -fPIC libraries which may
16571 get overriden by other libraries/executable and get
16572 a different address. Resolve it by the minimal symbol
16573 which may come from inferior's executable using copy
16574 relocation. Make this workaround only for gfortran as for
16575 other compilers GDB cannot guess the minimal symbol
16576 Fortran mangling kind. */
16577 if (cu->language == language_fortran && die->parent
16578 && die->parent->tag == DW_TAG_module
16579 && cu->producer
16580 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
16581 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
16582
16583 /* A variable with DW_AT_external is never static,
16584 but it may be block-scoped. */
16585 list_to_add = (cu->list_in_scope == &file_symbols
16586 ? &global_symbols : cu->list_in_scope);
16587 }
16588 else
16589 list_to_add = cu->list_in_scope;
16590 }
16591 else
16592 {
16593 /* We do not know the address of this symbol.
16594 If it is an external symbol and we have type information
16595 for it, enter the symbol as a LOC_UNRESOLVED symbol.
16596 The address of the variable will then be determined from
16597 the minimal symbol table whenever the variable is
16598 referenced. */
16599 attr2 = dwarf2_attr (die, DW_AT_external, cu);
16600
16601 /* Fortran explicitly imports any global symbols to the local
16602 scope by DW_TAG_common_block. */
16603 if (cu->language == language_fortran && die->parent
16604 && die->parent->tag == DW_TAG_common_block)
16605 {
16606 /* SYMBOL_CLASS doesn't matter here because
16607 read_common_block is going to reset it. */
16608 if (!suppress_add)
16609 list_to_add = cu->list_in_scope;
16610 }
16611 else if (attr2 && (DW_UNSND (attr2) != 0)
16612 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
16613 {
16614 /* A variable with DW_AT_external is never static, but it
16615 may be block-scoped. */
16616 list_to_add = (cu->list_in_scope == &file_symbols
16617 ? &global_symbols : cu->list_in_scope);
16618
16619 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
16620 }
16621 else if (!die_is_declaration (die, cu))
16622 {
16623 /* Use the default LOC_OPTIMIZED_OUT class. */
16624 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
16625 if (!suppress_add)
16626 list_to_add = cu->list_in_scope;
16627 }
16628 }
16629 break;
16630 case DW_TAG_formal_parameter:
16631 /* If we are inside a function, mark this as an argument. If
16632 not, we might be looking at an argument to an inlined function
16633 when we do not have enough information to show inlined frames;
16634 pretend it's a local variable in that case so that the user can
16635 still see it. */
16636 if (context_stack_depth > 0
16637 && context_stack[context_stack_depth - 1].name != NULL)
16638 SYMBOL_IS_ARGUMENT (sym) = 1;
16639 attr = dwarf2_attr (die, DW_AT_location, cu);
16640 if (attr)
16641 {
16642 var_decode_location (attr, sym, cu);
16643 }
16644 attr = dwarf2_attr (die, DW_AT_const_value, cu);
16645 if (attr)
16646 {
16647 dwarf2_const_value (attr, sym, cu);
16648 }
16649
16650 list_to_add = cu->list_in_scope;
16651 break;
16652 case DW_TAG_unspecified_parameters:
16653 /* From varargs functions; gdb doesn't seem to have any
16654 interest in this information, so just ignore it for now.
16655 (FIXME?) */
16656 break;
16657 case DW_TAG_template_type_param:
16658 suppress_add = 1;
16659 /* Fall through. */
16660 case DW_TAG_class_type:
16661 case DW_TAG_interface_type:
16662 case DW_TAG_structure_type:
16663 case DW_TAG_union_type:
16664 case DW_TAG_set_type:
16665 case DW_TAG_enumeration_type:
16666 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
16667 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
16668
16669 {
16670 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
16671 really ever be static objects: otherwise, if you try
16672 to, say, break of a class's method and you're in a file
16673 which doesn't mention that class, it won't work unless
16674 the check for all static symbols in lookup_symbol_aux
16675 saves you. See the OtherFileClass tests in
16676 gdb.c++/namespace.exp. */
16677
16678 if (!suppress_add)
16679 {
16680 list_to_add = (cu->list_in_scope == &file_symbols
16681 && (cu->language == language_cplus
16682 || cu->language == language_java)
16683 ? &global_symbols : cu->list_in_scope);
16684
16685 /* The semantics of C++ state that "struct foo {
16686 ... }" also defines a typedef for "foo". A Java
16687 class declaration also defines a typedef for the
16688 class. */
16689 if (cu->language == language_cplus
16690 || cu->language == language_java
16691 || cu->language == language_ada)
16692 {
16693 /* The symbol's name is already allocated along
16694 with this objfile, so we don't need to
16695 duplicate it for the type. */
16696 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
16697 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
16698 }
16699 }
16700 }
16701 break;
16702 case DW_TAG_typedef:
16703 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
16704 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
16705 list_to_add = cu->list_in_scope;
16706 break;
16707 case DW_TAG_base_type:
16708 case DW_TAG_subrange_type:
16709 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
16710 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
16711 list_to_add = cu->list_in_scope;
16712 break;
16713 case DW_TAG_enumerator:
16714 attr = dwarf2_attr (die, DW_AT_const_value, cu);
16715 if (attr)
16716 {
16717 dwarf2_const_value (attr, sym, cu);
16718 }
16719 {
16720 /* NOTE: carlton/2003-11-10: See comment above in the
16721 DW_TAG_class_type, etc. block. */
16722
16723 list_to_add = (cu->list_in_scope == &file_symbols
16724 && (cu->language == language_cplus
16725 || cu->language == language_java)
16726 ? &global_symbols : cu->list_in_scope);
16727 }
16728 break;
16729 case DW_TAG_namespace:
16730 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
16731 list_to_add = &global_symbols;
16732 break;
16733 case DW_TAG_common_block:
16734 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
16735 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
16736 add_symbol_to_list (sym, cu->list_in_scope);
16737 break;
16738 default:
16739 /* Not a tag we recognize. Hopefully we aren't processing
16740 trash data, but since we must specifically ignore things
16741 we don't recognize, there is nothing else we should do at
16742 this point. */
16743 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
16744 dwarf_tag_name (die->tag));
16745 break;
16746 }
16747
16748 if (suppress_add)
16749 {
16750 sym->hash_next = objfile->template_symbols;
16751 objfile->template_symbols = sym;
16752 list_to_add = NULL;
16753 }
16754
16755 if (list_to_add != NULL)
16756 add_symbol_to_list (sym, list_to_add);
16757
16758 /* For the benefit of old versions of GCC, check for anonymous
16759 namespaces based on the demangled name. */
16760 if (!cu->processing_has_namespace_info
16761 && cu->language == language_cplus)
16762 cp_scan_for_anonymous_namespaces (sym, objfile);
16763 }
16764 return (sym);
16765 }
16766
16767 /* A wrapper for new_symbol_full that always allocates a new symbol. */
16768
16769 static struct symbol *
16770 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
16771 {
16772 return new_symbol_full (die, type, cu, NULL);
16773 }
16774
16775 /* Given an attr with a DW_FORM_dataN value in host byte order,
16776 zero-extend it as appropriate for the symbol's type. The DWARF
16777 standard (v4) is not entirely clear about the meaning of using
16778 DW_FORM_dataN for a constant with a signed type, where the type is
16779 wider than the data. The conclusion of a discussion on the DWARF
16780 list was that this is unspecified. We choose to always zero-extend
16781 because that is the interpretation long in use by GCC. */
16782
16783 static gdb_byte *
16784 dwarf2_const_value_data (struct attribute *attr, struct obstack *obstack,
16785 struct dwarf2_cu *cu, LONGEST *value, int bits)
16786 {
16787 struct objfile *objfile = cu->objfile;
16788 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
16789 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
16790 LONGEST l = DW_UNSND (attr);
16791
16792 if (bits < sizeof (*value) * 8)
16793 {
16794 l &= ((LONGEST) 1 << bits) - 1;
16795 *value = l;
16796 }
16797 else if (bits == sizeof (*value) * 8)
16798 *value = l;
16799 else
16800 {
16801 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
16802 store_unsigned_integer (bytes, bits / 8, byte_order, l);
16803 return bytes;
16804 }
16805
16806 return NULL;
16807 }
16808
16809 /* Read a constant value from an attribute. Either set *VALUE, or if
16810 the value does not fit in *VALUE, set *BYTES - either already
16811 allocated on the objfile obstack, or newly allocated on OBSTACK,
16812 or, set *BATON, if we translated the constant to a location
16813 expression. */
16814
16815 static void
16816 dwarf2_const_value_attr (struct attribute *attr, struct type *type,
16817 const char *name, struct obstack *obstack,
16818 struct dwarf2_cu *cu,
16819 LONGEST *value, const gdb_byte **bytes,
16820 struct dwarf2_locexpr_baton **baton)
16821 {
16822 struct objfile *objfile = cu->objfile;
16823 struct comp_unit_head *cu_header = &cu->header;
16824 struct dwarf_block *blk;
16825 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
16826 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
16827
16828 *value = 0;
16829 *bytes = NULL;
16830 *baton = NULL;
16831
16832 switch (attr->form)
16833 {
16834 case DW_FORM_addr:
16835 case DW_FORM_GNU_addr_index:
16836 {
16837 gdb_byte *data;
16838
16839 if (TYPE_LENGTH (type) != cu_header->addr_size)
16840 dwarf2_const_value_length_mismatch_complaint (name,
16841 cu_header->addr_size,
16842 TYPE_LENGTH (type));
16843 /* Symbols of this form are reasonably rare, so we just
16844 piggyback on the existing location code rather than writing
16845 a new implementation of symbol_computed_ops. */
16846 *baton = obstack_alloc (obstack, sizeof (struct dwarf2_locexpr_baton));
16847 (*baton)->per_cu = cu->per_cu;
16848 gdb_assert ((*baton)->per_cu);
16849
16850 (*baton)->size = 2 + cu_header->addr_size;
16851 data = obstack_alloc (obstack, (*baton)->size);
16852 (*baton)->data = data;
16853
16854 data[0] = DW_OP_addr;
16855 store_unsigned_integer (&data[1], cu_header->addr_size,
16856 byte_order, DW_ADDR (attr));
16857 data[cu_header->addr_size + 1] = DW_OP_stack_value;
16858 }
16859 break;
16860 case DW_FORM_string:
16861 case DW_FORM_strp:
16862 case DW_FORM_GNU_str_index:
16863 case DW_FORM_GNU_strp_alt:
16864 /* DW_STRING is already allocated on the objfile obstack, point
16865 directly to it. */
16866 *bytes = (const gdb_byte *) DW_STRING (attr);
16867 break;
16868 case DW_FORM_block1:
16869 case DW_FORM_block2:
16870 case DW_FORM_block4:
16871 case DW_FORM_block:
16872 case DW_FORM_exprloc:
16873 blk = DW_BLOCK (attr);
16874 if (TYPE_LENGTH (type) != blk->size)
16875 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
16876 TYPE_LENGTH (type));
16877 *bytes = blk->data;
16878 break;
16879
16880 /* The DW_AT_const_value attributes are supposed to carry the
16881 symbol's value "represented as it would be on the target
16882 architecture." By the time we get here, it's already been
16883 converted to host endianness, so we just need to sign- or
16884 zero-extend it as appropriate. */
16885 case DW_FORM_data1:
16886 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
16887 break;
16888 case DW_FORM_data2:
16889 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
16890 break;
16891 case DW_FORM_data4:
16892 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
16893 break;
16894 case DW_FORM_data8:
16895 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
16896 break;
16897
16898 case DW_FORM_sdata:
16899 *value = DW_SND (attr);
16900 break;
16901
16902 case DW_FORM_udata:
16903 *value = DW_UNSND (attr);
16904 break;
16905
16906 default:
16907 complaint (&symfile_complaints,
16908 _("unsupported const value attribute form: '%s'"),
16909 dwarf_form_name (attr->form));
16910 *value = 0;
16911 break;
16912 }
16913 }
16914
16915
16916 /* Copy constant value from an attribute to a symbol. */
16917
16918 static void
16919 dwarf2_const_value (struct attribute *attr, struct symbol *sym,
16920 struct dwarf2_cu *cu)
16921 {
16922 struct objfile *objfile = cu->objfile;
16923 struct comp_unit_head *cu_header = &cu->header;
16924 LONGEST value;
16925 const gdb_byte *bytes;
16926 struct dwarf2_locexpr_baton *baton;
16927
16928 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
16929 SYMBOL_PRINT_NAME (sym),
16930 &objfile->objfile_obstack, cu,
16931 &value, &bytes, &baton);
16932
16933 if (baton != NULL)
16934 {
16935 SYMBOL_LOCATION_BATON (sym) = baton;
16936 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
16937 }
16938 else if (bytes != NULL)
16939 {
16940 SYMBOL_VALUE_BYTES (sym) = bytes;
16941 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
16942 }
16943 else
16944 {
16945 SYMBOL_VALUE (sym) = value;
16946 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
16947 }
16948 }
16949
16950 /* Return the type of the die in question using its DW_AT_type attribute. */
16951
16952 static struct type *
16953 die_type (struct die_info *die, struct dwarf2_cu *cu)
16954 {
16955 struct attribute *type_attr;
16956
16957 type_attr = dwarf2_attr (die, DW_AT_type, cu);
16958 if (!type_attr)
16959 {
16960 /* A missing DW_AT_type represents a void type. */
16961 return objfile_type (cu->objfile)->builtin_void;
16962 }
16963
16964 return lookup_die_type (die, type_attr, cu);
16965 }
16966
16967 /* True iff CU's producer generates GNAT Ada auxiliary information
16968 that allows to find parallel types through that information instead
16969 of having to do expensive parallel lookups by type name. */
16970
16971 static int
16972 need_gnat_info (struct dwarf2_cu *cu)
16973 {
16974 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
16975 of GNAT produces this auxiliary information, without any indication
16976 that it is produced. Part of enhancing the FSF version of GNAT
16977 to produce that information will be to put in place an indicator
16978 that we can use in order to determine whether the descriptive type
16979 info is available or not. One suggestion that has been made is
16980 to use a new attribute, attached to the CU die. For now, assume
16981 that the descriptive type info is not available. */
16982 return 0;
16983 }
16984
16985 /* Return the auxiliary type of the die in question using its
16986 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
16987 attribute is not present. */
16988
16989 static struct type *
16990 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
16991 {
16992 struct attribute *type_attr;
16993
16994 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
16995 if (!type_attr)
16996 return NULL;
16997
16998 return lookup_die_type (die, type_attr, cu);
16999 }
17000
17001 /* If DIE has a descriptive_type attribute, then set the TYPE's
17002 descriptive type accordingly. */
17003
17004 static void
17005 set_descriptive_type (struct type *type, struct die_info *die,
17006 struct dwarf2_cu *cu)
17007 {
17008 struct type *descriptive_type = die_descriptive_type (die, cu);
17009
17010 if (descriptive_type)
17011 {
17012 ALLOCATE_GNAT_AUX_TYPE (type);
17013 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
17014 }
17015 }
17016
17017 /* Return the containing type of the die in question using its
17018 DW_AT_containing_type attribute. */
17019
17020 static struct type *
17021 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
17022 {
17023 struct attribute *type_attr;
17024
17025 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
17026 if (!type_attr)
17027 error (_("Dwarf Error: Problem turning containing type into gdb type "
17028 "[in module %s]"), cu->objfile->name);
17029
17030 return lookup_die_type (die, type_attr, cu);
17031 }
17032
17033 /* Return an error marker type to use for the ill formed type in DIE/CU. */
17034
17035 static struct type *
17036 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
17037 {
17038 struct objfile *objfile = dwarf2_per_objfile->objfile;
17039 char *message, *saved;
17040
17041 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
17042 objfile->name,
17043 cu->header.offset.sect_off,
17044 die->offset.sect_off);
17045 saved = obstack_copy0 (&objfile->objfile_obstack,
17046 message, strlen (message));
17047 xfree (message);
17048
17049 return init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
17050 }
17051
17052 /* Look up the type of DIE in CU using its type attribute ATTR.
17053 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
17054 DW_AT_containing_type.
17055 If there is no type substitute an error marker. */
17056
17057 static struct type *
17058 lookup_die_type (struct die_info *die, struct attribute *attr,
17059 struct dwarf2_cu *cu)
17060 {
17061 struct objfile *objfile = cu->objfile;
17062 struct type *this_type;
17063
17064 gdb_assert (attr->name == DW_AT_type
17065 || attr->name == DW_AT_GNAT_descriptive_type
17066 || attr->name == DW_AT_containing_type);
17067
17068 /* First see if we have it cached. */
17069
17070 if (attr->form == DW_FORM_GNU_ref_alt)
17071 {
17072 struct dwarf2_per_cu_data *per_cu;
17073 sect_offset offset = dwarf2_get_ref_die_offset (attr);
17074
17075 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
17076 this_type = get_die_type_at_offset (offset, per_cu);
17077 }
17078 else if (is_ref_attr (attr))
17079 {
17080 sect_offset offset = dwarf2_get_ref_die_offset (attr);
17081
17082 this_type = get_die_type_at_offset (offset, cu->per_cu);
17083 }
17084 else if (attr->form == DW_FORM_ref_sig8)
17085 {
17086 ULONGEST signature = DW_SIGNATURE (attr);
17087
17088 return get_signatured_type (die, signature, cu);
17089 }
17090 else
17091 {
17092 complaint (&symfile_complaints,
17093 _("Dwarf Error: Bad type attribute %s in DIE"
17094 " at 0x%x [in module %s]"),
17095 dwarf_attr_name (attr->name), die->offset.sect_off,
17096 objfile->name);
17097 return build_error_marker_type (cu, die);
17098 }
17099
17100 /* If not cached we need to read it in. */
17101
17102 if (this_type == NULL)
17103 {
17104 struct die_info *type_die = NULL;
17105 struct dwarf2_cu *type_cu = cu;
17106
17107 if (is_ref_attr (attr))
17108 type_die = follow_die_ref (die, attr, &type_cu);
17109 if (type_die == NULL)
17110 return build_error_marker_type (cu, die);
17111 /* If we find the type now, it's probably because the type came
17112 from an inter-CU reference and the type's CU got expanded before
17113 ours. */
17114 this_type = read_type_die (type_die, type_cu);
17115 }
17116
17117 /* If we still don't have a type use an error marker. */
17118
17119 if (this_type == NULL)
17120 return build_error_marker_type (cu, die);
17121
17122 return this_type;
17123 }
17124
17125 /* Return the type in DIE, CU.
17126 Returns NULL for invalid types.
17127
17128 This first does a lookup in die_type_hash,
17129 and only reads the die in if necessary.
17130
17131 NOTE: This can be called when reading in partial or full symbols. */
17132
17133 static struct type *
17134 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
17135 {
17136 struct type *this_type;
17137
17138 this_type = get_die_type (die, cu);
17139 if (this_type)
17140 return this_type;
17141
17142 return read_type_die_1 (die, cu);
17143 }
17144
17145 /* Read the type in DIE, CU.
