404faf89e655752eebee21b65ccfa119dfc8bd46
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
4 2004, 2005, 2006, 2007, 2008, 2009, 2010
5 Free Software Foundation, Inc.
6
7 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
8 Inc. with support from Florida State University (under contract
9 with the Ada Joint Program Office), and Silicon Graphics, Inc.
10 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
11 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
12 support.
13
14 This file is part of GDB.
15
16 This program is free software; you can redistribute it and/or modify
17 it under the terms of the GNU General Public License as published by
18 the Free Software Foundation; either version 3 of the License, or
19 (at your option) any later version.
20
21 This program is distributed in the hope that it will be useful,
22 but WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 GNU General Public License for more details.
25
26 You should have received a copy of the GNU General Public License
27 along with this program. If not, see <http://www.gnu.org/licenses/>. */
28
29 #include "defs.h"
30 #include "bfd.h"
31 #include "symtab.h"
32 #include "gdbtypes.h"
33 #include "objfiles.h"
34 #include "dwarf2.h"
35 #include "buildsym.h"
36 #include "demangle.h"
37 #include "expression.h"
38 #include "filenames.h" /* for DOSish file names */
39 #include "macrotab.h"
40 #include "language.h"
41 #include "complaints.h"
42 #include "bcache.h"
43 #include "dwarf2expr.h"
44 #include "dwarf2loc.h"
45 #include "cp-support.h"
46 #include "hashtab.h"
47 #include "command.h"
48 #include "gdbcmd.h"
49 #include "block.h"
50 #include "addrmap.h"
51 #include "typeprint.h"
52 #include "jv-lang.h"
53 #include "psympriv.h"
54 #include "exceptions.h"
55 #include "gdb_stat.h"
56 #include "completer.h"
57 #include "vec.h"
58 #include "c-lang.h"
59 #include "valprint.h"
60
61 #include <fcntl.h>
62 #include "gdb_string.h"
63 #include "gdb_assert.h"
64 #include <sys/types.h>
65 #ifdef HAVE_ZLIB_H
66 #include <zlib.h>
67 #endif
68 #ifdef HAVE_MMAP
69 #include <sys/mman.h>
70 #ifndef MAP_FAILED
71 #define MAP_FAILED ((void *) -1)
72 #endif
73 #endif
74
75 typedef struct symbol *symbolp;
76 DEF_VEC_P (symbolp);
77
78 #if 0
79 /* .debug_info header for a compilation unit
80 Because of alignment constraints, this structure has padding and cannot
81 be mapped directly onto the beginning of the .debug_info section. */
82 typedef struct comp_unit_header
83 {
84 unsigned int length; /* length of the .debug_info
85 contribution */
86 unsigned short version; /* version number -- 2 for DWARF
87 version 2 */
88 unsigned int abbrev_offset; /* offset into .debug_abbrev section */
89 unsigned char addr_size; /* byte size of an address -- 4 */
90 }
91 _COMP_UNIT_HEADER;
92 #define _ACTUAL_COMP_UNIT_HEADER_SIZE 11
93 #endif
94
95 /* .debug_line statement program prologue
96 Because of alignment constraints, this structure has padding and cannot
97 be mapped directly onto the beginning of the .debug_info section. */
98 typedef struct statement_prologue
99 {
100 unsigned int total_length; /* byte length of the statement
101 information */
102 unsigned short version; /* version number -- 2 for DWARF
103 version 2 */
104 unsigned int prologue_length; /* # bytes between prologue &
105 stmt program */
106 unsigned char minimum_instruction_length; /* byte size of
107 smallest instr */
108 unsigned char default_is_stmt; /* initial value of is_stmt
109 register */
110 char line_base;
111 unsigned char line_range;
112 unsigned char opcode_base; /* number assigned to first special
113 opcode */
114 unsigned char *standard_opcode_lengths;
115 }
116 _STATEMENT_PROLOGUE;
117
118 /* When non-zero, dump DIEs after they are read in. */
119 static int dwarf2_die_debug = 0;
120
121 static int pagesize;
122
123 /* When set, the file that we're processing is known to have debugging
124 info for C++ namespaces. GCC 3.3.x did not produce this information,
125 but later versions do. */
126
127 static int processing_has_namespace_info;
128
129 static const struct objfile_data *dwarf2_objfile_data_key;
130
131 struct dwarf2_section_info
132 {
133 asection *asection;
134 gdb_byte *buffer;
135 bfd_size_type size;
136 int was_mmapped;
137 /* True if we have tried to read this section. */
138 int readin;
139 };
140
141 /* All offsets in the index are of this type. It must be
142 architecture-independent. */
143 typedef uint32_t offset_type;
144
145 DEF_VEC_I (offset_type);
146
147 /* A description of the mapped index. The file format is described in
148 a comment by the code that writes the index. */
149 struct mapped_index
150 {
151 /* The total length of the buffer. */
152 off_t total_size;
153 /* A pointer to the address table data. */
154 const gdb_byte *address_table;
155 /* Size of the address table data in bytes. */
156 offset_type address_table_size;
157 /* The symbol table, implemented as a hash table. */
158 const offset_type *symbol_table;
159 /* Size in slots, each slot is 2 offset_types. */
160 offset_type symbol_table_slots;
161 /* A pointer to the constant pool. */
162 const char *constant_pool;
163 };
164
165 struct dwarf2_per_objfile
166 {
167 struct dwarf2_section_info info;
168 struct dwarf2_section_info abbrev;
169 struct dwarf2_section_info line;
170 struct dwarf2_section_info loc;
171 struct dwarf2_section_info macinfo;
172 struct dwarf2_section_info str;
173 struct dwarf2_section_info ranges;
174 struct dwarf2_section_info types;
175 struct dwarf2_section_info frame;
176 struct dwarf2_section_info eh_frame;
177 struct dwarf2_section_info gdb_index;
178
179 /* Back link. */
180 struct objfile *objfile;
181
182 /* A list of all the compilation units. This is used to locate
183 the target compilation unit of a particular reference. */
184 struct dwarf2_per_cu_data **all_comp_units;
185
186 /* The number of compilation units in ALL_COMP_UNITS. */
187 int n_comp_units;
188
189 /* The number of .debug_types-related CUs. */
190 int n_type_comp_units;
191
192 /* The .debug_types-related CUs. */
193 struct dwarf2_per_cu_data **type_comp_units;
194
195 /* A chain of compilation units that are currently read in, so that
196 they can be freed later. */
197 struct dwarf2_per_cu_data *read_in_chain;
198
199 /* A table mapping .debug_types signatures to its signatured_type entry.
200 This is NULL if the .debug_types section hasn't been read in yet. */
201 htab_t signatured_types;
202
203 /* A flag indicating wether this objfile has a section loaded at a
204 VMA of 0. */
205 int has_section_at_zero;
206
207 /* True if we are using the mapped index. */
208 unsigned char using_index;
209
210 /* The mapped index. */
211 struct mapped_index *index_table;
212
213 /* Set during partial symbol reading, to prevent queueing of full
214 symbols. */
215 int reading_partial_symbols;
216
217 /* Table mapping type .debug_info DIE offsets to types.
218 This is NULL if not allocated yet.
219 It (currently) makes sense to allocate debug_types_type_hash lazily.
220 To keep things simple we allocate both lazily. */
221 htab_t debug_info_type_hash;
222
223 /* Table mapping type .debug_types DIE offsets to types.
224 This is NULL if not allocated yet. */
225 htab_t debug_types_type_hash;
226 };
227
228 static struct dwarf2_per_objfile *dwarf2_per_objfile;
229
230 /* names of the debugging sections */
231
232 /* Note that if the debugging section has been compressed, it might
233 have a name like .zdebug_info. */
234
235 #define INFO_SECTION "debug_info"
236 #define ABBREV_SECTION "debug_abbrev"
237 #define LINE_SECTION "debug_line"
238 #define LOC_SECTION "debug_loc"
239 #define MACINFO_SECTION "debug_macinfo"
240 #define STR_SECTION "debug_str"
241 #define RANGES_SECTION "debug_ranges"
242 #define TYPES_SECTION "debug_types"
243 #define FRAME_SECTION "debug_frame"
244 #define EH_FRAME_SECTION "eh_frame"
245 #define GDB_INDEX_SECTION "gdb_index"
246
247 /* local data types */
248
249 /* We hold several abbreviation tables in memory at the same time. */
250 #ifndef ABBREV_HASH_SIZE
251 #define ABBREV_HASH_SIZE 121
252 #endif
253
254 /* The data in a compilation unit header, after target2host
255 translation, looks like this. */
256 struct comp_unit_head
257 {
258 unsigned int length;
259 short version;
260 unsigned char addr_size;
261 unsigned char signed_addr_p;
262 unsigned int abbrev_offset;
263
264 /* Size of file offsets; either 4 or 8. */
265 unsigned int offset_size;
266
267 /* Size of the length field; either 4 or 12. */
268 unsigned int initial_length_size;
269
270 /* Offset to the first byte of this compilation unit header in the
271 .debug_info section, for resolving relative reference dies. */
272 unsigned int offset;
273
274 /* Offset to first die in this cu from the start of the cu.
275 This will be the first byte following the compilation unit header. */
276 unsigned int first_die_offset;
277 };
278
279 /* Type used for delaying computation of method physnames.
280 See comments for compute_delayed_physnames. */
281 struct delayed_method_info
282 {
283 /* The type to which the method is attached, i.e., its parent class. */
284 struct type *type;
285
286 /* The index of the method in the type's function fieldlists. */
287 int fnfield_index;
288
289 /* The index of the method in the fieldlist. */
290 int index;
291
292 /* The name of the DIE. */
293 const char *name;
294
295 /* The DIE associated with this method. */
296 struct die_info *die;
297 };
298
299 typedef struct delayed_method_info delayed_method_info;
300 DEF_VEC_O (delayed_method_info);
301
302 /* Internal state when decoding a particular compilation unit. */
303 struct dwarf2_cu
304 {
305 /* The objfile containing this compilation unit. */
306 struct objfile *objfile;
307
308 /* The header of the compilation unit. */
309 struct comp_unit_head header;
310
311 /* Base address of this compilation unit. */
312 CORE_ADDR base_address;
313
314 /* Non-zero if base_address has been set. */
315 int base_known;
316
317 struct function_range *first_fn, *last_fn, *cached_fn;
318
319 /* The language we are debugging. */
320 enum language language;
321 const struct language_defn *language_defn;
322
323 const char *producer;
324
325 /* The generic symbol table building routines have separate lists for
326 file scope symbols and all all other scopes (local scopes). So
327 we need to select the right one to pass to add_symbol_to_list().
328 We do it by keeping a pointer to the correct list in list_in_scope.
329
330 FIXME: The original dwarf code just treated the file scope as the
331 first local scope, and all other local scopes as nested local
332 scopes, and worked fine. Check to see if we really need to
333 distinguish these in buildsym.c. */
334 struct pending **list_in_scope;
335
336 /* DWARF abbreviation table associated with this compilation unit. */
337 struct abbrev_info **dwarf2_abbrevs;
338
339 /* Storage for the abbrev table. */
340 struct obstack abbrev_obstack;
341
342 /* Hash table holding all the loaded partial DIEs. */
343 htab_t partial_dies;
344
345 /* Storage for things with the same lifetime as this read-in compilation
346 unit, including partial DIEs. */
347 struct obstack comp_unit_obstack;
348
349 /* When multiple dwarf2_cu structures are living in memory, this field
350 chains them all together, so that they can be released efficiently.
351 We will probably also want a generation counter so that most-recently-used
352 compilation units are cached... */
353 struct dwarf2_per_cu_data *read_in_chain;
354
355 /* Backchain to our per_cu entry if the tree has been built. */
356 struct dwarf2_per_cu_data *per_cu;
357
358 /* How many compilation units ago was this CU last referenced? */
359 int last_used;
360
361 /* A hash table of die offsets for following references. */
362 htab_t die_hash;
363
364 /* Full DIEs if read in. */
365 struct die_info *dies;
366
367 /* A set of pointers to dwarf2_per_cu_data objects for compilation
368 units referenced by this one. Only set during full symbol processing;
369 partial symbol tables do not have dependencies. */
370 htab_t dependencies;
371
372 /* Header data from the line table, during full symbol processing. */
373 struct line_header *line_header;
374
375 /* A list of methods which need to have physnames computed
376 after all type information has been read. */
377 VEC (delayed_method_info) *method_list;
378
379 /* Mark used when releasing cached dies. */
380 unsigned int mark : 1;
381
382 /* This flag will be set if this compilation unit might include
383 inter-compilation-unit references. */
384 unsigned int has_form_ref_addr : 1;
385
386 /* This flag will be set if this compilation unit includes any
387 DW_TAG_namespace DIEs. If we know that there are explicit
388 DIEs for namespaces, we don't need to try to infer them
389 from mangled names. */
390 unsigned int has_namespace_info : 1;
391 };
392
393 /* When using the index (and thus not using psymtabs), each CU has an
394 object of this type. This is used to hold information needed by
395 the various "quick" methods. */
396 struct dwarf2_per_cu_quick_data
397 {
398 /* The line table. This can be NULL if there was no line table. */
399 struct line_header *lines;
400
401 /* The file names from the line table. */
402 const char **file_names;
403 /* The file names from the line table after being run through
404 gdb_realpath. */
405 const char **full_names;
406
407 /* The corresponding symbol table. This is NULL if symbols for this
408 CU have not yet been read. */
409 struct symtab *symtab;
410
411 /* A temporary mark bit used when iterating over all CUs in
412 expand_symtabs_matching. */
413 unsigned int mark : 1;
414
415 /* True if we've tried to read the line table. */
416 unsigned int read_lines : 1;
417 };
418
419 /* Persistent data held for a compilation unit, even when not
420 processing it. We put a pointer to this structure in the
421 read_symtab_private field of the psymtab. If we encounter
422 inter-compilation-unit references, we also maintain a sorted
423 list of all compilation units. */
424
425 struct dwarf2_per_cu_data
426 {
427 /* The start offset and length of this compilation unit. 2**29-1
428 bytes should suffice to store the length of any compilation unit
429 - if it doesn't, GDB will fall over anyway.
430 NOTE: Unlike comp_unit_head.length, this length includes
431 initial_length_size. */
432 unsigned int offset;
433 unsigned int length : 29;
434
435 /* Flag indicating this compilation unit will be read in before
436 any of the current compilation units are processed. */
437 unsigned int queued : 1;
438
439 /* This flag will be set if we need to load absolutely all DIEs
440 for this compilation unit, instead of just the ones we think
441 are interesting. It gets set if we look for a DIE in the
442 hash table and don't find it. */
443 unsigned int load_all_dies : 1;
444
445 /* Non-zero if this CU is from .debug_types.
446 Otherwise it's from .debug_info. */
447 unsigned int from_debug_types : 1;
448
449 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
450 of the CU cache it gets reset to NULL again. */
451 struct dwarf2_cu *cu;
452
453 /* The corresponding objfile. */
454 struct objfile *objfile;
455
456 /* When using partial symbol tables, the 'psymtab' field is active.
457 Otherwise the 'quick' field is active. */
458 union
459 {
460 /* The partial symbol table associated with this compilation unit,
461 or NULL for partial units (which do not have an associated
462 symtab). */
463 struct partial_symtab *psymtab;
464
465 /* Data needed by the "quick" functions. */
466 struct dwarf2_per_cu_quick_data *quick;
467 } v;
468 };
469
470 /* Entry in the signatured_types hash table. */
471
472 struct signatured_type
473 {
474 ULONGEST signature;
475
476 /* Offset in .debug_types of the TU (type_unit) for this type. */
477 unsigned int offset;
478
479 /* Offset in .debug_types of the type defined by this TU. */
480 unsigned int type_offset;
481
482 /* The CU(/TU) of this type. */
483 struct dwarf2_per_cu_data per_cu;
484 };
485
486 /* Struct used to pass misc. parameters to read_die_and_children, et. al.
487 which are used for both .debug_info and .debug_types dies.
488 All parameters here are unchanging for the life of the call.
489 This struct exists to abstract away the constant parameters of
490 die reading. */
491
492 struct die_reader_specs
493 {
494 /* The bfd of this objfile. */
495 bfd* abfd;
496
497 /* The CU of the DIE we are parsing. */
498 struct dwarf2_cu *cu;
499
500 /* Pointer to start of section buffer.
501 This is either the start of .debug_info or .debug_types. */
502 const gdb_byte *buffer;
503 };
504
505 /* The line number information for a compilation unit (found in the
506 .debug_line section) begins with a "statement program header",
507 which contains the following information. */
508 struct line_header
509 {
510 unsigned int total_length;
511 unsigned short version;
512 unsigned int header_length;
513 unsigned char minimum_instruction_length;
514 unsigned char maximum_ops_per_instruction;
515 unsigned char default_is_stmt;
516 int line_base;
517 unsigned char line_range;
518 unsigned char opcode_base;
519
520 /* standard_opcode_lengths[i] is the number of operands for the
521 standard opcode whose value is i. This means that
522 standard_opcode_lengths[0] is unused, and the last meaningful
523 element is standard_opcode_lengths[opcode_base - 1]. */
524 unsigned char *standard_opcode_lengths;
525
526 /* The include_directories table. NOTE! These strings are not
527 allocated with xmalloc; instead, they are pointers into
528 debug_line_buffer. If you try to free them, `free' will get
529 indigestion. */
530 unsigned int num_include_dirs, include_dirs_size;
531 char **include_dirs;
532
533 /* The file_names table. NOTE! These strings are not allocated
534 with xmalloc; instead, they are pointers into debug_line_buffer.
535 Don't try to free them directly. */
536 unsigned int num_file_names, file_names_size;
537 struct file_entry
538 {
539 char *name;
540 unsigned int dir_index;
541 unsigned int mod_time;
542 unsigned int length;
543 int included_p; /* Non-zero if referenced by the Line Number Program. */
544 struct symtab *symtab; /* The associated symbol table, if any. */
545 } *file_names;
546
547 /* The start and end of the statement program following this
548 header. These point into dwarf2_per_objfile->line_buffer. */
549 gdb_byte *statement_program_start, *statement_program_end;
550 };
551
552 /* When we construct a partial symbol table entry we only
553 need this much information. */
554 struct partial_die_info
555 {
556 /* Offset of this DIE. */
557 unsigned int offset;
558
559 /* DWARF-2 tag for this DIE. */
560 ENUM_BITFIELD(dwarf_tag) tag : 16;
561
562 /* Assorted flags describing the data found in this DIE. */
563 unsigned int has_children : 1;
564 unsigned int is_external : 1;
565 unsigned int is_declaration : 1;
566 unsigned int has_type : 1;
567 unsigned int has_specification : 1;
568 unsigned int has_pc_info : 1;
569
570 /* Flag set if the SCOPE field of this structure has been
571 computed. */
572 unsigned int scope_set : 1;
573
574 /* Flag set if the DIE has a byte_size attribute. */
575 unsigned int has_byte_size : 1;
576
577 /* Flag set if any of the DIE's children are template arguments. */
578 unsigned int has_template_arguments : 1;
579
580 /* Flag set if fixup_partial_die has been called on this die. */
581 unsigned int fixup_called : 1;
582
583 /* The name of this DIE. Normally the value of DW_AT_name, but
584 sometimes a default name for unnamed DIEs. */
585 char *name;
586
587 /* The linkage name, if present. */
588 const char *linkage_name;
589
590 /* The scope to prepend to our children. This is generally
591 allocated on the comp_unit_obstack, so will disappear
592 when this compilation unit leaves the cache. */
593 char *scope;
594
595 /* The location description associated with this DIE, if any. */
596 struct dwarf_block *locdesc;
597
598 /* If HAS_PC_INFO, the PC range associated with this DIE. */
599 CORE_ADDR lowpc;
600 CORE_ADDR highpc;
601
602 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
603 DW_AT_sibling, if any. */
604 /* NOTE: This member isn't strictly necessary, read_partial_die could
605 return DW_AT_sibling values to its caller load_partial_dies. */
606 gdb_byte *sibling;
607
608 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
609 DW_AT_specification (or DW_AT_abstract_origin or
610 DW_AT_extension). */
611 unsigned int spec_offset;
612
613 /* Pointers to this DIE's parent, first child, and next sibling,
614 if any. */
615 struct partial_die_info *die_parent, *die_child, *die_sibling;
616 };
617
618 /* This data structure holds the information of an abbrev. */
619 struct abbrev_info
620 {
621 unsigned int number; /* number identifying abbrev */
622 enum dwarf_tag tag; /* dwarf tag */
623 unsigned short has_children; /* boolean */
624 unsigned short num_attrs; /* number of attributes */
625 struct attr_abbrev *attrs; /* an array of attribute descriptions */
626 struct abbrev_info *next; /* next in chain */
627 };
628
629 struct attr_abbrev
630 {
631 ENUM_BITFIELD(dwarf_attribute) name : 16;
632 ENUM_BITFIELD(dwarf_form) form : 16;
633 };
634
635 /* Attributes have a name and a value */
636 struct attribute
637 {
638 ENUM_BITFIELD(dwarf_attribute) name : 16;
639 ENUM_BITFIELD(dwarf_form) form : 15;
640
641 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
642 field should be in u.str (existing only for DW_STRING) but it is kept
643 here for better struct attribute alignment. */
644 unsigned int string_is_canonical : 1;
645
646 union
647 {
648 char *str;
649 struct dwarf_block *blk;
650 ULONGEST unsnd;
651 LONGEST snd;
652 CORE_ADDR addr;
653 struct signatured_type *signatured_type;
654 }
655 u;
656 };
657
658 /* This data structure holds a complete die structure. */
659 struct die_info
660 {
661 /* DWARF-2 tag for this DIE. */
662 ENUM_BITFIELD(dwarf_tag) tag : 16;
663
664 /* Number of attributes */
665 unsigned char num_attrs;
666
667 /* True if we're presently building the full type name for the
668 type derived from this DIE. */
669 unsigned char building_fullname : 1;
670
671 /* Abbrev number */
672 unsigned int abbrev;
673
674 /* Offset in .debug_info or .debug_types section. */
675 unsigned int offset;
676
677 /* The dies in a compilation unit form an n-ary tree. PARENT
678 points to this die's parent; CHILD points to the first child of
679 this node; and all the children of a given node are chained
680 together via their SIBLING fields. */
681 struct die_info *child; /* Its first child, if any. */
682 struct die_info *sibling; /* Its next sibling, if any. */
683 struct die_info *parent; /* Its parent, if any. */
684
685 /* An array of attributes, with NUM_ATTRS elements. There may be
686 zero, but it's not common and zero-sized arrays are not
687 sufficiently portable C. */
688 struct attribute attrs[1];
689 };
690
691 struct function_range
692 {
693 const char *name;
694 CORE_ADDR lowpc, highpc;
695 int seen_line;
696 struct function_range *next;
697 };
698
699 /* Get at parts of an attribute structure */
700
701 #define DW_STRING(attr) ((attr)->u.str)
702 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
703 #define DW_UNSND(attr) ((attr)->u.unsnd)
704 #define DW_BLOCK(attr) ((attr)->u.blk)
705 #define DW_SND(attr) ((attr)->u.snd)
706 #define DW_ADDR(attr) ((attr)->u.addr)
707 #define DW_SIGNATURED_TYPE(attr) ((attr)->u.signatured_type)
708
709 /* Blocks are a bunch of untyped bytes. */
710 struct dwarf_block
711 {
712 unsigned int size;
713 gdb_byte *data;
714 };
715
716 #ifndef ATTR_ALLOC_CHUNK
717 #define ATTR_ALLOC_CHUNK 4
718 #endif
719
720 /* Allocate fields for structs, unions and enums in this size. */
721 #ifndef DW_FIELD_ALLOC_CHUNK
722 #define DW_FIELD_ALLOC_CHUNK 4
723 #endif
724
725 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
726 but this would require a corresponding change in unpack_field_as_long
727 and friends. */
728 static int bits_per_byte = 8;
729
730 /* The routines that read and process dies for a C struct or C++ class
731 pass lists of data member fields and lists of member function fields
732 in an instance of a field_info structure, as defined below. */
733 struct field_info
734 {
735 /* List of data member and baseclasses fields. */
736 struct nextfield
737 {
738 struct nextfield *next;
739 int accessibility;
740 int virtuality;
741 struct field field;
742 }
743 *fields, *baseclasses;
744
745 /* Number of fields (including baseclasses). */
746 int nfields;
747
748 /* Number of baseclasses. */
749 int nbaseclasses;
750
751 /* Set if the accesibility of one of the fields is not public. */
752 int non_public_fields;
753
754 /* Member function fields array, entries are allocated in the order they
755 are encountered in the object file. */
756 struct nextfnfield
757 {
758 struct nextfnfield *next;
759 struct fn_field fnfield;
760 }
761 *fnfields;
762
763 /* Member function fieldlist array, contains name of possibly overloaded
764 member function, number of overloaded member functions and a pointer
765 to the head of the member function field chain. */
766 struct fnfieldlist
767 {
768 char *name;
769 int length;
770 struct nextfnfield *head;
771 }
772 *fnfieldlists;
773
774 /* Number of entries in the fnfieldlists array. */
775 int nfnfields;
776
777 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
778 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
779 struct typedef_field_list
780 {
781 struct typedef_field field;
782 struct typedef_field_list *next;
783 }
784 *typedef_field_list;
785 unsigned typedef_field_list_count;
786 };
787
788 /* One item on the queue of compilation units to read in full symbols
789 for. */
790 struct dwarf2_queue_item
791 {
792 struct dwarf2_per_cu_data *per_cu;
793 struct dwarf2_queue_item *next;
794 };
795
796 /* The current queue. */
797 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
798
799 /* Loaded secondary compilation units are kept in memory until they
800 have not been referenced for the processing of this many
801 compilation units. Set this to zero to disable caching. Cache
802 sizes of up to at least twenty will improve startup time for
803 typical inter-CU-reference binaries, at an obvious memory cost. */
804 static int dwarf2_max_cache_age = 5;
805 static void
806 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
807 struct cmd_list_element *c, const char *value)
808 {
809 fprintf_filtered (file, _("\
810 The upper bound on the age of cached dwarf2 compilation units is %s.\n"),
811 value);
812 }
813
814
815 /* Various complaints about symbol reading that don't abort the process */
816
817 static void
818 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
819 {
820 complaint (&symfile_complaints,
821 _("statement list doesn't fit in .debug_line section"));
822 }
823
824 static void
825 dwarf2_debug_line_missing_file_complaint (void)
826 {
827 complaint (&symfile_complaints,
828 _(".debug_line section has line data without a file"));
829 }
830
831 static void
832 dwarf2_debug_line_missing_end_sequence_complaint (void)
833 {
834 complaint (&symfile_complaints,
835 _(".debug_line section has line program sequence without an end"));
836 }
837
838 static void
839 dwarf2_complex_location_expr_complaint (void)
840 {
841 complaint (&symfile_complaints, _("location expression too complex"));
842 }
843
844 static void
845 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
846 int arg3)
847 {
848 complaint (&symfile_complaints,
849 _("const value length mismatch for '%s', got %d, expected %d"), arg1,
850 arg2, arg3);
851 }
852
853 static void
854 dwarf2_macros_too_long_complaint (void)
855 {
856 complaint (&symfile_complaints,
857 _("macro info runs off end of `.debug_macinfo' section"));
858 }
859
860 static void
861 dwarf2_macro_malformed_definition_complaint (const char *arg1)
862 {
863 complaint (&symfile_complaints,
864 _("macro debug info contains a malformed macro definition:\n`%s'"),
865 arg1);
866 }
867
868 static void
869 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
870 {
871 complaint (&symfile_complaints,
872 _("invalid attribute class or form for '%s' in '%s'"), arg1, arg2);
873 }
874
875 /* local function prototypes */
876
877 static void dwarf2_locate_sections (bfd *, asection *, void *);
878
879 static void dwarf2_create_include_psymtab (char *, struct partial_symtab *,
880 struct objfile *);
881
882 static void dwarf2_build_psymtabs_hard (struct objfile *);
883
884 static void scan_partial_symbols (struct partial_die_info *,
885 CORE_ADDR *, CORE_ADDR *,
886 int, struct dwarf2_cu *);
887
888 static void add_partial_symbol (struct partial_die_info *,
889 struct dwarf2_cu *);
890
891 static void add_partial_namespace (struct partial_die_info *pdi,
892 CORE_ADDR *lowpc, CORE_ADDR *highpc,
893 int need_pc, struct dwarf2_cu *cu);
894
895 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
896 CORE_ADDR *highpc, int need_pc,
897 struct dwarf2_cu *cu);
898
899 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
900 struct dwarf2_cu *cu);
901
902 static void add_partial_subprogram (struct partial_die_info *pdi,
903 CORE_ADDR *lowpc, CORE_ADDR *highpc,
904 int need_pc, struct dwarf2_cu *cu);
905
906 static gdb_byte *locate_pdi_sibling (struct partial_die_info *orig_pdi,
907 gdb_byte *buffer, gdb_byte *info_ptr,
908 bfd *abfd, struct dwarf2_cu *cu);
909
910 static void dwarf2_psymtab_to_symtab (struct partial_symtab *);
911
912 static void psymtab_to_symtab_1 (struct partial_symtab *);
913
914 static void dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu);
915
916 static void dwarf2_free_abbrev_table (void *);
917
918 static struct abbrev_info *peek_die_abbrev (gdb_byte *, unsigned int *,
919 struct dwarf2_cu *);
920
921 static struct abbrev_info *dwarf2_lookup_abbrev (unsigned int,
922 struct dwarf2_cu *);
923
924 static struct partial_die_info *load_partial_dies (bfd *,
925 gdb_byte *, gdb_byte *,
926 int, struct dwarf2_cu *);
927
928 static gdb_byte *read_partial_die (struct partial_die_info *,
929 struct abbrev_info *abbrev,
930 unsigned int, bfd *,
931 gdb_byte *, gdb_byte *,
932 struct dwarf2_cu *);
933
934 static struct partial_die_info *find_partial_die (unsigned int,
935 struct dwarf2_cu *);
936
937 static void fixup_partial_die (struct partial_die_info *,
938 struct dwarf2_cu *);
939
940 static gdb_byte *read_attribute (struct attribute *, struct attr_abbrev *,
941 bfd *, gdb_byte *, struct dwarf2_cu *);
942
943 static gdb_byte *read_attribute_value (struct attribute *, unsigned,
944 bfd *, gdb_byte *, struct dwarf2_cu *);
945
946 static unsigned int read_1_byte (bfd *, gdb_byte *);
947
948 static int read_1_signed_byte (bfd *, gdb_byte *);
949
950 static unsigned int read_2_bytes (bfd *, gdb_byte *);
951
952 static unsigned int read_4_bytes (bfd *, gdb_byte *);
953
954 static ULONGEST read_8_bytes (bfd *, gdb_byte *);
955
956 static CORE_ADDR read_address (bfd *, gdb_byte *ptr, struct dwarf2_cu *,
957 unsigned int *);
958
959 static LONGEST read_initial_length (bfd *, gdb_byte *, unsigned int *);
960
961 static LONGEST read_checked_initial_length_and_offset
962 (bfd *, gdb_byte *, const struct comp_unit_head *,
963 unsigned int *, unsigned int *);
964
965 static LONGEST read_offset (bfd *, gdb_byte *, const struct comp_unit_head *,
966 unsigned int *);
967
968 static LONGEST read_offset_1 (bfd *, gdb_byte *, unsigned int);
969
970 static gdb_byte *read_n_bytes (bfd *, gdb_byte *, unsigned int);
971
972 static char *read_direct_string (bfd *, gdb_byte *, unsigned int *);
973
974 static char *read_indirect_string (bfd *, gdb_byte *,
975 const struct comp_unit_head *,
976 unsigned int *);
977
978 static unsigned long read_unsigned_leb128 (bfd *, gdb_byte *, unsigned int *);
979
980 static long read_signed_leb128 (bfd *, gdb_byte *, unsigned int *);
981
982 static gdb_byte *skip_leb128 (bfd *, gdb_byte *);
983
984 static void set_cu_language (unsigned int, struct dwarf2_cu *);
985
986 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
987 struct dwarf2_cu *);
988
989 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
990 unsigned int,
991 struct dwarf2_cu *);
992
993 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
994 struct dwarf2_cu *cu);
995
996 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
997
998 static struct die_info *die_specification (struct die_info *die,
999 struct dwarf2_cu **);
1000
1001 static void free_line_header (struct line_header *lh);
1002
1003 static void add_file_name (struct line_header *, char *, unsigned int,
1004 unsigned int, unsigned int);
1005
1006 static struct line_header *(dwarf_decode_line_header
1007 (unsigned int offset,
1008 bfd *abfd, struct dwarf2_cu *cu));
1009
1010 static void dwarf_decode_lines (struct line_header *, const char *, bfd *,
1011 struct dwarf2_cu *, struct partial_symtab *);
1012
1013 static void dwarf2_start_subfile (char *, const char *, const char *);
1014
1015 static struct symbol *new_symbol (struct die_info *, struct type *,
1016 struct dwarf2_cu *);
1017
1018 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1019 struct dwarf2_cu *, struct symbol *);
1020
1021 static void dwarf2_const_value (struct attribute *, struct symbol *,
1022 struct dwarf2_cu *);
1023
1024 static void dwarf2_const_value_attr (struct attribute *attr,
1025 struct type *type,
1026 const char *name,
1027 struct obstack *obstack,
1028 struct dwarf2_cu *cu, long *value,
1029 gdb_byte **bytes,
1030 struct dwarf2_locexpr_baton **baton);
1031
1032 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1033
1034 static int need_gnat_info (struct dwarf2_cu *);
1035
1036 static struct type *die_descriptive_type (struct die_info *, struct dwarf2_cu *);
1037
1038 static void set_descriptive_type (struct type *, struct die_info *,
1039 struct dwarf2_cu *);
1040
1041 static struct type *die_containing_type (struct die_info *,
1042 struct dwarf2_cu *);
1043
1044 static struct type *lookup_die_type (struct die_info *, struct attribute *,
1045 struct dwarf2_cu *);
1046
1047 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1048
1049 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1050
1051 static char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1052
1053 static char *typename_concat (struct obstack *obs, const char *prefix,
1054 const char *suffix, int physname,
1055 struct dwarf2_cu *cu);
1056
1057 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1058
1059 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1060
1061 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1062
1063 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1064
1065 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1066 struct dwarf2_cu *, struct partial_symtab *);
1067
1068 static int dwarf2_get_pc_bounds (struct die_info *,
1069 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1070 struct partial_symtab *);
1071
1072 static void get_scope_pc_bounds (struct die_info *,
1073 CORE_ADDR *, CORE_ADDR *,
1074 struct dwarf2_cu *);
1075
1076 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1077 CORE_ADDR, struct dwarf2_cu *);
1078
1079 static void dwarf2_add_field (struct field_info *, struct die_info *,
1080 struct dwarf2_cu *);
1081
1082 static void dwarf2_attach_fields_to_type (struct field_info *,
1083 struct type *, struct dwarf2_cu *);
1084
1085 static void dwarf2_add_member_fn (struct field_info *,
1086 struct die_info *, struct type *,
1087 struct dwarf2_cu *);
1088
1089 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1090 struct type *, struct dwarf2_cu *);
1091
1092 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1093
1094 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1095
1096 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1097
1098 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1099
1100 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1101
1102 static struct type *read_module_type (struct die_info *die,
1103 struct dwarf2_cu *cu);
1104
1105 static const char *namespace_name (struct die_info *die,
1106 int *is_anonymous, struct dwarf2_cu *);
1107
1108 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1109
1110 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1111
1112 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1113 struct dwarf2_cu *);
1114
1115 static struct die_info *read_comp_unit (gdb_byte *, struct dwarf2_cu *);
1116
1117 static struct die_info *read_die_and_children_1 (const struct die_reader_specs *reader,
1118 gdb_byte *info_ptr,
1119 gdb_byte **new_info_ptr,
1120 struct die_info *parent);
1121
1122 static struct die_info *read_die_and_children (const struct die_reader_specs *reader,
1123 gdb_byte *info_ptr,
1124 gdb_byte **new_info_ptr,
1125 struct die_info *parent);
1126
1127 static struct die_info *read_die_and_siblings (const struct die_reader_specs *reader,
1128 gdb_byte *info_ptr,
1129 gdb_byte **new_info_ptr,
1130 struct die_info *parent);
1131
1132 static gdb_byte *read_full_die (const struct die_reader_specs *reader,
1133 struct die_info **, gdb_byte *,
1134 int *);
1135
1136 static void process_die (struct die_info *, struct dwarf2_cu *);
1137
1138 static char *dwarf2_canonicalize_name (char *, struct dwarf2_cu *,
1139 struct obstack *);
1140
1141 static char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1142
1143 static const char *dwarf2_full_name (char *name,
1144 struct die_info *die,
1145 struct dwarf2_cu *cu);
1146
1147 static struct die_info *dwarf2_extension (struct die_info *die,
1148 struct dwarf2_cu **);
1149
1150 static char *dwarf_tag_name (unsigned int);
1151
1152 static char *dwarf_attr_name (unsigned int);
1153
1154 static char *dwarf_form_name (unsigned int);
1155
1156 static char *dwarf_bool_name (unsigned int);
1157
1158 static char *dwarf_type_encoding_name (unsigned int);
1159
1160 #if 0
1161 static char *dwarf_cfi_name (unsigned int);
1162 #endif
1163
1164 static struct die_info *sibling_die (struct die_info *);
1165
1166 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1167
1168 static void dump_die_for_error (struct die_info *);
1169
1170 static void dump_die_1 (struct ui_file *, int level, int max_level,
1171 struct die_info *);
1172
1173 /*static*/ void dump_die (struct die_info *, int max_level);
1174
1175 static void store_in_ref_table (struct die_info *,
1176 struct dwarf2_cu *);
1177
1178 static int is_ref_attr (struct attribute *);
1179
1180 static unsigned int dwarf2_get_ref_die_offset (struct attribute *);
1181
1182 static LONGEST dwarf2_get_attr_constant_value (struct attribute *, int);
1183
1184 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1185 struct attribute *,
1186 struct dwarf2_cu **);
1187
1188 static struct die_info *follow_die_ref (struct die_info *,
1189 struct attribute *,
1190 struct dwarf2_cu **);
1191
1192 static struct die_info *follow_die_sig (struct die_info *,
1193 struct attribute *,
1194 struct dwarf2_cu **);
1195
1196 static void read_signatured_type_at_offset (struct objfile *objfile,
1197 unsigned int offset);
1198
1199 static void read_signatured_type (struct objfile *,
1200 struct signatured_type *type_sig);
1201
1202 /* memory allocation interface */
1203
1204 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1205
1206 static struct abbrev_info *dwarf_alloc_abbrev (struct dwarf2_cu *);
1207
1208 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1209
1210 static void initialize_cu_func_list (struct dwarf2_cu *);
1211
1212 static void add_to_cu_func_list (const char *, CORE_ADDR, CORE_ADDR,
1213 struct dwarf2_cu *);
1214
1215 static void dwarf_decode_macros (struct line_header *, unsigned int,
1216 char *, bfd *, struct dwarf2_cu *);
1217
1218 static int attr_form_is_block (struct attribute *);
1219
1220 static int attr_form_is_section_offset (struct attribute *);
1221
1222 static int attr_form_is_constant (struct attribute *);
1223
1224 static void dwarf2_symbol_mark_computed (struct attribute *attr,
1225 struct symbol *sym,
1226 struct dwarf2_cu *cu);
1227
1228 static gdb_byte *skip_one_die (gdb_byte *buffer, gdb_byte *info_ptr,
1229 struct abbrev_info *abbrev,
1230 struct dwarf2_cu *cu);
1231
1232 static void free_stack_comp_unit (void *);
1233
1234 static hashval_t partial_die_hash (const void *item);
1235
1236 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1237
1238 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1239 (unsigned int offset, struct objfile *objfile);
1240
1241 static struct dwarf2_per_cu_data *dwarf2_find_comp_unit
1242 (unsigned int offset, struct objfile *objfile);
1243
1244 static struct dwarf2_cu *alloc_one_comp_unit (struct objfile *objfile);
1245
1246 static void free_one_comp_unit (void *);
1247
1248 static void free_cached_comp_units (void *);
1249
1250 static void age_cached_comp_units (void);
1251
1252 static void free_one_cached_comp_unit (void *);
1253
1254 static struct type *set_die_type (struct die_info *, struct type *,
1255 struct dwarf2_cu *);
1256
1257 static void create_all_comp_units (struct objfile *);
1258
1259 static int create_debug_types_hash_table (struct objfile *objfile);
1260
1261 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1262 struct objfile *);
1263
1264 static void process_full_comp_unit (struct dwarf2_per_cu_data *);
1265
1266 static void dwarf2_add_dependence (struct dwarf2_cu *,
1267 struct dwarf2_per_cu_data *);
1268
1269 static void dwarf2_mark (struct dwarf2_cu *);
1270
1271 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1272
1273 static struct type *get_die_type_at_offset (unsigned int,
1274 struct dwarf2_per_cu_data *per_cu);
1275
1276 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1277
1278 static void dwarf2_release_queue (void *dummy);
1279
1280 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1281 struct objfile *objfile);
1282
1283 static void process_queue (struct objfile *objfile);
1284
1285 static void find_file_and_directory (struct die_info *die,
1286 struct dwarf2_cu *cu,
1287 char **name, char **comp_dir);
1288
1289 static char *file_full_name (int file, struct line_header *lh,
1290 const char *comp_dir);
1291
1292 static gdb_byte *partial_read_comp_unit_head (struct comp_unit_head *header,
1293 gdb_byte *info_ptr,
1294 gdb_byte *buffer,
1295 unsigned int buffer_size,
1296 bfd *abfd);
1297
1298 static void init_cu_die_reader (struct die_reader_specs *reader,
1299 struct dwarf2_cu *cu);
1300
1301 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1302
1303 #if WORDS_BIGENDIAN
1304
1305 /* Convert VALUE between big- and little-endian. */
1306 static offset_type
1307 byte_swap (offset_type value)
1308 {
1309 offset_type result;
1310
1311 result = (value & 0xff) << 24;
1312 result |= (value & 0xff00) << 8;
1313 result |= (value & 0xff0000) >> 8;
1314 result |= (value & 0xff000000) >> 24;
1315 return result;
1316 }
1317
1318 #define MAYBE_SWAP(V) byte_swap (V)
1319
1320 #else
1321 #define MAYBE_SWAP(V) (V)
1322 #endif /* WORDS_BIGENDIAN */
1323
1324 /* The suffix for an index file. */
1325 #define INDEX_SUFFIX ".gdb-index"
1326
1327 static const char *dwarf2_physname (char *name, struct die_info *die,
1328 struct dwarf2_cu *cu);
1329
1330 /* Try to locate the sections we need for DWARF 2 debugging
1331 information and return true if we have enough to do something. */
1332
1333 int
1334 dwarf2_has_info (struct objfile *objfile)
1335 {
1336 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1337 if (!dwarf2_per_objfile)
1338 {
1339 /* Initialize per-objfile state. */
1340 struct dwarf2_per_objfile *data
1341 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1342
1343 memset (data, 0, sizeof (*data));
1344 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1345 dwarf2_per_objfile = data;
1346
1347 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections, NULL);
1348 dwarf2_per_objfile->objfile = objfile;
1349 }
1350 return (dwarf2_per_objfile->info.asection != NULL
1351 && dwarf2_per_objfile->abbrev.asection != NULL);
1352 }
1353
1354 /* When loading sections, we can either look for ".<name>", or for
1355 * ".z<name>", which indicates a compressed section. */
1356
1357 static int
1358 section_is_p (const char *section_name, const char *name)
1359 {
1360 return (section_name[0] == '.'
1361 && (strcmp (section_name + 1, name) == 0
1362 || (section_name[1] == 'z'
1363 && strcmp (section_name + 2, name) == 0)));
1364 }
1365
1366 /* This function is mapped across the sections and remembers the
1367 offset and size of each of the debugging sections we are interested
1368 in. */
1369
1370 static void
1371 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *ignore_ptr)
1372 {
1373 if (section_is_p (sectp->name, INFO_SECTION))
1374 {
1375 dwarf2_per_objfile->info.asection = sectp;
1376 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
1377 }
1378 else if (section_is_p (sectp->name, ABBREV_SECTION))
1379 {
1380 dwarf2_per_objfile->abbrev.asection = sectp;
1381 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
1382 }
1383 else if (section_is_p (sectp->name, LINE_SECTION))
1384 {
1385 dwarf2_per_objfile->line.asection = sectp;
1386 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
1387 }
1388 else if (section_is_p (sectp->name, LOC_SECTION))
1389 {
1390 dwarf2_per_objfile->loc.asection = sectp;
1391 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
1392 }
1393 else if (section_is_p (sectp->name, MACINFO_SECTION))
1394 {
1395 dwarf2_per_objfile->macinfo.asection = sectp;
1396 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
1397 }
1398 else if (section_is_p (sectp->name, STR_SECTION))
1399 {
1400 dwarf2_per_objfile->str.asection = sectp;
1401 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
1402 }
1403 else if (section_is_p (sectp->name, FRAME_SECTION))
1404 {
1405 dwarf2_per_objfile->frame.asection = sectp;
1406 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
1407 }
1408 else if (section_is_p (sectp->name, EH_FRAME_SECTION))
1409 {
1410 flagword aflag = bfd_get_section_flags (ignore_abfd, sectp);
1411
1412 if (aflag & SEC_HAS_CONTENTS)
1413 {
1414 dwarf2_per_objfile->eh_frame.asection = sectp;
1415 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
1416 }
1417 }
1418 else if (section_is_p (sectp->name, RANGES_SECTION))
1419 {
1420 dwarf2_per_objfile->ranges.asection = sectp;
1421 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
1422 }
1423 else if (section_is_p (sectp->name, TYPES_SECTION))
1424 {
1425 dwarf2_per_objfile->types.asection = sectp;
1426 dwarf2_per_objfile->types.size = bfd_get_section_size (sectp);
1427 }
1428 else if (section_is_p (sectp->name, GDB_INDEX_SECTION))
1429 {
1430 dwarf2_per_objfile->gdb_index.asection = sectp;
1431 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
1432 }
1433
1434 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
1435 && bfd_section_vma (abfd, sectp) == 0)
1436 dwarf2_per_objfile->has_section_at_zero = 1;
1437 }
1438
1439 /* Decompress a section that was compressed using zlib. Store the
1440 decompressed buffer, and its size, in OUTBUF and OUTSIZE. */
1441
1442 static void
1443 zlib_decompress_section (struct objfile *objfile, asection *sectp,
1444 gdb_byte **outbuf, bfd_size_type *outsize)
1445 {
1446 bfd *abfd = objfile->obfd;
1447 #ifndef HAVE_ZLIB_H
1448 error (_("Support for zlib-compressed DWARF data (from '%s') "
1449 "is disabled in this copy of GDB"),
1450 bfd_get_filename (abfd));
1451 #else
1452 bfd_size_type compressed_size = bfd_get_section_size (sectp);
1453 gdb_byte *compressed_buffer = xmalloc (compressed_size);
1454 struct cleanup *cleanup = make_cleanup (xfree, compressed_buffer);
1455 bfd_size_type uncompressed_size;
1456 gdb_byte *uncompressed_buffer;
1457 z_stream strm;
1458 int rc;
1459 int header_size = 12;
1460
1461 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1462 || bfd_bread (compressed_buffer, compressed_size, abfd) != compressed_size)
1463 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1464 bfd_get_filename (abfd));
1465
1466 /* Read the zlib header. In this case, it should be "ZLIB" followed
1467 by the uncompressed section size, 8 bytes in big-endian order. */
1468 if (compressed_size < header_size
1469 || strncmp (compressed_buffer, "ZLIB", 4) != 0)
1470 error (_("Dwarf Error: Corrupt DWARF ZLIB header from '%s'"),
1471 bfd_get_filename (abfd));
1472 uncompressed_size = compressed_buffer[4]; uncompressed_size <<= 8;
1473 uncompressed_size += compressed_buffer[5]; uncompressed_size <<= 8;
1474 uncompressed_size += compressed_buffer[6]; uncompressed_size <<= 8;
1475 uncompressed_size += compressed_buffer[7]; uncompressed_size <<= 8;
1476 uncompressed_size += compressed_buffer[8]; uncompressed_size <<= 8;
1477 uncompressed_size += compressed_buffer[9]; uncompressed_size <<= 8;
1478 uncompressed_size += compressed_buffer[10]; uncompressed_size <<= 8;
1479 uncompressed_size += compressed_buffer[11];
1480
1481 /* It is possible the section consists of several compressed
1482 buffers concatenated together, so we uncompress in a loop. */
1483 strm.zalloc = NULL;
1484 strm.zfree = NULL;
1485 strm.opaque = NULL;
1486 strm.avail_in = compressed_size - header_size;
1487 strm.next_in = (Bytef*) compressed_buffer + header_size;
1488 strm.avail_out = uncompressed_size;
1489 uncompressed_buffer = obstack_alloc (&objfile->objfile_obstack,
1490 uncompressed_size);
1491 rc = inflateInit (&strm);
1492 while (strm.avail_in > 0)
1493 {
1494 if (rc != Z_OK)
1495 error (_("Dwarf Error: setting up DWARF uncompression in '%s': %d"),
1496 bfd_get_filename (abfd), rc);
1497 strm.next_out = ((Bytef*) uncompressed_buffer
1498 + (uncompressed_size - strm.avail_out));
1499 rc = inflate (&strm, Z_FINISH);
1500 if (rc != Z_STREAM_END)
1501 error (_("Dwarf Error: zlib error uncompressing from '%s': %d"),
1502 bfd_get_filename (abfd), rc);
1503 rc = inflateReset (&strm);
1504 }
1505 rc = inflateEnd (&strm);
1506 if (rc != Z_OK
1507 || strm.avail_out != 0)
1508 error (_("Dwarf Error: concluding DWARF uncompression in '%s': %d"),
1509 bfd_get_filename (abfd), rc);
1510
1511 do_cleanups (cleanup);
1512 *outbuf = uncompressed_buffer;
1513 *outsize = uncompressed_size;
1514 #endif
1515 }
1516
1517 /* Read the contents of the section SECTP from object file specified by
1518 OBJFILE, store info about the section into INFO.
1519 If the section is compressed, uncompress it before returning. */
1520
1521 static void
1522 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
1523 {
1524 bfd *abfd = objfile->obfd;
1525 asection *sectp = info->asection;
1526 gdb_byte *buf, *retbuf;
1527 unsigned char header[4];
1528
1529 if (info->readin)
1530 return;
1531 info->buffer = NULL;
1532 info->was_mmapped = 0;
1533 info->readin = 1;
1534
1535 if (info->asection == NULL || info->size == 0)
1536 return;
1537
1538 /* Check if the file has a 4-byte header indicating compression. */
1539 if (info->size > sizeof (header)
1540 && bfd_seek (abfd, sectp->filepos, SEEK_SET) == 0
1541 && bfd_bread (header, sizeof (header), abfd) == sizeof (header))
1542 {
1543 /* Upon decompression, update the buffer and its size. */
1544 if (strncmp (header, "ZLIB", sizeof (header)) == 0)
1545 {
1546 zlib_decompress_section (objfile, sectp, &info->buffer,
1547 &info->size);
1548 return;
1549 }
1550 }
1551
1552 #ifdef HAVE_MMAP
1553 if (pagesize == 0)
1554 pagesize = getpagesize ();
1555
1556 /* Only try to mmap sections which are large enough: we don't want to
1557 waste space due to fragmentation. Also, only try mmap for sections
1558 without relocations. */
1559
1560 if (info->size > 4 * pagesize && (sectp->flags & SEC_RELOC) == 0)
1561 {
1562 off_t pg_offset = sectp->filepos & ~(pagesize - 1);
1563 size_t map_length = info->size + sectp->filepos - pg_offset;
1564 caddr_t retbuf = bfd_mmap (abfd, 0, map_length, PROT_READ,
1565 MAP_PRIVATE, pg_offset);
1566
1567 if (retbuf != MAP_FAILED)
1568 {
1569 info->was_mmapped = 1;
1570 info->buffer = retbuf + (sectp->filepos & (pagesize - 1)) ;
1571 #if HAVE_POSIX_MADVISE
1572 posix_madvise (retbuf, map_length, POSIX_MADV_WILLNEED);
1573 #endif
1574 return;
1575 }
1576 }
1577 #endif
1578
1579 /* If we get here, we are a normal, not-compressed section. */
1580 info->buffer = buf
1581 = obstack_alloc (&objfile->objfile_obstack, info->size);
1582
1583 /* When debugging .o files, we may need to apply relocations; see
1584 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
1585 We never compress sections in .o files, so we only need to
1586 try this when the section is not compressed. */
1587 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
1588 if (retbuf != NULL)
1589 {
1590 info->buffer = retbuf;
1591 return;
1592 }
1593
1594 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1595 || bfd_bread (buf, info->size, abfd) != info->size)
1596 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1597 bfd_get_filename (abfd));
1598 }
1599
1600 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
1601 SECTION_NAME. */
1602
1603 void
1604 dwarf2_get_section_info (struct objfile *objfile, const char *section_name,
1605 asection **sectp, gdb_byte **bufp,
1606 bfd_size_type *sizep)
1607 {
1608 struct dwarf2_per_objfile *data
1609 = objfile_data (objfile, dwarf2_objfile_data_key);
1610 struct dwarf2_section_info *info;
1611
1612 /* We may see an objfile without any DWARF, in which case we just
1613 return nothing. */
1614 if (data == NULL)
1615 {
1616 *sectp = NULL;
1617 *bufp = NULL;
1618 *sizep = 0;
1619 return;
1620 }
1621 if (section_is_p (section_name, EH_FRAME_SECTION))
1622 info = &data->eh_frame;
1623 else if (section_is_p (section_name, FRAME_SECTION))
1624 info = &data->frame;
1625 else
1626 gdb_assert_not_reached ("unexpected section");
1627
1628 if (info->asection != NULL && info->size != 0 && info->buffer == NULL)
1629 /* We haven't read this section in yet. Do it now. */
1630 dwarf2_read_section (objfile, info);
1631
1632 *sectp = info->asection;
1633 *bufp = info->buffer;
1634 *sizep = info->size;
1635 }
1636
1637 \f
1638
1639 /* Read in the symbols for PER_CU. OBJFILE is the objfile from which
1640 this CU came. */
1641
1642 static void
1643 dw2_do_instantiate_symtab (struct objfile *objfile,
1644 struct dwarf2_per_cu_data *per_cu)
1645 {
1646 struct cleanup *back_to;
1647
1648 back_to = make_cleanup (dwarf2_release_queue, NULL);
1649
1650 queue_comp_unit (per_cu, objfile);
1651
1652 if (per_cu->from_debug_types)
1653 read_signatured_type_at_offset (objfile, per_cu->offset);
1654 else
1655 load_full_comp_unit (per_cu, objfile);
1656
1657 process_queue (objfile);
1658
1659 /* Age the cache, releasing compilation units that have not
1660 been used recently. */
1661 age_cached_comp_units ();
1662
1663 do_cleanups (back_to);
1664 }
1665
1666 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
1667 the objfile from which this CU came. Returns the resulting symbol
1668 table. */
1669
1670 static struct symtab *
1671 dw2_instantiate_symtab (struct objfile *objfile,
1672 struct dwarf2_per_cu_data *per_cu)
1673 {
1674 if (!per_cu->v.quick->symtab)
1675 {
1676 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
1677 increment_reading_symtab ();
1678 dw2_do_instantiate_symtab (objfile, per_cu);
1679 do_cleanups (back_to);
1680 }
1681 return per_cu->v.quick->symtab;
1682 }
1683
1684 /* Return the CU given its index. */
1685
1686 static struct dwarf2_per_cu_data *
1687 dw2_get_cu (int index)
1688 {
1689 if (index >= dwarf2_per_objfile->n_comp_units)
1690 {
1691 index -= dwarf2_per_objfile->n_comp_units;
1692 return dwarf2_per_objfile->type_comp_units[index];
1693 }
1694 return dwarf2_per_objfile->all_comp_units[index];
1695 }
1696
1697 /* A helper function that knows how to read a 64-bit value in a way
1698 that doesn't make gdb die. Returns 1 if the conversion went ok, 0
1699 otherwise. */
1700
1701 static int
1702 extract_cu_value (const char *bytes, ULONGEST *result)
1703 {
1704 if (sizeof (ULONGEST) < 8)
1705 {
1706 int i;
1707
1708 /* Ignore the upper 4 bytes if they are all zero. */
1709 for (i = 0; i < 4; ++i)
1710 if (bytes[i + 4] != 0)
1711 return 0;
1712
1713 *result = extract_unsigned_integer (bytes, 4, BFD_ENDIAN_LITTLE);
1714 }
1715 else
1716 *result = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
1717 return 1;
1718 }
1719
1720 /* Read the CU list from the mapped index, and use it to create all
1721 the CU objects for this objfile. Return 0 if something went wrong,
1722 1 if everything went ok. */
1723
1724 static int
1725 create_cus_from_index (struct objfile *objfile, const gdb_byte *cu_list,
1726 offset_type cu_list_elements)
1727 {
1728 offset_type i;
1729
1730 dwarf2_per_objfile->n_comp_units = cu_list_elements / 2;
1731 dwarf2_per_objfile->all_comp_units
1732 = obstack_alloc (&objfile->objfile_obstack,
1733 dwarf2_per_objfile->n_comp_units
1734 * sizeof (struct dwarf2_per_cu_data *));
1735
1736 for (i = 0; i < cu_list_elements; i += 2)
1737 {
1738 struct dwarf2_per_cu_data *the_cu;
1739 ULONGEST offset, length;
1740
1741 if (!extract_cu_value (cu_list, &offset)
1742 || !extract_cu_value (cu_list + 8, &length))
1743 return 0;
1744 cu_list += 2 * 8;
1745
1746 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1747 struct dwarf2_per_cu_data);
1748 the_cu->offset = offset;
1749 the_cu->length = length;
1750 the_cu->objfile = objfile;
1751 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1752 struct dwarf2_per_cu_quick_data);
1753 dwarf2_per_objfile->all_comp_units[i / 2] = the_cu;
1754 }
1755
1756 return 1;
1757 }
1758
1759 /* Create the signatured type hash table from the index. */
1760
1761 static int
1762 create_signatured_type_table_from_index (struct objfile *objfile,
1763 const gdb_byte *bytes,
1764 offset_type elements)
1765 {
1766 offset_type i;
1767 htab_t sig_types_hash;
1768
1769 dwarf2_per_objfile->n_type_comp_units = elements / 3;
1770 dwarf2_per_objfile->type_comp_units
1771 = obstack_alloc (&objfile->objfile_obstack,
1772 dwarf2_per_objfile->n_type_comp_units
1773 * sizeof (struct dwarf2_per_cu_data *));
1774
1775 sig_types_hash = allocate_signatured_type_table (objfile);
1776
1777 for (i = 0; i < elements; i += 3)
1778 {
1779 struct signatured_type *type_sig;
1780 ULONGEST offset, type_offset, signature;
1781 void **slot;
1782
1783 if (!extract_cu_value (bytes, &offset)
1784 || !extract_cu_value (bytes + 8, &type_offset))
1785 return 0;
1786 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
1787 bytes += 3 * 8;
1788
1789 type_sig = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1790 struct signatured_type);
1791 type_sig->signature = signature;
1792 type_sig->offset = offset;
1793 type_sig->type_offset = type_offset;
1794 type_sig->per_cu.from_debug_types = 1;
1795 type_sig->per_cu.offset = offset;
1796 type_sig->per_cu.objfile = objfile;
1797 type_sig->per_cu.v.quick
1798 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1799 struct dwarf2_per_cu_quick_data);
1800
1801 slot = htab_find_slot (sig_types_hash, type_sig, INSERT);
1802 *slot = type_sig;
1803
1804 dwarf2_per_objfile->type_comp_units[i / 3] = &type_sig->per_cu;
1805 }
1806
1807 dwarf2_per_objfile->signatured_types = sig_types_hash;
1808
1809 return 1;
1810 }
1811
1812 /* Read the address map data from the mapped index, and use it to
1813 populate the objfile's psymtabs_addrmap. */
1814
1815 static void
1816 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
1817 {
1818 const gdb_byte *iter, *end;
1819 struct obstack temp_obstack;
1820 struct addrmap *mutable_map;
1821 struct cleanup *cleanup;
1822 CORE_ADDR baseaddr;
1823
1824 obstack_init (&temp_obstack);
1825 cleanup = make_cleanup_obstack_free (&temp_obstack);
1826 mutable_map = addrmap_create_mutable (&temp_obstack);
1827
1828 iter = index->address_table;
1829 end = iter + index->address_table_size;
1830
1831 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1832
1833 while (iter < end)
1834 {
1835 ULONGEST hi, lo, cu_index;
1836 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
1837 iter += 8;
1838 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
1839 iter += 8;
1840 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
1841 iter += 4;
1842
1843 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
1844 dw2_get_cu (cu_index));
1845 }
1846
1847 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
1848 &objfile->objfile_obstack);
1849 do_cleanups (cleanup);
1850 }
1851
1852 /* The hash function for strings in the mapped index. This is the
1853 same as the hashtab.c hash function, but we keep a separate copy to
1854 maintain control over the implementation. This is necessary
1855 because the hash function is tied to the format of the mapped index
1856 file. */
1857
1858 static hashval_t
1859 mapped_index_string_hash (const void *p)
1860 {
1861 const unsigned char *str = (const unsigned char *) p;
1862 hashval_t r = 0;
1863 unsigned char c;
1864
1865 while ((c = *str++) != 0)
1866 r = r * 67 + c - 113;
1867
1868 return r;
1869 }
1870
1871 /* Find a slot in the mapped index INDEX for the object named NAME.
