make calls to help_list use enumerator
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2014 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "jv-lang.h"
57 #include "psympriv.h"
58 #include "exceptions.h"
59 #include <sys/stat.h>
60 #include "completer.h"
61 #include "vec.h"
62 #include "c-lang.h"
63 #include "go-lang.h"
64 #include "valprint.h"
65 #include "gdbcore.h" /* for gnutarget */
66 #include "gdb/gdb-index.h"
67 #include <ctype.h>
68 #include "gdb_bfd.h"
69 #include "f-lang.h"
70 #include "source.h"
71 #include "filestuff.h"
72 #include "build-id.h"
73
74 #include <fcntl.h>
75 #include <string.h>
76 #include "gdb_assert.h"
77 #include <sys/types.h>
78
79 typedef struct symbol *symbolp;
80 DEF_VEC_P (symbolp);
81
82 /* When == 1, print basic high level tracing messages.
83 When > 1, be more verbose.
84 This is in contrast to the low level DIE reading of dwarf2_die_debug. */
85 static unsigned int dwarf2_read_debug = 0;
86
87 /* When non-zero, dump DIEs after they are read in. */
88 static unsigned int dwarf2_die_debug = 0;
89
90 /* When non-zero, cross-check physname against demangler. */
91 static int check_physname = 0;
92
93 /* When non-zero, do not reject deprecated .gdb_index sections. */
94 static int use_deprecated_index_sections = 0;
95
96 static const struct objfile_data *dwarf2_objfile_data_key;
97
98 /* The "aclass" indices for various kinds of computed DWARF symbols. */
99
100 static int dwarf2_locexpr_index;
101 static int dwarf2_loclist_index;
102 static int dwarf2_locexpr_block_index;
103 static int dwarf2_loclist_block_index;
104
105 /* A descriptor for dwarf sections.
106
107 S.ASECTION, SIZE are typically initialized when the objfile is first
108 scanned. BUFFER, READIN are filled in later when the section is read.
109 If the section contained compressed data then SIZE is updated to record
110 the uncompressed size of the section.
111
112 DWP file format V2 introduces a wrinkle that is easiest to handle by
113 creating the concept of virtual sections contained within a real section.
114 In DWP V2 the sections of the input DWO files are concatenated together
115 into one section, but section offsets are kept relative to the original
116 input section.
117 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
118 the real section this "virtual" section is contained in, and BUFFER,SIZE
119 describe the virtual section. */
120
121 struct dwarf2_section_info
122 {
123 union
124 {
125 /* If this is a real section, the bfd section. */
126 asection *asection;
127 /* If this is a virtual section, pointer to the containing ("real")
128 section. */
129 struct dwarf2_section_info *containing_section;
130 } s;
131 /* Pointer to section data, only valid if readin. */
132 const gdb_byte *buffer;
133 /* The size of the section, real or virtual. */
134 bfd_size_type size;
135 /* If this is a virtual section, the offset in the real section.
136 Only valid if is_virtual. */
137 bfd_size_type virtual_offset;
138 /* True if we have tried to read this section. */
139 char readin;
140 /* True if this is a virtual section, False otherwise.
141 This specifies which of s.asection and s.containing_section to use. */
142 char is_virtual;
143 };
144
145 typedef struct dwarf2_section_info dwarf2_section_info_def;
146 DEF_VEC_O (dwarf2_section_info_def);
147
148 /* All offsets in the index are of this type. It must be
149 architecture-independent. */
150 typedef uint32_t offset_type;
151
152 DEF_VEC_I (offset_type);
153
154 /* Ensure only legit values are used. */
155 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
156 do { \
157 gdb_assert ((unsigned int) (value) <= 1); \
158 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
159 } while (0)
160
161 /* Ensure only legit values are used. */
162 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
163 do { \
164 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
165 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
166 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
167 } while (0)
168
169 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
170 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
171 do { \
172 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
173 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
174 } while (0)
175
176 /* A description of the mapped index. The file format is described in
177 a comment by the code that writes the index. */
178 struct mapped_index
179 {
180 /* Index data format version. */
181 int version;
182
183 /* The total length of the buffer. */
184 off_t total_size;
185
186 /* A pointer to the address table data. */
187 const gdb_byte *address_table;
188
189 /* Size of the address table data in bytes. */
190 offset_type address_table_size;
191
192 /* The symbol table, implemented as a hash table. */
193 const offset_type *symbol_table;
194
195 /* Size in slots, each slot is 2 offset_types. */
196 offset_type symbol_table_slots;
197
198 /* A pointer to the constant pool. */
199 const char *constant_pool;
200 };
201
202 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
203 DEF_VEC_P (dwarf2_per_cu_ptr);
204
205 /* Collection of data recorded per objfile.
206 This hangs off of dwarf2_objfile_data_key. */
207
208 struct dwarf2_per_objfile
209 {
210 struct dwarf2_section_info info;
211 struct dwarf2_section_info abbrev;
212 struct dwarf2_section_info line;
213 struct dwarf2_section_info loc;
214 struct dwarf2_section_info macinfo;
215 struct dwarf2_section_info macro;
216 struct dwarf2_section_info str;
217 struct dwarf2_section_info ranges;
218 struct dwarf2_section_info addr;
219 struct dwarf2_section_info frame;
220 struct dwarf2_section_info eh_frame;
221 struct dwarf2_section_info gdb_index;
222
223 VEC (dwarf2_section_info_def) *types;
224
225 /* Back link. */
226 struct objfile *objfile;
227
228 /* Table of all the compilation units. This is used to locate
229 the target compilation unit of a particular reference. */
230 struct dwarf2_per_cu_data **all_comp_units;
231
232 /* The number of compilation units in ALL_COMP_UNITS. */
233 int n_comp_units;
234
235 /* The number of .debug_types-related CUs. */
236 int n_type_units;
237
238 /* The number of elements allocated in all_type_units.
239 If there are skeleton-less TUs, we add them to all_type_units lazily. */
240 int n_allocated_type_units;
241
242 /* The .debug_types-related CUs (TUs).
243 This is stored in malloc space because we may realloc it. */
244 struct signatured_type **all_type_units;
245
246 /* Table of struct type_unit_group objects.
247 The hash key is the DW_AT_stmt_list value. */
248 htab_t type_unit_groups;
249
250 /* A table mapping .debug_types signatures to its signatured_type entry.
251 This is NULL if the .debug_types section hasn't been read in yet. */
252 htab_t signatured_types;
253
254 /* Type unit statistics, to see how well the scaling improvements
255 are doing. */
256 struct tu_stats
257 {
258 int nr_uniq_abbrev_tables;
259 int nr_symtabs;
260 int nr_symtab_sharers;
261 int nr_stmt_less_type_units;
262 int nr_all_type_units_reallocs;
263 } tu_stats;
264
265 /* A chain of compilation units that are currently read in, so that
266 they can be freed later. */
267 struct dwarf2_per_cu_data *read_in_chain;
268
269 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
270 This is NULL if the table hasn't been allocated yet. */
271 htab_t dwo_files;
272
273 /* Non-zero if we've check for whether there is a DWP file. */
274 int dwp_checked;
275
276 /* The DWP file if there is one, or NULL. */
277 struct dwp_file *dwp_file;
278
279 /* The shared '.dwz' file, if one exists. This is used when the
280 original data was compressed using 'dwz -m'. */
281 struct dwz_file *dwz_file;
282
283 /* A flag indicating wether this objfile has a section loaded at a
284 VMA of 0. */
285 int has_section_at_zero;
286
287 /* True if we are using the mapped index,
288 or we are faking it for OBJF_READNOW's sake. */
289 unsigned char using_index;
290
291 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
292 struct mapped_index *index_table;
293
294 /* When using index_table, this keeps track of all quick_file_names entries.
295 TUs typically share line table entries with a CU, so we maintain a
296 separate table of all line table entries to support the sharing.
297 Note that while there can be way more TUs than CUs, we've already
298 sorted all the TUs into "type unit groups", grouped by their
299 DW_AT_stmt_list value. Therefore the only sharing done here is with a
300 CU and its associated TU group if there is one. */
301 htab_t quick_file_names_table;
302
303 /* Set during partial symbol reading, to prevent queueing of full
304 symbols. */
305 int reading_partial_symbols;
306
307 /* Table mapping type DIEs to their struct type *.
308 This is NULL if not allocated yet.
309 The mapping is done via (CU/TU + DIE offset) -> type. */
310 htab_t die_type_hash;
311
312 /* The CUs we recently read. */
313 VEC (dwarf2_per_cu_ptr) *just_read_cus;
314 };
315
316 static struct dwarf2_per_objfile *dwarf2_per_objfile;
317
318 /* Default names of the debugging sections. */
319
320 /* Note that if the debugging section has been compressed, it might
321 have a name like .zdebug_info. */
322
323 static const struct dwarf2_debug_sections dwarf2_elf_names =
324 {
325 { ".debug_info", ".zdebug_info" },
326 { ".debug_abbrev", ".zdebug_abbrev" },
327 { ".debug_line", ".zdebug_line" },
328 { ".debug_loc", ".zdebug_loc" },
329 { ".debug_macinfo", ".zdebug_macinfo" },
330 { ".debug_macro", ".zdebug_macro" },
331 { ".debug_str", ".zdebug_str" },
332 { ".debug_ranges", ".zdebug_ranges" },
333 { ".debug_types", ".zdebug_types" },
334 { ".debug_addr", ".zdebug_addr" },
335 { ".debug_frame", ".zdebug_frame" },
336 { ".eh_frame", NULL },
337 { ".gdb_index", ".zgdb_index" },
338 23
339 };
340
341 /* List of DWO/DWP sections. */
342
343 static const struct dwop_section_names
344 {
345 struct dwarf2_section_names abbrev_dwo;
346 struct dwarf2_section_names info_dwo;
347 struct dwarf2_section_names line_dwo;
348 struct dwarf2_section_names loc_dwo;
349 struct dwarf2_section_names macinfo_dwo;
350 struct dwarf2_section_names macro_dwo;
351 struct dwarf2_section_names str_dwo;
352 struct dwarf2_section_names str_offsets_dwo;
353 struct dwarf2_section_names types_dwo;
354 struct dwarf2_section_names cu_index;
355 struct dwarf2_section_names tu_index;
356 }
357 dwop_section_names =
358 {
359 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
360 { ".debug_info.dwo", ".zdebug_info.dwo" },
361 { ".debug_line.dwo", ".zdebug_line.dwo" },
362 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
363 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
364 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
365 { ".debug_str.dwo", ".zdebug_str.dwo" },
366 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
367 { ".debug_types.dwo", ".zdebug_types.dwo" },
368 { ".debug_cu_index", ".zdebug_cu_index" },
369 { ".debug_tu_index", ".zdebug_tu_index" },
370 };
371
372 /* local data types */
373
374 /* The data in a compilation unit header, after target2host
375 translation, looks like this. */
376 struct comp_unit_head
377 {
378 unsigned int length;
379 short version;
380 unsigned char addr_size;
381 unsigned char signed_addr_p;
382 sect_offset abbrev_offset;
383
384 /* Size of file offsets; either 4 or 8. */
385 unsigned int offset_size;
386
387 /* Size of the length field; either 4 or 12. */
388 unsigned int initial_length_size;
389
390 /* Offset to the first byte of this compilation unit header in the
391 .debug_info section, for resolving relative reference dies. */
392 sect_offset offset;
393
394 /* Offset to first die in this cu from the start of the cu.
395 This will be the first byte following the compilation unit header. */
396 cu_offset first_die_offset;
397 };
398
399 /* Type used for delaying computation of method physnames.
400 See comments for compute_delayed_physnames. */
401 struct delayed_method_info
402 {
403 /* The type to which the method is attached, i.e., its parent class. */
404 struct type *type;
405
406 /* The index of the method in the type's function fieldlists. */
407 int fnfield_index;
408
409 /* The index of the method in the fieldlist. */
410 int index;
411
412 /* The name of the DIE. */
413 const char *name;
414
415 /* The DIE associated with this method. */
416 struct die_info *die;
417 };
418
419 typedef struct delayed_method_info delayed_method_info;
420 DEF_VEC_O (delayed_method_info);
421
422 /* Internal state when decoding a particular compilation unit. */
423 struct dwarf2_cu
424 {
425 /* The objfile containing this compilation unit. */
426 struct objfile *objfile;
427
428 /* The header of the compilation unit. */
429 struct comp_unit_head header;
430
431 /* Base address of this compilation unit. */
432 CORE_ADDR base_address;
433
434 /* Non-zero if base_address has been set. */
435 int base_known;
436
437 /* The language we are debugging. */
438 enum language language;
439 const struct language_defn *language_defn;
440
441 const char *producer;
442
443 /* The generic symbol table building routines have separate lists for
444 file scope symbols and all all other scopes (local scopes). So
445 we need to select the right one to pass to add_symbol_to_list().
446 We do it by keeping a pointer to the correct list in list_in_scope.
447
448 FIXME: The original dwarf code just treated the file scope as the
449 first local scope, and all other local scopes as nested local
450 scopes, and worked fine. Check to see if we really need to
451 distinguish these in buildsym.c. */
452 struct pending **list_in_scope;
453
454 /* The abbrev table for this CU.
455 Normally this points to the abbrev table in the objfile.
456 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
457 struct abbrev_table *abbrev_table;
458
459 /* Hash table holding all the loaded partial DIEs
460 with partial_die->offset.SECT_OFF as hash. */
461 htab_t partial_dies;
462
463 /* Storage for things with the same lifetime as this read-in compilation
464 unit, including partial DIEs. */
465 struct obstack comp_unit_obstack;
466
467 /* When multiple dwarf2_cu structures are living in memory, this field
468 chains them all together, so that they can be released efficiently.
469 We will probably also want a generation counter so that most-recently-used
470 compilation units are cached... */
471 struct dwarf2_per_cu_data *read_in_chain;
472
473 /* Backlink to our per_cu entry. */
474 struct dwarf2_per_cu_data *per_cu;
475
476 /* How many compilation units ago was this CU last referenced? */
477 int last_used;
478
479 /* A hash table of DIE cu_offset for following references with
480 die_info->offset.sect_off as hash. */
481 htab_t die_hash;
482
483 /* Full DIEs if read in. */
484 struct die_info *dies;
485
486 /* A set of pointers to dwarf2_per_cu_data objects for compilation
487 units referenced by this one. Only set during full symbol processing;
488 partial symbol tables do not have dependencies. */
489 htab_t dependencies;
490
491 /* Header data from the line table, during full symbol processing. */
492 struct line_header *line_header;
493
494 /* A list of methods which need to have physnames computed
495 after all type information has been read. */
496 VEC (delayed_method_info) *method_list;
497
498 /* To be copied to symtab->call_site_htab. */
499 htab_t call_site_htab;
500
501 /* Non-NULL if this CU came from a DWO file.
502 There is an invariant here that is important to remember:
503 Except for attributes copied from the top level DIE in the "main"
504 (or "stub") file in preparation for reading the DWO file
505 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
506 Either there isn't a DWO file (in which case this is NULL and the point
507 is moot), or there is and either we're not going to read it (in which
508 case this is NULL) or there is and we are reading it (in which case this
509 is non-NULL). */
510 struct dwo_unit *dwo_unit;
511
512 /* The DW_AT_addr_base attribute if present, zero otherwise
513 (zero is a valid value though).
514 Note this value comes from the Fission stub CU/TU's DIE. */
515 ULONGEST addr_base;
516
517 /* The DW_AT_ranges_base attribute if present, zero otherwise
518 (zero is a valid value though).
519 Note this value comes from the Fission stub CU/TU's DIE.
520 Also note that the value is zero in the non-DWO case so this value can
521 be used without needing to know whether DWO files are in use or not.
522 N.B. This does not apply to DW_AT_ranges appearing in
523 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
524 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
525 DW_AT_ranges_base *would* have to be applied, and we'd have to care
526 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
527 ULONGEST ranges_base;
528
529 /* Mark used when releasing cached dies. */
530 unsigned int mark : 1;
531
532 /* This CU references .debug_loc. See the symtab->locations_valid field.
533 This test is imperfect as there may exist optimized debug code not using
534 any location list and still facing inlining issues if handled as
535 unoptimized code. For a future better test see GCC PR other/32998. */
536 unsigned int has_loclist : 1;
537
538 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
539 if all the producer_is_* fields are valid. This information is cached
540 because profiling CU expansion showed excessive time spent in
541 producer_is_gxx_lt_4_6. */
542 unsigned int checked_producer : 1;
543 unsigned int producer_is_gxx_lt_4_6 : 1;
544 unsigned int producer_is_gcc_lt_4_3 : 1;
545 unsigned int producer_is_icc : 1;
546
547 /* When set, the file that we're processing is known to have
548 debugging info for C++ namespaces. GCC 3.3.x did not produce
549 this information, but later versions do. */
550
551 unsigned int processing_has_namespace_info : 1;
552 };
553
554 /* Persistent data held for a compilation unit, even when not
555 processing it. We put a pointer to this structure in the
556 read_symtab_private field of the psymtab. */
557
558 struct dwarf2_per_cu_data
559 {
560 /* The start offset and length of this compilation unit.
561 NOTE: Unlike comp_unit_head.length, this length includes
562 initial_length_size.
563 If the DIE refers to a DWO file, this is always of the original die,
564 not the DWO file. */
565 sect_offset offset;
566 unsigned int length;
567
568 /* Flag indicating this compilation unit will be read in before
569 any of the current compilation units are processed. */
570 unsigned int queued : 1;
571
572 /* This flag will be set when reading partial DIEs if we need to load
573 absolutely all DIEs for this compilation unit, instead of just the ones
574 we think are interesting. It gets set if we look for a DIE in the
575 hash table and don't find it. */
576 unsigned int load_all_dies : 1;
577
578 /* Non-zero if this CU is from .debug_types.
579 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
580 this is non-zero. */
581 unsigned int is_debug_types : 1;
582
583 /* Non-zero if this CU is from the .dwz file. */
584 unsigned int is_dwz : 1;
585
586 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
587 This flag is only valid if is_debug_types is true.
588 We can't read a CU directly from a DWO file: There are required
589 attributes in the stub. */
590 unsigned int reading_dwo_directly : 1;
591
592 /* Non-zero if the TU has been read.
593 This is used to assist the "Stay in DWO Optimization" for Fission:
594 When reading a DWO, it's faster to read TUs from the DWO instead of
595 fetching them from random other DWOs (due to comdat folding).
596 If the TU has already been read, the optimization is unnecessary
597 (and unwise - we don't want to change where gdb thinks the TU lives
598 "midflight").
599 This flag is only valid if is_debug_types is true. */
600 unsigned int tu_read : 1;
601
602 /* The section this CU/TU lives in.
603 If the DIE refers to a DWO file, this is always the original die,
604 not the DWO file. */
605 struct dwarf2_section_info *section;
606
607 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
608 of the CU cache it gets reset to NULL again. */
609 struct dwarf2_cu *cu;
610
611 /* The corresponding objfile.
612 Normally we can get the objfile from dwarf2_per_objfile.
613 However we can enter this file with just a "per_cu" handle. */
614 struct objfile *objfile;
615
616 /* When using partial symbol tables, the 'psymtab' field is active.
617 Otherwise the 'quick' field is active. */
618 union
619 {
620 /* The partial symbol table associated with this compilation unit,
621 or NULL for unread partial units. */
622 struct partial_symtab *psymtab;
623
624 /* Data needed by the "quick" functions. */
625 struct dwarf2_per_cu_quick_data *quick;
626 } v;
627
628 /* The CUs we import using DW_TAG_imported_unit. This is filled in
629 while reading psymtabs, used to compute the psymtab dependencies,
630 and then cleared. Then it is filled in again while reading full
631 symbols, and only deleted when the objfile is destroyed.
632
633 This is also used to work around a difference between the way gold
634 generates .gdb_index version <=7 and the way gdb does. Arguably this
635 is a gold bug. For symbols coming from TUs, gold records in the index
636 the CU that includes the TU instead of the TU itself. This breaks
637 dw2_lookup_symbol: It assumes that if the index says symbol X lives
638 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
639 will find X. Alas TUs live in their own symtab, so after expanding CU Y
640 we need to look in TU Z to find X. Fortunately, this is akin to
641 DW_TAG_imported_unit, so we just use the same mechanism: For
642 .gdb_index version <=7 this also records the TUs that the CU referred
643 to. Concurrently with this change gdb was modified to emit version 8
644 indices so we only pay a price for gold generated indices.
645 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
646 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
647 };
648
649 /* Entry in the signatured_types hash table. */
650
651 struct signatured_type
652 {
653 /* The "per_cu" object of this type.
654 This struct is used iff per_cu.is_debug_types.
655 N.B.: This is the first member so that it's easy to convert pointers
656 between them. */
657 struct dwarf2_per_cu_data per_cu;
658
659 /* The type's signature. */
660 ULONGEST signature;
661
662 /* Offset in the TU of the type's DIE, as read from the TU header.
663 If this TU is a DWO stub and the definition lives in a DWO file
664 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
665 cu_offset type_offset_in_tu;
666
667 /* Offset in the section of the type's DIE.
668 If the definition lives in a DWO file, this is the offset in the
669 .debug_types.dwo section.
670 The value is zero until the actual value is known.
671 Zero is otherwise not a valid section offset. */
672 sect_offset type_offset_in_section;
673
674 /* Type units are grouped by their DW_AT_stmt_list entry so that they
675 can share them. This points to the containing symtab. */
676 struct type_unit_group *type_unit_group;
677
678 /* The type.
679 The first time we encounter this type we fully read it in and install it
680 in the symbol tables. Subsequent times we only need the type. */
681 struct type *type;
682
683 /* Containing DWO unit.
684 This field is valid iff per_cu.reading_dwo_directly. */
685 struct dwo_unit *dwo_unit;
686 };
687
688 typedef struct signatured_type *sig_type_ptr;
689 DEF_VEC_P (sig_type_ptr);
690
691 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
692 This includes type_unit_group and quick_file_names. */
693
694 struct stmt_list_hash
695 {
696 /* The DWO unit this table is from or NULL if there is none. */
697 struct dwo_unit *dwo_unit;
698
699 /* Offset in .debug_line or .debug_line.dwo. */
700 sect_offset line_offset;
701 };
702
703 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
704 an object of this type. */
705
706 struct type_unit_group
707 {
708 /* dwarf2read.c's main "handle" on a TU symtab.
709 To simplify things we create an artificial CU that "includes" all the
710 type units using this stmt_list so that the rest of the code still has
711 a "per_cu" handle on the symtab.
712 This PER_CU is recognized by having no section. */
713 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
714 struct dwarf2_per_cu_data per_cu;
715
716 /* The TUs that share this DW_AT_stmt_list entry.
717 This is added to while parsing type units to build partial symtabs,
718 and is deleted afterwards and not used again. */
719 VEC (sig_type_ptr) *tus;
720
721 /* The primary symtab.
722 Type units in a group needn't all be defined in the same source file,
723 so we create an essentially anonymous symtab as the primary symtab. */
724 struct symtab *primary_symtab;
725
726 /* The data used to construct the hash key. */
727 struct stmt_list_hash hash;
728
729 /* The number of symtabs from the line header.
730 The value here must match line_header.num_file_names. */
731 unsigned int num_symtabs;
732
733 /* The symbol tables for this TU (obtained from the files listed in
734 DW_AT_stmt_list).
735 WARNING: The order of entries here must match the order of entries
736 in the line header. After the first TU using this type_unit_group, the
737 line header for the subsequent TUs is recreated from this. This is done
738 because we need to use the same symtabs for each TU using the same
739 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
740 there's no guarantee the line header doesn't have duplicate entries. */
741 struct symtab **symtabs;
742 };
743
744 /* These sections are what may appear in a (real or virtual) DWO file. */
745
746 struct dwo_sections
747 {
748 struct dwarf2_section_info abbrev;
749 struct dwarf2_section_info line;
750 struct dwarf2_section_info loc;
751 struct dwarf2_section_info macinfo;
752 struct dwarf2_section_info macro;
753 struct dwarf2_section_info str;
754 struct dwarf2_section_info str_offsets;
755 /* In the case of a virtual DWO file, these two are unused. */
756 struct dwarf2_section_info info;
757 VEC (dwarf2_section_info_def) *types;
758 };
759
760 /* CUs/TUs in DWP/DWO files. */
761
762 struct dwo_unit
763 {
764 /* Backlink to the containing struct dwo_file. */
765 struct dwo_file *dwo_file;
766
767 /* The "id" that distinguishes this CU/TU.
768 .debug_info calls this "dwo_id", .debug_types calls this "signature".
769 Since signatures came first, we stick with it for consistency. */
770 ULONGEST signature;
771
772 /* The section this CU/TU lives in, in the DWO file. */
773 struct dwarf2_section_info *section;
774
775 /* Same as dwarf2_per_cu_data:{offset,length} but in the DWO section. */
776 sect_offset offset;
777 unsigned int length;
778
779 /* For types, offset in the type's DIE of the type defined by this TU. */
780 cu_offset type_offset_in_tu;
781 };
782
783 /* include/dwarf2.h defines the DWP section codes.
784 It defines a max value but it doesn't define a min value, which we
785 use for error checking, so provide one. */
786
787 enum dwp_v2_section_ids
788 {
789 DW_SECT_MIN = 1
790 };
791
792 /* Data for one DWO file.
793
794 This includes virtual DWO files (a virtual DWO file is a DWO file as it
795 appears in a DWP file). DWP files don't really have DWO files per se -
796 comdat folding of types "loses" the DWO file they came from, and from
797 a high level view DWP files appear to contain a mass of random types.
798 However, to maintain consistency with the non-DWP case we pretend DWP
799 files contain virtual DWO files, and we assign each TU with one virtual
800 DWO file (generally based on the line and abbrev section offsets -
801 a heuristic that seems to work in practice). */
802
803 struct dwo_file
804 {
805 /* The DW_AT_GNU_dwo_name attribute.
806 For virtual DWO files the name is constructed from the section offsets
807 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
808 from related CU+TUs. */
809 const char *dwo_name;
810
811 /* The DW_AT_comp_dir attribute. */
812 const char *comp_dir;
813
814 /* The bfd, when the file is open. Otherwise this is NULL.
815 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
816 bfd *dbfd;
817
818 /* The sections that make up this DWO file.
819 Remember that for virtual DWO files in DWP V2, these are virtual
820 sections (for lack of a better name). */
821 struct dwo_sections sections;
822
823 /* The CU in the file.
824 We only support one because having more than one requires hacking the
825 dwo_name of each to match, which is highly unlikely to happen.
826 Doing this means all TUs can share comp_dir: We also assume that
827 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
828 struct dwo_unit *cu;
829
830 /* Table of TUs in the file.
831 Each element is a struct dwo_unit. */
832 htab_t tus;
833 };
834
835 /* These sections are what may appear in a DWP file. */
836
837 struct dwp_sections
838 {
839 /* These are used by both DWP version 1 and 2. */
840 struct dwarf2_section_info str;
841 struct dwarf2_section_info cu_index;
842 struct dwarf2_section_info tu_index;
843
844 /* These are only used by DWP version 2 files.
845 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
846 sections are referenced by section number, and are not recorded here.
847 In DWP version 2 there is at most one copy of all these sections, each
848 section being (effectively) comprised of the concatenation of all of the
849 individual sections that exist in the version 1 format.
850 To keep the code simple we treat each of these concatenated pieces as a
851 section itself (a virtual section?). */
852 struct dwarf2_section_info abbrev;
853 struct dwarf2_section_info info;
854 struct dwarf2_section_info line;
855 struct dwarf2_section_info loc;
856 struct dwarf2_section_info macinfo;
857 struct dwarf2_section_info macro;
858 struct dwarf2_section_info str_offsets;
859 struct dwarf2_section_info types;
860 };
861
862 /* These sections are what may appear in a virtual DWO file in DWP version 1.
863 A virtual DWO file is a DWO file as it appears in a DWP file. */
864
865 struct virtual_v1_dwo_sections
866 {
867 struct dwarf2_section_info abbrev;
868 struct dwarf2_section_info line;
869 struct dwarf2_section_info loc;
870 struct dwarf2_section_info macinfo;
871 struct dwarf2_section_info macro;
872 struct dwarf2_section_info str_offsets;
873 /* Each DWP hash table entry records one CU or one TU.
874 That is recorded here, and copied to dwo_unit.section. */
875 struct dwarf2_section_info info_or_types;
876 };
877
878 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
879 In version 2, the sections of the DWO files are concatenated together
880 and stored in one section of that name. Thus each ELF section contains
881 several "virtual" sections. */
882
883 struct virtual_v2_dwo_sections
884 {
885 bfd_size_type abbrev_offset;
886 bfd_size_type abbrev_size;
887
888 bfd_size_type line_offset;
889 bfd_size_type line_size;
890
891 bfd_size_type loc_offset;
892 bfd_size_type loc_size;
893
894 bfd_size_type macinfo_offset;
895 bfd_size_type macinfo_size;
896
897 bfd_size_type macro_offset;
898 bfd_size_type macro_size;
899
900 bfd_size_type str_offsets_offset;
901 bfd_size_type str_offsets_size;
902
903 /* Each DWP hash table entry records one CU or one TU.
904 That is recorded here, and copied to dwo_unit.section. */
905 bfd_size_type info_or_types_offset;
906 bfd_size_type info_or_types_size;
907 };
908
909 /* Contents of DWP hash tables. */
910
911 struct dwp_hash_table
912 {
913 uint32_t version, nr_columns;
914 uint32_t nr_units, nr_slots;
915 const gdb_byte *hash_table, *unit_table;
916 union
917 {
918 struct
919 {
920 const gdb_byte *indices;
921 } v1;
922 struct
923 {
924 /* This is indexed by column number and gives the id of the section
925 in that column. */
926 #define MAX_NR_V2_DWO_SECTIONS \
927 (1 /* .debug_info or .debug_types */ \
928 + 1 /* .debug_abbrev */ \
929 + 1 /* .debug_line */ \
930 + 1 /* .debug_loc */ \
931 + 1 /* .debug_str_offsets */ \
932 + 1 /* .debug_macro or .debug_macinfo */)
933 int section_ids[MAX_NR_V2_DWO_SECTIONS];
934 const gdb_byte *offsets;
935 const gdb_byte *sizes;
936 } v2;
937 } section_pool;
938 };
939
940 /* Data for one DWP file. */
941
942 struct dwp_file
943 {
944 /* Name of the file. */
945 const char *name;
946
947 /* File format version. */
948 int version;
949
950 /* The bfd. */
951 bfd *dbfd;
952
953 /* Section info for this file. */
954 struct dwp_sections sections;
955
956 /* Table of CUs in the file. */
957 const struct dwp_hash_table *cus;
958
959 /* Table of TUs in the file. */
960 const struct dwp_hash_table *tus;
961
962 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
963 htab_t loaded_cus;
964 htab_t loaded_tus;
965
966 /* Table to map ELF section numbers to their sections.
967 This is only needed for the DWP V1 file format. */
968 unsigned int num_sections;
969 asection **elf_sections;
970 };
971
972 /* This represents a '.dwz' file. */
973
974 struct dwz_file
975 {
976 /* A dwz file can only contain a few sections. */
977 struct dwarf2_section_info abbrev;
978 struct dwarf2_section_info info;
979 struct dwarf2_section_info str;
980 struct dwarf2_section_info line;
981 struct dwarf2_section_info macro;
982 struct dwarf2_section_info gdb_index;
983
984 /* The dwz's BFD. */
985 bfd *dwz_bfd;
986 };
987
988 /* Struct used to pass misc. parameters to read_die_and_children, et
989 al. which are used for both .debug_info and .debug_types dies.
990 All parameters here are unchanging for the life of the call. This
991 struct exists to abstract away the constant parameters of die reading. */
992
993 struct die_reader_specs
994 {
995 /* The bfd of die_section. */
996 bfd* abfd;
997
998 /* The CU of the DIE we are parsing. */
999 struct dwarf2_cu *cu;
1000
1001 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
1002 struct dwo_file *dwo_file;
1003
1004 /* The section the die comes from.
1005 This is either .debug_info or .debug_types, or the .dwo variants. */
1006 struct dwarf2_section_info *die_section;
1007
1008 /* die_section->buffer. */
1009 const gdb_byte *buffer;
1010
1011 /* The end of the buffer. */
1012 const gdb_byte *buffer_end;
1013
1014 /* The value of the DW_AT_comp_dir attribute. */
1015 const char *comp_dir;
1016 };
1017
1018 /* Type of function passed to init_cutu_and_read_dies, et.al. */
1019 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
1020 const gdb_byte *info_ptr,
1021 struct die_info *comp_unit_die,
1022 int has_children,
1023 void *data);
1024
1025 /* The line number information for a compilation unit (found in the
1026 .debug_line section) begins with a "statement program header",
1027 which contains the following information. */
1028 struct line_header
1029 {
1030 unsigned int total_length;
1031 unsigned short version;
1032 unsigned int header_length;
1033 unsigned char minimum_instruction_length;
1034 unsigned char maximum_ops_per_instruction;
1035 unsigned char default_is_stmt;
1036 int line_base;
1037 unsigned char line_range;
1038 unsigned char opcode_base;
1039
1040 /* standard_opcode_lengths[i] is the number of operands for the
1041 standard opcode whose value is i. This means that
1042 standard_opcode_lengths[0] is unused, and the last meaningful
1043 element is standard_opcode_lengths[opcode_base - 1]. */
1044 unsigned char *standard_opcode_lengths;
1045
1046 /* The include_directories table. NOTE! These strings are not
1047 allocated with xmalloc; instead, they are pointers into
1048 debug_line_buffer. If you try to free them, `free' will get
1049 indigestion. */
1050 unsigned int num_include_dirs, include_dirs_size;
1051 const char **include_dirs;
1052
1053 /* The file_names table. NOTE! These strings are not allocated
1054 with xmalloc; instead, they are pointers into debug_line_buffer.
1055 Don't try to free them directly. */
1056 unsigned int num_file_names, file_names_size;
1057 struct file_entry
1058 {
1059 const char *name;
1060 unsigned int dir_index;
1061 unsigned int mod_time;
1062 unsigned int length;
1063 int included_p; /* Non-zero if referenced by the Line Number Program. */
1064 struct symtab *symtab; /* The associated symbol table, if any. */
1065 } *file_names;
1066
1067 /* The start and end of the statement program following this
1068 header. These point into dwarf2_per_objfile->line_buffer. */
1069 const gdb_byte *statement_program_start, *statement_program_end;
1070 };
1071
1072 /* When we construct a partial symbol table entry we only
1073 need this much information. */
1074 struct partial_die_info
1075 {
1076 /* Offset of this DIE. */
1077 sect_offset offset;
1078
1079 /* DWARF-2 tag for this DIE. */
1080 ENUM_BITFIELD(dwarf_tag) tag : 16;
1081
1082 /* Assorted flags describing the data found in this DIE. */
1083 unsigned int has_children : 1;
1084 unsigned int is_external : 1;
1085 unsigned int is_declaration : 1;
1086 unsigned int has_type : 1;
1087 unsigned int has_specification : 1;
1088 unsigned int has_pc_info : 1;
1089 unsigned int may_be_inlined : 1;
1090
1091 /* Flag set if the SCOPE field of this structure has been
1092 computed. */
1093 unsigned int scope_set : 1;
1094
1095 /* Flag set if the DIE has a byte_size attribute. */
1096 unsigned int has_byte_size : 1;
1097
1098 /* Flag set if any of the DIE's children are template arguments. */
1099 unsigned int has_template_arguments : 1;
1100
1101 /* Flag set if fixup_partial_die has been called on this die. */
1102 unsigned int fixup_called : 1;
1103
1104 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1105 unsigned int is_dwz : 1;
1106
1107 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1108 unsigned int spec_is_dwz : 1;
1109
1110 /* The name of this DIE. Normally the value of DW_AT_name, but
1111 sometimes a default name for unnamed DIEs. */
1112 const char *name;
1113
1114 /* The linkage name, if present. */
1115 const char *linkage_name;
1116
1117 /* The scope to prepend to our children. This is generally
1118 allocated on the comp_unit_obstack, so will disappear
1119 when this compilation unit leaves the cache. */
1120 const char *scope;
1121
1122 /* Some data associated with the partial DIE. The tag determines
1123 which field is live. */
1124 union
1125 {
1126 /* The location description associated with this DIE, if any. */
1127 struct dwarf_block *locdesc;
1128 /* The offset of an import, for DW_TAG_imported_unit. */
1129 sect_offset offset;
1130 } d;
1131
1132 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1133 CORE_ADDR lowpc;
1134 CORE_ADDR highpc;
1135
1136 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1137 DW_AT_sibling, if any. */
1138 /* NOTE: This member isn't strictly necessary, read_partial_die could
1139 return DW_AT_sibling values to its caller load_partial_dies. */
1140 const gdb_byte *sibling;
1141
1142 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1143 DW_AT_specification (or DW_AT_abstract_origin or
1144 DW_AT_extension). */
1145 sect_offset spec_offset;
1146
1147 /* Pointers to this DIE's parent, first child, and next sibling,
1148 if any. */
1149 struct partial_die_info *die_parent, *die_child, *die_sibling;
1150 };
1151
1152 /* This data structure holds the information of an abbrev. */
1153 struct abbrev_info
1154 {
1155 unsigned int number; /* number identifying abbrev */
1156 enum dwarf_tag tag; /* dwarf tag */
1157 unsigned short has_children; /* boolean */
1158 unsigned short num_attrs; /* number of attributes */
1159 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1160 struct abbrev_info *next; /* next in chain */
1161 };
1162
1163 struct attr_abbrev
1164 {
1165 ENUM_BITFIELD(dwarf_attribute) name : 16;
1166 ENUM_BITFIELD(dwarf_form) form : 16;
1167 };
1168
1169 /* Size of abbrev_table.abbrev_hash_table. */
1170 #define ABBREV_HASH_SIZE 121
1171
1172 /* Top level data structure to contain an abbreviation table. */
1173
1174 struct abbrev_table
1175 {
1176 /* Where the abbrev table came from.
1177 This is used as a sanity check when the table is used. */
1178 sect_offset offset;
1179
1180 /* Storage for the abbrev table. */
1181 struct obstack abbrev_obstack;
1182
1183 /* Hash table of abbrevs.
1184 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1185 It could be statically allocated, but the previous code didn't so we
1186 don't either. */
1187 struct abbrev_info **abbrevs;
1188 };
1189
1190 /* Attributes have a name and a value. */
1191 struct attribute
1192 {
1193 ENUM_BITFIELD(dwarf_attribute) name : 16;
1194 ENUM_BITFIELD(dwarf_form) form : 15;
1195
1196 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1197 field should be in u.str (existing only for DW_STRING) but it is kept
1198 here for better struct attribute alignment. */
1199 unsigned int string_is_canonical : 1;
1200
1201 union
1202 {
1203 const char *str;
1204 struct dwarf_block *blk;
1205 ULONGEST unsnd;
1206 LONGEST snd;
1207 CORE_ADDR addr;
1208 ULONGEST signature;
1209 }
1210 u;
1211 };
1212
1213 /* This data structure holds a complete die structure. */
1214 struct die_info
1215 {
1216 /* DWARF-2 tag for this DIE. */
1217 ENUM_BITFIELD(dwarf_tag) tag : 16;
1218
1219 /* Number of attributes */
1220 unsigned char num_attrs;
1221
1222 /* True if we're presently building the full type name for the
1223 type derived from this DIE. */
1224 unsigned char building_fullname : 1;
1225
1226 /* True if this die is in process. PR 16581. */
1227 unsigned char in_process : 1;
1228
1229 /* Abbrev number */
1230 unsigned int abbrev;
1231
1232 /* Offset in .debug_info or .debug_types section. */
1233 sect_offset offset;
1234
1235 /* The dies in a compilation unit form an n-ary tree. PARENT
1236 points to this die's parent; CHILD points to the first child of
1237 this node; and all the children of a given node are chained
1238 together via their SIBLING fields. */
1239 struct die_info *child; /* Its first child, if any. */
1240 struct die_info *sibling; /* Its next sibling, if any. */
1241 struct die_info *parent; /* Its parent, if any. */
1242
1243 /* An array of attributes, with NUM_ATTRS elements. There may be
1244 zero, but it's not common and zero-sized arrays are not
1245 sufficiently portable C. */
1246 struct attribute attrs[1];
1247 };
1248
1249 /* Get at parts of an attribute structure. */
1250
1251 #define DW_STRING(attr) ((attr)->u.str)
1252 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1253 #define DW_UNSND(attr) ((attr)->u.unsnd)
1254 #define DW_BLOCK(attr) ((attr)->u.blk)
1255 #define DW_SND(attr) ((attr)->u.snd)
1256 #define DW_ADDR(attr) ((attr)->u.addr)
1257 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1258
1259 /* Blocks are a bunch of untyped bytes. */
1260 struct dwarf_block
1261 {
1262 size_t size;
1263
1264 /* Valid only if SIZE is not zero. */
1265 const gdb_byte *data;
1266 };
1267
1268 #ifndef ATTR_ALLOC_CHUNK
1269 #define ATTR_ALLOC_CHUNK 4
1270 #endif
1271
1272 /* Allocate fields for structs, unions and enums in this size. */
1273 #ifndef DW_FIELD_ALLOC_CHUNK
1274 #define DW_FIELD_ALLOC_CHUNK 4
1275 #endif
1276
1277 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1278 but this would require a corresponding change in unpack_field_as_long
1279 and friends. */
1280 static int bits_per_byte = 8;
1281
1282 /* The routines that read and process dies for a C struct or C++ class
1283 pass lists of data member fields and lists of member function fields
1284 in an instance of a field_info structure, as defined below. */
1285 struct field_info
1286 {
1287 /* List of data member and baseclasses fields. */
1288 struct nextfield
1289 {
1290 struct nextfield *next;
1291 int accessibility;
1292 int virtuality;
1293 struct field field;
1294 }
1295 *fields, *baseclasses;
1296
1297 /* Number of fields (including baseclasses). */
1298 int nfields;
1299
1300 /* Number of baseclasses. */
1301 int nbaseclasses;
1302
1303 /* Set if the accesibility of one of the fields is not public. */
1304 int non_public_fields;
1305
1306 /* Member function fields array, entries are allocated in the order they
1307 are encountered in the object file. */
1308 struct nextfnfield
1309 {
1310 struct nextfnfield *next;
1311 struct fn_field fnfield;
1312 }
1313 *fnfields;
1314
1315 /* Member function fieldlist array, contains name of possibly overloaded
1316 member function, number of overloaded member functions and a pointer
1317 to the head of the member function field chain. */
1318 struct fnfieldlist
1319 {
1320 const char *name;
1321 int length;
1322 struct nextfnfield *head;
1323 }
1324 *fnfieldlists;
1325
1326 /* Number of entries in the fnfieldlists array. */
1327 int nfnfields;
1328
1329 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1330 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1331 struct typedef_field_list
1332 {
1333 struct typedef_field field;
1334 struct typedef_field_list *next;
1335 }
1336 *typedef_field_list;
1337 unsigned typedef_field_list_count;
1338 };
1339
1340 /* One item on the queue of compilation units to read in full symbols
1341 for. */
1342 struct dwarf2_queue_item
1343 {
1344 struct dwarf2_per_cu_data *per_cu;
1345 enum language pretend_language;
1346 struct dwarf2_queue_item *next;
1347 };
1348
1349 /* The current queue. */
1350 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1351
1352 /* Loaded secondary compilation units are kept in memory until they
1353 have not been referenced for the processing of this many
1354 compilation units. Set this to zero to disable caching. Cache
1355 sizes of up to at least twenty will improve startup time for
1356 typical inter-CU-reference binaries, at an obvious memory cost. */
1357 static int dwarf2_max_cache_age = 5;
1358 static void
1359 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
1360 struct cmd_list_element *c, const char *value)
1361 {
1362 fprintf_filtered (file, _("The upper bound on the age of cached "
1363 "dwarf2 compilation units is %s.\n"),
1364 value);
1365 }
1366 \f
1367 /* local function prototypes */
1368
1369 static const char *get_section_name (const struct dwarf2_section_info *);
1370
1371 static const char *get_section_file_name (const struct dwarf2_section_info *);
1372
1373 static void dwarf2_locate_sections (bfd *, asection *, void *);
1374
1375 static void dwarf2_find_base_address (struct die_info *die,
1376 struct dwarf2_cu *cu);
1377
1378 static struct partial_symtab *create_partial_symtab
1379 (struct dwarf2_per_cu_data *per_cu, const char *name);
1380
1381 static void dwarf2_build_psymtabs_hard (struct objfile *);
1382
1383 static void scan_partial_symbols (struct partial_die_info *,
1384 CORE_ADDR *, CORE_ADDR *,
1385 int, struct dwarf2_cu *);
1386
1387 static void add_partial_symbol (struct partial_die_info *,
1388 struct dwarf2_cu *);
1389
1390 static void add_partial_namespace (struct partial_die_info *pdi,
1391 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1392 int need_pc, struct dwarf2_cu *cu);
1393
1394 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1395 CORE_ADDR *highpc, int need_pc,
1396 struct dwarf2_cu *cu);
1397
1398 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1399 struct dwarf2_cu *cu);
1400
1401 static void add_partial_subprogram (struct partial_die_info *pdi,
1402 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1403 int need_pc, struct dwarf2_cu *cu);
1404
1405 static void dwarf2_read_symtab (struct partial_symtab *,
1406 struct objfile *);
1407
1408 static void psymtab_to_symtab_1 (struct partial_symtab *);
1409
1410 static struct abbrev_info *abbrev_table_lookup_abbrev
1411 (const struct abbrev_table *, unsigned int);
1412
1413 static struct abbrev_table *abbrev_table_read_table
1414 (struct dwarf2_section_info *, sect_offset);
1415
1416 static void abbrev_table_free (struct abbrev_table *);
1417
1418 static void abbrev_table_free_cleanup (void *);
1419
1420 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1421 struct dwarf2_section_info *);
1422
1423 static void dwarf2_free_abbrev_table (void *);
1424
1425 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1426
1427 static struct partial_die_info *load_partial_dies
1428 (const struct die_reader_specs *, const gdb_byte *, int);
1429
1430 static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1431 struct partial_die_info *,
1432 struct abbrev_info *,
1433 unsigned int,
1434 const gdb_byte *);
1435
1436 static struct partial_die_info *find_partial_die (sect_offset, int,
1437 struct dwarf2_cu *);
1438
1439 static void fixup_partial_die (struct partial_die_info *,
1440 struct dwarf2_cu *);
1441
1442 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1443 struct attribute *, struct attr_abbrev *,
1444 const gdb_byte *);
1445
1446 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1447
1448 static int read_1_signed_byte (bfd *, const gdb_byte *);
1449
1450 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1451
1452 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1453
1454 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1455
1456 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1457 unsigned int *);
1458
1459 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1460
1461 static LONGEST read_checked_initial_length_and_offset
1462 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1463 unsigned int *, unsigned int *);
1464
1465 static LONGEST read_offset (bfd *, const gdb_byte *,
1466 const struct comp_unit_head *,
1467 unsigned int *);
1468
1469 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1470
1471 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1472 sect_offset);
1473
1474 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1475
1476 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1477
1478 static const char *read_indirect_string (bfd *, const gdb_byte *,
1479 const struct comp_unit_head *,
1480 unsigned int *);
1481
1482 static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1483
1484 static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
1485
1486 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1487
1488 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1489 const gdb_byte *,
1490 unsigned int *);
1491
1492 static const char *read_str_index (const struct die_reader_specs *reader,
1493 ULONGEST str_index);
1494
1495 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1496
1497 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1498 struct dwarf2_cu *);
1499
1500 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1501 unsigned int);
1502
1503 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1504 struct dwarf2_cu *cu);
1505
1506 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1507
1508 static struct die_info *die_specification (struct die_info *die,
1509 struct dwarf2_cu **);
1510
1511 static void free_line_header (struct line_header *lh);
1512
1513 static struct line_header *dwarf_decode_line_header (unsigned int offset,
1514 struct dwarf2_cu *cu);
1515
1516 static void dwarf_decode_lines (struct line_header *, const char *,
1517 struct dwarf2_cu *, struct partial_symtab *,
1518 int);
1519
1520 static void dwarf2_start_subfile (const char *, const char *, const char *);
1521
1522 static void dwarf2_start_symtab (struct dwarf2_cu *,
1523 const char *, const char *, CORE_ADDR);
1524
1525 static struct symbol *new_symbol (struct die_info *, struct type *,
1526 struct dwarf2_cu *);
1527
1528 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1529 struct dwarf2_cu *, struct symbol *);
1530
1531 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1532 struct dwarf2_cu *);
1533
1534 static void dwarf2_const_value_attr (const struct attribute *attr,
1535 struct type *type,
1536 const char *name,
1537 struct obstack *obstack,
1538 struct dwarf2_cu *cu, LONGEST *value,
1539 const gdb_byte **bytes,
1540 struct dwarf2_locexpr_baton **baton);
1541
1542 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1543
1544 static int need_gnat_info (struct dwarf2_cu *);
1545
1546 static struct type *die_descriptive_type (struct die_info *,
1547 struct dwarf2_cu *);
1548
1549 static void set_descriptive_type (struct type *, struct die_info *,
1550 struct dwarf2_cu *);
1551
1552 static struct type *die_containing_type (struct die_info *,
1553 struct dwarf2_cu *);
1554
1555 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1556 struct dwarf2_cu *);
1557
1558 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1559
1560 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1561
1562 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1563
1564 static char *typename_concat (struct obstack *obs, const char *prefix,
1565 const char *suffix, int physname,
1566 struct dwarf2_cu *cu);
1567
1568 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1569
1570 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1571
1572 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1573
1574 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1575
1576 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1577
1578 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1579 struct dwarf2_cu *, struct partial_symtab *);
1580
1581 static int dwarf2_get_pc_bounds (struct die_info *,
1582 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1583 struct partial_symtab *);
1584
1585 static void get_scope_pc_bounds (struct die_info *,
1586 CORE_ADDR *, CORE_ADDR *,
1587 struct dwarf2_cu *);
1588
1589 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1590 CORE_ADDR, struct dwarf2_cu *);
1591
1592 static void dwarf2_add_field (struct field_info *, struct die_info *,
1593 struct dwarf2_cu *);
1594
1595 static void dwarf2_attach_fields_to_type (struct field_info *,
1596 struct type *, struct dwarf2_cu *);
1597
1598 static void dwarf2_add_member_fn (struct field_info *,
1599 struct die_info *, struct type *,
1600 struct dwarf2_cu *);
1601
1602 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1603 struct type *,
1604 struct dwarf2_cu *);
1605
1606 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1607
1608 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1609
1610 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1611
1612 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1613
1614 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1615
1616 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1617
1618 static struct type *read_module_type (struct die_info *die,
1619 struct dwarf2_cu *cu);
1620
1621 static const char *namespace_name (struct die_info *die,
1622 int *is_anonymous, struct dwarf2_cu *);
1623
1624 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1625
1626 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1627
1628 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1629 struct dwarf2_cu *);
1630
1631 static struct die_info *read_die_and_siblings_1
1632 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1633 struct die_info *);
1634
1635 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1636 const gdb_byte *info_ptr,
1637 const gdb_byte **new_info_ptr,
1638 struct die_info *parent);
1639
1640 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1641 struct die_info **, const gdb_byte *,
1642 int *, int);
1643
1644 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1645 struct die_info **, const gdb_byte *,
1646 int *);
1647
1648 static void process_die (struct die_info *, struct dwarf2_cu *);
1649
1650 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1651 struct obstack *);
1652
1653 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1654
1655 static const char *dwarf2_full_name (const char *name,
1656 struct die_info *die,
1657 struct dwarf2_cu *cu);
1658
1659 static const char *dwarf2_physname (const char *name, struct die_info *die,
1660 struct dwarf2_cu *cu);
1661
1662 static struct die_info *dwarf2_extension (struct die_info *die,
1663 struct dwarf2_cu **);
1664
1665 static const char *dwarf_tag_name (unsigned int);
1666
1667 static const char *dwarf_attr_name (unsigned int);
1668
1669 static const char *dwarf_form_name (unsigned int);
1670
1671 static char *dwarf_bool_name (unsigned int);
1672
1673 static const char *dwarf_type_encoding_name (unsigned int);
1674
1675 static struct die_info *sibling_die (struct die_info *);
1676
1677 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1678
1679 static void dump_die_for_error (struct die_info *);
1680
1681 static void dump_die_1 (struct ui_file *, int level, int max_level,
1682 struct die_info *);
1683
1684 /*static*/ void dump_die (struct die_info *, int max_level);
1685
1686 static void store_in_ref_table (struct die_info *,
1687 struct dwarf2_cu *);
1688
1689 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1690
1691 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1692
1693 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1694 const struct attribute *,
1695 struct dwarf2_cu **);
1696
1697 static struct die_info *follow_die_ref (struct die_info *,
1698 const struct attribute *,
1699 struct dwarf2_cu **);
1700
1701 static struct die_info *follow_die_sig (struct die_info *,
1702 const struct attribute *,
1703 struct dwarf2_cu **);
1704
1705 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1706 struct dwarf2_cu *);
1707
1708 static struct type *get_DW_AT_signature_type (struct die_info *,
1709 const struct attribute *,
1710 struct dwarf2_cu *);
1711
1712 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1713
1714 static void read_signatured_type (struct signatured_type *);
1715
1716 /* memory allocation interface */
1717
1718 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1719
1720 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1721
1722 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int,
1723 const char *, int);
1724
1725 static int attr_form_is_block (const struct attribute *);
1726
1727 static int attr_form_is_section_offset (const struct attribute *);
1728
1729 static int attr_form_is_constant (const struct attribute *);
1730
1731 static int attr_form_is_ref (const struct attribute *);
1732
1733 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1734 struct dwarf2_loclist_baton *baton,
1735 const struct attribute *attr);
1736
1737 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1738 struct symbol *sym,
1739 struct dwarf2_cu *cu,
1740 int is_block);
1741
1742 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1743 const gdb_byte *info_ptr,
1744 struct abbrev_info *abbrev);
1745
1746 static void free_stack_comp_unit (void *);
1747
1748 static hashval_t partial_die_hash (const void *item);
1749
1750 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1751
1752 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1753 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
1754
1755 static void init_one_comp_unit (struct dwarf2_cu *cu,
1756 struct dwarf2_per_cu_data *per_cu);
1757
1758 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1759 struct die_info *comp_unit_die,
1760 enum language pretend_language);
1761
1762 static void free_heap_comp_unit (void *);
1763
1764 static void free_cached_comp_units (void *);
1765
1766 static void age_cached_comp_units (void);
1767
1768 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1769
1770 static struct type *set_die_type (struct die_info *, struct type *,
1771 struct dwarf2_cu *);
1772
1773 static void create_all_comp_units (struct objfile *);
1774
1775 static int create_all_type_units (struct objfile *);
1776
1777 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1778 enum language);
1779
1780 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1781 enum language);
1782
1783 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1784 enum language);
1785
1786 static void dwarf2_add_dependence (struct dwarf2_cu *,
1787 struct dwarf2_per_cu_data *);
1788
1789 static void dwarf2_mark (struct dwarf2_cu *);
1790
1791 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1792
1793 static struct type *get_die_type_at_offset (sect_offset,
1794 struct dwarf2_per_cu_data *);
1795
1796 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1797
1798 static void dwarf2_release_queue (void *dummy);
1799
1800 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1801 enum language pretend_language);
1802
1803 static void process_queue (void);
1804
1805 static void find_file_and_directory (struct die_info *die,
1806 struct dwarf2_cu *cu,
1807 const char **name, const char **comp_dir);
1808
1809 static char *file_full_name (int file, struct line_header *lh,
1810 const char *comp_dir);
1811
1812 static const gdb_byte *read_and_check_comp_unit_head
1813 (struct comp_unit_head *header,
1814 struct dwarf2_section_info *section,
1815 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1816 int is_debug_types_section);
1817
1818 static void init_cutu_and_read_dies
1819 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1820 int use_existing_cu, int keep,
1821 die_reader_func_ftype *die_reader_func, void *data);
1822
1823 static void init_cutu_and_read_dies_simple
1824 (struct dwarf2_per_cu_data *this_cu,
1825 die_reader_func_ftype *die_reader_func, void *data);
1826
1827 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1828
1829 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1830
1831 static struct dwo_unit *lookup_dwo_unit_in_dwp
1832 (struct dwp_file *dwp_file, const char *comp_dir,
1833 ULONGEST signature, int is_debug_types);
1834
1835 static struct dwp_file *get_dwp_file (void);
1836
1837 static struct dwo_unit *lookup_dwo_comp_unit
1838 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1839
1840 static struct dwo_unit *lookup_dwo_type_unit
1841 (struct signatured_type *, const char *, const char *);
1842
1843 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1844
1845 static void free_dwo_file_cleanup (void *);
1846
1847 static void process_cu_includes (void);
1848
1849 static void check_producer (struct dwarf2_cu *cu);
1850 \f
1851 /* Various complaints about symbol reading that don't abort the process. */
1852
1853 static void
1854 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1855 {
1856 complaint (&symfile_complaints,
1857 _("statement list doesn't fit in .debug_line section"));
1858 }
1859
1860 static void
1861 dwarf2_debug_line_missing_file_complaint (void)
1862 {
1863 complaint (&symfile_complaints,
1864 _(".debug_line section has line data without a file"));
1865 }
1866
1867 static void
1868 dwarf2_debug_line_missing_end_sequence_complaint (void)
1869 {
1870 complaint (&symfile_complaints,
1871 _(".debug_line section has line "
1872 "program sequence without an end"));
1873 }
1874
1875 static void
1876 dwarf2_complex_location_expr_complaint (void)
1877 {
1878 complaint (&symfile_complaints, _("location expression too complex"));
1879 }
1880
1881 static void
1882 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1883 int arg3)
1884 {
1885 complaint (&symfile_complaints,
1886 _("const value length mismatch for '%s', got %d, expected %d"),
1887 arg1, arg2, arg3);
1888 }
1889
1890 static void
1891 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1892 {
1893 complaint (&symfile_complaints,
1894 _("debug info runs off end of %s section"
1895 " [in module %s]"),
1896 get_section_name (section),
1897 get_section_file_name (section));
1898 }
1899
1900 static void
1901 dwarf2_macro_malformed_definition_complaint (const char *arg1)
1902 {
1903 complaint (&symfile_complaints,
1904 _("macro debug info contains a "
1905 "malformed macro definition:\n`%s'"),
1906 arg1);
1907 }
1908
1909 static void
1910 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1911 {
1912 complaint (&symfile_complaints,
1913 _("invalid attribute class or form for '%s' in '%s'"),
1914 arg1, arg2);
1915 }
1916 \f
1917 #if WORDS_BIGENDIAN
1918
1919 /* Convert VALUE between big- and little-endian. */
1920 static offset_type
1921 byte_swap (offset_type value)
1922 {
1923 offset_type result;
1924
1925 result = (value & 0xff) << 24;
1926 result |= (value & 0xff00) << 8;
1927 result |= (value & 0xff0000) >> 8;
1928 result |= (value & 0xff000000) >> 24;
1929 return result;
1930 }
1931
1932 #define MAYBE_SWAP(V) byte_swap (V)
1933
1934 #else
1935 #define MAYBE_SWAP(V) (V)
1936 #endif /* WORDS_BIGENDIAN */
1937
1938 /* Read the given attribute value as an address, taking the attribute's
1939 form into account. */
1940
1941 static CORE_ADDR
1942 attr_value_as_address (struct attribute *attr)
1943 {
1944 CORE_ADDR addr;
1945
1946 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
1947 {
1948 /* Aside from a few clearly defined exceptions, attributes that
1949 contain an address must always be in DW_FORM_addr form.
1950 Unfortunately, some compilers happen to be violating this
1951 requirement by encoding addresses using other forms, such
1952 as DW_FORM_data4 for example. For those broken compilers,
1953 we try to do our best, without any guarantee of success,
1954 to interpret the address correctly. It would also be nice
1955 to generate a complaint, but that would require us to maintain
1956 a list of legitimate cases where a non-address form is allowed,
1957 as well as update callers to pass in at least the CU's DWARF
1958 version. This is more overhead than what we're willing to
1959 expand for a pretty rare case. */
1960 addr = DW_UNSND (attr);
1961 }
1962 else
1963 addr = DW_ADDR (attr);
1964
1965 return addr;
1966 }
1967
1968 /* The suffix for an index file. */
1969 #define INDEX_SUFFIX ".gdb-index"
1970
1971 /* Try to locate the sections we need for DWARF 2 debugging
1972 information and return true if we have enough to do something.
1973 NAMES points to the dwarf2 section names, or is NULL if the standard
1974 ELF names are used. */
1975
1976 int
1977 dwarf2_has_info (struct objfile *objfile,
1978 const struct dwarf2_debug_sections *names)
1979 {
1980 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1981 if (!dwarf2_per_objfile)
1982 {
1983 /* Initialize per-objfile state. */
1984 struct dwarf2_per_objfile *data
1985 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1986
1987 memset (data, 0, sizeof (*data));
1988 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1989 dwarf2_per_objfile = data;
1990
1991 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
1992 (void *) names);
1993 dwarf2_per_objfile->objfile = objfile;
1994 }
1995 return (!dwarf2_per_objfile->info.is_virtual
1996 && dwarf2_per_objfile->info.s.asection != NULL
1997 && !dwarf2_per_objfile->abbrev.is_virtual
1998 && dwarf2_per_objfile->abbrev.s.asection != NULL);
1999 }
2000
2001 /* Return the containing section of virtual section SECTION. */
2002
2003 static struct dwarf2_section_info *
2004 get_containing_section (const struct dwarf2_section_info *section)
2005 {
2006 gdb_assert (section->is_virtual);
2007 return section->s.containing_section;
2008 }
2009
2010 /* Return the bfd owner of SECTION. */
2011
2012 static struct bfd *
2013 get_section_bfd_owner (const struct dwarf2_section_info *section)
2014 {
2015 if (section->is_virtual)
2016 {
2017 section = get_containing_section (section);
2018 gdb_assert (!section->is_virtual);
2019 }
2020 return section->s.asection->owner;
2021 }
2022
2023 /* Return the bfd section of SECTION.
2024 Returns NULL if the section is not present. */
2025
2026 static asection *
2027 get_section_bfd_section (const struct dwarf2_section_info *section)
2028 {
2029 if (section->is_virtual)
2030 {
2031 section = get_containing_section (section);
2032 gdb_assert (!section->is_virtual);
2033 }
2034 return section->s.asection;
2035 }
2036
2037 /* Return the name of SECTION. */
2038
2039 static const char *
2040 get_section_name (const struct dwarf2_section_info *section)
2041 {
2042 asection *sectp = get_section_bfd_section (section);
2043
2044 gdb_assert (sectp != NULL);
2045 return bfd_section_name (get_section_bfd_owner (section), sectp);
2046 }
2047
2048 /* Return the name of the file SECTION is in. */
2049
2050 static const char *
2051 get_section_file_name (const struct dwarf2_section_info *section)
2052 {
2053 bfd *abfd = get_section_bfd_owner (section);
2054
2055 return bfd_get_filename (abfd);
2056 }
2057
2058 /* Return the id of SECTION.
2059 Returns 0 if SECTION doesn't exist. */
2060
2061 static int
2062 get_section_id (const struct dwarf2_section_info *section)
2063 {
2064 asection *sectp = get_section_bfd_section (section);
2065
2066 if (sectp == NULL)
2067 return 0;
2068 return sectp->id;
2069 }
2070
2071 /* Return the flags of SECTION.
2072 SECTION (or containing section if this is a virtual section) must exist. */
2073
2074 static int
2075 get_section_flags (const struct dwarf2_section_info *section)
2076 {
2077 asection *sectp = get_section_bfd_section (section);
2078
2079 gdb_assert (sectp != NULL);
2080 return bfd_get_section_flags (sectp->owner, sectp);
2081 }
2082
2083 /* When loading sections, we look either for uncompressed section or for
2084 compressed section names. */
2085
2086 static int
2087 section_is_p (const char *section_name,
2088 const struct dwarf2_section_names *names)
2089 {
2090 if (names->normal != NULL
2091 && strcmp (section_name, names->normal) == 0)
2092 return 1;
2093 if (names->compressed != NULL
2094 && strcmp (section_name, names->compressed) == 0)
2095 return 1;
2096 return 0;
2097 }
2098
2099 /* This function is mapped across the sections and remembers the
2100 offset and size of each of the debugging sections we are interested
2101 in. */
2102
2103 static void
2104 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
2105 {
2106 const struct dwarf2_debug_sections *names;
2107 flagword aflag = bfd_get_section_flags (abfd, sectp);
2108
2109 if (vnames == NULL)
2110 names = &dwarf2_elf_names;
2111 else
2112 names = (const struct dwarf2_debug_sections *) vnames;
2113
2114 if ((aflag & SEC_HAS_CONTENTS) == 0)
2115 {
2116 }
2117 else if (section_is_p (sectp->name, &names->info))
2118 {
2119 dwarf2_per_objfile->info.s.asection = sectp;
2120 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
2121 }
2122 else if (section_is_p (sectp->name, &names->abbrev))
2123 {
2124 dwarf2_per_objfile->abbrev.s.asection = sectp;
2125 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
2126 }
2127 else if (section_is_p (sectp->name, &names->line))
2128 {
2129 dwarf2_per_objfile->line.s.asection = sectp;
2130 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
2131 }
2132 else if (section_is_p (sectp->name, &names->loc))
2133 {
2134 dwarf2_per_objfile->loc.s.asection = sectp;
2135 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
2136 }
2137 else if (section_is_p (sectp->name, &names->macinfo))
2138 {
2139 dwarf2_per_objfile->macinfo.s.asection = sectp;
2140 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
2141 }
2142 else if (section_is_p (sectp->name, &names->macro))
2143 {
2144 dwarf2_per_objfile->macro.s.asection = sectp;
2145 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
2146 }
2147 else if (section_is_p (sectp->name, &names->str))
2148 {
2149 dwarf2_per_objfile->str.s.asection = sectp;
2150 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
2151 }
2152 else if (section_is_p (sectp->name, &names->addr))
2153 {
2154 dwarf2_per_objfile->addr.s.asection = sectp;
2155 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
2156 }
2157 else if (section_is_p (sectp->name, &names->frame))
2158 {
2159 dwarf2_per_objfile->frame.s.asection = sectp;
2160 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
2161 }
2162 else if (section_is_p (sectp->name, &names->eh_frame))
2163 {
2164 dwarf2_per_objfile->eh_frame.s.asection = sectp;
2165 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
2166 }
2167 else if (section_is_p (sectp->name, &names->ranges))
2168 {
2169 dwarf2_per_objfile->ranges.s.asection = sectp;
2170 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
2171 }
2172 else if (section_is_p (sectp->name, &names->types))
2173 {
2174 struct dwarf2_section_info type_section;
2175
2176 memset (&type_section, 0, sizeof (type_section));
2177 type_section.s.asection = sectp;
2178 type_section.size = bfd_get_section_size (sectp);
2179
2180 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
2181 &type_section);
2182 }
2183 else if (section_is_p (sectp->name, &names->gdb_index))
2184 {
2185 dwarf2_per_objfile->gdb_index.s.asection = sectp;
2186 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
2187 }
2188
2189 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
2190 && bfd_section_vma (abfd, sectp) == 0)
2191 dwarf2_per_objfile->has_section_at_zero = 1;
2192 }
2193
2194 /* A helper function that decides whether a section is empty,
2195 or not present. */
2196
2197 static int
2198 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2199 {
2200 if (section->is_virtual)
2201 return section->size == 0;
2202 return section->s.asection == NULL || section->size == 0;
2203 }
2204
2205 /* Read the contents of the section INFO.
2206 OBJFILE is the main object file, but not necessarily the file where
2207 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2208 of the DWO file.
2209 If the section is compressed, uncompress it before returning. */
2210
2211 static void
2212 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
2213 {
2214 asection *sectp;
2215 bfd *abfd;
2216 gdb_byte *buf, *retbuf;
2217
2218 if (info->readin)
2219 return;
2220 info->buffer = NULL;
2221 info->readin = 1;
2222
2223 if (dwarf2_section_empty_p (info))
2224 return;
2225
2226 sectp = get_section_bfd_section (info);
2227
2228 /* If this is a virtual section we need to read in the real one first. */
2229 if (info->is_virtual)
2230 {
2231 struct dwarf2_section_info *containing_section =
2232 get_containing_section (info);
2233
2234 gdb_assert (sectp != NULL);
2235 if ((sectp->flags & SEC_RELOC) != 0)
2236 {
2237 error (_("Dwarf Error: DWP format V2 with relocations is not"
2238 " supported in section %s [in module %s]"),
2239 get_section_name (info), get_section_file_name (info));
2240 }
2241 dwarf2_read_section (objfile, containing_section);
2242 /* Other code should have already caught virtual sections that don't
2243 fit. */
2244 gdb_assert (info->virtual_offset + info->size
2245 <= containing_section->size);
2246 /* If the real section is empty or there was a problem reading the
2247 section we shouldn't get here. */
2248 gdb_assert (containing_section->buffer != NULL);
2249 info->buffer = containing_section->buffer + info->virtual_offset;
2250 return;
2251 }
2252
2253 /* If the section has relocations, we must read it ourselves.
2254 Otherwise we attach it to the BFD. */
2255 if ((sectp->flags & SEC_RELOC) == 0)
2256 {
2257 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2258 return;
2259 }
2260
2261 buf = obstack_alloc (&objfile->objfile_obstack, info->size);
2262 info->buffer = buf;
2263
2264 /* When debugging .o files, we may need to apply relocations; see
2265 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2266 We never compress sections in .o files, so we only need to
2267 try this when the section is not compressed. */
2268 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2269 if (retbuf != NULL)
2270 {
2271 info->buffer = retbuf;
2272 return;
2273 }
2274
2275 abfd = get_section_bfd_owner (info);
2276 gdb_assert (abfd != NULL);
2277
2278 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2279 || bfd_bread (buf, info->size, abfd) != info->size)
2280 {
2281 error (_("Dwarf Error: Can't read DWARF data"
2282 " in section %s [in module %s]"),
2283 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2284 }
2285 }
2286
2287 /* A helper function that returns the size of a section in a safe way.
2288 If you are positive that the section has been read before using the
2289 size, then it is safe to refer to the dwarf2_section_info object's
2290 "size" field directly. In other cases, you must call this
2291 function, because for compressed sections the size field is not set
2292 correctly until the section has been read. */
2293
2294 static bfd_size_type
2295 dwarf2_section_size (struct objfile *objfile,
2296 struct dwarf2_section_info *info)
2297 {
2298 if (!info->readin)
2299 dwarf2_read_section (objfile, info);
2300 return info->size;
2301 }
2302
2303 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2304 SECTION_NAME. */
2305
2306 void
2307 dwarf2_get_section_info (struct objfile *objfile,
2308 enum dwarf2_section_enum sect,
2309 asection **sectp, const gdb_byte **bufp,
2310 bfd_size_type *sizep)
2311 {
2312 struct dwarf2_per_objfile *data
2313 = objfile_data (objfile, dwarf2_objfile_data_key);
2314 struct dwarf2_section_info *info;
2315
2316 /* We may see an objfile without any DWARF, in which case we just
2317 return nothing. */
2318 if (data == NULL)
2319 {
2320 *sectp = NULL;
2321 *bufp = NULL;
2322 *sizep = 0;
2323 return;
2324 }
2325 switch (sect)
2326 {
2327 case DWARF2_DEBUG_FRAME:
2328 info = &data->frame;
2329 break;
2330 case DWARF2_EH_FRAME:
2331 info = &data->eh_frame;
2332 break;
2333 default:
2334 gdb_assert_not_reached ("unexpected section");
2335 }
2336
2337 dwarf2_read_section (objfile, info);
2338
2339 *sectp = get_section_bfd_section (info);
2340 *bufp = info->buffer;
2341 *sizep = info->size;
2342 }
2343
2344 /* A helper function to find the sections for a .dwz file. */
2345
2346 static void
2347 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2348 {
2349 struct dwz_file *dwz_file = arg;
2350
2351 /* Note that we only support the standard ELF names, because .dwz
2352 is ELF-only (at the time of writing). */
2353 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2354 {
2355 dwz_file->abbrev.s.asection = sectp;
2356 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2357 }
2358 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2359 {
2360 dwz_file->info.s.asection = sectp;
2361 dwz_file->info.size = bfd_get_section_size (sectp);
2362 }
2363 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2364 {
2365 dwz_file->str.s.asection = sectp;
2366 dwz_file->str.size = bfd_get_section_size (sectp);
2367 }
2368 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2369 {
2370 dwz_file->line.s.asection = sectp;
2371 dwz_file->line.size = bfd_get_section_size (sectp);
2372 }
2373 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2374 {
2375 dwz_file->macro.s.asection = sectp;
2376 dwz_file->macro.size = bfd_get_section_size (sectp);
2377 }
2378 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2379 {
2380 dwz_file->gdb_index.s.asection = sectp;
2381 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2382 }
2383 }
2384
2385 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2386 there is no .gnu_debugaltlink section in the file. Error if there
2387 is such a section but the file cannot be found. */
2388
2389 static struct dwz_file *
2390 dwarf2_get_dwz_file (void)
2391 {
2392 bfd *dwz_bfd;
2393 char *data;
2394 struct cleanup *cleanup;
2395 const char *filename;
2396 struct dwz_file *result;
2397 bfd_size_type buildid_len_arg;
2398 size_t buildid_len;
2399 bfd_byte *buildid;
2400
2401 if (dwarf2_per_objfile->dwz_file != NULL)
2402 return dwarf2_per_objfile->dwz_file;
2403
2404 bfd_set_error (bfd_error_no_error);
2405 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2406 &buildid_len_arg, &buildid);
2407 if (data == NULL)
2408 {
2409 if (bfd_get_error () == bfd_error_no_error)
2410 return NULL;
2411 error (_("could not read '.gnu_debugaltlink' section: %s"),
2412 bfd_errmsg (bfd_get_error ()));
2413 }
2414 cleanup = make_cleanup (xfree, data);
2415 make_cleanup (xfree, buildid);
2416
2417 buildid_len = (size_t) buildid_len_arg;
2418
2419 filename = (const char *) data;
2420 if (!IS_ABSOLUTE_PATH (filename))
2421 {
2422 char *abs = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2423 char *rel;
2424
2425 make_cleanup (xfree, abs);
2426 abs = ldirname (abs);
2427 make_cleanup (xfree, abs);
2428
2429 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2430 make_cleanup (xfree, rel);
2431 filename = rel;
2432 }
2433
2434 /* First try the file name given in the section. If that doesn't
2435 work, try to use the build-id instead. */
2436 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
2437 if (dwz_bfd != NULL)
2438 {
2439 if (!build_id_verify (dwz_bfd, buildid_len, buildid))
2440 {
2441 gdb_bfd_unref (dwz_bfd);
2442 dwz_bfd = NULL;
2443 }
2444 }
2445
2446 if (dwz_bfd == NULL)
2447 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2448
2449 if (dwz_bfd == NULL)
2450 error (_("could not find '.gnu_debugaltlink' file for %s"),
2451 objfile_name (dwarf2_per_objfile->objfile));
2452
2453 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2454 struct dwz_file);
2455 result->dwz_bfd = dwz_bfd;
2456
2457 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2458
2459 do_cleanups (cleanup);
2460
2461 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, dwz_bfd);
2462 dwarf2_per_objfile->dwz_file = result;
2463 return result;
2464 }
2465 \f
2466 /* DWARF quick_symbols_functions support. */
2467
2468 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2469 unique line tables, so we maintain a separate table of all .debug_line
2470 derived entries to support the sharing.
2471 All the quick functions need is the list of file names. We discard the
2472 line_header when we're done and don't need to record it here. */
2473 struct quick_file_names
2474 {
2475 /* The data used to construct the hash key. */
2476 struct stmt_list_hash hash;
2477
2478 /* The number of entries in file_names, real_names. */
2479 unsigned int num_file_names;
2480
2481 /* The file names from the line table, after being run through
2482 file_full_name. */
2483 const char **file_names;
2484
2485 /* The file names from the line table after being run through
2486 gdb_realpath. These are computed lazily. */
2487 const char **real_names;
2488 };
2489
2490 /* When using the index (and thus not using psymtabs), each CU has an
2491 object of this type. This is used to hold information needed by
2492 the various "quick" methods. */
2493 struct dwarf2_per_cu_quick_data
2494 {
2495 /* The file table. This can be NULL if there was no file table
2496 or it's currently not read in.
2497 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2498 struct quick_file_names *file_names;
2499
2500 /* The corresponding symbol table. This is NULL if symbols for this
2501 CU have not yet been read. */
2502 struct symtab *symtab;
2503
2504 /* A temporary mark bit used when iterating over all CUs in
2505 expand_symtabs_matching. */
2506 unsigned int mark : 1;
2507
2508 /* True if we've tried to read the file table and found there isn't one.
2509 There will be no point in trying to read it again next time. */
2510 unsigned int no_file_data : 1;
2511 };
2512
2513 /* Utility hash function for a stmt_list_hash. */
2514
2515 static hashval_t
2516 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2517 {
2518 hashval_t v = 0;
2519
2520 if (stmt_list_hash->dwo_unit != NULL)
2521 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2522 v += stmt_list_hash->line_offset.sect_off;
2523 return v;
2524 }
2525
2526 /* Utility equality function for a stmt_list_hash. */
2527
2528 static int
2529 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2530 const struct stmt_list_hash *rhs)
2531 {
2532 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2533 return 0;
2534 if (lhs->dwo_unit != NULL
2535 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2536 return 0;
2537
2538 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2539 }
2540
2541 /* Hash function for a quick_file_names. */
2542
2543 static hashval_t
2544 hash_file_name_entry (const void *e)
2545 {
2546 const struct quick_file_names *file_data = e;
2547
2548 return hash_stmt_list_entry (&file_data->hash);
2549 }
2550
2551 /* Equality function for a quick_file_names. */
2552
2553 static int
2554 eq_file_name_entry (const void *a, const void *b)
2555 {
2556 const struct quick_file_names *ea = a;
2557 const struct quick_file_names *eb = b;
2558
2559 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2560 }
2561
2562 /* Delete function for a quick_file_names. */
2563
2564 static void
2565 delete_file_name_entry (void *e)
2566 {
2567 struct quick_file_names *file_data = e;
2568 int i;
2569
2570 for (i = 0; i < file_data->num_file_names; ++i)
2571 {
2572 xfree ((void*) file_data->file_names[i]);
2573 if (file_data->real_names)
2574 xfree ((void*) file_data->real_names[i]);
2575 }
2576
2577 /* The space for the struct itself lives on objfile_obstack,
2578 so we don't free it here. */
2579 }
2580
2581 /* Create a quick_file_names hash table. */
2582
2583 static htab_t
2584 create_quick_file_names_table (unsigned int nr_initial_entries)
2585 {
2586 return htab_create_alloc (nr_initial_entries,
2587 hash_file_name_entry, eq_file_name_entry,
2588 delete_file_name_entry, xcalloc, xfree);
2589 }
2590
2591 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2592 have to be created afterwards. You should call age_cached_comp_units after
2593 processing PER_CU->CU. dw2_setup must have been already called. */
2594
2595 static void
2596 load_cu (struct dwarf2_per_cu_data *per_cu)
2597 {
2598 if (per_cu->is_debug_types)
2599 load_full_type_unit (per_cu);
2600 else
2601 load_full_comp_unit (per_cu, language_minimal);
2602
2603 gdb_assert (per_cu->cu != NULL);
2604
2605 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2606 }
2607
2608 /* Read in the symbols for PER_CU. */
2609
2610 static void
2611 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2612 {
2613 struct cleanup *back_to;
2614
2615 /* Skip type_unit_groups, reading the type units they contain
2616 is handled elsewhere. */
2617 if (IS_TYPE_UNIT_GROUP (per_cu))
2618 return;
2619
2620 back_to = make_cleanup (dwarf2_release_queue, NULL);
2621
2622 if (dwarf2_per_objfile->using_index
2623 ? per_cu->v.quick->symtab == NULL
2624 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2625 {
2626 queue_comp_unit (per_cu, language_minimal);
2627 load_cu (per_cu);
2628
2629 /* If we just loaded a CU from a DWO, and we're working with an index
2630 that may badly handle TUs, load all the TUs in that DWO as well.
2631 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2632 if (!per_cu->is_debug_types
2633 && per_cu->cu->dwo_unit != NULL
2634 && dwarf2_per_objfile->index_table != NULL
2635 && dwarf2_per_objfile->index_table->version <= 7
2636 /* DWP files aren't supported yet. */
2637 && get_dwp_file () == NULL)
2638 queue_and_load_all_dwo_tus (per_cu);
2639 }
2640
2641 process_queue ();
2642
2643 /* Age the cache, releasing compilation units that have not
2644 been used recently. */
2645 age_cached_comp_units ();
2646
2647 do_cleanups (back_to);
2648 }
2649
2650 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2651 the objfile from which this CU came. Returns the resulting symbol
2652 table. */
2653
2654 static struct symtab *
2655 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2656 {
2657 gdb_assert (dwarf2_per_objfile->using_index);
2658 if (!per_cu->v.quick->symtab)
2659 {
2660 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2661 increment_reading_symtab ();
2662 dw2_do_instantiate_symtab (per_cu);
2663 process_cu_includes ();
2664 do_cleanups (back_to);
2665 }
2666 return per_cu->v.quick->symtab;
2667 }
2668
2669 /* Return the CU/TU given its index.
2670
2671 This is intended for loops like:
2672
2673 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2674 + dwarf2_per_objfile->n_type_units); ++i)
2675 {
2676 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
2677
2678 ...;
2679 }
2680 */
2681
2682 static struct dwarf2_per_cu_data *
2683 dw2_get_cutu (int index)
2684 {
2685 if (index >= dwarf2_per_objfile->n_comp_units)
2686 {
2687 index -= dwarf2_per_objfile->n_comp_units;
2688 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2689 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2690 }
2691
2692 return dwarf2_per_objfile->all_comp_units[index];
2693 }
2694
2695 /* Return the CU given its index.
2696 This differs from dw2_get_cutu in that it's for when you know INDEX
2697 refers to a CU. */
2698
2699 static struct dwarf2_per_cu_data *
2700 dw2_get_cu (int index)
2701 {
2702 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
2703
2704 return dwarf2_per_objfile->all_comp_units[index];
2705 }
2706
2707 /* A helper for create_cus_from_index that handles a given list of
2708 CUs. */
2709
2710 static void
2711 create_cus_from_index_list (struct objfile *objfile,
2712 const gdb_byte *cu_list, offset_type n_elements,
2713 struct dwarf2_section_info *section,
2714 int is_dwz,
2715 int base_offset)
2716 {
2717 offset_type i;
2718
2719 for (i = 0; i < n_elements; i += 2)
2720 {
2721 struct dwarf2_per_cu_data *the_cu;
2722 ULONGEST offset, length;
2723
2724 gdb_static_assert (sizeof (ULONGEST) >= 8);
2725 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2726 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2727 cu_list += 2 * 8;
2728
2729 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2730 struct dwarf2_per_cu_data);
2731 the_cu->offset.sect_off = offset;
2732 the_cu->length = length;
2733 the_cu->objfile = objfile;
2734 the_cu->section = section;
2735 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2736 struct dwarf2_per_cu_quick_data);
2737 the_cu->is_dwz = is_dwz;
2738 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
2739 }
2740 }
2741
2742 /* Read the CU list from the mapped index, and use it to create all
2743 the CU objects for this objfile. */
2744
2745 static void
2746 create_cus_from_index (struct objfile *objfile,
2747 const gdb_byte *cu_list, offset_type cu_list_elements,
2748 const gdb_byte *dwz_list, offset_type dwz_elements)
2749 {
2750 struct dwz_file *dwz;
2751
2752 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2753 dwarf2_per_objfile->all_comp_units
2754 = obstack_alloc (&objfile->objfile_obstack,
2755 dwarf2_per_objfile->n_comp_units
2756 * sizeof (struct dwarf2_per_cu_data *));
2757
2758 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2759 &dwarf2_per_objfile->info, 0, 0);
2760
2761 if (dwz_elements == 0)
2762 return;
2763
2764 dwz = dwarf2_get_dwz_file ();
2765 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2766 cu_list_elements / 2);
2767 }
2768
2769 /* Create the signatured type hash table from the index. */
2770
2771 static void
2772 create_signatured_type_table_from_index (struct objfile *objfile,
2773 struct dwarf2_section_info *section,
2774 const gdb_byte *bytes,
2775 offset_type elements)
2776 {
2777 offset_type i;
2778 htab_t sig_types_hash;
2779
2780 dwarf2_per_objfile->n_type_units
2781 = dwarf2_per_objfile->n_allocated_type_units
2782 = elements / 3;
2783 dwarf2_per_objfile->all_type_units
2784 = xmalloc (dwarf2_per_objfile->n_type_units
2785 * sizeof (struct signatured_type *));
2786
2787 sig_types_hash = allocate_signatured_type_table (objfile);
2788
2789 for (i = 0; i < elements; i += 3)
2790 {
2791 struct signatured_type *sig_type;
2792 ULONGEST offset, type_offset_in_tu, signature;
2793 void **slot;
2794
2795 gdb_static_assert (sizeof (ULONGEST) >= 8);
2796 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2797 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2798 BFD_ENDIAN_LITTLE);
2799 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2800 bytes += 3 * 8;
2801
2802 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2803 struct signatured_type);
2804 sig_type->signature = signature;
2805 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2806 sig_type->per_cu.is_debug_types = 1;
2807 sig_type->per_cu.section = section;
2808 sig_type->per_cu.offset.sect_off = offset;
2809 sig_type->per_cu.objfile = objfile;
2810 sig_type->per_cu.v.quick
2811 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2812 struct dwarf2_per_cu_quick_data);
2813
2814 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2815 *slot = sig_type;
2816
2817 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
2818 }
2819
2820 dwarf2_per_objfile->signatured_types = sig_types_hash;
2821 }
2822
2823 /* Read the address map data from the mapped index, and use it to
2824 populate the objfile's psymtabs_addrmap. */
2825
2826 static void
2827 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2828 {
2829 const gdb_byte *iter, *end;
2830 struct obstack temp_obstack;
2831 struct addrmap *mutable_map;
2832 struct cleanup *cleanup;
2833 CORE_ADDR baseaddr;
2834
2835 obstack_init (&temp_obstack);
2836 cleanup = make_cleanup_obstack_free (&temp_obstack);
2837 mutable_map = addrmap_create_mutable (&temp_obstack);
2838
2839 iter = index->address_table;
2840 end = iter + index->address_table_size;
2841
2842 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2843
2844 while (iter < end)
2845 {
2846 ULONGEST hi, lo, cu_index;
2847 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2848 iter += 8;
2849 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2850 iter += 8;
2851 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2852 iter += 4;
2853
2854 if (lo > hi)
2855 {
2856 complaint (&symfile_complaints,
2857 _(".gdb_index address table has invalid range (%s - %s)"),
2858 hex_string (lo), hex_string (hi));
2859 continue;
2860 }
2861
2862 if (cu_index >= dwarf2_per_objfile->n_comp_units)
2863 {
2864 complaint (&symfile_complaints,
2865 _(".gdb_index address table has invalid CU number %u"),
2866 (unsigned) cu_index);
2867 continue;
2868 }
2869
2870 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
2871 dw2_get_cutu (cu_index));
2872 }
2873
2874 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2875 &objfile->objfile_obstack);
2876 do_cleanups (cleanup);
2877 }
2878
2879 /* The hash function for strings in the mapped index. This is the same as
2880 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2881 implementation. This is necessary because the hash function is tied to the
2882 format of the mapped index file. The hash values do not have to match with
2883 SYMBOL_HASH_NEXT.
2884
2885 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2886
2887 static hashval_t
2888 mapped_index_string_hash (int index_version, const void *p)
2889 {
2890 const unsigned char *str = (const unsigned char *) p;
2891 hashval_t r = 0;
2892 unsigned char c;
2893
2894 while ((c = *str++) != 0)
2895 {
2896 if (index_version >= 5)
2897 c = tolower (c);
2898 r = r * 67 + c - 113;
2899 }
2900
2901 return r;
2902 }
2903
2904 /* Find a slot in the mapped index INDEX for the object named NAME.
2905 If NAME is found, set *VEC_OUT to point to the CU vector in the
2906 constant pool and return 1. If NAME cannot be found, return 0. */
2907
2908 static int
2909 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2910 offset_type **vec_out)
2911 {
2912 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2913 offset_type hash;
2914 offset_type slot, step;
2915 int (*cmp) (const char *, const char *);
2916
2917 if (current_language->la_language == language_cplus
2918 || current_language->la_language == language_java
2919 || current_language->la_language == language_fortran)
2920 {
2921 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2922 not contain any. */
2923 const char *paren = strchr (name, '(');
2924
2925 if (paren)
2926 {
2927 char *dup;
2928
2929 dup = xmalloc (paren - name + 1);
2930 memcpy (dup, name, paren - name);
2931 dup[paren - name] = 0;
2932
2933 make_cleanup (xfree, dup);
2934 name = dup;
2935 }
2936 }
2937
2938 /* Index version 4 did not support case insensitive searches. But the
2939 indices for case insensitive languages are built in lowercase, therefore
2940 simulate our NAME being searched is also lowercased. */
2941 hash = mapped_index_string_hash ((index->version == 4
2942 && case_sensitivity == case_sensitive_off
2943 ? 5 : index->version),
2944 name);
2945
2946 slot = hash & (index->symbol_table_slots - 1);
2947 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
2948 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
2949
2950 for (;;)
2951 {
2952 /* Convert a slot number to an offset into the table. */
2953 offset_type i = 2 * slot;
2954 const char *str;
2955 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
2956 {
2957 do_cleanups (back_to);
2958 return 0;
2959 }
2960
2961 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
2962 if (!cmp (name, str))
2963 {
2964 *vec_out = (offset_type *) (index->constant_pool
2965 + MAYBE_SWAP (index->symbol_table[i + 1]));
2966 do_cleanups (back_to);
2967 return 1;
2968 }
2969
2970 slot = (slot + step) & (index->symbol_table_slots - 1);
2971 }
2972 }
2973
2974 /* A helper function that reads the .gdb_index from SECTION and fills
2975 in MAP. FILENAME is the name of the file containing the section;
2976 it is used for error reporting. DEPRECATED_OK is nonzero if it is
2977 ok to use deprecated sections.