17146 Returns NULL for invalid types. */
17147
17148 static struct type *
17149 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
17150 {
17151 struct type *this_type = NULL;
17152
17153 switch (die->tag)
17154 {
17155 case DW_TAG_class_type:
17156 case DW_TAG_interface_type:
17157 case DW_TAG_structure_type:
17158 case DW_TAG_union_type:
17159 this_type = read_structure_type (die, cu);
17160 break;
17161 case DW_TAG_enumeration_type:
17162 this_type = read_enumeration_type (die, cu);
17163 break;
17164 case DW_TAG_subprogram:
17165 case DW_TAG_subroutine_type:
17166 case DW_TAG_inlined_subroutine:
17167 this_type = read_subroutine_type (die, cu);
17168 break;
17169 case DW_TAG_array_type:
17170 this_type = read_array_type (die, cu);
17171 break;
17172 case DW_TAG_set_type:
17173 this_type = read_set_type (die, cu);
17174 break;
17175 case DW_TAG_pointer_type:
17176 this_type = read_tag_pointer_type (die, cu);
17177 break;
17178 case DW_TAG_ptr_to_member_type:
17179 this_type = read_tag_ptr_to_member_type (die, cu);
17180 break;
17181 case DW_TAG_reference_type:
17182 this_type = read_tag_reference_type (die, cu);
17183 break;
17184 case DW_TAG_const_type:
17185 this_type = read_tag_const_type (die, cu);
17186 break;
17187 case DW_TAG_volatile_type:
17188 this_type = read_tag_volatile_type (die, cu);
17189 break;
17190 case DW_TAG_restrict_type:
17191 this_type = read_tag_restrict_type (die, cu);
17192 break;
17193 case DW_TAG_string_type:
17194 this_type = read_tag_string_type (die, cu);
17195 break;
17196 case DW_TAG_typedef:
17197 this_type = read_typedef (die, cu);
17198 break;
17199 case DW_TAG_subrange_type:
17200 this_type = read_subrange_type (die, cu);
17201 break;
17202 case DW_TAG_base_type:
17203 this_type = read_base_type (die, cu);
17204 break;
17205 case DW_TAG_unspecified_type:
17206 this_type = read_unspecified_type (die, cu);
17207 break;
17208 case DW_TAG_namespace:
17209 this_type = read_namespace_type (die, cu);
17210 break;
17211 case DW_TAG_module:
17212 this_type = read_module_type (die, cu);
17213 break;
17214 default:
17215 complaint (&symfile_complaints,
17216 _("unexpected tag in read_type_die: '%s'"),
17217 dwarf_tag_name (die->tag));
17218 break;
17219 }
17220
17221 return this_type;
17222 }
17223
17224 /* See if we can figure out if the class lives in a namespace. We do
17225 this by looking for a member function; its demangled name will
17226 contain namespace info, if there is any.
17227 Return the computed name or NULL.
17228 Space for the result is allocated on the objfile's obstack.
17229 This is the full-die version of guess_partial_die_structure_name.
17230 In this case we know DIE has no useful parent. */
17231
17232 static char *
17233 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
17234 {
17235 struct die_info *spec_die;
17236 struct dwarf2_cu *spec_cu;
17237 struct die_info *child;
17238
17239 spec_cu = cu;
17240 spec_die = die_specification (die, &spec_cu);
17241 if (spec_die != NULL)
17242 {
17243 die = spec_die;
17244 cu = spec_cu;
17245 }
17246
17247 for (child = die->child;
17248 child != NULL;
17249 child = child->sibling)
17250 {
17251 if (child->tag == DW_TAG_subprogram)
17252 {
17253 struct attribute *attr;
17254
17255 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
17256 if (attr == NULL)
17257 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
17258 if (attr != NULL)
17259 {
17260 char *actual_name
17261 = language_class_name_from_physname (cu->language_defn,
17262 DW_STRING (attr));
17263 char *name = NULL;
17264
17265 if (actual_name != NULL)
17266 {
17267 const char *die_name = dwarf2_name (die, cu);
17268
17269 if (die_name != NULL
17270 && strcmp (die_name, actual_name) != 0)
17271 {
17272 /* Strip off the class name from the full name.
17273 We want the prefix. */
17274 int die_name_len = strlen (die_name);
17275 int actual_name_len = strlen (actual_name);
17276
17277 /* Test for '::' as a sanity check. */
17278 if (actual_name_len > die_name_len + 2
17279 && actual_name[actual_name_len
17280 - die_name_len - 1] == ':')
17281 name =
17282 obstack_copy0 (&cu->objfile->objfile_obstack,
17283 actual_name,
17284 actual_name_len - die_name_len - 2);
17285 }
17286 }
17287 xfree (actual_name);
17288 return name;
17289 }
17290 }
17291 }
17292
17293 return NULL;
17294 }
17295
17296 /* GCC might emit a nameless typedef that has a linkage name. Determine the
17297 prefix part in such case. See
17298 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
17299
17300 static char *
17301 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
17302 {
17303 struct attribute *attr;
17304 char *base;
17305
17306 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
17307 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
17308 return NULL;
17309
17310 attr = dwarf2_attr (die, DW_AT_name, cu);
17311 if (attr != NULL && DW_STRING (attr) != NULL)
17312 return NULL;
17313
17314 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
17315 if (attr == NULL)
17316 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
17317 if (attr == NULL || DW_STRING (attr) == NULL)
17318 return NULL;
17319
17320 /* dwarf2_name had to be already called. */
17321 gdb_assert (DW_STRING_IS_CANONICAL (attr));
17322
17323 /* Strip the base name, keep any leading namespaces/classes. */
17324 base = strrchr (DW_STRING (attr), ':');
17325 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
17326 return "";
17327
17328 return obstack_copy0 (&cu->objfile->objfile_obstack,
17329 DW_STRING (attr), &base[-1] - DW_STRING (attr));
17330 }
17331
17332 /* Return the name of the namespace/class that DIE is defined within,
17333 or "" if we can't tell. The caller should not xfree the result.
17334
17335 For example, if we're within the method foo() in the following
17336 code:
17337
17338 namespace N {
17339 class C {
17340 void foo () {
17341 }
17342 };
17343 }
17344
17345 then determine_prefix on foo's die will return "N::C". */
17346
17347 static const char *
17348 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
17349 {
17350 struct die_info *parent, *spec_die;
17351 struct dwarf2_cu *spec_cu;
17352 struct type *parent_type;
17353 char *retval;
17354
17355 if (cu->language != language_cplus && cu->language != language_java
17356 && cu->language != language_fortran)
17357 return "";
17358
17359 retval = anonymous_struct_prefix (die, cu);
17360 if (retval)
17361 return retval;
17362
17363 /* We have to be careful in the presence of DW_AT_specification.
17364 For example, with GCC 3.4, given the code
17365
17366 namespace N {
17367 void foo() {
17368 // Definition of N::foo.
17369 }
17370 }
17371
17372 then we'll have a tree of DIEs like this:
17373
17374 1: DW_TAG_compile_unit
17375 2: DW_TAG_namespace // N
17376 3: DW_TAG_subprogram // declaration of N::foo
17377 4: DW_TAG_subprogram // definition of N::foo
17378 DW_AT_specification // refers to die #3
17379
17380 Thus, when processing die #4, we have to pretend that we're in
17381 the context of its DW_AT_specification, namely the contex of die
17382 #3. */
17383 spec_cu = cu;
17384 spec_die = die_specification (die, &spec_cu);
17385 if (spec_die == NULL)
17386 parent = die->parent;
17387 else
17388 {
17389 parent = spec_die->parent;
17390 cu = spec_cu;
17391 }
17392
17393 if (parent == NULL)
17394 return "";
17395 else if (parent->building_fullname)
17396 {
17397 const char *name;
17398 const char *parent_name;
17399
17400 /* It has been seen on RealView 2.2 built binaries,
17401 DW_TAG_template_type_param types actually _defined_ as
17402 children of the parent class:
17403
17404 enum E {};
17405 template class <class Enum> Class{};
17406 Class<enum E> class_e;
17407
17408 1: DW_TAG_class_type (Class)
17409 2: DW_TAG_enumeration_type (E)
17410 3: DW_TAG_enumerator (enum1:0)
17411 3: DW_TAG_enumerator (enum2:1)
17412 ...
17413 2: DW_TAG_template_type_param
17414 DW_AT_type DW_FORM_ref_udata (E)
17415
17416 Besides being broken debug info, it can put GDB into an
17417 infinite loop. Consider:
17418
17419 When we're building the full name for Class<E>, we'll start
17420 at Class, and go look over its template type parameters,
17421 finding E. We'll then try to build the full name of E, and
17422 reach here. We're now trying to build the full name of E,
17423 and look over the parent DIE for containing scope. In the
17424 broken case, if we followed the parent DIE of E, we'd again
17425 find Class, and once again go look at its template type
17426 arguments, etc., etc. Simply don't consider such parent die
17427 as source-level parent of this die (it can't be, the language
17428 doesn't allow it), and break the loop here. */
17429 name = dwarf2_name (die, cu);
17430 parent_name = dwarf2_name (parent, cu);
17431 complaint (&symfile_complaints,
17432 _("template param type '%s' defined within parent '%s'"),
17433 name ? name : "<unknown>",
17434 parent_name ? parent_name : "<unknown>");
17435 return "";
17436 }
17437 else
17438 switch (parent->tag)
17439 {
17440 case DW_TAG_namespace:
17441 parent_type = read_type_die (parent, cu);
17442 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
17443 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
17444 Work around this problem here. */
17445 if (cu->language == language_cplus
17446 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
17447 return "";
17448 /* We give a name to even anonymous namespaces. */
17449 return TYPE_TAG_NAME (parent_type);
17450 case DW_TAG_class_type:
17451 case DW_TAG_interface_type:
17452 case DW_TAG_structure_type:
17453 case DW_TAG_union_type:
17454 case DW_TAG_module:
17455 parent_type = read_type_die (parent, cu);
17456 if (TYPE_TAG_NAME (parent_type) != NULL)
17457 return TYPE_TAG_NAME (parent_type);
17458 else
17459 /* An anonymous structure is only allowed non-static data
17460 members; no typedefs, no member functions, et cetera.
17461 So it does not need a prefix. */
17462 return "";
17463 case DW_TAG_compile_unit:
17464 case DW_TAG_partial_unit:
17465 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
17466 if (cu->language == language_cplus
17467 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
17468 && die->child != NULL
17469 && (die->tag == DW_TAG_class_type
17470 || die->tag == DW_TAG_structure_type
17471 || die->tag == DW_TAG_union_type))
17472 {
17473 char *name = guess_full_die_structure_name (die, cu);
17474 if (name != NULL)
17475 return name;
17476 }
17477 return "";
17478 default:
17479 return determine_prefix (parent, cu);
17480 }
17481 }
17482
17483 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
17484 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
17485 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
17486 an obconcat, otherwise allocate storage for the result. The CU argument is
17487 used to determine the language and hence, the appropriate separator. */
17488
17489 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
17490
17491 static char *
17492 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
17493 int physname, struct dwarf2_cu *cu)
17494 {
17495 const char *lead = "";
17496 const char *sep;
17497
17498 if (suffix == NULL || suffix[0] == '\0'
17499 || prefix == NULL || prefix[0] == '\0')
17500 sep = "";
17501 else if (cu->language == language_java)
17502 sep = ".";
17503 else if (cu->language == language_fortran && physname)
17504 {
17505 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
17506 DW_AT_MIPS_linkage_name is preferred and used instead. */
17507
17508 lead = "__";
17509 sep = "_MOD_";
17510 }
17511 else
17512 sep = "::";
17513
17514 if (prefix == NULL)
17515 prefix = "";
17516 if (suffix == NULL)
17517 suffix = "";
17518
17519 if (obs == NULL)
17520 {
17521 char *retval
17522 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
17523
17524 strcpy (retval, lead);
17525 strcat (retval, prefix);
17526 strcat (retval, sep);
17527 strcat (retval, suffix);
17528 return retval;
17529 }
17530 else
17531 {
17532 /* We have an obstack. */
17533 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
17534 }
17535 }
17536
17537 /* Return sibling of die, NULL if no sibling. */
17538
17539 static struct die_info *
17540 sibling_die (struct die_info *die)
17541 {
17542 return die->sibling;
17543 }
17544
17545 /* Get name of a die, return NULL if not found. */
17546
17547 static const char *
17548 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
17549 struct obstack *obstack)
17550 {
17551 if (name && cu->language == language_cplus)
17552 {
17553 char *canon_name = cp_canonicalize_string (name);
17554
17555 if (canon_name != NULL)
17556 {
17557 if (strcmp (canon_name, name) != 0)
17558 name = obstack_copy0 (obstack, canon_name, strlen (canon_name));
17559 xfree (canon_name);
17560 }
17561 }
17562
17563 return name;
17564 }
17565
17566 /* Get name of a die, return NULL if not found. */
17567
17568 static const char *
17569 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
17570 {
17571 struct attribute *attr;
17572
17573 attr = dwarf2_attr (die, DW_AT_name, cu);
17574 if ((!attr || !DW_STRING (attr))
17575 && die->tag != DW_TAG_class_type
17576 && die->tag != DW_TAG_interface_type
17577 && die->tag != DW_TAG_structure_type
17578 && die->tag != DW_TAG_union_type)
17579 return NULL;
17580
17581 switch (die->tag)
17582 {
17583 case DW_TAG_compile_unit:
17584 case DW_TAG_partial_unit:
17585 /* Compilation units have a DW_AT_name that is a filename, not
17586 a source language identifier. */
17587 case DW_TAG_enumeration_type:
17588 case DW_TAG_enumerator:
17589 /* These tags always have simple identifiers already; no need
17590 to canonicalize them. */
17591 return DW_STRING (attr);
17592
17593 case DW_TAG_subprogram:
17594 /* Java constructors will all be named "<init>", so return
17595 the class name when we see this special case. */
17596 if (cu->language == language_java
17597 && DW_STRING (attr) != NULL
17598 && strcmp (DW_STRING (attr), "<init>") == 0)
17599 {
17600 struct dwarf2_cu *spec_cu = cu;
17601 struct die_info *spec_die;
17602
17603 /* GCJ will output '<init>' for Java constructor names.
17604 For this special case, return the name of the parent class. */
17605
17606 /* GCJ may output suprogram DIEs with AT_specification set.
17607 If so, use the name of the specified DIE. */
17608 spec_die = die_specification (die, &spec_cu);
17609 if (spec_die != NULL)
17610 return dwarf2_name (spec_die, spec_cu);
17611
17612 do
17613 {
17614 die = die->parent;
17615 if (die->tag == DW_TAG_class_type)
17616 return dwarf2_name (die, cu);
17617 }
17618 while (die->tag != DW_TAG_compile_unit
17619 && die->tag != DW_TAG_partial_unit);
17620 }
17621 break;
17622
17623 case DW_TAG_class_type:
17624 case DW_TAG_interface_type:
17625 case DW_TAG_structure_type:
17626 case DW_TAG_union_type:
17627 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
17628 structures or unions. These were of the form "._%d" in GCC 4.1,
17629 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
17630 and GCC 4.4. We work around this problem by ignoring these. */
17631 if (attr && DW_STRING (attr)
17632 && (strncmp (DW_STRING (attr), "._", 2) == 0
17633 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0))
17634 return NULL;
17635
17636 /* GCC might emit a nameless typedef that has a linkage name. See
17637 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
17638 if (!attr || DW_STRING (attr) == NULL)
17639 {
17640 char *demangled = NULL;
17641
17642 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
17643 if (attr == NULL)
17644 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
17645
17646 if (attr == NULL || DW_STRING (attr) == NULL)
17647 return NULL;
17648
17649 /* Avoid demangling DW_STRING (attr) the second time on a second
17650 call for the same DIE. */
17651 if (!DW_STRING_IS_CANONICAL (attr))
17652 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
17653
17654 if (demangled)
17655 {
17656 char *base;
17657
17658 /* FIXME: we already did this for the partial symbol... */
17659 DW_STRING (attr) = obstack_copy0 (&cu->objfile->objfile_obstack,
17660 demangled, strlen (demangled));
17661 DW_STRING_IS_CANONICAL (attr) = 1;
17662 xfree (demangled);
17663
17664 /* Strip any leading namespaces/classes, keep only the base name.
17665 DW_AT_name for named DIEs does not contain the prefixes. */
17666 base = strrchr (DW_STRING (attr), ':');
17667 if (base && base > DW_STRING (attr) && base[-1] == ':')
17668 return &base[1];
17669 else
17670 return DW_STRING (attr);
17671 }
17672 }
17673 break;
17674
17675 default:
17676 break;
17677 }
17678
17679 if (!DW_STRING_IS_CANONICAL (attr))
17680 {
17681 DW_STRING (attr)
17682 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
17683 &cu->objfile->objfile_obstack);
17684 DW_STRING_IS_CANONICAL (attr) = 1;
17685 }
17686 return DW_STRING (attr);
17687 }
17688
17689 /* Return the die that this die in an extension of, or NULL if there
17690 is none. *EXT_CU is the CU containing DIE on input, and the CU
17691 containing the return value on output. */
17692
17693 static struct die_info *
17694 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
17695 {
17696 struct attribute *attr;
17697
17698 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
17699 if (attr == NULL)
17700 return NULL;
17701
17702 return follow_die_ref (die, attr, ext_cu);
17703 }
17704
17705 /* Convert a DIE tag into its string name. */
17706
17707 static const char *
17708 dwarf_tag_name (unsigned tag)
17709 {
17710 const char *name = get_DW_TAG_name (tag);
17711
17712 if (name == NULL)
17713 return "DW_TAG_<unknown>";
17714
17715 return name;
17716 }
17717
17718 /* Convert a DWARF attribute code into its string name. */
17719
17720 static const char *
17721 dwarf_attr_name (unsigned attr)
17722 {
17723 const char *name;
17724
17725 #ifdef MIPS /* collides with DW_AT_HP_block_index */
17726 if (attr == DW_AT_MIPS_fde)
17727 return "DW_AT_MIPS_fde";
17728 #else
17729 if (attr == DW_AT_HP_block_index)
17730 return "DW_AT_HP_block_index";
17731 #endif
17732
17733 name = get_DW_AT_name (attr);
17734
17735 if (name == NULL)
17736 return "DW_AT_<unknown>";
17737
17738 return name;
17739 }
17740
17741 /* Convert a DWARF value form code into its string name. */
17742
17743 static const char *
17744 dwarf_form_name (unsigned form)
17745 {
17746 const char *name = get_DW_FORM_name (form);
17747
17748 if (name == NULL)
17749 return "DW_FORM_<unknown>";
17750
17751 return name;
17752 }
17753
17754 static char *
17755 dwarf_bool_name (unsigned mybool)
17756 {
17757 if (mybool)
17758 return "TRUE";
17759 else
17760 return "FALSE";
17761 }
17762
17763 /* Convert a DWARF type code into its string name. */
17764
17765 static const char *
17766 dwarf_type_encoding_name (unsigned enc)
17767 {
17768 const char *name = get_DW_ATE_name (enc);
17769
17770 if (name == NULL)
17771 return "DW_ATE_<unknown>";
17772
17773 return name;
17774 }
17775
17776 static void
17777 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
17778 {
17779 unsigned int i;
17780
17781 print_spaces (indent, f);
17782 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
17783 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
17784
17785 if (die->parent != NULL)
17786 {
17787 print_spaces (indent, f);
17788 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
17789 die->parent->offset.sect_off);
17790 }
17791
17792 print_spaces (indent, f);
17793 fprintf_unfiltered (f, " has children: %s\n",
17794 dwarf_bool_name (die->child != NULL));
17795
17796 print_spaces (indent, f);
17797 fprintf_unfiltered (f, " attributes:\n");
17798
17799 for (i = 0; i < die->num_attrs; ++i)
17800 {
17801 print_spaces (indent, f);
17802 fprintf_unfiltered (f, " %s (%s) ",
17803 dwarf_attr_name (die->attrs[i].name),
17804 dwarf_form_name (die->attrs[i].form));
17805
17806 switch (die->attrs[i].form)
17807 {
17808 case DW_FORM_addr:
17809 case DW_FORM_GNU_addr_index:
17810 fprintf_unfiltered (f, "address: ");
17811 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
17812 break;
17813 case DW_FORM_block2:
17814 case DW_FORM_block4:
17815 case DW_FORM_block:
17816 case DW_FORM_block1:
17817 fprintf_unfiltered (f, "block: size %s",
17818 pulongest (DW_BLOCK (&die->attrs[i])->size));
17819 break;
17820 case DW_FORM_exprloc:
17821 fprintf_unfiltered (f, "expression: size %s",
17822 pulongest (DW_BLOCK (&die->attrs[i])->size));
17823 break;
17824 case DW_FORM_ref_addr:
17825 fprintf_unfiltered (f, "ref address: ");
17826 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
17827 break;
17828 case DW_FORM_GNU_ref_alt:
17829 fprintf_unfiltered (f, "alt ref address: ");
17830 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
17831 break;
17832 case DW_FORM_ref1:
17833 case DW_FORM_ref2:
17834 case DW_FORM_ref4:
17835 case DW_FORM_ref8:
17836 case DW_FORM_ref_udata:
17837 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
17838 (long) (DW_UNSND (&die->attrs[i])));
17839 break;
17840 case DW_FORM_data1:
17841 case DW_FORM_data2:
17842 case DW_FORM_data4:
17843 case DW_FORM_data8:
17844 case DW_FORM_udata:
17845 case DW_FORM_sdata:
17846 fprintf_unfiltered (f, "constant: %s",
17847 pulongest (DW_UNSND (&die->attrs[i])));
17848 break;
17849 case DW_FORM_sec_offset:
17850 fprintf_unfiltered (f, "section offset: %s",
17851 pulongest (DW_UNSND (&die->attrs[i])));
17852 break;
17853 case DW_FORM_ref_sig8:
17854 fprintf_unfiltered (f, "signature: %s",
17855 hex_string (DW_SIGNATURE (&die->attrs[i])));
17856 break;
17857 case DW_FORM_string:
17858 case DW_FORM_strp:
17859 case DW_FORM_GNU_str_index:
17860 case DW_FORM_GNU_strp_alt:
17861 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
17862 DW_STRING (&die->attrs[i])
17863 ? DW_STRING (&die->attrs[i]) : "",
17864 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
17865 break;
17866 case DW_FORM_flag:
17867 if (DW_UNSND (&die->attrs[i]))
17868 fprintf_unfiltered (f, "flag: TRUE");
17869 else
17870 fprintf_unfiltered (f, "flag: FALSE");
17871 break;
17872 case DW_FORM_flag_present:
17873 fprintf_unfiltered (f, "flag: TRUE");
17874 break;
17875 case DW_FORM_indirect:
17876 /* The reader will have reduced the indirect form to
17877 the "base form" so this form should not occur. */
17878 fprintf_unfiltered (f,
17879 "unexpected attribute form: DW_FORM_indirect");
17880 break;
17881 default:
17882 fprintf_unfiltered (f, "unsupported attribute form: %d.",
17883 die->attrs[i].form);
17884 break;
17885 }
17886 fprintf_unfiltered (f, "\n");
17887 }
17888 }
17889
17890 static void
17891 dump_die_for_error (struct die_info *die)
17892 {
17893 dump_die_shallow (gdb_stderr, 0, die);
17894 }
17895
17896 static void
17897 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
17898 {
17899 int indent = level * 4;
17900
17901 gdb_assert (die != NULL);
17902
17903 if (level >= max_level)
17904 return;
17905
17906 dump_die_shallow (f, indent, die);
17907
17908 if (die->child != NULL)
17909 {
17910 print_spaces (indent, f);
17911 fprintf_unfiltered (f, " Children:");
17912 if (level + 1 < max_level)
17913 {
17914 fprintf_unfiltered (f, "\n");
17915 dump_die_1 (f, level + 1, max_level, die->child);
17916 }
17917 else
17918 {
17919 fprintf_unfiltered (f,
17920 " [not printed, max nesting level reached]\n");
17921 }
17922 }
17923
17924 if (die->sibling != NULL && level > 0)
17925 {
17926 dump_die_1 (f, level, max_level, die->sibling);
17927 }
17928 }
17929
17930 /* This is called from the pdie macro in gdbinit.in.