1872 If NAME is found, set *VEC_OUT to point to the CU vector in the
1873 constant pool and return 1. If NAME cannot be found, return 0. */
1874
1875 static int
1876 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
1877 offset_type **vec_out)
1878 {
1879 offset_type hash = mapped_index_string_hash (name);
1880 offset_type slot, step;
1881
1882 slot = hash & (index->symbol_table_slots - 1);
1883 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
1884
1885 for (;;)
1886 {
1887 /* Convert a slot number to an offset into the table. */
1888 offset_type i = 2 * slot;
1889 const char *str;
1890 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
1891 return 0;
1892
1893 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
1894 if (!strcmp (name, str))
1895 {
1896 *vec_out = (offset_type *) (index->constant_pool
1897 + MAYBE_SWAP (index->symbol_table[i + 1]));
1898 return 1;
1899 }
1900
1901 slot = (slot + step) & (index->symbol_table_slots - 1);
1902 }
1903 }
1904
1905 /* Read the index file. If everything went ok, initialize the "quick"
1906 elements of all the CUs and return 1. Otherwise, return 0. */
1907
1908 static int
1909 dwarf2_read_index (struct objfile *objfile)
1910 {
1911 char *addr;
1912 struct mapped_index *map;
1913 offset_type *metadata;
1914 const gdb_byte *cu_list;
1915 const gdb_byte *types_list = NULL;
1916 offset_type version, cu_list_elements;
1917 offset_type types_list_elements = 0;
1918 int i;
1919
1920 if (dwarf2_per_objfile->gdb_index.asection == NULL
1921 || dwarf2_per_objfile->gdb_index.size == 0)
1922 return 0;
1923
1924 /* Older elfutils strip versions could keep the section in the main
1925 executable while splitting it for the separate debug info file. */
1926 if ((bfd_get_file_flags (dwarf2_per_objfile->gdb_index.asection)
1927 & SEC_HAS_CONTENTS) == 0)
1928 return 0;
1929
1930 dwarf2_read_section (objfile, &dwarf2_per_objfile->gdb_index);
1931
1932 addr = dwarf2_per_objfile->gdb_index.buffer;
1933 /* Version check. */
1934 version = MAYBE_SWAP (*(offset_type *) addr);
1935 /* Versions earlier than 3 emitted every copy of a psymbol. This
1936 causes the index to behave very poorly for certain requests. So,
1937 it seems better to just ignore such indices. */
1938 if (version < 3)
1939 return 0;
1940
1941 map = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct mapped_index);
1942 map->total_size = dwarf2_per_objfile->gdb_index.size;
1943
1944 metadata = (offset_type *) (addr + sizeof (offset_type));
1945
1946 i = 0;
1947 cu_list = addr + MAYBE_SWAP (metadata[i]);
1948 cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
1949 / 8);
1950 ++i;
1951
1952 types_list = addr + MAYBE_SWAP (metadata[i]);
1953 types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
1954 - MAYBE_SWAP (metadata[i]))
1955 / 8);
1956 ++i;
1957
1958 map->address_table = addr + MAYBE_SWAP (metadata[i]);
1959 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
1960 - MAYBE_SWAP (metadata[i]));
1961 ++i;
1962
1963 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
1964 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
1965 - MAYBE_SWAP (metadata[i]))
1966 / (2 * sizeof (offset_type)));
1967 ++i;
1968
1969 map->constant_pool = addr + MAYBE_SWAP (metadata[i]);
1970
1971 if (!create_cus_from_index (objfile, cu_list, cu_list_elements))
1972 return 0;
1973
1974 if (types_list_elements
1975 && !create_signatured_type_table_from_index (objfile, types_list,
1976 types_list_elements))
1977 return 0;
1978
1979 create_addrmap_from_index (objfile, map);
1980
1981 dwarf2_per_objfile->index_table = map;
1982 dwarf2_per_objfile->using_index = 1;
1983
1984 return 1;
1985 }
1986
1987 /* A helper for the "quick" functions which sets the global
1988 dwarf2_per_objfile according to OBJFILE. */
1989
1990 static void
1991 dw2_setup (struct objfile *objfile)
1992 {
1993 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1994 gdb_assert (dwarf2_per_objfile);
1995 }
1996
1997 /* A helper for the "quick" functions which attempts to read the line
1998 table for THIS_CU. */
1999
2000 static void
2001 dw2_require_line_header (struct objfile *objfile,
2002 struct dwarf2_per_cu_data *this_cu)
2003 {
2004 bfd *abfd = objfile->obfd;
2005 struct line_header *lh = NULL;
2006 struct attribute *attr;
2007 struct cleanup *cleanups;
2008 struct die_info *comp_unit_die;
2009 struct dwarf2_section_info* sec;
2010 gdb_byte *beg_of_comp_unit, *info_ptr, *buffer;
2011 int has_children, i;
2012 struct dwarf2_cu cu;
2013 unsigned int bytes_read, buffer_size;
2014 struct die_reader_specs reader_specs;
2015 char *name, *comp_dir;
2016
2017 if (this_cu->v.quick->read_lines)
2018 return;
2019 this_cu->v.quick->read_lines = 1;
2020
2021 memset (&cu, 0, sizeof (cu));
2022 cu.objfile = objfile;
2023 obstack_init (&cu.comp_unit_obstack);
2024
2025 cleanups = make_cleanup (free_stack_comp_unit, &cu);
2026
2027 if (this_cu->from_debug_types)
2028 sec = &dwarf2_per_objfile->types;
2029 else
2030 sec = &dwarf2_per_objfile->info;
2031 dwarf2_read_section (objfile, sec);
2032 buffer_size = sec->size;
2033 buffer = sec->buffer;
2034 info_ptr = buffer + this_cu->offset;
2035 beg_of_comp_unit = info_ptr;
2036
2037 info_ptr = partial_read_comp_unit_head (&cu.header, info_ptr,
2038 buffer, buffer_size,
2039 abfd);
2040
2041 /* Complete the cu_header. */
2042 cu.header.offset = beg_of_comp_unit - buffer;
2043 cu.header.first_die_offset = info_ptr - beg_of_comp_unit;
2044
2045 this_cu->cu = &cu;
2046 cu.per_cu = this_cu;
2047
2048 dwarf2_read_abbrevs (abfd, &cu);
2049 make_cleanup (dwarf2_free_abbrev_table, &cu);
2050
2051 if (this_cu->from_debug_types)
2052 info_ptr += 8 /*signature*/ + cu.header.offset_size;
2053 init_cu_die_reader (&reader_specs, &cu);
2054 info_ptr = read_full_die (&reader_specs, &comp_unit_die, info_ptr,
2055 &has_children);
2056
2057 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, &cu);
2058 if (attr)
2059 {
2060 unsigned int line_offset = DW_UNSND (attr);
2061 lh = dwarf_decode_line_header (line_offset, abfd, &cu);
2062 }
2063 if (lh == NULL)
2064 {
2065 do_cleanups (cleanups);
2066 return;
2067 }
2068
2069 find_file_and_directory (comp_unit_die, &cu, &name, &comp_dir);
2070
2071 this_cu->v.quick->lines = lh;
2072
2073 this_cu->v.quick->file_names
2074 = obstack_alloc (&objfile->objfile_obstack,
2075 lh->num_file_names * sizeof (char *));
2076 for (i = 0; i < lh->num_file_names; ++i)
2077 this_cu->v.quick->file_names[i] = file_full_name (i + 1, lh, comp_dir);
2078
2079 do_cleanups (cleanups);
2080 }
2081
2082 /* A helper for the "quick" functions which computes and caches the
2083 real path for a given file name from the line table.
2084 dw2_require_line_header must have been called before this is
2085 invoked. */
2086
2087 static const char *
2088 dw2_require_full_path (struct objfile *objfile,
2089 struct dwarf2_per_cu_data *per_cu,
2090 int index)
2091 {
2092 if (!per_cu->v.quick->full_names)
2093 per_cu->v.quick->full_names
2094 = OBSTACK_CALLOC (&objfile->objfile_obstack,
2095 per_cu->v.quick->lines->num_file_names,
2096 sizeof (char *));
2097
2098 if (!per_cu->v.quick->full_names[index])
2099 per_cu->v.quick->full_names[index]
2100 = gdb_realpath (per_cu->v.quick->file_names[index]);
2101
2102 return per_cu->v.quick->full_names[index];
2103 }
2104
2105 static struct symtab *
2106 dw2_find_last_source_symtab (struct objfile *objfile)
2107 {
2108 int index;
2109 dw2_setup (objfile);
2110 index = dwarf2_per_objfile->n_comp_units - 1;
2111 return dw2_instantiate_symtab (objfile, dw2_get_cu (index));
2112 }
2113
2114 static void
2115 dw2_forget_cached_source_info (struct objfile *objfile)
2116 {
2117 int i;
2118
2119 dw2_setup (objfile);
2120 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2121 + dwarf2_per_objfile->n_type_comp_units); ++i)
2122 {
2123 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2124
2125 if (per_cu->v.quick->full_names)
2126 {
2127 int j;
2128
2129 for (j = 0; j < per_cu->v.quick->lines->num_file_names; ++j)
2130 xfree ((void *) per_cu->v.quick->full_names[j]);
2131 }
2132 }
2133 }
2134
2135 static int
2136 dw2_lookup_symtab (struct objfile *objfile, const char *name,
2137 const char *full_path, const char *real_path,
2138 struct symtab **result)
2139 {
2140 int i;
2141 int check_basename = lbasename (name) == name;
2142 struct dwarf2_per_cu_data *base_cu = NULL;
2143
2144 dw2_setup (objfile);
2145 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2146 + dwarf2_per_objfile->n_type_comp_units); ++i)
2147 {
2148 int j;
2149 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2150
2151 if (per_cu->v.quick->symtab)
2152 continue;
2153
2154 dw2_require_line_header (objfile, per_cu);
2155 if (!per_cu->v.quick->lines)
2156 continue;
2157
2158 for (j = 0; j < per_cu->v.quick->lines->num_file_names; ++j)
2159 {
2160 const char *this_name = per_cu->v.quick->file_names[j];
2161
2162 if (FILENAME_CMP (name, this_name) == 0)
2163 {
2164 *result = dw2_instantiate_symtab (objfile, per_cu);
2165 return 1;
2166 }
2167
2168 if (check_basename && ! base_cu
2169 && FILENAME_CMP (lbasename (this_name), name) == 0)
2170 base_cu = per_cu;
2171
2172 if (full_path != NULL)
2173 {
2174 const char *this_full_name = dw2_require_full_path (objfile,
2175 per_cu, j);
2176
2177 if (this_full_name
2178 && FILENAME_CMP (full_path, this_full_name) == 0)
2179 {
2180 *result = dw2_instantiate_symtab (objfile, per_cu);
2181 return 1;
2182 }
2183 }
2184
2185 if (real_path != NULL)
2186 {
2187 const char *this_full_name = dw2_require_full_path (objfile,
2188 per_cu, j);
2189
2190 if (this_full_name != NULL)
2191 {
2192 char *rp = gdb_realpath (this_full_name);
2193 if (rp != NULL && FILENAME_CMP (real_path, rp) == 0)
2194 {
2195 xfree (rp);
2196 *result = dw2_instantiate_symtab (objfile, per_cu);
2197 return 1;
2198 }
2199 xfree (rp);
2200 }
2201 }
2202 }
2203 }
2204
2205 if (base_cu)
2206 {
2207 *result = dw2_instantiate_symtab (objfile, base_cu);
2208 return 1;
2209 }
2210
2211 return 0;
2212 }
2213
2214 static struct symtab *
2215 dw2_lookup_symbol (struct objfile *objfile, int block_index,
2216 const char *name, domain_enum domain)
2217 {
2218 /* We do all the work in the pre_expand_symtabs_matching hook
2219 instead. */
2220 return NULL;
2221 }
2222
2223 /* A helper function that expands all symtabs that hold an object
2224 named NAME. */
2225
2226 static void
2227 dw2_do_expand_symtabs_matching (struct objfile *objfile, const char *name)
2228 {
2229 dw2_setup (objfile);
2230
2231 if (dwarf2_per_objfile->index_table)
2232 {
2233 offset_type *vec;
2234
2235 if (find_slot_in_mapped_hash (dwarf2_per_objfile->index_table,
2236 name, &vec))
2237 {
2238 offset_type i, len = MAYBE_SWAP (*vec);
2239 for (i = 0; i < len; ++i)
2240 {
2241 offset_type cu_index = MAYBE_SWAP (vec[i + 1]);
2242 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (cu_index);
2243
2244 dw2_instantiate_symtab (objfile, per_cu);
2245 }
2246 }
2247 }
2248 }
2249
2250 static void
2251 dw2_pre_expand_symtabs_matching (struct objfile *objfile,
2252 int kind, const char *name,
2253 domain_enum domain)
2254 {
2255 dw2_do_expand_symtabs_matching (objfile, name);
2256 }
2257
2258 static void
2259 dw2_print_stats (struct objfile *objfile)
2260 {
2261 int i, count;
2262
2263 dw2_setup (objfile);
2264 count = 0;
2265 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2266 + dwarf2_per_objfile->n_type_comp_units); ++i)
2267 {
2268 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2269
2270 if (!per_cu->v.quick->symtab)
2271 ++count;
2272 }
2273 printf_filtered (_(" Number of unread CUs: %d\n"), count);
2274 }
2275
2276 static void
2277 dw2_dump (struct objfile *objfile)
2278 {
2279 /* Nothing worth printing. */
2280 }
2281
2282 static void
2283 dw2_relocate (struct objfile *objfile, struct section_offsets *new_offsets,
2284 struct section_offsets *delta)
2285 {
2286 /* There's nothing to relocate here. */
2287 }
2288
2289 static void
2290 dw2_expand_symtabs_for_function (struct objfile *objfile,
2291 const char *func_name)
2292 {
2293 dw2_do_expand_symtabs_matching (objfile, func_name);
2294 }
2295
2296 static void
2297 dw2_expand_all_symtabs (struct objfile *objfile)
2298 {
2299 int i;
2300
2301 dw2_setup (objfile);
2302
2303 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2304 + dwarf2_per_objfile->n_type_comp_units); ++i)
2305 {
2306 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2307
2308 dw2_instantiate_symtab (objfile, per_cu);
2309 }
2310 }
2311
2312 static void
2313 dw2_expand_symtabs_with_filename (struct objfile *objfile,
2314 const char *filename)
2315 {
2316 int i;
2317
2318 dw2_setup (objfile);
2319 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2320 + dwarf2_per_objfile->n_type_comp_units); ++i)
2321 {
2322 int j;
2323 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2324
2325 if (per_cu->v.quick->symtab)
2326 continue;
2327
2328 dw2_require_line_header (objfile, per_cu);
2329 if (!per_cu->v.quick->lines)
2330 continue;
2331
2332 for (j = 0; j < per_cu->v.quick->lines->num_file_names; ++j)
2333 {
2334 const char *this_name = per_cu->v.quick->file_names[j];
2335 if (strcmp (this_name, filename) == 0)
2336 {
2337 dw2_instantiate_symtab (objfile, per_cu);
2338 break;
2339 }
2340 }
2341 }
2342 }
2343
2344 static const char *
2345 dw2_find_symbol_file (struct objfile *objfile, const char *name)
2346 {
2347 struct dwarf2_per_cu_data *per_cu;
2348 offset_type *vec;
2349
2350 dw2_setup (objfile);
2351
2352 if (!dwarf2_per_objfile->index_table)
2353 return NULL;
2354
2355 if (!find_slot_in_mapped_hash (dwarf2_per_objfile->index_table,
2356 name, &vec))
2357 return NULL;
2358
2359 /* Note that this just looks at the very first one named NAME -- but
2360 actually we are looking for a function. find_main_filename
2361 should be rewritten so that it doesn't require a custom hook. It
2362 could just use the ordinary symbol tables. */
2363 /* vec[0] is the length, which must always be >0. */
2364 per_cu = dw2_get_cu (MAYBE_SWAP (vec[1]));
2365
2366 dw2_require_line_header (objfile, per_cu);
2367 if (!per_cu->v.quick->lines)
2368 return NULL;
2369
2370 return per_cu->v.quick->file_names[per_cu->v.quick->lines->num_file_names - 1];
2371 }
2372
2373 static void
2374 dw2_map_matching_symbols (const char * name, domain_enum namespace,
2375 struct objfile *objfile, int global,
2376 int (*callback) (struct block *,
2377 struct symbol *, void *),
2378 void *data,
2379 int (*match) (const char *, const char *),
2380 int (*ordered_compare) (const char *,
2381 const char *))
2382 {
2383 /* Currently unimplemented; used for Ada. The function can be called if the
2384 current language is Ada for a non-Ada objfile using GNU index. As Ada
2385 does not look for non-Ada symbols this function should just return. */
2386 }
2387
2388 static void
2389 dw2_expand_symtabs_matching (struct objfile *objfile,
2390 int (*file_matcher) (const char *, void *),
2391 int (*name_matcher) (const char *, void *),
2392 domain_enum kind,
2393 void *data)
2394 {
2395 int i;
2396 offset_type iter;
2397 struct mapped_index *index;
2398
2399 dw2_setup (objfile);
2400 if (!dwarf2_per_objfile->index_table)
2401 return;
2402 index = dwarf2_per_objfile->index_table;
2403
2404 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2405 + dwarf2_per_objfile->n_type_comp_units); ++i)
2406 {
2407 int j;
2408 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2409
2410 per_cu->v.quick->mark = 0;
2411 if (per_cu->v.quick->symtab)
2412 continue;
2413
2414 dw2_require_line_header (objfile, per_cu);
2415 if (!per_cu->v.quick->lines)
2416 continue;
2417
2418 for (j = 0; j < per_cu->v.quick->lines->num_file_names; ++j)
2419 {
2420 if (file_matcher (per_cu->v.quick->file_names[j], data))
2421 {
2422 per_cu->v.quick->mark = 1;
2423 break;
2424 }
2425 }
2426 }
2427
2428 for (iter = 0; iter < index->symbol_table_slots; ++iter)
2429 {
2430 offset_type idx = 2 * iter;
2431 const char *name;
2432 offset_type *vec, vec_len, vec_idx;
2433
2434 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
2435 continue;
2436
2437 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
2438
2439 if (! (*name_matcher) (name, data))
2440 continue;
2441
2442 /* The name was matched, now expand corresponding CUs that were
2443 marked. */
2444 vec = (offset_type *) (index->constant_pool
2445 + MAYBE_SWAP (index->symbol_table[idx + 1]));
2446 vec_len = MAYBE_SWAP (vec[0]);
2447 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
2448 {
2449 struct dwarf2_per_cu_data *per_cu;
2450
2451 per_cu = dw2_get_cu (MAYBE_SWAP (vec[vec_idx + 1]));
2452 if (per_cu->v.quick->mark)
2453 dw2_instantiate_symtab (objfile, per_cu);
2454 }
2455 }
2456 }
2457
2458 static struct symtab *
2459 dw2_find_pc_sect_symtab (struct objfile *objfile,
2460 struct minimal_symbol *msymbol,
2461 CORE_ADDR pc,
2462 struct obj_section *section,
2463 int warn_if_readin)
2464 {
2465 struct dwarf2_per_cu_data *data;
2466
2467 dw2_setup (objfile);
2468
2469 if (!objfile->psymtabs_addrmap)
2470 return NULL;
2471
2472 data = addrmap_find (objfile->psymtabs_addrmap, pc);
2473 if (!data)
2474 return NULL;
2475
2476 if (warn_if_readin && data->v.quick->symtab)
2477 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
2478 paddress (get_objfile_arch (objfile), pc));
2479
2480 return dw2_instantiate_symtab (objfile, data);
2481 }
2482
2483 static void
2484 dw2_map_symbol_names (struct objfile *objfile,
2485 void (*fun) (const char *, void *),
2486 void *data)
2487 {
2488 offset_type iter;
2489 struct mapped_index *index;
2490
2491 dw2_setup (objfile);
2492
2493 if (!dwarf2_per_objfile->index_table)
2494 return;
2495 index = dwarf2_per_objfile->index_table;
2496
2497 for (iter = 0; iter < index->symbol_table_slots; ++iter)
2498 {
2499 offset_type idx = 2 * iter;
2500 const char *name;
2501 offset_type *vec, vec_len, vec_idx;
2502
2503 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
2504 continue;
2505
2506 name = (index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]));
2507
2508 (*fun) (name, data);
2509 }
2510 }
2511
2512 static void
2513 dw2_map_symbol_filenames (struct objfile *objfile,
2514 void (*fun) (const char *, const char *, void *),
2515 void *data)
2516 {
2517 int i;
2518
2519 dw2_setup (objfile);
2520 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2521 + dwarf2_per_objfile->n_type_comp_units); ++i)
2522 {
2523 int j;
2524 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2525
2526 if (per_cu->v.quick->symtab)
2527 continue;
2528
2529 dw2_require_line_header (objfile, per_cu);
2530 if (!per_cu->v.quick->lines)
2531 continue;
2532
2533 for (j = 0; j < per_cu->v.quick->lines->num_file_names; ++j)
2534 {
2535 const char *this_full_name = dw2_require_full_path (objfile, per_cu,
2536 j);
2537 (*fun) (per_cu->v.quick->file_names[j], this_full_name, data);
2538 }
2539 }
2540 }
2541
2542 static int
2543 dw2_has_symbols (struct objfile *objfile)
2544 {
2545 return 1;
2546 }
2547
2548 const struct quick_symbol_functions dwarf2_gdb_index_functions =
2549 {
2550 dw2_has_symbols,
2551 dw2_find_last_source_symtab,
2552 dw2_forget_cached_source_info,
2553 dw2_lookup_symtab,
2554 dw2_lookup_symbol,
2555 dw2_pre_expand_symtabs_matching,
2556 dw2_print_stats,
2557 dw2_dump,
2558 dw2_relocate,
2559 dw2_expand_symtabs_for_function,
2560 dw2_expand_all_symtabs,
2561 dw2_expand_symtabs_with_filename,
2562 dw2_find_symbol_file,
2563 dw2_map_matching_symbols,
2564 dw2_expand_symtabs_matching,
2565 dw2_find_pc_sect_symtab,
2566 dw2_map_symbol_names,
2567 dw2_map_symbol_filenames
2568 };
2569
2570 /* Initialize for reading DWARF for this objfile. Return 0 if this
2571 file will use psymtabs, or 1 if using the GNU index. */
2572
2573 int
2574 dwarf2_initialize_objfile (struct objfile *objfile)
2575 {
2576 /* If we're about to read full symbols, don't bother with the
2577 indices. In this case we also don't care if some other debug
2578 format is making psymtabs, because they are all about to be
2579 expanded anyway. */
2580 if ((objfile->flags & OBJF_READNOW))
2581 {
2582 int i;
2583
2584 dwarf2_per_objfile->using_index = 1;
2585 create_all_comp_units (objfile);
2586 create_debug_types_hash_table (objfile);
2587
2588 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2589 + dwarf2_per_objfile->n_type_comp_units); ++i)
2590 {
2591 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2592
2593 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2594 struct dwarf2_per_cu_quick_data);
2595 }
2596
2597 /* Return 1 so that gdb sees the "quick" functions. However,
2598 these functions will be no-ops because we will have expanded
2599 all symtabs. */
2600 return 1;
2601 }
2602
2603 if (dwarf2_read_index (objfile))
2604 return 1;
2605
2606 dwarf2_build_psymtabs (objfile);
2607 return 0;
2608 }
2609
2610 \f
2611
2612 /* Build a partial symbol table. */
2613
2614 void
2615 dwarf2_build_psymtabs (struct objfile *objfile)
2616 {
2617 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
2618 {
2619 init_psymbol_list (objfile, 1024);
2620 }
2621
2622 dwarf2_build_psymtabs_hard (objfile);
2623 }
2624
2625 /* Return TRUE if OFFSET is within CU_HEADER. */
2626
2627 static inline int
2628 offset_in_cu_p (const struct comp_unit_head *cu_header, unsigned int offset)
2629 {
2630 unsigned int bottom = cu_header->offset;
2631 unsigned int top = (cu_header->offset
2632 + cu_header->length
2633 + cu_header->initial_length_size);
2634
2635 return (offset >= bottom && offset < top);
2636 }
2637
2638 /* Read in the comp unit header information from the debug_info at info_ptr.
2639 NOTE: This leaves members offset, first_die_offset to be filled in
2640 by the caller. */
2641
2642 static gdb_byte *
2643 read_comp_unit_head (struct comp_unit_head *cu_header,
2644 gdb_byte *info_ptr, bfd *abfd)
2645 {
2646 int signed_addr;
2647 unsigned int bytes_read;
2648
2649 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
2650 cu_header->initial_length_size = bytes_read;
2651 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
2652 info_ptr += bytes_read;
2653 cu_header->version = read_2_bytes (abfd, info_ptr);
2654 info_ptr += 2;
2655 cu_header->abbrev_offset = read_offset (abfd, info_ptr, cu_header,
2656 &bytes_read);
2657 info_ptr += bytes_read;
2658 cu_header->addr_size = read_1_byte (abfd, info_ptr);
2659 info_ptr += 1;
2660 signed_addr = bfd_get_sign_extend_vma (abfd);
2661 if (signed_addr < 0)
2662 internal_error (__FILE__, __LINE__,
2663 _("read_comp_unit_head: dwarf from non elf file"));
2664 cu_header->signed_addr_p = signed_addr;
2665
2666 return info_ptr;
2667 }
2668
2669 static gdb_byte *
2670 partial_read_comp_unit_head (struct comp_unit_head *header, gdb_byte *info_ptr,
2671 gdb_byte *buffer, unsigned int buffer_size,
2672 bfd *abfd)
2673 {
2674 gdb_byte *beg_of_comp_unit = info_ptr;
2675
2676 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
2677
2678 if (header->version != 2 && header->version != 3 && header->version != 4)
2679 error (_("Dwarf Error: wrong version in compilation unit header "
2680 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
2681 bfd_get_filename (abfd));
2682
2683 if (header->abbrev_offset >= dwarf2_per_objfile->abbrev.size)
2684 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
2685 "(offset 0x%lx + 6) [in module %s]"),
2686 (long) header->abbrev_offset,
2687 (long) (beg_of_comp_unit - buffer),
2688 bfd_get_filename (abfd));
2689
2690 if (beg_of_comp_unit + header->length + header->initial_length_size
2691 > buffer + buffer_size)
2692 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
2693 "(offset 0x%lx + 0) [in module %s]"),
2694 (long) header->length,
2695 (long) (beg_of_comp_unit - buffer),
2696 bfd_get_filename (abfd));
2697
2698 return info_ptr;
2699 }
2700
2701 /* Read in the types comp unit header information from .debug_types entry at
2702 types_ptr. The result is a pointer to one past the end of the header. */
2703
2704 static gdb_byte *
2705 read_type_comp_unit_head (struct comp_unit_head *cu_header,
2706 ULONGEST *signature,
2707 gdb_byte *types_ptr, bfd *abfd)
2708 {
2709 gdb_byte *initial_types_ptr = types_ptr;
2710
2711 dwarf2_read_section (dwarf2_per_objfile->objfile,
2712 &dwarf2_per_objfile->types);
2713 cu_header->offset = types_ptr - dwarf2_per_objfile->types.buffer;
2714
2715 types_ptr = read_comp_unit_head (cu_header, types_ptr, abfd);
2716
2717 *signature = read_8_bytes (abfd, types_ptr);
2718 types_ptr += 8;
2719 types_ptr += cu_header->offset_size;
2720 cu_header->first_die_offset = types_ptr - initial_types_ptr;
2721
2722 return types_ptr;
2723 }
2724
2725 /* Allocate a new partial symtab for file named NAME and mark this new
2726 partial symtab as being an include of PST. */
2727
2728 static void
2729 dwarf2_create_include_psymtab (char *name, struct partial_symtab *pst,
2730 struct objfile *objfile)
2731 {
2732 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
2733
2734 subpst->section_offsets = pst->section_offsets;
2735 subpst->textlow = 0;
2736 subpst->texthigh = 0;
2737
2738 subpst->dependencies = (struct partial_symtab **)
2739 obstack_alloc (&objfile->objfile_obstack,
2740 sizeof (struct partial_symtab *));
2741 subpst->dependencies[0] = pst;
2742 subpst->number_of_dependencies = 1;
2743
2744 subpst->globals_offset = 0;
2745 subpst->n_global_syms = 0;
2746 subpst->statics_offset = 0;
2747 subpst->n_static_syms = 0;
2748 subpst->symtab = NULL;
2749 subpst->read_symtab = pst->read_symtab;
2750 subpst->readin = 0;
2751
2752 /* No private part is necessary for include psymtabs. This property
2753 can be used to differentiate between such include psymtabs and
2754 the regular ones. */
2755 subpst->read_symtab_private = NULL;
2756 }
2757
2758 /* Read the Line Number Program data and extract the list of files
2759 included by the source file represented by PST. Build an include
2760 partial symtab for each of these included files. */
2761
2762 static void
2763 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
2764 struct die_info *die,
2765 struct partial_symtab *pst)
2766 {
2767 struct objfile *objfile = cu->objfile;
2768 bfd *abfd = objfile->obfd;
2769 struct line_header *lh = NULL;
2770 struct attribute *attr;
2771
2772 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
2773 if (attr)
2774 {
2775 unsigned int line_offset = DW_UNSND (attr);
2776
2777 lh = dwarf_decode_line_header (line_offset, abfd, cu);
2778 }
2779 if (lh == NULL)
2780 return; /* No linetable, so no includes. */
2781
2782 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
2783 dwarf_decode_lines (lh, pst->dirname, abfd, cu, pst);
2784
2785 free_line_header (lh);
2786 }
2787
2788 static hashval_t
2789 hash_type_signature (const void *item)
2790 {
2791 const struct signatured_type *type_sig = item;
2792
2793 /* This drops the top 32 bits of the signature, but is ok for a hash. */
2794 return type_sig->signature;
2795 }
2796
2797 static int
2798 eq_type_signature (const void *item_lhs, const void *item_rhs)
2799 {
2800 const struct signatured_type *lhs = item_lhs;
2801 const struct signatured_type *rhs = item_rhs;
2802
2803 return lhs->signature == rhs->signature;
2804 }
2805
2806 /* Allocate a hash table for signatured types. */
2807
2808 static htab_t
2809 allocate_signatured_type_table (struct objfile *objfile)
2810 {
2811 return htab_create_alloc_ex (41,
2812 hash_type_signature,
2813 eq_type_signature,
2814 NULL,
2815 &objfile->objfile_obstack,
2816 hashtab_obstack_allocate,
2817 dummy_obstack_deallocate);
2818 }
2819
2820 /* A helper function to add a signatured type CU to a list. */
2821
2822 static int
2823 add_signatured_type_cu_to_list (void **slot, void *datum)
2824 {
2825 struct signatured_type *sigt = *slot;
2826 struct dwarf2_per_cu_data ***datap = datum;
2827
2828 **datap = &sigt->per_cu;
2829 ++*datap;
2830
2831 return 1;
2832 }
2833
2834 /* Create the hash table of all entries in the .debug_types section.
2835 The result is zero if there is an error (e.g. missing .debug_types section),
2836 otherwise non-zero. */
2837
2838 static int
2839 create_debug_types_hash_table (struct objfile *objfile)
2840 {
2841 gdb_byte *info_ptr;
2842 htab_t types_htab;
2843 struct dwarf2_per_cu_data **iter;
2844
2845 dwarf2_read_section (objfile, &dwarf2_per_objfile->types);
2846 info_ptr = dwarf2_per_objfile->types.buffer;
2847
2848 if (info_ptr == NULL)
2849 {
2850 dwarf2_per_objfile->signatured_types = NULL;
2851 return 0;
2852 }
2853
2854 types_htab = allocate_signatured_type_table (objfile);
2855
2856 if (dwarf2_die_debug)
2857 fprintf_unfiltered (gdb_stdlog, "Signatured types:\n");
2858
2859 while (info_ptr < dwarf2_per_objfile->types.buffer + dwarf2_per_objfile->types.size)
2860 {
2861 unsigned int offset;
2862 unsigned int offset_size;
2863 unsigned int type_offset;
2864 unsigned int length, initial_length_size;
2865 unsigned short version;
2866 ULONGEST signature;
2867 struct signatured_type *type_sig;
2868 void **slot;
2869 gdb_byte *ptr = info_ptr;
2870
2871 offset = ptr - dwarf2_per_objfile->types.buffer;
2872
2873 /* We need to read the type's signature in order to build the hash
2874 table, but we don't need to read anything else just yet. */
2875
2876 /* Sanity check to ensure entire cu is present. */
2877 length = read_initial_length (objfile->obfd, ptr, &initial_length_size);
2878 if (ptr + length + initial_length_size
2879 > dwarf2_per_objfile->types.buffer + dwarf2_per_objfile->types.size)
2880 {
2881 complaint (&symfile_complaints,
2882 _("debug type entry runs off end of `.debug_types' section, ignored"));
2883 break;
2884 }
2885
2886 offset_size = initial_length_size == 4 ? 4 : 8;
2887 ptr += initial_length_size;
2888 version = bfd_get_16 (objfile->obfd, ptr);
2889 ptr += 2;
2890 ptr += offset_size; /* abbrev offset */
2891 ptr += 1; /* address size */
2892 signature = bfd_get_64 (objfile->obfd, ptr);
2893 ptr += 8;
2894 type_offset = read_offset_1 (objfile->obfd, ptr, offset_size);
2895
2896 type_sig = obstack_alloc (&objfile->objfile_obstack, sizeof (*type_sig));
2897 memset (type_sig, 0, sizeof (*type_sig));
2898 type_sig->signature = signature;
2899 type_sig->offset = offset;
2900 type_sig->type_offset = type_offset;
2901 type_sig->per_cu.objfile = objfile;
2902 type_sig->per_cu.from_debug_types = 1;
2903
2904 slot = htab_find_slot (types_htab, type_sig, INSERT);
2905 gdb_assert (slot != NULL);
2906 *slot = type_sig;
2907
2908 if (dwarf2_die_debug)
2909 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature 0x%s\n",
2910 offset, phex (signature, sizeof (signature)));
2911
2912 info_ptr = info_ptr + initial_length_size + length;
2913 }
2914
2915 dwarf2_per_objfile->signatured_types = types_htab;
2916
2917 dwarf2_per_objfile->n_type_comp_units = htab_elements (types_htab);
2918 dwarf2_per_objfile->type_comp_units
2919 = obstack_alloc (&objfile->objfile_obstack,
2920 dwarf2_per_objfile->n_type_comp_units
2921 * sizeof (struct dwarf2_per_cu_data *));
2922 iter = &dwarf2_per_objfile->type_comp_units[0];
2923 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_list, &iter);
2924 gdb_assert (iter - &dwarf2_per_objfile->type_comp_units[0]
2925 == dwarf2_per_objfile->n_type_comp_units);
2926
2927 return 1;
2928 }
2929
2930 /* Lookup a signature based type.
2931 Returns NULL if SIG is not present in the table. */
2932
2933 static struct signatured_type *
2934 lookup_signatured_type (struct objfile *objfile, ULONGEST sig)
2935 {
2936 struct signatured_type find_entry, *entry;
2937
2938 if (dwarf2_per_objfile->signatured_types == NULL)
2939 {
2940 complaint (&symfile_complaints,
2941 _("missing `.debug_types' section for DW_FORM_sig8 die"));
2942 return 0;
2943 }
2944
2945 find_entry.signature = sig;
2946 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
2947 return entry;
2948 }
2949
2950 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
2951
2952 static void
2953 init_cu_die_reader (struct die_reader_specs *reader,
2954 struct dwarf2_cu *cu)
2955 {
2956 reader->abfd = cu->objfile->obfd;
2957 reader->cu = cu;
2958 if (cu->per_cu->from_debug_types)
2959 {
2960 gdb_assert (dwarf2_per_objfile->types.readin);
2961 reader->buffer = dwarf2_per_objfile->types.buffer;
2962 }
2963 else
2964 {
2965 gdb_assert (dwarf2_per_objfile->info.readin);
2966 reader->buffer = dwarf2_per_objfile->info.buffer;
2967 }
2968 }
2969
2970 /* Find the base address of the compilation unit for range lists and
2971 location lists. It will normally be specified by DW_AT_low_pc.
2972 In DWARF-3 draft 4, the base address could be overridden by
2973 DW_AT_entry_pc. It's been removed, but GCC still uses this for
2974 compilation units with discontinuous ranges. */
2975
2976 static void
2977 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
2978 {
2979 struct attribute *attr;
2980
2981 cu->base_known = 0;
2982 cu->base_address = 0;
2983
2984 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
2985 if (attr)
2986 {
2987 cu->base_address = DW_ADDR (attr);
2988 cu->base_known = 1;
2989 }
2990 else
2991 {
2992 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
2993 if (attr)
2994 {
2995 cu->base_address = DW_ADDR (attr);
2996 cu->base_known = 1;
2997 }
2998 }
2999 }
3000
3001 /* Subroutine of process_type_comp_unit and dwarf2_build_psymtabs_hard
3002 to combine the common parts.
3003 Process a compilation unit for a psymtab.
3004 BUFFER is a pointer to the beginning of the dwarf section buffer,
3005 either .debug_info or debug_types.
3006 INFO_PTR is a pointer to the start of the CU.
3007 Returns a pointer to the next CU. */
3008
3009 static gdb_byte *
3010 process_psymtab_comp_unit (struct objfile *objfile,
3011 struct dwarf2_per_cu_data *this_cu,
3012 gdb_byte *buffer, gdb_byte *info_ptr,
3013 unsigned int buffer_size)
3014 {
3015 bfd *abfd = objfile->obfd;
3016 gdb_byte *beg_of_comp_unit = info_ptr;
3017 struct die_info *comp_unit_die;
3018 struct partial_symtab *pst;
3019 CORE_ADDR baseaddr;
3020 struct cleanup *back_to_inner;
3021 struct dwarf2_cu cu;
3022 int has_children, has_pc_info;
3023 struct attribute *attr;
3024 CORE_ADDR best_lowpc = 0, best_highpc = 0;
3025 struct die_reader_specs reader_specs;
3026
3027 memset (&cu, 0, sizeof (cu));
3028 cu.objfile = objfile;
3029 obstack_init (&cu.comp_unit_obstack);
3030
3031 back_to_inner = make_cleanup (free_stack_comp_unit, &cu);
3032
3033 info_ptr = partial_read_comp_unit_head (&cu.header, info_ptr,
3034 buffer, buffer_size,
3035 abfd);
3036
3037 /* Complete the cu_header. */
3038 cu.header.offset = beg_of_comp_unit - buffer;
3039 cu.header.first_die_offset = info_ptr - beg_of_comp_unit;
3040
3041 cu.list_in_scope = &file_symbols;
3042
3043 /* If this compilation unit was already read in, free the
3044 cached copy in order to read it in again. This is
3045 necessary because we skipped some symbols when we first
3046 read in the compilation unit (see load_partial_dies).
3047 This problem could be avoided, but the benefit is
3048 unclear. */
3049 if (this_cu->cu != NULL)
3050 free_one_cached_comp_unit (this_cu->cu);
3051
3052 /* Note that this is a pointer to our stack frame, being
3053 added to a global data structure. It will be cleaned up
3054 in free_stack_comp_unit when we finish with this
3055 compilation unit. */
3056 this_cu->cu = &cu;
3057 cu.per_cu = this_cu;
3058
3059 /* Read the abbrevs for this compilation unit into a table. */
3060 dwarf2_read_abbrevs (abfd, &cu);
3061 make_cleanup (dwarf2_free_abbrev_table, &cu);
3062
3063 /* Read the compilation unit die. */
3064 if (this_cu->from_debug_types)
3065 info_ptr += 8 /*signature*/ + cu.header.offset_size;
3066 init_cu_die_reader (&reader_specs, &cu);
3067 info_ptr = read_full_die (&reader_specs, &comp_unit_die, info_ptr,
3068 &has_children);
3069
3070 if (this_cu->from_debug_types)
3071 {
3072 /* offset,length haven't been set yet for type units. */
3073 this_cu->offset = cu.header.offset;
3074 this_cu->length = cu.header.length + cu.header.initial_length_size;
3075 }
3076 else if (comp_unit_die->tag == DW_TAG_partial_unit)
3077 {
3078 info_ptr = (beg_of_comp_unit + cu.header.length
3079 + cu.header.initial_length_size);
3080 do_cleanups (back_to_inner);
3081 return info_ptr;
3082 }
3083
3084 /* Set the language we're debugging. */
3085 attr = dwarf2_attr (comp_unit_die, DW_AT_language, &cu);
3086 if (attr)
3087 set_cu_language (DW_UNSND (attr), &cu);
3088 else
3089 set_cu_language (language_minimal, &cu);
3090
3091 /* Allocate a new partial symbol table structure. */
3092 attr = dwarf2_attr (comp_unit_die, DW_AT_name, &cu);
3093 pst = start_psymtab_common (objfile, objfile->section_offsets,
3094 (attr != NULL) ? DW_STRING (attr) : "",
3095 /* TEXTLOW and TEXTHIGH are set below. */
3096 0,
3097 objfile->global_psymbols.next,
3098 objfile->static_psymbols.next);
3099
3100 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, &cu);
3101 if (attr != NULL)
3102 pst->dirname = DW_STRING (attr);
3103
3104 pst->read_symtab_private = this_cu;
3105
3106 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3107
3108 /* Store the function that reads in the rest of the symbol table */
3109 pst->read_symtab = dwarf2_psymtab_to_symtab;
3110
3111 this_cu->v.psymtab = pst;
3112
3113 dwarf2_find_base_address (comp_unit_die, &cu);
3114
3115 /* Possibly set the default values of LOWPC and HIGHPC from
3116 `DW_AT_ranges'. */
3117 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
3118 &best_highpc, &cu, pst);
3119 if (has_pc_info == 1 && best_lowpc < best_highpc)
3120 /* Store the contiguous range if it is not empty; it can be empty for
3121 CUs with no code. */
3122 addrmap_set_empty (objfile->psymtabs_addrmap,
3123 best_lowpc + baseaddr,
3124 best_highpc + baseaddr - 1, pst);
3125
3126 /* Check if comp unit has_children.
3127 If so, read the rest of the partial symbols from this comp unit.
3128 If not, there's no more debug_info for this comp unit. */
3129 if (has_children)
3130 {
3131 struct partial_die_info *first_die;
3132 CORE_ADDR lowpc, highpc;
3133
3134 lowpc = ((CORE_ADDR) -1);
3135 highpc = ((CORE_ADDR) 0);
3136
3137 first_die = load_partial_dies (abfd, buffer, info_ptr, 1, &cu);
3138
3139 scan_partial_symbols (first_die, &lowpc, &highpc,
3140 ! has_pc_info, &cu);
3141
3142 /* If we didn't find a lowpc, set it to highpc to avoid
3143 complaints from `maint check'. */
3144 if (lowpc == ((CORE_ADDR) -1))
3145 lowpc = highpc;
3146
3147 /* If the compilation unit didn't have an explicit address range,
3148 then use the information extracted from its child dies. */
3149 if (! has_pc_info)
3150 {
3151 best_lowpc = lowpc;
3152 best_highpc = highpc;
3153 }
3154 }
3155 pst->textlow = best_lowpc + baseaddr;
3156 pst->texthigh = best_highpc + baseaddr;
3157
3158 pst->n_global_syms = objfile->global_psymbols.next -
3159 (objfile->global_psymbols.list + pst->globals_offset);
3160 pst->n_static_syms = objfile->static_psymbols.next -
3161 (objfile->static_psymbols.list + pst->statics_offset);
3162 sort_pst_symbols (pst);
3163
3164 info_ptr = (beg_of_comp_unit + cu.header.length
3165 + cu.header.initial_length_size);
3166
3167 if (this_cu->from_debug_types)
3168 {
3169 /* It's not clear we want to do anything with stmt lists here.
3170 Waiting to see what gcc ultimately does. */
3171 }
3172 else
3173 {
3174 /* Get the list of files included in the current compilation unit,
3175 and build a psymtab for each of them. */
3176 dwarf2_build_include_psymtabs (&cu, comp_unit_die, pst);
3177 }
3178
3179 do_cleanups (back_to_inner);
3180
3181 return info_ptr;
3182 }
3183
3184 /* Traversal function for htab_traverse_noresize.
3185 Process one .debug_types comp-unit. */
3186
3187 static int
3188 process_type_comp_unit (void **slot, void *info)
3189 {
3190 struct signatured_type *entry = (struct signatured_type *) *slot;
3191 struct objfile *objfile = (struct objfile *) info;
3192 struct dwarf2_per_cu_data *this_cu;
3193
3194 this_cu = &entry->per_cu;
3195
3196 gdb_assert (dwarf2_per_objfile->types.readin);
3197 process_psymtab_comp_unit (objfile, this_cu,
3198 dwarf2_per_objfile->types.buffer,
3199 dwarf2_per_objfile->types.buffer + entry->offset,
3200 dwarf2_per_objfile->types.size);
3201
3202 return 1;
3203 }
3204
3205 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
3206 Build partial symbol tables for the .debug_types comp-units. */
3207
3208 static void
3209 build_type_psymtabs (struct objfile *objfile)
3210 {
3211 if (! create_debug_types_hash_table (objfile))
3212 return;
3213
3214 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
3215 process_type_comp_unit, objfile);
3216 }
3217
3218 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
3219
3220 static void
3221 psymtabs_addrmap_cleanup (void *o)
3222 {
3223 struct objfile *objfile = o;
3224
3225 objfile->psymtabs_addrmap = NULL;
3226 }
3227
3228 /* Build the partial symbol table by doing a quick pass through the
3229 .debug_info and .debug_abbrev sections. */
3230
3231 static void
3232 dwarf2_build_psymtabs_hard (struct objfile *objfile)
3233 {
3234 gdb_byte *info_ptr;
3235 struct cleanup *back_to, *addrmap_cleanup;
3236 struct obstack temp_obstack;
3237
3238 dwarf2_per_objfile->reading_partial_symbols = 1;
3239
3240 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
3241 info_ptr = dwarf2_per_objfile->info.buffer;
3242
3243 /* Any cached compilation units will be linked by the per-objfile
3244 read_in_chain. Make sure to free them when we're done. */
3245 back_to = make_cleanup (free_cached_comp_units, NULL);
3246
3247 build_type_psymtabs (objfile);
3248
3249 create_all_comp_units (objfile);
3250
3251 /* Create a temporary address map on a temporary obstack. We later
3252 copy this to the final obstack. */
3253 obstack_init (&temp_obstack);
3254 make_cleanup_obstack_free (&temp_obstack);
3255 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
3256 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
3257
3258 /* Since the objects we're extracting from .debug_info vary in
3259 length, only the individual functions to extract them (like
3260 read_comp_unit_head and load_partial_die) can really know whether
3261 the buffer is large enough to hold another complete object.
3262
3263 At the moment, they don't actually check that. If .debug_info
3264 holds just one extra byte after the last compilation unit's dies,
3265 then read_comp_unit_head will happily read off the end of the
3266 buffer. read_partial_die is similarly casual. Those functions
3267 should be fixed.
3268
3269 For this loop condition, simply checking whether there's any data
3270 left at all should be sufficient. */
3271
3272 while (info_ptr < (dwarf2_per_objfile->info.buffer
3273 + dwarf2_per_objfile->info.size))
3274 {
3275 struct dwarf2_per_cu_data *this_cu;
3276
3277 this_cu = dwarf2_find_comp_unit (info_ptr - dwarf2_per_objfile->info.buffer,
3278 objfile);
3279
3280 info_ptr = process_psymtab_comp_unit (objfile, this_cu,
3281 dwarf2_per_objfile->info.buffer,
3282 info_ptr,
3283 dwarf2_per_objfile->info.size);
3284 }
3285
3286 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
3287 &objfile->objfile_obstack);
3288 discard_cleanups (addrmap_cleanup);
3289
3290 do_cleanups (back_to);
3291 }
3292
3293 /* Load the partial DIEs for a secondary CU into memory. */
3294
3295 static void
3296 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu,
3297 struct objfile *objfile)
3298 {
3299 bfd *abfd = objfile->obfd;
3300 gdb_byte *info_ptr, *beg_of_comp_unit;
3301 struct die_info *comp_unit_die;
3302 struct dwarf2_cu *cu;
3303 struct cleanup *free_abbrevs_cleanup, *free_cu_cleanup = NULL;
3304 struct attribute *attr;
3305 int has_children;
3306 struct die_reader_specs reader_specs;
3307 int read_cu = 0;
3308
3309 gdb_assert (! this_cu->from_debug_types);
3310
3311 gdb_assert (dwarf2_per_objfile->info.readin);
3312 info_ptr = dwarf2_per_objfile->info.buffer + this_cu->offset;
3313 beg_of_comp_unit = info_ptr;
3314
3315 if (this_cu->cu == NULL)
3316 {
3317 cu = alloc_one_comp_unit (objfile);
3318
3319 read_cu = 1;
3320
3321 /* If an error occurs while loading, release our storage. */
3322 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
3323
3324 info_ptr = partial_read_comp_unit_head (&cu->header, info_ptr,
3325 dwarf2_per_objfile->info.buffer,
3326 dwarf2_per_objfile->info.size,
3327 abfd);
3328
3329 /* Complete the cu_header. */
3330 cu->header.offset = this_cu->offset;
3331 cu->header.first_die_offset = info_ptr - beg_of_comp_unit;
3332
3333 /* Link this compilation unit into the compilation unit tree. */
3334 this_cu->cu = cu;
3335 cu->per_cu = this_cu;
3336
3337 /* Link this CU into read_in_chain. */
3338 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
3339 dwarf2_per_objfile->read_in_chain = this_cu;
3340 }
3341 else
3342 {
3343 cu = this_cu->cu;
3344 info_ptr += cu->header.first_die_offset;
3345 }
3346
3347 /* Read the abbrevs for this compilation unit into a table. */
3348 gdb_assert (cu->dwarf2_abbrevs == NULL);
3349 dwarf2_read_abbrevs (abfd, cu);
3350 free_abbrevs_cleanup = make_cleanup (dwarf2_free_abbrev_table, cu);
3351
3352 /* Read the compilation unit die. */
3353 init_cu_die_reader (&reader_specs, cu);
3354 info_ptr = read_full_die (&reader_specs, &comp_unit_die, info_ptr,
3355 &has_children);
3356
3357 /* Set the language we're debugging. */
3358 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
3359 if (attr)
3360 set_cu_language (DW_UNSND (attr), cu);
3361 else
3362 set_cu_language (language_minimal, cu);
3363
3364 /* Check if comp unit has_children.
3365 If so, read the rest of the partial symbols from this comp unit.
3366 If not, there's no more debug_info for this comp unit. */
3367 if (has_children)
3368 load_partial_dies (abfd, dwarf2_per_objfile->info.buffer, info_ptr, 0, cu);
3369
3370 do_cleanups (free_abbrevs_cleanup);
3371
3372 if (read_cu)
3373 {
3374 /* We've successfully allocated this compilation unit. Let our
3375 caller clean it up when finished with it. */
3376 discard_cleanups (free_cu_cleanup);
3377 }
3378 }
3379
3380 /* Create a list of all compilation units in OBJFILE. We do this only
3381 if an inter-comp-unit reference is found; presumably if there is one,
3382 there will be many, and one will occur early in the .debug_info section.
3383 So there's no point in building this list incrementally. */
3384
3385 static void
3386 create_all_comp_units (struct objfile *objfile)
3387 {
3388 int n_allocated;
3389 int n_comp_units;
3390 struct dwarf2_per_cu_data **all_comp_units;
3391 gdb_byte *info_ptr;
3392
3393 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
3394 info_ptr = dwarf2_per_objfile->info.buffer;
3395
3396 n_comp_units = 0;
3397 n_allocated = 10;
3398 all_comp_units = xmalloc (n_allocated
3399 * sizeof (struct dwarf2_per_cu_data *));
3400
3401 while (info_ptr < dwarf2_per_objfile->info.buffer + dwarf2_per_objfile->info.size)
3402 {
3403 unsigned int length, initial_length_size;
3404 struct dwarf2_per_cu_data *this_cu;
3405 unsigned int offset;
3406
3407 offset = info_ptr - dwarf2_per_objfile->info.buffer;
3408
3409 /* Read just enough information to find out where the next
3410 compilation unit is. */
3411 length = read_initial_length (objfile->obfd, info_ptr,
3412 &initial_length_size);
3413
3414 /* Save the compilation unit for later lookup. */
3415 this_cu = obstack_alloc (&objfile->objfile_obstack,
3416 sizeof (struct dwarf2_per_cu_data));
3417 memset (this_cu, 0, sizeof (*this_cu));
3418 this_cu->offset = offset;
3419 this_cu->length = length + initial_length_size;
3420 this_cu->objfile = objfile;
3421
3422 if (n_comp_units == n_allocated)
3423 {
3424 n_allocated *= 2;
3425 all_comp_units = xrealloc (all_comp_units,
3426 n_allocated
3427 * sizeof (struct dwarf2_per_cu_data *));
3428 }
3429 all_comp_units[n_comp_units++] = this_cu;
3430
3431 info_ptr = info_ptr + this_cu->length;
3432 }
3433
3434 dwarf2_per_objfile->all_comp_units
3435 = obstack_alloc (&objfile->objfile_obstack,
3436 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
3437 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
3438 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
3439 xfree (all_comp_units);
3440 dwarf2_per_objfile->n_comp_units = n_comp_units;
3441 }
3442
3443 /* Process all loaded DIEs for compilation unit CU, starting at
3444 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
3445 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
3446 DW_AT_ranges). If NEED_PC is set, then this function will set
3447 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
3448 and record the covered ranges in the addrmap. */
3449
3450 static void
3451 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
3452 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
3453 {
3454 struct partial_die_info *pdi;
3455
3456 /* Now, march along the PDI's, descending into ones which have
3457 interesting children but skipping the children of the other ones,
3458 until we reach the end of the compilation unit. */
3459
3460 pdi = first_die;
3461
3462 while (pdi != NULL)
3463 {
3464 fixup_partial_die (pdi, cu);
3465
3466 /* Anonymous namespaces or modules have no name but have interesting
3467 children, so we need to look at them. Ditto for anonymous
3468 enums. */
3469
3470 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
3471 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type)
3472 {
3473 switch (pdi->tag)
3474 {
3475 case DW_TAG_subprogram:
3476 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
3477 break;
3478 case DW_TAG_constant:
3479 case DW_TAG_variable:
3480 case DW_TAG_typedef:
3481 case DW_TAG_union_type:
3482 if (!pdi->is_declaration)
3483 {
3484 add_partial_symbol (pdi, cu);
3485 }
3486 break;
3487 case DW_TAG_class_type:
3488 case DW_TAG_interface_type:
3489 case DW_TAG_structure_type:
3490 if (!pdi->is_declaration)
3491 {
3492 add_partial_symbol (pdi, cu);
3493 }
3494 break;
3495 case DW_TAG_enumeration_type:
3496 if (!pdi->is_declaration)
3497 add_partial_enumeration (pdi, cu);
3498 break;
3499 case DW_TAG_base_type:
3500 case DW_TAG_subrange_type:
3501 /* File scope base type definitions are added to the partial
3502 symbol table. */
3503 add_partial_symbol (pdi, cu);
3504 break;
3505 case DW_TAG_namespace:
3506 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
3507 break;
3508 case DW_TAG_module:
3509 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
3510 break;
3511 default:
3512 break;
3513 }
3514 }
3515
3516 /* If the die has a sibling, skip to the sibling. */
3517
3518 pdi = pdi->die_sibling;
3519 }
3520 }
3521
3522 /* Functions used to compute the fully scoped name of a partial DIE.
3523
3524 Normally, this is simple. For C++, the parent DIE's fully scoped
3525 name is concatenated with "::" and the partial DIE's name. For
3526 Java, the same thing occurs except that "." is used instead of "::".
3527 Enumerators are an exception; they use the scope of their parent
3528 enumeration type, i.e. the name of the enumeration type is not
3529 prepended to the enumerator.
3530
3531 There are two complexities. One is DW_AT_specification; in this
3532 case "parent" means the parent of the target of the specification,
3533 instead of the direct parent of the DIE. The other is compilers
3534 which do not emit DW_TAG_namespace; in this case we try to guess
3535 the fully qualified name of structure types from their members'
3536 linkage names. This must be done using the DIE's children rather
3537 than the children of any DW_AT_specification target. We only need
3538 to do this for structures at the top level, i.e. if the target of
3539 any DW_AT_specification (if any; otherwise the DIE itself) does not
3540 have a parent. */
3541
3542 /* Compute the scope prefix associated with PDI's parent, in
3543 compilation unit CU. The result will be allocated on CU's
3544 comp_unit_obstack, or a copy of the already allocated PDI->NAME
3545 field. NULL is returned if no prefix is necessary. */
3546 static char *
3547 partial_die_parent_scope (struct partial_die_info *pdi,
3548 struct dwarf2_cu *cu)
3549 {
3550 char *grandparent_scope;
3551 struct partial_die_info *parent, *real_pdi;
3552
3553 /* We need to look at our parent DIE; if we have a DW_AT_specification,
3554 then this means the parent of the specification DIE. */
3555
3556 real_pdi = pdi;
3557 while (real_pdi->has_specification)
3558 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
3559
3560 parent = real_pdi->die_parent;
3561 if (parent == NULL)
3562 return NULL;
3563
3564 if (parent->scope_set)
3565 return parent->scope;
3566
3567 fixup_partial_die (parent, cu);
3568
3569 grandparent_scope = partial_die_parent_scope (parent, cu);
3570
3571 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
3572 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
3573 Work around this problem here. */
3574 if (cu->language == language_cplus
3575 && parent->tag == DW_TAG_namespace
3576 && strcmp (parent->name, "::") == 0
3577 && grandparent_scope == NULL)
3578 {
3579 parent->scope = NULL;
3580 parent->scope_set = 1;
3581 return NULL;
3582 }
3583
3584 if (parent->tag == DW_TAG_namespace
3585 || parent->tag == DW_TAG_module
3586 || parent->tag == DW_TAG_structure_type
3587 || parent->tag == DW_TAG_class_type
3588 || parent->tag == DW_TAG_interface_type
3589 || parent->tag == DW_TAG_union_type
3590 || parent->tag == DW_TAG_enumeration_type)
3591 {
3592 if (grandparent_scope == NULL)
3593 parent->scope = parent->name;
3594 else
3595 parent->scope = typename_concat (&cu->comp_unit_obstack, grandparent_scope,
3596 parent->name, 0, cu);
3597 }
3598 else if (parent->tag == DW_TAG_enumerator)
3599 /* Enumerators should not get the name of the enumeration as a prefix. */
3600 parent->scope = grandparent_scope;
3601 else
3602 {
3603 /* FIXME drow/2004-04-01: What should we be doing with
3604 function-local names? For partial symbols, we should probably be
3605 ignoring them. */
3606 complaint (&symfile_complaints,
3607 _("unhandled containing DIE tag %d for DIE at %d"),
3608 parent->tag, pdi->offset);
3609 parent->scope = grandparent_scope;
3610 }
3611
3612 parent->scope_set = 1;
3613 return parent->scope;
3614 }
3615
3616 /* Return the fully scoped name associated with PDI, from compilation unit
3617 CU. The result will be allocated with malloc. */
3618 static char *
3619 partial_die_full_name (struct partial_die_info *pdi,
3620 struct dwarf2_cu *cu)
3621 {
3622 char *parent_scope;
3623
3624 /* If this is a template instantiation, we can not work out the
3625 template arguments from partial DIEs. So, unfortunately, we have
3626 to go through the full DIEs. At least any work we do building
3627 types here will be reused if full symbols are loaded later. */
3628 if (pdi->has_template_arguments)
3629 {
3630 fixup_partial_die (pdi, cu);
3631
3632 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
3633 {
3634 struct die_info *die;
3635 struct attribute attr;
3636 struct dwarf2_cu *ref_cu = cu;
3637
3638 attr.name = 0;
3639 attr.form = DW_FORM_ref_addr;
3640 attr.u.addr = pdi->offset;
3641 die = follow_die_ref (NULL, &attr, &ref_cu);
3642
3643 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
3644 }
3645 }
3646
3647 parent_scope = partial_die_parent_scope (pdi, cu);
3648 if (parent_scope == NULL)
3649 return NULL;
3650 else
3651 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
3652 }
3653
3654 static void
3655 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
3656 {
3657 struct objfile *objfile = cu->objfile;
3658 CORE_ADDR addr = 0;
3659 char *actual_name = NULL;
3660 const struct partial_symbol *psym = NULL;
3661 CORE_ADDR baseaddr;
3662 int built_actual_name = 0;
3663
3664 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3665
3666 actual_name = partial_die_full_name (pdi, cu);
3667 if (actual_name)
3668 built_actual_name = 1;
3669
3670 if (actual_name == NULL)
3671 actual_name = pdi->name;
3672
3673 switch (pdi->tag)
3674 {
3675 case DW_TAG_subprogram:
3676 if (pdi->is_external || cu->language == language_ada)
3677 {
3678 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
3679 of the global scope. But in Ada, we want to be able to access
3680 nested procedures globally. So all Ada subprograms are stored
3681 in the global scope. */
3682 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
3683 mst_text, objfile); */
3684 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
3685 built_actual_name,
3686 VAR_DOMAIN, LOC_BLOCK,
3687 &objfile->global_psymbols,
3688 0, pdi->lowpc + baseaddr,
3689 cu->language, objfile);
3690 }
3691 else
3692 {
3693 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
3694 mst_file_text, objfile); */
3695 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
3696 built_actual_name,
3697 VAR_DOMAIN, LOC_BLOCK,
3698 &objfile->static_psymbols,
3699 0, pdi->lowpc + baseaddr,
3700 cu->language, objfile);
3701 }
3702 break;
3703 case DW_TAG_constant:
3704 {
3705 struct psymbol_allocation_list *list;
3706
3707 if (pdi->is_external)
3708 list = &objfile->global_psymbols;
3709 else
3710 list = &objfile->static_psymbols;
3711 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
3712 built_actual_name, VAR_DOMAIN, LOC_STATIC,
3713 list, 0, 0, cu->language, objfile);
3714
3715 }
3716 break;
3717 case DW_TAG_variable:
3718 if (pdi->locdesc)
3719 addr = decode_locdesc (pdi->locdesc, cu);
3720
3721 if (pdi->locdesc
3722 && addr == 0
3723 && !dwarf2_per_objfile->has_section_at_zero)
3724 {
3725 /* A global or static variable may also have been stripped
3726 out by the linker if unused, in which case its address
3727 will be nullified; do not add such variables into partial
3728 symbol table then. */
3729 }
3730 else if (pdi->is_external)
3731 {
3732 /* Global Variable.
3733 Don't enter into the minimal symbol tables as there is
3734 a minimal symbol table entry from the ELF symbols already.
3735 Enter into partial symbol table if it has a location
3736 descriptor or a type.
3737 If the location descriptor is missing, new_symbol will create
3738 a LOC_UNRESOLVED symbol, the address of the variable will then
3739 be determined from the minimal symbol table whenever the variable
3740 is referenced.
3741 The address for the partial symbol table entry is not
3742 used by GDB, but it comes in handy for debugging partial symbol
3743 table building. */
3744
3745 if (pdi->locdesc || pdi->has_type)
3746 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
3747 built_actual_name,
3748 VAR_DOMAIN, LOC_STATIC,
3749 &objfile->global_psymbols,
3750 0, addr + baseaddr,
3751 cu->language, objfile);
3752 }
3753 else
3754 {
3755 /* Static Variable. Skip symbols without location descriptors. */
3756 if (pdi->locdesc == NULL)
3757 {
3758 if (built_actual_name)
3759 xfree (actual_name);
3760 return;
3761 }
3762 /*prim_record_minimal_symbol (actual_name, addr + baseaddr,
3763 mst_file_data, objfile); */
3764 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
3765 built_actual_name,
3766 VAR_DOMAIN, LOC_STATIC,
3767 &objfile->static_psymbols,
3768 0, addr + baseaddr,
3769 cu->language, objfile);
3770 }
3771 break;
3772 case DW_TAG_typedef:
3773 case DW_TAG_base_type:
3774 case DW_TAG_subrange_type:
3775 add_psymbol_to_list (actual_name, strlen (actual_name),
3776 built_actual_name,
3777 VAR_DOMAIN, LOC_TYPEDEF,
3778 &objfile->static_psymbols,
3779 0, (CORE_ADDR) 0, cu->language, objfile);
3780 break;
3781 case DW_TAG_namespace:
3782 add_psymbol_to_list (actual_name, strlen (actual_name),
3783 built_actual_name,
3784 VAR_DOMAIN, LOC_TYPEDEF,
3785 &objfile->global_psymbols,
3786 0, (CORE_ADDR) 0, cu->language, objfile);
3787 break;
3788 case DW_TAG_class_type:
3789 case DW_TAG_interface_type:
3790 case DW_TAG_structure_type:
3791 case DW_TAG_union_type:
3792 case DW_TAG_enumeration_type:
3793 /* Skip external references. The DWARF standard says in the section
3794 about "Structure, Union, and Class Type Entries": "An incomplete
3795 structure, union or class type is represented by a structure,
3796 union or class entry that does not have a byte size attribute
3797 and that has a DW_AT_declaration attribute." */
3798 if (!pdi->has_byte_size && pdi->is_declaration)
3799 {
3800 if (built_actual_name)
3801 xfree (actual_name);
3802 return;
3803 }
3804
3805 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
3806 static vs. global. */
3807 add_psymbol_to_list (actual_name, strlen (actual_name),
3808 built_actual_name,
3809 STRUCT_DOMAIN, LOC_TYPEDEF,
3810 (cu->language == language_cplus
3811 || cu->language == language_java)
3812 ? &objfile->global_psymbols
3813 : &objfile->static_psymbols,
3814 0, (CORE_ADDR) 0, cu->language, objfile);
3815
3816 break;
3817 case DW_TAG_enumerator:
3818 add_psymbol_to_list (actual_name, strlen (actual_name),
3819 built_actual_name,
3820 VAR_DOMAIN, LOC_CONST,
3821 (cu->language == language_cplus
3822 || cu->language == language_java)
3823 ? &objfile->global_psymbols
3824 : &objfile->static_psymbols,
3825 0, (CORE_ADDR) 0, cu->language, objfile);
3826 break;
3827 default:
3828 break;
3829 }
3830
3831 if (built_actual_name)
3832 xfree (actual_name);
3833 }
3834
3835 /* Read a partial die corresponding to a namespace; also, add a symbol
3836 corresponding to that namespace to the symbol table. NAMESPACE is
3837 the name of the enclosing namespace. */
3838
3839 static void
3840 add_partial_namespace (struct partial_die_info *pdi,
3841 CORE_ADDR *lowpc, CORE_ADDR *highpc,
3842 int need_pc, struct dwarf2_cu *cu)
3843 {
3844 /* Add a symbol for the namespace. */
3845
3846 add_partial_symbol (pdi, cu);
3847
3848 /* Now scan partial symbols in that namespace. */
3849
3850 if (pdi->has_children)
3851 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
3852 }
3853
3854 /* Read a partial die corresponding to a Fortran module. */
3855
3856 static void
3857 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
3858 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
3859 {
3860 /* Now scan partial symbols in that module. */
3861
3862 if (pdi->has_children)
3863 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
3864 }
3865
3866 /* Read a partial die corresponding to a subprogram and create a partial
3867 symbol for that subprogram. When the CU language allows it, this
3868 routine also defines a partial symbol for each nested subprogram
3869 that this subprogram contains.