2978
2979 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
2980 out parameters that are filled in with information about the CU and
2981 TU lists in the section.
2982
2983 Returns 1 if all went well, 0 otherwise. */
2984
2985 static int
2986 read_index_from_section (struct objfile *objfile,
2987 const char *filename,
2988 int deprecated_ok,
2989 struct dwarf2_section_info *section,
2990 struct mapped_index *map,
2991 const gdb_byte **cu_list,
2992 offset_type *cu_list_elements,
2993 const gdb_byte **types_list,
2994 offset_type *types_list_elements)
2995 {
2996 const gdb_byte *addr;
2997 offset_type version;
2998 offset_type *metadata;
2999 int i;
3000
3001 if (dwarf2_section_empty_p (section))
3002 return 0;
3003
3004 /* Older elfutils strip versions could keep the section in the main
3005 executable while splitting it for the separate debug info file. */
3006 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
3007 return 0;
3008
3009 dwarf2_read_section (objfile, section);
3010
3011 addr = section->buffer;
3012 /* Version check. */
3013 version = MAYBE_SWAP (*(offset_type *) addr);
3014 /* Versions earlier than 3 emitted every copy of a psymbol. This
3015 causes the index to behave very poorly for certain requests. Version 3
3016 contained incomplete addrmap. So, it seems better to just ignore such
3017 indices. */
3018 if (version < 4)
3019 {
3020 static int warning_printed = 0;
3021 if (!warning_printed)
3022 {
3023 warning (_("Skipping obsolete .gdb_index section in %s."),
3024 filename);
3025 warning_printed = 1;
3026 }
3027 return 0;
3028 }
3029 /* Index version 4 uses a different hash function than index version
3030 5 and later.
3031
3032 Versions earlier than 6 did not emit psymbols for inlined
3033 functions. Using these files will cause GDB not to be able to
3034 set breakpoints on inlined functions by name, so we ignore these
3035 indices unless the user has done
3036 "set use-deprecated-index-sections on". */
3037 if (version < 6 && !deprecated_ok)
3038 {
3039 static int warning_printed = 0;
3040 if (!warning_printed)
3041 {
3042 warning (_("\
3043 Skipping deprecated .gdb_index section in %s.\n\
3044 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3045 to use the section anyway."),
3046 filename);
3047 warning_printed = 1;
3048 }
3049 return 0;
3050 }
3051 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3052 of the TU (for symbols coming from TUs),
3053 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3054 Plus gold-generated indices can have duplicate entries for global symbols,
3055 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3056 These are just performance bugs, and we can't distinguish gdb-generated
3057 indices from gold-generated ones, so issue no warning here. */
3058
3059 /* Indexes with higher version than the one supported by GDB may be no
3060 longer backward compatible. */
3061 if (version > 8)
3062 return 0;
3063
3064 map->version = version;
3065 map->total_size = section->size;
3066
3067 metadata = (offset_type *) (addr + sizeof (offset_type));
3068
3069 i = 0;
3070 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3071 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3072 / 8);
3073 ++i;
3074
3075 *types_list = addr + MAYBE_SWAP (metadata[i]);
3076 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3077 - MAYBE_SWAP (metadata[i]))
3078 / 8);
3079 ++i;
3080
3081 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3082 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3083 - MAYBE_SWAP (metadata[i]));
3084 ++i;
3085
3086 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3087 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3088 - MAYBE_SWAP (metadata[i]))
3089 / (2 * sizeof (offset_type)));
3090 ++i;
3091
3092 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3093
3094 return 1;
3095 }
3096
3097
3098 /* Read the index file. If everything went ok, initialize the "quick"
3099 elements of all the CUs and return 1. Otherwise, return 0. */
3100
3101 static int
3102 dwarf2_read_index (struct objfile *objfile)
3103 {
3104 struct mapped_index local_map, *map;
3105 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3106 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3107 struct dwz_file *dwz;
3108
3109 if (!read_index_from_section (objfile, objfile_name (objfile),
3110 use_deprecated_index_sections,
3111 &dwarf2_per_objfile->gdb_index, &local_map,
3112 &cu_list, &cu_list_elements,
3113 &types_list, &types_list_elements))
3114 return 0;
3115
3116 /* Don't use the index if it's empty. */
3117 if (local_map.symbol_table_slots == 0)
3118 return 0;
3119
3120 /* If there is a .dwz file, read it so we can get its CU list as
3121 well. */
3122 dwz = dwarf2_get_dwz_file ();
3123 if (dwz != NULL)
3124 {
3125 struct mapped_index dwz_map;
3126 const gdb_byte *dwz_types_ignore;
3127 offset_type dwz_types_elements_ignore;
3128
3129 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3130 1,
3131 &dwz->gdb_index, &dwz_map,
3132 &dwz_list, &dwz_list_elements,
3133 &dwz_types_ignore,
3134 &dwz_types_elements_ignore))
3135 {
3136 warning (_("could not read '.gdb_index' section from %s; skipping"),
3137 bfd_get_filename (dwz->dwz_bfd));
3138 return 0;
3139 }
3140 }
3141
3142 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3143 dwz_list_elements);
3144
3145 if (types_list_elements)
3146 {
3147 struct dwarf2_section_info *section;
3148
3149 /* We can only handle a single .debug_types when we have an
3150 index. */
3151 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3152 return 0;
3153
3154 section = VEC_index (dwarf2_section_info_def,
3155 dwarf2_per_objfile->types, 0);
3156
3157 create_signatured_type_table_from_index (objfile, section, types_list,
3158 types_list_elements);
3159 }
3160
3161 create_addrmap_from_index (objfile, &local_map);
3162
3163 map = obstack_alloc (&objfile->objfile_obstack, sizeof (struct mapped_index));
3164 *map = local_map;
3165
3166 dwarf2_per_objfile->index_table = map;
3167 dwarf2_per_objfile->using_index = 1;
3168 dwarf2_per_objfile->quick_file_names_table =
3169 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3170
3171 return 1;
3172 }
3173
3174 /* A helper for the "quick" functions which sets the global
3175 dwarf2_per_objfile according to OBJFILE. */
3176
3177 static void
3178 dw2_setup (struct objfile *objfile)
3179 {
3180 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
3181 gdb_assert (dwarf2_per_objfile);
3182 }
3183
3184 /* die_reader_func for dw2_get_file_names. */
3185
3186 static void
3187 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3188 const gdb_byte *info_ptr,
3189 struct die_info *comp_unit_die,
3190 int has_children,
3191 void *data)
3192 {
3193 struct dwarf2_cu *cu = reader->cu;
3194 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3195 struct objfile *objfile = dwarf2_per_objfile->objfile;
3196 struct dwarf2_per_cu_data *lh_cu;
3197 struct line_header *lh;
3198 struct attribute *attr;
3199 int i;
3200 const char *name, *comp_dir;
3201 void **slot;
3202 struct quick_file_names *qfn;
3203 unsigned int line_offset;
3204
3205 gdb_assert (! this_cu->is_debug_types);
3206
3207 /* Our callers never want to match partial units -- instead they
3208 will match the enclosing full CU. */
3209 if (comp_unit_die->tag == DW_TAG_partial_unit)
3210 {
3211 this_cu->v.quick->no_file_data = 1;
3212 return;
3213 }
3214
3215 lh_cu = this_cu;
3216 lh = NULL;
3217 slot = NULL;
3218 line_offset = 0;
3219
3220 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3221 if (attr)
3222 {
3223 struct quick_file_names find_entry;
3224
3225 line_offset = DW_UNSND (attr);
3226
3227 /* We may have already read in this line header (TU line header sharing).
3228 If we have we're done. */
3229 find_entry.hash.dwo_unit = cu->dwo_unit;
3230 find_entry.hash.line_offset.sect_off = line_offset;
3231 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3232 &find_entry, INSERT);
3233 if (*slot != NULL)
3234 {
3235 lh_cu->v.quick->file_names = *slot;
3236 return;
3237 }
3238
3239 lh = dwarf_decode_line_header (line_offset, cu);
3240 }
3241 if (lh == NULL)
3242 {
3243 lh_cu->v.quick->no_file_data = 1;
3244 return;
3245 }
3246
3247 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
3248 qfn->hash.dwo_unit = cu->dwo_unit;
3249 qfn->hash.line_offset.sect_off = line_offset;
3250 gdb_assert (slot != NULL);
3251 *slot = qfn;
3252
3253 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
3254
3255 qfn->num_file_names = lh->num_file_names;
3256 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
3257 lh->num_file_names * sizeof (char *));
3258 for (i = 0; i < lh->num_file_names; ++i)
3259 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
3260 qfn->real_names = NULL;
3261
3262 free_line_header (lh);
3263
3264 lh_cu->v.quick->file_names = qfn;
3265 }
3266
3267 /* A helper for the "quick" functions which attempts to read the line
3268 table for THIS_CU. */
3269
3270 static struct quick_file_names *
3271 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3272 {
3273 /* This should never be called for TUs. */
3274 gdb_assert (! this_cu->is_debug_types);
3275 /* Nor type unit groups. */
3276 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3277
3278 if (this_cu->v.quick->file_names != NULL)
3279 return this_cu->v.quick->file_names;
3280 /* If we know there is no line data, no point in looking again. */
3281 if (this_cu->v.quick->no_file_data)
3282 return NULL;
3283
3284 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3285
3286 if (this_cu->v.quick->no_file_data)
3287 return NULL;
3288 return this_cu->v.quick->file_names;
3289 }
3290
3291 /* A helper for the "quick" functions which computes and caches the
3292 real path for a given file name from the line table. */
3293
3294 static const char *
3295 dw2_get_real_path (struct objfile *objfile,
3296 struct quick_file_names *qfn, int index)
3297 {
3298 if (qfn->real_names == NULL)
3299 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3300 qfn->num_file_names, char *);
3301
3302 if (qfn->real_names[index] == NULL)
3303 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
3304
3305 return qfn->real_names[index];
3306 }
3307
3308 static struct symtab *
3309 dw2_find_last_source_symtab (struct objfile *objfile)
3310 {
3311 int index;
3312
3313 dw2_setup (objfile);
3314 index = dwarf2_per_objfile->n_comp_units - 1;
3315 return dw2_instantiate_symtab (dw2_get_cutu (index));
3316 }
3317
3318 /* Traversal function for dw2_forget_cached_source_info. */
3319
3320 static int
3321 dw2_free_cached_file_names (void **slot, void *info)
3322 {
3323 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3324
3325 if (file_data->real_names)
3326 {
3327 int i;
3328
3329 for (i = 0; i < file_data->num_file_names; ++i)
3330 {
3331 xfree ((void*) file_data->real_names[i]);
3332 file_data->real_names[i] = NULL;
3333 }
3334 }
3335
3336 return 1;
3337 }
3338
3339 static void
3340 dw2_forget_cached_source_info (struct objfile *objfile)
3341 {
3342 dw2_setup (objfile);
3343
3344 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3345 dw2_free_cached_file_names, NULL);
3346 }
3347
3348 /* Helper function for dw2_map_symtabs_matching_filename that expands
3349 the symtabs and calls the iterator. */
3350
3351 static int
3352 dw2_map_expand_apply (struct objfile *objfile,
3353 struct dwarf2_per_cu_data *per_cu,
3354 const char *name, const char *real_path,
3355 int (*callback) (struct symtab *, void *),
3356 void *data)
3357 {
3358 struct symtab *last_made = objfile->symtabs;
3359
3360 /* Don't visit already-expanded CUs. */
3361 if (per_cu->v.quick->symtab)
3362 return 0;
3363
3364 /* This may expand more than one symtab, and we want to iterate over
3365 all of them. */
3366 dw2_instantiate_symtab (per_cu);
3367
3368 return iterate_over_some_symtabs (name, real_path, callback, data,
3369 objfile->symtabs, last_made);
3370 }
3371
3372 /* Implementation of the map_symtabs_matching_filename method. */
3373
3374 static int
3375 dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
3376 const char *real_path,
3377 int (*callback) (struct symtab *, void *),
3378 void *data)
3379 {
3380 int i;
3381 const char *name_basename = lbasename (name);
3382
3383 dw2_setup (objfile);
3384
3385 /* The rule is CUs specify all the files, including those used by
3386 any TU, so there's no need to scan TUs here. */
3387
3388 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3389 {
3390 int j;
3391 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3392 struct quick_file_names *file_data;
3393
3394 /* We only need to look at symtabs not already expanded. */
3395 if (per_cu->v.quick->symtab)
3396 continue;
3397
3398 file_data = dw2_get_file_names (per_cu);
3399 if (file_data == NULL)
3400 continue;
3401
3402 for (j = 0; j < file_data->num_file_names; ++j)
3403 {
3404 const char *this_name = file_data->file_names[j];
3405 const char *this_real_name;
3406
3407 if (compare_filenames_for_search (this_name, name))
3408 {
3409 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3410 callback, data))
3411 return 1;
3412 continue;
3413 }
3414
3415 /* Before we invoke realpath, which can get expensive when many
3416 files are involved, do a quick comparison of the basenames. */
3417 if (! basenames_may_differ
3418 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3419 continue;
3420
3421 this_real_name = dw2_get_real_path (objfile, file_data, j);
3422 if (compare_filenames_for_search (this_real_name, name))
3423 {
3424 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3425 callback, data))
3426 return 1;
3427 continue;
3428 }
3429
3430 if (real_path != NULL)
3431 {
3432 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3433 gdb_assert (IS_ABSOLUTE_PATH (name));
3434 if (this_real_name != NULL
3435 && FILENAME_CMP (real_path, this_real_name) == 0)
3436 {
3437 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3438 callback, data))
3439 return 1;
3440 continue;
3441 }
3442 }
3443 }
3444 }
3445
3446 return 0;
3447 }
3448
3449 /* Struct used to manage iterating over all CUs looking for a symbol. */
3450
3451 struct dw2_symtab_iterator
3452 {
3453 /* The internalized form of .gdb_index. */
3454 struct mapped_index *index;
3455 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3456 int want_specific_block;
3457 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3458 Unused if !WANT_SPECIFIC_BLOCK. */
3459 int block_index;
3460 /* The kind of symbol we're looking for. */
3461 domain_enum domain;
3462 /* The list of CUs from the index entry of the symbol,
3463 or NULL if not found. */
3464 offset_type *vec;
3465 /* The next element in VEC to look at. */
3466 int next;
3467 /* The number of elements in VEC, or zero if there is no match. */
3468 int length;
3469 /* Have we seen a global version of the symbol?
3470 If so we can ignore all further global instances.
3471 This is to work around gold/15646, inefficient gold-generated
3472 indices. */
3473 int global_seen;
3474 };
3475
3476 /* Initialize the index symtab iterator ITER.
3477 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3478 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3479
3480 static void
3481 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3482 struct mapped_index *index,
3483 int want_specific_block,
3484 int block_index,
3485 domain_enum domain,
3486 const char *name)
3487 {
3488 iter->index = index;
3489 iter->want_specific_block = want_specific_block;
3490 iter->block_index = block_index;
3491 iter->domain = domain;
3492 iter->next = 0;
3493 iter->global_seen = 0;
3494
3495 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3496 iter->length = MAYBE_SWAP (*iter->vec);
3497 else
3498 {
3499 iter->vec = NULL;
3500 iter->length = 0;
3501 }
3502 }
3503
3504 /* Return the next matching CU or NULL if there are no more. */
3505
3506 static struct dwarf2_per_cu_data *
3507 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3508 {
3509 for ( ; iter->next < iter->length; ++iter->next)
3510 {
3511 offset_type cu_index_and_attrs =
3512 MAYBE_SWAP (iter->vec[iter->next + 1]);
3513 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3514 struct dwarf2_per_cu_data *per_cu;
3515 int want_static = iter->block_index != GLOBAL_BLOCK;
3516 /* This value is only valid for index versions >= 7. */
3517 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3518 gdb_index_symbol_kind symbol_kind =
3519 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3520 /* Only check the symbol attributes if they're present.
3521 Indices prior to version 7 don't record them,
3522 and indices >= 7 may elide them for certain symbols
3523 (gold does this). */
3524 int attrs_valid =
3525 (iter->index->version >= 7
3526 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3527
3528 /* Don't crash on bad data. */
3529 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3530 + dwarf2_per_objfile->n_type_units))
3531 {
3532 complaint (&symfile_complaints,
3533 _(".gdb_index entry has bad CU index"
3534 " [in module %s]"),
3535 objfile_name (dwarf2_per_objfile->objfile));
3536 continue;
3537 }
3538
3539 per_cu = dw2_get_cutu (cu_index);
3540
3541 /* Skip if already read in. */
3542 if (per_cu->v.quick->symtab)
3543 continue;
3544
3545 /* Check static vs global. */
3546 if (attrs_valid)
3547 {
3548 if (iter->want_specific_block
3549 && want_static != is_static)
3550 continue;
3551 /* Work around gold/15646. */
3552 if (!is_static && iter->global_seen)
3553 continue;
3554 if (!is_static)
3555 iter->global_seen = 1;
3556 }
3557
3558 /* Only check the symbol's kind if it has one. */
3559 if (attrs_valid)
3560 {
3561 switch (iter->domain)
3562 {
3563 case VAR_DOMAIN:
3564 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3565 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3566 /* Some types are also in VAR_DOMAIN. */
3567 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3568 continue;
3569 break;
3570 case STRUCT_DOMAIN:
3571 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3572 continue;
3573 break;
3574 case LABEL_DOMAIN:
3575 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3576 continue;
3577 break;
3578 default:
3579 break;
3580 }
3581 }
3582
3583 ++iter->next;
3584 return per_cu;
3585 }
3586
3587 return NULL;
3588 }
3589
3590 static struct symtab *
3591 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3592 const char *name, domain_enum domain)
3593 {
3594 struct symtab *stab_best = NULL;
3595 struct mapped_index *index;
3596
3597 dw2_setup (objfile);
3598
3599 index = dwarf2_per_objfile->index_table;
3600
3601 /* index is NULL if OBJF_READNOW. */
3602 if (index)
3603 {
3604 struct dw2_symtab_iterator iter;
3605 struct dwarf2_per_cu_data *per_cu;
3606
3607 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3608
3609 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3610 {
3611 struct symbol *sym = NULL;
3612 struct symtab *stab = dw2_instantiate_symtab (per_cu);
3613
3614 /* Some caution must be observed with overloaded functions
3615 and methods, since the index will not contain any overload
3616 information (but NAME might contain it). */
3617 if (stab->primary)
3618 {
3619 struct blockvector *bv = BLOCKVECTOR (stab);
3620 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3621
3622 sym = lookup_block_symbol (block, name, domain);
3623 }
3624
3625 if (sym && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3626 {
3627 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
3628 return stab;
3629
3630 stab_best = stab;
3631 }
3632
3633 /* Keep looking through other CUs. */
3634 }
3635 }
3636
3637 return stab_best;
3638 }
3639
3640 static void
3641 dw2_print_stats (struct objfile *objfile)
3642 {
3643 int i, total, count;
3644
3645 dw2_setup (objfile);
3646 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
3647 count = 0;
3648 for (i = 0; i < total; ++i)
3649 {
3650 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3651
3652 if (!per_cu->v.quick->symtab)
3653 ++count;
3654 }
3655 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3656 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3657 }
3658
3659 /* This dumps minimal information about the index.
3660 It is called via "mt print objfiles".
3661 One use is to verify .gdb_index has been loaded by the
3662 gdb.dwarf2/gdb-index.exp testcase. */
3663
3664 static void
3665 dw2_dump (struct objfile *objfile)
3666 {
3667 dw2_setup (objfile);
3668 gdb_assert (dwarf2_per_objfile->using_index);
3669 printf_filtered (".gdb_index:");
3670 if (dwarf2_per_objfile->index_table != NULL)
3671 {
3672 printf_filtered (" version %d\n",
3673 dwarf2_per_objfile->index_table->version);
3674 }
3675 else
3676 printf_filtered (" faked for \"readnow\"\n");
3677 printf_filtered ("\n");
3678 }
3679
3680 static void
3681 dw2_relocate (struct objfile *objfile,
3682 const struct section_offsets *new_offsets,
3683 const struct section_offsets *delta)
3684 {
3685 /* There's nothing to relocate here. */
3686 }
3687
3688 static void
3689 dw2_expand_symtabs_for_function (struct objfile *objfile,
3690 const char *func_name)
3691 {
3692 struct mapped_index *index;
3693
3694 dw2_setup (objfile);
3695
3696 index = dwarf2_per_objfile->index_table;
3697
3698 /* index is NULL if OBJF_READNOW. */
3699 if (index)
3700 {
3701 struct dw2_symtab_iterator iter;
3702 struct dwarf2_per_cu_data *per_cu;
3703
3704 /* Note: It doesn't matter what we pass for block_index here. */
3705 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3706 func_name);
3707
3708 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3709 dw2_instantiate_symtab (per_cu);
3710 }
3711 }
3712
3713 static void
3714 dw2_expand_all_symtabs (struct objfile *objfile)
3715 {
3716 int i;
3717
3718 dw2_setup (objfile);
3719
3720 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3721 + dwarf2_per_objfile->n_type_units); ++i)
3722 {
3723 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3724
3725 dw2_instantiate_symtab (per_cu);
3726 }
3727 }
3728
3729 static void
3730 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3731 const char *fullname)
3732 {
3733 int i;
3734
3735 dw2_setup (objfile);
3736
3737 /* We don't need to consider type units here.
3738 This is only called for examining code, e.g. expand_line_sal.
3739 There can be an order of magnitude (or more) more type units
3740 than comp units, and we avoid them if we can. */
3741
3742 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3743 {
3744 int j;
3745 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3746 struct quick_file_names *file_data;
3747
3748 /* We only need to look at symtabs not already expanded. */
3749 if (per_cu->v.quick->symtab)
3750 continue;
3751
3752 file_data = dw2_get_file_names (per_cu);
3753 if (file_data == NULL)
3754 continue;
3755
3756 for (j = 0; j < file_data->num_file_names; ++j)
3757 {
3758 const char *this_fullname = file_data->file_names[j];
3759
3760 if (filename_cmp (this_fullname, fullname) == 0)
3761 {
3762 dw2_instantiate_symtab (per_cu);
3763 break;
3764 }
3765 }
3766 }
3767 }
3768
3769 static void
3770 dw2_map_matching_symbols (struct objfile *objfile,
3771 const char * name, domain_enum namespace,
3772 int global,
3773 int (*callback) (struct block *,
3774 struct symbol *, void *),
3775 void *data, symbol_compare_ftype *match,
3776 symbol_compare_ftype *ordered_compare)
3777 {
3778 /* Currently unimplemented; used for Ada. The function can be called if the
3779 current language is Ada for a non-Ada objfile using GNU index. As Ada
3780 does not look for non-Ada symbols this function should just return. */
3781 }
3782
3783 static void
3784 dw2_expand_symtabs_matching
3785 (struct objfile *objfile,
3786 expand_symtabs_file_matcher_ftype *file_matcher,
3787 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
3788 enum search_domain kind,
3789 void *data)
3790 {
3791 int i;
3792 offset_type iter;
3793 struct mapped_index *index;
3794
3795 dw2_setup (objfile);
3796
3797 /* index_table is NULL if OBJF_READNOW. */
3798 if (!dwarf2_per_objfile->index_table)
3799 return;
3800 index = dwarf2_per_objfile->index_table;
3801
3802 if (file_matcher != NULL)
3803 {
3804 struct cleanup *cleanup;
3805 htab_t visited_found, visited_not_found;
3806
3807 visited_found = htab_create_alloc (10,
3808 htab_hash_pointer, htab_eq_pointer,
3809 NULL, xcalloc, xfree);
3810 cleanup = make_cleanup_htab_delete (visited_found);
3811 visited_not_found = htab_create_alloc (10,
3812 htab_hash_pointer, htab_eq_pointer,
3813 NULL, xcalloc, xfree);
3814 make_cleanup_htab_delete (visited_not_found);
3815
3816 /* The rule is CUs specify all the files, including those used by
3817 any TU, so there's no need to scan TUs here. */
3818
3819 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3820 {
3821 int j;
3822 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3823 struct quick_file_names *file_data;
3824 void **slot;
3825
3826 per_cu->v.quick->mark = 0;
3827
3828 /* We only need to look at symtabs not already expanded. */
3829 if (per_cu->v.quick->symtab)
3830 continue;
3831
3832 file_data = dw2_get_file_names (per_cu);
3833 if (file_data == NULL)
3834 continue;
3835
3836 if (htab_find (visited_not_found, file_data) != NULL)
3837 continue;
3838 else if (htab_find (visited_found, file_data) != NULL)
3839 {
3840 per_cu->v.quick->mark = 1;
3841 continue;
3842 }
3843
3844 for (j = 0; j < file_data->num_file_names; ++j)
3845 {
3846 const char *this_real_name;
3847
3848 if (file_matcher (file_data->file_names[j], data, 0))
3849 {
3850 per_cu->v.quick->mark = 1;
3851 break;
3852 }
3853
3854 /* Before we invoke realpath, which can get expensive when many
3855 files are involved, do a quick comparison of the basenames. */
3856 if (!basenames_may_differ
3857 && !file_matcher (lbasename (file_data->file_names[j]),
3858 data, 1))
3859 continue;
3860
3861 this_real_name = dw2_get_real_path (objfile, file_data, j);
3862 if (file_matcher (this_real_name, data, 0))
3863 {
3864 per_cu->v.quick->mark = 1;
3865 break;
3866 }
3867 }
3868
3869 slot = htab_find_slot (per_cu->v.quick->mark
3870 ? visited_found
3871 : visited_not_found,
3872 file_data, INSERT);
3873 *slot = file_data;
3874 }
3875
3876 do_cleanups (cleanup);
3877 }
3878
3879 for (iter = 0; iter < index->symbol_table_slots; ++iter)
3880 {
3881 offset_type idx = 2 * iter;
3882 const char *name;
3883 offset_type *vec, vec_len, vec_idx;
3884 int global_seen = 0;
3885
3886 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
3887 continue;
3888
3889 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
3890
3891 if (! (*symbol_matcher) (name, data))
3892 continue;
3893
3894 /* The name was matched, now expand corresponding CUs that were
3895 marked. */
3896 vec = (offset_type *) (index->constant_pool
3897 + MAYBE_SWAP (index->symbol_table[idx + 1]));
3898 vec_len = MAYBE_SWAP (vec[0]);
3899 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3900 {
3901 struct dwarf2_per_cu_data *per_cu;
3902 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
3903 /* This value is only valid for index versions >= 7. */
3904 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3905 gdb_index_symbol_kind symbol_kind =
3906 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3907 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3908 /* Only check the symbol attributes if they're present.
3909 Indices prior to version 7 don't record them,
3910 and indices >= 7 may elide them for certain symbols
3911 (gold does this). */
3912 int attrs_valid =
3913 (index->version >= 7
3914 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3915
3916 /* Work around gold/15646. */
3917 if (attrs_valid)
3918 {
3919 if (!is_static && global_seen)
3920 continue;
3921 if (!is_static)
3922 global_seen = 1;
3923 }
3924
3925 /* Only check the symbol's kind if it has one. */
3926 if (attrs_valid)
3927 {
3928 switch (kind)
3929 {
3930 case VARIABLES_DOMAIN:
3931 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
3932 continue;
3933 break;
3934 case FUNCTIONS_DOMAIN:
3935 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
3936 continue;
3937 break;
3938 case TYPES_DOMAIN:
3939 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3940 continue;
3941 break;
3942 default:
3943 break;
3944 }
3945 }
3946
3947 /* Don't crash on bad data. */
3948 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3949 + dwarf2_per_objfile->n_type_units))
3950 {
3951 complaint (&symfile_complaints,
3952 _(".gdb_index entry has bad CU index"
3953 " [in module %s]"), objfile_name (objfile));
3954 continue;
3955 }
3956
3957 per_cu = dw2_get_cutu (cu_index);
3958 if (file_matcher == NULL || per_cu->v.quick->mark)
3959 dw2_instantiate_symtab (per_cu);
3960 }
3961 }
3962 }
3963
3964 /* A helper for dw2_find_pc_sect_symtab which finds the most specific
3965 symtab. */
3966
3967 static struct symtab *
3968 recursively_find_pc_sect_symtab (struct symtab *symtab, CORE_ADDR pc)
3969 {
3970 int i;
3971
3972 if (BLOCKVECTOR (symtab) != NULL
3973 && blockvector_contains_pc (BLOCKVECTOR (symtab), pc))
3974 return symtab;
3975
3976 if (symtab->includes == NULL)
3977 return NULL;
3978
3979 for (i = 0; symtab->includes[i]; ++i)
3980 {
3981 struct symtab *s = symtab->includes[i];
3982
3983 s = recursively_find_pc_sect_symtab (s, pc);
3984 if (s != NULL)
3985 return s;
3986 }
3987
3988 return NULL;
3989 }
3990
3991 static struct symtab *
3992 dw2_find_pc_sect_symtab (struct objfile *objfile,
3993 struct bound_minimal_symbol msymbol,
3994 CORE_ADDR pc,
3995 struct obj_section *section,
3996 int warn_if_readin)
3997 {
3998 struct dwarf2_per_cu_data *data;
3999 struct symtab *result;
4000
4001 dw2_setup (objfile);
4002
4003 if (!objfile->psymtabs_addrmap)
4004 return NULL;
4005
4006 data = addrmap_find (objfile->psymtabs_addrmap, pc);
4007 if (!data)
4008 return NULL;
4009
4010 if (warn_if_readin && data->v.quick->symtab)
4011 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
4012 paddress (get_objfile_arch (objfile), pc));
4013
4014 result = recursively_find_pc_sect_symtab (dw2_instantiate_symtab (data), pc);
4015 gdb_assert (result != NULL);
4016 return result;
4017 }
4018
4019 static void
4020 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
4021 void *data, int need_fullname)
4022 {
4023 int i;
4024 struct cleanup *cleanup;
4025 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
4026 NULL, xcalloc, xfree);
4027
4028 cleanup = make_cleanup_htab_delete (visited);
4029 dw2_setup (objfile);
4030
4031 /* The rule is CUs specify all the files, including those used by
4032 any TU, so there's no need to scan TUs here.
4033 We can ignore file names coming from already-expanded CUs. */
4034
4035 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4036 {
4037 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4038
4039 if (per_cu->v.quick->symtab)
4040 {
4041 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
4042 INSERT);
4043
4044 *slot = per_cu->v.quick->file_names;
4045 }
4046 }
4047
4048 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4049 {
4050 int j;
4051 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4052 struct quick_file_names *file_data;
4053 void **slot;
4054
4055 /* We only need to look at symtabs not already expanded. */
4056 if (per_cu->v.quick->symtab)
4057 continue;
4058
4059 file_data = dw2_get_file_names (per_cu);
4060 if (file_data == NULL)
4061 continue;
4062
4063 slot = htab_find_slot (visited, file_data, INSERT);
4064 if (*slot)
4065 {
4066 /* Already visited. */
4067 continue;
4068 }
4069 *slot = file_data;
4070
4071 for (j = 0; j < file_data->num_file_names; ++j)
4072 {
4073 const char *this_real_name;
4074
4075 if (need_fullname)
4076 this_real_name = dw2_get_real_path (objfile, file_data, j);
4077 else
4078 this_real_name = NULL;
4079 (*fun) (file_data->file_names[j], this_real_name, data);
4080 }
4081 }
4082
4083 do_cleanups (cleanup);
4084 }
4085
4086 static int
4087 dw2_has_symbols (struct objfile *objfile)
4088 {
4089 return 1;
4090 }
4091
4092 const struct quick_symbol_functions dwarf2_gdb_index_functions =
4093 {
4094 dw2_has_symbols,
4095 dw2_find_last_source_symtab,
4096 dw2_forget_cached_source_info,
4097 dw2_map_symtabs_matching_filename,
4098 dw2_lookup_symbol,
4099 dw2_print_stats,
4100 dw2_dump,
4101 dw2_relocate,
4102 dw2_expand_symtabs_for_function,
4103 dw2_expand_all_symtabs,
4104 dw2_expand_symtabs_with_fullname,
4105 dw2_map_matching_symbols,
4106 dw2_expand_symtabs_matching,
4107 dw2_find_pc_sect_symtab,
4108 dw2_map_symbol_filenames
4109 };
4110
4111 /* Initialize for reading DWARF for this objfile. Return 0 if this
4112 file will use psymtabs, or 1 if using the GNU index. */
4113
4114 int
4115 dwarf2_initialize_objfile (struct objfile *objfile)
4116 {
4117 /* If we're about to read full symbols, don't bother with the
4118 indices. In this case we also don't care if some other debug
4119 format is making psymtabs, because they are all about to be
4120 expanded anyway. */
4121 if ((objfile->flags & OBJF_READNOW))
4122 {
4123 int i;
4124
4125 dwarf2_per_objfile->using_index = 1;
4126 create_all_comp_units (objfile);
4127 create_all_type_units (objfile);
4128 dwarf2_per_objfile->quick_file_names_table =
4129 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
4130
4131 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
4132 + dwarf2_per_objfile->n_type_units); ++i)
4133 {
4134 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4135
4136 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4137 struct dwarf2_per_cu_quick_data);
4138 }
4139
4140 /* Return 1 so that gdb sees the "quick" functions. However,
4141 these functions will be no-ops because we will have expanded
4142 all symtabs. */
4143 return 1;
4144 }
4145
4146 if (dwarf2_read_index (objfile))
4147 return 1;
4148
4149 return 0;
4150 }
4151
4152 \f
4153
4154 /* Build a partial symbol table. */
4155
4156 void
4157 dwarf2_build_psymtabs (struct objfile *objfile)
4158 {
4159 volatile struct gdb_exception except;
4160
4161 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
4162 {
4163 init_psymbol_list (objfile, 1024);
4164 }
4165
4166 TRY_CATCH (except, RETURN_MASK_ERROR)
4167 {
4168 /* This isn't really ideal: all the data we allocate on the
4169 objfile's obstack is still uselessly kept around. However,
4170 freeing it seems unsafe. */
4171 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
4172
4173 dwarf2_build_psymtabs_hard (objfile);
4174 discard_cleanups (cleanups);
4175 }
4176 if (except.reason < 0)
4177 exception_print (gdb_stderr, except);
4178 }
4179
4180 /* Return the total length of the CU described by HEADER. */
4181
4182 static unsigned int
4183 get_cu_length (const struct comp_unit_head *header)
4184 {
4185 return header->initial_length_size + header->length;
4186 }
4187
4188 /* Return TRUE if OFFSET is within CU_HEADER. */
4189
4190 static inline int
4191 offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
4192 {
4193 sect_offset bottom = { cu_header->offset.sect_off };
4194 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
4195
4196 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
4197 }
4198
4199 /* Find the base address of the compilation unit for range lists and
4200 location lists. It will normally be specified by DW_AT_low_pc.
4201 In DWARF-3 draft 4, the base address could be overridden by
4202 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4203 compilation units with discontinuous ranges. */
4204
4205 static void
4206 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4207 {
4208 struct attribute *attr;
4209
4210 cu->base_known = 0;
4211 cu->base_address = 0;
4212
4213 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4214 if (attr)
4215 {
4216 cu->base_address = attr_value_as_address (attr);
4217 cu->base_known = 1;
4218 }
4219 else
4220 {
4221 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4222 if (attr)
4223 {
4224 cu->base_address = attr_value_as_address (attr);
4225 cu->base_known = 1;
4226 }
4227 }
4228 }
4229
4230 /* Read in the comp unit header information from the debug_info at info_ptr.
4231 NOTE: This leaves members offset, first_die_offset to be filled in
4232 by the caller. */
4233
4234 static const gdb_byte *
4235 read_comp_unit_head (struct comp_unit_head *cu_header,
4236 const gdb_byte *info_ptr, bfd *abfd)
4237 {
4238 int signed_addr;
4239 unsigned int bytes_read;
4240
4241 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4242 cu_header->initial_length_size = bytes_read;
4243 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
4244 info_ptr += bytes_read;
4245 cu_header->version = read_2_bytes (abfd, info_ptr);
4246 info_ptr += 2;
4247 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
4248 &bytes_read);
4249 info_ptr += bytes_read;
4250 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4251 info_ptr += 1;
4252 signed_addr = bfd_get_sign_extend_vma (abfd);
4253 if (signed_addr < 0)
4254 internal_error (__FILE__, __LINE__,
4255 _("read_comp_unit_head: dwarf from non elf file"));
4256 cu_header->signed_addr_p = signed_addr;
4257
4258 return info_ptr;
4259 }
4260
4261 /* Helper function that returns the proper abbrev section for
4262 THIS_CU. */
4263
4264 static struct dwarf2_section_info *
4265 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4266 {
4267 struct dwarf2_section_info *abbrev;
4268
4269 if (this_cu->is_dwz)
4270 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4271 else
4272 abbrev = &dwarf2_per_objfile->abbrev;
4273
4274 return abbrev;
4275 }
4276
4277 /* Subroutine of read_and_check_comp_unit_head and
4278 read_and_check_type_unit_head to simplify them.
4279 Perform various error checking on the header. */
4280
4281 static void
4282 error_check_comp_unit_head (struct comp_unit_head *header,
4283 struct dwarf2_section_info *section,
4284 struct dwarf2_section_info *abbrev_section)
4285 {
4286 bfd *abfd = get_section_bfd_owner (section);
4287 const char *filename = get_section_file_name (section);
4288
4289 if (header->version != 2 && header->version != 3 && header->version != 4)
4290 error (_("Dwarf Error: wrong version in compilation unit header "
4291 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
4292 filename);
4293
4294 if (header->abbrev_offset.sect_off
4295 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
4296 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
4297 "(offset 0x%lx + 6) [in module %s]"),
4298 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
4299 filename);
4300
4301 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4302 avoid potential 32-bit overflow. */
4303 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
4304 > section->size)
4305 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4306 "(offset 0x%lx + 0) [in module %s]"),
4307 (long) header->length, (long) header->offset.sect_off,
4308 filename);
4309 }
4310
4311 /* Read in a CU/TU header and perform some basic error checking.
4312 The contents of the header are stored in HEADER.
4313 The result is a pointer to the start of the first DIE. */
4314
4315 static const gdb_byte *
4316 read_and_check_comp_unit_head (struct comp_unit_head *header,
4317 struct dwarf2_section_info *section,
4318 struct dwarf2_section_info *abbrev_section,
4319 const gdb_byte *info_ptr,
4320 int is_debug_types_section)
4321 {
4322 const gdb_byte *beg_of_comp_unit = info_ptr;
4323 bfd *abfd = get_section_bfd_owner (section);
4324
4325 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4326
4327 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4328
4329 /* If we're reading a type unit, skip over the signature and
4330 type_offset fields. */
4331 if (is_debug_types_section)
4332 info_ptr += 8 /*signature*/ + header->offset_size;
4333
4334 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4335
4336 error_check_comp_unit_head (header, section, abbrev_section);
4337
4338 return info_ptr;
4339 }
4340
4341 /* Read in the types comp unit header information from .debug_types entry at
4342 types_ptr. The result is a pointer to one past the end of the header. */
4343
4344 static const gdb_byte *
4345 read_and_check_type_unit_head (struct comp_unit_head *header,
4346 struct dwarf2_section_info *section,
4347 struct dwarf2_section_info *abbrev_section,
4348 const gdb_byte *info_ptr,
4349 ULONGEST *signature,
4350 cu_offset *type_offset_in_tu)
4351 {
4352 const gdb_byte *beg_of_comp_unit = info_ptr;
4353 bfd *abfd = get_section_bfd_owner (section);
4354
4355 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4356
4357 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4358
4359 /* If we're reading a type unit, skip over the signature and
4360 type_offset fields. */
4361 if (signature != NULL)
4362 *signature = read_8_bytes (abfd, info_ptr);
4363 info_ptr += 8;
4364 if (type_offset_in_tu != NULL)
4365 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4366 header->offset_size);
4367 info_ptr += header->offset_size;
4368
4369 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4370
4371 error_check_comp_unit_head (header, section, abbrev_section);
4372
4373 return info_ptr;
4374 }
4375
4376 /* Fetch the abbreviation table offset from a comp or type unit header. */
4377
4378 static sect_offset
4379 read_abbrev_offset (struct dwarf2_section_info *section,
4380 sect_offset offset)
4381 {
4382 bfd *abfd = get_section_bfd_owner (section);
4383 const gdb_byte *info_ptr;
4384 unsigned int length, initial_length_size, offset_size;
4385 sect_offset abbrev_offset;
4386
4387 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4388 info_ptr = section->buffer + offset.sect_off;
4389 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4390 offset_size = initial_length_size == 4 ? 4 : 8;
4391 info_ptr += initial_length_size + 2 /*version*/;
4392 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4393 return abbrev_offset;
4394 }
4395
4396 /* Allocate a new partial symtab for file named NAME and mark this new
4397 partial symtab as being an include of PST. */
4398
4399 static void
4400 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
4401 struct objfile *objfile)
4402 {
4403 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4404
4405 if (!IS_ABSOLUTE_PATH (subpst->filename))
4406 {
4407 /* It shares objfile->objfile_obstack. */
4408 subpst->dirname = pst->dirname;
4409 }
4410
4411 subpst->section_offsets = pst->section_offsets;
4412 subpst->textlow = 0;
4413 subpst->texthigh = 0;
4414
4415 subpst->dependencies = (struct partial_symtab **)
4416 obstack_alloc (&objfile->objfile_obstack,
4417 sizeof (struct partial_symtab *));
4418 subpst->dependencies[0] = pst;
4419 subpst->number_of_dependencies = 1;
4420
4421 subpst->globals_offset = 0;
4422 subpst->n_global_syms = 0;
4423 subpst->statics_offset = 0;
4424 subpst->n_static_syms = 0;
4425 subpst->symtab = NULL;
4426 subpst->read_symtab = pst->read_symtab;
4427 subpst->readin = 0;
4428
4429 /* No private part is necessary for include psymtabs. This property
4430 can be used to differentiate between such include psymtabs and
4431 the regular ones. */
4432 subpst->read_symtab_private = NULL;
4433 }
4434
4435 /* Read the Line Number Program data and extract the list of files
4436 included by the source file represented by PST. Build an include
4437 partial symtab for each of these included files. */
4438
4439 static void
4440 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4441 struct die_info *die,
4442 struct partial_symtab *pst)
4443 {
4444 struct line_header *lh = NULL;
4445 struct attribute *attr;
4446
4447 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4448 if (attr)
4449 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
4450 if (lh == NULL)
4451 return; /* No linetable, so no includes. */
4452
4453 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4454 dwarf_decode_lines (lh, pst->dirname, cu, pst, 1);
4455
4456 free_line_header (lh);
4457 }
4458
4459 static hashval_t
4460 hash_signatured_type (const void *item)
4461 {
4462 const struct signatured_type *sig_type = item;
4463
4464 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4465 return sig_type->signature;
4466 }
4467
4468 static int
4469 eq_signatured_type (const void *item_lhs, const void *item_rhs)
4470 {
4471 const struct signatured_type *lhs = item_lhs;
4472 const struct signatured_type *rhs = item_rhs;
4473
4474 return lhs->signature == rhs->signature;
4475 }
4476
4477 /* Allocate a hash table for signatured types. */
4478
4479 static htab_t
4480 allocate_signatured_type_table (struct objfile *objfile)
4481 {
4482 return htab_create_alloc_ex (41,
4483 hash_signatured_type,
4484 eq_signatured_type,
4485 NULL,
4486 &objfile->objfile_obstack,
4487 hashtab_obstack_allocate,
4488 dummy_obstack_deallocate);
4489 }
4490
4491 /* A helper function to add a signatured type CU to a table. */
4492
4493 static int
4494 add_signatured_type_cu_to_table (void **slot, void *datum)
4495 {
4496 struct signatured_type *sigt = *slot;
4497 struct signatured_type ***datap = datum;
4498
4499 **datap = sigt;
4500 ++*datap;
4501
4502 return 1;
4503 }
4504
4505 /* Create the hash table of all entries in the .debug_types
4506 (or .debug_types.dwo) section(s).
4507 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4508 otherwise it is NULL.
4509
4510 The result is a pointer to the hash table or NULL if there are no types.
4511
4512 Note: This function processes DWO files only, not DWP files. */
4513
4514 static htab_t
4515 create_debug_types_hash_table (struct dwo_file *dwo_file,
4516 VEC (dwarf2_section_info_def) *types)
4517 {
4518 struct objfile *objfile = dwarf2_per_objfile->objfile;
4519 htab_t types_htab = NULL;
4520 int ix;
4521 struct dwarf2_section_info *section;
4522 struct dwarf2_section_info *abbrev_section;
4523
4524 if (VEC_empty (dwarf2_section_info_def, types))
4525 return NULL;
4526
4527 abbrev_section = (dwo_file != NULL
4528 ? &dwo_file->sections.abbrev
4529 : &dwarf2_per_objfile->abbrev);
4530
4531 if (dwarf2_read_debug)
4532 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4533 dwo_file ? ".dwo" : "",
4534 get_section_file_name (abbrev_section));
4535
4536 for (ix = 0;
4537 VEC_iterate (dwarf2_section_info_def, types, ix, section);
4538 ++ix)
4539 {
4540 bfd *abfd;
4541 const gdb_byte *info_ptr, *end_ptr;
4542
4543 dwarf2_read_section (objfile, section);
4544 info_ptr = section->buffer;
4545
4546 if (info_ptr == NULL)
4547 continue;
4548
4549 /* We can't set abfd until now because the section may be empty or
4550 not present, in which case the bfd is unknown. */
4551 abfd = get_section_bfd_owner (section);
4552
4553 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4554 because we don't need to read any dies: the signature is in the
4555 header. */
4556
4557 end_ptr = info_ptr + section->size;
4558 while (info_ptr < end_ptr)
4559 {
4560 sect_offset offset;
4561 cu_offset type_offset_in_tu;
4562 ULONGEST signature;
4563 struct signatured_type *sig_type;
4564 struct dwo_unit *dwo_tu;
4565 void **slot;
4566 const gdb_byte *ptr = info_ptr;
4567 struct comp_unit_head header;
4568 unsigned int length;
4569
4570 offset.sect_off = ptr - section->buffer;
4571
4572 /* We need to read the type's signature in order to build the hash
4573 table, but we don't need anything else just yet. */
4574
4575 ptr = read_and_check_type_unit_head (&header, section,
4576 abbrev_section, ptr,
4577 &signature, &type_offset_in_tu);
4578
4579 length = get_cu_length (&header);
4580
4581 /* Skip dummy type units. */
4582 if (ptr >= info_ptr + length
4583 || peek_abbrev_code (abfd, ptr) == 0)
4584 {
4585 info_ptr += length;
4586 continue;
4587 }
4588
4589 if (types_htab == NULL)
4590 {
4591 if (dwo_file)
4592 types_htab = allocate_dwo_unit_table (objfile);
4593 else
4594 types_htab = allocate_signatured_type_table (objfile);
4595 }
4596
4597 if (dwo_file)
4598 {
4599 sig_type = NULL;
4600 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4601 struct dwo_unit);
4602 dwo_tu->dwo_file = dwo_file;
4603 dwo_tu->signature = signature;
4604 dwo_tu->type_offset_in_tu = type_offset_in_tu;
4605 dwo_tu->section = section;
4606 dwo_tu->offset = offset;
4607 dwo_tu->length = length;
4608 }
4609 else
4610 {
4611 /* N.B.: type_offset is not usable if this type uses a DWO file.
4612 The real type_offset is in the DWO file. */
4613 dwo_tu = NULL;
4614 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4615 struct signatured_type);
4616 sig_type->signature = signature;
4617 sig_type->type_offset_in_tu = type_offset_in_tu;
4618 sig_type->per_cu.objfile = objfile;
4619 sig_type->per_cu.is_debug_types = 1;
4620 sig_type->per_cu.section = section;
4621 sig_type->per_cu.offset = offset;
4622 sig_type->per_cu.length = length;
4623 }
4624
4625 slot = htab_find_slot (types_htab,
4626 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4627 INSERT);
4628 gdb_assert (slot != NULL);
4629 if (*slot != NULL)
4630 {
4631 sect_offset dup_offset;
4632
4633 if (dwo_file)
4634 {
4635 const struct dwo_unit *dup_tu = *slot;
4636
4637 dup_offset = dup_tu->offset;
4638 }
4639 else
4640 {
4641 const struct signatured_type *dup_tu = *slot;
4642
4643 dup_offset = dup_tu->per_cu.offset;
4644 }
4645
4646 complaint (&symfile_complaints,
4647 _("debug type entry at offset 0x%x is duplicate to"
4648 " the entry at offset 0x%x, signature %s"),
4649 offset.sect_off, dup_offset.sect_off,
4650 hex_string (signature));
4651 }
4652 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4653
4654 if (dwarf2_read_debug > 1)
4655 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
4656 offset.sect_off,
4657 hex_string (signature));
4658
4659 info_ptr += length;
4660 }
4661 }
4662
4663 return types_htab;
4664 }
4665
4666 /* Create the hash table of all entries in the .debug_types section,
4667 and initialize all_type_units.
4668 The result is zero if there is an error (e.g. missing .debug_types section),
4669 otherwise non-zero. */
4670
4671 static int
4672 create_all_type_units (struct objfile *objfile)
4673 {
4674 htab_t types_htab;
4675 struct signatured_type **iter;
4676
4677 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4678 if (types_htab == NULL)
4679 {
4680 dwarf2_per_objfile->signatured_types = NULL;
4681 return 0;
4682 }
4683
4684 dwarf2_per_objfile->signatured_types = types_htab;
4685
4686 dwarf2_per_objfile->n_type_units
4687 = dwarf2_per_objfile->n_allocated_type_units
4688 = htab_elements (types_htab);
4689 dwarf2_per_objfile->all_type_units
4690 = xmalloc (dwarf2_per_objfile->n_type_units
4691 * sizeof (struct signatured_type *));
4692 iter = &dwarf2_per_objfile->all_type_units[0];
4693 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4694 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4695 == dwarf2_per_objfile->n_type_units);
4696
4697 return 1;
4698 }
4699
4700 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
4701 If SLOT is non-NULL, it is the entry to use in the hash table.
4702 Otherwise we find one. */
4703
4704 static struct signatured_type *
4705 add_type_unit (ULONGEST sig, void **slot)
4706 {
4707 struct objfile *objfile = dwarf2_per_objfile->objfile;
4708 int n_type_units = dwarf2_per_objfile->n_type_units;
4709 struct signatured_type *sig_type;
4710
4711 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
4712 ++n_type_units;
4713 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
4714 {
4715 if (dwarf2_per_objfile->n_allocated_type_units == 0)
4716 dwarf2_per_objfile->n_allocated_type_units = 1;
4717 dwarf2_per_objfile->n_allocated_type_units *= 2;
4718 dwarf2_per_objfile->all_type_units
4719 = xrealloc (dwarf2_per_objfile->all_type_units,
4720 dwarf2_per_objfile->n_allocated_type_units
4721 * sizeof (struct signatured_type *));
4722 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
4723 }
4724 dwarf2_per_objfile->n_type_units = n_type_units;
4725
4726 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4727 struct signatured_type);
4728 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4729 sig_type->signature = sig;
4730 sig_type->per_cu.is_debug_types = 1;
4731 if (dwarf2_per_objfile->using_index)
4732 {
4733 sig_type->per_cu.v.quick =
4734 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4735 struct dwarf2_per_cu_quick_data);
4736 }
4737
4738 if (slot == NULL)
4739 {
4740 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4741 sig_type, INSERT);
4742 }
4743 gdb_assert (*slot == NULL);
4744 *slot = sig_type;
4745 /* The rest of sig_type must be filled in by the caller. */
4746 return sig_type;
4747 }
4748
4749 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4750 Fill in SIG_ENTRY with DWO_ENTRY. */
4751
4752 static void
4753 fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4754 struct signatured_type *sig_entry,
4755 struct dwo_unit *dwo_entry)
4756 {
4757 /* Make sure we're not clobbering something we don't expect to. */
4758 gdb_assert (! sig_entry->per_cu.queued);
4759 gdb_assert (sig_entry->per_cu.cu == NULL);
4760 if (dwarf2_per_objfile->using_index)
4761 {
4762 gdb_assert (sig_entry->per_cu.v.quick != NULL);
4763 gdb_assert (sig_entry->per_cu.v.quick->symtab == NULL);
4764 }
4765 else
4766 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
4767 gdb_assert (sig_entry->signature == dwo_entry->signature);
4768 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4769 gdb_assert (sig_entry->type_unit_group == NULL);
4770 gdb_assert (sig_entry->dwo_unit == NULL);
4771
4772 sig_entry->per_cu.section = dwo_entry->section;
4773 sig_entry->per_cu.offset = dwo_entry->offset;
4774 sig_entry->per_cu.length = dwo_entry->length;
4775 sig_entry->per_cu.reading_dwo_directly = 1;
4776 sig_entry->per_cu.objfile = objfile;
4777 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4778 sig_entry->dwo_unit = dwo_entry;
4779 }
4780
4781 /* Subroutine of lookup_signatured_type.
4782 If we haven't read the TU yet, create the signatured_type data structure
4783 for a TU to be read in directly from a DWO file, bypassing the stub.
4784 This is the "Stay in DWO Optimization": When there is no DWP file and we're
4785 using .gdb_index, then when reading a CU we want to stay in the DWO file
4786 containing that CU. Otherwise we could end up reading several other DWO
4787 files (due to comdat folding) to process the transitive closure of all the
4788 mentioned TUs, and that can be slow. The current DWO file will have every
4789 type signature that it needs.
4790 We only do this for .gdb_index because in the psymtab case we already have
4791 to read all the DWOs to build the type unit groups. */
4792
4793 static struct signatured_type *
4794 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4795 {
4796 struct objfile *objfile = dwarf2_per_objfile->objfile;
4797 struct dwo_file *dwo_file;
4798 struct dwo_unit find_dwo_entry, *dwo_entry;
4799 struct signatured_type find_sig_entry, *sig_entry;
4800 void **slot;
4801
4802 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4803
4804 /* If TU skeletons have been removed then we may not have read in any
4805 TUs yet. */
4806 if (dwarf2_per_objfile->signatured_types == NULL)
4807 {
4808 dwarf2_per_objfile->signatured_types
4809 = allocate_signatured_type_table (objfile);
4810 }
4811
4812 /* We only ever need to read in one copy of a signatured type.
4813 Use the global signatured_types array to do our own comdat-folding
4814 of types. If this is the first time we're reading this TU, and
4815 the TU has an entry in .gdb_index, replace the recorded data from
4816 .gdb_index with this TU. */
4817
4818 find_sig_entry.signature = sig;
4819 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4820 &find_sig_entry, INSERT);
4821 sig_entry = *slot;
4822
4823 /* We can get here with the TU already read, *or* in the process of being
4824 read. Don't reassign the global entry to point to this DWO if that's
4825 the case. Also note that if the TU is already being read, it may not
4826 have come from a DWO, the program may be a mix of Fission-compiled
4827 code and non-Fission-compiled code. */
4828
4829 /* Have we already tried to read this TU?
4830 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4831 needn't exist in the global table yet). */
4832 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
4833 return sig_entry;
4834
4835 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
4836 dwo_unit of the TU itself. */
4837 dwo_file = cu->dwo_unit->dwo_file;
4838
4839 /* Ok, this is the first time we're reading this TU. */
4840 if (dwo_file->tus == NULL)
4841 return NULL;
4842 find_dwo_entry.signature = sig;
4843 dwo_entry = htab_find (dwo_file->tus, &find_dwo_entry);
4844 if (dwo_entry == NULL)
4845 return NULL;
4846
4847 /* If the global table doesn't have an entry for this TU, add one. */
4848 if (sig_entry == NULL)
4849 sig_entry = add_type_unit (sig, slot);
4850
4851 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4852 sig_entry->per_cu.tu_read = 1;
4853 return sig_entry;
4854 }
4855
4856 /* Subroutine of lookup_signatured_type.
4857 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
4858 then try the DWP file. If the TU stub (skeleton) has been removed then
4859 it won't be in .gdb_index. */
4860
4861 static struct signatured_type *
4862 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4863 {
4864 struct objfile *objfile = dwarf2_per_objfile->objfile;
4865 struct dwp_file *dwp_file = get_dwp_file ();
4866 struct dwo_unit *dwo_entry;
4867 struct signatured_type find_sig_entry, *sig_entry;
4868 void **slot;
4869
4870 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4871 gdb_assert (dwp_file != NULL);
4872
4873 /* If TU skeletons have been removed then we may not have read in any
4874 TUs yet. */
4875 if (dwarf2_per_objfile->signatured_types == NULL)
4876 {
4877 dwarf2_per_objfile->signatured_types
4878 = allocate_signatured_type_table (objfile);
4879 }
4880
4881 find_sig_entry.signature = sig;
4882 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4883 &find_sig_entry, INSERT);
4884 sig_entry = *slot;
4885
4886 /* Have we already tried to read this TU?
4887 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4888 needn't exist in the global table yet). */
4889 if (sig_entry != NULL)
4890 return sig_entry;
4891
4892 if (dwp_file->tus == NULL)
4893 return NULL;
4894 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
4895 sig, 1 /* is_debug_types */);
4896 if (dwo_entry == NULL)
4897 return NULL;
4898
4899 sig_entry = add_type_unit (sig, slot);
4900 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4901
4902 return sig_entry;
4903 }
4904
4905 /* Lookup a signature based type for DW_FORM_ref_sig8.
4906 Returns NULL if signature SIG is not present in the table.
4907 It is up to the caller to complain about this. */
4908
4909 static struct signatured_type *
4910 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4911 {
4912 if (cu->dwo_unit
4913 && dwarf2_per_objfile->using_index)
4914 {
4915 /* We're in a DWO/DWP file, and we're using .gdb_index.
4916 These cases require special processing. */
4917 if (get_dwp_file () == NULL)
4918 return lookup_dwo_signatured_type (cu, sig);
4919 else
4920 return lookup_dwp_signatured_type (cu, sig);
4921 }
4922 else
4923 {
4924 struct signatured_type find_entry, *entry;
4925
4926 if (dwarf2_per_objfile->signatured_types == NULL)
4927 return NULL;
4928 find_entry.signature = sig;
4929 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
4930 return entry;
4931 }
4932 }
4933 \f
4934 /* Low level DIE reading support. */
4935
4936 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
4937
4938 static void
4939 init_cu_die_reader (struct die_reader_specs *reader,
4940 struct dwarf2_cu *cu,
4941 struct dwarf2_section_info *section,
4942 struct dwo_file *dwo_file)
4943 {
4944 gdb_assert (section->readin && section->buffer != NULL);
4945 reader->abfd = get_section_bfd_owner (section);
4946 reader->cu = cu;
4947 reader->dwo_file = dwo_file;
4948 reader->die_section = section;
4949 reader->buffer = section->buffer;
4950 reader->buffer_end = section->buffer + section->size;
4951 reader->comp_dir = NULL;
4952 }
4953
4954 /* Subroutine of init_cutu_and_read_dies to simplify it.
4955 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
4956 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
4957 already.
4958
4959 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
4960 from it to the DIE in the DWO. If NULL we are skipping the stub.
4961 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
4962 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
4963 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
4964 STUB_COMP_DIR may be non-NULL.
4965 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
4966 are filled in with the info of the DIE from the DWO file.
4967 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
4968 provided an abbrev table to use.
4969 The result is non-zero if a valid (non-dummy) DIE was found. */
4970
4971 static int
4972 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
4973 struct dwo_unit *dwo_unit,
4974 int abbrev_table_provided,
4975 struct die_info *stub_comp_unit_die,
4976 const char *stub_comp_dir,
4977 struct die_reader_specs *result_reader,
4978 const gdb_byte **result_info_ptr,
4979 struct die_info **result_comp_unit_die,
4980 int *result_has_children)
4981 {
4982 struct objfile *objfile = dwarf2_per_objfile->objfile;
4983 struct dwarf2_cu *cu = this_cu->cu;
4984 struct dwarf2_section_info *section;
4985 bfd *abfd;
4986 const gdb_byte *begin_info_ptr, *info_ptr;
4987 ULONGEST signature; /* Or dwo_id. */
4988 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
4989 int i,num_extra_attrs;
4990 struct dwarf2_section_info *dwo_abbrev_section;
4991 struct attribute *attr;
4992 struct die_info *comp_unit_die;
4993
4994 /* At most one of these may be provided. */
4995 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
4996
4997 /* These attributes aren't processed until later:
4998 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
4999 DW_AT_comp_dir is used now, to find the DWO file, but it is also
5000 referenced later. However, these attributes are found in the stub
5001 which we won't have later. In order to not impose this complication
5002 on the rest of the code, we read them here and copy them to the
5003 DWO CU/TU die. */
5004
5005 stmt_list = NULL;
5006 low_pc = NULL;
5007 high_pc = NULL;
5008 ranges = NULL;
5009 comp_dir = NULL;
5010
5011 if (stub_comp_unit_die != NULL)
5012 {
5013 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
5014 DWO file. */
5015 if (! this_cu->is_debug_types)
5016 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
5017 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
5018 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
5019 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
5020 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
5021
5022 /* There should be a DW_AT_addr_base attribute here (if needed).
5023 We need the value before we can process DW_FORM_GNU_addr_index. */
5024 cu->addr_base = 0;
5025 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
5026 if (attr)
5027 cu->addr_base = DW_UNSND (attr);
5028
5029 /* There should be a DW_AT_ranges_base attribute here (if needed).
5030 We need the value before we can process DW_AT_ranges. */
5031 cu->ranges_base = 0;
5032 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
5033 if (attr)
5034 cu->ranges_base = DW_UNSND (attr);
5035 }
5036 else if (stub_comp_dir != NULL)
5037 {
5038 /* Reconstruct the comp_dir attribute to simplify the code below. */
5039 comp_dir = (struct attribute *)
5040 obstack_alloc (&cu->comp_unit_obstack, sizeof (*comp_dir));
5041 comp_dir->name = DW_AT_comp_dir;
5042 comp_dir->form = DW_FORM_string;
5043 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5044 DW_STRING (comp_dir) = stub_comp_dir;
5045 }
5046
5047 /* Set up for reading the DWO CU/TU. */
5048 cu->dwo_unit = dwo_unit;
5049 section = dwo_unit->section;
5050 dwarf2_read_section (objfile, section);
5051 abfd = get_section_bfd_owner (section);
5052 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
5053 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5054 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5055
5056 if (this_cu->is_debug_types)
5057 {
5058 ULONGEST header_signature;
5059 cu_offset type_offset_in_tu;
5060 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5061
5062 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5063 dwo_abbrev_section,
5064 info_ptr,
5065 &header_signature,
5066 &type_offset_in_tu);
5067 /* This is not an assert because it can be caused by bad debug info. */
5068 if (sig_type->signature != header_signature)
5069 {
5070 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5071 " TU at offset 0x%x [in module %s]"),
5072 hex_string (sig_type->signature),
5073 hex_string (header_signature),
5074 dwo_unit->offset.sect_off,
5075 bfd_get_filename (abfd));
5076 }
5077 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5078 /* For DWOs coming from DWP files, we don't know the CU length
5079 nor the type's offset in the TU until now. */
5080 dwo_unit->length = get_cu_length (&cu->header);
5081 dwo_unit->type_offset_in_tu = type_offset_in_tu;
5082
5083 /* Establish the type offset that can be used to lookup the type.
5084 For DWO files, we don't know it until now. */
5085 sig_type->type_offset_in_section.sect_off =
5086 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
5087 }
5088 else
5089 {
5090 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5091 dwo_abbrev_section,
5092 info_ptr, 0);
5093 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5094 /* For DWOs coming from DWP files, we don't know the CU length
5095 until now. */
5096 dwo_unit->length = get_cu_length (&cu->header);
5097 }
5098
5099 /* Replace the CU's original abbrev table with the DWO's.
5100 Reminder: We can't read the abbrev table until we've read the header. */
5101 if (abbrev_table_provided)
5102 {
5103 /* Don't free the provided abbrev table, the caller of
5104 init_cutu_and_read_dies owns it. */
5105 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5106 /* Ensure the DWO abbrev table gets freed. */
5107 make_cleanup (dwarf2_free_abbrev_table, cu);
5108 }
5109 else
5110 {
5111 dwarf2_free_abbrev_table (cu);
5112 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5113 /* Leave any existing abbrev table cleanup as is. */
5114 }
5115
5116 /* Read in the die, but leave space to copy over the attributes
5117 from the stub. This has the benefit of simplifying the rest of
5118 the code - all the work to maintain the illusion of a single
5119 DW_TAG_{compile,type}_unit DIE is done here. */
5120 num_extra_attrs = ((stmt_list != NULL)
5121 + (low_pc != NULL)
5122 + (high_pc != NULL)
5123 + (ranges != NULL)
5124 + (comp_dir != NULL));
5125 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5126 result_has_children, num_extra_attrs);
5127
5128 /* Copy over the attributes from the stub to the DIE we just read in. */
5129 comp_unit_die = *result_comp_unit_die;
5130 i = comp_unit_die->num_attrs;
5131 if (stmt_list != NULL)
5132 comp_unit_die->attrs[i++] = *stmt_list;
5133 if (low_pc != NULL)
5134 comp_unit_die->attrs[i++] = *low_pc;
5135 if (high_pc != NULL)
5136 comp_unit_die->attrs[i++] = *high_pc;
5137 if (ranges != NULL)
5138 comp_unit_die->attrs[i++] = *ranges;
5139 if (comp_dir != NULL)
5140 comp_unit_die->attrs[i++] = *comp_dir;
5141 comp_unit_die->num_attrs += num_extra_attrs;
5142
5143 if (dwarf2_die_debug)
5144 {
5145 fprintf_unfiltered (gdb_stdlog,
5146 "Read die from %s@0x%x of %s:\n",
5147 get_section_name (section),
5148 (unsigned) (begin_info_ptr - section->buffer),
5149 bfd_get_filename (abfd));
5150 dump_die (comp_unit_die, dwarf2_die_debug);
5151 }
5152
5153 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5154 TUs by skipping the stub and going directly to the entry in the DWO file.
5155 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5156 to get it via circuitous means. Blech. */
5157 if (comp_dir != NULL)
5158 result_reader->comp_dir = DW_STRING (comp_dir);
5159
5160 /* Skip dummy compilation units. */
5161 if (info_ptr >= begin_info_ptr + dwo_unit->length
5162 || peek_abbrev_code (abfd, info_ptr) == 0)
5163 return 0;
5164
5165 *result_info_ptr = info_ptr;
5166 return 1;
5167 }
5168
5169 /* Subroutine of init_cutu_and_read_dies to simplify it.
5170 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
5171 Returns NULL if the specified DWO unit cannot be found. */
5172
5173 static struct dwo_unit *
5174 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5175 struct die_info *comp_unit_die)
5176 {
5177 struct dwarf2_cu *cu = this_cu->cu;
5178 struct attribute *attr;
5179 ULONGEST signature;
5180 struct dwo_unit *dwo_unit;
5181 const char *comp_dir, *dwo_name;
5182
5183 gdb_assert (cu != NULL);
5184
5185 /* Yeah, we look dwo_name up again, but it simplifies the code. */
5186 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5187 gdb_assert (attr != NULL);
5188 dwo_name = DW_STRING (attr);
5189 comp_dir = NULL;
5190 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5191 if (attr)
5192 comp_dir = DW_STRING (attr);
5193
5194 if (this_cu->is_debug_types)
5195 {
5196 struct signatured_type *sig_type;
5197
5198 /* Since this_cu is the first member of struct signatured_type,
5199 we can go from a pointer to one to a pointer to the other. */
5200 sig_type = (struct signatured_type *) this_cu;
5201 signature = sig_type->signature;
5202 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5203 }
5204 else
5205 {
5206 struct attribute *attr;
5207
5208 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5209 if (! attr)
5210 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5211 " [in module %s]"),
5212 dwo_name, objfile_name (this_cu->objfile));
5213 signature = DW_UNSND (attr);
5214 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5215 signature);
5216 }
5217
5218 return dwo_unit;
5219 }
5220
5221 /* Subroutine of init_cutu_and_read_dies to simplify it.
5222 See it for a description of the parameters.
5223 Read a TU directly from a DWO file, bypassing the stub.
5224
5225 Note: This function could be a little bit simpler if we shared cleanups
5226 with our caller, init_cutu_and_read_dies. That's generally a fragile thing
5227 to do, so we keep this function self-contained. Or we could move this
5228 into our caller, but it's complex enough already. */
5229
5230 static void
5231 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
5232 int use_existing_cu, int keep,
5233 die_reader_func_ftype *die_reader_func,
5234 void *data)
5235 {
5236 struct dwarf2_cu *cu;
5237 struct signatured_type *sig_type;
5238 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5239 struct die_reader_specs reader;
5240 const gdb_byte *info_ptr;
5241 struct die_info *comp_unit_die;
5242 int has_children;
5243
5244 /* Verify we can do the following downcast, and that we have the
5245 data we need. */
5246 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5247 sig_type = (struct signatured_type *) this_cu;
5248 gdb_assert (sig_type->dwo_unit != NULL);
5249
5250 cleanups = make_cleanup (null_cleanup, NULL);
5251
5252 if (use_existing_cu && this_cu->cu != NULL)
5253 {
5254 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
5255 cu = this_cu->cu;
5256 /* There's no need to do the rereading_dwo_cu handling that
5257 init_cutu_and_read_dies does since we don't read the stub. */
5258 }
5259 else
5260 {
5261 /* If !use_existing_cu, this_cu->cu must be NULL. */
5262 gdb_assert (this_cu->cu == NULL);
5263 cu = xmalloc (sizeof (*cu));
5264 init_one_comp_unit (cu, this_cu);
5265 /* If an error occurs while loading, release our storage. */
5266 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5267 }
5268
5269 /* A future optimization, if needed, would be to use an existing
5270 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
5271 could share abbrev tables. */
5272
5273 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5274 0 /* abbrev_table_provided */,
5275 NULL /* stub_comp_unit_die */,
5276 sig_type->dwo_unit->dwo_file->comp_dir,
5277 &reader, &info_ptr,
5278 &comp_unit_die, &has_children) == 0)
5279 {
5280 /* Dummy die. */
5281 do_cleanups (cleanups);
5282 return;
5283 }
5284
5285 /* All the "real" work is done here. */
5286 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5287
5288 /* This duplicates the code in init_cutu_and_read_dies,
5289 but the alternative is making the latter more complex.
5290 This function is only for the special case of using DWO files directly:
5291 no point in overly complicating the general case just to handle this. */
5292 if (free_cu_cleanup != NULL)
5293 {
5294 if (keep)
5295 {
5296 /* We've successfully allocated this compilation unit. Let our
5297 caller clean it up when finished with it. */
5298 discard_cleanups (free_cu_cleanup);
5299
5300 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5301 So we have to manually free the abbrev table. */
5302 dwarf2_free_abbrev_table (cu);
5303
5304 /* Link this CU into read_in_chain. */
5305 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5306 dwarf2_per_objfile->read_in_chain = this_cu;
5307 }
5308 else
5309 do_cleanups (free_cu_cleanup);
5310 }
5311
5312 do_cleanups (cleanups);
5313 }
5314
5315 /* Initialize a CU (or TU) and read its DIEs.
5316 If the CU defers to a DWO file, read the DWO file as well.
5317
5318 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5319 Otherwise the table specified in the comp unit header is read in and used.
5320 This is an optimization for when we already have the abbrev table.
5321
5322 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5323 Otherwise, a new CU is allocated with xmalloc.
5324
5325 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5326 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5327
5328 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5329 linker) then DIE_READER_FUNC will not get called. */
5330
5331 static void
5332 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
5333 struct abbrev_table *abbrev_table,
5334 int use_existing_cu, int keep,
5335 die_reader_func_ftype *die_reader_func,
5336 void *data)
5337 {
5338 struct objfile *objfile = dwarf2_per_objfile->objfile;
5339 struct dwarf2_section_info *section = this_cu->section;
5340 bfd *abfd = get_section_bfd_owner (section);
5341 struct dwarf2_cu *cu;
5342 const gdb_byte *begin_info_ptr, *info_ptr;
5343 struct die_reader_specs reader;
5344 struct die_info *comp_unit_die;
5345 int has_children;
5346 struct attribute *attr;
5347 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5348 struct signatured_type *sig_type = NULL;
5349 struct dwarf2_section_info *abbrev_section;
5350 /* Non-zero if CU currently points to a DWO file and we need to
5351 reread it. When this happens we need to reread the skeleton die
5352 before we can reread the DWO file (this only applies to CUs, not TUs). */
5353 int rereading_dwo_cu = 0;
5354
5355 if (dwarf2_die_debug)
5356 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5357 this_cu->is_debug_types ? "type" : "comp",
5358 this_cu->offset.sect_off);
5359
5360 if (use_existing_cu)
5361 gdb_assert (keep);
5362
5363 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5364 file (instead of going through the stub), short-circuit all of this. */
5365 if (this_cu->reading_dwo_directly)
5366 {
5367 /* Narrow down the scope of possibilities to have to understand. */
5368 gdb_assert (this_cu->is_debug_types);
5369 gdb_assert (abbrev_table == NULL);
5370 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
5371 die_reader_func, data);
5372 return;
5373 }
5374
5375 cleanups = make_cleanup (null_cleanup, NULL);
5376
5377 /* This is cheap if the section is already read in. */
5378 dwarf2_read_section (objfile, section);
5379
5380 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5381
5382 abbrev_section = get_abbrev_section_for_cu (this_cu);
5383
5384 if (use_existing_cu && this_cu->cu != NULL)
5385 {
5386 cu = this_cu->cu;
5387 /* If this CU is from a DWO file we need to start over, we need to
5388 refetch the attributes from the skeleton CU.
5389 This could be optimized by retrieving those attributes from when we
5390 were here the first time: the previous comp_unit_die was stored in
5391 comp_unit_obstack. But there's no data yet that we need this
5392 optimization. */
5393 if (cu->dwo_unit != NULL)
5394 rereading_dwo_cu = 1;
5395 }
5396 else
5397 {
5398 /* If !use_existing_cu, this_cu->cu must be NULL. */
5399 gdb_assert (this_cu->cu == NULL);
5400 cu = xmalloc (sizeof (*cu));
5401 init_one_comp_unit (cu, this_cu);
5402 /* If an error occurs while loading, release our storage. */
5403 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5404 }
5405
5406 /* Get the header. */
5407 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5408 {
5409 /* We already have the header, there's no need to read it in again. */
5410 info_ptr += cu->header.first_die_offset.cu_off;
5411 }
5412 else
5413 {
5414 if (this_cu->is_debug_types)
5415 {
5416 ULONGEST signature;
5417 cu_offset type_offset_in_tu;
5418
5419 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5420 abbrev_section, info_ptr,
5421 &signature,
5422 &type_offset_in_tu);
5423
5424 /* Since per_cu is the first member of struct signatured_type,
5425 we can go from a pointer to one to a pointer to the other. */
5426 sig_type = (struct signatured_type *) this_cu;
5427 gdb_assert (sig_type->signature == signature);
5428 gdb_assert (sig_type->type_offset_in_tu.cu_off
5429 == type_offset_in_tu.cu_off);
5430 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5431
5432 /* LENGTH has not been set yet for type units if we're
5433 using .gdb_index. */
5434 this_cu->length = get_cu_length (&cu->header);
5435
5436 /* Establish the type offset that can be used to lookup the type. */
5437 sig_type->type_offset_in_section.sect_off =
5438 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
5439 }
5440 else
5441 {
5442 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5443 abbrev_section,
5444 info_ptr, 0);
5445
5446 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5447 gdb_assert (this_cu->length == get_cu_length (&cu->header));
5448 }
5449 }
5450
5451 /* Skip dummy compilation units. */
5452 if (info_ptr >= begin_info_ptr + this_cu->length
5453 || peek_abbrev_code (abfd, info_ptr) == 0)
5454 {
5455 do_cleanups (cleanups);
5456 return;
5457 }
5458
5459 /* If we don't have them yet, read the abbrevs for this compilation unit.
5460 And if we need to read them now, make sure they're freed when we're
5461 done. Note that it's important that if the CU had an abbrev table
5462 on entry we don't free it when we're done: Somewhere up the call stack
5463 it may be in use. */
5464 if (abbrev_table != NULL)
5465 {
5466 gdb_assert (cu->abbrev_table == NULL);
5467 gdb_assert (cu->header.abbrev_offset.sect_off
5468 == abbrev_table->offset.sect_off);
5469 cu->abbrev_table = abbrev_table;
5470 }
5471 else if (cu->abbrev_table == NULL)
5472 {
5473 dwarf2_read_abbrevs (cu, abbrev_section);
5474 make_cleanup (dwarf2_free_abbrev_table, cu);
5475 }
5476 else if (rereading_dwo_cu)
5477 {
5478 dwarf2_free_abbrev_table (cu);
5479 dwarf2_read_abbrevs (cu, abbrev_section);
5480 }
5481
5482 /* Read the top level CU/TU die. */
5483 init_cu_die_reader (&reader, cu, section, NULL);
5484 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5485
5486 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5487 from the DWO file.
5488 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5489 DWO CU, that this test will fail (the attribute will not be present). */
5490 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5491 if (attr)
5492 {
5493 struct dwo_unit *dwo_unit;
5494 struct die_info *dwo_comp_unit_die;
5495
5496 if (has_children)
5497 {
5498 complaint (&symfile_complaints,
5499 _("compilation unit with DW_AT_GNU_dwo_name"
5500 " has children (offset 0x%x) [in module %s]"),
5501 this_cu->offset.sect_off, bfd_get_filename (abfd));
5502 }
5503 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
5504 if (dwo_unit != NULL)
5505 {
5506 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5507 abbrev_table != NULL,
5508 comp_unit_die, NULL,
5509 &reader, &info_ptr,
5510 &dwo_comp_unit_die, &has_children) == 0)
5511 {
5512 /* Dummy die. */
5513 do_cleanups (cleanups);
5514 return;
5515 }
5516 comp_unit_die = dwo_comp_unit_die;
5517 }
5518 else
5519 {
5520 /* Yikes, we couldn't find the rest of the DIE, we only have
5521 the stub. A complaint has already been logged. There's
5522 not much more we can do except pass on the stub DIE to
5523 die_reader_func. We don't want to throw an error on bad
5524 debug info. */
5525 }
5526 }
5527
5528 /* All of the above is setup for this call. Yikes. */
5529 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5530
5531 /* Done, clean up. */
5532 if (free_cu_cleanup != NULL)
5533 {
5534 if (keep)
5535 {
5536 /* We've successfully allocated this compilation unit. Let our
5537 caller clean it up when finished with it. */
5538 discard_cleanups (free_cu_cleanup);
5539
5540 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5541 So we have to manually free the abbrev table. */
5542 dwarf2_free_abbrev_table (cu);
5543
5544 /* Link this CU into read_in_chain. */
5545 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5546 dwarf2_per_objfile->read_in_chain = this_cu;
5547 }
5548 else
5549 do_cleanups (free_cu_cleanup);
5550 }
5551
5552 do_cleanups (cleanups);
5553 }
5554
5555 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
5556 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
5557 to have already done the lookup to find the DWO file).
5558
5559 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
5560 THIS_CU->is_debug_types, but nothing else.
5561
5562 We fill in THIS_CU->length.
5563
5564 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5565 linker) then DIE_READER_FUNC will not get called.
5566
5567 THIS_CU->cu is always freed when done.
5568 This is done in order to not leave THIS_CU->cu in a state where we have
5569 to care whether it refers to the "main" CU or the DWO CU. */
5570
5571 static void
5572 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
5573 struct dwo_file *dwo_file,
5574 die_reader_func_ftype *die_reader_func,
5575 void *data)
5576 {
5577 struct objfile *objfile = dwarf2_per_objfile->objfile;
5578 struct dwarf2_section_info *section = this_cu->section;
5579 bfd *abfd = get_section_bfd_owner (section);
5580 struct dwarf2_section_info *abbrev_section;
5581 struct dwarf2_cu cu;
5582 const gdb_byte *begin_info_ptr, *info_ptr;
5583 struct die_reader_specs reader;
5584 struct cleanup *cleanups;
5585 struct die_info *comp_unit_die;
5586 int has_children;
5587
5588 if (dwarf2_die_debug)
5589 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5590 this_cu->is_debug_types ? "type" : "comp",
5591 this_cu->offset.sect_off);
5592
5593 gdb_assert (this_cu->cu == NULL);
5594
5595 abbrev_section = (dwo_file != NULL
5596 ? &dwo_file->sections.abbrev
5597 : get_abbrev_section_for_cu (this_cu));
5598
5599 /* This is cheap if the section is already read in. */
5600 dwarf2_read_section (objfile, section);
5601
5602 init_one_comp_unit (&cu, this_cu);
5603
5604 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5605
5606 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5607 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5608 abbrev_section, info_ptr,
5609 this_cu->is_debug_types);
5610
5611 this_cu->length = get_cu_length (&cu.header);
5612
5613 /* Skip dummy compilation units. */
5614 if (info_ptr >= begin_info_ptr + this_cu->length
5615 || peek_abbrev_code (abfd, info_ptr) == 0)
5616 {
5617 do_cleanups (cleanups);
5618 return;
5619 }
5620
5621 dwarf2_read_abbrevs (&cu, abbrev_section);
5622 make_cleanup (dwarf2_free_abbrev_table, &cu);
5623
5624 init_cu_die_reader (&reader, &cu, section, dwo_file);
5625 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5626
5627 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5628
5629 do_cleanups (cleanups);
5630 }
5631
5632 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5633 does not lookup the specified DWO file.
5634 This cannot be used to read DWO files.
5635
5636 THIS_CU->cu is always freed when done.
5637 This is done in order to not leave THIS_CU->cu in a state where we have
5638 to care whether it refers to the "main" CU or the DWO CU.
5639 We can revisit this if the data shows there's a performance issue. */
5640
5641 static void
5642 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5643 die_reader_func_ftype *die_reader_func,
5644 void *data)
5645 {
5646 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
5647 }
5648 \f
5649 /* Type Unit Groups.
5650
5651 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5652 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5653 so that all types coming from the same compilation (.o file) are grouped
5654 together. A future step could be to put the types in the same symtab as
5655 the CU the types ultimately came from. */
5656
5657 static hashval_t
5658 hash_type_unit_group (const void *item)
5659 {
5660 const struct type_unit_group *tu_group = item;
5661
5662 return hash_stmt_list_entry (&tu_group->hash);
5663 }
5664
5665 static int
5666 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
5667 {
5668 const struct type_unit_group *lhs = item_lhs;
5669 const struct type_unit_group *rhs = item_rhs;
5670
5671 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
5672 }
5673
5674 /* Allocate a hash table for type unit groups. */
5675
5676 static htab_t
5677 allocate_type_unit_groups_table (void)
5678 {
5679 return htab_create_alloc_ex (3,
5680 hash_type_unit_group,
5681 eq_type_unit_group,
5682 NULL,
5683 &dwarf2_per_objfile->objfile->objfile_obstack,
5684 hashtab_obstack_allocate,
5685 dummy_obstack_deallocate);
5686 }
5687
5688 /* Type units that don't have DW_AT_stmt_list are grouped into their own
5689 partial symtabs. We combine several TUs per psymtab to not let the size
5690 of any one psymtab grow too big. */
5691 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5692 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
5693
5694 /* Helper routine for get_type_unit_group.
5695 Create the type_unit_group object used to hold one or more TUs. */
5696
5697 static struct type_unit_group *
5698 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
5699 {
5700 struct objfile *objfile = dwarf2_per_objfile->objfile;
5701 struct dwarf2_per_cu_data *per_cu;
5702 struct type_unit_group *tu_group;
5703
5704 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5705 struct type_unit_group);
5706 per_cu = &tu_group->per_cu;
5707 per_cu->objfile = objfile;
5708
5709 if (dwarf2_per_objfile->using_index)
5710 {
5711 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5712 struct dwarf2_per_cu_quick_data);
5713 }
5714 else
5715 {
5716 unsigned int line_offset = line_offset_struct.sect_off;
5717 struct partial_symtab *pst;
5718 char *name;
5719
5720 /* Give the symtab a useful name for debug purposes. */
5721 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5722 name = xstrprintf ("<type_units_%d>",
5723 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5724 else
5725 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5726
5727 pst = create_partial_symtab (per_cu, name);
5728 pst->anonymous = 1;
5729
5730 xfree (name);
5731 }
5732
5733 tu_group->hash.dwo_unit = cu->dwo_unit;
5734 tu_group->hash.line_offset = line_offset_struct;
5735
5736 return tu_group;
5737 }
5738
5739 /* Look up the type_unit_group for type unit CU, and create it if necessary.
5740 STMT_LIST is a DW_AT_stmt_list attribute. */
5741
5742 static struct type_unit_group *
5743 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
5744 {
5745 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5746 struct type_unit_group *tu_group;
5747 void **slot;
5748 unsigned int line_offset;
5749 struct type_unit_group type_unit_group_for_lookup;
5750
5751 if (dwarf2_per_objfile->type_unit_groups == NULL)
5752 {
5753 dwarf2_per_objfile->type_unit_groups =
5754 allocate_type_unit_groups_table ();
5755 }
5756
5757 /* Do we need to create a new group, or can we use an existing one? */
5758
5759 if (stmt_list)
5760 {
5761 line_offset = DW_UNSND (stmt_list);
5762 ++tu_stats->nr_symtab_sharers;
5763 }
5764 else
5765 {
5766 /* Ugh, no stmt_list. Rare, but we have to handle it.
5767 We can do various things here like create one group per TU or
5768 spread them over multiple groups to split up the expansion work.
5769 To avoid worst case scenarios (too many groups or too large groups)
5770 we, umm, group them in bunches. */
5771 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5772 | (tu_stats->nr_stmt_less_type_units
5773 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5774 ++tu_stats->nr_stmt_less_type_units;
5775 }
5776
5777 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5778 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
5779 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5780 &type_unit_group_for_lookup, INSERT);
5781 if (*slot != NULL)
5782 {
5783 tu_group = *slot;
5784 gdb_assert (tu_group != NULL);
5785 }
5786 else
5787 {
5788 sect_offset line_offset_struct;
5789
5790 line_offset_struct.sect_off = line_offset;
5791 tu_group = create_type_unit_group (cu, line_offset_struct);
5792 *slot = tu_group;
5793 ++tu_stats->nr_symtabs;
5794 }
5795
5796 return tu_group;
5797 }
5798 \f
5799 /* Partial symbol tables. */
5800
5801 /* Create a psymtab named NAME and assign it to PER_CU.
5802
5803 The caller must fill in the following details:
5804 dirname, textlow, texthigh. */
5805
5806 static struct partial_symtab *
5807 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5808 {
5809 struct objfile *objfile = per_cu->objfile;
5810 struct partial_symtab *pst;
5811
5812 pst = start_psymtab_common (objfile, objfile->section_offsets,
5813 name, 0,
5814 objfile->global_psymbols.next,
5815 objfile->static_psymbols.next);
5816
5817 pst->psymtabs_addrmap_supported = 1;
5818
5819 /* This is the glue that links PST into GDB's symbol API. */
5820 pst->read_symtab_private = per_cu;
5821 pst->read_symtab = dwarf2_read_symtab;
5822 per_cu->v.psymtab = pst;
5823
5824 return pst;
5825 }
5826
5827 /* The DATA object passed to process_psymtab_comp_unit_reader has this
5828 type. */
5829
5830 struct process_psymtab_comp_unit_data
5831 {
5832 /* True if we are reading a DW_TAG_partial_unit. */
5833
5834 int want_partial_unit;
5835
5836 /* The "pretend" language that is used if the CU doesn't declare a
5837 language. */
5838
5839 enum language pretend_language;
5840 };
5841
5842 /* die_reader_func for process_psymtab_comp_unit. */
5843
5844 static void
5845 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
5846 const gdb_byte *info_ptr,
5847 struct die_info *comp_unit_die,
5848 int has_children,
5849 void *data)
5850 {
5851 struct dwarf2_cu *cu = reader->cu;
5852 struct objfile *objfile = cu->objfile;
5853 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5854 struct attribute *attr;
5855 CORE_ADDR baseaddr;
5856 CORE_ADDR best_lowpc = 0, best_highpc = 0;
5857 struct partial_symtab *pst;
5858 int has_pc_info;
5859 const char *filename;
5860 struct process_psymtab_comp_unit_data *info = data;
5861
5862 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
5863 return;
5864
5865 gdb_assert (! per_cu->is_debug_types);
5866
5867 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
5868
5869 cu->list_in_scope = &file_symbols;
5870
5871 /* Allocate a new partial symbol table structure. */
5872 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
5873 if (attr == NULL || !DW_STRING (attr))
5874 filename = "";
5875 else
5876 filename = DW_STRING (attr);
5877
5878 pst = create_partial_symtab (per_cu, filename);
5879
5880 /* This must be done before calling dwarf2_build_include_psymtabs. */
5881 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5882 if (attr != NULL)
5883 pst->dirname = DW_STRING (attr);
5884
5885 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5886
5887 dwarf2_find_base_address (comp_unit_die, cu);
5888
5889 /* Possibly set the default values of LOWPC and HIGHPC from
5890 `DW_AT_ranges'. */
5891 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
5892 &best_highpc, cu, pst);
5893 if (has_pc_info == 1 && best_lowpc < best_highpc)
5894 /* Store the contiguous range if it is not empty; it can be empty for
5895 CUs with no code. */
5896 addrmap_set_empty (objfile->psymtabs_addrmap,
5897 best_lowpc + baseaddr,
5898 best_highpc + baseaddr - 1, pst);
5899
5900 /* Check if comp unit has_children.