17931 It's not static so gcc will keep a copy callable from gdb. */
17932
17933 void
17934 dump_die (struct die_info *die, int max_level)
17935 {
17936 dump_die_1 (gdb_stdlog, 0, max_level, die);
17937 }
17938
17939 static void
17940 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
17941 {
17942 void **slot;
17943
17944 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
17945 INSERT);
17946
17947 *slot = die;
17948 }
17949
17950 /* DW_ADDR is always stored already as sect_offset; despite for the forms
17951 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
17952
17953 static int
17954 is_ref_attr (struct attribute *attr)
17955 {
17956 switch (attr->form)
17957 {
17958 case DW_FORM_ref_addr:
17959 case DW_FORM_ref1:
17960 case DW_FORM_ref2:
17961 case DW_FORM_ref4:
17962 case DW_FORM_ref8:
17963 case DW_FORM_ref_udata:
17964 case DW_FORM_GNU_ref_alt:
17965 return 1;
17966 default:
17967 return 0;
17968 }
17969 }
17970
17971 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
17972 required kind. */
17973
17974 static sect_offset
17975 dwarf2_get_ref_die_offset (struct attribute *attr)
17976 {
17977 sect_offset retval = { DW_UNSND (attr) };
17978
17979 if (is_ref_attr (attr))
17980 return retval;
17981
17982 retval.sect_off = 0;
17983 complaint (&symfile_complaints,
17984 _("unsupported die ref attribute form: '%s'"),
17985 dwarf_form_name (attr->form));
17986 return retval;
17987 }
17988
17989 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
17990 * the value held by the attribute is not constant. */
17991
17992 static LONGEST
17993 dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
17994 {
17995 if (attr->form == DW_FORM_sdata)
17996 return DW_SND (attr);
17997 else if (attr->form == DW_FORM_udata
17998 || attr->form == DW_FORM_data1
17999 || attr->form == DW_FORM_data2
18000 || attr->form == DW_FORM_data4
18001 || attr->form == DW_FORM_data8)
18002 return DW_UNSND (attr);
18003 else
18004 {
18005 complaint (&symfile_complaints,
18006 _("Attribute value is not a constant (%s)"),
18007 dwarf_form_name (attr->form));
18008 return default_value;
18009 }
18010 }
18011
18012 /* Follow reference or signature attribute ATTR of SRC_DIE.
18013 On entry *REF_CU is the CU of SRC_DIE.
18014 On exit *REF_CU is the CU of the result. */
18015
18016 static struct die_info *
18017 follow_die_ref_or_sig (struct die_info *src_die, struct attribute *attr,
18018 struct dwarf2_cu **ref_cu)
18019 {
18020 struct die_info *die;
18021
18022 if (is_ref_attr (attr))
18023 die = follow_die_ref (src_die, attr, ref_cu);
18024 else if (attr->form == DW_FORM_ref_sig8)
18025 die = follow_die_sig (src_die, attr, ref_cu);
18026 else
18027 {
18028 dump_die_for_error (src_die);
18029 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
18030 (*ref_cu)->objfile->name);
18031 }
18032
18033 return die;
18034 }
18035
18036 /* Follow reference OFFSET.
18037 On entry *REF_CU is the CU of the source die referencing OFFSET.
18038 On exit *REF_CU is the CU of the result.
18039 Returns NULL if OFFSET is invalid. */
18040
18041 static struct die_info *
18042 follow_die_offset (sect_offset offset, int offset_in_dwz,
18043 struct dwarf2_cu **ref_cu)
18044 {
18045 struct die_info temp_die;
18046 struct dwarf2_cu *target_cu, *cu = *ref_cu;
18047
18048 gdb_assert (cu->per_cu != NULL);
18049
18050 target_cu = cu;
18051
18052 if (cu->per_cu->is_debug_types)
18053 {
18054 /* .debug_types CUs cannot reference anything outside their CU.
18055 If they need to, they have to reference a signatured type via
18056 DW_FORM_ref_sig8. */
18057 if (! offset_in_cu_p (&cu->header, offset))
18058 return NULL;
18059 }
18060 else if (offset_in_dwz != cu->per_cu->is_dwz
18061 || ! offset_in_cu_p (&cu->header, offset))
18062 {
18063 struct dwarf2_per_cu_data *per_cu;
18064
18065 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
18066 cu->objfile);
18067
18068 /* If necessary, add it to the queue and load its DIEs. */
18069 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
18070 load_full_comp_unit (per_cu, cu->language);
18071
18072 target_cu = per_cu->cu;
18073 }
18074 else if (cu->dies == NULL)
18075 {
18076 /* We're loading full DIEs during partial symbol reading. */
18077 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
18078 load_full_comp_unit (cu->per_cu, language_minimal);
18079 }
18080
18081 *ref_cu = target_cu;
18082 temp_die.offset = offset;
18083 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
18084 }
18085
18086 /* Follow reference attribute ATTR of SRC_DIE.
18087 On entry *REF_CU is the CU of SRC_DIE.
18088 On exit *REF_CU is the CU of the result. */
18089
18090 static struct die_info *
18091 follow_die_ref (struct die_info *src_die, struct attribute *attr,
18092 struct dwarf2_cu **ref_cu)
18093 {
18094 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18095 struct dwarf2_cu *cu = *ref_cu;
18096 struct die_info *die;
18097
18098 die = follow_die_offset (offset,
18099 (attr->form == DW_FORM_GNU_ref_alt
18100 || cu->per_cu->is_dwz),
18101 ref_cu);
18102 if (!die)
18103 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
18104 "at 0x%x [in module %s]"),
18105 offset.sect_off, src_die->offset.sect_off, cu->objfile->name);
18106
18107 return die;
18108 }
18109
18110 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
18111 Returned value is intended for DW_OP_call*. Returned
18112 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
18113
18114 struct dwarf2_locexpr_baton
18115 dwarf2_fetch_die_loc_sect_off (sect_offset offset,
18116 struct dwarf2_per_cu_data *per_cu,
18117 CORE_ADDR (*get_frame_pc) (void *baton),
18118 void *baton)
18119 {
18120 struct dwarf2_cu *cu;
18121 struct die_info *die;
18122 struct attribute *attr;
18123 struct dwarf2_locexpr_baton retval;
18124
18125 dw2_setup (per_cu->objfile);
18126
18127 if (per_cu->cu == NULL)
18128 load_cu (per_cu);
18129 cu = per_cu->cu;
18130
18131 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
18132 if (!die)
18133 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
18134 offset.sect_off, per_cu->objfile->name);
18135
18136 attr = dwarf2_attr (die, DW_AT_location, cu);
18137 if (!attr)
18138 {
18139 /* DWARF: "If there is no such attribute, then there is no effect.".
18140 DATA is ignored if SIZE is 0. */
18141
18142 retval.data = NULL;
18143 retval.size = 0;
18144 }
18145 else if (attr_form_is_section_offset (attr))
18146 {
18147 struct dwarf2_loclist_baton loclist_baton;
18148 CORE_ADDR pc = (*get_frame_pc) (baton);
18149 size_t size;
18150
18151 fill_in_loclist_baton (cu, &loclist_baton, attr);
18152
18153 retval.data = dwarf2_find_location_expression (&loclist_baton,
18154 &size, pc);
18155 retval.size = size;
18156 }
18157 else
18158 {
18159 if (!attr_form_is_block (attr))
18160 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
18161 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
18162 offset.sect_off, per_cu->objfile->name);
18163
18164 retval.data = DW_BLOCK (attr)->data;
18165 retval.size = DW_BLOCK (attr)->size;
18166 }
18167 retval.per_cu = cu->per_cu;
18168
18169 age_cached_comp_units ();
18170
18171 return retval;
18172 }
18173
18174 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
18175 offset. */
18176
18177 struct dwarf2_locexpr_baton
18178 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
18179 struct dwarf2_per_cu_data *per_cu,
18180 CORE_ADDR (*get_frame_pc) (void *baton),
18181 void *baton)
18182 {
18183 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
18184
18185 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
18186 }
18187
18188 /* Write a constant of a given type as target-ordered bytes into
18189 OBSTACK. */
18190
18191 static const gdb_byte *
18192 write_constant_as_bytes (struct obstack *obstack,
18193 enum bfd_endian byte_order,
18194 struct type *type,
18195 ULONGEST value,
18196 LONGEST *len)
18197 {
18198 gdb_byte *result;
18199
18200 *len = TYPE_LENGTH (type);
18201 result = obstack_alloc (obstack, *len);
18202 store_unsigned_integer (result, *len, byte_order, value);
18203
18204 return result;
18205 }
18206
18207 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
18208 pointer to the constant bytes and set LEN to the length of the
18209 data. If memory is needed, allocate it on OBSTACK. If the DIE
18210 does not have a DW_AT_const_value, return NULL. */
18211
18212 const gdb_byte *
18213 dwarf2_fetch_constant_bytes (sect_offset offset,
18214 struct dwarf2_per_cu_data *per_cu,
18215 struct obstack *obstack,
18216 LONGEST *len)
18217 {
18218 struct dwarf2_cu *cu;
18219 struct die_info *die;
18220 struct attribute *attr;
18221 const gdb_byte *result = NULL;
18222 struct type *type;
18223 LONGEST value;
18224 enum bfd_endian byte_order;
18225
18226 dw2_setup (per_cu->objfile);
18227
18228 if (per_cu->cu == NULL)
18229 load_cu (per_cu);
18230 cu = per_cu->cu;
18231
18232 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
18233 if (!die)
18234 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
18235 offset.sect_off, per_cu->objfile->name);
18236
18237
18238 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18239 if (attr == NULL)
18240 return NULL;
18241
18242 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
18243 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
18244
18245 switch (attr->form)
18246 {
18247 case DW_FORM_addr:
18248 case DW_FORM_GNU_addr_index:
18249 {
18250 gdb_byte *tem;
18251
18252 *len = cu->header.addr_size;
18253 tem = obstack_alloc (obstack, *len);
18254 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
18255 result = tem;
18256 }
18257 break;
18258 case DW_FORM_string:
18259 case DW_FORM_strp:
18260 case DW_FORM_GNU_str_index:
18261 case DW_FORM_GNU_strp_alt:
18262 /* DW_STRING is already allocated on the objfile obstack, point
18263 directly to it. */
18264 result = (const gdb_byte *) DW_STRING (attr);
18265 *len = strlen (DW_STRING (attr));
18266 break;
18267 case DW_FORM_block1:
18268 case DW_FORM_block2:
18269 case DW_FORM_block4:
18270 case DW_FORM_block:
18271 case DW_FORM_exprloc:
18272 result = DW_BLOCK (attr)->data;
18273 *len = DW_BLOCK (attr)->size;
18274 break;
18275
18276 /* The DW_AT_const_value attributes are supposed to carry the
18277 symbol's value "represented as it would be on the target
18278 architecture." By the time we get here, it's already been
18279 converted to host endianness, so we just need to sign- or
18280 zero-extend it as appropriate. */
18281 case DW_FORM_data1:
18282 type = die_type (die, cu);
18283 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
18284 if (result == NULL)
18285 result = write_constant_as_bytes (obstack, byte_order,
18286 type, value, len);
18287 break;
18288 case DW_FORM_data2:
18289 type = die_type (die, cu);
18290 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
18291 if (result == NULL)
18292 result = write_constant_as_bytes (obstack, byte_order,
18293 type, value, len);
18294 break;
18295 case DW_FORM_data4:
18296 type = die_type (die, cu);
18297 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
18298 if (result == NULL)
18299 result = write_constant_as_bytes (obstack, byte_order,
18300 type, value, len);
18301 break;
18302 case DW_FORM_data8:
18303 type = die_type (die, cu);
18304 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
18305 if (result == NULL)
18306 result = write_constant_as_bytes (obstack, byte_order,
18307 type, value, len);
18308 break;
18309
18310 case DW_FORM_sdata:
18311 type = die_type (die, cu);
18312 result = write_constant_as_bytes (obstack, byte_order,
18313 type, DW_SND (attr), len);
18314 break;
18315
18316 case DW_FORM_udata:
18317 type = die_type (die, cu);
18318 result = write_constant_as_bytes (obstack, byte_order,
18319 type, DW_UNSND (attr), len);
18320 break;
18321
18322 default:
18323 complaint (&symfile_complaints,
18324 _("unsupported const value attribute form: '%s'"),
18325 dwarf_form_name (attr->form));
18326 break;
18327 }
18328
18329 return result;
18330 }
18331
18332 /* Return the type of the DIE at DIE_OFFSET in the CU named by
18333 PER_CU. */
18334
18335 struct type *
18336 dwarf2_get_die_type (cu_offset die_offset,
18337 struct dwarf2_per_cu_data *per_cu)
18338 {
18339 sect_offset die_offset_sect;
18340
18341 dw2_setup (per_cu->objfile);
18342
18343 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
18344 return get_die_type_at_offset (die_offset_sect, per_cu);
18345 }
18346
18347 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
18348 On entry *REF_CU is the CU of SRC_DIE.
18349 On exit *REF_CU is the CU of the result.
18350 Returns NULL if the referenced DIE isn't found. */
18351
18352 static struct die_info *
18353 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
18354 struct dwarf2_cu **ref_cu)
18355 {
18356 struct objfile *objfile = (*ref_cu)->objfile;
18357 struct die_info temp_die;
18358 struct dwarf2_cu *sig_cu;
18359 struct die_info *die;
18360
18361 /* While it might be nice to assert sig_type->type == NULL here,
18362 we can get here for DW_AT_imported_declaration where we need
18363 the DIE not the type. */
18364
18365 /* If necessary, add it to the queue and load its DIEs. */
18366
18367 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
18368 read_signatured_type (sig_type);
18369
18370 gdb_assert (sig_type->per_cu.cu != NULL);
18371
18372 sig_cu = sig_type->per_cu.cu;
18373 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
18374 temp_die.offset = sig_type->type_offset_in_section;
18375 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
18376 temp_die.offset.sect_off);
18377 if (die)
18378 {
18379 /* For .gdb_index version 7 keep track of included TUs.
18380 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
18381 if (dwarf2_per_objfile->index_table != NULL
18382 && dwarf2_per_objfile->index_table->version <= 7)
18383 {
18384 VEC_safe_push (dwarf2_per_cu_ptr,
18385 (*ref_cu)->per_cu->imported_symtabs,
18386 sig_cu->per_cu);
18387 }
18388
18389 *ref_cu = sig_cu;
18390 return die;
18391 }
18392
18393 return NULL;
18394 }
18395
18396 /* Follow signatured type referenced by ATTR in SRC_DIE.
