gdb/
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2012 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "jv-lang.h"
57 #include "psympriv.h"
58 #include "exceptions.h"
59 #include "gdb_stat.h"
60 #include "completer.h"
61 #include "vec.h"
62 #include "c-lang.h"
63 #include "go-lang.h"
64 #include "valprint.h"
65 #include "gdbcore.h" /* for gnutarget */
66 #include "gdb/gdb-index.h"
67 #include <ctype.h>
68 #include "gdb_bfd.h"
69 #include "f-lang.h"
70
71 #include <fcntl.h>
72 #include "gdb_string.h"
73 #include "gdb_assert.h"
74 #include <sys/types.h>
75
76 typedef struct symbol *symbolp;
77 DEF_VEC_P (symbolp);
78
79 /* When non-zero, print basic high level tracing messages.
80 This is in contrast to the low level DIE reading of dwarf2_die_debug. */
81 static int dwarf2_read_debug = 0;
82
83 /* When non-zero, dump DIEs after they are read in. */
84 static unsigned int dwarf2_die_debug = 0;
85
86 /* When non-zero, cross-check physname against demangler. */
87 static int check_physname = 0;
88
89 /* When non-zero, do not reject deprecated .gdb_index sections. */
90 static int use_deprecated_index_sections = 0;
91
92 /* When set, the file that we're processing is known to have debugging
93 info for C++ namespaces. GCC 3.3.x did not produce this information,
94 but later versions do. */
95
96 static int processing_has_namespace_info;
97
98 static const struct objfile_data *dwarf2_objfile_data_key;
99
100 struct dwarf2_section_info
101 {
102 asection *asection;
103 gdb_byte *buffer;
104 bfd_size_type size;
105 /* True if we have tried to read this section. */
106 int readin;
107 };
108
109 typedef struct dwarf2_section_info dwarf2_section_info_def;
110 DEF_VEC_O (dwarf2_section_info_def);
111
112 /* All offsets in the index are of this type. It must be
113 architecture-independent. */
114 typedef uint32_t offset_type;
115
116 DEF_VEC_I (offset_type);
117
118 /* Ensure only legit values are used. */
119 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
120 do { \
121 gdb_assert ((unsigned int) (value) <= 1); \
122 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
123 } while (0)
124
125 /* Ensure only legit values are used. */
126 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
127 do { \
128 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
129 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
130 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
131 } while (0)
132
133 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
134 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
135 do { \
136 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
137 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
138 } while (0)
139
140 /* A description of the mapped index. The file format is described in
141 a comment by the code that writes the index. */
142 struct mapped_index
143 {
144 /* Index data format version. */
145 int version;
146
147 /* The total length of the buffer. */
148 off_t total_size;
149
150 /* A pointer to the address table data. */
151 const gdb_byte *address_table;
152
153 /* Size of the address table data in bytes. */
154 offset_type address_table_size;
155
156 /* The symbol table, implemented as a hash table. */
157 const offset_type *symbol_table;
158
159 /* Size in slots, each slot is 2 offset_types. */
160 offset_type symbol_table_slots;
161
162 /* A pointer to the constant pool. */
163 const char *constant_pool;
164 };
165
166 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
167 DEF_VEC_P (dwarf2_per_cu_ptr);
168
169 /* Collection of data recorded per objfile.
170 This hangs off of dwarf2_objfile_data_key. */
171
172 struct dwarf2_per_objfile
173 {
174 struct dwarf2_section_info info;
175 struct dwarf2_section_info abbrev;
176 struct dwarf2_section_info line;
177 struct dwarf2_section_info loc;
178 struct dwarf2_section_info macinfo;
179 struct dwarf2_section_info macro;
180 struct dwarf2_section_info str;
181 struct dwarf2_section_info ranges;
182 struct dwarf2_section_info addr;
183 struct dwarf2_section_info frame;
184 struct dwarf2_section_info eh_frame;
185 struct dwarf2_section_info gdb_index;
186
187 VEC (dwarf2_section_info_def) *types;
188
189 /* Back link. */
190 struct objfile *objfile;
191
192 /* Table of all the compilation units. This is used to locate
193 the target compilation unit of a particular reference. */
194 struct dwarf2_per_cu_data **all_comp_units;
195
196 /* The number of compilation units in ALL_COMP_UNITS. */
197 int n_comp_units;
198
199 /* The number of .debug_types-related CUs. */
200 int n_type_units;
201
202 /* The .debug_types-related CUs (TUs). */
203 struct signatured_type **all_type_units;
204
205 /* The number of entries in all_type_unit_groups. */
206 int n_type_unit_groups;
207
208 /* Table of type unit groups.
209 This exists to make it easy to iterate over all CUs and TU groups. */
210 struct type_unit_group **all_type_unit_groups;
211
212 /* Table of struct type_unit_group objects.
213 The hash key is the DW_AT_stmt_list value. */
214 htab_t type_unit_groups;
215
216 /* A table mapping .debug_types signatures to its signatured_type entry.
217 This is NULL if the .debug_types section hasn't been read in yet. */
218 htab_t signatured_types;
219
220 /* Type unit statistics, to see how well the scaling improvements
221 are doing. */
222 struct tu_stats
223 {
224 int nr_uniq_abbrev_tables;
225 int nr_symtabs;
226 int nr_symtab_sharers;
227 int nr_stmt_less_type_units;
228 } tu_stats;
229
230 /* A chain of compilation units that are currently read in, so that
231 they can be freed later. */
232 struct dwarf2_per_cu_data *read_in_chain;
233
234 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
235 This is NULL if the table hasn't been allocated yet. */
236 htab_t dwo_files;
237
238 /* Non-zero if we've check for whether there is a DWP file. */
239 int dwp_checked;
240
241 /* The DWP file if there is one, or NULL. */
242 struct dwp_file *dwp_file;
243
244 /* The shared '.dwz' file, if one exists. This is used when the
245 original data was compressed using 'dwz -m'. */
246 struct dwz_file *dwz_file;
247
248 /* A flag indicating wether this objfile has a section loaded at a
249 VMA of 0. */
250 int has_section_at_zero;
251
252 /* True if we are using the mapped index,
253 or we are faking it for OBJF_READNOW's sake. */
254 unsigned char using_index;
255
256 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
257 struct mapped_index *index_table;
258
259 /* When using index_table, this keeps track of all quick_file_names entries.
260 TUs typically share line table entries with a CU, so we maintain a
261 separate table of all line table entries to support the sharing.
262 Note that while there can be way more TUs than CUs, we've already
263 sorted all the TUs into "type unit groups", grouped by their
264 DW_AT_stmt_list value. Therefore the only sharing done here is with a
265 CU and its associated TU group if there is one. */
266 htab_t quick_file_names_table;
267
268 /* Set during partial symbol reading, to prevent queueing of full
269 symbols. */
270 int reading_partial_symbols;
271
272 /* Table mapping type DIEs to their struct type *.
273 This is NULL if not allocated yet.
274 The mapping is done via (CU/TU signature + DIE offset) -> type. */
275 htab_t die_type_hash;
276
277 /* The CUs we recently read. */
278 VEC (dwarf2_per_cu_ptr) *just_read_cus;
279 };
280
281 static struct dwarf2_per_objfile *dwarf2_per_objfile;
282
283 /* Default names of the debugging sections. */
284
285 /* Note that if the debugging section has been compressed, it might
286 have a name like .zdebug_info. */
287
288 static const struct dwarf2_debug_sections dwarf2_elf_names =
289 {
290 { ".debug_info", ".zdebug_info" },
291 { ".debug_abbrev", ".zdebug_abbrev" },
292 { ".debug_line", ".zdebug_line" },
293 { ".debug_loc", ".zdebug_loc" },
294 { ".debug_macinfo", ".zdebug_macinfo" },
295 { ".debug_macro", ".zdebug_macro" },
296 { ".debug_str", ".zdebug_str" },
297 { ".debug_ranges", ".zdebug_ranges" },
298 { ".debug_types", ".zdebug_types" },
299 { ".debug_addr", ".zdebug_addr" },
300 { ".debug_frame", ".zdebug_frame" },
301 { ".eh_frame", NULL },
302 { ".gdb_index", ".zgdb_index" },
303 23
304 };
305
306 /* List of DWO/DWP sections. */
307
308 static const struct dwop_section_names
309 {
310 struct dwarf2_section_names abbrev_dwo;
311 struct dwarf2_section_names info_dwo;
312 struct dwarf2_section_names line_dwo;
313 struct dwarf2_section_names loc_dwo;
314 struct dwarf2_section_names macinfo_dwo;
315 struct dwarf2_section_names macro_dwo;
316 struct dwarf2_section_names str_dwo;
317 struct dwarf2_section_names str_offsets_dwo;
318 struct dwarf2_section_names types_dwo;
319 struct dwarf2_section_names cu_index;
320 struct dwarf2_section_names tu_index;
321 }
322 dwop_section_names =
323 {
324 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
325 { ".debug_info.dwo", ".zdebug_info.dwo" },
326 { ".debug_line.dwo", ".zdebug_line.dwo" },
327 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
328 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
329 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
330 { ".debug_str.dwo", ".zdebug_str.dwo" },
331 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
332 { ".debug_types.dwo", ".zdebug_types.dwo" },
333 { ".debug_cu_index", ".zdebug_cu_index" },
334 { ".debug_tu_index", ".zdebug_tu_index" },
335 };
336
337 /* local data types */
338
339 /* The data in a compilation unit header, after target2host
340 translation, looks like this. */
341 struct comp_unit_head
342 {
343 unsigned int length;
344 short version;
345 unsigned char addr_size;
346 unsigned char signed_addr_p;
347 sect_offset abbrev_offset;
348
349 /* Size of file offsets; either 4 or 8. */
350 unsigned int offset_size;
351
352 /* Size of the length field; either 4 or 12. */
353 unsigned int initial_length_size;
354
355 /* Offset to the first byte of this compilation unit header in the
356 .debug_info section, for resolving relative reference dies. */
357 sect_offset offset;
358
359 /* Offset to first die in this cu from the start of the cu.
360 This will be the first byte following the compilation unit header. */
361 cu_offset first_die_offset;
362 };
363
364 /* Type used for delaying computation of method physnames.
365 See comments for compute_delayed_physnames. */
366 struct delayed_method_info
367 {
368 /* The type to which the method is attached, i.e., its parent class. */
369 struct type *type;
370
371 /* The index of the method in the type's function fieldlists. */
372 int fnfield_index;
373
374 /* The index of the method in the fieldlist. */
375 int index;
376
377 /* The name of the DIE. */
378 const char *name;
379
380 /* The DIE associated with this method. */
381 struct die_info *die;
382 };
383
384 typedef struct delayed_method_info delayed_method_info;
385 DEF_VEC_O (delayed_method_info);
386
387 /* Internal state when decoding a particular compilation unit. */
388 struct dwarf2_cu
389 {
390 /* The objfile containing this compilation unit. */
391 struct objfile *objfile;
392
393 /* The header of the compilation unit. */
394 struct comp_unit_head header;
395
396 /* Base address of this compilation unit. */
397 CORE_ADDR base_address;
398
399 /* Non-zero if base_address has been set. */
400 int base_known;
401
402 /* The language we are debugging. */
403 enum language language;
404 const struct language_defn *language_defn;
405
406 const char *producer;
407
408 /* The generic symbol table building routines have separate lists for
409 file scope symbols and all all other scopes (local scopes). So
410 we need to select the right one to pass to add_symbol_to_list().
411 We do it by keeping a pointer to the correct list in list_in_scope.
412
413 FIXME: The original dwarf code just treated the file scope as the
414 first local scope, and all other local scopes as nested local
415 scopes, and worked fine. Check to see if we really need to
416 distinguish these in buildsym.c. */
417 struct pending **list_in_scope;
418
419 /* The abbrev table for this CU.
420 Normally this points to the abbrev table in the objfile.
421 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
422 struct abbrev_table *abbrev_table;
423
424 /* Hash table holding all the loaded partial DIEs
425 with partial_die->offset.SECT_OFF as hash. */
426 htab_t partial_dies;
427
428 /* Storage for things with the same lifetime as this read-in compilation
429 unit, including partial DIEs. */
430 struct obstack comp_unit_obstack;
431
432 /* When multiple dwarf2_cu structures are living in memory, this field
433 chains them all together, so that they can be released efficiently.
434 We will probably also want a generation counter so that most-recently-used
435 compilation units are cached... */
436 struct dwarf2_per_cu_data *read_in_chain;
437
438 /* Backchain to our per_cu entry if the tree has been built. */
439 struct dwarf2_per_cu_data *per_cu;
440
441 /* How many compilation units ago was this CU last referenced? */
442 int last_used;
443
444 /* A hash table of DIE cu_offset for following references with
445 die_info->offset.sect_off as hash. */
446 htab_t die_hash;
447
448 /* Full DIEs if read in. */
449 struct die_info *dies;
450
451 /* A set of pointers to dwarf2_per_cu_data objects for compilation
452 units referenced by this one. Only set during full symbol processing;
453 partial symbol tables do not have dependencies. */
454 htab_t dependencies;
455
456 /* Header data from the line table, during full symbol processing. */
457 struct line_header *line_header;
458
459 /* A list of methods which need to have physnames computed
460 after all type information has been read. */
461 VEC (delayed_method_info) *method_list;
462
463 /* To be copied to symtab->call_site_htab. */
464 htab_t call_site_htab;
465
466 /* Non-NULL if this CU came from a DWO file.
467 There is an invariant here that is important to remember:
468 Except for attributes copied from the top level DIE in the "main"
469 (or "stub") file in preparation for reading the DWO file
470 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
471 Either there isn't a DWO file (in which case this is NULL and the point
472 is moot), or there is and either we're not going to read it (in which
473 case this is NULL) or there is and we are reading it (in which case this
474 is non-NULL). */
475 struct dwo_unit *dwo_unit;
476
477 /* The DW_AT_addr_base attribute if present, zero otherwise
478 (zero is a valid value though).
479 Note this value comes from the stub CU/TU's DIE. */
480 ULONGEST addr_base;
481
482 /* The DW_AT_ranges_base attribute if present, zero otherwise
483 (zero is a valid value though).
484 Note this value comes from the stub CU/TU's DIE.
485 Also note that the value is zero in the non-DWO case so this value can
486 be used without needing to know whether DWO files are in use or not.
487 N.B. This does not apply to DW_AT_ranges appearing in
488 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
489 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
490 DW_AT_ranges_base *would* have to be applied, and we'd have to care
491 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
492 ULONGEST ranges_base;
493
494 /* Mark used when releasing cached dies. */
495 unsigned int mark : 1;
496
497 /* This CU references .debug_loc. See the symtab->locations_valid field.
498 This test is imperfect as there may exist optimized debug code not using
499 any location list and still facing inlining issues if handled as
500 unoptimized code. For a future better test see GCC PR other/32998. */
501 unsigned int has_loclist : 1;
502
503 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
504 if all the producer_is_* fields are valid. This information is cached
505 because profiling CU expansion showed excessive time spent in
506 producer_is_gxx_lt_4_6. */
507 unsigned int checked_producer : 1;
508 unsigned int producer_is_gxx_lt_4_6 : 1;
509 unsigned int producer_is_gcc_lt_4_3 : 1;
510 unsigned int producer_is_icc : 1;
511 };
512
513 /* Persistent data held for a compilation unit, even when not
514 processing it. We put a pointer to this structure in the
515 read_symtab_private field of the psymtab. */
516
517 struct dwarf2_per_cu_data
518 {
519 /* The start offset and length of this compilation unit.
520 NOTE: Unlike comp_unit_head.length, this length includes
521 initial_length_size.
522 If the DIE refers to a DWO file, this is always of the original die,
523 not the DWO file. */
524 sect_offset offset;
525 unsigned int length;
526
527 /* Flag indicating this compilation unit will be read in before
528 any of the current compilation units are processed. */
529 unsigned int queued : 1;
530
531 /* This flag will be set when reading partial DIEs if we need to load
532 absolutely all DIEs for this compilation unit, instead of just the ones
533 we think are interesting. It gets set if we look for a DIE in the
534 hash table and don't find it. */
535 unsigned int load_all_dies : 1;
536
537 /* Non-zero if this CU is from .debug_types. */
538 unsigned int is_debug_types : 1;
539
540 /* Non-zero if this CU is from the .dwz file. */
541 unsigned int is_dwz : 1;
542
543 /* The section this CU/TU lives in.
544 If the DIE refers to a DWO file, this is always the original die,
545 not the DWO file. */
546 struct dwarf2_section_info *info_or_types_section;
547
548 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
549 of the CU cache it gets reset to NULL again. */
550 struct dwarf2_cu *cu;
551
552 /* The corresponding objfile.
553 Normally we can get the objfile from dwarf2_per_objfile.
554 However we can enter this file with just a "per_cu" handle. */
555 struct objfile *objfile;
556
557 /* When using partial symbol tables, the 'psymtab' field is active.
558 Otherwise the 'quick' field is active. */
559 union
560 {
561 /* The partial symbol table associated with this compilation unit,
562 or NULL for unread partial units. */
563 struct partial_symtab *psymtab;
564
565 /* Data needed by the "quick" functions. */
566 struct dwarf2_per_cu_quick_data *quick;
567 } v;
568
569 union
570 {
571 /* The CUs we import using DW_TAG_imported_unit. This is filled in
572 while reading psymtabs, used to compute the psymtab dependencies,
573 and then cleared. Then it is filled in again while reading full
574 symbols, and only deleted when the objfile is destroyed. */
575 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
576
577 /* Type units are grouped by their DW_AT_stmt_list entry so that they
578 can share them. If this is a TU, this points to the containing
579 symtab. */
580 struct type_unit_group *type_unit_group;
581 } s;
582 };
583
584 /* Entry in the signatured_types hash table. */
585
586 struct signatured_type
587 {
588 /* The "per_cu" object of this type.
589 N.B.: This is the first member so that it's easy to convert pointers
590 between them. */
591 struct dwarf2_per_cu_data per_cu;
592
593 /* The type's signature. */
594 ULONGEST signature;
595
596 /* Offset in the TU of the type's DIE, as read from the TU header.
597 If the definition lives in a DWO file, this value is unusable. */
598 cu_offset type_offset_in_tu;
599
600 /* Offset in the section of the type's DIE.
601 If the definition lives in a DWO file, this is the offset in the
602 .debug_types.dwo section.
603 The value is zero until the actual value is known.
604 Zero is otherwise not a valid section offset. */
605 sect_offset type_offset_in_section;
606 };
607
608 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
609 This includes type_unit_group and quick_file_names. */
610
611 struct stmt_list_hash
612 {
613 /* The DWO unit this table is from or NULL if there is none. */
614 struct dwo_unit *dwo_unit;
615
616 /* Offset in .debug_line or .debug_line.dwo. */
617 sect_offset line_offset;
618 };
619
620 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
621 an object of this type. */
622
623 struct type_unit_group
624 {
625 /* dwarf2read.c's main "handle" on the symtab.
626 To simplify things we create an artificial CU that "includes" all the
627 type units using this stmt_list so that the rest of the code still has
628 a "per_cu" handle on the symtab.
629 This PER_CU is recognized by having no section. */
630 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->info_or_types_section == NULL)
631 struct dwarf2_per_cu_data per_cu;
632
633 union
634 {
635 /* The TUs that share this DW_AT_stmt_list entry.
636 This is added to while parsing type units to build partial symtabs,
637 and is deleted afterwards and not used again. */
638 VEC (dwarf2_per_cu_ptr) *tus;
639
640 /* When reading the line table in "quick" functions, we need a real TU.
641 Any will do, we know they all share the same DW_AT_stmt_list entry.
642 For simplicity's sake, we pick the first one. */
643 struct dwarf2_per_cu_data *first_tu;
644 } t;
645
646 /* The primary symtab.
647 Type units in a group needn't all be defined in the same source file,
648 so we create an essentially anonymous symtab as the primary symtab. */
649 struct symtab *primary_symtab;
650
651 /* The data used to construct the hash key. */
652 struct stmt_list_hash hash;
653
654 /* The number of symtabs from the line header.
655 The value here must match line_header.num_file_names. */
656 unsigned int num_symtabs;
657
658 /* The symbol tables for this TU (obtained from the files listed in
659 DW_AT_stmt_list).
660 WARNING: The order of entries here must match the order of entries
661 in the line header. After the first TU using this type_unit_group, the
662 line header for the subsequent TUs is recreated from this. This is done
663 because we need to use the same symtabs for each TU using the same
664 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
665 there's no guarantee the line header doesn't have duplicate entries. */
666 struct symtab **symtabs;
667 };
668
669 /* These sections are what may appear in a DWO file. */
670
671 struct dwo_sections
672 {
673 struct dwarf2_section_info abbrev;
674 struct dwarf2_section_info line;
675 struct dwarf2_section_info loc;
676 struct dwarf2_section_info macinfo;
677 struct dwarf2_section_info macro;
678 struct dwarf2_section_info str;
679 struct dwarf2_section_info str_offsets;
680 /* In the case of a virtual DWO file, these two are unused. */
681 struct dwarf2_section_info info;
682 VEC (dwarf2_section_info_def) *types;
683 };
684
685 /* Common bits of DWO CUs/TUs. */
686
687 struct dwo_unit
688 {
689 /* Backlink to the containing struct dwo_file. */
690 struct dwo_file *dwo_file;
691
692 /* The "id" that distinguishes this CU/TU.
693 .debug_info calls this "dwo_id", .debug_types calls this "signature".
694 Since signatures came first, we stick with it for consistency. */
695 ULONGEST signature;
696
697 /* The section this CU/TU lives in, in the DWO file. */
698 struct dwarf2_section_info *info_or_types_section;
699
700 /* Same as dwarf2_per_cu_data:{offset,length} but for the DWO section. */
701 sect_offset offset;
702 unsigned int length;
703
704 /* For types, offset in the type's DIE of the type defined by this TU. */
705 cu_offset type_offset_in_tu;
706 };
707
708 /* Data for one DWO file.
709 This includes virtual DWO files that have been packaged into a
710 DWP file. */
711
712 struct dwo_file
713 {
714 /* The DW_AT_GNU_dwo_name attribute. This is the hash key.
715 For virtual DWO files the name is constructed from the section offsets
716 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
717 from related CU+TUs. */
718 const char *name;
719
720 /* The bfd, when the file is open. Otherwise this is NULL.
721 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
722 bfd *dbfd;
723
724 /* Section info for this file. */
725 struct dwo_sections sections;
726
727 /* Table of CUs in the file.
728 Each element is a struct dwo_unit. */
729 htab_t cus;
730
731 /* Table of TUs in the file.
732 Each element is a struct dwo_unit. */
733 htab_t tus;
734 };
735
736 /* These sections are what may appear in a DWP file. */
737
738 struct dwp_sections
739 {
740 struct dwarf2_section_info str;
741 struct dwarf2_section_info cu_index;
742 struct dwarf2_section_info tu_index;
743 /* The .debug_info.dwo, .debug_types.dwo, and other sections are referenced
744 by section number. We don't need to record them here. */
745 };
746
747 /* These sections are what may appear in a virtual DWO file. */
748
749 struct virtual_dwo_sections
750 {
751 struct dwarf2_section_info abbrev;
752 struct dwarf2_section_info line;
753 struct dwarf2_section_info loc;
754 struct dwarf2_section_info macinfo;
755 struct dwarf2_section_info macro;
756 struct dwarf2_section_info str_offsets;
757 /* Each DWP hash table entry records one CU or one TU.
758 That is recorded here, and copied to dwo_unit.info_or_types_section. */
759 struct dwarf2_section_info info_or_types;
760 };
761
762 /* Contents of DWP hash tables. */
763
764 struct dwp_hash_table
765 {
766 uint32_t nr_units, nr_slots;
767 const gdb_byte *hash_table, *unit_table, *section_pool;
768 };
769
770 /* Data for one DWP file. */
771
772 struct dwp_file
773 {
774 /* Name of the file. */
775 const char *name;
776
777 /* The bfd, when the file is open. Otherwise this is NULL. */
778 bfd *dbfd;
779
780 /* Section info for this file. */
781 struct dwp_sections sections;
782
783 /* Table of CUs in the file. */
784 const struct dwp_hash_table *cus;
785
786 /* Table of TUs in the file. */
787 const struct dwp_hash_table *tus;
788
789 /* Table of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
790 htab_t loaded_cutus;
791
792 /* Table to map ELF section numbers to their sections. */
793 unsigned int num_sections;
794 asection **elf_sections;
795 };
796
797 /* This represents a '.dwz' file. */
798
799 struct dwz_file
800 {
801 /* A dwz file can only contain a few sections. */
802 struct dwarf2_section_info abbrev;
803 struct dwarf2_section_info info;
804 struct dwarf2_section_info str;
805 struct dwarf2_section_info line;
806 struct dwarf2_section_info macro;
807 struct dwarf2_section_info gdb_index;
808
809 /* The dwz's BFD. */
810 bfd *dwz_bfd;
811 };
812
813 /* Struct used to pass misc. parameters to read_die_and_children, et
814 al. which are used for both .debug_info and .debug_types dies.
815 All parameters here are unchanging for the life of the call. This
816 struct exists to abstract away the constant parameters of die reading. */
817
818 struct die_reader_specs
819 {
820 /* die_section->asection->owner. */
821 bfd* abfd;
822
823 /* The CU of the DIE we are parsing. */
824 struct dwarf2_cu *cu;
825
826 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
827 struct dwo_file *dwo_file;
828
829 /* The section the die comes from.
830 This is either .debug_info or .debug_types, or the .dwo variants. */
831 struct dwarf2_section_info *die_section;
832
833 /* die_section->buffer. */
834 gdb_byte *buffer;
835
836 /* The end of the buffer. */
837 const gdb_byte *buffer_end;
838 };
839
840 /* Type of function passed to init_cutu_and_read_dies, et.al. */
841 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
842 gdb_byte *info_ptr,
843 struct die_info *comp_unit_die,
844 int has_children,
845 void *data);
846
847 /* The line number information for a compilation unit (found in the
848 .debug_line section) begins with a "statement program header",
849 which contains the following information. */
850 struct line_header
851 {
852 unsigned int total_length;
853 unsigned short version;
854 unsigned int header_length;
855 unsigned char minimum_instruction_length;
856 unsigned char maximum_ops_per_instruction;
857 unsigned char default_is_stmt;
858 int line_base;
859 unsigned char line_range;
860 unsigned char opcode_base;
861
862 /* standard_opcode_lengths[i] is the number of operands for the
863 standard opcode whose value is i. This means that
864 standard_opcode_lengths[0] is unused, and the last meaningful
865 element is standard_opcode_lengths[opcode_base - 1]. */
866 unsigned char *standard_opcode_lengths;
867
868 /* The include_directories table. NOTE! These strings are not
869 allocated with xmalloc; instead, they are pointers into
870 debug_line_buffer. If you try to free them, `free' will get
871 indigestion. */
872 unsigned int num_include_dirs, include_dirs_size;
873 char **include_dirs;
874
875 /* The file_names table. NOTE! These strings are not allocated
876 with xmalloc; instead, they are pointers into debug_line_buffer.
877 Don't try to free them directly. */
878 unsigned int num_file_names, file_names_size;
879 struct file_entry
880 {
881 char *name;
882 unsigned int dir_index;
883 unsigned int mod_time;
884 unsigned int length;
885 int included_p; /* Non-zero if referenced by the Line Number Program. */
886 struct symtab *symtab; /* The associated symbol table, if any. */
887 } *file_names;
888
889 /* The start and end of the statement program following this
890 header. These point into dwarf2_per_objfile->line_buffer. */
891 gdb_byte *statement_program_start, *statement_program_end;
892 };
893
894 /* When we construct a partial symbol table entry we only
895 need this much information. */
896 struct partial_die_info
897 {
898 /* Offset of this DIE. */
899 sect_offset offset;
900
901 /* DWARF-2 tag for this DIE. */
902 ENUM_BITFIELD(dwarf_tag) tag : 16;
903
904 /* Assorted flags describing the data found in this DIE. */
905 unsigned int has_children : 1;
906 unsigned int is_external : 1;
907 unsigned int is_declaration : 1;
908 unsigned int has_type : 1;
909 unsigned int has_specification : 1;
910 unsigned int has_pc_info : 1;
911 unsigned int may_be_inlined : 1;
912
913 /* Flag set if the SCOPE field of this structure has been
914 computed. */
915 unsigned int scope_set : 1;
916
917 /* Flag set if the DIE has a byte_size attribute. */
918 unsigned int has_byte_size : 1;
919
920 /* Flag set if any of the DIE's children are template arguments. */
921 unsigned int has_template_arguments : 1;
922
923 /* Flag set if fixup_partial_die has been called on this die. */
924 unsigned int fixup_called : 1;
925
926 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
927 unsigned int is_dwz : 1;
928
929 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
930 unsigned int spec_is_dwz : 1;
931
932 /* The name of this DIE. Normally the value of DW_AT_name, but
933 sometimes a default name for unnamed DIEs. */
934 char *name;
935
936 /* The linkage name, if present. */
937 const char *linkage_name;
938
939 /* The scope to prepend to our children. This is generally
940 allocated on the comp_unit_obstack, so will disappear
941 when this compilation unit leaves the cache. */
942 char *scope;
943
944 /* Some data associated with the partial DIE. The tag determines
945 which field is live. */
946 union
947 {
948 /* The location description associated with this DIE, if any. */
949 struct dwarf_block *locdesc;
950 /* The offset of an import, for DW_TAG_imported_unit. */
951 sect_offset offset;
952 } d;
953
954 /* If HAS_PC_INFO, the PC range associated with this DIE. */
955 CORE_ADDR lowpc;
956 CORE_ADDR highpc;
957
958 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
959 DW_AT_sibling, if any. */
960 /* NOTE: This member isn't strictly necessary, read_partial_die could
961 return DW_AT_sibling values to its caller load_partial_dies. */
962 gdb_byte *sibling;
963
964 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
965 DW_AT_specification (or DW_AT_abstract_origin or
966 DW_AT_extension). */
967 sect_offset spec_offset;
968
969 /* Pointers to this DIE's parent, first child, and next sibling,
970 if any. */
971 struct partial_die_info *die_parent, *die_child, *die_sibling;
972 };
973
974 /* This data structure holds the information of an abbrev. */
975 struct abbrev_info
976 {
977 unsigned int number; /* number identifying abbrev */
978 enum dwarf_tag tag; /* dwarf tag */
979 unsigned short has_children; /* boolean */
980 unsigned short num_attrs; /* number of attributes */
981 struct attr_abbrev *attrs; /* an array of attribute descriptions */
982 struct abbrev_info *next; /* next in chain */
983 };
984
985 struct attr_abbrev
986 {
987 ENUM_BITFIELD(dwarf_attribute) name : 16;
988 ENUM_BITFIELD(dwarf_form) form : 16;
989 };
990
991 /* Size of abbrev_table.abbrev_hash_table. */
992 #define ABBREV_HASH_SIZE 121
993
994 /* Top level data structure to contain an abbreviation table. */
995
996 struct abbrev_table
997 {
998 /* Where the abbrev table came from.
999 This is used as a sanity check when the table is used. */
1000 sect_offset offset;
1001
1002 /* Storage for the abbrev table. */
1003 struct obstack abbrev_obstack;
1004
1005 /* Hash table of abbrevs.
1006 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1007 It could be statically allocated, but the previous code didn't so we
1008 don't either. */
1009 struct abbrev_info **abbrevs;
1010 };
1011
1012 /* Attributes have a name and a value. */
1013 struct attribute
1014 {
1015 ENUM_BITFIELD(dwarf_attribute) name : 16;
1016 ENUM_BITFIELD(dwarf_form) form : 15;
1017
1018 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1019 field should be in u.str (existing only for DW_STRING) but it is kept
1020 here for better struct attribute alignment. */
1021 unsigned int string_is_canonical : 1;
1022
1023 union
1024 {
1025 char *str;
1026 struct dwarf_block *blk;
1027 ULONGEST unsnd;
1028 LONGEST snd;
1029 CORE_ADDR addr;
1030 struct signatured_type *signatured_type;
1031 }
1032 u;
1033 };
1034
1035 /* This data structure holds a complete die structure. */
1036 struct die_info
1037 {
1038 /* DWARF-2 tag for this DIE. */
1039 ENUM_BITFIELD(dwarf_tag) tag : 16;
1040
1041 /* Number of attributes */
1042 unsigned char num_attrs;
1043
1044 /* True if we're presently building the full type name for the
1045 type derived from this DIE. */
1046 unsigned char building_fullname : 1;
1047
1048 /* Abbrev number */
1049 unsigned int abbrev;
1050
1051 /* Offset in .debug_info or .debug_types section. */
1052 sect_offset offset;
1053
1054 /* The dies in a compilation unit form an n-ary tree. PARENT
1055 points to this die's parent; CHILD points to the first child of
1056 this node; and all the children of a given node are chained
1057 together via their SIBLING fields. */
1058 struct die_info *child; /* Its first child, if any. */
1059 struct die_info *sibling; /* Its next sibling, if any. */
1060 struct die_info *parent; /* Its parent, if any. */
1061
1062 /* An array of attributes, with NUM_ATTRS elements. There may be
1063 zero, but it's not common and zero-sized arrays are not
1064 sufficiently portable C. */
1065 struct attribute attrs[1];
1066 };
1067
1068 /* Get at parts of an attribute structure. */
1069
1070 #define DW_STRING(attr) ((attr)->u.str)
1071 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1072 #define DW_UNSND(attr) ((attr)->u.unsnd)
1073 #define DW_BLOCK(attr) ((attr)->u.blk)
1074 #define DW_SND(attr) ((attr)->u.snd)
1075 #define DW_ADDR(attr) ((attr)->u.addr)
1076 #define DW_SIGNATURED_TYPE(attr) ((attr)->u.signatured_type)
1077
1078 /* Blocks are a bunch of untyped bytes. */
1079 struct dwarf_block
1080 {
1081 size_t size;
1082
1083 /* Valid only if SIZE is not zero. */
1084 gdb_byte *data;
1085 };
1086
1087 #ifndef ATTR_ALLOC_CHUNK
1088 #define ATTR_ALLOC_CHUNK 4
1089 #endif
1090
1091 /* Allocate fields for structs, unions and enums in this size. */
1092 #ifndef DW_FIELD_ALLOC_CHUNK
1093 #define DW_FIELD_ALLOC_CHUNK 4
1094 #endif
1095
1096 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1097 but this would require a corresponding change in unpack_field_as_long
1098 and friends. */
1099 static int bits_per_byte = 8;
1100
1101 /* The routines that read and process dies for a C struct or C++ class
1102 pass lists of data member fields and lists of member function fields
1103 in an instance of a field_info structure, as defined below. */
1104 struct field_info
1105 {
1106 /* List of data member and baseclasses fields. */
1107 struct nextfield
1108 {
1109 struct nextfield *next;
1110 int accessibility;
1111 int virtuality;
1112 struct field field;
1113 }
1114 *fields, *baseclasses;
1115
1116 /* Number of fields (including baseclasses). */
1117 int nfields;
1118
1119 /* Number of baseclasses. */
1120 int nbaseclasses;
1121
1122 /* Set if the accesibility of one of the fields is not public. */
1123 int non_public_fields;
1124
1125 /* Member function fields array, entries are allocated in the order they
1126 are encountered in the object file. */
1127 struct nextfnfield
1128 {
1129 struct nextfnfield *next;
1130 struct fn_field fnfield;
1131 }
1132 *fnfields;
1133
1134 /* Member function fieldlist array, contains name of possibly overloaded
1135 member function, number of overloaded member functions and a pointer
1136 to the head of the member function field chain. */
1137 struct fnfieldlist
1138 {
1139 char *name;
1140 int length;
1141 struct nextfnfield *head;
1142 }
1143 *fnfieldlists;
1144
1145 /* Number of entries in the fnfieldlists array. */
1146 int nfnfields;
1147
1148 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1149 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1150 struct typedef_field_list
1151 {
1152 struct typedef_field field;
1153 struct typedef_field_list *next;
1154 }
1155 *typedef_field_list;
1156 unsigned typedef_field_list_count;
1157 };
1158
1159 /* One item on the queue of compilation units to read in full symbols
1160 for. */
1161 struct dwarf2_queue_item
1162 {
1163 struct dwarf2_per_cu_data *per_cu;
1164 enum language pretend_language;
1165 struct dwarf2_queue_item *next;
1166 };
1167
1168 /* The current queue. */
1169 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1170
1171 /* Loaded secondary compilation units are kept in memory until they
1172 have not been referenced for the processing of this many
1173 compilation units. Set this to zero to disable caching. Cache
1174 sizes of up to at least twenty will improve startup time for
1175 typical inter-CU-reference binaries, at an obvious memory cost. */
1176 static int dwarf2_max_cache_age = 5;
1177 static void
1178 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
1179 struct cmd_list_element *c, const char *value)
1180 {
1181 fprintf_filtered (file, _("The upper bound on the age of cached "
1182 "dwarf2 compilation units is %s.\n"),
1183 value);
1184 }
1185
1186
1187 /* Various complaints about symbol reading that don't abort the process. */
1188
1189 static void
1190 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1191 {
1192 complaint (&symfile_complaints,
1193 _("statement list doesn't fit in .debug_line section"));
1194 }
1195
1196 static void
1197 dwarf2_debug_line_missing_file_complaint (void)
1198 {
1199 complaint (&symfile_complaints,
1200 _(".debug_line section has line data without a file"));
1201 }
1202
1203 static void
1204 dwarf2_debug_line_missing_end_sequence_complaint (void)
1205 {
1206 complaint (&symfile_complaints,
1207 _(".debug_line section has line "
1208 "program sequence without an end"));
1209 }
1210
1211 static void
1212 dwarf2_complex_location_expr_complaint (void)
1213 {
1214 complaint (&symfile_complaints, _("location expression too complex"));
1215 }
1216
1217 static void
1218 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1219 int arg3)
1220 {
1221 complaint (&symfile_complaints,
1222 _("const value length mismatch for '%s', got %d, expected %d"),
1223 arg1, arg2, arg3);
1224 }
1225
1226 static void
1227 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1228 {
1229 complaint (&symfile_complaints,
1230 _("debug info runs off end of %s section"
1231 " [in module %s]"),
1232 section->asection->name,
1233 bfd_get_filename (section->asection->owner));
1234 }
1235
1236 static void
1237 dwarf2_macro_malformed_definition_complaint (const char *arg1)
1238 {
1239 complaint (&symfile_complaints,
1240 _("macro debug info contains a "
1241 "malformed macro definition:\n`%s'"),
1242 arg1);
1243 }
1244
1245 static void
1246 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1247 {
1248 complaint (&symfile_complaints,
1249 _("invalid attribute class or form for '%s' in '%s'"),
1250 arg1, arg2);
1251 }
1252
1253 /* local function prototypes */
1254
1255 static void dwarf2_locate_sections (bfd *, asection *, void *);
1256
1257 static void dwarf2_create_include_psymtab (char *, struct partial_symtab *,
1258 struct objfile *);
1259
1260 static void dwarf2_find_base_address (struct die_info *die,
1261 struct dwarf2_cu *cu);
1262
1263 static void dwarf2_build_psymtabs_hard (struct objfile *);
1264
1265 static void scan_partial_symbols (struct partial_die_info *,
1266 CORE_ADDR *, CORE_ADDR *,
1267 int, struct dwarf2_cu *);
1268
1269 static void add_partial_symbol (struct partial_die_info *,
1270 struct dwarf2_cu *);
1271
1272 static void add_partial_namespace (struct partial_die_info *pdi,
1273 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1274 int need_pc, struct dwarf2_cu *cu);
1275
1276 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1277 CORE_ADDR *highpc, int need_pc,
1278 struct dwarf2_cu *cu);
1279
1280 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1281 struct dwarf2_cu *cu);
1282
1283 static void add_partial_subprogram (struct partial_die_info *pdi,
1284 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1285 int need_pc, struct dwarf2_cu *cu);
1286
1287 static void dwarf2_psymtab_to_symtab (struct objfile *,
1288 struct partial_symtab *);
1289
1290 static void psymtab_to_symtab_1 (struct partial_symtab *);
1291
1292 static struct abbrev_info *abbrev_table_lookup_abbrev
1293 (const struct abbrev_table *, unsigned int);
1294
1295 static struct abbrev_table *abbrev_table_read_table
1296 (struct dwarf2_section_info *, sect_offset);
1297
1298 static void abbrev_table_free (struct abbrev_table *);
1299
1300 static void abbrev_table_free_cleanup (void *);
1301
1302 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1303 struct dwarf2_section_info *);
1304
1305 static void dwarf2_free_abbrev_table (void *);
1306
1307 static unsigned int peek_abbrev_code (bfd *, gdb_byte *);
1308
1309 static struct partial_die_info *load_partial_dies
1310 (const struct die_reader_specs *, gdb_byte *, int);
1311
1312 static gdb_byte *read_partial_die (const struct die_reader_specs *,
1313 struct partial_die_info *,
1314 struct abbrev_info *,
1315 unsigned int,
1316 gdb_byte *);
1317
1318 static struct partial_die_info *find_partial_die (sect_offset, int,
1319 struct dwarf2_cu *);
1320
1321 static void fixup_partial_die (struct partial_die_info *,
1322 struct dwarf2_cu *);
1323
1324 static gdb_byte *read_attribute (const struct die_reader_specs *,
1325 struct attribute *, struct attr_abbrev *,
1326 gdb_byte *);
1327
1328 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1329
1330 static int read_1_signed_byte (bfd *, const gdb_byte *);
1331
1332 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1333
1334 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1335
1336 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1337
1338 static CORE_ADDR read_address (bfd *, gdb_byte *ptr, struct dwarf2_cu *,
1339 unsigned int *);
1340
1341 static LONGEST read_initial_length (bfd *, gdb_byte *, unsigned int *);
1342
1343 static LONGEST read_checked_initial_length_and_offset
1344 (bfd *, gdb_byte *, const struct comp_unit_head *,
1345 unsigned int *, unsigned int *);
1346
1347 static LONGEST read_offset (bfd *, gdb_byte *, const struct comp_unit_head *,
1348 unsigned int *);
1349
1350 static LONGEST read_offset_1 (bfd *, gdb_byte *, unsigned int);
1351
1352 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1353 sect_offset);
1354
1355 static gdb_byte *read_n_bytes (bfd *, gdb_byte *, unsigned int);
1356
1357 static char *read_direct_string (bfd *, gdb_byte *, unsigned int *);
1358
1359 static char *read_indirect_string (bfd *, gdb_byte *,
1360 const struct comp_unit_head *,
1361 unsigned int *);
1362
1363 static char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1364
1365 static ULONGEST read_unsigned_leb128 (bfd *, gdb_byte *, unsigned int *);
1366
1367 static LONGEST read_signed_leb128 (bfd *, gdb_byte *, unsigned int *);
1368
1369 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *, gdb_byte *,
1370 unsigned int *);
1371
1372 static char *read_str_index (const struct die_reader_specs *reader,
1373 struct dwarf2_cu *cu, ULONGEST str_index);
1374
1375 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1376
1377 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1378 struct dwarf2_cu *);
1379
1380 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1381 unsigned int);
1382
1383 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1384 struct dwarf2_cu *cu);
1385
1386 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1387
1388 static struct die_info *die_specification (struct die_info *die,
1389 struct dwarf2_cu **);
1390
1391 static void free_line_header (struct line_header *lh);
1392
1393 static void add_file_name (struct line_header *, char *, unsigned int,
1394 unsigned int, unsigned int);
1395
1396 static struct line_header *dwarf_decode_line_header (unsigned int offset,
1397 struct dwarf2_cu *cu);
1398
1399 static void dwarf_decode_lines (struct line_header *, const char *,
1400 struct dwarf2_cu *, struct partial_symtab *,
1401 int);
1402
1403 static void dwarf2_start_subfile (char *, const char *, const char *);
1404
1405 static void dwarf2_start_symtab (struct dwarf2_cu *,
1406 char *, char *, CORE_ADDR);
1407
1408 static struct symbol *new_symbol (struct die_info *, struct type *,
1409 struct dwarf2_cu *);
1410
1411 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1412 struct dwarf2_cu *, struct symbol *);
1413
1414 static void dwarf2_const_value (struct attribute *, struct symbol *,
1415 struct dwarf2_cu *);
1416
1417 static void dwarf2_const_value_attr (struct attribute *attr,
1418 struct type *type,
1419 const char *name,
1420 struct obstack *obstack,
1421 struct dwarf2_cu *cu, LONGEST *value,
1422 gdb_byte **bytes,
1423 struct dwarf2_locexpr_baton **baton);
1424
1425 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1426
1427 static int need_gnat_info (struct dwarf2_cu *);
1428
1429 static struct type *die_descriptive_type (struct die_info *,
1430 struct dwarf2_cu *);
1431
1432 static void set_descriptive_type (struct type *, struct die_info *,
1433 struct dwarf2_cu *);
1434
1435 static struct type *die_containing_type (struct die_info *,
1436 struct dwarf2_cu *);
1437
1438 static struct type *lookup_die_type (struct die_info *, struct attribute *,
1439 struct dwarf2_cu *);
1440
1441 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1442
1443 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1444
1445 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1446
1447 static char *typename_concat (struct obstack *obs, const char *prefix,
1448 const char *suffix, int physname,
1449 struct dwarf2_cu *cu);
1450
1451 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1452
1453 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1454
1455 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1456
1457 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1458
1459 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1460
1461 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1462 struct dwarf2_cu *, struct partial_symtab *);
1463
1464 static int dwarf2_get_pc_bounds (struct die_info *,
1465 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1466 struct partial_symtab *);
1467
1468 static void get_scope_pc_bounds (struct die_info *,
1469 CORE_ADDR *, CORE_ADDR *,
1470 struct dwarf2_cu *);
1471
1472 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1473 CORE_ADDR, struct dwarf2_cu *);
1474
1475 static void dwarf2_add_field (struct field_info *, struct die_info *,
1476 struct dwarf2_cu *);
1477
1478 static void dwarf2_attach_fields_to_type (struct field_info *,
1479 struct type *, struct dwarf2_cu *);
1480
1481 static void dwarf2_add_member_fn (struct field_info *,
1482 struct die_info *, struct type *,
1483 struct dwarf2_cu *);
1484
1485 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1486 struct type *,
1487 struct dwarf2_cu *);
1488
1489 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1490
1491 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1492
1493 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1494
1495 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1496
1497 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1498
1499 static struct type *read_module_type (struct die_info *die,
1500 struct dwarf2_cu *cu);
1501
1502 static const char *namespace_name (struct die_info *die,
1503 int *is_anonymous, struct dwarf2_cu *);
1504
1505 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1506
1507 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1508
1509 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1510 struct dwarf2_cu *);
1511
1512 static struct die_info *read_die_and_children (const struct die_reader_specs *,
1513 gdb_byte *info_ptr,
1514 gdb_byte **new_info_ptr,
1515 struct die_info *parent);
1516
1517 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1518 gdb_byte *info_ptr,
1519 gdb_byte **new_info_ptr,
1520 struct die_info *parent);
1521
1522 static gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1523 struct die_info **, gdb_byte *, int *, int);
1524
1525 static gdb_byte *read_full_die (const struct die_reader_specs *,
1526 struct die_info **, gdb_byte *, int *);
1527
1528 static void process_die (struct die_info *, struct dwarf2_cu *);
1529
1530 static char *dwarf2_canonicalize_name (char *, struct dwarf2_cu *,
1531 struct obstack *);
1532
1533 static char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1534
1535 static const char *dwarf2_full_name (char *name,
1536 struct die_info *die,
1537 struct dwarf2_cu *cu);
1538
1539 static struct die_info *dwarf2_extension (struct die_info *die,
1540 struct dwarf2_cu **);
1541
1542 static const char *dwarf_tag_name (unsigned int);
1543
1544 static const char *dwarf_attr_name (unsigned int);
1545
1546 static const char *dwarf_form_name (unsigned int);
1547
1548 static char *dwarf_bool_name (unsigned int);
1549
1550 static const char *dwarf_type_encoding_name (unsigned int);
1551
1552 static struct die_info *sibling_die (struct die_info *);
1553
1554 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1555
1556 static void dump_die_for_error (struct die_info *);
1557
1558 static void dump_die_1 (struct ui_file *, int level, int max_level,
1559 struct die_info *);
1560
1561 /*static*/ void dump_die (struct die_info *, int max_level);
1562
1563 static void store_in_ref_table (struct die_info *,
1564 struct dwarf2_cu *);
1565
1566 static int is_ref_attr (struct attribute *);
1567
1568 static sect_offset dwarf2_get_ref_die_offset (struct attribute *);
1569
1570 static LONGEST dwarf2_get_attr_constant_value (struct attribute *, int);
1571
1572 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1573 struct attribute *,
1574 struct dwarf2_cu **);
1575
1576 static struct die_info *follow_die_ref (struct die_info *,
1577 struct attribute *,
1578 struct dwarf2_cu **);
1579
1580 static struct die_info *follow_die_sig (struct die_info *,
1581 struct attribute *,
1582 struct dwarf2_cu **);
1583
1584 static struct signatured_type *lookup_signatured_type_at_offset
1585 (struct objfile *objfile,
1586 struct dwarf2_section_info *section, sect_offset offset);
1587
1588 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1589
1590 static void read_signatured_type (struct signatured_type *);
1591
1592 static struct type_unit_group *get_type_unit_group
1593 (struct dwarf2_cu *, struct attribute *);
1594
1595 static void build_type_unit_groups (die_reader_func_ftype *, void *);
1596
1597 /* memory allocation interface */
1598
1599 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1600
1601 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1602
1603 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int,
1604 char *, int);
1605
1606 static int attr_form_is_block (struct attribute *);
1607
1608 static int attr_form_is_section_offset (struct attribute *);
1609
1610 static int attr_form_is_constant (struct attribute *);
1611
1612 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1613 struct dwarf2_loclist_baton *baton,
1614 struct attribute *attr);
1615
1616 static void dwarf2_symbol_mark_computed (struct attribute *attr,
1617 struct symbol *sym,
1618 struct dwarf2_cu *cu);
1619
1620 static gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1621 gdb_byte *info_ptr,
1622 struct abbrev_info *abbrev);
1623
1624 static void free_stack_comp_unit (void *);
1625
1626 static hashval_t partial_die_hash (const void *item);
1627
1628 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1629
1630 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1631 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
1632
1633 static void init_one_comp_unit (struct dwarf2_cu *cu,
1634 struct dwarf2_per_cu_data *per_cu);
1635
1636 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1637 struct die_info *comp_unit_die,
1638 enum language pretend_language);
1639
1640 static void free_heap_comp_unit (void *);
1641
1642 static void free_cached_comp_units (void *);
1643
1644 static void age_cached_comp_units (void);
1645
1646 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1647
1648 static struct type *set_die_type (struct die_info *, struct type *,
1649 struct dwarf2_cu *);
1650
1651 static void create_all_comp_units (struct objfile *);
1652
1653 static int create_all_type_units (struct objfile *);
1654
1655 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1656 enum language);
1657
1658 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1659 enum language);
1660
1661 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1662 enum language);
1663
1664 static void dwarf2_add_dependence (struct dwarf2_cu *,
1665 struct dwarf2_per_cu_data *);
1666
1667 static void dwarf2_mark (struct dwarf2_cu *);
1668
1669 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1670
1671 static struct type *get_die_type_at_offset (sect_offset,
1672 struct dwarf2_per_cu_data *per_cu);
1673
1674 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1675
1676 static void dwarf2_release_queue (void *dummy);
1677
1678 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1679 enum language pretend_language);
1680
1681 static int maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
1682 struct dwarf2_per_cu_data *per_cu,
1683 enum language pretend_language);
1684
1685 static void process_queue (void);
1686
1687 static void find_file_and_directory (struct die_info *die,
1688 struct dwarf2_cu *cu,
1689 char **name, char **comp_dir);
1690
1691 static char *file_full_name (int file, struct line_header *lh,
1692 const char *comp_dir);
1693
1694 static gdb_byte *read_and_check_comp_unit_head
1695 (struct comp_unit_head *header,
1696 struct dwarf2_section_info *section,
1697 struct dwarf2_section_info *abbrev_section, gdb_byte *info_ptr,
1698 int is_debug_types_section);
1699
1700 static void init_cutu_and_read_dies
1701 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1702 int use_existing_cu, int keep,
1703 die_reader_func_ftype *die_reader_func, void *data);
1704
1705 static void init_cutu_and_read_dies_simple
1706 (struct dwarf2_per_cu_data *this_cu,
1707 die_reader_func_ftype *die_reader_func, void *data);
1708
1709 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1710
1711 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1712
1713 static struct dwo_unit *lookup_dwo_comp_unit
1714 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1715
1716 static struct dwo_unit *lookup_dwo_type_unit
1717 (struct signatured_type *, const char *, const char *);
1718
1719 static void free_dwo_file_cleanup (void *);
1720
1721 static void process_cu_includes (void);
1722
1723 static void check_producer (struct dwarf2_cu *cu);
1724
1725 #if WORDS_BIGENDIAN
1726
1727 /* Convert VALUE between big- and little-endian. */
1728 static offset_type
1729 byte_swap (offset_type value)
1730 {
1731 offset_type result;
1732
1733 result = (value & 0xff) << 24;
1734 result |= (value & 0xff00) << 8;
1735 result |= (value & 0xff0000) >> 8;
1736 result |= (value & 0xff000000) >> 24;
1737 return result;
1738 }
1739
1740 #define MAYBE_SWAP(V) byte_swap (V)
1741
1742 #else
1743 #define MAYBE_SWAP(V) (V)
1744 #endif /* WORDS_BIGENDIAN */
1745
1746 /* The suffix for an index file. */
1747 #define INDEX_SUFFIX ".gdb-index"
1748
1749 static const char *dwarf2_physname (char *name, struct die_info *die,
1750 struct dwarf2_cu *cu);
1751
1752 /* Try to locate the sections we need for DWARF 2 debugging
1753 information and return true if we have enough to do something.
1754 NAMES points to the dwarf2 section names, or is NULL if the standard
1755 ELF names are used. */
1756
1757 int
1758 dwarf2_has_info (struct objfile *objfile,
1759 const struct dwarf2_debug_sections *names)
1760 {
1761 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1762 if (!dwarf2_per_objfile)
1763 {
1764 /* Initialize per-objfile state. */
1765 struct dwarf2_per_objfile *data
1766 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1767
1768 memset (data, 0, sizeof (*data));
1769 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1770 dwarf2_per_objfile = data;
1771
1772 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
1773 (void *) names);
1774 dwarf2_per_objfile->objfile = objfile;
1775 }
1776 return (dwarf2_per_objfile->info.asection != NULL
1777 && dwarf2_per_objfile->abbrev.asection != NULL);
1778 }
1779
1780 /* When loading sections, we look either for uncompressed section or for
1781 compressed section names. */
1782
1783 static int
1784 section_is_p (const char *section_name,
1785 const struct dwarf2_section_names *names)
1786 {
1787 if (names->normal != NULL
1788 && strcmp (section_name, names->normal) == 0)
1789 return 1;
1790 if (names->compressed != NULL
1791 && strcmp (section_name, names->compressed) == 0)
1792 return 1;
1793 return 0;
1794 }
1795
1796 /* This function is mapped across the sections and remembers the
1797 offset and size of each of the debugging sections we are interested
1798 in. */
1799
1800 static void
1801 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
1802 {
1803 const struct dwarf2_debug_sections *names;
1804 flagword aflag = bfd_get_section_flags (abfd, sectp);
1805
1806 if (vnames == NULL)
1807 names = &dwarf2_elf_names;
1808 else
1809 names = (const struct dwarf2_debug_sections *) vnames;
1810
1811 if ((aflag & SEC_HAS_CONTENTS) == 0)
1812 {
1813 }
1814 else if (section_is_p (sectp->name, &names->info))
1815 {
1816 dwarf2_per_objfile->info.asection = sectp;
1817 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
1818 }
1819 else if (section_is_p (sectp->name, &names->abbrev))
1820 {
1821 dwarf2_per_objfile->abbrev.asection = sectp;
1822 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
1823 }
1824 else if (section_is_p (sectp->name, &names->line))
1825 {
1826 dwarf2_per_objfile->line.asection = sectp;
1827 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
1828 }
1829 else if (section_is_p (sectp->name, &names->loc))
1830 {
1831 dwarf2_per_objfile->loc.asection = sectp;
1832 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
1833 }
1834 else if (section_is_p (sectp->name, &names->macinfo))
1835 {
1836 dwarf2_per_objfile->macinfo.asection = sectp;
1837 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
1838 }
1839 else if (section_is_p (sectp->name, &names->macro))
1840 {
1841 dwarf2_per_objfile->macro.asection = sectp;
1842 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
1843 }
1844 else if (section_is_p (sectp->name, &names->str))
1845 {
1846 dwarf2_per_objfile->str.asection = sectp;
1847 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
1848 }
1849 else if (section_is_p (sectp->name, &names->addr))
1850 {
1851 dwarf2_per_objfile->addr.asection = sectp;
1852 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
1853 }
1854 else if (section_is_p (sectp->name, &names->frame))
1855 {
1856 dwarf2_per_objfile->frame.asection = sectp;
1857 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
1858 }
1859 else if (section_is_p (sectp->name, &names->eh_frame))
1860 {
1861 dwarf2_per_objfile->eh_frame.asection = sectp;
1862 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
1863 }
1864 else if (section_is_p (sectp->name, &names->ranges))
1865 {
1866 dwarf2_per_objfile->ranges.asection = sectp;
1867 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
1868 }
1869 else if (section_is_p (sectp->name, &names->types))
1870 {
1871 struct dwarf2_section_info type_section;
1872
1873 memset (&type_section, 0, sizeof (type_section));
1874 type_section.asection = sectp;
1875 type_section.size = bfd_get_section_size (sectp);
1876
1877 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
1878 &type_section);
1879 }
1880 else if (section_is_p (sectp->name, &names->gdb_index))
1881 {
1882 dwarf2_per_objfile->gdb_index.asection = sectp;
1883 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
1884 }
1885
1886 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
1887 && bfd_section_vma (abfd, sectp) == 0)
1888 dwarf2_per_objfile->has_section_at_zero = 1;
1889 }
1890
1891 /* A helper function that decides whether a section is empty,
1892 or not present. */
1893
1894 static int
1895 dwarf2_section_empty_p (struct dwarf2_section_info *info)
1896 {
1897 return info->asection == NULL || info->size == 0;
1898 }
1899
1900 /* Read the contents of the section INFO.
1901 OBJFILE is the main object file, but not necessarily the file where
1902 the section comes from. E.g., for DWO files INFO->asection->owner
1903 is the bfd of the DWO file.
1904 If the section is compressed, uncompress it before returning. */
1905
1906 static void
1907 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
1908 {
1909 asection *sectp = info->asection;
1910 bfd *abfd;
1911 gdb_byte *buf, *retbuf;
1912 unsigned char header[4];
1913
1914 if (info->readin)
1915 return;
1916 info->buffer = NULL;
1917 info->readin = 1;
1918
1919 if (dwarf2_section_empty_p (info))
1920 return;
1921
1922 abfd = sectp->owner;
1923
1924 /* If the section has relocations, we must read it ourselves.
1925 Otherwise we attach it to the BFD. */
1926 if ((sectp->flags & SEC_RELOC) == 0)
1927 {
1928 const gdb_byte *bytes = gdb_bfd_map_section (sectp, &info->size);
1929
1930 /* We have to cast away const here for historical reasons.
1931 Fixing dwarf2read to be const-correct would be quite nice. */
1932 info->buffer = (gdb_byte *) bytes;
1933 return;
1934 }
1935
1936 buf = obstack_alloc (&objfile->objfile_obstack, info->size);
1937 info->buffer = buf;
1938
1939 /* When debugging .o files, we may need to apply relocations; see
1940 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
1941 We never compress sections in .o files, so we only need to
1942 try this when the section is not compressed. */
1943 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
1944 if (retbuf != NULL)
1945 {
1946 info->buffer = retbuf;
1947 return;
1948 }
1949
1950 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1951 || bfd_bread (buf, info->size, abfd) != info->size)
1952 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1953 bfd_get_filename (abfd));
1954 }
1955
1956 /* A helper function that returns the size of a section in a safe way.
1957 If you are positive that the section has been read before using the
1958 size, then it is safe to refer to the dwarf2_section_info object's
1959 "size" field directly. In other cases, you must call this
1960 function, because for compressed sections the size field is not set
1961 correctly until the section has been read. */
1962
1963 static bfd_size_type
1964 dwarf2_section_size (struct objfile *objfile,
1965 struct dwarf2_section_info *info)
1966 {
1967 if (!info->readin)
1968 dwarf2_read_section (objfile, info);
1969 return info->size;
1970 }
1971
1972 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
1973 SECTION_NAME. */
1974
1975 void
1976 dwarf2_get_section_info (struct objfile *objfile,
1977 enum dwarf2_section_enum sect,
1978 asection **sectp, gdb_byte **bufp,
1979 bfd_size_type *sizep)
1980 {
1981 struct dwarf2_per_objfile *data
1982 = objfile_data (objfile, dwarf2_objfile_data_key);
1983 struct dwarf2_section_info *info;
1984
1985 /* We may see an objfile without any DWARF, in which case we just
1986 return nothing. */
1987 if (data == NULL)
1988 {
1989 *sectp = NULL;
1990 *bufp = NULL;
1991 *sizep = 0;
1992 return;
1993 }
1994 switch (sect)
1995 {
1996 case DWARF2_DEBUG_FRAME:
1997 info = &data->frame;
1998 break;
1999 case DWARF2_EH_FRAME:
2000 info = &data->eh_frame;
2001 break;
2002 default:
2003 gdb_assert_not_reached ("unexpected section");
2004 }
2005
2006 dwarf2_read_section (objfile, info);
2007
2008 *sectp = info->asection;
2009 *bufp = info->buffer;
2010 *sizep = info->size;
2011 }
2012
2013 /* A helper function to find the sections for a .dwz file. */
2014
2015 static void
2016 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2017 {
2018 struct dwz_file *dwz_file = arg;
2019
2020 /* Note that we only support the standard ELF names, because .dwz
2021 is ELF-only (at the time of writing). */
2022 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2023 {
2024 dwz_file->abbrev.asection = sectp;
2025 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2026 }
2027 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2028 {
2029 dwz_file->info.asection = sectp;
2030 dwz_file->info.size = bfd_get_section_size (sectp);
2031 }
2032 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2033 {
2034 dwz_file->str.asection = sectp;
2035 dwz_file->str.size = bfd_get_section_size (sectp);
2036 }
2037 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2038 {
2039 dwz_file->line.asection = sectp;
2040 dwz_file->line.size = bfd_get_section_size (sectp);
2041 }
2042 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2043 {
2044 dwz_file->macro.asection = sectp;
2045 dwz_file->macro.size = bfd_get_section_size (sectp);
2046 }
2047 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2048 {
2049 dwz_file->gdb_index.asection = sectp;
2050 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2051 }
2052 }
2053
2054 /* Open the separate '.dwz' debug file, if needed. Error if the file
2055 cannot be found. */
2056
2057 static struct dwz_file *
2058 dwarf2_get_dwz_file (void)
2059 {
2060 bfd *abfd, *dwz_bfd;
2061 asection *section;
2062 gdb_byte *data;
2063 struct cleanup *cleanup;
2064 const char *filename;
2065 struct dwz_file *result;
2066
2067 if (dwarf2_per_objfile->dwz_file != NULL)
2068 return dwarf2_per_objfile->dwz_file;
2069
2070 abfd = dwarf2_per_objfile->objfile->obfd;
2071 section = bfd_get_section_by_name (abfd, ".gnu_debugaltlink");
2072 if (section == NULL)
2073 error (_("could not find '.gnu_debugaltlink' section"));
2074 if (!bfd_malloc_and_get_section (abfd, section, &data))
2075 error (_("could not read '.gnu_debugaltlink' section: %s"),
2076 bfd_errmsg (bfd_get_error ()));
2077 cleanup = make_cleanup (xfree, data);
2078
2079 filename = data;
2080 if (!IS_ABSOLUTE_PATH (filename))
2081 {
2082 char *abs = gdb_realpath (dwarf2_per_objfile->objfile->name);
2083 char *rel;
2084
2085 make_cleanup (xfree, abs);
2086 abs = ldirname (abs);
2087 make_cleanup (xfree, abs);
2088
2089 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2090 make_cleanup (xfree, rel);
2091 filename = rel;
2092 }
2093
2094 /* The format is just a NUL-terminated file name, followed by the
2095 build-id. For now, though, we ignore the build-id. */
2096 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
2097 if (dwz_bfd == NULL)
2098 error (_("could not read '%s': %s"), filename,
2099 bfd_errmsg (bfd_get_error ()));
2100
2101 if (!bfd_check_format (dwz_bfd, bfd_object))
2102 {
2103 gdb_bfd_unref (dwz_bfd);
2104 error (_("file '%s' was not usable: %s"), filename,
2105 bfd_errmsg (bfd_get_error ()));
2106 }
2107
2108 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2109 struct dwz_file);
2110 result->dwz_bfd = dwz_bfd;
2111
2112 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2113
2114 do_cleanups (cleanup);
2115
2116 dwarf2_per_objfile->dwz_file = result;
2117 return result;
2118 }
2119 \f
2120 /* DWARF quick_symbols_functions support. */
2121
2122 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2123 unique line tables, so we maintain a separate table of all .debug_line
2124 derived entries to support the sharing.
2125 All the quick functions need is the list of file names. We discard the
2126 line_header when we're done and don't need to record it here. */
2127 struct quick_file_names
2128 {
2129 /* The data used to construct the hash key. */
2130 struct stmt_list_hash hash;
2131
2132 /* The number of entries in file_names, real_names. */
2133 unsigned int num_file_names;
2134
2135 /* The file names from the line table, after being run through
2136 file_full_name. */
2137 const char **file_names;
2138
2139 /* The file names from the line table after being run through
2140 gdb_realpath. These are computed lazily. */
2141 const char **real_names;
2142 };
2143
2144 /* When using the index (and thus not using psymtabs), each CU has an
2145 object of this type. This is used to hold information needed by
2146 the various "quick" methods. */
2147 struct dwarf2_per_cu_quick_data
2148 {
2149 /* The file table. This can be NULL if there was no file table
2150 or it's currently not read in.
2151 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2152 struct quick_file_names *file_names;
2153
2154 /* The corresponding symbol table. This is NULL if symbols for this
2155 CU have not yet been read. */
2156 struct symtab *symtab;
2157
2158 /* A temporary mark bit used when iterating over all CUs in
2159 expand_symtabs_matching. */
2160 unsigned int mark : 1;
2161
2162 /* True if we've tried to read the file table and found there isn't one.
2163 There will be no point in trying to read it again next time. */
2164 unsigned int no_file_data : 1;
2165 };
2166
2167 /* Utility hash function for a stmt_list_hash. */
2168
2169 static hashval_t
2170 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2171 {
2172 hashval_t v = 0;
2173
2174 if (stmt_list_hash->dwo_unit != NULL)
2175 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2176 v += stmt_list_hash->line_offset.sect_off;
2177 return v;
2178 }
2179
2180 /* Utility equality function for a stmt_list_hash. */
2181
2182 static int
2183 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2184 const struct stmt_list_hash *rhs)
2185 {
2186 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2187 return 0;
2188 if (lhs->dwo_unit != NULL
2189 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2190 return 0;
2191
2192 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2193 }
2194
2195 /* Hash function for a quick_file_names. */
2196
2197 static hashval_t
2198 hash_file_name_entry (const void *e)
2199 {
2200 const struct quick_file_names *file_data = e;
2201
2202 return hash_stmt_list_entry (&file_data->hash);
2203 }
2204
2205 /* Equality function for a quick_file_names. */
2206
2207 static int
2208 eq_file_name_entry (const void *a, const void *b)
2209 {
2210 const struct quick_file_names *ea = a;
2211 const struct quick_file_names *eb = b;
2212
2213 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2214 }
2215
2216 /* Delete function for a quick_file_names. */
2217
2218 static void
2219 delete_file_name_entry (void *e)
2220 {
2221 struct quick_file_names *file_data = e;
2222 int i;
2223
2224 for (i = 0; i < file_data->num_file_names; ++i)
2225 {
2226 xfree ((void*) file_data->file_names[i]);
2227 if (file_data->real_names)
2228 xfree ((void*) file_data->real_names[i]);
2229 }
2230
2231 /* The space for the struct itself lives on objfile_obstack,
2232 so we don't free it here. */
2233 }
2234
2235 /* Create a quick_file_names hash table. */
2236
2237 static htab_t
2238 create_quick_file_names_table (unsigned int nr_initial_entries)
2239 {
2240 return htab_create_alloc (nr_initial_entries,
2241 hash_file_name_entry, eq_file_name_entry,
2242 delete_file_name_entry, xcalloc, xfree);
2243 }
2244
2245 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2246 have to be created afterwards. You should call age_cached_comp_units after
2247 processing PER_CU->CU. dw2_setup must have been already called. */
2248
2249 static void
2250 load_cu (struct dwarf2_per_cu_data *per_cu)
2251 {
2252 if (per_cu->is_debug_types)
2253 load_full_type_unit (per_cu);
2254 else
2255 load_full_comp_unit (per_cu, language_minimal);
2256
2257 gdb_assert (per_cu->cu != NULL);
2258
2259 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2260 }
2261
2262 /* Read in the symbols for PER_CU. */
2263
2264 static void
2265 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2266 {
2267 struct cleanup *back_to;
2268
2269 /* Skip type_unit_groups, reading the type units they contain
2270 is handled elsewhere. */
2271 if (IS_TYPE_UNIT_GROUP (per_cu))
2272 return;
2273
2274 back_to = make_cleanup (dwarf2_release_queue, NULL);
2275
2276 if (dwarf2_per_objfile->using_index
2277 ? per_cu->v.quick->symtab == NULL
2278 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2279 {
2280 queue_comp_unit (per_cu, language_minimal);
2281 load_cu (per_cu);
2282 }
2283
2284 process_queue ();
2285
2286 /* Age the cache, releasing compilation units that have not
2287 been used recently. */
2288 age_cached_comp_units ();
2289
2290 do_cleanups (back_to);
2291 }
2292
2293 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2294 the objfile from which this CU came. Returns the resulting symbol
2295 table. */
2296
2297 static struct symtab *
2298 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2299 {
2300 gdb_assert (dwarf2_per_objfile->using_index);
2301 if (!per_cu->v.quick->symtab)
2302 {
2303 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2304 increment_reading_symtab ();
2305 dw2_do_instantiate_symtab (per_cu);
2306 process_cu_includes ();
2307 do_cleanups (back_to);
2308 }
2309 return per_cu->v.quick->symtab;
2310 }
2311
2312 /* Return the CU given its index.
2313
2314 This is intended for loops like:
2315
2316 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2317 + dwarf2_per_objfile->n_type_units); ++i)
2318 {
2319 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2320
2321 ...;
2322 }
2323 */
2324
2325 static struct dwarf2_per_cu_data *
2326 dw2_get_cu (int index)
2327 {
2328 if (index >= dwarf2_per_objfile->n_comp_units)
2329 {
2330 index -= dwarf2_per_objfile->n_comp_units;
2331 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2332 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2333 }
2334
2335 return dwarf2_per_objfile->all_comp_units[index];
2336 }
2337
2338 /* Return the primary CU given its index.
2339 The difference between this function and dw2_get_cu is in the handling
2340 of type units (TUs). Here we return the type_unit_group object.
2341
2342 This is intended for loops like:
2343
2344 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2345 + dwarf2_per_objfile->n_type_unit_groups); ++i)
2346 {
2347 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
2348
2349 ...;
2350 }
2351 */
2352
2353 static struct dwarf2_per_cu_data *
2354 dw2_get_primary_cu (int index)
2355 {
2356 if (index >= dwarf2_per_objfile->n_comp_units)
2357 {
2358 index -= dwarf2_per_objfile->n_comp_units;
2359 gdb_assert (index < dwarf2_per_objfile->n_type_unit_groups);
2360 return &dwarf2_per_objfile->all_type_unit_groups[index]->per_cu;
2361 }
2362
2363 return dwarf2_per_objfile->all_comp_units[index];
2364 }
2365
2366 /* A helper for create_cus_from_index that handles a given list of
2367 CUs. */
2368
2369 static void
2370 create_cus_from_index_list (struct objfile *objfile,
2371 const gdb_byte *cu_list, offset_type n_elements,
2372 struct dwarf2_section_info *section,
2373 int is_dwz,
2374 int base_offset)
2375 {
2376 offset_type i;
2377
2378 for (i = 0; i < n_elements; i += 2)
2379 {
2380 struct dwarf2_per_cu_data *the_cu;
2381 ULONGEST offset, length;
2382
2383 gdb_static_assert (sizeof (ULONGEST) >= 8);
2384 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2385 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2386 cu_list += 2 * 8;
2387
2388 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2389 struct dwarf2_per_cu_data);
2390 the_cu->offset.sect_off = offset;
2391 the_cu->length = length;
2392 the_cu->objfile = objfile;
2393 the_cu->info_or_types_section = section;
2394 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2395 struct dwarf2_per_cu_quick_data);
2396 the_cu->is_dwz = is_dwz;
2397 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
2398 }
2399 }
2400
2401 /* Read the CU list from the mapped index, and use it to create all
2402 the CU objects for this objfile. */
2403
2404 static void
2405 create_cus_from_index (struct objfile *objfile,
2406 const gdb_byte *cu_list, offset_type cu_list_elements,
2407 const gdb_byte *dwz_list, offset_type dwz_elements)
2408 {
2409 struct dwz_file *dwz;
2410
2411 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2412 dwarf2_per_objfile->all_comp_units
2413 = obstack_alloc (&objfile->objfile_obstack,
2414 dwarf2_per_objfile->n_comp_units
2415 * sizeof (struct dwarf2_per_cu_data *));
2416
2417 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2418 &dwarf2_per_objfile->info, 0, 0);
2419
2420 if (dwz_elements == 0)
2421 return;
2422
2423 dwz = dwarf2_get_dwz_file ();
2424 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2425 cu_list_elements / 2);
2426 }
2427
2428 /* Create the signatured type hash table from the index. */
2429
2430 static void
2431 create_signatured_type_table_from_index (struct objfile *objfile,
2432 struct dwarf2_section_info *section,
2433 const gdb_byte *bytes,
2434 offset_type elements)
2435 {
2436 offset_type i;
2437 htab_t sig_types_hash;
2438
2439 dwarf2_per_objfile->n_type_units = elements / 3;
2440 dwarf2_per_objfile->all_type_units
2441 = obstack_alloc (&objfile->objfile_obstack,
2442 dwarf2_per_objfile->n_type_units
2443 * sizeof (struct signatured_type *));
2444
2445 sig_types_hash = allocate_signatured_type_table (objfile);
2446
2447 for (i = 0; i < elements; i += 3)
2448 {
2449 struct signatured_type *sig_type;
2450 ULONGEST offset, type_offset_in_tu, signature;
2451 void **slot;
2452
2453 gdb_static_assert (sizeof (ULONGEST) >= 8);
2454 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2455 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2456 BFD_ENDIAN_LITTLE);
2457 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2458 bytes += 3 * 8;
2459
2460 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2461 struct signatured_type);
2462 sig_type->signature = signature;
2463 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2464 sig_type->per_cu.is_debug_types = 1;
2465 sig_type->per_cu.info_or_types_section = section;
2466 sig_type->per_cu.offset.sect_off = offset;
2467 sig_type->per_cu.objfile = objfile;
2468 sig_type->per_cu.v.quick
2469 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2470 struct dwarf2_per_cu_quick_data);
2471
2472 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2473 *slot = sig_type;
2474
2475 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
2476 }
2477
2478 dwarf2_per_objfile->signatured_types = sig_types_hash;
2479 }
2480
2481 /* Read the address map data from the mapped index, and use it to
2482 populate the objfile's psymtabs_addrmap. */
2483
2484 static void
2485 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2486 {
2487 const gdb_byte *iter, *end;
2488 struct obstack temp_obstack;
2489 struct addrmap *mutable_map;
2490 struct cleanup *cleanup;
2491 CORE_ADDR baseaddr;
2492
2493 obstack_init (&temp_obstack);
2494 cleanup = make_cleanup_obstack_free (&temp_obstack);
2495 mutable_map = addrmap_create_mutable (&temp_obstack);
2496
2497 iter = index->address_table;
2498 end = iter + index->address_table_size;
2499
2500 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2501
2502 while (iter < end)
2503 {
2504 ULONGEST hi, lo, cu_index;
2505 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2506 iter += 8;
2507 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2508 iter += 8;
2509 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2510 iter += 4;
2511
2512 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
2513 dw2_get_cu (cu_index));
2514 }
2515
2516 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2517 &objfile->objfile_obstack);
2518 do_cleanups (cleanup);
2519 }
2520
2521 /* The hash function for strings in the mapped index. This is the same as
2522 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2523 implementation. This is necessary because the hash function is tied to the
2524 format of the mapped index file. The hash values do not have to match with
2525 SYMBOL_HASH_NEXT.
2526
2527 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2528
2529 static hashval_t
2530 mapped_index_string_hash (int index_version, const void *p)
2531 {
2532 const unsigned char *str = (const unsigned char *) p;
2533 hashval_t r = 0;
2534 unsigned char c;
2535
2536 while ((c = *str++) != 0)
2537 {
2538 if (index_version >= 5)
2539 c = tolower (c);
2540 r = r * 67 + c - 113;
2541 }
2542
2543 return r;
2544 }
2545
2546 /* Find a slot in the mapped index INDEX for the object named NAME.
2547 If NAME is found, set *VEC_OUT to point to the CU vector in the
2548 constant pool and return 1. If NAME cannot be found, return 0. */
2549
2550 static int
2551 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2552 offset_type **vec_out)
2553 {
2554 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2555 offset_type hash;
2556 offset_type slot, step;
2557 int (*cmp) (const char *, const char *);
2558
2559 if (current_language->la_language == language_cplus
2560 || current_language->la_language == language_java
2561 || current_language->la_language == language_fortran)
2562 {
2563 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2564 not contain any. */
2565 const char *paren = strchr (name, '(');
2566
2567 if (paren)
2568 {
2569 char *dup;
2570
2571 dup = xmalloc (paren - name + 1);
2572 memcpy (dup, name, paren - name);
2573 dup[paren - name] = 0;
2574
2575 make_cleanup (xfree, dup);
2576 name = dup;
2577 }
2578 }
2579
2580 /* Index version 4 did not support case insensitive searches. But the
2581 indices for case insensitive languages are built in lowercase, therefore
2582 simulate our NAME being searched is also lowercased. */
2583 hash = mapped_index_string_hash ((index->version == 4
2584 && case_sensitivity == case_sensitive_off
2585 ? 5 : index->version),
2586 name);
2587
2588 slot = hash & (index->symbol_table_slots - 1);
2589 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
2590 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
2591
2592 for (;;)
2593 {
2594 /* Convert a slot number to an offset into the table. */
2595 offset_type i = 2 * slot;
2596 const char *str;
2597 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
2598 {
2599 do_cleanups (back_to);
2600 return 0;
2601 }
2602
2603 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
2604 if (!cmp (name, str))
2605 {
2606 *vec_out = (offset_type *) (index->constant_pool
2607 + MAYBE_SWAP (index->symbol_table[i + 1]));
2608 do_cleanups (back_to);
2609 return 1;
2610 }
2611
2612 slot = (slot + step) & (index->symbol_table_slots - 1);
2613 }
2614 }
2615
2616 /* A helper function that reads the .gdb_index from SECTION and fills
2617 in MAP. FILENAME is the name of the file containing the section;
2618 it is used for error reporting. DEPRECATED_OK is nonzero if it is
2619 ok to use deprecated sections.
2620
2621 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
2622 out parameters that are filled in with information about the CU and
2623 TU lists in the section.
2624
2625 Returns 1 if all went well, 0 otherwise. */
2626
2627 static int
2628 read_index_from_section (struct objfile *objfile,
2629 const char *filename,
2630 int deprecated_ok,
2631 struct dwarf2_section_info *section,
2632 struct mapped_index *map,
2633 const gdb_byte **cu_list,
2634 offset_type *cu_list_elements,
2635 const gdb_byte **types_list,
2636 offset_type *types_list_elements)
2637 {
2638 char *addr;
2639 offset_type version;
2640 offset_type *metadata;
2641 int i;
2642
2643 if (dwarf2_section_empty_p (section))
2644 return 0;
2645
2646 /* Older elfutils strip versions could keep the section in the main
2647 executable while splitting it for the separate debug info file. */
2648 if ((bfd_get_file_flags (section->asection) & SEC_HAS_CONTENTS) == 0)
2649 return 0;
2650
2651 dwarf2_read_section (objfile, section);
2652
2653 addr = section->buffer;
2654 /* Version check. */
2655 version = MAYBE_SWAP (*(offset_type *) addr);
2656 /* Versions earlier than 3 emitted every copy of a psymbol. This
2657 causes the index to behave very poorly for certain requests. Version 3
2658 contained incomplete addrmap. So, it seems better to just ignore such
2659 indices. */
2660 if (version < 4)
2661 {
2662 static int warning_printed = 0;
2663 if (!warning_printed)
2664 {
2665 warning (_("Skipping obsolete .gdb_index section in %s."),
2666 filename);
2667 warning_printed = 1;
2668 }
2669 return 0;
2670 }
2671 /* Index version 4 uses a different hash function than index version
2672 5 and later.