3870
3871 DIE my also be a lexical block, in which case we simply search
3872 recursively for suprograms defined inside that lexical block.
3873 Again, this is only performed when the CU language allows this
3874 type of definitions. */
3875
3876 static void
3877 add_partial_subprogram (struct partial_die_info *pdi,
3878 CORE_ADDR *lowpc, CORE_ADDR *highpc,
3879 int need_pc, struct dwarf2_cu *cu)
3880 {
3881 if (pdi->tag == DW_TAG_subprogram)
3882 {
3883 if (pdi->has_pc_info)
3884 {
3885 if (pdi->lowpc < *lowpc)
3886 *lowpc = pdi->lowpc;
3887 if (pdi->highpc > *highpc)
3888 *highpc = pdi->highpc;
3889 if (need_pc)
3890 {
3891 CORE_ADDR baseaddr;
3892 struct objfile *objfile = cu->objfile;
3893
3894 baseaddr = ANOFFSET (objfile->section_offsets,
3895 SECT_OFF_TEXT (objfile));
3896 addrmap_set_empty (objfile->psymtabs_addrmap,
3897 pdi->lowpc + baseaddr,
3898 pdi->highpc - 1 + baseaddr,
3899 cu->per_cu->v.psymtab);
3900 }
3901 if (!pdi->is_declaration)
3902 /* Ignore subprogram DIEs that do not have a name, they are
3903 illegal. Do not emit a complaint at this point, we will
3904 do so when we convert this psymtab into a symtab. */
3905 if (pdi->name)
3906 add_partial_symbol (pdi, cu);
3907 }
3908 }
3909
3910 if (! pdi->has_children)
3911 return;
3912
3913 if (cu->language == language_ada)
3914 {
3915 pdi = pdi->die_child;
3916 while (pdi != NULL)
3917 {
3918 fixup_partial_die (pdi, cu);
3919 if (pdi->tag == DW_TAG_subprogram
3920 || pdi->tag == DW_TAG_lexical_block)
3921 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
3922 pdi = pdi->die_sibling;
3923 }
3924 }
3925 }
3926
3927 /* Read a partial die corresponding to an enumeration type. */
3928
3929 static void
3930 add_partial_enumeration (struct partial_die_info *enum_pdi,
3931 struct dwarf2_cu *cu)
3932 {
3933 struct partial_die_info *pdi;
3934
3935 if (enum_pdi->name != NULL)
3936 add_partial_symbol (enum_pdi, cu);
3937
3938 pdi = enum_pdi->die_child;
3939 while (pdi)
3940 {
3941 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
3942 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
3943 else
3944 add_partial_symbol (pdi, cu);
3945 pdi = pdi->die_sibling;
3946 }
3947 }
3948
3949 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
3950 Return the corresponding abbrev, or NULL if the number is zero (indicating
3951 an empty DIE). In either case *BYTES_READ will be set to the length of
3952 the initial number. */
3953
3954 static struct abbrev_info *
3955 peek_die_abbrev (gdb_byte *info_ptr, unsigned int *bytes_read,
3956 struct dwarf2_cu *cu)
3957 {
3958 bfd *abfd = cu->objfile->obfd;
3959 unsigned int abbrev_number;
3960 struct abbrev_info *abbrev;
3961
3962 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
3963
3964 if (abbrev_number == 0)
3965 return NULL;
3966
3967 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
3968 if (!abbrev)
3969 {
3970 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"), abbrev_number,
3971 bfd_get_filename (abfd));
3972 }
3973
3974 return abbrev;
3975 }
3976
3977 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
3978 Returns a pointer to the end of a series of DIEs, terminated by an empty
3979 DIE. Any children of the skipped DIEs will also be skipped. */
3980
3981 static gdb_byte *
3982 skip_children (gdb_byte *buffer, gdb_byte *info_ptr, struct dwarf2_cu *cu)
3983 {
3984 struct abbrev_info *abbrev;
3985 unsigned int bytes_read;
3986
3987 while (1)
3988 {
3989 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
3990 if (abbrev == NULL)
3991 return info_ptr + bytes_read;
3992 else
3993 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
3994 }
3995 }
3996
3997 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
3998 INFO_PTR should point just after the initial uleb128 of a DIE, and the
3999 abbrev corresponding to that skipped uleb128 should be passed in
4000 ABBREV. Returns a pointer to this DIE's sibling, skipping any
4001 children. */
4002
4003 static gdb_byte *
4004 skip_one_die (gdb_byte *buffer, gdb_byte *info_ptr,
4005 struct abbrev_info *abbrev, struct dwarf2_cu *cu)
4006 {
4007 unsigned int bytes_read;
4008 struct attribute attr;
4009 bfd *abfd = cu->objfile->obfd;
4010 unsigned int form, i;
4011
4012 for (i = 0; i < abbrev->num_attrs; i++)
4013 {
4014 /* The only abbrev we care about is DW_AT_sibling. */
4015 if (abbrev->attrs[i].name == DW_AT_sibling)
4016 {
4017 read_attribute (&attr, &abbrev->attrs[i],
4018 abfd, info_ptr, cu);
4019 if (attr.form == DW_FORM_ref_addr)
4020 complaint (&symfile_complaints, _("ignoring absolute DW_AT_sibling"));
4021 else
4022 return buffer + dwarf2_get_ref_die_offset (&attr);
4023 }
4024
4025 /* If it isn't DW_AT_sibling, skip this attribute. */
4026 form = abbrev->attrs[i].form;
4027 skip_attribute:
4028 switch (form)
4029 {
4030 case DW_FORM_ref_addr:
4031 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
4032 and later it is offset sized. */
4033 if (cu->header.version == 2)
4034 info_ptr += cu->header.addr_size;
4035 else
4036 info_ptr += cu->header.offset_size;
4037 break;
4038 case DW_FORM_addr:
4039 info_ptr += cu->header.addr_size;
4040 break;
4041 case DW_FORM_data1:
4042 case DW_FORM_ref1:
4043 case DW_FORM_flag:
4044 info_ptr += 1;
4045 break;
4046 case DW_FORM_flag_present:
4047 break;
4048 case DW_FORM_data2:
4049 case DW_FORM_ref2:
4050 info_ptr += 2;
4051 break;
4052 case DW_FORM_data4:
4053 case DW_FORM_ref4:
4054 info_ptr += 4;
4055 break;
4056 case DW_FORM_data8:
4057 case DW_FORM_ref8:
4058 case DW_FORM_sig8:
4059 info_ptr += 8;
4060 break;
4061 case DW_FORM_string:
4062 read_direct_string (abfd, info_ptr, &bytes_read);
4063 info_ptr += bytes_read;
4064 break;
4065 case DW_FORM_sec_offset:
4066 case DW_FORM_strp:
4067 info_ptr += cu->header.offset_size;
4068 break;
4069 case DW_FORM_exprloc:
4070 case DW_FORM_block:
4071 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
4072 info_ptr += bytes_read;
4073 break;
4074 case DW_FORM_block1:
4075 info_ptr += 1 + read_1_byte (abfd, info_ptr);
4076 break;
4077 case DW_FORM_block2:
4078 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
4079 break;
4080 case DW_FORM_block4:
4081 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
4082 break;
4083 case DW_FORM_sdata:
4084 case DW_FORM_udata:
4085 case DW_FORM_ref_udata:
4086 info_ptr = skip_leb128 (abfd, info_ptr);
4087 break;
4088 case DW_FORM_indirect:
4089 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
4090 info_ptr += bytes_read;
4091 /* We need to continue parsing from here, so just go back to
4092 the top. */
4093 goto skip_attribute;
4094
4095 default:
4096 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
4097 dwarf_form_name (form),
4098 bfd_get_filename (abfd));
4099 }
4100 }
4101
4102 if (abbrev->has_children)
4103 return skip_children (buffer, info_ptr, cu);
4104 else
4105 return info_ptr;
4106 }
4107
4108 /* Locate ORIG_PDI's sibling.
4109 INFO_PTR should point to the start of the next DIE after ORIG_PDI
4110 in BUFFER. */
4111
4112 static gdb_byte *
4113 locate_pdi_sibling (struct partial_die_info *orig_pdi,
4114 gdb_byte *buffer, gdb_byte *info_ptr,
4115 bfd *abfd, struct dwarf2_cu *cu)
4116 {
4117 /* Do we know the sibling already? */
4118
4119 if (orig_pdi->sibling)
4120 return orig_pdi->sibling;
4121
4122 /* Are there any children to deal with? */
4123
4124 if (!orig_pdi->has_children)
4125 return info_ptr;
4126
4127 /* Skip the children the long way. */
4128
4129 return skip_children (buffer, info_ptr, cu);
4130 }
4131
4132 /* Expand this partial symbol table into a full symbol table. */
4133
4134 static void
4135 dwarf2_psymtab_to_symtab (struct partial_symtab *pst)
4136 {
4137 if (pst != NULL)
4138 {
4139 if (pst->readin)
4140 {
4141 warning (_("bug: psymtab for %s is already read in."), pst->filename);
4142 }
4143 else
4144 {
4145 if (info_verbose)
4146 {
4147 printf_filtered (_("Reading in symbols for %s..."), pst->filename);
4148 gdb_flush (gdb_stdout);
4149 }
4150
4151 /* Restore our global data. */
4152 dwarf2_per_objfile = objfile_data (pst->objfile,
4153 dwarf2_objfile_data_key);
4154
4155 /* If this psymtab is constructed from a debug-only objfile, the
4156 has_section_at_zero flag will not necessarily be correct. We
4157 can get the correct value for this flag by looking at the data
4158 associated with the (presumably stripped) associated objfile. */
4159 if (pst->objfile->separate_debug_objfile_backlink)
4160 {
4161 struct dwarf2_per_objfile *dpo_backlink
4162 = objfile_data (pst->objfile->separate_debug_objfile_backlink,
4163 dwarf2_objfile_data_key);
4164
4165 dwarf2_per_objfile->has_section_at_zero
4166 = dpo_backlink->has_section_at_zero;
4167 }
4168
4169 dwarf2_per_objfile->reading_partial_symbols = 0;
4170
4171 psymtab_to_symtab_1 (pst);
4172
4173 /* Finish up the debug error message. */
4174 if (info_verbose)
4175 printf_filtered (_("done.\n"));
4176 }
4177 }
4178 }
4179
4180 /* Add PER_CU to the queue. */
4181
4182 static void
4183 queue_comp_unit (struct dwarf2_per_cu_data *per_cu, struct objfile *objfile)
4184 {
4185 struct dwarf2_queue_item *item;
4186
4187 per_cu->queued = 1;
4188 item = xmalloc (sizeof (*item));
4189 item->per_cu = per_cu;
4190 item->next = NULL;
4191
4192 if (dwarf2_queue == NULL)
4193 dwarf2_queue = item;
4194 else
4195 dwarf2_queue_tail->next = item;
4196
4197 dwarf2_queue_tail = item;
4198 }
4199
4200 /* Process the queue. */
4201
4202 static void
4203 process_queue (struct objfile *objfile)
4204 {
4205 struct dwarf2_queue_item *item, *next_item;
4206
4207 /* The queue starts out with one item, but following a DIE reference
4208 may load a new CU, adding it to the end of the queue. */
4209 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
4210 {
4211 if (dwarf2_per_objfile->using_index
4212 ? !item->per_cu->v.quick->symtab
4213 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
4214 process_full_comp_unit (item->per_cu);
4215
4216 item->per_cu->queued = 0;
4217 next_item = item->next;
4218 xfree (item);
4219 }
4220
4221 dwarf2_queue_tail = NULL;
4222 }
4223
4224 /* Free all allocated queue entries. This function only releases anything if
4225 an error was thrown; if the queue was processed then it would have been
4226 freed as we went along. */
4227
4228 static void
4229 dwarf2_release_queue (void *dummy)
4230 {
4231 struct dwarf2_queue_item *item, *last;
4232
4233 item = dwarf2_queue;
4234 while (item)
4235 {
4236 /* Anything still marked queued is likely to be in an
4237 inconsistent state, so discard it. */
4238 if (item->per_cu->queued)
4239 {
4240 if (item->per_cu->cu != NULL)
4241 free_one_cached_comp_unit (item->per_cu->cu);
4242 item->per_cu->queued = 0;
4243 }
4244
4245 last = item;
4246 item = item->next;
4247 xfree (last);
4248 }
4249
4250 dwarf2_queue = dwarf2_queue_tail = NULL;
4251 }
4252
4253 /* Read in full symbols for PST, and anything it depends on. */
4254
4255 static void
4256 psymtab_to_symtab_1 (struct partial_symtab *pst)
4257 {
4258 struct dwarf2_per_cu_data *per_cu;
4259 struct cleanup *back_to;
4260 int i;
4261
4262 for (i = 0; i < pst->number_of_dependencies; i++)
4263 if (!pst->dependencies[i]->readin)
4264 {
4265 /* Inform about additional files that need to be read in. */
4266 if (info_verbose)
4267 {
4268 /* FIXME: i18n: Need to make this a single string. */
4269 fputs_filtered (" ", gdb_stdout);
4270 wrap_here ("");
4271 fputs_filtered ("and ", gdb_stdout);
4272 wrap_here ("");
4273 printf_filtered ("%s...", pst->dependencies[i]->filename);
4274 wrap_here (""); /* Flush output */
4275 gdb_flush (gdb_stdout);
4276 }
4277 psymtab_to_symtab_1 (pst->dependencies[i]);
4278 }
4279
4280 per_cu = pst->read_symtab_private;
4281
4282 if (per_cu == NULL)
4283 {
4284 /* It's an include file, no symbols to read for it.
4285 Everything is in the parent symtab. */
4286 pst->readin = 1;
4287 return;
4288 }
4289
4290 dw2_do_instantiate_symtab (pst->objfile, per_cu);
4291 }
4292
4293 /* Load the DIEs associated with PER_CU into memory. */
4294
4295 static void
4296 load_full_comp_unit (struct dwarf2_per_cu_data *per_cu, struct objfile *objfile)
4297 {
4298 bfd *abfd = objfile->obfd;
4299 struct dwarf2_cu *cu;
4300 unsigned int offset;
4301 gdb_byte *info_ptr, *beg_of_comp_unit;
4302 struct cleanup *free_abbrevs_cleanup = NULL, *free_cu_cleanup = NULL;
4303 struct attribute *attr;
4304 int read_cu = 0;
4305
4306 gdb_assert (! per_cu->from_debug_types);
4307
4308 /* Set local variables from the partial symbol table info. */
4309 offset = per_cu->offset;
4310
4311 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
4312 info_ptr = dwarf2_per_objfile->info.buffer + offset;
4313 beg_of_comp_unit = info_ptr;
4314
4315 if (per_cu->cu == NULL)
4316 {
4317 cu = alloc_one_comp_unit (objfile);
4318
4319 read_cu = 1;
4320
4321 /* If an error occurs while loading, release our storage. */
4322 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
4323
4324 /* Read in the comp_unit header. */
4325 info_ptr = read_comp_unit_head (&cu->header, info_ptr, abfd);
4326
4327 /* Complete the cu_header. */
4328 cu->header.offset = offset;
4329 cu->header.first_die_offset = info_ptr - beg_of_comp_unit;
4330
4331 /* Read the abbrevs for this compilation unit. */
4332 dwarf2_read_abbrevs (abfd, cu);
4333 free_abbrevs_cleanup = make_cleanup (dwarf2_free_abbrev_table, cu);
4334
4335 /* Link this compilation unit into the compilation unit tree. */
4336 per_cu->cu = cu;
4337 cu->per_cu = per_cu;
4338
4339 /* Link this CU into read_in_chain. */
4340 per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
4341 dwarf2_per_objfile->read_in_chain = per_cu;
4342 }
4343 else
4344 {
4345 cu = per_cu->cu;
4346 info_ptr += cu->header.first_die_offset;
4347 }
4348
4349 cu->dies = read_comp_unit (info_ptr, cu);
4350
4351 /* We try not to read any attributes in this function, because not
4352 all objfiles needed for references have been loaded yet, and symbol
4353 table processing isn't initialized. But we have to set the CU language,
4354 or we won't be able to build types correctly. */
4355 attr = dwarf2_attr (cu->dies, DW_AT_language, cu);
4356 if (attr)
4357 set_cu_language (DW_UNSND (attr), cu);
4358 else
4359 set_cu_language (language_minimal, cu);
4360
4361 /* Similarly, if we do not read the producer, we can not apply
4362 producer-specific interpretation. */
4363 attr = dwarf2_attr (cu->dies, DW_AT_producer, cu);
4364 if (attr)
4365 cu->producer = DW_STRING (attr);
4366
4367 if (read_cu)
4368 {
4369 do_cleanups (free_abbrevs_cleanup);
4370
4371 /* We've successfully allocated this compilation unit. Let our
4372 caller clean it up when finished with it. */
4373 discard_cleanups (free_cu_cleanup);
4374 }
4375 }
4376
4377 /* Add a DIE to the delayed physname list. */
4378
4379 static void
4380 add_to_method_list (struct type *type, int fnfield_index, int index,
4381 const char *name, struct die_info *die,
4382 struct dwarf2_cu *cu)
4383 {
4384 struct delayed_method_info mi;
4385 mi.type = type;
4386 mi.fnfield_index = fnfield_index;
4387 mi.index = index;
4388 mi.name = name;
4389 mi.die = die;
4390 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
4391 }
4392
4393 /* A cleanup for freeing the delayed method list. */
4394
4395 static void
4396 free_delayed_list (void *ptr)
4397 {
4398 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
4399 if (cu->method_list != NULL)
4400 {
4401 VEC_free (delayed_method_info, cu->method_list);
4402 cu->method_list = NULL;
4403 }
4404 }
4405
4406 /* Compute the physnames of any methods on the CU's method list.
4407
4408 The computation of method physnames is delayed in order to avoid the
4409 (bad) condition that one of the method's formal parameters is of an as yet
4410 incomplete type. */
4411
4412 static void
4413 compute_delayed_physnames (struct dwarf2_cu *cu)
4414 {
4415 int i;
4416 struct delayed_method_info *mi;
4417 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
4418 {
4419 char *physname;
4420 struct fn_fieldlist *fn_flp
4421 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
4422 physname = (char *) dwarf2_physname ((char *) mi->name, mi->die, cu);
4423 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
4424 }
4425 }
4426
4427 /* Generate full symbol information for PST and CU, whose DIEs have
4428 already been loaded into memory. */
4429
4430 static void
4431 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu)
4432 {
4433 struct dwarf2_cu *cu = per_cu->cu;
4434 struct objfile *objfile = per_cu->objfile;
4435 CORE_ADDR lowpc, highpc;
4436 struct symtab *symtab;
4437 struct cleanup *back_to, *delayed_list_cleanup;
4438 CORE_ADDR baseaddr;
4439
4440 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
4441
4442 buildsym_init ();
4443 back_to = make_cleanup (really_free_pendings, NULL);
4444 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
4445
4446 cu->list_in_scope = &file_symbols;
4447
4448 dwarf2_find_base_address (cu->dies, cu);
4449
4450 /* Do line number decoding in read_file_scope () */
4451 process_die (cu->dies, cu);
4452
4453 /* Now that we have processed all the DIEs in the CU, all the types
4454 should be complete, and it should now be safe to compute all of the
4455 physnames. */
4456 compute_delayed_physnames (cu);
4457 do_cleanups (delayed_list_cleanup);
4458
4459 /* Some compilers don't define a DW_AT_high_pc attribute for the
4460 compilation unit. If the DW_AT_high_pc is missing, synthesize
4461 it, by scanning the DIE's below the compilation unit. */
4462 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
4463
4464 symtab = end_symtab (highpc + baseaddr, objfile, SECT_OFF_TEXT (objfile));
4465
4466 /* Set symtab language to language from DW_AT_language.
4467 If the compilation is from a C file generated by language preprocessors,
4468 do not set the language if it was already deduced by start_subfile. */
4469 if (symtab != NULL
4470 && !(cu->language == language_c && symtab->language != language_c))
4471 {
4472 symtab->language = cu->language;
4473 }
4474
4475 if (dwarf2_per_objfile->using_index)
4476 per_cu->v.quick->symtab = symtab;
4477 else
4478 {
4479 struct partial_symtab *pst = per_cu->v.psymtab;
4480 pst->symtab = symtab;
4481 pst->readin = 1;
4482 }
4483
4484 do_cleanups (back_to);
4485 }
4486
4487 /* Process a die and its children. */
4488
4489 static void
4490 process_die (struct die_info *die, struct dwarf2_cu *cu)
4491 {
4492 switch (die->tag)
4493 {
4494 case DW_TAG_padding:
4495 break;
4496 case DW_TAG_compile_unit:
4497 read_file_scope (die, cu);
4498 break;
4499 case DW_TAG_type_unit:
4500 read_type_unit_scope (die, cu);
4501 break;
4502 case DW_TAG_subprogram:
4503 case DW_TAG_inlined_subroutine:
4504 read_func_scope (die, cu);
4505 break;
4506 case DW_TAG_lexical_block:
4507 case DW_TAG_try_block:
4508 case DW_TAG_catch_block:
4509 read_lexical_block_scope (die, cu);
4510 break;
4511 case DW_TAG_class_type:
4512 case DW_TAG_interface_type:
4513 case DW_TAG_structure_type:
4514 case DW_TAG_union_type:
4515 process_structure_scope (die, cu);
4516 break;
4517 case DW_TAG_enumeration_type:
4518 process_enumeration_scope (die, cu);
4519 break;
4520
4521 /* These dies have a type, but processing them does not create
4522 a symbol or recurse to process the children. Therefore we can
4523 read them on-demand through read_type_die. */
4524 case DW_TAG_subroutine_type:
4525 case DW_TAG_set_type:
4526 case DW_TAG_array_type:
4527 case DW_TAG_pointer_type:
4528 case DW_TAG_ptr_to_member_type:
4529 case DW_TAG_reference_type:
4530 case DW_TAG_string_type:
4531 break;
4532
4533 case DW_TAG_base_type:
4534 case DW_TAG_subrange_type:
4535 case DW_TAG_typedef:
4536 /* Add a typedef symbol for the type definition, if it has a
4537 DW_AT_name. */
4538 new_symbol (die, read_type_die (die, cu), cu);
4539 break;
4540 case DW_TAG_common_block:
4541 read_common_block (die, cu);
4542 break;
4543 case DW_TAG_common_inclusion:
4544 break;
4545 case DW_TAG_namespace:
4546 processing_has_namespace_info = 1;
4547 read_namespace (die, cu);
4548 break;
4549 case DW_TAG_module:
4550 processing_has_namespace_info = 1;
4551 read_module (die, cu);
4552 break;
4553 case DW_TAG_imported_declaration:
4554 case DW_TAG_imported_module:
4555 processing_has_namespace_info = 1;
4556 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
4557 || cu->language != language_fortran))
4558 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
4559 dwarf_tag_name (die->tag));
4560 read_import_statement (die, cu);
4561 break;
4562 default:
4563 new_symbol (die, NULL, cu);
4564 break;
4565 }
4566 }
4567
4568 /* A helper function for dwarf2_compute_name which determines whether DIE
4569 needs to have the name of the scope prepended to the name listed in the
4570 die. */
4571
4572 static int
4573 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
4574 {
4575 struct attribute *attr;
4576
4577 switch (die->tag)
4578 {
4579 case DW_TAG_namespace:
4580 case DW_TAG_typedef:
4581 case DW_TAG_class_type:
4582 case DW_TAG_interface_type:
4583 case DW_TAG_structure_type:
4584 case DW_TAG_union_type:
4585 case DW_TAG_enumeration_type:
4586 case DW_TAG_enumerator:
4587 case DW_TAG_subprogram:
4588 case DW_TAG_member:
4589 return 1;
4590
4591 case DW_TAG_variable:
4592 case DW_TAG_constant:
4593 /* We only need to prefix "globally" visible variables. These include
4594 any variable marked with DW_AT_external or any variable that
4595 lives in a namespace. [Variables in anonymous namespaces
4596 require prefixing, but they are not DW_AT_external.] */
4597
4598 if (dwarf2_attr (die, DW_AT_specification, cu))
4599 {
4600 struct dwarf2_cu *spec_cu = cu;
4601
4602 return die_needs_namespace (die_specification (die, &spec_cu),
4603 spec_cu);
4604 }
4605
4606 attr = dwarf2_attr (die, DW_AT_external, cu);
4607 if (attr == NULL && die->parent->tag != DW_TAG_namespace
4608 && die->parent->tag != DW_TAG_module)
4609 return 0;
4610 /* A variable in a lexical block of some kind does not need a
4611 namespace, even though in C++ such variables may be external
4612 and have a mangled name. */
4613 if (die->parent->tag == DW_TAG_lexical_block
4614 || die->parent->tag == DW_TAG_try_block
4615 || die->parent->tag == DW_TAG_catch_block
4616 || die->parent->tag == DW_TAG_subprogram)
4617 return 0;
4618 return 1;
4619
4620 default:
4621 return 0;
4622 }
4623 }
4624
4625 /* Retrieve the last character from a mem_file. */
4626
4627 static void
4628 do_ui_file_peek_last (void *object, const char *buffer, long length)
4629 {
4630 char *last_char_p = (char *) object;
4631
4632 if (length > 0)
4633 *last_char_p = buffer[length - 1];
4634 }
4635
4636 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
4637 compute the physname for the object, which include a method's
4638 formal parameters (C++/Java) and return type (Java).
4639
4640 For Ada, return the DIE's linkage name rather than the fully qualified
4641 name. PHYSNAME is ignored..
4642
4643 The result is allocated on the objfile_obstack and canonicalized. */
4644
4645 static const char *
4646 dwarf2_compute_name (char *name, struct die_info *die, struct dwarf2_cu *cu,
4647 int physname)
4648 {
4649 if (name == NULL)
4650 name = dwarf2_name (die, cu);
4651
4652 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
4653 compute it by typename_concat inside GDB. */
4654 if (cu->language == language_ada
4655 || (cu->language == language_fortran && physname))
4656 {
4657 /* For Ada unit, we prefer the linkage name over the name, as
4658 the former contains the exported name, which the user expects
4659 to be able to reference. Ideally, we want the user to be able
4660 to reference this entity using either natural or linkage name,
4661 but we haven't started looking at this enhancement yet. */
4662 struct attribute *attr;
4663
4664 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
4665 if (attr == NULL)
4666 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
4667 if (attr && DW_STRING (attr))
4668 return DW_STRING (attr);
4669 }
4670
4671 /* These are the only languages we know how to qualify names in. */
4672 if (name != NULL
4673 && (cu->language == language_cplus || cu->language == language_java
4674 || cu->language == language_fortran))
4675 {
4676 if (die_needs_namespace (die, cu))
4677 {
4678 long length;
4679 char *prefix;
4680 struct ui_file *buf;
4681
4682 prefix = determine_prefix (die, cu);
4683 buf = mem_fileopen ();
4684 if (*prefix != '\0')
4685 {
4686 char *prefixed_name = typename_concat (NULL, prefix, name,
4687 physname, cu);
4688
4689 fputs_unfiltered (prefixed_name, buf);
4690 xfree (prefixed_name);
4691 }
4692 else
4693 fputs_unfiltered (name ? name : "", buf);
4694
4695 /* Template parameters may be specified in the DIE's DW_AT_name, or
4696 as children with DW_TAG_template_type_param or
4697 DW_TAG_value_type_param. If the latter, add them to the name
4698 here. If the name already has template parameters, then
4699 skip this step; some versions of GCC emit both, and
4700 it is more efficient to use the pre-computed name.
4701
4702 Something to keep in mind about this process: it is very
4703 unlikely, or in some cases downright impossible, to produce
4704 something that will match the mangled name of a function.
4705 If the definition of the function has the same debug info,
4706 we should be able to match up with it anyway. But fallbacks
4707 using the minimal symbol, for instance to find a method
4708 implemented in a stripped copy of libstdc++, will not work.
4709 If we do not have debug info for the definition, we will have to
4710 match them up some other way.
4711
4712 When we do name matching there is a related problem with function
4713 templates; two instantiated function templates are allowed to
4714 differ only by their return types, which we do not add here. */
4715
4716 if (cu->language == language_cplus && strchr (name, '<') == NULL)
4717 {
4718 struct attribute *attr;
4719 struct die_info *child;
4720 int first = 1;
4721
4722 die->building_fullname = 1;
4723
4724 for (child = die->child; child != NULL; child = child->sibling)
4725 {
4726 struct type *type;
4727 long value;
4728 gdb_byte *bytes;
4729 struct dwarf2_locexpr_baton *baton;
4730 struct value *v;
4731
4732 if (child->tag != DW_TAG_template_type_param
4733 && child->tag != DW_TAG_template_value_param)
4734 continue;
4735
4736 if (first)
4737 {
4738 fputs_unfiltered ("<", buf);
4739 first = 0;
4740 }
4741 else
4742 fputs_unfiltered (", ", buf);
4743
4744 attr = dwarf2_attr (child, DW_AT_type, cu);
4745 if (attr == NULL)
4746 {
4747 complaint (&symfile_complaints,
4748 _("template parameter missing DW_AT_type"));
4749 fputs_unfiltered ("UNKNOWN_TYPE", buf);
4750 continue;
4751 }
4752 type = die_type (child, cu);
4753
4754 if (child->tag == DW_TAG_template_type_param)
4755 {
4756 c_print_type (type, "", buf, -1, 0);
4757 continue;
4758 }
4759
4760 attr = dwarf2_attr (child, DW_AT_const_value, cu);
4761 if (attr == NULL)
4762 {
4763 complaint (&symfile_complaints,
4764 _("template parameter missing DW_AT_const_value"));
4765 fputs_unfiltered ("UNKNOWN_VALUE", buf);
4766 continue;
4767 }
4768
4769 dwarf2_const_value_attr (attr, type, name,
4770 &cu->comp_unit_obstack, cu,
4771 &value, &bytes, &baton);
4772
4773 if (TYPE_NOSIGN (type))
4774 /* GDB prints characters as NUMBER 'CHAR'. If that's
4775 changed, this can use value_print instead. */
4776 c_printchar (value, type, buf);
4777 else
4778 {
4779 struct value_print_options opts;
4780
4781 if (baton != NULL)
4782 v = dwarf2_evaluate_loc_desc (type, NULL,
4783 baton->data,
4784 baton->size,
4785 baton->per_cu);
4786 else if (bytes != NULL)
4787 {
4788 v = allocate_value (type);
4789 memcpy (value_contents_writeable (v), bytes,
4790 TYPE_LENGTH (type));
4791 }
4792 else
4793 v = value_from_longest (type, value);
4794
4795 /* Specify decimal so that we do not depend on the radix. */
4796 get_formatted_print_options (&opts, 'd');
4797 opts.raw = 1;
4798 value_print (v, buf, &opts);
4799 release_value (v);
4800 value_free (v);
4801 }
4802 }
4803
4804 die->building_fullname = 0;
4805
4806 if (!first)
4807 {
4808 /* Close the argument list, with a space if necessary
4809 (nested templates). */
4810 char last_char = '\0';
4811 ui_file_put (buf, do_ui_file_peek_last, &last_char);
4812 if (last_char == '>')
4813 fputs_unfiltered (" >", buf);
4814 else
4815 fputs_unfiltered (">", buf);
4816 }
4817 }
4818
4819 /* For Java and C++ methods, append formal parameter type
4820 information, if PHYSNAME. */
4821
4822 if (physname && die->tag == DW_TAG_subprogram
4823 && (cu->language == language_cplus
4824 || cu->language == language_java))
4825 {
4826 struct type *type = read_type_die (die, cu);
4827
4828 c_type_print_args (type, buf, 0, cu->language);
4829
4830 if (cu->language == language_java)
4831 {
4832 /* For java, we must append the return type to method
4833 names. */
4834 if (die->tag == DW_TAG_subprogram)
4835 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
4836 0, 0);
4837 }
4838 else if (cu->language == language_cplus)
4839 {
4840 /* Assume that an artificial first parameter is
4841 "this", but do not crash if it is not. RealView
4842 marks unnamed (and thus unused) parameters as
4843 artificial; there is no way to differentiate
4844 the two cases. */
4845 if (TYPE_NFIELDS (type) > 0
4846 && TYPE_FIELD_ARTIFICIAL (type, 0)
4847 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
4848 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 0))))
4849 fputs_unfiltered (" const", buf);
4850 }
4851 }
4852
4853 name = ui_file_obsavestring (buf, &cu->objfile->objfile_obstack,
4854 &length);
4855 ui_file_delete (buf);
4856
4857 if (cu->language == language_cplus)
4858 {
4859 char *cname
4860 = dwarf2_canonicalize_name (name, cu,
4861 &cu->objfile->objfile_obstack);
4862
4863 if (cname != NULL)
4864 name = cname;
4865 }
4866 }
4867 }
4868
4869 return name;
4870 }
4871
4872 /* Return the fully qualified name of DIE, based on its DW_AT_name.
4873 If scope qualifiers are appropriate they will be added. The result
4874 will be allocated on the objfile_obstack, or NULL if the DIE does
4875 not have a name. NAME may either be from a previous call to
4876 dwarf2_name or NULL.
4877
4878 The output string will be canonicalized (if C++/Java). */
4879
4880 static const char *
4881 dwarf2_full_name (char *name, struct die_info *die, struct dwarf2_cu *cu)
4882 {
4883 return dwarf2_compute_name (name, die, cu, 0);
4884 }
4885
4886 /* Construct a physname for the given DIE in CU. NAME may either be
4887 from a previous call to dwarf2_name or NULL. The result will be
4888 allocated on the objfile_objstack or NULL if the DIE does not have a
4889 name.
4890
4891 The output string will be canonicalized (if C++/Java). */
4892
4893 static const char *
4894 dwarf2_physname (char *name, struct die_info *die, struct dwarf2_cu *cu)
4895 {
4896 return dwarf2_compute_name (name, die, cu, 1);
4897 }
4898
4899 /* Read the import statement specified by the given die and record it. */
4900
4901 static void
4902 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
4903 {
4904 struct attribute *import_attr;
4905 struct die_info *imported_die;
4906 struct dwarf2_cu *imported_cu;
4907 const char *imported_name;
4908 const char *imported_name_prefix;
4909 const char *canonical_name;
4910 const char *import_alias;
4911 const char *imported_declaration = NULL;
4912 const char *import_prefix;
4913
4914 char *temp;
4915
4916 import_attr = dwarf2_attr (die, DW_AT_import, cu);
4917 if (import_attr == NULL)
4918 {
4919 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
4920 dwarf_tag_name (die->tag));
4921 return;
4922 }
4923
4924 imported_cu = cu;
4925 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
4926 imported_name = dwarf2_name (imported_die, imported_cu);
4927 if (imported_name == NULL)
4928 {
4929 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
4930
4931 The import in the following code:
4932 namespace A
4933 {
4934 typedef int B;
4935 }
4936
4937 int main ()
4938 {
4939 using A::B;
4940 B b;
4941 return b;
4942 }
4943
4944 ...
4945 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
4946 <52> DW_AT_decl_file : 1
4947 <53> DW_AT_decl_line : 6
4948 <54> DW_AT_import : <0x75>
4949 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
4950 <59> DW_AT_name : B
4951 <5b> DW_AT_decl_file : 1
4952 <5c> DW_AT_decl_line : 2
4953 <5d> DW_AT_type : <0x6e>
4954 ...
4955 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
4956 <76> DW_AT_byte_size : 4
4957 <77> DW_AT_encoding : 5 (signed)
4958
4959 imports the wrong die ( 0x75 instead of 0x58 ).
4960 This case will be ignored until the gcc bug is fixed. */
4961 return;
4962 }
4963
4964 /* Figure out the local name after import. */
4965 import_alias = dwarf2_name (die, cu);
4966
4967 /* Figure out where the statement is being imported to. */
4968 import_prefix = determine_prefix (die, cu);
4969
4970 /* Figure out what the scope of the imported die is and prepend it
4971 to the name of the imported die. */
4972 imported_name_prefix = determine_prefix (imported_die, imported_cu);
4973
4974 if (imported_die->tag != DW_TAG_namespace
4975 && imported_die->tag != DW_TAG_module)
4976 {
4977 imported_declaration = imported_name;
4978 canonical_name = imported_name_prefix;
4979 }
4980 else if (strlen (imported_name_prefix) > 0)
4981 {
4982 temp = alloca (strlen (imported_name_prefix)
4983 + 2 + strlen (imported_name) + 1);
4984 strcpy (temp, imported_name_prefix);
4985 strcat (temp, "::");
4986 strcat (temp, imported_name);
4987 canonical_name = temp;
4988 }
4989 else
4990 canonical_name = imported_name;
4991
4992 cp_add_using_directive (import_prefix,
4993 canonical_name,
4994 import_alias,
4995 imported_declaration,
4996 &cu->objfile->objfile_obstack);
4997 }
4998
4999 static void
5000 initialize_cu_func_list (struct dwarf2_cu *cu)
5001 {
5002 cu->first_fn = cu->last_fn = cu->cached_fn = NULL;
5003 }
5004
5005 static void
5006 free_cu_line_header (void *arg)
5007 {
5008 struct dwarf2_cu *cu = arg;
5009
5010 free_line_header (cu->line_header);
5011 cu->line_header = NULL;
5012 }
5013
5014 static void
5015 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
5016 char **name, char **comp_dir)
5017 {
5018 struct attribute *attr;
5019
5020 *name = NULL;
5021 *comp_dir = NULL;
5022
5023 /* Find the filename. Do not use dwarf2_name here, since the filename
5024 is not a source language identifier. */
5025 attr = dwarf2_attr (die, DW_AT_name, cu);
5026 if (attr)
5027 {
5028 *name = DW_STRING (attr);
5029 }
5030
5031 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
5032 if (attr)
5033 *comp_dir = DW_STRING (attr);
5034 else if (*name != NULL && IS_ABSOLUTE_PATH (*name))
5035 {
5036 *comp_dir = ldirname (*name);
5037 if (*comp_dir != NULL)
5038 make_cleanup (xfree, *comp_dir);
5039 }
5040 if (*comp_dir != NULL)
5041 {
5042 /* Irix 6.2 native cc prepends <machine>.: to the compilation
5043 directory, get rid of it. */
5044 char *cp = strchr (*comp_dir, ':');
5045
5046 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
5047 *comp_dir = cp + 1;
5048 }
5049
5050 if (*name == NULL)
5051 *name = "<unknown>";
5052 }
5053
5054 static void
5055 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
5056 {
5057 struct objfile *objfile = cu->objfile;
5058 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
5059 CORE_ADDR lowpc = ((CORE_ADDR) -1);
5060 CORE_ADDR highpc = ((CORE_ADDR) 0);
5061 struct attribute *attr;
5062 char *name = NULL;
5063 char *comp_dir = NULL;
5064 struct die_info *child_die;
5065 bfd *abfd = objfile->obfd;
5066 struct line_header *line_header = 0;
5067 CORE_ADDR baseaddr;
5068
5069 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5070
5071 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
5072
5073 /* If we didn't find a lowpc, set it to highpc to avoid complaints
5074 from finish_block. */
5075 if (lowpc == ((CORE_ADDR) -1))
5076 lowpc = highpc;
5077 lowpc += baseaddr;
5078 highpc += baseaddr;
5079
5080 find_file_and_directory (die, cu, &name, &comp_dir);
5081
5082 attr = dwarf2_attr (die, DW_AT_language, cu);
5083 if (attr)
5084 {
5085 set_cu_language (DW_UNSND (attr), cu);
5086 }
5087
5088 attr = dwarf2_attr (die, DW_AT_producer, cu);
5089 if (attr)
5090 cu->producer = DW_STRING (attr);
5091
5092 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
5093 standardised yet. As a workaround for the language detection we fall
5094 back to the DW_AT_producer string. */
5095 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
5096 cu->language = language_opencl;
5097
5098 /* We assume that we're processing GCC output. */
5099 processing_gcc_compilation = 2;
5100
5101 processing_has_namespace_info = 0;
5102
5103 start_symtab (name, comp_dir, lowpc);
5104 record_debugformat ("DWARF 2");
5105 record_producer (cu->producer);
5106
5107 initialize_cu_func_list (cu);
5108
5109 /* Decode line number information if present. We do this before
5110 processing child DIEs, so that the line header table is available
5111 for DW_AT_decl_file. */
5112 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
5113 if (attr)
5114 {
5115 unsigned int line_offset = DW_UNSND (attr);
5116 line_header = dwarf_decode_line_header (line_offset, abfd, cu);
5117 if (line_header)
5118 {
5119 cu->line_header = line_header;
5120 make_cleanup (free_cu_line_header, cu);
5121 dwarf_decode_lines (line_header, comp_dir, abfd, cu, NULL);
5122 }
5123 }
5124
5125 /* Process all dies in compilation unit. */
5126 if (die->child != NULL)
5127 {
5128 child_die = die->child;
5129 while (child_die && child_die->tag)
5130 {
5131 process_die (child_die, cu);
5132 child_die = sibling_die (child_die);
5133 }
5134 }
5135
5136 /* Decode macro information, if present. Dwarf 2 macro information
5137 refers to information in the line number info statement program
5138 header, so we can only read it if we've read the header
5139 successfully. */
5140 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
5141 if (attr && line_header)
5142 {
5143 unsigned int macro_offset = DW_UNSND (attr);
5144
5145 dwarf_decode_macros (line_header, macro_offset,
5146 comp_dir, abfd, cu);
5147 }
5148 do_cleanups (back_to);
5149 }
5150
5151 /* For TUs we want to skip the first top level sibling if it's not the
5152 actual type being defined by this TU. In this case the first top
5153 level sibling is there to provide context only. */
5154
5155 static void
5156 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
5157 {
5158 struct objfile *objfile = cu->objfile;
5159 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
5160 CORE_ADDR lowpc;
5161 struct attribute *attr;
5162 char *name = NULL;
5163 char *comp_dir = NULL;
5164 struct die_info *child_die;
5165 bfd *abfd = objfile->obfd;
5166
5167 /* start_symtab needs a low pc, but we don't really have one.
5168 Do what read_file_scope would do in the absence of such info. */
5169 lowpc = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5170
5171 /* Find the filename. Do not use dwarf2_name here, since the filename
5172 is not a source language identifier. */
5173 attr = dwarf2_attr (die, DW_AT_name, cu);
5174 if (attr)
5175 name = DW_STRING (attr);
5176
5177 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
5178 if (attr)
5179 comp_dir = DW_STRING (attr);
5180 else if (name != NULL && IS_ABSOLUTE_PATH (name))
5181 {
5182 comp_dir = ldirname (name);
5183 if (comp_dir != NULL)
5184 make_cleanup (xfree, comp_dir);
5185 }
5186
5187 if (name == NULL)
5188 name = "<unknown>";
5189
5190 attr = dwarf2_attr (die, DW_AT_language, cu);
5191 if (attr)
5192 set_cu_language (DW_UNSND (attr), cu);
5193
5194 /* This isn't technically needed today. It is done for symmetry
5195 with read_file_scope. */
5196 attr = dwarf2_attr (die, DW_AT_producer, cu);
5197 if (attr)
5198 cu->producer = DW_STRING (attr);
5199
5200 /* We assume that we're processing GCC output. */
5201 processing_gcc_compilation = 2;
5202
5203 processing_has_namespace_info = 0;
5204
5205 start_symtab (name, comp_dir, lowpc);
5206 record_debugformat ("DWARF 2");
5207 record_producer (cu->producer);
5208
5209 /* Process the dies in the type unit. */
5210 if (die->child == NULL)
5211 {
5212 dump_die_for_error (die);
5213 error (_("Dwarf Error: Missing children for type unit [in module %s]"),
5214 bfd_get_filename (abfd));
5215 }
5216
5217 child_die = die->child;
5218
5219 while (child_die && child_die->tag)
5220 {
5221 process_die (child_die, cu);
5222
5223 child_die = sibling_die (child_die);
5224 }
5225
5226 do_cleanups (back_to);
5227 }
5228
5229 static void
5230 add_to_cu_func_list (const char *name, CORE_ADDR lowpc, CORE_ADDR highpc,
5231 struct dwarf2_cu *cu)
5232 {
5233 struct function_range *thisfn;
5234
5235 thisfn = (struct function_range *)
5236 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct function_range));
5237 thisfn->name = name;
5238 thisfn->lowpc = lowpc;
5239 thisfn->highpc = highpc;
5240 thisfn->seen_line = 0;
5241 thisfn->next = NULL;
5242
5243 if (cu->last_fn == NULL)
5244 cu->first_fn = thisfn;
5245 else
5246 cu->last_fn->next = thisfn;
5247
5248 cu->last_fn = thisfn;
5249 }
5250
5251 /* qsort helper for inherit_abstract_dies. */
5252
5253 static int
5254 unsigned_int_compar (const void *ap, const void *bp)
5255 {
5256 unsigned int a = *(unsigned int *) ap;
5257 unsigned int b = *(unsigned int *) bp;
5258
5259 return (a > b) - (b > a);
5260 }
5261
5262 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
5263 Inherit only the children of the DW_AT_abstract_origin DIE not being already
5264 referenced by DW_AT_abstract_origin from the children of the current DIE. */
5265
5266 static void
5267 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
5268 {
5269 struct die_info *child_die;
5270 unsigned die_children_count;
5271 /* CU offsets which were referenced by children of the current DIE. */
5272 unsigned *offsets;
5273 unsigned *offsets_end, *offsetp;
5274 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
5275 struct die_info *origin_die;
5276 /* Iterator of the ORIGIN_DIE children. */
5277 struct die_info *origin_child_die;
5278 struct cleanup *cleanups;
5279 struct attribute *attr;
5280 struct dwarf2_cu *origin_cu;
5281 struct pending **origin_previous_list_in_scope;
5282
5283 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
5284 if (!attr)
5285 return;
5286
5287 /* Note that following die references may follow to a die in a
5288 different cu. */
5289
5290 origin_cu = cu;
5291 origin_die = follow_die_ref (die, attr, &origin_cu);
5292
5293 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
5294 symbols in. */
5295 origin_previous_list_in_scope = origin_cu->list_in_scope;
5296 origin_cu->list_in_scope = cu->list_in_scope;
5297
5298 if (die->tag != origin_die->tag
5299 && !(die->tag == DW_TAG_inlined_subroutine
5300 && origin_die->tag == DW_TAG_subprogram))
5301 complaint (&symfile_complaints,
5302 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
5303 die->offset, origin_die->offset);
5304
5305 child_die = die->child;
5306 die_children_count = 0;
5307 while (child_die && child_die->tag)
5308 {
5309 child_die = sibling_die (child_die);
5310 die_children_count++;
5311 }
5312 offsets = xmalloc (sizeof (*offsets) * die_children_count);
5313 cleanups = make_cleanup (xfree, offsets);
5314
5315 offsets_end = offsets;
5316 child_die = die->child;
5317 while (child_die && child_die->tag)
5318 {
5319 /* For each CHILD_DIE, find the corresponding child of
5320 ORIGIN_DIE. If there is more than one layer of
5321 DW_AT_abstract_origin, follow them all; there shouldn't be,
5322 but GCC versions at least through 4.4 generate this (GCC PR
5323 40573). */
5324 struct die_info *child_origin_die = child_die;
5325 struct dwarf2_cu *child_origin_cu = cu;
5326
5327 while (1)
5328 {
5329 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
5330 child_origin_cu);
5331 if (attr == NULL)
5332 break;
5333 child_origin_die = follow_die_ref (child_origin_die, attr,
5334 &child_origin_cu);
5335 }
5336
5337 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
5338 counterpart may exist. */
5339 if (child_origin_die != child_die)
5340 {
5341 if (child_die->tag != child_origin_die->tag
5342 && !(child_die->tag == DW_TAG_inlined_subroutine
5343 && child_origin_die->tag == DW_TAG_subprogram))
5344 complaint (&symfile_complaints,
5345 _("Child DIE 0x%x and its abstract origin 0x%x have "
5346 "different tags"), child_die->offset,
5347 child_origin_die->offset);
5348 if (child_origin_die->parent != origin_die)
5349 complaint (&symfile_complaints,
5350 _("Child DIE 0x%x and its abstract origin 0x%x have "
5351 "different parents"), child_die->offset,
5352 child_origin_die->offset);
5353 else
5354 *offsets_end++ = child_origin_die->offset;
5355 }
5356 child_die = sibling_die (child_die);
5357 }
5358 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
5359 unsigned_int_compar);
5360 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
5361 if (offsetp[-1] == *offsetp)
5362 complaint (&symfile_complaints, _("Multiple children of DIE 0x%x refer "
5363 "to DIE 0x%x as their abstract origin"),
5364 die->offset, *offsetp);
5365
5366 offsetp = offsets;
5367 origin_child_die = origin_die->child;
5368 while (origin_child_die && origin_child_die->tag)
5369 {
5370 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
5371 while (offsetp < offsets_end && *offsetp < origin_child_die->offset)
5372 offsetp++;
5373 if (offsetp >= offsets_end || *offsetp > origin_child_die->offset)
5374 {
5375 /* Found that ORIGIN_CHILD_DIE is really not referenced. */
5376 process_die (origin_child_die, origin_cu);
5377 }
5378 origin_child_die = sibling_die (origin_child_die);
5379 }
5380 origin_cu->list_in_scope = origin_previous_list_in_scope;
5381
5382 do_cleanups (cleanups);
5383 }
5384
5385 static void
5386 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
5387 {
5388 struct objfile *objfile = cu->objfile;
5389 struct context_stack *new;
5390 CORE_ADDR lowpc;
5391 CORE_ADDR highpc;
5392 struct die_info *child_die;
5393 struct attribute *attr, *call_line, *call_file;
5394 char *name;
5395 CORE_ADDR baseaddr;
5396 struct block *block;
5397 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
5398 VEC (symbolp) *template_args = NULL;
5399 struct template_symbol *templ_func = NULL;
5400
5401 if (inlined_func)
5402 {
5403 /* If we do not have call site information, we can't show the
5404 caller of this inlined function. That's too confusing, so
5405 only use the scope for local variables. */
5406 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
5407 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
5408 if (call_line == NULL || call_file == NULL)
5409 {
5410 read_lexical_block_scope (die, cu);
5411 return;
5412 }
5413 }
5414
5415 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5416
5417 name = dwarf2_name (die, cu);
5418
5419 /* Ignore functions with missing or empty names. These are actually
5420 illegal according to the DWARF standard. */
5421 if (name == NULL)
5422 {
5423 complaint (&symfile_complaints,
5424 _("missing name for subprogram DIE at %d"), die->offset);
5425 return;
5426 }
5427
5428 /* Ignore functions with missing or invalid low and high pc attributes. */
5429 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
5430 {
5431 attr = dwarf2_attr (die, DW_AT_external, cu);
5432 if (!attr || !DW_UNSND (attr))
5433 complaint (&symfile_complaints,
5434 _("cannot get low and high bounds for subprogram DIE at %d"),
5435 die->offset);
5436 return;
5437 }
5438
5439 lowpc += baseaddr;
5440 highpc += baseaddr;
5441
5442 /* Record the function range for dwarf_decode_lines. */
5443 add_to_cu_func_list (name, lowpc, highpc, cu);
5444
5445 /* If we have any template arguments, then we must allocate a
5446 different sort of symbol. */
5447 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
5448 {
5449 if (child_die->tag == DW_TAG_template_type_param
5450 || child_die->tag == DW_TAG_template_value_param)
5451 {
5452 templ_func = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5453 struct template_symbol);
5454 templ_func->base.is_cplus_template_function = 1;
5455 break;
5456 }
5457 }
5458
5459 new = push_context (0, lowpc);
5460 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
5461 (struct symbol *) templ_func);
5462
5463 /* If there is a location expression for DW_AT_frame_base, record
5464 it. */
5465 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
5466 if (attr)
5467 /* FIXME: cagney/2004-01-26: The DW_AT_frame_base's location
5468 expression is being recorded directly in the function's symbol
5469 and not in a separate frame-base object. I guess this hack is
5470 to avoid adding some sort of frame-base adjunct/annex to the
5471 function's symbol :-(. The problem with doing this is that it
5472 results in a function symbol with a location expression that
5473 has nothing to do with the location of the function, ouch! The
5474 relationship should be: a function's symbol has-a frame base; a
5475 frame-base has-a location expression. */
5476 dwarf2_symbol_mark_computed (attr, new->name, cu);
5477
5478 cu->list_in_scope = &local_symbols;
5479
5480 if (die->child != NULL)
5481 {
5482 child_die = die->child;
5483 while (child_die && child_die->tag)
5484 {
5485 if (child_die->tag == DW_TAG_template_type_param
5486 || child_die->tag == DW_TAG_template_value_param)
5487 {
5488 struct symbol *arg = new_symbol (child_die, NULL, cu);
5489
5490 if (arg != NULL)
5491 VEC_safe_push (symbolp, template_args, arg);
5492 }
5493 else
5494 process_die (child_die, cu);
5495 child_die = sibling_die (child_die);
5496 }
5497 }
5498
5499 inherit_abstract_dies (die, cu);
5500
5501 /* If we have a DW_AT_specification, we might need to import using
5502 directives from the context of the specification DIE. See the
5503 comment in determine_prefix. */
5504 if (cu->language == language_cplus
5505 && dwarf2_attr (die, DW_AT_specification, cu))
5506 {
5507 struct dwarf2_cu *spec_cu = cu;
5508 struct die_info *spec_die = die_specification (die, &spec_cu);
5509
5510 while (spec_die)
5511 {
5512 child_die = spec_die->child;
5513 while (child_die && child_die->tag)
5514 {
5515 if (child_die->tag == DW_TAG_imported_module)
5516 process_die (child_die, spec_cu);
5517 child_die = sibling_die (child_die);
5518 }
5519
5520 /* In some cases, GCC generates specification DIEs that
5521 themselves contain DW_AT_specification attributes. */
5522 spec_die = die_specification (spec_die, &spec_cu);
5523 }
5524 }
5525
5526 new = pop_context ();
5527 /* Make a block for the local symbols within. */
5528 block = finish_block (new->name, &local_symbols, new->old_blocks,
5529 lowpc, highpc, objfile);
5530
5531 /* For C++, set the block's scope. */
5532 if (cu->language == language_cplus || cu->language == language_fortran)
5533 cp_set_block_scope (new->name, block, &objfile->objfile_obstack,
5534 determine_prefix (die, cu),
5535 processing_has_namespace_info);
5536
5537 /* If we have address ranges, record them. */
5538 dwarf2_record_block_ranges (die, block, baseaddr, cu);
5539
5540 /* Attach template arguments to function. */
5541 if (! VEC_empty (symbolp, template_args))
5542 {
5543 gdb_assert (templ_func != NULL);
5544
5545 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
5546 templ_func->template_arguments
5547 = obstack_alloc (&objfile->objfile_obstack,
5548 (templ_func->n_template_arguments
5549 * sizeof (struct symbol *)));
5550 memcpy (templ_func->template_arguments,
5551 VEC_address (symbolp, template_args),
5552 (templ_func->n_template_arguments * sizeof (struct symbol *)));
5553 VEC_free (symbolp, template_args);
5554 }
5555
5556 /* In C++, we can have functions nested inside functions (e.g., when
5557 a function declares a class that has methods). This means that
5558 when we finish processing a function scope, we may need to go
5559 back to building a containing block's symbol lists. */
5560 local_symbols = new->locals;
5561 param_symbols = new->params;
5562 using_directives = new->using_directives;
5563
5564 /* If we've finished processing a top-level function, subsequent
5565 symbols go in the file symbol list. */
5566 if (outermost_context_p ())
5567 cu->list_in_scope = &file_symbols;
5568 }
5569
5570 /* Process all the DIES contained within a lexical block scope. Start
5571 a new scope, process the dies, and then close the scope. */
5572
5573 static void
5574 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
5575 {
5576 struct objfile *objfile = cu->objfile;
5577 struct context_stack *new;
5578 CORE_ADDR lowpc, highpc;
5579 struct die_info *child_die;
5580 CORE_ADDR baseaddr;
5581
5582 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5583
5584 /* Ignore blocks with missing or invalid low and high pc attributes. */
5585 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
5586 as multiple lexical blocks? Handling children in a sane way would
5587 be nasty. Might be easier to properly extend generic blocks to
5588 describe ranges. */
5589 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
5590 return;
5591 lowpc += baseaddr;
5592 highpc += baseaddr;
5593
5594 push_context (0, lowpc);
5595 if (die->child != NULL)
5596 {
5597 child_die = die->child;
5598 while (child_die && child_die->tag)
5599 {
5600 process_die (child_die, cu);
5601 child_die = sibling_die (child_die);
5602 }
5603 }
5604 new = pop_context ();
5605
5606 if (local_symbols != NULL || using_directives != NULL)
5607 {
5608 struct block *block
5609 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
5610 highpc, objfile);
5611
5612 /* Note that recording ranges after traversing children, as we
5613 do here, means that recording a parent's ranges entails
5614 walking across all its children's ranges as they appear in
5615 the address map, which is quadratic behavior.
5616
5617 It would be nicer to record the parent's ranges before
5618 traversing its children, simply overriding whatever you find
5619 there. But since we don't even decide whether to create a
5620 block until after we've traversed its children, that's hard
5621 to do. */
5622 dwarf2_record_block_ranges (die, block, baseaddr, cu);
5623 }
5624 local_symbols = new->locals;
5625 using_directives = new->using_directives;
5626 }
5627
5628 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
5629 Return 1 if the attributes are present and valid, otherwise, return 0.
5630 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
5631
5632 static int
5633 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
5634 CORE_ADDR *high_return, struct dwarf2_cu *cu,
5635 struct partial_symtab *ranges_pst)
5636 {
5637 struct objfile *objfile = cu->objfile;
5638 struct comp_unit_head *cu_header = &cu->header;
5639 bfd *obfd = objfile->obfd;
5640 unsigned int addr_size = cu_header->addr_size;
5641 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
5642 /* Base address selection entry. */
5643 CORE_ADDR base;
5644 int found_base;
5645 unsigned int dummy;
5646 gdb_byte *buffer;
5647 CORE_ADDR marker;
5648 int low_set;
5649 CORE_ADDR low = 0;
5650 CORE_ADDR high = 0;
5651 CORE_ADDR baseaddr;
5652
5653 found_base = cu->base_known;
5654 base = cu->base_address;
5655
5656 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
5657 if (offset >= dwarf2_per_objfile->ranges.size)
5658 {
5659 complaint (&symfile_complaints,
5660 _("Offset %d out of bounds for DW_AT_ranges attribute"),
5661 offset);
5662 return 0;
5663 }
5664 buffer = dwarf2_per_objfile->ranges.buffer + offset;
5665
5666 /* Read in the largest possible address. */
5667 marker = read_address (obfd, buffer, cu, &dummy);
5668 if ((marker & mask) == mask)
5669 {
5670 /* If we found the largest possible address, then
5671 read the base address. */
5672 base = read_address (obfd, buffer + addr_size, cu, &dummy);
5673 buffer += 2 * addr_size;
5674 offset += 2 * addr_size;
5675 found_base = 1;
5676 }
5677
5678 low_set = 0;
5679
5680 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5681
5682 while (1)
5683 {
5684 CORE_ADDR range_beginning, range_end;
5685
5686 range_beginning = read_address (obfd, buffer, cu, &dummy);
5687 buffer += addr_size;
5688 range_end = read_address (obfd, buffer, cu, &dummy);
5689 buffer += addr_size;
5690 offset += 2 * addr_size;
5691
5692 /* An end of list marker is a pair of zero addresses. */
5693 if (range_beginning == 0 && range_end == 0)
5694 /* Found the end of list entry. */
5695 break;
5696
5697 /* Each base address selection entry is a pair of 2 values.
5698 The first is the largest possible address, the second is
5699 the base address. Check for a base address here. */
5700 if ((range_beginning & mask) == mask)
5701 {
5702 /* If we found the largest possible address, then
5703 read the base address. */
5704 base = read_address (obfd, buffer + addr_size, cu, &dummy);
5705 found_base = 1;
5706 continue;
5707 }
5708
5709 if (!found_base)
5710 {
5711 /* We have no valid base address for the ranges
5712 data. */
5713 complaint (&symfile_complaints,
5714 _("Invalid .debug_ranges data (no base address)"));
5715 return 0;
5716 }
5717
5718 range_beginning += base;
5719 range_end += base;
5720
5721 if (ranges_pst != NULL && range_beginning < range_end)
5722 addrmap_set_empty (objfile->psymtabs_addrmap,
5723 range_beginning + baseaddr, range_end - 1 + baseaddr,
5724 ranges_pst);
5725
5726 /* FIXME: This is recording everything as a low-high
5727 segment of consecutive addresses. We should have a
5728 data structure for discontiguous block ranges
5729 instead. */
5730 if (! low_set)
5731 {
5732 low = range_beginning;
5733 high = range_end;
5734 low_set = 1;
5735 }
5736 else
5737 {
5738 if (range_beginning < low)
5739 low = range_beginning;
5740 if (range_end > high)
5741 high = range_end;
5742 }
5743 }
5744
5745 if (! low_set)
5746 /* If the first entry is an end-of-list marker, the range
5747 describes an empty scope, i.e. no instructions. */
5748 return 0;
5749
5750 if (low_return)
5751 *low_return = low;
5752 if (high_return)
5753 *high_return = high;
5754 return 1;
5755 }
5756
5757 /* Get low and high pc attributes from a die. Return 1 if the attributes
5758 are present and valid, otherwise, return 0. Return -1 if the range is
5759 discontinuous, i.e. derived from DW_AT_ranges information. */
5760 static int
5761 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
5762 CORE_ADDR *highpc, struct dwarf2_cu *cu,
5763 struct partial_symtab *pst)
5764 {
5765 struct attribute *attr;
5766 CORE_ADDR low = 0;
5767 CORE_ADDR high = 0;
5768 int ret = 0;
5769
5770 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
5771 if (attr)
5772 {
5773 high = DW_ADDR (attr);
5774 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
5775 if (attr)
5776 low = DW_ADDR (attr);
5777 else
5778 /* Found high w/o low attribute. */
5779 return 0;
5780
5781 /* Found consecutive range of addresses. */
5782 ret = 1;
5783 }
5784 else
5785 {
5786 attr = dwarf2_attr (die, DW_AT_ranges, cu);
5787 if (attr != NULL)
5788 {
5789 /* Value of the DW_AT_ranges attribute is the offset in the
5790 .debug_ranges section. */
5791 if (!dwarf2_ranges_read (DW_UNSND (attr), &low, &high, cu, pst))
5792 return 0;
5793 /* Found discontinuous range of addresses. */
5794 ret = -1;
5795 }
5796 }
5797
5798 if (high < low)
5799 return 0;
5800
5801 /* When using the GNU linker, .gnu.linkonce. sections are used to
5802 eliminate duplicate copies of functions and vtables and such.
5803 The linker will arbitrarily choose one and discard the others.
5804 The AT_*_pc values for such functions refer to local labels in
5805 these sections. If the section from that file was discarded, the
5806 labels are not in the output, so the relocs get a value of 0.