18397 On entry *REF_CU is the CU of SRC_DIE.
18398 On exit *REF_CU is the CU of the result.
18399 The result is the DIE of the type.
18400 If the referenced type cannot be found an error is thrown. */
18401
18402 static struct die_info *
18403 follow_die_sig (struct die_info *src_die, struct attribute *attr,
18404 struct dwarf2_cu **ref_cu)
18405 {
18406 ULONGEST signature = DW_SIGNATURE (attr);
18407 struct signatured_type *sig_type;
18408 struct die_info *die;
18409
18410 gdb_assert (attr->form == DW_FORM_ref_sig8);
18411
18412 sig_type = lookup_signatured_type (*ref_cu, signature);
18413 /* sig_type will be NULL if the signatured type is missing from
18414 the debug info. */
18415 if (sig_type == NULL)
18416 {
18417 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
18418 " from DIE at 0x%x [in module %s]"),
18419 hex_string (signature), src_die->offset.sect_off,
18420 (*ref_cu)->objfile->name);
18421 }
18422
18423 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
18424 if (die == NULL)
18425 {
18426 dump_die_for_error (src_die);
18427 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
18428 " from DIE at 0x%x [in module %s]"),
18429 hex_string (signature), src_die->offset.sect_off,
18430 (*ref_cu)->objfile->name);
18431 }
18432
18433 return die;
18434 }
18435
18436 /* Get the type specified by SIGNATURE referenced in DIE/CU,
18437 reading in and processing the type unit if necessary. */
18438
18439 static struct type *
18440 get_signatured_type (struct die_info *die, ULONGEST signature,
18441 struct dwarf2_cu *cu)
18442 {
18443 struct signatured_type *sig_type;
18444 struct dwarf2_cu *type_cu;
18445 struct die_info *type_die;
18446 struct type *type;
18447
18448 sig_type = lookup_signatured_type (cu, signature);
18449 /* sig_type will be NULL if the signatured type is missing from
18450 the debug info. */
18451 if (sig_type == NULL)
18452 {
18453 complaint (&symfile_complaints,
18454 _("Dwarf Error: Cannot find signatured DIE %s referenced"
18455 " from DIE at 0x%x [in module %s]"),
18456 hex_string (signature), die->offset.sect_off,
18457 dwarf2_per_objfile->objfile->name);
18458 return build_error_marker_type (cu, die);
18459 }
18460
18461 /* If we already know the type we're done. */
18462 if (sig_type->type != NULL)
18463 return sig_type->type;
18464
18465 type_cu = cu;
18466 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
18467 if (type_die != NULL)
18468 {
18469 /* N.B. We need to call get_die_type to ensure only one type for this DIE
18470 is created. This is important, for example, because for c++ classes
18471 we need TYPE_NAME set which is only done by new_symbol. Blech. */
18472 type = read_type_die (type_die, type_cu);
18473 if (type == NULL)
18474 {
18475 complaint (&symfile_complaints,
18476 _("Dwarf Error: Cannot build signatured type %s"
18477 " referenced from DIE at 0x%x [in module %s]"),
18478 hex_string (signature), die->offset.sect_off,
18479 dwarf2_per_objfile->objfile->name);
18480 type = build_error_marker_type (cu, die);
18481 }
18482 }
18483 else
18484 {
18485 complaint (&symfile_complaints,
18486 _("Dwarf Error: Problem reading signatured DIE %s referenced"
18487 " from DIE at 0x%x [in module %s]"),
18488 hex_string (signature), die->offset.sect_off,
18489 dwarf2_per_objfile->objfile->name);
18490 type = build_error_marker_type (cu, die);
18491 }
18492 sig_type->type = type;
18493
18494 return type;
18495 }
18496
18497 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
18498 reading in and processing the type unit if necessary. */
18499
18500 static struct type *
18501 get_DW_AT_signature_type (struct die_info *die, struct attribute *attr,
18502 struct dwarf2_cu *cu) /* ARI: editCase function */
18503 {
18504 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
18505 if (is_ref_attr (attr))
18506 {
18507 struct dwarf2_cu *type_cu = cu;
18508 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
18509
18510 return read_type_die (type_die, type_cu);
18511 }
18512 else if (attr->form == DW_FORM_ref_sig8)
18513 {
18514 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
18515 }
18516 else
18517 {
18518 complaint (&symfile_complaints,
18519 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
18520 " at 0x%x [in module %s]"),
18521 dwarf_form_name (attr->form), die->offset.sect_off,
18522 dwarf2_per_objfile->objfile->name);
18523 return build_error_marker_type (cu, die);
18524 }
18525 }
18526
18527 /* Load the DIEs associated with type unit PER_CU into memory. */
18528
18529 static void
18530 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
18531 {
18532 struct signatured_type *sig_type;
18533
18534 /* Caller is responsible for ensuring type_unit_groups don't get here. */
18535 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
18536
18537 /* We have the per_cu, but we need the signatured_type.
18538 Fortunately this is an easy translation. */
18539 gdb_assert (per_cu->is_debug_types);
18540 sig_type = (struct signatured_type *) per_cu;
18541
18542 gdb_assert (per_cu->cu == NULL);
18543
18544 read_signatured_type (sig_type);
18545
18546 gdb_assert (per_cu->cu != NULL);
18547 }
18548
18549 /* die_reader_func for read_signatured_type.
18550 This is identical to load_full_comp_unit_reader,
18551 but is kept separate for now. */
18552
18553 static void
18554 read_signatured_type_reader (const struct die_reader_specs *reader,
18555 const gdb_byte *info_ptr,
18556 struct die_info *comp_unit_die,
18557 int has_children,
18558 void *data)
18559 {
18560 struct dwarf2_cu *cu = reader->cu;
18561
18562 gdb_assert (cu->die_hash == NULL);
18563 cu->die_hash =
18564 htab_create_alloc_ex (cu->header.length / 12,
18565 die_hash,
18566 die_eq,
18567 NULL,
18568 &cu->comp_unit_obstack,
18569 hashtab_obstack_allocate,
18570 dummy_obstack_deallocate);
18571
18572 if (has_children)
18573 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
18574 &info_ptr, comp_unit_die);
18575 cu->dies = comp_unit_die;
18576 /* comp_unit_die is not stored in die_hash, no need. */
18577
18578 /* We try not to read any attributes in this function, because not
18579 all CUs needed for references have been loaded yet, and symbol
18580 table processing isn't initialized. But we have to set the CU language,
18581 or we won't be able to build types correctly.
18582 Similarly, if we do not read the producer, we can not apply
18583 producer-specific interpretation. */
18584 prepare_one_comp_unit (cu, cu->dies, language_minimal);
18585 }
18586
18587 /* Read in a signatured type and build its CU and DIEs.
18588 If the type is a stub for the real type in a DWO file,
18589 read in the real type from the DWO file as well. */
18590
18591 static void
18592 read_signatured_type (struct signatured_type *sig_type)
18593 {
18594 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
18595
18596 gdb_assert (per_cu->is_debug_types);
18597 gdb_assert (per_cu->cu == NULL);
18598
18599 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
18600 read_signatured_type_reader, NULL);
18601 }
18602
18603 /* Decode simple location descriptions.
18604 Given a pointer to a dwarf block that defines a location, compute
18605 the location and return the value.
18606
18607 NOTE drow/2003-11-18: This function is called in two situations
18608 now: for the address of static or global variables (partial symbols
18609 only) and for offsets into structures which are expected to be
18610 (more or less) constant. The partial symbol case should go away,
18611 and only the constant case should remain. That will let this
18612 function complain more accurately. A few special modes are allowed
18613 without complaint for global variables (for instance, global
18614 register values and thread-local values).
18615
18616 A location description containing no operations indicates that the
18617 object is optimized out. The return value is 0 for that case.
18618 FIXME drow/2003-11-16: No callers check for this case any more; soon all
18619 callers will only want a very basic result and this can become a
18620 complaint.
18621
18622 Note that stack[0] is unused except as a default error return. */
18623
18624 static CORE_ADDR
18625 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
18626 {
18627 struct objfile *objfile = cu->objfile;
18628 size_t i;
18629 size_t size = blk->size;
18630 const gdb_byte *data = blk->data;
18631 CORE_ADDR stack[64];
18632 int stacki;
18633 unsigned int bytes_read, unsnd;
18634 gdb_byte op;
18635
18636 i = 0;
18637 stacki = 0;
18638 stack[stacki] = 0;
18639 stack[++stacki] = 0;
18640
18641 while (i < size)
18642 {
18643 op = data[i++];
18644 switch (op)
18645 {
18646 case DW_OP_lit0:
18647 case DW_OP_lit1:
18648 case DW_OP_lit2:
18649 case DW_OP_lit3:
18650 case DW_OP_lit4:
18651 case DW_OP_lit5:
18652 case DW_OP_lit6:
18653 case DW_OP_lit7:
18654 case DW_OP_lit8:
18655 case DW_OP_lit9:
18656 case DW_OP_lit10:
18657 case DW_OP_lit11:
18658 case DW_OP_lit12:
18659 case DW_OP_lit13:
18660 case DW_OP_lit14:
18661 case DW_OP_lit15:
18662 case DW_OP_lit16:
18663 case DW_OP_lit17:
18664 case DW_OP_lit18:
18665 case DW_OP_lit19:
18666 case DW_OP_lit20:
18667 case DW_OP_lit21:
18668 case DW_OP_lit22:
18669 case DW_OP_lit23:
18670 case DW_OP_lit24:
18671 case DW_OP_lit25:
18672 case DW_OP_lit26:
18673 case DW_OP_lit27:
18674 case DW_OP_lit28:
18675 case DW_OP_lit29:
18676 case DW_OP_lit30:
18677 case DW_OP_lit31:
18678 stack[++stacki] = op - DW_OP_lit0;
18679 break;
18680
18681 case DW_OP_reg0:
18682 case DW_OP_reg1:
18683 case DW_OP_reg2:
18684 case DW_OP_reg3:
18685 case DW_OP_reg4:
18686 case DW_OP_reg5:
18687 case DW_OP_reg6:
18688 case DW_OP_reg7:
18689 case DW_OP_reg8:
18690 case DW_OP_reg9:
18691 case DW_OP_reg10:
18692 case DW_OP_reg11:
18693 case DW_OP_reg12:
18694 case DW_OP_reg13:
18695 case DW_OP_reg14:
18696 case DW_OP_reg15:
18697 case DW_OP_reg16:
18698 case DW_OP_reg17:
18699 case DW_OP_reg18:
18700 case DW_OP_reg19:
18701 case DW_OP_reg20:
18702 case DW_OP_reg21:
18703 case DW_OP_reg22:
18704 case DW_OP_reg23:
18705 case DW_OP_reg24:
18706 case DW_OP_reg25:
18707 case DW_OP_reg26:
18708 case DW_OP_reg27:
18709 case DW_OP_reg28:
18710 case DW_OP_reg29:
18711 case DW_OP_reg30:
18712 case DW_OP_reg31:
18713 stack[++stacki] = op - DW_OP_reg0;
18714 if (i < size)
18715 dwarf2_complex_location_expr_complaint ();
18716 break;
18717
18718 case DW_OP_regx:
18719 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
18720 i += bytes_read;
18721 stack[++stacki] = unsnd;
18722 if (i < size)
18723 dwarf2_complex_location_expr_complaint ();
18724 break;
18725
18726 case DW_OP_addr:
18727 stack[++stacki] = read_address (objfile->obfd, &data[i],
18728 cu, &bytes_read);
18729 i += bytes_read;
18730 break;
18731
18732 case DW_OP_const1u:
18733 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
18734 i += 1;
18735 break;
18736
18737 case DW_OP_const1s:
18738 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
18739 i += 1;
18740 break;
18741
18742 case DW_OP_const2u:
18743 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
18744 i += 2;
18745 break;
18746
18747 case DW_OP_const2s:
18748 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
18749 i += 2;
18750 break;
18751
18752 case DW_OP_const4u:
18753 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
18754 i += 4;
18755 break;
18756
18757 case DW_OP_const4s:
18758 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
18759 i += 4;
18760 break;
18761
18762 case DW_OP_const8u:
18763 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
18764 i += 8;
18765 break;
18766
18767 case DW_OP_constu:
18768 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
18769 &bytes_read);
18770 i += bytes_read;
18771 break;
18772
18773 case DW_OP_consts:
18774 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
18775 i += bytes_read;
18776 break;
18777
18778 case DW_OP_dup:
18779 stack[stacki + 1] = stack[stacki];
18780 stacki++;
18781 break;
18782
18783 case DW_OP_plus:
18784 stack[stacki - 1] += stack[stacki];
18785 stacki--;
18786 break;
18787
18788 case DW_OP_plus_uconst:
18789 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
18790 &bytes_read);
18791 i += bytes_read;
18792 break;
18793
18794 case DW_OP_minus:
18795 stack[stacki - 1] -= stack[stacki];
18796 stacki--;
18797 break;
18798
18799 case DW_OP_deref:
18800 /* If we're not the last op, then we definitely can't encode
18801 this using GDB's address_class enum. This is valid for partial
18802 global symbols, although the variable's address will be bogus
18803 in the psymtab. */
18804 if (i < size)
18805 dwarf2_complex_location_expr_complaint ();
18806 break;
18807
18808 case DW_OP_GNU_push_tls_address:
18809 /* The top of the stack has the offset from the beginning
18810 of the thread control block at which the variable is located. */
18811 /* Nothing should follow this operator, so the top of stack would
18812 be returned. */
18813 /* This is valid for partial global symbols, but the variable's
18814 address will be bogus in the psymtab. Make it always at least
18815 non-zero to not look as a variable garbage collected by linker
18816 which have DW_OP_addr 0. */
18817 if (i < size)
18818 dwarf2_complex_location_expr_complaint ();
18819 stack[stacki]++;
18820 break;
18821
18822 case DW_OP_GNU_uninit:
18823 break;
18824
18825 case DW_OP_GNU_addr_index:
18826 case DW_OP_GNU_const_index:
18827 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
18828 &bytes_read);
18829 i += bytes_read;
18830 break;
18831
18832 default:
18833 {
18834 const char *name = get_DW_OP_name (op);
18835
18836 if (name)
18837 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
18838 name);
18839 else
18840 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
18841 op);
18842 }
18843
18844 return (stack[stacki]);
18845 }
18846
18847 /* Enforce maximum stack depth of SIZE-1 to avoid writing
18848 outside of the allocated space. Also enforce minimum>0. */
18849 if (stacki >= ARRAY_SIZE (stack) - 1)
18850 {
18851 complaint (&symfile_complaints,
18852 _("location description stack overflow"));
18853 return 0;
18854 }
18855
18856 if (stacki <= 0)
18857 {
18858 complaint (&symfile_complaints,
18859 _("location description stack underflow"));
18860 return 0;
18861 }
18862 }
18863 return (stack[stacki]);
18864 }
18865
18866 /* memory allocation interface */
18867
18868 static struct dwarf_block *
18869 dwarf_alloc_block (struct dwarf2_cu *cu)
18870 {
18871 struct dwarf_block *blk;
18872
18873 blk = (struct dwarf_block *)
18874 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
18875 return (blk);
18876 }
18877
18878 static struct die_info *
18879 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
18880 {
18881 struct die_info *die;
18882 size_t size = sizeof (struct die_info);
18883
18884 if (num_attrs > 1)
18885 size += (num_attrs - 1) * sizeof (struct attribute);
18886
18887 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
18888 memset (die, 0, sizeof (struct die_info));
18889 return (die);
18890 }
18891
18892 \f
18893 /* Macro support. */
18894
18895 /* Return file name relative to the compilation directory of file number I in
18896 *LH's file name table. The result is allocated using xmalloc; the caller is
18897 responsible for freeing it. */
18898
18899 static char *
18900 file_file_name (int file, struct line_header *lh)
18901 {
18902 /* Is the file number a valid index into the line header's file name
18903 table? Remember that file numbers start with one, not zero. */
18904 if (1 <= file && file <= lh->num_file_names)
18905 {
18906 struct file_entry *fe = &lh->file_names[file - 1];
18907
18908 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0)
18909 return xstrdup (fe->name);
18910 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
18911 fe->name, NULL);
18912 }
18913 else
18914 {
18915 /* The compiler produced a bogus file number. We can at least
18916 record the macro definitions made in the file, even if we
18917 won't be able to find the file by name. */
18918 char fake_name[80];
18919
18920 xsnprintf (fake_name, sizeof (fake_name),
18921 "<bad macro file number %d>", file);
18922
18923 complaint (&symfile_complaints,
18924 _("bad file number in macro information (%d)"),
18925 file);
18926
18927 return xstrdup (fake_name);
18928 }
18929 }
18930
18931 /* Return the full name of file number I in *LH's file name table.
18932 Use COMP_DIR as the name of the current directory of the
18933 compilation. The result is allocated using xmalloc; the caller is
18934 responsible for freeing it. */
18935 static char *
18936 file_full_name (int file, struct line_header *lh, const char *comp_dir)
18937 {
18938 /* Is the file number a valid index into the line header's file name
18939 table? Remember that file numbers start with one, not zero. */
18940 if (1 <= file && file <= lh->num_file_names)
18941 {
18942 char *relative = file_file_name (file, lh);
18943
18944 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
18945 return relative;
18946 return reconcat (relative, comp_dir, SLASH_STRING, relative, NULL);
18947 }
18948 else
18949 return file_file_name (file, lh);
18950 }
18951
18952
18953 static struct macro_source_file *
18954 macro_start_file (int file, int line,
18955 struct macro_source_file *current_file,
18956 const char *comp_dir,
18957 struct line_header *lh, struct objfile *objfile)
18958 {
18959 /* File name relative to the compilation directory of this source file. */
18960 char *file_name = file_file_name (file, lh);
18961
18962 /* We don't create a macro table for this compilation unit
18963 at all until we actually get a filename. */
18964 if (! pending_macros)
18965 pending_macros = new_macro_table (&objfile->per_bfd->storage_obstack,
18966 objfile->per_bfd->macro_cache,
18967 comp_dir);
18968
18969 if (! current_file)
18970 {
18971 /* If we have no current file, then this must be the start_file
18972 directive for the compilation unit's main source file. */
18973 current_file = macro_set_main (pending_macros, file_name);
18974 macro_define_special (pending_macros);
18975 }
18976 else
18977 current_file = macro_include (current_file, line, file_name);
18978
18979 xfree (file_name);
18980
18981 return current_file;
18982 }
18983
18984
18985 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
18986 followed by a null byte. */
18987 static char *
18988 copy_string (const char *buf, int len)
18989 {
18990 char *s = xmalloc (len + 1);
18991
18992 memcpy (s, buf, len);
18993 s[len] = '\0';
18994 return s;
18995 }
18996
18997
18998 static const char *
18999 consume_improper_spaces (const char *p, const char *body)
19000 {
19001 if (*p == ' ')
19002 {
19003 complaint (&symfile_complaints,
19004 _("macro definition contains spaces "
19005 "in formal argument list:\n`%s'"),
19006 body);
19007
19008 while (*p == ' ')
19009 p++;
19010 }
19011
19012 return p;
19013 }
19014
19015
19016 static void
19017 parse_macro_definition (struct macro_source_file *file, int line,
19018 const char *body)
19019 {
19020 const char *p;
19021
19022 /* The body string takes one of two forms. For object-like macro
19023 definitions, it should be:
19024
19025 <macro name> " " <definition>
19026
19027 For function-like macro definitions, it should be:
19028
19029 <macro name> "() " <definition>
19030 or
19031 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
19032
19033 Spaces may appear only where explicitly indicated, and in the
19034 <definition>.
19035
19036 The Dwarf 2 spec says that an object-like macro's name is always
19037 followed by a space, but versions of GCC around March 2002 omit
19038 the space when the macro's definition is the empty string.
19039
19040 The Dwarf 2 spec says that there should be no spaces between the
19041 formal arguments in a function-like macro's formal argument list,
19042 but versions of GCC around March 2002 include spaces after the
19043 commas. */
19044
19045
19046 /* Find the extent of the macro name. The macro name is terminated
19047 by either a space or null character (for an object-like macro) or
19048 an opening paren (for a function-like macro). */
19049 for (p = body; *p; p++)
19050 if (*p == ' ' || *p == '(')
19051 break;
19052
19053 if (*p == ' ' || *p == '\0')
19054 {
19055 /* It's an object-like macro. */
19056 int name_len = p - body;
19057 char *name = copy_string (body, name_len);
19058 const char *replacement;
19059
19060 if (*p == ' ')
19061 replacement = body + name_len + 1;
19062 else
19063 {
19064 dwarf2_macro_malformed_definition_complaint (body);
19065 replacement = body + name_len;
19066 }
19067
19068 macro_define_object (file, line, name, replacement);
19069
19070 xfree (name);
19071 }
19072 else if (*p == '(')
19073 {
19074 /* It's a function-like macro. */
19075 char *name = copy_string (body, p - body);
19076 int argc = 0;
19077 int argv_size = 1;
19078 char **argv = xmalloc (argv_size * sizeof (*argv));
19079
19080 p++;
19081
19082 p = consume_improper_spaces (p, body);
19083
19084 /* Parse the formal argument list. */
19085 while (*p && *p != ')')
19086 {
19087 /* Find the extent of the current argument name. */
19088 const char *arg_start = p;
19089
19090 while (*p && *p != ',' && *p != ')' && *p != ' ')
19091 p++;
19092
19093 if (! *p || p == arg_start)
19094 dwarf2_macro_malformed_definition_complaint (body);
19095 else
19096 {
19097 /* Make sure argv has room for the new argument. */
19098 if (argc >= argv_size)
19099 {
19100 argv_size *= 2;
19101 argv = xrealloc (argv, argv_size * sizeof (*argv));
19102 }
19103
19104 argv[argc++] = copy_string (arg_start, p - arg_start);
19105 }
19106
19107 p = consume_improper_spaces (p, body);
19108
19109 /* Consume the comma, if present. */
19110 if (*p == ',')
19111 {
19112 p++;
19113
19114 p = consume_improper_spaces (p, body);
19115 }
19116 }
19117
19118 if (*p == ')')
19119 {
19120 p++;
19121
19122 if (*p == ' ')
19123 /* Perfectly formed definition, no complaints. */
19124 macro_define_function (file, line, name,
19125 argc, (const char **) argv,
19126 p + 1);
19127 else if (*p == '\0')
19128 {
19129 /* Complain, but do define it. */
19130 dwarf2_macro_malformed_definition_complaint (body);
19131 macro_define_function (file, line, name,
19132 argc, (const char **) argv,
19133 p);
19134 }
19135 else
19136 /* Just complain. */
19137 dwarf2_macro_malformed_definition_complaint (body);
19138 }
19139 else
19140 /* Just complain. */
19141 dwarf2_macro_malformed_definition_complaint (body);
19142
19143 xfree (name);
19144 {
19145 int i;
19146
19147 for (i = 0; i < argc; i++)
19148 xfree (argv[i]);
19149 }
19150 xfree (argv);
19151 }
19152 else
19153 dwarf2_macro_malformed_definition_complaint (body);
19154 }
19155
19156 /* Skip some bytes from BYTES according to the form given in FORM.