2673
2674 Versions earlier than 6 did not emit psymbols for inlined
2675 functions. Using these files will cause GDB not to be able to
2676 set breakpoints on inlined functions by name, so we ignore these
2677 indices unless the user has done
2678 "set use-deprecated-index-sections on". */
2679 if (version < 6 && !deprecated_ok)
2680 {
2681 static int warning_printed = 0;
2682 if (!warning_printed)
2683 {
2684 warning (_("\
2685 Skipping deprecated .gdb_index section in %s.\n\
2686 Do \"set use-deprecated-index-sections on\" before the file is read\n\
2687 to use the section anyway."),
2688 filename);
2689 warning_printed = 1;
2690 }
2691 return 0;
2692 }
2693 /* Indexes with higher version than the one supported by GDB may be no
2694 longer backward compatible. */
2695 if (version > 7)
2696 return 0;
2697
2698 map->version = version;
2699 map->total_size = section->size;
2700
2701 metadata = (offset_type *) (addr + sizeof (offset_type));
2702
2703 i = 0;
2704 *cu_list = addr + MAYBE_SWAP (metadata[i]);
2705 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
2706 / 8);
2707 ++i;
2708
2709 *types_list = addr + MAYBE_SWAP (metadata[i]);
2710 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
2711 - MAYBE_SWAP (metadata[i]))
2712 / 8);
2713 ++i;
2714
2715 map->address_table = addr + MAYBE_SWAP (metadata[i]);
2716 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
2717 - MAYBE_SWAP (metadata[i]));
2718 ++i;
2719
2720 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
2721 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
2722 - MAYBE_SWAP (metadata[i]))
2723 / (2 * sizeof (offset_type)));
2724 ++i;
2725
2726 map->constant_pool = addr + MAYBE_SWAP (metadata[i]);
2727
2728 return 1;
2729 }
2730
2731
2732 /* Read the index file. If everything went ok, initialize the "quick"
2733 elements of all the CUs and return 1. Otherwise, return 0. */
2734
2735 static int
2736 dwarf2_read_index (struct objfile *objfile)
2737 {
2738 struct mapped_index local_map, *map;
2739 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
2740 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
2741
2742 if (!read_index_from_section (objfile, objfile->name,
2743 use_deprecated_index_sections,
2744 &dwarf2_per_objfile->gdb_index, &local_map,
2745 &cu_list, &cu_list_elements,
2746 &types_list, &types_list_elements))
2747 return 0;
2748
2749 /* Don't use the index if it's empty. */
2750 if (local_map.symbol_table_slots == 0)
2751 return 0;
2752
2753 /* If there is a .dwz file, read it so we can get its CU list as
2754 well. */
2755 if (bfd_get_section_by_name (objfile->obfd, ".gnu_debugaltlink") != NULL)
2756 {
2757 struct dwz_file *dwz = dwarf2_get_dwz_file ();
2758 struct mapped_index dwz_map;
2759 const gdb_byte *dwz_types_ignore;
2760 offset_type dwz_types_elements_ignore;
2761
2762 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
2763 1,
2764 &dwz->gdb_index, &dwz_map,
2765 &dwz_list, &dwz_list_elements,
2766 &dwz_types_ignore,
2767 &dwz_types_elements_ignore))
2768 {
2769 warning (_("could not read '.gdb_index' section from %s; skipping"),
2770 bfd_get_filename (dwz->dwz_bfd));
2771 return 0;
2772 }
2773 }
2774
2775 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
2776 dwz_list_elements);
2777
2778 if (types_list_elements)
2779 {
2780 struct dwarf2_section_info *section;
2781
2782 /* We can only handle a single .debug_types when we have an
2783 index. */
2784 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
2785 return 0;
2786
2787 section = VEC_index (dwarf2_section_info_def,
2788 dwarf2_per_objfile->types, 0);
2789
2790 create_signatured_type_table_from_index (objfile, section, types_list,
2791 types_list_elements);
2792 }
2793
2794 create_addrmap_from_index (objfile, &local_map);
2795
2796 map = obstack_alloc (&objfile->objfile_obstack, sizeof (struct mapped_index));
2797 *map = local_map;
2798
2799 dwarf2_per_objfile->index_table = map;
2800 dwarf2_per_objfile->using_index = 1;
2801 dwarf2_per_objfile->quick_file_names_table =
2802 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
2803
2804 return 1;
2805 }
2806
2807 /* A helper for the "quick" functions which sets the global
2808 dwarf2_per_objfile according to OBJFILE. */
2809
2810 static void
2811 dw2_setup (struct objfile *objfile)
2812 {
2813 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
2814 gdb_assert (dwarf2_per_objfile);
2815 }
2816
2817 /* Reader function for dw2_build_type_unit_groups. */
2818
2819 static void
2820 dw2_build_type_unit_groups_reader (const struct die_reader_specs *reader,
2821 gdb_byte *info_ptr,
2822 struct die_info *type_unit_die,
2823 int has_children,
2824 void *data)
2825 {
2826 struct dwarf2_cu *cu = reader->cu;
2827 struct attribute *attr;
2828 struct type_unit_group *tu_group;
2829
2830 gdb_assert (data == NULL);
2831
2832 if (! has_children)
2833 return;
2834
2835 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
2836 /* Call this for its side-effect of creating the associated
2837 struct type_unit_group if it doesn't already exist. */
2838 tu_group = get_type_unit_group (cu, attr);
2839 }
2840
2841 /* Build dwarf2_per_objfile->type_unit_groups.
2842 This function may be called multiple times. */
2843
2844 static void
2845 dw2_build_type_unit_groups (void)
2846 {
2847 if (dwarf2_per_objfile->type_unit_groups == NULL)
2848 build_type_unit_groups (dw2_build_type_unit_groups_reader, NULL);
2849 }
2850
2851 /* die_reader_func for dw2_get_file_names. */
2852
2853 static void
2854 dw2_get_file_names_reader (const struct die_reader_specs *reader,
2855 gdb_byte *info_ptr,
2856 struct die_info *comp_unit_die,
2857 int has_children,
2858 void *data)
2859 {
2860 struct dwarf2_cu *cu = reader->cu;
2861 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
2862 struct objfile *objfile = dwarf2_per_objfile->objfile;
2863 struct dwarf2_per_cu_data *lh_cu;
2864 struct line_header *lh;
2865 struct attribute *attr;
2866 int i;
2867 char *name, *comp_dir;
2868 void **slot;
2869 struct quick_file_names *qfn;
2870 unsigned int line_offset;
2871
2872 /* Our callers never want to match partial units -- instead they
2873 will match the enclosing full CU. */
2874 if (comp_unit_die->tag == DW_TAG_partial_unit)
2875 {
2876 this_cu->v.quick->no_file_data = 1;
2877 return;
2878 }
2879
2880 /* If we're reading the line header for TUs, store it in the "per_cu"
2881 for tu_group. */
2882 if (this_cu->is_debug_types)
2883 {
2884 struct type_unit_group *tu_group = data;
2885
2886 gdb_assert (tu_group != NULL);
2887 lh_cu = &tu_group->per_cu;
2888 }
2889 else
2890 lh_cu = this_cu;
2891
2892 lh = NULL;
2893 slot = NULL;
2894 line_offset = 0;
2895
2896 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
2897 if (attr)
2898 {
2899 struct quick_file_names find_entry;
2900
2901 line_offset = DW_UNSND (attr);
2902
2903 /* We may have already read in this line header (TU line header sharing).
2904 If we have we're done. */
2905 find_entry.hash.dwo_unit = cu->dwo_unit;
2906 find_entry.hash.line_offset.sect_off = line_offset;
2907 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
2908 &find_entry, INSERT);
2909 if (*slot != NULL)
2910 {
2911 lh_cu->v.quick->file_names = *slot;
2912 return;
2913 }
2914
2915 lh = dwarf_decode_line_header (line_offset, cu);
2916 }
2917 if (lh == NULL)
2918 {
2919 lh_cu->v.quick->no_file_data = 1;
2920 return;
2921 }
2922
2923 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
2924 qfn->hash.dwo_unit = cu->dwo_unit;
2925 qfn->hash.line_offset.sect_off = line_offset;
2926 gdb_assert (slot != NULL);
2927 *slot = qfn;
2928
2929 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
2930
2931 qfn->num_file_names = lh->num_file_names;
2932 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
2933 lh->num_file_names * sizeof (char *));
2934 for (i = 0; i < lh->num_file_names; ++i)
2935 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
2936 qfn->real_names = NULL;
2937
2938 free_line_header (lh);
2939
2940 lh_cu->v.quick->file_names = qfn;
2941 }
2942
2943 /* A helper for the "quick" functions which attempts to read the line
2944 table for THIS_CU. */
2945
2946 static struct quick_file_names *
2947 dw2_get_file_names (struct objfile *objfile,
2948 struct dwarf2_per_cu_data *this_cu)
2949 {
2950 /* For TUs this should only be called on the parent group. */
2951 if (this_cu->is_debug_types)
2952 gdb_assert (IS_TYPE_UNIT_GROUP (this_cu));
2953
2954 if (this_cu->v.quick->file_names != NULL)
2955 return this_cu->v.quick->file_names;
2956 /* If we know there is no line data, no point in looking again. */
2957 if (this_cu->v.quick->no_file_data)
2958 return NULL;
2959
2960 /* If DWO files are in use, we can still find the DW_AT_stmt_list attribute
2961 in the stub for CUs, there's is no need to lookup the DWO file.
2962 However, that's not the case for TUs where DW_AT_stmt_list lives in the
2963 DWO file. */
2964 if (this_cu->is_debug_types)
2965 {
2966 struct type_unit_group *tu_group = this_cu->s.type_unit_group;
2967
2968 init_cutu_and_read_dies (tu_group->t.first_tu, NULL, 0, 0,
2969 dw2_get_file_names_reader, tu_group);
2970 }
2971 else
2972 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
2973
2974 if (this_cu->v.quick->no_file_data)
2975 return NULL;
2976 return this_cu->v.quick->file_names;
2977 }
2978
2979 /* A helper for the "quick" functions which computes and caches the
2980 real path for a given file name from the line table. */
2981
2982 static const char *
2983 dw2_get_real_path (struct objfile *objfile,
2984 struct quick_file_names *qfn, int index)
2985 {
2986 if (qfn->real_names == NULL)
2987 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
2988 qfn->num_file_names, sizeof (char *));
2989
2990 if (qfn->real_names[index] == NULL)
2991 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
2992
2993 return qfn->real_names[index];
2994 }
2995
2996 static struct symtab *
2997 dw2_find_last_source_symtab (struct objfile *objfile)
2998 {
2999 int index;
3000
3001 dw2_setup (objfile);
3002 index = dwarf2_per_objfile->n_comp_units - 1;
3003 return dw2_instantiate_symtab (dw2_get_cu (index));
3004 }
3005
3006 /* Traversal function for dw2_forget_cached_source_info. */
3007
3008 static int
3009 dw2_free_cached_file_names (void **slot, void *info)
3010 {
3011 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3012
3013 if (file_data->real_names)
3014 {
3015 int i;
3016
3017 for (i = 0; i < file_data->num_file_names; ++i)
3018 {
3019 xfree ((void*) file_data->real_names[i]);
3020 file_data->real_names[i] = NULL;
3021 }
3022 }
3023
3024 return 1;
3025 }
3026
3027 static void
3028 dw2_forget_cached_source_info (struct objfile *objfile)
3029 {
3030 dw2_setup (objfile);
3031
3032 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3033 dw2_free_cached_file_names, NULL);
3034 }
3035
3036 /* Helper function for dw2_map_symtabs_matching_filename that expands
3037 the symtabs and calls the iterator. */
3038
3039 static int
3040 dw2_map_expand_apply (struct objfile *objfile,
3041 struct dwarf2_per_cu_data *per_cu,
3042 const char *name,
3043 const char *full_path, const char *real_path,
3044 int (*callback) (struct symtab *, void *),
3045 void *data)
3046 {
3047 struct symtab *last_made = objfile->symtabs;
3048
3049 /* Don't visit already-expanded CUs. */
3050 if (per_cu->v.quick->symtab)
3051 return 0;
3052
3053 /* This may expand more than one symtab, and we want to iterate over
3054 all of them. */
3055 dw2_instantiate_symtab (per_cu);
3056
3057 return iterate_over_some_symtabs (name, full_path, real_path, callback, data,
3058 objfile->symtabs, last_made);
3059 }
3060
3061 /* Implementation of the map_symtabs_matching_filename method. */
3062
3063 static int
3064 dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
3065 const char *full_path, const char *real_path,
3066 int (*callback) (struct symtab *, void *),
3067 void *data)
3068 {
3069 int i;
3070 const char *name_basename = lbasename (name);
3071 int is_abs = IS_ABSOLUTE_PATH (name);
3072
3073 dw2_setup (objfile);
3074
3075 dw2_build_type_unit_groups ();
3076
3077 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3078 + dwarf2_per_objfile->n_type_unit_groups); ++i)
3079 {
3080 int j;
3081 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3082 struct quick_file_names *file_data;
3083
3084 /* We only need to look at symtabs not already expanded. */
3085 if (per_cu->v.quick->symtab)
3086 continue;
3087
3088 file_data = dw2_get_file_names (objfile, per_cu);
3089 if (file_data == NULL)
3090 continue;
3091
3092 for (j = 0; j < file_data->num_file_names; ++j)
3093 {
3094 const char *this_name = file_data->file_names[j];
3095
3096 if (FILENAME_CMP (name, this_name) == 0
3097 || (!is_abs && compare_filenames_for_search (this_name, name)))
3098 {
3099 if (dw2_map_expand_apply (objfile, per_cu,
3100 name, full_path, real_path,
3101 callback, data))
3102 return 1;
3103 }
3104
3105 /* Before we invoke realpath, which can get expensive when many
3106 files are involved, do a quick comparison of the basenames. */
3107 if (! basenames_may_differ
3108 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3109 continue;
3110
3111 if (full_path != NULL)
3112 {
3113 const char *this_real_name = dw2_get_real_path (objfile,
3114 file_data, j);
3115
3116 if (this_real_name != NULL
3117 && (FILENAME_CMP (full_path, this_real_name) == 0
3118 || (!is_abs
3119 && compare_filenames_for_search (this_real_name,
3120 name))))
3121 {
3122 if (dw2_map_expand_apply (objfile, per_cu,
3123 name, full_path, real_path,
3124 callback, data))
3125 return 1;
3126 }
3127 }
3128
3129 if (real_path != NULL)
3130 {
3131 const char *this_real_name = dw2_get_real_path (objfile,
3132 file_data, j);
3133
3134 if (this_real_name != NULL
3135 && (FILENAME_CMP (real_path, this_real_name) == 0
3136 || (!is_abs
3137 && compare_filenames_for_search (this_real_name,
3138 name))))
3139 {
3140 if (dw2_map_expand_apply (objfile, per_cu,
3141 name, full_path, real_path,
3142 callback, data))
3143 return 1;
3144 }
3145 }
3146 }
3147 }
3148
3149 return 0;
3150 }
3151
3152 static struct symtab *
3153 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3154 const char *name, domain_enum domain)
3155 {
3156 /* We do all the work in the pre_expand_symtabs_matching hook
3157 instead. */
3158 return NULL;
3159 }
3160
3161 /* A helper function that expands all symtabs that hold an object
3162 named NAME. If WANT_SPECIFIC_BLOCK is non-zero, only look for
3163 symbols in block BLOCK_KIND. */
3164
3165 static void
3166 dw2_do_expand_symtabs_matching (struct objfile *objfile,
3167 int want_specific_block,
3168 enum block_enum block_kind,
3169 const char *name, domain_enum domain)
3170 {
3171 struct mapped_index *index;
3172
3173 dw2_setup (objfile);
3174
3175 index = dwarf2_per_objfile->index_table;
3176
3177 /* index_table is NULL if OBJF_READNOW. */
3178 if (index)
3179 {
3180 offset_type *vec;
3181
3182 if (find_slot_in_mapped_hash (index, name, &vec))
3183 {
3184 offset_type i, len = MAYBE_SWAP (*vec);
3185 for (i = 0; i < len; ++i)
3186 {
3187 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[i + 1]);
3188 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3189 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (cu_index);
3190 int want_static = block_kind != GLOBAL_BLOCK;
3191 /* This value is only valid for index versions >= 7. */
3192 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3193 gdb_index_symbol_kind symbol_kind =
3194 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3195 /* Only check the symbol attributes if they're present.
3196 Indices prior to version 7 don't record them,
3197 and indices >= 7 may elide them for certain symbols
3198 (gold does this). */
3199 int attrs_valid =
3200 (index->version >= 7
3201 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3202
3203 if (attrs_valid
3204 && want_specific_block
3205 && want_static != is_static)
3206 continue;
3207
3208 /* Only check the symbol's kind if it has one. */
3209 if (attrs_valid)
3210 {
3211 switch (domain)
3212 {
3213 case VAR_DOMAIN:
3214 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3215 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3216 /* Some types are also in VAR_DOMAIN. */
3217 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3218 continue;
3219 break;
3220 case STRUCT_DOMAIN:
3221 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3222 continue;
3223 break;
3224 case LABEL_DOMAIN:
3225 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3226 continue;
3227 break;
3228 default:
3229 break;
3230 }
3231 }
3232
3233 dw2_instantiate_symtab (per_cu);
3234 }
3235 }
3236 }
3237 }
3238
3239 static void
3240 dw2_pre_expand_symtabs_matching (struct objfile *objfile,
3241 enum block_enum block_kind, const char *name,
3242 domain_enum domain)
3243 {
3244 dw2_do_expand_symtabs_matching (objfile, 1, block_kind, name, domain);
3245 }
3246
3247 static void
3248 dw2_print_stats (struct objfile *objfile)
3249 {
3250 int i, count;
3251
3252 dw2_setup (objfile);
3253 count = 0;
3254 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3255 + dwarf2_per_objfile->n_type_units); ++i)
3256 {
3257 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3258
3259 if (!per_cu->v.quick->symtab)
3260 ++count;
3261 }
3262 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3263 }
3264
3265 static void
3266 dw2_dump (struct objfile *objfile)
3267 {
3268 /* Nothing worth printing. */
3269 }
3270
3271 static void
3272 dw2_relocate (struct objfile *objfile, struct section_offsets *new_offsets,
3273 struct section_offsets *delta)
3274 {
3275 /* There's nothing to relocate here. */
3276 }
3277
3278 static void
3279 dw2_expand_symtabs_for_function (struct objfile *objfile,
3280 const char *func_name)
3281 {
3282 /* Note: It doesn't matter what we pass for block_kind here. */
3283 dw2_do_expand_symtabs_matching (objfile, 0, GLOBAL_BLOCK, func_name,
3284 VAR_DOMAIN);
3285 }
3286
3287 static void
3288 dw2_expand_all_symtabs (struct objfile *objfile)
3289 {
3290 int i;
3291
3292 dw2_setup (objfile);
3293
3294 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3295 + dwarf2_per_objfile->n_type_units); ++i)
3296 {
3297 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3298
3299 dw2_instantiate_symtab (per_cu);
3300 }
3301 }
3302
3303 static void
3304 dw2_expand_symtabs_with_filename (struct objfile *objfile,
3305 const char *filename)
3306 {
3307 int i;
3308
3309 dw2_setup (objfile);
3310
3311 /* We don't need to consider type units here.
3312 This is only called for examining code, e.g. expand_line_sal.
3313 There can be an order of magnitude (or more) more type units
3314 than comp units, and we avoid them if we can. */
3315
3316 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3317 {
3318 int j;
3319 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3320 struct quick_file_names *file_data;
3321
3322 /* We only need to look at symtabs not already expanded. */
3323 if (per_cu->v.quick->symtab)
3324 continue;
3325
3326 file_data = dw2_get_file_names (objfile, per_cu);
3327 if (file_data == NULL)
3328 continue;
3329
3330 for (j = 0; j < file_data->num_file_names; ++j)
3331 {
3332 const char *this_name = file_data->file_names[j];
3333 if (FILENAME_CMP (this_name, filename) == 0)
3334 {
3335 dw2_instantiate_symtab (per_cu);
3336 break;
3337 }
3338 }
3339 }
3340 }
3341
3342 /* A helper function for dw2_find_symbol_file that finds the primary
3343 file name for a given CU. This is a die_reader_func. */
3344
3345 static void
3346 dw2_get_primary_filename_reader (const struct die_reader_specs *reader,
3347 gdb_byte *info_ptr,
3348 struct die_info *comp_unit_die,
3349 int has_children,
3350 void *data)
3351 {
3352 const char **result_ptr = data;
3353 struct dwarf2_cu *cu = reader->cu;
3354 struct attribute *attr;
3355
3356 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
3357 if (attr == NULL)
3358 *result_ptr = NULL;
3359 else
3360 *result_ptr = DW_STRING (attr);
3361 }
3362
3363 static const char *
3364 dw2_find_symbol_file (struct objfile *objfile, const char *name)
3365 {
3366 struct dwarf2_per_cu_data *per_cu;
3367 offset_type *vec;
3368 const char *filename;
3369
3370 dw2_setup (objfile);
3371
3372 /* index_table is NULL if OBJF_READNOW. */
3373 if (!dwarf2_per_objfile->index_table)
3374 {
3375 struct symtab *s;
3376
3377 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
3378 {
3379 struct blockvector *bv = BLOCKVECTOR (s);
3380 const struct block *block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
3381 struct symbol *sym = lookup_block_symbol (block, name, VAR_DOMAIN);
3382
3383 if (sym)
3384 return SYMBOL_SYMTAB (sym)->filename;
3385 }
3386 return NULL;
3387 }
3388
3389 if (!find_slot_in_mapped_hash (dwarf2_per_objfile->index_table,
3390 name, &vec))
3391 return NULL;
3392
3393 /* Note that this just looks at the very first one named NAME -- but
3394 actually we are looking for a function. find_main_filename
3395 should be rewritten so that it doesn't require a custom hook. It
3396 could just use the ordinary symbol tables. */
3397 /* vec[0] is the length, which must always be >0. */
3398 per_cu = dw2_get_cu (GDB_INDEX_CU_VALUE (MAYBE_SWAP (vec[1])));
3399
3400 if (per_cu->v.quick->symtab != NULL)
3401 return per_cu->v.quick->symtab->filename;
3402
3403 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
3404 dw2_get_primary_filename_reader, &filename);
3405
3406 return filename;
3407 }
3408
3409 static void
3410 dw2_map_matching_symbols (const char * name, domain_enum namespace,
3411 struct objfile *objfile, int global,
3412 int (*callback) (struct block *,
3413 struct symbol *, void *),
3414 void *data, symbol_compare_ftype *match,
3415 symbol_compare_ftype *ordered_compare)
3416 {
3417 /* Currently unimplemented; used for Ada. The function can be called if the
3418 current language is Ada for a non-Ada objfile using GNU index. As Ada
3419 does not look for non-Ada symbols this function should just return. */
3420 }
3421
3422 static void
3423 dw2_expand_symtabs_matching
3424 (struct objfile *objfile,
3425 int (*file_matcher) (const char *, void *),
3426 int (*name_matcher) (const char *, void *),
3427 enum search_domain kind,
3428 void *data)
3429 {
3430 int i;
3431 offset_type iter;
3432 struct mapped_index *index;
3433
3434 dw2_setup (objfile);
3435
3436 /* index_table is NULL if OBJF_READNOW. */
3437 if (!dwarf2_per_objfile->index_table)
3438 return;
3439 index = dwarf2_per_objfile->index_table;
3440
3441 if (file_matcher != NULL)
3442 {
3443 struct cleanup *cleanup;
3444 htab_t visited_found, visited_not_found;
3445
3446 dw2_build_type_unit_groups ();
3447
3448 visited_found = htab_create_alloc (10,
3449 htab_hash_pointer, htab_eq_pointer,
3450 NULL, xcalloc, xfree);
3451 cleanup = make_cleanup_htab_delete (visited_found);
3452 visited_not_found = htab_create_alloc (10,
3453 htab_hash_pointer, htab_eq_pointer,
3454 NULL, xcalloc, xfree);
3455 make_cleanup_htab_delete (visited_not_found);
3456
3457 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3458 + dwarf2_per_objfile->n_type_unit_groups); ++i)
3459 {
3460 int j;
3461 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3462 struct quick_file_names *file_data;
3463 void **slot;
3464
3465 per_cu->v.quick->mark = 0;
3466
3467 /* We only need to look at symtabs not already expanded. */
3468 if (per_cu->v.quick->symtab)
3469 continue;
3470
3471 file_data = dw2_get_file_names (objfile, per_cu);
3472 if (file_data == NULL)
3473 continue;
3474
3475 if (htab_find (visited_not_found, file_data) != NULL)
3476 continue;
3477 else if (htab_find (visited_found, file_data) != NULL)
3478 {
3479 per_cu->v.quick->mark = 1;
3480 continue;
3481 }
3482
3483 for (j = 0; j < file_data->num_file_names; ++j)
3484 {
3485 if (file_matcher (file_data->file_names[j], data))
3486 {
3487 per_cu->v.quick->mark = 1;
3488 break;
3489 }
3490 }
3491
3492 slot = htab_find_slot (per_cu->v.quick->mark
3493 ? visited_found
3494 : visited_not_found,
3495 file_data, INSERT);
3496 *slot = file_data;
3497 }
3498
3499 do_cleanups (cleanup);
3500 }
3501
3502 for (iter = 0; iter < index->symbol_table_slots; ++iter)
3503 {
3504 offset_type idx = 2 * iter;
3505 const char *name;
3506 offset_type *vec, vec_len, vec_idx;
3507
3508 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
3509 continue;
3510
3511 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
3512
3513 if (! (*name_matcher) (name, data))
3514 continue;
3515
3516 /* The name was matched, now expand corresponding CUs that were
3517 marked. */
3518 vec = (offset_type *) (index->constant_pool
3519 + MAYBE_SWAP (index->symbol_table[idx + 1]));
3520 vec_len = MAYBE_SWAP (vec[0]);
3521 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3522 {
3523 struct dwarf2_per_cu_data *per_cu;
3524 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
3525 gdb_index_symbol_kind symbol_kind =
3526 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3527 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3528
3529 /* Don't crash on bad data. */
3530 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3531 + dwarf2_per_objfile->n_type_units))
3532 continue;
3533
3534 /* Only check the symbol's kind if it has one.
3535 Indices prior to version 7 don't record it. */
3536 if (index->version >= 7)
3537 {
3538 switch (kind)
3539 {
3540 case VARIABLES_DOMAIN:
3541 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
3542 continue;
3543 break;
3544 case FUNCTIONS_DOMAIN:
3545 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
3546 continue;
3547 break;
3548 case TYPES_DOMAIN:
3549 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3550 continue;
3551 break;
3552 default:
3553 break;
3554 }
3555 }
3556
3557 per_cu = dw2_get_cu (cu_index);
3558 if (file_matcher == NULL || per_cu->v.quick->mark)
3559 dw2_instantiate_symtab (per_cu);
3560 }
3561 }
3562 }
3563
3564 /* A helper for dw2_find_pc_sect_symtab which finds the most specific
3565 symtab. */
3566
3567 static struct symtab *
3568 recursively_find_pc_sect_symtab (struct symtab *symtab, CORE_ADDR pc)
3569 {
3570 int i;
3571
3572 if (BLOCKVECTOR (symtab) != NULL
3573 && blockvector_contains_pc (BLOCKVECTOR (symtab), pc))
3574 return symtab;
3575
3576 if (symtab->includes == NULL)
3577 return NULL;
3578
3579 for (i = 0; symtab->includes[i]; ++i)
3580 {
3581 struct symtab *s = symtab->includes[i];
3582
3583 s = recursively_find_pc_sect_symtab (s, pc);
3584 if (s != NULL)
3585 return s;
3586 }
3587
3588 return NULL;
3589 }
3590
3591 static struct symtab *
3592 dw2_find_pc_sect_symtab (struct objfile *objfile,
3593 struct minimal_symbol *msymbol,
3594 CORE_ADDR pc,
3595 struct obj_section *section,
3596 int warn_if_readin)
3597 {
3598 struct dwarf2_per_cu_data *data;
3599 struct symtab *result;
3600
3601 dw2_setup (objfile);
3602
3603 if (!objfile->psymtabs_addrmap)
3604 return NULL;
3605
3606 data = addrmap_find (objfile->psymtabs_addrmap, pc);
3607 if (!data)
3608 return NULL;
3609
3610 if (warn_if_readin && data->v.quick->symtab)
3611 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
3612 paddress (get_objfile_arch (objfile), pc));
3613
3614 result = recursively_find_pc_sect_symtab (dw2_instantiate_symtab (data), pc);
3615 gdb_assert (result != NULL);
3616 return result;
3617 }
3618
3619 static void
3620 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
3621 void *data, int need_fullname)
3622 {
3623 int i;
3624 struct cleanup *cleanup;
3625 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
3626 NULL, xcalloc, xfree);
3627
3628 cleanup = make_cleanup_htab_delete (visited);
3629 dw2_setup (objfile);
3630
3631 dw2_build_type_unit_groups ();
3632
3633 /* We can ignore file names coming from already-expanded CUs. */
3634 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3635 + dwarf2_per_objfile->n_type_units); ++i)
3636 {
3637 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3638
3639 if (per_cu->v.quick->symtab)
3640 {
3641 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
3642 INSERT);
3643
3644 *slot = per_cu->v.quick->file_names;
3645 }
3646 }
3647
3648 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3649 + dwarf2_per_objfile->n_type_unit_groups); ++i)
3650 {
3651 int j;
3652 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3653 struct quick_file_names *file_data;
3654 void **slot;
3655
3656 /* We only need to look at symtabs not already expanded. */
3657 if (per_cu->v.quick->symtab)
3658 continue;
3659
3660 file_data = dw2_get_file_names (objfile, per_cu);
3661 if (file_data == NULL)
3662 continue;
3663
3664 slot = htab_find_slot (visited, file_data, INSERT);
3665 if (*slot)
3666 {
3667 /* Already visited. */
3668 continue;
3669 }
3670 *slot = file_data;
3671
3672 for (j = 0; j < file_data->num_file_names; ++j)
3673 {
3674 const char *this_real_name;
3675
3676 if (need_fullname)
3677 this_real_name = dw2_get_real_path (objfile, file_data, j);
3678 else
3679 this_real_name = NULL;
3680 (*fun) (file_data->file_names[j], this_real_name, data);
3681 }
3682 }
3683
3684 do_cleanups (cleanup);
3685 }
3686
3687 static int
3688 dw2_has_symbols (struct objfile *objfile)
3689 {
3690 return 1;
3691 }
3692
3693 const struct quick_symbol_functions dwarf2_gdb_index_functions =
3694 {
3695 dw2_has_symbols,
3696 dw2_find_last_source_symtab,
3697 dw2_forget_cached_source_info,
3698 dw2_map_symtabs_matching_filename,
3699 dw2_lookup_symbol,
3700 dw2_pre_expand_symtabs_matching,
3701 dw2_print_stats,
3702 dw2_dump,
3703 dw2_relocate,
3704 dw2_expand_symtabs_for_function,
3705 dw2_expand_all_symtabs,
3706 dw2_expand_symtabs_with_filename,
3707 dw2_find_symbol_file,
3708 dw2_map_matching_symbols,
3709 dw2_expand_symtabs_matching,
3710 dw2_find_pc_sect_symtab,
3711 dw2_map_symbol_filenames
3712 };
3713
3714 /* Initialize for reading DWARF for this objfile. Return 0 if this
3715 file will use psymtabs, or 1 if using the GNU index. */
3716
3717 int
3718 dwarf2_initialize_objfile (struct objfile *objfile)
3719 {
3720 /* If we're about to read full symbols, don't bother with the
3721 indices. In this case we also don't care if some other debug
3722 format is making psymtabs, because they are all about to be
3723 expanded anyway. */
3724 if ((objfile->flags & OBJF_READNOW))
3725 {
3726 int i;
3727
3728 dwarf2_per_objfile->using_index = 1;
3729 create_all_comp_units (objfile);
3730 create_all_type_units (objfile);
3731 dwarf2_per_objfile->quick_file_names_table =
3732 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3733
3734 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3735 + dwarf2_per_objfile->n_type_units); ++i)
3736 {
3737 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3738
3739 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3740 struct dwarf2_per_cu_quick_data);
3741 }
3742
3743 /* Return 1 so that gdb sees the "quick" functions. However,
3744 these functions will be no-ops because we will have expanded
3745 all symtabs. */
3746 return 1;
3747 }
3748
3749 if (dwarf2_read_index (objfile))
3750 return 1;
3751
3752 return 0;
3753 }
3754
3755 \f
3756
3757 /* Build a partial symbol table. */
3758
3759 void
3760 dwarf2_build_psymtabs (struct objfile *objfile)
3761 {
3762 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
3763 {
3764 init_psymbol_list (objfile, 1024);
3765 }
3766
3767 dwarf2_build_psymtabs_hard (objfile);
3768 }
3769
3770 /* Return the total length of the CU described by HEADER. */
3771
3772 static unsigned int
3773 get_cu_length (const struct comp_unit_head *header)
3774 {
3775 return header->initial_length_size + header->length;
3776 }
3777
3778 /* Return TRUE if OFFSET is within CU_HEADER. */
3779
3780 static inline int
3781 offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
3782 {
3783 sect_offset bottom = { cu_header->offset.sect_off };
3784 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
3785
3786 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
3787 }
3788
3789 /* Find the base address of the compilation unit for range lists and
3790 location lists. It will normally be specified by DW_AT_low_pc.
3791 In DWARF-3 draft 4, the base address could be overridden by
3792 DW_AT_entry_pc. It's been removed, but GCC still uses this for
3793 compilation units with discontinuous ranges. */
3794
3795 static void
3796 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
3797 {
3798 struct attribute *attr;
3799
3800 cu->base_known = 0;
3801 cu->base_address = 0;
3802
3803 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
3804 if (attr)
3805 {
3806 cu->base_address = DW_ADDR (attr);
3807 cu->base_known = 1;
3808 }
3809 else
3810 {
3811 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
3812 if (attr)
3813 {
3814 cu->base_address = DW_ADDR (attr);
3815 cu->base_known = 1;
3816 }
3817 }
3818 }
3819
3820 /* Read in the comp unit header information from the debug_info at info_ptr.
3821 NOTE: This leaves members offset, first_die_offset to be filled in
3822 by the caller. */
3823
3824 static gdb_byte *
3825 read_comp_unit_head (struct comp_unit_head *cu_header,
3826 gdb_byte *info_ptr, bfd *abfd)
3827 {
3828 int signed_addr;
3829 unsigned int bytes_read;
3830
3831 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
3832 cu_header->initial_length_size = bytes_read;
3833 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
3834 info_ptr += bytes_read;
3835 cu_header->version = read_2_bytes (abfd, info_ptr);
3836 info_ptr += 2;
3837 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
3838 &bytes_read);
3839 info_ptr += bytes_read;
3840 cu_header->addr_size = read_1_byte (abfd, info_ptr);
3841 info_ptr += 1;
3842 signed_addr = bfd_get_sign_extend_vma (abfd);
3843 if (signed_addr < 0)
3844 internal_error (__FILE__, __LINE__,
3845 _("read_comp_unit_head: dwarf from non elf file"));
3846 cu_header->signed_addr_p = signed_addr;
3847
3848 return info_ptr;
3849 }
3850
3851 /* Helper function that returns the proper abbrev section for
3852 THIS_CU. */
3853
3854 static struct dwarf2_section_info *
3855 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
3856 {
3857 struct dwarf2_section_info *abbrev;
3858
3859 if (this_cu->is_dwz)
3860 abbrev = &dwarf2_get_dwz_file ()->abbrev;
3861 else
3862 abbrev = &dwarf2_per_objfile->abbrev;
3863
3864 return abbrev;
3865 }
3866
3867 /* Subroutine of read_and_check_comp_unit_head and
3868 read_and_check_type_unit_head to simplify them.
3869 Perform various error checking on the header. */
3870
3871 static void
3872 error_check_comp_unit_head (struct comp_unit_head *header,
3873 struct dwarf2_section_info *section,
3874 struct dwarf2_section_info *abbrev_section)
3875 {
3876 bfd *abfd = section->asection->owner;
3877 const char *filename = bfd_get_filename (abfd);
3878
3879 if (header->version != 2 && header->version != 3 && header->version != 4)
3880 error (_("Dwarf Error: wrong version in compilation unit header "
3881 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
3882 filename);
3883
3884 if (header->abbrev_offset.sect_off
3885 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
3886 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
3887 "(offset 0x%lx + 6) [in module %s]"),
3888 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
3889 filename);
3890
3891 /* Cast to unsigned long to use 64-bit arithmetic when possible to
3892 avoid potential 32-bit overflow. */
3893 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
3894 > section->size)
3895 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
3896 "(offset 0x%lx + 0) [in module %s]"),
3897 (long) header->length, (long) header->offset.sect_off,
3898 filename);
3899 }
3900
3901 /* Read in a CU/TU header and perform some basic error checking.
3902 The contents of the header are stored in HEADER.
3903 The result is a pointer to the start of the first DIE. */
3904
3905 static gdb_byte *
3906 read_and_check_comp_unit_head (struct comp_unit_head *header,
3907 struct dwarf2_section_info *section,
3908 struct dwarf2_section_info *abbrev_section,
3909 gdb_byte *info_ptr,
3910 int is_debug_types_section)
3911 {
3912 gdb_byte *beg_of_comp_unit = info_ptr;
3913 bfd *abfd = section->asection->owner;
3914
3915 header->offset.sect_off = beg_of_comp_unit - section->buffer;
3916
3917 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
3918
3919 /* If we're reading a type unit, skip over the signature and
3920 type_offset fields. */
3921 if (is_debug_types_section)
3922 info_ptr += 8 /*signature*/ + header->offset_size;
3923
3924 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
3925
3926 error_check_comp_unit_head (header, section, abbrev_section);
3927
3928 return info_ptr;
3929 }
3930
3931 /* Read in the types comp unit header information from .debug_types entry at
3932 types_ptr. The result is a pointer to one past the end of the header. */
3933
3934 static gdb_byte *
3935 read_and_check_type_unit_head (struct comp_unit_head *header,
3936 struct dwarf2_section_info *section,
3937 struct dwarf2_section_info *abbrev_section,
3938 gdb_byte *info_ptr,
3939 ULONGEST *signature,
3940 cu_offset *type_offset_in_tu)
3941 {
3942 gdb_byte *beg_of_comp_unit = info_ptr;
3943 bfd *abfd = section->asection->owner;
3944
3945 header->offset.sect_off = beg_of_comp_unit - section->buffer;
3946
3947 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
3948
3949 /* If we're reading a type unit, skip over the signature and
3950 type_offset fields. */
3951 if (signature != NULL)
3952 *signature = read_8_bytes (abfd, info_ptr);
3953 info_ptr += 8;
3954 if (type_offset_in_tu != NULL)
3955 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
3956 header->offset_size);
3957 info_ptr += header->offset_size;
3958
3959 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
3960
3961 error_check_comp_unit_head (header, section, abbrev_section);
3962
3963 return info_ptr;
3964 }
3965
3966 /* Fetch the abbreviation table offset from a comp or type unit header. */
3967
3968 static sect_offset
3969 read_abbrev_offset (struct dwarf2_section_info *section,
3970 sect_offset offset)
3971 {
3972 bfd *abfd = section->asection->owner;
3973 gdb_byte *info_ptr;
3974 unsigned int length, initial_length_size, offset_size;
3975 sect_offset abbrev_offset;
3976
3977 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
3978 info_ptr = section->buffer + offset.sect_off;
3979 length = read_initial_length (abfd, info_ptr, &initial_length_size);
3980 offset_size = initial_length_size == 4 ? 4 : 8;
3981 info_ptr += initial_length_size + 2 /*version*/;
3982 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
3983 return abbrev_offset;
3984 }
3985
3986 /* Allocate a new partial symtab for file named NAME and mark this new
3987 partial symtab as being an include of PST. */
3988
3989 static void
3990 dwarf2_create_include_psymtab (char *name, struct partial_symtab *pst,
3991 struct objfile *objfile)
3992 {
3993 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
3994
3995 subpst->section_offsets = pst->section_offsets;
3996 subpst->textlow = 0;
3997 subpst->texthigh = 0;
3998
3999 subpst->dependencies = (struct partial_symtab **)
4000 obstack_alloc (&objfile->objfile_obstack,
4001 sizeof (struct partial_symtab *));
4002 subpst->dependencies[0] = pst;
4003 subpst->number_of_dependencies = 1;
4004
4005 subpst->globals_offset = 0;
4006 subpst->n_global_syms = 0;
4007 subpst->statics_offset = 0;
4008 subpst->n_static_syms = 0;
4009 subpst->symtab = NULL;
4010 subpst->read_symtab = pst->read_symtab;
4011 subpst->readin = 0;
4012
4013 /* No private part is necessary for include psymtabs. This property
4014 can be used to differentiate between such include psymtabs and
4015 the regular ones. */
4016 subpst->read_symtab_private = NULL;
4017 }
4018
4019 /* Read the Line Number Program data and extract the list of files
4020 included by the source file represented by PST. Build an include
4021 partial symtab for each of these included files. */
4022
4023 static void
4024 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4025 struct die_info *die,
4026 struct partial_symtab *pst)
4027 {
4028 struct line_header *lh = NULL;
4029 struct attribute *attr;
4030
4031 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4032 if (attr)
4033 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
4034 if (lh == NULL)
4035 return; /* No linetable, so no includes. */
4036
4037 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4038 dwarf_decode_lines (lh, pst->dirname, cu, pst, 1);
4039
4040 free_line_header (lh);
4041 }
4042
4043 static hashval_t
4044 hash_signatured_type (const void *item)
4045 {
4046 const struct signatured_type *sig_type = item;
4047
4048 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4049 return sig_type->signature;
4050 }
4051
4052 static int
4053 eq_signatured_type (const void *item_lhs, const void *item_rhs)
4054 {
4055 const struct signatured_type *lhs = item_lhs;
4056 const struct signatured_type *rhs = item_rhs;
4057
4058 return lhs->signature == rhs->signature;
4059 }
4060
4061 /* Allocate a hash table for signatured types. */
4062
4063 static htab_t
4064 allocate_signatured_type_table (struct objfile *objfile)
4065 {
4066 return htab_create_alloc_ex (41,
4067 hash_signatured_type,
4068 eq_signatured_type,
4069 NULL,
4070 &objfile->objfile_obstack,
4071 hashtab_obstack_allocate,
4072 dummy_obstack_deallocate);
4073 }
4074
4075 /* A helper function to add a signatured type CU to a table. */
4076
4077 static int
4078 add_signatured_type_cu_to_table (void **slot, void *datum)
4079 {
4080 struct signatured_type *sigt = *slot;
4081 struct signatured_type ***datap = datum;
4082
4083 **datap = sigt;
4084 ++*datap;
4085
4086 return 1;
4087 }
4088
4089 /* Create the hash table of all entries in the .debug_types section.
4090 DWO_FILE is a pointer to the DWO file for .debug_types.dwo,
4091 NULL otherwise.
4092 Note: This function processes DWO files only, not DWP files.
4093 The result is a pointer to the hash table or NULL if there are
4094 no types. */
4095
4096 static htab_t
4097 create_debug_types_hash_table (struct dwo_file *dwo_file,
4098 VEC (dwarf2_section_info_def) *types)
4099 {
4100 struct objfile *objfile = dwarf2_per_objfile->objfile;
4101 htab_t types_htab = NULL;
4102 int ix;
4103 struct dwarf2_section_info *section;
4104 struct dwarf2_section_info *abbrev_section;
4105
4106 if (VEC_empty (dwarf2_section_info_def, types))
4107 return NULL;
4108
4109 abbrev_section = (dwo_file != NULL
4110 ? &dwo_file->sections.abbrev
4111 : &dwarf2_per_objfile->abbrev);
4112
4113 if (dwarf2_read_debug)
4114 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4115 dwo_file ? ".dwo" : "",
4116 bfd_get_filename (abbrev_section->asection->owner));
4117
4118 for (ix = 0;
4119 VEC_iterate (dwarf2_section_info_def, types, ix, section);
4120 ++ix)
4121 {
4122 bfd *abfd;
4123 gdb_byte *info_ptr, *end_ptr;
4124 struct dwarf2_section_info *abbrev_section;
4125
4126 dwarf2_read_section (objfile, section);
4127 info_ptr = section->buffer;
4128
4129 if (info_ptr == NULL)
4130 continue;
4131
4132 /* We can't set abfd until now because the section may be empty or
4133 not present, in which case section->asection will be NULL. */
4134 abfd = section->asection->owner;
4135
4136 if (dwo_file)
4137 abbrev_section = &dwo_file->sections.abbrev;
4138 else
4139 abbrev_section = &dwarf2_per_objfile->abbrev;
4140
4141 if (types_htab == NULL)
4142 {
4143 if (dwo_file)
4144 types_htab = allocate_dwo_unit_table (objfile);
4145 else
4146 types_htab = allocate_signatured_type_table (objfile);
4147 }
4148
4149 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4150 because we don't need to read any dies: the signature is in the
4151 header. */
4152
4153 end_ptr = info_ptr + section->size;
4154 while (info_ptr < end_ptr)
4155 {
4156 sect_offset offset;
4157 cu_offset type_offset_in_tu;
4158 ULONGEST signature;
4159 struct signatured_type *sig_type;
4160 struct dwo_unit *dwo_tu;
4161 void **slot;
4162 gdb_byte *ptr = info_ptr;
4163 struct comp_unit_head header;
4164 unsigned int length;
4165
4166 offset.sect_off = ptr - section->buffer;
4167
4168 /* We need to read the type's signature in order to build the hash
4169 table, but we don't need anything else just yet. */
4170
4171 ptr = read_and_check_type_unit_head (&header, section,
4172 abbrev_section, ptr,
4173 &signature, &type_offset_in_tu);
4174
4175 length = get_cu_length (&header);
4176
4177 /* Skip dummy type units. */
4178 if (ptr >= info_ptr + length
4179 || peek_abbrev_code (abfd, ptr) == 0)
4180 {
4181 info_ptr += length;
4182 continue;
4183 }
4184
4185 if (dwo_file)
4186 {
4187 sig_type = NULL;
4188 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4189 struct dwo_unit);
4190 dwo_tu->dwo_file = dwo_file;
4191 dwo_tu->signature = signature;
4192 dwo_tu->type_offset_in_tu = type_offset_in_tu;
4193 dwo_tu->info_or_types_section = section;
4194 dwo_tu->offset = offset;
4195 dwo_tu->length = length;
4196 }
4197 else
4198 {
4199 /* N.B.: type_offset is not usable if this type uses a DWO file.
4200 The real type_offset is in the DWO file. */
4201 dwo_tu = NULL;
4202 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4203 struct signatured_type);
4204 sig_type->signature = signature;
4205 sig_type->type_offset_in_tu = type_offset_in_tu;
4206 sig_type->per_cu.objfile = objfile;
4207 sig_type->per_cu.is_debug_types = 1;
4208 sig_type->per_cu.info_or_types_section = section;
4209 sig_type->per_cu.offset = offset;
4210 sig_type->per_cu.length = length;
4211 }
4212
4213 slot = htab_find_slot (types_htab,
4214 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4215 INSERT);
4216 gdb_assert (slot != NULL);
4217 if (*slot != NULL)
4218 {
4219 sect_offset dup_offset;
4220
4221 if (dwo_file)
4222 {
4223 const struct dwo_unit *dup_tu = *slot;
4224
4225 dup_offset = dup_tu->offset;
4226 }
4227 else
4228 {
4229 const struct signatured_type *dup_tu = *slot;
4230
4231 dup_offset = dup_tu->per_cu.offset;
4232 }
4233
4234 complaint (&symfile_complaints,
4235 _("debug type entry at offset 0x%x is duplicate to the "
4236 "entry at offset 0x%x, signature 0x%s"),
4237 offset.sect_off, dup_offset.sect_off,
4238 phex (signature, sizeof (signature)));
4239 }
4240 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4241
4242 if (dwarf2_read_debug)
4243 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature 0x%s\n",
4244 offset.sect_off,
4245 phex (signature, sizeof (signature)));
4246
4247 info_ptr += length;
4248 }
4249 }
4250
4251 return types_htab;
4252 }
4253
4254 /* Create the hash table of all entries in the .debug_types section,
4255 and initialize all_type_units.
4256 The result is zero if there is an error (e.g. missing .debug_types section),
4257 otherwise non-zero. */
4258
4259 static int
4260 create_all_type_units (struct objfile *objfile)
4261 {
4262 htab_t types_htab;
4263 struct signatured_type **iter;
4264
4265 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4266 if (types_htab == NULL)
4267 {
4268 dwarf2_per_objfile->signatured_types = NULL;
4269 return 0;
4270 }
4271
4272 dwarf2_per_objfile->signatured_types = types_htab;
4273
4274 dwarf2_per_objfile->n_type_units = htab_elements (types_htab);
4275 dwarf2_per_objfile->all_type_units
4276 = obstack_alloc (&objfile->objfile_obstack,
4277 dwarf2_per_objfile->n_type_units
4278 * sizeof (struct signatured_type *));
4279 iter = &dwarf2_per_objfile->all_type_units[0];
4280 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4281 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4282 == dwarf2_per_objfile->n_type_units);
4283
4284 return 1;
4285 }
4286
4287 /* Lookup a signature based type for DW_FORM_ref_sig8.
4288 Returns NULL if signature SIG is not present in the table. */
4289
4290 static struct signatured_type *
4291 lookup_signatured_type (ULONGEST sig)
4292 {
4293 struct signatured_type find_entry, *entry;
4294
4295 if (dwarf2_per_objfile->signatured_types == NULL)
4296 {
4297 complaint (&symfile_complaints,
4298 _("missing `.debug_types' section for DW_FORM_ref_sig8 die"));
4299 return NULL;
4300 }
4301
4302 find_entry.signature = sig;
4303 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
4304 return entry;
4305 }
4306 \f
4307 /* Low level DIE reading support. */
4308
4309 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
4310
4311 static void
4312 init_cu_die_reader (struct die_reader_specs *reader,
4313 struct dwarf2_cu *cu,
4314 struct dwarf2_section_info *section,
4315 struct dwo_file *dwo_file)
4316 {
4317 gdb_assert (section->readin && section->buffer != NULL);
4318 reader->abfd = section->asection->owner;
4319 reader->cu = cu;
4320 reader->dwo_file = dwo_file;
4321 reader->die_section = section;
4322 reader->buffer = section->buffer;
4323 reader->buffer_end = section->buffer + section->size;
4324 }
4325
4326 /* Initialize a CU (or TU) and read its DIEs.
4327 If the CU defers to a DWO file, read the DWO file as well.
4328
4329 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
4330 Otherwise the table specified in the comp unit header is read in and used.
4331 This is an optimization for when we already have the abbrev table.
4332
4333 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
4334 Otherwise, a new CU is allocated with xmalloc.
4335
4336 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
4337 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
4338
4339 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
4340 linker) then DIE_READER_FUNC will not get called. */
4341
4342 static void
4343 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
4344 struct abbrev_table *abbrev_table,
4345 int use_existing_cu, int keep,
4346 die_reader_func_ftype *die_reader_func,
4347 void *data)
4348 {
4349 struct objfile *objfile = dwarf2_per_objfile->objfile;
4350 struct dwarf2_section_info *section = this_cu->info_or_types_section;
4351 bfd *abfd = section->asection->owner;
4352 struct dwarf2_cu *cu;
4353 gdb_byte *begin_info_ptr, *info_ptr;
4354 struct die_reader_specs reader;
4355 struct die_info *comp_unit_die;
4356 int has_children;
4357 struct attribute *attr;
4358 struct cleanup *cleanups, *free_cu_cleanup = NULL;
4359 struct signatured_type *sig_type = NULL;
4360 struct dwarf2_section_info *abbrev_section;
4361 /* Non-zero if CU currently points to a DWO file and we need to
4362 reread it. When this happens we need to reread the skeleton die
4363 before we can reread the DWO file. */
4364 int rereading_dwo_cu = 0;
4365
4366 if (dwarf2_die_debug)
4367 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
4368 this_cu->is_debug_types ? "type" : "comp",
4369 this_cu->offset.sect_off);
4370
4371 if (use_existing_cu)
4372 gdb_assert (keep);
4373
4374 cleanups = make_cleanup (null_cleanup, NULL);
4375
4376 /* This is cheap if the section is already read in. */
4377 dwarf2_read_section (objfile, section);
4378
4379 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
4380
4381 abbrev_section = get_abbrev_section_for_cu (this_cu);
4382
4383 if (use_existing_cu && this_cu->cu != NULL)
4384 {
4385 cu = this_cu->cu;
4386
4387 /* If this CU is from a DWO file we need to start over, we need to
4388 refetch the attributes from the skeleton CU.
4389 This could be optimized by retrieving those attributes from when we
4390 were here the first time: the previous comp_unit_die was stored in
4391 comp_unit_obstack. But there's no data yet that we need this
4392 optimization. */
4393 if (cu->dwo_unit != NULL)
4394 rereading_dwo_cu = 1;
4395 }
4396 else
4397 {
4398 /* If !use_existing_cu, this_cu->cu must be NULL. */
4399 gdb_assert (this_cu->cu == NULL);
4400
4401 cu = xmalloc (sizeof (*cu));
4402 init_one_comp_unit (cu, this_cu);
4403
4404 /* If an error occurs while loading, release our storage. */
4405 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
4406 }
4407
4408 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
4409 {
4410 /* We already have the header, there's no need to read it in again. */
4411 info_ptr += cu->header.first_die_offset.cu_off;
4412 }
4413 else
4414 {
4415 if (this_cu->is_debug_types)
4416 {
4417 ULONGEST signature;
4418 cu_offset type_offset_in_tu;
4419
4420 info_ptr = read_and_check_type_unit_head (&cu->header, section,
4421 abbrev_section, info_ptr,
4422 &signature,
4423 &type_offset_in_tu);
4424
4425 /* Since per_cu is the first member of struct signatured_type,
4426 we can go from a pointer to one to a pointer to the other. */
4427 sig_type = (struct signatured_type *) this_cu;
4428 gdb_assert (sig_type->signature == signature);
4429 gdb_assert (sig_type->type_offset_in_tu.cu_off
4430 == type_offset_in_tu.cu_off);
4431 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
4432
4433 /* LENGTH has not been set yet for type units if we're
4434 using .gdb_index. */
4435 this_cu->length = get_cu_length (&cu->header);
4436
4437 /* Establish the type offset that can be used to lookup the type. */
4438 sig_type->type_offset_in_section.sect_off =
4439 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
4440 }
4441 else
4442 {
4443 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
4444 abbrev_section,
4445 info_ptr, 0);
4446
4447 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
4448 gdb_assert (this_cu->length == get_cu_length (&cu->header));
4449 }
4450 }
4451
4452 /* Skip dummy compilation units. */
4453 if (info_ptr >= begin_info_ptr + this_cu->length
4454 || peek_abbrev_code (abfd, info_ptr) == 0)
4455 {
4456 do_cleanups (cleanups);
4457 return;
4458 }
4459
4460 /* If we don't have them yet, read the abbrevs for this compilation unit.
4461 And if we need to read them now, make sure they're freed when we're
4462 done. Note that it's important that if the CU had an abbrev table
4463 on entry we don't free it when we're done: Somewhere up the call stack
4464 it may be in use. */
4465 if (abbrev_table != NULL)
4466 {
4467 gdb_assert (cu->abbrev_table == NULL);
4468 gdb_assert (cu->header.abbrev_offset.sect_off
4469 == abbrev_table->offset.sect_off);
4470 cu->abbrev_table = abbrev_table;
4471 }
4472 else if (cu->abbrev_table == NULL)
4473 {
4474 dwarf2_read_abbrevs (cu, abbrev_section);
4475 make_cleanup (dwarf2_free_abbrev_table, cu);
4476 }
4477 else if (rereading_dwo_cu)
4478 {
4479 dwarf2_free_abbrev_table (cu);
4480 dwarf2_read_abbrevs (cu, abbrev_section);
4481 }
4482
4483 /* Read the top level CU/TU die. */
4484 init_cu_die_reader (&reader, cu, section, NULL);
4485 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
4486
4487 /* If we have a DWO stub, process it and then read in the DWO file.
4488 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains
4489 a DWO CU, that this test will fail. */
4490 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
4491 if (attr)
4492 {
4493 char *dwo_name = DW_STRING (attr);
4494 const char *comp_dir_string;
4495 struct dwo_unit *dwo_unit;
4496 ULONGEST signature; /* Or dwo_id. */
4497 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
4498 int i,num_extra_attrs;
4499 struct dwarf2_section_info *dwo_abbrev_section;
4500
4501 if (has_children)
4502 error (_("Dwarf Error: compilation unit with DW_AT_GNU_dwo_name"
4503 " has children (offset 0x%x) [in module %s]"),
4504 this_cu->offset.sect_off, bfd_get_filename (abfd));
4505
4506 /* These attributes aren't processed until later:
4507 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
4508 However, the attribute is found in the stub which we won't have later.
4509 In order to not impose this complication on the rest of the code,
4510 we read them here and copy them to the DWO CU/TU die. */
4511
4512 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
4513 DWO file. */
4514 stmt_list = NULL;
4515 if (! this_cu->is_debug_types)
4516 stmt_list = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
4517 low_pc = dwarf2_attr (comp_unit_die, DW_AT_low_pc, cu);
4518 high_pc = dwarf2_attr (comp_unit_die, DW_AT_high_pc, cu);
4519 ranges = dwarf2_attr (comp_unit_die, DW_AT_ranges, cu);
4520 comp_dir = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
4521
4522 /* There should be a DW_AT_addr_base attribute here (if needed).
4523 We need the value before we can process DW_FORM_GNU_addr_index. */
4524 cu->addr_base = 0;
4525 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_addr_base, cu);
4526 if (attr)
4527 cu->addr_base = DW_UNSND (attr);
4528
4529 /* There should be a DW_AT_ranges_base attribute here (if needed).
4530 We need the value before we can process DW_AT_ranges. */
4531 cu->ranges_base = 0;
4532 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_ranges_base, cu);
4533 if (attr)
4534 cu->ranges_base = DW_UNSND (attr);
4535
4536 if (this_cu->is_debug_types)
4537 {
4538 gdb_assert (sig_type != NULL);
4539 signature = sig_type->signature;
4540 }
4541 else
4542 {
4543 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
4544 if (! attr)
4545 error (_("Dwarf Error: missing dwo_id [in module %s]"),
4546 dwo_name);
4547 signature = DW_UNSND (attr);
4548 }
4549
4550 /* We may need the comp_dir in order to find the DWO file. */
4551 comp_dir_string = NULL;
4552 if (comp_dir)
4553 comp_dir_string = DW_STRING (comp_dir);
4554
4555 if (this_cu->is_debug_types)
4556 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir_string);
4557 else
4558 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir_string,
4559 signature);
4560
4561 if (dwo_unit == NULL)
4562 {
4563 error (_("Dwarf Error: CU at offset 0x%x references unknown DWO"
4564 " with ID %s [in module %s]"),
4565 this_cu->offset.sect_off,
4566 phex (signature, sizeof (signature)),
4567 objfile->name);
4568 }
4569
4570 /* Set up for reading the DWO CU/TU. */
4571 cu->dwo_unit = dwo_unit;
4572 section = dwo_unit->info_or_types_section;
4573 dwarf2_read_section (objfile, section);
4574 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
4575 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
4576 init_cu_die_reader (&reader, cu, section, dwo_unit->dwo_file);
4577
4578 if (this_cu->is_debug_types)
4579 {
4580 ULONGEST signature;
4581 cu_offset type_offset_in_tu;
4582
4583 info_ptr = read_and_check_type_unit_head (&cu->header, section,
4584 dwo_abbrev_section,
4585 info_ptr,
4586 &signature,
4587 &type_offset_in_tu);
4588 gdb_assert (sig_type->signature == signature);
4589 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
4590 /* For DWOs coming from DWP files, we don't know the CU length
4591 nor the type's offset in the TU until now. */
4592 dwo_unit->length = get_cu_length (&cu->header);
4593 dwo_unit->type_offset_in_tu = type_offset_in_tu;
4594
4595 /* Establish the type offset that can be used to lookup the type.
4596 For DWO files, we don't know it until now. */
4597 sig_type->type_offset_in_section.sect_off =
4598 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
4599 }
4600 else
4601 {
4602 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
4603 dwo_abbrev_section,
4604 info_ptr, 0);
4605 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
4606 /* For DWOs coming from DWP files, we don't know the CU length
4607 until now. */
4608 dwo_unit->length = get_cu_length (&cu->header);
4609 }
4610
4611 /* Discard the original CU's abbrev table, and read the DWO's. */
4612 if (abbrev_table == NULL)
4613 {
4614 dwarf2_free_abbrev_table (cu);
4615 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
4616 }
4617 else
4618 {
4619 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
4620 make_cleanup (dwarf2_free_abbrev_table, cu);
4621 }
4622
4623 /* Read in the die, but leave space to copy over the attributes
4624 from the stub. This has the benefit of simplifying the rest of
4625 the code - all the real work is done here. */
4626 num_extra_attrs = ((stmt_list != NULL)
4627 + (low_pc != NULL)
4628 + (high_pc != NULL)
4629 + (ranges != NULL)
4630 + (comp_dir != NULL));
4631 info_ptr = read_full_die_1 (&reader, &comp_unit_die, info_ptr,
4632 &has_children, num_extra_attrs);
4633
4634 /* Copy over the attributes from the stub to the DWO die. */
4635 i = comp_unit_die->num_attrs;
4636 if (stmt_list != NULL)
4637 comp_unit_die->attrs[i++] = *stmt_list;
4638 if (low_pc != NULL)
4639 comp_unit_die->attrs[i++] = *low_pc;
4640 if (high_pc != NULL)
4641 comp_unit_die->attrs[i++] = *high_pc;
4642 if (ranges != NULL)
4643 comp_unit_die->attrs[i++] = *ranges;
4644 if (comp_dir != NULL)
4645 comp_unit_die->attrs[i++] = *comp_dir;
4646 comp_unit_die->num_attrs += num_extra_attrs;
4647
4648 /* Skip dummy compilation units. */
4649 if (info_ptr >= begin_info_ptr + dwo_unit->length
4650 || peek_abbrev_code (abfd, info_ptr) == 0)
4651 {
4652 do_cleanups (cleanups);
4653 return;
4654 }
4655 }
4656
4657 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
4658
4659 if (free_cu_cleanup != NULL)
4660 {
4661 if (keep)
4662 {
4663 /* We've successfully allocated this compilation unit. Let our
4664 caller clean it up when finished with it. */
4665 discard_cleanups (free_cu_cleanup);
4666
4667 /* We can only discard free_cu_cleanup and all subsequent cleanups.
4668 So we have to manually free the abbrev table. */
4669 dwarf2_free_abbrev_table (cu);
4670
4671 /* Link this CU into read_in_chain. */
4672 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
4673 dwarf2_per_objfile->read_in_chain = this_cu;
4674 }
4675 else
4676 do_cleanups (free_cu_cleanup);
4677 }
4678
4679 do_cleanups (cleanups);
4680 }
4681
4682 /* Read CU/TU THIS_CU in section SECTION,
4683 but do not follow DW_AT_GNU_dwo_name if present.
4684 DWOP_FILE, if non-NULL, is the DWO/DWP file to read (the caller is assumed
4685 to have already done the lookup to find the DWO/DWP file).
4686
4687 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
4688 THIS_CU->is_debug_types, but nothing else.
4689
4690 We fill in THIS_CU->length.
4691
4692 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
4693 linker) then DIE_READER_FUNC will not get called.
4694
4695 THIS_CU->cu is always freed when done.
4696 This is done in order to not leave THIS_CU->cu in a state where we have
4697 to care whether it refers to the "main" CU or the DWO CU. */
4698
4699 static void
4700 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
4701 struct dwarf2_section_info *abbrev_section,
4702 struct dwo_file *dwo_file,
4703 die_reader_func_ftype *die_reader_func,
4704 void *data)
4705 {
4706 struct objfile *objfile = dwarf2_per_objfile->objfile;
4707 struct dwarf2_section_info *section = this_cu->info_or_types_section;
4708 bfd *abfd = section->asection->owner;
4709 struct dwarf2_cu cu;
4710 gdb_byte *begin_info_ptr, *info_ptr;
4711 struct die_reader_specs reader;
4712 struct cleanup *cleanups;
4713 struct die_info *comp_unit_die;
4714 int has_children;
4715
4716 if (dwarf2_die_debug)
4717 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
4718 this_cu->is_debug_types ? "type" : "comp",
4719 this_cu->offset.sect_off);
4720
4721 gdb_assert (this_cu->cu == NULL);
4722
4723 /* This is cheap if the section is already read in. */
4724 dwarf2_read_section (objfile, section);
4725
4726 init_one_comp_unit (&cu, this_cu);
4727
4728 cleanups = make_cleanup (free_stack_comp_unit, &cu);
4729
4730 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
4731 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
4732 abbrev_section, info_ptr,
4733 this_cu->is_debug_types);
4734
4735 this_cu->length = get_cu_length (&cu.header);
4736
4737 /* Skip dummy compilation units. */
4738 if (info_ptr >= begin_info_ptr + this_cu->length
4739 || peek_abbrev_code (abfd, info_ptr) == 0)
4740 {
4741 do_cleanups (cleanups);
4742 return;
4743 }
4744
4745 dwarf2_read_abbrevs (&cu, abbrev_section);
4746 make_cleanup (dwarf2_free_abbrev_table, &cu);
4747
4748 init_cu_die_reader (&reader, &cu, section, dwo_file);
4749 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
4750
4751 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
4752
4753 do_cleanups (cleanups);
4754 }
4755
4756 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
4757 does not lookup the specified DWO file.
4758 This cannot be used to read DWO files.
4759
4760 THIS_CU->cu is always freed when done.
4761 This is done in order to not leave THIS_CU->cu in a state where we have
4762 to care whether it refers to the "main" CU or the DWO CU.
4763 We can revisit this if the data shows there's a performance issue. */
4764
4765 static void
4766 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
4767 die_reader_func_ftype *die_reader_func,
4768 void *data)
4769 {
4770 init_cutu_and_read_dies_no_follow (this_cu,
4771 get_abbrev_section_for_cu (this_cu),
4772 NULL,
4773 die_reader_func, data);
4774 }
4775
4776 /* Create a psymtab named NAME and assign it to PER_CU.
4777
4778 The caller must fill in the following details:
4779 dirname, textlow, texthigh. */
4780
4781 static struct partial_symtab *
4782 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
4783 {
4784 struct objfile *objfile = per_cu->objfile;
4785 struct partial_symtab *pst;
4786
4787 pst = start_psymtab_common (objfile, objfile->section_offsets,
4788 name, 0,
4789 objfile->global_psymbols.next,
4790 objfile->static_psymbols.next);
4791
4792 pst->psymtabs_addrmap_supported = 1;
4793
4794 /* This is the glue that links PST into GDB's symbol API. */
4795 pst->read_symtab_private = per_cu;
4796 pst->read_symtab = dwarf2_psymtab_to_symtab;
4797 per_cu->v.psymtab = pst;
4798
4799 return pst;
4800 }
4801
4802 /* die_reader_func for process_psymtab_comp_unit. */
4803
4804 static void
4805 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
4806 gdb_byte *info_ptr,
4807 struct die_info *comp_unit_die,
4808 int has_children,
4809 void *data)
4810 {
4811 struct dwarf2_cu *cu = reader->cu;
4812 struct objfile *objfile = cu->objfile;
4813 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
4814 struct attribute *attr;
4815 CORE_ADDR baseaddr;
4816 CORE_ADDR best_lowpc = 0, best_highpc = 0;
4817 struct partial_symtab *pst;
4818 int has_pc_info;
4819 const char *filename;
4820 int *want_partial_unit_ptr = data;
4821
4822 if (comp_unit_die->tag == DW_TAG_partial_unit
4823 && (want_partial_unit_ptr == NULL
4824 || !*want_partial_unit_ptr))
4825 return;
4826
4827 gdb_assert (! per_cu->is_debug_types);
4828
4829 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
4830
4831 cu->list_in_scope = &file_symbols;
4832
4833 /* Allocate a new partial symbol table structure. */
4834 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
4835 if (attr == NULL || !DW_STRING (attr))
4836 filename = "";
4837 else
4838 filename = DW_STRING (attr);
4839
4840 pst = create_partial_symtab (per_cu, filename);
4841
4842 /* This must be done before calling dwarf2_build_include_psymtabs. */
4843 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
4844 if (attr != NULL)
4845 pst->dirname = DW_STRING (attr);
4846
4847 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
4848
4849 dwarf2_find_base_address (comp_unit_die, cu);
4850
4851 /* Possibly set the default values of LOWPC and HIGHPC from
4852 `DW_AT_ranges'. */
4853 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
4854 &best_highpc, cu, pst);
4855 if (has_pc_info == 1 && best_lowpc < best_highpc)
4856 /* Store the contiguous range if it is not empty; it can be empty for
4857 CUs with no code. */
4858 addrmap_set_empty (objfile->psymtabs_addrmap,
4859 best_lowpc + baseaddr,
4860 best_highpc + baseaddr - 1, pst);
4861
4862 /* Check if comp unit has_children.
4863 If so, read the rest of the partial symbols from this comp unit.
4864 If not, there's no more debug_info for this comp unit. */
4865 if (has_children)
4866 {
4867 struct partial_die_info *first_die;
4868 CORE_ADDR lowpc, highpc;
4869
4870 lowpc = ((CORE_ADDR) -1);
4871 highpc = ((CORE_ADDR) 0);
4872
4873 first_die = load_partial_dies (reader, info_ptr, 1);
4874
4875 scan_partial_symbols (first_die, &lowpc, &highpc,
4876 ! has_pc_info, cu);
4877
4878 /* If we didn't find a lowpc, set it to highpc to avoid
4879 complaints from `maint check'. */
4880 if (lowpc == ((CORE_ADDR) -1))
4881 lowpc = highpc;
4882
4883 /* If the compilation unit didn't have an explicit address range,
4884 then use the information extracted from its child dies. */
4885 if (! has_pc_info)
4886 {
4887 best_lowpc = lowpc;
4888 best_highpc = highpc;
4889 }
4890 }
4891 pst->textlow = best_lowpc + baseaddr;
4892 pst->texthigh = best_highpc + baseaddr;
4893
4894 pst->n_global_syms = objfile->global_psymbols.next -
4895 (objfile->global_psymbols.list + pst->globals_offset);
4896 pst->n_static_syms = objfile->static_psymbols.next -
4897 (objfile->static_psymbols.list + pst->statics_offset);
4898 sort_pst_symbols (objfile, pst);
4899
4900 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->s.imported_symtabs))
4901 {
4902 int i;
4903 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->s.imported_symtabs);
4904 struct dwarf2_per_cu_data *iter;
4905
4906 /* Fill in 'dependencies' here; we fill in 'users' in a
4907 post-pass. */
4908 pst->number_of_dependencies = len;
4909 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
4910 len * sizeof (struct symtab *));
4911 for (i = 0;
4912 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->s.imported_symtabs,
4913 i, iter);
4914 ++i)
4915 pst->dependencies[i] = iter->v.psymtab;
4916
4917 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->s.imported_symtabs);
4918 }
4919
4920 /* Get the list of files included in the current compilation unit,
4921 and build a psymtab for each of them. */
4922 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
4923
4924 if (dwarf2_read_debug)
4925 {
4926 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4927
4928 fprintf_unfiltered (gdb_stdlog,
4929 "Psymtab for %s unit @0x%x: %s - %s"
4930 ", %d global, %d static syms\n",
4931 per_cu->is_debug_types ? "type" : "comp",
4932 per_cu->offset.sect_off,
4933 paddress (gdbarch, pst->textlow),
4934 paddress (gdbarch, pst->texthigh),
4935 pst->n_global_syms, pst->n_static_syms);
4936 }
4937 }
4938
4939 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
4940 Process compilation unit THIS_CU for a psymtab. */
4941
4942 static void
4943 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
4944 int want_partial_unit)
4945 {
4946 /* If this compilation unit was already read in, free the
4947 cached copy in order to read it in again. This is
4948 necessary because we skipped some symbols when we first
4949 read in the compilation unit (see load_partial_dies).
4950 This problem could be avoided, but the benefit is unclear. */
4951 if (this_cu->cu != NULL)
4952 free_one_cached_comp_unit (this_cu);
4953
4954 gdb_assert (! this_cu->is_debug_types);
4955 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
4956 process_psymtab_comp_unit_reader,
4957 &want_partial_unit);
4958
4959 /* Age out any secondary CUs. */
4960 age_cached_comp_units ();
4961 }
4962
4963 static hashval_t
4964 hash_type_unit_group (const void *item)
4965 {
4966 const struct type_unit_group *tu_group = item;
4967
4968 return hash_stmt_list_entry (&tu_group->hash);
4969 }
4970
4971 static int
4972 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
4973 {
4974 const struct type_unit_group *lhs = item_lhs;
4975 const struct type_unit_group *rhs = item_rhs;
4976
4977 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
4978 }
4979
4980 /* Allocate a hash table for type unit groups. */
4981
4982 static htab_t
4983 allocate_type_unit_groups_table (void)
4984 {
4985 return htab_create_alloc_ex (3,
4986 hash_type_unit_group,
4987 eq_type_unit_group,
4988 NULL,
4989 &dwarf2_per_objfile->objfile->objfile_obstack,
4990 hashtab_obstack_allocate,
4991 dummy_obstack_deallocate);
4992 }
4993
4994 /* Type units that don't have DW_AT_stmt_list are grouped into their own
4995 partial symtabs. We combine several TUs per psymtab to not let the size
4996 of any one psymtab grow too big. */
4997 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
4998 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
4999
5000 /* Helper routine for get_type_unit_group.
5001 Create the type_unit_group object used to hold one or more TUs. */
5002
5003 static struct type_unit_group *
5004 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
5005 {
5006 struct objfile *objfile = dwarf2_per_objfile->objfile;
5007 struct dwarf2_per_cu_data *per_cu;
5008 struct type_unit_group *tu_group;
5009
5010 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5011 struct type_unit_group);
5012 per_cu = &tu_group->per_cu;
5013 per_cu->objfile = objfile;
5014 per_cu->is_debug_types = 1;
5015 per_cu->s.type_unit_group = tu_group;
5016
5017 if (dwarf2_per_objfile->using_index)
5018 {
5019 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5020 struct dwarf2_per_cu_quick_data);
5021 tu_group->t.first_tu = cu->per_cu;
5022 }
5023 else
5024 {
5025 unsigned int line_offset = line_offset_struct.sect_off;
5026 struct partial_symtab *pst;
5027 char *name;
5028
5029 /* Give the symtab a useful name for debug purposes. */
5030 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5031 name = xstrprintf ("<type_units_%d>",
5032 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5033 else
5034 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5035
5036 pst = create_partial_symtab (per_cu, name);
5037 pst->anonymous = 1;
5038
5039 xfree (name);
5040 }
5041
5042 tu_group->hash.dwo_unit = cu->dwo_unit;
5043 tu_group->hash.line_offset = line_offset_struct;
5044
5045 return tu_group;
5046 }
5047
5048 /* Look up the type_unit_group for type unit CU, and create it if necessary.
5049 STMT_LIST is a DW_AT_stmt_list attribute. */
5050
5051 static struct type_unit_group *
5052 get_type_unit_group (struct dwarf2_cu *cu, struct attribute *stmt_list)
5053 {
5054 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5055 struct type_unit_group *tu_group;
5056 void **slot;
5057 unsigned int line_offset;
5058 struct type_unit_group type_unit_group_for_lookup;
5059
5060 if (dwarf2_per_objfile->type_unit_groups == NULL)
5061 {
5062 dwarf2_per_objfile->type_unit_groups =
5063 allocate_type_unit_groups_table ();
5064 }
5065
5066 /* Do we need to create a new group, or can we use an existing one? */
5067
5068 if (stmt_list)
5069 {
5070 line_offset = DW_UNSND (stmt_list);
5071 ++tu_stats->nr_symtab_sharers;
5072 }
5073 else
5074 {
5075 /* Ugh, no stmt_list. Rare, but we have to handle it.
5076 We can do various things here like create one group per TU or
5077 spread them over multiple groups to split up the expansion work.
5078 To avoid worst case scenarios (too many groups or too large groups)
5079 we, umm, group them in bunches. */
5080 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5081 | (tu_stats->nr_stmt_less_type_units
5082 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5083 ++tu_stats->nr_stmt_less_type_units;
5084 }
5085
5086 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5087 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
5088 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5089 &type_unit_group_for_lookup, INSERT);
5090 if (*slot != NULL)
5091 {
5092 tu_group = *slot;
5093 gdb_assert (tu_group != NULL);
5094 }
5095 else
5096 {
5097 sect_offset line_offset_struct;
5098
5099 line_offset_struct.sect_off = line_offset;
5100 tu_group = create_type_unit_group (cu, line_offset_struct);
5101 *slot = tu_group;
5102 ++tu_stats->nr_symtabs;
5103 }
5104
5105 return tu_group;
5106 }
5107
5108 /* Struct used to sort TUs by their abbreviation table offset. */
5109
5110 struct tu_abbrev_offset
5111 {
5112 struct signatured_type *sig_type;
5113 sect_offset abbrev_offset;
5114 };
5115
5116 /* Helper routine for build_type_unit_groups, passed to qsort. */
5117
5118 static int
5119 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
5120 {
5121 const struct tu_abbrev_offset * const *a = ap;
5122 const struct tu_abbrev_offset * const *b = bp;
5123 unsigned int aoff = (*a)->abbrev_offset.sect_off;
5124 unsigned int boff = (*b)->abbrev_offset.sect_off;
5125
5126 return (aoff > boff) - (aoff < boff);
5127 }
5128
5129 /* A helper function to add a type_unit_group to a table. */
5130
5131 static int
5132 add_type_unit_group_to_table (void **slot, void *datum)
5133 {
5134 struct type_unit_group *tu_group = *slot;
5135 struct type_unit_group ***datap = datum;
5136
5137 **datap = tu_group;
5138 ++*datap;
5139
5140 return 1;
5141 }
5142
5143 /* Efficiently read all the type units, calling init_cutu_and_read_dies on
5144 each one passing FUNC,DATA.
5145
5146 The efficiency is because we sort TUs by the abbrev table they use and
5147 only read each abbrev table once. In one program there are 200K TUs
5148 sharing 8K abbrev tables.
5149
5150 The main purpose of this function is to support building the
5151 dwarf2_per_objfile->type_unit_groups table.
5152 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
5153 can collapse the search space by grouping them by stmt_list.
5154 The savings can be significant, in the same program from above the 200K TUs
5155 share 8K stmt_list tables.
5156
5157 FUNC is expected to call get_type_unit_group, which will create the
5158 struct type_unit_group if necessary and add it to
5159 dwarf2_per_objfile->type_unit_groups. */
5160
5161 static void
5162 build_type_unit_groups (die_reader_func_ftype *func, void *data)
5163 {
5164 struct objfile *objfile = dwarf2_per_objfile->objfile;
5165 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5166 struct cleanup *cleanups;
5167 struct abbrev_table *abbrev_table;
5168 sect_offset abbrev_offset;
5169 struct tu_abbrev_offset *sorted_by_abbrev;
5170 struct type_unit_group **iter;
5171 int i;
5172
5173 /* It's up to the caller to not call us multiple times. */
5174 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
5175
5176 if (dwarf2_per_objfile->n_type_units == 0)
5177 return;
5178
5179 /* TUs typically share abbrev tables, and there can be way more TUs than
5180 abbrev tables. Sort by abbrev table to reduce the number of times we
5181 read each abbrev table in.
5182 Alternatives are to punt or to maintain a cache of abbrev tables.
5183 This is simpler and efficient enough for now.
5184
5185 Later we group TUs by their DW_AT_stmt_list value (as this defines the
5186 symtab to use). Typically TUs with the same abbrev offset have the same
5187 stmt_list value too so in practice this should work well.