5807 If this is a discarded function, mark the pc bounds as invalid,
5808 so that GDB will ignore it. */
5809 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
5810 return 0;
5811
5812 *lowpc = low;
5813 *highpc = high;
5814 return ret;
5815 }
5816
5817 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
5818 its low and high PC addresses. Do nothing if these addresses could not
5819 be determined. Otherwise, set LOWPC to the low address if it is smaller,
5820 and HIGHPC to the high address if greater than HIGHPC. */
5821
5822 static void
5823 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
5824 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5825 struct dwarf2_cu *cu)
5826 {
5827 CORE_ADDR low, high;
5828 struct die_info *child = die->child;
5829
5830 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
5831 {
5832 *lowpc = min (*lowpc, low);
5833 *highpc = max (*highpc, high);
5834 }
5835
5836 /* If the language does not allow nested subprograms (either inside
5837 subprograms or lexical blocks), we're done. */
5838 if (cu->language != language_ada)
5839 return;
5840
5841 /* Check all the children of the given DIE. If it contains nested
5842 subprograms, then check their pc bounds. Likewise, we need to
5843 check lexical blocks as well, as they may also contain subprogram
5844 definitions. */
5845 while (child && child->tag)
5846 {
5847 if (child->tag == DW_TAG_subprogram
5848 || child->tag == DW_TAG_lexical_block)
5849 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
5850 child = sibling_die (child);
5851 }
5852 }
5853
5854 /* Get the low and high pc's represented by the scope DIE, and store
5855 them in *LOWPC and *HIGHPC. If the correct values can't be
5856 determined, set *LOWPC to -1 and *HIGHPC to 0. */
5857
5858 static void
5859 get_scope_pc_bounds (struct die_info *die,
5860 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5861 struct dwarf2_cu *cu)
5862 {
5863 CORE_ADDR best_low = (CORE_ADDR) -1;
5864 CORE_ADDR best_high = (CORE_ADDR) 0;
5865 CORE_ADDR current_low, current_high;
5866
5867 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
5868 {
5869 best_low = current_low;
5870 best_high = current_high;
5871 }
5872 else
5873 {
5874 struct die_info *child = die->child;
5875
5876 while (child && child->tag)
5877 {
5878 switch (child->tag) {
5879 case DW_TAG_subprogram:
5880 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
5881 break;
5882 case DW_TAG_namespace:
5883 case DW_TAG_module:
5884 /* FIXME: carlton/2004-01-16: Should we do this for
5885 DW_TAG_class_type/DW_TAG_structure_type, too? I think
5886 that current GCC's always emit the DIEs corresponding
5887 to definitions of methods of classes as children of a
5888 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
5889 the DIEs giving the declarations, which could be
5890 anywhere). But I don't see any reason why the
5891 standards says that they have to be there. */
5892 get_scope_pc_bounds (child, &current_low, &current_high, cu);
5893
5894 if (current_low != ((CORE_ADDR) -1))
5895 {
5896 best_low = min (best_low, current_low);
5897 best_high = max (best_high, current_high);
5898 }
5899 break;
5900 default:
5901 /* Ignore. */
5902 break;
5903 }
5904
5905 child = sibling_die (child);
5906 }
5907 }
5908
5909 *lowpc = best_low;
5910 *highpc = best_high;
5911 }
5912
5913 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
5914 in DIE. */
5915 static void
5916 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
5917 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
5918 {
5919 struct attribute *attr;
5920
5921 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
5922 if (attr)
5923 {
5924 CORE_ADDR high = DW_ADDR (attr);
5925
5926 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
5927 if (attr)
5928 {
5929 CORE_ADDR low = DW_ADDR (attr);
5930
5931 record_block_range (block, baseaddr + low, baseaddr + high - 1);
5932 }
5933 }
5934
5935 attr = dwarf2_attr (die, DW_AT_ranges, cu);
5936 if (attr)
5937 {
5938 bfd *obfd = cu->objfile->obfd;
5939
5940 /* The value of the DW_AT_ranges attribute is the offset of the
5941 address range list in the .debug_ranges section. */
5942 unsigned long offset = DW_UNSND (attr);
5943 gdb_byte *buffer = dwarf2_per_objfile->ranges.buffer + offset;
5944
5945 /* For some target architectures, but not others, the
5946 read_address function sign-extends the addresses it returns.
5947 To recognize base address selection entries, we need a
5948 mask. */
5949 unsigned int addr_size = cu->header.addr_size;
5950 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
5951
5952 /* The base address, to which the next pair is relative. Note
5953 that this 'base' is a DWARF concept: most entries in a range
5954 list are relative, to reduce the number of relocs against the
5955 debugging information. This is separate from this function's
5956 'baseaddr' argument, which GDB uses to relocate debugging
5957 information from a shared library based on the address at
5958 which the library was loaded. */
5959 CORE_ADDR base = cu->base_address;
5960 int base_known = cu->base_known;
5961
5962 gdb_assert (dwarf2_per_objfile->ranges.readin);
5963 if (offset >= dwarf2_per_objfile->ranges.size)
5964 {
5965 complaint (&symfile_complaints,
5966 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
5967 offset);
5968 return;
5969 }
5970
5971 for (;;)
5972 {
5973 unsigned int bytes_read;
5974 CORE_ADDR start, end;
5975
5976 start = read_address (obfd, buffer, cu, &bytes_read);
5977 buffer += bytes_read;
5978 end = read_address (obfd, buffer, cu, &bytes_read);
5979 buffer += bytes_read;
5980
5981 /* Did we find the end of the range list? */
5982 if (start == 0 && end == 0)
5983 break;
5984
5985 /* Did we find a base address selection entry? */
5986 else if ((start & base_select_mask) == base_select_mask)
5987 {
5988 base = end;
5989 base_known = 1;
5990 }
5991
5992 /* We found an ordinary address range. */
5993 else
5994 {
5995 if (!base_known)
5996 {
5997 complaint (&symfile_complaints,
5998 _("Invalid .debug_ranges data (no base address)"));
5999 return;
6000 }
6001
6002 record_block_range (block,
6003 baseaddr + base + start,
6004 baseaddr + base + end - 1);
6005 }
6006 }
6007 }
6008 }
6009
6010 /* Add an aggregate field to the field list. */
6011
6012 static void
6013 dwarf2_add_field (struct field_info *fip, struct die_info *die,
6014 struct dwarf2_cu *cu)
6015 {
6016 struct objfile *objfile = cu->objfile;
6017 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6018 struct nextfield *new_field;
6019 struct attribute *attr;
6020 struct field *fp;
6021 char *fieldname = "";
6022
6023 /* Allocate a new field list entry and link it in. */
6024 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
6025 make_cleanup (xfree, new_field);
6026 memset (new_field, 0, sizeof (struct nextfield));
6027
6028 if (die->tag == DW_TAG_inheritance)
6029 {
6030 new_field->next = fip->baseclasses;
6031 fip->baseclasses = new_field;
6032 }
6033 else
6034 {
6035 new_field->next = fip->fields;
6036 fip->fields = new_field;
6037 }
6038 fip->nfields++;
6039
6040 /* Handle accessibility and virtuality of field.
6041 The default accessibility for members is public, the default
6042 accessibility for inheritance is private. */
6043 if (die->tag != DW_TAG_inheritance)
6044 new_field->accessibility = DW_ACCESS_public;
6045 else
6046 new_field->accessibility = DW_ACCESS_private;
6047 new_field->virtuality = DW_VIRTUALITY_none;
6048
6049 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
6050 if (attr)
6051 new_field->accessibility = DW_UNSND (attr);
6052 if (new_field->accessibility != DW_ACCESS_public)
6053 fip->non_public_fields = 1;
6054 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
6055 if (attr)
6056 new_field->virtuality = DW_UNSND (attr);
6057
6058 fp = &new_field->field;
6059
6060 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
6061 {
6062 /* Data member other than a C++ static data member. */
6063
6064 /* Get type of field. */
6065 fp->type = die_type (die, cu);
6066
6067 SET_FIELD_BITPOS (*fp, 0);
6068
6069 /* Get bit size of field (zero if none). */
6070 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
6071 if (attr)
6072 {
6073 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
6074 }
6075 else
6076 {
6077 FIELD_BITSIZE (*fp) = 0;
6078 }
6079
6080 /* Get bit offset of field. */
6081 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
6082 if (attr)
6083 {
6084 int byte_offset = 0;
6085
6086 if (attr_form_is_section_offset (attr))
6087 dwarf2_complex_location_expr_complaint ();
6088 else if (attr_form_is_constant (attr))
6089 byte_offset = dwarf2_get_attr_constant_value (attr, 0);
6090 else if (attr_form_is_block (attr))
6091 byte_offset = decode_locdesc (DW_BLOCK (attr), cu);
6092 else
6093 dwarf2_complex_location_expr_complaint ();
6094
6095 SET_FIELD_BITPOS (*fp, byte_offset * bits_per_byte);
6096 }
6097 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
6098 if (attr)
6099 {
6100 if (gdbarch_bits_big_endian (gdbarch))
6101 {
6102 /* For big endian bits, the DW_AT_bit_offset gives the
6103 additional bit offset from the MSB of the containing
6104 anonymous object to the MSB of the field. We don't
6105 have to do anything special since we don't need to
6106 know the size of the anonymous object. */
6107 FIELD_BITPOS (*fp) += DW_UNSND (attr);
6108 }
6109 else
6110 {
6111 /* For little endian bits, compute the bit offset to the
6112 MSB of the anonymous object, subtract off the number of
6113 bits from the MSB of the field to the MSB of the
6114 object, and then subtract off the number of bits of
6115 the field itself. The result is the bit offset of
6116 the LSB of the field. */
6117 int anonymous_size;
6118 int bit_offset = DW_UNSND (attr);
6119
6120 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
6121 if (attr)
6122 {
6123 /* The size of the anonymous object containing
6124 the bit field is explicit, so use the
6125 indicated size (in bytes). */
6126 anonymous_size = DW_UNSND (attr);
6127 }
6128 else
6129 {
6130 /* The size of the anonymous object containing
6131 the bit field must be inferred from the type
6132 attribute of the data member containing the
6133 bit field. */
6134 anonymous_size = TYPE_LENGTH (fp->type);
6135 }
6136 FIELD_BITPOS (*fp) += anonymous_size * bits_per_byte
6137 - bit_offset - FIELD_BITSIZE (*fp);
6138 }
6139 }
6140
6141 /* Get name of field. */
6142 fieldname = dwarf2_name (die, cu);
6143 if (fieldname == NULL)
6144 fieldname = "";
6145
6146 /* The name is already allocated along with this objfile, so we don't
6147 need to duplicate it for the type. */
6148 fp->name = fieldname;
6149
6150 /* Change accessibility for artificial fields (e.g. virtual table
6151 pointer or virtual base class pointer) to private. */
6152 if (dwarf2_attr (die, DW_AT_artificial, cu))
6153 {
6154 FIELD_ARTIFICIAL (*fp) = 1;
6155 new_field->accessibility = DW_ACCESS_private;
6156 fip->non_public_fields = 1;
6157 }
6158 }
6159 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
6160 {
6161 /* C++ static member. */
6162
6163 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
6164 is a declaration, but all versions of G++ as of this writing
6165 (so through at least 3.2.1) incorrectly generate
6166 DW_TAG_variable tags. */
6167
6168 char *physname;
6169
6170 /* Get name of field. */
6171 fieldname = dwarf2_name (die, cu);
6172 if (fieldname == NULL)
6173 return;
6174
6175 attr = dwarf2_attr (die, DW_AT_const_value, cu);
6176 if (attr
6177 /* Only create a symbol if this is an external value.
6178 new_symbol checks this and puts the value in the global symbol
6179 table, which we want. If it is not external, new_symbol
6180 will try to put the value in cu->list_in_scope which is wrong. */
6181 && dwarf2_flag_true_p (die, DW_AT_external, cu))
6182 {
6183 /* A static const member, not much different than an enum as far as
6184 we're concerned, except that we can support more types. */
6185 new_symbol (die, NULL, cu);
6186 }
6187
6188 /* Get physical name. */
6189 physname = (char *) dwarf2_physname (fieldname, die, cu);
6190
6191 /* The name is already allocated along with this objfile, so we don't
6192 need to duplicate it for the type. */
6193 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
6194 FIELD_TYPE (*fp) = die_type (die, cu);
6195 FIELD_NAME (*fp) = fieldname;
6196 }
6197 else if (die->tag == DW_TAG_inheritance)
6198 {
6199 /* C++ base class field. */
6200 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
6201 if (attr)
6202 {
6203 int byte_offset = 0;
6204
6205 if (attr_form_is_section_offset (attr))
6206 dwarf2_complex_location_expr_complaint ();
6207 else if (attr_form_is_constant (attr))
6208 byte_offset = dwarf2_get_attr_constant_value (attr, 0);
6209 else if (attr_form_is_block (attr))
6210 byte_offset = decode_locdesc (DW_BLOCK (attr), cu);
6211 else
6212 dwarf2_complex_location_expr_complaint ();
6213
6214 SET_FIELD_BITPOS (*fp, byte_offset * bits_per_byte);
6215 }
6216 FIELD_BITSIZE (*fp) = 0;
6217 FIELD_TYPE (*fp) = die_type (die, cu);
6218 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
6219 fip->nbaseclasses++;
6220 }
6221 }
6222
6223 /* Add a typedef defined in the scope of the FIP's class. */
6224
6225 static void
6226 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
6227 struct dwarf2_cu *cu)
6228 {
6229 struct objfile *objfile = cu->objfile;
6230 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6231 struct typedef_field_list *new_field;
6232 struct attribute *attr;
6233 struct typedef_field *fp;
6234 char *fieldname = "";
6235
6236 /* Allocate a new field list entry and link it in. */
6237 new_field = xzalloc (sizeof (*new_field));
6238 make_cleanup (xfree, new_field);
6239
6240 gdb_assert (die->tag == DW_TAG_typedef);
6241
6242 fp = &new_field->field;
6243
6244 /* Get name of field. */
6245 fp->name = dwarf2_name (die, cu);
6246 if (fp->name == NULL)
6247 return;
6248
6249 fp->type = read_type_die (die, cu);
6250
6251 new_field->next = fip->typedef_field_list;
6252 fip->typedef_field_list = new_field;
6253 fip->typedef_field_list_count++;
6254 }
6255
6256 /* Create the vector of fields, and attach it to the type. */
6257
6258 static void
6259 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
6260 struct dwarf2_cu *cu)
6261 {
6262 int nfields = fip->nfields;
6263
6264 /* Record the field count, allocate space for the array of fields,
6265 and create blank accessibility bitfields if necessary. */
6266 TYPE_NFIELDS (type) = nfields;
6267 TYPE_FIELDS (type) = (struct field *)
6268 TYPE_ALLOC (type, sizeof (struct field) * nfields);
6269 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
6270
6271 if (fip->non_public_fields && cu->language != language_ada)
6272 {
6273 ALLOCATE_CPLUS_STRUCT_TYPE (type);
6274
6275 TYPE_FIELD_PRIVATE_BITS (type) =
6276 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
6277 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
6278
6279 TYPE_FIELD_PROTECTED_BITS (type) =
6280 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
6281 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
6282
6283 TYPE_FIELD_IGNORE_BITS (type) =
6284 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
6285 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
6286 }
6287
6288 /* If the type has baseclasses, allocate and clear a bit vector for
6289 TYPE_FIELD_VIRTUAL_BITS. */
6290 if (fip->nbaseclasses && cu->language != language_ada)
6291 {
6292 int num_bytes = B_BYTES (fip->nbaseclasses);
6293 unsigned char *pointer;
6294
6295 ALLOCATE_CPLUS_STRUCT_TYPE (type);
6296 pointer = TYPE_ALLOC (type, num_bytes);
6297 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
6298 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
6299 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
6300 }
6301
6302 /* Copy the saved-up fields into the field vector. Start from the head
6303 of the list, adding to the tail of the field array, so that they end
6304 up in the same order in the array in which they were added to the list. */
6305 while (nfields-- > 0)
6306 {
6307 struct nextfield *fieldp;
6308
6309 if (fip->fields)
6310 {
6311 fieldp = fip->fields;
6312 fip->fields = fieldp->next;
6313 }
6314 else
6315 {
6316 fieldp = fip->baseclasses;
6317 fip->baseclasses = fieldp->next;
6318 }
6319
6320 TYPE_FIELD (type, nfields) = fieldp->field;
6321 switch (fieldp->accessibility)
6322 {
6323 case DW_ACCESS_private:
6324 if (cu->language != language_ada)
6325 SET_TYPE_FIELD_PRIVATE (type, nfields);
6326 break;
6327
6328 case DW_ACCESS_protected:
6329 if (cu->language != language_ada)
6330 SET_TYPE_FIELD_PROTECTED (type, nfields);
6331 break;
6332
6333 case DW_ACCESS_public:
6334 break;
6335
6336 default:
6337 /* Unknown accessibility. Complain and treat it as public. */
6338 {
6339 complaint (&symfile_complaints, _("unsupported accessibility %d"),
6340 fieldp->accessibility);
6341 }
6342 break;
6343 }
6344 if (nfields < fip->nbaseclasses)
6345 {
6346 switch (fieldp->virtuality)
6347 {
6348 case DW_VIRTUALITY_virtual:
6349 case DW_VIRTUALITY_pure_virtual:
6350 if (cu->language == language_ada)
6351 error ("unexpected virtuality in component of Ada type");
6352 SET_TYPE_FIELD_VIRTUAL (type, nfields);
6353 break;
6354 }
6355 }
6356 }
6357 }
6358
6359 /* Add a member function to the proper fieldlist. */
6360
6361 static void
6362 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
6363 struct type *type, struct dwarf2_cu *cu)
6364 {
6365 struct objfile *objfile = cu->objfile;
6366 struct attribute *attr;
6367 struct fnfieldlist *flp;
6368 int i;
6369 struct fn_field *fnp;
6370 char *fieldname;
6371 struct nextfnfield *new_fnfield;
6372 struct type *this_type;
6373
6374 if (cu->language == language_ada)
6375 error ("unexpected member function in Ada type");
6376
6377 /* Get name of member function. */
6378 fieldname = dwarf2_name (die, cu);
6379 if (fieldname == NULL)
6380 return;
6381
6382 /* Look up member function name in fieldlist. */
6383 for (i = 0; i < fip->nfnfields; i++)
6384 {
6385 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
6386 break;
6387 }
6388
6389 /* Create new list element if necessary. */
6390 if (i < fip->nfnfields)
6391 flp = &fip->fnfieldlists[i];
6392 else
6393 {
6394 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
6395 {
6396 fip->fnfieldlists = (struct fnfieldlist *)
6397 xrealloc (fip->fnfieldlists,
6398 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
6399 * sizeof (struct fnfieldlist));
6400 if (fip->nfnfields == 0)
6401 make_cleanup (free_current_contents, &fip->fnfieldlists);
6402 }
6403 flp = &fip->fnfieldlists[fip->nfnfields];
6404 flp->name = fieldname;
6405 flp->length = 0;
6406 flp->head = NULL;
6407 i = fip->nfnfields++;
6408 }
6409
6410 /* Create a new member function field and chain it to the field list
6411 entry. */
6412 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
6413 make_cleanup (xfree, new_fnfield);
6414 memset (new_fnfield, 0, sizeof (struct nextfnfield));
6415 new_fnfield->next = flp->head;
6416 flp->head = new_fnfield;
6417 flp->length++;
6418
6419 /* Fill in the member function field info. */
6420 fnp = &new_fnfield->fnfield;
6421
6422 /* Delay processing of the physname until later. */
6423 if (cu->language == language_cplus || cu->language == language_java)
6424 {
6425 add_to_method_list (type, i, flp->length - 1, fieldname,
6426 die, cu);
6427 }
6428 else
6429 {
6430 char *physname = (char *) dwarf2_physname (fieldname, die, cu);
6431 fnp->physname = physname ? physname : "";
6432 }
6433
6434 fnp->type = alloc_type (objfile);
6435 this_type = read_type_die (die, cu);
6436 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
6437 {
6438 int nparams = TYPE_NFIELDS (this_type);
6439
6440 /* TYPE is the domain of this method, and THIS_TYPE is the type
6441 of the method itself (TYPE_CODE_METHOD). */
6442 smash_to_method_type (fnp->type, type,
6443 TYPE_TARGET_TYPE (this_type),
6444 TYPE_FIELDS (this_type),
6445 TYPE_NFIELDS (this_type),
6446 TYPE_VARARGS (this_type));
6447
6448 /* Handle static member functions.
6449 Dwarf2 has no clean way to discern C++ static and non-static
6450 member functions. G++ helps GDB by marking the first
6451 parameter for non-static member functions (which is the
6452 this pointer) as artificial. We obtain this information
6453 from read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
6454 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
6455 fnp->voffset = VOFFSET_STATIC;
6456 }
6457 else
6458 complaint (&symfile_complaints, _("member function type missing for '%s'"),
6459 dwarf2_full_name (fieldname, die, cu));
6460
6461 /* Get fcontext from DW_AT_containing_type if present. */
6462 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
6463 fnp->fcontext = die_containing_type (die, cu);
6464
6465 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const
6466 and is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
6467
6468 /* Get accessibility. */
6469 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
6470 if (attr)
6471 {
6472 switch (DW_UNSND (attr))
6473 {
6474 case DW_ACCESS_private:
6475 fnp->is_private = 1;
6476 break;
6477 case DW_ACCESS_protected:
6478 fnp->is_protected = 1;
6479 break;
6480 }
6481 }
6482
6483 /* Check for artificial methods. */
6484 attr = dwarf2_attr (die, DW_AT_artificial, cu);
6485 if (attr && DW_UNSND (attr) != 0)
6486 fnp->is_artificial = 1;
6487
6488 /* Get index in virtual function table if it is a virtual member
6489 function. For older versions of GCC, this is an offset in the
6490 appropriate virtual table, as specified by DW_AT_containing_type.
6491 For everyone else, it is an expression to be evaluated relative
6492 to the object address. */
6493
6494 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
6495 if (attr)
6496 {
6497 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
6498 {
6499 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
6500 {
6501 /* Old-style GCC. */
6502 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
6503 }
6504 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
6505 || (DW_BLOCK (attr)->size > 1
6506 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
6507 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
6508 {
6509 struct dwarf_block blk;
6510 int offset;
6511
6512 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
6513 ? 1 : 2);
6514 blk.size = DW_BLOCK (attr)->size - offset;
6515 blk.data = DW_BLOCK (attr)->data + offset;
6516 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
6517 if ((fnp->voffset % cu->header.addr_size) != 0)
6518 dwarf2_complex_location_expr_complaint ();
6519 else
6520 fnp->voffset /= cu->header.addr_size;
6521 fnp->voffset += 2;
6522 }
6523 else
6524 dwarf2_complex_location_expr_complaint ();
6525
6526 if (!fnp->fcontext)
6527 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
6528 }
6529 else if (attr_form_is_section_offset (attr))
6530 {
6531 dwarf2_complex_location_expr_complaint ();
6532 }
6533 else
6534 {
6535 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
6536 fieldname);
6537 }
6538 }
6539 else
6540 {
6541 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
6542 if (attr && DW_UNSND (attr))
6543 {
6544 /* GCC does this, as of 2008-08-25; PR debug/37237. */
6545 complaint (&symfile_complaints,
6546 _("Member function \"%s\" (offset %d) is virtual but the vtable offset is not specified"),
6547 fieldname, die->offset);
6548 ALLOCATE_CPLUS_STRUCT_TYPE (type);
6549 TYPE_CPLUS_DYNAMIC (type) = 1;
6550 }
6551 }
6552 }
6553
6554 /* Create the vector of member function fields, and attach it to the type. */
6555
6556 static void
6557 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
6558 struct dwarf2_cu *cu)
6559 {
6560 struct fnfieldlist *flp;
6561 int total_length = 0;
6562 int i;
6563
6564 if (cu->language == language_ada)
6565 error ("unexpected member functions in Ada type");
6566
6567 ALLOCATE_CPLUS_STRUCT_TYPE (type);
6568 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
6569 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
6570
6571 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
6572 {
6573 struct nextfnfield *nfp = flp->head;
6574 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
6575 int k;
6576
6577 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
6578 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
6579 fn_flp->fn_fields = (struct fn_field *)
6580 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
6581 for (k = flp->length; (k--, nfp); nfp = nfp->next)
6582 fn_flp->fn_fields[k] = nfp->fnfield;
6583
6584 total_length += flp->length;
6585 }
6586
6587 TYPE_NFN_FIELDS (type) = fip->nfnfields;
6588 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
6589 }
6590
6591 /* Returns non-zero if NAME is the name of a vtable member in CU's
6592 language, zero otherwise. */
6593 static int
6594 is_vtable_name (const char *name, struct dwarf2_cu *cu)
6595 {
6596 static const char vptr[] = "_vptr";
6597 static const char vtable[] = "vtable";
6598
6599 /* Look for the C++ and Java forms of the vtable. */
6600 if ((cu->language == language_java
6601 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
6602 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
6603 && is_cplus_marker (name[sizeof (vptr) - 1])))
6604 return 1;
6605
6606 return 0;
6607 }
6608
6609 /* GCC outputs unnamed structures that are really pointers to member
6610 functions, with the ABI-specified layout. If TYPE describes
6611 such a structure, smash it into a member function type.
6612
6613 GCC shouldn't do this; it should just output pointer to member DIEs.
6614 This is GCC PR debug/28767. */
6615
6616 static void
6617 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
6618 {
6619 struct type *pfn_type, *domain_type, *new_type;
6620
6621 /* Check for a structure with no name and two children. */
6622 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
6623 return;
6624
6625 /* Check for __pfn and __delta members. */
6626 if (TYPE_FIELD_NAME (type, 0) == NULL
6627 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
6628 || TYPE_FIELD_NAME (type, 1) == NULL
6629 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
6630 return;
6631
6632 /* Find the type of the method. */
6633 pfn_type = TYPE_FIELD_TYPE (type, 0);
6634 if (pfn_type == NULL
6635 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
6636 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
6637 return;
6638
6639 /* Look for the "this" argument. */
6640 pfn_type = TYPE_TARGET_TYPE (pfn_type);
6641 if (TYPE_NFIELDS (pfn_type) == 0
6642 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
6643 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
6644 return;
6645
6646 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
6647 new_type = alloc_type (objfile);
6648 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
6649 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
6650 TYPE_VARARGS (pfn_type));
6651 smash_to_methodptr_type (type, new_type);
6652 }
6653
6654 /* Called when we find the DIE that starts a structure or union scope
6655 (definition) to create a type for the structure or union. Fill in
6656 the type's name and general properties; the members will not be
6657 processed until process_structure_type.
6658
6659 NOTE: we need to call these functions regardless of whether or not the
6660 DIE has a DW_AT_name attribute, since it might be an anonymous
6661 structure or union. This gets the type entered into our set of
6662 user defined types.
6663
6664 However, if the structure is incomplete (an opaque struct/union)
6665 then suppress creating a symbol table entry for it since gdb only
6666 wants to find the one with the complete definition. Note that if
6667 it is complete, we just call new_symbol, which does it's own
6668 checking about whether the struct/union is anonymous or not (and
6669 suppresses creating a symbol table entry itself). */
6670
6671 static struct type *
6672 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
6673 {
6674 struct objfile *objfile = cu->objfile;
6675 struct type *type;
6676 struct attribute *attr;
6677 char *name;
6678
6679 /* If the definition of this type lives in .debug_types, read that type.
6680 Don't follow DW_AT_specification though, that will take us back up
6681 the chain and we want to go down. */
6682 attr = dwarf2_attr_no_follow (die, DW_AT_signature, cu);
6683 if (attr)
6684 {
6685 struct dwarf2_cu *type_cu = cu;
6686 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
6687
6688 /* We could just recurse on read_structure_type, but we need to call
6689 get_die_type to ensure only one type for this DIE is created.
6690 This is important, for example, because for c++ classes we need
6691 TYPE_NAME set which is only done by new_symbol. Blech. */
6692 type = read_type_die (type_die, type_cu);
6693
6694 /* TYPE_CU may not be the same as CU.
6695 Ensure TYPE is recorded in CU's type_hash table. */
6696 return set_die_type (die, type, cu);
6697 }
6698
6699 type = alloc_type (objfile);
6700 INIT_CPLUS_SPECIFIC (type);
6701
6702 name = dwarf2_name (die, cu);
6703 if (name != NULL)
6704 {
6705 if (cu->language == language_cplus
6706 || cu->language == language_java)
6707 {
6708 char *full_name = (char *) dwarf2_full_name (name, die, cu);
6709
6710 /* dwarf2_full_name might have already finished building the DIE's
6711 type. If so, there is no need to continue. */
6712 if (get_die_type (die, cu) != NULL)
6713 return get_die_type (die, cu);
6714
6715 TYPE_TAG_NAME (type) = full_name;
6716 if (die->tag == DW_TAG_structure_type
6717 || die->tag == DW_TAG_class_type)
6718 TYPE_NAME (type) = TYPE_TAG_NAME (type);
6719 }
6720 else
6721 {
6722 /* The name is already allocated along with this objfile, so
6723 we don't need to duplicate it for the type. */
6724 TYPE_TAG_NAME (type) = (char *) name;
6725 if (die->tag == DW_TAG_class_type)
6726 TYPE_NAME (type) = TYPE_TAG_NAME (type);
6727 }
6728 }
6729
6730 if (die->tag == DW_TAG_structure_type)
6731 {
6732 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6733 }
6734 else if (die->tag == DW_TAG_union_type)
6735 {
6736 TYPE_CODE (type) = TYPE_CODE_UNION;
6737 }
6738 else
6739 {
6740 TYPE_CODE (type) = TYPE_CODE_CLASS;
6741 }
6742
6743 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
6744 TYPE_DECLARED_CLASS (type) = 1;
6745
6746 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
6747 if (attr)
6748 {
6749 TYPE_LENGTH (type) = DW_UNSND (attr);
6750 }
6751 else
6752 {
6753 TYPE_LENGTH (type) = 0;
6754 }
6755
6756 TYPE_STUB_SUPPORTED (type) = 1;
6757 if (die_is_declaration (die, cu))
6758 TYPE_STUB (type) = 1;
6759 else if (attr == NULL && die->child == NULL
6760 && producer_is_realview (cu->producer))
6761 /* RealView does not output the required DW_AT_declaration
6762 on incomplete types. */
6763 TYPE_STUB (type) = 1;
6764
6765 /* We need to add the type field to the die immediately so we don't
6766 infinitely recurse when dealing with pointers to the structure
6767 type within the structure itself. */
6768 set_die_type (die, type, cu);
6769
6770 /* set_die_type should be already done. */
6771 set_descriptive_type (type, die, cu);
6772
6773 return type;
6774 }
6775
6776 /* Finish creating a structure or union type, including filling in
6777 its members and creating a symbol for it. */
6778
6779 static void
6780 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
6781 {
6782 struct objfile *objfile = cu->objfile;
6783 struct die_info *child_die = die->child;
6784 struct type *type;
6785
6786 type = get_die_type (die, cu);
6787 if (type == NULL)
6788 type = read_structure_type (die, cu);
6789
6790 if (die->child != NULL && ! die_is_declaration (die, cu))
6791 {
6792 struct field_info fi;
6793 struct die_info *child_die;
6794 VEC (symbolp) *template_args = NULL;
6795 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
6796
6797 memset (&fi, 0, sizeof (struct field_info));
6798
6799 child_die = die->child;
6800
6801 while (child_die && child_die->tag)
6802 {
6803 if (child_die->tag == DW_TAG_member
6804 || child_die->tag == DW_TAG_variable)
6805 {
6806 /* NOTE: carlton/2002-11-05: A C++ static data member
6807 should be a DW_TAG_member that is a declaration, but
6808 all versions of G++ as of this writing (so through at
6809 least 3.2.1) incorrectly generate DW_TAG_variable
6810 tags for them instead. */
6811 dwarf2_add_field (&fi, child_die, cu);
6812 }
6813 else if (child_die->tag == DW_TAG_subprogram)
6814 {
6815 /* C++ member function. */
6816 dwarf2_add_member_fn (&fi, child_die, type, cu);
6817 }
6818 else if (child_die->tag == DW_TAG_inheritance)
6819 {
6820 /* C++ base class field. */
6821 dwarf2_add_field (&fi, child_die, cu);
6822 }
6823 else if (child_die->tag == DW_TAG_typedef)
6824 dwarf2_add_typedef (&fi, child_die, cu);
6825 else if (child_die->tag == DW_TAG_template_type_param
6826 || child_die->tag == DW_TAG_template_value_param)
6827 {
6828 struct symbol *arg = new_symbol (child_die, NULL, cu);
6829
6830 if (arg != NULL)
6831 VEC_safe_push (symbolp, template_args, arg);
6832 }
6833
6834 child_die = sibling_die (child_die);
6835 }
6836
6837 /* Attach template arguments to type. */
6838 if (! VEC_empty (symbolp, template_args))
6839 {
6840 ALLOCATE_CPLUS_STRUCT_TYPE (type);
6841 TYPE_N_TEMPLATE_ARGUMENTS (type)
6842 = VEC_length (symbolp, template_args);
6843 TYPE_TEMPLATE_ARGUMENTS (type)
6844 = obstack_alloc (&objfile->objfile_obstack,
6845 (TYPE_N_TEMPLATE_ARGUMENTS (type)
6846 * sizeof (struct symbol *)));
6847 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
6848 VEC_address (symbolp, template_args),
6849 (TYPE_N_TEMPLATE_ARGUMENTS (type)
6850 * sizeof (struct symbol *)));
6851 VEC_free (symbolp, template_args);
6852 }
6853
6854 /* Attach fields and member functions to the type. */
6855 if (fi.nfields)
6856 dwarf2_attach_fields_to_type (&fi, type, cu);
6857 if (fi.nfnfields)
6858 {
6859 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
6860
6861 /* Get the type which refers to the base class (possibly this
6862 class itself) which contains the vtable pointer for the current
6863 class from the DW_AT_containing_type attribute. This use of
6864 DW_AT_containing_type is a GNU extension. */
6865
6866 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
6867 {
6868 struct type *t = die_containing_type (die, cu);
6869
6870 TYPE_VPTR_BASETYPE (type) = t;
6871 if (type == t)
6872 {
6873 int i;
6874
6875 /* Our own class provides vtbl ptr. */
6876 for (i = TYPE_NFIELDS (t) - 1;
6877 i >= TYPE_N_BASECLASSES (t);
6878 --i)
6879 {
6880 char *fieldname = TYPE_FIELD_NAME (t, i);
6881
6882 if (is_vtable_name (fieldname, cu))
6883 {
6884 TYPE_VPTR_FIELDNO (type) = i;
6885 break;
6886 }
6887 }
6888
6889 /* Complain if virtual function table field not found. */
6890 if (i < TYPE_N_BASECLASSES (t))
6891 complaint (&symfile_complaints,
6892 _("virtual function table pointer not found when defining class '%s'"),
6893 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
6894 "");
6895 }
6896 else
6897 {
6898 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
6899 }
6900 }
6901 else if (cu->producer
6902 && strncmp (cu->producer,
6903 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
6904 {
6905 /* The IBM XLC compiler does not provide direct indication
6906 of the containing type, but the vtable pointer is
6907 always named __vfp. */
6908
6909 int i;
6910
6911 for (i = TYPE_NFIELDS (type) - 1;
6912 i >= TYPE_N_BASECLASSES (type);
6913 --i)
6914 {
6915 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
6916 {
6917 TYPE_VPTR_FIELDNO (type) = i;
6918 TYPE_VPTR_BASETYPE (type) = type;
6919 break;
6920 }
6921 }
6922 }
6923 }
6924
6925 /* Copy fi.typedef_field_list linked list elements content into the
6926 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
6927 if (fi.typedef_field_list)
6928 {
6929 int i = fi.typedef_field_list_count;
6930
6931 ALLOCATE_CPLUS_STRUCT_TYPE (type);
6932 TYPE_TYPEDEF_FIELD_ARRAY (type)
6933 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
6934 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
6935
6936 /* Reverse the list order to keep the debug info elements order. */
6937 while (--i >= 0)
6938 {
6939 struct typedef_field *dest, *src;
6940
6941 dest = &TYPE_TYPEDEF_FIELD (type, i);
6942 src = &fi.typedef_field_list->field;
6943 fi.typedef_field_list = fi.typedef_field_list->next;
6944 *dest = *src;
6945 }
6946 }
6947
6948 do_cleanups (back_to);
6949 }
6950
6951 quirk_gcc_member_function_pointer (type, cu->objfile);
6952
6953 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
6954 snapshots) has been known to create a die giving a declaration
6955 for a class that has, as a child, a die giving a definition for a
6956 nested class. So we have to process our children even if the
6957 current die is a declaration. Normally, of course, a declaration
6958 won't have any children at all. */
6959
6960 while (child_die != NULL && child_die->tag)
6961 {
6962 if (child_die->tag == DW_TAG_member
6963 || child_die->tag == DW_TAG_variable
6964 || child_die->tag == DW_TAG_inheritance
6965 || child_die->tag == DW_TAG_template_value_param
6966 || child_die->tag == DW_TAG_template_type_param)
6967 {
6968 /* Do nothing. */
6969 }
6970 else
6971 process_die (child_die, cu);
6972
6973 child_die = sibling_die (child_die);
6974 }
6975
6976 /* Do not consider external references. According to the DWARF standard,
6977 these DIEs are identified by the fact that they have no byte_size
6978 attribute, and a declaration attribute. */
6979 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
6980 || !die_is_declaration (die, cu))
6981 new_symbol (die, type, cu);
6982 }
6983
6984 /* Given a DW_AT_enumeration_type die, set its type. We do not
6985 complete the type's fields yet, or create any symbols. */
6986
6987 static struct type *
6988 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
6989 {
6990 struct objfile *objfile = cu->objfile;
6991 struct type *type;
6992 struct attribute *attr;
6993 const char *name;
6994
6995 /* If the definition of this type lives in .debug_types, read that type.
6996 Don't follow DW_AT_specification though, that will take us back up
6997 the chain and we want to go down. */
6998 attr = dwarf2_attr_no_follow (die, DW_AT_signature, cu);
6999 if (attr)
7000 {
7001 struct dwarf2_cu *type_cu = cu;
7002 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
7003
7004 type = read_type_die (type_die, type_cu);
7005
7006 /* TYPE_CU may not be the same as CU.
7007 Ensure TYPE is recorded in CU's type_hash table. */
7008 return set_die_type (die, type, cu);
7009 }
7010
7011 type = alloc_type (objfile);
7012
7013 TYPE_CODE (type) = TYPE_CODE_ENUM;
7014 name = dwarf2_full_name (NULL, die, cu);
7015 if (name != NULL)
7016 TYPE_TAG_NAME (type) = (char *) name;
7017
7018 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
7019 if (attr)
7020 {
7021 TYPE_LENGTH (type) = DW_UNSND (attr);
7022 }
7023 else
7024 {
7025 TYPE_LENGTH (type) = 0;
7026 }
7027
7028 /* The enumeration DIE can be incomplete. In Ada, any type can be
7029 declared as private in the package spec, and then defined only
7030 inside the package body. Such types are known as Taft Amendment
7031 Types. When another package uses such a type, an incomplete DIE
7032 may be generated by the compiler. */
7033 if (die_is_declaration (die, cu))
7034 TYPE_STUB (type) = 1;
7035
7036 return set_die_type (die, type, cu);
7037 }
7038
7039 /* Given a pointer to a die which begins an enumeration, process all
7040 the dies that define the members of the enumeration, and create the
7041 symbol for the enumeration type.
7042
7043 NOTE: We reverse the order of the element list. */
7044
7045 static void
7046 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
7047 {
7048 struct type *this_type;
7049
7050 this_type = get_die_type (die, cu);
7051 if (this_type == NULL)
7052 this_type = read_enumeration_type (die, cu);
7053
7054 if (die->child != NULL)
7055 {
7056 struct die_info *child_die;
7057 struct symbol *sym;
7058 struct field *fields = NULL;
7059 int num_fields = 0;
7060 int unsigned_enum = 1;
7061 char *name;
7062
7063 child_die = die->child;
7064 while (child_die && child_die->tag)
7065 {
7066 if (child_die->tag != DW_TAG_enumerator)
7067 {
7068 process_die (child_die, cu);
7069 }
7070 else
7071 {
7072 name = dwarf2_name (child_die, cu);
7073 if (name)
7074 {
7075 sym = new_symbol (child_die, this_type, cu);
7076 if (SYMBOL_VALUE (sym) < 0)
7077 unsigned_enum = 0;
7078
7079 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
7080 {
7081 fields = (struct field *)
7082 xrealloc (fields,
7083 (num_fields + DW_FIELD_ALLOC_CHUNK)
7084 * sizeof (struct field));
7085 }
7086
7087 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
7088 FIELD_TYPE (fields[num_fields]) = NULL;
7089 SET_FIELD_BITPOS (fields[num_fields], SYMBOL_VALUE (sym));
7090 FIELD_BITSIZE (fields[num_fields]) = 0;
7091
7092 num_fields++;
7093 }
7094 }
7095
7096 child_die = sibling_die (child_die);
7097 }
7098
7099 if (num_fields)
7100 {
7101 TYPE_NFIELDS (this_type) = num_fields;
7102 TYPE_FIELDS (this_type) = (struct field *)
7103 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
7104 memcpy (TYPE_FIELDS (this_type), fields,
7105 sizeof (struct field) * num_fields);
7106 xfree (fields);
7107 }
7108 if (unsigned_enum)
7109 TYPE_UNSIGNED (this_type) = 1;
7110 }
7111
7112 new_symbol (die, this_type, cu);
7113 }
7114
7115 /* Extract all information from a DW_TAG_array_type DIE and put it in
7116 the DIE's type field. For now, this only handles one dimensional
7117 arrays. */
7118
7119 static struct type *
7120 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
7121 {
7122 struct objfile *objfile = cu->objfile;
7123 struct die_info *child_die;
7124 struct type *type;
7125 struct type *element_type, *range_type, *index_type;
7126 struct type **range_types = NULL;
7127 struct attribute *attr;
7128 int ndim = 0;
7129 struct cleanup *back_to;
7130 char *name;
7131
7132 element_type = die_type (die, cu);
7133
7134 /* The die_type call above may have already set the type for this DIE. */
7135 type = get_die_type (die, cu);
7136 if (type)
7137 return type;
7138
7139 /* Irix 6.2 native cc creates array types without children for
7140 arrays with unspecified length. */
7141 if (die->child == NULL)
7142 {
7143 index_type = objfile_type (objfile)->builtin_int;
7144 range_type = create_range_type (NULL, index_type, 0, -1);
7145 type = create_array_type (NULL, element_type, range_type);
7146 return set_die_type (die, type, cu);
7147 }
7148
7149 back_to = make_cleanup (null_cleanup, NULL);
7150 child_die = die->child;
7151 while (child_die && child_die->tag)
7152 {
7153 if (child_die->tag == DW_TAG_subrange_type)
7154 {
7155 struct type *child_type = read_type_die (child_die, cu);
7156
7157 if (child_type != NULL)
7158 {
7159 /* The range type was succesfully read. Save it for
7160 the array type creation. */
7161 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
7162 {
7163 range_types = (struct type **)
7164 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
7165 * sizeof (struct type *));
7166 if (ndim == 0)
7167 make_cleanup (free_current_contents, &range_types);
7168 }
7169 range_types[ndim++] = child_type;
7170 }
7171 }
7172 child_die = sibling_die (child_die);
7173 }
7174
7175 /* Dwarf2 dimensions are output from left to right, create the
7176 necessary array types in backwards order. */
7177
7178 type = element_type;
7179
7180 if (read_array_order (die, cu) == DW_ORD_col_major)
7181 {
7182 int i = 0;
7183
7184 while (i < ndim)
7185 type = create_array_type (NULL, type, range_types[i++]);
7186 }
7187 else
7188 {
7189 while (ndim-- > 0)
7190 type = create_array_type (NULL, type, range_types[ndim]);
7191 }
7192
7193 /* Understand Dwarf2 support for vector types (like they occur on
7194 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
7195 array type. This is not part of the Dwarf2/3 standard yet, but a
7196 custom vendor extension. The main difference between a regular
7197 array and the vector variant is that vectors are passed by value
7198 to functions. */
7199 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
7200 if (attr)
7201 make_vector_type (type);
7202
7203 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
7204 implementation may choose to implement triple vectors using this
7205 attribute. */
7206 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
7207 if (attr)
7208 {
7209 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
7210 TYPE_LENGTH (type) = DW_UNSND (attr);
7211 else
7212 complaint (&symfile_complaints, _("\
7213 DW_AT_byte_size for array type smaller than the total size of elements"));
7214 }
7215
7216 name = dwarf2_name (die, cu);
7217 if (name)
7218 TYPE_NAME (type) = name;
7219
7220 /* Install the type in the die. */
7221 set_die_type (die, type, cu);
7222
7223 /* set_die_type should be already done. */
7224 set_descriptive_type (type, die, cu);
7225
7226 do_cleanups (back_to);
7227
7228 return type;
7229 }
7230
7231 static enum dwarf_array_dim_ordering
7232 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
7233 {
7234 struct attribute *attr;
7235
7236 attr = dwarf2_attr (die, DW_AT_ordering, cu);
7237
7238 if (attr) return DW_SND (attr);
7239
7240 /*
7241 GNU F77 is a special case, as at 08/2004 array type info is the
7242 opposite order to the dwarf2 specification, but data is still
7243 laid out as per normal fortran.
7244
7245 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
7246 version checking.
7247 */
7248
7249 if (cu->language == language_fortran
7250 && cu->producer && strstr (cu->producer, "GNU F77"))
7251 {
7252 return DW_ORD_row_major;
7253 }
7254
7255 switch (cu->language_defn->la_array_ordering)
7256 {
7257 case array_column_major:
7258 return DW_ORD_col_major;
7259 case array_row_major:
7260 default:
7261 return DW_ORD_row_major;
7262 };
7263 }
7264
7265 /* Extract all information from a DW_TAG_set_type DIE and put it in
7266 the DIE's type field. */
7267
7268 static struct type *
7269 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
7270 {
7271 struct type *domain_type, *set_type;
7272 struct attribute *attr;
7273
7274 domain_type = die_type (die, cu);
7275
7276 /* The die_type call above may have already set the type for this DIE. */
7277 set_type = get_die_type (die, cu);
7278 if (set_type)
7279 return set_type;
7280
7281 set_type = create_set_type (NULL, domain_type);
7282
7283 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
7284 if (attr)
7285 TYPE_LENGTH (set_type) = DW_UNSND (attr);
7286
7287 return set_die_type (die, set_type, cu);
7288 }
7289
7290 /* First cut: install each common block member as a global variable. */
7291
7292 static void
7293 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
7294 {
7295 struct die_info *child_die;
7296 struct attribute *attr;
7297 struct symbol *sym;
7298 CORE_ADDR base = (CORE_ADDR) 0;
7299
7300 attr = dwarf2_attr (die, DW_AT_location, cu);
7301 if (attr)
7302 {
7303 /* Support the .debug_loc offsets */
7304 if (attr_form_is_block (attr))
7305 {
7306 base = decode_locdesc (DW_BLOCK (attr), cu);
7307 }
7308 else if (attr_form_is_section_offset (attr))
7309 {
7310 dwarf2_complex_location_expr_complaint ();
7311 }
7312 else
7313 {
7314 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
7315 "common block member");
7316 }
7317 }
7318 if (die->child != NULL)
7319 {
7320 child_die = die->child;
7321 while (child_die && child_die->tag)
7322 {
7323 sym = new_symbol (child_die, NULL, cu);
7324 attr = dwarf2_attr (child_die, DW_AT_data_member_location, cu);
7325 if (sym != NULL && attr != NULL)
7326 {
7327 CORE_ADDR byte_offset = 0;
7328
7329 if (attr_form_is_section_offset (attr))
7330 dwarf2_complex_location_expr_complaint ();
7331 else if (attr_form_is_constant (attr))
7332 byte_offset = dwarf2_get_attr_constant_value (attr, 0);
7333 else if (attr_form_is_block (attr))
7334 byte_offset = decode_locdesc (DW_BLOCK (attr), cu);
7335 else
7336 dwarf2_complex_location_expr_complaint ();
7337
7338 SYMBOL_VALUE_ADDRESS (sym) = base + byte_offset;
7339 add_symbol_to_list (sym, &global_symbols);
7340 }
7341 child_die = sibling_die (child_die);
7342 }
7343 }
7344 }
7345
7346 /* Create a type for a C++ namespace. */
7347
7348 static struct type *
7349 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
7350 {
7351 struct objfile *objfile = cu->objfile;
7352 const char *previous_prefix, *name;
7353 int is_anonymous;
7354 struct type *type;
7355
7356 /* For extensions, reuse the type of the original namespace. */
7357 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
7358 {
7359 struct die_info *ext_die;
7360 struct dwarf2_cu *ext_cu = cu;
7361
7362 ext_die = dwarf2_extension (die, &ext_cu);
7363 type = read_type_die (ext_die, ext_cu);
7364
7365 /* EXT_CU may not be the same as CU.
7366 Ensure TYPE is recorded in CU's type_hash table. */
7367 return set_die_type (die, type, cu);
7368 }
7369
7370 name = namespace_name (die, &is_anonymous, cu);
7371
7372 /* Now build the name of the current namespace. */
7373
7374 previous_prefix = determine_prefix (die, cu);
7375 if (previous_prefix[0] != '\0')
7376 name = typename_concat (&objfile->objfile_obstack,
7377 previous_prefix, name, 0, cu);
7378
7379 /* Create the type. */
7380 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
7381 objfile);
7382 TYPE_NAME (type) = (char *) name;
7383 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7384
7385 return set_die_type (die, type, cu);
7386 }
7387
7388 /* Read a C++ namespace. */
7389
7390 static void
7391 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
7392 {
7393 struct objfile *objfile = cu->objfile;
7394 const char *name;
7395 int is_anonymous;
7396
7397 /* Add a symbol associated to this if we haven't seen the namespace
7398 before. Also, add a using directive if it's an anonymous
7399 namespace. */
7400
7401 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
7402 {
7403 struct type *type;
7404
7405 type = read_type_die (die, cu);
7406 new_symbol (die, type, cu);
7407
7408 name = namespace_name (die, &is_anonymous, cu);
7409 if (is_anonymous)
7410 {
7411 const char *previous_prefix = determine_prefix (die, cu);
7412
7413 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
7414 NULL, &objfile->objfile_obstack);
7415 }
7416 }
7417
7418 if (die->child != NULL)
7419 {
7420 struct die_info *child_die = die->child;
7421
7422 while (child_die && child_die->tag)
7423 {
7424 process_die (child_die, cu);
7425 child_die = sibling_die (child_die);
7426 }
7427 }
7428 }
7429
7430 /* Read a Fortran module as type. This DIE can be only a declaration used for
7431 imported module. Still we need that type as local Fortran "use ... only"
7432 declaration imports depend on the created type in determine_prefix. */
7433
7434 static struct type *
7435 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
7436 {
7437 struct objfile *objfile = cu->objfile;
7438 char *module_name;
7439 struct type *type;
7440
7441 module_name = dwarf2_name (die, cu);
7442 if (!module_name)
7443 complaint (&symfile_complaints, _("DW_TAG_module has no name, offset 0x%x"),
7444 die->offset);
7445 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
7446
7447 /* determine_prefix uses TYPE_TAG_NAME. */
7448 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7449
7450 return set_die_type (die, type, cu);
7451 }
7452
7453 /* Read a Fortran module. */
7454
7455 static void
7456 read_module (struct die_info *die, struct dwarf2_cu *cu)
7457 {
7458 struct die_info *child_die = die->child;
7459
7460 while (child_die && child_die->tag)
7461 {
7462 process_die (child_die, cu);
7463 child_die = sibling_die (child_die);
7464 }
7465 }
7466
7467 /* Return the name of the namespace represented by DIE. Set
7468 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
7469 namespace. */
7470
7471 static const char *
7472 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
7473 {
7474 struct die_info *current_die;
7475 const char *name = NULL;
7476
7477 /* Loop through the extensions until we find a name. */
7478
7479 for (current_die = die;
7480 current_die != NULL;
7481 current_die = dwarf2_extension (die, &cu))
7482 {
7483 name = dwarf2_name (current_die, cu);
7484 if (name != NULL)
7485 break;
7486 }
7487
7488 /* Is it an anonymous namespace? */
7489
7490 *is_anonymous = (name == NULL);
7491 if (*is_anonymous)
7492 name = "(anonymous namespace)";
7493
7494 return name;
7495 }
7496
7497 /* Extract all information from a DW_TAG_pointer_type DIE and add to
7498 the user defined type vector. */
7499
7500 static struct type *
7501 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
7502 {
7503 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
7504 struct comp_unit_head *cu_header = &cu->header;
7505 struct type *type;
7506 struct attribute *attr_byte_size;
7507 struct attribute *attr_address_class;
7508 int byte_size, addr_class;
7509 struct type *target_type;
7510
7511 target_type = die_type (die, cu);
7512
7513 /* The die_type call above may have already set the type for this DIE. */
7514 type = get_die_type (die, cu);
7515 if (type)
7516 return type;
7517
7518 type = lookup_pointer_type (target_type);
7519
7520 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
7521 if (attr_byte_size)
7522 byte_size = DW_UNSND (attr_byte_size);
7523 else
7524 byte_size = cu_header->addr_size;
7525
7526 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
7527 if (attr_address_class)
7528 addr_class = DW_UNSND (attr_address_class);
7529 else
7530 addr_class = DW_ADDR_none;
7531
7532 /* If the pointer size or address class is different than the
7533 default, create a type variant marked as such and set the
7534 length accordingly. */
7535 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
7536 {
7537 if (gdbarch_address_class_type_flags_p (gdbarch))
7538 {
7539 int type_flags;
7540
7541 type_flags = gdbarch_address_class_type_flags
7542 (gdbarch, byte_size, addr_class);
7543 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
7544 == 0);
7545 type = make_type_with_address_space (type, type_flags);
7546 }
7547 else if (TYPE_LENGTH (type) != byte_size)
7548 {
7549 complaint (&symfile_complaints, _("invalid pointer size %d"), byte_size);
7550 }
7551 else
7552 {
7553 /* Should we also complain about unhandled address classes? */
7554 }
7555 }
7556
7557 TYPE_LENGTH (type) = byte_size;
7558 return set_die_type (die, type, cu);
7559 }
7560
7561 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
7562 the user defined type vector. */
7563
7564 static struct type *
7565 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
7566 {
7567 struct type *type;
7568 struct type *to_type;
7569 struct type *domain;
7570
7571 to_type = die_type (die, cu);
7572 domain = die_containing_type (die, cu);
7573
7574 /* The calls above may have already set the type for this DIE. */
7575 type = get_die_type (die, cu);
7576 if (type)
7577 return type;
7578
7579 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
7580 type = lookup_methodptr_type (to_type);
7581 else
7582 type = lookup_memberptr_type (to_type, domain);
7583
7584 return set_die_type (die, type, cu);
7585 }
7586
7587 /* Extract all information from a DW_TAG_reference_type DIE and add to
7588 the user defined type vector. */
7589
7590 static struct type *
7591 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
7592 {
7593 struct comp_unit_head *cu_header = &cu->header;
7594 struct type *type, *target_type;
7595 struct attribute *attr;
7596
7597 target_type = die_type (die, cu);
7598
7599 /* The die_type call above may have already set the type for this DIE. */
7600 type = get_die_type (die, cu);
7601 if (type)
7602 return type;
7603
7604 type = lookup_reference_type (target_type);
7605 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
7606 if (attr)
7607 {
7608 TYPE_LENGTH (type) = DW_UNSND (attr);
7609 }
7610 else
7611 {
7612 TYPE_LENGTH (type) = cu_header->addr_size;
7613 }
7614 return set_die_type (die, type, cu);
7615 }
7616
7617 static struct type *
7618 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
7619 {
7620 struct type *base_type, *cv_type;
7621
7622 base_type = die_type (die, cu);
7623
7624 /* The die_type call above may have already set the type for this DIE. */
7625 cv_type = get_die_type (die, cu);
7626 if (cv_type)
7627 return cv_type;
7628
7629 /* In case the const qualifier is applied to an array type, the element type
7630 is so qualified, not the array type (section 6.7.3 of C99). */
7631 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
7632 {
7633 struct type *el_type, *inner_array;
7634
7635 base_type = copy_type (base_type);
7636 inner_array = base_type;
7637
7638 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
7639 {
7640 TYPE_TARGET_TYPE (inner_array) =
7641 copy_type (TYPE_TARGET_TYPE (inner_array));
7642 inner_array = TYPE_TARGET_TYPE (inner_array);
7643 }
7644
7645 el_type = TYPE_TARGET_TYPE (inner_array);
7646 TYPE_TARGET_TYPE (inner_array) =
7647 make_cv_type (1, TYPE_VOLATILE (el_type), el_type, NULL);
7648
7649 return set_die_type (die, base_type, cu);
7650 }
7651
7652 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
7653 return set_die_type (die, cv_type, cu);
7654 }
7655
7656 static struct type *
7657 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
7658 {
7659 struct type *base_type, *cv_type;
7660
7661 base_type = die_type (die, cu);
7662
7663 /* The die_type call above may have already set the type for this DIE. */
7664 cv_type = get_die_type (die, cu);
7665 if (cv_type)
7666 return cv_type;
7667
7668 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
7669 return set_die_type (die, cv_type, cu);
7670 }
7671
7672 /* Extract all information from a DW_TAG_string_type DIE and add to
7673 the user defined type vector. It isn't really a user defined type,
7674 but it behaves like one, with other DIE's using an AT_user_def_type
7675 attribute to reference it. */
7676
7677 static struct type *
7678 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
7679 {
7680 struct objfile *objfile = cu->objfile;
7681 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7682 struct type *type, *range_type, *index_type, *char_type;
7683 struct attribute *attr;
7684 unsigned int length;
7685
7686 attr = dwarf2_attr (die, DW_AT_string_length, cu);
7687 if (attr)
7688 {
7689 length = DW_UNSND (attr);
7690 }
7691 else
7692 {
7693 /* check for the DW_AT_byte_size attribute */
7694 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
7695 if (attr)
7696 {
7697 length = DW_UNSND (attr);
7698 }
7699 else
7700 {
7701 length = 1;
7702 }
7703 }
7704
7705 index_type = objfile_type (objfile)->builtin_int;
7706 range_type = create_range_type (NULL, index_type, 1, length);
7707 char_type = language_string_char_type (cu->language_defn, gdbarch);
7708 type = create_string_type (NULL, char_type, range_type);
7709
7710 return set_die_type (die, type, cu);
7711 }
7712
7713 /* Handle DIES due to C code like:
7714
7715 struct foo
7716 {
7717 int (*funcp)(int a, long l);
7718 int b;
7719 };
7720
7721 ('funcp' generates a DW_TAG_subroutine_type DIE)
7722 */
7723
7724 static struct type *
7725 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
7726 {
7727 struct type *type; /* Type that this function returns */
7728 struct type *ftype; /* Function that returns above type */
7729 struct attribute *attr;
7730
7731 type = die_type (die, cu);
7732
7733 /* The die_type call above may have already set the type for this DIE. */
7734 ftype = get_die_type (die, cu);
7735 if (ftype)
7736 return ftype;
7737
7738 ftype = lookup_function_type (type);
7739
7740 /* All functions in C++, Pascal and Java have prototypes. */
7741 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
7742 if ((attr && (DW_UNSND (attr) != 0))
7743 || cu->language == language_cplus
7744 || cu->language == language_java
7745 || cu->language == language_pascal)
7746 TYPE_PROTOTYPED (ftype) = 1;
7747 else if (producer_is_realview (cu->producer))
7748 /* RealView does not emit DW_AT_prototyped. We can not
7749 distinguish prototyped and unprototyped functions; default to
7750 prototyped, since that is more common in modern code (and
7751 RealView warns about unprototyped functions). */
7752 TYPE_PROTOTYPED (ftype) = 1;
7753
7754 /* Store the calling convention in the type if it's available in
7755 the subroutine die. Otherwise set the calling convention to
7756 the default value DW_CC_normal. */
7757 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
7758 TYPE_CALLING_CONVENTION (ftype) = attr ? DW_UNSND (attr) : DW_CC_normal;
7759
7760 /* We need to add the subroutine type to the die immediately so
7761 we don't infinitely recurse when dealing with parameters
7762 declared as the same subroutine type. */
7763 set_die_type (die, ftype, cu);
7764
7765 if (die->child != NULL)
7766 {
7767 struct type *void_type = objfile_type (cu->objfile)->builtin_void;
7768 struct die_info *child_die;
7769 int nparams, iparams;
7770
7771 /* Count the number of parameters.
7772 FIXME: GDB currently ignores vararg functions, but knows about
7773 vararg member functions. */
7774 nparams = 0;
7775 child_die = die->child;
7776 while (child_die && child_die->tag)
7777 {
7778 if (child_die->tag == DW_TAG_formal_parameter)
7779 nparams++;
7780 else if (child_die->tag == DW_TAG_unspecified_parameters)
7781 TYPE_VARARGS (ftype) = 1;
7782 child_die = sibling_die (child_die);
7783 }
7784
7785 /* Allocate storage for parameters and fill them in. */
7786 TYPE_NFIELDS (ftype) = nparams;
7787 TYPE_FIELDS (ftype) = (struct field *)
7788 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
7789
7790 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
7791 even if we error out during the parameters reading below. */
7792 for (iparams = 0; iparams < nparams; iparams++)
7793 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
7794
7795 iparams = 0;
7796 child_die = die->child;
7797 while (child_die && child_die->tag)
7798 {
7799 if (child_die->tag == DW_TAG_formal_parameter)
7800 {
7801 struct type *arg_type;
7802
7803 /* DWARF version 2 has no clean way to discern C++
7804 static and non-static member functions. G++ helps
7805 GDB by marking the first parameter for non-static
7806 member functions (which is the this pointer) as
7807 artificial. We pass this information to
7808 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
7809
7810 DWARF version 3 added DW_AT_object_pointer, which GCC
7811 4.5 does not yet generate. */
7812 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
7813 if (attr)
7814 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
7815 else
7816 {
7817 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
7818
7819 /* GCC/43521: In java, the formal parameter
7820 "this" is sometimes not marked with DW_AT_artificial. */
7821 if (cu->language == language_java)
7822 {
7823 const char *name = dwarf2_name (child_die, cu);
7824
7825 if (name && !strcmp (name, "this"))
7826 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
7827 }
7828 }
7829 arg_type = die_type (child_die, cu);
7830
7831 /* RealView does not mark THIS as const, which the testsuite
7832 expects. GCC marks THIS as const in method definitions,
7833 but not in the class specifications (GCC PR 43053). */
7834 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
7835 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
7836 {
7837 int is_this = 0;
7838 struct dwarf2_cu *arg_cu = cu;
7839 const char *name = dwarf2_name (child_die, cu);
7840
7841 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
7842 if (attr)
7843 {
7844 /* If the compiler emits this, use it. */
7845 if (follow_die_ref (die, attr, &arg_cu) == child_die)
7846 is_this = 1;
7847 }
7848 else if (name && strcmp (name, "this") == 0)
7849 /* Function definitions will have the argument names. */
7850 is_this = 1;
7851 else if (name == NULL && iparams == 0)
7852 /* Declarations may not have the names, so like
7853 elsewhere in GDB, assume an artificial first
7854 argument is "this". */
7855 is_this = 1;
7856
7857 if (is_this)
7858 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
7859 arg_type, 0);
7860 }
7861
7862 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
7863 iparams++;
7864 }
7865 child_die = sibling_die (child_die);
7866 }
7867 }
7868
7869 return ftype;
7870 }
7871
7872 static struct type *
7873 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
7874 {
7875 struct objfile *objfile = cu->objfile;
7876 const char *name = NULL;
7877 struct type *this_type;
7878
7879 name = dwarf2_full_name (NULL, die, cu);
7880 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
7881 TYPE_FLAG_TARGET_STUB, NULL, objfile);
7882 TYPE_NAME (this_type) = (char *) name;
7883 set_die_type (die, this_type, cu);
7884 TYPE_TARGET_TYPE (this_type) = die_type (die, cu);
7885 return this_type;
7886 }
7887
7888 /* Find a representation of a given base type and install
7889 it in the TYPE field of the die. */
7890
7891 static struct type *
7892 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
7893 {
7894 struct objfile *objfile = cu->objfile;
7895 struct type *type;
7896 struct attribute *attr;
7897 int encoding = 0, size = 0;
7898 char *name;
7899 enum type_code code = TYPE_CODE_INT;
7900 int type_flags = 0;
7901 struct type *target_type = NULL;
7902
7903 attr = dwarf2_attr (die, DW_AT_encoding, cu);
7904 if (attr)
7905 {
7906 encoding = DW_UNSND (attr);
7907 }
7908 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
7909 if (attr)
7910 {
7911 size = DW_UNSND (attr);
7912 }
7913 name = dwarf2_name (die, cu);
7914 if (!name)
7915 {
7916 complaint (&symfile_complaints,
7917 _("DW_AT_name missing from DW_TAG_base_type"));
7918 }
7919
7920 switch (encoding)
7921 {
7922 case DW_ATE_address:
7923 /* Turn DW_ATE_address into a void * pointer. */
7924 code = TYPE_CODE_PTR;
7925 type_flags |= TYPE_FLAG_UNSIGNED;
7926 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
7927 break;
7928 case DW_ATE_boolean:
7929 code = TYPE_CODE_BOOL;
7930 type_flags |= TYPE_FLAG_UNSIGNED;
7931 break;
7932 case DW_ATE_complex_float:
7933 code = TYPE_CODE_COMPLEX;
7934 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
7935 break;
7936 case DW_ATE_decimal_float:
7937 code = TYPE_CODE_DECFLOAT;
7938 break;
7939 case DW_ATE_float:
7940 code = TYPE_CODE_FLT;
7941 break;
7942 case DW_ATE_signed:
7943 break;
7944 case DW_ATE_unsigned:
7945 type_flags |= TYPE_FLAG_UNSIGNED;
7946 break;
7947 case DW_ATE_signed_char:
7948 if (cu->language == language_ada || cu->language == language_m2
7949 || cu->language == language_pascal)
7950 code = TYPE_CODE_CHAR;
7951 break;
7952 case DW_ATE_unsigned_char:
7953 if (cu->language == language_ada || cu->language == language_m2
7954 || cu->language == language_pascal)
7955 code = TYPE_CODE_CHAR;
7956 type_flags |= TYPE_FLAG_UNSIGNED;
7957 break;
7958 case DW_ATE_UTF:
7959 /* We just treat this as an integer and then recognize the
7960 type by name elsewhere. */
7961 break;
7962
7963 default:
7964 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
7965 dwarf_type_encoding_name (encoding));
7966 break;
7967 }
7968
7969 type = init_type (code, size, type_flags, NULL, objfile);
7970 TYPE_NAME (type) = name;
7971 TYPE_TARGET_TYPE (type) = target_type;
7972
7973 if (name && strcmp (name, "char") == 0)
7974 TYPE_NOSIGN (type) = 1;
7975
7976 return set_die_type (die, type, cu);
7977 }
7978
7979 /* Read the given DW_AT_subrange DIE. */
7980
7981 static struct type *
7982 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
7983 {
7984 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
7985 struct type *base_type;
7986 struct type *range_type;
7987 struct attribute *attr;
7988 LONGEST low = 0;
7989 LONGEST high = -1;
7990 char *name;
7991 LONGEST negative_mask;
7992
7993 base_type = die_type (die, cu);
7994 /* Preserve BASE_TYPE's original type, just set its LENGTH. */
7995 check_typedef (base_type);
7996
7997 /* The die_type call above may have already set the type for this DIE. */
7998 range_type = get_die_type (die, cu);
7999 if (range_type)
8000 return range_type;
8001
8002 if (cu->language == language_fortran)
8003 {
8004 /* FORTRAN implies a lower bound of 1, if not given. */
8005 low = 1;
8006 }
8007
8008 /* FIXME: For variable sized arrays either of these could be
8009 a variable rather than a constant value. We'll allow it,
8010 but we don't know how to handle it. */
8011 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
8012 if (attr)
8013 low = dwarf2_get_attr_constant_value (attr, 0);
8014
8015 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
8016 if (attr)
8017 {
8018 if (attr->form == DW_FORM_block1 || is_ref_attr (attr))
8019 {
8020 /* GCC encodes arrays with unspecified or dynamic length
8021 with a DW_FORM_block1 attribute or a reference attribute.