19157 Returns the new pointer. */
19158
19159 static const gdb_byte *
19160 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
19161 enum dwarf_form form,
19162 unsigned int offset_size,
19163 struct dwarf2_section_info *section)
19164 {
19165 unsigned int bytes_read;
19166
19167 switch (form)
19168 {
19169 case DW_FORM_data1:
19170 case DW_FORM_flag:
19171 ++bytes;
19172 break;
19173
19174 case DW_FORM_data2:
19175 bytes += 2;
19176 break;
19177
19178 case DW_FORM_data4:
19179 bytes += 4;
19180 break;
19181
19182 case DW_FORM_data8:
19183 bytes += 8;
19184 break;
19185
19186 case DW_FORM_string:
19187 read_direct_string (abfd, bytes, &bytes_read);
19188 bytes += bytes_read;
19189 break;
19190
19191 case DW_FORM_sec_offset:
19192 case DW_FORM_strp:
19193 case DW_FORM_GNU_strp_alt:
19194 bytes += offset_size;
19195 break;
19196
19197 case DW_FORM_block:
19198 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
19199 bytes += bytes_read;
19200 break;
19201
19202 case DW_FORM_block1:
19203 bytes += 1 + read_1_byte (abfd, bytes);
19204 break;
19205 case DW_FORM_block2:
19206 bytes += 2 + read_2_bytes (abfd, bytes);
19207 break;
19208 case DW_FORM_block4:
19209 bytes += 4 + read_4_bytes (abfd, bytes);
19210 break;
19211
19212 case DW_FORM_sdata:
19213 case DW_FORM_udata:
19214 case DW_FORM_GNU_addr_index:
19215 case DW_FORM_GNU_str_index:
19216 bytes = gdb_skip_leb128 (bytes, buffer_end);
19217 if (bytes == NULL)
19218 {
19219 dwarf2_section_buffer_overflow_complaint (section);
19220 return NULL;
19221 }
19222 break;
19223
19224 default:
19225 {
19226 complain:
19227 complaint (&symfile_complaints,
19228 _("invalid form 0x%x in `%s'"),
19229 form,
19230 section->asection->name);
19231 return NULL;
19232 }
19233 }
19234
19235 return bytes;
19236 }
19237
19238 /* A helper for dwarf_decode_macros that handles skipping an unknown
19239 opcode. Returns an updated pointer to the macro data buffer; or,
19240 on error, issues a complaint and returns NULL. */
19241
19242 static const gdb_byte *
19243 skip_unknown_opcode (unsigned int opcode,
19244 const gdb_byte **opcode_definitions,
19245 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
19246 bfd *abfd,
19247 unsigned int offset_size,
19248 struct dwarf2_section_info *section)
19249 {
19250 unsigned int bytes_read, i;
19251 unsigned long arg;
19252 const gdb_byte *defn;
19253
19254 if (opcode_definitions[opcode] == NULL)
19255 {
19256 complaint (&symfile_complaints,
19257 _("unrecognized DW_MACFINO opcode 0x%x"),
19258 opcode);
19259 return NULL;
19260 }
19261
19262 defn = opcode_definitions[opcode];
19263 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
19264 defn += bytes_read;
19265
19266 for (i = 0; i < arg; ++i)
19267 {
19268 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end, defn[i], offset_size,
19269 section);
19270 if (mac_ptr == NULL)
19271 {
19272 /* skip_form_bytes already issued the complaint. */
19273 return NULL;
19274 }
19275 }
19276
19277 return mac_ptr;
19278 }
19279
19280 /* A helper function which parses the header of a macro section.
19281 If the macro section is the extended (for now called "GNU") type,
19282 then this updates *OFFSET_SIZE. Returns a pointer to just after
19283 the header, or issues a complaint and returns NULL on error. */
19284
19285 static const gdb_byte *
19286 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
19287 bfd *abfd,
19288 const gdb_byte *mac_ptr,
19289 unsigned int *offset_size,
19290 int section_is_gnu)
19291 {
19292 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
19293
19294 if (section_is_gnu)
19295 {
19296 unsigned int version, flags;
19297
19298 version = read_2_bytes (abfd, mac_ptr);
19299 if (version != 4)
19300 {
19301 complaint (&symfile_complaints,
19302 _("unrecognized version `%d' in .debug_macro section"),
19303 version);
19304 return NULL;
19305 }
19306 mac_ptr += 2;
19307
19308 flags = read_1_byte (abfd, mac_ptr);
19309 ++mac_ptr;
19310 *offset_size = (flags & 1) ? 8 : 4;
19311
19312 if ((flags & 2) != 0)
19313 /* We don't need the line table offset. */
19314 mac_ptr += *offset_size;
19315
19316 /* Vendor opcode descriptions. */
19317 if ((flags & 4) != 0)
19318 {
19319 unsigned int i, count;
19320
19321 count = read_1_byte (abfd, mac_ptr);
19322 ++mac_ptr;
19323 for (i = 0; i < count; ++i)
19324 {
19325 unsigned int opcode, bytes_read;
19326 unsigned long arg;
19327
19328 opcode = read_1_byte (abfd, mac_ptr);
19329 ++mac_ptr;
19330 opcode_definitions[opcode] = mac_ptr;
19331 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19332 mac_ptr += bytes_read;
19333 mac_ptr += arg;
19334 }
19335 }
19336 }
19337
19338 return mac_ptr;
19339 }
19340
19341 /* A helper for dwarf_decode_macros that handles the GNU extensions,
19342 including DW_MACRO_GNU_transparent_include. */
19343
19344 static void
19345 dwarf_decode_macro_bytes (bfd *abfd,
19346 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
19347 struct macro_source_file *current_file,
19348 struct line_header *lh, const char *comp_dir,
19349 struct dwarf2_section_info *section,
19350 int section_is_gnu, int section_is_dwz,
19351 unsigned int offset_size,
19352 struct objfile *objfile,
19353 htab_t include_hash)
19354 {
19355 enum dwarf_macro_record_type macinfo_type;
19356 int at_commandline;
19357 const gdb_byte *opcode_definitions[256];
19358
19359 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
19360 &offset_size, section_is_gnu);
19361 if (mac_ptr == NULL)
19362 {
19363 /* We already issued a complaint. */
19364 return;
19365 }
19366
19367 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
19368 GDB is still reading the definitions from command line. First
19369 DW_MACINFO_start_file will need to be ignored as it was already executed
19370 to create CURRENT_FILE for the main source holding also the command line
19371 definitions. On first met DW_MACINFO_start_file this flag is reset to
19372 normally execute all the remaining DW_MACINFO_start_file macinfos. */
19373
19374 at_commandline = 1;
19375
19376 do
19377 {
19378 /* Do we at least have room for a macinfo type byte? */
19379 if (mac_ptr >= mac_end)
19380 {
19381 dwarf2_section_buffer_overflow_complaint (section);
19382 break;
19383 }
19384
19385 macinfo_type = read_1_byte (abfd, mac_ptr);
19386 mac_ptr++;
19387
19388 /* Note that we rely on the fact that the corresponding GNU and
19389 DWARF constants are the same. */
19390 switch (macinfo_type)
19391 {
19392 /* A zero macinfo type indicates the end of the macro
19393 information. */
19394 case 0:
19395 break;
19396
19397 case DW_MACRO_GNU_define:
19398 case DW_MACRO_GNU_undef:
19399 case DW_MACRO_GNU_define_indirect:
19400 case DW_MACRO_GNU_undef_indirect:
19401 case DW_MACRO_GNU_define_indirect_alt:
19402 case DW_MACRO_GNU_undef_indirect_alt:
19403 {
19404 unsigned int bytes_read;
19405 int line;
19406 const char *body;
19407 int is_define;
19408
19409 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19410 mac_ptr += bytes_read;
19411
19412 if (macinfo_type == DW_MACRO_GNU_define
19413 || macinfo_type == DW_MACRO_GNU_undef)
19414 {
19415 body = read_direct_string (abfd, mac_ptr, &bytes_read);
19416 mac_ptr += bytes_read;
19417 }
19418 else
19419 {
19420 LONGEST str_offset;
19421
19422 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
19423 mac_ptr += offset_size;
19424
19425 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
19426 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
19427 || section_is_dwz)
19428 {
19429 struct dwz_file *dwz = dwarf2_get_dwz_file ();
19430
19431 body = read_indirect_string_from_dwz (dwz, str_offset);
19432 }
19433 else
19434 body = read_indirect_string_at_offset (abfd, str_offset);
19435 }
19436
19437 is_define = (macinfo_type == DW_MACRO_GNU_define
19438 || macinfo_type == DW_MACRO_GNU_define_indirect
19439 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
19440 if (! current_file)
19441 {
19442 /* DWARF violation as no main source is present. */
19443 complaint (&symfile_complaints,
19444 _("debug info with no main source gives macro %s "
19445 "on line %d: %s"),
19446 is_define ? _("definition") : _("undefinition"),
19447 line, body);
19448 break;
19449 }
19450 if ((line == 0 && !at_commandline)
19451 || (line != 0 && at_commandline))
19452 complaint (&symfile_complaints,
19453 _("debug info gives %s macro %s with %s line %d: %s"),
19454 at_commandline ? _("command-line") : _("in-file"),
19455 is_define ? _("definition") : _("undefinition"),
19456 line == 0 ? _("zero") : _("non-zero"), line, body);
19457
19458 if (is_define)
19459 parse_macro_definition (current_file, line, body);
19460 else
19461 {
19462 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
19463 || macinfo_type == DW_MACRO_GNU_undef_indirect
19464 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
19465 macro_undef (current_file, line, body);
19466 }
19467 }
19468 break;
19469
19470 case DW_MACRO_GNU_start_file:
19471 {
19472 unsigned int bytes_read;
19473 int line, file;
19474
19475 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19476 mac_ptr += bytes_read;
19477 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19478 mac_ptr += bytes_read;
19479
19480 if ((line == 0 && !at_commandline)
19481 || (line != 0 && at_commandline))
19482 complaint (&symfile_complaints,
19483 _("debug info gives source %d included "
19484 "from %s at %s line %d"),
19485 file, at_commandline ? _("command-line") : _("file"),
19486 line == 0 ? _("zero") : _("non-zero"), line);
19487
19488 if (at_commandline)
19489 {
19490 /* This DW_MACRO_GNU_start_file was executed in the
19491 pass one. */
19492 at_commandline = 0;
19493 }
19494 else
19495 current_file = macro_start_file (file, line,
19496 current_file, comp_dir,
19497 lh, objfile);
19498 }
19499 break;
19500
19501 case DW_MACRO_GNU_end_file:
19502 if (! current_file)
19503 complaint (&symfile_complaints,
19504 _("macro debug info has an unmatched "
19505 "`close_file' directive"));
19506 else
19507 {
19508 current_file = current_file->included_by;
19509 if (! current_file)
19510 {
19511 enum dwarf_macro_record_type next_type;
19512
19513 /* GCC circa March 2002 doesn't produce the zero
19514 type byte marking the end of the compilation
19515 unit. Complain if it's not there, but exit no
19516 matter what. */
19517
19518 /* Do we at least have room for a macinfo type byte? */
19519 if (mac_ptr >= mac_end)
19520 {
19521 dwarf2_section_buffer_overflow_complaint (section);
19522 return;
19523 }
19524
19525 /* We don't increment mac_ptr here, so this is just
19526 a look-ahead. */
19527 next_type = read_1_byte (abfd, mac_ptr);
19528 if (next_type != 0)
19529 complaint (&symfile_complaints,
19530 _("no terminating 0-type entry for "
19531 "macros in `.debug_macinfo' section"));
19532
19533 return;
19534 }
19535 }
19536 break;
19537
19538 case DW_MACRO_GNU_transparent_include:
19539 case DW_MACRO_GNU_transparent_include_alt:
19540 {
19541 LONGEST offset;
19542 void **slot;
19543 bfd *include_bfd = abfd;
19544 struct dwarf2_section_info *include_section = section;
19545 struct dwarf2_section_info alt_section;
19546 const gdb_byte *include_mac_end = mac_end;
19547 int is_dwz = section_is_dwz;
19548 const gdb_byte *new_mac_ptr;
19549
19550 offset = read_offset_1 (abfd, mac_ptr, offset_size);
19551 mac_ptr += offset_size;
19552
19553 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
19554 {
19555 struct dwz_file *dwz = dwarf2_get_dwz_file ();
19556
19557 dwarf2_read_section (dwarf2_per_objfile->objfile,
19558 &dwz->macro);
19559
19560 include_bfd = dwz->macro.asection->owner;
19561 include_section = &dwz->macro;
19562 include_mac_end = dwz->macro.buffer + dwz->macro.size;
19563 is_dwz = 1;
19564 }
19565
19566 new_mac_ptr = include_section->buffer + offset;
19567 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
19568
19569 if (*slot != NULL)
19570 {
19571 /* This has actually happened; see
19572 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
19573 complaint (&symfile_complaints,
19574 _("recursive DW_MACRO_GNU_transparent_include in "
19575 ".debug_macro section"));
19576 }
19577 else
19578 {
19579 *slot = (void *) new_mac_ptr;
19580
19581 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
19582 include_mac_end, current_file,
19583 lh, comp_dir,
19584 section, section_is_gnu, is_dwz,
19585 offset_size, objfile, include_hash);
19586
19587 htab_remove_elt (include_hash, (void *) new_mac_ptr);
19588 }
19589 }
19590 break;
19591
19592 case DW_MACINFO_vendor_ext:
19593 if (!section_is_gnu)
19594 {
19595 unsigned int bytes_read;
19596 int constant;
19597
19598 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19599 mac_ptr += bytes_read;
19600 read_direct_string (abfd, mac_ptr, &bytes_read);
19601 mac_ptr += bytes_read;
19602
19603 /* We don't recognize any vendor extensions. */
19604 break;
19605 }
19606 /* FALLTHROUGH */
19607
19608 default:
19609 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
19610 mac_ptr, mac_end, abfd, offset_size,
19611 section);
19612 if (mac_ptr == NULL)
19613 return;
19614 break;
19615 }
19616 } while (macinfo_type != 0);
19617 }
19618
19619 static void
19620 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
19621 const char *comp_dir, int section_is_gnu)
19622 {
19623 struct objfile *objfile = dwarf2_per_objfile->objfile;
19624 struct line_header *lh = cu->line_header;
19625 bfd *abfd;
19626 const gdb_byte *mac_ptr, *mac_end;
19627 struct macro_source_file *current_file = 0;
19628 enum dwarf_macro_record_type macinfo_type;
19629 unsigned int offset_size = cu->header.offset_size;
19630 const gdb_byte *opcode_definitions[256];
19631 struct cleanup *cleanup;
19632 htab_t include_hash;
19633 void **slot;
19634 struct dwarf2_section_info *section;
19635 const char *section_name;
19636
19637 if (cu->dwo_unit != NULL)
19638 {
19639 if (section_is_gnu)
19640 {
19641 section = &cu->dwo_unit->dwo_file->sections.macro;
19642 section_name = ".debug_macro.dwo";
19643 }
19644 else
19645 {
19646 section = &cu->dwo_unit->dwo_file->sections.macinfo;
19647 section_name = ".debug_macinfo.dwo";
19648 }
19649 }
19650 else
19651 {
19652 if (section_is_gnu)
19653 {
19654 section = &dwarf2_per_objfile->macro;
19655 section_name = ".debug_macro";
19656 }
19657 else
19658 {
19659 section = &dwarf2_per_objfile->macinfo;
19660 section_name = ".debug_macinfo";
19661 }
19662 }
19663
19664 dwarf2_read_section (objfile, section);
19665 if (section->buffer == NULL)
19666 {
19667 complaint (&symfile_complaints, _("missing %s section"), section_name);
19668 return;
19669 }
19670 abfd = section->asection->owner;
19671
19672 /* First pass: Find the name of the base filename.
19673 This filename is needed in order to process all macros whose definition
19674 (or undefinition) comes from the command line. These macros are defined
19675 before the first DW_MACINFO_start_file entry, and yet still need to be
19676 associated to the base file.
19677
19678 To determine the base file name, we scan the macro definitions until we
19679 reach the first DW_MACINFO_start_file entry. We then initialize
19680 CURRENT_FILE accordingly so that any macro definition found before the
19681 first DW_MACINFO_start_file can still be associated to the base file. */
19682
19683 mac_ptr = section->buffer + offset;
19684 mac_end = section->buffer + section->size;
19685
19686 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
19687 &offset_size, section_is_gnu);
19688 if (mac_ptr == NULL)
19689 {
19690 /* We already issued a complaint. */
19691 return;
19692 }
19693
19694 do
19695 {
19696 /* Do we at least have room for a macinfo type byte? */
19697 if (mac_ptr >= mac_end)
19698 {
19699 /* Complaint is printed during the second pass as GDB will probably
19700 stop the first pass earlier upon finding
19701 DW_MACINFO_start_file. */
19702 break;
19703 }
19704
19705 macinfo_type = read_1_byte (abfd, mac_ptr);
19706 mac_ptr++;
19707
19708 /* Note that we rely on the fact that the corresponding GNU and
19709 DWARF constants are the same. */
19710 switch (macinfo_type)
19711 {
19712 /* A zero macinfo type indicates the end of the macro
19713 information. */
19714 case 0:
19715 break;
19716
19717 case DW_MACRO_GNU_define:
19718 case DW_MACRO_GNU_undef:
19719 /* Only skip the data by MAC_PTR. */
19720 {
19721 unsigned int bytes_read;
19722
19723 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19724 mac_ptr += bytes_read;
19725 read_direct_string (abfd, mac_ptr, &bytes_read);
19726 mac_ptr += bytes_read;
19727 }
19728 break;
19729
19730 case DW_MACRO_GNU_start_file:
19731 {
19732 unsigned int bytes_read;
19733 int line, file;
19734
19735 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19736 mac_ptr += bytes_read;
19737 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19738 mac_ptr += bytes_read;
19739
19740 current_file = macro_start_file (file, line, current_file,
19741 comp_dir, lh, objfile);
19742 }
19743 break;
19744
19745 case DW_MACRO_GNU_end_file:
19746 /* No data to skip by MAC_PTR. */
19747 break;
19748
19749 case DW_MACRO_GNU_define_indirect:
19750 case DW_MACRO_GNU_undef_indirect:
19751 case DW_MACRO_GNU_define_indirect_alt:
19752 case DW_MACRO_GNU_undef_indirect_alt:
19753 {
19754 unsigned int bytes_read;
19755
19756 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19757 mac_ptr += bytes_read;
19758 mac_ptr += offset_size;
19759 }
19760 break;
19761
19762 case DW_MACRO_GNU_transparent_include:
19763 case DW_MACRO_GNU_transparent_include_alt:
19764 /* Note that, according to the spec, a transparent include
19765 chain cannot call DW_MACRO_GNU_start_file. So, we can just
19766 skip this opcode. */
19767 mac_ptr += offset_size;
19768 break;
19769
19770 case DW_MACINFO_vendor_ext:
19771 /* Only skip the data by MAC_PTR. */
19772 if (!section_is_gnu)
19773 {
19774 unsigned int bytes_read;
19775
19776 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19777 mac_ptr += bytes_read;
19778 read_direct_string (abfd, mac_ptr, &bytes_read);
19779 mac_ptr += bytes_read;
19780 }
19781 /* FALLTHROUGH */
19782
19783 default:
19784 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
19785 mac_ptr, mac_end, abfd, offset_size,
19786 section);
19787 if (mac_ptr == NULL)
19788 return;
19789 break;
19790 }
19791 } while (macinfo_type != 0 && current_file == NULL);
19792
19793 /* Second pass: Process all entries.