5188
5189 The basic algorithm here is:
5190
5191 sort TUs by abbrev table
5192 for each TU with same abbrev table:
5193 read abbrev table if first user
5194 read TU top level DIE
5195 [IWBN if DWO skeletons had DW_AT_stmt_list]
5196 call FUNC */
5197
5198 if (dwarf2_read_debug)
5199 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
5200
5201 /* Sort in a separate table to maintain the order of all_type_units
5202 for .gdb_index: TU indices directly index all_type_units. */
5203 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
5204 dwarf2_per_objfile->n_type_units);
5205 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5206 {
5207 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
5208
5209 sorted_by_abbrev[i].sig_type = sig_type;
5210 sorted_by_abbrev[i].abbrev_offset =
5211 read_abbrev_offset (sig_type->per_cu.info_or_types_section,
5212 sig_type->per_cu.offset);
5213 }
5214 cleanups = make_cleanup (xfree, sorted_by_abbrev);
5215 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
5216 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
5217
5218 /* Note: In the .gdb_index case, get_type_unit_group may have already been
5219 called any number of times, so we don't reset tu_stats here. */
5220
5221 abbrev_offset.sect_off = ~(unsigned) 0;
5222 abbrev_table = NULL;
5223 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
5224
5225 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5226 {
5227 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
5228
5229 /* Switch to the next abbrev table if necessary. */
5230 if (abbrev_table == NULL
5231 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
5232 {
5233 if (abbrev_table != NULL)
5234 {
5235 abbrev_table_free (abbrev_table);
5236 /* Reset to NULL in case abbrev_table_read_table throws
5237 an error: abbrev_table_free_cleanup will get called. */
5238 abbrev_table = NULL;
5239 }
5240 abbrev_offset = tu->abbrev_offset;
5241 abbrev_table =
5242 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
5243 abbrev_offset);
5244 ++tu_stats->nr_uniq_abbrev_tables;
5245 }
5246
5247 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
5248 func, data);
5249 }
5250
5251 /* Create a vector of pointers to primary type units to make it easy to
5252 iterate over them and CUs. See dw2_get_primary_cu. */
5253 dwarf2_per_objfile->n_type_unit_groups =
5254 htab_elements (dwarf2_per_objfile->type_unit_groups);
5255 dwarf2_per_objfile->all_type_unit_groups =
5256 obstack_alloc (&objfile->objfile_obstack,
5257 dwarf2_per_objfile->n_type_unit_groups
5258 * sizeof (struct type_unit_group *));
5259 iter = &dwarf2_per_objfile->all_type_unit_groups[0];
5260 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
5261 add_type_unit_group_to_table, &iter);
5262 gdb_assert (iter - &dwarf2_per_objfile->all_type_unit_groups[0]
5263 == dwarf2_per_objfile->n_type_unit_groups);
5264
5265 do_cleanups (cleanups);
5266
5267 if (dwarf2_read_debug)
5268 {
5269 fprintf_unfiltered (gdb_stdlog, "Done building type unit groups:\n");
5270 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
5271 dwarf2_per_objfile->n_type_units);
5272 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
5273 tu_stats->nr_uniq_abbrev_tables);
5274 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
5275 tu_stats->nr_symtabs);
5276 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
5277 tu_stats->nr_symtab_sharers);
5278 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
5279 tu_stats->nr_stmt_less_type_units);
5280 }
5281 }
5282
5283 /* Reader function for build_type_psymtabs. */
5284
5285 static void
5286 build_type_psymtabs_reader (const struct die_reader_specs *reader,
5287 gdb_byte *info_ptr,
5288 struct die_info *type_unit_die,
5289 int has_children,
5290 void *data)
5291 {
5292 struct objfile *objfile = dwarf2_per_objfile->objfile;
5293 struct dwarf2_cu *cu = reader->cu;
5294 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5295 struct type_unit_group *tu_group;
5296 struct attribute *attr;
5297 struct partial_die_info *first_die;
5298 CORE_ADDR lowpc, highpc;
5299 struct partial_symtab *pst;
5300
5301 gdb_assert (data == NULL);
5302
5303 if (! has_children)
5304 return;
5305
5306 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
5307 tu_group = get_type_unit_group (cu, attr);
5308
5309 VEC_safe_push (dwarf2_per_cu_ptr, tu_group->t.tus, per_cu);
5310
5311 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
5312 cu->list_in_scope = &file_symbols;
5313 pst = create_partial_symtab (per_cu, "");
5314 pst->anonymous = 1;
5315
5316 first_die = load_partial_dies (reader, info_ptr, 1);
5317
5318 lowpc = (CORE_ADDR) -1;
5319 highpc = (CORE_ADDR) 0;
5320 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
5321
5322 pst->n_global_syms = objfile->global_psymbols.next -
5323 (objfile->global_psymbols.list + pst->globals_offset);
5324 pst->n_static_syms = objfile->static_psymbols.next -
5325 (objfile->static_psymbols.list + pst->statics_offset);
5326 sort_pst_symbols (objfile, pst);
5327 }
5328
5329 /* Traversal function for build_type_psymtabs. */
5330
5331 static int
5332 build_type_psymtab_dependencies (void **slot, void *info)
5333 {
5334 struct objfile *objfile = dwarf2_per_objfile->objfile;
5335 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
5336 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
5337 struct partial_symtab *pst = per_cu->v.psymtab;
5338 int len = VEC_length (dwarf2_per_cu_ptr, tu_group->t.tus);
5339 struct dwarf2_per_cu_data *iter;
5340 int i;
5341
5342 gdb_assert (len > 0);
5343
5344 pst->number_of_dependencies = len;
5345 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
5346 len * sizeof (struct psymtab *));
5347 for (i = 0;
5348 VEC_iterate (dwarf2_per_cu_ptr, tu_group->t.tus, i, iter);
5349 ++i)
5350 {
5351 pst->dependencies[i] = iter->v.psymtab;
5352 iter->s.type_unit_group = tu_group;
5353 }
5354
5355 VEC_free (dwarf2_per_cu_ptr, tu_group->t.tus);
5356
5357 return 1;
5358 }
5359
5360 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
5361 Build partial symbol tables for the .debug_types comp-units. */
5362
5363 static void
5364 build_type_psymtabs (struct objfile *objfile)
5365 {
5366 if (! create_all_type_units (objfile))
5367 return;
5368
5369 build_type_unit_groups (build_type_psymtabs_reader, NULL);
5370
5371 /* Now that all TUs have been processed we can fill in the dependencies. */
5372 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
5373 build_type_psymtab_dependencies, NULL);
5374 }
5375
5376 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
5377
5378 static void
5379 psymtabs_addrmap_cleanup (void *o)
5380 {
5381 struct objfile *objfile = o;
5382
5383 objfile->psymtabs_addrmap = NULL;
5384 }
5385
5386 /* Compute the 'user' field for each psymtab in OBJFILE. */
5387
5388 static void
5389 set_partial_user (struct objfile *objfile)
5390 {
5391 int i;
5392
5393 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
5394 {
5395 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
5396 struct partial_symtab *pst = per_cu->v.psymtab;
5397 int j;
5398
5399 if (pst == NULL)
5400 continue;
5401
5402 for (j = 0; j < pst->number_of_dependencies; ++j)
5403 {
5404 /* Set the 'user' field only if it is not already set. */
5405 if (pst->dependencies[j]->user == NULL)
5406 pst->dependencies[j]->user = pst;
5407 }
5408 }
5409 }
5410
5411 /* Build the partial symbol table by doing a quick pass through the
5412 .debug_info and .debug_abbrev sections. */
5413
5414 static void
5415 dwarf2_build_psymtabs_hard (struct objfile *objfile)
5416 {
5417 struct cleanup *back_to, *addrmap_cleanup;
5418 struct obstack temp_obstack;
5419 int i;
5420
5421 if (dwarf2_read_debug)
5422 {
5423 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
5424 objfile->name);
5425 }
5426
5427 dwarf2_per_objfile->reading_partial_symbols = 1;
5428
5429 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
5430
5431 /* Any cached compilation units will be linked by the per-objfile
5432 read_in_chain. Make sure to free them when we're done. */
5433 back_to = make_cleanup (free_cached_comp_units, NULL);
5434
5435 build_type_psymtabs (objfile);
5436
5437 create_all_comp_units (objfile);
5438
5439 /* Create a temporary address map on a temporary obstack. We later
5440 copy this to the final obstack. */
5441 obstack_init (&temp_obstack);
5442 make_cleanup_obstack_free (&temp_obstack);
5443 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
5444 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
5445
5446 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
5447 {
5448 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
5449
5450 process_psymtab_comp_unit (per_cu, 0);
5451 }
5452
5453 set_partial_user (objfile);
5454
5455 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
5456 &objfile->objfile_obstack);
5457 discard_cleanups (addrmap_cleanup);
5458
5459 do_cleanups (back_to);
5460
5461 if (dwarf2_read_debug)
5462 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
5463 objfile->name);
5464 }
5465
5466 /* die_reader_func for load_partial_comp_unit. */
5467
5468 static void
5469 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
5470 gdb_byte *info_ptr,
5471 struct die_info *comp_unit_die,
5472 int has_children,
5473 void *data)
5474 {
5475 struct dwarf2_cu *cu = reader->cu;
5476
5477 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
5478
5479 /* Check if comp unit has_children.
5480 If so, read the rest of the partial symbols from this comp unit.
5481 If not, there's no more debug_info for this comp unit. */
5482 if (has_children)
5483 load_partial_dies (reader, info_ptr, 0);
5484 }
5485
5486 /* Load the partial DIEs for a secondary CU into memory.
5487 This is also used when rereading a primary CU with load_all_dies. */
5488
5489 static void
5490 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
5491 {
5492 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
5493 load_partial_comp_unit_reader, NULL);
5494 }
5495
5496 static void
5497 read_comp_units_from_section (struct objfile *objfile,
5498 struct dwarf2_section_info *section,
5499 unsigned int is_dwz,
5500 int *n_allocated,
5501 int *n_comp_units,
5502 struct dwarf2_per_cu_data ***all_comp_units)
5503 {
5504 gdb_byte *info_ptr;
5505 bfd *abfd = section->asection->owner;
5506
5507 dwarf2_read_section (objfile, section);
5508
5509 info_ptr = section->buffer;
5510
5511 while (info_ptr < section->buffer + section->size)
5512 {
5513 unsigned int length, initial_length_size;
5514 struct dwarf2_per_cu_data *this_cu;
5515 sect_offset offset;
5516
5517 offset.sect_off = info_ptr - section->buffer;
5518
5519 /* Read just enough information to find out where the next
5520 compilation unit is. */
5521 length = read_initial_length (abfd, info_ptr, &initial_length_size);
5522
5523 /* Save the compilation unit for later lookup. */
5524 this_cu = obstack_alloc (&objfile->objfile_obstack,
5525 sizeof (struct dwarf2_per_cu_data));
5526 memset (this_cu, 0, sizeof (*this_cu));
5527 this_cu->offset = offset;
5528 this_cu->length = length + initial_length_size;
5529 this_cu->is_dwz = is_dwz;
5530 this_cu->objfile = objfile;
5531 this_cu->info_or_types_section = section;
5532
5533 if (*n_comp_units == *n_allocated)
5534 {
5535 *n_allocated *= 2;
5536 *all_comp_units = xrealloc (*all_comp_units,
5537 *n_allocated
5538 * sizeof (struct dwarf2_per_cu_data *));
5539 }
5540 (*all_comp_units)[*n_comp_units] = this_cu;
5541 ++*n_comp_units;
5542
5543 info_ptr = info_ptr + this_cu->length;
5544 }
5545 }
5546
5547 /* Create a list of all compilation units in OBJFILE.
5548 This is only done for -readnow and building partial symtabs. */
5549
5550 static void
5551 create_all_comp_units (struct objfile *objfile)
5552 {
5553 int n_allocated;
5554 int n_comp_units;
5555 struct dwarf2_per_cu_data **all_comp_units;
5556
5557 n_comp_units = 0;
5558 n_allocated = 10;
5559 all_comp_units = xmalloc (n_allocated
5560 * sizeof (struct dwarf2_per_cu_data *));
5561
5562 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
5563 &n_allocated, &n_comp_units, &all_comp_units);
5564
5565 if (bfd_get_section_by_name (objfile->obfd, ".gnu_debugaltlink") != NULL)
5566 {
5567 struct dwz_file *dwz = dwarf2_get_dwz_file ();
5568
5569 read_comp_units_from_section (objfile, &dwz->info, 1,
5570 &n_allocated, &n_comp_units,
5571 &all_comp_units);
5572 }
5573
5574 dwarf2_per_objfile->all_comp_units
5575 = obstack_alloc (&objfile->objfile_obstack,
5576 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
5577 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
5578 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
5579 xfree (all_comp_units);
5580 dwarf2_per_objfile->n_comp_units = n_comp_units;
5581 }
5582
5583 /* Process all loaded DIEs for compilation unit CU, starting at
5584 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
5585 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
5586 DW_AT_ranges). If NEED_PC is set, then this function will set
5587 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
5588 and record the covered ranges in the addrmap. */
5589
5590 static void
5591 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
5592 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
5593 {
5594 struct partial_die_info *pdi;
5595
5596 /* Now, march along the PDI's, descending into ones which have
5597 interesting children but skipping the children of the other ones,
5598 until we reach the end of the compilation unit. */
5599
5600 pdi = first_die;
5601
5602 while (pdi != NULL)
5603 {
5604 fixup_partial_die (pdi, cu);
5605
5606 /* Anonymous namespaces or modules have no name but have interesting
5607 children, so we need to look at them. Ditto for anonymous
5608 enums. */
5609
5610 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
5611 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
5612 || pdi->tag == DW_TAG_imported_unit)
5613 {
5614 switch (pdi->tag)
5615 {
5616 case DW_TAG_subprogram:
5617 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
5618 break;
5619 case DW_TAG_constant:
5620 case DW_TAG_variable:
5621 case DW_TAG_typedef:
5622 case DW_TAG_union_type:
5623 if (!pdi->is_declaration)
5624 {
5625 add_partial_symbol (pdi, cu);
5626 }
5627 break;
5628 case DW_TAG_class_type:
5629 case DW_TAG_interface_type:
5630 case DW_TAG_structure_type:
5631 if (!pdi->is_declaration)
5632 {
5633 add_partial_symbol (pdi, cu);
5634 }
5635 break;
5636 case DW_TAG_enumeration_type:
5637 if (!pdi->is_declaration)
5638 add_partial_enumeration (pdi, cu);
5639 break;
5640 case DW_TAG_base_type:
5641 case DW_TAG_subrange_type:
5642 /* File scope base type definitions are added to the partial
5643 symbol table. */
5644 add_partial_symbol (pdi, cu);
5645 break;
5646 case DW_TAG_namespace:
5647 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
5648 break;
5649 case DW_TAG_module:
5650 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
5651 break;
5652 case DW_TAG_imported_unit:
5653 {
5654 struct dwarf2_per_cu_data *per_cu;
5655
5656 /* For now we don't handle imported units in type units. */
5657 if (cu->per_cu->is_debug_types)
5658 {
5659 error (_("Dwarf Error: DW_TAG_imported_unit is not"
5660 " supported in type units [in module %s]"),
5661 cu->objfile->name);
5662 }
5663
5664 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
5665 pdi->is_dwz,
5666 cu->objfile);
5667
5668 /* Go read the partial unit, if needed. */
5669 if (per_cu->v.psymtab == NULL)
5670 process_psymtab_comp_unit (per_cu, 1);
5671
5672 VEC_safe_push (dwarf2_per_cu_ptr,
5673 cu->per_cu->s.imported_symtabs, per_cu);
5674 }
5675 break;
5676 default:
5677 break;
5678 }
5679 }
5680
5681 /* If the die has a sibling, skip to the sibling. */
5682
5683 pdi = pdi->die_sibling;
5684 }
5685 }
5686
5687 /* Functions used to compute the fully scoped name of a partial DIE.
5688
5689 Normally, this is simple. For C++, the parent DIE's fully scoped
5690 name is concatenated with "::" and the partial DIE's name. For
5691 Java, the same thing occurs except that "." is used instead of "::".
5692 Enumerators are an exception; they use the scope of their parent
5693 enumeration type, i.e. the name of the enumeration type is not
5694 prepended to the enumerator.
5695
5696 There are two complexities. One is DW_AT_specification; in this
5697 case "parent" means the parent of the target of the specification,
5698 instead of the direct parent of the DIE. The other is compilers
5699 which do not emit DW_TAG_namespace; in this case we try to guess
5700 the fully qualified name of structure types from their members'
5701 linkage names. This must be done using the DIE's children rather
5702 than the children of any DW_AT_specification target. We only need
5703 to do this for structures at the top level, i.e. if the target of
5704 any DW_AT_specification (if any; otherwise the DIE itself) does not
5705 have a parent. */
5706
5707 /* Compute the scope prefix associated with PDI's parent, in
5708 compilation unit CU. The result will be allocated on CU's
5709 comp_unit_obstack, or a copy of the already allocated PDI->NAME
5710 field. NULL is returned if no prefix is necessary. */
5711 static char *
5712 partial_die_parent_scope (struct partial_die_info *pdi,
5713 struct dwarf2_cu *cu)
5714 {
5715 char *grandparent_scope;
5716 struct partial_die_info *parent, *real_pdi;
5717
5718 /* We need to look at our parent DIE; if we have a DW_AT_specification,
5719 then this means the parent of the specification DIE. */
5720
5721 real_pdi = pdi;
5722 while (real_pdi->has_specification)
5723 real_pdi = find_partial_die (real_pdi->spec_offset,
5724 real_pdi->spec_is_dwz, cu);
5725
5726 parent = real_pdi->die_parent;
5727 if (parent == NULL)
5728 return NULL;
5729
5730 if (parent->scope_set)
5731 return parent->scope;
5732
5733 fixup_partial_die (parent, cu);
5734
5735 grandparent_scope = partial_die_parent_scope (parent, cu);
5736
5737 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
5738 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
5739 Work around this problem here. */
5740 if (cu->language == language_cplus
5741 && parent->tag == DW_TAG_namespace
5742 && strcmp (parent->name, "::") == 0
5743 && grandparent_scope == NULL)
5744 {
5745 parent->scope = NULL;
5746 parent->scope_set = 1;
5747 return NULL;
5748 }
5749
5750 if (pdi->tag == DW_TAG_enumerator)
5751 /* Enumerators should not get the name of the enumeration as a prefix. */
5752 parent->scope = grandparent_scope;
5753 else if (parent->tag == DW_TAG_namespace
5754 || parent->tag == DW_TAG_module
5755 || parent->tag == DW_TAG_structure_type
5756 || parent->tag == DW_TAG_class_type
5757 || parent->tag == DW_TAG_interface_type
5758 || parent->tag == DW_TAG_union_type
5759 || parent->tag == DW_TAG_enumeration_type)
5760 {
5761 if (grandparent_scope == NULL)
5762 parent->scope = parent->name;
5763 else
5764 parent->scope = typename_concat (&cu->comp_unit_obstack,
5765 grandparent_scope,
5766 parent->name, 0, cu);
5767 }
5768 else
5769 {
5770 /* FIXME drow/2004-04-01: What should we be doing with
5771 function-local names? For partial symbols, we should probably be
5772 ignoring them. */
5773 complaint (&symfile_complaints,
5774 _("unhandled containing DIE tag %d for DIE at %d"),
5775 parent->tag, pdi->offset.sect_off);
5776 parent->scope = grandparent_scope;
5777 }
5778
5779 parent->scope_set = 1;
5780 return parent->scope;
5781 }
5782
5783 /* Return the fully scoped name associated with PDI, from compilation unit
5784 CU. The result will be allocated with malloc. */
5785
5786 static char *
5787 partial_die_full_name (struct partial_die_info *pdi,
5788 struct dwarf2_cu *cu)
5789 {
5790 char *parent_scope;
5791
5792 /* If this is a template instantiation, we can not work out the
5793 template arguments from partial DIEs. So, unfortunately, we have
5794 to go through the full DIEs. At least any work we do building
5795 types here will be reused if full symbols are loaded later. */
5796 if (pdi->has_template_arguments)
5797 {
5798 fixup_partial_die (pdi, cu);
5799
5800 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
5801 {
5802 struct die_info *die;
5803 struct attribute attr;
5804 struct dwarf2_cu *ref_cu = cu;
5805
5806 /* DW_FORM_ref_addr is using section offset. */
5807 attr.name = 0;
5808 attr.form = DW_FORM_ref_addr;
5809 attr.u.unsnd = pdi->offset.sect_off;
5810 die = follow_die_ref (NULL, &attr, &ref_cu);
5811
5812 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
5813 }
5814 }
5815
5816 parent_scope = partial_die_parent_scope (pdi, cu);
5817 if (parent_scope == NULL)
5818 return NULL;
5819 else
5820 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
5821 }
5822
5823 static void
5824 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
5825 {
5826 struct objfile *objfile = cu->objfile;
5827 CORE_ADDR addr = 0;
5828 char *actual_name = NULL;
5829 CORE_ADDR baseaddr;
5830 int built_actual_name = 0;
5831
5832 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5833
5834 actual_name = partial_die_full_name (pdi, cu);
5835 if (actual_name)
5836 built_actual_name = 1;
5837
5838 if (actual_name == NULL)
5839 actual_name = pdi->name;
5840
5841 switch (pdi->tag)
5842 {
5843 case DW_TAG_subprogram:
5844 if (pdi->is_external || cu->language == language_ada)
5845 {
5846 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
5847 of the global scope. But in Ada, we want to be able to access
5848 nested procedures globally. So all Ada subprograms are stored
5849 in the global scope. */
5850 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
5851 mst_text, objfile); */
5852 add_psymbol_to_list (actual_name, strlen (actual_name),
5853 built_actual_name,
5854 VAR_DOMAIN, LOC_BLOCK,
5855 &objfile->global_psymbols,
5856 0, pdi->lowpc + baseaddr,
5857 cu->language, objfile);
5858 }
5859 else
5860 {
5861 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
5862 mst_file_text, objfile); */
5863 add_psymbol_to_list (actual_name, strlen (actual_name),
5864 built_actual_name,
5865 VAR_DOMAIN, LOC_BLOCK,
5866 &objfile->static_psymbols,
5867 0, pdi->lowpc + baseaddr,
5868 cu->language, objfile);
5869 }
5870 break;
5871 case DW_TAG_constant:
5872 {
5873 struct psymbol_allocation_list *list;
5874
5875 if (pdi->is_external)
5876 list = &objfile->global_psymbols;
5877 else
5878 list = &objfile->static_psymbols;
5879 add_psymbol_to_list (actual_name, strlen (actual_name),
5880 built_actual_name, VAR_DOMAIN, LOC_STATIC,
5881 list, 0, 0, cu->language, objfile);
5882 }
5883 break;
5884 case DW_TAG_variable:
5885 if (pdi->d.locdesc)
5886 addr = decode_locdesc (pdi->d.locdesc, cu);
5887
5888 if (pdi->d.locdesc
5889 && addr == 0
5890 && !dwarf2_per_objfile->has_section_at_zero)
5891 {
5892 /* A global or static variable may also have been stripped
5893 out by the linker if unused, in which case its address
5894 will be nullified; do not add such variables into partial
5895 symbol table then. */
5896 }
5897 else if (pdi->is_external)
5898 {
5899 /* Global Variable.
5900 Don't enter into the minimal symbol tables as there is
5901 a minimal symbol table entry from the ELF symbols already.
5902 Enter into partial symbol table if it has a location
5903 descriptor or a type.
5904 If the location descriptor is missing, new_symbol will create
5905 a LOC_UNRESOLVED symbol, the address of the variable will then
5906 be determined from the minimal symbol table whenever the variable
5907 is referenced.
5908 The address for the partial symbol table entry is not
5909 used by GDB, but it comes in handy for debugging partial symbol
5910 table building. */
5911
5912 if (pdi->d.locdesc || pdi->has_type)
5913 add_psymbol_to_list (actual_name, strlen (actual_name),
5914 built_actual_name,
5915 VAR_DOMAIN, LOC_STATIC,
5916 &objfile->global_psymbols,
5917 0, addr + baseaddr,
5918 cu->language, objfile);
5919 }
5920 else
5921 {
5922 /* Static Variable. Skip symbols without location descriptors. */
5923 if (pdi->d.locdesc == NULL)
5924 {
5925 if (built_actual_name)
5926 xfree (actual_name);
5927 return;
5928 }
5929 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
5930 mst_file_data, objfile); */
5931 add_psymbol_to_list (actual_name, strlen (actual_name),
5932 built_actual_name,
5933 VAR_DOMAIN, LOC_STATIC,
5934 &objfile->static_psymbols,
5935 0, addr + baseaddr,
5936 cu->language, objfile);
5937 }
5938 break;
5939 case DW_TAG_typedef:
5940 case DW_TAG_base_type:
5941 case DW_TAG_subrange_type:
5942 add_psymbol_to_list (actual_name, strlen (actual_name),
5943 built_actual_name,
5944 VAR_DOMAIN, LOC_TYPEDEF,
5945 &objfile->static_psymbols,
5946 0, (CORE_ADDR) 0, cu->language, objfile);
5947 break;
5948 case DW_TAG_namespace:
5949 add_psymbol_to_list (actual_name, strlen (actual_name),
5950 built_actual_name,
5951 VAR_DOMAIN, LOC_TYPEDEF,
5952 &objfile->global_psymbols,
5953 0, (CORE_ADDR) 0, cu->language, objfile);
5954 break;
5955 case DW_TAG_class_type:
5956 case DW_TAG_interface_type:
5957 case DW_TAG_structure_type:
5958 case DW_TAG_union_type:
5959 case DW_TAG_enumeration_type:
5960 /* Skip external references. The DWARF standard says in the section
5961 about "Structure, Union, and Class Type Entries": "An incomplete
5962 structure, union or class type is represented by a structure,
5963 union or class entry that does not have a byte size attribute
5964 and that has a DW_AT_declaration attribute." */
5965 if (!pdi->has_byte_size && pdi->is_declaration)
5966 {
5967 if (built_actual_name)
5968 xfree (actual_name);
5969 return;
5970 }
5971
5972 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
5973 static vs. global. */
5974 add_psymbol_to_list (actual_name, strlen (actual_name),
5975 built_actual_name,
5976 STRUCT_DOMAIN, LOC_TYPEDEF,
5977 (cu->language == language_cplus
5978 || cu->language == language_java)
5979 ? &objfile->global_psymbols
5980 : &objfile->static_psymbols,
5981 0, (CORE_ADDR) 0, cu->language, objfile);
5982
5983 break;
5984 case DW_TAG_enumerator:
5985 add_psymbol_to_list (actual_name, strlen (actual_name),
5986 built_actual_name,
5987 VAR_DOMAIN, LOC_CONST,
5988 (cu->language == language_cplus
5989 || cu->language == language_java)
5990 ? &objfile->global_psymbols
5991 : &objfile->static_psymbols,
5992 0, (CORE_ADDR) 0, cu->language, objfile);
5993 break;
5994 default:
5995 break;
5996 }
5997
5998 if (built_actual_name)
5999 xfree (actual_name);
6000 }
6001
6002 /* Read a partial die corresponding to a namespace; also, add a symbol
6003 corresponding to that namespace to the symbol table. NAMESPACE is
6004 the name of the enclosing namespace. */
6005
6006 static void
6007 add_partial_namespace (struct partial_die_info *pdi,
6008 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6009 int need_pc, struct dwarf2_cu *cu)
6010 {
6011 /* Add a symbol for the namespace. */
6012
6013 add_partial_symbol (pdi, cu);
6014
6015 /* Now scan partial symbols in that namespace. */
6016
6017 if (pdi->has_children)
6018 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
6019 }
6020
6021 /* Read a partial die corresponding to a Fortran module. */
6022
6023 static void
6024 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
6025 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
6026 {
6027 /* Now scan partial symbols in that module. */
6028
6029 if (pdi->has_children)
6030 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
6031 }
6032
6033 /* Read a partial die corresponding to a subprogram and create a partial
6034 symbol for that subprogram. When the CU language allows it, this
6035 routine also defines a partial symbol for each nested subprogram
6036 that this subprogram contains.
6037
6038 DIE my also be a lexical block, in which case we simply search
6039 recursively for suprograms defined inside that lexical block.
6040 Again, this is only performed when the CU language allows this
6041 type of definitions. */
6042
6043 static void
6044 add_partial_subprogram (struct partial_die_info *pdi,
6045 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6046 int need_pc, struct dwarf2_cu *cu)
6047 {
6048 if (pdi->tag == DW_TAG_subprogram)
6049 {
6050 if (pdi->has_pc_info)
6051 {
6052 if (pdi->lowpc < *lowpc)
6053 *lowpc = pdi->lowpc;
6054 if (pdi->highpc > *highpc)
6055 *highpc = pdi->highpc;
6056 if (need_pc)
6057 {
6058 CORE_ADDR baseaddr;
6059 struct objfile *objfile = cu->objfile;
6060
6061 baseaddr = ANOFFSET (objfile->section_offsets,
6062 SECT_OFF_TEXT (objfile));
6063 addrmap_set_empty (objfile->psymtabs_addrmap,
6064 pdi->lowpc + baseaddr,
6065 pdi->highpc - 1 + baseaddr,
6066 cu->per_cu->v.psymtab);
6067 }
6068 }
6069
6070 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
6071 {
6072 if (!pdi->is_declaration)
6073 /* Ignore subprogram DIEs that do not have a name, they are
6074 illegal. Do not emit a complaint at this point, we will
6075 do so when we convert this psymtab into a symtab. */
6076 if (pdi->name)
6077 add_partial_symbol (pdi, cu);
6078 }
6079 }
6080
6081 if (! pdi->has_children)
6082 return;
6083
6084 if (cu->language == language_ada)
6085 {
6086 pdi = pdi->die_child;
6087 while (pdi != NULL)
6088 {
6089 fixup_partial_die (pdi, cu);
6090 if (pdi->tag == DW_TAG_subprogram
6091 || pdi->tag == DW_TAG_lexical_block)
6092 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
6093 pdi = pdi->die_sibling;
6094 }
6095 }
6096 }
6097
6098 /* Read a partial die corresponding to an enumeration type. */
6099
6100 static void
6101 add_partial_enumeration (struct partial_die_info *enum_pdi,
6102 struct dwarf2_cu *cu)
6103 {
6104 struct partial_die_info *pdi;
6105
6106 if (enum_pdi->name != NULL)
6107 add_partial_symbol (enum_pdi, cu);
6108
6109 pdi = enum_pdi->die_child;
6110 while (pdi)
6111 {
6112 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
6113 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
6114 else
6115 add_partial_symbol (pdi, cu);
6116 pdi = pdi->die_sibling;
6117 }
6118 }
6119
6120 /* Return the initial uleb128 in the die at INFO_PTR. */
6121
6122 static unsigned int
6123 peek_abbrev_code (bfd *abfd, gdb_byte *info_ptr)
6124 {
6125 unsigned int bytes_read;
6126
6127 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6128 }
6129
6130 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
6131 Return the corresponding abbrev, or NULL if the number is zero (indicating
6132 an empty DIE). In either case *BYTES_READ will be set to the length of
6133 the initial number. */
6134
6135 static struct abbrev_info *
6136 peek_die_abbrev (gdb_byte *info_ptr, unsigned int *bytes_read,
6137 struct dwarf2_cu *cu)
6138 {
6139 bfd *abfd = cu->objfile->obfd;
6140 unsigned int abbrev_number;
6141 struct abbrev_info *abbrev;
6142
6143 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
6144
6145 if (abbrev_number == 0)
6146 return NULL;
6147
6148 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
6149 if (!abbrev)
6150 {
6151 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"),
6152 abbrev_number, bfd_get_filename (abfd));
6153 }
6154
6155 return abbrev;
6156 }
6157
6158 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
6159 Returns a pointer to the end of a series of DIEs, terminated by an empty
6160 DIE. Any children of the skipped DIEs will also be skipped. */
6161
6162 static gdb_byte *
6163 skip_children (const struct die_reader_specs *reader, gdb_byte *info_ptr)
6164 {
6165 struct dwarf2_cu *cu = reader->cu;
6166 struct abbrev_info *abbrev;
6167 unsigned int bytes_read;
6168
6169 while (1)
6170 {
6171 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
6172 if (abbrev == NULL)
6173 return info_ptr + bytes_read;
6174 else
6175 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
6176 }
6177 }
6178
6179 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
6180 INFO_PTR should point just after the initial uleb128 of a DIE, and the
6181 abbrev corresponding to that skipped uleb128 should be passed in
6182 ABBREV. Returns a pointer to this DIE's sibling, skipping any
6183 children. */
6184
6185 static gdb_byte *
6186 skip_one_die (const struct die_reader_specs *reader, gdb_byte *info_ptr,
6187 struct abbrev_info *abbrev)
6188 {
6189 unsigned int bytes_read;
6190 struct attribute attr;
6191 bfd *abfd = reader->abfd;
6192 struct dwarf2_cu *cu = reader->cu;
6193 gdb_byte *buffer = reader->buffer;
6194 const gdb_byte *buffer_end = reader->buffer_end;
6195 gdb_byte *start_info_ptr = info_ptr;
6196 unsigned int form, i;
6197
6198 for (i = 0; i < abbrev->num_attrs; i++)
6199 {
6200 /* The only abbrev we care about is DW_AT_sibling. */
6201 if (abbrev->attrs[i].name == DW_AT_sibling)
6202 {
6203 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
6204 if (attr.form == DW_FORM_ref_addr)
6205 complaint (&symfile_complaints,
6206 _("ignoring absolute DW_AT_sibling"));
6207 else
6208 return buffer + dwarf2_get_ref_die_offset (&attr).sect_off;
6209 }
6210
6211 /* If it isn't DW_AT_sibling, skip this attribute. */
6212 form = abbrev->attrs[i].form;
6213 skip_attribute:
6214 switch (form)
6215 {
6216 case DW_FORM_ref_addr:
6217 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
6218 and later it is offset sized. */
6219 if (cu->header.version == 2)
6220 info_ptr += cu->header.addr_size;
6221 else
6222 info_ptr += cu->header.offset_size;
6223 break;
6224 case DW_FORM_GNU_ref_alt:
6225 info_ptr += cu->header.offset_size;
6226 break;
6227 case DW_FORM_addr:
6228 info_ptr += cu->header.addr_size;
6229 break;
6230 case DW_FORM_data1:
6231 case DW_FORM_ref1:
6232 case DW_FORM_flag:
6233 info_ptr += 1;
6234 break;
6235 case DW_FORM_flag_present:
6236 break;
6237 case DW_FORM_data2:
6238 case DW_FORM_ref2:
6239 info_ptr += 2;
6240 break;
6241 case DW_FORM_data4:
6242 case DW_FORM_ref4:
6243 info_ptr += 4;
6244 break;
6245 case DW_FORM_data8:
6246 case DW_FORM_ref8:
6247 case DW_FORM_ref_sig8:
6248 info_ptr += 8;
6249 break;
6250 case DW_FORM_string:
6251 read_direct_string (abfd, info_ptr, &bytes_read);
6252 info_ptr += bytes_read;
6253 break;
6254 case DW_FORM_sec_offset:
6255 case DW_FORM_strp:
6256 case DW_FORM_GNU_strp_alt:
6257 info_ptr += cu->header.offset_size;
6258 break;
6259 case DW_FORM_exprloc:
6260 case DW_FORM_block:
6261 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6262 info_ptr += bytes_read;
6263 break;
6264 case DW_FORM_block1:
6265 info_ptr += 1 + read_1_byte (abfd, info_ptr);
6266 break;
6267 case DW_FORM_block2:
6268 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
6269 break;
6270 case DW_FORM_block4:
6271 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
6272 break;
6273 case DW_FORM_sdata:
6274 case DW_FORM_udata:
6275 case DW_FORM_ref_udata:
6276 case DW_FORM_GNU_addr_index:
6277 case DW_FORM_GNU_str_index:
6278 info_ptr = (gdb_byte *) safe_skip_leb128 (info_ptr, buffer_end);
6279 break;
6280 case DW_FORM_indirect:
6281 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6282 info_ptr += bytes_read;
6283 /* We need to continue parsing from here, so just go back to
6284 the top. */
6285 goto skip_attribute;
6286
6287 default:
6288 error (_("Dwarf Error: Cannot handle %s "
6289 "in DWARF reader [in module %s]"),
6290 dwarf_form_name (form),
6291 bfd_get_filename (abfd));
6292 }
6293 }
6294
6295 if (abbrev->has_children)
6296 return skip_children (reader, info_ptr);
6297 else
6298 return info_ptr;
6299 }
6300
6301 /* Locate ORIG_PDI's sibling.
6302 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
6303
6304 static gdb_byte *
6305 locate_pdi_sibling (const struct die_reader_specs *reader,
6306 struct partial_die_info *orig_pdi,
6307 gdb_byte *info_ptr)
6308 {
6309 /* Do we know the sibling already? */
6310
6311 if (orig_pdi->sibling)
6312 return orig_pdi->sibling;
6313
6314 /* Are there any children to deal with? */
6315
6316 if (!orig_pdi->has_children)
6317 return info_ptr;
6318
6319 /* Skip the children the long way. */
6320
6321 return skip_children (reader, info_ptr);
6322 }
6323
6324 /* Expand this partial symbol table into a full symbol table. */
6325
6326 static void
6327 dwarf2_psymtab_to_symtab (struct objfile *objfile, struct partial_symtab *pst)
6328 {
6329 if (pst != NULL)
6330 {
6331 if (pst->readin)
6332 {
6333 warning (_("bug: psymtab for %s is already read in."),
6334 pst->filename);
6335 }
6336 else
6337 {
6338 if (info_verbose)
6339 {
6340 printf_filtered (_("Reading in symbols for %s..."),
6341 pst->filename);
6342 gdb_flush (gdb_stdout);
6343 }
6344
6345 /* Restore our global data. */
6346 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
6347
6348 /* If this psymtab is constructed from a debug-only objfile, the
6349 has_section_at_zero flag will not necessarily be correct. We
6350 can get the correct value for this flag by looking at the data
6351 associated with the (presumably stripped) associated objfile. */
6352 if (objfile->separate_debug_objfile_backlink)
6353 {
6354 struct dwarf2_per_objfile *dpo_backlink
6355 = objfile_data (objfile->separate_debug_objfile_backlink,
6356 dwarf2_objfile_data_key);
6357
6358 dwarf2_per_objfile->has_section_at_zero
6359 = dpo_backlink->has_section_at_zero;
6360 }
6361
6362 dwarf2_per_objfile->reading_partial_symbols = 0;
6363
6364 psymtab_to_symtab_1 (pst);
6365
6366 /* Finish up the debug error message. */
6367 if (info_verbose)
6368 printf_filtered (_("done.\n"));
6369 }
6370 }
6371
6372 process_cu_includes ();
6373 }
6374 \f
6375 /* Reading in full CUs. */
6376
6377 /* Add PER_CU to the queue. */
6378
6379 static void
6380 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
6381 enum language pretend_language)
6382 {
6383 struct dwarf2_queue_item *item;
6384
6385 per_cu->queued = 1;
6386 item = xmalloc (sizeof (*item));
6387 item->per_cu = per_cu;
6388 item->pretend_language = pretend_language;
6389 item->next = NULL;
6390
6391 if (dwarf2_queue == NULL)
6392 dwarf2_queue = item;
6393 else
6394 dwarf2_queue_tail->next = item;
6395
6396 dwarf2_queue_tail = item;
6397 }
6398
6399 /* THIS_CU has a reference to PER_CU. If necessary, load the new compilation
6400 unit and add it to our queue.
6401 The result is non-zero if PER_CU was queued, otherwise the result is zero
6402 meaning either PER_CU is already queued or it is already loaded. */
6403
6404 static int
6405 maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
6406 struct dwarf2_per_cu_data *per_cu,
6407 enum language pretend_language)
6408 {
6409 /* We may arrive here during partial symbol reading, if we need full
6410 DIEs to process an unusual case (e.g. template arguments). Do
6411 not queue PER_CU, just tell our caller to load its DIEs. */
6412 if (dwarf2_per_objfile->reading_partial_symbols)
6413 {
6414 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
6415 return 1;
6416 return 0;
6417 }
6418
6419 /* Mark the dependence relation so that we don't flush PER_CU
6420 too early. */
6421 dwarf2_add_dependence (this_cu, per_cu);
6422
6423 /* If it's already on the queue, we have nothing to do. */
6424 if (per_cu->queued)
6425 return 0;
6426
6427 /* If the compilation unit is already loaded, just mark it as
6428 used. */
6429 if (per_cu->cu != NULL)
6430 {
6431 per_cu->cu->last_used = 0;
6432 return 0;
6433 }
6434
6435 /* Add it to the queue. */
6436 queue_comp_unit (per_cu, pretend_language);
6437
6438 return 1;
6439 }
6440
6441 /* Process the queue. */
6442
6443 static void
6444 process_queue (void)
6445 {
6446 struct dwarf2_queue_item *item, *next_item;
6447
6448 if (dwarf2_read_debug)
6449 {
6450 fprintf_unfiltered (gdb_stdlog,
6451 "Expanding one or more symtabs of objfile %s ...\n",
6452 dwarf2_per_objfile->objfile->name);
6453 }
6454
6455 /* The queue starts out with one item, but following a DIE reference
6456 may load a new CU, adding it to the end of the queue. */
6457 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
6458 {
6459 if (dwarf2_per_objfile->using_index
6460 ? !item->per_cu->v.quick->symtab
6461 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
6462 {
6463 struct dwarf2_per_cu_data *per_cu = item->per_cu;
6464
6465 if (dwarf2_read_debug)
6466 {
6467 fprintf_unfiltered (gdb_stdlog,
6468 "Expanding symtab of %s at offset 0x%x\n",
6469 per_cu->is_debug_types ? "TU" : "CU",
6470 per_cu->offset.sect_off);
6471 }
6472
6473 if (per_cu->is_debug_types)
6474 process_full_type_unit (per_cu, item->pretend_language);
6475 else
6476 process_full_comp_unit (per_cu, item->pretend_language);
6477
6478 if (dwarf2_read_debug)
6479 {
6480 fprintf_unfiltered (gdb_stdlog,
6481 "Done expanding %s at offset 0x%x\n",
6482 per_cu->is_debug_types ? "TU" : "CU",
6483 per_cu->offset.sect_off);
6484 }
6485 }
6486
6487 item->per_cu->queued = 0;
6488 next_item = item->next;
6489 xfree (item);
6490 }
6491
6492 dwarf2_queue_tail = NULL;
6493
6494 if (dwarf2_read_debug)
6495 {
6496 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
6497 dwarf2_per_objfile->objfile->name);
6498 }
6499 }
6500
6501 /* Free all allocated queue entries. This function only releases anything if
6502 an error was thrown; if the queue was processed then it would have been
6503 freed as we went along. */
6504
6505 static void
6506 dwarf2_release_queue (void *dummy)
6507 {
6508 struct dwarf2_queue_item *item, *last;
6509
6510 item = dwarf2_queue;
6511 while (item)
6512 {
6513 /* Anything still marked queued is likely to be in an
6514 inconsistent state, so discard it. */
6515 if (item->per_cu->queued)
6516 {
6517 if (item->per_cu->cu != NULL)
6518 free_one_cached_comp_unit (item->per_cu);
6519 item->per_cu->queued = 0;
6520 }
6521
6522 last = item;
6523 item = item->next;
6524 xfree (last);
6525 }
6526
6527 dwarf2_queue = dwarf2_queue_tail = NULL;
6528 }
6529
6530 /* Read in full symbols for PST, and anything it depends on. */
6531
6532 static void
6533 psymtab_to_symtab_1 (struct partial_symtab *pst)
6534 {
6535 struct dwarf2_per_cu_data *per_cu;
6536 int i;
6537
6538 if (pst->readin)
6539 return;
6540
6541 for (i = 0; i < pst->number_of_dependencies; i++)
6542 if (!pst->dependencies[i]->readin
6543 && pst->dependencies[i]->user == NULL)
6544 {
6545 /* Inform about additional files that need to be read in. */
6546 if (info_verbose)
6547 {
6548 /* FIXME: i18n: Need to make this a single string. */
6549 fputs_filtered (" ", gdb_stdout);
6550 wrap_here ("");
6551 fputs_filtered ("and ", gdb_stdout);
6552 wrap_here ("");
6553 printf_filtered ("%s...", pst->dependencies[i]->filename);
6554 wrap_here (""); /* Flush output. */
6555 gdb_flush (gdb_stdout);
6556 }
6557 psymtab_to_symtab_1 (pst->dependencies[i]);
6558 }
6559
6560 per_cu = pst->read_symtab_private;
6561
6562 if (per_cu == NULL)
6563 {
6564 /* It's an include file, no symbols to read for it.
6565 Everything is in the parent symtab. */
6566 pst->readin = 1;
6567 return;
6568 }
6569
6570 dw2_do_instantiate_symtab (per_cu);
6571 }
6572
6573 /* Trivial hash function for die_info: the hash value of a DIE
6574 is its offset in .debug_info for this objfile. */
6575
6576 static hashval_t
6577 die_hash (const void *item)
6578 {
6579 const struct die_info *die = item;
6580
6581 return die->offset.sect_off;
6582 }
6583
6584 /* Trivial comparison function for die_info structures: two DIEs
6585 are equal if they have the same offset. */
6586
6587 static int
6588 die_eq (const void *item_lhs, const void *item_rhs)
6589 {
6590 const struct die_info *die_lhs = item_lhs;
6591 const struct die_info *die_rhs = item_rhs;
6592
6593 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
6594 }
6595
6596 /* die_reader_func for load_full_comp_unit.
6597 This is identical to read_signatured_type_reader,
6598 but is kept separate for now. */
6599
6600 static void
6601 load_full_comp_unit_reader (const struct die_reader_specs *reader,
6602 gdb_byte *info_ptr,
6603 struct die_info *comp_unit_die,
6604 int has_children,
6605 void *data)
6606 {
6607 struct dwarf2_cu *cu = reader->cu;
6608 enum language *language_ptr = data;
6609
6610 gdb_assert (cu->die_hash == NULL);
6611 cu->die_hash =
6612 htab_create_alloc_ex (cu->header.length / 12,
6613 die_hash,
6614 die_eq,
6615 NULL,
6616 &cu->comp_unit_obstack,
6617 hashtab_obstack_allocate,
6618 dummy_obstack_deallocate);
6619
6620 if (has_children)
6621 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
6622 &info_ptr, comp_unit_die);
6623 cu->dies = comp_unit_die;
6624 /* comp_unit_die is not stored in die_hash, no need. */
6625
6626 /* We try not to read any attributes in this function, because not
6627 all CUs needed for references have been loaded yet, and symbol
6628 table processing isn't initialized. But we have to set the CU language,
6629 or we won't be able to build types correctly.
6630 Similarly, if we do not read the producer, we can not apply
6631 producer-specific interpretation. */
6632 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
6633 }
6634
6635 /* Load the DIEs associated with PER_CU into memory. */
6636
6637 static void
6638 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
6639 enum language pretend_language)
6640 {
6641 gdb_assert (! this_cu->is_debug_types);
6642
6643 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6644 load_full_comp_unit_reader, &pretend_language);
6645 }
6646
6647 /* Add a DIE to the delayed physname list. */
6648
6649 static void
6650 add_to_method_list (struct type *type, int fnfield_index, int index,
6651 const char *name, struct die_info *die,
6652 struct dwarf2_cu *cu)
6653 {
6654 struct delayed_method_info mi;
6655 mi.type = type;
6656 mi.fnfield_index = fnfield_index;
6657 mi.index = index;
6658 mi.name = name;
6659 mi.die = die;
6660 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
6661 }
6662
6663 /* A cleanup for freeing the delayed method list. */
6664
6665 static void
6666 free_delayed_list (void *ptr)
6667 {
6668 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
6669 if (cu->method_list != NULL)
6670 {
6671 VEC_free (delayed_method_info, cu->method_list);
6672 cu->method_list = NULL;
6673 }
6674 }
6675
6676 /* Compute the physnames of any methods on the CU's method list.
6677
6678 The computation of method physnames is delayed in order to avoid the
6679 (bad) condition that one of the method's formal parameters is of an as yet
6680 incomplete type. */
6681
6682 static void
6683 compute_delayed_physnames (struct dwarf2_cu *cu)
6684 {
6685 int i;
6686 struct delayed_method_info *mi;
6687 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
6688 {
6689 const char *physname;
6690 struct fn_fieldlist *fn_flp
6691 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
6692 physname = dwarf2_physname ((char *) mi->name, mi->die, cu);
6693 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
6694 }
6695 }
6696
6697 /* Go objects should be embedded in a DW_TAG_module DIE,
6698 and it's not clear if/how imported objects will appear.
6699 To keep Go support simple until that's worked out,
6700 go back through what we've read and create something usable.
6701 We could do this while processing each DIE, and feels kinda cleaner,
6702 but that way is more invasive.
6703 This is to, for example, allow the user to type "p var" or "b main"
6704 without having to specify the package name, and allow lookups
6705 of module.object to work in contexts that use the expression
6706 parser. */
6707
6708 static void
6709 fixup_go_packaging (struct dwarf2_cu *cu)
6710 {
6711 char *package_name = NULL;
6712 struct pending *list;
6713 int i;
6714
6715 for (list = global_symbols; list != NULL; list = list->next)
6716 {
6717 for (i = 0; i < list->nsyms; ++i)
6718 {
6719 struct symbol *sym = list->symbol[i];
6720
6721 if (SYMBOL_LANGUAGE (sym) == language_go
6722 && SYMBOL_CLASS (sym) == LOC_BLOCK)
6723 {
6724 char *this_package_name = go_symbol_package_name (sym);
6725
6726 if (this_package_name == NULL)
6727 continue;
6728 if (package_name == NULL)
6729 package_name = this_package_name;
6730 else
6731 {
6732 if (strcmp (package_name, this_package_name) != 0)
6733 complaint (&symfile_complaints,
6734 _("Symtab %s has objects from two different Go packages: %s and %s"),
6735 (SYMBOL_SYMTAB (sym)
6736 ? SYMBOL_SYMTAB (sym)->filename
6737 : cu->objfile->name),
6738 this_package_name, package_name);
6739 xfree (this_package_name);
6740 }
6741 }
6742 }
6743 }
6744
6745 if (package_name != NULL)
6746 {
6747 struct objfile *objfile = cu->objfile;
6748 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
6749 package_name, objfile);
6750 struct symbol *sym;
6751
6752 TYPE_TAG_NAME (type) = TYPE_NAME (type);
6753
6754 sym = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
6755 SYMBOL_SET_LANGUAGE (sym, language_go);
6756 SYMBOL_SET_NAMES (sym, package_name, strlen (package_name), 1, objfile);
6757 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
6758 e.g., "main" finds the "main" module and not C's main(). */
6759 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
6760 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
6761 SYMBOL_TYPE (sym) = type;
6762
6763 add_symbol_to_list (sym, &global_symbols);
6764
6765 xfree (package_name);
6766 }
6767 }
6768
6769 static void compute_symtab_includes (struct dwarf2_per_cu_data *per_cu);
6770
6771 /* Return the symtab for PER_CU. This works properly regardless of
6772 whether we're using the index or psymtabs. */
6773
6774 static struct symtab *
6775 get_symtab (struct dwarf2_per_cu_data *per_cu)
6776 {
6777 return (dwarf2_per_objfile->using_index
6778 ? per_cu->v.quick->symtab
6779 : per_cu->v.psymtab->symtab);
6780 }
6781
6782 /* A helper function for computing the list of all symbol tables
6783 included by PER_CU. */
6784
6785 static void
6786 recursively_compute_inclusions (VEC (dwarf2_per_cu_ptr) **result,
6787 htab_t all_children,
6788 struct dwarf2_per_cu_data *per_cu)
6789 {
6790 void **slot;
6791 int ix;
6792 struct dwarf2_per_cu_data *iter;
6793
6794 slot = htab_find_slot (all_children, per_cu, INSERT);
6795 if (*slot != NULL)
6796 {
6797 /* This inclusion and its children have been processed. */
6798 return;
6799 }
6800
6801 *slot = per_cu;
6802 /* Only add a CU if it has a symbol table. */
6803 if (get_symtab (per_cu) != NULL)
6804 VEC_safe_push (dwarf2_per_cu_ptr, *result, per_cu);
6805
6806 for (ix = 0;
6807 VEC_iterate (dwarf2_per_cu_ptr, per_cu->s.imported_symtabs, ix, iter);
6808 ++ix)
6809 recursively_compute_inclusions (result, all_children, iter);
6810 }
6811
6812 /* Compute the symtab 'includes' fields for the symtab related to
6813 PER_CU. */
6814
6815 static void
6816 compute_symtab_includes (struct dwarf2_per_cu_data *per_cu)
6817 {
6818 gdb_assert (! per_cu->is_debug_types);
6819
6820 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->s.imported_symtabs))
6821 {
6822 int ix, len;
6823 struct dwarf2_per_cu_data *iter;
6824 VEC (dwarf2_per_cu_ptr) *result_children = NULL;
6825 htab_t all_children;
6826 struct symtab *symtab = get_symtab (per_cu);
6827
6828 /* If we don't have a symtab, we can just skip this case. */
6829 if (symtab == NULL)
6830 return;
6831
6832 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
6833 NULL, xcalloc, xfree);
6834
6835 for (ix = 0;
6836 VEC_iterate (dwarf2_per_cu_ptr, per_cu->s.imported_symtabs,
6837 ix, iter);
6838 ++ix)
6839 recursively_compute_inclusions (&result_children, all_children, iter);
6840
6841 /* Now we have a transitive closure of all the included CUs, so
6842 we can convert it to a list of symtabs. */
6843 len = VEC_length (dwarf2_per_cu_ptr, result_children);
6844 symtab->includes
6845 = obstack_alloc (&dwarf2_per_objfile->objfile->objfile_obstack,
6846 (len + 1) * sizeof (struct symtab *));
6847 for (ix = 0;
6848 VEC_iterate (dwarf2_per_cu_ptr, result_children, ix, iter);
6849 ++ix)
6850 symtab->includes[ix] = get_symtab (iter);
6851 symtab->includes[len] = NULL;
6852
6853 VEC_free (dwarf2_per_cu_ptr, result_children);
6854 htab_delete (all_children);
6855 }
6856 }
6857
6858 /* Compute the 'includes' field for the symtabs of all the CUs we just
6859 read. */
6860
6861 static void
6862 process_cu_includes (void)
6863 {
6864 int ix;
6865 struct dwarf2_per_cu_data *iter;
6866
6867 for (ix = 0;
6868 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
6869 ix, iter);
6870 ++ix)
6871 {
6872 if (! iter->is_debug_types)
6873 compute_symtab_includes (iter);
6874 }
6875
6876 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
6877 }
6878
6879 /* Generate full symbol information for PER_CU, whose DIEs have
6880 already been loaded into memory. */
6881
6882 static void
6883 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
6884 enum language pretend_language)
6885 {
6886 struct dwarf2_cu *cu = per_cu->cu;
6887 struct objfile *objfile = per_cu->objfile;
6888 CORE_ADDR lowpc, highpc;
6889 struct symtab *symtab;
6890 struct cleanup *back_to, *delayed_list_cleanup;
6891 CORE_ADDR baseaddr;
6892 struct block *static_block;
6893
6894 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6895
6896 buildsym_init ();
6897 back_to = make_cleanup (really_free_pendings, NULL);
6898 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
6899
6900 cu->list_in_scope = &file_symbols;
6901
6902 cu->language = pretend_language;
6903 cu->language_defn = language_def (cu->language);
6904
6905 /* Do line number decoding in read_file_scope () */
6906 process_die (cu->dies, cu);
6907
6908 /* For now fudge the Go package. */
6909 if (cu->language == language_go)
6910 fixup_go_packaging (cu);
6911
6912 /* Now that we have processed all the DIEs in the CU, all the types
6913 should be complete, and it should now be safe to compute all of the
6914 physnames. */
6915 compute_delayed_physnames (cu);
6916 do_cleanups (delayed_list_cleanup);
6917
6918 /* Some compilers don't define a DW_AT_high_pc attribute for the
6919 compilation unit. If the DW_AT_high_pc is missing, synthesize
6920 it, by scanning the DIE's below the compilation unit. */
6921 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
6922
6923 static_block
6924 = end_symtab_get_static_block (highpc + baseaddr, objfile, 0,
6925 per_cu->s.imported_symtabs != NULL);
6926
6927 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
6928 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
6929 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
6930 addrmap to help ensure it has an accurate map of pc values belonging to
6931 this comp unit. */
6932 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
6933
6934 symtab = end_symtab_from_static_block (static_block, objfile,
6935 SECT_OFF_TEXT (objfile), 0);
6936
6937 if (symtab != NULL)
6938 {
6939 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
6940
6941 /* Set symtab language to language from DW_AT_language. If the
6942 compilation is from a C file generated by language preprocessors, do
6943 not set the language if it was already deduced by start_subfile. */
6944 if (!(cu->language == language_c && symtab->language != language_c))
6945 symtab->language = cu->language;
6946
6947 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
6948 produce DW_AT_location with location lists but it can be possibly
6949 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
6950 there were bugs in prologue debug info, fixed later in GCC-4.5
6951 by "unwind info for epilogues" patch (which is not directly related).
6952
6953 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
6954 needed, it would be wrong due to missing DW_AT_producer there.
6955
6956 Still one can confuse GDB by using non-standard GCC compilation
6957 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
6958 */
6959 if (cu->has_loclist && gcc_4_minor >= 5)
6960 symtab->locations_valid = 1;
6961
6962 if (gcc_4_minor >= 5)
6963 symtab->epilogue_unwind_valid = 1;
6964
6965 symtab->call_site_htab = cu->call_site_htab;
6966 }
6967
6968 if (dwarf2_per_objfile->using_index)
6969 per_cu->v.quick->symtab = symtab;
6970 else
6971 {
6972 struct partial_symtab *pst = per_cu->v.psymtab;
6973 pst->symtab = symtab;
6974 pst->readin = 1;
6975 }
6976
6977 /* Push it for inclusion processing later. */
6978 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
6979
6980 do_cleanups (back_to);
6981 }
6982
6983 /* Generate full symbol information for type unit PER_CU, whose DIEs have
6984 already been loaded into memory. */
6985
6986 static void
6987 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
6988 enum language pretend_language)
6989 {
6990 struct dwarf2_cu *cu = per_cu->cu;
6991 struct objfile *objfile = per_cu->objfile;
6992 struct symtab *symtab;
6993 struct cleanup *back_to, *delayed_list_cleanup;
6994
6995 buildsym_init ();
6996 back_to = make_cleanup (really_free_pendings, NULL);
6997 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
6998
6999 cu->list_in_scope = &file_symbols;
7000
7001 cu->language = pretend_language;
7002 cu->language_defn = language_def (cu->language);
7003
7004 /* The symbol tables are set up in read_type_unit_scope. */
7005 process_die (cu->dies, cu);
7006
7007 /* For now fudge the Go package. */
7008 if (cu->language == language_go)
7009 fixup_go_packaging (cu);
7010
7011 /* Now that we have processed all the DIEs in the CU, all the types
7012 should be complete, and it should now be safe to compute all of the
7013 physnames. */
7014 compute_delayed_physnames (cu);
7015 do_cleanups (delayed_list_cleanup);
7016
7017 /* TUs share symbol tables.
7018 If this is the first TU to use this symtab, complete the construction
7019 of it with end_expandable_symtab. Otherwise, complete the addition of
7020 this TU's symbols to the existing symtab. */
7021 if (per_cu->s.type_unit_group->primary_symtab == NULL)
7022 {
7023 symtab = end_expandable_symtab (0, objfile, SECT_OFF_TEXT (objfile));
7024 per_cu->s.type_unit_group->primary_symtab = symtab;
7025
7026 if (symtab != NULL)
7027 {
7028 /* Set symtab language to language from DW_AT_language. If the
7029 compilation is from a C file generated by language preprocessors,
7030 do not set the language if it was already deduced by
7031 start_subfile. */
7032 if (!(cu->language == language_c && symtab->language != language_c))
7033 symtab->language = cu->language;
7034 }
7035 }
7036 else
7037 {
7038 augment_type_symtab (objfile,
7039 per_cu->s.type_unit_group->primary_symtab);
7040 symtab = per_cu->s.type_unit_group->primary_symtab;
7041 }
7042
7043 if (dwarf2_per_objfile->using_index)
7044 per_cu->v.quick->symtab = symtab;
7045 else
7046 {
7047 struct partial_symtab *pst = per_cu->v.psymtab;
7048 pst->symtab = symtab;
7049 pst->readin = 1;
7050 }
7051
7052 do_cleanups (back_to);
7053 }
7054
7055 /* Process an imported unit DIE. */
7056
7057 static void
7058 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
7059 {
7060 struct attribute *attr;
7061
7062 /* For now we don't handle imported units in type units. */
7063 if (cu->per_cu->is_debug_types)
7064 {
7065 error (_("Dwarf Error: DW_TAG_imported_unit is not"
7066 " supported in type units [in module %s]"),
7067 cu->objfile->name);
7068 }
7069
7070 attr = dwarf2_attr (die, DW_AT_import, cu);
7071 if (attr != NULL)
7072 {
7073 struct dwarf2_per_cu_data *per_cu;
7074 struct symtab *imported_symtab;
7075 sect_offset offset;
7076 int is_dwz;
7077
7078 offset = dwarf2_get_ref_die_offset (attr);
7079 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
7080 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
7081
7082 /* Queue the unit, if needed. */
7083 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
7084 load_full_comp_unit (per_cu, cu->language);
7085
7086 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->s.imported_symtabs,
7087 per_cu);
7088 }
7089 }
7090
7091 /* Process a die and its children. */
7092
7093 static void
7094 process_die (struct die_info *die, struct dwarf2_cu *cu)
7095 {
7096 switch (die->tag)
7097 {
7098 case DW_TAG_padding:
7099 break;
7100 case DW_TAG_compile_unit:
7101 case DW_TAG_partial_unit:
7102 read_file_scope (die, cu);
7103 break;
7104 case DW_TAG_type_unit:
7105 read_type_unit_scope (die, cu);
7106 break;
7107 case DW_TAG_subprogram:
7108 case DW_TAG_inlined_subroutine:
7109 read_func_scope (die, cu);
7110 break;
7111 case DW_TAG_lexical_block:
7112 case DW_TAG_try_block:
7113 case DW_TAG_catch_block:
7114 read_lexical_block_scope (die, cu);
7115 break;
7116 case DW_TAG_GNU_call_site:
7117 read_call_site_scope (die, cu);
7118 break;
7119 case DW_TAG_class_type:
7120 case DW_TAG_interface_type:
7121 case DW_TAG_structure_type:
7122 case DW_TAG_union_type:
7123 process_structure_scope (die, cu);
7124 break;
7125 case DW_TAG_enumeration_type:
7126 process_enumeration_scope (die, cu);
7127 break;
7128
7129 /* These dies have a type, but processing them does not create
7130 a symbol or recurse to process the children. Therefore we can
7131 read them on-demand through read_type_die. */
7132 case DW_TAG_subroutine_type:
7133 case DW_TAG_set_type:
7134 case DW_TAG_array_type:
7135 case DW_TAG_pointer_type:
7136 case DW_TAG_ptr_to_member_type:
7137 case DW_TAG_reference_type:
7138 case DW_TAG_string_type:
7139 break;
7140
7141 case DW_TAG_base_type:
7142 case DW_TAG_subrange_type:
7143 case DW_TAG_typedef:
7144 /* Add a typedef symbol for the type definition, if it has a
7145 DW_AT_name. */
7146 new_symbol (die, read_type_die (die, cu), cu);
7147 break;
7148 case DW_TAG_common_block:
7149 read_common_block (die, cu);
7150 break;
7151 case DW_TAG_common_inclusion:
7152 break;
7153 case DW_TAG_namespace:
7154 processing_has_namespace_info = 1;
7155 read_namespace (die, cu);
7156 break;
7157 case DW_TAG_module:
7158 processing_has_namespace_info = 1;
7159 read_module (die, cu);
7160 break;
7161 case DW_TAG_imported_declaration:
7162 case DW_TAG_imported_module:
7163 processing_has_namespace_info = 1;
7164 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
7165 || cu->language != language_fortran))
7166 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
7167 dwarf_tag_name (die->tag));
7168 read_import_statement (die, cu);
7169 break;
7170
7171 case DW_TAG_imported_unit:
7172 process_imported_unit_die (die, cu);
7173 break;
7174
7175 default:
7176 new_symbol (die, NULL, cu);
7177 break;
7178 }
7179 }
7180
7181 /* A helper function for dwarf2_compute_name which determines whether DIE
7182 needs to have the name of the scope prepended to the name listed in the
7183 die. */
7184
7185 static int
7186 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
7187 {
7188 struct attribute *attr;
7189
7190 switch (die->tag)
7191 {
7192 case DW_TAG_namespace:
7193 case DW_TAG_typedef:
7194 case DW_TAG_class_type:
7195 case DW_TAG_interface_type:
7196 case DW_TAG_structure_type:
7197 case DW_TAG_union_type:
7198 case DW_TAG_enumeration_type:
7199 case DW_TAG_enumerator:
7200 case DW_TAG_subprogram:
7201 case DW_TAG_member:
7202 return 1;
7203
7204 case DW_TAG_variable:
7205 case DW_TAG_constant:
7206 /* We only need to prefix "globally" visible variables. These include
7207 any variable marked with DW_AT_external or any variable that
7208 lives in a namespace. [Variables in anonymous namespaces
7209 require prefixing, but they are not DW_AT_external.] */
7210
7211 if (dwarf2_attr (die, DW_AT_specification, cu))
7212 {
7213 struct dwarf2_cu *spec_cu = cu;
7214
7215 return die_needs_namespace (die_specification (die, &spec_cu),
7216 spec_cu);
7217 }
7218
7219 attr = dwarf2_attr (die, DW_AT_external, cu);
7220 if (attr == NULL && die->parent->tag != DW_TAG_namespace
7221 && die->parent->tag != DW_TAG_module)
7222 return 0;
7223 /* A variable in a lexical block of some kind does not need a
7224 namespace, even though in C++ such variables may be external
7225 and have a mangled name. */
7226 if (die->parent->tag == DW_TAG_lexical_block
7227 || die->parent->tag == DW_TAG_try_block
7228 || die->parent->tag == DW_TAG_catch_block
7229 || die->parent->tag == DW_TAG_subprogram)
7230 return 0;
7231 return 1;
7232
7233 default:
7234 return 0;
7235 }
7236 }
7237
7238 /* Retrieve the last character from a mem_file. */
7239
7240 static void
7241 do_ui_file_peek_last (void *object, const char *buffer, long length)
7242 {
7243 char *last_char_p = (char *) object;
7244
7245 if (length > 0)
7246 *last_char_p = buffer[length - 1];
7247 }
7248
7249 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
7250 compute the physname for the object, which include a method's:
7251 - formal parameters (C++/Java),
7252 - receiver type (Go),
7253 - return type (Java).
7254
7255 The term "physname" is a bit confusing.
7256 For C++, for example, it is the demangled name.
7257 For Go, for example, it's the mangled name.
7258
7259 For Ada, return the DIE's linkage name rather than the fully qualified
7260 name. PHYSNAME is ignored..
7261
7262 The result is allocated on the objfile_obstack and canonicalized. */
7263
7264 static const char *
7265 dwarf2_compute_name (char *name, struct die_info *die, struct dwarf2_cu *cu,
7266 int physname)
7267 {
7268 struct objfile *objfile = cu->objfile;
7269
7270 if (name == NULL)
7271 name = dwarf2_name (die, cu);
7272
7273 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
7274 compute it by typename_concat inside GDB. */
7275 if (cu->language == language_ada
7276 || (cu->language == language_fortran && physname))
7277 {
7278 /* For Ada unit, we prefer the linkage name over the name, as
7279 the former contains the exported name, which the user expects
7280 to be able to reference. Ideally, we want the user to be able
7281 to reference this entity using either natural or linkage name,
7282 but we haven't started looking at this enhancement yet. */
7283 struct attribute *attr;
7284
7285 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
7286 if (attr == NULL)
7287 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
7288 if (attr && DW_STRING (attr))
7289 return DW_STRING (attr);
7290 }
7291
7292 /* These are the only languages we know how to qualify names in. */
7293 if (name != NULL
7294 && (cu->language == language_cplus || cu->language == language_java
7295 || cu->language == language_fortran))
7296 {
7297 if (die_needs_namespace (die, cu))
7298 {
7299 long length;
7300 const char *prefix;
7301 struct ui_file *buf;
7302
7303 prefix = determine_prefix (die, cu);
7304 buf = mem_fileopen ();
7305 if (*prefix != '\0')
7306 {
7307 char *prefixed_name = typename_concat (NULL, prefix, name,
7308 physname, cu);
7309
7310 fputs_unfiltered (prefixed_name, buf);
7311 xfree (prefixed_name);
7312 }
7313 else
7314 fputs_unfiltered (name, buf);
7315
7316 /* Template parameters may be specified in the DIE's DW_AT_name, or
7317 as children with DW_TAG_template_type_param or
7318 DW_TAG_value_type_param. If the latter, add them to the name
7319 here. If the name already has template parameters, then
7320 skip this step; some versions of GCC emit both, and
7321 it is more efficient to use the pre-computed name.
7322
7323 Something to keep in mind about this process: it is very
7324 unlikely, or in some cases downright impossible, to produce
7325 something that will match the mangled name of a function.
7326 If the definition of the function has the same debug info,
7327 we should be able to match up with it anyway. But fallbacks
7328 using the minimal symbol, for instance to find a method
7329 implemented in a stripped copy of libstdc++, will not work.
7330 If we do not have debug info for the definition, we will have to
7331 match them up some other way.
7332
7333 When we do name matching there is a related problem with function
7334 templates; two instantiated function templates are allowed to
7335 differ only by their return types, which we do not add here. */
7336
7337 if (cu->language == language_cplus && strchr (name, '<') == NULL)
7338 {
7339 struct attribute *attr;
7340 struct die_info *child;
7341 int first = 1;
7342
7343 die->building_fullname = 1;
7344
7345 for (child = die->child; child != NULL; child = child->sibling)
7346 {
7347 struct type *type;
7348 LONGEST value;
7349 gdb_byte *bytes;
7350 struct dwarf2_locexpr_baton *baton;
7351 struct value *v;
7352
7353 if (child->tag != DW_TAG_template_type_param
7354 && child->tag != DW_TAG_template_value_param)
7355 continue;
7356
7357 if (first)
7358 {
7359 fputs_unfiltered ("<", buf);
7360 first = 0;
7361 }
7362 else
7363 fputs_unfiltered (", ", buf);
7364
7365 attr = dwarf2_attr (child, DW_AT_type, cu);
7366 if (attr == NULL)
7367 {
7368 complaint (&symfile_complaints,
7369 _("template parameter missing DW_AT_type"));
7370 fputs_unfiltered ("UNKNOWN_TYPE", buf);
7371 continue;
7372 }
7373 type = die_type (child, cu);
7374
7375 if (child->tag == DW_TAG_template_type_param)
7376 {
7377 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
7378 continue;
7379 }
7380
7381 attr = dwarf2_attr (child, DW_AT_const_value, cu);
7382 if (attr == NULL)
7383 {
7384 complaint (&symfile_complaints,
7385 _("template parameter missing "
7386 "DW_AT_const_value"));
7387 fputs_unfiltered ("UNKNOWN_VALUE", buf);
7388 continue;
7389 }
7390
7391 dwarf2_const_value_attr (attr, type, name,
7392 &cu->comp_unit_obstack, cu,
7393 &value, &bytes, &baton);
7394
7395 if (TYPE_NOSIGN (type))
7396 /* GDB prints characters as NUMBER 'CHAR'. If that's
7397 changed, this can use value_print instead. */
7398 c_printchar (value, type, buf);
7399 else
7400 {
7401 struct value_print_options opts;
7402
7403 if (baton != NULL)
7404 v = dwarf2_evaluate_loc_desc (type, NULL,
7405 baton->data,
7406 baton->size,
7407 baton->per_cu);
7408 else if (bytes != NULL)
7409 {
7410 v = allocate_value (type);
7411 memcpy (value_contents_writeable (v), bytes,
7412 TYPE_LENGTH (type));
7413 }
7414 else
7415 v = value_from_longest (type, value);
7416
7417 /* Specify decimal so that we do not depend on
7418 the radix. */
7419 get_formatted_print_options (&opts, 'd');
7420 opts.raw = 1;
7421 value_print (v, buf, &opts);
7422 release_value (v);
7423 value_free (v);
7424 }
7425 }
7426
7427 die->building_fullname = 0;
7428
7429 if (!first)
7430 {
7431 /* Close the argument list, with a space if necessary
7432 (nested templates). */
7433 char last_char = '\0';
7434 ui_file_put (buf, do_ui_file_peek_last, &last_char);
7435 if (last_char == '>')
7436 fputs_unfiltered (" >", buf);
7437 else
7438 fputs_unfiltered (">", buf);
7439 }
7440 }
7441
7442 /* For Java and C++ methods, append formal parameter type
7443 information, if PHYSNAME. */
7444
7445 if (physname && die->tag == DW_TAG_subprogram
7446 && (cu->language == language_cplus
7447 || cu->language == language_java))
7448 {
7449 struct type *type = read_type_die (die, cu);
7450
7451 c_type_print_args (type, buf, 1, cu->language,
7452 &type_print_raw_options);
7453
7454 if (cu->language == language_java)
7455 {
7456 /* For java, we must append the return type to method
7457 names. */
7458 if (die->tag == DW_TAG_subprogram)
7459 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
7460 0, 0, &type_print_raw_options);
7461 }
7462 else if (cu->language == language_cplus)
7463 {
7464 /* Assume that an artificial first parameter is
7465 "this", but do not crash if it is not. RealView
7466 marks unnamed (and thus unused) parameters as
7467 artificial; there is no way to differentiate
7468 the two cases. */
7469 if (TYPE_NFIELDS (type) > 0
7470 && TYPE_FIELD_ARTIFICIAL (type, 0)
7471 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
7472 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
7473 0))))
7474 fputs_unfiltered (" const", buf);
7475 }
7476 }
7477
7478 name = ui_file_obsavestring (buf, &objfile->objfile_obstack,
7479 &length);
7480 ui_file_delete (buf);
7481
7482 if (cu->language == language_cplus)
7483 {
7484 char *cname
7485 = dwarf2_canonicalize_name (name, cu,
7486 &objfile->objfile_obstack);
7487
7488 if (cname != NULL)
7489 name = cname;
7490 }
7491 }
7492 }
7493
7494 return name;
7495 }
7496
7497 /* Return the fully qualified name of DIE, based on its DW_AT_name.
7498 If scope qualifiers are appropriate they will be added. The result
7499 will be allocated on the objfile_obstack, or NULL if the DIE does
7500 not have a name. NAME may either be from a previous call to
7501 dwarf2_name or NULL.
7502
7503 The output string will be canonicalized (if C++/Java). */
7504
7505 static const char *
7506 dwarf2_full_name (char *name, struct die_info *die, struct dwarf2_cu *cu)
7507 {
7508 return dwarf2_compute_name (name, die, cu, 0);
7509 }
7510
7511 /* Construct a physname for the given DIE in CU. NAME may either be
7512 from a previous call to dwarf2_name or NULL. The result will be
7513 allocated on the objfile_objstack or NULL if the DIE does not have a
7514 name.
7515
7516 The output string will be canonicalized (if C++/Java). */
7517
7518 static const char *
7519 dwarf2_physname (char *name, struct die_info *die, struct dwarf2_cu *cu)
7520 {
7521 struct objfile *objfile = cu->objfile;
7522 struct attribute *attr;
7523 const char *retval, *mangled = NULL, *canon = NULL;
7524 struct cleanup *back_to;
7525 int need_copy = 1;
7526
7527 /* In this case dwarf2_compute_name is just a shortcut not building anything
7528 on its own. */
7529 if (!die_needs_namespace (die, cu))
7530 return dwarf2_compute_name (name, die, cu, 1);
7531
7532 back_to = make_cleanup (null_cleanup, NULL);
7533
7534 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
7535 if (!attr)
7536 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
7537
7538 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
7539 has computed. */
7540 if (attr && DW_STRING (attr))
7541 {
7542 char *demangled;
7543
7544 mangled = DW_STRING (attr);
7545
7546 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
7547 type. It is easier for GDB users to search for such functions as
7548 `name(params)' than `long name(params)'. In such case the minimal
7549 symbol names do not match the full symbol names but for template
7550 functions there is never a need to look up their definition from their
7551 declaration so the only disadvantage remains the minimal symbol
7552 variant `long name(params)' does not have the proper inferior type.
7553 */
7554
7555 if (cu->language == language_go)
7556 {
7557 /* This is a lie, but we already lie to the caller new_symbol_full.
7558 new_symbol_full assumes we return the mangled name.
7559 This just undoes that lie until things are cleaned up. */
7560 demangled = NULL;
7561 }
7562 else
7563 {
7564 demangled = cplus_demangle (mangled,
7565 (DMGL_PARAMS | DMGL_ANSI
7566 | (cu->language == language_java
7567 ? DMGL_JAVA | DMGL_RET_POSTFIX
7568 : DMGL_RET_DROP)));
7569 }
7570 if (demangled)
7571 {
7572 make_cleanup (xfree, demangled);
7573 canon = demangled;
7574 }
7575 else
7576 {
7577 canon = mangled;
7578 need_copy = 0;
7579 }
7580 }
7581
7582 if (canon == NULL || check_physname)
7583 {
7584 const char *physname = dwarf2_compute_name (name, die, cu, 1);
7585
7586 if (canon != NULL && strcmp (physname, canon) != 0)
7587 {
7588 /* It may not mean a bug in GDB. The compiler could also
7589 compute DW_AT_linkage_name incorrectly. But in such case
7590 GDB would need to be bug-to-bug compatible. */
7591
7592 complaint (&symfile_complaints,
7593 _("Computed physname <%s> does not match demangled <%s> "
7594 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
7595 physname, canon, mangled, die->offset.sect_off, objfile->name);
7596
7597 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
7598 is available here - over computed PHYSNAME. It is safer
7599 against both buggy GDB and buggy compilers. */
7600
7601 retval = canon;
7602 }
7603 else
7604 {
7605 retval = physname;
7606 need_copy = 0;
7607 }
7608 }
7609 else
7610 retval = canon;
7611
7612 if (need_copy)
7613 retval = obsavestring (retval, strlen (retval),
7614 &objfile->objfile_obstack);
7615
7616 do_cleanups (back_to);
7617 return retval;
7618 }
7619
7620 /* Read the import statement specified by the given die and record it. */
7621
7622 static void
7623 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
7624 {
7625 struct objfile *objfile = cu->objfile;
7626 struct attribute *import_attr;
7627 struct die_info *imported_die, *child_die;
7628 struct dwarf2_cu *imported_cu;
7629 const char *imported_name;
7630 const char *imported_name_prefix;
7631 const char *canonical_name;
7632 const char *import_alias;
7633 const char *imported_declaration = NULL;
7634 const char *import_prefix;
7635 VEC (const_char_ptr) *excludes = NULL;
7636 struct cleanup *cleanups;
7637
7638 char *temp;
7639
7640 import_attr = dwarf2_attr (die, DW_AT_import, cu);
7641 if (import_attr == NULL)
7642 {
7643 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
7644 dwarf_tag_name (die->tag));
7645 return;
7646 }
7647
7648 imported_cu = cu;
7649 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
7650 imported_name = dwarf2_name (imported_die, imported_cu);
7651 if (imported_name == NULL)
7652 {
7653 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
7654
7655 The import in the following code:
7656 namespace A
7657 {
7658 typedef int B;
7659 }
7660
7661 int main ()
7662 {
7663 using A::B;
7664 B b;
7665 return b;
7666 }
7667
7668 ...
7669 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
7670 <52> DW_AT_decl_file : 1
7671 <53> DW_AT_decl_line : 6
7672 <54> DW_AT_import : <0x75>
7673 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
7674 <59> DW_AT_name : B
7675 <5b> DW_AT_decl_file : 1
7676 <5c> DW_AT_decl_line : 2
7677 <5d> DW_AT_type : <0x6e>
7678 ...
7679 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
7680 <76> DW_AT_byte_size : 4
7681 <77> DW_AT_encoding : 5 (signed)
7682
7683 imports the wrong die ( 0x75 instead of 0x58 ).
7684 This case will be ignored until the gcc bug is fixed. */
7685 return;
7686 }
7687
7688 /* Figure out the local name after import. */
7689 import_alias = dwarf2_name (die, cu);
7690
7691 /* Figure out where the statement is being imported to. */
7692 import_prefix = determine_prefix (die, cu);
7693
7694 /* Figure out what the scope of the imported die is and prepend it
7695 to the name of the imported die. */
7696 imported_name_prefix = determine_prefix (imported_die, imported_cu);
7697
7698 if (imported_die->tag != DW_TAG_namespace
7699 && imported_die->tag != DW_TAG_module)
7700 {
7701 imported_declaration = imported_name;
7702 canonical_name = imported_name_prefix;
7703 }
7704 else if (strlen (imported_name_prefix) > 0)
7705 {
7706 temp = alloca (strlen (imported_name_prefix)
7707 + 2 + strlen (imported_name) + 1);
7708 strcpy (temp, imported_name_prefix);
7709 strcat (temp, "::");
7710 strcat (temp, imported_name);
7711 canonical_name = temp;
7712 }
7713 else
7714 canonical_name = imported_name;
7715
7716 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
7717
7718 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
7719 for (child_die = die->child; child_die && child_die->tag;
7720 child_die = sibling_die (child_die))
7721 {
7722 /* DWARF-4: A Fortran use statement with a “rename list” may be
7723 represented by an imported module entry with an import attribute
7724 referring to the module and owned entries corresponding to those
7725 entities that are renamed as part of being imported. */
7726
7727 if (child_die->tag != DW_TAG_imported_declaration)
7728 {
7729 complaint (&symfile_complaints,
7730 _("child DW_TAG_imported_declaration expected "
7731 "- DIE at 0x%x [in module %s]"),
7732 child_die->offset.sect_off, objfile->name);
7733 continue;
7734 }
7735
7736 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
7737 if (import_attr == NULL)
7738 {
7739 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
7740 dwarf_tag_name (child_die->tag));
7741 continue;
7742 }
7743
7744 imported_cu = cu;
7745 imported_die = follow_die_ref_or_sig (child_die, import_attr,
7746 &imported_cu);
7747 imported_name = dwarf2_name (imported_die, imported_cu);
7748 if (imported_name == NULL)
7749 {
7750 complaint (&symfile_complaints,
7751 _("child DW_TAG_imported_declaration has unknown "
7752 "imported name - DIE at 0x%x [in module %s]"),
7753 child_die->offset.sect_off, objfile->name);
7754 continue;
7755 }
7756
7757 VEC_safe_push (const_char_ptr, excludes, imported_name);
7758
7759 process_die (child_die, cu);
7760 }
7761
7762 cp_add_using_directive (import_prefix,
7763 canonical_name,
7764 import_alias,
7765 imported_declaration,
7766 excludes,
7767 &objfile->objfile_obstack);
7768
7769 do_cleanups (cleanups);
7770 }
7771
7772 /* Cleanup function for handle_DW_AT_stmt_list. */
7773
7774 static void
7775 free_cu_line_header (void *arg)
7776 {
7777 struct dwarf2_cu *cu = arg;
7778
7779 free_line_header (cu->line_header);
7780 cu->line_header = NULL;
7781 }
7782
7783 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
7784 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
7785 this, it was first present in GCC release 4.3.0. */
7786
7787 static int
7788 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
7789 {
7790 if (!cu->checked_producer)
7791 check_producer (cu);
7792
7793 return cu->producer_is_gcc_lt_4_3;
7794 }
7795
7796 static void
7797 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
7798 char **name, char **comp_dir)
7799 {
7800 struct attribute *attr;
7801
7802 *name = NULL;
7803 *comp_dir = NULL;
7804
7805 /* Find the filename. Do not use dwarf2_name here, since the filename
7806 is not a source language identifier. */
7807 attr = dwarf2_attr (die, DW_AT_name, cu);
7808 if (attr)
7809 {
7810 *name = DW_STRING (attr);
7811 }
7812
7813 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
7814 if (attr)
7815 *comp_dir = DW_STRING (attr);
7816 else if (producer_is_gcc_lt_4_3 (cu) && *name != NULL
7817 && IS_ABSOLUTE_PATH (*name))
7818 {
7819 *comp_dir = ldirname (*name);
7820 if (*comp_dir != NULL)
7821 make_cleanup (xfree, *comp_dir);
7822 }
7823 if (*comp_dir != NULL)
7824 {
7825 /* Irix 6.2 native cc prepends <machine>.: to the compilation
7826 directory, get rid of it. */
7827 char *cp = strchr (*comp_dir, ':');
7828
7829 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
7830 *comp_dir = cp + 1;
7831 }
7832
7833 if (*name == NULL)
7834 *name = "<unknown>";
7835 }
7836
7837 /* Handle DW_AT_stmt_list for a compilation unit.