5901 If so, read the rest of the partial symbols from this comp unit.
5902 If not, there's no more debug_info for this comp unit. */
5903 if (has_children)
5904 {
5905 struct partial_die_info *first_die;
5906 CORE_ADDR lowpc, highpc;
5907
5908 lowpc = ((CORE_ADDR) -1);
5909 highpc = ((CORE_ADDR) 0);
5910
5911 first_die = load_partial_dies (reader, info_ptr, 1);
5912
5913 scan_partial_symbols (first_die, &lowpc, &highpc,
5914 ! has_pc_info, cu);
5915
5916 /* If we didn't find a lowpc, set it to highpc to avoid
5917 complaints from `maint check'. */
5918 if (lowpc == ((CORE_ADDR) -1))
5919 lowpc = highpc;
5920
5921 /* If the compilation unit didn't have an explicit address range,
5922 then use the information extracted from its child dies. */
5923 if (! has_pc_info)
5924 {
5925 best_lowpc = lowpc;
5926 best_highpc = highpc;
5927 }
5928 }
5929 pst->textlow = best_lowpc + baseaddr;
5930 pst->texthigh = best_highpc + baseaddr;
5931
5932 pst->n_global_syms = objfile->global_psymbols.next -
5933 (objfile->global_psymbols.list + pst->globals_offset);
5934 pst->n_static_syms = objfile->static_psymbols.next -
5935 (objfile->static_psymbols.list + pst->statics_offset);
5936 sort_pst_symbols (objfile, pst);
5937
5938 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
5939 {
5940 int i;
5941 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
5942 struct dwarf2_per_cu_data *iter;
5943
5944 /* Fill in 'dependencies' here; we fill in 'users' in a
5945 post-pass. */
5946 pst->number_of_dependencies = len;
5947 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
5948 len * sizeof (struct symtab *));
5949 for (i = 0;
5950 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
5951 i, iter);
5952 ++i)
5953 pst->dependencies[i] = iter->v.psymtab;
5954
5955 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
5956 }
5957
5958 /* Get the list of files included in the current compilation unit,
5959 and build a psymtab for each of them. */
5960 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
5961
5962 if (dwarf2_read_debug)
5963 {
5964 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5965
5966 fprintf_unfiltered (gdb_stdlog,
5967 "Psymtab for %s unit @0x%x: %s - %s"
5968 ", %d global, %d static syms\n",
5969 per_cu->is_debug_types ? "type" : "comp",
5970 per_cu->offset.sect_off,
5971 paddress (gdbarch, pst->textlow),
5972 paddress (gdbarch, pst->texthigh),
5973 pst->n_global_syms, pst->n_static_syms);
5974 }
5975 }
5976
5977 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
5978 Process compilation unit THIS_CU for a psymtab. */
5979
5980 static void
5981 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
5982 int want_partial_unit,
5983 enum language pretend_language)
5984 {
5985 struct process_psymtab_comp_unit_data info;
5986
5987 /* If this compilation unit was already read in, free the
5988 cached copy in order to read it in again. This is
5989 necessary because we skipped some symbols when we first
5990 read in the compilation unit (see load_partial_dies).
5991 This problem could be avoided, but the benefit is unclear. */
5992 if (this_cu->cu != NULL)
5993 free_one_cached_comp_unit (this_cu);
5994
5995 gdb_assert (! this_cu->is_debug_types);
5996 info.want_partial_unit = want_partial_unit;
5997 info.pretend_language = pretend_language;
5998 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
5999 process_psymtab_comp_unit_reader,
6000 &info);
6001
6002 /* Age out any secondary CUs. */
6003 age_cached_comp_units ();
6004 }
6005
6006 /* Reader function for build_type_psymtabs. */
6007
6008 static void
6009 build_type_psymtabs_reader (const struct die_reader_specs *reader,
6010 const gdb_byte *info_ptr,
6011 struct die_info *type_unit_die,
6012 int has_children,
6013 void *data)
6014 {
6015 struct objfile *objfile = dwarf2_per_objfile->objfile;
6016 struct dwarf2_cu *cu = reader->cu;
6017 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6018 struct signatured_type *sig_type;
6019 struct type_unit_group *tu_group;
6020 struct attribute *attr;
6021 struct partial_die_info *first_die;
6022 CORE_ADDR lowpc, highpc;
6023 struct partial_symtab *pst;
6024
6025 gdb_assert (data == NULL);
6026 gdb_assert (per_cu->is_debug_types);
6027 sig_type = (struct signatured_type *) per_cu;
6028
6029 if (! has_children)
6030 return;
6031
6032 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
6033 tu_group = get_type_unit_group (cu, attr);
6034
6035 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
6036
6037 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6038 cu->list_in_scope = &file_symbols;
6039 pst = create_partial_symtab (per_cu, "");
6040 pst->anonymous = 1;
6041
6042 first_die = load_partial_dies (reader, info_ptr, 1);
6043
6044 lowpc = (CORE_ADDR) -1;
6045 highpc = (CORE_ADDR) 0;
6046 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6047
6048 pst->n_global_syms = objfile->global_psymbols.next -
6049 (objfile->global_psymbols.list + pst->globals_offset);
6050 pst->n_static_syms = objfile->static_psymbols.next -
6051 (objfile->static_psymbols.list + pst->statics_offset);
6052 sort_pst_symbols (objfile, pst);
6053 }
6054
6055 /* Struct used to sort TUs by their abbreviation table offset. */
6056
6057 struct tu_abbrev_offset
6058 {
6059 struct signatured_type *sig_type;
6060 sect_offset abbrev_offset;
6061 };
6062
6063 /* Helper routine for build_type_psymtabs_1, passed to qsort. */
6064
6065 static int
6066 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
6067 {
6068 const struct tu_abbrev_offset * const *a = ap;
6069 const struct tu_abbrev_offset * const *b = bp;
6070 unsigned int aoff = (*a)->abbrev_offset.sect_off;
6071 unsigned int boff = (*b)->abbrev_offset.sect_off;
6072
6073 return (aoff > boff) - (aoff < boff);
6074 }
6075
6076 /* Efficiently read all the type units.
6077 This does the bulk of the work for build_type_psymtabs.
6078
6079 The efficiency is because we sort TUs by the abbrev table they use and
6080 only read each abbrev table once. In one program there are 200K TUs
6081 sharing 8K abbrev tables.
6082
6083 The main purpose of this function is to support building the
6084 dwarf2_per_objfile->type_unit_groups table.
6085 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
6086 can collapse the search space by grouping them by stmt_list.
6087 The savings can be significant, in the same program from above the 200K TUs
6088 share 8K stmt_list tables.
6089
6090 FUNC is expected to call get_type_unit_group, which will create the
6091 struct type_unit_group if necessary and add it to
6092 dwarf2_per_objfile->type_unit_groups. */
6093
6094 static void
6095 build_type_psymtabs_1 (void)
6096 {
6097 struct objfile *objfile = dwarf2_per_objfile->objfile;
6098 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6099 struct cleanup *cleanups;
6100 struct abbrev_table *abbrev_table;
6101 sect_offset abbrev_offset;
6102 struct tu_abbrev_offset *sorted_by_abbrev;
6103 struct type_unit_group **iter;
6104 int i;
6105
6106 /* It's up to the caller to not call us multiple times. */
6107 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
6108
6109 if (dwarf2_per_objfile->n_type_units == 0)
6110 return;
6111
6112 /* TUs typically share abbrev tables, and there can be way more TUs than
6113 abbrev tables. Sort by abbrev table to reduce the number of times we
6114 read each abbrev table in.
6115 Alternatives are to punt or to maintain a cache of abbrev tables.
6116 This is simpler and efficient enough for now.
6117
6118 Later we group TUs by their DW_AT_stmt_list value (as this defines the
6119 symtab to use). Typically TUs with the same abbrev offset have the same
6120 stmt_list value too so in practice this should work well.
6121
6122 The basic algorithm here is:
6123
6124 sort TUs by abbrev table
6125 for each TU with same abbrev table:
6126 read abbrev table if first user
6127 read TU top level DIE
6128 [IWBN if DWO skeletons had DW_AT_stmt_list]
6129 call FUNC */
6130
6131 if (dwarf2_read_debug)
6132 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
6133
6134 /* Sort in a separate table to maintain the order of all_type_units
6135 for .gdb_index: TU indices directly index all_type_units. */
6136 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
6137 dwarf2_per_objfile->n_type_units);
6138 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6139 {
6140 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
6141
6142 sorted_by_abbrev[i].sig_type = sig_type;
6143 sorted_by_abbrev[i].abbrev_offset =
6144 read_abbrev_offset (sig_type->per_cu.section,
6145 sig_type->per_cu.offset);
6146 }
6147 cleanups = make_cleanup (xfree, sorted_by_abbrev);
6148 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
6149 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
6150
6151 abbrev_offset.sect_off = ~(unsigned) 0;
6152 abbrev_table = NULL;
6153 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
6154
6155 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6156 {
6157 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
6158
6159 /* Switch to the next abbrev table if necessary. */
6160 if (abbrev_table == NULL
6161 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
6162 {
6163 if (abbrev_table != NULL)
6164 {
6165 abbrev_table_free (abbrev_table);
6166 /* Reset to NULL in case abbrev_table_read_table throws
6167 an error: abbrev_table_free_cleanup will get called. */
6168 abbrev_table = NULL;
6169 }
6170 abbrev_offset = tu->abbrev_offset;
6171 abbrev_table =
6172 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
6173 abbrev_offset);
6174 ++tu_stats->nr_uniq_abbrev_tables;
6175 }
6176
6177 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
6178 build_type_psymtabs_reader, NULL);
6179 }
6180
6181 do_cleanups (cleanups);
6182 }
6183
6184 /* Print collected type unit statistics. */
6185
6186 static void
6187 print_tu_stats (void)
6188 {
6189 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6190
6191 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
6192 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
6193 dwarf2_per_objfile->n_type_units);
6194 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
6195 tu_stats->nr_uniq_abbrev_tables);
6196 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
6197 tu_stats->nr_symtabs);
6198 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
6199 tu_stats->nr_symtab_sharers);
6200 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
6201 tu_stats->nr_stmt_less_type_units);
6202 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
6203 tu_stats->nr_all_type_units_reallocs);
6204 }
6205
6206 /* Traversal function for build_type_psymtabs. */
6207
6208 static int
6209 build_type_psymtab_dependencies (void **slot, void *info)
6210 {
6211 struct objfile *objfile = dwarf2_per_objfile->objfile;
6212 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
6213 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
6214 struct partial_symtab *pst = per_cu->v.psymtab;
6215 int len = VEC_length (sig_type_ptr, tu_group->tus);
6216 struct signatured_type *iter;
6217 int i;
6218
6219 gdb_assert (len > 0);
6220 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
6221
6222 pst->number_of_dependencies = len;
6223 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
6224 len * sizeof (struct psymtab *));
6225 for (i = 0;
6226 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
6227 ++i)
6228 {
6229 gdb_assert (iter->per_cu.is_debug_types);
6230 pst->dependencies[i] = iter->per_cu.v.psymtab;
6231 iter->type_unit_group = tu_group;
6232 }
6233
6234 VEC_free (sig_type_ptr, tu_group->tus);
6235
6236 return 1;
6237 }
6238
6239 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6240 Build partial symbol tables for the .debug_types comp-units. */
6241
6242 static void
6243 build_type_psymtabs (struct objfile *objfile)
6244 {
6245 if (! create_all_type_units (objfile))
6246 return;
6247
6248 build_type_psymtabs_1 ();
6249 }
6250
6251 /* Traversal function for process_skeletonless_type_unit.
6252 Read a TU in a DWO file and build partial symbols for it. */
6253
6254 static int
6255 process_skeletonless_type_unit (void **slot, void *info)
6256 {
6257 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
6258 struct objfile *objfile = info;
6259 struct signatured_type find_entry, *entry;
6260
6261 /* If this TU doesn't exist in the global table, add it and read it in. */
6262
6263 if (dwarf2_per_objfile->signatured_types == NULL)
6264 {
6265 dwarf2_per_objfile->signatured_types
6266 = allocate_signatured_type_table (objfile);
6267 }
6268
6269 find_entry.signature = dwo_unit->signature;
6270 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
6271 INSERT);
6272 /* If we've already seen this type there's nothing to do. What's happening
6273 is we're doing our own version of comdat-folding here. */
6274 if (*slot != NULL)
6275 return 1;
6276
6277 /* This does the job that create_all_type_units would have done for
6278 this TU. */
6279 entry = add_type_unit (dwo_unit->signature, slot);
6280 fill_in_sig_entry_from_dwo_entry (objfile, entry, dwo_unit);
6281 *slot = entry;
6282
6283 /* This does the job that build_type_psymtabs_1 would have done. */
6284 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
6285 build_type_psymtabs_reader, NULL);
6286
6287 return 1;
6288 }
6289
6290 /* Traversal function for process_skeletonless_type_units. */
6291
6292 static int
6293 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
6294 {
6295 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
6296
6297 if (dwo_file->tus != NULL)
6298 {
6299 htab_traverse_noresize (dwo_file->tus,
6300 process_skeletonless_type_unit, info);
6301 }
6302
6303 return 1;
6304 }
6305
6306 /* Scan all TUs of DWO files, verifying we've processed them.
6307 This is needed in case a TU was emitted without its skeleton.
6308 Note: This can't be done until we know what all the DWO files are. */
6309
6310 static void
6311 process_skeletonless_type_units (struct objfile *objfile)
6312 {
6313 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
6314 if (get_dwp_file () == NULL
6315 && dwarf2_per_objfile->dwo_files != NULL)
6316 {
6317 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
6318 process_dwo_file_for_skeletonless_type_units,
6319 objfile);
6320 }
6321 }
6322
6323 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
6324
6325 static void
6326 psymtabs_addrmap_cleanup (void *o)
6327 {
6328 struct objfile *objfile = o;
6329
6330 objfile->psymtabs_addrmap = NULL;
6331 }
6332
6333 /* Compute the 'user' field for each psymtab in OBJFILE. */
6334
6335 static void
6336 set_partial_user (struct objfile *objfile)
6337 {
6338 int i;
6339
6340 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6341 {
6342 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6343 struct partial_symtab *pst = per_cu->v.psymtab;
6344 int j;
6345
6346 if (pst == NULL)
6347 continue;
6348
6349 for (j = 0; j < pst->number_of_dependencies; ++j)
6350 {
6351 /* Set the 'user' field only if it is not already set. */
6352 if (pst->dependencies[j]->user == NULL)
6353 pst->dependencies[j]->user = pst;
6354 }
6355 }
6356 }
6357
6358 /* Build the partial symbol table by doing a quick pass through the
6359 .debug_info and .debug_abbrev sections. */
6360
6361 static void
6362 dwarf2_build_psymtabs_hard (struct objfile *objfile)
6363 {
6364 struct cleanup *back_to, *addrmap_cleanup;
6365 struct obstack temp_obstack;
6366 int i;
6367
6368 if (dwarf2_read_debug)
6369 {
6370 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
6371 objfile_name (objfile));
6372 }
6373
6374 dwarf2_per_objfile->reading_partial_symbols = 1;
6375
6376 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
6377
6378 /* Any cached compilation units will be linked by the per-objfile
6379 read_in_chain. Make sure to free them when we're done. */
6380 back_to = make_cleanup (free_cached_comp_units, NULL);
6381
6382 build_type_psymtabs (objfile);
6383
6384 create_all_comp_units (objfile);
6385
6386 /* Create a temporary address map on a temporary obstack. We later
6387 copy this to the final obstack. */
6388 obstack_init (&temp_obstack);
6389 make_cleanup_obstack_free (&temp_obstack);
6390 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6391 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
6392
6393 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6394 {
6395 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6396
6397 process_psymtab_comp_unit (per_cu, 0, language_minimal);
6398 }
6399
6400 /* This has to wait until we read the CUs, we need the list of DWOs. */
6401 process_skeletonless_type_units (objfile);
6402
6403 /* Now that all TUs have been processed we can fill in the dependencies. */
6404 if (dwarf2_per_objfile->type_unit_groups != NULL)
6405 {
6406 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6407 build_type_psymtab_dependencies, NULL);
6408 }
6409
6410 if (dwarf2_read_debug)
6411 print_tu_stats ();
6412
6413 set_partial_user (objfile);
6414
6415 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6416 &objfile->objfile_obstack);
6417 discard_cleanups (addrmap_cleanup);
6418
6419 do_cleanups (back_to);
6420
6421 if (dwarf2_read_debug)
6422 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
6423 objfile_name (objfile));
6424 }
6425
6426 /* die_reader_func for load_partial_comp_unit. */
6427
6428 static void
6429 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
6430 const gdb_byte *info_ptr,
6431 struct die_info *comp_unit_die,
6432 int has_children,
6433 void *data)
6434 {
6435 struct dwarf2_cu *cu = reader->cu;
6436
6437 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
6438
6439 /* Check if comp unit has_children.
6440 If so, read the rest of the partial symbols from this comp unit.
6441 If not, there's no more debug_info for this comp unit. */
6442 if (has_children)
6443 load_partial_dies (reader, info_ptr, 0);
6444 }
6445
6446 /* Load the partial DIEs for a secondary CU into memory.
6447 This is also used when rereading a primary CU with load_all_dies. */
6448
6449 static void
6450 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6451 {
6452 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6453 load_partial_comp_unit_reader, NULL);
6454 }
6455
6456 static void
6457 read_comp_units_from_section (struct objfile *objfile,
6458 struct dwarf2_section_info *section,
6459 unsigned int is_dwz,
6460 int *n_allocated,
6461 int *n_comp_units,
6462 struct dwarf2_per_cu_data ***all_comp_units)
6463 {
6464 const gdb_byte *info_ptr;
6465 bfd *abfd = get_section_bfd_owner (section);
6466
6467 if (dwarf2_read_debug)
6468 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
6469 get_section_name (section),
6470 get_section_file_name (section));
6471
6472 dwarf2_read_section (objfile, section);
6473
6474 info_ptr = section->buffer;
6475
6476 while (info_ptr < section->buffer + section->size)
6477 {
6478 unsigned int length, initial_length_size;
6479 struct dwarf2_per_cu_data *this_cu;
6480 sect_offset offset;
6481
6482 offset.sect_off = info_ptr - section->buffer;
6483
6484 /* Read just enough information to find out where the next
6485 compilation unit is. */
6486 length = read_initial_length (abfd, info_ptr, &initial_length_size);
6487
6488 /* Save the compilation unit for later lookup. */
6489 this_cu = obstack_alloc (&objfile->objfile_obstack,
6490 sizeof (struct dwarf2_per_cu_data));
6491 memset (this_cu, 0, sizeof (*this_cu));
6492 this_cu->offset = offset;
6493 this_cu->length = length + initial_length_size;
6494 this_cu->is_dwz = is_dwz;
6495 this_cu->objfile = objfile;
6496 this_cu->section = section;
6497
6498 if (*n_comp_units == *n_allocated)
6499 {
6500 *n_allocated *= 2;
6501 *all_comp_units = xrealloc (*all_comp_units,
6502 *n_allocated
6503 * sizeof (struct dwarf2_per_cu_data *));
6504 }
6505 (*all_comp_units)[*n_comp_units] = this_cu;
6506 ++*n_comp_units;
6507
6508 info_ptr = info_ptr + this_cu->length;
6509 }
6510 }
6511
6512 /* Create a list of all compilation units in OBJFILE.
6513 This is only done for -readnow and building partial symtabs. */
6514
6515 static void
6516 create_all_comp_units (struct objfile *objfile)
6517 {
6518 int n_allocated;
6519 int n_comp_units;
6520 struct dwarf2_per_cu_data **all_comp_units;
6521 struct dwz_file *dwz;
6522
6523 n_comp_units = 0;
6524 n_allocated = 10;
6525 all_comp_units = xmalloc (n_allocated
6526 * sizeof (struct dwarf2_per_cu_data *));
6527
6528 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6529 &n_allocated, &n_comp_units, &all_comp_units);
6530
6531 dwz = dwarf2_get_dwz_file ();
6532 if (dwz != NULL)
6533 read_comp_units_from_section (objfile, &dwz->info, 1,
6534 &n_allocated, &n_comp_units,
6535 &all_comp_units);
6536
6537 dwarf2_per_objfile->all_comp_units
6538 = obstack_alloc (&objfile->objfile_obstack,
6539 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6540 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6541 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6542 xfree (all_comp_units);
6543 dwarf2_per_objfile->n_comp_units = n_comp_units;
6544 }
6545
6546 /* Process all loaded DIEs for compilation unit CU, starting at
6547 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
6548 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
6549 DW_AT_ranges). If NEED_PC is set, then this function will set
6550 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
6551 and record the covered ranges in the addrmap. */
6552
6553 static void
6554 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
6555 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
6556 {
6557 struct partial_die_info *pdi;
6558
6559 /* Now, march along the PDI's, descending into ones which have
6560 interesting children but skipping the children of the other ones,
6561 until we reach the end of the compilation unit. */
6562
6563 pdi = first_die;
6564
6565 while (pdi != NULL)
6566 {
6567 fixup_partial_die (pdi, cu);
6568
6569 /* Anonymous namespaces or modules have no name but have interesting
6570 children, so we need to look at them. Ditto for anonymous
6571 enums. */
6572
6573 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
6574 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6575 || pdi->tag == DW_TAG_imported_unit)
6576 {
6577 switch (pdi->tag)
6578 {
6579 case DW_TAG_subprogram:
6580 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
6581 break;
6582 case DW_TAG_constant:
6583 case DW_TAG_variable:
6584 case DW_TAG_typedef:
6585 case DW_TAG_union_type:
6586 if (!pdi->is_declaration)
6587 {
6588 add_partial_symbol (pdi, cu);
6589 }
6590 break;
6591 case DW_TAG_class_type:
6592 case DW_TAG_interface_type:
6593 case DW_TAG_structure_type:
6594 if (!pdi->is_declaration)
6595 {
6596 add_partial_symbol (pdi, cu);
6597 }
6598 break;
6599 case DW_TAG_enumeration_type:
6600 if (!pdi->is_declaration)
6601 add_partial_enumeration (pdi, cu);
6602 break;
6603 case DW_TAG_base_type:
6604 case DW_TAG_subrange_type:
6605 /* File scope base type definitions are added to the partial
6606 symbol table. */
6607 add_partial_symbol (pdi, cu);
6608 break;
6609 case DW_TAG_namespace:
6610 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
6611 break;
6612 case DW_TAG_module:
6613 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
6614 break;
6615 case DW_TAG_imported_unit:
6616 {
6617 struct dwarf2_per_cu_data *per_cu;
6618
6619 /* For now we don't handle imported units in type units. */
6620 if (cu->per_cu->is_debug_types)
6621 {
6622 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6623 " supported in type units [in module %s]"),
6624 objfile_name (cu->objfile));
6625 }
6626
6627 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
6628 pdi->is_dwz,
6629 cu->objfile);
6630
6631 /* Go read the partial unit, if needed. */
6632 if (per_cu->v.psymtab == NULL)
6633 process_psymtab_comp_unit (per_cu, 1, cu->language);
6634
6635 VEC_safe_push (dwarf2_per_cu_ptr,
6636 cu->per_cu->imported_symtabs, per_cu);
6637 }
6638 break;
6639 case DW_TAG_imported_declaration:
6640 add_partial_symbol (pdi, cu);
6641 break;
6642 default:
6643 break;
6644 }
6645 }
6646
6647 /* If the die has a sibling, skip to the sibling. */
6648
6649 pdi = pdi->die_sibling;
6650 }
6651 }
6652
6653 /* Functions used to compute the fully scoped name of a partial DIE.
6654
6655 Normally, this is simple. For C++, the parent DIE's fully scoped
6656 name is concatenated with "::" and the partial DIE's name. For
6657 Java, the same thing occurs except that "." is used instead of "::".
6658 Enumerators are an exception; they use the scope of their parent
6659 enumeration type, i.e. the name of the enumeration type is not
6660 prepended to the enumerator.
6661
6662 There are two complexities. One is DW_AT_specification; in this
6663 case "parent" means the parent of the target of the specification,
6664 instead of the direct parent of the DIE. The other is compilers
6665 which do not emit DW_TAG_namespace; in this case we try to guess
6666 the fully qualified name of structure types from their members'
6667 linkage names. This must be done using the DIE's children rather
6668 than the children of any DW_AT_specification target. We only need
6669 to do this for structures at the top level, i.e. if the target of
6670 any DW_AT_specification (if any; otherwise the DIE itself) does not
6671 have a parent. */
6672
6673 /* Compute the scope prefix associated with PDI's parent, in
6674 compilation unit CU. The result will be allocated on CU's
6675 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6676 field. NULL is returned if no prefix is necessary. */
6677 static const char *
6678 partial_die_parent_scope (struct partial_die_info *pdi,
6679 struct dwarf2_cu *cu)
6680 {
6681 const char *grandparent_scope;
6682 struct partial_die_info *parent, *real_pdi;
6683
6684 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6685 then this means the parent of the specification DIE. */
6686
6687 real_pdi = pdi;
6688 while (real_pdi->has_specification)
6689 real_pdi = find_partial_die (real_pdi->spec_offset,
6690 real_pdi->spec_is_dwz, cu);
6691
6692 parent = real_pdi->die_parent;
6693 if (parent == NULL)
6694 return NULL;
6695
6696 if (parent->scope_set)
6697 return parent->scope;
6698
6699 fixup_partial_die (parent, cu);
6700
6701 grandparent_scope = partial_die_parent_scope (parent, cu);
6702
6703 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6704 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6705 Work around this problem here. */
6706 if (cu->language == language_cplus
6707 && parent->tag == DW_TAG_namespace
6708 && strcmp (parent->name, "::") == 0
6709 && grandparent_scope == NULL)
6710 {
6711 parent->scope = NULL;
6712 parent->scope_set = 1;
6713 return NULL;
6714 }
6715
6716 if (pdi->tag == DW_TAG_enumerator)
6717 /* Enumerators should not get the name of the enumeration as a prefix. */
6718 parent->scope = grandparent_scope;
6719 else if (parent->tag == DW_TAG_namespace
6720 || parent->tag == DW_TAG_module
6721 || parent->tag == DW_TAG_structure_type
6722 || parent->tag == DW_TAG_class_type
6723 || parent->tag == DW_TAG_interface_type
6724 || parent->tag == DW_TAG_union_type
6725 || parent->tag == DW_TAG_enumeration_type)
6726 {
6727 if (grandparent_scope == NULL)
6728 parent->scope = parent->name;
6729 else
6730 parent->scope = typename_concat (&cu->comp_unit_obstack,
6731 grandparent_scope,
6732 parent->name, 0, cu);
6733 }
6734 else
6735 {
6736 /* FIXME drow/2004-04-01: What should we be doing with
6737 function-local names? For partial symbols, we should probably be
6738 ignoring them. */
6739 complaint (&symfile_complaints,
6740 _("unhandled containing DIE tag %d for DIE at %d"),
6741 parent->tag, pdi->offset.sect_off);
6742 parent->scope = grandparent_scope;
6743 }
6744
6745 parent->scope_set = 1;
6746 return parent->scope;
6747 }
6748
6749 /* Return the fully scoped name associated with PDI, from compilation unit
6750 CU. The result will be allocated with malloc. */
6751
6752 static char *
6753 partial_die_full_name (struct partial_die_info *pdi,
6754 struct dwarf2_cu *cu)
6755 {
6756 const char *parent_scope;
6757
6758 /* If this is a template instantiation, we can not work out the
6759 template arguments from partial DIEs. So, unfortunately, we have
6760 to go through the full DIEs. At least any work we do building
6761 types here will be reused if full symbols are loaded later. */
6762 if (pdi->has_template_arguments)
6763 {
6764 fixup_partial_die (pdi, cu);
6765
6766 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6767 {
6768 struct die_info *die;
6769 struct attribute attr;
6770 struct dwarf2_cu *ref_cu = cu;
6771
6772 /* DW_FORM_ref_addr is using section offset. */
6773 attr.name = 0;
6774 attr.form = DW_FORM_ref_addr;
6775 attr.u.unsnd = pdi->offset.sect_off;
6776 die = follow_die_ref (NULL, &attr, &ref_cu);
6777
6778 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6779 }
6780 }
6781
6782 parent_scope = partial_die_parent_scope (pdi, cu);
6783 if (parent_scope == NULL)
6784 return NULL;
6785 else
6786 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
6787 }
6788
6789 static void
6790 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
6791 {
6792 struct objfile *objfile = cu->objfile;
6793 CORE_ADDR addr = 0;
6794 const char *actual_name = NULL;
6795 CORE_ADDR baseaddr;
6796 char *built_actual_name;
6797
6798 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6799
6800 built_actual_name = partial_die_full_name (pdi, cu);
6801 if (built_actual_name != NULL)
6802 actual_name = built_actual_name;
6803
6804 if (actual_name == NULL)
6805 actual_name = pdi->name;
6806
6807 switch (pdi->tag)
6808 {
6809 case DW_TAG_subprogram:
6810 if (pdi->is_external || cu->language == language_ada)
6811 {
6812 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6813 of the global scope. But in Ada, we want to be able to access
6814 nested procedures globally. So all Ada subprograms are stored
6815 in the global scope. */
6816 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
6817 mst_text, objfile); */
6818 add_psymbol_to_list (actual_name, strlen (actual_name),
6819 built_actual_name != NULL,
6820 VAR_DOMAIN, LOC_BLOCK,
6821 &objfile->global_psymbols,
6822 0, pdi->lowpc + baseaddr,
6823 cu->language, objfile);
6824 }
6825 else
6826 {
6827 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
6828 mst_file_text, objfile); */
6829 add_psymbol_to_list (actual_name, strlen (actual_name),
6830 built_actual_name != NULL,
6831 VAR_DOMAIN, LOC_BLOCK,
6832 &objfile->static_psymbols,
6833 0, pdi->lowpc + baseaddr,
6834 cu->language, objfile);
6835 }
6836 break;
6837 case DW_TAG_constant:
6838 {
6839 struct psymbol_allocation_list *list;
6840
6841 if (pdi->is_external)
6842 list = &objfile->global_psymbols;
6843 else
6844 list = &objfile->static_psymbols;
6845 add_psymbol_to_list (actual_name, strlen (actual_name),
6846 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
6847 list, 0, 0, cu->language, objfile);
6848 }
6849 break;
6850 case DW_TAG_variable:
6851 if (pdi->d.locdesc)
6852 addr = decode_locdesc (pdi->d.locdesc, cu);
6853
6854 if (pdi->d.locdesc
6855 && addr == 0
6856 && !dwarf2_per_objfile->has_section_at_zero)
6857 {
6858 /* A global or static variable may also have been stripped
6859 out by the linker if unused, in which case its address
6860 will be nullified; do not add such variables into partial
6861 symbol table then. */
6862 }
6863 else if (pdi->is_external)
6864 {
6865 /* Global Variable.
6866 Don't enter into the minimal symbol tables as there is
6867 a minimal symbol table entry from the ELF symbols already.
6868 Enter into partial symbol table if it has a location
6869 descriptor or a type.
6870 If the location descriptor is missing, new_symbol will create
6871 a LOC_UNRESOLVED symbol, the address of the variable will then
6872 be determined from the minimal symbol table whenever the variable
6873 is referenced.
6874 The address for the partial symbol table entry is not
6875 used by GDB, but it comes in handy for debugging partial symbol
6876 table building. */
6877
6878 if (pdi->d.locdesc || pdi->has_type)
6879 add_psymbol_to_list (actual_name, strlen (actual_name),
6880 built_actual_name != NULL,
6881 VAR_DOMAIN, LOC_STATIC,
6882 &objfile->global_psymbols,
6883 0, addr + baseaddr,
6884 cu->language, objfile);
6885 }
6886 else
6887 {
6888 /* Static Variable. Skip symbols without location descriptors. */
6889 if (pdi->d.locdesc == NULL)
6890 {
6891 xfree (built_actual_name);
6892 return;
6893 }
6894 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
6895 mst_file_data, objfile); */
6896 add_psymbol_to_list (actual_name, strlen (actual_name),
6897 built_actual_name != NULL,
6898 VAR_DOMAIN, LOC_STATIC,
6899 &objfile->static_psymbols,
6900 0, addr + baseaddr,
6901 cu->language, objfile);
6902 }
6903 break;
6904 case DW_TAG_typedef:
6905 case DW_TAG_base_type:
6906 case DW_TAG_subrange_type:
6907 add_psymbol_to_list (actual_name, strlen (actual_name),
6908 built_actual_name != NULL,
6909 VAR_DOMAIN, LOC_TYPEDEF,
6910 &objfile->static_psymbols,
6911 0, (CORE_ADDR) 0, cu->language, objfile);
6912 break;
6913 case DW_TAG_imported_declaration:
6914 case DW_TAG_namespace:
6915 add_psymbol_to_list (actual_name, strlen (actual_name),
6916 built_actual_name != NULL,
6917 VAR_DOMAIN, LOC_TYPEDEF,
6918 &objfile->global_psymbols,
6919 0, (CORE_ADDR) 0, cu->language, objfile);
6920 break;
6921 case DW_TAG_module:
6922 add_psymbol_to_list (actual_name, strlen (actual_name),
6923 built_actual_name != NULL,
6924 MODULE_DOMAIN, LOC_TYPEDEF,
6925 &objfile->global_psymbols,
6926 0, (CORE_ADDR) 0, cu->language, objfile);
6927 break;
6928 case DW_TAG_class_type:
6929 case DW_TAG_interface_type:
6930 case DW_TAG_structure_type:
6931 case DW_TAG_union_type:
6932 case DW_TAG_enumeration_type:
6933 /* Skip external references. The DWARF standard says in the section
6934 about "Structure, Union, and Class Type Entries": "An incomplete
6935 structure, union or class type is represented by a structure,
6936 union or class entry that does not have a byte size attribute
6937 and that has a DW_AT_declaration attribute." */
6938 if (!pdi->has_byte_size && pdi->is_declaration)
6939 {
6940 xfree (built_actual_name);
6941 return;
6942 }
6943
6944 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
6945 static vs. global. */
6946 add_psymbol_to_list (actual_name, strlen (actual_name),
6947 built_actual_name != NULL,
6948 STRUCT_DOMAIN, LOC_TYPEDEF,
6949 (cu->language == language_cplus
6950 || cu->language == language_java)
6951 ? &objfile->global_psymbols
6952 : &objfile->static_psymbols,
6953 0, (CORE_ADDR) 0, cu->language, objfile);
6954
6955 break;
6956 case DW_TAG_enumerator:
6957 add_psymbol_to_list (actual_name, strlen (actual_name),
6958 built_actual_name != NULL,
6959 VAR_DOMAIN, LOC_CONST,
6960 (cu->language == language_cplus
6961 || cu->language == language_java)
6962 ? &objfile->global_psymbols
6963 : &objfile->static_psymbols,
6964 0, (CORE_ADDR) 0, cu->language, objfile);
6965 break;
6966 default:
6967 break;
6968 }
6969
6970 xfree (built_actual_name);
6971 }
6972
6973 /* Read a partial die corresponding to a namespace; also, add a symbol
6974 corresponding to that namespace to the symbol table. NAMESPACE is
6975 the name of the enclosing namespace. */
6976
6977 static void
6978 add_partial_namespace (struct partial_die_info *pdi,
6979 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6980 int need_pc, struct dwarf2_cu *cu)
6981 {
6982 /* Add a symbol for the namespace. */
6983
6984 add_partial_symbol (pdi, cu);
6985
6986 /* Now scan partial symbols in that namespace. */
6987
6988 if (pdi->has_children)
6989 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
6990 }
6991
6992 /* Read a partial die corresponding to a Fortran module. */
6993
6994 static void
6995 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
6996 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
6997 {
6998 /* Add a symbol for the namespace. */
6999
7000 add_partial_symbol (pdi, cu);
7001
7002 /* Now scan partial symbols in that module. */
7003
7004 if (pdi->has_children)
7005 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
7006 }
7007
7008 /* Read a partial die corresponding to a subprogram and create a partial
7009 symbol for that subprogram. When the CU language allows it, this
7010 routine also defines a partial symbol for each nested subprogram
7011 that this subprogram contains.
7012
7013 DIE my also be a lexical block, in which case we simply search
7014 recursively for suprograms defined inside that lexical block.
7015 Again, this is only performed when the CU language allows this
7016 type of definitions. */
7017
7018 static void
7019 add_partial_subprogram (struct partial_die_info *pdi,
7020 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7021 int need_pc, struct dwarf2_cu *cu)
7022 {
7023 if (pdi->tag == DW_TAG_subprogram)
7024 {
7025 if (pdi->has_pc_info)
7026 {
7027 if (pdi->lowpc < *lowpc)
7028 *lowpc = pdi->lowpc;
7029 if (pdi->highpc > *highpc)
7030 *highpc = pdi->highpc;
7031 if (need_pc)
7032 {
7033 CORE_ADDR baseaddr;
7034 struct objfile *objfile = cu->objfile;
7035
7036 baseaddr = ANOFFSET (objfile->section_offsets,
7037 SECT_OFF_TEXT (objfile));
7038 addrmap_set_empty (objfile->psymtabs_addrmap,
7039 pdi->lowpc + baseaddr,
7040 pdi->highpc - 1 + baseaddr,
7041 cu->per_cu->v.psymtab);
7042 }
7043 }
7044
7045 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
7046 {
7047 if (!pdi->is_declaration)
7048 /* Ignore subprogram DIEs that do not have a name, they are
7049 illegal. Do not emit a complaint at this point, we will
7050 do so when we convert this psymtab into a symtab. */
7051 if (pdi->name)
7052 add_partial_symbol (pdi, cu);
7053 }
7054 }
7055
7056 if (! pdi->has_children)
7057 return;
7058
7059 if (cu->language == language_ada)
7060 {
7061 pdi = pdi->die_child;
7062 while (pdi != NULL)
7063 {
7064 fixup_partial_die (pdi, cu);
7065 if (pdi->tag == DW_TAG_subprogram
7066 || pdi->tag == DW_TAG_lexical_block)
7067 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
7068 pdi = pdi->die_sibling;
7069 }
7070 }
7071 }
7072
7073 /* Read a partial die corresponding to an enumeration type. */
7074
7075 static void
7076 add_partial_enumeration (struct partial_die_info *enum_pdi,
7077 struct dwarf2_cu *cu)
7078 {
7079 struct partial_die_info *pdi;
7080
7081 if (enum_pdi->name != NULL)
7082 add_partial_symbol (enum_pdi, cu);
7083
7084 pdi = enum_pdi->die_child;
7085 while (pdi)
7086 {
7087 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
7088 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
7089 else
7090 add_partial_symbol (pdi, cu);
7091 pdi = pdi->die_sibling;
7092 }
7093 }
7094
7095 /* Return the initial uleb128 in the die at INFO_PTR. */
7096
7097 static unsigned int
7098 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
7099 {
7100 unsigned int bytes_read;
7101
7102 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7103 }
7104
7105 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
7106 Return the corresponding abbrev, or NULL if the number is zero (indicating
7107 an empty DIE). In either case *BYTES_READ will be set to the length of
7108 the initial number. */
7109
7110 static struct abbrev_info *
7111 peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
7112 struct dwarf2_cu *cu)
7113 {
7114 bfd *abfd = cu->objfile->obfd;
7115 unsigned int abbrev_number;
7116 struct abbrev_info *abbrev;
7117
7118 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7119
7120 if (abbrev_number == 0)
7121 return NULL;
7122
7123 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
7124 if (!abbrev)
7125 {
7126 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"),
7127 abbrev_number, bfd_get_filename (abfd));
7128 }
7129
7130 return abbrev;
7131 }
7132
7133 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7134 Returns a pointer to the end of a series of DIEs, terminated by an empty
7135 DIE. Any children of the skipped DIEs will also be skipped. */
7136
7137 static const gdb_byte *
7138 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
7139 {
7140 struct dwarf2_cu *cu = reader->cu;
7141 struct abbrev_info *abbrev;
7142 unsigned int bytes_read;
7143
7144 while (1)
7145 {
7146 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7147 if (abbrev == NULL)
7148 return info_ptr + bytes_read;
7149 else
7150 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
7151 }
7152 }
7153
7154 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7155 INFO_PTR should point just after the initial uleb128 of a DIE, and the
7156 abbrev corresponding to that skipped uleb128 should be passed in
7157 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7158 children. */
7159
7160 static const gdb_byte *
7161 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
7162 struct abbrev_info *abbrev)
7163 {
7164 unsigned int bytes_read;
7165 struct attribute attr;
7166 bfd *abfd = reader->abfd;
7167 struct dwarf2_cu *cu = reader->cu;
7168 const gdb_byte *buffer = reader->buffer;
7169 const gdb_byte *buffer_end = reader->buffer_end;
7170 const gdb_byte *start_info_ptr = info_ptr;
7171 unsigned int form, i;
7172
7173 for (i = 0; i < abbrev->num_attrs; i++)
7174 {
7175 /* The only abbrev we care about is DW_AT_sibling. */
7176 if (abbrev->attrs[i].name == DW_AT_sibling)
7177 {
7178 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
7179 if (attr.form == DW_FORM_ref_addr)
7180 complaint (&symfile_complaints,
7181 _("ignoring absolute DW_AT_sibling"));
7182 else
7183 {
7184 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
7185 const gdb_byte *sibling_ptr = buffer + off;
7186
7187 if (sibling_ptr < info_ptr)
7188 complaint (&symfile_complaints,
7189 _("DW_AT_sibling points backwards"));
7190 else if (sibling_ptr > reader->buffer_end)
7191 dwarf2_section_buffer_overflow_complaint (reader->die_section);
7192 else
7193 return sibling_ptr;
7194 }
7195 }
7196
7197 /* If it isn't DW_AT_sibling, skip this attribute. */
7198 form = abbrev->attrs[i].form;
7199 skip_attribute:
7200 switch (form)
7201 {
7202 case DW_FORM_ref_addr:
7203 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7204 and later it is offset sized. */
7205 if (cu->header.version == 2)
7206 info_ptr += cu->header.addr_size;
7207 else
7208 info_ptr += cu->header.offset_size;
7209 break;
7210 case DW_FORM_GNU_ref_alt:
7211 info_ptr += cu->header.offset_size;
7212 break;
7213 case DW_FORM_addr:
7214 info_ptr += cu->header.addr_size;
7215 break;
7216 case DW_FORM_data1:
7217 case DW_FORM_ref1:
7218 case DW_FORM_flag:
7219 info_ptr += 1;
7220 break;
7221 case DW_FORM_flag_present:
7222 break;
7223 case DW_FORM_data2:
7224 case DW_FORM_ref2:
7225 info_ptr += 2;
7226 break;
7227 case DW_FORM_data4:
7228 case DW_FORM_ref4:
7229 info_ptr += 4;
7230 break;
7231 case DW_FORM_data8:
7232 case DW_FORM_ref8:
7233 case DW_FORM_ref_sig8:
7234 info_ptr += 8;
7235 break;
7236 case DW_FORM_string:
7237 read_direct_string (abfd, info_ptr, &bytes_read);
7238 info_ptr += bytes_read;
7239 break;
7240 case DW_FORM_sec_offset:
7241 case DW_FORM_strp:
7242 case DW_FORM_GNU_strp_alt:
7243 info_ptr += cu->header.offset_size;
7244 break;
7245 case DW_FORM_exprloc:
7246 case DW_FORM_block:
7247 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7248 info_ptr += bytes_read;
7249 break;
7250 case DW_FORM_block1:
7251 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7252 break;
7253 case DW_FORM_block2:
7254 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7255 break;
7256 case DW_FORM_block4:
7257 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7258 break;
7259 case DW_FORM_sdata:
7260 case DW_FORM_udata:
7261 case DW_FORM_ref_udata:
7262 case DW_FORM_GNU_addr_index:
7263 case DW_FORM_GNU_str_index:
7264 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
7265 break;
7266 case DW_FORM_indirect:
7267 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7268 info_ptr += bytes_read;
7269 /* We need to continue parsing from here, so just go back to
7270 the top. */
7271 goto skip_attribute;
7272
7273 default:
7274 error (_("Dwarf Error: Cannot handle %s "
7275 "in DWARF reader [in module %s]"),
7276 dwarf_form_name (form),
7277 bfd_get_filename (abfd));
7278 }
7279 }
7280
7281 if (abbrev->has_children)
7282 return skip_children (reader, info_ptr);
7283 else
7284 return info_ptr;
7285 }
7286
7287 /* Locate ORIG_PDI's sibling.
7288 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
7289
7290 static const gdb_byte *
7291 locate_pdi_sibling (const struct die_reader_specs *reader,
7292 struct partial_die_info *orig_pdi,
7293 const gdb_byte *info_ptr)
7294 {
7295 /* Do we know the sibling already? */
7296
7297 if (orig_pdi->sibling)
7298 return orig_pdi->sibling;
7299
7300 /* Are there any children to deal with? */
7301
7302 if (!orig_pdi->has_children)
7303 return info_ptr;
7304
7305 /* Skip the children the long way. */
7306
7307 return skip_children (reader, info_ptr);
7308 }
7309
7310 /* Expand this partial symbol table into a full symbol table. SELF is
7311 not NULL. */
7312
7313 static void
7314 dwarf2_read_symtab (struct partial_symtab *self,
7315 struct objfile *objfile)
7316 {
7317 if (self->readin)
7318 {
7319 warning (_("bug: psymtab for %s is already read in."),
7320 self->filename);
7321 }
7322 else
7323 {
7324 if (info_verbose)
7325 {
7326 printf_filtered (_("Reading in symbols for %s..."),
7327 self->filename);
7328 gdb_flush (gdb_stdout);
7329 }
7330
7331 /* Restore our global data. */
7332 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
7333
7334 /* If this psymtab is constructed from a debug-only objfile, the
7335 has_section_at_zero flag will not necessarily be correct. We
7336 can get the correct value for this flag by looking at the data
7337 associated with the (presumably stripped) associated objfile. */
7338 if (objfile->separate_debug_objfile_backlink)
7339 {
7340 struct dwarf2_per_objfile *dpo_backlink
7341 = objfile_data (objfile->separate_debug_objfile_backlink,
7342 dwarf2_objfile_data_key);
7343
7344 dwarf2_per_objfile->has_section_at_zero
7345 = dpo_backlink->has_section_at_zero;
7346 }
7347
7348 dwarf2_per_objfile->reading_partial_symbols = 0;
7349
7350 psymtab_to_symtab_1 (self);
7351
7352 /* Finish up the debug error message. */
7353 if (info_verbose)
7354 printf_filtered (_("done.\n"));
7355 }
7356
7357 process_cu_includes ();
7358 }
7359 \f
7360 /* Reading in full CUs. */
7361
7362 /* Add PER_CU to the queue. */
7363
7364 static void
7365 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7366 enum language pretend_language)
7367 {
7368 struct dwarf2_queue_item *item;
7369
7370 per_cu->queued = 1;
7371 item = xmalloc (sizeof (*item));
7372 item->per_cu = per_cu;
7373 item->pretend_language = pretend_language;
7374 item->next = NULL;
7375
7376 if (dwarf2_queue == NULL)
7377 dwarf2_queue = item;
7378 else
7379 dwarf2_queue_tail->next = item;
7380
7381 dwarf2_queue_tail = item;
7382 }
7383
7384 /* If PER_CU is not yet queued, add it to the queue.
7385 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7386 dependency.
7387 The result is non-zero if PER_CU was queued, otherwise the result is zero
7388 meaning either PER_CU is already queued or it is already loaded.
7389
7390 N.B. There is an invariant here that if a CU is queued then it is loaded.
7391 The caller is required to load PER_CU if we return non-zero. */
7392
7393 static int
7394 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
7395 struct dwarf2_per_cu_data *per_cu,
7396 enum language pretend_language)
7397 {
7398 /* We may arrive here during partial symbol reading, if we need full
7399 DIEs to process an unusual case (e.g. template arguments). Do
7400 not queue PER_CU, just tell our caller to load its DIEs. */
7401 if (dwarf2_per_objfile->reading_partial_symbols)
7402 {
7403 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7404 return 1;
7405 return 0;
7406 }
7407
7408 /* Mark the dependence relation so that we don't flush PER_CU
7409 too early. */
7410 if (dependent_cu != NULL)
7411 dwarf2_add_dependence (dependent_cu, per_cu);
7412
7413 /* If it's already on the queue, we have nothing to do. */
7414 if (per_cu->queued)
7415 return 0;
7416
7417 /* If the compilation unit is already loaded, just mark it as
7418 used. */
7419 if (per_cu->cu != NULL)
7420 {
7421 per_cu->cu->last_used = 0;
7422 return 0;
7423 }
7424
7425 /* Add it to the queue. */
7426 queue_comp_unit (per_cu, pretend_language);
7427
7428 return 1;
7429 }
7430
7431 /* Process the queue. */
7432
7433 static void
7434 process_queue (void)
7435 {
7436 struct dwarf2_queue_item *item, *next_item;
7437
7438 if (dwarf2_read_debug)
7439 {
7440 fprintf_unfiltered (gdb_stdlog,
7441 "Expanding one or more symtabs of objfile %s ...\n",
7442 objfile_name (dwarf2_per_objfile->objfile));
7443 }
7444
7445 /* The queue starts out with one item, but following a DIE reference
7446 may load a new CU, adding it to the end of the queue. */
7447 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7448 {
7449 if (dwarf2_per_objfile->using_index
7450 ? !item->per_cu->v.quick->symtab
7451 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7452 {
7453 struct dwarf2_per_cu_data *per_cu = item->per_cu;
7454 unsigned int debug_print_threshold;
7455 char buf[100];
7456
7457 if (per_cu->is_debug_types)
7458 {
7459 struct signatured_type *sig_type =
7460 (struct signatured_type *) per_cu;
7461
7462 sprintf (buf, "TU %s at offset 0x%x",
7463 hex_string (sig_type->signature),
7464 per_cu->offset.sect_off);
7465 /* There can be 100s of TUs.
7466 Only print them in verbose mode. */
7467 debug_print_threshold = 2;
7468 }
7469 else
7470 {
7471 sprintf (buf, "CU at offset 0x%x", per_cu->offset.sect_off);
7472 debug_print_threshold = 1;
7473 }
7474
7475 if (dwarf2_read_debug >= debug_print_threshold)
7476 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
7477
7478 if (per_cu->is_debug_types)
7479 process_full_type_unit (per_cu, item->pretend_language);
7480 else
7481 process_full_comp_unit (per_cu, item->pretend_language);
7482
7483 if (dwarf2_read_debug >= debug_print_threshold)
7484 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
7485 }
7486
7487 item->per_cu->queued = 0;
7488 next_item = item->next;
7489 xfree (item);
7490 }
7491
7492 dwarf2_queue_tail = NULL;
7493
7494 if (dwarf2_read_debug)
7495 {
7496 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
7497 objfile_name (dwarf2_per_objfile->objfile));
7498 }
7499 }
7500
7501 /* Free all allocated queue entries. This function only releases anything if
7502 an error was thrown; if the queue was processed then it would have been
7503 freed as we went along. */
7504
7505 static void
7506 dwarf2_release_queue (void *dummy)
7507 {
7508 struct dwarf2_queue_item *item, *last;
7509
7510 item = dwarf2_queue;
7511 while (item)
7512 {
7513 /* Anything still marked queued is likely to be in an
7514 inconsistent state, so discard it. */
7515 if (item->per_cu->queued)
7516 {
7517 if (item->per_cu->cu != NULL)
7518 free_one_cached_comp_unit (item->per_cu);
7519 item->per_cu->queued = 0;
7520 }
7521
7522 last = item;
7523 item = item->next;
7524 xfree (last);
7525 }
7526
7527 dwarf2_queue = dwarf2_queue_tail = NULL;
7528 }
7529
7530 /* Read in full symbols for PST, and anything it depends on. */
7531
7532 static void
7533 psymtab_to_symtab_1 (struct partial_symtab *pst)
7534 {
7535 struct dwarf2_per_cu_data *per_cu;
7536 int i;
7537
7538 if (pst->readin)
7539 return;
7540
7541 for (i = 0; i < pst->number_of_dependencies; i++)
7542 if (!pst->dependencies[i]->readin
7543 && pst->dependencies[i]->user == NULL)
7544 {
7545 /* Inform about additional files that need to be read in. */
7546 if (info_verbose)
7547 {
7548 /* FIXME: i18n: Need to make this a single string. */
7549 fputs_filtered (" ", gdb_stdout);
7550 wrap_here ("");
7551 fputs_filtered ("and ", gdb_stdout);
7552 wrap_here ("");
7553 printf_filtered ("%s...", pst->dependencies[i]->filename);
7554 wrap_here (""); /* Flush output. */
7555 gdb_flush (gdb_stdout);
7556 }
7557 psymtab_to_symtab_1 (pst->dependencies[i]);
7558 }
7559
7560 per_cu = pst->read_symtab_private;
7561
7562 if (per_cu == NULL)
7563 {
7564 /* It's an include file, no symbols to read for it.
7565 Everything is in the parent symtab. */
7566 pst->readin = 1;
7567 return;
7568 }
7569
7570 dw2_do_instantiate_symtab (per_cu);
7571 }
7572
7573 /* Trivial hash function for die_info: the hash value of a DIE
7574 is its offset in .debug_info for this objfile. */
7575
7576 static hashval_t
7577 die_hash (const void *item)
7578 {
7579 const struct die_info *die = item;
7580
7581 return die->offset.sect_off;
7582 }
7583
7584 /* Trivial comparison function for die_info structures: two DIEs
7585 are equal if they have the same offset. */
7586
7587 static int
7588 die_eq (const void *item_lhs, const void *item_rhs)
7589 {
7590 const struct die_info *die_lhs = item_lhs;
7591 const struct die_info *die_rhs = item_rhs;
7592
7593 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7594 }
7595
7596 /* die_reader_func for load_full_comp_unit.
7597 This is identical to read_signatured_type_reader,
7598 but is kept separate for now. */
7599
7600 static void
7601 load_full_comp_unit_reader (const struct die_reader_specs *reader,
7602 const gdb_byte *info_ptr,
7603 struct die_info *comp_unit_die,
7604 int has_children,
7605 void *data)
7606 {
7607 struct dwarf2_cu *cu = reader->cu;
7608 enum language *language_ptr = data;
7609
7610 gdb_assert (cu->die_hash == NULL);
7611 cu->die_hash =
7612 htab_create_alloc_ex (cu->header.length / 12,
7613 die_hash,
7614 die_eq,
7615 NULL,
7616 &cu->comp_unit_obstack,
7617 hashtab_obstack_allocate,
7618 dummy_obstack_deallocate);
7619
7620 if (has_children)
7621 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7622 &info_ptr, comp_unit_die);
7623 cu->dies = comp_unit_die;
7624 /* comp_unit_die is not stored in die_hash, no need. */
7625
7626 /* We try not to read any attributes in this function, because not
7627 all CUs needed for references have been loaded yet, and symbol
7628 table processing isn't initialized. But we have to set the CU language,
7629 or we won't be able to build types correctly.
7630 Similarly, if we do not read the producer, we can not apply
7631 producer-specific interpretation. */
7632 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
7633 }
7634
7635 /* Load the DIEs associated with PER_CU into memory. */
7636
7637 static void
7638 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7639 enum language pretend_language)
7640 {
7641 gdb_assert (! this_cu->is_debug_types);
7642
7643 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7644 load_full_comp_unit_reader, &pretend_language);
7645 }
7646
7647 /* Add a DIE to the delayed physname list. */
7648
7649 static void
7650 add_to_method_list (struct type *type, int fnfield_index, int index,
7651 const char *name, struct die_info *die,
7652 struct dwarf2_cu *cu)
7653 {
7654 struct delayed_method_info mi;
7655 mi.type = type;
7656 mi.fnfield_index = fnfield_index;
7657 mi.index = index;
7658 mi.name = name;
7659 mi.die = die;
7660 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7661 }
7662
7663 /* A cleanup for freeing the delayed method list. */
7664
7665 static void
7666 free_delayed_list (void *ptr)
7667 {
7668 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7669 if (cu->method_list != NULL)
7670 {
7671 VEC_free (delayed_method_info, cu->method_list);
7672 cu->method_list = NULL;
7673 }
7674 }
7675
7676 /* Compute the physnames of any methods on the CU's method list.
7677
7678 The computation of method physnames is delayed in order to avoid the
7679 (bad) condition that one of the method's formal parameters is of an as yet
7680 incomplete type. */
7681
7682 static void
7683 compute_delayed_physnames (struct dwarf2_cu *cu)
7684 {
7685 int i;
7686 struct delayed_method_info *mi;
7687 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7688 {
7689 const char *physname;
7690 struct fn_fieldlist *fn_flp
7691 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7692 physname = dwarf2_physname (mi->name, mi->die, cu);
7693 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
7694 }
7695 }
7696
7697 /* Go objects should be embedded in a DW_TAG_module DIE,
7698 and it's not clear if/how imported objects will appear.
7699 To keep Go support simple until that's worked out,
7700 go back through what we've read and create something usable.
7701 We could do this while processing each DIE, and feels kinda cleaner,
7702 but that way is more invasive.
7703 This is to, for example, allow the user to type "p var" or "b main"
7704 without having to specify the package name, and allow lookups
7705 of module.object to work in contexts that use the expression
7706 parser. */
7707
7708 static void
7709 fixup_go_packaging (struct dwarf2_cu *cu)
7710 {
7711 char *package_name = NULL;
7712 struct pending *list;
7713 int i;
7714
7715 for (list = global_symbols; list != NULL; list = list->next)
7716 {
7717 for (i = 0; i < list->nsyms; ++i)
7718 {
7719 struct symbol *sym = list->symbol[i];
7720
7721 if (SYMBOL_LANGUAGE (sym) == language_go
7722 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7723 {
7724 char *this_package_name = go_symbol_package_name (sym);
7725
7726 if (this_package_name == NULL)
7727 continue;
7728 if (package_name == NULL)
7729 package_name = this_package_name;
7730 else
7731 {
7732 if (strcmp (package_name, this_package_name) != 0)
7733 complaint (&symfile_complaints,
7734 _("Symtab %s has objects from two different Go packages: %s and %s"),
7735 (SYMBOL_SYMTAB (sym)
7736 ? symtab_to_filename_for_display (SYMBOL_SYMTAB (sym))
7737 : objfile_name (cu->objfile)),
7738 this_package_name, package_name);
7739 xfree (this_package_name);
7740 }
7741 }
7742 }
7743 }
7744
7745 if (package_name != NULL)
7746 {
7747 struct objfile *objfile = cu->objfile;
7748 const char *saved_package_name = obstack_copy0 (&objfile->objfile_obstack,
7749 package_name,
7750 strlen (package_name));
7751 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
7752 saved_package_name, objfile);
7753 struct symbol *sym;
7754
7755 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7756
7757 sym = allocate_symbol (objfile);
7758 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
7759 SYMBOL_SET_NAMES (sym, saved_package_name,
7760 strlen (saved_package_name), 0, objfile);
7761 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7762 e.g., "main" finds the "main" module and not C's main(). */
7763 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
7764 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
7765 SYMBOL_TYPE (sym) = type;
7766
7767 add_symbol_to_list (sym, &global_symbols);
7768
7769 xfree (package_name);
7770 }
7771 }
7772
7773 /* Return the symtab for PER_CU. This works properly regardless of
7774 whether we're using the index or psymtabs. */
7775
7776 static struct symtab *
7777 get_symtab (struct dwarf2_per_cu_data *per_cu)
7778 {
7779 return (dwarf2_per_objfile->using_index
7780 ? per_cu->v.quick->symtab
7781 : per_cu->v.psymtab->symtab);
7782 }
7783
7784 /* A helper function for computing the list of all symbol tables
7785 included by PER_CU. */
7786
7787 static void
7788 recursively_compute_inclusions (VEC (symtab_ptr) **result,
7789 htab_t all_children, htab_t all_type_symtabs,
7790 struct dwarf2_per_cu_data *per_cu,
7791 struct symtab *immediate_parent)
7792 {
7793 void **slot;
7794 int ix;
7795 struct symtab *symtab;
7796 struct dwarf2_per_cu_data *iter;
7797
7798 slot = htab_find_slot (all_children, per_cu, INSERT);
7799 if (*slot != NULL)
7800 {
7801 /* This inclusion and its children have been processed. */
7802 return;
7803 }
7804
7805 *slot = per_cu;
7806 /* Only add a CU if it has a symbol table. */
7807 symtab = get_symtab (per_cu);
7808 if (symtab != NULL)
7809 {
7810 /* If this is a type unit only add its symbol table if we haven't
7811 seen it yet (type unit per_cu's can share symtabs). */
7812 if (per_cu->is_debug_types)
7813 {
7814 slot = htab_find_slot (all_type_symtabs, symtab, INSERT);
7815 if (*slot == NULL)
7816 {
7817 *slot = symtab;
7818 VEC_safe_push (symtab_ptr, *result, symtab);
7819 if (symtab->user == NULL)
7820 symtab->user = immediate_parent;
7821 }
7822 }
7823 else
7824 {
7825 VEC_safe_push (symtab_ptr, *result, symtab);
7826 if (symtab->user == NULL)
7827 symtab->user = immediate_parent;
7828 }
7829 }
7830
7831 for (ix = 0;
7832 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
7833 ++ix)
7834 {
7835 recursively_compute_inclusions (result, all_children,
7836 all_type_symtabs, iter, symtab);
7837 }
7838 }
7839
7840 /* Compute the symtab 'includes' fields for the symtab related to
7841 PER_CU. */
7842
7843 static void
7844 compute_symtab_includes (struct dwarf2_per_cu_data *per_cu)
7845 {
7846 gdb_assert (! per_cu->is_debug_types);
7847
7848 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
7849 {
7850 int ix, len;
7851 struct dwarf2_per_cu_data *per_cu_iter;
7852 struct symtab *symtab_iter;
7853 VEC (symtab_ptr) *result_symtabs = NULL;
7854 htab_t all_children, all_type_symtabs;
7855 struct symtab *symtab = get_symtab (per_cu);
7856
7857 /* If we don't have a symtab, we can just skip this case. */
7858 if (symtab == NULL)
7859 return;
7860
7861 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7862 NULL, xcalloc, xfree);
7863 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7864 NULL, xcalloc, xfree);
7865
7866 for (ix = 0;
7867 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
7868 ix, per_cu_iter);
7869 ++ix)
7870 {
7871 recursively_compute_inclusions (&result_symtabs, all_children,
7872 all_type_symtabs, per_cu_iter,
7873 symtab);
7874 }
7875
7876 /* Now we have a transitive closure of all the included symtabs. */
7877 len = VEC_length (symtab_ptr, result_symtabs);
7878 symtab->includes
7879 = obstack_alloc (&dwarf2_per_objfile->objfile->objfile_obstack,
7880 (len + 1) * sizeof (struct symtab *));
7881 for (ix = 0;
7882 VEC_iterate (symtab_ptr, result_symtabs, ix, symtab_iter);
7883 ++ix)
7884 symtab->includes[ix] = symtab_iter;
7885 symtab->includes[len] = NULL;
7886
7887 VEC_free (symtab_ptr, result_symtabs);
7888 htab_delete (all_children);
7889 htab_delete (all_type_symtabs);
7890 }
7891 }
7892
7893 /* Compute the 'includes' field for the symtabs of all the CUs we just
7894 read. */
7895
7896 static void
7897 process_cu_includes (void)
7898 {
7899 int ix;
7900 struct dwarf2_per_cu_data *iter;
7901
7902 for (ix = 0;
7903 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
7904 ix, iter);
7905 ++ix)
7906 {
7907 if (! iter->is_debug_types)
7908 compute_symtab_includes (iter);
7909 }
7910
7911 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
7912 }
7913
7914 /* Generate full symbol information for PER_CU, whose DIEs have
7915 already been loaded into memory. */
7916
7917 static void
7918 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
7919 enum language pretend_language)
7920 {
7921 struct dwarf2_cu *cu = per_cu->cu;
7922 struct objfile *objfile = per_cu->objfile;
7923 CORE_ADDR lowpc, highpc;
7924 struct symtab *symtab;
7925 struct cleanup *back_to, *delayed_list_cleanup;
7926 CORE_ADDR baseaddr;
7927 struct block *static_block;
7928
7929 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7930
7931 buildsym_init ();
7932 back_to = make_cleanup (really_free_pendings, NULL);
7933 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
7934
7935 cu->list_in_scope = &file_symbols;
7936
7937 cu->language = pretend_language;
7938 cu->language_defn = language_def (cu->language);
7939
7940 /* Do line number decoding in read_file_scope () */
7941 process_die (cu->dies, cu);
7942
7943 /* For now fudge the Go package. */
7944 if (cu->language == language_go)
7945 fixup_go_packaging (cu);
7946
7947 /* Now that we have processed all the DIEs in the CU, all the types
7948 should be complete, and it should now be safe to compute all of the
7949 physnames. */
7950 compute_delayed_physnames (cu);
7951 do_cleanups (delayed_list_cleanup);
7952
7953 /* Some compilers don't define a DW_AT_high_pc attribute for the
7954 compilation unit. If the DW_AT_high_pc is missing, synthesize
7955 it, by scanning the DIE's below the compilation unit. */
7956 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
7957
7958 static_block
7959 = end_symtab_get_static_block (highpc + baseaddr, objfile, 0, 1);
7960
7961 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
7962 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
7963 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
7964 addrmap to help ensure it has an accurate map of pc values belonging to
7965 this comp unit. */
7966 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
7967
7968 symtab = end_symtab_from_static_block (static_block, objfile,
7969 SECT_OFF_TEXT (objfile), 0);
7970
7971 if (symtab != NULL)
7972 {
7973 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
7974
7975 /* Set symtab language to language from DW_AT_language. If the
7976 compilation is from a C file generated by language preprocessors, do
7977 not set the language if it was already deduced by start_subfile. */
7978 if (!(cu->language == language_c && symtab->language != language_c))
7979 symtab->language = cu->language;
7980
7981 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
7982 produce DW_AT_location with location lists but it can be possibly
7983 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
7984 there were bugs in prologue debug info, fixed later in GCC-4.5
7985 by "unwind info for epilogues" patch (which is not directly related).
7986
7987 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
7988 needed, it would be wrong due to missing DW_AT_producer there.
7989
7990 Still one can confuse GDB by using non-standard GCC compilation
7991 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
7992 */
7993 if (cu->has_loclist && gcc_4_minor >= 5)
7994 symtab->locations_valid = 1;
7995
7996 if (gcc_4_minor >= 5)
7997 symtab->epilogue_unwind_valid = 1;
7998
7999 symtab->call_site_htab = cu->call_site_htab;
8000 }
8001
8002 if (dwarf2_per_objfile->using_index)
8003 per_cu->v.quick->symtab = symtab;
8004 else
8005 {
8006 struct partial_symtab *pst = per_cu->v.psymtab;
8007 pst->symtab = symtab;
8008 pst->readin = 1;
8009 }
8010
8011 /* Push it for inclusion processing later. */
8012 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
8013
8014 do_cleanups (back_to);
8015 }
8016
8017 /* Generate full symbol information for type unit PER_CU, whose DIEs have
8018 already been loaded into memory. */
8019
8020 static void
8021 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
8022 enum language pretend_language)
8023 {
8024 struct dwarf2_cu *cu = per_cu->cu;
8025 struct objfile *objfile = per_cu->objfile;
8026 struct symtab *symtab;
8027 struct cleanup *back_to, *delayed_list_cleanup;
8028 struct signatured_type *sig_type;
8029
8030 gdb_assert (per_cu->is_debug_types);
8031 sig_type = (struct signatured_type *) per_cu;
8032
8033 buildsym_init ();
8034 back_to = make_cleanup (really_free_pendings, NULL);
8035 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8036
8037 cu->list_in_scope = &file_symbols;
8038
8039 cu->language = pretend_language;
8040 cu->language_defn = language_def (cu->language);
8041
8042 /* The symbol tables are set up in read_type_unit_scope. */
8043 process_die (cu->dies, cu);
8044
8045 /* For now fudge the Go package. */
8046 if (cu->language == language_go)
8047 fixup_go_packaging (cu);
8048
8049 /* Now that we have processed all the DIEs in the CU, all the types
8050 should be complete, and it should now be safe to compute all of the
8051 physnames. */
8052 compute_delayed_physnames (cu);
8053 do_cleanups (delayed_list_cleanup);
8054
8055 /* TUs share symbol tables.
8056 If this is the first TU to use this symtab, complete the construction
8057 of it with end_expandable_symtab. Otherwise, complete the addition of
8058 this TU's symbols to the existing symtab. */
8059 if (sig_type->type_unit_group->primary_symtab == NULL)
8060 {
8061 symtab = end_expandable_symtab (0, objfile, SECT_OFF_TEXT (objfile));
8062 sig_type->type_unit_group->primary_symtab = symtab;
8063
8064 if (symtab != NULL)
8065 {
8066 /* Set symtab language to language from DW_AT_language. If the
8067 compilation is from a C file generated by language preprocessors,
8068 do not set the language if it was already deduced by
8069 start_subfile. */
8070 if (!(cu->language == language_c && symtab->language != language_c))
8071 symtab->language = cu->language;
8072 }
8073 }
8074 else
8075 {
8076 augment_type_symtab (objfile,
8077 sig_type->type_unit_group->primary_symtab);
8078 symtab = sig_type->type_unit_group->primary_symtab;
8079 }
8080
8081 if (dwarf2_per_objfile->using_index)
8082 per_cu->v.quick->symtab = symtab;
8083 else
8084 {
8085 struct partial_symtab *pst = per_cu->v.psymtab;
8086 pst->symtab = symtab;
8087 pst->readin = 1;
8088 }
8089
8090 do_cleanups (back_to);
8091 }
8092
8093 /* Process an imported unit DIE. */
8094
8095 static void
8096 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
8097 {
8098 struct attribute *attr;
8099
8100 /* For now we don't handle imported units in type units. */
8101 if (cu->per_cu->is_debug_types)
8102 {
8103 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8104 " supported in type units [in module %s]"),
8105 objfile_name (cu->objfile));
8106 }
8107
8108 attr = dwarf2_attr (die, DW_AT_import, cu);
8109 if (attr != NULL)
8110 {
8111 struct dwarf2_per_cu_data *per_cu;
8112 struct symtab *imported_symtab;
8113 sect_offset offset;
8114 int is_dwz;
8115
8116 offset = dwarf2_get_ref_die_offset (attr);
8117 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8118 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
8119
8120 /* If necessary, add it to the queue and load its DIEs. */
8121 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8122 load_full_comp_unit (per_cu, cu->language);
8123
8124 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8125 per_cu);
8126 }
8127 }
8128
8129 /* Reset the in_process bit of a die. */
8130
8131 static void
8132 reset_die_in_process (void *arg)
8133 {
8134 struct die_info *die = arg;
8135
8136 die->in_process = 0;
8137 }
8138
8139 /* Process a die and its children. */
8140
8141 static void
8142 process_die (struct die_info *die, struct dwarf2_cu *cu)
8143 {
8144 struct cleanup *in_process;
8145
8146 /* We should only be processing those not already in process. */
8147 gdb_assert (!die->in_process);
8148
8149 die->in_process = 1;
8150 in_process = make_cleanup (reset_die_in_process,die);
8151
8152 switch (die->tag)
8153 {
8154 case DW_TAG_padding:
8155 break;
8156 case DW_TAG_compile_unit:
8157 case DW_TAG_partial_unit:
8158 read_file_scope (die, cu);
8159 break;
8160 case DW_TAG_type_unit:
8161 read_type_unit_scope (die, cu);
8162 break;
8163 case DW_TAG_subprogram:
8164 case DW_TAG_inlined_subroutine:
8165 read_func_scope (die, cu);
8166 break;
8167 case DW_TAG_lexical_block:
8168 case DW_TAG_try_block:
8169 case DW_TAG_catch_block:
8170 read_lexical_block_scope (die, cu);
8171 break;
8172 case DW_TAG_GNU_call_site:
8173 read_call_site_scope (die, cu);
8174 break;
8175 case DW_TAG_class_type:
8176 case DW_TAG_interface_type:
8177 case DW_TAG_structure_type:
8178 case DW_TAG_union_type:
8179 process_structure_scope (die, cu);
8180 break;
8181 case DW_TAG_enumeration_type:
8182 process_enumeration_scope (die, cu);
8183 break;
8184
8185 /* These dies have a type, but processing them does not create
8186 a symbol or recurse to process the children. Therefore we can
8187 read them on-demand through read_type_die. */
8188 case DW_TAG_subroutine_type:
8189 case DW_TAG_set_type:
8190 case DW_TAG_array_type:
8191 case DW_TAG_pointer_type:
8192 case DW_TAG_ptr_to_member_type:
8193 case DW_TAG_reference_type:
8194 case DW_TAG_string_type:
8195 break;
8196
8197 case DW_TAG_base_type:
8198 case DW_TAG_subrange_type:
8199 case DW_TAG_typedef:
8200 /* Add a typedef symbol for the type definition, if it has a
8201 DW_AT_name. */
8202 new_symbol (die, read_type_die (die, cu), cu);
8203 break;
8204 case DW_TAG_common_block:
8205 read_common_block (die, cu);
8206 break;
8207 case DW_TAG_common_inclusion:
8208 break;
8209 case DW_TAG_namespace:
8210 cu->processing_has_namespace_info = 1;
8211 read_namespace (die, cu);
8212 break;
8213 case DW_TAG_module:
8214 cu->processing_has_namespace_info = 1;
8215 read_module (die, cu);
8216 break;
8217 case DW_TAG_imported_declaration:
8218 cu->processing_has_namespace_info = 1;
8219 if (read_namespace_alias (die, cu))
8220 break;
8221 /* The declaration is not a global namespace alias: fall through. */
8222 case DW_TAG_imported_module:
8223 cu->processing_has_namespace_info = 1;
8224 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8225 || cu->language != language_fortran))
8226 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8227 dwarf_tag_name (die->tag));
8228 read_import_statement (die, cu);
8229 break;
8230
8231 case DW_TAG_imported_unit:
8232 process_imported_unit_die (die, cu);
8233 break;
8234
8235 default:
8236 new_symbol (die, NULL, cu);
8237 break;
8238 }
8239
8240 do_cleanups (in_process);
8241 }
8242 \f
8243 /* DWARF name computation. */
8244
8245 /* A helper function for dwarf2_compute_name which determines whether DIE
8246 needs to have the name of the scope prepended to the name listed in the
8247 die. */
8248
8249 static int
8250 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8251 {
8252 struct attribute *attr;
8253
8254 switch (die->tag)
8255 {
8256 case DW_TAG_namespace:
8257 case DW_TAG_typedef:
8258 case DW_TAG_class_type:
8259 case DW_TAG_interface_type:
8260 case DW_TAG_structure_type:
8261 case DW_TAG_union_type:
8262 case DW_TAG_enumeration_type:
8263 case DW_TAG_enumerator:
8264 case DW_TAG_subprogram:
8265 case DW_TAG_member:
8266 case DW_TAG_imported_declaration:
8267 return 1;
8268
8269 case DW_TAG_variable:
8270 case DW_TAG_constant:
8271 /* We only need to prefix "globally" visible variables. These include
8272 any variable marked with DW_AT_external or any variable that
8273 lives in a namespace. [Variables in anonymous namespaces
8274 require prefixing, but they are not DW_AT_external.] */
8275
8276 if (dwarf2_attr (die, DW_AT_specification, cu))
8277 {
8278 struct dwarf2_cu *spec_cu = cu;
8279
8280 return die_needs_namespace (die_specification (die, &spec_cu),
8281 spec_cu);
8282 }
8283
8284 attr = dwarf2_attr (die, DW_AT_external, cu);
8285 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8286 && die->parent->tag != DW_TAG_module)
8287 return 0;
8288 /* A variable in a lexical block of some kind does not need a
8289 namespace, even though in C++ such variables may be external
8290 and have a mangled name. */
8291 if (die->parent->tag == DW_TAG_lexical_block
8292 || die->parent->tag == DW_TAG_try_block
8293 || die->parent->tag == DW_TAG_catch_block
8294 || die->parent->tag == DW_TAG_subprogram)
8295 return 0;
8296 return 1;
8297
8298 default:
8299 return 0;
8300 }
8301 }
8302
8303 /* Retrieve the last character from a mem_file. */
8304
8305 static void
8306 do_ui_file_peek_last (void *object, const char *buffer, long length)
8307 {
8308 char *last_char_p = (char *) object;
8309
8310 if (length > 0)
8311 *last_char_p = buffer[length - 1];
8312 }
8313
8314 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
8315 compute the physname for the object, which include a method's:
8316 - formal parameters (C++/Java),
8317 - receiver type (Go),
8318 - return type (Java).
8319
8320 The term "physname" is a bit confusing.
8321 For C++, for example, it is the demangled name.
8322 For Go, for example, it's the mangled name.
8323
8324 For Ada, return the DIE's linkage name rather than the fully qualified
8325 name. PHYSNAME is ignored..
8326
8327 The result is allocated on the objfile_obstack and canonicalized. */
8328
8329 static const char *
8330 dwarf2_compute_name (const char *name,
8331 struct die_info *die, struct dwarf2_cu *cu,
8332 int physname)
8333 {
8334 struct objfile *objfile = cu->objfile;
8335
8336 if (name == NULL)
8337 name = dwarf2_name (die, cu);
8338
8339 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
8340 compute it by typename_concat inside GDB. */
8341 if (cu->language == language_ada
8342 || (cu->language == language_fortran && physname))
8343 {
8344 /* For Ada unit, we prefer the linkage name over the name, as
8345 the former contains the exported name, which the user expects
8346 to be able to reference. Ideally, we want the user to be able
8347 to reference this entity using either natural or linkage name,
8348 but we haven't started looking at this enhancement yet. */
8349 struct attribute *attr;
8350
8351 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8352 if (attr == NULL)
8353 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8354 if (attr && DW_STRING (attr))
8355 return DW_STRING (attr);
8356 }
8357
8358 /* These are the only languages we know how to qualify names in. */
8359 if (name != NULL
8360 && (cu->language == language_cplus || cu->language == language_java
8361 || cu->language == language_fortran))
8362 {
8363 if (die_needs_namespace (die, cu))
8364 {
8365 long length;
8366 const char *prefix;
8367 struct ui_file *buf;
8368
8369 prefix = determine_prefix (die, cu);
8370 buf = mem_fileopen ();
8371 if (*prefix != '\0')
8372 {
8373 char *prefixed_name = typename_concat (NULL, prefix, name,
8374 physname, cu);
8375
8376 fputs_unfiltered (prefixed_name, buf);
8377 xfree (prefixed_name);
8378 }
8379 else
8380 fputs_unfiltered (name, buf);
8381
8382 /* Template parameters may be specified in the DIE's DW_AT_name, or
8383 as children with DW_TAG_template_type_param or
8384 DW_TAG_value_type_param. If the latter, add them to the name
8385 here. If the name already has template parameters, then
8386 skip this step; some versions of GCC emit both, and
8387 it is more efficient to use the pre-computed name.
8388
8389 Something to keep in mind about this process: it is very
8390 unlikely, or in some cases downright impossible, to produce
8391 something that will match the mangled name of a function.
8392 If the definition of the function has the same debug info,
8393 we should be able to match up with it anyway. But fallbacks
8394 using the minimal symbol, for instance to find a method
8395 implemented in a stripped copy of libstdc++, will not work.
8396 If we do not have debug info for the definition, we will have to
8397 match them up some other way.
8398
8399 When we do name matching there is a related problem with function
8400 templates; two instantiated function templates are allowed to
8401 differ only by their return types, which we do not add here. */
8402
8403 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8404 {
8405 struct attribute *attr;
8406 struct die_info *child;
8407 int first = 1;
8408
8409 die->building_fullname = 1;
8410
8411 for (child = die->child; child != NULL; child = child->sibling)
8412 {
8413 struct type *type;
8414 LONGEST value;
8415 const gdb_byte *bytes;
8416 struct dwarf2_locexpr_baton *baton;
8417 struct value *v;
8418
8419 if (child->tag != DW_TAG_template_type_param
8420 && child->tag != DW_TAG_template_value_param)
8421 continue;
8422
8423 if (first)
8424 {
8425 fputs_unfiltered ("<", buf);
8426 first = 0;
8427 }
8428 else
8429 fputs_unfiltered (", ", buf);
8430
8431 attr = dwarf2_attr (child, DW_AT_type, cu);
8432 if (attr == NULL)
8433 {
8434 complaint (&symfile_complaints,
8435 _("template parameter missing DW_AT_type"));
8436 fputs_unfiltered ("UNKNOWN_TYPE", buf);
8437 continue;
8438 }
8439 type = die_type (child, cu);
8440
8441 if (child->tag == DW_TAG_template_type_param)
8442 {
8443 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
8444 continue;
8445 }
8446
8447 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8448 if (attr == NULL)
8449 {
8450 complaint (&symfile_complaints,
8451 _("template parameter missing "
8452 "DW_AT_const_value"));
8453 fputs_unfiltered ("UNKNOWN_VALUE", buf);
8454 continue;
8455 }
8456
8457 dwarf2_const_value_attr (attr, type, name,
8458 &cu->comp_unit_obstack, cu,
8459 &value, &bytes, &baton);
8460
8461 if (TYPE_NOSIGN (type))
8462 /* GDB prints characters as NUMBER 'CHAR'. If that's
8463 changed, this can use value_print instead. */
8464 c_printchar (value, type, buf);
8465 else
8466 {
8467 struct value_print_options opts;
8468
8469 if (baton != NULL)
8470 v = dwarf2_evaluate_loc_desc (type, NULL,
8471 baton->data,
8472 baton->size,
8473 baton->per_cu);
8474 else if (bytes != NULL)
8475 {
8476 v = allocate_value (type);
8477 memcpy (value_contents_writeable (v), bytes,
8478 TYPE_LENGTH (type));
8479 }
8480 else
8481 v = value_from_longest (type, value);
8482
8483 /* Specify decimal so that we do not depend on
8484 the radix. */
8485 get_formatted_print_options (&opts, 'd');
8486 opts.raw = 1;
8487 value_print (v, buf, &opts);
8488 release_value (v);
8489 value_free (v);
8490 }
8491 }
8492
8493 die->building_fullname = 0;
8494
8495 if (!first)
8496 {
8497 /* Close the argument list, with a space if necessary
8498 (nested templates). */
8499 char last_char = '\0';
8500 ui_file_put (buf, do_ui_file_peek_last, &last_char);
8501 if (last_char == '>')
8502 fputs_unfiltered (" >", buf);
8503 else
8504 fputs_unfiltered (">", buf);
8505 }
8506 }
8507
8508 /* For Java and C++ methods, append formal parameter type
8509 information, if PHYSNAME. */
8510
8511 if (physname && die->tag == DW_TAG_subprogram
8512 && (cu->language == language_cplus
8513 || cu->language == language_java))
8514 {
8515 struct type *type = read_type_die (die, cu);
8516
8517 c_type_print_args (type, buf, 1, cu->language,
8518 &type_print_raw_options);
8519
8520 if (cu->language == language_java)
8521 {
8522 /* For java, we must append the return type to method
8523 names. */
8524 if (die->tag == DW_TAG_subprogram)
8525 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
8526 0, 0, &type_print_raw_options);
8527 }
8528 else if (cu->language == language_cplus)
8529 {
8530 /* Assume that an artificial first parameter is
8531 "this", but do not crash if it is not. RealView
8532 marks unnamed (and thus unused) parameters as
8533 artificial; there is no way to differentiate
8534 the two cases. */
8535 if (TYPE_NFIELDS (type) > 0
8536 && TYPE_FIELD_ARTIFICIAL (type, 0)
8537 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
8538 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8539 0))))
8540 fputs_unfiltered (" const", buf);
8541 }
8542 }
8543
8544 name = ui_file_obsavestring (buf, &objfile->objfile_obstack,
8545 &length);
8546 ui_file_delete (buf);
8547
8548 if (cu->language == language_cplus)
8549 {
8550 const char *cname
8551 = dwarf2_canonicalize_name (name, cu,
8552 &objfile->objfile_obstack);
8553
8554 if (cname != NULL)
8555 name = cname;
8556 }
8557 }
8558 }
8559
8560 return name;
8561 }
8562
8563 /* Return the fully qualified name of DIE, based on its DW_AT_name.
8564 If scope qualifiers are appropriate they will be added. The result
8565 will be allocated on the objfile_obstack, or NULL if the DIE does
8566 not have a name. NAME may either be from a previous call to
8567 dwarf2_name or NULL.
8568
8569 The output string will be canonicalized (if C++/Java). */
8570
8571 static const char *
8572 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8573 {
8574 return dwarf2_compute_name (name, die, cu, 0);
8575 }
8576
8577 /* Construct a physname for the given DIE in CU. NAME may either be
8578 from a previous call to dwarf2_name or NULL. The result will be
8579 allocated on the objfile_objstack or NULL if the DIE does not have a
8580 name.
8581
8582 The output string will be canonicalized (if C++/Java). */
8583
8584 static const char *
8585 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8586 {
8587 struct objfile *objfile = cu->objfile;
8588 struct attribute *attr;
8589 const char *retval, *mangled = NULL, *canon = NULL;
8590 struct cleanup *back_to;
8591 int need_copy = 1;
8592
8593 /* In this case dwarf2_compute_name is just a shortcut not building anything
8594 on its own. */
8595 if (!die_needs_namespace (die, cu))
8596 return dwarf2_compute_name (name, die, cu, 1);
8597
8598 back_to = make_cleanup (null_cleanup, NULL);
8599
8600 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8601 if (!attr)
8602 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8603
8604 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8605 has computed. */
8606 if (attr && DW_STRING (attr))
8607 {
8608 char *demangled;
8609
8610 mangled = DW_STRING (attr);
8611
8612 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8613 type. It is easier for GDB users to search for such functions as
8614 `name(params)' than `long name(params)'. In such case the minimal
8615 symbol names do not match the full symbol names but for template
8616 functions there is never a need to look up their definition from their
8617 declaration so the only disadvantage remains the minimal symbol
8618 variant `long name(params)' does not have the proper inferior type.
8619 */
8620
8621 if (cu->language == language_go)
8622 {
8623 /* This is a lie, but we already lie to the caller new_symbol_full.
8624 new_symbol_full assumes we return the mangled name.
8625 This just undoes that lie until things are cleaned up. */
8626 demangled = NULL;
8627 }
8628 else
8629 {
8630 demangled = gdb_demangle (mangled,
8631 (DMGL_PARAMS | DMGL_ANSI
8632 | (cu->language == language_java
8633 ? DMGL_JAVA | DMGL_RET_POSTFIX
8634 : DMGL_RET_DROP)));
8635 }
8636 if (demangled)
8637 {
8638 make_cleanup (xfree, demangled);
8639 canon = demangled;
8640 }
8641 else
8642 {
8643 canon = mangled;
8644 need_copy = 0;
8645 }
8646 }
8647
8648 if (canon == NULL || check_physname)
8649 {
8650 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8651
8652 if (canon != NULL && strcmp (physname, canon) != 0)
8653 {
8654 /* It may not mean a bug in GDB. The compiler could also
8655 compute DW_AT_linkage_name incorrectly. But in such case
8656 GDB would need to be bug-to-bug compatible. */
8657
8658 complaint (&symfile_complaints,
8659 _("Computed physname <%s> does not match demangled <%s> "
8660 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
8661 physname, canon, mangled, die->offset.sect_off,
8662 objfile_name (objfile));
8663
8664 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8665 is available here - over computed PHYSNAME. It is safer
8666 against both buggy GDB and buggy compilers. */
8667
8668 retval = canon;
8669 }
8670 else
8671 {
8672 retval = physname;
8673 need_copy = 0;
8674 }
8675 }
8676 else
8677 retval = canon;
8678
8679 if (need_copy)
8680 retval = obstack_copy0 (&objfile->objfile_obstack, retval, strlen (retval));
8681
8682 do_cleanups (back_to);
8683 return retval;
8684 }
8685
8686 /* Inspect DIE in CU for a namespace alias. If one exists, record
8687 a new symbol for it.