8022 FIXME: GDB does not yet know how to handle dynamic
8023 arrays properly, treat them as arrays with unspecified
8024 length for now.
8025
8026 FIXME: jimb/2003-09-22: GDB does not really know
8027 how to handle arrays of unspecified length
8028 either; we just represent them as zero-length
8029 arrays. Choose an appropriate upper bound given
8030 the lower bound we've computed above. */
8031 high = low - 1;
8032 }
8033 else
8034 high = dwarf2_get_attr_constant_value (attr, 1);
8035 }
8036 else
8037 {
8038 attr = dwarf2_attr (die, DW_AT_count, cu);
8039 if (attr)
8040 {
8041 int count = dwarf2_get_attr_constant_value (attr, 1);
8042 high = low + count - 1;
8043 }
8044 }
8045
8046 /* Dwarf-2 specifications explicitly allows to create subrange types
8047 without specifying a base type.
8048 In that case, the base type must be set to the type of
8049 the lower bound, upper bound or count, in that order, if any of these
8050 three attributes references an object that has a type.
8051 If no base type is found, the Dwarf-2 specifications say that
8052 a signed integer type of size equal to the size of an address should
8053 be used.
8054 For the following C code: `extern char gdb_int [];'
8055 GCC produces an empty range DIE.
8056 FIXME: muller/2010-05-28: Possible references to object for low bound,
8057 high bound or count are not yet handled by this code.
8058 */
8059 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
8060 {
8061 struct objfile *objfile = cu->objfile;
8062 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8063 int addr_size = gdbarch_addr_bit (gdbarch) /8;
8064 struct type *int_type = objfile_type (objfile)->builtin_int;
8065
8066 /* Test "int", "long int", and "long long int" objfile types,
8067 and select the first one having a size above or equal to the
8068 architecture address size. */
8069 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
8070 base_type = int_type;
8071 else
8072 {
8073 int_type = objfile_type (objfile)->builtin_long;
8074 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
8075 base_type = int_type;
8076 else
8077 {
8078 int_type = objfile_type (objfile)->builtin_long_long;
8079 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
8080 base_type = int_type;
8081 }
8082 }
8083 }
8084
8085 negative_mask =
8086 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
8087 if (!TYPE_UNSIGNED (base_type) && (low & negative_mask))
8088 low |= negative_mask;
8089 if (!TYPE_UNSIGNED (base_type) && (high & negative_mask))
8090 high |= negative_mask;
8091
8092 range_type = create_range_type (NULL, base_type, low, high);
8093
8094 /* Mark arrays with dynamic length at least as an array of unspecified
8095 length. GDB could check the boundary but before it gets implemented at
8096 least allow accessing the array elements. */
8097 if (attr && attr->form == DW_FORM_block1)
8098 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
8099
8100 name = dwarf2_name (die, cu);
8101 if (name)
8102 TYPE_NAME (range_type) = name;
8103
8104 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
8105 if (attr)
8106 TYPE_LENGTH (range_type) = DW_UNSND (attr);
8107
8108 set_die_type (die, range_type, cu);
8109
8110 /* set_die_type should be already done. */
8111 set_descriptive_type (range_type, die, cu);
8112
8113 return range_type;
8114 }
8115
8116 static struct type *
8117 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
8118 {
8119 struct type *type;
8120
8121 /* For now, we only support the C meaning of an unspecified type: void. */
8122
8123 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
8124 TYPE_NAME (type) = dwarf2_name (die, cu);
8125
8126 return set_die_type (die, type, cu);
8127 }
8128
8129 /* Trivial hash function for die_info: the hash value of a DIE
8130 is its offset in .debug_info for this objfile. */
8131
8132 static hashval_t
8133 die_hash (const void *item)
8134 {
8135 const struct die_info *die = item;
8136
8137 return die->offset;
8138 }
8139
8140 /* Trivial comparison function for die_info structures: two DIEs
8141 are equal if they have the same offset. */
8142
8143 static int
8144 die_eq (const void *item_lhs, const void *item_rhs)
8145 {
8146 const struct die_info *die_lhs = item_lhs;
8147 const struct die_info *die_rhs = item_rhs;
8148
8149 return die_lhs->offset == die_rhs->offset;
8150 }
8151
8152 /* Read a whole compilation unit into a linked list of dies. */
8153
8154 static struct die_info *
8155 read_comp_unit (gdb_byte *info_ptr, struct dwarf2_cu *cu)
8156 {
8157 struct die_reader_specs reader_specs;
8158 int read_abbrevs = 0;
8159 struct cleanup *back_to = NULL;
8160 struct die_info *die;
8161
8162 if (cu->dwarf2_abbrevs == NULL)
8163 {
8164 dwarf2_read_abbrevs (cu->objfile->obfd, cu);
8165 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
8166 read_abbrevs = 1;
8167 }
8168
8169 gdb_assert (cu->die_hash == NULL);
8170 cu->die_hash
8171 = htab_create_alloc_ex (cu->header.length / 12,
8172 die_hash,
8173 die_eq,
8174 NULL,
8175 &cu->comp_unit_obstack,
8176 hashtab_obstack_allocate,
8177 dummy_obstack_deallocate);
8178
8179 init_cu_die_reader (&reader_specs, cu);
8180
8181 die = read_die_and_children (&reader_specs, info_ptr, &info_ptr, NULL);
8182
8183 if (read_abbrevs)
8184 do_cleanups (back_to);
8185
8186 return die;
8187 }
8188
8189 /* Main entry point for reading a DIE and all children.
8190 Read the DIE and dump it if requested. */
8191
8192 static struct die_info *
8193 read_die_and_children (const struct die_reader_specs *reader,
8194 gdb_byte *info_ptr,
8195 gdb_byte **new_info_ptr,
8196 struct die_info *parent)
8197 {
8198 struct die_info *result = read_die_and_children_1 (reader, info_ptr,
8199 new_info_ptr, parent);
8200
8201 if (dwarf2_die_debug)
8202 {
8203 fprintf_unfiltered (gdb_stdlog,
8204 "\nRead die from %s of %s:\n",
8205 reader->buffer == dwarf2_per_objfile->info.buffer
8206 ? ".debug_info"
8207 : reader->buffer == dwarf2_per_objfile->types.buffer
8208 ? ".debug_types"
8209 : "unknown section",
8210 reader->abfd->filename);
8211 dump_die (result, dwarf2_die_debug);
8212 }
8213
8214 return result;
8215 }
8216
8217 /* Read a single die and all its descendents. Set the die's sibling
8218 field to NULL; set other fields in the die correctly, and set all
8219 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
8220 location of the info_ptr after reading all of those dies. PARENT
8221 is the parent of the die in question. */
8222
8223 static struct die_info *
8224 read_die_and_children_1 (const struct die_reader_specs *reader,
8225 gdb_byte *info_ptr,
8226 gdb_byte **new_info_ptr,
8227 struct die_info *parent)
8228 {
8229 struct die_info *die;
8230 gdb_byte *cur_ptr;
8231 int has_children;
8232
8233 cur_ptr = read_full_die (reader, &die, info_ptr, &has_children);
8234 if (die == NULL)
8235 {
8236 *new_info_ptr = cur_ptr;
8237 return NULL;
8238 }
8239 store_in_ref_table (die, reader->cu);
8240
8241 if (has_children)
8242 die->child = read_die_and_siblings (reader, cur_ptr, new_info_ptr, die);
8243 else
8244 {
8245 die->child = NULL;
8246 *new_info_ptr = cur_ptr;
8247 }
8248
8249 die->sibling = NULL;
8250 die->parent = parent;
8251 return die;
8252 }
8253
8254 /* Read a die, all of its descendents, and all of its siblings; set
8255 all of the fields of all of the dies correctly. Arguments are as
8256 in read_die_and_children. */
8257
8258 static struct die_info *
8259 read_die_and_siblings (const struct die_reader_specs *reader,
8260 gdb_byte *info_ptr,
8261 gdb_byte **new_info_ptr,
8262 struct die_info *parent)
8263 {
8264 struct die_info *first_die, *last_sibling;
8265 gdb_byte *cur_ptr;
8266
8267 cur_ptr = info_ptr;
8268 first_die = last_sibling = NULL;
8269
8270 while (1)
8271 {
8272 struct die_info *die
8273 = read_die_and_children_1 (reader, cur_ptr, &cur_ptr, parent);
8274
8275 if (die == NULL)
8276 {
8277 *new_info_ptr = cur_ptr;
8278 return first_die;
8279 }
8280
8281 if (!first_die)
8282 first_die = die;
8283 else
8284 last_sibling->sibling = die;
8285
8286 last_sibling = die;
8287 }
8288 }
8289
8290 /* Read the die from the .debug_info section buffer. Set DIEP to
8291 point to a newly allocated die with its information, except for its
8292 child, sibling, and parent fields. Set HAS_CHILDREN to tell
8293 whether the die has children or not. */
8294
8295 static gdb_byte *
8296 read_full_die (const struct die_reader_specs *reader,
8297 struct die_info **diep, gdb_byte *info_ptr,
8298 int *has_children)
8299 {
8300 unsigned int abbrev_number, bytes_read, i, offset;
8301 struct abbrev_info *abbrev;
8302 struct die_info *die;
8303 struct dwarf2_cu *cu = reader->cu;
8304 bfd *abfd = reader->abfd;
8305
8306 offset = info_ptr - reader->buffer;
8307 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
8308 info_ptr += bytes_read;
8309 if (!abbrev_number)
8310 {
8311 *diep = NULL;
8312 *has_children = 0;
8313 return info_ptr;
8314 }
8315
8316 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
8317 if (!abbrev)
8318 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
8319 abbrev_number,
8320 bfd_get_filename (abfd));
8321
8322 die = dwarf_alloc_die (cu, abbrev->num_attrs);
8323 die->offset = offset;
8324 die->tag = abbrev->tag;
8325 die->abbrev = abbrev_number;
8326
8327 die->num_attrs = abbrev->num_attrs;
8328
8329 for (i = 0; i < abbrev->num_attrs; ++i)
8330 info_ptr = read_attribute (&die->attrs[i], &abbrev->attrs[i],
8331 abfd, info_ptr, cu);
8332
8333 *diep = die;
8334 *has_children = abbrev->has_children;
8335 return info_ptr;
8336 }
8337
8338 /* In DWARF version 2, the description of the debugging information is
8339 stored in a separate .debug_abbrev section. Before we read any
8340 dies from a section we read in all abbreviations and install them
8341 in a hash table. This function also sets flags in CU describing
8342 the data found in the abbrev table. */
8343
8344 static void
8345 dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu)
8346 {
8347 struct comp_unit_head *cu_header = &cu->header;
8348 gdb_byte *abbrev_ptr;
8349 struct abbrev_info *cur_abbrev;
8350 unsigned int abbrev_number, bytes_read, abbrev_name;
8351 unsigned int abbrev_form, hash_number;
8352 struct attr_abbrev *cur_attrs;
8353 unsigned int allocated_attrs;
8354
8355 /* Initialize dwarf2 abbrevs */
8356 obstack_init (&cu->abbrev_obstack);
8357 cu->dwarf2_abbrevs = obstack_alloc (&cu->abbrev_obstack,
8358 (ABBREV_HASH_SIZE
8359 * sizeof (struct abbrev_info *)));
8360 memset (cu->dwarf2_abbrevs, 0,
8361 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
8362
8363 dwarf2_read_section (dwarf2_per_objfile->objfile,
8364 &dwarf2_per_objfile->abbrev);
8365 abbrev_ptr = dwarf2_per_objfile->abbrev.buffer + cu_header->abbrev_offset;
8366 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8367 abbrev_ptr += bytes_read;
8368
8369 allocated_attrs = ATTR_ALLOC_CHUNK;
8370 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
8371
8372 /* loop until we reach an abbrev number of 0 */
8373 while (abbrev_number)
8374 {
8375 cur_abbrev = dwarf_alloc_abbrev (cu);
8376
8377 /* read in abbrev header */
8378 cur_abbrev->number = abbrev_number;
8379 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8380 abbrev_ptr += bytes_read;
8381 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
8382 abbrev_ptr += 1;
8383
8384 if (cur_abbrev->tag == DW_TAG_namespace)
8385 cu->has_namespace_info = 1;
8386
8387 /* now read in declarations */
8388 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8389 abbrev_ptr += bytes_read;
8390 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8391 abbrev_ptr += bytes_read;
8392 while (abbrev_name)
8393 {
8394 if (cur_abbrev->num_attrs == allocated_attrs)
8395 {
8396 allocated_attrs += ATTR_ALLOC_CHUNK;
8397 cur_attrs
8398 = xrealloc (cur_attrs, (allocated_attrs
8399 * sizeof (struct attr_abbrev)));
8400 }
8401
8402 /* Record whether this compilation unit might have
8403 inter-compilation-unit references. If we don't know what form
8404 this attribute will have, then it might potentially be a
8405 DW_FORM_ref_addr, so we conservatively expect inter-CU
8406 references. */
8407
8408 if (abbrev_form == DW_FORM_ref_addr
8409 || abbrev_form == DW_FORM_indirect)
8410 cu->has_form_ref_addr = 1;
8411
8412 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
8413 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
8414 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8415 abbrev_ptr += bytes_read;
8416 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8417 abbrev_ptr += bytes_read;
8418 }
8419
8420 cur_abbrev->attrs = obstack_alloc (&cu->abbrev_obstack,
8421 (cur_abbrev->num_attrs
8422 * sizeof (struct attr_abbrev)));
8423 memcpy (cur_abbrev->attrs, cur_attrs,
8424 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
8425
8426 hash_number = abbrev_number % ABBREV_HASH_SIZE;
8427 cur_abbrev->next = cu->dwarf2_abbrevs[hash_number];
8428 cu->dwarf2_abbrevs[hash_number] = cur_abbrev;
8429
8430 /* Get next abbreviation.
8431 Under Irix6 the abbreviations for a compilation unit are not
8432 always properly terminated with an abbrev number of 0.
8433 Exit loop if we encounter an abbreviation which we have
8434 already read (which means we are about to read the abbreviations
8435 for the next compile unit) or if the end of the abbreviation
8436 table is reached. */
8437 if ((unsigned int) (abbrev_ptr - dwarf2_per_objfile->abbrev.buffer)
8438 >= dwarf2_per_objfile->abbrev.size)
8439 break;
8440 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8441 abbrev_ptr += bytes_read;
8442 if (dwarf2_lookup_abbrev (abbrev_number, cu) != NULL)
8443 break;
8444 }
8445
8446 xfree (cur_attrs);
8447 }
8448
8449 /* Release the memory used by the abbrev table for a compilation unit. */
8450
8451 static void
8452 dwarf2_free_abbrev_table (void *ptr_to_cu)
8453 {
8454 struct dwarf2_cu *cu = ptr_to_cu;
8455
8456 obstack_free (&cu->abbrev_obstack, NULL);
8457 cu->dwarf2_abbrevs = NULL;
8458 }
8459
8460 /* Lookup an abbrev_info structure in the abbrev hash table. */
8461
8462 static struct abbrev_info *
8463 dwarf2_lookup_abbrev (unsigned int number, struct dwarf2_cu *cu)
8464 {
8465 unsigned int hash_number;
8466 struct abbrev_info *abbrev;
8467
8468 hash_number = number % ABBREV_HASH_SIZE;
8469 abbrev = cu->dwarf2_abbrevs[hash_number];
8470
8471 while (abbrev)
8472 {
8473 if (abbrev->number == number)
8474 return abbrev;
8475 else
8476 abbrev = abbrev->next;
8477 }
8478 return NULL;
8479 }
8480
8481 /* Returns nonzero if TAG represents a type that we might generate a partial
8482 symbol for. */
8483
8484 static int
8485 is_type_tag_for_partial (int tag)
8486 {
8487 switch (tag)
8488 {
8489 #if 0
8490 /* Some types that would be reasonable to generate partial symbols for,
8491 that we don't at present. */
8492 case DW_TAG_array_type:
8493 case DW_TAG_file_type:
8494 case DW_TAG_ptr_to_member_type:
8495 case DW_TAG_set_type:
8496 case DW_TAG_string_type:
8497 case DW_TAG_subroutine_type:
8498 #endif
8499 case DW_TAG_base_type:
8500 case DW_TAG_class_type:
8501 case DW_TAG_interface_type:
8502 case DW_TAG_enumeration_type:
8503 case DW_TAG_structure_type:
8504 case DW_TAG_subrange_type:
8505 case DW_TAG_typedef:
8506 case DW_TAG_union_type:
8507 return 1;
8508 default:
8509 return 0;
8510 }
8511 }
8512
8513 /* Load all DIEs that are interesting for partial symbols into memory. */
8514
8515 static struct partial_die_info *
8516 load_partial_dies (bfd *abfd, gdb_byte *buffer, gdb_byte *info_ptr,
8517 int building_psymtab, struct dwarf2_cu *cu)
8518 {
8519 struct partial_die_info *part_die;
8520 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
8521 struct abbrev_info *abbrev;
8522 unsigned int bytes_read;
8523 unsigned int load_all = 0;
8524
8525 int nesting_level = 1;
8526
8527 parent_die = NULL;
8528 last_die = NULL;
8529
8530 if (cu->per_cu && cu->per_cu->load_all_dies)
8531 load_all = 1;
8532
8533 cu->partial_dies
8534 = htab_create_alloc_ex (cu->header.length / 12,
8535 partial_die_hash,
8536 partial_die_eq,
8537 NULL,
8538 &cu->comp_unit_obstack,
8539 hashtab_obstack_allocate,
8540 dummy_obstack_deallocate);
8541
8542 part_die = obstack_alloc (&cu->comp_unit_obstack,
8543 sizeof (struct partial_die_info));
8544
8545 while (1)
8546 {
8547 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
8548
8549 /* A NULL abbrev means the end of a series of children. */
8550 if (abbrev == NULL)
8551 {
8552 if (--nesting_level == 0)
8553 {
8554 /* PART_DIE was probably the last thing allocated on the
8555 comp_unit_obstack, so we could call obstack_free
8556 here. We don't do that because the waste is small,
8557 and will be cleaned up when we're done with this
8558 compilation unit. This way, we're also more robust
8559 against other users of the comp_unit_obstack. */
8560 return first_die;
8561 }
8562 info_ptr += bytes_read;
8563 last_die = parent_die;
8564 parent_die = parent_die->die_parent;
8565 continue;
8566 }
8567
8568 /* Check for template arguments. We never save these; if
8569 they're seen, we just mark the parent, and go on our way. */
8570 if (parent_die != NULL
8571 && cu->language == language_cplus
8572 && (abbrev->tag == DW_TAG_template_type_param
8573 || abbrev->tag == DW_TAG_template_value_param))
8574 {
8575 parent_die->has_template_arguments = 1;
8576
8577 if (!load_all)
8578 {
8579 /* We don't need a partial DIE for the template argument. */
8580 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev,
8581 cu);
8582 continue;
8583 }
8584 }
8585
8586 /* We only recurse into subprograms looking for template arguments.
8587 Skip their other children. */
8588 if (!load_all
8589 && cu->language == language_cplus
8590 && parent_die != NULL
8591 && parent_die->tag == DW_TAG_subprogram)
8592 {
8593 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
8594 continue;
8595 }
8596
8597 /* Check whether this DIE is interesting enough to save. Normally
8598 we would not be interested in members here, but there may be
8599 later variables referencing them via DW_AT_specification (for
8600 static members). */
8601 if (!load_all
8602 && !is_type_tag_for_partial (abbrev->tag)
8603 && abbrev->tag != DW_TAG_constant
8604 && abbrev->tag != DW_TAG_enumerator
8605 && abbrev->tag != DW_TAG_subprogram
8606 && abbrev->tag != DW_TAG_lexical_block
8607 && abbrev->tag != DW_TAG_variable
8608 && abbrev->tag != DW_TAG_namespace
8609 && abbrev->tag != DW_TAG_module
8610 && abbrev->tag != DW_TAG_member)
8611 {
8612 /* Otherwise we skip to the next sibling, if any. */
8613 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
8614 continue;
8615 }
8616
8617 info_ptr = read_partial_die (part_die, abbrev, bytes_read, abfd,
8618 buffer, info_ptr, cu);
8619
8620 /* This two-pass algorithm for processing partial symbols has a
8621 high cost in cache pressure. Thus, handle some simple cases
8622 here which cover the majority of C partial symbols. DIEs
8623 which neither have specification tags in them, nor could have
8624 specification tags elsewhere pointing at them, can simply be
8625 processed and discarded.
8626
8627 This segment is also optional; scan_partial_symbols and
8628 add_partial_symbol will handle these DIEs if we chain
8629 them in normally. When compilers which do not emit large
8630 quantities of duplicate debug information are more common,
8631 this code can probably be removed. */
8632
8633 /* Any complete simple types at the top level (pretty much all
8634 of them, for a language without namespaces), can be processed
8635 directly. */
8636 if (parent_die == NULL
8637 && part_die->has_specification == 0
8638 && part_die->is_declaration == 0
8639 && (part_die->tag == DW_TAG_typedef
8640 || part_die->tag == DW_TAG_base_type
8641 || part_die->tag == DW_TAG_subrange_type))
8642 {
8643 if (building_psymtab && part_die->name != NULL)
8644 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
8645 VAR_DOMAIN, LOC_TYPEDEF,
8646 &cu->objfile->static_psymbols,
8647 0, (CORE_ADDR) 0, cu->language, cu->objfile);
8648 info_ptr = locate_pdi_sibling (part_die, buffer, info_ptr, abfd, cu);
8649 continue;
8650 }
8651
8652 /* If we're at the second level, and we're an enumerator, and
8653 our parent has no specification (meaning possibly lives in a
8654 namespace elsewhere), then we can add the partial symbol now
8655 instead of queueing it. */
8656 if (part_die->tag == DW_TAG_enumerator
8657 && parent_die != NULL
8658 && parent_die->die_parent == NULL
8659 && parent_die->tag == DW_TAG_enumeration_type
8660 && parent_die->has_specification == 0)
8661 {
8662 if (part_die->name == NULL)
8663 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
8664 else if (building_psymtab)
8665 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
8666 VAR_DOMAIN, LOC_CONST,
8667 (cu->language == language_cplus
8668 || cu->language == language_java)
8669 ? &cu->objfile->global_psymbols
8670 : &cu->objfile->static_psymbols,
8671 0, (CORE_ADDR) 0, cu->language, cu->objfile);
8672
8673 info_ptr = locate_pdi_sibling (part_die, buffer, info_ptr, abfd, cu);
8674 continue;
8675 }
8676
8677 /* We'll save this DIE so link it in. */
8678 part_die->die_parent = parent_die;
8679 part_die->die_sibling = NULL;
8680 part_die->die_child = NULL;
8681
8682 if (last_die && last_die == parent_die)
8683 last_die->die_child = part_die;
8684 else if (last_die)
8685 last_die->die_sibling = part_die;
8686
8687 last_die = part_die;
8688
8689 if (first_die == NULL)
8690 first_die = part_die;
8691
8692 /* Maybe add the DIE to the hash table. Not all DIEs that we
8693 find interesting need to be in the hash table, because we
8694 also have the parent/sibling/child chains; only those that we
8695 might refer to by offset later during partial symbol reading.
8696
8697 For now this means things that might have be the target of a
8698 DW_AT_specification, DW_AT_abstract_origin, or
8699 DW_AT_extension. DW_AT_extension will refer only to
8700 namespaces; DW_AT_abstract_origin refers to functions (and
8701 many things under the function DIE, but we do not recurse
8702 into function DIEs during partial symbol reading) and
8703 possibly variables as well; DW_AT_specification refers to
8704 declarations. Declarations ought to have the DW_AT_declaration
8705 flag. It happens that GCC forgets to put it in sometimes, but
8706 only for functions, not for types.
8707
8708 Adding more things than necessary to the hash table is harmless
8709 except for the performance cost. Adding too few will result in
8710 wasted time in find_partial_die, when we reread the compilation
8711 unit with load_all_dies set. */
8712
8713 if (load_all
8714 || abbrev->tag == DW_TAG_constant
8715 || abbrev->tag == DW_TAG_subprogram
8716 || abbrev->tag == DW_TAG_variable
8717 || abbrev->tag == DW_TAG_namespace
8718 || part_die->is_declaration)
8719 {
8720 void **slot;
8721
8722 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
8723 part_die->offset, INSERT);
8724 *slot = part_die;
8725 }
8726
8727 part_die = obstack_alloc (&cu->comp_unit_obstack,
8728 sizeof (struct partial_die_info));
8729
8730 /* For some DIEs we want to follow their children (if any). For C
8731 we have no reason to follow the children of structures; for other
8732 languages we have to, so that we can get at method physnames
8733 to infer fully qualified class names, for DW_AT_specification,
8734 and for C++ template arguments. For C++, we also look one level
8735 inside functions to find template arguments (if the name of the
8736 function does not already contain the template arguments).
8737
8738 For Ada, we need to scan the children of subprograms and lexical
8739 blocks as well because Ada allows the definition of nested
8740 entities that could be interesting for the debugger, such as
8741 nested subprograms for instance. */
8742 if (last_die->has_children
8743 && (load_all
8744 || last_die->tag == DW_TAG_namespace
8745 || last_die->tag == DW_TAG_module
8746 || last_die->tag == DW_TAG_enumeration_type
8747 || (cu->language == language_cplus
8748 && last_die->tag == DW_TAG_subprogram
8749 && (last_die->name == NULL
8750 || strchr (last_die->name, '<') == NULL))
8751 || (cu->language != language_c
8752 && (last_die->tag == DW_TAG_class_type
8753 || last_die->tag == DW_TAG_interface_type
8754 || last_die->tag == DW_TAG_structure_type
8755 || last_die->tag == DW_TAG_union_type))
8756 || (cu->language == language_ada
8757 && (last_die->tag == DW_TAG_subprogram
8758 || last_die->tag == DW_TAG_lexical_block))))
8759 {
8760 nesting_level++;
8761 parent_die = last_die;
8762 continue;
8763 }
8764
8765 /* Otherwise we skip to the next sibling, if any. */
8766 info_ptr = locate_pdi_sibling (last_die, buffer, info_ptr, abfd, cu);
8767
8768 /* Back to the top, do it again. */
8769 }
8770 }
8771
8772 /* Read a minimal amount of information into the minimal die structure. */
8773
8774 static gdb_byte *
8775 read_partial_die (struct partial_die_info *part_die,
8776 struct abbrev_info *abbrev,
8777 unsigned int abbrev_len, bfd *abfd,
8778 gdb_byte *buffer, gdb_byte *info_ptr,
8779 struct dwarf2_cu *cu)
8780 {
8781 unsigned int i;
8782 struct attribute attr;
8783 int has_low_pc_attr = 0;
8784 int has_high_pc_attr = 0;
8785
8786 memset (part_die, 0, sizeof (struct partial_die_info));
8787
8788 part_die->offset = info_ptr - buffer;
8789
8790 info_ptr += abbrev_len;
8791
8792 if (abbrev == NULL)
8793 return info_ptr;
8794
8795 part_die->tag = abbrev->tag;
8796 part_die->has_children = abbrev->has_children;
8797
8798 for (i = 0; i < abbrev->num_attrs; ++i)
8799 {
8800 info_ptr = read_attribute (&attr, &abbrev->attrs[i], abfd, info_ptr, cu);
8801
8802 /* Store the data if it is of an attribute we want to keep in a
8803 partial symbol table. */
8804 switch (attr.name)
8805 {
8806 case DW_AT_name:
8807 switch (part_die->tag)
8808 {
8809 case DW_TAG_compile_unit:
8810 case DW_TAG_type_unit:
8811 /* Compilation units have a DW_AT_name that is a filename, not
8812 a source language identifier. */
8813 case DW_TAG_enumeration_type:
8814 case DW_TAG_enumerator:
8815 /* These tags always have simple identifiers already; no need
8816 to canonicalize them. */
8817 part_die->name = DW_STRING (&attr);
8818 break;
8819 default:
8820 part_die->name
8821 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
8822 &cu->objfile->objfile_obstack);
8823 break;
8824 }
8825 break;
8826 case DW_AT_linkage_name:
8827 case DW_AT_MIPS_linkage_name:
8828 /* Note that both forms of linkage name might appear. We
8829 assume they will be the same, and we only store the last
8830 one we see. */
8831 if (cu->language == language_ada)
8832 part_die->name = DW_STRING (&attr);
8833 part_die->linkage_name = DW_STRING (&attr);
8834 break;
8835 case DW_AT_low_pc:
8836 has_low_pc_attr = 1;
8837 part_die->lowpc = DW_ADDR (&attr);
8838 break;
8839 case DW_AT_high_pc:
8840 has_high_pc_attr = 1;
8841 part_die->highpc = DW_ADDR (&attr);
8842 break;
8843 case DW_AT_location:
8844 /* Support the .debug_loc offsets */
8845 if (attr_form_is_block (&attr))
8846 {
8847 part_die->locdesc = DW_BLOCK (&attr);
8848 }
8849 else if (attr_form_is_section_offset (&attr))
8850 {
8851 dwarf2_complex_location_expr_complaint ();
8852 }
8853 else
8854 {
8855 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
8856 "partial symbol information");
8857 }
8858 break;
8859 case DW_AT_external:
8860 part_die->is_external = DW_UNSND (&attr);
8861 break;
8862 case DW_AT_declaration:
8863 part_die->is_declaration = DW_UNSND (&attr);
8864 break;
8865 case DW_AT_type:
8866 part_die->has_type = 1;
8867 break;
8868 case DW_AT_abstract_origin:
8869 case DW_AT_specification:
8870 case DW_AT_extension:
8871 part_die->has_specification = 1;
8872 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
8873 break;
8874 case DW_AT_sibling:
8875 /* Ignore absolute siblings, they might point outside of
8876 the current compile unit. */
8877 if (attr.form == DW_FORM_ref_addr)
8878 complaint (&symfile_complaints, _("ignoring absolute DW_AT_sibling"));
8879 else
8880 part_die->sibling = buffer + dwarf2_get_ref_die_offset (&attr);
8881 break;
8882 case DW_AT_byte_size:
8883 part_die->has_byte_size = 1;
8884 break;
8885 case DW_AT_calling_convention:
8886 /* DWARF doesn't provide a way to identify a program's source-level
8887 entry point. DW_AT_calling_convention attributes are only meant
8888 to describe functions' calling conventions.
8889
8890 However, because it's a necessary piece of information in
8891 Fortran, and because DW_CC_program is the only piece of debugging
8892 information whose definition refers to a 'main program' at all,
8893 several compilers have begun marking Fortran main programs with
8894 DW_CC_program --- even when those functions use the standard
8895 calling conventions.
8896
8897 So until DWARF specifies a way to provide this information and
8898 compilers pick up the new representation, we'll support this
8899 practice. */
8900 if (DW_UNSND (&attr) == DW_CC_program
8901 && cu->language == language_fortran)
8902 {
8903 set_main_name (part_die->name);
8904
8905 /* As this DIE has a static linkage the name would be difficult
8906 to look up later. */
8907 language_of_main = language_fortran;
8908 }
8909 break;
8910 default:
8911 break;
8912 }
8913 }
8914
8915 /* When using the GNU linker, .gnu.linkonce. sections are used to
8916 eliminate duplicate copies of functions and vtables and such.
8917 The linker will arbitrarily choose one and discard the others.
8918 The AT_*_pc values for such functions refer to local labels in
8919 these sections. If the section from that file was discarded, the
8920 labels are not in the output, so the relocs get a value of 0.
8921 If this is a discarded function, mark the pc bounds as invalid,
8922 so that GDB will ignore it. */
8923 if (has_low_pc_attr && has_high_pc_attr
8924 && part_die->lowpc < part_die->highpc
8925 && (part_die->lowpc != 0
8926 || dwarf2_per_objfile->has_section_at_zero))
8927 part_die->has_pc_info = 1;
8928
8929 return info_ptr;
8930 }
8931
8932 /* Find a cached partial DIE at OFFSET in CU. */
8933
8934 static struct partial_die_info *
8935 find_partial_die_in_comp_unit (unsigned int offset, struct dwarf2_cu *cu)
8936 {
8937 struct partial_die_info *lookup_die = NULL;
8938 struct partial_die_info part_die;
8939
8940 part_die.offset = offset;
8941 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die, offset);
8942
8943 return lookup_die;
8944 }
8945
8946 /* Find a partial DIE at OFFSET, which may or may not be in CU,
8947 except in the case of .debug_types DIEs which do not reference
8948 outside their CU (they do however referencing other types via
8949 DW_FORM_sig8). */
8950
8951 static struct partial_die_info *
8952 find_partial_die (unsigned int offset, struct dwarf2_cu *cu)
8953 {
8954 struct dwarf2_per_cu_data *per_cu = NULL;
8955 struct partial_die_info *pd = NULL;
8956
8957 if (cu->per_cu->from_debug_types)
8958 {
8959 pd = find_partial_die_in_comp_unit (offset, cu);
8960 if (pd != NULL)
8961 return pd;
8962 goto not_found;
8963 }
8964
8965 if (offset_in_cu_p (&cu->header, offset))
8966 {
8967 pd = find_partial_die_in_comp_unit (offset, cu);
8968 if (pd != NULL)
8969 return pd;
8970 }
8971
8972 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
8973
8974 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
8975 load_partial_comp_unit (per_cu, cu->objfile);
8976
8977 per_cu->cu->last_used = 0;
8978 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
8979
8980 if (pd == NULL && per_cu->load_all_dies == 0)
8981 {
8982 struct cleanup *back_to;
8983 struct partial_die_info comp_unit_die;
8984 struct abbrev_info *abbrev;
8985 unsigned int bytes_read;
8986 char *info_ptr;
8987
8988 per_cu->load_all_dies = 1;
8989
8990 /* Re-read the DIEs. */
8991 back_to = make_cleanup (null_cleanup, 0);
8992 if (per_cu->cu->dwarf2_abbrevs == NULL)
8993 {
8994 dwarf2_read_abbrevs (per_cu->cu->objfile->obfd, per_cu->cu);
8995 make_cleanup (dwarf2_free_abbrev_table, per_cu->cu);
8996 }
8997 info_ptr = (dwarf2_per_objfile->info.buffer
8998 + per_cu->cu->header.offset
8999 + per_cu->cu->header.first_die_offset);
9000 abbrev = peek_die_abbrev (info_ptr, &bytes_read, per_cu->cu);
9001 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
9002 per_cu->cu->objfile->obfd,
9003 dwarf2_per_objfile->info.buffer, info_ptr,
9004 per_cu->cu);
9005 if (comp_unit_die.has_children)
9006 load_partial_dies (per_cu->cu->objfile->obfd,
9007 dwarf2_per_objfile->info.buffer, info_ptr,
9008 0, per_cu->cu);
9009 do_cleanups (back_to);
9010
9011 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
9012 }
9013
9014 not_found:
9015
9016 if (pd == NULL)
9017 internal_error (__FILE__, __LINE__,
9018 _("could not find partial DIE 0x%x in cache [from module %s]\n"),
9019 offset, bfd_get_filename (cu->objfile->obfd));
9020 return pd;
9021 }
9022
9023 /* See if we can figure out if the class lives in a namespace. We do
9024 this by looking for a member function; its demangled name will
9025 contain namespace info, if there is any. */
9026
9027 static void
9028 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
9029 struct dwarf2_cu *cu)
9030 {
9031 /* NOTE: carlton/2003-10-07: Getting the info this way changes
9032 what template types look like, because the demangler
9033 frequently doesn't give the same name as the debug info. We
9034 could fix this by only using the demangled name to get the
9035 prefix (but see comment in read_structure_type). */
9036
9037 struct partial_die_info *real_pdi;
9038 struct partial_die_info *child_pdi;
9039
9040 /* If this DIE (this DIE's specification, if any) has a parent, then
9041 we should not do this. We'll prepend the parent's fully qualified
9042 name when we create the partial symbol. */
9043
9044 real_pdi = struct_pdi;
9045 while (real_pdi->has_specification)
9046 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
9047
9048 if (real_pdi->die_parent != NULL)
9049 return;
9050
9051 for (child_pdi = struct_pdi->die_child;
9052 child_pdi != NULL;
9053 child_pdi = child_pdi->die_sibling)
9054 {
9055 if (child_pdi->tag == DW_TAG_subprogram
9056 && child_pdi->linkage_name != NULL)
9057 {
9058 char *actual_class_name
9059 = language_class_name_from_physname (cu->language_defn,
9060 child_pdi->linkage_name);
9061 if (actual_class_name != NULL)
9062 {
9063 struct_pdi->name
9064 = obsavestring (actual_class_name,
9065 strlen (actual_class_name),
9066 &cu->objfile->objfile_obstack);
9067 xfree (actual_class_name);
9068 }
9069 break;
9070 }
9071 }
9072 }
9073
9074 /* Adjust PART_DIE before generating a symbol for it. This function
9075 may set the is_external flag or change the DIE's name. */
9076
9077 static void
9078 fixup_partial_die (struct partial_die_info *part_die,
9079 struct dwarf2_cu *cu)
9080 {
9081 /* Once we've fixed up a die, there's no point in doing so again.
9082 This also avoids a memory leak if we were to call
9083 guess_partial_die_structure_name multiple times. */
9084 if (part_die->fixup_called)
9085 return;
9086
9087 /* If we found a reference attribute and the DIE has no name, try
9088 to find a name in the referred to DIE. */
9089
9090 if (part_die->name == NULL && part_die->has_specification)
9091 {
9092 struct partial_die_info *spec_die;
9093
9094 spec_die = find_partial_die (part_die->spec_offset, cu);
9095
9096 fixup_partial_die (spec_die, cu);
9097
9098 if (spec_die->name)
9099 {
9100 part_die->name = spec_die->name;
9101
9102 /* Copy DW_AT_external attribute if it is set. */
9103 if (spec_die->is_external)
9104 part_die->is_external = spec_die->is_external;
9105 }
9106 }
9107
9108 /* Set default names for some unnamed DIEs. */
9109
9110 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
9111 part_die->name = "(anonymous namespace)";
9112
9113 /* If there is no parent die to provide a namespace, and there are
9114 children, see if we can determine the namespace from their linkage
9115 name.
9116 NOTE: We need to do this even if cu->has_namespace_info != 0.
9117 gcc-4.5 -gdwarf-4 can drop the enclosing namespace. */
9118 if (cu->language == language_cplus
9119 && dwarf2_per_objfile->types.asection != NULL
9120 && part_die->die_parent == NULL
9121 && part_die->has_children
9122 && (part_die->tag == DW_TAG_class_type
9123 || part_die->tag == DW_TAG_structure_type
9124 || part_die->tag == DW_TAG_union_type))
9125 guess_partial_die_structure_name (part_die, cu);
9126
9127 part_die->fixup_called = 1;
9128 }
9129
9130 /* Read an attribute value described by an attribute form. */
9131
9132 static gdb_byte *
9133 read_attribute_value (struct attribute *attr, unsigned form,
9134 bfd *abfd, gdb_byte *info_ptr,
9135 struct dwarf2_cu *cu)
9136 {
9137 struct comp_unit_head *cu_header = &cu->header;
9138 unsigned int bytes_read;
9139 struct dwarf_block *blk;
9140
9141 attr->form = form;
9142 switch (form)
9143 {
9144 case DW_FORM_ref_addr:
9145 if (cu->header.version == 2)
9146 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
9147 else
9148 DW_ADDR (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
9149 info_ptr += bytes_read;
9150 break;
9151 case DW_FORM_addr:
9152 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
9153 info_ptr += bytes_read;
9154 break;
9155 case DW_FORM_block2:
9156 blk = dwarf_alloc_block (cu);
9157 blk->size = read_2_bytes (abfd, info_ptr);
9158 info_ptr += 2;
9159 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
9160 info_ptr += blk->size;
9161 DW_BLOCK (attr) = blk;
9162 break;
9163 case DW_FORM_block4:
9164 blk = dwarf_alloc_block (cu);
9165 blk->size = read_4_bytes (abfd, info_ptr);
9166 info_ptr += 4;
9167 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
9168 info_ptr += blk->size;
9169 DW_BLOCK (attr) = blk;
9170 break;
9171 case DW_FORM_data2:
9172 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
9173 info_ptr += 2;
9174 break;
9175 case DW_FORM_data4:
9176 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
9177 info_ptr += 4;
9178 break;
9179 case DW_FORM_data8:
9180 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
9181 info_ptr += 8;
9182 break;
9183 case DW_FORM_sec_offset:
9184 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
9185 info_ptr += bytes_read;
9186 break;
9187 case DW_FORM_string:
9188 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
9189 DW_STRING_IS_CANONICAL (attr) = 0;
9190 info_ptr += bytes_read;
9191 break;
9192 case DW_FORM_strp:
9193 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
9194 &bytes_read);
9195 DW_STRING_IS_CANONICAL (attr) = 0;
9196 info_ptr += bytes_read;
9197 break;
9198 case DW_FORM_exprloc:
9199 case DW_FORM_block:
9200 blk = dwarf_alloc_block (cu);
9201 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9202 info_ptr += bytes_read;
9203 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
9204 info_ptr += blk->size;
9205 DW_BLOCK (attr) = blk;
9206 break;
9207 case DW_FORM_block1:
9208 blk = dwarf_alloc_block (cu);
9209 blk->size = read_1_byte (abfd, info_ptr);
9210 info_ptr += 1;
9211 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
9212 info_ptr += blk->size;
9213 DW_BLOCK (attr) = blk;
9214 break;
9215 case DW_FORM_data1:
9216 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
9217 info_ptr += 1;
9218 break;
9219 case DW_FORM_flag:
9220 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
9221 info_ptr += 1;
9222 break;
9223 case DW_FORM_flag_present:
9224 DW_UNSND (attr) = 1;
9225 break;
9226 case DW_FORM_sdata:
9227 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
9228 info_ptr += bytes_read;
9229 break;
9230 case DW_FORM_udata:
9231 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9232 info_ptr += bytes_read;
9233 break;
9234 case DW_FORM_ref1:
9235 DW_ADDR (attr) = cu->header.offset + read_1_byte (abfd, info_ptr);
9236 info_ptr += 1;
9237 break;
9238 case DW_FORM_ref2:
9239 DW_ADDR (attr) = cu->header.offset + read_2_bytes (abfd, info_ptr);
9240 info_ptr += 2;
9241 break;
9242 case DW_FORM_ref4:
9243 DW_ADDR (attr) = cu->header.offset + read_4_bytes (abfd, info_ptr);
9244 info_ptr += 4;
9245 break;
9246 case DW_FORM_ref8:
9247 DW_ADDR (attr) = cu->header.offset + read_8_bytes (abfd, info_ptr);
9248 info_ptr += 8;
9249 break;
9250 case DW_FORM_sig8:
9251 /* Convert the signature to something we can record in DW_UNSND
9252 for later lookup.
9253 NOTE: This is NULL if the type wasn't found. */
9254 DW_SIGNATURED_TYPE (attr) =
9255 lookup_signatured_type (cu->objfile, read_8_bytes (abfd, info_ptr));
9256 info_ptr += 8;
9257 break;
9258 case DW_FORM_ref_udata:
9259 DW_ADDR (attr) = (cu->header.offset
9260 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
9261 info_ptr += bytes_read;
9262 break;
9263 case DW_FORM_indirect:
9264 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9265 info_ptr += bytes_read;
9266 info_ptr = read_attribute_value (attr, form, abfd, info_ptr, cu);
9267 break;
9268 default:
9269 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
9270 dwarf_form_name (form),
9271 bfd_get_filename (abfd));
9272 }
9273
9274 /* We have seen instances where the compiler tried to emit a byte
9275 size attribute of -1 which ended up being encoded as an unsigned
9276 0xffffffff. Although 0xffffffff is technically a valid size value,
9277 an object of this size seems pretty unlikely so we can relatively
9278 safely treat these cases as if the size attribute was invalid and
9279 treat them as zero by default. */
9280 if (attr->name == DW_AT_byte_size
9281 && form == DW_FORM_data4
9282 && DW_UNSND (attr) >= 0xffffffff)
9283 {
9284 complaint
9285 (&symfile_complaints,
9286 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
9287 hex_string (DW_UNSND (attr)));
9288 DW_UNSND (attr) = 0;
9289 }
9290
9291 return info_ptr;
9292 }
9293
9294 /* Read an attribute described by an abbreviated attribute. */
9295
9296 static gdb_byte *
9297 read_attribute (struct attribute *attr, struct attr_abbrev *abbrev,
9298 bfd *abfd, gdb_byte *info_ptr, struct dwarf2_cu *cu)
9299 {
9300 attr->name = abbrev->name;
9301 return read_attribute_value (attr, abbrev->form, abfd, info_ptr, cu);
9302 }
9303
9304 /* read dwarf information from a buffer */
9305
9306 static unsigned int
9307 read_1_byte (bfd *abfd, gdb_byte *buf)
9308 {
9309 return bfd_get_8 (abfd, buf);
9310 }
9311
9312 static int
9313 read_1_signed_byte (bfd *abfd, gdb_byte *buf)
9314 {
9315 return bfd_get_signed_8 (abfd, buf);
9316 }
9317
9318 static unsigned int
9319 read_2_bytes (bfd *abfd, gdb_byte *buf)
9320 {
9321 return bfd_get_16 (abfd, buf);
9322 }
9323
9324 static int
9325 read_2_signed_bytes (bfd *abfd, gdb_byte *buf)
9326 {
9327 return bfd_get_signed_16 (abfd, buf);
9328 }
9329
9330 static unsigned int
9331 read_4_bytes (bfd *abfd, gdb_byte *buf)
9332 {
9333 return bfd_get_32 (abfd, buf);
9334 }
9335
9336 static int
9337 read_4_signed_bytes (bfd *abfd, gdb_byte *buf)
9338 {
9339 return bfd_get_signed_32 (abfd, buf);
9340 }
9341
9342 static ULONGEST
9343 read_8_bytes (bfd *abfd, gdb_byte *buf)
9344 {
9345 return bfd_get_64 (abfd, buf);
9346 }
9347
9348 static CORE_ADDR
9349 read_address (bfd *abfd, gdb_byte *buf, struct dwarf2_cu *cu,
9350 unsigned int *bytes_read)
9351 {
9352 struct comp_unit_head *cu_header = &cu->header;
9353 CORE_ADDR retval = 0;
9354
9355 if (cu_header->signed_addr_p)
9356 {
9357 switch (cu_header->addr_size)
9358 {
9359 case 2:
9360 retval = bfd_get_signed_16 (abfd, buf);
9361 break;
9362 case 4:
9363 retval = bfd_get_signed_32 (abfd, buf);
9364 break;
9365 case 8:
9366 retval = bfd_get_signed_64 (abfd, buf);
9367 break;
9368 default:
9369 internal_error (__FILE__, __LINE__,
9370 _("read_address: bad switch, signed [in module %s]"),
9371 bfd_get_filename (abfd));
9372 }
9373 }
9374 else
9375 {
9376 switch (cu_header->addr_size)
9377 {
9378 case 2:
9379 retval = bfd_get_16 (abfd, buf);
9380 break;
9381 case 4:
9382 retval = bfd_get_32 (abfd, buf);
9383 break;
9384 case 8:
9385 retval = bfd_get_64 (abfd, buf);
9386 break;
9387 default:
9388 internal_error (__FILE__, __LINE__,
9389 _("read_address: bad switch, unsigned [in module %s]"),
9390 bfd_get_filename (abfd));
9391 }
9392 }
9393
9394 *bytes_read = cu_header->addr_size;
9395 return retval;
9396 }
9397
9398 /* Read the initial length from a section. The (draft) DWARF 3
9399 specification allows the initial length to take up either 4 bytes
9400 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
9401 bytes describe the length and all offsets will be 8 bytes in length
9402 instead of 4.
9403
9404 An older, non-standard 64-bit format is also handled by this
9405 function. The older format in question stores the initial length
9406 as an 8-byte quantity without an escape value. Lengths greater
9407 than 2^32 aren't very common which means that the initial 4 bytes
9408 is almost always zero. Since a length value of zero doesn't make
9409 sense for the 32-bit format, this initial zero can be considered to
9410 be an escape value which indicates the presence of the older 64-bit
9411 format. As written, the code can't detect (old format) lengths
9412 greater than 4GB. If it becomes necessary to handle lengths
9413 somewhat larger than 4GB, we could allow other small values (such
9414 as the non-sensical values of 1, 2, and 3) to also be used as
9415 escape values indicating the presence of the old format.
9416
9417 The value returned via bytes_read should be used to increment the
9418 relevant pointer after calling read_initial_length().
9419
9420 [ Note: read_initial_length() and read_offset() are based on the
9421 document entitled "DWARF Debugging Information Format", revision
9422 3, draft 8, dated November 19, 2001. This document was obtained
9423 from:
9424
9425 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
9426
9427 This document is only a draft and is subject to change. (So beware.)
9428
9429 Details regarding the older, non-standard 64-bit format were
9430 determined empirically by examining 64-bit ELF files produced by
9431 the SGI toolchain on an IRIX 6.5 machine.
9432
9433 - Kevin, July 16, 2002
9434 ] */
9435
9436 static LONGEST
9437 read_initial_length (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read)
9438 {
9439 LONGEST length = bfd_get_32 (abfd, buf);
9440
9441 if (length == 0xffffffff)
9442 {
9443 length = bfd_get_64 (abfd, buf + 4);
9444 *bytes_read = 12;
9445 }
9446 else if (length == 0)
9447 {
9448 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
9449 length = bfd_get_64 (abfd, buf);
9450 *bytes_read = 8;
9451 }
9452 else
9453 {
9454 *bytes_read = 4;
9455 }
9456
9457 return length;
9458 }
9459
9460 /* Cover function for read_initial_length.
9461 Returns the length of the object at BUF, and stores the size of the
9462 initial length in *BYTES_READ and stores the size that offsets will be in
9463 *OFFSET_SIZE.
9464 If the initial length size is not equivalent to that specified in
9465 CU_HEADER then issue a complaint.
9466 This is useful when reading non-comp-unit headers. */
9467
9468 static LONGEST
9469 read_checked_initial_length_and_offset (bfd *abfd, gdb_byte *buf,
9470 const struct comp_unit_head *cu_header,
9471 unsigned int *bytes_read,
9472 unsigned int *offset_size)
9473 {
9474 LONGEST length = read_initial_length (abfd, buf, bytes_read);
9475
9476 gdb_assert (cu_header->initial_length_size == 4
9477 || cu_header->initial_length_size == 8
9478 || cu_header->initial_length_size == 12);
9479
9480 if (cu_header->initial_length_size != *bytes_read)
9481 complaint (&symfile_complaints,
9482 _("intermixed 32-bit and 64-bit DWARF sections"));
9483
9484 *offset_size = (*bytes_read == 4) ? 4 : 8;
9485 return length;
9486 }
9487
9488 /* Read an offset from the data stream. The size of the offset is
9489 given by cu_header->offset_size. */
9490
9491 static LONGEST
9492 read_offset (bfd *abfd, gdb_byte *buf, const struct comp_unit_head *cu_header,
9493 unsigned int *bytes_read)
9494 {
9495 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
9496
9497 *bytes_read = cu_header->offset_size;
9498 return offset;
9499 }
9500
9501 /* Read an offset from the data stream. */
9502
9503 static LONGEST
9504 read_offset_1 (bfd *abfd, gdb_byte *buf, unsigned int offset_size)
9505 {
9506 LONGEST retval = 0;
9507
9508 switch (offset_size)
9509 {
9510 case 4:
9511 retval = bfd_get_32 (abfd, buf);
9512 break;
9513 case 8:
9514 retval = bfd_get_64 (abfd, buf);
9515 break;
9516 default:
9517 internal_error (__FILE__, __LINE__,
9518 _("read_offset_1: bad switch [in module %s]"),
9519 bfd_get_filename (abfd));
9520 }
9521
9522 return retval;
9523 }
9524
9525 static gdb_byte *
9526 read_n_bytes (bfd *abfd, gdb_byte *buf, unsigned int size)
9527 {
9528 /* If the size of a host char is 8 bits, we can return a pointer
9529 to the buffer, otherwise we have to copy the data to a buffer
9530 allocated on the temporary obstack. */
9531 gdb_assert (HOST_CHAR_BIT == 8);
9532 return buf;
9533 }
9534
9535 static char *
9536 read_direct_string (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
9537 {
9538 /* If the size of a host char is 8 bits, we can return a pointer
9539 to the string, otherwise we have to copy the string to a buffer
9540 allocated on the temporary obstack. */
9541 gdb_assert (HOST_CHAR_BIT == 8);
9542 if (*buf == '\0')
9543 {
9544 *bytes_read_ptr = 1;
9545 return NULL;
9546 }
9547 *bytes_read_ptr = strlen ((char *) buf) + 1;
9548 return (char *) buf;
9549 }
9550
9551 static char *
9552 read_indirect_string (bfd *abfd, gdb_byte *buf,
9553 const struct comp_unit_head *cu_header,
9554 unsigned int *bytes_read_ptr)
9555 {
9556 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
9557
9558 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
9559 if (dwarf2_per_objfile->str.buffer == NULL)
9560 {
9561 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
9562 bfd_get_filename (abfd));
9563 return NULL;
9564 }
9565 if (str_offset >= dwarf2_per_objfile->str.size)
9566 {
9567 error (_("DW_FORM_strp pointing outside of .debug_str section [in module %s]"),
9568 bfd_get_filename (abfd));
9569 return NULL;
9570 }
9571 gdb_assert (HOST_CHAR_BIT == 8);
9572 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
9573 return NULL;
9574 return (char *) (dwarf2_per_objfile->str.buffer + str_offset);
9575 }
9576
9577 static unsigned long
9578 read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
9579 {
9580 unsigned long result;
9581 unsigned int num_read;
9582 int i, shift;
9583 unsigned char byte;
9584
9585 result = 0;
9586 shift = 0;
9587 num_read = 0;
9588 i = 0;
9589 while (1)
9590 {
9591 byte = bfd_get_8 (abfd, buf);
9592 buf++;
9593 num_read++;
9594 result |= ((unsigned long)(byte & 127) << shift);
9595 if ((byte & 128) == 0)
9596 {
9597 break;
9598 }
9599 shift += 7;
9600 }
9601 *bytes_read_ptr = num_read;
9602 return result;
9603 }
9604
9605 static long
9606 read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
9607 {
9608 long result;
9609 int i, shift, num_read;
9610 unsigned char byte;
9611
9612 result = 0;
9613 shift = 0;
9614 num_read = 0;
9615 i = 0;
9616 while (1)
9617 {
9618 byte = bfd_get_8 (abfd, buf);
9619 buf++;
9620 num_read++;
9621 result |= ((long)(byte & 127) << shift);
9622 shift += 7;
9623 if ((byte & 128) == 0)
9624 {
9625 break;
9626 }
9627 }
9628 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
9629 result |= -(((long)1) << shift);
9630 *bytes_read_ptr = num_read;
9631 return result;
9632 }
9633
9634 /* Return a pointer to just past the end of an LEB128 number in BUF. */
9635
9636 static gdb_byte *
9637 skip_leb128 (bfd *abfd, gdb_byte *buf)
9638 {
9639 int byte;
9640
9641 while (1)
9642 {
9643 byte = bfd_get_8 (abfd, buf);
9644 buf++;
9645 if ((byte & 128) == 0)
9646 return buf;
9647 }
9648 }
9649
9650 static void
9651 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
9652 {
9653 switch (lang)
9654 {
9655 case DW_LANG_C89:
9656 case DW_LANG_C99:
9657 case DW_LANG_C:
9658 cu->language = language_c;
9659 break;
9660 case DW_LANG_C_plus_plus:
9661 cu->language = language_cplus;
9662 break;
9663 case DW_LANG_D:
9664 cu->language = language_d;
9665 break;
9666 case DW_LANG_Fortran77:
9667 case DW_LANG_Fortran90:
9668 case DW_LANG_Fortran95:
9669 cu->language = language_fortran;
9670 break;
9671 case DW_LANG_Mips_Assembler:
9672 cu->language = language_asm;
9673 break;
9674 case DW_LANG_Java:
9675 cu->language = language_java;
9676 break;
9677 case DW_LANG_Ada83:
9678 case DW_LANG_Ada95:
9679 cu->language = language_ada;
9680 break;
9681 case DW_LANG_Modula2:
9682 cu->language = language_m2;
9683 break;
9684 case DW_LANG_Pascal83:
9685 cu->language = language_pascal;
9686 break;
9687 case DW_LANG_ObjC:
9688 cu->language = language_objc;
9689 break;
9690 case DW_LANG_Cobol74:
9691 case DW_LANG_Cobol85:
9692 default:
9693 cu->language = language_minimal;
9694 break;
9695 }
9696 cu->language_defn = language_def (cu->language);
9697 }
9698
9699 /* Return the named attribute or NULL if not there. */
9700
9701 static struct attribute *
9702 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
9703 {
9704 unsigned int i;
9705 struct attribute *spec = NULL;
9706
9707 for (i = 0; i < die->num_attrs; ++i)
9708 {
9709 if (die->attrs[i].name == name)
9710 return &die->attrs[i];
9711 if (die->attrs[i].name == DW_AT_specification
9712 || die->attrs[i].name == DW_AT_abstract_origin)
9713 spec = &die->attrs[i];
9714 }
9715
9716 if (spec)
9717 {
9718 die = follow_die_ref (die, spec, &cu);
9719 return dwarf2_attr (die, name, cu);
9720 }
9721
9722 return NULL;
9723 }
9724
9725 /* Return the named attribute or NULL if not there,
9726 but do not follow DW_AT_specification, etc.
9727 This is for use in contexts where we're reading .debug_types dies.
9728 Following DW_AT_specification, DW_AT_abstract_origin will take us
9729 back up the chain, and we want to go down. */
9730
9731 static struct attribute *
9732 dwarf2_attr_no_follow (struct die_info *die, unsigned int name,
9733 struct dwarf2_cu *cu)
9734 {
9735 unsigned int i;
9736
9737 for (i = 0; i < die->num_attrs; ++i)
9738 if (die->attrs[i].name == name)
9739 return &die->attrs[i];
9740
9741 return NULL;
9742 }
9743
9744 /* Return non-zero iff the attribute NAME is defined for the given DIE,
9745 and holds a non-zero value. This function should only be used for
9746 DW_FORM_flag or DW_FORM_flag_present attributes. */
9747
9748 static int
9749 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
9750 {
9751 struct attribute *attr = dwarf2_attr (die, name, cu);
9752
9753 return (attr && DW_UNSND (attr));
9754 }
9755
9756 static int
9757 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
9758 {
9759 /* A DIE is a declaration if it has a DW_AT_declaration attribute
9760 which value is non-zero. However, we have to be careful with
9761 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
9762 (via dwarf2_flag_true_p) follows this attribute. So we may
9763 end up accidently finding a declaration attribute that belongs
9764 to a different DIE referenced by the specification attribute,
9765 even though the given DIE does not have a declaration attribute. */
9766 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
9767 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
9768 }
9769
9770 /* Return the die giving the specification for DIE, if there is
9771 one. *SPEC_CU is the CU containing DIE on input, and the CU
9772 containing the return value on output. If there is no
9773 specification, but there is an abstract origin, that is
9774 returned. */
9775
9776 static struct die_info *
9777 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
9778 {
9779 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
9780 *spec_cu);
9781
9782 if (spec_attr == NULL)
9783 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
9784
9785 if (spec_attr == NULL)
9786 return NULL;
9787 else
9788 return follow_die_ref (die, spec_attr, spec_cu);
9789 }
9790
9791 /* Free the line_header structure *LH, and any arrays and strings it
9792 refers to. */
9793 static void
9794 free_line_header (struct line_header *lh)
9795 {
9796 if (lh->standard_opcode_lengths)
9797 xfree (lh->standard_opcode_lengths);
9798
9799 /* Remember that all the lh->file_names[i].name pointers are
9800 pointers into debug_line_buffer, and don't need to be freed. */
9801 if (lh->file_names)
9802 xfree (lh->file_names);
9803
9804 /* Similarly for the include directory names. */
9805 if (lh->include_dirs)
9806 xfree (lh->include_dirs);
9807
9808 xfree (lh);
9809 }
9810
9811
9812 /* Add an entry to LH's include directory table. */
9813 static void
9814 add_include_dir (struct line_header *lh, char *include_dir)
9815 {
9816 /* Grow the array if necessary. */
9817 if (lh->include_dirs_size == 0)
9818 {
9819 lh->include_dirs_size = 1; /* for testing */
9820 lh->include_dirs = xmalloc (lh->include_dirs_size
9821 * sizeof (*lh->include_dirs));
9822 }
9823 else if (lh->num_include_dirs >= lh->include_dirs_size)
9824 {
9825 lh->include_dirs_size *= 2;
9826 lh->include_dirs = xrealloc (lh->include_dirs,
9827 (lh->include_dirs_size
9828 * sizeof (*lh->include_dirs)));
9829 }
9830
9831 lh->include_dirs[lh->num_include_dirs++] = include_dir;
9832 }
9833
9834
9835 /* Add an entry to LH's file name table. */
9836 static void
9837 add_file_name (struct line_header *lh,
9838 char *name,
9839 unsigned int dir_index,
9840 unsigned int mod_time,
9841 unsigned int length)
9842 {
9843 struct file_entry *fe;
9844
9845 /* Grow the array if necessary. */
9846 if (lh->file_names_size == 0)
9847 {
9848 lh->file_names_size = 1; /* for testing */
9849 lh->file_names = xmalloc (lh->file_names_size
9850 * sizeof (*lh->file_names));
9851 }
9852 else if (lh->num_file_names >= lh->file_names_size)
9853 {
9854 lh->file_names_size *= 2;
9855 lh->file_names = xrealloc (lh->file_names,
9856 (lh->file_names_size
9857 * sizeof (*lh->file_names)));
9858 }
9859
9860 fe = &lh->file_names[lh->num_file_names++];
9861 fe->name = name;
9862 fe->dir_index = dir_index;
9863 fe->mod_time = mod_time;
9864 fe->length = length;
9865 fe->included_p = 0;
9866 fe->symtab = NULL;
9867 }
9868
9869
9870 /* Read the statement program header starting at OFFSET in
9871 .debug_line, according to the endianness of ABFD. Return a pointer
9872 to a struct line_header, allocated using xmalloc.