7838 DIE is the DW_TAG_compile_unit die for CU.
7839 COMP_DIR is the compilation directory.
7840 WANT_LINE_INFO is non-zero if the pc/line-number mapping is needed. */
7841
7842 static void
7843 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
7844 const char *comp_dir)
7845 {
7846 struct attribute *attr;
7847
7848 gdb_assert (! cu->per_cu->is_debug_types);
7849
7850 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
7851 if (attr)
7852 {
7853 unsigned int line_offset = DW_UNSND (attr);
7854 struct line_header *line_header
7855 = dwarf_decode_line_header (line_offset, cu);
7856
7857 if (line_header)
7858 {
7859 cu->line_header = line_header;
7860 make_cleanup (free_cu_line_header, cu);
7861 dwarf_decode_lines (line_header, comp_dir, cu, NULL, 1);
7862 }
7863 }
7864 }
7865
7866 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
7867
7868 static void
7869 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
7870 {
7871 struct objfile *objfile = dwarf2_per_objfile->objfile;
7872 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
7873 CORE_ADDR lowpc = ((CORE_ADDR) -1);
7874 CORE_ADDR highpc = ((CORE_ADDR) 0);
7875 struct attribute *attr;
7876 char *name = NULL;
7877 char *comp_dir = NULL;
7878 struct die_info *child_die;
7879 bfd *abfd = objfile->obfd;
7880 CORE_ADDR baseaddr;
7881
7882 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7883
7884 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
7885
7886 /* If we didn't find a lowpc, set it to highpc to avoid complaints
7887 from finish_block. */
7888 if (lowpc == ((CORE_ADDR) -1))
7889 lowpc = highpc;
7890 lowpc += baseaddr;
7891 highpc += baseaddr;
7892
7893 find_file_and_directory (die, cu, &name, &comp_dir);
7894
7895 prepare_one_comp_unit (cu, die, cu->language);
7896
7897 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
7898 standardised yet. As a workaround for the language detection we fall
7899 back to the DW_AT_producer string. */
7900 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
7901 cu->language = language_opencl;
7902
7903 /* Similar hack for Go. */
7904 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
7905 set_cu_language (DW_LANG_Go, cu);
7906
7907 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
7908
7909 /* Decode line number information if present. We do this before
7910 processing child DIEs, so that the line header table is available
7911 for DW_AT_decl_file. */
7912 handle_DW_AT_stmt_list (die, cu, comp_dir);
7913
7914 /* Process all dies in compilation unit. */
7915 if (die->child != NULL)
7916 {
7917 child_die = die->child;
7918 while (child_die && child_die->tag)
7919 {
7920 process_die (child_die, cu);
7921 child_die = sibling_die (child_die);
7922 }
7923 }
7924
7925 /* Decode macro information, if present. Dwarf 2 macro information
7926 refers to information in the line number info statement program
7927 header, so we can only read it if we've read the header
7928 successfully. */
7929 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
7930 if (attr && cu->line_header)
7931 {
7932 if (dwarf2_attr (die, DW_AT_macro_info, cu))
7933 complaint (&symfile_complaints,
7934 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
7935
7936 dwarf_decode_macros (cu, DW_UNSND (attr), comp_dir, 1);
7937 }
7938 else
7939 {
7940 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
7941 if (attr && cu->line_header)
7942 {
7943 unsigned int macro_offset = DW_UNSND (attr);
7944
7945 dwarf_decode_macros (cu, macro_offset, comp_dir, 0);
7946 }
7947 }
7948
7949 do_cleanups (back_to);
7950 }
7951
7952 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
7953 Create the set of symtabs used by this TU, or if this TU is sharing
7954 symtabs with another TU and the symtabs have already been created
7955 then restore those symtabs in the line header.
7956 We don't need the pc/line-number mapping for type units. */
7957
7958 static void
7959 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
7960 {
7961 struct objfile *objfile = dwarf2_per_objfile->objfile;
7962 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7963 struct type_unit_group *tu_group;
7964 int first_time;
7965 struct line_header *lh;
7966 struct attribute *attr;
7967 unsigned int i, line_offset;
7968
7969 gdb_assert (per_cu->is_debug_types);
7970
7971 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
7972
7973 /* If we're using .gdb_index (includes -readnow) then
7974 per_cu->s.type_unit_group may not have been set up yet. */
7975 if (per_cu->s.type_unit_group == NULL)
7976 per_cu->s.type_unit_group = get_type_unit_group (cu, attr);
7977 tu_group = per_cu->s.type_unit_group;
7978
7979 /* If we've already processed this stmt_list there's no real need to
7980 do it again, we could fake it and just recreate the part we need
7981 (file name,index -> symtab mapping). If data shows this optimization
7982 is useful we can do it then. */
7983 first_time = tu_group->primary_symtab == NULL;
7984
7985 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
7986 debug info. */
7987 lh = NULL;
7988 if (attr != NULL)
7989 {
7990 line_offset = DW_UNSND (attr);
7991 lh = dwarf_decode_line_header (line_offset, cu);
7992 }
7993 if (lh == NULL)
7994 {
7995 if (first_time)
7996 dwarf2_start_symtab (cu, "", NULL, 0);
7997 else
7998 {
7999 gdb_assert (tu_group->symtabs == NULL);
8000 restart_symtab (0);
8001 }
8002 /* Note: The primary symtab will get allocated at the end. */
8003 return;
8004 }
8005
8006 cu->line_header = lh;
8007 make_cleanup (free_cu_line_header, cu);
8008
8009 if (first_time)
8010 {
8011 dwarf2_start_symtab (cu, "", NULL, 0);
8012
8013 tu_group->num_symtabs = lh->num_file_names;
8014 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
8015
8016 for (i = 0; i < lh->num_file_names; ++i)
8017 {
8018 char *dir = NULL;
8019 struct file_entry *fe = &lh->file_names[i];
8020
8021 if (fe->dir_index)
8022 dir = lh->include_dirs[fe->dir_index - 1];
8023 dwarf2_start_subfile (fe->name, dir, NULL);
8024
8025 /* Note: We don't have to watch for the main subfile here, type units
8026 don't have DW_AT_name. */
8027
8028 if (current_subfile->symtab == NULL)
8029 {
8030 /* NOTE: start_subfile will recognize when it's been passed
8031 a file it has already seen. So we can't assume there's a
8032 simple mapping from lh->file_names to subfiles,
8033 lh->file_names may contain dups. */
8034 current_subfile->symtab = allocate_symtab (current_subfile->name,
8035 objfile);
8036 }
8037
8038 fe->symtab = current_subfile->symtab;
8039 tu_group->symtabs[i] = fe->symtab;
8040 }
8041 }
8042 else
8043 {
8044 restart_symtab (0);
8045
8046 for (i = 0; i < lh->num_file_names; ++i)
8047 {
8048 struct file_entry *fe = &lh->file_names[i];
8049
8050 fe->symtab = tu_group->symtabs[i];
8051 }
8052 }
8053
8054 /* The main symtab is allocated last. Type units don't have DW_AT_name
8055 so they don't have a "real" (so to speak) symtab anyway.
8056 There is later code that will assign the main symtab to all symbols
8057 that don't have one. We need to handle the case of a symbol with a
8058 missing symtab (DW_AT_decl_file) anyway. */
8059 }
8060
8061 /* Process DW_TAG_type_unit.
8062 For TUs we want to skip the first top level sibling if it's not the
8063 actual type being defined by this TU. In this case the first top
8064 level sibling is there to provide context only. */
8065
8066 static void
8067 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
8068 {
8069 struct die_info *child_die;
8070
8071 prepare_one_comp_unit (cu, die, language_minimal);
8072
8073 /* Initialize (or reinitialize) the machinery for building symtabs.
8074 We do this before processing child DIEs, so that the line header table
8075 is available for DW_AT_decl_file. */
8076 setup_type_unit_groups (die, cu);
8077
8078 if (die->child != NULL)
8079 {
8080 child_die = die->child;
8081 while (child_die && child_die->tag)
8082 {
8083 process_die (child_die, cu);
8084 child_die = sibling_die (child_die);
8085 }
8086 }
8087 }
8088 \f
8089 /* DWO/DWP files.
8090
8091 http://gcc.gnu.org/wiki/DebugFission
8092 http://gcc.gnu.org/wiki/DebugFissionDWP
8093
8094 To simplify handling of both DWO files ("object" files with the DWARF info)
8095 and DWP files (a file with the DWOs packaged up into one file), we treat
8096 DWP files as having a collection of virtual DWO files. */
8097
8098 static hashval_t
8099 hash_dwo_file (const void *item)
8100 {
8101 const struct dwo_file *dwo_file = item;
8102
8103 return htab_hash_string (dwo_file->name);
8104 }
8105
8106 static int
8107 eq_dwo_file (const void *item_lhs, const void *item_rhs)
8108 {
8109 const struct dwo_file *lhs = item_lhs;
8110 const struct dwo_file *rhs = item_rhs;
8111
8112 return strcmp (lhs->name, rhs->name) == 0;
8113 }
8114
8115 /* Allocate a hash table for DWO files. */
8116
8117 static htab_t
8118 allocate_dwo_file_hash_table (void)
8119 {
8120 struct objfile *objfile = dwarf2_per_objfile->objfile;
8121
8122 return htab_create_alloc_ex (41,
8123 hash_dwo_file,
8124 eq_dwo_file,
8125 NULL,
8126 &objfile->objfile_obstack,
8127 hashtab_obstack_allocate,
8128 dummy_obstack_deallocate);
8129 }
8130
8131 /* Lookup DWO file DWO_NAME. */
8132
8133 static void **
8134 lookup_dwo_file_slot (const char *dwo_name)
8135 {
8136 struct dwo_file find_entry;
8137 void **slot;
8138
8139 if (dwarf2_per_objfile->dwo_files == NULL)
8140 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
8141
8142 memset (&find_entry, 0, sizeof (find_entry));
8143 find_entry.name = dwo_name;
8144 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
8145
8146 return slot;
8147 }
8148
8149 static hashval_t
8150 hash_dwo_unit (const void *item)
8151 {
8152 const struct dwo_unit *dwo_unit = item;
8153
8154 /* This drops the top 32 bits of the id, but is ok for a hash. */
8155 return dwo_unit->signature;
8156 }
8157
8158 static int
8159 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
8160 {
8161 const struct dwo_unit *lhs = item_lhs;
8162 const struct dwo_unit *rhs = item_rhs;
8163
8164 /* The signature is assumed to be unique within the DWO file.
8165 So while object file CU dwo_id's always have the value zero,
8166 that's OK, assuming each object file DWO file has only one CU,
8167 and that's the rule for now. */
8168 return lhs->signature == rhs->signature;
8169 }
8170
8171 /* Allocate a hash table for DWO CUs,TUs.
8172 There is one of these tables for each of CUs,TUs for each DWO file. */
8173
8174 static htab_t
8175 allocate_dwo_unit_table (struct objfile *objfile)
8176 {
8177 /* Start out with a pretty small number.
8178 Generally DWO files contain only one CU and maybe some TUs. */
8179 return htab_create_alloc_ex (3,
8180 hash_dwo_unit,
8181 eq_dwo_unit,
8182 NULL,
8183 &objfile->objfile_obstack,
8184 hashtab_obstack_allocate,
8185 dummy_obstack_deallocate);
8186 }
8187
8188 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
8189
8190 struct create_dwo_info_table_data
8191 {
8192 struct dwo_file *dwo_file;
8193 htab_t cu_htab;
8194 };
8195
8196 /* die_reader_func for create_dwo_debug_info_hash_table. */
8197
8198 static void
8199 create_dwo_debug_info_hash_table_reader (const struct die_reader_specs *reader,
8200 gdb_byte *info_ptr,
8201 struct die_info *comp_unit_die,
8202 int has_children,
8203 void *datap)
8204 {
8205 struct dwarf2_cu *cu = reader->cu;
8206 struct objfile *objfile = dwarf2_per_objfile->objfile;
8207 sect_offset offset = cu->per_cu->offset;
8208 struct dwarf2_section_info *section = cu->per_cu->info_or_types_section;
8209 struct create_dwo_info_table_data *data = datap;
8210 struct dwo_file *dwo_file = data->dwo_file;
8211 htab_t cu_htab = data->cu_htab;
8212 void **slot;
8213 struct attribute *attr;
8214 struct dwo_unit *dwo_unit;
8215
8216 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
8217 if (attr == NULL)
8218 {
8219 error (_("Dwarf Error: debug entry at offset 0x%x is missing"
8220 " its dwo_id [in module %s]"),
8221 offset.sect_off, dwo_file->name);
8222 return;
8223 }
8224
8225 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
8226 dwo_unit->dwo_file = dwo_file;
8227 dwo_unit->signature = DW_UNSND (attr);
8228 dwo_unit->info_or_types_section = section;
8229 dwo_unit->offset = offset;
8230 dwo_unit->length = cu->per_cu->length;
8231
8232 slot = htab_find_slot (cu_htab, dwo_unit, INSERT);
8233 gdb_assert (slot != NULL);
8234 if (*slot != NULL)
8235 {
8236 const struct dwo_unit *dup_dwo_unit = *slot;
8237
8238 complaint (&symfile_complaints,
8239 _("debug entry at offset 0x%x is duplicate to the entry at"
8240 " offset 0x%x, dwo_id 0x%s [in module %s]"),
8241 offset.sect_off, dup_dwo_unit->offset.sect_off,
8242 phex (dwo_unit->signature, sizeof (dwo_unit->signature)),
8243 dwo_file->name);
8244 }
8245 else
8246 *slot = dwo_unit;
8247
8248 if (dwarf2_read_debug)
8249 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id 0x%s\n",
8250 offset.sect_off,
8251 phex (dwo_unit->signature,
8252 sizeof (dwo_unit->signature)));
8253 }
8254
8255 /* Create a hash table to map DWO IDs to their CU entry in
8256 .debug_info.dwo in DWO_FILE.
8257 Note: This function processes DWO files only, not DWP files. */
8258
8259 static htab_t
8260 create_dwo_debug_info_hash_table (struct dwo_file *dwo_file)
8261 {
8262 struct objfile *objfile = dwarf2_per_objfile->objfile;
8263 struct dwarf2_section_info *section = &dwo_file->sections.info;
8264 bfd *abfd;
8265 htab_t cu_htab;
8266 gdb_byte *info_ptr, *end_ptr;
8267 struct create_dwo_info_table_data create_dwo_info_table_data;
8268
8269 dwarf2_read_section (objfile, section);
8270 info_ptr = section->buffer;
8271
8272 if (info_ptr == NULL)
8273 return NULL;
8274
8275 /* We can't set abfd until now because the section may be empty or
8276 not present, in which case section->asection will be NULL. */
8277 abfd = section->asection->owner;
8278
8279 if (dwarf2_read_debug)
8280 fprintf_unfiltered (gdb_stdlog, "Reading .debug_info.dwo for %s:\n",
8281 bfd_get_filename (abfd));
8282
8283 cu_htab = allocate_dwo_unit_table (objfile);
8284
8285 create_dwo_info_table_data.dwo_file = dwo_file;
8286 create_dwo_info_table_data.cu_htab = cu_htab;
8287
8288 end_ptr = info_ptr + section->size;
8289 while (info_ptr < end_ptr)
8290 {
8291 struct dwarf2_per_cu_data per_cu;
8292
8293 memset (&per_cu, 0, sizeof (per_cu));
8294 per_cu.objfile = objfile;
8295 per_cu.is_debug_types = 0;
8296 per_cu.offset.sect_off = info_ptr - section->buffer;
8297 per_cu.info_or_types_section = section;
8298
8299 init_cutu_and_read_dies_no_follow (&per_cu,
8300 &dwo_file->sections.abbrev,
8301 dwo_file,
8302 create_dwo_debug_info_hash_table_reader,
8303 &create_dwo_info_table_data);
8304
8305 info_ptr += per_cu.length;
8306 }
8307
8308 return cu_htab;
8309 }
8310
8311 /* DWP file .debug_{cu,tu}_index section format:
8312 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
8313
8314 Both index sections have the same format, and serve to map a 64-bit
8315 signature to a set of section numbers. Each section begins with a header,
8316 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
8317 indexes, and a pool of 32-bit section numbers. The index sections will be
8318 aligned at 8-byte boundaries in the file.
8319
8320 The index section header contains two unsigned 32-bit values (using the
8321 byte order of the application binary):
8322
8323 N, the number of compilation units or type units in the index
8324 M, the number of slots in the hash table
8325
8326 (We assume that N and M will not exceed 2^32 - 1.)
8327
8328 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
8329
8330 The hash table begins at offset 8 in the section, and consists of an array
8331 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
8332 order of the application binary). Unused slots in the hash table are 0.
8333 (We rely on the extreme unlikeliness of a signature being exactly 0.)
8334
8335 The parallel table begins immediately after the hash table
8336 (at offset 8 + 8 * M from the beginning of the section), and consists of an
8337 array of 32-bit indexes (using the byte order of the application binary),
8338 corresponding 1-1 with slots in the hash table. Each entry in the parallel
8339 table contains a 32-bit index into the pool of section numbers. For unused
8340 hash table slots, the corresponding entry in the parallel table will be 0.
8341
8342 Given a 64-bit compilation unit signature or a type signature S, an entry
8343 in the hash table is located as follows:
8344
8345 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
8346 the low-order k bits all set to 1.
8347
8348 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
8349
8350 3) If the hash table entry at index H matches the signature, use that
8351 entry. If the hash table entry at index H is unused (all zeroes),
8352 terminate the search: the signature is not present in the table.
8353
8354 4) Let H = (H + H') modulo M. Repeat at Step 3.
8355
8356 Because M > N and H' and M are relatively prime, the search is guaranteed
8357 to stop at an unused slot or find the match.
8358
8359 The pool of section numbers begins immediately following the hash table
8360 (at offset 8 + 12 * M from the beginning of the section). The pool of
8361 section numbers consists of an array of 32-bit words (using the byte order
8362 of the application binary). Each item in the array is indexed starting
8363 from 0. The hash table entry provides the index of the first section
8364 number in the set. Additional section numbers in the set follow, and the
8365 set is terminated by a 0 entry (section number 0 is not used in ELF).
8366
8367 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
8368 section must be the first entry in the set, and the .debug_abbrev.dwo must
8369 be the second entry. Other members of the set may follow in any order. */
8370
8371 /* Create a hash table to map DWO IDs to their CU/TU entry in
8372 .debug_{info,types}.dwo in DWP_FILE.
8373 Returns NULL if there isn't one.
8374 Note: This function processes DWP files only, not DWO files. */
8375
8376 static struct dwp_hash_table *
8377 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
8378 {
8379 struct objfile *objfile = dwarf2_per_objfile->objfile;
8380 bfd *dbfd = dwp_file->dbfd;
8381 char *index_ptr, *index_end;
8382 struct dwarf2_section_info *index;
8383 uint32_t version, nr_units, nr_slots;
8384 struct dwp_hash_table *htab;
8385
8386 if (is_debug_types)
8387 index = &dwp_file->sections.tu_index;
8388 else
8389 index = &dwp_file->sections.cu_index;
8390
8391 if (dwarf2_section_empty_p (index))
8392 return NULL;
8393 dwarf2_read_section (objfile, index);
8394
8395 index_ptr = index->buffer;
8396 index_end = index_ptr + index->size;
8397
8398 version = read_4_bytes (dbfd, index_ptr);
8399 index_ptr += 8; /* Skip the unused word. */
8400 nr_units = read_4_bytes (dbfd, index_ptr);
8401 index_ptr += 4;
8402 nr_slots = read_4_bytes (dbfd, index_ptr);
8403 index_ptr += 4;
8404
8405 if (version != 1)
8406 {
8407 error (_("Dwarf Error: unsupported DWP file version (%u)"
8408 " [in module %s]"),
8409 version, dwp_file->name);
8410 }
8411 if (nr_slots != (nr_slots & -nr_slots))
8412 {
8413 error (_("Dwarf Error: number of slots in DWP hash table (%u)"
8414 " is not power of 2 [in module %s]"),
8415 nr_slots, dwp_file->name);
8416 }
8417
8418 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
8419 htab->nr_units = nr_units;
8420 htab->nr_slots = nr_slots;
8421 htab->hash_table = index_ptr;
8422 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
8423 htab->section_pool = htab->unit_table + sizeof (uint32_t) * nr_slots;
8424
8425 return htab;
8426 }
8427
8428 /* Update SECTIONS with the data from SECTP.
8429
8430 This function is like the other "locate" section routines that are
8431 passed to bfd_map_over_sections, but in this context the sections to
8432 read comes from the DWP hash table, not the full ELF section table.
8433
8434 The result is non-zero for success, or zero if an error was found. */
8435
8436 static int
8437 locate_virtual_dwo_sections (asection *sectp,
8438 struct virtual_dwo_sections *sections)
8439 {
8440 const struct dwop_section_names *names = &dwop_section_names;
8441
8442 if (section_is_p (sectp->name, &names->abbrev_dwo))
8443 {
8444 /* There can be only one. */
8445 if (sections->abbrev.asection != NULL)
8446 return 0;
8447 sections->abbrev.asection = sectp;
8448 sections->abbrev.size = bfd_get_section_size (sectp);
8449 }
8450 else if (section_is_p (sectp->name, &names->info_dwo)
8451 || section_is_p (sectp->name, &names->types_dwo))
8452 {
8453 /* There can be only one. */
8454 if (sections->info_or_types.asection != NULL)
8455 return 0;
8456 sections->info_or_types.asection = sectp;
8457 sections->info_or_types.size = bfd_get_section_size (sectp);
8458 }
8459 else if (section_is_p (sectp->name, &names->line_dwo))
8460 {
8461 /* There can be only one. */
8462 if (sections->line.asection != NULL)
8463 return 0;
8464 sections->line.asection = sectp;
8465 sections->line.size = bfd_get_section_size (sectp);
8466 }
8467 else if (section_is_p (sectp->name, &names->loc_dwo))
8468 {
8469 /* There can be only one. */
8470 if (sections->loc.asection != NULL)
8471 return 0;
8472 sections->loc.asection = sectp;
8473 sections->loc.size = bfd_get_section_size (sectp);
8474 }
8475 else if (section_is_p (sectp->name, &names->macinfo_dwo))
8476 {
8477 /* There can be only one. */
8478 if (sections->macinfo.asection != NULL)
8479 return 0;
8480 sections->macinfo.asection = sectp;
8481 sections->macinfo.size = bfd_get_section_size (sectp);
8482 }
8483 else if (section_is_p (sectp->name, &names->macro_dwo))
8484 {
8485 /* There can be only one. */
8486 if (sections->macro.asection != NULL)
8487 return 0;
8488 sections->macro.asection = sectp;
8489 sections->macro.size = bfd_get_section_size (sectp);
8490 }
8491 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
8492 {
8493 /* There can be only one. */
8494 if (sections->str_offsets.asection != NULL)
8495 return 0;
8496 sections->str_offsets.asection = sectp;
8497 sections->str_offsets.size = bfd_get_section_size (sectp);
8498 }
8499 else
8500 {
8501 /* No other kind of section is valid. */
8502 return 0;
8503 }
8504
8505 return 1;
8506 }
8507
8508 /* Create a dwo_unit object for the DWO with signature SIGNATURE.
8509 HTAB is the hash table from the DWP file.
8510 SECTION_INDEX is the index of the DWO in HTAB. */
8511
8512 static struct dwo_unit *
8513 create_dwo_in_dwp (struct dwp_file *dwp_file,
8514 const struct dwp_hash_table *htab,
8515 uint32_t section_index,
8516 ULONGEST signature, int is_debug_types)
8517 {
8518 struct objfile *objfile = dwarf2_per_objfile->objfile;
8519 bfd *dbfd = dwp_file->dbfd;
8520 const char *kind = is_debug_types ? "TU" : "CU";
8521 struct dwo_file *dwo_file;
8522 struct dwo_unit *dwo_unit;
8523 struct virtual_dwo_sections sections;
8524 void **dwo_file_slot;
8525 char *virtual_dwo_name;
8526 struct dwarf2_section_info *cutu;
8527 struct cleanup *cleanups;
8528 int i;
8529
8530 if (dwarf2_read_debug)
8531 {
8532 fprintf_unfiltered (gdb_stdlog, "Reading %s %u/0x%s in DWP file: %s\n",
8533 kind,
8534 section_index, phex (signature, sizeof (signature)),
8535 dwp_file->name);
8536 }
8537
8538 /* Fetch the sections of this DWO.
8539 Put a limit on the number of sections we look for so that bad data
8540 doesn't cause us to loop forever. */
8541
8542 #define MAX_NR_DWO_SECTIONS \
8543 (1 /* .debug_info or .debug_types */ \
8544 + 1 /* .debug_abbrev */ \
8545 + 1 /* .debug_line */ \
8546 + 1 /* .debug_loc */ \
8547 + 1 /* .debug_str_offsets */ \
8548 + 1 /* .debug_macro */ \
8549 + 1 /* .debug_macinfo */ \
8550 + 1 /* trailing zero */)
8551
8552 memset (&sections, 0, sizeof (sections));
8553 cleanups = make_cleanup (null_cleanup, 0);
8554
8555 for (i = 0; i < MAX_NR_DWO_SECTIONS; ++i)
8556 {
8557 asection *sectp;
8558 uint32_t section_nr =
8559 read_4_bytes (dbfd,
8560 htab->section_pool
8561 + (section_index + i) * sizeof (uint32_t));
8562
8563 if (section_nr == 0)
8564 break;
8565 if (section_nr >= dwp_file->num_sections)
8566 {
8567 error (_("Dwarf Error: bad DWP hash table, section number too large"
8568 " [in module %s]"),
8569 dwp_file->name);
8570 }
8571
8572 sectp = dwp_file->elf_sections[section_nr];
8573 if (! locate_virtual_dwo_sections (sectp, &sections))
8574 {
8575 error (_("Dwarf Error: bad DWP hash table, invalid section found"
8576 " [in module %s]"),
8577 dwp_file->name);
8578 }
8579 }
8580
8581 if (i < 2
8582 || sections.info_or_types.asection == NULL
8583 || sections.abbrev.asection == NULL)
8584 {
8585 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
8586 " [in module %s]"),
8587 dwp_file->name);
8588 }
8589 if (i == MAX_NR_DWO_SECTIONS)
8590 {
8591 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
8592 " [in module %s]"),
8593 dwp_file->name);
8594 }
8595
8596 /* It's easier for the rest of the code if we fake a struct dwo_file and
8597 have dwo_unit "live" in that. At least for now.
8598
8599 The DWP file can be made up of a random collection of CUs and TUs.
8600 However, for each CU + set of TUs that came from the same original DWO
8601 file, we want to combine them back into a virtual DWO file to save space
8602 (fewer struct dwo_file objects to allocated). Remember that for really
8603 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
8604
8605 virtual_dwo_name =
8606 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
8607 sections.abbrev.asection ? sections.abbrev.asection->id : 0,
8608 sections.line.asection ? sections.line.asection->id : 0,
8609 sections.loc.asection ? sections.loc.asection->id : 0,
8610 (sections.str_offsets.asection
8611 ? sections.str_offsets.asection->id
8612 : 0));
8613 make_cleanup (xfree, virtual_dwo_name);
8614 /* Can we use an existing virtual DWO file? */
8615 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name);
8616 /* Create one if necessary. */
8617 if (*dwo_file_slot == NULL)
8618 {
8619 if (dwarf2_read_debug)
8620 {
8621 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
8622 virtual_dwo_name);
8623 }
8624 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
8625 dwo_file->name = obstack_copy0 (&objfile->objfile_obstack,
8626 virtual_dwo_name,
8627 strlen (virtual_dwo_name));
8628 dwo_file->sections.abbrev = sections.abbrev;
8629 dwo_file->sections.line = sections.line;
8630 dwo_file->sections.loc = sections.loc;
8631 dwo_file->sections.macinfo = sections.macinfo;
8632 dwo_file->sections.macro = sections.macro;
8633 dwo_file->sections.str_offsets = sections.str_offsets;
8634 /* The "str" section is global to the entire DWP file. */
8635 dwo_file->sections.str = dwp_file->sections.str;
8636 /* The info or types section is assigned later to dwo_unit,
8637 there's no need to record it in dwo_file.
8638 Also, we can't simply record type sections in dwo_file because
8639 we record a pointer into the vector in dwo_unit. As we collect more
8640 types we'll grow the vector and eventually have to reallocate space
8641 for it, invalidating all the pointers into the current copy. */
8642 *dwo_file_slot = dwo_file;
8643 }
8644 else
8645 {
8646 if (dwarf2_read_debug)
8647 {
8648 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
8649 virtual_dwo_name);
8650 }
8651 dwo_file = *dwo_file_slot;
8652 }
8653 do_cleanups (cleanups);
8654
8655 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
8656 dwo_unit->dwo_file = dwo_file;
8657 dwo_unit->signature = signature;
8658 dwo_unit->info_or_types_section =
8659 obstack_alloc (&objfile->objfile_obstack,
8660 sizeof (struct dwarf2_section_info));
8661 *dwo_unit->info_or_types_section = sections.info_or_types;
8662 /* offset, length, type_offset_in_tu are set later. */
8663
8664 return dwo_unit;
8665 }
8666
8667 /* Lookup the DWO with SIGNATURE in DWP_FILE. */
8668
8669 static struct dwo_unit *
8670 lookup_dwo_in_dwp (struct dwp_file *dwp_file,
8671 const struct dwp_hash_table *htab,
8672 ULONGEST signature, int is_debug_types)
8673 {
8674 bfd *dbfd = dwp_file->dbfd;
8675 uint32_t mask = htab->nr_slots - 1;
8676 uint32_t hash = signature & mask;
8677 uint32_t hash2 = ((signature >> 32) & mask) | 1;
8678 unsigned int i;
8679 void **slot;
8680 struct dwo_unit find_dwo_cu, *dwo_cu;
8681
8682 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
8683 find_dwo_cu.signature = signature;
8684 slot = htab_find_slot (dwp_file->loaded_cutus, &find_dwo_cu, INSERT);
8685
8686 if (*slot != NULL)
8687 return *slot;
8688
8689 /* Use a for loop so that we don't loop forever on bad debug info. */
8690 for (i = 0; i < htab->nr_slots; ++i)
8691 {
8692 ULONGEST signature_in_table;
8693
8694 signature_in_table =
8695 read_8_bytes (dbfd, htab->hash_table + hash * sizeof (uint64_t));
8696 if (signature_in_table == signature)
8697 {
8698 uint32_t section_index =
8699 read_4_bytes (dbfd, htab->unit_table + hash * sizeof (uint32_t));
8700
8701 *slot = create_dwo_in_dwp (dwp_file, htab, section_index,
8702 signature, is_debug_types);
8703 return *slot;
8704 }
8705 if (signature_in_table == 0)
8706 return NULL;
8707 hash = (hash + hash2) & mask;
8708 }
8709
8710 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
8711 " [in module %s]"),
8712 dwp_file->name);
8713 }
8714
8715 /* Subroutine of open_dwop_file to simplify it.
8716 Open the file specified by FILE_NAME and hand it off to BFD for
8717 preliminary analysis. Return a newly initialized bfd *, which
8718 includes a canonicalized copy of FILE_NAME.
8719 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
8720 In case of trouble, return NULL.
8721 NOTE: This function is derived from symfile_bfd_open. */
8722
8723 static bfd *
8724 try_open_dwop_file (const char *file_name, int is_dwp)
8725 {
8726 bfd *sym_bfd;
8727 int desc, flags;
8728 char *absolute_name;
8729
8730 flags = OPF_TRY_CWD_FIRST;
8731 if (is_dwp)
8732 flags |= OPF_SEARCH_IN_PATH;
8733 desc = openp (debug_file_directory, flags, file_name,
8734 O_RDONLY | O_BINARY, &absolute_name);
8735 if (desc < 0)
8736 return NULL;
8737
8738 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
8739 if (!sym_bfd)
8740 {
8741 xfree (absolute_name);
8742 return NULL;
8743 }
8744 xfree (absolute_name);
8745 bfd_set_cacheable (sym_bfd, 1);
8746
8747 if (!bfd_check_format (sym_bfd, bfd_object))
8748 {
8749 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
8750 return NULL;
8751 }
8752
8753 return sym_bfd;
8754 }
8755
8756 /* Try to open DWO/DWP file FILE_NAME.
8757 COMP_DIR is the DW_AT_comp_dir attribute.
8758 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
8759 The result is the bfd handle of the file.
8760 If there is a problem finding or opening the file, return NULL.
8761 Upon success, the canonicalized path of the file is stored in the bfd,
8762 same as symfile_bfd_open. */
8763
8764 static bfd *
8765 open_dwop_file (const char *file_name, const char *comp_dir, int is_dwp)
8766 {
8767 bfd *abfd;
8768
8769 if (IS_ABSOLUTE_PATH (file_name))
8770 return try_open_dwop_file (file_name, is_dwp);
8771
8772 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
8773
8774 if (comp_dir != NULL)
8775 {
8776 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
8777
8778 /* NOTE: If comp_dir is a relative path, this will also try the
8779 search path, which seems useful. */
8780 abfd = try_open_dwop_file (path_to_try, is_dwp);
8781 xfree (path_to_try);
8782 if (abfd != NULL)
8783 return abfd;
8784 }
8785
8786 /* That didn't work, try debug-file-directory, which, despite its name,
8787 is a list of paths. */
8788
8789 if (*debug_file_directory == '\0')
8790 return NULL;
8791
8792 return try_open_dwop_file (file_name, is_dwp);
8793 }
8794
8795 /* This function is mapped across the sections and remembers the offset and
8796 size of each of the DWO debugging sections we are interested in. */
8797
8798 static void
8799 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
8800 {
8801 struct dwo_sections *dwo_sections = dwo_sections_ptr;
8802 const struct dwop_section_names *names = &dwop_section_names;
8803
8804 if (section_is_p (sectp->name, &names->abbrev_dwo))
8805 {
8806 dwo_sections->abbrev.asection = sectp;
8807 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
8808 }
8809 else if (section_is_p (sectp->name, &names->info_dwo))
8810 {
8811 dwo_sections->info.asection = sectp;
8812 dwo_sections->info.size = bfd_get_section_size (sectp);
8813 }
8814 else if (section_is_p (sectp->name, &names->line_dwo))
8815 {
8816 dwo_sections->line.asection = sectp;
8817 dwo_sections->line.size = bfd_get_section_size (sectp);
8818 }
8819 else if (section_is_p (sectp->name, &names->loc_dwo))
8820 {
8821 dwo_sections->loc.asection = sectp;
8822 dwo_sections->loc.size = bfd_get_section_size (sectp);
8823 }
8824 else if (section_is_p (sectp->name, &names->macinfo_dwo))
8825 {
8826 dwo_sections->macinfo.asection = sectp;
8827 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
8828 }
8829 else if (section_is_p (sectp->name, &names->macro_dwo))
8830 {
8831 dwo_sections->macro.asection = sectp;
8832 dwo_sections->macro.size = bfd_get_section_size (sectp);
8833 }
8834 else if (section_is_p (sectp->name, &names->str_dwo))
8835 {
8836 dwo_sections->str.asection = sectp;
8837 dwo_sections->str.size = bfd_get_section_size (sectp);
8838 }
8839 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
8840 {
8841 dwo_sections->str_offsets.asection = sectp;
8842 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
8843 }
8844 else if (section_is_p (sectp->name, &names->types_dwo))
8845 {
8846 struct dwarf2_section_info type_section;
8847
8848 memset (&type_section, 0, sizeof (type_section));
8849 type_section.asection = sectp;
8850 type_section.size = bfd_get_section_size (sectp);
8851 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
8852 &type_section);
8853 }
8854 }
8855
8856 /* Initialize the use of the DWO file specified by DWO_NAME.
8857 The result is NULL if DWO_NAME can't be found. */
8858
8859 static struct dwo_file *
8860 open_and_init_dwo_file (const char *dwo_name, const char *comp_dir)
8861 {
8862 struct objfile *objfile = dwarf2_per_objfile->objfile;
8863 struct dwo_file *dwo_file;
8864 bfd *dbfd;
8865 struct cleanup *cleanups;
8866
8867 dbfd = open_dwop_file (dwo_name, comp_dir, 0);
8868 if (dbfd == NULL)
8869 {
8870 if (dwarf2_read_debug)
8871 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
8872 return NULL;
8873 }
8874 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
8875 dwo_file->name = obstack_copy0 (&objfile->objfile_obstack,
8876 dwo_name, strlen (dwo_name));
8877 dwo_file->dbfd = dbfd;
8878
8879 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
8880
8881 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
8882
8883 dwo_file->cus = create_dwo_debug_info_hash_table (dwo_file);
8884
8885 dwo_file->tus = create_debug_types_hash_table (dwo_file,
8886 dwo_file->sections.types);
8887
8888 discard_cleanups (cleanups);
8889
8890 if (dwarf2_read_debug)
8891 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
8892
8893 return dwo_file;
8894 }
8895
8896 /* This function is mapped across the sections and remembers the offset and
8897 size of each of the DWP debugging sections we are interested in. */
8898
8899 static void
8900 dwarf2_locate_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
8901 {
8902 struct dwp_file *dwp_file = dwp_file_ptr;
8903 const struct dwop_section_names *names = &dwop_section_names;
8904 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
8905
8906 /* Record the ELF section number for later lookup: this is what the
8907 .debug_cu_index,.debug_tu_index tables use. */
8908 gdb_assert (elf_section_nr < dwp_file->num_sections);
8909 dwp_file->elf_sections[elf_section_nr] = sectp;
8910
8911 /* Look for specific sections that we need. */
8912 if (section_is_p (sectp->name, &names->str_dwo))
8913 {
8914 dwp_file->sections.str.asection = sectp;
8915 dwp_file->sections.str.size = bfd_get_section_size (sectp);
8916 }
8917 else if (section_is_p (sectp->name, &names->cu_index))
8918 {
8919 dwp_file->sections.cu_index.asection = sectp;
8920 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
8921 }
8922 else if (section_is_p (sectp->name, &names->tu_index))
8923 {
8924 dwp_file->sections.tu_index.asection = sectp;
8925 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
8926 }
8927 }
8928
8929 /* Hash function for dwp_file loaded CUs/TUs. */
8930
8931 static hashval_t
8932 hash_dwp_loaded_cutus (const void *item)
8933 {
8934 const struct dwo_unit *dwo_unit = item;
8935
8936 /* This drops the top 32 bits of the signature, but is ok for a hash. */
8937 return dwo_unit->signature;
8938 }
8939
8940 /* Equality function for dwp_file loaded CUs/TUs. */
8941
8942 static int
8943 eq_dwp_loaded_cutus (const void *a, const void *b)
8944 {
8945 const struct dwo_unit *dua = a;
8946 const struct dwo_unit *dub = b;
8947
8948 return dua->signature == dub->signature;
8949 }
8950
8951 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
8952
8953 static htab_t
8954 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
8955 {
8956 return htab_create_alloc_ex (3,
8957 hash_dwp_loaded_cutus,
8958 eq_dwp_loaded_cutus,
8959 NULL,
8960 &objfile->objfile_obstack,
8961 hashtab_obstack_allocate,
8962 dummy_obstack_deallocate);
8963 }
8964
8965 /* Initialize the use of the DWP file for the current objfile.
8966 By convention the name of the DWP file is ${objfile}.dwp.
8967 The result is NULL if it can't be found. */
8968
8969 static struct dwp_file *
8970 open_and_init_dwp_file (const char *comp_dir)
8971 {
8972 struct objfile *objfile = dwarf2_per_objfile->objfile;
8973 struct dwp_file *dwp_file;
8974 char *dwp_name;
8975 bfd *dbfd;
8976 struct cleanup *cleanups;
8977
8978 dwp_name = xstrprintf ("%s.dwp", dwarf2_per_objfile->objfile->name);
8979 cleanups = make_cleanup (xfree, dwp_name);
8980
8981 dbfd = open_dwop_file (dwp_name, comp_dir, 1);
8982 if (dbfd == NULL)
8983 {
8984 if (dwarf2_read_debug)
8985 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
8986 do_cleanups (cleanups);
8987 return NULL;
8988 }
8989 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
8990 dwp_file->name = obstack_copy0 (&objfile->objfile_obstack,
8991 dwp_name, strlen (dwp_name));
8992 dwp_file->dbfd = dbfd;
8993 do_cleanups (cleanups);
8994
8995 cleanups = make_cleanup (free_dwo_file_cleanup, dwp_file);
8996
8997 /* +1: section 0 is unused */
8998 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
8999 dwp_file->elf_sections =
9000 OBSTACK_CALLOC (&objfile->objfile_obstack,
9001 dwp_file->num_sections, asection *);
9002
9003 bfd_map_over_sections (dbfd, dwarf2_locate_dwp_sections, dwp_file);
9004
9005 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
9006
9007 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
9008
9009 dwp_file->loaded_cutus = allocate_dwp_loaded_cutus_table (objfile);
9010
9011 discard_cleanups (cleanups);
9012
9013 if (dwarf2_read_debug)
9014 {
9015 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
9016 fprintf_unfiltered (gdb_stdlog,
9017 " %u CUs, %u TUs\n",
9018 dwp_file->cus ? dwp_file->cus->nr_units : 0,
9019 dwp_file->tus ? dwp_file->tus->nr_units : 0);
9020 }
9021
9022 return dwp_file;
9023 }
9024
9025 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
9026 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
9027 or in the DWP file for the objfile, referenced by THIS_UNIT.
9028 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
9029 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
9030
9031 This is called, for example, when wanting to read a variable with a
9032 complex location. Therefore we don't want to do file i/o for every call.
9033 Therefore we don't want to look for a DWO file on every call.
9034 Therefore we first see if we've already seen SIGNATURE in a DWP file,
9035 then we check if we've already seen DWO_NAME, and only THEN do we check
9036 for a DWO file.
9037
9038 The result is a pointer to the dwo_unit object or NULL if we didn't find it
9039 (dwo_id mismatch or couldn't find the DWO/DWP file). */
9040
9041 static struct dwo_unit *
9042 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
9043 const char *dwo_name, const char *comp_dir,
9044 ULONGEST signature, int is_debug_types)
9045 {
9046 struct objfile *objfile = dwarf2_per_objfile->objfile;
9047 const char *kind = is_debug_types ? "TU" : "CU";
9048 void **dwo_file_slot;
9049 struct dwo_file *dwo_file;
9050 struct dwp_file *dwp_file;
9051
9052 /* Have we already read SIGNATURE from a DWP file? */
9053
9054 if (! dwarf2_per_objfile->dwp_checked)
9055 {
9056 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file (comp_dir);
9057 dwarf2_per_objfile->dwp_checked = 1;
9058 }
9059 dwp_file = dwarf2_per_objfile->dwp_file;
9060
9061 if (dwp_file != NULL)
9062 {
9063 const struct dwp_hash_table *dwp_htab =
9064 is_debug_types ? dwp_file->tus : dwp_file->cus;
9065
9066 if (dwp_htab != NULL)
9067 {
9068 struct dwo_unit *dwo_cutu =
9069 lookup_dwo_in_dwp (dwp_file, dwp_htab, signature, is_debug_types);
9070
9071 if (dwo_cutu != NULL)
9072 {
9073 if (dwarf2_read_debug)
9074 {
9075 fprintf_unfiltered (gdb_stdlog,
9076 "Virtual DWO %s %s found: @%s\n",
9077 kind, hex_string (signature),
9078 host_address_to_string (dwo_cutu));
9079 }
9080 return dwo_cutu;
9081 }
9082 }
9083 }
9084
9085 /* Have we already seen DWO_NAME? */
9086
9087 dwo_file_slot = lookup_dwo_file_slot (dwo_name);
9088 if (*dwo_file_slot == NULL)
9089 {
9090 /* Read in the file and build a table of the DWOs it contains. */
9091 *dwo_file_slot = open_and_init_dwo_file (dwo_name, comp_dir);
9092 }
9093 /* NOTE: This will be NULL if unable to open the file. */
9094 dwo_file = *dwo_file_slot;
9095
9096 if (dwo_file != NULL)
9097 {
9098 htab_t htab = is_debug_types ? dwo_file->tus : dwo_file->cus;
9099
9100 if (htab != NULL)
9101 {
9102 struct dwo_unit find_dwo_cutu, *dwo_cutu;
9103
9104 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
9105 find_dwo_cutu.signature = signature;
9106 dwo_cutu = htab_find (htab, &find_dwo_cutu);
9107
9108 if (dwo_cutu != NULL)
9109 {
9110 if (dwarf2_read_debug)
9111 {
9112 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
9113 kind, dwo_name, hex_string (signature),
9114 host_address_to_string (dwo_cutu));
9115 }
9116 return dwo_cutu;
9117 }
9118 }
9119 }
9120
9121 /* We didn't find it. This could mean a dwo_id mismatch, or
9122 someone deleted the DWO/DWP file, or the search path isn't set up
9123 correctly to find the file. */
9124
9125 if (dwarf2_read_debug)
9126 {
9127 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
9128 kind, dwo_name, hex_string (signature));
9129 }
9130
9131 complaint (&symfile_complaints,
9132 _("Could not find DWO CU referenced by CU at offset 0x%x"
9133 " [in module %s]"),
9134 this_unit->offset.sect_off, objfile->name);
9135 return NULL;
9136 }
9137
9138 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
9139 See lookup_dwo_cutu_unit for details. */
9140
9141 static struct dwo_unit *
9142 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
9143 const char *dwo_name, const char *comp_dir,
9144 ULONGEST signature)
9145 {
9146 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
9147 }
9148
9149 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
9150 See lookup_dwo_cutu_unit for details. */
9151
9152 static struct dwo_unit *
9153 lookup_dwo_type_unit (struct signatured_type *this_tu,
9154 const char *dwo_name, const char *comp_dir)
9155 {
9156 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
9157 }
9158
9159 /* Free all resources associated with DWO_FILE.
9160 Close the DWO file and munmap the sections.
9161 All memory should be on the objfile obstack. */
9162
9163 static void
9164 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
9165 {
9166 int ix;
9167 struct dwarf2_section_info *section;
9168
9169 gdb_assert (dwo_file->dbfd != objfile->obfd);
9170 gdb_bfd_unref (dwo_file->dbfd);
9171
9172 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
9173 }
9174
9175 /* Wrapper for free_dwo_file for use in cleanups. */
9176
9177 static void
9178 free_dwo_file_cleanup (void *arg)
9179 {
9180 struct dwo_file *dwo_file = (struct dwo_file *) arg;
9181 struct objfile *objfile = dwarf2_per_objfile->objfile;
9182
9183 free_dwo_file (dwo_file, objfile);
9184 }
9185
9186 /* Traversal function for free_dwo_files. */
9187
9188 static int
9189 free_dwo_file_from_slot (void **slot, void *info)
9190 {
9191 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
9192 struct objfile *objfile = (struct objfile *) info;
9193
9194 free_dwo_file (dwo_file, objfile);
9195
9196 return 1;
9197 }
9198
9199 /* Free all resources associated with DWO_FILES. */
9200
9201 static void
9202 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
9203 {
9204 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
9205 }
9206 \f
9207 /* Read in various DIEs. */
9208
9209 /* qsort helper for inherit_abstract_dies. */
9210
9211 static int
9212 unsigned_int_compar (const void *ap, const void *bp)
9213 {
9214 unsigned int a = *(unsigned int *) ap;
9215 unsigned int b = *(unsigned int *) bp;
9216
9217 return (a > b) - (b > a);
9218 }
9219
9220 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
9221 Inherit only the children of the DW_AT_abstract_origin DIE not being
9222 already referenced by DW_AT_abstract_origin from the children of the
9223 current DIE. */
9224
9225 static void
9226 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
9227 {
9228 struct die_info *child_die;
9229 unsigned die_children_count;
9230 /* CU offsets which were referenced by children of the current DIE. */
9231 sect_offset *offsets;
9232 sect_offset *offsets_end, *offsetp;
9233 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
9234 struct die_info *origin_die;
9235 /* Iterator of the ORIGIN_DIE children. */
9236 struct die_info *origin_child_die;
9237 struct cleanup *cleanups;
9238 struct attribute *attr;
9239 struct dwarf2_cu *origin_cu;
9240 struct pending **origin_previous_list_in_scope;
9241
9242 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
9243 if (!attr)
9244 return;
9245
9246 /* Note that following die references may follow to a die in a
9247 different cu. */
9248
9249 origin_cu = cu;
9250 origin_die = follow_die_ref (die, attr, &origin_cu);
9251
9252 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
9253 symbols in. */
9254 origin_previous_list_in_scope = origin_cu->list_in_scope;
9255 origin_cu->list_in_scope = cu->list_in_scope;
9256
9257 if (die->tag != origin_die->tag
9258 && !(die->tag == DW_TAG_inlined_subroutine
9259 && origin_die->tag == DW_TAG_subprogram))
9260 complaint (&symfile_complaints,
9261 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
9262 die->offset.sect_off, origin_die->offset.sect_off);
9263
9264 child_die = die->child;
9265 die_children_count = 0;
9266 while (child_die && child_die->tag)
9267 {
9268 child_die = sibling_die (child_die);
9269 die_children_count++;
9270 }
9271 offsets = xmalloc (sizeof (*offsets) * die_children_count);
9272 cleanups = make_cleanup (xfree, offsets);
9273
9274 offsets_end = offsets;
9275 child_die = die->child;
9276 while (child_die && child_die->tag)
9277 {
9278 /* For each CHILD_DIE, find the corresponding child of
9279 ORIGIN_DIE. If there is more than one layer of
9280 DW_AT_abstract_origin, follow them all; there shouldn't be,
9281 but GCC versions at least through 4.4 generate this (GCC PR
9282 40573). */
9283 struct die_info *child_origin_die = child_die;
9284 struct dwarf2_cu *child_origin_cu = cu;
9285
9286 while (1)
9287 {
9288 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
9289 child_origin_cu);
9290 if (attr == NULL)
9291 break;
9292 child_origin_die = follow_die_ref (child_origin_die, attr,
9293 &child_origin_cu);
9294 }
9295
9296 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
9297 counterpart may exist. */
9298 if (child_origin_die != child_die)
9299 {
9300 if (child_die->tag != child_origin_die->tag
9301 && !(child_die->tag == DW_TAG_inlined_subroutine
9302 && child_origin_die->tag == DW_TAG_subprogram))
9303 complaint (&symfile_complaints,
9304 _("Child DIE 0x%x and its abstract origin 0x%x have "
9305 "different tags"), child_die->offset.sect_off,
9306 child_origin_die->offset.sect_off);
9307 if (child_origin_die->parent != origin_die)
9308 complaint (&symfile_complaints,
9309 _("Child DIE 0x%x and its abstract origin 0x%x have "
9310 "different parents"), child_die->offset.sect_off,
9311 child_origin_die->offset.sect_off);
9312 else
9313 *offsets_end++ = child_origin_die->offset;
9314 }
9315 child_die = sibling_die (child_die);
9316 }
9317 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
9318 unsigned_int_compar);
9319 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
9320 if (offsetp[-1].sect_off == offsetp->sect_off)
9321 complaint (&symfile_complaints,
9322 _("Multiple children of DIE 0x%x refer "
9323 "to DIE 0x%x as their abstract origin"),
9324 die->offset.sect_off, offsetp->sect_off);
9325
9326 offsetp = offsets;
9327 origin_child_die = origin_die->child;
9328 while (origin_child_die && origin_child_die->tag)
9329 {
9330 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
9331 while (offsetp < offsets_end
9332 && offsetp->sect_off < origin_child_die->offset.sect_off)
9333 offsetp++;
9334 if (offsetp >= offsets_end
9335 || offsetp->sect_off > origin_child_die->offset.sect_off)
9336 {
9337 /* Found that ORIGIN_CHILD_DIE is really not referenced. */
9338 process_die (origin_child_die, origin_cu);
9339 }
9340 origin_child_die = sibling_die (origin_child_die);
9341 }
9342 origin_cu->list_in_scope = origin_previous_list_in_scope;
9343
9344 do_cleanups (cleanups);
9345 }
9346
9347 static void
9348 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
9349 {
9350 struct objfile *objfile = cu->objfile;
9351 struct context_stack *new;
9352 CORE_ADDR lowpc;
9353 CORE_ADDR highpc;
9354 struct die_info *child_die;
9355 struct attribute *attr, *call_line, *call_file;
9356 char *name;
9357 CORE_ADDR baseaddr;
9358 struct block *block;
9359 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
9360 VEC (symbolp) *template_args = NULL;
9361 struct template_symbol *templ_func = NULL;
9362
9363 if (inlined_func)
9364 {
9365 /* If we do not have call site information, we can't show the
9366 caller of this inlined function. That's too confusing, so
9367 only use the scope for local variables. */
9368 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
9369 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
9370 if (call_line == NULL || call_file == NULL)
9371 {
9372 read_lexical_block_scope (die, cu);
9373 return;
9374 }
9375 }
9376
9377 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9378
9379 name = dwarf2_name (die, cu);
9380
9381 /* Ignore functions with missing or empty names. These are actually
9382 illegal according to the DWARF standard. */
9383 if (name == NULL)
9384 {
9385 complaint (&symfile_complaints,
9386 _("missing name for subprogram DIE at %d"),
9387 die->offset.sect_off);
9388 return;
9389 }
9390
9391 /* Ignore functions with missing or invalid low and high pc attributes. */
9392 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
9393 {
9394 attr = dwarf2_attr (die, DW_AT_external, cu);
9395 if (!attr || !DW_UNSND (attr))
9396 complaint (&symfile_complaints,
9397 _("cannot get low and high bounds "
9398 "for subprogram DIE at %d"),
9399 die->offset.sect_off);
9400 return;
9401 }
9402
9403 lowpc += baseaddr;
9404 highpc += baseaddr;
9405
9406 /* If we have any template arguments, then we must allocate a
9407 different sort of symbol. */
9408 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
9409 {
9410 if (child_die->tag == DW_TAG_template_type_param
9411 || child_die->tag == DW_TAG_template_value_param)
9412 {
9413 templ_func = OBSTACK_ZALLOC (&objfile->objfile_obstack,
9414 struct template_symbol);
9415 templ_func->base.is_cplus_template_function = 1;
9416 break;
9417 }
9418 }
9419
9420 new = push_context (0, lowpc);
9421 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
9422 (struct symbol *) templ_func);
9423
9424 /* If there is a location expression for DW_AT_frame_base, record
9425 it. */
9426 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
9427 if (attr)
9428 /* FIXME: cagney/2004-01-26: The DW_AT_frame_base's location
9429 expression is being recorded directly in the function's symbol
9430 and not in a separate frame-base object. I guess this hack is
9431 to avoid adding some sort of frame-base adjunct/annex to the
9432 function's symbol :-(. The problem with doing this is that it
9433 results in a function symbol with a location expression that
9434 has nothing to do with the location of the function, ouch! The
9435 relationship should be: a function's symbol has-a frame base; a
9436 frame-base has-a location expression. */
9437 dwarf2_symbol_mark_computed (attr, new->name, cu);
9438
9439 cu->list_in_scope = &local_symbols;
9440
9441 if (die->child != NULL)
9442 {
9443 child_die = die->child;
9444 while (child_die && child_die->tag)
9445 {
9446 if (child_die->tag == DW_TAG_template_type_param
9447 || child_die->tag == DW_TAG_template_value_param)
9448 {
9449 struct symbol *arg = new_symbol (child_die, NULL, cu);
9450
9451 if (arg != NULL)
9452 VEC_safe_push (symbolp, template_args, arg);
9453 }
9454 else
9455 process_die (child_die, cu);
9456 child_die = sibling_die (child_die);
9457 }
9458 }
9459
9460 inherit_abstract_dies (die, cu);
9461
9462 /* If we have a DW_AT_specification, we might need to import using
9463 directives from the context of the specification DIE. See the
9464 comment in determine_prefix. */
9465 if (cu->language == language_cplus
9466 && dwarf2_attr (die, DW_AT_specification, cu))
9467 {
9468 struct dwarf2_cu *spec_cu = cu;
9469 struct die_info *spec_die = die_specification (die, &spec_cu);
9470
9471 while (spec_die)
9472 {
9473 child_die = spec_die->child;
9474 while (child_die && child_die->tag)
9475 {
9476 if (child_die->tag == DW_TAG_imported_module)
9477 process_die (child_die, spec_cu);
9478 child_die = sibling_die (child_die);
9479 }
9480
9481 /* In some cases, GCC generates specification DIEs that
9482 themselves contain DW_AT_specification attributes. */
9483 spec_die = die_specification (spec_die, &spec_cu);
9484 }
9485 }
9486
9487 new = pop_context ();
9488 /* Make a block for the local symbols within. */
9489 block = finish_block (new->name, &local_symbols, new->old_blocks,
9490 lowpc, highpc, objfile);
9491
9492 /* For C++, set the block's scope. */
9493 if (cu->language == language_cplus || cu->language == language_fortran)
9494 cp_set_block_scope (new->name, block, &objfile->objfile_obstack,
9495 determine_prefix (die, cu),
9496 processing_has_namespace_info);
9497
9498 /* If we have address ranges, record them. */
9499 dwarf2_record_block_ranges (die, block, baseaddr, cu);
9500
9501 /* Attach template arguments to function. */
9502 if (! VEC_empty (symbolp, template_args))
9503 {
9504 gdb_assert (templ_func != NULL);
9505
9506 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
9507 templ_func->template_arguments
9508 = obstack_alloc (&objfile->objfile_obstack,
9509 (templ_func->n_template_arguments
9510 * sizeof (struct symbol *)));
9511 memcpy (templ_func->template_arguments,
9512 VEC_address (symbolp, template_args),
9513 (templ_func->n_template_arguments * sizeof (struct symbol *)));
9514 VEC_free (symbolp, template_args);
9515 }
9516
9517 /* In C++, we can have functions nested inside functions (e.g., when
9518 a function declares a class that has methods). This means that
9519 when we finish processing a function scope, we may need to go
9520 back to building a containing block's symbol lists. */
9521 local_symbols = new->locals;
9522 using_directives = new->using_directives;
9523
9524 /* If we've finished processing a top-level function, subsequent
9525 symbols go in the file symbol list. */
9526 if (outermost_context_p ())
9527 cu->list_in_scope = &file_symbols;
9528 }
9529
9530 /* Process all the DIES contained within a lexical block scope. Start
9531 a new scope, process the dies, and then close the scope. */
9532
9533 static void
9534 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
9535 {
9536 struct objfile *objfile = cu->objfile;
9537 struct context_stack *new;
9538 CORE_ADDR lowpc, highpc;
9539 struct die_info *child_die;
9540 CORE_ADDR baseaddr;
9541
9542 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9543
9544 /* Ignore blocks with missing or invalid low and high pc attributes. */
9545 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
9546 as multiple lexical blocks? Handling children in a sane way would
9547 be nasty. Might be easier to properly extend generic blocks to
9548 describe ranges. */
9549 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
9550 return;
9551 lowpc += baseaddr;
9552 highpc += baseaddr;
9553
9554 push_context (0, lowpc);
9555 if (die->child != NULL)
9556 {
9557 child_die = die->child;
9558 while (child_die && child_die->tag)
9559 {
9560 process_die (child_die, cu);
9561 child_die = sibling_die (child_die);
9562 }
9563 }
9564 new = pop_context ();
9565
9566 if (local_symbols != NULL || using_directives != NULL)
9567 {
9568 struct block *block
9569 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
9570 highpc, objfile);
9571
9572 /* Note that recording ranges after traversing children, as we
9573 do here, means that recording a parent's ranges entails
9574 walking across all its children's ranges as they appear in
9575 the address map, which is quadratic behavior.
9576
9577 It would be nicer to record the parent's ranges before
9578 traversing its children, simply overriding whatever you find
9579 there. But since we don't even decide whether to create a
9580 block until after we've traversed its children, that's hard
9581 to do. */
9582 dwarf2_record_block_ranges (die, block, baseaddr, cu);
9583 }
9584 local_symbols = new->locals;
9585 using_directives = new->using_directives;
9586 }
9587
9588 /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
9589
9590 static void
9591 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
9592 {
9593 struct objfile *objfile = cu->objfile;
9594 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9595 CORE_ADDR pc, baseaddr;
9596 struct attribute *attr;
9597 struct call_site *call_site, call_site_local;
9598 void **slot;
9599 int nparams;
9600 struct die_info *child_die;
9601
9602 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9603
9604 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
9605 if (!attr)
9606 {
9607 complaint (&symfile_complaints,
9608 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
9609 "DIE 0x%x [in module %s]"),
9610 die->offset.sect_off, objfile->name);
9611 return;
9612 }
9613 pc = DW_ADDR (attr) + baseaddr;
9614
9615 if (cu->call_site_htab == NULL)
9616 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
9617 NULL, &objfile->objfile_obstack,
9618 hashtab_obstack_allocate, NULL);
9619 call_site_local.pc = pc;
9620 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
9621 if (*slot != NULL)
9622 {
9623 complaint (&symfile_complaints,
9624 _("Duplicate PC %s for DW_TAG_GNU_call_site "
9625 "DIE 0x%x [in module %s]"),
9626 paddress (gdbarch, pc), die->offset.sect_off, objfile->name);
9627 return;
9628 }
9629
9630 /* Count parameters at the caller. */
9631
9632 nparams = 0;
9633 for (child_die = die->child; child_die && child_die->tag;
9634 child_die = sibling_die (child_die))
9635 {
9636 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
9637 {
9638 complaint (&symfile_complaints,
9639 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
9640 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
9641 child_die->tag, child_die->offset.sect_off, objfile->name);
9642 continue;
9643 }
9644
9645 nparams++;
9646 }
9647
9648 call_site = obstack_alloc (&objfile->objfile_obstack,
9649 (sizeof (*call_site)
9650 + (sizeof (*call_site->parameter)
9651 * (nparams - 1))));
9652 *slot = call_site;
9653 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
9654 call_site->pc = pc;
9655
9656 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
9657 {
9658 struct die_info *func_die;
9659
9660 /* Skip also over DW_TAG_inlined_subroutine. */
9661 for (func_die = die->parent;
9662 func_die && func_die->tag != DW_TAG_subprogram
9663 && func_die->tag != DW_TAG_subroutine_type;
9664 func_die = func_die->parent);
9665
9666 /* DW_AT_GNU_all_call_sites is a superset
9667 of DW_AT_GNU_all_tail_call_sites. */
9668 if (func_die
9669 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
9670 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
9671 {
9672 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
9673 not complete. But keep CALL_SITE for look ups via call_site_htab,
9674 both the initial caller containing the real return address PC and
9675 the final callee containing the current PC of a chain of tail
9676 calls do not need to have the tail call list complete. But any
9677 function candidate for a virtual tail call frame searched via
9678 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
9679 determined unambiguously. */
9680 }
9681 else
9682 {
9683 struct type *func_type = NULL;
9684
9685 if (func_die)
9686 func_type = get_die_type (func_die, cu);
9687 if (func_type != NULL)
9688 {
9689 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
9690
9691 /* Enlist this call site to the function. */
9692 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
9693 TYPE_TAIL_CALL_LIST (func_type) = call_site;
9694 }
9695 else
9696 complaint (&symfile_complaints,
9697 _("Cannot find function owning DW_TAG_GNU_call_site "
9698 "DIE 0x%x [in module %s]"),
9699 die->offset.sect_off, objfile->name);
9700 }
9701 }
9702
9703 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
9704 if (attr == NULL)
9705 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
9706 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
9707 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
9708 /* Keep NULL DWARF_BLOCK. */;
9709 else if (attr_form_is_block (attr))
9710 {
9711 struct dwarf2_locexpr_baton *dlbaton;
9712
9713 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
9714 dlbaton->data = DW_BLOCK (attr)->data;
9715 dlbaton->size = DW_BLOCK (attr)->size;
9716 dlbaton->per_cu = cu->per_cu;
9717
9718 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
9719 }
9720 else if (is_ref_attr (attr))
9721 {
9722 struct dwarf2_cu *target_cu = cu;
9723 struct die_info *target_die;
9724
9725 target_die = follow_die_ref_or_sig (die, attr, &target_cu);
9726 gdb_assert (target_cu->objfile == objfile);
9727 if (die_is_declaration (target_die, target_cu))
9728 {
9729 const char *target_physname;
9730
9731 target_physname = dwarf2_physname (NULL, target_die, target_cu);
9732 if (target_physname == NULL)
9733 complaint (&symfile_complaints,
9734 _("DW_AT_GNU_call_site_target target DIE has invalid "
9735 "physname, for referencing DIE 0x%x [in module %s]"),
9736 die->offset.sect_off, objfile->name);
9737 else
9738 SET_FIELD_PHYSNAME (call_site->target, (char *) target_physname);
9739 }
9740 else
9741 {
9742 CORE_ADDR lowpc;
9743
9744 /* DW_AT_entry_pc should be preferred. */
9745 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
9746 complaint (&symfile_complaints,
9747 _("DW_AT_GNU_call_site_target target DIE has invalid "
9748 "low pc, for referencing DIE 0x%x [in module %s]"),
9749 die->offset.sect_off, objfile->name);
9750 else
9751 SET_FIELD_PHYSADDR (call_site->target, lowpc + baseaddr);
9752 }
9753 }
9754 else
9755 complaint (&symfile_complaints,
9756 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
9757 "block nor reference, for DIE 0x%x [in module %s]"),
9758 die->offset.sect_off, objfile->name);
9759
9760 call_site->per_cu = cu->per_cu;
9761
9762 for (child_die = die->child;
9763 child_die && child_die->tag;
9764 child_die = sibling_die (child_die))
9765 {
9766 struct call_site_parameter *parameter;
9767 struct attribute *loc, *origin;
9768
9769 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
9770 {
9771 /* Already printed the complaint above. */
9772 continue;
9773 }
9774
9775 gdb_assert (call_site->parameter_count < nparams);
9776 parameter = &call_site->parameter[call_site->parameter_count];
9777
9778 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
9779 specifies DW_TAG_formal_parameter. Value of the data assumed for the
9780 register is contained in DW_AT_GNU_call_site_value. */
9781
9782 loc = dwarf2_attr (child_die, DW_AT_location, cu);
9783 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
9784 if (loc == NULL && origin != NULL && is_ref_attr (origin))
9785 {
9786 sect_offset offset;
9787
9788 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
9789 offset = dwarf2_get_ref_die_offset (origin);
9790 if (!offset_in_cu_p (&cu->header, offset))
9791 {
9792 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
9793 binding can be done only inside one CU. Such referenced DIE
9794 therefore cannot be even moved to DW_TAG_partial_unit. */
9795 complaint (&symfile_complaints,
9796 _("DW_AT_abstract_origin offset is not in CU for "
9797 "DW_TAG_GNU_call_site child DIE 0x%x "
9798 "[in module %s]"),
9799 child_die->offset.sect_off, objfile->name);
9800 continue;
9801 }
9802 parameter->u.param_offset.cu_off = (offset.sect_off
9803 - cu->header.offset.sect_off);
9804 }
9805 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
9806 {
9807 complaint (&symfile_complaints,
9808 _("No DW_FORM_block* DW_AT_location for "
9809 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
9810 child_die->offset.sect_off, objfile->name);
9811 continue;
9812 }
9813 else
9814 {
9815 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
9816 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
9817 if (parameter->u.dwarf_reg != -1)
9818 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
9819 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
9820 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
9821 &parameter->u.fb_offset))
9822 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
9823 else
9824 {
9825 complaint (&symfile_complaints,
9826 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
9827 "for DW_FORM_block* DW_AT_location is supported for "
9828 "DW_TAG_GNU_call_site child DIE 0x%x "
9829 "[in module %s]"),
9830 child_die->offset.sect_off, objfile->name);
9831 continue;
9832 }
9833 }
9834
9835 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
9836 if (!attr_form_is_block (attr))
9837 {
9838 complaint (&symfile_complaints,
9839 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
9840 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
9841 child_die->offset.sect_off, objfile->name);
9842 continue;
9843 }
9844 parameter->value = DW_BLOCK (attr)->data;
9845 parameter->value_size = DW_BLOCK (attr)->size;
9846
9847 /* Parameters are not pre-cleared by memset above. */
9848 parameter->data_value = NULL;
9849 parameter->data_value_size = 0;
9850 call_site->parameter_count++;
9851
9852 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
9853 if (attr)
9854 {
9855 if (!attr_form_is_block (attr))
9856 complaint (&symfile_complaints,
9857 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
9858 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
9859 child_die->offset.sect_off, objfile->name);
9860 else
9861 {
9862 parameter->data_value = DW_BLOCK (attr)->data;
9863 parameter->data_value_size = DW_BLOCK (attr)->size;
9864 }
9865 }
9866 }
9867 }
9868
9869 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
9870 Return 1 if the attributes are present and valid, otherwise, return 0.
9871 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
9872
9873 static int
9874 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
9875 CORE_ADDR *high_return, struct dwarf2_cu *cu,
9876 struct partial_symtab *ranges_pst)
9877 {
9878 struct objfile *objfile = cu->objfile;
9879 struct comp_unit_head *cu_header = &cu->header;
9880 bfd *obfd = objfile->obfd;
9881 unsigned int addr_size = cu_header->addr_size;
9882 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
9883 /* Base address selection entry. */
9884 CORE_ADDR base;
9885 int found_base;
9886 unsigned int dummy;
9887 gdb_byte *buffer;
9888 CORE_ADDR marker;
9889 int low_set;
9890 CORE_ADDR low = 0;
9891 CORE_ADDR high = 0;
9892 CORE_ADDR baseaddr;
9893
9894 found_base = cu->base_known;
9895 base = cu->base_address;
9896
9897 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
9898 if (offset >= dwarf2_per_objfile->ranges.size)
9899 {
9900 complaint (&symfile_complaints,
9901 _("Offset %d out of bounds for DW_AT_ranges attribute"),
9902 offset);
9903 return 0;
9904 }
9905 buffer = dwarf2_per_objfile->ranges.buffer + offset;
9906
9907 /* Read in the largest possible address. */
9908 marker = read_address (obfd, buffer, cu, &dummy);
9909 if ((marker & mask) == mask)
9910 {
9911 /* If we found the largest possible address, then
9912 read the base address. */
9913 base = read_address (obfd, buffer + addr_size, cu, &dummy);
9914 buffer += 2 * addr_size;
9915 offset += 2 * addr_size;
9916 found_base = 1;
9917 }
9918
9919 low_set = 0;
9920
9921 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9922
9923 while (1)
9924 {
9925 CORE_ADDR range_beginning, range_end;
9926
9927 range_beginning = read_address (obfd, buffer, cu, &dummy);
9928 buffer += addr_size;
9929 range_end = read_address (obfd, buffer, cu, &dummy);
9930 buffer += addr_size;
9931 offset += 2 * addr_size;
9932
9933 /* An end of list marker is a pair of zero addresses. */
9934 if (range_beginning == 0 && range_end == 0)
9935 /* Found the end of list entry. */
9936 break;
9937
9938 /* Each base address selection entry is a pair of 2 values.
9939 The first is the largest possible address, the second is
9940 the base address. Check for a base address here. */
9941 if ((range_beginning & mask) == mask)
9942 {
9943 /* If we found the largest possible address, then
9944 read the base address. */
9945 base = read_address (obfd, buffer + addr_size, cu, &dummy);
9946 found_base = 1;
9947 continue;
9948 }
9949
9950 if (!found_base)
9951 {
9952 /* We have no valid base address for the ranges
9953 data. */
9954 complaint (&symfile_complaints,
9955 _("Invalid .debug_ranges data (no base address)"));
9956 return 0;
9957 }
9958
9959 if (range_beginning > range_end)
9960 {
9961 /* Inverted range entries are invalid. */
9962 complaint (&symfile_complaints,
9963 _("Invalid .debug_ranges data (inverted range)"));
9964 return 0;
9965 }
9966
9967 /* Empty range entries have no effect. */
9968 if (range_beginning == range_end)
9969 continue;
9970
9971 range_beginning += base;
9972 range_end += base;
9973
9974 /* A not-uncommon case of bad debug info.
9975 Don't pollute the addrmap with bad data. */
9976 if (range_beginning + baseaddr == 0
9977 && !dwarf2_per_objfile->has_section_at_zero)
9978 {
9979 complaint (&symfile_complaints,
9980 _(".debug_ranges entry has start address of zero"
9981 " [in module %s]"), objfile->name);
9982 continue;
9983 }
9984
9985 if (ranges_pst != NULL)
9986 addrmap_set_empty (objfile->psymtabs_addrmap,
9987 range_beginning + baseaddr,
9988 range_end - 1 + baseaddr,
9989 ranges_pst);
9990
9991 /* FIXME: This is recording everything as a low-high
9992 segment of consecutive addresses. We should have a
9993 data structure for discontiguous block ranges
9994 instead. */
9995 if (! low_set)
9996 {
9997 low = range_beginning;
9998 high = range_end;
9999 low_set = 1;
10000 }
10001 else
10002 {
10003 if (range_beginning < low)
10004 low = range_beginning;
10005 if (range_end > high)
10006 high = range_end;
10007 }
10008 }
10009
10010 if (! low_set)
10011 /* If the first entry is an end-of-list marker, the range
10012 describes an empty scope, i.e. no instructions. */
10013 return 0;
10014
10015 if (low_return)
10016 *low_return = low;
10017 if (high_return)
10018 *high_return = high;
10019 return 1;
10020 }
10021
10022 /* Get low and high pc attributes from a die. Return 1 if the attributes
10023 are present and valid, otherwise, return 0. Return -1 if the range is
10024 discontinuous, i.e. derived from DW_AT_ranges information. */
10025
10026 static int
10027 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
10028 CORE_ADDR *highpc, struct dwarf2_cu *cu,
10029 struct partial_symtab *pst)
10030 {
10031 struct attribute *attr;
10032 struct attribute *attr_high;
10033 CORE_ADDR low = 0;
10034 CORE_ADDR high = 0;
10035 int ret = 0;
10036
10037 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
10038 if (attr_high)
10039 {
10040 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
10041 if (attr)
10042 {
10043 low = DW_ADDR (attr);
10044 if (attr_high->form == DW_FORM_addr
10045 || attr_high->form == DW_FORM_GNU_addr_index)
10046 high = DW_ADDR (attr_high);
10047 else
10048 high = low + DW_UNSND (attr_high);
10049 }
10050 else
10051 /* Found high w/o low attribute. */
10052 return 0;
10053
10054 /* Found consecutive range of addresses. */
10055 ret = 1;
10056 }
10057 else
10058 {
10059 attr = dwarf2_attr (die, DW_AT_ranges, cu);
10060 if (attr != NULL)
10061 {
10062 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
10063 We take advantage of the fact that DW_AT_ranges does not appear
10064 in DW_TAG_compile_unit of DWO files. */
10065 int need_ranges_base = die->tag != DW_TAG_compile_unit;
10066 unsigned int ranges_offset = (DW_UNSND (attr)
10067 + (need_ranges_base
10068 ? cu->ranges_base
10069 : 0));
10070
10071 /* Value of the DW_AT_ranges attribute is the offset in the
10072 .debug_ranges section. */
10073 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
10074 return 0;
10075 /* Found discontinuous range of addresses. */
10076 ret = -1;
10077 }
10078 }
10079
10080 /* read_partial_die has also the strict LOW < HIGH requirement. */
10081 if (high <= low)
10082 return 0;
10083
10084 /* When using the GNU linker, .gnu.linkonce. sections are used to
10085 eliminate duplicate copies of functions and vtables and such.
10086 The linker will arbitrarily choose one and discard the others.
10087 The AT_*_pc values for such functions refer to local labels in
10088 these sections. If the section from that file was discarded, the
10089 labels are not in the output, so the relocs get a value of 0.
10090 If this is a discarded function, mark the pc bounds as invalid,
10091 so that GDB will ignore it. */
10092 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
10093 return 0;
10094
10095 *lowpc = low;
10096 if (highpc)
10097 *highpc = high;
10098 return ret;
10099 }
10100
10101 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
10102 its low and high PC addresses. Do nothing if these addresses could not
10103 be determined. Otherwise, set LOWPC to the low address if it is smaller,
10104 and HIGHPC to the high address if greater than HIGHPC. */
10105
10106 static void
10107 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
10108 CORE_ADDR *lowpc, CORE_ADDR *highpc,
10109 struct dwarf2_cu *cu)
10110 {
10111 CORE_ADDR low, high;
10112 struct die_info *child = die->child;
10113
10114 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
10115 {
10116 *lowpc = min (*lowpc, low);
10117 *highpc = max (*highpc, high);
10118 }
10119
10120 /* If the language does not allow nested subprograms (either inside
10121 subprograms or lexical blocks), we're done. */
10122 if (cu->language != language_ada)
10123 return;
10124
10125 /* Check all the children of the given DIE. If it contains nested
10126 subprograms, then check their pc bounds. Likewise, we need to
10127 check lexical blocks as well, as they may also contain subprogram
10128 definitions. */
10129 while (child && child->tag)
10130 {
10131 if (child->tag == DW_TAG_subprogram
10132 || child->tag == DW_TAG_lexical_block)
10133 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
10134 child = sibling_die (child);
10135 }
10136 }
10137
10138 /* Get the low and high pc's represented by the scope DIE, and store
10139 them in *LOWPC and *HIGHPC. If the correct values can't be
10140 determined, set *LOWPC to -1 and *HIGHPC to 0. */
10141
10142 static void
10143 get_scope_pc_bounds (struct die_info *die,
10144 CORE_ADDR *lowpc, CORE_ADDR *highpc,
10145 struct dwarf2_cu *cu)
10146 {
10147 CORE_ADDR best_low = (CORE_ADDR) -1;
10148 CORE_ADDR best_high = (CORE_ADDR) 0;
10149 CORE_ADDR current_low, current_high;
10150
10151 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
10152 {
10153 best_low = current_low;
10154 best_high = current_high;
10155 }
10156 else
10157 {
10158 struct die_info *child = die->child;
10159
10160 while (child && child->tag)
10161 {
10162 switch (child->tag) {
10163 case DW_TAG_subprogram:
10164 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
10165 break;
10166 case DW_TAG_namespace:
10167 case DW_TAG_module:
10168 /* FIXME: carlton/2004-01-16: Should we do this for
10169 DW_TAG_class_type/DW_TAG_structure_type, too? I think
10170 that current GCC's always emit the DIEs corresponding
10171 to definitions of methods of classes as children of a
10172 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
10173 the DIEs giving the declarations, which could be
10174 anywhere). But I don't see any reason why the
10175 standards says that they have to be there. */
10176 get_scope_pc_bounds (child, &current_low, &current_high, cu);
10177
10178 if (current_low != ((CORE_ADDR) -1))
10179 {
10180 best_low = min (best_low, current_low);
10181 best_high = max (best_high, current_high);
10182 }
10183 break;
10184 default:
10185 /* Ignore. */
10186 break;
10187 }
10188
10189 child = sibling_die (child);
10190 }
10191 }
10192
10193 *lowpc = best_low;
10194 *highpc = best_high;
10195 }
10196
10197 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
10198 in DIE. */
10199
10200 static void
10201 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
10202 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
10203 {
10204 struct objfile *objfile = cu->objfile;
10205 struct attribute *attr;
10206 struct attribute *attr_high;
10207
10208 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
10209 if (attr_high)
10210 {
10211 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
10212 if (attr)
10213 {
10214 CORE_ADDR low = DW_ADDR (attr);
10215 CORE_ADDR high;
10216 if (attr_high->form == DW_FORM_addr
10217 || attr_high->form == DW_FORM_GNU_addr_index)
10218 high = DW_ADDR (attr_high);
10219 else
10220 high = low + DW_UNSND (attr_high);
10221
10222 record_block_range (block, baseaddr + low, baseaddr + high - 1);
10223 }
10224 }
10225
10226 attr = dwarf2_attr (die, DW_AT_ranges, cu);
10227 if (attr)
10228 {
10229 bfd *obfd = objfile->obfd;
10230 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
10231 We take advantage of the fact that DW_AT_ranges does not appear
10232 in DW_TAG_compile_unit of DWO files. */
10233 int need_ranges_base = die->tag != DW_TAG_compile_unit;
10234
10235 /* The value of the DW_AT_ranges attribute is the offset of the
10236 address range list in the .debug_ranges section. */
10237 unsigned long offset = (DW_UNSND (attr)
10238 + (need_ranges_base ? cu->ranges_base : 0));
10239 gdb_byte *buffer = dwarf2_per_objfile->ranges.buffer + offset;
10240
10241 /* For some target architectures, but not others, the
10242 read_address function sign-extends the addresses it returns.