8688
8689 Returns 1 if a namespace alias was recorded, 0 otherwise. */
8690
8691 static int
8692 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
8693 {
8694 struct attribute *attr;
8695
8696 /* If the die does not have a name, this is not a namespace
8697 alias. */
8698 attr = dwarf2_attr (die, DW_AT_name, cu);
8699 if (attr != NULL)
8700 {
8701 int num;
8702 struct die_info *d = die;
8703 struct dwarf2_cu *imported_cu = cu;
8704
8705 /* If the compiler has nested DW_AT_imported_declaration DIEs,
8706 keep inspecting DIEs until we hit the underlying import. */
8707 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
8708 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
8709 {
8710 attr = dwarf2_attr (d, DW_AT_import, cu);
8711 if (attr == NULL)
8712 break;
8713
8714 d = follow_die_ref (d, attr, &imported_cu);
8715 if (d->tag != DW_TAG_imported_declaration)
8716 break;
8717 }
8718
8719 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
8720 {
8721 complaint (&symfile_complaints,
8722 _("DIE at 0x%x has too many recursively imported "
8723 "declarations"), d->offset.sect_off);
8724 return 0;
8725 }
8726
8727 if (attr != NULL)
8728 {
8729 struct type *type;
8730 sect_offset offset = dwarf2_get_ref_die_offset (attr);
8731
8732 type = get_die_type_at_offset (offset, cu->per_cu);
8733 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
8734 {
8735 /* This declaration is a global namespace alias. Add
8736 a symbol for it whose type is the aliased namespace. */
8737 new_symbol (die, type, cu);
8738 return 1;
8739 }
8740 }
8741 }
8742
8743 return 0;
8744 }
8745
8746 /* Read the import statement specified by the given die and record it. */
8747
8748 static void
8749 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8750 {
8751 struct objfile *objfile = cu->objfile;
8752 struct attribute *import_attr;
8753 struct die_info *imported_die, *child_die;
8754 struct dwarf2_cu *imported_cu;
8755 const char *imported_name;
8756 const char *imported_name_prefix;
8757 const char *canonical_name;
8758 const char *import_alias;
8759 const char *imported_declaration = NULL;
8760 const char *import_prefix;
8761 VEC (const_char_ptr) *excludes = NULL;
8762 struct cleanup *cleanups;
8763
8764 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8765 if (import_attr == NULL)
8766 {
8767 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8768 dwarf_tag_name (die->tag));
8769 return;
8770 }
8771
8772 imported_cu = cu;
8773 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8774 imported_name = dwarf2_name (imported_die, imported_cu);
8775 if (imported_name == NULL)
8776 {
8777 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8778
8779 The import in the following code:
8780 namespace A
8781 {
8782 typedef int B;
8783 }
8784
8785 int main ()
8786 {
8787 using A::B;
8788 B b;
8789 return b;
8790 }
8791
8792 ...
8793 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8794 <52> DW_AT_decl_file : 1
8795 <53> DW_AT_decl_line : 6
8796 <54> DW_AT_import : <0x75>
8797 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8798 <59> DW_AT_name : B
8799 <5b> DW_AT_decl_file : 1
8800 <5c> DW_AT_decl_line : 2
8801 <5d> DW_AT_type : <0x6e>
8802 ...
8803 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
8804 <76> DW_AT_byte_size : 4
8805 <77> DW_AT_encoding : 5 (signed)
8806
8807 imports the wrong die ( 0x75 instead of 0x58 ).
8808 This case will be ignored until the gcc bug is fixed. */
8809 return;
8810 }
8811
8812 /* Figure out the local name after import. */
8813 import_alias = dwarf2_name (die, cu);
8814
8815 /* Figure out where the statement is being imported to. */
8816 import_prefix = determine_prefix (die, cu);
8817
8818 /* Figure out what the scope of the imported die is and prepend it
8819 to the name of the imported die. */
8820 imported_name_prefix = determine_prefix (imported_die, imported_cu);
8821
8822 if (imported_die->tag != DW_TAG_namespace
8823 && imported_die->tag != DW_TAG_module)
8824 {
8825 imported_declaration = imported_name;
8826 canonical_name = imported_name_prefix;
8827 }
8828 else if (strlen (imported_name_prefix) > 0)
8829 canonical_name = obconcat (&objfile->objfile_obstack,
8830 imported_name_prefix, "::", imported_name,
8831 (char *) NULL);
8832 else
8833 canonical_name = imported_name;
8834
8835 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
8836
8837 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
8838 for (child_die = die->child; child_die && child_die->tag;
8839 child_die = sibling_die (child_die))
8840 {
8841 /* DWARF-4: A Fortran use statement with a “rename list” may be
8842 represented by an imported module entry with an import attribute
8843 referring to the module and owned entries corresponding to those
8844 entities that are renamed as part of being imported. */
8845
8846 if (child_die->tag != DW_TAG_imported_declaration)
8847 {
8848 complaint (&symfile_complaints,
8849 _("child DW_TAG_imported_declaration expected "
8850 "- DIE at 0x%x [in module %s]"),
8851 child_die->offset.sect_off, objfile_name (objfile));
8852 continue;
8853 }
8854
8855 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
8856 if (import_attr == NULL)
8857 {
8858 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8859 dwarf_tag_name (child_die->tag));
8860 continue;
8861 }
8862
8863 imported_cu = cu;
8864 imported_die = follow_die_ref_or_sig (child_die, import_attr,
8865 &imported_cu);
8866 imported_name = dwarf2_name (imported_die, imported_cu);
8867 if (imported_name == NULL)
8868 {
8869 complaint (&symfile_complaints,
8870 _("child DW_TAG_imported_declaration has unknown "
8871 "imported name - DIE at 0x%x [in module %s]"),
8872 child_die->offset.sect_off, objfile_name (objfile));
8873 continue;
8874 }
8875
8876 VEC_safe_push (const_char_ptr, excludes, imported_name);
8877
8878 process_die (child_die, cu);
8879 }
8880
8881 cp_add_using_directive (import_prefix,
8882 canonical_name,
8883 import_alias,
8884 imported_declaration,
8885 excludes,
8886 0,
8887 &objfile->objfile_obstack);
8888
8889 do_cleanups (cleanups);
8890 }
8891
8892 /* Cleanup function for handle_DW_AT_stmt_list. */
8893
8894 static void
8895 free_cu_line_header (void *arg)
8896 {
8897 struct dwarf2_cu *cu = arg;
8898
8899 free_line_header (cu->line_header);
8900 cu->line_header = NULL;
8901 }
8902
8903 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
8904 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
8905 this, it was first present in GCC release 4.3.0. */
8906
8907 static int
8908 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
8909 {
8910 if (!cu->checked_producer)
8911 check_producer (cu);
8912
8913 return cu->producer_is_gcc_lt_4_3;
8914 }
8915
8916 static void
8917 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
8918 const char **name, const char **comp_dir)
8919 {
8920 struct attribute *attr;
8921
8922 *name = NULL;
8923 *comp_dir = NULL;
8924
8925 /* Find the filename. Do not use dwarf2_name here, since the filename
8926 is not a source language identifier. */
8927 attr = dwarf2_attr (die, DW_AT_name, cu);
8928 if (attr)
8929 {
8930 *name = DW_STRING (attr);
8931 }
8932
8933 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
8934 if (attr)
8935 *comp_dir = DW_STRING (attr);
8936 else if (producer_is_gcc_lt_4_3 (cu) && *name != NULL
8937 && IS_ABSOLUTE_PATH (*name))
8938 {
8939 char *d = ldirname (*name);
8940
8941 *comp_dir = d;
8942 if (d != NULL)
8943 make_cleanup (xfree, d);
8944 }
8945 if (*comp_dir != NULL)
8946 {
8947 /* Irix 6.2 native cc prepends <machine>.: to the compilation
8948 directory, get rid of it. */
8949 char *cp = strchr (*comp_dir, ':');
8950
8951 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
8952 *comp_dir = cp + 1;
8953 }
8954
8955 if (*name == NULL)
8956 *name = "<unknown>";
8957 }
8958
8959 /* Handle DW_AT_stmt_list for a compilation unit.
8960 DIE is the DW_TAG_compile_unit die for CU.
8961 COMP_DIR is the compilation directory.
8962 WANT_LINE_INFO is non-zero if the pc/line-number mapping is needed. */
8963
8964 static void
8965 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
8966 const char *comp_dir) /* ARI: editCase function */
8967 {
8968 struct attribute *attr;
8969
8970 gdb_assert (! cu->per_cu->is_debug_types);
8971
8972 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
8973 if (attr)
8974 {
8975 unsigned int line_offset = DW_UNSND (attr);
8976 struct line_header *line_header
8977 = dwarf_decode_line_header (line_offset, cu);
8978
8979 if (line_header)
8980 {
8981 cu->line_header = line_header;
8982 make_cleanup (free_cu_line_header, cu);
8983 dwarf_decode_lines (line_header, comp_dir, cu, NULL, 1);
8984 }
8985 }
8986 }
8987
8988 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
8989
8990 static void
8991 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
8992 {
8993 struct objfile *objfile = dwarf2_per_objfile->objfile;
8994 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
8995 CORE_ADDR lowpc = ((CORE_ADDR) -1);
8996 CORE_ADDR highpc = ((CORE_ADDR) 0);
8997 struct attribute *attr;
8998 const char *name = NULL;
8999 const char *comp_dir = NULL;
9000 struct die_info *child_die;
9001 bfd *abfd = objfile->obfd;
9002 CORE_ADDR baseaddr;
9003
9004 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9005
9006 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
9007
9008 /* If we didn't find a lowpc, set it to highpc to avoid complaints
9009 from finish_block. */
9010 if (lowpc == ((CORE_ADDR) -1))
9011 lowpc = highpc;
9012 lowpc += baseaddr;
9013 highpc += baseaddr;
9014
9015 find_file_and_directory (die, cu, &name, &comp_dir);
9016
9017 prepare_one_comp_unit (cu, die, cu->language);
9018
9019 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
9020 standardised yet. As a workaround for the language detection we fall
9021 back to the DW_AT_producer string. */
9022 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
9023 cu->language = language_opencl;
9024
9025 /* Similar hack for Go. */
9026 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
9027 set_cu_language (DW_LANG_Go, cu);
9028
9029 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
9030
9031 /* Decode line number information if present. We do this before
9032 processing child DIEs, so that the line header table is available
9033 for DW_AT_decl_file. */
9034 handle_DW_AT_stmt_list (die, cu, comp_dir);
9035
9036 /* Process all dies in compilation unit. */
9037 if (die->child != NULL)
9038 {
9039 child_die = die->child;
9040 while (child_die && child_die->tag)
9041 {
9042 process_die (child_die, cu);
9043 child_die = sibling_die (child_die);
9044 }
9045 }
9046
9047 /* Decode macro information, if present. Dwarf 2 macro information
9048 refers to information in the line number info statement program
9049 header, so we can only read it if we've read the header
9050 successfully. */
9051 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
9052 if (attr && cu->line_header)
9053 {
9054 if (dwarf2_attr (die, DW_AT_macro_info, cu))
9055 complaint (&symfile_complaints,
9056 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
9057
9058 dwarf_decode_macros (cu, DW_UNSND (attr), comp_dir, 1);
9059 }
9060 else
9061 {
9062 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
9063 if (attr && cu->line_header)
9064 {
9065 unsigned int macro_offset = DW_UNSND (attr);
9066
9067 dwarf_decode_macros (cu, macro_offset, comp_dir, 0);
9068 }
9069 }
9070
9071 do_cleanups (back_to);
9072 }
9073
9074 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
9075 Create the set of symtabs used by this TU, or if this TU is sharing
9076 symtabs with another TU and the symtabs have already been created
9077 then restore those symtabs in the line header.
9078 We don't need the pc/line-number mapping for type units. */
9079
9080 static void
9081 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
9082 {
9083 struct objfile *objfile = dwarf2_per_objfile->objfile;
9084 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
9085 struct type_unit_group *tu_group;
9086 int first_time;
9087 struct line_header *lh;
9088 struct attribute *attr;
9089 unsigned int i, line_offset;
9090 struct signatured_type *sig_type;
9091
9092 gdb_assert (per_cu->is_debug_types);
9093 sig_type = (struct signatured_type *) per_cu;
9094
9095 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9096
9097 /* If we're using .gdb_index (includes -readnow) then
9098 per_cu->type_unit_group may not have been set up yet. */
9099 if (sig_type->type_unit_group == NULL)
9100 sig_type->type_unit_group = get_type_unit_group (cu, attr);
9101 tu_group = sig_type->type_unit_group;
9102
9103 /* If we've already processed this stmt_list there's no real need to
9104 do it again, we could fake it and just recreate the part we need
9105 (file name,index -> symtab mapping). If data shows this optimization
9106 is useful we can do it then. */
9107 first_time = tu_group->primary_symtab == NULL;
9108
9109 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
9110 debug info. */
9111 lh = NULL;
9112 if (attr != NULL)
9113 {
9114 line_offset = DW_UNSND (attr);
9115 lh = dwarf_decode_line_header (line_offset, cu);
9116 }
9117 if (lh == NULL)
9118 {
9119 if (first_time)
9120 dwarf2_start_symtab (cu, "", NULL, 0);
9121 else
9122 {
9123 gdb_assert (tu_group->symtabs == NULL);
9124 restart_symtab (0);
9125 }
9126 /* Note: The primary symtab will get allocated at the end. */
9127 return;
9128 }
9129
9130 cu->line_header = lh;
9131 make_cleanup (free_cu_line_header, cu);
9132
9133 if (first_time)
9134 {
9135 dwarf2_start_symtab (cu, "", NULL, 0);
9136
9137 tu_group->num_symtabs = lh->num_file_names;
9138 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
9139
9140 for (i = 0; i < lh->num_file_names; ++i)
9141 {
9142 const char *dir = NULL;
9143 struct file_entry *fe = &lh->file_names[i];
9144
9145 if (fe->dir_index)
9146 dir = lh->include_dirs[fe->dir_index - 1];
9147 dwarf2_start_subfile (fe->name, dir, NULL);
9148
9149 /* Note: We don't have to watch for the main subfile here, type units
9150 don't have DW_AT_name. */
9151
9152 if (current_subfile->symtab == NULL)
9153 {
9154 /* NOTE: start_subfile will recognize when it's been passed
9155 a file it has already seen. So we can't assume there's a
9156 simple mapping from lh->file_names to subfiles,
9157 lh->file_names may contain dups. */
9158 current_subfile->symtab = allocate_symtab (current_subfile->name,
9159 objfile);
9160 }
9161
9162 fe->symtab = current_subfile->symtab;
9163 tu_group->symtabs[i] = fe->symtab;
9164 }
9165 }
9166 else
9167 {
9168 restart_symtab (0);
9169
9170 for (i = 0; i < lh->num_file_names; ++i)
9171 {
9172 struct file_entry *fe = &lh->file_names[i];
9173
9174 fe->symtab = tu_group->symtabs[i];
9175 }
9176 }
9177
9178 /* The main symtab is allocated last. Type units don't have DW_AT_name
9179 so they don't have a "real" (so to speak) symtab anyway.
9180 There is later code that will assign the main symtab to all symbols
9181 that don't have one. We need to handle the case of a symbol with a
9182 missing symtab (DW_AT_decl_file) anyway. */
9183 }
9184
9185 /* Process DW_TAG_type_unit.
9186 For TUs we want to skip the first top level sibling if it's not the
9187 actual type being defined by this TU. In this case the first top
9188 level sibling is there to provide context only. */
9189
9190 static void
9191 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9192 {
9193 struct die_info *child_die;
9194
9195 prepare_one_comp_unit (cu, die, language_minimal);
9196
9197 /* Initialize (or reinitialize) the machinery for building symtabs.
9198 We do this before processing child DIEs, so that the line header table
9199 is available for DW_AT_decl_file. */
9200 setup_type_unit_groups (die, cu);
9201
9202 if (die->child != NULL)
9203 {
9204 child_die = die->child;
9205 while (child_die && child_die->tag)
9206 {
9207 process_die (child_die, cu);
9208 child_die = sibling_die (child_die);
9209 }
9210 }
9211 }
9212 \f
9213 /* DWO/DWP files.
9214
9215 http://gcc.gnu.org/wiki/DebugFission
9216 http://gcc.gnu.org/wiki/DebugFissionDWP
9217
9218 To simplify handling of both DWO files ("object" files with the DWARF info)
9219 and DWP files (a file with the DWOs packaged up into one file), we treat
9220 DWP files as having a collection of virtual DWO files. */
9221
9222 static hashval_t
9223 hash_dwo_file (const void *item)
9224 {
9225 const struct dwo_file *dwo_file = item;
9226 hashval_t hash;
9227
9228 hash = htab_hash_string (dwo_file->dwo_name);
9229 if (dwo_file->comp_dir != NULL)
9230 hash += htab_hash_string (dwo_file->comp_dir);
9231 return hash;
9232 }
9233
9234 static int
9235 eq_dwo_file (const void *item_lhs, const void *item_rhs)
9236 {
9237 const struct dwo_file *lhs = item_lhs;
9238 const struct dwo_file *rhs = item_rhs;
9239
9240 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9241 return 0;
9242 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9243 return lhs->comp_dir == rhs->comp_dir;
9244 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
9245 }
9246
9247 /* Allocate a hash table for DWO files. */
9248
9249 static htab_t
9250 allocate_dwo_file_hash_table (void)
9251 {
9252 struct objfile *objfile = dwarf2_per_objfile->objfile;
9253
9254 return htab_create_alloc_ex (41,
9255 hash_dwo_file,
9256 eq_dwo_file,
9257 NULL,
9258 &objfile->objfile_obstack,
9259 hashtab_obstack_allocate,
9260 dummy_obstack_deallocate);
9261 }
9262
9263 /* Lookup DWO file DWO_NAME. */
9264
9265 static void **
9266 lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
9267 {
9268 struct dwo_file find_entry;
9269 void **slot;
9270
9271 if (dwarf2_per_objfile->dwo_files == NULL)
9272 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9273
9274 memset (&find_entry, 0, sizeof (find_entry));
9275 find_entry.dwo_name = dwo_name;
9276 find_entry.comp_dir = comp_dir;
9277 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9278
9279 return slot;
9280 }
9281
9282 static hashval_t
9283 hash_dwo_unit (const void *item)
9284 {
9285 const struct dwo_unit *dwo_unit = item;
9286
9287 /* This drops the top 32 bits of the id, but is ok for a hash. */
9288 return dwo_unit->signature;
9289 }
9290
9291 static int
9292 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9293 {
9294 const struct dwo_unit *lhs = item_lhs;
9295 const struct dwo_unit *rhs = item_rhs;
9296
9297 /* The signature is assumed to be unique within the DWO file.
9298 So while object file CU dwo_id's always have the value zero,
9299 that's OK, assuming each object file DWO file has only one CU,
9300 and that's the rule for now. */
9301 return lhs->signature == rhs->signature;
9302 }
9303
9304 /* Allocate a hash table for DWO CUs,TUs.
9305 There is one of these tables for each of CUs,TUs for each DWO file. */
9306
9307 static htab_t
9308 allocate_dwo_unit_table (struct objfile *objfile)
9309 {
9310 /* Start out with a pretty small number.
9311 Generally DWO files contain only one CU and maybe some TUs. */
9312 return htab_create_alloc_ex (3,
9313 hash_dwo_unit,
9314 eq_dwo_unit,
9315 NULL,
9316 &objfile->objfile_obstack,
9317 hashtab_obstack_allocate,
9318 dummy_obstack_deallocate);
9319 }
9320
9321 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
9322
9323 struct create_dwo_cu_data
9324 {
9325 struct dwo_file *dwo_file;
9326 struct dwo_unit dwo_unit;
9327 };
9328
9329 /* die_reader_func for create_dwo_cu. */
9330
9331 static void
9332 create_dwo_cu_reader (const struct die_reader_specs *reader,
9333 const gdb_byte *info_ptr,
9334 struct die_info *comp_unit_die,
9335 int has_children,
9336 void *datap)
9337 {
9338 struct dwarf2_cu *cu = reader->cu;
9339 struct objfile *objfile = dwarf2_per_objfile->objfile;
9340 sect_offset offset = cu->per_cu->offset;
9341 struct dwarf2_section_info *section = cu->per_cu->section;
9342 struct create_dwo_cu_data *data = datap;
9343 struct dwo_file *dwo_file = data->dwo_file;
9344 struct dwo_unit *dwo_unit = &data->dwo_unit;
9345 struct attribute *attr;
9346
9347 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9348 if (attr == NULL)
9349 {
9350 complaint (&symfile_complaints,
9351 _("Dwarf Error: debug entry at offset 0x%x is missing"
9352 " its dwo_id [in module %s]"),
9353 offset.sect_off, dwo_file->dwo_name);
9354 return;
9355 }
9356
9357 dwo_unit->dwo_file = dwo_file;
9358 dwo_unit->signature = DW_UNSND (attr);
9359 dwo_unit->section = section;
9360 dwo_unit->offset = offset;
9361 dwo_unit->length = cu->per_cu->length;
9362
9363 if (dwarf2_read_debug)
9364 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9365 offset.sect_off, hex_string (dwo_unit->signature));
9366 }
9367
9368 /* Create the dwo_unit for the lone CU in DWO_FILE.
9369 Note: This function processes DWO files only, not DWP files. */
9370
9371 static struct dwo_unit *
9372 create_dwo_cu (struct dwo_file *dwo_file)
9373 {
9374 struct objfile *objfile = dwarf2_per_objfile->objfile;
9375 struct dwarf2_section_info *section = &dwo_file->sections.info;
9376 bfd *abfd;
9377 htab_t cu_htab;
9378 const gdb_byte *info_ptr, *end_ptr;
9379 struct create_dwo_cu_data create_dwo_cu_data;
9380 struct dwo_unit *dwo_unit;
9381
9382 dwarf2_read_section (objfile, section);
9383 info_ptr = section->buffer;
9384
9385 if (info_ptr == NULL)
9386 return NULL;
9387
9388 /* We can't set abfd until now because the section may be empty or
9389 not present, in which case section->asection will be NULL. */
9390 abfd = get_section_bfd_owner (section);
9391
9392 if (dwarf2_read_debug)
9393 {
9394 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
9395 get_section_name (section),
9396 get_section_file_name (section));
9397 }
9398
9399 create_dwo_cu_data.dwo_file = dwo_file;
9400 dwo_unit = NULL;
9401
9402 end_ptr = info_ptr + section->size;
9403 while (info_ptr < end_ptr)
9404 {
9405 struct dwarf2_per_cu_data per_cu;
9406
9407 memset (&create_dwo_cu_data.dwo_unit, 0,
9408 sizeof (create_dwo_cu_data.dwo_unit));
9409 memset (&per_cu, 0, sizeof (per_cu));
9410 per_cu.objfile = objfile;
9411 per_cu.is_debug_types = 0;
9412 per_cu.offset.sect_off = info_ptr - section->buffer;
9413 per_cu.section = section;
9414
9415 init_cutu_and_read_dies_no_follow (&per_cu, dwo_file,
9416 create_dwo_cu_reader,
9417 &create_dwo_cu_data);
9418
9419 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
9420 {
9421 /* If we've already found one, complain. We only support one
9422 because having more than one requires hacking the dwo_name of
9423 each to match, which is highly unlikely to happen. */
9424 if (dwo_unit != NULL)
9425 {
9426 complaint (&symfile_complaints,
9427 _("Multiple CUs in DWO file %s [in module %s]"),
9428 dwo_file->dwo_name, objfile_name (objfile));
9429 break;
9430 }
9431
9432 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9433 *dwo_unit = create_dwo_cu_data.dwo_unit;
9434 }
9435
9436 info_ptr += per_cu.length;
9437 }
9438
9439 return dwo_unit;
9440 }
9441
9442 /* DWP file .debug_{cu,tu}_index section format:
9443 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9444
9445 DWP Version 1:
9446
9447 Both index sections have the same format, and serve to map a 64-bit
9448 signature to a set of section numbers. Each section begins with a header,
9449 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9450 indexes, and a pool of 32-bit section numbers. The index sections will be
9451 aligned at 8-byte boundaries in the file.
9452
9453 The index section header consists of:
9454
9455 V, 32 bit version number
9456 -, 32 bits unused
9457 N, 32 bit number of compilation units or type units in the index
9458 M, 32 bit number of slots in the hash table
9459
9460 Numbers are recorded using the byte order of the application binary.
9461
9462 The hash table begins at offset 16 in the section, and consists of an array
9463 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9464 order of the application binary). Unused slots in the hash table are 0.
9465 (We rely on the extreme unlikeliness of a signature being exactly 0.)
9466
9467 The parallel table begins immediately after the hash table
9468 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9469 array of 32-bit indexes (using the byte order of the application binary),
9470 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9471 table contains a 32-bit index into the pool of section numbers. For unused
9472 hash table slots, the corresponding entry in the parallel table will be 0.
9473
9474 The pool of section numbers begins immediately following the hash table
9475 (at offset 16 + 12 * M from the beginning of the section). The pool of
9476 section numbers consists of an array of 32-bit words (using the byte order
9477 of the application binary). Each item in the array is indexed starting
9478 from 0. The hash table entry provides the index of the first section
9479 number in the set. Additional section numbers in the set follow, and the
9480 set is terminated by a 0 entry (section number 0 is not used in ELF).
9481
9482 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9483 section must be the first entry in the set, and the .debug_abbrev.dwo must
9484 be the second entry. Other members of the set may follow in any order.
9485
9486 ---
9487
9488 DWP Version 2:
9489
9490 DWP Version 2 combines all the .debug_info, etc. sections into one,
9491 and the entries in the index tables are now offsets into these sections.
9492 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9493 section.
9494
9495 Index Section Contents:
9496 Header
9497 Hash Table of Signatures dwp_hash_table.hash_table
9498 Parallel Table of Indices dwp_hash_table.unit_table
9499 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9500 Table of Section Sizes dwp_hash_table.v2.sizes
9501
9502 The index section header consists of:
9503
9504 V, 32 bit version number
9505 L, 32 bit number of columns in the table of section offsets
9506 N, 32 bit number of compilation units or type units in the index
9507 M, 32 bit number of slots in the hash table
9508
9509 Numbers are recorded using the byte order of the application binary.
9510
9511 The hash table has the same format as version 1.
9512 The parallel table of indices has the same format as version 1,
9513 except that the entries are origin-1 indices into the table of sections
9514 offsets and the table of section sizes.
9515
9516 The table of offsets begins immediately following the parallel table
9517 (at offset 16 + 12 * M from the beginning of the section). The table is
9518 a two-dimensional array of 32-bit words (using the byte order of the
9519 application binary), with L columns and N+1 rows, in row-major order.
9520 Each row in the array is indexed starting from 0. The first row provides
9521 a key to the remaining rows: each column in this row provides an identifier
9522 for a debug section, and the offsets in the same column of subsequent rows
9523 refer to that section. The section identifiers are:
9524
9525 DW_SECT_INFO 1 .debug_info.dwo
9526 DW_SECT_TYPES 2 .debug_types.dwo
9527 DW_SECT_ABBREV 3 .debug_abbrev.dwo
9528 DW_SECT_LINE 4 .debug_line.dwo
9529 DW_SECT_LOC 5 .debug_loc.dwo
9530 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
9531 DW_SECT_MACINFO 7 .debug_macinfo.dwo
9532 DW_SECT_MACRO 8 .debug_macro.dwo
9533
9534 The offsets provided by the CU and TU index sections are the base offsets
9535 for the contributions made by each CU or TU to the corresponding section
9536 in the package file. Each CU and TU header contains an abbrev_offset
9537 field, used to find the abbreviations table for that CU or TU within the
9538 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
9539 be interpreted as relative to the base offset given in the index section.
9540 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
9541 should be interpreted as relative to the base offset for .debug_line.dwo,
9542 and offsets into other debug sections obtained from DWARF attributes should
9543 also be interpreted as relative to the corresponding base offset.
9544
9545 The table of sizes begins immediately following the table of offsets.
9546 Like the table of offsets, it is a two-dimensional array of 32-bit words,
9547 with L columns and N rows, in row-major order. Each row in the array is
9548 indexed starting from 1 (row 0 is shared by the two tables).
9549
9550 ---
9551
9552 Hash table lookup is handled the same in version 1 and 2:
9553
9554 We assume that N and M will not exceed 2^32 - 1.
9555 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
9556
9557 Given a 64-bit compilation unit signature or a type signature S, an entry
9558 in the hash table is located as follows:
9559
9560 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
9561 the low-order k bits all set to 1.
9562
9563 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
9564
9565 3) If the hash table entry at index H matches the signature, use that
9566 entry. If the hash table entry at index H is unused (all zeroes),
9567 terminate the search: the signature is not present in the table.
9568
9569 4) Let H = (H + H') modulo M. Repeat at Step 3.
9570
9571 Because M > N and H' and M are relatively prime, the search is guaranteed
9572 to stop at an unused slot or find the match. */
9573
9574 /* Create a hash table to map DWO IDs to their CU/TU entry in
9575 .debug_{info,types}.dwo in DWP_FILE.
9576 Returns NULL if there isn't one.
9577 Note: This function processes DWP files only, not DWO files. */
9578
9579 static struct dwp_hash_table *
9580 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
9581 {
9582 struct objfile *objfile = dwarf2_per_objfile->objfile;
9583 bfd *dbfd = dwp_file->dbfd;
9584 const gdb_byte *index_ptr, *index_end;
9585 struct dwarf2_section_info *index;
9586 uint32_t version, nr_columns, nr_units, nr_slots;
9587 struct dwp_hash_table *htab;
9588
9589 if (is_debug_types)
9590 index = &dwp_file->sections.tu_index;
9591 else
9592 index = &dwp_file->sections.cu_index;
9593
9594 if (dwarf2_section_empty_p (index))
9595 return NULL;
9596 dwarf2_read_section (objfile, index);
9597
9598 index_ptr = index->buffer;
9599 index_end = index_ptr + index->size;
9600
9601 version = read_4_bytes (dbfd, index_ptr);
9602 index_ptr += 4;
9603 if (version == 2)
9604 nr_columns = read_4_bytes (dbfd, index_ptr);
9605 else
9606 nr_columns = 0;
9607 index_ptr += 4;
9608 nr_units = read_4_bytes (dbfd, index_ptr);
9609 index_ptr += 4;
9610 nr_slots = read_4_bytes (dbfd, index_ptr);
9611 index_ptr += 4;
9612
9613 if (version != 1 && version != 2)
9614 {
9615 error (_("Dwarf Error: unsupported DWP file version (%s)"
9616 " [in module %s]"),
9617 pulongest (version), dwp_file->name);
9618 }
9619 if (nr_slots != (nr_slots & -nr_slots))
9620 {
9621 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
9622 " is not power of 2 [in module %s]"),
9623 pulongest (nr_slots), dwp_file->name);
9624 }
9625
9626 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
9627 htab->version = version;
9628 htab->nr_columns = nr_columns;
9629 htab->nr_units = nr_units;
9630 htab->nr_slots = nr_slots;
9631 htab->hash_table = index_ptr;
9632 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
9633
9634 /* Exit early if the table is empty. */
9635 if (nr_slots == 0 || nr_units == 0
9636 || (version == 2 && nr_columns == 0))
9637 {
9638 /* All must be zero. */
9639 if (nr_slots != 0 || nr_units != 0
9640 || (version == 2 && nr_columns != 0))
9641 {
9642 complaint (&symfile_complaints,
9643 _("Empty DWP but nr_slots,nr_units,nr_columns not"
9644 " all zero [in modules %s]"),
9645 dwp_file->name);
9646 }
9647 return htab;
9648 }
9649
9650 if (version == 1)
9651 {
9652 htab->section_pool.v1.indices =
9653 htab->unit_table + sizeof (uint32_t) * nr_slots;
9654 /* It's harder to decide whether the section is too small in v1.
9655 V1 is deprecated anyway so we punt. */
9656 }
9657 else
9658 {
9659 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
9660 int *ids = htab->section_pool.v2.section_ids;
9661 /* Reverse map for error checking. */
9662 int ids_seen[DW_SECT_MAX + 1];
9663 int i;
9664
9665 if (nr_columns < 2)
9666 {
9667 error (_("Dwarf Error: bad DWP hash table, too few columns"
9668 " in section table [in module %s]"),
9669 dwp_file->name);
9670 }
9671 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
9672 {
9673 error (_("Dwarf Error: bad DWP hash table, too many columns"
9674 " in section table [in module %s]"),
9675 dwp_file->name);
9676 }
9677 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9678 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9679 for (i = 0; i < nr_columns; ++i)
9680 {
9681 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
9682
9683 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
9684 {
9685 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
9686 " in section table [in module %s]"),
9687 id, dwp_file->name);
9688 }
9689 if (ids_seen[id] != -1)
9690 {
9691 error (_("Dwarf Error: bad DWP hash table, duplicate section"
9692 " id %d in section table [in module %s]"),
9693 id, dwp_file->name);
9694 }
9695 ids_seen[id] = i;
9696 ids[i] = id;
9697 }
9698 /* Must have exactly one info or types section. */
9699 if (((ids_seen[DW_SECT_INFO] != -1)
9700 + (ids_seen[DW_SECT_TYPES] != -1))
9701 != 1)
9702 {
9703 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
9704 " DWO info/types section [in module %s]"),
9705 dwp_file->name);
9706 }
9707 /* Must have an abbrev section. */
9708 if (ids_seen[DW_SECT_ABBREV] == -1)
9709 {
9710 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
9711 " section [in module %s]"),
9712 dwp_file->name);
9713 }
9714 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
9715 htab->section_pool.v2.sizes =
9716 htab->section_pool.v2.offsets + (sizeof (uint32_t)
9717 * nr_units * nr_columns);
9718 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
9719 * nr_units * nr_columns))
9720 > index_end)
9721 {
9722 error (_("Dwarf Error: DWP index section is corrupt (too small)"
9723 " [in module %s]"),
9724 dwp_file->name);
9725 }
9726 }
9727
9728 return htab;
9729 }
9730
9731 /* Update SECTIONS with the data from SECTP.
9732
9733 This function is like the other "locate" section routines that are
9734 passed to bfd_map_over_sections, but in this context the sections to
9735 read comes from the DWP V1 hash table, not the full ELF section table.
9736
9737 The result is non-zero for success, or zero if an error was found. */
9738
9739 static int
9740 locate_v1_virtual_dwo_sections (asection *sectp,
9741 struct virtual_v1_dwo_sections *sections)
9742 {
9743 const struct dwop_section_names *names = &dwop_section_names;
9744
9745 if (section_is_p (sectp->name, &names->abbrev_dwo))
9746 {
9747 /* There can be only one. */
9748 if (sections->abbrev.s.asection != NULL)
9749 return 0;
9750 sections->abbrev.s.asection = sectp;
9751 sections->abbrev.size = bfd_get_section_size (sectp);
9752 }
9753 else if (section_is_p (sectp->name, &names->info_dwo)
9754 || section_is_p (sectp->name, &names->types_dwo))
9755 {
9756 /* There can be only one. */
9757 if (sections->info_or_types.s.asection != NULL)
9758 return 0;
9759 sections->info_or_types.s.asection = sectp;
9760 sections->info_or_types.size = bfd_get_section_size (sectp);
9761 }
9762 else if (section_is_p (sectp->name, &names->line_dwo))
9763 {
9764 /* There can be only one. */
9765 if (sections->line.s.asection != NULL)
9766 return 0;
9767 sections->line.s.asection = sectp;
9768 sections->line.size = bfd_get_section_size (sectp);
9769 }
9770 else if (section_is_p (sectp->name, &names->loc_dwo))
9771 {
9772 /* There can be only one. */
9773 if (sections->loc.s.asection != NULL)
9774 return 0;
9775 sections->loc.s.asection = sectp;
9776 sections->loc.size = bfd_get_section_size (sectp);
9777 }
9778 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9779 {
9780 /* There can be only one. */
9781 if (sections->macinfo.s.asection != NULL)
9782 return 0;
9783 sections->macinfo.s.asection = sectp;
9784 sections->macinfo.size = bfd_get_section_size (sectp);
9785 }
9786 else if (section_is_p (sectp->name, &names->macro_dwo))
9787 {
9788 /* There can be only one. */
9789 if (sections->macro.s.asection != NULL)
9790 return 0;
9791 sections->macro.s.asection = sectp;
9792 sections->macro.size = bfd_get_section_size (sectp);
9793 }
9794 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9795 {
9796 /* There can be only one. */
9797 if (sections->str_offsets.s.asection != NULL)
9798 return 0;
9799 sections->str_offsets.s.asection = sectp;
9800 sections->str_offsets.size = bfd_get_section_size (sectp);
9801 }
9802 else
9803 {
9804 /* No other kind of section is valid. */
9805 return 0;
9806 }
9807
9808 return 1;
9809 }
9810
9811 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
9812 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
9813 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
9814 This is for DWP version 1 files. */
9815
9816 static struct dwo_unit *
9817 create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
9818 uint32_t unit_index,
9819 const char *comp_dir,
9820 ULONGEST signature, int is_debug_types)
9821 {
9822 struct objfile *objfile = dwarf2_per_objfile->objfile;
9823 const struct dwp_hash_table *dwp_htab =
9824 is_debug_types ? dwp_file->tus : dwp_file->cus;
9825 bfd *dbfd = dwp_file->dbfd;
9826 const char *kind = is_debug_types ? "TU" : "CU";
9827 struct dwo_file *dwo_file;
9828 struct dwo_unit *dwo_unit;
9829 struct virtual_v1_dwo_sections sections;
9830 void **dwo_file_slot;
9831 char *virtual_dwo_name;
9832 struct dwarf2_section_info *cutu;
9833 struct cleanup *cleanups;
9834 int i;
9835
9836 gdb_assert (dwp_file->version == 1);
9837
9838 if (dwarf2_read_debug)
9839 {
9840 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
9841 kind,
9842 pulongest (unit_index), hex_string (signature),
9843 dwp_file->name);
9844 }
9845
9846 /* Fetch the sections of this DWO unit.
9847 Put a limit on the number of sections we look for so that bad data
9848 doesn't cause us to loop forever. */
9849
9850 #define MAX_NR_V1_DWO_SECTIONS \
9851 (1 /* .debug_info or .debug_types */ \
9852 + 1 /* .debug_abbrev */ \
9853 + 1 /* .debug_line */ \
9854 + 1 /* .debug_loc */ \
9855 + 1 /* .debug_str_offsets */ \
9856 + 1 /* .debug_macro or .debug_macinfo */ \
9857 + 1 /* trailing zero */)
9858
9859 memset (&sections, 0, sizeof (sections));
9860 cleanups = make_cleanup (null_cleanup, 0);
9861
9862 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
9863 {
9864 asection *sectp;
9865 uint32_t section_nr =
9866 read_4_bytes (dbfd,
9867 dwp_htab->section_pool.v1.indices
9868 + (unit_index + i) * sizeof (uint32_t));
9869
9870 if (section_nr == 0)
9871 break;
9872 if (section_nr >= dwp_file->num_sections)
9873 {
9874 error (_("Dwarf Error: bad DWP hash table, section number too large"
9875 " [in module %s]"),
9876 dwp_file->name);
9877 }
9878
9879 sectp = dwp_file->elf_sections[section_nr];
9880 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
9881 {
9882 error (_("Dwarf Error: bad DWP hash table, invalid section found"
9883 " [in module %s]"),
9884 dwp_file->name);
9885 }
9886 }
9887
9888 if (i < 2
9889 || dwarf2_section_empty_p (&sections.info_or_types)
9890 || dwarf2_section_empty_p (&sections.abbrev))
9891 {
9892 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
9893 " [in module %s]"),
9894 dwp_file->name);
9895 }
9896 if (i == MAX_NR_V1_DWO_SECTIONS)
9897 {
9898 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
9899 " [in module %s]"),
9900 dwp_file->name);
9901 }
9902
9903 /* It's easier for the rest of the code if we fake a struct dwo_file and
9904 have dwo_unit "live" in that. At least for now.
9905
9906 The DWP file can be made up of a random collection of CUs and TUs.
9907 However, for each CU + set of TUs that came from the same original DWO
9908 file, we can combine them back into a virtual DWO file to save space
9909 (fewer struct dwo_file objects to allocate). Remember that for really
9910 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
9911
9912 virtual_dwo_name =
9913 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
9914 get_section_id (&sections.abbrev),
9915 get_section_id (&sections.line),
9916 get_section_id (&sections.loc),
9917 get_section_id (&sections.str_offsets));
9918 make_cleanup (xfree, virtual_dwo_name);
9919 /* Can we use an existing virtual DWO file? */
9920 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
9921 /* Create one if necessary. */
9922 if (*dwo_file_slot == NULL)
9923 {
9924 if (dwarf2_read_debug)
9925 {
9926 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
9927 virtual_dwo_name);
9928 }
9929 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
9930 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
9931 virtual_dwo_name,
9932 strlen (virtual_dwo_name));
9933 dwo_file->comp_dir = comp_dir;
9934 dwo_file->sections.abbrev = sections.abbrev;
9935 dwo_file->sections.line = sections.line;
9936 dwo_file->sections.loc = sections.loc;
9937 dwo_file->sections.macinfo = sections.macinfo;
9938 dwo_file->sections.macro = sections.macro;
9939 dwo_file->sections.str_offsets = sections.str_offsets;
9940 /* The "str" section is global to the entire DWP file. */
9941 dwo_file->sections.str = dwp_file->sections.str;
9942 /* The info or types section is assigned below to dwo_unit,
9943 there's no need to record it in dwo_file.
9944 Also, we can't simply record type sections in dwo_file because
9945 we record a pointer into the vector in dwo_unit. As we collect more
9946 types we'll grow the vector and eventually have to reallocate space
9947 for it, invalidating all copies of pointers into the previous
9948 contents. */
9949 *dwo_file_slot = dwo_file;
9950 }
9951 else
9952 {
9953 if (dwarf2_read_debug)
9954 {
9955 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
9956 virtual_dwo_name);
9957 }
9958 dwo_file = *dwo_file_slot;
9959 }
9960 do_cleanups (cleanups);
9961
9962 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9963 dwo_unit->dwo_file = dwo_file;
9964 dwo_unit->signature = signature;
9965 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
9966 sizeof (struct dwarf2_section_info));
9967 *dwo_unit->section = sections.info_or_types;
9968 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
9969
9970 return dwo_unit;
9971 }
9972
9973 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
9974 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
9975 piece within that section used by a TU/CU, return a virtual section
9976 of just that piece. */
9977
9978 static struct dwarf2_section_info
9979 create_dwp_v2_section (struct dwarf2_section_info *section,
9980 bfd_size_type offset, bfd_size_type size)
9981 {
9982 struct dwarf2_section_info result;
9983 asection *sectp;
9984
9985 gdb_assert (section != NULL);
9986 gdb_assert (!section->is_virtual);
9987
9988 memset (&result, 0, sizeof (result));
9989 result.s.containing_section = section;
9990 result.is_virtual = 1;
9991
9992 if (size == 0)
9993 return result;
9994
9995 sectp = get_section_bfd_section (section);
9996
9997 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
9998 bounds of the real section. This is a pretty-rare event, so just
9999 flag an error (easier) instead of a warning and trying to cope. */
10000 if (sectp == NULL
10001 || offset + size > bfd_get_section_size (sectp))
10002 {
10003 bfd *abfd = sectp->owner;
10004
10005 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
10006 " in section %s [in module %s]"),
10007 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
10008 objfile_name (dwarf2_per_objfile->objfile));
10009 }
10010
10011 result.virtual_offset = offset;
10012 result.size = size;
10013 return result;
10014 }
10015
10016 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10017 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10018 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10019 This is for DWP version 2 files. */
10020
10021 static struct dwo_unit *
10022 create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
10023 uint32_t unit_index,
10024 const char *comp_dir,
10025 ULONGEST signature, int is_debug_types)
10026 {
10027 struct objfile *objfile = dwarf2_per_objfile->objfile;
10028 const struct dwp_hash_table *dwp_htab =
10029 is_debug_types ? dwp_file->tus : dwp_file->cus;
10030 bfd *dbfd = dwp_file->dbfd;
10031 const char *kind = is_debug_types ? "TU" : "CU";
10032 struct dwo_file *dwo_file;
10033 struct dwo_unit *dwo_unit;
10034 struct virtual_v2_dwo_sections sections;
10035 void **dwo_file_slot;
10036 char *virtual_dwo_name;
10037 struct dwarf2_section_info *cutu;
10038 struct cleanup *cleanups;
10039 int i;
10040
10041 gdb_assert (dwp_file->version == 2);
10042
10043 if (dwarf2_read_debug)
10044 {
10045 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
10046 kind,
10047 pulongest (unit_index), hex_string (signature),
10048 dwp_file->name);
10049 }
10050
10051 /* Fetch the section offsets of this DWO unit. */
10052
10053 memset (&sections, 0, sizeof (sections));
10054 cleanups = make_cleanup (null_cleanup, 0);
10055
10056 for (i = 0; i < dwp_htab->nr_columns; ++i)
10057 {
10058 uint32_t offset = read_4_bytes (dbfd,
10059 dwp_htab->section_pool.v2.offsets
10060 + (((unit_index - 1) * dwp_htab->nr_columns
10061 + i)
10062 * sizeof (uint32_t)));
10063 uint32_t size = read_4_bytes (dbfd,
10064 dwp_htab->section_pool.v2.sizes
10065 + (((unit_index - 1) * dwp_htab->nr_columns
10066 + i)
10067 * sizeof (uint32_t)));
10068
10069 switch (dwp_htab->section_pool.v2.section_ids[i])
10070 {
10071 case DW_SECT_INFO:
10072 case DW_SECT_TYPES:
10073 sections.info_or_types_offset = offset;
10074 sections.info_or_types_size = size;
10075 break;
10076 case DW_SECT_ABBREV:
10077 sections.abbrev_offset = offset;
10078 sections.abbrev_size = size;
10079 break;
10080 case DW_SECT_LINE:
10081 sections.line_offset = offset;
10082 sections.line_size = size;
10083 break;
10084 case DW_SECT_LOC:
10085 sections.loc_offset = offset;
10086 sections.loc_size = size;
10087 break;
10088 case DW_SECT_STR_OFFSETS:
10089 sections.str_offsets_offset = offset;
10090 sections.str_offsets_size = size;
10091 break;
10092 case DW_SECT_MACINFO:
10093 sections.macinfo_offset = offset;
10094 sections.macinfo_size = size;
10095 break;
10096 case DW_SECT_MACRO:
10097 sections.macro_offset = offset;
10098 sections.macro_size = size;
10099 break;
10100 }
10101 }
10102
10103 /* It's easier for the rest of the code if we fake a struct dwo_file and
10104 have dwo_unit "live" in that. At least for now.
10105
10106 The DWP file can be made up of a random collection of CUs and TUs.
10107 However, for each CU + set of TUs that came from the same original DWO
10108 file, we can combine them back into a virtual DWO file to save space
10109 (fewer struct dwo_file objects to allocate). Remember that for really
10110 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10111
10112 virtual_dwo_name =
10113 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
10114 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
10115 (long) (sections.line_size ? sections.line_offset : 0),
10116 (long) (sections.loc_size ? sections.loc_offset : 0),
10117 (long) (sections.str_offsets_size
10118 ? sections.str_offsets_offset : 0));
10119 make_cleanup (xfree, virtual_dwo_name);
10120 /* Can we use an existing virtual DWO file? */
10121 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10122 /* Create one if necessary. */
10123 if (*dwo_file_slot == NULL)
10124 {
10125 if (dwarf2_read_debug)
10126 {
10127 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10128 virtual_dwo_name);
10129 }
10130 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10131 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
10132 virtual_dwo_name,
10133 strlen (virtual_dwo_name));
10134 dwo_file->comp_dir = comp_dir;
10135 dwo_file->sections.abbrev =
10136 create_dwp_v2_section (&dwp_file->sections.abbrev,
10137 sections.abbrev_offset, sections.abbrev_size);
10138 dwo_file->sections.line =
10139 create_dwp_v2_section (&dwp_file->sections.line,
10140 sections.line_offset, sections.line_size);
10141 dwo_file->sections.loc =
10142 create_dwp_v2_section (&dwp_file->sections.loc,
10143 sections.loc_offset, sections.loc_size);
10144 dwo_file->sections.macinfo =
10145 create_dwp_v2_section (&dwp_file->sections.macinfo,
10146 sections.macinfo_offset, sections.macinfo_size);
10147 dwo_file->sections.macro =
10148 create_dwp_v2_section (&dwp_file->sections.macro,
10149 sections.macro_offset, sections.macro_size);
10150 dwo_file->sections.str_offsets =
10151 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10152 sections.str_offsets_offset,
10153 sections.str_offsets_size);
10154 /* The "str" section is global to the entire DWP file. */
10155 dwo_file->sections.str = dwp_file->sections.str;
10156 /* The info or types section is assigned below to dwo_unit,
10157 there's no need to record it in dwo_file.
10158 Also, we can't simply record type sections in dwo_file because
10159 we record a pointer into the vector in dwo_unit. As we collect more
10160 types we'll grow the vector and eventually have to reallocate space
10161 for it, invalidating all copies of pointers into the previous
10162 contents. */
10163 *dwo_file_slot = dwo_file;
10164 }
10165 else
10166 {
10167 if (dwarf2_read_debug)
10168 {
10169 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10170 virtual_dwo_name);
10171 }
10172 dwo_file = *dwo_file_slot;
10173 }
10174 do_cleanups (cleanups);
10175
10176 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10177 dwo_unit->dwo_file = dwo_file;
10178 dwo_unit->signature = signature;
10179 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
10180 sizeof (struct dwarf2_section_info));
10181 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10182 ? &dwp_file->sections.types
10183 : &dwp_file->sections.info,
10184 sections.info_or_types_offset,
10185 sections.info_or_types_size);
10186 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10187
10188 return dwo_unit;
10189 }
10190
10191 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10192 Returns NULL if the signature isn't found. */
10193
10194 static struct dwo_unit *
10195 lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10196 ULONGEST signature, int is_debug_types)
10197 {
10198 const struct dwp_hash_table *dwp_htab =
10199 is_debug_types ? dwp_file->tus : dwp_file->cus;
10200 bfd *dbfd = dwp_file->dbfd;
10201 uint32_t mask = dwp_htab->nr_slots - 1;
10202 uint32_t hash = signature & mask;
10203 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10204 unsigned int i;
10205 void **slot;
10206 struct dwo_unit find_dwo_cu, *dwo_cu;
10207
10208 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10209 find_dwo_cu.signature = signature;
10210 slot = htab_find_slot (is_debug_types
10211 ? dwp_file->loaded_tus
10212 : dwp_file->loaded_cus,
10213 &find_dwo_cu, INSERT);
10214
10215 if (*slot != NULL)
10216 return *slot;
10217
10218 /* Use a for loop so that we don't loop forever on bad debug info. */
10219 for (i = 0; i < dwp_htab->nr_slots; ++i)
10220 {
10221 ULONGEST signature_in_table;
10222
10223 signature_in_table =
10224 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
10225 if (signature_in_table == signature)
10226 {
10227 uint32_t unit_index =
10228 read_4_bytes (dbfd,
10229 dwp_htab->unit_table + hash * sizeof (uint32_t));
10230
10231 if (dwp_file->version == 1)
10232 {
10233 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10234 comp_dir, signature,
10235 is_debug_types);
10236 }
10237 else
10238 {
10239 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10240 comp_dir, signature,
10241 is_debug_types);
10242 }
10243 return *slot;
10244 }
10245 if (signature_in_table == 0)
10246 return NULL;
10247 hash = (hash + hash2) & mask;
10248 }
10249
10250 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10251 " [in module %s]"),
10252 dwp_file->name);
10253 }
10254
10255 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
10256 Open the file specified by FILE_NAME and hand it off to BFD for
10257 preliminary analysis. Return a newly initialized bfd *, which
10258 includes a canonicalized copy of FILE_NAME.
10259 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
10260 SEARCH_CWD is true if the current directory is to be searched.
10261 It will be searched before debug-file-directory.
10262 If successful, the file is added to the bfd include table of the
10263 objfile's bfd (see gdb_bfd_record_inclusion).
10264 If unable to find/open the file, return NULL.
10265 NOTE: This function is derived from symfile_bfd_open. */
10266
10267 static bfd *
10268 try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
10269 {
10270 bfd *sym_bfd;
10271 int desc, flags;
10272 char *absolute_name;
10273 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10274 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10275 to debug_file_directory. */
10276 char *search_path;
10277 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10278
10279 if (search_cwd)
10280 {
10281 if (*debug_file_directory != '\0')
10282 search_path = concat (".", dirname_separator_string,
10283 debug_file_directory, NULL);
10284 else
10285 search_path = xstrdup (".");
10286 }
10287 else
10288 search_path = xstrdup (debug_file_directory);
10289
10290 flags = OPF_RETURN_REALPATH;
10291 if (is_dwp)
10292 flags |= OPF_SEARCH_IN_PATH;
10293 desc = openp (search_path, flags, file_name,
10294 O_RDONLY | O_BINARY, &absolute_name);
10295 xfree (search_path);
10296 if (desc < 0)
10297 return NULL;
10298
10299 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
10300 xfree (absolute_name);
10301 if (sym_bfd == NULL)
10302 return NULL;
10303 bfd_set_cacheable (sym_bfd, 1);
10304
10305 if (!bfd_check_format (sym_bfd, bfd_object))
10306 {
10307 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
10308 return NULL;
10309 }
10310
10311 /* Success. Record the bfd as having been included by the objfile's bfd.
10312 This is important because things like demangled_names_hash lives in the
10313 objfile's per_bfd space and may have references to things like symbol
10314 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
10315 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd);
10316
10317 return sym_bfd;
10318 }
10319
10320 /* Try to open DWO file FILE_NAME.
10321 COMP_DIR is the DW_AT_comp_dir attribute.
10322 The result is the bfd handle of the file.
10323 If there is a problem finding or opening the file, return NULL.
10324 Upon success, the canonicalized path of the file is stored in the bfd,
10325 same as symfile_bfd_open. */
10326
10327 static bfd *
10328 open_dwo_file (const char *file_name, const char *comp_dir)
10329 {
10330 bfd *abfd;
10331
10332 if (IS_ABSOLUTE_PATH (file_name))
10333 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
10334
10335 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10336
10337 if (comp_dir != NULL)
10338 {
10339 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
10340
10341 /* NOTE: If comp_dir is a relative path, this will also try the
10342 search path, which seems useful. */
10343 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/, 1 /*search_cwd*/);
10344 xfree (path_to_try);
10345 if (abfd != NULL)
10346 return abfd;
10347 }
10348
10349 /* That didn't work, try debug-file-directory, which, despite its name,
10350 is a list of paths. */
10351
10352 if (*debug_file_directory == '\0')
10353 return NULL;
10354
10355 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
10356 }
10357
10358 /* This function is mapped across the sections and remembers the offset and
10359 size of each of the DWO debugging sections we are interested in. */
10360
10361 static void
10362 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10363 {
10364 struct dwo_sections *dwo_sections = dwo_sections_ptr;
10365 const struct dwop_section_names *names = &dwop_section_names;
10366
10367 if (section_is_p (sectp->name, &names->abbrev_dwo))
10368 {
10369 dwo_sections->abbrev.s.asection = sectp;
10370 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10371 }
10372 else if (section_is_p (sectp->name, &names->info_dwo))
10373 {
10374 dwo_sections->info.s.asection = sectp;
10375 dwo_sections->info.size = bfd_get_section_size (sectp);
10376 }
10377 else if (section_is_p (sectp->name, &names->line_dwo))
10378 {
10379 dwo_sections->line.s.asection = sectp;
10380 dwo_sections->line.size = bfd_get_section_size (sectp);
10381 }
10382 else if (section_is_p (sectp->name, &names->loc_dwo))
10383 {
10384 dwo_sections->loc.s.asection = sectp;
10385 dwo_sections->loc.size = bfd_get_section_size (sectp);
10386 }
10387 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10388 {
10389 dwo_sections->macinfo.s.asection = sectp;
10390 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10391 }
10392 else if (section_is_p (sectp->name, &names->macro_dwo))
10393 {
10394 dwo_sections->macro.s.asection = sectp;
10395 dwo_sections->macro.size = bfd_get_section_size (sectp);
10396 }
10397 else if (section_is_p (sectp->name, &names->str_dwo))
10398 {
10399 dwo_sections->str.s.asection = sectp;
10400 dwo_sections->str.size = bfd_get_section_size (sectp);
10401 }
10402 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10403 {
10404 dwo_sections->str_offsets.s.asection = sectp;
10405 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10406 }
10407 else if (section_is_p (sectp->name, &names->types_dwo))
10408 {
10409 struct dwarf2_section_info type_section;
10410
10411 memset (&type_section, 0, sizeof (type_section));
10412 type_section.s.asection = sectp;
10413 type_section.size = bfd_get_section_size (sectp);
10414 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10415 &type_section);
10416 }
10417 }
10418
10419 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
10420 by PER_CU. This is for the non-DWP case.
10421 The result is NULL if DWO_NAME can't be found. */
10422
10423 static struct dwo_file *
10424 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10425 const char *dwo_name, const char *comp_dir)
10426 {
10427 struct objfile *objfile = dwarf2_per_objfile->objfile;
10428 struct dwo_file *dwo_file;
10429 bfd *dbfd;
10430 struct cleanup *cleanups;
10431
10432 dbfd = open_dwo_file (dwo_name, comp_dir);
10433 if (dbfd == NULL)
10434 {
10435 if (dwarf2_read_debug)
10436 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10437 return NULL;
10438 }
10439 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10440 dwo_file->dwo_name = dwo_name;
10441 dwo_file->comp_dir = comp_dir;
10442 dwo_file->dbfd = dbfd;
10443
10444 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10445
10446 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
10447
10448 dwo_file->cu = create_dwo_cu (dwo_file);
10449
10450 dwo_file->tus = create_debug_types_hash_table (dwo_file,
10451 dwo_file->sections.types);
10452
10453 discard_cleanups (cleanups);
10454
10455 if (dwarf2_read_debug)
10456 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10457
10458 return dwo_file;
10459 }
10460
10461 /* This function is mapped across the sections and remembers the offset and
10462 size of each of the DWP debugging sections common to version 1 and 2 that
10463 we are interested in. */
10464
10465 static void
10466 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10467 void *dwp_file_ptr)
10468 {
10469 struct dwp_file *dwp_file = dwp_file_ptr;
10470 const struct dwop_section_names *names = &dwop_section_names;
10471 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10472
10473 /* Record the ELF section number for later lookup: this is what the
10474 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10475 gdb_assert (elf_section_nr < dwp_file->num_sections);
10476 dwp_file->elf_sections[elf_section_nr] = sectp;
10477
10478 /* Look for specific sections that we need. */
10479 if (section_is_p (sectp->name, &names->str_dwo))
10480 {
10481 dwp_file->sections.str.s.asection = sectp;
10482 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10483 }
10484 else if (section_is_p (sectp->name, &names->cu_index))
10485 {
10486 dwp_file->sections.cu_index.s.asection = sectp;
10487 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10488 }
10489 else if (section_is_p (sectp->name, &names->tu_index))
10490 {
10491 dwp_file->sections.tu_index.s.asection = sectp;
10492 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10493 }
10494 }
10495
10496 /* This function is mapped across the sections and remembers the offset and
10497 size of each of the DWP version 2 debugging sections that we are interested
10498 in. This is split into a separate function because we don't know if we
10499 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10500
10501 static void
10502 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10503 {
10504 struct dwp_file *dwp_file = dwp_file_ptr;
10505 const struct dwop_section_names *names = &dwop_section_names;
10506 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10507
10508 /* Record the ELF section number for later lookup: this is what the
10509 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10510 gdb_assert (elf_section_nr < dwp_file->num_sections);
10511 dwp_file->elf_sections[elf_section_nr] = sectp;
10512
10513 /* Look for specific sections that we need. */
10514 if (section_is_p (sectp->name, &names->abbrev_dwo))
10515 {
10516 dwp_file->sections.abbrev.s.asection = sectp;
10517 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10518 }
10519 else if (section_is_p (sectp->name, &names->info_dwo))
10520 {
10521 dwp_file->sections.info.s.asection = sectp;
10522 dwp_file->sections.info.size = bfd_get_section_size (sectp);
10523 }
10524 else if (section_is_p (sectp->name, &names->line_dwo))
10525 {
10526 dwp_file->sections.line.s.asection = sectp;
10527 dwp_file->sections.line.size = bfd_get_section_size (sectp);
10528 }
10529 else if (section_is_p (sectp->name, &names->loc_dwo))
10530 {
10531 dwp_file->sections.loc.s.asection = sectp;
10532 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
10533 }
10534 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10535 {
10536 dwp_file->sections.macinfo.s.asection = sectp;
10537 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
10538 }
10539 else if (section_is_p (sectp->name, &names->macro_dwo))
10540 {
10541 dwp_file->sections.macro.s.asection = sectp;
10542 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
10543 }
10544 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10545 {
10546 dwp_file->sections.str_offsets.s.asection = sectp;
10547 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
10548 }
10549 else if (section_is_p (sectp->name, &names->types_dwo))
10550 {
10551 dwp_file->sections.types.s.asection = sectp;
10552 dwp_file->sections.types.size = bfd_get_section_size (sectp);
10553 }
10554 }
10555
10556 /* Hash function for dwp_file loaded CUs/TUs. */
10557
10558 static hashval_t
10559 hash_dwp_loaded_cutus (const void *item)
10560 {
10561 const struct dwo_unit *dwo_unit = item;
10562
10563 /* This drops the top 32 bits of the signature, but is ok for a hash. */
10564 return dwo_unit->signature;
10565 }
10566
10567 /* Equality function for dwp_file loaded CUs/TUs. */
10568
10569 static int
10570 eq_dwp_loaded_cutus (const void *a, const void *b)
10571 {
10572 const struct dwo_unit *dua = a;
10573 const struct dwo_unit *dub = b;
10574
10575 return dua->signature == dub->signature;
10576 }
10577
10578 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
10579
10580 static htab_t
10581 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
10582 {
10583 return htab_create_alloc_ex (3,
10584 hash_dwp_loaded_cutus,
10585 eq_dwp_loaded_cutus,
10586 NULL,
10587 &objfile->objfile_obstack,
10588 hashtab_obstack_allocate,
10589 dummy_obstack_deallocate);
10590 }
10591
10592 /* Try to open DWP file FILE_NAME.
10593 The result is the bfd handle of the file.
10594 If there is a problem finding or opening the file, return NULL.
10595 Upon success, the canonicalized path of the file is stored in the bfd,
10596 same as symfile_bfd_open. */
10597
10598 static bfd *
10599 open_dwp_file (const char *file_name)
10600 {
10601 bfd *abfd;
10602
10603 abfd = try_open_dwop_file (file_name, 1 /*is_dwp*/, 1 /*search_cwd*/);
10604 if (abfd != NULL)
10605 return abfd;
10606
10607 /* Work around upstream bug 15652.
10608 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
10609 [Whether that's a "bug" is debatable, but it is getting in our way.]
10610 We have no real idea where the dwp file is, because gdb's realpath-ing
10611 of the executable's path may have discarded the needed info.
10612 [IWBN if the dwp file name was recorded in the executable, akin to
10613 .gnu_debuglink, but that doesn't exist yet.]
10614 Strip the directory from FILE_NAME and search again. */
10615 if (*debug_file_directory != '\0')
10616 {
10617 /* Don't implicitly search the current directory here.
10618 If the user wants to search "." to handle this case,
10619 it must be added to debug-file-directory. */
10620 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
10621 0 /*search_cwd*/);
10622 }
10623
10624 return NULL;
10625 }
10626
10627 /* Initialize the use of the DWP file for the current objfile.
10628 By convention the name of the DWP file is ${objfile}.dwp.
10629 The result is NULL if it can't be found. */
10630
10631 static struct dwp_file *
10632 open_and_init_dwp_file (void)
10633 {
10634 struct objfile *objfile = dwarf2_per_objfile->objfile;
10635 struct dwp_file *dwp_file;
10636 char *dwp_name;
10637 bfd *dbfd;
10638 struct cleanup *cleanups;
10639
10640 /* Try to find first .dwp for the binary file before any symbolic links
10641 resolving. */
10642 dwp_name = xstrprintf ("%s.dwp", objfile->original_name);
10643 cleanups = make_cleanup (xfree, dwp_name);
10644
10645 dbfd = open_dwp_file (dwp_name);
10646 if (dbfd == NULL
10647 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
10648 {
10649 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
10650 dwp_name = xstrprintf ("%s.dwp", objfile_name (objfile));
10651 make_cleanup (xfree, dwp_name);
10652 dbfd = open_dwp_file (dwp_name);
10653 }
10654
10655 if (dbfd == NULL)
10656 {
10657 if (dwarf2_read_debug)
10658 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
10659 do_cleanups (cleanups);
10660 return NULL;
10661 }
10662 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
10663 dwp_file->name = bfd_get_filename (dbfd);
10664 dwp_file->dbfd = dbfd;
10665 do_cleanups (cleanups);
10666
10667 /* +1: section 0 is unused */
10668 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
10669 dwp_file->elf_sections =
10670 OBSTACK_CALLOC (&objfile->objfile_obstack,
10671 dwp_file->num_sections, asection *);
10672
10673 bfd_map_over_sections (dbfd, dwarf2_locate_common_dwp_sections, dwp_file);
10674
10675 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
10676
10677 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
10678
10679 /* The DWP file version is stored in the hash table. Oh well. */
10680 if (dwp_file->cus->version != dwp_file->tus->version)
10681 {
10682 /* Technically speaking, we should try to limp along, but this is
10683 pretty bizarre. We use pulongest here because that's the established
10684 portability solution (e.g, we cannot use %u for uint32_t). */
10685 error (_("Dwarf Error: DWP file CU version %s doesn't match"
10686 " TU version %s [in DWP file %s]"),
10687 pulongest (dwp_file->cus->version),
10688 pulongest (dwp_file->tus->version), dwp_name);
10689 }
10690 dwp_file->version = dwp_file->cus->version;
10691
10692 if (dwp_file->version == 2)
10693 bfd_map_over_sections (dbfd, dwarf2_locate_v2_dwp_sections, dwp_file);
10694
10695 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
10696 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
10697
10698 if (dwarf2_read_debug)
10699 {
10700 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
10701 fprintf_unfiltered (gdb_stdlog,
10702 " %s CUs, %s TUs\n",
10703 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
10704 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
10705 }
10706
10707 return dwp_file;
10708 }
10709
10710 /* Wrapper around open_and_init_dwp_file, only open it once. */
10711
10712 static struct dwp_file *
10713 get_dwp_file (void)
10714 {
10715 if (! dwarf2_per_objfile->dwp_checked)
10716 {
10717 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
10718 dwarf2_per_objfile->dwp_checked = 1;
10719 }
10720 return dwarf2_per_objfile->dwp_file;
10721 }
10722
10723 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
10724 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
10725 or in the DWP file for the objfile, referenced by THIS_UNIT.
10726 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
10727 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
10728
10729 This is called, for example, when wanting to read a variable with a
10730 complex location. Therefore we don't want to do file i/o for every call.
10731 Therefore we don't want to look for a DWO file on every call.
10732 Therefore we first see if we've already seen SIGNATURE in a DWP file,
10733 then we check if we've already seen DWO_NAME, and only THEN do we check
10734 for a DWO file.
10735
10736 The result is a pointer to the dwo_unit object or NULL if we didn't find it
10737 (dwo_id mismatch or couldn't find the DWO/DWP file). */
10738
10739 static struct dwo_unit *
10740 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
10741 const char *dwo_name, const char *comp_dir,
10742 ULONGEST signature, int is_debug_types)
10743 {
10744 struct objfile *objfile = dwarf2_per_objfile->objfile;
10745 const char *kind = is_debug_types ? "TU" : "CU";
10746 void **dwo_file_slot;
10747 struct dwo_file *dwo_file;
10748 struct dwp_file *dwp_file;
10749
10750 /* First see if there's a DWP file.
10751 If we have a DWP file but didn't find the DWO inside it, don't
10752 look for the original DWO file. It makes gdb behave differently
10753 depending on whether one is debugging in the build tree. */
10754
10755 dwp_file = get_dwp_file ();
10756 if (dwp_file != NULL)
10757 {
10758 const struct dwp_hash_table *dwp_htab =
10759 is_debug_types ? dwp_file->tus : dwp_file->cus;
10760
10761 if (dwp_htab != NULL)
10762 {
10763 struct dwo_unit *dwo_cutu =
10764 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
10765 signature, is_debug_types);
10766
10767 if (dwo_cutu != NULL)
10768 {
10769 if (dwarf2_read_debug)
10770 {
10771 fprintf_unfiltered (gdb_stdlog,
10772 "Virtual DWO %s %s found: @%s\n",
10773 kind, hex_string (signature),
10774 host_address_to_string (dwo_cutu));
10775 }
10776 return dwo_cutu;
10777 }
10778 }
10779 }
10780 else
10781 {
10782 /* No DWP file, look for the DWO file. */
10783
10784 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
10785 if (*dwo_file_slot == NULL)
10786 {
10787 /* Read in the file and build a table of the CUs/TUs it contains. */
10788 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
10789 }
10790 /* NOTE: This will be NULL if unable to open the file. */
10791 dwo_file = *dwo_file_slot;
10792
10793 if (dwo_file != NULL)
10794 {
10795 struct dwo_unit *dwo_cutu = NULL;
10796
10797 if (is_debug_types && dwo_file->tus)
10798 {
10799 struct dwo_unit find_dwo_cutu;
10800
10801 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
10802 find_dwo_cutu.signature = signature;
10803 dwo_cutu = htab_find (dwo_file->tus, &find_dwo_cutu);
10804 }
10805 else if (!is_debug_types && dwo_file->cu)
10806 {
10807 if (signature == dwo_file->cu->signature)
10808 dwo_cutu = dwo_file->cu;
10809 }
10810
10811 if (dwo_cutu != NULL)
10812 {
10813 if (dwarf2_read_debug)
10814 {
10815 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
10816 kind, dwo_name, hex_string (signature),
10817 host_address_to_string (dwo_cutu));
10818 }
10819 return dwo_cutu;
10820 }
10821 }
10822 }
10823
10824 /* We didn't find it. This could mean a dwo_id mismatch, or
10825 someone deleted the DWO/DWP file, or the search path isn't set up
10826 correctly to find the file. */
10827
10828 if (dwarf2_read_debug)
10829 {
10830 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
10831 kind, dwo_name, hex_string (signature));
10832 }
10833
10834 /* This is a warning and not a complaint because it can be caused by
10835 pilot error (e.g., user accidentally deleting the DWO). */
10836 {
10837 /* Print the name of the DWP file if we looked there, helps the user
10838 better diagnose the problem. */
10839 char *dwp_text = NULL;
10840 struct cleanup *cleanups;
10841
10842 if (dwp_file != NULL)
10843 dwp_text = xstrprintf (" [in DWP file %s]", lbasename (dwp_file->name));
10844 cleanups = make_cleanup (xfree, dwp_text);
10845
10846 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
10847 " [in module %s]"),
10848 kind, dwo_name, hex_string (signature),
10849 dwp_text != NULL ? dwp_text : "",
10850 this_unit->is_debug_types ? "TU" : "CU",
10851 this_unit->offset.sect_off, objfile_name (objfile));
10852
10853 do_cleanups (cleanups);
10854 }
10855 return NULL;
10856 }
10857
10858 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
10859 See lookup_dwo_cutu_unit for details. */
10860
10861 static struct dwo_unit *
10862 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
10863 const char *dwo_name, const char *comp_dir,
10864 ULONGEST signature)
10865 {
10866 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
10867 }
10868
10869 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
10870 See lookup_dwo_cutu_unit for details. */
10871
10872 static struct dwo_unit *
10873 lookup_dwo_type_unit (struct signatured_type *this_tu,
10874 const char *dwo_name, const char *comp_dir)
10875 {
10876 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
10877 }
10878
10879 /* Traversal function for queue_and_load_all_dwo_tus. */
10880
10881 static int
10882 queue_and_load_dwo_tu (void **slot, void *info)
10883 {
10884 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
10885 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
10886 ULONGEST signature = dwo_unit->signature;
10887 struct signatured_type *sig_type =
10888 lookup_dwo_signatured_type (per_cu->cu, signature);
10889
10890 if (sig_type != NULL)
10891 {
10892 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
10893
10894 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
10895 a real dependency of PER_CU on SIG_TYPE. That is detected later
10896 while processing PER_CU. */
10897 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
10898 load_full_type_unit (sig_cu);
10899 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
10900 }
10901
10902 return 1;
10903 }
10904
10905 /* Queue all TUs contained in the DWO of PER_CU to be read in.
10906 The DWO may have the only definition of the type, though it may not be
10907 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
10908 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
10909
10910 static void
10911 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
10912 {
10913 struct dwo_unit *dwo_unit;
10914 struct dwo_file *dwo_file;
10915
10916 gdb_assert (!per_cu->is_debug_types);
10917 gdb_assert (get_dwp_file () == NULL);
10918 gdb_assert (per_cu->cu != NULL);
10919
10920 dwo_unit = per_cu->cu->dwo_unit;
10921 gdb_assert (dwo_unit != NULL);
10922
10923 dwo_file = dwo_unit->dwo_file;
10924 if (dwo_file->tus != NULL)
10925 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
10926 }
10927
10928 /* Free all resources associated with DWO_FILE.
10929 Close the DWO file and munmap the sections.
10930 All memory should be on the objfile obstack. */
10931
10932 static void
10933 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
10934 {
10935 int ix;
10936 struct dwarf2_section_info *section;
10937
10938 /* Note: dbfd is NULL for virtual DWO files. */
10939 gdb_bfd_unref (dwo_file->dbfd);
10940
10941 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
10942 }
10943
10944 /* Wrapper for free_dwo_file for use in cleanups. */
10945
10946 static void
10947 free_dwo_file_cleanup (void *arg)
10948 {
10949 struct dwo_file *dwo_file = (struct dwo_file *) arg;
10950 struct objfile *objfile = dwarf2_per_objfile->objfile;
10951
10952 free_dwo_file (dwo_file, objfile);
10953 }
10954
10955 /* Traversal function for free_dwo_files. */
10956
10957 static int
10958 free_dwo_file_from_slot (void **slot, void *info)
10959 {
10960 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
10961 struct objfile *objfile = (struct objfile *) info;
10962
10963 free_dwo_file (dwo_file, objfile);
10964
10965 return 1;
10966 }
10967
10968 /* Free all resources associated with DWO_FILES. */
10969
10970 static void
10971 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
10972 {
10973 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
10974 }
10975 \f
10976 /* Read in various DIEs. */
10977
10978 /* qsort helper for inherit_abstract_dies. */
10979
10980 static int
10981 unsigned_int_compar (const void *ap, const void *bp)
10982 {
10983 unsigned int a = *(unsigned int *) ap;
10984 unsigned int b = *(unsigned int *) bp;
10985
10986 return (a > b) - (b > a);
10987 }
10988
10989 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
10990 Inherit only the children of the DW_AT_abstract_origin DIE not being
10991 already referenced by DW_AT_abstract_origin from the children of the
10992 current DIE. */
10993
10994 static void
10995 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
10996 {
10997 struct die_info *child_die;
10998 unsigned die_children_count;
10999 /* CU offsets which were referenced by children of the current DIE. */
11000 sect_offset *offsets;
11001 sect_offset *offsets_end, *offsetp;
11002 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
11003 struct die_info *origin_die;
11004 /* Iterator of the ORIGIN_DIE children. */
11005 struct die_info *origin_child_die;
11006 struct cleanup *cleanups;
11007 struct attribute *attr;
11008 struct dwarf2_cu *origin_cu;
11009 struct pending **origin_previous_list_in_scope;
11010
11011 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11012 if (!attr)
11013 return;
11014
11015 /* Note that following die references may follow to a die in a
11016 different cu. */
11017
11018 origin_cu = cu;
11019 origin_die = follow_die_ref (die, attr, &origin_cu);
11020
11021 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
11022 symbols in. */
11023 origin_previous_list_in_scope = origin_cu->list_in_scope;
11024 origin_cu->list_in_scope = cu->list_in_scope;
11025
11026 if (die->tag != origin_die->tag
11027 && !(die->tag == DW_TAG_inlined_subroutine
11028 && origin_die->tag == DW_TAG_subprogram))
11029 complaint (&symfile_complaints,
11030 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
11031 die->offset.sect_off, origin_die->offset.sect_off);
11032
11033 child_die = die->child;
11034 die_children_count = 0;
11035 while (child_die && child_die->tag)
11036 {
11037 child_die = sibling_die (child_die);
11038 die_children_count++;
11039 }
11040 offsets = xmalloc (sizeof (*offsets) * die_children_count);
11041 cleanups = make_cleanup (xfree, offsets);
11042
11043 offsets_end = offsets;
11044 child_die = die->child;
11045 while (child_die && child_die->tag)
11046 {
11047 /* For each CHILD_DIE, find the corresponding child of
11048 ORIGIN_DIE. If there is more than one layer of
11049 DW_AT_abstract_origin, follow them all; there shouldn't be,
11050 but GCC versions at least through 4.4 generate this (GCC PR
11051 40573). */
11052 struct die_info *child_origin_die = child_die;
11053 struct dwarf2_cu *child_origin_cu = cu;
11054
11055 while (1)
11056 {
11057 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
11058 child_origin_cu);
11059 if (attr == NULL)
11060 break;
11061 child_origin_die = follow_die_ref (child_origin_die, attr,
11062 &child_origin_cu);
11063 }
11064
11065 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
11066 counterpart may exist. */
11067 if (child_origin_die != child_die)
11068 {
11069 if (child_die->tag != child_origin_die->tag
11070 && !(child_die->tag == DW_TAG_inlined_subroutine
11071 && child_origin_die->tag == DW_TAG_subprogram))
11072 complaint (&symfile_complaints,
11073 _("Child DIE 0x%x and its abstract origin 0x%x have "
11074 "different tags"), child_die->offset.sect_off,
11075 child_origin_die->offset.sect_off);
11076 if (child_origin_die->parent != origin_die)
11077 complaint (&symfile_complaints,
11078 _("Child DIE 0x%x and its abstract origin 0x%x have "
11079 "different parents"), child_die->offset.sect_off,
11080 child_origin_die->offset.sect_off);
11081 else
11082 *offsets_end++ = child_origin_die->offset;
11083 }
11084 child_die = sibling_die (child_die);
11085 }
11086 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
11087 unsigned_int_compar);
11088 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
11089 if (offsetp[-1].sect_off == offsetp->sect_off)
11090 complaint (&symfile_complaints,
11091 _("Multiple children of DIE 0x%x refer "
11092 "to DIE 0x%x as their abstract origin"),
11093 die->offset.sect_off, offsetp->sect_off);
11094
11095 offsetp = offsets;
11096 origin_child_die = origin_die->child;
11097 while (origin_child_die && origin_child_die->tag)
11098 {
11099 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
11100 while (offsetp < offsets_end
11101 && offsetp->sect_off < origin_child_die->offset.sect_off)
11102 offsetp++;
11103 if (offsetp >= offsets_end
11104 || offsetp->sect_off > origin_child_die->offset.sect_off)
11105 {
11106 /* Found that ORIGIN_CHILD_DIE is really not referenced.
11107 Check whether we're already processing ORIGIN_CHILD_DIE.
11108 This can happen with mutually referenced abstract_origins.
11109 PR 16581. */
11110 if (!origin_child_die->in_process)
11111 process_die (origin_child_die, origin_cu);
11112 }
11113 origin_child_die = sibling_die (origin_child_die);
11114 }
11115 origin_cu->list_in_scope = origin_previous_list_in_scope;
11116
11117 do_cleanups (cleanups);
11118 }
11119
11120 static void
11121 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
11122 {
11123 struct objfile *objfile = cu->objfile;
11124 struct context_stack *new;
11125 CORE_ADDR lowpc;
11126 CORE_ADDR highpc;
11127 struct die_info *child_die;
11128 struct attribute *attr, *call_line, *call_file;
11129 const char *name;
11130 CORE_ADDR baseaddr;
11131 struct block *block;
11132 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
11133 VEC (symbolp) *template_args = NULL;
11134 struct template_symbol *templ_func = NULL;
11135
11136 if (inlined_func)
11137 {
11138 /* If we do not have call site information, we can't show the
11139 caller of this inlined function. That's too confusing, so
11140 only use the scope for local variables. */
11141 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11142 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11143 if (call_line == NULL || call_file == NULL)
11144 {
11145 read_lexical_block_scope (die, cu);
11146 return;
11147 }
11148 }
11149
11150 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11151
11152 name = dwarf2_name (die, cu);
11153
11154 /* Ignore functions with missing or empty names. These are actually
11155 illegal according to the DWARF standard. */
11156 if (name == NULL)
11157 {
11158 complaint (&symfile_complaints,
11159 _("missing name for subprogram DIE at %d"),
11160 die->offset.sect_off);
11161 return;
11162 }
11163
11164 /* Ignore functions with missing or invalid low and high pc attributes. */
11165 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11166 {
11167 attr = dwarf2_attr (die, DW_AT_external, cu);
11168 if (!attr || !DW_UNSND (attr))
11169 complaint (&symfile_complaints,
11170 _("cannot get low and high bounds "
11171 "for subprogram DIE at %d"),
11172 die->offset.sect_off);
11173 return;
11174 }
11175
11176 lowpc += baseaddr;
11177 highpc += baseaddr;
11178
11179 /* If we have any template arguments, then we must allocate a
11180 different sort of symbol. */
11181 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11182 {
11183 if (child_die->tag == DW_TAG_template_type_param
11184 || child_die->tag == DW_TAG_template_value_param)
11185 {
11186 templ_func = allocate_template_symbol (objfile);
11187 templ_func->base.is_cplus_template_function = 1;
11188 break;
11189 }
11190 }
11191
11192 new = push_context (0, lowpc);
11193 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
11194 (struct symbol *) templ_func);
11195
11196 /* If there is a location expression for DW_AT_frame_base, record
11197 it. */
11198 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
11199 if (attr)
11200 dwarf2_symbol_mark_computed (attr, new->name, cu, 1);
11201
11202 cu->list_in_scope = &local_symbols;
11203
11204 if (die->child != NULL)
11205 {
11206 child_die = die->child;
11207 while (child_die && child_die->tag)
11208 {
11209 if (child_die->tag == DW_TAG_template_type_param
11210 || child_die->tag == DW_TAG_template_value_param)
11211 {
11212 struct symbol *arg = new_symbol (child_die, NULL, cu);
11213
11214 if (arg != NULL)
11215 VEC_safe_push (symbolp, template_args, arg);
11216 }
11217 else
11218 process_die (child_die, cu);
11219 child_die = sibling_die (child_die);
11220 }
11221 }
11222
11223 inherit_abstract_dies (die, cu);
11224
11225 /* If we have a DW_AT_specification, we might need to import using
11226 directives from the context of the specification DIE. See the
11227 comment in determine_prefix. */
11228 if (cu->language == language_cplus
11229 && dwarf2_attr (die, DW_AT_specification, cu))
11230 {
11231 struct dwarf2_cu *spec_cu = cu;
11232 struct die_info *spec_die = die_specification (die, &spec_cu);
11233
11234 while (spec_die)
11235 {
11236 child_die = spec_die->child;
11237 while (child_die && child_die->tag)
11238 {
11239 if (child_die->tag == DW_TAG_imported_module)
11240 process_die (child_die, spec_cu);
11241 child_die = sibling_die (child_die);
11242 }
11243
11244 /* In some cases, GCC generates specification DIEs that
11245 themselves contain DW_AT_specification attributes. */
11246 spec_die = die_specification (spec_die, &spec_cu);
11247 }
11248 }
11249
11250 new = pop_context ();
11251 /* Make a block for the local symbols within. */
11252 block = finish_block (new->name, &local_symbols, new->old_blocks,
11253 lowpc, highpc, objfile);
11254
11255 /* For C++, set the block's scope. */
11256 if ((cu->language == language_cplus || cu->language == language_fortran)
11257 && cu->processing_has_namespace_info)
11258 block_set_scope (block, determine_prefix (die, cu),
11259 &objfile->objfile_obstack);
11260
11261 /* If we have address ranges, record them. */
11262 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11263
11264 /* Attach template arguments to function. */
11265 if (! VEC_empty (symbolp, template_args))
11266 {
11267 gdb_assert (templ_func != NULL);
11268
11269 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11270 templ_func->template_arguments
11271 = obstack_alloc (&objfile->objfile_obstack,
11272 (templ_func->n_template_arguments
11273 * sizeof (struct symbol *)));
11274 memcpy (templ_func->template_arguments,
11275 VEC_address (symbolp, template_args),
11276 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11277 VEC_free (symbolp, template_args);
11278 }
11279
11280 /* In C++, we can have functions nested inside functions (e.g., when
11281 a function declares a class that has methods). This means that
11282 when we finish processing a function scope, we may need to go
11283 back to building a containing block's symbol lists. */
11284 local_symbols = new->locals;
11285 using_directives = new->using_directives;
11286
11287 /* If we've finished processing a top-level function, subsequent
11288 symbols go in the file symbol list. */
11289 if (outermost_context_p ())
11290 cu->list_in_scope = &file_symbols;
11291 }
11292
11293 /* Process all the DIES contained within a lexical block scope. Start
11294 a new scope, process the dies, and then close the scope. */
11295
11296 static void
11297 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
11298 {
11299 struct objfile *objfile = cu->objfile;
11300 struct context_stack *new;
11301 CORE_ADDR lowpc, highpc;
11302 struct die_info *child_die;
11303 CORE_ADDR baseaddr;
11304
11305 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11306
11307 /* Ignore blocks with missing or invalid low and high pc attributes. */
11308 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11309 as multiple lexical blocks? Handling children in a sane way would
11310 be nasty. Might be easier to properly extend generic blocks to
11311 describe ranges. */
11312 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11313 return;
11314 lowpc += baseaddr;
11315 highpc += baseaddr;
11316
11317 push_context (0, lowpc);
11318 if (die->child != NULL)
11319 {
11320 child_die = die->child;
11321 while (child_die && child_die->tag)
11322 {
11323 process_die (child_die, cu);
11324 child_die = sibling_die (child_die);
11325 }
11326 }
11327 new = pop_context ();
11328
11329 if (local_symbols != NULL || using_directives != NULL)
11330 {
11331 struct block *block
11332 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
11333 highpc, objfile);
11334
11335 /* Note that recording ranges after traversing children, as we
11336 do here, means that recording a parent's ranges entails
11337 walking across all its children's ranges as they appear in
11338 the address map, which is quadratic behavior.