9873
9874 NOTE: the strings in the include directory and file name tables of
9875 the returned object point into debug_line_buffer, and must not be
9876 freed. */
9877 static struct line_header *
9878 dwarf_decode_line_header (unsigned int offset, bfd *abfd,
9879 struct dwarf2_cu *cu)
9880 {
9881 struct cleanup *back_to;
9882 struct line_header *lh;
9883 gdb_byte *line_ptr;
9884 unsigned int bytes_read, offset_size;
9885 int i;
9886 char *cur_dir, *cur_file;
9887
9888 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->line);
9889 if (dwarf2_per_objfile->line.buffer == NULL)
9890 {
9891 complaint (&symfile_complaints, _("missing .debug_line section"));
9892 return 0;
9893 }
9894
9895 /* Make sure that at least there's room for the total_length field.
9896 That could be 12 bytes long, but we're just going to fudge that. */
9897 if (offset + 4 >= dwarf2_per_objfile->line.size)
9898 {
9899 dwarf2_statement_list_fits_in_line_number_section_complaint ();
9900 return 0;
9901 }
9902
9903 lh = xmalloc (sizeof (*lh));
9904 memset (lh, 0, sizeof (*lh));
9905 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
9906 (void *) lh);
9907
9908 line_ptr = dwarf2_per_objfile->line.buffer + offset;
9909
9910 /* Read in the header. */
9911 lh->total_length =
9912 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
9913 &bytes_read, &offset_size);
9914 line_ptr += bytes_read;
9915 if (line_ptr + lh->total_length > (dwarf2_per_objfile->line.buffer
9916 + dwarf2_per_objfile->line.size))
9917 {
9918 dwarf2_statement_list_fits_in_line_number_section_complaint ();
9919 return 0;
9920 }
9921 lh->statement_program_end = line_ptr + lh->total_length;
9922 lh->version = read_2_bytes (abfd, line_ptr);
9923 line_ptr += 2;
9924 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
9925 line_ptr += offset_size;
9926 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
9927 line_ptr += 1;
9928 if (lh->version >= 4)
9929 {
9930 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
9931 line_ptr += 1;
9932 }
9933 else
9934 lh->maximum_ops_per_instruction = 1;
9935
9936 if (lh->maximum_ops_per_instruction == 0)
9937 {
9938 lh->maximum_ops_per_instruction = 1;
9939 complaint (&symfile_complaints,
9940 _("invalid maximum_ops_per_instruction in `.debug_line' section"));
9941 }
9942
9943 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
9944 line_ptr += 1;
9945 lh->line_base = read_1_signed_byte (abfd, line_ptr);
9946 line_ptr += 1;
9947 lh->line_range = read_1_byte (abfd, line_ptr);
9948 line_ptr += 1;
9949 lh->opcode_base = read_1_byte (abfd, line_ptr);
9950 line_ptr += 1;
9951 lh->standard_opcode_lengths
9952 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
9953
9954 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
9955 for (i = 1; i < lh->opcode_base; ++i)
9956 {
9957 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
9958 line_ptr += 1;
9959 }
9960
9961 /* Read directory table. */
9962 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
9963 {
9964 line_ptr += bytes_read;
9965 add_include_dir (lh, cur_dir);
9966 }
9967 line_ptr += bytes_read;
9968
9969 /* Read file name table. */
9970 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
9971 {
9972 unsigned int dir_index, mod_time, length;
9973
9974 line_ptr += bytes_read;
9975 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
9976 line_ptr += bytes_read;
9977 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
9978 line_ptr += bytes_read;
9979 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
9980 line_ptr += bytes_read;
9981
9982 add_file_name (lh, cur_file, dir_index, mod_time, length);
9983 }
9984 line_ptr += bytes_read;
9985 lh->statement_program_start = line_ptr;
9986
9987 if (line_ptr > (dwarf2_per_objfile->line.buffer
9988 + dwarf2_per_objfile->line.size))
9989 complaint (&symfile_complaints,
9990 _("line number info header doesn't fit in `.debug_line' section"));
9991
9992 discard_cleanups (back_to);
9993 return lh;
9994 }
9995
9996 /* This function exists to work around a bug in certain compilers
9997 (particularly GCC 2.95), in which the first line number marker of a
9998 function does not show up until after the prologue, right before
9999 the second line number marker. This function shifts ADDRESS down
10000 to the beginning of the function if necessary, and is called on
10001 addresses passed to record_line. */
10002
10003 static CORE_ADDR
10004 check_cu_functions (CORE_ADDR address, struct dwarf2_cu *cu)
10005 {
10006 struct function_range *fn;
10007
10008 /* Find the function_range containing address. */
10009 if (!cu->first_fn)
10010 return address;
10011
10012 if (!cu->cached_fn)
10013 cu->cached_fn = cu->first_fn;
10014
10015 fn = cu->cached_fn;
10016 while (fn)
10017 if (fn->lowpc <= address && fn->highpc > address)
10018 goto found;
10019 else
10020 fn = fn->next;
10021
10022 fn = cu->first_fn;
10023 while (fn && fn != cu->cached_fn)
10024 if (fn->lowpc <= address && fn->highpc > address)
10025 goto found;
10026 else
10027 fn = fn->next;
10028
10029 return address;
10030
10031 found:
10032 if (fn->seen_line)
10033 return address;
10034 if (address != fn->lowpc)
10035 complaint (&symfile_complaints,
10036 _("misplaced first line number at 0x%lx for '%s'"),
10037 (unsigned long) address, fn->name);
10038 fn->seen_line = 1;
10039 return fn->lowpc;
10040 }
10041
10042 /* Subroutine of dwarf_decode_lines to simplify it.
10043 Return the file name of the psymtab for included file FILE_INDEX
10044 in line header LH of PST.
10045 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
10046 If space for the result is malloc'd, it will be freed by a cleanup.
10047 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
10048
10049 static char *
10050 psymtab_include_file_name (const struct line_header *lh, int file_index,
10051 const struct partial_symtab *pst,
10052 const char *comp_dir)
10053 {
10054 const struct file_entry fe = lh->file_names [file_index];
10055 char *include_name = fe.name;
10056 char *include_name_to_compare = include_name;
10057 char *dir_name = NULL;
10058 const char *pst_filename;
10059 char *copied_name = NULL;
10060 int file_is_pst;
10061
10062 if (fe.dir_index)
10063 dir_name = lh->include_dirs[fe.dir_index - 1];
10064
10065 if (!IS_ABSOLUTE_PATH (include_name)
10066 && (dir_name != NULL || comp_dir != NULL))
10067 {
10068 /* Avoid creating a duplicate psymtab for PST.
10069 We do this by comparing INCLUDE_NAME and PST_FILENAME.
10070 Before we do the comparison, however, we need to account
10071 for DIR_NAME and COMP_DIR.
10072 First prepend dir_name (if non-NULL). If we still don't
10073 have an absolute path prepend comp_dir (if non-NULL).
10074 However, the directory we record in the include-file's
10075 psymtab does not contain COMP_DIR (to match the
10076 corresponding symtab(s)).
10077
10078 Example:
10079
10080 bash$ cd /tmp
10081 bash$ gcc -g ./hello.c
10082 include_name = "hello.c"
10083 dir_name = "."
10084 DW_AT_comp_dir = comp_dir = "/tmp"
10085 DW_AT_name = "./hello.c" */
10086
10087 if (dir_name != NULL)
10088 {
10089 include_name = concat (dir_name, SLASH_STRING,
10090 include_name, (char *)NULL);
10091 include_name_to_compare = include_name;
10092 make_cleanup (xfree, include_name);
10093 }
10094 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
10095 {
10096 include_name_to_compare = concat (comp_dir, SLASH_STRING,
10097 include_name, (char *)NULL);
10098 }
10099 }
10100
10101 pst_filename = pst->filename;
10102 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
10103 {
10104 copied_name = concat (pst->dirname, SLASH_STRING,
10105 pst_filename, (char *)NULL);
10106 pst_filename = copied_name;
10107 }
10108
10109 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
10110
10111 if (include_name_to_compare != include_name)
10112 xfree (include_name_to_compare);
10113 if (copied_name != NULL)
10114 xfree (copied_name);
10115
10116 if (file_is_pst)
10117 return NULL;
10118 return include_name;
10119 }
10120
10121 /* Decode the Line Number Program (LNP) for the given line_header
10122 structure and CU. The actual information extracted and the type
10123 of structures created from the LNP depends on the value of PST.
10124
10125 1. If PST is NULL, then this procedure uses the data from the program
10126 to create all necessary symbol tables, and their linetables.
10127
10128 2. If PST is not NULL, this procedure reads the program to determine
10129 the list of files included by the unit represented by PST, and
10130 builds all the associated partial symbol tables.
10131
10132 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
10133 It is used for relative paths in the line table.
10134 NOTE: When processing partial symtabs (pst != NULL),
10135 comp_dir == pst->dirname.
10136
10137 NOTE: It is important that psymtabs have the same file name (via strcmp)
10138 as the corresponding symtab. Since COMP_DIR is not used in the name of the
10139 symtab we don't use it in the name of the psymtabs we create.
10140 E.g. expand_line_sal requires this when finding psymtabs to expand.
10141 A good testcase for this is mb-inline.exp. */
10142
10143 static void
10144 dwarf_decode_lines (struct line_header *lh, const char *comp_dir, bfd *abfd,
10145 struct dwarf2_cu *cu, struct partial_symtab *pst)
10146 {
10147 gdb_byte *line_ptr, *extended_end;
10148 gdb_byte *line_end;
10149 unsigned int bytes_read, extended_len;
10150 unsigned char op_code, extended_op, adj_opcode;
10151 CORE_ADDR baseaddr;
10152 struct objfile *objfile = cu->objfile;
10153 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10154 const int decode_for_pst_p = (pst != NULL);
10155 struct subfile *last_subfile = NULL, *first_subfile = current_subfile;
10156
10157 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10158
10159 line_ptr = lh->statement_program_start;
10160 line_end = lh->statement_program_end;
10161
10162 /* Read the statement sequences until there's nothing left. */
10163 while (line_ptr < line_end)
10164 {
10165 /* state machine registers */
10166 CORE_ADDR address = 0;
10167 unsigned int file = 1;
10168 unsigned int line = 1;
10169 unsigned int column = 0;
10170 int is_stmt = lh->default_is_stmt;
10171 int basic_block = 0;
10172 int end_sequence = 0;
10173 CORE_ADDR addr;
10174 unsigned char op_index = 0;
10175
10176 if (!decode_for_pst_p && lh->num_file_names >= file)
10177 {
10178 /* Start a subfile for the current file of the state machine. */
10179 /* lh->include_dirs and lh->file_names are 0-based, but the
10180 directory and file name numbers in the statement program
10181 are 1-based. */
10182 struct file_entry *fe = &lh->file_names[file - 1];
10183 char *dir = NULL;
10184
10185 if (fe->dir_index)
10186 dir = lh->include_dirs[fe->dir_index - 1];
10187
10188 dwarf2_start_subfile (fe->name, dir, comp_dir);
10189 }
10190
10191 /* Decode the table. */
10192 while (!end_sequence)
10193 {
10194 op_code = read_1_byte (abfd, line_ptr);
10195 line_ptr += 1;
10196 if (line_ptr > line_end)
10197 {
10198 dwarf2_debug_line_missing_end_sequence_complaint ();
10199 break;
10200 }
10201
10202 if (op_code >= lh->opcode_base)
10203 {
10204 /* Special operand. */
10205 adj_opcode = op_code - lh->opcode_base;
10206 address += (((op_index + (adj_opcode / lh->line_range))
10207 / lh->maximum_ops_per_instruction)
10208 * lh->minimum_instruction_length);
10209 op_index = ((op_index + (adj_opcode / lh->line_range))
10210 % lh->maximum_ops_per_instruction);
10211 line += lh->line_base + (adj_opcode % lh->line_range);
10212 if (lh->num_file_names < file || file == 0)
10213 dwarf2_debug_line_missing_file_complaint ();
10214 /* For now we ignore lines not starting on an
10215 instruction boundary. */
10216 else if (op_index == 0)
10217 {
10218 lh->file_names[file - 1].included_p = 1;
10219 if (!decode_for_pst_p && is_stmt)
10220 {
10221 if (last_subfile != current_subfile)
10222 {
10223 addr = gdbarch_addr_bits_remove (gdbarch, address);
10224 if (last_subfile)
10225 record_line (last_subfile, 0, addr);
10226 last_subfile = current_subfile;
10227 }
10228 /* Append row to matrix using current values. */
10229 addr = check_cu_functions (address, cu);
10230 addr = gdbarch_addr_bits_remove (gdbarch, addr);
10231 record_line (current_subfile, line, addr);
10232 }
10233 }
10234 basic_block = 0;
10235 }
10236 else switch (op_code)
10237 {
10238 case DW_LNS_extended_op:
10239 extended_len = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10240 line_ptr += bytes_read;
10241 extended_end = line_ptr + extended_len;
10242 extended_op = read_1_byte (abfd, line_ptr);
10243 line_ptr += 1;
10244 switch (extended_op)
10245 {
10246 case DW_LNE_end_sequence:
10247 end_sequence = 1;
10248 break;
10249 case DW_LNE_set_address:
10250 address = read_address (abfd, line_ptr, cu, &bytes_read);
10251 op_index = 0;
10252 line_ptr += bytes_read;
10253 address += baseaddr;
10254 break;
10255 case DW_LNE_define_file:
10256 {
10257 char *cur_file;
10258 unsigned int dir_index, mod_time, length;
10259
10260 cur_file = read_direct_string (abfd, line_ptr, &bytes_read);
10261 line_ptr += bytes_read;
10262 dir_index =
10263 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10264 line_ptr += bytes_read;
10265 mod_time =
10266 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10267 line_ptr += bytes_read;
10268 length =
10269 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10270 line_ptr += bytes_read;
10271 add_file_name (lh, cur_file, dir_index, mod_time, length);
10272 }
10273 break;
10274 case DW_LNE_set_discriminator:
10275 /* The discriminator is not interesting to the debugger;
10276 just ignore it. */
10277 line_ptr = extended_end;
10278 break;
10279 default:
10280 complaint (&symfile_complaints,
10281 _("mangled .debug_line section"));
10282 return;
10283 }
10284 /* Make sure that we parsed the extended op correctly. If e.g.
10285 we expected a different address size than the producer used,
10286 we may have read the wrong number of bytes. */
10287 if (line_ptr != extended_end)
10288 {
10289 complaint (&symfile_complaints,
10290 _("mangled .debug_line section"));
10291 return;
10292 }
10293 break;
10294 case DW_LNS_copy:
10295 if (lh->num_file_names < file || file == 0)
10296 dwarf2_debug_line_missing_file_complaint ();
10297 else
10298 {
10299 lh->file_names[file - 1].included_p = 1;
10300 if (!decode_for_pst_p && is_stmt)
10301 {
10302 if (last_subfile != current_subfile)
10303 {
10304 addr = gdbarch_addr_bits_remove (gdbarch, address);
10305 if (last_subfile)
10306 record_line (last_subfile, 0, addr);
10307 last_subfile = current_subfile;
10308 }
10309 addr = check_cu_functions (address, cu);
10310 addr = gdbarch_addr_bits_remove (gdbarch, addr);
10311 record_line (current_subfile, line, addr);
10312 }
10313 }
10314 basic_block = 0;
10315 break;
10316 case DW_LNS_advance_pc:
10317 {
10318 CORE_ADDR adjust
10319 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10320
10321 address += (((op_index + adjust)
10322 / lh->maximum_ops_per_instruction)
10323 * lh->minimum_instruction_length);
10324 op_index = ((op_index + adjust)
10325 % lh->maximum_ops_per_instruction);
10326 line_ptr += bytes_read;
10327 }
10328 break;
10329 case DW_LNS_advance_line:
10330 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
10331 line_ptr += bytes_read;
10332 break;
10333 case DW_LNS_set_file:
10334 {
10335 /* The arrays lh->include_dirs and lh->file_names are
10336 0-based, but the directory and file name numbers in
10337 the statement program are 1-based. */
10338 struct file_entry *fe;
10339 char *dir = NULL;
10340
10341 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10342 line_ptr += bytes_read;
10343 if (lh->num_file_names < file || file == 0)
10344 dwarf2_debug_line_missing_file_complaint ();
10345 else
10346 {
10347 fe = &lh->file_names[file - 1];
10348 if (fe->dir_index)
10349 dir = lh->include_dirs[fe->dir_index - 1];
10350 if (!decode_for_pst_p)
10351 {
10352 last_subfile = current_subfile;
10353 dwarf2_start_subfile (fe->name, dir, comp_dir);
10354 }
10355 }
10356 }
10357 break;
10358 case DW_LNS_set_column:
10359 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10360 line_ptr += bytes_read;
10361 break;
10362 case DW_LNS_negate_stmt:
10363 is_stmt = (!is_stmt);
10364 break;
10365 case DW_LNS_set_basic_block:
10366 basic_block = 1;
10367 break;
10368 /* Add to the address register of the state machine the
10369 address increment value corresponding to special opcode
10370 255. I.e., this value is scaled by the minimum
10371 instruction length since special opcode 255 would have
10372 scaled the the increment. */
10373 case DW_LNS_const_add_pc:
10374 {
10375 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
10376
10377 address += (((op_index + adjust)
10378 / lh->maximum_ops_per_instruction)
10379 * lh->minimum_instruction_length);
10380 op_index = ((op_index + adjust)
10381 % lh->maximum_ops_per_instruction);
10382 }
10383 break;
10384 case DW_LNS_fixed_advance_pc:
10385 address += read_2_bytes (abfd, line_ptr);
10386 op_index = 0;
10387 line_ptr += 2;
10388 break;
10389 default:
10390 {
10391 /* Unknown standard opcode, ignore it. */
10392 int i;
10393
10394 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
10395 {
10396 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10397 line_ptr += bytes_read;
10398 }
10399 }
10400 }
10401 }
10402 if (lh->num_file_names < file || file == 0)
10403 dwarf2_debug_line_missing_file_complaint ();
10404 else
10405 {
10406 lh->file_names[file - 1].included_p = 1;
10407 if (!decode_for_pst_p)
10408 {
10409 addr = gdbarch_addr_bits_remove (gdbarch, address);
10410 record_line (current_subfile, 0, addr);
10411 }
10412 }
10413 }
10414
10415 if (decode_for_pst_p)
10416 {
10417 int file_index;
10418
10419 /* Now that we're done scanning the Line Header Program, we can
10420 create the psymtab of each included file. */
10421 for (file_index = 0; file_index < lh->num_file_names; file_index++)
10422 if (lh->file_names[file_index].included_p == 1)
10423 {
10424 char *include_name =
10425 psymtab_include_file_name (lh, file_index, pst, comp_dir);
10426 if (include_name != NULL)
10427 dwarf2_create_include_psymtab (include_name, pst, objfile);
10428 }
10429 }
10430 else
10431 {
10432 /* Make sure a symtab is created for every file, even files
10433 which contain only variables (i.e. no code with associated
10434 line numbers). */
10435
10436 int i;
10437 struct file_entry *fe;
10438
10439 for (i = 0; i < lh->num_file_names; i++)
10440 {
10441 char *dir = NULL;
10442
10443 fe = &lh->file_names[i];
10444 if (fe->dir_index)
10445 dir = lh->include_dirs[fe->dir_index - 1];
10446 dwarf2_start_subfile (fe->name, dir, comp_dir);
10447
10448 /* Skip the main file; we don't need it, and it must be
10449 allocated last, so that it will show up before the
10450 non-primary symtabs in the objfile's symtab list. */
10451 if (current_subfile == first_subfile)
10452 continue;
10453
10454 if (current_subfile->symtab == NULL)
10455 current_subfile->symtab = allocate_symtab (current_subfile->name,
10456 cu->objfile);
10457 fe->symtab = current_subfile->symtab;
10458 }
10459 }
10460 }
10461
10462 /* Start a subfile for DWARF. FILENAME is the name of the file and
10463 DIRNAME the name of the source directory which contains FILENAME
10464 or NULL if not known. COMP_DIR is the compilation directory for the
10465 linetable's compilation unit or NULL if not known.
10466 This routine tries to keep line numbers from identical absolute and
10467 relative file names in a common subfile.
10468
10469 Using the `list' example from the GDB testsuite, which resides in
10470 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
10471 of /srcdir/list0.c yields the following debugging information for list0.c:
10472
10473 DW_AT_name: /srcdir/list0.c
10474 DW_AT_comp_dir: /compdir
10475 files.files[0].name: list0.h
10476 files.files[0].dir: /srcdir
10477 files.files[1].name: list0.c
10478 files.files[1].dir: /srcdir
10479
10480 The line number information for list0.c has to end up in a single
10481 subfile, so that `break /srcdir/list0.c:1' works as expected.
10482 start_subfile will ensure that this happens provided that we pass the
10483 concatenation of files.files[1].dir and files.files[1].name as the
10484 subfile's name. */
10485
10486 static void
10487 dwarf2_start_subfile (char *filename, const char *dirname, const char *comp_dir)
10488 {
10489 char *fullname;
10490
10491 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
10492 `start_symtab' will always pass the contents of DW_AT_comp_dir as
10493 second argument to start_subfile. To be consistent, we do the
10494 same here. In order not to lose the line information directory,
10495 we concatenate it to the filename when it makes sense.
10496 Note that the Dwarf3 standard says (speaking of filenames in line
10497 information): ``The directory index is ignored for file names
10498 that represent full path names''. Thus ignoring dirname in the
10499 `else' branch below isn't an issue. */
10500
10501 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
10502 fullname = concat (dirname, SLASH_STRING, filename, (char *)NULL);
10503 else
10504 fullname = filename;
10505
10506 start_subfile (fullname, comp_dir);
10507
10508 if (fullname != filename)
10509 xfree (fullname);
10510 }
10511
10512 static void
10513 var_decode_location (struct attribute *attr, struct symbol *sym,
10514 struct dwarf2_cu *cu)
10515 {
10516 struct objfile *objfile = cu->objfile;
10517 struct comp_unit_head *cu_header = &cu->header;
10518
10519 /* NOTE drow/2003-01-30: There used to be a comment and some special
10520 code here to turn a symbol with DW_AT_external and a
10521 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
10522 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
10523 with some versions of binutils) where shared libraries could have
10524 relocations against symbols in their debug information - the
10525 minimal symbol would have the right address, but the debug info
10526 would not. It's no longer necessary, because we will explicitly
10527 apply relocations when we read in the debug information now. */
10528
10529 /* A DW_AT_location attribute with no contents indicates that a
10530 variable has been optimized away. */
10531 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
10532 {
10533 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
10534 return;
10535 }
10536
10537 /* Handle one degenerate form of location expression specially, to
10538 preserve GDB's previous behavior when section offsets are
10539 specified. If this is just a DW_OP_addr then mark this symbol
10540 as LOC_STATIC. */
10541
10542 if (attr_form_is_block (attr)
10543 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size
10544 && DW_BLOCK (attr)->data[0] == DW_OP_addr)
10545 {
10546 unsigned int dummy;
10547
10548 SYMBOL_VALUE_ADDRESS (sym) =
10549 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
10550 SYMBOL_CLASS (sym) = LOC_STATIC;
10551 fixup_symbol_section (sym, objfile);
10552 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
10553 SYMBOL_SECTION (sym));
10554 return;
10555 }
10556
10557 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
10558 expression evaluator, and use LOC_COMPUTED only when necessary
10559 (i.e. when the value of a register or memory location is
10560 referenced, or a thread-local block, etc.). Then again, it might
10561 not be worthwhile. I'm assuming that it isn't unless performance
10562 or memory numbers show me otherwise. */
10563
10564 dwarf2_symbol_mark_computed (attr, sym, cu);
10565 SYMBOL_CLASS (sym) = LOC_COMPUTED;
10566 }
10567
10568 /* Given a pointer to a DWARF information entry, figure out if we need
10569 to make a symbol table entry for it, and if so, create a new entry
10570 and return a pointer to it.
10571 If TYPE is NULL, determine symbol type from the die, otherwise
10572 used the passed type.
10573 If SPACE is not NULL, use it to hold the new symbol. If it is
10574 NULL, allocate a new symbol on the objfile's obstack. */
10575
10576 static struct symbol *
10577 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
10578 struct symbol *space)
10579 {
10580 struct objfile *objfile = cu->objfile;
10581 struct symbol *sym = NULL;
10582 char *name;
10583 struct attribute *attr = NULL;
10584 struct attribute *attr2 = NULL;
10585 CORE_ADDR baseaddr;
10586 struct pending **list_to_add = NULL;
10587
10588 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
10589
10590 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10591
10592 name = dwarf2_name (die, cu);
10593 if (name)
10594 {
10595 const char *linkagename;
10596 int suppress_add = 0;
10597
10598 if (space)
10599 sym = space;
10600 else
10601 sym = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
10602 OBJSTAT (objfile, n_syms++);
10603
10604 /* Cache this symbol's name and the name's demangled form (if any). */
10605 SYMBOL_SET_LANGUAGE (sym, cu->language);
10606 linkagename = dwarf2_physname (name, die, cu);
10607 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
10608
10609 /* Fortran does not have mangling standard and the mangling does differ
10610 between gfortran, iFort etc. */
10611 if (cu->language == language_fortran
10612 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
10613 symbol_set_demangled_name (&(sym->ginfo),
10614 (char *) dwarf2_full_name (name, die, cu),
10615 NULL);
10616
10617 /* Default assumptions.
10618 Use the passed type or decode it from the die. */
10619 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
10620 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
10621 if (type != NULL)
10622 SYMBOL_TYPE (sym) = type;
10623 else
10624 SYMBOL_TYPE (sym) = die_type (die, cu);
10625 attr = dwarf2_attr (die,
10626 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
10627 cu);
10628 if (attr)
10629 {
10630 SYMBOL_LINE (sym) = DW_UNSND (attr);
10631 }
10632
10633 attr = dwarf2_attr (die,
10634 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
10635 cu);
10636 if (attr)
10637 {
10638 int file_index = DW_UNSND (attr);
10639
10640 if (cu->line_header == NULL
10641 || file_index > cu->line_header->num_file_names)
10642 complaint (&symfile_complaints,
10643 _("file index out of range"));
10644 else if (file_index > 0)
10645 {
10646 struct file_entry *fe;
10647
10648 fe = &cu->line_header->file_names[file_index - 1];
10649 SYMBOL_SYMTAB (sym) = fe->symtab;
10650 }
10651 }
10652
10653 switch (die->tag)
10654 {
10655 case DW_TAG_label:
10656 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
10657 if (attr)
10658 {
10659 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
10660 }
10661 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
10662 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
10663 SYMBOL_CLASS (sym) = LOC_LABEL;
10664 add_symbol_to_list (sym, cu->list_in_scope);
10665 break;
10666 case DW_TAG_subprogram:
10667 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
10668 finish_block. */
10669 SYMBOL_CLASS (sym) = LOC_BLOCK;
10670 attr2 = dwarf2_attr (die, DW_AT_external, cu);
10671 if ((attr2 && (DW_UNSND (attr2) != 0))
10672 || cu->language == language_ada)
10673 {
10674 /* Subprograms marked external are stored as a global symbol.
10675 Ada subprograms, whether marked external or not, are always
10676 stored as a global symbol, because we want to be able to
10677 access them globally. For instance, we want to be able
10678 to break on a nested subprogram without having to
10679 specify the context. */
10680 list_to_add = &global_symbols;
10681 }
10682 else
10683 {
10684 list_to_add = cu->list_in_scope;
10685 }
10686 break;
10687 case DW_TAG_inlined_subroutine:
10688 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
10689 finish_block. */
10690 SYMBOL_CLASS (sym) = LOC_BLOCK;
10691 SYMBOL_INLINED (sym) = 1;
10692 /* Do not add the symbol to any lists. It will be found via
10693 BLOCK_FUNCTION from the blockvector. */
10694 break;
10695 case DW_TAG_template_value_param:
10696 suppress_add = 1;
10697 /* Fall through. */
10698 case DW_TAG_constant:
10699 case DW_TAG_variable:
10700 case DW_TAG_member:
10701 /* Compilation with minimal debug info may result in variables
10702 with missing type entries. Change the misleading `void' type
10703 to something sensible. */
10704 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
10705 SYMBOL_TYPE (sym)
10706 = objfile_type (objfile)->nodebug_data_symbol;
10707
10708 attr = dwarf2_attr (die, DW_AT_const_value, cu);
10709 /* In the case of DW_TAG_member, we should only be called for
10710 static const members. */
10711 if (die->tag == DW_TAG_member)
10712 {
10713 /* dwarf2_add_field uses die_is_declaration,
10714 so we do the same. */
10715 gdb_assert (die_is_declaration (die, cu));
10716 gdb_assert (attr);
10717 }
10718 if (attr)
10719 {
10720 dwarf2_const_value (attr, sym, cu);
10721 attr2 = dwarf2_attr (die, DW_AT_external, cu);
10722 if (!suppress_add)
10723 {
10724 if (attr2 && (DW_UNSND (attr2) != 0))
10725 list_to_add = &global_symbols;
10726 else
10727 list_to_add = cu->list_in_scope;
10728 }
10729 break;
10730 }
10731 attr = dwarf2_attr (die, DW_AT_location, cu);
10732 if (attr)
10733 {
10734 var_decode_location (attr, sym, cu);
10735 attr2 = dwarf2_attr (die, DW_AT_external, cu);
10736 if (SYMBOL_CLASS (sym) == LOC_STATIC
10737 && SYMBOL_VALUE_ADDRESS (sym) == 0
10738 && !dwarf2_per_objfile->has_section_at_zero)
10739 {
10740 /* When a static variable is eliminated by the linker,
10741 the corresponding debug information is not stripped
10742 out, but the variable address is set to null;
10743 do not add such variables into symbol table. */
10744 }
10745 else if (attr2 && (DW_UNSND (attr2) != 0))
10746 {
10747 /* Workaround gfortran PR debug/40040 - it uses
10748 DW_AT_location for variables in -fPIC libraries which may
10749 get overriden by other libraries/executable and get
10750 a different address. Resolve it by the minimal symbol
10751 which may come from inferior's executable using copy
10752 relocation. Make this workaround only for gfortran as for
10753 other compilers GDB cannot guess the minimal symbol
10754 Fortran mangling kind. */
10755 if (cu->language == language_fortran && die->parent
10756 && die->parent->tag == DW_TAG_module
10757 && cu->producer
10758 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
10759 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
10760
10761 /* A variable with DW_AT_external is never static,
10762 but it may be block-scoped. */
10763 list_to_add = (cu->list_in_scope == &file_symbols
10764 ? &global_symbols : cu->list_in_scope);
10765 }
10766 else
10767 list_to_add = cu->list_in_scope;
10768 }
10769 else
10770 {
10771 /* We do not know the address of this symbol.
10772 If it is an external symbol and we have type information
10773 for it, enter the symbol as a LOC_UNRESOLVED symbol.
10774 The address of the variable will then be determined from
10775 the minimal symbol table whenever the variable is
10776 referenced. */
10777 attr2 = dwarf2_attr (die, DW_AT_external, cu);
10778 if (attr2 && (DW_UNSND (attr2) != 0)
10779 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
10780 {
10781 /* A variable with DW_AT_external is never static, but it
10782 may be block-scoped. */
10783 list_to_add = (cu->list_in_scope == &file_symbols
10784 ? &global_symbols : cu->list_in_scope);
10785
10786 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
10787 }
10788 else if (!die_is_declaration (die, cu))
10789 {
10790 /* Use the default LOC_OPTIMIZED_OUT class. */
10791 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
10792 if (!suppress_add)
10793 list_to_add = cu->list_in_scope;
10794 }
10795 }
10796 break;
10797 case DW_TAG_formal_parameter:
10798 /* If we are inside a function, mark this as an argument. If
10799 not, we might be looking at an argument to an inlined function
10800 when we do not have enough information to show inlined frames;
10801 pretend it's a local variable in that case so that the user can
10802 still see it. */
10803 if (context_stack_depth > 0
10804 && context_stack[context_stack_depth - 1].name != NULL)
10805 SYMBOL_IS_ARGUMENT (sym) = 1;
10806 attr = dwarf2_attr (die, DW_AT_location, cu);
10807 if (attr)
10808 {
10809 var_decode_location (attr, sym, cu);
10810 }
10811 attr = dwarf2_attr (die, DW_AT_const_value, cu);
10812 if (attr)
10813 {
10814 dwarf2_const_value (attr, sym, cu);
10815 }
10816 attr = dwarf2_attr (die, DW_AT_variable_parameter, cu);
10817 if (attr && DW_UNSND (attr))
10818 {
10819 struct type *ref_type;
10820
10821 ref_type = lookup_reference_type (SYMBOL_TYPE (sym));
10822 SYMBOL_TYPE (sym) = ref_type;
10823 }
10824
10825 list_to_add = cu->list_in_scope;
10826 break;
10827 case DW_TAG_unspecified_parameters:
10828 /* From varargs functions; gdb doesn't seem to have any
10829 interest in this information, so just ignore it for now.
10830 (FIXME?) */
10831 break;
10832 case DW_TAG_template_type_param:
10833 suppress_add = 1;
10834 /* Fall through. */
10835 case DW_TAG_class_type:
10836 case DW_TAG_interface_type:
10837 case DW_TAG_structure_type:
10838 case DW_TAG_union_type:
10839 case DW_TAG_set_type:
10840 case DW_TAG_enumeration_type:
10841 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
10842 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
10843
10844 {
10845 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
10846 really ever be static objects: otherwise, if you try
10847 to, say, break of a class's method and you're in a file
10848 which doesn't mention that class, it won't work unless
10849 the check for all static symbols in lookup_symbol_aux
10850 saves you. See the OtherFileClass tests in
10851 gdb.c++/namespace.exp. */
10852
10853 if (!suppress_add)
10854 {
10855 list_to_add = (cu->list_in_scope == &file_symbols
10856 && (cu->language == language_cplus
10857 || cu->language == language_java)
10858 ? &global_symbols : cu->list_in_scope);
10859
10860 /* The semantics of C++ state that "struct foo {
10861 ... }" also defines a typedef for "foo". A Java
10862 class declaration also defines a typedef for the
10863 class. */
10864 if (cu->language == language_cplus
10865 || cu->language == language_java
10866 || cu->language == language_ada)
10867 {
10868 /* The symbol's name is already allocated along
10869 with this objfile, so we don't need to
10870 duplicate it for the type. */
10871 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
10872 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
10873 }
10874 }
10875 }
10876 break;
10877 case DW_TAG_typedef:
10878 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
10879 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
10880 list_to_add = cu->list_in_scope;
10881 break;
10882 case DW_TAG_base_type:
10883 case DW_TAG_subrange_type:
10884 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
10885 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
10886 list_to_add = cu->list_in_scope;
10887 break;
10888 case DW_TAG_enumerator:
10889 attr = dwarf2_attr (die, DW_AT_const_value, cu);
10890 if (attr)
10891 {
10892 dwarf2_const_value (attr, sym, cu);
10893 }
10894 {
10895 /* NOTE: carlton/2003-11-10: See comment above in the
10896 DW_TAG_class_type, etc. block. */
10897
10898 list_to_add = (cu->list_in_scope == &file_symbols
10899 && (cu->language == language_cplus
10900 || cu->language == language_java)
10901 ? &global_symbols : cu->list_in_scope);
10902 }
10903 break;
10904 case DW_TAG_namespace:
10905 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
10906 list_to_add = &global_symbols;
10907 break;
10908 default:
10909 /* Not a tag we recognize. Hopefully we aren't processing
10910 trash data, but since we must specifically ignore things
10911 we don't recognize, there is nothing else we should do at
10912 this point. */
10913 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
10914 dwarf_tag_name (die->tag));
10915 break;
10916 }
10917
10918 if (suppress_add)
10919 {
10920 sym->hash_next = objfile->template_symbols;
10921 objfile->template_symbols = sym;
10922 list_to_add = NULL;
10923 }
10924
10925 if (list_to_add != NULL)
10926 add_symbol_to_list (sym, list_to_add);
10927
10928 /* For the benefit of old versions of GCC, check for anonymous
10929 namespaces based on the demangled name. */
10930 if (!processing_has_namespace_info
10931 && cu->language == language_cplus)
10932 cp_scan_for_anonymous_namespaces (sym);
10933 }
10934 return (sym);
10935 }
10936
10937 /* A wrapper for new_symbol_full that always allocates a new symbol. */
10938
10939 static struct symbol *
10940 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
10941 {
10942 return new_symbol_full (die, type, cu, NULL);
10943 }
10944
10945 /* Given an attr with a DW_FORM_dataN value in host byte order,
10946 zero-extend it as appropriate for the symbol's type. The DWARF
10947 standard (v4) is not entirely clear about the meaning of using
10948 DW_FORM_dataN for a constant with a signed type, where the type is
10949 wider than the data. The conclusion of a discussion on the DWARF
10950 list was that this is unspecified. We choose to always zero-extend
10951 because that is the interpretation long in use by GCC. */
10952
10953 static gdb_byte *
10954 dwarf2_const_value_data (struct attribute *attr, struct type *type,
10955 const char *name, struct obstack *obstack,
10956 struct dwarf2_cu *cu, long *value, int bits)
10957 {
10958 struct objfile *objfile = cu->objfile;
10959 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
10960 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
10961 LONGEST l = DW_UNSND (attr);
10962
10963 if (bits < sizeof (*value) * 8)
10964 {
10965 l &= ((LONGEST) 1 << bits) - 1;
10966 *value = l;
10967 }
10968 else if (bits == sizeof (*value) * 8)
10969 *value = l;
10970 else
10971 {
10972 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
10973 store_unsigned_integer (bytes, bits / 8, byte_order, l);
10974 return bytes;
10975 }
10976
10977 return NULL;
10978 }
10979
10980 /* Read a constant value from an attribute. Either set *VALUE, or if
10981 the value does not fit in *VALUE, set *BYTES - either already
10982 allocated on the objfile obstack, or newly allocated on OBSTACK,
10983 or, set *BATON, if we translated the constant to a location
10984 expression. */
10985
10986 static void
10987 dwarf2_const_value_attr (struct attribute *attr, struct type *type,
10988 const char *name, struct obstack *obstack,
10989 struct dwarf2_cu *cu,
10990 long *value, gdb_byte **bytes,
10991 struct dwarf2_locexpr_baton **baton)
10992 {
10993 struct objfile *objfile = cu->objfile;
10994 struct comp_unit_head *cu_header = &cu->header;
10995 struct dwarf_block *blk;
10996 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
10997 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
10998
10999 *value = 0;
11000 *bytes = NULL;
11001 *baton = NULL;
11002
11003 switch (attr->form)
11004 {
11005 case DW_FORM_addr:
11006 {
11007 gdb_byte *data;
11008
11009 if (TYPE_LENGTH (type) != cu_header->addr_size)
11010 dwarf2_const_value_length_mismatch_complaint (name,
11011 cu_header->addr_size,
11012 TYPE_LENGTH (type));
11013 /* Symbols of this form are reasonably rare, so we just
11014 piggyback on the existing location code rather than writing
11015 a new implementation of symbol_computed_ops. */
11016 *baton = obstack_alloc (&objfile->objfile_obstack,
11017 sizeof (struct dwarf2_locexpr_baton));
11018 (*baton)->per_cu = cu->per_cu;
11019 gdb_assert ((*baton)->per_cu);
11020
11021 (*baton)->size = 2 + cu_header->addr_size;
11022 data = obstack_alloc (&objfile->objfile_obstack, (*baton)->size);
11023 (*baton)->data = data;
11024
11025 data[0] = DW_OP_addr;
11026 store_unsigned_integer (&data[1], cu_header->addr_size,
11027 byte_order, DW_ADDR (attr));
11028 data[cu_header->addr_size + 1] = DW_OP_stack_value;
11029 }
11030 break;
11031 case DW_FORM_string:
11032 case DW_FORM_strp:
11033 /* DW_STRING is already allocated on the objfile obstack, point
11034 directly to it. */
11035 *bytes = (gdb_byte *) DW_STRING (attr);
11036 break;
11037 case DW_FORM_block1:
11038 case DW_FORM_block2:
11039 case DW_FORM_block4:
11040 case DW_FORM_block:
11041 case DW_FORM_exprloc:
11042 blk = DW_BLOCK (attr);
11043 if (TYPE_LENGTH (type) != blk->size)
11044 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
11045 TYPE_LENGTH (type));
11046 *bytes = blk->data;
11047 break;
11048
11049 /* The DW_AT_const_value attributes are supposed to carry the
11050 symbol's value "represented as it would be on the target
11051 architecture." By the time we get here, it's already been
11052 converted to host endianness, so we just need to sign- or
11053 zero-extend it as appropriate. */
11054 case DW_FORM_data1:
11055 *bytes = dwarf2_const_value_data (attr, type, name, obstack, cu, value, 8);
11056 break;
11057 case DW_FORM_data2:
11058 *bytes = dwarf2_const_value_data (attr, type, name, obstack, cu, value, 16);
11059 break;
11060 case DW_FORM_data4:
11061 *bytes = dwarf2_const_value_data (attr, type, name, obstack, cu, value, 32);
11062 break;
11063 case DW_FORM_data8:
11064 *bytes = dwarf2_const_value_data (attr, type, name, obstack, cu, value, 64);
11065 break;
11066
11067 case DW_FORM_sdata:
11068 *value = DW_SND (attr);
11069 break;
11070
11071 case DW_FORM_udata:
11072 *value = DW_UNSND (attr);
11073 break;
11074
11075 default:
11076 complaint (&symfile_complaints,
11077 _("unsupported const value attribute form: '%s'"),
11078 dwarf_form_name (attr->form));
11079 *value = 0;
11080 break;
11081 }
11082 }
11083
11084
11085 /* Copy constant value from an attribute to a symbol. */
11086
11087 static void
11088 dwarf2_const_value (struct attribute *attr, struct symbol *sym,
11089 struct dwarf2_cu *cu)
11090 {
11091 struct objfile *objfile = cu->objfile;
11092 struct comp_unit_head *cu_header = &cu->header;
11093 long value;
11094 gdb_byte *bytes;
11095 struct dwarf2_locexpr_baton *baton;
11096
11097 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
11098 SYMBOL_PRINT_NAME (sym),
11099 &objfile->objfile_obstack, cu,
11100 &value, &bytes, &baton);
11101
11102 if (baton != NULL)
11103 {
11104 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
11105 SYMBOL_LOCATION_BATON (sym) = baton;
11106 SYMBOL_CLASS (sym) = LOC_COMPUTED;
11107 }
11108 else if (bytes != NULL)
11109 {
11110 SYMBOL_VALUE_BYTES (sym) = bytes;
11111 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
11112 }
11113 else
11114 {
11115 SYMBOL_VALUE (sym) = value;
11116 SYMBOL_CLASS (sym) = LOC_CONST;
11117 }
11118 }
11119
11120 /* Return the type of the die in question using its DW_AT_type attribute. */
11121
11122 static struct type *
11123 die_type (struct die_info *die, struct dwarf2_cu *cu)
11124 {
11125 struct attribute *type_attr;
11126
11127 type_attr = dwarf2_attr (die, DW_AT_type, cu);
11128 if (!type_attr)
11129 {
11130 /* A missing DW_AT_type represents a void type. */
11131 return objfile_type (cu->objfile)->builtin_void;
11132 }
11133
11134 return lookup_die_type (die, type_attr, cu);
11135 }
11136
11137 /* True iff CU's producer generates GNAT Ada auxiliary information
11138 that allows to find parallel types through that information instead
11139 of having to do expensive parallel lookups by type name. */
11140
11141 static int
11142 need_gnat_info (struct dwarf2_cu *cu)
11143 {
11144 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
11145 of GNAT produces this auxiliary information, without any indication
11146 that it is produced. Part of enhancing the FSF version of GNAT
11147 to produce that information will be to put in place an indicator
11148 that we can use in order to determine whether the descriptive type
11149 info is available or not. One suggestion that has been made is
11150 to use a new attribute, attached to the CU die. For now, assume
11151 that the descriptive type info is not available. */
11152 return 0;
11153 }
11154
11155 /* Return the auxiliary type of the die in question using its
11156 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
11157 attribute is not present. */
11158
11159 static struct type *
11160 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
11161 {
11162 struct attribute *type_attr;
11163
11164 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
11165 if (!type_attr)
11166 return NULL;
11167
11168 return lookup_die_type (die, type_attr, cu);
11169 }
11170
11171 /* If DIE has a descriptive_type attribute, then set the TYPE's
11172 descriptive type accordingly. */
11173
11174 static void
11175 set_descriptive_type (struct type *type, struct die_info *die,
11176 struct dwarf2_cu *cu)
11177 {
11178 struct type *descriptive_type = die_descriptive_type (die, cu);
11179
11180 if (descriptive_type)
11181 {
11182 ALLOCATE_GNAT_AUX_TYPE (type);
11183 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
11184 }
11185 }
11186
11187 /* Return the containing type of the die in question using its
11188 DW_AT_containing_type attribute. */
11189
11190 static struct type *
11191 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
11192 {
11193 struct attribute *type_attr;
11194
11195 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
11196 if (!type_attr)
11197 error (_("Dwarf Error: Problem turning containing type into gdb type "
11198 "[in module %s]"), cu->objfile->name);
11199
11200 return lookup_die_type (die, type_attr, cu);
11201 }
11202
11203 /* Look up the type of DIE in CU using its type attribute ATTR.
11204 If there is no type substitute an error marker. */
11205
11206 static struct type *
11207 lookup_die_type (struct die_info *die, struct attribute *attr,
11208 struct dwarf2_cu *cu)
11209 {
11210 struct type *this_type;
11211
11212 /* First see if we have it cached. */
11213
11214 if (is_ref_attr (attr))
11215 {
11216 unsigned int offset = dwarf2_get_ref_die_offset (attr);
11217
11218 this_type = get_die_type_at_offset (offset, cu->per_cu);
11219 }
11220 else if (attr->form == DW_FORM_sig8)
11221 {
11222 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
11223 struct dwarf2_cu *sig_cu;
11224 unsigned int offset;
11225
11226 /* sig_type will be NULL if the signatured type is missing from
11227 the debug info. */
11228 if (sig_type == NULL)
11229 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
11230 "at 0x%x [in module %s]"),
11231 die->offset, cu->objfile->name);
11232
11233 gdb_assert (sig_type->per_cu.from_debug_types);
11234 offset = sig_type->offset + sig_type->type_offset;
11235 this_type = get_die_type_at_offset (offset, &sig_type->per_cu);
11236 }
11237 else
11238 {
11239 dump_die_for_error (die);
11240 error (_("Dwarf Error: Bad type attribute %s [in module %s]"),
11241 dwarf_attr_name (attr->name), cu->objfile->name);
11242 }
11243
11244 /* If not cached we need to read it in. */
11245
11246 if (this_type == NULL)
11247 {
11248 struct die_info *type_die;
11249 struct dwarf2_cu *type_cu = cu;
11250
11251 type_die = follow_die_ref_or_sig (die, attr, &type_cu);
11252 /* If the type is cached, we should have found it above. */
11253 gdb_assert (get_die_type (type_die, type_cu) == NULL);
11254 this_type = read_type_die_1 (type_die, type_cu);
11255 }
11256
11257 /* If we still don't have a type use an error marker. */
11258
11259 if (this_type == NULL)
11260 {
11261 char *message, *saved;
11262
11263 /* read_type_die already issued a complaint. */
11264 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
11265 cu->objfile->name,
11266 cu->header.offset,
11267 die->offset);
11268 saved = obstack_copy0 (&cu->objfile->objfile_obstack,
11269 message, strlen (message));
11270 xfree (message);
11271
11272 this_type = init_type (TYPE_CODE_ERROR, 0, 0, saved, cu->objfile);
11273 }
11274
11275 return this_type;
11276 }
11277
11278 /* Return the type in DIE, CU.
11279 Returns NULL for invalid types.
11280
11281 This first does a lookup in the appropriate type_hash table,
11282 and only reads the die in if necessary.
11283
11284 NOTE: This can be called when reading in partial or full symbols. */
11285
11286 static struct type *
11287 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
11288 {
11289 struct type *this_type;
11290
11291 this_type = get_die_type (die, cu);
11292 if (this_type)
11293 return this_type;
11294
11295 return read_type_die_1 (die, cu);
11296 }
11297
11298 /* Read the type in DIE, CU.
11299 Returns NULL for invalid types. */
11300
11301 static struct type *
11302 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
11303 {
11304 struct type *this_type = NULL;
11305
11306 switch (die->tag)
11307 {
11308 case DW_TAG_class_type:
11309 case DW_TAG_interface_type:
11310 case DW_TAG_structure_type:
11311 case DW_TAG_union_type:
11312 this_type = read_structure_type (die, cu);
11313 break;
11314 case DW_TAG_enumeration_type:
11315 this_type = read_enumeration_type (die, cu);
11316 break;
11317 case DW_TAG_subprogram:
11318 case DW_TAG_subroutine_type:
11319 case DW_TAG_inlined_subroutine:
11320 this_type = read_subroutine_type (die, cu);
11321 break;
11322 case DW_TAG_array_type:
11323 this_type = read_array_type (die, cu);
11324 break;
11325 case DW_TAG_set_type:
11326 this_type = read_set_type (die, cu);
11327 break;
11328 case DW_TAG_pointer_type:
11329 this_type = read_tag_pointer_type (die, cu);
11330 break;
11331 case DW_TAG_ptr_to_member_type:
11332 this_type = read_tag_ptr_to_member_type (die, cu);
11333 break;
11334 case DW_TAG_reference_type:
11335 this_type = read_tag_reference_type (die, cu);
11336 break;
11337 case DW_TAG_const_type:
11338 this_type = read_tag_const_type (die, cu);
11339 break;
11340 case DW_TAG_volatile_type:
11341 this_type = read_tag_volatile_type (die, cu);
11342 break;
11343 case DW_TAG_string_type:
11344 this_type = read_tag_string_type (die, cu);
11345 break;
11346 case DW_TAG_typedef:
11347 this_type = read_typedef (die, cu);
11348 break;
11349 case DW_TAG_subrange_type:
11350 this_type = read_subrange_type (die, cu);
11351 break;
11352 case DW_TAG_base_type:
11353 this_type = read_base_type (die, cu);
11354 break;
11355 case DW_TAG_unspecified_type:
11356 this_type = read_unspecified_type (die, cu);
11357 break;
11358 case DW_TAG_namespace:
11359 this_type = read_namespace_type (die, cu);
11360 break;
11361 case DW_TAG_module:
11362 this_type = read_module_type (die, cu);
11363 break;
11364 default:
11365 complaint (&symfile_complaints, _("unexpected tag in read_type_die: '%s'"),
11366 dwarf_tag_name (die->tag));
11367 break;
11368 }
11369
11370 return this_type;
11371 }
11372
11373 /* See if we can figure out if the class lives in a namespace. We do
11374 this by looking for a member function; its demangled name will
11375 contain namespace info, if there is any.
11376 Return the computed name or NULL.
11377 Space for the result is allocated on the objfile's obstack.
11378 This is the full-die version of guess_partial_die_structure_name.
11379 In this case we know DIE has no useful parent. */
11380
11381 static char *
11382 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
11383 {
11384 struct die_info *spec_die;
11385 struct dwarf2_cu *spec_cu;
11386 struct die_info *child;
11387
11388 spec_cu = cu;
11389 spec_die = die_specification (die, &spec_cu);
11390 if (spec_die != NULL)
11391 {
11392 die = spec_die;
11393 cu = spec_cu;
11394 }
11395
11396 for (child = die->child;
11397 child != NULL;
11398 child = child->sibling)
11399 {
11400 if (child->tag == DW_TAG_subprogram)
11401 {
11402 struct attribute *attr;
11403
11404 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
11405 if (attr == NULL)
11406 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
11407 if (attr != NULL)
11408 {
11409 char *actual_name
11410 = language_class_name_from_physname (cu->language_defn,
11411 DW_STRING (attr));
11412 char *name = NULL;
11413
11414 if (actual_name != NULL)
11415 {
11416 char *die_name = dwarf2_name (die, cu);
11417
11418 if (die_name != NULL
11419 && strcmp (die_name, actual_name) != 0)
11420 {
11421 /* Strip off the class name from the full name.
11422 We want the prefix. */
11423 int die_name_len = strlen (die_name);
11424 int actual_name_len = strlen (actual_name);
11425
11426 /* Test for '::' as a sanity check. */
11427 if (actual_name_len > die_name_len + 2
11428 && actual_name[actual_name_len - die_name_len - 1] == ':')
11429 name =
11430 obsavestring (actual_name,
11431 actual_name_len - die_name_len - 2,
11432 &cu->objfile->objfile_obstack);
11433 }
11434 }
11435 xfree (actual_name);
11436 return name;
11437 }
11438 }
11439 }
11440
11441 return NULL;
11442 }
11443
11444 /* Return the name of the namespace/class that DIE is defined within,
11445 or "" if we can't tell. The caller should not xfree the result.
11446
11447 For example, if we're within the method foo() in the following
11448 code:
11449
11450 namespace N {
11451 class C {
11452 void foo () {
11453 }
11454 };
11455 }
11456
11457 then determine_prefix on foo's die will return "N::C". */
11458
11459 static char *
11460 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
11461 {
11462 struct die_info *parent, *spec_die;
11463 struct dwarf2_cu *spec_cu;
11464 struct type *parent_type;
11465
11466 if (cu->language != language_cplus && cu->language != language_java
11467 && cu->language != language_fortran)
11468 return "";
11469
11470 /* We have to be careful in the presence of DW_AT_specification.
11471 For example, with GCC 3.4, given the code
11472
11473 namespace N {
11474 void foo() {
11475 // Definition of N::foo.
11476 }
11477 }
11478
11479 then we'll have a tree of DIEs like this:
11480
11481 1: DW_TAG_compile_unit
11482 2: DW_TAG_namespace // N
11483 3: DW_TAG_subprogram // declaration of N::foo
11484 4: DW_TAG_subprogram // definition of N::foo
11485 DW_AT_specification // refers to die #3
11486
11487 Thus, when processing die #4, we have to pretend that we're in
11488 the context of its DW_AT_specification, namely the contex of die
11489 #3. */
11490 spec_cu = cu;
11491 spec_die = die_specification (die, &spec_cu);
11492 if (spec_die == NULL)
11493 parent = die->parent;
11494 else
11495 {
11496 parent = spec_die->parent;
11497 cu = spec_cu;
11498 }
11499
11500 if (parent == NULL)
11501 return "";
11502 else if (parent->building_fullname)
11503 {
11504 const char *name;
11505 const char *parent_name;
11506
11507 /* It has been seen on RealView 2.2 built binaries,
11508 DW_TAG_template_type_param types actually _defined_ as
11509 children of the parent class:
11510
11511 enum E {};
11512 template class <class Enum> Class{};
11513 Class<enum E> class_e;
11514
11515 1: DW_TAG_class_type (Class)
11516 2: DW_TAG_enumeration_type (E)
11517 3: DW_TAG_enumerator (enum1:0)
11518 3: DW_TAG_enumerator (enum2:1)
11519 ...
11520 2: DW_TAG_template_type_param
11521 DW_AT_type DW_FORM_ref_udata (E)
11522
11523 Besides being broken debug info, it can put GDB into an
11524 infinite loop. Consider:
11525
11526 When we're building the full name for Class<E>, we'll start
11527 at Class, and go look over its template type parameters,
11528 finding E. We'll then try to build the full name of E, and
11529 reach here. We're now trying to build the full name of E,
11530 and look over the parent DIE for containing scope. In the
11531 broken case, if we followed the parent DIE of E, we'd again
11532 find Class, and once again go look at its template type
11533 arguments, etc., etc. Simply don't consider such parent die
11534 as source-level parent of this die (it can't be, the language
11535 doesn't allow it), and break the loop here. */
11536 name = dwarf2_name (die, cu);
11537 parent_name = dwarf2_name (parent, cu);
11538 complaint (&symfile_complaints,
11539 _("template param type '%s' defined within parent '%s'"),
11540 name ? name : "<unknown>",
11541 parent_name ? parent_name : "<unknown>");
11542 return "";
11543 }
11544 else
11545 switch (parent->tag)
11546 {
11547 case DW_TAG_namespace:
11548 parent_type = read_type_die (parent, cu);
11549 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
11550 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
11551 Work around this problem here. */
11552 if (cu->language == language_cplus
11553 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
11554 return "";
11555 /* We give a name to even anonymous namespaces. */
11556 return TYPE_TAG_NAME (parent_type);
11557 case DW_TAG_class_type:
11558 case DW_TAG_interface_type:
11559 case DW_TAG_structure_type:
11560 case DW_TAG_union_type:
11561 case DW_TAG_module:
11562 parent_type = read_type_die (parent, cu);
11563 if (TYPE_TAG_NAME (parent_type) != NULL)
11564 return TYPE_TAG_NAME (parent_type);
11565 else
11566 /* An anonymous structure is only allowed non-static data
11567 members; no typedefs, no member functions, et cetera.
11568 So it does not need a prefix. */
11569 return "";
11570 case DW_TAG_compile_unit:
11571 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
11572 if (cu->language == language_cplus
11573 && dwarf2_per_objfile->types.asection != NULL
11574 && die->child != NULL
11575 && (die->tag == DW_TAG_class_type
11576 || die->tag == DW_TAG_structure_type
11577 || die->tag == DW_TAG_union_type))
11578 {
11579 char *name = guess_full_die_structure_name (die, cu);
11580 if (name != NULL)
11581 return name;
11582 }
11583 return "";
11584 default:
11585 return determine_prefix (parent, cu);
11586 }
11587 }
11588
11589 /* Return a newly-allocated string formed by concatenating PREFIX and
11590 SUFFIX with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
11591 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null,
11592 perform an obconcat, otherwise allocate storage for the result. The CU argument
11593 is used to determine the language and hence, the appropriate separator. */
11594
11595 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
11596
11597 static char *
11598 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
11599 int physname, struct dwarf2_cu *cu)
11600 {
11601 const char *lead = "";
11602 const char *sep;
11603
11604 if (suffix == NULL || suffix[0] == '\0' || prefix == NULL || prefix[0] == '\0')
11605 sep = "";
11606 else if (cu->language == language_java)
11607 sep = ".";
11608 else if (cu->language == language_fortran && physname)
11609 {
11610 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
11611 DW_AT_MIPS_linkage_name is preferred and used instead. */
11612
11613 lead = "__";
11614 sep = "_MOD_";
11615 }
11616 else
11617 sep = "::";
11618
11619 if (prefix == NULL)
11620 prefix = "";
11621 if (suffix == NULL)
11622 suffix = "";
11623
11624 if (obs == NULL)
11625 {
11626 char *retval = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
11627
11628 strcpy (retval, lead);
11629 strcat (retval, prefix);
11630 strcat (retval, sep);
11631 strcat (retval, suffix);
11632 return retval;
11633 }
11634 else
11635 {
11636 /* We have an obstack. */
11637 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
11638 }
11639 }
11640
11641 /* Return sibling of die, NULL if no sibling. */
11642
11643 static struct die_info *
11644 sibling_die (struct die_info *die)
11645 {
11646 return die->sibling;
11647 }
11648
11649 /* Get name of a die, return NULL if not found. */
11650
11651 static char *
11652 dwarf2_canonicalize_name (char *name, struct dwarf2_cu *cu,
11653 struct obstack *obstack)
11654 {
11655 if (name && cu->language == language_cplus)
11656 {
11657 char *canon_name = cp_canonicalize_string (name);
11658
11659 if (canon_name != NULL)
11660 {
11661 if (strcmp (canon_name, name) != 0)
11662 name = obsavestring (canon_name, strlen (canon_name),
11663 obstack);
11664 xfree (canon_name);
11665 }
11666 }
11667
11668 return name;
11669 }
11670
11671 /* Get name of a die, return NULL if not found. */
11672
11673 static char *
11674 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
11675 {
11676 struct attribute *attr;
11677
11678 attr = dwarf2_attr (die, DW_AT_name, cu);
11679 if (!attr || !DW_STRING (attr))
11680 return NULL;
11681
11682 switch (die->tag)
11683 {
11684 case DW_TAG_compile_unit:
11685 /* Compilation units have a DW_AT_name that is a filename, not
11686 a source language identifier. */
11687 case DW_TAG_enumeration_type:
11688 case DW_TAG_enumerator:
11689 /* These tags always have simple identifiers already; no need
11690 to canonicalize them. */
11691 return DW_STRING (attr);
11692
11693 case DW_TAG_subprogram:
11694 /* Java constructors will all be named "<init>", so return
11695 the class name when we see this special case. */
11696 if (cu->language == language_java
11697 && DW_STRING (attr) != NULL
11698 && strcmp (DW_STRING (attr), "<init>") == 0)
11699 {
11700 struct dwarf2_cu *spec_cu = cu;
11701 struct die_info *spec_die;
11702
11703 /* GCJ will output '<init>' for Java constructor names.
11704 For this special case, return the name of the parent class. */
11705
11706 /* GCJ may output suprogram DIEs with AT_specification set.