10243 To recognize base address selection entries, we need a
10244 mask. */
10245 unsigned int addr_size = cu->header.addr_size;
10246 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
10247
10248 /* The base address, to which the next pair is relative. Note
10249 that this 'base' is a DWARF concept: most entries in a range
10250 list are relative, to reduce the number of relocs against the
10251 debugging information. This is separate from this function's
10252 'baseaddr' argument, which GDB uses to relocate debugging
10253 information from a shared library based on the address at
10254 which the library was loaded. */
10255 CORE_ADDR base = cu->base_address;
10256 int base_known = cu->base_known;
10257
10258 gdb_assert (dwarf2_per_objfile->ranges.readin);
10259 if (offset >= dwarf2_per_objfile->ranges.size)
10260 {
10261 complaint (&symfile_complaints,
10262 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
10263 offset);
10264 return;
10265 }
10266
10267 for (;;)
10268 {
10269 unsigned int bytes_read;
10270 CORE_ADDR start, end;
10271
10272 start = read_address (obfd, buffer, cu, &bytes_read);
10273 buffer += bytes_read;
10274 end = read_address (obfd, buffer, cu, &bytes_read);
10275 buffer += bytes_read;
10276
10277 /* Did we find the end of the range list? */
10278 if (start == 0 && end == 0)
10279 break;
10280
10281 /* Did we find a base address selection entry? */
10282 else if ((start & base_select_mask) == base_select_mask)
10283 {
10284 base = end;
10285 base_known = 1;
10286 }
10287
10288 /* We found an ordinary address range. */
10289 else
10290 {
10291 if (!base_known)
10292 {
10293 complaint (&symfile_complaints,
10294 _("Invalid .debug_ranges data "
10295 "(no base address)"));
10296 return;
10297 }
10298
10299 if (start > end)
10300 {
10301 /* Inverted range entries are invalid. */
10302 complaint (&symfile_complaints,
10303 _("Invalid .debug_ranges data "
10304 "(inverted range)"));
10305 return;
10306 }
10307
10308 /* Empty range entries have no effect. */
10309 if (start == end)
10310 continue;
10311
10312 start += base + baseaddr;
10313 end += base + baseaddr;
10314
10315 /* A not-uncommon case of bad debug info.
10316 Don't pollute the addrmap with bad data. */
10317 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
10318 {
10319 complaint (&symfile_complaints,
10320 _(".debug_ranges entry has start address of zero"
10321 " [in module %s]"), objfile->name);
10322 continue;
10323 }
10324
10325 record_block_range (block, start, end - 1);
10326 }
10327 }
10328 }
10329 }
10330
10331 /* Check whether the producer field indicates either of GCC < 4.6, or the
10332 Intel C/C++ compiler, and cache the result in CU. */
10333
10334 static void
10335 check_producer (struct dwarf2_cu *cu)
10336 {
10337 const char *cs;
10338 int major, minor, release;
10339
10340 if (cu->producer == NULL)
10341 {
10342 /* For unknown compilers expect their behavior is DWARF version
10343 compliant.
10344
10345 GCC started to support .debug_types sections by -gdwarf-4 since
10346 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
10347 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
10348 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
10349 interpreted incorrectly by GDB now - GCC PR debug/48229. */
10350 }
10351 else if (strncmp (cu->producer, "GNU ", strlen ("GNU ")) == 0)
10352 {
10353 /* Skip any identifier after "GNU " - such as "C++" or "Java". */
10354
10355 cs = &cu->producer[strlen ("GNU ")];
10356 while (*cs && !isdigit (*cs))
10357 cs++;
10358 if (sscanf (cs, "%d.%d.%d", &major, &minor, &release) != 3)
10359 {
10360 /* Not recognized as GCC. */
10361 }
10362 else
10363 {
10364 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
10365 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
10366 }
10367 }
10368 else if (strncmp (cu->producer, "Intel(R) C", strlen ("Intel(R) C")) == 0)
10369 cu->producer_is_icc = 1;
10370 else
10371 {
10372 /* For other non-GCC compilers, expect their behavior is DWARF version
10373 compliant. */
10374 }
10375
10376 cu->checked_producer = 1;
10377 }
10378
10379 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
10380 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
10381 during 4.6.0 experimental. */
10382
10383 static int
10384 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
10385 {
10386 if (!cu->checked_producer)
10387 check_producer (cu);
10388
10389 return cu->producer_is_gxx_lt_4_6;
10390 }
10391
10392 /* Return the default accessibility type if it is not overriden by
10393 DW_AT_accessibility. */
10394
10395 static enum dwarf_access_attribute
10396 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
10397 {
10398 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
10399 {
10400 /* The default DWARF 2 accessibility for members is public, the default
10401 accessibility for inheritance is private. */
10402
10403 if (die->tag != DW_TAG_inheritance)
10404 return DW_ACCESS_public;
10405 else
10406 return DW_ACCESS_private;
10407 }
10408 else
10409 {
10410 /* DWARF 3+ defines the default accessibility a different way. The same
10411 rules apply now for DW_TAG_inheritance as for the members and it only
10412 depends on the container kind. */
10413
10414 if (die->parent->tag == DW_TAG_class_type)
10415 return DW_ACCESS_private;
10416 else
10417 return DW_ACCESS_public;
10418 }
10419 }
10420
10421 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
10422 offset. If the attribute was not found return 0, otherwise return
10423 1. If it was found but could not properly be handled, set *OFFSET
10424 to 0. */
10425
10426 static int
10427 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
10428 LONGEST *offset)
10429 {
10430 struct attribute *attr;
10431
10432 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
10433 if (attr != NULL)
10434 {
10435 *offset = 0;
10436
10437 /* Note that we do not check for a section offset first here.
10438 This is because DW_AT_data_member_location is new in DWARF 4,
10439 so if we see it, we can assume that a constant form is really
10440 a constant and not a section offset. */
10441 if (attr_form_is_constant (attr))
10442 *offset = dwarf2_get_attr_constant_value (attr, 0);
10443 else if (attr_form_is_section_offset (attr))
10444 dwarf2_complex_location_expr_complaint ();
10445 else if (attr_form_is_block (attr))
10446 *offset = decode_locdesc (DW_BLOCK (attr), cu);
10447 else
10448 dwarf2_complex_location_expr_complaint ();
10449
10450 return 1;
10451 }
10452
10453 return 0;
10454 }
10455
10456 /* Add an aggregate field to the field list. */
10457
10458 static void
10459 dwarf2_add_field (struct field_info *fip, struct die_info *die,
10460 struct dwarf2_cu *cu)
10461 {
10462 struct objfile *objfile = cu->objfile;
10463 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10464 struct nextfield *new_field;
10465 struct attribute *attr;
10466 struct field *fp;
10467 char *fieldname = "";
10468
10469 /* Allocate a new field list entry and link it in. */
10470 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
10471 make_cleanup (xfree, new_field);
10472 memset (new_field, 0, sizeof (struct nextfield));
10473
10474 if (die->tag == DW_TAG_inheritance)
10475 {
10476 new_field->next = fip->baseclasses;
10477 fip->baseclasses = new_field;
10478 }
10479 else
10480 {
10481 new_field->next = fip->fields;
10482 fip->fields = new_field;
10483 }
10484 fip->nfields++;
10485
10486 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
10487 if (attr)
10488 new_field->accessibility = DW_UNSND (attr);
10489 else
10490 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
10491 if (new_field->accessibility != DW_ACCESS_public)
10492 fip->non_public_fields = 1;
10493
10494 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
10495 if (attr)
10496 new_field->virtuality = DW_UNSND (attr);
10497 else
10498 new_field->virtuality = DW_VIRTUALITY_none;
10499
10500 fp = &new_field->field;
10501
10502 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
10503 {
10504 LONGEST offset;
10505
10506 /* Data member other than a C++ static data member. */
10507
10508 /* Get type of field. */
10509 fp->type = die_type (die, cu);
10510
10511 SET_FIELD_BITPOS (*fp, 0);
10512
10513 /* Get bit size of field (zero if none). */
10514 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
10515 if (attr)
10516 {
10517 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
10518 }
10519 else
10520 {
10521 FIELD_BITSIZE (*fp) = 0;
10522 }
10523
10524 /* Get bit offset of field. */
10525 if (handle_data_member_location (die, cu, &offset))
10526 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
10527 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
10528 if (attr)
10529 {
10530 if (gdbarch_bits_big_endian (gdbarch))
10531 {
10532 /* For big endian bits, the DW_AT_bit_offset gives the
10533 additional bit offset from the MSB of the containing
10534 anonymous object to the MSB of the field. We don't
10535 have to do anything special since we don't need to
10536 know the size of the anonymous object. */
10537 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
10538 }
10539 else
10540 {
10541 /* For little endian bits, compute the bit offset to the
10542 MSB of the anonymous object, subtract off the number of
10543 bits from the MSB of the field to the MSB of the
10544 object, and then subtract off the number of bits of
10545 the field itself. The result is the bit offset of
10546 the LSB of the field. */
10547 int anonymous_size;
10548 int bit_offset = DW_UNSND (attr);
10549
10550 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
10551 if (attr)
10552 {
10553 /* The size of the anonymous object containing
10554 the bit field is explicit, so use the
10555 indicated size (in bytes). */
10556 anonymous_size = DW_UNSND (attr);
10557 }
10558 else
10559 {
10560 /* The size of the anonymous object containing
10561 the bit field must be inferred from the type
10562 attribute of the data member containing the
10563 bit field. */
10564 anonymous_size = TYPE_LENGTH (fp->type);
10565 }
10566 SET_FIELD_BITPOS (*fp,
10567 (FIELD_BITPOS (*fp)
10568 + anonymous_size * bits_per_byte
10569 - bit_offset - FIELD_BITSIZE (*fp)));
10570 }
10571 }
10572
10573 /* Get name of field. */
10574 fieldname = dwarf2_name (die, cu);
10575 if (fieldname == NULL)
10576 fieldname = "";
10577
10578 /* The name is already allocated along with this objfile, so we don't
10579 need to duplicate it for the type. */
10580 fp->name = fieldname;
10581
10582 /* Change accessibility for artificial fields (e.g. virtual table
10583 pointer or virtual base class pointer) to private. */
10584 if (dwarf2_attr (die, DW_AT_artificial, cu))
10585 {
10586 FIELD_ARTIFICIAL (*fp) = 1;
10587 new_field->accessibility = DW_ACCESS_private;
10588 fip->non_public_fields = 1;
10589 }
10590 }
10591 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
10592 {
10593 /* C++ static member. */
10594
10595 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
10596 is a declaration, but all versions of G++ as of this writing
10597 (so through at least 3.2.1) incorrectly generate
10598 DW_TAG_variable tags. */
10599
10600 const char *physname;
10601
10602 /* Get name of field. */
10603 fieldname = dwarf2_name (die, cu);
10604 if (fieldname == NULL)
10605 return;
10606
10607 attr = dwarf2_attr (die, DW_AT_const_value, cu);
10608 if (attr
10609 /* Only create a symbol if this is an external value.
10610 new_symbol checks this and puts the value in the global symbol
10611 table, which we want. If it is not external, new_symbol
10612 will try to put the value in cu->list_in_scope which is wrong. */
10613 && dwarf2_flag_true_p (die, DW_AT_external, cu))
10614 {
10615 /* A static const member, not much different than an enum as far as
10616 we're concerned, except that we can support more types. */
10617 new_symbol (die, NULL, cu);
10618 }
10619
10620 /* Get physical name. */
10621 physname = dwarf2_physname (fieldname, die, cu);
10622
10623 /* The name is already allocated along with this objfile, so we don't
10624 need to duplicate it for the type. */
10625 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
10626 FIELD_TYPE (*fp) = die_type (die, cu);
10627 FIELD_NAME (*fp) = fieldname;
10628 }
10629 else if (die->tag == DW_TAG_inheritance)
10630 {
10631 LONGEST offset;
10632
10633 /* C++ base class field. */
10634 if (handle_data_member_location (die, cu, &offset))
10635 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
10636 FIELD_BITSIZE (*fp) = 0;
10637 FIELD_TYPE (*fp) = die_type (die, cu);
10638 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
10639 fip->nbaseclasses++;
10640 }
10641 }
10642
10643 /* Add a typedef defined in the scope of the FIP's class. */
10644
10645 static void
10646 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
10647 struct dwarf2_cu *cu)
10648 {
10649 struct objfile *objfile = cu->objfile;
10650 struct typedef_field_list *new_field;
10651 struct attribute *attr;
10652 struct typedef_field *fp;
10653 char *fieldname = "";
10654
10655 /* Allocate a new field list entry and link it in. */
10656 new_field = xzalloc (sizeof (*new_field));
10657 make_cleanup (xfree, new_field);
10658
10659 gdb_assert (die->tag == DW_TAG_typedef);
10660
10661 fp = &new_field->field;
10662
10663 /* Get name of field. */
10664 fp->name = dwarf2_name (die, cu);
10665 if (fp->name == NULL)
10666 return;
10667
10668 fp->type = read_type_die (die, cu);
10669
10670 new_field->next = fip->typedef_field_list;
10671 fip->typedef_field_list = new_field;
10672 fip->typedef_field_list_count++;
10673 }
10674
10675 /* Create the vector of fields, and attach it to the type. */
10676
10677 static void
10678 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
10679 struct dwarf2_cu *cu)
10680 {
10681 int nfields = fip->nfields;
10682
10683 /* Record the field count, allocate space for the array of fields,
10684 and create blank accessibility bitfields if necessary. */
10685 TYPE_NFIELDS (type) = nfields;
10686 TYPE_FIELDS (type) = (struct field *)
10687 TYPE_ALLOC (type, sizeof (struct field) * nfields);
10688 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
10689
10690 if (fip->non_public_fields && cu->language != language_ada)
10691 {
10692 ALLOCATE_CPLUS_STRUCT_TYPE (type);
10693
10694 TYPE_FIELD_PRIVATE_BITS (type) =
10695 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
10696 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
10697
10698 TYPE_FIELD_PROTECTED_BITS (type) =
10699 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
10700 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
10701
10702 TYPE_FIELD_IGNORE_BITS (type) =
10703 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
10704 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
10705 }
10706
10707 /* If the type has baseclasses, allocate and clear a bit vector for
10708 TYPE_FIELD_VIRTUAL_BITS. */
10709 if (fip->nbaseclasses && cu->language != language_ada)
10710 {
10711 int num_bytes = B_BYTES (fip->nbaseclasses);
10712 unsigned char *pointer;
10713
10714 ALLOCATE_CPLUS_STRUCT_TYPE (type);
10715 pointer = TYPE_ALLOC (type, num_bytes);
10716 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
10717 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
10718 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
10719 }
10720
10721 /* Copy the saved-up fields into the field vector. Start from the head of
10722 the list, adding to the tail of the field array, so that they end up in
10723 the same order in the array in which they were added to the list. */
10724 while (nfields-- > 0)
10725 {
10726 struct nextfield *fieldp;
10727
10728 if (fip->fields)
10729 {
10730 fieldp = fip->fields;
10731 fip->fields = fieldp->next;
10732 }
10733 else
10734 {
10735 fieldp = fip->baseclasses;
10736 fip->baseclasses = fieldp->next;
10737 }
10738
10739 TYPE_FIELD (type, nfields) = fieldp->field;
10740 switch (fieldp->accessibility)
10741 {
10742 case DW_ACCESS_private:
10743 if (cu->language != language_ada)
10744 SET_TYPE_FIELD_PRIVATE (type, nfields);
10745 break;
10746
10747 case DW_ACCESS_protected:
10748 if (cu->language != language_ada)
10749 SET_TYPE_FIELD_PROTECTED (type, nfields);
10750 break;
10751
10752 case DW_ACCESS_public:
10753 break;
10754
10755 default:
10756 /* Unknown accessibility. Complain and treat it as public. */
10757 {
10758 complaint (&symfile_complaints, _("unsupported accessibility %d"),
10759 fieldp->accessibility);
10760 }
10761 break;
10762 }
10763 if (nfields < fip->nbaseclasses)
10764 {
10765 switch (fieldp->virtuality)
10766 {
10767 case DW_VIRTUALITY_virtual:
10768 case DW_VIRTUALITY_pure_virtual:
10769 if (cu->language == language_ada)
10770 error (_("unexpected virtuality in component of Ada type"));
10771 SET_TYPE_FIELD_VIRTUAL (type, nfields);
10772 break;
10773 }
10774 }
10775 }
10776 }
10777
10778 /* Return true if this member function is a constructor, false
10779 otherwise. */
10780
10781 static int
10782 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
10783 {
10784 const char *fieldname;
10785 const char *typename;
10786 int len;
10787
10788 if (die->parent == NULL)
10789 return 0;
10790
10791 if (die->parent->tag != DW_TAG_structure_type
10792 && die->parent->tag != DW_TAG_union_type
10793 && die->parent->tag != DW_TAG_class_type)
10794 return 0;
10795
10796 fieldname = dwarf2_name (die, cu);
10797 typename = dwarf2_name (die->parent, cu);
10798 if (fieldname == NULL || typename == NULL)
10799 return 0;
10800
10801 len = strlen (fieldname);
10802 return (strncmp (fieldname, typename, len) == 0
10803 && (typename[len] == '\0' || typename[len] == '<'));
10804 }
10805
10806 /* Add a member function to the proper fieldlist. */
10807
10808 static void
10809 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
10810 struct type *type, struct dwarf2_cu *cu)
10811 {
10812 struct objfile *objfile = cu->objfile;
10813 struct attribute *attr;
10814 struct fnfieldlist *flp;
10815 int i;
10816 struct fn_field *fnp;
10817 char *fieldname;
10818 struct nextfnfield *new_fnfield;
10819 struct type *this_type;
10820 enum dwarf_access_attribute accessibility;
10821
10822 if (cu->language == language_ada)
10823 error (_("unexpected member function in Ada type"));
10824
10825 /* Get name of member function. */
10826 fieldname = dwarf2_name (die, cu);
10827 if (fieldname == NULL)
10828 return;
10829
10830 /* Look up member function name in fieldlist. */
10831 for (i = 0; i < fip->nfnfields; i++)
10832 {
10833 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
10834 break;
10835 }
10836
10837 /* Create new list element if necessary. */
10838 if (i < fip->nfnfields)
10839 flp = &fip->fnfieldlists[i];
10840 else
10841 {
10842 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
10843 {
10844 fip->fnfieldlists = (struct fnfieldlist *)
10845 xrealloc (fip->fnfieldlists,
10846 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
10847 * sizeof (struct fnfieldlist));
10848 if (fip->nfnfields == 0)
10849 make_cleanup (free_current_contents, &fip->fnfieldlists);
10850 }
10851 flp = &fip->fnfieldlists[fip->nfnfields];
10852 flp->name = fieldname;
10853 flp->length = 0;
10854 flp->head = NULL;
10855 i = fip->nfnfields++;
10856 }
10857
10858 /* Create a new member function field and chain it to the field list
10859 entry. */
10860 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
10861 make_cleanup (xfree, new_fnfield);
10862 memset (new_fnfield, 0, sizeof (struct nextfnfield));
10863 new_fnfield->next = flp->head;
10864 flp->head = new_fnfield;
10865 flp->length++;
10866
10867 /* Fill in the member function field info. */
10868 fnp = &new_fnfield->fnfield;
10869
10870 /* Delay processing of the physname until later. */
10871 if (cu->language == language_cplus || cu->language == language_java)
10872 {
10873 add_to_method_list (type, i, flp->length - 1, fieldname,
10874 die, cu);
10875 }
10876 else
10877 {
10878 const char *physname = dwarf2_physname (fieldname, die, cu);
10879 fnp->physname = physname ? physname : "";
10880 }
10881
10882 fnp->type = alloc_type (objfile);
10883 this_type = read_type_die (die, cu);
10884 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
10885 {
10886 int nparams = TYPE_NFIELDS (this_type);
10887
10888 /* TYPE is the domain of this method, and THIS_TYPE is the type
10889 of the method itself (TYPE_CODE_METHOD). */
10890 smash_to_method_type (fnp->type, type,
10891 TYPE_TARGET_TYPE (this_type),
10892 TYPE_FIELDS (this_type),
10893 TYPE_NFIELDS (this_type),
10894 TYPE_VARARGS (this_type));
10895
10896 /* Handle static member functions.
10897 Dwarf2 has no clean way to discern C++ static and non-static
10898 member functions. G++ helps GDB by marking the first
10899 parameter for non-static member functions (which is the this
10900 pointer) as artificial. We obtain this information from
10901 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
10902 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
10903 fnp->voffset = VOFFSET_STATIC;
10904 }
10905 else
10906 complaint (&symfile_complaints, _("member function type missing for '%s'"),
10907 dwarf2_full_name (fieldname, die, cu));
10908
10909 /* Get fcontext from DW_AT_containing_type if present. */
10910 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
10911 fnp->fcontext = die_containing_type (die, cu);
10912
10913 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
10914 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
10915
10916 /* Get accessibility. */
10917 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
10918 if (attr)
10919 accessibility = DW_UNSND (attr);
10920 else
10921 accessibility = dwarf2_default_access_attribute (die, cu);
10922 switch (accessibility)
10923 {
10924 case DW_ACCESS_private:
10925 fnp->is_private = 1;
10926 break;
10927 case DW_ACCESS_protected:
10928 fnp->is_protected = 1;
10929 break;
10930 }
10931
10932 /* Check for artificial methods. */
10933 attr = dwarf2_attr (die, DW_AT_artificial, cu);
10934 if (attr && DW_UNSND (attr) != 0)
10935 fnp->is_artificial = 1;
10936
10937 fnp->is_constructor = dwarf2_is_constructor (die, cu);
10938
10939 /* Get index in virtual function table if it is a virtual member
10940 function. For older versions of GCC, this is an offset in the
10941 appropriate virtual table, as specified by DW_AT_containing_type.
10942 For everyone else, it is an expression to be evaluated relative
10943 to the object address. */
10944
10945 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
10946 if (attr)
10947 {
10948 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
10949 {
10950 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
10951 {
10952 /* Old-style GCC. */
10953 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
10954 }
10955 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
10956 || (DW_BLOCK (attr)->size > 1
10957 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
10958 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
10959 {
10960 struct dwarf_block blk;
10961 int offset;
10962
10963 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
10964 ? 1 : 2);
10965 blk.size = DW_BLOCK (attr)->size - offset;
10966 blk.data = DW_BLOCK (attr)->data + offset;
10967 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
10968 if ((fnp->voffset % cu->header.addr_size) != 0)
10969 dwarf2_complex_location_expr_complaint ();
10970 else
10971 fnp->voffset /= cu->header.addr_size;
10972 fnp->voffset += 2;
10973 }
10974 else
10975 dwarf2_complex_location_expr_complaint ();
10976
10977 if (!fnp->fcontext)
10978 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
10979 }
10980 else if (attr_form_is_section_offset (attr))
10981 {
10982 dwarf2_complex_location_expr_complaint ();
10983 }
10984 else
10985 {
10986 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
10987 fieldname);
10988 }
10989 }
10990 else
10991 {
10992 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
10993 if (attr && DW_UNSND (attr))
10994 {
10995 /* GCC does this, as of 2008-08-25; PR debug/37237. */
10996 complaint (&symfile_complaints,
10997 _("Member function \"%s\" (offset %d) is virtual "
10998 "but the vtable offset is not specified"),
10999 fieldname, die->offset.sect_off);
11000 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11001 TYPE_CPLUS_DYNAMIC (type) = 1;
11002 }
11003 }
11004 }
11005
11006 /* Create the vector of member function fields, and attach it to the type. */
11007
11008 static void
11009 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
11010 struct dwarf2_cu *cu)
11011 {
11012 struct fnfieldlist *flp;
11013 int i;
11014
11015 if (cu->language == language_ada)
11016 error (_("unexpected member functions in Ada type"));
11017
11018 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11019 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
11020 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
11021
11022 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
11023 {
11024 struct nextfnfield *nfp = flp->head;
11025 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
11026 int k;
11027
11028 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
11029 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
11030 fn_flp->fn_fields = (struct fn_field *)
11031 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
11032 for (k = flp->length; (k--, nfp); nfp = nfp->next)
11033 fn_flp->fn_fields[k] = nfp->fnfield;
11034 }
11035
11036 TYPE_NFN_FIELDS (type) = fip->nfnfields;
11037 }
11038
11039 /* Returns non-zero if NAME is the name of a vtable member in CU's
11040 language, zero otherwise. */
11041 static int
11042 is_vtable_name (const char *name, struct dwarf2_cu *cu)
11043 {
11044 static const char vptr[] = "_vptr";
11045 static const char vtable[] = "vtable";
11046
11047 /* Look for the C++ and Java forms of the vtable. */
11048 if ((cu->language == language_java
11049 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
11050 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
11051 && is_cplus_marker (name[sizeof (vptr) - 1])))
11052 return 1;
11053
11054 return 0;
11055 }
11056
11057 /* GCC outputs unnamed structures that are really pointers to member
11058 functions, with the ABI-specified layout. If TYPE describes
11059 such a structure, smash it into a member function type.
11060
11061 GCC shouldn't do this; it should just output pointer to member DIEs.
11062 This is GCC PR debug/28767. */
11063
11064 static void
11065 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
11066 {
11067 struct type *pfn_type, *domain_type, *new_type;
11068
11069 /* Check for a structure with no name and two children. */
11070 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
11071 return;
11072
11073 /* Check for __pfn and __delta members. */
11074 if (TYPE_FIELD_NAME (type, 0) == NULL
11075 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
11076 || TYPE_FIELD_NAME (type, 1) == NULL
11077 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
11078 return;
11079
11080 /* Find the type of the method. */
11081 pfn_type = TYPE_FIELD_TYPE (type, 0);
11082 if (pfn_type == NULL
11083 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
11084 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
11085 return;
11086
11087 /* Look for the "this" argument. */
11088 pfn_type = TYPE_TARGET_TYPE (pfn_type);
11089 if (TYPE_NFIELDS (pfn_type) == 0
11090 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
11091 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
11092 return;
11093
11094 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
11095 new_type = alloc_type (objfile);
11096 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
11097 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
11098 TYPE_VARARGS (pfn_type));
11099 smash_to_methodptr_type (type, new_type);
11100 }
11101
11102 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
11103 (icc). */
11104
11105 static int
11106 producer_is_icc (struct dwarf2_cu *cu)
11107 {
11108 if (!cu->checked_producer)
11109 check_producer (cu);
11110
11111 return cu->producer_is_icc;
11112 }
11113
11114 /* Called when we find the DIE that starts a structure or union scope
11115 (definition) to create a type for the structure or union. Fill in
11116 the type's name and general properties; the members will not be
11117 processed until process_structure_type.
11118
11119 NOTE: we need to call these functions regardless of whether or not the
11120 DIE has a DW_AT_name attribute, since it might be an anonymous
11121 structure or union. This gets the type entered into our set of
11122 user defined types.
11123
11124 However, if the structure is incomplete (an opaque struct/union)
11125 then suppress creating a symbol table entry for it since gdb only
11126 wants to find the one with the complete definition. Note that if
11127 it is complete, we just call new_symbol, which does it's own
11128 checking about whether the struct/union is anonymous or not (and
11129 suppresses creating a symbol table entry itself). */
11130
11131 static struct type *
11132 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
11133 {
11134 struct objfile *objfile = cu->objfile;
11135 struct type *type;
11136 struct attribute *attr;
11137 char *name;
11138
11139 /* If the definition of this type lives in .debug_types, read that type.
11140 Don't follow DW_AT_specification though, that will take us back up
11141 the chain and we want to go down. */
11142 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
11143 if (attr)
11144 {
11145 struct dwarf2_cu *type_cu = cu;
11146 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
11147
11148 /* We could just recurse on read_structure_type, but we need to call
11149 get_die_type to ensure only one type for this DIE is created.
11150 This is important, for example, because for c++ classes we need
11151 TYPE_NAME set which is only done by new_symbol. Blech. */
11152 type = read_type_die (type_die, type_cu);
11153
11154 /* TYPE_CU may not be the same as CU.
11155 Ensure TYPE is recorded in CU's type_hash table. */
11156 return set_die_type (die, type, cu);
11157 }
11158
11159 type = alloc_type (objfile);
11160 INIT_CPLUS_SPECIFIC (type);
11161
11162 name = dwarf2_name (die, cu);
11163 if (name != NULL)
11164 {
11165 if (cu->language == language_cplus
11166 || cu->language == language_java)
11167 {
11168 char *full_name = (char *) dwarf2_full_name (name, die, cu);
11169
11170 /* dwarf2_full_name might have already finished building the DIE's
11171 type. If so, there is no need to continue. */
11172 if (get_die_type (die, cu) != NULL)
11173 return get_die_type (die, cu);
11174
11175 TYPE_TAG_NAME (type) = full_name;
11176 if (die->tag == DW_TAG_structure_type
11177 || die->tag == DW_TAG_class_type)
11178 TYPE_NAME (type) = TYPE_TAG_NAME (type);
11179 }
11180 else
11181 {
11182 /* The name is already allocated along with this objfile, so
11183 we don't need to duplicate it for the type. */
11184 TYPE_TAG_NAME (type) = (char *) name;
11185 if (die->tag == DW_TAG_class_type)
11186 TYPE_NAME (type) = TYPE_TAG_NAME (type);
11187 }
11188 }
11189
11190 if (die->tag == DW_TAG_structure_type)
11191 {
11192 TYPE_CODE (type) = TYPE_CODE_STRUCT;
11193 }
11194 else if (die->tag == DW_TAG_union_type)
11195 {
11196 TYPE_CODE (type) = TYPE_CODE_UNION;
11197 }
11198 else
11199 {
11200 TYPE_CODE (type) = TYPE_CODE_CLASS;
11201 }
11202
11203 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
11204 TYPE_DECLARED_CLASS (type) = 1;
11205
11206 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11207 if (attr)
11208 {
11209 TYPE_LENGTH (type) = DW_UNSND (attr);
11210 }
11211 else
11212 {
11213 TYPE_LENGTH (type) = 0;
11214 }
11215
11216 if (producer_is_icc (cu))
11217 {
11218 /* ICC does not output the required DW_AT_declaration
11219 on incomplete types, but gives them a size of zero. */
11220 }
11221 else
11222 TYPE_STUB_SUPPORTED (type) = 1;
11223
11224 if (die_is_declaration (die, cu))
11225 TYPE_STUB (type) = 1;
11226 else if (attr == NULL && die->child == NULL
11227 && producer_is_realview (cu->producer))
11228 /* RealView does not output the required DW_AT_declaration
11229 on incomplete types. */
11230 TYPE_STUB (type) = 1;
11231
11232 /* We need to add the type field to the die immediately so we don't
11233 infinitely recurse when dealing with pointers to the structure
11234 type within the structure itself. */
11235 set_die_type (die, type, cu);
11236
11237 /* set_die_type should be already done. */
11238 set_descriptive_type (type, die, cu);
11239
11240 return type;
11241 }
11242
11243 /* Finish creating a structure or union type, including filling in
11244 its members and creating a symbol for it. */
11245
11246 static void
11247 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
11248 {
11249 struct objfile *objfile = cu->objfile;
11250 struct die_info *child_die = die->child;
11251 struct type *type;
11252
11253 type = get_die_type (die, cu);
11254 if (type == NULL)
11255 type = read_structure_type (die, cu);
11256
11257 if (die->child != NULL && ! die_is_declaration (die, cu))
11258 {
11259 struct field_info fi;
11260 struct die_info *child_die;
11261 VEC (symbolp) *template_args = NULL;
11262 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
11263
11264 memset (&fi, 0, sizeof (struct field_info));
11265
11266 child_die = die->child;
11267
11268 while (child_die && child_die->tag)
11269 {
11270 if (child_die->tag == DW_TAG_member
11271 || child_die->tag == DW_TAG_variable)
11272 {
11273 /* NOTE: carlton/2002-11-05: A C++ static data member
11274 should be a DW_TAG_member that is a declaration, but
11275 all versions of G++ as of this writing (so through at
11276 least 3.2.1) incorrectly generate DW_TAG_variable
11277 tags for them instead. */
11278 dwarf2_add_field (&fi, child_die, cu);
11279 }
11280 else if (child_die->tag == DW_TAG_subprogram)
11281 {
11282 /* C++ member function. */
11283 dwarf2_add_member_fn (&fi, child_die, type, cu);
11284 }
11285 else if (child_die->tag == DW_TAG_inheritance)
11286 {
11287 /* C++ base class field. */
11288 dwarf2_add_field (&fi, child_die, cu);
11289 }
11290 else if (child_die->tag == DW_TAG_typedef)
11291 dwarf2_add_typedef (&fi, child_die, cu);
11292 else if (child_die->tag == DW_TAG_template_type_param
11293 || child_die->tag == DW_TAG_template_value_param)
11294 {
11295 struct symbol *arg = new_symbol (child_die, NULL, cu);
11296
11297 if (arg != NULL)
11298 VEC_safe_push (symbolp, template_args, arg);
11299 }
11300
11301 child_die = sibling_die (child_die);
11302 }
11303
11304 /* Attach template arguments to type. */
11305 if (! VEC_empty (symbolp, template_args))
11306 {
11307 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11308 TYPE_N_TEMPLATE_ARGUMENTS (type)
11309 = VEC_length (symbolp, template_args);
11310 TYPE_TEMPLATE_ARGUMENTS (type)
11311 = obstack_alloc (&objfile->objfile_obstack,
11312 (TYPE_N_TEMPLATE_ARGUMENTS (type)
11313 * sizeof (struct symbol *)));
11314 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
11315 VEC_address (symbolp, template_args),
11316 (TYPE_N_TEMPLATE_ARGUMENTS (type)
11317 * sizeof (struct symbol *)));
11318 VEC_free (symbolp, template_args);
11319 }
11320
11321 /* Attach fields and member functions to the type. */
11322 if (fi.nfields)
11323 dwarf2_attach_fields_to_type (&fi, type, cu);
11324 if (fi.nfnfields)
11325 {
11326 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
11327
11328 /* Get the type which refers to the base class (possibly this
11329 class itself) which contains the vtable pointer for the current
11330 class from the DW_AT_containing_type attribute. This use of
11331 DW_AT_containing_type is a GNU extension. */
11332
11333 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
11334 {
11335 struct type *t = die_containing_type (die, cu);
11336
11337 TYPE_VPTR_BASETYPE (type) = t;
11338 if (type == t)
11339 {
11340 int i;
11341
11342 /* Our own class provides vtbl ptr. */
11343 for (i = TYPE_NFIELDS (t) - 1;
11344 i >= TYPE_N_BASECLASSES (t);
11345 --i)
11346 {
11347 const char *fieldname = TYPE_FIELD_NAME (t, i);
11348
11349 if (is_vtable_name (fieldname, cu))
11350 {
11351 TYPE_VPTR_FIELDNO (type) = i;
11352 break;
11353 }
11354 }
11355
11356 /* Complain if virtual function table field not found. */
11357 if (i < TYPE_N_BASECLASSES (t))
11358 complaint (&symfile_complaints,
11359 _("virtual function table pointer "
11360 "not found when defining class '%s'"),
11361 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
11362 "");
11363 }
11364 else
11365 {
11366 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
11367 }
11368 }
11369 else if (cu->producer
11370 && strncmp (cu->producer,
11371 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
11372 {
11373 /* The IBM XLC compiler does not provide direct indication
11374 of the containing type, but the vtable pointer is
11375 always named __vfp. */
11376
11377 int i;
11378
11379 for (i = TYPE_NFIELDS (type) - 1;
11380 i >= TYPE_N_BASECLASSES (type);
11381 --i)
11382 {
11383 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
11384 {
11385 TYPE_VPTR_FIELDNO (type) = i;
11386 TYPE_VPTR_BASETYPE (type) = type;
11387 break;
11388 }
11389 }
11390 }
11391 }
11392
11393 /* Copy fi.typedef_field_list linked list elements content into the
11394 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
11395 if (fi.typedef_field_list)
11396 {
11397 int i = fi.typedef_field_list_count;
11398
11399 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11400 TYPE_TYPEDEF_FIELD_ARRAY (type)
11401 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
11402 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
11403
11404 /* Reverse the list order to keep the debug info elements order. */
11405 while (--i >= 0)
11406 {
11407 struct typedef_field *dest, *src;
11408
11409 dest = &TYPE_TYPEDEF_FIELD (type, i);
11410 src = &fi.typedef_field_list->field;
11411 fi.typedef_field_list = fi.typedef_field_list->next;
11412 *dest = *src;
11413 }
11414 }
11415
11416 do_cleanups (back_to);
11417
11418 if (HAVE_CPLUS_STRUCT (type))
11419 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
11420 }
11421
11422 quirk_gcc_member_function_pointer (type, objfile);
11423
11424 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
11425 snapshots) has been known to create a die giving a declaration
11426 for a class that has, as a child, a die giving a definition for a
11427 nested class. So we have to process our children even if the
11428 current die is a declaration. Normally, of course, a declaration
11429 won't have any children at all. */
11430
11431 while (child_die != NULL && child_die->tag)
11432 {
11433 if (child_die->tag == DW_TAG_member
11434 || child_die->tag == DW_TAG_variable
11435 || child_die->tag == DW_TAG_inheritance
11436 || child_die->tag == DW_TAG_template_value_param
11437 || child_die->tag == DW_TAG_template_type_param)
11438 {
11439 /* Do nothing. */
11440 }
11441 else
11442 process_die (child_die, cu);
11443
11444 child_die = sibling_die (child_die);
11445 }
11446
11447 /* Do not consider external references. According to the DWARF standard,
11448 these DIEs are identified by the fact that they have no byte_size
11449 attribute, and a declaration attribute. */
11450 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
11451 || !die_is_declaration (die, cu))
11452 new_symbol (die, type, cu);
11453 }
11454
11455 /* Given a DW_AT_enumeration_type die, set its type. We do not
11456 complete the type's fields yet, or create any symbols. */
11457
11458 static struct type *
11459 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
11460 {
11461 struct objfile *objfile = cu->objfile;
11462 struct type *type;
11463 struct attribute *attr;
11464 const char *name;
11465
11466 /* If the definition of this type lives in .debug_types, read that type.
11467 Don't follow DW_AT_specification though, that will take us back up
11468 the chain and we want to go down. */
11469 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
11470 if (attr)
11471 {
11472 struct dwarf2_cu *type_cu = cu;
11473 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
11474
11475 type = read_type_die (type_die, type_cu);
11476
11477 /* TYPE_CU may not be the same as CU.
11478 Ensure TYPE is recorded in CU's type_hash table. */
11479 return set_die_type (die, type, cu);
11480 }
11481
11482 type = alloc_type (objfile);
11483
11484 TYPE_CODE (type) = TYPE_CODE_ENUM;
11485 name = dwarf2_full_name (NULL, die, cu);
11486 if (name != NULL)
11487 TYPE_TAG_NAME (type) = (char *) name;
11488
11489 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11490 if (attr)
11491 {
11492 TYPE_LENGTH (type) = DW_UNSND (attr);
11493 }
11494 else
11495 {
11496 TYPE_LENGTH (type) = 0;
11497 }
11498
11499 /* The enumeration DIE can be incomplete. In Ada, any type can be
11500 declared as private in the package spec, and then defined only
11501 inside the package body. Such types are known as Taft Amendment
11502 Types. When another package uses such a type, an incomplete DIE
11503 may be generated by the compiler. */
11504 if (die_is_declaration (die, cu))
11505 TYPE_STUB (type) = 1;
11506
11507 return set_die_type (die, type, cu);
11508 }
11509
11510 /* Given a pointer to a die which begins an enumeration, process all
11511 the dies that define the members of the enumeration, and create the
11512 symbol for the enumeration type.
11513
11514 NOTE: We reverse the order of the element list. */
11515
11516 static void
11517 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
11518 {
11519 struct type *this_type;
11520
11521 this_type = get_die_type (die, cu);
11522 if (this_type == NULL)
11523 this_type = read_enumeration_type (die, cu);
11524
11525 if (die->child != NULL)
11526 {
11527 struct die_info *child_die;
11528 struct symbol *sym;
11529 struct field *fields = NULL;
11530 int num_fields = 0;
11531 int unsigned_enum = 1;
11532 char *name;
11533 int flag_enum = 1;
11534 ULONGEST mask = 0;
11535
11536 child_die = die->child;
11537 while (child_die && child_die->tag)
11538 {
11539 if (child_die->tag != DW_TAG_enumerator)
11540 {
11541 process_die (child_die, cu);
11542 }
11543 else
11544 {
11545 name = dwarf2_name (child_die, cu);
11546 if (name)
11547 {
11548 sym = new_symbol (child_die, this_type, cu);
11549 if (SYMBOL_VALUE (sym) < 0)
11550 {
11551 unsigned_enum = 0;
11552 flag_enum = 0;
11553 }
11554 else if ((mask & SYMBOL_VALUE (sym)) != 0)
11555 flag_enum = 0;
11556 else
11557 mask |= SYMBOL_VALUE (sym);
11558
11559 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
11560 {
11561 fields = (struct field *)
11562 xrealloc (fields,
11563 (num_fields + DW_FIELD_ALLOC_CHUNK)
11564 * sizeof (struct field));
11565 }
11566
11567 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
11568 FIELD_TYPE (fields[num_fields]) = NULL;
11569 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
11570 FIELD_BITSIZE (fields[num_fields]) = 0;
11571
11572 num_fields++;
11573 }
11574 }
11575
11576 child_die = sibling_die (child_die);
11577 }
11578
11579 if (num_fields)
11580 {
11581 TYPE_NFIELDS (this_type) = num_fields;
11582 TYPE_FIELDS (this_type) = (struct field *)
11583 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
11584 memcpy (TYPE_FIELDS (this_type), fields,
11585 sizeof (struct field) * num_fields);
11586 xfree (fields);
11587 }
11588 if (unsigned_enum)
11589 TYPE_UNSIGNED (this_type) = 1;
11590 if (flag_enum)
11591 TYPE_FLAG_ENUM (this_type) = 1;
11592 }
11593
11594 /* If we are reading an enum from a .debug_types unit, and the enum
11595 is a declaration, and the enum is not the signatured type in the
11596 unit, then we do not want to add a symbol for it. Adding a
11597 symbol would in some cases obscure the true definition of the
11598 enum, giving users an incomplete type when the definition is
11599 actually available. Note that we do not want to do this for all
11600 enums which are just declarations, because C++0x allows forward
11601 enum declarations. */
11602 if (cu->per_cu->is_debug_types
11603 && die_is_declaration (die, cu))
11604 {
11605 struct signatured_type *sig_type;
11606
11607 sig_type
11608 = lookup_signatured_type_at_offset (dwarf2_per_objfile->objfile,
11609 cu->per_cu->info_or_types_section,
11610 cu->per_cu->offset);
11611 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
11612 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
11613 return;
11614 }
11615
11616 new_symbol (die, this_type, cu);
11617 }
11618
11619 /* Extract all information from a DW_TAG_array_type DIE and put it in
11620 the DIE's type field. For now, this only handles one dimensional
11621 arrays. */
11622
11623 static struct type *
11624 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
11625 {
11626 struct objfile *objfile = cu->objfile;
11627 struct die_info *child_die;
11628 struct type *type;
11629 struct type *element_type, *range_type, *index_type;
11630 struct type **range_types = NULL;
11631 struct attribute *attr;
11632 int ndim = 0;
11633 struct cleanup *back_to;
11634 char *name;
11635
11636 element_type = die_type (die, cu);
11637
11638 /* The die_type call above may have already set the type for this DIE. */
11639 type = get_die_type (die, cu);
11640 if (type)
11641 return type;
11642
11643 /* Irix 6.2 native cc creates array types without children for
11644 arrays with unspecified length. */
11645 if (die->child == NULL)
11646 {
11647 index_type = objfile_type (objfile)->builtin_int;
11648 range_type = create_range_type (NULL, index_type, 0, -1);
11649 type = create_array_type (NULL, element_type, range_type);
11650 return set_die_type (die, type, cu);
11651 }
11652
11653 back_to = make_cleanup (null_cleanup, NULL);
11654 child_die = die->child;
11655 while (child_die && child_die->tag)
11656 {
11657 if (child_die->tag == DW_TAG_subrange_type)
11658 {
11659 struct type *child_type = read_type_die (child_die, cu);
11660
11661 if (child_type != NULL)
11662 {
11663 /* The range type was succesfully read. Save it for the
11664 array type creation. */
11665 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
11666 {
11667 range_types = (struct type **)
11668 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
11669 * sizeof (struct type *));
11670 if (ndim == 0)
11671 make_cleanup (free_current_contents, &range_types);
11672 }
11673 range_types[ndim++] = child_type;
11674 }
11675 }
11676 child_die = sibling_die (child_die);
11677 }
11678
11679 /* Dwarf2 dimensions are output from left to right, create the
11680 necessary array types in backwards order. */
11681
11682 type = element_type;
11683
11684 if (read_array_order (die, cu) == DW_ORD_col_major)
11685 {
11686 int i = 0;
11687
11688 while (i < ndim)
11689 type = create_array_type (NULL, type, range_types[i++]);
11690 }
11691 else
11692 {
11693 while (ndim-- > 0)
11694 type = create_array_type (NULL, type, range_types[ndim]);
11695 }
11696
11697 /* Understand Dwarf2 support for vector types (like they occur on
11698 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
11699 array type. This is not part of the Dwarf2/3 standard yet, but a
11700 custom vendor extension. The main difference between a regular
11701 array and the vector variant is that vectors are passed by value
11702 to functions. */
11703 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
11704 if (attr)
11705 make_vector_type (type);
11706
11707 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
11708 implementation may choose to implement triple vectors using this
11709 attribute. */
11710 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11711 if (attr)
11712 {
11713 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
11714 TYPE_LENGTH (type) = DW_UNSND (attr);
11715 else
11716 complaint (&symfile_complaints,
11717 _("DW_AT_byte_size for array type smaller "
11718 "than the total size of elements"));
11719 }
11720
11721 name = dwarf2_name (die, cu);
11722 if (name)
11723 TYPE_NAME (type) = name;
11724
11725 /* Install the type in the die. */
11726 set_die_type (die, type, cu);
11727
11728 /* set_die_type should be already done. */
11729 set_descriptive_type (type, die, cu);
11730
11731 do_cleanups (back_to);
11732
11733 return type;
11734 }
11735
11736 static enum dwarf_array_dim_ordering
11737 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
11738 {
11739 struct attribute *attr;
11740
11741 attr = dwarf2_attr (die, DW_AT_ordering, cu);
11742
11743 if (attr) return DW_SND (attr);
11744
11745 /* GNU F77 is a special case, as at 08/2004 array type info is the
11746 opposite order to the dwarf2 specification, but data is still
11747 laid out as per normal fortran.
11748
11749 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
11750 version checking. */
11751
11752 if (cu->language == language_fortran
11753 && cu->producer && strstr (cu->producer, "GNU F77"))
11754 {
11755 return DW_ORD_row_major;
11756 }
11757
11758 switch (cu->language_defn->la_array_ordering)
11759 {
11760 case array_column_major:
11761 return DW_ORD_col_major;
11762 case array_row_major:
11763 default:
11764 return DW_ORD_row_major;
11765 };
11766 }
11767
11768 /* Extract all information from a DW_TAG_set_type DIE and put it in
11769 the DIE's type field. */
11770
11771 static struct type *
11772 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
11773 {
11774 struct type *domain_type, *set_type;
11775 struct attribute *attr;
11776
11777 domain_type = die_type (die, cu);
11778
11779 /* The die_type call above may have already set the type for this DIE. */
11780 set_type = get_die_type (die, cu);
11781 if (set_type)
11782 return set_type;
11783
11784 set_type = create_set_type (NULL, domain_type);
11785
11786 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11787 if (attr)
11788 TYPE_LENGTH (set_type) = DW_UNSND (attr);
11789
11790 return set_die_type (die, set_type, cu);
11791 }
11792
11793 /* A helper for read_common_block that creates a locexpr baton.
11794 SYM is the symbol which we are marking as computed.
11795 COMMON_DIE is the DIE for the common block.
11796 COMMON_LOC is the location expression attribute for the common
11797 block itself.
11798 MEMBER_LOC is the location expression attribute for the particular
11799 member of the common block that we are processing.
11800 CU is the CU from which the above come. */
11801
11802 static void
11803 mark_common_block_symbol_computed (struct symbol *sym,
11804 struct die_info *common_die,
11805 struct attribute *common_loc,
11806 struct attribute *member_loc,
11807 struct dwarf2_cu *cu)
11808 {
11809 struct objfile *objfile = dwarf2_per_objfile->objfile;
11810 struct dwarf2_locexpr_baton *baton;
11811 gdb_byte *ptr;
11812 unsigned int cu_off;
11813 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
11814 LONGEST offset = 0;
11815
11816 gdb_assert (common_loc && member_loc);
11817 gdb_assert (attr_form_is_block (common_loc));
11818 gdb_assert (attr_form_is_block (member_loc)
11819 || attr_form_is_constant (member_loc));
11820
11821 baton = obstack_alloc (&objfile->objfile_obstack,
11822 sizeof (struct dwarf2_locexpr_baton));
11823 baton->per_cu = cu->per_cu;
11824 gdb_assert (baton->per_cu);
11825
11826 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
11827
11828 if (attr_form_is_constant (member_loc))
11829 {
11830 offset = dwarf2_get_attr_constant_value (member_loc, 0);
11831 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
11832 }
11833 else
11834 baton->size += DW_BLOCK (member_loc)->size;
11835
11836 ptr = obstack_alloc (&objfile->objfile_obstack, baton->size);
11837 baton->data = ptr;
11838
11839 *ptr++ = DW_OP_call4;
11840 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
11841 store_unsigned_integer (ptr, 4, byte_order, cu_off);
11842 ptr += 4;
11843
11844 if (attr_form_is_constant (member_loc))
11845 {
11846 *ptr++ = DW_OP_addr;
11847 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
11848 ptr += cu->header.addr_size;
11849 }
11850 else
11851 {
11852 /* We have to copy the data here, because DW_OP_call4 will only
11853 use a DW_AT_location attribute. */
11854 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
11855 ptr += DW_BLOCK (member_loc)->size;
11856 }
11857
11858 *ptr++ = DW_OP_plus;
11859 gdb_assert (ptr - baton->data == baton->size);
11860
11861 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
11862 SYMBOL_LOCATION_BATON (sym) = baton;
11863 SYMBOL_CLASS (sym) = LOC_COMPUTED;
11864 }
11865
11866 /* Create appropriate locally-scoped variables for all the
11867 DW_TAG_common_block entries. Also create a struct common_block
11868 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
11869 is used to sepate the common blocks name namespace from regular
11870 variable names. */
11871
11872 static void
11873 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
11874 {
11875 struct attribute *attr;
11876
11877 attr = dwarf2_attr (die, DW_AT_location, cu);
11878 if (attr)
11879 {
11880 /* Support the .debug_loc offsets. */
11881 if (attr_form_is_block (attr))
11882 {
11883 /* Ok. */
11884 }
11885 else if (attr_form_is_section_offset (attr))
11886 {
11887 dwarf2_complex_location_expr_complaint ();
11888 attr = NULL;
11889 }
11890 else
11891 {
11892 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
11893 "common block member");
11894 attr = NULL;
11895 }
11896 }
11897
11898 if (die->child != NULL)
11899 {
11900 struct objfile *objfile = cu->objfile;
11901 struct die_info *child_die;
11902 size_t n_entries = 0, size;
11903 struct common_block *common_block;
11904 struct symbol *sym;
11905
11906 for (child_die = die->child;
11907 child_die && child_die->tag;
11908 child_die = sibling_die (child_die))
11909 ++n_entries;
11910
11911 size = (sizeof (struct common_block)
11912 + (n_entries - 1) * sizeof (struct symbol *));
11913 common_block = obstack_alloc (&objfile->objfile_obstack, size);
11914 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
11915 common_block->n_entries = 0;
11916
11917 for (child_die = die->child;
11918 child_die && child_die->tag;
11919 child_die = sibling_die (child_die))
11920 {
11921 /* Create the symbol in the DW_TAG_common_block block in the current
11922 symbol scope. */
11923 sym = new_symbol (child_die, NULL, cu);
11924 if (sym != NULL)
11925 {
11926 struct attribute *member_loc;
11927
11928 common_block->contents[common_block->n_entries++] = sym;
11929
11930 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
11931 cu);
11932 if (member_loc)
11933 {
11934 /* GDB has handled this for a long time, but it is
11935 not specified by DWARF. It seems to have been
11936 emitted by gfortran at least as recently as:
11937 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
11938 complaint (&symfile_complaints,
11939 _("Variable in common block has "
11940 "DW_AT_data_member_location "
11941 "- DIE at 0x%x [in module %s]"),
11942 child_die->offset.sect_off, cu->objfile->name);
11943
11944 if (attr_form_is_section_offset (member_loc))
11945 dwarf2_complex_location_expr_complaint ();
11946 else if (attr_form_is_constant (member_loc)
11947 || attr_form_is_block (member_loc))
11948 {
11949 if (attr)
11950 mark_common_block_symbol_computed (sym, die, attr,
11951 member_loc, cu);
11952 }
11953 else
11954 dwarf2_complex_location_expr_complaint ();
11955 }
11956 }
11957 }
11958
11959 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
11960 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
11961 }
11962 }
11963
11964 /* Create a type for a C++ namespace. */
11965
11966 static struct type *
11967 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
11968 {
11969 struct objfile *objfile = cu->objfile;
11970 const char *previous_prefix, *name;
11971 int is_anonymous;
11972 struct type *type;
11973
11974 /* For extensions, reuse the type of the original namespace. */
11975 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
11976 {
11977 struct die_info *ext_die;
11978 struct dwarf2_cu *ext_cu = cu;
11979
11980 ext_die = dwarf2_extension (die, &ext_cu);
11981 type = read_type_die (ext_die, ext_cu);
11982
11983 /* EXT_CU may not be the same as CU.
11984 Ensure TYPE is recorded in CU's type_hash table. */
11985 return set_die_type (die, type, cu);
11986 }
11987
11988 name = namespace_name (die, &is_anonymous, cu);
11989
11990 /* Now build the name of the current namespace. */
11991
11992 previous_prefix = determine_prefix (die, cu);
11993 if (previous_prefix[0] != '\0')
11994 name = typename_concat (&objfile->objfile_obstack,
11995 previous_prefix, name, 0, cu);
11996
11997 /* Create the type. */
11998 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
11999 objfile);
12000 TYPE_NAME (type) = (char *) name;
12001 TYPE_TAG_NAME (type) = TYPE_NAME (type);
12002
12003 return set_die_type (die, type, cu);
12004 }
12005
12006 /* Read a C++ namespace. */
12007
12008 static void
12009 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
12010 {
12011 struct objfile *objfile = cu->objfile;
12012 int is_anonymous;
12013
12014 /* Add a symbol associated to this if we haven't seen the namespace
12015 before. Also, add a using directive if it's an anonymous
12016 namespace. */
12017
12018 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
12019 {
12020 struct type *type;
12021
12022 type = read_type_die (die, cu);
12023 new_symbol (die, type, cu);
12024
12025 namespace_name (die, &is_anonymous, cu);
12026 if (is_anonymous)
12027 {
12028 const char *previous_prefix = determine_prefix (die, cu);
12029
12030 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
12031 NULL, NULL, &objfile->objfile_obstack);
12032 }
12033 }
12034
12035 if (die->child != NULL)
12036 {
12037 struct die_info *child_die = die->child;
12038
12039 while (child_die && child_die->tag)
12040 {
12041 process_die (child_die, cu);
12042 child_die = sibling_die (child_die);
12043 }
12044 }
12045 }
12046
12047 /* Read a Fortran module as type. This DIE can be only a declaration used for
12048 imported module. Still we need that type as local Fortran "use ... only"
12049 declaration imports depend on the created type in determine_prefix. */
12050
12051 static struct type *
12052 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
12053 {
12054 struct objfile *objfile = cu->objfile;
12055 char *module_name;
12056 struct type *type;
12057
12058 module_name = dwarf2_name (die, cu);
12059 if (!module_name)
12060 complaint (&symfile_complaints,
12061 _("DW_TAG_module has no name, offset 0x%x"),
12062 die->offset.sect_off);
12063 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
12064
12065 /* determine_prefix uses TYPE_TAG_NAME. */
12066 TYPE_TAG_NAME (type) = TYPE_NAME (type);
12067
12068 return set_die_type (die, type, cu);
12069 }
12070
12071 /* Read a Fortran module. */
12072
12073 static void
12074 read_module (struct die_info *die, struct dwarf2_cu *cu)
12075 {
12076 struct die_info *child_die = die->child;
12077
12078 while (child_die && child_die->tag)
12079 {
12080 process_die (child_die, cu);
12081 child_die = sibling_die (child_die);
12082 }
12083 }
12084
12085 /* Return the name of the namespace represented by DIE. Set
12086 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
12087 namespace. */
12088
12089 static const char *
12090 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
12091 {
12092 struct die_info *current_die;
12093 const char *name = NULL;
12094
12095 /* Loop through the extensions until we find a name. */
12096
12097 for (current_die = die;
12098 current_die != NULL;
12099 current_die = dwarf2_extension (die, &cu))
12100 {
12101 name = dwarf2_name (current_die, cu);
12102 if (name != NULL)
12103 break;
12104 }
12105
12106 /* Is it an anonymous namespace? */
12107
12108 *is_anonymous = (name == NULL);
12109 if (*is_anonymous)
12110 name = CP_ANONYMOUS_NAMESPACE_STR;
12111
12112 return name;
12113 }
12114
12115 /* Extract all information from a DW_TAG_pointer_type DIE and add to
12116 the user defined type vector. */
12117
12118 static struct type *
12119 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
12120 {
12121 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
12122 struct comp_unit_head *cu_header = &cu->header;
12123 struct type *type;
12124 struct attribute *attr_byte_size;
12125 struct attribute *attr_address_class;
12126 int byte_size, addr_class;
12127 struct type *target_type;
12128
12129 target_type = die_type (die, cu);
12130
12131 /* The die_type call above may have already set the type for this DIE. */
12132 type = get_die_type (die, cu);
12133 if (type)
12134 return type;
12135
12136 type = lookup_pointer_type (target_type);
12137
12138 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
12139 if (attr_byte_size)
12140 byte_size = DW_UNSND (attr_byte_size);
12141 else
12142 byte_size = cu_header->addr_size;
12143
12144 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
12145 if (attr_address_class)
12146 addr_class = DW_UNSND (attr_address_class);
12147 else
12148 addr_class = DW_ADDR_none;
12149
12150 /* If the pointer size or address class is different than the
12151 default, create a type variant marked as such and set the
12152 length accordingly. */
12153 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
12154 {
12155 if (gdbarch_address_class_type_flags_p (gdbarch))
12156 {
12157 int type_flags;
12158
12159 type_flags = gdbarch_address_class_type_flags
12160 (gdbarch, byte_size, addr_class);
12161 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
12162 == 0);
12163 type = make_type_with_address_space (type, type_flags);
12164 }
12165 else if (TYPE_LENGTH (type) != byte_size)
12166 {
12167 complaint (&symfile_complaints,
12168 _("invalid pointer size %d"), byte_size);
12169 }
12170 else
12171 {
12172 /* Should we also complain about unhandled address classes? */
12173 }
12174 }
12175
12176 TYPE_LENGTH (type) = byte_size;
12177 return set_die_type (die, type, cu);
12178 }
12179
12180 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
12181 the user defined type vector. */
12182
12183 static struct type *
12184 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
12185 {
12186 struct type *type;
12187 struct type *to_type;
12188 struct type *domain;
12189
12190 to_type = die_type (die, cu);
12191 domain = die_containing_type (die, cu);
12192
12193 /* The calls above may have already set the type for this DIE. */
12194 type = get_die_type (die, cu);
12195 if (type)
12196 return type;
12197
12198 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
12199 type = lookup_methodptr_type (to_type);
12200 else
12201 type = lookup_memberptr_type (to_type, domain);
12202
12203 return set_die_type (die, type, cu);
12204 }
12205
12206 /* Extract all information from a DW_TAG_reference_type DIE and add to
12207 the user defined type vector. */
12208
12209 static struct type *
12210 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
12211 {
12212 struct comp_unit_head *cu_header = &cu->header;
12213 struct type *type, *target_type;
12214 struct attribute *attr;
12215
12216 target_type = die_type (die, cu);
12217
12218 /* The die_type call above may have already set the type for this DIE. */
12219 type = get_die_type (die, cu);
12220 if (type)
12221 return type;
12222
12223 type = lookup_reference_type (target_type);
12224 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12225 if (attr)
12226 {
12227 TYPE_LENGTH (type) = DW_UNSND (attr);
12228 }
12229 else
12230 {
12231 TYPE_LENGTH (type) = cu_header->addr_size;
12232 }
12233 return set_die_type (die, type, cu);
12234 }
12235
12236 static struct type *
12237 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
12238 {
12239 struct type *base_type, *cv_type;
12240
12241 base_type = die_type (die, cu);
12242
12243 /* The die_type call above may have already set the type for this DIE. */
12244 cv_type = get_die_type (die, cu);
12245 if (cv_type)
12246 return cv_type;
12247
12248 /* In case the const qualifier is applied to an array type, the element type
12249 is so qualified, not the array type (section 6.7.3 of C99). */
12250 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
12251 {
12252 struct type *el_type, *inner_array;
12253
12254 base_type = copy_type (base_type);
12255 inner_array = base_type;
12256
12257 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
12258 {
12259 TYPE_TARGET_TYPE (inner_array) =
12260 copy_type (TYPE_TARGET_TYPE (inner_array));
12261 inner_array = TYPE_TARGET_TYPE (inner_array);
12262 }
12263
12264 el_type = TYPE_TARGET_TYPE (inner_array);
12265 TYPE_TARGET_TYPE (inner_array) =
12266 make_cv_type (1, TYPE_VOLATILE (el_type), el_type, NULL);
12267
12268 return set_die_type (die, base_type, cu);
12269 }
12270
12271 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
12272 return set_die_type (die, cv_type, cu);
12273 }
12274
12275 static struct type *
12276 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
12277 {
12278 struct type *base_type, *cv_type;
12279
12280 base_type = die_type (die, cu);
12281
12282 /* The die_type call above may have already set the type for this DIE. */
12283 cv_type = get_die_type (die, cu);
12284 if (cv_type)
12285 return cv_type;
12286
12287 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
12288 return set_die_type (die, cv_type, cu);
12289 }
12290
12291 /* Extract all information from a DW_TAG_string_type DIE and add to
12292 the user defined type vector. It isn't really a user defined type,
12293 but it behaves like one, with other DIE's using an AT_user_def_type
12294 attribute to reference it. */
12295
12296 static struct type *
12297 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
12298 {
12299 struct objfile *objfile = cu->objfile;
12300 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12301 struct type *type, *range_type, *index_type, *char_type;
12302 struct attribute *attr;
12303 unsigned int length;
12304
12305 attr = dwarf2_attr (die, DW_AT_string_length, cu);
12306 if (attr)
12307 {
12308 length = DW_UNSND (attr);
12309 }
12310 else
12311 {
12312 /* Check for the DW_AT_byte_size attribute. */
12313 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12314 if (attr)
12315 {
12316 length = DW_UNSND (attr);
12317 }
12318 else
12319 {
12320 length = 1;
12321 }
12322 }
12323
12324 index_type = objfile_type (objfile)->builtin_int;
12325 range_type = create_range_type (NULL, index_type, 1, length);
12326 char_type = language_string_char_type (cu->language_defn, gdbarch);
12327 type = create_string_type (NULL, char_type, range_type);
12328
12329 return set_die_type (die, type, cu);
12330 }
12331
12332 /* Handle DIES due to C code like:
12333
12334 struct foo
12335 {
12336 int (*funcp)(int a, long l);
12337 int b;
12338 };
12339
12340 ('funcp' generates a DW_TAG_subroutine_type DIE). */
12341
12342 static struct type *
12343 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
12344 {
12345 struct objfile *objfile = cu->objfile;
12346 struct type *type; /* Type that this function returns. */
12347 struct type *ftype; /* Function that returns above type. */
12348 struct attribute *attr;
12349
12350 type = die_type (die, cu);
12351
12352 /* The die_type call above may have already set the type for this DIE. */
12353 ftype = get_die_type (die, cu);
12354 if (ftype)
12355 return ftype;
12356
12357 ftype = lookup_function_type (type);
12358
12359 /* All functions in C++, Pascal and Java have prototypes. */
12360 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
12361 if ((attr && (DW_UNSND (attr) != 0))
12362 || cu->language == language_cplus
12363 || cu->language == language_java
12364 || cu->language == language_pascal)
12365 TYPE_PROTOTYPED (ftype) = 1;
12366 else if (producer_is_realview (cu->producer))
12367 /* RealView does not emit DW_AT_prototyped. We can not
12368 distinguish prototyped and unprototyped functions; default to
12369 prototyped, since that is more common in modern code (and
12370 RealView warns about unprototyped functions). */
12371 TYPE_PROTOTYPED (ftype) = 1;
12372
12373 /* Store the calling convention in the type if it's available in
12374 the subroutine die. Otherwise set the calling convention to
12375 the default value DW_CC_normal. */
12376 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
12377 if (attr)
12378 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
12379 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
12380 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
12381 else
12382 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
12383
12384 /* We need to add the subroutine type to the die immediately so
12385 we don't infinitely recurse when dealing with parameters
12386 declared as the same subroutine type. */
12387 set_die_type (die, ftype, cu);
12388
12389 if (die->child != NULL)
12390 {
12391 struct type *void_type = objfile_type (objfile)->builtin_void;
12392 struct die_info *child_die;
12393 int nparams, iparams;
12394
12395 /* Count the number of parameters.
12396 FIXME: GDB currently ignores vararg functions, but knows about
12397 vararg member functions. */
12398 nparams = 0;
12399 child_die = die->child;
12400 while (child_die && child_die->tag)
12401 {
12402 if (child_die->tag == DW_TAG_formal_parameter)
12403 nparams++;
12404 else if (child_die->tag == DW_TAG_unspecified_parameters)
12405 TYPE_VARARGS (ftype) = 1;
12406 child_die = sibling_die (child_die);
12407 }
12408
12409 /* Allocate storage for parameters and fill them in. */
12410 TYPE_NFIELDS (ftype) = nparams;
12411 TYPE_FIELDS (ftype) = (struct field *)
12412 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
12413
12414 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
12415 even if we error out during the parameters reading below. */
12416 for (iparams = 0; iparams < nparams; iparams++)
12417 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
12418
12419 iparams = 0;
12420 child_die = die->child;
12421 while (child_die && child_die->tag)
12422 {
12423 if (child_die->tag == DW_TAG_formal_parameter)
12424 {
12425 struct type *arg_type;
12426
12427 /* DWARF version 2 has no clean way to discern C++
12428 static and non-static member functions. G++ helps
12429 GDB by marking the first parameter for non-static
12430 member functions (which is the this pointer) as
12431 artificial. We pass this information to
12432 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
12433
12434 DWARF version 3 added DW_AT_object_pointer, which GCC
12435 4.5 does not yet generate. */
12436 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
12437 if (attr)
12438 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
12439 else
12440 {
12441 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
12442
12443 /* GCC/43521: In java, the formal parameter
12444 "this" is sometimes not marked with DW_AT_artificial. */
12445 if (cu->language == language_java)
12446 {
12447 const char *name = dwarf2_name (child_die, cu);
12448
12449 if (name && !strcmp (name, "this"))
12450 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
12451 }
12452 }
12453 arg_type = die_type (child_die, cu);
12454
12455 /* RealView does not mark THIS as const, which the testsuite
12456 expects. GCC marks THIS as const in method definitions,
12457 but not in the class specifications (GCC PR 43053). */
12458 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
12459 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
12460 {
12461 int is_this = 0;
12462 struct dwarf2_cu *arg_cu = cu;
12463 const char *name = dwarf2_name (child_die, cu);
12464
12465 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
12466 if (attr)
12467 {
12468 /* If the compiler emits this, use it. */
12469 if (follow_die_ref (die, attr, &arg_cu) == child_die)
12470 is_this = 1;
12471 }
12472 else if (name && strcmp (name, "this") == 0)
12473 /* Function definitions will have the argument names. */
12474 is_this = 1;
12475 else if (name == NULL && iparams == 0)
12476 /* Declarations may not have the names, so like
12477 elsewhere in GDB, assume an artificial first
12478 argument is "this". */
12479 is_this = 1;
12480
12481 if (is_this)
12482 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
12483 arg_type, 0);
12484 }
12485
12486 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
12487 iparams++;
12488 }
12489 child_die = sibling_die (child_die);
12490 }
12491 }
12492
12493 return ftype;
12494 }
12495
12496 static struct type *
12497 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
12498 {
12499 struct objfile *objfile = cu->objfile;
12500 const char *name = NULL;
12501 struct type *this_type, *target_type;
12502
12503 name = dwarf2_full_name (NULL, die, cu);
12504 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
12505 TYPE_FLAG_TARGET_STUB, NULL, objfile);
12506 TYPE_NAME (this_type) = (char *) name;
12507 set_die_type (die, this_type, cu);
12508 target_type = die_type (die, cu);
12509 if (target_type != this_type)
12510 TYPE_TARGET_TYPE (this_type) = target_type;
12511 else
12512 {
12513 /* Self-referential typedefs are, it seems, not allowed by the DWARF
12514 spec and cause infinite loops in GDB. */
12515 complaint (&symfile_complaints,
12516 _("Self-referential DW_TAG_typedef "
12517 "- DIE at 0x%x [in module %s]"),
12518 die->offset.sect_off, objfile->name);
12519 TYPE_TARGET_TYPE (this_type) = NULL;
12520 }
12521 return this_type;
12522 }
12523
12524 /* Find a representation of a given base type and install
12525 it in the TYPE field of the die. */
12526
12527 static struct type *
12528 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
12529 {
12530 struct objfile *objfile = cu->objfile;
12531 struct type *type;
12532 struct attribute *attr;
12533 int encoding = 0, size = 0;
12534 char *name;
12535 enum type_code code = TYPE_CODE_INT;
12536 int type_flags = 0;
12537 struct type *target_type = NULL;
12538
12539 attr = dwarf2_attr (die, DW_AT_encoding, cu);
12540 if (attr)
12541 {
12542 encoding = DW_UNSND (attr);
12543 }
12544 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12545 if (attr)
12546 {
12547 size = DW_UNSND (attr);
12548 }
12549 name = dwarf2_name (die, cu);
12550 if (!name)
12551 {
12552 complaint (&symfile_complaints,
12553 _("DW_AT_name missing from DW_TAG_base_type"));
12554 }
12555
12556 switch (encoding)
12557 {
12558 case DW_ATE_address:
12559 /* Turn DW_ATE_address into a void * pointer. */
12560 code = TYPE_CODE_PTR;
12561 type_flags |= TYPE_FLAG_UNSIGNED;
12562 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
12563 break;
12564 case DW_ATE_boolean:
12565 code = TYPE_CODE_BOOL;
12566 type_flags |= TYPE_FLAG_UNSIGNED;
12567 break;
12568 case DW_ATE_complex_float:
12569 code = TYPE_CODE_COMPLEX;
12570 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
12571 break;
12572 case DW_ATE_decimal_float:
12573 code = TYPE_CODE_DECFLOAT;
12574 break;
12575 case DW_ATE_float:
12576 code = TYPE_CODE_FLT;
12577 break;
12578 case DW_ATE_signed:
12579 break;
12580 case DW_ATE_unsigned:
12581 type_flags |= TYPE_FLAG_UNSIGNED;
12582 if (cu->language == language_fortran
12583 && name
12584 && strncmp (name, "character(", sizeof ("character(") - 1) == 0)
12585 code = TYPE_CODE_CHAR;
12586 break;
12587 case DW_ATE_signed_char:
12588 if (cu->language == language_ada || cu->language == language_m2
12589 || cu->language == language_pascal
12590 || cu->language == language_fortran)
12591 code = TYPE_CODE_CHAR;
12592 break;
12593 case DW_ATE_unsigned_char:
12594 if (cu->language == language_ada || cu->language == language_m2
12595 || cu->language == language_pascal
12596 || cu->language == language_fortran)
12597 code = TYPE_CODE_CHAR;
12598 type_flags |= TYPE_FLAG_UNSIGNED;
12599 break;
12600 case DW_ATE_UTF:
12601 /* We just treat this as an integer and then recognize the
12602 type by name elsewhere. */
12603 break;
12604
12605 default:
12606 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
12607 dwarf_type_encoding_name (encoding));
12608 break;
12609 }
12610
12611 type = init_type (code, size, type_flags, NULL, objfile);
12612 TYPE_NAME (type) = name;
12613 TYPE_TARGET_TYPE (type) = target_type;
12614
12615 if (name && strcmp (name, "char") == 0)
12616 TYPE_NOSIGN (type) = 1;
12617
12618 return set_die_type (die, type, cu);
12619 }
12620
12621 /* Read the given DW_AT_subrange DIE. */
12622
12623 static struct type *
12624 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
12625 {
12626 struct type *base_type;
12627 struct type *range_type;
12628 struct attribute *attr;
12629 LONGEST low, high;
12630 int low_default_is_valid;
12631 char *name;
12632 LONGEST negative_mask;
12633
12634 base_type = die_type (die, cu);
12635 /* Preserve BASE_TYPE's original type, just set its LENGTH. */
12636 check_typedef (base_type);
12637
12638 /* The die_type call above may have already set the type for this DIE. */
12639 range_type = get_die_type (die, cu);
12640 if (range_type)
12641 return range_type;
12642
12643 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
12644 omitting DW_AT_lower_bound. */
12645 switch (cu->language)
12646 {
12647 case language_c:
12648 case language_cplus:
12649 low = 0;
12650 low_default_is_valid = 1;
12651 break;
12652 case language_fortran:
12653 low = 1;
12654 low_default_is_valid = 1;
12655 break;
12656 case language_d:
12657 case language_java:
12658 case language_objc:
12659 low = 0;
12660 low_default_is_valid = (cu->header.version >= 4);
12661 break;
12662 case language_ada:
12663 case language_m2:
12664 case language_pascal:
12665 low = 1;
12666 low_default_is_valid = (cu->header.version >= 4);
12667 break;
12668 default:
12669 low = 0;
12670 low_default_is_valid = 0;
12671 break;
12672 }
12673
12674 /* FIXME: For variable sized arrays either of these could be
12675 a variable rather than a constant value. We'll allow it,
12676 but we don't know how to handle it. */
12677 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
12678 if (attr)
12679 low = dwarf2_get_attr_constant_value (attr, low);
12680 else if (!low_default_is_valid)
12681 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
12682 "- DIE at 0x%x [in module %s]"),
12683 die->offset.sect_off, cu->objfile->name);
12684
12685 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
12686 if (attr)
12687 {
12688 if (attr_form_is_block (attr) || is_ref_attr (attr))
12689 {
12690 /* GCC encodes arrays with unspecified or dynamic length
12691 with a DW_FORM_block1 attribute or a reference attribute.
12692 FIXME: GDB does not yet know how to handle dynamic
12693 arrays properly, treat them as arrays with unspecified
12694 length for now.
12695
12696 FIXME: jimb/2003-09-22: GDB does not really know
12697 how to handle arrays of unspecified length
12698 either; we just represent them as zero-length
12699 arrays. Choose an appropriate upper bound given
12700 the lower bound we've computed above. */
12701 high = low - 1;
12702 }
12703 else
12704 high = dwarf2_get_attr_constant_value (attr, 1);
12705 }
12706 else
12707 {
12708 attr = dwarf2_attr (die, DW_AT_count, cu);
12709 if (attr)
12710 {
12711 int count = dwarf2_get_attr_constant_value (attr, 1);
12712 high = low + count - 1;
12713 }
12714 else
12715 {
12716 /* Unspecified array length. */
12717 high = low - 1;
12718 }
12719 }
12720
12721 /* Dwarf-2 specifications explicitly allows to create subrange types
12722 without specifying a base type.
12723 In that case, the base type must be set to the type of
12724 the lower bound, upper bound or count, in that order, if any of these
12725 three attributes references an object that has a type.
12726 If no base type is found, the Dwarf-2 specifications say that
12727 a signed integer type of size equal to the size of an address should
12728 be used.
12729 For the following C code: `extern char gdb_int [];'
12730 GCC produces an empty range DIE.
12731 FIXME: muller/2010-05-28: Possible references to object for low bound,
12732 high bound or count are not yet handled by this code. */
12733 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
12734 {
12735 struct objfile *objfile = cu->objfile;
12736 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12737 int addr_size = gdbarch_addr_bit (gdbarch) /8;
12738 struct type *int_type = objfile_type (objfile)->builtin_int;
12739
12740 /* Test "int", "long int", and "long long int" objfile types,
12741 and select the first one having a size above or equal to the
12742 architecture address size. */
12743 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
12744 base_type = int_type;
12745 else
12746 {
12747 int_type = objfile_type (objfile)->builtin_long;
12748 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
12749 base_type = int_type;
12750 else
12751 {
12752 int_type = objfile_type (objfile)->builtin_long_long;
12753 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
12754 base_type = int_type;
12755 }
12756 }
12757 }
12758
12759 negative_mask =
12760 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
12761 if (!TYPE_UNSIGNED (base_type) && (low & negative_mask))
12762 low |= negative_mask;
12763 if (!TYPE_UNSIGNED (base_type) && (high & negative_mask))
12764 high |= negative_mask;
12765
12766 range_type = create_range_type (NULL, base_type, low, high);
12767
12768 /* Mark arrays with dynamic length at least as an array of unspecified
12769 length. GDB could check the boundary but before it gets implemented at
12770 least allow accessing the array elements. */
12771 if (attr && attr_form_is_block (attr))
12772 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
12773
12774 /* Ada expects an empty array on no boundary attributes. */
12775 if (attr == NULL && cu->language != language_ada)
12776 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
12777
12778 name = dwarf2_name (die, cu);
12779 if (name)
12780 TYPE_NAME (range_type) = name;
12781
12782 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12783 if (attr)
12784 TYPE_LENGTH (range_type) = DW_UNSND (attr);
12785
12786 set_die_type (die, range_type, cu);
12787
12788 /* set_die_type should be already done. */
12789 set_descriptive_type (range_type, die, cu);
12790
12791 return range_type;
12792 }
12793
12794 static struct type *
12795 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
12796 {
12797 struct type *type;
12798
12799 /* For now, we only support the C meaning of an unspecified type: void. */
12800
12801 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
12802 TYPE_NAME (type) = dwarf2_name (die, cu);
12803
12804 return set_die_type (die, type, cu);
12805 }
12806
12807 /* Read a single die and all its descendents. Set the die's sibling
12808 field to NULL; set other fields in the die correctly, and set all
12809 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
12810 location of the info_ptr after reading all of those dies. PARENT
12811 is the parent of the die in question. */
12812
12813 static struct die_info *
12814 read_die_and_children (const struct die_reader_specs *reader,
12815 gdb_byte *info_ptr,
12816 gdb_byte **new_info_ptr,
12817 struct die_info *parent)
12818 {
12819 struct die_info *die;
12820 gdb_byte *cur_ptr;
12821 int has_children;
12822
12823 cur_ptr = read_full_die (reader, &die, info_ptr, &has_children);
12824 if (die == NULL)
12825 {
12826 *new_info_ptr = cur_ptr;
12827 return NULL;
12828 }
12829 store_in_ref_table (die, reader->cu);
12830
12831 if (has_children)
12832 die->child = read_die_and_siblings (reader, cur_ptr, new_info_ptr, die);
12833 else
12834 {
12835 die->child = NULL;
12836 *new_info_ptr = cur_ptr;
12837 }
12838
12839 die->sibling = NULL;
12840 die->parent = parent;
12841 return die;
12842 }
12843
12844 /* Read a die, all of its descendents, and all of its siblings; set
12845 all of the fields of all of the dies correctly. Arguments are as
12846 in read_die_and_children. */
12847
12848 static struct die_info *
12849 read_die_and_siblings (const struct die_reader_specs *reader,
12850 gdb_byte *info_ptr,
12851 gdb_byte **new_info_ptr,
12852 struct die_info *parent)
12853 {
12854 struct die_info *first_die, *last_sibling;
12855 gdb_byte *cur_ptr;
12856
12857 cur_ptr = info_ptr;
12858 first_die = last_sibling = NULL;
12859
12860 while (1)
12861 {
12862 struct die_info *die
12863 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
12864
12865 if (die == NULL)
12866 {
12867 *new_info_ptr = cur_ptr;
12868 return first_die;
12869 }
12870
12871 if (!first_die)
12872 first_die = die;
12873 else
12874 last_sibling->sibling = die;
12875
12876 last_sibling = die;
12877 }
12878 }
12879
12880 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
12881 attributes.
12882 The caller is responsible for filling in the extra attributes
12883 and updating (*DIEP)->num_attrs.
12884 Set DIEP to point to a newly allocated die with its information,
12885 except for its child, sibling, and parent fields.
12886 Set HAS_CHILDREN to tell whether the die has children or not. */
12887
12888 static gdb_byte *
12889 read_full_die_1 (const struct die_reader_specs *reader,
12890 struct die_info **diep, gdb_byte *info_ptr,
12891 int *has_children, int num_extra_attrs)
12892 {
12893 unsigned int abbrev_number, bytes_read, i;
12894 sect_offset offset;
12895 struct abbrev_info *abbrev;
12896 struct die_info *die;
12897 struct dwarf2_cu *cu = reader->cu;
12898 bfd *abfd = reader->abfd;
12899
12900 offset.sect_off = info_ptr - reader->buffer;
12901 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
12902 info_ptr += bytes_read;
12903 if (!abbrev_number)
12904 {
12905 *diep = NULL;
12906 *has_children = 0;
12907 return info_ptr;
12908 }
12909
12910 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
12911 if (!abbrev)
12912 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
12913 abbrev_number,
12914 bfd_get_filename (abfd));
12915
12916 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
12917 die->offset = offset;
12918 die->tag = abbrev->tag;
12919 die->abbrev = abbrev_number;
12920
12921 /* Make the result usable.
12922 The caller needs to update num_attrs after adding the extra
12923 attributes. */
12924 die->num_attrs = abbrev->num_attrs;
12925
12926 for (i = 0; i < abbrev->num_attrs; ++i)
12927 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
12928 info_ptr);
12929
12930 *diep = die;
12931 *has_children = abbrev->has_children;
12932 return info_ptr;
12933 }
12934
12935 /* Read a die and all its attributes.
12936 Set DIEP to point to a newly allocated die with its information,
12937 except for its child, sibling, and parent fields.