11339
11340 It would be nicer to record the parent's ranges before
11341 traversing its children, simply overriding whatever you find
11342 there. But since we don't even decide whether to create a
11343 block until after we've traversed its children, that's hard
11344 to do. */
11345 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11346 }
11347 local_symbols = new->locals;
11348 using_directives = new->using_directives;
11349 }
11350
11351 /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
11352
11353 static void
11354 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11355 {
11356 struct objfile *objfile = cu->objfile;
11357 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11358 CORE_ADDR pc, baseaddr;
11359 struct attribute *attr;
11360 struct call_site *call_site, call_site_local;
11361 void **slot;
11362 int nparams;
11363 struct die_info *child_die;
11364
11365 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11366
11367 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11368 if (!attr)
11369 {
11370 complaint (&symfile_complaints,
11371 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
11372 "DIE 0x%x [in module %s]"),
11373 die->offset.sect_off, objfile_name (objfile));
11374 return;
11375 }
11376 pc = attr_value_as_address (attr) + baseaddr;
11377
11378 if (cu->call_site_htab == NULL)
11379 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11380 NULL, &objfile->objfile_obstack,
11381 hashtab_obstack_allocate, NULL);
11382 call_site_local.pc = pc;
11383 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11384 if (*slot != NULL)
11385 {
11386 complaint (&symfile_complaints,
11387 _("Duplicate PC %s for DW_TAG_GNU_call_site "
11388 "DIE 0x%x [in module %s]"),
11389 paddress (gdbarch, pc), die->offset.sect_off,
11390 objfile_name (objfile));
11391 return;
11392 }
11393
11394 /* Count parameters at the caller. */
11395
11396 nparams = 0;
11397 for (child_die = die->child; child_die && child_die->tag;
11398 child_die = sibling_die (child_die))
11399 {
11400 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11401 {
11402 complaint (&symfile_complaints,
11403 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
11404 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11405 child_die->tag, child_die->offset.sect_off,
11406 objfile_name (objfile));
11407 continue;
11408 }
11409
11410 nparams++;
11411 }
11412
11413 call_site = obstack_alloc (&objfile->objfile_obstack,
11414 (sizeof (*call_site)
11415 + (sizeof (*call_site->parameter)
11416 * (nparams - 1))));
11417 *slot = call_site;
11418 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11419 call_site->pc = pc;
11420
11421 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
11422 {
11423 struct die_info *func_die;
11424
11425 /* Skip also over DW_TAG_inlined_subroutine. */
11426 for (func_die = die->parent;
11427 func_die && func_die->tag != DW_TAG_subprogram
11428 && func_die->tag != DW_TAG_subroutine_type;
11429 func_die = func_die->parent);
11430
11431 /* DW_AT_GNU_all_call_sites is a superset
11432 of DW_AT_GNU_all_tail_call_sites. */
11433 if (func_die
11434 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
11435 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11436 {
11437 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11438 not complete. But keep CALL_SITE for look ups via call_site_htab,
11439 both the initial caller containing the real return address PC and
11440 the final callee containing the current PC of a chain of tail
11441 calls do not need to have the tail call list complete. But any
11442 function candidate for a virtual tail call frame searched via
11443 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11444 determined unambiguously. */
11445 }
11446 else
11447 {
11448 struct type *func_type = NULL;
11449
11450 if (func_die)
11451 func_type = get_die_type (func_die, cu);
11452 if (func_type != NULL)
11453 {
11454 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11455
11456 /* Enlist this call site to the function. */
11457 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11458 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11459 }
11460 else
11461 complaint (&symfile_complaints,
11462 _("Cannot find function owning DW_TAG_GNU_call_site "
11463 "DIE 0x%x [in module %s]"),
11464 die->offset.sect_off, objfile_name (objfile));
11465 }
11466 }
11467
11468 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11469 if (attr == NULL)
11470 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11471 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
11472 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
11473 /* Keep NULL DWARF_BLOCK. */;
11474 else if (attr_form_is_block (attr))
11475 {
11476 struct dwarf2_locexpr_baton *dlbaton;
11477
11478 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
11479 dlbaton->data = DW_BLOCK (attr)->data;
11480 dlbaton->size = DW_BLOCK (attr)->size;
11481 dlbaton->per_cu = cu->per_cu;
11482
11483 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
11484 }
11485 else if (attr_form_is_ref (attr))
11486 {
11487 struct dwarf2_cu *target_cu = cu;
11488 struct die_info *target_die;
11489
11490 target_die = follow_die_ref (die, attr, &target_cu);
11491 gdb_assert (target_cu->objfile == objfile);
11492 if (die_is_declaration (target_die, target_cu))
11493 {
11494 const char *target_physname = NULL;
11495 struct attribute *target_attr;
11496
11497 /* Prefer the mangled name; otherwise compute the demangled one. */
11498 target_attr = dwarf2_attr (target_die, DW_AT_linkage_name, target_cu);
11499 if (target_attr == NULL)
11500 target_attr = dwarf2_attr (target_die, DW_AT_MIPS_linkage_name,
11501 target_cu);
11502 if (target_attr != NULL && DW_STRING (target_attr) != NULL)
11503 target_physname = DW_STRING (target_attr);
11504 else
11505 target_physname = dwarf2_physname (NULL, target_die, target_cu);
11506 if (target_physname == NULL)
11507 complaint (&symfile_complaints,
11508 _("DW_AT_GNU_call_site_target target DIE has invalid "
11509 "physname, for referencing DIE 0x%x [in module %s]"),
11510 die->offset.sect_off, objfile_name (objfile));
11511 else
11512 SET_FIELD_PHYSNAME (call_site->target, target_physname);
11513 }
11514 else
11515 {
11516 CORE_ADDR lowpc;
11517
11518 /* DW_AT_entry_pc should be preferred. */
11519 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
11520 complaint (&symfile_complaints,
11521 _("DW_AT_GNU_call_site_target target DIE has invalid "
11522 "low pc, for referencing DIE 0x%x [in module %s]"),
11523 die->offset.sect_off, objfile_name (objfile));
11524 else
11525 SET_FIELD_PHYSADDR (call_site->target, lowpc + baseaddr);
11526 }
11527 }
11528 else
11529 complaint (&symfile_complaints,
11530 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
11531 "block nor reference, for DIE 0x%x [in module %s]"),
11532 die->offset.sect_off, objfile_name (objfile));
11533
11534 call_site->per_cu = cu->per_cu;
11535
11536 for (child_die = die->child;
11537 child_die && child_die->tag;
11538 child_die = sibling_die (child_die))
11539 {
11540 struct call_site_parameter *parameter;
11541 struct attribute *loc, *origin;
11542
11543 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11544 {
11545 /* Already printed the complaint above. */
11546 continue;
11547 }
11548
11549 gdb_assert (call_site->parameter_count < nparams);
11550 parameter = &call_site->parameter[call_site->parameter_count];
11551
11552 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
11553 specifies DW_TAG_formal_parameter. Value of the data assumed for the
11554 register is contained in DW_AT_GNU_call_site_value. */
11555
11556 loc = dwarf2_attr (child_die, DW_AT_location, cu);
11557 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
11558 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
11559 {
11560 sect_offset offset;
11561
11562 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
11563 offset = dwarf2_get_ref_die_offset (origin);
11564 if (!offset_in_cu_p (&cu->header, offset))
11565 {
11566 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
11567 binding can be done only inside one CU. Such referenced DIE
11568 therefore cannot be even moved to DW_TAG_partial_unit. */
11569 complaint (&symfile_complaints,
11570 _("DW_AT_abstract_origin offset is not in CU for "
11571 "DW_TAG_GNU_call_site child DIE 0x%x "
11572 "[in module %s]"),
11573 child_die->offset.sect_off, objfile_name (objfile));
11574 continue;
11575 }
11576 parameter->u.param_offset.cu_off = (offset.sect_off
11577 - cu->header.offset.sect_off);
11578 }
11579 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
11580 {
11581 complaint (&symfile_complaints,
11582 _("No DW_FORM_block* DW_AT_location for "
11583 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11584 child_die->offset.sect_off, objfile_name (objfile));
11585 continue;
11586 }
11587 else
11588 {
11589 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
11590 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
11591 if (parameter->u.dwarf_reg != -1)
11592 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
11593 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
11594 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
11595 &parameter->u.fb_offset))
11596 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
11597 else
11598 {
11599 complaint (&symfile_complaints,
11600 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
11601 "for DW_FORM_block* DW_AT_location is supported for "
11602 "DW_TAG_GNU_call_site child DIE 0x%x "
11603 "[in module %s]"),
11604 child_die->offset.sect_off, objfile_name (objfile));
11605 continue;
11606 }
11607 }
11608
11609 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
11610 if (!attr_form_is_block (attr))
11611 {
11612 complaint (&symfile_complaints,
11613 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
11614 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11615 child_die->offset.sect_off, objfile_name (objfile));
11616 continue;
11617 }
11618 parameter->value = DW_BLOCK (attr)->data;
11619 parameter->value_size = DW_BLOCK (attr)->size;
11620
11621 /* Parameters are not pre-cleared by memset above. */
11622 parameter->data_value = NULL;
11623 parameter->data_value_size = 0;
11624 call_site->parameter_count++;
11625
11626 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
11627 if (attr)
11628 {
11629 if (!attr_form_is_block (attr))
11630 complaint (&symfile_complaints,
11631 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
11632 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11633 child_die->offset.sect_off, objfile_name (objfile));
11634 else
11635 {
11636 parameter->data_value = DW_BLOCK (attr)->data;
11637 parameter->data_value_size = DW_BLOCK (attr)->size;
11638 }
11639 }
11640 }
11641 }
11642
11643 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
11644 Return 1 if the attributes are present and valid, otherwise, return 0.
11645 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
11646
11647 static int
11648 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
11649 CORE_ADDR *high_return, struct dwarf2_cu *cu,
11650 struct partial_symtab *ranges_pst)
11651 {
11652 struct objfile *objfile = cu->objfile;
11653 struct comp_unit_head *cu_header = &cu->header;
11654 bfd *obfd = objfile->obfd;
11655 unsigned int addr_size = cu_header->addr_size;
11656 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11657 /* Base address selection entry. */
11658 CORE_ADDR base;
11659 int found_base;
11660 unsigned int dummy;
11661 const gdb_byte *buffer;
11662 CORE_ADDR marker;
11663 int low_set;
11664 CORE_ADDR low = 0;
11665 CORE_ADDR high = 0;
11666 CORE_ADDR baseaddr;
11667
11668 found_base = cu->base_known;
11669 base = cu->base_address;
11670
11671 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
11672 if (offset >= dwarf2_per_objfile->ranges.size)
11673 {
11674 complaint (&symfile_complaints,
11675 _("Offset %d out of bounds for DW_AT_ranges attribute"),
11676 offset);
11677 return 0;
11678 }
11679 buffer = dwarf2_per_objfile->ranges.buffer + offset;
11680
11681 /* Read in the largest possible address. */
11682 marker = read_address (obfd, buffer, cu, &dummy);
11683 if ((marker & mask) == mask)
11684 {
11685 /* If we found the largest possible address, then
11686 read the base address. */
11687 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11688 buffer += 2 * addr_size;
11689 offset += 2 * addr_size;
11690 found_base = 1;
11691 }
11692
11693 low_set = 0;
11694
11695 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11696
11697 while (1)
11698 {
11699 CORE_ADDR range_beginning, range_end;
11700
11701 range_beginning = read_address (obfd, buffer, cu, &dummy);
11702 buffer += addr_size;
11703 range_end = read_address (obfd, buffer, cu, &dummy);
11704 buffer += addr_size;
11705 offset += 2 * addr_size;
11706
11707 /* An end of list marker is a pair of zero addresses. */
11708 if (range_beginning == 0 && range_end == 0)
11709 /* Found the end of list entry. */
11710 break;
11711
11712 /* Each base address selection entry is a pair of 2 values.
11713 The first is the largest possible address, the second is
11714 the base address. Check for a base address here. */
11715 if ((range_beginning & mask) == mask)
11716 {
11717 /* If we found the largest possible address, then
11718 read the base address. */
11719 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11720 found_base = 1;
11721 continue;
11722 }
11723
11724 if (!found_base)
11725 {
11726 /* We have no valid base address for the ranges
11727 data. */
11728 complaint (&symfile_complaints,
11729 _("Invalid .debug_ranges data (no base address)"));
11730 return 0;
11731 }
11732
11733 if (range_beginning > range_end)
11734 {
11735 /* Inverted range entries are invalid. */
11736 complaint (&symfile_complaints,
11737 _("Invalid .debug_ranges data (inverted range)"));
11738 return 0;
11739 }
11740
11741 /* Empty range entries have no effect. */
11742 if (range_beginning == range_end)
11743 continue;
11744
11745 range_beginning += base;
11746 range_end += base;
11747
11748 /* A not-uncommon case of bad debug info.
11749 Don't pollute the addrmap with bad data. */
11750 if (range_beginning + baseaddr == 0
11751 && !dwarf2_per_objfile->has_section_at_zero)
11752 {
11753 complaint (&symfile_complaints,
11754 _(".debug_ranges entry has start address of zero"
11755 " [in module %s]"), objfile_name (objfile));
11756 continue;
11757 }
11758
11759 if (ranges_pst != NULL)
11760 addrmap_set_empty (objfile->psymtabs_addrmap,
11761 range_beginning + baseaddr,
11762 range_end - 1 + baseaddr,
11763 ranges_pst);
11764
11765 /* FIXME: This is recording everything as a low-high
11766 segment of consecutive addresses. We should have a
11767 data structure for discontiguous block ranges
11768 instead. */
11769 if (! low_set)
11770 {
11771 low = range_beginning;
11772 high = range_end;
11773 low_set = 1;
11774 }
11775 else
11776 {
11777 if (range_beginning < low)
11778 low = range_beginning;
11779 if (range_end > high)
11780 high = range_end;
11781 }
11782 }
11783
11784 if (! low_set)
11785 /* If the first entry is an end-of-list marker, the range
11786 describes an empty scope, i.e. no instructions. */
11787 return 0;
11788
11789 if (low_return)
11790 *low_return = low;
11791 if (high_return)
11792 *high_return = high;
11793 return 1;
11794 }
11795
11796 /* Get low and high pc attributes from a die. Return 1 if the attributes
11797 are present and valid, otherwise, return 0. Return -1 if the range is
11798 discontinuous, i.e. derived from DW_AT_ranges information. */
11799
11800 static int
11801 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
11802 CORE_ADDR *highpc, struct dwarf2_cu *cu,
11803 struct partial_symtab *pst)
11804 {
11805 struct attribute *attr;
11806 struct attribute *attr_high;
11807 CORE_ADDR low = 0;
11808 CORE_ADDR high = 0;
11809 int ret = 0;
11810
11811 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
11812 if (attr_high)
11813 {
11814 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11815 if (attr)
11816 {
11817 low = attr_value_as_address (attr);
11818 high = attr_value_as_address (attr_high);
11819 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
11820 high += low;
11821 }
11822 else
11823 /* Found high w/o low attribute. */
11824 return 0;
11825
11826 /* Found consecutive range of addresses. */
11827 ret = 1;
11828 }
11829 else
11830 {
11831 attr = dwarf2_attr (die, DW_AT_ranges, cu);
11832 if (attr != NULL)
11833 {
11834 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
11835 We take advantage of the fact that DW_AT_ranges does not appear
11836 in DW_TAG_compile_unit of DWO files. */
11837 int need_ranges_base = die->tag != DW_TAG_compile_unit;
11838 unsigned int ranges_offset = (DW_UNSND (attr)
11839 + (need_ranges_base
11840 ? cu->ranges_base
11841 : 0));
11842
11843 /* Value of the DW_AT_ranges attribute is the offset in the
11844 .debug_ranges section. */
11845 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
11846 return 0;
11847 /* Found discontinuous range of addresses. */
11848 ret = -1;
11849 }
11850 }
11851
11852 /* read_partial_die has also the strict LOW < HIGH requirement. */
11853 if (high <= low)
11854 return 0;
11855
11856 /* When using the GNU linker, .gnu.linkonce. sections are used to
11857 eliminate duplicate copies of functions and vtables and such.
11858 The linker will arbitrarily choose one and discard the others.
11859 The AT_*_pc values for such functions refer to local labels in
11860 these sections. If the section from that file was discarded, the
11861 labels are not in the output, so the relocs get a value of 0.
11862 If this is a discarded function, mark the pc bounds as invalid,
11863 so that GDB will ignore it. */
11864 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
11865 return 0;
11866
11867 *lowpc = low;
11868 if (highpc)
11869 *highpc = high;
11870 return ret;
11871 }
11872
11873 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
11874 its low and high PC addresses. Do nothing if these addresses could not
11875 be determined. Otherwise, set LOWPC to the low address if it is smaller,
11876 and HIGHPC to the high address if greater than HIGHPC. */
11877
11878 static void
11879 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
11880 CORE_ADDR *lowpc, CORE_ADDR *highpc,
11881 struct dwarf2_cu *cu)
11882 {
11883 CORE_ADDR low, high;
11884 struct die_info *child = die->child;
11885
11886 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
11887 {
11888 *lowpc = min (*lowpc, low);
11889 *highpc = max (*highpc, high);
11890 }
11891
11892 /* If the language does not allow nested subprograms (either inside
11893 subprograms or lexical blocks), we're done. */
11894 if (cu->language != language_ada)
11895 return;
11896
11897 /* Check all the children of the given DIE. If it contains nested
11898 subprograms, then check their pc bounds. Likewise, we need to
11899 check lexical blocks as well, as they may also contain subprogram
11900 definitions. */
11901 while (child && child->tag)
11902 {
11903 if (child->tag == DW_TAG_subprogram
11904 || child->tag == DW_TAG_lexical_block)
11905 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
11906 child = sibling_die (child);
11907 }
11908 }
11909
11910 /* Get the low and high pc's represented by the scope DIE, and store
11911 them in *LOWPC and *HIGHPC. If the correct values can't be
11912 determined, set *LOWPC to -1 and *HIGHPC to 0. */
11913
11914 static void
11915 get_scope_pc_bounds (struct die_info *die,
11916 CORE_ADDR *lowpc, CORE_ADDR *highpc,
11917 struct dwarf2_cu *cu)
11918 {
11919 CORE_ADDR best_low = (CORE_ADDR) -1;
11920 CORE_ADDR best_high = (CORE_ADDR) 0;
11921 CORE_ADDR current_low, current_high;
11922
11923 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
11924 {
11925 best_low = current_low;
11926 best_high = current_high;
11927 }
11928 else
11929 {
11930 struct die_info *child = die->child;
11931
11932 while (child && child->tag)
11933 {
11934 switch (child->tag) {
11935 case DW_TAG_subprogram:
11936 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
11937 break;
11938 case DW_TAG_namespace:
11939 case DW_TAG_module:
11940 /* FIXME: carlton/2004-01-16: Should we do this for
11941 DW_TAG_class_type/DW_TAG_structure_type, too? I think
11942 that current GCC's always emit the DIEs corresponding
11943 to definitions of methods of classes as children of a
11944 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
11945 the DIEs giving the declarations, which could be
11946 anywhere). But I don't see any reason why the
11947 standards says that they have to be there. */
11948 get_scope_pc_bounds (child, &current_low, &current_high, cu);
11949
11950 if (current_low != ((CORE_ADDR) -1))
11951 {
11952 best_low = min (best_low, current_low);
11953 best_high = max (best_high, current_high);
11954 }
11955 break;
11956 default:
11957 /* Ignore. */
11958 break;
11959 }
11960
11961 child = sibling_die (child);
11962 }
11963 }
11964
11965 *lowpc = best_low;
11966 *highpc = best_high;
11967 }
11968
11969 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
11970 in DIE. */
11971
11972 static void
11973 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
11974 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
11975 {
11976 struct objfile *objfile = cu->objfile;
11977 struct attribute *attr;
11978 struct attribute *attr_high;
11979
11980 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
11981 if (attr_high)
11982 {
11983 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11984 if (attr)
11985 {
11986 CORE_ADDR low = attr_value_as_address (attr);
11987 CORE_ADDR high = attr_value_as_address (attr_high);
11988
11989 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
11990 high += low;
11991
11992 record_block_range (block, baseaddr + low, baseaddr + high - 1);
11993 }
11994 }
11995
11996 attr = dwarf2_attr (die, DW_AT_ranges, cu);
11997 if (attr)
11998 {
11999 bfd *obfd = objfile->obfd;
12000 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12001 We take advantage of the fact that DW_AT_ranges does not appear
12002 in DW_TAG_compile_unit of DWO files. */
12003 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12004
12005 /* The value of the DW_AT_ranges attribute is the offset of the
12006 address range list in the .debug_ranges section. */
12007 unsigned long offset = (DW_UNSND (attr)
12008 + (need_ranges_base ? cu->ranges_base : 0));
12009 const gdb_byte *buffer;
12010
12011 /* For some target architectures, but not others, the
12012 read_address function sign-extends the addresses it returns.
12013 To recognize base address selection entries, we need a
12014 mask. */
12015 unsigned int addr_size = cu->header.addr_size;
12016 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12017
12018 /* The base address, to which the next pair is relative. Note
12019 that this 'base' is a DWARF concept: most entries in a range
12020 list are relative, to reduce the number of relocs against the
12021 debugging information. This is separate from this function's
12022 'baseaddr' argument, which GDB uses to relocate debugging
12023 information from a shared library based on the address at
12024 which the library was loaded. */
12025 CORE_ADDR base = cu->base_address;
12026 int base_known = cu->base_known;
12027
12028 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
12029 if (offset >= dwarf2_per_objfile->ranges.size)
12030 {
12031 complaint (&symfile_complaints,
12032 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
12033 offset);
12034 return;
12035 }
12036 buffer = dwarf2_per_objfile->ranges.buffer + offset;
12037
12038 for (;;)
12039 {
12040 unsigned int bytes_read;
12041 CORE_ADDR start, end;
12042
12043 start = read_address (obfd, buffer, cu, &bytes_read);
12044 buffer += bytes_read;
12045 end = read_address (obfd, buffer, cu, &bytes_read);
12046 buffer += bytes_read;
12047
12048 /* Did we find the end of the range list? */
12049 if (start == 0 && end == 0)
12050 break;
12051
12052 /* Did we find a base address selection entry? */
12053 else if ((start & base_select_mask) == base_select_mask)
12054 {
12055 base = end;
12056 base_known = 1;
12057 }
12058
12059 /* We found an ordinary address range. */
12060 else
12061 {
12062 if (!base_known)
12063 {
12064 complaint (&symfile_complaints,
12065 _("Invalid .debug_ranges data "
12066 "(no base address)"));
12067 return;
12068 }
12069
12070 if (start > end)
12071 {
12072 /* Inverted range entries are invalid. */
12073 complaint (&symfile_complaints,
12074 _("Invalid .debug_ranges data "
12075 "(inverted range)"));
12076 return;
12077 }
12078
12079 /* Empty range entries have no effect. */
12080 if (start == end)
12081 continue;
12082
12083 start += base + baseaddr;
12084 end += base + baseaddr;
12085
12086 /* A not-uncommon case of bad debug info.
12087 Don't pollute the addrmap with bad data. */
12088 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
12089 {
12090 complaint (&symfile_complaints,
12091 _(".debug_ranges entry has start address of zero"
12092 " [in module %s]"), objfile_name (objfile));
12093 continue;
12094 }
12095
12096 record_block_range (block, start, end - 1);
12097 }
12098 }
12099 }
12100 }
12101
12102 /* Check whether the producer field indicates either of GCC < 4.6, or the
12103 Intel C/C++ compiler, and cache the result in CU. */
12104
12105 static void
12106 check_producer (struct dwarf2_cu *cu)
12107 {
12108 const char *cs;
12109 int major, minor, release;
12110
12111 if (cu->producer == NULL)
12112 {
12113 /* For unknown compilers expect their behavior is DWARF version
12114 compliant.
12115
12116 GCC started to support .debug_types sections by -gdwarf-4 since
12117 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
12118 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
12119 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
12120 interpreted incorrectly by GDB now - GCC PR debug/48229. */
12121 }
12122 else if (strncmp (cu->producer, "GNU ", strlen ("GNU ")) == 0)
12123 {
12124 /* Skip any identifier after "GNU " - such as "C++" or "Java". */
12125
12126 cs = &cu->producer[strlen ("GNU ")];
12127 while (*cs && !isdigit (*cs))
12128 cs++;
12129 if (sscanf (cs, "%d.%d.%d", &major, &minor, &release) != 3)
12130 {
12131 /* Not recognized as GCC. */
12132 }
12133 else
12134 {
12135 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
12136 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
12137 }
12138 }
12139 else if (strncmp (cu->producer, "Intel(R) C", strlen ("Intel(R) C")) == 0)
12140 cu->producer_is_icc = 1;
12141 else
12142 {
12143 /* For other non-GCC compilers, expect their behavior is DWARF version
12144 compliant. */
12145 }
12146
12147 cu->checked_producer = 1;
12148 }
12149
12150 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12151 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12152 during 4.6.0 experimental. */
12153
12154 static int
12155 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12156 {
12157 if (!cu->checked_producer)
12158 check_producer (cu);
12159
12160 return cu->producer_is_gxx_lt_4_6;
12161 }
12162
12163 /* Return the default accessibility type if it is not overriden by
12164 DW_AT_accessibility. */
12165
12166 static enum dwarf_access_attribute
12167 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12168 {
12169 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12170 {
12171 /* The default DWARF 2 accessibility for members is public, the default
12172 accessibility for inheritance is private. */
12173
12174 if (die->tag != DW_TAG_inheritance)
12175 return DW_ACCESS_public;
12176 else
12177 return DW_ACCESS_private;
12178 }
12179 else
12180 {
12181 /* DWARF 3+ defines the default accessibility a different way. The same
12182 rules apply now for DW_TAG_inheritance as for the members and it only
12183 depends on the container kind. */
12184
12185 if (die->parent->tag == DW_TAG_class_type)
12186 return DW_ACCESS_private;
12187 else
12188 return DW_ACCESS_public;
12189 }
12190 }
12191
12192 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12193 offset. If the attribute was not found return 0, otherwise return
12194 1. If it was found but could not properly be handled, set *OFFSET
12195 to 0. */
12196
12197 static int
12198 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12199 LONGEST *offset)
12200 {
12201 struct attribute *attr;
12202
12203 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12204 if (attr != NULL)
12205 {
12206 *offset = 0;
12207
12208 /* Note that we do not check for a section offset first here.
12209 This is because DW_AT_data_member_location is new in DWARF 4,
12210 so if we see it, we can assume that a constant form is really
12211 a constant and not a section offset. */
12212 if (attr_form_is_constant (attr))
12213 *offset = dwarf2_get_attr_constant_value (attr, 0);
12214 else if (attr_form_is_section_offset (attr))
12215 dwarf2_complex_location_expr_complaint ();
12216 else if (attr_form_is_block (attr))
12217 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12218 else
12219 dwarf2_complex_location_expr_complaint ();
12220
12221 return 1;
12222 }
12223
12224 return 0;
12225 }
12226
12227 /* Add an aggregate field to the field list. */
12228
12229 static void
12230 dwarf2_add_field (struct field_info *fip, struct die_info *die,
12231 struct dwarf2_cu *cu)
12232 {
12233 struct objfile *objfile = cu->objfile;
12234 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12235 struct nextfield *new_field;
12236 struct attribute *attr;
12237 struct field *fp;
12238 const char *fieldname = "";
12239
12240 /* Allocate a new field list entry and link it in. */
12241 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
12242 make_cleanup (xfree, new_field);
12243 memset (new_field, 0, sizeof (struct nextfield));
12244
12245 if (die->tag == DW_TAG_inheritance)
12246 {
12247 new_field->next = fip->baseclasses;
12248 fip->baseclasses = new_field;
12249 }
12250 else
12251 {
12252 new_field->next = fip->fields;
12253 fip->fields = new_field;
12254 }
12255 fip->nfields++;
12256
12257 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12258 if (attr)
12259 new_field->accessibility = DW_UNSND (attr);
12260 else
12261 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
12262 if (new_field->accessibility != DW_ACCESS_public)
12263 fip->non_public_fields = 1;
12264
12265 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12266 if (attr)
12267 new_field->virtuality = DW_UNSND (attr);
12268 else
12269 new_field->virtuality = DW_VIRTUALITY_none;
12270
12271 fp = &new_field->field;
12272
12273 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
12274 {
12275 LONGEST offset;
12276
12277 /* Data member other than a C++ static data member. */
12278
12279 /* Get type of field. */
12280 fp->type = die_type (die, cu);
12281
12282 SET_FIELD_BITPOS (*fp, 0);
12283
12284 /* Get bit size of field (zero if none). */
12285 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
12286 if (attr)
12287 {
12288 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12289 }
12290 else
12291 {
12292 FIELD_BITSIZE (*fp) = 0;
12293 }
12294
12295 /* Get bit offset of field. */
12296 if (handle_data_member_location (die, cu, &offset))
12297 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12298 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
12299 if (attr)
12300 {
12301 if (gdbarch_bits_big_endian (gdbarch))
12302 {
12303 /* For big endian bits, the DW_AT_bit_offset gives the
12304 additional bit offset from the MSB of the containing
12305 anonymous object to the MSB of the field. We don't
12306 have to do anything special since we don't need to
12307 know the size of the anonymous object. */
12308 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
12309 }
12310 else
12311 {
12312 /* For little endian bits, compute the bit offset to the
12313 MSB of the anonymous object, subtract off the number of
12314 bits from the MSB of the field to the MSB of the
12315 object, and then subtract off the number of bits of
12316 the field itself. The result is the bit offset of
12317 the LSB of the field. */
12318 int anonymous_size;
12319 int bit_offset = DW_UNSND (attr);
12320
12321 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12322 if (attr)
12323 {
12324 /* The size of the anonymous object containing
12325 the bit field is explicit, so use the
12326 indicated size (in bytes). */
12327 anonymous_size = DW_UNSND (attr);
12328 }
12329 else
12330 {
12331 /* The size of the anonymous object containing
12332 the bit field must be inferred from the type
12333 attribute of the data member containing the
12334 bit field. */
12335 anonymous_size = TYPE_LENGTH (fp->type);
12336 }
12337 SET_FIELD_BITPOS (*fp,
12338 (FIELD_BITPOS (*fp)
12339 + anonymous_size * bits_per_byte
12340 - bit_offset - FIELD_BITSIZE (*fp)));
12341 }
12342 }
12343
12344 /* Get name of field. */
12345 fieldname = dwarf2_name (die, cu);
12346 if (fieldname == NULL)
12347 fieldname = "";
12348
12349 /* The name is already allocated along with this objfile, so we don't
12350 need to duplicate it for the type. */
12351 fp->name = fieldname;
12352
12353 /* Change accessibility for artificial fields (e.g. virtual table
12354 pointer or virtual base class pointer) to private. */
12355 if (dwarf2_attr (die, DW_AT_artificial, cu))
12356 {
12357 FIELD_ARTIFICIAL (*fp) = 1;
12358 new_field->accessibility = DW_ACCESS_private;
12359 fip->non_public_fields = 1;
12360 }
12361 }
12362 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
12363 {
12364 /* C++ static member. */
12365
12366 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
12367 is a declaration, but all versions of G++ as of this writing
12368 (so through at least 3.2.1) incorrectly generate
12369 DW_TAG_variable tags. */
12370
12371 const char *physname;
12372
12373 /* Get name of field. */
12374 fieldname = dwarf2_name (die, cu);
12375 if (fieldname == NULL)
12376 return;
12377
12378 attr = dwarf2_attr (die, DW_AT_const_value, cu);
12379 if (attr
12380 /* Only create a symbol if this is an external value.
12381 new_symbol checks this and puts the value in the global symbol
12382 table, which we want. If it is not external, new_symbol
12383 will try to put the value in cu->list_in_scope which is wrong. */
12384 && dwarf2_flag_true_p (die, DW_AT_external, cu))
12385 {
12386 /* A static const member, not much different than an enum as far as
12387 we're concerned, except that we can support more types. */
12388 new_symbol (die, NULL, cu);
12389 }
12390
12391 /* Get physical name. */
12392 physname = dwarf2_physname (fieldname, die, cu);
12393
12394 /* The name is already allocated along with this objfile, so we don't
12395 need to duplicate it for the type. */
12396 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
12397 FIELD_TYPE (*fp) = die_type (die, cu);
12398 FIELD_NAME (*fp) = fieldname;
12399 }
12400 else if (die->tag == DW_TAG_inheritance)
12401 {
12402 LONGEST offset;
12403
12404 /* C++ base class field. */
12405 if (handle_data_member_location (die, cu, &offset))
12406 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12407 FIELD_BITSIZE (*fp) = 0;
12408 FIELD_TYPE (*fp) = die_type (die, cu);
12409 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
12410 fip->nbaseclasses++;
12411 }
12412 }
12413
12414 /* Add a typedef defined in the scope of the FIP's class. */
12415
12416 static void
12417 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
12418 struct dwarf2_cu *cu)
12419 {
12420 struct objfile *objfile = cu->objfile;
12421 struct typedef_field_list *new_field;
12422 struct attribute *attr;
12423 struct typedef_field *fp;
12424 char *fieldname = "";
12425
12426 /* Allocate a new field list entry and link it in. */
12427 new_field = xzalloc (sizeof (*new_field));
12428 make_cleanup (xfree, new_field);
12429
12430 gdb_assert (die->tag == DW_TAG_typedef);
12431
12432 fp = &new_field->field;
12433
12434 /* Get name of field. */
12435 fp->name = dwarf2_name (die, cu);
12436 if (fp->name == NULL)
12437 return;
12438
12439 fp->type = read_type_die (die, cu);
12440
12441 new_field->next = fip->typedef_field_list;
12442 fip->typedef_field_list = new_field;
12443 fip->typedef_field_list_count++;
12444 }
12445
12446 /* Create the vector of fields, and attach it to the type. */
12447
12448 static void
12449 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
12450 struct dwarf2_cu *cu)
12451 {
12452 int nfields = fip->nfields;
12453
12454 /* Record the field count, allocate space for the array of fields,
12455 and create blank accessibility bitfields if necessary. */
12456 TYPE_NFIELDS (type) = nfields;
12457 TYPE_FIELDS (type) = (struct field *)
12458 TYPE_ALLOC (type, sizeof (struct field) * nfields);
12459 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
12460
12461 if (fip->non_public_fields && cu->language != language_ada)
12462 {
12463 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12464
12465 TYPE_FIELD_PRIVATE_BITS (type) =
12466 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12467 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
12468
12469 TYPE_FIELD_PROTECTED_BITS (type) =
12470 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12471 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
12472
12473 TYPE_FIELD_IGNORE_BITS (type) =
12474 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12475 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
12476 }
12477
12478 /* If the type has baseclasses, allocate and clear a bit vector for
12479 TYPE_FIELD_VIRTUAL_BITS. */
12480 if (fip->nbaseclasses && cu->language != language_ada)
12481 {
12482 int num_bytes = B_BYTES (fip->nbaseclasses);
12483 unsigned char *pointer;
12484
12485 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12486 pointer = TYPE_ALLOC (type, num_bytes);
12487 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
12488 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
12489 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
12490 }
12491
12492 /* Copy the saved-up fields into the field vector. Start from the head of
12493 the list, adding to the tail of the field array, so that they end up in
12494 the same order in the array in which they were added to the list. */
12495 while (nfields-- > 0)
12496 {
12497 struct nextfield *fieldp;
12498
12499 if (fip->fields)
12500 {
12501 fieldp = fip->fields;
12502 fip->fields = fieldp->next;
12503 }
12504 else
12505 {
12506 fieldp = fip->baseclasses;
12507 fip->baseclasses = fieldp->next;
12508 }
12509
12510 TYPE_FIELD (type, nfields) = fieldp->field;
12511 switch (fieldp->accessibility)
12512 {
12513 case DW_ACCESS_private:
12514 if (cu->language != language_ada)
12515 SET_TYPE_FIELD_PRIVATE (type, nfields);
12516 break;
12517
12518 case DW_ACCESS_protected:
12519 if (cu->language != language_ada)
12520 SET_TYPE_FIELD_PROTECTED (type, nfields);
12521 break;
12522
12523 case DW_ACCESS_public:
12524 break;
12525
12526 default:
12527 /* Unknown accessibility. Complain and treat it as public. */
12528 {
12529 complaint (&symfile_complaints, _("unsupported accessibility %d"),
12530 fieldp->accessibility);
12531 }
12532 break;
12533 }
12534 if (nfields < fip->nbaseclasses)
12535 {
12536 switch (fieldp->virtuality)
12537 {
12538 case DW_VIRTUALITY_virtual:
12539 case DW_VIRTUALITY_pure_virtual:
12540 if (cu->language == language_ada)
12541 error (_("unexpected virtuality in component of Ada type"));
12542 SET_TYPE_FIELD_VIRTUAL (type, nfields);
12543 break;
12544 }
12545 }
12546 }
12547 }
12548
12549 /* Return true if this member function is a constructor, false
12550 otherwise. */
12551
12552 static int
12553 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
12554 {
12555 const char *fieldname;
12556 const char *typename;
12557 int len;
12558
12559 if (die->parent == NULL)
12560 return 0;
12561
12562 if (die->parent->tag != DW_TAG_structure_type
12563 && die->parent->tag != DW_TAG_union_type
12564 && die->parent->tag != DW_TAG_class_type)
12565 return 0;
12566
12567 fieldname = dwarf2_name (die, cu);
12568 typename = dwarf2_name (die->parent, cu);
12569 if (fieldname == NULL || typename == NULL)
12570 return 0;
12571
12572 len = strlen (fieldname);
12573 return (strncmp (fieldname, typename, len) == 0
12574 && (typename[len] == '\0' || typename[len] == '<'));
12575 }
12576
12577 /* Add a member function to the proper fieldlist. */
12578
12579 static void
12580 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
12581 struct type *type, struct dwarf2_cu *cu)
12582 {
12583 struct objfile *objfile = cu->objfile;
12584 struct attribute *attr;
12585 struct fnfieldlist *flp;
12586 int i;
12587 struct fn_field *fnp;
12588 const char *fieldname;
12589 struct nextfnfield *new_fnfield;
12590 struct type *this_type;
12591 enum dwarf_access_attribute accessibility;
12592
12593 if (cu->language == language_ada)
12594 error (_("unexpected member function in Ada type"));
12595
12596 /* Get name of member function. */
12597 fieldname = dwarf2_name (die, cu);
12598 if (fieldname == NULL)
12599 return;
12600
12601 /* Look up member function name in fieldlist. */
12602 for (i = 0; i < fip->nfnfields; i++)
12603 {
12604 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
12605 break;
12606 }
12607
12608 /* Create new list element if necessary. */
12609 if (i < fip->nfnfields)
12610 flp = &fip->fnfieldlists[i];
12611 else
12612 {
12613 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
12614 {
12615 fip->fnfieldlists = (struct fnfieldlist *)
12616 xrealloc (fip->fnfieldlists,
12617 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
12618 * sizeof (struct fnfieldlist));
12619 if (fip->nfnfields == 0)
12620 make_cleanup (free_current_contents, &fip->fnfieldlists);
12621 }
12622 flp = &fip->fnfieldlists[fip->nfnfields];
12623 flp->name = fieldname;
12624 flp->length = 0;
12625 flp->head = NULL;
12626 i = fip->nfnfields++;
12627 }
12628
12629 /* Create a new member function field and chain it to the field list
12630 entry. */
12631 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
12632 make_cleanup (xfree, new_fnfield);
12633 memset (new_fnfield, 0, sizeof (struct nextfnfield));
12634 new_fnfield->next = flp->head;
12635 flp->head = new_fnfield;
12636 flp->length++;
12637
12638 /* Fill in the member function field info. */
12639 fnp = &new_fnfield->fnfield;
12640
12641 /* Delay processing of the physname until later. */
12642 if (cu->language == language_cplus || cu->language == language_java)
12643 {
12644 add_to_method_list (type, i, flp->length - 1, fieldname,
12645 die, cu);
12646 }
12647 else
12648 {
12649 const char *physname = dwarf2_physname (fieldname, die, cu);
12650 fnp->physname = physname ? physname : "";
12651 }
12652
12653 fnp->type = alloc_type (objfile);
12654 this_type = read_type_die (die, cu);
12655 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
12656 {
12657 int nparams = TYPE_NFIELDS (this_type);
12658
12659 /* TYPE is the domain of this method, and THIS_TYPE is the type
12660 of the method itself (TYPE_CODE_METHOD). */
12661 smash_to_method_type (fnp->type, type,
12662 TYPE_TARGET_TYPE (this_type),
12663 TYPE_FIELDS (this_type),
12664 TYPE_NFIELDS (this_type),
12665 TYPE_VARARGS (this_type));
12666
12667 /* Handle static member functions.
12668 Dwarf2 has no clean way to discern C++ static and non-static
12669 member functions. G++ helps GDB by marking the first
12670 parameter for non-static member functions (which is the this
12671 pointer) as artificial. We obtain this information from
12672 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
12673 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
12674 fnp->voffset = VOFFSET_STATIC;
12675 }
12676 else
12677 complaint (&symfile_complaints, _("member function type missing for '%s'"),
12678 dwarf2_full_name (fieldname, die, cu));
12679
12680 /* Get fcontext from DW_AT_containing_type if present. */
12681 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
12682 fnp->fcontext = die_containing_type (die, cu);
12683
12684 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
12685 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
12686
12687 /* Get accessibility. */
12688 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12689 if (attr)
12690 accessibility = DW_UNSND (attr);
12691 else
12692 accessibility = dwarf2_default_access_attribute (die, cu);
12693 switch (accessibility)
12694 {
12695 case DW_ACCESS_private:
12696 fnp->is_private = 1;
12697 break;
12698 case DW_ACCESS_protected:
12699 fnp->is_protected = 1;
12700 break;
12701 }
12702
12703 /* Check for artificial methods. */
12704 attr = dwarf2_attr (die, DW_AT_artificial, cu);
12705 if (attr && DW_UNSND (attr) != 0)
12706 fnp->is_artificial = 1;
12707
12708 fnp->is_constructor = dwarf2_is_constructor (die, cu);
12709
12710 /* Get index in virtual function table if it is a virtual member
12711 function. For older versions of GCC, this is an offset in the
12712 appropriate virtual table, as specified by DW_AT_containing_type.
12713 For everyone else, it is an expression to be evaluated relative
12714 to the object address. */
12715
12716 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
12717 if (attr)
12718 {
12719 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
12720 {
12721 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
12722 {
12723 /* Old-style GCC. */
12724 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
12725 }
12726 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
12727 || (DW_BLOCK (attr)->size > 1
12728 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
12729 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
12730 {
12731 struct dwarf_block blk;
12732 int offset;
12733
12734 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
12735 ? 1 : 2);
12736 blk.size = DW_BLOCK (attr)->size - offset;
12737 blk.data = DW_BLOCK (attr)->data + offset;
12738 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
12739 if ((fnp->voffset % cu->header.addr_size) != 0)
12740 dwarf2_complex_location_expr_complaint ();
12741 else
12742 fnp->voffset /= cu->header.addr_size;
12743 fnp->voffset += 2;
12744 }
12745 else
12746 dwarf2_complex_location_expr_complaint ();
12747
12748 if (!fnp->fcontext)
12749 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
12750 }
12751 else if (attr_form_is_section_offset (attr))
12752 {
12753 dwarf2_complex_location_expr_complaint ();
12754 }
12755 else
12756 {
12757 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
12758 fieldname);
12759 }
12760 }
12761 else
12762 {
12763 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12764 if (attr && DW_UNSND (attr))
12765 {
12766 /* GCC does this, as of 2008-08-25; PR debug/37237. */
12767 complaint (&symfile_complaints,
12768 _("Member function \"%s\" (offset %d) is virtual "
12769 "but the vtable offset is not specified"),
12770 fieldname, die->offset.sect_off);
12771 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12772 TYPE_CPLUS_DYNAMIC (type) = 1;
12773 }
12774 }
12775 }
12776
12777 /* Create the vector of member function fields, and attach it to the type. */
12778
12779 static void
12780 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
12781 struct dwarf2_cu *cu)
12782 {
12783 struct fnfieldlist *flp;
12784 int i;
12785
12786 if (cu->language == language_ada)
12787 error (_("unexpected member functions in Ada type"));
12788
12789 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12790 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
12791 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
12792
12793 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
12794 {
12795 struct nextfnfield *nfp = flp->head;
12796 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
12797 int k;
12798
12799 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
12800 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
12801 fn_flp->fn_fields = (struct fn_field *)
12802 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
12803 for (k = flp->length; (k--, nfp); nfp = nfp->next)
12804 fn_flp->fn_fields[k] = nfp->fnfield;
12805 }
12806
12807 TYPE_NFN_FIELDS (type) = fip->nfnfields;
12808 }
12809
12810 /* Returns non-zero if NAME is the name of a vtable member in CU's
12811 language, zero otherwise. */
12812 static int
12813 is_vtable_name (const char *name, struct dwarf2_cu *cu)
12814 {
12815 static const char vptr[] = "_vptr";
12816 static const char vtable[] = "vtable";
12817
12818 /* Look for the C++ and Java forms of the vtable. */
12819 if ((cu->language == language_java
12820 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
12821 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
12822 && is_cplus_marker (name[sizeof (vptr) - 1])))
12823 return 1;
12824
12825 return 0;
12826 }
12827
12828 /* GCC outputs unnamed structures that are really pointers to member
12829 functions, with the ABI-specified layout. If TYPE describes
12830 such a structure, smash it into a member function type.
12831
12832 GCC shouldn't do this; it should just output pointer to member DIEs.
12833 This is GCC PR debug/28767. */
12834
12835 static void
12836 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
12837 {
12838 struct type *pfn_type, *domain_type, *new_type;
12839
12840 /* Check for a structure with no name and two children. */
12841 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
12842 return;
12843
12844 /* Check for __pfn and __delta members. */
12845 if (TYPE_FIELD_NAME (type, 0) == NULL
12846 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
12847 || TYPE_FIELD_NAME (type, 1) == NULL
12848 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
12849 return;
12850
12851 /* Find the type of the method. */
12852 pfn_type = TYPE_FIELD_TYPE (type, 0);
12853 if (pfn_type == NULL
12854 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
12855 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
12856 return;
12857
12858 /* Look for the "this" argument. */
12859 pfn_type = TYPE_TARGET_TYPE (pfn_type);
12860 if (TYPE_NFIELDS (pfn_type) == 0
12861 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
12862 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
12863 return;
12864
12865 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
12866 new_type = alloc_type (objfile);
12867 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
12868 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
12869 TYPE_VARARGS (pfn_type));
12870 smash_to_methodptr_type (type, new_type);
12871 }
12872
12873 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
12874 (icc). */
12875
12876 static int
12877 producer_is_icc (struct dwarf2_cu *cu)
12878 {
12879 if (!cu->checked_producer)
12880 check_producer (cu);
12881
12882 return cu->producer_is_icc;
12883 }
12884
12885 /* Called when we find the DIE that starts a structure or union scope
12886 (definition) to create a type for the structure or union. Fill in
12887 the type's name and general properties; the members will not be
12888 processed until process_structure_scope. A symbol table entry for
12889 the type will also not be done until process_structure_scope (assuming
12890 the type has a name).
12891
12892 NOTE: we need to call these functions regardless of whether or not the
12893 DIE has a DW_AT_name attribute, since it might be an anonymous
12894 structure or union. This gets the type entered into our set of
12895 user defined types. */
12896
12897 static struct type *
12898 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
12899 {
12900 struct objfile *objfile = cu->objfile;
12901 struct type *type;
12902 struct attribute *attr;
12903 const char *name;
12904
12905 /* If the definition of this type lives in .debug_types, read that type.
12906 Don't follow DW_AT_specification though, that will take us back up
12907 the chain and we want to go down. */
12908 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
12909 if (attr)
12910 {
12911 type = get_DW_AT_signature_type (die, attr, cu);
12912
12913 /* The type's CU may not be the same as CU.
12914 Ensure TYPE is recorded with CU in die_type_hash. */
12915 return set_die_type (die, type, cu);
12916 }
12917
12918 type = alloc_type (objfile);
12919 INIT_CPLUS_SPECIFIC (type);
12920
12921 name = dwarf2_name (die, cu);
12922 if (name != NULL)
12923 {
12924 if (cu->language == language_cplus
12925 || cu->language == language_java)
12926 {
12927 const char *full_name = dwarf2_full_name (name, die, cu);
12928
12929 /* dwarf2_full_name might have already finished building the DIE's
12930 type. If so, there is no need to continue. */
12931 if (get_die_type (die, cu) != NULL)
12932 return get_die_type (die, cu);
12933
12934 TYPE_TAG_NAME (type) = full_name;
12935 if (die->tag == DW_TAG_structure_type
12936 || die->tag == DW_TAG_class_type)
12937 TYPE_NAME (type) = TYPE_TAG_NAME (type);
12938 }
12939 else
12940 {
12941 /* The name is already allocated along with this objfile, so
12942 we don't need to duplicate it for the type. */
12943 TYPE_TAG_NAME (type) = name;
12944 if (die->tag == DW_TAG_class_type)
12945 TYPE_NAME (type) = TYPE_TAG_NAME (type);
12946 }
12947 }
12948
12949 if (die->tag == DW_TAG_structure_type)
12950 {
12951 TYPE_CODE (type) = TYPE_CODE_STRUCT;
12952 }
12953 else if (die->tag == DW_TAG_union_type)
12954 {
12955 TYPE_CODE (type) = TYPE_CODE_UNION;
12956 }
12957 else
12958 {
12959 TYPE_CODE (type) = TYPE_CODE_CLASS;
12960 }
12961
12962 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
12963 TYPE_DECLARED_CLASS (type) = 1;
12964
12965 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12966 if (attr)
12967 {
12968 TYPE_LENGTH (type) = DW_UNSND (attr);
12969 }
12970 else
12971 {
12972 TYPE_LENGTH (type) = 0;
12973 }
12974
12975 if (producer_is_icc (cu))
12976 {
12977 /* ICC does not output the required DW_AT_declaration
12978 on incomplete types, but gives them a size of zero. */
12979 }
12980 else
12981 TYPE_STUB_SUPPORTED (type) = 1;
12982
12983 if (die_is_declaration (die, cu))
12984 TYPE_STUB (type) = 1;
12985 else if (attr == NULL && die->child == NULL
12986 && producer_is_realview (cu->producer))
12987 /* RealView does not output the required DW_AT_declaration
12988 on incomplete types. */
12989 TYPE_STUB (type) = 1;
12990
12991 /* We need to add the type field to the die immediately so we don't
12992 infinitely recurse when dealing with pointers to the structure
12993 type within the structure itself. */
12994 set_die_type (die, type, cu);
12995
12996 /* set_die_type should be already done. */
12997 set_descriptive_type (type, die, cu);
12998
12999 return type;
13000 }
13001
13002 /* Finish creating a structure or union type, including filling in
13003 its members and creating a symbol for it. */
13004
13005 static void
13006 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
13007 {
13008 struct objfile *objfile = cu->objfile;
13009 struct die_info *child_die = die->child;
13010 struct type *type;
13011
13012 type = get_die_type (die, cu);
13013 if (type == NULL)
13014 type = read_structure_type (die, cu);
13015
13016 if (die->child != NULL && ! die_is_declaration (die, cu))
13017 {
13018 struct field_info fi;
13019 struct die_info *child_die;
13020 VEC (symbolp) *template_args = NULL;
13021 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
13022
13023 memset (&fi, 0, sizeof (struct field_info));
13024
13025 child_die = die->child;
13026
13027 while (child_die && child_die->tag)
13028 {
13029 if (child_die->tag == DW_TAG_member
13030 || child_die->tag == DW_TAG_variable)
13031 {
13032 /* NOTE: carlton/2002-11-05: A C++ static data member
13033 should be a DW_TAG_member that is a declaration, but
13034 all versions of G++ as of this writing (so through at
13035 least 3.2.1) incorrectly generate DW_TAG_variable
13036 tags for them instead. */
13037 dwarf2_add_field (&fi, child_die, cu);
13038 }
13039 else if (child_die->tag == DW_TAG_subprogram)
13040 {
13041 /* C++ member function. */
13042 dwarf2_add_member_fn (&fi, child_die, type, cu);
13043 }
13044 else if (child_die->tag == DW_TAG_inheritance)
13045 {
13046 /* C++ base class field. */
13047 dwarf2_add_field (&fi, child_die, cu);
13048 }
13049 else if (child_die->tag == DW_TAG_typedef)
13050 dwarf2_add_typedef (&fi, child_die, cu);
13051 else if (child_die->tag == DW_TAG_template_type_param
13052 || child_die->tag == DW_TAG_template_value_param)
13053 {
13054 struct symbol *arg = new_symbol (child_die, NULL, cu);
13055
13056 if (arg != NULL)
13057 VEC_safe_push (symbolp, template_args, arg);
13058 }
13059
13060 child_die = sibling_die (child_die);
13061 }
13062
13063 /* Attach template arguments to type. */
13064 if (! VEC_empty (symbolp, template_args))
13065 {
13066 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13067 TYPE_N_TEMPLATE_ARGUMENTS (type)
13068 = VEC_length (symbolp, template_args);
13069 TYPE_TEMPLATE_ARGUMENTS (type)
13070 = obstack_alloc (&objfile->objfile_obstack,
13071 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13072 * sizeof (struct symbol *)));
13073 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
13074 VEC_address (symbolp, template_args),
13075 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13076 * sizeof (struct symbol *)));
13077 VEC_free (symbolp, template_args);
13078 }
13079
13080 /* Attach fields and member functions to the type. */
13081 if (fi.nfields)
13082 dwarf2_attach_fields_to_type (&fi, type, cu);
13083 if (fi.nfnfields)
13084 {
13085 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
13086
13087 /* Get the type which refers to the base class (possibly this
13088 class itself) which contains the vtable pointer for the current
13089 class from the DW_AT_containing_type attribute. This use of
13090 DW_AT_containing_type is a GNU extension. */
13091
13092 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
13093 {
13094 struct type *t = die_containing_type (die, cu);
13095
13096 TYPE_VPTR_BASETYPE (type) = t;
13097 if (type == t)
13098 {
13099 int i;
13100
13101 /* Our own class provides vtbl ptr. */
13102 for (i = TYPE_NFIELDS (t) - 1;
13103 i >= TYPE_N_BASECLASSES (t);
13104 --i)
13105 {
13106 const char *fieldname = TYPE_FIELD_NAME (t, i);
13107
13108 if (is_vtable_name (fieldname, cu))
13109 {
13110 TYPE_VPTR_FIELDNO (type) = i;
13111 break;
13112 }
13113 }
13114
13115 /* Complain if virtual function table field not found. */
13116 if (i < TYPE_N_BASECLASSES (t))
13117 complaint (&symfile_complaints,
13118 _("virtual function table pointer "
13119 "not found when defining class '%s'"),
13120 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
13121 "");
13122 }
13123 else
13124 {
13125 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
13126 }
13127 }
13128 else if (cu->producer
13129 && strncmp (cu->producer,
13130 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
13131 {
13132 /* The IBM XLC compiler does not provide direct indication
13133 of the containing type, but the vtable pointer is
13134 always named __vfp. */
13135
13136 int i;
13137
13138 for (i = TYPE_NFIELDS (type) - 1;
13139 i >= TYPE_N_BASECLASSES (type);
13140 --i)
13141 {
13142 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13143 {
13144 TYPE_VPTR_FIELDNO (type) = i;
13145 TYPE_VPTR_BASETYPE (type) = type;
13146 break;
13147 }
13148 }
13149 }
13150 }
13151
13152 /* Copy fi.typedef_field_list linked list elements content into the
13153 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13154 if (fi.typedef_field_list)
13155 {
13156 int i = fi.typedef_field_list_count;
13157
13158 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13159 TYPE_TYPEDEF_FIELD_ARRAY (type)
13160 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
13161 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13162
13163 /* Reverse the list order to keep the debug info elements order. */
13164 while (--i >= 0)
13165 {
13166 struct typedef_field *dest, *src;
13167
13168 dest = &TYPE_TYPEDEF_FIELD (type, i);
13169 src = &fi.typedef_field_list->field;
13170 fi.typedef_field_list = fi.typedef_field_list->next;
13171 *dest = *src;
13172 }
13173 }
13174
13175 do_cleanups (back_to);
13176
13177 if (HAVE_CPLUS_STRUCT (type))
13178 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
13179 }
13180
13181 quirk_gcc_member_function_pointer (type, objfile);
13182
13183 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13184 snapshots) has been known to create a die giving a declaration
13185 for a class that has, as a child, a die giving a definition for a
13186 nested class. So we have to process our children even if the
13187 current die is a declaration. Normally, of course, a declaration
13188 won't have any children at all. */
13189
13190 while (child_die != NULL && child_die->tag)
13191 {
13192 if (child_die->tag == DW_TAG_member
13193 || child_die->tag == DW_TAG_variable
13194 || child_die->tag == DW_TAG_inheritance
13195 || child_die->tag == DW_TAG_template_value_param
13196 || child_die->tag == DW_TAG_template_type_param)
13197 {
13198 /* Do nothing. */
13199 }
13200 else
13201 process_die (child_die, cu);
13202
13203 child_die = sibling_die (child_die);
13204 }
13205
13206 /* Do not consider external references. According to the DWARF standard,
13207 these DIEs are identified by the fact that they have no byte_size
13208 attribute, and a declaration attribute. */
13209 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13210 || !die_is_declaration (die, cu))
13211 new_symbol (die, type, cu);
13212 }
13213
13214 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
13215 update TYPE using some information only available in DIE's children. */
13216
13217 static void
13218 update_enumeration_type_from_children (struct die_info *die,
13219 struct type *type,
13220 struct dwarf2_cu *cu)
13221 {
13222 struct obstack obstack;
13223 struct die_info *child_die = die->child;
13224 int unsigned_enum = 1;
13225 int flag_enum = 1;
13226 ULONGEST mask = 0;
13227 struct cleanup *old_chain;
13228
13229 obstack_init (&obstack);
13230 old_chain = make_cleanup_obstack_free (&obstack);
13231
13232 while (child_die != NULL && child_die->tag)
13233 {
13234 struct attribute *attr;
13235 LONGEST value;
13236 const gdb_byte *bytes;
13237 struct dwarf2_locexpr_baton *baton;
13238 const char *name;
13239 if (child_die->tag != DW_TAG_enumerator)
13240 continue;
13241
13242 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
13243 if (attr == NULL)
13244 continue;
13245
13246 name = dwarf2_name (child_die, cu);
13247 if (name == NULL)
13248 name = "<anonymous enumerator>";
13249
13250 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
13251 &value, &bytes, &baton);
13252 if (value < 0)
13253 {
13254 unsigned_enum = 0;
13255 flag_enum = 0;
13256 }
13257 else if ((mask & value) != 0)
13258 flag_enum = 0;
13259 else
13260 mask |= value;
13261
13262 /* If we already know that the enum type is neither unsigned, nor
13263 a flag type, no need to look at the rest of the enumerates. */
13264 if (!unsigned_enum && !flag_enum)
13265 break;
13266 child_die = sibling_die (child_die);
13267 }
13268
13269 if (unsigned_enum)
13270 TYPE_UNSIGNED (type) = 1;
13271 if (flag_enum)
13272 TYPE_FLAG_ENUM (type) = 1;
13273
13274 do_cleanups (old_chain);
13275 }
13276
13277 /* Given a DW_AT_enumeration_type die, set its type. We do not
13278 complete the type's fields yet, or create any symbols. */
13279
13280 static struct type *
13281 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
13282 {
13283 struct objfile *objfile = cu->objfile;
13284 struct type *type;
13285 struct attribute *attr;
13286 const char *name;
13287
13288 /* If the definition of this type lives in .debug_types, read that type.
13289 Don't follow DW_AT_specification though, that will take us back up
13290 the chain and we want to go down. */
13291 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13292 if (attr)
13293 {
13294 type = get_DW_AT_signature_type (die, attr, cu);
13295
13296 /* The type's CU may not be the same as CU.
13297 Ensure TYPE is recorded with CU in die_type_hash. */
13298 return set_die_type (die, type, cu);
13299 }
13300
13301 type = alloc_type (objfile);
13302
13303 TYPE_CODE (type) = TYPE_CODE_ENUM;
13304 name = dwarf2_full_name (NULL, die, cu);
13305 if (name != NULL)
13306 TYPE_TAG_NAME (type) = name;
13307
13308 attr = dwarf2_attr (die, DW_AT_type, cu);
13309 if (attr != NULL)
13310 {
13311 struct type *underlying_type = die_type (die, cu);
13312
13313 TYPE_TARGET_TYPE (type) = underlying_type;
13314 }
13315
13316 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13317 if (attr)
13318 {
13319 TYPE_LENGTH (type) = DW_UNSND (attr);
13320 }
13321 else
13322 {
13323 TYPE_LENGTH (type) = 0;
13324 }
13325
13326 /* The enumeration DIE can be incomplete. In Ada, any type can be
13327 declared as private in the package spec, and then defined only
13328 inside the package body. Such types are known as Taft Amendment
13329 Types. When another package uses such a type, an incomplete DIE
13330 may be generated by the compiler. */
13331 if (die_is_declaration (die, cu))
13332 TYPE_STUB (type) = 1;
13333
13334 /* Finish the creation of this type by using the enum's children.
13335 We must call this even when the underlying type has been provided
13336 so that we can determine if we're looking at a "flag" enum. */
13337 update_enumeration_type_from_children (die, type, cu);
13338
13339 /* If this type has an underlying type that is not a stub, then we
13340 may use its attributes. We always use the "unsigned" attribute
13341 in this situation, because ordinarily we guess whether the type
13342 is unsigned -- but the guess can be wrong and the underlying type
13343 can tell us the reality. However, we defer to a local size
13344 attribute if one exists, because this lets the compiler override
13345 the underlying type if needed. */
13346 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
13347 {
13348 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
13349 if (TYPE_LENGTH (type) == 0)
13350 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
13351 }
13352
13353 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
13354
13355 return set_die_type (die, type, cu);
13356 }
13357
13358 /* Given a pointer to a die which begins an enumeration, process all
13359 the dies that define the members of the enumeration, and create the
13360 symbol for the enumeration type.
13361
13362 NOTE: We reverse the order of the element list. */
13363
13364 static void
13365 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
13366 {
13367 struct type *this_type;
13368
13369 this_type = get_die_type (die, cu);
13370 if (this_type == NULL)
13371 this_type = read_enumeration_type (die, cu);
13372
13373 if (die->child != NULL)
13374 {
13375 struct die_info *child_die;
13376 struct symbol *sym;
13377 struct field *fields = NULL;
13378 int num_fields = 0;
13379 const char *name;
13380
13381 child_die = die->child;
13382 while (child_die && child_die->tag)
13383 {
13384 if (child_die->tag != DW_TAG_enumerator)
13385 {
13386 process_die (child_die, cu);
13387 }
13388 else
13389 {
13390 name = dwarf2_name (child_die, cu);
13391 if (name)
13392 {
13393 sym = new_symbol (child_die, this_type, cu);
13394
13395 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
13396 {
13397 fields = (struct field *)
13398 xrealloc (fields,
13399 (num_fields + DW_FIELD_ALLOC_CHUNK)
13400 * sizeof (struct field));
13401 }
13402
13403 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
13404 FIELD_TYPE (fields[num_fields]) = NULL;
13405 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
13406 FIELD_BITSIZE (fields[num_fields]) = 0;
13407
13408 num_fields++;
13409 }
13410 }
13411
13412 child_die = sibling_die (child_die);
13413 }
13414
13415 if (num_fields)
13416 {
13417 TYPE_NFIELDS (this_type) = num_fields;
13418 TYPE_FIELDS (this_type) = (struct field *)
13419 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
13420 memcpy (TYPE_FIELDS (this_type), fields,
13421 sizeof (struct field) * num_fields);
13422 xfree (fields);
13423 }
13424 }
13425
13426 /* If we are reading an enum from a .debug_types unit, and the enum
13427 is a declaration, and the enum is not the signatured type in the
13428 unit, then we do not want to add a symbol for it. Adding a
13429 symbol would in some cases obscure the true definition of the
13430 enum, giving users an incomplete type when the definition is
13431 actually available. Note that we do not want to do this for all
13432 enums which are just declarations, because C++0x allows forward
13433 enum declarations. */
13434 if (cu->per_cu->is_debug_types
13435 && die_is_declaration (die, cu))
13436 {
13437 struct signatured_type *sig_type;
13438
13439 sig_type = (struct signatured_type *) cu->per_cu;
13440 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
13441 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
13442 return;
13443 }
13444
13445 new_symbol (die, this_type, cu);
13446 }
13447
13448 /* Extract all information from a DW_TAG_array_type DIE and put it in
13449 the DIE's type field. For now, this only handles one dimensional
13450 arrays. */
13451
13452 static struct type *
13453 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
13454 {
13455 struct objfile *objfile = cu->objfile;
13456 struct die_info *child_die;
13457 struct type *type;
13458 struct type *element_type, *range_type, *index_type;
13459 struct type **range_types = NULL;
13460 struct attribute *attr;
13461 int ndim = 0;
13462 struct cleanup *back_to;
13463 const char *name;
13464 unsigned int bit_stride = 0;
13465
13466 element_type = die_type (die, cu);
13467
13468 /* The die_type call above may have already set the type for this DIE. */
13469 type = get_die_type (die, cu);
13470 if (type)
13471 return type;
13472
13473 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
13474 if (attr != NULL)
13475 bit_stride = DW_UNSND (attr) * 8;
13476
13477 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
13478 if (attr != NULL)
13479 bit_stride = DW_UNSND (attr);
13480
13481 /* Irix 6.2 native cc creates array types without children for
13482 arrays with unspecified length. */
13483 if (die->child == NULL)
13484 {
13485 index_type = objfile_type (objfile)->builtin_int;
13486 range_type = create_static_range_type (NULL, index_type, 0, -1);
13487 type = create_array_type_with_stride (NULL, element_type, range_type,
13488 bit_stride);
13489 return set_die_type (die, type, cu);
13490 }
13491
13492 back_to = make_cleanup (null_cleanup, NULL);
13493 child_die = die->child;
13494 while (child_die && child_die->tag)
13495 {
13496 if (child_die->tag == DW_TAG_subrange_type)
13497 {
13498 struct type *child_type = read_type_die (child_die, cu);
13499
13500 if (child_type != NULL)
13501 {
13502 /* The range type was succesfully read. Save it for the
13503 array type creation. */
13504 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
13505 {
13506 range_types = (struct type **)
13507 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
13508 * sizeof (struct type *));
13509 if (ndim == 0)
13510 make_cleanup (free_current_contents, &range_types);
13511 }
13512 range_types[ndim++] = child_type;
13513 }
13514 }
13515 child_die = sibling_die (child_die);
13516 }
13517
13518 /* Dwarf2 dimensions are output from left to right, create the
13519 necessary array types in backwards order. */
13520
13521 type = element_type;
13522
13523 if (read_array_order (die, cu) == DW_ORD_col_major)
13524 {
13525 int i = 0;
13526
13527 while (i < ndim)
13528 type = create_array_type_with_stride (NULL, type, range_types[i++],
13529 bit_stride);
13530 }
13531 else
13532 {
13533 while (ndim-- > 0)
13534 type = create_array_type_with_stride (NULL, type, range_types[ndim],
13535 bit_stride);
13536 }
13537
13538 /* Understand Dwarf2 support for vector types (like they occur on
13539 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
13540 array type. This is not part of the Dwarf2/3 standard yet, but a
13541 custom vendor extension. The main difference between a regular
13542 array and the vector variant is that vectors are passed by value
13543 to functions. */
13544 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
13545 if (attr)
13546 make_vector_type (type);
13547
13548 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
13549 implementation may choose to implement triple vectors using this
13550 attribute. */
13551 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13552 if (attr)
13553 {
13554 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
13555 TYPE_LENGTH (type) = DW_UNSND (attr);
13556 else
13557 complaint (&symfile_complaints,
13558 _("DW_AT_byte_size for array type smaller "
13559 "than the total size of elements"));
13560 }
13561
13562 name = dwarf2_name (die, cu);
13563 if (name)
13564 TYPE_NAME (type) = name;
13565
13566 /* Install the type in the die. */
13567 set_die_type (die, type, cu);
13568
13569 /* set_die_type should be already done. */
13570 set_descriptive_type (type, die, cu);
13571
13572 do_cleanups (back_to);
13573
13574 return type;
13575 }
13576
13577 static enum dwarf_array_dim_ordering
13578 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
13579 {
13580 struct attribute *attr;
13581
13582 attr = dwarf2_attr (die, DW_AT_ordering, cu);
13583
13584 if (attr) return DW_SND (attr);
13585
13586 /* GNU F77 is a special case, as at 08/2004 array type info is the
13587 opposite order to the dwarf2 specification, but data is still
13588 laid out as per normal fortran.
13589
13590 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
13591 version checking. */
13592
13593 if (cu->language == language_fortran
13594 && cu->producer && strstr (cu->producer, "GNU F77"))
13595 {
13596 return DW_ORD_row_major;
13597 }
13598
13599 switch (cu->language_defn->la_array_ordering)
13600 {
13601 case array_column_major:
13602 return DW_ORD_col_major;
13603 case array_row_major:
13604 default:
13605 return DW_ORD_row_major;
13606 };
13607 }
13608
13609 /* Extract all information from a DW_TAG_set_type DIE and put it in
13610 the DIE's type field. */
13611
13612 static struct type *
13613 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
13614 {
13615 struct type *domain_type, *set_type;
13616 struct attribute *attr;
13617
13618 domain_type = die_type (die, cu);
13619
13620 /* The die_type call above may have already set the type for this DIE. */
13621 set_type = get_die_type (die, cu);
13622 if (set_type)
13623 return set_type;
13624
13625 set_type = create_set_type (NULL, domain_type);
13626
13627 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13628 if (attr)
13629 TYPE_LENGTH (set_type) = DW_UNSND (attr);
13630
13631 return set_die_type (die, set_type, cu);
13632 }
13633
13634 /* A helper for read_common_block that creates a locexpr baton.
13635 SYM is the symbol which we are marking as computed.
13636 COMMON_DIE is the DIE for the common block.
13637 COMMON_LOC is the location expression attribute for the common
13638 block itself.
13639 MEMBER_LOC is the location expression attribute for the particular
13640 member of the common block that we are processing.
13641 CU is the CU from which the above come. */
13642
13643 static void
13644 mark_common_block_symbol_computed (struct symbol *sym,
13645 struct die_info *common_die,
13646 struct attribute *common_loc,
13647 struct attribute *member_loc,
13648 struct dwarf2_cu *cu)
13649 {
13650 struct objfile *objfile = dwarf2_per_objfile->objfile;
13651 struct dwarf2_locexpr_baton *baton;
13652 gdb_byte *ptr;
13653 unsigned int cu_off;
13654 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
13655 LONGEST offset = 0;
13656
13657 gdb_assert (common_loc && member_loc);
13658 gdb_assert (attr_form_is_block (common_loc));
13659 gdb_assert (attr_form_is_block (member_loc)
13660 || attr_form_is_constant (member_loc));
13661
13662 baton = obstack_alloc (&objfile->objfile_obstack,
13663 sizeof (struct dwarf2_locexpr_baton));
13664 baton->per_cu = cu->per_cu;
13665 gdb_assert (baton->per_cu);
13666
13667 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
13668
13669 if (attr_form_is_constant (member_loc))
13670 {
13671 offset = dwarf2_get_attr_constant_value (member_loc, 0);
13672 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
13673 }
13674 else
13675 baton->size += DW_BLOCK (member_loc)->size;
13676
13677 ptr = obstack_alloc (&objfile->objfile_obstack, baton->size);
13678 baton->data = ptr;
13679
13680 *ptr++ = DW_OP_call4;
13681 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
13682 store_unsigned_integer (ptr, 4, byte_order, cu_off);
13683 ptr += 4;
13684
13685 if (attr_form_is_constant (member_loc))
13686 {
13687 *ptr++ = DW_OP_addr;
13688 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
13689 ptr += cu->header.addr_size;
13690 }
13691 else
13692 {
13693 /* We have to copy the data here, because DW_OP_call4 will only
13694 use a DW_AT_location attribute. */
13695 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
13696 ptr += DW_BLOCK (member_loc)->size;
13697 }
13698
13699 *ptr++ = DW_OP_plus;
13700 gdb_assert (ptr - baton->data == baton->size);
13701
13702 SYMBOL_LOCATION_BATON (sym) = baton;
13703 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
13704 }
13705
13706 /* Create appropriate locally-scoped variables for all the
13707 DW_TAG_common_block entries. Also create a struct common_block
13708 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
13709 is used to sepate the common blocks name namespace from regular
13710 variable names. */
13711
13712 static void
13713 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
13714 {
13715 struct attribute *attr;
13716
13717 attr = dwarf2_attr (die, DW_AT_location, cu);
13718 if (attr)
13719 {
13720 /* Support the .debug_loc offsets. */
13721 if (attr_form_is_block (attr))
13722 {
13723 /* Ok. */
13724 }
13725 else if (attr_form_is_section_offset (attr))
13726 {
13727 dwarf2_complex_location_expr_complaint ();
13728 attr = NULL;
13729 }
13730 else
13731 {
13732 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
13733 "common block member");
13734 attr = NULL;
13735 }
13736 }
13737
13738 if (die->child != NULL)
13739 {
13740 struct objfile *objfile = cu->objfile;
13741 struct die_info *child_die;
13742 size_t n_entries = 0, size;
13743 struct common_block *common_block;
13744 struct symbol *sym;
13745
13746 for (child_die = die->child;
13747 child_die && child_die->tag;
13748 child_die = sibling_die (child_die))
13749 ++n_entries;
13750
13751 size = (sizeof (struct common_block)
13752 + (n_entries - 1) * sizeof (struct symbol *));
13753 common_block = obstack_alloc (&objfile->objfile_obstack, size);
13754 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
13755 common_block->n_entries = 0;
13756
13757 for (child_die = die->child;
13758 child_die && child_die->tag;
13759 child_die = sibling_die (child_die))
13760 {
13761 /* Create the symbol in the DW_TAG_common_block block in the current
13762 symbol scope. */
13763 sym = new_symbol (child_die, NULL, cu);
13764 if (sym != NULL)
13765 {
13766 struct attribute *member_loc;
13767
13768 common_block->contents[common_block->n_entries++] = sym;
13769
13770 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
13771 cu);
13772 if (member_loc)
13773 {
13774 /* GDB has handled this for a long time, but it is
13775 not specified by DWARF. It seems to have been
13776 emitted by gfortran at least as recently as:
13777 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
13778 complaint (&symfile_complaints,
13779 _("Variable in common block has "
13780 "DW_AT_data_member_location "
13781 "- DIE at 0x%x [in module %s]"),
13782 child_die->offset.sect_off,
13783 objfile_name (cu->objfile));
13784
13785 if (attr_form_is_section_offset (member_loc))
13786 dwarf2_complex_location_expr_complaint ();
13787 else if (attr_form_is_constant (member_loc)
13788 || attr_form_is_block (member_loc))
13789 {
13790 if (attr)
13791 mark_common_block_symbol_computed (sym, die, attr,
13792 member_loc, cu);
13793 }
13794 else
13795 dwarf2_complex_location_expr_complaint ();
13796 }
13797 }
13798 }
13799
13800 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
13801 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
13802 }
13803 }
13804
13805 /* Create a type for a C++ namespace. */
13806
13807 static struct type *
13808 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
13809 {
13810 struct objfile *objfile = cu->objfile;
13811 const char *previous_prefix, *name;
13812 int is_anonymous;
13813 struct type *type;
13814
13815 /* For extensions, reuse the type of the original namespace. */
13816 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
13817 {
13818 struct die_info *ext_die;
13819 struct dwarf2_cu *ext_cu = cu;
13820
13821 ext_die = dwarf2_extension (die, &ext_cu);
13822 type = read_type_die (ext_die, ext_cu);
13823
13824 /* EXT_CU may not be the same as CU.
13825 Ensure TYPE is recorded with CU in die_type_hash. */
13826 return set_die_type (die, type, cu);
13827 }
13828
13829 name = namespace_name (die, &is_anonymous, cu);
13830
13831 /* Now build the name of the current namespace. */
13832
13833 previous_prefix = determine_prefix (die, cu);
13834 if (previous_prefix[0] != '\0')
13835 name = typename_concat (&objfile->objfile_obstack,
13836 previous_prefix, name, 0, cu);
13837
13838 /* Create the type. */
13839 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
13840 objfile);
13841 TYPE_NAME (type) = name;
13842 TYPE_TAG_NAME (type) = TYPE_NAME (type);
13843
13844 return set_die_type (die, type, cu);
13845 }
13846
13847 /* Read a C++ namespace. */
13848
13849 static void
13850 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
13851 {
13852 struct objfile *objfile = cu->objfile;
13853 int is_anonymous;
13854
13855 /* Add a symbol associated to this if we haven't seen the namespace
13856 before. Also, add a using directive if it's an anonymous
13857 namespace. */
13858
13859 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
13860 {
13861 struct type *type;
13862
13863 type = read_type_die (die, cu);
13864 new_symbol (die, type, cu);
13865
13866 namespace_name (die, &is_anonymous, cu);
13867 if (is_anonymous)
13868 {
13869 const char *previous_prefix = determine_prefix (die, cu);
13870
13871 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
13872 NULL, NULL, 0, &objfile->objfile_obstack);
13873 }
13874 }
13875
13876 if (die->child != NULL)
13877 {
13878 struct die_info *child_die = die->child;
13879
13880 while (child_die && child_die->tag)
13881 {
13882 process_die (child_die, cu);
13883 child_die = sibling_die (child_die);
13884 }
13885 }
13886 }
13887
13888 /* Read a Fortran module as type. This DIE can be only a declaration used for
13889 imported module. Still we need that type as local Fortran "use ... only"
13890 declaration imports depend on the created type in determine_prefix. */
13891
13892 static struct type *
13893 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
13894 {
13895 struct objfile *objfile = cu->objfile;
13896 const char *module_name;
13897 struct type *type;
13898
13899 module_name = dwarf2_name (die, cu);
13900 if (!module_name)
13901 complaint (&symfile_complaints,
13902 _("DW_TAG_module has no name, offset 0x%x"),
13903 die->offset.sect_off);
13904 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
13905
13906 /* determine_prefix uses TYPE_TAG_NAME. */
13907 TYPE_TAG_NAME (type) = TYPE_NAME (type);
13908
13909 return set_die_type (die, type, cu);
13910 }
13911
13912 /* Read a Fortran module. */
13913
13914 static void
13915 read_module (struct die_info *die, struct dwarf2_cu *cu)
13916 {
13917 struct die_info *child_die = die->child;
13918 struct type *type;
13919
13920 type = read_type_die (die, cu);
13921 new_symbol (die, type, cu);
13922
13923 while (child_die && child_die->tag)
13924 {
13925 process_die (child_die, cu);
13926 child_die = sibling_die (child_die);
13927 }
13928 }
13929
13930 /* Return the name of the namespace represented by DIE. Set
13931 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
13932 namespace. */
13933
13934 static const char *
13935 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
13936 {
13937 struct die_info *current_die;
13938 const char *name = NULL;
13939
13940 /* Loop through the extensions until we find a name. */
13941
13942 for (current_die = die;
13943 current_die != NULL;
13944 current_die = dwarf2_extension (die, &cu))
13945 {
13946 name = dwarf2_name (current_die, cu);
13947 if (name != NULL)
13948 break;
13949 }
13950
13951 /* Is it an anonymous namespace? */
13952
13953 *is_anonymous = (name == NULL);
13954 if (*is_anonymous)
13955 name = CP_ANONYMOUS_NAMESPACE_STR;
13956
13957 return name;
13958 }
13959
13960 /* Extract all information from a DW_TAG_pointer_type DIE and add to
13961 the user defined type vector. */
13962
13963 static struct type *
13964 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
13965 {
13966 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
13967 struct comp_unit_head *cu_header = &cu->header;
13968 struct type *type;
13969 struct attribute *attr_byte_size;
13970 struct attribute *attr_address_class;
13971 int byte_size, addr_class;
13972 struct type *target_type;
13973
13974 target_type = die_type (die, cu);
13975
13976 /* The die_type call above may have already set the type for this DIE. */
13977 type = get_die_type (die, cu);
13978 if (type)
13979 return type;
13980
13981 type = lookup_pointer_type (target_type);
13982
13983 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
13984 if (attr_byte_size)
13985 byte_size = DW_UNSND (attr_byte_size);
13986 else
13987 byte_size = cu_header->addr_size;
13988
13989 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
13990 if (attr_address_class)
13991 addr_class = DW_UNSND (attr_address_class);
13992 else
13993 addr_class = DW_ADDR_none;
13994
13995 /* If the pointer size or address class is different than the
13996 default, create a type variant marked as such and set the
13997 length accordingly. */
13998 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
13999 {
14000 if (gdbarch_address_class_type_flags_p (gdbarch))
14001 {
14002 int type_flags;
14003
14004 type_flags = gdbarch_address_class_type_flags
14005 (gdbarch, byte_size, addr_class);
14006 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
14007 == 0);
14008 type = make_type_with_address_space (type, type_flags);
14009 }
14010 else if (TYPE_LENGTH (type) != byte_size)
14011 {
14012 complaint (&symfile_complaints,
14013 _("invalid pointer size %d"), byte_size);
14014 }
14015 else
14016 {
14017 /* Should we also complain about unhandled address classes? */
14018 }
14019 }
14020
14021 TYPE_LENGTH (type) = byte_size;
14022 return set_die_type (die, type, cu);
14023 }
14024
14025 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
14026 the user defined type vector. */
14027
14028 static struct type *
14029 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
14030 {
14031 struct type *type;
14032 struct type *to_type;
14033 struct type *domain;
14034
14035 to_type = die_type (die, cu);
14036 domain = die_containing_type (die, cu);
14037
14038 /* The calls above may have already set the type for this DIE. */
14039 type = get_die_type (die, cu);
14040 if (type)
14041 return type;
14042
14043 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
14044 type = lookup_methodptr_type (to_type);
14045 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
14046 {
14047 struct type *new_type = alloc_type (cu->objfile);
14048
14049 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
14050 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
14051 TYPE_VARARGS (to_type));
14052 type = lookup_methodptr_type (new_type);
14053 }
14054 else
14055 type = lookup_memberptr_type (to_type, domain);
14056
14057 return set_die_type (die, type, cu);
14058 }
14059
14060 /* Extract all information from a DW_TAG_reference_type DIE and add to
14061 the user defined type vector. */
14062
14063 static struct type *
14064 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
14065 {
14066 struct comp_unit_head *cu_header = &cu->header;
14067 struct type *type, *target_type;
14068 struct attribute *attr;
14069
14070 target_type = die_type (die, cu);
14071
14072 /* The die_type call above may have already set the type for this DIE. */
14073 type = get_die_type (die, cu);
14074 if (type)
14075 return type;
14076
14077 type = lookup_reference_type (target_type);
14078 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14079 if (attr)
14080 {
14081 TYPE_LENGTH (type) = DW_UNSND (attr);
14082 }
14083 else
14084 {
14085 TYPE_LENGTH (type) = cu_header->addr_size;
14086 }
14087 return set_die_type (die, type, cu);
14088 }
14089
14090 static struct type *
14091 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
14092 {
14093 struct type *base_type, *cv_type;
14094
14095 base_type = die_type (die, cu);
14096
14097 /* The die_type call above may have already set the type for this DIE. */
14098 cv_type = get_die_type (die, cu);
14099 if (cv_type)
14100 return cv_type;
14101
14102 /* In case the const qualifier is applied to an array type, the element type
14103 is so qualified, not the array type (section 6.7.3 of C99). */
14104 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14105 {
14106 struct type *el_type, *inner_array;
14107
14108 base_type = copy_type (base_type);
14109 inner_array = base_type;
14110
14111 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
14112 {
14113 TYPE_TARGET_TYPE (inner_array) =
14114 copy_type (TYPE_TARGET_TYPE (inner_array));
14115 inner_array = TYPE_TARGET_TYPE (inner_array);
14116 }
14117
14118 el_type = TYPE_TARGET_TYPE (inner_array);
14119 TYPE_TARGET_TYPE (inner_array) =
14120 make_cv_type (1, TYPE_VOLATILE (el_type), el_type, NULL);
14121
14122 return set_die_type (die, base_type, cu);
14123 }
14124
14125 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
14126 return set_die_type (die, cv_type, cu);
14127 }
14128
14129 static struct type *
14130 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
14131 {
14132 struct type *base_type, *cv_type;
14133
14134 base_type = die_type (die, cu);
14135
14136 /* The die_type call above may have already set the type for this DIE. */
14137 cv_type = get_die_type (die, cu);
14138 if (cv_type)
14139 return cv_type;
14140
14141 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
14142 return set_die_type (die, cv_type, cu);
14143 }
14144
14145 /* Handle DW_TAG_restrict_type. */
14146
14147 static struct type *
14148 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
14149 {
14150 struct type *base_type, *cv_type;
14151
14152 base_type = die_type (die, cu);
14153
14154 /* The die_type call above may have already set the type for this DIE. */
14155 cv_type = get_die_type (die, cu);
14156 if (cv_type)
14157 return cv_type;
14158
14159 cv_type = make_restrict_type (base_type);
14160 return set_die_type (die, cv_type, cu);
14161 }
14162
14163 /* Extract all information from a DW_TAG_string_type DIE and add to
14164 the user defined type vector. It isn't really a user defined type,
14165 but it behaves like one, with other DIE's using an AT_user_def_type
14166 attribute to reference it. */
14167
14168 static struct type *
14169 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
14170 {
14171 struct objfile *objfile = cu->objfile;
14172 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14173 struct type *type, *range_type, *index_type, *char_type;
14174 struct attribute *attr;
14175 unsigned int length;
14176
14177 attr = dwarf2_attr (die, DW_AT_string_length, cu);
14178 if (attr)
14179 {
14180 length = DW_UNSND (attr);
14181 }
14182 else
14183 {
14184 /* Check for the DW_AT_byte_size attribute. */
14185 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14186 if (attr)
14187 {
14188 length = DW_UNSND (attr);
14189 }
14190 else
14191 {
14192 length = 1;
14193 }
14194 }
14195
14196 index_type = objfile_type (objfile)->builtin_int;
14197 range_type = create_static_range_type (NULL, index_type, 1, length);
14198 char_type = language_string_char_type (cu->language_defn, gdbarch);
14199 type = create_string_type (NULL, char_type, range_type);
14200
14201 return set_die_type (die, type, cu);
14202 }
14203
14204 /* Assuming that DIE corresponds to a function, returns nonzero
14205 if the function is prototyped. */
14206
14207 static int
14208 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
14209 {
14210 struct attribute *attr;
14211
14212 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
14213 if (attr && (DW_UNSND (attr) != 0))
14214 return 1;
14215
14216 /* The DWARF standard implies that the DW_AT_prototyped attribute
14217 is only meaninful for C, but the concept also extends to other
14218 languages that allow unprototyped functions (Eg: Objective C).
14219 For all other languages, assume that functions are always
14220 prototyped. */
14221 if (cu->language != language_c
14222 && cu->language != language_objc
14223 && cu->language != language_opencl)
14224 return 1;
14225
14226 /* RealView does not emit DW_AT_prototyped. We can not distinguish
14227 prototyped and unprototyped functions; default to prototyped,
14228 since that is more common in modern code (and RealView warns
14229 about unprototyped functions). */
14230 if (producer_is_realview (cu->producer))
14231 return 1;
14232
14233 return 0;
14234 }
14235
14236 /* Handle DIES due to C code like:
14237
14238 struct foo
14239 {
14240 int (*funcp)(int a, long l);
14241 int b;
14242 };
14243
14244 ('funcp' generates a DW_TAG_subroutine_type DIE). */
14245
14246 static struct type *
14247 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
14248 {
14249 struct objfile *objfile = cu->objfile;
14250 struct type *type; /* Type that this function returns. */
14251 struct type *ftype; /* Function that returns above type. */
14252 struct attribute *attr;
14253
14254 type = die_type (die, cu);
14255
14256 /* The die_type call above may have already set the type for this DIE. */
14257 ftype = get_die_type (die, cu);
14258 if (ftype)
14259 return ftype;
14260
14261 ftype = lookup_function_type (type);
14262
14263 if (prototyped_function_p (die, cu))
14264 TYPE_PROTOTYPED (ftype) = 1;
14265
14266 /* Store the calling convention in the type if it's available in
14267 the subroutine die. Otherwise set the calling convention to
14268 the default value DW_CC_normal. */
14269 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
14270 if (attr)
14271 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
14272 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
14273 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
14274 else
14275 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
14276
14277 /* We need to add the subroutine type to the die immediately so
14278 we don't infinitely recurse when dealing with parameters
14279 declared as the same subroutine type. */
14280 set_die_type (die, ftype, cu);
14281
14282 if (die->child != NULL)
14283 {
14284 struct type *void_type = objfile_type (objfile)->builtin_void;
14285 struct die_info *child_die;
14286 int nparams, iparams;
14287
14288 /* Count the number of parameters.
14289 FIXME: GDB currently ignores vararg functions, but knows about
14290 vararg member functions. */
14291 nparams = 0;
14292 child_die = die->child;
14293 while (child_die && child_die->tag)
14294 {
14295 if (child_die->tag == DW_TAG_formal_parameter)
14296 nparams++;
14297 else if (child_die->tag == DW_TAG_unspecified_parameters)
14298 TYPE_VARARGS (ftype) = 1;
14299 child_die = sibling_die (child_die);
14300 }
14301
14302 /* Allocate storage for parameters and fill them in. */
14303 TYPE_NFIELDS (ftype) = nparams;
14304 TYPE_FIELDS (ftype) = (struct field *)
14305 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
14306
14307 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
14308 even if we error out during the parameters reading below. */
14309 for (iparams = 0; iparams < nparams; iparams++)
14310 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
14311
14312 iparams = 0;
14313 child_die = die->child;
14314 while (child_die && child_die->tag)
14315 {
14316 if (child_die->tag == DW_TAG_formal_parameter)
14317 {
14318 struct type *arg_type;
14319
14320 /* DWARF version 2 has no clean way to discern C++
14321 static and non-static member functions. G++ helps
14322 GDB by marking the first parameter for non-static
14323 member functions (which is the this pointer) as
14324 artificial. We pass this information to
14325 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
14326
14327 DWARF version 3 added DW_AT_object_pointer, which GCC
14328 4.5 does not yet generate. */
14329 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
14330 if (attr)
14331 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
14332 else
14333 {
14334 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
14335
14336 /* GCC/43521: In java, the formal parameter
14337 "this" is sometimes not marked with DW_AT_artificial. */
14338 if (cu->language == language_java)
14339 {
14340 const char *name = dwarf2_name (child_die, cu);
14341
14342 if (name && !strcmp (name, "this"))
14343 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
14344 }
14345 }
14346 arg_type = die_type (child_die, cu);
14347
14348 /* RealView does not mark THIS as const, which the testsuite
14349 expects. GCC marks THIS as const in method definitions,
14350 but not in the class specifications (GCC PR 43053). */
14351 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
14352 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
14353 {
14354 int is_this = 0;
14355 struct dwarf2_cu *arg_cu = cu;
14356 const char *name = dwarf2_name (child_die, cu);
14357
14358 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
14359 if (attr)
14360 {
14361 /* If the compiler emits this, use it. */
14362 if (follow_die_ref (die, attr, &arg_cu) == child_die)
14363 is_this = 1;
14364 }
14365 else if (name && strcmp (name, "this") == 0)
14366 /* Function definitions will have the argument names. */
14367 is_this = 1;
14368 else if (name == NULL && iparams == 0)
14369 /* Declarations may not have the names, so like
14370 elsewhere in GDB, assume an artificial first
14371 argument is "this". */
14372 is_this = 1;
14373
14374 if (is_this)
14375 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
14376 arg_type, 0);
14377 }
14378
14379 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
14380 iparams++;
14381 }
14382 child_die = sibling_die (child_die);
14383 }
14384 }
14385
14386 return ftype;
14387 }
14388
14389 static struct type *
14390 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
14391 {
14392 struct objfile *objfile = cu->objfile;
14393 const char *name = NULL;
14394 struct type *this_type, *target_type;
14395
14396 name = dwarf2_full_name (NULL, die, cu);
14397 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
14398 TYPE_FLAG_TARGET_STUB, NULL, objfile);
14399 TYPE_NAME (this_type) = name;
14400 set_die_type (die, this_type, cu);
14401 target_type = die_type (die, cu);
14402 if (target_type != this_type)
14403 TYPE_TARGET_TYPE (this_type) = target_type;
14404 else
14405 {
14406 /* Self-referential typedefs are, it seems, not allowed by the DWARF
14407 spec and cause infinite loops in GDB. */
14408 complaint (&symfile_complaints,
14409 _("Self-referential DW_TAG_typedef "
14410 "- DIE at 0x%x [in module %s]"),
14411 die->offset.sect_off, objfile_name (objfile));
14412 TYPE_TARGET_TYPE (this_type) = NULL;
14413 }
14414 return this_type;
14415 }
14416
14417 /* Find a representation of a given base type and install
14418 it in the TYPE field of the die. */
14419
14420 static struct type *
14421 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
14422 {
14423 struct objfile *objfile = cu->objfile;
14424 struct type *type;
14425 struct attribute *attr;
14426 int encoding = 0, size = 0;
14427 const char *name;
14428 enum type_code code = TYPE_CODE_INT;
14429 int type_flags = 0;
14430 struct type *target_type = NULL;
14431
14432 attr = dwarf2_attr (die, DW_AT_encoding, cu);
14433 if (attr)
14434 {
14435 encoding = DW_UNSND (attr);
14436 }
14437 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14438 if (attr)
14439 {
14440 size = DW_UNSND (attr);
14441 }
14442 name = dwarf2_name (die, cu);
14443 if (!name)
14444 {
14445 complaint (&symfile_complaints,
14446 _("DW_AT_name missing from DW_TAG_base_type"));
14447 }
14448
14449 switch (encoding)
14450 {
14451 case DW_ATE_address:
14452 /* Turn DW_ATE_address into a void * pointer. */
14453 code = TYPE_CODE_PTR;
14454 type_flags |= TYPE_FLAG_UNSIGNED;
14455 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
14456 break;
14457 case DW_ATE_boolean:
14458 code = TYPE_CODE_BOOL;
14459 type_flags |= TYPE_FLAG_UNSIGNED;
14460 break;
14461 case DW_ATE_complex_float:
14462 code = TYPE_CODE_COMPLEX;
14463 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
14464 break;
14465 case DW_ATE_decimal_float:
14466 code = TYPE_CODE_DECFLOAT;
14467 break;
14468 case DW_ATE_float:
14469 code = TYPE_CODE_FLT;
14470 break;
14471 case DW_ATE_signed:
14472 break;
14473 case DW_ATE_unsigned:
14474 type_flags |= TYPE_FLAG_UNSIGNED;
14475 if (cu->language == language_fortran
14476 && name
14477 && strncmp (name, "character(", sizeof ("character(") - 1) == 0)
14478 code = TYPE_CODE_CHAR;
14479 break;
14480 case DW_ATE_signed_char:
14481 if (cu->language == language_ada || cu->language == language_m2
14482 || cu->language == language_pascal
14483 || cu->language == language_fortran)
14484 code = TYPE_CODE_CHAR;
14485 break;
14486 case DW_ATE_unsigned_char:
14487 if (cu->language == language_ada || cu->language == language_m2
14488 || cu->language == language_pascal
14489 || cu->language == language_fortran)
14490 code = TYPE_CODE_CHAR;
14491 type_flags |= TYPE_FLAG_UNSIGNED;
14492 break;
14493 case DW_ATE_UTF:
14494 /* We just treat this as an integer and then recognize the
14495 type by name elsewhere. */
14496 break;
14497
14498 default:
14499 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
14500 dwarf_type_encoding_name (encoding));
14501 break;
14502 }
14503
14504 type = init_type (code, size, type_flags, NULL, objfile);
14505 TYPE_NAME (type) = name;
14506 TYPE_TARGET_TYPE (type) = target_type;
14507
14508 if (name && strcmp (name, "char") == 0)
14509 TYPE_NOSIGN (type) = 1;
14510
14511 return set_die_type (die, type, cu);
14512 }
14513
14514 /* Parse dwarf attribute if it's a block, reference or constant and put the
14515 resulting value of the attribute into struct bound_prop.