19794
19795 Use the AT_COMMAND_LINE flag to determine whether we are still processing
19796 command-line macro definitions/undefinitions. This flag is unset when we
19797 reach the first DW_MACINFO_start_file entry. */
19798
19799 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
19800 NULL, xcalloc, xfree);
19801 cleanup = make_cleanup_htab_delete (include_hash);
19802 mac_ptr = section->buffer + offset;
19803 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
19804 *slot = (void *) mac_ptr;
19805 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
19806 current_file, lh, comp_dir, section,
19807 section_is_gnu, 0,
19808 offset_size, objfile, include_hash);
19809 do_cleanups (cleanup);
19810 }
19811
19812 /* Check if the attribute's form is a DW_FORM_block*
19813 if so return true else false. */
19814
19815 static int
19816 attr_form_is_block (struct attribute *attr)
19817 {
19818 return (attr == NULL ? 0 :
19819 attr->form == DW_FORM_block1
19820 || attr->form == DW_FORM_block2
19821 || attr->form == DW_FORM_block4
19822 || attr->form == DW_FORM_block
19823 || attr->form == DW_FORM_exprloc);
19824 }
19825
19826 /* Return non-zero if ATTR's value is a section offset --- classes
19827 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
19828 You may use DW_UNSND (attr) to retrieve such offsets.
19829
19830 Section 7.5.4, "Attribute Encodings", explains that no attribute
19831 may have a value that belongs to more than one of these classes; it
19832 would be ambiguous if we did, because we use the same forms for all
19833 of them. */
19834
19835 static int
19836 attr_form_is_section_offset (struct attribute *attr)
19837 {
19838 return (attr->form == DW_FORM_data4
19839 || attr->form == DW_FORM_data8
19840 || attr->form == DW_FORM_sec_offset);
19841 }
19842
19843 /* Return non-zero if ATTR's value falls in the 'constant' class, or
19844 zero otherwise. When this function returns true, you can apply
19845 dwarf2_get_attr_constant_value to it.
19846
19847 However, note that for some attributes you must check
19848 attr_form_is_section_offset before using this test. DW_FORM_data4
19849 and DW_FORM_data8 are members of both the constant class, and of
19850 the classes that contain offsets into other debug sections
19851 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
19852 that, if an attribute's can be either a constant or one of the
19853 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
19854 taken as section offsets, not constants. */
19855
19856 static int
19857 attr_form_is_constant (struct attribute *attr)
19858 {
19859 switch (attr->form)
19860 {
19861 case DW_FORM_sdata:
19862 case DW_FORM_udata:
19863 case DW_FORM_data1:
19864 case DW_FORM_data2:
19865 case DW_FORM_data4:
19866 case DW_FORM_data8:
19867 return 1;
19868 default:
19869 return 0;
19870 }
19871 }
19872
19873 /* Return the .debug_loc section to use for CU.
19874 For DWO files use .debug_loc.dwo. */
19875
19876 static struct dwarf2_section_info *
19877 cu_debug_loc_section (struct dwarf2_cu *cu)
19878 {
19879 if (cu->dwo_unit)
19880 return &cu->dwo_unit->dwo_file->sections.loc;
19881 return &dwarf2_per_objfile->loc;
19882 }
19883
19884 /* A helper function that fills in a dwarf2_loclist_baton. */
19885
19886 static void
19887 fill_in_loclist_baton (struct dwarf2_cu *cu,
19888 struct dwarf2_loclist_baton *baton,
19889 struct attribute *attr)
19890 {
19891 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
19892
19893 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
19894
19895 baton->per_cu = cu->per_cu;
19896 gdb_assert (baton->per_cu);
19897 /* We don't know how long the location list is, but make sure we
19898 don't run off the edge of the section. */
19899 baton->size = section->size - DW_UNSND (attr);
19900 baton->data = section->buffer + DW_UNSND (attr);
19901 baton->base_address = cu->base_address;
19902 baton->from_dwo = cu->dwo_unit != NULL;
19903 }
19904
19905 static void
19906 dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
19907 struct dwarf2_cu *cu, int is_block)
19908 {
19909 struct objfile *objfile = dwarf2_per_objfile->objfile;
19910 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
19911
19912 if (attr_form_is_section_offset (attr)
19913 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
19914 the section. If so, fall through to the complaint in the
19915 other branch. */
19916 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
19917 {
19918 struct dwarf2_loclist_baton *baton;
19919
19920 baton = obstack_alloc (&objfile->objfile_obstack,
19921 sizeof (struct dwarf2_loclist_baton));
19922
19923 fill_in_loclist_baton (cu, baton, attr);
19924
19925 if (cu->base_known == 0)
19926 complaint (&symfile_complaints,
19927 _("Location list used without "
19928 "specifying the CU base address."));
19929
19930 SYMBOL_ACLASS_INDEX (sym) = (is_block
19931 ? dwarf2_loclist_block_index
19932 : dwarf2_loclist_index);
19933 SYMBOL_LOCATION_BATON (sym) = baton;
19934 }
19935 else
19936 {
19937 struct dwarf2_locexpr_baton *baton;
19938
19939 baton = obstack_alloc (&objfile->objfile_obstack,
19940 sizeof (struct dwarf2_locexpr_baton));
19941 baton->per_cu = cu->per_cu;
19942 gdb_assert (baton->per_cu);
19943
19944 if (attr_form_is_block (attr))
19945 {
19946 /* Note that we're just copying the block's data pointer
19947 here, not the actual data. We're still pointing into the
19948 info_buffer for SYM's objfile; right now we never release
19949 that buffer, but when we do clean up properly this may
19950 need to change. */
19951 baton->size = DW_BLOCK (attr)->size;
19952 baton->data = DW_BLOCK (attr)->data;
19953 }
19954 else
19955 {
19956 dwarf2_invalid_attrib_class_complaint ("location description",
19957 SYMBOL_NATURAL_NAME (sym));
19958 baton->size = 0;
19959 }
19960
19961 SYMBOL_ACLASS_INDEX (sym) = (is_block
19962 ? dwarf2_locexpr_block_index
19963 : dwarf2_locexpr_index);
19964 SYMBOL_LOCATION_BATON (sym) = baton;
19965 }
19966 }
19967
19968 /* Return the OBJFILE associated with the compilation unit CU. If CU
19969 came from a separate debuginfo file, then the master objfile is
19970 returned. */
19971
19972 struct objfile *
19973 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
19974 {
19975 struct objfile *objfile = per_cu->objfile;
19976
19977 /* Return the master objfile, so that we can report and look up the
19978 correct file containing this variable. */
19979 if (objfile->separate_debug_objfile_backlink)
19980 objfile = objfile->separate_debug_objfile_backlink;
19981
19982 return objfile;
19983 }
19984
19985 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
19986 (CU_HEADERP is unused in such case) or prepare a temporary copy at
19987 CU_HEADERP first. */
19988
19989 static const struct comp_unit_head *
19990 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
19991 struct dwarf2_per_cu_data *per_cu)
19992 {
19993 const gdb_byte *info_ptr;
19994
19995 if (per_cu->cu)
19996 return &per_cu->cu->header;
19997
19998 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
19999
20000 memset (cu_headerp, 0, sizeof (*cu_headerp));
20001 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
20002
20003 return cu_headerp;
20004 }
20005
20006 /* Return the address size given in the compilation unit header for CU. */
20007
20008 int
20009 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
20010 {
20011 struct comp_unit_head cu_header_local;
20012 const struct comp_unit_head *cu_headerp;
20013
20014 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
20015
20016 return cu_headerp->addr_size;
20017 }
20018
20019 /* Return the offset size given in the compilation unit header for CU. */
20020
20021 int
20022 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
20023 {
20024 struct comp_unit_head cu_header_local;
20025 const struct comp_unit_head *cu_headerp;
20026
20027 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
20028
20029 return cu_headerp->offset_size;
20030 }
20031
20032 /* See its dwarf2loc.h declaration. */
20033
20034 int
20035 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
20036 {
20037 struct comp_unit_head cu_header_local;
20038 const struct comp_unit_head *cu_headerp;
20039
20040 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
20041
20042 if (cu_headerp->version == 2)
20043 return cu_headerp->addr_size;
20044 else
20045 return cu_headerp->offset_size;
20046 }
20047
20048 /* Return the text offset of the CU. The returned offset comes from
20049 this CU's objfile. If this objfile came from a separate debuginfo
20050 file, then the offset may be different from the corresponding
20051 offset in the parent objfile. */
20052
20053 CORE_ADDR
20054 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
20055 {
20056 struct objfile *objfile = per_cu->objfile;
20057
20058 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
20059 }
20060
20061 /* Locate the .debug_info compilation unit from CU's objfile which contains
20062 the DIE at OFFSET. Raises an error on failure. */
20063
20064 static struct dwarf2_per_cu_data *
20065 dwarf2_find_containing_comp_unit (sect_offset offset,
20066 unsigned int offset_in_dwz,
20067 struct objfile *objfile)
20068 {
20069 struct dwarf2_per_cu_data *this_cu;
20070 int low, high;
20071 const sect_offset *cu_off;
20072
20073 low = 0;
20074 high = dwarf2_per_objfile->n_comp_units - 1;
20075 while (high > low)
20076 {
20077 struct dwarf2_per_cu_data *mid_cu;
20078 int mid = low + (high - low) / 2;
20079
20080 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
20081 cu_off = &mid_cu->offset;
20082 if (mid_cu->is_dwz > offset_in_dwz
20083 || (mid_cu->is_dwz == offset_in_dwz
20084 && cu_off->sect_off >= offset.sect_off))
20085 high = mid;
20086 else
20087 low = mid + 1;
20088 }
20089 gdb_assert (low == high);
20090 this_cu = dwarf2_per_objfile->all_comp_units[low];
20091 cu_off = &this_cu->offset;
20092 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
20093 {
20094 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
20095 error (_("Dwarf Error: could not find partial DIE containing "
20096 "offset 0x%lx [in module %s]"),
20097 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
20098
20099 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
20100 <= offset.sect_off);
20101 return dwarf2_per_objfile->all_comp_units[low-1];
20102 }
20103 else
20104 {
20105 this_cu = dwarf2_per_objfile->all_comp_units[low];
20106 if (low == dwarf2_per_objfile->n_comp_units - 1
20107 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
20108 error (_("invalid dwarf2 offset %u"), offset.sect_off);
20109 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
20110 return this_cu;
20111 }
20112 }
20113
20114 /* Initialize dwarf2_cu CU, owned by PER_CU. */
20115
20116 static void
20117 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
20118 {
20119 memset (cu, 0, sizeof (*cu));
20120 per_cu->cu = cu;
20121 cu->per_cu = per_cu;
20122 cu->objfile = per_cu->objfile;
20123 obstack_init (&cu->comp_unit_obstack);
20124 }
20125
20126 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
20127
20128 static void
20129 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
20130 enum language pretend_language)
20131 {
20132 struct attribute *attr;
20133
20134 /* Set the language we're debugging. */
20135 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
20136 if (attr)
20137 set_cu_language (DW_UNSND (attr), cu);
20138 else
20139 {
20140 cu->language = pretend_language;
20141 cu->language_defn = language_def (cu->language);
20142 }
20143
20144 attr = dwarf2_attr (comp_unit_die, DW_AT_producer, cu);
20145 if (attr)
20146 cu->producer = DW_STRING (attr);
20147 }
20148
20149 /* Release one cached compilation unit, CU. We unlink it from the tree
20150 of compilation units, but we don't remove it from the read_in_chain;
20151 the caller is responsible for that.
20152 NOTE: DATA is a void * because this function is also used as a
20153 cleanup routine. */
20154
20155 static void
20156 free_heap_comp_unit (void *data)
20157 {
20158 struct dwarf2_cu *cu = data;
20159
20160 gdb_assert (cu->per_cu != NULL);
20161 cu->per_cu->cu = NULL;
20162 cu->per_cu = NULL;
20163
20164 obstack_free (&cu->comp_unit_obstack, NULL);
20165
20166 xfree (cu);
20167 }
20168
20169 /* This cleanup function is passed the address of a dwarf2_cu on the stack
20170 when we're finished with it. We can't free the pointer itself, but be
20171 sure to unlink it from the cache. Also release any associated storage. */
20172
20173 static void
20174 free_stack_comp_unit (void *data)
20175 {
20176 struct dwarf2_cu *cu = data;
20177
20178 gdb_assert (cu->per_cu != NULL);
20179 cu->per_cu->cu = NULL;
20180 cu->per_cu = NULL;
20181
20182 obstack_free (&cu->comp_unit_obstack, NULL);
20183 cu->partial_dies = NULL;
20184 }
20185
20186 /* Free all cached compilation units. */
20187
20188 static void
20189 free_cached_comp_units (void *data)
20190 {
20191 struct dwarf2_per_cu_data *per_cu, **last_chain;
20192
20193 per_cu = dwarf2_per_objfile->read_in_chain;
20194 last_chain = &dwarf2_per_objfile->read_in_chain;
20195 while (per_cu != NULL)
20196 {
20197 struct dwarf2_per_cu_data *next_cu;
20198
20199 next_cu = per_cu->cu->read_in_chain;
20200
20201 free_heap_comp_unit (per_cu->cu);
20202 *last_chain = next_cu;
20203
20204 per_cu = next_cu;
20205 }
20206 }
20207
20208 /* Increase the age counter on each cached compilation unit, and free
20209 any that are too old. */
20210
20211 static void
20212 age_cached_comp_units (void)
20213 {
20214 struct dwarf2_per_cu_data *per_cu, **last_chain;
20215
20216 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
20217 per_cu = dwarf2_per_objfile->read_in_chain;
20218 while (per_cu != NULL)
20219 {
20220 per_cu->cu->last_used ++;
20221 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
20222 dwarf2_mark (per_cu->cu);
20223 per_cu = per_cu->cu->read_in_chain;
20224 }
20225
20226 per_cu = dwarf2_per_objfile->read_in_chain;
20227 last_chain = &dwarf2_per_objfile->read_in_chain;
20228 while (per_cu != NULL)
20229 {
20230 struct dwarf2_per_cu_data *next_cu;
20231
20232 next_cu = per_cu->cu->read_in_chain;
20233
20234 if (!per_cu->cu->mark)
20235 {
20236 free_heap_comp_unit (per_cu->cu);
20237 *last_chain = next_cu;
20238 }
20239 else
20240 last_chain = &per_cu->cu->read_in_chain;
20241
20242 per_cu = next_cu;
20243 }
20244 }
20245
20246 /* Remove a single compilation unit from the cache. */
20247
20248 static void
20249 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
20250 {
20251 struct dwarf2_per_cu_data *per_cu, **last_chain;
20252
20253 per_cu = dwarf2_per_objfile->read_in_chain;
20254 last_chain = &dwarf2_per_objfile->read_in_chain;
20255 while (per_cu != NULL)
20256 {
20257 struct dwarf2_per_cu_data *next_cu;
20258
20259 next_cu = per_cu->cu->read_in_chain;
20260
20261 if (per_cu == target_per_cu)
20262 {
20263 free_heap_comp_unit (per_cu->cu);
20264 per_cu->cu = NULL;
20265 *last_chain = next_cu;
20266 break;
20267 }
20268 else
20269 last_chain = &per_cu->cu->read_in_chain;
20270
20271 per_cu = next_cu;
20272 }
20273 }
20274
20275 /* Release all extra memory associated with OBJFILE. */
20276
20277 void
20278 dwarf2_free_objfile (struct objfile *objfile)
20279 {
20280 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
20281
20282 if (dwarf2_per_objfile == NULL)
20283 return;
20284
20285 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
20286 free_cached_comp_units (NULL);
20287
20288 if (dwarf2_per_objfile->quick_file_names_table)
20289 htab_delete (dwarf2_per_objfile->quick_file_names_table);
20290
20291 /* Everything else should be on the objfile obstack. */
20292 }
20293
20294 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
20295 We store these in a hash table separate from the DIEs, and preserve them
20296 when the DIEs are flushed out of cache.
20297
20298 The CU "per_cu" pointer is needed because offset alone is not enough to
20299 uniquely identify the type. A file may have multiple .debug_types sections,
20300 or the type may come from a DWO file. Furthermore, while it's more logical
20301 to use per_cu->section+offset, with Fission the section with the data is in
20302 the DWO file but we don't know that section at the point we need it.
20303 We have to use something in dwarf2_per_cu_data (or the pointer to it)
20304 because we can enter the lookup routine, get_die_type_at_offset, from
20305 outside this file, and thus won't necessarily have PER_CU->cu.
20306 Fortunately, PER_CU is stable for the life of the objfile. */
20307
20308 struct dwarf2_per_cu_offset_and_type
20309 {
20310 const struct dwarf2_per_cu_data *per_cu;
20311 sect_offset offset;
20312 struct type *type;
20313 };
20314
20315 /* Hash function for a dwarf2_per_cu_offset_and_type. */
20316
20317 static hashval_t
20318 per_cu_offset_and_type_hash (const void *item)
20319 {
20320 const struct dwarf2_per_cu_offset_and_type *ofs = item;
20321
20322 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
20323 }
20324
20325 /* Equality function for a dwarf2_per_cu_offset_and_type. */
20326
20327 static int
20328 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
20329 {
20330 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
20331 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
20332
20333 return (ofs_lhs->per_cu == ofs_rhs->per_cu
20334 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
20335 }
20336
20337 /* Set the type associated with DIE to TYPE. Save it in CU's hash
20338 table if necessary. For convenience, return TYPE.
20339
20340 The DIEs reading must have careful ordering to:
20341 * Not cause infite loops trying to read in DIEs as a prerequisite for
20342 reading current DIE.
20343 * Not trying to dereference contents of still incompletely read in types
20344 while reading in other DIEs.
20345 * Enable referencing still incompletely read in types just by a pointer to
20346 the type without accessing its fields.
20347
20348 Therefore caller should follow these rules:
20349 * Try to fetch any prerequisite types we may need to build this DIE type
20350 before building the type and calling set_die_type.
20351 * After building type call set_die_type for current DIE as soon as
20352 possible before fetching more types to complete the current type.
20353 * Make the type as complete as possible before fetching more types. */
20354
20355 static struct type *
20356 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
20357 {
20358 struct dwarf2_per_cu_offset_and_type **slot, ofs;
20359 struct objfile *objfile = cu->objfile;
20360
20361 /* For Ada types, make sure that the gnat-specific data is always
20362 initialized (if not already set). There are a few types where
20363 we should not be doing so, because the type-specific area is
20364 already used to hold some other piece of info (eg: TYPE_CODE_FLT
20365 where the type-specific area is used to store the floatformat).