12938 Set HAS_CHILDREN to tell whether the die has children or not. */
12939
12940 static gdb_byte *
12941 read_full_die (const struct die_reader_specs *reader,
12942 struct die_info **diep, gdb_byte *info_ptr,
12943 int *has_children)
12944 {
12945 return read_full_die_1 (reader, diep, info_ptr, has_children, 0);
12946 }
12947 \f
12948 /* Abbreviation tables.
12949
12950 In DWARF version 2, the description of the debugging information is
12951 stored in a separate .debug_abbrev section. Before we read any
12952 dies from a section we read in all abbreviations and install them
12953 in a hash table. */
12954
12955 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
12956
12957 static struct abbrev_info *
12958 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
12959 {
12960 struct abbrev_info *abbrev;
12961
12962 abbrev = (struct abbrev_info *)
12963 obstack_alloc (&abbrev_table->abbrev_obstack, sizeof (struct abbrev_info));
12964 memset (abbrev, 0, sizeof (struct abbrev_info));
12965 return abbrev;
12966 }
12967
12968 /* Add an abbreviation to the table. */
12969
12970 static void
12971 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
12972 unsigned int abbrev_number,
12973 struct abbrev_info *abbrev)
12974 {
12975 unsigned int hash_number;
12976
12977 hash_number = abbrev_number % ABBREV_HASH_SIZE;
12978 abbrev->next = abbrev_table->abbrevs[hash_number];
12979 abbrev_table->abbrevs[hash_number] = abbrev;
12980 }
12981
12982 /* Look up an abbrev in the table.
12983 Returns NULL if the abbrev is not found. */
12984
12985 static struct abbrev_info *
12986 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
12987 unsigned int abbrev_number)
12988 {
12989 unsigned int hash_number;
12990 struct abbrev_info *abbrev;
12991
12992 hash_number = abbrev_number % ABBREV_HASH_SIZE;
12993 abbrev = abbrev_table->abbrevs[hash_number];
12994
12995 while (abbrev)
12996 {
12997 if (abbrev->number == abbrev_number)
12998 return abbrev;
12999 abbrev = abbrev->next;
13000 }
13001 return NULL;
13002 }
13003
13004 /* Read in an abbrev table. */
13005
13006 static struct abbrev_table *
13007 abbrev_table_read_table (struct dwarf2_section_info *section,
13008 sect_offset offset)
13009 {
13010 struct objfile *objfile = dwarf2_per_objfile->objfile;
13011 bfd *abfd = section->asection->owner;
13012 struct abbrev_table *abbrev_table;
13013 gdb_byte *abbrev_ptr;
13014 struct abbrev_info *cur_abbrev;
13015 unsigned int abbrev_number, bytes_read, abbrev_name;
13016 unsigned int abbrev_form;
13017 struct attr_abbrev *cur_attrs;
13018 unsigned int allocated_attrs;
13019
13020 abbrev_table = XMALLOC (struct abbrev_table);
13021 abbrev_table->offset = offset;
13022 obstack_init (&abbrev_table->abbrev_obstack);
13023 abbrev_table->abbrevs = obstack_alloc (&abbrev_table->abbrev_obstack,
13024 (ABBREV_HASH_SIZE
13025 * sizeof (struct abbrev_info *)));
13026 memset (abbrev_table->abbrevs, 0,
13027 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
13028
13029 dwarf2_read_section (objfile, section);
13030 abbrev_ptr = section->buffer + offset.sect_off;
13031 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13032 abbrev_ptr += bytes_read;
13033
13034 allocated_attrs = ATTR_ALLOC_CHUNK;
13035 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
13036
13037 /* Loop until we reach an abbrev number of 0. */
13038 while (abbrev_number)
13039 {
13040 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
13041
13042 /* read in abbrev header */
13043 cur_abbrev->number = abbrev_number;
13044 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13045 abbrev_ptr += bytes_read;
13046 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
13047 abbrev_ptr += 1;
13048
13049 /* now read in declarations */
13050 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13051 abbrev_ptr += bytes_read;
13052 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13053 abbrev_ptr += bytes_read;
13054 while (abbrev_name)
13055 {
13056 if (cur_abbrev->num_attrs == allocated_attrs)
13057 {
13058 allocated_attrs += ATTR_ALLOC_CHUNK;
13059 cur_attrs
13060 = xrealloc (cur_attrs, (allocated_attrs
13061 * sizeof (struct attr_abbrev)));
13062 }
13063
13064 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
13065 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
13066 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13067 abbrev_ptr += bytes_read;
13068 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13069 abbrev_ptr += bytes_read;
13070 }
13071
13072 cur_abbrev->attrs = obstack_alloc (&abbrev_table->abbrev_obstack,
13073 (cur_abbrev->num_attrs
13074 * sizeof (struct attr_abbrev)));
13075 memcpy (cur_abbrev->attrs, cur_attrs,
13076 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
13077
13078 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
13079
13080 /* Get next abbreviation.
13081 Under Irix6 the abbreviations for a compilation unit are not
13082 always properly terminated with an abbrev number of 0.
13083 Exit loop if we encounter an abbreviation which we have
13084 already read (which means we are about to read the abbreviations
13085 for the next compile unit) or if the end of the abbreviation
13086 table is reached. */
13087 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
13088 break;
13089 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13090 abbrev_ptr += bytes_read;
13091 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
13092 break;
13093 }
13094
13095 xfree (cur_attrs);
13096 return abbrev_table;
13097 }
13098
13099 /* Free the resources held by ABBREV_TABLE. */
13100
13101 static void
13102 abbrev_table_free (struct abbrev_table *abbrev_table)
13103 {
13104 obstack_free (&abbrev_table->abbrev_obstack, NULL);
13105 xfree (abbrev_table);
13106 }
13107
13108 /* Same as abbrev_table_free but as a cleanup.
13109 We pass in a pointer to the pointer to the table so that we can
13110 set the pointer to NULL when we're done. It also simplifies
13111 build_type_unit_groups. */
13112
13113 static void
13114 abbrev_table_free_cleanup (void *table_ptr)
13115 {
13116 struct abbrev_table **abbrev_table_ptr = table_ptr;
13117
13118 if (*abbrev_table_ptr != NULL)
13119 abbrev_table_free (*abbrev_table_ptr);
13120 *abbrev_table_ptr = NULL;
13121 }
13122
13123 /* Read the abbrev table for CU from ABBREV_SECTION. */
13124
13125 static void
13126 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
13127 struct dwarf2_section_info *abbrev_section)
13128 {
13129 cu->abbrev_table =
13130 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
13131 }
13132
13133 /* Release the memory used by the abbrev table for a compilation unit. */
13134
13135 static void
13136 dwarf2_free_abbrev_table (void *ptr_to_cu)
13137 {
13138 struct dwarf2_cu *cu = ptr_to_cu;
13139
13140 abbrev_table_free (cu->abbrev_table);
13141 /* Set this to NULL so that we SEGV if we try to read it later,
13142 and also because free_comp_unit verifies this is NULL. */
13143 cu->abbrev_table = NULL;
13144 }
13145 \f
13146 /* Returns nonzero if TAG represents a type that we might generate a partial
13147 symbol for. */
13148
13149 static int
13150 is_type_tag_for_partial (int tag)
13151 {
13152 switch (tag)
13153 {
13154 #if 0
13155 /* Some types that would be reasonable to generate partial symbols for,
13156 that we don't at present. */
13157 case DW_TAG_array_type:
13158 case DW_TAG_file_type:
13159 case DW_TAG_ptr_to_member_type:
13160 case DW_TAG_set_type:
13161 case DW_TAG_string_type:
13162 case DW_TAG_subroutine_type:
13163 #endif
13164 case DW_TAG_base_type:
13165 case DW_TAG_class_type:
13166 case DW_TAG_interface_type:
13167 case DW_TAG_enumeration_type:
13168 case DW_TAG_structure_type:
13169 case DW_TAG_subrange_type:
13170 case DW_TAG_typedef:
13171 case DW_TAG_union_type:
13172 return 1;
13173 default:
13174 return 0;
13175 }
13176 }
13177
13178 /* Load all DIEs that are interesting for partial symbols into memory. */
13179
13180 static struct partial_die_info *
13181 load_partial_dies (const struct die_reader_specs *reader,
13182 gdb_byte *info_ptr, int building_psymtab)
13183 {
13184 struct dwarf2_cu *cu = reader->cu;
13185 struct objfile *objfile = cu->objfile;
13186 struct partial_die_info *part_die;
13187 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
13188 struct abbrev_info *abbrev;
13189 unsigned int bytes_read;
13190 unsigned int load_all = 0;
13191 int nesting_level = 1;
13192
13193 parent_die = NULL;
13194 last_die = NULL;
13195
13196 gdb_assert (cu->per_cu != NULL);
13197 if (cu->per_cu->load_all_dies)
13198 load_all = 1;
13199
13200 cu->partial_dies
13201 = htab_create_alloc_ex (cu->header.length / 12,
13202 partial_die_hash,
13203 partial_die_eq,
13204 NULL,
13205 &cu->comp_unit_obstack,
13206 hashtab_obstack_allocate,
13207 dummy_obstack_deallocate);
13208
13209 part_die = obstack_alloc (&cu->comp_unit_obstack,
13210 sizeof (struct partial_die_info));
13211
13212 while (1)
13213 {
13214 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
13215
13216 /* A NULL abbrev means the end of a series of children. */
13217 if (abbrev == NULL)
13218 {
13219 if (--nesting_level == 0)
13220 {
13221 /* PART_DIE was probably the last thing allocated on the
13222 comp_unit_obstack, so we could call obstack_free
13223 here. We don't do that because the waste is small,
13224 and will be cleaned up when we're done with this
13225 compilation unit. This way, we're also more robust
13226 against other users of the comp_unit_obstack. */
13227 return first_die;
13228 }
13229 info_ptr += bytes_read;
13230 last_die = parent_die;
13231 parent_die = parent_die->die_parent;
13232 continue;
13233 }
13234
13235 /* Check for template arguments. We never save these; if
13236 they're seen, we just mark the parent, and go on our way. */
13237 if (parent_die != NULL
13238 && cu->language == language_cplus
13239 && (abbrev->tag == DW_TAG_template_type_param
13240 || abbrev->tag == DW_TAG_template_value_param))
13241 {
13242 parent_die->has_template_arguments = 1;
13243
13244 if (!load_all)
13245 {
13246 /* We don't need a partial DIE for the template argument. */
13247 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
13248 continue;
13249 }
13250 }
13251
13252 /* We only recurse into c++ subprograms looking for template arguments.
13253 Skip their other children. */
13254 if (!load_all
13255 && cu->language == language_cplus
13256 && parent_die != NULL
13257 && parent_die->tag == DW_TAG_subprogram)
13258 {
13259 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
13260 continue;
13261 }
13262
13263 /* Check whether this DIE is interesting enough to save. Normally
13264 we would not be interested in members here, but there may be
13265 later variables referencing them via DW_AT_specification (for
13266 static members). */
13267 if (!load_all
13268 && !is_type_tag_for_partial (abbrev->tag)
13269 && abbrev->tag != DW_TAG_constant
13270 && abbrev->tag != DW_TAG_enumerator
13271 && abbrev->tag != DW_TAG_subprogram
13272 && abbrev->tag != DW_TAG_lexical_block
13273 && abbrev->tag != DW_TAG_variable
13274 && abbrev->tag != DW_TAG_namespace
13275 && abbrev->tag != DW_TAG_module
13276 && abbrev->tag != DW_TAG_member
13277 && abbrev->tag != DW_TAG_imported_unit)
13278 {
13279 /* Otherwise we skip to the next sibling, if any. */
13280 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
13281 continue;
13282 }
13283
13284 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
13285 info_ptr);
13286
13287 /* This two-pass algorithm for processing partial symbols has a
13288 high cost in cache pressure. Thus, handle some simple cases
13289 here which cover the majority of C partial symbols. DIEs
13290 which neither have specification tags in them, nor could have
13291 specification tags elsewhere pointing at them, can simply be
13292 processed and discarded.
13293
13294 This segment is also optional; scan_partial_symbols and
13295 add_partial_symbol will handle these DIEs if we chain
13296 them in normally. When compilers which do not emit large
13297 quantities of duplicate debug information are more common,
13298 this code can probably be removed. */
13299
13300 /* Any complete simple types at the top level (pretty much all
13301 of them, for a language without namespaces), can be processed
13302 directly. */
13303 if (parent_die == NULL
13304 && part_die->has_specification == 0
13305 && part_die->is_declaration == 0
13306 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
13307 || part_die->tag == DW_TAG_base_type
13308 || part_die->tag == DW_TAG_subrange_type))
13309 {
13310 if (building_psymtab && part_die->name != NULL)
13311 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
13312 VAR_DOMAIN, LOC_TYPEDEF,
13313 &objfile->static_psymbols,
13314 0, (CORE_ADDR) 0, cu->language, objfile);
13315 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
13316 continue;
13317 }
13318
13319 /* The exception for DW_TAG_typedef with has_children above is
13320 a workaround of GCC PR debug/47510. In the case of this complaint
13321 type_name_no_tag_or_error will error on such types later.
13322
13323 GDB skipped children of DW_TAG_typedef by the shortcut above and then
13324 it could not find the child DIEs referenced later, this is checked
13325 above. In correct DWARF DW_TAG_typedef should have no children. */
13326
13327 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
13328 complaint (&symfile_complaints,
13329 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
13330 "- DIE at 0x%x [in module %s]"),
13331 part_die->offset.sect_off, objfile->name);
13332
13333 /* If we're at the second level, and we're an enumerator, and
13334 our parent has no specification (meaning possibly lives in a
13335 namespace elsewhere), then we can add the partial symbol now
13336 instead of queueing it. */
13337 if (part_die->tag == DW_TAG_enumerator
13338 && parent_die != NULL
13339 && parent_die->die_parent == NULL
13340 && parent_die->tag == DW_TAG_enumeration_type
13341 && parent_die->has_specification == 0)
13342 {
13343 if (part_die->name == NULL)
13344 complaint (&symfile_complaints,
13345 _("malformed enumerator DIE ignored"));
13346 else if (building_psymtab)
13347 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
13348 VAR_DOMAIN, LOC_CONST,
13349 (cu->language == language_cplus
13350 || cu->language == language_java)
13351 ? &objfile->global_psymbols
13352 : &objfile->static_psymbols,
13353 0, (CORE_ADDR) 0, cu->language, objfile);
13354
13355 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
13356 continue;
13357 }
13358
13359 /* We'll save this DIE so link it in. */
13360 part_die->die_parent = parent_die;
13361 part_die->die_sibling = NULL;
13362 part_die->die_child = NULL;
13363
13364 if (last_die && last_die == parent_die)
13365 last_die->die_child = part_die;
13366 else if (last_die)
13367 last_die->die_sibling = part_die;
13368
13369 last_die = part_die;
13370
13371 if (first_die == NULL)
13372 first_die = part_die;
13373
13374 /* Maybe add the DIE to the hash table. Not all DIEs that we
13375 find interesting need to be in the hash table, because we
13376 also have the parent/sibling/child chains; only those that we
13377 might refer to by offset later during partial symbol reading.
13378
13379 For now this means things that might have be the target of a
13380 DW_AT_specification, DW_AT_abstract_origin, or
13381 DW_AT_extension. DW_AT_extension will refer only to
13382 namespaces; DW_AT_abstract_origin refers to functions (and
13383 many things under the function DIE, but we do not recurse
13384 into function DIEs during partial symbol reading) and
13385 possibly variables as well; DW_AT_specification refers to
13386 declarations. Declarations ought to have the DW_AT_declaration
13387 flag. It happens that GCC forgets to put it in sometimes, but
13388 only for functions, not for types.
13389
13390 Adding more things than necessary to the hash table is harmless
13391 except for the performance cost. Adding too few will result in
13392 wasted time in find_partial_die, when we reread the compilation
13393 unit with load_all_dies set. */
13394
13395 if (load_all
13396 || abbrev->tag == DW_TAG_constant
13397 || abbrev->tag == DW_TAG_subprogram
13398 || abbrev->tag == DW_TAG_variable
13399 || abbrev->tag == DW_TAG_namespace
13400 || part_die->is_declaration)
13401 {
13402 void **slot;
13403
13404 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
13405 part_die->offset.sect_off, INSERT);
13406 *slot = part_die;
13407 }
13408
13409 part_die = obstack_alloc (&cu->comp_unit_obstack,
13410 sizeof (struct partial_die_info));
13411
13412 /* For some DIEs we want to follow their children (if any). For C
13413 we have no reason to follow the children of structures; for other
13414 languages we have to, so that we can get at method physnames
13415 to infer fully qualified class names, for DW_AT_specification,
13416 and for C++ template arguments. For C++, we also look one level
13417 inside functions to find template arguments (if the name of the
13418 function does not already contain the template arguments).
13419
13420 For Ada, we need to scan the children of subprograms and lexical
13421 blocks as well because Ada allows the definition of nested
13422 entities that could be interesting for the debugger, such as
13423 nested subprograms for instance. */
13424 if (last_die->has_children
13425 && (load_all
13426 || last_die->tag == DW_TAG_namespace
13427 || last_die->tag == DW_TAG_module
13428 || last_die->tag == DW_TAG_enumeration_type
13429 || (cu->language == language_cplus
13430 && last_die->tag == DW_TAG_subprogram
13431 && (last_die->name == NULL
13432 || strchr (last_die->name, '<') == NULL))
13433 || (cu->language != language_c
13434 && (last_die->tag == DW_TAG_class_type
13435 || last_die->tag == DW_TAG_interface_type
13436 || last_die->tag == DW_TAG_structure_type
13437 || last_die->tag == DW_TAG_union_type))
13438 || (cu->language == language_ada
13439 && (last_die->tag == DW_TAG_subprogram
13440 || last_die->tag == DW_TAG_lexical_block))))
13441 {
13442 nesting_level++;
13443 parent_die = last_die;
13444 continue;
13445 }
13446
13447 /* Otherwise we skip to the next sibling, if any. */
13448 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
13449
13450 /* Back to the top, do it again. */
13451 }
13452 }
13453
13454 /* Read a minimal amount of information into the minimal die structure. */
13455
13456 static gdb_byte *
13457 read_partial_die (const struct die_reader_specs *reader,
13458 struct partial_die_info *part_die,
13459 struct abbrev_info *abbrev, unsigned int abbrev_len,
13460 gdb_byte *info_ptr)
13461 {
13462 struct dwarf2_cu *cu = reader->cu;
13463 struct objfile *objfile = cu->objfile;
13464 gdb_byte *buffer = reader->buffer;
13465 unsigned int i;
13466 struct attribute attr;
13467 int has_low_pc_attr = 0;
13468 int has_high_pc_attr = 0;
13469 int high_pc_relative = 0;
13470
13471 memset (part_die, 0, sizeof (struct partial_die_info));
13472
13473 part_die->offset.sect_off = info_ptr - buffer;
13474
13475 info_ptr += abbrev_len;
13476
13477 if (abbrev == NULL)
13478 return info_ptr;
13479
13480 part_die->tag = abbrev->tag;
13481 part_die->has_children = abbrev->has_children;
13482
13483 for (i = 0; i < abbrev->num_attrs; ++i)
13484 {
13485 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
13486
13487 /* Store the data if it is of an attribute we want to keep in a
13488 partial symbol table. */
13489 switch (attr.name)
13490 {
13491 case DW_AT_name:
13492 switch (part_die->tag)
13493 {
13494 case DW_TAG_compile_unit:
13495 case DW_TAG_partial_unit:
13496 case DW_TAG_type_unit:
13497 /* Compilation units have a DW_AT_name that is a filename, not
13498 a source language identifier. */
13499 case DW_TAG_enumeration_type:
13500 case DW_TAG_enumerator:
13501 /* These tags always have simple identifiers already; no need
13502 to canonicalize them. */
13503 part_die->name = DW_STRING (&attr);
13504 break;
13505 default:
13506 part_die->name
13507 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
13508 &objfile->objfile_obstack);
13509 break;
13510 }
13511 break;
13512 case DW_AT_linkage_name:
13513 case DW_AT_MIPS_linkage_name:
13514 /* Note that both forms of linkage name might appear. We
13515 assume they will be the same, and we only store the last
13516 one we see. */
13517 if (cu->language == language_ada)
13518 part_die->name = DW_STRING (&attr);
13519 part_die->linkage_name = DW_STRING (&attr);
13520 break;
13521 case DW_AT_low_pc:
13522 has_low_pc_attr = 1;
13523 part_die->lowpc = DW_ADDR (&attr);
13524 break;
13525 case DW_AT_high_pc:
13526 has_high_pc_attr = 1;
13527 if (attr.form == DW_FORM_addr
13528 || attr.form == DW_FORM_GNU_addr_index)
13529 part_die->highpc = DW_ADDR (&attr);
13530 else
13531 {
13532 high_pc_relative = 1;
13533 part_die->highpc = DW_UNSND (&attr);
13534 }
13535 break;
13536 case DW_AT_location:
13537 /* Support the .debug_loc offsets. */
13538 if (attr_form_is_block (&attr))
13539 {
13540 part_die->d.locdesc = DW_BLOCK (&attr);
13541 }
13542 else if (attr_form_is_section_offset (&attr))
13543 {
13544 dwarf2_complex_location_expr_complaint ();
13545 }
13546 else
13547 {
13548 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
13549 "partial symbol information");
13550 }
13551 break;
13552 case DW_AT_external:
13553 part_die->is_external = DW_UNSND (&attr);
13554 break;
13555 case DW_AT_declaration:
13556 part_die->is_declaration = DW_UNSND (&attr);
13557 break;
13558 case DW_AT_type:
13559 part_die->has_type = 1;
13560 break;
13561 case DW_AT_abstract_origin:
13562 case DW_AT_specification:
13563 case DW_AT_extension:
13564 part_die->has_specification = 1;
13565 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
13566 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
13567 || cu->per_cu->is_dwz);
13568 break;
13569 case DW_AT_sibling:
13570 /* Ignore absolute siblings, they might point outside of
13571 the current compile unit. */
13572 if (attr.form == DW_FORM_ref_addr)
13573 complaint (&symfile_complaints,
13574 _("ignoring absolute DW_AT_sibling"));
13575 else
13576 part_die->sibling = buffer + dwarf2_get_ref_die_offset (&attr).sect_off;
13577 break;
13578 case DW_AT_byte_size:
13579 part_die->has_byte_size = 1;
13580 break;
13581 case DW_AT_calling_convention:
13582 /* DWARF doesn't provide a way to identify a program's source-level
13583 entry point. DW_AT_calling_convention attributes are only meant
13584 to describe functions' calling conventions.
13585
13586 However, because it's a necessary piece of information in
13587 Fortran, and because DW_CC_program is the only piece of debugging
13588 information whose definition refers to a 'main program' at all,
13589 several compilers have begun marking Fortran main programs with
13590 DW_CC_program --- even when those functions use the standard
13591 calling conventions.
13592
13593 So until DWARF specifies a way to provide this information and
13594 compilers pick up the new representation, we'll support this
13595 practice. */
13596 if (DW_UNSND (&attr) == DW_CC_program
13597 && cu->language == language_fortran)
13598 {
13599 set_main_name (part_die->name);
13600
13601 /* As this DIE has a static linkage the name would be difficult
13602 to look up later. */
13603 language_of_main = language_fortran;
13604 }
13605 break;
13606 case DW_AT_inline:
13607 if (DW_UNSND (&attr) == DW_INL_inlined
13608 || DW_UNSND (&attr) == DW_INL_declared_inlined)
13609 part_die->may_be_inlined = 1;
13610 break;
13611
13612 case DW_AT_import:
13613 if (part_die->tag == DW_TAG_imported_unit)
13614 {
13615 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
13616 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
13617 || cu->per_cu->is_dwz);
13618 }
13619 break;
13620
13621 default:
13622 break;
13623 }
13624 }
13625
13626 if (high_pc_relative)
13627 part_die->highpc += part_die->lowpc;
13628
13629 if (has_low_pc_attr && has_high_pc_attr)
13630 {
13631 /* When using the GNU linker, .gnu.linkonce. sections are used to
13632 eliminate duplicate copies of functions and vtables and such.
13633 The linker will arbitrarily choose one and discard the others.
13634 The AT_*_pc values for such functions refer to local labels in
13635 these sections. If the section from that file was discarded, the
13636 labels are not in the output, so the relocs get a value of 0.
13637 If this is a discarded function, mark the pc bounds as invalid,
13638 so that GDB will ignore it. */
13639 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
13640 {
13641 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13642
13643 complaint (&symfile_complaints,
13644 _("DW_AT_low_pc %s is zero "
13645 "for DIE at 0x%x [in module %s]"),
13646 paddress (gdbarch, part_die->lowpc),
13647 part_die->offset.sect_off, objfile->name);
13648 }
13649 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
13650 else if (part_die->lowpc >= part_die->highpc)
13651 {
13652 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13653
13654 complaint (&symfile_complaints,
13655 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
13656 "for DIE at 0x%x [in module %s]"),
13657 paddress (gdbarch, part_die->lowpc),
13658 paddress (gdbarch, part_die->highpc),
13659 part_die->offset.sect_off, objfile->name);
13660 }
13661 else
13662 part_die->has_pc_info = 1;
13663 }
13664
13665 return info_ptr;
13666 }
13667
13668 /* Find a cached partial DIE at OFFSET in CU. */
13669
13670 static struct partial_die_info *
13671 find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
13672 {
13673 struct partial_die_info *lookup_die = NULL;
13674 struct partial_die_info part_die;
13675
13676 part_die.offset = offset;
13677 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
13678 offset.sect_off);
13679
13680 return lookup_die;
13681 }
13682
13683 /* Find a partial DIE at OFFSET, which may or may not be in CU,
13684 except in the case of .debug_types DIEs which do not reference
13685 outside their CU (they do however referencing other types via
13686 DW_FORM_ref_sig8). */
13687
13688 static struct partial_die_info *
13689 find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
13690 {
13691 struct objfile *objfile = cu->objfile;
13692 struct dwarf2_per_cu_data *per_cu = NULL;
13693 struct partial_die_info *pd = NULL;
13694
13695 if (offset_in_dwz == cu->per_cu->is_dwz
13696 && offset_in_cu_p (&cu->header, offset))
13697 {
13698 pd = find_partial_die_in_comp_unit (offset, cu);
13699 if (pd != NULL)
13700 return pd;
13701 /* We missed recording what we needed.
13702 Load all dies and try again. */
13703 per_cu = cu->per_cu;
13704 }
13705 else
13706 {
13707 /* TUs don't reference other CUs/TUs (except via type signatures). */
13708 if (cu->per_cu->is_debug_types)
13709 {
13710 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
13711 " external reference to offset 0x%lx [in module %s].\n"),
13712 (long) cu->header.offset.sect_off, (long) offset.sect_off,
13713 bfd_get_filename (objfile->obfd));
13714 }
13715 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
13716 objfile);
13717
13718 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
13719 load_partial_comp_unit (per_cu);
13720
13721 per_cu->cu->last_used = 0;
13722 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
13723 }
13724
13725 /* If we didn't find it, and not all dies have been loaded,
13726 load them all and try again. */
13727
13728 if (pd == NULL && per_cu->load_all_dies == 0)
13729 {
13730 per_cu->load_all_dies = 1;
13731
13732 /* This is nasty. When we reread the DIEs, somewhere up the call chain
13733 THIS_CU->cu may already be in use. So we can't just free it and
13734 replace its DIEs with the ones we read in. Instead, we leave those
13735 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
13736 and clobber THIS_CU->cu->partial_dies with the hash table for the new
13737 set. */
13738 load_partial_comp_unit (per_cu);
13739
13740 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
13741 }
13742
13743 if (pd == NULL)
13744 internal_error (__FILE__, __LINE__,
13745 _("could not find partial DIE 0x%x "
13746 "in cache [from module %s]\n"),
13747 offset.sect_off, bfd_get_filename (objfile->obfd));
13748 return pd;
13749 }
13750
13751 /* See if we can figure out if the class lives in a namespace. We do
13752 this by looking for a member function; its demangled name will
13753 contain namespace info, if there is any. */
13754
13755 static void
13756 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
13757 struct dwarf2_cu *cu)
13758 {
13759 /* NOTE: carlton/2003-10-07: Getting the info this way changes
13760 what template types look like, because the demangler
13761 frequently doesn't give the same name as the debug info. We
13762 could fix this by only using the demangled name to get the
13763 prefix (but see comment in read_structure_type). */
13764
13765 struct partial_die_info *real_pdi;
13766 struct partial_die_info *child_pdi;
13767
13768 /* If this DIE (this DIE's specification, if any) has a parent, then
13769 we should not do this. We'll prepend the parent's fully qualified
13770 name when we create the partial symbol. */
13771
13772 real_pdi = struct_pdi;
13773 while (real_pdi->has_specification)
13774 real_pdi = find_partial_die (real_pdi->spec_offset,
13775 real_pdi->spec_is_dwz, cu);
13776
13777 if (real_pdi->die_parent != NULL)
13778 return;
13779
13780 for (child_pdi = struct_pdi->die_child;
13781 child_pdi != NULL;
13782 child_pdi = child_pdi->die_sibling)
13783 {
13784 if (child_pdi->tag == DW_TAG_subprogram
13785 && child_pdi->linkage_name != NULL)
13786 {
13787 char *actual_class_name
13788 = language_class_name_from_physname (cu->language_defn,
13789 child_pdi->linkage_name);
13790 if (actual_class_name != NULL)
13791 {
13792 struct_pdi->name
13793 = obsavestring (actual_class_name,
13794 strlen (actual_class_name),
13795 &cu->objfile->objfile_obstack);
13796 xfree (actual_class_name);
13797 }
13798 break;
13799 }
13800 }
13801 }
13802
13803 /* Adjust PART_DIE before generating a symbol for it. This function
13804 may set the is_external flag or change the DIE's name. */
13805
13806 static void
13807 fixup_partial_die (struct partial_die_info *part_die,
13808 struct dwarf2_cu *cu)
13809 {
13810 /* Once we've fixed up a die, there's no point in doing so again.
13811 This also avoids a memory leak if we were to call
13812 guess_partial_die_structure_name multiple times. */
13813 if (part_die->fixup_called)
13814 return;
13815
13816 /* If we found a reference attribute and the DIE has no name, try
13817 to find a name in the referred to DIE. */
13818
13819 if (part_die->name == NULL && part_die->has_specification)
13820 {
13821 struct partial_die_info *spec_die;
13822
13823 spec_die = find_partial_die (part_die->spec_offset,
13824 part_die->spec_is_dwz, cu);
13825
13826 fixup_partial_die (spec_die, cu);
13827
13828 if (spec_die->name)
13829 {
13830 part_die->name = spec_die->name;
13831
13832 /* Copy DW_AT_external attribute if it is set. */
13833 if (spec_die->is_external)
13834 part_die->is_external = spec_die->is_external;
13835 }
13836 }
13837
13838 /* Set default names for some unnamed DIEs. */
13839
13840 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
13841 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
13842
13843 /* If there is no parent die to provide a namespace, and there are
13844 children, see if we can determine the namespace from their linkage
13845 name. */
13846 if (cu->language == language_cplus
13847 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
13848 && part_die->die_parent == NULL
13849 && part_die->has_children
13850 && (part_die->tag == DW_TAG_class_type
13851 || part_die->tag == DW_TAG_structure_type
13852 || part_die->tag == DW_TAG_union_type))
13853 guess_partial_die_structure_name (part_die, cu);
13854
13855 /* GCC might emit a nameless struct or union that has a linkage
13856 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
13857 if (part_die->name == NULL
13858 && (part_die->tag == DW_TAG_class_type
13859 || part_die->tag == DW_TAG_interface_type
13860 || part_die->tag == DW_TAG_structure_type
13861 || part_die->tag == DW_TAG_union_type)
13862 && part_die->linkage_name != NULL)
13863 {
13864 char *demangled;
13865
13866 demangled = cplus_demangle (part_die->linkage_name, DMGL_TYPES);
13867 if (demangled)
13868 {
13869 const char *base;
13870
13871 /* Strip any leading namespaces/classes, keep only the base name.
13872 DW_AT_name for named DIEs does not contain the prefixes. */
13873 base = strrchr (demangled, ':');
13874 if (base && base > demangled && base[-1] == ':')
13875 base++;
13876 else
13877 base = demangled;
13878
13879 part_die->name = obsavestring (base, strlen (base),
13880 &cu->objfile->objfile_obstack);
13881 xfree (demangled);
13882 }
13883 }
13884
13885 part_die->fixup_called = 1;
13886 }
13887
13888 /* Read an attribute value described by an attribute form. */
13889
13890 static gdb_byte *
13891 read_attribute_value (const struct die_reader_specs *reader,
13892 struct attribute *attr, unsigned form,
13893 gdb_byte *info_ptr)
13894 {
13895 struct dwarf2_cu *cu = reader->cu;
13896 bfd *abfd = reader->abfd;
13897 struct comp_unit_head *cu_header = &cu->header;
13898 unsigned int bytes_read;
13899 struct dwarf_block *blk;
13900
13901 attr->form = form;
13902 switch (form)
13903 {
13904 case DW_FORM_ref_addr:
13905 if (cu->header.version == 2)
13906 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
13907 else
13908 DW_UNSND (attr) = read_offset (abfd, info_ptr,
13909 &cu->header, &bytes_read);
13910 info_ptr += bytes_read;
13911 break;
13912 case DW_FORM_GNU_ref_alt:
13913 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
13914 info_ptr += bytes_read;
13915 break;
13916 case DW_FORM_addr:
13917 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
13918 info_ptr += bytes_read;
13919 break;
13920 case DW_FORM_block2:
13921 blk = dwarf_alloc_block (cu);
13922 blk->size = read_2_bytes (abfd, info_ptr);
13923 info_ptr += 2;
13924 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
13925 info_ptr += blk->size;
13926 DW_BLOCK (attr) = blk;
13927 break;
13928 case DW_FORM_block4:
13929 blk = dwarf_alloc_block (cu);
13930 blk->size = read_4_bytes (abfd, info_ptr);
13931 info_ptr += 4;
13932 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
13933 info_ptr += blk->size;
13934 DW_BLOCK (attr) = blk;
13935 break;
13936 case DW_FORM_data2:
13937 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
13938 info_ptr += 2;
13939 break;
13940 case DW_FORM_data4:
13941 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
13942 info_ptr += 4;
13943 break;
13944 case DW_FORM_data8:
13945 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
13946 info_ptr += 8;
13947 break;
13948 case DW_FORM_sec_offset:
13949 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
13950 info_ptr += bytes_read;
13951 break;
13952 case DW_FORM_string:
13953 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
13954 DW_STRING_IS_CANONICAL (attr) = 0;
13955 info_ptr += bytes_read;
13956 break;
13957 case DW_FORM_strp:
13958 if (!cu->per_cu->is_dwz)
13959 {
13960 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
13961 &bytes_read);
13962 DW_STRING_IS_CANONICAL (attr) = 0;
13963 info_ptr += bytes_read;
13964 break;
13965 }
13966 /* FALLTHROUGH */
13967 case DW_FORM_GNU_strp_alt:
13968 {
13969 struct dwz_file *dwz = dwarf2_get_dwz_file ();
13970 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
13971 &bytes_read);
13972
13973 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
13974 DW_STRING_IS_CANONICAL (attr) = 0;
13975 info_ptr += bytes_read;
13976 }
13977 break;
13978 case DW_FORM_exprloc:
13979 case DW_FORM_block:
13980 blk = dwarf_alloc_block (cu);
13981 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
13982 info_ptr += bytes_read;
13983 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
13984 info_ptr += blk->size;
13985 DW_BLOCK (attr) = blk;
13986 break;
13987 case DW_FORM_block1:
13988 blk = dwarf_alloc_block (cu);
13989 blk->size = read_1_byte (abfd, info_ptr);
13990 info_ptr += 1;
13991 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
13992 info_ptr += blk->size;
13993 DW_BLOCK (attr) = blk;
13994 break;
13995 case DW_FORM_data1:
13996 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
13997 info_ptr += 1;
13998 break;
13999 case DW_FORM_flag:
14000 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
14001 info_ptr += 1;
14002 break;
14003 case DW_FORM_flag_present:
14004 DW_UNSND (attr) = 1;
14005 break;
14006 case DW_FORM_sdata:
14007 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
14008 info_ptr += bytes_read;
14009 break;
14010 case DW_FORM_udata:
14011 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14012 info_ptr += bytes_read;
14013 break;
14014 case DW_FORM_ref1:
14015 DW_UNSND (attr) = (cu->header.offset.sect_off
14016 + read_1_byte (abfd, info_ptr));
14017 info_ptr += 1;
14018 break;
14019 case DW_FORM_ref2:
14020 DW_UNSND (attr) = (cu->header.offset.sect_off
14021 + read_2_bytes (abfd, info_ptr));
14022 info_ptr += 2;
14023 break;
14024 case DW_FORM_ref4:
14025 DW_UNSND (attr) = (cu->header.offset.sect_off
14026 + read_4_bytes (abfd, info_ptr));
14027 info_ptr += 4;
14028 break;
14029 case DW_FORM_ref8:
14030 DW_UNSND (attr) = (cu->header.offset.sect_off
14031 + read_8_bytes (abfd, info_ptr));
14032 info_ptr += 8;
14033 break;
14034 case DW_FORM_ref_sig8:
14035 /* Convert the signature to something we can record in DW_UNSND
14036 for later lookup.
14037 NOTE: This is NULL if the type wasn't found. */
14038 DW_SIGNATURED_TYPE (attr) =
14039 lookup_signatured_type (read_8_bytes (abfd, info_ptr));
14040 info_ptr += 8;
14041 break;
14042 case DW_FORM_ref_udata:
14043 DW_UNSND (attr) = (cu->header.offset.sect_off
14044 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
14045 info_ptr += bytes_read;
14046 break;
14047 case DW_FORM_indirect:
14048 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14049 info_ptr += bytes_read;
14050 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
14051 break;
14052 case DW_FORM_GNU_addr_index:
14053 if (reader->dwo_file == NULL)
14054 {
14055 /* For now flag a hard error.
14056 Later we can turn this into a complaint. */
14057 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
14058 dwarf_form_name (form),
14059 bfd_get_filename (abfd));
14060 }
14061 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
14062 info_ptr += bytes_read;
14063 break;
14064 case DW_FORM_GNU_str_index:
14065 if (reader->dwo_file == NULL)
14066 {
14067 /* For now flag a hard error.
14068 Later we can turn this into a complaint if warranted. */
14069 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
14070 dwarf_form_name (form),
14071 bfd_get_filename (abfd));
14072 }
14073 {
14074 ULONGEST str_index =
14075 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14076
14077 DW_STRING (attr) = read_str_index (reader, cu, str_index);
14078 DW_STRING_IS_CANONICAL (attr) = 0;
14079 info_ptr += bytes_read;
14080 }
14081 break;
14082 default:
14083 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
14084 dwarf_form_name (form),
14085 bfd_get_filename (abfd));
14086 }
14087
14088 /* Super hack. */
14089 if (cu->per_cu->is_dwz && is_ref_attr (attr))
14090 attr->form = DW_FORM_GNU_ref_alt;
14091
14092 /* We have seen instances where the compiler tried to emit a byte
14093 size attribute of -1 which ended up being encoded as an unsigned
14094 0xffffffff. Although 0xffffffff is technically a valid size value,
14095 an object of this size seems pretty unlikely so we can relatively
14096 safely treat these cases as if the size attribute was invalid and
14097 treat them as zero by default. */
14098 if (attr->name == DW_AT_byte_size
14099 && form == DW_FORM_data4
14100 && DW_UNSND (attr) >= 0xffffffff)
14101 {
14102 complaint
14103 (&symfile_complaints,
14104 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
14105 hex_string (DW_UNSND (attr)));
14106 DW_UNSND (attr) = 0;
14107 }
14108
14109 return info_ptr;
14110 }
14111
14112 /* Read an attribute described by an abbreviated attribute. */
14113
14114 static gdb_byte *
14115 read_attribute (const struct die_reader_specs *reader,
14116 struct attribute *attr, struct attr_abbrev *abbrev,
14117 gdb_byte *info_ptr)
14118 {
14119 attr->name = abbrev->name;
14120 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
14121 }
14122
14123 /* Read dwarf information from a buffer. */
14124
14125 static unsigned int
14126 read_1_byte (bfd *abfd, const gdb_byte *buf)
14127 {
14128 return bfd_get_8 (abfd, buf);
14129 }
14130
14131 static int
14132 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
14133 {
14134 return bfd_get_signed_8 (abfd, buf);
14135 }
14136
14137 static unsigned int
14138 read_2_bytes (bfd *abfd, const gdb_byte *buf)
14139 {
14140 return bfd_get_16 (abfd, buf);
14141 }
14142
14143 static int
14144 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
14145 {
14146 return bfd_get_signed_16 (abfd, buf);
14147 }
14148
14149 static unsigned int
14150 read_4_bytes (bfd *abfd, const gdb_byte *buf)
14151 {
14152 return bfd_get_32 (abfd, buf);
14153 }
14154
14155 static int
14156 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
14157 {
14158 return bfd_get_signed_32 (abfd, buf);
14159 }
14160
14161 static ULONGEST
14162 read_8_bytes (bfd *abfd, const gdb_byte *buf)
14163 {
14164 return bfd_get_64 (abfd, buf);
14165 }
14166
14167 static CORE_ADDR
14168 read_address (bfd *abfd, gdb_byte *buf, struct dwarf2_cu *cu,
14169 unsigned int *bytes_read)
14170 {
14171 struct comp_unit_head *cu_header = &cu->header;
14172 CORE_ADDR retval = 0;
14173
14174 if (cu_header->signed_addr_p)
14175 {
14176 switch (cu_header->addr_size)
14177 {
14178 case 2:
14179 retval = bfd_get_signed_16 (abfd, buf);
14180 break;
14181 case 4:
14182 retval = bfd_get_signed_32 (abfd, buf);
14183 break;
14184 case 8:
14185 retval = bfd_get_signed_64 (abfd, buf);
14186 break;
14187 default:
14188 internal_error (__FILE__, __LINE__,
14189 _("read_address: bad switch, signed [in module %s]"),
14190 bfd_get_filename (abfd));
14191 }
14192 }
14193 else
14194 {
14195 switch (cu_header->addr_size)
14196 {
14197 case 2:
14198 retval = bfd_get_16 (abfd, buf);
14199 break;
14200 case 4:
14201 retval = bfd_get_32 (abfd, buf);
14202 break;
14203 case 8:
14204 retval = bfd_get_64 (abfd, buf);
14205 break;
14206 default:
14207 internal_error (__FILE__, __LINE__,
14208 _("read_address: bad switch, "
14209 "unsigned [in module %s]"),
14210 bfd_get_filename (abfd));
14211 }
14212 }
14213
14214 *bytes_read = cu_header->addr_size;
14215 return retval;
14216 }
14217
14218 /* Read the initial length from a section. The (draft) DWARF 3
14219 specification allows the initial length to take up either 4 bytes
14220 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
14221 bytes describe the length and all offsets will be 8 bytes in length
14222 instead of 4.
14223
14224 An older, non-standard 64-bit format is also handled by this
14225 function. The older format in question stores the initial length
14226 as an 8-byte quantity without an escape value. Lengths greater
14227 than 2^32 aren't very common which means that the initial 4 bytes
14228 is almost always zero. Since a length value of zero doesn't make
14229 sense for the 32-bit format, this initial zero can be considered to
14230 be an escape value which indicates the presence of the older 64-bit
14231 format. As written, the code can't detect (old format) lengths
14232 greater than 4GB. If it becomes necessary to handle lengths
14233 somewhat larger than 4GB, we could allow other small values (such
14234 as the non-sensical values of 1, 2, and 3) to also be used as
14235 escape values indicating the presence of the old format.
14236
14237 The value returned via bytes_read should be used to increment the
14238 relevant pointer after calling read_initial_length().
14239
14240 [ Note: read_initial_length() and read_offset() are based on the
14241 document entitled "DWARF Debugging Information Format", revision
14242 3, draft 8, dated November 19, 2001. This document was obtained
14243 from:
14244
14245 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
14246
14247 This document is only a draft and is subject to change. (So beware.)
14248
14249 Details regarding the older, non-standard 64-bit format were
14250 determined empirically by examining 64-bit ELF files produced by
14251 the SGI toolchain on an IRIX 6.5 machine.
14252
14253 - Kevin, July 16, 2002
14254 ] */
14255
14256 static LONGEST
14257 read_initial_length (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read)
14258 {
14259 LONGEST length = bfd_get_32 (abfd, buf);
14260
14261 if (length == 0xffffffff)
14262 {
14263 length = bfd_get_64 (abfd, buf + 4);
14264 *bytes_read = 12;
14265 }
14266 else if (length == 0)
14267 {
14268 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
14269 length = bfd_get_64 (abfd, buf);
14270 *bytes_read = 8;
14271 }
14272 else
14273 {
14274 *bytes_read = 4;
14275 }
14276
14277 return length;
14278 }
14279
14280 /* Cover function for read_initial_length.
14281 Returns the length of the object at BUF, and stores the size of the
14282 initial length in *BYTES_READ and stores the size that offsets will be in
14283 *OFFSET_SIZE.
14284 If the initial length size is not equivalent to that specified in
14285 CU_HEADER then issue a complaint.
14286 This is useful when reading non-comp-unit headers. */
14287
14288 static LONGEST
14289 read_checked_initial_length_and_offset (bfd *abfd, gdb_byte *buf,
14290 const struct comp_unit_head *cu_header,
14291 unsigned int *bytes_read,
14292 unsigned int *offset_size)
14293 {
14294 LONGEST length = read_initial_length (abfd, buf, bytes_read);
14295
14296 gdb_assert (cu_header->initial_length_size == 4
14297 || cu_header->initial_length_size == 8
14298 || cu_header->initial_length_size == 12);
14299
14300 if (cu_header->initial_length_size != *bytes_read)
14301 complaint (&symfile_complaints,
14302 _("intermixed 32-bit and 64-bit DWARF sections"));
14303
14304 *offset_size = (*bytes_read == 4) ? 4 : 8;
14305 return length;
14306 }
14307
14308 /* Read an offset from the data stream. The size of the offset is
14309 given by cu_header->offset_size. */
14310
14311 static LONGEST
14312 read_offset (bfd *abfd, gdb_byte *buf, const struct comp_unit_head *cu_header,
14313 unsigned int *bytes_read)
14314 {
14315 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
14316
14317 *bytes_read = cu_header->offset_size;
14318 return offset;
14319 }
14320
14321 /* Read an offset from the data stream. */
14322
14323 static LONGEST
14324 read_offset_1 (bfd *abfd, gdb_byte *buf, unsigned int offset_size)
14325 {
14326 LONGEST retval = 0;
14327
14328 switch (offset_size)
14329 {
14330 case 4:
14331 retval = bfd_get_32 (abfd, buf);
14332 break;
14333 case 8:
14334 retval = bfd_get_64 (abfd, buf);
14335 break;
14336 default:
14337 internal_error (__FILE__, __LINE__,
14338 _("read_offset_1: bad switch [in module %s]"),
14339 bfd_get_filename (abfd));
14340 }
14341
14342 return retval;
14343 }
14344
14345 static gdb_byte *
14346 read_n_bytes (bfd *abfd, gdb_byte *buf, unsigned int size)
14347 {
14348 /* If the size of a host char is 8 bits, we can return a pointer
14349 to the buffer, otherwise we have to copy the data to a buffer
14350 allocated on the temporary obstack. */
14351 gdb_assert (HOST_CHAR_BIT == 8);
14352 return buf;
14353 }
14354
14355 static char *
14356 read_direct_string (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
14357 {
14358 /* If the size of a host char is 8 bits, we can return a pointer
14359 to the string, otherwise we have to copy the string to a buffer
14360 allocated on the temporary obstack. */
14361 gdb_assert (HOST_CHAR_BIT == 8);
14362 if (*buf == '\0')
14363 {
14364 *bytes_read_ptr = 1;
14365 return NULL;
14366 }
14367 *bytes_read_ptr = strlen ((char *) buf) + 1;
14368 return (char *) buf;
14369 }
14370
14371 static char *
14372 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
14373 {
14374 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
14375 if (dwarf2_per_objfile->str.buffer == NULL)
14376 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
14377 bfd_get_filename (abfd));
14378 if (str_offset >= dwarf2_per_objfile->str.size)
14379 error (_("DW_FORM_strp pointing outside of "
14380 ".debug_str section [in module %s]"),
14381 bfd_get_filename (abfd));
14382 gdb_assert (HOST_CHAR_BIT == 8);
14383 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
14384 return NULL;
14385 return (char *) (dwarf2_per_objfile->str.buffer + str_offset);
14386 }
14387
14388 /* Read a string at offset STR_OFFSET in the .debug_str section from
14389 the .dwz file DWZ. Throw an error if the offset is too large. If
14390 the string consists of a single NUL byte, return NULL; otherwise
14391 return a pointer to the string. */
14392
14393 static char *
14394 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
14395 {
14396 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
14397
14398 if (dwz->str.buffer == NULL)
14399 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
14400 "section [in module %s]"),
14401 bfd_get_filename (dwz->dwz_bfd));
14402 if (str_offset >= dwz->str.size)
14403 error (_("DW_FORM_GNU_strp_alt pointing outside of "
14404 ".debug_str section [in module %s]"),
14405 bfd_get_filename (dwz->dwz_bfd));
14406 gdb_assert (HOST_CHAR_BIT == 8);
14407 if (dwz->str.buffer[str_offset] == '\0')
14408 return NULL;
14409 return (char *) (dwz->str.buffer + str_offset);
14410 }
14411
14412 static char *
14413 read_indirect_string (bfd *abfd, gdb_byte *buf,
14414 const struct comp_unit_head *cu_header,
14415 unsigned int *bytes_read_ptr)
14416 {
14417 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
14418
14419 return read_indirect_string_at_offset (abfd, str_offset);
14420 }
14421
14422 static ULONGEST
14423 read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
14424 {
14425 ULONGEST result;
14426 unsigned int num_read;
14427 int i, shift;
14428 unsigned char byte;
14429
14430 result = 0;
14431 shift = 0;
14432 num_read = 0;
14433 i = 0;
14434 while (1)
14435 {
14436 byte = bfd_get_8 (abfd, buf);
14437 buf++;
14438 num_read++;
14439 result |= ((ULONGEST) (byte & 127) << shift);
14440 if ((byte & 128) == 0)
14441 {
14442 break;
14443 }
14444 shift += 7;
14445 }
14446 *bytes_read_ptr = num_read;
14447 return result;
14448 }
14449
14450 static LONGEST
14451 read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
14452 {
14453 LONGEST result;
14454 int i, shift, num_read;
14455 unsigned char byte;
14456
14457 result = 0;
14458 shift = 0;
14459 num_read = 0;
14460 i = 0;
14461 while (1)
14462 {
14463 byte = bfd_get_8 (abfd, buf);
14464 buf++;
14465 num_read++;
14466 result |= ((LONGEST) (byte & 127) << shift);
14467 shift += 7;
14468 if ((byte & 128) == 0)
14469 {
14470 break;
14471 }
14472 }
14473 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
14474 result |= -(((LONGEST) 1) << shift);
14475 *bytes_read_ptr = num_read;
14476 return result;
14477 }
14478
14479 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
14480 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
14481 ADDR_SIZE is the size of addresses from the CU header. */
14482
14483 static CORE_ADDR
14484 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
14485 {
14486 struct objfile *objfile = dwarf2_per_objfile->objfile;
14487 bfd *abfd = objfile->obfd;
14488 const gdb_byte *info_ptr;
14489
14490 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
14491 if (dwarf2_per_objfile->addr.buffer == NULL)
14492 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
14493 objfile->name);
14494 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
14495 error (_("DW_FORM_addr_index pointing outside of "
14496 ".debug_addr section [in module %s]"),
14497 objfile->name);
14498 info_ptr = (dwarf2_per_objfile->addr.buffer
14499 + addr_base + addr_index * addr_size);
14500 if (addr_size == 4)
14501 return bfd_get_32 (abfd, info_ptr);
14502 else
14503 return bfd_get_64 (abfd, info_ptr);
14504 }
14505
14506 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
14507
14508 static CORE_ADDR
14509 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
14510 {
14511 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
14512 }
14513
14514 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
14515
14516 static CORE_ADDR
14517 read_addr_index_from_leb128 (struct dwarf2_cu *cu, gdb_byte *info_ptr,
14518 unsigned int *bytes_read)
14519 {
14520 bfd *abfd = cu->objfile->obfd;
14521 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
14522
14523 return read_addr_index (cu, addr_index);
14524 }
14525
14526 /* Data structure to pass results from dwarf2_read_addr_index_reader
14527 back to dwarf2_read_addr_index. */
14528
14529 struct dwarf2_read_addr_index_data
14530 {
14531 ULONGEST addr_base;
14532 int addr_size;
14533 };
14534
14535 /* die_reader_func for dwarf2_read_addr_index. */
14536
14537 static void
14538 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
14539 gdb_byte *info_ptr,
14540 struct die_info *comp_unit_die,
14541 int has_children,
14542 void *data)
14543 {
14544 struct dwarf2_cu *cu = reader->cu;
14545 struct dwarf2_read_addr_index_data *aidata =
14546 (struct dwarf2_read_addr_index_data *) data;
14547
14548 aidata->addr_base = cu->addr_base;
14549 aidata->addr_size = cu->header.addr_size;
14550 }
14551
14552 /* Given an index in .debug_addr, fetch the value.
14553 NOTE: This can be called during dwarf expression evaluation,
14554 long after the debug information has been read, and thus per_cu->cu
14555 may no longer exist. */
14556
14557 CORE_ADDR
14558 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
14559 unsigned int addr_index)
14560 {
14561 struct objfile *objfile = per_cu->objfile;
14562 struct dwarf2_cu *cu = per_cu->cu;
14563 ULONGEST addr_base;
14564 int addr_size;
14565
14566 /* This is intended to be called from outside this file. */
14567 dw2_setup (objfile);
14568
14569 /* We need addr_base and addr_size.
14570 If we don't have PER_CU->cu, we have to get it.
14571 Nasty, but the alternative is storing the needed info in PER_CU,
14572 which at this point doesn't seem justified: it's not clear how frequently
14573 it would get used and it would increase the size of every PER_CU.
14574 Entry points like dwarf2_per_cu_addr_size do a similar thing
14575 so we're not in uncharted territory here.
14576 Alas we need to be a bit more complicated as addr_base is contained
14577 in the DIE.
14578
14579 We don't need to read the entire CU(/TU).
14580 We just need the header and top level die.
14581
14582 IWBN to use the aging mechanism to let us lazily later discard the CU.
14583 For now we skip this optimization. */
14584
14585 if (cu != NULL)
14586 {
14587 addr_base = cu->addr_base;
14588 addr_size = cu->header.addr_size;
14589 }
14590 else
14591 {
14592 struct dwarf2_read_addr_index_data aidata;
14593
14594 /* Note: We can't use init_cutu_and_read_dies_simple here,
14595 we need addr_base. */
14596 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
14597 dwarf2_read_addr_index_reader, &aidata);
14598 addr_base = aidata.addr_base;
14599 addr_size = aidata.addr_size;
14600 }
14601
14602 return read_addr_index_1 (addr_index, addr_base, addr_size);
14603 }
14604
14605 /* Given a DW_AT_str_index, fetch the string. */
14606
14607 static char *
14608 read_str_index (const struct die_reader_specs *reader,
14609 struct dwarf2_cu *cu, ULONGEST str_index)
14610 {
14611 struct objfile *objfile = dwarf2_per_objfile->objfile;
14612 const char *dwo_name = objfile->name;
14613 bfd *abfd = objfile->obfd;
14614 struct dwo_sections *sections = &reader->dwo_file->sections;
14615 gdb_byte *info_ptr;
14616 ULONGEST str_offset;
14617
14618 dwarf2_read_section (objfile, &sections->str);
14619 dwarf2_read_section (objfile, &sections->str_offsets);
14620 if (sections->str.buffer == NULL)
14621 error (_("DW_FORM_str_index used without .debug_str.dwo section"
14622 " in CU at offset 0x%lx [in module %s]"),
14623 (long) cu->header.offset.sect_off, dwo_name);
14624 if (sections->str_offsets.buffer == NULL)
14625 error (_("DW_FORM_str_index used without .debug_str_offsets.dwo section"
14626 " in CU at offset 0x%lx [in module %s]"),
14627 (long) cu->header.offset.sect_off, dwo_name);
14628 if (str_index * cu->header.offset_size >= sections->str_offsets.size)
14629 error (_("DW_FORM_str_index pointing outside of .debug_str_offsets.dwo"
14630 " section in CU at offset 0x%lx [in module %s]"),
14631 (long) cu->header.offset.sect_off, dwo_name);
14632 info_ptr = (sections->str_offsets.buffer
14633 + str_index * cu->header.offset_size);
14634 if (cu->header.offset_size == 4)
14635 str_offset = bfd_get_32 (abfd, info_ptr);
14636 else
14637 str_offset = bfd_get_64 (abfd, info_ptr);
14638 if (str_offset >= sections->str.size)
14639 error (_("Offset from DW_FORM_str_index pointing outside of"
14640 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
14641 (long) cu->header.offset.sect_off, dwo_name);
14642 return (char *) (sections->str.buffer + str_offset);
14643 }
14644
14645 /* Return the length of an LEB128 number in BUF. */
14646
14647 static int
14648 leb128_size (const gdb_byte *buf)
14649 {
14650 const gdb_byte *begin = buf;
14651 gdb_byte byte;
14652
14653 while (1)
14654 {
14655 byte = *buf++;
14656 if ((byte & 128) == 0)
14657 return buf - begin;
14658 }
14659 }
14660
14661 static void
14662 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
14663 {
14664 switch (lang)
14665 {
14666 case DW_LANG_C89:
14667 case DW_LANG_C99:
14668 case DW_LANG_C:
14669 cu->language = language_c;
14670 break;
14671 case DW_LANG_C_plus_plus:
14672 cu->language = language_cplus;
14673 break;
14674 case DW_LANG_D:
14675 cu->language = language_d;
14676 break;
14677 case DW_LANG_Fortran77:
14678 case DW_LANG_Fortran90:
14679 case DW_LANG_Fortran95:
14680 cu->language = language_fortran;
14681 break;
14682 case DW_LANG_Go:
14683 cu->language = language_go;
14684 break;
14685 case DW_LANG_Mips_Assembler:
14686 cu->language = language_asm;
14687 break;
14688 case DW_LANG_Java:
14689 cu->language = language_java;
14690 break;
14691 case DW_LANG_Ada83:
14692 case DW_LANG_Ada95:
14693 cu->language = language_ada;
14694 break;
14695 case DW_LANG_Modula2:
14696 cu->language = language_m2;
14697 break;
14698 case DW_LANG_Pascal83:
14699 cu->language = language_pascal;
14700 break;
14701 case DW_LANG_ObjC:
14702 cu->language = language_objc;
14703 break;
14704 case DW_LANG_Cobol74:
14705 case DW_LANG_Cobol85:
14706 default:
14707 cu->language = language_minimal;
14708 break;
14709 }
14710 cu->language_defn = language_def (cu->language);
14711 }
14712
14713 /* Return the named attribute or NULL if not there. */
14714
14715 static struct attribute *
14716 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
14717 {
14718 for (;;)
14719 {
14720 unsigned int i;
14721 struct attribute *spec = NULL;
14722
14723 for (i = 0; i < die->num_attrs; ++i)
14724 {
14725 if (die->attrs[i].name == name)
14726 return &die->attrs[i];
14727 if (die->attrs[i].name == DW_AT_specification
14728 || die->attrs[i].name == DW_AT_abstract_origin)
14729 spec = &die->attrs[i];
14730 }
14731
14732 if (!spec)
14733 break;
14734
14735 die = follow_die_ref (die, spec, &cu);
14736 }
14737
14738 return NULL;
14739 }
14740
14741 /* Return the named attribute or NULL if not there,
14742 but do not follow DW_AT_specification, etc.
14743 This is for use in contexts where we're reading .debug_types dies.
14744 Following DW_AT_specification, DW_AT_abstract_origin will take us
14745 back up the chain, and we want to go down. */
14746
14747 static struct attribute *
14748 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
14749 {
14750 unsigned int i;
14751
14752 for (i = 0; i < die->num_attrs; ++i)
14753 if (die->attrs[i].name == name)
14754 return &die->attrs[i];
14755
14756 return NULL;
14757 }
14758
14759 /* Return non-zero iff the attribute NAME is defined for the given DIE,
14760 and holds a non-zero value. This function should only be used for
14761 DW_FORM_flag or DW_FORM_flag_present attributes. */
14762
14763 static int
14764 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
14765 {
14766 struct attribute *attr = dwarf2_attr (die, name, cu);
14767
14768 return (attr && DW_UNSND (attr));
14769 }
14770
14771 static int
14772 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
14773 {
14774 /* A DIE is a declaration if it has a DW_AT_declaration attribute
14775 which value is non-zero. However, we have to be careful with
14776 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
14777 (via dwarf2_flag_true_p) follows this attribute. So we may
14778 end up accidently finding a declaration attribute that belongs
14779 to a different DIE referenced by the specification attribute,
14780 even though the given DIE does not have a declaration attribute. */
14781 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
14782 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
14783 }
14784
14785 /* Return the die giving the specification for DIE, if there is
14786 one. *SPEC_CU is the CU containing DIE on input, and the CU
14787 containing the return value on output. If there is no
14788 specification, but there is an abstract origin, that is
14789 returned. */
14790
14791 static struct die_info *
14792 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
14793 {
14794 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
14795 *spec_cu);
14796
14797 if (spec_attr == NULL)
14798 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
14799
14800 if (spec_attr == NULL)
14801 return NULL;
14802 else
14803 return follow_die_ref (die, spec_attr, spec_cu);
14804 }
14805
14806 /* Free the line_header structure *LH, and any arrays and strings it
14807 refers to.
14808 NOTE: This is also used as a "cleanup" function. */
14809
14810 static void
14811 free_line_header (struct line_header *lh)
14812 {
14813 if (lh->standard_opcode_lengths)
14814 xfree (lh->standard_opcode_lengths);
14815
14816 /* Remember that all the lh->file_names[i].name pointers are
14817 pointers into debug_line_buffer, and don't need to be freed. */
14818 if (lh->file_names)
14819 xfree (lh->file_names);
14820
14821 /* Similarly for the include directory names. */
14822 if (lh->include_dirs)
14823 xfree (lh->include_dirs);
14824
14825 xfree (lh);
14826 }
14827
14828 /* Add an entry to LH's include directory table. */
14829
14830 static void
14831 add_include_dir (struct line_header *lh, char *include_dir)
14832 {
14833 /* Grow the array if necessary. */
14834 if (lh->include_dirs_size == 0)
14835 {
14836 lh->include_dirs_size = 1; /* for testing */
14837 lh->include_dirs = xmalloc (lh->include_dirs_size
14838 * sizeof (*lh->include_dirs));
14839 }
14840 else if (lh->num_include_dirs >= lh->include_dirs_size)
14841 {
14842 lh->include_dirs_size *= 2;
14843 lh->include_dirs = xrealloc (lh->include_dirs,
14844 (lh->include_dirs_size
14845 * sizeof (*lh->include_dirs)));
14846 }
14847
14848 lh->include_dirs[lh->num_include_dirs++] = include_dir;
14849 }
14850
14851 /* Add an entry to LH's file name table. */
14852
14853 static void
14854 add_file_name (struct line_header *lh,
14855 char *name,
14856 unsigned int dir_index,
14857 unsigned int mod_time,
14858 unsigned int length)
14859 {
14860 struct file_entry *fe;
14861
14862 /* Grow the array if necessary. */
14863 if (lh->file_names_size == 0)
14864 {
14865 lh->file_names_size = 1; /* for testing */
14866 lh->file_names = xmalloc (lh->file_names_size
14867 * sizeof (*lh->file_names));
14868 }
14869 else if (lh->num_file_names >= lh->file_names_size)
14870 {
14871 lh->file_names_size *= 2;
14872 lh->file_names = xrealloc (lh->file_names,
14873 (lh->file_names_size
14874 * sizeof (*lh->file_names)));
14875 }
14876
14877 fe = &lh->file_names[lh->num_file_names++];
14878 fe->name = name;
14879 fe->dir_index = dir_index;
14880 fe->mod_time = mod_time;
14881 fe->length = length;
14882 fe->included_p = 0;
14883 fe->symtab = NULL;
14884 }
14885
14886 /* A convenience function to find the proper .debug_line section for a
14887 CU. */
14888
14889 static struct dwarf2_section_info *
14890 get_debug_line_section (struct dwarf2_cu *cu)
14891 {
14892 struct dwarf2_section_info *section;
14893
14894 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
14895 DWO file. */
14896 if (cu->dwo_unit && cu->per_cu->is_debug_types)
14897 section = &cu->dwo_unit->dwo_file->sections.line;
14898 else if (cu->per_cu->is_dwz)
14899 {
14900 struct dwz_file *dwz = dwarf2_get_dwz_file ();
14901
14902 section = &dwz->line;
14903 }
14904 else
14905 section = &dwarf2_per_objfile->line;
14906
14907 return section;
14908 }
14909
14910 /* Read the statement program header starting at OFFSET in
14911 .debug_line, or .debug_line.dwo. Return a pointer
14912 to a struct line_header, allocated using xmalloc.
14913
14914 NOTE: the strings in the include directory and file name tables of
14915 the returned object point into the dwarf line section buffer,
14916 and must not be freed. */
14917
14918 static struct line_header *
14919 dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
14920 {
14921 struct cleanup *back_to;
14922 struct line_header *lh;
14923 gdb_byte *line_ptr;
14924 unsigned int bytes_read, offset_size;
14925 int i;
14926 char *cur_dir, *cur_file;
14927 struct dwarf2_section_info *section;
14928 bfd *abfd;
14929
14930 section = get_debug_line_section (cu);
14931 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
14932 if (section->buffer == NULL)
14933 {
14934 if (cu->dwo_unit && cu->per_cu->is_debug_types)
14935 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
14936 else
14937 complaint (&symfile_complaints, _("missing .debug_line section"));
14938 return 0;
14939 }
14940
14941 /* We can't do this until we know the section is non-empty.
14942 Only then do we know we have such a section. */
14943 abfd = section->asection->owner;
14944
14945 /* Make sure that at least there's room for the total_length field.
14946 That could be 12 bytes long, but we're just going to fudge that. */
14947 if (offset + 4 >= section->size)
14948 {
14949 dwarf2_statement_list_fits_in_line_number_section_complaint ();
14950 return 0;
14951 }
14952
14953 lh = xmalloc (sizeof (*lh));
14954 memset (lh, 0, sizeof (*lh));
14955 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
14956 (void *) lh);
14957
14958 line_ptr = section->buffer + offset;
14959
14960 /* Read in the header. */
14961 lh->total_length =
14962 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
14963 &bytes_read, &offset_size);
14964 line_ptr += bytes_read;
14965 if (line_ptr + lh->total_length > (section->buffer + section->size))
14966 {
14967 dwarf2_statement_list_fits_in_line_number_section_complaint ();
14968 return 0;
14969 }
14970 lh->statement_program_end = line_ptr + lh->total_length;
14971 lh->version = read_2_bytes (abfd, line_ptr);
14972 line_ptr += 2;
14973 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
14974 line_ptr += offset_size;
14975 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
14976 line_ptr += 1;
14977 if (lh->version >= 4)
14978 {
14979 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
14980 line_ptr += 1;
14981 }
14982 else
14983 lh->maximum_ops_per_instruction = 1;
14984
14985 if (lh->maximum_ops_per_instruction == 0)
14986 {
14987 lh->maximum_ops_per_instruction = 1;
14988 complaint (&symfile_complaints,
14989 _("invalid maximum_ops_per_instruction "
14990 "in `.debug_line' section"));
14991 }
14992
14993 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
14994 line_ptr += 1;
14995 lh->line_base = read_1_signed_byte (abfd, line_ptr);
14996 line_ptr += 1;
14997 lh->line_range = read_1_byte (abfd, line_ptr);
14998 line_ptr += 1;
14999 lh->opcode_base = read_1_byte (abfd, line_ptr);
15000 line_ptr += 1;
15001 lh->standard_opcode_lengths
15002 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
15003
15004 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
15005 for (i = 1; i < lh->opcode_base; ++i)
15006 {
15007 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
15008 line_ptr += 1;
15009 }
15010
15011 /* Read directory table. */
15012 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
15013 {
15014 line_ptr += bytes_read;
15015 add_include_dir (lh, cur_dir);
15016 }
15017 line_ptr += bytes_read;
15018
15019 /* Read file name table. */
15020 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
15021 {
15022 unsigned int dir_index, mod_time, length;
15023
15024 line_ptr += bytes_read;
15025 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15026 line_ptr += bytes_read;
15027 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15028 line_ptr += bytes_read;
15029 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15030 line_ptr += bytes_read;
15031
15032 add_file_name (lh, cur_file, dir_index, mod_time, length);
15033 }
15034 line_ptr += bytes_read;
15035 lh->statement_program_start = line_ptr;
15036
15037 if (line_ptr > (section->buffer + section->size))
15038 complaint (&symfile_complaints,
15039 _("line number info header doesn't "
15040 "fit in `.debug_line' section"));
15041
15042 discard_cleanups (back_to);
15043 return lh;
15044 }
15045
15046 /* Subroutine of dwarf_decode_lines to simplify it.
15047 Return the file name of the psymtab for included file FILE_INDEX
15048 in line header LH of PST.
15049 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
15050 If space for the result is malloc'd, it will be freed by a cleanup.
15051 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
15052
15053 static char *
15054 psymtab_include_file_name (const struct line_header *lh, int file_index,
15055 const struct partial_symtab *pst,
15056 const char *comp_dir)
15057 {
15058 const struct file_entry fe = lh->file_names [file_index];
15059 char *include_name = fe.name;
15060 char *include_name_to_compare = include_name;
15061 char *dir_name = NULL;
15062 const char *pst_filename;
15063 char *copied_name = NULL;
15064 int file_is_pst;
15065
15066 if (fe.dir_index)
15067 dir_name = lh->include_dirs[fe.dir_index - 1];
15068
15069 if (!IS_ABSOLUTE_PATH (include_name)
15070 && (dir_name != NULL || comp_dir != NULL))
15071 {
15072 /* Avoid creating a duplicate psymtab for PST.
15073 We do this by comparing INCLUDE_NAME and PST_FILENAME.
15074 Before we do the comparison, however, we need to account
15075 for DIR_NAME and COMP_DIR.
15076 First prepend dir_name (if non-NULL). If we still don't
15077 have an absolute path prepend comp_dir (if non-NULL).
15078 However, the directory we record in the include-file's
15079 psymtab does not contain COMP_DIR (to match the
15080 corresponding symtab(s)).
15081
15082 Example:
15083
15084 bash$ cd /tmp
15085 bash$ gcc -g ./hello.c
15086 include_name = "hello.c"
15087 dir_name = "."
15088 DW_AT_comp_dir = comp_dir = "/tmp"
15089 DW_AT_name = "./hello.c" */
15090
15091 if (dir_name != NULL)
15092 {
15093 include_name = concat (dir_name, SLASH_STRING,
15094 include_name, (char *)NULL);
15095 include_name_to_compare = include_name;
15096 make_cleanup (xfree, include_name);
15097 }
15098 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
15099 {
15100 include_name_to_compare = concat (comp_dir, SLASH_STRING,
15101 include_name, (char *)NULL);
15102 }
15103 }
15104
15105 pst_filename = pst->filename;
15106 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
15107 {
15108 copied_name = concat (pst->dirname, SLASH_STRING,
15109 pst_filename, (char *)NULL);
15110 pst_filename = copied_name;
15111 }
15112
15113 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
15114
15115 if (include_name_to_compare != include_name)
15116 xfree (include_name_to_compare);
15117 if (copied_name != NULL)
15118 xfree (copied_name);
15119
15120 if (file_is_pst)
15121 return NULL;
15122 return include_name;
15123 }
15124
15125 /* Ignore this record_line request. */
15126
15127 static void
15128 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
15129 {
15130 return;
15131 }
15132
15133 /* Subroutine of dwarf_decode_lines to simplify it.
15134 Process the line number information in LH. */
15135
15136 static void
15137 dwarf_decode_lines_1 (struct line_header *lh, const char *comp_dir,
15138 struct dwarf2_cu *cu, struct partial_symtab *pst)
15139 {
15140 gdb_byte *line_ptr, *extended_end;
15141 gdb_byte *line_end;
15142 unsigned int bytes_read, extended_len;
15143 unsigned char op_code, extended_op, adj_opcode;
15144 CORE_ADDR baseaddr;
15145 struct objfile *objfile = cu->objfile;
15146 bfd *abfd = objfile->obfd;
15147 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15148 const int decode_for_pst_p = (pst != NULL);
15149 struct subfile *last_subfile = NULL;
15150 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
15151 = record_line;
15152
15153 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
15154
15155 line_ptr = lh->statement_program_start;
15156 line_end = lh->statement_program_end;
15157
15158 /* Read the statement sequences until there's nothing left. */
15159 while (line_ptr < line_end)
15160 {
15161 /* state machine registers */
15162 CORE_ADDR address = 0;
15163 unsigned int file = 1;
15164 unsigned int line = 1;
15165 unsigned int column = 0;
15166 int is_stmt = lh->default_is_stmt;
15167 int basic_block = 0;
15168 int end_sequence = 0;
15169 CORE_ADDR addr;
15170 unsigned char op_index = 0;
15171
15172 if (!decode_for_pst_p && lh->num_file_names >= file)
15173 {
15174 /* Start a subfile for the current file of the state machine. */
15175 /* lh->include_dirs and lh->file_names are 0-based, but the
15176 directory and file name numbers in the statement program
15177 are 1-based. */
15178 struct file_entry *fe = &lh->file_names[file - 1];
15179 char *dir = NULL;
15180
15181 if (fe->dir_index)
15182 dir = lh->include_dirs[fe->dir_index - 1];
15183
15184 dwarf2_start_subfile (fe->name, dir, comp_dir);
15185 }
15186
15187 /* Decode the table. */
15188 while (!end_sequence)
15189 {
15190 op_code = read_1_byte (abfd, line_ptr);
15191 line_ptr += 1;
15192 if (line_ptr > line_end)
15193 {
15194 dwarf2_debug_line_missing_end_sequence_complaint ();
15195 break;
15196 }
15197
15198 if (op_code >= lh->opcode_base)
15199 {
15200 /* Special operand. */
15201 adj_opcode = op_code - lh->opcode_base;
15202 address += (((op_index + (adj_opcode / lh->line_range))
15203 / lh->maximum_ops_per_instruction)
15204 * lh->minimum_instruction_length);
15205 op_index = ((op_index + (adj_opcode / lh->line_range))
15206 % lh->maximum_ops_per_instruction);
15207 line += lh->line_base + (adj_opcode % lh->line_range);
15208 if (lh->num_file_names < file || file == 0)
15209 dwarf2_debug_line_missing_file_complaint ();
15210 /* For now we ignore lines not starting on an
15211 instruction boundary. */
15212 else if (op_index == 0)
15213 {
15214 lh->file_names[file - 1].included_p = 1;
15215 if (!decode_for_pst_p && is_stmt)
15216 {
15217 if (last_subfile != current_subfile)
15218 {
15219 addr = gdbarch_addr_bits_remove (gdbarch, address);
15220 if (last_subfile)
15221 (*p_record_line) (last_subfile, 0, addr);
15222 last_subfile = current_subfile;
15223 }
15224 /* Append row to matrix using current values. */
15225 addr = gdbarch_addr_bits_remove (gdbarch, address);
15226 (*p_record_line) (current_subfile, line, addr);
15227 }
15228 }
15229 basic_block = 0;
15230 }
15231 else switch (op_code)
15232 {
15233 case DW_LNS_extended_op:
15234 extended_len = read_unsigned_leb128 (abfd, line_ptr,
15235 &bytes_read);
15236 line_ptr += bytes_read;
15237 extended_end = line_ptr + extended_len;
15238 extended_op = read_1_byte (abfd, line_ptr);
15239 line_ptr += 1;
15240 switch (extended_op)
15241 {
15242 case DW_LNE_end_sequence:
15243 p_record_line = record_line;
15244 end_sequence = 1;
15245 break;
15246 case DW_LNE_set_address:
15247 address = read_address (abfd, line_ptr, cu, &bytes_read);
15248
15249 if (address == 0 && !dwarf2_per_objfile->has_section_at_zero)
15250 {
15251 /* This line table is for a function which has been
15252 GCd by the linker. Ignore it. PR gdb/12528 */
15253
15254 long line_offset
15255 = line_ptr - get_debug_line_section (cu)->buffer;
15256
15257 complaint (&symfile_complaints,
15258 _(".debug_line address at offset 0x%lx is 0 "
15259 "[in module %s]"),
15260 line_offset, objfile->name);
15261 p_record_line = noop_record_line;
15262 }
15263
15264 op_index = 0;
15265 line_ptr += bytes_read;
15266 address += baseaddr;
15267 break;
15268 case DW_LNE_define_file:
15269 {
15270 char *cur_file;
15271 unsigned int dir_index, mod_time, length;
15272
15273 cur_file = read_direct_string (abfd, line_ptr,
15274 &bytes_read);
15275 line_ptr += bytes_read;
15276 dir_index =
15277 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15278 line_ptr += bytes_read;
15279 mod_time =
15280 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15281 line_ptr += bytes_read;
15282 length =
15283 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15284 line_ptr += bytes_read;
15285 add_file_name (lh, cur_file, dir_index, mod_time, length);
15286 }
15287 break;
15288 case DW_LNE_set_discriminator:
15289 /* The discriminator is not interesting to the debugger;
15290 just ignore it. */
15291 line_ptr = extended_end;
15292 break;
15293 default:
15294 complaint (&symfile_complaints,
15295 _("mangled .debug_line section"));
15296 return;
15297 }
15298 /* Make sure that we parsed the extended op correctly. If e.g.
15299 we expected a different address size than the producer used,
15300 we may have read the wrong number of bytes. */
15301 if (line_ptr != extended_end)
15302 {
15303 complaint (&symfile_complaints,
15304 _("mangled .debug_line section"));
15305 return;
15306 }
15307 break;
15308 case DW_LNS_copy:
15309 if (lh->num_file_names < file || file == 0)
15310 dwarf2_debug_line_missing_file_complaint ();
15311 else
15312 {
15313 lh->file_names[file - 1].included_p = 1;
15314 if (!decode_for_pst_p && is_stmt)
15315 {
15316 if (last_subfile != current_subfile)
15317 {
15318 addr = gdbarch_addr_bits_remove (gdbarch, address);
15319 if (last_subfile)
15320 (*p_record_line) (last_subfile, 0, addr);
15321 last_subfile = current_subfile;
15322 }
15323 addr = gdbarch_addr_bits_remove (gdbarch, address);
15324 (*p_record_line) (current_subfile, line, addr);
15325 }
15326 }
15327 basic_block = 0;
15328 break;
15329 case DW_LNS_advance_pc:
15330 {
15331 CORE_ADDR adjust
15332 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15333
15334 address += (((op_index + adjust)
15335 / lh->maximum_ops_per_instruction)
15336 * lh->minimum_instruction_length);
15337 op_index = ((op_index + adjust)
15338 % lh->maximum_ops_per_instruction);
15339 line_ptr += bytes_read;
15340 }
15341 break;
15342 case DW_LNS_advance_line:
15343 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
15344 line_ptr += bytes_read;
15345 break;
15346 case DW_LNS_set_file:
15347 {
15348 /* The arrays lh->include_dirs and lh->file_names are
15349 0-based, but the directory and file name numbers in
15350 the statement program are 1-based. */
15351 struct file_entry *fe;
15352 char *dir = NULL;
15353
15354 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15355 line_ptr += bytes_read;
15356 if (lh->num_file_names < file || file == 0)
15357 dwarf2_debug_line_missing_file_complaint ();
15358 else
15359 {
15360 fe = &lh->file_names[file - 1];
15361 if (fe->dir_index)
15362 dir = lh->include_dirs[fe->dir_index - 1];
15363 if (!decode_for_pst_p)
15364 {
15365 last_subfile = current_subfile;
15366 dwarf2_start_subfile (fe->name, dir, comp_dir);
15367 }
15368 }
15369 }
15370 break;
15371 case DW_LNS_set_column:
15372 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15373 line_ptr += bytes_read;
15374 break;
15375 case DW_LNS_negate_stmt:
15376 is_stmt = (!is_stmt);
15377 break;
15378 case DW_LNS_set_basic_block:
15379 basic_block = 1;
15380 break;
15381 /* Add to the address register of the state machine the
15382 address increment value corresponding to special opcode
15383 255. I.e., this value is scaled by the minimum
15384 instruction length since special opcode 255 would have
15385 scaled the increment. */
15386 case DW_LNS_const_add_pc:
15387 {
15388 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
15389
15390 address += (((op_index + adjust)
15391 / lh->maximum_ops_per_instruction)
15392 * lh->minimum_instruction_length);
15393 op_index = ((op_index + adjust)
15394 % lh->maximum_ops_per_instruction);
15395 }
15396 break;
15397 case DW_LNS_fixed_advance_pc:
15398 address += read_2_bytes (abfd, line_ptr);
15399 op_index = 0;
15400 line_ptr += 2;
15401 break;
15402 default:
15403 {
15404 /* Unknown standard opcode, ignore it. */
15405 int i;
15406
15407 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
15408 {
15409 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15410 line_ptr += bytes_read;
15411 }
15412 }
15413 }
15414 }
15415 if (lh->num_file_names < file || file == 0)
15416 dwarf2_debug_line_missing_file_complaint ();
15417 else
15418 {
15419 lh->file_names[file - 1].included_p = 1;
15420 if (!decode_for_pst_p)
15421 {
15422 addr = gdbarch_addr_bits_remove (gdbarch, address);
15423 (*p_record_line) (current_subfile, 0, addr);
15424 }
15425 }
15426 }
15427 }
15428
15429 /* Decode the Line Number Program (LNP) for the given line_header
15430 structure and CU. The actual information extracted and the type
15431 of structures created from the LNP depends on the value of PST.