14516 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
14517
14518 static int
14519 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
14520 struct dwarf2_cu *cu, struct dynamic_prop *prop)
14521 {
14522 struct dwarf2_property_baton *baton;
14523 struct obstack *obstack = &cu->objfile->objfile_obstack;
14524
14525 if (attr == NULL || prop == NULL)
14526 return 0;
14527
14528 if (attr_form_is_block (attr))
14529 {
14530 baton = obstack_alloc (obstack, sizeof (*baton));
14531 baton->referenced_type = NULL;
14532 baton->locexpr.per_cu = cu->per_cu;
14533 baton->locexpr.size = DW_BLOCK (attr)->size;
14534 baton->locexpr.data = DW_BLOCK (attr)->data;
14535 prop->data.baton = baton;
14536 prop->kind = PROP_LOCEXPR;
14537 gdb_assert (prop->data.baton != NULL);
14538 }
14539 else if (attr_form_is_ref (attr))
14540 {
14541 struct dwarf2_cu *target_cu = cu;
14542 struct die_info *target_die;
14543 struct attribute *target_attr;
14544
14545 target_die = follow_die_ref (die, attr, &target_cu);
14546 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
14547 if (target_attr == NULL)
14548 return 0;
14549
14550 if (attr_form_is_section_offset (target_attr))
14551 {
14552 baton = obstack_alloc (obstack, sizeof (*baton));
14553 baton->referenced_type = die_type (target_die, target_cu);
14554 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
14555 prop->data.baton = baton;
14556 prop->kind = PROP_LOCLIST;
14557 gdb_assert (prop->data.baton != NULL);
14558 }
14559 else if (attr_form_is_block (target_attr))
14560 {
14561 baton = obstack_alloc (obstack, sizeof (*baton));
14562 baton->referenced_type = die_type (target_die, target_cu);
14563 baton->locexpr.per_cu = cu->per_cu;
14564 baton->locexpr.size = DW_BLOCK (target_attr)->size;
14565 baton->locexpr.data = DW_BLOCK (target_attr)->data;
14566 prop->data.baton = baton;
14567 prop->kind = PROP_LOCEXPR;
14568 gdb_assert (prop->data.baton != NULL);
14569 }
14570 else
14571 {
14572 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14573 "dynamic property");
14574 return 0;
14575 }
14576 }
14577 else if (attr_form_is_constant (attr))
14578 {
14579 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
14580 prop->kind = PROP_CONST;
14581 }
14582 else
14583 {
14584 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
14585 dwarf2_name (die, cu));
14586 return 0;
14587 }
14588
14589 return 1;
14590 }
14591
14592 /* Read the given DW_AT_subrange DIE. */
14593
14594 static struct type *
14595 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
14596 {
14597 struct type *base_type, *orig_base_type;
14598 struct type *range_type;
14599 struct attribute *attr;
14600 struct dynamic_prop low, high;
14601 int low_default_is_valid;
14602 int high_bound_is_count = 0;
14603 const char *name;
14604 LONGEST negative_mask;
14605
14606 orig_base_type = die_type (die, cu);
14607 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
14608 whereas the real type might be. So, we use ORIG_BASE_TYPE when
14609 creating the range type, but we use the result of check_typedef
14610 when examining properties of the type. */
14611 base_type = check_typedef (orig_base_type);
14612
14613 /* The die_type call above may have already set the type for this DIE. */
14614 range_type = get_die_type (die, cu);
14615 if (range_type)
14616 return range_type;
14617
14618 low.kind = PROP_CONST;
14619 high.kind = PROP_CONST;
14620 high.data.const_val = 0;
14621
14622 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
14623 omitting DW_AT_lower_bound. */
14624 switch (cu->language)
14625 {
14626 case language_c:
14627 case language_cplus:
14628 low.data.const_val = 0;
14629 low_default_is_valid = 1;
14630 break;
14631 case language_fortran:
14632 low.data.const_val = 1;
14633 low_default_is_valid = 1;
14634 break;
14635 case language_d:
14636 case language_java:
14637 case language_objc:
14638 low.data.const_val = 0;
14639 low_default_is_valid = (cu->header.version >= 4);
14640 break;
14641 case language_ada:
14642 case language_m2:
14643 case language_pascal:
14644 low.data.const_val = 1;
14645 low_default_is_valid = (cu->header.version >= 4);
14646 break;
14647 default:
14648 low.data.const_val = 0;
14649 low_default_is_valid = 0;
14650 break;
14651 }
14652
14653 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
14654 if (attr)
14655 attr_to_dynamic_prop (attr, die, cu, &low);
14656 else if (!low_default_is_valid)
14657 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
14658 "- DIE at 0x%x [in module %s]"),
14659 die->offset.sect_off, objfile_name (cu->objfile));
14660
14661 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
14662 if (!attr_to_dynamic_prop (attr, die, cu, &high))
14663 {
14664 attr = dwarf2_attr (die, DW_AT_count, cu);
14665 if (attr_to_dynamic_prop (attr, die, cu, &high))
14666 {
14667 /* If bounds are constant do the final calculation here. */
14668 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
14669 high.data.const_val = low.data.const_val + high.data.const_val - 1;
14670 else
14671 high_bound_is_count = 1;
14672 }
14673 }
14674
14675 /* Dwarf-2 specifications explicitly allows to create subrange types
14676 without specifying a base type.
14677 In that case, the base type must be set to the type of
14678 the lower bound, upper bound or count, in that order, if any of these
14679 three attributes references an object that has a type.
14680 If no base type is found, the Dwarf-2 specifications say that
14681 a signed integer type of size equal to the size of an address should
14682 be used.
14683 For the following C code: `extern char gdb_int [];'
14684 GCC produces an empty range DIE.
14685 FIXME: muller/2010-05-28: Possible references to object for low bound,
14686 high bound or count are not yet handled by this code. */
14687 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
14688 {
14689 struct objfile *objfile = cu->objfile;
14690 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14691 int addr_size = gdbarch_addr_bit (gdbarch) /8;
14692 struct type *int_type = objfile_type (objfile)->builtin_int;
14693
14694 /* Test "int", "long int", and "long long int" objfile types,
14695 and select the first one having a size above or equal to the
14696 architecture address size. */
14697 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14698 base_type = int_type;
14699 else
14700 {
14701 int_type = objfile_type (objfile)->builtin_long;
14702 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14703 base_type = int_type;
14704 else
14705 {
14706 int_type = objfile_type (objfile)->builtin_long_long;
14707 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14708 base_type = int_type;
14709 }
14710 }
14711 }
14712
14713 /* Normally, the DWARF producers are expected to use a signed
14714 constant form (Eg. DW_FORM_sdata) to express negative bounds.
14715 But this is unfortunately not always the case, as witnessed
14716 with GCC, for instance, where the ambiguous DW_FORM_dataN form
14717 is used instead. To work around that ambiguity, we treat
14718 the bounds as signed, and thus sign-extend their values, when
14719 the base type is signed. */
14720 negative_mask =
14721 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
14722 if (low.kind == PROP_CONST
14723 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
14724 low.data.const_val |= negative_mask;
14725 if (high.kind == PROP_CONST
14726 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
14727 high.data.const_val |= negative_mask;
14728
14729 range_type = create_range_type (NULL, orig_base_type, &low, &high);
14730
14731 if (high_bound_is_count)
14732 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
14733
14734 /* Ada expects an empty array on no boundary attributes. */
14735 if (attr == NULL && cu->language != language_ada)
14736 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
14737
14738 name = dwarf2_name (die, cu);
14739 if (name)
14740 TYPE_NAME (range_type) = name;
14741
14742 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14743 if (attr)
14744 TYPE_LENGTH (range_type) = DW_UNSND (attr);
14745
14746 set_die_type (die, range_type, cu);
14747
14748 /* set_die_type should be already done. */
14749 set_descriptive_type (range_type, die, cu);
14750
14751 return range_type;
14752 }
14753
14754 static struct type *
14755 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
14756 {
14757 struct type *type;
14758
14759 /* For now, we only support the C meaning of an unspecified type: void. */
14760
14761 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
14762 TYPE_NAME (type) = dwarf2_name (die, cu);
14763
14764 return set_die_type (die, type, cu);
14765 }
14766
14767 /* Read a single die and all its descendents. Set the die's sibling
14768 field to NULL; set other fields in the die correctly, and set all
14769 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
14770 location of the info_ptr after reading all of those dies. PARENT
14771 is the parent of the die in question. */
14772
14773 static struct die_info *
14774 read_die_and_children (const struct die_reader_specs *reader,
14775 const gdb_byte *info_ptr,
14776 const gdb_byte **new_info_ptr,
14777 struct die_info *parent)
14778 {
14779 struct die_info *die;
14780 const gdb_byte *cur_ptr;
14781 int has_children;
14782
14783 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
14784 if (die == NULL)
14785 {
14786 *new_info_ptr = cur_ptr;
14787 return NULL;
14788 }
14789 store_in_ref_table (die, reader->cu);
14790
14791 if (has_children)
14792 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
14793 else
14794 {
14795 die->child = NULL;
14796 *new_info_ptr = cur_ptr;
14797 }
14798
14799 die->sibling = NULL;
14800 die->parent = parent;
14801 return die;
14802 }
14803
14804 /* Read a die, all of its descendents, and all of its siblings; set
14805 all of the fields of all of the dies correctly. Arguments are as
14806 in read_die_and_children. */
14807
14808 static struct die_info *
14809 read_die_and_siblings_1 (const struct die_reader_specs *reader,
14810 const gdb_byte *info_ptr,
14811 const gdb_byte **new_info_ptr,
14812 struct die_info *parent)
14813 {
14814 struct die_info *first_die, *last_sibling;
14815 const gdb_byte *cur_ptr;
14816
14817 cur_ptr = info_ptr;
14818 first_die = last_sibling = NULL;
14819
14820 while (1)
14821 {
14822 struct die_info *die
14823 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
14824
14825 if (die == NULL)
14826 {
14827 *new_info_ptr = cur_ptr;
14828 return first_die;
14829 }
14830
14831 if (!first_die)
14832 first_die = die;
14833 else
14834 last_sibling->sibling = die;
14835
14836 last_sibling = die;
14837 }
14838 }
14839
14840 /* Read a die, all of its descendents, and all of its siblings; set
14841 all of the fields of all of the dies correctly. Arguments are as
14842 in read_die_and_children.
14843 This the main entry point for reading a DIE and all its children. */
14844
14845 static struct die_info *
14846 read_die_and_siblings (const struct die_reader_specs *reader,
14847 const gdb_byte *info_ptr,
14848 const gdb_byte **new_info_ptr,
14849 struct die_info *parent)
14850 {
14851 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
14852 new_info_ptr, parent);
14853
14854 if (dwarf2_die_debug)
14855 {
14856 fprintf_unfiltered (gdb_stdlog,
14857 "Read die from %s@0x%x of %s:\n",
14858 get_section_name (reader->die_section),
14859 (unsigned) (info_ptr - reader->die_section->buffer),
14860 bfd_get_filename (reader->abfd));
14861 dump_die (die, dwarf2_die_debug);
14862 }
14863
14864 return die;
14865 }
14866
14867 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
14868 attributes.
14869 The caller is responsible for filling in the extra attributes
14870 and updating (*DIEP)->num_attrs.
14871 Set DIEP to point to a newly allocated die with its information,
14872 except for its child, sibling, and parent fields.
14873 Set HAS_CHILDREN to tell whether the die has children or not. */
14874
14875 static const gdb_byte *
14876 read_full_die_1 (const struct die_reader_specs *reader,
14877 struct die_info **diep, const gdb_byte *info_ptr,
14878 int *has_children, int num_extra_attrs)
14879 {
14880 unsigned int abbrev_number, bytes_read, i;
14881 sect_offset offset;
14882 struct abbrev_info *abbrev;
14883 struct die_info *die;
14884 struct dwarf2_cu *cu = reader->cu;
14885 bfd *abfd = reader->abfd;
14886
14887 offset.sect_off = info_ptr - reader->buffer;
14888 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14889 info_ptr += bytes_read;
14890 if (!abbrev_number)
14891 {
14892 *diep = NULL;
14893 *has_children = 0;
14894 return info_ptr;
14895 }
14896
14897 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
14898 if (!abbrev)
14899 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
14900 abbrev_number,
14901 bfd_get_filename (abfd));
14902
14903 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
14904 die->offset = offset;
14905 die->tag = abbrev->tag;
14906 die->abbrev = abbrev_number;
14907
14908 /* Make the result usable.
14909 The caller needs to update num_attrs after adding the extra
14910 attributes. */
14911 die->num_attrs = abbrev->num_attrs;
14912
14913 for (i = 0; i < abbrev->num_attrs; ++i)
14914 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
14915 info_ptr);
14916
14917 *diep = die;
14918 *has_children = abbrev->has_children;
14919 return info_ptr;
14920 }
14921
14922 /* Read a die and all its attributes.
14923 Set DIEP to point to a newly allocated die with its information,
14924 except for its child, sibling, and parent fields.
14925 Set HAS_CHILDREN to tell whether the die has children or not. */
14926
14927 static const gdb_byte *
14928 read_full_die (const struct die_reader_specs *reader,
14929 struct die_info **diep, const gdb_byte *info_ptr,
14930 int *has_children)
14931 {
14932 const gdb_byte *result;
14933
14934 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
14935
14936 if (dwarf2_die_debug)
14937 {
14938 fprintf_unfiltered (gdb_stdlog,
14939 "Read die from %s@0x%x of %s:\n",
14940 get_section_name (reader->die_section),
14941 (unsigned) (info_ptr - reader->die_section->buffer),
14942 bfd_get_filename (reader->abfd));
14943 dump_die (*diep, dwarf2_die_debug);
14944 }
14945
14946 return result;
14947 }
14948 \f
14949 /* Abbreviation tables.
14950
14951 In DWARF version 2, the description of the debugging information is
14952 stored in a separate .debug_abbrev section. Before we read any
14953 dies from a section we read in all abbreviations and install them
14954 in a hash table. */
14955
14956 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
14957
14958 static struct abbrev_info *
14959 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
14960 {
14961 struct abbrev_info *abbrev;
14962
14963 abbrev = (struct abbrev_info *)
14964 obstack_alloc (&abbrev_table->abbrev_obstack, sizeof (struct abbrev_info));
14965 memset (abbrev, 0, sizeof (struct abbrev_info));
14966 return abbrev;
14967 }
14968
14969 /* Add an abbreviation to the table. */
14970
14971 static void
14972 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
14973 unsigned int abbrev_number,
14974 struct abbrev_info *abbrev)
14975 {
14976 unsigned int hash_number;
14977
14978 hash_number = abbrev_number % ABBREV_HASH_SIZE;
14979 abbrev->next = abbrev_table->abbrevs[hash_number];
14980 abbrev_table->abbrevs[hash_number] = abbrev;
14981 }
14982
14983 /* Look up an abbrev in the table.
14984 Returns NULL if the abbrev is not found. */
14985
14986 static struct abbrev_info *
14987 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
14988 unsigned int abbrev_number)
14989 {
14990 unsigned int hash_number;
14991 struct abbrev_info *abbrev;
14992
14993 hash_number = abbrev_number % ABBREV_HASH_SIZE;
14994 abbrev = abbrev_table->abbrevs[hash_number];
14995
14996 while (abbrev)
14997 {
14998 if (abbrev->number == abbrev_number)
14999 return abbrev;
15000 abbrev = abbrev->next;
15001 }
15002 return NULL;
15003 }
15004
15005 /* Read in an abbrev table. */
15006
15007 static struct abbrev_table *
15008 abbrev_table_read_table (struct dwarf2_section_info *section,
15009 sect_offset offset)
15010 {
15011 struct objfile *objfile = dwarf2_per_objfile->objfile;
15012 bfd *abfd = get_section_bfd_owner (section);
15013 struct abbrev_table *abbrev_table;
15014 const gdb_byte *abbrev_ptr;
15015 struct abbrev_info *cur_abbrev;
15016 unsigned int abbrev_number, bytes_read, abbrev_name;
15017 unsigned int abbrev_form;
15018 struct attr_abbrev *cur_attrs;
15019 unsigned int allocated_attrs;
15020
15021 abbrev_table = XNEW (struct abbrev_table);
15022 abbrev_table->offset = offset;
15023 obstack_init (&abbrev_table->abbrev_obstack);
15024 abbrev_table->abbrevs = obstack_alloc (&abbrev_table->abbrev_obstack,
15025 (ABBREV_HASH_SIZE
15026 * sizeof (struct abbrev_info *)));
15027 memset (abbrev_table->abbrevs, 0,
15028 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
15029
15030 dwarf2_read_section (objfile, section);
15031 abbrev_ptr = section->buffer + offset.sect_off;
15032 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15033 abbrev_ptr += bytes_read;
15034
15035 allocated_attrs = ATTR_ALLOC_CHUNK;
15036 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
15037
15038 /* Loop until we reach an abbrev number of 0. */
15039 while (abbrev_number)
15040 {
15041 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
15042
15043 /* read in abbrev header */
15044 cur_abbrev->number = abbrev_number;
15045 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15046 abbrev_ptr += bytes_read;
15047 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
15048 abbrev_ptr += 1;
15049
15050 /* now read in declarations */
15051 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15052 abbrev_ptr += bytes_read;
15053 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15054 abbrev_ptr += bytes_read;
15055 while (abbrev_name)
15056 {
15057 if (cur_abbrev->num_attrs == allocated_attrs)
15058 {
15059 allocated_attrs += ATTR_ALLOC_CHUNK;
15060 cur_attrs
15061 = xrealloc (cur_attrs, (allocated_attrs
15062 * sizeof (struct attr_abbrev)));
15063 }
15064
15065 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
15066 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
15067 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15068 abbrev_ptr += bytes_read;
15069 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15070 abbrev_ptr += bytes_read;
15071 }
15072
15073 cur_abbrev->attrs = obstack_alloc (&abbrev_table->abbrev_obstack,
15074 (cur_abbrev->num_attrs
15075 * sizeof (struct attr_abbrev)));
15076 memcpy (cur_abbrev->attrs, cur_attrs,
15077 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
15078
15079 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
15080
15081 /* Get next abbreviation.
15082 Under Irix6 the abbreviations for a compilation unit are not
15083 always properly terminated with an abbrev number of 0.
15084 Exit loop if we encounter an abbreviation which we have
15085 already read (which means we are about to read the abbreviations
15086 for the next compile unit) or if the end of the abbreviation
15087 table is reached. */
15088 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
15089 break;
15090 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15091 abbrev_ptr += bytes_read;
15092 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
15093 break;
15094 }
15095
15096 xfree (cur_attrs);
15097 return abbrev_table;
15098 }
15099
15100 /* Free the resources held by ABBREV_TABLE. */
15101
15102 static void
15103 abbrev_table_free (struct abbrev_table *abbrev_table)
15104 {
15105 obstack_free (&abbrev_table->abbrev_obstack, NULL);
15106 xfree (abbrev_table);
15107 }
15108
15109 /* Same as abbrev_table_free but as a cleanup.
15110 We pass in a pointer to the pointer to the table so that we can
15111 set the pointer to NULL when we're done. It also simplifies
15112 build_type_psymtabs_1. */
15113
15114 static void
15115 abbrev_table_free_cleanup (void *table_ptr)
15116 {
15117 struct abbrev_table **abbrev_table_ptr = table_ptr;
15118
15119 if (*abbrev_table_ptr != NULL)
15120 abbrev_table_free (*abbrev_table_ptr);
15121 *abbrev_table_ptr = NULL;
15122 }
15123
15124 /* Read the abbrev table for CU from ABBREV_SECTION. */
15125
15126 static void
15127 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
15128 struct dwarf2_section_info *abbrev_section)
15129 {
15130 cu->abbrev_table =
15131 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
15132 }
15133
15134 /* Release the memory used by the abbrev table for a compilation unit. */
15135
15136 static void
15137 dwarf2_free_abbrev_table (void *ptr_to_cu)
15138 {
15139 struct dwarf2_cu *cu = ptr_to_cu;
15140
15141 if (cu->abbrev_table != NULL)
15142 abbrev_table_free (cu->abbrev_table);
15143 /* Set this to NULL so that we SEGV if we try to read it later,
15144 and also because free_comp_unit verifies this is NULL. */
15145 cu->abbrev_table = NULL;
15146 }
15147 \f
15148 /* Returns nonzero if TAG represents a type that we might generate a partial
15149 symbol for. */
15150
15151 static int
15152 is_type_tag_for_partial (int tag)
15153 {
15154 switch (tag)
15155 {
15156 #if 0
15157 /* Some types that would be reasonable to generate partial symbols for,
15158 that we don't at present. */
15159 case DW_TAG_array_type:
15160 case DW_TAG_file_type:
15161 case DW_TAG_ptr_to_member_type:
15162 case DW_TAG_set_type:
15163 case DW_TAG_string_type:
15164 case DW_TAG_subroutine_type:
15165 #endif
15166 case DW_TAG_base_type:
15167 case DW_TAG_class_type:
15168 case DW_TAG_interface_type:
15169 case DW_TAG_enumeration_type:
15170 case DW_TAG_structure_type:
15171 case DW_TAG_subrange_type:
15172 case DW_TAG_typedef:
15173 case DW_TAG_union_type:
15174 return 1;
15175 default:
15176 return 0;
15177 }
15178 }
15179
15180 /* Load all DIEs that are interesting for partial symbols into memory. */
15181
15182 static struct partial_die_info *
15183 load_partial_dies (const struct die_reader_specs *reader,
15184 const gdb_byte *info_ptr, int building_psymtab)
15185 {
15186 struct dwarf2_cu *cu = reader->cu;
15187 struct objfile *objfile = cu->objfile;
15188 struct partial_die_info *part_die;
15189 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
15190 struct abbrev_info *abbrev;
15191 unsigned int bytes_read;
15192 unsigned int load_all = 0;
15193 int nesting_level = 1;
15194
15195 parent_die = NULL;
15196 last_die = NULL;
15197
15198 gdb_assert (cu->per_cu != NULL);
15199 if (cu->per_cu->load_all_dies)
15200 load_all = 1;
15201
15202 cu->partial_dies
15203 = htab_create_alloc_ex (cu->header.length / 12,
15204 partial_die_hash,
15205 partial_die_eq,
15206 NULL,
15207 &cu->comp_unit_obstack,
15208 hashtab_obstack_allocate,
15209 dummy_obstack_deallocate);
15210
15211 part_die = obstack_alloc (&cu->comp_unit_obstack,
15212 sizeof (struct partial_die_info));
15213
15214 while (1)
15215 {
15216 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
15217
15218 /* A NULL abbrev means the end of a series of children. */
15219 if (abbrev == NULL)
15220 {
15221 if (--nesting_level == 0)
15222 {
15223 /* PART_DIE was probably the last thing allocated on the
15224 comp_unit_obstack, so we could call obstack_free
15225 here. We don't do that because the waste is small,
15226 and will be cleaned up when we're done with this
15227 compilation unit. This way, we're also more robust
15228 against other users of the comp_unit_obstack. */
15229 return first_die;
15230 }
15231 info_ptr += bytes_read;
15232 last_die = parent_die;
15233 parent_die = parent_die->die_parent;
15234 continue;
15235 }
15236
15237 /* Check for template arguments. We never save these; if
15238 they're seen, we just mark the parent, and go on our way. */
15239 if (parent_die != NULL
15240 && cu->language == language_cplus
15241 && (abbrev->tag == DW_TAG_template_type_param
15242 || abbrev->tag == DW_TAG_template_value_param))
15243 {
15244 parent_die->has_template_arguments = 1;
15245
15246 if (!load_all)
15247 {
15248 /* We don't need a partial DIE for the template argument. */
15249 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15250 continue;
15251 }
15252 }
15253
15254 /* We only recurse into c++ subprograms looking for template arguments.
15255 Skip their other children. */
15256 if (!load_all
15257 && cu->language == language_cplus
15258 && parent_die != NULL
15259 && parent_die->tag == DW_TAG_subprogram)
15260 {
15261 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15262 continue;
15263 }
15264
15265 /* Check whether this DIE is interesting enough to save. Normally
15266 we would not be interested in members here, but there may be
15267 later variables referencing them via DW_AT_specification (for
15268 static members). */
15269 if (!load_all
15270 && !is_type_tag_for_partial (abbrev->tag)
15271 && abbrev->tag != DW_TAG_constant
15272 && abbrev->tag != DW_TAG_enumerator
15273 && abbrev->tag != DW_TAG_subprogram
15274 && abbrev->tag != DW_TAG_lexical_block
15275 && abbrev->tag != DW_TAG_variable
15276 && abbrev->tag != DW_TAG_namespace
15277 && abbrev->tag != DW_TAG_module
15278 && abbrev->tag != DW_TAG_member
15279 && abbrev->tag != DW_TAG_imported_unit
15280 && abbrev->tag != DW_TAG_imported_declaration)
15281 {
15282 /* Otherwise we skip to the next sibling, if any. */
15283 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15284 continue;
15285 }
15286
15287 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
15288 info_ptr);
15289
15290 /* This two-pass algorithm for processing partial symbols has a
15291 high cost in cache pressure. Thus, handle some simple cases
15292 here which cover the majority of C partial symbols. DIEs
15293 which neither have specification tags in them, nor could have
15294 specification tags elsewhere pointing at them, can simply be
15295 processed and discarded.
15296
15297 This segment is also optional; scan_partial_symbols and
15298 add_partial_symbol will handle these DIEs if we chain
15299 them in normally. When compilers which do not emit large
15300 quantities of duplicate debug information are more common,
15301 this code can probably be removed. */
15302
15303 /* Any complete simple types at the top level (pretty much all
15304 of them, for a language without namespaces), can be processed
15305 directly. */
15306 if (parent_die == NULL
15307 && part_die->has_specification == 0
15308 && part_die->is_declaration == 0
15309 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
15310 || part_die->tag == DW_TAG_base_type
15311 || part_die->tag == DW_TAG_subrange_type))
15312 {
15313 if (building_psymtab && part_die->name != NULL)
15314 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15315 VAR_DOMAIN, LOC_TYPEDEF,
15316 &objfile->static_psymbols,
15317 0, (CORE_ADDR) 0, cu->language, objfile);
15318 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15319 continue;
15320 }
15321
15322 /* The exception for DW_TAG_typedef with has_children above is
15323 a workaround of GCC PR debug/47510. In the case of this complaint
15324 type_name_no_tag_or_error will error on such types later.
15325
15326 GDB skipped children of DW_TAG_typedef by the shortcut above and then
15327 it could not find the child DIEs referenced later, this is checked
15328 above. In correct DWARF DW_TAG_typedef should have no children. */
15329
15330 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
15331 complaint (&symfile_complaints,
15332 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
15333 "- DIE at 0x%x [in module %s]"),
15334 part_die->offset.sect_off, objfile_name (objfile));
15335
15336 /* If we're at the second level, and we're an enumerator, and
15337 our parent has no specification (meaning possibly lives in a
15338 namespace elsewhere), then we can add the partial symbol now
15339 instead of queueing it. */
15340 if (part_die->tag == DW_TAG_enumerator
15341 && parent_die != NULL
15342 && parent_die->die_parent == NULL
15343 && parent_die->tag == DW_TAG_enumeration_type
15344 && parent_die->has_specification == 0)
15345 {
15346 if (part_die->name == NULL)
15347 complaint (&symfile_complaints,
15348 _("malformed enumerator DIE ignored"));
15349 else if (building_psymtab)
15350 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15351 VAR_DOMAIN, LOC_CONST,
15352 (cu->language == language_cplus
15353 || cu->language == language_java)
15354 ? &objfile->global_psymbols
15355 : &objfile->static_psymbols,
15356 0, (CORE_ADDR) 0, cu->language, objfile);
15357
15358 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15359 continue;
15360 }
15361
15362 /* We'll save this DIE so link it in. */
15363 part_die->die_parent = parent_die;
15364 part_die->die_sibling = NULL;
15365 part_die->die_child = NULL;
15366
15367 if (last_die && last_die == parent_die)
15368 last_die->die_child = part_die;
15369 else if (last_die)
15370 last_die->die_sibling = part_die;
15371
15372 last_die = part_die;
15373
15374 if (first_die == NULL)
15375 first_die = part_die;
15376
15377 /* Maybe add the DIE to the hash table. Not all DIEs that we
15378 find interesting need to be in the hash table, because we
15379 also have the parent/sibling/child chains; only those that we
15380 might refer to by offset later during partial symbol reading.
15381
15382 For now this means things that might have be the target of a
15383 DW_AT_specification, DW_AT_abstract_origin, or
15384 DW_AT_extension. DW_AT_extension will refer only to
15385 namespaces; DW_AT_abstract_origin refers to functions (and
15386 many things under the function DIE, but we do not recurse
15387 into function DIEs during partial symbol reading) and
15388 possibly variables as well; DW_AT_specification refers to
15389 declarations. Declarations ought to have the DW_AT_declaration
15390 flag. It happens that GCC forgets to put it in sometimes, but
15391 only for functions, not for types.
15392
15393 Adding more things than necessary to the hash table is harmless
15394 except for the performance cost. Adding too few will result in
15395 wasted time in find_partial_die, when we reread the compilation
15396 unit with load_all_dies set. */
15397
15398 if (load_all
15399 || abbrev->tag == DW_TAG_constant
15400 || abbrev->tag == DW_TAG_subprogram
15401 || abbrev->tag == DW_TAG_variable
15402 || abbrev->tag == DW_TAG_namespace
15403 || part_die->is_declaration)
15404 {
15405 void **slot;
15406
15407 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
15408 part_die->offset.sect_off, INSERT);
15409 *slot = part_die;
15410 }
15411
15412 part_die = obstack_alloc (&cu->comp_unit_obstack,
15413 sizeof (struct partial_die_info));
15414
15415 /* For some DIEs we want to follow their children (if any). For C
15416 we have no reason to follow the children of structures; for other
15417 languages we have to, so that we can get at method physnames
15418 to infer fully qualified class names, for DW_AT_specification,
15419 and for C++ template arguments. For C++, we also look one level
15420 inside functions to find template arguments (if the name of the
15421 function does not already contain the template arguments).
15422
15423 For Ada, we need to scan the children of subprograms and lexical
15424 blocks as well because Ada allows the definition of nested
15425 entities that could be interesting for the debugger, such as
15426 nested subprograms for instance. */
15427 if (last_die->has_children
15428 && (load_all
15429 || last_die->tag == DW_TAG_namespace
15430 || last_die->tag == DW_TAG_module
15431 || last_die->tag == DW_TAG_enumeration_type
15432 || (cu->language == language_cplus
15433 && last_die->tag == DW_TAG_subprogram
15434 && (last_die->name == NULL
15435 || strchr (last_die->name, '<') == NULL))
15436 || (cu->language != language_c
15437 && (last_die->tag == DW_TAG_class_type
15438 || last_die->tag == DW_TAG_interface_type
15439 || last_die->tag == DW_TAG_structure_type
15440 || last_die->tag == DW_TAG_union_type))
15441 || (cu->language == language_ada
15442 && (last_die->tag == DW_TAG_subprogram
15443 || last_die->tag == DW_TAG_lexical_block))))
15444 {
15445 nesting_level++;
15446 parent_die = last_die;
15447 continue;
15448 }
15449
15450 /* Otherwise we skip to the next sibling, if any. */
15451 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
15452
15453 /* Back to the top, do it again. */
15454 }
15455 }
15456
15457 /* Read a minimal amount of information into the minimal die structure. */
15458
15459 static const gdb_byte *
15460 read_partial_die (const struct die_reader_specs *reader,
15461 struct partial_die_info *part_die,
15462 struct abbrev_info *abbrev, unsigned int abbrev_len,
15463 const gdb_byte *info_ptr)
15464 {
15465 struct dwarf2_cu *cu = reader->cu;
15466 struct objfile *objfile = cu->objfile;
15467 const gdb_byte *buffer = reader->buffer;
15468 unsigned int i;
15469 struct attribute attr;
15470 int has_low_pc_attr = 0;
15471 int has_high_pc_attr = 0;
15472 int high_pc_relative = 0;
15473
15474 memset (part_die, 0, sizeof (struct partial_die_info));
15475
15476 part_die->offset.sect_off = info_ptr - buffer;
15477
15478 info_ptr += abbrev_len;
15479
15480 if (abbrev == NULL)
15481 return info_ptr;
15482
15483 part_die->tag = abbrev->tag;
15484 part_die->has_children = abbrev->has_children;
15485
15486 for (i = 0; i < abbrev->num_attrs; ++i)
15487 {
15488 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
15489
15490 /* Store the data if it is of an attribute we want to keep in a
15491 partial symbol table. */
15492 switch (attr.name)
15493 {
15494 case DW_AT_name:
15495 switch (part_die->tag)
15496 {
15497 case DW_TAG_compile_unit:
15498 case DW_TAG_partial_unit:
15499 case DW_TAG_type_unit:
15500 /* Compilation units have a DW_AT_name that is a filename, not
15501 a source language identifier. */
15502 case DW_TAG_enumeration_type:
15503 case DW_TAG_enumerator:
15504 /* These tags always have simple identifiers already; no need
15505 to canonicalize them. */
15506 part_die->name = DW_STRING (&attr);
15507 break;
15508 default:
15509 part_die->name
15510 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
15511 &objfile->objfile_obstack);
15512 break;
15513 }
15514 break;
15515 case DW_AT_linkage_name:
15516 case DW_AT_MIPS_linkage_name:
15517 /* Note that both forms of linkage name might appear. We
15518 assume they will be the same, and we only store the last
15519 one we see. */
15520 if (cu->language == language_ada)
15521 part_die->name = DW_STRING (&attr);
15522 part_die->linkage_name = DW_STRING (&attr);
15523 break;
15524 case DW_AT_low_pc:
15525 has_low_pc_attr = 1;
15526 part_die->lowpc = attr_value_as_address (&attr);
15527 break;
15528 case DW_AT_high_pc:
15529 has_high_pc_attr = 1;
15530 part_die->highpc = attr_value_as_address (&attr);
15531 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
15532 high_pc_relative = 1;
15533 break;
15534 case DW_AT_location:
15535 /* Support the .debug_loc offsets. */
15536 if (attr_form_is_block (&attr))
15537 {
15538 part_die->d.locdesc = DW_BLOCK (&attr);
15539 }
15540 else if (attr_form_is_section_offset (&attr))
15541 {
15542 dwarf2_complex_location_expr_complaint ();
15543 }
15544 else
15545 {
15546 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15547 "partial symbol information");
15548 }
15549 break;
15550 case DW_AT_external:
15551 part_die->is_external = DW_UNSND (&attr);
15552 break;
15553 case DW_AT_declaration:
15554 part_die->is_declaration = DW_UNSND (&attr);
15555 break;
15556 case DW_AT_type:
15557 part_die->has_type = 1;
15558 break;
15559 case DW_AT_abstract_origin:
15560 case DW_AT_specification:
15561 case DW_AT_extension:
15562 part_die->has_specification = 1;
15563 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
15564 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15565 || cu->per_cu->is_dwz);
15566 break;
15567 case DW_AT_sibling:
15568 /* Ignore absolute siblings, they might point outside of
15569 the current compile unit. */
15570 if (attr.form == DW_FORM_ref_addr)
15571 complaint (&symfile_complaints,
15572 _("ignoring absolute DW_AT_sibling"));
15573 else
15574 {
15575 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
15576 const gdb_byte *sibling_ptr = buffer + off;
15577
15578 if (sibling_ptr < info_ptr)
15579 complaint (&symfile_complaints,
15580 _("DW_AT_sibling points backwards"));
15581 else if (sibling_ptr > reader->buffer_end)
15582 dwarf2_section_buffer_overflow_complaint (reader->die_section);
15583 else
15584 part_die->sibling = sibling_ptr;
15585 }
15586 break;
15587 case DW_AT_byte_size:
15588 part_die->has_byte_size = 1;
15589 break;
15590 case DW_AT_calling_convention:
15591 /* DWARF doesn't provide a way to identify a program's source-level
15592 entry point. DW_AT_calling_convention attributes are only meant
15593 to describe functions' calling conventions.
15594
15595 However, because it's a necessary piece of information in
15596 Fortran, and because DW_CC_program is the only piece of debugging
15597 information whose definition refers to a 'main program' at all,
15598 several compilers have begun marking Fortran main programs with
15599 DW_CC_program --- even when those functions use the standard
15600 calling conventions.
15601
15602 So until DWARF specifies a way to provide this information and
15603 compilers pick up the new representation, we'll support this
15604 practice. */
15605 if (DW_UNSND (&attr) == DW_CC_program
15606 && cu->language == language_fortran)
15607 set_objfile_main_name (objfile, part_die->name, language_fortran);
15608 break;
15609 case DW_AT_inline:
15610 if (DW_UNSND (&attr) == DW_INL_inlined
15611 || DW_UNSND (&attr) == DW_INL_declared_inlined)
15612 part_die->may_be_inlined = 1;
15613 break;
15614
15615 case DW_AT_import:
15616 if (part_die->tag == DW_TAG_imported_unit)
15617 {
15618 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
15619 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15620 || cu->per_cu->is_dwz);
15621 }
15622 break;
15623
15624 default:
15625 break;
15626 }
15627 }
15628
15629 if (high_pc_relative)
15630 part_die->highpc += part_die->lowpc;
15631
15632 if (has_low_pc_attr && has_high_pc_attr)
15633 {
15634 /* When using the GNU linker, .gnu.linkonce. sections are used to
15635 eliminate duplicate copies of functions and vtables and such.
15636 The linker will arbitrarily choose one and discard the others.
15637 The AT_*_pc values for such functions refer to local labels in
15638 these sections. If the section from that file was discarded, the
15639 labels are not in the output, so the relocs get a value of 0.
15640 If this is a discarded function, mark the pc bounds as invalid,
15641 so that GDB will ignore it. */
15642 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
15643 {
15644 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15645
15646 complaint (&symfile_complaints,
15647 _("DW_AT_low_pc %s is zero "
15648 "for DIE at 0x%x [in module %s]"),
15649 paddress (gdbarch, part_die->lowpc),
15650 part_die->offset.sect_off, objfile_name (objfile));
15651 }
15652 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
15653 else if (part_die->lowpc >= part_die->highpc)
15654 {
15655 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15656
15657 complaint (&symfile_complaints,
15658 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
15659 "for DIE at 0x%x [in module %s]"),
15660 paddress (gdbarch, part_die->lowpc),
15661 paddress (gdbarch, part_die->highpc),
15662 part_die->offset.sect_off, objfile_name (objfile));
15663 }
15664 else
15665 part_die->has_pc_info = 1;
15666 }
15667
15668 return info_ptr;
15669 }
15670
15671 /* Find a cached partial DIE at OFFSET in CU. */
15672
15673 static struct partial_die_info *
15674 find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
15675 {
15676 struct partial_die_info *lookup_die = NULL;
15677 struct partial_die_info part_die;
15678
15679 part_die.offset = offset;
15680 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
15681 offset.sect_off);
15682
15683 return lookup_die;
15684 }
15685
15686 /* Find a partial DIE at OFFSET, which may or may not be in CU,
15687 except in the case of .debug_types DIEs which do not reference
15688 outside their CU (they do however referencing other types via
15689 DW_FORM_ref_sig8). */
15690
15691 static struct partial_die_info *
15692 find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
15693 {
15694 struct objfile *objfile = cu->objfile;
15695 struct dwarf2_per_cu_data *per_cu = NULL;
15696 struct partial_die_info *pd = NULL;
15697
15698 if (offset_in_dwz == cu->per_cu->is_dwz
15699 && offset_in_cu_p (&cu->header, offset))
15700 {
15701 pd = find_partial_die_in_comp_unit (offset, cu);
15702 if (pd != NULL)
15703 return pd;
15704 /* We missed recording what we needed.
15705 Load all dies and try again. */
15706 per_cu = cu->per_cu;
15707 }
15708 else
15709 {
15710 /* TUs don't reference other CUs/TUs (except via type signatures). */
15711 if (cu->per_cu->is_debug_types)
15712 {
15713 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
15714 " external reference to offset 0x%lx [in module %s].\n"),
15715 (long) cu->header.offset.sect_off, (long) offset.sect_off,
15716 bfd_get_filename (objfile->obfd));
15717 }
15718 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
15719 objfile);
15720
15721 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
15722 load_partial_comp_unit (per_cu);
15723
15724 per_cu->cu->last_used = 0;
15725 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
15726 }
15727
15728 /* If we didn't find it, and not all dies have been loaded,
15729 load them all and try again. */
15730
15731 if (pd == NULL && per_cu->load_all_dies == 0)
15732 {
15733 per_cu->load_all_dies = 1;
15734
15735 /* This is nasty. When we reread the DIEs, somewhere up the call chain
15736 THIS_CU->cu may already be in use. So we can't just free it and
15737 replace its DIEs with the ones we read in. Instead, we leave those
15738 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
15739 and clobber THIS_CU->cu->partial_dies with the hash table for the new
15740 set. */
15741 load_partial_comp_unit (per_cu);
15742
15743 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
15744 }
15745
15746 if (pd == NULL)
15747 internal_error (__FILE__, __LINE__,
15748 _("could not find partial DIE 0x%x "
15749 "in cache [from module %s]\n"),
15750 offset.sect_off, bfd_get_filename (objfile->obfd));
15751 return pd;
15752 }
15753
15754 /* See if we can figure out if the class lives in a namespace. We do
15755 this by looking for a member function; its demangled name will
15756 contain namespace info, if there is any. */
15757
15758 static void
15759 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
15760 struct dwarf2_cu *cu)
15761 {
15762 /* NOTE: carlton/2003-10-07: Getting the info this way changes
15763 what template types look like, because the demangler
15764 frequently doesn't give the same name as the debug info. We
15765 could fix this by only using the demangled name to get the
15766 prefix (but see comment in read_structure_type). */
15767
15768 struct partial_die_info *real_pdi;
15769 struct partial_die_info *child_pdi;
15770
15771 /* If this DIE (this DIE's specification, if any) has a parent, then
15772 we should not do this. We'll prepend the parent's fully qualified
15773 name when we create the partial symbol. */
15774
15775 real_pdi = struct_pdi;
15776 while (real_pdi->has_specification)
15777 real_pdi = find_partial_die (real_pdi->spec_offset,
15778 real_pdi->spec_is_dwz, cu);
15779
15780 if (real_pdi->die_parent != NULL)
15781 return;
15782
15783 for (child_pdi = struct_pdi->die_child;
15784 child_pdi != NULL;
15785 child_pdi = child_pdi->die_sibling)
15786 {
15787 if (child_pdi->tag == DW_TAG_subprogram
15788 && child_pdi->linkage_name != NULL)
15789 {
15790 char *actual_class_name
15791 = language_class_name_from_physname (cu->language_defn,
15792 child_pdi->linkage_name);
15793 if (actual_class_name != NULL)
15794 {
15795 struct_pdi->name
15796 = obstack_copy0 (&cu->objfile->objfile_obstack,
15797 actual_class_name,
15798 strlen (actual_class_name));
15799 xfree (actual_class_name);
15800 }
15801 break;
15802 }
15803 }
15804 }
15805
15806 /* Adjust PART_DIE before generating a symbol for it. This function
15807 may set the is_external flag or change the DIE's name. */
15808
15809 static void
15810 fixup_partial_die (struct partial_die_info *part_die,
15811 struct dwarf2_cu *cu)
15812 {
15813 /* Once we've fixed up a die, there's no point in doing so again.
15814 This also avoids a memory leak if we were to call
15815 guess_partial_die_structure_name multiple times. */
15816 if (part_die->fixup_called)
15817 return;
15818
15819 /* If we found a reference attribute and the DIE has no name, try
15820 to find a name in the referred to DIE. */
15821
15822 if (part_die->name == NULL && part_die->has_specification)
15823 {
15824 struct partial_die_info *spec_die;
15825
15826 spec_die = find_partial_die (part_die->spec_offset,
15827 part_die->spec_is_dwz, cu);
15828
15829 fixup_partial_die (spec_die, cu);
15830
15831 if (spec_die->name)
15832 {
15833 part_die->name = spec_die->name;
15834
15835 /* Copy DW_AT_external attribute if it is set. */
15836 if (spec_die->is_external)
15837 part_die->is_external = spec_die->is_external;
15838 }
15839 }
15840
15841 /* Set default names for some unnamed DIEs. */
15842
15843 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
15844 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
15845
15846 /* If there is no parent die to provide a namespace, and there are
15847 children, see if we can determine the namespace from their linkage
15848 name. */
15849 if (cu->language == language_cplus
15850 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
15851 && part_die->die_parent == NULL
15852 && part_die->has_children
15853 && (part_die->tag == DW_TAG_class_type
15854 || part_die->tag == DW_TAG_structure_type
15855 || part_die->tag == DW_TAG_union_type))
15856 guess_partial_die_structure_name (part_die, cu);
15857
15858 /* GCC might emit a nameless struct or union that has a linkage
15859 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
15860 if (part_die->name == NULL
15861 && (part_die->tag == DW_TAG_class_type
15862 || part_die->tag == DW_TAG_interface_type
15863 || part_die->tag == DW_TAG_structure_type
15864 || part_die->tag == DW_TAG_union_type)
15865 && part_die->linkage_name != NULL)
15866 {
15867 char *demangled;
15868
15869 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
15870 if (demangled)
15871 {
15872 const char *base;
15873
15874 /* Strip any leading namespaces/classes, keep only the base name.
15875 DW_AT_name for named DIEs does not contain the prefixes. */
15876 base = strrchr (demangled, ':');
15877 if (base && base > demangled && base[-1] == ':')
15878 base++;
15879 else
15880 base = demangled;
15881
15882 part_die->name = obstack_copy0 (&cu->objfile->objfile_obstack,
15883 base, strlen (base));
15884 xfree (demangled);
15885 }
15886 }
15887
15888 part_die->fixup_called = 1;
15889 }
15890
15891 /* Read an attribute value described by an attribute form. */
15892
15893 static const gdb_byte *
15894 read_attribute_value (const struct die_reader_specs *reader,
15895 struct attribute *attr, unsigned form,
15896 const gdb_byte *info_ptr)
15897 {
15898 struct dwarf2_cu *cu = reader->cu;
15899 bfd *abfd = reader->abfd;
15900 struct comp_unit_head *cu_header = &cu->header;
15901 unsigned int bytes_read;
15902 struct dwarf_block *blk;
15903
15904 attr->form = form;
15905 switch (form)
15906 {
15907 case DW_FORM_ref_addr:
15908 if (cu->header.version == 2)
15909 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
15910 else
15911 DW_UNSND (attr) = read_offset (abfd, info_ptr,
15912 &cu->header, &bytes_read);
15913 info_ptr += bytes_read;
15914 break;
15915 case DW_FORM_GNU_ref_alt:
15916 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
15917 info_ptr += bytes_read;
15918 break;
15919 case DW_FORM_addr:
15920 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
15921 info_ptr += bytes_read;
15922 break;
15923 case DW_FORM_block2:
15924 blk = dwarf_alloc_block (cu);
15925 blk->size = read_2_bytes (abfd, info_ptr);
15926 info_ptr += 2;
15927 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15928 info_ptr += blk->size;
15929 DW_BLOCK (attr) = blk;
15930 break;
15931 case DW_FORM_block4:
15932 blk = dwarf_alloc_block (cu);
15933 blk->size = read_4_bytes (abfd, info_ptr);
15934 info_ptr += 4;
15935 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15936 info_ptr += blk->size;
15937 DW_BLOCK (attr) = blk;
15938 break;
15939 case DW_FORM_data2:
15940 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
15941 info_ptr += 2;
15942 break;
15943 case DW_FORM_data4:
15944 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
15945 info_ptr += 4;
15946 break;
15947 case DW_FORM_data8:
15948 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
15949 info_ptr += 8;
15950 break;
15951 case DW_FORM_sec_offset:
15952 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
15953 info_ptr += bytes_read;
15954 break;
15955 case DW_FORM_string:
15956 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
15957 DW_STRING_IS_CANONICAL (attr) = 0;
15958 info_ptr += bytes_read;
15959 break;
15960 case DW_FORM_strp:
15961 if (!cu->per_cu->is_dwz)
15962 {
15963 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
15964 &bytes_read);
15965 DW_STRING_IS_CANONICAL (attr) = 0;
15966 info_ptr += bytes_read;
15967 break;
15968 }
15969 /* FALLTHROUGH */
15970 case DW_FORM_GNU_strp_alt:
15971 {
15972 struct dwz_file *dwz = dwarf2_get_dwz_file ();
15973 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
15974 &bytes_read);
15975
15976 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
15977 DW_STRING_IS_CANONICAL (attr) = 0;
15978 info_ptr += bytes_read;
15979 }
15980 break;
15981 case DW_FORM_exprloc:
15982 case DW_FORM_block:
15983 blk = dwarf_alloc_block (cu);
15984 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15985 info_ptr += bytes_read;
15986 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15987 info_ptr += blk->size;
15988 DW_BLOCK (attr) = blk;
15989 break;
15990 case DW_FORM_block1:
15991 blk = dwarf_alloc_block (cu);
15992 blk->size = read_1_byte (abfd, info_ptr);
15993 info_ptr += 1;
15994 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15995 info_ptr += blk->size;
15996 DW_BLOCK (attr) = blk;
15997 break;
15998 case DW_FORM_data1:
15999 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16000 info_ptr += 1;
16001 break;
16002 case DW_FORM_flag:
16003 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16004 info_ptr += 1;
16005 break;
16006 case DW_FORM_flag_present:
16007 DW_UNSND (attr) = 1;
16008 break;
16009 case DW_FORM_sdata:
16010 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16011 info_ptr += bytes_read;
16012 break;
16013 case DW_FORM_udata:
16014 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16015 info_ptr += bytes_read;
16016 break;
16017 case DW_FORM_ref1:
16018 DW_UNSND (attr) = (cu->header.offset.sect_off
16019 + read_1_byte (abfd, info_ptr));
16020 info_ptr += 1;
16021 break;
16022 case DW_FORM_ref2:
16023 DW_UNSND (attr) = (cu->header.offset.sect_off
16024 + read_2_bytes (abfd, info_ptr));
16025 info_ptr += 2;
16026 break;
16027 case DW_FORM_ref4:
16028 DW_UNSND (attr) = (cu->header.offset.sect_off
16029 + read_4_bytes (abfd, info_ptr));
16030 info_ptr += 4;
16031 break;
16032 case DW_FORM_ref8:
16033 DW_UNSND (attr) = (cu->header.offset.sect_off
16034 + read_8_bytes (abfd, info_ptr));
16035 info_ptr += 8;
16036 break;
16037 case DW_FORM_ref_sig8:
16038 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
16039 info_ptr += 8;
16040 break;
16041 case DW_FORM_ref_udata:
16042 DW_UNSND (attr) = (cu->header.offset.sect_off
16043 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
16044 info_ptr += bytes_read;
16045 break;
16046 case DW_FORM_indirect:
16047 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16048 info_ptr += bytes_read;
16049 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
16050 break;
16051 case DW_FORM_GNU_addr_index:
16052 if (reader->dwo_file == NULL)
16053 {
16054 /* For now flag a hard error.
16055 Later we can turn this into a complaint. */
16056 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16057 dwarf_form_name (form),
16058 bfd_get_filename (abfd));
16059 }
16060 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
16061 info_ptr += bytes_read;
16062 break;
16063 case DW_FORM_GNU_str_index:
16064 if (reader->dwo_file == NULL)
16065 {
16066 /* For now flag a hard error.
16067 Later we can turn this into a complaint if warranted. */
16068 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16069 dwarf_form_name (form),
16070 bfd_get_filename (abfd));
16071 }
16072 {
16073 ULONGEST str_index =
16074 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16075
16076 DW_STRING (attr) = read_str_index (reader, str_index);
16077 DW_STRING_IS_CANONICAL (attr) = 0;
16078 info_ptr += bytes_read;
16079 }
16080 break;
16081 default:
16082 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
16083 dwarf_form_name (form),
16084 bfd_get_filename (abfd));
16085 }
16086
16087 /* Super hack. */
16088 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
16089 attr->form = DW_FORM_GNU_ref_alt;
16090
16091 /* We have seen instances where the compiler tried to emit a byte
16092 size attribute of -1 which ended up being encoded as an unsigned
16093 0xffffffff. Although 0xffffffff is technically a valid size value,
16094 an object of this size seems pretty unlikely so we can relatively
16095 safely treat these cases as if the size attribute was invalid and
16096 treat them as zero by default. */
16097 if (attr->name == DW_AT_byte_size
16098 && form == DW_FORM_data4
16099 && DW_UNSND (attr) >= 0xffffffff)
16100 {
16101 complaint
16102 (&symfile_complaints,
16103 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
16104 hex_string (DW_UNSND (attr)));
16105 DW_UNSND (attr) = 0;
16106 }
16107
16108 return info_ptr;
16109 }
16110
16111 /* Read an attribute described by an abbreviated attribute. */
16112
16113 static const gdb_byte *
16114 read_attribute (const struct die_reader_specs *reader,
16115 struct attribute *attr, struct attr_abbrev *abbrev,
16116 const gdb_byte *info_ptr)
16117 {
16118 attr->name = abbrev->name;
16119 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
16120 }
16121
16122 /* Read dwarf information from a buffer. */
16123
16124 static unsigned int
16125 read_1_byte (bfd *abfd, const gdb_byte *buf)
16126 {
16127 return bfd_get_8 (abfd, buf);
16128 }
16129
16130 static int
16131 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
16132 {
16133 return bfd_get_signed_8 (abfd, buf);
16134 }
16135
16136 static unsigned int
16137 read_2_bytes (bfd *abfd, const gdb_byte *buf)
16138 {
16139 return bfd_get_16 (abfd, buf);
16140 }
16141
16142 static int
16143 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
16144 {
16145 return bfd_get_signed_16 (abfd, buf);
16146 }
16147
16148 static unsigned int
16149 read_4_bytes (bfd *abfd, const gdb_byte *buf)
16150 {
16151 return bfd_get_32 (abfd, buf);
16152 }
16153
16154 static int
16155 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
16156 {
16157 return bfd_get_signed_32 (abfd, buf);
16158 }
16159
16160 static ULONGEST
16161 read_8_bytes (bfd *abfd, const gdb_byte *buf)
16162 {
16163 return bfd_get_64 (abfd, buf);
16164 }
16165
16166 static CORE_ADDR
16167 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
16168 unsigned int *bytes_read)
16169 {
16170 struct comp_unit_head *cu_header = &cu->header;
16171 CORE_ADDR retval = 0;
16172
16173 if (cu_header->signed_addr_p)
16174 {
16175 switch (cu_header->addr_size)
16176 {
16177 case 2:
16178 retval = bfd_get_signed_16 (abfd, buf);
16179 break;
16180 case 4:
16181 retval = bfd_get_signed_32 (abfd, buf);
16182 break;
16183 case 8:
16184 retval = bfd_get_signed_64 (abfd, buf);
16185 break;
16186 default:
16187 internal_error (__FILE__, __LINE__,
16188 _("read_address: bad switch, signed [in module %s]"),
16189 bfd_get_filename (abfd));
16190 }
16191 }
16192 else
16193 {
16194 switch (cu_header->addr_size)
16195 {
16196 case 2:
16197 retval = bfd_get_16 (abfd, buf);
16198 break;
16199 case 4:
16200 retval = bfd_get_32 (abfd, buf);
16201 break;
16202 case 8:
16203 retval = bfd_get_64 (abfd, buf);
16204 break;
16205 default:
16206 internal_error (__FILE__, __LINE__,
16207 _("read_address: bad switch, "
16208 "unsigned [in module %s]"),
16209 bfd_get_filename (abfd));
16210 }
16211 }
16212
16213 *bytes_read = cu_header->addr_size;
16214 return retval;
16215 }
16216
16217 /* Read the initial length from a section. The (draft) DWARF 3
16218 specification allows the initial length to take up either 4 bytes
16219 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
16220 bytes describe the length and all offsets will be 8 bytes in length
16221 instead of 4.
16222
16223 An older, non-standard 64-bit format is also handled by this
16224 function. The older format in question stores the initial length
16225 as an 8-byte quantity without an escape value. Lengths greater
16226 than 2^32 aren't very common which means that the initial 4 bytes
16227 is almost always zero. Since a length value of zero doesn't make
16228 sense for the 32-bit format, this initial zero can be considered to
16229 be an escape value which indicates the presence of the older 64-bit
16230 format. As written, the code can't detect (old format) lengths
16231 greater than 4GB. If it becomes necessary to handle lengths
16232 somewhat larger than 4GB, we could allow other small values (such
16233 as the non-sensical values of 1, 2, and 3) to also be used as
16234 escape values indicating the presence of the old format.
16235
16236 The value returned via bytes_read should be used to increment the
16237 relevant pointer after calling read_initial_length().
16238
16239 [ Note: read_initial_length() and read_offset() are based on the
16240 document entitled "DWARF Debugging Information Format", revision
16241 3, draft 8, dated November 19, 2001. This document was obtained
16242 from:
16243
16244 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
16245
16246 This document is only a draft and is subject to change. (So beware.)
16247
16248 Details regarding the older, non-standard 64-bit format were
16249 determined empirically by examining 64-bit ELF files produced by
16250 the SGI toolchain on an IRIX 6.5 machine.
16251
16252 - Kevin, July 16, 2002
16253 ] */
16254
16255 static LONGEST
16256 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
16257 {
16258 LONGEST length = bfd_get_32 (abfd, buf);
16259
16260 if (length == 0xffffffff)
16261 {
16262 length = bfd_get_64 (abfd, buf + 4);
16263 *bytes_read = 12;
16264 }
16265 else if (length == 0)
16266 {
16267 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
16268 length = bfd_get_64 (abfd, buf);
16269 *bytes_read = 8;
16270 }
16271 else
16272 {
16273 *bytes_read = 4;
16274 }
16275
16276 return length;
16277 }
16278
16279 /* Cover function for read_initial_length.
16280 Returns the length of the object at BUF, and stores the size of the
16281 initial length in *BYTES_READ and stores the size that offsets will be in
16282 *OFFSET_SIZE.
16283 If the initial length size is not equivalent to that specified in
16284 CU_HEADER then issue a complaint.
16285 This is useful when reading non-comp-unit headers. */
16286
16287 static LONGEST
16288 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
16289 const struct comp_unit_head *cu_header,
16290 unsigned int *bytes_read,
16291 unsigned int *offset_size)
16292 {
16293 LONGEST length = read_initial_length (abfd, buf, bytes_read);
16294
16295 gdb_assert (cu_header->initial_length_size == 4
16296 || cu_header->initial_length_size == 8
16297 || cu_header->initial_length_size == 12);
16298
16299 if (cu_header->initial_length_size != *bytes_read)
16300 complaint (&symfile_complaints,
16301 _("intermixed 32-bit and 64-bit DWARF sections"));
16302
16303 *offset_size = (*bytes_read == 4) ? 4 : 8;
16304 return length;
16305 }
16306
16307 /* Read an offset from the data stream. The size of the offset is
16308 given by cu_header->offset_size. */
16309
16310 static LONGEST
16311 read_offset (bfd *abfd, const gdb_byte *buf,
16312 const struct comp_unit_head *cu_header,
16313 unsigned int *bytes_read)
16314 {
16315 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
16316
16317 *bytes_read = cu_header->offset_size;
16318 return offset;
16319 }
16320
16321 /* Read an offset from the data stream. */
16322
16323 static LONGEST
16324 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
16325 {
16326 LONGEST retval = 0;
16327
16328 switch (offset_size)
16329 {
16330 case 4:
16331 retval = bfd_get_32 (abfd, buf);
16332 break;
16333 case 8:
16334 retval = bfd_get_64 (abfd, buf);
16335 break;
16336 default:
16337 internal_error (__FILE__, __LINE__,
16338 _("read_offset_1: bad switch [in module %s]"),
16339 bfd_get_filename (abfd));
16340 }
16341
16342 return retval;
16343 }
16344
16345 static const gdb_byte *
16346 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
16347 {
16348 /* If the size of a host char is 8 bits, we can return a pointer
16349 to the buffer, otherwise we have to copy the data to a buffer
16350 allocated on the temporary obstack. */
16351 gdb_assert (HOST_CHAR_BIT == 8);
16352 return buf;
16353 }
16354
16355 static const char *
16356 read_direct_string (bfd *abfd, const gdb_byte *buf,
16357 unsigned int *bytes_read_ptr)
16358 {
16359 /* If the size of a host char is 8 bits, we can return a pointer
16360 to the string, otherwise we have to copy the string to a buffer
16361 allocated on the temporary obstack. */
16362 gdb_assert (HOST_CHAR_BIT == 8);
16363 if (*buf == '\0')
16364 {
16365 *bytes_read_ptr = 1;
16366 return NULL;
16367 }
16368 *bytes_read_ptr = strlen ((const char *) buf) + 1;
16369 return (const char *) buf;
16370 }
16371
16372 static const char *
16373 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
16374 {
16375 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
16376 if (dwarf2_per_objfile->str.buffer == NULL)
16377 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
16378 bfd_get_filename (abfd));
16379 if (str_offset >= dwarf2_per_objfile->str.size)
16380 error (_("DW_FORM_strp pointing outside of "
16381 ".debug_str section [in module %s]"),
16382 bfd_get_filename (abfd));
16383 gdb_assert (HOST_CHAR_BIT == 8);
16384 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
16385 return NULL;
16386 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
16387 }
16388
16389 /* Read a string at offset STR_OFFSET in the .debug_str section from
16390 the .dwz file DWZ. Throw an error if the offset is too large. If
16391 the string consists of a single NUL byte, return NULL; otherwise
16392 return a pointer to the string. */
16393
16394 static const char *
16395 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
16396 {
16397 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
16398
16399 if (dwz->str.buffer == NULL)
16400 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
16401 "section [in module %s]"),
16402 bfd_get_filename (dwz->dwz_bfd));
16403 if (str_offset >= dwz->str.size)
16404 error (_("DW_FORM_GNU_strp_alt pointing outside of "
16405 ".debug_str section [in module %s]"),
16406 bfd_get_filename (dwz->dwz_bfd));
16407 gdb_assert (HOST_CHAR_BIT == 8);
16408 if (dwz->str.buffer[str_offset] == '\0')
16409 return NULL;
16410 return (const char *) (dwz->str.buffer + str_offset);
16411 }
16412
16413 static const char *
16414 read_indirect_string (bfd *abfd, const gdb_byte *buf,
16415 const struct comp_unit_head *cu_header,
16416 unsigned int *bytes_read_ptr)
16417 {
16418 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
16419
16420 return read_indirect_string_at_offset (abfd, str_offset);
16421 }
16422
16423 static ULONGEST
16424 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
16425 unsigned int *bytes_read_ptr)
16426 {
16427 ULONGEST result;
16428 unsigned int num_read;
16429 int i, shift;
16430 unsigned char byte;
16431
16432 result = 0;
16433 shift = 0;
16434 num_read = 0;
16435 i = 0;
16436 while (1)
16437 {
16438 byte = bfd_get_8 (abfd, buf);
16439 buf++;
16440 num_read++;
16441 result |= ((ULONGEST) (byte & 127) << shift);
16442 if ((byte & 128) == 0)
16443 {
16444 break;
16445 }
16446 shift += 7;
16447 }
16448 *bytes_read_ptr = num_read;
16449 return result;
16450 }
16451
16452 static LONGEST
16453 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
16454 unsigned int *bytes_read_ptr)
16455 {
16456 LONGEST result;
16457 int i, shift, num_read;
16458 unsigned char byte;
16459
16460 result = 0;
16461 shift = 0;
16462 num_read = 0;
16463 i = 0;
16464 while (1)
16465 {
16466 byte = bfd_get_8 (abfd, buf);
16467 buf++;
16468 num_read++;
16469 result |= ((LONGEST) (byte & 127) << shift);
16470 shift += 7;
16471 if ((byte & 128) == 0)
16472 {
16473 break;
16474 }
16475 }
16476 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
16477 result |= -(((LONGEST) 1) << shift);
16478 *bytes_read_ptr = num_read;
16479 return result;
16480 }
16481
16482 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
16483 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
16484 ADDR_SIZE is the size of addresses from the CU header. */
16485
16486 static CORE_ADDR
16487 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
16488 {
16489 struct objfile *objfile = dwarf2_per_objfile->objfile;
16490 bfd *abfd = objfile->obfd;
16491 const gdb_byte *info_ptr;
16492
16493 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
16494 if (dwarf2_per_objfile->addr.buffer == NULL)
16495 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
16496 objfile_name (objfile));
16497 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
16498 error (_("DW_FORM_addr_index pointing outside of "
16499 ".debug_addr section [in module %s]"),
16500 objfile_name (objfile));
16501 info_ptr = (dwarf2_per_objfile->addr.buffer
16502 + addr_base + addr_index * addr_size);
16503 if (addr_size == 4)
16504 return bfd_get_32 (abfd, info_ptr);
16505 else
16506 return bfd_get_64 (abfd, info_ptr);
16507 }
16508
16509 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
16510
16511 static CORE_ADDR
16512 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
16513 {
16514 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
16515 }
16516
16517 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
16518
16519 static CORE_ADDR
16520 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
16521 unsigned int *bytes_read)
16522 {
16523 bfd *abfd = cu->objfile->obfd;
16524 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
16525
16526 return read_addr_index (cu, addr_index);
16527 }
16528
16529 /* Data structure to pass results from dwarf2_read_addr_index_reader
16530 back to dwarf2_read_addr_index. */
16531
16532 struct dwarf2_read_addr_index_data
16533 {
16534 ULONGEST addr_base;
16535 int addr_size;
16536 };
16537
16538 /* die_reader_func for dwarf2_read_addr_index. */
16539
16540 static void
16541 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
16542 const gdb_byte *info_ptr,
16543 struct die_info *comp_unit_die,
16544 int has_children,
16545 void *data)
16546 {
16547 struct dwarf2_cu *cu = reader->cu;
16548 struct dwarf2_read_addr_index_data *aidata =
16549 (struct dwarf2_read_addr_index_data *) data;
16550
16551 aidata->addr_base = cu->addr_base;
16552 aidata->addr_size = cu->header.addr_size;
16553 }
16554
16555 /* Given an index in .debug_addr, fetch the value.
16556 NOTE: This can be called during dwarf expression evaluation,
16557 long after the debug information has been read, and thus per_cu->cu
16558 may no longer exist. */
16559
16560 CORE_ADDR
16561 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
16562 unsigned int addr_index)
16563 {
16564 struct objfile *objfile = per_cu->objfile;
16565 struct dwarf2_cu *cu = per_cu->cu;
16566 ULONGEST addr_base;
16567 int addr_size;
16568
16569 /* This is intended to be called from outside this file. */
16570 dw2_setup (objfile);
16571
16572 /* We need addr_base and addr_size.
16573 If we don't have PER_CU->cu, we have to get it.
16574 Nasty, but the alternative is storing the needed info in PER_CU,
16575 which at this point doesn't seem justified: it's not clear how frequently
16576 it would get used and it would increase the size of every PER_CU.
16577 Entry points like dwarf2_per_cu_addr_size do a similar thing
16578 so we're not in uncharted territory here.
16579 Alas we need to be a bit more complicated as addr_base is contained
16580 in the DIE.
16581
16582 We don't need to read the entire CU(/TU).
16583 We just need the header and top level die.
16584
16585 IWBN to use the aging mechanism to let us lazily later discard the CU.
16586 For now we skip this optimization. */
16587
16588 if (cu != NULL)
16589 {
16590 addr_base = cu->addr_base;
16591 addr_size = cu->header.addr_size;
16592 }
16593 else
16594 {
16595 struct dwarf2_read_addr_index_data aidata;
16596
16597 /* Note: We can't use init_cutu_and_read_dies_simple here,
16598 we need addr_base. */
16599 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
16600 dwarf2_read_addr_index_reader, &aidata);
16601 addr_base = aidata.addr_base;
16602 addr_size = aidata.addr_size;
16603 }
16604
16605 return read_addr_index_1 (addr_index, addr_base, addr_size);
16606 }
16607
16608 /* Given a DW_FORM_GNU_str_index, fetch the string.
16609 This is only used by the Fission support. */
16610
16611 static const char *
16612 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
16613 {
16614 struct objfile *objfile = dwarf2_per_objfile->objfile;
16615 const char *objf_name = objfile_name (objfile);
16616 bfd *abfd = objfile->obfd;
16617 struct dwarf2_cu *cu = reader->cu;
16618 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
16619 struct dwarf2_section_info *str_offsets_section =
16620 &reader->dwo_file->sections.str_offsets;
16621 const gdb_byte *info_ptr;
16622 ULONGEST str_offset;
16623 static const char form_name[] = "DW_FORM_GNU_str_index";
16624
16625 dwarf2_read_section (objfile, str_section);
16626 dwarf2_read_section (objfile, str_offsets_section);
16627 if (str_section->buffer == NULL)
16628 error (_("%s used without .debug_str.dwo section"
16629 " in CU at offset 0x%lx [in module %s]"),
16630 form_name, (long) cu->header.offset.sect_off, objf_name);
16631 if (str_offsets_section->buffer == NULL)
16632 error (_("%s used without .debug_str_offsets.dwo section"
16633 " in CU at offset 0x%lx [in module %s]"),
16634 form_name, (long) cu->header.offset.sect_off, objf_name);
16635 if (str_index * cu->header.offset_size >= str_offsets_section->size)
16636 error (_("%s pointing outside of .debug_str_offsets.dwo"
16637 " section in CU at offset 0x%lx [in module %s]"),
16638 form_name, (long) cu->header.offset.sect_off, objf_name);
16639 info_ptr = (str_offsets_section->buffer
16640 + str_index * cu->header.offset_size);
16641 if (cu->header.offset_size == 4)
16642 str_offset = bfd_get_32 (abfd, info_ptr);
16643 else
16644 str_offset = bfd_get_64 (abfd, info_ptr);
16645 if (str_offset >= str_section->size)
16646 error (_("Offset from %s pointing outside of"
16647 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
16648 form_name, (long) cu->header.offset.sect_off, objf_name);
16649 return (const char *) (str_section->buffer + str_offset);
16650 }
16651
16652 /* Return the length of an LEB128 number in BUF. */
16653
16654 static int
16655 leb128_size (const gdb_byte *buf)
16656 {
16657 const gdb_byte *begin = buf;
16658 gdb_byte byte;
16659
16660 while (1)
16661 {
16662 byte = *buf++;
16663 if ((byte & 128) == 0)
16664 return buf - begin;
16665 }
16666 }
16667
16668 static void
16669 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
16670 {
16671 switch (lang)
16672 {
16673 case DW_LANG_C89:
16674 case DW_LANG_C99:
16675 case DW_LANG_C:
16676 case DW_LANG_UPC:
16677 cu->language = language_c;
16678 break;
16679 case DW_LANG_C_plus_plus:
16680 cu->language = language_cplus;
16681 break;
16682 case DW_LANG_D:
16683 cu->language = language_d;
16684 break;
16685 case DW_LANG_Fortran77:
16686 case DW_LANG_Fortran90:
16687 case DW_LANG_Fortran95:
16688 cu->language = language_fortran;
16689 break;
16690 case DW_LANG_Go:
16691 cu->language = language_go;
16692 break;
16693 case DW_LANG_Mips_Assembler:
16694 cu->language = language_asm;
16695 break;
16696 case DW_LANG_Java:
16697 cu->language = language_java;
16698 break;
16699 case DW_LANG_Ada83:
16700 case DW_LANG_Ada95:
16701 cu->language = language_ada;
16702 break;
16703 case DW_LANG_Modula2:
16704 cu->language = language_m2;
16705 break;
16706 case DW_LANG_Pascal83:
16707 cu->language = language_pascal;
16708 break;
16709 case DW_LANG_ObjC:
16710 cu->language = language_objc;
16711 break;
16712 case DW_LANG_Cobol74:
16713 case DW_LANG_Cobol85:
16714 default:
16715 cu->language = language_minimal;
16716 break;
16717 }
16718 cu->language_defn = language_def (cu->language);
16719 }
16720
16721 /* Return the named attribute or NULL if not there. */
16722
16723 static struct attribute *
16724 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
16725 {
16726 for (;;)
16727 {
16728 unsigned int i;
16729 struct attribute *spec = NULL;
16730
16731 for (i = 0; i < die->num_attrs; ++i)
16732 {
16733 if (die->attrs[i].name == name)
16734 return &die->attrs[i];
16735 if (die->attrs[i].name == DW_AT_specification
16736 || die->attrs[i].name == DW_AT_abstract_origin)
16737 spec = &die->attrs[i];
16738 }
16739
16740 if (!spec)
16741 break;
16742
16743 die = follow_die_ref (die, spec, &cu);
16744 }
16745
16746 return NULL;
16747 }
16748
16749 /* Return the named attribute or NULL if not there,
16750 but do not follow DW_AT_specification, etc.
16751 This is for use in contexts where we're reading .debug_types dies.
16752 Following DW_AT_specification, DW_AT_abstract_origin will take us
16753 back up the chain, and we want to go down. */
16754
16755 static struct attribute *
16756 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
16757 {
16758 unsigned int i;
16759
16760 for (i = 0; i < die->num_attrs; ++i)
16761 if (die->attrs[i].name == name)
16762 return &die->attrs[i];
16763
16764 return NULL;
16765 }
16766
16767 /* Return non-zero iff the attribute NAME is defined for the given DIE,
16768 and holds a non-zero value. This function should only be used for
16769 DW_FORM_flag or DW_FORM_flag_present attributes. */
16770
16771 static int
16772 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
16773 {
16774 struct attribute *attr = dwarf2_attr (die, name, cu);
16775
16776 return (attr && DW_UNSND (attr));
16777 }
16778
16779 static int
16780 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
16781 {
16782 /* A DIE is a declaration if it has a DW_AT_declaration attribute
16783 which value is non-zero. However, we have to be careful with
16784 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
16785 (via dwarf2_flag_true_p) follows this attribute. So we may
16786 end up accidently finding a declaration attribute that belongs
16787 to a different DIE referenced by the specification attribute,
16788 even though the given DIE does not have a declaration attribute. */
16789 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
16790 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
16791 }
16792
16793 /* Return the die giving the specification for DIE, if there is
16794 one. *SPEC_CU is the CU containing DIE on input, and the CU
16795 containing the return value on output. If there is no
16796 specification, but there is an abstract origin, that is
16797 returned. */
16798
16799 static struct die_info *
16800 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
16801 {
16802 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
16803 *spec_cu);
16804
16805 if (spec_attr == NULL)
16806 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
16807
16808 if (spec_attr == NULL)
16809 return NULL;
16810 else
16811 return follow_die_ref (die, spec_attr, spec_cu);
16812 }
16813
16814 /* Free the line_header structure *LH, and any arrays and strings it
16815 refers to.
16816 NOTE: This is also used as a "cleanup" function. */
16817
16818 static void
16819 free_line_header (struct line_header *lh)
16820 {
16821 if (lh->standard_opcode_lengths)
16822 xfree (lh->standard_opcode_lengths);
16823
16824 /* Remember that all the lh->file_names[i].name pointers are
16825 pointers into debug_line_buffer, and don't need to be freed. */
16826 if (lh->file_names)
16827 xfree (lh->file_names);
16828
16829 /* Similarly for the include directory names. */
16830 if (lh->include_dirs)
16831 xfree (lh->include_dirs);
16832
16833 xfree (lh);
16834 }
16835
16836 /* Add an entry to LH's include directory table. */
16837
16838 static void
16839 add_include_dir (struct line_header *lh, const char *include_dir)
16840 {
16841 /* Grow the array if necessary. */
16842 if (lh->include_dirs_size == 0)
16843 {
16844 lh->include_dirs_size = 1; /* for testing */
16845 lh->include_dirs = xmalloc (lh->include_dirs_size
16846 * sizeof (*lh->include_dirs));
16847 }
16848 else if (lh->num_include_dirs >= lh->include_dirs_size)
16849 {
16850 lh->include_dirs_size *= 2;
16851 lh->include_dirs = xrealloc (lh->include_dirs,
16852 (lh->include_dirs_size
16853 * sizeof (*lh->include_dirs)));
16854 }
16855
16856 lh->include_dirs[lh->num_include_dirs++] = include_dir;
16857 }
16858
16859 /* Add an entry to LH's file name table. */
16860
16861 static void
16862 add_file_name (struct line_header *lh,
16863 const char *name,
16864 unsigned int dir_index,
16865 unsigned int mod_time,
16866 unsigned int length)
16867 {
16868 struct file_entry *fe;
16869
16870 /* Grow the array if necessary. */
16871 if (lh->file_names_size == 0)
16872 {
16873 lh->file_names_size = 1; /* for testing */
16874 lh->file_names = xmalloc (lh->file_names_size
16875 * sizeof (*lh->file_names));
16876 }
16877 else if (lh->num_file_names >= lh->file_names_size)
16878 {
16879 lh->file_names_size *= 2;
16880 lh->file_names = xrealloc (lh->file_names,
16881 (lh->file_names_size
16882 * sizeof (*lh->file_names)));
16883 }
16884
16885 fe = &lh->file_names[lh->num_file_names++];
16886 fe->name = name;
16887 fe->dir_index = dir_index;
16888 fe->mod_time = mod_time;
16889 fe->length = length;
16890 fe->included_p = 0;
16891 fe->symtab = NULL;
16892 }
16893
16894 /* A convenience function to find the proper .debug_line section for a
16895 CU. */
16896
16897 static struct dwarf2_section_info *
16898 get_debug_line_section (struct dwarf2_cu *cu)
16899 {
16900 struct dwarf2_section_info *section;
16901
16902 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
16903 DWO file. */
16904 if (cu->dwo_unit && cu->per_cu->is_debug_types)
16905 section = &cu->dwo_unit->dwo_file->sections.line;
16906 else if (cu->per_cu->is_dwz)
16907 {
16908 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16909
16910 section = &dwz->line;
16911 }
16912 else
16913 section = &dwarf2_per_objfile->line;
16914
16915 return section;
16916 }
16917
16918 /* Read the statement program header starting at OFFSET in
16919 .debug_line, or .debug_line.dwo. Return a pointer
16920 to a struct line_header, allocated using xmalloc.
16921
16922 NOTE: the strings in the include directory and file name tables of
16923 the returned object point into the dwarf line section buffer,
16924 and must not be freed. */
16925
16926 static struct line_header *
16927 dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
16928 {
16929 struct cleanup *back_to;
16930 struct line_header *lh;
16931 const gdb_byte *line_ptr;
16932 unsigned int bytes_read, offset_size;
16933 int i;
16934 const char *cur_dir, *cur_file;
16935 struct dwarf2_section_info *section;
16936 bfd *abfd;
16937
16938 section = get_debug_line_section (cu);
16939 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
16940 if (section->buffer == NULL)
16941 {
16942 if (cu->dwo_unit && cu->per_cu->is_debug_types)
16943 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
16944 else
16945 complaint (&symfile_complaints, _("missing .debug_line section"));
16946 return 0;
16947 }
16948
16949 /* We can't do this until we know the section is non-empty.
16950 Only then do we know we have such a section. */
16951 abfd = get_section_bfd_owner (section);
16952
16953 /* Make sure that at least there's room for the total_length field.
16954 That could be 12 bytes long, but we're just going to fudge that. */
16955 if (offset + 4 >= section->size)
16956 {
16957 dwarf2_statement_list_fits_in_line_number_section_complaint ();
16958 return 0;
16959 }
16960
16961 lh = xmalloc (sizeof (*lh));
16962 memset (lh, 0, sizeof (*lh));
16963 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
16964 (void *) lh);
16965
16966 line_ptr = section->buffer + offset;
16967
16968 /* Read in the header. */
16969 lh->total_length =
16970 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
16971 &bytes_read, &offset_size);
16972 line_ptr += bytes_read;
16973 if (line_ptr + lh->total_length > (section->buffer + section->size))
16974 {
16975 dwarf2_statement_list_fits_in_line_number_section_complaint ();
16976 do_cleanups (back_to);
16977 return 0;
16978 }
16979 lh->statement_program_end = line_ptr + lh->total_length;
16980 lh->version = read_2_bytes (abfd, line_ptr);
16981 line_ptr += 2;
16982 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
16983 line_ptr += offset_size;
16984 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
16985 line_ptr += 1;
16986 if (lh->version >= 4)
16987 {
16988 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
16989 line_ptr += 1;
16990 }
16991 else
16992 lh->maximum_ops_per_instruction = 1;
16993
16994 if (lh->maximum_ops_per_instruction == 0)
16995 {
16996 lh->maximum_ops_per_instruction = 1;
16997 complaint (&symfile_complaints,
16998 _("invalid maximum_ops_per_instruction "
16999 "in `.debug_line' section"));
17000 }
17001
17002 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
17003 line_ptr += 1;
17004 lh->line_base = read_1_signed_byte (abfd, line_ptr);
17005 line_ptr += 1;
17006 lh->line_range = read_1_byte (abfd, line_ptr);
17007 line_ptr += 1;
17008 lh->opcode_base = read_1_byte (abfd, line_ptr);
17009 line_ptr += 1;
17010 lh->standard_opcode_lengths
17011 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
17012
17013 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
17014 for (i = 1; i < lh->opcode_base; ++i)
17015 {
17016 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
17017 line_ptr += 1;
17018 }
17019
17020 /* Read directory table. */
17021 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17022 {
17023 line_ptr += bytes_read;
17024 add_include_dir (lh, cur_dir);
17025 }
17026 line_ptr += bytes_read;
17027
17028 /* Read file name table. */
17029 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17030 {
17031 unsigned int dir_index, mod_time, length;
17032
17033 line_ptr += bytes_read;
17034 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17035 line_ptr += bytes_read;
17036 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17037 line_ptr += bytes_read;
17038 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17039 line_ptr += bytes_read;
17040
17041 add_file_name (lh, cur_file, dir_index, mod_time, length);
17042 }
17043 line_ptr += bytes_read;
17044 lh->statement_program_start = line_ptr;
17045
17046 if (line_ptr > (section->buffer + section->size))
17047 complaint (&symfile_complaints,
17048 _("line number info header doesn't "
17049 "fit in `.debug_line' section"));
17050
17051 discard_cleanups (back_to);
17052 return lh;
17053 }
17054
17055 /* Subroutine of dwarf_decode_lines to simplify it.
17056 Return the file name of the psymtab for included file FILE_INDEX
17057 in line header LH of PST.
17058 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17059 If space for the result is malloc'd, it will be freed by a cleanup.
17060 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
17061
17062 The function creates dangling cleanup registration. */
17063
17064 static const char *
17065 psymtab_include_file_name (const struct line_header *lh, int file_index,
17066 const struct partial_symtab *pst,
17067 const char *comp_dir)
17068 {
17069 const struct file_entry fe = lh->file_names [file_index];
17070 const char *include_name = fe.name;
17071 const char *include_name_to_compare = include_name;
17072 const char *dir_name = NULL;
17073 const char *pst_filename;
17074 char *copied_name = NULL;
17075 int file_is_pst;
17076
17077 if (fe.dir_index)
17078 dir_name = lh->include_dirs[fe.dir_index - 1];
17079
17080 if (!IS_ABSOLUTE_PATH (include_name)
17081 && (dir_name != NULL || comp_dir != NULL))
17082 {
17083 /* Avoid creating a duplicate psymtab for PST.
17084 We do this by comparing INCLUDE_NAME and PST_FILENAME.
17085 Before we do the comparison, however, we need to account
17086 for DIR_NAME and COMP_DIR.
17087 First prepend dir_name (if non-NULL). If we still don't
17088 have an absolute path prepend comp_dir (if non-NULL).
17089 However, the directory we record in the include-file's
17090 psymtab does not contain COMP_DIR (to match the
17091 corresponding symtab(s)).
17092
17093 Example:
17094
17095 bash$ cd /tmp
17096 bash$ gcc -g ./hello.c
17097 include_name = "hello.c"
17098 dir_name = "."
17099 DW_AT_comp_dir = comp_dir = "/tmp"
17100 DW_AT_name = "./hello.c" */
17101
17102 if (dir_name != NULL)
17103 {
17104 char *tem = concat (dir_name, SLASH_STRING,
17105 include_name, (char *)NULL);
17106
17107 make_cleanup (xfree, tem);
17108 include_name = tem;
17109 include_name_to_compare = include_name;
17110 }
17111 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
17112 {
17113 char *tem = concat (comp_dir, SLASH_STRING,
17114 include_name, (char *)NULL);
17115
17116 make_cleanup (xfree, tem);
17117 include_name_to_compare = tem;
17118 }
17119 }
17120
17121 pst_filename = pst->filename;
17122 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
17123 {
17124 copied_name = concat (pst->dirname, SLASH_STRING,
17125 pst_filename, (char *)NULL);
17126 pst_filename = copied_name;
17127 }
17128
17129 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
17130
17131 if (copied_name != NULL)
17132 xfree (copied_name);
17133
17134 if (file_is_pst)
17135 return NULL;
17136 return include_name;
17137 }
17138
17139 /* Ignore this record_line request. */
17140
17141 static void
17142 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
17143 {
17144 return;
17145 }
17146
17147 /* Subroutine of dwarf_decode_lines to simplify it.