11707 If so, use the name of the specified DIE. */
11708 spec_die = die_specification (die, &spec_cu);
11709 if (spec_die != NULL)
11710 return dwarf2_name (spec_die, spec_cu);
11711
11712 do
11713 {
11714 die = die->parent;
11715 if (die->tag == DW_TAG_class_type)
11716 return dwarf2_name (die, cu);
11717 }
11718 while (die->tag != DW_TAG_compile_unit);
11719 }
11720 break;
11721
11722 case DW_TAG_class_type:
11723 case DW_TAG_interface_type:
11724 case DW_TAG_structure_type:
11725 case DW_TAG_union_type:
11726 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
11727 structures or unions. These were of the form "._%d" in GCC 4.1,
11728 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
11729 and GCC 4.4. We work around this problem by ignoring these. */
11730 if (strncmp (DW_STRING (attr), "._", 2) == 0
11731 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0)
11732 return NULL;
11733 break;
11734
11735 default:
11736 break;
11737 }
11738
11739 if (!DW_STRING_IS_CANONICAL (attr))
11740 {
11741 DW_STRING (attr)
11742 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
11743 &cu->objfile->objfile_obstack);
11744 DW_STRING_IS_CANONICAL (attr) = 1;
11745 }
11746 return DW_STRING (attr);
11747 }
11748
11749 /* Return the die that this die in an extension of, or NULL if there
11750 is none. *EXT_CU is the CU containing DIE on input, and the CU
11751 containing the return value on output. */
11752
11753 static struct die_info *
11754 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
11755 {
11756 struct attribute *attr;
11757
11758 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
11759 if (attr == NULL)
11760 return NULL;
11761
11762 return follow_die_ref (die, attr, ext_cu);
11763 }
11764
11765 /* Convert a DIE tag into its string name. */
11766
11767 static char *
11768 dwarf_tag_name (unsigned tag)
11769 {
11770 switch (tag)
11771 {
11772 case DW_TAG_padding:
11773 return "DW_TAG_padding";
11774 case DW_TAG_array_type:
11775 return "DW_TAG_array_type";
11776 case DW_TAG_class_type:
11777 return "DW_TAG_class_type";
11778 case DW_TAG_entry_point:
11779 return "DW_TAG_entry_point";
11780 case DW_TAG_enumeration_type:
11781 return "DW_TAG_enumeration_type";
11782 case DW_TAG_formal_parameter:
11783 return "DW_TAG_formal_parameter";
11784 case DW_TAG_imported_declaration:
11785 return "DW_TAG_imported_declaration";
11786 case DW_TAG_label:
11787 return "DW_TAG_label";
11788 case DW_TAG_lexical_block:
11789 return "DW_TAG_lexical_block";
11790 case DW_TAG_member:
11791 return "DW_TAG_member";
11792 case DW_TAG_pointer_type:
11793 return "DW_TAG_pointer_type";
11794 case DW_TAG_reference_type:
11795 return "DW_TAG_reference_type";
11796 case DW_TAG_compile_unit:
11797 return "DW_TAG_compile_unit";
11798 case DW_TAG_string_type:
11799 return "DW_TAG_string_type";
11800 case DW_TAG_structure_type:
11801 return "DW_TAG_structure_type";
11802 case DW_TAG_subroutine_type:
11803 return "DW_TAG_subroutine_type";
11804 case DW_TAG_typedef:
11805 return "DW_TAG_typedef";
11806 case DW_TAG_union_type:
11807 return "DW_TAG_union_type";
11808 case DW_TAG_unspecified_parameters:
11809 return "DW_TAG_unspecified_parameters";
11810 case DW_TAG_variant:
11811 return "DW_TAG_variant";
11812 case DW_TAG_common_block:
11813 return "DW_TAG_common_block";
11814 case DW_TAG_common_inclusion:
11815 return "DW_TAG_common_inclusion";
11816 case DW_TAG_inheritance:
11817 return "DW_TAG_inheritance";
11818 case DW_TAG_inlined_subroutine:
11819 return "DW_TAG_inlined_subroutine";
11820 case DW_TAG_module:
11821 return "DW_TAG_module";
11822 case DW_TAG_ptr_to_member_type:
11823 return "DW_TAG_ptr_to_member_type";
11824 case DW_TAG_set_type:
11825 return "DW_TAG_set_type";
11826 case DW_TAG_subrange_type:
11827 return "DW_TAG_subrange_type";
11828 case DW_TAG_with_stmt:
11829 return "DW_TAG_with_stmt";
11830 case DW_TAG_access_declaration:
11831 return "DW_TAG_access_declaration";
11832 case DW_TAG_base_type:
11833 return "DW_TAG_base_type";
11834 case DW_TAG_catch_block:
11835 return "DW_TAG_catch_block";
11836 case DW_TAG_const_type:
11837 return "DW_TAG_const_type";
11838 case DW_TAG_constant:
11839 return "DW_TAG_constant";
11840 case DW_TAG_enumerator:
11841 return "DW_TAG_enumerator";
11842 case DW_TAG_file_type:
11843 return "DW_TAG_file_type";
11844 case DW_TAG_friend:
11845 return "DW_TAG_friend";
11846 case DW_TAG_namelist:
11847 return "DW_TAG_namelist";
11848 case DW_TAG_namelist_item:
11849 return "DW_TAG_namelist_item";
11850 case DW_TAG_packed_type:
11851 return "DW_TAG_packed_type";
11852 case DW_TAG_subprogram:
11853 return "DW_TAG_subprogram";
11854 case DW_TAG_template_type_param:
11855 return "DW_TAG_template_type_param";
11856 case DW_TAG_template_value_param:
11857 return "DW_TAG_template_value_param";
11858 case DW_TAG_thrown_type:
11859 return "DW_TAG_thrown_type";
11860 case DW_TAG_try_block:
11861 return "DW_TAG_try_block";
11862 case DW_TAG_variant_part:
11863 return "DW_TAG_variant_part";
11864 case DW_TAG_variable:
11865 return "DW_TAG_variable";
11866 case DW_TAG_volatile_type:
11867 return "DW_TAG_volatile_type";
11868 case DW_TAG_dwarf_procedure:
11869 return "DW_TAG_dwarf_procedure";
11870 case DW_TAG_restrict_type:
11871 return "DW_TAG_restrict_type";
11872 case DW_TAG_interface_type:
11873 return "DW_TAG_interface_type";
11874 case DW_TAG_namespace:
11875 return "DW_TAG_namespace";
11876 case DW_TAG_imported_module:
11877 return "DW_TAG_imported_module";
11878 case DW_TAG_unspecified_type:
11879 return "DW_TAG_unspecified_type";
11880 case DW_TAG_partial_unit:
11881 return "DW_TAG_partial_unit";
11882 case DW_TAG_imported_unit:
11883 return "DW_TAG_imported_unit";
11884 case DW_TAG_condition:
11885 return "DW_TAG_condition";
11886 case DW_TAG_shared_type:
11887 return "DW_TAG_shared_type";
11888 case DW_TAG_type_unit:
11889 return "DW_TAG_type_unit";
11890 case DW_TAG_MIPS_loop:
11891 return "DW_TAG_MIPS_loop";
11892 case DW_TAG_HP_array_descriptor:
11893 return "DW_TAG_HP_array_descriptor";
11894 case DW_TAG_format_label:
11895 return "DW_TAG_format_label";
11896 case DW_TAG_function_template:
11897 return "DW_TAG_function_template";
11898 case DW_TAG_class_template:
11899 return "DW_TAG_class_template";
11900 case DW_TAG_GNU_BINCL:
11901 return "DW_TAG_GNU_BINCL";
11902 case DW_TAG_GNU_EINCL:
11903 return "DW_TAG_GNU_EINCL";
11904 case DW_TAG_upc_shared_type:
11905 return "DW_TAG_upc_shared_type";
11906 case DW_TAG_upc_strict_type:
11907 return "DW_TAG_upc_strict_type";
11908 case DW_TAG_upc_relaxed_type:
11909 return "DW_TAG_upc_relaxed_type";
11910 case DW_TAG_PGI_kanji_type:
11911 return "DW_TAG_PGI_kanji_type";
11912 case DW_TAG_PGI_interface_block:
11913 return "DW_TAG_PGI_interface_block";
11914 default:
11915 return "DW_TAG_<unknown>";
11916 }
11917 }
11918
11919 /* Convert a DWARF attribute code into its string name. */
11920
11921 static char *
11922 dwarf_attr_name (unsigned attr)
11923 {
11924 switch (attr)
11925 {
11926 case DW_AT_sibling:
11927 return "DW_AT_sibling";
11928 case DW_AT_location:
11929 return "DW_AT_location";
11930 case DW_AT_name:
11931 return "DW_AT_name";
11932 case DW_AT_ordering:
11933 return "DW_AT_ordering";
11934 case DW_AT_subscr_data:
11935 return "DW_AT_subscr_data";
11936 case DW_AT_byte_size:
11937 return "DW_AT_byte_size";
11938 case DW_AT_bit_offset:
11939 return "DW_AT_bit_offset";
11940 case DW_AT_bit_size:
11941 return "DW_AT_bit_size";
11942 case DW_AT_element_list:
11943 return "DW_AT_element_list";
11944 case DW_AT_stmt_list:
11945 return "DW_AT_stmt_list";
11946 case DW_AT_low_pc:
11947 return "DW_AT_low_pc";
11948 case DW_AT_high_pc:
11949 return "DW_AT_high_pc";
11950 case DW_AT_language:
11951 return "DW_AT_language";
11952 case DW_AT_member:
11953 return "DW_AT_member";
11954 case DW_AT_discr:
11955 return "DW_AT_discr";
11956 case DW_AT_discr_value:
11957 return "DW_AT_discr_value";
11958 case DW_AT_visibility:
11959 return "DW_AT_visibility";
11960 case DW_AT_import:
11961 return "DW_AT_import";
11962 case DW_AT_string_length:
11963 return "DW_AT_string_length";
11964 case DW_AT_common_reference:
11965 return "DW_AT_common_reference";
11966 case DW_AT_comp_dir:
11967 return "DW_AT_comp_dir";
11968 case DW_AT_const_value:
11969 return "DW_AT_const_value";
11970 case DW_AT_containing_type:
11971 return "DW_AT_containing_type";
11972 case DW_AT_default_value:
11973 return "DW_AT_default_value";
11974 case DW_AT_inline:
11975 return "DW_AT_inline";
11976 case DW_AT_is_optional:
11977 return "DW_AT_is_optional";
11978 case DW_AT_lower_bound:
11979 return "DW_AT_lower_bound";
11980 case DW_AT_producer:
11981 return "DW_AT_producer";
11982 case DW_AT_prototyped:
11983 return "DW_AT_prototyped";
11984 case DW_AT_return_addr:
11985 return "DW_AT_return_addr";
11986 case DW_AT_start_scope:
11987 return "DW_AT_start_scope";
11988 case DW_AT_bit_stride:
11989 return "DW_AT_bit_stride";
11990 case DW_AT_upper_bound:
11991 return "DW_AT_upper_bound";
11992 case DW_AT_abstract_origin:
11993 return "DW_AT_abstract_origin";
11994 case DW_AT_accessibility:
11995 return "DW_AT_accessibility";
11996 case DW_AT_address_class:
11997 return "DW_AT_address_class";
11998 case DW_AT_artificial:
11999 return "DW_AT_artificial";
12000 case DW_AT_base_types:
12001 return "DW_AT_base_types";
12002 case DW_AT_calling_convention:
12003 return "DW_AT_calling_convention";
12004 case DW_AT_count:
12005 return "DW_AT_count";
12006 case DW_AT_data_member_location:
12007 return "DW_AT_data_member_location";
12008 case DW_AT_decl_column:
12009 return "DW_AT_decl_column";
12010 case DW_AT_decl_file:
12011 return "DW_AT_decl_file";
12012 case DW_AT_decl_line:
12013 return "DW_AT_decl_line";
12014 case DW_AT_declaration:
12015 return "DW_AT_declaration";
12016 case DW_AT_discr_list:
12017 return "DW_AT_discr_list";
12018 case DW_AT_encoding:
12019 return "DW_AT_encoding";
12020 case DW_AT_external:
12021 return "DW_AT_external";
12022 case DW_AT_frame_base:
12023 return "DW_AT_frame_base";
12024 case DW_AT_friend:
12025 return "DW_AT_friend";
12026 case DW_AT_identifier_case:
12027 return "DW_AT_identifier_case";
12028 case DW_AT_macro_info:
12029 return "DW_AT_macro_info";
12030 case DW_AT_namelist_items:
12031 return "DW_AT_namelist_items";
12032 case DW_AT_priority:
12033 return "DW_AT_priority";
12034 case DW_AT_segment:
12035 return "DW_AT_segment";
12036 case DW_AT_specification:
12037 return "DW_AT_specification";
12038 case DW_AT_static_link:
12039 return "DW_AT_static_link";
12040 case DW_AT_type:
12041 return "DW_AT_type";
12042 case DW_AT_use_location:
12043 return "DW_AT_use_location";
12044 case DW_AT_variable_parameter:
12045 return "DW_AT_variable_parameter";
12046 case DW_AT_virtuality:
12047 return "DW_AT_virtuality";
12048 case DW_AT_vtable_elem_location:
12049 return "DW_AT_vtable_elem_location";
12050 /* DWARF 3 values. */
12051 case DW_AT_allocated:
12052 return "DW_AT_allocated";
12053 case DW_AT_associated:
12054 return "DW_AT_associated";
12055 case DW_AT_data_location:
12056 return "DW_AT_data_location";
12057 case DW_AT_byte_stride:
12058 return "DW_AT_byte_stride";
12059 case DW_AT_entry_pc:
12060 return "DW_AT_entry_pc";
12061 case DW_AT_use_UTF8:
12062 return "DW_AT_use_UTF8";
12063 case DW_AT_extension:
12064 return "DW_AT_extension";
12065 case DW_AT_ranges:
12066 return "DW_AT_ranges";
12067 case DW_AT_trampoline:
12068 return "DW_AT_trampoline";
12069 case DW_AT_call_column:
12070 return "DW_AT_call_column";
12071 case DW_AT_call_file:
12072 return "DW_AT_call_file";
12073 case DW_AT_call_line:
12074 return "DW_AT_call_line";
12075 case DW_AT_description:
12076 return "DW_AT_description";
12077 case DW_AT_binary_scale:
12078 return "DW_AT_binary_scale";
12079 case DW_AT_decimal_scale:
12080 return "DW_AT_decimal_scale";
12081 case DW_AT_small:
12082 return "DW_AT_small";
12083 case DW_AT_decimal_sign:
12084 return "DW_AT_decimal_sign";
12085 case DW_AT_digit_count:
12086 return "DW_AT_digit_count";
12087 case DW_AT_picture_string:
12088 return "DW_AT_picture_string";
12089 case DW_AT_mutable:
12090 return "DW_AT_mutable";
12091 case DW_AT_threads_scaled:
12092 return "DW_AT_threads_scaled";
12093 case DW_AT_explicit:
12094 return "DW_AT_explicit";
12095 case DW_AT_object_pointer:
12096 return "DW_AT_object_pointer";
12097 case DW_AT_endianity:
12098 return "DW_AT_endianity";
12099 case DW_AT_elemental:
12100 return "DW_AT_elemental";
12101 case DW_AT_pure:
12102 return "DW_AT_pure";
12103 case DW_AT_recursive:
12104 return "DW_AT_recursive";
12105 /* DWARF 4 values. */
12106 case DW_AT_signature:
12107 return "DW_AT_signature";
12108 case DW_AT_linkage_name:
12109 return "DW_AT_linkage_name";
12110 /* SGI/MIPS extensions. */
12111 #ifdef MIPS /* collides with DW_AT_HP_block_index */
12112 case DW_AT_MIPS_fde:
12113 return "DW_AT_MIPS_fde";
12114 #endif
12115 case DW_AT_MIPS_loop_begin:
12116 return "DW_AT_MIPS_loop_begin";
12117 case DW_AT_MIPS_tail_loop_begin:
12118 return "DW_AT_MIPS_tail_loop_begin";
12119 case DW_AT_MIPS_epilog_begin:
12120 return "DW_AT_MIPS_epilog_begin";
12121 case DW_AT_MIPS_loop_unroll_factor:
12122 return "DW_AT_MIPS_loop_unroll_factor";
12123 case DW_AT_MIPS_software_pipeline_depth:
12124 return "DW_AT_MIPS_software_pipeline_depth";
12125 case DW_AT_MIPS_linkage_name:
12126 return "DW_AT_MIPS_linkage_name";
12127 case DW_AT_MIPS_stride:
12128 return "DW_AT_MIPS_stride";
12129 case DW_AT_MIPS_abstract_name:
12130 return "DW_AT_MIPS_abstract_name";
12131 case DW_AT_MIPS_clone_origin:
12132 return "DW_AT_MIPS_clone_origin";
12133 case DW_AT_MIPS_has_inlines:
12134 return "DW_AT_MIPS_has_inlines";
12135 /* HP extensions. */
12136 #ifndef MIPS /* collides with DW_AT_MIPS_fde */
12137 case DW_AT_HP_block_index:
12138 return "DW_AT_HP_block_index";
12139 #endif
12140 case DW_AT_HP_unmodifiable:
12141 return "DW_AT_HP_unmodifiable";
12142 case DW_AT_HP_actuals_stmt_list:
12143 return "DW_AT_HP_actuals_stmt_list";
12144 case DW_AT_HP_proc_per_section:
12145 return "DW_AT_HP_proc_per_section";
12146 case DW_AT_HP_raw_data_ptr:
12147 return "DW_AT_HP_raw_data_ptr";
12148 case DW_AT_HP_pass_by_reference:
12149 return "DW_AT_HP_pass_by_reference";
12150 case DW_AT_HP_opt_level:
12151 return "DW_AT_HP_opt_level";
12152 case DW_AT_HP_prof_version_id:
12153 return "DW_AT_HP_prof_version_id";
12154 case DW_AT_HP_opt_flags:
12155 return "DW_AT_HP_opt_flags";
12156 case DW_AT_HP_cold_region_low_pc:
12157 return "DW_AT_HP_cold_region_low_pc";
12158 case DW_AT_HP_cold_region_high_pc:
12159 return "DW_AT_HP_cold_region_high_pc";
12160 case DW_AT_HP_all_variables_modifiable:
12161 return "DW_AT_HP_all_variables_modifiable";
12162 case DW_AT_HP_linkage_name:
12163 return "DW_AT_HP_linkage_name";
12164 case DW_AT_HP_prof_flags:
12165 return "DW_AT_HP_prof_flags";
12166 /* GNU extensions. */
12167 case DW_AT_sf_names:
12168 return "DW_AT_sf_names";
12169 case DW_AT_src_info:
12170 return "DW_AT_src_info";
12171 case DW_AT_mac_info:
12172 return "DW_AT_mac_info";
12173 case DW_AT_src_coords:
12174 return "DW_AT_src_coords";
12175 case DW_AT_body_begin:
12176 return "DW_AT_body_begin";
12177 case DW_AT_body_end:
12178 return "DW_AT_body_end";
12179 case DW_AT_GNU_vector:
12180 return "DW_AT_GNU_vector";
12181 case DW_AT_GNU_odr_signature:
12182 return "DW_AT_GNU_odr_signature";
12183 /* VMS extensions. */
12184 case DW_AT_VMS_rtnbeg_pd_address:
12185 return "DW_AT_VMS_rtnbeg_pd_address";
12186 /* UPC extension. */
12187 case DW_AT_upc_threads_scaled:
12188 return "DW_AT_upc_threads_scaled";
12189 /* PGI (STMicroelectronics) extensions. */
12190 case DW_AT_PGI_lbase:
12191 return "DW_AT_PGI_lbase";
12192 case DW_AT_PGI_soffset:
12193 return "DW_AT_PGI_soffset";
12194 case DW_AT_PGI_lstride:
12195 return "DW_AT_PGI_lstride";
12196 default:
12197 return "DW_AT_<unknown>";
12198 }
12199 }
12200
12201 /* Convert a DWARF value form code into its string name. */
12202
12203 static char *
12204 dwarf_form_name (unsigned form)
12205 {
12206 switch (form)
12207 {
12208 case DW_FORM_addr:
12209 return "DW_FORM_addr";
12210 case DW_FORM_block2:
12211 return "DW_FORM_block2";
12212 case DW_FORM_block4:
12213 return "DW_FORM_block4";
12214 case DW_FORM_data2:
12215 return "DW_FORM_data2";
12216 case DW_FORM_data4:
12217 return "DW_FORM_data4";
12218 case DW_FORM_data8:
12219 return "DW_FORM_data8";
12220 case DW_FORM_string:
12221 return "DW_FORM_string";
12222 case DW_FORM_block:
12223 return "DW_FORM_block";
12224 case DW_FORM_block1:
12225 return "DW_FORM_block1";
12226 case DW_FORM_data1:
12227 return "DW_FORM_data1";
12228 case DW_FORM_flag:
12229 return "DW_FORM_flag";
12230 case DW_FORM_sdata:
12231 return "DW_FORM_sdata";
12232 case DW_FORM_strp:
12233 return "DW_FORM_strp";
12234 case DW_FORM_udata:
12235 return "DW_FORM_udata";
12236 case DW_FORM_ref_addr:
12237 return "DW_FORM_ref_addr";
12238 case DW_FORM_ref1:
12239 return "DW_FORM_ref1";
12240 case DW_FORM_ref2:
12241 return "DW_FORM_ref2";
12242 case DW_FORM_ref4:
12243 return "DW_FORM_ref4";
12244 case DW_FORM_ref8:
12245 return "DW_FORM_ref8";
12246 case DW_FORM_ref_udata:
12247 return "DW_FORM_ref_udata";
12248 case DW_FORM_indirect:
12249 return "DW_FORM_indirect";
12250 case DW_FORM_sec_offset:
12251 return "DW_FORM_sec_offset";
12252 case DW_FORM_exprloc:
12253 return "DW_FORM_exprloc";
12254 case DW_FORM_flag_present:
12255 return "DW_FORM_flag_present";
12256 case DW_FORM_sig8:
12257 return "DW_FORM_sig8";
12258 default:
12259 return "DW_FORM_<unknown>";
12260 }
12261 }
12262
12263 /* Convert a DWARF stack opcode into its string name. */
12264
12265 const char *
12266 dwarf_stack_op_name (unsigned op, int def)
12267 {
12268 switch (op)
12269 {
12270 case DW_OP_addr:
12271 return "DW_OP_addr";
12272 case DW_OP_deref:
12273 return "DW_OP_deref";
12274 case DW_OP_const1u:
12275 return "DW_OP_const1u";
12276 case DW_OP_const1s:
12277 return "DW_OP_const1s";
12278 case DW_OP_const2u:
12279 return "DW_OP_const2u";
12280 case DW_OP_const2s:
12281 return "DW_OP_const2s";
12282 case DW_OP_const4u:
12283 return "DW_OP_const4u";
12284 case DW_OP_const4s:
12285 return "DW_OP_const4s";
12286 case DW_OP_const8u:
12287 return "DW_OP_const8u";
12288 case DW_OP_const8s:
12289 return "DW_OP_const8s";
12290 case DW_OP_constu:
12291 return "DW_OP_constu";
12292 case DW_OP_consts:
12293 return "DW_OP_consts";
12294 case DW_OP_dup:
12295 return "DW_OP_dup";
12296 case DW_OP_drop:
12297 return "DW_OP_drop";
12298 case DW_OP_over:
12299 return "DW_OP_over";
12300 case DW_OP_pick:
12301 return "DW_OP_pick";
12302 case DW_OP_swap:
12303 return "DW_OP_swap";
12304 case DW_OP_rot:
12305 return "DW_OP_rot";
12306 case DW_OP_xderef:
12307 return "DW_OP_xderef";
12308 case DW_OP_abs:
12309 return "DW_OP_abs";
12310 case DW_OP_and:
12311 return "DW_OP_and";
12312 case DW_OP_div:
12313 return "DW_OP_div";
12314 case DW_OP_minus:
12315 return "DW_OP_minus";
12316 case DW_OP_mod:
12317 return "DW_OP_mod";
12318 case DW_OP_mul:
12319 return "DW_OP_mul";
12320 case DW_OP_neg:
12321 return "DW_OP_neg";
12322 case DW_OP_not:
12323 return "DW_OP_not";
12324 case DW_OP_or:
12325 return "DW_OP_or";
12326 case DW_OP_plus:
12327 return "DW_OP_plus";
12328 case DW_OP_plus_uconst:
12329 return "DW_OP_plus_uconst";
12330 case DW_OP_shl:
12331 return "DW_OP_shl";
12332 case DW_OP_shr:
12333 return "DW_OP_shr";
12334 case DW_OP_shra:
12335 return "DW_OP_shra";
12336 case DW_OP_xor:
12337 return "DW_OP_xor";
12338 case DW_OP_bra:
12339 return "DW_OP_bra";
12340 case DW_OP_eq:
12341 return "DW_OP_eq";
12342 case DW_OP_ge:
12343 return "DW_OP_ge";
12344 case DW_OP_gt:
12345 return "DW_OP_gt";
12346 case DW_OP_le:
12347 return "DW_OP_le";
12348 case DW_OP_lt:
12349 return "DW_OP_lt";
12350 case DW_OP_ne:
12351 return "DW_OP_ne";
12352 case DW_OP_skip:
12353 return "DW_OP_skip";
12354 case DW_OP_lit0:
12355 return "DW_OP_lit0";
12356 case DW_OP_lit1:
12357 return "DW_OP_lit1";
12358 case DW_OP_lit2:
12359 return "DW_OP_lit2";
12360 case DW_OP_lit3:
12361 return "DW_OP_lit3";
12362 case DW_OP_lit4:
12363 return "DW_OP_lit4";
12364 case DW_OP_lit5:
12365 return "DW_OP_lit5";
12366 case DW_OP_lit6:
12367 return "DW_OP_lit6";
12368 case DW_OP_lit7:
12369 return "DW_OP_lit7";
12370 case DW_OP_lit8:
12371 return "DW_OP_lit8";
12372 case DW_OP_lit9:
12373 return "DW_OP_lit9";
12374 case DW_OP_lit10:
12375 return "DW_OP_lit10";
12376 case DW_OP_lit11:
12377 return "DW_OP_lit11";
12378 case DW_OP_lit12:
12379 return "DW_OP_lit12";
12380 case DW_OP_lit13:
12381 return "DW_OP_lit13";
12382 case DW_OP_lit14:
12383 return "DW_OP_lit14";
12384 case DW_OP_lit15:
12385 return "DW_OP_lit15";
12386 case DW_OP_lit16:
12387 return "DW_OP_lit16";
12388 case DW_OP_lit17:
12389 return "DW_OP_lit17";
12390 case DW_OP_lit18:
12391 return "DW_OP_lit18";
12392 case DW_OP_lit19:
12393 return "DW_OP_lit19";
12394 case DW_OP_lit20:
12395 return "DW_OP_lit20";
12396 case DW_OP_lit21:
12397 return "DW_OP_lit21";
12398 case DW_OP_lit22:
12399 return "DW_OP_lit22";
12400 case DW_OP_lit23:
12401 return "DW_OP_lit23";
12402 case DW_OP_lit24:
12403 return "DW_OP_lit24";
12404 case DW_OP_lit25:
12405 return "DW_OP_lit25";
12406 case DW_OP_lit26:
12407 return "DW_OP_lit26";
12408 case DW_OP_lit27:
12409 return "DW_OP_lit27";
12410 case DW_OP_lit28:
12411 return "DW_OP_lit28";
12412 case DW_OP_lit29:
12413 return "DW_OP_lit29";
12414 case DW_OP_lit30:
12415 return "DW_OP_lit30";
12416 case DW_OP_lit31:
12417 return "DW_OP_lit31";
12418 case DW_OP_reg0:
12419 return "DW_OP_reg0";
12420 case DW_OP_reg1:
12421 return "DW_OP_reg1";
12422 case DW_OP_reg2:
12423 return "DW_OP_reg2";
12424 case DW_OP_reg3:
12425 return "DW_OP_reg3";
12426 case DW_OP_reg4:
12427 return "DW_OP_reg4";
12428 case DW_OP_reg5:
12429 return "DW_OP_reg5";
12430 case DW_OP_reg6:
12431 return "DW_OP_reg6";
12432 case DW_OP_reg7:
12433 return "DW_OP_reg7";
12434 case DW_OP_reg8:
12435 return "DW_OP_reg8";
12436 case DW_OP_reg9:
12437 return "DW_OP_reg9";
12438 case DW_OP_reg10:
12439 return "DW_OP_reg10";
12440 case DW_OP_reg11:
12441 return "DW_OP_reg11";
12442 case DW_OP_reg12:
12443 return "DW_OP_reg12";
12444 case DW_OP_reg13:
12445 return "DW_OP_reg13";
12446 case DW_OP_reg14:
12447 return "DW_OP_reg14";
12448 case DW_OP_reg15:
12449 return "DW_OP_reg15";
12450 case DW_OP_reg16:
12451 return "DW_OP_reg16";
12452 case DW_OP_reg17:
12453 return "DW_OP_reg17";
12454 case DW_OP_reg18:
12455 return "DW_OP_reg18";
12456 case DW_OP_reg19:
12457 return "DW_OP_reg19";
12458 case DW_OP_reg20:
12459 return "DW_OP_reg20";
12460 case DW_OP_reg21:
12461 return "DW_OP_reg21";
12462 case DW_OP_reg22:
12463 return "DW_OP_reg22";
12464 case DW_OP_reg23:
12465 return "DW_OP_reg23";
12466 case DW_OP_reg24:
12467 return "DW_OP_reg24";
12468 case DW_OP_reg25:
12469 return "DW_OP_reg25";
12470 case DW_OP_reg26:
12471 return "DW_OP_reg26";
12472 case DW_OP_reg27:
12473 return "DW_OP_reg27";
12474 case DW_OP_reg28:
12475 return "DW_OP_reg28";
12476 case DW_OP_reg29:
12477 return "DW_OP_reg29";
12478 case DW_OP_reg30:
12479 return "DW_OP_reg30";
12480 case DW_OP_reg31:
12481 return "DW_OP_reg31";
12482 case DW_OP_breg0:
12483 return "DW_OP_breg0";
12484 case DW_OP_breg1:
12485 return "DW_OP_breg1";
12486 case DW_OP_breg2:
12487 return "DW_OP_breg2";
12488 case DW_OP_breg3:
12489 return "DW_OP_breg3";
12490 case DW_OP_breg4:
12491 return "DW_OP_breg4";
12492 case DW_OP_breg5:
12493 return "DW_OP_breg5";
12494 case DW_OP_breg6:
12495 return "DW_OP_breg6";
12496 case DW_OP_breg7:
12497 return "DW_OP_breg7";
12498 case DW_OP_breg8:
12499 return "DW_OP_breg8";
12500 case DW_OP_breg9:
12501 return "DW_OP_breg9";
12502 case DW_OP_breg10:
12503 return "DW_OP_breg10";
12504 case DW_OP_breg11:
12505 return "DW_OP_breg11";
12506 case DW_OP_breg12:
12507 return "DW_OP_breg12";
12508 case DW_OP_breg13:
12509 return "DW_OP_breg13";
12510 case DW_OP_breg14:
12511 return "DW_OP_breg14";
12512 case DW_OP_breg15:
12513 return "DW_OP_breg15";
12514 case DW_OP_breg16:
12515 return "DW_OP_breg16";
12516 case DW_OP_breg17:
12517 return "DW_OP_breg17";
12518 case DW_OP_breg18:
12519 return "DW_OP_breg18";
12520 case DW_OP_breg19:
12521 return "DW_OP_breg19";
12522 case DW_OP_breg20:
12523 return "DW_OP_breg20";
12524 case DW_OP_breg21:
12525 return "DW_OP_breg21";
12526 case DW_OP_breg22:
12527 return "DW_OP_breg22";
12528 case DW_OP_breg23:
12529 return "DW_OP_breg23";
12530 case DW_OP_breg24:
12531 return "DW_OP_breg24";
12532 case DW_OP_breg25:
12533 return "DW_OP_breg25";
12534 case DW_OP_breg26:
12535 return "DW_OP_breg26";
12536 case DW_OP_breg27:
12537 return "DW_OP_breg27";
12538 case DW_OP_breg28:
12539 return "DW_OP_breg28";
12540 case DW_OP_breg29:
12541 return "DW_OP_breg29";
12542 case DW_OP_breg30:
12543 return "DW_OP_breg30";
12544 case DW_OP_breg31:
12545 return "DW_OP_breg31";
12546 case DW_OP_regx:
12547 return "DW_OP_regx";
12548 case DW_OP_fbreg:
12549 return "DW_OP_fbreg";
12550 case DW_OP_bregx:
12551 return "DW_OP_bregx";
12552 case DW_OP_piece:
12553 return "DW_OP_piece";
12554 case DW_OP_deref_size:
12555 return "DW_OP_deref_size";
12556 case DW_OP_xderef_size:
12557 return "DW_OP_xderef_size";
12558 case DW_OP_nop:
12559 return "DW_OP_nop";
12560 /* DWARF 3 extensions. */
12561 case DW_OP_push_object_address:
12562 return "DW_OP_push_object_address";
12563 case DW_OP_call2:
12564 return "DW_OP_call2";
12565 case DW_OP_call4:
12566 return "DW_OP_call4";
12567 case DW_OP_call_ref:
12568 return "DW_OP_call_ref";
12569 case DW_OP_form_tls_address:
12570 return "DW_OP_form_tls_address";
12571 case DW_OP_call_frame_cfa:
12572 return "DW_OP_call_frame_cfa";
12573 case DW_OP_bit_piece:
12574 return "DW_OP_bit_piece";
12575 /* DWARF 4 extensions. */
12576 case DW_OP_implicit_value:
12577 return "DW_OP_implicit_value";
12578 case DW_OP_stack_value:
12579 return "DW_OP_stack_value";
12580 /* GNU extensions. */
12581 case DW_OP_GNU_push_tls_address:
12582 return "DW_OP_GNU_push_tls_address";
12583 case DW_OP_GNU_uninit:
12584 return "DW_OP_GNU_uninit";
12585 default:
12586 return def ? "OP_<unknown>" : NULL;
12587 }
12588 }
12589
12590 static char *
12591 dwarf_bool_name (unsigned mybool)
12592 {
12593 if (mybool)
12594 return "TRUE";
12595 else
12596 return "FALSE";
12597 }
12598
12599 /* Convert a DWARF type code into its string name. */
12600
12601 static char *
12602 dwarf_type_encoding_name (unsigned enc)
12603 {
12604 switch (enc)
12605 {
12606 case DW_ATE_void:
12607 return "DW_ATE_void";
12608 case DW_ATE_address:
12609 return "DW_ATE_address";
12610 case DW_ATE_boolean:
12611 return "DW_ATE_boolean";
12612 case DW_ATE_complex_float:
12613 return "DW_ATE_complex_float";
12614 case DW_ATE_float:
12615 return "DW_ATE_float";
12616 case DW_ATE_signed:
12617 return "DW_ATE_signed";
12618 case DW_ATE_signed_char:
12619 return "DW_ATE_signed_char";
12620 case DW_ATE_unsigned:
12621 return "DW_ATE_unsigned";
12622 case DW_ATE_unsigned_char:
12623 return "DW_ATE_unsigned_char";
12624 /* DWARF 3. */
12625 case DW_ATE_imaginary_float:
12626 return "DW_ATE_imaginary_float";
12627 case DW_ATE_packed_decimal:
12628 return "DW_ATE_packed_decimal";
12629 case DW_ATE_numeric_string:
12630 return "DW_ATE_numeric_string";
12631 case DW_ATE_edited:
12632 return "DW_ATE_edited";
12633 case DW_ATE_signed_fixed:
12634 return "DW_ATE_signed_fixed";
12635 case DW_ATE_unsigned_fixed:
12636 return "DW_ATE_unsigned_fixed";
12637 case DW_ATE_decimal_float:
12638 return "DW_ATE_decimal_float";
12639 /* DWARF 4. */
12640 case DW_ATE_UTF:
12641 return "DW_ATE_UTF";
12642 /* HP extensions. */
12643 case DW_ATE_HP_float80:
12644 return "DW_ATE_HP_float80";
12645 case DW_ATE_HP_complex_float80:
12646 return "DW_ATE_HP_complex_float80";
12647 case DW_ATE_HP_float128:
12648 return "DW_ATE_HP_float128";
12649 case DW_ATE_HP_complex_float128:
12650 return "DW_ATE_HP_complex_float128";
12651 case DW_ATE_HP_floathpintel:
12652 return "DW_ATE_HP_floathpintel";
12653 case DW_ATE_HP_imaginary_float80:
12654 return "DW_ATE_HP_imaginary_float80";
12655 case DW_ATE_HP_imaginary_float128:
12656 return "DW_ATE_HP_imaginary_float128";
12657 default:
12658 return "DW_ATE_<unknown>";
12659 }
12660 }
12661
12662 /* Convert a DWARF call frame info operation to its string name. */
12663
12664 #if 0
12665 static char *
12666 dwarf_cfi_name (unsigned cfi_opc)
12667 {
12668 switch (cfi_opc)
12669 {
12670 case DW_CFA_advance_loc:
12671 return "DW_CFA_advance_loc";
12672 case DW_CFA_offset:
12673 return "DW_CFA_offset";
12674 case DW_CFA_restore:
12675 return "DW_CFA_restore";
12676 case DW_CFA_nop:
12677 return "DW_CFA_nop";
12678 case DW_CFA_set_loc:
12679 return "DW_CFA_set_loc";
12680 case DW_CFA_advance_loc1:
12681 return "DW_CFA_advance_loc1";
12682 case DW_CFA_advance_loc2:
12683 return "DW_CFA_advance_loc2";
12684 case DW_CFA_advance_loc4:
12685 return "DW_CFA_advance_loc4";
12686 case DW_CFA_offset_extended:
12687 return "DW_CFA_offset_extended";
12688 case DW_CFA_restore_extended:
12689 return "DW_CFA_restore_extended";
12690 case DW_CFA_undefined:
12691 return "DW_CFA_undefined";
12692 case DW_CFA_same_value:
12693 return "DW_CFA_same_value";
12694 case DW_CFA_register:
12695 return "DW_CFA_register";
12696 case DW_CFA_remember_state:
12697 return "DW_CFA_remember_state";
12698 case DW_CFA_restore_state:
12699 return "DW_CFA_restore_state";
12700 case DW_CFA_def_cfa:
12701 return "DW_CFA_def_cfa";
12702 case DW_CFA_def_cfa_register:
12703 return "DW_CFA_def_cfa_register";
12704 case DW_CFA_def_cfa_offset:
12705 return "DW_CFA_def_cfa_offset";
12706 /* DWARF 3. */
12707 case DW_CFA_def_cfa_expression:
12708 return "DW_CFA_def_cfa_expression";
12709 case DW_CFA_expression:
12710 return "DW_CFA_expression";
12711 case DW_CFA_offset_extended_sf:
12712 return "DW_CFA_offset_extended_sf";
12713 case DW_CFA_def_cfa_sf:
12714 return "DW_CFA_def_cfa_sf";
12715 case DW_CFA_def_cfa_offset_sf:
12716 return "DW_CFA_def_cfa_offset_sf";
12717 case DW_CFA_val_offset:
12718 return "DW_CFA_val_offset";
12719 case DW_CFA_val_offset_sf:
12720 return "DW_CFA_val_offset_sf";
12721 case DW_CFA_val_expression:
12722 return "DW_CFA_val_expression";
12723 /* SGI/MIPS specific. */
12724 case DW_CFA_MIPS_advance_loc8:
12725 return "DW_CFA_MIPS_advance_loc8";
12726 /* GNU extensions. */
12727 case DW_CFA_GNU_window_save:
12728 return "DW_CFA_GNU_window_save";
12729 case DW_CFA_GNU_args_size:
12730 return "DW_CFA_GNU_args_size";
12731 case DW_CFA_GNU_negative_offset_extended:
12732 return "DW_CFA_GNU_negative_offset_extended";
12733 default:
12734 return "DW_CFA_<unknown>";
12735 }
12736 }
12737 #endif
12738
12739 static void
12740 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
12741 {
12742 unsigned int i;
12743
12744 print_spaces (indent, f);
12745 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
12746 dwarf_tag_name (die->tag), die->abbrev, die->offset);
12747
12748 if (die->parent != NULL)
12749 {
12750 print_spaces (indent, f);
12751 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
12752 die->parent->offset);
12753 }
12754
12755 print_spaces (indent, f);
12756 fprintf_unfiltered (f, " has children: %s\n",
12757 dwarf_bool_name (die->child != NULL));
12758
12759 print_spaces (indent, f);
12760 fprintf_unfiltered (f, " attributes:\n");
12761
12762 for (i = 0; i < die->num_attrs; ++i)
12763 {
12764 print_spaces (indent, f);
12765 fprintf_unfiltered (f, " %s (%s) ",
12766 dwarf_attr_name (die->attrs[i].name),
12767 dwarf_form_name (die->attrs[i].form));
12768
12769 switch (die->attrs[i].form)
12770 {
12771 case DW_FORM_ref_addr:
12772 case DW_FORM_addr:
12773 fprintf_unfiltered (f, "address: ");
12774 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
12775 break;
12776 case DW_FORM_block2:
12777 case DW_FORM_block4:
12778 case DW_FORM_block:
12779 case DW_FORM_block1:
12780 fprintf_unfiltered (f, "block: size %d", DW_BLOCK (&die->attrs[i])->size);
12781 break;
12782 case DW_FORM_exprloc:
12783 fprintf_unfiltered (f, "expression: size %u",
12784 DW_BLOCK (&die->attrs[i])->size);
12785 break;
12786 case DW_FORM_ref1:
12787 case DW_FORM_ref2:
12788 case DW_FORM_ref4:
12789 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
12790 (long) (DW_ADDR (&die->attrs[i])));
12791 break;
12792 case DW_FORM_data1:
12793 case DW_FORM_data2:
12794 case DW_FORM_data4:
12795 case DW_FORM_data8:
12796 case DW_FORM_udata:
12797 case DW_FORM_sdata:
12798 fprintf_unfiltered (f, "constant: %s",
12799 pulongest (DW_UNSND (&die->attrs[i])));
12800 break;
12801 case DW_FORM_sec_offset:
12802 fprintf_unfiltered (f, "section offset: %s",
12803 pulongest (DW_UNSND (&die->attrs[i])));
12804 break;
12805 case DW_FORM_sig8:
12806 if (DW_SIGNATURED_TYPE (&die->attrs[i]) != NULL)
12807 fprintf_unfiltered (f, "signatured type, offset: 0x%x",
12808 DW_SIGNATURED_TYPE (&die->attrs[i])->offset);
12809 else
12810 fprintf_unfiltered (f, "signatured type, offset: unknown");
12811 break;
12812 case DW_FORM_string:
12813 case DW_FORM_strp:
12814 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
12815 DW_STRING (&die->attrs[i])
12816 ? DW_STRING (&die->attrs[i]) : "",
12817 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
12818 break;
12819 case DW_FORM_flag:
12820 if (DW_UNSND (&die->attrs[i]))
12821 fprintf_unfiltered (f, "flag: TRUE");
12822 else
12823 fprintf_unfiltered (f, "flag: FALSE");
12824 break;
12825 case DW_FORM_flag_present:
12826 fprintf_unfiltered (f, "flag: TRUE");
12827 break;
12828 case DW_FORM_indirect:
12829 /* the reader will have reduced the indirect form to
12830 the "base form" so this form should not occur */
12831 fprintf_unfiltered (f, "unexpected attribute form: DW_FORM_indirect");
12832 break;
12833 default:
12834 fprintf_unfiltered (f, "unsupported attribute form: %d.",
12835 die->attrs[i].form);
12836 break;
12837 }
12838 fprintf_unfiltered (f, "\n");
12839 }
12840 }
12841
12842 static void
12843 dump_die_for_error (struct die_info *die)
12844 {
12845 dump_die_shallow (gdb_stderr, 0, die);
12846 }
12847
12848 static void
12849 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
12850 {
12851 int indent = level * 4;
12852
12853 gdb_assert (die != NULL);
12854
12855 if (level >= max_level)
12856 return;
12857
12858 dump_die_shallow (f, indent, die);
12859
12860 if (die->child != NULL)
12861 {
12862 print_spaces (indent, f);
12863 fprintf_unfiltered (f, " Children:");
12864 if (level + 1 < max_level)
12865 {
12866 fprintf_unfiltered (f, "\n");
12867 dump_die_1 (f, level + 1, max_level, die->child);
12868 }
12869 else
12870 {
12871 fprintf_unfiltered (f, " [not printed, max nesting level reached]\n");
12872 }
12873 }
12874
12875 if (die->sibling != NULL && level > 0)
12876 {
12877 dump_die_1 (f, level, max_level, die->sibling);
12878 }
12879 }
12880
12881 /* This is called from the pdie macro in gdbinit.in.
12882 It's not static so gcc will keep a copy callable from gdb. */
12883
12884 void
12885 dump_die (struct die_info *die, int max_level)
12886 {
12887 dump_die_1 (gdb_stdlog, 0, max_level, die);
12888 }
12889
12890 static void
12891 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
12892 {
12893 void **slot;
12894
12895 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset, INSERT);
12896
12897 *slot = die;
12898 }
12899
12900 static int
12901 is_ref_attr (struct attribute *attr)
12902 {
12903 switch (attr->form)
12904 {
12905 case DW_FORM_ref_addr:
12906 case DW_FORM_ref1:
12907 case DW_FORM_ref2:
12908 case DW_FORM_ref4:
12909 case DW_FORM_ref8:
12910 case DW_FORM_ref_udata:
12911 return 1;
12912 default:
12913 return 0;
12914 }
12915 }
12916
12917 static unsigned int
12918 dwarf2_get_ref_die_offset (struct attribute *attr)
12919 {
12920 if (is_ref_attr (attr))
12921 return DW_ADDR (attr);
12922
12923 complaint (&symfile_complaints,
12924 _("unsupported die ref attribute form: '%s'"),
12925 dwarf_form_name (attr->form));
12926 return 0;
12927 }
12928
12929 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
12930 * the value held by the attribute is not constant. */
12931
12932 static LONGEST
12933 dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
12934 {
12935 if (attr->form == DW_FORM_sdata)
12936 return DW_SND (attr);
12937 else if (attr->form == DW_FORM_udata
12938 || attr->form == DW_FORM_data1
12939 || attr->form == DW_FORM_data2
12940 || attr->form == DW_FORM_data4
12941 || attr->form == DW_FORM_data8)
12942 return DW_UNSND (attr);
12943 else
12944 {
12945 complaint (&symfile_complaints, _("Attribute value is not a constant (%s)"),
12946 dwarf_form_name (attr->form));
12947 return default_value;
12948 }
12949 }
12950
12951 /* THIS_CU has a reference to PER_CU. If necessary, load the new compilation
12952 unit and add it to our queue.
12953 The result is non-zero if PER_CU was queued, otherwise the result is zero
12954 meaning either PER_CU is already queued or it is already loaded. */
12955
12956 static int
12957 maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
12958 struct dwarf2_per_cu_data *per_cu)
12959 {
12960 /* We may arrive here during partial symbol reading, if we need full
12961 DIEs to process an unusual case (e.g. template arguments). Do
12962 not queue PER_CU, just tell our caller to load its DIEs. */
12963 if (dwarf2_per_objfile->reading_partial_symbols)
12964 {
12965 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
12966 return 1;
12967 return 0;
12968 }
12969
12970 /* Mark the dependence relation so that we don't flush PER_CU
12971 too early. */
12972 dwarf2_add_dependence (this_cu, per_cu);
12973
12974 /* If it's already on the queue, we have nothing to do. */
12975 if (per_cu->queued)
12976 return 0;
12977
12978 /* If the compilation unit is already loaded, just mark it as
12979 used. */
12980 if (per_cu->cu != NULL)
12981 {
12982 per_cu->cu->last_used = 0;
12983 return 0;
12984 }
12985
12986 /* Add it to the queue. */
12987 queue_comp_unit (per_cu, this_cu->objfile);
12988
12989 return 1;
12990 }
12991
12992 /* Follow reference or signature attribute ATTR of SRC_DIE.
12993 On entry *REF_CU is the CU of SRC_DIE.
12994 On exit *REF_CU is the CU of the result. */
12995
12996 static struct die_info *
12997 follow_die_ref_or_sig (struct die_info *src_die, struct attribute *attr,
12998 struct dwarf2_cu **ref_cu)
12999 {
13000 struct die_info *die;
13001
13002 if (is_ref_attr (attr))
13003 die = follow_die_ref (src_die, attr, ref_cu);
13004 else if (attr->form == DW_FORM_sig8)
13005 die = follow_die_sig (src_die, attr, ref_cu);
13006 else
13007 {
13008 dump_die_for_error (src_die);
13009 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
13010 (*ref_cu)->objfile->name);
13011 }
13012
13013 return die;
13014 }
13015
13016 /* Follow reference OFFSET.
13017 On entry *REF_CU is the CU of the source die referencing OFFSET.
13018 On exit *REF_CU is the CU of the result.
13019 Returns NULL if OFFSET is invalid. */
13020
13021 static struct die_info *
13022 follow_die_offset (unsigned int offset, struct dwarf2_cu **ref_cu)
13023 {
13024 struct die_info temp_die;
13025 struct dwarf2_cu *target_cu, *cu = *ref_cu;
13026
13027 gdb_assert (cu->per_cu != NULL);
13028
13029 target_cu = cu;
13030
13031 if (cu->per_cu->from_debug_types)
13032 {
13033 /* .debug_types CUs cannot reference anything outside their CU.
13034 If they need to, they have to reference a signatured type via
13035 DW_FORM_sig8. */
13036 if (! offset_in_cu_p (&cu->header, offset))
13037 return NULL;
13038 }
13039 else if (! offset_in_cu_p (&cu->header, offset))
13040 {
13041 struct dwarf2_per_cu_data *per_cu;
13042
13043 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
13044
13045 /* If necessary, add it to the queue and load its DIEs. */
13046 if (maybe_queue_comp_unit (cu, per_cu))
13047 load_full_comp_unit (per_cu, cu->objfile);
13048
13049 target_cu = per_cu->cu;
13050 }
13051 else if (cu->dies == NULL)
13052 {
13053 /* We're loading full DIEs during partial symbol reading. */
13054 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
13055 load_full_comp_unit (cu->per_cu, cu->objfile);
13056 }
13057
13058 *ref_cu = target_cu;
13059 temp_die.offset = offset;
13060 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset);
13061 }
13062
13063 /* Follow reference attribute ATTR of SRC_DIE.
13064 On entry *REF_CU is the CU of SRC_DIE.
13065 On exit *REF_CU is the CU of the result. */
13066
13067 static struct die_info *
13068 follow_die_ref (struct die_info *src_die, struct attribute *attr,
13069 struct dwarf2_cu **ref_cu)
13070 {
13071 unsigned int offset = dwarf2_get_ref_die_offset (attr);
13072 struct dwarf2_cu *cu = *ref_cu;
13073 struct die_info *die;
13074
13075 die = follow_die_offset (offset, ref_cu);
13076 if (!die)
13077 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
13078 "at 0x%x [in module %s]"),
13079 offset, src_die->offset, cu->objfile->name);
13080
13081 return die;
13082 }
13083
13084 /* Return DWARF block and its CU referenced by OFFSET at PER_CU. Returned
13085 value is intended for DW_OP_call*. */
13086
13087 struct dwarf2_locexpr_baton
13088 dwarf2_fetch_die_location_block (unsigned int offset,
13089 struct dwarf2_per_cu_data *per_cu)
13090 {
13091 struct dwarf2_cu *cu = per_cu->cu;
13092 struct die_info *die;
13093 struct attribute *attr;
13094 struct dwarf2_locexpr_baton retval;
13095
13096 die = follow_die_offset (offset, &cu);
13097 if (!die)
13098 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
13099 offset, per_cu->cu->objfile->name);
13100
13101 attr = dwarf2_attr (die, DW_AT_location, cu);
13102 if (!attr)
13103 {
13104 /* DWARF: "If there is no such attribute, then there is no effect.". */
13105
13106 retval.data = NULL;
13107 retval.size = 0;
13108 }
13109 else
13110 {
13111 if (!attr_form_is_block (attr))
13112 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
13113 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
13114 offset, per_cu->cu->objfile->name);
13115
13116 retval.data = DW_BLOCK (attr)->data;
13117 retval.size = DW_BLOCK (attr)->size;
13118 }
13119 retval.per_cu = cu->per_cu;
13120 return retval;
13121 }
13122
13123 /* Follow the signature attribute ATTR in SRC_DIE.
13124 On entry *REF_CU is the CU of SRC_DIE.
13125 On exit *REF_CU is the CU of the result. */
13126
13127 static struct die_info *
13128 follow_die_sig (struct die_info *src_die, struct attribute *attr,
13129 struct dwarf2_cu **ref_cu)
13130 {
13131 struct objfile *objfile = (*ref_cu)->objfile;
13132 struct die_info temp_die;
13133 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
13134 struct dwarf2_cu *sig_cu;
13135 struct die_info *die;
13136
13137 /* sig_type will be NULL if the signatured type is missing from
13138 the debug info. */
13139 if (sig_type == NULL)
13140 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
13141 "at 0x%x [in module %s]"),
13142 src_die->offset, objfile->name);
13143
13144 /* If necessary, add it to the queue and load its DIEs. */
13145
13146 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu))
13147 read_signatured_type (objfile, sig_type);
13148
13149 gdb_assert (sig_type->per_cu.cu != NULL);
13150
13151 sig_cu = sig_type->per_cu.cu;
13152 temp_die.offset = sig_cu->header.offset + sig_type->type_offset;
13153 die = htab_find_with_hash (sig_cu->die_hash, &temp_die, temp_die.offset);
13154 if (die)
13155 {
13156 *ref_cu = sig_cu;
13157 return die;
13158 }
13159
13160 error (_("Dwarf Error: Cannot find signatured DIE at 0x%x referenced from DIE "
13161 "at 0x%x [in module %s]"),
13162 sig_type->type_offset, src_die->offset, objfile->name);
13163 }
13164
13165 /* Given an offset of a signatured type, return its signatured_type. */
13166
13167 static struct signatured_type *
13168 lookup_signatured_type_at_offset (struct objfile *objfile, unsigned int offset)
13169 {
13170 gdb_byte *info_ptr = dwarf2_per_objfile->types.buffer + offset;
13171 unsigned int length, initial_length_size;
13172 unsigned int sig_offset;
13173 struct signatured_type find_entry, *type_sig;
13174
13175 length = read_initial_length (objfile->obfd, info_ptr, &initial_length_size);
13176 sig_offset = (initial_length_size
13177 + 2 /*version*/
13178 + (initial_length_size == 4 ? 4 : 8) /*debug_abbrev_offset*/
13179 + 1 /*address_size*/);
13180 find_entry.signature = bfd_get_64 (objfile->obfd, info_ptr + sig_offset);
13181 type_sig = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
13182
13183 /* This is only used to lookup previously recorded types.
13184 If we didn't find it, it's our bug. */
13185 gdb_assert (type_sig != NULL);
13186 gdb_assert (offset == type_sig->offset);
13187
13188 return type_sig;
13189 }
13190
13191 /* Read in signatured type at OFFSET and build its CU and die(s). */
13192
13193 static void
13194 read_signatured_type_at_offset (struct objfile *objfile,
13195 unsigned int offset)
13196 {
13197 struct signatured_type *type_sig;
13198
13199 dwarf2_read_section (objfile, &dwarf2_per_objfile->types);
13200
13201 /* We have the section offset, but we need the signature to do the
13202 hash table lookup. */
13203 type_sig = lookup_signatured_type_at_offset (objfile, offset);
13204
13205 gdb_assert (type_sig->per_cu.cu == NULL);
13206
13207 read_signatured_type (objfile, type_sig);
13208
13209 gdb_assert (type_sig->per_cu.cu != NULL);
13210 }
13211
13212 /* Read in a signatured type and build its CU and DIEs. */
13213
13214 static void
13215 read_signatured_type (struct objfile *objfile,
13216 struct signatured_type *type_sig)
13217 {
13218 gdb_byte *types_ptr;
13219 struct die_reader_specs reader_specs;
13220 struct dwarf2_cu *cu;
13221 ULONGEST signature;
13222 struct cleanup *back_to, *free_cu_cleanup;
13223 struct attribute *attr;
13224
13225 dwarf2_read_section (objfile, &dwarf2_per_objfile->types);
13226 types_ptr = dwarf2_per_objfile->types.buffer + type_sig->offset;
13227
13228 gdb_assert (type_sig->per_cu.cu == NULL);
13229
13230 cu = xmalloc (sizeof (struct dwarf2_cu));
13231 memset (cu, 0, sizeof (struct dwarf2_cu));
13232 obstack_init (&cu->comp_unit_obstack);
13233 cu->objfile = objfile;
13234 type_sig->per_cu.cu = cu;
13235 cu->per_cu = &type_sig->per_cu;
13236
13237 /* If an error occurs while loading, release our storage. */
13238 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
13239
13240 types_ptr = read_type_comp_unit_head (&cu->header, &signature,
13241 types_ptr, objfile->obfd);
13242 gdb_assert (signature == type_sig->signature);
13243
13244 cu->die_hash
13245 = htab_create_alloc_ex (cu->header.length / 12,
13246 die_hash,
13247 die_eq,
13248 NULL,
13249 &cu->comp_unit_obstack,
13250 hashtab_obstack_allocate,
13251 dummy_obstack_deallocate);
13252
13253 dwarf2_read_abbrevs (cu->objfile->obfd, cu);
13254 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
13255
13256 init_cu_die_reader (&reader_specs, cu);
13257
13258 cu->dies = read_die_and_children (&reader_specs, types_ptr, &types_ptr,
13259 NULL /*parent*/);
13260
13261 /* We try not to read any attributes in this function, because not
13262 all objfiles needed for references have been loaded yet, and symbol
13263 table processing isn't initialized. But we have to set the CU language,
13264 or we won't be able to build types correctly. */
13265 attr = dwarf2_attr (cu->dies, DW_AT_language, cu);
13266 if (attr)
13267 set_cu_language (DW_UNSND (attr), cu);
13268 else
13269 set_cu_language (language_minimal, cu);
13270
13271 do_cleanups (back_to);
13272
13273 /* We've successfully allocated this compilation unit. Let our caller
13274 clean it up when finished with it. */
13275 discard_cleanups (free_cu_cleanup);
13276
13277 type_sig->per_cu.cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
13278 dwarf2_per_objfile->read_in_chain = &type_sig->per_cu;
13279 }
13280
13281 /* Decode simple location descriptions.
13282 Given a pointer to a dwarf block that defines a location, compute
13283 the location and return the value.
13284
13285 NOTE drow/2003-11-18: This function is called in two situations
13286 now: for the address of static or global variables (partial symbols
13287 only) and for offsets into structures which are expected to be
13288 (more or less) constant. The partial symbol case should go away,
13289 and only the constant case should remain. That will let this
13290 function complain more accurately. A few special modes are allowed
13291 without complaint for global variables (for instance, global
13292 register values and thread-local values).
13293
13294 A location description containing no operations indicates that the
13295 object is optimized out. The return value is 0 for that case.
13296 FIXME drow/2003-11-16: No callers check for this case any more; soon all
13297 callers will only want a very basic result and this can become a
13298 complaint.
13299
13300 Note that stack[0] is unused except as a default error return.
13301 Note that stack overflow is not yet handled. */
13302
13303 static CORE_ADDR
13304 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
13305 {
13306 struct objfile *objfile = cu->objfile;
13307 int i;
13308 int size = blk->size;
13309 gdb_byte *data = blk->data;
13310 CORE_ADDR stack[64];
13311 int stacki;
13312 unsigned int bytes_read, unsnd;
13313 gdb_byte op;
13314
13315 i = 0;
13316 stacki = 0;
13317 stack[stacki] = 0;
13318
13319 while (i < size)
13320 {
13321 op = data[i++];
13322 switch (op)
13323 {
13324 case DW_OP_lit0:
13325 case DW_OP_lit1:
13326 case DW_OP_lit2:
13327 case DW_OP_lit3:
13328 case DW_OP_lit4:
13329 case DW_OP_lit5:
13330 case DW_OP_lit6:
13331 case DW_OP_lit7:
13332 case DW_OP_lit8:
13333 case DW_OP_lit9:
13334 case DW_OP_lit10:
13335 case DW_OP_lit11:
13336 case DW_OP_lit12:
13337 case DW_OP_lit13:
13338 case DW_OP_lit14:
13339 case DW_OP_lit15:
13340 case DW_OP_lit16:
13341 case DW_OP_lit17:
13342 case DW_OP_lit18:
13343 case DW_OP_lit19:
13344 case DW_OP_lit20:
13345 case DW_OP_lit21:
13346 case DW_OP_lit22:
13347 case DW_OP_lit23:
13348 case DW_OP_lit24:
13349 case DW_OP_lit25:
13350 case DW_OP_lit26:
13351 case DW_OP_lit27:
13352 case DW_OP_lit28:
13353 case DW_OP_lit29:
13354 case DW_OP_lit30:
13355 case DW_OP_lit31:
13356 stack[++stacki] = op - DW_OP_lit0;
13357 break;
13358
13359 case DW_OP_reg0:
13360 case DW_OP_reg1:
13361 case DW_OP_reg2:
13362 case DW_OP_reg3:
13363 case DW_OP_reg4:
13364 case DW_OP_reg5:
13365 case DW_OP_reg6:
13366 case DW_OP_reg7:
13367 case DW_OP_reg8:
13368 case DW_OP_reg9:
13369 case DW_OP_reg10:
13370 case DW_OP_reg11:
13371 case DW_OP_reg12:
13372 case DW_OP_reg13:
13373 case DW_OP_reg14:
13374 case DW_OP_reg15:
13375 case DW_OP_reg16:
13376 case DW_OP_reg17:
13377 case DW_OP_reg18:
13378 case DW_OP_reg19:
13379 case DW_OP_reg20:
13380 case DW_OP_reg21:
13381 case DW_OP_reg22:
13382 case DW_OP_reg23:
13383 case DW_OP_reg24:
13384 case DW_OP_reg25:
13385 case DW_OP_reg26:
13386 case DW_OP_reg27:
13387 case DW_OP_reg28:
13388 case DW_OP_reg29:
13389 case DW_OP_reg30:
13390 case DW_OP_reg31:
13391 stack[++stacki] = op - DW_OP_reg0;
13392 if (i < size)
13393 dwarf2_complex_location_expr_complaint ();
13394 break;
13395
13396 case DW_OP_regx:
13397 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
13398 i += bytes_read;
13399 stack[++stacki] = unsnd;
13400 if (i < size)
13401 dwarf2_complex_location_expr_complaint ();
13402 break;
13403
13404 case DW_OP_addr:
13405 stack[++stacki] = read_address (objfile->obfd, &data[i],
13406 cu, &bytes_read);
13407 i += bytes_read;
13408 break;
13409
13410 case DW_OP_const1u:
13411 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
13412 i += 1;
13413 break;
13414
13415 case DW_OP_const1s:
13416 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
13417 i += 1;
13418 break;
13419
13420 case DW_OP_const2u:
13421 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
13422 i += 2;
13423 break;
13424
13425 case DW_OP_const2s:
13426 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
13427 i += 2;
13428 break;
13429
13430 case DW_OP_const4u:
13431 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
13432 i += 4;
13433 break;
13434
13435 case DW_OP_const4s:
13436 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
13437 i += 4;
13438 break;
13439
13440 case DW_OP_constu:
13441 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
13442 &bytes_read);
13443 i += bytes_read;
13444 break;
13445
13446 case DW_OP_consts:
13447 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
13448 i += bytes_read;
13449 break;
13450
13451 case DW_OP_dup:
13452 stack[stacki + 1] = stack[stacki];
13453 stacki++;
13454 break;
13455
13456 case DW_OP_plus:
13457 stack[stacki - 1] += stack[stacki];
13458 stacki--;
13459 break;
13460
13461 case DW_OP_plus_uconst:
13462 stack[stacki] += read_unsigned_leb128 (NULL, (data + i), &bytes_read);
13463 i += bytes_read;
13464 break;
13465
13466 case DW_OP_minus:
13467 stack[stacki - 1] -= stack[stacki];
13468 stacki--;
13469 break;
13470
13471 case DW_OP_deref:
13472 /* If we're not the last op, then we definitely can't encode
13473 this using GDB's address_class enum. This is valid for partial
13474 global symbols, although the variable's address will be bogus
13475 in the psymtab. */
13476 if (i < size)
13477 dwarf2_complex_location_expr_complaint ();
13478 break;
13479
13480 case DW_OP_GNU_push_tls_address:
13481 /* The top of the stack has the offset from the beginning
13482 of the thread control block at which the variable is located. */
13483 /* Nothing should follow this operator, so the top of stack would
13484 be returned. */
13485 /* This is valid for partial global symbols, but the variable's
13486 address will be bogus in the psymtab. */
13487 if (i < size)
13488 dwarf2_complex_location_expr_complaint ();
13489 break;
13490
13491 case DW_OP_GNU_uninit:
13492 break;
13493
13494 default:
13495 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
13496 dwarf_stack_op_name (op, 1));
13497 return (stack[stacki]);
13498 }
13499 }
13500 return (stack[stacki]);
13501 }
13502
13503 /* memory allocation interface */
13504
13505 static struct dwarf_block *
13506 dwarf_alloc_block (struct dwarf2_cu *cu)
13507 {
13508 struct dwarf_block *blk;
13509
13510 blk = (struct dwarf_block *)
13511 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
13512 return (blk);
13513 }
13514
13515 static struct abbrev_info *
13516 dwarf_alloc_abbrev (struct dwarf2_cu *cu)
13517 {
13518 struct abbrev_info *abbrev;
13519
13520 abbrev = (struct abbrev_info *)
13521 obstack_alloc (&cu->abbrev_obstack, sizeof (struct abbrev_info));
13522 memset (abbrev, 0, sizeof (struct abbrev_info));
13523 return (abbrev);
13524 }
13525
13526 static struct die_info *
13527 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
13528 {
13529 struct die_info *die;
13530 size_t size = sizeof (struct die_info);
13531
13532 if (num_attrs > 1)
13533 size += (num_attrs - 1) * sizeof (struct attribute);
13534
13535 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
13536 memset (die, 0, sizeof (struct die_info));
13537 return (die);
13538 }
13539
13540 \f
13541 /* Macro support. */
13542
13543
13544 /* Return the full name of file number I in *LH's file name table.