15432
15433 1. If PST is NULL, then this procedure uses the data from the program
15434 to create all necessary symbol tables, and their linetables.
15435
15436 2. If PST is not NULL, this procedure reads the program to determine
15437 the list of files included by the unit represented by PST, and
15438 builds all the associated partial symbol tables.
15439
15440 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
15441 It is used for relative paths in the line table.
15442 NOTE: When processing partial symtabs (pst != NULL),
15443 comp_dir == pst->dirname.
15444
15445 NOTE: It is important that psymtabs have the same file name (via strcmp)
15446 as the corresponding symtab. Since COMP_DIR is not used in the name of the
15447 symtab we don't use it in the name of the psymtabs we create.
15448 E.g. expand_line_sal requires this when finding psymtabs to expand.
15449 A good testcase for this is mb-inline.exp. */
15450
15451 static void
15452 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
15453 struct dwarf2_cu *cu, struct partial_symtab *pst,
15454 int want_line_info)
15455 {
15456 struct objfile *objfile = cu->objfile;
15457 const int decode_for_pst_p = (pst != NULL);
15458 struct subfile *first_subfile = current_subfile;
15459
15460 if (want_line_info)
15461 dwarf_decode_lines_1 (lh, comp_dir, cu, pst);
15462
15463 if (decode_for_pst_p)
15464 {
15465 int file_index;
15466
15467 /* Now that we're done scanning the Line Header Program, we can
15468 create the psymtab of each included file. */
15469 for (file_index = 0; file_index < lh->num_file_names; file_index++)
15470 if (lh->file_names[file_index].included_p == 1)
15471 {
15472 char *include_name =
15473 psymtab_include_file_name (lh, file_index, pst, comp_dir);
15474 if (include_name != NULL)
15475 dwarf2_create_include_psymtab (include_name, pst, objfile);
15476 }
15477 }
15478 else
15479 {
15480 /* Make sure a symtab is created for every file, even files
15481 which contain only variables (i.e. no code with associated
15482 line numbers). */
15483 int i;
15484
15485 for (i = 0; i < lh->num_file_names; i++)
15486 {
15487 char *dir = NULL;
15488 struct file_entry *fe;
15489
15490 fe = &lh->file_names[i];
15491 if (fe->dir_index)
15492 dir = lh->include_dirs[fe->dir_index - 1];
15493 dwarf2_start_subfile (fe->name, dir, comp_dir);
15494
15495 /* Skip the main file; we don't need it, and it must be
15496 allocated last, so that it will show up before the
15497 non-primary symtabs in the objfile's symtab list. */
15498 if (current_subfile == first_subfile)
15499 continue;
15500
15501 if (current_subfile->symtab == NULL)
15502 current_subfile->symtab = allocate_symtab (current_subfile->name,
15503 objfile);
15504 fe->symtab = current_subfile->symtab;
15505 }
15506 }
15507 }
15508
15509 /* Start a subfile for DWARF. FILENAME is the name of the file and
15510 DIRNAME the name of the source directory which contains FILENAME
15511 or NULL if not known. COMP_DIR is the compilation directory for the
15512 linetable's compilation unit or NULL if not known.
15513 This routine tries to keep line numbers from identical absolute and
15514 relative file names in a common subfile.
15515
15516 Using the `list' example from the GDB testsuite, which resides in
15517 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
15518 of /srcdir/list0.c yields the following debugging information for list0.c:
15519
15520 DW_AT_name: /srcdir/list0.c
15521 DW_AT_comp_dir: /compdir
15522 files.files[0].name: list0.h
15523 files.files[0].dir: /srcdir
15524 files.files[1].name: list0.c
15525 files.files[1].dir: /srcdir
15526
15527 The line number information for list0.c has to end up in a single
15528 subfile, so that `break /srcdir/list0.c:1' works as expected.
15529 start_subfile will ensure that this happens provided that we pass the
15530 concatenation of files.files[1].dir and files.files[1].name as the
15531 subfile's name. */
15532
15533 static void
15534 dwarf2_start_subfile (char *filename, const char *dirname,
15535 const char *comp_dir)
15536 {
15537 char *fullname;
15538
15539 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
15540 `start_symtab' will always pass the contents of DW_AT_comp_dir as
15541 second argument to start_subfile. To be consistent, we do the
15542 same here. In order not to lose the line information directory,
15543 we concatenate it to the filename when it makes sense.
15544 Note that the Dwarf3 standard says (speaking of filenames in line
15545 information): ``The directory index is ignored for file names
15546 that represent full path names''. Thus ignoring dirname in the
15547 `else' branch below isn't an issue. */
15548
15549 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
15550 fullname = concat (dirname, SLASH_STRING, filename, (char *)NULL);
15551 else
15552 fullname = filename;
15553
15554 start_subfile (fullname, comp_dir);
15555
15556 if (fullname != filename)
15557 xfree (fullname);
15558 }
15559
15560 /* Start a symtab for DWARF.
15561 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
15562
15563 static void
15564 dwarf2_start_symtab (struct dwarf2_cu *cu,
15565 char *name, char *comp_dir, CORE_ADDR low_pc)
15566 {
15567 start_symtab (name, comp_dir, low_pc);
15568 record_debugformat ("DWARF 2");
15569 record_producer (cu->producer);
15570
15571 /* We assume that we're processing GCC output. */
15572 processing_gcc_compilation = 2;
15573
15574 processing_has_namespace_info = 0;
15575 }
15576
15577 static void
15578 var_decode_location (struct attribute *attr, struct symbol *sym,
15579 struct dwarf2_cu *cu)
15580 {
15581 struct objfile *objfile = cu->objfile;
15582 struct comp_unit_head *cu_header = &cu->header;
15583
15584 /* NOTE drow/2003-01-30: There used to be a comment and some special
15585 code here to turn a symbol with DW_AT_external and a
15586 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
15587 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
15588 with some versions of binutils) where shared libraries could have
15589 relocations against symbols in their debug information - the
15590 minimal symbol would have the right address, but the debug info
15591 would not. It's no longer necessary, because we will explicitly
15592 apply relocations when we read in the debug information now. */
15593
15594 /* A DW_AT_location attribute with no contents indicates that a
15595 variable has been optimized away. */
15596 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
15597 {
15598 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
15599 return;
15600 }
15601
15602 /* Handle one degenerate form of location expression specially, to
15603 preserve GDB's previous behavior when section offsets are
15604 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
15605 then mark this symbol as LOC_STATIC. */
15606
15607 if (attr_form_is_block (attr)
15608 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
15609 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
15610 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
15611 && (DW_BLOCK (attr)->size
15612 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
15613 {
15614 unsigned int dummy;
15615
15616 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
15617 SYMBOL_VALUE_ADDRESS (sym) =
15618 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
15619 else
15620 SYMBOL_VALUE_ADDRESS (sym) =
15621 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
15622 SYMBOL_CLASS (sym) = LOC_STATIC;
15623 fixup_symbol_section (sym, objfile);
15624 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
15625 SYMBOL_SECTION (sym));
15626 return;
15627 }
15628
15629 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
15630 expression evaluator, and use LOC_COMPUTED only when necessary
15631 (i.e. when the value of a register or memory location is
15632 referenced, or a thread-local block, etc.). Then again, it might
15633 not be worthwhile. I'm assuming that it isn't unless performance
15634 or memory numbers show me otherwise. */
15635
15636 dwarf2_symbol_mark_computed (attr, sym, cu);
15637 SYMBOL_CLASS (sym) = LOC_COMPUTED;
15638
15639 if (SYMBOL_COMPUTED_OPS (sym) == &dwarf2_loclist_funcs)
15640 cu->has_loclist = 1;
15641 }
15642
15643 /* Given a pointer to a DWARF information entry, figure out if we need
15644 to make a symbol table entry for it, and if so, create a new entry
15645 and return a pointer to it.
15646 If TYPE is NULL, determine symbol type from the die, otherwise
15647 used the passed type.
15648 If SPACE is not NULL, use it to hold the new symbol. If it is
15649 NULL, allocate a new symbol on the objfile's obstack. */
15650
15651 static struct symbol *
15652 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
15653 struct symbol *space)
15654 {
15655 struct objfile *objfile = cu->objfile;
15656 struct symbol *sym = NULL;
15657 char *name;
15658 struct attribute *attr = NULL;
15659 struct attribute *attr2 = NULL;
15660 CORE_ADDR baseaddr;
15661 struct pending **list_to_add = NULL;
15662
15663 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
15664
15665 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
15666
15667 name = dwarf2_name (die, cu);
15668 if (name)
15669 {
15670 const char *linkagename;
15671 int suppress_add = 0;
15672
15673 if (space)
15674 sym = space;
15675 else
15676 sym = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
15677 OBJSTAT (objfile, n_syms++);
15678
15679 /* Cache this symbol's name and the name's demangled form (if any). */
15680 SYMBOL_SET_LANGUAGE (sym, cu->language);
15681 linkagename = dwarf2_physname (name, die, cu);
15682 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
15683
15684 /* Fortran does not have mangling standard and the mangling does differ
15685 between gfortran, iFort etc. */
15686 if (cu->language == language_fortran
15687 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
15688 symbol_set_demangled_name (&(sym->ginfo),
15689 (char *) dwarf2_full_name (name, die, cu),
15690 NULL);
15691
15692 /* Default assumptions.
15693 Use the passed type or decode it from the die. */
15694 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
15695 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
15696 if (type != NULL)
15697 SYMBOL_TYPE (sym) = type;
15698 else
15699 SYMBOL_TYPE (sym) = die_type (die, cu);
15700 attr = dwarf2_attr (die,
15701 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
15702 cu);
15703 if (attr)
15704 {
15705 SYMBOL_LINE (sym) = DW_UNSND (attr);
15706 }
15707
15708 attr = dwarf2_attr (die,
15709 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
15710 cu);
15711 if (attr)
15712 {
15713 int file_index = DW_UNSND (attr);
15714
15715 if (cu->line_header == NULL
15716 || file_index > cu->line_header->num_file_names)
15717 complaint (&symfile_complaints,
15718 _("file index out of range"));
15719 else if (file_index > 0)
15720 {
15721 struct file_entry *fe;
15722
15723 fe = &cu->line_header->file_names[file_index - 1];
15724 SYMBOL_SYMTAB (sym) = fe->symtab;
15725 }
15726 }
15727
15728 switch (die->tag)
15729 {
15730 case DW_TAG_label:
15731 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
15732 if (attr)
15733 {
15734 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
15735 }
15736 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
15737 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
15738 SYMBOL_CLASS (sym) = LOC_LABEL;
15739 add_symbol_to_list (sym, cu->list_in_scope);
15740 break;
15741 case DW_TAG_subprogram:
15742 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
15743 finish_block. */
15744 SYMBOL_CLASS (sym) = LOC_BLOCK;
15745 attr2 = dwarf2_attr (die, DW_AT_external, cu);
15746 if ((attr2 && (DW_UNSND (attr2) != 0))
15747 || cu->language == language_ada)
15748 {
15749 /* Subprograms marked external are stored as a global symbol.
15750 Ada subprograms, whether marked external or not, are always
15751 stored as a global symbol, because we want to be able to
15752 access them globally. For instance, we want to be able
15753 to break on a nested subprogram without having to
15754 specify the context. */
15755 list_to_add = &global_symbols;
15756 }
15757 else
15758 {
15759 list_to_add = cu->list_in_scope;
15760 }
15761 break;
15762 case DW_TAG_inlined_subroutine:
15763 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
15764 finish_block. */
15765 SYMBOL_CLASS (sym) = LOC_BLOCK;
15766 SYMBOL_INLINED (sym) = 1;
15767 list_to_add = cu->list_in_scope;
15768 break;
15769 case DW_TAG_template_value_param:
15770 suppress_add = 1;
15771 /* Fall through. */
15772 case DW_TAG_constant:
15773 case DW_TAG_variable:
15774 case DW_TAG_member:
15775 /* Compilation with minimal debug info may result in
15776 variables with missing type entries. Change the
15777 misleading `void' type to something sensible. */
15778 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
15779 SYMBOL_TYPE (sym)
15780 = objfile_type (objfile)->nodebug_data_symbol;
15781
15782 attr = dwarf2_attr (die, DW_AT_const_value, cu);
15783 /* In the case of DW_TAG_member, we should only be called for
15784 static const members. */
15785 if (die->tag == DW_TAG_member)
15786 {
15787 /* dwarf2_add_field uses die_is_declaration,
15788 so we do the same. */
15789 gdb_assert (die_is_declaration (die, cu));
15790 gdb_assert (attr);
15791 }
15792 if (attr)
15793 {
15794 dwarf2_const_value (attr, sym, cu);
15795 attr2 = dwarf2_attr (die, DW_AT_external, cu);
15796 if (!suppress_add)
15797 {
15798 if (attr2 && (DW_UNSND (attr2) != 0))
15799 list_to_add = &global_symbols;
15800 else
15801 list_to_add = cu->list_in_scope;
15802 }
15803 break;
15804 }
15805 attr = dwarf2_attr (die, DW_AT_location, cu);
15806 if (attr)
15807 {
15808 var_decode_location (attr, sym, cu);
15809 attr2 = dwarf2_attr (die, DW_AT_external, cu);
15810
15811 /* Fortran explicitly imports any global symbols to the local
15812 scope by DW_TAG_common_block. */
15813 if (cu->language == language_fortran && die->parent
15814 && die->parent->tag == DW_TAG_common_block)
15815 attr2 = NULL;
15816
15817 if (SYMBOL_CLASS (sym) == LOC_STATIC
15818 && SYMBOL_VALUE_ADDRESS (sym) == 0
15819 && !dwarf2_per_objfile->has_section_at_zero)
15820 {
15821 /* When a static variable is eliminated by the linker,
15822 the corresponding debug information is not stripped
15823 out, but the variable address is set to null;
15824 do not add such variables into symbol table. */
15825 }
15826 else if (attr2 && (DW_UNSND (attr2) != 0))
15827 {
15828 /* Workaround gfortran PR debug/40040 - it uses
15829 DW_AT_location for variables in -fPIC libraries which may
15830 get overriden by other libraries/executable and get
15831 a different address. Resolve it by the minimal symbol
15832 which may come from inferior's executable using copy
15833 relocation. Make this workaround only for gfortran as for
15834 other compilers GDB cannot guess the minimal symbol
15835 Fortran mangling kind. */
15836 if (cu->language == language_fortran && die->parent
15837 && die->parent->tag == DW_TAG_module
15838 && cu->producer
15839 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
15840 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
15841
15842 /* A variable with DW_AT_external is never static,
15843 but it may be block-scoped. */
15844 list_to_add = (cu->list_in_scope == &file_symbols
15845 ? &global_symbols : cu->list_in_scope);
15846 }
15847 else
15848 list_to_add = cu->list_in_scope;
15849 }
15850 else
15851 {
15852 /* We do not know the address of this symbol.
15853 If it is an external symbol and we have type information
15854 for it, enter the symbol as a LOC_UNRESOLVED symbol.
15855 The address of the variable will then be determined from
15856 the minimal symbol table whenever the variable is
15857 referenced. */
15858 attr2 = dwarf2_attr (die, DW_AT_external, cu);
15859
15860 /* Fortran explicitly imports any global symbols to the local
15861 scope by DW_TAG_common_block. */
15862 if (cu->language == language_fortran && die->parent
15863 && die->parent->tag == DW_TAG_common_block)
15864 {
15865 /* SYMBOL_CLASS doesn't matter here because
15866 read_common_block is going to reset it. */
15867 if (!suppress_add)
15868 list_to_add = cu->list_in_scope;
15869 }
15870 else if (attr2 && (DW_UNSND (attr2) != 0)
15871 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
15872 {
15873 /* A variable with DW_AT_external is never static, but it
15874 may be block-scoped. */
15875 list_to_add = (cu->list_in_scope == &file_symbols
15876 ? &global_symbols : cu->list_in_scope);
15877
15878 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
15879 }
15880 else if (!die_is_declaration (die, cu))
15881 {
15882 /* Use the default LOC_OPTIMIZED_OUT class. */
15883 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
15884 if (!suppress_add)
15885 list_to_add = cu->list_in_scope;
15886 }
15887 }
15888 break;
15889 case DW_TAG_formal_parameter:
15890 /* If we are inside a function, mark this as an argument. If
15891 not, we might be looking at an argument to an inlined function
15892 when we do not have enough information to show inlined frames;
15893 pretend it's a local variable in that case so that the user can
15894 still see it. */
15895 if (context_stack_depth > 0
15896 && context_stack[context_stack_depth - 1].name != NULL)
15897 SYMBOL_IS_ARGUMENT (sym) = 1;
15898 attr = dwarf2_attr (die, DW_AT_location, cu);
15899 if (attr)
15900 {
15901 var_decode_location (attr, sym, cu);
15902 }
15903 attr = dwarf2_attr (die, DW_AT_const_value, cu);
15904 if (attr)
15905 {
15906 dwarf2_const_value (attr, sym, cu);
15907 }
15908
15909 list_to_add = cu->list_in_scope;
15910 break;
15911 case DW_TAG_unspecified_parameters:
15912 /* From varargs functions; gdb doesn't seem to have any
15913 interest in this information, so just ignore it for now.
15914 (FIXME?) */
15915 break;
15916 case DW_TAG_template_type_param:
15917 suppress_add = 1;
15918 /* Fall through. */
15919 case DW_TAG_class_type:
15920 case DW_TAG_interface_type:
15921 case DW_TAG_structure_type:
15922 case DW_TAG_union_type:
15923 case DW_TAG_set_type:
15924 case DW_TAG_enumeration_type:
15925 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
15926 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
15927
15928 {
15929 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
15930 really ever be static objects: otherwise, if you try
15931 to, say, break of a class's method and you're in a file
15932 which doesn't mention that class, it won't work unless
15933 the check for all static symbols in lookup_symbol_aux
15934 saves you. See the OtherFileClass tests in
15935 gdb.c++/namespace.exp. */
15936
15937 if (!suppress_add)
15938 {
15939 list_to_add = (cu->list_in_scope == &file_symbols
15940 && (cu->language == language_cplus
15941 || cu->language == language_java)
15942 ? &global_symbols : cu->list_in_scope);
15943
15944 /* The semantics of C++ state that "struct foo {
15945 ... }" also defines a typedef for "foo". A Java
15946 class declaration also defines a typedef for the
15947 class. */
15948 if (cu->language == language_cplus
15949 || cu->language == language_java
15950 || cu->language == language_ada)
15951 {
15952 /* The symbol's name is already allocated along
15953 with this objfile, so we don't need to
15954 duplicate it for the type. */
15955 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
15956 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
15957 }
15958 }
15959 }
15960 break;
15961 case DW_TAG_typedef:
15962 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
15963 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
15964 list_to_add = cu->list_in_scope;
15965 break;
15966 case DW_TAG_base_type:
15967 case DW_TAG_subrange_type:
15968 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
15969 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
15970 list_to_add = cu->list_in_scope;
15971 break;
15972 case DW_TAG_enumerator:
15973 attr = dwarf2_attr (die, DW_AT_const_value, cu);
15974 if (attr)
15975 {
15976 dwarf2_const_value (attr, sym, cu);
15977 }
15978 {
15979 /* NOTE: carlton/2003-11-10: See comment above in the
15980 DW_TAG_class_type, etc. block. */
15981
15982 list_to_add = (cu->list_in_scope == &file_symbols
15983 && (cu->language == language_cplus
15984 || cu->language == language_java)
15985 ? &global_symbols : cu->list_in_scope);
15986 }
15987 break;
15988 case DW_TAG_namespace:
15989 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
15990 list_to_add = &global_symbols;
15991 break;
15992 case DW_TAG_common_block:
15993 SYMBOL_CLASS (sym) = LOC_STATIC;
15994 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
15995 add_symbol_to_list (sym, cu->list_in_scope);
15996 break;
15997 default:
15998 /* Not a tag we recognize. Hopefully we aren't processing
15999 trash data, but since we must specifically ignore things
16000 we don't recognize, there is nothing else we should do at
16001 this point. */
16002 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
16003 dwarf_tag_name (die->tag));
16004 break;
16005 }
16006
16007 if (suppress_add)
16008 {
16009 sym->hash_next = objfile->template_symbols;
16010 objfile->template_symbols = sym;
16011 list_to_add = NULL;
16012 }
16013
16014 if (list_to_add != NULL)
16015 add_symbol_to_list (sym, list_to_add);
16016
16017 /* For the benefit of old versions of GCC, check for anonymous
16018 namespaces based on the demangled name. */
16019 if (!processing_has_namespace_info
16020 && cu->language == language_cplus)
16021 cp_scan_for_anonymous_namespaces (sym, objfile);
16022 }
16023 return (sym);
16024 }
16025
16026 /* A wrapper for new_symbol_full that always allocates a new symbol. */
16027
16028 static struct symbol *
16029 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
16030 {
16031 return new_symbol_full (die, type, cu, NULL);
16032 }
16033
16034 /* Given an attr with a DW_FORM_dataN value in host byte order,
16035 zero-extend it as appropriate for the symbol's type. The DWARF
16036 standard (v4) is not entirely clear about the meaning of using
16037 DW_FORM_dataN for a constant with a signed type, where the type is
16038 wider than the data. The conclusion of a discussion on the DWARF
16039 list was that this is unspecified. We choose to always zero-extend
16040 because that is the interpretation long in use by GCC. */
16041
16042 static gdb_byte *
16043 dwarf2_const_value_data (struct attribute *attr, struct type *type,
16044 const char *name, struct obstack *obstack,
16045 struct dwarf2_cu *cu, LONGEST *value, int bits)
16046 {
16047 struct objfile *objfile = cu->objfile;
16048 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
16049 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
16050 LONGEST l = DW_UNSND (attr);
16051
16052 if (bits < sizeof (*value) * 8)
16053 {
16054 l &= ((LONGEST) 1 << bits) - 1;
16055 *value = l;
16056 }
16057 else if (bits == sizeof (*value) * 8)
16058 *value = l;
16059 else
16060 {
16061 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
16062 store_unsigned_integer (bytes, bits / 8, byte_order, l);
16063 return bytes;
16064 }
16065
16066 return NULL;
16067 }
16068
16069 /* Read a constant value from an attribute. Either set *VALUE, or if
16070 the value does not fit in *VALUE, set *BYTES - either already
16071 allocated on the objfile obstack, or newly allocated on OBSTACK,
16072 or, set *BATON, if we translated the constant to a location
16073 expression. */
16074
16075 static void
16076 dwarf2_const_value_attr (struct attribute *attr, struct type *type,
16077 const char *name, struct obstack *obstack,
16078 struct dwarf2_cu *cu,
16079 LONGEST *value, gdb_byte **bytes,
16080 struct dwarf2_locexpr_baton **baton)
16081 {
16082 struct objfile *objfile = cu->objfile;
16083 struct comp_unit_head *cu_header = &cu->header;
16084 struct dwarf_block *blk;
16085 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
16086 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
16087
16088 *value = 0;
16089 *bytes = NULL;
16090 *baton = NULL;
16091
16092 switch (attr->form)
16093 {
16094 case DW_FORM_addr:
16095 case DW_FORM_GNU_addr_index:
16096 {
16097 gdb_byte *data;
16098
16099 if (TYPE_LENGTH (type) != cu_header->addr_size)
16100 dwarf2_const_value_length_mismatch_complaint (name,
16101 cu_header->addr_size,
16102 TYPE_LENGTH (type));
16103 /* Symbols of this form are reasonably rare, so we just
16104 piggyback on the existing location code rather than writing
16105 a new implementation of symbol_computed_ops. */
16106 *baton = obstack_alloc (&objfile->objfile_obstack,
16107 sizeof (struct dwarf2_locexpr_baton));
16108 (*baton)->per_cu = cu->per_cu;
16109 gdb_assert ((*baton)->per_cu);
16110
16111 (*baton)->size = 2 + cu_header->addr_size;
16112 data = obstack_alloc (&objfile->objfile_obstack, (*baton)->size);
16113 (*baton)->data = data;
16114
16115 data[0] = DW_OP_addr;
16116 store_unsigned_integer (&data[1], cu_header->addr_size,
16117 byte_order, DW_ADDR (attr));
16118 data[cu_header->addr_size + 1] = DW_OP_stack_value;
16119 }
16120 break;
16121 case DW_FORM_string:
16122 case DW_FORM_strp:
16123 case DW_FORM_GNU_str_index:
16124 case DW_FORM_GNU_strp_alt:
16125 /* DW_STRING is already allocated on the objfile obstack, point
16126 directly to it. */
16127 *bytes = (gdb_byte *) DW_STRING (attr);
16128 break;
16129 case DW_FORM_block1:
16130 case DW_FORM_block2:
16131 case DW_FORM_block4:
16132 case DW_FORM_block:
16133 case DW_FORM_exprloc:
16134 blk = DW_BLOCK (attr);
16135 if (TYPE_LENGTH (type) != blk->size)
16136 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
16137 TYPE_LENGTH (type));
16138 *bytes = blk->data;
16139 break;
16140
16141 /* The DW_AT_const_value attributes are supposed to carry the
16142 symbol's value "represented as it would be on the target
16143 architecture." By the time we get here, it's already been
16144 converted to host endianness, so we just need to sign- or
16145 zero-extend it as appropriate. */
16146 case DW_FORM_data1:
16147 *bytes = dwarf2_const_value_data (attr, type, name,
16148 obstack, cu, value, 8);
16149 break;
16150 case DW_FORM_data2:
16151 *bytes = dwarf2_const_value_data (attr, type, name,
16152 obstack, cu, value, 16);
16153 break;
16154 case DW_FORM_data4:
16155 *bytes = dwarf2_const_value_data (attr, type, name,
16156 obstack, cu, value, 32);
16157 break;
16158 case DW_FORM_data8:
16159 *bytes = dwarf2_const_value_data (attr, type, name,
16160 obstack, cu, value, 64);
16161 break;
16162
16163 case DW_FORM_sdata:
16164 *value = DW_SND (attr);
16165 break;
16166
16167 case DW_FORM_udata:
16168 *value = DW_UNSND (attr);
16169 break;
16170
16171 default:
16172 complaint (&symfile_complaints,
16173 _("unsupported const value attribute form: '%s'"),
16174 dwarf_form_name (attr->form));
16175 *value = 0;
16176 break;
16177 }
16178 }
16179
16180
16181 /* Copy constant value from an attribute to a symbol. */
16182
16183 static void
16184 dwarf2_const_value (struct attribute *attr, struct symbol *sym,
16185 struct dwarf2_cu *cu)
16186 {
16187 struct objfile *objfile = cu->objfile;
16188 struct comp_unit_head *cu_header = &cu->header;
16189 LONGEST value;
16190 gdb_byte *bytes;
16191 struct dwarf2_locexpr_baton *baton;
16192
16193 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
16194 SYMBOL_PRINT_NAME (sym),
16195 &objfile->objfile_obstack, cu,
16196 &value, &bytes, &baton);
16197
16198 if (baton != NULL)
16199 {
16200 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
16201 SYMBOL_LOCATION_BATON (sym) = baton;
16202 SYMBOL_CLASS (sym) = LOC_COMPUTED;
16203 }
16204 else if (bytes != NULL)
16205 {
16206 SYMBOL_VALUE_BYTES (sym) = bytes;
16207 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
16208 }
16209 else
16210 {
16211 SYMBOL_VALUE (sym) = value;
16212 SYMBOL_CLASS (sym) = LOC_CONST;
16213 }
16214 }
16215
16216 /* Return the type of the die in question using its DW_AT_type attribute. */
16217
16218 static struct type *
16219 die_type (struct die_info *die, struct dwarf2_cu *cu)
16220 {
16221 struct attribute *type_attr;
16222
16223 type_attr = dwarf2_attr (die, DW_AT_type, cu);
16224 if (!type_attr)
16225 {
16226 /* A missing DW_AT_type represents a void type. */
16227 return objfile_type (cu->objfile)->builtin_void;
16228 }
16229
16230 return lookup_die_type (die, type_attr, cu);
16231 }
16232
16233 /* True iff CU's producer generates GNAT Ada auxiliary information
16234 that allows to find parallel types through that information instead
16235 of having to do expensive parallel lookups by type name. */
16236
16237 static int
16238 need_gnat_info (struct dwarf2_cu *cu)
16239 {
16240 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
16241 of GNAT produces this auxiliary information, without any indication
16242 that it is produced. Part of enhancing the FSF version of GNAT
16243 to produce that information will be to put in place an indicator
16244 that we can use in order to determine whether the descriptive type
16245 info is available or not. One suggestion that has been made is
16246 to use a new attribute, attached to the CU die. For now, assume
16247 that the descriptive type info is not available. */
16248 return 0;
16249 }
16250
16251 /* Return the auxiliary type of the die in question using its
16252 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
16253 attribute is not present. */
16254
16255 static struct type *
16256 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
16257 {
16258 struct attribute *type_attr;
16259
16260 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
16261 if (!type_attr)
16262 return NULL;
16263
16264 return lookup_die_type (die, type_attr, cu);
16265 }
16266
16267 /* If DIE has a descriptive_type attribute, then set the TYPE's
16268 descriptive type accordingly. */
16269
16270 static void
16271 set_descriptive_type (struct type *type, struct die_info *die,
16272 struct dwarf2_cu *cu)
16273 {
16274 struct type *descriptive_type = die_descriptive_type (die, cu);
16275
16276 if (descriptive_type)
16277 {
16278 ALLOCATE_GNAT_AUX_TYPE (type);
16279 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
16280 }
16281 }
16282
16283 /* Return the containing type of the die in question using its
16284 DW_AT_containing_type attribute. */
16285
16286 static struct type *
16287 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
16288 {
16289 struct attribute *type_attr;
16290
16291 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
16292 if (!type_attr)
16293 error (_("Dwarf Error: Problem turning containing type into gdb type "
16294 "[in module %s]"), cu->objfile->name);
16295
16296 return lookup_die_type (die, type_attr, cu);
16297 }
16298
16299 /* Look up the type of DIE in CU using its type attribute ATTR.
16300 If there is no type substitute an error marker. */
16301
16302 static struct type *
16303 lookup_die_type (struct die_info *die, struct attribute *attr,
16304 struct dwarf2_cu *cu)
16305 {
16306 struct objfile *objfile = cu->objfile;
16307 struct type *this_type;
16308
16309 /* First see if we have it cached. */
16310
16311 if (attr->form == DW_FORM_GNU_ref_alt)
16312 {
16313 struct dwarf2_per_cu_data *per_cu;
16314 sect_offset offset = dwarf2_get_ref_die_offset (attr);
16315
16316 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
16317 this_type = get_die_type_at_offset (offset, per_cu);
16318 }
16319 else if (is_ref_attr (attr))
16320 {
16321 sect_offset offset = dwarf2_get_ref_die_offset (attr);
16322
16323 this_type = get_die_type_at_offset (offset, cu->per_cu);
16324 }
16325 else if (attr->form == DW_FORM_ref_sig8)
16326 {
16327 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
16328
16329 /* sig_type will be NULL if the signatured type is missing from
16330 the debug info. */
16331 if (sig_type == NULL)
16332 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
16333 "at 0x%x [in module %s]"),
16334 die->offset.sect_off, objfile->name);
16335
16336 gdb_assert (sig_type->per_cu.is_debug_types);
16337 /* If we haven't filled in type_offset_in_section yet, then we
16338 haven't read the type in yet. */
16339 this_type = NULL;
16340 if (sig_type->type_offset_in_section.sect_off != 0)
16341 {
16342 this_type =
16343 get_die_type_at_offset (sig_type->type_offset_in_section,
16344 &sig_type->per_cu);
16345 }
16346 }
16347 else
16348 {
16349 dump_die_for_error (die);
16350 error (_("Dwarf Error: Bad type attribute %s [in module %s]"),
16351 dwarf_attr_name (attr->name), objfile->name);
16352 }
16353
16354 /* If not cached we need to read it in. */
16355
16356 if (this_type == NULL)
16357 {
16358 struct die_info *type_die;
16359 struct dwarf2_cu *type_cu = cu;
16360
16361 type_die = follow_die_ref_or_sig (die, attr, &type_cu);
16362 /* If we found the type now, it's probably because the type came
16363 from an inter-CU reference and the type's CU got expanded before
16364 ours. */
16365 this_type = get_die_type (type_die, type_cu);
16366 if (this_type == NULL)
16367 this_type = read_type_die_1 (type_die, type_cu);
16368 }
16369
16370 /* If we still don't have a type use an error marker. */
16371
16372 if (this_type == NULL)
16373 {
16374 char *message, *saved;
16375
16376 /* read_type_die already issued a complaint. */
16377 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
16378 objfile->name,
16379 cu->header.offset.sect_off,
16380 die->offset.sect_off);
16381 saved = obstack_copy0 (&objfile->objfile_obstack,
16382 message, strlen (message));
16383 xfree (message);
16384
16385 this_type = init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
16386 }
16387
16388 return this_type;
16389 }
16390
16391 /* Return the type in DIE, CU.
16392 Returns NULL for invalid types.
16393
16394 This first does a lookup in the appropriate type_hash table,
16395 and only reads the die in if necessary.
16396
16397 NOTE: This can be called when reading in partial or full symbols. */
16398
16399 static struct type *
16400 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
16401 {
16402 struct type *this_type;
16403
16404 this_type = get_die_type (die, cu);
16405 if (this_type)
16406 return this_type;
16407
16408 return read_type_die_1 (die, cu);
16409 }
16410
16411 /* Read the type in DIE, CU.
16412 Returns NULL for invalid types. */
16413
16414 static struct type *
16415 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
16416 {
16417 struct type *this_type = NULL;
16418
16419 switch (die->tag)
16420 {
16421 case DW_TAG_class_type:
16422 case DW_TAG_interface_type:
16423 case DW_TAG_structure_type:
16424 case DW_TAG_union_type:
16425 this_type = read_structure_type (die, cu);
16426 break;
16427 case DW_TAG_enumeration_type:
16428 this_type = read_enumeration_type (die, cu);
16429 break;
16430 case DW_TAG_subprogram:
16431 case DW_TAG_subroutine_type:
16432 case DW_TAG_inlined_subroutine:
16433 this_type = read_subroutine_type (die, cu);
16434 break;
16435 case DW_TAG_array_type:
16436 this_type = read_array_type (die, cu);
16437 break;
16438 case DW_TAG_set_type:
16439 this_type = read_set_type (die, cu);
16440 break;
16441 case DW_TAG_pointer_type:
16442 this_type = read_tag_pointer_type (die, cu);
16443 break;
16444 case DW_TAG_ptr_to_member_type:
16445 this_type = read_tag_ptr_to_member_type (die, cu);
16446 break;
16447 case DW_TAG_reference_type:
16448 this_type = read_tag_reference_type (die, cu);
16449 break;
16450 case DW_TAG_const_type:
16451 this_type = read_tag_const_type (die, cu);
16452 break;
16453 case DW_TAG_volatile_type:
16454 this_type = read_tag_volatile_type (die, cu);
16455 break;
16456 case DW_TAG_string_type:
16457 this_type = read_tag_string_type (die, cu);
16458 break;
16459 case DW_TAG_typedef:
16460 this_type = read_typedef (die, cu);
16461 break;
16462 case DW_TAG_subrange_type:
16463 this_type = read_subrange_type (die, cu);
16464 break;
16465 case DW_TAG_base_type:
16466 this_type = read_base_type (die, cu);
16467 break;
16468 case DW_TAG_unspecified_type:
16469 this_type = read_unspecified_type (die, cu);
16470 break;
16471 case DW_TAG_namespace:
16472 this_type = read_namespace_type (die, cu);
16473 break;
16474 case DW_TAG_module:
16475 this_type = read_module_type (die, cu);
16476 break;
16477 default:
16478 complaint (&symfile_complaints,
16479 _("unexpected tag in read_type_die: '%s'"),
16480 dwarf_tag_name (die->tag));
16481 break;
16482 }
16483
16484 return this_type;
16485 }
16486
16487 /* See if we can figure out if the class lives in a namespace. We do
16488 this by looking for a member function; its demangled name will
16489 contain namespace info, if there is any.
16490 Return the computed name or NULL.
16491 Space for the result is allocated on the objfile's obstack.
16492 This is the full-die version of guess_partial_die_structure_name.
16493 In this case we know DIE has no useful parent. */
16494
16495 static char *
16496 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
16497 {
16498 struct die_info *spec_die;
16499 struct dwarf2_cu *spec_cu;
16500 struct die_info *child;
16501
16502 spec_cu = cu;
16503 spec_die = die_specification (die, &spec_cu);
16504 if (spec_die != NULL)
16505 {
16506 die = spec_die;
16507 cu = spec_cu;
16508 }
16509
16510 for (child = die->child;
16511 child != NULL;
16512 child = child->sibling)
16513 {
16514 if (child->tag == DW_TAG_subprogram)
16515 {
16516 struct attribute *attr;
16517
16518 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
16519 if (attr == NULL)
16520 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
16521 if (attr != NULL)
16522 {
16523 char *actual_name
16524 = language_class_name_from_physname (cu->language_defn,
16525 DW_STRING (attr));
16526 char *name = NULL;
16527
16528 if (actual_name != NULL)
16529 {
16530 char *die_name = dwarf2_name (die, cu);
16531
16532 if (die_name != NULL
16533 && strcmp (die_name, actual_name) != 0)
16534 {
16535 /* Strip off the class name from the full name.
16536 We want the prefix. */
16537 int die_name_len = strlen (die_name);
16538 int actual_name_len = strlen (actual_name);
16539
16540 /* Test for '::' as a sanity check. */
16541 if (actual_name_len > die_name_len + 2
16542 && actual_name[actual_name_len
16543 - die_name_len - 1] == ':')
16544 name =
16545 obsavestring (actual_name,
16546 actual_name_len - die_name_len - 2,
16547 &cu->objfile->objfile_obstack);
16548 }
16549 }
16550 xfree (actual_name);
16551 return name;
16552 }
16553 }
16554 }
16555
16556 return NULL;
16557 }
16558
16559 /* GCC might emit a nameless typedef that has a linkage name. Determine the
16560 prefix part in such case. See
16561 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16562
16563 static char *
16564 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
16565 {
16566 struct attribute *attr;
16567 char *base;
16568
16569 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
16570 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
16571 return NULL;
16572
16573 attr = dwarf2_attr (die, DW_AT_name, cu);
16574 if (attr != NULL && DW_STRING (attr) != NULL)
16575 return NULL;
16576
16577 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
16578 if (attr == NULL)
16579 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
16580 if (attr == NULL || DW_STRING (attr) == NULL)
16581 return NULL;
16582
16583 /* dwarf2_name had to be already called. */
16584 gdb_assert (DW_STRING_IS_CANONICAL (attr));
16585
16586 /* Strip the base name, keep any leading namespaces/classes. */
16587 base = strrchr (DW_STRING (attr), ':');
16588 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
16589 return "";
16590
16591 return obsavestring (DW_STRING (attr), &base[-1] - DW_STRING (attr),
16592 &cu->objfile->objfile_obstack);
16593 }
16594
16595 /* Return the name of the namespace/class that DIE is defined within,
16596 or "" if we can't tell. The caller should not xfree the result.
16597
16598 For example, if we're within the method foo() in the following
16599 code:
16600
16601 namespace N {
16602 class C {
16603 void foo () {
16604 }
16605 };
16606 }
16607
16608 then determine_prefix on foo's die will return "N::C". */
16609
16610 static const char *
16611 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
16612 {
16613 struct die_info *parent, *spec_die;
16614 struct dwarf2_cu *spec_cu;
16615 struct type *parent_type;
16616 char *retval;
16617
16618 if (cu->language != language_cplus && cu->language != language_java
16619 && cu->language != language_fortran)
16620 return "";
16621
16622 retval = anonymous_struct_prefix (die, cu);
16623 if (retval)
16624 return retval;
16625
16626 /* We have to be careful in the presence of DW_AT_specification.
16627 For example, with GCC 3.4, given the code
16628
16629 namespace N {
16630 void foo() {
16631 // Definition of N::foo.
16632 }
16633 }
16634
16635 then we'll have a tree of DIEs like this:
16636
16637 1: DW_TAG_compile_unit
16638 2: DW_TAG_namespace // N
16639 3: DW_TAG_subprogram // declaration of N::foo
16640 4: DW_TAG_subprogram // definition of N::foo
16641 DW_AT_specification // refers to die #3
16642
16643 Thus, when processing die #4, we have to pretend that we're in
16644 the context of its DW_AT_specification, namely the contex of die
16645 #3. */
16646 spec_cu = cu;
16647 spec_die = die_specification (die, &spec_cu);
16648 if (spec_die == NULL)
16649 parent = die->parent;
16650 else
16651 {
16652 parent = spec_die->parent;
16653 cu = spec_cu;
16654 }
16655
16656 if (parent == NULL)
16657 return "";
16658 else if (parent->building_fullname)
16659 {
16660 const char *name;
16661 const char *parent_name;
16662
16663 /* It has been seen on RealView 2.2 built binaries,
16664 DW_TAG_template_type_param types actually _defined_ as
16665 children of the parent class:
16666
16667 enum E {};
16668 template class <class Enum> Class{};
16669 Class<enum E> class_e;
16670
16671 1: DW_TAG_class_type (Class)
16672 2: DW_TAG_enumeration_type (E)
16673 3: DW_TAG_enumerator (enum1:0)
16674 3: DW_TAG_enumerator (enum2:1)
16675 ...
16676 2: DW_TAG_template_type_param
16677 DW_AT_type DW_FORM_ref_udata (E)
16678
16679 Besides being broken debug info, it can put GDB into an
16680 infinite loop. Consider:
16681
16682 When we're building the full name for Class<E>, we'll start
16683 at Class, and go look over its template type parameters,
16684 finding E. We'll then try to build the full name of E, and
16685 reach here. We're now trying to build the full name of E,
16686 and look over the parent DIE for containing scope. In the
16687 broken case, if we followed the parent DIE of E, we'd again
16688 find Class, and once again go look at its template type
16689 arguments, etc., etc. Simply don't consider such parent die
16690 as source-level parent of this die (it can't be, the language
16691 doesn't allow it), and break the loop here. */
16692 name = dwarf2_name (die, cu);
16693 parent_name = dwarf2_name (parent, cu);
16694 complaint (&symfile_complaints,
16695 _("template param type '%s' defined within parent '%s'"),
16696 name ? name : "<unknown>",
16697 parent_name ? parent_name : "<unknown>");
16698 return "";
16699 }
16700 else
16701 switch (parent->tag)
16702 {
16703 case DW_TAG_namespace:
16704 parent_type = read_type_die (parent, cu);
16705 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
16706 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
16707 Work around this problem here. */
16708 if (cu->language == language_cplus
16709 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
16710 return "";
16711 /* We give a name to even anonymous namespaces. */
16712 return TYPE_TAG_NAME (parent_type);
16713 case DW_TAG_class_type:
16714 case DW_TAG_interface_type:
16715 case DW_TAG_structure_type:
16716 case DW_TAG_union_type:
16717 case DW_TAG_module:
16718 parent_type = read_type_die (parent, cu);
16719 if (TYPE_TAG_NAME (parent_type) != NULL)
16720 return TYPE_TAG_NAME (parent_type);
16721 else
16722 /* An anonymous structure is only allowed non-static data
16723 members; no typedefs, no member functions, et cetera.
16724 So it does not need a prefix. */
16725 return "";
16726 case DW_TAG_compile_unit:
16727 case DW_TAG_partial_unit:
16728 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
16729 if (cu->language == language_cplus
16730 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
16731 && die->child != NULL
16732 && (die->tag == DW_TAG_class_type
16733 || die->tag == DW_TAG_structure_type
16734 || die->tag == DW_TAG_union_type))
16735 {
16736 char *name = guess_full_die_structure_name (die, cu);
16737 if (name != NULL)
16738 return name;
16739 }
16740 return "";
16741 default:
16742 return determine_prefix (parent, cu);
16743 }
16744 }
16745
16746 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
16747 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
16748 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
16749 an obconcat, otherwise allocate storage for the result. The CU argument is
16750 used to determine the language and hence, the appropriate separator. */
16751
16752 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
16753
16754 static char *
16755 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
16756 int physname, struct dwarf2_cu *cu)
16757 {
16758 const char *lead = "";
16759 const char *sep;
16760
16761 if (suffix == NULL || suffix[0] == '\0'
16762 || prefix == NULL || prefix[0] == '\0')
16763 sep = "";
16764 else if (cu->language == language_java)
16765 sep = ".";
16766 else if (cu->language == language_fortran && physname)
16767 {
16768 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
16769 DW_AT_MIPS_linkage_name is preferred and used instead. */
16770
16771 lead = "__";
16772 sep = "_MOD_";
16773 }
16774 else
16775 sep = "::";
16776
16777 if (prefix == NULL)
16778 prefix = "";
16779 if (suffix == NULL)
16780 suffix = "";
16781
16782 if (obs == NULL)
16783 {
16784 char *retval
16785 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
16786
16787 strcpy (retval, lead);
16788 strcat (retval, prefix);
16789 strcat (retval, sep);
16790 strcat (retval, suffix);
16791 return retval;
16792 }
16793 else
16794 {
16795 /* We have an obstack. */
16796 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
16797 }
16798 }
16799
16800 /* Return sibling of die, NULL if no sibling. */
16801
16802 static struct die_info *
16803 sibling_die (struct die_info *die)
16804 {
16805 return die->sibling;
16806 }
16807
16808 /* Get name of a die, return NULL if not found. */
16809
16810 static char *
16811 dwarf2_canonicalize_name (char *name, struct dwarf2_cu *cu,
16812 struct obstack *obstack)
16813 {
16814 if (name && cu->language == language_cplus)
16815 {
16816 char *canon_name = cp_canonicalize_string (name);
16817
16818 if (canon_name != NULL)
16819 {
16820 if (strcmp (canon_name, name) != 0)
16821 name = obsavestring (canon_name, strlen (canon_name),
16822 obstack);
16823 xfree (canon_name);
16824 }
16825 }
16826
16827 return name;
16828 }
16829
16830 /* Get name of a die, return NULL if not found. */
16831
16832 static char *
16833 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
16834 {
16835 struct attribute *attr;
16836
16837 attr = dwarf2_attr (die, DW_AT_name, cu);
16838 if ((!attr || !DW_STRING (attr))
16839 && die->tag != DW_TAG_class_type
16840 && die->tag != DW_TAG_interface_type
16841 && die->tag != DW_TAG_structure_type
16842 && die->tag != DW_TAG_union_type)
16843 return NULL;
16844
16845 switch (die->tag)
16846 {
16847 case DW_TAG_compile_unit:
16848 case DW_TAG_partial_unit:
16849 /* Compilation units have a DW_AT_name that is a filename, not
16850 a source language identifier. */
16851 case DW_TAG_enumeration_type:
16852 case DW_TAG_enumerator:
16853 /* These tags always have simple identifiers already; no need
16854 to canonicalize them. */
16855 return DW_STRING (attr);
16856
16857 case DW_TAG_subprogram:
16858 /* Java constructors will all be named "<init>", so return
16859 the class name when we see this special case. */
16860 if (cu->language == language_java
16861 && DW_STRING (attr) != NULL
16862 && strcmp (DW_STRING (attr), "<init>") == 0)
16863 {
16864 struct dwarf2_cu *spec_cu = cu;
16865 struct die_info *spec_die;
16866
16867 /* GCJ will output '<init>' for Java constructor names.
16868 For this special case, return the name of the parent class. */
16869
16870 /* GCJ may output suprogram DIEs with AT_specification set.
16871 If so, use the name of the specified DIE. */
16872 spec_die = die_specification (die, &spec_cu);
16873 if (spec_die != NULL)
16874 return dwarf2_name (spec_die, spec_cu);
16875
16876 do
16877 {
16878 die = die->parent;
16879 if (die->tag == DW_TAG_class_type)
16880 return dwarf2_name (die, cu);
16881 }
16882 while (die->tag != DW_TAG_compile_unit
16883 && die->tag != DW_TAG_partial_unit);
16884 }
16885 break;
16886
16887 case DW_TAG_class_type:
16888 case DW_TAG_interface_type:
16889 case DW_TAG_structure_type:
16890 case DW_TAG_union_type:
16891 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
16892 structures or unions. These were of the form "._%d" in GCC 4.1,
16893 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
16894 and GCC 4.4. We work around this problem by ignoring these. */
16895 if (attr && DW_STRING (attr)
16896 && (strncmp (DW_STRING (attr), "._", 2) == 0
16897 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0))
16898 return NULL;
16899
16900 /* GCC might emit a nameless typedef that has a linkage name. See
16901 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16902 if (!attr || DW_STRING (attr) == NULL)
16903 {
16904 char *demangled = NULL;
16905
16906 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
16907 if (attr == NULL)
16908 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
16909
16910 if (attr == NULL || DW_STRING (attr) == NULL)
16911 return NULL;
16912
16913 /* Avoid demangling DW_STRING (attr) the second time on a second
16914 call for the same DIE. */
16915 if (!DW_STRING_IS_CANONICAL (attr))
16916 demangled = cplus_demangle (DW_STRING (attr), DMGL_TYPES);
16917
16918 if (demangled)
16919 {
16920 char *base;
16921
16922 /* FIXME: we already did this for the partial symbol... */
16923 DW_STRING (attr) = obsavestring (demangled, strlen (demangled),
16924 &cu->objfile->objfile_obstack);
16925 DW_STRING_IS_CANONICAL (attr) = 1;
16926 xfree (demangled);
16927
16928 /* Strip any leading namespaces/classes, keep only the base name.
16929 DW_AT_name for named DIEs does not contain the prefixes. */
16930 base = strrchr (DW_STRING (attr), ':');
16931 if (base && base > DW_STRING (attr) && base[-1] == ':')
16932 return &base[1];
16933 else
16934 return DW_STRING (attr);
16935 }
16936 }
16937 break;
16938
16939 default:
16940 break;
16941 }
16942
16943 if (!DW_STRING_IS_CANONICAL (attr))
16944 {
16945 DW_STRING (attr)
16946 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
16947 &cu->objfile->objfile_obstack);
16948 DW_STRING_IS_CANONICAL (attr) = 1;
16949 }
16950 return DW_STRING (attr);
16951 }
16952
16953 /* Return the die that this die in an extension of, or NULL if there
16954 is none. *EXT_CU is the CU containing DIE on input, and the CU
16955 containing the return value on output. */
16956
16957 static struct die_info *
16958 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
16959 {
16960 struct attribute *attr;
16961
16962 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
16963 if (attr == NULL)
16964 return NULL;
16965
16966 return follow_die_ref (die, attr, ext_cu);
16967 }
16968
16969 /* Convert a DIE tag into its string name. */
16970
16971 static const char *
16972 dwarf_tag_name (unsigned tag)
16973 {
16974 const char *name = get_DW_TAG_name (tag);
16975
16976 if (name == NULL)
16977 return "DW_TAG_<unknown>";
16978
16979 return name;
16980 }
16981
16982 /* Convert a DWARF attribute code into its string name. */
16983
16984 static const char *
16985 dwarf_attr_name (unsigned attr)
16986 {
16987 const char *name;
16988
16989 #ifdef MIPS /* collides with DW_AT_HP_block_index */
16990 if (attr == DW_AT_MIPS_fde)
16991 return "DW_AT_MIPS_fde";
16992 #else
16993 if (attr == DW_AT_HP_block_index)
16994 return "DW_AT_HP_block_index";
16995 #endif
16996
16997 name = get_DW_AT_name (attr);
16998
16999 if (name == NULL)
17000 return "DW_AT_<unknown>";
17001
17002 return name;
17003 }
17004
17005 /* Convert a DWARF value form code into its string name. */
17006
17007 static const char *
17008 dwarf_form_name (unsigned form)
17009 {
17010 const char *name = get_DW_FORM_name (form);
17011
17012 if (name == NULL)
17013 return "DW_FORM_<unknown>";
17014
17015 return name;
17016 }
17017
17018 static char *
17019 dwarf_bool_name (unsigned mybool)
17020 {
17021 if (mybool)
17022 return "TRUE";
17023 else
17024 return "FALSE";
17025 }
17026
17027 /* Convert a DWARF type code into its string name. */
17028
17029 static const char *
17030 dwarf_type_encoding_name (unsigned enc)
17031 {
17032 const char *name = get_DW_ATE_name (enc);
17033
17034 if (name == NULL)
17035 return "DW_ATE_<unknown>";
17036
17037 return name;
17038 }
17039
17040 static void
17041 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
17042 {
17043 unsigned int i;
17044
17045 print_spaces (indent, f);
17046 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
17047 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
17048
17049 if (die->parent != NULL)
17050 {
17051 print_spaces (indent, f);
17052 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
17053 die->parent->offset.sect_off);
17054 }
17055
17056 print_spaces (indent, f);
17057 fprintf_unfiltered (f, " has children: %s\n",
17058 dwarf_bool_name (die->child != NULL));
17059
17060 print_spaces (indent, f);
17061 fprintf_unfiltered (f, " attributes:\n");
17062
17063 for (i = 0; i < die->num_attrs; ++i)
17064 {
17065 print_spaces (indent, f);
17066 fprintf_unfiltered (f, " %s (%s) ",
17067 dwarf_attr_name (die->attrs[i].name),
17068 dwarf_form_name (die->attrs[i].form));
17069
17070 switch (die->attrs[i].form)
17071 {
17072 case DW_FORM_addr:
17073 case DW_FORM_GNU_addr_index:
17074 fprintf_unfiltered (f, "address: ");
17075 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
17076 break;
17077 case DW_FORM_block2:
17078 case DW_FORM_block4:
17079 case DW_FORM_block:
17080 case DW_FORM_block1:
17081 fprintf_unfiltered (f, "block: size %s",
17082 pulongest (DW_BLOCK (&die->attrs[i])->size));
17083 break;
17084 case DW_FORM_exprloc:
17085 fprintf_unfiltered (f, "expression: size %s",
17086 pulongest (DW_BLOCK (&die->attrs[i])->size));
17087 break;
17088 case DW_FORM_ref_addr:
17089 fprintf_unfiltered (f, "ref address: ");
17090 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
17091 break;
17092 case DW_FORM_GNU_ref_alt:
17093 fprintf_unfiltered (f, "alt ref address: ");
17094 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
17095 break;
17096 case DW_FORM_ref1:
17097 case DW_FORM_ref2:
17098 case DW_FORM_ref4:
17099 case DW_FORM_ref8:
17100 case DW_FORM_ref_udata:
17101 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
17102 (long) (DW_UNSND (&die->attrs[i])));
17103 break;
17104 case DW_FORM_data1:
17105 case DW_FORM_data2:
17106 case DW_FORM_data4:
17107 case DW_FORM_data8:
17108 case DW_FORM_udata:
17109 case DW_FORM_sdata:
17110 fprintf_unfiltered (f, "constant: %s",
17111 pulongest (DW_UNSND (&die->attrs[i])));
17112 break;
17113 case DW_FORM_sec_offset:
17114 fprintf_unfiltered (f, "section offset: %s",
17115 pulongest (DW_UNSND (&die->attrs[i])));
17116 break;
17117 case DW_FORM_ref_sig8:
17118 if (DW_SIGNATURED_TYPE (&die->attrs[i]) != NULL)
17119 fprintf_unfiltered (f, "signatured type, offset: 0x%x",
17120 DW_SIGNATURED_TYPE (&die->attrs[i])->per_cu.offset.sect_off);
17121 else
17122 fprintf_unfiltered (f, "signatured type, offset: unknown");
17123 break;
17124 case DW_FORM_string:
17125 case DW_FORM_strp:
17126 case DW_FORM_GNU_str_index:
17127 case DW_FORM_GNU_strp_alt:
17128 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
17129 DW_STRING (&die->attrs[i])
17130 ? DW_STRING (&die->attrs[i]) : "",
17131 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
17132 break;
17133 case DW_FORM_flag:
17134 if (DW_UNSND (&die->attrs[i]))
17135 fprintf_unfiltered (f, "flag: TRUE");
17136 else
17137 fprintf_unfiltered (f, "flag: FALSE");
17138 break;
17139 case DW_FORM_flag_present:
17140 fprintf_unfiltered (f, "flag: TRUE");
17141 break;
17142 case DW_FORM_indirect:
17143 /* The reader will have reduced the indirect form to
17144 the "base form" so this form should not occur. */
17145 fprintf_unfiltered (f,
17146 "unexpected attribute form: DW_FORM_indirect");
17147 break;
17148 default:
17149 fprintf_unfiltered (f, "unsupported attribute form: %d.",
17150 die->attrs[i].form);
17151 break;
17152 }
17153 fprintf_unfiltered (f, "\n");
17154 }
17155 }
17156
17157 static void
17158 dump_die_for_error (struct die_info *die)
17159 {
17160 dump_die_shallow (gdb_stderr, 0, die);
17161 }
17162
17163 static void
17164 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
17165 {
17166 int indent = level * 4;
17167
17168 gdb_assert (die != NULL);
17169
17170 if (level >= max_level)
17171 return;
17172
17173 dump_die_shallow (f, indent, die);
17174
17175 if (die->child != NULL)
17176 {
17177 print_spaces (indent, f);
17178 fprintf_unfiltered (f, " Children:");
17179 if (level + 1 < max_level)
17180 {
17181 fprintf_unfiltered (f, "\n");
17182 dump_die_1 (f, level + 1, max_level, die->child);
17183 }
17184 else
17185 {
17186 fprintf_unfiltered (f,
17187 " [not printed, max nesting level reached]\n");
17188 }
17189 }
17190
17191 if (die->sibling != NULL && level > 0)
17192 {
17193 dump_die_1 (f, level, max_level, die->sibling);
17194 }
17195 }
17196
17197 /* This is called from the pdie macro in gdbinit.in.
17198 It's not static so gcc will keep a copy callable from gdb. */
17199
17200 void
17201 dump_die (struct die_info *die, int max_level)
17202 {
17203 dump_die_1 (gdb_stdlog, 0, max_level, die);
17204 }
17205
17206 static void
17207 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
17208 {
17209 void **slot;
17210
17211 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
17212 INSERT);
17213
17214 *slot = die;
17215 }
17216
17217 /* DW_ADDR is always stored already as sect_offset; despite for the forms
17218 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
17219
17220 static int
17221 is_ref_attr (struct attribute *attr)
17222 {
17223 switch (attr->form)
17224 {
17225 case DW_FORM_ref_addr:
17226 case DW_FORM_ref1:
17227 case DW_FORM_ref2:
17228 case DW_FORM_ref4:
17229 case DW_FORM_ref8:
17230 case DW_FORM_ref_udata:
17231 case DW_FORM_GNU_ref_alt:
17232 return 1;
17233 default:
17234 return 0;
17235 }
17236 }
17237
17238 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
17239 required kind. */
17240
17241 static sect_offset
17242 dwarf2_get_ref_die_offset (struct attribute *attr)
17243 {
17244 sect_offset retval = { DW_UNSND (attr) };
17245
17246 if (is_ref_attr (attr))
17247 return retval;
17248
17249 retval.sect_off = 0;
17250 complaint (&symfile_complaints,
17251 _("unsupported die ref attribute form: '%s'"),
17252 dwarf_form_name (attr->form));
17253 return retval;
17254 }
17255
17256 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
17257 * the value held by the attribute is not constant. */
17258
17259 static LONGEST
17260 dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
17261 {
17262 if (attr->form == DW_FORM_sdata)
17263 return DW_SND (attr);
17264 else if (attr->form == DW_FORM_udata
17265 || attr->form == DW_FORM_data1
17266 || attr->form == DW_FORM_data2
17267 || attr->form == DW_FORM_data4
17268 || attr->form == DW_FORM_data8)
17269 return DW_UNSND (attr);
17270 else
17271 {
17272 complaint (&symfile_complaints,
17273 _("Attribute value is not a constant (%s)"),
17274 dwarf_form_name (attr->form));
17275 return default_value;
17276 }
17277 }
17278
17279 /* Follow reference or signature attribute ATTR of SRC_DIE.
17280 On entry *REF_CU is the CU of SRC_DIE.
17281 On exit *REF_CU is the CU of the result. */
17282
17283 static struct die_info *
17284 follow_die_ref_or_sig (struct die_info *src_die, struct attribute *attr,
17285 struct dwarf2_cu **ref_cu)
17286 {
17287 struct die_info *die;
17288
17289 if (is_ref_attr (attr))
17290 die = follow_die_ref (src_die, attr, ref_cu);
17291 else if (attr->form == DW_FORM_ref_sig8)
17292 die = follow_die_sig (src_die, attr, ref_cu);
17293 else
17294 {
17295 dump_die_for_error (src_die);
17296 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
17297 (*ref_cu)->objfile->name);
17298 }
17299
17300 return die;
17301 }
17302
17303 /* Follow reference OFFSET.
17304 On entry *REF_CU is the CU of the source die referencing OFFSET.
17305 On exit *REF_CU is the CU of the result.
17306 Returns NULL if OFFSET is invalid. */
17307
17308 static struct die_info *
17309 follow_die_offset (sect_offset offset, int offset_in_dwz,
17310 struct dwarf2_cu **ref_cu)
17311 {
17312 struct die_info temp_die;
17313 struct dwarf2_cu *target_cu, *cu = *ref_cu;
17314
17315 gdb_assert (cu->per_cu != NULL);
17316
17317 target_cu = cu;
17318
17319 if (cu->per_cu->is_debug_types)
17320 {
17321 /* .debug_types CUs cannot reference anything outside their CU.
17322 If they need to, they have to reference a signatured type via
17323 DW_FORM_ref_sig8. */
17324 if (! offset_in_cu_p (&cu->header, offset))
17325 return NULL;
17326 }
17327 else if (offset_in_dwz != cu->per_cu->is_dwz
17328 || ! offset_in_cu_p (&cu->header, offset))
17329 {
17330 struct dwarf2_per_cu_data *per_cu;
17331
17332 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
17333 cu->objfile);
17334
17335 /* If necessary, add it to the queue and load its DIEs. */
17336 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
17337 load_full_comp_unit (per_cu, cu->language);
17338
17339 target_cu = per_cu->cu;
17340 }
17341 else if (cu->dies == NULL)
17342 {
17343 /* We're loading full DIEs during partial symbol reading. */
17344 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
17345 load_full_comp_unit (cu->per_cu, language_minimal);
17346 }
17347
17348 *ref_cu = target_cu;
17349 temp_die.offset = offset;
17350 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
17351 }
17352
17353 /* Follow reference attribute ATTR of SRC_DIE.
17354 On entry *REF_CU is the CU of SRC_DIE.
17355 On exit *REF_CU is the CU of the result. */
17356
17357 static struct die_info *
17358 follow_die_ref (struct die_info *src_die, struct attribute *attr,
17359 struct dwarf2_cu **ref_cu)
17360 {
17361 sect_offset offset = dwarf2_get_ref_die_offset (attr);
17362 struct dwarf2_cu *cu = *ref_cu;
17363 struct die_info *die;
17364
17365 die = follow_die_offset (offset,
17366 (attr->form == DW_FORM_GNU_ref_alt
17367 || cu->per_cu->is_dwz),
17368 ref_cu);
17369 if (!die)
17370 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
17371 "at 0x%x [in module %s]"),
17372 offset.sect_off, src_die->offset.sect_off, cu->objfile->name);
17373
17374 return die;
17375 }
17376
17377 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
17378 Returned value is intended for DW_OP_call*. Returned
17379 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
17380
17381 struct dwarf2_locexpr_baton
17382 dwarf2_fetch_die_loc_sect_off (sect_offset offset,
17383 struct dwarf2_per_cu_data *per_cu,
17384 CORE_ADDR (*get_frame_pc) (void *baton),
17385 void *baton)
17386 {
17387 struct dwarf2_cu *cu;
17388 struct die_info *die;
17389 struct attribute *attr;
17390 struct dwarf2_locexpr_baton retval;
17391
17392 dw2_setup (per_cu->objfile);
17393
17394 if (per_cu->cu == NULL)
17395 load_cu (per_cu);
17396 cu = per_cu->cu;
17397
17398 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
17399 if (!die)
17400 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
17401 offset.sect_off, per_cu->objfile->name);
17402
17403 attr = dwarf2_attr (die, DW_AT_location, cu);
17404 if (!attr)
17405 {
17406 /* DWARF: "If there is no such attribute, then there is no effect.".
17407 DATA is ignored if SIZE is 0. */
17408
17409 retval.data = NULL;
17410 retval.size = 0;
17411 }
17412 else if (attr_form_is_section_offset (attr))
17413 {
17414 struct dwarf2_loclist_baton loclist_baton;
17415 CORE_ADDR pc = (*get_frame_pc) (baton);
17416 size_t size;
17417
17418 fill_in_loclist_baton (cu, &loclist_baton, attr);
17419
17420 retval.data = dwarf2_find_location_expression (&loclist_baton,
17421 &size, pc);
17422 retval.size = size;
17423 }
17424 else
17425 {
17426 if (!attr_form_is_block (attr))
17427 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
17428 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
17429 offset.sect_off, per_cu->objfile->name);
17430
17431 retval.data = DW_BLOCK (attr)->data;
17432 retval.size = DW_BLOCK (attr)->size;
17433 }
17434 retval.per_cu = cu->per_cu;
17435
17436 age_cached_comp_units ();
17437
17438 return retval;
17439 }
17440
17441 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
17442 offset. */
17443
17444 struct dwarf2_locexpr_baton
17445 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
17446 struct dwarf2_per_cu_data *per_cu,
17447 CORE_ADDR (*get_frame_pc) (void *baton),
17448 void *baton)
17449 {
17450 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
17451
17452 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
17453 }
17454
17455 /* Return the type of the DIE at DIE_OFFSET in the CU named by
17456 PER_CU. */
17457
17458 struct type *
17459 dwarf2_get_die_type (cu_offset die_offset,
17460 struct dwarf2_per_cu_data *per_cu)
17461 {
17462 sect_offset die_offset_sect;
17463
17464 dw2_setup (per_cu->objfile);
17465
17466 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
17467 return get_die_type_at_offset (die_offset_sect, per_cu);
17468 }
17469
17470 /* Follow the signature attribute ATTR in SRC_DIE.
17471 On entry *REF_CU is the CU of SRC_DIE.
17472 On exit *REF_CU is the CU of the result. */
17473
17474 static struct die_info *
17475 follow_die_sig (struct die_info *src_die, struct attribute *attr,
17476 struct dwarf2_cu **ref_cu)
17477 {
17478 struct objfile *objfile = (*ref_cu)->objfile;
17479 struct die_info temp_die;
17480 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
17481 struct dwarf2_cu *sig_cu;
17482 struct die_info *die;
17483
17484 /* sig_type will be NULL if the signatured type is missing from
17485 the debug info. */
17486 if (sig_type == NULL)
17487 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
17488 "at 0x%x [in module %s]"),
17489 src_die->offset.sect_off, objfile->name);
17490
17491 /* If necessary, add it to the queue and load its DIEs. */
17492
17493 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
17494 read_signatured_type (sig_type);
17495
17496 gdb_assert (sig_type->per_cu.cu != NULL);
17497
17498 sig_cu = sig_type->per_cu.cu;
17499 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
17500 temp_die.offset = sig_type->type_offset_in_section;
17501 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
17502 temp_die.offset.sect_off);
17503 if (die)
17504 {
17505 *ref_cu = sig_cu;
17506 return die;
17507 }
17508
17509 error (_("Dwarf Error: Cannot find signatured DIE at 0x%x referenced "
17510 "from DIE at 0x%x [in module %s]"),
17511 temp_die.offset.sect_off, src_die->offset.sect_off, objfile->name);
17512 }
17513
17514 /* Given an offset of a signatured type, return its signatured_type. */
17515
17516 static struct signatured_type *
17517 lookup_signatured_type_at_offset (struct objfile *objfile,
17518 struct dwarf2_section_info *section,
17519 sect_offset offset)
17520 {
17521 gdb_byte *info_ptr = section->buffer + offset.sect_off;
17522 unsigned int length, initial_length_size;
17523 unsigned int sig_offset;
17524 struct signatured_type find_entry, *sig_type;
17525
17526 length = read_initial_length (objfile->obfd, info_ptr, &initial_length_size);
17527 sig_offset = (initial_length_size
17528 + 2 /*version*/
17529 + (initial_length_size == 4 ? 4 : 8) /*debug_abbrev_offset*/
17530 + 1 /*address_size*/);
17531 find_entry.signature = bfd_get_64 (objfile->obfd, info_ptr + sig_offset);
17532 sig_type = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
17533
17534 /* This is only used to lookup previously recorded types.
17535 If we didn't find it, it's our bug. */
17536 gdb_assert (sig_type != NULL);
17537 gdb_assert (offset.sect_off == sig_type->per_cu.offset.sect_off);
17538
17539 return sig_type;
17540 }
17541
17542 /* Load the DIEs associated with type unit PER_CU into memory. */
17543
17544 static void
17545 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
17546 {
17547 struct signatured_type *sig_type;
17548
17549 /* Caller is responsible for ensuring type_unit_groups don't get here. */
17550 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
17551
17552 /* We have the per_cu, but we need the signatured_type.
17553 Fortunately this is an easy translation. */
17554 gdb_assert (per_cu->is_debug_types);
17555 sig_type = (struct signatured_type *) per_cu;
17556
17557 gdb_assert (per_cu->cu == NULL);
17558
17559 read_signatured_type (sig_type);
17560
17561 gdb_assert (per_cu->cu != NULL);
17562 }
17563
17564 /* die_reader_func for read_signatured_type.
17565 This is identical to load_full_comp_unit_reader,
17566 but is kept separate for now. */
17567
17568 static void
17569 read_signatured_type_reader (const struct die_reader_specs *reader,
17570 gdb_byte *info_ptr,
17571 struct die_info *comp_unit_die,
17572 int has_children,
17573 void *data)
17574 {
17575 struct dwarf2_cu *cu = reader->cu;
17576
17577 gdb_assert (cu->die_hash == NULL);
17578 cu->die_hash =
17579 htab_create_alloc_ex (cu->header.length / 12,
17580 die_hash,
17581 die_eq,
17582 NULL,
17583 &cu->comp_unit_obstack,
17584 hashtab_obstack_allocate,
17585 dummy_obstack_deallocate);
17586
17587 if (has_children)
17588 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
17589 &info_ptr, comp_unit_die);
17590 cu->dies = comp_unit_die;
17591 /* comp_unit_die is not stored in die_hash, no need. */
17592
17593 /* We try not to read any attributes in this function, because not
17594 all CUs needed for references have been loaded yet, and symbol
17595 table processing isn't initialized. But we have to set the CU language,
17596 or we won't be able to build types correctly.
17597 Similarly, if we do not read the producer, we can not apply
17598 producer-specific interpretation. */
17599 prepare_one_comp_unit (cu, cu->dies, language_minimal);
17600 }
17601
17602 /* Read in a signatured type and build its CU and DIEs.
17603 If the type is a stub for the real type in a DWO file,
17604 read in the real type from the DWO file as well. */
17605
17606 static void
17607 read_signatured_type (struct signatured_type *sig_type)
17608 {
17609 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
17610
17611 gdb_assert (per_cu->is_debug_types);
17612 gdb_assert (per_cu->cu == NULL);
17613
17614 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
17615 read_signatured_type_reader, NULL);
17616 }
17617
17618 /* Decode simple location descriptions.
17619 Given a pointer to a dwarf block that defines a location, compute
17620 the location and return the value.
17621
17622 NOTE drow/2003-11-18: This function is called in two situations
17623 now: for the address of static or global variables (partial symbols
17624 only) and for offsets into structures which are expected to be
17625 (more or less) constant. The partial symbol case should go away,
17626 and only the constant case should remain. That will let this
17627 function complain more accurately. A few special modes are allowed
17628 without complaint for global variables (for instance, global
17629 register values and thread-local values).
17630
17631 A location description containing no operations indicates that the
17632 object is optimized out. The return value is 0 for that case.
17633 FIXME drow/2003-11-16: No callers check for this case any more; soon all
17634 callers will only want a very basic result and this can become a
17635 complaint.
17636
17637 Note that stack[0] is unused except as a default error return. */
17638
17639 static CORE_ADDR
17640 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
17641 {
17642 struct objfile *objfile = cu->objfile;
17643 size_t i;
17644 size_t size = blk->size;
17645 gdb_byte *data = blk->data;
17646 CORE_ADDR stack[64];
17647 int stacki;
17648 unsigned int bytes_read, unsnd;
17649 gdb_byte op;
17650
17651 i = 0;
17652 stacki = 0;
17653 stack[stacki] = 0;
17654 stack[++stacki] = 0;
17655
17656 while (i < size)
17657 {
17658 op = data[i++];
17659 switch (op)
17660 {
17661 case DW_OP_lit0:
17662 case DW_OP_lit1:
17663 case DW_OP_lit2:
17664 case DW_OP_lit3:
17665 case DW_OP_lit4:
17666 case DW_OP_lit5:
17667 case DW_OP_lit6:
17668 case DW_OP_lit7:
17669 case DW_OP_lit8:
17670 case DW_OP_lit9:
17671 case DW_OP_lit10:
17672 case DW_OP_lit11:
17673 case DW_OP_lit12:
17674 case DW_OP_lit13:
17675 case DW_OP_lit14:
17676 case DW_OP_lit15:
17677 case DW_OP_lit16:
17678 case DW_OP_lit17:
17679 case DW_OP_lit18:
17680 case DW_OP_lit19:
17681 case DW_OP_lit20:
17682 case DW_OP_lit21:
17683 case DW_OP_lit22:
17684 case DW_OP_lit23:
17685 case DW_OP_lit24:
17686 case DW_OP_lit25:
17687 case DW_OP_lit26:
17688 case DW_OP_lit27:
17689 case DW_OP_lit28:
17690 case DW_OP_lit29:
17691 case DW_OP_lit30:
17692 case DW_OP_lit31:
17693 stack[++stacki] = op - DW_OP_lit0;
17694 break;
17695
17696 case DW_OP_reg0:
17697 case DW_OP_reg1:
17698 case DW_OP_reg2:
17699 case DW_OP_reg3:
17700 case DW_OP_reg4:
17701 case DW_OP_reg5:
17702 case DW_OP_reg6:
17703 case DW_OP_reg7:
17704 case DW_OP_reg8:
17705 case DW_OP_reg9:
17706 case DW_OP_reg10:
17707 case DW_OP_reg11:
17708 case DW_OP_reg12:
17709 case DW_OP_reg13:
17710 case DW_OP_reg14:
17711 case DW_OP_reg15:
17712 case DW_OP_reg16:
17713 case DW_OP_reg17:
17714 case DW_OP_reg18:
17715 case DW_OP_reg19:
17716 case DW_OP_reg20:
17717 case DW_OP_reg21:
17718 case DW_OP_reg22:
17719 case DW_OP_reg23:
17720 case DW_OP_reg24:
17721 case DW_OP_reg25:
17722 case DW_OP_reg26:
17723 case DW_OP_reg27:
17724 case DW_OP_reg28:
17725 case DW_OP_reg29:
17726 case DW_OP_reg30:
17727 case DW_OP_reg31:
17728 stack[++stacki] = op - DW_OP_reg0;
17729 if (i < size)
17730 dwarf2_complex_location_expr_complaint ();
17731 break;
17732
17733 case DW_OP_regx:
17734 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
17735 i += bytes_read;
17736 stack[++stacki] = unsnd;
17737 if (i < size)
17738 dwarf2_complex_location_expr_complaint ();
17739 break;
17740
17741 case DW_OP_addr:
17742 stack[++stacki] = read_address (objfile->obfd, &data[i],
17743 cu, &bytes_read);
17744 i += bytes_read;
17745 break;
17746
17747 case DW_OP_const1u:
17748 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
17749 i += 1;
17750 break;
17751
17752 case DW_OP_const1s:
17753 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
17754 i += 1;
17755 break;
17756
17757 case DW_OP_const2u:
17758 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
17759 i += 2;
17760 break;
17761
17762 case DW_OP_const2s:
17763 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
17764 i += 2;
17765 break;
17766
17767 case DW_OP_const4u:
17768 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
17769 i += 4;
17770 break;
17771
17772 case DW_OP_const4s:
17773 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
17774 i += 4;
17775 break;
17776
17777 case DW_OP_const8u:
17778 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
17779 i += 8;
17780 break;
17781
17782 case DW_OP_constu:
17783 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
17784 &bytes_read);
17785 i += bytes_read;
17786 break;
17787
17788 case DW_OP_consts:
17789 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
17790 i += bytes_read;
17791 break;
17792
17793 case DW_OP_dup:
17794 stack[stacki + 1] = stack[stacki];
17795 stacki++;
17796 break;
17797
17798 case DW_OP_plus:
17799 stack[stacki - 1] += stack[stacki];
17800 stacki--;
17801 break;
17802
17803 case DW_OP_plus_uconst:
17804 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
17805 &bytes_read);
17806 i += bytes_read;
17807 break;
17808
17809 case DW_OP_minus:
17810 stack[stacki - 1] -= stack[stacki];
17811 stacki--;
17812 break;
17813
17814 case DW_OP_deref:
17815 /* If we're not the last op, then we definitely can't encode
17816 this using GDB's address_class enum. This is valid for partial
17817 global symbols, although the variable's address will be bogus
17818 in the psymtab. */
17819 if (i < size)
17820 dwarf2_complex_location_expr_complaint ();
17821 break;
17822
17823 case DW_OP_GNU_push_tls_address:
17824 /* The top of the stack has the offset from the beginning
17825 of the thread control block at which the variable is located. */
17826 /* Nothing should follow this operator, so the top of stack would
17827 be returned. */
17828 /* This is valid for partial global symbols, but the variable's
17829 address will be bogus in the psymtab. Make it always at least
17830 non-zero to not look as a variable garbage collected by linker
17831 which have DW_OP_addr 0. */
17832 if (i < size)
17833 dwarf2_complex_location_expr_complaint ();
17834 stack[stacki]++;
17835 break;
17836
17837 case DW_OP_GNU_uninit:
17838 break;
17839
17840 case DW_OP_GNU_addr_index:
17841 case DW_OP_GNU_const_index:
17842 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
17843 &bytes_read);
17844 i += bytes_read;
17845 break;
17846
17847 default:
17848 {
17849 const char *name = get_DW_OP_name (op);
17850
17851 if (name)
17852 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
17853 name);
17854 else
17855 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
17856 op);
17857 }
17858
17859 return (stack[stacki]);
17860 }
17861
17862 /* Enforce maximum stack depth of SIZE-1 to avoid writing
17863 outside of the allocated space. Also enforce minimum>0. */
17864 if (stacki >= ARRAY_SIZE (stack) - 1)
17865 {
17866 complaint (&symfile_complaints,
17867 _("location description stack overflow"));
17868 return 0;
17869 }
17870
17871 if (stacki <= 0)
17872 {
17873 complaint (&symfile_complaints,
17874 _("location description stack underflow"));
17875 return 0;
17876 }
17877 }
17878 return (stack[stacki]);
17879 }
17880
17881 /* memory allocation interface */
17882
17883 static struct dwarf_block *
17884 dwarf_alloc_block (struct dwarf2_cu *cu)
17885 {
17886 struct dwarf_block *blk;
17887
17888 blk = (struct dwarf_block *)
17889 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
17890 return (blk);
17891 }
17892
17893 static struct die_info *
17894 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
17895 {
17896 struct die_info *die;
17897 size_t size = sizeof (struct die_info);
17898
17899 if (num_attrs > 1)
17900 size += (num_attrs - 1) * sizeof (struct attribute);
17901
17902 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
17903 memset (die, 0, sizeof (struct die_info));
17904 return (die);
17905 }
17906
17907 \f
17908 /* Macro support. */
17909
17910 /* Return the full name of file number I in *LH's file name table.