17148 Process the line number information in LH. */
17149
17150 static void
17151 dwarf_decode_lines_1 (struct line_header *lh, const char *comp_dir,
17152 struct dwarf2_cu *cu, struct partial_symtab *pst)
17153 {
17154 const gdb_byte *line_ptr, *extended_end;
17155 const gdb_byte *line_end;
17156 unsigned int bytes_read, extended_len;
17157 unsigned char op_code, extended_op, adj_opcode;
17158 CORE_ADDR baseaddr;
17159 struct objfile *objfile = cu->objfile;
17160 bfd *abfd = objfile->obfd;
17161 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17162 const int decode_for_pst_p = (pst != NULL);
17163 struct subfile *last_subfile = NULL;
17164 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
17165 = record_line;
17166
17167 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
17168
17169 line_ptr = lh->statement_program_start;
17170 line_end = lh->statement_program_end;
17171
17172 /* Read the statement sequences until there's nothing left. */
17173 while (line_ptr < line_end)
17174 {
17175 /* state machine registers */
17176 CORE_ADDR address = 0;
17177 unsigned int file = 1;
17178 unsigned int line = 1;
17179 unsigned int column = 0;
17180 int is_stmt = lh->default_is_stmt;
17181 int basic_block = 0;
17182 int end_sequence = 0;
17183 CORE_ADDR addr;
17184 unsigned char op_index = 0;
17185
17186 if (!decode_for_pst_p && lh->num_file_names >= file)
17187 {
17188 /* Start a subfile for the current file of the state machine. */
17189 /* lh->include_dirs and lh->file_names are 0-based, but the
17190 directory and file name numbers in the statement program
17191 are 1-based. */
17192 struct file_entry *fe = &lh->file_names[file - 1];
17193 const char *dir = NULL;
17194
17195 if (fe->dir_index)
17196 dir = lh->include_dirs[fe->dir_index - 1];
17197
17198 dwarf2_start_subfile (fe->name, dir, comp_dir);
17199 }
17200
17201 /* Decode the table. */
17202 while (!end_sequence)
17203 {
17204 op_code = read_1_byte (abfd, line_ptr);
17205 line_ptr += 1;
17206 if (line_ptr > line_end)
17207 {
17208 dwarf2_debug_line_missing_end_sequence_complaint ();
17209 break;
17210 }
17211
17212 if (op_code >= lh->opcode_base)
17213 {
17214 /* Special operand. */
17215 adj_opcode = op_code - lh->opcode_base;
17216 address += (((op_index + (adj_opcode / lh->line_range))
17217 / lh->maximum_ops_per_instruction)
17218 * lh->minimum_instruction_length);
17219 op_index = ((op_index + (adj_opcode / lh->line_range))
17220 % lh->maximum_ops_per_instruction);
17221 line += lh->line_base + (adj_opcode % lh->line_range);
17222 if (lh->num_file_names < file || file == 0)
17223 dwarf2_debug_line_missing_file_complaint ();
17224 /* For now we ignore lines not starting on an
17225 instruction boundary. */
17226 else if (op_index == 0)
17227 {
17228 lh->file_names[file - 1].included_p = 1;
17229 if (!decode_for_pst_p && is_stmt)
17230 {
17231 if (last_subfile != current_subfile)
17232 {
17233 addr = gdbarch_addr_bits_remove (gdbarch, address);
17234 if (last_subfile)
17235 (*p_record_line) (last_subfile, 0, addr);
17236 last_subfile = current_subfile;
17237 }
17238 /* Append row to matrix using current values. */
17239 addr = gdbarch_addr_bits_remove (gdbarch, address);
17240 (*p_record_line) (current_subfile, line, addr);
17241 }
17242 }
17243 basic_block = 0;
17244 }
17245 else switch (op_code)
17246 {
17247 case DW_LNS_extended_op:
17248 extended_len = read_unsigned_leb128 (abfd, line_ptr,
17249 &bytes_read);
17250 line_ptr += bytes_read;
17251 extended_end = line_ptr + extended_len;
17252 extended_op = read_1_byte (abfd, line_ptr);
17253 line_ptr += 1;
17254 switch (extended_op)
17255 {
17256 case DW_LNE_end_sequence:
17257 p_record_line = record_line;
17258 end_sequence = 1;
17259 break;
17260 case DW_LNE_set_address:
17261 address = read_address (abfd, line_ptr, cu, &bytes_read);
17262
17263 if (address == 0 && !dwarf2_per_objfile->has_section_at_zero)
17264 {
17265 /* This line table is for a function which has been
17266 GCd by the linker. Ignore it. PR gdb/12528 */
17267
17268 long line_offset
17269 = line_ptr - get_debug_line_section (cu)->buffer;
17270
17271 complaint (&symfile_complaints,
17272 _(".debug_line address at offset 0x%lx is 0 "
17273 "[in module %s]"),
17274 line_offset, objfile_name (objfile));
17275 p_record_line = noop_record_line;
17276 }
17277
17278 op_index = 0;
17279 line_ptr += bytes_read;
17280 address += baseaddr;
17281 break;
17282 case DW_LNE_define_file:
17283 {
17284 const char *cur_file;
17285 unsigned int dir_index, mod_time, length;
17286
17287 cur_file = read_direct_string (abfd, line_ptr,
17288 &bytes_read);
17289 line_ptr += bytes_read;
17290 dir_index =
17291 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17292 line_ptr += bytes_read;
17293 mod_time =
17294 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17295 line_ptr += bytes_read;
17296 length =
17297 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17298 line_ptr += bytes_read;
17299 add_file_name (lh, cur_file, dir_index, mod_time, length);
17300 }
17301 break;
17302 case DW_LNE_set_discriminator:
17303 /* The discriminator is not interesting to the debugger;
17304 just ignore it. */
17305 line_ptr = extended_end;
17306 break;
17307 default:
17308 complaint (&symfile_complaints,
17309 _("mangled .debug_line section"));
17310 return;
17311 }
17312 /* Make sure that we parsed the extended op correctly. If e.g.
17313 we expected a different address size than the producer used,
17314 we may have read the wrong number of bytes. */
17315 if (line_ptr != extended_end)
17316 {
17317 complaint (&symfile_complaints,
17318 _("mangled .debug_line section"));
17319 return;
17320 }
17321 break;
17322 case DW_LNS_copy:
17323 if (lh->num_file_names < file || file == 0)
17324 dwarf2_debug_line_missing_file_complaint ();
17325 else
17326 {
17327 lh->file_names[file - 1].included_p = 1;
17328 if (!decode_for_pst_p && is_stmt)
17329 {
17330 if (last_subfile != current_subfile)
17331 {
17332 addr = gdbarch_addr_bits_remove (gdbarch, address);
17333 if (last_subfile)
17334 (*p_record_line) (last_subfile, 0, addr);
17335 last_subfile = current_subfile;
17336 }
17337 addr = gdbarch_addr_bits_remove (gdbarch, address);
17338 (*p_record_line) (current_subfile, line, addr);
17339 }
17340 }
17341 basic_block = 0;
17342 break;
17343 case DW_LNS_advance_pc:
17344 {
17345 CORE_ADDR adjust
17346 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17347
17348 address += (((op_index + adjust)
17349 / lh->maximum_ops_per_instruction)
17350 * lh->minimum_instruction_length);
17351 op_index = ((op_index + adjust)
17352 % lh->maximum_ops_per_instruction);
17353 line_ptr += bytes_read;
17354 }
17355 break;
17356 case DW_LNS_advance_line:
17357 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
17358 line_ptr += bytes_read;
17359 break;
17360 case DW_LNS_set_file:
17361 {
17362 /* The arrays lh->include_dirs and lh->file_names are
17363 0-based, but the directory and file name numbers in
17364 the statement program are 1-based. */
17365 struct file_entry *fe;
17366 const char *dir = NULL;
17367
17368 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17369 line_ptr += bytes_read;
17370 if (lh->num_file_names < file || file == 0)
17371 dwarf2_debug_line_missing_file_complaint ();
17372 else
17373 {
17374 fe = &lh->file_names[file - 1];
17375 if (fe->dir_index)
17376 dir = lh->include_dirs[fe->dir_index - 1];
17377 if (!decode_for_pst_p)
17378 {
17379 last_subfile = current_subfile;
17380 dwarf2_start_subfile (fe->name, dir, comp_dir);
17381 }
17382 }
17383 }
17384 break;
17385 case DW_LNS_set_column:
17386 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17387 line_ptr += bytes_read;
17388 break;
17389 case DW_LNS_negate_stmt:
17390 is_stmt = (!is_stmt);
17391 break;
17392 case DW_LNS_set_basic_block:
17393 basic_block = 1;
17394 break;
17395 /* Add to the address register of the state machine the
17396 address increment value corresponding to special opcode
17397 255. I.e., this value is scaled by the minimum
17398 instruction length since special opcode 255 would have
17399 scaled the increment. */
17400 case DW_LNS_const_add_pc:
17401 {
17402 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
17403
17404 address += (((op_index + adjust)
17405 / lh->maximum_ops_per_instruction)
17406 * lh->minimum_instruction_length);
17407 op_index = ((op_index + adjust)
17408 % lh->maximum_ops_per_instruction);
17409 }
17410 break;
17411 case DW_LNS_fixed_advance_pc:
17412 address += read_2_bytes (abfd, line_ptr);
17413 op_index = 0;
17414 line_ptr += 2;
17415 break;
17416 default:
17417 {
17418 /* Unknown standard opcode, ignore it. */
17419 int i;
17420
17421 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
17422 {
17423 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17424 line_ptr += bytes_read;
17425 }
17426 }
17427 }
17428 }
17429 if (lh->num_file_names < file || file == 0)
17430 dwarf2_debug_line_missing_file_complaint ();
17431 else
17432 {
17433 lh->file_names[file - 1].included_p = 1;
17434 if (!decode_for_pst_p)
17435 {
17436 addr = gdbarch_addr_bits_remove (gdbarch, address);
17437 (*p_record_line) (current_subfile, 0, addr);
17438 }
17439 }
17440 }
17441 }
17442
17443 /* Decode the Line Number Program (LNP) for the given line_header
17444 structure and CU. The actual information extracted and the type
17445 of structures created from the LNP depends on the value of PST.
17446
17447 1. If PST is NULL, then this procedure uses the data from the program
17448 to create all necessary symbol tables, and their linetables.
17449
17450 2. If PST is not NULL, this procedure reads the program to determine
17451 the list of files included by the unit represented by PST, and
17452 builds all the associated partial symbol tables.
17453
17454 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17455 It is used for relative paths in the line table.
17456 NOTE: When processing partial symtabs (pst != NULL),
17457 comp_dir == pst->dirname.
17458
17459 NOTE: It is important that psymtabs have the same file name (via strcmp)
17460 as the corresponding symtab. Since COMP_DIR is not used in the name of the
17461 symtab we don't use it in the name of the psymtabs we create.
17462 E.g. expand_line_sal requires this when finding psymtabs to expand.
17463 A good testcase for this is mb-inline.exp. */
17464
17465 static void
17466 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
17467 struct dwarf2_cu *cu, struct partial_symtab *pst,
17468 int want_line_info)
17469 {
17470 struct objfile *objfile = cu->objfile;
17471 const int decode_for_pst_p = (pst != NULL);
17472 struct subfile *first_subfile = current_subfile;
17473
17474 if (want_line_info)
17475 dwarf_decode_lines_1 (lh, comp_dir, cu, pst);
17476
17477 if (decode_for_pst_p)
17478 {
17479 int file_index;
17480
17481 /* Now that we're done scanning the Line Header Program, we can
17482 create the psymtab of each included file. */
17483 for (file_index = 0; file_index < lh->num_file_names; file_index++)
17484 if (lh->file_names[file_index].included_p == 1)
17485 {
17486 const char *include_name =
17487 psymtab_include_file_name (lh, file_index, pst, comp_dir);
17488 if (include_name != NULL)
17489 dwarf2_create_include_psymtab (include_name, pst, objfile);
17490 }
17491 }
17492 else
17493 {
17494 /* Make sure a symtab is created for every file, even files
17495 which contain only variables (i.e. no code with associated
17496 line numbers). */
17497 int i;
17498
17499 for (i = 0; i < lh->num_file_names; i++)
17500 {
17501 const char *dir = NULL;
17502 struct file_entry *fe;
17503
17504 fe = &lh->file_names[i];
17505 if (fe->dir_index)
17506 dir = lh->include_dirs[fe->dir_index - 1];
17507 dwarf2_start_subfile (fe->name, dir, comp_dir);
17508
17509 /* Skip the main file; we don't need it, and it must be
17510 allocated last, so that it will show up before the
17511 non-primary symtabs in the objfile's symtab list. */
17512 if (current_subfile == first_subfile)
17513 continue;
17514
17515 if (current_subfile->symtab == NULL)
17516 current_subfile->symtab = allocate_symtab (current_subfile->name,
17517 objfile);
17518 fe->symtab = current_subfile->symtab;
17519 }
17520 }
17521 }
17522
17523 /* Start a subfile for DWARF. FILENAME is the name of the file and
17524 DIRNAME the name of the source directory which contains FILENAME
17525 or NULL if not known. COMP_DIR is the compilation directory for the
17526 linetable's compilation unit or NULL if not known.
17527 This routine tries to keep line numbers from identical absolute and
17528 relative file names in a common subfile.
17529
17530 Using the `list' example from the GDB testsuite, which resides in
17531 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
17532 of /srcdir/list0.c yields the following debugging information for list0.c:
17533
17534 DW_AT_name: /srcdir/list0.c
17535 DW_AT_comp_dir: /compdir
17536 files.files[0].name: list0.h
17537 files.files[0].dir: /srcdir
17538 files.files[1].name: list0.c
17539 files.files[1].dir: /srcdir
17540
17541 The line number information for list0.c has to end up in a single
17542 subfile, so that `break /srcdir/list0.c:1' works as expected.
17543 start_subfile will ensure that this happens provided that we pass the
17544 concatenation of files.files[1].dir and files.files[1].name as the
17545 subfile's name. */
17546
17547 static void
17548 dwarf2_start_subfile (const char *filename, const char *dirname,
17549 const char *comp_dir)
17550 {
17551 char *copy = NULL;
17552
17553 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
17554 `start_symtab' will always pass the contents of DW_AT_comp_dir as
17555 second argument to start_subfile. To be consistent, we do the
17556 same here. In order not to lose the line information directory,
17557 we concatenate it to the filename when it makes sense.
17558 Note that the Dwarf3 standard says (speaking of filenames in line
17559 information): ``The directory index is ignored for file names
17560 that represent full path names''. Thus ignoring dirname in the
17561 `else' branch below isn't an issue. */
17562
17563 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
17564 {
17565 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
17566 filename = copy;
17567 }
17568
17569 start_subfile (filename, comp_dir);
17570
17571 if (copy != NULL)
17572 xfree (copy);
17573 }
17574
17575 /* Start a symtab for DWARF.
17576 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
17577
17578 static void
17579 dwarf2_start_symtab (struct dwarf2_cu *cu,
17580 const char *name, const char *comp_dir, CORE_ADDR low_pc)
17581 {
17582 start_symtab (name, comp_dir, low_pc);
17583 record_debugformat ("DWARF 2");
17584 record_producer (cu->producer);
17585
17586 /* We assume that we're processing GCC output. */
17587 processing_gcc_compilation = 2;
17588
17589 cu->processing_has_namespace_info = 0;
17590 }
17591
17592 static void
17593 var_decode_location (struct attribute *attr, struct symbol *sym,
17594 struct dwarf2_cu *cu)
17595 {
17596 struct objfile *objfile = cu->objfile;
17597 struct comp_unit_head *cu_header = &cu->header;
17598
17599 /* NOTE drow/2003-01-30: There used to be a comment and some special
17600 code here to turn a symbol with DW_AT_external and a
17601 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
17602 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
17603 with some versions of binutils) where shared libraries could have
17604 relocations against symbols in their debug information - the
17605 minimal symbol would have the right address, but the debug info
17606 would not. It's no longer necessary, because we will explicitly
17607 apply relocations when we read in the debug information now. */
17608
17609 /* A DW_AT_location attribute with no contents indicates that a
17610 variable has been optimized away. */
17611 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
17612 {
17613 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
17614 return;
17615 }
17616
17617 /* Handle one degenerate form of location expression specially, to
17618 preserve GDB's previous behavior when section offsets are
17619 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
17620 then mark this symbol as LOC_STATIC. */
17621
17622 if (attr_form_is_block (attr)
17623 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
17624 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
17625 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
17626 && (DW_BLOCK (attr)->size
17627 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
17628 {
17629 unsigned int dummy;
17630
17631 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
17632 SYMBOL_VALUE_ADDRESS (sym) =
17633 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
17634 else
17635 SYMBOL_VALUE_ADDRESS (sym) =
17636 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
17637 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
17638 fixup_symbol_section (sym, objfile);
17639 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
17640 SYMBOL_SECTION (sym));
17641 return;
17642 }
17643
17644 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
17645 expression evaluator, and use LOC_COMPUTED only when necessary
17646 (i.e. when the value of a register or memory location is
17647 referenced, or a thread-local block, etc.). Then again, it might
17648 not be worthwhile. I'm assuming that it isn't unless performance
17649 or memory numbers show me otherwise. */
17650
17651 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
17652
17653 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
17654 cu->has_loclist = 1;
17655 }
17656
17657 /* Given a pointer to a DWARF information entry, figure out if we need
17658 to make a symbol table entry for it, and if so, create a new entry
17659 and return a pointer to it.
17660 If TYPE is NULL, determine symbol type from the die, otherwise
17661 used the passed type.
17662 If SPACE is not NULL, use it to hold the new symbol. If it is
17663 NULL, allocate a new symbol on the objfile's obstack. */
17664
17665 static struct symbol *
17666 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
17667 struct symbol *space)
17668 {
17669 struct objfile *objfile = cu->objfile;
17670 struct symbol *sym = NULL;
17671 const char *name;
17672 struct attribute *attr = NULL;
17673 struct attribute *attr2 = NULL;
17674 CORE_ADDR baseaddr;
17675 struct pending **list_to_add = NULL;
17676
17677 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
17678
17679 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
17680
17681 name = dwarf2_name (die, cu);
17682 if (name)
17683 {
17684 const char *linkagename;
17685 int suppress_add = 0;
17686
17687 if (space)
17688 sym = space;
17689 else
17690 sym = allocate_symbol (objfile);
17691 OBJSTAT (objfile, n_syms++);
17692
17693 /* Cache this symbol's name and the name's demangled form (if any). */
17694 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
17695 linkagename = dwarf2_physname (name, die, cu);
17696 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
17697
17698 /* Fortran does not have mangling standard and the mangling does differ
17699 between gfortran, iFort etc. */
17700 if (cu->language == language_fortran
17701 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
17702 symbol_set_demangled_name (&(sym->ginfo),
17703 dwarf2_full_name (name, die, cu),
17704 NULL);
17705
17706 /* Default assumptions.
17707 Use the passed type or decode it from the die. */
17708 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
17709 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
17710 if (type != NULL)
17711 SYMBOL_TYPE (sym) = type;
17712 else
17713 SYMBOL_TYPE (sym) = die_type (die, cu);
17714 attr = dwarf2_attr (die,
17715 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
17716 cu);
17717 if (attr)
17718 {
17719 SYMBOL_LINE (sym) = DW_UNSND (attr);
17720 }
17721
17722 attr = dwarf2_attr (die,
17723 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
17724 cu);
17725 if (attr)
17726 {
17727 int file_index = DW_UNSND (attr);
17728
17729 if (cu->line_header == NULL
17730 || file_index > cu->line_header->num_file_names)
17731 complaint (&symfile_complaints,
17732 _("file index out of range"));
17733 else if (file_index > 0)
17734 {
17735 struct file_entry *fe;
17736
17737 fe = &cu->line_header->file_names[file_index - 1];
17738 SYMBOL_SYMTAB (sym) = fe->symtab;
17739 }
17740 }
17741
17742 switch (die->tag)
17743 {
17744 case DW_TAG_label:
17745 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
17746 if (attr)
17747 SYMBOL_VALUE_ADDRESS (sym)
17748 = attr_value_as_address (attr) + baseaddr;
17749 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
17750 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
17751 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
17752 add_symbol_to_list (sym, cu->list_in_scope);
17753 break;
17754 case DW_TAG_subprogram:
17755 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
17756 finish_block. */
17757 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
17758 attr2 = dwarf2_attr (die, DW_AT_external, cu);
17759 if ((attr2 && (DW_UNSND (attr2) != 0))
17760 || cu->language == language_ada)
17761 {
17762 /* Subprograms marked external are stored as a global symbol.
17763 Ada subprograms, whether marked external or not, are always
17764 stored as a global symbol, because we want to be able to
17765 access them globally. For instance, we want to be able
17766 to break on a nested subprogram without having to
17767 specify the context. */
17768 list_to_add = &global_symbols;
17769 }
17770 else
17771 {
17772 list_to_add = cu->list_in_scope;
17773 }
17774 break;
17775 case DW_TAG_inlined_subroutine:
17776 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
17777 finish_block. */
17778 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
17779 SYMBOL_INLINED (sym) = 1;
17780 list_to_add = cu->list_in_scope;
17781 break;
17782 case DW_TAG_template_value_param:
17783 suppress_add = 1;
17784 /* Fall through. */
17785 case DW_TAG_constant:
17786 case DW_TAG_variable:
17787 case DW_TAG_member:
17788 /* Compilation with minimal debug info may result in
17789 variables with missing type entries. Change the
17790 misleading `void' type to something sensible. */
17791 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
17792 SYMBOL_TYPE (sym)
17793 = objfile_type (objfile)->nodebug_data_symbol;
17794
17795 attr = dwarf2_attr (die, DW_AT_const_value, cu);
17796 /* In the case of DW_TAG_member, we should only be called for
17797 static const members. */
17798 if (die->tag == DW_TAG_member)
17799 {
17800 /* dwarf2_add_field uses die_is_declaration,
17801 so we do the same. */
17802 gdb_assert (die_is_declaration (die, cu));
17803 gdb_assert (attr);
17804 }
17805 if (attr)
17806 {
17807 dwarf2_const_value (attr, sym, cu);
17808 attr2 = dwarf2_attr (die, DW_AT_external, cu);
17809 if (!suppress_add)
17810 {
17811 if (attr2 && (DW_UNSND (attr2) != 0))
17812 list_to_add = &global_symbols;
17813 else
17814 list_to_add = cu->list_in_scope;
17815 }
17816 break;
17817 }
17818 attr = dwarf2_attr (die, DW_AT_location, cu);
17819 if (attr)
17820 {
17821 var_decode_location (attr, sym, cu);
17822 attr2 = dwarf2_attr (die, DW_AT_external, cu);
17823
17824 /* Fortran explicitly imports any global symbols to the local
17825 scope by DW_TAG_common_block. */
17826 if (cu->language == language_fortran && die->parent
17827 && die->parent->tag == DW_TAG_common_block)
17828 attr2 = NULL;
17829
17830 if (SYMBOL_CLASS (sym) == LOC_STATIC
17831 && SYMBOL_VALUE_ADDRESS (sym) == 0
17832 && !dwarf2_per_objfile->has_section_at_zero)
17833 {
17834 /* When a static variable is eliminated by the linker,
17835 the corresponding debug information is not stripped
17836 out, but the variable address is set to null;
17837 do not add such variables into symbol table. */
17838 }
17839 else if (attr2 && (DW_UNSND (attr2) != 0))
17840 {
17841 /* Workaround gfortran PR debug/40040 - it uses
17842 DW_AT_location for variables in -fPIC libraries which may
17843 get overriden by other libraries/executable and get
17844 a different address. Resolve it by the minimal symbol
17845 which may come from inferior's executable using copy
17846 relocation. Make this workaround only for gfortran as for
17847 other compilers GDB cannot guess the minimal symbol
17848 Fortran mangling kind. */
17849 if (cu->language == language_fortran && die->parent
17850 && die->parent->tag == DW_TAG_module
17851 && cu->producer
17852 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
17853 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
17854
17855 /* A variable with DW_AT_external is never static,
17856 but it may be block-scoped. */
17857 list_to_add = (cu->list_in_scope == &file_symbols
17858 ? &global_symbols : cu->list_in_scope);
17859 }
17860 else
17861 list_to_add = cu->list_in_scope;
17862 }
17863 else
17864 {
17865 /* We do not know the address of this symbol.
17866 If it is an external symbol and we have type information
17867 for it, enter the symbol as a LOC_UNRESOLVED symbol.
17868 The address of the variable will then be determined from
17869 the minimal symbol table whenever the variable is
17870 referenced. */
17871 attr2 = dwarf2_attr (die, DW_AT_external, cu);
17872
17873 /* Fortran explicitly imports any global symbols to the local
17874 scope by DW_TAG_common_block. */
17875 if (cu->language == language_fortran && die->parent
17876 && die->parent->tag == DW_TAG_common_block)
17877 {
17878 /* SYMBOL_CLASS doesn't matter here because
17879 read_common_block is going to reset it. */
17880 if (!suppress_add)
17881 list_to_add = cu->list_in_scope;
17882 }
17883 else if (attr2 && (DW_UNSND (attr2) != 0)
17884 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
17885 {
17886 /* A variable with DW_AT_external is never static, but it
17887 may be block-scoped. */
17888 list_to_add = (cu->list_in_scope == &file_symbols
17889 ? &global_symbols : cu->list_in_scope);
17890
17891 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
17892 }
17893 else if (!die_is_declaration (die, cu))
17894 {
17895 /* Use the default LOC_OPTIMIZED_OUT class. */
17896 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
17897 if (!suppress_add)
17898 list_to_add = cu->list_in_scope;
17899 }
17900 }
17901 break;
17902 case DW_TAG_formal_parameter:
17903 /* If we are inside a function, mark this as an argument. If
17904 not, we might be looking at an argument to an inlined function
17905 when we do not have enough information to show inlined frames;
17906 pretend it's a local variable in that case so that the user can
17907 still see it. */
17908 if (context_stack_depth > 0
17909 && context_stack[context_stack_depth - 1].name != NULL)
17910 SYMBOL_IS_ARGUMENT (sym) = 1;
17911 attr = dwarf2_attr (die, DW_AT_location, cu);
17912 if (attr)
17913 {
17914 var_decode_location (attr, sym, cu);
17915 }
17916 attr = dwarf2_attr (die, DW_AT_const_value, cu);
17917 if (attr)
17918 {
17919 dwarf2_const_value (attr, sym, cu);
17920 }
17921
17922 list_to_add = cu->list_in_scope;
17923 break;
17924 case DW_TAG_unspecified_parameters:
17925 /* From varargs functions; gdb doesn't seem to have any
17926 interest in this information, so just ignore it for now.
17927 (FIXME?) */
17928 break;
17929 case DW_TAG_template_type_param:
17930 suppress_add = 1;
17931 /* Fall through. */
17932 case DW_TAG_class_type:
17933 case DW_TAG_interface_type:
17934 case DW_TAG_structure_type:
17935 case DW_TAG_union_type:
17936 case DW_TAG_set_type:
17937 case DW_TAG_enumeration_type:
17938 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
17939 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
17940
17941 {
17942 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
17943 really ever be static objects: otherwise, if you try
17944 to, say, break of a class's method and you're in a file
17945 which doesn't mention that class, it won't work unless
17946 the check for all static symbols in lookup_symbol_aux
17947 saves you. See the OtherFileClass tests in
17948 gdb.c++/namespace.exp. */
17949
17950 if (!suppress_add)
17951 {
17952 list_to_add = (cu->list_in_scope == &file_symbols
17953 && (cu->language == language_cplus
17954 || cu->language == language_java)
17955 ? &global_symbols : cu->list_in_scope);
17956
17957 /* The semantics of C++ state that "struct foo {
17958 ... }" also defines a typedef for "foo". A Java
17959 class declaration also defines a typedef for the
17960 class. */
17961 if (cu->language == language_cplus
17962 || cu->language == language_java
17963 || cu->language == language_ada)
17964 {
17965 /* The symbol's name is already allocated along
17966 with this objfile, so we don't need to
17967 duplicate it for the type. */
17968 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
17969 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
17970 }
17971 }
17972 }
17973 break;
17974 case DW_TAG_typedef:
17975 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
17976 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
17977 list_to_add = cu->list_in_scope;
17978 break;
17979 case DW_TAG_base_type:
17980 case DW_TAG_subrange_type:
17981 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
17982 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
17983 list_to_add = cu->list_in_scope;
17984 break;
17985 case DW_TAG_enumerator:
17986 attr = dwarf2_attr (die, DW_AT_const_value, cu);
17987 if (attr)
17988 {
17989 dwarf2_const_value (attr, sym, cu);
17990 }
17991 {
17992 /* NOTE: carlton/2003-11-10: See comment above in the
17993 DW_TAG_class_type, etc. block. */
17994
17995 list_to_add = (cu->list_in_scope == &file_symbols
17996 && (cu->language == language_cplus
17997 || cu->language == language_java)
17998 ? &global_symbols : cu->list_in_scope);
17999 }
18000 break;
18001 case DW_TAG_imported_declaration:
18002 case DW_TAG_namespace:
18003 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18004 list_to_add = &global_symbols;
18005 break;
18006 case DW_TAG_module:
18007 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18008 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
18009 list_to_add = &global_symbols;
18010 break;
18011 case DW_TAG_common_block:
18012 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
18013 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
18014 add_symbol_to_list (sym, cu->list_in_scope);
18015 break;
18016 default:
18017 /* Not a tag we recognize. Hopefully we aren't processing
18018 trash data, but since we must specifically ignore things
18019 we don't recognize, there is nothing else we should do at
18020 this point. */
18021 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
18022 dwarf_tag_name (die->tag));
18023 break;
18024 }
18025
18026 if (suppress_add)
18027 {
18028 sym->hash_next = objfile->template_symbols;
18029 objfile->template_symbols = sym;
18030 list_to_add = NULL;
18031 }
18032
18033 if (list_to_add != NULL)
18034 add_symbol_to_list (sym, list_to_add);
18035
18036 /* For the benefit of old versions of GCC, check for anonymous
18037 namespaces based on the demangled name. */
18038 if (!cu->processing_has_namespace_info
18039 && cu->language == language_cplus)
18040 cp_scan_for_anonymous_namespaces (sym, objfile);
18041 }
18042 return (sym);
18043 }
18044
18045 /* A wrapper for new_symbol_full that always allocates a new symbol. */
18046
18047 static struct symbol *
18048 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
18049 {
18050 return new_symbol_full (die, type, cu, NULL);
18051 }
18052
18053 /* Given an attr with a DW_FORM_dataN value in host byte order,
18054 zero-extend it as appropriate for the symbol's type. The DWARF
18055 standard (v4) is not entirely clear about the meaning of using
18056 DW_FORM_dataN for a constant with a signed type, where the type is
18057 wider than the data. The conclusion of a discussion on the DWARF
18058 list was that this is unspecified. We choose to always zero-extend
18059 because that is the interpretation long in use by GCC. */
18060
18061 static gdb_byte *
18062 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
18063 struct dwarf2_cu *cu, LONGEST *value, int bits)
18064 {
18065 struct objfile *objfile = cu->objfile;
18066 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
18067 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
18068 LONGEST l = DW_UNSND (attr);
18069
18070 if (bits < sizeof (*value) * 8)
18071 {
18072 l &= ((LONGEST) 1 << bits) - 1;
18073 *value = l;
18074 }
18075 else if (bits == sizeof (*value) * 8)
18076 *value = l;
18077 else
18078 {
18079 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
18080 store_unsigned_integer (bytes, bits / 8, byte_order, l);
18081 return bytes;
18082 }
18083
18084 return NULL;
18085 }
18086
18087 /* Read a constant value from an attribute. Either set *VALUE, or if
18088 the value does not fit in *VALUE, set *BYTES - either already
18089 allocated on the objfile obstack, or newly allocated on OBSTACK,
18090 or, set *BATON, if we translated the constant to a location
18091 expression. */
18092
18093 static void
18094 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
18095 const char *name, struct obstack *obstack,
18096 struct dwarf2_cu *cu,
18097 LONGEST *value, const gdb_byte **bytes,
18098 struct dwarf2_locexpr_baton **baton)
18099 {
18100 struct objfile *objfile = cu->objfile;
18101 struct comp_unit_head *cu_header = &cu->header;
18102 struct dwarf_block *blk;
18103 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
18104 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
18105
18106 *value = 0;
18107 *bytes = NULL;
18108 *baton = NULL;
18109
18110 switch (attr->form)
18111 {
18112 case DW_FORM_addr:
18113 case DW_FORM_GNU_addr_index:
18114 {
18115 gdb_byte *data;
18116
18117 if (TYPE_LENGTH (type) != cu_header->addr_size)
18118 dwarf2_const_value_length_mismatch_complaint (name,
18119 cu_header->addr_size,
18120 TYPE_LENGTH (type));
18121 /* Symbols of this form are reasonably rare, so we just
18122 piggyback on the existing location code rather than writing
18123 a new implementation of symbol_computed_ops. */
18124 *baton = obstack_alloc (obstack, sizeof (struct dwarf2_locexpr_baton));
18125 (*baton)->per_cu = cu->per_cu;
18126 gdb_assert ((*baton)->per_cu);
18127
18128 (*baton)->size = 2 + cu_header->addr_size;
18129 data = obstack_alloc (obstack, (*baton)->size);
18130 (*baton)->data = data;
18131
18132 data[0] = DW_OP_addr;
18133 store_unsigned_integer (&data[1], cu_header->addr_size,
18134 byte_order, DW_ADDR (attr));
18135 data[cu_header->addr_size + 1] = DW_OP_stack_value;
18136 }
18137 break;
18138 case DW_FORM_string:
18139 case DW_FORM_strp:
18140 case DW_FORM_GNU_str_index:
18141 case DW_FORM_GNU_strp_alt:
18142 /* DW_STRING is already allocated on the objfile obstack, point
18143 directly to it. */
18144 *bytes = (const gdb_byte *) DW_STRING (attr);
18145 break;
18146 case DW_FORM_block1:
18147 case DW_FORM_block2:
18148 case DW_FORM_block4:
18149 case DW_FORM_block:
18150 case DW_FORM_exprloc:
18151 blk = DW_BLOCK (attr);
18152 if (TYPE_LENGTH (type) != blk->size)
18153 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
18154 TYPE_LENGTH (type));
18155 *bytes = blk->data;
18156 break;
18157
18158 /* The DW_AT_const_value attributes are supposed to carry the
18159 symbol's value "represented as it would be on the target
18160 architecture." By the time we get here, it's already been
18161 converted to host endianness, so we just need to sign- or
18162 zero-extend it as appropriate. */
18163 case DW_FORM_data1:
18164 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
18165 break;
18166 case DW_FORM_data2:
18167 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
18168 break;
18169 case DW_FORM_data4:
18170 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
18171 break;
18172 case DW_FORM_data8:
18173 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
18174 break;
18175
18176 case DW_FORM_sdata:
18177 *value = DW_SND (attr);
18178 break;
18179
18180 case DW_FORM_udata:
18181 *value = DW_UNSND (attr);
18182 break;
18183
18184 default:
18185 complaint (&symfile_complaints,
18186 _("unsupported const value attribute form: '%s'"),
18187 dwarf_form_name (attr->form));
18188 *value = 0;
18189 break;
18190 }
18191 }
18192
18193
18194 /* Copy constant value from an attribute to a symbol. */
18195
18196 static void
18197 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
18198 struct dwarf2_cu *cu)
18199 {
18200 struct objfile *objfile = cu->objfile;
18201 struct comp_unit_head *cu_header = &cu->header;
18202 LONGEST value;
18203 const gdb_byte *bytes;
18204 struct dwarf2_locexpr_baton *baton;
18205
18206 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
18207 SYMBOL_PRINT_NAME (sym),
18208 &objfile->objfile_obstack, cu,
18209 &value, &bytes, &baton);
18210
18211 if (baton != NULL)
18212 {
18213 SYMBOL_LOCATION_BATON (sym) = baton;
18214 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
18215 }
18216 else if (bytes != NULL)
18217 {
18218 SYMBOL_VALUE_BYTES (sym) = bytes;
18219 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
18220 }
18221 else
18222 {
18223 SYMBOL_VALUE (sym) = value;
18224 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
18225 }
18226 }
18227
18228 /* Return the type of the die in question using its DW_AT_type attribute. */
18229
18230 static struct type *
18231 die_type (struct die_info *die, struct dwarf2_cu *cu)
18232 {
18233 struct attribute *type_attr;
18234
18235 type_attr = dwarf2_attr (die, DW_AT_type, cu);
18236 if (!type_attr)
18237 {
18238 /* A missing DW_AT_type represents a void type. */
18239 return objfile_type (cu->objfile)->builtin_void;
18240 }
18241
18242 return lookup_die_type (die, type_attr, cu);
18243 }
18244
18245 /* True iff CU's producer generates GNAT Ada auxiliary information
18246 that allows to find parallel types through that information instead
18247 of having to do expensive parallel lookups by type name. */
18248
18249 static int
18250 need_gnat_info (struct dwarf2_cu *cu)
18251 {
18252 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
18253 of GNAT produces this auxiliary information, without any indication
18254 that it is produced. Part of enhancing the FSF version of GNAT
18255 to produce that information will be to put in place an indicator
18256 that we can use in order to determine whether the descriptive type
18257 info is available or not. One suggestion that has been made is
18258 to use a new attribute, attached to the CU die. For now, assume
18259 that the descriptive type info is not available. */
18260 return 0;
18261 }
18262
18263 /* Return the auxiliary type of the die in question using its
18264 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
18265 attribute is not present. */
18266
18267 static struct type *
18268 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
18269 {
18270 struct attribute *type_attr;
18271
18272 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
18273 if (!type_attr)
18274 return NULL;
18275
18276 return lookup_die_type (die, type_attr, cu);
18277 }
18278
18279 /* If DIE has a descriptive_type attribute, then set the TYPE's
18280 descriptive type accordingly. */
18281
18282 static void
18283 set_descriptive_type (struct type *type, struct die_info *die,
18284 struct dwarf2_cu *cu)
18285 {
18286 struct type *descriptive_type = die_descriptive_type (die, cu);
18287
18288 if (descriptive_type)
18289 {
18290 ALLOCATE_GNAT_AUX_TYPE (type);
18291 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
18292 }
18293 }
18294
18295 /* Return the containing type of the die in question using its
18296 DW_AT_containing_type attribute. */
18297
18298 static struct type *
18299 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
18300 {
18301 struct attribute *type_attr;
18302
18303 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
18304 if (!type_attr)
18305 error (_("Dwarf Error: Problem turning containing type into gdb type "
18306 "[in module %s]"), objfile_name (cu->objfile));
18307
18308 return lookup_die_type (die, type_attr, cu);
18309 }
18310
18311 /* Return an error marker type to use for the ill formed type in DIE/CU. */
18312
18313 static struct type *
18314 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
18315 {
18316 struct objfile *objfile = dwarf2_per_objfile->objfile;
18317 char *message, *saved;
18318
18319 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
18320 objfile_name (objfile),
18321 cu->header.offset.sect_off,
18322 die->offset.sect_off);
18323 saved = obstack_copy0 (&objfile->objfile_obstack,
18324 message, strlen (message));
18325 xfree (message);
18326
18327 return init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
18328 }
18329
18330 /* Look up the type of DIE in CU using its type attribute ATTR.
18331 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
18332 DW_AT_containing_type.
18333 If there is no type substitute an error marker. */
18334
18335 static struct type *
18336 lookup_die_type (struct die_info *die, const struct attribute *attr,
18337 struct dwarf2_cu *cu)
18338 {
18339 struct objfile *objfile = cu->objfile;
18340 struct type *this_type;
18341
18342 gdb_assert (attr->name == DW_AT_type
18343 || attr->name == DW_AT_GNAT_descriptive_type
18344 || attr->name == DW_AT_containing_type);
18345
18346 /* First see if we have it cached. */
18347
18348 if (attr->form == DW_FORM_GNU_ref_alt)
18349 {
18350 struct dwarf2_per_cu_data *per_cu;
18351 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18352
18353 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
18354 this_type = get_die_type_at_offset (offset, per_cu);
18355 }
18356 else if (attr_form_is_ref (attr))
18357 {
18358 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18359
18360 this_type = get_die_type_at_offset (offset, cu->per_cu);
18361 }
18362 else if (attr->form == DW_FORM_ref_sig8)
18363 {
18364 ULONGEST signature = DW_SIGNATURE (attr);
18365
18366 return get_signatured_type (die, signature, cu);
18367 }
18368 else
18369 {
18370 complaint (&symfile_complaints,
18371 _("Dwarf Error: Bad type attribute %s in DIE"
18372 " at 0x%x [in module %s]"),
18373 dwarf_attr_name (attr->name), die->offset.sect_off,
18374 objfile_name (objfile));
18375 return build_error_marker_type (cu, die);
18376 }
18377
18378 /* If not cached we need to read it in. */
18379
18380 if (this_type == NULL)
18381 {
18382 struct die_info *type_die = NULL;
18383 struct dwarf2_cu *type_cu = cu;
18384
18385 if (attr_form_is_ref (attr))
18386 type_die = follow_die_ref (die, attr, &type_cu);
18387 if (type_die == NULL)
18388 return build_error_marker_type (cu, die);
18389 /* If we find the type now, it's probably because the type came
18390 from an inter-CU reference and the type's CU got expanded before
18391 ours. */
18392 this_type = read_type_die (type_die, type_cu);
18393 }
18394
18395 /* If we still don't have a type use an error marker. */
18396
18397 if (this_type == NULL)
18398 return build_error_marker_type (cu, die);
18399
18400 return this_type;
18401 }
18402
18403 /* Return the type in DIE, CU.
18404 Returns NULL for invalid types.
18405
18406 This first does a lookup in die_type_hash,
18407 and only reads the die in if necessary.
18408
18409 NOTE: This can be called when reading in partial or full symbols. */
18410
18411 static struct type *
18412 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
18413 {
18414 struct type *this_type;
18415
18416 this_type = get_die_type (die, cu);
18417 if (this_type)
18418 return this_type;
18419
18420 return read_type_die_1 (die, cu);
18421 }
18422
18423 /* Read the type in DIE, CU.
18424 Returns NULL for invalid types. */
18425
18426 static struct type *
18427 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
18428 {
18429 struct type *this_type = NULL;
18430
18431 switch (die->tag)
18432 {
18433 case DW_TAG_class_type:
18434 case DW_TAG_interface_type:
18435 case DW_TAG_structure_type:
18436 case DW_TAG_union_type:
18437 this_type = read_structure_type (die, cu);
18438 break;
18439 case DW_TAG_enumeration_type:
18440 this_type = read_enumeration_type (die, cu);
18441 break;
18442 case DW_TAG_subprogram:
18443 case DW_TAG_subroutine_type:
18444 case DW_TAG_inlined_subroutine:
18445 this_type = read_subroutine_type (die, cu);
18446 break;
18447 case DW_TAG_array_type:
18448 this_type = read_array_type (die, cu);
18449 break;
18450 case DW_TAG_set_type:
18451 this_type = read_set_type (die, cu);
18452 break;
18453 case DW_TAG_pointer_type:
18454 this_type = read_tag_pointer_type (die, cu);
18455 break;
18456 case DW_TAG_ptr_to_member_type:
18457 this_type = read_tag_ptr_to_member_type (die, cu);
18458 break;
18459 case DW_TAG_reference_type:
18460 this_type = read_tag_reference_type (die, cu);
18461 break;
18462 case DW_TAG_const_type:
18463 this_type = read_tag_const_type (die, cu);
18464 break;
18465 case DW_TAG_volatile_type:
18466 this_type = read_tag_volatile_type (die, cu);
18467 break;
18468 case DW_TAG_restrict_type:
18469 this_type = read_tag_restrict_type (die, cu);
18470 break;
18471 case DW_TAG_string_type:
18472 this_type = read_tag_string_type (die, cu);
18473 break;
18474 case DW_TAG_typedef:
18475 this_type = read_typedef (die, cu);
18476 break;
18477 case DW_TAG_subrange_type:
18478 this_type = read_subrange_type (die, cu);
18479 break;
18480 case DW_TAG_base_type:
18481 this_type = read_base_type (die, cu);
18482 break;
18483 case DW_TAG_unspecified_type:
18484 this_type = read_unspecified_type (die, cu);
18485 break;
18486 case DW_TAG_namespace:
18487 this_type = read_namespace_type (die, cu);
18488 break;
18489 case DW_TAG_module:
18490 this_type = read_module_type (die, cu);
18491 break;
18492 default:
18493 complaint (&symfile_complaints,
18494 _("unexpected tag in read_type_die: '%s'"),
18495 dwarf_tag_name (die->tag));
18496 break;
18497 }
18498
18499 return this_type;
18500 }
18501
18502 /* See if we can figure out if the class lives in a namespace. We do
18503 this by looking for a member function; its demangled name will
18504 contain namespace info, if there is any.
18505 Return the computed name or NULL.
18506 Space for the result is allocated on the objfile's obstack.
18507 This is the full-die version of guess_partial_die_structure_name.
18508 In this case we know DIE has no useful parent. */
18509
18510 static char *
18511 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
18512 {
18513 struct die_info *spec_die;
18514 struct dwarf2_cu *spec_cu;
18515 struct die_info *child;
18516
18517 spec_cu = cu;
18518 spec_die = die_specification (die, &spec_cu);
18519 if (spec_die != NULL)
18520 {
18521 die = spec_die;
18522 cu = spec_cu;
18523 }
18524
18525 for (child = die->child;
18526 child != NULL;
18527 child = child->sibling)
18528 {
18529 if (child->tag == DW_TAG_subprogram)
18530 {
18531 struct attribute *attr;
18532
18533 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
18534 if (attr == NULL)
18535 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
18536 if (attr != NULL)
18537 {
18538 char *actual_name
18539 = language_class_name_from_physname (cu->language_defn,
18540 DW_STRING (attr));
18541 char *name = NULL;
18542
18543 if (actual_name != NULL)
18544 {
18545 const char *die_name = dwarf2_name (die, cu);
18546
18547 if (die_name != NULL
18548 && strcmp (die_name, actual_name) != 0)
18549 {
18550 /* Strip off the class name from the full name.
18551 We want the prefix. */
18552 int die_name_len = strlen (die_name);
18553 int actual_name_len = strlen (actual_name);
18554
18555 /* Test for '::' as a sanity check. */
18556 if (actual_name_len > die_name_len + 2
18557 && actual_name[actual_name_len
18558 - die_name_len - 1] == ':')
18559 name =
18560 obstack_copy0 (&cu->objfile->objfile_obstack,
18561 actual_name,
18562 actual_name_len - die_name_len - 2);
18563 }
18564 }
18565 xfree (actual_name);
18566 return name;
18567 }
18568 }
18569 }
18570
18571 return NULL;
18572 }
18573
18574 /* GCC might emit a nameless typedef that has a linkage name. Determine the
18575 prefix part in such case. See
18576 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18577
18578 static char *
18579 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
18580 {
18581 struct attribute *attr;
18582 char *base;
18583
18584 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
18585 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
18586 return NULL;
18587
18588 attr = dwarf2_attr (die, DW_AT_name, cu);
18589 if (attr != NULL && DW_STRING (attr) != NULL)
18590 return NULL;
18591
18592 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
18593 if (attr == NULL)
18594 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
18595 if (attr == NULL || DW_STRING (attr) == NULL)
18596 return NULL;
18597
18598 /* dwarf2_name had to be already called. */
18599 gdb_assert (DW_STRING_IS_CANONICAL (attr));
18600
18601 /* Strip the base name, keep any leading namespaces/classes. */
18602 base = strrchr (DW_STRING (attr), ':');
18603 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
18604 return "";
18605
18606 return obstack_copy0 (&cu->objfile->objfile_obstack,
18607 DW_STRING (attr), &base[-1] - DW_STRING (attr));
18608 }
18609
18610 /* Return the name of the namespace/class that DIE is defined within,
18611 or "" if we can't tell. The caller should not xfree the result.
18612
18613 For example, if we're within the method foo() in the following
18614 code:
18615
18616 namespace N {
18617 class C {
18618 void foo () {
18619 }
18620 };
18621 }
18622
18623 then determine_prefix on foo's die will return "N::C". */
18624
18625 static const char *
18626 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
18627 {
18628 struct die_info *parent, *spec_die;
18629 struct dwarf2_cu *spec_cu;
18630 struct type *parent_type;
18631 char *retval;
18632
18633 if (cu->language != language_cplus && cu->language != language_java
18634 && cu->language != language_fortran)
18635 return "";
18636
18637 retval = anonymous_struct_prefix (die, cu);
18638 if (retval)
18639 return retval;
18640
18641 /* We have to be careful in the presence of DW_AT_specification.
18642 For example, with GCC 3.4, given the code
18643
18644 namespace N {
18645 void foo() {
18646 // Definition of N::foo.
18647 }
18648 }
18649
18650 then we'll have a tree of DIEs like this:
18651
18652 1: DW_TAG_compile_unit
18653 2: DW_TAG_namespace // N
18654 3: DW_TAG_subprogram // declaration of N::foo
18655 4: DW_TAG_subprogram // definition of N::foo
18656 DW_AT_specification // refers to die #3
18657
18658 Thus, when processing die #4, we have to pretend that we're in
18659 the context of its DW_AT_specification, namely the contex of die
18660 #3. */
18661 spec_cu = cu;
18662 spec_die = die_specification (die, &spec_cu);
18663 if (spec_die == NULL)
18664 parent = die->parent;
18665 else
18666 {
18667 parent = spec_die->parent;
18668 cu = spec_cu;
18669 }
18670
18671 if (parent == NULL)
18672 return "";
18673 else if (parent->building_fullname)
18674 {
18675 const char *name;
18676 const char *parent_name;
18677
18678 /* It has been seen on RealView 2.2 built binaries,
18679 DW_TAG_template_type_param types actually _defined_ as
18680 children of the parent class:
18681
18682 enum E {};
18683 template class <class Enum> Class{};
18684 Class<enum E> class_e;
18685
18686 1: DW_TAG_class_type (Class)
18687 2: DW_TAG_enumeration_type (E)
18688 3: DW_TAG_enumerator (enum1:0)
18689 3: DW_TAG_enumerator (enum2:1)
18690 ...
18691 2: DW_TAG_template_type_param
18692 DW_AT_type DW_FORM_ref_udata (E)
18693
18694 Besides being broken debug info, it can put GDB into an
18695 infinite loop. Consider:
18696
18697 When we're building the full name for Class<E>, we'll start
18698 at Class, and go look over its template type parameters,
18699 finding E. We'll then try to build the full name of E, and
18700 reach here. We're now trying to build the full name of E,
18701 and look over the parent DIE for containing scope. In the
18702 broken case, if we followed the parent DIE of E, we'd again
18703 find Class, and once again go look at its template type
18704 arguments, etc., etc. Simply don't consider such parent die
18705 as source-level parent of this die (it can't be, the language
18706 doesn't allow it), and break the loop here. */
18707 name = dwarf2_name (die, cu);
18708 parent_name = dwarf2_name (parent, cu);
18709 complaint (&symfile_complaints,
18710 _("template param type '%s' defined within parent '%s'"),
18711 name ? name : "<unknown>",
18712 parent_name ? parent_name : "<unknown>");
18713 return "";
18714 }
18715 else
18716 switch (parent->tag)
18717 {
18718 case DW_TAG_namespace:
18719 parent_type = read_type_die (parent, cu);
18720 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
18721 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
18722 Work around this problem here. */
18723 if (cu->language == language_cplus
18724 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
18725 return "";
18726 /* We give a name to even anonymous namespaces. */
18727 return TYPE_TAG_NAME (parent_type);
18728 case DW_TAG_class_type:
18729 case DW_TAG_interface_type:
18730 case DW_TAG_structure_type:
18731 case DW_TAG_union_type:
18732 case DW_TAG_module:
18733 parent_type = read_type_die (parent, cu);
18734 if (TYPE_TAG_NAME (parent_type) != NULL)
18735 return TYPE_TAG_NAME (parent_type);
18736 else
18737 /* An anonymous structure is only allowed non-static data
18738 members; no typedefs, no member functions, et cetera.
18739 So it does not need a prefix. */
18740 return "";
18741 case DW_TAG_compile_unit:
18742 case DW_TAG_partial_unit:
18743 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
18744 if (cu->language == language_cplus
18745 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
18746 && die->child != NULL
18747 && (die->tag == DW_TAG_class_type
18748 || die->tag == DW_TAG_structure_type
18749 || die->tag == DW_TAG_union_type))
18750 {
18751 char *name = guess_full_die_structure_name (die, cu);
18752 if (name != NULL)
18753 return name;
18754 }
18755 return "";
18756 case DW_TAG_enumeration_type:
18757 parent_type = read_type_die (parent, cu);
18758 if (TYPE_DECLARED_CLASS (parent_type))
18759 {
18760 if (TYPE_TAG_NAME (parent_type) != NULL)
18761 return TYPE_TAG_NAME (parent_type);
18762 return "";
18763 }
18764 /* Fall through. */
18765 default:
18766 return determine_prefix (parent, cu);
18767 }
18768 }
18769
18770 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
18771 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
18772 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
18773 an obconcat, otherwise allocate storage for the result. The CU argument is
18774 used to determine the language and hence, the appropriate separator. */
18775
18776 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
18777
18778 static char *
18779 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
18780 int physname, struct dwarf2_cu *cu)
18781 {
18782 const char *lead = "";
18783 const char *sep;
18784
18785 if (suffix == NULL || suffix[0] == '\0'
18786 || prefix == NULL || prefix[0] == '\0')
18787 sep = "";
18788 else if (cu->language == language_java)
18789 sep = ".";
18790 else if (cu->language == language_fortran && physname)
18791 {
18792 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
18793 DW_AT_MIPS_linkage_name is preferred and used instead. */
18794
18795 lead = "__";
18796 sep = "_MOD_";
18797 }
18798 else
18799 sep = "::";
18800
18801 if (prefix == NULL)
18802 prefix = "";
18803 if (suffix == NULL)
18804 suffix = "";
18805
18806 if (obs == NULL)
18807 {
18808 char *retval
18809 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
18810
18811 strcpy (retval, lead);
18812 strcat (retval, prefix);
18813 strcat (retval, sep);
18814 strcat (retval, suffix);
18815 return retval;
18816 }
18817 else
18818 {
18819 /* We have an obstack. */
18820 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
18821 }
18822 }
18823
18824 /* Return sibling of die, NULL if no sibling. */
18825
18826 static struct die_info *
18827 sibling_die (struct die_info *die)
18828 {
18829 return die->sibling;
18830 }
18831
18832 /* Get name of a die, return NULL if not found. */
18833
18834 static const char *
18835 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
18836 struct obstack *obstack)
18837 {
18838 if (name && cu->language == language_cplus)
18839 {
18840 char *canon_name = cp_canonicalize_string (name);
18841
18842 if (canon_name != NULL)
18843 {
18844 if (strcmp (canon_name, name) != 0)
18845 name = obstack_copy0 (obstack, canon_name, strlen (canon_name));
18846 xfree (canon_name);
18847 }
18848 }
18849
18850 return name;
18851 }
18852
18853 /* Get name of a die, return NULL if not found. */
18854
18855 static const char *
18856 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
18857 {
18858 struct attribute *attr;
18859
18860 attr = dwarf2_attr (die, DW_AT_name, cu);
18861 if ((!attr || !DW_STRING (attr))
18862 && die->tag != DW_TAG_class_type
18863 && die->tag != DW_TAG_interface_type
18864 && die->tag != DW_TAG_structure_type
18865 && die->tag != DW_TAG_union_type)
18866 return NULL;
18867
18868 switch (die->tag)
18869 {
18870 case DW_TAG_compile_unit:
18871 case DW_TAG_partial_unit:
18872 /* Compilation units have a DW_AT_name that is a filename, not
18873 a source language identifier. */
18874 case DW_TAG_enumeration_type:
18875 case DW_TAG_enumerator:
18876 /* These tags always have simple identifiers already; no need
18877 to canonicalize them. */
18878 return DW_STRING (attr);
18879
18880 case DW_TAG_subprogram:
18881 /* Java constructors will all be named "<init>", so return
18882 the class name when we see this special case. */
18883 if (cu->language == language_java
18884 && DW_STRING (attr) != NULL
18885 && strcmp (DW_STRING (attr), "<init>") == 0)
18886 {
18887 struct dwarf2_cu *spec_cu = cu;
18888 struct die_info *spec_die;
18889
18890 /* GCJ will output '<init>' for Java constructor names.
18891 For this special case, return the name of the parent class. */
18892
18893 /* GCJ may output suprogram DIEs with AT_specification set.
18894 If so, use the name of the specified DIE. */
18895 spec_die = die_specification (die, &spec_cu);
18896 if (spec_die != NULL)
18897 return dwarf2_name (spec_die, spec_cu);
18898
18899 do
18900 {
18901 die = die->parent;
18902 if (die->tag == DW_TAG_class_type)
18903 return dwarf2_name (die, cu);
18904 }
18905 while (die->tag != DW_TAG_compile_unit
18906 && die->tag != DW_TAG_partial_unit);
18907 }
18908 break;
18909
18910 case DW_TAG_class_type:
18911 case DW_TAG_interface_type:
18912 case DW_TAG_structure_type:
18913 case DW_TAG_union_type:
18914 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
18915 structures or unions. These were of the form "._%d" in GCC 4.1,
18916 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
18917 and GCC 4.4. We work around this problem by ignoring these. */
18918 if (attr && DW_STRING (attr)
18919 && (strncmp (DW_STRING (attr), "._", 2) == 0
18920 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0))
18921 return NULL;
18922
18923 /* GCC might emit a nameless typedef that has a linkage name. See
18924 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18925 if (!attr || DW_STRING (attr) == NULL)
18926 {
18927 char *demangled = NULL;
18928
18929 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
18930 if (attr == NULL)
18931 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
18932
18933 if (attr == NULL || DW_STRING (attr) == NULL)
18934 return NULL;
18935
18936 /* Avoid demangling DW_STRING (attr) the second time on a second
18937 call for the same DIE. */
18938 if (!DW_STRING_IS_CANONICAL (attr))
18939 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
18940
18941 if (demangled)
18942 {
18943 char *base;
18944
18945 /* FIXME: we already did this for the partial symbol... */
18946 DW_STRING (attr) = obstack_copy0 (&cu->objfile->objfile_obstack,
18947 demangled, strlen (demangled));
18948 DW_STRING_IS_CANONICAL (attr) = 1;
18949 xfree (demangled);
18950
18951 /* Strip any leading namespaces/classes, keep only the base name.
18952 DW_AT_name for named DIEs does not contain the prefixes. */
18953 base = strrchr (DW_STRING (attr), ':');
18954 if (base && base > DW_STRING (attr) && base[-1] == ':')
18955 return &base[1];
18956 else
18957 return DW_STRING (attr);
18958 }
18959 }
18960 break;
18961
18962 default:
18963 break;
18964 }
18965
18966 if (!DW_STRING_IS_CANONICAL (attr))
18967 {
18968 DW_STRING (attr)
18969 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
18970 &cu->objfile->objfile_obstack);
18971 DW_STRING_IS_CANONICAL (attr) = 1;
18972 }
18973 return DW_STRING (attr);
18974 }
18975
18976 /* Return the die that this die in an extension of, or NULL if there
18977 is none. *EXT_CU is the CU containing DIE on input, and the CU
18978 containing the return value on output. */
18979
18980 static struct die_info *
18981 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
18982 {
18983 struct attribute *attr;
18984
18985 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
18986 if (attr == NULL)
18987 return NULL;
18988
18989 return follow_die_ref (die, attr, ext_cu);
18990 }
18991
18992 /* Convert a DIE tag into its string name. */
18993
18994 static const char *
18995 dwarf_tag_name (unsigned tag)
18996 {
18997 const char *name = get_DW_TAG_name (tag);
18998
18999 if (name == NULL)
19000 return "DW_TAG_<unknown>";
19001
19002 return name;
19003 }
19004
19005 /* Convert a DWARF attribute code into its string name. */
19006
19007 static const char *
19008 dwarf_attr_name (unsigned attr)
19009 {
19010 const char *name;
19011
19012 #ifdef MIPS /* collides with DW_AT_HP_block_index */
19013 if (attr == DW_AT_MIPS_fde)
19014 return "DW_AT_MIPS_fde";
19015 #else
19016 if (attr == DW_AT_HP_block_index)
19017 return "DW_AT_HP_block_index";
19018 #endif
19019
19020 name = get_DW_AT_name (attr);
19021
19022 if (name == NULL)
19023 return "DW_AT_<unknown>";
19024
19025 return name;
19026 }
19027
19028 /* Convert a DWARF value form code into its string name. */
19029
19030 static const char *
19031 dwarf_form_name (unsigned form)
19032 {
19033 const char *name = get_DW_FORM_name (form);
19034
19035 if (name == NULL)
19036 return "DW_FORM_<unknown>";
19037
19038 return name;
19039 }
19040
19041 static char *
19042 dwarf_bool_name (unsigned mybool)
19043 {
19044 if (mybool)
19045 return "TRUE";
19046 else
19047 return "FALSE";
19048 }
19049
19050 /* Convert a DWARF type code into its string name. */
19051
19052 static const char *
19053 dwarf_type_encoding_name (unsigned enc)
19054 {
19055 const char *name = get_DW_ATE_name (enc);
19056
19057 if (name == NULL)
19058 return "DW_ATE_<unknown>";
19059
19060 return name;
19061 }
19062
19063 static void
19064 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
19065 {
19066 unsigned int i;
19067
19068 print_spaces (indent, f);
19069 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
19070 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
19071
19072 if (die->parent != NULL)
19073 {
19074 print_spaces (indent, f);
19075 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
19076 die->parent->offset.sect_off);
19077 }
19078
19079 print_spaces (indent, f);
19080 fprintf_unfiltered (f, " has children: %s\n",
19081 dwarf_bool_name (die->child != NULL));
19082
19083 print_spaces (indent, f);
19084 fprintf_unfiltered (f, " attributes:\n");
19085
19086 for (i = 0; i < die->num_attrs; ++i)
19087 {
19088 print_spaces (indent, f);
19089 fprintf_unfiltered (f, " %s (%s) ",
19090 dwarf_attr_name (die->attrs[i].name),
19091 dwarf_form_name (die->attrs[i].form));
19092
19093 switch (die->attrs[i].form)
19094 {
19095 case DW_FORM_addr:
19096 case DW_FORM_GNU_addr_index:
19097 fprintf_unfiltered (f, "address: ");
19098 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
19099 break;
19100 case DW_FORM_block2:
19101 case DW_FORM_block4:
19102 case DW_FORM_block:
19103 case DW_FORM_block1:
19104 fprintf_unfiltered (f, "block: size %s",
19105 pulongest (DW_BLOCK (&die->attrs[i])->size));
19106 break;
19107 case DW_FORM_exprloc:
19108 fprintf_unfiltered (f, "expression: size %s",
19109 pulongest (DW_BLOCK (&die->attrs[i])->size));
19110 break;
19111 case DW_FORM_ref_addr:
19112 fprintf_unfiltered (f, "ref address: ");
19113 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19114 break;
19115 case DW_FORM_GNU_ref_alt:
19116 fprintf_unfiltered (f, "alt ref address: ");
19117 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19118 break;
19119 case DW_FORM_ref1:
19120 case DW_FORM_ref2:
19121 case DW_FORM_ref4:
19122 case DW_FORM_ref8:
19123 case DW_FORM_ref_udata:
19124 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
19125 (long) (DW_UNSND (&die->attrs[i])));
19126 break;
19127 case DW_FORM_data1:
19128 case DW_FORM_data2:
19129 case DW_FORM_data4:
19130 case DW_FORM_data8:
19131 case DW_FORM_udata:
19132 case DW_FORM_sdata:
19133 fprintf_unfiltered (f, "constant: %s",
19134 pulongest (DW_UNSND (&die->attrs[i])));
19135 break;
19136 case DW_FORM_sec_offset:
19137 fprintf_unfiltered (f, "section offset: %s",
19138 pulongest (DW_UNSND (&die->attrs[i])));
19139 break;
19140 case DW_FORM_ref_sig8:
19141 fprintf_unfiltered (f, "signature: %s",
19142 hex_string (DW_SIGNATURE (&die->attrs[i])));
19143 break;
19144 case DW_FORM_string:
19145 case DW_FORM_strp:
19146 case DW_FORM_GNU_str_index:
19147 case DW_FORM_GNU_strp_alt:
19148 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
19149 DW_STRING (&die->attrs[i])
19150 ? DW_STRING (&die->attrs[i]) : "",
19151 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
19152 break;
19153 case DW_FORM_flag:
19154 if (DW_UNSND (&die->attrs[i]))
19155 fprintf_unfiltered (f, "flag: TRUE");
19156 else
19157 fprintf_unfiltered (f, "flag: FALSE");
19158 break;
19159 case DW_FORM_flag_present:
19160 fprintf_unfiltered (f, "flag: TRUE");
19161 break;
19162 case DW_FORM_indirect:
19163 /* The reader will have reduced the indirect form to
19164 the "base form" so this form should not occur. */
19165 fprintf_unfiltered (f,
19166 "unexpected attribute form: DW_FORM_indirect");
19167 break;
19168 default:
19169 fprintf_unfiltered (f, "unsupported attribute form: %d.",
19170 die->attrs[i].form);
19171 break;
19172 }
19173 fprintf_unfiltered (f, "\n");
19174 }
19175 }
19176
19177 static void
19178 dump_die_for_error (struct die_info *die)
19179 {
19180 dump_die_shallow (gdb_stderr, 0, die);
19181 }
19182
19183 static void
19184 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
19185 {
19186 int indent = level * 4;
19187
19188 gdb_assert (die != NULL);
19189
19190 if (level >= max_level)
19191 return;
19192
19193 dump_die_shallow (f, indent, die);
19194
19195 if (die->child != NULL)
19196 {
19197 print_spaces (indent, f);
19198 fprintf_unfiltered (f, " Children:");
19199 if (level + 1 < max_level)
19200 {
19201 fprintf_unfiltered (f, "\n");
19202 dump_die_1 (f, level + 1, max_level, die->child);
19203 }
19204 else
19205 {
19206 fprintf_unfiltered (f,
19207 " [not printed, max nesting level reached]\n");
19208 }
19209 }
19210
19211 if (die->sibling != NULL && level > 0)
19212 {
19213 dump_die_1 (f, level, max_level, die->sibling);
19214 }
19215 }
19216
19217 /* This is called from the pdie macro in gdbinit.in.
19218 It's not static so gcc will keep a copy callable from gdb. */
19219
19220 void
19221 dump_die (struct die_info *die, int max_level)
19222 {
19223 dump_die_1 (gdb_stdlog, 0, max_level, die);
19224 }
19225
19226 static void
19227 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
19228 {
19229 void **slot;
19230
19231 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
19232 INSERT);
19233
19234 *slot = die;
19235 }
19236
19237 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
19238 required kind. */
19239
19240 static sect_offset
19241 dwarf2_get_ref_die_offset (const struct attribute *attr)
19242 {
19243 sect_offset retval = { DW_UNSND (attr) };
19244
19245 if (attr_form_is_ref (attr))
19246 return retval;
19247
19248 retval.sect_off = 0;
19249 complaint (&symfile_complaints,
19250 _("unsupported die ref attribute form: '%s'"),
19251 dwarf_form_name (attr->form));
19252 return retval;
19253 }
19254
19255 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
19256 * the value held by the attribute is not constant. */
19257
19258 static LONGEST
19259 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
19260 {
19261 if (attr->form == DW_FORM_sdata)
19262 return DW_SND (attr);
19263 else if (attr->form == DW_FORM_udata
19264 || attr->form == DW_FORM_data1
19265 || attr->form == DW_FORM_data2
19266 || attr->form == DW_FORM_data4
19267 || attr->form == DW_FORM_data8)
19268 return DW_UNSND (attr);
19269 else
19270 {
19271 complaint (&symfile_complaints,
19272 _("Attribute value is not a constant (%s)"),
19273 dwarf_form_name (attr->form));
19274 return default_value;
19275 }
19276 }
19277
19278 /* Follow reference or signature attribute ATTR of SRC_DIE.
19279 On entry *REF_CU is the CU of SRC_DIE.
19280 On exit *REF_CU is the CU of the result. */
19281
19282 static struct die_info *
19283 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
19284 struct dwarf2_cu **ref_cu)
19285 {
19286 struct die_info *die;
19287
19288 if (attr_form_is_ref (attr))
19289 die = follow_die_ref (src_die, attr, ref_cu);
19290 else if (attr->form == DW_FORM_ref_sig8)
19291 die = follow_die_sig (src_die, attr, ref_cu);
19292 else
19293 {
19294 dump_die_for_error (src_die);
19295 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
19296 objfile_name ((*ref_cu)->objfile));
19297 }
19298
19299 return die;
19300 }
19301
19302 /* Follow reference OFFSET.
19303 On entry *REF_CU is the CU of the source die referencing OFFSET.
19304 On exit *REF_CU is the CU of the result.
19305 Returns NULL if OFFSET is invalid. */
19306
19307 static struct die_info *
19308 follow_die_offset (sect_offset offset, int offset_in_dwz,
19309 struct dwarf2_cu **ref_cu)
19310 {
19311 struct die_info temp_die;
19312 struct dwarf2_cu *target_cu, *cu = *ref_cu;
19313
19314 gdb_assert (cu->per_cu != NULL);
19315
19316 target_cu = cu;
19317
19318 if (cu->per_cu->is_debug_types)
19319 {
19320 /* .debug_types CUs cannot reference anything outside their CU.
19321 If they need to, they have to reference a signatured type via
19322 DW_FORM_ref_sig8. */
19323 if (! offset_in_cu_p (&cu->header, offset))
19324 return NULL;
19325 }
19326 else if (offset_in_dwz != cu->per_cu->is_dwz
19327 || ! offset_in_cu_p (&cu->header, offset))
19328 {
19329 struct dwarf2_per_cu_data *per_cu;
19330
19331 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
19332 cu->objfile);
19333
19334 /* If necessary, add it to the queue and load its DIEs. */
19335 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
19336 load_full_comp_unit (per_cu, cu->language);
19337
19338 target_cu = per_cu->cu;
19339 }
19340 else if (cu->dies == NULL)
19341 {
19342 /* We're loading full DIEs during partial symbol reading. */
19343 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
19344 load_full_comp_unit (cu->per_cu, language_minimal);
19345 }
19346
19347 *ref_cu = target_cu;
19348 temp_die.offset = offset;
19349 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
19350 }
19351
19352 /* Follow reference attribute ATTR of SRC_DIE.
19353 On entry *REF_CU is the CU of SRC_DIE.
19354 On exit *REF_CU is the CU of the result. */
19355
19356 static struct die_info *
19357 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
19358 struct dwarf2_cu **ref_cu)
19359 {
19360 sect_offset offset = dwarf2_get_ref_die_offset (attr);
19361 struct dwarf2_cu *cu = *ref_cu;
19362 struct die_info *die;
19363
19364 die = follow_die_offset (offset,
19365 (attr->form == DW_FORM_GNU_ref_alt
19366 || cu->per_cu->is_dwz),
19367 ref_cu);
19368 if (!die)
19369 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
19370 "at 0x%x [in module %s]"),
19371 offset.sect_off, src_die->offset.sect_off,
19372 objfile_name (cu->objfile));
19373
19374 return die;
19375 }
19376
19377 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
19378 Returned value is intended for DW_OP_call*. Returned
19379 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
19380
19381 struct dwarf2_locexpr_baton
19382 dwarf2_fetch_die_loc_sect_off (sect_offset offset,
19383 struct dwarf2_per_cu_data *per_cu,
19384 CORE_ADDR (*get_frame_pc) (void *baton),
19385 void *baton)
19386 {
19387 struct dwarf2_cu *cu;
19388 struct die_info *die;
19389 struct attribute *attr;
19390 struct dwarf2_locexpr_baton retval;
19391
19392 dw2_setup (per_cu->objfile);
19393
19394 if (per_cu->cu == NULL)
19395 load_cu (per_cu);
19396 cu = per_cu->cu;
19397
19398 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
19399 if (!die)
19400 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
19401 offset.sect_off, objfile_name (per_cu->objfile));
19402
19403 attr = dwarf2_attr (die, DW_AT_location, cu);
19404 if (!attr)
19405 {
19406 /* DWARF: "If there is no such attribute, then there is no effect.".
19407 DATA is ignored if SIZE is 0. */
19408
19409 retval.data = NULL;
19410 retval.size = 0;
19411 }
19412 else if (attr_form_is_section_offset (attr))
19413 {
19414 struct dwarf2_loclist_baton loclist_baton;
19415 CORE_ADDR pc = (*get_frame_pc) (baton);
19416 size_t size;
19417
19418 fill_in_loclist_baton (cu, &loclist_baton, attr);
19419
19420 retval.data = dwarf2_find_location_expression (&loclist_baton,
19421 &size, pc);
19422 retval.size = size;
19423 }
19424 else
19425 {
19426 if (!attr_form_is_block (attr))
19427 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
19428 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
19429 offset.sect_off, objfile_name (per_cu->objfile));
19430
19431 retval.data = DW_BLOCK (attr)->data;
19432 retval.size = DW_BLOCK (attr)->size;
19433 }
19434 retval.per_cu = cu->per_cu;
19435
19436 age_cached_comp_units ();
19437
19438 return retval;
19439 }
19440
19441 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
19442 offset. */
19443
19444 struct dwarf2_locexpr_baton
19445 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
19446 struct dwarf2_per_cu_data *per_cu,
19447 CORE_ADDR (*get_frame_pc) (void *baton),
19448 void *baton)
19449 {
19450 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
19451
19452 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
19453 }
19454
19455 /* Write a constant of a given type as target-ordered bytes into
19456 OBSTACK. */
19457
19458 static const gdb_byte *
19459 write_constant_as_bytes (struct obstack *obstack,
19460 enum bfd_endian byte_order,
19461 struct type *type,
19462 ULONGEST value,
19463 LONGEST *len)
19464 {
19465 gdb_byte *result;
19466
19467 *len = TYPE_LENGTH (type);
19468 result = obstack_alloc (obstack, *len);
19469 store_unsigned_integer (result, *len, byte_order, value);
19470
19471 return result;
19472 }
19473
19474 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
19475 pointer to the constant bytes and set LEN to the length of the
19476 data. If memory is needed, allocate it on OBSTACK. If the DIE
19477 does not have a DW_AT_const_value, return NULL. */
19478
19479 const gdb_byte *
19480 dwarf2_fetch_constant_bytes (sect_offset offset,
19481 struct dwarf2_per_cu_data *per_cu,
19482 struct obstack *obstack,
19483 LONGEST *len)
19484 {
19485 struct dwarf2_cu *cu;
19486 struct die_info *die;
19487 struct attribute *attr;
19488 const gdb_byte *result = NULL;
19489 struct type *type;
19490 LONGEST value;
19491 enum bfd_endian byte_order;
19492
19493 dw2_setup (per_cu->objfile);
19494
19495 if (per_cu->cu == NULL)
19496 load_cu (per_cu);
19497 cu = per_cu->cu;
19498
19499 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
19500 if (!die)
19501 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
19502 offset.sect_off, objfile_name (per_cu->objfile));
19503
19504
19505 attr = dwarf2_attr (die, DW_AT_const_value, cu);
19506 if (attr == NULL)
19507 return NULL;
19508
19509 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
19510 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
19511
19512 switch (attr->form)
19513 {
19514 case DW_FORM_addr:
19515 case DW_FORM_GNU_addr_index:
19516 {
19517 gdb_byte *tem;
19518
19519 *len = cu->header.addr_size;
19520 tem = obstack_alloc (obstack, *len);
19521 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
19522 result = tem;
19523 }
19524 break;
19525 case DW_FORM_string:
19526 case DW_FORM_strp:
19527 case DW_FORM_GNU_str_index:
19528 case DW_FORM_GNU_strp_alt:
19529 /* DW_STRING is already allocated on the objfile obstack, point
19530 directly to it. */
19531 result = (const gdb_byte *) DW_STRING (attr);
19532 *len = strlen (DW_STRING (attr));
19533 break;
19534 case DW_FORM_block1:
19535 case DW_FORM_block2:
19536 case DW_FORM_block4:
19537 case DW_FORM_block:
19538 case DW_FORM_exprloc:
19539 result = DW_BLOCK (attr)->data;
19540 *len = DW_BLOCK (attr)->size;
19541 break;
19542
19543 /* The DW_AT_const_value attributes are supposed to carry the
19544 symbol's value "represented as it would be on the target
19545 architecture." By the time we get here, it's already been
19546 converted to host endianness, so we just need to sign- or
19547 zero-extend it as appropriate. */
19548 case DW_FORM_data1:
19549 type = die_type (die, cu);
19550 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
19551 if (result == NULL)
19552 result = write_constant_as_bytes (obstack, byte_order,
19553 type, value, len);
19554 break;
19555 case DW_FORM_data2:
19556 type = die_type (die, cu);
19557 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
19558 if (result == NULL)
19559 result = write_constant_as_bytes (obstack, byte_order,
19560 type, value, len);
19561 break;
19562 case DW_FORM_data4:
19563 type = die_type (die, cu);
19564 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
19565 if (result == NULL)
19566 result = write_constant_as_bytes (obstack, byte_order,
19567 type, value, len);
19568 break;
19569 case DW_FORM_data8:
19570 type = die_type (die, cu);
19571 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
19572 if (result == NULL)
19573 result = write_constant_as_bytes (obstack, byte_order,
19574 type, value, len);
19575 break;
19576
19577 case DW_FORM_sdata:
19578 type = die_type (die, cu);
19579 result = write_constant_as_bytes (obstack, byte_order,
19580 type, DW_SND (attr), len);
19581 break;
19582
19583 case DW_FORM_udata:
19584 type = die_type (die, cu);
19585 result = write_constant_as_bytes (obstack, byte_order,
19586 type, DW_UNSND (attr), len);
19587 break;
19588
19589 default:
19590 complaint (&symfile_complaints,
19591 _("unsupported const value attribute form: '%s'"),
19592 dwarf_form_name (attr->form));
19593 break;
19594 }
19595
19596 return result;
19597 }
19598
19599 /* Return the type of the DIE at DIE_OFFSET in the CU named by
19600 PER_CU. */
19601
19602 struct type *
19603 dwarf2_get_die_type (cu_offset die_offset,
19604 struct dwarf2_per_cu_data *per_cu)
19605 {
19606 sect_offset die_offset_sect;
19607
19608 dw2_setup (per_cu->objfile);
19609
19610 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
19611 return get_die_type_at_offset (die_offset_sect, per_cu);
19612 }
19613
19614 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
19615 On entry *REF_CU is the CU of SRC_DIE.
19616 On exit *REF_CU is the CU of the result.
19617 Returns NULL if the referenced DIE isn't found. */
19618
19619 static struct die_info *
19620 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
19621 struct dwarf2_cu **ref_cu)
19622 {
19623 struct objfile *objfile = (*ref_cu)->objfile;
19624 struct die_info temp_die;
19625 struct dwarf2_cu *sig_cu;
19626 struct die_info *die;
19627
19628 /* While it might be nice to assert sig_type->type == NULL here,
19629 we can get here for DW_AT_imported_declaration where we need
19630 the DIE not the type. */
19631
19632 /* If necessary, add it to the queue and load its DIEs. */
19633
19634 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
19635 read_signatured_type (sig_type);
19636
19637 sig_cu = sig_type->per_cu.cu;
19638 gdb_assert (sig_cu != NULL);
19639 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
19640 temp_die.offset = sig_type->type_offset_in_section;
19641 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
19642 temp_die.offset.sect_off);
19643 if (die)
19644 {
19645 /* For .gdb_index version 7 keep track of included TUs.
19646 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
19647 if (dwarf2_per_objfile->index_table != NULL
19648 && dwarf2_per_objfile->index_table->version <= 7)
19649 {
19650 VEC_safe_push (dwarf2_per_cu_ptr,
19651 (*ref_cu)->per_cu->imported_symtabs,
19652 sig_cu->per_cu);
19653 }
19654
19655 *ref_cu = sig_cu;
19656 return die;
19657 }
19658
19659 return NULL;
19660 }
19661
19662 /* Follow signatured type referenced by ATTR in SRC_DIE.
19663 On entry *REF_CU is the CU of SRC_DIE.
19664 On exit *REF_CU is the CU of the result.
19665 The result is the DIE of the type.
19666 If the referenced type cannot be found an error is thrown. */
19667
19668 static struct die_info *
19669 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
19670 struct dwarf2_cu **ref_cu)
19671 {
19672 ULONGEST signature = DW_SIGNATURE (attr);
19673 struct signatured_type *sig_type;
19674 struct die_info *die;
19675
19676 gdb_assert (attr->form == DW_FORM_ref_sig8);
19677
19678 sig_type = lookup_signatured_type (*ref_cu, signature);
19679 /* sig_type will be NULL if the signatured type is missing from
19680 the debug info. */
19681 if (sig_type == NULL)
19682 {
19683 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
19684 " from DIE at 0x%x [in module %s]"),
19685 hex_string (signature), src_die->offset.sect_off,
19686 objfile_name ((*ref_cu)->objfile));
19687 }
19688
19689 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
19690 if (die == NULL)
19691 {
19692 dump_die_for_error (src_die);
19693 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
19694 " from DIE at 0x%x [in module %s]"),
19695 hex_string (signature), src_die->offset.sect_off,
19696 objfile_name ((*ref_cu)->objfile));
19697 }
19698
19699 return die;
19700 }
19701
19702 /* Get the type specified by SIGNATURE referenced in DIE/CU,
19703 reading in and processing the type unit if necessary. */
19704
19705 static struct type *
19706 get_signatured_type (struct die_info *die, ULONGEST signature,
19707 struct dwarf2_cu *cu)
19708 {
19709 struct signatured_type *sig_type;
19710 struct dwarf2_cu *type_cu;
19711 struct die_info *type_die;
19712 struct type *type;
19713
19714 sig_type = lookup_signatured_type (cu, signature);
19715 /* sig_type will be NULL if the signatured type is missing from
19716 the debug info. */
19717 if (sig_type == NULL)
19718 {
19719 complaint (&symfile_complaints,
19720 _("Dwarf Error: Cannot find signatured DIE %s referenced"
19721 " from DIE at 0x%x [in module %s]"),
19722 hex_string (signature), die->offset.sect_off,
19723 objfile_name (dwarf2_per_objfile->objfile));
19724 return build_error_marker_type (cu, die);
19725 }
19726
19727 /* If we already know the type we're done. */
19728 if (sig_type->type != NULL)
19729 return sig_type->type;
19730
19731 type_cu = cu;
19732 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
19733 if (type_die != NULL)
19734 {
19735 /* N.B. We need to call get_die_type to ensure only one type for this DIE
19736 is created. This is important, for example, because for c++ classes
19737 we need TYPE_NAME set which is only done by new_symbol. Blech. */
19738 type = read_type_die (type_die, type_cu);
19739 if (type == NULL)
19740 {
19741 complaint (&symfile_complaints,
19742 _("Dwarf Error: Cannot build signatured type %s"
19743 " referenced from DIE at 0x%x [in module %s]"),
19744 hex_string (signature), die->offset.sect_off,
19745 objfile_name (dwarf2_per_objfile->objfile));
19746 type = build_error_marker_type (cu, die);
19747 }
19748 }
19749 else
19750 {
19751 complaint (&symfile_complaints,
19752 _("Dwarf Error: Problem reading signatured DIE %s referenced"
19753 " from DIE at 0x%x [in module %s]"),
19754 hex_string (signature), die->offset.sect_off,
19755 objfile_name (dwarf2_per_objfile->objfile));
19756 type = build_error_marker_type (cu, die);
19757 }
19758 sig_type->type = type;
19759
19760 return type;
19761 }
19762
19763 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
19764 reading in and processing the type unit if necessary. */
19765
19766 static struct type *
19767 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
19768 struct dwarf2_cu *cu) /* ARI: editCase function */
19769 {
19770 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
19771 if (attr_form_is_ref (attr))
19772 {
19773 struct dwarf2_cu *type_cu = cu;
19774 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
19775
19776 return read_type_die (type_die, type_cu);
19777 }
19778 else if (attr->form == DW_FORM_ref_sig8)
19779 {
19780 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
19781 }
19782 else
19783 {
19784 complaint (&symfile_complaints,
19785 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
19786 " at 0x%x [in module %s]"),
19787 dwarf_form_name (attr->form), die->offset.sect_off,
19788 objfile_name (dwarf2_per_objfile->objfile));
19789 return build_error_marker_type (cu, die);
19790 }
19791 }
19792
19793 /* Load the DIEs associated with type unit PER_CU into memory. */
19794
19795 static void
19796 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
19797 {
19798 struct signatured_type *sig_type;
19799
19800 /* Caller is responsible for ensuring type_unit_groups don't get here. */
19801 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
19802
19803 /* We have the per_cu, but we need the signatured_type.
19804 Fortunately this is an easy translation. */
19805 gdb_assert (per_cu->is_debug_types);
19806 sig_type = (struct signatured_type *) per_cu;
19807
19808 gdb_assert (per_cu->cu == NULL);
19809
19810 read_signatured_type (sig_type);
19811
19812 gdb_assert (per_cu->cu != NULL);
19813 }
19814
19815 /* die_reader_func for read_signatured_type.
19816 This is identical to load_full_comp_unit_reader,
19817 but is kept separate for now. */
19818
19819 static void
19820 read_signatured_type_reader (const struct die_reader_specs *reader,
19821 const gdb_byte *info_ptr,
19822 struct die_info *comp_unit_die,
19823 int has_children,
19824 void *data)
19825 {
19826 struct dwarf2_cu *cu = reader->cu;
19827
19828 gdb_assert (cu->die_hash == NULL);
19829 cu->die_hash =
19830 htab_create_alloc_ex (cu->header.length / 12,
19831 die_hash,
19832 die_eq,
19833 NULL,
19834 &cu->comp_unit_obstack,
19835 hashtab_obstack_allocate,
19836 dummy_obstack_deallocate);
19837
19838 if (has_children)
19839 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
19840 &info_ptr, comp_unit_die);
19841 cu->dies = comp_unit_die;
19842 /* comp_unit_die is not stored in die_hash, no need. */
19843
19844 /* We try not to read any attributes in this function, because not
19845 all CUs needed for references have been loaded yet, and symbol
19846 table processing isn't initialized. But we have to set the CU language,
19847 or we won't be able to build types correctly.
19848 Similarly, if we do not read the producer, we can not apply
19849 producer-specific interpretation. */
19850 prepare_one_comp_unit (cu, cu->dies, language_minimal);
19851 }
19852
19853 /* Read in a signatured type and build its CU and DIEs.
19854 If the type is a stub for the real type in a DWO file,
19855 read in the real type from the DWO file as well. */
19856
19857 static void
19858 read_signatured_type (struct signatured_type *sig_type)
19859 {
19860 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
19861
19862 gdb_assert (per_cu->is_debug_types);
19863 gdb_assert (per_cu->cu == NULL);
19864
19865 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
19866 read_signatured_type_reader, NULL);
19867 sig_type->per_cu.tu_read = 1;
19868 }
19869
19870 /* Decode simple location descriptions.
19871 Given a pointer to a dwarf block that defines a location, compute
19872 the location and return the value.
19873
19874 NOTE drow/2003-11-18: This function is called in two situations
19875 now: for the address of static or global variables (partial symbols
19876 only) and for offsets into structures which are expected to be
19877 (more or less) constant. The partial symbol case should go away,
19878 and only the constant case should remain. That will let this
19879 function complain more accurately. A few special modes are allowed
19880 without complaint for global variables (for instance, global
19881 register values and thread-local values).
19882
19883 A location description containing no operations indicates that the
19884 object is optimized out. The return value is 0 for that case.
19885 FIXME drow/2003-11-16: No callers check for this case any more; soon all
19886 callers will only want a very basic result and this can become a
19887 complaint.