20366 But this is not a problem, because the gnat-specific information
20367 is actually not needed for these types. */
20368 if (need_gnat_info (cu)
20369 && TYPE_CODE (type) != TYPE_CODE_FUNC
20370 && TYPE_CODE (type) != TYPE_CODE_FLT
20371 && !HAVE_GNAT_AUX_INFO (type))
20372 INIT_GNAT_SPECIFIC (type);
20373
20374 if (dwarf2_per_objfile->die_type_hash == NULL)
20375 {
20376 dwarf2_per_objfile->die_type_hash =
20377 htab_create_alloc_ex (127,
20378 per_cu_offset_and_type_hash,
20379 per_cu_offset_and_type_eq,
20380 NULL,
20381 &objfile->objfile_obstack,
20382 hashtab_obstack_allocate,
20383 dummy_obstack_deallocate);
20384 }
20385
20386 ofs.per_cu = cu->per_cu;
20387 ofs.offset = die->offset;
20388 ofs.type = type;
20389 slot = (struct dwarf2_per_cu_offset_and_type **)
20390 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
20391 if (*slot)
20392 complaint (&symfile_complaints,
20393 _("A problem internal to GDB: DIE 0x%x has type already set"),
20394 die->offset.sect_off);
20395 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
20396 **slot = ofs;
20397 return type;
20398 }
20399
20400 /* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
20401 or return NULL if the die does not have a saved type. */
20402
20403 static struct type *
20404 get_die_type_at_offset (sect_offset offset,
20405 struct dwarf2_per_cu_data *per_cu)
20406 {
20407 struct dwarf2_per_cu_offset_and_type *slot, ofs;
20408
20409 if (dwarf2_per_objfile->die_type_hash == NULL)
20410 return NULL;
20411
20412 ofs.per_cu = per_cu;
20413 ofs.offset = offset;
20414 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
20415 if (slot)
20416 return slot->type;
20417 else
20418 return NULL;
20419 }
20420
20421 /* Look up the type for DIE in CU in die_type_hash,
20422 or return NULL if DIE does not have a saved type. */
20423
20424 static struct type *
20425 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
20426 {
20427 return get_die_type_at_offset (die->offset, cu->per_cu);
20428 }
20429
20430 /* Add a dependence relationship from CU to REF_PER_CU. */
20431
20432 static void
20433 dwarf2_add_dependence (struct dwarf2_cu *cu,
20434 struct dwarf2_per_cu_data *ref_per_cu)
20435 {
20436 void **slot;
20437
20438 if (cu->dependencies == NULL)
20439 cu->dependencies
20440 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
20441 NULL, &cu->comp_unit_obstack,
20442 hashtab_obstack_allocate,
20443 dummy_obstack_deallocate);
20444
20445 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
20446 if (*slot == NULL)
20447 *slot = ref_per_cu;
20448 }
20449
20450 /* Subroutine of dwarf2_mark to pass to htab_traverse.
20451 Set the mark field in every compilation unit in the
20452 cache that we must keep because we are keeping CU. */
20453
20454 static int
20455 dwarf2_mark_helper (void **slot, void *data)
20456 {
20457 struct dwarf2_per_cu_data *per_cu;
20458
20459 per_cu = (struct dwarf2_per_cu_data *) *slot;
20460
20461 /* cu->dependencies references may not yet have been ever read if QUIT aborts
20462 reading of the chain. As such dependencies remain valid it is not much
20463 useful to track and undo them during QUIT cleanups. */
20464 if (per_cu->cu == NULL)
20465 return 1;
20466
20467 if (per_cu->cu->mark)
20468 return 1;
20469 per_cu->cu->mark = 1;
20470
20471 if (per_cu->cu->dependencies != NULL)
20472 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
20473
20474 return 1;
20475 }
20476
20477 /* Set the mark field in CU and in every other compilation unit in the
20478 cache that we must keep because we are keeping CU. */
20479
20480 static void
20481 dwarf2_mark (struct dwarf2_cu *cu)
20482 {
20483 if (cu->mark)
20484 return;
20485 cu->mark = 1;
20486 if (cu->dependencies != NULL)
20487 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
20488 }
20489
20490 static void
20491 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
20492 {
20493 while (per_cu)
20494 {
20495 per_cu->cu->mark = 0;
20496 per_cu = per_cu->cu->read_in_chain;
20497 }
20498 }
20499
20500 /* Trivial hash function for partial_die_info: the hash value of a DIE
20501 is its offset in .debug_info for this objfile. */
20502
20503 static hashval_t
20504 partial_die_hash (const void *item)
20505 {
20506 const struct partial_die_info *part_die = item;
20507
20508 return part_die->offset.sect_off;
20509 }
20510
20511 /* Trivial comparison function for partial_die_info structures: two DIEs
20512 are equal if they have the same offset. */
20513
20514 static int
20515 partial_die_eq (const void *item_lhs, const void *item_rhs)
20516 {
20517 const struct partial_die_info *part_die_lhs = item_lhs;
20518 const struct partial_die_info *part_die_rhs = item_rhs;
20519
20520 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
20521 }
20522
20523 static struct cmd_list_element *set_dwarf2_cmdlist;
20524 static struct cmd_list_element *show_dwarf2_cmdlist;
20525
20526 static void
20527 set_dwarf2_cmd (char *args, int from_tty)
20528 {
20529 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
20530 }
20531
20532 static void
20533 show_dwarf2_cmd (char *args, int from_tty)
20534 {
20535 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
20536 }
20537
20538 /* Free data associated with OBJFILE, if necessary. */
20539
20540 static void
20541 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
20542 {
20543 struct dwarf2_per_objfile *data = d;
20544 int ix;
20545
20546 for (ix = 0; ix < data->n_comp_units; ++ix)
20547 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
20548
20549 for (ix = 0; ix < data->n_type_units; ++ix)
20550 VEC_free (dwarf2_per_cu_ptr,
20551 data->all_type_units[ix]->per_cu.imported_symtabs);
20552 xfree (data->all_type_units);
20553
20554 VEC_free (dwarf2_section_info_def, data->types);
20555
20556 if (data->dwo_files)
20557 free_dwo_files (data->dwo_files, objfile);
20558 if (data->dwp_file)
20559 gdb_bfd_unref (data->dwp_file->dbfd);
20560
20561 if (data->dwz_file && data->dwz_file->dwz_bfd)
20562 gdb_bfd_unref (data->dwz_file->dwz_bfd);
20563 }
20564
20565 \f
20566 /* The "save gdb-index" command. */
20567
20568 /* The contents of the hash table we create when building the string
20569 table. */
20570 struct strtab_entry
20571 {
20572 offset_type offset;
20573 const char *str;
20574 };
20575
20576 /* Hash function for a strtab_entry.
20577
20578 Function is used only during write_hash_table so no index format backward
20579 compatibility is needed. */
20580
20581 static hashval_t
20582 hash_strtab_entry (const void *e)
20583 {
20584 const struct strtab_entry *entry = e;
20585 return mapped_index_string_hash (INT_MAX, entry->str);
20586 }
20587
20588 /* Equality function for a strtab_entry. */
20589
20590 static int
20591 eq_strtab_entry (const void *a, const void *b)
20592 {
20593 const struct strtab_entry *ea = a;
20594 const struct strtab_entry *eb = b;
20595 return !strcmp (ea->str, eb->str);
20596 }
20597
20598 /* Create a strtab_entry hash table. */
20599
20600 static htab_t
20601 create_strtab (void)
20602 {
20603 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
20604 xfree, xcalloc, xfree);
20605 }
20606
20607 /* Add a string to the constant pool. Return the string's offset in
20608 host order. */
20609
20610 static offset_type
20611 add_string (htab_t table, struct obstack *cpool, const char *str)
20612 {
20613 void **slot;
20614 struct strtab_entry entry;
20615 struct strtab_entry *result;
20616
20617 entry.str = str;
20618 slot = htab_find_slot (table, &entry, INSERT);
20619 if (*slot)
20620 result = *slot;
20621 else
20622 {
20623 result = XNEW (struct strtab_entry);
20624 result->offset = obstack_object_size (cpool);
20625 result->str = str;
20626 obstack_grow_str0 (cpool, str);
20627 *slot = result;
20628 }
20629 return result->offset;
20630 }
20631
20632 /* An entry in the symbol table. */
20633 struct symtab_index_entry
20634 {
20635 /* The name of the symbol. */
20636 const char *name;
20637 /* The offset of the name in the constant pool. */
20638 offset_type index_offset;
20639 /* A sorted vector of the indices of all the CUs that hold an object
20640 of this name. */
20641 VEC (offset_type) *cu_indices;
20642 };
20643
20644 /* The symbol table. This is a power-of-2-sized hash table. */
20645 struct mapped_symtab
20646 {
20647 offset_type n_elements;
20648 offset_type size;
20649 struct symtab_index_entry **data;
20650 };
20651
20652 /* Hash function for a symtab_index_entry. */
20653
20654 static hashval_t
20655 hash_symtab_entry (const void *e)
20656 {
20657 const struct symtab_index_entry *entry = e;
20658 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
20659 sizeof (offset_type) * VEC_length (offset_type,
20660 entry->cu_indices),
20661 0);
20662 }
20663
20664 /* Equality function for a symtab_index_entry. */
20665
20666 static int
20667 eq_symtab_entry (const void *a, const void *b)
20668 {
20669 const struct symtab_index_entry *ea = a;
20670 const struct symtab_index_entry *eb = b;
20671 int len = VEC_length (offset_type, ea->cu_indices);
20672 if (len != VEC_length (offset_type, eb->cu_indices))
20673 return 0;
20674 return !memcmp (VEC_address (offset_type, ea->cu_indices),
20675 VEC_address (offset_type, eb->cu_indices),
20676 sizeof (offset_type) * len);
20677 }
20678
20679 /* Destroy a symtab_index_entry. */
20680
20681 static void
20682 delete_symtab_entry (void *p)
20683 {
20684 struct symtab_index_entry *entry = p;
20685 VEC_free (offset_type, entry->cu_indices);
20686 xfree (entry);
20687 }
20688
20689 /* Create a hash table holding symtab_index_entry objects. */
20690
20691 static htab_t
20692 create_symbol_hash_table (void)
20693 {
20694 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
20695 delete_symtab_entry, xcalloc, xfree);
20696 }
20697
20698 /* Create a new mapped symtab object. */
20699
20700 static struct mapped_symtab *
20701 create_mapped_symtab (void)
20702 {
20703 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
20704 symtab->n_elements = 0;
20705 symtab->size = 1024;
20706 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
20707 return symtab;
20708 }
20709
20710 /* Destroy a mapped_symtab. */
20711
20712 static void
20713 cleanup_mapped_symtab (void *p)
20714 {
20715 struct mapped_symtab *symtab = p;
20716 /* The contents of the array are freed when the other hash table is
20717 destroyed. */
20718 xfree (symtab->data);
20719 xfree (symtab);
20720 }
20721
20722 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
20723 the slot.
20724
20725 Function is used only during write_hash_table so no index format backward
20726 compatibility is needed. */
20727
20728 static struct symtab_index_entry **
20729 find_slot (struct mapped_symtab *symtab, const char *name)
20730 {
20731 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
20732
20733 index = hash & (symtab->size - 1);
20734 step = ((hash * 17) & (symtab->size - 1)) | 1;
20735
20736 for (;;)
20737 {
20738 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
20739 return &symtab->data[index];
20740 index = (index + step) & (symtab->size - 1);
20741 }
20742 }
20743
20744 /* Expand SYMTAB's hash table. */
20745
20746 static void
20747 hash_expand (struct mapped_symtab *symtab)
20748 {
20749 offset_type old_size = symtab->size;
20750 offset_type i;
20751 struct symtab_index_entry **old_entries = symtab->data;
20752
20753 symtab->size *= 2;
20754 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
20755
20756 for (i = 0; i < old_size; ++i)
20757 {
20758 if (old_entries[i])
20759 {
20760 struct symtab_index_entry **slot = find_slot (symtab,
20761 old_entries[i]->name);
20762 *slot = old_entries[i];
20763 }
20764 }
20765
20766 xfree (old_entries);
20767 }
20768
20769 /* Add an entry to SYMTAB. NAME is the name of the symbol.
20770 CU_INDEX is the index of the CU in which the symbol appears.
20771 IS_STATIC is one if the symbol is static, otherwise zero (global). */
20772
20773 static void
20774 add_index_entry (struct mapped_symtab *symtab, const char *name,
20775 int is_static, gdb_index_symbol_kind kind,
20776 offset_type cu_index)
20777 {
20778 struct symtab_index_entry **slot;
20779 offset_type cu_index_and_attrs;
20780
20781 ++symtab->n_elements;
20782 if (4 * symtab->n_elements / 3 >= symtab->size)
20783 hash_expand (symtab);
20784
20785 slot = find_slot (symtab, name);
20786 if (!*slot)
20787 {
20788 *slot = XNEW (struct symtab_index_entry);
20789 (*slot)->name = name;
20790 /* index_offset is set later. */
20791 (*slot)->cu_indices = NULL;
20792 }
20793
20794 cu_index_and_attrs = 0;
20795 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
20796 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
20797 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
20798
20799 /* We don't want to record an index value twice as we want to avoid the
20800 duplication.
20801 We process all global symbols and then all static symbols
20802 (which would allow us to avoid the duplication by only having to check
20803 the last entry pushed), but a symbol could have multiple kinds in one CU.
20804 To keep things simple we don't worry about the duplication here and
20805 sort and uniqufy the list after we've processed all symbols. */
20806 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
20807 }
20808
20809 /* qsort helper routine for uniquify_cu_indices. */
20810
20811 static int
20812 offset_type_compare (const void *ap, const void *bp)
20813 {
20814 offset_type a = *(offset_type *) ap;
20815 offset_type b = *(offset_type *) bp;
20816
20817 return (a > b) - (b > a);
20818 }
20819
20820 /* Sort and remove duplicates of all symbols' cu_indices lists. */
20821
20822 static void
20823 uniquify_cu_indices (struct mapped_symtab *symtab)
20824 {
20825 int i;
20826
20827 for (i = 0; i < symtab->size; ++i)
20828 {
20829 struct symtab_index_entry *entry = symtab->data[i];
20830
20831 if (entry
20832 && entry->cu_indices != NULL)
20833 {
20834 unsigned int next_to_insert, next_to_check;
20835 offset_type last_value;
20836
20837 qsort (VEC_address (offset_type, entry->cu_indices),
20838 VEC_length (offset_type, entry->cu_indices),
20839 sizeof (offset_type), offset_type_compare);
20840
20841 last_value = VEC_index (offset_type, entry->cu_indices, 0);
20842 next_to_insert = 1;
20843 for (next_to_check = 1;
20844 next_to_check < VEC_length (offset_type, entry->cu_indices);
20845 ++next_to_check)
20846 {
20847 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
20848 != last_value)
20849 {
20850 last_value = VEC_index (offset_type, entry->cu_indices,
20851 next_to_check);
20852 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
20853 last_value);
20854 ++next_to_insert;
20855 }
20856 }
20857 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
20858 }
20859 }
20860 }
20861
20862 /* Add a vector of indices to the constant pool. */
20863
20864 static offset_type
20865 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
20866 struct symtab_index_entry *entry)
20867 {
20868 void **slot;
20869
20870 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
20871 if (!*slot)
20872 {
20873 offset_type len = VEC_length (offset_type, entry->cu_indices);
20874 offset_type val = MAYBE_SWAP (len);
20875 offset_type iter;
20876 int i;
20877
20878 *slot = entry;
20879 entry->index_offset = obstack_object_size (cpool);
20880
20881 obstack_grow (cpool, &val, sizeof (val));
20882 for (i = 0;
20883 VEC_iterate (offset_type, entry->cu_indices, i, iter);
20884 ++i)
20885 {
20886 val = MAYBE_SWAP (iter);
20887 obstack_grow (cpool, &val, sizeof (val));
20888 }
20889 }
20890 else
20891 {
20892 struct symtab_index_entry *old_entry = *slot;
20893 entry->index_offset = old_entry->index_offset;
20894 entry = old_entry;
20895 }
20896 return entry->index_offset;
20897 }
20898
20899 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
20900 constant pool entries going into the obstack CPOOL. */
20901
20902 static void
20903 write_hash_table (struct mapped_symtab *symtab,
20904 struct obstack *output, struct obstack *cpool)
20905 {
20906 offset_type i;
20907 htab_t symbol_hash_table;
20908 htab_t str_table;
20909
20910 symbol_hash_table = create_symbol_hash_table ();
20911 str_table = create_strtab ();
20912
20913 /* We add all the index vectors to the constant pool first, to
20914 ensure alignment is ok. */
20915 for (i = 0; i < symtab->size; ++i)
20916 {
20917 if (symtab->data[i])
20918 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
20919 }
20920
20921 /* Now write out the hash table. */
20922 for (i = 0; i < symtab->size; ++i)
20923 {
20924 offset_type str_off, vec_off;
20925
20926 if (symtab->data[i])
20927 {
20928 str_off = add_string (str_table, cpool, symtab->data[i]->name);
20929 vec_off = symtab->data[i]->index_offset;
20930 }
20931 else
20932 {
20933 /* While 0 is a valid constant pool index, it is not valid
20934 to have 0 for both offsets. */
20935 str_off = 0;
20936 vec_off = 0;
20937 }
20938
20939 str_off = MAYBE_SWAP (str_off);
20940 vec_off = MAYBE_SWAP (vec_off);
20941
20942 obstack_grow (output, &str_off, sizeof (str_off));
20943 obstack_grow (output, &vec_off, sizeof (vec_off));
20944 }
20945
20946 htab_delete (str_table);
20947 htab_delete (symbol_hash_table);
20948 }
20949
20950 /* Struct to map psymtab to CU index in the index file. */
20951 struct psymtab_cu_index_map
20952 {
20953 struct partial_symtab *psymtab;
20954 unsigned int cu_index;
20955 };
20956
20957 static hashval_t
20958 hash_psymtab_cu_index (const void *item)
20959 {
20960 const struct psymtab_cu_index_map *map = item;
20961
20962 return htab_hash_pointer (map->psymtab);
20963 }
20964
20965 static int
20966 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
20967 {
20968 const struct psymtab_cu_index_map *lhs = item_lhs;
20969 const struct psymtab_cu_index_map *rhs = item_rhs;
20970
20971 return lhs->psymtab == rhs->psymtab;
20972 }
20973
20974 /* Helper struct for building the address table. */
20975 struct addrmap_index_data
20976 {
20977 struct objfile *objfile;
20978 struct obstack *addr_obstack;
20979 htab_t cu_index_htab;
20980
20981 /* Non-zero if the previous_* fields are valid.
20982 We can't write an entry until we see the next entry (since it is only then
20983 that we know the end of the entry). */
20984 int previous_valid;
20985 /* Index of the CU in the table of all CUs in the index file. */
20986 unsigned int previous_cu_index;
20987 /* Start address of the CU. */
20988 CORE_ADDR previous_cu_start;
20989 };
20990
20991 /* Write an address entry to OBSTACK. */
20992
20993 static void
20994 add_address_entry (struct objfile *objfile, struct obstack *obstack,
20995 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
20996 {
20997 offset_type cu_index_to_write;
20998 gdb_byte addr[8];
20999 CORE_ADDR baseaddr;
21000
21001 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21002
21003 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
21004 obstack_grow (obstack, addr, 8);
21005 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
21006 obstack_grow (obstack, addr, 8);
21007 cu_index_to_write = MAYBE_SWAP (cu_index);
21008 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
21009 }
21010
21011 /* Worker function for traversing an addrmap to build the address table. */
21012
21013 static int
21014 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
21015 {
21016 struct addrmap_index_data *data = datap;
21017 struct partial_symtab *pst = obj;
21018
21019 if (data->previous_valid)
21020 add_address_entry (data->objfile, data->addr_obstack,
21021 data->previous_cu_start, start_addr,
21022 data->previous_cu_index);
21023
21024 data->previous_cu_start = start_addr;
21025 if (pst != NULL)
21026 {
21027 struct psymtab_cu_index_map find_map, *map;
21028 find_map.psymtab = pst;
21029 map = htab_find (data->cu_index_htab, &find_map);
21030 gdb_assert (map != NULL);
21031 data->previous_cu_index = map->cu_index;
21032 data->previous_valid = 1;
21033 }
21034 else
21035 data->previous_valid = 0;
21036
21037 return 0;
21038 }
21039
21040 /* Write OBJFILE's address map to OBSTACK.