17911 Use COMP_DIR as the name of the current directory of the
17912 compilation. The result is allocated using xmalloc; the caller is
17913 responsible for freeing it. */
17914 static char *
17915 file_full_name (int file, struct line_header *lh, const char *comp_dir)
17916 {
17917 /* Is the file number a valid index into the line header's file name
17918 table? Remember that file numbers start with one, not zero. */
17919 if (1 <= file && file <= lh->num_file_names)
17920 {
17921 struct file_entry *fe = &lh->file_names[file - 1];
17922
17923 if (IS_ABSOLUTE_PATH (fe->name))
17924 return xstrdup (fe->name);
17925 else
17926 {
17927 const char *dir;
17928 int dir_len;
17929 char *full_name;
17930
17931 if (fe->dir_index)
17932 dir = lh->include_dirs[fe->dir_index - 1];
17933 else
17934 dir = comp_dir;
17935
17936 if (dir)
17937 {
17938 dir_len = strlen (dir);
17939 full_name = xmalloc (dir_len + 1 + strlen (fe->name) + 1);
17940 strcpy (full_name, dir);
17941 full_name[dir_len] = '/';
17942 strcpy (full_name + dir_len + 1, fe->name);
17943 return full_name;
17944 }
17945 else
17946 return xstrdup (fe->name);
17947 }
17948 }
17949 else
17950 {
17951 /* The compiler produced a bogus file number. We can at least
17952 record the macro definitions made in the file, even if we
17953 won't be able to find the file by name. */
17954 char fake_name[80];
17955
17956 xsnprintf (fake_name, sizeof (fake_name),
17957 "<bad macro file number %d>", file);
17958
17959 complaint (&symfile_complaints,
17960 _("bad file number in macro information (%d)"),
17961 file);
17962
17963 return xstrdup (fake_name);
17964 }
17965 }
17966
17967
17968 static struct macro_source_file *
17969 macro_start_file (int file, int line,
17970 struct macro_source_file *current_file,
17971 const char *comp_dir,
17972 struct line_header *lh, struct objfile *objfile)
17973 {
17974 /* The full name of this source file. */
17975 char *full_name = file_full_name (file, lh, comp_dir);
17976
17977 /* We don't create a macro table for this compilation unit
17978 at all until we actually get a filename. */
17979 if (! pending_macros)
17980 pending_macros = new_macro_table (&objfile->per_bfd->storage_obstack,
17981 objfile->per_bfd->macro_cache);
17982
17983 if (! current_file)
17984 {
17985 /* If we have no current file, then this must be the start_file
17986 directive for the compilation unit's main source file. */
17987 current_file = macro_set_main (pending_macros, full_name);
17988 macro_define_special (pending_macros);
17989 }
17990 else
17991 current_file = macro_include (current_file, line, full_name);
17992
17993 xfree (full_name);
17994
17995 return current_file;
17996 }
17997
17998
17999 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
18000 followed by a null byte. */
18001 static char *
18002 copy_string (const char *buf, int len)
18003 {
18004 char *s = xmalloc (len + 1);
18005
18006 memcpy (s, buf, len);
18007 s[len] = '\0';
18008 return s;
18009 }
18010
18011
18012 static const char *
18013 consume_improper_spaces (const char *p, const char *body)
18014 {
18015 if (*p == ' ')
18016 {
18017 complaint (&symfile_complaints,
18018 _("macro definition contains spaces "
18019 "in formal argument list:\n`%s'"),
18020 body);
18021
18022 while (*p == ' ')
18023 p++;
18024 }
18025
18026 return p;
18027 }
18028
18029
18030 static void
18031 parse_macro_definition (struct macro_source_file *file, int line,
18032 const char *body)
18033 {
18034 const char *p;
18035
18036 /* The body string takes one of two forms. For object-like macro
18037 definitions, it should be:
18038
18039 <macro name> " " <definition>
18040
18041 For function-like macro definitions, it should be:
18042
18043 <macro name> "() " <definition>
18044 or
18045 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
18046
18047 Spaces may appear only where explicitly indicated, and in the
18048 <definition>.
18049
18050 The Dwarf 2 spec says that an object-like macro's name is always
18051 followed by a space, but versions of GCC around March 2002 omit
18052 the space when the macro's definition is the empty string.
18053
18054 The Dwarf 2 spec says that there should be no spaces between the
18055 formal arguments in a function-like macro's formal argument list,
18056 but versions of GCC around March 2002 include spaces after the
18057 commas. */
18058
18059
18060 /* Find the extent of the macro name. The macro name is terminated
18061 by either a space or null character (for an object-like macro) or
18062 an opening paren (for a function-like macro). */
18063 for (p = body; *p; p++)
18064 if (*p == ' ' || *p == '(')
18065 break;
18066
18067 if (*p == ' ' || *p == '\0')
18068 {
18069 /* It's an object-like macro. */
18070 int name_len = p - body;
18071 char *name = copy_string (body, name_len);
18072 const char *replacement;
18073
18074 if (*p == ' ')
18075 replacement = body + name_len + 1;
18076 else
18077 {
18078 dwarf2_macro_malformed_definition_complaint (body);
18079 replacement = body + name_len;
18080 }
18081
18082 macro_define_object (file, line, name, replacement);
18083
18084 xfree (name);
18085 }
18086 else if (*p == '(')
18087 {
18088 /* It's a function-like macro. */
18089 char *name = copy_string (body, p - body);
18090 int argc = 0;
18091 int argv_size = 1;
18092 char **argv = xmalloc (argv_size * sizeof (*argv));
18093
18094 p++;
18095
18096 p = consume_improper_spaces (p, body);
18097
18098 /* Parse the formal argument list. */
18099 while (*p && *p != ')')
18100 {
18101 /* Find the extent of the current argument name. */
18102 const char *arg_start = p;
18103
18104 while (*p && *p != ',' && *p != ')' && *p != ' ')
18105 p++;
18106
18107 if (! *p || p == arg_start)
18108 dwarf2_macro_malformed_definition_complaint (body);
18109 else
18110 {
18111 /* Make sure argv has room for the new argument. */
18112 if (argc >= argv_size)
18113 {
18114 argv_size *= 2;
18115 argv = xrealloc (argv, argv_size * sizeof (*argv));
18116 }
18117
18118 argv[argc++] = copy_string (arg_start, p - arg_start);
18119 }
18120
18121 p = consume_improper_spaces (p, body);
18122
18123 /* Consume the comma, if present. */
18124 if (*p == ',')
18125 {
18126 p++;
18127
18128 p = consume_improper_spaces (p, body);
18129 }
18130 }
18131
18132 if (*p == ')')
18133 {
18134 p++;
18135
18136 if (*p == ' ')
18137 /* Perfectly formed definition, no complaints. */
18138 macro_define_function (file, line, name,
18139 argc, (const char **) argv,
18140 p + 1);
18141 else if (*p == '\0')
18142 {
18143 /* Complain, but do define it. */
18144 dwarf2_macro_malformed_definition_complaint (body);
18145 macro_define_function (file, line, name,
18146 argc, (const char **) argv,
18147 p);
18148 }
18149 else
18150 /* Just complain. */
18151 dwarf2_macro_malformed_definition_complaint (body);
18152 }
18153 else
18154 /* Just complain. */
18155 dwarf2_macro_malformed_definition_complaint (body);
18156
18157 xfree (name);
18158 {
18159 int i;
18160
18161 for (i = 0; i < argc; i++)
18162 xfree (argv[i]);
18163 }
18164 xfree (argv);
18165 }
18166 else
18167 dwarf2_macro_malformed_definition_complaint (body);
18168 }
18169
18170 /* Skip some bytes from BYTES according to the form given in FORM.
18171 Returns the new pointer. */
18172
18173 static gdb_byte *
18174 skip_form_bytes (bfd *abfd, gdb_byte *bytes, gdb_byte *buffer_end,
18175 enum dwarf_form form,
18176 unsigned int offset_size,
18177 struct dwarf2_section_info *section)
18178 {
18179 unsigned int bytes_read;
18180
18181 switch (form)
18182 {
18183 case DW_FORM_data1:
18184 case DW_FORM_flag:
18185 ++bytes;
18186 break;
18187
18188 case DW_FORM_data2:
18189 bytes += 2;
18190 break;
18191
18192 case DW_FORM_data4:
18193 bytes += 4;
18194 break;
18195
18196 case DW_FORM_data8:
18197 bytes += 8;
18198 break;
18199
18200 case DW_FORM_string:
18201 read_direct_string (abfd, bytes, &bytes_read);
18202 bytes += bytes_read;
18203 break;
18204
18205 case DW_FORM_sec_offset:
18206 case DW_FORM_strp:
18207 case DW_FORM_GNU_strp_alt:
18208 bytes += offset_size;
18209 break;
18210
18211 case DW_FORM_block:
18212 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
18213 bytes += bytes_read;
18214 break;
18215
18216 case DW_FORM_block1:
18217 bytes += 1 + read_1_byte (abfd, bytes);
18218 break;
18219 case DW_FORM_block2:
18220 bytes += 2 + read_2_bytes (abfd, bytes);
18221 break;
18222 case DW_FORM_block4:
18223 bytes += 4 + read_4_bytes (abfd, bytes);
18224 break;
18225
18226 case DW_FORM_sdata:
18227 case DW_FORM_udata:
18228 case DW_FORM_GNU_addr_index:
18229 case DW_FORM_GNU_str_index:
18230 bytes = (gdb_byte *) gdb_skip_leb128 (bytes, buffer_end);
18231 if (bytes == NULL)
18232 {
18233 dwarf2_section_buffer_overflow_complaint (section);
18234 return NULL;
18235 }
18236 break;
18237
18238 default:
18239 {
18240 complain:
18241 complaint (&symfile_complaints,
18242 _("invalid form 0x%x in `%s'"),
18243 form,
18244 section->asection->name);
18245 return NULL;
18246 }
18247 }
18248
18249 return bytes;
18250 }
18251
18252 /* A helper for dwarf_decode_macros that handles skipping an unknown
18253 opcode. Returns an updated pointer to the macro data buffer; or,
18254 on error, issues a complaint and returns NULL. */
18255
18256 static gdb_byte *
18257 skip_unknown_opcode (unsigned int opcode,
18258 gdb_byte **opcode_definitions,
18259 gdb_byte *mac_ptr, gdb_byte *mac_end,
18260 bfd *abfd,
18261 unsigned int offset_size,
18262 struct dwarf2_section_info *section)
18263 {
18264 unsigned int bytes_read, i;
18265 unsigned long arg;
18266 gdb_byte *defn;
18267
18268 if (opcode_definitions[opcode] == NULL)
18269 {
18270 complaint (&symfile_complaints,
18271 _("unrecognized DW_MACFINO opcode 0x%x"),
18272 opcode);
18273 return NULL;
18274 }
18275
18276 defn = opcode_definitions[opcode];
18277 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
18278 defn += bytes_read;
18279
18280 for (i = 0; i < arg; ++i)
18281 {
18282 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end, defn[i], offset_size,
18283 section);
18284 if (mac_ptr == NULL)
18285 {
18286 /* skip_form_bytes already issued the complaint. */
18287 return NULL;
18288 }
18289 }
18290
18291 return mac_ptr;
18292 }
18293
18294 /* A helper function which parses the header of a macro section.
18295 If the macro section is the extended (for now called "GNU") type,
18296 then this updates *OFFSET_SIZE. Returns a pointer to just after
18297 the header, or issues a complaint and returns NULL on error. */
18298
18299 static gdb_byte *
18300 dwarf_parse_macro_header (gdb_byte **opcode_definitions,
18301 bfd *abfd,
18302 gdb_byte *mac_ptr,
18303 unsigned int *offset_size,
18304 int section_is_gnu)
18305 {
18306 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
18307
18308 if (section_is_gnu)
18309 {
18310 unsigned int version, flags;
18311
18312 version = read_2_bytes (abfd, mac_ptr);
18313 if (version != 4)
18314 {
18315 complaint (&symfile_complaints,
18316 _("unrecognized version `%d' in .debug_macro section"),
18317 version);
18318 return NULL;
18319 }
18320 mac_ptr += 2;
18321
18322 flags = read_1_byte (abfd, mac_ptr);
18323 ++mac_ptr;
18324 *offset_size = (flags & 1) ? 8 : 4;
18325
18326 if ((flags & 2) != 0)
18327 /* We don't need the line table offset. */
18328 mac_ptr += *offset_size;
18329
18330 /* Vendor opcode descriptions. */
18331 if ((flags & 4) != 0)
18332 {
18333 unsigned int i, count;
18334
18335 count = read_1_byte (abfd, mac_ptr);
18336 ++mac_ptr;
18337 for (i = 0; i < count; ++i)
18338 {
18339 unsigned int opcode, bytes_read;
18340 unsigned long arg;
18341
18342 opcode = read_1_byte (abfd, mac_ptr);
18343 ++mac_ptr;
18344 opcode_definitions[opcode] = mac_ptr;
18345 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18346 mac_ptr += bytes_read;
18347 mac_ptr += arg;
18348 }
18349 }
18350 }
18351
18352 return mac_ptr;
18353 }
18354
18355 /* A helper for dwarf_decode_macros that handles the GNU extensions,
18356 including DW_MACRO_GNU_transparent_include. */
18357
18358 static void
18359 dwarf_decode_macro_bytes (bfd *abfd, gdb_byte *mac_ptr, gdb_byte *mac_end,
18360 struct macro_source_file *current_file,
18361 struct line_header *lh, char *comp_dir,
18362 struct dwarf2_section_info *section,
18363 int section_is_gnu, int section_is_dwz,
18364 unsigned int offset_size,
18365 struct objfile *objfile,
18366 htab_t include_hash)
18367 {
18368 enum dwarf_macro_record_type macinfo_type;
18369 int at_commandline;
18370 gdb_byte *opcode_definitions[256];
18371
18372 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
18373 &offset_size, section_is_gnu);
18374 if (mac_ptr == NULL)
18375 {
18376 /* We already issued a complaint. */
18377 return;
18378 }
18379
18380 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
18381 GDB is still reading the definitions from command line. First
18382 DW_MACINFO_start_file will need to be ignored as it was already executed
18383 to create CURRENT_FILE for the main source holding also the command line
18384 definitions. On first met DW_MACINFO_start_file this flag is reset to
18385 normally execute all the remaining DW_MACINFO_start_file macinfos. */
18386
18387 at_commandline = 1;
18388
18389 do
18390 {
18391 /* Do we at least have room for a macinfo type byte? */
18392 if (mac_ptr >= mac_end)
18393 {
18394 dwarf2_section_buffer_overflow_complaint (section);
18395 break;
18396 }
18397
18398 macinfo_type = read_1_byte (abfd, mac_ptr);
18399 mac_ptr++;
18400
18401 /* Note that we rely on the fact that the corresponding GNU and
18402 DWARF constants are the same. */
18403 switch (macinfo_type)
18404 {
18405 /* A zero macinfo type indicates the end of the macro
18406 information. */
18407 case 0:
18408 break;
18409
18410 case DW_MACRO_GNU_define:
18411 case DW_MACRO_GNU_undef:
18412 case DW_MACRO_GNU_define_indirect:
18413 case DW_MACRO_GNU_undef_indirect:
18414 case DW_MACRO_GNU_define_indirect_alt:
18415 case DW_MACRO_GNU_undef_indirect_alt:
18416 {
18417 unsigned int bytes_read;
18418 int line;
18419 char *body;
18420 int is_define;
18421
18422 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18423 mac_ptr += bytes_read;
18424
18425 if (macinfo_type == DW_MACRO_GNU_define
18426 || macinfo_type == DW_MACRO_GNU_undef)
18427 {
18428 body = read_direct_string (abfd, mac_ptr, &bytes_read);
18429 mac_ptr += bytes_read;
18430 }
18431 else
18432 {
18433 LONGEST str_offset;
18434
18435 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
18436 mac_ptr += offset_size;
18437
18438 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
18439 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
18440 || section_is_dwz)
18441 {
18442 struct dwz_file *dwz = dwarf2_get_dwz_file ();
18443
18444 body = read_indirect_string_from_dwz (dwz, str_offset);
18445 }
18446 else
18447 body = read_indirect_string_at_offset (abfd, str_offset);
18448 }
18449
18450 is_define = (macinfo_type == DW_MACRO_GNU_define
18451 || macinfo_type == DW_MACRO_GNU_define_indirect
18452 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
18453 if (! current_file)
18454 {
18455 /* DWARF violation as no main source is present. */
18456 complaint (&symfile_complaints,
18457 _("debug info with no main source gives macro %s "
18458 "on line %d: %s"),
18459 is_define ? _("definition") : _("undefinition"),
18460 line, body);
18461 break;
18462 }
18463 if ((line == 0 && !at_commandline)
18464 || (line != 0 && at_commandline))
18465 complaint (&symfile_complaints,
18466 _("debug info gives %s macro %s with %s line %d: %s"),
18467 at_commandline ? _("command-line") : _("in-file"),
18468 is_define ? _("definition") : _("undefinition"),
18469 line == 0 ? _("zero") : _("non-zero"), line, body);
18470
18471 if (is_define)
18472 parse_macro_definition (current_file, line, body);
18473 else
18474 {
18475 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
18476 || macinfo_type == DW_MACRO_GNU_undef_indirect
18477 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
18478 macro_undef (current_file, line, body);
18479 }
18480 }
18481 break;
18482
18483 case DW_MACRO_GNU_start_file:
18484 {
18485 unsigned int bytes_read;
18486 int line, file;
18487
18488 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18489 mac_ptr += bytes_read;
18490 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18491 mac_ptr += bytes_read;
18492
18493 if ((line == 0 && !at_commandline)
18494 || (line != 0 && at_commandline))
18495 complaint (&symfile_complaints,
18496 _("debug info gives source %d included "
18497 "from %s at %s line %d"),
18498 file, at_commandline ? _("command-line") : _("file"),
18499 line == 0 ? _("zero") : _("non-zero"), line);
18500
18501 if (at_commandline)
18502 {
18503 /* This DW_MACRO_GNU_start_file was executed in the
18504 pass one. */
18505 at_commandline = 0;
18506 }
18507 else
18508 current_file = macro_start_file (file, line,
18509 current_file, comp_dir,
18510 lh, objfile);
18511 }
18512 break;
18513
18514 case DW_MACRO_GNU_end_file:
18515 if (! current_file)
18516 complaint (&symfile_complaints,
18517 _("macro debug info has an unmatched "
18518 "`close_file' directive"));
18519 else
18520 {
18521 current_file = current_file->included_by;
18522 if (! current_file)
18523 {
18524 enum dwarf_macro_record_type next_type;
18525
18526 /* GCC circa March 2002 doesn't produce the zero
18527 type byte marking the end of the compilation
18528 unit. Complain if it's not there, but exit no
18529 matter what. */
18530
18531 /* Do we at least have room for a macinfo type byte? */
18532 if (mac_ptr >= mac_end)
18533 {
18534 dwarf2_section_buffer_overflow_complaint (section);
18535 return;
18536 }
18537
18538 /* We don't increment mac_ptr here, so this is just
18539 a look-ahead. */
18540 next_type = read_1_byte (abfd, mac_ptr);
18541 if (next_type != 0)
18542 complaint (&symfile_complaints,
18543 _("no terminating 0-type entry for "
18544 "macros in `.debug_macinfo' section"));
18545
18546 return;
18547 }
18548 }
18549 break;
18550
18551 case DW_MACRO_GNU_transparent_include:
18552 case DW_MACRO_GNU_transparent_include_alt:
18553 {
18554 LONGEST offset;
18555 void **slot;
18556 bfd *include_bfd = abfd;
18557 struct dwarf2_section_info *include_section = section;
18558 struct dwarf2_section_info alt_section;
18559 gdb_byte *include_mac_end = mac_end;
18560 int is_dwz = section_is_dwz;
18561 gdb_byte *new_mac_ptr;
18562
18563 offset = read_offset_1 (abfd, mac_ptr, offset_size);
18564 mac_ptr += offset_size;
18565
18566 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
18567 {
18568 struct dwz_file *dwz = dwarf2_get_dwz_file ();
18569
18570 dwarf2_read_section (dwarf2_per_objfile->objfile,
18571 &dwz->macro);
18572
18573 include_bfd = dwz->macro.asection->owner;
18574 include_section = &dwz->macro;
18575 include_mac_end = dwz->macro.buffer + dwz->macro.size;
18576 is_dwz = 1;
18577 }
18578
18579 new_mac_ptr = include_section->buffer + offset;
18580 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
18581
18582 if (*slot != NULL)
18583 {
18584 /* This has actually happened; see
18585 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
18586 complaint (&symfile_complaints,
18587 _("recursive DW_MACRO_GNU_transparent_include in "
18588 ".debug_macro section"));
18589 }
18590 else
18591 {
18592 *slot = new_mac_ptr;
18593
18594 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
18595 include_mac_end, current_file,
18596 lh, comp_dir,
18597 section, section_is_gnu, is_dwz,
18598 offset_size, objfile, include_hash);
18599
18600 htab_remove_elt (include_hash, new_mac_ptr);
18601 }
18602 }
18603 break;
18604
18605 case DW_MACINFO_vendor_ext:
18606 if (!section_is_gnu)
18607 {
18608 unsigned int bytes_read;
18609 int constant;
18610
18611 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18612 mac_ptr += bytes_read;
18613 read_direct_string (abfd, mac_ptr, &bytes_read);
18614 mac_ptr += bytes_read;
18615
18616 /* We don't recognize any vendor extensions. */
18617 break;
18618 }
18619 /* FALLTHROUGH */
18620
18621 default:
18622 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
18623 mac_ptr, mac_end, abfd, offset_size,
18624 section);
18625 if (mac_ptr == NULL)
18626 return;
18627 break;
18628 }
18629 } while (macinfo_type != 0);
18630 }
18631
18632 static void
18633 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
18634 char *comp_dir, int section_is_gnu)
18635 {
18636 struct objfile *objfile = dwarf2_per_objfile->objfile;
18637 struct line_header *lh = cu->line_header;
18638 bfd *abfd;
18639 gdb_byte *mac_ptr, *mac_end;
18640 struct macro_source_file *current_file = 0;
18641 enum dwarf_macro_record_type macinfo_type;
18642 unsigned int offset_size = cu->header.offset_size;
18643 gdb_byte *opcode_definitions[256];
18644 struct cleanup *cleanup;
18645 htab_t include_hash;
18646 void **slot;
18647 struct dwarf2_section_info *section;
18648 const char *section_name;
18649
18650 if (cu->dwo_unit != NULL)
18651 {
18652 if (section_is_gnu)
18653 {
18654 section = &cu->dwo_unit->dwo_file->sections.macro;
18655 section_name = ".debug_macro.dwo";
18656 }
18657 else
18658 {
18659 section = &cu->dwo_unit->dwo_file->sections.macinfo;
18660 section_name = ".debug_macinfo.dwo";
18661 }
18662 }
18663 else
18664 {
18665 if (section_is_gnu)
18666 {
18667 section = &dwarf2_per_objfile->macro;
18668 section_name = ".debug_macro";
18669 }
18670 else
18671 {
18672 section = &dwarf2_per_objfile->macinfo;
18673 section_name = ".debug_macinfo";
18674 }
18675 }
18676
18677 dwarf2_read_section (objfile, section);
18678 if (section->buffer == NULL)
18679 {
18680 complaint (&symfile_complaints, _("missing %s section"), section_name);
18681 return;
18682 }
18683 abfd = section->asection->owner;
18684
18685 /* First pass: Find the name of the base filename.
18686 This filename is needed in order to process all macros whose definition
18687 (or undefinition) comes from the command line. These macros are defined
18688 before the first DW_MACINFO_start_file entry, and yet still need to be
18689 associated to the base file.
18690
18691 To determine the base file name, we scan the macro definitions until we
18692 reach the first DW_MACINFO_start_file entry. We then initialize
18693 CURRENT_FILE accordingly so that any macro definition found before the
18694 first DW_MACINFO_start_file can still be associated to the base file. */
18695
18696 mac_ptr = section->buffer + offset;
18697 mac_end = section->buffer + section->size;
18698
18699 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
18700 &offset_size, section_is_gnu);
18701 if (mac_ptr == NULL)
18702 {
18703 /* We already issued a complaint. */
18704 return;
18705 }
18706
18707 do
18708 {
18709 /* Do we at least have room for a macinfo type byte? */
18710 if (mac_ptr >= mac_end)
18711 {
18712 /* Complaint is printed during the second pass as GDB will probably
18713 stop the first pass earlier upon finding
18714 DW_MACINFO_start_file. */
18715 break;
18716 }
18717
18718 macinfo_type = read_1_byte (abfd, mac_ptr);
18719 mac_ptr++;
18720
18721 /* Note that we rely on the fact that the corresponding GNU and
18722 DWARF constants are the same. */
18723 switch (macinfo_type)
18724 {
18725 /* A zero macinfo type indicates the end of the macro
18726 information. */
18727 case 0:
18728 break;
18729
18730 case DW_MACRO_GNU_define:
18731 case DW_MACRO_GNU_undef:
18732 /* Only skip the data by MAC_PTR. */
18733 {
18734 unsigned int bytes_read;
18735
18736 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18737 mac_ptr += bytes_read;
18738 read_direct_string (abfd, mac_ptr, &bytes_read);
18739 mac_ptr += bytes_read;
18740 }
18741 break;
18742
18743 case DW_MACRO_GNU_start_file:
18744 {
18745 unsigned int bytes_read;
18746 int line, file;
18747
18748 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18749 mac_ptr += bytes_read;
18750 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18751 mac_ptr += bytes_read;
18752
18753 current_file = macro_start_file (file, line, current_file,
18754 comp_dir, lh, objfile);
18755 }
18756 break;
18757
18758 case DW_MACRO_GNU_end_file:
18759 /* No data to skip by MAC_PTR. */
18760 break;
18761
18762 case DW_MACRO_GNU_define_indirect:
18763 case DW_MACRO_GNU_undef_indirect:
18764 case DW_MACRO_GNU_define_indirect_alt:
18765 case DW_MACRO_GNU_undef_indirect_alt:
18766 {
18767 unsigned int bytes_read;
18768
18769 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18770 mac_ptr += bytes_read;
18771 mac_ptr += offset_size;
18772 }
18773 break;
18774
18775 case DW_MACRO_GNU_transparent_include:
18776 case DW_MACRO_GNU_transparent_include_alt:
18777 /* Note that, according to the spec, a transparent include
18778 chain cannot call DW_MACRO_GNU_start_file. So, we can just
18779 skip this opcode. */
18780 mac_ptr += offset_size;
18781 break;
18782
18783 case DW_MACINFO_vendor_ext:
18784 /* Only skip the data by MAC_PTR. */
18785 if (!section_is_gnu)
18786 {
18787 unsigned int bytes_read;
18788
18789 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18790 mac_ptr += bytes_read;
18791 read_direct_string (abfd, mac_ptr, &bytes_read);
18792 mac_ptr += bytes_read;
18793 }
18794 /* FALLTHROUGH */
18795
18796 default:
18797 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
18798 mac_ptr, mac_end, abfd, offset_size,
18799 section);
18800 if (mac_ptr == NULL)
18801 return;
18802 break;
18803 }
18804 } while (macinfo_type != 0 && current_file == NULL);
18805
18806 /* Second pass: Process all entries.
18807
18808 Use the AT_COMMAND_LINE flag to determine whether we are still processing
18809 command-line macro definitions/undefinitions. This flag is unset when we
18810 reach the first DW_MACINFO_start_file entry. */
18811
18812 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
18813 NULL, xcalloc, xfree);
18814 cleanup = make_cleanup_htab_delete (include_hash);
18815 mac_ptr = section->buffer + offset;
18816 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
18817 *slot = mac_ptr;
18818 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
18819 current_file, lh, comp_dir, section,
18820 section_is_gnu, 0,
18821 offset_size, objfile, include_hash);
18822 do_cleanups (cleanup);
18823 }
18824
18825 /* Check if the attribute's form is a DW_FORM_block*
18826 if so return true else false. */
18827
18828 static int
18829 attr_form_is_block (struct attribute *attr)
18830 {
18831 return (attr == NULL ? 0 :
18832 attr->form == DW_FORM_block1
18833 || attr->form == DW_FORM_block2
18834 || attr->form == DW_FORM_block4
18835 || attr->form == DW_FORM_block
18836 || attr->form == DW_FORM_exprloc);
18837 }
18838
18839 /* Return non-zero if ATTR's value is a section offset --- classes
18840 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
18841 You may use DW_UNSND (attr) to retrieve such offsets.
18842
18843 Section 7.5.4, "Attribute Encodings", explains that no attribute
18844 may have a value that belongs to more than one of these classes; it
18845 would be ambiguous if we did, because we use the same forms for all
18846 of them. */
18847
18848 static int
18849 attr_form_is_section_offset (struct attribute *attr)
18850 {
18851 return (attr->form == DW_FORM_data4
18852 || attr->form == DW_FORM_data8
18853 || attr->form == DW_FORM_sec_offset);
18854 }
18855
18856 /* Return non-zero if ATTR's value falls in the 'constant' class, or
18857 zero otherwise. When this function returns true, you can apply
18858 dwarf2_get_attr_constant_value to it.
18859
18860 However, note that for some attributes you must check
18861 attr_form_is_section_offset before using this test. DW_FORM_data4
18862 and DW_FORM_data8 are members of both the constant class, and of
18863 the classes that contain offsets into other debug sections
18864 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
18865 that, if an attribute's can be either a constant or one of the
18866 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
18867 taken as section offsets, not constants. */
18868
18869 static int
18870 attr_form_is_constant (struct attribute *attr)
18871 {
18872 switch (attr->form)
18873 {
18874 case DW_FORM_sdata:
18875 case DW_FORM_udata:
18876 case DW_FORM_data1:
18877 case DW_FORM_data2:
18878 case DW_FORM_data4:
18879 case DW_FORM_data8:
18880 return 1;
18881 default:
18882 return 0;
18883 }
18884 }
18885
18886 /* Return the .debug_loc section to use for CU.
18887 For DWO files use .debug_loc.dwo. */
18888
18889 static struct dwarf2_section_info *
18890 cu_debug_loc_section (struct dwarf2_cu *cu)
18891 {
18892 if (cu->dwo_unit)
18893 return &cu->dwo_unit->dwo_file->sections.loc;
18894 return &dwarf2_per_objfile->loc;
18895 }
18896
18897 /* A helper function that fills in a dwarf2_loclist_baton. */
18898
18899 static void
18900 fill_in_loclist_baton (struct dwarf2_cu *cu,
18901 struct dwarf2_loclist_baton *baton,
18902 struct attribute *attr)
18903 {
18904 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
18905
18906 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
18907
18908 baton->per_cu = cu->per_cu;
18909 gdb_assert (baton->per_cu);
18910 /* We don't know how long the location list is, but make sure we
18911 don't run off the edge of the section. */
18912 baton->size = section->size - DW_UNSND (attr);
18913 baton->data = section->buffer + DW_UNSND (attr);
18914 baton->base_address = cu->base_address;
18915 baton->from_dwo = cu->dwo_unit != NULL;
18916 }
18917
18918 static void
18919 dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
18920 struct dwarf2_cu *cu)
18921 {
18922 struct objfile *objfile = dwarf2_per_objfile->objfile;
18923 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
18924
18925 if (attr_form_is_section_offset (attr)
18926 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
18927 the section. If so, fall through to the complaint in the
18928 other branch. */
18929 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
18930 {
18931 struct dwarf2_loclist_baton *baton;
18932
18933 baton = obstack_alloc (&objfile->objfile_obstack,
18934 sizeof (struct dwarf2_loclist_baton));
18935
18936 fill_in_loclist_baton (cu, baton, attr);
18937
18938 if (cu->base_known == 0)
18939 complaint (&symfile_complaints,
18940 _("Location list used without "
18941 "specifying the CU base address."));
18942
18943 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_loclist_funcs;
18944 SYMBOL_LOCATION_BATON (sym) = baton;
18945 }
18946 else
18947 {
18948 struct dwarf2_locexpr_baton *baton;
18949
18950 baton = obstack_alloc (&objfile->objfile_obstack,
18951 sizeof (struct dwarf2_locexpr_baton));
18952 baton->per_cu = cu->per_cu;
18953 gdb_assert (baton->per_cu);
18954
18955 if (attr_form_is_block (attr))
18956 {
18957 /* Note that we're just copying the block's data pointer
18958 here, not the actual data. We're still pointing into the
18959 info_buffer for SYM's objfile; right now we never release
18960 that buffer, but when we do clean up properly this may
18961 need to change. */
18962 baton->size = DW_BLOCK (attr)->size;
18963 baton->data = DW_BLOCK (attr)->data;
18964 }
18965 else
18966 {
18967 dwarf2_invalid_attrib_class_complaint ("location description",
18968 SYMBOL_NATURAL_NAME (sym));
18969 baton->size = 0;
18970 }
18971
18972 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
18973 SYMBOL_LOCATION_BATON (sym) = baton;
18974 }
18975 }
18976
18977 /* Return the OBJFILE associated with the compilation unit CU. If CU
18978 came from a separate debuginfo file, then the master objfile is
18979 returned. */
18980
18981 struct objfile *
18982 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
18983 {
18984 struct objfile *objfile = per_cu->objfile;
18985
18986 /* Return the master objfile, so that we can report and look up the
18987 correct file containing this variable. */
18988 if (objfile->separate_debug_objfile_backlink)
18989 objfile = objfile->separate_debug_objfile_backlink;
18990
18991 return objfile;
18992 }
18993
18994 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
18995 (CU_HEADERP is unused in such case) or prepare a temporary copy at
18996 CU_HEADERP first. */
18997
18998 static const struct comp_unit_head *
18999 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
19000 struct dwarf2_per_cu_data *per_cu)
19001 {
19002 gdb_byte *info_ptr;
19003
19004 if (per_cu->cu)
19005 return &per_cu->cu->header;
19006
19007 info_ptr = per_cu->info_or_types_section->buffer + per_cu->offset.sect_off;
19008
19009 memset (cu_headerp, 0, sizeof (*cu_headerp));
19010 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
19011
19012 return cu_headerp;
19013 }
19014
19015 /* Return the address size given in the compilation unit header for CU. */
19016
19017 int
19018 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
19019 {
19020 struct comp_unit_head cu_header_local;
19021 const struct comp_unit_head *cu_headerp;
19022
19023 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
19024
19025 return cu_headerp->addr_size;
19026 }
19027
19028 /* Return the offset size given in the compilation unit header for CU. */
19029
19030 int
19031 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
19032 {
19033 struct comp_unit_head cu_header_local;
19034 const struct comp_unit_head *cu_headerp;
19035
19036 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
19037
19038 return cu_headerp->offset_size;
19039 }
19040
19041 /* See its dwarf2loc.h declaration. */
19042
19043 int
19044 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
19045 {
19046 struct comp_unit_head cu_header_local;
19047 const struct comp_unit_head *cu_headerp;
19048
19049 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
19050
19051 if (cu_headerp->version == 2)
19052 return cu_headerp->addr_size;
19053 else
19054 return cu_headerp->offset_size;
19055 }
19056
19057 /* Return the text offset of the CU. The returned offset comes from
19058 this CU's objfile. If this objfile came from a separate debuginfo
19059 file, then the offset may be different from the corresponding
19060 offset in the parent objfile. */
19061
19062 CORE_ADDR
19063 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
19064 {
19065 struct objfile *objfile = per_cu->objfile;
19066
19067 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
19068 }
19069
19070 /* Locate the .debug_info compilation unit from CU's objfile which contains
19071 the DIE at OFFSET. Raises an error on failure. */
19072
19073 static struct dwarf2_per_cu_data *
19074 dwarf2_find_containing_comp_unit (sect_offset offset,
19075 unsigned int offset_in_dwz,
19076 struct objfile *objfile)
19077 {
19078 struct dwarf2_per_cu_data *this_cu;
19079 int low, high;
19080 const sect_offset *cu_off;
19081
19082 low = 0;
19083 high = dwarf2_per_objfile->n_comp_units - 1;
19084 while (high > low)
19085 {
19086 struct dwarf2_per_cu_data *mid_cu;
19087 int mid = low + (high - low) / 2;
19088
19089 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
19090 cu_off = &mid_cu->offset;
19091 if (mid_cu->is_dwz > offset_in_dwz
19092 || (mid_cu->is_dwz == offset_in_dwz
19093 && cu_off->sect_off >= offset.sect_off))
19094 high = mid;
19095 else
19096 low = mid + 1;
19097 }
19098 gdb_assert (low == high);
19099 this_cu = dwarf2_per_objfile->all_comp_units[low];
19100 cu_off = &this_cu->offset;
19101 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
19102 {
19103 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
19104 error (_("Dwarf Error: could not find partial DIE containing "
19105 "offset 0x%lx [in module %s]"),
19106 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
19107
19108 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
19109 <= offset.sect_off);
19110 return dwarf2_per_objfile->all_comp_units[low-1];
19111 }
19112 else
19113 {
19114 this_cu = dwarf2_per_objfile->all_comp_units[low];
19115 if (low == dwarf2_per_objfile->n_comp_units - 1
19116 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
19117 error (_("invalid dwarf2 offset %u"), offset.sect_off);
19118 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
19119 return this_cu;
19120 }
19121 }
19122
19123 /* Initialize dwarf2_cu CU, owned by PER_CU. */
19124
19125 static void
19126 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
19127 {
19128 memset (cu, 0, sizeof (*cu));
19129 per_cu->cu = cu;
19130 cu->per_cu = per_cu;
19131 cu->objfile = per_cu->objfile;
19132 obstack_init (&cu->comp_unit_obstack);
19133 }
19134
19135 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
19136
19137 static void
19138 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
19139 enum language pretend_language)
19140 {
19141 struct attribute *attr;
19142
19143 /* Set the language we're debugging. */
19144 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
19145 if (attr)
19146 set_cu_language (DW_UNSND (attr), cu);
19147 else
19148 {
19149 cu->language = pretend_language;
19150 cu->language_defn = language_def (cu->language);
19151 }
19152
19153 attr = dwarf2_attr (comp_unit_die, DW_AT_producer, cu);
19154 if (attr)
19155 cu->producer = DW_STRING (attr);
19156 }
19157
19158 /* Release one cached compilation unit, CU. We unlink it from the tree
19159 of compilation units, but we don't remove it from the read_in_chain;
19160 the caller is responsible for that.
19161 NOTE: DATA is a void * because this function is also used as a
19162 cleanup routine. */
19163
19164 static void
19165 free_heap_comp_unit (void *data)
19166 {
19167 struct dwarf2_cu *cu = data;
19168
19169 gdb_assert (cu->per_cu != NULL);
19170 cu->per_cu->cu = NULL;
19171 cu->per_cu = NULL;
19172
19173 obstack_free (&cu->comp_unit_obstack, NULL);
19174
19175 xfree (cu);
19176 }
19177
19178 /* This cleanup function is passed the address of a dwarf2_cu on the stack
19179 when we're finished with it. We can't free the pointer itself, but be
19180 sure to unlink it from the cache. Also release any associated storage. */
19181
19182 static void
19183 free_stack_comp_unit (void *data)
19184 {
19185 struct dwarf2_cu *cu = data;
19186
19187 gdb_assert (cu->per_cu != NULL);
19188 cu->per_cu->cu = NULL;
19189 cu->per_cu = NULL;
19190
19191 obstack_free (&cu->comp_unit_obstack, NULL);
19192 cu->partial_dies = NULL;
19193 }
19194
19195 /* Free all cached compilation units. */
19196
19197 static void
19198 free_cached_comp_units (void *data)
19199 {
19200 struct dwarf2_per_cu_data *per_cu, **last_chain;
19201
19202 per_cu = dwarf2_per_objfile->read_in_chain;
19203 last_chain = &dwarf2_per_objfile->read_in_chain;
19204 while (per_cu != NULL)
19205 {
19206 struct dwarf2_per_cu_data *next_cu;
19207
19208 next_cu = per_cu->cu->read_in_chain;
19209
19210 free_heap_comp_unit (per_cu->cu);
19211 *last_chain = next_cu;
19212
19213 per_cu = next_cu;
19214 }
19215 }
19216
19217 /* Increase the age counter on each cached compilation unit, and free
19218 any that are too old. */
19219
19220 static void
19221 age_cached_comp_units (void)
19222 {
19223 struct dwarf2_per_cu_data *per_cu, **last_chain;
19224
19225 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
19226 per_cu = dwarf2_per_objfile->read_in_chain;
19227 while (per_cu != NULL)
19228 {
19229 per_cu->cu->last_used ++;
19230 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
19231 dwarf2_mark (per_cu->cu);
19232 per_cu = per_cu->cu->read_in_chain;
19233 }
19234
19235 per_cu = dwarf2_per_objfile->read_in_chain;
19236 last_chain = &dwarf2_per_objfile->read_in_chain;
19237 while (per_cu != NULL)
19238 {
19239 struct dwarf2_per_cu_data *next_cu;
19240
19241 next_cu = per_cu->cu->read_in_chain;
19242
19243 if (!per_cu->cu->mark)
19244 {
19245 free_heap_comp_unit (per_cu->cu);
19246 *last_chain = next_cu;
19247 }
19248 else
19249 last_chain = &per_cu->cu->read_in_chain;
19250
19251 per_cu = next_cu;
19252 }
19253 }
19254
19255 /* Remove a single compilation unit from the cache. */
19256
19257 static void
19258 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
19259 {
19260 struct dwarf2_per_cu_data *per_cu, **last_chain;
19261
19262 per_cu = dwarf2_per_objfile->read_in_chain;
19263 last_chain = &dwarf2_per_objfile->read_in_chain;
19264 while (per_cu != NULL)
19265 {
19266 struct dwarf2_per_cu_data *next_cu;
19267
19268 next_cu = per_cu->cu->read_in_chain;
19269
19270 if (per_cu == target_per_cu)
19271 {
19272 free_heap_comp_unit (per_cu->cu);
19273 per_cu->cu = NULL;
19274 *last_chain = next_cu;
19275 break;
19276 }
19277 else
19278 last_chain = &per_cu->cu->read_in_chain;
19279
19280 per_cu = next_cu;
19281 }
19282 }
19283
19284 /* Release all extra memory associated with OBJFILE. */
19285
19286 void
19287 dwarf2_free_objfile (struct objfile *objfile)
19288 {
19289 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
19290
19291 if (dwarf2_per_objfile == NULL)
19292 return;
19293
19294 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
19295 free_cached_comp_units (NULL);
19296
19297 if (dwarf2_per_objfile->quick_file_names_table)
19298 htab_delete (dwarf2_per_objfile->quick_file_names_table);
19299
19300 /* Everything else should be on the objfile obstack. */
19301 }
19302
19303 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
19304 We store these in a hash table separate from the DIEs, and preserve them
19305 when the DIEs are flushed out of cache.
19306
19307 The CU "per_cu" pointer is needed because offset alone is not enough to
19308 uniquely identify the type. A file may have multiple .debug_types sections,
19309 or the type may come from a DWO file. We have to use something in
19310 dwarf2_per_cu_data (or the pointer to it) because we can enter the lookup
19311 routine, get_die_type_at_offset, from outside this file, and thus won't
19312 necessarily have PER_CU->cu. Fortunately, PER_CU is stable for the life
19313 of the objfile. */
19314
19315 struct dwarf2_per_cu_offset_and_type
19316 {
19317 const struct dwarf2_per_cu_data *per_cu;
19318 sect_offset offset;
19319 struct type *type;
19320 };
19321
19322 /* Hash function for a dwarf2_per_cu_offset_and_type. */
19323
19324 static hashval_t
19325 per_cu_offset_and_type_hash (const void *item)
19326 {
19327 const struct dwarf2_per_cu_offset_and_type *ofs = item;
19328
19329 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
19330 }
19331
19332 /* Equality function for a dwarf2_per_cu_offset_and_type. */
19333
19334 static int
19335 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
19336 {
19337 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
19338 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
19339
19340 return (ofs_lhs->per_cu == ofs_rhs->per_cu
19341 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
19342 }
19343
19344 /* Set the type associated with DIE to TYPE. Save it in CU's hash
19345 table if necessary. For convenience, return TYPE.
19346
19347 The DIEs reading must have careful ordering to:
19348 * Not cause infite loops trying to read in DIEs as a prerequisite for
19349 reading current DIE.
19350 * Not trying to dereference contents of still incompletely read in types
19351 while reading in other DIEs.
19352 * Enable referencing still incompletely read in types just by a pointer to
19353 the type without accessing its fields.
19354
19355 Therefore caller should follow these rules:
19356 * Try to fetch any prerequisite types we may need to build this DIE type
19357 before building the type and calling set_die_type.
19358 * After building type call set_die_type for current DIE as soon as
19359 possible before fetching more types to complete the current type.
19360 * Make the type as complete as possible before fetching more types. */
19361
19362 static struct type *
19363 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
19364 {
19365 struct dwarf2_per_cu_offset_and_type **slot, ofs;
19366 struct objfile *objfile = cu->objfile;
19367
19368 /* For Ada types, make sure that the gnat-specific data is always
19369 initialized (if not already set). There are a few types where
19370 we should not be doing so, because the type-specific area is
19371 already used to hold some other piece of info (eg: TYPE_CODE_FLT
19372 where the type-specific area is used to store the floatformat).
19373 But this is not a problem, because the gnat-specific information
19374 is actually not needed for these types. */
19375 if (need_gnat_info (cu)
19376 && TYPE_CODE (type) != TYPE_CODE_FUNC
19377 && TYPE_CODE (type) != TYPE_CODE_FLT
19378 && !HAVE_GNAT_AUX_INFO (type))
19379 INIT_GNAT_SPECIFIC (type);
19380
19381 if (dwarf2_per_objfile->die_type_hash == NULL)
19382 {
19383 dwarf2_per_objfile->die_type_hash =
19384 htab_create_alloc_ex (127,
19385 per_cu_offset_and_type_hash,
19386 per_cu_offset_and_type_eq,
19387 NULL,
19388 &objfile->objfile_obstack,
19389 hashtab_obstack_allocate,
19390 dummy_obstack_deallocate);
19391 }
19392
19393 ofs.per_cu = cu->per_cu;
19394 ofs.offset = die->offset;
19395 ofs.type = type;
19396 slot = (struct dwarf2_per_cu_offset_and_type **)
19397 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
19398 if (*slot)
19399 complaint (&symfile_complaints,
19400 _("A problem internal to GDB: DIE 0x%x has type already set"),
19401 die->offset.sect_off);
19402 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
19403 **slot = ofs;
19404 return type;
19405 }
19406
19407 /* Look up the type for the die at OFFSET in the appropriate type_hash
19408 table, or return NULL if the die does not have a saved type. */
19409
19410 static struct type *
19411 get_die_type_at_offset (sect_offset offset,
19412 struct dwarf2_per_cu_data *per_cu)
19413 {
19414 struct dwarf2_per_cu_offset_and_type *slot, ofs;
19415
19416 if (dwarf2_per_objfile->die_type_hash == NULL)
19417 return NULL;
19418
19419 ofs.per_cu = per_cu;
19420 ofs.offset = offset;
19421 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
19422 if (slot)
19423 return slot->type;
19424 else
19425 return NULL;
19426 }
19427
19428 /* Look up the type for DIE in the appropriate type_hash table,
19429 or return NULL if DIE does not have a saved type. */
19430
19431 static struct type *
19432 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
19433 {
19434 return get_die_type_at_offset (die->offset, cu->per_cu);
19435 }
19436
19437 /* Add a dependence relationship from CU to REF_PER_CU. */
19438
19439 static void
19440 dwarf2_add_dependence (struct dwarf2_cu *cu,
19441 struct dwarf2_per_cu_data *ref_per_cu)
19442 {
19443 void **slot;
19444
19445 if (cu->dependencies == NULL)
19446 cu->dependencies
19447 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
19448 NULL, &cu->comp_unit_obstack,
19449 hashtab_obstack_allocate,
19450 dummy_obstack_deallocate);
19451
19452 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
19453 if (*slot == NULL)
19454 *slot = ref_per_cu;
19455 }
19456
19457 /* Subroutine of dwarf2_mark to pass to htab_traverse.
19458 Set the mark field in every compilation unit in the
19459 cache that we must keep because we are keeping CU. */
19460
19461 static int
19462 dwarf2_mark_helper (void **slot, void *data)
19463 {
19464 struct dwarf2_per_cu_data *per_cu;
19465
19466 per_cu = (struct dwarf2_per_cu_data *) *slot;
19467
19468 /* cu->dependencies references may not yet have been ever read if QUIT aborts
19469 reading of the chain. As such dependencies remain valid it is not much
19470 useful to track and undo them during QUIT cleanups. */
19471 if (per_cu->cu == NULL)
19472 return 1;
19473
19474 if (per_cu->cu->mark)
19475 return 1;
19476 per_cu->cu->mark = 1;
19477
19478 if (per_cu->cu->dependencies != NULL)
19479 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
19480
19481 return 1;
19482 }
19483
19484 /* Set the mark field in CU and in every other compilation unit in the
19485 cache that we must keep because we are keeping CU. */
19486
19487 static void
19488 dwarf2_mark (struct dwarf2_cu *cu)
19489 {
19490 if (cu->mark)
19491 return;
19492 cu->mark = 1;
19493 if (cu->dependencies != NULL)
19494 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
19495 }
19496
19497 static void
19498 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
19499 {
19500 while (per_cu)
19501 {
19502 per_cu->cu->mark = 0;
19503 per_cu = per_cu->cu->read_in_chain;
19504 }
19505 }
19506
19507 /* Trivial hash function for partial_die_info: the hash value of a DIE
19508 is its offset in .debug_info for this objfile. */
19509
19510 static hashval_t
19511 partial_die_hash (const void *item)
19512 {
19513 const struct partial_die_info *part_die = item;
19514
19515 return part_die->offset.sect_off;
19516 }
19517
19518 /* Trivial comparison function for partial_die_info structures: two DIEs
19519 are equal if they have the same offset. */
19520
19521 static int
19522 partial_die_eq (const void *item_lhs, const void *item_rhs)
19523 {
19524 const struct partial_die_info *part_die_lhs = item_lhs;
19525 const struct partial_die_info *part_die_rhs = item_rhs;
19526
19527 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
19528 }
19529
19530 static struct cmd_list_element *set_dwarf2_cmdlist;
19531 static struct cmd_list_element *show_dwarf2_cmdlist;
19532
19533 static void
19534 set_dwarf2_cmd (char *args, int from_tty)
19535 {
19536 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
19537 }
19538
19539 static void
19540 show_dwarf2_cmd (char *args, int from_tty)
19541 {
19542 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
19543 }
19544
19545 /* Free data associated with OBJFILE, if necessary. */
19546
19547 static void
19548 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
19549 {
19550 struct dwarf2_per_objfile *data = d;
19551 int ix;
19552
19553 for (ix = 0; ix < dwarf2_per_objfile->n_comp_units; ++ix)
19554 VEC_free (dwarf2_per_cu_ptr,
19555 dwarf2_per_objfile->all_comp_units[ix]->s.imported_symtabs);
19556
19557 VEC_free (dwarf2_section_info_def, data->types);
19558
19559 if (data->dwo_files)
19560 free_dwo_files (data->dwo_files, objfile);
19561
19562 if (data->dwz_file && data->dwz_file->dwz_bfd)
19563 gdb_bfd_unref (data->dwz_file->dwz_bfd);
19564 }
19565
19566 \f
19567 /* The "save gdb-index" command. */
19568
19569 /* The contents of the hash table we create when building the string
19570 table. */
19571 struct strtab_entry
19572 {
19573 offset_type offset;
19574 const char *str;
19575 };
19576
19577 /* Hash function for a strtab_entry.
19578
19579 Function is used only during write_hash_table so no index format backward
19580 compatibility is needed. */
19581
19582 static hashval_t
19583 hash_strtab_entry (const void *e)
19584 {
19585 const struct strtab_entry *entry = e;
19586 return mapped_index_string_hash (INT_MAX, entry->str);
19587 }
19588
19589 /* Equality function for a strtab_entry. */
19590
19591 static int
19592 eq_strtab_entry (const void *a, const void *b)
19593 {
19594 const struct strtab_entry *ea = a;
19595 const struct strtab_entry *eb = b;
19596 return !strcmp (ea->str, eb->str);
19597 }
19598
19599 /* Create a strtab_entry hash table. */
19600
19601 static htab_t
19602 create_strtab (void)
19603 {
19604 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
19605 xfree, xcalloc, xfree);
19606 }
19607
19608 /* Add a string to the constant pool. Return the string's offset in
19609 host order. */
19610
19611 static offset_type
19612 add_string (htab_t table, struct obstack *cpool, const char *str)
19613 {
19614 void **slot;
19615 struct strtab_entry entry;
19616 struct strtab_entry *result;
19617
19618 entry.str = str;
19619 slot = htab_find_slot (table, &entry, INSERT);
19620 if (*slot)
19621 result = *slot;
19622 else
19623 {
19624 result = XNEW (struct strtab_entry);
19625 result->offset = obstack_object_size (cpool);
19626 result->str = str;
19627 obstack_grow_str0 (cpool, str);
19628 *slot = result;
19629 }
19630 return result->offset;
19631 }
19632
19633 /* An entry in the symbol table. */
19634 struct symtab_index_entry
19635 {
19636 /* The name of the symbol. */
19637 const char *name;
19638 /* The offset of the name in the constant pool. */
19639 offset_type index_offset;
19640 /* A sorted vector of the indices of all the CUs that hold an object
19641 of this name. */
19642 VEC (offset_type) *cu_indices;
19643 };
19644
19645 /* The symbol table. This is a power-of-2-sized hash table. */
19646 struct mapped_symtab
19647 {
19648 offset_type n_elements;
19649 offset_type size;
19650 struct symtab_index_entry **data;
19651 };
19652
19653 /* Hash function for a symtab_index_entry. */
19654
19655 static hashval_t
19656 hash_symtab_entry (const void *e)
19657 {
19658 const struct symtab_index_entry *entry = e;
19659 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
19660 sizeof (offset_type) * VEC_length (offset_type,
19661 entry->cu_indices),
19662 0);
19663 }
19664
19665 /* Equality function for a symtab_index_entry. */
19666
19667 static int
19668 eq_symtab_entry (const void *a, const void *b)
19669 {
19670 const struct symtab_index_entry *ea = a;
19671 const struct symtab_index_entry *eb = b;
19672 int len = VEC_length (offset_type, ea->cu_indices);
19673 if (len != VEC_length (offset_type, eb->cu_indices))
19674 return 0;
19675 return !memcmp (VEC_address (offset_type, ea->cu_indices),
19676 VEC_address (offset_type, eb->cu_indices),
19677 sizeof (offset_type) * len);
19678 }
19679
19680 /* Destroy a symtab_index_entry. */
19681
19682 static void
19683 delete_symtab_entry (void *p)
19684 {
19685 struct symtab_index_entry *entry = p;
19686 VEC_free (offset_type, entry->cu_indices);
19687 xfree (entry);
19688 }
19689
19690 /* Create a hash table holding symtab_index_entry objects. */
19691
19692 static htab_t
19693 create_symbol_hash_table (void)
19694 {
19695 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
19696 delete_symtab_entry, xcalloc, xfree);
19697 }
19698
19699 /* Create a new mapped symtab object. */
19700
19701 static struct mapped_symtab *
19702 create_mapped_symtab (void)
19703 {
19704 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
19705 symtab->n_elements = 0;
19706 symtab->size = 1024;
19707 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
19708 return symtab;
19709 }
19710
19711 /* Destroy a mapped_symtab. */
19712
19713 static void
19714 cleanup_mapped_symtab (void *p)
19715 {
19716 struct mapped_symtab *symtab = p;
19717 /* The contents of the array are freed when the other hash table is
19718 destroyed. */
19719 xfree (symtab->data);
19720 xfree (symtab);
19721 }
19722
19723 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
19724 the slot.
19725
19726 Function is used only during write_hash_table so no index format backward
19727 compatibility is needed. */
19728
19729 static struct symtab_index_entry **
19730 find_slot (struct mapped_symtab *symtab, const char *name)
19731 {
19732 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
19733
19734 index = hash & (symtab->size - 1);
19735 step = ((hash * 17) & (symtab->size - 1)) | 1;
19736
19737 for (;;)
19738 {
19739 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
19740 return &symtab->data[index];
19741 index = (index + step) & (symtab->size - 1);
19742 }
19743 }
19744
19745 /* Expand SYMTAB's hash table. */
19746
19747 static void
19748 hash_expand (struct mapped_symtab *symtab)
19749 {
19750 offset_type old_size = symtab->size;
19751 offset_type i;
19752 struct symtab_index_entry **old_entries = symtab->data;
19753
19754 symtab->size *= 2;
19755 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
19756
19757 for (i = 0; i < old_size; ++i)
19758 {
19759 if (old_entries[i])
19760 {
19761 struct symtab_index_entry **slot = find_slot (symtab,
19762 old_entries[i]->name);
19763 *slot = old_entries[i];
19764 }
19765 }
19766
19767 xfree (old_entries);
19768 }
19769
19770 /* Add an entry to SYMTAB. NAME is the name of the symbol.
19771 CU_INDEX is the index of the CU in which the symbol appears.
19772 IS_STATIC is one if the symbol is static, otherwise zero (global). */
19773
19774 static void
19775 add_index_entry (struct mapped_symtab *symtab, const char *name,
19776 int is_static, gdb_index_symbol_kind kind,
19777 offset_type cu_index)
19778 {
19779 struct symtab_index_entry **slot;
19780 offset_type cu_index_and_attrs;
19781
19782 ++symtab->n_elements;
19783 if (4 * symtab->n_elements / 3 >= symtab->size)
19784 hash_expand (symtab);
19785
19786 slot = find_slot (symtab, name);
19787 if (!*slot)
19788 {
19789 *slot = XNEW (struct symtab_index_entry);
19790 (*slot)->name = name;
19791 /* index_offset is set later. */
19792 (*slot)->cu_indices = NULL;
19793 }
19794
19795 cu_index_and_attrs = 0;
19796 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
19797 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
19798 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
19799
19800 /* We don't want to record an index value twice as we want to avoid the
19801 duplication.
19802 We process all global symbols and then all static symbols
19803 (which would allow us to avoid the duplication by only having to check
19804 the last entry pushed), but a symbol could have multiple kinds in one CU.
19805 To keep things simple we don't worry about the duplication here and
19806 sort and uniqufy the list after we've processed all symbols. */
19807 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
19808 }
19809
19810 /* qsort helper routine for uniquify_cu_indices. */
19811
19812 static int
19813 offset_type_compare (const void *ap, const void *bp)
19814 {
19815 offset_type a = *(offset_type *) ap;
19816 offset_type b = *(offset_type *) bp;
19817
19818 return (a > b) - (b > a);
19819 }
19820
19821 /* Sort and remove duplicates of all symbols' cu_indices lists. */
19822
19823 static void
19824 uniquify_cu_indices (struct mapped_symtab *symtab)
19825 {
19826 int i;
19827
19828 for (i = 0; i < symtab->size; ++i)
19829 {
19830 struct symtab_index_entry *entry = symtab->data[i];
19831
19832 if (entry
19833 && entry->cu_indices != NULL)
19834 {
19835 unsigned int next_to_insert, next_to_check;
19836 offset_type last_value;
19837
19838 qsort (VEC_address (offset_type, entry->cu_indices),
19839 VEC_length (offset_type, entry->cu_indices),
19840 sizeof (offset_type), offset_type_compare);
19841
19842 last_value = VEC_index (offset_type, entry->cu_indices, 0);
19843 next_to_insert = 1;
19844 for (next_to_check = 1;
19845 next_to_check < VEC_length (offset_type, entry->cu_indices);
19846 ++next_to_check)
19847 {
19848 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
19849 != last_value)
19850 {
19851 last_value = VEC_index (offset_type, entry->cu_indices,
19852 next_to_check);
19853 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
19854 last_value);
19855 ++next_to_insert;
19856 }
19857 }
19858 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
19859 }
19860 }
19861 }
19862
19863 /* Add a vector of indices to the constant pool. */
19864
19865 static offset_type
19866 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
19867 struct symtab_index_entry *entry)
19868 {
19869 void **slot;
19870
19871 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
19872 if (!*slot)
19873 {
19874 offset_type len = VEC_length (offset_type, entry->cu_indices);
19875 offset_type val = MAYBE_SWAP (len);
19876 offset_type iter;
19877 int i;
19878
19879 *slot = entry;
19880 entry->index_offset = obstack_object_size (cpool);
19881
19882 obstack_grow (cpool, &val, sizeof (val));
19883 for (i = 0;
19884 VEC_iterate (offset_type, entry->cu_indices, i, iter);
19885 ++i)
19886 {
19887 val = MAYBE_SWAP (iter);
19888 obstack_grow (cpool, &val, sizeof (val));
19889 }
19890 }
19891 else
19892 {
19893 struct symtab_index_entry *old_entry = *slot;
19894 entry->index_offset = old_entry->index_offset;
19895 entry = old_entry;
19896 }
19897 return entry->index_offset;
19898 }
19899
19900 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
19901 constant pool entries going into the obstack CPOOL. */
19902
19903 static void
19904 write_hash_table (struct mapped_symtab *symtab,
19905 struct obstack *output, struct obstack *cpool)
19906 {
19907 offset_type i;
19908 htab_t symbol_hash_table;
19909 htab_t str_table;
19910
19911 symbol_hash_table = create_symbol_hash_table ();
19912 str_table = create_strtab ();
19913
19914 /* We add all the index vectors to the constant pool first, to
19915 ensure alignment is ok. */
19916 for (i = 0; i < symtab->size; ++i)
19917 {
19918 if (symtab->data[i])
19919 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
19920 }
19921
19922 /* Now write out the hash table. */
19923 for (i = 0; i < symtab->size; ++i)
19924 {
19925 offset_type str_off, vec_off;
19926
19927 if (symtab->data[i])
19928 {
19929 str_off = add_string (str_table, cpool, symtab->data[i]->name);
19930 vec_off = symtab->data[i]->index_offset;
19931 }
19932 else
19933 {
19934 /* While 0 is a valid constant pool index, it is not valid
19935 to have 0 for both offsets. */
19936 str_off = 0;
19937 vec_off = 0;
19938 }
19939
19940 str_off = MAYBE_SWAP (str_off);
19941 vec_off = MAYBE_SWAP (vec_off);
19942
19943 obstack_grow (output, &str_off, sizeof (str_off));
19944 obstack_grow (output, &vec_off, sizeof (vec_off));
19945 }
19946
19947 htab_delete (str_table);
19948 htab_delete (symbol_hash_table);
19949 }
19950
19951 /* Struct to map psymtab to CU index in the index file. */
19952 struct psymtab_cu_index_map
19953 {
19954 struct partial_symtab *psymtab;
19955 unsigned int cu_index;
19956 };
19957
19958 static hashval_t
19959 hash_psymtab_cu_index (const void *item)
19960 {
19961 const struct psymtab_cu_index_map *map = item;
19962
19963 return htab_hash_pointer (map->psymtab);
19964 }
19965
19966 static int
19967 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
19968 {
19969 const struct psymtab_cu_index_map *lhs = item_lhs;
19970 const struct psymtab_cu_index_map *rhs = item_rhs;
19971
19972 return lhs->psymtab == rhs->psymtab;
19973 }
19974
19975 /* Helper struct for building the address table. */
19976 struct addrmap_index_data
19977 {
19978 struct objfile *objfile;
19979 struct obstack *addr_obstack;
19980 htab_t cu_index_htab;
19981
19982 /* Non-zero if the previous_* fields are valid.
19983 We can't write an entry until we see the next entry (since it is only then
19984 that we know the end of the entry). */
19985 int previous_valid;
19986 /* Index of the CU in the table of all CUs in the index file. */
19987 unsigned int previous_cu_index;
19988 /* Start address of the CU. */
19989 CORE_ADDR previous_cu_start;
19990 };
19991
19992 /* Write an address entry to OBSTACK. */
19993
19994 static void
19995 add_address_entry (struct objfile *objfile, struct obstack *obstack,
19996 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
19997 {
19998 offset_type cu_index_to_write;
19999 char addr[8];
20000 CORE_ADDR baseaddr;
20001
20002 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
20003
20004 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
20005 obstack_grow (obstack, addr, 8);
20006 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
20007 obstack_grow (obstack, addr, 8);
20008 cu_index_to_write = MAYBE_SWAP (cu_index);
20009 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
20010 }
20011
20012 /* Worker function for traversing an addrmap to build the address table. */
20013
20014 static int
20015 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
20016 {
20017 struct addrmap_index_data *data = datap;
20018 struct partial_symtab *pst = obj;
20019
20020 if (data->previous_valid)
20021 add_address_entry (data->objfile, data->addr_obstack,
20022 data->previous_cu_start, start_addr,
20023 data->previous_cu_index);
20024
20025 data->previous_cu_start = start_addr;
20026 if (pst != NULL)
20027 {
20028 struct psymtab_cu_index_map find_map, *map;
20029 find_map.psymtab = pst;
20030 map = htab_find (data->cu_index_htab, &find_map);
20031 gdb_assert (map != NULL);
20032 data->previous_cu_index = map->cu_index;
20033 data->previous_valid = 1;
20034 }
20035 else
20036 data->previous_valid = 0;
20037
20038 return 0;
20039 }
20040
20041 /* Write OBJFILE's address map to OBSTACK.
20042 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
20043 in the index file. */
20044
20045 static void
20046 write_address_map (struct objfile *objfile, struct obstack *obstack,
20047 htab_t cu_index_htab)
20048 {
20049 struct addrmap_index_data addrmap_index_data;
20050
20051 /* When writing the address table, we have to cope with the fact that
20052 the addrmap iterator only provides the start of a region; we have to
20053 wait until the next invocation to get the start of the next region. */
20054
20055 addrmap_index_data.objfile = objfile;
20056 addrmap_index_data.addr_obstack = obstack;
20057 addrmap_index_data.cu_index_htab = cu_index_htab;
20058 addrmap_index_data.previous_valid = 0;
20059
20060 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
20061 &addrmap_index_data);
20062
20063 /* It's highly unlikely the last entry (end address = 0xff...ff)
20064 is valid, but we should still handle it.
20065 The end address is recorded as the start of the next region, but that
20066 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
20067 anyway. */
20068 if (addrmap_index_data.previous_valid)
20069 add_address_entry (objfile, obstack,
20070 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
20071 addrmap_index_data.previous_cu_index);
20072 }
20073
20074 /* Return the symbol kind of PSYM. */
20075
20076 static gdb_index_symbol_kind
20077 symbol_kind (struct partial_symbol *psym)
20078 {
20079 domain_enum domain = PSYMBOL_DOMAIN (psym);
20080 enum address_class aclass = PSYMBOL_CLASS (psym);
20081
20082 switch (domain)
20083 {
20084 case VAR_DOMAIN:
20085 switch (aclass)
20086 {
20087 case LOC_BLOCK:
20088 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
20089 case LOC_TYPEDEF:
20090 return GDB_INDEX_SYMBOL_KIND_TYPE;
20091 case LOC_COMPUTED:
20092 case LOC_CONST_BYTES:
20093 case LOC_OPTIMIZED_OUT:
20094 case LOC_STATIC:
20095 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
20096 case LOC_CONST:
20097 /* Note: It's currently impossible to recognize psyms as enum values
20098 short of reading the type info. For now punt. */
20099 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
20100 default:
20101 /* There are other LOC_FOO values that one might want to classify
20102 as variables, but dwarf2read.c doesn't currently use them. */
20103 return GDB_INDEX_SYMBOL_KIND_OTHER;
20104 }
20105 case STRUCT_DOMAIN:
20106 return GDB_INDEX_SYMBOL_KIND_TYPE;
20107 default:
20108 return GDB_INDEX_SYMBOL_KIND_OTHER;
20109 }
20110 }
20111
20112 /* Add a list of partial symbols to SYMTAB. */
20113
20114 static void
20115 write_psymbols (struct mapped_symtab *symtab,
20116 htab_t psyms_seen,
20117 struct partial_symbol **psymp,
20118 int count,
20119 offset_type cu_index,
20120 int is_static)
20121 {
20122 for (; count-- > 0; ++psymp)
20123 {
20124 struct partial_symbol *psym = *psymp;
20125 void **slot;
20126
20127 if (SYMBOL_LANGUAGE (psym) == language_ada)
20128 error (_("Ada is not currently supported by the index"));
20129
20130 /* Only add a given psymbol once. */
20131 slot = htab_find_slot (psyms_seen, psym, INSERT);
20132 if (!*slot)
20133 {
20134 gdb_index_symbol_kind kind = symbol_kind (psym);
20135
20136 *slot = psym;
20137 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
20138 is_static, kind, cu_index);
20139 }
20140 }
20141 }
20142
20143 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
20144 exception if there is an error. */
20145
20146 static void
20147 write_obstack (FILE *file, struct obstack *obstack)
20148 {
20149 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
20150 file)
20151 != obstack_object_size (obstack))
20152 error (_("couldn't data write to file"));
20153 }
20154
20155 /* Unlink a file if the argument is not NULL. */
20156
20157 static void
20158 unlink_if_set (void *p)
20159 {
20160 char **filename = p;
20161 if (*filename)
20162 unlink (*filename);
20163 }
20164
20165 /* A helper struct used when iterating over debug_types. */
20166 struct signatured_type_index_data
20167 {
20168 struct objfile *objfile;
20169 struct mapped_symtab *symtab;
20170 struct obstack *types_list;
20171 htab_t psyms_seen;
20172 int cu_index;
20173 };
20174
20175 /* A helper function that writes a single signatured_type to an
20176 obstack. */
20177
20178 static int
20179 write_one_signatured_type (void **slot, void *d)
20180 {
20181 struct signatured_type_index_data *info = d;
20182 struct signatured_type *entry = (struct signatured_type *) *slot;
20183 struct dwarf2_per_cu_data *per_cu = &entry->per_cu;
20184 struct partial_symtab *psymtab = per_cu->v.psymtab;
20185 gdb_byte val[8];
20186
20187 write_psymbols (info->symtab,
20188 info->psyms_seen,
20189 info->objfile->global_psymbols.list
20190 + psymtab->globals_offset,
20191 psymtab->n_global_syms, info->cu_index,
20192 0);
20193 write_psymbols (info->symtab,
20194 info->psyms_seen,
20195 info->objfile->static_psymbols.list
20196 + psymtab->statics_offset,
20197 psymtab->n_static_syms, info->cu_index,
20198 1);
20199
20200 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
20201 entry->per_cu.offset.sect_off);
20202 obstack_grow (info->types_list, val, 8);
20203 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
20204 entry->type_offset_in_tu.cu_off);
20205 obstack_grow (info->types_list, val, 8);
20206 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
20207 obstack_grow (info->types_list, val, 8);
20208
20209 ++info->cu_index;
20210
20211 return 1;
20212 }
20213
20214 /* Recurse into all "included" dependencies and write their symbols as
20215 if they appeared in this psymtab. */
20216
20217 static void
20218 recursively_write_psymbols (struct objfile *objfile,
20219 struct partial_symtab *psymtab,
20220 struct mapped_symtab *symtab,
20221 htab_t psyms_seen,
20222 offset_type cu_index)
20223 {
20224 int i;
20225
20226 for (i = 0; i < psymtab->number_of_dependencies; ++i)
20227 if (psymtab->dependencies[i]->user != NULL)
20228 recursively_write_psymbols (objfile, psymtab->dependencies[i],
20229 symtab, psyms_seen, cu_index);
20230
20231 write_psymbols (symtab,
20232 psyms_seen,
20233 objfile->global_psymbols.list + psymtab->globals_offset,
20234 psymtab->n_global_syms, cu_index,
20235 0);
20236 write_psymbols (symtab,
20237 psyms_seen,
20238 objfile->static_psymbols.list + psymtab->statics_offset,
20239 psymtab->n_static_syms, cu_index,
20240 1);
20241 }
20242
20243 /* Create an index file for OBJFILE in the directory DIR. */
20244
20245 static void
20246 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
20247 {
20248 struct cleanup *cleanup;
20249 char *filename, *cleanup_filename;
20250 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
20251 struct obstack cu_list, types_cu_list;
20252 int i;
20253 FILE *out_file;
20254 struct mapped_symtab *symtab;
20255 offset_type val, size_of_contents, total_len;
20256 struct stat st;
20257 htab_t psyms_seen;
20258 htab_t cu_index_htab;
20259 struct psymtab_cu_index_map *psymtab_cu_index_map;
20260
20261 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
20262 return;
20263
20264 if (dwarf2_per_objfile->using_index)
20265 error (_("Cannot use an index to create the index"));
20266
20267 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
20268 error (_("Cannot make an index when the file has multiple .debug_types sections"));
20269
20270 if (stat (objfile->name, &st) < 0)
20271 perror_with_name (objfile->name);
20272
20273 filename = concat (dir, SLASH_STRING, lbasename (objfile->name),
20274 INDEX_SUFFIX, (char *) NULL);
20275 cleanup = make_cleanup (xfree, filename);
20276
20277 out_file = fopen (filename, "wb");
20278 if (!out_file)
20279 error (_("Can't open `%s' for writing"), filename);
20280
20281 cleanup_filename = filename;
20282 make_cleanup (unlink_if_set, &cleanup_filename);
20283
20284 symtab = create_mapped_symtab ();
20285 make_cleanup (cleanup_mapped_symtab, symtab);
20286
20287 obstack_init (&addr_obstack);
20288 make_cleanup_obstack_free (&addr_obstack);
20289
20290 obstack_init (&cu_list);
20291 make_cleanup_obstack_free (&cu_list);
20292
20293 obstack_init (&types_cu_list);
20294 make_cleanup_obstack_free (&types_cu_list);
20295
20296 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
20297 NULL, xcalloc, xfree);
20298 make_cleanup_htab_delete (psyms_seen);
20299
20300 /* While we're scanning CU's create a table that maps a psymtab pointer
20301 (which is what addrmap records) to its index (which is what is recorded
20302 in the index file). This will later be needed to write the address
20303 table. */
20304 cu_index_htab = htab_create_alloc (100,
20305 hash_psymtab_cu_index,
20306 eq_psymtab_cu_index,
20307 NULL, xcalloc, xfree);
20308 make_cleanup_htab_delete (cu_index_htab);
20309 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
20310 xmalloc (sizeof (struct psymtab_cu_index_map)
20311 * dwarf2_per_objfile->n_comp_units);
20312 make_cleanup (xfree, psymtab_cu_index_map);
20313
20314 /* The CU list is already sorted, so we don't need to do additional
20315 work here. Also, the debug_types entries do not appear in
20316 all_comp_units, but only in their own hash table. */
20317 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
20318 {
20319 struct dwarf2_per_cu_data *per_cu
20320 = dwarf2_per_objfile->all_comp_units[i];
20321 struct partial_symtab *psymtab = per_cu->v.psymtab;
20322 gdb_byte val[8];
20323 struct psymtab_cu_index_map *map;
20324 void **slot;
20325
20326 if (psymtab->user == NULL)
20327 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
20328
20329 map = &psymtab_cu_index_map[i];
20330 map->psymtab = psymtab;
20331 map->cu_index = i;
20332 slot = htab_find_slot (cu_index_htab, map, INSERT);
20333 gdb_assert (slot != NULL);
20334 gdb_assert (*slot == NULL);
20335 *slot = map;
20336
20337 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
20338 per_cu->offset.sect_off);
20339 obstack_grow (&cu_list, val, 8);
20340 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
20341 obstack_grow (&cu_list, val, 8);
20342 }
20343
20344 /* Dump the address map. */
20345 write_address_map (objfile, &addr_obstack, cu_index_htab);
20346
20347 /* Write out the .debug_type entries, if any. */
20348 if (dwarf2_per_objfile->signatured_types)
20349 {
20350 struct signatured_type_index_data sig_data;
20351
20352 sig_data.objfile = objfile;
20353 sig_data.symtab = symtab;
20354 sig_data.types_list = &types_cu_list;
20355 sig_data.psyms_seen = psyms_seen;
20356 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
20357 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
20358 write_one_signatured_type, &sig_data);
20359 }
20360
20361 /* Now that we've processed all symbols we can shrink their cu_indices
20362 lists. */
20363 uniquify_cu_indices (symtab);
20364
20365 obstack_init (&constant_pool);
20366 make_cleanup_obstack_free (&constant_pool);
20367 obstack_init (&symtab_obstack);
20368 make_cleanup_obstack_free (&symtab_obstack);
20369 write_hash_table (symtab, &symtab_obstack, &constant_pool);
20370
20371 obstack_init (&contents);
20372 make_cleanup_obstack_free (&contents);
20373 size_of_contents = 6 * sizeof (offset_type);
20374 total_len = size_of_contents;
20375
20376 /* The version number. */
20377 val = MAYBE_SWAP (7);
20378 obstack_grow (&contents, &val, sizeof (val));
20379
20380 /* The offset of the CU list from the start of the file. */
20381 val = MAYBE_SWAP (total_len);
20382 obstack_grow (&contents, &val, sizeof (val));
20383 total_len += obstack_object_size (&cu_list);
20384
20385 /* The offset of the types CU list from the start of the file. */
20386 val = MAYBE_SWAP (total_len);
20387 obstack_grow (&contents, &val, sizeof (val));
20388 total_len += obstack_object_size (&types_cu_list);
20389
20390 /* The offset of the address table from the start of the file. */
20391 val = MAYBE_SWAP (total_len);
20392 obstack_grow (&contents, &val, sizeof (val));
20393 total_len += obstack_object_size (&addr_obstack);
20394
20395 /* The offset of the symbol table from the start of the file. */
20396 val = MAYBE_SWAP (total_len);
20397 obstack_grow (&contents, &val, sizeof (val));
20398 total_len += obstack_object_size (&symtab_obstack);
20399
20400 /* The offset of the constant pool from the start of the file. */
20401 val = MAYBE_SWAP (total_len);
20402 obstack_grow (&contents, &val, sizeof (val));
20403 total_len += obstack_object_size (&constant_pool);
20404
20405 gdb_assert (obstack_object_size (&contents) == size_of_contents);
20406
20407 write_obstack (out_file, &contents);
20408 write_obstack (out_file, &cu_list);
20409 write_obstack (out_file, &types_cu_list);
20410 write_obstack (out_file, &addr_obstack);
20411 write_obstack (out_file, &symtab_obstack);
20412 write_obstack (out_file, &constant_pool);
20413
20414 fclose (out_file);
20415
20416 /* We want to keep the file, so we set cleanup_filename to NULL
20417 here. See unlink_if_set. */
20418 cleanup_filename = NULL;
20419
20420 do_cleanups (cleanup);
20421 }
20422
20423 /* Implementation of the `save gdb-index' command.
20424
20425 Note that the file format used by this command is documented in the
20426 GDB manual. Any changes here must be documented there. */
20427
20428 static void
20429 save_gdb_index_command (char *arg, int from_tty)
20430 {
20431 struct objfile *objfile;
20432
20433 if (!arg || !*arg)
20434 error (_("usage: save gdb-index DIRECTORY"));
20435
20436 ALL_OBJFILES (objfile)
20437 {
20438 struct stat st;
20439
20440 /* If the objfile does not correspond to an actual file, skip it. */
20441 if (stat (objfile->name, &st) < 0)
20442 continue;
20443
20444 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
20445 if (dwarf2_per_objfile)
20446 {
20447 volatile struct gdb_exception except;
20448
20449 TRY_CATCH (except, RETURN_MASK_ERROR)
20450 {
20451 write_psymtabs_to_index (objfile, arg);
20452 }
20453 if (except.reason < 0)
20454 exception_fprintf (gdb_stderr, except,
20455 _("Error while writing index for `%s': "),
20456 objfile->name);
20457 }
20458 }
20459 }
20460
20461 \f
20462
20463 int dwarf2_always_disassemble;
20464
20465 static void
20466 show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
20467 struct cmd_list_element *c, const char *value)
20468 {
20469 fprintf_filtered (file,
20470 _("Whether to always disassemble "
20471 "DWARF expressions is %s.\n"),
20472 value);
20473 }
20474
20475 static void
20476 show_check_physname (struct ui_file *file, int from_tty,
20477 struct cmd_list_element *c, const char *value)
20478 {
20479 fprintf_filtered (file,
20480 _("Whether to check \"physname\" is %s.\n"),
20481 value);
20482 }
20483
20484 void _initialize_dwarf2_read (void);
20485
20486 void
20487 _initialize_dwarf2_read (void)
20488 {
20489 struct cmd_list_element *c;
20490
20491 dwarf2_objfile_data_key
20492 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
20493
20494 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
20495 Set DWARF 2 specific variables.\n\
20496 Configure DWARF 2 variables such as the cache size"),
20497 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
20498 0/*allow-unknown*/, &maintenance_set_cmdlist);
20499
20500 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
20501 Show DWARF 2 specific variables\n\
20502 Show DWARF 2 variables such as the cache size"),
20503 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
20504 0/*allow-unknown*/, &maintenance_show_cmdlist);
20505
20506 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
20507 &dwarf2_max_cache_age, _("\
20508 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
20509 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
20510 A higher limit means that cached compilation units will be stored\n\
20511 in memory longer, and more total memory will be used. Zero disables\n\
20512 caching, which can slow down startup."),
20513 NULL,
20514 show_dwarf2_max_cache_age,
20515 &set_dwarf2_cmdlist,
20516 &show_dwarf2_cmdlist);
20517
20518 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
20519 &dwarf2_always_disassemble, _("\
20520 Set whether `info address' always disassembles DWARF expressions."), _("\
20521 Show whether `info address' always disassembles DWARF expressions."), _("\
20522 When enabled, DWARF expressions are always printed in an assembly-like\n\
20523 syntax. When disabled, expressions will be printed in a more\n\
20524 conversational style, when possible."),
20525 NULL,
20526 show_dwarf2_always_disassemble,
20527 &set_dwarf2_cmdlist,
20528 &show_dwarf2_cmdlist);
20529
20530 add_setshow_boolean_cmd ("dwarf2-read", no_class, &dwarf2_read_debug, _("\
20531 Set debugging of the dwarf2 reader."), _("\
20532 Show debugging of the dwarf2 reader."), _("\
20533 When enabled, debugging messages are printed during dwarf2 reading\n\
20534 and symtab expansion."),
20535 NULL,
20536 NULL,
20537 &setdebuglist, &showdebuglist);
20538
20539 add_setshow_zuinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
20540 Set debugging of the dwarf2 DIE reader."), _("\
20541 Show debugging of the dwarf2 DIE reader."), _("\
20542 When enabled (non-zero), DIEs are dumped after they are read in.\n\
20543 The value is the maximum depth to print."),
20544 NULL,
20545 NULL,
20546 &setdebuglist, &showdebuglist);
20547
20548 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
20549 Set cross-checking of \"physname\" code against demangler."), _("\
20550 Show cross-checking of \"physname\" code against demangler."), _("\
20551 When enabled, GDB's internal \"physname\" code is checked against\n\
20552 the demangler."),
20553 NULL, show_check_physname,
20554 &setdebuglist, &showdebuglist);
20555
20556 add_setshow_boolean_cmd ("use-deprecated-index-sections",
20557 no_class, &use_deprecated_index_sections, _("\
20558 Set whether to use deprecated gdb_index sections."), _("\
20559 Show whether to use deprecated gdb_index sections."), _("\
20560 When enabled, deprecated .gdb_index sections are used anyway.\n\
20561 Normally they are ignored either because of a missing feature or\n\
20562 performance issue.\n\
20563 Warning: This option must be enabled before gdb reads the file."),
20564 NULL,
20565 NULL,
20566 &setlist, &showlist);
20567
20568 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
20569 _("\
20570 Save a gdb-index file.\n\
20571 Usage: save gdb-index DIRECTORY"),
20572 &save_cmdlist);
20573 set_cmd_completer (c, filename_completer);
20574 }
This page took 0.692138 seconds and 4 git commands to generate.