19888
19889 Note that stack[0] is unused except as a default error return. */
19890
19891 static CORE_ADDR
19892 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
19893 {
19894 struct objfile *objfile = cu->objfile;
19895 size_t i;
19896 size_t size = blk->size;
19897 const gdb_byte *data = blk->data;
19898 CORE_ADDR stack[64];
19899 int stacki;
19900 unsigned int bytes_read, unsnd;
19901 gdb_byte op;
19902
19903 i = 0;
19904 stacki = 0;
19905 stack[stacki] = 0;
19906 stack[++stacki] = 0;
19907
19908 while (i < size)
19909 {
19910 op = data[i++];
19911 switch (op)
19912 {
19913 case DW_OP_lit0:
19914 case DW_OP_lit1:
19915 case DW_OP_lit2:
19916 case DW_OP_lit3:
19917 case DW_OP_lit4:
19918 case DW_OP_lit5:
19919 case DW_OP_lit6:
19920 case DW_OP_lit7:
19921 case DW_OP_lit8:
19922 case DW_OP_lit9:
19923 case DW_OP_lit10:
19924 case DW_OP_lit11:
19925 case DW_OP_lit12:
19926 case DW_OP_lit13:
19927 case DW_OP_lit14:
19928 case DW_OP_lit15:
19929 case DW_OP_lit16:
19930 case DW_OP_lit17:
19931 case DW_OP_lit18:
19932 case DW_OP_lit19:
19933 case DW_OP_lit20:
19934 case DW_OP_lit21:
19935 case DW_OP_lit22:
19936 case DW_OP_lit23:
19937 case DW_OP_lit24:
19938 case DW_OP_lit25:
19939 case DW_OP_lit26:
19940 case DW_OP_lit27:
19941 case DW_OP_lit28:
19942 case DW_OP_lit29:
19943 case DW_OP_lit30:
19944 case DW_OP_lit31:
19945 stack[++stacki] = op - DW_OP_lit0;
19946 break;
19947
19948 case DW_OP_reg0:
19949 case DW_OP_reg1:
19950 case DW_OP_reg2:
19951 case DW_OP_reg3:
19952 case DW_OP_reg4:
19953 case DW_OP_reg5:
19954 case DW_OP_reg6:
19955 case DW_OP_reg7:
19956 case DW_OP_reg8:
19957 case DW_OP_reg9:
19958 case DW_OP_reg10:
19959 case DW_OP_reg11:
19960 case DW_OP_reg12:
19961 case DW_OP_reg13:
19962 case DW_OP_reg14:
19963 case DW_OP_reg15:
19964 case DW_OP_reg16:
19965 case DW_OP_reg17:
19966 case DW_OP_reg18:
19967 case DW_OP_reg19:
19968 case DW_OP_reg20:
19969 case DW_OP_reg21:
19970 case DW_OP_reg22:
19971 case DW_OP_reg23:
19972 case DW_OP_reg24:
19973 case DW_OP_reg25:
19974 case DW_OP_reg26:
19975 case DW_OP_reg27:
19976 case DW_OP_reg28:
19977 case DW_OP_reg29:
19978 case DW_OP_reg30:
19979 case DW_OP_reg31:
19980 stack[++stacki] = op - DW_OP_reg0;
19981 if (i < size)
19982 dwarf2_complex_location_expr_complaint ();
19983 break;
19984
19985 case DW_OP_regx:
19986 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
19987 i += bytes_read;
19988 stack[++stacki] = unsnd;
19989 if (i < size)
19990 dwarf2_complex_location_expr_complaint ();
19991 break;
19992
19993 case DW_OP_addr:
19994 stack[++stacki] = read_address (objfile->obfd, &data[i],
19995 cu, &bytes_read);
19996 i += bytes_read;
19997 break;
19998
19999 case DW_OP_const1u:
20000 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
20001 i += 1;
20002 break;
20003
20004 case DW_OP_const1s:
20005 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
20006 i += 1;
20007 break;
20008
20009 case DW_OP_const2u:
20010 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
20011 i += 2;
20012 break;
20013
20014 case DW_OP_const2s:
20015 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
20016 i += 2;
20017 break;
20018
20019 case DW_OP_const4u:
20020 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
20021 i += 4;
20022 break;
20023
20024 case DW_OP_const4s:
20025 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
20026 i += 4;
20027 break;
20028
20029 case DW_OP_const8u:
20030 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
20031 i += 8;
20032 break;
20033
20034 case DW_OP_constu:
20035 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
20036 &bytes_read);
20037 i += bytes_read;
20038 break;
20039
20040 case DW_OP_consts:
20041 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
20042 i += bytes_read;
20043 break;
20044
20045 case DW_OP_dup:
20046 stack[stacki + 1] = stack[stacki];
20047 stacki++;
20048 break;
20049
20050 case DW_OP_plus:
20051 stack[stacki - 1] += stack[stacki];
20052 stacki--;
20053 break;
20054
20055 case DW_OP_plus_uconst:
20056 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
20057 &bytes_read);
20058 i += bytes_read;
20059 break;
20060
20061 case DW_OP_minus:
20062 stack[stacki - 1] -= stack[stacki];
20063 stacki--;
20064 break;
20065
20066 case DW_OP_deref:
20067 /* If we're not the last op, then we definitely can't encode
20068 this using GDB's address_class enum. This is valid for partial
20069 global symbols, although the variable's address will be bogus
20070 in the psymtab. */
20071 if (i < size)
20072 dwarf2_complex_location_expr_complaint ();
20073 break;
20074
20075 case DW_OP_GNU_push_tls_address:
20076 /* The top of the stack has the offset from the beginning
20077 of the thread control block at which the variable is located. */
20078 /* Nothing should follow this operator, so the top of stack would
20079 be returned. */
20080 /* This is valid for partial global symbols, but the variable's
20081 address will be bogus in the psymtab. Make it always at least
20082 non-zero to not look as a variable garbage collected by linker
20083 which have DW_OP_addr 0. */
20084 if (i < size)
20085 dwarf2_complex_location_expr_complaint ();
20086 stack[stacki]++;
20087 break;
20088
20089 case DW_OP_GNU_uninit:
20090 break;
20091
20092 case DW_OP_GNU_addr_index:
20093 case DW_OP_GNU_const_index:
20094 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
20095 &bytes_read);
20096 i += bytes_read;
20097 break;
20098
20099 default:
20100 {
20101 const char *name = get_DW_OP_name (op);
20102
20103 if (name)
20104 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
20105 name);
20106 else
20107 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
20108 op);
20109 }
20110
20111 return (stack[stacki]);
20112 }
20113
20114 /* Enforce maximum stack depth of SIZE-1 to avoid writing
20115 outside of the allocated space. Also enforce minimum>0. */
20116 if (stacki >= ARRAY_SIZE (stack) - 1)
20117 {
20118 complaint (&symfile_complaints,
20119 _("location description stack overflow"));
20120 return 0;
20121 }
20122
20123 if (stacki <= 0)
20124 {
20125 complaint (&symfile_complaints,
20126 _("location description stack underflow"));
20127 return 0;
20128 }
20129 }
20130 return (stack[stacki]);
20131 }
20132
20133 /* memory allocation interface */
20134
20135 static struct dwarf_block *
20136 dwarf_alloc_block (struct dwarf2_cu *cu)
20137 {
20138 struct dwarf_block *blk;
20139
20140 blk = (struct dwarf_block *)
20141 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
20142 return (blk);
20143 }
20144
20145 static struct die_info *
20146 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
20147 {
20148 struct die_info *die;
20149 size_t size = sizeof (struct die_info);
20150
20151 if (num_attrs > 1)
20152 size += (num_attrs - 1) * sizeof (struct attribute);
20153
20154 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
20155 memset (die, 0, sizeof (struct die_info));
20156 return (die);
20157 }
20158
20159 \f
20160 /* Macro support. */
20161
20162 /* Return file name relative to the compilation directory of file number I in
20163 *LH's file name table. The result is allocated using xmalloc; the caller is
20164 responsible for freeing it. */
20165
20166 static char *
20167 file_file_name (int file, struct line_header *lh)
20168 {
20169 /* Is the file number a valid index into the line header's file name
20170 table? Remember that file numbers start with one, not zero. */
20171 if (1 <= file && file <= lh->num_file_names)
20172 {
20173 struct file_entry *fe = &lh->file_names[file - 1];
20174
20175 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0)
20176 return xstrdup (fe->name);
20177 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
20178 fe->name, NULL);
20179 }
20180 else
20181 {
20182 /* The compiler produced a bogus file number. We can at least
20183 record the macro definitions made in the file, even if we
20184 won't be able to find the file by name. */
20185 char fake_name[80];
20186
20187 xsnprintf (fake_name, sizeof (fake_name),
20188 "<bad macro file number %d>", file);
20189
20190 complaint (&symfile_complaints,
20191 _("bad file number in macro information (%d)"),
20192 file);
20193
20194 return xstrdup (fake_name);
20195 }
20196 }
20197
20198 /* Return the full name of file number I in *LH's file name table.
20199 Use COMP_DIR as the name of the current directory of the
20200 compilation. The result is allocated using xmalloc; the caller is
20201 responsible for freeing it. */
20202 static char *
20203 file_full_name (int file, struct line_header *lh, const char *comp_dir)
20204 {
20205 /* Is the file number a valid index into the line header's file name
20206 table? Remember that file numbers start with one, not zero. */
20207 if (1 <= file && file <= lh->num_file_names)
20208 {
20209 char *relative = file_file_name (file, lh);
20210
20211 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
20212 return relative;
20213 return reconcat (relative, comp_dir, SLASH_STRING, relative, NULL);
20214 }
20215 else
20216 return file_file_name (file, lh);
20217 }
20218
20219
20220 static struct macro_source_file *
20221 macro_start_file (int file, int line,
20222 struct macro_source_file *current_file,
20223 const char *comp_dir,
20224 struct line_header *lh, struct objfile *objfile)
20225 {
20226 /* File name relative to the compilation directory of this source file. */
20227 char *file_name = file_file_name (file, lh);
20228
20229 if (! current_file)
20230 {
20231 /* Note: We don't create a macro table for this compilation unit
20232 at all until we actually get a filename. */
20233 struct macro_table *macro_table = get_macro_table (objfile, comp_dir);
20234
20235 /* If we have no current file, then this must be the start_file
20236 directive for the compilation unit's main source file. */
20237 current_file = macro_set_main (macro_table, file_name);
20238 macro_define_special (macro_table);
20239 }
20240 else
20241 current_file = macro_include (current_file, line, file_name);
20242
20243 xfree (file_name);
20244
20245 return current_file;
20246 }
20247
20248
20249 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
20250 followed by a null byte. */
20251 static char *
20252 copy_string (const char *buf, int len)
20253 {
20254 char *s = xmalloc (len + 1);
20255
20256 memcpy (s, buf, len);
20257 s[len] = '\0';
20258 return s;
20259 }
20260
20261
20262 static const char *
20263 consume_improper_spaces (const char *p, const char *body)
20264 {
20265 if (*p == ' ')
20266 {
20267 complaint (&symfile_complaints,
20268 _("macro definition contains spaces "
20269 "in formal argument list:\n`%s'"),
20270 body);
20271
20272 while (*p == ' ')
20273 p++;
20274 }
20275
20276 return p;
20277 }
20278
20279
20280 static void
20281 parse_macro_definition (struct macro_source_file *file, int line,
20282 const char *body)
20283 {
20284 const char *p;
20285
20286 /* The body string takes one of two forms. For object-like macro
20287 definitions, it should be:
20288
20289 <macro name> " " <definition>
20290
20291 For function-like macro definitions, it should be:
20292
20293 <macro name> "() " <definition>
20294 or
20295 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
20296
20297 Spaces may appear only where explicitly indicated, and in the
20298 <definition>.
20299
20300 The Dwarf 2 spec says that an object-like macro's name is always
20301 followed by a space, but versions of GCC around March 2002 omit
20302 the space when the macro's definition is the empty string.
20303
20304 The Dwarf 2 spec says that there should be no spaces between the
20305 formal arguments in a function-like macro's formal argument list,
20306 but versions of GCC around March 2002 include spaces after the
20307 commas. */
20308
20309
20310 /* Find the extent of the macro name. The macro name is terminated
20311 by either a space or null character (for an object-like macro) or
20312 an opening paren (for a function-like macro). */
20313 for (p = body; *p; p++)
20314 if (*p == ' ' || *p == '(')
20315 break;
20316
20317 if (*p == ' ' || *p == '\0')
20318 {
20319 /* It's an object-like macro. */
20320 int name_len = p - body;
20321 char *name = copy_string (body, name_len);
20322 const char *replacement;
20323
20324 if (*p == ' ')
20325 replacement = body + name_len + 1;
20326 else
20327 {
20328 dwarf2_macro_malformed_definition_complaint (body);
20329 replacement = body + name_len;
20330 }
20331
20332 macro_define_object (file, line, name, replacement);
20333
20334 xfree (name);
20335 }
20336 else if (*p == '(')
20337 {
20338 /* It's a function-like macro. */
20339 char *name = copy_string (body, p - body);
20340 int argc = 0;
20341 int argv_size = 1;
20342 char **argv = xmalloc (argv_size * sizeof (*argv));
20343
20344 p++;
20345
20346 p = consume_improper_spaces (p, body);
20347
20348 /* Parse the formal argument list. */
20349 while (*p && *p != ')')
20350 {
20351 /* Find the extent of the current argument name. */
20352 const char *arg_start = p;
20353
20354 while (*p && *p != ',' && *p != ')' && *p != ' ')
20355 p++;
20356
20357 if (! *p || p == arg_start)
20358 dwarf2_macro_malformed_definition_complaint (body);
20359 else
20360 {
20361 /* Make sure argv has room for the new argument. */
20362 if (argc >= argv_size)
20363 {
20364 argv_size *= 2;
20365 argv = xrealloc (argv, argv_size * sizeof (*argv));
20366 }
20367
20368 argv[argc++] = copy_string (arg_start, p - arg_start);
20369 }
20370
20371 p = consume_improper_spaces (p, body);
20372
20373 /* Consume the comma, if present. */
20374 if (*p == ',')
20375 {
20376 p++;
20377
20378 p = consume_improper_spaces (p, body);
20379 }
20380 }
20381
20382 if (*p == ')')
20383 {
20384 p++;
20385
20386 if (*p == ' ')
20387 /* Perfectly formed definition, no complaints. */
20388 macro_define_function (file, line, name,
20389 argc, (const char **) argv,
20390 p + 1);
20391 else if (*p == '\0')
20392 {
20393 /* Complain, but do define it. */
20394 dwarf2_macro_malformed_definition_complaint (body);
20395 macro_define_function (file, line, name,
20396 argc, (const char **) argv,
20397 p);
20398 }
20399 else
20400 /* Just complain. */
20401 dwarf2_macro_malformed_definition_complaint (body);
20402 }
20403 else
20404 /* Just complain. */
20405 dwarf2_macro_malformed_definition_complaint (body);
20406
20407 xfree (name);
20408 {
20409 int i;
20410
20411 for (i = 0; i < argc; i++)
20412 xfree (argv[i]);
20413 }
20414 xfree (argv);
20415 }
20416 else
20417 dwarf2_macro_malformed_definition_complaint (body);
20418 }
20419
20420 /* Skip some bytes from BYTES according to the form given in FORM.
20421 Returns the new pointer. */
20422
20423 static const gdb_byte *
20424 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
20425 enum dwarf_form form,
20426 unsigned int offset_size,
20427 struct dwarf2_section_info *section)
20428 {
20429 unsigned int bytes_read;
20430
20431 switch (form)
20432 {
20433 case DW_FORM_data1:
20434 case DW_FORM_flag:
20435 ++bytes;
20436 break;
20437
20438 case DW_FORM_data2:
20439 bytes += 2;
20440 break;
20441
20442 case DW_FORM_data4:
20443 bytes += 4;
20444 break;
20445
20446 case DW_FORM_data8:
20447 bytes += 8;
20448 break;
20449
20450 case DW_FORM_string:
20451 read_direct_string (abfd, bytes, &bytes_read);
20452 bytes += bytes_read;
20453 break;
20454
20455 case DW_FORM_sec_offset:
20456 case DW_FORM_strp:
20457 case DW_FORM_GNU_strp_alt:
20458 bytes += offset_size;
20459 break;
20460
20461 case DW_FORM_block:
20462 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
20463 bytes += bytes_read;
20464 break;
20465
20466 case DW_FORM_block1:
20467 bytes += 1 + read_1_byte (abfd, bytes);
20468 break;
20469 case DW_FORM_block2:
20470 bytes += 2 + read_2_bytes (abfd, bytes);
20471 break;
20472 case DW_FORM_block4:
20473 bytes += 4 + read_4_bytes (abfd, bytes);
20474 break;
20475
20476 case DW_FORM_sdata:
20477 case DW_FORM_udata:
20478 case DW_FORM_GNU_addr_index:
20479 case DW_FORM_GNU_str_index:
20480 bytes = gdb_skip_leb128 (bytes, buffer_end);
20481 if (bytes == NULL)
20482 {
20483 dwarf2_section_buffer_overflow_complaint (section);
20484 return NULL;
20485 }
20486 break;
20487
20488 default:
20489 {
20490 complain:
20491 complaint (&symfile_complaints,
20492 _("invalid form 0x%x in `%s'"),
20493 form, get_section_name (section));
20494 return NULL;
20495 }
20496 }
20497
20498 return bytes;
20499 }
20500
20501 /* A helper for dwarf_decode_macros that handles skipping an unknown
20502 opcode. Returns an updated pointer to the macro data buffer; or,
20503 on error, issues a complaint and returns NULL. */
20504
20505 static const gdb_byte *
20506 skip_unknown_opcode (unsigned int opcode,
20507 const gdb_byte **opcode_definitions,
20508 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
20509 bfd *abfd,
20510 unsigned int offset_size,
20511 struct dwarf2_section_info *section)
20512 {
20513 unsigned int bytes_read, i;
20514 unsigned long arg;
20515 const gdb_byte *defn;
20516
20517 if (opcode_definitions[opcode] == NULL)
20518 {
20519 complaint (&symfile_complaints,
20520 _("unrecognized DW_MACFINO opcode 0x%x"),
20521 opcode);
20522 return NULL;
20523 }
20524
20525 defn = opcode_definitions[opcode];
20526 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
20527 defn += bytes_read;
20528
20529 for (i = 0; i < arg; ++i)
20530 {
20531 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end, defn[i], offset_size,
20532 section);
20533 if (mac_ptr == NULL)
20534 {
20535 /* skip_form_bytes already issued the complaint. */
20536 return NULL;
20537 }
20538 }
20539
20540 return mac_ptr;
20541 }
20542
20543 /* A helper function which parses the header of a macro section.
20544 If the macro section is the extended (for now called "GNU") type,
20545 then this updates *OFFSET_SIZE. Returns a pointer to just after
20546 the header, or issues a complaint and returns NULL on error. */
20547
20548 static const gdb_byte *
20549 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
20550 bfd *abfd,
20551 const gdb_byte *mac_ptr,
20552 unsigned int *offset_size,
20553 int section_is_gnu)
20554 {
20555 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
20556
20557 if (section_is_gnu)
20558 {
20559 unsigned int version, flags;
20560
20561 version = read_2_bytes (abfd, mac_ptr);
20562 if (version != 4)
20563 {
20564 complaint (&symfile_complaints,
20565 _("unrecognized version `%d' in .debug_macro section"),
20566 version);
20567 return NULL;
20568 }
20569 mac_ptr += 2;
20570
20571 flags = read_1_byte (abfd, mac_ptr);
20572 ++mac_ptr;
20573 *offset_size = (flags & 1) ? 8 : 4;
20574
20575 if ((flags & 2) != 0)
20576 /* We don't need the line table offset. */
20577 mac_ptr += *offset_size;
20578
20579 /* Vendor opcode descriptions. */
20580 if ((flags & 4) != 0)
20581 {
20582 unsigned int i, count;
20583
20584 count = read_1_byte (abfd, mac_ptr);
20585 ++mac_ptr;
20586 for (i = 0; i < count; ++i)
20587 {
20588 unsigned int opcode, bytes_read;
20589 unsigned long arg;
20590
20591 opcode = read_1_byte (abfd, mac_ptr);
20592 ++mac_ptr;
20593 opcode_definitions[opcode] = mac_ptr;
20594 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20595 mac_ptr += bytes_read;
20596 mac_ptr += arg;
20597 }
20598 }
20599 }
20600
20601 return mac_ptr;
20602 }
20603
20604 /* A helper for dwarf_decode_macros that handles the GNU extensions,
20605 including DW_MACRO_GNU_transparent_include. */
20606
20607 static void
20608 dwarf_decode_macro_bytes (bfd *abfd,
20609 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
20610 struct macro_source_file *current_file,
20611 struct line_header *lh, const char *comp_dir,
20612 struct dwarf2_section_info *section,
20613 int section_is_gnu, int section_is_dwz,
20614 unsigned int offset_size,
20615 struct objfile *objfile,
20616 htab_t include_hash)
20617 {
20618 enum dwarf_macro_record_type macinfo_type;
20619 int at_commandline;
20620 const gdb_byte *opcode_definitions[256];
20621
20622 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
20623 &offset_size, section_is_gnu);
20624 if (mac_ptr == NULL)
20625 {
20626 /* We already issued a complaint. */
20627 return;
20628 }
20629
20630 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
20631 GDB is still reading the definitions from command line. First
20632 DW_MACINFO_start_file will need to be ignored as it was already executed
20633 to create CURRENT_FILE for the main source holding also the command line
20634 definitions. On first met DW_MACINFO_start_file this flag is reset to
20635 normally execute all the remaining DW_MACINFO_start_file macinfos. */
20636
20637 at_commandline = 1;
20638
20639 do
20640 {
20641 /* Do we at least have room for a macinfo type byte? */
20642 if (mac_ptr >= mac_end)
20643 {
20644 dwarf2_section_buffer_overflow_complaint (section);
20645 break;
20646 }
20647
20648 macinfo_type = read_1_byte (abfd, mac_ptr);
20649 mac_ptr++;
20650
20651 /* Note that we rely on the fact that the corresponding GNU and
20652 DWARF constants are the same. */
20653 switch (macinfo_type)
20654 {
20655 /* A zero macinfo type indicates the end of the macro
20656 information. */
20657 case 0:
20658 break;
20659
20660 case DW_MACRO_GNU_define:
20661 case DW_MACRO_GNU_undef:
20662 case DW_MACRO_GNU_define_indirect:
20663 case DW_MACRO_GNU_undef_indirect:
20664 case DW_MACRO_GNU_define_indirect_alt:
20665 case DW_MACRO_GNU_undef_indirect_alt:
20666 {
20667 unsigned int bytes_read;
20668 int line;
20669 const char *body;
20670 int is_define;
20671
20672 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20673 mac_ptr += bytes_read;
20674
20675 if (macinfo_type == DW_MACRO_GNU_define
20676 || macinfo_type == DW_MACRO_GNU_undef)
20677 {
20678 body = read_direct_string (abfd, mac_ptr, &bytes_read);
20679 mac_ptr += bytes_read;
20680 }
20681 else
20682 {
20683 LONGEST str_offset;
20684
20685 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
20686 mac_ptr += offset_size;
20687
20688 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
20689 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
20690 || section_is_dwz)
20691 {
20692 struct dwz_file *dwz = dwarf2_get_dwz_file ();
20693
20694 body = read_indirect_string_from_dwz (dwz, str_offset);
20695 }
20696 else
20697 body = read_indirect_string_at_offset (abfd, str_offset);
20698 }
20699
20700 is_define = (macinfo_type == DW_MACRO_GNU_define
20701 || macinfo_type == DW_MACRO_GNU_define_indirect
20702 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
20703 if (! current_file)
20704 {
20705 /* DWARF violation as no main source is present. */
20706 complaint (&symfile_complaints,
20707 _("debug info with no main source gives macro %s "
20708 "on line %d: %s"),
20709 is_define ? _("definition") : _("undefinition"),
20710 line, body);
20711 break;
20712 }
20713 if ((line == 0 && !at_commandline)
20714 || (line != 0 && at_commandline))
20715 complaint (&symfile_complaints,
20716 _("debug info gives %s macro %s with %s line %d: %s"),
20717 at_commandline ? _("command-line") : _("in-file"),
20718 is_define ? _("definition") : _("undefinition"),
20719 line == 0 ? _("zero") : _("non-zero"), line, body);
20720
20721 if (is_define)
20722 parse_macro_definition (current_file, line, body);
20723 else
20724 {
20725 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
20726 || macinfo_type == DW_MACRO_GNU_undef_indirect
20727 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
20728 macro_undef (current_file, line, body);
20729 }
20730 }
20731 break;
20732
20733 case DW_MACRO_GNU_start_file:
20734 {
20735 unsigned int bytes_read;
20736 int line, file;
20737
20738 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20739 mac_ptr += bytes_read;
20740 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20741 mac_ptr += bytes_read;
20742
20743 if ((line == 0 && !at_commandline)
20744 || (line != 0 && at_commandline))
20745 complaint (&symfile_complaints,
20746 _("debug info gives source %d included "
20747 "from %s at %s line %d"),
20748 file, at_commandline ? _("command-line") : _("file"),
20749 line == 0 ? _("zero") : _("non-zero"), line);
20750
20751 if (at_commandline)
20752 {
20753 /* This DW_MACRO_GNU_start_file was executed in the
20754 pass one. */
20755 at_commandline = 0;
20756 }
20757 else
20758 current_file = macro_start_file (file, line,
20759 current_file, comp_dir,
20760 lh, objfile);
20761 }
20762 break;
20763
20764 case DW_MACRO_GNU_end_file:
20765 if (! current_file)
20766 complaint (&symfile_complaints,
20767 _("macro debug info has an unmatched "
20768 "`close_file' directive"));
20769 else
20770 {
20771 current_file = current_file->included_by;
20772 if (! current_file)
20773 {
20774 enum dwarf_macro_record_type next_type;
20775
20776 /* GCC circa March 2002 doesn't produce the zero
20777 type byte marking the end of the compilation
20778 unit. Complain if it's not there, but exit no
20779 matter what. */
20780
20781 /* Do we at least have room for a macinfo type byte? */
20782 if (mac_ptr >= mac_end)
20783 {
20784 dwarf2_section_buffer_overflow_complaint (section);
20785 return;
20786 }
20787
20788 /* We don't increment mac_ptr here, so this is just
20789 a look-ahead. */
20790 next_type = read_1_byte (abfd, mac_ptr);
20791 if (next_type != 0)
20792 complaint (&symfile_complaints,
20793 _("no terminating 0-type entry for "
20794 "macros in `.debug_macinfo' section"));
20795
20796 return;
20797 }
20798 }
20799 break;
20800
20801 case DW_MACRO_GNU_transparent_include:
20802 case DW_MACRO_GNU_transparent_include_alt:
20803 {
20804 LONGEST offset;
20805 void **slot;
20806 bfd *include_bfd = abfd;
20807 struct dwarf2_section_info *include_section = section;
20808 struct dwarf2_section_info alt_section;
20809 const gdb_byte *include_mac_end = mac_end;
20810 int is_dwz = section_is_dwz;
20811 const gdb_byte *new_mac_ptr;
20812
20813 offset = read_offset_1 (abfd, mac_ptr, offset_size);
20814 mac_ptr += offset_size;
20815
20816 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
20817 {
20818 struct dwz_file *dwz = dwarf2_get_dwz_file ();
20819
20820 dwarf2_read_section (dwarf2_per_objfile->objfile,
20821 &dwz->macro);
20822
20823 include_section = &dwz->macro;
20824 include_bfd = get_section_bfd_owner (include_section);
20825 include_mac_end = dwz->macro.buffer + dwz->macro.size;
20826 is_dwz = 1;
20827 }
20828
20829 new_mac_ptr = include_section->buffer + offset;
20830 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
20831
20832 if (*slot != NULL)
20833 {
20834 /* This has actually happened; see
20835 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
20836 complaint (&symfile_complaints,
20837 _("recursive DW_MACRO_GNU_transparent_include in "
20838 ".debug_macro section"));
20839 }
20840 else
20841 {
20842 *slot = (void *) new_mac_ptr;
20843
20844 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
20845 include_mac_end, current_file,
20846 lh, comp_dir,
20847 section, section_is_gnu, is_dwz,
20848 offset_size, objfile, include_hash);
20849
20850 htab_remove_elt (include_hash, (void *) new_mac_ptr);
20851 }
20852 }
20853 break;
20854
20855 case DW_MACINFO_vendor_ext:
20856 if (!section_is_gnu)
20857 {
20858 unsigned int bytes_read;
20859 int constant;
20860
20861 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20862 mac_ptr += bytes_read;
20863 read_direct_string (abfd, mac_ptr, &bytes_read);
20864 mac_ptr += bytes_read;
20865
20866 /* We don't recognize any vendor extensions. */
20867 break;
20868 }
20869 /* FALLTHROUGH */
20870
20871 default:
20872 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
20873 mac_ptr, mac_end, abfd, offset_size,
20874 section);
20875 if (mac_ptr == NULL)
20876 return;
20877 break;
20878 }
20879 } while (macinfo_type != 0);
20880 }
20881
20882 static void
20883 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
20884 const char *comp_dir, int section_is_gnu)
20885 {
20886 struct objfile *objfile = dwarf2_per_objfile->objfile;
20887 struct line_header *lh = cu->line_header;
20888 bfd *abfd;
20889 const gdb_byte *mac_ptr, *mac_end;
20890 struct macro_source_file *current_file = 0;
20891 enum dwarf_macro_record_type macinfo_type;
20892 unsigned int offset_size = cu->header.offset_size;
20893 const gdb_byte *opcode_definitions[256];
20894 struct cleanup *cleanup;
20895 htab_t include_hash;
20896 void **slot;
20897 struct dwarf2_section_info *section;
20898 const char *section_name;
20899
20900 if (cu->dwo_unit != NULL)
20901 {
20902 if (section_is_gnu)
20903 {
20904 section = &cu->dwo_unit->dwo_file->sections.macro;
20905 section_name = ".debug_macro.dwo";
20906 }
20907 else
20908 {
20909 section = &cu->dwo_unit->dwo_file->sections.macinfo;
20910 section_name = ".debug_macinfo.dwo";
20911 }
20912 }
20913 else
20914 {
20915 if (section_is_gnu)
20916 {
20917 section = &dwarf2_per_objfile->macro;
20918 section_name = ".debug_macro";
20919 }
20920 else
20921 {
20922 section = &dwarf2_per_objfile->macinfo;
20923 section_name = ".debug_macinfo";
20924 }
20925 }
20926
20927 dwarf2_read_section (objfile, section);
20928 if (section->buffer == NULL)
20929 {
20930 complaint (&symfile_complaints, _("missing %s section"), section_name);
20931 return;
20932 }
20933 abfd = get_section_bfd_owner (section);
20934
20935 /* First pass: Find the name of the base filename.
20936 This filename is needed in order to process all macros whose definition
20937 (or undefinition) comes from the command line. These macros are defined
20938 before the first DW_MACINFO_start_file entry, and yet still need to be
20939 associated to the base file.
20940
20941 To determine the base file name, we scan the macro definitions until we
20942 reach the first DW_MACINFO_start_file entry. We then initialize
20943 CURRENT_FILE accordingly so that any macro definition found before the
20944 first DW_MACINFO_start_file can still be associated to the base file. */
20945
20946 mac_ptr = section->buffer + offset;
20947 mac_end = section->buffer + section->size;
20948
20949 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
20950 &offset_size, section_is_gnu);
20951 if (mac_ptr == NULL)
20952 {
20953 /* We already issued a complaint. */
20954 return;
20955 }
20956
20957 do
20958 {
20959 /* Do we at least have room for a macinfo type byte? */
20960 if (mac_ptr >= mac_end)
20961 {
20962 /* Complaint is printed during the second pass as GDB will probably
20963 stop the first pass earlier upon finding
20964 DW_MACINFO_start_file. */
20965 break;
20966 }
20967
20968 macinfo_type = read_1_byte (abfd, mac_ptr);
20969 mac_ptr++;
20970
20971 /* Note that we rely on the fact that the corresponding GNU and
20972 DWARF constants are the same. */
20973 switch (macinfo_type)
20974 {
20975 /* A zero macinfo type indicates the end of the macro
20976 information. */
20977 case 0:
20978 break;
20979
20980 case DW_MACRO_GNU_define:
20981 case DW_MACRO_GNU_undef:
20982 /* Only skip the data by MAC_PTR. */
20983 {
20984 unsigned int bytes_read;
20985
20986 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20987 mac_ptr += bytes_read;
20988 read_direct_string (abfd, mac_ptr, &bytes_read);
20989 mac_ptr += bytes_read;
20990 }
20991 break;
20992
20993 case DW_MACRO_GNU_start_file:
20994 {
20995 unsigned int bytes_read;
20996 int line, file;
20997
20998 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20999 mac_ptr += bytes_read;
21000 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21001 mac_ptr += bytes_read;
21002
21003 current_file = macro_start_file (file, line, current_file,
21004 comp_dir, lh, objfile);
21005 }
21006 break;
21007
21008 case DW_MACRO_GNU_end_file:
21009 /* No data to skip by MAC_PTR. */
21010 break;
21011
21012 case DW_MACRO_GNU_define_indirect:
21013 case DW_MACRO_GNU_undef_indirect:
21014 case DW_MACRO_GNU_define_indirect_alt:
21015 case DW_MACRO_GNU_undef_indirect_alt:
21016 {
21017 unsigned int bytes_read;
21018
21019 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21020 mac_ptr += bytes_read;
21021 mac_ptr += offset_size;
21022 }
21023 break;
21024
21025 case DW_MACRO_GNU_transparent_include:
21026 case DW_MACRO_GNU_transparent_include_alt:
21027 /* Note that, according to the spec, a transparent include
21028 chain cannot call DW_MACRO_GNU_start_file. So, we can just
21029 skip this opcode. */
21030 mac_ptr += offset_size;
21031 break;
21032
21033 case DW_MACINFO_vendor_ext:
21034 /* Only skip the data by MAC_PTR. */
21035 if (!section_is_gnu)
21036 {
21037 unsigned int bytes_read;
21038
21039 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21040 mac_ptr += bytes_read;
21041 read_direct_string (abfd, mac_ptr, &bytes_read);
21042 mac_ptr += bytes_read;
21043 }
21044 /* FALLTHROUGH */
21045
21046 default:
21047 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
21048 mac_ptr, mac_end, abfd, offset_size,
21049 section);
21050 if (mac_ptr == NULL)
21051 return;
21052 break;
21053 }
21054 } while (macinfo_type != 0 && current_file == NULL);
21055
21056 /* Second pass: Process all entries.
21057
21058 Use the AT_COMMAND_LINE flag to determine whether we are still processing
21059 command-line macro definitions/undefinitions. This flag is unset when we
21060 reach the first DW_MACINFO_start_file entry. */
21061
21062 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
21063 NULL, xcalloc, xfree);
21064 cleanup = make_cleanup_htab_delete (include_hash);
21065 mac_ptr = section->buffer + offset;
21066 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
21067 *slot = (void *) mac_ptr;
21068 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
21069 current_file, lh, comp_dir, section,
21070 section_is_gnu, 0,
21071 offset_size, objfile, include_hash);
21072 do_cleanups (cleanup);
21073 }
21074
21075 /* Check if the attribute's form is a DW_FORM_block*
21076 if so return true else false. */
21077
21078 static int
21079 attr_form_is_block (const struct attribute *attr)
21080 {
21081 return (attr == NULL ? 0 :
21082 attr->form == DW_FORM_block1
21083 || attr->form == DW_FORM_block2
21084 || attr->form == DW_FORM_block4
21085 || attr->form == DW_FORM_block
21086 || attr->form == DW_FORM_exprloc);
21087 }
21088
21089 /* Return non-zero if ATTR's value is a section offset --- classes
21090 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
21091 You may use DW_UNSND (attr) to retrieve such offsets.
21092
21093 Section 7.5.4, "Attribute Encodings", explains that no attribute
21094 may have a value that belongs to more than one of these classes; it
21095 would be ambiguous if we did, because we use the same forms for all
21096 of them. */
21097
21098 static int
21099 attr_form_is_section_offset (const struct attribute *attr)
21100 {
21101 return (attr->form == DW_FORM_data4
21102 || attr->form == DW_FORM_data8
21103 || attr->form == DW_FORM_sec_offset);
21104 }
21105
21106 /* Return non-zero if ATTR's value falls in the 'constant' class, or
21107 zero otherwise. When this function returns true, you can apply
21108 dwarf2_get_attr_constant_value to it.
21109
21110 However, note that for some attributes you must check
21111 attr_form_is_section_offset before using this test. DW_FORM_data4
21112 and DW_FORM_data8 are members of both the constant class, and of
21113 the classes that contain offsets into other debug sections
21114 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
21115 that, if an attribute's can be either a constant or one of the
21116 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
21117 taken as section offsets, not constants. */
21118
21119 static int
21120 attr_form_is_constant (const struct attribute *attr)
21121 {
21122 switch (attr->form)
21123 {
21124 case DW_FORM_sdata:
21125 case DW_FORM_udata:
21126 case DW_FORM_data1:
21127 case DW_FORM_data2:
21128 case DW_FORM_data4:
21129 case DW_FORM_data8:
21130 return 1;
21131 default:
21132 return 0;
21133 }
21134 }
21135
21136
21137 /* DW_ADDR is always stored already as sect_offset; despite for the forms
21138 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
21139
21140 static int
21141 attr_form_is_ref (const struct attribute *attr)
21142 {
21143 switch (attr->form)
21144 {
21145 case DW_FORM_ref_addr:
21146 case DW_FORM_ref1:
21147 case DW_FORM_ref2:
21148 case DW_FORM_ref4:
21149 case DW_FORM_ref8:
21150 case DW_FORM_ref_udata:
21151 case DW_FORM_GNU_ref_alt:
21152 return 1;
21153 default:
21154 return 0;
21155 }
21156 }
21157
21158 /* Return the .debug_loc section to use for CU.
21159 For DWO files use .debug_loc.dwo. */
21160
21161 static struct dwarf2_section_info *
21162 cu_debug_loc_section (struct dwarf2_cu *cu)
21163 {
21164 if (cu->dwo_unit)
21165 return &cu->dwo_unit->dwo_file->sections.loc;
21166 return &dwarf2_per_objfile->loc;
21167 }
21168
21169 /* A helper function that fills in a dwarf2_loclist_baton. */
21170
21171 static void
21172 fill_in_loclist_baton (struct dwarf2_cu *cu,
21173 struct dwarf2_loclist_baton *baton,
21174 const struct attribute *attr)
21175 {
21176 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21177
21178 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
21179
21180 baton->per_cu = cu->per_cu;
21181 gdb_assert (baton->per_cu);
21182 /* We don't know how long the location list is, but make sure we
21183 don't run off the edge of the section. */
21184 baton->size = section->size - DW_UNSND (attr);
21185 baton->data = section->buffer + DW_UNSND (attr);
21186 baton->base_address = cu->base_address;
21187 baton->from_dwo = cu->dwo_unit != NULL;
21188 }
21189
21190 static void
21191 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
21192 struct dwarf2_cu *cu, int is_block)
21193 {
21194 struct objfile *objfile = dwarf2_per_objfile->objfile;
21195 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21196
21197 if (attr_form_is_section_offset (attr)
21198 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
21199 the section. If so, fall through to the complaint in the
21200 other branch. */
21201 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
21202 {
21203 struct dwarf2_loclist_baton *baton;
21204
21205 baton = obstack_alloc (&objfile->objfile_obstack,
21206 sizeof (struct dwarf2_loclist_baton));
21207
21208 fill_in_loclist_baton (cu, baton, attr);
21209
21210 if (cu->base_known == 0)
21211 complaint (&symfile_complaints,
21212 _("Location list used without "
21213 "specifying the CU base address."));
21214
21215 SYMBOL_ACLASS_INDEX (sym) = (is_block
21216 ? dwarf2_loclist_block_index
21217 : dwarf2_loclist_index);
21218 SYMBOL_LOCATION_BATON (sym) = baton;
21219 }
21220 else
21221 {
21222 struct dwarf2_locexpr_baton *baton;
21223
21224 baton = obstack_alloc (&objfile->objfile_obstack,
21225 sizeof (struct dwarf2_locexpr_baton));
21226 baton->per_cu = cu->per_cu;
21227 gdb_assert (baton->per_cu);
21228
21229 if (attr_form_is_block (attr))
21230 {
21231 /* Note that we're just copying the block's data pointer
21232 here, not the actual data. We're still pointing into the
21233 info_buffer for SYM's objfile; right now we never release
21234 that buffer, but when we do clean up properly this may
21235 need to change. */
21236 baton->size = DW_BLOCK (attr)->size;
21237 baton->data = DW_BLOCK (attr)->data;
21238 }
21239 else
21240 {
21241 dwarf2_invalid_attrib_class_complaint ("location description",
21242 SYMBOL_NATURAL_NAME (sym));
21243 baton->size = 0;
21244 }
21245
21246 SYMBOL_ACLASS_INDEX (sym) = (is_block
21247 ? dwarf2_locexpr_block_index
21248 : dwarf2_locexpr_index);
21249 SYMBOL_LOCATION_BATON (sym) = baton;
21250 }
21251 }
21252
21253 /* Return the OBJFILE associated with the compilation unit CU. If CU
21254 came from a separate debuginfo file, then the master objfile is
21255 returned. */
21256
21257 struct objfile *
21258 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
21259 {
21260 struct objfile *objfile = per_cu->objfile;
21261
21262 /* Return the master objfile, so that we can report and look up the
21263 correct file containing this variable. */
21264 if (objfile->separate_debug_objfile_backlink)
21265 objfile = objfile->separate_debug_objfile_backlink;
21266
21267 return objfile;
21268 }
21269
21270 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
21271 (CU_HEADERP is unused in such case) or prepare a temporary copy at
21272 CU_HEADERP first. */
21273
21274 static const struct comp_unit_head *
21275 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
21276 struct dwarf2_per_cu_data *per_cu)
21277 {
21278 const gdb_byte *info_ptr;
21279
21280 if (per_cu->cu)
21281 return &per_cu->cu->header;
21282
21283 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
21284
21285 memset (cu_headerp, 0, sizeof (*cu_headerp));
21286 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
21287
21288 return cu_headerp;
21289 }
21290
21291 /* Return the address size given in the compilation unit header for CU. */
21292
21293 int
21294 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
21295 {
21296 struct comp_unit_head cu_header_local;
21297 const struct comp_unit_head *cu_headerp;
21298
21299 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21300
21301 return cu_headerp->addr_size;
21302 }
21303
21304 /* Return the offset size given in the compilation unit header for CU. */
21305
21306 int
21307 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
21308 {
21309 struct comp_unit_head cu_header_local;
21310 const struct comp_unit_head *cu_headerp;
21311
21312 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21313
21314 return cu_headerp->offset_size;
21315 }
21316
21317 /* See its dwarf2loc.h declaration. */
21318
21319 int
21320 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
21321 {
21322 struct comp_unit_head cu_header_local;
21323 const struct comp_unit_head *cu_headerp;
21324
21325 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21326
21327 if (cu_headerp->version == 2)
21328 return cu_headerp->addr_size;
21329 else
21330 return cu_headerp->offset_size;
21331 }
21332
21333 /* Return the text offset of the CU. The returned offset comes from
21334 this CU's objfile. If this objfile came from a separate debuginfo
21335 file, then the offset may be different from the corresponding
21336 offset in the parent objfile. */
21337
21338 CORE_ADDR
21339 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
21340 {
21341 struct objfile *objfile = per_cu->objfile;
21342
21343 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21344 }
21345
21346 /* Locate the .debug_info compilation unit from CU's objfile which contains
21347 the DIE at OFFSET. Raises an error on failure. */
21348
21349 static struct dwarf2_per_cu_data *
21350 dwarf2_find_containing_comp_unit (sect_offset offset,
21351 unsigned int offset_in_dwz,
21352 struct objfile *objfile)
21353 {
21354 struct dwarf2_per_cu_data *this_cu;
21355 int low, high;
21356 const sect_offset *cu_off;
21357
21358 low = 0;
21359 high = dwarf2_per_objfile->n_comp_units - 1;
21360 while (high > low)
21361 {
21362 struct dwarf2_per_cu_data *mid_cu;
21363 int mid = low + (high - low) / 2;
21364
21365 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
21366 cu_off = &mid_cu->offset;
21367 if (mid_cu->is_dwz > offset_in_dwz
21368 || (mid_cu->is_dwz == offset_in_dwz
21369 && cu_off->sect_off >= offset.sect_off))
21370 high = mid;
21371 else
21372 low = mid + 1;
21373 }
21374 gdb_assert (low == high);
21375 this_cu = dwarf2_per_objfile->all_comp_units[low];
21376 cu_off = &this_cu->offset;
21377 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
21378 {
21379 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
21380 error (_("Dwarf Error: could not find partial DIE containing "
21381 "offset 0x%lx [in module %s]"),
21382 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
21383
21384 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
21385 <= offset.sect_off);
21386 return dwarf2_per_objfile->all_comp_units[low-1];
21387 }
21388 else
21389 {
21390 this_cu = dwarf2_per_objfile->all_comp_units[low];
21391 if (low == dwarf2_per_objfile->n_comp_units - 1
21392 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
21393 error (_("invalid dwarf2 offset %u"), offset.sect_off);
21394 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
21395 return this_cu;
21396 }
21397 }
21398
21399 /* Initialize dwarf2_cu CU, owned by PER_CU. */
21400
21401 static void
21402 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
21403 {
21404 memset (cu, 0, sizeof (*cu));
21405 per_cu->cu = cu;
21406 cu->per_cu = per_cu;
21407 cu->objfile = per_cu->objfile;
21408 obstack_init (&cu->comp_unit_obstack);
21409 }
21410
21411 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
21412
21413 static void
21414 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
21415 enum language pretend_language)
21416 {
21417 struct attribute *attr;
21418
21419 /* Set the language we're debugging. */
21420 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
21421 if (attr)
21422 set_cu_language (DW_UNSND (attr), cu);
21423 else
21424 {
21425 cu->language = pretend_language;
21426 cu->language_defn = language_def (cu->language);
21427 }
21428
21429 attr = dwarf2_attr (comp_unit_die, DW_AT_producer, cu);
21430 if (attr)
21431 cu->producer = DW_STRING (attr);
21432 }
21433
21434 /* Release one cached compilation unit, CU. We unlink it from the tree
21435 of compilation units, but we don't remove it from the read_in_chain;
21436 the caller is responsible for that.
21437 NOTE: DATA is a void * because this function is also used as a
21438 cleanup routine. */
21439
21440 static void
21441 free_heap_comp_unit (void *data)
21442 {
21443 struct dwarf2_cu *cu = data;
21444
21445 gdb_assert (cu->per_cu != NULL);
21446 cu->per_cu->cu = NULL;
21447 cu->per_cu = NULL;
21448
21449 obstack_free (&cu->comp_unit_obstack, NULL);
21450
21451 xfree (cu);
21452 }
21453
21454 /* This cleanup function is passed the address of a dwarf2_cu on the stack
21455 when we're finished with it. We can't free the pointer itself, but be
21456 sure to unlink it from the cache. Also release any associated storage. */
21457
21458 static void
21459 free_stack_comp_unit (void *data)
21460 {
21461 struct dwarf2_cu *cu = data;
21462
21463 gdb_assert (cu->per_cu != NULL);
21464 cu->per_cu->cu = NULL;
21465 cu->per_cu = NULL;
21466
21467 obstack_free (&cu->comp_unit_obstack, NULL);
21468 cu->partial_dies = NULL;
21469 }
21470
21471 /* Free all cached compilation units. */
21472
21473 static void
21474 free_cached_comp_units (void *data)
21475 {
21476 struct dwarf2_per_cu_data *per_cu, **last_chain;
21477
21478 per_cu = dwarf2_per_objfile->read_in_chain;
21479 last_chain = &dwarf2_per_objfile->read_in_chain;
21480 while (per_cu != NULL)
21481 {
21482 struct dwarf2_per_cu_data *next_cu;
21483
21484 next_cu = per_cu->cu->read_in_chain;
21485
21486 free_heap_comp_unit (per_cu->cu);
21487 *last_chain = next_cu;
21488
21489 per_cu = next_cu;
21490 }
21491 }
21492
21493 /* Increase the age counter on each cached compilation unit, and free
21494 any that are too old. */
21495
21496 static void
21497 age_cached_comp_units (void)
21498 {
21499 struct dwarf2_per_cu_data *per_cu, **last_chain;
21500
21501 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
21502 per_cu = dwarf2_per_objfile->read_in_chain;
21503 while (per_cu != NULL)
21504 {
21505 per_cu->cu->last_used ++;
21506 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
21507 dwarf2_mark (per_cu->cu);
21508 per_cu = per_cu->cu->read_in_chain;
21509 }
21510
21511 per_cu = dwarf2_per_objfile->read_in_chain;
21512 last_chain = &dwarf2_per_objfile->read_in_chain;
21513 while (per_cu != NULL)
21514 {
21515 struct dwarf2_per_cu_data *next_cu;
21516
21517 next_cu = per_cu->cu->read_in_chain;
21518
21519 if (!per_cu->cu->mark)
21520 {
21521 free_heap_comp_unit (per_cu->cu);
21522 *last_chain = next_cu;
21523 }
21524 else
21525 last_chain = &per_cu->cu->read_in_chain;
21526
21527 per_cu = next_cu;
21528 }
21529 }
21530
21531 /* Remove a single compilation unit from the cache. */
21532
21533 static void
21534 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
21535 {
21536 struct dwarf2_per_cu_data *per_cu, **last_chain;
21537
21538 per_cu = dwarf2_per_objfile->read_in_chain;
21539 last_chain = &dwarf2_per_objfile->read_in_chain;
21540 while (per_cu != NULL)
21541 {
21542 struct dwarf2_per_cu_data *next_cu;
21543
21544 next_cu = per_cu->cu->read_in_chain;
21545
21546 if (per_cu == target_per_cu)
21547 {
21548 free_heap_comp_unit (per_cu->cu);
21549 per_cu->cu = NULL;
21550 *last_chain = next_cu;
21551 break;
21552 }
21553 else
21554 last_chain = &per_cu->cu->read_in_chain;
21555
21556 per_cu = next_cu;
21557 }
21558 }
21559
21560 /* Release all extra memory associated with OBJFILE. */
21561
21562 void
21563 dwarf2_free_objfile (struct objfile *objfile)
21564 {
21565 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
21566
21567 if (dwarf2_per_objfile == NULL)
21568 return;
21569
21570 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
21571 free_cached_comp_units (NULL);
21572
21573 if (dwarf2_per_objfile->quick_file_names_table)
21574 htab_delete (dwarf2_per_objfile->quick_file_names_table);
21575
21576 /* Everything else should be on the objfile obstack. */
21577 }
21578
21579 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
21580 We store these in a hash table separate from the DIEs, and preserve them
21581 when the DIEs are flushed out of cache.
21582
21583 The CU "per_cu" pointer is needed because offset alone is not enough to
21584 uniquely identify the type. A file may have multiple .debug_types sections,
21585 or the type may come from a DWO file. Furthermore, while it's more logical
21586 to use per_cu->section+offset, with Fission the section with the data is in
21587 the DWO file but we don't know that section at the point we need it.
21588 We have to use something in dwarf2_per_cu_data (or the pointer to it)
21589 because we can enter the lookup routine, get_die_type_at_offset, from
21590 outside this file, and thus won't necessarily have PER_CU->cu.
21591 Fortunately, PER_CU is stable for the life of the objfile. */
21592
21593 struct dwarf2_per_cu_offset_and_type
21594 {
21595 const struct dwarf2_per_cu_data *per_cu;
21596 sect_offset offset;
21597 struct type *type;
21598 };
21599
21600 /* Hash function for a dwarf2_per_cu_offset_and_type. */
21601
21602 static hashval_t
21603 per_cu_offset_and_type_hash (const void *item)
21604 {
21605 const struct dwarf2_per_cu_offset_and_type *ofs = item;
21606
21607 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
21608 }
21609
21610 /* Equality function for a dwarf2_per_cu_offset_and_type. */
21611
21612 static int
21613 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
21614 {
21615 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
21616 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
21617
21618 return (ofs_lhs->per_cu == ofs_rhs->per_cu
21619 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
21620 }
21621
21622 /* Set the type associated with DIE to TYPE. Save it in CU's hash
21623 table if necessary. For convenience, return TYPE.
21624
21625 The DIEs reading must have careful ordering to:
21626 * Not cause infite loops trying to read in DIEs as a prerequisite for
21627 reading current DIE.
21628 * Not trying to dereference contents of still incompletely read in types
21629 while reading in other DIEs.
21630 * Enable referencing still incompletely read in types just by a pointer to
21631 the type without accessing its fields.
21632
21633 Therefore caller should follow these rules:
21634 * Try to fetch any prerequisite types we may need to build this DIE type
21635 before building the type and calling set_die_type.
21636 * After building type call set_die_type for current DIE as soon as
21637 possible before fetching more types to complete the current type.
21638 * Make the type as complete as possible before fetching more types. */
21639
21640 static struct type *
21641 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
21642 {
21643 struct dwarf2_per_cu_offset_and_type **slot, ofs;
21644 struct objfile *objfile = cu->objfile;
21645
21646 /* For Ada types, make sure that the gnat-specific data is always
21647 initialized (if not already set). There are a few types where
21648 we should not be doing so, because the type-specific area is
21649 already used to hold some other piece of info (eg: TYPE_CODE_FLT
21650 where the type-specific area is used to store the floatformat).
21651 But this is not a problem, because the gnat-specific information
21652 is actually not needed for these types. */
21653 if (need_gnat_info (cu)
21654 && TYPE_CODE (type) != TYPE_CODE_FUNC
21655 && TYPE_CODE (type) != TYPE_CODE_FLT
21656 && !HAVE_GNAT_AUX_INFO (type))
21657 INIT_GNAT_SPECIFIC (type);
21658
21659 if (dwarf2_per_objfile->die_type_hash == NULL)
21660 {
21661 dwarf2_per_objfile->die_type_hash =
21662 htab_create_alloc_ex (127,
21663 per_cu_offset_and_type_hash,
21664 per_cu_offset_and_type_eq,
21665 NULL,
21666 &objfile->objfile_obstack,
21667 hashtab_obstack_allocate,
21668 dummy_obstack_deallocate);
21669 }
21670
21671 ofs.per_cu = cu->per_cu;
21672 ofs.offset = die->offset;
21673 ofs.type = type;
21674 slot = (struct dwarf2_per_cu_offset_and_type **)
21675 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
21676 if (*slot)
21677 complaint (&symfile_complaints,
21678 _("A problem internal to GDB: DIE 0x%x has type already set"),
21679 die->offset.sect_off);
21680 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
21681 **slot = ofs;
21682 return type;
21683 }
21684
21685 /* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
21686 or return NULL if the die does not have a saved type. */
21687
21688 static struct type *
21689 get_die_type_at_offset (sect_offset offset,
21690 struct dwarf2_per_cu_data *per_cu)
21691 {
21692 struct dwarf2_per_cu_offset_and_type *slot, ofs;
21693
21694 if (dwarf2_per_objfile->die_type_hash == NULL)
21695 return NULL;
21696
21697 ofs.per_cu = per_cu;
21698 ofs.offset = offset;
21699 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
21700 if (slot)
21701 return slot->type;
21702 else
21703 return NULL;
21704 }
21705
21706 /* Look up the type for DIE in CU in die_type_hash,
21707 or return NULL if DIE does not have a saved type. */
21708
21709 static struct type *
21710 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
21711 {
21712 return get_die_type_at_offset (die->offset, cu->per_cu);
21713 }
21714
21715 /* Add a dependence relationship from CU to REF_PER_CU. */
21716
21717 static void
21718 dwarf2_add_dependence (struct dwarf2_cu *cu,
21719 struct dwarf2_per_cu_data *ref_per_cu)
21720 {
21721 void **slot;
21722
21723 if (cu->dependencies == NULL)
21724 cu->dependencies
21725 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
21726 NULL, &cu->comp_unit_obstack,
21727 hashtab_obstack_allocate,
21728 dummy_obstack_deallocate);
21729
21730 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
21731 if (*slot == NULL)
21732 *slot = ref_per_cu;
21733 }
21734
21735 /* Subroutine of dwarf2_mark to pass to htab_traverse.
21736 Set the mark field in every compilation unit in the
21737 cache that we must keep because we are keeping CU. */
21738
21739 static int
21740 dwarf2_mark_helper (void **slot, void *data)
21741 {
21742 struct dwarf2_per_cu_data *per_cu;
21743
21744 per_cu = (struct dwarf2_per_cu_data *) *slot;
21745
21746 /* cu->dependencies references may not yet have been ever read if QUIT aborts
21747 reading of the chain. As such dependencies remain valid it is not much
21748 useful to track and undo them during QUIT cleanups. */
21749 if (per_cu->cu == NULL)
21750 return 1;
21751
21752 if (per_cu->cu->mark)
21753 return 1;
21754 per_cu->cu->mark = 1;
21755
21756 if (per_cu->cu->dependencies != NULL)
21757 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
21758
21759 return 1;
21760 }
21761
21762 /* Set the mark field in CU and in every other compilation unit in the
21763 cache that we must keep because we are keeping CU. */
21764
21765 static void
21766 dwarf2_mark (struct dwarf2_cu *cu)
21767 {
21768 if (cu->mark)
21769 return;
21770 cu->mark = 1;
21771 if (cu->dependencies != NULL)
21772 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
21773 }
21774
21775 static void
21776 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
21777 {
21778 while (per_cu)
21779 {
21780 per_cu->cu->mark = 0;
21781 per_cu = per_cu->cu->read_in_chain;
21782 }
21783 }
21784
21785 /* Trivial hash function for partial_die_info: the hash value of a DIE
21786 is its offset in .debug_info for this objfile. */
21787
21788 static hashval_t
21789 partial_die_hash (const void *item)
21790 {
21791 const struct partial_die_info *part_die = item;
21792
21793 return part_die->offset.sect_off;
21794 }
21795
21796 /* Trivial comparison function for partial_die_info structures: two DIEs
21797 are equal if they have the same offset. */
21798
21799 static int
21800 partial_die_eq (const void *item_lhs, const void *item_rhs)
21801 {
21802 const struct partial_die_info *part_die_lhs = item_lhs;
21803 const struct partial_die_info *part_die_rhs = item_rhs;
21804
21805 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
21806 }
21807
21808 static struct cmd_list_element *set_dwarf2_cmdlist;
21809 static struct cmd_list_element *show_dwarf2_cmdlist;
21810
21811 static void
21812 set_dwarf2_cmd (char *args, int from_tty)
21813 {
21814 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", all_commands,
21815 gdb_stdout);
21816 }
21817
21818 static void
21819 show_dwarf2_cmd (char *args, int from_tty)
21820 {
21821 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
21822 }
21823
21824 /* Free data associated with OBJFILE, if necessary. */
21825
21826 static void
21827 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
21828 {
21829 struct dwarf2_per_objfile *data = d;
21830 int ix;
21831
21832 /* Make sure we don't accidentally use dwarf2_per_objfile while
21833 cleaning up. */
21834 dwarf2_per_objfile = NULL;
21835
21836 for (ix = 0; ix < data->n_comp_units; ++ix)
21837 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
21838
21839 for (ix = 0; ix < data->n_type_units; ++ix)
21840 VEC_free (dwarf2_per_cu_ptr,
21841 data->all_type_units[ix]->per_cu.imported_symtabs);
21842 xfree (data->all_type_units);
21843
21844 VEC_free (dwarf2_section_info_def, data->types);
21845
21846 if (data->dwo_files)
21847 free_dwo_files (data->dwo_files, objfile);
21848 if (data->dwp_file)
21849 gdb_bfd_unref (data->dwp_file->dbfd);
21850
21851 if (data->dwz_file && data->dwz_file->dwz_bfd)
21852 gdb_bfd_unref (data->dwz_file->dwz_bfd);
21853 }
21854
21855 \f
21856 /* The "save gdb-index" command. */
21857
21858 /* The contents of the hash table we create when building the string
21859 table. */
21860 struct strtab_entry
21861 {
21862 offset_type offset;
21863 const char *str;
21864 };
21865
21866 /* Hash function for a strtab_entry.
21867
21868 Function is used only during write_hash_table so no index format backward
21869 compatibility is needed. */
21870
21871 static hashval_t
21872 hash_strtab_entry (const void *e)
21873 {
21874 const struct strtab_entry *entry = e;
21875 return mapped_index_string_hash (INT_MAX, entry->str);
21876 }
21877
21878 /* Equality function for a strtab_entry. */
21879
21880 static int
21881 eq_strtab_entry (const void *a, const void *b)
21882 {
21883 const struct strtab_entry *ea = a;
21884 const struct strtab_entry *eb = b;
21885 return !strcmp (ea->str, eb->str);
21886 }
21887
21888 /* Create a strtab_entry hash table. */
21889
21890 static htab_t
21891 create_strtab (void)
21892 {
21893 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
21894 xfree, xcalloc, xfree);
21895 }
21896
21897 /* Add a string to the constant pool. Return the string's offset in
21898 host order. */
21899
21900 static offset_type
21901 add_string (htab_t table, struct obstack *cpool, const char *str)
21902 {
21903 void **slot;
21904 struct strtab_entry entry;
21905 struct strtab_entry *result;
21906
21907 entry.str = str;
21908 slot = htab_find_slot (table, &entry, INSERT);
21909 if (*slot)
21910 result = *slot;
21911 else
21912 {
21913 result = XNEW (struct strtab_entry);
21914 result->offset = obstack_object_size (cpool);
21915 result->str = str;
21916 obstack_grow_str0 (cpool, str);
21917 *slot = result;
21918 }
21919 return result->offset;
21920 }
21921
21922 /* An entry in the symbol table. */
21923 struct symtab_index_entry
21924 {
21925 /* The name of the symbol. */
21926 const char *name;
21927 /* The offset of the name in the constant pool. */
21928 offset_type index_offset;
21929 /* A sorted vector of the indices of all the CUs that hold an object
21930 of this name. */
21931 VEC (offset_type) *cu_indices;
21932 };
21933
21934 /* The symbol table. This is a power-of-2-sized hash table. */
21935 struct mapped_symtab
21936 {
21937 offset_type n_elements;
21938 offset_type size;
21939 struct symtab_index_entry **data;
21940 };
21941
21942 /* Hash function for a symtab_index_entry. */
21943
21944 static hashval_t
21945 hash_symtab_entry (const void *e)
21946 {
21947 const struct symtab_index_entry *entry = e;
21948 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
21949 sizeof (offset_type) * VEC_length (offset_type,
21950 entry->cu_indices),
21951 0);
21952 }
21953
21954 /* Equality function for a symtab_index_entry. */
21955
21956 static int
21957 eq_symtab_entry (const void *a, const void *b)
21958 {
21959 const struct symtab_index_entry *ea = a;
21960 const struct symtab_index_entry *eb = b;
21961 int len = VEC_length (offset_type, ea->cu_indices);
21962 if (len != VEC_length (offset_type, eb->cu_indices))
21963 return 0;
21964 return !memcmp (VEC_address (offset_type, ea->cu_indices),
21965 VEC_address (offset_type, eb->cu_indices),
21966 sizeof (offset_type) * len);
21967 }
21968
21969 /* Destroy a symtab_index_entry. */
21970
21971 static void
21972 delete_symtab_entry (void *p)
21973 {
21974 struct symtab_index_entry *entry = p;
21975 VEC_free (offset_type, entry->cu_indices);
21976 xfree (entry);
21977 }
21978
21979 /* Create a hash table holding symtab_index_entry objects. */
21980
21981 static htab_t
21982 create_symbol_hash_table (void)
21983 {
21984 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
21985 delete_symtab_entry, xcalloc, xfree);
21986 }
21987
21988 /* Create a new mapped symtab object. */
21989
21990 static struct mapped_symtab *
21991 create_mapped_symtab (void)
21992 {
21993 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
21994 symtab->n_elements = 0;
21995 symtab->size = 1024;
21996 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
21997 return symtab;
21998 }
21999
22000 /* Destroy a mapped_symtab. */
22001
22002 static void
22003 cleanup_mapped_symtab (void *p)
22004 {
22005 struct mapped_symtab *symtab = p;
22006 /* The contents of the array are freed when the other hash table is
22007 destroyed. */
22008 xfree (symtab->data);
22009 xfree (symtab);
22010 }
22011
22012 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
22013 the slot.
22014
22015 Function is used only during write_hash_table so no index format backward
22016 compatibility is needed. */
22017
22018 static struct symtab_index_entry **
22019 find_slot (struct mapped_symtab *symtab, const char *name)
22020 {
22021 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
22022
22023 index = hash & (symtab->size - 1);
22024 step = ((hash * 17) & (symtab->size - 1)) | 1;
22025
22026 for (;;)
22027 {
22028 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
22029 return &symtab->data[index];
22030 index = (index + step) & (symtab->size - 1);
22031 }
22032 }
22033
22034 /* Expand SYMTAB's hash table. */
22035
22036 static void
22037 hash_expand (struct mapped_symtab *symtab)
22038 {
22039 offset_type old_size = symtab->size;
22040 offset_type i;
22041 struct symtab_index_entry **old_entries = symtab->data;
22042
22043 symtab->size *= 2;
22044 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22045
22046 for (i = 0; i < old_size; ++i)
22047 {
22048 if (old_entries[i])
22049 {
22050 struct symtab_index_entry **slot = find_slot (symtab,
22051 old_entries[i]->name);
22052 *slot = old_entries[i];
22053 }
22054 }
22055
22056 xfree (old_entries);
22057 }
22058
22059 /* Add an entry to SYMTAB. NAME is the name of the symbol.
22060 CU_INDEX is the index of the CU in which the symbol appears.
22061 IS_STATIC is one if the symbol is static, otherwise zero (global). */
22062
22063 static void
22064 add_index_entry (struct mapped_symtab *symtab, const char *name,
22065 int is_static, gdb_index_symbol_kind kind,
22066 offset_type cu_index)
22067 {
22068 struct symtab_index_entry **slot;
22069 offset_type cu_index_and_attrs;
22070
22071 ++symtab->n_elements;
22072 if (4 * symtab->n_elements / 3 >= symtab->size)
22073 hash_expand (symtab);
22074
22075 slot = find_slot (symtab, name);
22076 if (!*slot)
22077 {
22078 *slot = XNEW (struct symtab_index_entry);
22079 (*slot)->name = name;
22080 /* index_offset is set later. */
22081 (*slot)->cu_indices = NULL;
22082 }
22083
22084 cu_index_and_attrs = 0;
22085 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
22086 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
22087 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
22088
22089 /* We don't want to record an index value twice as we want to avoid the
22090 duplication.
22091 We process all global symbols and then all static symbols
22092 (which would allow us to avoid the duplication by only having to check
22093 the last entry pushed), but a symbol could have multiple kinds in one CU.
22094 To keep things simple we don't worry about the duplication here and
22095 sort and uniqufy the list after we've processed all symbols. */
22096 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
22097 }
22098
22099 /* qsort helper routine for uniquify_cu_indices. */
22100
22101 static int
22102 offset_type_compare (const void *ap, const void *bp)
22103 {
22104 offset_type a = *(offset_type *) ap;
22105 offset_type b = *(offset_type *) bp;
22106
22107 return (a > b) - (b > a);
22108 }
22109
22110 /* Sort and remove duplicates of all symbols' cu_indices lists. */
22111
22112 static void
22113 uniquify_cu_indices (struct mapped_symtab *symtab)
22114 {
22115 int i;
22116
22117 for (i = 0; i < symtab->size; ++i)
22118 {
22119 struct symtab_index_entry *entry = symtab->data[i];
22120
22121 if (entry
22122 && entry->cu_indices != NULL)
22123 {
22124 unsigned int next_to_insert, next_to_check;
22125 offset_type last_value;
22126
22127 qsort (VEC_address (offset_type, entry->cu_indices),
22128 VEC_length (offset_type, entry->cu_indices),
22129 sizeof (offset_type), offset_type_compare);
22130
22131 last_value = VEC_index (offset_type, entry->cu_indices, 0);
22132 next_to_insert = 1;
22133 for (next_to_check = 1;
22134 next_to_check < VEC_length (offset_type, entry->cu_indices);
22135 ++next_to_check)
22136 {
22137 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
22138 != last_value)
22139 {
22140 last_value = VEC_index (offset_type, entry->cu_indices,
22141 next_to_check);
22142 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
22143 last_value);
22144 ++next_to_insert;
22145 }
22146 }
22147 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
22148 }
22149 }
22150 }
22151
22152 /* Add a vector of indices to the constant pool. */
22153
22154 static offset_type
22155 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
22156 struct symtab_index_entry *entry)
22157 {
22158 void **slot;
22159
22160 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
22161 if (!*slot)
22162 {
22163 offset_type len = VEC_length (offset_type, entry->cu_indices);
22164 offset_type val = MAYBE_SWAP (len);
22165 offset_type iter;
22166 int i;
22167
22168 *slot = entry;
22169 entry->index_offset = obstack_object_size (cpool);
22170
22171 obstack_grow (cpool, &val, sizeof (val));
22172 for (i = 0;
22173 VEC_iterate (offset_type, entry->cu_indices, i, iter);
22174 ++i)
22175 {
22176 val = MAYBE_SWAP (iter);
22177 obstack_grow (cpool, &val, sizeof (val));
22178 }
22179 }
22180 else
22181 {
22182 struct symtab_index_entry *old_entry = *slot;
22183 entry->index_offset = old_entry->index_offset;
22184 entry = old_entry;
22185 }
22186 return entry->index_offset;
22187 }
22188
22189 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
22190 constant pool entries going into the obstack CPOOL. */
22191
22192 static void
22193 write_hash_table (struct mapped_symtab *symtab,
22194 struct obstack *output, struct obstack *cpool)
22195 {
22196 offset_type i;
22197 htab_t symbol_hash_table;
22198 htab_t str_table;
22199
22200 symbol_hash_table = create_symbol_hash_table ();
22201 str_table = create_strtab ();
22202
22203 /* We add all the index vectors to the constant pool first, to
22204 ensure alignment is ok. */
22205 for (i = 0; i < symtab->size; ++i)
22206 {
22207 if (symtab->data[i])
22208 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
22209 }
22210
22211 /* Now write out the hash table. */
22212 for (i = 0; i < symtab->size; ++i)
22213 {
22214 offset_type str_off, vec_off;
22215
22216 if (symtab->data[i])
22217 {
22218 str_off = add_string (str_table, cpool, symtab->data[i]->name);
22219 vec_off = symtab->data[i]->index_offset;
22220 }
22221 else
22222 {
22223 /* While 0 is a valid constant pool index, it is not valid
22224 to have 0 for both offsets. */
22225 str_off = 0;
22226 vec_off = 0;
22227 }
22228
22229 str_off = MAYBE_SWAP (str_off);
22230 vec_off = MAYBE_SWAP (vec_off);
22231
22232 obstack_grow (output, &str_off, sizeof (str_off));
22233 obstack_grow (output, &vec_off, sizeof (vec_off));
22234 }
22235
22236 htab_delete (str_table);
22237 htab_delete (symbol_hash_table);
22238 }
22239
22240 /* Struct to map psymtab to CU index in the index file. */
22241 struct psymtab_cu_index_map
22242 {
22243 struct partial_symtab *psymtab;
22244 unsigned int cu_index;
22245 };
22246
22247 static hashval_t
22248 hash_psymtab_cu_index (const void *item)
22249 {
22250 const struct psymtab_cu_index_map *map = item;
22251
22252 return htab_hash_pointer (map->psymtab);
22253 }
22254
22255 static int
22256 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
22257 {
22258 const struct psymtab_cu_index_map *lhs = item_lhs;
22259 const struct psymtab_cu_index_map *rhs = item_rhs;
22260
22261 return lhs->psymtab == rhs->psymtab;
22262 }
22263
22264 /* Helper struct for building the address table. */
22265 struct addrmap_index_data
22266 {
22267 struct objfile *objfile;
22268 struct obstack *addr_obstack;
22269 htab_t cu_index_htab;
22270
22271 /* Non-zero if the previous_* fields are valid.
22272 We can't write an entry until we see the next entry (since it is only then
22273 that we know the end of the entry). */
22274 int previous_valid;
22275 /* Index of the CU in the table of all CUs in the index file. */
22276 unsigned int previous_cu_index;
22277 /* Start address of the CU. */
22278 CORE_ADDR previous_cu_start;
22279 };
22280
22281 /* Write an address entry to OBSTACK. */
22282
22283 static void
22284 add_address_entry (struct objfile *objfile, struct obstack *obstack,
22285 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
22286 {
22287 offset_type cu_index_to_write;
22288 gdb_byte addr[8];
22289 CORE_ADDR baseaddr;
22290
22291 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22292
22293 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
22294 obstack_grow (obstack, addr, 8);
22295 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
22296 obstack_grow (obstack, addr, 8);
22297 cu_index_to_write = MAYBE_SWAP (cu_index);
22298 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
22299 }
22300
22301 /* Worker function for traversing an addrmap to build the address table. */
22302
22303 static int
22304 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
22305 {
22306 struct addrmap_index_data *data = datap;
22307 struct partial_symtab *pst = obj;
22308
22309 if (data->previous_valid)
22310 add_address_entry (data->objfile, data->addr_obstack,
22311 data->previous_cu_start, start_addr,
22312 data->previous_cu_index);
22313
22314 data->previous_cu_start = start_addr;
22315 if (pst != NULL)
22316 {
22317 struct psymtab_cu_index_map find_map, *map;
22318 find_map.psymtab = pst;
22319 map = htab_find (data->cu_index_htab, &find_map);
22320 gdb_assert (map != NULL);
22321 data->previous_cu_index = map->cu_index;
22322 data->previous_valid = 1;
22323 }
22324 else
22325 data->previous_valid = 0;
22326
22327 return 0;
22328 }
22329
22330 /* Write OBJFILE's address map to OBSTACK.
22331 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
22332 in the index file. */
22333
22334 static void
22335 write_address_map (struct objfile *objfile, struct obstack *obstack,
22336 htab_t cu_index_htab)
22337 {
22338 struct addrmap_index_data addrmap_index_data;
22339
22340 /* When writing the address table, we have to cope with the fact that
22341 the addrmap iterator only provides the start of a region; we have to
22342 wait until the next invocation to get the start of the next region. */
22343
22344 addrmap_index_data.objfile = objfile;
22345 addrmap_index_data.addr_obstack = obstack;
22346 addrmap_index_data.cu_index_htab = cu_index_htab;
22347 addrmap_index_data.previous_valid = 0;
22348
22349 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
22350 &addrmap_index_data);
22351
22352 /* It's highly unlikely the last entry (end address = 0xff...ff)
22353 is valid, but we should still handle it.
22354 The end address is recorded as the start of the next region, but that
22355 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
22356 anyway. */
22357 if (addrmap_index_data.previous_valid)
22358 add_address_entry (objfile, obstack,
22359 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
22360 addrmap_index_data.previous_cu_index);
22361 }
22362
22363 /* Return the symbol kind of PSYM. */
22364
22365 static gdb_index_symbol_kind
22366 symbol_kind (struct partial_symbol *psym)
22367 {
22368 domain_enum domain = PSYMBOL_DOMAIN (psym);
22369 enum address_class aclass = PSYMBOL_CLASS (psym);
22370
22371 switch (domain)
22372 {
22373 case VAR_DOMAIN:
22374 switch (aclass)
22375 {
22376 case LOC_BLOCK:
22377 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
22378 case LOC_TYPEDEF:
22379 return GDB_INDEX_SYMBOL_KIND_TYPE;
22380 case LOC_COMPUTED:
22381 case LOC_CONST_BYTES:
22382 case LOC_OPTIMIZED_OUT:
22383 case LOC_STATIC:
22384 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
22385 case LOC_CONST:
22386 /* Note: It's currently impossible to recognize psyms as enum values
22387 short of reading the type info. For now punt. */
22388 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
22389 default:
22390 /* There are other LOC_FOO values that one might want to classify
22391 as variables, but dwarf2read.c doesn't currently use them. */
22392 return GDB_INDEX_SYMBOL_KIND_OTHER;
22393 }
22394 case STRUCT_DOMAIN:
22395 return GDB_INDEX_SYMBOL_KIND_TYPE;
22396 default:
22397 return GDB_INDEX_SYMBOL_KIND_OTHER;
22398 }
22399 }
22400
22401 /* Add a list of partial symbols to SYMTAB. */
22402
22403 static void
22404 write_psymbols (struct mapped_symtab *symtab,
22405 htab_t psyms_seen,
22406 struct partial_symbol **psymp,
22407 int count,
22408 offset_type cu_index,
22409 int is_static)
22410 {
22411 for (; count-- > 0; ++psymp)
22412 {
22413 struct partial_symbol *psym = *psymp;
22414 void **slot;
22415
22416 if (SYMBOL_LANGUAGE (psym) == language_ada)
22417 error (_("Ada is not currently supported by the index"));
22418
22419 /* Only add a given psymbol once. */
22420 slot = htab_find_slot (psyms_seen, psym, INSERT);
22421 if (!*slot)
22422 {
22423 gdb_index_symbol_kind kind = symbol_kind (psym);
22424
22425 *slot = psym;
22426 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
22427 is_static, kind, cu_index);
22428 }
22429 }
22430 }
22431
22432 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
22433 exception if there is an error. */
22434
22435 static void
22436 write_obstack (FILE *file, struct obstack *obstack)
22437 {
22438 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
22439 file)
22440 != obstack_object_size (obstack))
22441 error (_("couldn't data write to file"));
22442 }
22443
22444 /* Unlink a file if the argument is not NULL. */
22445
22446 static void
22447 unlink_if_set (void *p)
22448 {
22449 char **filename = p;
22450 if (*filename)
22451 unlink (*filename);
22452 }
22453
22454 /* A helper struct used when iterating over debug_types. */
22455 struct signatured_type_index_data
22456 {
22457 struct objfile *objfile;
22458 struct mapped_symtab *symtab;
22459 struct obstack *types_list;
22460 htab_t psyms_seen;
22461 int cu_index;
22462 };
22463
22464 /* A helper function that writes a single signatured_type to an
22465 obstack. */
22466
22467 static int
22468 write_one_signatured_type (void **slot, void *d)
22469 {
22470 struct signatured_type_index_data *info = d;
22471 struct signatured_type *entry = (struct signatured_type *) *slot;
22472 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
22473 gdb_byte val[8];
22474
22475 write_psymbols (info->symtab,
22476 info->psyms_seen,
22477 info->objfile->global_psymbols.list
22478 + psymtab->globals_offset,
22479 psymtab->n_global_syms, info->cu_index,
22480 0);
22481 write_psymbols (info->symtab,
22482 info->psyms_seen,
22483 info->objfile->static_psymbols.list
22484 + psymtab->statics_offset,
22485 psymtab->n_static_syms, info->cu_index,
22486 1);
22487
22488 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22489 entry->per_cu.offset.sect_off);
22490 obstack_grow (info->types_list, val, 8);
22491 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22492 entry->type_offset_in_tu.cu_off);
22493 obstack_grow (info->types_list, val, 8);
22494 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
22495 obstack_grow (info->types_list, val, 8);
22496
22497 ++info->cu_index;
22498
22499 return 1;
22500 }
22501
22502 /* Recurse into all "included" dependencies and write their symbols as
22503 if they appeared in this psymtab. */
22504
22505 static void
22506 recursively_write_psymbols (struct objfile *objfile,
22507 struct partial_symtab *psymtab,
22508 struct mapped_symtab *symtab,
22509 htab_t psyms_seen,
22510 offset_type cu_index)
22511 {
22512 int i;
22513
22514 for (i = 0; i < psymtab->number_of_dependencies; ++i)
22515 if (psymtab->dependencies[i]->user != NULL)
22516 recursively_write_psymbols (objfile, psymtab->dependencies[i],
22517 symtab, psyms_seen, cu_index);
22518
22519 write_psymbols (symtab,
22520 psyms_seen,
22521 objfile->global_psymbols.list + psymtab->globals_offset,
22522 psymtab->n_global_syms, cu_index,
22523 0);
22524 write_psymbols (symtab,
22525 psyms_seen,
22526 objfile->static_psymbols.list + psymtab->statics_offset,
22527 psymtab->n_static_syms, cu_index,
22528 1);
22529 }
22530
22531 /* Create an index file for OBJFILE in the directory DIR. */
22532
22533 static void
22534 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
22535 {
22536 struct cleanup *cleanup;
22537 char *filename, *cleanup_filename;
22538 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
22539 struct obstack cu_list, types_cu_list;
22540 int i;
22541 FILE *out_file;
22542 struct mapped_symtab *symtab;
22543 offset_type val, size_of_contents, total_len;
22544 struct stat st;
22545 htab_t psyms_seen;
22546 htab_t cu_index_htab;
22547 struct psymtab_cu_index_map *psymtab_cu_index_map;
22548
22549 if (dwarf2_per_objfile->using_index)
22550 error (_("Cannot use an index to create the index"));
22551
22552 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
22553 error (_("Cannot make an index when the file has multiple .debug_types sections"));
22554
22555 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
22556 return;
22557
22558 if (stat (objfile_name (objfile), &st) < 0)
22559 perror_with_name (objfile_name (objfile));
22560
22561 filename = concat (dir, SLASH_STRING, lbasename (objfile_name (objfile)),
22562 INDEX_SUFFIX, (char *) NULL);
22563 cleanup = make_cleanup (xfree, filename);
22564
22565 out_file = gdb_fopen_cloexec (filename, "wb");
22566 if (!out_file)
22567 error (_("Can't open `%s' for writing"), filename);
22568
22569 cleanup_filename = filename;
22570 make_cleanup (unlink_if_set, &cleanup_filename);
22571
22572 symtab = create_mapped_symtab ();
22573 make_cleanup (cleanup_mapped_symtab, symtab);
22574
22575 obstack_init (&addr_obstack);
22576 make_cleanup_obstack_free (&addr_obstack);
22577
22578 obstack_init (&cu_list);
22579 make_cleanup_obstack_free (&cu_list);
22580
22581 obstack_init (&types_cu_list);
22582 make_cleanup_obstack_free (&types_cu_list);
22583
22584 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
22585 NULL, xcalloc, xfree);
22586 make_cleanup_htab_delete (psyms_seen);
22587
22588 /* While we're scanning CU's create a table that maps a psymtab pointer
22589 (which is what addrmap records) to its index (which is what is recorded
22590 in the index file). This will later be needed to write the address
22591 table. */
22592 cu_index_htab = htab_create_alloc (100,
22593 hash_psymtab_cu_index,
22594 eq_psymtab_cu_index,
22595 NULL, xcalloc, xfree);
22596 make_cleanup_htab_delete (cu_index_htab);
22597 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
22598 xmalloc (sizeof (struct psymtab_cu_index_map)
22599 * dwarf2_per_objfile->n_comp_units);
22600 make_cleanup (xfree, psymtab_cu_index_map);
22601
22602 /* The CU list is already sorted, so we don't need to do additional
22603 work here. Also, the debug_types entries do not appear in
22604 all_comp_units, but only in their own hash table. */
22605 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
22606 {
22607 struct dwarf2_per_cu_data *per_cu
22608 = dwarf2_per_objfile->all_comp_units[i];
22609 struct partial_symtab *psymtab = per_cu->v.psymtab;
22610 gdb_byte val[8];
22611 struct psymtab_cu_index_map *map;
22612 void **slot;
22613
22614 /* CU of a shared file from 'dwz -m' may be unused by this main file.
22615 It may be referenced from a local scope but in such case it does not
22616 need to be present in .gdb_index. */
22617 if (psymtab == NULL)
22618 continue;
22619
22620 if (psymtab->user == NULL)
22621 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
22622
22623 map = &psymtab_cu_index_map[i];
22624 map->psymtab = psymtab;
22625 map->cu_index = i;
22626 slot = htab_find_slot (cu_index_htab, map, INSERT);
22627 gdb_assert (slot != NULL);
22628 gdb_assert (*slot == NULL);
22629 *slot = map;
22630
22631 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22632 per_cu->offset.sect_off);
22633 obstack_grow (&cu_list, val, 8);
22634 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
22635 obstack_grow (&cu_list, val, 8);
22636 }
22637
22638 /* Dump the address map. */
22639 write_address_map (objfile, &addr_obstack, cu_index_htab);
22640
22641 /* Write out the .debug_type entries, if any. */
22642 if (dwarf2_per_objfile->signatured_types)
22643 {
22644 struct signatured_type_index_data sig_data;
22645
22646 sig_data.objfile = objfile;
22647 sig_data.symtab = symtab;
22648 sig_data.types_list = &types_cu_list;
22649 sig_data.psyms_seen = psyms_seen;
22650 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
22651 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
22652 write_one_signatured_type, &sig_data);
22653 }
22654
22655 /* Now that we've processed all symbols we can shrink their cu_indices
22656 lists. */
22657 uniquify_cu_indices (symtab);
22658
22659 obstack_init (&constant_pool);
22660 make_cleanup_obstack_free (&constant_pool);
22661 obstack_init (&symtab_obstack);
22662 make_cleanup_obstack_free (&symtab_obstack);
22663 write_hash_table (symtab, &symtab_obstack, &constant_pool);
22664
22665 obstack_init (&contents);
22666 make_cleanup_obstack_free (&contents);
22667 size_of_contents = 6 * sizeof (offset_type);
22668 total_len = size_of_contents;
22669
22670 /* The version number. */
22671 val = MAYBE_SWAP (8);
22672 obstack_grow (&contents, &val, sizeof (val));
22673
22674 /* The offset of the CU list from the start of the file. */
22675 val = MAYBE_SWAP (total_len);
22676 obstack_grow (&contents, &val, sizeof (val));
22677 total_len += obstack_object_size (&cu_list);
22678
22679 /* The offset of the types CU list from the start of the file. */
22680 val = MAYBE_SWAP (total_len);
22681 obstack_grow (&contents, &val, sizeof (val));
22682 total_len += obstack_object_size (&types_cu_list);
22683
22684 /* The offset of the address table from the start of the file. */
22685 val = MAYBE_SWAP (total_len);
22686 obstack_grow (&contents, &val, sizeof (val));
22687 total_len += obstack_object_size (&addr_obstack);
22688
22689 /* The offset of the symbol table from the start of the file. */
22690 val = MAYBE_SWAP (total_len);
22691 obstack_grow (&contents, &val, sizeof (val));
22692 total_len += obstack_object_size (&symtab_obstack);
22693
22694 /* The offset of the constant pool from the start of the file. */
22695 val = MAYBE_SWAP (total_len);
22696 obstack_grow (&contents, &val, sizeof (val));
22697 total_len += obstack_object_size (&constant_pool);
22698
22699 gdb_assert (obstack_object_size (&contents) == size_of_contents);
22700
22701 write_obstack (out_file, &contents);
22702 write_obstack (out_file, &cu_list);
22703 write_obstack (out_file, &types_cu_list);
22704 write_obstack (out_file, &addr_obstack);
22705 write_obstack (out_file, &symtab_obstack);
22706 write_obstack (out_file, &constant_pool);
22707
22708 fclose (out_file);
22709
22710 /* We want to keep the file, so we set cleanup_filename to NULL
22711 here. See unlink_if_set. */
22712 cleanup_filename = NULL;
22713
22714 do_cleanups (cleanup);
22715 }
22716
22717 /* Implementation of the `save gdb-index' command.
22718
22719 Note that the file format used by this command is documented in the
22720 GDB manual. Any changes here must be documented there. */
22721
22722 static void
22723 save_gdb_index_command (char *arg, int from_tty)
22724 {
22725 struct objfile *objfile;
22726
22727 if (!arg || !*arg)
22728 error (_("usage: save gdb-index DIRECTORY"));
22729
22730 ALL_OBJFILES (objfile)
22731 {
22732 struct stat st;
22733
22734 /* If the objfile does not correspond to an actual file, skip it. */
22735 if (stat (objfile_name (objfile), &st) < 0)
22736 continue;
22737
22738 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
22739 if (dwarf2_per_objfile)
22740 {
22741 volatile struct gdb_exception except;
22742
22743 TRY_CATCH (except, RETURN_MASK_ERROR)
22744 {
22745 write_psymtabs_to_index (objfile, arg);
22746 }
22747 if (except.reason < 0)
22748 exception_fprintf (gdb_stderr, except,
22749 _("Error while writing index for `%s': "),
22750 objfile_name (objfile));
22751 }
22752 }
22753 }
22754
22755 \f
22756
22757 int dwarf2_always_disassemble;
22758
22759 static void
22760 show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
22761 struct cmd_list_element *c, const char *value)
22762 {
22763 fprintf_filtered (file,
22764 _("Whether to always disassemble "
22765 "DWARF expressions is %s.\n"),
22766 value);
22767 }
22768
22769 static void
22770 show_check_physname (struct ui_file *file, int from_tty,
22771 struct cmd_list_element *c, const char *value)
22772 {
22773 fprintf_filtered (file,
22774 _("Whether to check \"physname\" is %s.\n"),
22775 value);
22776 }
22777
22778 void _initialize_dwarf2_read (void);
22779
22780 void
22781 _initialize_dwarf2_read (void)
22782 {
22783 struct cmd_list_element *c;
22784
22785 dwarf2_objfile_data_key
22786 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
22787
22788 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
22789 Set DWARF 2 specific variables.\n\
22790 Configure DWARF 2 variables such as the cache size"),
22791 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
22792 0/*allow-unknown*/, &maintenance_set_cmdlist);
22793
22794 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
22795 Show DWARF 2 specific variables\n\
22796 Show DWARF 2 variables such as the cache size"),
22797 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
22798 0/*allow-unknown*/, &maintenance_show_cmdlist);
22799
22800 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
22801 &dwarf2_max_cache_age, _("\
22802 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
22803 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
22804 A higher limit means that cached compilation units will be stored\n\
22805 in memory longer, and more total memory will be used. Zero disables\n\
22806 caching, which can slow down startup."),
22807 NULL,
22808 show_dwarf2_max_cache_age,
22809 &set_dwarf2_cmdlist,
22810 &show_dwarf2_cmdlist);
22811
22812 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
22813 &dwarf2_always_disassemble, _("\
22814 Set whether `info address' always disassembles DWARF expressions."), _("\
22815 Show whether `info address' always disassembles DWARF expressions."), _("\
22816 When enabled, DWARF expressions are always printed in an assembly-like\n\
22817 syntax. When disabled, expressions will be printed in a more\n\
22818 conversational style, when possible."),
22819 NULL,
22820 show_dwarf2_always_disassemble,
22821 &set_dwarf2_cmdlist,
22822 &show_dwarf2_cmdlist);
22823
22824 add_setshow_zuinteger_cmd ("dwarf2-read", no_class, &dwarf2_read_debug, _("\
22825 Set debugging of the dwarf2 reader."), _("\
22826 Show debugging of the dwarf2 reader."), _("\
22827 When enabled (non-zero), debugging messages are printed during dwarf2\n\
22828 reading and symtab expansion. A value of 1 (one) provides basic\n\
22829 information. A value greater than 1 provides more verbose information."),
22830 NULL,
22831 NULL,
22832 &setdebuglist, &showdebuglist);
22833
22834 add_setshow_zuinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
22835 Set debugging of the dwarf2 DIE reader."), _("\
22836 Show debugging of the dwarf2 DIE reader."), _("\
22837 When enabled (non-zero), DIEs are dumped after they are read in.\n\
22838 The value is the maximum depth to print."),
22839 NULL,
22840 NULL,
22841 &setdebuglist, &showdebuglist);
22842
22843 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
22844 Set cross-checking of \"physname\" code against demangler."), _("\
22845 Show cross-checking of \"physname\" code against demangler."), _("\
22846 When enabled, GDB's internal \"physname\" code is checked against\n\
22847 the demangler."),
22848 NULL, show_check_physname,
22849 &setdebuglist, &showdebuglist);
22850
22851 add_setshow_boolean_cmd ("use-deprecated-index-sections",
22852 no_class, &use_deprecated_index_sections, _("\
22853 Set whether to use deprecated gdb_index sections."), _("\
22854 Show whether to use deprecated gdb_index sections."), _("\
22855 When enabled, deprecated .gdb_index sections are used anyway.\n\
22856 Normally they are ignored either because of a missing feature or\n\
22857 performance issue.\n\
22858 Warning: This option must be enabled before gdb reads the file."),
22859 NULL,
22860 NULL,
22861 &setlist, &showlist);
22862
22863 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
22864 _("\
22865 Save a gdb-index file.\n\
22866 Usage: save gdb-index DIRECTORY"),
22867 &save_cmdlist);
22868 set_cmd_completer (c, filename_completer);
22869
22870 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
22871 &dwarf2_locexpr_funcs);
22872 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
22873 &dwarf2_loclist_funcs);
22874
22875 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
22876 &dwarf2_block_frame_base_locexpr_funcs);
22877 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
22878 &dwarf2_block_frame_base_loclist_funcs);
22879 }
This page took 0.561733 seconds and 4 git commands to generate.