21041 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
21042 in the index file. */
21043
21044 static void
21045 write_address_map (struct objfile *objfile, struct obstack *obstack,
21046 htab_t cu_index_htab)
21047 {
21048 struct addrmap_index_data addrmap_index_data;
21049
21050 /* When writing the address table, we have to cope with the fact that
21051 the addrmap iterator only provides the start of a region; we have to
21052 wait until the next invocation to get the start of the next region. */
21053
21054 addrmap_index_data.objfile = objfile;
21055 addrmap_index_data.addr_obstack = obstack;
21056 addrmap_index_data.cu_index_htab = cu_index_htab;
21057 addrmap_index_data.previous_valid = 0;
21058
21059 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
21060 &addrmap_index_data);
21061
21062 /* It's highly unlikely the last entry (end address = 0xff...ff)
21063 is valid, but we should still handle it.
21064 The end address is recorded as the start of the next region, but that
21065 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
21066 anyway. */
21067 if (addrmap_index_data.previous_valid)
21068 add_address_entry (objfile, obstack,
21069 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
21070 addrmap_index_data.previous_cu_index);
21071 }
21072
21073 /* Return the symbol kind of PSYM. */
21074
21075 static gdb_index_symbol_kind
21076 symbol_kind (struct partial_symbol *psym)
21077 {
21078 domain_enum domain = PSYMBOL_DOMAIN (psym);
21079 enum address_class aclass = PSYMBOL_CLASS (psym);
21080
21081 switch (domain)
21082 {
21083 case VAR_DOMAIN:
21084 switch (aclass)
21085 {
21086 case LOC_BLOCK:
21087 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
21088 case LOC_TYPEDEF:
21089 return GDB_INDEX_SYMBOL_KIND_TYPE;
21090 case LOC_COMPUTED:
21091 case LOC_CONST_BYTES:
21092 case LOC_OPTIMIZED_OUT:
21093 case LOC_STATIC:
21094 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
21095 case LOC_CONST:
21096 /* Note: It's currently impossible to recognize psyms as enum values
21097 short of reading the type info. For now punt. */
21098 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
21099 default:
21100 /* There are other LOC_FOO values that one might want to classify
21101 as variables, but dwarf2read.c doesn't currently use them. */
21102 return GDB_INDEX_SYMBOL_KIND_OTHER;
21103 }
21104 case STRUCT_DOMAIN:
21105 return GDB_INDEX_SYMBOL_KIND_TYPE;
21106 default:
21107 return GDB_INDEX_SYMBOL_KIND_OTHER;
21108 }
21109 }
21110
21111 /* Add a list of partial symbols to SYMTAB. */
21112
21113 static void
21114 write_psymbols (struct mapped_symtab *symtab,
21115 htab_t psyms_seen,
21116 struct partial_symbol **psymp,
21117 int count,
21118 offset_type cu_index,
21119 int is_static)
21120 {
21121 for (; count-- > 0; ++psymp)
21122 {
21123 struct partial_symbol *psym = *psymp;
21124 void **slot;
21125
21126 if (SYMBOL_LANGUAGE (psym) == language_ada)
21127 error (_("Ada is not currently supported by the index"));
21128
21129 /* Only add a given psymbol once. */
21130 slot = htab_find_slot (psyms_seen, psym, INSERT);
21131 if (!*slot)
21132 {
21133 gdb_index_symbol_kind kind = symbol_kind (psym);
21134
21135 *slot = psym;
21136 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
21137 is_static, kind, cu_index);
21138 }
21139 }
21140 }
21141
21142 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
21143 exception if there is an error. */
21144
21145 static void
21146 write_obstack (FILE *file, struct obstack *obstack)
21147 {
21148 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
21149 file)
21150 != obstack_object_size (obstack))
21151 error (_("couldn't data write to file"));
21152 }
21153
21154 /* Unlink a file if the argument is not NULL. */
21155
21156 static void
21157 unlink_if_set (void *p)
21158 {
21159 char **filename = p;
21160 if (*filename)
21161 unlink (*filename);
21162 }
21163
21164 /* A helper struct used when iterating over debug_types. */
21165 struct signatured_type_index_data
21166 {
21167 struct objfile *objfile;
21168 struct mapped_symtab *symtab;
21169 struct obstack *types_list;
21170 htab_t psyms_seen;
21171 int cu_index;
21172 };
21173
21174 /* A helper function that writes a single signatured_type to an
21175 obstack. */
21176
21177 static int
21178 write_one_signatured_type (void **slot, void *d)
21179 {
21180 struct signatured_type_index_data *info = d;
21181 struct signatured_type *entry = (struct signatured_type *) *slot;
21182 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
21183 gdb_byte val[8];
21184
21185 write_psymbols (info->symtab,
21186 info->psyms_seen,
21187 info->objfile->global_psymbols.list
21188 + psymtab->globals_offset,
21189 psymtab->n_global_syms, info->cu_index,
21190 0);
21191 write_psymbols (info->symtab,
21192 info->psyms_seen,
21193 info->objfile->static_psymbols.list
21194 + psymtab->statics_offset,
21195 psymtab->n_static_syms, info->cu_index,
21196 1);
21197
21198 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
21199 entry->per_cu.offset.sect_off);
21200 obstack_grow (info->types_list, val, 8);
21201 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
21202 entry->type_offset_in_tu.cu_off);
21203 obstack_grow (info->types_list, val, 8);
21204 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
21205 obstack_grow (info->types_list, val, 8);
21206
21207 ++info->cu_index;
21208
21209 return 1;
21210 }
21211
21212 /* Recurse into all "included" dependencies and write their symbols as
21213 if they appeared in this psymtab. */
21214
21215 static void
21216 recursively_write_psymbols (struct objfile *objfile,
21217 struct partial_symtab *psymtab,
21218 struct mapped_symtab *symtab,
21219 htab_t psyms_seen,
21220 offset_type cu_index)
21221 {
21222 int i;
21223
21224 for (i = 0; i < psymtab->number_of_dependencies; ++i)
21225 if (psymtab->dependencies[i]->user != NULL)
21226 recursively_write_psymbols (objfile, psymtab->dependencies[i],
21227 symtab, psyms_seen, cu_index);
21228
21229 write_psymbols (symtab,
21230 psyms_seen,
21231 objfile->global_psymbols.list + psymtab->globals_offset,
21232 psymtab->n_global_syms, cu_index,
21233 0);
21234 write_psymbols (symtab,
21235 psyms_seen,
21236 objfile->static_psymbols.list + psymtab->statics_offset,
21237 psymtab->n_static_syms, cu_index,
21238 1);
21239 }
21240
21241 /* Create an index file for OBJFILE in the directory DIR. */
21242
21243 static void
21244 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
21245 {
21246 struct cleanup *cleanup;
21247 char *filename, *cleanup_filename;
21248 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
21249 struct obstack cu_list, types_cu_list;
21250 int i;
21251 FILE *out_file;
21252 struct mapped_symtab *symtab;
21253 offset_type val, size_of_contents, total_len;
21254 struct stat st;
21255 htab_t psyms_seen;
21256 htab_t cu_index_htab;
21257 struct psymtab_cu_index_map *psymtab_cu_index_map;
21258
21259 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
21260 return;
21261
21262 if (dwarf2_per_objfile->using_index)
21263 error (_("Cannot use an index to create the index"));
21264
21265 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
21266 error (_("Cannot make an index when the file has multiple .debug_types sections"));
21267
21268 if (stat (objfile->name, &st) < 0)
21269 perror_with_name (objfile->name);
21270
21271 filename = concat (dir, SLASH_STRING, lbasename (objfile->name),
21272 INDEX_SUFFIX, (char *) NULL);
21273 cleanup = make_cleanup (xfree, filename);
21274
21275 out_file = gdb_fopen_cloexec (filename, "wb");
21276 if (!out_file)
21277 error (_("Can't open `%s' for writing"), filename);
21278
21279 cleanup_filename = filename;
21280 make_cleanup (unlink_if_set, &cleanup_filename);
21281
21282 symtab = create_mapped_symtab ();
21283 make_cleanup (cleanup_mapped_symtab, symtab);
21284
21285 obstack_init (&addr_obstack);
21286 make_cleanup_obstack_free (&addr_obstack);
21287
21288 obstack_init (&cu_list);
21289 make_cleanup_obstack_free (&cu_list);
21290
21291 obstack_init (&types_cu_list);
21292 make_cleanup_obstack_free (&types_cu_list);
21293
21294 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
21295 NULL, xcalloc, xfree);
21296 make_cleanup_htab_delete (psyms_seen);
21297
21298 /* While we're scanning CU's create a table that maps a psymtab pointer
21299 (which is what addrmap records) to its index (which is what is recorded
21300 in the index file). This will later be needed to write the address
21301 table. */
21302 cu_index_htab = htab_create_alloc (100,
21303 hash_psymtab_cu_index,
21304 eq_psymtab_cu_index,
21305 NULL, xcalloc, xfree);
21306 make_cleanup_htab_delete (cu_index_htab);
21307 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
21308 xmalloc (sizeof (struct psymtab_cu_index_map)
21309 * dwarf2_per_objfile->n_comp_units);
21310 make_cleanup (xfree, psymtab_cu_index_map);
21311
21312 /* The CU list is already sorted, so we don't need to do additional
21313 work here. Also, the debug_types entries do not appear in
21314 all_comp_units, but only in their own hash table. */
21315 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
21316 {
21317 struct dwarf2_per_cu_data *per_cu
21318 = dwarf2_per_objfile->all_comp_units[i];
21319 struct partial_symtab *psymtab = per_cu->v.psymtab;
21320 gdb_byte val[8];
21321 struct psymtab_cu_index_map *map;
21322 void **slot;
21323
21324 /* CU of a shared file from 'dwz -m' may be unused by this main file.
21325 It may be referenced from a local scope but in such case it does not
21326 need to be present in .gdb_index. */
21327 if (psymtab == NULL)
21328 continue;
21329
21330 if (psymtab->user == NULL)
21331 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
21332
21333 map = &psymtab_cu_index_map[i];
21334 map->psymtab = psymtab;
21335 map->cu_index = i;
21336 slot = htab_find_slot (cu_index_htab, map, INSERT);
21337 gdb_assert (slot != NULL);
21338 gdb_assert (*slot == NULL);
21339 *slot = map;
21340
21341 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
21342 per_cu->offset.sect_off);
21343 obstack_grow (&cu_list, val, 8);
21344 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
21345 obstack_grow (&cu_list, val, 8);
21346 }
21347
21348 /* Dump the address map. */
21349 write_address_map (objfile, &addr_obstack, cu_index_htab);
21350
21351 /* Write out the .debug_type entries, if any. */
21352 if (dwarf2_per_objfile->signatured_types)
21353 {
21354 struct signatured_type_index_data sig_data;
21355
21356 sig_data.objfile = objfile;
21357 sig_data.symtab = symtab;
21358 sig_data.types_list = &types_cu_list;
21359 sig_data.psyms_seen = psyms_seen;
21360 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
21361 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
21362 write_one_signatured_type, &sig_data);
21363 }
21364
21365 /* Now that we've processed all symbols we can shrink their cu_indices
21366 lists. */
21367 uniquify_cu_indices (symtab);
21368
21369 obstack_init (&constant_pool);
21370 make_cleanup_obstack_free (&constant_pool);
21371 obstack_init (&symtab_obstack);
21372 make_cleanup_obstack_free (&symtab_obstack);
21373 write_hash_table (symtab, &symtab_obstack, &constant_pool);
21374
21375 obstack_init (&contents);
21376 make_cleanup_obstack_free (&contents);
21377 size_of_contents = 6 * sizeof (offset_type);
21378 total_len = size_of_contents;
21379
21380 /* The version number. */
21381 val = MAYBE_SWAP (8);
21382 obstack_grow (&contents, &val, sizeof (val));
21383
21384 /* The offset of the CU list from the start of the file. */
21385 val = MAYBE_SWAP (total_len);
21386 obstack_grow (&contents, &val, sizeof (val));
21387 total_len += obstack_object_size (&cu_list);
21388
21389 /* The offset of the types CU list from the start of the file. */
21390 val = MAYBE_SWAP (total_len);
21391 obstack_grow (&contents, &val, sizeof (val));
21392 total_len += obstack_object_size (&types_cu_list);
21393
21394 /* The offset of the address table from the start of the file. */
21395 val = MAYBE_SWAP (total_len);
21396 obstack_grow (&contents, &val, sizeof (val));
21397 total_len += obstack_object_size (&addr_obstack);
21398
21399 /* The offset of the symbol table from the start of the file. */
21400 val = MAYBE_SWAP (total_len);
21401 obstack_grow (&contents, &val, sizeof (val));
21402 total_len += obstack_object_size (&symtab_obstack);
21403
21404 /* The offset of the constant pool from the start of the file. */
21405 val = MAYBE_SWAP (total_len);
21406 obstack_grow (&contents, &val, sizeof (val));
21407 total_len += obstack_object_size (&constant_pool);
21408
21409 gdb_assert (obstack_object_size (&contents) == size_of_contents);
21410
21411 write_obstack (out_file, &contents);
21412 write_obstack (out_file, &cu_list);
21413 write_obstack (out_file, &types_cu_list);
21414 write_obstack (out_file, &addr_obstack);
21415 write_obstack (out_file, &symtab_obstack);
21416 write_obstack (out_file, &constant_pool);
21417
21418 fclose (out_file);
21419
21420 /* We want to keep the file, so we set cleanup_filename to NULL
21421 here. See unlink_if_set. */
21422 cleanup_filename = NULL;
21423
21424 do_cleanups (cleanup);
21425 }
21426
21427 /* Implementation of the `save gdb-index' command.
21428
21429 Note that the file format used by this command is documented in the
21430 GDB manual. Any changes here must be documented there. */
21431
21432 static void
21433 save_gdb_index_command (char *arg, int from_tty)
21434 {
21435 struct objfile *objfile;
21436
21437 if (!arg || !*arg)
21438 error (_("usage: save gdb-index DIRECTORY"));
21439
21440 ALL_OBJFILES (objfile)
21441 {
21442 struct stat st;
21443
21444 /* If the objfile does not correspond to an actual file, skip it. */
21445 if (stat (objfile->name, &st) < 0)
21446 continue;
21447
21448 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
21449 if (dwarf2_per_objfile)
21450 {
21451 volatile struct gdb_exception except;
21452
21453 TRY_CATCH (except, RETURN_MASK_ERROR)
21454 {
21455 write_psymtabs_to_index (objfile, arg);
21456 }
21457 if (except.reason < 0)
21458 exception_fprintf (gdb_stderr, except,
21459 _("Error while writing index for `%s': "),
21460 objfile->name);
21461 }
21462 }
21463 }
21464
21465 \f
21466
21467 int dwarf2_always_disassemble;
21468
21469 static void
21470 show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
21471 struct cmd_list_element *c, const char *value)
21472 {
21473 fprintf_filtered (file,
21474 _("Whether to always disassemble "
21475 "DWARF expressions is %s.\n"),
21476 value);
21477 }
21478
21479 static void
21480 show_check_physname (struct ui_file *file, int from_tty,
21481 struct cmd_list_element *c, const char *value)
21482 {
21483 fprintf_filtered (file,
21484 _("Whether to check \"physname\" is %s.\n"),
21485 value);
21486 }
21487
21488 void _initialize_dwarf2_read (void);
21489
21490 void
21491 _initialize_dwarf2_read (void)
21492 {
21493 struct cmd_list_element *c;
21494
21495 dwarf2_objfile_data_key
21496 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
21497
21498 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
21499 Set DWARF 2 specific variables.\n\
21500 Configure DWARF 2 variables such as the cache size"),
21501 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
21502 0/*allow-unknown*/, &maintenance_set_cmdlist);
21503
21504 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
21505 Show DWARF 2 specific variables\n\
21506 Show DWARF 2 variables such as the cache size"),
21507 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
21508 0/*allow-unknown*/, &maintenance_show_cmdlist);
21509
21510 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
21511 &dwarf2_max_cache_age, _("\
21512 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
21513 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
21514 A higher limit means that cached compilation units will be stored\n\
21515 in memory longer, and more total memory will be used. Zero disables\n\
21516 caching, which can slow down startup."),
21517 NULL,
21518 show_dwarf2_max_cache_age,
21519 &set_dwarf2_cmdlist,
21520 &show_dwarf2_cmdlist);
21521
21522 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
21523 &dwarf2_always_disassemble, _("\
21524 Set whether `info address' always disassembles DWARF expressions."), _("\
21525 Show whether `info address' always disassembles DWARF expressions."), _("\
21526 When enabled, DWARF expressions are always printed in an assembly-like\n\
21527 syntax. When disabled, expressions will be printed in a more\n\
21528 conversational style, when possible."),
21529 NULL,
21530 show_dwarf2_always_disassemble,
21531 &set_dwarf2_cmdlist,
21532 &show_dwarf2_cmdlist);
21533
21534 add_setshow_boolean_cmd ("dwarf2-read", no_class, &dwarf2_read_debug, _("\
21535 Set debugging of the dwarf2 reader."), _("\
21536 Show debugging of the dwarf2 reader."), _("\
21537 When enabled, debugging messages are printed during dwarf2 reading\n\
21538 and symtab expansion."),
21539 NULL,
21540 NULL,
21541 &setdebuglist, &showdebuglist);
21542
21543 add_setshow_zuinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
21544 Set debugging of the dwarf2 DIE reader."), _("\
21545 Show debugging of the dwarf2 DIE reader."), _("\
21546 When enabled (non-zero), DIEs are dumped after they are read in.\n\
21547 The value is the maximum depth to print."),
21548 NULL,
21549 NULL,
21550 &setdebuglist, &showdebuglist);
21551
21552 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
21553 Set cross-checking of \"physname\" code against demangler."), _("\
21554 Show cross-checking of \"physname\" code against demangler."), _("\
21555 When enabled, GDB's internal \"physname\" code is checked against\n\
21556 the demangler."),
21557 NULL, show_check_physname,
21558 &setdebuglist, &showdebuglist);
21559
21560 add_setshow_boolean_cmd ("use-deprecated-index-sections",
21561 no_class, &use_deprecated_index_sections, _("\
21562 Set whether to use deprecated gdb_index sections."), _("\
21563 Show whether to use deprecated gdb_index sections."), _("\
21564 When enabled, deprecated .gdb_index sections are used anyway.\n\
21565 Normally they are ignored either because of a missing feature or\n\
21566 performance issue.\n\
21567 Warning: This option must be enabled before gdb reads the file."),
21568 NULL,
21569 NULL,
21570 &setlist, &showlist);
21571
21572 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
21573 _("\
21574 Save a gdb-index file.\n\
21575 Usage: save gdb-index DIRECTORY"),
21576 &save_cmdlist);
21577 set_cmd_completer (c, filename_completer);
21578
21579 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
21580 &dwarf2_locexpr_funcs);
21581 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
21582 &dwarf2_loclist_funcs);
21583
21584 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
21585 &dwarf2_block_frame_base_locexpr_funcs);
21586 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
21587 &dwarf2_block_frame_base_loclist_funcs);
21588 }
This page took 0.510918 seconds and 4 git commands to generate.