13545 Use COMP_DIR as the name of the current directory of the
13546 compilation. The result is allocated using xmalloc; the caller is
13547 responsible for freeing it. */
13548 static char *
13549 file_full_name (int file, struct line_header *lh, const char *comp_dir)
13550 {
13551 /* Is the file number a valid index into the line header's file name
13552 table? Remember that file numbers start with one, not zero. */
13553 if (1 <= file && file <= lh->num_file_names)
13554 {
13555 struct file_entry *fe = &lh->file_names[file - 1];
13556
13557 if (IS_ABSOLUTE_PATH (fe->name))
13558 return xstrdup (fe->name);
13559 else
13560 {
13561 const char *dir;
13562 int dir_len;
13563 char *full_name;
13564
13565 if (fe->dir_index)
13566 dir = lh->include_dirs[fe->dir_index - 1];
13567 else
13568 dir = comp_dir;
13569
13570 if (dir)
13571 {
13572 dir_len = strlen (dir);
13573 full_name = xmalloc (dir_len + 1 + strlen (fe->name) + 1);
13574 strcpy (full_name, dir);
13575 full_name[dir_len] = '/';
13576 strcpy (full_name + dir_len + 1, fe->name);
13577 return full_name;
13578 }
13579 else
13580 return xstrdup (fe->name);
13581 }
13582 }
13583 else
13584 {
13585 /* The compiler produced a bogus file number. We can at least
13586 record the macro definitions made in the file, even if we
13587 won't be able to find the file by name. */
13588 char fake_name[80];
13589
13590 sprintf (fake_name, "<bad macro file number %d>", file);
13591
13592 complaint (&symfile_complaints,
13593 _("bad file number in macro information (%d)"),
13594 file);
13595
13596 return xstrdup (fake_name);
13597 }
13598 }
13599
13600
13601 static struct macro_source_file *
13602 macro_start_file (int file, int line,
13603 struct macro_source_file *current_file,
13604 const char *comp_dir,
13605 struct line_header *lh, struct objfile *objfile)
13606 {
13607 /* The full name of this source file. */
13608 char *full_name = file_full_name (file, lh, comp_dir);
13609
13610 /* We don't create a macro table for this compilation unit
13611 at all until we actually get a filename. */
13612 if (! pending_macros)
13613 pending_macros = new_macro_table (&objfile->objfile_obstack,
13614 objfile->macro_cache);
13615
13616 if (! current_file)
13617 /* If we have no current file, then this must be the start_file
13618 directive for the compilation unit's main source file. */
13619 current_file = macro_set_main (pending_macros, full_name);
13620 else
13621 current_file = macro_include (current_file, line, full_name);
13622
13623 xfree (full_name);
13624
13625 return current_file;
13626 }
13627
13628
13629 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
13630 followed by a null byte. */
13631 static char *
13632 copy_string (const char *buf, int len)
13633 {
13634 char *s = xmalloc (len + 1);
13635
13636 memcpy (s, buf, len);
13637 s[len] = '\0';
13638 return s;
13639 }
13640
13641
13642 static const char *
13643 consume_improper_spaces (const char *p, const char *body)
13644 {
13645 if (*p == ' ')
13646 {
13647 complaint (&symfile_complaints,
13648 _("macro definition contains spaces in formal argument list:\n`%s'"),
13649 body);
13650
13651 while (*p == ' ')
13652 p++;
13653 }
13654
13655 return p;
13656 }
13657
13658
13659 static void
13660 parse_macro_definition (struct macro_source_file *file, int line,
13661 const char *body)
13662 {
13663 const char *p;
13664
13665 /* The body string takes one of two forms. For object-like macro
13666 definitions, it should be:
13667
13668 <macro name> " " <definition>
13669
13670 For function-like macro definitions, it should be:
13671
13672 <macro name> "() " <definition>
13673 or
13674 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
13675
13676 Spaces may appear only where explicitly indicated, and in the
13677 <definition>.
13678
13679 The Dwarf 2 spec says that an object-like macro's name is always
13680 followed by a space, but versions of GCC around March 2002 omit
13681 the space when the macro's definition is the empty string.
13682
13683 The Dwarf 2 spec says that there should be no spaces between the
13684 formal arguments in a function-like macro's formal argument list,
13685 but versions of GCC around March 2002 include spaces after the
13686 commas. */
13687
13688
13689 /* Find the extent of the macro name. The macro name is terminated
13690 by either a space or null character (for an object-like macro) or
13691 an opening paren (for a function-like macro). */
13692 for (p = body; *p; p++)
13693 if (*p == ' ' || *p == '(')
13694 break;
13695
13696 if (*p == ' ' || *p == '\0')
13697 {
13698 /* It's an object-like macro. */
13699 int name_len = p - body;
13700 char *name = copy_string (body, name_len);
13701 const char *replacement;
13702
13703 if (*p == ' ')
13704 replacement = body + name_len + 1;
13705 else
13706 {
13707 dwarf2_macro_malformed_definition_complaint (body);
13708 replacement = body + name_len;
13709 }
13710
13711 macro_define_object (file, line, name, replacement);
13712
13713 xfree (name);
13714 }
13715 else if (*p == '(')
13716 {
13717 /* It's a function-like macro. */
13718 char *name = copy_string (body, p - body);
13719 int argc = 0;
13720 int argv_size = 1;
13721 char **argv = xmalloc (argv_size * sizeof (*argv));
13722
13723 p++;
13724
13725 p = consume_improper_spaces (p, body);
13726
13727 /* Parse the formal argument list. */
13728 while (*p && *p != ')')
13729 {
13730 /* Find the extent of the current argument name. */
13731 const char *arg_start = p;
13732
13733 while (*p && *p != ',' && *p != ')' && *p != ' ')
13734 p++;
13735
13736 if (! *p || p == arg_start)
13737 dwarf2_macro_malformed_definition_complaint (body);
13738 else
13739 {
13740 /* Make sure argv has room for the new argument. */
13741 if (argc >= argv_size)
13742 {
13743 argv_size *= 2;
13744 argv = xrealloc (argv, argv_size * sizeof (*argv));
13745 }
13746
13747 argv[argc++] = copy_string (arg_start, p - arg_start);
13748 }
13749
13750 p = consume_improper_spaces (p, body);
13751
13752 /* Consume the comma, if present. */
13753 if (*p == ',')
13754 {
13755 p++;
13756
13757 p = consume_improper_spaces (p, body);
13758 }
13759 }
13760
13761 if (*p == ')')
13762 {
13763 p++;
13764
13765 if (*p == ' ')
13766 /* Perfectly formed definition, no complaints. */
13767 macro_define_function (file, line, name,
13768 argc, (const char **) argv,
13769 p + 1);
13770 else if (*p == '\0')
13771 {
13772 /* Complain, but do define it. */
13773 dwarf2_macro_malformed_definition_complaint (body);
13774 macro_define_function (file, line, name,
13775 argc, (const char **) argv,
13776 p);
13777 }
13778 else
13779 /* Just complain. */
13780 dwarf2_macro_malformed_definition_complaint (body);
13781 }
13782 else
13783 /* Just complain. */
13784 dwarf2_macro_malformed_definition_complaint (body);
13785
13786 xfree (name);
13787 {
13788 int i;
13789
13790 for (i = 0; i < argc; i++)
13791 xfree (argv[i]);
13792 }
13793 xfree (argv);
13794 }
13795 else
13796 dwarf2_macro_malformed_definition_complaint (body);
13797 }
13798
13799
13800 static void
13801 dwarf_decode_macros (struct line_header *lh, unsigned int offset,
13802 char *comp_dir, bfd *abfd,
13803 struct dwarf2_cu *cu)
13804 {
13805 gdb_byte *mac_ptr, *mac_end;
13806 struct macro_source_file *current_file = 0;
13807 enum dwarf_macinfo_record_type macinfo_type;
13808 int at_commandline;
13809
13810 dwarf2_read_section (dwarf2_per_objfile->objfile,
13811 &dwarf2_per_objfile->macinfo);
13812 if (dwarf2_per_objfile->macinfo.buffer == NULL)
13813 {
13814 complaint (&symfile_complaints, _("missing .debug_macinfo section"));
13815 return;
13816 }
13817
13818 /* First pass: Find the name of the base filename.
13819 This filename is needed in order to process all macros whose definition
13820 (or undefinition) comes from the command line. These macros are defined
13821 before the first DW_MACINFO_start_file entry, and yet still need to be
13822 associated to the base file.
13823
13824 To determine the base file name, we scan the macro definitions until we
13825 reach the first DW_MACINFO_start_file entry. We then initialize
13826 CURRENT_FILE accordingly so that any macro definition found before the
13827 first DW_MACINFO_start_file can still be associated to the base file. */
13828
13829 mac_ptr = dwarf2_per_objfile->macinfo.buffer + offset;
13830 mac_end = dwarf2_per_objfile->macinfo.buffer
13831 + dwarf2_per_objfile->macinfo.size;
13832
13833 do
13834 {
13835 /* Do we at least have room for a macinfo type byte? */
13836 if (mac_ptr >= mac_end)
13837 {
13838 /* Complaint is printed during the second pass as GDB will probably
13839 stop the first pass earlier upon finding DW_MACINFO_start_file. */
13840 break;
13841 }
13842
13843 macinfo_type = read_1_byte (abfd, mac_ptr);
13844 mac_ptr++;
13845
13846 switch (macinfo_type)
13847 {
13848 /* A zero macinfo type indicates the end of the macro
13849 information. */
13850 case 0:
13851 break;
13852
13853 case DW_MACINFO_define:
13854 case DW_MACINFO_undef:
13855 /* Only skip the data by MAC_PTR. */
13856 {
13857 unsigned int bytes_read;
13858
13859 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
13860 mac_ptr += bytes_read;
13861 read_direct_string (abfd, mac_ptr, &bytes_read);
13862 mac_ptr += bytes_read;
13863 }
13864 break;
13865
13866 case DW_MACINFO_start_file:
13867 {
13868 unsigned int bytes_read;
13869 int line, file;
13870
13871 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
13872 mac_ptr += bytes_read;
13873 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
13874 mac_ptr += bytes_read;
13875
13876 current_file = macro_start_file (file, line, current_file, comp_dir,
13877 lh, cu->objfile);
13878 }
13879 break;
13880
13881 case DW_MACINFO_end_file:
13882 /* No data to skip by MAC_PTR. */
13883 break;
13884
13885 case DW_MACINFO_vendor_ext:
13886 /* Only skip the data by MAC_PTR. */
13887 {
13888 unsigned int bytes_read;
13889
13890 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
13891 mac_ptr += bytes_read;
13892 read_direct_string (abfd, mac_ptr, &bytes_read);
13893 mac_ptr += bytes_read;
13894 }
13895 break;
13896
13897 default:
13898 break;
13899 }
13900 } while (macinfo_type != 0 && current_file == NULL);
13901
13902 /* Second pass: Process all entries.
13903
13904 Use the AT_COMMAND_LINE flag to determine whether we are still processing
13905 command-line macro definitions/undefinitions. This flag is unset when we
13906 reach the first DW_MACINFO_start_file entry. */
13907
13908 mac_ptr = dwarf2_per_objfile->macinfo.buffer + offset;
13909
13910 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
13911 GDB is still reading the definitions from command line. First
13912 DW_MACINFO_start_file will need to be ignored as it was already executed
13913 to create CURRENT_FILE for the main source holding also the command line
13914 definitions. On first met DW_MACINFO_start_file this flag is reset to
13915 normally execute all the remaining DW_MACINFO_start_file macinfos. */
13916
13917 at_commandline = 1;
13918
13919 do
13920 {
13921 /* Do we at least have room for a macinfo type byte? */
13922 if (mac_ptr >= mac_end)
13923 {
13924 dwarf2_macros_too_long_complaint ();
13925 break;
13926 }
13927
13928 macinfo_type = read_1_byte (abfd, mac_ptr);
13929 mac_ptr++;
13930
13931 switch (macinfo_type)
13932 {
13933 /* A zero macinfo type indicates the end of the macro
13934 information. */
13935 case 0:
13936 break;
13937
13938 case DW_MACINFO_define:
13939 case DW_MACINFO_undef:
13940 {
13941 unsigned int bytes_read;
13942 int line;
13943 char *body;
13944
13945 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
13946 mac_ptr += bytes_read;
13947 body = read_direct_string (abfd, mac_ptr, &bytes_read);
13948 mac_ptr += bytes_read;
13949
13950 if (! current_file)
13951 {
13952 /* DWARF violation as no main source is present. */
13953 complaint (&symfile_complaints,
13954 _("debug info with no main source gives macro %s "
13955 "on line %d: %s"),
13956 macinfo_type == DW_MACINFO_define ?
13957 _("definition") :
13958 macinfo_type == DW_MACINFO_undef ?
13959 _("undefinition") :
13960 _("something-or-other"), line, body);
13961 break;
13962 }
13963 if ((line == 0 && !at_commandline) || (line != 0 && at_commandline))
13964 complaint (&symfile_complaints,
13965 _("debug info gives %s macro %s with %s line %d: %s"),
13966 at_commandline ? _("command-line") : _("in-file"),
13967 macinfo_type == DW_MACINFO_define ?
13968 _("definition") :
13969 macinfo_type == DW_MACINFO_undef ?
13970 _("undefinition") :
13971 _("something-or-other"),
13972 line == 0 ? _("zero") : _("non-zero"), line, body);
13973
13974 if (macinfo_type == DW_MACINFO_define)
13975 parse_macro_definition (current_file, line, body);
13976 else if (macinfo_type == DW_MACINFO_undef)
13977 macro_undef (current_file, line, body);
13978 }
13979 break;
13980
13981 case DW_MACINFO_start_file:
13982 {
13983 unsigned int bytes_read;
13984 int line, file;
13985
13986 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
13987 mac_ptr += bytes_read;
13988 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
13989 mac_ptr += bytes_read;
13990
13991 if ((line == 0 && !at_commandline) || (line != 0 && at_commandline))
13992 complaint (&symfile_complaints,
13993 _("debug info gives source %d included "
13994 "from %s at %s line %d"),
13995 file, at_commandline ? _("command-line") : _("file"),
13996 line == 0 ? _("zero") : _("non-zero"), line);
13997
13998 if (at_commandline)
13999 {
14000 /* This DW_MACINFO_start_file was executed in the pass one. */
14001 at_commandline = 0;
14002 }
14003 else
14004 current_file = macro_start_file (file, line,
14005 current_file, comp_dir,
14006 lh, cu->objfile);
14007 }
14008 break;
14009
14010 case DW_MACINFO_end_file:
14011 if (! current_file)
14012 complaint (&symfile_complaints,
14013 _("macro debug info has an unmatched `close_file' directive"));
14014 else
14015 {
14016 current_file = current_file->included_by;
14017 if (! current_file)
14018 {
14019 enum dwarf_macinfo_record_type next_type;
14020
14021 /* GCC circa March 2002 doesn't produce the zero
14022 type byte marking the end of the compilation
14023 unit. Complain if it's not there, but exit no
14024 matter what. */
14025
14026 /* Do we at least have room for a macinfo type byte? */
14027 if (mac_ptr >= mac_end)
14028 {
14029 dwarf2_macros_too_long_complaint ();
14030 return;
14031 }
14032
14033 /* We don't increment mac_ptr here, so this is just
14034 a look-ahead. */
14035 next_type = read_1_byte (abfd, mac_ptr);
14036 if (next_type != 0)
14037 complaint (&symfile_complaints,
14038 _("no terminating 0-type entry for macros in `.debug_macinfo' section"));
14039
14040 return;
14041 }
14042 }
14043 break;
14044
14045 case DW_MACINFO_vendor_ext:
14046 {
14047 unsigned int bytes_read;
14048 int constant;
14049 char *string;
14050
14051 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
14052 mac_ptr += bytes_read;
14053 string = read_direct_string (abfd, mac_ptr, &bytes_read);
14054 mac_ptr += bytes_read;
14055
14056 /* We don't recognize any vendor extensions. */
14057 }
14058 break;
14059 }
14060 } while (macinfo_type != 0);
14061 }
14062
14063 /* Check if the attribute's form is a DW_FORM_block*
14064 if so return true else false. */
14065 static int
14066 attr_form_is_block (struct attribute *attr)
14067 {
14068 return (attr == NULL ? 0 :
14069 attr->form == DW_FORM_block1
14070 || attr->form == DW_FORM_block2
14071 || attr->form == DW_FORM_block4
14072 || attr->form == DW_FORM_block
14073 || attr->form == DW_FORM_exprloc);
14074 }
14075
14076 /* Return non-zero if ATTR's value is a section offset --- classes
14077 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
14078 You may use DW_UNSND (attr) to retrieve such offsets.
14079
14080 Section 7.5.4, "Attribute Encodings", explains that no attribute
14081 may have a value that belongs to more than one of these classes; it
14082 would be ambiguous if we did, because we use the same forms for all
14083 of them. */
14084 static int
14085 attr_form_is_section_offset (struct attribute *attr)
14086 {
14087 return (attr->form == DW_FORM_data4
14088 || attr->form == DW_FORM_data8
14089 || attr->form == DW_FORM_sec_offset);
14090 }
14091
14092
14093 /* Return non-zero if ATTR's value falls in the 'constant' class, or
14094 zero otherwise. When this function returns true, you can apply
14095 dwarf2_get_attr_constant_value to it.
14096
14097 However, note that for some attributes you must check
14098 attr_form_is_section_offset before using this test. DW_FORM_data4
14099 and DW_FORM_data8 are members of both the constant class, and of
14100 the classes that contain offsets into other debug sections
14101 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
14102 that, if an attribute's can be either a constant or one of the
14103 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
14104 taken as section offsets, not constants. */
14105 static int
14106 attr_form_is_constant (struct attribute *attr)
14107 {
14108 switch (attr->form)
14109 {
14110 case DW_FORM_sdata:
14111 case DW_FORM_udata:
14112 case DW_FORM_data1:
14113 case DW_FORM_data2:
14114 case DW_FORM_data4:
14115 case DW_FORM_data8:
14116 return 1;
14117 default:
14118 return 0;
14119 }
14120 }
14121
14122 static void
14123 dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
14124 struct dwarf2_cu *cu)
14125 {
14126 if (attr_form_is_section_offset (attr)
14127 /* ".debug_loc" may not exist at all, or the offset may be outside
14128 the section. If so, fall through to the complaint in the
14129 other branch. */
14130 && DW_UNSND (attr) < dwarf2_per_objfile->loc.size)
14131 {
14132 struct dwarf2_loclist_baton *baton;
14133
14134 baton = obstack_alloc (&cu->objfile->objfile_obstack,
14135 sizeof (struct dwarf2_loclist_baton));
14136 baton->per_cu = cu->per_cu;
14137 gdb_assert (baton->per_cu);
14138
14139 dwarf2_read_section (dwarf2_per_objfile->objfile,
14140 &dwarf2_per_objfile->loc);
14141
14142 /* We don't know how long the location list is, but make sure we
14143 don't run off the edge of the section. */
14144 baton->size = dwarf2_per_objfile->loc.size - DW_UNSND (attr);
14145 baton->data = dwarf2_per_objfile->loc.buffer + DW_UNSND (attr);
14146 baton->base_address = cu->base_address;
14147 if (cu->base_known == 0)
14148 complaint (&symfile_complaints,
14149 _("Location list used without specifying the CU base address."));
14150
14151 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_loclist_funcs;
14152 SYMBOL_LOCATION_BATON (sym) = baton;
14153 }
14154 else
14155 {
14156 struct dwarf2_locexpr_baton *baton;
14157
14158 baton = obstack_alloc (&cu->objfile->objfile_obstack,
14159 sizeof (struct dwarf2_locexpr_baton));
14160 baton->per_cu = cu->per_cu;
14161 gdb_assert (baton->per_cu);
14162
14163 if (attr_form_is_block (attr))
14164 {
14165 /* Note that we're just copying the block's data pointer
14166 here, not the actual data. We're still pointing into the
14167 info_buffer for SYM's objfile; right now we never release
14168 that buffer, but when we do clean up properly this may
14169 need to change. */
14170 baton->size = DW_BLOCK (attr)->size;
14171 baton->data = DW_BLOCK (attr)->data;
14172 }
14173 else
14174 {
14175 dwarf2_invalid_attrib_class_complaint ("location description",
14176 SYMBOL_NATURAL_NAME (sym));
14177 baton->size = 0;
14178 baton->data = NULL;
14179 }
14180
14181 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
14182 SYMBOL_LOCATION_BATON (sym) = baton;
14183 }
14184 }
14185
14186 /* Return the OBJFILE associated with the compilation unit CU. If CU
14187 came from a separate debuginfo file, then the master objfile is
14188 returned. */
14189
14190 struct objfile *
14191 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
14192 {
14193 struct objfile *objfile = per_cu->objfile;
14194
14195 /* Return the master objfile, so that we can report and look up the
14196 correct file containing this variable. */
14197 if (objfile->separate_debug_objfile_backlink)
14198 objfile = objfile->separate_debug_objfile_backlink;
14199
14200 return objfile;
14201 }
14202
14203 /* Return the address size given in the compilation unit header for CU. */
14204
14205 CORE_ADDR
14206 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
14207 {
14208 if (per_cu->cu)
14209 return per_cu->cu->header.addr_size;
14210 else
14211 {
14212 /* If the CU is not currently read in, we re-read its header. */
14213 struct objfile *objfile = per_cu->objfile;
14214 struct dwarf2_per_objfile *per_objfile
14215 = objfile_data (objfile, dwarf2_objfile_data_key);
14216 gdb_byte *info_ptr = per_objfile->info.buffer + per_cu->offset;
14217 struct comp_unit_head cu_header;
14218
14219 memset (&cu_header, 0, sizeof cu_header);
14220 read_comp_unit_head (&cu_header, info_ptr, objfile->obfd);
14221 return cu_header.addr_size;
14222 }
14223 }
14224
14225 /* Return the offset size given in the compilation unit header for CU. */
14226
14227 int
14228 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
14229 {
14230 if (per_cu->cu)
14231 return per_cu->cu->header.offset_size;
14232 else
14233 {
14234 /* If the CU is not currently read in, we re-read its header. */
14235 struct objfile *objfile = per_cu->objfile;
14236 struct dwarf2_per_objfile *per_objfile
14237 = objfile_data (objfile, dwarf2_objfile_data_key);
14238 gdb_byte *info_ptr = per_objfile->info.buffer + per_cu->offset;
14239 struct comp_unit_head cu_header;
14240
14241 memset (&cu_header, 0, sizeof cu_header);
14242 read_comp_unit_head (&cu_header, info_ptr, objfile->obfd);
14243 return cu_header.offset_size;
14244 }
14245 }
14246
14247 /* Return the text offset of the CU. The returned offset comes from
14248 this CU's objfile. If this objfile came from a separate debuginfo
14249 file, then the offset may be different from the corresponding
14250 offset in the parent objfile. */
14251
14252 CORE_ADDR
14253 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
14254 {
14255 struct objfile *objfile = per_cu->objfile;
14256
14257 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14258 }
14259
14260 /* Locate the .debug_info compilation unit from CU's objfile which contains
14261 the DIE at OFFSET. Raises an error on failure. */
14262
14263 static struct dwarf2_per_cu_data *
14264 dwarf2_find_containing_comp_unit (unsigned int offset,
14265 struct objfile *objfile)
14266 {
14267 struct dwarf2_per_cu_data *this_cu;
14268 int low, high;
14269
14270 low = 0;
14271 high = dwarf2_per_objfile->n_comp_units - 1;
14272 while (high > low)
14273 {
14274 int mid = low + (high - low) / 2;
14275
14276 if (dwarf2_per_objfile->all_comp_units[mid]->offset >= offset)
14277 high = mid;
14278 else
14279 low = mid + 1;
14280 }
14281 gdb_assert (low == high);
14282 if (dwarf2_per_objfile->all_comp_units[low]->offset > offset)
14283 {
14284 if (low == 0)
14285 error (_("Dwarf Error: could not find partial DIE containing "
14286 "offset 0x%lx [in module %s]"),
14287 (long) offset, bfd_get_filename (objfile->obfd));
14288
14289 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset <= offset);
14290 return dwarf2_per_objfile->all_comp_units[low-1];
14291 }
14292 else
14293 {
14294 this_cu = dwarf2_per_objfile->all_comp_units[low];
14295 if (low == dwarf2_per_objfile->n_comp_units - 1
14296 && offset >= this_cu->offset + this_cu->length)
14297 error (_("invalid dwarf2 offset %u"), offset);
14298 gdb_assert (offset < this_cu->offset + this_cu->length);
14299 return this_cu;
14300 }
14301 }
14302
14303 /* Locate the compilation unit from OBJFILE which is located at exactly
14304 OFFSET. Raises an error on failure. */
14305
14306 static struct dwarf2_per_cu_data *
14307 dwarf2_find_comp_unit (unsigned int offset, struct objfile *objfile)
14308 {
14309 struct dwarf2_per_cu_data *this_cu;
14310
14311 this_cu = dwarf2_find_containing_comp_unit (offset, objfile);
14312 if (this_cu->offset != offset)
14313 error (_("no compilation unit with offset %u."), offset);
14314 return this_cu;
14315 }
14316
14317 /* Malloc space for a dwarf2_cu for OBJFILE and initialize it. */
14318
14319 static struct dwarf2_cu *
14320 alloc_one_comp_unit (struct objfile *objfile)
14321 {
14322 struct dwarf2_cu *cu = xcalloc (1, sizeof (struct dwarf2_cu));
14323 cu->objfile = objfile;
14324 obstack_init (&cu->comp_unit_obstack);
14325 return cu;
14326 }
14327
14328 /* Release one cached compilation unit, CU. We unlink it from the tree
14329 of compilation units, but we don't remove it from the read_in_chain;
14330 the caller is responsible for that.
14331 NOTE: DATA is a void * because this function is also used as a
14332 cleanup routine. */
14333
14334 static void
14335 free_one_comp_unit (void *data)
14336 {
14337 struct dwarf2_cu *cu = data;
14338
14339 if (cu->per_cu != NULL)
14340 cu->per_cu->cu = NULL;
14341 cu->per_cu = NULL;
14342
14343 obstack_free (&cu->comp_unit_obstack, NULL);
14344
14345 xfree (cu);
14346 }
14347
14348 /* This cleanup function is passed the address of a dwarf2_cu on the stack
14349 when we're finished with it. We can't free the pointer itself, but be
14350 sure to unlink it from the cache. Also release any associated storage
14351 and perform cache maintenance.
14352
14353 Only used during partial symbol parsing. */
14354
14355 static void
14356 free_stack_comp_unit (void *data)
14357 {
14358 struct dwarf2_cu *cu = data;
14359
14360 obstack_free (&cu->comp_unit_obstack, NULL);
14361 cu->partial_dies = NULL;
14362
14363 if (cu->per_cu != NULL)
14364 {
14365 /* This compilation unit is on the stack in our caller, so we
14366 should not xfree it. Just unlink it. */
14367 cu->per_cu->cu = NULL;
14368 cu->per_cu = NULL;
14369
14370 /* If we had a per-cu pointer, then we may have other compilation
14371 units loaded, so age them now. */
14372 age_cached_comp_units ();
14373 }
14374 }
14375
14376 /* Free all cached compilation units. */
14377
14378 static void
14379 free_cached_comp_units (void *data)
14380 {
14381 struct dwarf2_per_cu_data *per_cu, **last_chain;
14382
14383 per_cu = dwarf2_per_objfile->read_in_chain;
14384 last_chain = &dwarf2_per_objfile->read_in_chain;
14385 while (per_cu != NULL)
14386 {
14387 struct dwarf2_per_cu_data *next_cu;
14388
14389 next_cu = per_cu->cu->read_in_chain;
14390
14391 free_one_comp_unit (per_cu->cu);
14392 *last_chain = next_cu;
14393
14394 per_cu = next_cu;
14395 }
14396 }
14397
14398 /* Increase the age counter on each cached compilation unit, and free
14399 any that are too old. */
14400
14401 static void
14402 age_cached_comp_units (void)
14403 {
14404 struct dwarf2_per_cu_data *per_cu, **last_chain;
14405
14406 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
14407 per_cu = dwarf2_per_objfile->read_in_chain;
14408 while (per_cu != NULL)
14409 {
14410 per_cu->cu->last_used ++;
14411 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
14412 dwarf2_mark (per_cu->cu);
14413 per_cu = per_cu->cu->read_in_chain;
14414 }
14415
14416 per_cu = dwarf2_per_objfile->read_in_chain;
14417 last_chain = &dwarf2_per_objfile->read_in_chain;
14418 while (per_cu != NULL)
14419 {
14420 struct dwarf2_per_cu_data *next_cu;
14421
14422 next_cu = per_cu->cu->read_in_chain;
14423
14424 if (!per_cu->cu->mark)
14425 {
14426 free_one_comp_unit (per_cu->cu);
14427 *last_chain = next_cu;
14428 }
14429 else
14430 last_chain = &per_cu->cu->read_in_chain;
14431
14432 per_cu = next_cu;
14433 }
14434 }
14435
14436 /* Remove a single compilation unit from the cache. */
14437
14438 static void
14439 free_one_cached_comp_unit (void *target_cu)
14440 {
14441 struct dwarf2_per_cu_data *per_cu, **last_chain;
14442
14443 per_cu = dwarf2_per_objfile->read_in_chain;
14444 last_chain = &dwarf2_per_objfile->read_in_chain;
14445 while (per_cu != NULL)
14446 {
14447 struct dwarf2_per_cu_data *next_cu;
14448
14449 next_cu = per_cu->cu->read_in_chain;
14450
14451 if (per_cu->cu == target_cu)
14452 {
14453 free_one_comp_unit (per_cu->cu);
14454 *last_chain = next_cu;
14455 break;
14456 }
14457 else
14458 last_chain = &per_cu->cu->read_in_chain;
14459
14460 per_cu = next_cu;
14461 }
14462 }
14463
14464 /* Release all extra memory associated with OBJFILE. */
14465
14466 void
14467 dwarf2_free_objfile (struct objfile *objfile)
14468 {
14469 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
14470
14471 if (dwarf2_per_objfile == NULL)
14472 return;
14473
14474 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
14475 free_cached_comp_units (NULL);
14476
14477 if (dwarf2_per_objfile->using_index)
14478 {
14479 int i;
14480
14481 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
14482 {
14483 int j;
14484 struct dwarf2_per_cu_data *per_cu =
14485 dwarf2_per_objfile->all_comp_units[i];
14486
14487 if (!per_cu->v.quick->lines)
14488 continue;
14489
14490 for (j = 0; j < per_cu->v.quick->lines->num_file_names; ++j)
14491 {
14492 if (per_cu->v.quick->file_names)
14493 xfree ((void *) per_cu->v.quick->file_names[j]);
14494 if (per_cu->v.quick->full_names)
14495 xfree ((void *) per_cu->v.quick->full_names[j]);
14496 }
14497
14498 free_line_header (per_cu->v.quick->lines);
14499 }
14500 }
14501
14502 /* Everything else should be on the objfile obstack. */
14503 }
14504
14505 /* A pair of DIE offset and GDB type pointer. We store these
14506 in a hash table separate from the DIEs, and preserve them
14507 when the DIEs are flushed out of cache. */
14508
14509 struct dwarf2_offset_and_type
14510 {
14511 unsigned int offset;
14512 struct type *type;
14513 };
14514
14515 /* Hash function for a dwarf2_offset_and_type. */
14516
14517 static hashval_t
14518 offset_and_type_hash (const void *item)
14519 {
14520 const struct dwarf2_offset_and_type *ofs = item;
14521
14522 return ofs->offset;
14523 }
14524
14525 /* Equality function for a dwarf2_offset_and_type. */
14526
14527 static int
14528 offset_and_type_eq (const void *item_lhs, const void *item_rhs)
14529 {
14530 const struct dwarf2_offset_and_type *ofs_lhs = item_lhs;
14531 const struct dwarf2_offset_and_type *ofs_rhs = item_rhs;
14532
14533 return ofs_lhs->offset == ofs_rhs->offset;
14534 }
14535
14536 /* Set the type associated with DIE to TYPE. Save it in CU's hash
14537 table if necessary. For convenience, return TYPE.
14538
14539 The DIEs reading must have careful ordering to:
14540 * Not cause infite loops trying to read in DIEs as a prerequisite for
14541 reading current DIE.
14542 * Not trying to dereference contents of still incompletely read in types
14543 while reading in other DIEs.
14544 * Enable referencing still incompletely read in types just by a pointer to
14545 the type without accessing its fields.
14546
14547 Therefore caller should follow these rules:
14548 * Try to fetch any prerequisite types we may need to build this DIE type
14549 before building the type and calling set_die_type.
14550 * After building type call set_die_type for current DIE as soon as
14551 possible before fetching more types to complete the current type.
14552 * Make the type as complete as possible before fetching more types. */
14553
14554 static struct type *
14555 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
14556 {
14557 struct dwarf2_offset_and_type **slot, ofs;
14558 struct objfile *objfile = cu->objfile;
14559 htab_t *type_hash_ptr;
14560
14561 /* For Ada types, make sure that the gnat-specific data is always
14562 initialized (if not already set). There are a few types where
14563 we should not be doing so, because the type-specific area is
14564 already used to hold some other piece of info (eg: TYPE_CODE_FLT
14565 where the type-specific area is used to store the floatformat).
14566 But this is not a problem, because the gnat-specific information
14567 is actually not needed for these types. */
14568 if (need_gnat_info (cu)
14569 && TYPE_CODE (type) != TYPE_CODE_FUNC
14570 && TYPE_CODE (type) != TYPE_CODE_FLT
14571 && !HAVE_GNAT_AUX_INFO (type))
14572 INIT_GNAT_SPECIFIC (type);
14573
14574 if (cu->per_cu->from_debug_types)
14575 type_hash_ptr = &dwarf2_per_objfile->debug_types_type_hash;
14576 else
14577 type_hash_ptr = &dwarf2_per_objfile->debug_info_type_hash;
14578
14579 if (*type_hash_ptr == NULL)
14580 {
14581 *type_hash_ptr
14582 = htab_create_alloc_ex (127,
14583 offset_and_type_hash,
14584 offset_and_type_eq,
14585 NULL,
14586 &objfile->objfile_obstack,
14587 hashtab_obstack_allocate,
14588 dummy_obstack_deallocate);
14589 }
14590
14591 ofs.offset = die->offset;
14592 ofs.type = type;
14593 slot = (struct dwarf2_offset_and_type **)
14594 htab_find_slot_with_hash (*type_hash_ptr, &ofs, ofs.offset, INSERT);
14595 if (*slot)
14596 complaint (&symfile_complaints,
14597 _("A problem internal to GDB: DIE 0x%x has type already set"),
14598 die->offset);
14599 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
14600 **slot = ofs;
14601 return type;
14602 }
14603
14604 /* Look up the type for the die at DIE_OFFSET in the appropriate type_hash
14605 table, or return NULL if the die does not have a saved type. */
14606
14607 static struct type *
14608 get_die_type_at_offset (unsigned int offset,
14609 struct dwarf2_per_cu_data *per_cu)
14610 {
14611 struct dwarf2_offset_and_type *slot, ofs;
14612 htab_t type_hash;
14613
14614 if (per_cu->from_debug_types)
14615 type_hash = dwarf2_per_objfile->debug_types_type_hash;
14616 else
14617 type_hash = dwarf2_per_objfile->debug_info_type_hash;
14618 if (type_hash == NULL)
14619 return NULL;
14620
14621 ofs.offset = offset;
14622 slot = htab_find_with_hash (type_hash, &ofs, ofs.offset);
14623 if (slot)
14624 return slot->type;
14625 else
14626 return NULL;
14627 }
14628
14629 /* Look up the type for DIE in the appropriate type_hash table,
14630 or return NULL if DIE does not have a saved type. */
14631
14632 static struct type *
14633 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
14634 {
14635 return get_die_type_at_offset (die->offset, cu->per_cu);
14636 }
14637
14638 /* Add a dependence relationship from CU to REF_PER_CU. */
14639
14640 static void
14641 dwarf2_add_dependence (struct dwarf2_cu *cu,
14642 struct dwarf2_per_cu_data *ref_per_cu)
14643 {
14644 void **slot;
14645
14646 if (cu->dependencies == NULL)
14647 cu->dependencies
14648 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
14649 NULL, &cu->comp_unit_obstack,
14650 hashtab_obstack_allocate,
14651 dummy_obstack_deallocate);
14652
14653 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
14654 if (*slot == NULL)
14655 *slot = ref_per_cu;
14656 }
14657
14658 /* Subroutine of dwarf2_mark to pass to htab_traverse.
14659 Set the mark field in every compilation unit in the
14660 cache that we must keep because we are keeping CU. */
14661
14662 static int
14663 dwarf2_mark_helper (void **slot, void *data)
14664 {
14665 struct dwarf2_per_cu_data *per_cu;
14666
14667 per_cu = (struct dwarf2_per_cu_data *) *slot;
14668 if (per_cu->cu->mark)
14669 return 1;
14670 per_cu->cu->mark = 1;
14671
14672 if (per_cu->cu->dependencies != NULL)
14673 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
14674
14675 return 1;
14676 }
14677
14678 /* Set the mark field in CU and in every other compilation unit in the
14679 cache that we must keep because we are keeping CU. */
14680
14681 static void
14682 dwarf2_mark (struct dwarf2_cu *cu)
14683 {
14684 if (cu->mark)
14685 return;
14686 cu->mark = 1;
14687 if (cu->dependencies != NULL)
14688 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
14689 }
14690
14691 static void
14692 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
14693 {
14694 while (per_cu)
14695 {
14696 per_cu->cu->mark = 0;
14697 per_cu = per_cu->cu->read_in_chain;
14698 }
14699 }
14700
14701 /* Trivial hash function for partial_die_info: the hash value of a DIE
14702 is its offset in .debug_info for this objfile. */
14703
14704 static hashval_t
14705 partial_die_hash (const void *item)
14706 {
14707 const struct partial_die_info *part_die = item;
14708
14709 return part_die->offset;
14710 }
14711
14712 /* Trivial comparison function for partial_die_info structures: two DIEs
14713 are equal if they have the same offset. */
14714
14715 static int
14716 partial_die_eq (const void *item_lhs, const void *item_rhs)
14717 {
14718 const struct partial_die_info *part_die_lhs = item_lhs;
14719 const struct partial_die_info *part_die_rhs = item_rhs;
14720
14721 return part_die_lhs->offset == part_die_rhs->offset;
14722 }
14723
14724 static struct cmd_list_element *set_dwarf2_cmdlist;
14725 static struct cmd_list_element *show_dwarf2_cmdlist;
14726
14727 static void
14728 set_dwarf2_cmd (char *args, int from_tty)
14729 {
14730 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
14731 }
14732
14733 static void
14734 show_dwarf2_cmd (char *args, int from_tty)
14735 {
14736 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
14737 }
14738
14739 /* If section described by INFO was mmapped, munmap it now. */
14740
14741 static void
14742 munmap_section_buffer (struct dwarf2_section_info *info)
14743 {
14744 if (info->was_mmapped)
14745 {
14746 #ifdef HAVE_MMAP
14747 intptr_t begin = (intptr_t) info->buffer;
14748 intptr_t map_begin = begin & ~(pagesize - 1);
14749 size_t map_length = info->size + begin - map_begin;
14750
14751 gdb_assert (munmap ((void *) map_begin, map_length) == 0);
14752 #else
14753 /* Without HAVE_MMAP, we should never be here to begin with. */
14754 gdb_assert_not_reached ("no mmap support");
14755 #endif
14756 }
14757 }
14758
14759 /* munmap debug sections for OBJFILE, if necessary. */
14760
14761 static void
14762 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
14763 {
14764 struct dwarf2_per_objfile *data = d;
14765
14766 /* This is sorted according to the order they're defined in to make it easier
14767 to keep in sync. */
14768 munmap_section_buffer (&data->info);
14769 munmap_section_buffer (&data->abbrev);
14770 munmap_section_buffer (&data->line);
14771 munmap_section_buffer (&data->loc);
14772 munmap_section_buffer (&data->macinfo);
14773 munmap_section_buffer (&data->str);
14774 munmap_section_buffer (&data->ranges);
14775 munmap_section_buffer (&data->types);
14776 munmap_section_buffer (&data->frame);
14777 munmap_section_buffer (&data->eh_frame);
14778 munmap_section_buffer (&data->gdb_index);
14779 }
14780
14781 \f
14782
14783 /* The contents of the hash table we create when building the string
14784 table. */
14785 struct strtab_entry
14786 {
14787 offset_type offset;
14788 const char *str;
14789 };
14790
14791 /* Hash function for a strtab_entry. */
14792
14793 static hashval_t
14794 hash_strtab_entry (const void *e)
14795 {
14796 const struct strtab_entry *entry = e;
14797 return mapped_index_string_hash (entry->str);
14798 }
14799
14800 /* Equality function for a strtab_entry. */
14801
14802 static int
14803 eq_strtab_entry (const void *a, const void *b)
14804 {
14805 const struct strtab_entry *ea = a;
14806 const struct strtab_entry *eb = b;
14807 return !strcmp (ea->str, eb->str);
14808 }
14809
14810 /* Create a strtab_entry hash table. */
14811
14812 static htab_t
14813 create_strtab (void)
14814 {
14815 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
14816 xfree, xcalloc, xfree);
14817 }
14818
14819 /* Add a string to the constant pool. Return the string's offset in
14820 host order. */
14821
14822 static offset_type
14823 add_string (htab_t table, struct obstack *cpool, const char *str)
14824 {
14825 void **slot;
14826 struct strtab_entry entry;
14827 struct strtab_entry *result;
14828
14829 entry.str = str;
14830 slot = htab_find_slot (table, &entry, INSERT);
14831 if (*slot)
14832 result = *slot;
14833 else
14834 {
14835 result = XNEW (struct strtab_entry);
14836 result->offset = obstack_object_size (cpool);
14837 result->str = str;
14838 obstack_grow_str0 (cpool, str);
14839 *slot = result;
14840 }
14841 return result->offset;
14842 }
14843
14844 /* An entry in the symbol table. */
14845 struct symtab_index_entry
14846 {
14847 /* The name of the symbol. */
14848 const char *name;
14849 /* The offset of the name in the constant pool. */
14850 offset_type index_offset;
14851 /* A sorted vector of the indices of all the CUs that hold an object
14852 of this name. */
14853 VEC (offset_type) *cu_indices;
14854 };
14855
14856 /* The symbol table. This is a power-of-2-sized hash table. */
14857 struct mapped_symtab
14858 {
14859 offset_type n_elements;
14860 offset_type size;
14861 struct symtab_index_entry **data;
14862 };
14863
14864 /* Hash function for a symtab_index_entry. */
14865
14866 static hashval_t
14867 hash_symtab_entry (const void *e)
14868 {
14869 const struct symtab_index_entry *entry = e;
14870 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
14871 sizeof (offset_type) * VEC_length (offset_type,
14872 entry->cu_indices),
14873 0);
14874 }
14875
14876 /* Equality function for a symtab_index_entry. */
14877
14878 static int
14879 eq_symtab_entry (const void *a, const void *b)
14880 {
14881 const struct symtab_index_entry *ea = a;
14882 const struct symtab_index_entry *eb = b;
14883 int len = VEC_length (offset_type, ea->cu_indices);
14884 if (len != VEC_length (offset_type, eb->cu_indices))
14885 return 0;
14886 return !memcmp (VEC_address (offset_type, ea->cu_indices),
14887 VEC_address (offset_type, eb->cu_indices),
14888 sizeof (offset_type) * len);
14889 }
14890
14891 /* Destroy a symtab_index_entry. */
14892
14893 static void
14894 delete_symtab_entry (void *p)
14895 {
14896 struct symtab_index_entry *entry = p;
14897 VEC_free (offset_type, entry->cu_indices);
14898 xfree (entry);
14899 }
14900
14901 /* Create a hash table holding symtab_index_entry objects. */
14902
14903 static htab_t
14904 create_symbol_hash_table (void)
14905 {
14906 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
14907 delete_symtab_entry, xcalloc, xfree);
14908 }
14909
14910 /* Create a new mapped symtab object. */
14911
14912 static struct mapped_symtab *
14913 create_mapped_symtab (void)
14914 {
14915 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
14916 symtab->n_elements = 0;
14917 symtab->size = 1024;
14918 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
14919 return symtab;
14920 }
14921
14922 /* Destroy a mapped_symtab. */
14923
14924 static void
14925 cleanup_mapped_symtab (void *p)
14926 {
14927 struct mapped_symtab *symtab = p;
14928 /* The contents of the array are freed when the other hash table is
14929 destroyed. */
14930 xfree (symtab->data);
14931 xfree (symtab);
14932 }
14933
14934 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
14935 the slot. */
14936
14937 static struct symtab_index_entry **
14938 find_slot (struct mapped_symtab *symtab, const char *name)
14939 {
14940 offset_type index, step, hash = mapped_index_string_hash (name);
14941
14942 index = hash & (symtab->size - 1);
14943 step = ((hash * 17) & (symtab->size - 1)) | 1;
14944
14945 for (;;)
14946 {
14947 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
14948 return &symtab->data[index];
14949 index = (index + step) & (symtab->size - 1);
14950 }
14951 }
14952
14953 /* Expand SYMTAB's hash table. */
14954
14955 static void
14956 hash_expand (struct mapped_symtab *symtab)
14957 {
14958 offset_type old_size = symtab->size;
14959 offset_type i;
14960 struct symtab_index_entry **old_entries = symtab->data;
14961
14962 symtab->size *= 2;
14963 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
14964
14965 for (i = 0; i < old_size; ++i)
14966 {
14967 if (old_entries[i])
14968 {
14969 struct symtab_index_entry **slot = find_slot (symtab,
14970 old_entries[i]->name);
14971 *slot = old_entries[i];
14972 }
14973 }
14974
14975 xfree (old_entries);
14976 }
14977
14978 /* Add an entry to SYMTAB. NAME is the name of the symbol. CU_INDEX
14979 is the index of the CU in which the symbol appears. */
14980
14981 static void
14982 add_index_entry (struct mapped_symtab *symtab, const char *name,
14983 offset_type cu_index)
14984 {
14985 struct symtab_index_entry **slot;
14986
14987 ++symtab->n_elements;
14988 if (4 * symtab->n_elements / 3 >= symtab->size)
14989 hash_expand (symtab);
14990
14991 slot = find_slot (symtab, name);
14992 if (!*slot)
14993 {
14994 *slot = XNEW (struct symtab_index_entry);
14995 (*slot)->name = name;
14996 (*slot)->cu_indices = NULL;
14997 }
14998 /* Don't push an index twice. Due to how we add entries we only
14999 have to check the last one. */
15000 if (VEC_empty (offset_type, (*slot)->cu_indices)
15001 || VEC_length (offset_type, (*slot)->cu_indices) != cu_index)
15002 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index);
15003 }
15004
15005 /* Add a vector of indices to the constant pool. */
15006
15007 static offset_type
15008 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
15009 struct symtab_index_entry *entry)
15010 {
15011 void **slot;
15012
15013 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
15014 if (!*slot)
15015 {
15016 offset_type len = VEC_length (offset_type, entry->cu_indices);
15017 offset_type val = MAYBE_SWAP (len);
15018 offset_type iter;
15019 int i;
15020
15021 *slot = entry;
15022 entry->index_offset = obstack_object_size (cpool);
15023
15024 obstack_grow (cpool, &val, sizeof (val));
15025 for (i = 0;
15026 VEC_iterate (offset_type, entry->cu_indices, i, iter);
15027 ++i)
15028 {
15029 val = MAYBE_SWAP (iter);
15030 obstack_grow (cpool, &val, sizeof (val));
15031 }
15032 }
15033 else
15034 {
15035 struct symtab_index_entry *old_entry = *slot;
15036 entry->index_offset = old_entry->index_offset;
15037 entry = old_entry;
15038 }
15039 return entry->index_offset;
15040 }
15041
15042 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
15043 constant pool entries going into the obstack CPOOL. */
15044
15045 static void
15046 write_hash_table (struct mapped_symtab *symtab,
15047 struct obstack *output, struct obstack *cpool)
15048 {
15049 offset_type i;
15050 htab_t symbol_hash_table;
15051 htab_t str_table;
15052
15053 symbol_hash_table = create_symbol_hash_table ();
15054 str_table = create_strtab ();
15055
15056 /* We add all the index vectors to the constant pool first, to
15057 ensure alignment is ok. */
15058 for (i = 0; i < symtab->size; ++i)
15059 {
15060 if (symtab->data[i])
15061 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
15062 }
15063
15064 /* Now write out the hash table. */
15065 for (i = 0; i < symtab->size; ++i)
15066 {
15067 offset_type str_off, vec_off;
15068
15069 if (symtab->data[i])
15070 {
15071 str_off = add_string (str_table, cpool, symtab->data[i]->name);
15072 vec_off = symtab->data[i]->index_offset;
15073 }
15074 else
15075 {
15076 /* While 0 is a valid constant pool index, it is not valid
15077 to have 0 for both offsets. */
15078 str_off = 0;
15079 vec_off = 0;
15080 }
15081
15082 str_off = MAYBE_SWAP (str_off);
15083 vec_off = MAYBE_SWAP (vec_off);
15084
15085 obstack_grow (output, &str_off, sizeof (str_off));
15086 obstack_grow (output, &vec_off, sizeof (vec_off));
15087 }
15088
15089 htab_delete (str_table);
15090 htab_delete (symbol_hash_table);
15091 }
15092
15093 /* Write an address entry to ADDR_OBSTACK. The addresses are taken
15094 from PST; CU_INDEX is the index of the CU in the vector of all
15095 CUs. */
15096
15097 static void
15098 add_address_entry (struct objfile *objfile,
15099 struct obstack *addr_obstack, struct partial_symtab *pst,
15100 unsigned int cu_index)
15101 {
15102 offset_type offset;
15103 char addr[8];
15104 CORE_ADDR baseaddr;
15105
15106 /* Don't bother recording empty ranges. */
15107 if (pst->textlow == pst->texthigh)
15108 return;
15109
15110 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
15111
15112 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, pst->textlow - baseaddr);
15113 obstack_grow (addr_obstack, addr, 8);
15114 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, pst->texthigh - baseaddr);
15115 obstack_grow (addr_obstack, addr, 8);
15116 offset = MAYBE_SWAP (cu_index);
15117 obstack_grow (addr_obstack, &offset, sizeof (offset_type));
15118 }
15119
15120 /* Add a list of partial symbols to SYMTAB. */
15121
15122 static void
15123 write_psymbols (struct mapped_symtab *symtab,
15124 htab_t psyms_seen,
15125 struct partial_symbol **psymp,
15126 int count,
15127 offset_type cu_index,
15128 int is_static)
15129 {
15130 for (; count-- > 0; ++psymp)
15131 {
15132 void **slot, *lookup;
15133
15134 if (SYMBOL_LANGUAGE (*psymp) == language_ada)
15135 error (_("Ada is not currently supported by the index"));
15136
15137 /* We only want to add a given psymbol once. However, we also
15138 want to account for whether it is global or static. So, we
15139 may add it twice, using slightly different values. */
15140 if (is_static)
15141 {
15142 uintptr_t val = 1 | (uintptr_t) *psymp;
15143
15144 lookup = (void *) val;
15145 }
15146 else
15147 lookup = *psymp;
15148
15149 /* Only add a given psymbol once. */
15150 slot = htab_find_slot (psyms_seen, lookup, INSERT);
15151 if (!*slot)
15152 {
15153 *slot = lookup;
15154 add_index_entry (symtab, SYMBOL_NATURAL_NAME (*psymp), cu_index);
15155 }
15156 }
15157 }
15158
15159 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
15160 exception if there is an error. */
15161
15162 static void
15163 write_obstack (FILE *file, struct obstack *obstack)
15164 {
15165 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
15166 file)
15167 != obstack_object_size (obstack))
15168 error (_("couldn't data write to file"));
15169 }
15170
15171 /* Unlink a file if the argument is not NULL. */
15172
15173 static void
15174 unlink_if_set (void *p)
15175 {
15176 char **filename = p;
15177 if (*filename)
15178 unlink (*filename);
15179 }
15180
15181 /* A helper struct used when iterating over debug_types. */
15182 struct signatured_type_index_data
15183 {
15184 struct objfile *objfile;
15185 struct mapped_symtab *symtab;
15186 struct obstack *types_list;
15187 htab_t psyms_seen;
15188 int cu_index;
15189 };
15190
15191 /* A helper function that writes a single signatured_type to an
15192 obstack. */
15193
15194 static int
15195 write_one_signatured_type (void **slot, void *d)
15196 {
15197 struct signatured_type_index_data *info = d;
15198 struct signatured_type *entry = (struct signatured_type *) *slot;
15199 struct dwarf2_per_cu_data *per_cu = &entry->per_cu;
15200 struct partial_symtab *psymtab = per_cu->v.psymtab;
15201 gdb_byte val[8];
15202
15203 write_psymbols (info->symtab,
15204 info->psyms_seen,
15205 info->objfile->global_psymbols.list + psymtab->globals_offset,
15206 psymtab->n_global_syms, info->cu_index,
15207 0);
15208 write_psymbols (info->symtab,
15209 info->psyms_seen,
15210 info->objfile->static_psymbols.list + psymtab->statics_offset,
15211 psymtab->n_static_syms, info->cu_index,
15212 1);
15213
15214 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->offset);
15215 obstack_grow (info->types_list, val, 8);
15216 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->type_offset);
15217 obstack_grow (info->types_list, val, 8);
15218 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
15219 obstack_grow (info->types_list, val, 8);
15220
15221 ++info->cu_index;
15222
15223 return 1;
15224 }
15225
15226 /* A cleanup function for an htab_t. */
15227
15228 static void
15229 cleanup_htab (void *arg)
15230 {
15231 htab_delete (arg);
15232 }
15233
15234 /* Create an index file for OBJFILE in the directory DIR. */
15235
15236 static void
15237 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
15238 {
15239 struct cleanup *cleanup;
15240 char *filename, *cleanup_filename;
15241 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
15242 struct obstack cu_list, types_cu_list;
15243 int i;
15244 FILE *out_file;
15245 struct mapped_symtab *symtab;
15246 offset_type val, size_of_contents, total_len;
15247 struct stat st;
15248 char buf[8];
15249 htab_t psyms_seen;
15250
15251 if (!objfile->psymtabs)
15252 return;
15253 if (dwarf2_per_objfile->using_index)
15254 error (_("Cannot use an index to create the index"));
15255
15256 if (stat (objfile->name, &st) < 0)
15257 perror_with_name (_("Could not stat"));
15258
15259 filename = concat (dir, SLASH_STRING, lbasename (objfile->name),
15260 INDEX_SUFFIX, (char *) NULL);
15261 cleanup = make_cleanup (xfree, filename);
15262
15263 out_file = fopen (filename, "wb");
15264 if (!out_file)
15265 error (_("Can't open `%s' for writing"), filename);
15266
15267 cleanup_filename = filename;
15268 make_cleanup (unlink_if_set, &cleanup_filename);
15269
15270 symtab = create_mapped_symtab ();
15271 make_cleanup (cleanup_mapped_symtab, symtab);
15272
15273 obstack_init (&addr_obstack);
15274 make_cleanup_obstack_free (&addr_obstack);
15275
15276 obstack_init (&cu_list);
15277 make_cleanup_obstack_free (&cu_list);
15278
15279 obstack_init (&types_cu_list);
15280 make_cleanup_obstack_free (&types_cu_list);
15281
15282 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
15283 NULL, xcalloc, xfree);
15284 make_cleanup (cleanup_htab, psyms_seen);
15285
15286 /* The list is already sorted, so we don't need to do additional
15287 work here. Also, the debug_types entries do not appear in
15288 all_comp_units, but only in their own hash table. */
15289 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
15290 {
15291 struct dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->all_comp_units[i];
15292 struct partial_symtab *psymtab = per_cu->v.psymtab;
15293 gdb_byte val[8];
15294
15295 write_psymbols (symtab,
15296 psyms_seen,
15297 objfile->global_psymbols.list + psymtab->globals_offset,
15298 psymtab->n_global_syms, i,
15299 0);
15300 write_psymbols (symtab,
15301 psyms_seen,
15302 objfile->static_psymbols.list + psymtab->statics_offset,
15303 psymtab->n_static_syms, i,
15304 1);
15305
15306 add_address_entry (objfile, &addr_obstack, psymtab, i);
15307
15308 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->offset);
15309 obstack_grow (&cu_list, val, 8);
15310 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
15311 obstack_grow (&cu_list, val, 8);
15312 }
15313
15314 /* Write out the .debug_type entries, if any. */
15315 if (dwarf2_per_objfile->signatured_types)
15316 {
15317 struct signatured_type_index_data sig_data;
15318
15319 sig_data.objfile = objfile;
15320 sig_data.symtab = symtab;
15321 sig_data.types_list = &types_cu_list;
15322 sig_data.psyms_seen = psyms_seen;
15323 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
15324 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
15325 write_one_signatured_type, &sig_data);
15326 }
15327
15328 obstack_init (&constant_pool);
15329 make_cleanup_obstack_free (&constant_pool);
15330 obstack_init (&symtab_obstack);
15331 make_cleanup_obstack_free (&symtab_obstack);
15332 write_hash_table (symtab, &symtab_obstack, &constant_pool);
15333
15334 obstack_init (&contents);
15335 make_cleanup_obstack_free (&contents);
15336 size_of_contents = 6 * sizeof (offset_type);
15337 total_len = size_of_contents;
15338
15339 /* The version number. */
15340 val = MAYBE_SWAP (3);
15341 obstack_grow (&contents, &val, sizeof (val));
15342
15343 /* The offset of the CU list from the start of the file. */
15344 val = MAYBE_SWAP (total_len);
15345 obstack_grow (&contents, &val, sizeof (val));
15346 total_len += obstack_object_size (&cu_list);
15347
15348 /* The offset of the types CU list from the start of the file. */
15349 val = MAYBE_SWAP (total_len);
15350 obstack_grow (&contents, &val, sizeof (val));
15351 total_len += obstack_object_size (&types_cu_list);
15352
15353 /* The offset of the address table from the start of the file. */
15354 val = MAYBE_SWAP (total_len);
15355 obstack_grow (&contents, &val, sizeof (val));
15356 total_len += obstack_object_size (&addr_obstack);
15357
15358 /* The offset of the symbol table from the start of the file. */
15359 val = MAYBE_SWAP (total_len);
15360 obstack_grow (&contents, &val, sizeof (val));
15361 total_len += obstack_object_size (&symtab_obstack);
15362
15363 /* The offset of the constant pool from the start of the file. */
15364 val = MAYBE_SWAP (total_len);
15365 obstack_grow (&contents, &val, sizeof (val));
15366 total_len += obstack_object_size (&constant_pool);
15367
15368 gdb_assert (obstack_object_size (&contents) == size_of_contents);
15369
15370 write_obstack (out_file, &contents);
15371 write_obstack (out_file, &cu_list);
15372 write_obstack (out_file, &types_cu_list);
15373 write_obstack (out_file, &addr_obstack);
15374 write_obstack (out_file, &symtab_obstack);
15375 write_obstack (out_file, &constant_pool);
15376
15377 fclose (out_file);
15378
15379 /* We want to keep the file, so we set cleanup_filename to NULL
15380 here. See unlink_if_set. */
15381 cleanup_filename = NULL;
15382
15383 do_cleanups (cleanup);
15384 }
15385
15386 /* The mapped index file format is designed to be directly mmap()able
15387 on any architecture. In most cases, a datum is represented using a
15388 little-endian 32-bit integer value, called an offset_type. Big
15389 endian machines must byte-swap the values before using them.
15390 Exceptions to this rule are noted. The data is laid out such that
15391 alignment is always respected.
15392
15393 A mapped index consists of several sections.
15394
15395 1. The file header. This is a sequence of values, of offset_type
15396 unless otherwise noted:
15397
15398 [0] The version number, currently 3. Versions 1 and 2 are
15399 obsolete.
15400 [1] The offset, from the start of the file, of the CU list.
15401 [2] The offset, from the start of the file, of the types CU list.
15402 Note that this section can be empty, in which case this offset will
15403 be equal to the next offset.
15404 [3] The offset, from the start of the file, of the address section.
15405 [4] The offset, from the start of the file, of the symbol table.
15406 [5] The offset, from the start of the file, of the constant pool.
15407
15408 2. The CU list. This is a sequence of pairs of 64-bit
15409 little-endian values, sorted by the CU offset. The first element
15410 in each pair is the offset of a CU in the .debug_info section. The
15411 second element in each pair is the length of that CU. References
15412 to a CU elsewhere in the map are done using a CU index, which is
15413 just the 0-based index into this table. Note that if there are
15414 type CUs, then conceptually CUs and type CUs form a single list for
15415 the purposes of CU indices.
15416
15417 3. The types CU list. This is a sequence of triplets of 64-bit
15418 little-endian values. In a triplet, the first value is the CU
15419 offset, the second value is the type offset in the CU, and the
15420 third value is the type signature. The types CU list is not
15421 sorted.
15422
15423 4. The address section. The address section consists of a sequence
15424 of address entries. Each address entry has three elements.
15425 [0] The low address. This is a 64-bit little-endian value.
15426 [1] The high address. This is a 64-bit little-endian value.
15427 [2] The CU index. This is an offset_type value.
15428
15429 5. The symbol table. This is a hash table. The size of the hash
15430 table is always a power of 2. The initial hash and the step are
15431 currently defined by the `find_slot' function.
15432
15433 Each slot in the hash table consists of a pair of offset_type
15434 values. The first value is the offset of the symbol's name in the
15435 constant pool. The second value is the offset of the CU vector in
15436 the constant pool.
15437
15438 If both values are 0, then this slot in the hash table is empty.
15439 This is ok because while 0 is a valid constant pool index, it
15440 cannot be a valid index for both a string and a CU vector.
15441
15442 A string in the constant pool is stored as a \0-terminated string,
15443 as you'd expect.
15444
15445 A CU vector in the constant pool is a sequence of offset_type
15446 values. The first value is the number of CU indices in the vector.
15447 Each subsequent value is the index of a CU in the CU list. This
15448 element in the hash table is used to indicate which CUs define the
15449 symbol.
15450
15451 6. The constant pool. This is simply a bunch of bytes. It is
15452 organized so that alignment is correct: CU vectors are stored
15453 first, followed by strings. */
15454
15455 static void
15456 save_gdb_index_command (char *arg, int from_tty)
15457 {
15458 struct objfile *objfile;
15459
15460 if (!arg || !*arg)
15461 error (_("usage: save gdb-index DIRECTORY"));
15462
15463 ALL_OBJFILES (objfile)
15464 {
15465 struct stat st;
15466
15467 /* If the objfile does not correspond to an actual file, skip it. */
15468 if (stat (objfile->name, &st) < 0)
15469 continue;
15470
15471 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
15472 if (dwarf2_per_objfile)
15473 {
15474 volatile struct gdb_exception except;
15475
15476 TRY_CATCH (except, RETURN_MASK_ERROR)
15477 {
15478 write_psymtabs_to_index (objfile, arg);
15479 }
15480 if (except.reason < 0)
15481 exception_fprintf (gdb_stderr, except,
15482 _("Error while writing index for `%s': "),
15483 objfile->name);
15484 }
15485 }
15486 }
15487
15488 \f
15489
15490 int dwarf2_always_disassemble;
15491
15492 static void
15493 show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
15494 struct cmd_list_element *c, const char *value)
15495 {
15496 fprintf_filtered (file, _("\
15497 Whether to always disassemble DWARF expressions is %s.\n"),
15498 value);
15499 }
15500
15501 void _initialize_dwarf2_read (void);
15502
15503 void
15504 _initialize_dwarf2_read (void)
15505 {
15506 struct cmd_list_element *c;
15507
15508 dwarf2_objfile_data_key
15509 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
15510
15511 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
15512 Set DWARF 2 specific variables.\n\
15513 Configure DWARF 2 variables such as the cache size"),
15514 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
15515 0/*allow-unknown*/, &maintenance_set_cmdlist);
15516
15517 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
15518 Show DWARF 2 specific variables\n\
15519 Show DWARF 2 variables such as the cache size"),
15520 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
15521 0/*allow-unknown*/, &maintenance_show_cmdlist);
15522
15523 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
15524 &dwarf2_max_cache_age, _("\
15525 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
15526 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
15527 A higher limit means that cached compilation units will be stored\n\
15528 in memory longer, and more total memory will be used. Zero disables\n\
15529 caching, which can slow down startup."),
15530 NULL,
15531 show_dwarf2_max_cache_age,
15532 &set_dwarf2_cmdlist,
15533 &show_dwarf2_cmdlist);
15534
15535 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
15536 &dwarf2_always_disassemble, _("\
15537 Set whether `info address' always disassembles DWARF expressions."), _("\
15538 Show whether `info address' always disassembles DWARF expressions."), _("\
15539 When enabled, DWARF expressions are always printed in an assembly-like\n\
15540 syntax. When disabled, expressions will be printed in a more\n\
15541 conversational style, when possible."),
15542 NULL,
15543 show_dwarf2_always_disassemble,
15544 &set_dwarf2_cmdlist,
15545 &show_dwarf2_cmdlist);
15546
15547 add_setshow_zinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
15548 Set debugging of the dwarf2 DIE reader."), _("\
15549 Show debugging of the dwarf2 DIE reader."), _("\
15550 When enabled (non-zero), DIEs are dumped after they are read in.\n\
15551 The value is the maximum depth to print."),
15552 NULL,
15553 NULL,
15554 &setdebuglist, &showdebuglist);
15555
15556 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
15557 _("\
15558 Save a .gdb-index file.\n\
15559 Usage: save gdb-index DIRECTORY"),
15560 &save_cmdlist);
15561 set_cmd_completer (c, filename_completer);
15562 }
This page took 0.457722 seconds and 4 git commands to generate.